Appendix 9D

Fireball Equations

Appendix 9D : Fireball Equations

Fireball equations used:

Fireball Equations

$$
\begin{aligned}
& \mathrm{D}=58 \mathrm{M}^{\wedge} .3333 \\
& \mathrm{~T}=4.5 \mathrm{M}^{\wedge} .333 \\
& \mathrm{~T}=8.2 \mathrm{M}^{\wedge} .167
\end{aligned}
$$

Emissive $q=235 p^{\wedge} 0.39$ power
based on Crossthwaite
D = Fireball Dia m $\mathrm{M}=$ mass in Fireball (te)
$M<=37$ te
$\mathrm{T}=$ Fireball Duration (s)
$\mathrm{M}=$ mass in Fireball (te)
$M>37$ te
$\mathrm{T}=$ Fireball Duration (s)
based on saturated vapour pressure
$\mathrm{P}=$ Vessel burst pressure (MPa)
Config $F=\left(R^{\wedge} 2 \times X^{\wedge} 2\right) /\left(R^{\wedge} 2+X^{\wedge} 2\right) \wedge 1.5$
$R=$ Fireball radius (m)
$X=$ distance from source (m)
Transmis

$$
\text { Tatm }=1-0.0565 \ln (X-R)
$$

Outdoor
Radiation $\quad \mathrm{I}=\mathrm{q} \times \mathrm{F} \times$ Tatm
Indoor
Radiation
Probit

$$
\mathrm{li}=3150 \times\left(\mathrm{R}^{\wedge} 2 / \mathrm{X}^{\wedge} 2\right)-150
$$

$$
\mathrm{Y}=-14.9+2.56^{*} \mathrm{LN}(\mathrm{~V})
$$

$\mathrm{Y}=$ Probit for fatal response
$\mathrm{V}=$ thermal radiation dose $\quad(\mathrm{kW} / \mathrm{m} 2)^{\wedge} 1.33 \mathrm{~s}$
If $\mathrm{V}>=3000 \quad$ then $\mathrm{Y}=8$
100% fatalities assumed within fireball
The above equations were incorporated into a spreadsheet model which calculated 50% fatality levels and provided data for the RiskProf lethality file.
The 50% fatality distance corresponds to the Fireball radius with 100% fatality assumed at lesser distances. Fatality rates among the exposed population are calculated from Riskprof's lethality files based on the probit function for the actual distance involved. The percentage of fatalities will be 100% up to the fireball radius, 50% at the radius and correspondingly less as the fireball radius is exceeded.

