香港電燈有限公司 The Hongkong Electric Co., Ltd.

ENVIRONMENTAL IMPACT ASSESSMENT (EIA) ORDINANCE, CAP. 499

ENVIRONMENTAL PERMIT NO. EP-083/2000

LAMMA POWER STATION CONVERSION OF TWO EXISTING GAS TURBINES (GT5 & GT7) INTO A COMBINED CYCLE UNIT ENVIRONMENTAL MONITORING & AUDIT PROGRAMME AT OPERATIONAL PHASE

Report Title	Monthly EM&A Report (January 2014)
Date	12 February 2014
Certified by	Calla
Verified by	Mr. Y T Tang (AECOM Asia Company Limited, Independent Environmental Checker)

TABLE OF CONTENT

EXECUTIVE SUMMARY

1.	INTRODUCTION	1
1.1	Background	1
1.2	Project Organisation	1
1.3	Plant Availability	2
1.4	Malfunction / Outage Record of Pollution Control Equipment	2
1.5	Summary of EM&A Requirements	2
2.	AIR QUALITY	5
2.1	Monitoring Requirements	5
2.2	Summary of Results And Observations	5
3.	WATER QUALITY MONITORING	6
3.1	Monitoring Requirements	6
3.2	Summary of Results And Observations	6
4.	ENVIRONMENTAL AUDIT	7
4.1	Review of Environmental Monitoring Procedures	7
4.2	Assessment of Environmental Monitoring Results	7
4.3	Status of Environmental Licensing and Permitting	8
4.4	Implementation Status of Environmental Mitigation Measures	9
4.5	Implementation Status of Event/Action Plans	9
4.6	Implementation Status of Environmental Complaint Handling Procedures	10
5.	FUTURE KEY ISSUES	11
5.1	Outage Plan for the coming 3 months	11
5.2	Key issues for the coming month	11
6.	CONCLUSION	12

LIST OF TABLES

Table 2.1	Air Quality Monitoring Parameters and Frequency
Table 3.1	Water Quality Monitoring Parameters and Frequencies for GT57
Table 4.1	Summary of AL Level Exceedances on Monitoring Parameters
Table 4.2	Summary of Environmental Licensing and Permit Status
Table 4.3	Implementation Schedule
Table 4.4	Environmental Complaints / Enquiries Received in January 2014
Table 4.5	Outstanding Environmental Complaints / Enquiries Carried Over

LIST OF FIGURES

Figure 1.1	Location	of GT57	Combined	Cycle	Unit

Figure 1.2 Organization Chart at Operational Phase

APPENDIX

Appendix A Event/Action Plans

Appendix B Action and Limit Levels for Air Quality and Water Quality Monitoring

Appendix C Summary Results and Observations on Air Quality Monitoring

Appendix D Summary Results and Observations on Water Quality Monitoring

EXECUTIVE SUMMARY

This is the January 2014 monthly Environmental Monitoring and Audit (EM&A) report for the Project "Operation of GT57 Combined Cycle Unit" prepared by the Environmental Team (ET). This report presents the results of impact monitoring on air quality and marine water quality for the said project in January 2014.

Air and water quality monitoring were conducted according to the requirement stated in the EM&A manual. The implementation status of the environmental mitigation measures, Event/Action Plan and environmental complaint handling procedures were also checked.

Plant Availability

Unit GT57 was out of service during the following period:

Unit	Period	Remark
GT5	01/01/2014 00:46 hrs to 11/01/2014 05:29 hrs	Defect rectification
GT5	22/01/2014 20:50 hrs to 31/01/2014 23:59 hrs	Unit overhaul
GT7	20/01/2014 00:41 hrs to 31/01/2014 23:59 hrs	Unit overhaul
GT57	22/01/2014 20:13 hrs to 31/01/2014 23:59 hrs	Unit overhaul

Malfunction / Outage Record of Pollution Control Equipment

No malfunction / Outage record in the reporting month.

Environmental Monitoring Works

Environmental monitoring works, as mentioned in the EM&A manual (Operational phase), were performed during the operation of GT57 in the reporting period.

Air Quality

One Action Level exceedance of GT7 stack NOx was recorded on 16/01/2014 at 04:00 hour in the month. Operation Engineers adjusted its loading to mitigate the high NOx problem.

No Limit level exceedance on stack NOx was recorded in the reporting month.

No exceedance on hourly average water injection rate was recorded in the month.

Water Quality

No exceedance of Action and Limit levels for water quality was recorded in the month.

Environmental Licensing and Permitting

Description	Permit/Licence	Valid	Period	Issued To	Date of
	No.	From	То		Issuance
Environmental Permit	EP-083/2000	04/12/2000	-	HEC	04/12/2000
Specified Process Licence issued under APCO	L-7-002(9)	01/01/2013	31/12/2014	HEC	28/12/2012
WPCO discharge licence for L1-L9 and GT57	WT00017775-2013	19/12/2013	30/11/2015	HEC	19/12/2013

Implementation Status of Environmental Mitigation Measures

Environmental mitigation measures were implemented in the reporting month.

Environmental Complaints

No complaint against the Project was received in the reporting month.

Future key issues

Key issues to be considered in the coming month include:

Air Impact

- To monitor the water injection rate continuously.
- To monitor the NOx emission continuously through the GT57 CEM System.
- To monitor the fuel sulphur content of the LGO if the combined cycle unit is run on LGO.

Water Impact

• To continuously carry out the water quality monitoring for GT57 as required by the EM&A manual (Operational phase).

Concluding Remarks

The environmental performance of the project was generally satisfactory.

1. INTRODUCTION

1.1 Background

The Environmental Team (hereinafter called the "ET") was formed within the Hongkong Electric Co. Ltd (HEC) to undertake Environmental Monitoring and Audit for "Operation of GT57 Combined Cycle Unit" (hereinafter called the "Project"). Under the requirements of Section 5 of Environmental Permit EP-083/2000, an EM&A programme for impact environmental monitoring, as set out in the EM&A Manual (Operational Phase), is required to be implemented. In accordance with the EM&A Manual, environmental monitoring of air quality and water quality are required for the Project.

Figure 1.1 shows the location of the GT57 combined cycle unit. Making use of the open area between the existing gas turbines at the south western corner of Lamma Power Station, a steam-cycle bottoming system was installed to recover the waste heat from the exhaust gas of GT5 and GT7 so as to produce an extra output of 115MW and form a combined cycle unit of a gross output of 345MW. The exhaust gas after passing through the heat recovery steam generator (HRSG) is discharged to the atmosphere through the existing stacks of 80m height. Cooling water required for the steam-cycle bottoming system is supplied from additional C.W. pumps and returned to the existing No.1 C.W. outfall for discharge to the sea. As a result of the additional power output generated by the steam cycle, there is a substantial gain in the overall thermal efficiency from about 30% (in a simple cycle GT) to 46% (in a combined cycle GT).

The additional equipment installed for the project include:

- 2 numbers of heat recovery steam generators;
- 1 steam turbine building to house the steam turbine and auxiliaries;
- Generator and unit transformer; and
- 2 numbers of additional C.W. pumps.

This report summarizes the environmental monitoring and audit work for the Project for the month of January 2014.

1.2 Project Organisation

The management structure to oversee the Project, includes the following:

- Environmental Protection Department (The Authority);
- General Manager (Corporate Development) (The official contact person between HEC and EPD);
- Environmental Team Leader (ET);
- Independent Environmental Checker (IEC);
- Environmental Team (ET).

The organization chart for the Operation EM&A programme is shown in Figure 1.2.

1.3 Plant Availability

Unit GT57 was out of service during the following period:

Unit	Period	Remark
GT5	01/01/2014 00:46 hrs to 11/01/2014 05:29 hrs	Defect rectification
GT5 22/01/2014 20:50 hrs to 31/01/2014 23:59 hrs		Unit overhaul
GT7 20/01/2014 00:41 hrs to 31/01/2014 23:59 hrs		Unit overhaul
GT57	22/01/2014 20:13 hrs to 31/01/2014 23:59 hrs	Unit overhaul

1.4 Malfunction / Outage Record of Pollution Control Equipment

No malfunction / Outage record in the reporting month.

1.5 Summary of EM&A Requirements

The EM&A program requires environmental monitoring for air and water quality. The EM&A monitoring work for air quality and water quality are described in Sections 2 and 3 respectively.

The following environmental audits are summarized in Section 4 of the report:

- Environmental monitoring results;
- The status of environmental licensing and permits for the Project;
- The implementation status of environmental protection and pollution control / mitigation measures.

The future key issues for the Project will be reported in Section 5 of this report.

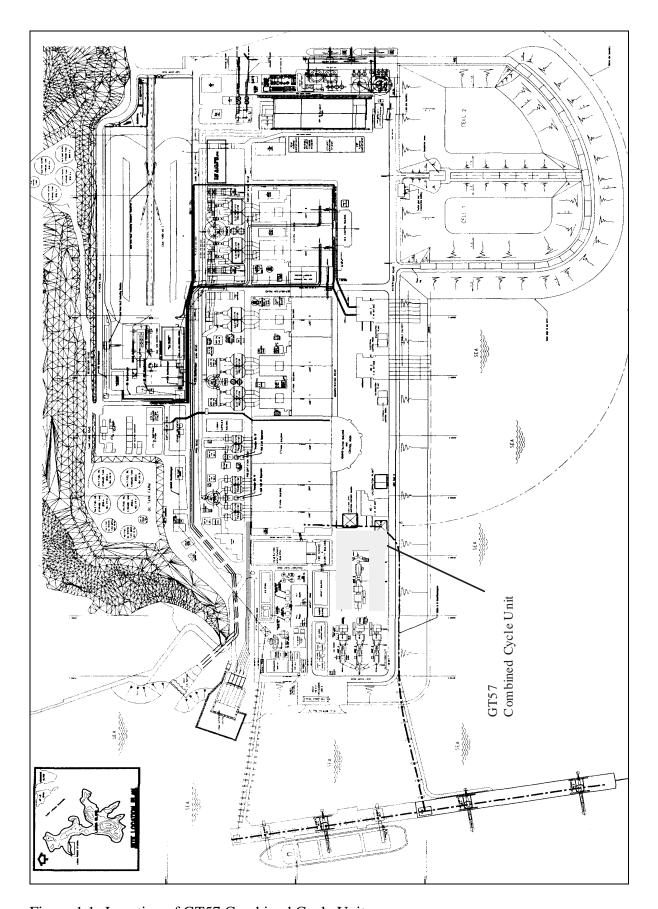


Figure 1.1 Location of GT57 Combined Cycle Unit

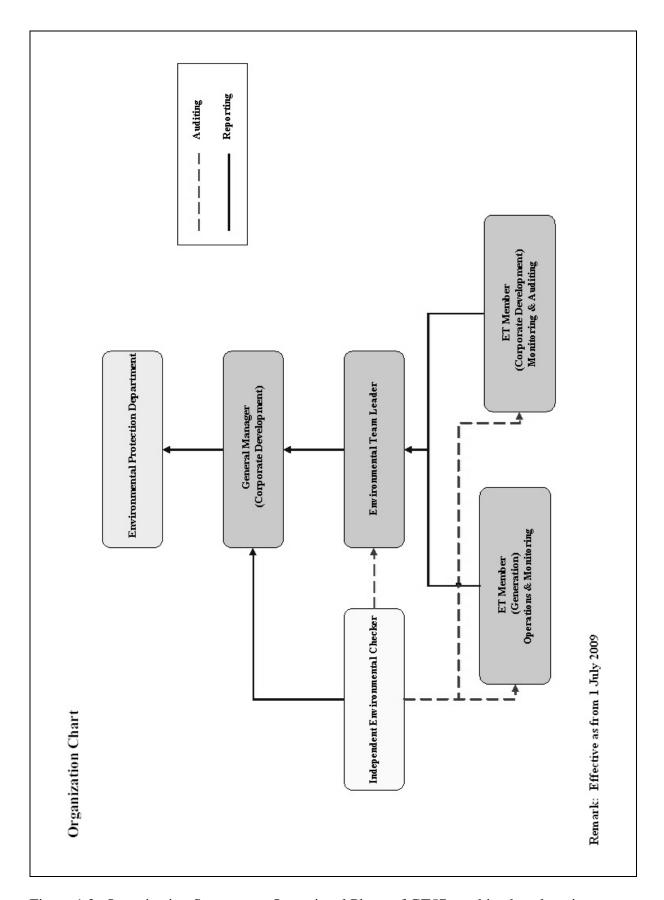


Figure 1.2 Organization Structure at Operational Phase of GT57 combined cycle unit

2. AIR QUALITY

2.1 Monitoring Requirements

In accordance with the EM&A manual (Operational Phase) for GT57 and the requirements stipulated in the Specified Process Licence issued under Air Pollution Control Ordinance, water injection rates, sulphur content of fuel burnt (when GT57 is run on light gas oil) are monitored. Various operation parameters (viz. generation output and fuel consumption) are reported. Water injection rates were checked against the Action/Limit Levels shown in Appendix B.

The monitoring frequency of various parameters is shown in table 2.1 below:

Table 2.1 Air Quality Monitoring Parameters and Frequency

Parameter	Frequency		
Hourly Average Stack NOx	Continuous, when GT57 is operating		
Hourly Average Water Injection Rate	Continuous, when GT57 is operating		
Sulphur content of fuel	Monthly		

2.2 Summary of Results And Observations

Monitoring of various parameters as mentioned in section 2.1 above was conducted during the operation of GT57 in the reporting month. A monthly summary of the data is shown in Appendix C.

Summary of Action/Limit Level Alarm in January 2014

One Action Level exceedance of GT7 stack NOx was recorded on 16/01/2014 at 04:00 hour in the month. Operation Engineers adjusted its loading to mitigate the high NOx problem.

No Limit level exceedance on stack NOx was recorded in the reporting month.

No exceedance of Action and Limit levels for hourly average water injection rate was recorded in the month.

3. WATER QUALITY MONITORING

3.1 Monitoring Requirements

In accordance with the EM&A manual (Operational Phase) for GT57, the monitoring requirements for the EM&A work should strictly follow the discharge licence for L1-L9 & GT57 issued under the Water Pollution Control Ordinance (WPCO). The parameters as stated in table 3.1 were monitored and checked against the Action/Limit Levels as given in Appendix B.

Table 3.1 Water Quality Monitoring Parameters and Frequencies for GT57

Item	Parameters	Frequency*
1	Cooling Water Temperature	Daily
2	Cooling Water Temperature Rise	Daily
3	Total Residual Chlorine	Bi-weekly
4	Grease & Oil from Oil Free Drain	Monthly
5	Temperature of Blowdown Effluent (HRSG)	At least twice per year
6	Suspended Solids from Blowdown Effluent (HRSG)	At least twice per year
7	Grease & Oil from Blowdown Effluent (HRSG)	At least twice per year
8	Scum of foam in ambient water	Daily

Remark: * monitoring will only be carried out when there is operation of the GT57.

3.2 Summary of Results And Observations

Monitoring of various parameters as listed in table 3.1 above were carried out during the operation of GT57 in the reporting month. A monthly summary of the data is shown in Appendix D.

The data recorded for the monitoring parameters were all below their corresponding Action/Limit Levels. No AL level exceedance was recorded in the reporting month. There was no foam present within 500 meters of Hung Sing Ye Beach in the reporting month. Details of the foam observation report are also given in Appendix D. The effluent quality was generally satisfactory.

4. ENVIRONMENTAL AUDIT

4.1 Review of Environmental Monitoring Procedures

The environmental monitoring procedures were regularly reviewed by the Environmental Team. No modification to the existing monitoring procedures was recommended.

4.2 Assessment of Environmental Monitoring Results

Monitoring results for Air Quality and Water Quality

The environmental monitoring results for Air Quality and Water Quality in January 2014 presented in sections 2 and 3 respectively are summarized in Table 4.1.

Table 4.1 Summary of AL Level Exceedances on Monitoring Parameters

Item	Parameter Monitored	Monitoring Period	No Exceeda		Event/Action Plan Implementation Status and
			Action Level	Limit Level	Results
Air					
1	Hourly Average Water Injection Rate	01/01/14- 31/01/14	0	0	
2	Stack NOx	01/01/14- 31/01/14	1 (GT7)	0	Complied. Operations Engineer adjusted GT7 unit loading to mitigate the high NOx problem.
Water					
1	Cooling Water Temperature	01/01/14- 31/01/14	N.A.	0	
2	Cooling Water Temperature Rise	01/01/14- 31/01/14	0	0	
3	Total Residual Chlorine	01/01/14- 31/01/14	0	0	
4	Grease & Oil from Oil Free Drain	01/01/14- 31/01/14	0	0	

Item	Parameter Monitored	Monitoring Period		. of ances In	Event/Action Plan Implementation Status and
			Action Level	Limit Level	Results
5	Temperature of Blowdown Effluent	01/01/14- 31/01/14	N.A.	N.A.*	
6	Suspended Solids from Blowdown Effluent	01/01/14- 31/01/14	N.A.	N.A.*	
7	Grease & Oil from Blowdown Effluent	01/01/14- 31/01/14	N.A.	N.A.*	
8	Inspection of Scum/Foam in ambient water	01/01/14- 31/01/14	0	0	

Note: * Monitoring was not scheduled in the reporting month.

4.3 Status of Environmental Licensing and Permitting

All permits/licenses obtained as of January 2014 are summarised in Table 4.2.

Table 4.2 Summary of Environmental Licensing and Permit Status

Description	Permit /	Valid 1	Status	
	Licence No.	From	To	
Environmental Permit	EP-083/2000	04/12/2000	-	Valid
Specified Process Licence issued under APCO	L-7-002(9)	01/01/2013	31/12/2014	Valid
WPCO Discharge Licence for L1-L9 and GT57	WT00017775-2013	19/12/2013	30/11/2015	Valid

4.4 Implementation Status of Environmental Mitigation Measures

Mitigation measures detailed in the permits and the EM&A Manual (Operational Phase) are required to be implemented. An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is presented below:

Table 4.3 Implementation Schedule

Project Profile Ref.	Mitigation Measures	Implementation Status
19	Use of 0.2% sulphur content for oil-firing of the conversion unit.	Complied (1)
19	Use of acoustic enclosures around major noise sources	Complied

(1) - Only Ultra Low Sulphur Diesel is consumed at Lamma Power Station.

4.5 Implementation Status of Event/Action Plans

The Event/Action Plans for air quality and water quality extracted from the EM&A Manual (Operational Phase) are presented in Appendix A.

As no action/limit level exceedance was recorded, no action has been devised.

4.6 Implementation Status of Environmental Complaint Handling Procedures

In January 2014, no complaint against the Project was received.

Table 4.4 Environmental Complaints / Enquiries Received in January 2014

Case Reference / Date, Time Received / Date, Time Concerned	Descriptions / Actions Taken	Conclusion / Status
Nil	N/A	N/A

Table 4.5 Outstanding Environmental Complaints / Enquiries Carried Over

Case Reference / Date, Time Received / Date, Time Concerned	Descriptions / Actions Taken	Conclusion / Status
Nil	N/A	N/A

5. FUTURE KEY ISSUES

5.1 Outage Plan for the coming 3 months

The major outage plan for the next 3 months is shown below:

Unit	Period	Remark
GT5	01/02/2013 to 18/02/2014	Unit overhaul
GT7	01/02/2013 to 30/03/2014	Unit overhaul
GT57 ST	01/02/2013 to 18/02/2014	Unit overhaul

5.2 Key issues for the coming month

Key issues to be considered in the coming month include:

Air Impact

- To monitor the water injection rate continuously.
- To monitor the NOx emission continuously through the GT57 CEM System.
- To monitor the fuel sulphur content of the LGO if the combined cycle unit is run on LGO.

Water Impact

• To continuously carry out the water quality monitoring for GT57 as required by the EM&A manual (Operational phase).

6. CONCLUSION

Environmental monitoring was performed as required in the reporting month. All monitoring results were checked and reviewed.

No Action/Limit level exceedance on hourly average water injection rate was recorded in the reporting month.

One Action Level exceedance of GT7 stack NOx was recorded on 16/01/2014 at 04:00 hour in the month. Operation Engineers adjusted its loading to mitigate the high NOx problem.

No Limit level exceedance on stack NOx was recorded in the reporting month.

No Action/Limit level exceedance on water quality parameters were recorded in the reporting month.

Environmental mitigation measures recommended in the Project Profile were implemented in the reporting month. No complaint against the Project was received in the reporting month. No prosecution was received for this Project in the reporting period.

The environmental performance of the Project was generally satisfactory.

Appendix A Event / Action Plans

Table A.1 Event and Action Plans for Air Quality

Exceedance	ET Leader	IEC	Operations Engineer
Action Level			
Exceedance of one sample	Identify source; Inform IEC verbally; Repeat measurement to confirm finding.	Check monitoring data submitted by ET and advise ET for any finding.	Rectify any unacceptable practice; Amend any working methods if appropriate.
Exceedance of two or more consecutive samples	Identify source; Inform IEC verbally; Repeat measurement to confirm finding; Increase monitoring frequency; Discuss with Operations Engineers on remedial actions required; If exceedance stops, discontinue additional monitoring.	Check monitoring data submitted by ET and advises ET for any finding; Verify the implementation of the remedial measures;	Discuss with ET on remedial actions required; Implement the agreed remedial actions.
Limit level			
Exceedance of one sample	Repeat measurement to confirm finding; Identify the source(s) of the impact. Verbally advise IEC, and inform the EPD of the exceedance, as soon as practicable; Discuss with Operations Engineers on remedial actions required; Increase monitoring frequency; Assess the effectiveness of the remedial actions and keep IEC and EPD informed of the results.	Check monitoring data submitted by ET and advises ET of any finding; Verify the implementation of the remedial measures.	Take immediate action to avoid further exceedances; Discuss with ET on remedial actions required Implement the agreed remedial actions.
Exceedance of two or more consecutive samples	Identify source; Identify the source(s) of the impact. Verbally advise IEC, and inform EPD of the exceedance as soon as practicable; Repeat measurement to confirm finding; Increase monitoring frequency; Carry out analysis on existing control procedures to determine possible mitigation to be implemented; Discuss with Operations Engineers on the remedial actions to be taken; If exceedance stops, discontinue additional monitoring.	Provide feedback and advise ET/Operations Engineers on the effectiveness of the remedial actions proposed by them; Verify the implementation of the remedial measures	Take immediate action to avoid further exceedance Discuss with ET on remedial actions required; Implement the agreed remedial actions; Stop the unit and check the suspected defective parts if the problem still does not come under control.

Table A.2 Event/Action Plan for Water Quality

Exceedance	ET Leader	IEC	Operations Engineer
Action Level			
Exceedance on one sampling day	Verbally inform IEC; Repeat in-situ measurement to confirm findings; Identify source(s) of impact.	Check monitoring data submitted by ET and advises ET for any findings.	Rectify unacceptable practice; Amend any working methods if appropriate.
Exceedances on more than one consecutive sampling day	Identify source(s) of impact; Verbally inform IEC; Repeat in-situ measurements to confirm findings; Increase monitoring frequency; Discuss with Operations Engineers on remedial actions required; If exceedance stops, discontinue additional monitoring	Check monitoring data submitted by ET and advises ET for any finding; Verify the implementation of the remedial measures.	Discuss with ET on remedial actions required; Implement the agreed remedial actions.
Limit Level			
Exceedance on one sampling day	Repeat measurement to confirm finding; Identify the source(s) of impact. Verbally advise IEC and inform the EPD of the exceedance, as soon as practicable; Discuss with Operations Engineers on remedial actions require; Increase monitoring frequency; Assess the effectiveness of the remedial actions and keep IEC and EPD informed of the results.	Check monitoring data submitted by ET and advises ET for any finding; Verify the implementation of the remedial measures.	Take immediate action to avoid further exceedance; Discuss with ET on remedial actions required; Implement the agreed remedial actions.
Exceedances on more than one consecutive sampling day	Identify the source(s) of impact. Verbally advise IEC, and inform EPD of the exceedance as soon as practicable; Repeat measurement to confirm finding; Increase monitoring frequency; Carry out analysis on existing control procedures to determine possible mitigation to be implemented; Discuss with Operations Engineers on the remedial actions to be taken; If exceedance stops, discontinue additional monitoring.	Provide feedback and advise ET/Operations Engineers on the effectiveness of the remedial actions proposed by them; Verify the implementation of the remedial measures.	Take immediate action to avoid further exceedance; Discuss with ET on remedial actions required; Implement the agreed remedial actions; Stop the unit and check the suspected defective parts if the problem still does not come under control.

Appendix B Action and Limit Levels for Air Quality, Water Quality Monitoring

B.1 Air

Parameter	Action	Limit
Stack NOx (gas firing)	80 mg/Nm ³	90 mg/Nm ³
Stack NOx (oil firing)	150 mg/Nm ³	150 mg/Nm ³
Hourly Average Water Injection Rate	Measured Hourly Average Water Injection Rate lower than corresponding Specified Hourly Average water Injection Rate.	Measured Hourly Average Water Injection Rate lower than corresponding Specified Hourly Average water Injection Rate.

Note: Expressed as at 0°C, 101.325kPa, dry and corrected to 15% O₂ condition.

The Action / Limit level for stack NOx would be revised with more emission data available if deemed necessary.

B.2 Water

Monitoring Area / Location	Parameters to be Monitored	Frequency	Concentration Not to Be Exceeded	Action	Limit	Proposed Action
Trade Effluent Cooling Water	Temperature	Daily, when the combined cycle unit is operating	Temperature at outfall should not exceed that at intake by > 10°C and temperature at outfall should not exceed 40°C	9.5°C	+10°C above intake	Please refer to the event & action plans in Table A.2.
	Total Residual Chlorine	Bi-weekly, when the combined cycle unit is operating	0.5mg/L	0.47 mg/L	0.5 mg/L	
Trade Effluent oil free drain discharge	Grease and Oil	Monthly, when the combined cycle unit is operating	20 mg/L	15 mg/L	20 mg/L	Please refer to the event & action plans in Table A.2.
Trade Effluent Boiler Blowdown (HRSG)	Temperature	At least twice per year, when the combined cycle unit is operating	40°C	-	40°C	Please refer to the event & action plans in Table A.2.
	Suspended Solids	At least twice per year, when the combined cycle unit is operating	30 mg/L	-	30 mg/L	
	Grease & Oil	At least twice per year, when the combined cycle unit is operating	20 mg/L	-	20 mg/L	
Marine waters cooling water outfall	Scum of foam in ambient water	Daily, when the combined cycle unit is operating	No scum within 500 m of Hung Shing Ye Beach	When scum passes the station south-west corner and north-west corner	No scum within 500 m of Hung Shing Ye Beach	Please refer to the event & action plans in Table A.2.

Appendix C Summary Results on Air Quality Monitoring

Site: Lamma Power Station – Unit GT57

Month: January 2014

Monthly Summary of Stack NOx

Data	Daily Maximum Stack NOx concentration (mg/Nm³)#	
Date	GT5	GT7
1/1/2014	**	79
2/1/2014	**	75
3/1/2014	**	79
4/1/2014	**	75
5/1/2014	**	74
6/1/2014	**	71
7/1/2014	**	68
8/1/2014	**	66
9/1/2014	**	68
10/1/2014	**	67
11/1/2014	66	76
12/1/2014	67	74
13/1/2014	68	74
14/1/2014	66	74
15/1/2014	68	76
16/1/2014	69	81 [at 04:00 hrs]*
17/1/2014	68	75
18/1/2014	73	79
19/1/2014	66	72
20/1/2014	69	**
21/1/2014	66	**
22/1/2014	64	**

Data	Daily Maximum Stack NOx concentration (mg/Nm ³) [#]		
Date	GT5	GT7	
23/1/2014	**	**	
24/1/2014	**	**	
25/1/2014	**	**	
26/1/2014	**	**	
27/1/2014	**	**	
28/1/2014	**	**	
29/1/2014	**	**	
30/1/2014	**	**	
31/1/2014	**	**	

Note:

- # Hourly average value. Expressed as at 0°C, 101.325kPa, dry and corrected to 15% O_2 condition.
- * One Action Level exceedances of NOx concentrations were recorded on 16/01/2014.
- ** The generating unit was not on load.

Monthly Fuel Data and Generation Output

	GT5	GT7	Steam Turbine	Total
Generation Output (MWH)	29,812.6	48,492.9	36,463.0	114,768.5
Natural Gas Consumption (MT)	7,170.5	12,074.6	-	19,245.1
Fuel Oil Consumption (MT)	0	0	-	0
Sulphur content of Fuel Oil (%)	NA	NA	-	-

^{*} The figures may not sum to total due to rounding.

	GT6
Sulphur content of Fuel (%)	0.001

Appendix D Summary Results and Observations on Water Quality Monitoring

Maximum Outlet Temperature and Temperature Rise (Deg. Celsius) of Cooling Water at C.W. Outfall No.1 Serving Units L1-L6 & GT57 Condensers Weighted by Flowrates of Individual Streams (January 2014)

Date	Maximum Outlet Temperature (Deg. Celsius)	Maximum Outlet Temperature Rise (Deg. Celsius)
1/1/2014	21.4	3.8
2/1/2014	21.7	4.1
3/1/2014	24.0	6.3
4/1/2014	24.2	6.6
5/1/2014	23.6	6.1
6/1/2014	24.1	6.5
7/1/2014	24.0	6.4
8/1/2014	24.7	7.0
9/1/2014	24.3	6.8
10/1/2014	24.0	6.7
11/1/2014	21.8	4.6
12/1/2014	22.1	4.9
13/1/2014	22.7	5.6
14/1/2014	22.5	5.7
15/1/2014	22.4	5.6
16/1/2014	22.4	5.6
17/1/2014	22.5	5.6
18/1/2014	22.2	5.5
19/1/2014	21.6	4.8
20/1/2014	22.7	5.9
21/1/2014	22.3	5.8
22/1/2014	22.9	6.3
23/1/2014	*	*
24/1/2014	*	*
25/1/2014	*	*
26/1/2014	*	*
27/1/2014	*	*
28/1/2014	*	*
29/1/2014	*	*
30/1/2014	*	*
31/1/2014	*	*

Note: * GT57 Condensers were not in operation.

Total Residual Chlorine Level at C.W. Outfall No.1 (January 2014)

Date of sampling	10/01	23/01
Total Residual Chlorine, mg/L	0.30	0.30

Grease & Oil at Oil Free Drain From Oil Interceptor for GT57 (January 2014)

Date of sampling	30/01
Grease & Oil, mg/L	<10

Boiler Blowdown from GT5 & GT7 HRSG to C.W. Outfall No.1 (January 2014)

Source of discharge	GT5	GT7
Date of sampling	#	#
Suspended Solid, mg/L	#	#
Grease & Oil, mg/L	#	#
Temperature, Deg. Celsius	#	#

Note: # Monitoring was not scheduled in the reporting month. The last monitoring was carried out in September 2013.

Observation of Scum Formation in Marine Water Mixing Zone At Lamma Power Station (January 2014)

Date	Observation
1/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
2/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
3/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
4/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
5/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
6/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
7/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
8/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall

Date	Observation
9/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
10/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
11/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
12/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
13/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
14/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
15/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
16/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
17/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
18/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
19/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
20/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
21/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
22/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
23/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
24/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
25/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
26/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
27/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
28/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
29/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
30/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall
31/1/2014	No scum within 500m of HSY Beach, NW/SW corner of the Station & CW Outfall