DEVELOPMENT AT ANDERSON ROAD 安達臣道發展計劃 CHIEF RESIDENT ENGINEER'S OFFICE TEL: (852) 2407 0300 FAX: (852) 2407 8382 ### BY POST Your ref Our ref 24711/(CV/07/03)/M45/630/(1297) Date 16 July 2015 Environmental Protection Department Metro Assessment Group, 27/F, Southorn Centre 130 Hennessy Road, Wan Chai Hong Kong For the attention of Mr Vincent Tin Dear Sir Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works Monthly EM&A Report for ID1A, ID2, ID3, ID4 and ID5 – June 2015 Please find attached two hard copies and one electronic copy of monthly EM&A report covering the monitoring period for June 2015 for the captioned Project in accordance with the Environmental Permit (EP-140/2002), Condition 3.3. Five monitoring stations are included in the report and they are namely Kwun Tong Government Secondary School (ID1A), On Yat House (ID2), Sau Nga House (ID3), Sau Ming Primary School (ID4) and Sau Mau Ping Catholic Primary School (ID5). Please note that ID1A (Kwun Tong Government Secondary School), ID2 (On Yat House) and ID3 (Sau Nga House) will serve the Development of Anderson Road (Schedule 3 DP) and only monitoring stations ID4 (Sau Ming Primary School) and ID5 (Sau Mau Ping Catholic Primary School) will serve both the entire Development of Anderson Road (Schedule 3 DP) as well as the Widening of Po Lam Road (Schedule 2 DP). The attached report has been certified by the ETL and verified by the IEC and it is therefore submitted for your information according to Environmental Permit, Condition 3.3. Should you have any queries, please do not hesitate to contact my ARE, Ms Heidi Fung, at 6905 0261. Yours faithfully Dennis Leung Chief Resident Engineer c.c. Mr Paul H T Mok CE/SD(W), CEDD Mr W K Wong – EPO, ECD Mr WONG Ka-yu – CSCEC Mr Fung Yiu Wah – ETL Mr David Yeung – IEC Mr Chris Lee – Arup Response required Date required : NA DL-HE-SYW-MONTHLY EM&A REPORT FOR ID1A, ID2, ID3, ID4 AND ID5 - JUNE 2015.DOC : Yes (1 CD + 2 Reports) \} w/e (By hand) w/e (By hand) \} w/o (By fax: 2702-6553) }w/o (By fax: 2891-0305) }w/o (By fax: 3465-2899) }w/o (By fax: 2268-3955) refer to M45/630/(1296) Level 5 Festival Walk 80 Tat Chee Avenue Kowloon Tong Kowloon www.arup.com Hong Kong China Attachments KOL/HF/syw Ove Arup & Partners Hong Kong Ltd | Registered in England & Wales Registered Number: 1359968 | Registered Address: 13 Fitzroy Street London W1T 4BQ China State Construction Engineering (Hong Kong) Ltd. # Contract No. CV/2007/03 # Development at Anderson Road – Site Formation and Associated Infrastructure Works # Monthly EM&A Report for June 2015 July 2015 | | Name | Signature | |---------------------------------|--------------------|-----------| | Prepared & Checked: | Joanne Ko | fexango. | | Reviewed, Approved & Certified: | Yiu Wah Fung (ETL) | 7/ | | Version: 0 | Date: | 13 July 2015 | |------------|-------|--------------| #### Disclaimer This report is prepared for China State Construction Engineering (Hong Kong) Ltd. and is given for its sole benefit in relation to and pursuant to Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works and may not be disclosed to, quoted to or relied upon by any person other than China State Construction Engineering (Hong Kong) Ltd. without our prior written consent. No person (other than China State Construction Engineering (Hong Kong) Ltd.) into whose possession a copy of this report comes may rely on this report without our express written consent and China State Construction Engineering (Hong Kong) Ltd. may not rely on it for any purpose other than as described above. AECOM Asia Co. Ltd. 11/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong. Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com Ref.: OAPANDSNEM00_0_1503L.15 13 July 2015 By Post and Fax: 2407 8382 Engineer's Representative Ove Arup & Partners Level 5, Festival Walk 80 Tat Chee Avenue Kowloon Tong, Kowloon Hong Kong Attention: Mr. Dennis Leung Dear Sir, Re: Contract No. CV/2007/03 (Environmental Permit No. EP -140/2002) Development at Anderson Road Site Formation and Associated Infrastructure Works Monthly EM&A Report for June 2015 Reference is made to the Environmental Team's submission of the draft Monthly EM&A Report for June 2015 received by e-mail on 13 July 2015 for our review and comment. Please be informed that we have no adverse comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 3.3 of the Environmental Permit No. EP-140/2002. Thank you very much for your attention and please feel free to contact the undersigned should you require further information. Yours faithfully, David Yeung Independent Environmental Checker c.c. AECOM CSCEC Attn.: Mr. Y. W. Fung Attn.: Mr. C. S. Yeung Fax: 3922 9797 Fax: 2702 6553 Q:\Projects\OAPANDSNEM00\Corr\OAPANDSNEM00_0_1503L.15.docx #### **Table of Content** | | | | Page | |------|-------|--|------| | EXEC | UTIVE | SUMMARY | 1 | | 1 | INTR | ODUCTION | 3 | | | 1.1 | Background | 3 | | | 1.2 | Scope of Report | 3 | | | 1.3 | Project Organization | 3 | | | 1.4 | Summary of Construction Works | 4 | | | 1.5 | Summary of EM&A Programme Requirements | 5 | | 2 | AIR C | QUALITY MONITORING | 6 | | | 2.1 | Monitoring Requirements | 6 | | | 2.2 | Monitoring Equipment | 6 | | | 2.3 | Monitoring Locations | 6 | | | 2.4 | Monitoring Parameters, Frequency and Duration | 7 | | | 2.5 | Monitoring Methodology | 7 | | | 2.6 | Monitoring Schedule for the Reporting Month | 10 | | | 2.7 | Monitoring Results | 10 | | 3 | NOIS | E MONITORING | 11 | | | 3.1 | Monitoring Requirements | 11 | | | 3.2 | Monitoring Equipment | 11 | | | 3.3 | Monitoring Locations | 11 | | | 3.4 | Monitoring Parameters, Frequency and Duration | 12 | | | 3.5 | Monitoring Methodology | 12 | | | 3.6 | Monitoring Schedule for the Reporting Month | 13 | | | 3.7 | Monitoring Results | 13 | | 4 | ENVI | RONMENTAL SITE INSPECTION AND AUDIT | 14 | | | 4.1 | Site Inspection. | 14 | | | 4.2 | Advice on the Solid and Liquid Waste Management Status | 16 | | | 4.3 | Environmental Licenses and Permits | 17 | | | 4.4 | Implementation Status of Environmental Mitigation Measures | 17 | | | 4.5 | Summary of Exceedances of the Environmental Quality Performance Limit | 17 | | | 4.6 | Summary of Complaints, Notification of Summons and Successful Prosecutions | 18 | | 5 | FUTU | JRE KEY ISSUES | 19 | | | 5.1 | Construction Programme for the Coming Two Months | 19 | | | 5.2 | Key Issues for the Coming Two Months | 19 | | | 5.3 | Monitoring Schedule for the Coming Month | | | 6 | CON | CLUSIONS AND RECOMMENDATIONS | 21 | | | 6.1 | Conclusions | 21 | | | 6.1 | Recommendations | 21 | | List of Tables | | |----------------|--| | Table 1.1 | Contact Information of Key Personnel | | Table 2.1 | Air Quality Monitoring Equipment | | Table 2.2 | Locations of Air Quality Monitoring Stations | | Table 2.3 | Air Quality Monitoring Parameters, Frequency and Duration | | Table 2.4 | Summary of 1-hour TSP Monitoring Results in the Reporting Period | | Table 2.5 | Summary of 24-hour TSP Monitoring Results in the Reporting Period | | Table 3.1 | Noise Monitoring Equipment | | Table 3.2 | Locations of Impact Noise Monitoring Stations | | Table 3.3 | Noise Monitoring Parameters, Frequency and Duration | | Table 3.4 | Summary of Impact Noise Monitoring Results in the Reporting Period | | Table 4.1 | Summary of Environmental Licensing and Permit Status | # **List of Figures** | Figure 1.1 | General Layout Plan | |------------|----------------------| | Figure 2.1 | Monitoring Locations | # **List of Appendices** | Appendix A | Project Organization Structure | |------------|---| | Appendix B | Implementation Schedule of Environmental Mitigation Measures | | Appendix C | Summary of Action and Limit Levels | | Appendix D | Calibration Certificates of Equipments | | Appendix E | EM&A Monitoring Schedules | | Appendix F | Air Quality Monitoring Results and their Graphical Presentations | | Appendix G | Noise Monitoring Results and their Graphical Presentations | | Appendix H | Meteorological Data for the Reporting Month | | Appendix I | Event Action Plan | | Appendix J | Cumulative Statistics on Exceedances, Complaints, Notification of Summons and Successful Prosecutions | #### **EXECUTIVE SUMMARY** The Project "Development at Anderson Road – Site Formation and Associated Infrastructure Works" (hereafter called "the Project") is proposed to form platforms for housing development and associated uses in area of about 20 hectares, and to carry out necessary infrastructural upgrading or improvement works to cater for the proposed development. China State Construction Engineering (Hong Kong) Limited (CSCE) was commissioned as the Contractor of the Project. AECOM Asia Co. Ltd. (AECOM) was employed by CSCE as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The impact EM&A for the Project includes air quality and noise monitoring. The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008. The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road (Schedule 2 DP) project. The construction for the Widening of Po Lam Road (Schedule 2 DP) project was commenced on 21 September 2011. This report documents the findings of EM&A works for ID 1A, ID 2, ID 3, ID 4 and ID 5 conducted in the
period between 1 and 30 June 2015. As informed by the Contractor, construction activities in the reporting period were: - Slope stabilization and upgrading works at Portions C and E - Earthwork and C&D stockpile at Portions A and C - Temporary traffic arrangement and road work at Po Lam Road, J/O Sau Mau Ping Road and Shun On Road, and J/O Po Lam Road - Toe / Berm planter and platform drainage construction on slope - Retaining wall structural works and backfilling works at R16b - Trench excavation and drainage works at main site and public road - Structural works at Footbridge A - Installation of granite stone facing at Skin Wall R15 - Watermain works at main site and Branch M - Installation of metal barriers at main site and footbridge - Asphalt laying at L1 L6 roads - Brick laying at footpath at L1 L6 roads - Landscaping works at main site and public area - Water tank and drainage clearing and remedial works - Installation of watermain downpipe at Lee On Road and Sewer B - Lift installation works at Footbridges B and C - E&M works at Footbridges B and C - Erection of bamboo scaffolding works at Footbridges A, B and C - Cement decoration works at Footbridges B and C - Installation of glazing at Footbridges B and C #### **Breaches of Action and Limit Levels for Air Quality** All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month. #### **Breaches of Action and Limit Levels for Noise** According to the information provided by the Contractor, no Action Level exceedance was recorded since no noise related complaint was received in the reporting month. No exceedance of Limit Level of noise was recorded in the reporting month. China State Construction Engineering (Hong Kong) Ltd. #### Complaint, Notification of Summons and Successful Prosecution According to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month. #### Reporting Changes There was no reporting change in the reporting month. #### **Future Key Issues** Key issues to be considered in the coming month included:- - Properly store and label oil drums and chemical containers placed on site; - Proper chemicals, chemical wastes and wastes management; - Maintenance works should be carried out within roofed, paved areas with proper drainage system to handle run-off from maintenance works; - Collection and segregation of construction waste and general refuse should be carried out properly and regularly; Site runoff should be properly collected and treated prior to discharge; - Regular review and maintenance of drainage systems and desilting facilities; - Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm; - Proper mitigation measures should be provided to avoid relocation of treated contaminated soil; - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits; - Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic; - Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage; Quieter powered mechanical equipment should be used; Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and Proper protection and regular inspection of existing trees, transplanted/retained trees. #### 1 INTRODUCTION #### 1.1 Background - 1.1.1 The Project site is located in the East Kowloon District. It is bounded by Anderson Road to the north, the realigned Sau Mau Ping Road to the south, Po Lam Road to the east, and Lee On Road and Shun On Road to the west. - 1.1.2 The objective of the Project "Development at Anderson Road Site Formation and Associated Infrastructure Works" under Contract CV/2007/03 (hereafter called "the Project") is to provide land for constructing public housing and government and public facilities. The development will provide 16,100 public housing units for 48,000 people in phases between 2015 and 2016. - 1.1.3 The scope of works of this Project includes construction of site formation, roads, drains and upgrading of existing infrastructure to provide usable land of about 20 hectares for housing and associated government, institution or community uses at the site between existing Anderson Road Quarry and Sau Mau Ping Road in Kwun Tong District. - 1.1.4 The Project is anticipated to complete in mid 2015. - 1.1.5 Part of the Project involving widening of existing Po Lam Road is a designated project and is governed by an Environmental Permit (EP) EP-140/2002, while the rest of the Project is non-designated. Baseline monitoring covering the entire Project site was undertaken and baseline monitoring report was prepared prior to commencement of construction of the Project in accordance with Conditions 3.2 and 3.4 of the EP (EP-140/2002) and the Environmental Monitoring and Audit (EM&A) Manual. The construction for the Widening of Po Lam Road was commenced on 21 September 2011. - 1.1.6 According to the EP and the EM&A Manual of the Project, there is a need of an EM&A programme including air quality and noise monitoring. - 1.1.7 The EM&A programme for Sau Ming Primary School (ID 4) and Sau Mau Ping Catholic Primary School (ID 5) commenced on 1 May 2008, while for Kwun Tong Government Secondary School (ID 1A), On Yat House (ID 2) and Sau Nga House (ID 3) commenced on 1 June 2008. - 1.1.8 The monitoring stations ID 4 & ID 5 will serve both the entire Development of Anderson Road (Schedule 3 Designated Project (DP)) project as well as the Widening of Po Lam Road. (Schedule 2 DP) project. - 1.1.9 AECOM Asia Co. Ltd. (AECOM) was employed by the Contractor, China State Construction Engineering (Hong Kong) Limited (CSCE), as the Environmental Team (ET) to undertake the EM&A works for the Project. In accordance with the EM&A Manual of the Project, environmental monitoring of air quality, noise and environmental site inspections would be required for this Project. #### 1.2 Scope of Report 1.2.1 This is the eighty-third monthly EM&A Report under the Contract CV/2007/03 - Development at Anderson Road – Site Formation and Associated Infrastructure Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in June 2015 for ID 1A, ID 2, ID 3, ID 4 and ID 5. #### 1.3 Project Organization 1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1. Monthly EM&A Report for June 2015 #### Table 1.1 Contact Information of Key Personnel | Party | Position | Name | Telephone | Fax | | |---|---|----------------|-----------|-----------|--| | | Chief Resident Engineer | Dennis Leung | 3656 3000 | 3656 3100 | | | ER (Ove Arup) | Senior Resident Engineer | Michael Wright | 3656 3000 | 3656 3100 | | | ER (Ove Arup) | Assistant Resident
Engineer
(Civil) | Heidi Fung | 2407 0300 | 3656 3100 | | | IEC (Ramboll Independent Environ) Environmental Checker | | David Yeung | 3465 2888 | 3465 2899 | | | Contractor
(CSCE) | Site Agent | Holmes Wong | 2704 2095 | 2702 6553 | | | | Environmental Officer | Thomas Cheung | 2704 2095 | 2702 6553 | | | ET (AECOM) | ET Leader | Yiu Wah Fung | 3922 9366 | 2317 7609 | | #### 1.4 **Summary of Construction Works** - As informed by the Contractor, the Contactor has carried out the following major activities in 1.4.1 the reporting month:- - Slope stabilization and upgrading works at Portions C and E - Earthwork and C&D stockpile at Portions A and C - Temporary traffic arrangement and road work at Po Lam Road, J/O Sau Mau Ping Road and Shun On Road, and J/O Po Lam Road - Toe / Berm planter and platform drainage construction on slope - Retaining wall structural works and backfilling works at R16b - Trench excavation and drainage works at main site and public road - Structural works at Footbridge A - Installation of granite stone facing at Skin Wall R15 - Watermain works at main site and Branch M - Installation of metal barriers at main site and footbridge - Asphalt laying at L1 L6 roads - Brick laying at footpath at L1 L6 roads - Landscaping works at main site and public area - Water tank and drainage clearing and remedial works - Installation of watermain downpipe at Lee On Road and Sewer B - Lift installation works at Footbridges B and C - Erection of bamboo scaffolding works at Footbridges A, B and C - Cement decoration works at Footbridges B and C - Installation of glazing at Footbridges B and C - 1.4.2 The general layout plan of the Project site showing the contract area is shown in Figure 1.1. - 1.4.3 The environmental mitigation measures implementation schedule are presented in Appendix # 1.5 Summary of EM&A Programme Requirements - 1.5.1 The EM&A programme required environmental monitoring for air quality, noise and environmental site inspections for air quality, noise, water quality, chemical and waste management. The EM&A requirements for each parameter described in the following sections include:- - All monitoring parameters; - Monitoring schedules for the reporting month and forthcoming months; - Action and Limit levels for all environmental parameters; - Event / Action Plan; - Environmental mitigation measures, as recommended in the Project EIA study final report; and - Environmental requirement in contract documents. #### AIR QUALITY MONITORING # 2.1 Monitoring Requirements 2.1.1 In accordance with the EM&A Manual,
1-hour and 24-hour TSP levels at 5 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix C. # 2.2 Monitoring Equipment 2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1. Table 2.1 Air Quality Monitoring Equipment | Equipment | Brand and Model | |--|---| | Portable direct reading dust
meter (1-hour TSP) | Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B) | | High Volume Sampler
(24-hour TSP) | Tisch Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. TE-5170 & GMW-2310) | #### 2.3 Monitoring Locations 2.3.1 Monitoring stations, ID 2, ID 3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 2.2 describes the details of the monitoring stations. Table 2.2 Locations of Air Quality Monitoring Stations | ID | Location | Monitoring Station | | |----|--|---|--| | 1A | Kwun Tong Government
Secondary School | Roof top of the premises facing Anderson Road | | | 2 | On Yat House | Roof top of the premises facing Lee On Road | | | 3 | Sau Nga House | Roof top of the premises facing Sau Mau Ping Road | | | 4 | Sau Ming Primary School | Roof top of the premises | | | 5 | Sau Mau Ping Catholic
Primary School | Roof top of the premises | | #### Monitoring Parameters, Frequency and Duration 2.4 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP 2.4.1 monitoring. Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration | Monitoring
Station | Parameter | Frequency and Duration | |-----------------------|-------------|-------------------------------| | ID 1A, ID 2, | 1-hour TSP | At least 3 times every 6 days | | ID 3, ID 4 &
ID5 | 24-hour TSP | At least once every 6 days | #### Monitoring Methodology 2.5 #### 24-hour TSP Monitoring 2.5.1 - The HVS was installed in the vicinity of the air sensitive receivers. The following (a) criteria were considered in the installation of the HVS:- - A horizontal platform with appropriate support to secure the sampler against (i) gusty wind was provided. - The distance between the HVS and any obstacles, such as buildings, was at (ii) least twice the height that the obstacle protrudes above the HVS. - A minimum of 2 meters separation from walls, parapets and penthouse for (iii) rooftop sampler. - A minimum of 2 meters separation from any supporting structure, measured (iv) horizontally is required. - No furnace or incinerator flues nearby. - Airflow around the sampler was unrestricted. (vi) - (vii) Permission was obtained to set up the samplers and access to the monitoring stations. - A secured supply of electricity was obtained to operate the samplers. (viii) - The sampler was located more than 20 meters from any dripline. (ix) - Any wire fence and gate, required to protect the sampler, did not obstruct the (x) monitoring process. - Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling (xi) period. #### Preparation of Filter Papers (b) - Glass fibre filters, G810 were labelled and sufficient filters that were clean and (i) without pinholes were selected. - All filters were equilibrated in the conditioning environment for 24 hours (ii) before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%. - All filter papers were prepared and analysed by ALS Technichem (HK) Pty (iii) Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes. #### (c) Field Monitoring - (i) The power supply was checked to ensure the HVS works properly. - (ii) The filter holder and the area surrounding the filter were cleaned. - (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully. - (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. - (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges. - (vi) Then the shelter lid was closed and was secured with the aluminium strip. - (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions. - (viii) A new flow rate record sheet was set into the flow recorder. - (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min). - (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded. - (xi) The initial elapsed time was recorded. - (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded. - (xiii) The final elapsed time was recorded. - (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact. - (xv) It was then placed in a clean plastic envelope and sealed. - (xvi) All monitoring information was recorded on a standard data sheet. - (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis. #### (d) Maintenance and Calibration - (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply. - (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals. - (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in Appendix D. # 2.5.2 1-hour TSP Monitoring ### (a) Measuring Procedures The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:- - (i) Turn the power on. - (ii) Close the air collecting opening cover. - (iii) Push the "TIME SETTING" switch to [BG]. - (iv) Push "START/STOP" switch to perform background measurement for 6 seconds. - (v) Turn the knob at SENSI ADJ position to insert the light scattering plate. - (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display. - (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute. - (viii) Pull out the knob and return it to MEASURE position. - (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours. - (x) Lower down the air collection opening cover. - (xi) Push "START/STOP" switch to start measurement. ### (b) Maintenance and Calibration (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix D. #### 2.6 Monitoring Schedule for the Reporting Month 2.6.1 The schedule for environmental monitoring in June 2015 is provided in Appendix E. #### 2.7 **Monitoring Results** 2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Tables 2.4 and 2.5 respectively. Detailed air quality monitoring results are presented in Appendix F. Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period | | Average (μg/m³) | Range (μg/m³) | Action Level
(μg/m³) | Limit Level
(μg/m³) | |-------|-----------------|---------------|-------------------------|------------------------| | ID 1A | 76.2 | 67.7 – 85.2 | 201.5 | 500 | | ID 2 | 76.8 | 67.5 – 84.7 | 197.0 | 500 | | ID 3 | 78.1 | 69.7 – 85.3 | 203.7 | 500 | | ID 4 | 77.5 | 70.6 – 84.2 | 264.6 | 500 | | ID 5 | 76.1 | 69.5 - 82.9 | 267.4 | 500 | Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period | | Average (μg/m³) | Range (μg/m³) | Action Level
(μg/m³) | Limit Level
(μg/m³) | |-------|-----------------|---------------|-------------------------|------------------------| | ID 1A | 25.2 | 18.5 – 37.5 | 170.2 | 260 | | ID 2 | 21.1 | 12.1 – 26.4 | 200.0 | 260 | | ID 3 | 30.4 | 20.8 – 40.1 | 200.0 | 260 | | ID 4 | 17.6 | 6.9 – 25.0 | 181.3 | 260 | | ID 5 | 27.0 | 21.6 – 34.9 | 180.8 | 260 | - All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the 2.7.2 reporting month. - 2.7.3 The event action plan is annexed in Appendix I. - 2.7.4 Major dust sources during the dust monitoring included construction dust from the Project site, construction dust from other construction sites nearby and nearby traffic emission. - Weather information including wind speed and wind direction is annexed in Appendix H. The 2.7.5 information was obtained from Hong Kong Observatory Tseung Kwan O Automatic Weather Station and Anemometer Station. ### 3 NOISE MONITORING #### 3.1 Monitoring Requirements 3.1.1 In accordance with the EM&A Manual, impact noise levels should be obtained at 5 noise monitoring stations. Impact noise
monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix C. #### 3.2 Monitoring Equipment 3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1. Table 3.1 Noise Monitoring Equipment | Equipment | Brand and Model | |------------------------------|--| | Integrated Sound Level Meter | Rion (Model No. NL-31) &
B&K (Model No. 2238) | | Acoustic Calibrator | Rion (Model No. NC-73) | #### 3.3 Monitoring Locations 3.3.1 Monitoring stations, ID 2, ID3, ID 4 and ID 5, were set up at the proposed locations in accordance with EM&A Manual, while monitoring station, ID 1A, was set up at a location agreed by the ER and IEC. Figure 2.1 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations. Table 3.2 Locations of Impact Noise Monitoring Stations | ID | Location | Monitoring Station | |----|--|--| | 1A | Kwun Tong Government
Secondary School | 1m from the exterior of the roof top façade of the premises facing Anderson Road | | 2 | On Yat House | 1m from the exterior of the roof top façade of the premises facing Lee On Road | | 3 | Sau Nga House | 1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road | | 4 | Sau Ming Primary School | 1m from the exterior of the roof top façade of the premises facing Sau Mau Ping Road | | 5 | Sau Mau Ping Catholic
Primary School | 1m from the exterior of the roof top façade of the premises facing Po Lam Road | # 3.4 Monitoring Parameters, Frequency and Duration 3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring. Table 3.3 Noise Monitoring Parameters, Frequency and Duration | Monitoring
Station | Parameter and Duration | Frequency | |-------------------------------------|--|------------------------| | ID 1A, ID 2,
ID 3, ID 4 &
ID5 | 30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. L_{eq} , L_{10} and L_{90} would be recorded. | At least once per week | #### 3.5 Monitoring Methodology #### 3.5.1 Monitoring Procedure - (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground. - (b) Façade measurements were made at all monitoring locations. - (c) The battery condition was checked to ensure the correct functioning of the meter. - (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows: - (i) frequency weighting: A - (ii) time weighting: Fast - (iii) time measurement: $L_{eq(30\text{-minutes})}$ during non-restricted hours i.e. 07:00-1900 on normal weekdays; $L_{eq(5\text{-minutes})}$ during restricted hours i.e. 19:00-23:00 and 23:00-07:00 of normal weekdays, whole day of Sundays and Public Holidays - (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment. - (f) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet. - (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable. - (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s. #### 3.5.2 Maintenance and Calibration - (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals. - (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals. - (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix D. # 3.6 Monitoring Schedule for the Reporting Month 3.6.1 The schedule for environmental monitoring in June 2015 is provided in Appendix E. #### 3.7 Monitoring Results 3.7.1 The monitoring results for noise are summarized in Table 3.4 and the monitoring data is provided in Appendix G. Table 3.4 Summary of Impact Noise Monitoring Results in the Reporting Period | | Average, dB(A), | Range, dB(A), | Limit Level, dB(A), | |-------|---------------------------|---------------|---------------------------| | | L _{eq (30 mins)} | Leq (30 mins) | L _{eq (30 mins)} | | ID 1A | 57.6 | 52.4 – 62.4 | *65/70 | | ID 2 | 63.3 | 62.0 - 64.8 | 75 | | ID 3 | 64.7 | 64.3 - 65.7 | 75 | | ID 4 | 58.8 | 54.2 - 62.5 | *65/70 | | ID 5 | 62.5 | 60.1 – 64.0 | *65/70 | Note: *Daytime noise Limit Level of 70dB(A) applies to education institutions while 65dB(A) applies during school examination period. - 3.7.2 According to the information provided by the Contractor, no noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded. - 3.7.3 No Limit Level exceedance of noise was recorded at all monitoring stations in the reporting month. - 3.7.4 The event action plan is annexed in Appendix I. - 3.7.5 Major noise sources during the noise monitoring included construction noise from the Project site, construction noise from other construction sites nearby, nearby traffic noise and noise from school activities and community noise. # 4 ENVIRONMENTAL SITE INSPECTION AND AUDIT #### 4.1 Site Inspection - 4.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 4 site inspections were carried out on 4, 12, 18 and 25 June 2015. Particular observations and status of non-compliance issued by IEC are described below. - 4.1.2 The Contractor has rectified most of the observations as identified during the environmental site inspections in the reporting month within an agreed time frame. Rectification of the remaining identified items are undergoing by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly. #### 4.1.3 Air Quality Impact - The slope was not fully covered at R16b. The Contractor should cover the exposed slope fully by tarpaulin or provide equivalent measures for dust suppression. - Muddy trail was observed at Anderson Road. The Contractor was reminded to clear the muddy trail and ensure the public road is free of dusty materials. - Dusty stockpile was observed at Road L4. The Contractor was reminded to cover the dusty stockpile entirely with impervious sheeting. - Dusty stockpile was observed at Road L5. The Contractor should cover dusty stockpile entirely with impervious sheeting to suppress dust. #### 4.1.4 Construction Noise Impact • The Contractor should wrap the breaker tip with acoustic resistant material to reduce noise nuisance. (near slope A8) ### 4.1.5 Water Quality Impact - Stagnant water was observed at Lee On Road. The Contractor should remove the stagnant water to prevent mosquito breeding. - Blockage of existing U-channel and direct discharge of surface runoff to the public road was observed near Footbridge A. The Contractor should clear the blocked U-channel and rectify immediately to prevent any untreated surface runoff from directly discharging to the public road. - Broken sandbags and dusty materials were observed at Po Lam Road near Footbridge C. The Contractor should keep the public road free from dusty materials to prevent them from entering the public drainage system. - Muddy surface runoff at Footbridge B was directly discharged to the gullies at public road. The Contractor should provide appropriate wastewater treatment measures to site effluent prior to discharge. # 4.1.6 Chemical and Waste Management - The Contractor should remove the construction waste accumulated at Lee On Road to maintain proper housekeeping. - The Contractor should remove the construction waste accumulated at Footbridge A to maintain proper housekeeping. China State Construction Engineering (Hong Kong) Ltd. - Oil leakage from the drip hole of a drip tray at Footbridge A was observed. The Contractor should block the drip hole of drip tray to prevent oil leakage. - The Contactor should provide drip trays to chemical containers, generator and air compressor to retain any possible oil leakage. (R9) - Oil leakage was observed underneath an air compressor and chemical containers at Footbridge C. The Contractor should provide drip trays for air compressors and chemical containers to retain any possible oil leakage. - Construction waste was accumulating at Footbridge B. The Contractor should remove the construction waste regularly to maintain proper housekeeping. ### 4.1.7 Landscape and Visual Impact Nil ### 4.2 Advice on the Solid and Liquid Waste Management Status - 4.2.1 The Contractor is registered as a chemical waste producer for this Project. C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection. - 4.2.2 As advised by
the Contractor, a total of 3287.67 m³ C&D material was generated on site in the reporting month. 0 m³ of hard rock and large broken concrete was generated and transferred to Anderson Road Quarry for further process. - For C&D waste, 0 kg of metals was generated and collected by registered recycling collector. 10kg of paper cardboard packing and 10kg of plastic were generated on site and collected by registered recycling collector. No chemical waste was collected by licensed chemical waste collectors. 133.26 tonnes of other types of wastes (e.g. general refuse and tree debris) were generated on site and disposed of at North East New Territories (NENT) Landfill. - 4.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly. - 4.2.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes. ### 4.3 Environmental Licenses and Permits 4.3.1 The environmental licenses and permits for this Project and valid in the reporting month is summarized in Table 4.1. Table 4.1 Summary of Environmental Licensing and Permit Status | Statutory | Description | Permit No. | Val | id Period | Remarks | |-----------|--|-------------------|----------|------------|--| | Reference | Description | i ensile wo. | From | То | | | EIAO | Environmental
Permit | EP-140/2002 | | | Widening of a section of Po Lam Road Improvement works to existing roads | | APCO | NA notification | | 16/04/09 | *** | - Whole Construction
Site | | WPCO | Discharge License | WT00020353-2014 | 04/12/14 | 31/08/19 | - Discharge of
Construction Runoff | | WPCO | Discharge License | EP670/I/C0613/293 | 02/02/12 | 28/02/17 | - Discharge from Road
L6 | | WDO | Chemical Waste
Producer
Registration | 5213-292-C3249-32 | 19/03/08 | | - Whole Construction
Site | | | Waste Charges
Account | 7006839 | 12/03/08 | | - Whole Construction
Site | | NCO | Construction Noise | GW-RE0164-15 | 23/02/15 | 08/08/2015 | - Whole Construction
Site | | | Permit | GW-RE0582-15 | 27/06/15 | 27/06/15 | - Erection of steel truss
at Footbridge A | # 4.4 Implementation Status of Environmental Mitigation Measures - 4.4.1 In response to the site audit findings, the Contractor carried out corrective actions promptly for particular items recorded. Outstanding items were closely monitored to ensure mitigation measures are implemented properly. - 4.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix B. Many necessary mitigation measures were implemented properly. ### 4.5 Summary of Exceedances of the Environmental Quality Performance Limit - 4.5.1 All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the reporting month. - 4.5.2 According to the information provided by the Contractor, no noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded. - 4.5.3 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month. - 4.5.4 Cumulative statistics on exceedances is provided in Appendix J. ### 4.6 Summary of Complaints, Notification of Summons and Successful Prosecutions - 4.6.1 Complaints shall be referred to the ET Leader for action. The ET Leader shall undertake the following procedures upon receipt of any complaint:- - Log complaint and date of receipt onto the complaint database and inform the IC(E) immediately; - Investigate the complaint to determine its validity, and assess whether the source of the problem is due to works activities; - Identify mitigation measures in consultation with the IC(E) if a complaint is valid and due to works; - · Advise the Contractor if additional mitigation measures are required; - Review the Contractor's response to identified mitigation measures, and the updated situation; - If the complaint is transferred from EPD, submit interim report to EPD on status of the complaint investigation and follow-up action within the time frame assigned by EPD; - Undertake additional monitoring and audit to verify the situation if necessary, and review that circumstances leading to the complaint to not recur; - Report investigation results and subsequent actions to complainant (if the source of complaint is EPD, the results should be reported within the time frame assigned by EPD); and - Record the complaint, investigation, the subsequent actions and the results in the monthly EM&A reports. - 4.6.2 During any complaint investigation work, the Contractor and the ER shall cooperate with the ET Leader in providing all necessary information and assistance for completion of the investigation. If mitigation measures are identified in the investigation, the Contractor shall promptly carry out the mitigation. The ER shall ensure that all necessary measures have been carried out by the Contractor. - 4.6.3 Referring to the information provided by the Contractor, no environmental complaint and no notification of summons and successful prosecution were received in the reporting month. - 4.6.4 Cumulative statistics on complaints, notification of summons and successful prosecutions is provided in Appendix J. ### 5 FUTURE KEY ISSUES # 5.1 Construction Programme for the Coming Two Months - 5.1.1 The major construction works in July and August 2015 will be:- - Slope stabilization and upgrading works at Portions C and E - Earthwork and C&D stockpile at Portions A and C - Temporary traffic arrangement and road work at Po Lam Road, J/O Sau Mau Ping Road and Shun On Road, and J/O Po Lam Road - Toe / Berm planter and platform drainage construction on slope - Retaining wall structural works and backfilling works at R16b - Trench excavation and drainage works at main site and public road - Structural works at Footbridge A - Installation of granite stone facing at Skin Wall R15 - Watermain works at main site and Branch M - Installation of metal barriers at main site and footbridge - Asphalt laying at L1 L6 roads - Brick laying at footpath at L1 L6 roads - Landscaping works at main site and public area - Water tank and drainage clearing and remedial works - Installation of watermain downpipe at Lee On Road and Sewer B - Lift installation works at Footbridges B and C - E&M works at Footbridges B and C - Erection of bamboo scaffolding works at Footbridges A, B and C - Cement decoration works at Footbridges B and C - Installation of glazing at Footbridges B and C - Steel truss installation at Footbridge A # 5.2 Key Issues for the Coming Two Months - 5.2.1 Key issues to be considered in the coming months included:- - Properly store and label oil drums and chemical containers placed on site; - Proper chemicals, chemical wastes and wastes management; - Maintenance works should be carried out within roofed, paved areas with proper drainage system to handle run-off from maintenance works; - Collection and segregation of construction waste and general refuse should be carried out properly and regularly; - Site runoff should be properly collected and treated prior to discharge; - Regular review and maintenance of drainage systems and desilting facilities; - Exposed slopes/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm; - Proper mitigation measures should be provided to avoid relocation of treated contaminated soil; - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits; - Suppress dust generated from work processes with use of bagged cements, earth movements, drilling works, breaking works, excavation activities, exposed areas/slopes/soil stockpiles and haul road traffic; - Conduct regular inspection of the working machineries within works area to avoid any dark smoke emission and oil leakage; - Quieter powered mechanical equipment should be used; - Provision of proper and effective noise control measures, such as erection of movable noise barriers during blasting, breaking and drilling works and at crushing plant works area and provision of acoustic material wrapping to breaking tips of breakers; and - Proper protection and regular inspection of existing trees, transplanted/retained trees. # 5.3 Monitoring Schedule for the Coming Month 5.3.1 The tentative schedule for environmental monitoring in July 2015 is provided in Appendix E. # CONCLUSIONS AND RECOMMENDATIONS - Conclusions 6.1 - The construction phase of the project commenced in May 2008. 6.1.1 - 1-hour TSP, 24-hour TSP and noise monitoring were carried out in the reporting month. 6.1.2 - All 1-hour TSP and 24-hour TSP results were below the Action and Limit Levels in the 6.1.3 reporting month. - According to the Contractor's information, no noise complaint was received in the reporting 6.1.4 month. Hence, no Action Level exceedance was recorded. - No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting 6.1.5 month. - Environmental site inspections were carried out 4 times in June 2015. Recommendations on 6.1.6 remedial actions were given to the Contractor for the deficiencies identified during the site audit. - According to the information provided by the Contractor, no environmental complaint and no 6.1.7 notification of summons and successful prosecution were received in the reporting month. #### 6.2 Recommendations 6.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:- #### Air
Quality Impact - Stockpiles and exposed slopes should be covered entirely by impervious sheeting or sprayed with water so as to maintain the entire surface wet. - Public road should be cleared of muddy trails and dusty materials. #### Construction Noise Impact Breaker tip should be wrapped with acoustic resistant material to reduce noise nuisance. #### Water Quality Impact - Stagnant water should be covered or cleared to prevent mosquito breeding. - U-channels should be cleared to prevent sand and debris from being washed into the public drain. - Public road should be kept free from dusty materials to prevent dusty materials from entering the public drainage system. #### Chemical and Waste Management - Chemicals, generators and air compressors should be placed inside drip trays to retain any oil leakage. - Oil stains should be cleared to prevent land contamination. - Construction waste should be cleared to maintain proper housekeeping. - Drip hole of drip trays should be blocked to prevent oil leakage. #### Landscape and Visual Impact No specific observation was identified in the reporting month. P:\60043155\1.01\CAD\Drawing\Report\Anderson_monitoring_location.dwg # APPENDIX A **Project Organization Structure** Employment Relationship Working Relationship Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works | Project | Organization | Structure | |---------|--------------|-----------| |---------|--------------|-----------| | SCALE | N.T.S. | DATE | 2009 | | |---------|----------|--------|------|-----| | CHECK | ENFL | DRAWN | LCHC | ; | | JOB NO. | | APPEND | OIX | Rev | | | 60043155 | | Α | - | # APPENDIX B Implementation Schedule of Environmental Mitigation Measures Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works Monthly EM&A Report for June 2015 China State Construction Engineering (Hong Kong) Ltd. Appendix B - Implementation Schedule of Environmental Mitigation Measures | | Appendix B - miprementation concerns of the state | - Control of the Cont | | |---------------------------|---|--|--| | Environmental M | Environmental Mitigation Measures | Location | Implementation Status | | Construction Noise Impact | oise Impact | district design | A STATE OF THE STA | | Site Formation | Silenced powered mechanical equipment (PME) for most equipment | All construction sites | > | | | (including drill rig, backhoe, dump truck, breaker and crane) and the | | | | | decrease of percentage on time usage of drill rig among the Central Area | | | | | from 50% to 40% is proposed. | 114447 | ACTIVITY AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRE | | | Temporary movable noise barrier shall be used to shield the noise | All construction sites | > | | | emanating from the drilling rig in order to provide adequate shielding for the | | | | | affected NSRs. | | | | Construction A | Construction Air Quality Impact | Laboration and the state of | Lange Lange | | General Site | Mean vehicle speed of haulage trucks at 10km/hr. | All construction sites | ^ | | Practice | Twice daily watering of all open site areas. | All construction sites | ^ | | | Regular watering (once every 1 hour) of all site roads and access roads with | All construction sites | > | | | frequent truck movement. | | And the second s | | | During road transportation of excavated spoil, vehicles should be covered to | All construction sites | > | | | avoid dust impact. Wheel washing facilities should be installed at all site | | | | | exits together with regular watering of the site access roads. | AMPRIL 1811// WART | N/++** W// | | | Tarpaulin covering of all dusty vehicle loads transported to, from and | All construction sites | > | | | between site locations. | | - Alleria Alle | | | Establishment and use of vehicle wheel
and body washing facilities at the | Site exits | > | | | exit points of the site, combined with cleaning of public roads were | | | | | 144 | - Long- | 1000 to t | China State Construction Engineering (Hong Kong) Ltd. Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works Monthly EM&A Report for June 2015 | | necessary. | | | |-----------------------|--|------------------------|-----| | General Site | Suitable side and tailboards on haulage vehicles. | All construction sites | > | | Practice | Watering of temporary stockpiles. | All construction sites | 0 | | Blasting | Use of select aggregate and fines to stem the charge with drill holes and watering of blast face. | All construction sites | N/A | | | Use of vacuum extraction drilling methods. | All construction sites | N/A | | | Carefully sequenced blasting. | All construction sites | N/A | | Crushing | Fabric filters installed for the crushing plant. | All construction sites | > | | | Water sprays on the crusher. | All construction sites | > | | Loading and Unloading | Water sprays at all fixed loading and unloading points (at the crusher and conveyor belts). | All construction sites | > | | Points and | The loading pat the grand of rode in the drive and the following fol | | | | conveyor Belt | installed. | All construction sites | > | | System | When transferring materials from conveyor belt or crusher to the dump trucks, chutes or dust curtains are used for controlling dust | All construction sites | > | | | Cover the conveyor belts with steel roof and canvas sides. | All construction sites | > | | onstruction M | Construction Water Quality Impact | | | | Construction | All active working areas should be bounded to retain storm water with | Site drainage system | @ | | Phase | sufficient retention time to ensure that suspended solids are not discharged | |) | | | from the site in concentrations above those specified in the TM for the | | | | | Victoria Harbour (Phase I) WCZ. All fuel storage areas should be bounded | | | China State Construction Engineering (Hong Kong) Ltd. | | T ANALYSIA STATE S | | | |------------------|--|--
--| | | with drainage directed to an oil interceptor. | | | | | Separate treatment facilities may be required for effluent from site offices, | Site drainage system | > | | | toilets (unless chemical toilets are used) and canteens. | A CONTRACTOR OF THE | ************************************** | | | Discharged wastewater from the construction sites to surface water and/or | All works area | 0 | | | public drainage systems should be controlled through licensing. Discharge | | | | | should follow fully the terms and conditions in the licenses. | The state of s | | | | Relevant practice for dealing with various type of construction discharges | All works area | > | | | provided in EPD's ProPECC Note PN 1/94 should be adopted. | A Company of the Comp | Adequated and the second of th | | Waste Management | ient | | 1 Acceptable | | Waste Disposal | Difference types of wastes should be segregated, stored, transported and | All construction sites | (9) | | | disposed of separately in accordance with the relevant legislative | | | | | requirements and guidelines as proper practice of waste management. | A A A A A A A A A A A A A A A A A A A | The change of th | | | Sorting of wastes should be done on-site. Different types of wastes should | All construction sites | > | | | be segregated and stored in different stockpiles, containers or skips to | | | | | enhance recycling of materials and proper disposal of spoil. | Landay Water | L MARAON TO | | | Excavated spoil should be used as much as possible to minimize off-side fill | All construction sites | > | | | material requirements and disposal of spoil. | i | | | | Chemical waste should be recycled on-site or removed by licenced | All construction sites | ^ | | | companies. It should be handled according to the Code of Practice on the | · · · · · · · · · · · · · · · · · · · | 1. And a state of the | China State Construction Engineering (Hong Kong) Ltd. Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works Monthly EM&A Report for June 2015 | | Packaging, Labelling and Storage of Chemical wastes. When off-site | | | |---------------|---|------------------------|---| | | disposal is required, it should be collected and delivered by licenced | | | | | contractors to Tsing Yi Chemical Waste Treatment Facility and disposed of | | | | | in accordance with the Chemical Waste (General) Regulation. | | | | | Necessary mitigation measures should be adopted to prevent the | All construction sites | 0 | | | uncontrolled disposal of chemical and hazardous waste into air, soil, surface | | | | | waters and ground waters. | | | | Waste Storage | Chemical material storage areas should be bounded, constructed of | All construction sites | 0 | | | impervious materials and have the capacity to contain 120 percent of the | | | | | total volume of the containers. Indoor storage areas must have sufficient | | | | | ventilation to prevent the build-up of fumes, and must be capable of | | | | | evacuating the space in the event of an accidental release. Outdoor storage | | | | | areas must be covered with a canopy or contain provisions for the safe | | | | | removal of rainwater. In both cases, storage areas must not be connected to | | | | | the foul or stormwater sewer system. | | | | | Dangerous materials as defined under the DGO, including fuel, oil and | All construction sites | > | | | lubricants, should be stored and properly labelled on site in accordance with | | | | | the requirements in the DGO. If transportation of hazardous materials is | | | | | necessary, hazardous materials, chemical wastes and fuel should be | | | | | packed or stored in containers or vessels of suitable design and construction | | | | | to prevent leakage, spillage or escape. | | | | | Human waste should be discharged into septic tanks provided by the | All construction sites | > | | | contractors and removed regularly by a hygiene services company. Refuse | | | China State Construction Engineering (Hong Kong) Ltd. Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works Monthly EM&A Report for June 2015 | | containers such as open skips should be provided at every work site for use | | | |----------------------|--|--|--| | Landscape and Visual | Visual | | disability . | | Additional | Planting and vegetation restoration (including transplanted trees) on soil | Whole development | N/A | | Measures | slopes including restoration of grassland, scrub and woodland on slopes | | | | | around the development platforms and access road. Restoration would be | | | | | undertaken using predominantly native species. | | | | Additional | Screen planting along the access roads, to limit impacts of elevated | Whole development | N/A | | Measures | structures and rock slopes. | | | | | Colouring of shotcrete slopes. | Whole development | N/A | | | Limited planting on shotcrete slopes. | Whole development | ٨ | | | Landscape buffers and planting in and around the development itself to | Whole development | N/A | | | screen partially close views of the site. | MATERIAL PROPERTY. | 1.111444-1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4 | | | Screen planting in front of retaining walls / granite cladding to those walls to | Whole development | N/A | | | reduce glare and visual impacts. | | , september . | | | Careful design of road elevated structure and abutments, to limit visual | Whole development | > | | | impacts. | A CONTRACTOR OF THE | | | | Roadside landscape features / hardworks to limit visual impacts. | Whole development | ^ | | | Conservation of CDG or CDV recovered from the site for re-use in the | Whole
development | N/A | | | landscape restoration. | Account of the control contro | | | | Preservation (by transplanting if necessary) of any trees identified as being | Whole development | \
\ | China State Construction Engineering (Hong Kong) Ltd. Contract No. CV/2007/03 Development at Anderson Road – Site Formation and Associated Infrastructure Works Monthly EM&A Report for June 2015 | | of particular landscape value. | | | |-------------------|---|----------------------------|---------------------| | Ecology | | | | | | Woodland planting on soft cut slopes available (about 13.4ha) within the | Soft cut slopes | N/A | | | development site. Native species, preferably with documented ecological | | | | | utility, should be used. | | | | | Seeds of the native species when possible should be added into the | Soft cut slopes | N/A | | | hydroseeding mix. Seedings should be pit planted with placement of slow | | | | | release fertilizer. | | | | | Maintenance and service, including weeding, fertilizing, replacement of | Soft cut slopes | N/A | | | dead plants, etc. should be performed during the first 1 years of planting to | | | | | enhance the survival rate of the plants. | | | | Contaminated Land | Land | | | | | In accordance with the approved Contamination Assessment Report (CAR) | Locations specified in CAR | N/A | | | and Remediation Action Plan (RAP) in Nov 2006, it is recommended that | | (Works In Progress) | | | cement solidification / stabilization prior to on-site backfill for heavy metal | | | | | contaminated soil and excavation followed by disposal at designated landfill | | | | | for organic contaminated soil. Upon the completion of the proposed | | | | | remediation exercise as outlined in CAR & RAP, a Remediation Report will | | | | | be complied for submission to EPD to demonstrate that the proposed soil | | | | | remediation has been carried out properly and satisfactorily. Results from | | | | | the confirmation tests will also be included in the Remediation Report. | | | | | Photos showing the area of excavation, the solidification process, and | | | | | remediated soil and site shall also be included in the report for reference. | | | Contract No. CV/2007/03 Development at Anderson Road — Site Formation and Associated Infrastructure Works Monthly EM&A Report for June 2015 | Landfill Gas Hazard | zard | HALL STATE OF THE | *************************************** | |---------------------|---|---|---| | | Further site investigation should be carried out during the detailed design | The whole development site | N/A | | | stage in order to measure landfill gas around the perimeter of the site, to | | | | | re-confirm that there is no preferential pathway for landfill gas migration and | | | | | to assess the potential for landfill gas hazards on the future development. If | | | | | a landfill gas hazard is identified, mitigation measures should be proposed | | | | | and implemented to address the hazard. | | | Legend: V = implemented; x = not implemented; @ = partially implemented; N/A = not applicable #### APPENDIX C **Summary of Action and Limit Levels** ### Appendix C - Summary of Action and Limit Levels Table 1 - Action and Limit Levels for 1-hour TSP | Location | Action Level | Limit Level | |----------|--------------|-------------| | ID 1A | 201.5 | 500 | | ID 2 | 197.0 | 500 | | ID 3 | 203.7 | 500 | | ID 4 | 264.6 | 500 | | ID 5 | 267.4 | 500 | Table 2 - Action and Limit Levels for 24-hour TSP | Location | Action Level | Limit Level | |----------|--------------|-------------| | ID 1A | 170.2 | 260 | | ID 2 | 200.0 | 260 | | ID 3 | 200.0 | 260 | | ID 4 | 181.3 | 260 | | ID 5 | 180.8 | 260 | Table 3 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays) | Location | Action Level | Limit Level | |----------|-------------------------------|----------------| | ID 1A | When one documented | *65 / 70 dB(A) | | ID 2 | | 75 dB(A) | | ID 3 | complaint is received | 75 dB(A) | | ID 4 | from any one of the sensitive | *65 / 70 dB(A) | | ID 5 | receivers | *65 / 70 dB(A) | ^{*}Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period ### APPENDIX D Calibration Certificates of Equipments | Station | Kwun Tong Go | vernment Seco | ondary School (ID1 | A) | Operator: | Leung 11 | u img | |--|--
--|--|---|--|--|--| | - | 19-May-15 | March 1 | | | Next Due Date: | 19-Jul | -15 | | - | 846 | ± | | V | erified Against: | O.T.S | 988 | | | ment No.: Expiration Date: | | | | | | 2015 | | | | | | | | | | | | | WHAT A THE TOTAL OF O | Ambient C | | | <u> </u> | I | | Temperature, Ta 301.6 | | | Kelvin Pressure, Pa | | | 757.7 | mmHg | | ±440 | | Or | ifice Transfer Sta | ndard Informat | ion | | | | Equipme | nt No.: | 988 | Slope, mc | 1.97 | | Intercept, bc | -0.01001 | | Last Calibra | | 28-May-14 | | | | G00/F 11/2 | | | | alibration Date: 28 -May-14 mc x Qstd + bc = [H x (Pa/760) x (298/Ta)] ^{1/2} Calibration Date: 28 -May-15 | | | | | | | | | | | | | | | | | ************************************** | | | Calibration of | TSP Sampler | | | | | Calibration
Point | H
in, of water | [H x (Pa/7 | 50) x (298/Ta)] ^{1/2} | Qstd
(m³/min) | W
in. of oil | [ΔW x (Pa/760)
Y-ax | | | 1 Ont | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | X - axis | | | ^ | | 1 | 8.1 | | 2.82 | 1.43 | 6.0 | 2.4 | ··· | | 2 | 7.2 | AND THE PROPERTY. | 2.66 | 1.35 | 4.9 | 2.20 | | | 3 | 5.9 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 2.41 | 1.23 | 4.2
2.6 | 1.6 | | | 4 | 4.2 | | 2.03 | 1.03
0.89 | 1,5 | 1.2 | | | 5 | 3.1 | v | 1.75 | V.02 | 1,2 | A 1 Fee | | | By Linear Regr | | Λ. | | Intercept, bw = | : | -0.66 | 36 | | Slope, mw = Correlation C | Name of the last o | | .9962 | 221121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | ************************************** | | | Correlation | ocinciem. | | | | and the second s | | TE TEST TO THE TES | | | was to summer to the | | Set Point C | 'alculation | | | | | From the TCD Fi | ald Calibration | Curve take O | $std = 1.21 \text{ m}^3/\text{min } ($
 | | ar vers av autoritas Steinebil (1995) dan men er er vers en med distributeur er en men | | | From the Regres | | | | ,,,, | | | | | rom me regres | sion squaron, | | | | 1/2 | | | | | | m x | Qstd + b = [W x (| Pa/760) x (298/1 | Γa)] ^{1/2} | | | | mu e e | 0.48-1.437 - (| my n Ootd 4 b ' |) ² x (760 / Pa) x (| Ta / 208) = | : | 3.85 | | | Inerefore, | Set Point w - (| m x Qsiu + o , | , x(/00/18/x(| 147270) | ************************************** | MANAGER WAR TO THE THE PARTY OF | ом | | *If Correlation (| Coefficient < 0. | 990, check and | recalibrate again. | anizani-x · · · · · · · · · · · · · · · · · · · | | | Marian Ma | Remarks: | | | | | | | | | | | | | LOCUMENTO | | - Laboration of the Control C | | | | 1 () | í | | / | | 10/5 | 1,5 | | QC Reviewer: | 115/10 | helling | Signature: | | Date | ; <u> 1/ </u> | Z() | | Station | On Yat House | (ID2) | | | Operator | :Leung Yi | u Ting | |----------------------|------------------------|--|--|------------------|---------------------|---------------------------|----------| | Date: | 10-Apr-15 | | | | | : 10-Jun | | | Pump No.: | 1654 | | | , | | :O.T.S | | | Equipment No.: | A-001-61T | A-001-61T Expiration Date: 28-May-2015 | | | | | | | | | | Ambient C | Condition | | | | | Tempera | ture, Ta | 292 | Kelvin | | ure, Pa | 762.2 | mmHg | | | | | | | | 1 7 0 2 1 2 | mining | | | | Or | ifice Transfer Sta | ndard Informa | tion | | | | Equipme | | 988 | Slope, mc | 1.97 | 7518 | Intercept, bc | -0.01001 | | Last Calibra | Last Calibration Date: | | mc x Qstd + bc = $[H \times (Pa/760) \times (298/Ta)]^{1/2}$ | | - (200/m_\\1/2 | | | | Next Calibra | ation Date: | 28-May-15 | A) | ile x Qstu + De | — [H X (FA//00) | x (298/1 a)j | | | | | • | Calibration of | TSP Sampler | We the second | | | | Calibration
Point | H
in. of water | [H x (Pa/76 | 0) x (298/Ta)] ^{1/2} | Qstd
(m³/min) | W
in. of oil | [ΔW x (Pa/760) x
Y-axi | | | | | - | | X - axis | III. OI OII | r-axi | S | | 1 | 8.0 | | 2.86 | 1.45 | 5.5 | 2.37 | | | 2 | 6.0 | | 2.48 | 1.26 | 3.9 | 2.00 | | | 3 | 5.1 | | 2.28 | 1.16 | 3.1 | 1.78 | | | 4 | 4.2 | | 2.07 | 1.05 | 2.2 | 1.50 | | | 5
By Linear Regre | 2.8 | | 1.69 | 0.86 | 1.0 | 1.01 | | | Slope , mw = | | X. | | | | | | | Correlation Co | | _ | 9974 | ntercept, bw = | | -0.943 | 7 | | Correlation Co | emelent – | | 77/4 | | | | | | | | | | | | | | | | | | Set Point Ca | | | | | | | | | $d = 1.21 \text{ m}^3/\text{min } (4)$ | 3 CFM) | | | | | From the Regress | ion Equation, t | ne "Y" value ac | cording to | | | | | | | | m x O | extd + b = [W x (P)] | a/760) x (298/T | (a)1 ^{1/2} | | | | | | | | | /] | | | | Therefore, So | et Point W = (1 | $m \times Qstd + b)^2$ | x (760/Pa)x(Ta | a / 298) = | 3. | 37 | | | If Correlation Co | pefficient < 0.9 | 00, check and re | ecalibrate again | Remarks: | | | | | | | | | - | | | | | | | | | | | | | | | | | | QC Reviewer: 1 | NK CHIDAN | | Signature: | F-1 | Date: | 10/4/15 | | | Station | On Yat House | (ID2) | | | Operator: | Leung Yi | u Ting | |---|--|------------------------|---|--|--|--
--| | Date: | 10-Jun-15 | _ | | | | 10-Aug | | | Pump No.: | Pump No.: 10373 Verified Against: 0.T.S 843 | | | | | | | | Equipment No.: | A-001-12T | | | F | Expiration Date: | 9-Dec-2 | .015 | | | | | | | | | | | | | | Ambient C | ondition | | | | | Тетрега | Temperature, Ta 300 Kelv | | Kelvin | Pressu | 756.0 | mmHg | | | | UND-10-4-1 | | | | | | | | | | Or | ifice Transfer Sta | ndard Informat | tion | | | | Equipme | ent No.: | 843 | Slope, mc | 1.99 | 924 | Intercept, bc | -0.01238 | | Last Calibra | Last Calibration Date: | | mc x Qstd + bc = $ H x (Pa/760) \times (298/Ta) ^{1/2}$ | | | | | | Next Calibra | ntion Date: | 9-Dec-15 | | ic x Qsta + bc - | - [m x (ra//00) | X (298/14)] | | | | | | | | | | | | | | | Calibration of | FSP Sampler | | | | | Calibration | Н | | 1/2 | Qstd | W | [ΔW x (Pa/760) x (298/Ta) | | | Point | in, of water | [H x (Pa/76 | 0) x (298/Ta)] ^{1/2} | (m³/min) | in. of oil | Y-ax | | | 1 | 7.0 | | 2.70 | X - axis | | 2.20 | \ | | 2 | 7.9 | | 2.79
2.43 | 1.40 | 5.8 | 2.39 | The same of sa | | *************************************** | 6.0 | | ····· | 1.22 | 4.0 | 1,99 | · · · · · · · · · · · · · · · · · · · | | 3 | 5.0 | | 2.22 | 1.12 | 3.2 | 1.78 | | | <u>4</u>
5 | 4.2 | | 2.04 | 1.03 | 2.2 | 1.47 | | | | 2,9 | v | 1.69 | 0.85 | 1,1 | 1.04 | } | | By Linear Regr
Slope , mw = | | Α | , | [m4auaam4 h.m. — | | 1.05 | (0 | | Correlation C | · · · · · · · · · · · · · · · · · · · | | | Intercept, bw = | | -1.050 |)9 | | Correlation | oemiciem | | 9974 | | | | | | ************************************** | | | | | | ************************************** | | | | | | Set Point Ca | .lanlatian | ······································ | | | | From the TSD Fig | eld Calibration | Curve take Oc | $d = 1.21 \text{ m}^3/\text{min } (4)$ | | · | | #0570011##1949500000000000000000000000000000000000 | | rom the Regress | | | | is Crwi) | | | | | Tom the Regress | sion Equation, t | ne i vantea | column to | | | | | | | | m x 0 | Qstd + b = W x (P | a/760) x (298/T | `a)] ^{1/2} | | | | | | _ | | | | | | | Therefore, S | Set Point $W = ($ | $m \times Qstd + b)^2$ | x (760/Pa)x (T | `a / 298) = | 3 | .84 | | | 350 L.C. 7 | | 00 1 1 1 | 121 | CONTROL | | 10000F022000 | | | II Correlation C | oefficient < 0.9 | 90, check and | recalibrate again. | | | | | | | | | | | | | | | lamada. | | | | | | | | | temarks: | *************************************** | | 2 | ************************************** | | CONTRACTOR OF THE PROPERTY | | | • | A CONTRACTOR OF THE | | 10-00000000000000000000000000000000000 | DIM THE THE PERSON OF PERS | | TOTAL THE STATE OF | NOTE | | QC Reviewer: | WS CHA | n (| C: | 71 | D-t | 10/6/15 | | | Or Keylewer: | VV> CAN | N | Signature: | 4 | Date; | 1016/15 | | | Station | Sau Nga Hous | <u>e (</u> ID3) | | | Operator | Leung Yi | u Ting | |----------------------|-------------------|------------------------|---|---|---------------------|----------------------------|----------| | Date: | 10-Apr-15 | _ | | | | 10-Jun | | | Pump No.: | 1272 | | | \ | | O.T.S | | | Equipment No.: | A-001-31T | | | | Expiration Date: | | | | | | | 4-14-76 | | | | | | Таминача | T. | 202 | Ambient C | | | Ventral (g) | | | Tempera | ture, 1a | 292 | Kelvin | Pressi | ure, Pa | 762.2 | mmHg | | | | Or | ifice Transfer Sta | ndard Informa | tion | | | | Equipme | ent No.: | 988 | Slope, mc | 1.97 | | Intercept, bc | -0.01001 | | Last Calibra | ation Date: | 28-May-14 | , | | 0.01001 | | | | Next Calibra | ation Date: | 28-May-15 | n | nc x Qstd + bc = | = [H x (Pa/760) | x (298/Ta)] ^{1/2} | | | | | • | Calibration of | FOR C | | | | | | | T | Calibration of | Qstd | | | | | Calibration
Point | H
in. of water | [H x (Pa/76 | 0) x (298/Ta)] ^{1/2} | (m ³ /min)
X - axis | W
in. of oil | [ΔW x (Pa/760) x
Y-axi | | | 1 | 8.3 | | 2.91 | 1.48 | 5.6 | 2.39 | | | 2 | 6.4 | | 2.56 | 1.30 | 4.2 | 2.07 | | | 3 | 5.5 | | 2.37 | 1.20 | 3.2 | 1.81 | | | 4 | 4.5 | | 2.15 | 1.09 | 2.4 | 1.57 | | | 5 | 3.2 | | 1.81 | 0.92 | 1.5 | 1.24 | | | By Linear Regro | ession of Y on I | X | | | | | | | Slope, $mw = $ | | | 3 | ntercept, bw = | | -0.691 | 8 | | Correlation Co | oefficient* = | 0.9 | 9984 | | | | | | | | | | | | | | | | | | Set Point Ca | | | | | | | | | $d = 1.21 \text{ m}^3/\text{min } (4)$ | 3 CFM) | | | | | From the Regress | sion Equation, th | he "Y" value ac | cording to | | | | | | | | m x C | $\mathbf{pstd} + \mathbf{b} = [\mathbf{W} \times (\mathbf{P})]$ | a/760) x (298/T | [a)] ^{1/2} | | | | | | | | , | /1 | | | | Therefore, S | et Point W = (1 | $n \times Qstd + b)^2$ | x (760 / Pa) x (Ta | a / 298) = | 3. | 31 | | | If Correlation Co | oefficient < 0.9 | 90, check and re | ecalibrate again. | | | | | | | | 8 | | | | | | | | | | | | | | | | Remarks: | | | | | | | | | - | | | | | | | | | QC Reviewer: _ | WS CHAN | / | Signature: | PI | Date: | 10/4/15 | | # TSP - Total Suspended Particulates Sampler Field Calibration Report | Station | Sau Nga House | <u>(</u> ID3) | | | Operator: | Leung Yn | ı Tıng | | |---|---|--
---|--|--|--|--|--| | Date: | 10-Jun-15 | | | 1 | Next Due Date: | 10-Aug | -15 | | | Pump No.: | 3261 | | | V | erified Against: | O.T.S | 843 | | | Equipment No.: | | | | E | xpiration Date: | 9-Dec-2 | 015 | | | • • | | | | | | | | | | | | | Ambient C | Condition | | | | | | Temperat | ure, Ta | 300 | Kelvin | Pressu | re, Pa | 756.0 | mmHg | | | | | | | | | | | | | | | Or | ifice Transfer Sta | ndard Informat | ion | | | | | Equipme | nt No.: | 843 | Slope, mc | 1,999 | 924 | Intercept, be | -0.01238 | | | | Last Calibration Date: 9-Dec- | | mc x Qstd + bc = $[H \times (Pa/760) \times (298/Ta)]^{1/2}$ | | | | | | | Next Calibra | Next Calibration Date: 9-Dec-15 $ mc \times Qstd + bc = [H \times (Pa/760) \times (298/Ta)]^{n} $ | | | | | | | | | 9200ml 14500 cm 200ml | | | | | | | | | | | | | Calibration of | TSP Sampler | | | | | | Calibration | Н | | | Qstd | w | [ΔW x (Pa/760) x (298/Ta | | | | Point | in, of water | [H x (Pa/70 | 50) x (298/Ta)] ^{1/2} | (m³/min) | in, of oil | Y-ax | | | | | | | w | X - axis | -0 | 1-4315 | | | | 1 | 8.1 | _ | 2.83 | 1.42 | 5.5 | 2.33 | | | | 2 | 6.2 | | 2.48 | 1.25 | 4.2 | 2.04 | | | | 3 | 5.5 | | 2.33 | 1.17 | 3.1 | 1,75 | | | | 4 | 4.4 | | 2.09 | 1.05 | 2.4 | 1.54 | | | | 5 | 3.2 | | 1.78 | 0.90 | 1.4 | 1.18 | } | | | By Linear Regr | ession of Y on I | X | | | | | | | | Slope, mw = | 2.2407 | _ | | Intercept, bw = | | -0.82 | 67 | | | Correlation C | oefficient* = | 0 | .9954 | | | | | | | · · _ · · · · · · · · · · · · · · · · · | | | | | | | | | | | | MANAGEMENT AND A STATE OF THE S | | | mm +10 | ANNE DE LE CONTRACTO DE LA CONTRACTORIO DEL CONTRACTORIO DEL CONTRACTORIO DE LA DEL CONTRACTORIO DELA CONTRACTORIO DE LA CONTRACTORIO DE LA CONTRACTORIO DE LA CONTRACTORIO DE | | | | <u> </u> | · ·
· · · · · · · · · · · · · · · · · | | Set Point C | | | v | ************************************** | | | From the TSP Fig | eld Calibration (| Curve, take Qs | std = 1.21 m ³ /min (| 43 CFM) | | | | | | From the Regress | sion Equation, t | he "Y" value a | ecording to | | | | | | | | | m v | Qstd + b = [W x (b)] | Da/760\ v /209/T | 2011/2 | | | | | | | A 111 | Qstu · b ~ [11 x (| 1 a, 700 j x (230/1 | 4/] | | | | | Therefore, S | Set Point W = (: | m x Ostd + b) | ² x (760 / Pa) x (¹ | Ta / 298) = | 3 | 3.59 | | | | , | • | , | , , , | | | | • | | | *If Correlation C | Coefficient < 0.9 | 90, check and | recalibrate again. | THE COLUMN AND CO | | and the second s | Remarks: | | | | | | ************************************** | Marian Control Control | | | | | Decimor | TO A SAME MATERIAL PROPERTY OF THE PARTY | 11 04 1 07 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 | AND A STATE OF THE | *************************************** | | | | | | | | | | / / | | | | QC Reviewer: | his CHAN | | Signature: | | Date: | 10/6/15 | | | | Station | Sau Ming Prin | nary School (ID4 | 1) | | Operator: | Shum Kar | n Yuen | |----------------------|--|------------------------|---------------------------------------|------------------------------|---------------------|------------------------|----------| | Date: | 10-Apr-15 | | | | Next Due Date: | 10-Jun | 1-15 | | Pump No.: | 1275 | | | V | erified Against: | O.T.S | 988 | | Equipment No.: | A-001-28T | | | 1 | Expiration Date: | 28-May- | 2015 | | | | | Ambient C | Condition | | | | | Temperat | ture, Ta | 292 | Kelvin | | ıre, Pa | 762.2 | mmHg | | | | · | | 11000 | , | 702.2 | mining | | | | Ori | fice Transfer Star | ndard Informa | tion | | | | Equipme | nt No.: | 988 | Slope, mc | 1.97 | 518 | Intercept, bc | -0.01001 | | Last Calibra | tion Date: | 28-May-14 | | an w Ootel I ha | = [H x (Pa/760) | (200/05 >1/2 | | | Next Calibra | tion Date: | 28-May-15 | 11 | ic x Qsta + bc = | = [H X (Pa//60) | X (298/1a)] | | | | | • | Calibration of | TSP Sampler | | | | | Calibration
Point | H
in. of water | [H x (Pa/766 | 0) x (298/Ta)] ^{1/2} | Qstd
(m³/min)
X - axis | W
in. of oil | [ΔW x (Pa/760) > Y-axi | | | 1 | 8.2 | | 2.90 | 1.47 | 5.6 | 2.39 | | | 2 | 6.2 | | 2.52 | 1.28 | 4.2 | 2.07 | | | 3 | 5.2 | | 2.31 | 1.17 | 3.4 | 1.87 | | | 4 | 4.1 | | 2.05 | 1.04 | 2.4 | 1.57 | | | 5 | 3.1 | | 1.78 | 0.91 | 1.8 | 1.36 | | | By Linear Regre | ession of Y on | X | | | | | | | Slope, mw = _ | 1.8763 | _ | | ntercept, bw = | | -0.350 |)7 | | Correlation Co | oefficient* = | 0.9 | 983 | | | | | | | | | | | | | | | | | | Set Point Ca | | | | | | | | | $l = 1.21 \text{ m}^3/\text{min} (4)$ | 3 CFM) | | | | | From the Regress | ion Equation, t | he "Y" value ac | cording to | | | | | | | | m x Q | std + b = [W x (P | a/760) x (298/T | [a)] ^{1/2} | | | | | Table 1 and 1 | 2 | | | | | | | Therefore, S | et Point W = (| $m \times Qstd + b)^2$ | x (760 / Pa) x (T | a / 298) = | 3 | .60 | | | If Correlation Co | pefficient < 0.9 | 90, check and re | calibrate again. | | | | | | | | | | | | | | | Remarks: | | | | | | | | | - | | | | | | | | | - | | | | | | | | | QC Reviewer: _ | NIS CHAT | J | Signature: | RI | Date | 10/4/15 | | | - | The state of s | | | | | 10116.0 | | # TSP - Total Suspended Particulates Sampler Field Calibration Report | Station | Sau Ming Prim | ary School (ID4 | .) | | Operator: | Shum Kan | n Yuen | |---|--|------------------------|---|--
--|---|---| | | 10-Jun-15 | | | | Next Due Date: | 10-Aug | <u>ş-15</u> | | Pump No.: | The state of s | | | V | erified Against: | O.T.S | 843 | | Equipment No.: | A-001-28T | | | H | Expiration Date: | 9-Dec-2 | 015 | | | | | | | | · zaka parwanaka manaka . | | | | | 200 | Ambient C | | n | 757.0 | TY0 | | Tempera | ture, 1a | 300 | Kelvin | Pressu | ire, Pa | 756.0 | mmHg | | | | Ori | fice Transfer Stai | ndard Informat | tion | | *************************************** | | Equipme | ent No.: | 843 | Slope, mc | 1.99 | 924 | Intercept, bc | -0.01238 | | Last Calibra | ation Date: | 9-Dec-14 | | | = [H x (Pa/760) | /300/T-\1/2 | | | Next Calibra | ation Date: | 9-Dec-15 | n | ne x Qsta + de = | = [H X (P8//00) | X (298/11) | ······································ | | ASSESSMENT OF THE PROPERTY | | | | ······································ | | 2 | | | | | 1 | Calibration of | TSP Sampler
Ostd | | | · | | Calibration
Point | H
in. of water | [H x (Pa/76 | 0) x (298/Ta)] ^{1/2} | (m³/min)
X - axis | W
in. of oil | [ΔW x (Pa/760) :
Y-ax | | | 1 | 8.0 | | 2.81 | 1,41 | 5.5 | 2.33 | 3 | | 2 | 6.2 | | 2.48 | 1.25 | 4.2 | 2.04 | 1 | | 3 | 5.1 | | 2.24 | 1.13 | 3.5 | 1.80 |) | | 4 | 4.1 | | 2.01 | 1,01 | 2.4 | 1.54 | A A A A A A A A A A A A A A A A A A A | | 5 | 3.0 | | 1.72 | 0.87 | 1.7 | 1.30 |) | | By Linear Regr | | X | | | | 0.00 | ο. π | | Slope, mw = | *************************************** | | | Intercept, bw = | • | -0.38 | U5 | | Correlation C | oefficient* = | U. | 9967 | | | | | | | ,, , , , , , , , , , , , , , , , , , , | | varressen rumanumsen arenassa rumakskus essen e | ,,,,,,, | - CONTRACTOR OF THE | 711001710117211110111101111111111111111 | | | | | | Set Point C | alculation | | | | | From the TSP Fi | eld Calibration | Curve, take Qst | d = 1.21 m ³ /min (4 | 43 CFM) | | | | | From the Regres | sion Equation, t | he "Y" value ac | cording to | | | | | | | | m x (| $\mathbf{pstd} + \mathbf{b} = \mathbf{[W x (I)]}$ | Pa/760) x (298/] | [a)] ^{1/2} | | | | | | 2 🕻 | [| | 71 | | | | Therefore, | Set Point W = (| $m \times Qstd + b)^2$ | x (760/Pa)x (7 | Γa / 298) = | *************************************** | .89 | | | *If Correlation C | Coefficient < 0.9 | 90, check and r | ecalibrate again. | <u> </u> | | · · · · · · · · · · · · · · · · · · · | | | voviacion c | | , | | | | | | | | | | | | | | | | Remarks: | *************************************** | | | | | | *************************************** | | | <u> </u> | | | | | m market maken hike were a common way. | ALDON A | | | 1 | | | PI | | . // / | | | OC Reviewer: | WS (HAZI | | Signature: | 1 | Date: | 10/6/15 | | | Station | Sau Mau Ping | Catholic Primar | y School (ID5) | | Operator: | Shum Kar | n Yuen | |---------------------------------|-------------------|------------------------|--|--|---------------------|----------------------------|----------| | Date: | 10-Apr-15 | _ | | | | 10-Jun | | | Pump No.: | 10088 | • | | V | | O.T.S | | | Equipment No.: | A-001-13T | | | | Expiration Date: | | | | | | | - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | | | | | | m | .02.02.1 | | Ambient C | | | | | | Tempera | ture, Ta | 292 | Kelvin | Pressi | ure, Pa | 762.2 | mmHg | | | | Ori | fice Transfer Star | ndard Informa | tion | | | | Equipme | ent No.: | 988 | Slope, mc | | 518 | Intercept, bc | -0.01001 | | Last Calibra | | 28-May-14 | | | | | -0.01001 | | Next Calibra | ation Date: | 28-May-15 | n | nc x Qstd + be | = [H x (Pa/760) | x (298/Ta)] ^{1/2} | | | | | • | | | | | | | | | | Calibration of | The second secon | | | | | Calibration
Point | H
in. of water | [H x (Pa/76) | 0) x (298/Ta)] ^{1/2} | Qstd
(m³/min)
X - axi s | W
in. of oil | [ΔW x (Pa/760) x
Y-ax | | | 1 | 8.1 | | 2.88 | 1.46 | 6.3 | 2.54 | | | 2 | 6.6 | | 2.60 | 1.32 | 4.4 | 2.12 | | | 3 | 5.3 | | 2.33 | 1.18 | 3.2 | 1.81 | | | 4 | 4.2 | | 2.07 | 1.05 | 2.4 | 1.57 | | | 5 | 3.2 | | 1.81 | 0.92 | 1.5 | 1.24 | | | By Linear Regro
Slope , mw = | | X | | | | 0.04 | | | Correlation Co | | | 968 | Intercept, bw = | | -0.914 | 10 | | correlation co | · | 0.7 | 700 | | | | | | | | | Var. 174 - 174 - 174 - 174 - 174 - 174 - 174 - 174 - 174 - 174 - 174 - 174 - 174 - 174 - 174 - 174 - 174 - 174 | | | | - | | | | | Set Point Ca | lculation | | | | | From the TSP Fie | eld Calibration | Curve, take Qsto | $l = 1.21 \text{ m}^3/\text{min}$ (4 | 3 CFM) | | | | | From the Regress | ion Equation, t | he "Y" value ac | cording to | | | | | | | | m x O | std + b = [W x (P | a/760) x (298/T | (a)1 ^{1/2} | | | | | | | | | /1 | | | | Therefore, S | et Point W = (| $n \times Qstd + b)^2$ | x (760 / Pa) x (Ta | a / 298)= | 3. | 57 | | | arc. I.i. C | CC ' 0.0 | 00 1 1 1 | | | | | | | If Correlation Co | oefficient < 0.9 | 90, check and re | ccalibrate again. | | | | | | | | | | | | | | | Remarks: | | | | | | | | | | | | | | | | | | Steel | | | | | | | | | QC Reviewer: | WS CHAN | / | Signature: | RI | Date | 10/6/15 | | | Station | Sau Mau Ping | <u>Ca</u> tholic Prima | ry School (ID5) | | Operator: | Shum Kar | n Yuen | |--|-------------------|--|-----------------------------------|--|---|--|--| | Date: | 10-Jun-15 | _ | | | Next Due Date: | 10-Auş | g-15 | | Pump No.: | 10088 | | | v | erified Against: | O.T.S | 843 | | Equipment No.: | A-001-13T | | | F | Expiration Date: | 9-Dec-2 |
2015 | | 25444724-044444444444444444444444444444444 | · | | | | | | | | | | | Ambient C | Condition | | | | | Temperat | ture, Ta | 300 | Kelvin | Pressu | ıre, Pa | 756.0 | mmHg | | | | | | | | | | | | | Or | ifice Transfer Sta | ndard Informat | tion | | | | Equipme | nt No.: | 843 | Slope, mc | 1.99 | 924 | Intercept, bc | -0.01238 | | Last Calibra | tion Date: | 9-Dec-14 | | nc x Qstd + bc = | - ID v (Da/760) | w/100/ma\1/2 | | | Next Calibra | ation Date: | 9-Dec-15 | Li | ne x Qstu + be - | - (H X (Fa//00) | x (290/18); | | | | | | | | | | | | | | | Calibration of | TSP Sampler | | | | | Calibration | Н | | 1/2 | Qstd | w | [ΔW x (Pa/760) : | x (298/Ta)1 ^{1/2} | | Point | in. of water | [H x (Pa/76 | 50) x (298/Ta)] ^{1/2} | (m³/min) | in, of oil | Y-ax | | | 1 | 0.0 | | 0.01 | X - axis | | | | | 1 | 8.0 | | 2.81 | 1.41 | 6.0 | 2.43 | | | 2 | 6.3 | | 2.50 | 1.26 | 4.5 | 2.13 | | | 3 | 5.3 | | 2.29 | 1.15 | 3.2 | 1.78 | *************************************** | | 4 | 4.1 | | 2.01 | 1.01 | 2.5 | 1.57 | | | 5 | 3.2 | <u> </u> | 1.78 | 0.90 | 1.6 | 1.20 |) | | By Linear Regr | | х | | | | 0.86 | | | Slope, mw = | | _ | | Intercept, bw = | | -0.76 | 15 | | Correlation C | oefficient* = | U. | .9961 | | | | | | | Manager 1997 | ************************************** | | William Commission Commission Commission Commission Commission Commission Commission Commission Commission Com | ************************************** | | 000000 | | | | | 0.1 | 1 1 4 | | | 77-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | a demonstration | . 1 C 1'1 | ^ · 1 ^ | Set Point C | | | | | | | | | td = 1.21 m ³ /min (4 | 43 CFM) | | | | | From the Regress | sion Equation, t | ne "Y" value a | ccording to | | | | | | | | m x | Qstd + b = [W x (I | Pa/760) x (298/T | (a) ^{1/2} | | | | | | | ` ` | , , | | | | | Therefore, S | Set Point W = (| m x Qstd + b) | ² x (760 / Pa) x (1 | $\Gamma a / 298) =$ | 3 | .95 | | | ~~~~ | ··· | ~~~ | | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | If Correlation C | coefficient < 0.9 | 90, check and | recalibrate again. | Remarks: | × | | | | · · · · · · · · · · · · · · · · · · · | | 45-00-1111-1111-1111-1111-1111-1111-1111 | | | | | | | *************************************** | | | | | | | , | | | . 11 1 - | | | QC Reviewer: | NS CHAN | | Signature: | 4-1 | Date: | 10/6/15 | | TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX ### ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A | Date - De
Operator | | Rootsmeter
Orifice I.I | | 0438320
0843 | Ta (K) -
Pa (mm) - | 293
- 755.65 | |-----------------------|----------------------------|----------------------------|------------------------------|--|----------------------------------|--------------------------------------| | PLATE
OR
Run # | VOLUME
START
(m3) | VOLUME
STOP
(m3) | DIFF
VOLUME
(m3) | DIFF
TIME
(min) | METER
DIFF
Hg
(mm) | ORFICE
DIFF
H2O
(in.) | | 1
2
3
4
5 | NA
NA
NA
NA
NA | NA
NA
NA
NA
NA | 1.00
1.00
1.00
1.00 | 1.4010
0.9950
0.8830
0.8420
0.6960 | 3.2
6.4
7.9
8.8
12.7 | 2.00
4.00
5.00
5.50
8.00 | #### DATA TABULATION | Vstd | (x axis)
Qstd | (y axis) |
Va | (x axis)
Qa | (y axis) | |---|--|--|---|--|--| | 1.0069
1.0027
1.0006
0.9994
0.9942 | 0.7187
1.0077
1.1332
1.1870
1.4285 | 1.4221
2.0112
2.2486
2.3584
2.8443 | 0.9957
0.9915
0.9894
0.9883
0.9831 | 0.7107
0.9965
1.1206
1.1738
1.4126 | 0.8806
1.2454
1.3924
1.4603
1.7612 | | Qstd slop
intercept
coefficie
y axis = | t (b) =
ent (r) = | 1.99924
-0.01238
0.99990
 |
Qa slop
intercep
coeffici
y axis = | t (b) = | 1.25189
-0.00766
0.99990 | #### CALCULATIONS Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time For subsequent flow rate calculations: Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$ | Type: | | | | Laser Du | st Wonit | or | | | |------------|---|---|--------------|--|------------|---|--------------------|--| | Manufa | acturer/Brand: | | | SIBATA | | . | | | | Model | No.: | | | LD-3 | | | | | | Equipn | nent No.: | | | A.005.07 | | | | | | Sensiti | vity Adjustment | Scale Setting: | | 557 CPN | 1 | | | | | Operat | tor: | | | Mike She | k (MSKN | 1) | | | | Standar | d Equipment | | | | , | | | | | Equipn | nent: | Ruppre | cht & Pat | tashnick : | ГЕОМ® | | | | | Venue | | | | ing Seco | | chool) | | | | Model | | Series 1 | | | | | | | | Serial | | Control: | | AB21989 | 9803 | | | | | Contain | | Sensor: | | OC14368 | | K _o : 12500 | | TARREST TO THE PARTY OF PAR | | Last C | alibration Date*: | | | | | | | | | *Remarl | ks: Recommend | ed interval for | hardwar | e calibrat | ion is 1 y | year | | | | Calibra | tion Result | | | | | *************************************** | | | | Callura | uon resur | | ~~~~~ | | | | | | | Soneit | ivity Adjustment | Scale Setting | (Before | Calibratio | n): | <i>557</i> CP | M | | | Soneit | ivity Adjustment | Scale Setting | (After C: | alibration | 1.
1. | 557 CP | | | | OCHOR | ivity Adjustinoit | Codic Colling | (1.11,101.01 | 4 11 5 1 5 1 5 1 | , | | | | | Hour | Date | Time | | Amł | pient | Concentration 1 | Total | Coun | | rioui | (dd-mm-yy) | 1 11110 | , | | dition | (mg/m ³) | Count ² | Minute | | | (dd-iiiii-yy) | | | Temp | R.H. | Y-axis | | X-axi | | | | | | (°C) | (%) | | | | | 1 | 08-05-15 | 09:15 - | 10:15 | 26.9 | 76 | 0.04417 | 1763 | 29.38 | | 2 | 08-05-15 | 10:15 - | 11:15 | 26.9 | 76 | 0.04625 | 1851 | 30.8 | | 3 | 08-05-15 | 11:15 - | 12:15 | 26.9 | 77 | 0.04513 | 1805 | 30.08 | | 4 | 08-05-15 | 12:15 - | 13:15 | 27.1 | 77 | 0.04828 | 1926 | 32.1 | | Note: | | | | | | ashnick TEOM® | <u> </u> | ,2 | | NOIG. | 2. Total Count | was looned h | v Laser I | Dust Mon | itor | | | | | | 3. Count/minu | | | | | | | | | | o, #22 | • | | | ŕ | | | | | By Linea | ar Regression of | Y or X | | | | | | | | | (K-factor): | | 0.0015 | | | | | | | | ation coefficient: | : 7 | 0.9983 | | | | | | | | | | , | | | | | | | Validit | y of Calibration I | Record: _8 | 3 May 20 | 16 | Remark | (S: | L | | | | | | | | | | | | | | | d | | | | | سيد سيريدس | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 5 | Olaur - | 4 | 7/ - | Date | o. 44 M/r | ay 2015 | | -QC R | eviewer: YW / | Fung | Signa | nure: | k | Date | 5. II IVIZ | ay 2010 | | Type: | | | | Laser L | Just Mo | nitor | | | |-----------------|--|--------------|---------------------------|-------------|------------|----------------------------|--------------------|---------------------| | | acturer/Brand: | | | SIBATA | | intoi | | | | Model | No.: | | | LD-3 | 1 | | | | | Equipn | ment No.: | | | A.005.0 | 8a | | | | | Sensiti | ivity Adjustment | Scale Set | ling: | 702 CF | | | | | | Operat | tor: | | | Mike Sh | ek (MS | KM) | | | | Standar | d Equipment | | | | | | | | | Equipp | nont. | _ | | \$ W AV 8 Y | | |
 | | Equipn | | | precht & P | | | | | | | Venue:
Model | | | erport (Pui | | ondary | School) | | | | Serial I | | | es 1400AB | | | | | | | Serial I | NO. | Con | - | 10AB2198 | | | | | | Last Ca | alibration Date*: | Sens | sor: <u>12</u>
ay 2015 | 200C1436 | 359803 | K _o : 12 | 500 | | | | | | * | | | | | | | *Remark | s: Recommend | led interval | for hardwa | are calibra | ation is ' | 1 year | | | | Calibrat | ion Result | | | | | | | | | Consiti | uitu Adiustmant | 01- 0-4 | (D. f. | 0 !!! .!! | | | | | | Sensiti | vity Adjustment | Scale Sett | ing (Before | Calibrati | on): | 702 | CPM | | | Sensiti | vity Adjustment | Scale Sett | ing (After C | Calibration | 1): | 702 | CPM | | | Hour | Date | Tir | me | Amb | ient | Concentration ¹ | Total | Count/ | | | (dd-mm-yy) | | | Cond | | (mg/m ³) | Count ² | Minute ³ | | | | | | Temp | R.H. | Y-axis | Count | X-axis | | | <u> </u> | | | (°C) | (%) | | | N-0AI3 | | 1 | 08-05-15 | 09:30 - | 10:30 | 26.9 | 76 | 0.04587 | 1722 | 28.70 | | 2 | 08-05-15 | 10:30 - | 11:30 | 26.9 | 76 | 0.04774 | 1795 | 29.92 | | 3 | 08-05-15 | 11:30 - | 7 - 100 | 26.9 | 77 | 0.04976 | 1864 | 31.07 | | 4 | 08-05-15 | 12:30 - | , 0.00 | 27.1 | 77 | 0.05051 | 1901 | 31.68 | | Note: | 1. Monitoring d | lata was m | easured by | Ruppred | ht & Pa | tashnick TEOM® | | | | | Total Count Count/minut | was logger | by Laser | Dust Mor | nitor | | | | | | o. Countrilling | e was calc | ulated by (| Total Cot | invov) | | | | | By Linear | r Regression of | Y or X | | | | | | | | Slope (I | K-factor): | | 0.0016 | | | | | | | | tion coefficient: | | 0.9978 | | | | | | | Validity | of Calibration F | Popord: | 0.4400 | 140 | | | | | | validity | or campration r | Record. | 8 May 20 | 110 | | | | | | Remarks | • | | | | | | | | | tomaino | 7 | | | | | | | | | in / | | | | | QC Rev | viewer: YW F | una | Class- | tura | 1 | | | - NOTE | | ac Nev | TOVEL. TVV | ung | Signa | iure: | | D | ate: 11 | May 2015 | | (dd-mm-yy) Condition (mg/m ³) Count ² Minute | Type: | | | | .aser Du | st Monit | or | | | |--|----------|---------------------------------|--------------------------|---------------|-------------|---|--|--|----------| | Equipment No.: Sensitivity Adjustment Scale Setting: A.005.09a 797 CPM | Manufa | acturer/Brand: | | ****** | | | | | | | Sensitivity Adjustment Scale Setting: | | | | | | | | | | | Standard Equipment Rupprocht & Patashnick TEOM* | | | | - | | *************************************** | | | | | Equipment Rupprecht & Patashnick TEOM® Venue: Cyberport (Pui Ying Secondary School) | Sensiti | vity Adjustment \$ | Scale Settir | ng: <u>7</u> | 97 CPN | 7 | | | | | Equipment: | Operat | or: | | | Mike She | k (MSKN | <u>) </u> | | | | Venue: Cyberport (Put Ying Secondary School) | Standar | d Equipment | | | | | | | | | Model No.: Series 1400AB Control: 140AB219899803 Sensor: 1200C143659803 Ko: 12500 | Equipn | nent: | Rupp | recht & Pat | ashnick ī | ГЕОМ® | | Larent La | | | Serial No: | Venue | : | Cybe | rport (Pui Y | ing Seco | ndary Sc | hool) | | | | Sensor: 1200C143659803 K _o : 12500 | Model | No.: | Serie | | | | | | | | Calibration Date Time | Serial I | No: | Conti | | | | | | | | Calibration Result Sensitivity Adjustment Scale Setting (Before Calibration): 797 | | | | | 0C14365 | 9803 | Κ _ο : <u>12500</u> | | | | Sensitivity Adjustment Scale Setting (Before Calibration): 797 CPM | Last C | alibration Date*: | _7 <i>Ma</i> , | y <u>2015</u> | | | | | ···· | | Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM* 2000 34.91 | *Remarl | ks: Recommend | ed interval | for hardwar | e calibrat | ion is 1 y | <i>r</i> ear | | | | Date | Calibrat | tion Result | | | | | | | | | Date | _ | | | /D () | O - 11h 41- | >- | 707 (1 | DN A | | | Hour Date (dd-mm-yy) | Sensit | vity Adjustment | Scale Setti | ng (Before (| Jalibratio | in): | | | | | Condition Condition Count Coun | Sensit | ivity Adjustment | Scale Setti | ng (After Ca | alibration, |); | CF | TVI | | | Condition Count | Hour | Date | Ti | me | Amb | oient | Concentration ¹ | | Count | | Temp (°C) (%) (%) (%) (%) (%) (%) (%) (%) (%) (% | 11001 | | , | | | | | Count ² | Minute | | 1 08-05-15 13:15 - 14:15 27.1 77 0.04986 1994 33.2: 2 08-05-15 14:15 - 15:15 27.1 77 0.05083 2037 33.9: 3 08-05-15 15:15 - 16:15 27.1 77 0.05012 2003 33.3: 4 08-05-15 16:15 - 17:15 27.1 76 0.05241 2095 34.9: Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0015 Correlation coefficient: 0.9968 Validity of Calibration Record: 8 May 2016 Remarks: | | (42 // 33) | | | Temp | R.H. | Y-axis | | X-axis | | 1 | | | | | (°C) | | | | <u> </u> | | 3 | 1 | 08-05-15 | | | | | | | | | 4 08-05-15 16:15 - 17:15 27.1 76 0.05241 2095 34.9. Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0015 Correlation coefficient: 0.9968 Validity of Calibration Record: 8 May 2016 Remarks: | 2 | 08-05-15 | 14:15 | | | | | | | | Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0015 Correlation coefficient: 0.9968 Validity of Calibration Record: 8 May 2016 Remarks: | 3 | 08-05-15 | <u> </u> | | | | | | | | 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By
Linear Regression of Y or X Slope (K-factor): 0.0015 Correlation coefficient: 0.9968 Validity of Calibration Record: 8 May 2016 Remarks: | 4 | 08-05-15 | | | | | | 2095 | 34.97 | | Slope (K-factor): 0.0015 Correlation coefficient: 0.9968 Validity of Calibration Record: 8 May 2016 Remarks: | | 2. Total Count
3. Count/minu | was logge
te was calc | d by Laser (| Dust Mon | itor | ISTANCE I EOIVI | | | | Correlation coefficient: 0.9968 Validity of Calibration Record: 8 May 2016 Remarks: | | | | 0.0015 | | | | | | | Remarks: | | | : | 0.9968 | | | | | | | n | Validit | y of Calibration l | Record: | 8 May 20 | 16 | | | | | | n | | | | | | | | | | | OC Reviewer: VW Fung Signature: Date: 11 May 2015 | Remark | (8: | | | | | | | | | OC Reviewer: VM/ Fung Signature: Date: 11 May 2015 | | | | | | | | | | | OC Reviewer: VW Euro Signature: Date: 11 May 2015 | | | | | | | | | | | OC Reviewer: VM/ Fung Signature: Date: 11 May 2015 | | | | | | | | | | | OC Reviewer: VW Fung Signature: Date: 11 May 2015 | | | | | | | | | | | OC Reviewer: VM/ Fung Signature: Date: 11 May 2015 | | | | | | | | | | | OC Boulover: VM Fung Signature: // Date: 11 May 2015 | | | | | | 1. / | | | | | | UC B | eviewer VM | Funa | Signa | iture: | <i>V</i>]/ | Dat | le: 11 Ma | ay 2015 | | Type | : | | | Laser D | ust Mon | nitor | | | |----------|-------------------------------|-------------|-----------------|------------|-----------------|----------------------------|--------------------|---------------------| | | ıfacturer/Brand: | | | SIBATA | | | | | | | el No.: | | | LD-3 | | | | | | | ment No.: | | _ | A.005.1 | 0a | | | | | Sens | itivity Adjustmen | t Scale Se | etting: | 753 CF | W | | | | | Opera | ator: | | 4 . | Mike Sh | ek (MSK | M) | | | | Standa | ard Equipment | | | | | | | | | Equip | mont | _ | W 2 121 | | | | | | | Venue | ment: | | pprecht & Pa | | | | | | | Mode | | Cy | berport (Pui | Ying Sec | ondary S | School) | | | | Serial | | | ries 1400AB | | | | | | | Serial | INO, | | | 0AB2198 | | | | | | Loot | Calibratian Data | | | 00C1436 | 59803 | K _o : 12500 |) | | | Lasi | Calibration Date* | : _// | <i>May</i> 2015 | | | | | | | *Remar | ks: Recommend | ded interva | al for hardwa | re calibra | tion is 1 | year | | | | Calibra | tion Result | | | | | | | | | | | | | | | | | | | Sensit | tivity Adjustment | Scale Se | tting (Before | Calibratio | on): | 753 CF | PM | | | Sensit | tivity Adjustment | Scale Se | tting (After C | alibration |): [*] | 753 CF | | | | | | | 1925 10 | | | | | | | Hour | Date | | Гіте | Aml | pient | Concentration ¹ | Total | Count/ | | | (dd-mm-yy) | | | Con | dition | (mg/m ³) | Count ² | Minute ³ | | | | | | Temp | R.H. | Y-axis | Journ | X-axis | | | | | | (°C) | (%) | | | A-dals | | 1 | 08-05-15 | 13:45 | - 14:45 | 27.1 | 77 | 0.04963 | 1989 | 33.15 | | 2 | 08-05-15 | 14:45 | - 15:45 | 27.1 | 77 | 0.05131 | 2054 | 34.23 | | 3 | 08-05-15 | 15:45 | - 16:45 | 27.1 | 77 | 0.05170 | 2066 | 34.43 | | 4 | 08-05-15 | 16:45 | - 17:45 | 27.1 | 77 | 0.05269 | 2110 | 35.17 | | Note: | 1. Monitoring of | lata was r | neasured by | Rupprec | nt & Pata | ashnick TEOM® | | | | | 2. Total Count | was logge | ed by Laser [| Dust Mon | itor | | | | | | Count/minut | te was cal | culated by (T | otal Cou | nt/60) | | | | | D 11 | | 1212 1010 | | | | | | | | By Linea | ar Regression of | Y or X | | | | | | | | | (K-factor): | | 0.0015 | | | | | | | Correla | ation coefficient: | | 0.9974 | | | | | | | Validity | of Calibration F | Record: | 8 May 201 | 16 | | | | | | 1 | | | _ v may zo | | | | | | | Remarks | | | | | | | | | | Temark | 5. | . / | | | | | QC Re | viewer: YW F | ung | Signati | ure: | 1/ | Date | 11 May | 2015 | | | /D | | ******* | Laser Du
SIBATA | st Monit | or | | | |---------------------------------|---|--|---------------------------------|--------------------|-------------------|--|--------------------|--| | Model | acturer/Brand: | | | LD-3 | | | | | | | no.:
nent No.: | | Vn. | 4.005.11a | | AAA AAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAA | | | | | vity Adjustment : | Scale Setting: | | 799 CPN | , | | | | | Operat | or: | | | Mike She. | k (MSKN | 1) | | | | tandaı | d Equipment | | | | | | | | | Equipn | nent: | Ruppred | ht & Pat | ashnick T | ΓΕΟΜ [®] | | | | | Venue | | Cyberpo | ort (Pui Y | ing Seco | ndary Sc | hool) | | | | Model | No.: | Series 1 | | | | | | | | Serial | No: | Control: | | AB21989 | · | | | MATTER THE STATE OF O | | Last C | alibration Date*: | Sensor:
7 May 2 | | OC14365 | 9803 | K _o : <u>12500</u> | | | | | ks: Recommend | ed interval for | hardwar | e calibrat | ion is 1 y | ear | | | | <i>,</i> (11) | NON NOOUN | | | | | | | | | Sensit | ivity Adjustment | Scale Setting | (Before | Calibratio | n): | _799CP | | | | Sensit | ivity Adjustment | Scale Setting | (After Ca | alibration) |): | 799 CP | М | | | | | | | | | | | I ~ | | Hour | Date | Time | | | pient | Concentration 3 | Total | Count Minute | | | (dd-mm-yy) | | | Cond | | (mg/m³) | Count ² | X-axis | | | | | | Temp | R.H. | Y-axis | | A-axi: | | | 13-05-15 | 09:15 - | 10:15 | (°C)
27.3 | (%)
78 | 0.04635 | 1853 | 30.88 | | 1 2 | 13-05-15 | 09:15 -
10:15 - | 11:15 | 27.3 | 78 | 0.04788 | 1916 | 31.93 | | 3 | 13-05-15 | 11:15 - | 12:15 | 27.3 | 78 | 0.04943 | 1985 | 33.08 | | | 13-05-15 | 12:15 - | 13:15 | 27.4 | 78 | 0.05176 | 2075 | 34.58 | | 4 | | | يبط اممسيد | Runnter | ht & Pata | ehnick TEOM [©] | | | | 4
Note:
By Linea
Slope | 1. Monitoring of 2. Total Count 3. Count/minuter Regression of (K-factor): | data was meas
was logged by
te was calcula
Y or X | y Laser [
ted by (T
.0015 | Dust Mon
 itor | STRICK (LOW) | | | | 4
Note:
By Linea
Slope | Monitoring of 2. Total Count 3. Count/minuter Regression of the second count t | data was meas
was logged by
te was calcula
Y or X | y Laser [
ted by (T | Dust Mon | itor | STRICK (LOW) | | | | | ıfacturer/Brand: | | | Laser D | ust Mon | itor | | | |----------|-------------------------------|--|-------------------------------|-----------------|------------|----------------------------|--------------------|----------------| | Mode | el No.: | | _ | LD-3B | | | | | | | ment No.: | | X- | A.005.1 | 3a | | | | | Sensi | itivity Adjustmen | Scale Set | tting: | 643 CP | - | | | | | Opera | ator: | | | Mike Sh | ek (MSK | M) | | | | Standa | ard Equipment | | | 5 | | | | | | Equip | ment: | 5 | | | | | | | | Venue | | | precht & Pa | | | | | | | Mode | | Cyt | erport (Pui ` | Ying Sec | ondary S | chool) | | | | | | A CONTRACTOR OF THE PARTY TH | ies 1400AB | | | | | | | Serial | NO: | | | 0AB2198 | | | | | | Last C | Calibration Date* | 27/720 | nsor: <u>12</u> 0
1ay 2015 | 00C1436 | 59803 | K _o : _12500 |) | | | | | | | | | | | | | *Remar | ks: Recommend | led interva | l for hardwa | re calibra | ition is 1 | year | | | | Calibra | tion Result | | | | | | | | | Const | thata All I | 0 1 0 | | | | | | | | Consider | tivity Adjustment | Scale Set | ting (Before | Calibration | on): | | PM | | | Sensi | tivity Adjustment | Scale Set | ting (After Ca | alibration |): | 643 CF | PM | | | Hour | Date | Т | ime | Ami | bient | C | T = 1.1 | T - | | 11001 | (dd-mm-yy) | | iiie | | dition | Concentration ¹ | Total | Count | | | (dd iiiii yy) | | | | | (mg/m³) | Count ² | Minute | | | | | | Temp
(°C) | R.H. | Y-axis | | X-axis | | 1 | 13-05-15 | 09:45 | - 10:45 | 27.3 | (%)
78 | 0.04654 | 1067 | 24.40 | | 2 | 13-05-15 | 10:45 | - 11:45 | 27.3 | 78 | 0.04743 | 1867 | 31.12 | | 3 | 13-05-15 | 11:45 | - 12:45 | 27.3 | 78 | | 1901 | 31.68 | | 4 | 13-05-15 | 12:45 | - 13:45 | 27.4 | 78 | 0.05036
0.05271 | 2010
2112 | 33.50
35.20 | | Note: | 1. Monitoring of | lata was m | neasured by | Rupprec | ht & Pata | ashnick TEOM® | 2112 | 00.20 | | | Total Count | was logge | d by Laser D | Dust Mon | itor | | | | | | Count/minut | e was calc | culated by (T | otal Cou | nt/60) | | | | | By Linea | ar Regression of | Y or X | | | | | | | | | (K-factor): | 1 01 7 | 0.0015 | | | | | | | | ation coefficient: | | 0.9984 | | | | | | | | | | 0.0007 | | | | | | | Validity | y of Calibration F | Record: | 13 May 20 | 016 | | | | | | | | | | | | | | | | Remark | F.' | | | | | | | | | Ciliaik | 5. | | | | | | | | | | | | | | | | | - 1 | | | | | | | | | | - 1 | 00.5 | and the second | | 525 | | , | | | | | QC Re | viewer: YW F | ung | Signati | ure: | 4 | Date | : _14 May | 2015 | | | | | | | // | | | | | | | | | | U | | | | | Model
Equipr | ment No.: | Carla Catting | | Laser Du
SIBATA
LD-3B
A.005.14a
786 CPN | 2 | tor | | | | |------------------|--|---|--------------------------|---|------------------|----------------------------|--------------------|---------------------|--| | Opera | ivity Adjustment i
tor: | ocale Setting | · | Mike Shek (MSKM) | | | | | | | Standar | rd Equipment | | | | | | | **** | | | Equipr | ment: | Ruppre | echt & Pai | tashnick "i | rEOM® | | | | | | Venue | | | ort (Pui Y | | | chool) | | | | | Model | | | 1400AB | | | | | | | | Serial | No: | Contro | l: 140 | AB21989 | 9803 | | | | | | | | Sensor | 120 | OC14365 | 9803 | K _o : 12500 | | | | | Last C | alibration Date*: | 7 May | 2015 | | | | | | | | | ks: Recommend | ed interval fo | r hardwar | re calibrat | ion is 1 y | /ear | | ····· | | | Calibra | tion Result | | | | | | | | | | Sensit
Sensit | ivity Adjustment
ivity Adjustment | Scale Setting
Scale Setting | g (Before
g (After Ca | Calibratio
alibration) | n):
: | 786 CP | | | | | Hour | Date | Tim | е | Amb | ient | Concentration ¹ | Total | Count/ | | | | (dd-mm-yy) | | | Conc | lition | (mg/m³) | Count ² | Minute ³ | | | | | | | Temp | R.H. | Y-axis | | X-axis | | | 1 | 13-05-15 | 13:15 - | 14:15 | (°C)
27.4 | <u>(%)</u>
78 | 0.05084 | 2178 | 36.30 | | | 2 | 13-05-15 | 14:15 - | 15:15 | 27.5 | 78 | 0.05236 | 2243 | 37.38 | | | 3 | 13-05-15 | 15:15 - | 16:15 | 27.5 | 78 | 0.05345 | 2295 | 38.25 | | | 4 | 13-05-15 | 16:15 - | 17:15 | 27.4 | 77 | 0.05272 | 2261 | 37.68 | | | Slope
Correl | 2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient: y of Calibration F | was logged le was calcul
Y or X
— | by Laser (| Oust Mon
Total Coul | itor | shnick TEOM [®] | | | | | Remark | • | | ioway z | | | | | | | | QC Re | eviewer: <u>YW F</u> | -ung | Signa | ture: | -1, | Date | e: <u>14 Ma</u> | y 2015 | | ### 綜 合 試 驗 有 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD. G/F., 9/F., 12/F., 13/F. 8 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黄竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 ### CERTIFICATE OF CALIBRATION Certificate No.: 14CA0702 01-01 Page Item tested Description: Manufacturer: Sound Level Meter (Type 1) Microphone Type/Model No.. **B&K** 2238 **B&K** Serial/Equipment No.: Adaptors used: 2800927 / N.009.06 4188 2791211 Item submitted by Customer Name: Address of Customer: AECOM ASIA CO., LTD. Request No.: 02-Jul-2014 Date of receipt: Date of test: 03-Jul-2014 Reference equipment used in the calibration Description: Model: Serial No. **Expiry Date:** Traceable to: Multi function sound calibrator Signal generator **B&K 4226** DS 360 2288444 20-Jun-2015 CIGISMEC Signal generator DS 360 33873 61227 09-Apr-2015 09-Apr-2015 CEPREI CEPREI Ambient conditions Temperature: 21 ± 1 °C Relative humidity: Air pressure: 60 ± 10 % 1000 ± 10 hPa Test specifications The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of ±20%. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter. #### **Test results** This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed. Details of the performed measurements are presented on page 2 of this certificate. Actual Measurement data are documented on worksheets. Huang lian N Approved Signatory: Date: in/Feng Jun Qi 04-Jul-2014 Company Chop: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. © Soils & Materials Engineering Co., Ltd. Form No.CARP152-1/Issue 1/Rev.C/01/02/2007 #### 綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road. Aberdeen, Hong Kong. 香港實竹坑道37號租達中心地下,9樓、12樓、13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 ### CERTIFICATE OF CALIBRATION Certificate No.: 14CA1106 04-02 Page: of to: Item tested Description: Acoustical Calibrator (Class 1) Manufacturer: Rion Co., Ltd. NC-73 Type/Model No.: Serial/Equipment No.: 10307223 / N.004.08 Adaptors used: Item submitted by Curstomer: AECOM ASIA CO., LTD. Address of Customer: Request No.: Date of
receipt: 06-Nov-2014 Date of test: 07-Nov-2014 #### Reference equipment used in the calibration | Description: | Model: | Serial No. | Expiry Date: | Traceable t | |-------------------------|----------|------------|--------------|-------------| | Lab standard microphone | B&K 4180 | 2412857 | 13-May-2015 | SCL | | Preamplifier | B&K 2673 | 2239857 | 10-Apr-2015 | CEPREI | | Measuring amplifier | B&K 2610 | 2346941 | 08-Apr-2015 | CEPREI | | Signal generator | DS 360 | 61227 | 09-Apr-2015 | CEPREI | | Digital multi-meter | 34401A | US36087050 | 17-Dec-2014 | CEPREI | | Audio analyzer | 8903B | GB41300350 | 07-Apr-2015 | CEPREI | | Universal counter | 53132A | MY40003662 | 11-Apr-2015 | CEPREI | #### Ambient conditions Temperature: 22 ± 1 °C Relative humidity: 65 ± 10 % 1010 ± 10 hPa Air pressure: #### Test specifications - The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B 1, and the lab calibration procedure SMTP004-CA-156. - 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique. - 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes. #### Test results This is to certify that the sound calibrator conforms to the requirements of annex 8 of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions. Details of the performed measurements are presented on page 2 of this certificate. Approved Signatory: Date: 08-Nov-2014 Company Chop: Huang Jian Min/Feng Jun Qi Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. © Soils & Materials Engineering Co., Ltd. Form No.CARP156-1/issue 1/Rev.0/01/03/2007 #### APPENDIX E **EM&A Monitoring Schedules** CV/2007/03 - Development at Anderson Road Impact Air Quality and Noise Monitoring Schedule for June 2015 | Saturday | unf-9 | 24-hour TSP | 1-hour TSP | (ID1-5) | 13-Jun | | | 20-Jun | | | | | 27-Jun | | | | | | | | | |-----------|-------|-------------|------------|------------------|--------|---------------------------|------------------|--------|-------------|------------|-------|---------|--------|-------------|------------|-------|---------|--------|-------------|------------|------------------| | Friday | unr-9 | | | | 12-Jun | 24-hour TSP
1-hour TSP | Noise
(ID1-5) | 19-Jun | | | | | 26-Jun | | | | | | | | | | Thursday | 4-Jun | | | | 11-Jun | | | 18-Jun | 24-hour TSP | 1-hour TSP | Noise | (ID1-5) | 25-Jun | | | | | | | | | | Wednesday | 3-Jun | | | | 10-Jun | | | 17-Jun | | | | | 24-Jun | 24-hour TSP | 1-hour TSP | Noise | (ID1-5) | | | | | | Tuesday | 2-Jun | | | | unc-6 | | | 16-Jun | | | | | 23-Jun | | | | | 30-Jun | | | | | Monday | 1-Jun | 24-hour TSP | 1-hour TSP | Noise
(ID1-5) | 9-Jun | | | 15-Jun | | | | | 22-Jun | | | | | 29-Jun | 24-hour TSP | 1-hour TSP | Noise
(ID1-5) | | Sunday | | | | | 7-Jun | | | 14-Jun | | | | | 21-Jun | | | | | 28-Jun | | | | CV/2007/03 - Development at Anderson Road Tentative Impact Air Quality and Noise Monitoring Schedule for July 2015 | Saturday | 4-Jul | 24-hour TSP | 1-hour TSP | (ID1-5) | 11-Jul | | | 18-Jul | | | 25-Jul | 24-hour TSP
1-hour TSP | (ID1-5) | | | |-----------|-------|-------------|------------|---------|--------|---------------------------|------------------|--------|---------------------------|------------------|--------|---------------------------|------------------|--------|---| | Friday | 3-Jul | | | | 10-Jul | | | 17-Jul | | | 24-Jul | | | 31-Jul | 24-hour TSP
1-hour TSP
Noise
(ID1-5) | | Thursday | 2-Jul | | | | InC-6 | | | 16-Jul | | | 23-Jul | : - | | 30-Jul | | | Wednesday | 1-Jul | | | | Int-8 | 24-hour TSP
1-hour TSP | Noise
(ID1-5) | 15-Jul | | | 22-Jul | | | 29-Jul | | | Tuesday | 24 | | | | Jnf-2 | | | 14-Jul | 24-hour TSP
1-hour TSP | Noise
(ID1-5) | 21-Jul | | | 28-Jul | | | Monday | | | | | Inf-9 | | | 13-Jul | | | 20-Jul | 24-hour TSP
1-hour TSP | Noise
(ID1-5) | 27-Jul | | | Sunday | | | | | Inf-9 | | | 12-Jul | | | Inc-61 | | | 26-Jul | | The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc) #### APPENDIX F Air Quality Monitoring Results and their Graphical Presentations #### Appendix F Air Quality Monitoring Results ### 1-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School) | | Start | 1st Hour | 2nd Hour | 3rd Hour | |-----------|---------|----------|----------|----------| | | Time | Conc. | Conc. | Conc. | | Date | (hh:mm) | (µg/m³) | (µg/m³) | (µg/m³) | | 1-Jun-15 | 13:25 | 67.7 | 69.2 | 68.4 | | 6-Jun-15 | 11:10 | 78.4 | 79.1 | 78.3 | | 12-Jun-15 | 14:25 | 79.6 | 78.3 | 80.2 | | 18-Jun-15 | 13:35 | 68.9 | 72.3 | 73.7 | | 24-Jun-15 | 10:45 | 85.2 | 84.9 | 84.8 | | 29-Jun-15 | 14:30 | 72.8 | 74.9 | 75.3 | | | | | Average | 76.2 | | | | | Min | 67.7 | | | | | Max | 85.2 | #### 1-hour TSP Monitoring Results at Station ID 2 (On Yat House) | | Start | 1st Hour | 2nd Hour | 3rd Hour | |-----------|---------|----------|----------|----------| | | Time | Conc. | Conc. | Conc. | | Date | (hh:mm) | (µg/m³) | (µg/m³) | (µg/m³) | | 1-Jun-15 | 13:15 | 68.7 | 69.9 | 67.5 | | 6-Jun-15 | 10:57 | 79.0 | 78.1 | 79.1 | | 12-Jun-15 | 14:10 | 78.4 | 78.9 | 79.9 | | 18-Jun-15 | 13:10 | 72.5 | 74.1 | 75.8 | | 24-Jun-15 | 10:22 | 84.7 | 83.6 | 84.2 | | 29-Jun-15 | 14:10 | 74.6 | 76.2 | 77.9 | | | | | Average | 76.8 | | | | | Min | 67.5 | | | | | Max | 84.7 | #### 1-hour TSP Monitoring Results at Station ID 3 (Sau Nga House) | | Start | 1st Hour | 2nd Hour | 3rd Hour | |-----------|---------|----------|----------|----------| | | Time | Conc. | Conc. | Conc. | | Date | (hh:mm) | (µg/m³) | (µg/m³) | (µg/m³) | | 1-Jun-15 | 10:50 | 70.2 | 69.7 | 71.8 | | 6-Jun-15 | 13:57 | 80.4 | 81.0 | 80.2 | | 12-Jun-15 | 13:10 | 80.1 | 81.0 | 79.7 | | 18-Jun-15 | 14:30 | 74.6 | 76.8 | 75.3 | | 24-Jun-15 | 9:48 | 84.2 | 85.3 | 84.0 | | 29-Jun-15 | 13:20 | 75.0 | 77.1 | 78.6 | | | | | Average | 78.1 | | | | | Min | 69.7 | | | | | Max | 85.3 | #### 1-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School) | | Start | 1st Hour | 2nd Hour | 3rd Hour | | |-----------|---------|----------|----------|----------|--| | | Time | Conc. | Conc. | Conc. | | | Date | (hh:mm) | (µg/m³) | (µg/m³) | (µg/m³) | | | 1-Jun-15 | 14:05 | 73.0 | 71.1 | 72.2 | | | 6-Jun-15 | 10:35 | 80.9 | 80.6 | 81.2 | | | 12-Jun-15 | 11:00 | 78.8 | 79.3 | 79.0 | | | 18-Jun-15 | 11:15 | 75.0 | 78.2 | 76.6 | | | 24-Jun-15 | 9:34 | 83.7 | 84.2 | 83.4 | | | 29-Jun-15 | 11:05 | 72.6 | 70.6 | 73.9 | | | | | | Average | 77.5 | | | | | | Min | 70.6 | | | | | | Max | 84.2 | | ### 1-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School) | | Start | 1st Hour | 2nd Hour | 3rd Hour | | |-----------|---------|----------|----------|----------|--| | | Time | Conc. | Conc. | Conc. | | | Date | (hh:mm) | (µg/m³) | (µg/m³) | (µg/m³) | | | 1-Jun-15 | 10:00 | 69.5 | 71.5 | 72.3 | | | 6-Jun-15 | 10:21 | 77.8 | 77.4 | 78.1 | | | 12-Jun-15 | 10:10 | 78.3 | 79.6 | 79.2 | | | 18-Jun-15 | 10:10 | 71.4 | 73.0 | 74.0 | | | 24-Jun-15 | 9:00 | 82.6 | 82.9 | 82.8 | | | 29-Jun-15 | 10:20 | 71.9 | 73.5 | 74.6 | | | L | M | | Average | 76.1 | | | | | | Min | 69.5 | | | | | | Max | 82.9 | | **A**ECOM Development at Anderson Road - Site Formation Sand Associated Infrastructure Works Graphical Presentations of Impact 1-hour TSP Monitoring Results | n | SCALE | N.T.S. | DATE | Jul-1 | 5 | |---|---------|----------|---------|-------|------| | | CHECK | | DRAWN | JCY | K | | | JOB NO. | | APPENDI | X No. | Rev. | | | | 60043155 | F | - | | | | | | | | | | AECOM | |--------------| | | | Development at Anderson Road - Site Formation | SCALE | N.T.S. | DATE | Ju | |---|---------|----------|---------|-------| | and Associated Infrastructure Works | CHECK | FYW | DRAWN | JC | | Graphical Presentations of Impact 1-hour TSP | JOB NO. | | APPENDI | K No. | | Monitoring Results | | 60043155 | F | | Jul-15 JCYK Rev. Appendix F Air Quality Monitoring Results 24-hour TSP Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School) | Date | Weather | ¥ | Atmospheric | Flow Rate | Flow Rate (m3/min.) | Av. flow | Total vol. | Filter W | Filter Weight (g) | Particulate | Elapse | Elapse Time | Sampling | Conc. | |-----------|-----------|------------|---------------|-----------|---------------------|----------|-------------------|----------|-------------------|-------------|----------|-------------|------------|----------------------| | | Condition | Temp. (°C) | Pressure(hPa) | Initial | Final | (m³/min) | (m ₃) | Initial | Final | weight(g) | Initial | Final | Time(hrs.) | (µg/m ₃) | | 1-Jun-15 | Sunny | 29.3 | 1007.9 | 1.29 | 1.29 | 1.29 | 1858.2 | 2.7400 | 2.8096 | 0.0696 | 21167.79 | 21191.79 | 24.00 | 37.5 | | 6-Jun-15 | Sunny | 29.5 | 1007.7 | 1.29 | 1.29 | 1.29 | 1858.2 | 2.8817 | 2.9372 | 0.0555 | 21191.79 | 21215.79 | 24.00 | 29.9 | | 12-Jun-15 | Fine | 28.8 | 1008.5 | 1.29 | 1.29 | 1.29 | 1853.0 | 2.8825 | 2.9245 | 0.0420 | 21215.79 | 21239.79 | 24.00 | 22.6 | | 18-Jun-15 | Sunny | 30.7 | 1005.3 | 1.29 | 1.28 | 1.28 | 1850.3 | 2.8970 | 2.9328 | 0.0358 | 21239.79 | 21263.79 | 24.00 | 19.3 | | 24-Jun-15 | Rainy | 28.3 | 1005.3 | 1.33 | 1.34 | 1.34 | 1924.1 | 2.8785 | 2.9141 | 0.0356 | 21263.79 | 21287.79 | 24.00 | 18.5 | | 29-Jun-15 | Sunny | 30.5 | 1007.9 | 1.29 | 1.29 | 1.29 | 1855.8 | 2.7978 | 2.8407 | 0.0429 | 21287.79 | 21311.79 | 24.00 | 23.1 | | | | | | | | | | | | | | | Average |
25.2 | | | | | | | | | | | | | | | | | 24-hour TSP Monitoring Results at Station ID 2 (On Yat House) | Date | Weather | Ā | Atmospheric | Flow Rate | Flow Rate (m³/min.) | Av. flow | Total vol. | Filter W | Filter Weight (g) | Particulate | Elapse | Elapse Time | Sampling | Conc | |----------|-----------|------------|---------------|-----------|---------------------|----------|------------|----------|-------------------|-------------|------------|-------------|------------|---------| | | Condition | Тетр. (°С) | Pressure(hPa) | Initial | Final | (m³/min) | (m³) | Initial | Final | weight(g) | Initial | Final | Time(hrs.) | (µg/m³) | | Jun-15 | Sunny | 29.3 | 1007.9 | 1.28 | 1.28 | 1.28 | 1843.8 | 2.8791 | 2.9277 | 0.0486 | 18431.12 | 18455.12 | 24.00 | 26.4 | | -Jun-15 | Sunny | 29.5 | 1007.7 | 1.28 | 1.28 | 1.28 | 1844.6 | 2.8633 | 2.8920 | 0.0287 | 18455.12 | 18479.12 | 24.00 | 15.6 | | 2-Jun-15 | Fine | 28.8 | 1008.5 | 1.28 | 1.28 | 1.28 | 1842.3 | 2.8664 | 2.8887 | 0.0223 | 18479,1200 | 18503.12 | 24.00 | 12.1 | | 8-Jun-15 | Sunny | 30.7 | 1005.3 | 1.30 | 1.30 | 1.30 | 1870.3 | 2.8721 | 2.9137 | 0.0416 | 18503.12 | 18527.12 | 24.00 | 22.2 | | 4-Jun-15 | Rainy | 28.3 | 1005.3 | 1.33 | 1.35 | 1.34 | 1931.3 | 2.8798 | 2.9258 | 0.0460 | 18527.12 | 18551.12 | 24.00 | 23.8 | | 9-Jun-15 | Sunny | 30.5 | 1007.9 | 1.28 | 1.28 | 1.28 | 1842.1 | 2.7884 | 2.8370 | 0.0486 | 18551.12 | 18575.12 | 24.00 | 26.4 | | | | | | | | | | | | | | | Average | 21.1 | | | | | | | | | | | | | | | Min | 12.1 | | | | | | | | | | | | | | | | Min | 24-hour TSP Monitoring Results at Station ID 3 (Sau Nga House) | Date | Weather | Ą | Atmospheric | Flow Rate | Flow Rate (m³/min.) | Av. flow | Total vol. | Filter Weight (g) | sight (g) | Particulate | Elapse | Elapse Time | Sampling | Conc. | |-----------|-----------|------------|---------------|-----------|---------------------|----------|-------------------|-------------------|-----------|-------------|----------|-------------|------------|----------------------| | | Condition | Temp. (°C) | Pressure(hPa) | Initial | Final | (m³/min) | (m ₃) | Initial | Final | weight(g) | Initial | Final | Time(hrs.) | (mg/m ₃) | | 1-Jun-15 | Sunny | 29.3 | 1007.9 | 1.29 | 1.29 | 1.29 | 1859.3 | 2.8687 | 2.9433 | 0.0746 | 20771.01 | 20795.01 | 24.00 | 40.1 | | 6-Jun-15 | Sunny | 29.5 | 1007.7 | 1.29 | 1.29 | 1.29 | 1859.3 | 2.8769 | 2.9424 | 0.0655 | 20795.01 | 20819.01 | 24.00 | 35.2 | | 12-Jun-15 | Fine | 28.8 | 1008.5 | 1.29 | 1.29 | 1.29 | 1857.0 | 2.8551 | 2.8976 | 0.0425 | 20819.01 | 20843.01 | 24.00 | 22.9 | | 18-Jun-15 | Sunny | 30.7 | 1005.3 | 1.31 | 1.31 | 1.31 | 1882.2 | 2.8722 | 2.9113 | 0.0391 | 20843.01 | 20867.01 | 24.00 | 20.8 | | 24-Jun-15 | Rainy | 28.3 | 1005.3 | 1.34 | 1.33 | 1.34 | 1924.2 | 2.8656 | 2.9279 | 0.0623 | 20867.01 | 20891.01 | 24.00 | 32.4 | | 29-Jun-15 | Sunny | 30.5 | 1007.9 | 1.29 | 1.29 | 1.29 | 1856.8 | 2.8188 | 2.8766 | 0.0578 | 20891.01 | 20915.01 | 24.00 | 31.1 | | | | | | | | | | | | | | | Average | 30.4 | | | | | | | | | | | | | | | Min | 20.8 | | | | | | | | | | | | | | | | | 24-hour TSP Monitoring Results at Station ID 4 (Sau Ming Primary School) | Date | Weather | Ą | Atmospheric | Flow Rate | Flow Rate (m ³ /min.) | Av. flow | Total vol. | Filter V | Filter Weight (g) | Particulate | Elapse Time | Time | Sampling | Conc. | |-----------|-----------|------------|---------------|-----------|----------------------------------|----------|------------|----------|-------------------|-------------|-------------|----------|------------|----------------------| | 7.000 | Condition | Тетр. (°С) | Pressure(hPa) | Initial | Final | (m³/min) | (m³) | Initial | Final | weight(g) | Initial | Final | Time(hrs.) | (mg/m ₃) | | 1-Jun-15 | Sunny | 29.3 | 1007.9 | 1.29 | 1.29 | 1.29 | 1855.0 | 2.8547 | 2.8912 | 0.0365 | 21447.07 | 21471.07 | 24.00 | 19.7 | | 6-Jun-15 | Sunny | 29.5 | 1007.7 | 1.29 | 1.29 | 1.29 | 1855.0 | 2.8725 | 2.9069 | 0.0344 | 21471.07 | 21495.07 | 24.00 | 18.5 | | 12-Jun-15 | Fine | 28.8 | 1008.5 | 1.28 | 1.29 | 1.29 | 1852.6 | 2.8653 | 2.8917 | 0.0264 | 21495.07 | 21519.07 | 24.00 | 14.3 | | 18-Jun-15 | Sunny | 30.7 | 1005.3 | 1.27 | 1.27 | 1.27 | 1821.9 | 2.8624 | 2.8750 | 0.0126 | 21519.07 | 21543.07 | 24.00 | 6.9 | | 24-Jun-15 | Rainy | 28.3 | 1005.3 | 1.34 | 1.34 | 1.34 | 1929.1 | 2.8607 | 2.9089 | 0.0482 | 21543.07 | 21567.07 | 24.00 | 25.0 | | 29-Jun-15 | Sunny | 30.5 | 1007.9 | 1.29 | 1.29 | 1.29 | 1852.3 | 2.8258 | 2.8651 | 0.0393 | 21567.07 | 21591.07 | 24.00 | 21.2 | | | | | | | | | | | | | | | Average | 17.6 | | | | | | | | | | | | | | | Min | ď | 24-hour TSP Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School) | Date | Weather | Ą | Atmospheric | Flow Rate | (m³/min.) | Av. flow | Total vol. | Filter Weigh | eight (g) | Particulate | Elapse Time | Time | Sampling | Conc. | |-----------|-----------|-----------|---------------|-----------|-----------|----------|-------------------|--------------|-----------|-------------|-------------|----------|------------|----------------------| | | Condition | Temp. (C) | Pressure(hPa) | Initial | Final | (m³/min) | (m ₃) | Initial | Final | weight(g) | Initial | Final | Time(hrs.) | (mg/m ₃) | | 1-Jun-15 | Sunny | 29.3 | 1007.9 | 1.28 | 1.28 | 1.28 | 1849.5 | 2.8974 | 2.9619 | 0.0645 | 16262,37 | 16286.37 | 24.00 | 34.9 | | 6-Jun-15 | Sunny | 29.5 | 1007.7 | 1.28 | 1.28 | 1.28 | 1849.5 | 2.8846 | 2.9330 | 0.0484 | 16286.37 | 16310.37 | 24.00 | 26.2 | | 12-Jun-15 | Fine | 28.8 | 1008.5 | 1.28 | 1.29 | 1.28 | 1847.1 | 2.8598 | 2.8997 | 0.0399 | 16310.37 | 16334.37 | 24.00 | 21.6 | | 18-Jun-15 | Sunny | 30.7 | 1005.3 | 1.29 | 1.29 | 1.29 | 1859.8 | 2.8731 | 2.9145 | 0.0414 | 16334.37 | 16358.37 | 24.00 | 22.3 | | 24-Jun-15 | Rainy | 28.3 | 1005.3 | 1.34 | 1.34 | 1.34 | 1928.5 | 2.8613 | 2.9107 | 0.0494 | 16358.37 | 16382.37 | 24.00 | 25.6 | | 29-Jun-15 | Sunny | 30.5 | 1007.9 | 1.28 | 1.28 | 1.28 | 1846.9 | 2.7814 | 2.8399 | 0.0585 | 16382.37 | 16406.37 | 24.00 | 31.7 | | | | | | | | | | | | | | | | 0 40 | Remark: Due to the failure of electricity supply on the rooftop of ID2 from 4 - 25 May 2015, the 24-hour TSP Monitoring was suspended until 25 May 2015. | A=COM | | |-------|---| | | ı | | Development at Anderson Road - Site Formation | SCALE | N.T.S. | DATE | Jul-1 | 5 | |--|---------|----------|--------------|-------|------| | and Associated Infrastructure Works | CHECK | FYW | DRAWN | JCY | K | | Graphical Presentations of Impact 24-hour TSP Monitoring Results | JOB NO. | 60043155 | APPENDI
F | X No. | Rev. | | <u>Development at Ande</u> | rson Road - Site Formation | |----------------------------|----------------------------| | and Associated | Infrastructure Works | | Graphical Presentations | of Impact 24-hour TSP | |--------------------------------|-----------------------| | Monitoring | I Results | | SCALE | N.T.S. | DATE | Jul-15 | |---------|----------|---------------|---------| | CHECK | FYW | DRAWN | JCKY | | JOB NO. | 60043155 | APPENDIX
F | No. Rev | ## APPENDIX G Noise Monitoring Results and their Graphical Presentations ### Appendix G **Noise Monitoring Results** Daytime Noise Monitoring Results at Station ID 1A (Kwun Tong Government Secondary School) | | Weather | Noise | Level for | 30-min, d | B(A) ⁺ | Baseline | Baseline Noise | | | |-----------|-----------|---------|-----------|-----------|-------------------|---------------------------|----------------|-------------------------|---------------------| | Date | Condition | Time | L90 | L10 | Leq | Corrected
Level, dB(A) | Level, dB(A) | Limit Level**,
dB(A) | Exceedance
(Y/N) | | 1-Jun-15 | Cloudy | 15:30 | 57.0 | 60.5 | 59.8 | 55.5 | 57.8 | 70 | N | | 12-Jun-15 | Sunny | 14:25 | 57.0 | 60.0 | 59.0 | 52.8 | 57.8 | 65 | N N | | 18-Jun-15 | Sunny | 13:35 | 56.5 | 60.0 | 58.9 | 52.4 | 57.8 | 65 | N | | 24-Jun-15 | Cloudy | 10:45 | 61.5 | 65.0 | 63.7 | 62.4 | 57.8 | 65 | N | | 29-Jun-15 | Sunny | 14:30 | 58.5 | 61.5 | 60.1 | 56.2 | 57.8 | 70 | N | | | | Min | 56.5 | 60,0 | | 52.4 | | | | | | | Max | 61.5 | 65.0 | | 62.4 | | | | | | | Average | | | | 57.6 | | | | Daytime Noise Monitoring Results at Station ID 2 (On Yat House) | | Weather | Noise | Level for | 30-min, d | B(A) ⁺ | Baseline | Baseline Noise | | | |-----------|-----------|---------|-----------|-----------|-------------------|---------------------------|----------------|-----------------------|---------------------| | Date | Condition | Time | L90 | L10 | Leq | Corrected
Level, dB(A) | Level, dB(A) | Limit Level,
dB(A) | Exceedance
(Y/N) | | 1-Jun-15 | Cloudy | 13:15 | 60.5 | 66.5 | 65.0 | 62,0 | 62.0 | 75 | N | | 12-Jun-15 | Sunny | 14:10 | 60.0 | 66.5 | 65.7 | 63.3 | 62.0 | 75 | N | | 18-Jun-15 | Sunny | 13:10 | 60.0 | 67.0 | 65.7 | 63.3 | 62.0 | 75 | N | | 24-Jun-15 | Cloudy | 11:34 | 65,1 | 67.4 | 66.6 | 64.8 | 62.0 | 75 | N | | 29-Jun-15 | Sunny | 14:10 | 61.0 | 66.5 | 65.5 | 62.9 | 62.0 | 75 | N N | | | | Min | 60.0 | 66.5 | | 62.0 | | | | | | | Max | 65,1 | 67.4 | | 64.8 |] | | | | | | Average | | | | 63.3 | J | | | Daytime Noise Monitoring Results at Station ID 3 (Sau Nga House) | | Weather | Noise | Level for | 30-min, d | B(A) [*] | Baseline | Baseline Noise | | | |-----------|-----------|---------|-----------|-----------|-------------------|---------------------------|----------------|-----------------------|---------------------| | Date | Condition | Time | L90 | L10 | Leq | Corrected
Level, dB(A) | Level, dB(A) | Limit Level,
dB(A) | Exceedance
(Y/N) | | 1-Jun-15 | Cloudy | 14:50 | 62.0 | 68.5 | 67.2 | 64.3 | 64.1 | 75 | N | | 12-Jun-15 | Sunny | 13:10 | 62.0 | 69.0 | 67.3 | 64.5 | 64.1 | 75 | N | | 18-Jun-15 | Sunny | 14:30 | 61.5 | 69.0 | 67.4 | 64.7 | 64.1 | 75 | N | | 24-Jun-15 | Cloudy | 13:30 | 65.9 | 68.6 | 67.2 | 64.3 | 64.1 | 75 | N | | 29-Jun-15 | Sunny | 13:20 | 61.5 | 69.5 | 68.0 | 65.7 | 64.1 | 75 | N | | | | Min | 61.5 |
68.5 | | 64.3 | | | | | | | Max | 65.9 | 69.5 | | 65.7 | | | | | | | Average | | | | 64.7 | | | | Daytime Noise Monitoring Results at Station ID 4 (Sau Ming Primary School) | Date | Weather | Noise | Level for | 30-min, d | B(A) ⁺ | Baseline
Corrected | Baseline Noise | Limit Level**, | Exceedance | |-----------|-----------|---------|-----------|-----------|-------------------|-----------------------|----------------|----------------|------------| | Date | Condition | Time | L90 | L10 | Leq | Level, dB(A) | Level, dB(A) | dB(A) | (Y/N) | | 1-Jun-15 | Cloudy | 14:05 | 63.5 | 68.5 | 66.0 | 54.2 | 65.7 | 70 | N | | 12-Jun-15 | Sunny | 11:00 | 63.5 | 68.0 | 66.4 | 58.1 | 65.7 | 70 | N | | 18-Jun-15 | Sunny | 11:15 | 63.0 | 69.0 | 66.4 | 58.1 | 65.7 | 70 | N | | 24-Jun-15 | Cloudy | 15:08 | 64.8 | 68.2 | 67.4 | 62.5 | 65.7 | 70 | N N | | 29-Jun-15 | Sunny | 11:05 | 63.0 | 67.5 | 66.2 | 56.6 | 65.7 | 70 | N N | | | | Min | 63.0 | 67,5 | | 54.2 | | | | | | | Max | 64,8 | 69.0 | | 62,5 | | | | | | | Average | | | | 58.8 | | | | Daytime Noise Monitoring Results at Station ID 5 (Sau Mau Ping Catholic Primary School) | Date | Weather | Noise | Level for | 30-min, d | B(A)⁺ | Baseline
Corrected | Baseline Noise | Limit Level**, | Exceedance | |-----------|-----------|-------|-----------|-----------|-------|-----------------------|----------------|----------------|------------| | Date | Condition | Time | L90 | L10 | Leq | Level, dB(A) | Level, dB(A) | dB(A) | (Y/N) | | 1-Jun-15 | Cloudy | 11:25 | 59.0 | 62.0 | 60.9 | 60.9 | 64.7 | 70 | N | | 12-Jun-15 | Sunny | 10:10 | 58.0 | 61.5 | 60.1 | 60.1 | 64.7 | 70 | N | | 18-Jun-15 | Sunny | 10:10 | 62.0 | 66.0 | 64.0 | 64.0 | 64.7 | 70 | N: | | 24-Jun-15 | Cloudy | 15:50 | 65.3 | 68.6 | 67.1 | 63.4 | 64.7 | 70 | N . | | 29-Jun-15 | Sunny | 10:20 | 60.0 | 65.0 | 63.1 | 63.1 | 64.7 | 70 | N | | | | Min | 58.0 | 61.5 | | 60.1 | | | | | | | Max | 65.3 | 68.6 | | 64.0 | | | | | | | A | ***** | | 1 | 62.5 | 11 | | | * - Façade measurement ** - Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period. # - Although the general weather condition was rainy for the day of monitoring, the noise measurement was conducted when the rain stopped. **A**ECOM <u>Development at Anderson Road - Site Formation and</u> <u>Associated Infrastructure Works</u> **Graphical Presentations of Noise Monitoring Results** | 1 | SCALE | N.T.S. | DATE | Jul-1 | 5 | |---|---------|----------|----------|-------|-----| | | CHECK | FYW | DRAWN | JCYI | < | | | JOB NO. | | APPENDIX | 0.000 | Rev | | • | | 60043155 | (| 3 | - | | AECOM | |--------------| | | <u>Development at Anderson Road - Site Formation and</u> <u>Associated Infrastructure Works</u> **Graphical Presentations of Noise Monitoring Results** | SCALE | N.T.S. | DATE | Jul-1 | 5 | |---------|----------|----------|-------|-----| | CHECK | FYW | DRAWN | JCY | K | | JOB NO. | 60043155 | APPENDIX | 3 | Rev | ### APPENDIX H Meteorological Data for the Reporting Month Hong Kong Observatory The Government of the Hong Kong Special Administrative Region Innovate with Science; Serve with Heart SEARCH Enter search keyword(s) GOVHK香港政府一站通 繁體版 简体版 What's new About us HKO Side Lights Back # Daily Extract of Meteorological Observations, June 2015 -Tseung Kwan O Year 2015 ▼ Month 6 ▼ Go | Our Services | | y.,,,, | Y | ear 2016 | ▼ Month € |) GO | | | | | |-------------------------------------|----------|------------------|--------------|------------|-------------------|----------------|-----------------|-------------------|------------------------|-----------------| | Visitors Figures | | | Air ' | Tempera | ture | Mean | Mean | m . 1 | Prevailing | Mean | | Press releases | Day | Mean
Pressure | Absolute | Mean | Absolute
Daily | Dew | Relative | Total
Rainfall | Wind | Wind | | Today's Weather | " | (hPa) | Daily
Max | (deg. | Min | Point (deg. C) | Humidity
(%) | (mm) | Direction
(degrees) | Speed
(km/h) | | Warnings | | | (deg. C) | C) | (deg. C) | (8/ | () | | | | | Local Weather | 01 | *** | 30.9 | 28.6 | 27.5 | 26.2 | 87 | 2.0 | 180 | 6.1 | | Observations | 02 | *** | 32.6 | 29.4 | 27.2 | 25.6 | 81 | 0.0 | 180 | 7.1 | | Weather Forecast | 03 | *** | 33.2 | 29.7 | 26.7 | 25.0 | 77 | 0.0 | 180 | 6.3 | | Weather Monitoring | 04 | *** | 33.7 | 29.8 | 27.0 | 24.7 | 75 | 0.0 | 190 | 8.2 | | hnagery | 05 | *** | 32.9 | 29.5 | 26.4 | 25.0 | 77 | 0.0 | 180 | 7.0 | | Computer Forecast | 06 | *** | 33.3 | 29.0 | 25.9 | 25.4 | 82 | 0.0 | 180 | 4.8 | | Products | 07 | *** | 33.1 | 29.4 | 26.4 | 25.2 | 79 | 1.0 | 180 | 7.0 | | MyObservatory | 08 | *** | 33.1 | 29.6 | 26.6 | 25.3 | 79 | 0.5 | 170 | 6.0 | | Tropical Cyclones | 09 | *** | 33.7 | 30.3 | 27.8 | 25.2 | 75 | 0.0 | 180 | 7.9 | | Aviation Weather Services | 10 | *** | 33.7 | 30.0 | 27.6 | 26.0 | 80 | 0.0 | 170 | 6.3 | | Marine Meteorological | 11 | *** | 34.5 | 30.5 | 26.9 | 25.8 | 77 | 0.5 | 180 | 7.3 | | Services | 12 | *** | 32.5 | 28.7 | 25.1 | 26.1 | 86 | 24.5 | 210 | 5.3 | | Weather Information for | 13 | *** | 33.2 | 29.7 | 27.2 | 25.5 | 79 | 0.0 | 230 | 5.8 | | Sports | 14 | *** | 32.8 | 29.4 | 27.2 | 25.6 | 80 | 0.0 | 180 | 5.3 | | Weather Information for | 15 | *** | 32.8 | 29.0 | 26.9 | 25.5 | 82 | 0.0 | 230 | 5.3 | | Communities | 16 | *** | 34.3 | 29.6 | 25.8 | 25.2 | 79 | 0.0 | 230 | 4.8 | | China Weather World Weather | 17 | *** | 34.5 | 30.5 | 27.3 | 25.1 | 74 | 0.0 | 180 | 8.5 | | | 18 | *** | 35.3 | 31.0 | 28.0 | 24.8 | 71 | 0.0 | 220 | 7.6 | | Climatological Information Services | 19 | *** | 35.2 | 30.8 | 27.8 | 25.2 | 73 | 0.0 | 190 | 6.0 | | > Climate Watch | 20 | *** | 34.1 | 30.3 | 27.2 | 25.8 | 78 | 0.0 | 090 | 5.3 | | > Climate Statistics | 21 | *** | 31.4 | 28.4 | 25.8 | 26.5 | 90 | 54.5 | 060 | 6.9 | | <u> </u> | 22 | *** | 30.5 | 28.1 | 26.3 | 26.3 | 90 | 17.0 | 110 | 7.0 | | > Climate Prediction | 23 | * * * | 28.6 | 26.9 | 25.5 | 26.0 | 95 | 32.5 | 100 | 4.3 | | > Climate Knowledge | 24 | *** | 29.6 | 27.4 | 25.7 | 26.2 | 93 | 13.5 | 180 | 4.0 | | > Need More | 25 | *** | 29.9 | 27.8 | 26.1 | 26.4 | 92 | 28.5 | 190 | 5,5 | | Information? | 26 | *** | 32.6 | 29.1 | 26.7 | 26.1 | 85 | 7.5 | 220 | 5.6 | | ⊳ Global Climate
Services | 27 | *** | 33.1 | 30.0 | 27.6 | 26.0 | 80 | 0.0 | 180 | 6.8 | | > Other Useful Links | 28 | *** | 34.3 | 30.1 | 27.0 | 25.8 | 79 | 2.5 | 230 | 6.4 | | | 29 | *** | 34.2 | 30.4 | 27.4 | 25.3 | 75 | 0.0 | 180 | 7.3 | | Climate Forocasi | 30 | *** | 33.4 | 30.5 | 28.6 | 25.9 | 77 | 0.0 | 180 | 7.3 | | Climate Change | <u>L</u> | 1 | | | 1 | | | | | 1 | El Nino and La Nina Earthquakes and Tsunamis Astronomy, Space Weather and Geomagnetism Time and Calendar Radiation Monitoring, Assessment and Protection *** unavailable Rainfall measured in increment of 0.5 mm. Amount of < 0.5 mm cannot be detected ### 7/13/2015 ### Automatic Weather Observations daily Extract | E | ducational Resources | |----|---------------------------| | P | ublications | | N | Media and Information | | S | ervices | | Α | .udio/Video Webpage | | E | lectronic services | | V | Vorld Meteorological Day | | V | Vorld Meteorological | | C | rganization-Official City | | M | Veather Forecasts | | V | Vorld Meteorological | | C | rganization-Global | | S | evere Weather | | P | ublic forms | | C | ontact & Support | | A | ccess to information | | Ţ | ender notices | | L | inks | | lr | nportant notices | | P | ersonalized Website | | N | lobile Version | | R | SS Feeds | | | ext Only Version | | В | ack | 2003 | Important notices | Privacy policy Last revision date: <24 Jun 2015> ### APPENDIX I **Event Action Plan** # Appendix I - Event Action Plan **Event and Action Plan for Air Quality** | Event | | ACTION | | | |----------------|--|--|--|---| | | ET | IC(E) | ER | Contractor | | ACTION LEVEL | | | | | | Exceedance for | ÷ 01 0 | 8 | 1. Notify Contractor. | Rectify any unacceptable practice. Amend working methods if | | one sample | Repeat measurement to confirm
finding. Increase monitoring frequency to | z. Crieck Contractors working
method. | | appropriate. | | | daily | | | | | Exceedance for | <u> </u> | 1. Check monitoring data | 1. Confirm receipt of | 1. Submit proposal for remedial | | | 2. Inform IC(E) and ER. | submitted by ET. | notification of failure in | actions to IC(E) within 3 working | | two or more | 3. Repeat measurements to confirm | 2. Check Contractor's working | writing. | days of notification. | | consecutive | findings. | | 2. Notify Contractor. | | |) | 4. Increase monitoring frequency to | 3. Discuss with E1 and Contractor | Ensure remedial actions
proporty implemented | 5. Amena proposal il appropriate: | | samples | dally. 5. Discuss with IC(E) and Contractor | 4. Advise ER on the effectiveness | property implemented. | | | | for remedial actions required. | of proposed remedial measures. | | | | | 6. If exceedance continues, arrange | 5. Supervise implementation of | | | | | meeting with IC(E) and ER. | remedial measures. | | | | | 7. If exceedance stops, cease | | | | | | additional monitoring. | | | NXIII | Event and Action Plan for Air Quality | Event | | ACTION | | | |----------------|--|--|---|--| | | ET | IC(E) | Ħ | Contractor | | LIMIT LEVEL | | | | | | Exceedance for | 1. Identify source. 2. Inform ER and EPD. | Check monitoring data Submitted by FT | 1. Confirm receipt of notification
of failure in | 1. Take immediate action to avoid | | one sample | 3. Repeat measurement to confirm | 2. Check Contractor's working | 9 (1.65) | 2. Submit proposals for remedial | | | 4. Increase monitoring frequency to | 3. Discuss with ET and Contractor | Notify Contractor. Ensure remedial actions | actions to IC(E) within 3 working days of notification. | | | daily.
5. Assess effectiveness of | on possible remedial measures. | properly implemented. | Implement the agreed proposals Amend proposal if appropriate | | | | | | | | | keep IC(E), EPD and ER informed of the results. | Supervise implementation of
remedial measures. | | | | Exceedance for | 1. Identify source. | 1. Discuss amongst ER, ET and | 1. Confirm receipt of | 1. Take immediate action to avoid | | | 2. Inform ER and EPD. | Contractor on the potential | notification of failure in | further exceedance. | | two or more | Repeat measurements to confirm | | writing. | 2. Submit proposals for remedial | | consecutive | | 2. Review Contractor's remedial | Notify Contractor. | actions to IC(E) within 3 working | | | 4. Increase monitoring frequency to | actions whenever necessary to | | | | sambles | | assure their effectiveness and | IC(E), agree with | | | | Carry out analysis of Contractor's | | Contractor on the | Amend proposal if appropriate. | | | working procedures to determine | 3. Supervise implementation of | remedial measures to be | | | | possible mitigation to by implemented | remedial measures. | implemented. | | | | 6. Arrange meeting with IC(E) and ER | | _ | | | | to discuss the remedial actions to | | implemented. | | | | be taken. | | 5. If exceedance | | | | Assess effectiveness of | | continues, consider what | | | | Contractor's remedial actions and | | portion of the work is | | | | keep IC(E), EPD and ER informed | | responsible and instruct | | | | | | Contractor to stop the | | | | 8. If exceedance stops, cease | | portion of work until the | | | | additional monitoring. | | exceedance is abated. | | | Noise | |--------| | Ç | | Plan | | Action | | and | | Event | | Event | | Action | | | |----------------------------------|---|--|--|---| | | Ш | IC(E) | ER | Contractor | | 1.Exceedance for
Action Level | Notify IC(E) and Contractor. Carry out investigation. Report the results of investigation to IC(E) and Contractor. Discuss with Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation effectiveness. | Review the analysed results submitted by ET. Review the proposed remedial measures by the Contractor and advise ER accordingly. Supervise the implementation of remedial measures. | Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented. | Submit noise mitigation proposals to IC(E). Implement noise mitigation proposals. | | 1.Exceedance for Limit Level | Notify IC(E), ER, EPD and Contractor. Identify sources. Repeat measurements to confirm finding. Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented. Inform IC(E), ER and EPD the causes and actions taken for the exceedance. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. If exceedance stops, cease additional monitoring. | Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise the implementation of remedial measures. | Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented If exceedance continues, consider what portion of the work is responsible and instruct Contractor to stop that portion of work until the exceedance is abated. | 1. Take immediate action to avoid further exceedance. 2. Submit proposals for remedial actions to IC(E) within 3 working days of notification. 3. Implement the agreed proposals. 4. Resubmit proposals if problem still not under control. 5. Stop the relevant portion of works as determined by ER until the exceedance is abated. | ### APPENDIX J Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions # Appendix J - Cumulative Statistics on Exceedances, Complaints, Notification of Summons and Successful Prosecutions ### Cumulative statistics on Exceedances | | | Total no. recorded in this month | Total no. recorded since project commencement | |--|--------|----------------------------------|---| | 1-Hour TSP | Action | - | - | | and the second s | Limit | - | <u>.</u> | | 24-Hour TSP | Action | - | 15 | | | Limit | - | 1 | | Noise | Action | - | 32 | | | Limit | - | 1 | # Cumulative statistics on Complaints, Notifications of Summons and Successful Prosecutions | E . | Date
Received | Subject | Status | Total no. recorded in this month | Total no. recorded since project commencement | |----------------------------|------------------|----------|------------|----------------------------------|---| | Environmental complaints | - | - | - | - | 74 | | Notification of summons | - | ~ | _ | ¥ | 6 | | Successful
Prosecutions |) <u>-</u> | - | S 1 | | 2 |