Contract No. DC/2008/03
 Design, Build and Operate Pillar Point Sewage Treatment Works: Twenty-sixth Monthly EM\& A Report

January 2013

Contract No. DC/2008/03

Design, Build and Operate Pillar Point Sewage Treatment Works:
Twenty-sixth Monthly EM\& \mathcal{A} Report

January 2013
Reference 0119806

For and on behalf of ERM-Hong Kong, Limited
Approved by: Frank Wan
Signed: \qquad
Position: Partner
Certified by:
(Environmental Team Leader - Winnie Ko)
Certified by: Chuistrion
(Registered Landscape Architect (R078) - Christina Ip)
Date: 11 January 2012

EXECUTIVE SUMMARY

1 INRODUCTION 1
1.1 PURPOSE OF THE REPORT 1
1.2 Structure of the Report 1
2 PROJECT INFORMATION 3
2.1 BACKGROUND 3
2.2 General Site Description3
2.3 Construction Activities4
2.4 Project Organisation and Management Structure4
2.5 Status of Environmental Approval Documents4
3 ENVIRONMENTAL MONITORING REQUIREMENTS 6
3.1 Air Quality Monitoring 6
3.1.1 Monitoring Location 6
3.1.2 Monitoring Parameter and Frequency 6
3.1.3 Action and Limit Levels 6
3.1.4 Monitoring Equipment 6
3.1.5 Monitoring Methodology 7
3.1.6 Event and Action Plan 9
3.2 Landscape and Visual Monitoring 9
3.3 Environmental Mitigation Measures and Environmental REQUIREMENTS IN CONTRACT 9
4IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTIONREQUIREMENTS10
5
MONITORING RESULTS 11
5.1 AIR QuAlity 11
6WASTE MANAGEMENT12
7 ENVIRONMENTAL INSPECTIONS 13
7.1 Weekly Site Audits 13
7.2 Landscape and Visual Monitoring 14
8
ENVIRONMENTAL NON-CONFORMANCE 15
8.1.1 Summary of Monitoring Exceedance 15
8.1.2 Summary of Environmental Non-Compliance 15
8.1.3 Summary of Environmental Complaint 15
8.1.4 Summary of Environmental Summon and Successful Prosecution 15
9.1.1 Key Issues for the Coming Month 16
9.1.2 Monitoring Schedule for the Next Reporting Period16
9.1.3 Construction Programme for the Next Three Months 16
10 REVIEW OF THE EM\&A DATA AND EIA PREDICTIONS 17
10.1 AIR QUALITY 17
10.2
WAStE MANAGEMENT 17
10.3 Conclusion of Review 18
11 CONCLUSIONS 19
LIST OF TABLES

Table 2.1 Summary of Construction Activities Undertaken in Reporting Period
Table 2.2 Summary of Environmental Licensing, Notification and Permit Status
Table 3.1 Construction Phase Air Monitoring Locations
Table 3.2 Construction Phase Air Quality Monitoring Parameters and Frequency
Table 3.3 Action and Limit Levels for Air Quality
Table $3.4 \quad$ TSP Monitoring Equipment
Table 6.1 Quantities of Waste Generated from the Project
Table 9.1 Construction Works to be Undertaken in the Next Reporting Period
Table 10.1 Comparison of the HKAQO and Air Quality Monitoring Results
Table 10.2 Quantity of Actual Amount of C\&D Materials, General Wastes and Chemical Wastes Generated and EIA Estimation

LIST OF ANNEXES

Annex A	Location of Project
Annex B	Works Location
Annex C	Project Organization Chart and Contact Detail
Annex D	Locations of Air Quality Monitoring Stations
Annex E	Monitoring Schedule of the Reporting Month and Next Month
Annex F	Calibration Reports for HVSs
Annex G	24-hour and 1-hour TSP Monitoring Results
Annex H	Event / Action Plan for Air Quality Monitoring
Annex I	Implementation Schedule of Mitigation Measures
Annex J	Waste Flow Table
Annex K	Environmental complaint, Environmental Summons and
Annex L	Prosecution Log
Construction Programme for the Project	

EXECUTIVE SUMMARY

The construction works of DC/2008/03 of Design, Build and Operate Pillar Point Sewage Treatment Works (the Project) commenced on 13 November 2010. This is the $26^{\text {th }}$ monthly Environmental Monitoring and Audit (EM\&A) report presenting the EM\&A works carried out during the period from 1 to 31 December 2012 in accordance with the EM\&A Manual.

Summary of Construction Works undertaken during the Reporting Month
Works undertaken in the reporting month included:

- Constructing the finishing works at the Administration Building;
- Constructing the structure, water tank and water proofing at the Sludge Dewatering Building;
- Constructing the structure, staircase and conducting water test at the PTW area of P2;
- Conducting water test, constructing kiosk and floor slab at the CEPT area of P2;
- Formatting waterproofing and conducting finish work at the Septic Waste Reception Station;
- Constructing the wall and roof at the Reuse Water Pump Room;
- Constructing a control room at the DOUA;
- Constructing pipe trend and control room at the DOUB;
- Constructing a wall and roof at the Chemical Building;
- Finishing work at the Electrical building No.1, No. 3 and No.4;
- Constructing drainage, cable ducts and a boundary wall at P2;
- Excavation at Payment Flow Meter Chamber; and
- Backfilling and drainage works for the whole site.

Environmental Monitoring and Audit Progress

A summary of the monitoring activities undertaken in this reporting period is listed below:

- 24-hour TSP Monitoring at each monitoring station (AM1 5 sets and AM2)
- 1-hour TSP Monitoring at each monitoring station (AM1 15 sets and AM2)
- Joint Environmental Site Inspection 4 times
- Landscape \& Visual Monitoring

Once

Air Quality

5 sets of 24-hour TSP and 15 sets of 1-hr TSP measurements were carried out at each of the designated monitoring stations during the reporting period. No exceedance was recorded during the reporting period.

Waste Management

Waste generated from this Project includes inert construction and demolition (C\&D) materials (public fill) and non-inert C\&D materials (construction wastes). In total, 4,319 tonnes of inert $C \& D$ material were generated from the

Project, in which 400 tonnes were reused in this Contract and 3,919.13 tonnes were sent to public fill during the reporting month 60 kg of metals, 20 kg of papers/ cardboard packing and 15 kg of plastics were sent to recyclers for recycling during the reporting period.

Environmental Site Inspection

Four weekly joint environmental site inspections were carried out by the representatives of the Contractor, SOR and the Environmental Team (ET). Details of the audit findings and implementation status of the mitigation measures are presented in Section 7.1.

Landscape \& Visual

Review on landscape and visual mitigation measures was performed on 28 December 2012. Details of the audit findings and implementation status of the mitigation measures are presented in Sections 3.2 and 7.2.

Environmental Exceedance/Non-conformance/Compliant/Summons and Prosecution

No exceedance was recorded during the reporting period.
No non-compliance event was recorded during the reporting period.
No environmental complaint and summon/prosecution was received in this reporting period.

Future Key Issues

Works to be undertaken in the next reporting month include:

- Constructing the finishing works at the Administration Building;
- Constructing the structure, water tank and water proofing at the Sludge Dewatering Building;
- Constructing the structure and conducting water test at the PTW area of P2;
- Conducting the finishing works at the CEPT area of P2;
- Constructing column and roof at the UV building;
- Formatting waterproofing and conducting finish work at the Septic Waste Reception Station;
- Constructing the wall and roof at the Reuse Water Pump Room;
- Constructing a control room and raft slab at the DOUA and DOUB;
- Constructing the finishing works at the Chemical Building;
- Constructing the finishing work at the Electrical building No.1, No. 3 and No.4;
- Constructing drainage, cable ducts and a boundary wall at P2;
- Excavation at Payment Flow Meter Chamber; and
- Backfilling and drainage works for the whole site.

Potential environmental impacts arising from the above construction activities are mainly associated with dust, construction noise, site runoffs, waste management and landscaping issues.

ERM-Hong Kong, Limited (ERM) was appointed by ATAL - Degrémont China State Joint Venture (ADC-JV) (the Contractor) as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM\&A) programme for the Contract No. DC/2008/03 of Design, Build and Operate Pillar Point Sewage Treatment Works (the Project).

1.1 PURPOSE OF THE REPORT

This is the $26^{\text {th }}$ EM\&A report which summarises the monitoring results and audit findings for the EM\&A programme during the reporting period from 1 to 31 December 2012.

1.2 STRUCTURE OF THE REPORT

The structure of the report is as follows:

Section 1: Introduction

It details the scope and structure of the report.

Section 2: Project Information

It summarises the background and scope of the Project, site description, project organization, construction programme, construction works undertaken and status of the Environmental Permits (EP)/licences over the construction phase of the Project.

Section 3: Environmental Monitoring Requirements
It summarises the environmental monitoring requirements including monitoring parameters, programmes, methodologies, frequency, locations, Action and Limit Levels, Event/Action Plans, environmental mitigation measures as recommended in the approved EIA report, EP and relevant environmental requirements stated in the Contract Specification.

Section 4: Implementation Status on Environmental Mitigation Measures It summarises the implementation of environmental protection measures during the reporting period.

Section 5: Monitoring Results

It summarises the monitoring results obtained in the reporting period.

Section 6: Waste Management

It summarises the quantity of public fill and construction waste generated in the reporting period

Section 7: Environmental Site Inspection

It summarises the audit findings of the weekly site inspections undertaken within the reporting period.

Section 8: Environmental Non-conformance
It summarises any exceedance of environmental performance standard, environmental complaints and summons received within the reporting period.

Section 9: Further Key Issues

It summarises the impact forecast and monitoring schedule for the next reporting month.

Section 10: Review of the EM\&A Data and Predictions

It compares the monitoring data and waste quantity against the predictions in the approved Project EIA report.

Section 1 : Conclusions

2.1 BACKGROUND

The existing Pillar Point Sewage Treatment Works (PPSTW) is located to the north of the Tuen Mun River Trade Terminal and is abutting the Lung Mun Roadin the north. It is a preliminary treatment works with screening and grit removal processes and the treated effluent is discharged to the sea (North Western Water Control Zone) via a twin submarine outfall. The Review of the Tuen Mun and Tsing Yi Sewerage Master Plan (RTMTYSMP), commissioned in February 1999, recommended that the sewage treatment capacity be expanded and the plant be upgraded to chemically enhanced primary treatment (CEPT) with disinfection. This is to cater for the projected ultimate population and planned developments in the Tuen Mun area, and to improve the effluent quality reducing pollution loadings to the receiving waters.

The upgrading of the PPSTW comprises the following works:

- expanding the treatment capacity of the existing PPSTW to cope with the increased peak wet-weather sewage flow in Tuen Mun area;
- upgrading the sewage treatment level of the existing PPSTW to incorporate chemical treatment with disinfection at minimum removal rates of 70%, 55% and 99.9% of suspended solids (SS), biochemical oxygen demand (BOD) and E.coli, respectively;
- upgrading the existing septic waste reception facilities at PPSTW; and
- providing and upgrading ancillary facilities including the administration building, workshop, laboratory, odour control facilities, sludge handling and dewatering facilities, access roads and minor landscaping works within the STW for the operation and maintenance of the upgraded STW.

The potential environmental impacts of the Project have been studied in the "Upgrading of Pillar Point Sewage Treatment Works" (EIAO Register No: AEIAR145/2008). The EIA was approved on 10 June 2008 under the Environmental Impact Assessment Ordinance (EIAO) and an Environmental Permit (EP$321 / 2008)$ for the works was granted on 17 November 2008. Under the requirements of Condition 3.1 of EP-322/2008, an EM\&A programme as set out in the EM\&A Manual is required to be implemented.

The construction works commenced on 13 November 2010 and are scheduled for completion by 2014.

2.2
 General Site Description

The open area adjacent to the existing PPSTW has been designated for the upgrading works. The layout of the upgrading works is illustrated in Annex

A summary of the major construction activities undertaken in the reporting period is shown in Table 2.1. The locations of the construction activities are shown in Annex B. The construction programme of the Project in the reporting month and the upcoming month is presented in Annex L.

Table 2.1 Summary of Construction Activities Undertaken in the Reporting Period

Construction Activities Undertaken

- Constructing the finishing works at the Administration Building;
- Constructing the structure, water tank and water proofing at the Sludge Dewatering Building;
- Constructing the structure, staircase and conducting water test at the PTW area of P2;
- Conducting water test, constructing kiosk and floor slab at the CEPT area of P2;
- Formatting waterproofing and conducting finish work at the Septic Waste Reception Station;
- Constructing the wall and roof at the Reuse Water Pump Room;
- Constructing a control room at the DOUA;
- Constructing pipe trend and control room at the DOUB;
- Constructing a wall and roof at the Chemical Building;
- Finishing work at the Electrical building No.1, No. 3 and No.4;
- Constructing drainage, cable ducts and a boundary wall at P2;
- Excavation at Payment Flow Meter Chamber; and
- Backfilling and drainage works for the whole site.

2.4 Project Organisation and Management Structure

The project organisation chart and contact details are shown in Annex C.

2.5 Status of Environmental Approval Documents

A summary of the valid permits, licences, and/or notifications on environmental protection for this Project is presented in Table 2.2.

Table 2.2 Summary of Environmental Licensing, Notification and Permit Status

Permit/ Licences/ Notification	Reference	Validity Period	Remarks
Environmental Permit	EP-321/2008	Throughout the Contract	Permit granted on 17 November 2008.
Notification of Construction Works under the Air Pollution Control (Construction Dust) Ref No. 308136	Throughout the Contract	-	
EnviroNMENTAL RESOURCES MANAGEMENT	4	ATAL-DEGREMONT-ChINA STATE JV	

Permit/ Licences/ Notification	Reference	Validity Period	Remarks
Regulation			
Water Discharge WT00008027-2010 Till 31 December License	Wastewater discharge licence was issued by EPD on 7 December 2010.		
Construction Noise Permit	GW-RW0535-12	28 July 2012-27	
		January 2013	
Chemical Waste Producer Registration			

3.1 AIR Quality Monitoring

3.1.1 Monitoring Location

The proposed air quality monitoring stations for the construction phase of the Project, as recommended in the approved EM\&A Manual, are given in Table 3.1 and shown in Annex D. The proposed locations (AM1 and AM2) have been agreed with the Drainage Services Department (DSD), Environmental Protection Department (EPD) and the Independent Environmental Checker (IEC).

Table 3.1 Construction Phase Air Monitoring Locations

Monitoring ID	Air Quality Monitoring Station
AM1	Tuen Mun EMSD Servicing Vehicle Station
AM2	River Trade Terminal Office

3.1.2 Monitoring Parameter and Frequency

The construction phase air quality monitoring has been conducted at the designated monitoring stations in accordance with the requirements stipulated in the EM\&A Manual. 1-hour and 24-hour TSP levels have been monitored at the frequency and duration stated in Table 3.2. The construction phase TSP monitoring has been conducted as per the schedule presented in Annex E.

Table 3.2 Construction Phase Air Quality Monitoring Parameters and Frequency

Parameter	Frequency
24-hour TSP	Once every 6 days
1-hour TSP	3 times every 6 days

3.1.3 \quad Action and Limit Levels

The Action and Limit levels have been established and presented in Table 3.3.
Table 3.3 Action and Limit Levels for Air Quality

Parameter	Air Monitoring Station	Action Level, $\mu \mathrm{gm}^{-3}$	Limit Level, $\mu_{\mathrm{gm}}{ }^{-3}$
24-hour TSP	AM1	183	260
	AM2	192	260
1-hour TSP	AM1	343	500
	AM2	383	500

3.1.4 Monitoring Equipment

Continuous 24-hour and 1-hour TSP monitoring was performed using High Volume Samplers (HVS) with appropriate sampling inlets located at the designated monitoring stations.

The performance specification of HVS complied with the standard method "Determination of Suspended Particulate Matter in the Atmosphere (High Volume Method)" as stipulated in US EPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50 Appendix B). Table 3.4 summarises the equipment that were deployed for the 24 -hour and 1-hour TSP monitoring respectively.

Table 3.4 TSP Monitoring Equipment

Monitoring Station	Monitoring Equipment (HVS and Calibrator)
$24-h r$ and 1-hr TSP	
AM1	GMW GS-2310 (S/N 7580), CM-AIR-43 (S/N 0438320)
AM2	GMW GS-2310 (S/N 1252), CM-AIR-43 (S/N 0438320)

3.1.5 Monitoring Methodology

The setup locations of the HVSs were listed in Table 3.1. All HVSs were freestanding with no obstruction.

The following criteria were considered in the installation of the HVSs:

- appropriate support to secure the samplers against gusty wind were provided at AM1 and AM2;
- a minimum of 2 m separation from walls, parapets and penthouses was required for rooftop samplers;
- no furnace or incinerator flues was nearby;
- airflow around the sampler was unrestricted; and
- permission was obtained to set up the samplers and gain access to the monitoring stations.

Preparation of Filter Papers

- glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected;
- all filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around $25^{\circ} \mathrm{C}$ and not variable by more than $\pm 3^{\circ} \mathrm{C}$; the relative humidity (RH) was 40%; and
- SGS Hong Kong Ltd, a HOKLAS accredited laboratory, implemented comprehensive quality assurance and quality control programmes.

Field Monitoring

- the power supply was checked to ensure that the HVSs were working properly;
- the filter holder and area surrounding the filter were cleaned;
- the filter holder was removed by loosening the foul bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully;
- the filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter;
- swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges;
- the shelter lid was closed and secured with an aluminium strip;
- the HVSs were warmed-up for about 5 minutes to establish runtemperature conditions;
- a new flowrate record sheet was inserted into the flow recorder;
- the flow rates of the HVSs were checked and adjusted to between 1.22 and $1.37 \mathrm{~m}^{3} \mathrm{~min}^{-1}$ which were within the range specified in the EM\&A Manual (ie 0.6 to $1.7 \mathrm{~m}^{3} \mathrm{~min}^{-1}$);
- the programmable timer was set for a sampling period of 24 hours ± 1 hour, and the starting time, weather condition and the filter number were recorded;
- the initial elapsed time was recorded;
- at the end of sampling, the sampled filter was removed carefully and folded in half 1 so that only surfaces with collected particulate matter were in contact;
- the filter was placed in a clean plastic envelope and sealed;
- all monitoring information was recorded on a standard data sheet; and
- filters were sent to SGS Hong Kong Ltd for analysis.

Maintenance and Calibration

- the HVSs and their accessories were maintained in good working condition, eg. motor brushes were replaced routinely and electrical wiring was checked to ensure a continuous power supply; and
- the flow rate of each HVS with mass flow controller was calibrated using an orifice calibrator. Initial calibrations of the dust monitoring equipment were conducted upon installation and prior to commissioning. Five-point calibration was carried out for HVSs using CM-AIR-43 Calibration Kit. HVSs are calibrated on a bi-monthly basis. The calibration records for the HVSs are given in Annex F.

Average wind data (wind speed and wind direction) during the monitoring period were obtained from the meteorological station at Tuen Mun of the Hong Kong Observatory (HKO) and were presented in Annex G.

3.1.6 Event and Action Plan

The Event/Action Plan (EAP) for air quality monitoring is presented in Annex H.

Landscape and Visual Monitoring
In accordance with the EM\&A Manual, monthly landscape and visual monitoring is required to ensure that the design, implementation and maintenance of landscape and visual mitigation measures recommended in the approved EIA Report are fully achieved. The monitoring procedures and criteria as described in the EM\&A Manual were adopted.

3.3 Environmental Mitigation Measures and Environmental Requirements in Contract

All the relevant environmental mitigation measures listed in the EIA Report and EM\&A Manual as well as the specific environmental requirements stated in the Contract Specification are summarised in Annex I. A summary of the key environmental mitigation measures implemented as per the Contract Requirements is also presented in Annex I.

The Contractor has implemented environmental mitigation measures and requirements as stated in the approved EIA Report, EM\&A Manual and EP. The implementation status of the measures during the reporting period is summarised in Annex I.

A total of 5 sets of 24 -hour and 15 sets of 1-hour TSP measurements were taken at each of the monitoring stations (AM1 and AM2) during the reporting period. The monitoring data for 24-hour and 1-hour TSP together with the wind data and graphical presentations for the past 4 months are presented in Annex G. The weather conditions during the monitoring period ranged from sunny to rainy. The local impacts near the monitoring stations of AM1 and AM2 were mainly associated with vehicular emissions. No exceedance of Action and Limit Level of the 1-hr and 24-hr TSP was recorded during the reporting period.

Wastes generated from this Project include inert construction and demolition (C\&D) materials (public fill) and non-inert C\&D materials (construction waste). Construction waste comprises general refuse, metals and paper/cardboard packaging materials. Metals generated from the Project are also grouped into construction waste as the materials were not disposed of with others at public fill. Reference has been made to the Monthly Summary Waste Flow Table prepared by the Contractor (see Annex J). With reference to the relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in Table 6.1. In total, 4,319 tonnes of inert C\&D material were generated from the Project, in which 400 tonnes were reused in this Contract and 3,919 tonnes were sent to public fill during the reporting month. 60 kg of metals, 20 kg of papers / cardboard packing and 15 kg of plastics were sent to recyclers for recycling during the reporting period. 165.28 tonnes of other non-inert C\&D waste were sent to WENT Landfill. No chemical waste was generated during the reporting month.

Table 6.1 Quantities of Waste Generated from the Project

Month / Year	Quantity			
	Total Inert C\&D Materials Generated (a)	Non-inert C\&D Materials (b)		
		C\&D Materials Recycled ${ }^{(\mathrm{c})}$	C\&D Waste Disposed of at Landfill(d)	Chemical Waste
December 2012	4,319 tonnes	95 kg	165.28 tonnes	0 L
Nyyyyy				

Notes:
(a) Inert C\&D materials (public fill) include bricks, concrete, building debris, rubble and excavated soil. In total, 4,319 tonnes of inert C\&D waste were generated from the Project, in which 400 tonnes were reused in this Contract and 3,919 tonnes were sent to public fill during the reporting month. The detailed waste flow is presented in Annex J.
(b) Non-inert C\&D materials (construction wastes) include metals, paper / cardboard packaging waste, plastics and other wastes such as general refuse. Metals generated from the Project were grouped into construction wastes as the materials were not disposed of with others at the public fill.
(c) 60 kg of metals, 20 kg of papers/ cardboard packing and 15 kg of plastics were sent to recyclers for recycling during the reporting period
(d) Construction wastes other than metals, paper/cardboard packaging, plastics and chemicals were disposed of at WENT Landfill by subcontractors.

7.1 WEEKLY SITE AUDITS

Joint site inspections were conducted by representatives of the Contractor, the SOR and the ET on $7,13,21$, and 28 December 2012. The IEC was also present at the joint inspection on 28 December 2012.

Major observations during the reporting period are summarised as follows:
7 December 2012

- Two chemical drums were observed without drip trays at the works area in front of the Administration Building at P2. The Contractor was reminded to provide drip trays or remove them if not in use.
- C\&D waste, general waste, cardboard, etc were observed being temporarily stockpiled at the area in front of the Administration Building at P2. The Contractor was advised to separate the waste materials and dispose of them properly.
- A pile of sand outside the Administration Building was not covered by impervious sheet. The Contractor was reminded to cover the pile with impervious sheet to avoid the generation of fugitive dust.
- An oil drum without drip tray was observed on the rooftop of the UV Building. A drip tray was provided to the oil drum immediately by the Contractor.
- A large pool of stagnant water with construction waste was observed near CEPT. The Contractor was reminded to pump and remove the stagnant water to prevent mosquito breeding and to dispose of the construction waste properly.

13 December 2012

- Several plastic chemical drums without drip trays were stored on bare ground next to gate 2 at P2. The Contractor was reminded to keep the drums inside the drip trays.

21 December 2012

- A steel component was stored on the root flare of retained tree no. R34 at P2. The Contractor was reminded to remove it away from the tree.

28 December 2012

- The haul road at P2 was dry. The Contractor was reminded to provide sufficient water spraying to suppress the dust generation.
- A chemical drums on the drip tray was not covered by an impervious sheet. The Contractor was reminded to cover the chemical drum with impervious sheet to avoid accumulation of water in the drip tray especially during raining season.

Follow-up actions resulting from the last site inspections were taken as reported by the Contractor and their results were observed in the site inspections conducted in the reporting period.

Landscape and Visual Monitoring
In accordance with the EM\&A Manual, monthly landscape and visual monitoring is required to ensure that the design, implementation and maintenance of landscape and visual mitigation measures recommended in the EIA Report are fully achieved. A review of the landscape and visual mitigation measures was performed on 28 December 2012. The IEC was present at the joint inspection on 28 December 2012. It was confirmed that most of the necessary landscape and visual mitigation measures as summarised in Annex I were implemented by the Contractor. The major findings are summarised as follow:

28 December 2012

- No observation during the site inspection.

The Contractor was reminded to implement the follow-up actions. The status of the follow-up actions will be reviewed in the first weekly site inspections in the next reporting period.

8.1.1 Summary of Monitoring Exceedance

No exceedances of the Action and Limit Levels of 1-hr and 24-hr TSP was recorded during the reporting period.

8.1.2 Summary of Environmental Non-Compliance

No non-compliance event was recorded during the reporting period.
8.1.3 Summary of Environmental Complaint

No complaint was received during the reporting period. The cumulative environmental complaint log is shown in Annex K.
8.1.4 Summary of Environmental Summon and Successful Prosecution

No summon was received during the reporting period. The cumulative summons/prosecution log is shown in Annex K.

9.1.1 Key Issues for the Coming Month

Works to be undertaken for the coming monitoring period are summarised in Table 9.1.

Table 9.1 Construction Works to be Undertaken in the Next Reporting Period

Work to be undertaken

- Constructing the finishing works at the Administration Building;
- Constructing the structure, water tank and water proofing at the Sludge Dewatering Building;
- Constructing the structure and conducting water test at the PTW area of P2;
- Conducting the finishing works at the CEPT area of P2;
- Constructing column and roof at the UV building;
- Formatting waterproofing and conducting finish work at the Septic Waste Reception Station;
- Constructing the wall and roof at the Reuse Water Pump Room;
- Constructing a control room and raft slab at the DOUA and DOUB;
- Constructing the finishing works at the Chemical Building;
- Constructing the finishing work at the Electrical building No.1, No. 3 and No.4;
- Constructing drainage, cable ducts and a boundary wall at P2;
- Excavation at Payment Flow Meter Chamber; and
- Backfilling and drainage works for the whole site.

Potential environmental impacts arising from the above construction activities will be mainly associated with dust, construction noise, site runoffs, waste management and landscaping issues.

9.1.2 Monitoring Schedule for the Next Reporting Period

The tentative schedule of TSP monitoring for the next reporting period was presented in Annex E. Environmental monitoring will be conducted at the same monitoring locations in the next reporting period. The monitoring programme has been reviewed and was considered adequate for the nature of works in progress.

9.1.3 Construction Programme for the Next Three Months

The most up-to-date construction programme for the Project is presented in Annex L.

10.1 AIR QuALITY

Since the EIA has only included a qualitative assessment of dust impact during the construction phase, a comparison was made between the monitoring results from the start of the Project and the Hong Kong Air Quality Objectives (HKAQO) (see Table 10.1).

Table 10.1 Comparison of the HKAQO and Air Quality Monitoring Results

Monitoring Station	Corresponding ASR in EIA	HKAQO, $\mu \mathrm{g} \mathrm{m}{ }^{-3}$	Measured 24-hour TSP Monitoring Results, $\mu \mathrm{g} \mathrm{m}{ }^{-3}{ }^{-3}$ (b)	
		24 hour ${ }^{\text {(a) }}$	Average	Range
AM1	A1	260	72	53-100
AM2	A7	260	77	51-102

Notes:
(a) Only 24 -hour TSP monitoring results were compared as there is no 1 hour TSP criterion in HKAQO.
(b) The average and range of data were calculated from the period between the commencement of the construction works and this reporting month.

The monitoring results show that the average and range of the 24 -hour TSP levels recorded since the commencement of the construction works have been well below the 24-hour TSP criterion in the HKAQO. Recommended mitigation measures in Section 3.7.1.1 of EIA have been implemented throughout the construction period and were considered effective.

10.2

WASte MANAGEMENT

The estimated amount of waste generated from the Project and the cumulative quantities of waste generated up to this reporting month are presented in Table 10.2. The amount of inert C\&D material sent to public fills is higher than the estimated amount in the EIA. With reference to the C\&D Material Assessment (Contractor's General Submission (CSF) No.:
DC200803/CSF/SAF/060026/A), the difference in quantities is mainly due to the differences in excavation depths and the excavation methods in the Contract Works and that assumed in the Reference Design. Recommended mitigation measures in Sections 7.5.1.1 to 7.5.1.9 of the EIA will continue to be implemented during the construction stage.

Table 10.2 Quantity of Amount of C\&D Materials, General Wastes and Chemical Wastes Actually Generated and Estimated in the EIA and C\&D Material Assessment

Type of Material	Estimated Amount of Public Fill and Construction Waste in the EIA (inert \& non- inert)	Estimated Amount of Public Fill and Construction Waste in C\&D Material Assessment (CSF No.: DC200803/CSF/SAF/060026/ A) (c)	Accumulated Actual Amount of Public Fill and Construction Waste Recorded (a) (b) (d) (inert \& non-inert)
Amount of C\&D Materials Arising	61,489 m ${ }^{3}$	77,600 m ${ }^{3}$	$119,310.6 \mathrm{~m}^{3}$
Amount of C\&D Materials Reused on other site	-	-	$3,163.9 \mathrm{~m}^{3}$
Amount of C\&D Materials Reused on site	14,926 m ${ }^{3}$	18,000 m ${ }^{3}$	$22,857.8 \mathrm{~m}^{3}$
Amount of C\&D Materials Sent to Fill Banks	$46,563 \mathrm{~m}^{3}$	59,600 m ${ }^{3}$	$93,289.0 \mathrm{~m}^{3}$
General Refuse	Small	-	1,210.9 tonnes
Chemical Waste	Small	-	810.0 L

Notes:
(a) The actual amount of C\&D Materials has been recorded since the commencement of construction works.
(b) The density of soil and rock (bulked) is 1.8 tonnes $/ \mathrm{m}^{3}$.
(c) The estimated amount of $\mathrm{C} \& \mathrm{D}$ material generated from the Contract Works was revised in the C\&D Material Assessment and submitted to the SO on 9 September 2010 (CSF No.: DC200803/CSF/SAF/060026/A) because of the new plant \& facility layout.
(d) The quantity of C\&D material reused in this Contract in Oct, Nov and Dec 2012 were updated by the Contractor on 5 January 2013..

10.3 Conclusion of The Review

The EIA predictions and monitoring results since the commencement of the construction works have been reviewed. The EIA concluded that the Project would not cause adverse impacts to the environment, and monitoring results have also confirmed that so far. Mitigation measures recommended in the EP, EIA and EM\&A Manual will continue to be implemented throughout the construction phase of the Project.

This EM\&A Report presents the EM\&A programme undertaken during the reporting period from 1 to 31 December 2012 in accordance with EM\&A Manual and requirements of EP (EP-321/2008).

No exceedance of Action and Limit Levels of 24-hour TSP and 1-hour TSP was recorded at the monitoring stations during the reporting period.

Monthly landscape and visual monitoring was conducted in the reporting period. Most of the necessary landscape and visual mitigation measures recommended in the EIA Report were implemented by the Contractor.
Follow-up actions are required by the Contractor to improve protection of the retained or to-be transplanted trees.

No non-compliance event was recorded during the reporting period.
No complaint and summons/prosecution was received during the reporting period.

The ET will keep track of the EM\&A programme to ensure compliance of environmental requirements and the proper implementation of all the necessary mitigation measures in the coming periods.

Annex A

Location of Project

Annex B

Works Location

Annex C

Project Organization Chart with Contact Details

Project Organization During Construction Phase (with contact details)

Annex D

Locations of Air Quality
Monitoring Stations

AM1 - Tuen Mun EMSD Servicing Vehicle Station

AM2 - River Trade Terminal Office

Annex E

Monitoring Schedule of Reporting Month and Next Month

Contract No. DC/2008/03 - Design, Build and Operate Pillar Point Sewage Treatment Works
(Tuen Mun EMSD Servicing Vehicle Station - AM1 \& River Trade Terminal Office - AM2) December 2012

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Dec
2-Dec	3-Dec	4-Dec	5-Dec	6-Dec	7-Dec	8-Dec
				3X1-hr \& 1X 24-hr TSP		
9-Dec	10-Dec	11-Dec	12-Dec	13-Dec	14-Dec	15-Dec
			3X1-hr \& 1X 24-hr TSP			
16-Dec	17-Dec	18-Dec	19-Dec	20-Dec	21-Dec	22-Dec
		3X1-hr \& 1X 24-hr TSP				3X1-hr \& 1X 24-hr TSP
23-Dec	24-Dec	25-Dec	26-Dec	27-Dec	28-Dec	29-Dec
		General Holiday	General Holiday		3X1-hr \& 1X 24-hr TSP	
30-Dec	31-Dec					

Contract No. DC/2008/03 - Design, Build and Operate Pillar Point Sewage Treatment Works
(Tuen Mun EMSD Servicing Vehicle Station - AM1 \& River Trade Terminal Office - AM2)
January 2012

Annex F

Calibration Reports for HVSs

TSP Monitoring Equipment

Monitoring Station ID	Location	Monitoring Equipment	Last Calibration Date	
Next Calibration Date				
AMr and 1-hr TSP		HVS	Calibrator	
AM2	Tuen Mun EMSD Vehicle Servicing Station	GMW GS-2310 (S/N 7580)	CM-AIR-43 (S/N 0438320)	03 November 2012

High-Volume TSP Sampler

5-Point Calibration Record

Location	$:$	EMSD
Calibrated by	$:$	K.T.Ho
Date	$:$	$03 / 11 / 2012$
Sampler	$:$	GMWS-2310 ACCU-VOL
Model	$:$	S/N 7580
Serial Number	$:$	1378
Calibration Orfice and Standard Calibration Relationship		
Serial Number	$:$	22 Feb 2012
Service Date	$:$	1.99405
Slope (m)	$:$	-0.00397
Intercept (b) Correlation Coefficient(r)	$:$	0.99999
Standard Condition	$:$	1013
Pstd (hpa)	$:$	298.18
Tstd (K)		
Calibration Condition	$:$	1016
Pa (hpa)	$:$	294
Ta(K)		

Resistance Plate		dH [green liquid] (inch water)	Z	X=Qstd (cubic meter/min)	IC	Y
1	18 holes	11.3	3.389	1.702	54	54.4
2	13 holes	9.5	3.108	1.560	48	48.4
3	10 holes	7.1	2.687	1.349	40	40.3
4	7 holes	4.5	2.139	1.075	30	30.2
5	5 holes	2.6	1.626	0.817	20	20.2

Sampler Calibration Relationship

Checked by: Magnum Fan
Date: 06/11/2012

High-Volume TSP Sampler
5-Point Calibration Record

Location	$:$	River Trade
Calibrated by	$:$	P.F.Yeung
Date	$:$	$03 / 11 / 2012$
Sampler	$:$	GMWS-2310 ACCU-VOL
Model		S/N 1252
Serial Number		
Calibration Orfice and Standard Calibration Relationship		
Serial Number	$:$	1378
Service Date	$:$	22 Feb 2012
Slope (m)	$:$	-0.0039705
Intercept (b)	$:$	0.99999
Correlation Coefficient(r)		
Standard Condition	$:$	1013
Pstd (hpa)	$:$	298.18
Tstd (K)		

Calibration Condition

Pa (hpa)	$:$	1016

Resistance Plate		dH [green liquid] (inch water)	Z	X=Qstd (cubic meter/min)	IC	Y
1	18 holes	11.2	3.374	1.694	64	64.5
2	13 holes	9.1	3.042	1.527	56	56.5
3	10 holes	7.3	2.724	1.368	48	48.4
4	7 holes	4.6	2.162	1.086	36	36.3
5	5 holes	2.6	1.626	0.817	22	22.2

Sampler Calibration Relationship

Annex G

24-hour and 1-hour TSP
 Monitoring Results

Annex G-24-hour and 1-hour TSP Monitoring Results

1-hour TSP Monitoring Results
Station AM1

Date	$\begin{aligned} & \text { Start } \\ & \text { Time } \end{aligned}$	Finish Time	Weather	$\begin{gathered} \hline \text { TSP } \\ \text { Concentration } \\ \left(\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	Action Level $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Limit Level $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Site Conditions / Observations / Remarks	Temperature (${ }^{\circ} \mathrm{C}$)	Wind Speed $*$ $(\mathrm{~m} / \mathrm{s})$	$\begin{gathered} \text { Sampler } \\ \text { ID } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Filter } \\ & \text { ID } \end{aligned}$
06/12/2012	13:10	14:10	Cloudy	99	343	500	Construction work in progress	16.0	*	7580	6042
	14:10	15:10	Cloudy	97	343	500	Construction work in progress	16.0	*	7580	6043
	15:10	16:10	Cloudy	91	343	500	Construction work in progress	16.0	*	7580	6044
12/12/2012	13:10	14:10	Sunny	86	343	500	Construction work in progress	18.0	*	7580	6068
	14:10	15:10	Sunny	83	343	500	Construction work in progress	18.0	*	7580	6069
	15:10	16:10	Sunny	92	343	500	Construction work in progress	18.0	*	7580	6070
18/12/2012	13:10	14:10	Rainy	72	343	500	Construction work in progress	16.0	*	7580	6092
	14:10	15:10	Rainy	81	343	500	Construction work in progress	16.0	*	7580	6093
	15:10	16:10	Cloudy	81	343	500	Construction work in progress	16.0	*	7580	6094
22/12/2012	13:10	14:10	Fine	91	343	500	Construction work in progress	18.0	*	7580	5917
	14:10	15:10	Fine	93	343	500	Construction work in progress	18.0	*	7580	5918
	15:10	16:10	Fine	85	343	500	Construction work in progress	18.0	*	7580	5919
28/12/2012	13:10	14:10	Sunny	80	343	500	Construction work in progress	20.0	*	7580	6152
	14:10	15:10	Fine	87	343	500	Construction work in progress	20.0	*	7580	6153
	15:10	16:10	Fine	93	343	500	Construction work in progress	20.0	*	7580	6154
			Min.	72							
			Max.	99							
			Average	87							

Wind Speed data is presented in the Meteorological Data table

Annex G-24-hour and 1-hour TSP Monitoring Results

1-hour TSP Monitoring Results

Date	Start Time	Finish Time	Weather	TSP Concentration $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Action Level $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Limit Level $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Site Conditions / Observations / Remarks	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Wind Speed * $(\mathrm{m} / \mathrm{s})$	$\begin{aligned} & \text { Sampler } \\ & \text { ID } \end{aligned}$	Filter ID
06/12/2012	13:00	14:00	Cloudy	96	383	500	Construction work in progress	16.0	*	1252	6038
	14:00	15:00	Cloudy	105	383	500	Construction work in progress	16.0	*	1252	6039
	15:00	16:00	Cloudy	100	383	500	Construction work in progress	16.0	*	1252	6040
12/12/2012	13:00	14:00	Sunny	103	383	500	Construction work in progress	18.0	*	1252	6064
	14:00	15:00	Sunny	104	383	500	Construction work in progress	18.0	*	1252	6065
	15:00	16:00	Sunny	105	383	500	Construction work in progress	18.0	*	1252	6066
18/12/2012	13:00	14:00	Rainy	96	343	500	Construction work in progress	16.0	*	1252	6088
	14:00	15:00	Rainy	100	343	500	Construction work in progress	16.0	*	1252	6089
	15:00	16:00	Rainy	102	343	500	Construction work in progress	16.0	*	1252	6090
22/12/2012	13:00	14:00	Fine	96	383	500	Construction work in progress	18.0	*	1252	5913
	14:00	15:00	Fine	90	383	500	Construction work in progress	18.0	*	1252	5914
	15:00	16:00	Fine	94	383	500	Construction work in progress	18.0	*	1252	5915
28/12/2012	13:00	14:00	Sunny	115	383	500	Construction work in progress	20.0	*	1252	6148
	14:00	15:00	Fine	97	383	500	Construction work in progress	20.0	*	1252	6149
	15:00	16:00	Fine	101	383	500	Construction work in progress	20.0	*	1252	6150
			Min.	90							
			Max.	115							
			Average	100							

Wind Speed data is presented in the Meteorological Data table

Annex G-24-hour and 1-hour TSP Monitoring Results

24-hour TSP Monitoring Results

Station AM1

Start		Finish		Weather	Filter Weight (g)		Elapsed Time Reading		Sampling Time	Flow Rate ($\mathrm{m}^{3} / \mathrm{min}$)			TSP Conc.	Action Level	Limit Level	Observations / Remarks	Sampler	Filter
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	$\left(\mu \mathrm{g} / \mathrm{m}^{3}\right.$)	$\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	$\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$		ID	ID
06/12/2012	16:10	7-Dec-12	16:10	Cloudy	2.8171	2.9449	13709.18	13733.18	24	1.38	1.38	1.38	64	183	260	Construction work in progress	7580	6045
12/12/2012	16:10	13-Dec-12	16:10	Sunny	2.7826	2.9009	13736.18	13760.18	24	1.38	1.38	1.38	60	183	260	Construction work in progress	7580	6071
18/12/2012	16:10	19-Dec-12	16:10	Cloudy	2.7707	2.8911	13601.18	13625.18	24	1.38	1.38	1.38	61	183	260	Construction work in progress	7580	6095
22/12/2012	16:10	23-Dec-12	16:10	Fine	2.8197	2.9641	13790.18	13814.18	24	1.38	1.38	1.38	73	183	260	Construction work in progress	7580	5920
28/12/2012	16:10	29-Dec-12	16:10	Fine	2.8155	2.9367	13817.18	13841.18	24	1.38	1.38	1.38	61	183	260	Construction work in progress	7580	6155
												Min.	60					
												Max.	73					
												Average	64					

24-hour TSP Monitoring Results

Start		Finish		Weather	Filter Weight (g)		Elapsed Time Reading		$\begin{gathered} \hline \text { Sampling } \\ \text { Time } \\ \hline \end{gathered}$	Flow Rate ($\mathrm{m}^{3} / \mathrm{min}$)			$\begin{aligned} & \text { TSP } \\ & \text { Conc. } \end{aligned}$	Action Level	$\begin{aligned} & \hline \text { Limit } \\ & \text { Level } \end{aligned}$	Observations / Remarks	Sampler	Filter
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	$\left(\mu \mathrm{g} / \mathrm{m}^{3}\right.$)	$\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	$\left(\mu \mathrm{g} / \mathrm{m}^{3}\right.$)		ID	ID
06/12/2012	16:00	7-Dec-12	16:00	Cloudy	2.8049	2.9315	21726.2	21750.2	24	1.22	1.22	1.22	72	192	260	Construction work in progress	1252	6041
12/12/2012	16:00	13-Dec-12	16:00	Sunny	2.8060	2.9291	21753.20	21777.20	24	1.22	1.22	1.22	70	192	260	Construction work in progress	1252	6067
18/12/2012	16:00	19-Dec-12	16:00	Rainy	2.7767	2.8998	21780.20	21804.20	24	1.22	1.22	1.22	70	192	260	Construction work in progress	1252	6091
22/12/2012	16:00	23-Dec-12	16:00	fine	2.8255	2.9494	21807.20	21831.20	24	1.22	1.22	1.22	71	192	260	Construction work in progress	1252	5916
28/12/2012	16:00	29-Dec-12	16:00	Fine	2.8234	2.9388	21834.20	21858.20	24	1.22	1.22	1.22	66	192	260	Construction work in progress	1252	6151
												Min.	66					
												Max.	72					
												Average	70					

Meteorological Data Extracted from the Hong Kong Observatory

		Tuen Mun Station				
Date	Weather	Average Air Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Average Relative Humiditiy $(\%)$	Total Rainfall $(\mathbf{m m})$	Average Wind Speed $(\mathbf{k m} / \mathbf{h})$	Wind Direction
$06 / 12 / 2012$	Cloudy	16.0	$63-80$	0.0	9.0	N
$07 / 12 / 2012$	Cloudy	18.0	$70-86$	Trace	6.0	N
$12 / 12 / 2012$	Sunny	17.5	$67-79$	0.0	12.0	N
$13 / 12 / 2012$	Sunny	18.3	$71-86$	0.0	8.0	N
$18 / 12 / 2012$	Cloudy	16.0	$65-93$	2.3	6.0	S
$19 / 12 / 2012$	Cloudy	15.0	$71-92$	1.1	14.0	NE
$22 / 12 / 2012$	Fine	17.8	$64-88$	0.0	8.0	NW
$23 / 12 / 2012$	Fine	13.0	$40-66$	0.0	15.0	N
$28 / 2 / 2022$	Fine	20.0	$66-81$	Trace	6.0	N
$29 / 12 / 2012$	Fine	16.0	$67-97$	22.1	6.0	SE

Annex G TSP Monitoring Results

24-hr TSP Levels for the Past 4 Months AM1 (Tuen Mun EMSD Vehicle Servicing Station)

24-hr TSP Levels for the Past 4 Months AM2 (River Trade Terminal Office)

1-hr TSP Levels for the Past 4 Months AM1 (Tuen Mun EMSD Vehicle Servicing Station)

1-hr TSP Levels for the Past 4 Months AM2 (River Trade Terminal Office)

Annex H

Event/Action Plan for Air Quality Monitoring

Table H1

 Event Action Plan for Air Quality Monitoring| Action Level/Limit Level | Environmental Team Leader (ETL) | Independent Environmental Checker (IEC) | Supervising Officer
 Representative (SOR) | Contractor |
| :---: | :---: | :---: | :---: | :---: |
| Action Level | | | | |
| Exceedance for one sample | - Identify source, investigate the causes of complaint and propose remedial measures;
 - Inform IEC and SOR;
 - Repeat measurement to confirm findings;
 - Increase monitoring frequency to daily. | - Check monitoring data submitted by ET;
 - Check Contractor's working method. | - Notify Contractor and DSD. | - Rectify any unacceptable practice;
 - Amend working methods if appropriate. |
| Exceedance for two or more consecutive samples | - Identify source;
 - Inform IEC and SOR;
 - Advise the SOR on the effectiveness of the proposed remedial measures;
 - Repeat measurements to confirm findings;
 - Increase monitoring frequency to daily;
 - Discuss with IEC and Contractor on remedial actions required;
 - If exceedance continues, arrange meeting with IEC and SOR;
 - If exceedance stops, cease additional monitoring. | - Check monitoring data submitted by ET;
 - Check Contractor's working method;
 - Discuss with ET and Contractor on possible remedial measures;
 - Advise the ET on the effectiveness of the proposed remedial measures;
 - Supervise Implementation of remedial measures. | - Confirm receipt of notification of exceedance in writing;
 - Notify Contractor and DSD;
 - Ensure remedial measures properly implemented. | - Submit proposals for remedial actions to IEC within three working days of notification;
 - Implement the agreed proposals;
 - Amend proposal if appropriate. |

Action Level/Limit Level	Environmental Team Leader (ETL)	Independent Environmental Checker (IEC)	Supervising Officer Representative (SOR)	Contractor
Limit Level				
Exceedance for one sample	- Identify source, investigate the causes of exceedance and propose remedial measures; - Inform IEC, SOR, DSD and EPD; - Repeat measurement to confirm finding; - Increase monitoring frequency to daily; - Assess effectiveness of Contractor's remedial actions and keep IEC, EPD, DSD and SOR informed of the results.	- Check monitoring data submitted by ET; - Check Contractor's working method; - Discuss with ET and Contractor on possible remedial measures; - Advise the SOR on the effectiveness of the proposed remedial measures; - Supervise implementation of remedial measures.	- Confirm receipt of notification of exceedance in writing; - Notify Contractor; - Ensure remedial measures properly implemented.	- Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; - Implement the agreed proposals; - Amend proposal if appropriate.
Exceedance for two or more consecutive samples	- Notify IEC, SOR, DSD and EPD; - Identify source; - Repeat measurement to confirm findings; - Increase monitoring frequency to daily; - Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; - Arrange meeting with IEC and SOR to discuss the remedial actions to be taken; - Assess effectiveness of Contractor's remedial actions	- Discuss amongst SOR, ET, and Contractor on the potential remedial actions; - Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the SOR accordingly; - Supervise the implementation of remedial measures.	- Confirm receipt of notification of exceedance in writing; - Notify Contractor; - In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; - Ensure remedial measures properly implemented; - If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	- Take immediate action to avoid further exceedance; - Submit proposals for remedial actions to IEC within three working days of notification; - Implement the agreed proposals; - Resubmit proposals if problem still not under control; - Stop the relevant portion of works as determined by the SOR until the exceedance is abated.

Annex I

Implementation Schedule of Mitigation Measures

Annex I Summary of Mitigation Measures Implementation Schedule

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
Summary of Environmental Mitigation Measures in the EIA and EMEA Manual			
Construction Phase	Notice of works commencement was submitted to EPD on 3 August 2010.		
Air Quality	Dust mitigation measures stipulated in the Air Pollution Control (Construction Dust) Regulation shall be incorporated to control Post emission. Notice shall be given to authority prior to commencing of work.	Work sites / during construction period	
Water Quality	The practices outlined in ProPECC PN 1/94 Construction Site Drainage should be adopted. It is recommended to install perimeter channels in the works areas to intercept runoff as site boundary prior to the commencement of any earthwork. To prevent storm runoff from washing across exposed soil surfaces, intercepting channels should be provided. Drainage channels are also required to convey site runoff to sand/silt traps and oil interceptors. Provision of regular cleaning and maintenance can ensure the normal operation of these facilities throughout the construction period. Any practical options for the diversion and re-alignment of drainage should comply with both engineering and environmental requirements in order to ensure adequate hydraulic capacity of all drains.	Work site/During the construction period	$\sqrt{ }$
Water Quality	There is a need to apply to EPD for a discharge license under the WPCO for discharging effluent from the construction site. The discharge quality is required to meet the requirements specified in the discharge license. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM- DSS. Reuse and recycling of the treated effluent can minimize water consumption and reduce the effluent discharge volume. The beneficial uses of the treated effluent may include dust suppression, wheel washing and general cleaning. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the WPCO license which is under the ambit of regional office (RO) of EPD.	Work site/During the construction period	Discharge licence was awarded by EPD on 7 December 2010.
Water Quality	The construction programme should be properly planned to minimize soil excavation, if any, in rainy seasons. This prevents soil erosion from	Work site/During the construction period	<>

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	exposed soil surfaces. Any exposed soil surfaces should also be properly protected to minimize dust emission. In areas where a large amount of exposed soil exists, earth bunds or sand bags should be provided. Exposed stockpiles should be covered with tarpaulin or impervious sheets at all times. The stockpiles of materials should be placed at locations away from any stream course so as to avoid releasing materials into the water bodies. Final surfaces of earthworks should be compacted and protected by permanent work. It is suggested that haul roads should be paved with concrete and the temporary access roads protected using crashed stone or gravel, wherever practicable. Wheel washing facilities should be provided at all site exists to ensure that earth, mud and debris would not be carried out of the works areas by vehicles.		
Water Quality	Good sites practices should be adopted to clean the rubbish and litter on the construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis.	Work site/During the construction period	<>
Water Quality	The presence of construction workers generates sewage. It is recommended to provide sufficient chemical toilets in the works areas. The toilet facilities should be more than 30 m from any watercourse. A licensed water collector should be deployed to clean the chemical toilets on a regular basis. The construction workers can also make use of the existing toilet facilities within the PPSTW as necessary.	Work site/During the construction period	\checkmark
Water Quality	Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the project. Regular environmental audit on the construction phase of the project. Regular environmental audit on the construction site can provide an effective control of any malpractices and can achieve continual improvement of environmental performance on site.	Work site/During the construction period	$\sqrt{ }$
Waste Management	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation	Work site/During the construction period	$\sqrt{ }$

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	should be observed and complied with for control of chemical wastes.		
Waste Management	Any service shop and maintenance facilities should be located on hard standings within a bunded area, and stumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.	Work site/During the construction period	\checkmark
Waste Management	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with the chemical wastes. General requirements are given as follows: - Suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport. - Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. - Storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.	Work site/During the construction period	\checkmark
Waste Management	Good Site Practices Recommendations for good site practices during the construction activities include: - Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site - Training of site personnel in proper waste management and chemical handling procedures - Provision of sufficient waste disposal points and regular collection of waste - Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by	Work site/During the construction period	<>

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	transporting wastes in enclosed containers - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.		
Waste Management	Waste Reduction Measures Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: - Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal. - Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force - Proper storage and site practices to minimise the potential for damage or contamination of construction materials. - Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.	Work site/During planning \& design stage, and construction stage	\checkmark
Waste Management	General Refuse General refuse should be stored in enclosed bins or compaction units separate from C\&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C\&D material. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light material.	Work site / During the construction period	\checkmark
Waste Management	Construction and Demolition Material In order to minimise the impact resulting from collection and transportation of C\&D material for off-site disposal, the excavated	Work site / During design stage \& construction period	\checkmark

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	material generated from site formation works for the proposed new facilities and units at the STW should be reused on-site as far as practicable. The surplus excavated material should be disposed of at the designated public fill reception facility, as agreed with the Secretary of the Public Fill Committee, for other beneficial uses.		
Waste Management	Mitigation measures and good site practices should be followed to control potential environmental impact from handling and transportation of C\&D material. The mitigation measures include: - Where it is unavoidable to have transient stockpiles of C\&D material pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible. - Open stockpiles of construction materials or construction wastes onsite should be covered with tarpaulin or similar fabric. - Skip hoist for material transport should be totally enclosed by impervious sheeting. - Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site - The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores. - The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle. - All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet. - The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading.	Work site / During design stage \& construction period	\checkmark
Waste Management	When disposing C\&D material at a public filling facility, it shall be noted that the material shall only consist of earth, building debris and broken rock and concrete. The material shall be free from marine mud, household refuse, plastic, metals, industrial and chemical waste, animal	Work site/During design stage \& construction period	\checkmark

Type of Impact	Environmental Protection Measures	Location/ Timing	
	and vegetable matter, and other material considered to be unsuitable by the Filling Supervisor. In order to monitor the disposal of the surplus C\&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work with reference to the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" as attached in Appendix 7-1. An Independent Environmental Checker should be responsible for auditing the results of the system.		
Waste Management	Chemical Waste		
	If chemical wastes are produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use licensed collector to transport and dispose of the chemical wastes, to either the Chemical Waste Treatment Centre, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Work site / During the construction period	V
 Visual	Temporary Tree Nurseries		

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	the construction period.		
Landscape \& Visual	No-intrusion Zone To maximize protection to existing trees and ground vegetation, construction contracts may designate "No-intrusion Zone" to various areas within the site boundary with rigid and durable fencing for each individual no-intrusion zone. The contractor should close monitor and restrict the site working staff not to enter the "no-intrusion zone", even for non-direct construction activities and storage of equipment.	Work site/During design stage \& construction period	<>
Landscape \& Visual	Hoarding Hoarding or boundary fencing for construction shall be considered. It should be sensitively designed, subtle, camouflaged and more 'permeable' so that they fit into the existing environment when looking from outside.	Work site/During design stage \& construction period	\checkmark
Landscape \& Visual	Dust and Erosion Control for Exposed Soil Excavation works and demolition of existing building blocks and which will be highly visible form surrounding areas should be well planned and with precautions to suppress dust. Exposed soil shall be covered or 'camouflaged' and watered often. Areas that are expected to be left with bare soil for a long period of time after excavation shall be properly covered with suitable protective fabric. Silt and erosion shall be controlled by ground barriers around the slope cutting area..	Work site/During design stage \& construction period	<>
Landscape \& Visual	Existing Tree Record Inventory All retained trees should be record photographically at the commencement of the Contract, and carefully protected during the construction period. Detailed tree protection specification shall be allowed and included in the Contract Specification, which specifying the tree protection requirement, submission and approval system, and the tree monitoring system.	Work site/During design stage \& construction period	\checkmark

Type of Impact	Environmental Protection Measures	Location/ Timing	
 Visual	Construction Light All security floodlights for construction sites shall be equipped with adjustable shield, frosted diffusers and reflective covers, and be carefully controlled to minimize light pollution and night-time glare to nearby residences and GIC users. The Contractor shall consider other security measures which shall minimize the visual impacts.	Work site / During design stage \& construction period	\checkmark
 Visual	Tree Transplanting Apart from the 18 numbers of "Leucaena leucocephala", which are proposed to be felled in accordance with ETWB TCW No. 3/2006, all the affected trees shall be transplanted. Where practicable, trees shall be directly transplanted to permanent on-site locations. The location of the transplanted tree is shown in Figure 8.9.1.	Work site / During design stage \& construction period	V. Tree transplantation in progress.
 Visual	Tree Compensation Ratio The total number of compensatory trees planted in the project area shall not be less than 1:1 ratios by new trees. Required numbers and locations of compensatory trees shall be determined and agreed with Government during the tree felling application process under ETWCTC 3/2006. Compensatory trees shall be at least heavy standard size to create "immediate" greening effect. 81 numbers of "Cassia surattensis" will be provided as the additional compensatory planting for loss of greenery in the area due to removal of the affected trees. The location of the additional compensatory planting is shown in Figure 8.9.1.	period / During design stage \& construction	N/A
 Visual	Re-use of Existing Soil and Advance formation of Planting Area	Work site / During design stage \& construction Existing topsoil shall be re-used where possible for new planting areas within the project. Advance formation of planting area and early implementation of the plating works can minimize adverse impact on trees. The construction program shall consider using the soil removed from one phase for backfilling another. Suitable storage ground, gathering ground and mixing ground may be set up on-site as necessary.	V

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
Landscape \& Visual	Establishment Period 12 month establishment period for the soft landscape works will be allowed in the main contract. Most construction contracts in Hong Kong require the Contractor to carry out routine horticultural operations, including watering, pruning, weeding, pest control, replacement of dead plants etc. to ensure healthy establishment of new planting during a 12 month establishment period. This period also serves as a kind of warranty / guarantee on the quality of the plants supplied and installed by the Contractor. Monthly monitoring during the first year of establishment period is recommended.	Work site/During operation period	N/A. To be implemented during operation phase of Project.
Landscape \& Visual	Re-instatement of excavated Area All excavated area and disturbed area for utilities diversion, temporary road diversion, and pipeline woks will be reinstated to former conditions, subject to applicable Government Standards.	Work site / During design stage \& operation period	N/A. To be implemented during operation phase of Project.
Landscape \& Visual	Appearance and Greening for the proposed structures Compatible design, construction materials and surface finishes of the proposed structure should match with the nearby existing external appearance of PPSTW buildings for achieving visual uniformity. Finishing materials shall have due consideration to form, basic color, color/tone variation, micro-and macro-texture, and reflectivity/light absorbance to avoid glare. Planting, such as turf, low groundcovers and climbers, may also be planted on top of these elements to provide greening and aesthetic effect.	Work site / During design stage \& operation period	N/A. To be implemented during operation phase of Project.
Summary of Key Environmental Mitigation Measures in Contract Requirements			
Air Quality	Only Ultra-low-sulphur diesel (ULSD) should be used for all dieseloperated plants and equipments on site	Work sites / during construction period	\checkmark
Air Quality and Noise	Plants and equipments of good operation conditions should be used on site.	Work sites / during construction period	\checkmark
Noise	No diesel hammers should be used for piling works	Work sites / during construction period	\checkmark
Noise	Construction Noise Permits (CNP) should be applied for works conducted outside non-restricted hours.	Work sites / during construction period	\checkmark
Noise	Quiet construction equipments and the quietest practicable working	Work sites / during construction period	\checkmark

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	methodologies should be adopted for works whenever feasible. Noise labels should be provided for air compressors. Hoods and cover panels of generators and air compressors should be closed during operation. Noise labels should be provided for air compressors and hand-held percussive breakers.		
Waste Management	Temporary works construction on site should minimize the use of timber to reduce the quantity of C\&D waste generated during works period.	Work sites / during construction period	V
Landscape and Visual	Retained or to-be-transplanted trees on site should be properly protected from physical damages and soil compacts with temporary fencing or hessian armouring whenever feasible.	Work sites / during construction period	$<>$

Remark:
$\checkmark \quad$ Compliance of Mitigation Measures
<> Compliance of Mitigation but need improvement
$x \quad$ Non-compliance of Mitigation Measures
© Non-compliance of Mitigation Measures but rectified by ATAL-Degrémont-China State JV
$\Delta \quad$ Deficiency of Mitigation Measures but rectified by ATAL-Degrémont-China State JV
N/A Not Applicable in Reporting Period

Annex J

Waste Flow Table

Contract No. : DC/2008/03 - Design, Build and Operate Pillar Point Sewage Treatment Works

Monthly Summary Waste Flow Table

Month	Actual Quantities of Inert C\&D Materials (Public Fill) Generated (see Note 13)					Actual Quantities of Non-inert C\&D Materials (Construction Waste) Generated (see Note 13)				
	Total Quantity Generated	Reused in the Contract	Reused in other Projects	Disposed as Public Fill		Metals (see Note 1)	Paper/ cardboard packaging (see Note 1)	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse (see Note 3)
				Rocks \& Broken Concrete	Total					
	tonne	tonne	tonne	tonne		kilogram	kilogram	kilogram	Litre	tonne
Nov 2010	2,248	0	0	55	2,248	60	100	0	0	18.05 (see Note 4)
Dec 2010	11,314 (see Note 4)	0	0	225	11,314	100	120	20	0	28.40 (see Note 4)
Jan 2011	58,383 (see Note 4)	0	0	3000	58,384	250	280	60	0	4.59 (see Note 4)
Sub-total	71,945	0	0	71,946		410	500	80	0	51.04
Feb 2011	12,855	0	0	1,050	12,855	100	150	50	0	2.43 (see Note 4)
Mar 2011	22,859	0	0	1,500	22,858	150	180	55	0	9.02
Apr 2011	8,547 (see Note 7)	0	5,684(see Note 5, 7)	550	2,863	50	30	15	0	5.78
Sub-total	44,261	0	5684	38,576.40		300	360	120	0	17.23
May 2011	6,293 (see Note 7)	0	11 (see Note 5, 7)	425	6,282 (see Note 7)	45	25	10	360 (see Note 7)	8.83
Jun 2011	4,587 (see Note 7)	0	0 (see Note 7)	313	4,587 (see Note 7)	40	30	15	0	7.10
Jul 2011	523	0	0	25	523	15	5	10	0	7.20
Sub-total	11,403	0	11	11,392		100	60	35	360	23.13
Aug 2011	571 (see Note 11)	0	0	50	571 (see Note 11)	0	0	15	450 (see Note 8)	6.12
Sept 2011	235	0	0	25	235	20	0	0	0	12.15 (see Note 9)
Oct 2011	5,705 (see Note 10)	0	0	650	5,705 (see Note 10)	100	0	0	0	2.98
Sub-total	6,511	0	0	6,511		120	0	15	450	21.25
Nov 2011	6,294	0	0	775	6,294	50	0	0	0	44.84
Dec 2011	3,011	0	0	263	3,011	20	0	0	0	17.14
Jan 2012	349	64	0	25	285	20	150	0	0	49.01

Month	Actual Quantities of Inert C\&D Materials (Public Fill) Generated					Actual Quantities of Non-inert C\&D Materials (Construction Waste) Generated				
	Total Quantity Generated	Reused in the Contract	Reused in other Projects	Disposed as Public Fill		Metals (see Note 1)	Paper/ cardboard packaging (see Note 1)	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse (see Note 3)
				Rocks \& Broken Concrete	Total					
	tonne	tonne	tonne	tonne	tonne	kilogram	kilogram	kilogram	Litre	tonne
Sub-total	9,654	64	0	9,590		90	150	0	0	110.99
Feb 2012	3,371	30	0	2,810	3,341	150	0	0	0	48.72
Mar 2012	6,460	3,000	0	625	3,460	30	0	0	0	41.10
April 2012	3,774	3,000	0	250	774	40	0	0	0	40.01
Sub-total	13,605	6,030	0	7,585		220	0	0	0	129.83
May 2012	7,936	5,600	0	750	2,336	40	0	10	0	75.19
June 2012	13,091	7,500	0	875	5,591	40	35	8	0	66.74
July 2012	11,972	8,600	0	825	3,373	40 (see Note 12)	36	5	0	100.50
Sub-total	32,999	21,700	0	11,299.50		120	70.9	23	0	242.43
Aug 2012	11,660	11,000	0	950	659	30	10	6	0	78.77
Sept 2012	3,055	1,500	0	920	1,555	30	40	5	0	118.80
Oct 2012	2,657	200	0	500	2,457	30	59	8	0	124.04
Sub-total	17,172	12,500	0	4672.2		90	109	19	0	321.61
Nov-2012	2,691	250	0	750	2,441	50	25	10	0	128.08
Dec-2012	4,319	400	0	200	3,919.13	60	20	15	0	165.28
Total	214,759	41,144	5,695	167,920		1,560	1,295	317	810	1,211

Notes: (1) Metal and paper/cardboard packaging were collected by recycler for recycling.
(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material collected by recycler for recycling.
(3) General refuse was disposed of at WENT by subcontractors.
(4) The waste flow data for November and December 2010, January and February 2011 was updated in March 2011based on SOR's comments and has been confirmed by the Contractor.
(5) The inert C\&D materials were reused in the Contract No. EP/SP/58/08 at Tuen Mun Tsang Tsui.
(6) Chemical waste was collected though the licensed chemical waste collector, Dunwell Ind. (Holdings) Ltd, with the waste collection licence number 7111-757-W0015-WC.
(7) The waste flow data for April, May and June 2011 was updated in August 2011 based on SOR's comments and has been confirmed by the Contractor.
(8) The waste flow data of chemical waste for August 2011 was updated in October 2011 based on Contractor's revised waste flow summary.
(9) The waste flow data of general refuse for September 2011 was updated in November 2011 based on Contractor's revised waste flow summary.
(10) The waste flow data of C\&D material for October 2011 was updated in December 2011 based on Contractor's revised waste flow summary.
(11) The waste flow data of C\&D material for August 2011 was updated in January 2011 based on SOR's comments and has been confirmed by the Contractor.
(12) The waste flow data of metal and paper/cardboard packaging for June 2011 was revised in August 2012.
(13) The quantity of inert and non-inert C\&D material generated from May 2012 to December and imported fill material was updated by the Contractor on 6 November 2012.
(14) The quantity of Rocks \& Broken Concrete from November 2010 to November 2012 was updated by the Contractor on 12 December 2012.
(15) The quantity of C\&D material reused in this Contract in Oct, Nov and Dec 2012 were updated by the Contractor on 5 January 2012.

Annex K

Environmental Complaint, Environmental Summons and Persecution Log

Annex K Cumulative Complaint and Summons/Prosecutions Log

Reporting Month	Number of Complaints in Reporting Month	Number of Summons/Prosecutions in Reporting Month
November 2010	0	0
December 2010	0	0
January 2011	0	0
February 2011	0	0
March 2011	0	0
April 2011	0	0
May 2011	0	0
June 2011	0	0
July 2011	0	0
August 2011	0	0
September 2011	0	0
October 2011	0	0
November 2011	0	0
December 2011	0	0
January 2012	0	0
February 2012	0	0
March 2012	0	0

Reporting Month	Number of Complaints in Reporting Month	Number of Summons/Prosecutions in Reporting Month
April 2012	0	0
May 2012	0	0
June 2012	0	0
July 2012	0	0
August 2012	0	0
September 2012	0	0
October 2012	0	0
November 2012	0	0
December 2012	0	0
Overall Total	0	0

Annex L

Construction Programme of the Project

O Primavera Systems, Inc.

CEPT: Scrapper 4 Bri
-
EPT: Scum Removal sy

CEPT: Lifting Appliance Installatio

\longrightarrow
Chemical: BS System Installatio

