KWAN ON CONSTRUCTION CO. LTD.

Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan

Baseline Environmental Monitoring Plan

(version 1.1)

Certified By	Chiphing.
	(Environmental Team Leader)
REMARKS:	

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

1	INTRODUCTION	1
2	NOISE	2
Mon	itoring Requirement	2
Mon	itoring Locations	2
Mon	itoring Equipment	3
Mon	itoring Parameters, Frequency and Duration	3
3	AIR QUALITY	4
Mon	itoring Requirement	4
Mon	itoring Locations	4
Mon	itoring Equipment	5
Mon	itoring Parameters, Frequency and Duration	6
4	WATER QUALITY	7
Mon	itoring Requirement	7
Mon	itoring Locations	7
Mon	itoring Equipment	8
Mon	itoring Parameters, Frequency	9
5	BASELINE MONITORING PROGRAMME	9

LIST OF TABLES

Table 2.1	Location for Noise Monitoring Stations
Table 2.2	Alternative Location and Current Situation for Noise Monitoring Stations
Table 2.3	Noise Monitoring Equipment
Table 3.1	Location for Air Quality Monitoring Stations
Table 3.2	Alternative Location and Current Situation for Noise Monitoring Stations
Table 3.3	Air Quality Monitoring Equipment
Table 3.4	Frequency and Parameters of Air Quality Monitoring
Table 4.1	Location for Water Quality Monitoring Stations
Table 4.2	Water Quality Monitoring Equipment
Table 4.3	Water Quality Monitoring Parameters and Frequency

LIST OF FIGURES

- Figure 1.1 General Location Plan of the Project
- Figure 2.1 Locations of Proposed Noise Monitoring Station and Representative Noise Sensitive Receivers
- Figure 2.2 Locations of Proposed Noise Monitoring Station and Representative Noise Sensitive Receivers
- Figure 2.3 Locations of Air Quality and Noise Monitoring Station
- Figure 3.1 Locations of Proposed Air Quality Monitoring Station and Representative Air Sensitive Receivers
- Figure 3.2 Locations of Proposed Air Quality Monitoring Station and Representative Air Sensitive Receivers
- Figure 4 Location of Water Quality Monitoring Stations

LIST OF APPENDICES

- Appendix A Copies of Calibration Certificates
- Appendix B Tentative Baseline Monitoring Schedule

Kwan On Construction Co. Ltd.

1 INTRODUCTION

- 1.1 The Project comprises the construction of the Hang Hau Tsuen Channel and associated works to improve the local drainage systems in the Hang Hau Tsuen area. The Project is located in Hang Hau Tsuen at Lau Fau Shan, North West New Territories. It is located between Deep Bay Road and Deep Bay. The general location plan of the Project is shown in **Figure 1.1**.
- 1.2 The implementation programme for the Project is tentatively expected to start in end 2009 for completion by end 2012
- 1.3 The Project is a designated project (Register No. : AEIAR-134/2009) and an Environmental Permit (Permit No. EP-343/2009) was issued on 21st May 2009 to the Civil Engineering and Development Department (hereinafter called the "CEDD") as the Permit Holder.
- 1.4 Kwan On Construction Company Limited (the Contractor) was commissioned by the CEDD to undertake the construction of the Contract No.YL/2009/01 "Hang Hau Channel at Lau Fau Shan".
- 1.5 Cinotech Consultants Limited was commissioned by Kawn On Construction Co. Ltd. to undertake the Environmental Monitoring and Audit (EM&A) works for "Hang Hau Tsuen Channel at Lau Fau Shan" and was appointed as the Environmental Team (ET) of the Project under Condition 2.1 of the EP.
- 1.6 A joint site visit was conducted on 29th January 2010 with the representatives of the CEDD, Black & Veatch Hong Kong Ltd. (the Resident Engineer), Environ Hong Kong Ltd. (the Independent Environmental Checker), and the ET regarding confirmation of the monitoring locations. During the site visit, some of the sensitive receivers were discovered abandoned and alternative monitoring location was suggested and agreed by all parties on site.
- 1.7 This Baseline Environmental Monitoring Plan is prepared by Cinotech to provide the monitoring requirement, locations and frequency for baseline monitoring for construction noise, air quality and water quality for Contract No.YL/2009/01 "Hang Hau Channel at Lau Fau Shan".

2 NOISE

Monitoring Requirement

2.1 The noise monitoring methodology is stipulated in Section 3.5 of the Environmental Monitoring and Audit Manual. In accordance with the EM&A Manual, baseline monitoring shall be carried out daily for a period of at least 14 consecutive days at the designated monitoring stations as agreed with the Resident Engineer (RE) and Independent Environmental Checker (IEC).

Monitoring Locations

2.2 According to the Environmental Monitoring and Audit Manual and EIA Report, three designated Noise Monitoring Stations are listed. **Table 2.1** Summarize the Noise Monitoring Locations and **Figure 2.1** shows location of the Noise Monitoring Locations.

Monitoring Station ID Sensitive Receiver ID		Description
N1	NSR 1	Wing Jan Kindergarten
N2 NSR 2		Village house at No.84 Hang Hau Tsuen
N3 NSR 3		Village house at No. 88 Hang Hau Tsuen

Table 2.1 Location of Noise Monitoring Stations

- 2.3 A joint site visit was conducted with the representative of RE, IEC, Contractor and ET on 29th January 2010, some of the locations were discovered abandoned. The abandoned locations include Noise Monitoring Station N1 (Wing Jan Kindergarten).
- 2.4 As Noise monitoring Station N1 (Wing Jan Kindergarten) is abandoned, and no other representative location was identified to obtain representative monitoring results for the nearest sensitive receivers other than the original Noise monitoring locations N2 (Village house at No.84 Hang Hau Tsuen) and N3 (Village house at No. 88 Hang Hau Tsuen). Hence, N1 is suggested to be cancelled.
- 2.5 As the current situation mentioned above, cancellation of noise monitoring location N1 is suggested and summarized as Table 2.2. Figure 2.2 shows the original and the alternative locations for Noise Monitoring Station. Figure 2.3 shows the photographic record for the Monitoring Locations.

Monitoring Station ID	SR ID	Description	Current Situation	Alternative Location
N1	NSR 1	Wing Jan Kindergarten	Abandoned	Cancellation of N1
N2	NSR 3	Village house at No.84 Hang Hau Tsuen	Remain Unchange	NA
N3	NSR 6	Village house at No. 88 Hang Hau Tsuen	Remain Unchange	NA

Table 2.2 Alternative Location and Current Situation for Noise Monitoring Stations

Monitoring Equipment

2.6 Integrating Sound Level Meters will be used for noise monitoring. The meters are Type 1 sound level meters capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (Leq) and percentile sound pressure level (Lx) and also complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. **Table 2.2** summarizes the noise monitoring equipment would be used. **Appendix A** presents calibration certificates for all monitoring equipment used.

Table 2.3Noise Monitoring Equipment

Equipment	Model and Make	Quantity
Integrating Sound Level Meter	SVAN 959 and 955	2
Calibrator	SV30A	1

Monitoring Parameters, Frequency and Duration

2.7 In accordance with the EM&A Manual, the baseline monitoring shall be carried out continuously for a period of at least two weeks (14 consecutive days) at interval of 5 minutes. The A-weighted noise level L_{eq}, L₁₀ and L₉₀ shall be recorded.

3 AIR QUALITY

Monitoring Requirement

3.1 The air monitoring methodology is stipulated in Section 2.6 of the Environmental Monitoring and Audit Manual. In accordance with the EM&A Manual, baseline monitoring shall be carried out at all the designated monitoring locations as agreed with the Resident Engineer (RE) and Independent Environmental Checker (IEC) for at least 14 consecutive days prior to the commissioning of the construction works to obtain daily 24-hour TSP samples. 1-hour TSP sampling shall also be done at least 3 times per day while highest dust impact is expected.

Monitoring Locations

3.2 According to the Environmental Monitoring and Audit Manual and EIA Report, two designated monitoring stations are listed. **Table 3.1** and **Figure 3.1** shows the location of Air Quality Monitoring Stations.

Table 3.1 Location of Air Quality Monitoring Stations

Monitoring Station ID	Sensitive Receiver ID	Description
A1	ASR 1	Wing Jan Camp
A2	ASR 2	Village house at No.57 Hang Hau Tsuen

- 3.3 A joint site visit was conducted with the representative of RE, IEC, Contractor and ET on 29th January 2010, some of the locations were discovered abandoned and some location was not identifiable.
- 3.4 The abandoned locations include Air Quality Station A1 (Wing Jan Camp) and not identifiable location include Air Quality Station A2 (Village house at No.57 Hang Hau Tsuen).
- 3.5 Since Air Quality Monitoring Station A2 (Village house at No.57 Hang Hau Tsuen) was not identifiable during the site visit, Village house at No. 29 Hang Hau Tsuen was suggested and proposed as the exact location of Air Quality Monitoring Station A2 with the agreement of the RE, IEC and Contractor on site.
- 3.6 Air Quality Station A1 (Wing Jan Camp) is abandoned, an alternative location A1a (Village house at No. 88 Hang Hau Tsuen) is selected in considering the most representative monitoring results can be obtained as A1a and the location A2 (Village

MA0002\ch000208_BMP_v1.1

house at No.29 Hang Hau Tsuen) are located in the opposite direction of the main construction area; air quality can therefore be monitored during up-wind or down-wind conditions for the most dominant air quality sensitive receivers.

3.7 As the current situation mentioned above, alternative locations for air quality (A1a and A2) is suggested and summarize as Table 3.2. Figure 3.2 shows the original and the alternative location for Air Quality Monitoring Station. Figure 2.3 shows the photographic record for the monitoring locations.

 Table 3.2 Alternative Location and Current Situation for Air Quality Monitoring Stations

Monitoring Station ID	SR ID	Description	Current Situation	Alternative Location
A1	ASR 2	Wing Jan Camp	Abandoned	A1a (Village house at No. 88 Hang Hau Tsuen)
A2	ASR 4	Village house at No.57 Hang Hau Tsuen	Not Identifiable	Village house at No.29 Hang Hau Tsuen

Monitoring Equipment

3.8 High Volume Samplers (HVS) in compliance with the specification stipulated in EM&A Manual Section 2.3 will be used to carry out 1-hour and 24-hour TSP monitoring. Wind data monitoring equipment will also be used to for logging wind speed and wind direction near to the dust monitoring locations. **Table 3.2** summarizes the equipment to be used in the baseline air quality monitoring. **Appendix A** presents calibration certificates for all monitoring equipment used.

Table 3.3Air Quality Monitoring Equipment

Equipment Model and Make		Qty.
HVS Sampler	Tisch Environmental, Inc.; Model no. TE-5170	2
RS232 Integral Vane Digital Anemometer	AZ Instrument (Model No. 451104)	1
Calibrator	Tisch Environmental, Inc.; Model no.: TE-5025A	1

MA0002\ch000208_BMP_v1.1

Monitoring Parameters, Frequency and Duration

3.9 Baseline monitoring shall be carried out at all of the designated monitoring locations for at least 14 consecutive days prior to the commissioning of the construction works to obtain daily 24-hour TSP samples. 1-hour sampling shall also be done at least 3 times per day while the highest dust impact is expected. **Table 3.3** summarizes the monitoring parameters, monitoring period and frequencies of baseline air quality monitoring.

 Table 3.4
 Frequency and Parameters of Air Quality Monitoring

Monitoring Station	Parameter	Period	Frequency
All monitoring locations	1-hour TSP	0700-1900	3 times/day
	24-hour TSP	24 hours	Daily

4 WATER QUALITY

Monitoring Requirement

- 4.1 The water quality monitoring methodology is stipulated in Section 4.6 of the Environmental Monitoring and Audit Manual. In accordance with the EM&A Manual, baseline condition for water quality shall be established and agreed upon with ER, IEC and EPD prior to the commencement of works.
- 4.2 The measurements shall be taken at all designated monitoring stations 3 days per week, at mid-flood and mid-ebb tides, at three depth locations (i.e. 1m below surface, mid-depth and 1m from bed, except where the water depth less than 6m, mid-depth station may be omitted. Will the water depth be less than 3m, only the mid-depth station will be monitored), for a period of 4 weeks prior to the commencement of marine works. The interval between two sets of monitoring will not be less than 36 hours. Flow rates and sample depth shall be taken, where appropriate. The tidal range for each of the flood and ebb tide should not be less than 0.5m.
- 4.3 Tidal information is retrieved from the Hong Kong Observatory website, predicted tides at Tsim Bei Tsui Station is selected as the reference location.

Monitoring Locations

4.4 According to the Environmental Monitoring and Audit Manual, seven water quality monitoring stations are listed in **Table 4.1** and their locations are shown in **Figure 4**.

Water Quality Monitoring Station	Description	Purpose of Placing Sampling Station	Coordinates E = Easting N = Northing
W1	Downstream of the works immediately at the discharge point to Deep Bay	Monitor and audit potential impacts from the works, check water quality discharging to Deep Bay, impact station	E: 816023 N: 836095
W2	Near the oyster bed in Deep Bay	Monitor and audit potential impacts from the works, check water quality discharging to Deep Bay, impact station	E: 815791 N: 836276
W3	Near the oyster bed in Deep Bay	Monitor and audit potential impacts from the works, check water quality discharging to Deep Bay, impact station	E: 815673 N: 836076
W4	Immediate downstream of any specific works within Hang Hau Tsuen channel	Temporary / mobile station to monitor and audit potential impacts from any specific works, check water quality discharging to Deep Bay, impact station	See notes below
W5	Upstream of the works at the confluence of San Hing Tsuen Channel and Fung Kong Tsuen Channel	Establish background water quality levels entering Hang Hau Tsuen stream, control station	E: 816390 N: 836039
W6	Waters of Deep Bay	Establish background water quality levels in Deep Bay, control station	E: 815496 N: 836713
W7	Waters of Deep Bay	Establish background water quality levels in Deep Bay, control station	E: 815174 N: 835484

Table 4.1Location for Water Quality Monitoring Stations

Notes:

- Temporary / mobile station to be proposed by the Environmental Team Leader with reference to the contractor's working programme and works location.

- All monitoring stations shall be proposed by the Environmental Team Leader and verified by the Independent Environmental Checker before submitting to EPD prior to commencement of any monitoring.

Monitoring Equipment

4.5 **Table 4.2** summarizes the equipment used in the water quality monitoring program. All the monitoring equipment complied with the specifications is stipulated in the EM&A Manual. **Appendix A** presents calibration certificates for all monitoring equipment used.

Table 4.2Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Multi-parameter Water Quality System	YSI 6820-C-M	2
Monitoring Position Equipment	"Magellan" Handheld GPS	1
Womoning i osition Equipment	Model GPS-320	1

Monitoring Parameters, Frequency

4.6 The measurement shall be taken at all designated monitoring stations for 3 days per week, at mid-flood and mid-ebb tides, for at least 4 weeks prior to commencement of the works. Table 4.3 summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring.

Table 4.3	Water Quality Monitoring Parameters and	Frequency
-----------	---	-----------

Monitoring Stations	Parameters, unit	Depth	Frequency
W1 W2 W3 W4 W5 W6 W7	 Temperature(°C) pH(pH unit) turbidity (NTU) water depth (m) salinity (mg/L) dissolved oxygen (DO) (mg/L and % of saturation) suspended solids (SS) (mg/L) 	 3 water depths: 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted. 	• Baseline monitoring: 3 days per week, at mid-flood and mid-ebb tides, for a period of 4 weeks prior to the commencement of the works

5 BASELINE MONITORING PROGRAMME

5.1 The tentative environmental baseline monitoring schedule, subject to the approval of the Engineer, IEC agreement and the permission of the premises owners, is provided in **Appendix B**.

FIGURES

Air Quality Monitoring Station (A1) - Wing Jan Camp (Cancel)

Air Quality Monitoring Station (A2) - Village house at No.29 Hang Hau Tsuen

SCALE	N.T.S.	DATE	5-Feb	-10
CHECK	IT	DRAWN	CH	
JOB NO.		DRAWING No. Re		Rev
	MA0002	Fig. 2.3		1

NoiseMonitoring Station (N1) - Wing Jan Kindergarten (Cancel)

Noise Monitoring Station (N2) - Village house at No.84 Hang Hau Tsuen

CINOTECH
Cinotech Consultants Limited

YL/2009/01 HANG HAU TSUEN CHANNEL AT LAU FAU SHAN		N.T.S.	DATE	5-Feb	-10
		IT	DRAWN	CH	
LOCATIONS OF AIR QUALITY AND NOISE			DRAWING	à No.	Rev
MONITORING STATION		MA0002	Fi	g. 2.3	1

Noise Mon	<image/>	ter No.8	B Hang Ha	au Tsuen	
CINOTECH	YL/2009/01 HANG HAU TSUEN CHANNEL AT LAU FAU SHAN LOCATIONS OF AIR QUALITY AND NOISE	SCALE CHECK JOB NO.	N.T.S. IT	DATE 5-Fet DRAWN CH DRAWING No.	
Cinotech Consultants Limited	MONITORING STATION		MA0002	Fig. 2.3	1

ſ

CAD Filename + pt\infrastr\yf\0095-0201\em&a\fig-2.1.d

APPENDIX A COPIES CALIBRATION CERTIFICATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

STORY CALIBRATION DATA SHEET							
				File No. MA0002/A52/0001			
Station	Ala - Village House at no.88 Hang Hau Tsuen	Operator:	WK/KT				
Date:	1-Feb-10	Next Due Date:	31-Mar-10				
Equipment No.:	A-01-52	Serial No.	1955	· · ·			

Ambient Condition							
Temperature, Ta (K)	294.6	Pressure, Pa (mmHg)	763.8				

Orifice Transfer Standard Information						
Equipment No.:	A-04-06	Slope, mc	0.0575	Intercept, bc	0.0395	
Last Calibration Date:	5-Mar-09	mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$				
Next Calibration Date:	6-Mar-10	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc				

-			tor sampler		
Calibration		Orfice		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	12.0	3.49	60.06	7.6	2,78
2	9.8	3.16	54.21	6.2	2.51
3	7.1	2.69	46.04	4.5	2.14
4	5,2	2.30	39.30	3.1	1.78
5	3.1	1.78	30.19	1.8	1.35
*If Correlation C	Coefficient < 0.990), check and recalibrate.	alculation		
From the TSP Fi	eld Calibration Cu	rve, take Qstd = 43 CFM			
From the Regres	sion Equation, the	"Y" value according to			
		mw x Qstd + bw = $[\Delta W x]$	(Pa/760) x (29	98/Ta)] ^{1/2}	
Therefore, Se	t Point; W = (mw	$x \text{ Qstd} + bw)^2 x (760 / Pa) x (760 / Pa)$	fa / 298) =	3.81	
t herefore, Se	t Point; W = (mw	x Qstd + bw) ² x (760 / Pa) x (7	fa / 298) =	3.81	

				<u></u>
Conducted by: <u>WK. Tang</u>	Signature:	Kwas	Date:	1/2/10
Checked by:	Signature:		Date:	1 February 2010

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

|--|

Station	A2 - Village Hou	se at no.29 Hang I	Hau Tsuen	Operator	r: WK/I	тне но. <u>-ма</u> КТ	1002/A34/0
Date:	1-Feb-10			Next Due Date	: 31-Ma	r-10	
Equipment No.	: A-01-54		-	Serial No	p. 1536	<u> </u>	
			Ambient	Condition			
Temperate	ure, Ta (K)	294.6	Pressure, P	'a (mmHg)		763.8	
		Or	ifice Transfer St	andard Inform	ation		
Equipm	ent No.:	A-04-06	Slope, me	0.0575 Intercept, bc		0.0395	
Last Callor	ation Date:	5-Mar-09	1	mc x Qstd + b	oc = [ΔH x (Pa/76))) x (298/Ta)] ^{1/2}	
Next Calibi	ration Date:	6-Mar-10		Qstd = $\{ \Delta H \}$	x (Pa/760) x (298/	Га)] ^{1/2} -bc} / mc	
· · · · · · · · · · · · · · · · · · ·		•					
	1	·	Calibration of	TSP Sampler	·		
Calibration	AH (orifice)	Or	1100	Out (OP) 0		HVS	
Point	in. of water	[ΔН x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	[ΔW x (Pa/760) x Y-axi	(298/Ta)] s
1	12.0		3.49	60.06	7.7	2.80	
2	9.0		3.02	51.92	6.0	2.47	
3	7.1		2.69	46.04	4.5	2.14	
4	5.1	2	2.28	38.91	3.1	1.78	
5	3.1	1	.78	30.19	1.8	1 35	
y Linear Regr Slope , mw = Correlation co f Correlation C	ession of Y on X 0.0492 Defficient* = 0efficient < 0.990	0.9), check and rec:	989 Ilibrate.	Intercept, bw :	-0.127	9	
			Sat Point C	laulation			
rom the TSP Fie	d Calibration Cu	rve_take Ostd =		alculation			
om the Regress	sion Equation, the	"Y" value acco	ding to				
0	,,	· • • • • • • • • • • • • • • • • • • •	ung to				
		mw x Qs	$td + bw = [\Delta W x]$	(Pa/760) x (29	8/Ta)] ^{1/2}		
Therefore Cal	Doint W-C	0.41.1.2	1				
i neretore, Sel	i point; w = (mw	x Qstd + bw)*	x (760 / Pa) x (7	(a / 298) =	3.89		
emarks:							
			[/				
onducted by:	WK JANA S	Signature [.]	Kun		г	ata da	Lic
Checked by	lar a	lionature:	- nun		L	(12)	110
	<u></u> 3	ngnature. —			Ľ	vate: <u>[Feb</u>	mary 2

Rms 816, 1516 & 1701, Technology Park 18 On Lai Street, Shatin, N.T., Hong Kong, Tel: 2398-7388 Fax: 2398-7076 Website: http://www.wellab.com.hk E-mail wellab@wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/09/90430
Date of Issue:	2009-05-02
Date Received:	2009-04-30
Date Tested:	2009-04-30
Date Completed:	2009-05-01
Next Due Date:	2010-05-01
Page:	1 of 1

ATTN:

Mr. Henry Leung

Certificate of Calibration

Item for calibration:

	Description	: RS232 Integral Vane Digital Anemometer
	Manufacturer	: AZ Instrument
	Model No.	: 451104
	Serial No.	: 9020746
	Equipment No.	: A-03-01
. Л	· · · · · · · · · · · · · · · · · · ·	

Test conditions:

Room Temperature	: 21 degree Celsius
Relative Humidity	: 67%
Pressure	: 101.5 kPa

Methodology:

The anemometer has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

	Reference Set Point	Instrument Readings
Measuring Air Velocity, m/s	2.00	2.00
Temperature, °C	21.0	21.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE, VILLAGE OF CLEVES, OH 45002 513.467.9000 877.283.7610 toll free 513.467.9009 fax WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

Date - M	ar 06, 200	9 Rootsmeter	S/N :	9833640	Ta (K) -	296
Operator	Tisch	Orifice I.	D	0999	Pa (mm) -	747.20
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H20 (in.)
।	NA	NA	1.00	1.3890	3.2	2,00
२	NA	NA	1.00	0.9850	6.3	4,00
२	NA	NA	1.00	0.8810	7.8	5,00
२	NA	NA	1.00	0.8410	8.6	5,50
२	NA	NA	1.00	0.6950	12.5	8,00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0,9917 0,9876 0.9854 0.9844 0.9842	0.7139 1.0026 1.1185 1.1706 1.4090	1.4113 1.9959 2.2315 2.3405 2.8227		0.9957 0.9916 0.9894 0.9884 0.9832	0.7168 1.0067 1.1231 1.1753 .1.4147	0.8874 1.2549 1.4030 1.4715 1.7747
Cstd slop intercept coefficie y axis =	pe (m) = (b) = ent (r) = SQRT [H2O (H	2.03154 -0.03970 0.99999 Pa/760)(298/1	(a)]	Qa slop intercep coeffici y axis =	oe (m) ot (b) = .ent (r) ≃	1.27212 -0.02496 0.99999 Fa/Pa)]

CALCULATIONS

Vstd = Diff. Vol((Pa-Diff. Hg)/760)(298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT(H2O(Ta/Pa)] - b \}$

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

* y-axis equations:
Qstd series:
$$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$$

Qa series:

Room 1516 & 816, Technology Park 18 On Lai Street, Shatin, N.T., Hong Kong, Tel: 2898 7388 Fax: 2898 7076 Website: http://www.wellab.com.hk E-mail: wellab@wellab.com.hk

1 of 1

TEST REPORT

APPLICANT:	Cinotech Consultants Limited	Test Report No.:	C/N/90925/1
	Room 1710, Technology Park,	Date of Issue:	2009-09-25
	18 On Lai Street,	Date Received:	2009-09-24
	Shatin, NT, Hong Kong	Date Tested:	2009-09-24
		Date Completed:	2009-09-25
		Next Due Date:	2010-09-24

ATTN:

Mr. Henry Leung

Certificate of Calibration

Page:

Item for calibration:

	Description	: 'SVANTEK' Integrating Sound Level Meter
	Manufacturer	: SVANTEK
	Model No.	: SVAN 959
	Serial No.	: 11275
	Microphone No.	: 86553
	Equipment No.	: N-08-01
Test con	ditions:	
	Room Temperatre	: 23 degree Celsius
	Relative Humidity	: 58%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Tick 10

PATRICK TSE Laboratory Manager

Room 1516 & 816, Technology Park 18 On Lai Street, Shatin, N.T., Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: http://www.wellab.com.hk E-mail: wellab@wellab.com.hk

1 of 1

TEST REPORT

APPLICANT:	Cinotech Consultants Limited	Test Report No.:	C/N/90925/4
	Room 1710, Technology Park,	Date of Issue:	2009-09-25
	18 On Lai Street,	Date Received:	2009-09-24
	Shatin, NT, Hong Kong	Date Tested:	2009-09-24
		Date Completed:	2009-09-25
		Next Due Date:	2010-09-24

ATTN:

Mr. Henry Leung

Certificate of Calibration

Item for calibration:

Description	
Manufacturer	
Model No.	
Serial No.	
Microphone No.	
Equipment No.	

: 'SVANTEK' Integrating Sound Level Meter : SVANTEK : SVAN 955 : 12553 : 35222 : N-08-02

Test conditions:

Room Temperatre Relative Humidity : 23 degree Celsius : 58%

Page:

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Room 1516 & 816, Technology Park 18 On Loi Street, Shatin, N.T., Hong Kong Tel 2898 7388 Fax 2898 7076 Website. http://www.wellab.com.hk B-mail.wellab/gwellab.com.hk

1 of 1

TEST REPORT

APPLICANT:	Cinotech Consultants Limited	Test Report No.:	C/N/90925/2
	Room 1710, Technology Park,	Date of Issue:	2009-09-25
	18 On Lai Street,	Date Received:	2009-09-24
	Shatin, NT, Hong Kong	Date Tested:	2009-09-24
		Date Completed:	2009-09-25
		Next Due Date:	2010-09-24

ATTN: Mr. Henry Leung

Item for calibration:

Description Manufacturer Model No. Serial No. Equipment No.

: SV30A : 10929 : N-09-01

: SVANTEK

: Acoustical Calibrator

Page:

Test conditions:

Room Temperatre Relative Humidity : 23 degree Celsius : 58%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT **APPLICANT:** Cinotech Consultants Limited Test Report No .: C/W/91031-1 Room 1710, Technology Park, Date of Issue: 2009-10-31 18 On Lai Street, Date Received: 2009-10-30 Shatin, NT, Hong Kong Date Tested: 2009-10-30 Date Completed: 2009-10-31 Next Due Date: 2010-01-30 ATTN: Mr. Henry Leung Page: 1 of 2**Certificate of Calibration** Item for calibration: Description : Sonde Environmental Monitoring System Manufacturer : YSI Model No. : 6820-C-M Serial No. :02D0126AA Equipment No. : W.03.01 Project No. : C013 **Test conditions:** Room Temperature : 24 degree Celsius **Relative Humidity** : 66% **Test Specifications:** Conductivity & Salinity Sensor, Model: 6560, S/N: 05A1209 1. Conductivity performance check with Potassium Chloride standard solution 2. Salinity performance check with Sodium Chloride standard solution Dissolved Oxygen Sensor, Model: 6562, S/N: 04A0145 1. Performance check against Winkler titration Turbidity Sensor, Model: 6136, S/N: 05A1610AJ 1. Calibration check with Formazin standard solution pH Meter, Model: 6561, S/N: 01J 1. Calibration check with standard pH buffer Depth Meter 1. Calibration check at 1m water level depth Methodologies: 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual 2. In-house method with reference to APHA and ISO standards PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No .:	C/W/91031-1
Date of Issue:	2009-10-31
Date Received:	2009-10-30
Date Tested:	2009-10-30
Date Completed:	2009-10-31
Next Due Date:	2010-01-30
Page:	2 of 2

Results:

1. Conductivity performance check

Specific (Conductivity, µS/cm	Correction, µS/cm	Acceptable range
Salinity Meter (C1) Theoretical Value (C2)		D = C1 - C2	
1421	1420	2	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading	Theoretical Value		
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH_j , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH_s , pH unit	0.01	Less than 0.02
Noise ΔpH_n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No .:	C/W/100129-1
Date of Issue:	2010-01-29
Date Received:	2010-01-28
Date Tested:	2010-01-28
Date Completed:	2010-01-29
Next Due Date:	2010-04-28
Page:	1 of 2

ATTN:

Mr. Henry Leung

Certificate of Calibration

Item for calibration:

Description: Sonde Environmental Monitoring SystemManufacturer: YSIModel No.: 6820-C-MSerial No.: 02D0126AAEquipment No.: W.03.01Project No.: C013

Test conditions:

Room Temperature Relative Humidity : 23 degree Celsius : 68%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, S/N: 05A1209

1. Conductivity performance check with Potassium Chloride standard solution

2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, S/N: 04A0145

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 05A1610AJ

1. Calibration check with Formazin standard solution

pH Meter, Model: 6561, S/N: 01J

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual

2. In-house method with reference to APHA and ISO standards

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No .:	C/W/100129-1
Date of Issue:	2010-01-29
Date Received:	2010-01-28
Date Tested:	2010-01-28
Date Completed:	2010-01-29
Next Due Date:	2010-04-28
Page:	2 of 2

Results:

1. Conductivity performance check

Specific (Conductivity, µS/cm	Correction, µS/cm	Acceptable range
Salinity Meter (C1) Theoretical Value (C2)		D = C1 - C2	1
1421	1420	2	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading	Theoretical Value		
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved O	xygen, mg O ₂ /L	Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH_i , pH unit	0.01	Less than 0.05
Shift on stirring ∆pHs , pH unit	0.01	Less than 0.02
Noise ΔpH_n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT APPLICANT: Cinotech Consultants Limited Test Report No .: C/W/91031-2 Room 1710, Technology Park, Date of Issue: 2009-10-31 Date Received: 18 On Lai Street, 2009-10-30 Shatin, NT, Hong Kong Date Tested: 2009-10-30 Date Completed: 2009-10-31 Next Due Date: 2010-01-30 ATTN: Mr. Henry Leung Page: 1 of 2**Certificate of Calibration** Item for calibration: Description : Sonde Environmental Monitoring System Manufacturer : YSI Model No. : 6820-C-M Serial No. :02D0293AA Equipment No. : W.03.02 Project No. : C013 **Test conditions:** Room Temperature : 24 degree Celsius **Relative Humidity** : 66% **Test Specifications:** Conductivity & Salinity Sensor, Model: 6560, S/N: 02C0886 1. Conductivity performance check with Potassium Chloride standard solution 2. Salinity performance check with Sodium Chloride standard solution Dissolved Oxygen Sensor, Model: 6562, S/N: 0261137 1. Performance check against Winkler titration Turbidity Sensor, Model: 6136, S/N: 05F2030AQ 1. Calibration check with Formazin standard solution pH Meter, Model: 6561, S/N: 02A 1. Calibration check with standard pH buffer Depth Meter 1. Calibration check at 1m water level depth **Methodologies:** 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual 2. In-house method with reference to APHA and ISO standards PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd. PÁTRICK TSE

Laboratory Manager

TEST REPORT

Test Report No .:	C/W/91031-2
Date of Issue:	2009-10-31
Date Received:	2009-10-30
Date Tested:	2009-10-30
Date Completed:	2009-10-31
Next Due Date:	2010-01-30
Page:	2 of 2

Results:

1. Conductivity performance check

Specific Conductivity, µS/cm		Correction, µS/cm	Acceptable range
Salinity Meter (C1) Theoretical Value (C2)		D = C1 - C2	
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salin	ity, ppt	Correction, ppt	Acceptable range
Instrument Reading	Theoretical Value	19 19 - A. M. Marine, M. — Miller M. Sterrett, S. Marine, J. M. Harris, M. M. M. M. 1997	
30.1	30.0	0.1	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved O	xygen, mg O ₂ /L	Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.0	9.0	0.0	± 0.2
Half-saturated	5.8	5.8	0,0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH_i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH_s , pH unit	0.01	Less than 0.02
Noise ΔpH_n , pH unit	0.01	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT APPLICANT: Cinotech Consultants Limited Test Report No .: C/W/100129-2 Room 1710, Technology Park, Date of Issue: 2010-01-29 18 On Lai Street, Date Received: 2010-01-28 Shatin, NT, Hong Kong Date Tested: 2010-01-28 Date Completed: 2010-01-29 Next Due Date: 2010-04-28 ATTN: Mr. Henry Leung Page: 1 of 2**Certificate of Calibration** Item for calibration: Description : Sonde Environmental Monitoring System Manufacturer : YSI Model No. : 6820-C-M Serial No. : 02D0293AA Equipment No. : W.03.02 Project No. : C013 **Test conditions:** Room Temperature : 23 degree Celsius **Relative Humidity** : 68% **Test Specifications:** Conductivity & Salinity Sensor, Model: 6560, S/N: 02C0886 1. Conductivity performance check with Potassium Chloride standard solution 2. Salinity performance check with Sodium Chloride standard solution Dissolved Oxygen Sensor, Model: 6562, S/N: 0261137 1. Performance check against Winkler titration Turbidity Sensor, Model: 6136, S/N: 05F2030AO 1. Calibration check with Formazin standard solution pH Meter, Model: 6561, S/N: 02A 1. Calibration check with standard pH buffer Depth Meter 1. Calibration check at 1m water level depth Methodologies: 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual 2. In-house method with reference to APHA and ISO standards PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No .:	C/W/100129-2
Date of Issue:	2010-01-29
Date Received:	2010-01-28
Date Tested:	2010-01-28
Date Completed:	2010-01-29
Next Due Date:	2010-04-28
Page:	2 of 2

Results:

1. Conductivity performance check

Specific Conductivity, µS/cm		Correction, µS/cm	Acceptable range
Salinity Meter (C1) Theoretical Value (C2)		D = C1 - C2	
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salini	ity, ppt	Correction, ppt	Acceptable range	
Instrument Reading Theoretical Value				
30.1	30.0	0.1	30.0 ± 3	

3. Dissolved Oxygen check

Oxygen level in	Dissolved O	xygen, mg O ₂ /L	Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.0	9.0	0.0	± 0.2
Half-saturated	5.8	5.8	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH_i , pH unit	0.01	Less than 0.05
Shift on stirring ApHs, pH unit	0.01	Less than 0.02
Noise ΔpH_n , pH unit	0.01	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range	
1.0	1.00	0.00	1.00 ± 0.05	

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

APPENDIX B TENTATIVE BASELINE MONITORING SCHEDULE

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Feb	2-Feb	3-Feb	4-Feb	5-Feb	6-Feb
		1-hr TSP 24 hrs TSP Noise				
7-Feb	8-Feb	9-Feb	10-Feb	11-Feb	12-Feb	13-Feb
1-hr TSP 24 hrs TSP Noise						
14-Feb	15-Feb	16-Feb	17-Feb	18-Feb	19-Feb	20-Feb
1-hr TSP 24 hrs TSP Noise	1-hr TSP 24 hrs TSP Noise					
21-Feb	22-Feb	23-Feb	24-Feb	25-Feb	26-Feb	27-Feb
28-Feb						

Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Tentative Baseline Air Quality and Noise Monitoring Schedule for February 2010

The schedule may be changed due to unforeseen circumstances (adverse weather, etc) NA indicated favourable tide occurs during non-working hours

Air Quality Monitoring Station

Noise Monitoring Station

A1a - Village house at No.88 Hang Hau Tsuen A2 - Village house at No.29 Hang Hau Tsuen N2 - Village house at No.84 Hang Hau Tsuen

N3 - Village house at No.88 Hang Hau Tsuen

Contract No. YL/2009/01 Jang Hau Tsuen Channel at Lau Fau Shan Tentative Baseline Water Quality Monitoring Schedule for January 2010

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Jan	2-Jan
2 1	4 1	5 T	(I.e.	7 1	0 I	0.1
5-Jan	4-Jan	5-Jan	o-Jan	/-Jan	8-Jan	9-Jan
10- Jan	11-Jan	12-Ian	13-Jan	14-Jan	15-Jan	16-Jan
10 9411	11 buil	12 0411	10 0411	1 i buii	10 041	Tovan
17-Jan	18-Jan	19-Jan	20-Jan	21-Jan	22-Jan	23-Jan
		Mid-Flood 09:30		Mid-Flood 10:30		Mid-Flood 11:00
		Mid-Ebb 15:00		Mid-Ebb 16:00		Mid-Ebb 17:30
24-Jan	25-Jan	26-Jan	27-Jan	28-Jan	29-Jan	30-Jan
		Mid-Flood 09:40		Mid-Flood 11:30		Mid-Flood 08:00
		Mid-Ebb NA*		Mid-Ebb 16:00		Mid-Ebb 13:00
31-Jan						

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Remarks:

* NA indicated favourable tide occurs during unfavourable time period which may cause potential safety and security problem.

Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Tentative Baseline Water Quality Monitoring Schedule for February 2010

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-]	eb 2-Fet	3-Feb	4-Feb	5-Feb	6-Feb
	Mid-Flood 09 Mid-Ebb 14	00 30	Mid-Flood 10:00 Mid-Ebb 15:50		Mid-Flood 11:00 Mid-Ebb 17:00	
7-Feb	8-]	eb 9-Fet	0 10-Feb	11-Feb	12-Feb	13-Feb
	Mid-Flood 09 Mid-Ebb	19 JA	Mid-Ebb 11:00 Mid-Flood 15:45		Mid-Flood 08:00 Mid-Ebb 13:00	
14-Feb	15-I	eb 16-Feb	17-Feb	18-Feb	19-Feb	20-Feb
21-Feb	22-]	eb 23-Feb	24-Feb	25-Feb	26-Feb	27-Feb
28-Feb						

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Remarks:

* NA indicated favourable tide occurs during unfavourable time period which may cause potential safety and security problem.