KWAN ON CONSTRUCTION CO. LTD.

Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan

Monthly Environmental Monitoring and Audit Report May 2012

(Version 1.1)

Certified By

(Environmental/Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388

Email: info@cinotech.com.hk

TABLE OF CONTENTS

	ra	age
EX	ECUTIVE SUMMARY	1
	Introduction	1
	Environmental Monitoring Works	
	Environmental Licenses and Permits	2
	Key Information in the Reporting Month	
	Key Information in the EIA Report	2
1.	INTRODUCTION	4
	Background	4
	Project Organizations	
	Construction Programme	5
	Summary of EM&A Requirements	6
2.	AIR QUALITY	7
	Monitoring Requirements	7
	Monitoring Locations	
	Monitoring Equipment	7
	Monitoring Parameters, Frequency and Duration	8
	Monitoring Methodology and QA/QC Procedure	
	Results and Observations	10
3.	NOISE	11
	Monitoring Requirements	11
	Monitoring Locations	
	Monitoring Equipment	11
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedures	
	Maintenance and Calibration	
	Results and Observations	13
4.	WATER QUALITY	14
	8 1	14
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology, Calibration Details and QA/QC Procedures	
	Results and Observations	
_		
5.	ENVIRONMENTAL AUDIT	
	Site Audits	
	Review of Environmental Monitoring Procedures	
	Status of Environmental Licensing and Permitting	
	Status of Waste Management.	
	Implementation Status of Event Action Plans	
	Summary of Complaints and Frosecutions	40

6.	FUTURE KEY ISSUES	21
	Key Issues for the Coming Month	21
	Monitoring Schedule for the Next Month	
	Construction Program for the Next Month	
7.	CONCLUSIONS AND RECOMMENDATIONS	22
	Conclusions	22
	Recommendations	

LIST OF TABLES

Table I	Summary Table for Non-compliance Recorded in the Reporting Month
Table II	Summary Table for Key Information in the Reporting Month
Table 1.1	Key Project Contacts
Table 2.1	Locations for Air Quality Monitoring
Table 2.2	Air Quality Monitoring Equipment
Table 2.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 3.1	Noise Monitoring Stations
Table 3.2	Noise Monitoring Equipment
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Baseline Noise Level and Allowed Construction Noise Level for Monitoring Stations
Table 4.1	Locations for Water Quality Monitoring
Table 4.2	Water Quality Monitoring Equipment
Table 4.3	Frequency and Parameters of Water Quality Monitoring
Table 5.1	Summary of Environmental Licensing and Permit Status
Table 5.2	Observations and Recommendations of Site Audit

LIST OF FIGURES

Figure 1	General Location Plan of the Project
Figure 2	Locations of Air Quality Monitoring Stations
Figure 3	Locations of Noise Monitoring Stations
Figure 4	Locations of Water Quality Monitoring Stations
Figure 5	ET's Organization Chart

LIST OF APPENDICES

Α	Action and Limit Levels for Air Quality, Noise and Water Quality
В	Copies of Calibration Certificates
C	Quality Control Reports for SS Laboratory Analysis
D	Environmental Monitoring Schedules
E	1-hour TSP Monitoring Results and Graphical Presentations
F	24-hour TSP Monitoring Results and Graphical Presentations
G	Noise Monitoring Results and Graphical Presentations
H	Water Quality Monitoring Results and Graphical Presentations
I	Summary of Exceedance
J	Site Audit Summary
K	Summary of Amount of Waste Generated
L	Event Action Plans
M	Environmental Mitigation Implementation Schedule (EMIS)
N	Complaint Log
O	Construction Programme

ABBREVIATION AND ACRONYM

AL Levels Action and Limit Levels

CEDD Civil Engineering & Development Department

E / ER Engineer/Engineer's Representative
EIA Environmental Impact Assessment

EM&A Environmental Monitoring and Audit

EMIS Environmental Mitigation Implementation Schedule

EP Environmental Permit

EPD Environmental Protection Department

ET Environmental Team

HVS High Volume Sampler

IEC Independent Environmental Checker

RE Resident Engineer

RH Relative Humidity

TSP Total Suspended Particulates

QA/QC Quality Assurance / Quality Control

SLM Sound Level Meter

WMP Waste Management Plan

EXECUTIVE SUMMARY

Introduction

- 1. This is the Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for CEDD's Civil Contract No. YL/2009/01 "Hang Hau Channel at Lau Fau Shan" under an Environmental Permit (Permit No. EP-343/2009). This report documents the findings of EM&A Works conducted in May 2012.
- 2. The site activities undertaken for in the reporting month included:
 - Installation of DN 150 water main Pipe completed;
 - Construction of DN150 valve chamber in progress;
 - Construction of additional footway at northern bank slope in progress;
 - Type II railing installation in progress;
 - Proposed CLP & PCCW U/G ducting & cable work at northern bank in progress;
 - Tree transplanting work in progress;
 - Top soil work at Northern bank in progress;
 - Installation of beam barrier in progress;
 - Prepare road formation;
 - Road kerb installation in progress;
 - Precast concrete paving block work at footbridge areas in progress;
 - Laying of Street light U/G ducting and draw pit construction in progress;
 - Hydro seed work at southern bank was completed;
 - Construction of LCM and Washout valve chamber of DN 150 water main completed;
 - Dismantle of temporary foot bridge was completed;
 - Noise insulation works at SR 37 in Yuen Long Areas 13 & 14 completed; and
 - Chain link fence installation at fish pond area (south) in progress.

Environmental Monitoring Works

- 3. Environmental monitoring was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the non-compliance of the reporting month is tabulated in Table I.

Table I Summary Table for Non-compliance Recorded in the Reporting Month

Parameter	No. of Exceedance		No. of Exceeda Proj		Action
	Action Level	Limit Level	Action Level	Limit Level	Taken
1-hr TSP	0	0	0	0	N/A
24-hr TSP	0	0	0	0	N/A
Noise	0	0	0	0	N/A
Water	0	0	0	0	N/A

1-hour TSP Monitoring

5. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

6. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise

7. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Water Quality

8. All water quality monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

9. Licenses/Permits granted to the Project include the Environmental Permit (EP); waste water discharge licence; and waste Producer under Waste Disposal (Chemical Waste) (General) Regulation for the Project. Permits under Dumping at Sea Ordinance with No. EP/MD/11-006 and EP/MD/11-045 are expired.

Key Information in the Reporting Month

10. Summary of key information in the reporting month is tabulated in Table II.

Key Information in the EIA Report

11. According to the EIA Report, air quality, noise, water quality, ecology and landscape and visual would be the key environmental issues during the construction and operation of the Hang Hau Tsuen Channel. Details of the implementation of mitigation measures are provided in the **Appendix M**.

Table II Summary Table for Key Information in the Reporting Month

Event	Eve	Event Details		Status	Domonto
Event	Number	Nature	Action Taken	Status	Remark
Complaint received	0		N/A	N/A	
Changes to the assumptions and key construction / operation activities recorded	0		N/A	N/A	

Evant	Event Details		Action Taken	Ctatus	Domonik
Event	Number	Nature	Action Taken	Status	Remark
Status of submissions under EP	1	Monthly EM&A Report for April 2012	Submitted to EPD On 18 May 2012	No comment	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues:

Major site activities for the coming two months include:

- Testing DN 150 D.I. pipe laying work at Northern bank;
- Irrigation pipe installation and water point construction;
- Backfilling and forming of slopes;
- Prepare road formation and road paving work;
- Arrange UU to carry out U/G ducting and cable work at footpath area and access road;
- Installation of street furniture such as traffic post, beam barrier, water meter box etc;
- Planting work;
- Installation of main gates at ramp area; and
- Modification of existing footpath for construction of access road at Deep Bay Road.

1. INTRODUCTION

Background

- 1.1 The Project comprises the construction of the Hang Hau Tsuen Channel and associated works to improve the local drainage systems in the Hang Hau Tsuen area. The Project is located in Hang Hau Tsuen at Lau Fau Shan, North West New Territories. It is located between Deep Bay Road and Deep Bay. The general location plan of the Project is shown in Figure 1.
- 1.2 The Project is a designated project (Register No.: AEIAR-134/2009) and an Environmental Permit (Permit No. EP-343/2009) was issued on 21st May 2009 to the Civil Engineering and Development Department (hereinafter called the CEDD) as the Permit Holder.
- 1.3 The implementation programme for the Project is tentatively expected to start in end 2009 for completion by end 2012.
- 1.4 Kwan On Construction Company Limited (hereafter called the Contractor) was commissioned by the CEDD to undertake the construction of the Contract No.YL/2009/01 "Hang Hau Channel at Lau Fau Shan"
- 1.5 Cinotech Consultants Limited was commissioned by Kawn On Construction Co. Ltd. to undertake the Environmental Monitoring and Audit (EM&A) works for "Hang Hau Tsuen Channel at Lau Fau Shan" and was appointed as the Environmental Team (ET) of the Project under Condition 2.1 of the EP.
- 1.6 This is the monthly EM&A report summarizing the EM&A works conducted for the Project in May 2012.

Project Organizations

- 1.7 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering & Development Department (CEDD).
 - Engineer's Representative (ER) –Black & Veatch Hong Kong Ltd (B&V).
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech).
 - Independent Environmental Checker (IEC) ENVIRON Hong Kong Limited (ENVIRON).
 - Contractor Kwan On Construction Co. Ltd. (Kwan On).
- 1.8 The responsibilities of respective parties are detailed in Sections 1.6 of the EM&A Manual of the Project.
- 1.9 The key contacts of the Project are shown in Table 1.1 and the organization chart of ET is shown in Figure 5.

Table 1.1 Key Project Contacts

Party	Role	Name	Position	Phone No.	Fax No.
CEDD	Permit Holder	Mr. Y.M. Chan	Chief Engineer	2158 5612	2693 2918
CEDD	Permit Holder	Mr. CK Choi	Engineer	2158 5613	2093 2918
	Engineer	Mr. Kelvin Lau	Director	2601 1000	2601 3988
		Mr. Victor Go	Resident Engineer	2475 4871/ 9686 4575	
B&V	Engineer's Representative	Mr. Vincent Wan	Assistant Resident Engineer	2442 8007/ 61178711	2470 3266
		Mr. Tim Law	AIOW	2475 4871/ 9845 6346	
		Dr. Priscilla Choy	ET Leader	2151 2089	
Cinotech	Environmental Team	Mr. Gary Lau	Project Coordinator & Audit Team Leader	2151 2098	3107 1388
		Mr. Henry Leung	Monitoring Team Leader	2151 2087	
	Independent	Mr. David Yeung	Independent Environmental Checker	3743 0717/ 9019 3740	
ENVIRON	Environmental Checker	Mr. Tony Cheng	Deputy Independent Environmental Checker	3743 0722	3548 6988
		Mr. Justin Ye	IEC Team Member	3743 0705/ 6576 9531	
		Mr. Ambrose Kwong	Project Director	2889 2675	
		Mr. P.H Ho	Project Manager	2889 2675	2558 6900
Kwan On	Contractor	Mr. K.L. Lee	Site Agent	6113 6926	
Kwan Oli	Contractor	Mr. Michael Chung	Environmental Manager	6198 7781	/
		Ms. Joey Wong	Environmental Officer	6108 7906	/

Construction Programme

- 1.10 The site activities undertaken in the reporting month included:
 - Installation of DN 150 water main Pipe completed;
 - Construction of DN150 valve chamber in progress;
 - Construction of additional footway at northern bank slope in progress;
 - Type II railing installation in progress;
 - Proposed CLP & PCCW U/G ducting & cable work at northern bank in progress;
 - Tree transplanting work in progress;
 - Top soil work at Northern bank in progress;
 - Installation of beam barrier in progress;
 - Prepare road formation;
 - Road kerb installation in progress;
 - Precast concrete paving block work at footbridge areas in progress;
 - Laying of Street light U/G ducting and draw pit construction in progress;
 - Hydro seed work at southern bank was completed;

- Construction of LCM and Washout valve chamber of DN 150 water main completed;
- Dismantle of temporary foot bridge was completed;
- Noise insulation works at SR 37 in Yuen Long Areas 13 & 14 completed; and
- Chain link fence installation at fish pond area (south) in progress.

Summary of EM&A Requirements

- 1.11 The EM&A programme requires construction phase monitoring for air quality and construction noise, water quality, landscape and visual and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental mitigation measures, as recommended in the project EIA study final report; and
 - Environmental requirements in contract documents.
- 1.12 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 5 of this report.
- 1.13 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely dust, noise levels, water quality, and audit works conducted for the Project in May 2012.

2. AIR QUALITY

Monitoring Requirements

2.1 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality. Appendix A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Two designated monitoring stations, A1a and A2 were selected for impact dust monitoring. Table 2.1 describes the air quality monitoring locations, which are also depicted in Figure 2.

Table 2.1 Locations for Air Quality Monitoring

Monitoring Station	Description	Location of Measurement
A1a*	Village house at No. 88 Hang	At the outdoor area of the Village
Ala	Hau Tsuen	house at No. 88 Hang Hau Tsuen
A2**	Village house at No.29 Hang	At the outdoor area of the Village
AZ.	Hau Tsuen	house at No. 29 Hang Hau Tsuen
A2b***	Village house at No.84 Hang	At the outdoor area of the Village
A20	Hau Tsuen	house at No. 84 Hang Hau Tsuen

^{*} Alternative location for Air Quality Monitoring Station A1.

Monitoring Equipment

2.3 Table 2.2 summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in Appendix B.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Qty.
HVS Sampler	Tisch Environmental, Inc.; Model no. TE-5170	2
Laser Dust Monitor	Sibata, Model no. LD-3B	2
Calibrator	Thermo Andersen; Model no.: G25A	1

^{**} Air Quality Monitoring Station A2 (Village house at No.57 Hang Hau Tsuen) was not identifiable and therefore Village house at No. 29 Hang Hau Tsuen was proposed as the alternative station.

^{***} The monitoring works for Air Quality Monitoring Station at A2 have been replaced with A2b (Village house at No.84 Hang Hau Tsuen) from 15th July 2010. A2b (24-TSP) is temporarily suspended after 19 March 2011 due to stopping of the High Volume Sampler requested by the house's owner but resumed in normal state on 25 May 2011 afterward.

Monitoring Parameters, Frequency and Duration

2.4 Table 2.3 summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting period is shown in Appendix D.

Table 2.3 Impact Dust Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Period	Frequency
All monitoring	1-hour TSP	0700-1900	3 times/ every 6 days
locations	24-hour TSP	0000-2400	once in every 6 days

Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - Pull up the air sampling inlet cover
 - Change the Mode 0 to BG with once
 - Push Start/Stop switch once
 - Turn the knob to SENSI.ADJ and press it
 - Push Start/Stop switch once
 - Return the knob to the position MEASURE slowly
 - Push the timer set switch to set measuring time
 - Remove the cap and make a measurement

Maintenance/Calibration

- 2.6 The following maintenance/calibration was required for the direct dust meters:
 - Check the meter at a 3-month interval and calibrate the meter at a 1-year interval throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

<u>Instrumentation</u>

2.7 High volume (HVS) samplers (Model no. TE-5170) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.3.1 of the EM&A

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For TSP sampling, fiberglass filters were used [Note: these filters have a collection efficiency of > 99% for particles of 0.3 mm diameter].
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.16 After sampling, the filter was removed and sent to the laboratory for weighing. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than

±5%. A convenient working RH is 40%. Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate
 maintenance such as routine motor brushes replacement and electrical wiring checking
 were made to ensure that the equipment and necessary power supply are in good
 working condition.
 - High volume samplers were calibrated at bi-monthly intervals using Calibration Kit (Tisch Environmental, Inc.; Model no.TE-5025A) throughout all stages of the air quality monitoring.

Results and Observations

- 2.19 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. Summary of exceedance is presented in Appendix I
- 2.20 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. Summary of exceedance is presented in Appendix I.
- 2.21 Alternative air quality monitoring station A2b (village house at No.84 Hang Hau Tsuen) was proposed for the replacement of station A2 (village house at No.29 Hang Hau Tsuen) to the EPD on 20 April 2010 for approval.
- 2.22 Referring to Email reply from EPD dated on 17 May 2010, no further comment from EPD was received for replacement of station A2 by A2b. The air quality monitoring works at A2b has been started from 15 July 2010.
- 2.23 The house's owners at A2b reported that the sound from the operating High volume sampler (HVS) might cause disturbance. Stopping the sampler is requested. 24-hour TSP is temporarily suspended after 19 Mar 2011 while 1-hour TSP is in normal state.
- 2.24 Referring to the letter sent to EPD by courier on 15 April 2011 and a copy of fax from CEDD to EPD on 18 May 2011, the shifting process of A2b was proposed and there is no need for approval from EPD. The course of action was completed and the 24-hour TSP monitoring has resumed in normal state on 25 May 2011.
- 2.25 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in Appendices E and F respectively.
- 2.26 In accordance with Condition 4.2 of the EP, all environmental monitoring data was made available to the public via internet access at the website http://www.cinotech.com.hk/projects/LFS.
- 2.27 According to our field observations, the identified dust sources at the monitoring stations were mainly generated when loading materials and vehicles movement.

3. NOISE

Monitoring Requirements

3.1 Two noise monitoring stations, namely N2 and N3 were designated in the EM&A Manual for impact monitoring. Appendix A shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Noise monitoring was conducted at two designated monitoring stations as listed in Table 3.1. Figure 3 shows the locations of these stations.

Table 3.1 Noise Monitoring Stations

Monitoring Station	Description	Location of Measurement
N2	Village house at No.84 Hang Hau	At the outdoor area of Village
IN2	Tsuen	house at No.84 Hang Hau Tsuen
N3	Village house at No. 88 Hang Hau	At the outdoor area of Village
N3	Tsuen	house at No. 88 Hang Hau Tsuen

Remarks: Noise Monitoring Station N1 (Wing Jan Kindergarten) was cancelled because it was found abandoned.

Monitoring Equipment

3.3 Table 3.2 summarizes the noise monitoring equipment. Copies of calibration certificates are provided in Appendix B.

Table 3.2 Noise Monitoring Equipment

Equipment	Model and Make	Quantity
Integrating Sound Level Meter	SVANTEK: SVAN 957	1
Acoustical Calibrator	SVANTEK: SV30A	1
RS232 Integral Vane Digital Anemometer	AZ Instrument: AZ8904	1
Allemonietei		

Monitoring Parameters, Frequency and Duration

3.4 Table 3.3 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in Appendix D.

Table 3.3	Noise Monitoring	Parameters, Freq	uency and Duration

Monitoring Stations	Parameter	Period	Frequency	Measurement
N2	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.)	0700-1900 hrs. on	Once per week	Free Field
N3	$\begin{array}{c} dB(A) \\ L_{eq}(30 \text{ min.}) \\ dB(A) \end{array}$	weekdays		Free Field

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels were adjusted with a correction of +3 dB(A).
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weightingtime weightingFast

time measurement : 30 minutes / 5 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.5 The microphone head of the sound level meter and calibrator was cleaned with soft cloth regularly.
- 3.6 The meters were sent to laboratory to check and calibrate on a yearly interval.

Results and Observations

- 3.7 All construction noise monitoring at two designated locations were conducted as scheduled in the reporting month.
- 3.8 No Action/Limit Level exceedance was recorded in the reporting month. Summary of exceedance is presented in Appendix I.
- 3.9 The proposal of the cancellation of Noise Monitoring Station N1 (Wing Jan Kindergarten) was approved by the EPD on 1 April 2010.
- 3.10 All the Construction Noise Levels (CNLs) reported in this report were adjusted with the corresponding baseline level (i.e. Measured Leq Baseline Leq = Measured CNL), in order to facilitate the interpretation of the noise exceedance. The baseline noise level and the allowed CNL at each designated noise monitoring station are presented at Table 3.4.
- 3.11 Noise monitoring results and graphical presentations are shown in Appendix G. In accordance with Condition 4.2 of the EP, all environmental monitoring data was made available to the public via internet access at the website http://www.cinotech.com.hk/projects/LFS.
- 3.12 The major noise sources identified at the designated noise monitoring stations were road noise and human activities.

Table 3.4 Baseline Noise Level and Allowed Construction Noise Level for Monitoring Stations

Station	Baseline Noise Level, dB (A)	Allowed CNL, dB (A)
N2 - Village house at No.84 Hang Hau Tsuen	57	75
N3 - Village house at No.88 Hang Hau Tsuen	58	75

4. WATER QUALITY

Monitoring Requirements

4.1 Temperature, pH, Turbidity, Water Depth, Salinity, DO and SS monitoring were conducted to monitor the water quality. Appendix A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

4.2 In accordance with the requirements set out in the approved EM&A Manual, seven water quality monitoring locations (W1, W2, W3, W4, W5, W6 and W7) were specified for baseline water quality monitoring. Table 4.1 describes the locations of these monitoring locations. The locations are also shown in Figure 4.

Table 4.1 Locations for Water Quality Monitoring

Monitoring	Description	Purpose of Placing Sampling Station	Coord	linates
Stations			N = Northing	E = Easting
W1	Downstream of the works immediately at the discharge point to Deep Bay	Monitor and audit potential impacts from the works, check water quality discharging to Deep Bay, impact station	836095	816023
W2	Near the oyster bed in Deep Bay	Monitor and audit potential impacts from the works, check water quality discharging to Deep Bay, impact station	836276	815791
W3	Near the oyster bed in Deep Bay	Monitor and audit potential impacts from the works, check water quality discharging to Deep Bay, impact station	836076	815673
W4	Immediate downstream of any specific works within Hang Hau Tsuen channel	Temporary / mobile station to monitor and audit potential impacts from any specific works, check water quality discharging to Deep Bay, impact station	See notes below	
W5	Upstream of the works at the confluence of San Hing Tsuen Channel and Fung Kong Tsuen Channel	Establish background water quality levels entering Hang Hau Tsuen stream, control station	836039 816390	
W6	Waters of Deep Bay	Establish background water quality levels in Deep Bay, control station	836713	815496
W7	Waters of Deep Bay	Establish background water quality levels in Deep Bay, control station	835484	815174

Notes:

⁻ Temporary / mobile station to be proposed by the Environmental Team Leader with reference to the contractor's working programme and works location.

Monitoring Equipment

4.3 Table 4.2 summarizes the equipment used in the water quality monitoring program. All the monitoring equipment complied with the specifications is stipulated in the Updated EM&A Manual. Copies of the calibration certificates of the equipment are shown in Appendix B.

Table 4.2 Water Quality Monitoring Equipment

Equipment	Model No. (Equipment No.)	Qty.
Sonde Environmental Monitoring System	YSI 6820-C-M (W.03.01 and W.03.02)	2

Monitoring Parameters, Frequency and Duration

4.4 Table 4.3 summarizes the monitoring parameters, monitoring period and frequencies of water quality monitoring.

Table 4.3 Frequency and Parameters of Water Quality Monitoring

Monitoring Stations	Parameters, unit (detection limit)	Depth	Frequency
All Monitoring Stations	 Temperature, °C (0.01°C) pH, pH unit (0.01pH unit) turbidity, NTU (0.1NTU) water depth, m (0.001m) salinity, mg/L (0.01ppt) dissolved oxygen (DO), mg/L and % of saturation (0.01mg/L) suspended solids (SS),mg/L) (0.5mg/L) 	 3 water depths: 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted. 	3 days per week at mid-flood and mid-ebb tides throughout construction phase.

Monitoring Methodology, Calibration Details and QA/QC Procedures

- 4.5 A multi-parameter meter (Model YSI 6820-C-M) was used to measure DO, turbidity, salinity, pH and temperature.
- 4.6 At each measurement, two consecutive measurements of turbidity and pH were taken. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.

4.7 For SS measurement, grab samples were collected. Water samples of about 500 ml were collected and stored in polyethylene bottles. The sample bottles were packed into an ice-box and delivered to a HOKLAS-accredited Laboratory, WELLAB Ltd., for the analysis of suspended solids contents within 24 hours.

Maintenance and Calibration

- 4.8 Before each round of monitoring, a zero check in distilled water was performed with the turbidity probe of YSI 6820-C-M. The probe was then calibrated with a solution of known NTU.
- 4.9 Quality Control Reports for SS analysis by the HOKLAS-accredited laboratory, WELLAB Ltd. are attached in Appendix C.

Results and Observations

- 4.10 All water quality monitoring were conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. Summary of exceedance is presented in Appendix I.
- 4.11 The monitoring data and graphical presentations of the monitoring results are shown in Appendix H.
- 4.12 Since the proposal of change of water quality monitoring station W2 and W3 was not approved by the EPD, all water quality monitoring stations will be maintained as that stated in the approved EM&A Manual.
- 4.13 In accordance with Condition 4.2 of the EP, all environmental monitoring data was made available to the public via internet access at the website: http://www.cinotech.com.hk/projects/LFS.

5. ENVIRONMENTAL AUDIT

Site Audits

- 5.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site.
- 5.2 Environmental site audits were conducted on 3, 10, 17, 23 and 31 May 2012 in the reporting month. No non-compliance was observed during the site audits.
- 5.3 Site inspections were undertaken to ensure and check that the implementation and maintenance of landscape and visual mitigation measures are being properly carried out in the reporting month in accordance to section 8.3 of the EM&A Manual. No non-compliance was observed during the site inspections.
- 5.4 The summaries of site audits are attached in Appendix J.

Review of Environmental Monitoring Procedures

5.5 The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

Water Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- The monitoring team recorded the weather condition on the monitoring day.

Status of Environmental Licensing and Permitting

5.6 All permits/licenses obtained for the Project are summarized in Table 5.1.

 Table 5.1
 Summary of Environmental Licensing and Permit Status

Downit No	ermit No. Valid Period Details		Dotoila	Status
Perint No.	From	To	Details	Status
Environmenta	ıl Permit			
EP- 343/2009	21/05/09	N/A	Waterways and drainage works for the Project - Hang Hau Tsuen Channel at Lau Fau Shan (Register No.: AEIAR- 134/2009)	Valid
Wastewater D	Discharge Lice	ence		
WT0000643 7-2010	13/04/10	30/04/15	Discharge of Industrial Trade Effluent at Deep Bay Water Control Zone	Valid
Waste Produc	er under Was	te Disposal (Chemical Waste) (General) Regulation	
5123-513- K2958-01	16/01/10	N/A	Major Chemical Waste: Spent lubricating oil	Valid
Permit under	Dumping at S	ea Ordinance		
EP/MD/11- 006	22/11/10	21/12/10	Type 1 – Open Sea Disposal Type 2 – Confined Marine Disposal	Expired
EP/MD/11- 045	01/11/10	30/04/11	Type 1 – Open Sea Disposal	Expired

Status of Waste Management

5.7 The amount of wastes generated by the activities of the Project in the reporting month is shown in Appendix K.

Implementation Status of Environmental Mitigation Measures

- 5.8 According to the EIA Report, air quality, noise, water quality, ecology and landscape and visual impact would be the key issues during the construction and operation of the Project. Details of the implementation of mitigation measures are provided in the Appendix M.
- 5.9 During the weekly environmental site inspections in the reporting period, no non-conformance was identified. The observations and recommendations for the Projects are summarized in Table 5.2.

Table 5.2 Observations and Recommendations of Site Audit

Parameters	Date (Ref. no.)	Observations	Remedial Actions
3-5-12 (120503-R01)		To ensure the U-channel is free from blockage by sand/sediment.	The situation was observed improved / rectified during site inspection on 10-5-12
Water Quality	3-5-12 (120503-R02)	To provide wheel washing for vehicles leaving the site area.	This item was found outstanding on 10-5- 2012 and observed improved / rectified during site inspection on 17-5-12

	10-5-12 (120510-R01)	To provide wheel washing for vehicles leaving the site area and clear the mud trail on public road.	The situation was observed improved / rectified during site inspection on 17-5-12
	17-5-12 (120517-O01)	Slope area next to U-channel should be stabilized and prevent the surface to get into the drainage channel.	The situation was observed improved / rectified during site inspection on 23-5-12
	17-5-12 (120517-O02)		
	31-5-12 (120531-O01)	Exposed stockpile should be covered to reduce dust emission and runoff generation.	This item was found outstanding and will be followed in the next site inspection.
	10-5-12 (120510-R02)	The exposed and used cement bags should be disposed of to reduce dust emission.	The situation was observed improved / rectified during site inspection on 17-5-12
Air Quality	23-5-12 (120523-O01)	Debris and dust on the public road should be cleared regularly to reduce dust generation.	The situation was observed improved / rectified during site inspection on 31-5-12
	31-5-12 (120531-O01)	Exposed stockpile should be covered to reduce dust emission and runoff generation.	This item was found outstanding and will be followed in the next site inspection.
Waste / Chemical Management			
Ecology			
Noise			
Landscape and Visual			
Permit/ Licenses			

Implementation Status of Event Action Plans

5.10 The Event Action Plans for air quality, noise and water quality are presented in Appendix L.

1-hr TSP

5.11 No Action/Limit Level exceedance was recorded.

24-hr TSP

5.12 No Action/Limit Level exceedance was recorded.

Construction Noise

5.13 No Action/Limit Level exceedance was recorded.

Water Quality

5.14 No Action/Limit Level exceedance was recorded.

Ecology

5.15 No non-compliance was recorded.

Landscape and Visual

5.16 No non-compliance was recorded.

Summary of Complaints and Prosecutions

- 5.17 No environmental complaint and prosecution was received for the Project in the reporting month.
- 5.18 There were no environmental complaint and prosecution received since the commencement of the Project. The Complaint Log is presented in Appendix N.

6. FUTURE KEY ISSUES

Key Issues for the Coming Month

- 6.1 Key environmental issues in the coming month include:
 - Generation of dust from stockpiles of excavated and dusty materials, unpaved site area and vehicle movement, roadworks, excavation works and loading and unloading dusty materials on-site;
 - Noise from operation of equipment and machinery on-site;
 - Regular removal of mud, sand and silt along U-channel;
 - Storage of chemicals/fuel and chemical waste/waste oil on-site;
 - Ponding water and surface runoff generated on rainy days;
 - Larviciding against mosquito breeding in stagnant water should be carried out at least on a weekly basis;
 - Drainage system should be well designed and maintained to prevent flooding and silty water getting into the public area during and after rainstorm;
 - Silty surface runoff generated from the site area during rainy weather;
 - Silt and dust getting into the public area by the leaving site vehicles at the site exits without adequate wheel washing facilities;
 - Provide proper treatment of wastewater and discharge it at designated discharge point;
 - Site tidiness:
 - Maintenance of the protection fence for retaining Mangrove;
 - Temporary stockpiles of excavated material shall be covered by tarpaulin or packed in plastic bags/enclosed skips and shall be removed off-site within 2 days;
 - Tightly sealed closed grab excavators shall be employed for conducting excavation works within the stream:
 - Containment structure shall be installed around the excavation area to facilitate a dry or confined excavation within the stream.

Monitoring Schedule for the Next Month

6.2 The tentative environmental monitoring schedules for the next month are shown in Appendix D.

Construction Program for the Next Month

6.3 The tentative construction program is provided in Appendix O.

7. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

7.1 Environmental monitoring and audit works were performed in the reporting month and all monitoring results were checked and reviewed.

1-hour TSP Monitoring

7.2 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

7.3 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

7.4 All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Water Quality Monitoring

7.5 All water quality monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Environmental Audit

7.6 Environmental site audits were conducted as weekly basis in the reporting month. No non-compliance was recorded.

Complaint and Prosecution

7.7 No environmental complaint and prosecution was received in the reporting month.

Recommendations

7.8 According to the environmental audit performed in the reporting month, the following recommendations were made:

Dust Impact

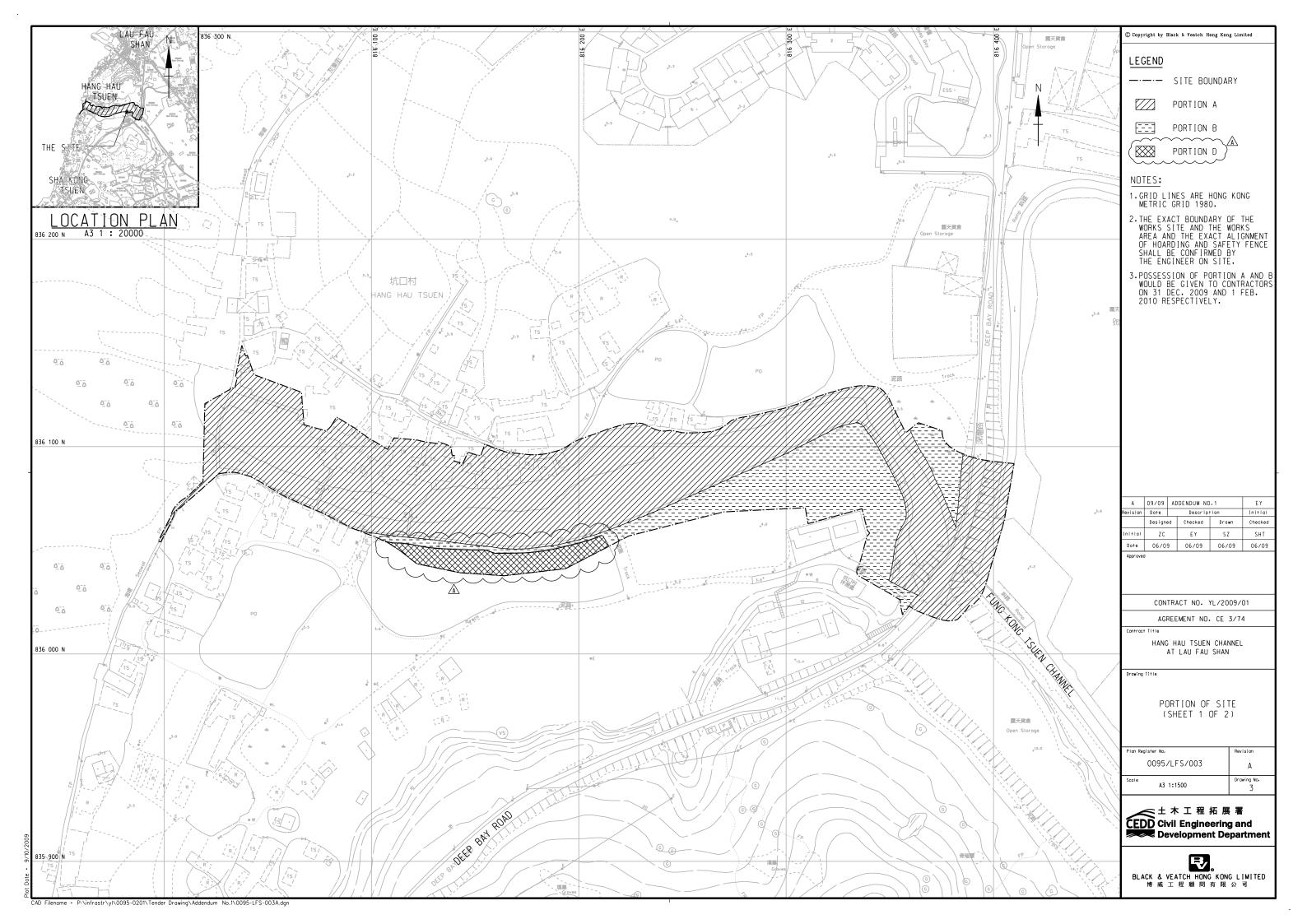
- To prohibit any open burning on site;
- To regularly maintain the machinery and vehicles on site;
- To follow up any exceedance caused by the construction works;
- To implement dust suppression measures on all haul roads, stockpiles, dried/unpaved surfaces and excavation/road breaking works; and
- To provide adequate wheel washing facilities at each exit.

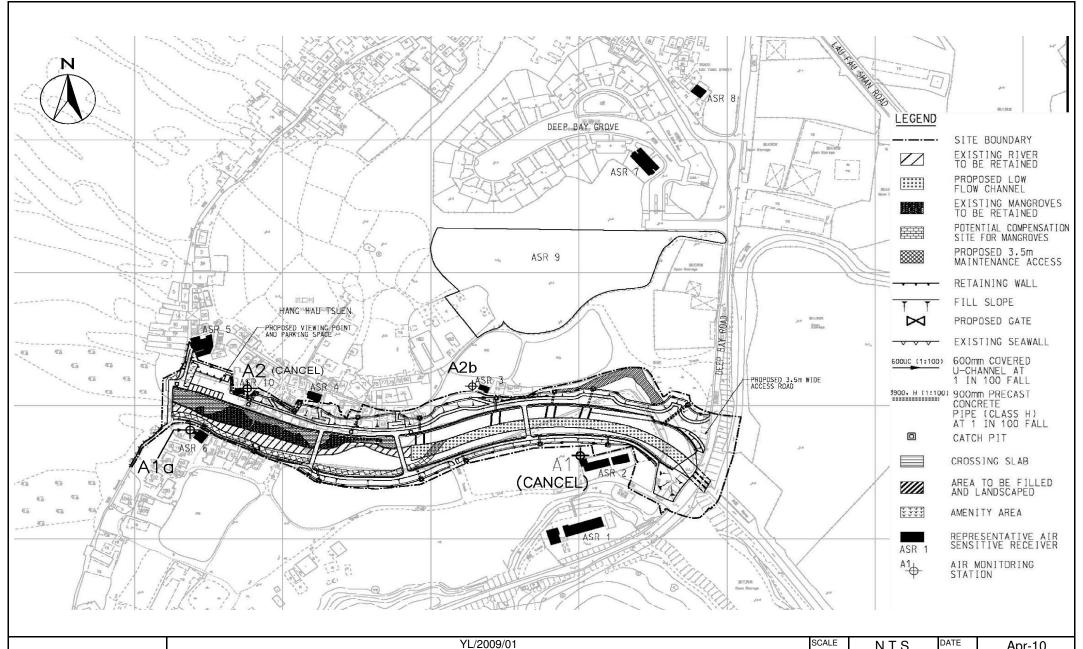
Noise Impact

- To inspect the noise sources inside the site;
- To follow up any exceedance caused by the construction works;
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers; and
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers in an appropriate location.
- To provide adequate lubricant on mechanical equipments to reduce frictional noise; and
- To well maintain the mechanical equipments / machineries to avoid abnormal noise nuisance

Water Impact

- To identify any discharge of wastewater from the construction site;
- To avoid any discharge of wastewater by-pass/ without the desilting facilities from the construction site;
- To regularly clear up and maintain the condition of u-channel, catch pits and wheel washing facilities on site;
- To regularly maintain the sediment control measures after rainstorms;
- To avoid water from accumulation on site and carry out larviciding against mosquito breeding for stagnant water when mosquito larvae are observed; and
- Containment structure shall be installed around the excavation area to facilitate a dry or confined excavation within the stream.

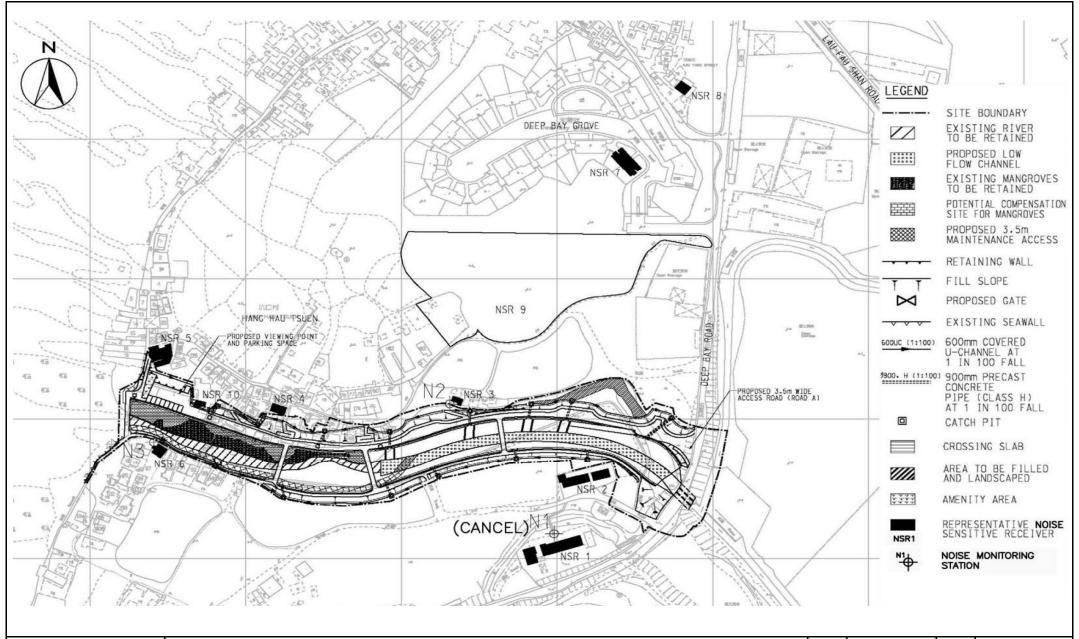

Waste/Chemical Management


- To provide proper rubbish bins / skips for waste collection;
- To check for any accumulation of wasted materials or rubbish on site;
- To provide proper storage area or drip trays for oil containers/ equipments on site;
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the equipment;
- To well maintain the equipments and drip trays to avoid oil leakage; and
- To avoid improper handling or storage of oil drum on site.

Air Quality

- Temporary stockpiles of excavated material shall be covered by tarpaulin or packed in plastic bags/enclosed skips and shall be removed off-site within 2 days; and
- Tightly sealed closed grab excavators shall be employed for conducting excavation works within the stream.

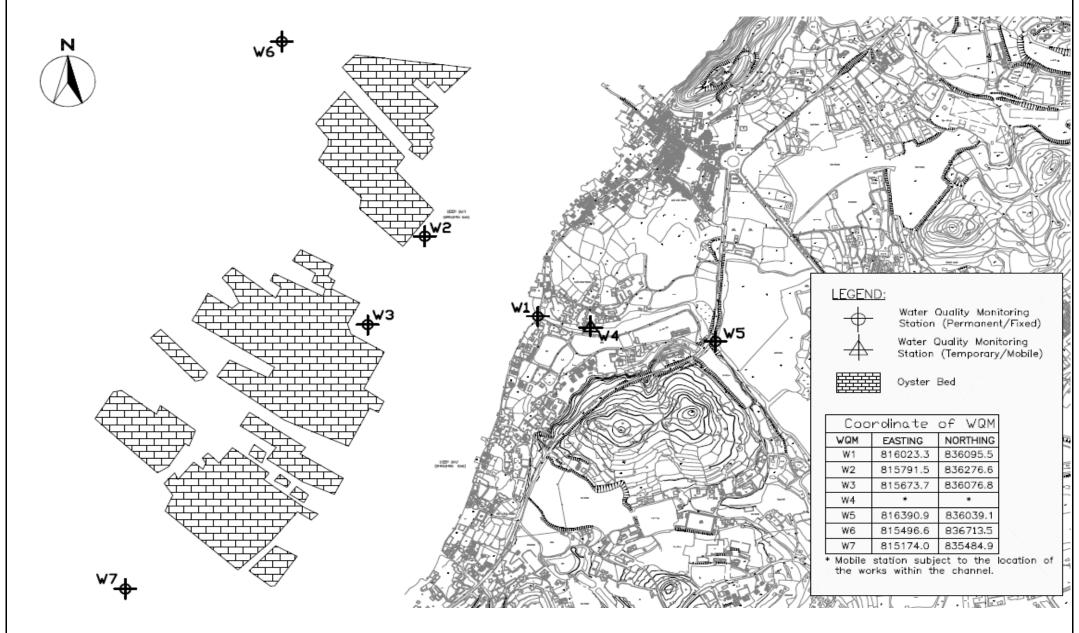
FIGURES



YL/2009/01 HANG HAU TSUEN CHANNEL AT LAU FAU SHAN

Locations of Air Quality Monitoring Stations

SCALE	N.T.S.	DATE	Apr-10	
CHECK	CH	DRAWN	SL	
JOB NO.		DRAWING No.		Rev
	MA0002	Fig. 2		-



YL/2009/01 HANG HAU TSUEN CHANNEL AT LAU FAU SHAN

Locations of Noise Monitoring Stations

SCALE	N.T.S.	N.T.S.		10
CHECK	CH	DRAWN	SL	
JOB NO.		DRAWING No.		Rev
	MA0002	Fig. 3		-

YL/2009/01 HANG HAU TSUEN CHANNEL AT LAU FAU SHAN

Locations of Water Quality Monitoring Stations

SCALE	N.T.S.	DATE	Jan-10	
CHECK	CH	DRAWN	SL	
JOB NO.		DRAWING No.		Rev
	MA0002	Fig. 4		1

Environmental Team Leader

Dr. Priscilla Choy (Tel: 2151 2089)

Project Coordinator

- coordination of the Project and compile reports

Gary Lau, William Lai (Tel: 2151 2098) (Tel: 2151 2078)

Monitoring Team

- perform environmental monitoring works

Team Leader: Henry SM Leung (Tel: 2151 2087)

Team Members: Tang Wing Kwai, Yeung Wing Kun, Tsang Tsz Keung, Tao Ching Hang, Choi Wai Yi.

Audit Team

- conduct site inspection, complete the environmental checklist once a week

Team Leader: Gary Lau (Tel: 2151 2098)

Team Members: Ivy Tam, William Lai

Title

Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan

Organization Chart

Scale	N.T.S	Project No.	MA0002
Date	Aug-10	Figure	5

APPENDIX A
ACTION AND LIMIT LEVELS FOR AIR
QUALITY, NOISE AND WATER
QUALITY

Appendix A Action and Limit Levels

Table A-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m ³	Limit Level, μg/m³
A1a	320	500
A2b	324	500

Table A-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m ³	Limit Level, μg/m ³
A1a	159	260
A2b	156	260

Table A-3 Action and Limit Level for Construction Noise

Time Period	Action Level	Limit Level	
0700-1900 hrs on normal weekdays	When one documented complaint is received	75* dB(A)	

^{*} reduce to 70 dB(A) for schools and 65 dB(A) during school examination periods.

Table A-4 Action and Limit Level for Water Quality

Parameter		Action		Limit	
DO, mg/L	Surface and Middle	W2, W3: 4.5	W1, W4: 5.1	W2, W3: 4.4	W1, W4: 5.0
	Bottom	N/A *		N/A *	
		97.8		162.8	
SS, mg/L		or 120% of upstream control station's SS at the same tide of the same day		or 130% of SS readings at the upstream control station at the same tide of same day and specific sensitive receiver water quality requirements	
		W2, W3: 135.0	W1, W4: 49.1	W2, W3: 142.6	W1, W4: 177.7
Turbic	lity, NTU	or 120% of upstream control station's turbidity at the same tide of the same day		or 130% of turbidity at the upstream control station at the same tide of same day	

^{*} Since the water depths were less than 3 meters at all monitoring stations, only middle depth samples were taken.

APPENDIX B COPIES OF CALIBRATION CERTIFICATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

CINOTECH

File No. MA0002/A52/0014 Station Ala - Village House at no.88 Hang Hau Tsuen Operator: ____ WK Date: 19-Mar-12 Next Due Date: 18-May-12 Equipment No.: A-01-52 Serial No. ____ 1955 **Ambient Condition** Temperature, Ta (K) 291.8 Pressure, Pa (mmHg) 765 Orifice Transfer Standard Information Equipment No.: A-04-01 Slope, mc 0.0568 Intercept, be -0.0432 me x Qstd + be = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 9-Oct-11 Next Calibration Date: 8-Oct-12 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), Qstd (CFM) ΔW [AW x (Pa/760) x (298/Ta)]1/2 Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis (HVS), in. of oil Y-axis 11.4 3.42 61.03 7.6 2.80 2 9.7 3.16 56.35 6.5 2.58 3 7.5 2.78 49.65 5.0 2.27 4 5.1 2.29 41.07 3.1 1.79 3.2 1.81 32.69 1.9 1.40 By Linear Regression of Y on X Slope, mw = 0.0501Intercept, bw: -0.2457 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 3.54 Remarks: Conducted by: W.C. Jane Signature: Date:

Date:

Signature:

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA0002/A52/0015

Station	Ala - Village Hou	se at no.88 Hang I	łau Tsuen	_ Operator.	:WK	_	
Date:	18-May-12		1	Next Due Date:		17-Jul-12	
Equipment No.:	A-01-52	- 100000		Serial No.	. 1955		
			1 11 47	3 114			
Tammanatu	T- (I/)	207.0	Ambient (
Temperatu	ire, Ia(K)	297.8	Pressure, Pa	(mmHg)	<u> </u>	759.6	
		Ori	fice Transfer Sta	ndard Inform	ation		
Equipme	ent No.:	A-04-01	Slope, m¢	0.0568	Intercep	t, bc	-0.0432
Last Calibra	ation Date:	9-Oct-11		mc x Qstd + b	$\mathbf{c} = [\Delta \mathbf{H} \times (\mathbf{Pa}/760$)) x (298/Ta)]	1/2
Next Calibr	ation Date:	8-Oct-12		$Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/	Γa)] ^{1/2} -bc} / 1	ne
		•	5				
	<u> </u>		Calibration of	TSP Sampler			
Calibration		Ori	fice	T		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76)	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	[ΔW x (Pa/)	760) x (298/Ta)] ^{1/2} Y-axis
1	11.8	3	.44	61.24	7.8		2.79
2	9.9	3	.15	56.16	6.6		2.57
3	7.6	2	.76	49.30	5.0		2.24
4	5.2	2	.28	40.91	3.2		1.79
5	3.3	1	.82	32,75	1.9		1.38
By Linear Regr Slope, mw = Correlation o	ession of Y on X 0.0501 oefficient* =	0.99		Intercept, bw	-0.254	7	
	Coefficient < 0.990			•			
*			Set Point Ca	lculation			
From the TSP Fi	eld Calibration Cu	irve, take Qstd =	43 CFM				
From the Regress	sion Equation, the	"Y" value accor	ding to				
		mw x Os	td + bw = [ΔW x	(Pa/760) x (29	08/Ta)] ^{1/2}		
			·				
Therefore, Se	et Point; W = (mw	v x Qstd + bw)²	x (760 / Pa) x (1	(a / 298) =	3.61		
Remarks:		· · · · · · · · · · · · · · · · · · ·					
Conducted by: Checked by:	3.5	Signature: _ Signature: _	Viwa			Date:	18/5/12 18 May 00/13

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA0002/A54/0014

Station	A2b - Village Ho	use at no.84 Hang I	Hau Tsuen	Operator:	: WK		
Date:	19-Mar-12	Next		 Next Due Date:	18-May	-12	
Equipment No.:	A-01-54			Serial No.	1536		
_							
			Ambient C	Condition			
Temperatu	re, Ta (K)	291.8	Pressure, Pa	(mmHg)		765	
							
		Ori	fice Transfer Sta	ndard Inform	ation		
Equipme	ent No.:	A-04-01	Slope, mc	0.0568	Intercept		-0.0432
Last Calibra	· · · · · · · · · · · · · · · · · · ·	9-Oct-11			$c = [\Delta H \times (Pa/760)]$		
Next Calibr	ation Date:	8-Oct-12		$Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/	[a)] ^{1/2} -bc}	/ mc
		•					
			Calibration of	TSP Sampler	T		
Calibration		Or.	fice	<u></u>		HVS	
Point	ΔH (orifice),	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM)	ΔW	[ΔW x (P	a/760) x (298/Ta)] ^{1/2}
	in. of water			X - axis	(HVS), in. of oil		Y-axis
1	11.3		3.41	60.76	7.7		2.81
2	9.9	<u> </u>	.19	56.92	6.7		2.62
3	7.4		2.76	49.32	5.0		2.27
4	5.2		2.31	41.47	3.2		1.81
5	3.3		.84	33.19	1.9		1.40
By Linear Regr Slope , mw =	ession of Y on X 0.0517	ζ.	1	Intercept, bw :	-0,314	6	
Correlation co		- 0.9	995			-	-
		0, check and rec					
		,					
			Set Point Ca	lculation			, , , , , , , , , , , , , , , , , , , ,
From the TSP Fi	eld Calibration (Curve, take Qstd =					
		e "Y" value acco					
	•				4/4		
		mw x Q	$std + bw = [\Delta W x]$	(Pa/760) x (29	08/Ta)] ^{1/2}		
Therefore Se	t Doint: W = (m	w v Ostd + bw)2	x (760 / Pa) x (7	Fo / 200) —	2 54		
Therefore, Sc	t romt, w – (m	w x Qsid + bw j	x(7007 ra)x(1	(a / 290) —	3.54		
Remarks:							
•			r				
•			1				
Conducted by: Checked by:	Wk. Pang	Signature:	Mwa	· ·		Date: Date:	19/3/12 19 March dold
			lacksquare				

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

CINOTECH

File No. MA0002/A54/0015

Station	A2b - Village Hor	ise at no.84 Hang l	Hau Tsuen	_ Operator.	: WK	
Date:	18-May-12			Next Due Date	:17-Jul-	-12
Equipment No.:	A-01-54			Serial No.	. 1536	
			Ambient (Condition	Factor of the second se	
Temperatu	re, Ta (K)	297.8	Pressure, Pa	ı (mmHg)		759.6
			fice Transfer Sta		ation	
Equipme		A-04-01	Slope, mc	0.0568	Intercept	
Last Calibra		9-Oct-11			$c = [\Delta H \times (Pa/760]$	
Next Calibr	ation Date:	8-Oct-12		$Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/	Γa)] ^{1/2} -bc} / mc
		•				
			Calibration of	TSP Sampler		
Calibration		Or	fice			HVS
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	11.7	3	.42	60.99	7.8	2.79
2	9.8	3	.13	55.88	6.4	2.53
3	7.6	2	76	49.30	4.9	2.21
4	5.2	2	.28	40.91	3.3	1.82
5	3.4	1	.84	33.23	2.0	1.41
By Linear Regr Slope , mw = Correlation co	ession of Y on X 0.0492 oefficient* =	0.9		Intercept, bw	-0.212	3
*If Correlation C	Coefficient < 0.99	0, check and rec	alibrate.			
			Set Point Ca	lculation		
From the TSP Fig	eld Calibration C	urve, take Qstd =	43 CFM			
From the Regress	sion Equation, the	e "Y" value acco:	rding to			
	•	mw x Qs	$std + bw = [\Delta W x]$	(Pa/760) x (29	98/Ta)] ^{1/2}	
Therefore, Se	et Point; W = (my	$\mathbf{v} \times \mathbf{Qstd} + \mathbf{bw}$) ²	x (760 / Pa) x (7	ra / 298) =	3.63	
Remarks:						
Conducted by:	wk. Jang	Signature:	Kwa			Date: 18/5/12
Checked by:	-(h	Signature:			j	Date: 18/5/1V Date: 18 May 20/3

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Description Calibration Orifice

Serial No. Model No.

1536

9 October 2011

Date

G25A

Manufacturer

Thermo Andersen

Temperature, Ta (K)

298

Pressure, Pa (mmHg)

762.3

Plate	Diff.Vol (m³)	Diff.Time (min)	Diff.Hg (mm)	Diff.H ₂ O (in.)
1	1.00	1.3760	3.4	2.00
2	1.00	0.9740	6.4	4.00
_3	1.00	0.8730	7.9	5.00
4	1.00	0.8320	8.6	5.50
5	1.00	0.6890	12.8	8.00

DATA TABULATION

Vstd	(X axis) Qstd	(Y axis)
0.9985	0.7257	1.4163
0.9946	1.0211	2.0030
0.9926	1.1370	2.2394
0.9917	1.1919	2.3487
0.9861	1.4313	2.8326

Y axis= SQRT[H₂O(Pa/760)(298/Ta)]

Qstd Slope (m) = 2.00766

Intercept (b) = -0.04318

Coefficient (r) = 0.99999

Va	(X axis) Qa	(Y axis)
0.9955	0.7235	0.8842
0.9916	1.0181	1.2505
0.9896	1.1336	1.3981
0.9887	1.1884	1.4664
0.9832	1.4270	1.7685

Y axis= SQRT[H₂O(Ta/Pa)]

Qa Slope (m) = 1.25716

intercept (b) = -0.02696

Coefficient (r) = 0.99999

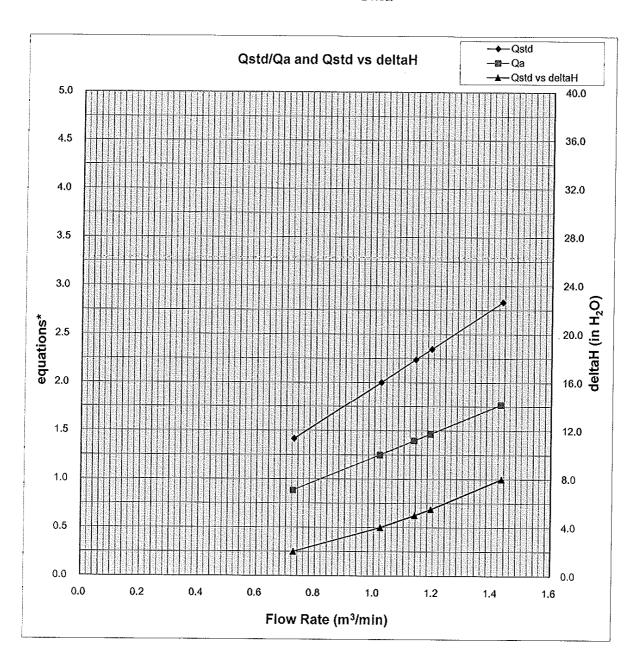
CALCULATIONS

Vstd=Diff. Vol[(Pa-Diff.Hg)/760](298/Ta) Qstd=Vstd/Time Va=Diff.Vol[(Pa-Diff.Hg)/Pa] Qa=Va/Time

For subsequent flow rate calculations: Qstd=I/m{[SQRT($H_2O(Pa/760)(298/Ta))]-b}$ Qa=I/m{[SQRT $H_2O(Ta/Pa)]-b$ }

> PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE


Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrat or tested.

TEST REPORT

Y-axis equations:

Qstd series: SQRT[\(\Delta H(Pa/Pstd)(Tstd/Ta) \)]

Qa series: $SQRT[\Delta H(Ta/Pa)]$

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/12/120501
Date of Issue: 2012-05-02
Date Received: 2012-05-01
Date Tested: 2012-05-01
Date Completed: 2012-05-02

Date Completed: Next Due Date:

2012-05-02 2013-05-01

ATTN:

Mr. W.K Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: RS232 Integral Vane Digital Anemometer

Manufacturer

: AZ Instrument

Model No.

: AZ8904

Serial No.

: 974835

Equipment No.

: A-03-03

Test conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 67%

Pressure

: 101.2 kPa

Methodology:

The anemometer has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

	Reference Set Point	Instrument Readings
Measuring Air Velocity, m/s	2.00	2.00
Temperature, °C	21.0	21.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/120405/1

Date of Issue: 2012-04-10 Date Received: 2012-04-05

Date Tested: 2012-04-05

Date Completed: 2012-04-10

Next Due Date: 2012-06-09

ATTN:

Mr. WK Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Laser Dust Monitor

Manufacturer

: Sibata

Model No.

: LD-3B

Serial No.

: 954253

Sensitivity (K) 1 CPM

 $: 0.001 \text{ mg/m}^3$

Sen. Adjustment Scale Setting

: 685 CPM

Equipment No.

: A-02-05

Test Conditions:

Room Temperature

: 24 degree Celsius

Relative Humidity

: 68%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

RATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/120420/2 Date of Issue: 2012-04-23

Date Received: 2012-04-20

Date Tested: 2012-04-20

Date Completed: 2012-04-23

Next Due Date: 2012-06-22

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata Model No. : LD-3B Serial No. : 095039

Sensitivity (K) 1 CPM $: 0.001 \text{ mg/m}^3$ Sen. Adjustment Scale Setting : 764 CPM Equipment No. : A-02-08

Test Conditions:

Room Temperature : 22 degree Celsius

Relative Humidity : 64%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

2240421401	
Correlation Factor (CF)	0.0032
************	**************

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wcllab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 C/N/111010/2

 Date of Issue:
 2011-10-11

 Date Received:
 2011-10-10

 Date Tested:
 2011-10-10

 Date Completed:
 2011-10-11

 Next Due Date:
 2012-10-10

ATTN:

Mr. Henry Leung

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 23851 : 48532

Microphone No. Equipment No.

: N-08-12

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 59%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/111008/1 Date of Issue: 2011-10-10 Date Received: 2011-10-08

Date Tested:

2011-10-08

Date Completed:

2011-10-10

Next Due Date:

2012-10-09

ATTN:

Mr. Henry Leung

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 62%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/120317-2
Date of Issue: 2012-03-17
Date Received: 2012-03-17
Date Tested: 2012-03-17
Date Completed: 2012-03-17
Next Due Date: 2012-06-16

ATTN: Mr. W.K. Tang

Page: 1 of 2

Certificate of Calibration

Item for calibration:

Description : Sonde Environmental Monitoring System

Manufacturer : YSI
Model No. : 6820-C-M
Serial No. : 02D0126AA
Equipment No. : W.03.01

Test conditions:

Room Temperature : 22 degree Celsius

Relative Humidity : 58%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 11J100025

- 1. Conductivity performance check with Potassium Chloride standard solution
- 2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 07E100029

1. Performance check against Winkler titration Turbidity Sensor, Model: 6136, S/N: 11J1000475

1. Calibration check with Formazin standard solution

pH Meter, Model: 6561, L/N: 11H

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

- 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual
- 2. In-house method with reference to APHA and ISO standards

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No.: C/W/120317-2
Date of Issue: 2012-03-17
Date Received: 2012-03-17
Date Tested: 2012-03-17
Date Completed: 2012-03-17
Next Due Date: 2012-06-16

2 of 2

Page:

Results:

1. Conductivity performance check

Specific (Conductivity, µS/cm	Correction, µS/cm	Acceptable range
Salinity Meter (C1)	Theoretical Value (C2)	D = C1 - C2	
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading	Theoretical Value	5.5	
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	l in Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O_2/L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	±0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range	
0.00	0.00	0.00	0.00 ± 0.05	
100	100	0	100 ± 5	
1000	1000	0	1000 ± 100	

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH _n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/120316-1
Date of Issue: 2012-03-16
Date Received: 2012-03-16
Date Tested: 2012-03-16
Date Completed: 2012-03-16
Next Due Date: 2012-06-15

ATTN:

Mr. W.K. Tang

Page: 1 of 2

Certificate of Calibration

Item for calibration:

Description : Sonde Environmental Monitoring System

Manufacturer : YSI
Model No. : 6820-C-M
Serial No. : 02D0293AA
Equipment No. : W.03.02

Test conditions:

Room Temperature : 21 degree Celsius

Relative Humidity : 57%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 12B100106

- 1. Conductivity performance check with Potassium Chloride standard solution
- 2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 12A100930

Performance check against Winkler titration
 Turbidity Sensor, Model: 6136, S/N: 12B100900
 Calibration check with Formazin standard solution

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

- 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual
- 2. In-house method with reference to APHA and ISO standards

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No.:	C/W/120316-1
Date of Issue:	2012-03-16
Date Received:	2012-03-16
Date Tested:	2012-03-16
Date Completed:	2012-03-16
Next Due Date:	2012-06-15

Page: 2 of 2

Results:

1. Conductivity performance check

Specific Conductivity, µS/cm		Correction, µS/cm	Acceptable range
Salinity Meter (C1)	Theoretical Value (C2)	D = C1 - C2	
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range	
Instrument Reading	Theoretical Value			
30.0	30.0	0	30.0 ± 3	

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O_2/L	range
Saturated	9.0	9.0	0.0	± 0.2
Half-saturated	5.8	5.8	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range	
0.00	0.00	0.00	0.00 ± 0.05	
100	100	0	100 ± 5	
1000	1000	0	1000 ± 100	

5. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

APPENDIX C QUALITY CONTROL REPORTS FOR SS LABORATORY ANALYSIS

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Loi Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 15821

Date of Issue: 2012/05/03

Date Received: 2012/05/02 Date Tested: 2012/05/02

Date Completed:

Page:

2012/05/03

1 of 1

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002

Sampling Date:

2012/05/02

Number of Sample: 28

Custody No.:

MA0002/120502

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
W2me	42	39	6	97

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 15835

Date of Issue:

2012/05/07

Date Received:

2012/05/04

Date Tested:

2012/05/04

1 of 1

Date Completed:

Page:

2012/05/07

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002

Sampling Date:

2012/05/04

Number of Sample: 28

Custody No.:

MA0002/120504

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
W2me	57	50	13	99

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAS LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shalin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 15846

Date of Issue:

2012/05/08

Date Received:

2012/05/07

Date Tested:

2012/05/07

1 of 1

Date Completed:

Page:

2012/05/08

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002

Sampling Date:

2012/05/07

Number of Sample: 14

Custody No.:

MA0002/120507

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
W2mf	14	14	2	99

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

MELLAR LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 15860

Date of Issue: 2012/05/10

Date Received: 2012/05/09

Date Tested: 2012/05/09 Date Completed: 2012/05/10

1 of 1

Page:

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002

Sampling Date:

2012/05/09

Number of Sample: 28

Custody No.:

MA0002/120509

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
W2mf	49	49	0	98

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lal Street, Shalin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 15881

Date of Issue: 2012/05/14 Date Received: 2012/05/11

Date Tested: 2012/05/11

Page:

Date Completed: 2012/05/14

1 **of** 1

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002

Sampling Date:

2012/05/11

Number of Sample: 28

Custody No.:

MA0002/120511

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
W3mf	52	49	6	98

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lei Street, Shalin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

15890

2012/05/15

2012/05/14

2012/05/14

2012/05/15

I of I

Laboratory No.:

Date of Issue:

Date Received:

Date Completed:

Date Tested:

Page:

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002

Sampling Date:

2012/05/14

Number of Sample: 28

Custody No.:

MA0002/120514

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
W3mf	55	48	13	96

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAR LIMITED Rrns 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Pax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

15915 Laboratory No.:

Date of Issue: 2012/05/17 Date Received: 2012/05/16

2012/05/17

Date Tested: 2012/05/16 Date Completed:

Page:

1 of 1

101

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002

Sampling Date:

2012/05/16

61

Number of Sample: 28

Custody No.:

W3mf

MA0002/120516

Total Suspended Solids Duplicate Analysis QC Recovery, % Sampling Point Trial 1, Trial 2, Difference, mg/L mg/L %

58

5

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lal Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

15936 Laboratory No.:

2012/05/21

Date of Issue: Date Received:

2012/05/18

Date Tested:

2012/05/18

Date Completed:

2012/05/21

1 of 1

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002

Sampling Date:

2012/05/18

Number of Sample: 28

Custody No.:

MA0002/120518

Page:

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	.mg/L	%	
W6mf	60	62	4	99

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lal Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellsb.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 15943
Date of Issue: 2012/05/22
Date Received: 2012/05/21

Date Tested: 2012/05/21 Date Completed: 2012/05/22

1 of 1

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002

Sampling Date:

2012/05/21

Number of Sample: 14

: 14

Custody No.:

MA0002/120521

Page:

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
W6me	26	27	3	101

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAS LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 15957 Date of Issue: 2012/05/24 Date Received: 2012/05/23 Date Tested: 2012/05/23

Page:

Date Completed:

1 of 1

2012/05/24

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002

Sampling Date:

2012/05/23

Number of Sample: 28

Custody No.:

MA0002/120523

Total Suspended Solids QC Recovery, % **Duplicate Analysis** Sampling Point Trial 1, Trial 2, Difference. mg/L mg/L % W2mf 20 20 101

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lel Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Date Completed: Page:

Laboratory No.: 15984 Date of Issue: 2012/05/28 Date Received: 2012/05/25 Date Tested:

1 of 1

2012/05/25 2012/05/28

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002

Sampling Date:

2012/05/25

19

Number of Sample: 28

W4me

Custody No.:

MA0002/120525

Total Suspended Solids Duplicate Analysis QC Recovery, % **Sampling Point** Trial 1, Trial 2, Difference, mg/L mg/L %

20

6

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shalin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 15993 Date of Issue: 2012/05/29 Date Received: 2012/05/28

Date Tested: 2012/05/28 Date Completed: 2012/05/29

1 of 1

Page:

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002 2012/05/28

Sampling Date: Number of Sample: 28

Custody No.:

MA0002/120528

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
W3mf	38	38	1	100

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shalin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 16009

Date of Issue: 2012/05/31

Date Received: 2012/05/30 Date Tested: 2012/05/30

1 of 1

Date Completed: 2012/05/31

ATTN: Ms. MeiLing Tang

Sampling Site:

Lau Fau Shan

Project No.:

MA0002

Sampling Date:

2012/05/30

Number of Sample: 28

Custody No.:

MA0002/120530

Page:

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
W3me	46	42	9	100

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Impact Air Quality and Noise Monitoring Schedule for May 2012

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-May	2-May	3-May	4-May	5-May
			1hr TSP		1hr TSP	
				24hrs TSP		
6-May	7-May	8-May	9-May	10-May	11-May	12-May
	1hr TSP Noise		1hr TSP		1hr TSP	
			24hrs TSP			
13-May	14-May	15-May	16-May	17-May	18-May	19-May
	1hr TSP Noise		1hr TSP		1hr TSP	
		24hrs TSP				
20-May	21-May	22-May	23-May	24-May	25-May	26-May
	1hr TSP Noise		1hr TSP		1hr TSP	
	24hrs TSP					24hrs TSP
27-May	28-May	29-May	30-May	31-May		
	1hr TSP Noise		1hr TSP			

Air Quality Monitoring Station

Noise Monitoring Station

A1a - Village house at No.88 Hang Hau Tsuen A2b - Village house at No.84 Hang Hau Tsuen N2 - Village house at No.84 Hang Hau Tsuen N3 - Village house at No.88 Hang Hau Tsuen

Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Impact Water Quality Monitoring Schedule for May 2012

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-Ma	y 2-May	y 3-May	4-May	5-May
			Mid-Ebb 10:45 Mid-Flood 16:43		Mid-Ebb 12:10 Mid-Flood 18:36	
6-May	7-	May 8-Ma	y 9-Ma	y 10-May	11-May	12-May
		1:23 N/A	Mid-Flood 8:49 Mid-Ebb 15:55	9	Mid-Flood 10:19 Mid-Ebb 17:32	
13-May	14-	May 15-Ma	y 16-Ma	y 17-May	18-May	19-May
		9:29 4:28	Mid-Ebb 11:12 Mid-Flood 16:55		Mid-Ebb 12:12 Mid-Flood 18:39	
20-May	21-	May 22-Ma	y 23-May	y 24-May	25-May	26-May
		3:52 N/A	Mid-Flood 8:00 Mid-Ebb 15:03		Mid-Flood 8:52 Mid-Ebb 16:16	
27-May	28-	May 29-Ma	y 30-May	y 31-May		
		1:33 3:32	Mid-Ebb 9:02 Mid-Flood 14:30			

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

NA indicated favourable tide occurs during non-working hours

Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Tentative Impact Air Quality and Noise Monitoring Schedule for June 2012

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Jun	2-Jun
					1hr TSP	
					24hrs TSP	
3-Jun	4-Jun	5-Jun	6-Jun	7-Jun	8-Jun	9-Jun
	1hr TSP Noise		1hr TSP		1hr TSP	
				24hrs TSP		
10-Jun	11-Jun	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun
	1hr TSP Noise		1hr TSP		1hr TSP	
			24hrs TSP			
17-Jun	18-Jun	19-Jun	20-Jun	21-Jun	22-Jun	23-Jun
	1hr TSP Noise		1hr TSP		1hr TSP	
		24hrs TSP				
24-Jun	25-Jun	26-Jun	27-Jun	28-Jun	29-Jun	30-Jun
	1hr TSP Noise		1hr TSP		1hr TSP	
	24hrs TSP					24hrs TSP

Air Quality Monitoring Station

Noise Monitoring Station

A1a - Village house at No.88 Hang Hau Tsuen A2b - Village house at No.84 Hang Hau Tsuen

N2 - Village house at No.84 Hang Hau Tsuen N3 - Village house at No.88 Hang Hau Tsuen

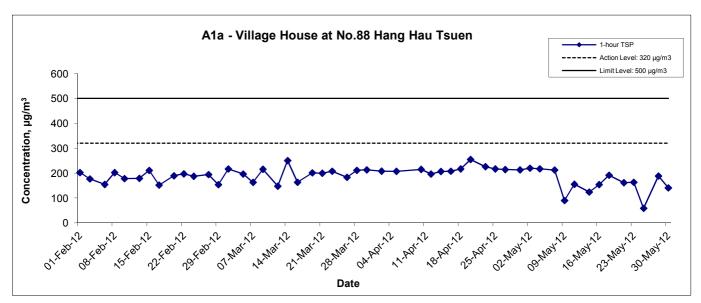
Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Impact Water Quality Monitoring Schedule for June 2012

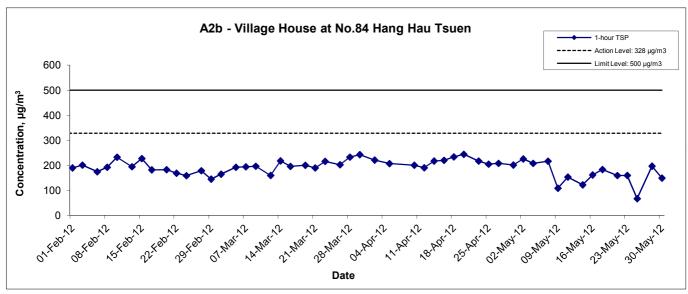
Sunday	Monday Tuesday		Tuesday	Wednes	sday	Thursday	Frida		Saturday
								1-Jun	2-Jun
							Mid-Ebb Mid-Flood	10:52 17:27	
3-Jun		4-Jun	5-Jun		6-Jun	7-Jun		8-Jun	9-Jun
	Mid-Ebb Mid-Flood	13:24 N/A		Mid-Flood Mid-Ebb	07:50 15:00		Mid-Flood Mid-Ebb	09:21 16:30	
10-Jun		11-Jun	12-Jun		13-Jun	14-Jun		15-Jun	16-Jun
	Mid-Flood Mid-Ebb	12:19 18:44		Mid-Ebb Mid-Flood	09:36 15:08		Mid-Ebb Mid-Flood	11:05 17:39	
17-Jun		18-Jun	19-Jun		20-Jun	21-Jun		22-Jun	23-Jun
	Mid-Ebb Mid-Flood	12:58 N/A		Mid-Ebb Mid-Flood	14:14 N/A		Mid-Flood Mid-Ebb	08:06 15:26	
24-Jun		25-Jun	26-Jun		27-Jun	28-Jun		29-Jun	30-Jun
	Mid-Flood Mid-Ebb	10:29 17:18		Mid-Flood Mid-Ebb	12:35 18:54		Mid-Ebb Mid-Flood	09:16 16:05	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

NA indicated favourable tide occurs during non-working hours

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS


Appendix E - 1-hour TSP Monitoring Results


Location A1a	- Village Ho	ouse at No.88 H	ang Hau Tsuen
Date	Time	Weather	Particulate Concentration (μg/m³)
2-May-12	10:00	Cloudy	219.8
4-May-12	14:00	Cloudy	217.4
7-May-12	14:30	Cloudy	212.4
9-May-12	9:00	Cloudy	90.0
11-May-12	9:30	Cloudy	155.3
14-May-12	13:00	Cloudy	124.1
16-May-12	10:00	Cloudy	153.9
18-May-12	11:00	Cloudy	191.7
21-May-12	13:00	Cloudy	161.7
23-May-12	8:30	Cloudy	163.3
25-May-12	9:30	Fine	58.8
28-May-12	16:00	Cloudy	188.3
30-May-12	10:15	Cloudy	140.9
		Average	159.8
		Maximum	219.8
		Minimum	58.8

Location A2b	- Village Ho	ouse at No.84 H	ang Hau Tsuen
Date	Time	Weather	Particulate Concentration (µg/m³)
2-May-12	11:10	Cloudy	225.3
4-May-12	15:10	Cloudy	207.7
7-May-12	13:10	Cloudy	216.2
9-May-12	15:00	Cloudy	108.2
11-May-12	10:45	Cloudy	152.9
14-May-12	14:10	Cloudy	121.8
16-May-12	13:30	Cloudy	161.3
18-May-12	13:00	Cloudy	183.0
21-May-12	14:10	Cloudy	159.1
23-May-12	14:00	Cloudy	159.4
25-May-12	15:00	Fine	67.0
28-May-12	17:10	Cloudy	196.4
30-May-12	11:30	Cloudy	149.0
		Average	162.1
		Maximum	225.3
		Minimum	67.0

MA0002/App E - 1hr TSP Cinotech

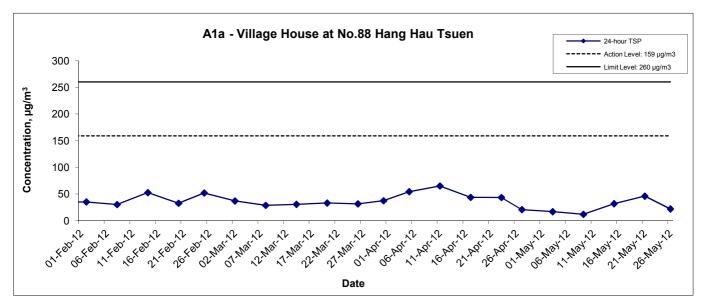
1-hr TSP Concentration Levels

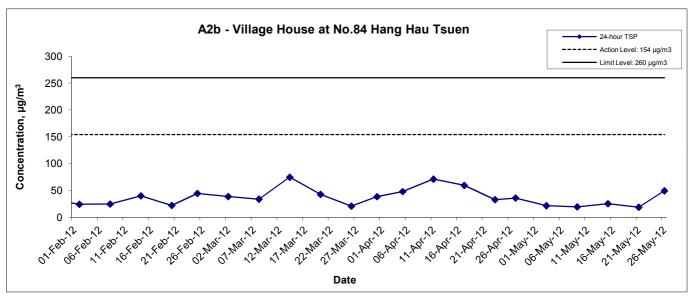
Title Contract No. YL/2009/01	Scale		Project	
Hang Hau Tsuen Channel at Lau Fau Shan	Date		Appendix	CINOTECH
Graphical Presentation of 1-hour TSP Monitoring Results		May 12	E	

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PERSENTATIONS

Appendix F - 24-hour TSP Monitoring Results

Location A1a - Village House at No.88 Hang Hau Tsuen


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
3-May-12	Cloudy	300.9	757.8	3.1070	3.1359	0.0289	4304.7	4328.7	24.0	1.19	1.19	1.19	1712.1	16.9
9-May-12	Cloudy	303.1	759.6	3.2821	3.3024	0.0203	4328.7	4352.7	24.0	1.19	1.19	1.19	1708.3	11.9
15-May-12	Cloudy	301.7	759.2	3.2679	3.3223	0.0544	4352.7	4376.7	24.0	1.19	1.19	1.19	1711.5	31.8
21-May-12	Cloudy	298.3	759.2	3.0874	3.1678	0.0804	4376.7	4400.7	24.0	1.21	1.21	1.21	1748.9	46.0
26-May-12	Cloudy	299.7	757.8	3.0953	3.1334	0.0381	4400.7	4424.7	24.0	1.21	1.21	1.21	1743.9	21.8
													Min	11.9
													Max	46.0
													Average	25.7


Location A2b - Village House at No.84 Hang Hau Tsuen

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
3-May-12	Cloudy	300.9	757.8	3.1101	3.1470	0.0369	6826.3	6850.3	24.0	1.19	1.19	1.19	1713.4	21.5
9-May-12	Cloudy	303.1	759.6	3.2956	3.3286	0.0330	6850.3	6874.3	24.0	1.19	1.19	1.19	1709.8	19.3
15-May-12	Cloudy	301.7	759.2	3.3050	3.3481	0.0431	6874.3	6898.3	24.0	1.19	1.19	1.19	1712.9	25.2
21-May-12	Cloudy	298.3	759.2	3.0839	3.1164	0.0325	6898.3	6922.3	24.0	1.21	1.21	1.21	1745.8	18.6
26-May-12	Cloudy	299.7	757.8	3.0996	3.1853	0.0857	6922.3	6946.3	24.0	1.21	1.21	1.21	1740.7	49.2
													Min	18.6
													Max	49.2
													Average	26.8

MA0002/App F - 24hr TSP

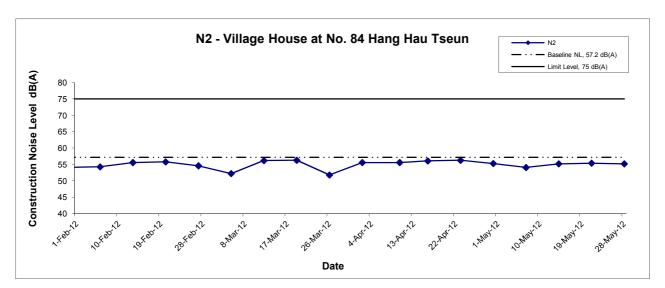
24-hr TSP Concentration Levels

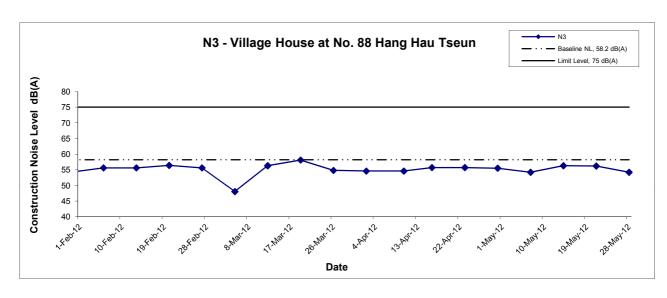
Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan	Scale	N.T.S	Project No.	MA0002	CINOTECH
Graphical Presentation of 24-hour TSP Monitoring Results	Date	May 12	Appendi	x F	CINOIECE

Title

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix G - Noise Monitoring Results


Location N2 -	Village Hou	se at No. 84 I	Hang Hau Ts	eun			
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise I	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
7-May-12	13:10	Cloudy	54.1	54.8	53.2		54.1 Measured ≤ Baseline
14-May-12	14:10	Cloudy	55.2	56.3	53.7	57.2	55.2 Measured ≤ Baseline
21-May-12	14:10	Cloudy	55.4	56.8	55.4 Measured ≤ Baseline		
28-May-12	17:10	Cloudy	55.2	56.7	53.1		55.2 Measured ≤ Baseline


Location N3 -	Village Hou	ise at No. 88 I	lang Hau Ts	eun											
					Unit:	dB (A) (30-min)									
Date	Time	Time Weather Measured Noise Level Baseline Level Construction Noise Level													
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}								
7-May-12	14:30	Cloudy	54.2	55.1	53.8		54.2 Measured ≤ Baseline								
14-May-12	13:00	Cloudy	56.3	57.2	54.1	58.2	56.3 Measured ≤ Baseline								
21-May-12	13:00	Cloudy	dy 56.2 57.4 53.6		56.2	56.2 Measured ≤ Baseline									
28-May-12	28-May-12 16:00 Cloudy 54.2 55.5 53.3 54.2 Measured ≦ Baseline														

^{*} Free-field adjustment is adopted for monitoring results at station N2 and N3.

MA0002/App G - Noise Cinotech

Noise Levels

Title	Contract No. YL/2009/01	Scale		Project No.		
	Hang Hau Tsuen Channel at Lau Fau Shan		N.T.S	INO.	MA0002	CINOTEC
	Graphical Presentation of Construction Noise Monitoring Results	Date	May 12	Append	dix G	CINOICO

APPENDIX H
WATER QUALITY MONITORING
RESULTS AND GRAPHICAL
PRESENTATIONS

Water Quality Monitoring Results at W1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Water Tem	perature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	10:22	Middle	0.3	26.5 27.2	26.9	7.9 7.7	7.8	21.7 19.8	20.8	86.0 87.9	87.0	7.2 7.3	7.3	16.6 17.4	17.0	50 50	50.0
4-May-12	Rainy	Calm	12:11	Middle	0.3	26.6 27.5	27.1	8.0 7.7	7.9	22.6 20.9	21.8	82.2 85.3	83.8	7.0 7.2	7.1	14.3 16.1	15.2	53 55	54.0
7-May-12	Sunny	Calm	13:06	Middle	0.3	26.7 26.7	26.7	7.9 7.7	7.8	21.7 19.8	20.8	86.0 87.9	87.0	7.2 7.3	7.3	16.6 17.4	17.0	14 14	14.0
9-May-12	Sunny	Calm	14:27	Middle	0.3	26.9 27.1	27.0	8.3 7.9	8.1	14.5 14.6	14.6	84.7 75.2	80.0	6.1 5.4	5.8	16.4 16.4	16.4	16 16	16.0
11-May-12	Fine	Calm	17:05	Middle	0.3	26.2 26.8	26.5	7.6 7.7	7.7	31.6 31.9	31.8	89.0 78.7	83.9	6.8 6.0	6.4	21.2 21.9	21.6	32 31	31.5
14-May-12	Fine	Calm	09:10	Middle	0.3	26.1 26.2	26.2	7.2 7.2	7.2	21.2 20.1	20.7	89.4 87.3	88.4	6.8 6.7	6.8	15.8 18.5	17.2	40 40	40.0
16-May-12	Cloudy	Calm	11:59	Middle	0.3	26.4 25.5	26.0	7.1 7.1	7.1	22.2 21.1	21.7	94.5 92.4	93.5	7.1 6.9	7.0	15.3 17.8	16.6	32 31	31.5
18-May-12	Rainy	Calm	12:15	Middle	0.3	26.9 26.2	26.6	6.2 5.0	5.6	20.5 19.3	19.9	81.3 80.0	80.7	5.2 5.2	5.2	16.6 16.5	16.6	38 38	38.0
21-May-12	Fine	Calm	13:22	Middle	0.3	26.0 25.9	26.0	8.6 9.0	8.8	21.9 18.2	20.1	72.4 71.8	72.1	6.9 6.8	6.9	16.3 14.9	15.6	16 16	16.0
23-May-12	Sunny	Calm	14:45	Middle	0.3	25.7 26.1	25.9	8.4 8.0	8.2	16.4 16.4	16.4	67.3 62.1	64.7	6.5 5.9	6.2	15.7 14.6	15.2	22 22	22.0
25-May-12	Fine	Calm	17:23	Middle	0.3	26.5 26.1	26.3	7.9 8.0	8.0	31.2 31.7	31.5	77.2 70.3	73.8	7.2 6.4	6.8	20.4 20.3	20.4	19 20	19.5
28-May-12	Cloudy	Calm	17:37	Middle	0.3	25.6 26.5	26.1	8.7 8.0	8.4	15.9 16.1	16.0	67.7 62.2	65.0	6.5 5.9	6.2	15.1 14.7	14.9	59 58	58.5
30-May-12	Fine	Calm	08:44	Middle	0.3	27.7 27.0	27.4	7.8 7.7	7.8	17.0 15.9	16.5	77.0 77.7	77.4	6.7 6.7	6.7	15.3 17.5	16.4	44 44	44.0

Water Quality Monitoring Results at W1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Water Tem	perature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	16:16	Middle	0.3	25.5 26.9	26.2	8.4 8.0	8.2	15.4 15.5	15.5	71.0 64.5	67.8	6.7 6.0	6.4	16.6 16.6	16.6	41 40	40.5
4-May-12	Rainy	Calm	17:00	Middle	0.3	25.9 27.1	26.5	8.4 8.0	8.2	16.4 16.4	16.4	67.3 62.1	64.7	6.5 5.9	6.2	15.7 14.6	15.2	64 64	64.0
9-May-12	Sunny	Calm	08:24	Middle	0.3	25.7 26.4	26.1	7.8 7.6	7.7	20.8 18.8	19.8	91.9 93.0	92.5	6.7 6.7	6.7	16.4 17.2	16.8	16 16	16.0
11-May-12	Fine	Calm	09:42	Middle	0.3	26.7 25.9	26.3	7.7 7.7	7.7	21.1 20.0	20.6	86.5 85.2	85.9	6.6 6.5	6.6	16.7 19.6	18.2	26 25	25.5
14-May-12	Fine	Calm	13:21	Middle	0.3	26.4 25.9	26.2	7.1 7.3	7.2	31.5 32.0	31.8	91.4 81.6	86.5	7.0 6.2	6.6	17.5 18.2	17.9	14 14	14.0
16-May-12	Cloudy	Calm	16:46	Middle	0.3	26.0 25.5	25.8	7.0 7.2	7.1	33.0 33.0	33.0	96.5 86.4	91.5	7.2 6.5	6.9	14.9 14.5	14.7	28 28	28.0
18-May-12	Rainy	Calm	17:52	Middle	0.3	27.4 27.1	27.3	6.6 6.8	6.7	31.4 30.6	31.0	83.8 73.5	78.7	5.8 5.0	5.4	16.6 16.6	16.6	40 41	40.5
23-May-12	Sunny	Calm	08:37	Middle	0.3	26.4 26.5	26.5	8.0 7.7	7.9	22.6 20.9	21.8	82.2 85.3	83.8	7.0 7.2	7.1	14.3 16.1	15.2	15 15	15.0
25-May-12	Fine	Calm	08:45	Middle	0.3	27.0 26.1	26.6	8.0 7.9	8.0	20.9 19.7	20.3	79.9 76.1	78.0	7.1 6.9	7.0	16.1 18.8	17.5	15 14	14.5
28-May-12	Cloudy	Calm	12:36	Middle	0.3	27.0 27.3	27.2	7.7 7.6	7.7	22.8 20.6	21.7	83.4 85.5	84.5	7.1 7.1	7.1	13.3 16.6	15.0	48 50	49.0
30-May-12	Fine	Calm	13:53	Middle	0.3	27.4 26.8	27.1	7.7 7.9	7.8	16.2 15.5	15.9	79.0 76.7	77.9	7.1 6.5	6.8	18.6 18.4	18.5	51 52	51.5

Water Quality Monitoring Results at W2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Water Tem	perature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бер	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	10:23	Middle	0.3	26.0 27.5	26.8	9.1 7.7	8.4	26.1 26.9	26.5	89.7 81.6	85.7	7.4 7.1	7.3	17.2 19.9	18.6	42 43	42.5
4-May-12	Rainy	Calm	12:13	Middle	0.3	26.4 27.7	27.1	8.2 7.7	8.0	27.1 27.7	27.4	86.0 79.2	82.6	7.3 7.0	7.2	16.3 17.9	17.1	57 56	56.5
7-May-12	Sunny	Calm	13:07	Middle	0.3	26.2 27.0	26.6	9.1 7.7	8.4	26.1 26.9	26.5	89.7 81.6	85.7	7.4 7.1	7.3	17.2 19.9	18.6	14 13	13.5
9-May-12	Sunny	Calm	14:28	Middle	0.3	26.2 26.4	26.3	8.3 8.5	8.4	30.8 26.8	28.8	75.2 93.5	84.4	5.4 6.8	6.1	18.9 19.2	19.1	41 41	41.0
11-May-12	Fine	Calm	17:06	Middle	0.3	26.1 26.7	26.4	7.6 8.3	8.0	32.3 31.4	31.9	100.6 96.8	98.7	7.7 7.4	7.6	20.3 23.4	21.9	49 50	49.5
14-May-12	Fine	Calm	09:11	Middle	0.3	26.5 26.0	26.3	7.4 7.4	7.4	30.8 30.7	30.8	98.7 98.8	98.8	7.6 7.6	7.6	19.5 19.0	19.3	54 53	53.5
16-May-12	Cloudy	Calm	12:00	Middle	0.3	25.9 25.3	25.6	7.3 7.3	7.3	32.3 32.2	32.3	104.2 104.3	104.3	7.8 7.8	7.8	18.9 18.3	18.6	56 58	57.0
18-May-12	Rainy	Calm	12:17	Middle	0.3	26.5 25.9	26.2	5.8 5.8	5.8	30.3 30.2	30.3	90.3 90.3	90.3	6.0 6.0	6.0	17.5 17.0	17.3	54 54	54.0
21-May-12	Fine	Calm	13:23	Middle	0.3	26.2 25.5	25.9	8.7 7.6	8.2	31.7 32.2	32.0	71.3 71.2	71.3	6.7 6.1	6.4	17.5 17.6	17.6	26 27	26.5
23-May-12	Sunny	Calm	14:46	Middle	0.3	26.0 26.0	26.0	8.4 8.7	8.6	32.9 28.7	30.8	60.7 71.3	66.0	5.8 7.2	6.5	17.5 18.8	18.2	21 21	21.0
25-May-12	Fine	Calm	17:24	Middle	0.3	26.3 25.9	26.1	7.9 8.5	8.2	31.9 31.0	31.5	98.8 94.5	96.7	8.2 7.9	8.1	19.5 22.4	21.0	30 28	29.0
28-May-12	Cloudy	Calm	17:39	Middle	0.3	25.7 26.2	26.0	8.5 8.6	8.6	32.1 29.1	30.6	61.1 59.9	60.5	5.9 5.7	5.8	17.5 20.0	18.8	57 55	56.0
30-May-12	Fine	Calm	08:45	Middle	0.3	27.1 26.6	26.9	8.0 8.2	8.1	27.0 26.9	27.0	96.2 94.6	95.4	7.8 7.4	7.6	17.1 18.5	17.8	49 49	49.0

Water Quality Monitoring Results at W2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Water Tem	perature (°C)	F	ρΗ	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidit	y(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	16:17	Middle	0.3	26.0 26.2	26.1	8.4 8.6	8.5	31.7 27.8	29.8	64.7 73.6	69.2	6.0 7.3	6.7	19.1 19.4	19.3	48 48	48.0
4-May-12	Rainy	Calm	17:01	Middle	0.3	26.2 26.6	26.4	8.4 8.7	8.6	32.9 28.7	30.8	60.7 71.3	66.0	5.8 7.2	6.5	17.5 18.8	18.2	52 51	51.5
9-May-12	Sunny	Calm	08:25	Middle	0.3	25.2 26.7	26.0	9.0 7.6	8.3	25.2 25.9	25.6	94.6 90.6	92.6	6.9 6.6	6.8	17.0 19.6	18.3	49 48	48.5
11-May-12	Fine	Calm	09:43	Middle	0.3	26.2 25.6	25.9	7.9 7.9	7.9	30.9 30.8	30.9	95.5 95.5	95.5	7.3 7.3	7.3	20.7 20.1	20.4	66 65	65.5
14-May-12	Fine	Calm	13:21	Middle	0.3	26.2 25.7	26.0	7.1 7.8	7.5	32.2 31.4	31.8	104.9 100.7	102.8	8.0 7.7	7.9	19.1 21.9	20.5	33 32	32.5
16-May-12	Cloudy	Calm	16:47	Middle	0.3	25.8 25.3	25.6	7.0 7.7	7.4	33.8 32.8	33.3	110.4 106.2	108.3	8.3 7.9	8.1	18.5 21.2	19.9	59 55	57.0
18-May-12	Rainy	Calm	17:53	Middle	0.3	27.3 26.9	27.1	6.6 7.3	7.0	32.1 31.3	31.7	95.4 91.6	93.5	6.7 6.4	6.6	19.1 19.4	19.3	45 45	45.0
23-May-12	Sunny	Calm	08:38	Middle	0.3	26.2 26.7	26.5	8.2 7.7	8.0	27.1 27.7	27.4	86.0 79.2	82.6	7.3 7.0	7.2	16.3 17.9	17.1	20 20	20.0
25-May-12	Fine	Calm	08:46	Middle	0.3	26.4 25.8	26.1	8.1 8.1	8.1	30.5 30.4	30.5	89.8 97.5	93.7	7.8 7.8	7.8	19.9 19.3	19.6	25 25	25.0
28-May-12	Cloudy	Calm	12:37	Middle	0.3	25.6 27.3	26.5	8.3 8.0	8.2	27.3 28.1	27.7	87.2 79.2	83.2	7.2 6.9	7.1	18.0 17.8	17.9	42 42	42.0
30-May-12	Fine	Calm	13:54	Middle	0.3	27.1 26.8	27.0	7.9 8.3	8.1	28.0 27.2	27.6	95.9 96.3	96.1	7.9 7.8	7.9	18.7 21.1	19.9	51 52	51.5

Water Quality Monitoring Results at W3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Deni	th (m)	Water Tem	perature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бер	ui (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	10:25	Middle	0.3	26.6 26.8	26.7	7.9 8.6	8.3	31.6 27.7	29.7	82.0 90.6	86.3	7.1 7.5	7.3	18.0 18.1	18.1	48 49	48.5
4-May-12	Rainy	Calm	12:14	Middle	0.3	26.9 27.3	27.1	7.9 8.7	8.3	32.8 28.6	30.7	78.0 88.3	83.2	6.9 7.4	7.2	16.4 17.5	17.0	60 61	60.5
7-May-12	Sunny	Calm	13:08	Middle	0.3	26.8 26.3	26.6	7.9 8.6	8.3	31.6 27.7	29.7	82.0 90.6	86.3	7.1 7.5	7.3	18.0 18.1	18.1	16 15	15.5
9-May-12	Sunny	Calm	14:29	Middle	0.3	26.3 26.9	26.6	7.4 6.9	7.2	29.4 24.8	27.1	82.1 72.3	77.2	5.9 5.2	5.6	21.1 17.8	19.5	44 45	44.5
11-May-12	Fine	Calm	17:07	Middle	0.3	27.2 26.5	26.9	8.0 7.7	7.9	30.8 30.7	30.8	94.2 94.2	94.2	7.2 7.2	7.2	22.4 19.1	20.8	48 47	47.5
14-May-12	Fine	Calm	09:12	Middle	0.3	26.6 26.1	26.4	7.4 7.6	7.5	32.4 30.6	31.5	96.2 93.7	95.0	7.4 7.2	7.3	18.5 19.6	19.1	46 47	46.5
16-May-12	Cloudy	Calm	12:01	Middle	0.3	25.9 25.4	25.7	7.2 7.5	7.4	33.9 32.0	33.0	101.6 98.9	100.3	7.6 7.4	7.5	17.8 19.0	18.4	57 60	58.5
18-May-12	Rainy	Calm	12:18	Middle	0.3	26.5 26.1	26.3	5.6 5.4	5.5	31.9 30.0	31.0	87.7 85.1	86.4	5.8 5.6	5.7	18.0 18.1	18.1	51 50	50.5
21-May-12	Fine	Calm	13:25	Middle	0.3	26.3 26.8	26.6	7.6 7.2	7.4	33.0 31.7	32.4	69.2 67.9	68.6	5.9 5.1	5.5	20.0 17.6	18.8	23 24	23.5
23-May-12	Sunny	Calm	14:47	Middle	0.3	26.0 26.4	26.2	7.7 7.0	7.4	31.2 26.9	29.1	64.3 59.6	62.0	6.3 5.7	6.0	19.1 16.7	17.9	21 20	20.5
25-May-12	Fine	Calm	17:25	Middle	0.3	26.5 25.7	26.1	8.2 7.9	8.1	30.4 30.3	30.4	88.1 95.8	92.0	7.7 7.7	7.7	21.6 18.3	20.0	18 18	18.0
28-May-12	Cloudy	Calm	17:40	Middle	0.3	26.3 27.4	26.9	7.7 6.9	7.3	30.9 26.9	28.9	87.7 71.2	79.5	7.4 7.3	7.4	18.5 17.3	17.9	57 56	56.5
30-May-12	Fine	Calm	08:46	Middle	0.3	27.3 26.6	27.0	7.9 8.2	8.1	27.9 27.1	27.5	93.9 92.3	93.1	7.5 7.4	7.5	17.9 17.7	17.8	46 47	46.5

Water Quality Monitoring Results at W3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Water Tem	perature (°C)	p	Н	Salin	ity ppt	DO Satu	ıration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	16:18	Middle	0.3	26.1 26.7	26.4	7.5 7.0	7.3	30.4 25.7	28.1	68.1 62.2	65.2	6.5 5.8	6.2	20.4 18.0	19.2	39 40	39.5
4-May-12	Rainy	Calm	17:02	Middle	0.3	26.2 26.9	26.6	7.7 7.0	7.4	31.2 26.9	29.1	64.3 59.6	62.0	6.3 5.7	6.0	19.1 16.7	17.9	67 67	67.0
9-May-12	Sunny	Calm	08:26	Middle	0.3	25.8 26.1	26.0	7.8 8.5	8.2	30.7 26.7	28.7	90.4 95.6	93.0	6.5 6.9	6.7	17.8 17.9	17.9	42 41	41.5
11-May-12	Fine	Calm	09:44	Middle	0.3	26.2 25.8	26.0	7.8 8.1	8.0	32.5 30.6	31.6	92.9 90.3	91.6	7.1 6.9	7.0	19.6 20.8	20.2	52 52	52.0
14-May-12	Fine	Calm	13:23	Middle	0.3	26.3 25.5	25.9	7.5 7.2	7.4	30.8 30.6	30.7	97.7 97.8	97.8	7.5 7.5	7.5	21.2 18.0	19.6	55 55	55.0
16-May-12	Cloudy	Calm	16:48	Middle	0.3	25.9 25.1	25.5	7.4 7.1	7.3	32.2 32.1	32.2	103.2 103.4	103.3	7.7 7.7	7.7	20.4 17.3	18.9	61 61	61.0
18-May-12	Rainy	Calm	17:54	Middle	0.3	27.4 26.7	27.1	7.0 6.7	6.9	30.7 30.5	30.6	89.0 89.0	89.0	6.2 6.2	6.2	21.4 18.0	19.7	49 50	49.5
23-May-12	Sunny	Calm	08:39	Middle	0.3	26.7 26.3	26.5	7.9 8.7	8.3	32.8 28.6	30.7	78.0 88.3	83.2	6.9 7.4	7.2	16.4 17.5	17.0	20 20	20.0
25-May-12	Fine	Calm	08:47	Middle	0.3	26.5 26.0	26.3	8.1 8.3	8.2	32.1 30.2	31.2	92.1 85.9	89.0	7.6 7.4	7.5	18.8 20.0	19.4	27 25	26.0
28-May-12	Cloudy	Calm	12:39	Middle	0.3	27.1 25.6	26.4	7.7 8.7	8.2	33.4 29.3	31.4	76.9 87.6	82.3	6.9 7.4	7.2	15.8 17.5	16.7	38 41	39.5
30-May-12	Fine	Calm	13:55	Middle	0.3	27.1 26.4	26.8	8.1 8.0	8.1	26.9 26.8	26.9	94.5 92.9	93.7	7.8 7.3	7.6	18.8 17.5	18.2	59 59	59.0

Water Quality Monitoring Results at W4 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Water Tem	perature (°C)	ţ	Н	Salin	ity ppt	DO Satu	uration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	10:26	Middle	0.3	26.3 27.6	27.0	7.6 7.7	7.7	8.1 8.5	8.3	83.8 78.3	81.1	6.9 6.5	6.7	27.4 28.5	28.0	28 27	27.5
4-May-12	Rainy	Calm	12:15	Middle	0.3	26.5 27.9	27.2	7.7 7.7	7.7	9.9 9.7	9.8	80.0 75.7	77.9	6.7 6.4	6.6	25.1 27.2	26.2	30 30	30.0
7-May-12	Sunny	Calm	13:09	Middle	0.3	26.5 27.1	26.8	7.6 7.7	7.7	8.0 8.5	8.3	83.8 78.3	81.1	6.9 6.5	6.7	27.4 28.5	28.0	30 31	30.5
9-May-12	Sunny	Calm	14:30	Middle	0.3	26.6 27.3	27.0	8.5 7.5	8.0	7.2 6.9	7.1	86.9 97.3	92.1	6.3 7.0	6.7	23.8 26.5	25.2	16 16	16.0
11-May-12	Fine	Calm	17:08	Middle	0.3	26.0 26.5	26.3	7.7 7.6	7.7	7.9 8.1	8.0	85.2 78.7	82.0	6.5 6.0	6.3	28.8 32.0	30.4	30 31	30.5
14-May-12	Fine	Calm	09:13	Middle	0.3	26.3 26.5	26.4	6.8 7.4	7.1	6.9 6.7	6.8	89.8 83.3	86.6	6.9 6.4	6.7	27.7 28.7	28.2	23 24	23.5
16-May-12	Cloudy	Calm	12:02	Middle	0.3	25.6 25.8	25.7	6.6 7.3	7.0	7.3 7.1	7.2	94.9 88.2	91.6	7.1 6.6	6.9	26.8 27.7	27.3	32 33	32.5
18-May-12	Rainy	Calm	12:19	Middle	0.3	26.3 26.4	26.4	5.1 4.7	4.9	5.8 5.6	5.7	81.3 81.3	81.3	5.3 5.3	5.3	27.4 28.5	28.0	27 28	27.5
21-May-12	Fine	Calm	13:26	Middle	0.3	26.9 26.1	26.5	8.6 7.6	8.1	10.6 10.4	10.5	73.5 87.6	80.6	6.9 6.2	6.6	24.9 29.7	27.3	10 10	10.0
23-May-12	Sunny	Calm	14:48	Middle	0.3	26.5 26.2	26.4	8.5 7.7	8.1	6.1 6.6	6.4	65.7 66.5	66.1	6.7 6.8	6.8	23.2 24.8	24.0	14 14	14.0
25-May-12	Fine	Calm	17:26	Middle	0.3	25.3 26.8	26.1	7.9 7.8	7.9	6.8 6.7	6.8	67.9 61.8	64.9	7.0 6.4	6.7	27.6 30.8	29.2	19 20	19.5
28-May-12	Cloudy	Calm	17:41	Middle	0.3	25.7 25.7	25.7	8.6 7.9	8.3	5.9 5.6	5.8	66.1 63.9	65.0	6.8 6.3	6.6	21.7 25.0	23.4	45 46	45.5
30-May-12	Fine	Calm	08:47	Middle	0.3	27.9 27.3	27.6	7.5 7.9	7.7	6.7 6.5	6.6	69.3 69.1	69.2	6.7 6.5	6.6	26.6 28.3	27.5	55 55	55.0

Water Quality Monitoring Results at W4 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Water Tem	perature (°C)	F	ρΗ	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidit	y(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	16:20	Middle	0.3	26.3 27.0	26.7	8.6 7.6	8.1	7.1 7.8	7.5	69.4 69.3	69.4	6.9 6.6	6.8	24.1 26.8	25.5	18 18	18.0
4-May-12	Rainy	Calm	17:03	Middle	0.3	26.7 27.2	27.0	8.5 7.7	8.1	7.1 7.6	7.4	65.7 65.8	65.8	6.7 6.7	6.7	23.2 24.8	24.0	27 27	27.0
9-May-12	Sunny	Calm	08:27	Middle	0.3	25.5 26.9	26.2	7.5 7.6	7.6	7.2 7.6	7.4	87.2 82.2	84.7	6.3 6.0	6.2	27.1 28.1	27.6	16 15	15.5
11-May-12	Fine	Calm	09:45	Middle	0.3	26.0 26.2	26.1	7.2 7.9	7.6	6.6 6.4	6.5	86.5 81.3	83.9	6.6 6.2	6.4	29.5 30.4	30.0	22 22	22.0
14-May-12	Fine	Calm	13:24	Middle	0.3	25.1 26.6	25.9	7.2 7.1	7.2	6.2 6.4	6.3	88.4 81.5	85.0	6.8 6.2	6.5	27.0 30.2	28.6	21 20	20.5
16-May-12	Cloudy	Calm	16:49	Middle	0.3	24.7 26.2	25.5	7.1 7.0	7.1	6.7 6.8	6.8	93.5 86.2	89.9	7.0 6.5	6.8	26.1 29.1	27.6	33 35	34.0
18-May-12	Rainy	Calm	17:55	Middle	0.3	26.3 27.7	27.0	6.7 6.6	6.7	7.6 7.5	7.6	80.0 73.5	76.8	5.5 5.0	5.3	24.1 26.8	25.5	26 26	26.0
23-May-12	Sunny	Calm	08:40	Middle	0.3	26.3 26.9	26.6	7.7 7.7	7.7	6.9 6.7	6.8	80.0 75.7	77.9	6.7 6.4	6.6	25.1 27.2	26.2	15 16	15.5
25-May-12	Fine	Calm	08:48	Middle	0.3	26.2 26.4	26.3	7.5 8.1	7.8	6.6 6.3	6.5	72.2 67.3	69.8	7.1 6.6	6.9	28.3 29.2	28.8	17 18	17.5
28-May-12	Cloudy	Calm	12:40	Middle	0.3	26.4 25.9	26.2	7.5 7.9	7.7	6.7 6.7	6.7	79.5 76.4	78.0	6.7 6.8	6.8	25.1 27.6	26.4	34 33	33.5
30-May-12	Fine	Calm	13:56	Middle	0.3	28.1 27.4	27.8	7.7 7.6	7.7	6.7 6.9	6.8	69.7 68.2	69.0	6.9 6.5	6.7	26.7 28.5	27.6	56 55	55.5

Water Quality Monitoring Results at W5 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Den	th (m)	Water Tem	perature (°C)	ŗ	Н	Salin	nity ppt	DO Satu	ıration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бер	ui (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	10:27	Middle	0.4	26.3 27.1	26.7	9.1 7.2	8.2	7.6 7.3	7.5	64.4 78.8	71.6	6.2 6.9	6.6	26.6 28.0	27.3	46 46	46.0
4-May-12	Rainy	Calm	12:16	Middle	0.4	26.7 27.2	27.0	9.1 7.3	8.2	8.6 8.1	8.4	76.0 76.4	76.2	6.7 6.8	6.8	25.7 26.0	25.9	61 60	60.5
7-May-12	Sunny	Calm	13:11	Middle	0.4	26.4 26.5	26.5	9.1 7.2	8.2	7.3 7.3	7.3	64.4 78.8	71.6	6.2 6.9	6.6	26.6 28.0	27.3	27 27	27.0
9-May-12	Sunny	Calm	14:31	Middle	0.4	26.7 27.7	27.2	7.8 9.0	8.4	7.0 6.5	6.8	89.5 92.2	90.9	6.5 6.7	6.6	26.2 23.5	24.9	16 16	16.0
11-May-12	Fine	Calm	17:09	Middle	0.4	26.6 26.9	26.8	7.7 8.0	7.9	6.1 5.9	6.0	87.7 81.3	84.5	6.7 6.2	6.5	26.8 27.1	27.0	36 35	35.5
14-May-12	Fine	Calm	09:14	Middle	0.4	26.6 26.9	26.8	7.3 6.9	7.1	7.0 6.2	6.6	85.4 87.7	86.6	6.5 6.7	6.6	27.3 27.5	27.4	40 40	40.0
16-May-12	Cloudy	Calm	12:04	Middle	0.4	25.9 26.2	26.1	7.2 6.8	7.0	7.4 6.6	7.0	90.4 92.8	91.6	6.8 6.9	6.9	26.4 26.6	26.5	32 31	31.5
18-May-12	Rainy	Calm	12:20	Middle	0.4	26.5 26.8	26.7	4.8 5.0	4.9	6.0 5.2	5.6	80.2 80.0	80.1	5.3 5.2	5.3	26.6 28.0	27.3	35 35	35.0
21-May-12	Fine	Calm	13:27	Middle	0.4	26.8 26.8	26.8	8.2 8.1	8.2	4.5 4.2	4.4	89.0 89.1	89.1	6.3 6.3	6.3	22.6 23.2	22.9	16 18	17.0
23-May-12	Sunny	Calm	14:49	Middle	0.4	26.5 26.8	26.7	8.0 9.1	8.6	5.1 5.4	5.3	81.1 83.6	82.4	6.9 7.1	7.0	24.9 23.2	24.1	21 21	21.0
25-May-12	Fine	Calm	17:27	Middle	0.4	26.9 26.1	26.5	8.0 8.3	8.2	6.1 5.8	6.0	73.5 67.9	70.7	7.2 6.6	6.9	32.5 26.1	29.3	17 18	17.5
28-May-12	Cloudy	Calm	17:42	Middle	0.4	26.7 26.8	26.8	7.9 9.0	8.5	5.2 5.3	5.3	79.9 83.0	81.5	6.8 7.1	7.0	24.7 23.8	24.3	52 50	51.0
30-May-12	Fine	Calm	08:48	Middle	0.4	28.1 27.5	27.8	7.9 7.7	7.8	6.2 6.4	6.3	70.2 69.3	69.8	6.8 6.6	6.7	26.0 26.9	26.5	53 53	53.0

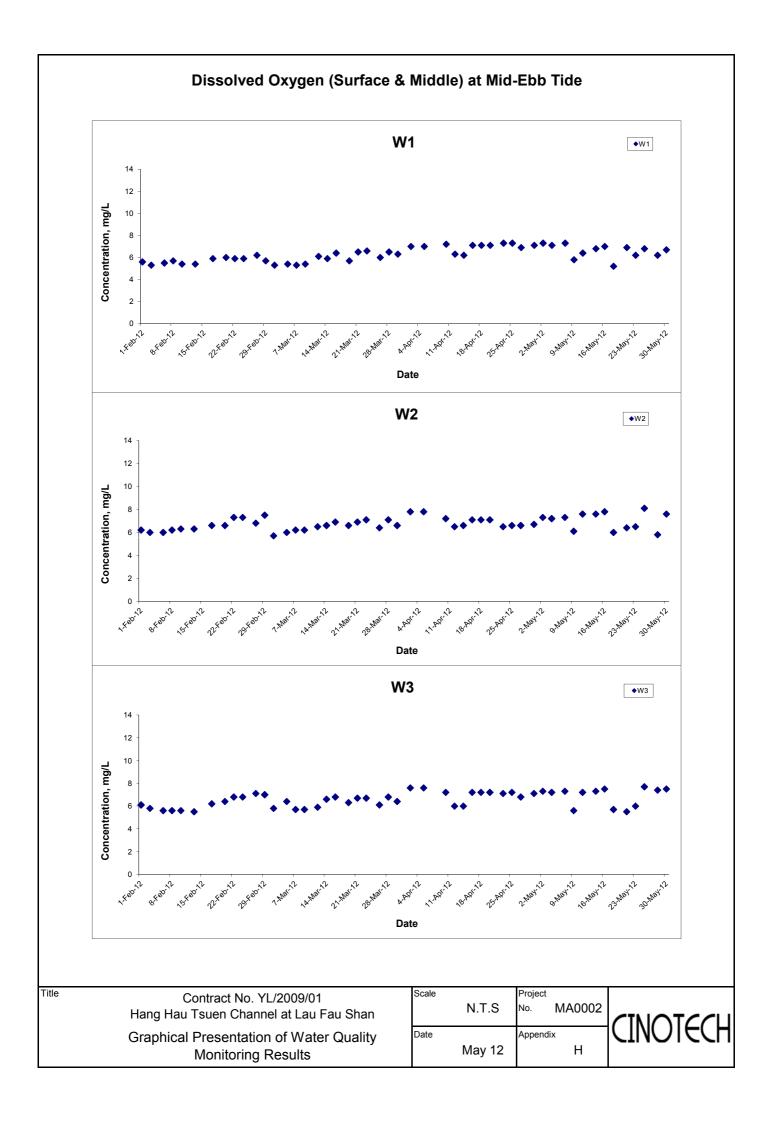
Water Quality Monitoring Results at W5 - Mid-Flood Tide

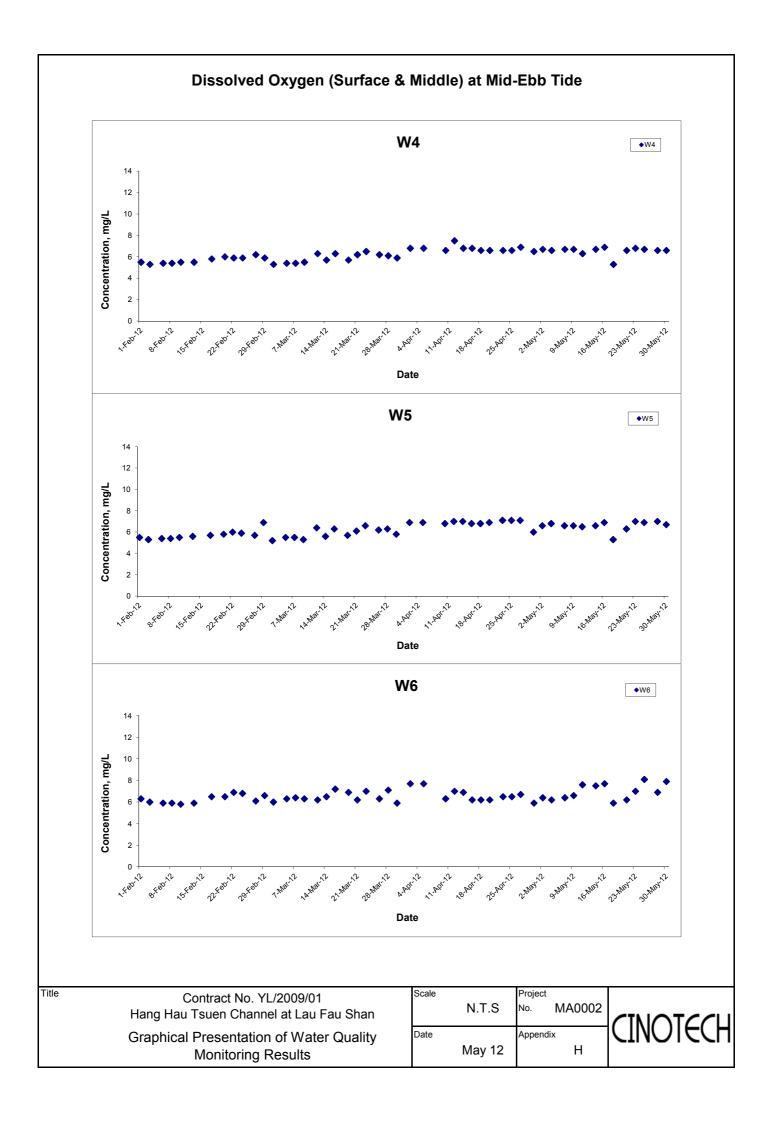
Date	Weather	Sea	Sampling	Dont	th (m)	Water Tem	perature (°C)	ř.	οH	Salin	nity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	16:21	Middle	0.4	26.5 27.4	27.0	7.9 9.1	8.5	7.9 7.4	7.7	85.1 85.9	85.5	7.1 7.2	7.2	26.5 23.8	25.2	42 42	42.0
4-May-12	Rainy	Calm	17:04	Middle	0.4	26.7 27.8	27.3	8.0 9.1	8.6	5.1 5.4	5.3	81.1 83.6	82.4	6.9 7.1	7.0	24.9 23.2	24.1	62 62	62.0
9-May-12	Sunny	Calm	08:29	Middle	0.4	25.5 26.3	25.9	9.0 7.1	8.1	6.3 6.3	6.3	77.2 87.3	82.3	5.6 6.3	6.0	26.3 27.6	27.0	15 15	15.0
11-May-12	Fine	Calm	09:46	Middle	0.4	26.2 26.5	26.4	7.8 7.4	7.6	6.7 6.0	6.4	82.6 85.2	83.9	6.3 6.5	6.4	29.1 29.3	29.2	24 23	23.5
14-May-12	Fine	Calm	13:25	Middle	0.4	26.8 26.0	26.4	7.2 7.6	7.4	6.4 6.2	6.3	90.7 83.3	87.0	6.9 6.4	6.7	31.8 25.6	28.7	17 18	17.5
16-May-12	Cloudy	Calm	16:50	Middle	0.4	26.4 25.6	26.0	7.1 7.5	7.3	6.8 6.6	6.7	95.9 88.2	92.1	7.2 6.6	6.9	30.8 24.7	27.8	29 29	29.0
18-May-12	Rainy	Calm	17:56	Middle	0.4	27.8 27.1	27.5	6.7 7.1	6.9	5.7 5.5	5.6	82.5 76.1	79.3	5.7 5.2	5.5	26.5 23.8	25.2	37 37	37.0
23-May-12	Sunny	Calm	08:41	Middle	0.4	26.5 26.2	26.4	9.1 7.3	8.2	8.6 8.1	8.4	76.0 76.4	76.2	6.7 6.8	6.8	25.7 26.0	25.9	13 13	13.0
25-May-12	Fine	Calm	08:49	Middle	0.4	26.4 26.8	26.6	8.1 7.6	7.9	6.7 5.9	6.3	63.8 72.2	68.0	6.7 6.9	6.8	27.9 28.1	28.0	21 20	20.5
28-May-12	Cloudy	Calm	12:41	Middle	0.4	25.9 27.5	26.7	8.7 7.4	8.1	7.6 7.9	7.8	60.6 66.1	63.4	6.0 6.1	6.1	26.3 23.9	25.1	45 45	45.0
30-May-12	Fine	Calm	13:57	Middle	0.4	27.7 27.0	27.4	8.0 8.1	8.1	6.2 6.0	6.1	70.6 69.7	70.2	6.8 6.5	6.7	30.8 25.2	28.0	62 64	63.0

Water Quality Monitoring Results at W6 - Mid-Ebb Tide

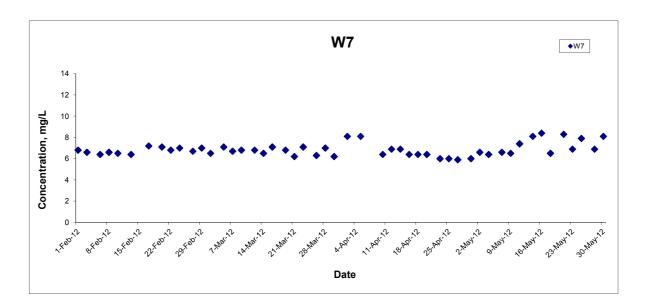
Date	Weather	Sea	Sampling	Den	th (m)	Water Tem	perature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бер	ui (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	10:28	Middle	0.4	26.1 26.6	26.4	7.2 9.1	8.2	30.3 30.5	30.4	70.4 67.3	68.9	6.3 6.4	6.4	17.2 17.3	17.3	52 53	52.5
4-May-12	Rainy	Calm	12:17	Middle	0.4	26.3 27.0	26.7	7.3 9.0	8.2	31.5 31.4	31.5	66.4 65.0	65.7	6.1 6.2	6.2	15.7 16.2	16.0	74 72	73.0
7-May-12	Sunny	Calm	13:12	Middle	0.4	26.3 26.1	26.2	7.2 9.1	8.2	30.3 31.5	30.9	70.4 67.3	68.9	6.3 6.4	6.4	16.1 16.8	16.5	15 15	15.0
9-May-12	Sunny	Calm	14:31	Middle	0.4	25.6 27.7	26.7	7.7 7.5	7.6	32.8 31.0	31.9	89.7 90.6	90.2	6.5 6.6	6.6	18.3 17.6	18.0	45 44	44.5
11-May-12	Fine	Calm	17:11	Middle	0.4	26.8 26.1	26.5	7.9 8.0	8.0	32.8 32.1	32.5	99.3 99.3	99.3	7.6 7.6	7.6	18.0 18.6	18.3	55 51	53.0
14-May-12	Fine	Calm	09:15	Middle	0.4	27.0 26.5	26.8	7.7 7.6	7.7	32.4 31.2	31.8	98.5 96.1	97.3	7.5 7.4	7.5	19.1 20.1	19.6	46 46	46.0
16-May-12	Cloudy	Calm	12:05	Middle	0.4	26.3 25.8	26.1	7.6 7.5	7.6	34.0 32.7	33.4	104.0 101.5	102.8	7.8 7.6	7.7	18.5 16.3	17.4	66 65	65.5
18-May-12	Rainy	Calm	12:21	Middle	0.4	26.9 26.4	26.7	5.8 5.6	5.7	31.9 30.8	31.4	90.3 87.7	89.0	6.0 5.8	5.9	15.5 15.4	15.5	56 57	56.5
21-May-12	Fine	Calm	13:27	Middle	0.4	25.5 26.6	26.1	7.9 7.8	7.9	36.3 31.9	34.1	88.1 86.4	87.3	6.2 6.1	6.2	17.1 16.4	16.8	26 26	26.0
23-May-12	Sunny	Calm	14:49	Middle	0.4	26.3 26.7	26.5	7.8 7.6	7.7	34.5 33.1	33.8	80.5 83.7	82.1	6.9 7.0	7.0	16.2 16.7	16.5	20 20	20.0
25-May-12	Fine	Calm	17:29	Middle	0.4	27.1 26.3	26.7	8.2 8.3	8.3	32.4 31.7	32.1	93.9 94.1	94.0	8.1 8.1	8.1	20.5 20.6	20.6	29 27	28.0
28-May-12	Cloudy	Calm	17:43	Middle	0.4	25.5 26.6	26.1	7.6 7.7	7.7	35.0 32.9	34.0	79.8 83.6	81.7	6.9 6.9	6.9	17.0 16.6	16.8	56 55	55.5
30-May-12	Fine	Calm	08:50	Middle	0.4	27.7 27.0	27.4	8.2 8.2	8.2	27.9 27.8	27.9	101.0 98.7	99.9	8.2 7.6	7.9	17.7 17.5	17.6	45 44	44.5

Water Quality Monitoring Results at W6 - Mid-Flood Tide


Date	Weather	Sea	Sampling	Dont	h (m)	Water Tem	perature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	16:21	Middle	0.4	25.4 27.4	26.4	7.8 7.6	7.7	33.7 32.0	32.9	84.3 86.3	85.3	7.1 7.1	7.1	18.5 18.6	18.6	43 45	44.0
4-May-12	Rainy	Calm	17:04	Middle	0.4	25.5 27.7	26.6	7.8 7.6	7.7	34.5 33.1	33.8	80.5 83.7	82.1	6.9 7.0	7.0	16.2 15.5	15.9	57 57	57.0
9-May-12	Sunny	Calm	08:30	Middle	0.4	25.3 25.8	25.6	7.2 9.0	8.1	29.4 29.5	29.5	79.3 79.9	79.6	5.7 5.8	5.8	16.8 15.9	16.4	44 43	43.5
11-May-12	Fine	Calm	09:47	Middle	0.4	26.6 26.2	26.4	8.2 8.1	8.2	32.5 31.3	31.9	95.5 92.9	94.2	7.3 7.1	7.2	20.3 20.5	20.4	58 57	57.5
14-May-12	Fine	Calm	13:26	Middle	0.4	26.9 26.2	26.6	7.4 7.5	7.5	32.7 32.0	32.4	102.6 102.8	102.7	7.9 7.9	7.9	16.9 17.4	17.2	49 49	49.0
16-May-12	Cloudy	Calm	16:51	Middle	0.4	26.5 25.8	26.2	7.3 7.4	7.4	34.3 33.5	33.9	108.2 108.4	108.3	8.1 8.1	8.1	16.4 16.8	16.6	58 60	59.0
18-May-12	Rainy	Calm	17:57	Middle	0.4	28.0 27.3	27.7	6.9 7.0	7.0	32.7 31.9	32.3	94.1 94.1	94.1	6.6 6.6	6.6	18.5 16.8	17.7	60 60	60.0
23-May-12	Sunny	Calm	08:42	Middle	0.4	26.1 26.0	26.1	7.3 9.0	8.2	31.5 31.4	31.5	66.4 65.0	65.7	6.1 6.2	6.2	17.5 17.2	17.4	22 22	22.0
25-May-12	Fine	Calm	08:50	Middle	0.4	26.9 26.4	26.7	8.4 8.3	8.4	32.1 30.9	31.5	89.6 92.3	91.0	7.8 7.6	7.7	19.5 18.8	19.2	27 25	26.0
28-May-12	Cloudy	Calm	12:42	Middle	0.4	25.8 26.6	26.2	7.4 9.2	8.3	32.3 33.7	33.0	76.8 65.8	71.3	6.4 6.2	6.3	15.4 15.7	15.6	45 46	45.5
30-May-12	Fine	Calm	13:52	Middle	0.4	27.7 27.1	27.4	8.0 8.3	8.2	28.9 28.1	28.5	100.3 99.5	99.9	8.1 7.9	8.0	16.8 16.6	16.7	56 56	56.0

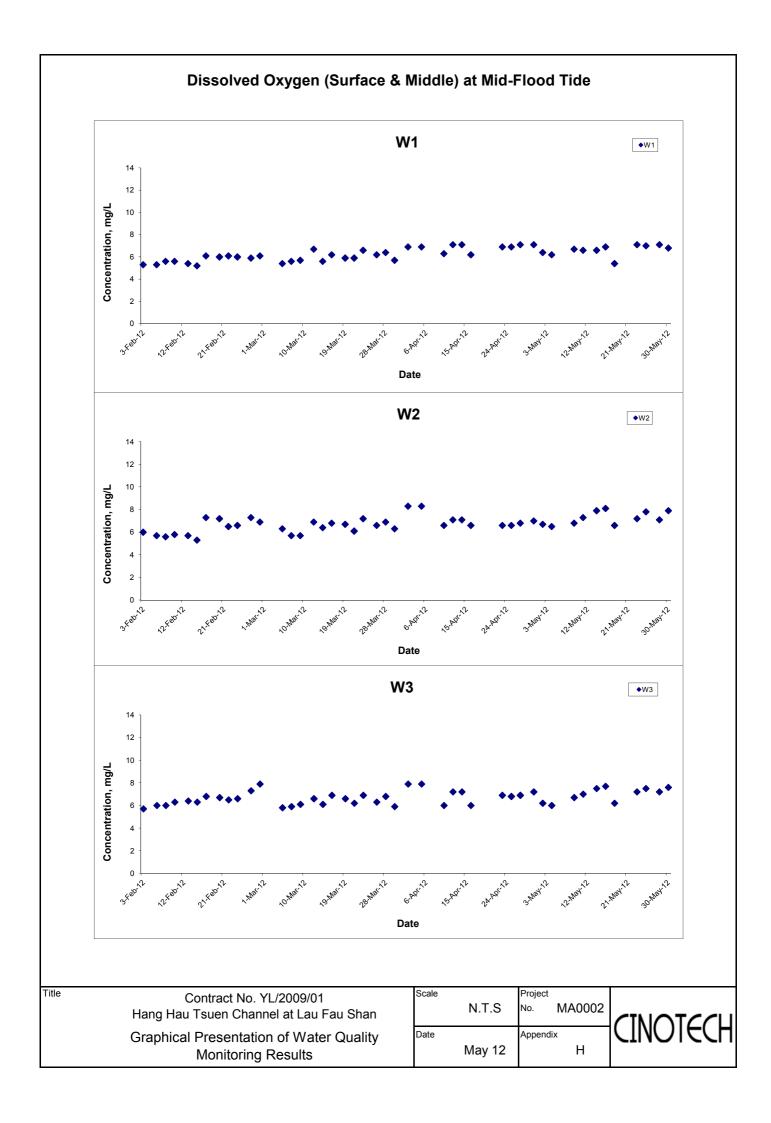

Water Quality Monitoring Results at W7 - Mid-Ebb Tide

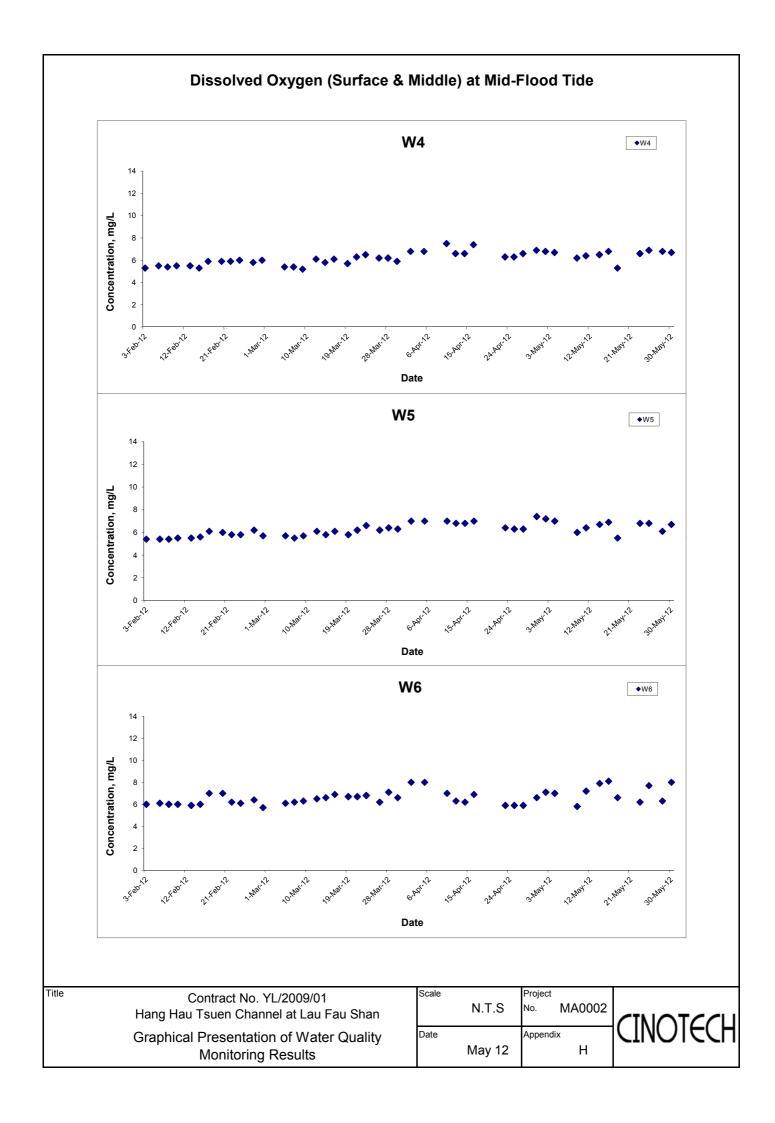
Date	Weather	Sea	Sampling	Deni	h (m)	Water Tem	perature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бер	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	10:28	Middle	0.4	26.0 26.7	26.4	8.3 8.0	8.2	33.7 32.0	32.9	65.7 68.1	66.9	6.5 6.6	6.6	15.5 16.1	15.8	56 55	55.5
4-May-12	Rainy	Calm	12:18	Middle	0.4	26.1 26.9	26.5	8.3 8.1	8.2	34.6 33.1	33.9	61.9 65.5	63.7	6.3 6.4	6.4	18.2 18.4	18.3	57 55	56.0
7-May-12	Sunny	Calm	13:12	Middle	0.4	26.2 26.1	26.2	8.3 8.0	8.2	33.7 32.0	32.9	65.7 68.1	66.9	6.5 6.6	6.6	15.5 16.1	15.8	15 15	15.0
9-May-12	Sunny	Calm	14:33	Middle	0.4	26.6 27.0	26.8	8.7 7.5	8.1	26.1 26.8	26.5	93.4 84.7	89.1	6.8 6.1	6.5	16.8 16.3	16.6	50 52	51.0
11-May-12	Fine	Calm	17:11	Middle	0.4	26.2 26.8	26.5	8.1 8.1	8.1	32.5 31.3	31.9	103.3 89.0	96.2	7.9 6.8	7.4	20.1 19.4	19.8	50 50	50.0
14-May-12	Fine	Calm	09:16	Middle	0.4	26.4 26.3	26.4	7.4 7.7	7.6	33.2 32.3	32.8	107.6 103.6	105.6	8.2 7.9	8.1	17.4 17.1	17.3	56 55	55.5
16-May-12	Cloudy	Calm	12:05	Middle	0.4	25.7 25.6	25.7	7.3 7.6	7.5	34.7 33.8	34.3	113.4 109.2	111.3	8.5 8.2	8.4	18.5 18.7	18.6	60 62	61.0
18-May-12	Rainy	Calm	12:22	Middle	0.4	26.3 26.2	26.3	6.5 6.1	6.3	32.7 31.8	32.3	99.4 94.1	96.8	6.7 6.3	6.5	15.5 16.1	15.8	47 48	47.5
21-May-12	Fine	Calm	13:29	Middle	0.4	26.9 26.8	26.9	7.9 7.6	7.8	33.5 30.4	32.0	89.2 88.9	89.1	8.3 8.2	8.3	15.2 16.3	15.8	25 26	25.5
23-May-12	Sunny	Calm	14:51	Middle	0.4	26.5 26.5	26.5	8.9 7.6	8.3	28.0 28.6	28.3	84.1 77.6	80.9	7.2 6.6	6.9	16.8 16.8	16.8	24 22	23.0
25-May-12	Fine	Calm	17:29	Middle	0.4	26.5 26.1	26.3	8.3 8.3	8.3	32.1 30.9	31.5	99.9 93.0	96.5	8.5 7.3	7.9	19.5 19.8	19.7	28 30	29.0
28-May-12	Cloudy	Calm	17:44	Middle	0.4	26.3 27.0	26.7	8.9 7.7	8.3	27.6 28.4	28.0	83.9 76.7	80.3	7.2 6.5	6.9	16.9 17.3	17.1	53 55	54.0
30-May-12	Fine	Calm	08:50	Middle	0.4	28.0 27.0	27.5	8.2 8.2	8.2	28.9 28.1	28.5	99.1 99.8	99.5	8.1 8.0	8.1	14.2 16.2	15.2	46 46	46.0


Water Quality Monitoring Results at W7 - Mid-Flood Tide

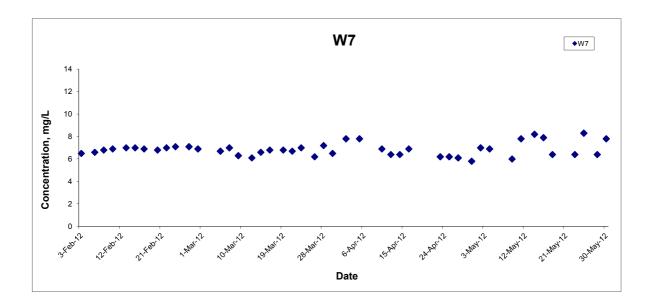
Date	Weather	Sea	Sampling	Dont	h (m)	Water Tem	perature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-May-12	Cloudy	Calm	16:22	Middle	0.4	26.3 26.8	26.6	8.9 7.6	8.3	27.1 27.7	27.4	87.8 80.0	83.9	7.3 6.7	7.0	16.5 16.3	16.4	55 56	55.5
4-May-12	Rainy	Calm	17:06	Middle	0.4	26.7 26.9	26.8	8.9 7.6	8.3	28.0 28.6	28.3	84.1 77.6	80.9	7.2 6.6	6.9	16.4 16.8	16.6	62 62	62.0
9-May-12	Sunny	Calm	08:30	Middle	0.4	25.2 25.9	25.6	8.2 7.9	8.1	32.8 31.0	31.9	81.8 82.8	82.3	5.9 6.0	6.0	15.3 15.9	15.6	60 62	61.0
11-May-12	Fine	Calm	09:48	Middle	0.4	26.1 25.9	26.0	7.8 8.2	8.0	33.2 32.3	32.8	104.6 99.3	102.0	8.0 7.6	7.8	18.0 18.3	18.2	68 69	68.5
14-May-12	Fine	Calm	13:27	Middle	0.4	26.3 26.3	26.3	7.6 7.4	7.5	32.4 32.3	32.4	107.5 106.8	107.2	8.2 8.2	8.2	19.0 18.7	18.9	57 58	57.5
16-May-12	Cloudy	Calm	16:52	Middle	0.4	25.9 25.5	25.7	7.5 7.5	7.5	34.0 32.7	33.4	113.3 97.5	105.4	8.5 7.3	7.9	18.3 19.2	18.8	54 51	52.5
18-May-12	Rainy	Calm	17:58	Middle	0.4	27.4 27.1	27.3	7.1 7.1	7.1	32.4 31.1	31.8	98.1 83.8	91.0	6.9 5.8	6.4	18.5 18.7	18.6	63 62	62.5
23-May-12	Sunny	Calm	08:43	Middle	0.4	25.9 25.9	25.9	8.3 8.1	8.2	34.6 33.1	33.9	61.9 65.5	63.7	6.3 6.4	6.4	16.5 16.3	16.4	22 21	21.5
25-May-12	Fine	Calm	08:51	Middle	0.4	26.3 26.1	26.2	8.1 8.4	8.3	32.8 31.9	32.4	102.0 98.0	100.0	8.5 8.1	8.3	16.9 17.5	17.2	34 32	33.0
28-May-12	Cloudy	Calm	12:42	Middle	0.4	25.1 25.8	25.5	8.3 7.9	8.1	33.3 33.4	33.4	61.3 66.1	63.7	6.3 6.5	6.4	17.3 17.0	17.2	46 47	46.5
30-May-12	Fine	Calm	13:59	Middle	0.4	27.4 26.7	27.1	8.1 8.2	8.2	27.9 27.7	27.8	101.7 99.4	100.6	8.3 7.3	7.8	17.5 17.1	17.3	57 57	57.0

Dissolved Oxygen (Surface & Middle) at Mid-Ebb Tide




Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Graphical Presentation of Water Quality Monitoring Results

Title


Scale		Project	
	N.T.S	No.	MA0002
Date		Append	lix
	May 12		Н

Dissolved Oxygen (Surface & Middle) at Mid-Flood Tide

Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Graphical Presentation of Water Quality Monitoring Results

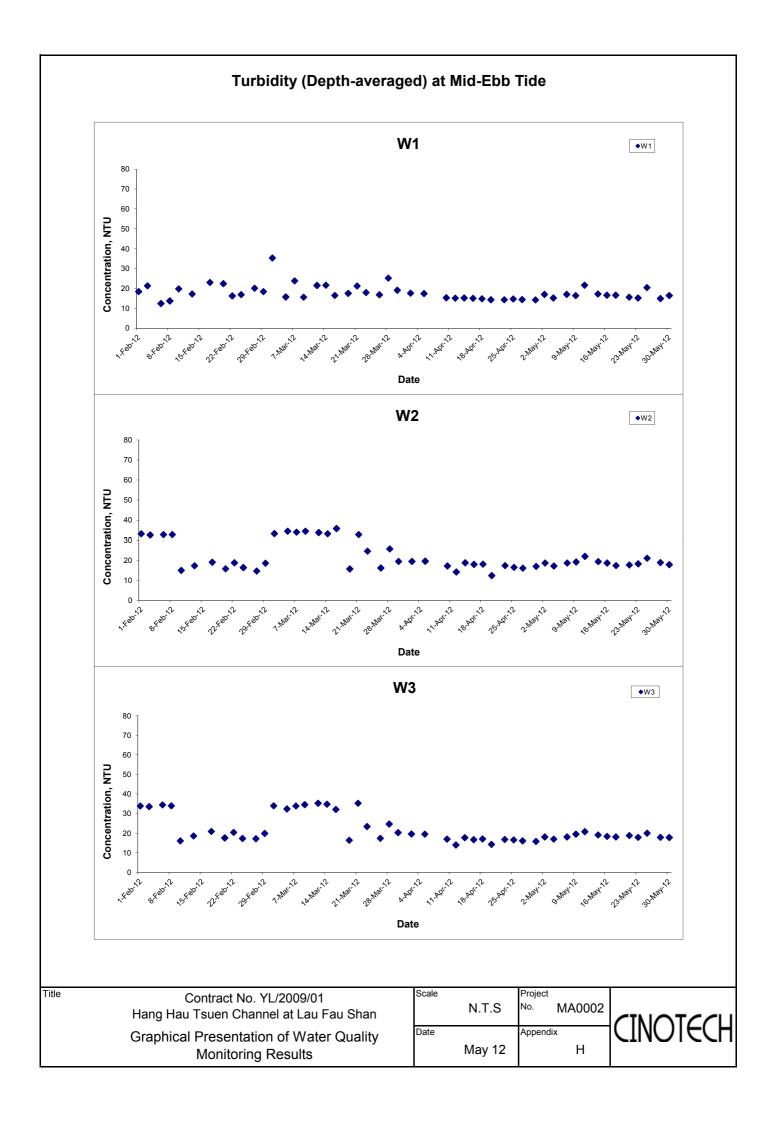
Title

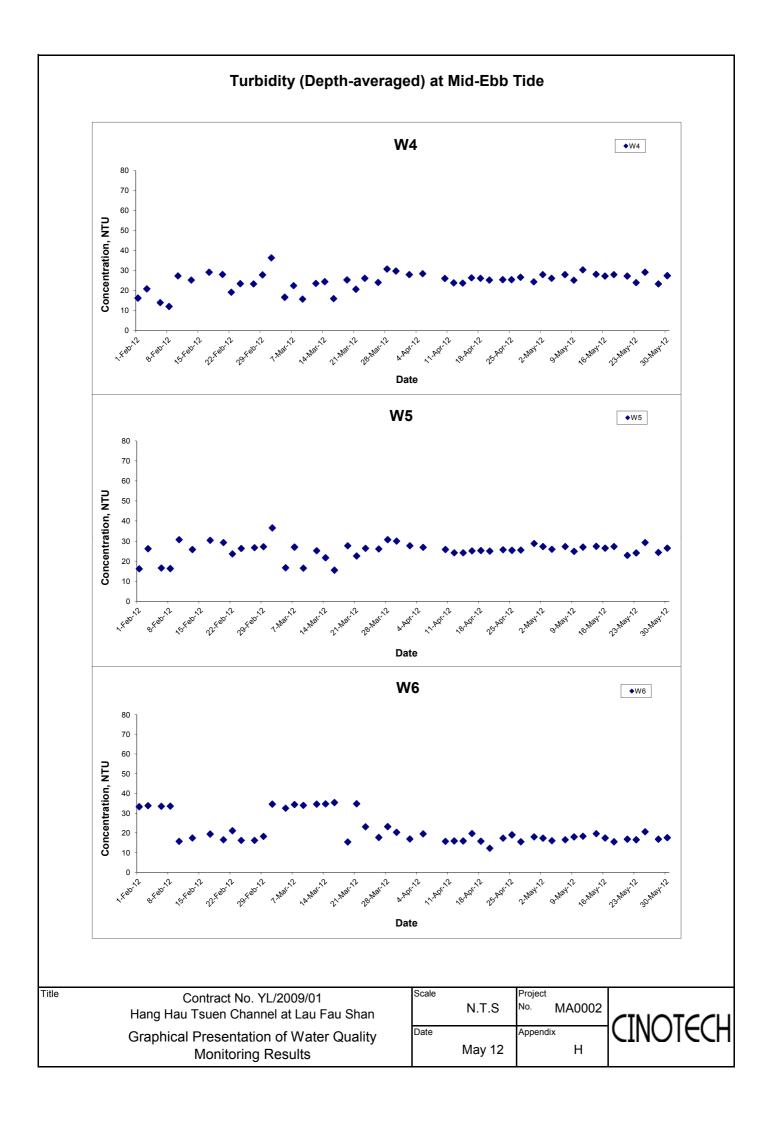
Scale

N.T.S

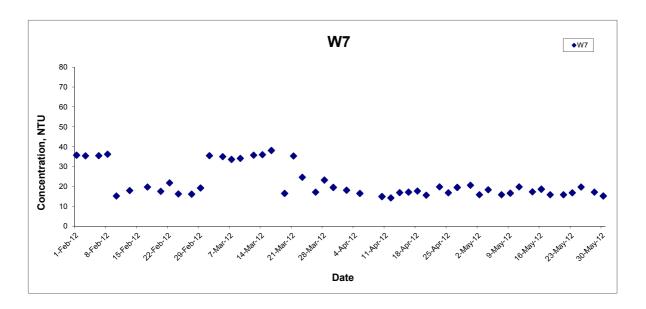
Project

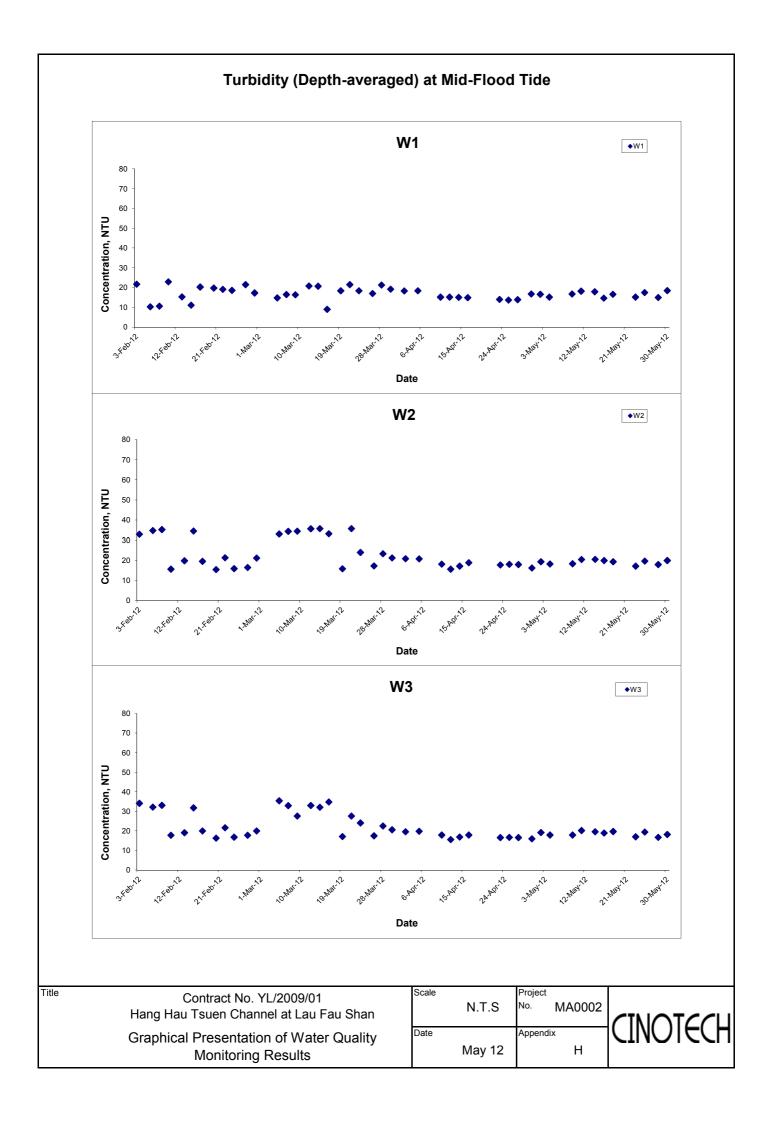
No. MA0002

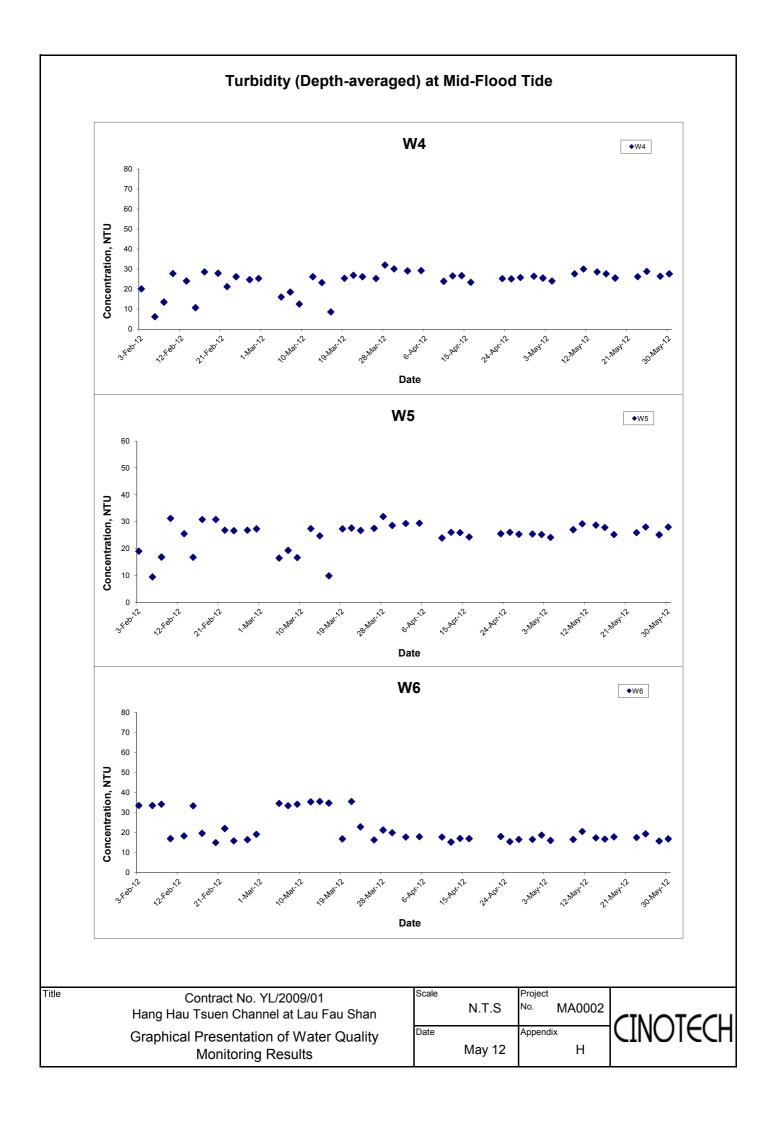

Date


May 12

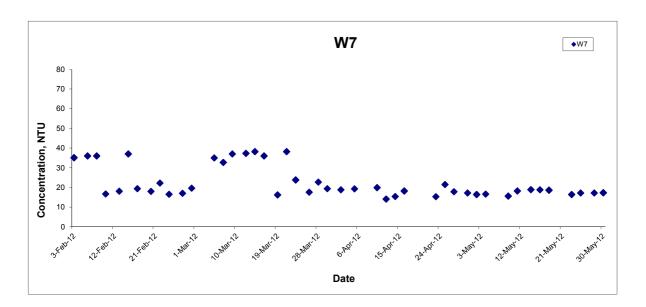
Appendix


H

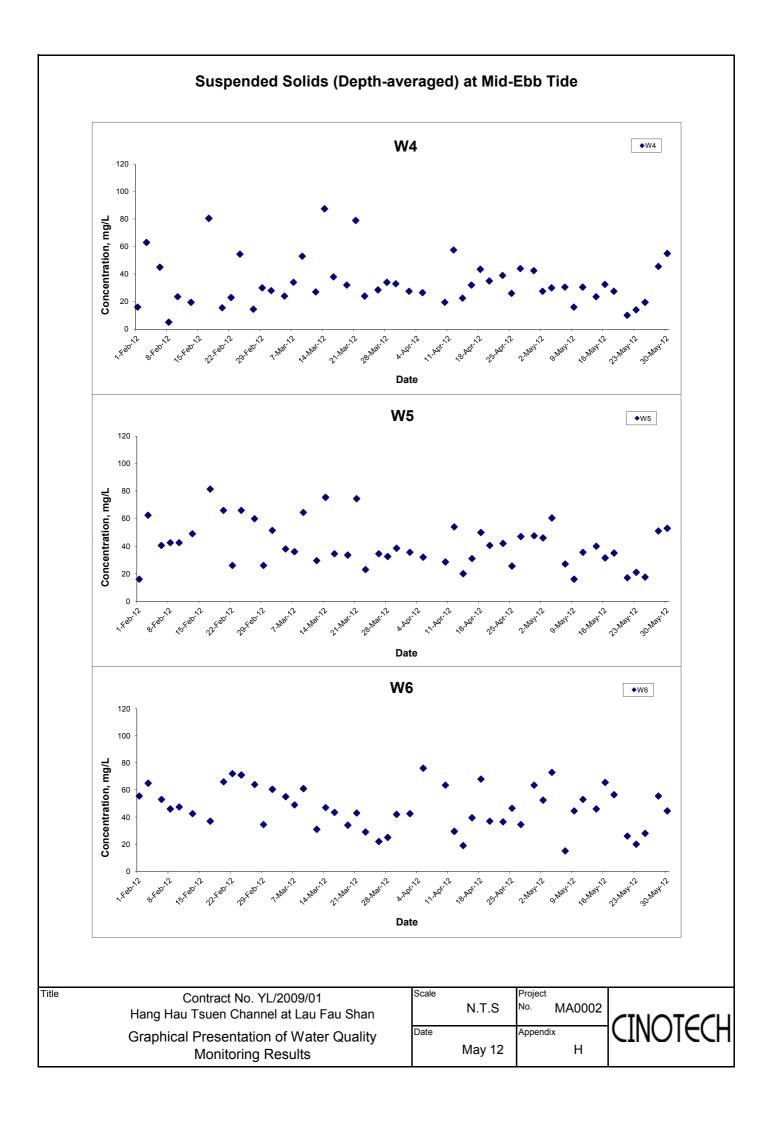

Turbidity (Depth-averaged) at Mid-Ebb Tide



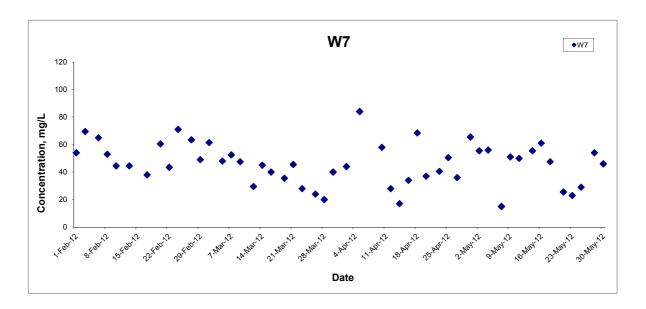
Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Graphical Presentation of Water Quality Monitoring Results

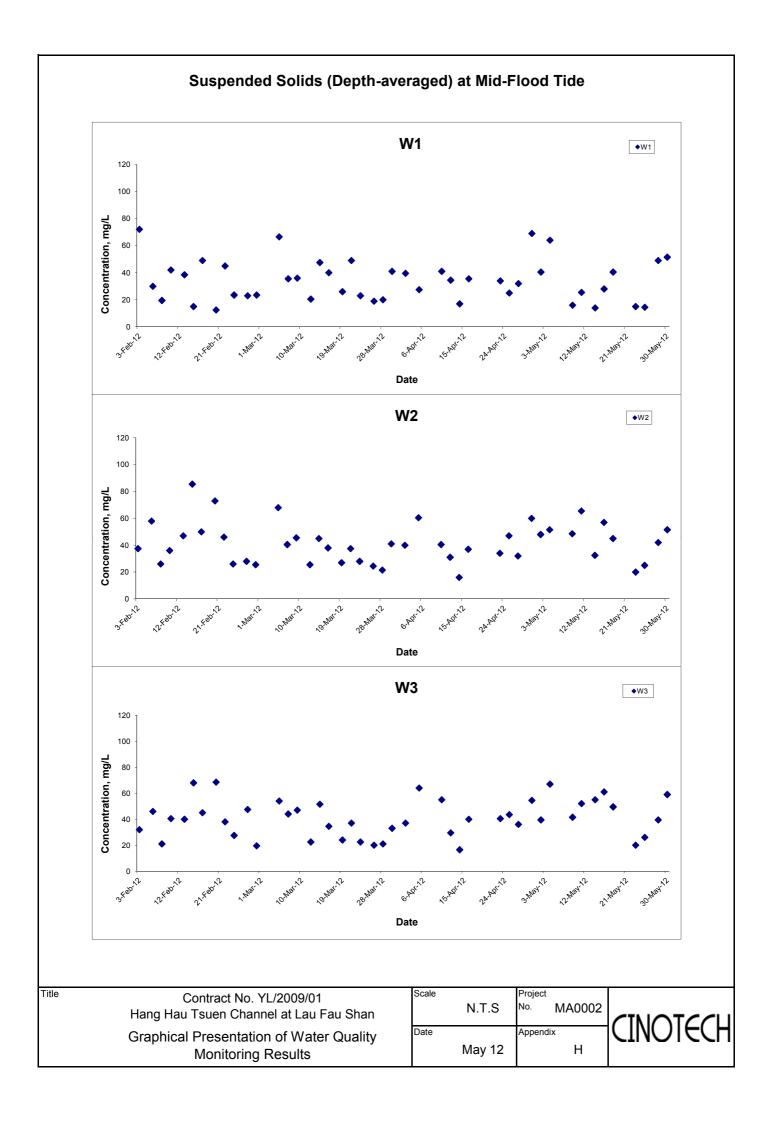

Title

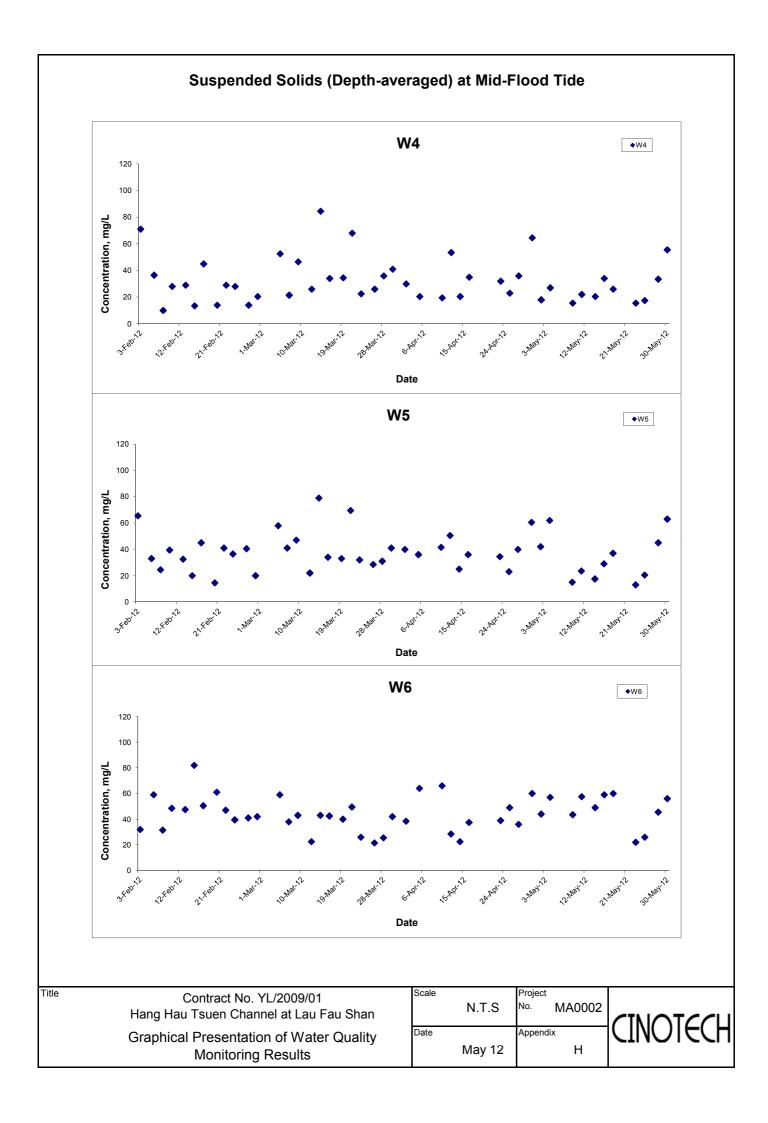

Turbidity (Depth-averaged) at Mid-Flood Tide



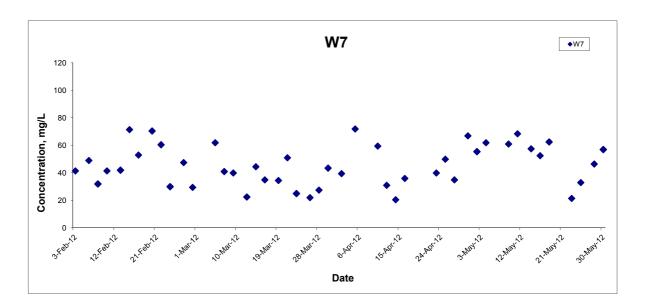
Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Graphical Presentation of Water Quality Monitoring Results


Title


Suspended Solids (Depth-averaged) at Mid-Ebb Tide



Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Graphical Presentation of Water Quality Monitoring Results


Title

Suspended Solids (Depth-averaged) at Mid-Flood Tide

Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Graphical Presentation of Water Quality Monitoring Results

Title

Scale N.T.S Project No. MA0002

Date Appendix H

APPENDIX I SUMMARY OF EXCEEDANCE

APPENIDX I – SUMMARY OF EXCEEDANCE

Reporting Month: May 2012

- a) Exceedance Report for 1-hr TSP (NIL)
- b) Exceedance Report for 24-hr TSP (NIL)
- c) Exceedance Report for Construction Noise (NIL)
- d) Exceedance Report for water quality (NIL)

APPENDIX J SITE AUDIT SUMMARY

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	120503
Date	3 May 2012 (Thursday)
Time	15:00-16:00

Ref. No.	Non-Compliance	Related Item No.
	None identified	

Ref. No.	Observations /Remarks	Related Item No.
	Part A - Water Quality	
120503-R01	• To ensure the U-channel is free from blockage by sand/sediment.	A 1
120503-R02	To provide wheel washing for vehicles leaving the site area.	A 13
	Part B – Ecology	
	1	
	No environmental deficiency was identified during the site inspection.	
	Part C – Landscape and Visual	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part E – Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	The charlemental deficiency was identified during the site inspection.	
	Part F – Waste / Chemical Management	
	 No environmental deficiency was identified during the site inspection. 	
	Part G – Permit / Licences	
	No environmental deficiency was identified during the site inspection.	
	Part H – Others	
	Follow-up on previous audit session (Ref. No.120426): All the items were improved/rectified during the site inspection.	
	Part I – Remarks	
	• N/A	

	Name	Signature,	Date
Recorded by	Mr. Gary Lau	frey L	4 May 2012
Checked by	Dr. Priscilla Choy	WF	4 May 2012

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	120510
Date	10 May 2012 (Thursday)
Time	14:00-15:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Observations /Remarks	Related Item No.
	Part A – Water Quality	
120510-R01	To provide wheel washing for vehicles leaving the site area and clear the mud trail on public road.	A 12 & 13
	Part B – Ecology No environmental deficiency was identified during the site inspection.	
	• 100 chandleng detection,	
	Part C – Landscape and Visual	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
120510-R02	The exposed and used cement bags should be disposed of to reduce dust emission.	D 6
	Part E – Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	innae
	Part F – Waste / Chemical Management	
1	No environmental deficiency was identified during the site inspection.	
	Part G – Permit / Licences	
	No environmental deficiency was identified during the site inspection.	-
	Part H Others	
	Follow-up on previous audit session (Ref. No.120503): Ref: 120503-R02 was found outstanding and will be followed up in the next site inspection.	
	Part I – Remarks	
	 Regular water spraying should be provided to unpaved road to reduce dust generation. 	

	Name	Signature	Date
Recorded by	Mr. Gary Lau	land.	10 May 2012
Checked by	Dr. Priscilla Choy	NA	10 May 2012

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	120517
Date	17 May 2012 (Thursday)
Time	15:00-16:00

Ref. No.	Non-Compliance	Related Item No.
_	None identified	•
Ref. No.	Observations /Remarks	Related Item No.
	Part A – Water Quality	
120517-001	• Slope area next to U-channel should be stabilized and prevent the surface to get into the drainage channel.	A 7
120517-O02	To prevent the over-flow of wastewater at upstream.	A 2
	Part B – Ecology	
	No environmental deficiency was identified during the site inspection.	
	Part C – Landscape and Visual	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
	No environmental deficiency was identified during the site inspection.	
	Part E – Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste / Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part G – Permit / Licences	
	No environmental deficiency was identified during the site inspection.	
	Part H – Others	
	Follow-up on previous audit session (Ref. No.120510): All the items were improved/rectified during the site inspection.	
	Part I – Remarks	
	• N/A	

	Name	Signature	Date
Recorded by	Mr. Gary Lau	lang 1.	17 May 2012
Checked by	Dr. Priscilla Choy	NI	17 May 2012

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	120523
Date	23 May 2012 (Wednesday)
Time	14:00-14:45

Ref. No.	Non-Compliance	Related Item No.
_	None identified	-

Ref. No.	Observations /Remarks	Related Item No.
	Part A – Water Quality	
	No environmental deficiency was identified during the site inspection.	THE COLUMN TWO IS NOT
	Part B – Ecology	T. S. C. S.
	No environmental deficiency was identified during the site inspection.	
	Part C – Landscape and Visual	
	No environmental deficiency was identified during the site inspection.	
	Part D – Air Quality	
120523-001	Debris and dust on the public road should be cleared regularly to reduce	D3
120323-001	dust generation.	2
	Part E – Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste / Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part G – Permit / Licences	
	No environmental deficiency was identified during the site inspection.	
	Part H – Others	
	Follow-up on previous audit session (Ref. No.120517): All the items were improved/rectified during the site inspection.	
	Part I – Remarks	
	• N/A	

	Name	Signature	Date		
Recorded by	Mr. Gary Lau	mil	23 May 2012		
Checked by	Dr. Priscilla Choy	WX	23 May 2012		

Record Summary of Environmental Site Inspection

Inspection Information

Checklist Reference Number	120531
Date	31 May 2012 (Thursday)
Time	15:00-16:00

Ref. No.	Non-Compliance	Related Item No.
82.	None identified	-

Ref. No.	Observations /Remarks	Related Item No.
	Part A – Water Quality	
120531-R01	Exposed stockpile should be covered to reduce dust emission and runoff generation.	A 9
	Part B – Ecology	
	No environmental deficiency was identified during the site inspection.	
	Part C – Landscape and Visual	
-	No environmental deficiency was identified during the site inspection.	
	Part D Air Quality	
120531-R01	Exposed stockpile should be covered to reduce dust emission and runoff generation.	D 6
	Part E – Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part F – Waste / Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part G – Permit / Licences	-
	No environmental deficiency was identified during the site inspection.	
	Part H – Others	
	Follow-up on previous audit session (Ref. No.120523): All the items were improved/rectified during the site inspection.	
	Part I – Remarks	
	• N/A	

	Name	Signature	Date
Recorded by	Mr. Gary Lau	Ban L.	31 May 2012
Checked by	Dr. Priscilla Choy	NJ	31 May 2012

APPENDIX K SUMMARY OF AMOUNT OF WASTE GENERATED

Kwan On	Construction Co Ltd
Contract	No.: YL/2009/01

Name of Department: CEDD Contract No. : YL/2009/01

Monthly Summary Waste Flow Table for 2010

		Annual Quar	ntities of Inert C	&D Materials Ge	nerated Monthly		Annual Quantities of C&D Materials Generated Monthly					
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse	
	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)	
Jan	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00984	
Feb	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.01751	
Mar	Nil	Nil	Nil	Nil	Nil	0.09225	Nil	Nil	Nil	Nil	0.14739	
Apr	0.44356	Nil	Nil	Nil	0.44356	0.15015	Nil	Nil	Nil	Nil	0.15099	
May	0.34204	Nil	Nil	Nil	0.34204	0.20970	Nil	Nil	Nil	Nil	0.01277	
June	0.33543	Nil	Nil	Nil	0.33543	0.60841	Nil	Nil	Nil	Nil	0.02963	
Sub-total	1.12103	Nil	Nil	Nil	1.12103	1.06051	Nil	Nil	Nil	Nil	0.45669	
July	0.69356	Nil	0.00250	Nil	0.69106	0.74752	Nil	Nil	Nil	Nil	0.01077	
Aug	0.03504	Nil	0.00110	Nil	0.03394	0.78783	Nil	Nil	Nil	Nil	0.00088	
Sept	0.00200	Nil	0.00200	Nil	Nil	0.16154	1.10000	Nil	Nil	Nil	0.00056	
Oct	1.25952	Nil	Nil	Nil	1.25952	0.12418	Nil	Nil	Nil	Nil	0.00239	
Nov	Nil	Nil	Nil	Nil	Nil	Nil	1.30000	Nil	Nil	Nil	0.03107	
Dec	0.00310	Nil	0.00310	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00255	
Total	3.11425	Nil	0.00870	Nil	3.10555	2.88158	2.40000	Nil	Nil	Nil	0.50491	

	Forecast of Total Quantities of C&D Materials to be Generated from the Contractor*										
Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse	
(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)	
21.00000		8.00000		12.00000	3.40000						
										3.80000	

Notes:

The performance targets are given in PS Clause 1.108(14).

The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

*The Contractor shall also submit the latest forecast of the total amount C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³.

Kwan On Construction Co Ltd Contract No.: YL/2009/01

Name of Department: CEDD Contract No. : YL/2009/01

Monthly Summary Waste Flow Table for 2011

		Annual Quar	ntities of Inert C	&D Materials Ge		Annual Quantities of C&D Materials Generated Monthly					
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse
	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	$(\text{in '}000 \text{ m}^3)$
Jan	Nil	0.05000	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.06000	0.00362
Feb	Nil	Nil	Nil	Nil	Nil	0.017958	Nil	Nil	Nil	Nil	0.00020
Mar	Nil	Nil	Nil	Nil	Nil	0.671667	Nil	Nil	Nil	Nil	0.02189
Apr	Nil	30.00000	30.00000	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00602
May	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00220
June	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00300	0.00198
Sub-total	Nil	30.05000	30.00000	Nil	Nil	0.689625	Nil	Nil	Nil	0.06300	0.03591
July	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00140
Aug	1.58417	Nil	Nil	Nil	1.58417	Nil	Nil	Nil	Nil	Nil	0.00897
Sept	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00337
Oct	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00098
Nov	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00087
Dec	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00230
Total	1.58417	30.05000	30.00000	Nil	1.58417	0.689625	Nil	Nil	Nil	0.06300	0.05380

	Forecast of Total Quantities of C&D Materials to be Generated from the Contractor*										
Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse	
(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)	
21.00000		8.00000		12.00000	3.40000						
										3.80000	

Notes:

The performance targets are given in PS Clause 1.108(14).

The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

*The Contractor shall also submit the latest forecast of the total amount C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³.

Kwan On	Construction Co Ltd
Contract	No · VI./2009/01

Name of Department: CEDD Contract No. : YL/2009/01

Monthly Summary Waste Flow Table for 2012

		Annual Quar	ntities of Inert C	&D Materials Ge	nerated Monthly		An	nual Quantities of	f C&D Materials	Generated Mont	hly
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse
	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
Jan	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00330
Feb	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00089
Mar	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00316
Apr	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00147
May	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.00161
June											
Sub-total											
July											
Aug											
Sept											
Oct											
Nov											
Dec											
Total											

	Forecast of Total Quantities of C&D Materials to be Generated from the Contractor*									
Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse
(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
21.00000		8.00000		12.00000	3.40000					
										3.80000

Notes:

- The performance targets are given in PS Clause 1.108(14).

 The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

 Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

 *The Contractor shall also submit the latest forecast of the total amount C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³.

APPENDIX L EVENT/ ACTION PLANS

APPENDIX L

Tale L-1 Event/Action Plan for Air Quality

		ACTION		
EVENT	ET Leader	IEC	ER	Contractor
ACTION LEVEL				
Exceedance for one sample	Identify source Inform IEC, ER and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily	Check monitoring data submitted by ET Leader Check Contractor's working method	Notify Contractor	Rectify any unacceptable practice Amend working methods if appropriate
Exceedance for two or more consecutive samples	Identify source Inform IEC, ER and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily Discuss with IEC, Contractor and ER on remedial actions required If exceedance continue, arrange meeting with IEC, ER and Contractor If exceedance stops, cease additional monitoring	Checking monitoring data submitted by ET Leader. Check Contractor's working method Discuss with ET Leader and Contractor on possible remedial measures Advise the ER on the effectiveness of the proposed remedial measures Supervise implementation of remedial measures	Confirm receipt of notification of failure in writing Notify Contractor Ensure remedial measures properly implemented	Submit proposals for remedial actions to IEC and ER within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate
LIMIT LEVEL				
Exceedance for one sample	Identify source Inform IEC, ER, EPD and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily Assess effectiveness of Contractor's remedial actions and kept IEC, EPD and ER informed of the results	Check monitoring data submitted by ET Leader Check Contractor's working method Discuss with ET Leader and Contractor on possible remedial measures Advise the ER on the effectiveness of the proposed remedial measures Audit implementation of remedial measures	Confirm receipt of notification of failure in writing Notify Contractor Ensure remedial measures properly implemented	Take immediate action to avoid for the exceedance Submit proposals for remedial actions to IEC and ER within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate
Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD Identify source Repeat measurement to confirm findings Increase monitoring frequency to daily Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Arrange meeting with IEC, Contractor and ER to discuss the remedial actions to be taken Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring 	Discuss amongst ER, ET leader and Contractor on the potential remedial actions Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly Audit the implementation of remedial measures	Confirm receipt of notification of failure in writing Notify Contractor In consultation with IEC, agree with the Contractor on the remedial measures to be implemented Ensure remedial measures properly implemented If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	Take immediate action to avoid for the exceedance Submit proposals for remedial actions to IEC and ER within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abate.

Table L-2 Event / Action Plan for Construction Noise

EVENT	ACTION								
EVENT	ET LEADER	IEC	ER	Contractor					
Action Level	 Notify IEC, Contractor and ER Carry out investigation and identify source Report the results of investigation to the IEC, Contractor and ER Discuss with the Contractor and formulate remedial measures Increase monitoring frequency Check compliance to Action/Limit Levels after application of mitigation measures 	Review the analysed results submitted by the ET Leader Review the proposed remedial measures by the Contractor and advise the ER & ET accordingly Supervise the implementation of remedial measures	Confirm receipt of notification of complaint in writing Notify Contractor Check monitoring data submitted by the ET Require Contractor to propose remedial measures for the analysed noise problem Ensure remedial measures are properly implemented	 Submit noise mitigation proposals to ER and IEC within three working days of notification Liaise with the ER to ensure the effectiveness of the agreed mitigation Amend proposal if required Implement noise mitigation proposals 					
Limit Level	Notify IEC, ER, EPD and Contractor Identify Source Repeat measurement to confirm findings Increase monitoring frequency Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Inform IEC, ER and EPD the causes & actions taken for the exceedances Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring	Check monitoring data submitted by ET Discuss amongst ER, ET Leader and Contractor on the potential remedial actions Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER & ET accordingly Supervise the implementation of remedial measures	Confirm receipt of notification of exceedance Notify Contractor Check monitoring data submitted by the ET Require Contractor to propose remedial measures for the analysed noise problem Discuss with ET, IEC and Contractor on proposed remedial actions to be implemented Ensure remedial measures are properly implemented Assess the effectiveness of the remedial actions and keep the Contractor informed If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	Take immediate action to avoid further exceedance Submit proposals for remedial actions to ER within 3 working days of notification Liaise with the ER to ensure the effectiveness of the agreed mitigation Amend proposal if required Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abated					

Table L-3 Event / Action Plan for Water Quality

Event	ET Leader	IEC	ER	Contractor
Action Level being exceeded by one sampling day	 Repeat in-site measurement to confirm findings. Identify source(s) of impact. Inform IEC and Contractor. Check monitoring data, all plant, equipment and Contractor's working methods. Discuss mitigation measures with IEC and Contractor. Repeat measurement on next day of exceedance. 	Discuss with ET and Contractor on the mitigation measures. Review proposals on mitigation measures. submitted by Contractor and advise the ER accordingly. Assess the effectiveness of the implemented mitigation measures.	Discuss with IEC on the proposed mitigation measures. Make agreement on the mitigation measures to be implemented. Assess effectiveness of the implemented mitigation measures.	Inform the ER and confirm notification of the non-compliance in writing. Rectify unacceptable practice. Check all plant and equipment. Consider changes of working methods. Discuss with ET and IEC and propose mitigation measures to IEC and ER. Implement the agreed mitigation measures.
Action Level being exceeded by more than one consecutive sampling days	 Repeat in-situ measurement to confirm findings; Identify source(s) of impact. Inform IEC and Contractor. Check monitoring data, all plant, equipment and Contractor's working methods. Discuss mitigation measures with IEC and Contractor. Ensure mitigation measures are implemented. Prepare to increase the monitoring frequency to daily. Repeat measurement on next day of exceedance. 	Discuss with ET and Contractor on the mitigation measures. Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly. Assess the effectiveness of the implemented mitigation measures.	Discuss with IEC on the proposed mitigation measures. Make agreement on the mitigation measures to be implemented. Assess the effectiveness of the implemented mitigation measures.	Inform the ER and confirm notification of the non-compliance in writing. Rectify unacceptable practice. Check all plant and equipment. Consider changes of working methods. Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days. Implement the agreed mitigation measures.
Limit Level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings. Identify source(s) of impact. Inform IEC, contractor, AFCD and EPD. Check monitoring data, all plant, equipment and Contractor's working methods. Discuss mitigation measures with IEC, ER and Contractor. Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level. 	Discuss with ET and Contractor on the mitigation measures. Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly. Assess the effectiveness of the implemented mitigation measures.	 Discuss with IEC, ET and Contractor on the proposed mitigation measures. Request Contract to critically review the working methods. Make agreement on the mitigation measures to be implemented. Assess the effectiveness of the implemented mitigation measures. 	Inform the ER and confirm notification of the non-compliance in writing. Rectify unacceptable practice. Check all plant and equipment. Consider changes of working methods. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days. Implement the agreed mitigation measures.
Limit Level being exceeded by more than one consecutive sampling days	 Repeat in-situ measurement to confirm findings. Identify source(s) of impact. Inform IEC, contractor, AFCD and EPD. Check monitoring data, all plant, equipment and Contractor's working methods. Discuss mitigation measures with IEC, ER and Contractor. Ensure mitigation measures are implemented. Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days. 	Discuss with ET and Contractor on the mitigation measures. Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly. Assess the effectiveness of the implemented mitigation measures.	 Discuss with IEC, ET and Contractor on the proposed mitigation measures. Request Contractor to critically review the working methods. Make agreement on the mitigation measures to be implemented. Assess the effectiveness of the implemented mitigation measures. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the work until no exceedance of Limit Level. 	Inform the ER and confirm notification of the non-compliance in writing. Rectify unacceptable practice. Check all plant and equipment. Consider changes of working methods. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days. Implement the agreed mitigation measures. As directed by the ER, to slow down or to stop all or part of the work or construction activities.

Table L-4 Event / Action Plan for Ecology during Construction Phase

EVENT		AC	TION	
EVENI	ET Leader	IEC	Engineer	Contractor
Non-conformity on one occasion	 Identify source Inform the IEC and the ER Discuss remedial actions with the IEC, the ER and the Contractor Monitor / audit / review remedial actions until rectification has been completed 	 Check monitoring / auditing results Check the Contractor's working method Discuss with the ET and Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures Check the implementation of remedial measures 	Notify Contractor Ensure remedial measures are properly implemented Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the works in the case of serious non-conformity until situation is rectified	 Take immediate action to avoid further problem Amend working methods if needed Submit proposals for remedial actions to ET, ER and IEC Rectify damage and implement the agreed remedial actions
Repeated Non-conformity	1. Identify source 2. Inform the IEC, ER, EPD and AFCD 3. Increase monitoring / auditing frequency 4. Discuss remedial actions with the IEC, the ER and the Contractor 5. Monitor / audit / review remedial actions until rectification has been completed 6. If exceedance stops, cease additional monitoring / auditing	 Check monitoring / auditing results Check the Contractor's working method Discuss with the ET and Contractor on possible remedial measures Supervise the implementation of remedial measures Advise the ER on effectiveness of proposed remedial measures and keep EPD and AFCD informed 	Notify Contractor Ensure remedial measures are properly implemented Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the works in the case of serious non-conformity until situation is rectified	Take immediate action to avoid further problem Amend working methods if needed Submit proposals for remedial actions to ET, ER and IEC Rectify damage and implement the agreed remedial actions

 Table L-5
 Event / Action Plan for Landscape and Visual Impact

Action Level	Environmental Team (ET) Leader	Independent Environmental Checker (IEC)	Engineer's Representative (ER)	Contractor
Non-conformity on one occasion	Identify source Inform the IEC and the ER Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed	Check report Check the Contractor's working method Discuss with the ER and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures	Notify the Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake remedial measures or any necessary replacement
Repeated Non-conformity	Identify source Inform the IEC, the ER and EPD Increase monitoring (site audit) frequency Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed If exceedance stops, cease additional monitoring (site audit)	Check report Check the Contractor's working method Discuss with the ER and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures Supervise implementation of remedial measures	Notify the Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake remedial measures or any necessary replacement

APPENDIX M ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE

Appendix M - Implementation Schedule of Environmental Mitigation Measures

EIA Ref.	EM& A Ref.	Recommended Mitigation Measures	Objectives of Recommended	Location /Timing	Implementation Agent	Impl Stag	lement es*	ation	Relevant Legislation	Status
			Measures and Main Concerns to addressed			D	C	O	& Guidelines	
Air Q	uality – C	onstruction Phase								
3.8.1	2.9.1	In order to comply with Air Pollution Control Ordinance (APCO), the Contractor should undertake at all times measures to prevent dust nuisance as a results of his activities. The Contractors are required to follow all the requirements for dust control stipulated in the Air Pollution Control (Construction Dust) Regulation. Dust suppression measures should be installed as part of good construction practice, and they should be incorporated in the Contract Specification and implemented to minimize dust nuisance to within acceptable levels arising from the works. The followings are examples of the dust suppression measures. (i) The area in which excavation takes place shall be sprayed with water immediately prior to, during and immediately after the excavation to minimise dust generation. (ii) The Contractor shall frequently clean and water the site to minimize fugitive dust emissions. (iii) Effective water sprays shall be used during the delivery and handling of aggregate, and other	To prevent dust nuisance on ASRs during construction	All work site / during construction	Construction Contractor		✓		Air Pollution Control Ordinance Air Pollution Control (Constructi on Dust) Regulation	*

	similar materials, when dust is likely to be				
	created and to dampen all stored materials				
	during dry and windy weather.				
(iv)	Watering of exposed surfaces shall be				
	conducted at least 2 times per day especially				
	during dry and windy weather.				
(v)	Areas within the site where there is a regular				
	movement of vehicles must be regularly				
	watered as often as necessary for effective				
	suppression of dust or as often as directed by				
	the Engineer.				
(vi)	Where dusty material are being discharged to				
	vehicle from a conveying system at a fixed				
	transfer point, a three-sided roofed enclosure				
	with a flexible curtain across the entry shall be				
	provided. Exhaust fans shall be provided for				
	this enclosure and vented to a suitable fabric				
	filter system.				
(vii)	The Contractor shall restrict all motorised				
	vehicles within the site, excluding those on				
	public roads, to a maximum speed of 15 km				
	per hour and confine haulage and delivery				
	vehicles to designated roadways inside the				
	site.				
(viii)	Wheel washing facilities shall be installed and				
	used by all vehicles leaving the site. No earth,				
	mud, debris, dust and the like shall be				
	deposited on public roads. Water in the wheel				
	cleaning facility shall be changed at frequent				
	intervals and sediments shall be removed				
	regularly. The Contractor shall submit details				
	of proposals for the wheel cleaning facility.				
	Such wheel washing facilities shall be usable				
	prior to any earthworks excavating activity on the site. The Contractor shall also provide a				
	hard-surfaced road between any washing				
	naru-surraceu roau oetween airy washing				

		facility and the public road. (ix) All vehicle exhausts shall be directly vertically upwards or directed away from the ground. (x) Any materials dropped on paved roads shall be cleaned up immediately to prevent dust nuisance.							
3.8.2	2.9.2	Odour In the event that excavated materials are found to be odourous, the following measures should be implemented by the Contractor. i. Place odorous excavated material as far away (say, at least 20m) from air sensitive receivers as possible. ii. Temporary stockpiles of odorous excavated material should be properly covered with tarpaulin and should be removed off-site as soon as practically possible within 2 days to avoid any odour nuisance arising.	To prevent odour nuisance on ASRs During construction	All work site / during construction	Construction Contractor	✓		Air Pollution Control Ordinance Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	۸
Air Qu	uality – O	perational Phase							
3.8.3	2.9.3	No adverse air quality impact is identified during operational phase. In the event that sediment excavated during maintenance are found to be odourous, the following measures should be implemented by DSD (or DSD's maintenance contractor). i. Place odorous excavated material as far away (say, at least 20m) from air sensitive receivers as possible. ii. Odorous excavated material should be properly covered with tarpaulin or packed in plastic bags or stored in enclosed skips and should be removed off-site as soon as	To prevent odour nuisance on ASRs during maintenance	The proposed channel / during operation	DSD (or DSD's maintenance contractor)+		√	Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	N/A

Kwan On	Construction	Co. Ltd.

Contract No. YL/2009/01
Hang Hau Tsuen Channel at Lau Fau Shan
Monthly Environmental Monitoring and Audit Report

practically possible within 2 days to avoid any odour nuisance arising.				

EIA Ref.	EM &A Ref.	Recommended Mitigation Measures	Objectives of Recommended Measures and	Location /Timing	Implementati on Agent		lemen Stage:		Relevant Legislation &	Status
	Kei.		Main Concerns to addressed			D	C	O	Guidelines	
Noise	– Const	ruction Phase								
4.7.2	3.8.2	Level 1 Mitigation - Use of Quiet Plant The quiet plant used in construction noise calculation is shown in Table 3.4 (and Appendix 4.1 of the EIA). The Contractor can propose other suitable alternative equipment with similar or lower sound power level.	To protect NSRs from noise during construction	All work site / during construction	Construction Contractor		✓		Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA	۸
4.7.3	3.8.3	The use of quiet plant is considered to be the most effective ways of alleviating construction noise impact. The Contractor should use quiet plant with sound power level lower than that stipulated in the TM-GW as the Level 1 mitigation for construction noise.	To protect NSRs from noise during construction	All work site / during construction	Construction Contractor		✓		Process Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	٨
4.7.4	3.8.4	The use of mini or lower power rating equipment (e.g. mini excavator) should also be considered where practical. This technique would be feasible and practical at some locations given the limited space available for using large size construction equipment and the small scale works involved.	To protect NSRs from noise during construction	All work site / during construction	Construction Contractor		✓		Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	۸

4.7.5	3.8.5	The Contractor should take note of ETWB TCW No. 19/2005 – "Environmental Management on Construction Sites" which sets out the policy and procedures requiring contractors to, among others, adopt Quality Powered Mechanical Equipment (QPME).	To protect NSRs from noise during construction	All work site / during construction	Construction Contractor		Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process ETWB TCW No. 19/2005	۸
4.7.6 Tabl e 4.11	3.8.6 Tabl e 3.4	A list of quiet powered mechanical equipment (PME) recommended for use during construction phase is tabulated below in <i>Table 3.4</i> .	To protect NSRs from noise during construction	All work site / during construction	Construction Contractor		Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process ETWB TCW No. 19/2005	٨
4.7.8	3.8.7	Level 2 Mitigation - Use of Temporary Noise Barriers Since most of the NSRs within the Project area are typically low-rise tin-sheeted village houses of not more than 2 storeys (all are less than 5 m tall), it would be effective to have noise screening structures or temporary noise barriers purposely-built along the site boundary to provide additional protection to	To protect NSRs from noise during construction	All work site located at 30m or less from NSRs as shown in Figure 4.2 of the EIA / during construction	Construction Contractor	V	Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	N/A

4.7.9	3.8.9	NSRs close to the construction site boundary. This could be in the form of purposely-built site hoarding constructed from appropriate materials with a minimum superficial density of 7 kg/m². Noise barrier should be provided for noisy construction activities that would be undertaken close (about 30 m or less) to NSRs. The noise barrier should have a vertical height of at least 3 m or (depending on the height of the NSRs to be protected) a height ensuring that the operating equipment can be shielded from the view of the NSRs. The temporary noise barrier should have no gaps or opening at joints. The Contractor should regularly inspect and maintain the noise barrier to ensure its effectiveness. For the construction works which have the potential to exceed the noise standards on nearby NSR and whose line of sight cannot be effectively blocked by	To protect NSRs from noise during	All work site for NSRs whose line of	Construction Contractor	~	Environme ntal Impact Assessment	N/A
		the temporary noise barrier, movable (mobile) barriers should be provided. This may also be applicable in situation where construction of a temporary noise barrier may not be possible due to site / space constraints, for example blocking village or emergency vehicle access. Movable barriers of at least 2.5 m height with a small cantilevered upper portion and skid footing can be located within a few meters of stationary plant (e.g. generator) and within about 5 m or more of a mobile equipment (e.g. excavator), such that the line of sight to the NSR is blocked by the barriers.	construction	sight cannot be effectively blocked by the temporary noise barriers / during constrcution			Ordinance Technical Memorand um on EIA Process	
4.7.1	3.8.1	Good Site Practices In general, potential construction noise impact can be minimised or avoided by imposing a combination of the following good site practices as mitigation measures:	To protect NSRs from noise during construction	All work site / during construction	Construction Contractor	√	Environme ntal Impact Assessment Ordinance Technical Memorand	۸

							um on EIA	
		a. Only well-maintained plant should be operated on-site and plant should be serviced regularly					Process	
		during the construction period.						
		b. Construction plant should be sited away from						
		NSRs						
		c. Machines and plant that may be in intermittent						
		use should be shut down between works periods or should be throttled down to a minimum.						
		d. Equipment known to emit sound strongly in one						
		direction should be orientated such that the						
		noise is directed away from nearby NSRs.						
		e. Material stockpiles and other structures (such as						
		site offices) should be effectively utilised to						
		shield on-site construction activities.						
		f. Stationary equipment should be located within the channel when weather conditions permit						
		(e.g. dry season).						
		g. The Contractor shall devise, arrange methods of						
		working and carrying out the works in such						
		manner as to minimise noise impacts on the						
		surrounding environment, and shall provide						
		experienced personnel with suitable training to ensure that these measures are implemented						
		properly.						
		h. In the event that new schools are built near the						
		works area, the Contractor should minimise						
		construction noise exposure to the schools						
		(especially during examination periods). The						
		Contractor should liaise with the school and the Examination Authority to ascertain the exact						
		dates and times of all examination periods						
		during the course of the contract and to avoid						
		noisy activities during these periods.					 	
4.7.1	3.8.1	To maintain an effective communication channel	To promote	All work	Project Office	✓	Environme	^

5	2	with the public, a 24-hour hotline system should be established by the project office for the Contractor to receive any enquiry and complaint lodged by the public in respect of the Project. Upon receipt of enquiry / complaint, the Contractor (or its Environmental Team) should investigate the causes of the incident and take the appropriate action to rectify the situation. Periodic newsletters, information leaflets, notices or other means of communication should be provided to the affected villages, communities, and residents advising them the current progress, the schedule of works in future, the potential environmental impacts arising from the works and the corresponding mitigation measures. It is considered that such a close relation between the local communities and the project site office could ensure speedy resolution of any environmental noncompliance and maintain an environmental standard acceptable to the local communities during construction.	good public relation and maintain effective communication during construction	site/ during construction	(Engineer) & Construction Contractor		ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	
4.7.1	3.8.1	Further mitigation is recommended for NSRs 3, 4, 6 & 10 by restricting concurrent usage of several equipments at the same time during excavation and construction of the channel lining, crossings.	To further mitigate construction noise at NSR 3,4,6 &10	For work within 20m of NSRs 3, 4, 6 &10 / during construction	Construction Contractor		Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	٨
4.7.1	3.8.1	All these construction noise mitigation measures should be implemented by the Contractor during the construction stage of the works. The location of the temporary noise barriers and mobile noise barriers should be further reviewed by the Contractor during the construction stage based on the latest construction	To protect NSRs from noise during construction and to ensure the Contactor will	All works site/ during construction	Construction Contractor	V	Environme ntal Impact Assessment Ordinance	۸

programme and contemporary conditions, including	properly			Technical	
any changes with respect to NSRs. The Contractor	implement the			Memorand	
should design, construct, operate and maintain the	mitigation			um on EIA	
mitigation measures throughout the construction	measures			Process	
stage and as required by the Engineer. Before					
commencement of the works, the Contractor should					
submit to the Engineer for approval (as part of their					
method statement) details of the mitigation measures					
to be employed under the works. The Contractor's					
proposed mitigation measures should also be certified					
by the ET Leader and verified by the IEC to ensure					
the intended noise reduction effectiveness can be					
achieved.					
Noise – Operational Phase					
N/A					

EIA Ref.	EM &A	Recommended Mitigation Measures	Objectives of Recommended	Location /Timing	Implementati on Agent	_	lemen		Relevant Legislation	Status
	Ref.		Measures and Main Concerns to addressed			D	C	O	& Guidelines	
Water	Qualit	y – Construction Phase								
5.7.2	4.9.2	General The Contractor shall observe and comply with the Water Pollution Control Ordinance (WPCO) and its subsidiary regulations. The Contractor shall carry out the works in such a manner as to minimise adverse impacts on the water quality during execution of the works. In particular the Contractor shall arrange his method of working to minimise the effects on the water quality within and outside the site and on the transport routes.	To minimize adverse water quality impact during construction	All work site / during construction	Construction Contractor		√		Water Pollution Control Ordinance	^
5.7.3	4.9.3	The Contractor shall follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures below and as specified in ProPECC PN 1/94 – "Construction Site Drainage". The design of the mitigation measures shall be submitted by the Contractor to the Engineer for approval.	To minimize adverse water quality impact during construction	All work site / during construction	Construction Contractor		√		ProPECC PN 1/94	<
5.7.4	4.9.4	Site Preparation / Clearance Proper construction site drainage management measures should be implemented to control site runoff and drainage, and thereby prevent high sediment loadings from reaching Deep Bay or the nearby abandoned fishponds. Site runoff and wastewater should not be discharged into the fishponds irrespective of the status of the fishponds.	To minimize adverse water quality impact during construction	All work site / during construction	Construction Contractor		√		ProPECC PN 1/94	*
5.7.5	4.9.5	Turbid water from construction sites must be treated to minimise the solids content before being discharged. Advice on the handling and disposal of	To minimize adverse water quality impact	All work site / during construction	Construction Contractor		✓		ProPECC PN 1/94	۸

		site discharge is given in the ProPECC Note PN 1/94 – "Construction Site Drainage".	during construction					
5.7.6	4.9.6	In general, surface run-off from construction sites should be discharged into water bodies via adequately designed silt removal facilities such as sand traps, silt traps and sediment basins. Channels or earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries should be provided to intercept storm run-off from outside the site so that it will not wash across the site (or into the proposed channel works area). Catchpits and perimeter channels should be constructed in advance of earthworks.	To minimize adverse water quality impact during construction	All work site / during construction	Construction Contractor	✓	ProPECC PN 1/94	*
5.7.7	4.9.7	Silt removal facilities and diversion channels should be maintained and the deposited silt and grit should be removed regularly, especially at the onset of and after each rainstorm to ensure proper functioning of these facilities at all times.	To minimize adverse water quality impact during construction	All work site / during construction	Construction Contractor	✓	ProPECC PN 1/94	۸
5.7.8	4.9.8	Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into the nearby water bodies. Open stockpiles susceptible to erosion should be covered with tarpaulin or similar fabric and provided with containment such as bunds, sand bag barriers or equivalent measures, especially during the wet season (April – September) or when heavy rainstorm is predicted. Runoff to watercourses should be reduced by minimising flat exposed areas of permeable soil, and by forming pits or diversion channels into which runoff can flow to suitable treatment facilities before discharge.	To minimize adverse water quality impact during construction	All work site / during construction	Construction Contractor	√	ProPECC PN 1/94	*
5.7.9	4.9.9	De-watering / Excavation of Stream / Pond and Removal of Sediment Excavation works within the existing stream section and pond should be programmed to be carried out	To minimize adverse water quality impact from excavation	Existing stream section and pond to be	Construction Contractor	√	Water Pollution Control Ordinance	N/A

		during dry season from 1 st October to 31 st March as far as practicable to minimise impacts on downstream water quality and nearby sensitive receivers.	works during wet season.	excavated / during construction				
5.7.1	4.9.1	The use of containment structure such as sheet pile barriers, earth bunds, sand bag barriers wrapped with geotextile fabric or similar material, diversion channels or other similar techniques should be installed surrounding the excavation area to facilitate a dry or at least confined excavation within the stream. Schematic diagram of typical drainage measures during excavation of the stream is shown in Figure 5.3 (of the EIA). The Contractor should submit details of the temporary drainage measures along with the proposed measures to ameliorate the potential water quality impacts to the Environmental Team (ET) for verification and to the Engineer for approval before commencement of the construction works.	To minimize adverse water quality impact during construction	All works site / during construction	Construction Contractor		Water Pollution Control Ordinance	٨
5.7.1	4.9.1	The excavation area should be limited to section of half width of the stream in order to maintain continuous water flow within the stream during the construction phase.	Restrict width of excavation work to minimize impacts on downstream water quality and sensitive receivers.	Existing stream section to be excavated / during construction	Construction Contractor	V	Water Pollution Control Ordinance	۸
5.7.1	4.9.1	After dewatering of the stream and pond, the sediments should be allowed to dry before excavation (yet still maintain a moist state to avoid dust nuisance). This will facilitate excavation of the sediments and also minimise the risk of drained water flowing back into watercourses as the sediment is handled. Where time or weather constraints require handling of wet sediment, care should be taken in the removal of sediment and the storage area should be	To minimize adverse water quality impact during construction (in particular when excavating and handling sediments)	All works site where sediment removal is required / during construction	Construction Contractor	*	Water Pollution Control Ordinance	۸

		bunded to prevent silty runoff entering water bodies.						
5.7.1	4.9.1	Tightly sealed closed grab excavators should be employed to minimize leakage and loss of sediments during excavation works within the stream.	To minimize adverse water quality impact during construction (in particular when excavating and handling sediments)	All works site where sediment removal is required / during construction	Construction Contractor	✓	Water Pollution Control Ordinance	N/A
5.7.1	4.9.1	Excavated sediment material from stream should be stored in covered impermeable skips and disposed within 2 days, to avoid inadvertent release of silty runoff and contaminants to nearby water bodies. If sediment material is identified to be suitable for reuse as stream bed material, it should be properly stockpiled, adequately covered and provided with containment to prevent runoff during wet season.	To minimize adverse water quality impact during construction (in particular when excavating and handling sediments)	All works site where sediment removal is required / during construction	Construction Contractor	✓	Water Pollution Control Ordinance	N/A
5.7.1	4.9.1	Regular monitoring of suspended solids and turbidity should be conducted during excavation works. Any exceedance of water quality in the nearby water bodies caused by inadvertent release of site runoff should be rectified in accordance with EM&A programme for this Project.	To minimize adverse water quality impact during construction	All works site / during construction	Construction Contractor	√	Water Pollution Control Ordinance	۸
5.7.1	4.9.1 6	Concreting Work Runoff should be carefully channelled to prevent concrete-contaminated water from entering watercourses. Adjustment of pH can be achieved by adding a suitable neutralising reagent to wastewater prior to discharge. Reuse of the supernatant from the sediment pits for washing out of concrete lorries should be practised.	To minimize adverse water quality impact during construction (in particular concreting works)	All works site / during construction	Construction Contractor	V	Water Pollution Control Ordinance	N/A
5.7.1 7	4.9.1 7	Any exceedance of acceptable range of pH levels in the nearby water bodies caused by inadvertent release	To minimize adverse water	All works site / during	Construction Contractor	✓	Water Pollution	۸

		of site runoff containing concrete should be monitored and rectified under the EM&A programme for this Project.	quality impact during construction (in particular concreting works)	construction			Control Ordinance	
5.7.1	4.9.1	Site Workshop or Depot General Construction Works Any Contractor generating waste oil or other chemicals as a result of his activities should register as a chemical waste producer and provide a safe designated storage area for chemicals on site. The storage site should be located away from existing water courses.	To minimize adverse water quality impact during construction	All works site / during construction	Construction Contractor	✓	Water Pollution Control Ordinance	۸
5.7.1	4.9.1	All compounds in works areas should be located on areas of hard standing surface with provision of diversion channels and settlement ponds where necessary to allow interception and controlled release of settled / treated water. Hard standing compounds should drain via an oil interceptor. The oil interceptor should be regularly inspected and cleaned to avoid wash-out of oil during storm conditions. A bypass should be provided to avoid overload of the interceptor's capacity. To prevent spillage of fuels or other chemicals to water courses, all fuel tanks and storage areas should be sited on sealed areas within a bund of a capacity equal to 110% of the storage capacity of the largest tank. Where temporary storage of chemicals or fuel drums outside the storage area is necessary, drip tray should be provided. Disposal of the waste oil should be carried out by a licensed collector. Good housekeeping practices should be implemented to minimise careless spillage and to keep the storage and the work space in a tidy and clean condition. Appropriate training including safety	To minimize adverse water quality impact during construction	All works site / during construction	Construction Contractor		Water Pollution Control Ordinance	^

		codes and relevant manuals should be given to the personnel who regularly handle the chemicals on site.						
5.7.2	4.9.2	Emergency Contingency Plan The Contractor should prepare an emergency contingency plan (spill response plan) for the Project to contain and remove accidental spillage of chemicals and all hazardous materials on-site including fuels at short notice and to prevent or to minimize the quantities of contaminants from entering the stream water and affecting the sensitive habitats. The Contractor should submit the emergency contingency plan to the ET for review & comment and the Engineer for approval. The Plan should include, but not limited to, the following: (i) potential emergency situations (ii) chemicals or hazardous materials used on-site (and their location) (iii) emergency response team (iv) emergency action plans and procedures (v) list of emergency telephone hotlines (vi) locations and types of emergency response equipment (vii) training plan and emergency drill (viii) schedules for review and audit.	To prevent or minimize the quantities of contaminants entering the stream water and affecting the habitats in case of accidental spillage of chemicals and hazardous materials	All works site / during construction	Construction Contractor		Water Pollution Control Ordinance	^
5.7.2	4.9.2	General Guidance for Handling of Spillage / Leakage In the event that accidental spillage or leakage of hazardous substances / chemical wastes takes place, the response procedures as listed below should be followed. It should be noted that the procedures below are not exhaustive. The Contractor should propose other response procedures in the emergency contingency plan based on actual site conditions as	To prevent or minimize the quantities of contaminants entering the stream water and affecting the habitats in case of accidental	All works site / during construction	Construction Contractor	V	Water Pollution Control Ordinance	^

well as the particular types and quantities of	spillage of				
chemicals or hazardous substances used, handled and	chemicals and				
stored on-site.	hazardous				
• Contact person in charge or nominated person	materials				
immediately and initiate action plans based on the					
emergency contingency plan.					
Oil leakage or spillage should be contained and					
cleaned up immediately. Waste oil should be					
collected and stored for recycling or disposal in					
accordance with the Waste Disposal Ordinance.					
• Instruct untrained personnel to keep at a safe					
distance well away from the spillage area.					
• If the spillage / leakage involves high toxic, volatile					
or hazardous waste, initiate emergency evacuation					
and call the emergency service.					
• Only trained persons equipped with suitable					
protective clothing and equipment should be allowed					
to enter and clean up the waste spillage / leakage					
area.					
• Where the spillage / leakage is contained in the					
enclosed storage area, the waste can be transferred					
back into suitable containers by suitable handheld					
equipment, such as hand operated pumps, scoops or					
shovels. If the spillage / leakage quantity is small, it					
can be covered and mixed with suitable absorbing					
materials such as tissue paper, dry soft sand or					
vermiculite. The resultant slurry should be treated as					
chemical waste and transferred to suitable containers					
for disposal.					
• For spillage / leakage in other areas, immediate					
action is required to contain the spillage / leakage.					
Suitable liquid absorbing materials such as tissue					
paper, dry soft sand or vermiculite should be used to					

		cover the spill. The resultant slurry should be treated						
		as chemical waste and transferred to suitable						
		containers for disposal.						
		• Areas that have been contaminated by chemical						
		waste spillage / leakage should be cleaned. While						
		water is a soluble solvent for aqueous chemical						
		wastes and water soluble organic waste, kerosene or						
		turpentine should be used for organic chemical						
		wastes that are not soluble in water. The waste from						
		the cleanup operation should be treated and disposed						
		of as chemical waste.						
		• In incidents where the spillage / leakage may result						
		in significant contamination of an area or risk of						
		pollution, the Environmental Protection Department						
		should be informed immediately.						
5.7.2	4.9.2	Presence of Additional Population (Workers)	To minimize	All works	Construction	✓	ProPECC	٨
2	2	Sewage arising from construction workers on site	adverse water	site / during	Contractor		PN 1/94	
		should be collected in a suitable storage facility, such	quality impact	construction				
		as portable chemical toilets. An adequate number of	during				Water	
		portable toilets should be provided for the	construction				Pollution	
		construction workforce. The portable toilets should					Control	
		be maintained in a state that will not deter the					Ordinance	
		workers from using them. Wastewater collected should be discharged into foul sewers and collected						
		by licensed collectors.						
5.7.2	4.9.2	The collected wastewater from sewage facilities and	To minimize	All works	Construction	√	ProPECC	٨
3.7.2	3	also from eating areas or washing facilities of site	adverse water	site / during	Contractor		PN 1/94	
		offices should be disposed to foul sewer. If there is	quality impact	construction				
		no foul sewer in the vicinity, a septic tank and	during				Water	
		soakaway system or for larger flow, a sewage	construction				Pollution	
		treatment plant should be provided. All domestic					Control	
		sewage discharges (except into foul sewer) are					Ordinance	
		controlled under the WPCO. The Contractor must						

		apply for a discharge licence from EPD and must comply with the terms and conditions of a valid WPCO licence.					
Water	Quality	y – Operational Phase					
5.9.1	4.9.2	Measures to Reduce Pollution Loadings entering the Channel Appropriate location along the toe zone of the channel will be filled with about 200 mm thick original stream bed materials. The upstream dry weather flow channel will also be filled with a layer of about 100 mm thick original stream bed materials on top of the rip-rap lining. The most important feature of such measure is the prospect of natural recolonization of benthic communities and reestablishment of vegetation along the toe zone of the channel replicating riparian vegetation. The vegetation is not expected to be detrimental in any way to the channel structure or to the conveyance of flood flow. Specific planting is considered not necessary as vegetation will recolonized and established itself naturally similar to current condition. Non-woody species (such as sedges) is preferred for ease of maintenance and pruning as they are easier to be pruned and will impede the flow of water to lesser extent during large flow as the vegetation will just collapse and spring back. However, seasonal cutting and clearance of vegetation, particularly in advance of the wet season may be required. This mitigation measure has additional benefits of aesthetic and ecological value.	To minimize adverse water quality impact during operation	The proposed channel / during operation	DSD (or DSD's maintenance contractor)+		 N/A
5.9.2	4.9.2	In addition, the use of rock fill base or original stream bed materials for the channel bed has the benefit of providing uneven surfaces and cavities for sediment to accumulate. Ultimately a sediment layer will build up on the channel bed, forming a natural layer for	To minimize adverse water quality impact during operation	The proposed channel / during operation	DSD (or DSD's maintenance contractor)+	√	 N/A

		development of the benthic community. Removal of the upper layer of this sediment will only be necessary once the layer thickness has built up to around 300 mm thick, and sediment is likely to be washed downstream in heavy storms. A minimum of 100 mm thick sediment should be allowed to accumulate at the channel bed to permit recolonizing of benthic communities. Growth of vegetation will inhibit washout of sediment and sediment removal can be carried out at the same time as vegetation harvesting during the dry season when flows are minimal.					
5.9.3	4.9.2	Catchpits with sand traps will be provided in the drainage system to trap sands, grits and rubbish in the Hang Hau Tsuen surface runoff prior to discharge to Deep Bay. The catchpit should be cleaned and maintained especially before the onset of the wet season to ensure its performance.	To minimize adverse water quality impact during operation	The proposed channel / during operation	DSD (or DSD's maintenance contractor)+	√	 N/A
5.9.4	4.9.2	Environmental Considerations for Maintenance of the Proposed Channel Maintenance may be necessary for the proposed channel at regular intervals to remove excessive silts, vegetation, rubbish, debris and obstruction. Little or no maintenance will be necessary for the natural stream bed section of the channel. Likewise, the retained and compensated mangroves within the mangrove zone (Figure 2.7 of the EIA) will not require any long term maintenance. Good practice guides for the planning and execution of desilting and maintenance works are recommended in the following sections.	To minimize adverse water quality impact during operation (maintenance works) of the channel	The proposed channel / during operation	DSD (or DSD's maintenance contractor)+	√	 N/A
5.9.5	4.9.2	The following considerations should be included in planning for the maintenance works of the proposed channel: (a) Maintenance of the channel should be restricted	To minimize adverse water quality impact during operation	The proposed channel / during operation	DSD (or DSD's maintenance contractor)+	√	 N/A

to silt removal when the accumulated silt will	(maintenance			
adversely affect the hydraulic capacity of the channel	works) of the			
(except during emergency situations where flooding	channel			
risk is imminent). Desilting should be carried out by				
hand or light machinery during the dry season				
(October to March) when water flow is low.				
(October to March) when water now is low.				
(b) The management of woody / emergent				
vegetation should be limited to manual cutting, to be				
carried out during dry season and only when				
unchecked growth of such vegetation is very likely				
to impede channel flow.				
•				
(c) Mangroves within the mangrove zone should be				
retained if the hydraulic capacity of the channel is				
adequate. Mangroves found outside the mangrove				
zone but within the proposed channel should be				
remove as they will affect the hydraulic capacity of				
the channel. Rip-rap that are used to delineate the				
mangrove zone should be replaced if found				
damaged.				
(d) A minimum of 100 mm thick sediment should				
be allowed to accumulate on the channel bed to				
permit recolonization of benthic communities.				
(e) Phasing of the works should be considered to				
better control and minimize any impacts caused, and				
to provide refuges for aquatic organisms. Where				
possible, works should be carried out along half				
width of the channel in short sections. A free passage				
along the channel is necessary to avoid forming				
stagnant water in any phase of the works and to				

		maintain the integrity of aquatic communities.						
		(f) Containment structures (such as sand bags barrier or similar method) should be provided for the active desilting works area to facilitate a dry or at least confined working area within the channel.						
		(g) Where no maintenance access is available for the channel, temporary access to the works site should be carefully planned and located to minimize disturbance caused to the channel, adjacent vegetation (especially mangroves) and nearby sensitive receivers by construction plants.						
		(h) The use of lesser or smaller construction plants should be considered to reduce disturbance to the channel bed. Quiet construction plants should be used.						
		(i) The locations for the disposal of the removed materials should be identified and agreement sought with the relevant departments before commencement of the maintenance works. Temporary stockpile of waste materials should be located away from the channel and properly covered. These waste materials should be disposed of in a timely and appropriate manner.						
5.9.7	4.9.3	Mitigation Measures for the Proposed Access Road, Viewing Point and Carpark Highways Department (HyD) standard road drainage system should be provided along the proposed access road and viewing point and carpark to collect the road runoff. The road drainage design should	To minimize adverse water quality impact during operation of the proposed access road,	The proposed access road, viewing point and carpark / during	CEDD (to incorporate HyD standard road drainage system design)	√	✓	 N/A

		incorporate gullies and silt / grit traps to trap any pollutants in the road surface runoff prior to discharge into Deep Bay.	viewing point and carpark	operation	HyD (to maintenance and mange the road drainage system)+			
5.9.8	4.9.3	Regular cleansing of the access road and viewing point and carpark following normal established practices should be carried out to remove any accumulated silts, grits and litters. The gullies and silt / grit traps should also be regularly cleaned and maintained in good working condition.	To minimize adverse water quality impact during operation of the proposed access road, viewing point and carpark	The proposed access road, viewing point and carpark / during operation	FEHD+		√	 N/A

EIA Ref.	EM &A Ref.	Recommended Mitigation Measures	Objectives of Recommended Measures and	Location /Timing	Implementati on Agent	_	lemen Stage:		Relevant Legislation	Status
	Kei.		Main Concerns to addressed			D	C	O	& Guidelines	
Waste	e – Cons	truction Phase								
6.5.1	5.1.1	General The HKSAR Government's construction and demolition waste management policy follows the same hierarchy as for other wastes, i.e. in order of desirability: avoidance, minimisation, recycling, treatment and safe disposal of waste. During the construction period the Contractor, Engineer and environmental specialists (Environmental Team, Independent Environmental Check) should work closely together with a view to reduce the volumes of materials requiring removal and final disposal.	To reduce the volumes of materials requiring removal and final disposal	All work site / during construction	Construction Contractor, Engineer, Environmental Team and Independent Environmental Checker		√		Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	^
6.5.2	5.1.2	Upon appointment, the main Contractor of each construction contract should prepare and implement an Environmental Management Plan (EMP) in accordance with ETWB TCW No. 19/2005 – "Environmental Management on Construction Sites" which should describe the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. The EMP should incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials. The EMP should be submitted to the Engineer for approval. The Contractor should implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP should be reviewed regularly and updated	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor		√		Waste Disposal Ordinance ETWB TCW No. 19/2005	^

		(preferably monthly) by the Contractor. The EMP should take into account the recommended mitigation measures in the approved EIA Report.						
6.5.3	5.1.3	The Contractor should refer to the simplified Construction and Demolition Material Management Plan (C&DMMP) conducted for this Project (Appendix 6.2 of the EIA) to facilitate him in the preparation of the EMP.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	✓	Waste Disposal Ordinance ETWB TCW No. 19/2005	۸
6.5.4	5.1.4	Training of construction staff should be undertaken by the Contractor about the concept of site cleanliness and appropriate waste management procedures. The Contractor should develop and provide toolbox talk for on-site sorting of C&D materials to enhance worker's awareness in handling, sorting, reuse and recycling of C&D materials. Requirements for staff training should be included in the EMP.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	✓	Waste Disposal Ordinance ETWB TCW No. 19/2005	۸
6.5.5	5.1.5	Good planning and site management practice should be employed to eliminate over ordering or mixing of construction materials to reduce wastage. Proper storage and site practices will minimise the damage or contamination of construction materials. Regular cleaning and maintenance of the waste storage area should be provided.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	✓	Waste Disposal Ordinance ETWB TCW No. 19/2005	۸
6.5.6	5.1.6	Where waste generation is unavoidable, the potential for recycling or reuse should be rigorously explored. If waste cannot be recycled, disposal routes described in the EMP should be followed. A recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be implemented. In order to monitor the disposal of C&D material and solid wastes at public fill reception facilities and landfills and to control fly-	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	*	Waste Disposal Ordinance ETWB TCW No. 19/2005	۸

		tipping, a trip-ticket system should be included. One may make reference to ETWB TCW No. 31/2004 for details.						
6.5.7	5.1.7	Imported soft fill and rocks should be source from CEDD's fill bank, other projects or other approved sources instead of using new materials. Approval from the Engineer and all other relevant parties should be obtained by the Contractor before importation of the fill materials.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	*	Waste Disposal Ordinance ETWB TCW No. 19/2005	۸
6.5.8	5.1.8	 On-site Sorting, Reuse and Recycling All waste materials should be segregated into categories covering: excavated materials suitable for reuse on-site; excavated materials suitable for public filling facilities; remaining C&D waste for landfill; chemical waste; and general refuse for landfill. 	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	✓	Waste Disposal Ordinance ETWB TCW No. 19/2005	۸
6.5.9	5.1.9	Proper segregation and disposal of construction waste should be implemented. Separate containers should be provided for inert and non-inert wastes.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	✓	Waste Disposal Ordinance ETWB TCW No. 19/2005	۸
6.5.1	5.1.1	Sorting is important to recover materials for reuse and recycling. Specific area should be allocated for on-site sorting of C&D materials and to provide a temporary storage area for those sorted materials such as metals, concrete, timber, plastics, glass, excavated spoils, bricks / tiles and waste papers. If area is limited, all C&D materials should at least be sorted on-site into inert and non-inert components.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	V	Waste Disposal Ordinance ETWB TCW No. 19/2005	۸

		Non-inert materials (C&D waste) such as bamboo, timber, vegetation, packaging waste and other organic materials should be reused and recycled wherever possible and disposed of to designated landfill only as a last resort. Inert materials (public fill) such as concrete, stone, clay, brick, soil, asphalt and the like should be separated and reused in this or other projects (subject to approval by the relevant parties in accordance with the ETWB TCW No. 31/2004) before disposed of at a public fill reception facility operated by Civil Engineering and Development Department (CEDD). Steel and other metals should be recovered from demolition waste stream and recycled.						
6.5.1	5.1.1	The reuse of inert materials such as soil, rock and broken concrete should be maximised. Waste should be separated into fine, soft and hard materials. With the use of a crusher coarse material can be crushed to make it suitable for use as fill material where fill is required in the works. This minimises the use of imported material and maximises use of the C&D material produced.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	✓	Waste Disposal Ordinance ETWB TCW No. 19/2005	۸
6.5.1	5.1.1	Prior to export of material from the site, the potential for it to be reused should be assessed. Most C&D material can easily be reused with minimum processing. Waste separation methods should be followed to ensure that C&D waste is separated at source. Suitable soft materials should be used for landscaping and grading of embankments. Fine material should be separated out and used as topsoil.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	*	Waste Disposal Ordinance ETWB TCW No. 19/2005	۸
6.5.1	5.1.1	The feasibility of using recycled aggregates in lieu of virgin materials should be rigorously considered during the detailed design and construction phases as stipulated in WBTC No. 12/2002 and ETWB TCW No. 24/2004. In general, recycled aggregates are suitable for use as fill materials in earthworks, road	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	✓	Waste Disposal Ordinance ETWB	۸

		sub-base formation, and drainage works. Recycled aggregates can also be used in concrete (up to Grade 35) for mass concrete walls and other minor structures such as planter boxes, toe wall planters and pavement, etc.					TCW No. 19/2005, 24/2004 WBTC No. 12/2002	
6.5.1	5.1.1	Recycled inert C&D material should be used in the works as sub-bases for access roads and footpaths of the proposed channel. Recycled aggregates should be considered for use in concrete as outlined in the above mentioned technical circulars. Some recycled rock material can be reused as rock fill or as stream bed material. This is dependent on size of rock fragments but can be achieved by appropriate use of a crusher.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction		✓	Waste Disposal Ordinance ETWB TCW No. 19/2005	^
6.5.1	5.1.1	Site Clearance / Demolition Materials Excavated Materials All C&D materials should be sorted on-site into inert and non-inert components by the Contractor. Non inert materials (C&D waste) such as wood, glass and plastic should be reused and recycled before disposal to a designated landfill as a last resort (currently assume to be the WENT Landfill). Inert materials (public fill) such as soil, rubble, sand, rock, brick and concrete should be separated and where appropriate broken down to size suitable for subsequent filling. Suitable C&D material should be use as pipe bedding or for backfilling of retaining walls, box culvert and formation of channel embankments. Excavated rocks from existing streams should be reused for rip-rap lining. Inert materials should be reused on-site or in other projects approved by relevant parties in accordance with the ETWB TCW No. 31/2004 before disposed of at public fill reception facilities. Steel and other metals should be recovered from	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	•	Waste Disposal Ordinance ETWB TCW No. 19/2005, 31/2004	۸

		C&D materials and recycled.						
6.5.1	5.1.1	Some of the excavated sediment from the stream bed will be contaminated with high levels of heavy metals. Contaminated sediment should be disposed of in accordance with ETWB TCW No. 34/2002 and WBTC No. 12/2000. In order to minimise off-site disposal, uncontaminated sediment should be reused as channel bed material as far as possible.	Proper disposal of excavated sediment	All work site / during construction	Construction Contractor	✓	Waste Disposal Ordinance ETWB TCW No. 34/2002 WBTC No. 12/2000	^
6.5.1	5.1.1	Good quality reusable topsoil should be stockpiled for later landscaping works. Stockpiles should be less than 2 m in height, formed to a safe angle of repose and hydroseeded or covered with tarpaulin to prevent erosion during the rainy season and to minimise dust generation.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	✓	Waste Disposal Ordinance ETWB TCW No. 19/2005	۸
6.5.1	5.1.1	Control measures for temporary stockpiles on-site should be taken in order to minimize the noise, generation of dust, pollution of water and visual impact. These measures include: • surface of stockpiled soil should be regularly wetted with water especially during dry season; • disturbance of stockpiled soil should be minimized; • stockpiled soil should be properly covered with tarpaulin especially when heavy rain storms are predicted; • stockpiling areas should be enclosed where space is available; • stockpiling location should be away from the water bodies; and	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction		Waste Disposal Ordinance ETWB TCW No. 19/2005	^

		• an independent surface water drainage system equipped with silt traps should be installed at the stockpiling area.						
6.5.1	5.1.1	The identification of final disposal sites for C&D materials generated by the construction works will be considered during the detailed design stage of the Project when the volume and types of C&D materials can be more accurately estimated. The Public Fill Committee of CEDD should be consulted on designated outlets (e.g. public fill reception facility) for public fill, whilst EPD should be consulted on landfills for C&D waste. Marine Fill Committee of CEDD should be consulted on the marine disposal sites of the excavated sediment if needed. The public fill to be disposed to public fill reception facilities must consist entirely of inert construction materials. Disposal of C&D waste to landfill must not have more than 50% (by weight) inert material. The C&D waste delivered for landfill disposal should contain no free water and the liquid content should not exceed 70% by weight.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	\	Waste Disposal Ordinance ETWB TCW No. 19/2005, 34/2002 WBTC No. 12/2002	۸
6.5.2	5.1.2	In order to avoid dust or odour impacts, any vehicles leaving a works area carrying C&D waste or public fill should have their load covered up before leaving the construction site.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	<	Waste Disposal Ordinance ETWB TCW No. 19/2005 WBTC No. 19/2001	۸
6.5.2	5.1.2	C&D materials should be disposed of at designated public fill reception facilities or landfills. Reuse of public fill materials at other construction projects is subject to the approval of the relevant project	Waste reduction, reuse, recycling and proper disposal	All work site / during construction	Construction Contractor	✓	Waste Disposal Ordinance	۸

		proponents, Engineer and/or other relevant authorities, such as LandsD, PlanD, etc. Furthermore, unauthorized disposal of C&D materials in particular on private agricultural land is prohibited and may be subject to relevant enforcement and regulating actions. The Contractor shall refer and strictly follow the trip-ticket system for the disposal of C&D materials as stipulated in the ETWB TCW No. 31/2004.	of waste			ETWB TCW No. 19/2005, 31/2004	
6.5.2	5.1.2	Chemical Waste Where the construction processes produce chemical waste, the Contractor must register with EPD as a chemical waste producer. Wastes classified as chemical wastes are listed in the Waste Disposal (Chemical Waste) (General) Regulation. These wastes are subject to stringent disposal routes. EPD requires information on the particulars of the waste generation processes including the types of waste produced, their location, quantities and generation rates. A nominated contact person must be registered with EPD. An updated list of licensed chemical waste collector can be obtained from EPD.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	Waste Disposal (Chemical Waste) (General) Regulation Code of Practice on the Packaging Labelling and Storage of Chemical Waste	٨
6.5.2	5.1.2	Storage, handling, transport and disposal of chemical waste should be arranged in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published by EPD, and should be collected by a licensed chemical waste collector.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	Waste Disposal (Chemical Waste) (General) Regulation Code of Practice on the	#

							Packaging Labelling and Storage of Chemical Waste	
6.5.2	5.1.2	Suitable containers should be used for specific types of chemical wastes, containers should be properly labelled (English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulations), resistance to corrosion, safely stored and securely closed. Stored volume should not be kept more than 450 liters unless the specification has been approved by the EPD. Storage area should be enclosed by three sides by a wall, partition of fence that is at least 2 m height or height of tallest container with adequate ventilation and space.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	✓	Waste Disposal (Chemical Waste) (General) Regulation Code of Practice on the Packaging Labelling and Storage of Chemical Waste	^
6.5.2	5.1.2	Hard standing, impermeable surfaces draining via oil interceptors should be provided in works area compounds. Interceptors should be regularly emptied to prevent release of oils and grease into the surface water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain. Oil and fuel bunkers should be bunded and/or enclosed on three sides to prevent discharge due to accidental spillages or breaches of tanks. Bunding should be of sufficient capacity to accommodate 110% of the volume of the largest container or 20% of the total volume of waste, whichever is largest. Waste collected from any grease traps should be collected and disposed of by a	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	V	Waste Disposal (Chemical Waste) (General) Regulation Code of Practice on the Packaging Labelling and Storage	N/A

		licensed contractor.					of Chemical Waste	
6.5.2	5.1.2	Lubricants, waste oils and other chemical wastes are likely to be generated during the maintenance of vehicles and mechanical equipment. Used lubricants should be collected and stored in individual containers which are fully labelled in English and Chinese and stored in a designated secure place. If possible, such waste should be sent to oil recycling companies, and the empty oil drums collected by appropriate companies for reuse or refill.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	*	Waste Disposal (Chemical Waste) (General) Regulation Code of Practice on the Packaging Labelling and Storage of Chemical Waste	٨
6.5.2	5.1.2	The registered chemical waste producer (i.e. the contractor) has to arrange for the chemical waste to be collected by licensed collectors. The licensed collector should regularly take chemical waste to a licensed chemical waste treatment facility (such as the Chemical Waste Treatment Centre in Tsing Yi). A trip ticket system operates to control the movement of chemical wastes.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor		Waste Disposal (Chemical Waste) (General) Regulation Code of Practice on the Packaging Labelling and Storage of Chemical Waste	^

6.5.2	5.1.2	No lubricants, oils, solvents or paint products should be allowed to discharge into water courses, either by direct discharge, or as contaminants carried in surface water runoff from the construction site.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor		Waste Disposal (Chemical Waste) (General) Regulation Code of Practice on the Packaging Labelling and Storage of Chemical Waste	^
6.5.2	5.1.2	General Works Waste Concrete Waste Dry concrete waste (considered as public fill) should be sorted out from the other wastes and recycled for reuse or sorted out for disposal at designated public fill reception facilities.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	V	Waste Disposal Ordinance ETWB TCW No. 19/2005, 33/2002	^
6.5.3	5.1.3	Wooden Materials All wooden materials used on-site should be kept separate from other wastes to avoid damage and to facilitate reuse. Timber which cannot be reused should be sorted out from other waste and stored separately from all inert waste before being disposed of to landfill.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	V	Waste Disposal Ordinance ETWB TCW No. 19/2005, 33/2002	۸
6.5.3	5.1.3	Reusable steel or concrete panel shutters, fencing and hoarding and signboard should be used as a preferred alternative to items made of wood, to minimise	Waste reduction, reuse, recycling and	All work site / during construction	Construction Contractor	√	Waste Disposal Ordinance	^

		wastage of wood. Attention should be paid to WBTC No. 19/2001 – "Metallic Site Hoardings and Signboards" to reduce the amount of timber used on construction sites. Metallic alternatives to timber are readily available and should be used rather than new timber. Precast concrete units should be adopted wherever feasible to minimize the use of timber formwork.	proper disposal of waste				ETWB TCW No. 19/2005, 33/2002	
6.5.3	5.1.3	Only waste material need to be taken to a landfill. It should be separated from recyclable wood and steel materials. As for all waste types these materials should be reused on-site or other approved sites before disposal is considered as an option. Disposal to landfill should only be considered as a final option. Contractors are responsible for storage of re-useable materials on-site.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	✓	Waste Disposal Ordinance ETWB TCW No. 19/2005, 33/2002	٨
6.5.3	5.1.3	Municipal Waste General refuse generated on-site should be stored in enclosed bins or skips and collected separately from other construction and chemical wastes and disposed of at designated landfill. A temporary refuse collection point should be set up by the Contractor to facilitate the collection of refuse by licensed contractors. The removal of waste from the site should be arranged on a daily or at least on every second day by the Contractor to minimise any potential odour impacts, minimise the presence of pests, vermin and other scavengers and prevent unsightly accumulation of waste.	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	\	Waste Disposal Ordinance ETWB TCW No. 19/2005	٨
6.5.3	5.1.3	The recyclable component of the municipal waste generated by the workforce, such as aluminium cans, paper and cleansed plastic containers should be separated from other waste. Provision and collection of recycling bins for different types of recyclable	Waste reduction, reuse, recycling and proper disposal of waste	All work site / during construction	Construction Contractor	√	Waste Disposal Ordinance ETWB	^

		waste should be set up by the Contractor. The contractor should also be responsible for arranging recycling companies to collect these materials.						TCW No. 19/2005	
6.5.3	5.1.3	The burning of refuse on-site is prohibited under the Air Pollution Control Ordinance (APCO) (Cap.311).	Waste reduction, reuse, recycling and proper disposal of waste as well as air pollution control	All work site / during construction	Construction Contractor	V		Waste Disposal Ordinance ETWB TCW No. 19/2005 Air Pollution Control Ordinance	٨
Waste	– Oper	ational Phase							
6.6.2	5.3.1	Adequate litter bins should be provided at the viewing point and carpark and should be regularly emptied by Food and Environmental Hygiene Department (FEHD). Normal road sweeping and street cleansing routinely carried out by FEHD on a need basis is considered adequate to minimise impact from such waste. Road side gullies should be cleared and desilted regularly to ensure proper operation of the road drainage system.	Proper management of wastes during operation	Proposed access road, viewing point, carpark and associated road drainage system / during operation	FEHD+		√	Waste Disposal Ordinance	N/A
6.6.5	5.3.2	In general, desilting or maintenance works should be carried out during dry season where flow in the watercourse is low. Non-inert materials such as excess vegetation and garbage should be properly packed and disposed of to landfill. Inert material such as excess silt should be dried and disposed of public fill reception facilities or to landfill if the amount is negligible. The locations for the disposal of the above materials should be identified and agreement sought	Proper disposal of wastes during routine maintenance	The proposed channel / during operation	DSD (or DSD's maintenance contractor)+		√	Waste Disposal Ordinance	N/A

Contract No. YL/2009/01 Hang Hau Tsuen Channel at Lau Fau Shan Monthly Environmental Monitoring and Audit Report

	with the relevant departments before commencement					
	of the maintenance works.					

EIA Ref.	EM &A Ref.	Recommended Mitigation Measures	Objectives of Recommended Measures and	Location /Timing	Implementati on Agent		lemen Stages		Relevant Legislation &	Status
	Kei.		Main Concerns to addressed			D	С	0	Guidelines	
Ecolog	gy – Coi	nstruction Phase								
7.9.2	6.5.2	Impact Avoidance / Minimisation Mitigation The layout of the preferred option had avoided the mangroves at the lower reach of the Hang Hau Tsuen stream.	Avoid the mangroves at the lower reach of Hang Hau Tsuen	The proposed channel / during detailed design	CEDD (Detailed Design engineer) to incorporate the preferred option into the design)	√			Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	۸
7.9.3	6.5.3	Good site practices and precautionary measures should be implemented to avoid encroachment onto the nearby natural habitats, minimise disturbance to wildlife, and ensure good water quality. Examples of water quality mitigation measures are detailed in <i>Section 4.9</i> of this EM&A Manual (and Section 5.7 of the EIA report). Other precautionary measures include: • Temporary fencing should be erected along the portion of the mangroves proposed to be retained to form protection zones to restrict access by construction workers or equipment or works. Unnecessary felling of the mangroves within these protection zones is prohibited. Signage should be provided at conspicuous location to warn workers from entering and disturbing these zones.	Avoid, minimize and mitigate ecological impacts during construction	All works sites / during construction	Construction Contractor		~		Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	<

	 All workers should be regularly briefed to avoid disturbing the flora and fauna near the works area. Surface run-off and wastewater from construction sites should be discharged into water bodies via adequately designed silt removal facilities such as sand traps, silt traps and sediment basins. Open stockpiles susceptible to erosion should be covered with tarpaulin or similar fabric and provided with containment such as bunds, sand bag barriers or equivalent measures, especially during the wet season (April – September) or when heavy rainstorm is predicted. Excavation works within the existing stream section should be programmed to be carried out during periods of low flow (dry season from 1st October to 31st March) as far as practicable to minimise impacts on downstream water quality and sensitive receivers. The excavation area should be limited to section of half width of the stream in order to maintain continuous water flow within the stream during the construction phase. Sewage arising from construction workers on site should be collected in a suitable storage facility, such as portable chemical toilets and disposed via licensed contractors. 		All				
7.9.6 6.5	The channel layout has been designed to retain as much trees as possible. To mitigate the loss of 16 trees, 114 nos. of new trees in heavy standard size	Compensate the loss of trees	All works sites / during construction	Construction Contractor	\	Environme ntal Impact Assessment	۸

		will be planted within the site. The proposed trees consisting mostly of native species will include <i>Celtis sinensis</i> , <i>Cinnamomum parthenoxylon</i> , <i>Ficus microcarpa</i> , <i>Hibiscus tiliaceus</i> and <i>Cassia siamea</i> .						Ordinance Technical Memorand um on EIA Process ETWB	
								TCW No. 3/2006	
7.9.7 Figur e 7.3	6.5.7	To mitigate the loss of 0.07 ha of mangrove patches, a total of 0.07 ha, mainly of newly formed surface at the northern part of the downstream section of the channel is identified for compensatory mangrove planting (Figure 7.3 of the EIA). Therefore, loss of mangrove will be compensated with a ratio of 1:1. Upon completion of construction, the mangrove compensation area will be filled with mud of at least 60 cm in depth to be collected from suitable stream bed material excavated during construction, the abandoned fish pond, or mudflat outside the project area. The final level of the planted area should be about 1-2 mCD. Mangrove species to be planted will include <i>Kandelia obovata</i> at about 1-1.5 mCD and <i>Acanthus ilicifolius</i> at about 1.5-2 mCD, the major species found at the site. Mangrove seedlings of at least 60 cm in height purchased at Futian or Mai Po Nature Reserve should be planted at 1 m spacing. Upon completion of planting, monitoring for survival and growth should be conducted for two years during the operation phase. The monitoring of the compensatory mangrove will be implemented by the project proponent. It is anticipated that both the retained and the compensated mangrove in the mangrove zone (Figure 2.7; Figure 7.3 of the EIA) would need no maintenance in the long run.	Compensate the loss of trees	Mangrove planting area as shown in Figure 7.3 of the EIA / planting upon completion of construction; monitoring & maintenance after completion of planting	Construction Contractor (for planting) CEDD (for 2 years of monitoring during operation)	✓	•	Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	N/A

7.9.8	6.5.8	Before commencement of the works, the Contractor should submit details of the mitigation measures to be implemented during construction stage as part of their working method statement to the Engineer for approval. This should also include the details of the mangrove planting. This should be reviewed by the Environmental Team Leader and verified by the Independent Environmental Checker.	To ensure the Contractor will properly implement the mitigation measures	All works site / before commencem ent of construction	Construction Contractor		√		Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	٨
7.9.9	gy – Op e 6.5.9	During operation phase, management and maintenance of the channel bed should be limited to the minimum required to prevent flooding and ensure safety. The channel should be permitted to find (and adjust) its own low flow channel and natural changes in the deposition of silt, sand, rock should be tolerated except where a specific flooding or safety issue is identified. Environmental considerations for maintenance of the proposed channel (see Section 5.9 of the EIA) should be adopted.	To minimize ecological impact during maintenance of the completed channel	The proposed channel / during operation	DSD (or DSD's maintenance contractor)+			√	Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	N/A
7.9.1	6.5.1	Vegetation management within the channel should be restricted to removing of obstructions and preventing tree establishment, while the presence of vegetation should be tolerated as much as possible. If clearance of vegetation is required to prevent obstruction of water flow, where specific flooding or safety issues have been identified, this should be undertaken during the dry season. Expert advice from AFCD should be sought in case of doubt.	To minimize ecological impact during maintenance of the completed channel	The proposed channel / during operation	DSD (or DSD's maintenance contractor)+			√	Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	N/A
7.9.1	6.5.1	To further mitigate stream loss, a layer of approximately 100 mm thick original river bed material will be added on top of the rip-rap bedding of the dry weather flow channel to recreate a natural stream environment. This would allow recolonization of benthic communities and re-establishment of	To further mitigate stream loss	The dry weather flow channel / during detailed design,	CEDD (Detailed Design Engineer) to incorporate into channel	√	√	√	Environme ntal Impact Assessment Ordinance	N/A

vegetation within the channel.	construction design	Memorand
	and operation	um on EIA
	Construction	Process
	Contractor to	
	construct	
	DSD (or	
	DSD's	
	maintenance	
	contractor)+	

EIA Ref.	EM &A Ref.	Recommended Mitigation Measures	Objectives of Recommended Measures and	Location /Timing	Implementati on Agent		lemen Stage:		Relevant Legislation	Status
	Kei.		Main Concerns to addressed			D	C	O	& Guidelines	
Lands	cape an	d Visual – Construction and Operation Phase								
9.9.4 Tabl e 9.9	8.5.2 Tabl e 8.2	Recommended landscape mitigation measures at construction stage are: • LMM1 Advance tree transplanting • LMM2 Sensitive design site hoarding • LMM3 Preservation of existing tree to be retained • LMM4 Demarcation of tree protection zone • LMM5 Minimize of construction works in stream • LMM6 Soil conservation • LMM7 Operational time restriction	Mitigate landscape and visual impacts during construction	All works sites / during construction	Construction Contractor		√		Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	^
Tabl e 9.9	Tabl e 8.2	LMM1 - Advance tree transplanting of existing trees affected by the proposed development.	Preservation of existing trees	Project area / during construction	Construction Contractor		✓		Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process ETWB TCW No. 3/2006	۸
Tabl e 9.9	Tabl e 8.2	LMM2 - Sensitively designed site hoarding in both color and form to screen view to the construction	Visual enhancement	Project area / during construction	Construction Contractor		√		Environme ntal Impact Assessment	^

		works.					Ordinance	
							Technical Memorand um on EIA Process	
Tabl e 9.9	Tabl e 8.2	LMM3 - Preservation of existing tree to be retain on area not affected by the proposed development.	Conservation of existing trees; Visual screen	Project area / during construction	Construction Contractor	V	Environme ntal Impact Assessment Ordinance	۸
							Technical Memorand um on EIA Process	
							ETWB TCW No. 3/2006	
Tabl e 9.9	Tabl e 8.2	LMM4 - Demarcation of the tree protection zone for retain trees	Preservation of existing trees	Project area / during construction	Construction Contractor	√	Environme ntal Impact Assessment Ordinance	#
							Technical Memorand um on EIA Process	
							ETWB TCW No. 3/2006	
Tabl e 9.9	Tabl e 8.2	LMM5 - Minimization of the construction works in the existing stream	Preservation of existing landscape	Project area / during construction	Construction Contractor	√	Environme ntal Impact Assessment	^

			resources and landscape character						Ordinance Technical Memorand um on EIA Process ETWB	
									TCW No.	
Tabl e 9.9	Tabl e 8.2	LMM6 - Soil conservation – conservation of existing and imported soil resources.	Conservation of existing topsoil	Project area / during construction	Construction Contractor		√		5/2005 Environme ntal Impact Assessment Ordinance	^
									Technical Memorand um on EIA Process	
Tabl e 9.9	Tabl e 8.2	LMM7 - Operational time restrictions to limit after dark welding and lighting.	Limit night time glare	Project area / during construction	Construction Contractor		*		Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA	۸
									Process	
9.9.5 Tabl e 9.9	8.5.3 Tabl e 8.2	To minimize the impact on landscape and visual features, proper provision of mitigation measures during the design stage would result in a visually more compatible design when viewed at adjacent environment. Subject to the detailed design, possible	To minimize the impact on landscape and visual features	Project area / during detailed design, construction and operation	CEDD (Detailed designed Engineer) to incorporate into design	√	√	√	Environme ntal Impact Assessment Ordinance	^

		mitigation measures to be considered during design stage should include: • LMM8 Selection of fast growing native tree and shrub mixes • LMM9 Preservation of stream and pond not affected • LMM10 Sensitive treatment and design to the external finish of channels walls • LMM11 Maintenance of planting works • LMM12 Compensation planting of mangrove			Construction Contractor to construct DLO, DSD, LCSD to maintain+			Memorand um on EIA Process ETWB TCW No. 2/2004	
Tabl e 9.9	Tabl e 8.2	LMM8 - Selection of fast growing native trees and shrubs mix in compensation for the removal / disturbance area. Planting will be planted along the channel bunds as landscape treatment to screen the built element and mitigate the landscape and visual impact. The combination of natives trees and shrubs mix will provide a more diverse edge effect and break up the overall visual dominance.	Visual screen; Landscape compensation	Project area / during construction and operation	Construction Contractor for planting DLO/LCSD for management and maintenance+	•	•	Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process ETWB TCW No. 2/2004	۸
Tabl e 9.9	Tabl e 8.2	LMM9 - Preservation of existing stream and pond not affected by the development.	Preservation of Landscape resources and character	Section of existing stream and pond not affected by the project / during construction and operation	Construction Contractor during construction DSD for management and maintenance (for area within DSD	V	•	Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process ETWB	٨

					boundary)+			TCW No. 5/2005	
Tabl e 9.9	Tabl e 8.2	LMM10 - Provide sensitive treatment and design to the external finish of the channel walls such as adopting the use of natural materials and planting to soften surface of built structures	Visual enhancement	Project area / during construction and operation	Construction Contractor during construction	✓	√	Environme ntal Impact Assessment Ordinance	N/A
					DSD for management and maintenance (for area within DSD boundary)+ DLO/LCSD for management and maintenance of planting outside DSD			Technical Memorand um on EIA Process ETWB TCW No. 2/2004	
T. 1.1	T 11		Y 1		boundary +	./	./	Б.	27/4
Tabl e 9.9	Tabl e 8.2	LMM11 - Maintenance of planting works upon completion.	Landscape compensation	Operation period	Construction Contractor for planting and maintenance during establishment period DLO/LCSD for management and maintenance+	~	√	Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process ETWB TCW No.	N/A

							2/2004	
Tabl e 9.9	Tabl e 8.2	LMM12 - Compensation planting of mangrove to stream bed	Landscape compensation	Mangrove zone / during construction (no long term maintenance necessary)	Construction Contractor for planting and maintenance during establishment period No long term maintenance necessary	✓	Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process ETWB TCW No. 2/2004	N/A
9.9.6	8.5.4	To mitigate the loss of 16 trees, 114 nos. of new trees in heavy standard size will be planted within the site. The proposed trees consisting mostly of native species will include <i>Celtis sinensis</i> , <i>Cinnamomum parthenoxylon</i> , <i>Ficus microcarpa</i> , <i>Hibiscus tiliaceus</i> and <i>Cassia siamea</i> . The total aggregated girth size of compensatory trees of 8.55 m is more than the felled 3.59 m. Therefore, loss of tree will be compensated with a ratio of more than 1:1 in terms of numbers and aggregated girth size.	Mitigate landscape and visual impacts during construction Compensate for the loss of tree fell	All works sites / during construction	Construction Contractor	*	Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process ETWB TCW No. 3/2006	N/A
9.9.7	8.5.5	The following native shrub species are recommended to be planted on the hydroseeded slope of the embankments: Calliandra haematocephala, Codiaeum variegatum, Duranta repen and Lxora stricta. Drooping plants such as Jasminum mesnyi, Russelia equisetiformis and Asparagus sprengeri are recommended to be planted to soften and provide greenery to the channel walls.	Mitigate landscape and visual impacts during construction	All works sites / during construction	Construction Contractor	V	Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA	N/A

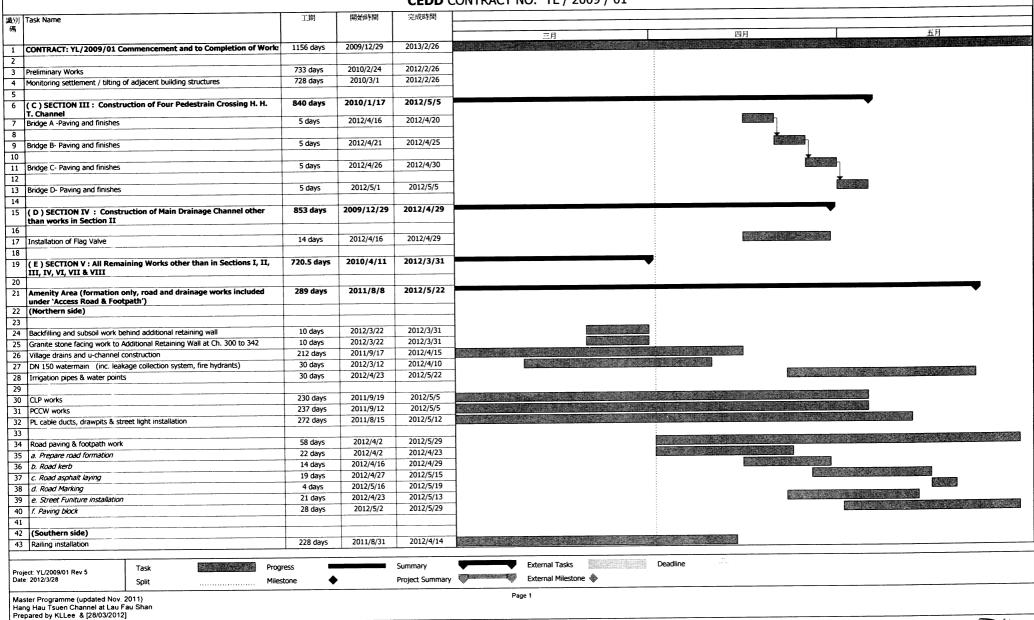
							Process	
9.9.9	8.5.6	As details of the proposed planting cannot be ascertain at the EIA stage, the preliminary design stage of the Project, it is recommended that a detailed Landscape Plan be submitted before commencement of planting or landscape works of the Project. The Landscape Plan should include the locations, size, number and species of plantings, design details, implementation programme, maintenance and management schedules, and drawings in scale of 1:1000 showing the landscape and visual mitigation measures. The Landscape Plan should be certified by the ET Leader and verified by the Independent Environmental Checker (IEC) as conforming to the information, requirements and recommendations set out in the approved EIA Report before submission to the relevant authorities.	Mitigate landscape and visual impacts during construction	Al works sites / during construction	Construction Contractor	~	Environme ntal Impact Assessment Ordinance Technical Memorand um on EIA Process	N/A

Remarks:	^	Compliance of mitigation measure;	Non-compliance	e of mitigation measure;			
	N/A	Not Applicable;	Non-compliance	but rectified by the contractor			
	#	Recommendation was made during site audit but improved/rectified by the	O = Design, C =	Construction, O = Operation			
		contractor.					
	**	Recommendation was made during site audit but not yet improved/rectified by					
		the contractor.					
	+	CEDD will assume to be responsible for the mitigation measures until an agreement is reach between CEDD and relevant parties on the management and maintenance					
		of the mitigation measures.					

APPENDIX N COMPLAINT LOG

APPENDIX N – COMPLAINT LOG

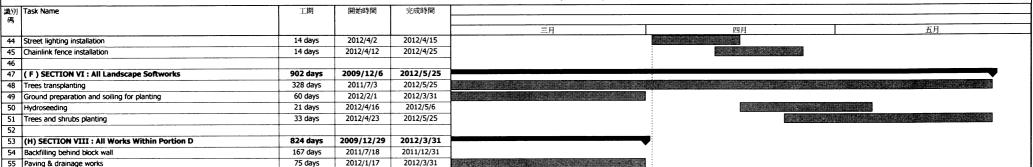
Reporting Month: May 2012


Log Ref.	Location Recei-		Details of Complaint	aint Investigation/Mitigation Action				
N.A.	N.A.	N.A.	N.A.	N.A.	N.A.			

Remarks: No environmental complaint was received in the reporting month.

APPENDIX O CONSTURCTION PROGRAMME

Acceleration programme


CEDD CONTRACT NO. YL / 2009 / 01

KWAN ON CONSTRUCTION CO. LTD.
CEDD Contract No. YL / 2009 / 01 Hang Hau Tsuen Channel at Lau Fau Shan

Acceleration programme

CEDD CONTRACT NO. YL / 2009 / 01

Project: YL/2009/01 Rev 5
Date: 2012/3/28

Task
Progress
Summary
External Tasks
Deadline

Froject Summary
External Milestone