

JOB NO.: TCS00874/16

CEDD CONTRACT NO. CV/2012/05 DEVELOPMENT OF A BATHING BEACH AT LUNG MEI, TAI PO

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (APRIL 2018)

PREPARED FOR WELCOME CONSTRUCTION CO., LTD

Date	Reference No.	Prepared By	Certified By
20 November 2018	TCS00874/16/600/R0170v4	Anh	The
		Nicola Hon	T.W. Tam
		(Environmental Consultant)	(Environmental Team Leader)

VersionDateRemarks18 May 2018First Submission210 May 2018Amended according to the IEC's comments on 9 May 2018311 May 2018Amended according to the IEC's comments on 10 and 11 May 2018420 November 2018Amended according to EPD's comments on 5 October 2018

Environmental Permit No. EP-388/2010

Development of a Bathing Beach at Lung Mei, Tai Po

Independent Environmental Checker Verification

Reference Document/Plan

Document/ Plan to be -Certified / Verified:	Monthly Environmental Monitoring and Audit Report (April 2018) (v4)
Date of Report:	20 November 2018
Date received by IEC:	20 November 2018

Reference EP Condition / Updated EM&A Manual Requirement

Environmental Permit Condition / Updated EM&A Manual Reference Condition 4.4

Three hard copies and one electronic copy of monthly EM&A Report shall be submitted to the Director within 2 weeks after the end of the reporting month. The EM&A Reports shall include a summary of all non-compliance (exceedances) of the environmental quality performance limits (Action and Limit Levels). The submissions shall be certified by the ET Leader and verified by the IEC. Additional copies of the submission shall be provided to the Director upon request by the Director.

IEC Verification

I hereby verify that the above referenced document/plan complies with the above referenced condition of EP-388/2010.

Mr Terence Fong

Independent Environmental Checker

Date:

21 November 2018

Our ref: P:\Projects\0206709 IEC for Lung Mei EM&A\07_ET Submission\23_Monthly EM&A Report\05_Apr 2018\20181120 v4

0100

EXECUTIVE SUMMARY

- ES.01 Civil Engineering and Development Department (hereafter referred as "CEDD") is the Project Proponent and the Permit Holder of *Agreement No. CE 59/2005 (EP) Development of a Bathing Beach at Lung Mei, Tai Po* (hereinafter referred as "the Project"), which is a Designated Project to be implemented under Environmental Permit number EP-388/2010 (hereinafter referred as "the EP-388/2010" or "the EP").
- ES.02 Action-United Environmental Services & Consulting (hereinafter referred as "AUES") has been commissioned as the Environmental Team for the Project (hereinafter referred as "the ET") to perform relevant Environmental Monitoring and Audit (EM&A) programme, including baseline and impact environmental monitoring in accordance with the EM&A Manual approved under the Environmental Impact Assessment Ordinance (EIAO).
- ES.03 According to the Approved Environmental Monitoring and Audit (EM&A) Manual [November 2007] (hereinafter referred as 'the EM&A Manual'), air quality, construction noise and water quality monitoring should be required to be monitored for baseline and during the construction phase of the Project. In January 2018, an updated EM&A Manual (AUES Ref.: TCS00874/16/300/L0085 dated 11 January 2018) was prepared to update of noise and air sensitive receivers and recent site condition for the EM&A Programme and it was submitted and approved by EPD in January 2018.
- ES.04 This is the 5th monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from 1 to 30 April 2018 (hereinafter 'the Reporting Period'). In the Reporting Period, the impact monitoring covered air quality, construction noise and water quality.

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.05 Environmental monitoring activities under the EM&A program in the Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Sessions Note 1
	1-hour TSP	5
Air Quality	24-hour TSP	5
Construction Noise	L _{Aeq(30min)} Daytime	4
Water Quality	Marine Water Sampling	12
	ET Regular Environmental Site Inspection	2
Inspection / Audit	Independent Environmental Checker (IEC) Monthly Environmental Site Audit	1

Note: 1.) *Total sessions are counted by monitoring days.*

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.06 No exceedance of air quality and construction noise monitoring were recorded in this Reporting Period. For water quality monitoring, a total of 139 Action/Limit Level exceedances of DO, Turbidity, Suspended Solids and Chlorophyll-*a* were recorded on 6, 10, 12, 14, 16, 18, 20, 23, 25, 28 and 30 April 2018 of the monitoring days. NOEs were issued to relevant parties upon confirmation of the monitoring result and investigation for the cause of exceedance was carried out by ET subsequently. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

		Excee	dance		Event & Action	n
Environmental Issues	Monitoring Parameters	Action Level	Limit Level	No. of NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0	-	-
Air Quality	24-hour TSP	0	0	0	-	-
Construction Noise	L _{Aeq(30min)}	0	0	0	-	-
Water Quality	DO	0	0	0	-	-

Turbidity	8	31	6	Not project-related.	NA
SS	9	69	6	Not project-related.	NA
Chlorophyll-a	7	15	2	Not project-related.	NA

Note:	NOE - N	otification	of Exceedanc
Note:	NOE - N	otification	of Exceedan

- ES.07 In our investigation as confirmed by Site Resident Engineers (SRE), there were no marine works carried out during the monitoring days on 6, 10, 12, 14, 16, 18, 20, 23, 25, 28 & 30 April 2018; so all turbidity, SS and chlorophyll-a exceedances in this reporting period were considered to be unlikely caused by the Project. Joint site inspection by CEDD, Welcome and ET was carried out twice in the reporting period. It was observed that the water quality mitigation measures such as silt curtains were properly implemented at designated location in accordance with the EP stipulation. Overall, environmental performance was satisfactory; and no adverse water quality causing impact to surrounding sea-body was observed and recorded.
- ES.08 Having reviewed environmental performance of the Project site and the monitoring results of the reference stations, impact stations as well as the sensitive receiver stations, it is considered that the turbidity, SS and chlorophyll-a exceedances were likely due to natural variation and not caused by the works under the project.

ENVIRONMENTAL COMPLAINT

ES.09 No environmental complaint was recorded or received in this Reporting Period. The statistics of environmental complaint are summarized in the following table.

Donorting Dariad	Environmental Complaint Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
1 – 30 April 2018	0	0	N/A	

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.10 No environmental summons or successful prosecutions were recorded in this Reporting Period. The statistics of environmental complaint are summarized in the following tables.

Donorting Daried	Environmental Summons Statistics				
Reporting Period	Frequency	Cumulative	Complaint Nature		
1 – 30 April 2018	0	0	N/A		

Donouting Dowied	Environmental Prosecution Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
1 – 30 April 2018	0	0	N/A	

REPORTING CHANGE

ES.11 There was no reporting change in the EM&A programme in this Reporting Period.

SITE INSPECTION

ES.12 In the Reporting Period, joint site inspection by CEDD, ET and the Contractor was performed on 6 April 2018, while joint site inspection by the above parties and IEC was performed on 24 April 2018. During the two occasions of the site inspection, no non-compliance was noted.

FUTURE KEY ISSUES

ES.13 The construction activities in May 2018 include site formation, construction of groynes and construction of eastern and western box culvert. The potential environmental impacts arising from the forthcoming construction activities include construction waste, air quality, construction noise and water quality.

- ES.14 In regards to the marine works, special attention should be paid on the groynes construction (Eastern and Western) in which water quality mitigation measures such as erection of silt curtain should be properly implemented and maintained.
- ES.15 Due to rainy seasonal has come, the Contractor is reminded prevent surface runoff entering the sea or public area such as cover the exposed slope by impervious sheets and maintain the temporary drain and wastewater treatment system effectively.
- ES.16 Furthermore, mitigation measures should be fully implemented to minimize construction dust and noise impact to nearby sensitive receivers as appropriate. Moreover, all vehicles leaving the Site should be thoroughly washed by wheel washing facilities and dump/highway trucks should be covered with mechanical covers.

Table of Contents

1.	INTRODUCTION	1
	1.1 PROJECT BACKGROUND	1
	1.2 REPORT STRUCTURE	1
2.	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS	3
	2.1 PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE	3
	2.2 CONSTRUCTION PROGRESS	4
	2.3 SUMMARY OF ENVIRONMENTAL SUBMISSIONS	4
3.	SUMMARY OF IMPACT MONITORING REQUIREMENTS	6
	3.1 GENERAL	6
	3.2 MONITORING PARAMETERS	6
	3.3 MONITORING LOCATIONS	6
	3.4 MONITORING FREQUENCY AND PERIOD	8
	3.5 MONITORING INSTRUMENT	9
	3.6 MONITORING PROCEDURES	10
	3.7 METEOROLOGICAL INFORMATION	13
	 3.8 DETERMINATION OF ACTION/LIMIT (A/L) LEVELS 3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL 	13 14
4.	AIR QUALITY MONITORING	15
	4.1 GENERAL	15
	4.2 RESULTS OF AIR QUALITY MONITORING	15
5.	CONSTRUCTION NOISE MONITORING	16
	5.1 GENERAL	16
	5.2 RESULTS OF NOISE MONITORING	16
6.	WATER QUALITY MONITORING	17
	6.1 GENERAL	17
	6.2 RESULTS OF WATER QUALITY MONITORING	17
7.	WASTE MANAGEMENT	21
/•	7.1 GENERAL	21
	7.2 RECORDS OF WASTE QUANTITIES	21
0		
8.	ECOLOGY 8.1 ECOLOGY MONITORING (MARINE-BASED)	22 22
9.	SITE INSPECTION	23
	9.1 REQUIREMENTS	23
	9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	23
10.	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	24
	10.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	24
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	25
11.	11.1 GENERAL	25 25
	11.2 IMPACT FORECAST	26
10		
12.	CONCLUSIONS AND RECOMMENTATIONS	27
	12.1 CONCLUSIONS	27
	12.2 RECOMMENDATIONS	27

LIST OF TABLES

TABLE 2-1STATUS	S OF ENVIRONMENTAL LICENSES AND PERMITS
-----------------	---

- TABLE 2-2SUBMISSION STATUS AS UNDER THE EP STIPULATION
- TABLE 3-1
 SUMMARY OF EM&A IMPACT MONITORING REQUIREMENTS
- TABLE 3-2
 LOCATION OF AIR QUALITY MONITORING
- TABLE 3-3
 DESIGNATED NOISE MONITORING STATION ACCORDING TO THE EM&A MANUAL
- TABLE 3-4
 NOISE MONITORING STATIONS OF THE EM&A PROGRAMME
- TABLE 3-5
 LOCATION OF MARINE WATER QUALITY MONITORING STATION
- TABLE 3-6
 AIR QUALITY MONITORING EQUIPMENT
- TABLE 3-7
 CONSTRUCTION NOISE MONITORING EQUIPMENT
- TABLE 3-8
 INSTRUMENT OF WATER QUALITY MONITORING
- TABLE 3-9
 TESTING METHOD AND REPORTING LIMIT OF THE CHEMICAL ANALYSIS
- TABLE 3-10
 ACTION AND LIMIT LEVELS FOR AIR QUALITY
- TABLE 3-11
 ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
- TABLE 3-12
 ACTION AND LIMIT LEVELS FOR WATER QUALITY
- TABLE 4-1SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS (A4)
- TABLE 4-2SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS (A7)
- TABLE 5-1
 CONSTRUCTION NOISE MONITORING RESULTS OF N1
- TABLE 5-2
 CONSTRUCTION NOISE MONITORING RESULTS OF N2A
- TABLE 5-3
 CONSTRUCTION NOISE MONITORING RESULTS OF N3A
- TABLE 5-4CONSTRUCTION NOISE MONITORING RESULTS OF N4
- TABLE 6-1RESULTS SUMMARY OF DEPTH AVERAGE (SURFACE & MIDDLE LAYER) OF DO (MG/L)
- TABLE 6-2RESULTS SUMMARY OF BOTTOM DEPTH OF DO (MG/L)
- TABLE 6-3
 RESULTS SUMMARY OF DEPTH AVERAGE OF TURBIDITY (NTU)
- TABLE 6-4
 RESULTS SUMMARY OF DEPTH AVERAGE OF SUSPENDED SOLIDS (MG/L)
- TABLE 6-5RESULTS SUMMARY OF DEPTH AVERAGE OF CHLOROPHYLL-A (µG/L)
- TABLE 6-6SUMMARY OF WATER QUALITY EXCEEDANCE
- TABLE 7-1SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
- TABLE 7-2SUMMARY OF QUANTITIES OF C&D WASTES
- TABLE 9-1SITE OBSERVATIONS
- TABLE 10-1
 STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
- TABLE 10-2
 STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
- TABLE 10-3
 STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
- TABLE 11-1
 ENVIRONMENTAL MITIGATION MEASURES IN THE REPORTING MONTH

LIST OF APPENDICES

- APPENDIX A LAYOUT PLAN OF THE PROJECT
- APPENDIX B ORGANIZATION STRUCTURE AND CONTACT DETAILS
- APPENDIX C 3-MONTH ROLLING CONSTRUCTION PROGRAM
- APPENDIX D MONITORING LOCATION
- APPENDIX E CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT
- APPENDIX F EVENT AND ACTION PLAN
- APPENDIX G IMPACT MONITORING SCHEDULES
- APPENDIX H DATABASE OF MONITORING RESULT
- APPENDIX I GRAPHICAL PLOTS OF MONITORING RESULTS
- APPENDIX J METEOROLOGICAL DATA

APPENDIX K WASTE FLOW TABLE

APPENDIX L IMPLEMENTATION SCHEDULE OF ENVIRONMENTAL MITIGATION MEASURES

1. INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department (hereafter referred as "CEDD") is the Project Proponent and the Permit Holder of *Agreement No. CE 59/2005 (EP) Development of a Bathing Beach at Lung Mei, Tai Po* (hereinafter referred as "the Project"), which is a Designated Project to be implemented under Environmental Permit number EP-388/2010 (hereinafter referred as "the EP-388/2010" or "the EP").
- 1.1.2 The major construction activities of the Project comprise construction of 200-metre long bathing beach with a groyne at each end, a shark prevention net; a public car park; retaining walls; and the associated roadworks, drainage and sewerage works. Layout plan of the Project is shown in *Appendix A*. Designated works of the Project under the EP shall include:
 - (i) Construction of a 200m long beach with a groyne at each end of the beach which includes dredging and sandfilling works;
 - (ii) Construction of one culvert at the eastern side of the beach and another small section of culvert and open drainage channel with gabion embankments at the western end, both to collect and divert surface runoff from upstream locations; and
 - (iii) Construction of a beach building with associated beach building facilities, kiosk and a carpark and associated road improvement works adjoining the facility.
- 1.1.3 CEDD is Site Resident Engineers (hereinafter referred as "SRE") responsible for the Project management; Welcome Construction CO., Ltd is a Main Contractor (hereinafter referred as "Contractor") responsible to construction of the Project Works; and Action-United Environmental Services & Consulting (hereinafter referred as "AUES") has been commissioned as an Independent Environmental Team (hereinafter referred as "the ET") to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. Moreover, Environmental Resources Management is Independent Environmental Checker (hereinafter referred as "IEC") of the Project.
- 1.1.4 As part of the EM&A program, baseline monitoring to determine the ambient environmental conditions including air quality, noise and water quality were undertaken between 7 June 2017 and 21 October 2017. After completed baseline monitoring, Baseline Monitoring Report for Air Quality and Noise (AUES Ref.: TCS00874/16/600/R0022v3) and Baseline Monitoring Report for Water Quality (AUES Ref.: TCS00874/16/600/R0036v2) has been verified by IEC and submitted to EPD for endorsement. These baseline monitoring reports has summarized the key findings of baseline condition and determined a set of Action and Limit Levels (A/L Levels) based on the baseline data. The A/L Levels will serve as the yardsticks for assessing the acceptability of the environmental impact during construction phase of the Project Works impact monitoring.
- 1.1.5 The construction phase of the Project commenced on 1st December 2017. Accordingly, the impact monitoring of the EM&A programme commenced on the same date
- 1.1.6 This is the 5th monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from 1 to 30 April 2018.

1.2 REPORT STRUCTURE

- 1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-
 - Section 1 Introduction
 - Section 2 Project Organization and Construction progress
 - Section 3 Summary of Impact Monitoring Requirements
 - *Section 4* Air Quality Monitoring
 - Section 5 Construction Noise Monitoring
 - Section 6 Water Quality Monitoring
 - *Section* 7 Waste Management

Section 8	Ecology
Section 9	Site Inspection
Section 10	Environmental Complaint and non-compliance
Section 11	Implementation Status of Mitigation Measures
Section 12	Conclusion and Recommendation

2. PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.1.1 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*. The responsibilities of respective parties are:

Engineer or Engineers Representative (ER)

- 2.1.2 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
 - monitor the Contractor's compliance with contract specifications, including the effective implementation and operation of environmental mitigation measures and other aspects of the EM&A programme;
 - instruct the Contractor to follow the agreed protocols or those in the Contract Specifications in the event of exceedances or complaints;
 - comply with the agreed Event and Action Plans in the event of any exceedance;
 - liaise with the IEC and assist as necessary in the implementation of the EM&A program; and
 - participate in joint site inspection undertaken by the EI and IEC.

The Contractor

- 2.1.3 The duties and responsibilities of the Contractor are:
 - work within the scope of the construction contract and other tender conditions;
 - provide assistance to the ET in carrying out monitoring;
 - ubmit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event and Action Plans;
 - implement measures to reduce impact where Action and Limit levels are exceeded;
 - implement the corrective actions instructed by ER/ET/IEC;
 - participate in the site inspections undertaken by the ET and the IEC, as required, and undertake any corrective actions instructed by ER/ET/IEC; and
 - adhere to the procedures for carrying out complaint investigation.

Environmental Team (ET)

- 2.1.4 The ET will be led and managed by the ET Leader. The ET leader will have relevant education, training, knowledge, experience and professional qualifications and the appointment will be subject to the approval of the Director of Environmental Protection and ER. Suitably qualified staff will be included in the ET, and the ET should not be in any way an associated body of the Contractor or the Independent Environmental Checker (IEC) for the Project.
- 2.1.5 The duties and responsibilities of the ET are:
 - monitor various environmental parameters as required in this EM&A Manual;
 - assess the EM&A data and review the success of the EM&A programme determining the adequacy of the mitigation measures implemented and the validity of the EIA predictions as well as identify any adverse environmental impacts before they arise;
 - carry out regular site inspection to investigate and audit the Contractor's site practice, equipment and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt issues;
 - review the Contractor's working programme and methodology, and comment as necessary;
 - review and prepare reports on the environmental monitoring data, site environmental conditions and audits;
 - report on the environmental monitoring and audit results and conditions to the IEC, Contractor, EPD and ER;
 - recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans;

- adhere to the procedures for carrying out complaint investigation; and,
- the ET Leader will keep a contemporaneous log-book and record each and every instance or circumstance or change of circumstances which may affect the environmental impact assessment and every non-conformance with the recommendations of the EIA Reports or the EPs.

Independent Environmental Checker (IEC)

- 2.1.6 The duties and responsibilities of the IEC are:
 - review and monitor the implementation of the EM&A programme and the overall level of environmental performance being achieved;
 - arrange and conduct monthly independent site inspections/audits of the works;
 - validate and confirm the accuracy of monitoring results, monitoring equipment, monitoring stations, monitoring procedures and locations of sensitive receivers;
 - carry out random sample check and audit on monitoring data and sampling procedures, etc;
 - audit the EIA recommendations and requirements against the status of implementation of environmental protection measures on site;
 - on needed basis, audit the Contractor's construction methodology and agree the appropriate, reduced impact alternative in consultation with ER, the ET and the Contractor;
 - provide specialist advice to ER and the Contractor on environmental matters;
 - check complaint cases and the effectiveness of corrective measures;
 - check that the necessary mitigation measures recommended in the EIA, EP and Contract documents, or as subsequently required, are effectively implemented;
 - review EM&A report submitted by the ET leader and feedback audit results to ET by signing off relevant EM&A proformas;
 - report the findings of site inspections/ audits and other environmental performance reviews to ER, ET, EPD and the Contractor;

2.2 CONSTRUCTION PROGRESS

- 2.2.1 The 3-month rolling construction program is enclosed in *Appendix C* and the major construction activities undertaken in the Reporting Period are listed below:-
 - Site formation
 - Construction of Groynes (Eastern and Western)
 - Construction of Western Box Culvert

2.3 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.3.1 Summary of currently relevant permits, licenses, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

		License/Permit Status			
Item	Description	Permit no./Account no./ Ref. no.	From	То	
	Air pollution Control (Construction Dust) Regulation	Ref. Number: 418137	N/A	N/A	
2	Chemical Waste Producer Registration	Waste Producers Number (WPN): PN5213-728-W3437-01	21 August 2017	End of Project	
3	Water Pollution Control Ordinance	License No.: WT00028905-2017	24 October 2017	31 October 2022	
4	for Disposal of	Billing Account for Disposal of Construction Waste: Account No. 7017686	3 July 2013	End of Project	

2.3.2 The submission status as under the EP requirement is presented in *Table 2-2*.

Table 2-2	Submission Status as under the EP Stipulation	
-----------	---	--

Item	EP condition	Description	Status
1	2.3	Management Organization of the	The updated version to be
		Main Construction Companies	submitted in May 2018
2	2.4	Report for Capture and Relocation of	Approved by EPD on 15 Sep 2017
		Common Rat Snake	(EPD ref.: (15) in EP2/N5/C/46
			Pt.6 dated 15 Sep 2017)
3	2.5	Landscape Plan	Submitted to EPD on 28 June 2017
4	3.12	Mangrove Seedling Planting	Not yet submitted
		Proposal	
5	3.13	Detailed Landscape As-built	Not yet submitted
		Drawing(s)	
6	4.3	Baseline Monitoring Report for Air	Approved by EPD on 8 Jan 2018
		Quality and Noise (AUES Ref.:	(EPD ref.: (36) in EP2/N5/C/46
		TCS00874/16/600/R0022v3)	Pt.6 dated 8 Jan 2018)
7		Baseline Monitoring Report for Water	Approved by EPD on 10 Jan 2018
		Quality(AUES Ref.:	(EPD ref.: (37) in EP2/N5/C/46
		TCS00874/16/600/R0036v2)	Pt.6 dated 10 Jan 2018)

3. SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

3.1.1 The Environmental Monitoring and Audit requirements are set out in the EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project. A summary of the EM&A requirements for air quality, noise monitoring and water quality are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

- 3.2.1 According to the Project EM&A Manual, the Impact monitoring program covers the following environmental issues:
 - Air Quality;
 - Construction Noise; and
 - Water Quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1* below.

Table 3-1	Summary of EM&A Impact Monitoring Requirements
-----------	--

Environmental Issue	Parameters
Air Quality	1-hour TSP24-hour TSP
Noise	• Leq (30min) in six consecutive Leq(5 min) between 07:00-19:00 on normal weekdays
Water Qaulity	 In-situ Measurements Dissolved Oxygen Concentration (mg/L); Dissolved Oxygen Saturation (%); Salinity (mg/L); Temperature (°C); Turbidity (NTU); pH unit; Current direction (degree); Current speed (m/s); and Water depth (m) Laboratory Analysis Suspended Solids (mg/L); and Chlorophyll-a (µg/L)

3.3 MONITORING LOCATIONS

Air Quality

3.3.1 There are air quality monitoring locations (A4 and A6) recommended in Section 3.1 of the EM&A Manual. During liaison with the landlord of A6, he refused to provide access and location for installation of High Volume Air Sampler (HVAS). Therefore, alternative location (A7) was proposed by ET in accordance with Section 3.4 of the EM&A Manual. The proposed alternative locations are considered capable of effectively representing the baseline conditions at the impact monitoring locations. The proposal (*ref no.: TCS00874/16/300/L0016b*) for alternative monitoring locations was verified by IEC and it has been submitted to EPD for approval on 8 May 2017. The air quality monitoring locations are in *Table 3-2* and illustrated in *Appendix D*.

Table 3-2Location of Air Quality Monitoring

Station ID	Location
A4	No. 101 Lung Mei Tsuen
A7	Hong Kong Eco-Farm

Construction Noise

3.3.2 According to Section 4.1 of the EM&A Manual, four designated noise sensitive receivers (N1, N2, N3 and N4) were recommended and they are listed in *Table 3-3* and illustrated in *Appendix D*.

Table 3-3	Designated Noise Monitoring Stat	tion according to the EM&A Manual
1 abic 5-5	Designated Roise Monitoring Stat	tion according to the Enter Manual

NSR	Location		
N1	Village house - No. 165A Lung Mei		
N2*	Village house - No. 103 Lung Mei		
N3	Village house - No. 70 Lo Tsz Tin		
N4	Village house - No. 79 Lo Tsz Tin		

Remarks: (*)*Noise monitoring should be conducted at N2a (i.e House No. 101 Lung Mei) if it is changed to residential use during construction phase.*

- 3.3.3 As confirmed on the first day of baseline monitoring, N2a (House no. 101 Lung Mei) has been changed to residential use. Therefore, the noise monitoring is conducted at N2a and to replace N2. Moreover, due to the lack of accessibility of noise monitoring at NSR N3 (Village house No. 70 Lo Tsz Tin), alternative location was proposed to replace N3 to carry out the noise monitoring. Having reviewed the surrounding condition, NSR N3a (Village house No. 66C Lo Tsz Tin) was proposed with the rationales summarized in below.
 - The distance between N3 and N3a is about 18 meter apart and N3a locates at close proximity of the project site and major site activities which are likely to have noise impacts;
 - 2) N3a is a village type residential house and it is a noise sensitive receiver (NSR);
 - 3) Accessibility for noise monitoring work at N3a is available; and
 - 4) Minimal disturbance would be only caused to the proposed monitoring location N3a.
- 3.3.4 The proposal (*ref no.: TCS00874/16/300/L0016b*) for alternative monitoring locations was verified by IEC and it has been submitted to EPD for approval on 8 May 2017. The noise monitoring stations under the EM&A programmes are listed in *Table 3-4* and illustrated in *Appendix D*.

Station ID	Address
N1	Village house No. 165A of Lung Mei
N2a	Village house No. 101 of Lung Mei
N3a	Village house No. 66C of Lo Tsz Tin
N4	Village house No. 79 of Lo Tsz Tin

Table 3-4Noise Monitoring Stations of the EM&A Programme

Water Quality

3.3.5 According to *Section 5.1.2 of the Approved EM&A Manual*, two Reference Stations (R1 and R2), three impact stations (I1, I2 and I3), three sensitive receivers (FCZ1, W1 and M1) and one Gradient station (G1), were identified to perform water quality monitoring. Detailed and co-ordnance of water quality monitoring stations is described in *Table 3-5* and the graphical is shown in *Appendix D*.

Table 3-5Location of Marine Water Quality Monitoring Station

Station	Coord	linates	Description	
Station	Easting	Northing	Description	
G1	841483.9	835936.1	Gradient Station - to assist in the identification of the source of	
01	041403.7	055750.1	any impact.	
			Reference Station - for the background water quality for Tolo	
R1	842307.4	835718.4	Harbour as it is at the channel where the water exchange	
IX1	042307.4	055710.4	between the enclosed Plover Cove and Tolo Harbour take place.	
			It is located at south of the Project dredging/sandfilling area.	
			Reference Station - for the background water quality in the	
R2	840739.4	836212.4	Plover Cove region. It is located at southwest of the Project	
			dredging/sandfilling area.	

Station	Coord	linates	Description
Station	Easting	Northing	Description
I1	841338.5	836588.5	Impact Station - located outside the mixing zone of dredging/sandfilling works of the Project.
I2	841590.3	836601.2	Impact Station - located outside the mixing zone of dredging/sandfilling works of the Project.
I3	841807.0	836680.9	Impact Station - located outside the mixing zone of dredging/sandfilling works of the Project.
W1	841858.9	836571.0	Sensitive Receiver - located at the Water Sport Centre, which is about 0.25 km distance to the southeast of the dredging/sandfilling area.
M1	840822.2	836416.4	Sensitive Receiver - located at the Ting Kok SSSI, which is about 0.8 km distance to the west of the dredging/sandfilling area.
FCZ1	841180.6	835230.8	Sensitive Receiver - located at the Yim Tin Tsai East Fish Culture Zone, which is about 1.5 km distance to the southwest of the dredging/sandfilling area.

3.4 MONITORING FREQUENCY AND PERIOD

3.4.1 The frequency and the duration for impact monitoring are summarized below.

Air Quality Monitoring

- <u>Parameters:</u> 1-hour TSP and 24-hour TSP
- Frequency: 3 times every six days for 1-hour TSP and once every 6 days for 24-hour TSP
- Duration: Throughout the construction period

Noise Monitoring

- <u>Parameters:</u> $L_{Aeq(30min)}$ and statistical results $L_{10} \& L_{90}$
- Frequency: Leq (30min) in 6 consecutive Leq(5min) for once a week during 07:00-19:00 on normal weekdays
- Duration: Throughout the construction period

Water Quality (Marine) Monitoring

- <u>Parameters:</u> In-situ measurements including water depth, Dissolved Oxygen (DO) concentration (mg/L) & saturation (%), Salinity (mg/L), Temperature ($^{\circ}$ C) and Turbidity (NTU); and Suspended Solids (mg/L) and Chlorophyll-*a* (µg/L) are analyzed by HOKLAS-accredited laboratory.
- Frequency: Three days a week, at mid ebb and mid flood tides. The interval between 2 sets of monitoring will be more than 36 hours.
- Sampling 1) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m;
 - 2) If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom; and
 - 3) If the water depth is less than 3m, 1 sample at mid-depth is taken
 - Duration: During marine works proceeding such as the dredging and sand filling
- 3.4.2 In addition to the water quality parameters, other relevant data will also be to measure and record, which are included the location of the sampling stations, water depth, time, weather conditions, sea conditions, tidal stage, current water flow direction and speed, special phenomena and work activities undertaken around the monitoring and works area that may influence the monitoring results. Observations on any special phenomena and work underway at the Project site during the time of sampling will also be to record.

3.5 MONITORING INSTRUMENT

Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to prove that the instrument is capable of achieving a comparable results to the HVS. The instrument should be calibrated regularly, and the 1-hour sampling shall be determined on yearly basis by the HVS to check the validity and accuracy of the results measured by direct reading method. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.2 All equipment to be used for air quality monitoring is listed in *Table 3-6*.

Table 3-6Air Quality Monitoring Equipment

Equipment	Model
24-Hour TSP	
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170
Calibration Kit	TISCH Calibration Kit Mode TE-5025A
1-Hour TSP	
Portable Dust Meter	Sibata LD-3B Laser Dust Meter

Noise Monitoring

- 3.5.3 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in ms⁻¹ for reference.
- 3.5.4 Monitoring equipment to be used for construction noise measurement is listed in *Table 3-7*.

Table 3-7 Construction Noise Monitoring Equipment

Portable Wind Speed Indicator (#) Anemometer AZ Instrument 8908			
2			

(#) Wind speed is reference data only and there is no calibration certificate for portable wind speed indicator.

Water Quality Monitoring

- 3.5.5 For water quality monitoring, the used equipment should be fulfill the requirements under *the Approved EM&A Manual Section 5.1.1*. Requirement of instruments is described in the following sections.
- 3.5.6 Instruments to be used for Water quality monitoring is listed in *Table 3-8*.

Table 3-8Instrument of Water Quality Monitoring

Equipment	Model
A Digital Global Positioning System	GPS12 Garmin
Water Depth Detector	Eagle Sonar CUDA 300
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends or teflon/stainless steel bailer or self-made sampler
Thermometer & DO meter	
pH meter	YSI Professional Plus Multifunctional Meter
Turbidimeter	

Equipment	Model			
Salinometer				
Current Meter	Valeport Ltd – Model 106 Self Recording/Direct Reading Current Meter			
Storage Container	'Willow' 33-litre plastic cool box with Ice pad			

3.6 MONITORING PROCEDURES

Air Quality

<u>1-hour TSP</u>

- 3.6.1 Operation of the 1-hour TSP meter will follow manufacturer's Operation and Service Manual.
- 3.6.2 The 1-hour TSP monitor, brand named "Sibata LD-3B Laser Dust Meter" is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - a. A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - b. A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - c. A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.3 The 1-hour TSP meter to be used will be within the valid period, calibrated by the manufacturer prior to purchasing. Zero response of the instrument will be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.

24-hour TSP

- 3.6.4 The equipment used for 24-hour TSP measurement is the High Volume Sampler (hereinafter the "HVS") brand named TISCH, Model TE-5170 TSP High Volume Air Sampler, which complied with *EPA Code of Federal Regulation, Appendix B to Part 50.* The HVS consists of the following:
 - a. An anodized aluminum shelter;
 - b. A 8"x10" stainless steel filter holder;
 - c. A blower motor assembly;
 - d. A continuous flow/pressure recorder;
 - e. A motor speed-voltage control/elapsed time indicator;
 - f. A 7-day mechanical timer, and
 - g. A power supply of 220v/50 hz
- 3.6.5 For HVS for 24-hour TSP monitoring, the HVS is mounted in a metallic cage with a top for protection and also it is sat on the existing ground or the roof of building. The flow rate of the HVS between 0.6m³/min and 1.7m³/min will be properly set in accordance with the manufacturer's instruction to within the range recommended in *EPA Code of Federal Regulation*, *Appendix B to Part 50*. Glass Fiber Filter 8" x 10" of TE-653 will be used for 24-Hour TSP monitoring and would be supplied by laboratory. The general procedures of sampling are described as below:-
 - A horizontal platform with appropriate support to secure the samples against gusty wind should be provided;
 - No two samplers should be placed less than 2 meters apart;
 - The distance between the sampler and an obstacle, such as building, must be at least twice the height that the obstacle protrudes above the sample;
 - A minimum of 2 meters of separation from any supporting structure, measured horizontally is required;
 - Before placing any filter media at the HVS, the power supply will be checked to ensure the sampler work properly;

- The filter paper will be set to align on the screen of HVS to ensure that the gasket formed an air tight seal on the outer edges of the filter. Then filter holder frame will be tightened to the filter hold with swing bolts. The holding pressure should be sufficient to avoid air leakage at the edge.
- The mechanical timer will be set for a sampling period of 24 hours (00:00 mid-night to 00:00 mid-night next day). Information will be recorded on the field data sheet, which would be included the sampling data, starting time, the weather condition at current and the filter paper ID with the initial weight;
- After sampling, the filter paper will be collected and transfer from the filter holder of the HVS to a sealed envelope and sent to a local HOKLAS accredited laboratory for quantifying.
- 3.6.6 All the sampled 24-hour TSP filters will be collected and put into the filter envelope provided by the laboratory. The sample will be kept in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C and delivery to the office within 48 hours and sent to laboratory for analysis. The sampled filter will be kept in the laboratory for six months prior to disposal.
- 3.6.7 The HVS used for 24-hour TSP monitoring will be calibrated before the commencement for sampling, and after in two months interval for 1 point checking of maintenance and six months interval for five points calibrate in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (TISCH Calibration Kit Model TE-5025A) to establish a relationship between the follow recorder meter reading in cfm (cubic feet per minute) and the standard flow rate, Qstd, in m³/min. Motor brushes of HVS will be regularly replaced of about five hundred hours per time.

Construction Noise

- 3.6.8 As referred to in the Technical Memorandum (TM) issued under the NCO, sound level meters in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804:1985 (Type 1) specifications shall be used for carrying out the noise monitoring. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.
- 3.6.9 All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq_(30 min) in six consecutive Leq_(5 min) measurements will be used as the monitoring parameter for the time period between 07:00-19:00 hours on weekdays.
- 3.6.10 The sound level meter will be mounted on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield will be fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point would normally be at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point would be at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.
- 3.6.11 Immediately prior to and following each noise measurement the accuracy of the sound level meter will be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration level from before and after the noise measurement agrees to within 1.0 dB.
- 3.6.12 Noise measurements will not be made in fog, rain, wind with a steady speed exceeding 5m/s or wind with gusts exceeding 10m/s. The wind speed will be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

Water Quality (Marine) Monitoring

- 3.6.13 Marine water quality monitoring will be conducted at the designated locations in accordance with EM&A Manual. The operating and analytical of sampling procedures are described as below:
 - A Global Positioning System (GPS) will be used to ensure that the correct location was selected prior to sample collection. A portable, battery-operated echo sounder will be used for the determination of water depth at each designated monitoring station.
 - The marine water sampler will be lowered into the water body at a predetermined depth. The trigger system of the sampler is activated with a messenger and opening ends of the sampler are closed accordingly then the sample of water is collected.
 - During the sampling, the sampling container will be rinsed to use a portion of the marine water sample before the water sample is transferred to the container. Upon sampling completion, the container is sealed with a screw cap.
 - Before the sampling process, general information such as the date and time of sampling, weather condition and tidal condition as well as the personnel responsible for the monitoring will be recorded on the monitoring field data sheet.
 - In-situ measurement including water temperature, turbidity, dissolved oxygen, salinity, pH and water depth undertake at the identified monitoring point. At each station, marine water samples are collected at three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m. Samples at 1m below water surface and 1m above sea bottom are collected when the water depth is between 3m and 6m. Only 1 sample at mid-depth is taken when the water depth is below 3m.
 - For the in-situ measurement, two consecutive measurements of sampling depth, temperature, dissolved oxygen, salinity, turbidity and pH concentration will be measured at the sea. The YSI ProDSS Multifunctional Meter is retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set is more than 25% of the value of the first reading, the reading is discarded and further readings is taken.
 - Water sample would be collected by a water sampler and then filled in high-density polythene bottles. Before the water sample storage, the sampling bottles will be pre-rinsed with the same water sample. The sample bottles then is packed in cool-boxes (cooled at 4°C without being frozen), and delivered to HOKLAS accredited laboratory for the chemical analysis as followed APHA Standard Methods.
 - The laboratory has been comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples is analyzed as followed the HOKLAS accredited requirement.
- 3.6.14 During marine water sampling period, all in-situ measurement equipment will be calibrated at three months interval accordingly. Except for the Current Velocity and Direction water flow meter will be calibrated every two years as recommended by the manufactory. Available calibration certificates will be issued to ensure the performance of equipment to use for in-situ measurement.
- 3.6.15 Before each round of monitoring, the dissolved oxygen probe will be calibrated by wet bulb method; a zero check in distilled water will be performed with the turbidity and salinity probes; 4 and 10 values of the standard solution will be undertaken to check the accuracy of pH value.
- 3.6.16 Valid calibration certificates of monitoring equipment of air quality, construction noise and water quality are shown in *Appendix E*.

LABORATORY ANALYSIS

3.6.17 Chemical analysis will be conducted for all water samples by a HOKALS accredited laboratory - ALS Technichem (HK) Pty Ltd. The chemicals analysis method and reporting limit is shown *Table 3-9*.

Table 3-9Testing Method and Reporting Limit of the Chemical Analysis

Parameter	ALS Method Code	In-house Method Reference ¹	Reporting Limit
Total Suspended Solids	EA025	APHA 2540D	2 mg/L
Chlorophyll-a	EP008F	APHA 10200 H2&H3	0.1 µg/L

Note: The exact method shall depend on the laboratory accredited method. APHA = Standard Methods for the Examination of Water and Wastewater by the American Public Health Association.

3.7 METEOROLOGICAL INFORMATION

3.7.1 The meteorological information including wind direction, wind speed, humidity, rainfall, air pressure and temperature etc. during impact monitoring is extracted from the closest Hong Kong Observatory Station. To obtain the most appropriate meteorological information where available, Air Temperature/Pressure and Relative Humidity will be extracted from Tai Po Station and wind speed and direction will be extracted from Tai Mei Tuk Station.

3.8 DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. A summary of the Action/Limit (A/L) Levels for air quality, construction noise and water quality are shown in *Table 3-10, 3-11* and *3-12* respectively.

Table 3-10Action and Limit Levels for Air Quality

Monitoring	onitoring Action Level (µg /m ³)		Limit Level (µg/m ³)		
Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP	
A4	275	142	500	260	
A7	274	141	500	260	

Table 3-11 Action and Limit Levels for Construction Noise, dB(A)

Time Period: 0700-1900 hours on normal weekdays					
Monitoring Location	Action Level	Limit Level Note 1 & Note 2			
N1, N2a, N3a, and N4	When one documented complaint is received	75			

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and 65 dB(A) during examination period

Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

Table 3-12Action and Limit Levels for Water Quality

Monitoring	Action	n Level	Limit	Level	
Location	Depth Average of SS (mg/L)				
I1	7.0	OD 1200/ -f	7.5	OD 1200/f	
I2	7.0	OR 120% of	8.1	OR 130% of	
I3	8.3	any reference stations at the same tide of the	15.0	any reference stations at the	
W1	8.0		8.6	same tide of the	
M1	10.0	same day	11.0	same day	
FCZ1	7.0	sume duy	8.0	sume duy	
	Dissolved Oxygen (mg/L)				
Monitoring	Depth Average		Depth Average		
Location	of Surface &	Bottom	of Surface &	Bottom	
	Mid-depth		Mid-depth		
I1	5.08	N/A	4.80	N/A	
I2	5.26	3.64	4.88	3.37	
I3	5.03	4.09	4.77	3.19	
W1	4.67	2.41	4.54	2.33	
M1	4.73	N/A	4.70	N/A	
FCZ1	5.00	3.43	5.00	3.18	

Monitoring Location	Depth Average of Turbidity (NTU)				
I1	2.8	OD 1000/ 6	2.9	OD 1000/ 6	
I2	3.5	OR 120% of any reference stations at the same tide of the same day	7.7	OR 130% of	
I3	2.6		3.0	any reference stations at the	
W1	2.9		3.3	same tide of the	
M1	5.2		6.6	same day	
FCZ1	3.2		3.4	same day	
Monitoring Location	Surface, Middle & Bottom of Chlorophyll-a (µg/L)				
I1	11	.1	12	2.1	
I2	11	11.0		3.1	
I3	11.3		14	4.5	
W1	11.3		11.3 16.1		5.1
M1	16.9		42.4		
FCZ1	11	.8	12	2.5	

Notes:

(a) For DO, non-compliance of water quality limits occurs when monitoring result is lower than the limits

(b) For SS, chlorophyll-a and turbidity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

(c) Both Action and Limit Levels for DO (surface and middle) in the FCZ1 are less than 5 mg/L.

Event Action Plan

3.8.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix F*.

3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.9.1 The impact monitoring data were handled by the ET's in-house data recording and management system.
- 3.9.2 The monitoring data recorded in the equipment were downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data were input into a computerized database properly maintained by the ET. The laboratory results were input directly into the computerized database and checked by personnel other than those who input the data.
- 3.9.3 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4. AIR QUALITY MONITORING

4.1 GENERAL

4.1.1 In the Reporting Period, air quality monitoring were performed at the proposed monitoring locations A4 and A7. The air quality monitoring schedule is presented in *Appendix G* and the monitoring results are summarized in the following sub-sections.

4.2 **RESULTS OF AIR QUALITY MONITORING**

4.2.1 In the Reporting Period, **5** sessions of 1-hour TSP and **5** sessions of 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Tables 4-1 to 4-4*. The detailed 24-hour TSP monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

	24-hour	1-hour TSP (µg/m ³)				
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
3-Apr-18	48	4-Apr-18	9:41	45	49	52
9-Apr-18	53	10-Apr-18	13:19	56	55	56
14-Apr-18	27	16-Apr-18	9:44	43	46	52
20-Apr-18	67	21-Apr-18	9:37	46	47	49
26-Apr-18	70	27-Apr-18	9:42	149	146	147
Average (Range)	53 (27 - 70)	Avera (Rang	-		69 (43 - 149)	

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results (A4)

Table 4-2Summary of 24-hour and 1-hour TSP Monitoring Results (A7)

	24-hour	1-hour TSP (µg/m³)				
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
3-Apr-18	34	4-Apr-18	9:30	46	44	49
9-Apr-18	91	10-Apr-18	9:32	64	59	62
14-Apr-18	32	16-Apr-18	9:34	47	52	56
20-Apr-18	82	21-Apr-18	9:49	51	53	52
26-Apr-18	74	27-Apr-18	13:03	152	160	156
Average	63	Average			74	
(Range)	(32 – 91)	(Rang	ge)		(44 - 160)	

- 4.2.2 As shown in *Tables 4-1 to 4-2*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action/Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.3 The meteorological data during the impact monitoring period are summarized in *Appendix J*.

5. CONSTRUCTION NOISE MONITORING

5.1 GENERAL

5.1.1 In the Reporting Period, construction noise quality monitoring were performed at the designated monitoring locations N1, N2a, N3a and N4. The noise quality monitoring schedule is presented in *Appendix G* and the monitoring results are summarized in the following sub-sections.

5.2 **RESULTS OF NOISE MONITORING**

5.2.1 In the Reporting Period, **4** sessions of noise monitoring were carried out at the designated locations. Free-field status were performed at N1 and N3a and façade correction (+3 dB(A)) has been added for the correction in according to the acoustical principles and EPD guidelines. The noise monitoring results at the designated locations are summarized in *Tables 5-1 to 5-4*. The detailed noise monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

Table 5-1	Construction	Noise Monitoring	Results of N1, dB	(A)
	Constituction	THOISE INTOILIOI ING	itcourte of 111, up	

Date	Start Time	L _{eq30min}	*Corrected L _{eq30min}
4-Apr-18	10:13	55	58
10-Apr-18	10:19	54	57
16-Apr-18	10:21	57	60
27-Apr-18	10:14	52	55

Remark:

(*) A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-2Con	struction Noise	Monitoring Re	esults of N2a, dB(A)
--------------	-----------------	---------------	--------------------	----

Date	Start Time	L _{eq30min}
4-Apr-18	9:43	61
10-Apr-18	11:13	57
16-Apr-18	9:51	65
27-Apr-18	9:40	54

Table 5-3Construction Noise Monitoring Results of N3a, dB(A)

Date	Start Time	L _{eq30min}	*Corrected L _{eq30min}
4-Apr-18	10:47	53	56
10-Apr-18	13:36	55	58
16-Apr-18	10:55	56	59
27-Apr-18	10:48	55	58

Remark:

(*) A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-4	Construction Noise Monitoring Results of N4, dB(A)
	Construction Noise Monitoring Results of 114, uD(A)

Date	Start Time	L _{eq30min}
4-Apr-18	11:19	59
10-Apr-18	14:11	56
16-Apr-18	11:27	58
27-Apr-18	11:20	55

5.2.2 As shown in *Table 5-1 to Table 5-4*, all the designated locations measured results were below 75dB(A) of the acceptance criteria. Furthermore, no complaint on construction noise was registered, indicating no exceedance of Action Level. No non-compliance was therefore found during the Reporting Period.

6. WATER QUALITY MONITORING

6.1 GENERAL

6.1.1 The water quality monitoring schedule is presented in *Appendix G* and the monitoring results are summarized in the following sub-sections.

6.2 **RESULTS OF WATER QUALITY MONITORING**

6.2.1 In this Reporting Period, a total of **12** sampling days were performed for marine water monitoring at the nine designated locations. Monitoring results of 4 key parameters: dissolved oxygen (DO), turbidity, suspended solids and Chlorophyll-*a* are summarized in *Tables 6-1* to *6-5*.

Sampling Tidal **G1 R1 R2 I1** I2 I3 W1 **M1** FCZ1 date 4-Apr-18 7.86 7.89 7.64 7.64 7.64 7.65 7.81 7.44 7.54 6-Apr-18 7.51 7.47 7.44 7.42 7.27 7.12 6.97 6.96 7.52 7.10 7.17 7.09 7.28 7.24 7.08 7.04 6.76 7.26 10-Apr-18 12-Apr-18 8.61 8.65 8.39 8.39 8.38 8.39 8.58 8.17 8.27 14-Apr-18 7.27 7.18 7.33 6.74 7.35 7.27 7.19 7.22 7.26 16-Apr-18 7.26 7.28 7.20 6.81 6.51 7.03 6.88 7.50 6.84 Mid-Ebb 18-Apr-18 7.59 7.94 7.58 7.14 8.14 8.05 7.90 7.68 8.09 7.81 7.72 7.59 7.34 20-Apr-18 8.31 8.16 8.53 7.64 8.10 23-Apr-18 8.64 8.39 8.48 8.63 8.76 8.71 7.56 8.40 7.12 7.29 7.88 7.99 25-Apr-18 8.14 8.20 8.19 7.82 7.06 8.13 28-Apr-18 8.22 8.29 8.68 8.74 7.45 8.46 6.12 7.88 7.98 8.24 30-Apr-18 4.55 8.40 7.92 8.53 7.96 8.27 6.04 8.14 7.27 4-Apr-18 7.72 7.46 7.76 7.53 7.39 7.22 7.26 7.38 6-Apr-18 7.50 7.02 6.92 7.51 7.50 7.47 7.11 7.47 7.50 7.00 7.30 10-Apr-18 7.32 7.28 7.15 7.11 6.98 7.28 7.24 12-Apr-18 4.00 7.73 8.00 7.97 7.74 7.63 7.60 7.41 8.06 7.52 7.34 7.53 7.49 7.43 7.46 7.13 7.37 7.51 14-Apr-18 16-Apr-18 6.89 6.62 6.68 6.75 6.80 6.74 6.82 5.92 7.31 Mid-Flood 7.29 18-Apr-18 7.71 7.56 7.68 7.60 7.50 6.74 6.95 7.67 7.77 7.37 7.74 7.70 7.53 7.65 6.58 20-Apr-18 7.45 8.12 8.30 23-Apr-18 8.59 8.15 8.37 8.23 7.96 8.18 7.37 8.27 7.23 8.21 8.21 8.48 8.14 7.95 7.36 8.20 8.47 25-Apr-18 28-Apr-18 8.74 7.28 8.99 9.11 9.06 8.95 8.39 9.07 8.99 8.29 30-Apr-18 6.37 5.26 8.50 8.27 8.36 7.08 8.51 8.27

 Table 6-1
 Results Summary of Depth Average (Surface & Middle Layer) of DO (mg/L)

Remark: Italic and bold value indicated Action Level exceedance Underlined and bold value indicated Limit Level exceedance

Table 6-2 Results Summary of Bottom Depth of DO (mg/L)

Tidal	Sampling date	G1	R1	R2	I1	I2	I 3	W1	M1	FCZ1
	4-Apr-18	6.93	7.05	7.55	N/A	7.82	7.79	6.87	N/A	7.33
	6-Apr-18	6.60	6.72	7.47	N/A	7.14	6.98	5.94	N/A	7.49
	10-Apr-18	6.92	5.07	6.33	N/A	6.97	6.61	5.90	N/A	7.24
	12-Apr-18	7.53	7.82	8.31	N/A	8.59	8.56	7.49	N/A	7.04
	14-Apr-18	5.50	5.34	5.99	N/A	7.06	6.78	6.01	N/A	6.14
Mid-Ebb	16-Apr-18	6.49	6.48	5.21	N/A	6.75	6.92	5.76	N/A	5.13
	18-Apr-18	5.41	5.85	7.95	N/A	7.27	5.69	5.08	N/A	8.17
	20-Apr-18	7.92	7.64	8.10	N/A	7.67	7.40	5.42	N/A	6.12
	23-Apr-18	6.37	5.24	7.97	N/A	7.06	8.40	5.03	N/A	5.99
	25-Apr-18	5.99	6.55	5.70	N/A	7.02	6.33	4.54	N/A	7.23
	28-Apr-18	6.43	7.48	3.72	N/A	6.61	5.64	3.85	N/A	6.44

Tidal	Sampling date	G1	R 1	R2	I1	I2	I 3	W1	M1	FCZ1
	30-Apr-18	6.11	5.33	4.99	N/A	7.43	6.42	3.52	N/A	6.36
	4-Apr-18	6.70	6.86	6.39	N/A	7.13	6.72	6.17	N/A	6.71
	6-Apr-18	7.10	6.50	7.49	N/A	7.50	7.48	6.65	N/A	7.48
	10-Apr-18	6.74	5.59	6.93	N/A	6.24	7.16	5.40	N/A	7.21
	12-Apr-18	6.83	7.01	8.16	N/A	7.65	7.44	6.41	N/A	8.16
	14-Apr-18	6.41	6.70	7.39	N/A	7.39	7.13	6.18	N/A	7.32
Mid-Flood	16-Apr-18	6.17	5.73	5.35	N/A	7.15	6.90	5.94	N/A	5.76
Mid-1100d	18-Apr-18	4.67	4.44	7.59	N/A	6.83	6.81	5.61	N/A	7.60
	20-Apr-18	7.54	5.11	6.40	N/A	5.78	5.54	5.26	N/A	5.70
	23-Apr-18	6.33	6.25	5.27	N/A	7.30	6.41	4.81	N/A	4.82
	25-Apr-18	5.89	6.21	6.16	N/A	7.67	7.44	4.64	N/A	7.65
	28-Apr-18	4.22	5.21	8.54	N/A	7.36	6.99	5.86	N/A	7.83
	30-Apr-18	6.79	8.41	7.42	N/A	8.41	7.17	5.13	N/A	5.92

Remark: Italic and bold value indicated Action Level exceedance

Underlined and bold value indicated Limit Level exceedance

 Table 6-3
 Results Summary of Depth Average of Turbidity (NTU)

Tidal	Sampling date	G1	R1	R2	I1	I2	I 3	W1	M1	FCZ1
	4-Apr-18	1.8	1.5	1.6	1.1	1.1	1.2	1.2	1.7	1.2
Tidal Mid-Ebb Mid-Flood	6-Apr-18	1.3	1.5	1.2	1.2	1.1	1.3	1.3	1.4	1.2
	10-Apr-18	1.3	1.7	2.0	<u>2.3</u>	1.7	1.7	1.9	1.9	1.2
	12-Apr-18	0.7	1.0	0.8	0.6	0.8	0.8	0.9	<u>1.5</u>	<u>2.6</u>
	14-Apr-18	1.2	1.3	1.2	1.2	0.7	1.0	1.1	1.3	0.9
Mid Ebb	16-Apr-18	1.2	1.9	2.0	<u>2.8</u>	1.7	1.1	1.6	<u>2.5</u>	1.8
MIG-EUU	18-Apr-18	1.2	1.2	1.1	1.2	1.2	1.3	1.4	<u>1.9</u>	0.9
	20-Apr-18	1.4	1.2	1.3	1.1	1.2	1.1	<u>1.6</u>	<u>2.4</u>	1.3
	23-Apr-18	2.3	2.3	2.1	2.2	1.5	1.4	1.3	1.8	1.7
	25-Apr-18	2.1	2.3	1.8	2.2	2.2	2.2	<u>2.5</u>	<u>3.2</u>	2.2
	28-Apr-18	1.8	1.8	2.8	1.8	1.8	1.8	<u>3.3</u>	2.2	<u>2.4</u>
	30-Apr-18	2.2	1.7	3.0	1.9	1.8	2.1	<u>2.3</u>	<u>3.0</u>	1.9
	4-Apr-18	1.2	1.7	1.9	1.3	1.4	1.1	1.5	1.9	1.2
	6-Apr-18	1.6	1.7	1.4	1.4	1.4	1.6	1.2	1.2	1.2
	10-Apr-18	1.3	2.0	1.7	1.5	1.7	<u>2.5</u>	<u>2.3</u>	2.7	1.7
	12-Apr-18	1.4	1.8	1.5	1.3	1.3	1.3	1.4	1.4	2.2
	14-Apr-18	2.2	1.3	1.0	0.8	1.0	0.9	1.1	<u>1.9</u>	0.8
Mid Flood	16-Apr-18	1.5	1.5	3.0	<u>2.7</u>	<u>2.0</u>	1.2	1.5	<u>2.0</u>	1.3
Mid-1100d	18-Apr-18	1.5	2.0	1.2	1.0	1.1	1.0	1.3	2.3	1.2
	20-Apr-18	1.2	1.5	1.3	1.1	1.4	1.5	<u>2.0</u>	<u>1.8</u>	1.3
	23-Apr-18	1.1	1.8	1.6	<u>2.4</u>	2.2	1.3	2.2	1.2	1.7
	25-Apr-18	2.2	2.1	2.3	2.1	2.1	2.1	2.4	3.2	2.5
	28-Apr-18	2.0	1.7	1.9	1.9	1.8	1.7	1.9	4.2	1.9
	30-Apr-18	2.1	1.7	1.9	1.9	1.8	1.7	1.9	<u>4.2</u>	1.9

Remark: Italic and bold value indicated Action Level exceedance Underlined and bold value indicated Limit Level exceedance

Tidal	Sampling date	G1	R1	R2	I1	I2	I 3	W1	M1	FCZ1
	4-Apr-18	4.3	3.75	5.00	4.50	3.25	3.50	2.83	4.50	2.00
Mid-Ebb	6-Apr-18	2.8	3.75	2.00	2.00	2.00	2.00	<u>3.33</u>	<u>3.50</u>	<u>4.50</u>
MIG-E00	10-Apr-18	3.3	4.50	5.00	5.50	4.50	3.75	4.33	5.00	4.00
	12-Apr-18	2.8	4.25	2.50	<u>4.50</u>	2.75	<u>3.50</u>	2.33	<u>4.00</u>	<u>3.50</u>

Tidal	Sampling date	G1	R1	R2	I1	I2	I 3	W1	M1	FCZ1
	14-Apr-18	3.3	2.00	4.75	<u>4.50</u>	<u>3.25</u>	<u>2.75</u>	<u>3.50</u>	<u>3.50</u>	<u>3.00</u>
	16-Apr-18	3.5	4.75	5.25	<u>9.50</u>	5.50	4.00	3.83	7.00	3.25
	18-Apr-18	2.0	3.00	4.25	<u>4.00</u>	<u>4.50</u>	<u>4.25</u>	<u>4.17</u>	<u>8.00</u>	<u>5.75</u>
	20-Apr-18	2.0	2.75	2.00	2.00	<u>3.75</u>	<u>6.50</u>	<u>5.50</u>	<u>12.50</u>	<u>9.75</u>
	23-Apr-18	9.0	5.50	5.25	6.50	4.25	5.50	4.83	5.00	5.75
	25-Apr-18	7.5	6.33	3.25	<u>4.50</u>	<u>6.25</u>	<u>5.00</u>	<u>5.17</u>	<u>5.00</u>	<u>5.75</u>
	28-Apr-18	2.0	2.00	2.00	<u>3.00</u>	<u>2.75</u>	<u>3.25</u>	2.33	2.00	2.00
	30-Apr-18	5.3	3.50	2.75	3.50	<u>3.75</u>	<u>3.75</u>	<u>3.83</u>	<u>6.50</u>	<u>4.00</u>
	4-Apr-18	2.25	4.17	3.25	3.50	3.00	3.50	3.00	3.00	3.25
	6-Apr-18	4.25	5.50	3.75	3.00	3.50	<u>6.25</u>	<u>5.33</u>	4.50	4.25
	10-Apr-18	5.75	4.17	2.75	<u>4.00</u>	<u>5.00</u>	<u>4.25</u>	<u>6.00</u>	<u>8.00</u>	<u>3.75</u>
	12-Apr-18	2.25	5.00	4.25	4.50	3.75	4.50	<u>6.17</u>	<u>6.00</u>	7.50
	14-Apr-18	2.75	5.17	3.00	3.50	<u>4.25</u>	<u>5.50</u>	3.83	<u>5.00</u>	<u>4.00</u>
Mid-Flood	16-Apr-18	3.50	4.33	6.50	<u>6.00</u>	<u>5.75</u>	3.50	4.50	<u>6.00</u>	3.50
Mild-Flood	18-Apr-18	4.25	5.17	4.25	3.50	5.25	4.75	4.67	4.00	4.50
	20-Apr-18	5.50	4.33	5.00	<u>6.00</u>	2.50	5.00	5.33	5.00	<u>5.75</u>
	23-Apr-18	6.25	4.00	3.75	4.00	4.00	3.25	<u>5.00</u>	3.00	<u>5.75</u>
	25-Apr-18	4.25	4.33	4.25	<u>6.00</u>	5.25	5.25	4.50	5.00	4.75
	28-Apr-18	2.00	2.00	2.00	2.00	2.00	2.00	2.00	<u>3.00</u>	2.00
	30-Apr-18	4.25	3.50	5.75	4.50	<u>5.00</u>	<u>7.75</u>	<u>4.67</u>	<u>5.50</u>	<u>6.50</u>

Remark: Italic and bold value indicated Action Level exceedance

Underlined and bold value indicated Limit Level exceedance

Table 6-5Results Summary of Depth Average of Chlorophyll-a (µg/L)

Tidal	Sampling date	G1	R 1	R2	I1	I2	I 3	W1	M1	FCZ1
	4-Apr-18	2.6	2.08	2.90	2.40	2.78	2.73	2.32	1.10	3.78
	6-Apr-18	2.3	3.03	2.80	4.30	3.30	4.00	3.52	3.75	4.13
	10-Apr-18	3.4	2.93	4.35	6.10	5.80	2.75	4.57	3.95	4.28
	12-Apr-18	2.6	1.30	2.43	2.15	1.95	1.88	1.68	1.50	5.68
	14-Apr-18	2.6	3.10	3.20	4.75	4.68	2.98	2.90	1.85	2.85
Mid-Ebb	16-Apr-18	10.5	8.28	16.90	4.05	8.13	7.00	9.00	17.30	<u>25.68</u>
MIG-LOU	18-Apr-18	5.8	5.80	6.18	7.35	<u>17.35</u>	8.83	6.12	4.40	5.93
	20-Apr-18	31.3	16.38	16.20	6.55	<u>15.75</u>	10.53	<u>17.05</u>	4.45	12.08
	23-Apr-18	2.9	3.52	3.30	4.70	7.70	6.18	4.88	5.10	3.35
	25-Apr-18	5.4	8.43	8.53	8.40	7.50	8.63	6.92	3.90	6.10
	28-Apr-18	12.3	12.03	10.55	<u>12.95</u>	<u>13.63</u>	11.10	13.58	4.45	12.50
	30-Apr-18	6.8	5.13	5.25	4.95	9.10	8.05	9.20	13.25	5.70
	4-Apr-18	3.48	4.77	3.15	3.90	3.50	5.08	3.32	3.95	4.25
	6-Apr-18	3.38	2.95	1.58	1.65	1.73	1.35	2.53	2.00	2.50
	10-Apr-18	2.50	2.33	6.23	3.65	2.40	2.08	1.83	4.30	2.50
	12-Apr-18	1.83	2.22	2.18	3.00	1.70	3.85	3.68	3.00	6.53
	14-Apr-18	2.60	2.30	2.78	4.95	4.35	5.93	2.27	6.10	2.33
Mid-Flood	16-Apr-18	4.68	6.92	7.68	4.95	4.50	4.40	4.30	4.20	5.60
Mid-1100d	18-Apr-18	14.13	11.58	11.00	11.25	9.03	10.45	9.67	3.50	<u>14.55</u>
	20-Apr-18	8.05	8.03	7.40	4.65	6.33	5.10	5.20	3.15	10.28
	23-Apr-18	4.55	5.62	4.25	6.25	7.50	4.40	5.72	6.50	4.00
	25-Apr-18	12.63	12.40	14.00	<u>47.50</u>	<u>17.75</u>	<u>23.03</u>	<u>21.05</u>	8.80	<u>14.33</u>
	28-Apr-18	12.15	6.72	11.18	<u>16.75</u>	<u>15.65</u>	14.20	8.70	19.60	<u>13.75</u>
	30-Apr-18	4.60	2.83	5.55	6.05	5.53	5.28	5.18	10.95	4.00

Remark: Italic and bold value indicated Action Level exceedance Underlined and bold value indicated Limit Level exceedance

- 6.2.2 During the Reporting Period, field measurements showed that temperatures of marine water were within 18.4°C to 26.5°C; the salinity concentrations within 33.47 to 35.94 ppt and pH values within 8.08 to 8.71.
- 6.2.3 The monitoring results including in-situ measurements and laboratory testing results are provided in *Appendix H*. The graphical plots are shown in *Appendix I*.
- 6.2.4 A summary of exceedances for the four parameters: dissolved oxygen (DO), turbidity, suspended solids (SS) and chlorophyll-*a* are shown in *Table 6-6*.

Station		O of Top -depth	(Bo	O ttom pth)		oidity opth ve)	(De	S epth ve)		phyll- <i>a</i> h Ave)	Excee for	tal dance the tion
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
I1	0	0	0	0	1	4	4	10	1	3	6	17
I2	0	0	0	0	1	2	2	10	0	5	3	17
I3	0	0	0	0	2	1	1	11	1	1	4	13
W1	0	0	0	0	1	7	2	11	1	2	4	20
M1	0	0	0	0	1	14	0	14	2	0	3	28
FCZ1	0	0	0	0	2	3	0	13	2	4	4	20
No of Exceedance	0	0	0	0	8	31	9	69	7	15	24	115

Table 6-6Summary of Water Quality Exceedance

- 6.2.5 In this Reporting Period, eight (8) Action & thirty-one (31) Limit Levels turbidity exceedances respectively recorded in 10, 12, 14, 16, 18, 20, 23, 25, 28 and 30 April 2018 of the monitoring days, also the exceedances was included all the impact monitoring stations.
- 6.2.6 Furthermore, there are nine (9) Action and sixty-ninth (69) Limit Levels of Suspended Solids exceedances were recorded during mid-ebb and mid-flood tides at eleven (11) monitoring days.
- 6.2.7 In this Reporting Period, seven (7) Action and fifteenth (15) Limit Levels of chlorophyll-*a* exceedances were recorded during mid-ebb and mid-flood tides at five (5) monitoring days.
- 6.2.8 Upon confirmation of the monitoring result, Notification of Exceedances (NOEs) has had issued to relevant parties. Investigation for the cause of exceedance was carried out by ET subsequently.
- 6.2.9 In our investigation, there were no marine works carried out during the monitoring days on 6, 10, 12, 14, 16, 18, 20, 23, 25, 28 & 30 April 2018, also water quality mitigation measures such as silt curtains were properly implemented and maintained at locations in accordance with EP's condition; during the joint site inspection by CEDD / Welcome / ET in the reporting month, the overall environmental performance was found satisfactory and no adverse water quality was observed and recorded. According investigation findings, it is considered that all exceedances included turbidity, SS and Chlorophyll-a in these monitoring days were unlikely generated from the Project.

7. WASTE MANAGEMENT

7.1 GENERAL

7.1.1 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

7.2 **RECORDS OF WASTE QUANTITIES**

- 7.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 7.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 7-1* and 7-2 and the Monthly Summary Waste Flow Table is shown in *Appendix K*. Whenever possible, materials were reused on-site as far as practicable.

Table 7-1 Summary of Quantities of Inert C&D Materials

Types of Waste	Quantity	Disposal Location
Total C&D Materials (Inert) ('000m ³)	1.31625	Tuen Mun Area 38
Reused in this Contract (Inert) ('000m ³)	0	NA
Reused in other Projects (Inert) ('000m ³)	0	NA
Disposal as Public Fill (Inert) ('000m ³)	1.31625	Tuen Mun Area 38

Table 7-2Summary of Quantities of C&D Wastes

Types of Waste	Quantity	Disposal Location
Recycled Metal ('000kg)	0	NA
Recycled Paper / Cardboard Packing ('000kg)	0	NA
Recycled Plastic ('000kg)	0	NA
Chemical Wastes ('000kg)	0	NA
General Refuse ('000m ³)	0	NENT

8. ECOLOGY

8.1 ECOLOGY MONITORING (MARINE-BASED)

Seahorse Translocation Surveys

- 8.1.1 Post-translocation monitoring of the seahorse was ongoing in April 2018 in accordance with the endorsed method statement (Seahorses Translocation Plan (Version 1, 11 January 2018) refers). Since the two tagged seahorses were not recorded at the Ting Kok East reception site during the first 7 days post-translocation monitoring on 21 to 27 January 2018, option 2 monitoring program (according to the method statement) will be followed which shall be conducted three times per week during the second to fourth week and undertaken weekly during the second to fourth months.
- 8.1.2 In the Reporting Period, post-translocation monitoring of the seahorse were carried out on 3, 4, 11, 12, 16, 17, 23, 27 & 30 April 2018 at Ting Kok East reception site. Monitoring results revealed that the two tagged seahorses #051 and #052 translocate from Lung Mei were not recorded during the monitoring.
- 8.1.3 The corresponding post-translocation monitoring reports will be submitted as standalone apart from the EM&A Report.

9. SITE INSPECTION

9.1 **REQUIREMENTS**

9.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. The site inspection and audits should be conducted twice per month by ET.

9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

- 9.2.1 In the Reporting Period, joint site inspection and audit to evaluate site environmental performance was carried out by the RE, ET and the Contractor on **6 and 24 April 2018**. No non-compliance was noted within this reporting period.
- 9.2.2 The findings / deficiencies that observed during the weekly site inspection are listed in *Table 9-1*.

Table 9-1	Site Observations	
Date	Findings / Deficiencies	Follow-Up Status
6 April 2018	• Chemical container without drip tray was observed, the Contractor should provide drip tray underneath to avoid land contamination.	• The chemical containers were removed from the site area.
	• Construction waste was observed on site, the Contractor should remove the waste and maintain the housekeeping of the site.	• Construction waste was removed from the working area.
24 April 2018	• The Contractor was reminded to cover dusty stockpile with tarpaulin sheets to minimise dust emission and surface runoff.	Reminder Only
	• It was reminded that drip trays should be properly plugged to ensure no potential fluid leakage from the trays.	Reminder Only
	• The Contractor was reminded to properly setup and maintain temporary chemical storage area.	Reminder Only
	• As the wet season is coming, stagnant water accumulated in site area should be cleaned in regular basis.	Reminder Only

10. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 Environmental Complaint, Summons and Prosecution

- 10.1.1 In the Reporting Period, no environmental complaint, summons and prosecution was received.
- 10.1.2 In the Reporting Period, no summons and prosecution under the EM&A Programme was lodged for the project. The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1 Statistical Summary of Environmental Complaints

Depending Devied	Environmental Complaint Statistics				
Reporting Period	Frequency	Cumulative	Complaint Nature		
1 – 30 April 2018	0	0	NA		

Table 10-2 Statistical Summary of Environmental Summons

Departing Davied	Environmental Summons Statistics				
Reporting Period	Frequency Cumulative		Summons Nature		
1 – 30 April 2018	0	0	NA		

Table 10-3 Statistical Summary of Environmental Prosecution

Departing Davied	Environmental Prosecution Statistics				
Reporting Period	Frequency	Cumulative	Prosecution Nature		
1 – 30 April 2018	0	0	NA		

11. IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water, ecology and waste etc. and they are summarized presented in *Appendix L*.
- 11.1.2 The Contractor had been implementing the required environmental mitigation measures according to the Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by the Contractor in this Reporting Month are summarized in *Table 11-1*.

Issues	Environmental Mitigation Measures
Construction	• Regularly to maintain all plants, so only the good condition plants were used
Noise	on-site ;
	• If possible, all mobile plants onsite operation has located far from NSRs;
	• When machines and plants (such as trucks) were not in using, it was switched
	off;
	• Wherever possible, plant was prevented oriented directly the nearby NSRs;
	• Provided quiet powered mechanical equipment to use onsite;
	 Moveable noise barriers were temporary used for construction work, where necessary; and
	 Weekly noise monitoring was conducted to ensure construction noise meet
	the criteria.
Air Quality	 Stockpile of dusty material was covered entirely with impervious sheeting or
i ili Quality	sprayed with water so as to maintain the entire surface wet;
	 The construction plants regularly maintained to avoid the emissions of black
	smoke;
	• The construction plants switched off when it not in use;
	• Water spraying on haul road and dry site area was provided regularly;
	• Where a vehicle leaving the works site is carrying a load of dusty materials,
	the load has covered entirely with clean impervious sheeting; and
	• Before any vehicle leaving the works site, wheel watering has been
	performed.
Water Quality	• Impervious sheeting was provided on exposed soil surfaces to reduce the potential of soil erosion;
	• Debris and refuse generated on-site collected daily;
	 Stockpiles of the cement and other construction materials were covered when not being used;
	• Oils and fuels were stored in designated areas with locks;
	• The chemical waste storage as sealed area provided with locks;
	• Sedimentation facilities was provided to remove silt particles from
	groundwater;
	• Site hoarding with sealed foot were provided surrounding the boundary of
	working site to prevent wastewater or site surface water runoff get into public
	areas; and
	• Portable chemical toilets were provided on-site. A licensed contractor was
	regularly disposal and maintenance of these facilities.
	• Silt curtain was installed and maintained in accordance with EP condition

 Table 11-1
 Environmental Mitigation Measures in the Reporting Month

Issues	Environmental Mitigation Measures					
Waste and	• Excavated material reused on site as far as possible to minimize off-site					
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if					
Management	possible;					
	• Waste arising kept to a minimum and be handled, transported and disposed of					
	in a suitable manner;					
	• Disposal of C&D wastes to any designated public filling facility and/or					
	landfill followed a trip ticket system; and					
	• Chemical waste handled in accordance with the Code of Practice on the					
	Packaging, Handling and Storage of Chemical Wastes.					
General	The site is generally kept tidy and clean.					
Uchicial	 Mosquito control is performed to prevent mosquito breeding on site. 					

11.2 IMPACT FORECAST

- 11.2.1 Construction activities to be undertaken in May 2018 should be included below:-
 - Site formation works
 - Construction of Western Box Culvert
 - Construction of Eastern Box Culvert
 - Construction of Groynes (Eastern and Western)

11.2.2 Potential environmental impacts arising from the works include:

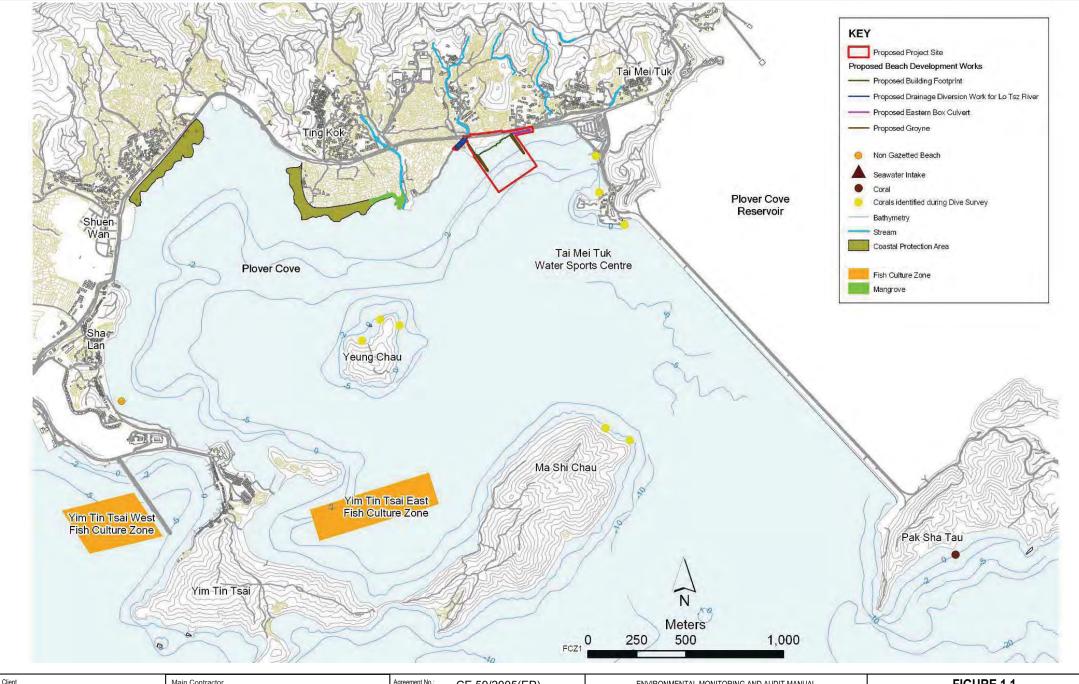
- Construction waste
- Air quality
- Construction noise
- Water quality (particularly site runoff during rainy seasons)
- 11.2.3 Environmental mitigation measures will be properly implemented and maintained as per the Mitigation Implementation Schedule in **Appendix L** to ensure site environmental performance is acceptable.

12. CONCLUSIONS AND RECOMMENTATIONS

12.1 CONCLUSIONS

- 12.1.1 This is the 5th monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from 1 to 30 April 2018.
- 12.1.2 In this Reporting Period, no construction noise monitoring results that triggered the Limit Level was recorded. No NOE or the associated corrective actions were therefore issued. Moreover, no noise complaint (which is an Action Level exceedance) was received for the Project.
- 12.1.3 In this Reporting Period, no air quality monitoring exceedance was recorded. No NOE or the associated corrective actions were therefore issued.
- 12.1.4 For marine water quality monitoring, a total of 139 Action/ Limit Level exceedances of Turbidity, Suspended Solids and Chlorophyll-*a* were recorded which involved 11 monitoring days. NOEs were issued to relevant parties upon confirmation of the monitoring result. In our investigation, there were no marine works carried out during the monitoring days on 6, 10, 12, 14, 16, 18, 20, 23, 25, 28 & 30 April 2018, it is considered that exceedances of turbidity, SS and chlorophyll-a in these monitoring days were unlikely caused by Project. In our conclusion, the elevated turbidity, SS levels and chlorophyll-*a* were likely due to natural variation and not caused by the works under the project.
- 12.1.5 In the Reporting Period, joint site inspection and audit to evaluate site environmental performance was carried out by the CEDD, ET and the Contractor on **6 and 24 April 2018**. No non-compliance was noted within this reporting period.
- 12.1.6 No environmental complaints, notification of summons or successful prosecution were received in this Reporting Period.

12.2 RECOMMENDATIONS

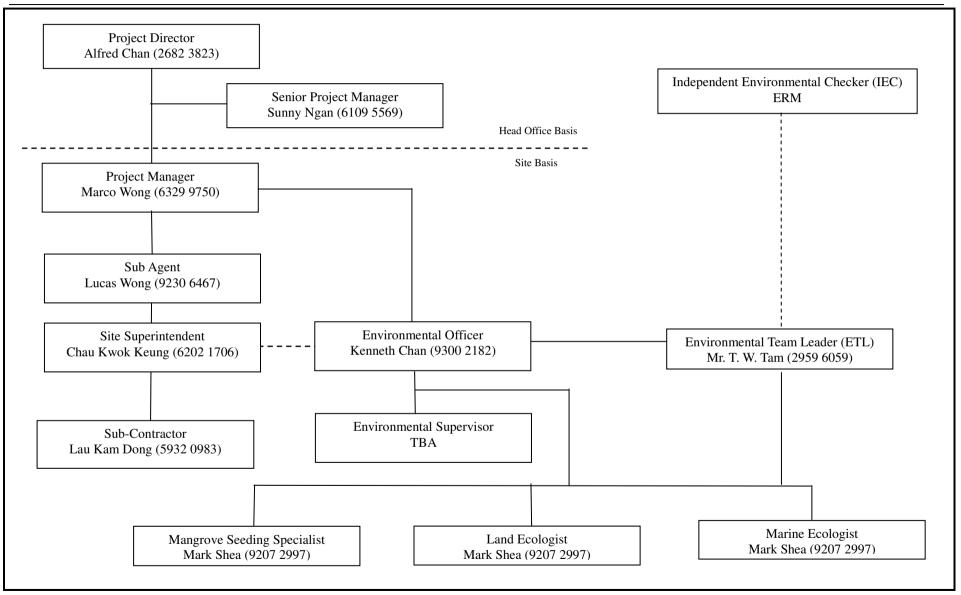

- 12.2.1 The construction activities in May 2018 include site formation, construction of groynes and construction of eastern and western box culvert. The potential environmental impacts arising from the forthcoming construction activities include construction waste, air quality, construction noise and water quality.
- 12.2.2 Due to rainy seasonal has come, the Contractor is reminded prevent surface runoff entering the sea or public area such as cover the exposed slope by impervious sheets and maintain the temporary drain and wastewater treatment system effectively.
- 12.2.3 Construction noise should be a key environmental impact during the works. The noise mitigation measures such as use of quiet plants and installation of temporary noise barrier at the construction noise predominate area should be fully implemented as accordance with the EM&A requirement.
- 12.2.4 As a reminder, housekeeping of the site and site tidiness should be undertaken after every day work completion. Also, drip tray should be provided for chemical container to prevent land contamination. In addition, mosquito control should be kept to prevent mosquito breeding on site.

Appendix A

Layout plan of the Project

(The content of Appendix A is modified from the previous EM&A Manual - Development of a Bathing Beach at Lung Mei, Tai Po (Register No. AEIAR-123/2008): Environmental Monitoring and Audit (EM&A) Manual (November 2007))

Client	Main Contractor	Agreement No.: CE 59/2005(EP)	ENVIRONMENTAL MONITORING AND AUDIT MANUAL		FIGURE 1.1	1
	(1) 傳金建築有限公司			Checked TF	Scale AS SHOWN	Rev. 1
DEPARTMENT		DEVELOPMENT OF A BATHING BEACH AT LUNG MEI, TAI PO		Designed -	Drawn AM	Date 13/03/2007



Appendix B

Organization structure and contact details

WELCOME CONSTRUCTION COMPANY LIMITED 偉金建築有限公司

Environmental Management Plan – Contract No.: CV/2012/05

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
CEDD	Engineer's Representative	Mr. K F Chan	2762 5532	2714 2054
ERM	Independent Environmental Checker	Mr. Jovy Tam	2271 3113	2723 5660
Welcome	Project Manager	Mr. Marco Wong	6329 9750	2682 3222
Welcome	Sub-Agent	Mr. Lucas Wong	9230 6467	2682 3222
Welcome	Environmental Officer	Mr. Kenneth Chan	9300 2182	2682 3222
Welcome	Environmental Supervisor	Mr. K K Lau	6055 9878	2682 3222
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel – CV/2012/05

Legend:

CEDD (Engineer) – Civil Engineering and Development Department Welcome (Contractor) – Welcome Construction Company Limited ERM (IEC) – Environmental Resources Management AUES (ET) – Action-United Environmental Services & Consulting

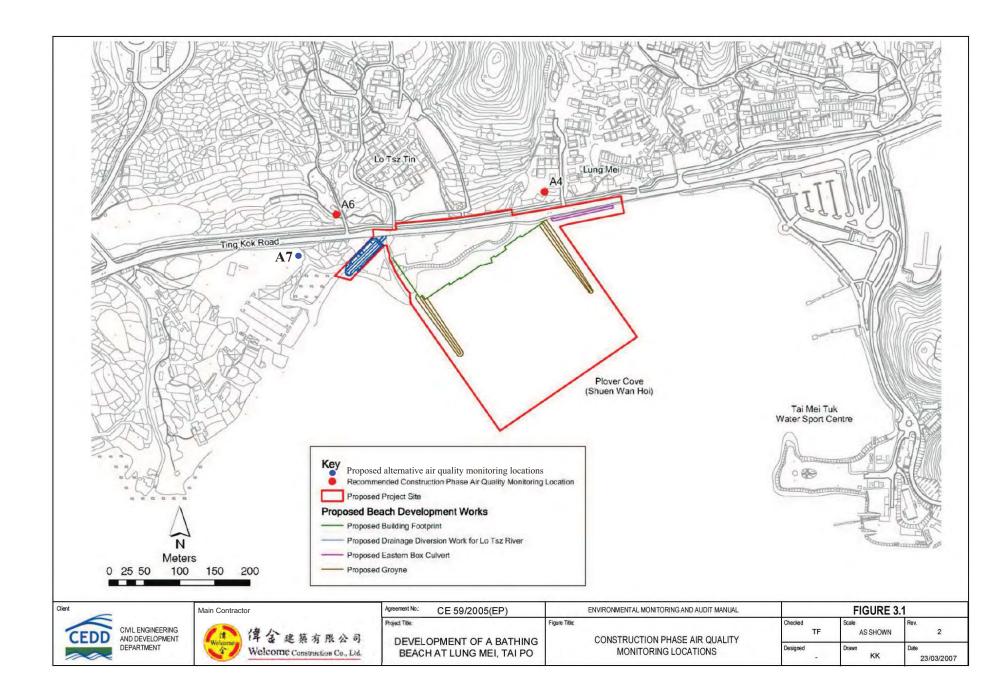
Appendix C

3-Month Rolling Construction Program

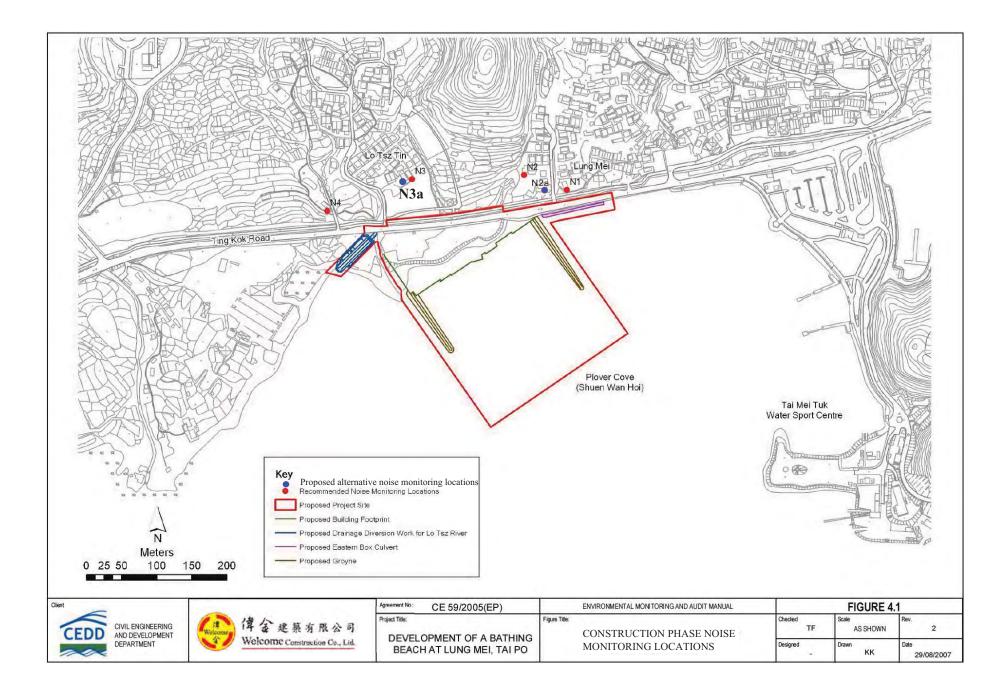
 $Z: Jobs \\ 2016 \\ TCS00874 \\ 600 \\ EM \\ \& A \ Report \\ Monthly \ EM \\ \& A \ Report \\ 5th \ Monthly \ Report \\ - \ April \ 2018 \\ R0170 \\ v4. doc \\ R0170 \\ r4. doc \\ R010 \\ r4. doc \\ R010 \\ r4. doc \\ R0170 \\ r4$

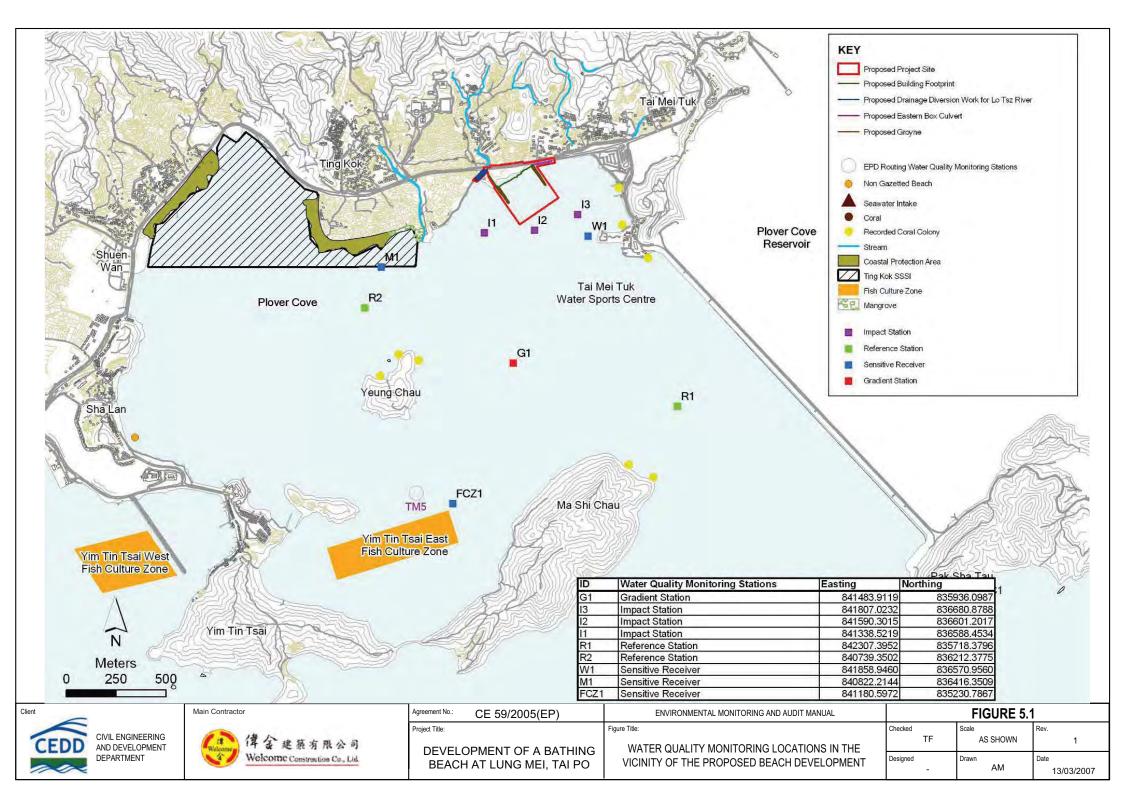
3-month Construction Program (Apr to June 2018)

Construction Work	Apr 2018	May 2018	June 2018
Site Formation	\checkmark	\checkmark	\checkmark
Construction of Western Box Culvert	\checkmark	\checkmark	\checkmark
Construction of Eastern Box Culvert		\checkmark	\checkmark
Construction of Groynes (East and West)	\checkmark	\checkmark	\checkmark
Construction of Retaining Wall			\checkmark



Appendix D


Monitoring Location


(The Figures of Appendix D are modified from the previous EM&A Manual - Development of a Bathing Beach at Lung Mei, Tai Po (Register No. AEIAR-123/2008): Environmental Monitoring and Audit (EM&A) Manual (November 2007))

.

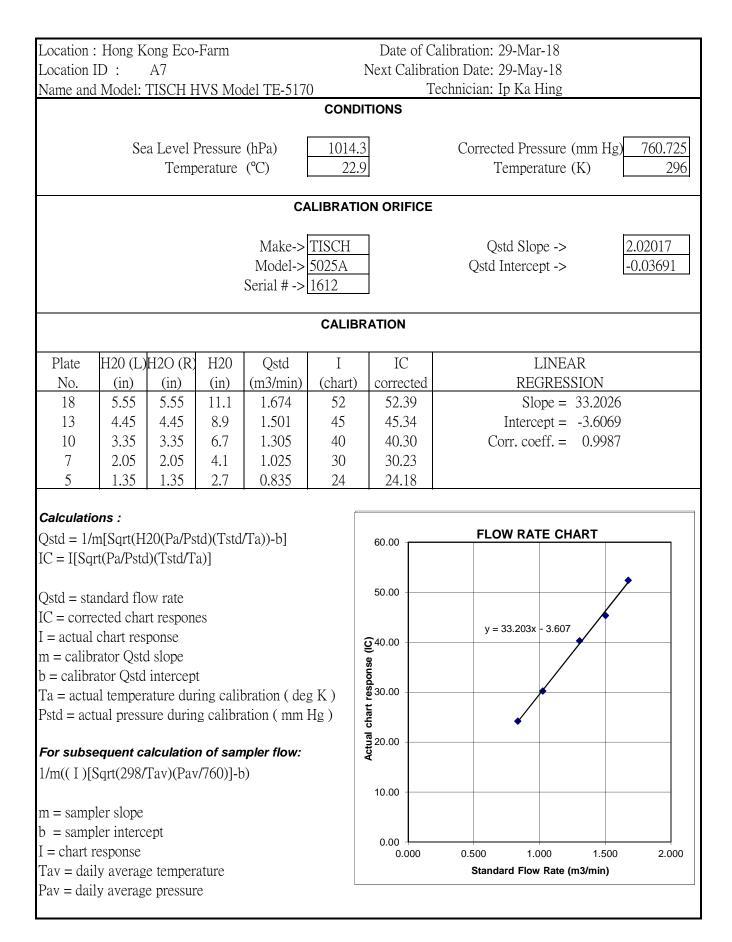
Photograph Records for Air Quality Monitoring

Photograph Records for Noise Monitoring

CEDD Contract No. CV/2012/05 – Development of a Bathing Beach at Lung Mei, Tai Po Monthly Environmental Monitoring & Audit Report – April 2018

Appendix E

Calibration Certificate of Monitoring Equipment


CEDD Contract No. CV/2012/05 – Development of a Bathing Beach at Lung Mei, Tai Po Monthly Environmental Monitoring & Audit Report – April 2018

MONITORING EQUIPMENT CALIBRATION CERTIFICATES

Items	Aspect	Description of Equipment	Date of Calibration	Date of Next Calibration
1		TSP Sampler Calibration Spreadsheet for A4	29 Mar 18	29 May 18
2		TSP Sampler Calibration Spreadsheet for A7	29 Mar 18	29 May 18
3		Calibration Kit TISCH Model TE-5025A Orifice ID 1612 and Rootsmeter S/N 438320	13 Feb 18	13 Feb 19
4	Air	Laser Dust Monitor, Model LD-3B (Serial No. 456658) – EQ115	15 Mar 18	15 Mar 19
5		Laser Dust Monitor, Model LD-3B (Serial No. 456659) – EQ116	15 Mar 18	15 Mar 19
6		Laser Dust Monitor, Model LD-3B (Serial No. 456660) – EQ117	15 Mar 18	15 Mar 19
7		Laser Dust Monitor, Model LD-3B (Serial No. 456662) – EQ118	15 Mar 18	15 Mar 19
8		Rion NL-52 Sound Level Meter (Serial No. 01121362) – EQ011	24 May 17	24 May 18
9		Rion NL-31 Sound Level Meter (Serial No. 00410221) – EQ067	2 May 17	2 May 18
10		Rion NL-31 Sound Level Meter (Serial No. 00410247) – EQ068	24 May 17	24 May 18
11	Noise	Rion Sound Level Calibrator NC-73 (Serial No.: 10655561) - EQ085	25 Jul 17	25 Jul 18
12		Rion Sound Level Calibrator NC-74 (Serial No.: 34657230) - EQ086	30 Jun 17	30 Jun 18
13		Rion Sound Level Calibrator NC-74 (Serial No.: 34657231) - EQ087	25 Jul 17	25 Jul 18
14		Valeport Ltd - Model 106 Current Meter (Serial No. 60011)	16 Jun 17	16 Jun 19
15	Water	Multifunctional Meter – YSI Professional DSS (Serial No. 17B102764/17B100758) – EQW019	25 Jan 18	25 Apr 18
16		Multifunctional Meter – YSI Professional DSS (Serial No. 15H102620/15H103928) – EQW018	17 Apr 18	17 Jul 18

Location	o. 101 Lu	ng Mei	Tsuen		Dat	e of C	Calibration: 29-Mar-18			
Location	ID :	A4				Next C	Calibra	ation Date: 29-May-18		
Name and	d Model:	TISCH H	IVS Mo	del TE-502	5A		Т	echnician: Ip Ka Hing		
					CONE	DITIONS				
	Se	a Level I	Pressure	(hPa)	1014			Corrected Pressure (mm Hg) 760.725		
	Temp	erature	(°C)	22	.9		Temperature (K) 296			
				CA	LIBRAT	ION OR	IFICE			
				Make->	TISCH			Qstd Slope -> 2.02017		
				Model->				Qstd Intercept -> -0.03691		
				Serial # ->						
					CALIB	BRATION	1			
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	I	2	LINEAR		
No.	(in)	(in)	(in)	(m3/min)	(chart)	corre	ected	REGRESSION		
18	5.80	5.80	11.6	1.711	44	44.	33	Slope = 26.9718		
13	4.60	4.60	9.2	1.526	39	39.	30	Intercept = -1.9858		
10	3.45	3.45	6.9	1.324	33	33.	25	Corr. coeff. = 0.9995		
7	2.30	2.30	4.6	1.084	27	27.	20			
5	1.40	1.40	2.8	0.850	21	21.	16			
Calculati	ons :									
Qstd = 1/	m[Sqrt(H	20(Pa/Ps	td)(Tstd	/Ta))-b]		50.00	<u> </u>	FLOW RATE CHART		
IC = I[Sq	rt(Pa/Pstc	l)(Tstd/Ta	a)]					y = 26.972x - 1.986		
Qstd = st						40.00	-			
IC = corr		_	es							
I = actual		-				(C				
m = calib	-	-) 30.00 chart response 20.00				
b = calibation	-	-		L		odsa		×		
	-		-	bration (de		artra				
Pstd = ac	tual press	ure aurin	g calibr	ation (mm	Hg)	ਦੱ 20.00	-	↔		
For subs	equent c	alculation	n of san	npler flow:		Actual				
	Sqrt(298/			-		4				
1/111((1)[5411(290)	1 av)(1 av	//00/]-เ))		10.00				
m = samp	pler slope									
b = samp	pler interc	ept				0.00				
I = chart	-					0.00 0.	000	0.500 1.000 1.500 2.000		
Tav = dat								Standard Flow Rate (m3/min)		
Pav = dat	ily averag	e pressur	e							

RECALIBRATION DUE DATE: February 13, 2019

Environmental Certificate of Calibration

			Calibration	Certificatio	on Informat	ion		
Cal. Date:	February 1	3, 2018	Roots	meter S/N:	438320	Ta:	293	°К
Operator:	Jim Tisch					Pa:	763.3	mm Hg
Calibration	Model #:	TE-5025A	Calil	prator S/N:	1612			
			Mal Plant	A) (- 1	ATI	AD	A11	
	Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	∆H (in H2O)	
	1	1	2	(113)	1.3970	3.2	2.00	
	2	3	4	- 1	1.0000	6.3	4.00	
	3	5	6	1	0.8900	7.9	5.00	
	4	7	8	1	0.8440	8.7	5.50	
	5	9	10	1	0.7010	12.6	8.00	
				Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstc}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-axis)		Va	(x-axis)	(y-axis)	
	1.0172	0.7281	1.4293		0.9958	0.7128	0.8762	
	1.0130	1.0130	2.0213		0.9917	0.9917	1.2392	
	1.0109	1.1358	2.2599		0.9896	1.1120	1.3854	
	1.0098	1.1964	2.37	A PERSON NEW YORK OF THE PARTY	0.9886	1.1713	1.4530	
	1.0046	1.4331 m=	2.85 2.02 (0.9835	1.4030 m=	1.7524 1.26500	4
	QSTD	b= -0.03		and the second design of the s	QA	b=	-0.02263	1
	QSID	r=	0.999		QA	r=	0.99988	
				Calculatio	ns			1
	Vstd=	∆Vol((Pa-∆P)/Pstd)(Tstd/T		Va=	1		
	Qstd=	Vstd/∆Time			Qa=	Va/∆Time]
			For subsequ	uent flow ra	te calculatio	ns:		-
	Qstd=	1/m ((Pa <u>Tstd</u>	-))-b)	Qa=	$1/m\left(\sqrt{\Delta H}\right)$	H(Ta/Pa))-b)	
	Standard	Conditions						
Tstd		CONTRACTOR AND A CONTRACTOR OF A DATA OF				RECA	LIBRATION	
Pstd	1	mm Hg			LIS FPA rec	ommends a	nnual recalibrati	on per 1999
AH: calibrat		Key ter reading (in H2O)				Regulations Part	
		eter reading			1), Reference Metl	
Ta: actual a	bsolute tem	perature (°K)				ended Particulat	
		ressure (mm	Hg)		1		ere, 9.2.17, page	
b: intercept	t							
m: slope								

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.cor TOLL FREE: (877)263-761(FAX: (513)467-900

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

	SUB-CONTRACTING REPORT							
CONTACT	: MR BEN TAM	WORK ORDER	HK1825892					
CLIENT	ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING							
ADDRESS	: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T. HONG KONG	SUB-BATCH DATE RECEIVED DATE OF ISSUE	: 1 : 12-APR-2018 : 19-APR-2018					
PROJECT	:	NO. OF SAMPLES CLIENT ORDER	: 1 :					

General Comments

• Sample(s) were received in ambient condition.

- Sample(s) analysed and reported on an as received basis.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position
Richard Fung General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group 11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER SUB-BATCH CLIENT PROJECT	: HK1825892 [:] 1 [:] ACTION UNITED ENV :	ALS			
ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.	
ID		Туре			

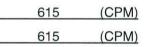
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	456660
Equipment Ref:	EQ117
Job Order	HK1825892

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	27 February 2018	


Equipment Verification Results:

Calibration Date:

12 & 13 March 2018

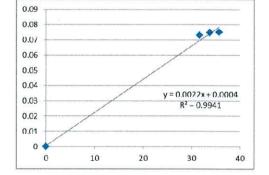
Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	9:50 ~ 11:57	19.6	1019.0	0.073	4016	31.7
2hr14min	12:05 ~ 14:19	19.6	1019.0	0.075	4544	33.8
2hr17min	9:50 ~ 12:07	20.9	1016.7	0.075	4912	35.7

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X

Slope (K-factor): Correlation Coefficient (R) Date of Issue

0 0000


Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Location : Gold King Industrial Building, K Location ID : Calibration Room	Cwai Ch	lung	Date of Calibration: 27-Feb-18 Next Calibration Date: 27-May-18				
	CONE	ITIONS					
Sea Level Pressure (hPa)1017.3Corrected Pressure (mm Hg)762.975Temperature (°C)19.1Temperature (K)292							
CAL	IBRAT	ON ORIFIC	E				
Make->TISCHQstd Slope ->2.11965Model->5025AQstd Intercept ->-0.02696Calibration Date->28-Feb-17Expiry Date->28-Feb-18							
	CALIB	RATION					
	I hart)	IC corrected	LINEAR REGRESSION				
13 5.1 5.1 10.2 1.538 4 10 3.9 3.9 7.8 1.346 4 8 2.6 2.6 5.2 1.101 5	52 46 40 30 20	52.63 46.55 40.48 30.36 20.24	Slope = 39.8525 Intercept = -14.3322 Corr. coeff. = 0.9974				
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	00 Actual chart response (IC) 07 00 07 01	.00 .00 .00 .00 .00 .00 .00 .00 .00	FLOW RATE CHART				

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

	SUB-CONTRACTING REPORT						
CONTACT	: MR BEN TAM WORK ORDER	HK1825891					
CLIENT	ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING						
ADDRESS	RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, SUB-BATCH KWAI CHUNG, N.T. HONG KONG DATE OF ISSUE						
PROJECT	: NO. OF SAMPLE						

General Comments

- Sample(s) were received in ambient condition.
- Sample(s) analysed and reported on an as received basis.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

	Signatories		Position	
Æ	Richard Fung	W	General Manager	
14		1		

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group 11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER SUB-BATCH CLIENT PROJECT	: HK1825891 [:] 1 [:] ACTION UNITED ENV [:]	IRONMENT SERVICES	AND CONSULTING		ALS
ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.	
ID		Туре			
HK1825891-001	S/N: 456659	Equipments	12-Apr-2018	S/N: 456659	

Equipment Verification Report (TSP)

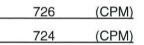
Equipment Calibrated:

Type:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	456659
Equipment Ref:	EQ116
Job Order	HK1825891

Standard Equipment:

Higher Volume Sampler
AUES office (calibration room)
HVS 018
27 February 2018

Equipment Verification Results:


Calibration Date:

12 & 13 March 2018

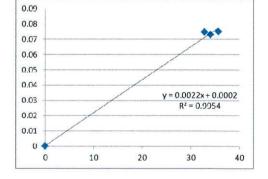
Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	9:50 ~ 11:57	19.6	1019.0	0.073	4313	34.1
2hr14min	12:05 ~ 14:19	19.6	1019.0	0.075	4413	32.8
2hr17min	9:50 ~ 12:07	20.9	1016.7	0.075	4906	35.7

8

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X

0.0022
0.9977
15 March 201


Remarks:

1. Strong Correlation (R>0.8)

Factor 0.0022 should be apply for TSP monitoring 2.

*If R<0.5, repair or re-verification is required for the equipment

I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope	Location :Gold King Industrial Building, KwaiLocation ID :Calibration Room					ng, Kv	wai Chi	ung	Date of Calibration: 27-Feb-18 Next Calibration Date: 27-May-18
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							COND	TIONS	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Sea Level Pressure (hPa) 1017.3 Corrected Pressure (mm Hg) 762.975							
Model> 5025A 28-Feb-17 Qstd Intercept -> Expiry Date-> -0.02696 28-Feb-18 CALIBRATION CALIBRATION Calibration Date-> 28 -Feb-17 CALIBRATION Calculations: State of the colspan="4">Calculation S: Calculations : Calculations : Calculation for and colspan="4">Calculation (resequence of the colspa	CALIBRATION ORIFICE								
Plate H20 (L)H2O (R) H20 (m3/min) I IC LINEAR No. (in) (in) (m3/min) (chart) corrected REGRESSION 18 6.2 6.2 12.4 1.694 52 52.63 Slope = 39.8525 13 5.1 5.1 10.2 1.538 46 46.55 Intercept = -14.3322 10 3.9 3.9 7.8 1.346 40 40.48 Corr. coeff. = 0.9974 8 2.6 2.6 5.2 1.101 30 30.36 20 20.24 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] 60.00 50.00		Model-> 5025A Qstd Intercept -> -0.02696							Qstd Intercept -> -0.02696
No. (in) (in) (m3/min) (chart) corrected REGRESSION 18 6.2 6.2 12.4 1.694 52 52.63 Slope = 39.8525 13 5.1 5.1 10.2 1.538 46 46.55 Intercept = -14.3322 10 3.9 3.9 7.8 1.346 40 40.48 Corr. coeff. = 0.9974 8 2.6 2.6 5.2 1.101 30 30.36 5 1.7 1.7 3.4 0.893 20 20.24 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] 50.00						8	CALIBR	RATION	
18 6.2 6.2 12.4 1.694 52 52.63 Slope = 39.8525 13 5.1 5.1 10.2 1.538 46 46.55 Intercept = -14.3322 10 3.9 3.9 7.8 1.346 40 40.48 Corr. coeff. = 0.9974 8 2.6 2.6 5.2 1.101 30 30.36 Slope = 39.8525 5 1.7 1.7 3.4 0.893 20 20.24 Corr. coeff. = 0.9974 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] FLOW RATE CHART IC = corrected chart respones 50.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>633</td><td></td></t<>								633	
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4	16 10 30	46.55 40.48 30.36	Intercept = -14.3322	
b = sampler intercept I = chart response Tav = daily average temperature	Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response					.05 Actual chart response (IC) .02 .02 .02			

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT					
CONTACT	: MR BEN TAM WORK ORDER	HK1825890			
CLIENT	ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING				
ADDRESS	RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, SUB-BATCH KWAI CHUNG, N.T. HONG KONG DATE RECEIVED DATE OF ISSUE	: 1 : 12-APR-2018 : 19-APR-2018			
PROJECT	: NO. OF SAMPLES CLIENT ORDER	: 1 :			

General Comments

• Sample(s) were received in ambient condition.

- Sample(s) analysed and reported on an as received basis.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Position

Signatories

Richard Fung

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

712

General Manager

pp

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group 11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER SUB-BATCH CLIENT PROJECT	: HK1825890 1 ACTION UNITED ENV :	/IRONMENT SERVICES	AND CONSULTING		ALS
ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.	
ID HK1825890-001	S/N: 456658	Type Equipments	12-Apr-2018	S/N: 456658	

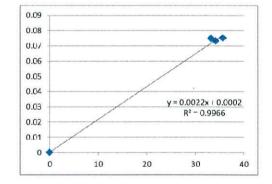
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	456658
Equipment Ref:	EQ115
Job Order	HK1825890

Standard Equipment:

Higher Volume Sampler
AUES office (calibration room)
HVS 018
27 February 2018


Equipment Verification Results:

Calibration Date:

12 & 13 March 2018

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	9:50 ~ 11:57	19.6	1019.0	0.073	4333	34.2
2hr14min	12:05 ~ 14:19	19.6	1019.0	0.075	4469	33.3
2hr17min	9:50 ~ 12:07	20.9	1016.7	0.075	4912	35.7

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 705 (CPM) 705 (CPM)

Linear Regression of Y or X

Slope (K-factor): Correlation Coefficient (R)

0.0022 0.9983 15 March 2018

Remarks:

Date of Issue

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room					Date of Calibration: 27-Feb-18 Next Calibration Date: 27-May-18		
					COND	ITIONS	
Sea Level Pressure (hPa)1017.3Corrected Pressure (mm Hg)7Temperature (°C)19.1Temperature (K)							
				CALI	BRATI	ON ORIFIC	CE
Make-> TISCH Model-> 5025A Calibration Date-> 28-Feb-					25A		Qstd Slope ->2.11965Qstd Intercept ->-0.02696Expiry Date->28-Feb-18
				(CALIB	RATION	
	20 (L)H2O (R) (in) (in)	H20 (in)	Qstd (m3/min)		I art)	IC corrected	LINEAR REGRESSION
18 13 10 8	$\begin{array}{c cccc} 6.2 & 6.2 \\ 5.1 & 5.1 \\ 3.9 & 3.9 \\ 2.6 & 2.6 \\ 1.7 & 1.7 \\ \end{array}$	12.4 10.2 7.8 5.2 3.4	1.694 1.538 1.346 1.101 0.893	5 4 4 3	2 6 0 0	52.63 46.55 40.48 30.36 20.24	Slope = 39.8525 Intercept = -14.3322 Corr. coeff. = 0.9974
IC = I[Sqrt(PaQstd = standaIC = correctedI = actual cham = calibratorb = calibratorTa = actual tePstd = actualFor subseque	Gqrt(H20(Pa/Ps a/Pstd)(Tstd/T ard flow rate d chart response in Qstd slope Qstd intercept emperature dur pressure durin ent calculation (298/Tav)(Pav slope intercept	a)] es t ing calib g calibra n of sam	pration (deg tion (mm] ppler flow:		Actual chart response (IC) 07 00 07 07	.00 .00 .00 .00 .00 .00 .00 .00 0.000	FLOW RATE CHART
100 D 10 D 100 D	verage tempera verage pressur						

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

	SUB-CONTRACTING REPORT					
CONTACT	: MR BEN TAM	WORK ORDER	HK1825893			
CLIENT	ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING					
ADDRESS	: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T. HONG KONG	SUB-BATCH DATE RECEIVED DATE OF ISSUE	: 1 : 12-APR-2018 : 19-APR-2018			
PROJECT	3	NO. OF SAMPLES CLIENT ORDER	: 1			

General Comments

- Sample(s) were received in ambient condition.
- Sample(s) analysed and reported on an as received basis.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Position

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Richard Fung

General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group 11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER SUB-BATCH CLIENT PROJECT	: HK1825893 1 ACTION UNITED ENV 	/IRONMENT SERVICES	AND CONSULTING		ALS
ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.	
ID	-	Туре			
HK1825893-001	S/N: 456662	Equipments	17-Apr-2018	S/N: 456662	

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	456662
Equipment Ref:	EQ118
Job Order	HK1825893

Standard Equipment:

Higher Volume Sampler
AUES office (calibration room)
HVS 018
27 February 2018

Equipment Verification Results:

Calibration Date:

12 & 13 March 2018

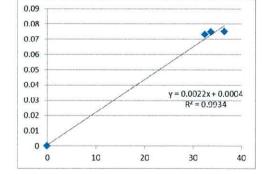
Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	9:50 ~ 11:57	19.6	1019.0	0.073	4108	32.4
2hr14min	12:05 ~ 14:19	19.6	1019.0	0.075	4532	33.7
2hr17min	9:50 ~ 12:07	20.9	1016.7	0.075	5016	36.5

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) <u>591 (CPM)</u> 591 (CPM)

Linear Regression of Y or X

Slope (K-factor): _____ Correlation Coefficient (R) _____ Date of Issue

0.0022 0.9967 15 March 2018


Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

	Next Calibration Date: 27-May-18					
CONDITIONS						
Sea Level Pressure (hPa)1017.3Corrected Pressure (mm Hg)762.975Temperature (°C)19.1Temperature (K)292						
CALIBRATION ORIFICE						
Make->TISCHQstd Slope ->2.1196Model->5025AQstd Intercept ->-0.026Calibration Date->28-Feb-17Expiry Date->28-Feb-17						
CALIBRATION						
Plate H20 (L)H2O (R) H20 Qstd I IC No. (in) (in) (m3/min) (chart) corrected	LINEAR REGRESSION					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Slope = 39.8525 Intercept = -14.3322 Corr. coeff. = 0.9974					
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	FLOW RATE CHART					

Certificate of Calibration 校正證書

Certificate No. : C174094 證書編號

ITEM TESTED / 送檢項目	目 (Job No. / 序引編號:IC17-0924)	Date of Receipt / 收件日期:14 July 2017		
Description / 儀器名稱 :	Sound Level Calibrator (EQ085)			
Manufacturer / 製造商 :	Rion			
Model No. / 型號 :	NC-73			
Serial No. / 編號 :	10655561			
Supplied By / 委託者 :	Action-United Environmental Services an	d Consulting		
	Unit A, 20/F., Gold King Industrial Build	ing,		
	35-41 Tai Lin Pai Road, Kwai Chung, N.T	Г.		
TEST CONDITIONS / 測試條件				

/ 测武保什

Temperature / 溫度 : $(23 \pm 2)^{\circ}C$ Line Voltage / 雷壓 : ----

Relative Humidity / 相對濕度 : $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 22 July 2017 :

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification & user's specified acceptance criteria. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

K C Lee Engineer

Certified By 核證

Date of Issue 簽發日期

:

25 July 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laborator

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 枝正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C174094 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.

.

3. Test equipment :

Equipment ID CL130 CL281 TST150A Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C173864 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	93.9	± 0.5	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	User's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0.954	1 kHz ± 6 %	± 1

Remarks : - The user's specified acceptance criteria (user's spec.) is a customer pre-defined operating tolerance of the UUT, suitable for one's own intended use.

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部後印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門與安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172795 證書編號

ITEM TESTED / 送檢項目	(Job No. / 序引編號:IC17-0924)	Date of Receipt / 收件日期]: 16 May 2017
Description / 儀器名稱 :	Sound Level Meter (EQ068)		
Manufacturer / 製造商 :	Rion		
Model No. / 型號 :	NL-31		
Serial No. / 編號 :	00410247		
Supplied By / 委託者 :	Action-United Environmental Services ar	d Consulting	
	Unit A, 20/F., Gold King Industrial Build	ing,	
	35-41 Tai Lin Pai Road, Kwai Chung, N.	Г.	
TEST CONDITIONS / 測詞	式條件		
Temperature / 溫度 : (23	3 ± 2)°C	Relative Humidity / 相對濕度	: $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

:

Calibration check

Line Voltage / 電壓

DATE OF TEST / 測試日期 : 23 May 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試	:H T Wong Technical Officer			
Certified By 核證	: K C/Lee Engineer	Date of Issue 簽發日期	:	24 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172795 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment IDDescriptionCertificate No.CL28040 MHz Arbitrary Waveform GeneratorC170048CL281Multifunction Acoustic CalibratorPA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

	UU	JT Setting		Applied	Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	LA	Α	Fast	94.00	1	93.6	± 1.1

6.1.2 Linearity

	UU	JT Setting		Applied	Value	UUT
Range	Mode	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 120	L _A	A	Fast	94.00	1	93.6 (Ref.)
				104.00		103.7
				114.00		113.7

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

	UUT Setting			Applied	Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	A	Fast	94.00	1	93.6	Ref.
			Slow			93.6	± 0.3

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傅真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172795 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

• •	it worghting	>						
		UUT Setting Applied Value			ied Value	UUT	IEC 61672 Class 1	
	Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
	(dB)		Weighting	Weighting	(dB)	0.5	(dB)	(dB)
	30 - 120	L _A	A	Fast	94.00	63 Hz	67.2	-26.2 ± 1.5
						125 Hz	77.3	-16.1 ± 1.5
						250 Hz	84.8	-8.6 ± 1.4
						500 Hz	90.3	-3.2 ± 1.4
						1 kHz	93.6	Ref.
						2 kHz	94.8	$+1.2 \pm 1.6$
						4 kHz	94.7	$+1.0 \pm 1.6$
						8 kHz	92.6	-1.1 (+2.1 ; -3.1)
						12.5 kHz	89.6	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

		Γ Setting		Appl	ied Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _C	С	Fast	94.00	63 Hz	92.8	-0.8 ± 1.5
					125 Hz	93.4	-0.2 ± 1.5
					250 Hz	93.5	0.0 ± 1.4
					500 Hz	93.6	0.0 ± 1.4
					1 kHz	93.6	Ref.
					2 kHz	93.5	-0.2 ± 1.6
					4 kHz	92.9	-0.8 ± 1.6
					8 kHz	90.7	-3.0 (+2.1 ; -3.1)
					12.5 kHz	87.8	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate No. : C172795 證書編號

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 319841

- Mfr's Spec.	. : IEC 61672 Class 1	
---------------	-----------------------	--

Uncertainties of Applied Value :	94 dB	: 63 Hz - 125 Hz	:	$\pm 0.35 \text{ dB}$
		250 Hz - 500 Hz	::	$\pm 0.30 \text{ dB}$
		1 kHz	:	\pm 0.20 dB
		2 kHz - 4 kHz	:	$\pm 0.35 \text{ dB}$
		8 kHz	:	$\pm 0.45 \text{ dB}$
		12.5 kHz	:	\pm 0.70 dB
	104 dB	: 1 kHz	:	± 0.10 dB (Ref. 94 dB)
	114 dB	: 1 kHz	:	± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

ITEM TESTED / 送檢項目 Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :		ilding,							
TEST CONDITIONS / 測記 Temperature / 溫度 : (2: Line Voltage / 電壓 :		Relative Humidity / 相對濕度 : (55 ± 20)%							
TEST SPECIFICATIONS / 測試規範 Calibration check									
DATE OF TEST / 測試日期 : 28 April 2017									

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試	: HT Wong Technical Officer		
Certified By 核證	: KCLee Project Engineer	Date of Issue : 簽發日期	2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- Self-calibration was performed before the test. 2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281

Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

Certificate No. C170048 PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- Sound Pressure Level 6.1
- 6.1.1 Reference Sound Pressure Level

	UUT Setting Applied Value				UUT	IEC 61672 Class 1	
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	1	93.1	± 1.1

6.1.2 Linearity

		UU	JT Setting		Applied	Value	UUT			
	Range Mode Frequency		Time	Level	Freq.	Reading				
	(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)			
	30 - 120			Fast	94.00	1	93.1 (Ref.)			
					104.00		103.1			
					114.00		113.2			

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

Time Weighting 6.2

	UU	T Setting		Applied	Value	UUT	IEC 61672 Class 1
Range	Range Mode Frequency			Level	Freq.	Reading	Spec.
(dB)			Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	30 - 120 L _A A		Fast	94.00	1	93.1	Ref.
			Slow			93.1	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

		Γ Setting		Appl	ied Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	63 Hz	66.8	-26.2 ± 1.5
					125 Hz	76.9	-16.1 ± 1.5
					250 Hz	84.4	-8.6 ± 1.4
					500 Hz	89.8	-3.2 ± 1.4
					1 kHz	93.1	Ref.
					2 kHz	94.4	$+1.2 \pm 1.6$
					4 kHz	94.2	$+1.0 \pm 1.6$
				8 kHz	92.0	-1.1 (+2.1 ; -3.1)	
					12.5 kHz	89.2	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

	UU	T Setting		Appl	ied Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _C	С	Fast	94.00	63 Hz	92.2	-0.8 ± 1.5
					125 Hz	92.9	-0.2 ± 1.5
					250 Hz	93.1	0.0 ± 1.4
					500 Hz	93.1	0.0 ± 1.4
					1 kHz	93.1	Ref.
					2 kHz	93.0	-0.2 ± 1.6
					4 kHz	92.4	-0.8 ± 1.6
					8 kHz	90.2	-3.0 (+2.1 ; -3.1)
					12.5 kHz	87.3	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 319734

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value :	94 dB	: 63 Hz - 125 Hz	:	$\pm 0.35 \text{ dB}$
		250 Hz - 500 Hz	: :	$\pm 0.30 \text{ dB}$
		1 kHz	:	$\pm 0.20 \text{ dB}$
		2 kHz - 4 kHz	:	$\pm 0.35 \text{ dB}$
		8 kHz	:	$\pm 0.45 \text{ dB}$
		12.5 kHz	:	$\pm 0.70 \text{ dB}$
	104 dB	: 1 kHz	:	± 0.10 dB (Ref. 94 dB)
	114 dB	: 1 kHz	:	± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172793 證書編號

ITEM TESTED / 送檢項	目	(Job No. / 序引編號:IC17-0924)	Date of Receipt / 收件日期: 16 May 2017
Description / 儀器名稱	;	Sound Level Meter (EQ011)	
Manufacturer / 製造商	:	Rion	
Model No. / 型號	:	NL-52	
Serial No. / 編號	:	01121362	
Supplied By / 委託者	:	Action-United Environmental Services and C	Consulting
		Unit A, 20/F., Gold King Industrial Building,	2
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.	
TEST CONDITIONS /	測討	《條件	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 23 May 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

	witt.
·	H T Wong

Technical Officer

Certified By : Date of Issue : 24 May 2017 核證 K C Lee 簽發日期 Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172793 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C170048
CL281	Multifunction Acoustic Calibrator	PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

	UUT	Setting		Applied Value		UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L _A	A	Fast	94.00	1	93.2	± 1.1

6.1.2 Linearity

	UU	Γ Setting	Applied	d Value	UUT	
Range Function Frequency Time				Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 130	L _A	A	Fast	94.00	1	93.2 (Ref.)
				104.00		103.2
				114.00		113.2

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

	UUT	Setting		Applied Value		UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L _A	A	Fast	94.00	1	93.2	Ref.
			Slow			93.2	± 0.3

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所

```
c/o 香港新界屯門興安里一號青山灣機樓四樓
Tel/電話: 2927 2606 Fax/傳真: 2744 8986
```

E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172793 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

		Setting		Appl	ied Value	UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 130	L _A	A	Fast	94.00	63 Hz	66.9	-26.2 ± 1.5
					125 Hz	76.9	-16.1 ± 1.5
					250 Hz	84.5	-8.6 ± 1.4
					500 Hz	89.9	-3.2 ± 1.4
					1 kHz	93.2	Ref.
					2 kHz	94.4	$+1.2 \pm 1.6$
					4 kHz	94.2	$+1.0 \pm 1.6$
					8 kHz	92.1	-1.1 (+2.1 ; -3.1)
					12.5 kHz	88.7	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

UUT Setting			Applied Value		UUT	IEC 61672	
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 130	L _C	С	Fast	94.00	63 Hz	92.3	-0.8 ± 1.5
					125 Hz	93.0	-0.2 ± 1.5
					250 Hz	93.2	0.0 ± 1.4
					500 Hz	93.2	0.0 ± 1.4
					1 kHz	93.2	Ref.
					2 kHz	93.0	-0.2 ± 1.6
					4 kHz	92.4	-0.8 ± 1.6
					8 kHz	90.2	-3.0 (+2.1 ; -3.1)
					12.5 kHz	86.8	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate No. : C172793 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 07549

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value :	1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz 104 dB : 1 kHz	: $\pm 0.35 \text{ dB}$: $\pm 0.30 \text{ dB}$: $\pm 0.20 \text{ dB}$: $\pm 0.35 \text{ dB}$: $\pm 0.45 \text{ dB}$: $\pm 0.70 \text{ dB}$: $\pm 0.10 \text{ dB}$ (Ref. 94 dB) : $\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	114 dB : 1 kHz	: \pm 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C174095 證書編號

ITEM TESTED / 送檢項目 Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :	(Job No. / 序引編號: IC17-0924) Sound Calibrator Rion NC-74 34657231 Action-United Environmental Services an Unit A, 20/F., Gold King Industrial Build 35-41 Tai Lin Pai Road, Kwai Chung, N.	ling,		
TEST CONDITIONS / 測記 Temperature / 溫度 : (23 Line Voltage / 電壓 :		Relative Humidity / 相對濕度 : (55 ± 20)%		
TEST SPECIFICATIONS / 測試規範 Calibration check				

DATE OF TEST / 測試日期 : 22 July 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

K C Lee Engineer

Certified By 核證 Date of Issue : 簽發日期

25 July 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate No. : C174095 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

ł

Equipment ID CL130 CL281 **TST150A**

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier

Certificate No. C173864 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.1	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

Certificate No. : C173479 證書編號

ITEM TESTED / 送檢項目 Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :	(Job No. / 序引編號: IC17-0924) Sound Calibrator (EQ086) Rion NC-74 34657230 Action-United Environmental Services a Unit A, 20/F., Gold King Industrial Bui 35-41 Tai Lin Pai Road, Kwai Chung, N	ding,	≥ 2017	
TEST CONDITIONS / 測試條件 Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 :			20)%	
TEST SPECIFICATIONS / 測試規範 Calibration check				

DATE OF TEST / 測試日期 : 28 June 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試	:H T Wong Technical Officer			
Certified By 核證	K Lee Engineer	Date of Issue 簽發日期	:	30 June 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate No. : C173479 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Ľ,

Equipment ID CL130 CL281 TST150A

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C163709 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Naminal Valua	(dB)	(dB)	(dB)
Nominal Value 94 dB, 1 kHz	94.1	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.002	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR BEN TAM	WORK
CLIENT:	ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	SUB-BA
ADDRESS:	RM A 20/F., GOLD KING IND BLDG,	LABORA
	NO. 35- 41 TAI LIN PAI ROAD,	DATE RE
	KWAI CHUNG,	DATE O
	N.T., HONG KONG.	

WORK ORDER:	HK1813603
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	19-Jan-2018
DATE OF ISSUE:	26- Jan- 2018

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Conductivity, Dissolved Oxygen, pH, Salinity, Temperature and Turbidity
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional DSS
Serial No.:	17B102764/ 17B100758
Equipment No.:	EQW019
Date of Calibration:	25 January, 2018

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, V

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

Work Order: Sub-Batch: Date of Issue: Client:	HK1813603 0 26- Jan- 2018 ACTION UNITED ENVIRONM	IENT SERVICES AND CONSULTING		A
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional DSS 17B102764/ 17B100758 EQW019 25 January, 2018	Date of next Calibration:	25 April, 2018	
D				

Parameters: Conductivity

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	156.7	+ 6.7
6667	6404	- 3.9
12890	11931	- 7.4
58670	54679	- 6.8
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 4500O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.02	2.85	- 0.17
5.41	5.30	- 0.11
8.23	8.12	- 0.11
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	3.82	- 0.18
7.0	6.93	- 0.07
10.0	9.85	- 0.15
	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vieo Manager - Inorganics

Work Order: Sub-Batch: Date of Issue: Client:	HK1813603 0 26- Jan- 2018 ACTION UNITED ENVIRONM	IENT SERVICES AND CONSULTING		AL
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional DSS 17B102764/ 17B100758 EQW019 25 January, 2018	Date of next Calibration:	25 April, 2018	

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

ethou kei. AFHA (21st eutton), 2520B				
Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)		
0	0.00			
10	10.86	+ 8.6		
20	18.85	- 5.7		
30	28.36	- 5.5		
	Tolerance Limit (%)	±10.0		

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

uide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.		
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
9.5	8.7	- 0.8
20.5	20.8	+ 0.3
39.0	38.4	- 0.6
	Tolerance Limit (°C)	±2.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	2.5	
4	4.3	+ 7.5
40	37.9	- 5.3
80	83.6	+ 4.5
400	375.7	- 6.1
800	758.8	- 5.2
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR BEN TAM	WORK ORDER:	HK1824786
CLIENT:	ACTION UNITED ENVIRONMENT SERVICES		
	AND CONSULTING	SUB-BATCH:	0
ADDRESS:	RM A 20/F., GOLD KING IND BLDG,	LABORATORY:	HONG KONG
	NO. 35-41 TAI LIN PAI ROAD,	DATE RECEIVED:	11-Apr-2018
	KWAI CHUNG,	DATE OF ISSUE:	19-Apr-2018
	N.T., HONG KONG.		

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test: Conductivity, Dissolved Oxygen, pH Value, Turbitidy, Salinity and Temperature

Equipment Type:Multifunctional MeterBrand Name:YSIModel No.:Professional DSSSerial No.:15H102620/ 15H103928Equipment No.:EQW018Date of Calibration:17 April, 2018

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ma Aij

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER:	HK1824786			1
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 19-Apr-2018 ACTION UNITED ENVIRONMEN	T SERVICES AND CONSULTING		
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional DSS 15H102620/ 15H103928 EQW018 17 April, 2018	Date of Next Calibration:	17 July, 2018	

PARAMETERS:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
6667	6636	-0.5
12890	12795	-0.7
58670	58781	+0.2
	Tolerance Limit (%)	±10.0

Dissolved Oxygen

n Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.90	3.05	+0.15
5.24	5.40	+0.16
8.16	8.34	+0.18
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

E	xpected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
	4.0	3.92	-0.08
	7.0	7.04	+0.04
	10.0	9.91	-0.09
		Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Aij

Mr Chan Siu Ming, Vico Manager - Inorganic

Page 2 of 4

WORK ORDER:	HK1824786			ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 19-Apr-2018 ACTION UNITED ENVIRONMEN	T SERVICES AND CONSULTING		
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional DSS 15H102620/ 15H103928 EQW018 17 April, 2018	Date of Next Calibration:	17 July, 2018	

PARAMETERS:

Turbidity

Method Ref: ALPHA (21st edition), 2130B

•	· ·	
Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.1	
4	4.4	+10.0
40	41.7	+ 4.3
80	83.3	+ 4.1
400	412.4	+3.1
800	809.6	+1.2
	Tolerance Limit (%)	±10.0

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0.0	0.02	
10.0	10.01	+ O. 1
20.0	19.68	-1.6
30.0	32.43	+8.1
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Alin

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER:	HK1824786			ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 19-Apr-2018 ACTION UNITED ENVIRONMEN	IT SERVICES AND CONSULTING		(*
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional DSS 15H102620/ 15H103928 EQW018 17 April, 2018	Date of Next Calibration:	17 July, 2018	
PARAMETERS: Temperature		national Accreditation New Zealand		0

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.										
Expected Reading (^o C)	Displayed Reading (^o C)	Tolerance (°C)								
10.0	10.8	+0.8								
21.5	20.4	-1.1								
38.5	37.1	-1.4								
	Tolerance Limit (°C)	±2.0								

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Ain

Mr Chan Siu Ming, Vico Manager - Inorganic

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 –《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date : 5 May 2009 簽發日期:二零零九年五月五日

Registration Number : HCKLAS 066 註冊號碼:

Date of First Registration : 15 September 1995 首次註冊日期:一九九五年九月十五日

∟ 000552

Appendix F

Event and Action Plan

Z:\Jobs\2016\TCS00874\600\EM&A Report\Monthly EM&A Report\5th Monthly Report - April 2018\R0170v4.doc

Event and Action Plan for Air Quality

		ACTION										
EVENT		ET		IEC		ER		Contractor				
Action Level Exceedance for One Sample	1. 2. 3. 4.	Identify source(s) of impact; Inform the IEC and the ER; Repeat measurement to confirm findings; Carry out investigation for the cause of exceedance, if the exceedance is project-related, increase monitoring frequency to daily	1. 2.	Check monitoring data submitted by ET; Check Contractor's working method	1.	Notify Contractor	1. 2.	Rectify any unacceptable practice; Amend working methods if appropriate				
Action Level Exceedance for Two or More Consecutive Samples	1. 2. 3. 4. 5. 6. 7.	Identify source(s) of impact; Inform the IEC and ER; Repeat measurement to confirm findings; Carry out investigation for the cause of exceedance, if the exceedance is project-related, increase monitoring frequency to daily Discuss with IEC and Contractor on remedial action required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring	1. 2. 3. 4. 5.	effectiveness of the proposed remedial measures;	1. 2. 3.	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented	1. 2. 3.	Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate				
Limit Level Exceedance for One Sample	1. 2. 3. 4.	Identify source(s) of impact; Inform the EPD and the ER; Repeat measurement to confirm findings;	 1. 2. 3. 4. 	Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed	1. 2. 3.	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented	 1. 2. 3. 4. 	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if				

EVENT	ACTION												
EVENI	ET			IEC	ER			Contractor					
Limit Loval	5.	Contractor's remedial actions and keep IEC, EPD and ER informed of results	5.	remedial measures; Supervise implementation of remedial measures	1	Confirm receipt of	1	appropriate Take immediate action to					
Limit Level Exceedance for Two or More Consecutive Samples	 1. 2. 3. 4. 5. 6. 7. 8. 	cause of exceedance, if the exceedance is project-related, increase monitoring frequency to daily	1. 2. 3.	Discuss amongst ER, ET and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures	1. 2. 3. 4. 5.	Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	1. 2. 3. 4. 5.	avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals					

Event and Action Plan for Construction Noise

EXCEEDANCE		ACT	TION	
EACEEDANCE	ЕТ	IEC	ER	Contractor
Action Level	 Notify IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals
Limit Level	 Notify IEC, ER, EPD and Contractor; Identify source; Carry out investigation; Report the results of investigation to the IEC and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals

Event and Action Plan for Water Quality

EVENT							
EVENI	ET		IEC		ER		Contractor
Action Level being exceeded by one sampling day	 Repeat <i>in-situ</i> measurement i confirm findings; Identify source(s) of impact; Inform the IEC and the Contractor; Check monitoring data, a plant, equipment and the Contractor's working methods Discuss mitigation measured with the IEC and the Contractor; 	e 2. II e 3.	Contractor on the mitigation measures; Review proposals on mitigation measures submitted by the Contractor;	1. 2.	Discuss with the IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented.	 1. 2. 3. 4. 5. 6. 	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET and the IEC and propose mitigation measures to the IEC and ER; Implement the agreed mitigation measures.
Action Level being exceeded by more than one consecutive sampling days	 Repeat <i>in-situ</i> measurement confirm findings; Identify source(s) of impact; Inform the IEC and th Contractor; Check monitoring data, all plar equipment and Contractor working methods; Discuss mitigation measures wi the IEC and the Contractor; Ensure mitigation measures a implemented; 	e 2. t, s 3. h	Discuss with the ET and the Contractor on the mitigation measures; Review proposals on mitigation measures submitted by the Contractor accordingly; Assess the effectiveness of the implemented mitigation measures.	1. 2. 3.	Discuss with the IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess effectiveness of the implemented mitigation measures.	1. 2. 3. 4. 5. 6.	Inform the ER and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET and the IEC and propose mitigation measures to the IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit Level being exceeded by one consecutive sampling day	 Repeat <i>in-situ</i> measurement confirm findings; Identify source(s) of impact; Inform the IEC, the Contracto and the EPD; Check monitoring data, all plan equipment and the Contractor working methods; Discuss mitigation measures with 	2. or t, s 3.	Discuss with the ET / Contractor on the mitigation measures; Review proposals on mitigation measures submitted by the Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures.	1. 2. 3.	Discuss with the IEC, the ET and the Contractor on the proposed mitigation measures; Request the Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented;	1. 2. 3. 4. 5.	Inform the ER and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, the IEC and the ER and propose mitigation

EXTENT	ACTION												
EVENT	ЕТ	IEC	ER	Contractor									
	the IEC, the ER and the Contractor;6. Ensure mitigation measures are implemented.		4. Assess the effectiveness of the implemented mitigation measures.	measures to the IEC and the ER within 3 working days;6. Implement the agreed mitigation measures.									
Limit Level being exceeded by more than one consecutive sampling days	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform the IEC, the Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with the IEC, the ER and the Contractor; Ensure mitigation measures are implemented; 	 on the mitigation measures; 2. Review proposals on mitigation measures submitted by the Contractor and advise the ER accordingly; 	 Discuss with the IEC, the ET and the Contractor on the proposed mitigation measures; Request Contractor to critically review working methods; Make agreement on the mitigation measures to be implemented; Assess effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit Level. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, the IEC and the ER and propose mitigation measures to the IEC and the ER within 3 working days; Implement the agreed mitigation measures; As directed by the ER, slow down or stop all or part of the construction activities. 									

Appendix G

Impact Monitoring Schedule

Date		Noise Monitoring	Air Quality	Monitoring	- Water Quality	
		(0700 – 1900)	1-hour TSP	24-hour TSP		
Sun	1-Apr-18					
Mon	2-Apr-18					
Tue	3-Apr-18			✓		
Wed	4-Apr-18	✓	✓		✓	
Thu	5-Apr-18					
Fri	6-Apr-18				✓	
Sat	7-Apr-18					
Sun	8-Apr-18					
Mon	9-Apr-18			✓		
Tue	10-Apr-18	✓	✓		✓	
Wed	11-Apr-18					
Thu	12-Apr-18				✓	
Fri	13-Apr-18					
Sat	14-Apr-18			✓	✓	
Sun	15-Apr-18					
Mon	16-Apr-18	✓	✓		✓	
Tue	17-Apr-18					
Wed	18-Apr-18				✓	
Thu	19-Apr-18					
Fri	20-Apr-18			✓	✓	
Sat	21-Apr-18		✓			
Sun	22-Apr-18					
Mon	23-Apr-18				✓	
Tue	24-Apr-18					
Wed	25-Apr-18				✓	
Thu	26-Apr-18			✓		
Fri	27-Apr-18	✓	✓			
Sat	28-Apr-18				✓	
Sun	29-Apr-18					
Mon	30-Apr-18				✓	

✓	Monitoring Day	
	Sunday or Public Holiday	

Scheduled		Tides of Tai Po Kau		Proposed Sampling Time (#)	
Monitoring Day		Mid-Ebb	Mid-Flood	Mid-Ebb	Mid-Flood
Wed	4-Apr-18	15:35	9:19	14:05 - 17:05	07:49 - 10:49
Fri	6-Apr-18	16:53	10:13	15:23 - 18:23	08:43 - 11:43
Tue	10-Apr-18	9:01*	13:07*	07:31 - 10:31	11:37 - 14:37
Thu	12-Apr-18	11:03*	15:47	09:33 - 12:33	14:17 - 17:17
Sat	14-Apr-18	12:15	18:07	10:45 - 13:45	16:37 - 19:37
Mon	16-Apr-18	13:27	7:17	11:57 - 14:57	05:47 - 08:47
Wed	18-Apr-18	14:47	8:28	13:17 – 16:17	06:58-09:58
Fri	20-Apr-18	16:17	9:37	14:47 - 17:47	08:07 - 11:07
Mon	23-Apr-18	19:26	11:35	17:56 - 20:56	10:05 - 13:05
Wed	25-Apr-18	9:15*	14:55	07:45 - 10:45	13:25 - 16:25
Sat	28-Apr-18	11:56	18:05	10:26 - 13:26	16:35 - 19:35
Mon	30-Apr-18	13:17	19:32	11:47 – 14:47	18:02 - 21:02

Marine Water Quality Monitoring Schedule

Remark:

(*) The tidal range for the flood and ebb tide is less than 0.5m.

(#) The water quality sampling will be undertaken within a 3-hour window of 1.5 hour before and 1.5 hour after mid flood and mid-ebb tides.

Impact Monitoring Schedule for next Reporting I	Period
---	--------

Date		Noise Monitoring	Air Quality	Quality Monitoring Water O	
		(0700 – 1900)	1-hour TSP	24-hour TSP	- Water Quality
Tue	1-May-18				
Wed	2-May-18			✓	✓
Thu	3-May-18	✓	\checkmark		
Fri	4-May-18				✓
Sat	5-May-18				
Sun	6-May-18				
Mon	7-May-18				✓
Tue	8-May-18			✓	
Wed	9-May-18	✓	✓		✓
Thu	10-May-18				
Fri	11-May-18				✓
Sat	12-May-18				
Sun	13-May-18				
Mon	14-May-18			✓	✓
Tue	15-May-18	✓	✓		
Wed	16-May-18				✓
Thu	17-May-18				
Fri	18-May-18				✓
Sat	19-May-18			✓	
Sun	20-May-18				
Mon	21-May-18	✓	√		✓
Tue	22-May-18				
Wed	23-May-18				✓
Thu	24-May-18				
Fri	25-May-18			✓	✓
Sat	26-May-18		✓		
Sun	27-May-18				
Mon	28-May-18				✓
Tue	29-May-18				
Wed	30-May-18				
Thu	31-May-18			✓	✓

✓	Monitoring Day	
	Sunday or Public Holiday	

Scheduled		Tides of Tai Po Kau		Proposed Sampling Time (#)		
Monitoring Day		Mid-Ebb	Mid-Flood	Mid-Ebb	Mid-Flood	
Wed	2-May-18	14:34	8:12	13:04 - 16:04	06:42-09:42	
Fri	4-May-18	15:48	9:05	14:18 - 17:18	07:35 - 10:35	
Mon	7-May-18	17:47	13:00 [@]	16:17 – 19:17	11:30 - 14:30	
Wed	9-May-18	8:27*	12:35*	06:57 - 09:57	11:05 - 14:05	
Fri	11-May-18	10:28	15:36	08:58 - 11:58	14:06 - 17:06	
Mon	14-May-18	12:22	18:32	10:52 - 13:52	17:02 - 20:02	
Wed	16-May-18	13:46	7:18	12:16 - 15:16	05:48 - 08:48	
Fri	18-May-18	15:15	8:32	13:45 - 16:45	07:02 - 10:02	
Mon	21-May-18	17:53	10:29	16:23 – 19:23	08:59 - 11:59	
Wed	23-May-18	7:34*	13:19	06:04 - 09:04	11:49 - 14:49	
Fri	25-May-18	9:56	15:58	08:26 - 11:26	14:28 - 17:28	
Mon	28-May-18	12:17	18:35	10:47 – 13:47	17:05 - 20:05	
Thu	31-May-18	14:14	7:40	12:44 - 15:44	06:10-09:10	

Marine Water Quality Monitoring Schedule

Remark:

(*) The tidal range for the flood and ebb tide is less than 0.5m.

(#) The water quality sampling will be undertaken within a 3-hour window of 1.5 hour before and 1.5 hour after mid flood and mid-ebb tides.

(@) No predicted time and heights of high tide is provided for 7th & 8th May 2018 from HKO, hence the time for mid-flood on 7th May 2018 is assumed to be 13:00pm

Appendix H

Database of Monitoring Result

24-hour TSP Monitoring Data

DATE	SAMPLE NUMBER	E	LAPSED TIM	E	CHAR	T REA	DING	AVG TEMP	AVG AIR PRESS	STANDAR D FLOW RATE	AIR VOLUME	FILTER W		DUST WEIGHT COLLECTED	24-Hr TSP (μg/m ³)	LEVEL	LIMIT LEVEL
		INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)		(µg/m³)	$(\mu g/m^3)$
A4 - No. 101	l Lung Mei T	suen															
3-Apr-18	22359	12771.76	12795.76	1440.00	33	34	33.5	20.8	1014.2	1.33	1908	2.6714	2.7637	0.0923	48	142	260
9-Apr-18	22360	12795.76	12819.77	1440.60	33	34	33.5	21.8	1013.1	1.32	1905	2.6690	2.7699	0.1009	53	142	260
14-Apr-18	21560	12819.77	12843.77	1440.00	33	34	33.5	21.9	1013.6	1.32	1904	2.8173	2.8692	0.0519	27	142	260
20-Apr-18	22461	12843.77	12867.77	1440.00	34	35	34.5	23.7	1011.5	1.35	1950	2.6754	2.8070	0.1316	67	142	260
26-Apr-18	22535	12867.77	12891.78	1440.60	34	34	34.0	23.8	1012.6	1.34	1925	2.6892	2.8240	0.1348	70	142	260
A7 - Hong K	Kong Eco-Fari	m															
3-Apr-18	22358	10127.18	10151.38	1452.00	39	40	39.5	20.8	1014.2	1.31	1898	2.6822	2.7459	0.0637	34	141	260
9-Apr-18	22360	10151.38	10175.61	1453.80	39	40	39.5	21.8	1013.1	1.30	1897	2.6763	2.8487	0.1724	91	141	260
14-Apr-18	21562	10175.61	10199.89	1456.80	38	39	38.5	21.9	1013.6	1.27	1857	2.8105	2.8699	0.0594	32	141	260
20-Apr-18	22364	10199.89	10224.19	1458.00	40	41	40.5	23.7	1011.5	1.33	1939	2.6719	2.8313	0.1594	82	141	260
26-Apr-18	22536	10224.19	10248.44	1455.00	40	40	40.0	23.8	1012.1	1.32	1913	2.6739	2.8164	0.1425	74	141	260

1-hour TSP Monitoring Data

Date	Start Time	1 st reading	2 nd reading	3 rd reading	Action Level (µg/m ³)	Limit Level (µg/m ³)
A4 - No. 101 L	Lung Mei Tsuen					
4-Apr-18	9:41	45	49	52	275	500
10-Apr-18	13:19	56	55	56	275	500
16-Apr-18	9:44	43	46	52	275	500
21-Apr-18	9:37	46	47	49	275	500
27-Apr-18	9:42	149	146	147	275	500
A7 - Hong Kor	ng Eco-Farm					
4-Apr-18	9:30	46	44	49	274	500
10-Apr-18	9:32	64	59	62	274	500
16-Apr-18	9:34	47	52	56	274	500
21-Apr-18	9:49	51	53	52	274	500
27-Apr-18	13:03	152	160	156	274	500

Construction Noise Monitoring Results, dB(A)

Date	Start Time	1 st Leq _{5min}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction	Limit Level (dB(A))
N1 - Village	house - N	No. 165A	Lung Mei	i	-	-	-	-		-	-	-		-	-	-	-		-			
4-Apr-18	10:13	53.9	57.5	41.8	52.7	56.6	44.6	57.4	60.4	45.7	54.7	58.8	43.5	54.1	57.5	44.0	55.5	58.7	46.5	55	58	75
10-Apr-18	10:19	57.7	55.7	46.2	54.6	58.4	43.1	52.4	56.2	45.2	52.0	55.4	42.3	52.7	56.2	46.3	51.6	55.6	43.2	54	57	75
16-Apr-18	10:21	56.1	59.9	44.7	56.7	60.3	42.7	55.8	59.6	44.6	57.2	60.0	49.1	57.5	60.1	47.9	56.3	59.0	46.1	57	60	75
27-Apr-18	10:14	50.9	54.6	41.5	51.4	55.3	39.8	53.6	57.3	44.1	53.2	55.8	43.6	51.6	55.3	40.6	51.7	55.7	41.0	52	55	75
N2a - Village	e house -	No. 101 I	Lung Mei		-		-			_	-		_	-					-	-		
4-Apr-18	9:43	56.1	59.1	47.5	65.5	62.6	48.0	61.3	64.8	47.9	57.8	60.4	47.5	57.5	60.7	44.5	59.6	61.9	50.4	61	N/A	75
10-Apr-18	11:13	56.4	60.1	45.2	54.0	58.1	46.2	59.1	63.2	44.8	54.8	58.8	46.3	57.3	61.4	45.1	56.7	59.6	51.1	57	N/A	75
16-Apr-18	9:51	59.8	62.8	46.0	57.5	61.2	46.8	66.7	69.6	59.4	66.4	70.4	60.2	68.8	73.3	60.5	56.9	60.7	47.6	65	N/A	75
27-Apr-18	9:40	52.4	55.6	40.0	54.1	58.6	40.8	53.9	58.0	40.7	56.9	56.7	40.9	52.4	55.1	39.6	52.7	55.5	41.7	54	N/A	75
N3a - Villago	e house -	No. 66C	Lo Tsz Ti	n																_	-	
4-Apr-18	10:47	50.9	53.5	41.4	48.8	50.7	42.3	49.4	52.7	42.8	57.4	61.2	44.7	54.8	57.3	44.8	50.9	54.3	42.8	53	56	75
10-Apr-18	13:36	53.2	55.5	46.0	57.1	58.2	44.9	58.4	55.1	45.7	50.8	54.5	44.0	48.9	51.8	44.1	49.2	51.8	43.7	55	58	75
16-Apr-18	10:55	53.6	55.1	49.8	52.9	55.4	48.7	54.4	57.4	47.8	53.5	55.7	50.4	56.7	60.2	47.1	60.2	61.0	50.2	56	59	75
27-Apr-18	10:48	53.3	54.8	43.6	55.7	57.7	51.6	53.9	57.3	45.6	44.3	45.3	37.3	59.9	51.5	40.1	49.5	52.5	43.2	55	58	75
N4 - Village	house - N	No. 79 Lo	Tsz Tin																			
4-Apr-18	11:19	58.6	62.4	47.3	58.4	62.2	46.2	61.4	63.9	46.1	56.8	60.9	45.1	58.6	61.3	46.3	57.2	61.4	44.2	59	N/A	75
10-Apr-18	14:11	58.1	58.5	47.3	53.7	54.7	46.1	58.1	57.5	48.1	55.0	55.9	46.4	54.1	55.5	47.5	56.7	56.2	46.8	56	N/A	75
16-Apr-18	11:27	57.3	58.6	46.3	56.6	61.0	44.8	59.6	59.3	44.3	56.2	61.9	45.4	56.8	60.1	44.0	57.6	62.1	45.4	58	N/A	75
27-Apr-18	11:20	54.8	57.5	43.9	55.6	58.1	49.0	56.4	58.7	48.4	52.0	55.4	42.5	53.4	57.1	41.7	54.6	57.3	40.9	55	N/A	75

Remark:

Sound level meter set at N1 and N3a are made free-field measurement, façade correction (+3dB(A)) has added according to acoustical principles and EPD guidelines;

Contract No. CV/2012/05
Bathing Beach at Lung Mei, Tai Po

	4.4 - 10					Impa	ct Water Qua	uity Monit	oring Re	sult						
Sampling Date:																
Weather:																
Sea Condition:	Smooth				XX7 - 4	Comer Prove	Contract	Ground		DO	DO	1			1	r
Date / Time	Location	Tide*	Co-ord	dinates	Water Depth	Sampling Depth	Current Direction	Current Speed	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS	Chlorophyll-a
Date / Thile	Location	The	East	North	m	m	degrees	m/s	ĉ	mg/L	%	NTU	ppt	unit	mg/L	μg/L
			Luot			1.00	acgrees	11,5	24.3	7.85	114.7	1.12	35.25	8.59	4	3
						1.00			24.3	7.87	115	1.12	35.25	8.59	4	2.3
14:35	G1	ME	841460	835942	5.3	2.65	76	0.087								
						4.30			20.9	6.93	95.5	2.38	35.65	8.58	4	2.8
									20.9 23.6	6.93 7.88	95.5 113.8	2.41 1.26	35.63 35.26	8.57 8.6	5	2.3 1.9
						1.00			23.6	7.89	115.8	1.20	35.20	8.6	3	2.1
14:41	R1	ME	842293	835724	5.4	2.70	134	0.094								
									21	7.05	97.6	1.8	35.73	8.58	4	2.2
						4.40			21	7.05	97.5	1.84	35.7	8.58	3	2.1
						1.00			24.4 24.4	7.64	111.8 111.9	1.1	35.25 35.25	8.57 8.57	5	2.8 2.9
14:18	R2	ME	840725	836201	4.2	2.20	214	0.059	24.4	7.55	107.4	2.18	35.34	8.57	6 5	2.9
						3.20			22.8	7.55	107.4	2.19	35.34	8.57	4	3.3
14:11	I1	ME	841321	836571	2.5	1.25	106	0.067	24.6 24.6	7.64 7.64	112.2 112.3	1.13 1.13	35.22 35.22	8.58 8.58	5	2.6 2.2
						1.00			24.4	7.63	111.7	1.1	35.25	8.59	2	2.6
14:08	I2	ME	841593	836591	4.4	1.00	115	0.084	24.4	7.65	111.9	1.09	35.25	8.59	2	2.6
	_					3.40			22.6	7.82 7.82	111.9 111.6	1.11	36.45 36.38	8.6 8.6	4	3
						1.00			24.2	7.64	111.4	1.1	35.23	8.62	4	2.8
14:02	I3	ME	841802	836673	4.2	1.00	85	0.096	24.1	7.65	111.5	1.17	35.24	8.62	4	2.7
						3.20			22.4 22.3	7.79	110.3 110	1.18 1.19	35.55 35.49	8.62 8.62	3	2.7
						1.00			23.9	7.83	113.7	1.15	35.27	8.6	2	2.6
						1.00			23.9 22.4	7.85	113.9	1.15	35.27	8.6	2	2.5 2.2
14:48	W1	ME	841844	836553	7.3	3.65	67	0.076	22.4	7.77	110.7 110.2	1.05	35.9 35.84	8.61 8.61	2	2.2
						6.30			20.2	6.88	94	1.35	36.22	8.58	4	2
									20.2 25.7	6.85 7.44	93.6 111.3	1.36 1.65	36.11 35.22	8.58 8.53	4	2.4
14:15	M1	ME	840832	836395	0.4	0.20	223	0.051	25.7	7.44	111.5	1.68	35.22	8.53	5	1.2
						1.00			24.3	7.53	110	1.19	35.28	8.56	<2	4.1
14:26	FCZ1	ME	841174	835212	4.2		96	0.110	24.3 22.4	7.54 7.34	110.1 104.1	1.19 1.11	35.28 35.75	8.56 8.57	$\stackrel{\triangleleft}{\sim}$	3.8 3.6
						3.20			22.3	7.32	103.7	1.12	35.62	8.57	<2	3.6
																_
						1.00			23 23	7.7 7.74	110.1 110.6	1.04 1.03	35.24 35.24	8.59 8.59	$\stackrel{\triangleleft}{\sim}$	3.3 3.8
10:18	C1		041472	025022	5.2	2.00	177	0.112	23	7.74	110.0	1.05	55.24	0.39	<2	3.8
10:18	G1	MF	841473	835922	5.2	2.60	177	0.112								
						4.20			21.2 21.1	6.69 6.7	92.8 92.7	1.25 1.28	35.49 35.52	8.53 8.53	2	3.6 3.2
						1.00			23.6	7.63	110	1.11	35.25	8.58	3	4.9
						1.00			23.5	7.7	111	1.12	35.25	8.58	4	4.9
10:24	R1	MF	842305	835704	7	3.50	145	0.128	20.5	7.03 6.73	96.3 92.2	1.77 1.78	35.6 35.59	8.57 8.56	5	4.7 4.1
						6.00			20.2	6.85	93.4	2.21	35.65	8.56	5	4.9
									20 23.1	6.86 7.46	93.2 106.8	2.22 1.15	35.7 35.24	8.56 8.57	4	5.1
10:05	D2	ME	940710	926207	5.2	1.00	119	0.052	23.1	7.46	106.8	1.15	35.24	8.57	3	3.3
10.05	R2	MF	840712	836207	3.2	4.20	119	0.052	21	6.41	88.7	2.67	35.6	8.52	4	3
									20.9 22.9	6.37 7.75	87.9 110.5	2.69 1.25	35.62 35.28	8.52 8.57	3	3.3 4.2
9:57	I1	MF	841317	836563	2.6	1.30	210	0.089	22.9	7.77	110.7	1.28	35.29	8.57	4	3.6
						1.00			23.1	7.53	107.7	1.65	35.28	8.55	3	3.6
9:53	I2	MF	841574	836593	4.4		155	0.047	23	7.53	98	1.58	35.31	8.55 8.54	3	4.1
						3.40			20.6	7.11	97.5	1.28	35.61	8.54	3	3.1
						1.00			23.6 23.5	7.38 7.39	106.4 106.5	1.01 1.03	35.12 35.15	8.56 8.56	3	6.5 6.5
9:48	I3	MF	841802	836664	5		164	0.087	23.5	6.72	92.5	1.03	35.15	8.56	4	6.5
						4.00			20.7	6.72	92.4	1.15	35.56	8.53	4	3.3
						1.00			22.8 22.8	7.68	109.4 109.5	1.01	35.28 35.28	8.6 8.6	4	3.7 3.2
10:33	W1	MF	841856	836573	8.3	4.15	158	0.098	20.6	6.76	92.9	1.21	35.83	8.58	2	3.5
10.55	VÝ 1	IVIT	041830	0303/3	0.5	4.13	138	0.098	20.6	6.73	92.4	1.32	35.68	8.57	3	3.1
						7.30			20.3	6.19 6.14	84.5 83.5	2.14 2.6	35.62 35.64	8.55 8.54	3	3.1
10:01	M1	MF	840832	836407	0.5	0.25	196	0.056	20.2	7.29	85.5 105.2	1.74	35.04	8.53	3	3.5 4.5
10.01	1/11	IVIT	040852	650407	0.5	0.25	190	0.050	23.6	7.23	104.4	2	35.23	8.53	3	3.4
10.15	DOD		0.411-5	00555		1.00		0.67	23.7 23.8	7.37 7.39	106.5 106.9	1.11 1.11	35.27 35.24	8.54 8.54	3	5 5.2
10:12	FCZ1	MF	841178	835224	5.1	4.10	157	0.086	21.6	6.72	94	1.32	35.66	8.54	3	3.2
						4.10			21.6	6.69	93.5	1.41	35.49	8.54	3	3.6

Contract No. CV/2012/05 Bathing Beach at Lung Mei, Tai Po

						Impac	t Water Q	uality Mo	nitoring	Result						
Sampling Date:	6-Apr-18					•										
Weather:	Fine															
Sea Condition:	Smooth															
			Co-ore	linates	Water	Sampling	Current	Current	Тетр	DO	DO	Turbidity	Salinity	pН	SS	Chlorophyll-a
Date / Time	Location	Tide*			Depth	Depth	Direction	Speed	•	Conc	Saturation	-		-		
			East	North	m	m	degrees	m/s	°C	mg/L	%	NTU	ppt	unit	mg/L	μg/L
						1.00			24.6 24.6	7.51 7.51	110.2 110.2	1.19 1.17	35.25 35.25	8.61 8.6	4	1.4 2.6
16:00	G1	ME	841459	835944	5.4	2.70	94	0.103	2110	7101	11012	1117	00120	0.0	5	210
10.00	01	IVIL	041439	055944	5.4	2.70	94	0.105	22.1	6.61	02.1	1.04	05.45	0.50	2	2.7
						4.40			22.1	6.61 6.59	93.1 92.8	1.34 1.35	35.47 35.45	8.58 8.57	2	2.7 2.6
						1.00			24.5	7.47	109.4	1.57	35.25	8.6	4	3.6
						1.00			24.5	7.47	109.5	1.55	35.25	8.6	4	2.9
16:06	R1	ME	842292	835722	5.6	2.80	142	0.121								
						4.60			22	6.74	95.3	1.37	36.51	8.6	3	3.2
						4.00			22	6.69	94.6	1.44	36.37	8.6	4	2.4
						1.00			24.5 24.5	7.44	109.1	1.11	35.24 35.25	8.6 8.6	<2	2.9 2.1
15:44	R2	ME	840723	836203	4.2	3.20	112	0.094	24.5	7.47	109.5	1.34	35.25	8.6	<2	3.4
						3.20			24.5	7.47	109.5	1.33	35.25	8.6	<2	2.8
15:35	I1	ME	841322	836573	2.4	1.20	136	0.064	23.9 23.9	7.42	107.6 107.6	1.15 1.16	35.25 35.25	8.6 8.6	2	4.8 3.8
						1.00			23.1	7.27	104	1.1	35.2	8.6	<2	2.8
15:31	I2	ME	841594	836592	4.2	1.00	49	0.072	23.1	7.27	104	1.11	35.2	8.6	<2	4.8
						3.20			22 21.9	7.13	100.2 100.3	1.18 1.19	35.43 35.45	8.61 8.61	<2 <2	2.8 2.8
						1.00			23.1	7.14	100.5	1.19	35.32	8.6	<2	3.4
15:25	13	ME	841805	836671	4.3	1.00	78	0.084	23.1	7.12	101.9	1.4	35.32	8.6	<2	4.6
15.25	15	IVIL	041005	050071	4.5	3.30	70	0.004	21.5 21.5	6.98	97.6 97.5	1.11	36.01	8.61	<2	4.1
						1.00			21.5	6.98 7.47	97.5	1.18	35.93 35.26	8.61 8.6	<2	3.9 5
						1.00			24.5	7.48	109.6	1.19	35.26	8.6	3	4.4
16:14	W1	ME	841846	836552	6.6	3.30	122	0.067	22.7	6.46	91.9	1.29	35.55	8.56	4	4.3
									22.6 21.6	6.46 5.94	91.8 83	1.3 1.31	35.55 35.52	8.55 8.52	2	3
						5.60			21.6	5.94	82.9	1.35	35.53	8.52	4	2.4
15:40	M1	ME	840831	836394	0.6	0.30	214	0.054	24.2	6.96	101.4	1.4	35.23	8.57	3	3
									24.2 24.5	6.96 7.52	101.4 110.3	1.41 1.13	35.23 35.25	8.57 8.6	4	4.5 3.8
15.50	EC71	ME	941170	925210	4.2	1.00	126	0.104	24.5	7.52	110.3	1.15	35.25	8.6	4	4.1
15:52	FCZ1	ME	841172	835210	4.2	3.20	136	0.104	24.5	7.49	109.9	1.25	35.25	8.6	5	5
						0.20			24.5	7.49	109.9	1.26	35.25	8.6	6	3.6
									23.6	7.49	108.2	1.6	35.21	8.6	5	2.6
						1.00			23.7	7.51	108.5	1.5	35.28	8.6	4	3
10:59	G1	MF	841471	835925	5.4	2.70	121	0.134								
10.07	01		011111	000720	5	2.70		0.10	23.7	7.51	108.5	1.59	25.09	86	4	2.6
						4.40			22.2	6.69	94.8	1.62	35.28 36.15	8.6 8.6	4	3.6 4.3
						1.00			22.1	6.66	94.3	1.55	36.09	8.6	5	2.8
						1.00			22.7	7.36	104.7	1.53	35.35	8.59	5	3.1
11:06	R1	MF	842306	835702	6.2	3.10	64	0.113	22.7 22.6	7.36	104.7 95.3	1.72 1.75	35.35 35.4	8.59 8.59	6 6	2.5
						5.20			22.6	6.68	94.8	1.85	35.4	8.59	5	2.9
						5.20			20.9	6.32	87.4	1.88	36.01	8.56	6	3.4
10.11	D.C.	1.00	0.40-11	00/00 :	1.2	1.00	110	0.007	20.9 24.5	6.32 7.51	87.3 110.2	1.19 1.18	35.92 35.25	8.56 8.6	2 4	1.5 1.4
10:46	R2	MF	840711	836204	4.2	3.20	113	0.095	24.5	7.49	109.7	1.65	35.25	8.6	5	1.8
ļ						5.20			24.5	7.48	109.6	1.68	35.25	8.6	4	1.6
10:24	I1	MF	841318	836560	2.3	1.15	142	0.048	24.5 24.5	7.51	110.1 110.1	1.35	35.26 35.26	8.6 8.6	4	1.6
						1.00			24.5	7.5	110.1	1.39	35.25	8.6	2	1.7
10:14	I2	MF	841571	836591	4.2	1.00	116	0.069	24.5	7.5	110	1.38	35.25	8.6	4	1.7
						3.20			24.5 24.5	7.5	109.9 109.9	1.33 1.31	35.25 35.25	8.6 8.6	4	1.7 1.7
						1.00			24.5	7.49	109.9	1.62	35.25	8.6	5	1.7
10:06	13	MF	841804	836668	4.2	1.00	69	0.089	24.5	7.47	109.5	1.61	35.25	8.6	6	1.5
			0.1001	22 3000		3.20			24.5 24.5	7.47	109.6 109.6	1.53 1.51	35.25 35.25	8.6 8.6	8 6	1.3 1.2
						1.00			24.5	7.48	109.6	1.31	35.32	8.56	5	1.2
						1.00			22.6	7.24	102.7	1.14	35.32	8.57	6	2.2
11:18	W1	MF	841852	836575	6.7	3.35	98	0.084	21.8	6.98	97.9	1.14	35.46	8.58	5	3.3
									21.7 20.8	6.98 6.65	97.7 91.6	1.11 1.22	35.48 35.6	8.57 8.55	4	3 2.4
						5.70			20.8	6.65	91.6	1.22	35.6	8.55	6	2.6
10:39	M1	MF	840833	836404	0.6	0.30	79	0.048	24.5	7.46	109.5	1.16	35.25	8.6	5	2.2
							-		24.5 24.5	7.47	109.6 109.9	1.17 1.13	35.25 35.26	8.6 8.6	4	1.8 1.5
10:52	FCZ1	ME	841176	835223	4.3	1.00	126	0.124	24.5	7.5	109.9	1.12	35.26	8.6	4	1.3
10:32	FCZI	MF	0411/0	033223	4.3	3.30	136	0.124	24.5	7.48	109.6	1.29	35.26	8.6	5	2.5
			od tida			2.50			24.5	7.48	109.6	1.29	35.26	8.6	6	4.7

	40.4	0				Imp	act Water	Quality M	ionitorín	g Kesult						
ampling Date:	10-Apr-1	8														
Weather:	Fine															
ea Condition:	Smooth				-	-					-			-		
			Co-ore	dinates	Water	. 0	Current	Current	Temp	DO	DO	Turbidity	Salinity	pН	SS	Chlorophyll-
Date / Time	Location	Tide*		1	Depth	Depth	Direction	Speed	-	Conc	Saturation		-	-		
			East	North	m	m	degrees	m/s	°C 21.9	mg/L	% 102	NTU 1.27	ppt 35,44	unit 8.59	mg/L	μg/L
						1.00			21.9	7.28 7.28	102	1.27	35.44	8.59	4	3.5 3.6
9:50	G1	ME	841457	835941	5.3	2.65	109	0.147	211)	1.20	10211	1.21	50111	0.57		510
9.50	01	WIL	0+1+37	055741	5.5	2.05	10,7	0.147	21.4	6.0.4	06.6	1.20	05.5	0.57	2	0.5
						4.30			21.4	6.94 6.9	96.6 96	1.38 1.32	35.5 35.51	8.57 8.56	3 4	3.7
						1.00			21.8	7.3	102.1	1.02	35.36	8.59	4	3.3
						1.00			21.8	7.29	102	1.01	35.37	8.59	2	3.8
9:57	R1	ME	842294	835720	6.8	3.40	318	0.104	21.5 21.5	6.89 6.9	96 96.1	1.85 1.81	35.5 35.51	8.57 8.57	5 5	2.7 3
						5 90			20.4	5.07	69.4	2.32	35.9	8.47	5	2.6
						5.80			20.4	5.07	69.4	2.35	35.91	8.47	6	2.2
						1.00			21.8	7.24	101.5	1.75	35.4	8.59	5	4.2
9:36	R2	ME	840721	836205	4.2		79	0.192	21.9 21	7.23 6.31	101.3 87.1	1.77 2.31	35.4 35.51	8.59 8.51	4	4.1
						3.20			21 21 22	6.34	87.6	2.22	35.52	8.51	6	4.2
9:29	I1	ME	841320	836571	2.8	1.40	214	0.104		7.17	100.8	2.31	35.39	8.59	6	6.1
-	-							-	21.9 21.8	7.17	100.6 99.1	2.32 1.13	35.39 35.42	8.59 8.59	5	6.1 7.6
0.24	10		041504	026502	5 1	1.00	176	0.102	21.8	7.08	99.1	1.15	35.42	8.59	5	7.5
9:24	I2	ME	841594	836592	5.1	4.10	176	0.192	21.4	6.98	97.1	2.18	35.5	8.58	5	4.4
						4.10			21.4	6.96	96.8	2.22	35.51	8.58	4	3.7
						1.00			21.8 21.8	7.09 7.09	99.2 99.2	1.16 1.14	35.42 35.42	8.59 8.59	3	2.8 3.1
9:20	I3	ME	841804	836674	4.8	2.00	186	0.103	21.8	6.62	99.2	2.18	35.49	8.57	4	2.9
						3.80			21.4	6.6	91.9	2.19	35.5	8.56	4	2.2
						1.00			22 22	7.15	100.5	1.92	35.33	8.59	5	6.1
									22 21.3	7.16	100.6	1.04	35.37	8.6	4	6 4.4
10:07	W1	ME	841843	836554	6.9	3.45	89	0.190	21.3	6.95	96.5 95.9	1.35 1.43	35.55 35.55	8.58 8.57	3	4.4
						5.00			20.8	5.94	81.8	2.75	35.64	8.55	5	3.3
						5.90			20.7	5.86	80.6	2.81	35.68	8.55	5	3.5
9:32	M1	ME	840833	836392	0.5	0.25	208	0.138	22.3 22.3	6.76	95.5	1.86	35.42	8.55	5	4
									22.3	6.75 7.25	95.3 102.9	1.87 1.14	35.42 35.46	8.55 8.55	5 2	3.9 5.3
0.42	F071		041174	025212	4.2	1.00	207	0.104	22.5 22.5	7.26	102.9	1.14	35.40	8.55	4	2.6
9:43	FCZ1	ME	841174	835212	4.2	3.20	306	0.104	21.7	7.24	101.3	1.19	35.45	8.59	4	4.5
						5.20			21.7	7.24	101.3	1.2	35.45	8.59	6	4.7
			_													
						1.00			22.3 22.3	7.32	103.4 103.5	1.24	35.4 35.42	8.56 8.56	6 6	3 2.6
									22.3	1.32	105.5	1.23	33.42	8.50	0	2.0
12:20	G1	MF	841470	835923	5.5	2.75	107	0.113								
						4.50			21.4	6.75	93.9	1.34	35.52	8.53	6	2.2
						1150			21.3	6.72	93.4	1.41	35.52	8.52	5	2.2
						1.00			21.9 21.9	7.28	102.2 102.2	1.1 1.09	35.44 35.43	8.57 8.56	4	2.7 2.8
12:26	R1	MF	842307	835701	7.2	2.60	119	0.109	21.4	6.7	93.3	2.27	35.54	8.53	4	2
12.20	K1	MIF	642507	855701	1.2	3.60	119	0.109	21.5	6.75	94	2.26	35.54	8.53	4	2
						6.20			20.2	5.61	76.6	2.61	35.93	8.51	4	2.2
									20.2 23	5.57 7.27	76 103.9	2.67 1.55	35.94 35.45	8.51 8.56	4	2.3 6.9
12.05	D2	ME	840712	026205	5 5	1.00	207	0.122	23	7.29	103.9	1.56	35.45	8.56	3	7.6
12:05	R2	MF	840713	836205	5.5	4.50	297	0.132	21.8	6.96	97.4	1.84	35.46	8.57	2	4.3
	ļ				ļ				21.6	6.9	96.3	1.89	35.49	8.56	2	6.1
11:57	I1	MF	841319	836563	2.9	1.45	127	0.071	22.4 22.4	7.13	101 101.5	1.55 1.52	35.42 35.43	8.58 8.59	5	3.9 3.4
						1.00			22.3	7.08	101.5	1.15	35.43	8.6	3	2.5
11:53	I2	MF	841572	836593	5.5	1.00	72	0.097	22.4	7.13	100.8	1.15	35.46	8.6	4	2.7
			0		2.0	4.50			20.8	6.25	86.1	2.12 2.22	35.65	8.56	7	2
									20.8 22	6.23 7.3	85.8 102.6	2.22 2.15	35.66 35.42	8.56 8.7	6 4	2.4 2.3
11.40	12	ME	Q41005	026662	50	1.00	101	0.002	22	7.3	102.0	2.13	35.42	8.68	4	2.3
11:49	13	MF	841805	836663	5.2	4.20	101	0.083	21.7	7.16	100	2.98	35.48	8.64	5	2
							ļ		21.7	7.15	99.9	2.88	35.48	8.63	4	1.9
						1.00			21.9 21.9	7.26	102 102.2	1.16 1.16	35.43 35.42	8.56 8.56	4 3	2 1.8
10.25	W71	ME	041052	026574	0.2	4.15	114	0.104	21.9	6.7	93	2.45	35.52	8.55	6	1.8
12:35	W1	MF	841853	836574	8.3	4.15	114	0.104	21.2	6.68	92.6	2.56	35.54	8.55	8	2
						7.30			20.6	5.43	74.6	3.11	35.74	8.48	7	1.8
									20.6 23.5	5.37 7.28	73.6 105	3.51 2.77	35.75 35.29	8.48 8.55	8	1.6 4.3
12:01	M1	MF	840832	836402	0.9	0.45	110	0.096	23.5	7.28	105	2.77	35.29	8.55	9	4.3
				1		1.00			22.6	7.23	102.8	1.18	35.49	8.54	2	2.4
12:13	FCZ1	MF	841174	835225	4.9	1.00	269	0.142	22.6 21.9	7.24 7.21	102.8	1.18	35.49	8.54	4	2.5
											101.1	2.15	35.49	8.55	5	2.5

Contract No. CV/2012/05
Bathing Beach at Lung Mei, Tai Po

						Imp	act Water	Quality M	lonitorin	g Result						
Sampling Date:	12-Apr-1	8								-						
Weather:	Fine															
Sea Condition:	Smooth															
Data / Tima	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Current Direction	Current Speed	Temp	DO Conc	DO Saturation	Turbidity	Salinity	рН	SS	Chlorophyll-a
Date / Time	Location	1100**	East	North	m	m	degrees	m/s	°	mg/L	Saturation %	NTU	ppt	unit	mg/L	μg/L
			Last	north	m		utgrets	11/3	22.5	8.6	120.9	0.63	33.96	8.11	3	2.5
						1.00			22.5	8.62	121.2	0.62	33.96	8.11	2	2.6
10:22	G1	ME	841498	835953	5.2	2.60	264	0.167		\						
						4.20			20.3	7.51	101.7	0.77	34.36	8.14	3	2.7
						4.20			20.1	7.54	101.7	0.79	34.34	8.14	3	2.5
						1.00			21.8 21.8	8.64 8.66	120 120.2	0.99	33.97 33.97	8.08 8.08	4	1.9 0.4
10:30	R1	ME	842303	835738	5.9	2.95	233	0.169	2110	0.00	12012	-	55171	0.00		011
10.50	i (i	IIIL	042505	055750	5.7		235	0.109	19.2	7.82	103.8	1.01	34.44	8.14	4	1.4
						4.90			19.2	7.82	103.8	1.01	34.44	8.14	5	1.4
						1.00			22.6	8.38	118	0.68	33.96	8.1	2	2.6
10:07	R2	ME	840717	836234	5.3		109	0.208	22.6	8.39 8.31	118.1 113.6	0.7 0.85	33.96 34.05	8.1 8.09	3	2.4
						4.30			21	8.3	113.6	0.88	34.05	8.09	3	2.5
9:55	I1	ME	841317	836570	2.8	1.40	261	0.099	22.8	8.38	118.4	0.63	33.93	8.13	5	2.2
		-			-	1.00			22.8 22.6	8.39 8.37	118.5 117.9	0.61 0.7	33.93 33.96	8.12 8.12	4	2.1 2.2
9:49	12	ME	841577	836583	5.1	1.00	336	0.154	22.6	8.39	118.1	0.69	33.96	8.12	3	1.9
2.12			0.10//	000000	2.1	4.10	250	0.104	20.8	8.6 8.58	118.1 117.8	0.88	35.16 35.09	8.12 8.12	3	1.8
						1.00			20.8	8.38	117.6	0.88	33.94	8.11	4	1.9
9:43	13	ME	841798	836669	4.8	1.00	317	0.182	22.3	8.4	117.7	0.89	33.95	8.11	2	1.9
						3.80			20.6	8.56 8.56	116.5 116.2	0.74	34.26 34.2	8.11 8.11	3	1.8
						1.00			22.1	8.59	119.9	0.87	33.98	8.1	2	1.7
						1.00			22.1	8.6	120.1	0.78	33.98	8.1	2	2
10:41	W1	ME	841841	836551	8.1	4.05	141	0.077	20.6 20.6	8.57 8.54	116.9 116.4	0.88	34.61 34.55	8.09 8.09	2	1.9
						7.10			20.4	7.36	100.2	1.03	34.93	8.07	3	1.8
									18.4 23.9	7.61 8.16	99.8 117.5	0.95	34.82 33.93	8.07 8.09	3	1.7 1.4
10:03	M1	ME	840808	836405	0.7	0.35	248	0.184	23.9	8.10	117.6	1.4	33.93	8.09	4	1.4
						1.00			22.5	8.27	116.2	1.92	33.99	8.08	2	3.9
10:15	FCZ1	ME	841169	835214	4.6		284	0.168	22.5 20.6	8.27 6.99	116.3 95.3	1.96 3.36	33.99 34.46	8.08 8.08	2 6	3.7 8.6
						3.60			20.5	7.08	96.2	3.31	34.33	8.08	4	6.5
							_		22.4	5.04	110.0	1.20	22.54	0.12	2	2
						1.00			23.4 23.4	7.94 8.06	113.2 114.9	1.28 1.26	33.76 33.76	8.13 8.13	3	2 1.6
15:06	G1	MF	841476	835939	5.5	2.75	165	0.047	23.4	0.00	114.2	1.20	33.70	0.15	2	1.0
15.00	01	IVII.	041470	655959	5.5	2.15	105	0.047	22.4	6.05	07.0	1.6	24.24	0.12	2	1.7
						4.50			23.4 23.6	6.85 6.8	97.9 97.6	1.6 1.55	34.24 34.2	8.13 8.13	2	1.7
						1.00			23.2	8.03	114.2	1.3	33.82	8.15	3	2.1
									23.2 23.1	8.04 7.39	114.3 105	1.28 1.9	33.82 33.93	8.15 8.11	3 5	2.1 2.3
15:14	R1	MF	842312	835703	6.3	3.15	196	0.103	23.1	7.39	105	1.85	33.95	8.11	6	2.3
						5.30			22.9	7.05	100.1	2.18	34.6	8.11	6	2.3
									23.1 23.3	6.97 8	99.4 113.9	2.3 1.26	34.57 33.72	8.11 8.1	7	2.2
14:45	R2	MF	840738	836202	4.5	1.00	211	0.214	23.4	7.99	113.9	1.28	33.72	8.1	4	1.9
17.40	112	1411.	010100	030202	т.5	3.50	211	0.214	22.4	8.15 8.16	114.3 114.3	1.7 1.72	33.9 33.91	8.1 8.1	4	2.4 2.3
14.24	T1	ME	841220	926570	27		174	0.260	22.8	7.96	114.3	1.72	33.82	8.1	6 4	2.3
14:34	I1	MF	841329	836578	2.7	1.35	1/4	0.269	22.7	7.97	112.4	1.3	33.84	8.1	5	3.2
						1.00			22.5 22.5	7.74 7.74	108.8 108.8	1.29 1.28	33.9 33.9	8.13 8.13	3	1.7 1.9
14:28	12	MF	841588	836602	4.3	3.30	256	0.185	21.1	7.64	108.8	1.28	34.47	8.15	4	1.9
						5.50			21.1	7.65	105.1	1.29	34.4	8.16	4	1.6
1.4.55			0.41000	0000		1.00	10-	0.1.1-	22.2 22.2	7.63 7.63	106.7 106.7	1.27 1.26	33.9 33.92	8.12 8.12	4	4 3.9
14:22	13	MF	841800	836679	4.4	3.40	195	0.145	21.3	7.44	102.4	1.29	34.1	8.14	6	3.7
									21.3 22.4	7.43 8.15	102.3 114.4	1.28	34.11 33.94	8.14	4	3.8 3.6
						1.00			22.4	8.15	114.4	1.3 1.31	33.94	8.1 8.11	5 4	3.0
15:23	W1	MF	841858	836556	7.8	3.90	96	0.196	21.1	7.05	96.7	1.37	34.14	8.11	5	3.7
	.,, 1		0.1000	000000				0.170	21.1 21	7.04 6.41	96.6 87.8	1.38 1.55	34.14 34.16	8.11 8.12	6 8	3.9 3.8
						6.80			21	6.4	87.8 87.7	1.55	34.16	8.12	8 9	<u> </u>
14:40	M1	MF	840826	836426	0.9	0.45	202	0.056	23.8	7.41	106.2	1.44	33.46	8.08	6	2.8
									23.8 23.5	7.41 8.06	106.2 115.1	1.43 2.05	33.48 33.76	8.08 8.09	6 5	3.2 6.2
14:54	FCZ1	MF	841172	835223	4.2	1.00	116	0.167	23.5	8.06	115.1	2.26	33.76	8.09	6	7.1
14.34	TCZI	IVIT	0411/2	033223	4.2	3.20	110	0.107	22.6	8.15	114.7	2.12	33.86	8.1	9	6.2
Remarks.	L		L <u></u>	1		1		1	22.5	8.17	114.7	2.22	33.87	8.1	10	6.6

	14 4	0				mp	uct muter	Quanty in	lonnormį	g Result						
Sampling Date:		8														
	Fine															
Sea Condition:	Smooth				Water	Sampling	Current	Current	1	DO	DO	1		1	1	1
Date / Time	Location	Tide*	Co-ore	linates	Depth	Depth	Direction	Speed	Temp	Conc	Saturation	Turbidity	Salinity	pH	SS	Chlorophyll-a
			East	North	m	m	degrees	m/s	ĉ	mg/L	%	NTU	ppt	unit	mg/L	μg/L
						1.00			24.3	7.26	107.7	0.74	35.41	8.59	3	2.9
									24.3	7.27	107.8	0.72	35.41	8.6	3	2.5
13:06	G1	ME	841457	835942	5.4	2.70	124	0.161								
						4.40			21	5.48	77.2	1.89	36.21	8.53	3	2.3
									20.9 24.5	5.51 7.18	77.5 106.9	1.61 0.8	36.28 35.43	8.53 8.59	4	2.8 3.1
						1.00			24.4	7.18	106.8	0.77	35.44	8.59	2	2.6
13:12	R1	ME	842290	835720	5.9	2.95	56	0.146								
						1.00			20.9	5.49	77.2	1.83	36.19	8.54	2	3.3
						4.90			21	5.18	72.8	1.9	36.14	8.53	2	3.4
						1.00			24.3 24.3	7.33	108.7 108.8	0.89 0.96	35.39 35.38	8.6 8.6	3 5	3.5 3.4
12:51	R2	ME	840721	836201	4.6	3.60	147	0.149	21.9	6.03	86.3	1.5	36.25	8.59	6	2.9
						5.00			21.9	5.94	84.7	1.54	36.06	8.58	5	3
12:36	I1	ME	841320	836571	2.7	1.35	154	0.148	23.8 23.9	6.74 6.74	99 99.1	1.12 1.22	35.29 35.27	8.59 8.58	4 5	4.6 4.9
						1.00			24	7.34	108.4	0.64	35.3	8.62	3	4.6
12:28	I2	ME	841592	836590	4.5		126	0.113	24 22.7	7.36	108.5 102.4	0.64 0.71	35.32 35.55	8.62 8.62	4 3	5.4 4.3
						3.50			22.6	7.03	101.4	0.72	35.56	8.61	3	4.4
						1.00			23.9 23.9	7.26	106.8 106.9	0.73	35.33 35.33	8.6	3	3.3 3.2
12:23	I3	ME	841803	836669	4.7	2.70	58	0.108	23.9	6.78	98	1.23	35.55	8.6 8.58	3	<u>3.2</u> 2.7
						3.70			22.7	6.77	97.7	1.29	35.58	8.58	2	2.7
						1.00			23.9 23.9	7.48	110.3 110.5	0.59	35.29 35.29	8.67 8.67	3	2.6 3.3
13:21	W1	ME	841844	836550	7.9	3.95	16	0.051	22.4	6.92	99.9	0.86	36.23	8.66	4	3
15:21	W I	ME	841844	830330	7.9	5.95	46	0.051	22.3	6.86	98.9	0.94	36.18	8.66	2	3.3
						6.90			20.8 20.8	6.01 6	84.4 84.2	1.94 1.81	36.32 36.35	8.61 8.6	5 3	2.7 2.5
12:43	M1	ME	840829	836392	0.8	0.40	113	0.174	25.7	7.21	109.3	1.34	35.11	8.56	4	1.8
12.43	IVI I	IVIL	840829	830392	0.8	0.40	115	0.174	25.7 24.3	7.23	109.5 107.7	1.33 0.7	35.12	8.56	3	1.9
10.50	DOZI		041170	005000	10	1.00	100		24.3	7.26	107.7	0.7	35.4 35.4	8.6 8.6	2	2.8 3
12:59	FCZ1	ME	841170	835208	4.3	3.30	102	0.213	21.7	6.13	87.1	1.13	35.79	8.52	3	2.8
									21.8	6.14	87.3	1.11	35.78	8.52	3	2.8
						1.00			25	7.52	113.3	0.78	35.36	8.6	2	2.1
						1.00			25	7.52	113.3	0.77	35.36	8.6	3	2.6
17:56	G1	MF	841474	835923	5.6	2.80	89	0.071								
						4.60			21.8	6.42	92.1	3.38	36.36	8.6	3	2.5
						4.00			21.8	6.4	91.6	3.9	36.15	8.6	3	3.2
						1.00			24.8 24.8	7.53	113.1 113.2	0.68	35.37 35.37	8.59 8.59	3	2.5 2.5
18:02	R1	MF	842306	835705	6.1	3.05	124	0.162	22.3	7.15	103.1	0.96	35.82	8.61	4	2.2
10.02	ICI		042500	055705	0.1		124	0.102	22.3 21.5	7.14	102.9	0.97 2.27	35.78 36.03	8.61	6	2.4
						5.10			21.5	6.68 6.71	95 95.5	2.27	36.03	8.58 8.57	6 8	2 2.2
						1.00			25.1	7.52	113.4	0.81	35.35	8.61	2	3.3
17:41	R2	MF	840713	836208	4.6		198	0.12	25.1 23.3	7.53 7.39	113.5 108.5	0.82	35.35 35.91	8.61 8.62	4 3	3.2 2
						3.60			23.3	7.39	108.4	1.23	35.74	8.62	3	2.6
17:26	I1	MF	841318	836564	2.5	1.25	209	0.054	25.1 25.1	7.48	112.8 112.9	0.85 0.84	35.28 35.27	8.64 8.64	3	4.8
						1.00			25.1	7.49	112.9	0.84	35.32	8.66	4	4.2
17:19	I2	MF	841575	836594	4.7	1.00	57	0.094	25.1	7.43	112	0.76	35.33	8.66	2	4.2
						3.70			22.9	7.39	108 107.9	1.22 1.21	36.32 36.17	8.67 8.67	6 5	4.4 4.6
						1.00			25.2	7.46	112.5	0.82	35.33	8.72	6	5.8
17:10	I3	MF	841803	836665	4.5		100	0.117	25.2 23	7.46	112.6	0.81	35.33	8.72	5	6.7
						3.50			23	7.13	104 103.8	1.02 1.03	35.78 35.64	8.71 8.7	5 6	5.4 5.8
						1.00			25.2	7.37	111.5	0.86	35.3	8.57	4	2.2
10.55								0.45	25.2 22.4	7.38	111.5 99.6	0.87 0.96	35.3 35.74	8.57 8.59	3	2.7 2.2
18:09	W1	MF	841857	836574	7.5	3.75	94	0.136	22.4	6.86	99	0.97	35.73	8.59	4	2.3
						6.50			20.9	6.19	87.3	1.51	36.28	8.56	3	1.9
17.00	N		0.400000	026106	0.7		102	0.051	20.9 25.8	6.17 7.36	87 112.3	1.53 1.85	36.29 35.16	8.56 8.6	5 5	2.3 5.6
17:33	M1	MF	840833	836408	0.7	0.35	192	0.054	25.8	7.38	112.5	1.86	35.16	8.6	5	6.6
17.55									25	7.5	112.8	0.82	35.35	8.6	4	2.1
						1.00										
17:47	FCZ1	MF	841179	835225	4.2	1.00 3.20	142	0.156	25 23.3	7.51 7.32	113 107.4	0.8	35.35 35.82	8.6 8.61	3	2 2.5

Contract No. CV/2012/05 Bathing Beach at Lung Mei, Tai Po

a 11 -	16 1 -	0				impaci	Water Qu	ianty Mo	moring	Kesult						
Sampling Date:	_	8														
Weather:																
Sea Condition:	Smooth				Water	Sampling	Current	Current		DO	DO					
Date / Time	Location	Tide*	Co-ord	linates	Depth	Depth	Direction	Speed	Temp	Conc	Saturation	Turbidity	Salinity	рН	SS	Chlorophyll-a
			East	North	m	m	degrees	m/s	ĉ	mg/L	%	NTU	ppt	unit	mg/L	μg/L
						1.00			22.1 22.1	7.26	102 102	1.16 1.14	35.19 35.19	8.63 8.63	4	12.4 11.5
14:09	G1	ME	841472	835925	5.3	2.65	126	0.089	22.1	7.20	102	1.14	33.19	8.05	3	11.5
14:09	61	NIE	841472	855925	5.5	2.65	120	0.089	22.1	6.45	00.0	1.22	25 (0	0.50	2	0.4
						4.30			22.1	6.45 6.52	90.9 91.8	1.32 1.24	35.69 35.66	8.59 8.59	3	9.4 8.7
						1.00			22.2 22.2	7.28	102.7	1.27	35.38	8.64	3	9.2
									22.2	7.28	102.7	1.38	35.38	8.64	5	8.2
14:16	R1	ME	842305	835703	5.8	2.90	135	0.093								
						4.80			22 22 22.2	6.27	88.2 94.2	2.41	35.69	8.57	6	7.9
						1.00			22.2	6.69 7.2	101.3	2.45 1.27	35.64 35.1	8.57 8.63	5 4	7.8 15.4
13:55	R2	ME	840720	836207	4.3	1.00	108	0.086	22.2	7.19	101.2	1.29	35.1	8.63	4	15.4
						3.30			22 21.8	5.23 5.18	73.7 72.8	2.65	35.78 35.88	8.55 8.55	6	16.7 20.1
13:46	I1	ME	841318	836566	2.5	1.25	104	0.103	22.2	6.81	96	2.75	35.35	8.63	9	4.2
15.40	**	L	041510	050500	2.5		104	0.105	22.3 21.9	6.81 6.51	96.1 91.1	2.88 1.58	35.37 35.01	8.63 8.6	10 6	3.9 7.7
13:39	I2	ME	841575	836592	4.5	1.00	113	0.119	21.9	6.51	91.1	1.58	35.01	8.6	4	7.5
15.59	12	IVIE	041373	030392	4.3	3.50	115	0.119	22.4	6.76	95.7	1.78	35.59	8.63	5	7.7
									22.4 22.3	6.74 7.01	95.5 98.9	1.87 1.08	35.61 35.33	8.64 8.72	7	9.6 6.2
13:34	13	ME	841803	836667	4.5	1.00	96	0.153	22.3	7.04	99.4	1.1	35.37	8.69	4	7.7
15.54	15	IIIL	041005	050007	4.5	3.50	70	0.155	22.3 22.4	7.04 6.79	99.5 96.1	1.09	35.37 35.61	8.69 8.67	4	7.1
						1.00			22.3	7.05	90.1	1.09	35.33	8.6	4	9.3
						1.00			22.3 22.3	7.04	99.5	1.07	35.33	8.6	5	9
14:23	W1	ME	841853	836575	7.5	3.75	89	0.139	22.3	6.71 6.7	94.9 94.8	1.09	35.65 35.67	8.6 8.6	3	7.6 9.2
						6.50			21.8	5.77	81.1	2.4	35.93	8.54	4	9.7
									21.8 22	5.74 6.84	80.6 95.9	2.65 2.48	35.95 34.97	8.54 8.6	3	9.2 17.8
13:49	M1	ME	840835	836406	0.5	0.25	105	0.156	22	6.84	95.8	2.48	34.97	8.6	7	16.8
						1.00			22.3	7.5	105.8	1.23	35.21	8.65	3	22.2
14:02	FCZ1	ME	841178	835227	4.1		79	0.123	22.3 21.9	7.49 5.17	105.7 72.6	1.22 2.22	35.21 35.83	8.65 8.54	3	21.5 29.9
						3.10			21.8	5.09	71.5	2.36	35.88	8.53	4	29.1
										6.00		1.0.6	25.25	0.44		
						1.00			22.3	6.89 6.89	97.2 97.2	1.06	35.25 35.25	8.61 8.61	3	4.4 4.6
8:36	G1	MF	841471	835920	5.6	2.80	136	0.079	22.0	0.07	71.2	1.07	55.25	0.01	5	4.0
0.50	01	1411	0414/1	055720	5.0	2.00	150	0.077	22.2	6.21	89.1	1.98	35.75	8.6	5	4.5
						4.60			22.2 22.1	6.31 6.02	85	1.98	35.78	8.6	5	4.5 5.2
						1.00			22.2	7.07	99.7	1.27	35.39	8.65	5	7.1
									22.2 21.9	7.07 6.16	99.7 86.6	1.39 1.49	35.39 35.89	8.65 8.61	4	6.9 6.6
8:46	R1	MF	842292	835703	6.4	3.20	154	0.103	21.9	6.16	86.6	1.44	35.89	8.6	4	7.2
						5.40			21.5 21.5	5.73 5.72	80.2 80	1.69 1.66	36.07 36.08	8.57 8.56	4	6.6 7.1
						1.00			22.1	6.7	94.1	2.19	35.04	8.57	6	8.9
8:29	R2	MF	840723	836195	4.7		169	0.116	22.1 22.1	6.66	93.5 78	2.11	35.05	8.57	5	7.9
						3.70			22.1	5.53 5.16	78	3.77 3.83	35.74 35.79	8.56 8.56	8	6.4 7.5
8:15	I1	MF	841351	836566	2.6	1.30	103	0.106	22.2	6.76	95.2	2.69	35.27	8.61	6	5
-									22.2 22.4	6.74 6.8	94.9 96	2.68 1.26	35.27 35.36	8.61 8.61	6 5	4.9 4.9
8:09	12	MF	841574	836581	4.4	1.00	118	0.048	22.4	6.79	96	1.24	35.37	8.62	3	4.4
0.07	12		041574	050501		3.40	110	0.040	22.5 22.5	7.15	101.3 101.4	2.66 2.79	35.51 35.52	8.66	8	4.3 4.4
						1.00			22.4	6.72	95	1.03	35.27	8.66 8.62	4	4.4
8:00	13	MF	841809	836666	4.3	1.00	68	0.069	22.4	6.75	95.4	1	35.29	8.62	2	4.5
						3.30	-		22.5 22.5	6.92 6.88	98.2 97.7	1.44 1.46	35.57 35.58	8.65 8.64	3	4.3
						1.00			22.2	6.84	96.5	1.16	35.26	8.59	5	4.7
									22.2 22.4	6.83 6.79	96.2 96.1	1.27 1.43	35.25 35.54	8.59 8.61	5	4.6 4.1
8:47	W1	MF	841876	836559	7.3	3.65	89	0.089	22.4	6.8	96.1	1.43	35.54	8.61	5	4.1
						6.30			21.7	5.94	83.3	1.8	35.98	8.59	4	4
0.10	1.41		040004	026421	0.4		(2)	0.110	21.6 21.8	5.94 5.93	83.1 82.7	1.92 2.04	36.05 34.84	8.59 8.51	4	3.7 4.4
8:18	M1	MF	840804	836421	0.6	0.30	63	0.118	21.8	5.91	82.5	2.03	34.85	8.51	7	4
						1.00			22.4 22.4	7.31	103.2 103.2	1.05 1.02	35.17 35.17	8.62 8.62	3	5.6 6.6
8:23	FCZ1	MF	841167	835226	4.1	2 10	109	0.106	22	5.78	81.4	1.56	35.85	8.57	4	4.8
			od tida			3.10			22	5.74	80.8	1.52	35.84	8.56	3	5.4

Jamping Dates	18-Apr-1	8														
Weather:		÷														
Sea Condition:	-	`														
sea conuntion.	moucrat	-			Water	Sampling	Current	Current		DO	DO		1		1	1
Date / Time	Location	Tide*	Co-ore	dinates	Depth	Depth	Direction	Speed	Temp	Conc	Saturation	Turbidity	Salinity	pН	SS	Chlorophyll-a
Date / Thic	Location	Thue	East	North	m	m	degrees	m/s	°C	mg/L	%	NTU	ppt	unit	mg/L	µg/L
			Last	norm			ucgrees	114.5	22	8.14	114.5	0.89	35.32	7.8	2	5.5
						1.00			22	8.14	114.4	0.9	35.32	7.81	2	5.6
14:09	G1	ME	841471	835920	5.3	2.65	169	0.116								
			0.1.1.1	000720					21.9	5.66	79.4	1.36	35.57	7.62	2	6.1
						4.30			21.8	5.15	79.4	1.50	35.64	7.61	2	6.1
						1.00			22.1	7.58	106.8	0.95	35.43	7.78	4	6.1
						1.00			22.1	7.6	107.1	0.95	35.42	7.78	3	5.8
14:14	R1	ME	842292	835703	5.6	2.80	153	0.081								-
									22	5.89	82.8	1.33	35.65	7.66	2	5.8
						4.60			21.9	5.81	81.6	1.43	35.72	7.65	3	5.5
						1.00			22	8.04	113	0.87	35.32	7.81	3	6.7
13:56	R2	ME	840723	836195	4.5	1.00	105	0.143	22 21.9	8.06	113.3	0.85	35.32	7.81	4	6.4
						3.50			21.9	7.93 7.96	111.2 111.6	1.23 1.25	35.37 35.37	7.81 7.81	4 6	5.3 6.3
12.44		ME	041251	926566	24	1.20	1.40	0.002	22.1	7.89	111.0	1.23	35.27	7.81	4	7.3
13:46	11	ME	841351	836566	2.6	1.30	149	0.093	22.1	7.9	111.1	1.22	35.28	7.82	4	7.4
						1.00			22.2	7.93	111.6	1.09	35.34	7.83	5	17.6
13:39	12	ME	841574	836581	4.2		96	0.134	22.2 22	7.94	111.8 102.2	1.08 1.22	35.33 35.45	7.83	4 5	15.1 18.5
						3.20			22	7.28	102.2	1.22	35.43	7.82	4	18.2
						1.00			22.3	7.56	106.7	0.91	35.46	7.83	4	8.5
13:34	13	ME	841809	836666	4.3	1.00	123	0.111	22.3	7.59	107.1	0.91	35.46	7.83	4	8.3
			0.2007			3.30			22 22	5.7 5.68	80.1 79.9	1.78 1.74	35.78 35.78	7.72	5	9.4 9.1
									22.2	7.68	108.2	0.97	35.78	7.77	3	6.6
						1.00			22.2	7.68	108.3	0.98	35.4	7.77	4	6.3
14:19	W1	ME	841876	836559	7.4	3.70	134	0.142	21.9	6.61	92.9	1.11	35.65	7.71	3	5.7
1			041070	050557	<i></i>	5.70	151	0.1.12	21.9 21.7	6.59	92.6	1.12	35.65 35.97	7.71	5	5
						6.40			21.7	5.1 5.06	71.5	2.16 2.29	35.97	7.66	5	6.1
12.50		ME	840804	836421	0.6	0.20	105	0.124	22.6	7.67	108.5	1.85	35.05	7.78	8	4.4
13:50	M1	ME	840804	830421	0.6	0.30	105	0.134	22.6	7.68	108.8	1.86	35.05	7.78	8	4.4
						1.00			22.1	8.09	113.7	0.94	35.32	7.8	5	5.7
14:03	FCZ1	ME	841167	835226	4.3		163	0.103	22.1 22	8.09 8.17	113.7 114.6	0.92 0.88	35.32 35.35	7.81 7.81	6 6	6.6 5.9
						3.30			22	8.17	114.6	0.88	35.35	7.81	6	5.5
						1.00			21.8	7.71	108	0.95	35.32	7.8	4	14.8
						1.00			21.8	7.71	108	0.93	35.32	7.8	4	14.5
9:06	G1	MF	841495	835952	5.6	2.80	196	0.099								
						4.60			21.8	4.82	67.6	2.01	35.68	7.59	5	13.3
						4.60			21.8	4.51	63.2	2.2	35.75	7.59	4	13.9
						1.00			21.8	7.65	107.2	0.99	35.32	7.79	5	13.4
									21.8 21.8	7.66	107.2 107.2	0.96	35.32 35.27	7.8 7.54	5 5	12.5 12.5
9:12	R1	MF	842301	835735	6.2	3.10	192	0.091	21.8	7.44	107.2	2.18	35.31	7.54	4	12.7
						5.20			21.7	4.39	61.5	2.98	35.84	7.55	6	8.7
						5.20			21.7	4.48	62.8	2.96	35.83	7.56	6	9.7
						1.00			21.8 21.8	7.67	107.4 107.5	0.91 0.93	35.31 35.31	7.79 7.79	4 5	10 10.6
8:52	R2	MF	840713	836229	4.8	2.00	178	0.084	21.8	7.6	107.5	1.55	35.31	7.79	4	10.6
						3.80			21.8	7.57	106	1.56	35.32	7.79	4	11.4
8:40	I1	MF	841316	836572	2.5	1.25	203	0.096	21.9	7.6	106.6	0.97	35.26	7.79	3	11.9
									21.9 21.9	7.59 7.5	106.4 105.2	0.98	35.26	7.79	4	10.6
0.51			041	000000		1.00	2/-	0.155	21.9	7.5	105.2	0.9	35.38 35.38	7.77	5 5	8.9
8:31	12	MF	841574	836582	4.3	3.30	215	0.138	21.9	6.84	96	1.36	35.51	7.75	5	9.2
						5.50			21.9	6.82	95.7	1.33	35.53	7.75	6	9
						1.00			21.9 21.9	7.28	102.1 102.4	0.96	35.42 35.42	7.7	5	9.9 9
8:26	13	MF	841793	836664	4.5		201	0.113	21.9	7.3 6.81	95.6	0.93	35.42	7.7	5 5	12.1
						3.50			21.9	6.8	95.4	0.96	35.5	7.7	4	10.8
						1.00			22	7.26	101.9	0.98	35.41	7.78	4	11.4
									22	7.25	101.7	0.99	35.42	7.77	5	10.3
9:19	W1	MF	841840	836553	7.8	3.90	229	0.126	21.9 21.9	6.22 6.24	87.4 87.7	1.17 1.17	35.64 35.64	7.71	4	4.7 5.2
						6.00			21.9	5.61	78.8	1.67	35.86	7.69	5	13.4
						6.80			21.7	5.6	78.5	1.8	35.89	7.69	4	13
8:47	M1	MF	840806	836401	0.7	0.35	206	0.169	22	6.95	97.5	2.27	35.13	7.74	4	3.5
			0.0000	555401		0.00			22	6.95	97.4	2.3	35.13	7.74	4	3.5
						1.00			21.8 21.8	7.67	107.3 107.3	0.97 0.94	35.32 35.32	7.79 7.79	4 3	16 15.6
8:59	FCZ1	MF	841165	835213	4.1	2.10	168	0.143	21.8	7.61	107.3	1.36	35.32	7.79	5	12.2
						3.10			21.8	7.58	106.1	1.50	35.32	7.79	6	14.4

Contract No. CV/2012/05 Bathing Beach at Lung Mei, Tai Po

						Impact	t Water Qu	ality Mo	nitoring	Result						
Sampling Date:	20-Apr-1	8				-		-								
Weather:	Fine															
Sea Condition:	Moderate	5														
			Co-or	dinates	Water	Sampling	Current	Current	Temp	DO	DO	Turbidity	Salinity	pН	SS	Chlorophyll-a
Date / Time	Location	Tide*	0.010	umatts	Depth	Depth	Direction	Speed	-	Conc	Saturation	-	Samily	pm	66	Children opnyn-a
			East	North	m	m	degrees	m/s	ĉ	mg/L	%	NTU	ppt	unit	mg/L	μg/L
						1.00			22.5 22.5	8.3 8.32	117.8 118	1.48 1.47	35.53 35.53	7.9 7.9	<2	31.6 31.4
							107	0.400	22.3	0.32	110	1.4/	35.55	7.9	<2	51.4
15:32	G1	ME	841457	835942	5.3	2.65	107	0.102								
						4.30			22.5	7.93	112.5	1.32	35.55	7.88	<2	32
									22.5 22.4	7.91 8.16	112.2 115.6	1.28 1.27	35.56 35.58	7.88 7.88	<2	30.2 22.3
						1.00			22.4	8.16	115.6	1.27	35.58	7.88	4	18.9
15:39	R1	ME	842290	835720	5.6	2.80	155	0.132		0120		2127				
10.07			042270	055720	5.0	2.00	155	0.152	22.2	7.62	107.0	1.0	25.64	7.95	2	11.5
						4.60			22.3	7.63	107.9 108.2	1.2	35.64 35.64	7.85	2	11.5 12.8
						1.00			22.8	8.52	121.4	1.23	35.35	7.93	<2	16.8
15:20	R2	ME	840721	836201	4.6	1.00	125	0.139	22.8	8.54	121.7	1.26	35.35	7.92	<2	18.7
			0.0721	000201		3.60	120	0.107	22.8	8.1 8.09	115.4 115.2	1.39 1.43	35.39 35.4	7.9 7.89	<2	13.2 16.1
									22.6	7.8	110.8	1.43	35.45	7.89	<2	6.7
15:09	I1	ME	841320	836571	2.9	1.45	149	0.129	22.6	7.82	111.1	1.13	35.45	7.88	<2	6.4
						1.00			22.6	7.71	109.6	1.18	35.44	7.88	4	15.3
15:03	I2	ME	841592	836590	4.5		68	0.082	22.6 22.6	7.73	109.8 109	1.18 1.13	35.45 35.49	7.88	4	15.7 15.2
						3.50			22.6	7.65	109	1.13	35.49	7.85	3	15.2
	1				1	1.00			22.7	7.58	107.9	1.16	35.47	7.88	5	10.9
14:56	13	ME	841803	836669	4.4	1.00	103	0.092	22.7	7.59	108	1.14	35.48	7.88	6	12.4
						3.40			22.6 22.5	7.61	108.2 102	1.12 1.14	35.49 35.55	7.87 7.85	7 8	9.2 9.6
						1.00			22.3	7.59	102	1.14	35.55	7.86	3	18.3
						1.00			22.7	7.59	108	1.27	35.51	7.85	4	20.2
15:43	W1	ME	841844	836550	7.6	3.80	135	0.112	22.6	7.11	100.9	1.24	35.55	7.83	7	9.8
									22.5 22.1	7.06	100.2 78.9	1.27 2.12	35.56 35.81	7.83	6 6	8.8 22.7
						6.60			22.1	5.24	73.9	2.12	35.81	7.68	7	22.5
15:13	M1	ME	840829	836392	0.7	0.35	227	0.141	22.8	7.64	108.6	2.31	34.96	7.82	12	4.8
15.15		ML	040022	050572	0.7	0.55	221	0.141	22.8	7.64	108.6	2.46	34.96	7.82	13	4.1
						1.00			22.8 22.8	8.09 8.1	115.1 115.4	1.03 1.02	35.37 35.37	7.91 7.9	10 10	11.9 14.1
15:26	FCZ1	ME	841170	835208	4.5	3.50	149	0.129	22.4	6.22	88.1	1.56	35.52	7.71	10	12.1
						3.50			22.4	6.02	85.2	1.7	35.55	7.7	9	10.2
					_											_
						1.00			22.3 22.3	7.73	109.3 110.4	1.13	35.52	7.84 7.85	7	9 8.4
			.						22.3	7.81	110.4	1.18	35.53	7.85	3	8.4
10:50	G1	MF	841474	835923	5.4	2.70	182	0.143								
						4.40			22.3	7.81	110.4	1.17	35.53	7.85	5	8.8
									22.3 22.2	7.26	102.6 108.5	1.19 1.3	35.55 35.63	7.84	5 5	6 7.7
						1.00			22.2	7.69	108.3	1.28	35.63	7.89	3	7.5
10:56	R1	MF	842306	835705	6.3	3.15	123	0.097	22.1	7.09	100	1.3	35.66	7.86	4	7.8
10.50	KI	WII	042300	855705	0.5	5.15	125	0.097	22.1	7.03	99.1	1.31	35.67	7.85	3	8.6
						5.30			21.5 21.4	5.12 5.1	71.7 71.4	1.84 1.97	36.29 36.34	7.69	6 5	8.4 8.2
						1.00			22.5	7.74	109.6	1.09	35.42	7.84	6	8
10:36	R2	MF	840713	836208	4.3	1.00	97	0.153	22.5	7.74	109.7	1.1	35.42	7.84	6	7
			0.0715	000200		3.30			22.3 22.3	6.43	91 90	1.45	35.6	7.8	4	7.1
			041015	00.00				0.77	22.3	6.37 7.69	90 109	1.52 1.07	35.61 35.44	7.78	4	7.5 4.8
10:25	I1	MF	841318	836564	2.7	1.35	43	0.096	22.5	7.71	109.3	1.08	35.44	7.84	6	4.5
						1.00			22.5	7.52	106.5	1.17	35.47	7.81	<2	5.8
10:19	I2	MF	841575	836594	4.5		8	0.124	22.5 22.3	7.53	106.7 84.9	1.19	35.47	7.81	<2	6.4
						3.50			22.3	6 5.56	84.9 78.5	1.57 1.73	35.65 35.75	7.69	3	6.8 6.3
	r –					1.00			22.4	7.65	108.2	1.05	35.49	7.8	6	5.1
			841803	836665	4.2	1.50	12	0.103	22.4	7.64	108.2	1.05	35.49	7.8	6	5
10:13	13	MF			1	3.20			22.1 22	5.59 5.49	78.8 77.4	1.82 2.01	35.75 35.83	7.66	4	4.5 5.8
10:13	13	MF	011000							2.72		2.01				
10:13	13	MF	0.1000			1.00			22.4	7.43	105.2	1.13	35.53	7.85	5	4.6
10:13	13	MF	011000			1.00			22.4	7.43	105.2	1.14	35.53 35.53	7.85 7.85	5 4	4.6 5
10:13	13 W1	MF MF	841857	836574	7.2	1.00	97	0.103	22.4 22.1	7.43 5.82	105.2 82	1.14 1.42	35.53 35.53 35.75	7.85 7.85 7.71	5 4 4	4.6 5 5.5
				836574	7.2	3.60	97	0.103	22.4 22.1 21.9	7.43 5.82 5.65	105.2 82 79.6	1.14 1.42 1.61	35.53 35.53 35.75 35.87	7.85 7.85 7.71 7.7	5 4 4 6	4.6 5 5.5 5.9
				836574	7.2		97	0.103	22.4 22.1 21.9 21.8 21.5	7.43 5.82	105.2 82	1.14 1.42	35.53 35.53 35.75	7.85 7.85 7.71	5 4 4	4.6 5 5.5
			841857		7.2	3.60	97 59	0.103	22.4 22.1 21.9 21.8 21.5 22.4	7.43 5.82 5.65 5.58 4.93 7.45	105.2 82 79.6 78.4 68.9 105.4	$ \begin{array}{r} 1.14 \\ 1.42 \\ 1.61 \\ 1.69 \\ 5.25 \\ 1.79 \\ \end{array} $	35.53 35.53 35.75 35.87 35.93 36.21 35.37	7.85 7.85 7.71 7.7 7.7 7.68 7.82	5 4 6 7 6 4	4.6 5 5.5 5.9 5.1 5.1 3.3
11:02	W1	MF		836574 836408		3.60 6.20 0.30			22.4 22.1 21.9 21.8 21.5 22.4 22.5	7.43 5.82 5.65 5.58 4.93 7.45 7.45	105.2 82 79.6 78.4 68.9 105.4 105.5	$ \begin{array}{r} 1.14 \\ 1.42 \\ 1.61 \\ 1.69 \\ 5.25 \\ 1.79 \\ 1.82 \\ \end{array} $	35.53 35.53 35.75 35.87 35.93 36.21 35.37 35.38	7.85 7.85 7.71 7.7 7.7 7.68 7.82 7.82	$5 \\ 4 \\ 6 \\ 7 \\ 6 \\ 4 \\ 6 \\ 6$	$ \begin{array}{r} 4.6 \\ 5 \\ 5.5 \\ 5.9 \\ 5.1 \\ 5.1 \\ 3.3 \\ 3 \\ \end{array} $
11:02	W1 M1	MF MF	841857 840833	836408	0.6	3.60 6.20	59	0.142	22.4 22.1 21.9 21.8 21.5 22.4	7.43 5.82 5.65 5.58 4.93 7.45	105.2 82 79.6 78.4 68.9 105.4	$ \begin{array}{r} 1.14 \\ 1.42 \\ 1.61 \\ 1.69 \\ 5.25 \\ 1.79 \\ \end{array} $	35.53 35.53 35.75 35.87 35.93 36.21 35.37 35.38 35.38 35.41	7.85 7.85 7.71 7.7 7.7 7.68 7.82	5 4 6 7 6 4	4.6 5 5.5 5.9 5.1 5.1 3.3
11:02	W1	MF	841857			3.60 6.20 0.30			22.4 22.1 21.9 21.8 21.5 22.4 22.5 22.4	7.43 5.82 5.65 5.58 4.93 7.45 7.45 8.09	105.2 82 79.6 78.4 68.9 105.4 105.5 114.5	$ \begin{array}{r} 1.14 \\ 1.42 \\ 1.61 \\ 1.69 \\ 5.25 \\ 1.79 \\ 1.82 \\ 1 \end{array} $	35.53 35.53 35.75 35.87 35.93 36.21 35.37 35.38	7.85 7.85 7.71 7.7 7.7 7.68 7.82 7.82 7.82	5 4 6 7 6 4 6 5	$ \begin{array}{r} 4.6 \\ 5 \\ 5.5 \\ 5.9 \\ 5.1 \\ 5.1 \\ 3.3 \\ 3 \\ 11.8 \\ \end{array} $

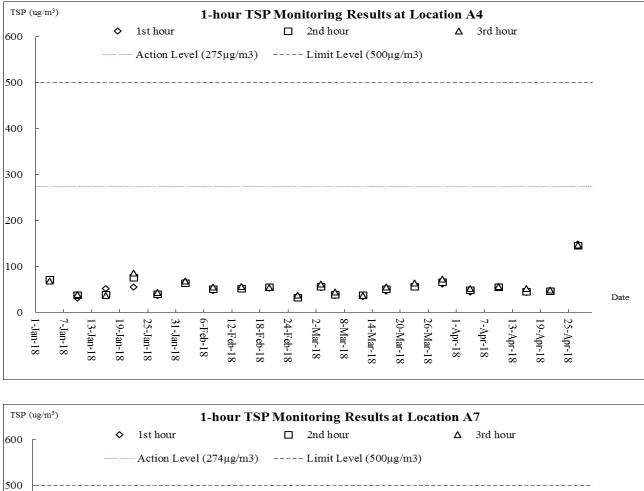
sampning Date.	23-Apr-1	8														
Weather:	_															
Sea Condition:		<u>,</u>														
Seu Condition.	1.10ucruc		~		Water	Sampling	Current	Current		DO	DO					
Date / Time	Location	Tide*	Co-ore	linates	Depth	Depth	Direction	Speed	Temp	Conc	Saturation	Turbidity	Salinity	рН	SS	Chlorophyll-a
			East	North	m	m	degrees	m/s	°C	mg/L	%	NTU	ppt	unit	mg/L	μg/L
						1.00			24.6	8.64	140.1	2.06	35.41	7.91	9	2.6
						1.00			24.6	8.64	140.3	2.06	35.41	7.91	7	2.8
18:25	G1	ME	841454	835944	5.2	2.60	237	0.136								
						4.90			22.7	6.44	101.8	2.42	36.38	7.72	9	3.1
						4.20			22.7	6.3	99.4	2.51	36.24	7.7	11	3
						1.00			24.1	8.54	137.6	2.35	35.47	7.89	7	3.5
									24.1 23.7	8.57 8.21	138 131.3	2.33	35.47 35.61	7.89	5	3.4
18:30	R1	ME	842289	835723	6.3	3.15	231	0.128	23.7	8.22	131.5	2.14	35.6	7.87	5	3.6
						5.30			22.5	5.29	83.2	2.28	36.04	7.66	6	3.6
						5.50			22.3	5.19	81.5	2.33	36.13	7.65	5	4
						1.00			25.1 25.1	8.46 8.49	138.5 139	1.89 1.88	35.35 35.37	7.9 7.9	3	3.4 3.4
18:14	R2	ME	840724	836203	4.7	2.70	321	0.087	24.3	7.98	128.9	2.24	35.48	7.89	6	3.1
						3.70			24.1	7.95	128.1	2.34	35.5	7.88	8	3.3
18:07	I1	ME	841322	836573	2.8	1.40	263	0.072	25 24.9	8.6	133.8	2.31 2.11	35.4 35.42	7.91	7	4.8
									24.9	8.65 8.73	134.4 135.4	1.31	35.42	7.92	6	4.6 8.4
18.02	12	ME	841591	836592	4.5	1.00	279	0.084	24.9	8.79	136.4	1.41	35.40	7.95	4	8.2
18:03	12	ME	041391	030392	4.5	3.50	219	0.084	22.7	7.41	111.7	1.59	36.75	7.81	5	7.1
									22.6	6.7	100.7	1.62	36.58	7.79	5	7.1
						1.00			25.1 25.1	8.7 8.71	135.6 135.8	1.15	35.41 35.41	8.01 8	4 5	6.3 6.1
18:00	13	ME	841802	836667	4.3	2.20	316	0.102	25.1	8.75	136.3	1.63	35.41	8	7	6.5
						3.30			24.3	8.04	123.8	1.68	35.51	7.94	6	5.8
						1.00			24.8	8.58	139.9	1.16	35.43	7.88	4	4
									24.8 22.5	8.61 6.52	140.2 102.5	1.17 1.44	35.43 36.23	7.88	4	4.1
18:36	W1	ME	841842	836552	7.8	3.90	216	0.093	22.5	6.53	102.6	1.44	36.11	7.74	5	5.3
						6.80			21.7	5.04	78.3	1.28	36.54	7.67	6	4.8
						0.00			21.7	5.02	78	1.38	36.56	7.66	5	5.1
18:10	M1	ME	840828	836393	0.8	0.40	43	0.021	25.1 25.1	8.39 8.4	137.2 137.4	1.75 1.75	35.38 35.38	7.91	5	5.1
						1.00			24.7	8.55	139	1.65	35.38	7.9	6	3.9
18:20	FCZ1	ME	841172	835206	4.4	1.00	194	0.112	23	5.68	89.8	1.65	35.65	7.65	6	3.6
10.20			041172	055200		3.40	.,,	0.112	22.9	6.34	100.1	1.66	35.67	7.67	5	3 2.9
									21.6	5.63	82	1.84	36.6	7.68	6	2.9
									24	8.59	129.6	1.05	35.42	7.91	4	4.5
						1.00			24	8.59	129.6	1.05	35.42	7.91	6	4.7
12:30	G1	MF	841472	835921	5.3	2.65	134	0.106								
			0.1.72	000721					22.5	6.25	02.6	1.00	26	7 72	7	1.6
						4.30			22.5	6.35 6.3	93.6 92.8	1.09	36 35.94	7.73	7 8	4.6 4.4
						1.00			24	8.75	132.1	1.56	35.43	7.93	4	6.3
						1.00			24	8.75	132.1	1.55	35.44	7.93	3	5.8
12:35	R1	MF	842305	835703	6.2	3.10	203	0.067	23.4 22.6	8.03 7.07	120 104.4	1.66 1.64	35.55 35.96	7.85	4	5 5.5
									22.6	7.23	104.4	2.24	35.90	7.75	5	5.2
						5.20			21.5	5.26	76.7	2.23	36.69	7.7	4	5.9
						1.00			23.8	8.34	125.4	1.03	35.45	7.92	3	4.4
12:18	R2	MF	840715	836203	4.5		136	0.097	24 22.7	8.39 5.3	126.6 78.3	1.02 2.28	35.45 35.89	7.91	2	4.4
						3.50			22.5	5.24	77.2	2.28	35.89	7.67	5	4.1
12:12	I1	MF	841319	836562	2.6	1.30	159	0.136	23.7	8.23	122.8	2.35	35.4	7.88	4	6
12.12	11	WII	041319	830302	2.0	1.50	159	0.150	23.6	8.22	122.5	2.38	35.43	7.88	4	6.5
						1.00			25.1 24.4	7.64 8.28	116.5 124.8	2.13	35.11 35.44	7.88 7.88	5	8 7.2
12:07	12	MF	841573	836592	4.5	2.50	79	0.119	24.4	8.3	124.8	2.27	35.44	7.88	4	7.7
						3.50			22.5	6.3	92.2	2.21	35.92	7.76	4	7.1
						1.00			23.7	8.17	121.8	1.38	35.49	7.87	3	4.4
12:04	13	MF	841801	836663	4.3		106	0.087	23.7 22.4	8.19 6.44	122 94.3	1.38 1.27	35.51 36	7.87	4	4.7 4.6
						3.30			22.4	6.38	94.5	1.27	36.06	7.77	3	3.9
						1.00			24.4	8.36	127.2	2.05	35.43	7.92	6	5.3
						1.00			24.3	8.4	127.5	2.02	35.43	7.91	4	6
12:44	W1	MF	841856	836573	7.3	3.65	215	0.073	22.5 22.5	6.38 6.32	94.2 93.2	2.25 2.24	35.9 35.92	7.76	5	5.3
									22.5	6.32 4.81	93.2	2.24	35.92	7.75	5	6.2 5.6
						6.30			21.6	4.8	69.9	2.18	36.58	7.65	5	5.9
12:15	M1	MF	840834	836406	0.5	0.25	226	0.167	24.9	8.29	126.6	1.23	35.37	7.89	4	6.7
12.19	.,,11		0-0004	00400	0.5	0.23	220	0.107	24.9	8.3	126.9	1.23	35.37	7.88	2	6.3
						1.00			24.4 24.4	8.24 8.29	125.1 125.8	1.07 1.07	35.41 35.41	7.9 7.9	4	4 3.7
12:23	FCZ1	MF	841177	835226	4.3	2.57	139	0.149	24.4	4.89	72.1	2.23	35.75	7.65	8	4.3
				1		3.30			22.5	4.75	69.9	2.3	35.82	7.63	6	4

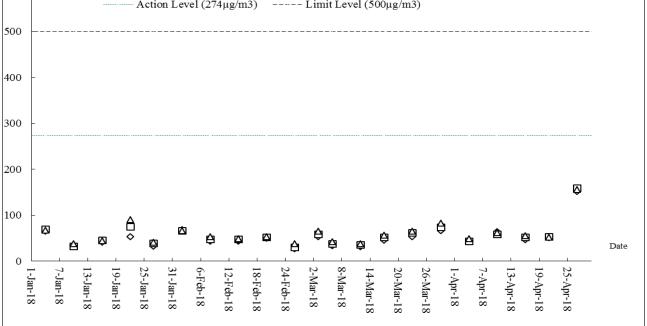
Sampling Date:	25. Ann. 1	8				imput			nitoring	1000010						
Weather:	25-Apr-1 Fine	0														
	-															
Sea Condition:	Moderate	:			Watan	Compling	Cumont	Cumont		DO	DO	1			1	1
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Current Direction	Current Speed	Temp	Conc	DO Saturation	Turbidity	Salinity	pН	SS	Chlorophyll-a
Date / Time	Location	The	East	North	m	m	degrees	m/s	ະ	mg/L	%	NTU	ppt	unit	mg/L	μg/L
			Lust	Horth	m		utgrees	1145	24.1	8.12	118.4	2.12	35.38	7.9	8	5.6
						1.00			24.1	8.16	118.9	2.1	35.38	7.91	8	5.9
10:49	G1	ME	841452	835943	5.3	2.65	214	0.146								
									22.5	6	85.5	2.09	36.08	7.73	7	4.7
						4.30			22.5	5.98	85.1	2.11	36.08	7.72	7	5.4
						1.00			23.6	8.13	117.6	2.17	35.48	7.9	5	9.1
									23.6 22.8	8.14 6.46	<u>117.7</u> 92.3	2.18 2.12	35.48 35.96	7.9 7.76	7	7.7 10.7
10:56	R1	ME	842288	835722	6.2	3.10	46	0.121	22.7	6.44	92	2.07	35.99	7.76	6	9.5
						5.20			22.6	6.56	92.1	2.56	35.49	7.87	7	7.2
									22.5 24.5	6.54 8.19	92.1 120.1	2.54 1.52	35.51 35.29	7.89	7	6.4
10.01			0.40725	026204		1.00	0.5	0.047	24.5	8.19	120.1	1.52	35.29	7.91	3	11.7 11
10:31	R2	ME	840725	836204	4.6	3.60	85	0.067	23	5.77	82.9	2.12	36.29	7.73	4	6
						5.00			22.9	5.63	80.7	2.13	36.26	7.72	3	5.4
10:25	I1	ME	841321	836575	2.7	1.35	124	0.087	24.3 24.3	7.88 7.88	115.1 115.2	2.19 2.19	35.29 35.29	7.91	4	8.4 8.4
						1.00			24.3	7.96	115.2	2.19	35.32	7.9	5	7.5
10:19	12	ME	841593	836591	4.4	1.00	106	0.069	24.3	8.02	117.2	2.17	35.31	7.91	5	7.5
	_	-				3.40			23.9 23.7	7.03	102.2	2.16	35.54	7.89 7.88	8	7.3
						1.00			23.7	8.21	101.6	2.13	35.37	7.89	4	11.8
10:12	13	ME	841803	836665	4.3	1.00	202	0.187	24.2	8.17	119.2	2.05	35.37	7.89	4	9.7
10.12	15	ML	041005	050005	4.5	3.30	202	0.107	23.4	6.36	91.9	2.26	35.77	7.75	5	6.9
									23.3 24.2	6.3 8.12	90.8 118.5	2.31 2.17	35.84 35.31	7.74	5	6.1 5.9
						1.00			24.2	8.18	119.3	2.17	35.32	7.9	5	5.8
11:06	W1	ME	841843	836554	7.7	3.85	164	0.079	23.9	7.52	109.3	2.14	35.53	7.88	6	6.6
11.00	** 1	MIL	041045	050554	1.1	5.85	104	0.079	23.8	7.46	108.3	2.12	35.6	7.88	6	6.9
						6.70			21.8 21.8	4.58	64.6 63.3	2.98 3.15	36.65 36.59	7.64	5	7.6 8.7
			0.40027	02/205					24.2	7.06	103	3.25	35.3	7.84	4	4.2
10:28	M1	ME	840827	836395	0.7	0.35	148	0.057	24.2	7.06	102.9	3.22	35.31	7.83	6	3.6
						1.00			24	8.11	118.1	2.08	35.38	7.91	6	6.1
10:41	FCZ1	ME	841173	835207	4.3		94	0.134	24 22.4	8.14 7.24	118.4 102.8	2.07 2.27	35.38 36.11	7.91 7.52	5 6	5.6 5.8
						3.30			22.4	7.24	102.8	2.31	36.08	7.52	6	6.9
						1.00			23.8	8.46	122.7	2.18	35.48	7.92	4	14.7
									23.8	8.49	123.2	2.17	35.48	7.92	4	12.8
14:04	G1	MF	841471	835922	5.2	2.60	103	0.116								
						4.20			22.6	5.91	84.4	2.16	36.06	7.73	5	11.2
						4.20			22.5	5.86	83.5	2.16	36.13	7.72	4	11.8
						1.00			23.2	7.8	112 112.3	2.14	35.74 35.76	7.89 7.89	4	14.4 14.8
14:12	R1	MF	842306	835704	6.3	3.15	112	0.143	22.7	6.59	91.4	2.14	35.73	7.88	4	11.2
14:12	KI	MIF	842300	855704	0.5	5.15	112	0.145	22.6	6.72	91.8	2.15	35.72	7.86	5	12.6
						5.30			22.9 22.8	6.25	89.4	2.14 2.15	35.9 35.96	7.72	3	10.2 11.2
						1.65			22.8	6.16 8.11	88.1 118.7	2.15	35.96	7.94	5	11.2
13:50	R2	MF	840714	836202	4.4	1.00	136	0.084	24.4	8.16	119.4	2.3	35.28	7.94	4	11.1
15.50	112		0-0/14	050202	7.4	3.40	150	0.004	23.8	6.17	89.6	2.33	35.55	7.76	4	15.3
									23.6 23.9	6.14 7.95	88.9 115.6	2.31 2.11	35.62 35.53	7.76	4	17 45.8
13:43	I1	MF	841318	836561	2.7	1.35	129	0.076	23.9	7.94	115.5	2.08	35.53	7.94	6	49.2
						1.00			23.8	8.19	118.8	2.2	35.51	7.96	5	15.8
13:39	12	MF	841572	836594	4.6	1.50	84	0.091	23.8	8.22	119.3	2.17	35.52	7.96	6	15
						3.60			23.5 23.5	7.68	110.9 110.5	2.08	35.62 35.65	7.95	5 5	20.8 19.4
						1.00			23.5	8.21	119.6	2.08	35.46	8	6	22
13:34	13	MF	841803	836664	4.3	1.00	93	0.104	24.1	8.21	119.5	2.18	35.46	8	5	22.2
	~		0.1005	00000		3.30			23.7 23.6	7.45	108 107.5	2.11 2.1	35.61 35.66	7.98	6	22.6 25.3
									23.6	8.26	107.5	2.1	35.66	7.88	5	25.3
						1.00			24.1	8.24	120	2.12	35.46	7.88	5	25.7
14:21	W1	MF	841854	836574	7.2	3.60	79	0.063	23.6	6.52	94.3	2.18	35.68	7.74	4	17
			0.1007						23.4	6.43	92.8	2.19	35.75	7.74	4	21.6
						6.20			22.2	4.65	66 65.5	2.72 2.85	36.33 36.42	7.66	4 5	20.4
13:47	M1	MF	840834	836106	0.6	0.20	118	0.057	24.4	8.19	119.8	3.27	35.3	7.93	6	8.8
13.47	111	IVIF	040834	836406	0.0	0.30	118	0.037	24.4	8.2	120	3.21	35.3	7.93	4	8.8
						1.00			23.9	8.47	123.1	2.18 2.16	35.44 35.44	7.93	4	13.8 12.9
13:57	FCZ1	MF	841176	835224	4.5	3.50	153	0.137	23.9 23.4	8.47 7.64	123.1 110.5	2.10	35.66	7.93	5	16.2

Compline Det	28 4 1	0				Impac	t Water Q	uality Mo	nitoring	Kesult							
Sampling Date:	-	8															
Weather:																	
Sea Condition:	Moderate	\$			11/-4	C	Comment	Comment		DO	DO						
Date / Time	T	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Current Direction	Current Speed	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	pН	SS	Chlorophyll-a
Date / Time	Location	Tide	East	North	m	m	degrees	m/s	°	mg/L	%	NTU	ppt	unit	unit	mg/L	μg/L
			East	North	m		uegrees	111/8	23.6	8.21	123.9	1.75	35.51	7.94		<2	μg/L 12.7
						1.00			23.6	8.22	126.5	1.76	35.51	7.94		<2	13.8
13:10	G1	ME	841455	835940	5.2	2.60	107	0.139									
15.10	01	MIL	041455	055740	5.2	2.00	107	0.157	02	())	04.0	1 70	25.92	7.76	7.76	- 2	10.2
						4.20			23 23.1	6.23 6.62	94.9 101.2	1.78 1.74	35.82 35.8	7.76		<2	12.3 10.5
						1.00			23.3	8.28	128.1	1.86	35.65	7.95		<2	11.2
						1.00			23.3	8.3	128.4	1.85	35.65	7.95		<2	16
13:14	R1	ME	842288	835718	5.6	2.80	155	0.157									
									23.2	7.67	112.9	1.73	35.69	7.94	7.04	<2	10.4
						4.60			23.2	7.29	107.4	1.73	35.71	7.94		<2	10.4
						1.00			23.9	8.68	128.9	1.91	35.33	7.99	7.99	<2	10.4
12:56	R2	ME	840719	836199	4.3	1.00	125	0.130	23.9	8.68	128.9	1.91	35.33	7.99		<2	8.7
			0.0717	000177		3.30	120	0.150	23.4	3.99 3.45	58.9	3.53 4.01	35.68	7.65		<2	10.7
	-			00.07.7				0.477	23.2 23.6	3.45 8.72	50.8 128.5	4.01	35.81 35.45	7.61 7.98		<u><2</u> 3	12.4 13.4
12:44	I1	ME	841318	836569	2.6	1.30	149	0.100	23.6	8.75	129	1.77	35.45	7.98	7.98	3	12.5
						1.00			23.1	6.12	89.5	1.87	35.81	7.75	7.75	4	14.4
12:39	12	ME	841590	836588	4.1	1.50	62	0.108	23.6	8.78	129.1	1.75	35.4	7.97		3	11
						3.10			23.6 22.8	8.79 4.42	129.4 64.5	1.78 1.78	35.4 36	7.98		2	15.8 13.3
	1					1.00			23.5	8.43	123.9	1.68	35.51	7.92		3	13.3
12:34	13	ME	841801	836667	4.2	1.00	91	0.120	23.5	8.48	124.7	1.71	35.49	7.92	7.92	3	11.6
12.54	1.5	MIL	041001	050007	4.2	3.20	71	0.120	23.3	5.87	86.1	1.84	35.67	7.74		4	9.8
									23.2	5.41	79.2	1.87	35.73	7.73		3	8.6
						1.00			23.4 23.5	8.41 8.35	125.4 125.2	4.33 3.75	35.65 35.54	7.95		<2	11.1 12.9
12.21	11/1	ME	041040	026540	7	2.50	125	0.102	22.6	3.86	56.8	2.42	36.14	7.62		<2	14.4
13:21	W1	ME	841842	836548	7	3.50	135	0.103	22.5	3.84	56.7	2.78	36.28	7.59		<2	13.8
						6.00			22.4	3.85	56.8	2.73	36.31	7.59		3	14.4
									22.2 23.8	3.85 7.87	58.1 116.6	3.69	36.49	7.59		3	14.9 4.1
12:51	M1	ME	840827	836390	0.6	0.30	227	0.072	23.8	7.87	116.6	2.22	35.22	7.91		<2	4.1
						1.00			23.7	7.96	118.2	1.7	35.47	7.92		<2	11.4
13:02	FCZ1	ME	841168	835206	4.1	1.00	149	0.140	23.7	8	118.7	1.71	35.47	7.92	7.92	<2	12.5
			0.1100	000200		3.10	1.12	0.110	22.8 22.7	6.52	95.7	3.04	35.97	7.55		<2	15.5
									22.1	6.36	93.5	3.17	36.01	7.53	1.33	<2	10.6
									23.4	8.73	131.8	1.75	35.67	7.97	7 97	<2	13.2
						1.00			23.4	8.74	132	1.74	35.67	7.97		<2	11.8
17:23	G1	MF	841469	835923	5.1	2.55	66	0.082									
			0.11.05	000720					22	4.55	(0.7	2.00	25.96	7.65	7.65	2	12.6
						4.10			23 23	4.55 3.89	68.7 58.6	2.09 2.22	35.86 35.93	7.65		2	12.6 11
						1.00			23.2	7.98	123.6	1.65	35.74	7.91		<2	9.5
						1.00			23.2	7.96	123.3	1.66	35.74	7.91		<2	8.9
17:30	R1	MF	842304	835700	6.2	3.10	101	0.042	23	6.6	101.5	1.63	35.84	7.87		<2	7.7
									23 22.8	6.57 5.26	101 80.6	1.62 1.66	35.87 36.1	7.86		<2 <2	7.7 3.3
	l			1		5.20			22.8	5.16	78.9	1.00	36.18	7.68		<2	3.2
						1.00			23.6	8.99	136.9	1.94	35.59	7.98	7.98	<2	15.2
17:13	R2	MF	840709	836202	4.5	1.00	175	0.104	23.6	8.99	136.9	1.92	35.59	7.98		<2	12.4
-						3.50			23.6	8.55 8.52	132.3 131.2	1.9 1.88	35.59 35.59	7.97		<2	9.2 7.9
10.10		1.77	041215	026555			10.1	0.67	23.5	8.52 9.08	131.2	1.88	35.39	8.01		<2	17.6
17:10	I1	MF	841316	836558	2.8	1.40	186	0.054	23.7	9.14	138.3	1.89	35.44	8.01		<2	15.9
						1.00			23.6	9.05	135.4	1.82	35.55	8.03	8.03	<2	17.7
16:50	12	MF	841569	836589	4.2		123	0.095	23.6	9.06	135.6	1.84	35.55	8.03		<2	14.2
						3.20	-		23.5 23.4	7.58	113.3 106.5	1.78 1.75	35.6 35.63	8 7.99		<2 <2	16.5 14.2
						1.00			23.4	8.93	106.5	1.73	35.61	8.07		<2	14.2
16:44	13	MF	841802	836666	4.3	1.00	79	0.072	23.7	8.97	134.6	1.72	35.6	8.07	8.07	<2	14.2
10.44	13	IVIT.	041002	00000	4.3	3.30	19	0.072	23.3	7.01	104.5	1.67	35.71	7.92		<2	16.5
									23.2	6.97	103.8	1.63	35.75	7.92		<2	14.2
						1.00			23.5 23.5	8.67 8.64	134 133.8	2.2 1.71	35.57 35.57	7.95		<2	13.5 11.9
17.27	W/1	ME	941950	926572	7.2	2.65	71	0.102	23.3	8.53	133.8	1.71	35.59	7.94		<2	10.2
17:37	W1	MF	841850	836573	7.3	3.65	71	0.103	23.2	7.71	122.7	1.72	35.73	7.91		<2	11
						6.30			23.2	7.4	116.2	1.71	35.77	7.9		<2	2.4
									22.6	4.32	67.5	2.18	36.2	7.63		<2	3.2
17:02	M1	MF	840831	836402	0.8	0.40	169	0.095	23.8 23.8	9.04 9.1	135.4 136.3	4.05	35.46 35.45	7.99		3	20.7 18.5
		-				1.00			23.8	8.97	130.3	1.83	35.43	8		<2	15.1
17:18	FCZ1	MF	841174	835221	4.1	1.00	119	0.064	23.8	9.01	135.7	1.83	35.47	8	8	<2	13
17.10	1.021	TAIL.	0411/4	055221	4.1	3.10	119	0.004	23.6	7.91	118.9	1.89	35.54	7.99		<2	14.7
	l					2.10			23.6	7.74	116.4	1.92	35.57	7.98	7.98	<2	12.2

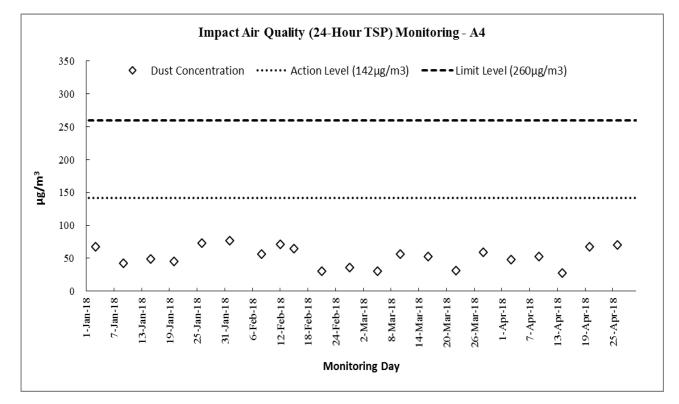
Contract No. CV/2012/05 Bathing Beach at Lung Mei, Tai Po

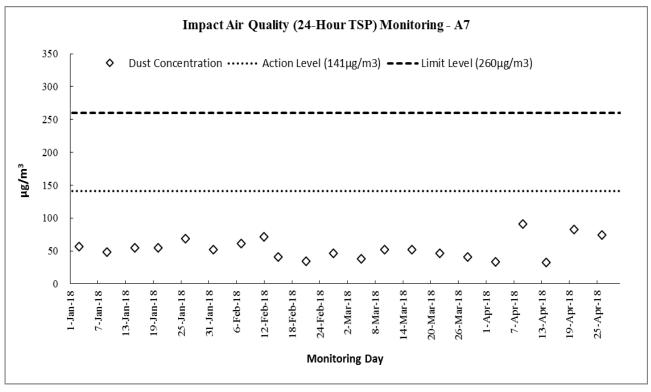
						Impact	t Water Qu	uality Mo	nitoring	Result						
Sampling Date:		8														
	Fine															
Sea Condition:	Moderate	5														
D (171	. .		Co-ord	linates		Sampling	Current	Current	Temp	DO	DO	Turbidity	Salinity	pН	SS	Chlorophyll-a
Date / Time	Location	Tide*	E4	N41-	Depth	Depth	Direction	Speed	ĉ	Conc	Saturation	NTU			/T	
			East	North	m	m	degrees	m/s	23.2	mg/L 4.85	% 70	2.18	ppt 36.08	unit 7.65	mg/L 4	μg/L 8
						1.00			23	4.85	61	2.18	36.22	7.62	6	7.5
14:21	G1	ME	841467	835922	5.2	2.60	201	0.168								
14.21	01	ML	041407	055722	5.2	2.00	201	0.100	22.4	6.00	87.0	0.17	26	2 22	Ē	5.2
						4.20			23.4	6.09 6.13	87.9 88.5	2.17 2.13	36 35.97	7.77 7.77	5	5.3 6.5
						1.00			24.3	8.4	123	1.63	35.68	7.96	4	6.5
						1.00			24.1	8.4	122.8	1.59	35.71	7.96	3	6.2
14:29	R1	ME	842303	835702	5.8	2.90	124	0.134								
									23.1	5.36	77.1	1.7	36.13	7.69	3	3.8
						4.80			23.1	5.29	76.1	1.71	36.13	7.7	4	4
						1.00			25.1	7.92	117.4	1.92	35.52	7.93	3	7.3
14:10	R2	ME	840708	836201	4.2	1.00	167	0.109	25	7.92	117.3	1.91	35.52	7.93	3	8.3
						3.20			23.6 23.7	4.94 5.04	71.5 73.2	4.06	35.86 35.76	7.63	2	2.8 2.6
12.56	T1	ME	041215	026557	2.7	1.25	110	0.075	25.2	8.57	127.5	1.91	35.49	7.98	3	5.9
13:56	11	ME	841315	836557	2.7	1.35	118	0.075	25.1	8.49	126	1.86	35.55	7.97	4	4
						1.00			24.6	7.95	117.1	1.89	35.6	7.95	4	10
13:49	I2	ME	841566	836588	4.3		67	0.069	24.4 23.8	7.97	117 108.1	1.89 1.73	35.65 35.88	7.95 7.9	4	11.8 7
						3.30			23.7	7.42	107.7	1.74	35.91	7.9	4	7.6
						1.00			24.3	8.26	121	1.61	35.67	7.93	3	8.8
13:43	13	ME	841803	836668	4.4	1.00	98	0.089	24.2	8.27	121.1	1.6	35.7	7.94	3	8.8
						3.40			23.6 23.6	6.65 6.18	96.4 89.5	2.57 2.55	35.96 35.95	7.81 7.81	4	7.2
						1.00			24.5	8.16	120	1.96	35.62	7.94	3	5.9
						1.00			24.5	8.19	120.3	1.95	35.63	7.94	3	6
14:30	W1	ME	841851	836574	7.3	3.65	139	0.058	22.6	3.91	55.8	2.4	36.37	7.61	4	15.2
									22.6 22.7	3.88 3.53	55.3 50.4	2.31 2.72	36.37 36.32	7.6 7.55	5 4	11.4 8.4
						6.30			22.7	3.5	50.4	2.69	36.33	7.55	4	8.3
14:03	M1	ME	840833	836401	0.6	0.30	147	0.067	26.2	8.14	122.8	3	35.36	7.89	7	13.4
14.05	IVII	IVIL	040055	050401	0.0	0.50	147	0.007	26.5	8.14	123.3	2.9	35.24	7.89	6	13.1
						1.00			24.9 24.9	8.23 8.25	121.6 122	1.61 1.63	35.51 35.5	7.95	5	6 5.8
14:16	FCZ1	ME	841171	835223	4.2	2.20	159	0.138	23.6	6.34	91.8	2.24	35.86	7.78	4	5.2
						3.20			23.6	6.37	92.3	2.26	35.86	7.78	3	5.8
						1.00			23.5	6.33	91.6	2.42	36.03	7.81	4	5.2
									23.7	6.4	92.9	2.27	35.97	7.81	5	4.4
18:35	G1	MF	841472	835925	5.2	2.60	124	0.131								
						4.20			24	6.77	98.8	1.86	35.85	7.82	3	4.3
						4.20			24	6.8	99.2	1.84	35.85	7.83	5	4.5
						1.00			23	6 5.74	86.2 82.3	1.66 1.66	36.19 36.22	7.75	2	3.4
10.11			0.40000	025702	6.0	0.15	202	0.125	22.7	4.65	66.4	2.14	36.33	7.65	3	2.6
18:41	R1	MF	842309	835703	6.3	3.15	203	0.137	22.7	4.63	66.2	2.04	36.33	7.65	3	2.6
						5.30			24.9	8.4	124.2	1.94	35.63	7.93	6	2.5
									24.9 25.1	8.42 8.5	124.5 126.1	1.95 1.89	35.64 35.52	7.93 7.98	5	2.6 5.6
18:23	R2	MF	040715		1	1.00						1.02	35.52	7.98	6	4.9
				8363187	15		60	0.140	25.1	8.5	126.2					6.1
10.25	112	NIF	840715	836207	4.5	3.50	69	0.169	25.1 24.2	7.41	108.3	2.21	35.79	7.88	5	
10.25						3.50			25.1 24.2 24.4	7.41 7.42	108.3 108.7	2.21 2.19	35.74	7.88	5 6	5.6
18:14	11	MF	840715	836207 836565	4.5 2.5	3.50 1.25	69 84	0.169	25.1 24.2 24.4 24.8	7.41	108.3	2.21 2.19 1.93	35.74 35.61	7.88 7.95	5	5.6 5.7
						1.25			25.1 24.2 24.4 24.8 24.8 24.7	7.41 7.42 8.27 8.27 8.26	108.3 108.7 122.2 122 121.9	2.21 2.19 1.93 1.89 1.79	35.74 35.61 35.61 35.61	7.88 7.95 7.95 7.97	5 6 4 5 4	5.6 5.7 6.4 5.9
18:14			841321	836565	2.5		84		25.1 24.2 24.4 24.8 24.8 24.7 24.7	7.41 7.42 8.27 8.27 8.26 8.31	108.3 108.7 122.2 122 121.9 122.7	2.21 2.19 1.93 1.89 1.79 1.78	35.74 35.61 35.61 35.61 35.62	7.88 7.95 7.95 7.97 7.97	5 6 4 5 4 5	5.6 5.7 6.4 5.9 4.5
	11	MF				1.25		0.059	25.1 24.2 24.4 24.8 24.8 24.7 24.7 24.7	7.41 7.42 8.27 8.27 8.26 8.31 8.41	108.3 108.7 122.2 122 121.9 122.7 124	2.21 2.19 1.93 1.89 1.79 1.78 1.78	35.74 35.61 35.61 35.61 35.62 35.64	7.88 7.95 7.95 7.97 7.97 7.97	5 6 4 5 4 5 5	5.6 5.7 6.4 5.9 4.5 5.5
18:14	11	MF	841321	836565	2.5	1.25 1.00 3.50	84	0.059	25.1 24.2 24.4 24.8 24.8 24.7 24.7 24.7 24.7	7.41 7.42 8.27 8.27 8.26 8.31 8.41 8.41	108.3 108.7 122.2 122 121.9 122.7 124 123.9	2.21 2.19 1.93 1.89 1.79 1.78 1.78 1.78 1.8	35.74 35.61 35.61 35.62 35.62 35.64 35.65	7.88 7.95 7.95 7.97 7.97 7.97 7.97 7.97	5 6 4 5 4 5 5 6	$5.6 \\ 5.7 \\ 6.4 \\ 5.9 \\ 4.5 \\ 5.5 \\ 6.2$
18:14 18:10	11 12	MF MF	841321 841569	836565 836595	2.5 4.5	1.25 1.00	84 96	0.059	25.1 24.2 24.4 24.8 24.8 24.7 24.7 24.7 24.7 24.7 24.7 24.7	7.41 7.42 8.27 8.27 8.26 8.31 8.41 8.41 8.41 8.35 8.37	108.3 108.7 122.2 122 121.9 122.7 124 123.9 123.2 123.4	$\begin{array}{r} 2.21 \\ 2.19 \\ 1.93 \\ 1.89 \\ 1.79 \\ 1.78 \\ 1.78 \\ 1.8 \\ 1.84 \\ 1.83 \end{array}$	35.74 35.61 35.61 35.62 35.64 35.65 35.64 35.64 35.64	7.88 7.95 7.95 7.97 7.97 7.97 7.97 7.97 8.01 8.01	5 6 4 5 4 5 5 6 5 7	5.6 5.7 6.4 5.9 4.5 5.5 6.2 5.5 5.3
18:14	11	MF	841321	836565	2.5	1.25 1.00 3.50	84	0.059	25.1 24.2 24.4 24.8 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	7.41 7.42 8.27 8.26 8.31 8.41 8.41 8.35 8.37 7.18	108.3 108.7 122.2 121.9 122.7 124 123.9 123.2 123.4 104.9	$\begin{array}{r} 2.21 \\ 2.19 \\ 1.93 \\ 1.79 \\ 1.78 \\ 1.78 \\ 1.8 \\ 1.8 \\ 1.84 \\ 1.83 \\ 2.17 \end{array}$	35.74 35.61 35.61 35.62 35.64 35.65 35.64 35.64 35.64 35.64 35.84	7.88 7.95 7.95 7.97 7.97 7.97 7.97 7.97 8.01 8.01 7.92	5 6 4 5 5 5 6 5 7 10	5.6 5.7 6.4 5.9 4.5 5.5 6.2 5.5 5.3 5.5
18:14 18:10	11 12	MF MF	841321 841569	836565 836595	2.5 4.5	1.25 1.00 3.50 1.00 3.60	84 96	0.059	25.1 24.2 24.4 24.8 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	7.41 7.42 8.27 8.26 8.31 8.41 8.41 8.35 8.37 7.18 7.15	108.3 108.7 122.2 122 121.9 122.7 124 123.9 123.2 123.4 104.9 104.4	$\begin{array}{r} 2.21 \\ 2.19 \\ 1.93 \\ 1.79 \\ 1.78 \\ 1.78 \\ 1.8 \\ 1.8 \\ 1.84 \\ 1.83 \\ 2.17 \\ 2.19 \end{array}$	35.74 35.61 35.61 35.62 35.64 35.65 35.64 35.64 35.64 35.84 35.84	7.88 7.95 7.95 7.97 7.97 7.97 7.97 7.97 8.01 8.01 7.92 7.91	5 6 4 5 5 5 6 5 7 10 9	5.6 5.7 6.4 5.9 4.5 5.5 6.2 5.5 5.3 5.5 4.8
18:14 18:10	11 12	MF MF	841321 841569	836565 836595	2.5 4.5	1.25 1.00 3.50 1.00	84 96	0.059	25.1 24.2 24.4 24.8 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	7.41 7.42 8.27 8.26 8.31 8.41 8.41 8.41 8.35 8.37 7.18 7.15 8.33	108.3 108.7 122.2 122 121.9 122.7 124 123.9 123.2 123.4 104.9 104.4 122.9	$\begin{array}{r} 2.21\\ 2.19\\ 1.93\\ 1.89\\ 1.79\\ 1.78\\ 1.8\\ 1.84\\ 1.83\\ 2.17\\ 2.19\\ 2.06\end{array}$	35.74 35.61 35.61 35.62 35.64 35.65 35.64 35.64 35.64 35.84 35.84 35.84	7.88 7.95 7.97 7.97 7.97 7.97 7.97 8.01 8.01 7.92 7.91 7.93	5 6 4 5 5 5 6 5 7 10	5.6 5.7 6.4 5.9 4.5 5.5 6.2 5.5 5.3 5.5 4.8 4.2
18:14 18:10 18:05	I1 I2 I3	MF MF MF	841321 841569 841807	836565 836595 836665	2.5 4.5 4.6	1.25 1.00 3.50 1.00 3.60 1.00	84 96 118	0.059	25.1 24.2 24.4 24.8 24.8 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	7.41 7.42 8.27 8.26 8.31 8.41 8.41 8.35 8.37 7.18 7.15	108.3 108.7 122.2 122 121.9 122.7 124 123.9 123.2 123.4 104.9 104.4	$\begin{array}{r} 2.21 \\ 2.19 \\ 1.93 \\ 1.89 \\ 1.79 \\ 1.78 \\ 1.8 \\ 1.8 \\ 1.84 \\ 1.83 \\ 2.17 \\ 2.19 \\ 2.06 \\ 2.07 \\ 2.31 \end{array}$	35.74 35.61 35.61 35.62 35.64 35.65 35.64 35.64 35.64 35.84 35.84	7.88 7.95 7.97 7.97 7.97 7.97 7.97 7.97 8.01 8.01 7.92 7.91 7.92 7.91 7.92 7.84	5 6 4 5 5 6 5 7 10 9 4	5.6 5.7 6.4 5.9 4.5 5.5 6.2 5.5 5.3 5.5 4.8
18:14 18:10	11 12	MF MF	841321 841569	836565 836595	2.5 4.5	1.25 1.00 3.50 1.00 3.60	84 96	0.059	25.1 24.2 24.4 24.8 24.8 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.1 24.1 24.1 24.1 24.2 24.3 24	7.41 7.42 8.27 8.27 8.26 8.31 8.41 8.41 8.41 8.41 8.41 7.15 8.33 7.18 7.15 8.33 8.23 6.21 5.54	108.3 108.7 122.2 122.9 122.7 124 123.9 123.2 123.4 104.9 104.4 122.9 104.4 122.9 104.4 122.9 81	$\begin{array}{r} 2.21\\ 2.19\\ 1.93\\ 1.89\\ 1.79\\ 1.78\\ 1.78\\ 1.8\\ 1.8\\ 1.84\\ 1.83\\ 2.17\\ 2.19\\ 2.06\\ 2.07\\ 2.31\\ 2.29\end{array}$	35.74 35.61 35.61 35.62 35.64 35.65 35.64 35.64 35.84 35.84 35.84 35.84 35.7 35.81 35.81 35.88	7.88 7.95 7.95 7.97 7.97 7.97 7.97 8.01 8.01 7.92 7.91 7.93 7.92 7.84 7.71		$\begin{array}{c} 5.6\\ 5.7\\ 6.4\\ 5.9\\ 4.5\\ 5.5\\ 6.2\\ 5.3\\ 5.3\\ 5.3\\ 5.3\\ 4.8\\ 4.2\\ 5\\ 5.2\\ 5.2\end{array}$
18:14 18:10 18:05	I1 I2 I3	MF MF MF	841321 841569 841807	836565 836595 836665	2.5 4.5 4.6	1.25 1.00 3.50 1.00 3.60 1.00	84 96 118	0.059	25.1 24.2 24.4 24.8 24.8 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	7.41 7.42 8.27 8.27 8.26 8.31 8.41 8.41 8.41 8.35 7.18 7.15 8.33 8.23 6.21 5.54 5.24	$\begin{array}{c} 108.3\\ 108.7\\ 122.2\\ 122\\ 121.9\\ 122.7\\ 124\\ 123.9\\ 123.2\\ 123.4\\ 104.4\\ 104.4\\ 102.9\\ 121.3\\ 90.9\\ 81\\ 76.4 \end{array}$	2.21 2.19 1.93 1.89 1.79 1.78 1.78 1.78 1.8 1.8 1.8 1.8 2.17 2.19 2.06 2.07 2.31 2.29 2.34	35.74 35.61 35.61 35.62 35.64 35.65 35.64 35.64 35.84 35.84 35.84 35.84 35.84 35.84 35.84 35.84 35.88 35.9	$\begin{array}{c} 7.88\\ 7.95\\ 7.95\\ 7.97\\ 7.97\\ 7.97\\ 7.97\\ 7.97\\ 8.01\\ 8.01\\ 8.01\\ 7.92\\ 7.91\\ 7.93\\ 7.92\\ 7.92\\ 7.94\\ 7.71\\ 7.69\end{array}$	5 6 4 5 5 6 5 7 10 9 4 4 6 5 5 5 5 5 5	$\begin{array}{c} 5.6\\ 5.7\\ 6.4\\ 5.9\\ 4.5\\ 5.5\\ 6.2\\ 5.5\\ 5.3\\ 5.5\\ 4.8\\ 4.2\\ 5\\ 5.2\\ 5.2\\ 5.2\\ 6\end{array}$
18:14 18:10 18:05 18:50	11 12 13 W1	MF MF MF	841321 841569 841807 841855	836565 836595 836665 836576	2.5 4.5 4.6 7.1	1.25 1.00 3.50 1.00 3.60 1.00 3.55 6.10	84 96 118 143	0.059	25.1 24.2 24.4 24.8 24.8 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	7.41 7.42 8.27 8.26 8.31 8.41 8.41 8.41 8.35 8.37 7.18 8.33 8.23 6.21 5.54 5.24 5.01	$\begin{array}{c} 108.3\\ 108.7\\ 122.2\\ 122.\\ 122.\\ 122.\\ 122.\\ 123.9\\ 123.2\\ 123.4\\ 104.9\\ 104.4\\ 122.9\\ 104.4\\ 122.9\\ 104.4\\ 122.9\\ 104.4\\ 122.9\\ 104.4\\ 122.3\\ 104.9\\ 104.4\\ 122.3\\ 104.2\\$	$\begin{array}{c} 2.21 \\ 2.19 \\ 1.93 \\ 1.89 \\ 1.79 \\ 1.78 \\ 1.8 \\ 1.84 \\ 1.83 \\ 2.17 \\ 2.19 \\ 2.06 \\ 2.07 \\ 2.31 \\ 2.29 \\ 2.34 \\ 2.41 \end{array}$	35.74 35.61 35.61 35.61 35.62 35.64 35.64 35.64 35.64 35.84 35.84 35.84 35.84 35.84 35.84 35.83 35.9 35.9 35.9 36.36	$\begin{array}{c} 7.88\\ 7.95\\ 7.95\\ 7.97\\ 7.97\\ 7.97\\ 7.97\\ 8.01\\ 8.01\\ 7.92\\ 7.91\\ 7.93\\ 7.92\\ 7.84\\ 7.71\\ 7.69\\ 7.73\\ \end{array}$	$5 \\ 6 \\ 4 \\ 5 \\ 5 \\ 5 \\ 6 \\ 5 \\ 7 \\ 10 \\ 9 \\ 4 \\ 4 \\ 6 \\ 5 \\ 4 \\ 4 \\ 6 \\ 5 \\ 4 \\ 4 \\ 6 \\ 5 \\ 4 \\ 4 \\ 6 \\ 5 \\ 4 \\ 4 \\ 6 \\ 5 \\ 4 \\ 4 \\ 6 \\ 5 \\ 5 \\ 4 \\ 4 \\ 6 \\ 5 \\ 5 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 7 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	$\begin{array}{c} 5.6\\ 5.7\\ 6.4\\ 5.9\\ 4.5\\ 5.5\\ 5.5\\ 5.3\\ 5.5\\ 4.8\\ 4.2\\ 5\\ 5.2\\ 5.2\\ 5.2\\ 6\\ 6\\ 5.5\\ \end{array}$
18:14 18:10 18:05	I1 I2 I3	MF MF MF	841321 841569 841807	836565 836595 836665	2.5 4.5 4.6	1.25 1.00 3.50 1.00 3.60 1.00 3.55	84 96 118	0.059	25.1 24.2 24.4 24.8 24.8 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	7.41 7.42 8.27 8.27 8.26 8.31 8.41 8.41 8.41 8.35 7.18 7.15 8.33 8.23 6.21 5.54 5.24	$\begin{array}{c} 108.3\\ 108.7\\ 122.2\\ 122\\ 121.9\\ 122.7\\ 124\\ 123.9\\ 123.2\\ 123.4\\ 104.4\\ 104.4\\ 102.9\\ 121.3\\ 90.9\\ 81\\ 76.4 \end{array}$	2.21 2.19 1.93 1.89 1.79 1.78 1.78 1.78 1.8 1.8 1.8 1.8 2.17 2.19 2.06 2.07 2.31 2.29 2.34	35.74 35.61 35.61 35.62 35.64 35.65 35.64 35.64 35.84 35.84 35.84 35.84 35.84 35.84 35.84 35.84 35.88 35.9	$\begin{array}{c} 7.88\\ 7.95\\ 7.95\\ 7.97\\ 7.97\\ 7.97\\ 7.97\\ 7.97\\ 8.01\\ 8.01\\ 8.01\\ 7.92\\ 7.91\\ 7.93\\ 7.92\\ 7.92\\ 7.94\\ 7.71\\ 7.69\end{array}$	5 6 4 5 5 6 5 7 10 9 4 4 6 5 5 5 5 5 5	$\begin{array}{c} 5.6\\ 5.7\\ 6.4\\ 5.9\\ 4.5\\ 5.5\\ 6.2\\ 5.5\\ 5.3\\ 5.5\\ 4.8\\ 4.2\\ 5\\ 5.2\\ 5.2\\ 5.2\\ 6\end{array}$
18:14 18:10 18:05 18:50	11 12 13 W1	MF MF MF	841321 841569 841807 841855	836565 836595 836665 836576	2.5 4.5 4.6 7.1	1.25 1.00 3.50 1.00 3.60 1.00 3.55 6.10 0.40	84 96 118 143	0.059	$\begin{array}{c} 25.1 \\ 24.2 \\ 24.4 \\ 24.8 \\ 24.8 \\ 24.7 \\ 24.7 \\ 24.7 \\ 24.7 \\ 24.7 \\ 24.7 \\ 24.7 \\ 24.1 \\ 24.1 \\ 24.1 \\ 24.1 \\ 24.2 \\ 23.2 \\ 25.6 \\ 25.6 \\ 25.6 \\ 25.1 \\ \end{array}$	$\begin{array}{r} 7.41 \\ 7.42 \\ 8.27 \\ 8.27 \\ 8.26 \\ 8.31 \\ 8.41 \\ 8.41 \\ 8.35 \\ 7.18 \\ 7.18 \\ 7.15 \\ 8.33 \\ 6.21 \\ 5.54 \\ 5.24 \\ 5.01 \\ 8.47 \\ 8.54 \\ 8.21 \\ \end{array}$	$\begin{array}{c} 108.3\\ 108.7\\ 108.7\\ 122.2\\ 122.\\ 122.\\ 122.\\ 122.\\ 123.9\\ 123.2\\ 123.4\\ 104.9\\ 104.4\\ 122.9\\ 104.4\\ 122.9\\ 104.4\\ 122.9\\ 104.4\\ 122.9\\ 104.4\\ 122.9\\ 104.4\\ 122.9\\ 104.4\\ 122.7\\ 104.7\\ 121.3\\ 126.7\\ 127.7\\ 121.8\\ \end{array}$	2.21 2.19 1.93 1.89 1.78 1.78 1.78 1.84 1.83 2.17 2.19 2.06 2.07 2.31 2.29 2.34 2.41 3.71 2.67	$\begin{array}{r} 35.74\\ 35.61\\ 35.61\\ 35.61\\ 35.62\\ 35.64\\ 35.64\\ 35.64\\ 35.84\\ 35.84\\ 35.84\\ 35.84\\ 35.81\\ 35.81\\ 35.81\\ 35.81\\ 35.81\\ 35.81\\ 35.81\\ 35.81\\ 35.42\\ 35.42\\ 35.42\\ 35.42\\ 35.42\\ 35.52\\ \end{array}$	$\begin{array}{r} 7.88\\ 7.95\\ 7.95\\ 7.97\\ 7.97\\ 7.97\\ 7.97\\ 8.01\\ 8.01\\ 8.01\\ 8.01\\ 7.92\\ 7.93\\ 7.92\\ 7.93\\ 7.92\\ 7.84\\ 7.71\\ 7.69\\ 7.73\\ 7.99\\ 7.99\\ 7.99\\ 7.96\end{array}$	5 6 4 5 6 5 7 10 9 4 6 5 7 4 6 5 4 6 5 3	$\begin{array}{c} 5.6\\ 5.7\\ 6.4\\ 5.9\\ 4.5\\ 5.5\\ 6.2\\ 5.5\\ 5.3\\ 5.5\\ 4.8\\ 4.2\\ 5\\ 5.2\\ 5.2\\ 6\\ 6\\ 5.5\\ 10.5\\ 11.4\\ 4.4 \end{array}$
18:14 18:10 18:05 18:50	11 12 13 W1	MF MF MF	841321 841569 841807 841855	836565 836595 836665 836576	2.5 4.5 4.6 7.1	1.25 1.00 3.50 1.00 3.60 1.00 3.55 6.10	84 96 118 143	0.059	$\begin{array}{c} 25.1 \\ 24.2 \\ 24.4 \\ 24.8 \\ 24.8 \\ 24.7 \\ 24.7 \\ 24.7 \\ 24.7 \\ 24.7 \\ 24.7 \\ 24.7 \\ 24.7 \\ 24.1 \\ 24.7 \\ 24.6 \\ 24.3 \\ 24.2 \\ 23.9 \\ 23.2 \\ 23.6 \\ 25.6 \end{array}$	7.41 7.42 8.27 8.27 8.26 8.31 8.41 8.41 8.35 8.37 7.18 8.33 8.23 6.21 5.54 5.24 5.24 5.01 8.47	$\begin{array}{c} 108.3\\ 108.7\\ 102.2\\ 122.\\ 122\\ 121.9\\ 122.7\\ 123.9\\ 123.2\\ 123.2\\ 123.4\\ 104.9\\ 104.4\\ 122.9\\ 104.4\\ 122.9\\ 104.4\\ 122.9\\ 121.3\\ 90.9\\ 81\\ 76.4\\ 72.3\\ 126.7\\ 127.7\end{array}$	$\begin{array}{c} 2.21\\ 2.19\\ 1.93\\ 1.89\\ 1.79\\ 1.78\\ 1.8\\ 1.84\\ 1.83\\ 2.17\\ 2.19\\ 2.06\\ 2.07\\ 2.31\\ 2.29\\ 2.34\\ 2.41\\ 3.71\\ 2.87\\ \end{array}$	$\begin{array}{r} 35.74\\ 35.61\\ 35.61\\ 35.62\\ 35.64\\ 35.64\\ 35.64\\ 35.64\\ 35.64\\ 35.84\\ 35.84\\ 35.84\\ 35.88\\ 35.7\\ 35.88\\ 35.8\\ 35.88\\ 35.9\\ 35.88\\ 35.9\\ 36.66\\ 35.42\\ 35.42\\ \end{array}$	$\begin{array}{c} 7.88\\ 7.95\\ 7.95\\ 7.97\\ 7.97\\ 7.97\\ 7.97\\ 7.97\\ 8.01\\ 8.01\\ 8.01\\ 7.91\\ 7.91\\ 7.93\\ 7.92\\ 7.92\\ 7.83\\ 7.92\\ 7.71\\ 7.69\\ 7.73\\ 7.99\\ 7.99\\ \end{array}$	$5 \\ 6 \\ 4 \\ 5 \\ 5 \\ 6 \\ 5 \\ 7 \\ 10 \\ 9 \\ 4 \\ 4 \\ 6 \\ 5 \\ 5 \\ 4 \\ 6 \\ 5 \\ 5 \\ 6 \\ 5 \\ 5 \\ 6 \\ 5 \\ 5 \\ 6 \\ 5 \\ 5$	$\begin{array}{c} 5.6\\ 5.7\\ 6.4\\ 5.9\\ 4.5\\ 5.5\\ 6.2\\ 5.5\\ 5.3\\ 5.5\\ 4.8\\ 4.2\\ 5\\ 5.2\\ 5.2\\ 5.2\\ 6\\ 5.5\\ 10.5\\ 11.4\end{array}$

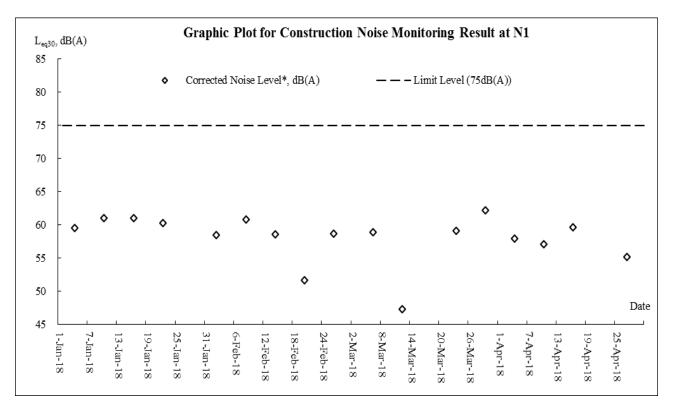

Appendix I

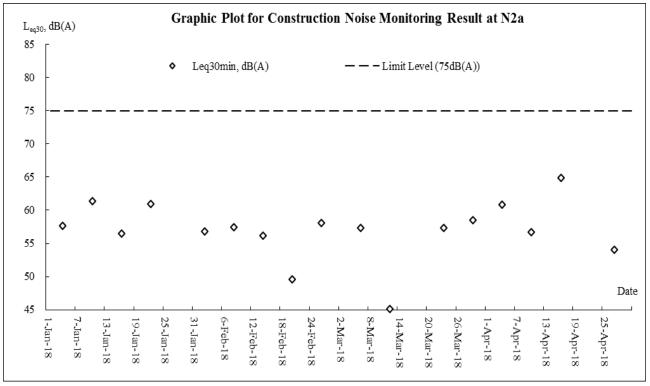

Graphical Plots for Monitoring Results

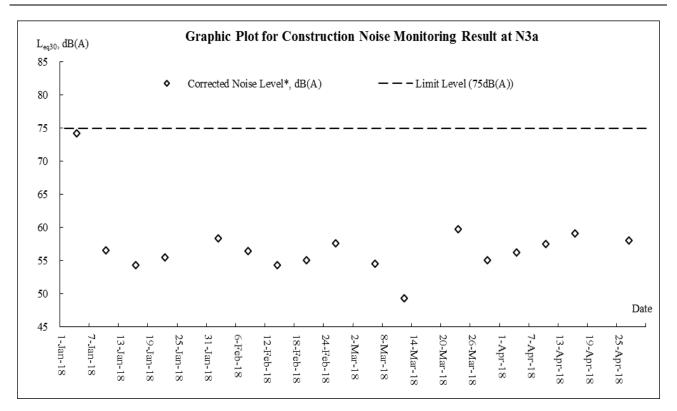
 $Z: \label{eq:loss} 2016 \ CS00874 \ 600 \ EM\& A \ Report \ Monthly \ EM\& A \ Report \ 5th \ Monthly \ Report \ - \ April \ 2018 \ R0170v4. doc$

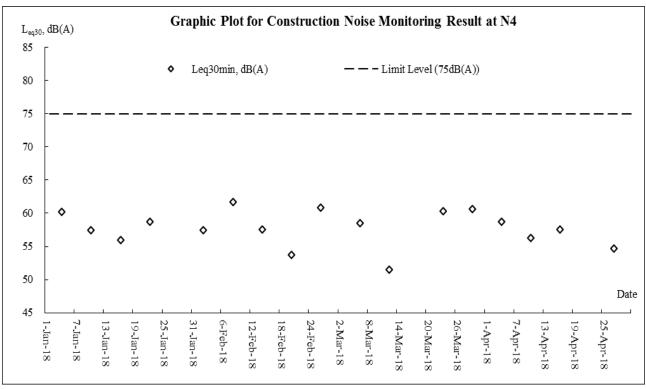

<u>Air Quality – 1-hour TSP</u>

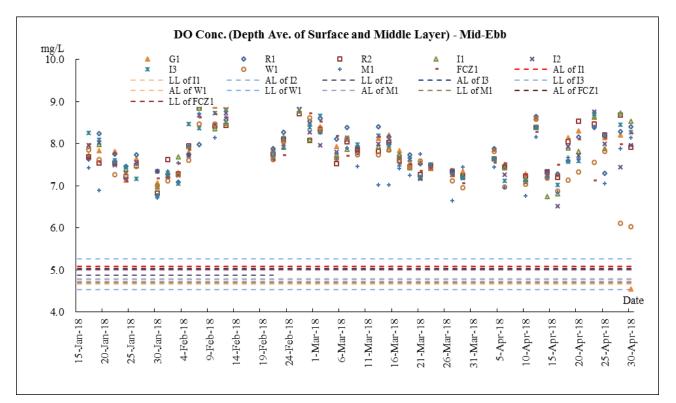


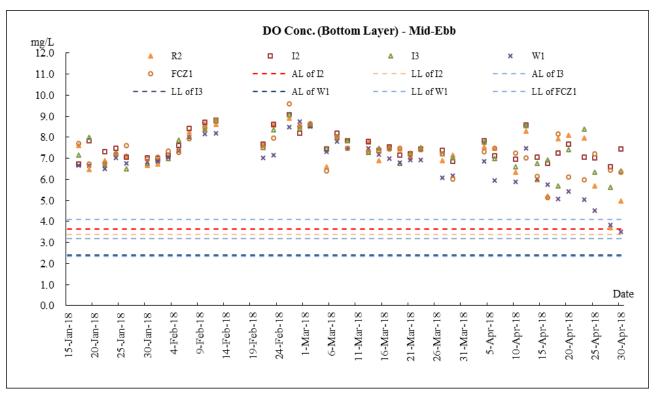

<u>Air Quality – 24-hour TSP</u>

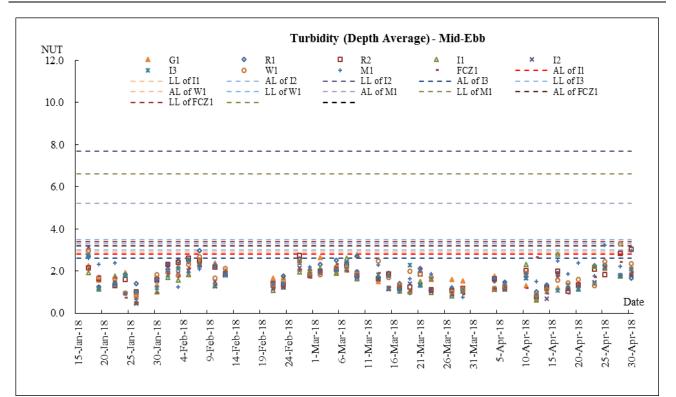


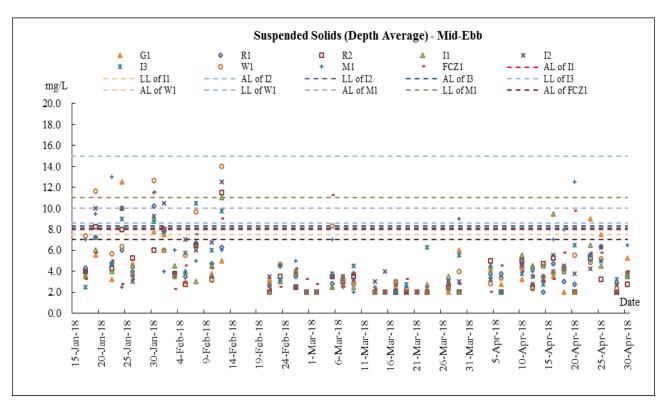


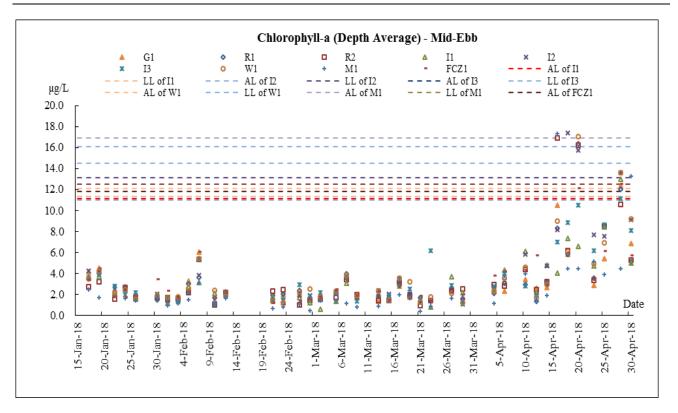

Construction Noise

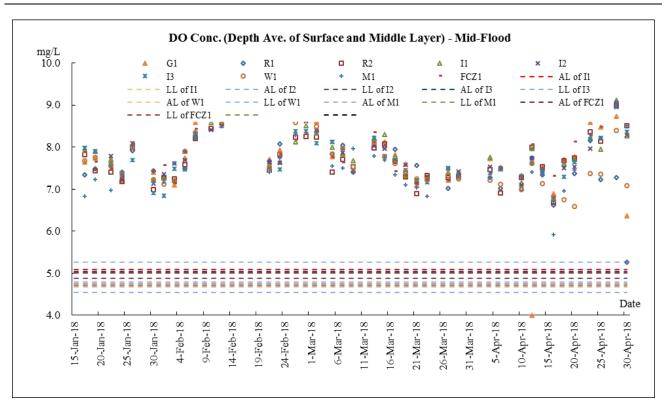


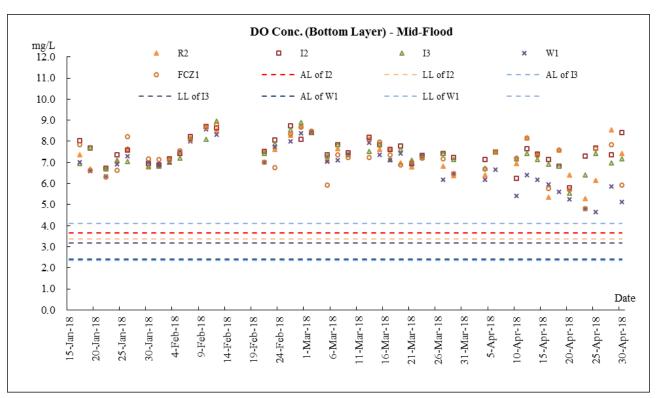


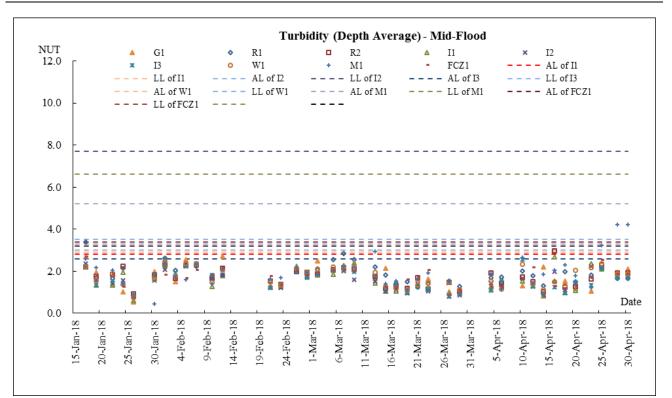


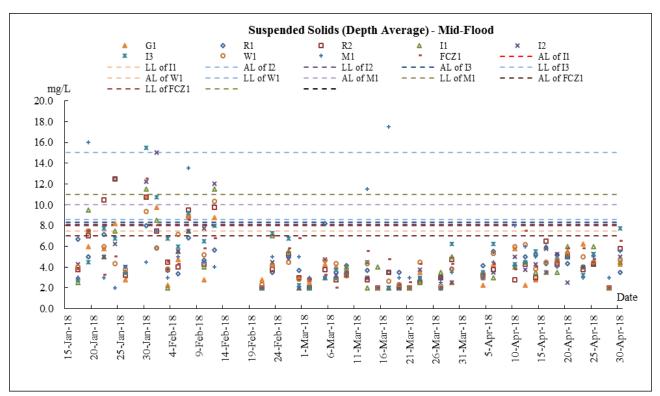

Water Quality

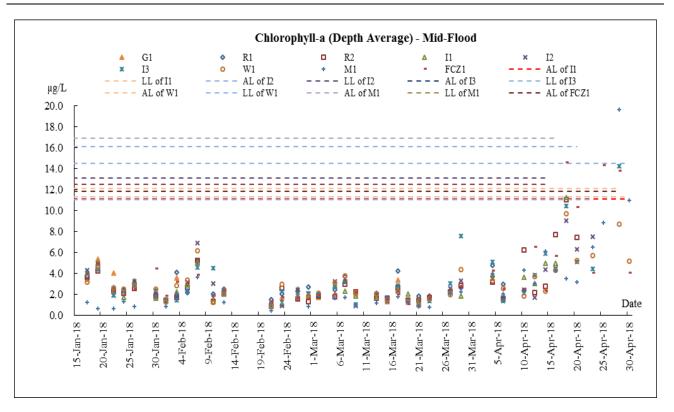











Z:\Jobs\2016\TCS00874\600\EM&A Report\Monthly EM&A Report\5th Monthly Report - April 2018\R0170v4.doc

Appendix J

Meteorological Data

 $Z: \label{eq:loss} 2016 \ CS00874 \ 600 \ EM\& A \ Report \ Monthly \ EM\& A \ Report \ 5th \ Monthly \ Report \ - \ April \ 2018 \ R0170v4. doc$

				Tai Po	Station	Tai Mei 7	Tuk Station
Date	2	Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Mean Relative Humidity (%)	Wind Speed (km/h)	Wind Direction
1-Apr-18	Sun	Hot and dry in the afternoon. Light winds.	0	23.8	73	10.2	E/SE
2-Apr-18	Mon	Hot and dry in the afternoon. Light winds.	0	#	#	6.6	E/SE
3-Apr-18	Tue	Hot and dry in the afternoon. Light winds.	0	#	#	8.9	SE
4-Apr-18	Wed	Mainly fine.	0	23.6	77	8.9	E/NE
5-Apr-18	Thu	Hot and dry in the afternoon. Light winds.	0	24.2	71.2	10.9	S/SE
6-Apr-18	Fri	Hot and dry in the afternoon. Light winds.	Trace	22.3	73	21	NE
7-Apr-18	Sat	Mainly fine.	Trace	17.7	56.8	9.8	E/NE
8-Apr-18	Sun	Light to moderate east to southeasterly winds.Mainly fine.	0	17.7	55.7	7.8	E/NE
9-Apr-18	Mon	Light to moderate east to southeasterly winds.Mainly fine.	0	20	77	10.5	E/NE
10-Apr-18	Tue	Moderate easterly winds, occasionally fresh offshore.	0	23.1	76.2	10	E/NE
11-Apr-18	Wed	Hot and dry in the afternoon. Light winds.	0	23.3	84.5	7.5	E/NE
12-Apr-18	Thu	Mainly fine.	0	25.4	80.5	7.4	SE
13-Apr-18	Fri	Light to moderate east to southeasterly winds.Mainly fine.	Trace	26.8	76	10.8	SE
14-Apr-18	Sat	Mainly fine.	Trace	27.3	81.5	12.3	N/NE
15-Apr-18	Sun	Cloudy to overcast with rain.	17.2	21.1	87.5	22.2	N/NE
16-Apr-18	Mon	Cloudy to overcast with rain.	2	16.3	91.5	7.1	NE
17-Apr-18	Tue	Mainly cloudy. Bright periods in the afternoon.	0.2	18.5	85.5	7.9	NE
18-Apr-18	Wed	Mainly cloudy. Bright periods in the afternoon.	0.1	22	78.2	10.5	E/NE
19-Apr-18	Thu	Mainly cloudy with one or two showers.	0	21.9	78.7	11.8	E/NE
20-Apr-18	Fri	Moderate easterly winds.	Trace	23.2	82	14	E/NE
21-Apr-18	Sat	Mainly cloudy with one or two showers.	Trace	24.4	80.3	10.2	E/NE
22-Apr-18	Sun	Moderate easterly winds.	Trace	25.2	82.5	9.7	SE
23-Apr-18	Mon	Moderate easterly winds.	Trace	26.7	78	10.5	SE
24-Apr-18		Moderate east to northeasterly winds.	8.2	24.1	89.5	10.5	E/NE
25-Apr-18	Wed	Cloudy. Isolated showers in the afternoon.	Trace	22.3	80	9.7	E/NE
26-Apr-18	Thu	Fine and hot. Light to moderate southerly winds.	0.3	22.8	85	14	E/NE
27-Apr-18	Fri	Fine and hot. Light to moderate southerly winds.	Trace	24.9	#	7.2	E/NE
28-Apr-18	Sat	Fine and hot. Light to moderate southerly winds.	0.1	24.1	85.6	8.2	E/NE
29-Apr-18	Sun	Fine and hot. Light to moderate southerly winds.	Trace	25.4	85.5	10	E/NE
30-Apr-18	Mon	Fine and hot. Light to moderate southerly winds.	Trace	26	85.5	10.6	E/NE

Remark: (#) Under Maintenance;

Appendix K

Waste Flow Table

		Actual	Quantities of In	ert C&D Mater	ials Generated M	Aonthly	Actual	Ac	tual Quantities	of C&D Waste C	Generated Mont	hly
Year	Mth	Total Quantities Generated	Broken Concrete (see Note 3)	Reused in the Contract	Reused in Other Projects	Disposed in Public Fill	Quantities of Import Fill	Metal	Paper / Cardboard Packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. General Refuse
		(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
	Jun	0	0	0	0	0	0	0	0	0	0	0
	Jul	0	0	0	0	0	0	0	0	0	0	0
3	Aug	0	0	0	0	0	0	0	0	0	0	0
2013	Sep	0	0	0	0	0	0	0	0	0	0	0
0	Oct	0	0	0	0	0	0	0	0	0	0	0
	Nov	0	0	0	0	0	0	0	0	0	0	0
	Dec	0	0	0	0	0	0	0	0	0	0	0
	Jan	0	0	0	0	0	0	0	0	0	0	0
)16	:	0	0	0	0	0	0	0	0	0	0	0
2014-2016	Jun	0	0	0	0	0	0	0	0	0	0	0
014	Sub-total:	0	0	0	0	0	0	0	0	0	0	0
5	:	0	0	0	0	0	0	0	0	0	0	0
10	Oct	0	0	0	0	0	0	0	0	0	0	0
2016	Nov	0	0	0	0	0	0	0	0	0	0	0
5	Dec	0	0	0	0	0	0	0	0	0	0	0
	Total:	0	0	0	0	0	0	0	0	0	0	0
	Jan	0	0	0	0	0	0	0	0	0	0	0
	Feb Mar	0 0	0	0	0	0	0	0	0	0	0 0	0.0024
		0	0	0	0	0	0	0	0	0	0	0
	Apr May	0	0	0	0	0	0	4.97	0	0	0	0.103644
	Jun	0	0	0	0	0	0	0	0	0	0	0.103044
2017	Sub-total:	0	0	0	0	0	0	4.97	0	0	0	0.112444
20	Jul	0	0	0	0	0	0	0	0	0	0	0.01104
	Aug	0	0	0	0	0	0	0	0	0	0	0
	Sep	0	0	0	0	0	0	0	0	0	0	0.02883
	Oct	0	0	0	0	0	0	0	0	0	0	0
	Nov	0.04875	0	0	0	0.04875	0	0	0	0	8	0.26
	Dec	0	0	0	0	0	0	0	0	0	0	0.0325
	Total:	0.04875	0	0	0	0.04875	0	4.97	0	0	0	0.444814
	Jan	0	0	0	0	0	0	0	0	0	0	0.078
	Feb	0	0	0	0	0	0	0	0	0	0	0
1	Mar	1.633125	0	0	0	1.633125	0	0	0	0	0	0.0065
	Apr	1.31625	0	0	0	1.31625	0	0	0	0	0	0
	May											
~	Jun											
2018	Sub-total:											
10	Jul											
1	Aug											
	Sep											
	Oct											
	Nov											
	Dec											
	Total:	2.998125	0	0	0	2.998125	0	4.97	0	0	8	0.529314

Appendix L

Implementation Schedule for Environmental Mitigation Measures

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of Completion of	Implementation Agent	Implementation Stage	Relevant Legislation Guidelines
			address	Measures		Des C O Dec	Guidennes
Air Qu	ality – Cor	nstruction Phase					
4.5.1	-	Dust Control					
		a Vehicle washing facilities should be provided at the designated vehicle exit point;b Every vehicle should be washed to remove any dusty materials from its body and wheels immediately before	To ensure dust emission is controlled and compliance with relevant statutory requirements	Project Site / During construction	Contractor	~	Air Pollution Control (Construction Dust) Regulations
		leaving the worksite;c The load carried by the trucks should					
		be covered entirely to ensure no leakage from the vehicles;					
		d Hoarding of not less than 2.4 m high from ground level should be provided along the entire length of that portion of the site boundary adjoining a road or other area accessible to the public except for a site entrance or exit;					
		e The main haul road should be kept clear of dusty materials and should be sprayed with water so as to maintain the entire road surface wet at all the time;					
		f The stockpile of dusty materials should be either covered entirely by					

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Imp	eme Staş		Legislation
			& Main Concerns to address	Completion of Measures		Des	С	O Dec	Guidelines
		impervious sheets; place in an area sheltered on the top and three sides; or sprayed with water to maintain the entire surface wet at all the time;							
		g Belt conveyor system should be enclosed on the top and two sides;							
		h The height of the belt conveyor should be kept as low as possible to avoid delivery at height; and							
		i All the exposed area should be kept wet always to minimise dust emission.							
4.5.1	-	Air Quality Control							
		a All dump trucks entering or leaving the Project Site should be provided with mechanical covers in good service condition; and	To ensure air quality standards compliance with relevant statutory requirements	Project Site / During construction	Contractor		~		ETWB TCW No 19/2005
		b Ultra-low-sulphur diesel (ULSD) should be used for all construction plant on site.							

4.7.1 - EM&A Requirements

Regular site audits (at a frequency of not

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	-	Sta	Legislation
		less than once every two weeks) are recommended.	To ensure that appropriate dust control measures are implemented and good site practices are adopted	Project Site / During construction	ET and Contractor		✓	Air Pollution Control (Construction Dust) Regulations
4.7.1	3.0-3.7	Implementation of a construction dust monitoring in every six days	To ensure compliance with the relevant criterion during the construction works.	ASRs A4 (No. 101 Lung Mei Tsuen) and A6 (No. 79 Lo Tsz Tin tsuen) / during construction	ET and Contractor		✓	Air Pollution Control (Construction Dust) Regulations
Noise -	– Construc	tion Phase						
5.6.1		Site hoardings at the particular work site boundary may be provided for achieving screening effect, provided that the hoardings have no openings or gaps and meet the same specifications for movable noise barriers. The proposed movable noise barriers should be at least 3m high with a surface density of not less than 7 kg m ⁻² , which could provide a minimum of 5 dB(A) attenuation. Skid footing of movable noise barriers should be located at a distance not more than a few metres of stationary plant and mobile plant such that the NSRs would not have direct line of sight to the plant. The length of the barriers should also be at least five times greater than its height.	To reduce the construction noise impact.	Project Site / During construction	ET and Contractor		✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1	-	The following Quiet Powered Mechanical	To reduce the construction	Project Site / During	Contractor		✓	Noise Control

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	-	Stag	Legislation Cuidelines
(Table 5.12)		Equipment (PME) should be used during the construction Phase.		construction phase				<i>Ordinance</i> (NCO) and <i>Annex 5</i> of the
		• Mobile Crane, SWL listed in the data base of quality powered mechanical equipment prepared by the Noise Control Authority, 107 dB(A);						EIAO-TM
		 Tracked Loader, British Standard 5228 – Table C3, Reference No. 16, 104 dB(A); 						
		 Pneumatic breaker, British Standard 5228 – Table C2, Reference No. 10, 110 dB(A); 						
		• Concrete Lorry Mixer British Standard 5228 – Table C6, Reference No. 23, 100 dB(A); and						
		• Excavator British Standard 5228 - Table C3, Reference No. 97, 105 dB(A).						
5.7.1	-	Construction Works on Land						
(Table 5.13)		Movable noise barrier should be provided for excavator and mobile crane;	To reduce the construction noise impact.	Project Site / During the Site Formation,	Contractor		√	Noise Control Ordinance
		Timber sawing machine should be operated behind site hoarding/ movable noise barrier; and		construction of seawall, ramp, staircase, retaining walls, sump tanks for				(NCO) and Annex 5 of the EIAO-TM
		Concrete lorry mixer should be operated behind site hoarding/movable noise barrier.		grey water system and superstructure				

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures foundation	Implementation Agent	Implementation StageDesCODec	Relevant Legislation Guidelines
5.7.1 (Table 5.13)	-	Timber sawing machine should be operated behind movable noise barrier; and Movable noise barrier should be provided for excavator and mobile crane.	To reduce the construction noise impact.	Project Site / During the localised road widening works along Ting Kok Road	Contractor	~	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1 (Table 5.13)	-	<u>Car Park Paving</u> Movable noise barrier should be provided for excavator.	To reduce the construction noise impact.	Project Site / During the car park paving	Contractor	~	<i>Noise Control</i> <i>Ordinance</i> (NCO) and <i>Annex 5</i> of the <i>EIAO-TM</i>
5.7.1 (Table 5.13)	-	Building Works Movable noise barrier should be provided for excavator, mobile crane and earth auger; and Timber sawing machine should be operated behind site hoarding/ movable noise barrier.	To reduce the construction noise impact.	Project Site / During foundation and tanking works	Contractor	~	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1 (Table 5.13)	-	Movable noise barrier should be provided for mobile crane; and Timber sawing machine should be operated behind site hoarding/ movable noise barrier.	To reduce the construction noise impact.	Project Site / During superstructure works	Contractor	¥	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage	Relevant Legislation Guidelines
						Des C O Dec	
5.7.1 (Table 5.13)	-	Movable noise barrier should be provided for mobile crane.	To reduce the construction noise impact.	Project Site / During building finishes & internal fitting-out	Contractor	✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1 (Table 5.13)	-	Rock filling for the Groynes					
		Movable noise barrier should be provided for excavator and derrick lighter.	To reduce the construction noise impact.	Project Site / During the construction of gabion channel	Contractor	✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1 (Table 5.13)	-	Box Culvert Construction					
		Movable noise barrier should be provided for excavator.	To reduce the construction noise impact.	Project Site / During the construction of gabion channel	Contractor	✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1 (Table 5.13)	-	Movable noise barrier should be provided for excavator, mobile crane; and	To reduce the construction noise impact.	Project Site / During the construction of western culvert	Contractor	~	<i>Noise Control</i> <i>Ordinance</i> (NCO) and <i>Annex 5</i> of the <i>EIAO-TM</i>
		Concrete lorry mixer should be operated behind site hoarding/movable noise barrier.					
5.7.1 (Table 5.13)	-	Concrete lorry mixer should be operated behind site hoarding/movable noise barrier.	To reduce the construction noise impact.	Project Site / During the construction of eastern culvert	Contractor	✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1	-	Site hoarding should be provided for work	To reduce the construction	Project Site / During	Contractor	\checkmark	Noise Control

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of Completion of	Implementation Agent	Implementation Stage	Legislation
			address	Measures		Des C O Dec	Guidennes
(Table 5.13)		site.	noise impact.	the construction of 90m box culvert			Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1	-	Sand Filling					
(Table 5.13)		Movable noise barrier should be provided for excavator.	To reduce the construction noise impact.	Project Site / During the construction of gabion channel	Contractor	*	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1	-	Good Site Practice					
		Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;	To reduce the construction noise impact.	Project Site / Throughout the construction period	Contractor	\checkmark	<i>Noise Control</i> <i>Ordinance</i> (NCO) and <i>Annex 5</i> of the
		Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction programme;					EIAO-TM
		Mobile plant, if any, should be sited as far from NSRs as possible;					
		Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;					
		Plant known to emit noise strongly in one direction should, wherever possible, be					

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of Completion of	Implementation Agent	Implementation Stage Des C O Dec				Relevant Legislation Guidelines
			address	Measures		Des	С	0 1	Dec	Guidennes
		orientated so that the noise is directed away from the nearby NSRs; and								
		Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.								
5.9.1	4.1	EM&A Requirements								
		Implementation of weekly construction noise monitoring at the representative NSRs.	To ensure compliance with the relevant criterion during the construction works.	N1, N2/N2a, N3 & N4/ Throughout the construction period	ET and Contractor		~			Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
Water 9	Quality – C	Construction Phase								
6.6.1	-	Dredging and Sandfilling Operations	To further minimise the SS	Project Site / During	Contractor		✓			-
		Sandfilling works should be carried out after the completion of groyne construction.	level during sandfilling Sal	sandfilling						
6.6.1 and Figure 6.20	-	A movable cage type / metal frame type silt curtain will be deployed around the dredging area next to the grab dredger prior to commencement of dredging works.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor		✓			Annex 6 of the EIAO-TM
6.6.1 and Figure 6.21	-	Standing type silt curtains will be deployed around the proposed sandfilling extent prior to commencement of sandfilling works.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor		✓			Annex 6 of the EIAO-TM
6.6.1	-	A hourly dredging rate of a closed grab dredger (with a minimum grab size of 3 m^3) should be less than $31 \text{ m}^3 \text{ hr}^{-1}$, with	To further minimise the SS level during the dredging works	Project Site / During dredging	Contractor		✓			-

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Implementation Stage	Legislation
			& Main Concerns to address	Completion of Measures		Des C O Dec	Guidelines
		reference to the maximum rate for dredging, which was derived in the EIA.					
6.6.1	-	A daily filling rate should be less than 1,000 m ³ day ⁻¹ , which was defined in the EIA.	To further minimise the SS level during the sandfilling works	Project Site / During sandfilling	Contractor	\checkmark	-
6.6.1	-	Mechanical grabs should be designed and maintained to avoid spillage and should seal tightly while being lifted.	To further minimise the SS level during the dredging works	Project Site / During dredging	Contractor	\checkmark	-
6.6.1	-	Barges or hoppers should have tight fitting seals to their bottom openings to prevent leakage of material.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor	\checkmark	-
6.6.1	-	Loading of barges or hoppers shall be controlled to prevent splashing of dredged material to the surrounding water.	To further minimise the SS level during the dredging works	Project Site / During dredging	Contractor	\checkmark	-
6.6.1	-	Barges or hoppers should not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor	✓	-
6.6.1	-	Excess material should be cleaned from the decks and exposed fittings of barges or hoppers before the vessel is moved.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor	✓	-
6.6.1	-	Adequate freeboard should be maintained on barges to reduce the likelihood of decks being washed by wave action.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor	\checkmark	-
6.6.1	-	All vessels should be sized such that adequate clearance is maintained between vessels and the seabed at all states of the	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor	\checkmark	-

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Measures/Timing of	Implementation Agent	n Implementation Stage			Legislation
			& Main Concerns to address	Completion of Measures		Des	С	O Dec	Guidelines
		tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.							
6.6.1	-	The works should not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the Project Site.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor		✓		ProPECC PN 1/94
6.6.1	-	<u>Construction Site Runoff</u> The excavation works for the drainage diversions should be carried out to minimise any seawater influx entering the works area and hence to keep the works area dry as much as possible.	To ensure the works area will be kept dry as much as possible and hence avoid construction site runoff	Project Site / During excavation for the drainage diversions	Contractor		✓		-
6.6.1 and Figure 6.21	-	Silt curtains at the inshore waters should be deployed to enclose the works area before the commencement of the excavation works for two drainage diversions until the completion of the diversions.	To avoid any adverse water quality impacts resulting from the site runoff due to heavy rainfall	Project Site / During excavation for the drainage diversions	Contractor		~		-
6.6.1	-	At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed and internal drainage works and erosion and sedimentation control facilities implemented. Channels, earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of efficient silt removal facilities should be based on the guidelines in <i>Appendix A1</i> of <i>ProPECC PN</i> <i>1/94</i> .	To minimise the construction site runoff	Project Site / During land based construction works	Contractor		•		<i>ProPECC PN</i> 1/94
6.6.1	_	All the surface runoff should be collected by	To minimise the	Project Site / During	Contractor		✓		ProPECC PN

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Impl	emei Stag		Legislation
			& Main Concerns to address	Completion of Measures		Des	C	O Dec	Guidelines
		the on-site drainage system and diverted through the silt traps prior to discharge into storm drain.	construction site runoff	land based construction works					1/94
6.6.1	-	All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks, where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or by other means.	To minimise the construction site runoff	Project Site / During land based construction works	Contractor		~		<i>ProPECC PN 1/94</i>
6.6.1	-	All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rainstorms. Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas.	To minimise the construction site runoff	Project Site / During land based construction works	Contractor		~		ProPECC PN 1/94
6.6.1	-	Measures should be taken to reduce the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal	To minimise the construction site runoff	Project Site / During land based construction works	Contractor		✓		<i>ProPECC PN 1/94</i>

 $Z: \label{eq:loss} 2016 \ CS00874 \ 600 \ EM\&A \ Report \ Monthly \ EM\&A \ Report \ 5th \ Monthly \ Report \ - \ April \ 2018 \ R0170 \ v4. doc$

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Implementation Stage	Legislation
			& Main Concerns to address	Completion of Measures		Des C O Dec	Guidelines
		facilities.					
6.6.1	-	Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	To minimise the construction site runoff	Project Site / During land based construction works	Contractor	~	<i>ProPECC PN</i> 1/94
6.6.1	-	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system.	To minimise the construction site runoff	Project Site / During land based construction works	Contractor	*	ProPECC PN 1/94
6.6.1	-	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarised in <i>Appendix</i> <i>A2</i> of <i>ProPECC PN 1/94</i> . Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.	To minimise the construction site runoff	Project Site / During land based construction works	Contractor	~	ProPECC PN 1/94
6.6.1	-	Oil interceptors should be provided in the	To minimise the	Project Site / During	Contractor	\checkmark	ProPECC PN

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	_	emen Stag		Legislation
			& Main Concerns to address	Completion of Measures		Des	C C	Dec	Guidelines
		drainage system and regularly emptied to prevent the release of oil and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	construction site runoff	land based construction works					1/94
6.6.1	-	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment traps should be regularly cleaned and maintained. The temporary diverted drainage should be reinstated to the original condition when the construction work has finished or the temporary diversion is no longer required.	To minimise the construction site runoff	Project Site / During land based construction works	Contractor		✓		<i>ProPECC PN</i> 1/94
6.6.1	-	Sewage Generated by Workforce							
		Sewage from toilets should be collected by a licensed waste collector.	To prevent contamination to nearby environment	Project Site / During land based construction works	Contractor		✓		Water Pollution Control Ordinance
6.6.1	-	Storage and Handling of Oil, Other Petroleum Products and Chemicals	To prevent contamination to	Project Site / During	Contractor		√		Waste Disposal
		Waste streams classifiable as chemical wastes should be properly stored, collected and treated for compliance with <i>Waste</i> <i>Disposal Ordinance or Disposal (Chemical</i> <i>Waste) (General) Regulation</i> requirements.	nearby environment	land based construction works	Contractor		-		Ordinance
6.6.1	-	All fuel tanks and chemical storage areas should be provided with locks and be sited	To prevent contamination to	Project Site / During land based construction	Contractor		✓		Waste Disposal

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	-	eme Sta		Legislation
			& Main Concerns to address	Completion of Measures		Des	С	O Dec	Guidelines
		on paved areas.	nearby environment	works					Ordinance
6.6.1	-	The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled oil, fuel and chemicals from reaching the receiving waters.	To prevent contamination to nearby environment	Project Site / During land based construction works	Contractor		✓		Waste Disposal Ordinance
6.6.1	-	Oil leakage or spillage should be contained and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal, in accordance with the <i>Waste</i> <i>Disposal Ordinance</i> . The Contractors should prepare guidelines and procedures for immediate clean-up actions following any spillages of oil, fuel or chemicals.	To prevent contamination to nearby environment	Project Site / During land based construction works	Contractor		✓		Waste Disposal Ordinance
6.6.1	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should, as far as possible, be located within roofed areas. The drainage in these covered areas should be connected to foul sewers via a petrol interceptor.	To prevent contamination to nearby environment	Project Site / During land based construction works	Contractor		✓		Waste Disposal Ordinance
6.9.1	5.1	EM&A Requirements							
and 11.6.1		Monitoring of marine water quality during the construction phase is considered necessary to evaluate whether any impacts would be posed by these marine works on the surrounding waters during the operation of dredging and filling works.	To ensure the construction works would not arise any impacts to the surrounding waters	Marine water outside the Project Site / During dredging and filling works	ET and Contractor		✓		-

EIA	EM&A	Environmental Protection Measures	Objectives of the	Location/Duration of	Implementation	Implementation	Relevant
Ref.	Ref		Recommended Measure	Measures/Timing of	Agent	Stage	Legislation
			& Main Concerns to address	Completion of Measures		Des C O Dec	Guidelines

Water Quality – Post-Construction Phase (After the completion of the construction and before the operation of the beach)

6.9.2 and 11.6.2	5.2	EM&A Requirements E. coli monitoring should be conducted at the outlet of two diverted drains and at EPD's beach water monitoring stations for the identification of pollution loading and to establish relationship between the loading and EPD's beach monitoring programme.	To investigate the pollution loading of <i>E. coli</i> and to establish relationship with EPD's beach monitoring data	Two diverted drains and the Bathing Beach/ Within six weeks after the completion of the construction works	ET	Post-Con n Phase the comp of the construc before th operatio beach)	bletion tion and ne	
Water 9	Quality – C	Operational Phase						
6.6.2	-	Surface Runoff from Project Site						
		A petrol interceptor should be provided in the drainage system and regularly emptied to prevent the release of oil and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain. Where appropriate, the design should follow or of similar functions as stated in the <i>ProPECC PN</i>	To prevent contamination to nearby environment	Beach Park area / During operation	Operator	~	~	Water Pollution Control Ordinance and ProPECC PN 1/94

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Imp	leme Sta		tion	Legislation
			& Main Concerns to address	Completion of Measures		Des	С	0	Dec	Guidelines
		1/94.								
6.6.2	-	Oil leakage or spillage should be contained and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal in accordance with the <i>Waste</i> <i>Disposal Ordinance</i> .	To prevent contamination to nearby environment	Beach Building Facility / During operation	Operator	✓		✓		Waste Disposal Ordinance
Waste .	Manageme	ent – Construction Phase								
7.6	-	The Contractor should submit the plan to Project Proponent's Engineer Representative for endorsement prior to the commencement of the construction works. The plan should incorporate site-specific factors, such as the designation of areas for the segregation and temporary storage of reusable and recyclable materials.	To ensure that adverse environmental impacts are prevented	Project Site / Contract mobilisation and during construction	Contractor	•	•			-
7.6	-	It will be the Contractor's responsibility to ensure that only reputable licensed waste collectors are used and that appropriate measures to reduce adverse impacts, including windblown litter and dust from the transportation of these wastes, are employed.	To ensure that adverse environmental impacts are prevented	Project Site / Contract mobilisation and during construction	Contractor	✓	•			-
7.6	-	The Contractor must ensure that all the necessary permits or licences required under the Waste Disposal Ordinance are obtained for the construction phase.	To ensure compliance with relevant statutory requirements	Project Site / Contract mobilisation and during construction	Contractor	✓	✓			-
7.6	-	 Waste Management Hierarchy Nomination of approved personnel to be responsible for good site practices, 	To ensure that adverse environmental impacts are prevented	Project Site / Contract mobilisation and during construction	Contractor	~	~			Waste Disposal (Charges for Disposal of

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	ImplementationStageDesCODec	Relevant Legislation Guidelines
		arrangements for collection and effective disposal to an appropriate facility of all wastes generated at the site;					Construction Waste) Regulation;
		 Training of site personnel in proper waste management and chemical handling procedures; 					ETWB TCW No.31/2004; and Appendix C of
		 Provision of sufficient waste disposal points and regular collection for disposal; 					ETWB TCW No. 19/2005
		• Appropriate measures to reduce windblown litter and dust transportation of waste by either covering trucks or by transporting wastes in enclosed containers;					
		• Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Centre;					
		• Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and					
		• A recording system for the amount of wastes generated/recycled and disposal sites.					
	-	 Waste Reduction Measures Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse 	To reduce construction waste generation	Project Site / During construction	Contractor	V	-

EIA Ref.	EM&A Ref	Ref H	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of Completion of	Implementation Agent	Stage	Legislation
			address	Measures		Des C O De	c
		or recycling of material and their proper disposal;					
		• Encourage collection of aluminium cans and waste paper by individual collectors during construction with separate labelled bins being provided to allow the segregation of these wastes from other general refuse generated by the workforce;					
		• Any unused chemicals and those with remaining functional capacity be recycled as far as possible;					
		• Use of reusable non-timber formwork to reduce the amount of C&D materials;					
		• Prior to disposal of construction waste, wood, steel and other metals should be separated, to the extent practical for re-use and/or recycling to reduce the quantity of waste to be disposed at landfills;					
		• Proper storage and site practices to reduce the potential for damage or contamination of construction materials; and					
		• Plan and stock construction materials carefully to reduce amount of waste generated and avoid unnecessary generation of waste.					

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	ation Implementation Stage			Legislation
			& Main Concerns to address	Completion of Measures		Des	C (D Dec	Guidelines
7.6.1	-	Dredging Materials							
		The final disposal site for the dredged sediments should be determined by the MFC and a dumping licence should be obtained from EPD prior to the commencement of the dredging works. Uncontaminated sediments should be disposed of at open sea disposal sites designated by the MFC. For contaminated sediments requiring Type 2 confined marine disposal, relevant contract documents should specify the allocation conditions of the MFC and EPD.	To ensure adverse environmental impacts are prevented	Dredging area / During construction	Contractor		~		Dumping at Sea Ordinance
7.6.2	-	Excavated Materials and C&D Waste							
		Management of Waste Disposal The contractor should open a billing account with EPD in accordance with the Waste Disposal (Charges for Disposal of Construction Waste) Regulation for the payment of disposal charges. Every waste load transferred to Government waste disposal facilities such as public fill, sorting facilities, or landfills should require a valid "chit" which contains the information of the account holder to facilitate waste transaction recording and billing to the waste producer. A trip-ticket system should be established in accordance with TCW No. 6/2010 to monitor the reuse of surplus excavated materials off-site and disposal of construction waste and general refuse at	To properly handle the excavated materials and C&D waste and thus avoid any adverse impacts	Project Site / During construction	Contractor		~		Waste Disposal (Charges for Disposal of Construction Waste) Regulation

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of Completion of	Implementation Agent	-	Sta		Legislation	
			address	Measures		Des	С	0 1	Dec	Guidelines
		transfer stations/landfills, and to control fly-tipping. The billing "chit" and trip-ticket system should be included as one of the contractual requirements and implemented by the contractor. Regular audits of the waste management measures implemented on-site as described in the Waste Management Plan should be conducted.								
		A recording system (similar to summary table as shown in Annex 4 and Annex 5 of <i>Appendix C</i> of ETWB TWC No. 19/2005) for the amount of waste generated, recycled and disposed of (including the disposal sites) will be established during the construction phase.								
7.6.2	-	Reduction of C&D Materials Generation	To reduce the generation of		Contractor		✓			-
		Public fill and construction waste should be segregated and stored in different containers or skips to facilitate reuse or recycling of the public fill and proper disposal of the construction waste. Specific areas of the work site should be designated for such segregation and storage if immediate use is not practicable.	C&D waste	construction						
		To reduce the potential dust and water quality impacts of site formation works, C&D materials should be wetted as quickly as possible to the extent practicable after excavation/filling.								

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation StageDesCODec	Relevant Legislation Guidelines
7.6.3	-	 <u>Chemical Waste</u> The Contractor should register as a chemical waste producer with the EPD. Chemical waste, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes should: Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; Have a capacity of less than 450 L unless the specifications have been approved by the EPD; and Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulations. The storage area for chemical wastes will: Be clearly labelled and used solely for the storage of chemical waste; Be enclosed on at least 3 sides; 	To ensure proper handling of chemical waste	Project Site / During construction	Contractor		Code of Practice on the Packaging, Handling and Storage of Chemical Wastes

EIA	EM&A	Environmental Protection Measures	Objectives of the	Location/Duration of	Implementation	Implementation	Relevant
Ref.	Ref		Recommended Measure	Measures/Timing of	Agent	Stage	Legislation
			& Main Concerns to address	Completion of Measures		Des C O Dec	Guidelines

- Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest;
- Have adequate ventilation;
- Be covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and
- Be arranged so that incompatible materials are appropriately separated.

Chemical waste should be collected by a licensed chemical waste collector to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Facility.

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Measures/Timing of	Implementation Agent	mplementation Implem Agent St		- Stage I	
			& Main Concerns to address	Completion of Measures		Des	C O	Dec	Guidelines
7.6.4	-	Sewage An adequate number of portable toilets should be provided for the on-site construction workforce during construction phase. All portable toilets should be maintained in a state that will not deter the users from using them. Night soil should be regularly collected by a licensed collector for disposal. The sewage generated from the visitors during operation of the Proposed Beach Development should be discharged to the adjacent foul sewer conveying to Tai Po Sewage Treatment Works for treatment.	To ensure proper handling of sewage	Project Site / During construction	Contractor		✓		-
7.6.5	-	General Refuse	To ensure proper handling	5 0	Contractor		\checkmark		-
		General refuse should be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector should be employed to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to reduce odour, pest and litter impacts. The burning of refuse on construction sites is prohibited by law.	of general refuse	construction					
		Recycling bins should be provided at strategic locations to facilitate recovery of aluminium cans and waste paper from the Project Site. Materials recovered should be sold for recycling.							

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	n Implementation Stage			Legislation
			& Main Concerns to address	Completion of Measures		Des	С	O Dec	Guidelines
7.6.6	-	<u>Staff Training</u> Training should be provided to workers on the concept of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycling at the beginning of the construction works.	To ensure that adverse environmental impacts are prevented	Project Site / Contract mobilisation and during construction	Contractor	V	•		-
7.7	6.1	EM&A Requirements Joint site audits by the Environmental Team and the Contractor should be undertaken on a weekly basis. Particular attention should be given to the Contractor's provision of sufficient spaces, adequacy of resources and facilities for on-site sorting and temporary storage of C&D materials. The C&D materials to be disposed of from the Project Site should be visually inspected. The public fill for delivery to the off-site stockpiling area should contain no observable non-inert materials (e.g., general	To ensure that adverse environmental impacts are prevented	Project Site / During construction	ET and Contractor		•		-
		refuse, timber, etc). The waste to be disposed of at refuse transfer stations or landfills should as far as possible contains no observable inert or reusable/recyclable C&D materials (e.g., soil, broken rock, metal, and paper/cardboard packaging, etc). Any irregularities observed during the weekly site audits should be raised promptly to the Contractor for rectification.							

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	ImplementationStageDesCODec	Relevant Legislation Guidelines
Ecolog	y – Cons	struction Phase					
8.10.2	7.1	Measures for Common Rat Snake To undertake a search of the Common Rat Snake within the land based Project Site just before the commencement of the construction works. Due to the small size of the Project Site and given that there are no optimal habitats for Common Rat Snake, one day-time search is considered sufficient. The surveyor(s) should actively search the areas within the Project Site and pay special attention to the leaf litters and rocks. All recorded Common Rat Snake should be caught by hand and translocated to the shrubland at the north of the Study Area, immediately after the search. The Common Rat Snake search and translocation works should be undertaken by a qualified ecologist with relevant experience in faunal translocation works.	To ensure that adverse impacts arising from the Project to Common Rat Snake are prevented	Project Site (land based) / prior to commencement of construction works	ET / Qualified Ecologist	✓	-
-	7.2	 Measures for marine ecology (1) To translocate target marine fauna, including fishes, starfish, sea urchins and sea cucumbers, from the intertidal area of the Site at Lung Mei to the intertidal area at the reception site of Ting Kok East before commencement of sand filling works or any other works that may cause disturbances to the 	To ensure that adverse impacts arising from the Project to marine ecology	Project Site (marine based) / prior to commencement of marine works	ET / Qualified Ecologist	✓	

 $Z: \label{eq:loss} 2016 \ CS00874 \ 600 \ EM\&A \ Report \ Monthly \ EM\&A \ Report \ 5th \ Monthly \ Report \ - \ April \ 2018 \ R0170 \ v4. doc$

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	ImplementationStageDesCODec	Relevant Legislation Guidelines
		existing marine ecology. The translocation works shall cover capturing, handling, holding transporting and releasing of the captured target marine fauna.					
		(2) Translocation of seahorses, including identifying, capturing, handling, protecting, transporting and placing the target seahorse species from Site at Lung Mei to the reception site of Ting Kok East, as well as pre- and post-translocation monitoring and post-construction monitoring shall be conducted. Seahorse translocation shall be undertaken before the commencement of marine construction works. The identifying, capturing, handling, protecting, transporting and placing of seahorses shall be led and supervised by the Fish Specialist.					
8.10.2	-	Dredging and Sand Filling Operations It is predicted that the sediment plume and the sediment deposition will not be large in extent and no unacceptable water impacts including DO depletion, release of contaminants and nutrients are expected. Although no unacceptable water quality impacts would result, the following good construction site practice and proactive precautionary measures are recommended to	To minimise ecological impacts arising from dredging and sand filling works	Project Site / During dredging and sand filling works	Contractor	✓	_

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	ImplementationStageDesCODecODec	Relevant Legislation Guidelines
		ensure dredging and sandfilling operations would be undertaken in such a manner as to avoid any uncontrolled or unexpected incidents during the marine works:	auress	Measures			
		• A movable cage type / metal frame type silt curtain should be deployed around the dredging area next to the grab dredger prior to commencement of dredging works;					
		• Standing type silt curtains should be deployed around the proposed sandfilling extent prior to commencement of sandfilling works; and					
		Proper equipment, dredging rate, filling rate and good construction practices should be implemented, details refer to <i>Section 6.6.1</i> .					
3.10.2	-	<u>Measures for Controlling Construction</u> <u>Runoff</u> • Storm water run-off from the construction site should be directed into existing drainage channel via adequately designed sand/silt removal facilities such as sand/silt traps and oil interceptors. Channels, earth bunds or sand bag	To minimise ecological impacts of construction runoff	Project Site / During dredging and filling works	Contractor	✓	-

 $Z: \label{eq:loss} 2016 \ CS00874 \ 600 \ EM\&A \ Report \ Monthly \ EM\&A \ Report \ 5th \ Monthly \ Report \ - \ April \ 2018 \ R0170 \ v4. doc$

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	ImplementationStageDesCODecODec	Relevant Legislation Guidelines
		barriers should be provided on site to properly direct storm water to such silt removal facilities.					
8.10.2	_	 <u>Planting along the Western Drainage</u> <u>Diversion</u> Provide tree/ shrub/ climber planting along the gabion wall of the new drainage channel. Regular monitoring and removal of the weed plant <i>Mikania micrantha</i> during the establishment and maintenance period. 	To provide an ecological habitat	Along gabion wall of the new western drainage channel/ After completion of the gabion	Contractor	✓ ✓	-
8.10.2	-	 <u>Good Construction Practices</u> Erect fences along the boundary of the Extension Site before the commencement of works to prevent vehicle movements, and encroachment of personnel, onto adjacent areas; and Regularly check the work site boundaries to ensure that they are not breached and that damage does not occur to surrounding areas. 	To avoid any adverse ecological impacts	Project Site / During construction works	Contractor	✓	-
Fisheri	es – Const	ruction Phase					
9.10.1	-	EM&A Requirements EM&A is not required during the	To ensure that no water quality deterioration in the	Details refer to Section 12.6 of the EM&A	ET and Contractor	~	Environmental Impact

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Imp		entat ige	ion	Legislation
			& Main Concerns to address	Completion of Measures		Des	С	0	Dec	Guidelines
		construction phase of the Project. However, water quality monitoring will be conducted at the Yim Tin Tsai Fish Culture Zone. Details should be referred to the Water Quality Section.	Fish Culture Zone as a result of the dredging and sandfilling works	Manual.						Assessment Ordinance, Annex 21 of the EIAO-TM
Landsc	cape and V	isual Impact – Construction Phase								
10.5.1	-	Landscape Mitigation								
		A Landscape Plan will be submitted before the commencement of Works.	To provide landscaping work.	Before commencement of construction phase	ET and Contractor	✓				-
10.6.10) -	<i>Cultivation of areas impacted during</i> <i>construction.</i> Areas impacted during the construction phase that are not required during the operation phase, are to be cultivated to a depth of 300mm in accordance with accepted Hong Kong practice and guidelines. The cultivation shall involve ripping of compacted soil by mechanical means and the addition gypsum and/or organic fertiliser if required.	To improve the soil allowing plants to thrive	Project Site / During construction	Contractor		~			-
10.6.10) -	<i>Car Park Tree Planting</i> . Advanced trees are to be planted in the car park.	To provide shade to the carpark areas and to reduce the mass of the paved areas	Project Site / During construction	Contractor		✓			-
10.6.10) -	<i>Tree and shrub planting.</i> All planting of trees and shrubs is to be carried out in accordance with the relevant best practice guidelines. Plant densities are to be provided in future detailed design documents and are to be selected so as to achieve a finished landscape that matches	To improve the appearance of the development	Project Site / During construction	Contractor			•		-

EIA Ref.	EM&A Ref	ef [Recommended Measure M & Main Concerns to C		Implementation Agent	Implementation Stage				Relevant Legislation
						Des	С	0 1	Dec	Guidelines
		the surrounding, undisturbed, equivalent landscape types. Regular monitoring and removal of the weed plant <i>Mikania</i> <i>micrantha</i> during the establishment and maintenance period.								
10.6.10	-	<i>Roof Terrace Planting.</i> Trees, shrubs and climbers shall be established in planters on the roof terraces of the new structures where possible.	To improve the appearance of the development by softening the building element	Project Site / During construction	Contractor		✓			-
10.6.10	-	<i>Natural Rock Groynes</i> New rock groynes are needed to contain the sand of the new beach. Natural stones will be used for construction of the Groynes.	To improve the appearance of the development to make the man-made feature be more compatible with the surroundings	Project Site / During construction	Contractor		✓			-
10.6.10	-	<i>Inter-Tidal Re-generation</i> . It is likely that a build up of sediment and sand will occur at the outer edges of the rock groyne. This is a natural process and the development proponent has no control over the implementation of this mitigation measure.	To improve the appearance of the development	Adjacent areas	Nil			✓		-
10.6.10	-	<i>Mangrove Re-generation</i> . Mangroves of similar species to existing to be manually established by planting of droppings.	To improve the ecological value of the project	Project Site / During post-construction	Contractor		~			-
10.6.10	-	<i>Buffer Planting.</i> Trees and shrubs are to be planted along Ting Kok road to screen the development from the nearby Village/Developed Areas.	To improve the appearance of the development	Project Site / During post-construction	Contractor		✓			-

	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	-	ementation Stage	Legislation
			& Main Concerns to address	Completion of Measures		Des	C O Dec	Guidelines
10.6.10	-	<i>Early Planting Works</i> Where technically feasible, new plantings are to be installed during the construction works to reduce landscape impacts.	To improve the appearance of the development	Project Site / During construction	Contractor		✓	-
10.6.10	-	<i>Tree Protection/Transplantation.</i> Where technically feasible, existing trees in the Trees/Backshore Vegetation LR are to be retained. Those trees that cannot be retained that are of value are to be transplanted.	To improve the appearance of the development	Project Site / Before commencement of construction	Contractor	✓		-
10.7.9	-	Visual Mitigation						-
		Design of Structures. The structure shown in the photomontages are to illustrate the mass of the structures only. During the design phase of the development, features such as the location of doors, windows, eaves etc. will be detailed. All of these elements will greatly improve the appearance of the structures. Where possible, built structures will utilise appropriate designs to complement the surrounding landscape. Materials and finishes will also be considered during detailed design.	To reduce visual impacts and improve the appearance of the development	Project Site / During construction	Architect	✓		
10.7.9	-	<i>Colour Scheme</i> . Colours for the structures can be used to complement the surrounding area. Lighter colours such as shades of light grey, off-white and light brown may be utilised where technically feasible to reduce the visibility of the structures.	To reduce visual impacts and improve the appearance of the development	Project Site / During construction	Architect	✓		-
10.7.9	-	Plantings. In addition to the landscape	To help integrate the new	Project Site / During	Contractor		✓	-

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of Completion of	Implementation Agent	Implementation Stage Des C O Dec	Relevant Legislation Guidelines
		mitigation plantings proposed in Section 10.5.9 of the EIA report, appropriate new plantings will be installed as appropriate to help integrate the new structures into the surrounding landscape.	address structures into the surrounding landscape	Measures post-construction			
10.7.9	-	<i>Colour of Site Hoardings</i> . In order to mitigate the visual impact of these temporary hoardings, it is recommended that the hoardings be erected at a uniform height, with a uniform colour that complements the existing surrounding landscape.	To mitigate the visual impact of temporary hoardings	Project Site / During construction	Contractor	~	-
-	9.2	EM&A Requirements					
		A specialist Landscape Sub-Contractor should be employed for the implementation of landscape construction works and subsequent maintenance operations during a 12-month establishment period.	To check the implementation and maintenance of landscape mitigation measures and ensure that they are fully	Project Site / During construction and post-construction phase	Specialist Landscape Sub-contractor,R egistered Landscape	~	-
		A Registered Landscape Architect should be employed to supervise the specialist Landscape Sub-contractor for the implementation of landscape works, both hard and soft, involved.	realised and that potential conflicts between the proposed landscape measures and any other project works and operational requirements		Architect and ET		
		Measures undertaken by both the Contractor(s) and the specialist Landscape Sub-Contractor during the construction phase and first year post-construction will be audited by the Registered Landscape Architect of the ET.	are resolved at the earliest practical date and without compromise to the intention of the mitigation measures				
		Site inspections should be undertaken at					

EIA Ref.	EM&A Ref	Ref F	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Implementation Stage			Legislation	
			& Main Concerns to address	-		Des C O Dec	Guidelines			
		least once every two weeks throughout the landscaping plants establishment period when planting works are being undertaken.								
		A tree survey should be prepared, for DLO submission, and for the purpose of existing trees protection. Removal of existing trees to be minimized. The Contractor should consider to employ a certified arborist when sizable and valuable existing tree(s) protection of transplant is required.								
		Post-construction phase auditing will be restricted to the 12-month establishment works of the landscaping proposals.								
		Advance planting- monitoring of implementation and maintenance of planting, and against potential incursion, physical damage, fire, pollution, surface erosion, etc.								
		Protection of trees to be retained-identification and demarcation of trees / vegetation to be retained, erection of physical protection (e.g. fencing), monitoring against potential incursion, physical damage, fire, pollution, surface erosion, etc.								
		Clearance of existing vegetation-identification and demarcation of trees / vegetation to be cleared, checking of								

EIA Ref.	EM&A Ref	Ref I	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Implementation Stage			Legislation	
			& Main Concerns to address	Completion of Measures		Des C O	Dec	Guidelines		
		extent of works to reduce damage, monitoring of adjacent areas against potential incursion, physical damage, fire, pollution, surface erosion, etc.								
		Transplanting of trees-identification and demarcation of trees / vegetation to be transplanted, monitoring of extent of pruning / lifting works to reduce damage, timing of operations, implementation of the stages of preparatory and translocation works, and maintenance of transplanted vegetation, etc.								
		Plant supply-monitoring of operations relating to the supply of specialist plant material (including the collecting, germination and growth of plants from seed) to ensure that plants will be available in time to be used within the construction works.								
		Soiling, planting, etc-monitoring of implementation and maintenance of soiling and planting works and against potential incursion, physical damage, fire, pollution, surface erosion, etc.								
		Architectural design and treatment of all structures (where practicable), retaining walls, elevated road structures and other engineering works-implementation and maintenance of mitigation measures, to ensure conformity with agreed designs. Erection of Site Hoardings/Fences-								

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	ImplementationStageDesCODec	Relevant Legislation Guidelines
		Erection of site hoardings/fences during the construction phase to reduce visual impacts.					
		Establishment Works- monitoring of implementation of maintenance operations during Establishment Period.					

Remark: Des – Design; C – Construction; O – Operation; Dec – Decommissioning