

JOB NO.: TCS00874/16

CEDD CONTRACT NO. CV/2012/05
DEVELOPMENT OF A BATHING BEACH AT LUNG MEI,
TAI PO

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (FEBRUARY 2020)

PREPARED FOR

WELCOME CONSTRUCTION CO., LTD

Date Reference No. Prepared By Certified By

28 April 2020 TCS00874/16/600/R0570v3

Nicola Hon T.W. Tam (Environmental Consultant) (Environmental Team Leader)

Version	Date	Remarks	
1	9 March 2020	First Submission	
2	11 March 2020	mended according to the IEC's comments on 10 March 2020	
3	28 April 2020	Amended according to the EPD's comments on 15 April 2020	

Environmental Permit No. EP-388/2010

Development of a Bathing Beach at Lung Mei, Tai Po

Independent Environmental Checker Verification

Reference Document/Plan

Document/Plan to be-Certified/ Verified: Monthly Environmental Monitoring and Audit Report

(February 2020)

Date of Report: 28 April 2020

Date received by IEC: 7 May 2020

Reference EP Condition / Updated EM&A Manual Requirement

Environmental Permit Condition / Updated EM&A Manual Reference Condition 4.4

Three hard copies and one electronic copy of monthly EM&A Report shall be submitted to the Director within 2 weeks after the end of the reporting month. The EM&A Reports shall include a summary of all non-compliance (exceedances) of the environmental quality performance limits (Action and Limit Levels). The submissions shall be certified by the ET Leader and verified by the IEC. Additional copies of the submission shall be provided to the Director upon request by the Director.

IEC Verification

I hereby verify that the above referenced document/plan complies with the above referenced condition of EP-388/2010.

Mr Terence Fong

Independent Environmental Checker

Date: 7 May 2020

Our ref: P:\Projects\0206709 IEC for Lung Mei EM&A\07_ET Submission\23_Monthly EM&A Report\27_February 2020\

EXECUTIVE SUMMARY

- ES.01 Civil Engineering and Development Department (hereafter referred as "CEDD") is the Project Proponent and the Permit Holder of *Agreement No. CE 59/2005 (EP) Development of a Bathing Beach at Lung Mei, Tai Po* (hereinafter referred as "the Project"), which is a Designated Project to be implemented under Environmental Permit number EP-388/2010 (hereinafter referred as "the EP-388/2010" or "the EP").
- ES.02 Action-United Environmental Services & Consulting (hereinafter referred as "AUES") has been commissioned as the Environmental Team for the Project (hereinafter referred as "the ET") to perform relevant Environmental Monitoring and Audit (EM&A) programme, including baseline and impact environmental monitoring in accordance with the EM&A Manual approved under the Environmental Impact Assessment Ordinance (EIAO).
- ES.03 According to the Approved EM&A Manual [November 2007] (hereinafter referred as 'the EM&A Manual'), air quality, construction noise and water quality monitoring should be required to be monitored for baseline and during the construction phase of the Project. In January 2018, an updated EM&A Manual (AUES Ref.: TCS00874/16/300/L0085 dated 11 January 2018) was prepared to update of noise and air sensitive receivers and recent site condition for the EM&A programme and it was submitted and approved by EPD in January 2018.
- ES.04 This is the 27th monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from 1st to 29th February 2020 (hereinafter 'the Reporting Period'). In the Reporting Period, the impact monitoring covered air quality, construction noise and water quality.

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.05 Environmental monitoring activities under the EM&A program in the Reporting Period are summarized in the following table.

Issues Environmental Monitoring Parameters / Inspection		Sessions Note 1
Air Quality	1-hour TSP	5
Air Quality	24-hour TSP	5
Construction Noise	L _{Aeq(30min)} Daytime	4
Water Quality	Marine Water Sampling	12
	ET Regular Environmental Site Inspection	2
Inspection / Audit	Independent Environmental Checker (IEC) Monthly	1
	Environmental Site Audit	1

Note: 1.) Total sessions are counted by monitoring days.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.06 No exceedance of air quality and construction noise monitoring were recorded in this Reporting Period. For water quality monitoring and a total of **106** Action/Limit Level exceedances were recorded for parameters of Turbidity and Suspended Solids as shown in below table. NOEs were issued to relevant parties upon confirmation of the monitoring result and investigation for the causes of exceedances were carried out by ET subsequently. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Exceedance		Event & Action	
Issues	Parameters Parameters	Action Level	Limit Level	Investigation	Corrective Actions
Air Ovolity	1-hour TSP	0	0	-	-
Air Quality	24-hour TSP	0	0	-	-
Construction Noise	$L_{Aeq(30min)}$	0	0	-	-
	Dissolved Oxygen	0	0	-	-
Water Quality	Turbidity	10	48		
water Quarity	Suspended Solids	13	35	Refer to ES.0	7 and ES.08
	Chlorophyll-a	0	0		

Exceedances on 4th to 28th February 2020

ES.07 The Contractor advised that there were no marine works (dredging and sand filling) carried out during the Reporting Period and only rock filling above sea level at East Groyne was conducted. As water quality mitigation measures, silt curtain at Eastern Box Culvert was properly installed whereas the broken silt curtain between East Groyne and West Groyne has been reinstated in late February 2020. Having assessed the monitoring results, it is noted that the apart from a SS result recorded at sensitive receiver station W1, all elevated suspended solids and turbidity results which exceeded the environmental performance criteria were generally within the respective range of baseline, it is considered that the exceedances were unlikely caused by the works under the project.

ENVIRONMENTAL COMPLAINT

ES.08 In the Reporting period, one (1) environmental complaint was received by EPD on 24 February 2020 concerning on the construction dust problem at the road section outside the site at Ting Kok Road. Investigation for the complaint was undertaken by ET to audit the mitigation measures implemented by the Contractor. It was considered that complaint was related to the traffic dust on Ting Kok Road contributed by both construction vehicles under the project as well as the public vehicles travelling on the road. The statistics of environmental complaint are summarized in the following table.

Donouting Dowied	Environmental Complaint Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
1 – 29 February 2020	1	1	Air	

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.09 No environmental summons or successful prosecutions were recorded in this Reporting Period. The statistics of environmental complaint are summarized in the following tables.

Donauting Davied	Environmental Summons Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
1 – 29 February 2020	0	0	N/A	

Donauting David	Environmental Prosecution Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
1 – 29 February 2020	0	0	N/A	

REPORTING CHANGE

ES.10 There was no reporting change in the EM&A programme in this Reporting Period.

SITE INSPECTION

- ES.11 In the Reporting Period, joint site inspection by ET and the Contractor was performed on 18th and 26th

 February 2020. Special attention was drawn to broken silt curtains observed on 18th February 2020 and the Contractor was urged to repair the silt curtain properly.
- ES.12 In additional, an ad-hoc site inspection was carried out by the IEC, ET and the Contractor on 21 February 2020 to following up the deficiency of the conditions of the silt curtains raised by EPD on 17 February 2020. During the site inspection, it was observed that a standing type silt curtain was installed around the works area although there were no dredging or sand filling works. Given the potential sand filling works in March 2020, the Contractor was reminded to improve the condition of the standing type silt curtain. According to ET's site inspection on 26 February 2020 and IEC's subsequent site inspection on 10 March 2020, the Contractor had improved the silt curtain condition. Both the IEC and ET had looked at the response from Contractor regarding the silt curtain condition and have no comments on it.

FUTURE KEY ISSUES

ES.13 The construction activities in March 2020 include site formation, construction of East Groyne, Western Open Channel, Eastern Box Culvert, Retaining Wall, Sewage Holding Tank, Drainage System

at car park, car park, petrol interceptor, road widening, structure above Groyne, E&M Works and construction of underwater sill. The potential environmental impacts arising from the forthcoming construction activities include construction waste, air quality, construction noise and water quality.

- ES.14 In view of upcoming activities, the Contractor was reminded to follow EP condition 3.6 "sandfilling works shall not be carried out concurrently with the dredging works and shall be carried out only after the construction of groynes has been completed." Moreover, as stipulated in EP condition 3.9 a standing type silt curtain shall be installed at locations shown in the EP throughout sandfilling operation to minimise the water quality impact.
- ES.15 During the dry season, it is reminded that dust mitigation measures should be fully implemented such as water spraying during dust work to minimize dust impact as appropriate. All dump trucks leaving the Site should be thoroughly washed by wheel washing facilities and provided with mechanical covers in good service condition. In addition, the Contractor is reminded to prevent surface runoff entering the sea or public area such as cover the exposed slope by impervious sheets and maintain the temporary drain and wastewater treatment system effectively. Mitigation measures should be fully implemented to minimize construction noise impact to nearby sensitive receivers as appropriate.
- ES.16 Construction noise should be a key environmental impact during the works. Noise mitigation measures such as use of quiet plants and installation of temporary noise barrier at the construction noise predominate area should be fully implemented in accordance with the EM&A requirement.

Table of Contents

1.	INTRODUCTION	1
	1.1 PROJECT BACKGROUND	1
	1.2 REPORT STRUCTURE	1
2.	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS	3
	2.1 PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE	3
	2.2 CONSTRUCTION PROGRESS	4
	2.3 SUMMARY OF ENVIRONMENTAL SUBMISSIONS	4
3.	SUMMARY OF IMPACT MONITORING REQUIREMENTS	6
	3.1 GENERAL	6
	3.2 MONITORING PARAMETERS	6
	3.3 MONITORING LOCATIONS	6
	3.4 MONITORING FREQUENCY AND PERIOD	8
	3.5 MONITORING INSTRUMENT	9
	3.6 MONITORING PROCEDURES	11
	3.7 METEOROLOGICAL INFORMATION	14
	3.8 DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	14
	3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL	15
4.	AIR QUALITY MONITORING	16
	4.1 GENERAL	16
	4.2 RESULTS OF AIR QUALITY MONITORING	16
5.	CONSTRUCTION NOISE MONITORING	17
	5.1 GENERAL	17
	5.2 RESULTS OF NOISE MONITORING	17
6.	WATER QUALITY MONITORING	18
	6.1 GENERAL	18
	6.2 RESULTS OF WATER QUALITY MONITORING	18
7.	WASTE MANAGEMENT	22
•	7.1 GENERAL	22
	7.2 RECORDS OF WASTE QUANTITIES	22
8.	ECOLOGY	23
ο.	8.1 ECOLOGY MONITORING (MARINE-BASED)	23
_		
9.	SITE INSPECTION	25
	9.1 REQUIREMENTS	25
	9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	25
10.	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	26
	10.1 Environmental Complaint, Summons and Prosecution	26
11.	IMPLEMENTATION STATUS OF MITIGATION MEASURES	27
	11.1 GENERAL	27
	11.2 IMPACT FORECAST	28
12	CONCLUSIONS AND RECOMMENTATIONS	29
14.	12.1 CONCLUSIONS	29
	12.2 RECOMMENDATIONS	29

LIST OF TABLES

ΓABLE 2-1	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS
ГАВLЕ 2-2	SUBMISSION STATUS AS UNDER THE EP STIPULATION
ΓABLE 3-1	SUMMARY OF EM&A IMPACT MONITORING REQUIREMENTS
TABLE 3-2	LOCATION OF AIR QUALITY MONITORING
TABLE 3-3	DESIGNATED NOISE MONITORING STATION ACCORDING TO THE EM&A MANUAL
ΓABLE 3-4	NOISE MONITORING STATIONS OF THE EM&A PROGRAMME
ΓABLE 3-5	LOCATION OF MARINE WATER QUALITY MONITORING STATION
ΓABLE 3-6	AIR QUALITY MONITORING EQUIPMENT
ΓABLE 3-7	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-8	Instrument of Water Quality Monitoring
TABLE 3-9	TESTING METHOD AND REPORTING LIMIT OF THE CHEMICAL ANALYSIS
ГАВLЕ 3-10	ACTION AND LIMIT LEVELS FOR AIR QUALITY
ГАВLЕ 3-11	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
ГАВLЕ 3-12	ACTION AND LIMIT LEVELS FOR WATER QUALITY
ΓABLE 4-1	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS (A4)
ΓABLE 4-2	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS (A7)
ΓABLE 5-1	CONSTRUCTION NOISE MONITORING RESULTS OF N1
ΓABLE 5-2	CONSTRUCTION NOISE MONITORING RESULTS OF N2A
TABLE 5-3	CONSTRUCTION NOISE MONITORING RESULTS OF N3A
ΓABLE 5-4	CONSTRUCTION NOISE MONITORING RESULTS OF N4
ΓABLE 6-1	RESULTS SUMMARY OF DEPTH AVERAGE (SURFACE & MIDDLE LAYER) OF DO (MG/L)
ΓABLE 6-2	RESULTS SUMMARY OF BOTTOM DEPTH OF DO (MG/L)
ΓABLE 6-3	RESULTS SUMMARY OF DEPTH AVERAGE OF TURBIDITY (NTU)
ΓABLE 6-4	RESULTS SUMMARY OF DEPTH AVERAGE OF SUSPENDED SOLIDS (MG/L)
ΓABLE 6-5	RESULTS SUMMARY OF DEPTH AVERAGE OF CHLOROPHYLL-A (μ G/L)
ΓABLE 6-6	SUMMARY OF WATER QUALITY EXCEEDANCE
ΓABLE 7-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
ΓABLE 7-2	SUMMARY OF QUANTITIES OF C&D WASTES
ΓABLE 8-1	SUMMARY OF SUBMISSION FOR SEAHORSE MONITORING
ΓABLE 8-2	SUMMARY OF SUBMISSION FOR MARINE ECOLOGICAL MONITORING
ΓABLE 9-1	SITE OBSERVATIONS
ΓABLE 10 - 1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
ГАВLЕ 10 -2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
ГАВLЕ 10 - 3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
ΓABLE 11-1	ENVIRONMENTAL MITIGATION MEASURES IN THE REPORTING MONTH

LIST OF APPENDICES

APPENDIX A	LAYOUT PLAN OF THE PROJECT
APPENDIX B	ORGANIZATION STRUCTURE AND CONTACT DETAILS
APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
APPENDIX D	MONITORING LOCATION
Appendix E	CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT
Appendix F	EVENT AND ACTION PLAN
Appendix G	IMPACT MONITORING SCHEDULES
Appendix H	DATABASE OF MONITORING RESULT

CEDD Contract No. CV/2012/05 – Development of a Bathing Beach at Lung Mei, Tai Po Monthly Environmental Monitoring & Audit Report – February 2020

APPENDIX I GRAPHICAL PLOTS OF MONITORING RESULTS

APPENDIX J METEOROLOGICAL DATA
APPENDIX K WASTE FLOW TABLE

APPENDIX L IMPLEMENTATION SCHEDULE OF ENVIRONMENTAL MITIGATION MEASURES

1. INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department (hereafter referred as "CEDD") is the Project Proponent and the Permit Holder of *Agreement No. CE 59/2005 (EP) Development of a Bathing Beach at Lung Mei, Tai Po* (hereinafter referred as "the Project"), which is a Designated Project to be implemented under Environmental Permit number EP-388/2010 (hereinafter referred as "the EP-388/2010" or "the EP").
- 1.1.2 The major construction activities of the Project comprise construction of 200-metre long bathing beach with a groyne at each end, a shark prevention net; a public car park; retaining walls; and the associated roadworks, drainage and sewerage works. Layout plan of the Project is shown in *Appendix A*. Designated works of the Project under the EP shall include:
 - (i) Construction of a 200m long beach with a groyne at each end of the beach which includes dredging and sandfilling works;
 - (ii) Construction of one culvert at the eastern side of the beach and another small section of culvert and open drainage channel with gabion embankments at the western end, both to collect and divert surface runoff from upstream locations; and
 - (iii) Construction of a beach building with associated beach building facilities, kiosk and a carpark and associated road improvement works adjoining the facility.
- 1.1.3 CEDD is Site Resident Engineers (hereinafter referred as "SRE") responsible for the Project management; Welcome Construction CO., Ltd is a Main Contractor (hereinafter referred as "Contractor") responsible for construction of the Project; and Action-United Environmental Services & Consulting (hereinafter referred as "AUES") has been commissioned as an Independent Environmental Team (hereinafter referred as "the ET") to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. Moreover, Environmental Resources Management is Independent Environmental Checker (hereinafter referred as "IEC") of the Project.
- 1.1.4 As part of the EM&A program, baseline monitoring to determine the ambient environmental conditions including air quality, noise and water quality were undertaken between 7 June 2017 and 21 October 2017. After completed baseline monitoring, Baseline Monitoring Report for Air Quality and Noise (AUES Ref.: TCS00874/16/600/R0022v3) and Baseline Monitoring Report for Water Quality (AUES Ref.: TCS00874/16/600/R0036v2) were verified by IEC and submitted to EPD for endorsement. These Baseline Monitoring Reports have summarized the key findings of baseline condition and determined a set of Action and Limit Levels (A/L Levels) based on the baseline data. The A/L Levels will serve as the yardsticks for assessing the acceptability of the environmental impact during construction phase of the Project Works impact monitoring.
- 1.1.5 The construction phase of the Project commenced on 1st December 2017. Accordingly, the impact monitoring of the EM&A programme commenced on the same date
- 1.1.6 This is the 27th monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from 1st to 29th February 2020.

1.2 REPORT STRUCTURE

1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-

Section 1	Introduction
	mucuon

- Section 2 Project Organization and Construction progress
- **Section 3** Summary of Impact Monitoring Requirements
- **Section 4** Air Quality Monitoring
- **Section 5** Construction Noise Monitoring
- **Section 6** Water Quality Monitoring
- Section 7 Waste Management

CEDD Contract No. CV/2012/05 – Development of a Bathing Beach at Lung Mei, Tai Po Monthly Environmental Monitoring & Audit Report – February 2020

Section 8	Ecology
Section 9	Site Inspection
Section 10	Environmental Complaint and non-compliance
Section 11	Implementation Status of Mitigation Measures
Section 12	Conclusion and Recommendation

2. PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*. The responsibilities of respective parties are:

Engineer or Engineers Representative (ER)

- 2.1.2 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
 - monitor the Contractor's compliance with contract specifications, including the effective implementation and operation of environmental mitigation measures and other aspects of the EM&A programme;
 - instruct the Contractor to follow the agreed protocols or those in the Contract Specifications in the event of exceedances or complaints;
 - comply with the agreed Event and Action Plans in the event of any exceedance;
 - liaise with the IEC and assist as necessary in the implementation of the EM&A program; and
 - participate in joint site inspection undertaken by the ET and IEC.

The Contractor

- 2.1.3 The duties and responsibilities of the Contractor are:
 - work within the scope of the construction contract and other tender conditions;
 - provide assistance to the ET in carrying out monitoring;
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event and Action Plans;
 - implement measures to reduce impact where Action and Limit levels are exceeded;
 - implement the corrective actions instructed by ER/ET/IEC;
 - participate in the site inspections undertaken by the ET and the IEC, as required, and undertake any corrective actions instructed by ER/ET/IEC; and
 - adhere to the procedures for carrying out complaint investigation.

Environmental Team (ET)

- 2.1.4 The ET will be led and managed by the ET Leader. The ET leader will have relevant education, training, knowledge, experience and professional qualifications and the appointment will be subject to the approval of the Director of Environmental Protection and ER. Suitably qualified staff will be included in the ET, and the ET should not be in any way an associated body of the Contractor or the Independent Environmental Checker (IEC) for the Project.
- 2.1.5 The duties and responsibilities of the ET are:
 - monitor various environmental parameters as required in this EM&A Manual;
 - assess the EM&A data and review the success of the EM&A programme determining the adequacy of the mitigation measures implemented and the validity of the EIA predictions as well as identify any adverse environmental impacts before they arise;
 - carry out regular site inspection to investigate and audit the Contractor's site practice, equipment and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt issues;
 - review the Contractor's working programme and methodology, and comment as necessary;
 - review and prepare reports on the environmental monitoring data, site environmental conditions and audits;
 - report on the environmental monitoring and audit results and conditions to the IEC, Contractor, EPD and ER;
 - recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans:

- adhere to the procedures for carrying out complaint investigation; and,
- the ET Leader will keep a contemporaneous log-book and record each and every instance or circumstance or change of circumstances which may affect the environmental impact assessment and every non-conformance with the recommendations of the EIA Reports or the EPs.

Independent Environmental Checker (IEC)

- 2.1.6 The duties and responsibilities of the IEC are:
 - review and monitor the implementation of the EM&A programme and the overall level of environmental performance being achieved;
 - arrange and conduct monthly independent site inspections/audits of the works;
 - validate and confirm the accuracy of monitoring results, monitoring equipment, monitoring stations, monitoring procedures and locations of sensitive receivers;
 - carry out random sample check and audit on monitoring data and sampling procedures, etc;
 - audit the EIA recommendations and requirements against the status of implementation of environmental protection measures on site;
 - on needed basis, audit the Contractor's construction methodology and agree the appropriate, reduced impact alternative in consultation with ER, the ET and the Contractor;
 - provide specialist advice to ER and the Contractor on environmental matters;
 - check complaint cases and the effectiveness of corrective measures;
 - check that the necessary mitigation measures recommended in the EIA, EP and Contract documents, or as subsequently required, are effectively implemented;
 - review EM&A report submitted by the ET leader and feedback audit results to ET by signing off relevant EM&A proformas;
 - report the findings of site inspections/ audits and other environmental performance reviews to ER, ET, EPD and the Contractor;

2.2 CONSTRUCTION PROGRESS

- 2.2.1 The 3-month rolling construction program is enclosed in *Appendix C* and the major construction activities undertaken in the Reporting Period are listed below:-
 - Site formation
 - Construction of East Groyne
 - Construction of Western Open Channel
 - Construction of Eastern Box Culvert
 - Construction of Retaining Wall
 - Construction of Sewage Holding Tank
 - Construction of Drainage System at car park
 - Construction of car park
 - Road widening
 - Construction of petrol interceptor
 - E&M Works

2.3 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.3.1 Summary of currently relevant permits, licenses, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits

		License/Permit Status			
Item	Description	Permit no./Account no./ Ref. no.	From	То	
	Air pollution Control (Construction Dust) Regulation	Ref. Number: 418137	N/A	N/A	
2	Chemical Waste	Waste Producers Number	21 August	End of Project	

		License/Permit Status			
Item	Description	Permit no./Account no./ Ref. no.	From	То	
	Producer Registration	(WPN): 5213-728-W3437-01	2017		
3	Water Pollution Control Ordinance	License No.: WT00028905-2017	24 October 2017	31 October 2022	
4	Waste Disposal (Charges for Disposal of Construction Waste) Regulation	Billing Account for Disposal of Construction Waste: Account No. 7017686	3 July 2013	End of Project	
5	Construction Noise Permit (Noise Control Ordinance)	GW-RN0564-19	29 Sep 2019	28 Mar 2020	
6	Construction Noise Permit (Noise Control Ordinance)	GW-RN0009-20	21 Jan 2020	20 Mar 2020	

2.3.2 The submission status as under the EP requirement is presented in *Table 2-2*.

 Table 2-2
 Submission Status as under the EP Stipulation

Item	EP condition	Description	Status
1	2.3	Management Organization of the	The updated version was submitted
		Main Construction Companies	in May 2018
2	2.4	Report for Capture and Relocation of	Approved by EPD on 15 Sep 2017
		Common Rat Snake	(EPD ref.: (15) in EP2/N5/C/46
			Pt.6 dated 15 Sep 2017)
3	2.5	Landscape Plan	Submitted to EPD on 28 June 2017
4	3.12	Mangrove Seedling Planting Proposal	Not yet submitted
5	3.13	Detailed Landscape As-built	Not yet submitted
		Drawing(s)	
6	4.3	Baseline Monitoring Report for Air	Approved by EPD on 8 Jan 2018
		Quality and Noise (AUES Ref.:	(EPD ref.: (36) in EP2/N5/C/46
		TCS00874/16/600/R0022v3)	Pt.6 dated 8 Jan 2018)
7		Baseline Monitoring Report for Water	Approved by EPD on 10 Jan 2018
		Quality(AUES Ref.:	(EPD ref.: (37) in EP2/N5/C/46
		TCS00874/16/600/R0036v2)	Pt.6 dated 10 Jan 2018)

3. SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

3.1.1 The Environmental Monitoring and Audit requirements are set out in the EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project. A summary of the EM&A requirements for air quality, noise monitoring and water quality are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

- 3.2.1 According to the Project EM&A Manual, the Impact monitoring program covers the following environmental issues:
 - Air Quality;
 - Construction Noise; and
 - Water Quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1* below.

Table 3-1 Summary of EM&A Impact Monitoring Requirements

Environmental Issue	Parameters
Air Quality	1-hour TSP24-hour TSP
Noise	Leq (30min) in six consecutive Leq(5 min) between 07:00-19:00 on normal weekdays
Water Quality	In-situ Measurements • Dissolved Oxygen Concentration (mg/L); • Dissolved Oxygen Saturation (%); • Salinity (mg/L); • Temperature (°C); • Turbidity (NTU); • pH unit; • Current direction (degree); • Current speed (m/s); and • Water depth (m) Laboratory Analysis • Suspended Solids (mg/L); and • Chlorophyll-a (μg/L)

3.3 MONITORING LOCATIONS

Air Quality

3.3.1 There are air quality monitoring locations (A4 and A6) recommended in Section 3.1 of the EM&A Manual. During liaison with the landlord of A6, he refused to provide access and location for installation of High Volume Air Sampler (HVAS). Therefore, alternative location (A7) was proposed by ET in accordance with Section 3.4 of the EM&A Manual. The proposed alternative locations are considered capable of effectively representing the baseline conditions at the impact monitoring locations. The proposal (ref no.: TCS00874/16/300/L0016b) for alternative monitoring locations was verified by IEC and it has been submitted to EPD for approval on 8 May 2017. The air quality monitoring locations are in Table 3-2 and illustrated in Appendix D.

Table 3-2 Location of Air Quality Monitoring

Station ID	Location
A4	No. 101 Lung Mei Tsuen
A7	Hong Kong Eco-Farm

Construction Noise

3.3.2 According to Section 4.1 of the EM&A Manual, four designated noise sensitive receivers (N1, N2, N3 and N4) were recommended and they are listed in *Table 3-3* and illustrated in *Appendix D*.

Table 3-3 Designated Noise Monitoring Station according to the EM&A Manual

NSR	Location	
N1	Village house - No. 165A Lung Mei	
N2*	Village house - No. 103 Lung Mei	
N3	Village house - No. 70 Lo Tsz Tin	
N4	Village house - No. 79 Lo Tsz Tin	

Remarks: (*)Noise monitoring should be conducted at N2a (i.e House No. 101 Lung Mei) if it is changed to residential use during construction phase.

- 3.3.3 As confirmed on the first day of baseline monitoring, N2a (House no. 101 Lung Mei) has been changed to residential use. Therefore, the noise monitoring is conducted at N2a and to replace N2. Moreover, due to the lack of accessibility of noise monitoring at N3 (Village house No. 70 Lo Tsz Tin), alternative location was proposed to replace N3 to carry out the noise monitoring. Having reviewed the surrounding condition, N3a (Village house No. 66C Lo Tsz Tin) was proposed with the rationales summarized in below.
 - 1) The distance between N3 and N3a is about 18 meter apart and N3a locates at close proximity of the project site and major site activities which are likely to have noise impacts;
 - 2) N3a is a village type residential house and it is a noise sensitive receiver (NSR);
 - 3) Accessibility for noise monitoring work at N3a is available; and
 - 4) Minimal disturbance would be only caused to the proposed monitoring location N3a.
- 3.3.4 The proposal (*ref no.: TCS00874/16/300/L0016b*) for alternative monitoring locations was verified by IEC and it has been submitted to EPD for approval on 8 May 2017. The noise monitoring stations under the EM&A programme are listed in *Table 3-4* and illustrated in *Appendix D*.

Table 3-4 Noise Monitoring Stations of the EM&A Programme

Station ID	Address
N1	Village house No. 165A of Lung Mei
N2a	Village house No. 101 of Lung Mei
N3a	Village house No. 66C of Lo Tsz Tin
N4	Village house No. 79 of Lo Tsz Tin

Water Quality

3.3.5 According to Section 5.1.2 of the Approved EM&A Manual, two Reference Stations (R1 and R2), three impact stations (I1, I2 and I3), three sensitive receivers (FCZ1, W1 and M1) and one Gradient station (G1), were identified to perform water quality monitoring. Detailed and coordinates of water quality monitoring stations is described in **Table 3-5** and the graphical is shown in **Appendix D**.

Table 3-5 Location of Marine Water Quality Monitoring Station

Station	Coord	linates	Description
Station	Easting	Northing	Description
G1	841483.9	835936.1	Gradient Station - to assist in the identification of the source of any impact.
R1	842307.4	835718.4	Reference Station - for the background water quality for Tolo Harbour as it is at the channel where the water exchange between the enclosed Plover Cove and Tolo Harbour take place. It is located at south of the Project dredging/sandfilling area.
R2	840739.4	836212.4	Reference Station - for the background water quality in the Plover Cove region. It is located at southwest of the Project dredging/sandfilling area.

Station	Coordinates		Description	
	Easting	Northing	P	
I1	841338.5	836588.5	Impact Station - located outside the mixing zone of dredging/sandfilling works of the Project.	
I2	841590.3	836601.2	Impact Station - located outside the mixing zone of dredging/sandfilling works of the Project.	
13	841807.0	836680.9	Impact Station - located outside the mixing zone of dredging/sandfilling works of the Project.	
W1	841858.9	836571.0	Sensitive Receiver - located at the Water Sport Centre, which is about 0.25 km distance to the southeast of the dredging/sandfilling area.	
M1	840822.2	836416.4	Sensitive Receiver - located at the Ting Kok SSSI, which is about 0.8 km distance to the west of the dredging/sandfilling area.	
FCZ1	841180.6	835230.8	Sensitive Receiver - located at the Yim Tin Tsai East Fish Culture Zone, which is about 1.5 km distance to the southwest of the dredging/sandfilling area.	

3.4 MONITORING FREQUENCY AND PERIOD

3.4.1 The frequency and the duration for impact monitoring are summarized below.

Air Quality Monitoring

• Parameters: 1-hour TSP and 24-hour TSP

• Frequency: 3 times every six days for 1-hour TSP and once every 6 days for 24-hour

TSP

• Duration: Throughout the construction period

Noise Monitoring

• Parameters: $L_{Aeq(30min)}$ and statistical results L_{10} & L_{90}

• Frequency: Leq (30min) in 6 consecutive Leq(5min) for once a week during

07:00-19:00 on normal weekdays

• Duration: Throughout the construction period

Water Quality (Marine) Monitoring

• <u>Parameters:</u> In-situ measurements including water depth, Dissolved Oxygen (DO) concentration (mg/L) & saturation (%), Salinity (mg/L), Temperature (°C) and Turbidity (NTU); and Suspended Solids (mg/L) and Chlorophyll-a

(μ g/L) are analyzed by HOKLAS-accredited laboratory.

• Frequency: Three days a week, at mid ebb and mid flood tides. The interval between 2 sets of monitoring will be more than 36 hours.

Sampling 1) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m;

2) If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom; and

3) If the water depth is less than 3m, 1 sample at mid-depth is taken

• Duration: During marine works proceeding such as the dredging and sand filling

In addition to the water quality parameters, other relevant data will also be to measure and record, which are included the location of the sampling stations, water depth, time, weather conditions, sea conditions, tidal stage, current water flow direction and speed, special phenomena and work activities undertaken around the monitoring and works area that may influence the monitoring results. Observations on any special phenomena and work underway at the Project site during the time of sampling will also be to record.

3.5 MONITORING INSTRUMENT

Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to prove that the instrument is capable of achieving a comparable results to the HVS. The instrument should be calibrated regularly, and the 1-hour sampling shall be determined on yearly basis by the HVS to check the validity and accuracy of the results measured by direct reading method. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.2 All equipment to be used for air quality monitoring is listed in *Table 3-6*.

Table 3-6 Air Quality Monitoring Equipment

Equipment	Model	
24-Hour TSP		
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170	
Calibration Kit	TISCH Calibration Kit Mode TE-5025A	
1-Hour TSP		
Portable Dust Meter	Sibata LD-3B Laser Dust Meter	

Noise Monitoring

- 3.5.3 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in ms⁻¹ for reference.
- 3.5.4 Monitoring equipment to be used for construction noise measurement is listed in *Table 3-7*.

Table 3-7 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	Brüel & Kjær 2238/2250
Acoustic Calibrator	Rion NC-74 or Brüel & Kjær 4231
Portable Wind Speed Indicator (#)	Anemometer AZ Instrument 8908

^(#) Wind speed is reference data only and there is no calibration certificate for portable wind speed indicator.

Water Quality Monitoring

- 3.5.5 For water quality monitoring, the used equipment should be fulfill the requirements under *the Approved EM&A Manual Section 5.1.1*. Requirement of instruments is described in the following sections.
- 3.5.6 Instruments to be used for Water quality monitoring is listed in *Table 3-8*.

Table 3-8 Instrument of Water Quality Monitoring

Equipment	Model
A Digital Global Positioning System	Garmin eTrex
Water Depth Detector	Garmin ECHO 100
Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L
Thermometer & DO meter	YSI EXO-3 Multi-parameter Water Quality Meter
pH meter	
Turbidimeter	

Equipment	Model
Salinometer	
Current Meter	Valeport Current Meter 106CM
Storage Container	'Willow' 33-litre plastic cool box with Ice pad

3.5.7 The following equipment and facilities shall be provided and used for the monitoring of water quality impacts:

Dissolved Oxygen and Temperature Measuring Equipment

- 3.5.8 DO and water temperature shall be measured in-situ by a DO/ temperature meter. The instrument shall be portable and weatherproof using a DC power source. It shall have a membrane electrode or an optical dissolved oxygen sensor with automatic temperature compensation complete with a cable. The equipment shall be capable of measuring:
 - DO level in the range of 0-20 mg/l and 0-200% saturation; and
 - Temperature of between 0 and 45 degree Celsius with a capability of measuring \pm 0.1 degree Celsius.

Turbidity Measurement Instrument

3.5.9 The instrument shall be portable and weatherproof using a DC power source. It shall have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.

Salinity

3.5.10 A portable salinometer with measuring range of 0-40 mg/l shall be used to determine the salinity of the water.

Water Depth Detector

3.5.11 A portable, battery-operated echo sounder shall be used for the measurement of water depth at each designated monitoring station. The unit shall be either handheld or affixed to the bottom of the work boat, if the same vessel is to be used throughout the monitoring programme.

Positioning Device

3.5.12 A hand-held or boat-fixed type digital Global Positioning System (dGPS) with way point bearing indication or other equivalent instrument of similarly accuracy should be provided and used during monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

Water Sampling Equipment

- 3.5.13 A water sampler comprises a transparent PVC cylinder, with a capacity of not less than 2 litres, and could be effectively sealed with latex cups at both ends shall be used. The sampler has a positive latching system to keep it open and prevent premature closure until it is released by a messenger when the sampler is at the predetermined water depth (Kahlsico Water Sampler or other approved instrument).
- 3.5.14 Water samples shall be collected in high density polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory within 24 hours possible after collection. Each bottle will be labelled on the surface with date, location, tide, parameter and replicate information of the sample.

3.6 MONITORING PROCEDURES

Air Quality

1-hour TSP

- 3.6.1 Operation of the 1-hour TSP meter will follow manufacturer's Operation and Service Manual.
- 3.6.2 The 1-hour TSP monitor, brand named "Sibata LD-3B Laser Dust Meter" is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - a. A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - b. A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - c. A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.3 The 1-hour TSP meter to be used will be within the valid period, calibrated by the manufacturer prior to purchasing. Zero response of the instrument will be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.

24-hour TSP

- 3.6.4 The equipment used for 24-hour TSP measurement is the High Volume Sampler (hereinafter the "HVS") brand named TISCH, Model TE-5170 TSP High Volume Air Sampler, which complied with *EPA Code of Federal Regulation, Appendix B to Part 50*. The HVS consists of the following:
 - a. An anodized aluminum shelter;
 - b. A 8"x10" stainless steel filter holder;
 - c. A blower motor assembly;
 - d. A continuous flow/pressure recorder;
 - e. A motor speed-voltage control/elapsed time indicator;
 - f. A 7-day mechanical timer, and
 - g. A power supply of 220v/50 hz
- 3.6.5 For HVS for 24-hour TSP monitoring, the HVS is mounted in a metallic cage with a top for protection and also it is sat on the existing ground or the roof of building. The flow rate of the HVS between 0.6m³/min and 1.7m³/min will be properly set in accordance with the manufacturer's instruction to within the range recommended in *EPA Code of Federal Regulation*, *Appendix B to Part 50*. Glass Fiber Filter 8" x 10" of TE-653 will be used for 24-Hour TSP monitoring and would be supplied by laboratory. The general procedures of sampling are described as below:-
 - A horizontal platform with appropriate support to secure the samples against gusty wind should be provided;
 - No two samplers should be placed less than 2 meters apart;
 - The distance between the sampler and an obstacle, such as building, must be at least twice the height that the obstacle protrudes above the sample;
 - A minimum of 2 meters of separation from any supporting structure, measured horizontally is required;
 - Before placing any filter media at the HVS, the power supply will be checked to ensure the sampler work properly;
 - The filter paper will be set to align on the screen of HVS to ensure that the gasket formed an air tight seal on the outer edges of the filter. Then filter holder frame will be tightened to the filter hold with swing bolts. The holding pressure should be sufficient to avoid air leakage at the edge.
 - The mechanical timer will be set for a sampling period of 24 hours (00:00 mid-night to 00:00 mid-night next day). Information will be recorded on the field data sheet, which would be included the sampling data, starting time, the weather condition at current and the filter paper

ID with the initial weight;

- After sampling, the filter paper will be collected and transfer from the filter holder of the HVS to a sealed envelope and sent to a local HOKLAS accredited laboratory for quantifying.
- 3.6.6 All the sampled 24-hour TSP filters will be collected and put into the filter envelope provided by the laboratory. The sample will be kept in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C and delivery to the office within 48 hours and sent to laboratory for analysis. The sampled filter will be kept in the laboratory for six months prior to disposal.
- 3.6.7 The HVS used for 24-hour TSP monitoring will be calibrated before the commencement for sampling, and after in two months interval for 1 point checking of maintenance and six months interval for five points calibrate in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (TISCH Calibration Kit Model TE-5025A) to establish a relationship between the follow recorder meter reading in cfm (cubic feet per minute) and the standard flow rate, Qstd, in m³/min. Motor brushes of HVS will be regularly replaced of about five hundred hours per time.

Construction Noise

- 3.6.8 As referred to in the Technical Memorandum (TM) issued under the NCO, sound level meters in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804:1985 (Type 1) specifications shall be used for carrying out the noise monitoring. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.
- 3.6.9 All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq_(30 min) in six consecutive Leq_(5 min) measurements will be used as the monitoring parameter for the time period between 07:00-19:00 hours on weekdays.
- 3.6.10 The sound level meter will be mounted on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield will be fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point would normally be at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point would be at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.
- 3.6.11 Immediately prior to and following each noise measurement the accuracy of the sound level meter will be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration level from before and after the noise measurement agrees to within 1.0 dB.
- 3.6.12 Noise measurements will not be made in fog, rain, wind with a steady speed exceeding 5m/s or wind with gusts exceeding 10m/s. The wind speed will be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

Water Quality (Marine) Monitoring

- 3.6.13 Marine water quality monitoring will be conducted at the designated locations in accordance with EM&A Manual. The operating and analytical of sampling procedures are described as below:
 - Water quality monitoring locations shall be located by GPS prior to in-situ monitoring and sampling. Water depth should be determined by using portable echo sounder for each monitoring location.
 - Measurements shall be taken at 3 water depths: 1m below water surface, mid-depth and 1m

- above sea bed, except where the water depth less than 6m, the mid-depth station may be omitted. Should the water depth be less than 3 m, only the mid-depth station will be monitored.
- Water samples should be collected repeatedly using the water sampler as described in Section 3.5.13 to obtain adequate water samples for laboratory analysis.
- Sample container should be pre-labeled with date, location, tide, parameter and replicate information of the sample. The container should be rinsed using a portion of the marine water sample before the container is filled. Container is sealed with a screw cap after the filling is completed. The filled sample containers are then packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.
- Two consecutive in-situ readings of water temperature, turbidity, dissolved oxygen, salinity, pH and water depth should taken at a predetermined depth. Where the difference in the value between the first and second readings of each set is more than 25% of the value of the first reading, the reading is discarded and further readings is taken.
- 3.6.14 All in-situ monitoring instruments shall be checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use, and subsequently re-calibrated at 3 months intervals throughout the water quality monitoring programme. Responses of sensors and electrodes shall be checked with certified standard solutions before each use. Certificate for calibration of in-situ instruments shall also be provided for auditing.
- 3.6.15 Wet bulb calibration for a DO probe shall be carried out at least once per monitoring day. A zero check in distilled water shall be performed with the turbidity probe at least once per monitoring day. The probe shall then be calibrated with a solution of known NTU. In addition, the turbidity probe shall be calibrated at least twice per month to establish the relationship between turbidity readings (in NTU) and levels of suspended solids (in mg/L).
- 3.6.16 For the on-site calibration of field equipment, the BS 1427: 1993, Guide to Field and On-Site Test Methods for the Analysis of Waters should be observed. Sufficient stocks of spare parts shall be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring is uninterrupted even when some equipment is under maintenance or calibration etc.
- 3.6.17 Before each round of monitoring, the dissolved oxygen probe will be calibrated by wet bulb method; a zero check in distilled water will be performed with the turbidity and salinity probes; 4 and 10 values of the standard solution will be undertaken to check the accuracy of pH value.

LABORATORY ANALYSIS

3.6.18 Sufficient water samples shall be collected at the monitoring stations for carrying out laboratory determination. Analysis of suspended solids and Chlorophyll-a should be carried out in a HOKLAS or other international accredited laboratory. The chemicals analysis method and reporting limit is shown *Table 3-9*.

Table 3-9 Testing Method and Reporting Limit of the Chemical Analysis

Parameter	ALS Method Code	In-house Method Reference ¹	Reporting Limit
Total Suspended Solids	EA025	APHA 2540D	2 mg/L
Chlorophyll-a	EP008F	APHA 10200H	1 μg/L

Note: The exact method shall depend on the laboratory accredited method. APHA = Standard Methods for the Examination of Water and Wastewater by the American Public Health Association.

Valid calibration certificates of monitoring equipment of air quality, construction noise and water quality are shown in *Appendix E*.

3.7 METEOROLOGICAL INFORMATION

3.7.1 The meteorological information including wind direction, wind speed, humidity, rainfall, air pressure and temperature etc. during impact monitoring is extracted from the closest Hong Kong Observatory Station. To obtain the most appropriate meteorological information where available, Air Temperature/Pressure and Relative Humidity will be extracted from Tai Po Station and wind speed and direction will be extracted from Tai Mei Tuk Station.

3.8 DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. A summary of the Action/Limit (A/L) Levels for air quality, construction noise and water quality are shown in *Table 3-10*, *3-11* and *3-12* respectively.

Table 3-10 Action and Limit Levels for Air Quality

Monitoring	Action Lev	vel (μg /m³)	Limit Level (μg/m³)		
Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP	
A4	275	142	500	260	
A7	274	141	500	260	

Table 3-11 Action and Limit Levels for Construction Noise, dB(A)

Time Period: 0700-1900 hours on normal weekdays						
Monitoring Location	Action Level	Limit Level Note 1 & Note 2				
N1, N2a, N3a, and N4	When one documented complaint is received	75				

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and 65 dB(A) during examination period

Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

Table 3-12 Action and Limit Levels for Water Quality

Monitoring	Action	ı Level	Limit	Level	
Location		Depth Average	e of SS (mg/L)	_	
I1	7.0	OD 1200/ - C	7.5	OD 1200/ - C	
I2	7.0	OR 120% of	8.1	OR 130% of	
I3	8.3	any reference stations at the	15.0	any reference stations at the	
W1	8.0	same tide of the	8.6	same tide of the	
M1	10.0	same day	11.0	same day	
FCZ1	7.0	same day	8.0	same day	
		ygen (mg/L)			
Monitoring	Depth Average		Depth Average		
Location	of Surface &	Bottom	of Surface &	Bottom	
	Mid-depth		Mid-depth		
I1	5.08	N/A	4.80	N/A	
I2	5.26	3.64	4.88	3.37	
I3	5.03	4.09	4.77	3.19	
W1	4.67	2.41	4.54	2.33	
M1	4.73	N/A	4.70	N/A	
FCZ1	5.00	3.43	5.00	3.18	
Monitoring Location		Depth Average of	Turbidity (NTU)		
I1	2.8		2.9		
I2	3.5	OR 120% of	7.7	OR 130% of	
I3	2.6	any reference	3.0	any reference	
W1	2.9	stations at the same tide of the	3.3	stations at the same tide of the	
M1	5.2	same day	6.6	same day	
FCZ1	3.2	Sume day	3.4	same day	

Monitoring Location	Surface, Middle & Bottor	Surface, Middle & Bottom of Chlorophyll-a (μg/L)				
I1	11.1	12.1				
I2	11.0	13.1				
I3	11.3	14.5				
W1	11.3	16.1				
M1	16.9	42.4				
FCZ1	11.8	12.5				

Notes:

- (a) For DO, non-compliance of water quality limits occurs when monitoring result is lower than the limits
- (b) For SS, chlorophyll-a and turbidity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (c) Both Action and Limit Levels for DO (surface and middle) in the FCZ1 are less than 5 mg/L.

Event Action Plan

3.8.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix F*.

3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.9.1 The impact monitoring data were handled by the ET's in-house data recording and management system.
- 3.9.2 The monitoring data recorded in the equipment were downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data were input into a computerized database properly maintained by the ET. The laboratory results were input directly into the computerized database and checked by personnel other than those who input the data.
- For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4. AIR QUALITY MONITORING

4.1 GENERAL

4.1.1 In the Reporting Period, air quality monitoring were performed at the proposed monitoring locations A4 and A7. The air quality monitoring schedule is presented in *Appendix G* and the monitoring results are summarized in the following sub-sections.

4.2 RESULTS OF AIR QUALITY MONITORING

4.2.1 In the Reporting Period, 5 sessions of 1-hour TSP and 5 sessions 24-hour TSP were performed at Stations A4 and A7. The monitoring results for air quality monitoring are summarized in *Tables* 4-1 to 4-2. The detailed 24-hour TSP and 1-hour TSP monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*. The meteorological data during the impact monitoring period are summarized in *Appendix J*.

Table 4-1 Summary of 24-hour and 1-hour TSP Monitoring Results (A4)

	24-hour TSP	1-hour TSP (μg/m³)					
Date	$(\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
5-Feb-20	46	4-Feb-20	13:14	33	33	31	
11-Feb-20	33	10-Feb-20	11:01	39	42	41	
17-Feb-20	18	15-Feb-20	10:18	74	80	70	
22-Feb-20	32	21-Feb-20	9:58	50	44	52	
28-Feb-20	30	27-Feb-20	9:21	55	50	50	
Average (Range)	32 (18 – 46)	Avera (Rang	•	50 (31 – 80)			

Table 4-2 Summary of 24-hour and 1-hour TSP Monitoring Results (A7)

	24-hour	1-hour TSP (μg/m³)					
Date	$TSP (\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
5-Feb-20	79	4-Feb-20	10:05	32	27	30	
11-Feb-20	60	10-Feb-20	14:10	42	40	44	
17-Feb-20	47	15-Feb-20	10:29	70	65	76	
22-Feb-20	76	21-Feb-20	13:22	56	64	67	
28-Feb-20	51	27-Feb-20	12:53	59	62	64	
Average	63	Avera	ge	53			
(Range)	(47 – 79)	(Rang	ge)	(27 - 76)			

4.2.2 As shown in *Tables 4-1 to 4-2*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action / Limit Level. No Notification of Exceedance (NOE) was issued in this Reporting Period.

5. CONSTRUCTION NOISE MONITORING

5.1 GENERAL

5.1.1 In the Reporting Period, construction noise quality monitoring were performed at the designated monitoring locations N1, N2a, N3a and N4. The noise quality monitoring schedule is presented in *Appendix G* and the monitoring results are summarized in the following sub-sections.

5.2 RESULTS OF NOISE MONITORING

5.2.1 In the Reporting Period, 4 sessions of noise monitoring were carried out at the designated locations. Free-field status were performed at N1 and N3a and façade correction (+3 dB(A)) has been added for the correction in according to the acoustical principles and EPD guidelines. The noise monitoring results at the designated locations are summarized in *Tables 5-1 to 5-4*. The detailed noise monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

Table 5-1 Construction Noise Monitoring Results of N1, dB(A)

Date	Start Time	$ m L_{eq30min}$	*Corrected Leq30min
4-Feb-20	11:12	60	63
10-Feb-20	11:10	64	67
21-Feb-20	9:55	63	66
27-Feb-20	9:28	58	61

Remark: (*) A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-2 Construction Noise Monitoring Results of N2a, dB(A)

Date	Start Time	$ m L_{eq30min}$	Corrected $L_{eq30min}$
4-Feb-20	11:46	56	NA
10-Feb-20	14:36	61	NA
21-Feb-20	10:27	60	NA
27-Feb-20	10:00	58	NA

Table 5-3 Construction Noise Monitoring Results of N3a, dB(A)

Date	Start Time	$ m L_{eq30min}$	*Corrected L _{eq30min}
4-Feb-20	10:32	52	55
10-Feb-20	13:01	60	63
21-Feb-20	11:14	65	68
27-Feb-20	13:08	59	62

Remark: (*) A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-4 Construction Noise Monitoring Results of N4, dB(A)

Date	Start Time	$ m L_{eq30min}$	Corrected L _{eq30min}
4-Feb-20	9:41	59	NA
10-Feb-20	13:47	60	NA
21-Feb-20	14:06	65	NA
27-Feb-20	13:43	65	NA

5.2.2 As shown in *Table 5-1 to Table 5-4*, all the designated locations measured results were below 75dB(A) of the acceptance criteria. Furthermore, no complaint on construction noise was registered, indicating no exceedance of Action Level. No non-compliance was therefore found during the Reporting Period.

6. WATER QUALITY MONITORING

6.1 GENERAL

6.1.1 The water quality monitoring schedule is presented in *Appendix G* and the monitoring results are summarized in the following sub-sections.

6.2 RESULTS OF WATER QUALITY MONITORING

6.2.1 In this Reporting Period, a total of **twelve (12)** sampling days were performed at the nine designated locations. Monitoring results of 4 key parameters: dissolved oxygen (DO), turbidity, suspended solids and Chlorophyll-*a* are summarized in *Tables 6-1* to *6-5*.

Table 6-1 Results Summary of Depth Average (Surface & Middle Layer) of DO (mg/L)

Tidal	Sampling Date	G1	R1	R2	I1	12	13	W1	M1	FCZ1
	4-Feb-20	7.35	7.28	7.40	7.31	7.29	7.31	7.28	7.42	7.35
	6-Feb-20	7.42	7.49	7.43	7.42	7.31	7.31	7.28	7.45	7.28
	8-Feb-20	7.52	7.16	7.29	7.05	7.06	7.07	6.96	6.95	7.17
	10-Feb-20	7.53	7.63	7.40	7.41	6.94	6.75	7.70	7.01	7.48
	12-Feb-20	7.06	7.11	6.94	7.23	7.02	7.19	6.93	7.21	7.18
Mid-Ebb	14-Feb-20	7.33	7.17	7.28	7.62	7.34	7.54	7.15	7.51	7.52
MIG-EDD	17-Feb-20	7.68	6.91	7.93	7.94	6.45	7.81	6.80	7.74	7.46
	19-Feb-20	7.31	8.07	7.63	7.74	7.58	7.73	7.61	7.73	7.59
	21-Feb-20	7.72	7.95	7.72	7.63	7.37	7.67	7.63	7.76	7.42
	24-Feb-20	7.81	7.81	7.56	7.62	7.66	7.66	7.76	7.50	7.44
	26-Feb-20	7.38	7.31	7.05	7.38	7.27	7.39	7.05	7.15	6.95
	28-Feb-20	7.19	7.41	7.06	7.27	7.12	7.23	7.01	7.03	6.94
	4-Feb-20	7.66	7.57	7.61	7.54	7.31	7.50	7.46	7.57	7.67
	6-Feb-20	7.66	7.74	7.55	7.46	7.34	7.21	7.52	7.54	7.61
	8-Feb-20	7.28	7.23	7.35	7.48	7.21	7.45	7.24	7.07	7.25
	10-Feb-20	7.29	7.29	7.28	6.83	6.85	6.90	7.19	6.93	7.31
	12-Feb-20	7.25	7.54	7.20	7.43	7.44	7.18	7.12	4.77	7.42
Mid-Flood	14-Feb-20	7.40	7.28	7.53	7.61	7.28	7.60	7.27	7.57	7.36
Mid-Fiood	17-Feb-20	7.34	6.67	7.35	8.10	7.17	7.85	6.45	7.23	6.87
	19-Feb-20	7.42	7.76	7.22	7.76	7.27	7.44	7.41	7.69	7.30
	21-Feb-20	7.88	7.94	7.61	7.79	7.57	7.74	7.73	7.78	7.33
	24-Feb-20	7.82	7.82	7.53	7.57	7.66	7.62	7.76	7.51	7.68
	26-Feb-20	7.38	7.29	7.31	7.37	7.27	7.33	7.20	6.96	7.07
	28-Feb-20	7.18	7.42	7.08	7.24	7.14	7.21	7.01	7.01	6.97

Remark: Italic and bold value indicated Action Level exceedance.
Underlined and bold value indicated Limit Level exceedance

Table 6-2 Results Summary of Bottom Depth of DO (mg/L)

Tidal	Sampling Date	G1	R1	R2	I1	12	13	W1	M1	FCZ1
	4-Feb-20	6.97	6.99	7.03	7.08	6.63	7.12	6.86	N/A	6.96
	6-Feb-20	7.23	7.22	7.10	7.17	6.91	7.13	7.12	N/A	7.14
	8-Feb-20	7.16	6.81	7.25	6.98	6.21	6.40	6.14	N/A	7.13
	10-Feb-20	6.83	7.08	6.94	7.73	6.45	7.62	6.69	N/A	7.09
	12-Feb-20	6.47	6.84	6.55	6.77	6.56	7.11	6.40	N/A	6.51
MCJ ELL	14-Feb-20	6.60	6.76	6.92	7.02	6.82	6.59	6.44	N/A	7.05
Mid-Ebb	17-Feb-20	6.67	6.55	6.74	6.84	6.26	7.20	5.82	N/A	6.73
	19-Feb-20	7.11	6.28	6.45	7.70	6.72	7.12	6.08	N/A	7.05
	21-Feb-20	7.65	6.47	7.60	6.61	6.14	7.63	7.51	N/A	7.35
	24-Feb-20	7.74	7.77	7.55	7.58	7.74	7.58	7.68	N/A	6.81
	26-Feb-20	5.88	5.98	6.30	6.67	5.70	7.20	6.07	N/A	5.73
	28-Feb-20	6.81	7.30	6.44	6.91	6.69	6.80	6.23	N/A	7.14
Mid-Flood	4-Feb-20	6.78	6.72	7.06	6.72	6.63	7.08	6.67	N/A	6.71
1V11 u- F100 u	6-Feb-20	6.92	6.98	7.07	7.11	6.80	7.00	7.01	N/A	6.89

Tidal	Sampling Date	G1	R1	R2	I1	12	13	W1	M1	FCZ1
	8-Feb-20	7.23	7.15	7.29	7.27	6.34	6.75	6.54	N/A	7.16
	10-Feb-20	7.05	6.92	6.85	6.48	6.56	7.77	6.89	N/A	6.80
	12-Feb-20	6.57	6.73	6.70	6.81	6.51	7.01	6.38	N/A	6.79
	14-Feb-20	6.65	6.93	6.99	7.42	6.13	6.83	6.53	N/A	7.11
	17-Feb-20	5.75	6.53	5.78	7.45	6.47	7.34	5.75	N/A	6.56
	19-Feb-20	6.33	5.87	6.27	7.69	6.16	7.18	5.75	N/A	7.10
	21-Feb-20	7.86	6.18	7.58	6.86	5.55	7.65	6.41	N/A	7.31
	24-Feb-20	7.78	7.77	7.54	7.59	7.69	7.57	7.44	N/A	7.21
	26-Feb-20	5.97	6.32	6.44	6.70	6.06	7.29	6.41	N/A	5.83
	28-Feb-20	6.96	7.32	6.38	6.90	6.73	6.67	6.38	N/A	7.13

Remark: Italic and bold value indicated Action Level exceedance Underlined and bold value indicated Limit Level exceedance

Table 6-3 Results Summary of Depth Average of Turbidity (NTU)

Tidal	Sampling Date	G1	R1	R2	I1	12	13	W1	M1	FCZ1
	4-Feb-20	0.5	0.6	0.6	0.6	0.6	0.8	0.6	0.4	0.6
	6-Feb-20	0.8	0.6	0.7	0.6	0.6	0.8	0.7	0.5	0.7
	8-Feb-20	1.8	1.0	1.0	1.6	1.4	1.3	2.2	1.5	1.5
	10-Feb-20	0.7	0.6	0.6	0.5	0.5	0.6	0.7	0.4	0.7
	12-Feb-20	1.5	0.9	1.3	1.1	1.0	1.1	1.2	1.1	1.1
26:17:11	14-Feb-20	0.8	0.7	0.8	0.8	0.9	0.8	0.7	1.2	0.7
Mid-Ebb	17-Feb-20	1.0	0.7	0.8	0.8	0.8	0.9	1.3	0.8	1.0
	19-Feb-20	1.2	1.6	1.4	0.7	1.2	1.0	<u>1.9</u>	0.8	1.5
	21-Feb-20	1.0	0.7	0.7	1.5	1.2	0.8	1.1	2.3	0.9
	24-Feb-20	0.6	0.4	0.5	<u>0.7</u>	0.5	0.8	0.5	1.2	<u>0.7</u>
	26-Feb-20	0.7	0.6	0.6	0.6	0.7	0.6	0.7	0.5	0.5
	28-Feb-20	0.3	0.4	0.5	0.6	0.6	1.2	0.5	1.3	0.3
	4-Feb-20	0.8	0.5	0.6	0.6	0.6	0.6	0.6	0.4	0.8
	6-Feb-20	0.6	0.7	0.6	0.5	0.6	0.6	0.5	0.4	0.6
	8-Feb-20	1.0	0.9	1.1	1.8	<u>1.6</u>	<u>1.5</u>	2.2	<u>1.4</u>	1.4
	10-Feb-20	0.6	0.6	0.6	0.6	0.9	0.6	0.6	0.5	0.7
	12-Feb-20	1.5	0.9	1.3	1.0	0.9	1.1	1.2	1.2	1.1
Mid-Flood	14-Feb-20	0.8	0.6	0.8	0.8	0.8	0.7	0.7	1.1	0.6
Mid-Fiood	17-Feb-20	0.9	0.7	0.8	0.7	0.7	0.8	1.1	0.7	1.1
	19-Feb-20	2.1	1.1	1.0	0.6	1.2	1.0	2.2	0.7	1.2
	21-Feb-20	0.6	0.7	0.6	1.1_	1.2	0.9	0.8	1.5	0.8
	24-Feb-20	0.5	0.4	0.5	0.6	0.6	1.1	0.5	1.2	0.7
	26-Feb-20	0.5	0.6	0.6	0.6	0.7	0.6	0.6	0.4	0.5
	28-Feb-20	0.4	0.4	0.5	0.5	0.6	1.2	0.5	2.2	0.3

Remark: Italic and bold value indicated Action Level exceedance.
Underlined and bold value indicated Limit Level exceedance

Table 6-4 Results Summary of Depth Average of Suspended Solids (mg/L)

Tidal	Sampling Date	G1	R1	R2	I1	I2	13	W1	M1	FCZ1
	4-Feb-20	6.0	7.5	4.0	4.3	3.7	<u>5.5</u>	5.3	3.0	4.8
	6-Feb-20	6.0	6.3	6.0	6.5	6.2	5.8	5.8	6.0	7.0
	8-Feb-20	7.8	4.5	4.8	5.0	4.8	5.0	4.7	5.0	4.5
	10-Feb-20	4.5	4.5	5.5	6.5	5.8	5.5	4.3	6.0	4.3
Mid-Ebb	12-Feb-20	4.5	6.0	4.5	4.5	6.3	5.8	6.3	4.0	4.5
	14-Feb-20	3.3	3.0	3.5	4.0	3.8	3.5	6.0	3.0	3.5
	17-Feb-20	4.0	3.3	3.5	3.0	3.3	3.0	3.3	3.0	3.0
	19-Feb-20	4.5	3.5	4.0	4.0	5.2	5.0	5.3	6.0	3.0
	21-Feb-20	4.5	4.8	4.3	5.0	<u>5.7</u>	5.5	4.0	4.0	3.8

Tidal	Sampling Date	G1	R1	R2	I1	12	13	W1	M1	FCZ1
	24-Feb-20	4.0	3.3	3.8	4.3	4.2	4.0	5.3	<u>5.5</u>	2.5
	26-Feb-20	4.0	5.0	4.5	4.5	5.3	7.0	5.0	4.5	5.0
	28-Feb-20	3.0	2.8	3.0	3.0	3.0	3.3	2.5	2.0	4.5
	4-Feb-20	4.0	5.5	3.0	4.5	5.3	4.8	5.3	3.0	4.5
	6-Feb-20	6.5	6.0	6.8	7.0	6.5	6.0	7.3	5.5	6.8
	8-Feb-20	5.5	5.0	4.8	5.5	4.7	5.3	5.0	5.0	6.8
	10-Feb-20	6.0	5.3	6.0	5.5	6.0	4.8	4.3	5.0	6.0
	12-Feb-20	4.0	4.3	4.5	4.0	6.0	6.0	7.0	4.0	4.0
Mid-Flood	14-Feb-20	2.5	3.0	3.3	3.3	3.3	2.8	5.3	3.0	3.8
Wiid-Fiood	17-Feb-20	3.5	4.3	5.0	3.5	4.8	8.8	3.8	4.5	4.0
	19-Feb-20	3.5	6.0	3.3	3.0	3.8	4.0	10.0	4.5	4.5
	21-Feb-20	4.8	6.0	5.3	6.8	5.3	5.8	4.7	6.0	6.0
	24-Feb-20	3.5	3.0	3.0	3.5	4.0	4.5	3.5	4.0	3.0
	26-Feb-20	6.8	4.0	4.3	4.5	4.0	<u>6.0</u>	4.2	3.0	4.8
	28-Feb-20	2.5	2.8	2.5	3.3	3.3	2.5	3.3	3.0	2.5

Remark: Italic and bold value indicated Action Level exceedance
Underlined and bold value indicated Limit Level exceedance

Table 6-5 Results Summary of Depth Average of Chlorophyll-a (μg/L)

Tidal	Sampling Date	G1	R1	R2	I1	12	13	W1	M1	FCZ1
	4-Feb-20	3.7	4.9	2.9	4.2	3.1	3.1	5.4	2.3	3.6
	6-Feb-20	5.1	4.9	4.7	4.8	4.8	4.8	5.2	5.1	5.1
	8-Feb-20	4.2	3.7	3.4	3.8	3.7	3.7	3.6	3.0	3.4
	10-Feb-20	3.3	3.3	3.4	3.2	3.4	3.5	3.2	3.5	3.4
	12-Feb-20	3.6	5.0	4.2	4.7	7.6	4.8	5.2	4.0	3.4
) (* 1 E) 1	14-Feb-20	4.5	4.6	5.3	6.4	6.0	6.3	5.0	5.6	4.8
Mid-Ebb	17-Feb-20	3.7	3.6	3.4	3.4	3.4	3.2	3.3	3.3	3.7
	19-Feb-20	3.6	4.7	3.4	3.9	4.3	4.1	4.2	3.4	3.5
	21-Feb-20	3.2	3.3	3.5	3.5	3.3	3.3	3.4	3.3	3.5
	24-Feb-20	2.0	2.0	1.6	1.4	1.8	1.9	2.0	1.7	2.7
	26-Feb-20	3.8	4.0	3.7	4.1	3.8	4.1	3.8	4.1	3.8
	28-Feb-20	1.9	1.6	1.6	1.7	1.7	1.7	1.7	1.8	1.9
	4-Feb-20	3.8	4.7	2.6	4.0	3.1	2.8	4.5	1.9	3.3
	6-Feb-20	4.2	4.5	2.6	4.6	4.8	4.6	2.8	2.2	2.8
	8-Feb-20	4.2	4.1	3.5	3.9	3.7	3.7	3.7	3.2	3.4
	10-Feb-20	3.1	3.1	3.3	3.1	3.2	3.2	3.4	3.2	3.0
	12-Feb-20	4.2	3.9	3.5	4.5	6.6	3.4	4.8	3.8	3.2
Mid-Flood	14-Feb-20	4.0	4.4	5.1	6.1	5.4	5.3	4.6	5.8	4.5
Mid-Fiood	17-Feb-20	3.6	3.3	3.1	3.0	3.1	2.8	3.1	3.0	3.3
	19-Feb-20	3.5	4.5	3.3	3.7	3.8	3.8	3.9	3.2	3.2
	21-Feb-20	3.4	3.2	3.2	3.0	2.9	2.9	3.3	3.0	3.3
	24-Feb-20	1.7	1.8	1.7	1.4	1.7	1.8	1.9	1.7	2.3
	26-Feb-20	2.4	2.5	2.5	3.7	3.7	3.7	2.7	2.7	2.7
	28-Feb-20	1.9	1.5	1.7	1.6	1.5	1.5	1.7	1.8	1.8

- 6.2.2 During the Reporting Period, field measurements showed that temperatures of marine water were within 17.45°C to 22.16°C; the salinity concentrations within 31.05 to 32.81 ppt and pH values within 7.65 to 8.20.
- 6.2.3 The monitoring results including in-situ measurements and laboratory testing results are attached in *Appendix H*. The graphical plots are shown in *Appendix I*.
- 6.2.4 In this Reporting Period, there were total of 106 exceedances recorded, included 58 AL/LL exceedances of Turbidity and 48 AL/LL exceedances of Suspended Solids for marine water quality monitoring. A summary of water quality monitoring exceedance is shown in *Table 6-6*.

Table 6-6 Summary of Water Quality Exceedance

Station	To	Ave of p & depth)	(Bot	O ttom pth)		oidity h Ave)		S h Ave)		phyll- <i>a</i> h Ave)	Excee for	tal dance the tion
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
I1	0	0	0	0	1	7	3	3	0	0	4	10
I2	0	0	0	0	2	8	4	6	0	0	6	14
13	0	0	0	0	3	7	4	8	0	0	7	15
W1	0	0	0	0	2	8	1	9	0	0	3	17
M1	0	0	0	0	1	10	0	5	0	0	1	15
FCZ1	0	0	0	0	1	8	1	4	0	0	2	12
No of Exceedance	0	0	0	0	10	48	13	35	0	0	23	83

6.3 EXCEEDANCE INVESTIGATION

6.3.1 Upon confirmation of the monitoring result, Notification of Exceedances (NOEs) has had issued to relevant parties. Investigation for the cause of exceedance was carried out by ET subsequently.

Exceedances on 4th to 28th February 2020

6.3.2 The Contractor advised that there were no marine works (dredging and sand filling) carried out during the Reporting Period and only rock filling above sea level at East Groyne was conducted. As water quality mitigation measures, silt curtain at Eastern Box Culvert was properly installed whereas the broken silt curtain between East Groyne and West Groyne has been reinstated in late February 2020. Having assessed the monitoring results, it is noted that the apart from a SS result recorded at sensitive receiver station W1, all elevated suspended solids and turbidity results which exceeded the environmental performance criteria were generally within the respective range of baseline, it is considered that the exceedances were unlikely caused by the works under the project.

7. WASTE MANAGEMENT

7.1 GENERAL

7.1.1 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

7.2 RECORDS OF WASTE QUANTITIES

- 7.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste:
 - General Refuse; and
 - Excavated Soil.
- 7.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 7-1* and 7-2 and the Monthly Summary Waste Flow Table is shown in *Appendix K*. Whenever possible, materials were reused on-site as far as practicable.

Table 7-1 Summary of Quantities of Inert C&D Materials

Types of Waste	Quantity	Disposal Location
Total C&D Materials (Inert) ('000m ³)	0.392	Tuen Mun Area 38
Reused in this Contract (Inert) ('000m ³)	0	NA
Reused in other Projects (Inert) ('000m ³)	0	NA
Disposal as Public Fill (Inert) ('000m ³)	0.392	Tuen Mun Area 38

Table 7-2 Summary of Quantities of C&D Wastes

Types of Waste	Quantity	Disposal Location
Recycled Metal ('000kg)	0	NA
Recycled Paper / Cardboard Packing ('000kg)	0	NA
Recycled Plastic ('000kg)	0	NA
Chemical Wastes ('000kg)	0	NA
General Refuse ('000m ³)	0.039	NENT

8. ECOLOGY

8.1 ECOLOGY MONITORING (MARINE-BASED)

Seahorse Translocation Surveys

- 8.1.1 The seahorse captured and translocation was conducted in the period of 17 to 20 January 2018. Since the two tagged seahorses were not recorded at the Ting Kok East reception site during the first 7 days Post-translocation Seahorse Survey on 21 to 27 January 2018, Option 2 of monitoring programme was therefore adopted to perform the Post-translocation Seahorse Survey in accordance with the approved method statement (Seahorses Translocation Plan (Version 1, 11 January 2018) refers). The Post-translocation Seahorse Survey should be performed in the first year for a period of one year after the completion of seahorse translocation. The proposed survey time would be at least 28 man-hours (including 14 man-hours during daytime and 14 man-hours during nighttime for each survey). The survey frequency is listed below:
 - Daily for first week
 - three times per week for the second to fourth week
 - once a week for the second to fourth month
 - once a month for the fifth to twelve month
- 8.1.2 The one year Post-translocation Seahorse Survey at Ting Kok East was completed in January 2019. Post-construction will be undertaken at the installed shark net during the maintenance period of the Project. A summary of submission regarding seahorse monitoring is shown in below *Table 8-1*.

Table 8-1 Summary of Submission for Seahorse Monitoring

EM&A	Submission	First Submission	Latest Version
Ref.		Date	Submission Date
S7.2.3.3	Seahorse Translocation Plan	19 Sep 2017	30 Nov 2017
S7.2.3.8	Pre-translocation Survey Report for Seahorse	1 Dec 2018	2019
S7.2.3.4	Seahorse Translocation Report	29 Jan 2018	23 Jun 2019
S7.2.3.9	Post-translocation monitoring report		23 Jun 2019
	(all reports)		
	1 st Week	29 Jan 2018	
	2 nd Week	4 Feb 2018	
	3 rd Week	27 Mar 2018	
	4 th Week	27 Mar 2018	
	Second Month	27 Mar 2018	
	Third Month	27 Mar 2018	
	Fourth Month	25 May 2018	
	Fifth Month	28 August 2018	
	Sixth Month	28 August 2018	
	Seven Month	28 August 2018	
	Eighth Month	4 Oct 2018	
	Ninth Month	19 Oct 2018	
	Tenth Month	18 Nov 2018	
	Eleventh Month	21 Dec 2018	
	Twelfth Month	15 Feb 2019	
S7.2.3.10	Post-construction monitoring report	To be confirmed	To be confirmed

Marine Ecological Monitoring

8.1.3 In accordance to Section 7.2 of the updated EM & A manual, it is required to conducting marine ecological monitoring after marine fauna relocation at a six-monthly interval at (i) vicinity site near bathing beach at Lung Mei and (ii) The Reception Site of Ting Kok East until expiry of the Contract Maintenance Period.

8.1.4 The objectives of the marine ecological monitoring are to collect data for determining whether there is any impact on the marine ecological resources (i) in the vicinity of the Site due to the development of the bathing beach at Lung Mei, and (ii) at the Reception Site of Ting Kok East due to translocation of the target marine fauna.

Marine Fauna Translocation

- 8.1.5 Target marine fauna, including fishes, starfish, sea urchins and sea cucumbers, shall be translocated from the intertidal area of the Site at Lung Mei to the intertidal area at the Reception Site of Ting Kok East before commencement of sand filling works or any other works that may cause disturbances to the existing marine ecology. The translocation works shall cover capturing, handling, holding, transporting and releasing of the captured target marine fauna.
- 8.1.6 Baseline quantitative quadrat surveys were conducted at the vicinity site of Lung Mei beach and Ting Kok East in June 2017. Moreover, fauna translocation was completed in January 2018. After the translocation, marine ecological monitoring was conducted at a six-monthly interval at vicinity site near bathing beach at Lung Mei and the reception Site of Ting Kok East until expiry of the Contract Maintenance Period.
- 8.1.7 A summary of submission regarding marine ecological monitoring is shown in below *Table 8-2*.

Table 8-2 Summary of Submission for Marine Ecological Monitoring

EM&A	Submission	First Submission	Latest Version
Ref.		Date	Submission Date
S7.2.2.3	Fauna Translocation – Stage 1	9 Oct 2017	18 Dec 2017
S7.2.2.3	Fauna Translocation – Stage 2	19 Dec 2017	28 Dec 2017
S7.2.2.3	Fauna Translocation – Stage 3 and 4	5 Jan 2018	5 Jan 2018
S7.2.2.4	Fauna Translocation Report	29 May 2018	15 Jan 2019
S7.2.1.4 &	Report for Baseline Marine Ecological	20 Jul 2017	15 Jan 2019
S7.2.2.6	Survey on inter-tidal habitat (Lung		
	Mei)		
S7.2.1.4 &	Report for Baseline Marine Ecological	26 Jun 2017	5 Oct 2019
S7.2.2.6	Survey on inter-tidal habitat (Ting		
	Kok)		
S7.2.1.4 &	Marine Fauna Post-translocation	11 Jul 2018	15 Dec 2018
S7.2.2.6	Monitoring Report for Lung Mei (1 st		
	Report)		
S7.2.1.4 &	Marine Fauna Post-translocation	11 Jul 2018	15 Dec 2018
S7.2.2.6	Monitoring Report for Ting Kok (1 st		
	Report)		
S7.2.1.4 &	Marine Fauna Post-translocation	29 Jan 2019	18 May 2019
S7.2.2.6	Monitoring Report for Lung Mei (2 nd		
	Report)		
S7.2.1.4 &	Marine Fauna Post-translocation	11 Jan 2019	18 May 2019
S7.2.2.6	Monitoring Report for Ting Kok (2 nd		
	Report)		
S7.2.1.4 &	Marine Fauna Post-translocation	29 July 2019	To be submitted
S7.2.2.6	Monitoring Report for Lung Mei (3 rd		
	Report)		
S7.2.1.4 &	Marine Fauna Post-translocation	29 July 2019	To be submitted
S7.2.2.6	Monitoring Report for Ting Kok (3 rd		
	Report)		

9. SITE INSPECTION

9.1 REQUIREMENTS

9.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. The site inspection and audits should be conducted twice per month by ET.

9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

- 9.2.1 In the Reporting Period, joint site inspection and audit to evaluate site environmental performance was carried out by the RE, ET and the Contractor on 18th and 26th February 2020. No non-compliance was noted within this reporting period.
- 9.2.2 The findings / deficiencies that observed during the weekly site inspection are listed in *Table 9-1*.

Table 9-1 Site Observations

Date	Findings / Deficiencies	Follow-Up Status
18 th February 2020	 Pile of unused water-filled barriers was observed, the Contractor should improve housekeeping of the site. Silt curtain was broken, the Contractor should repair the silt curtain promptly and ensure they are installed properly in accordance with EP. 	 To be followed The silt curtain was reinstated properly.
26 th February 2020	 Fugitive dust was observed at the site area. The Contractor should provide water spraying or other dust suppression measures for unpaved area. Loose soil was observed at the temporary pedestrian crossing of the temporary site area along Ting Kok Road. The Contractor should clean the loose soil to avoid dust impact. 	 Water spraying was provided. Loose soil was cleaned.

- 9.2.3 In additional, an ad-hoc site inspection was carried out by the IEC, ET and the Contractor on 21 February 2020 to following up the deficiency of the conditions of the silt curtains raised by EPD on 17 February 2020. During the site inspection, it was observed that a standing type silt curtain was installed around the works area although there were no dredging or sand filling works. Given the potential sand filling works in March 2020, the Contractor was reminded to improve the condition of the standing type silt curtain by the following:
 - 1. To attach the silt curtain to the two groynes as per indicative arrangement of Figure 3 of the EP; and;
 - 2. Tighten the link between the panels of silt curtains to make sure gaps not exist. The Contractor was also reminded that sand filling works should not be undertaken before the silt curtain condition is improved.
- 9.2.4 According to ET's site inspection on 26th February 2020 and IEC's subsequent site inspection on 10 March 2020, the Contractor had improved the silt curtain condition. Both the IEC and ET had looked at the response from Contractor regarding the silt curtain condition and have no comments on it.

10. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 Environmental Complaint, Summons and Prosecution

10.1.1 In the Reporting Period, one (1) environmental complaint was received with respect to construction dust. Besides, no summons and prosecution under the EM&A Programme was lodged for the project. Investigation for the complaint was undertaken by the ET and presented below.

Complaint received on 24 February 2020

- 10.1.2 A public complaint was received by EPD on 24 February 2020 concerning on the construction dust problem at the road section outside the site at Ting Kok Road.
- In our investigation, Contractor has implemented dust mitigation measures such as providing the wheel washing facilities at site exit and properly maintained cleanliness of site exit and adjoin roads. Apart from the small amount loose soils observed at the temporary pedestrian crossing, the entire road section along the temporary works area was wetted and clean without noticeable dust impact. It was considered that complaint was related to the traffic dust on Ting Kok Road contributed by both construction vehicles under the project as well as the public vehicles travelling on the road. Nevertheless, the ET will keep closely inspecting the site condition and cleanliness of adjoined roads in subsequent weekly site inspection.
- In the Reporting Period, no summons and prosecution under the EM&A Programme was lodged for the project. The statistical summary table of environmental complaint is presented in *Tables* 10-1, 10-2 and 10-3.

Table 10-1 Statistical Summary of Environmental Complaints

Domontino Dominal	Environmental Complaint Statistics		
Reporting Period	Frequency	Cumulative	Complaint Nature
1 – 29 February 2020	1	1	Air

Table 10-2 Statistical Summary of Environmental Summons

Donouting Dowind	Environmental Summons Statistics		
Reporting Period	Frequency	Cumulative	Summons Nature
1 – 29 February 2020	0	0	NA

Table 10-3 Statistical Summary of Environmental Prosecution

Denouting Davied	Environmental Prosecution Statistics		
Reporting Period	Frequency	Cumulative	Prosecution Nature
1 – 29 February 2020	0	0	NA

11. IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water, ecology and waste etc. and they are summarized presented in *Appendix L*.
- 11.1.2 The Contractor had been implementing the required environmental mitigation measures according to the Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by the Contractor in this Reporting Month are summarized in *Table 11-1*.

Table 11-1 Environmental Mitigation Measures in the Reporting Month

Issues	Environmental Mitigation Measures
Construction	• Regularly to maintain all plants, so only the good condition plants were used
Noise	 on-site; If possible, all mobile plants onsite operation has located far from NSRs; When machines and plants (such as trucks) were not in using, it was switched off;
	 Wherever possible, plant was prevented oriented directly the nearby NSRs; Provided quiet powered mechanical equipment to use onsite; Moveable noise barriers were temporary used for construction work, where necessary; and
	Weekly noise monitoring was conducted to ensure construction noise meet the criteria.
Air Quality	• Stockpile of dusty material was covered entirely with impervious sheeting or sprayed with water so as to maintain the entire surface wet;
	• The construction plants regularly maintained to avoid the emissions of black smoke;
	• The construction plants switched off when it not in use;
	Water spraying on haul road and dry site area was provided regularly;
	• Where a vehicle leaving the works site is carrying a load of dusty materials, the load has covered entirely with clean impervious sheeting; and
	Before any vehicle leaving the works site, wheel watering has been performed.
Water Quality	• Impervious sheeting was provided on exposed soil surfaces to reduce the potential of soil erosion;
	Debris and refuse generated on-site collected daily;
	• Stockpiles of the cement and other construction materials were covered when not being used;
	Oils and fuels were stored in designated areas with locks;
	The chemical waste storage as sealed area provided with locks;
	• Sedimentation facilities was provided to remove silt particles from groundwater;
	Site hoarding with sealed foot were provided surrounding the boundary of working site to prevent wastewater or site surface water runoff get into public areas; and
	• Portable chemical toilets were provided on-site. A licensed contractor was regularly disposal and maintenance of these facilities.
	Silt curtain was installed and maintained in accordance with EP condition

Issues	Environmental Mitigation Measures
Waste and	• Excavated material reused on site as far as possible to minimize off-site
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if
Management	possible;
	• Waste arising kept to a minimum and be handled, transported and disposed of in a suitable manner;
	• Disposal of C&D wastes to any designated public filling facility and/or landfill followed a trip ticket system; and
	• Chemical waste handled in accordance with the Code of Practice on the
	Packaging, Handling and Storage of Chemical Wastes.
General	The site is generally kept tidy and clean.
General	Mosquito control is performed to prevent mosquito breeding on site.

11.2 IMPACT FORECAST

- 11.2.1 Construction activities to be undertaken in March 2020 should be included below:
 - Site formation
 - Construction of East Groyne
 - Construction of Western Open Channel
 - Construction of Eastern Box Culvert
 - Construction of Retaining Wall
 - Construction of Sewage Holding Tank
 - Construction of Drainage System at car park
 - Construction of car park
 - Road widening
 - Construction of Petrol interceptor
 - Structure above Groyne
 - E&M Works
 - Construction of underwater sill
- 11.2.2 Potential environmental impacts arising from the works include:
 - Construction waste
 - Air quality
 - Construction noise
 - Water quality
- 11.2.3 Environmental mitigation measures will be properly implemented and maintained as per the Mitigation Implementation Schedule in **Appendix L** to ensure site environmental performance is acceptable.

12. CONCLUSIONS AND RECOMMENTATIONS

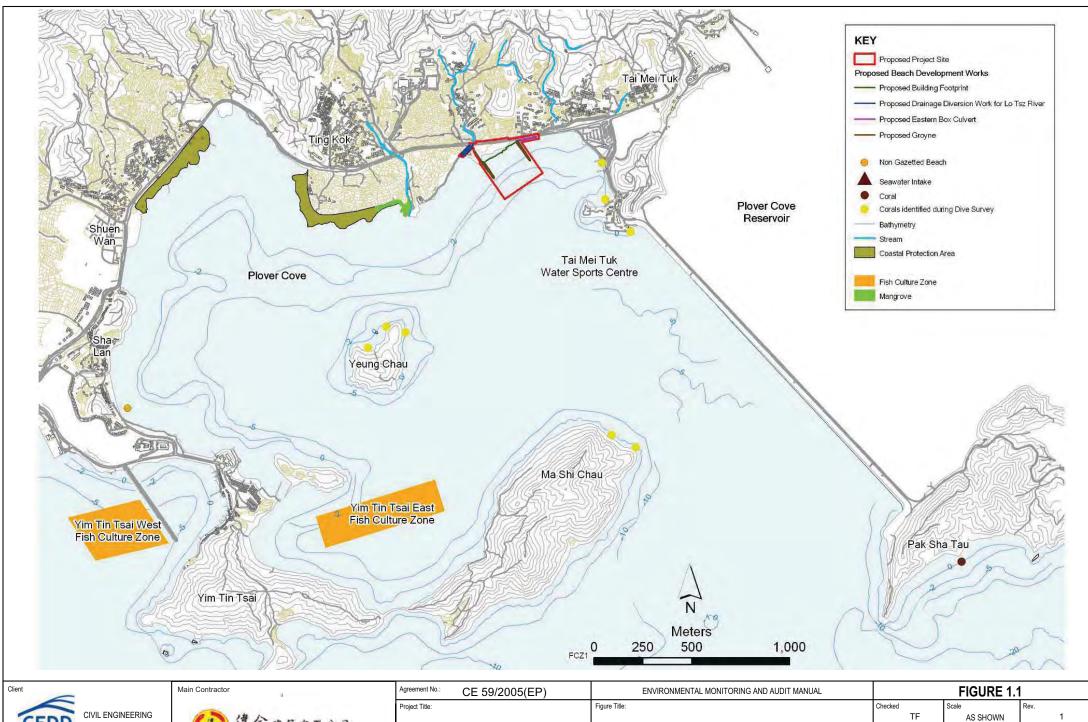
12.1 CONCLUSIONS

- 12.1.1 This is the 27th monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from 1st to 29th February 2020.
- 12.1.2 In this Reporting Period, no construction noise monitoring results that triggered the Limit Level was recorded. No NOE or the associated corrective actions were therefore issued. Moreover, no noise complaint (which is an Action Level exceedance) was received for the Project.
- 12.1.3 In this Reporting Period, no air quality monitoring exceedance was recorded. No NOE or the associated corrective actions were therefore issued.
- In this Reporting Period, there were total of **106** exceedances recorded, included **58** AL/LL exceedances of Turbidity and **48** AL/LL exceedances of Suspended Solids. The Contractor advised that there were no marine works (dredging and sand filling) carried out during the Reporting Period and only rock filling above sea level at East Groyne was conducted. As water quality mitigation measures, silt curtain at Eastern Box Culvert was properly installed whereas the broken silt curtain between East Groyne and West Groyne has been reinstated in late February 2020. Having assessed the monitoring results, it is noted that the apart from a SS result recorded at sensitive receiver station W1, all elevated suspended solids and turbidity results which exceeded the environmental performance criteria were generally within the respective range of baseline, it is considered that the exceedances were unlikely caused by the works under the project.
- In the Reporting Period, joint site inspection and audit to evaluate site environmental performance was carried out by the CEDD, ET and the Contractor on 18th and 26th February 2020. Special attention was drawn to broken silt curtains observed on 18th February 2020 and the Contractor was urged to repair the silt curtain properly.
- In additional, an ad-hoc site inspection was carried out by the IEC, ET and the Contractor on 21 February 2020 to following up the deficiency of the conditions of the silt curtains raised by EPD on 17 February 2020. During the site inspection, it was observed that a standing type silt curtain was installed around the works area although there were no dredging or sand filling works. Given the potential sand filling works in March 2020, the Contractor was reminded to improve the condition of the standing type silt curtain. According to ET's site inspection on 26 February 2020 and IEC's subsequent site inspection on 10 March 2020, the Contractor had improved the silt curtain condition. Both the IEC and ET had looked at the response from Contractor regarding the silt curtain condition and have no comments on it.
- 12.1.7 In the Reporting period, one (1) environmental complaint was received by EPD on 24 February 2020 concerning on the construction dust problem at the road section outside the site at Ting Kok Road. Investigation for the complaint was undertaken by ET to audit the mitigation measures implemented by the Contractor. It was considered that complaint was related to the traffic dust on Ting Kok Road contributed by both construction vehicles under the project as well as the public vehicles travelling the road.
- 12.1.8 No notification of summons or prosecution were received and recorded for the project.

12.2 RECOMMENDATIONS

The forthcoming construction activities include site formation, construction of East Groyne, Western Open Channel, Eastern Box Culvert, Retaining Wall, Sewage Holding Tank, Drainage System at car park, car park, petrol interceptor, road widening, structure above Groyne, E&M Works and construction of underwater sill. The potential environmental impacts arising from the forthcoming construction activities include construction waste, air quality, construction noise and water quality.

CEDD Contract No. CV/2012/05 – Development of a Bathing Beach at Lung Mei, Tai Po Monthly Environmental Monitoring & Audit Report – February 2020


- 12.2.2 In view of upcoming activities, the Contractor was reminded to follow EP condition 3.6 "sandfilling works shall not carried out concurrently with the dredging works and shall be carried out only after the construction of groynes has been completed." Moreover, as stipulated in EP condition 3.9 a standing type silt curtain shall be installed at locations shown in the EP throughout sandfilling operation to minimise the water quality impact.
- During dry season, it is reminded that dust mitigation measures should be fully implemented such as water spraying during dust work to minimize dust impact as appropriate. All dump trucks leaving the Site should be thoroughly washed by wheel washing facilities and provided with mechanical covers in good service condition. In addition, the Contractor is reminded to prevent surface runoff entering the sea or public area such as cover the exposed slope by impervious sheets and maintain the temporary drain and wastewater treatment system effectively. Mitigation measures should be fully implemented to minimize construction noise impact to nearby sensitive receivers as appropriate
- 12.2.4 Construction noise should be a key environmental impact during the works. The noise mitigation measures such as use of quiet plants and installation of temporary noise barrier at construction noise predominate area should be fully implemented as accordance with the EM&A requirement.

Appendix A

Layout plan of the Project

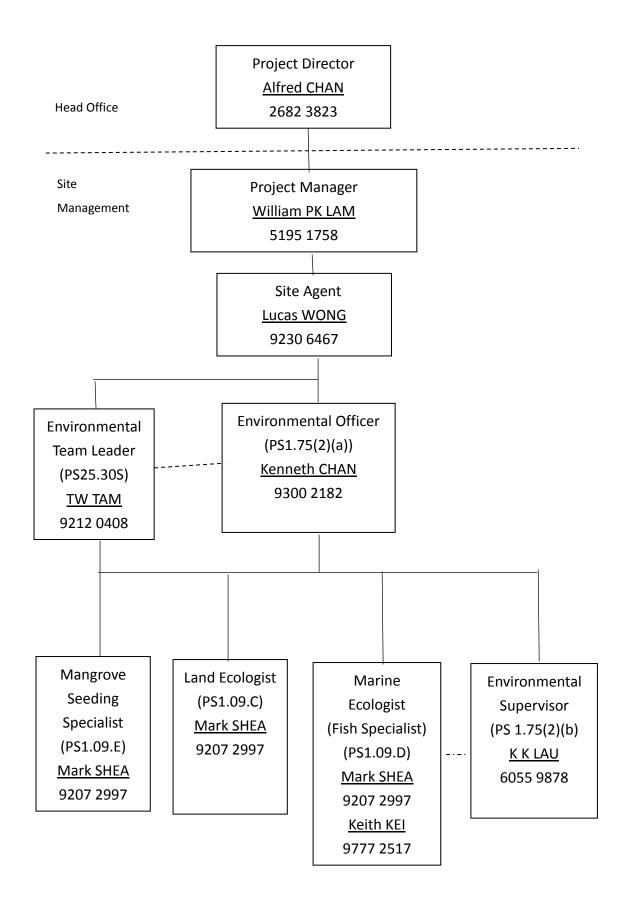
(The content of Appendix A is modified from the previous EM&A Manual - Development of a Bathing Beach at Lung Mei, Tai Po (Register No. AEIAR-123/2008): Environmental Monitoring and Audit (EM&A) Manual (November 2007))

AND DEVELOPMENT DEPARTMENT

DEVELOPMENT OF A BATHING

BEACH AT LUNG MEI, TAI PO

PROJECT LOCATION AND ENVIRONMENTAL SENSITIVE RECEIVERS


Designed Drawn AM 13/03/2007

Appendix B

Organization structure and contact details

Contract No. CV/2012/05 Bathing Beach at Lung Mei, Tai Po Project Organization Chart for Environmental Management 2019/1/2

Contact Details of Key Personnel - CV/2012/05

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
CEDD	Engineer's Representative	Mr. K F Chan	2762 5532	2714 2054
ERM	Independent Environmental Checker	Mr. Terence Fong	2271 3156	2723 5660
Welcome	Project Manager	Mr. William Lam	5195 1758	2682 3222
Welcome	Site Agent	Mr. Lucas Wong	9230 6467	2682 3222
Welcome	Environmental Officer	Mr. Kenneth Chan	9300 2182	2682 3222
Welcome	Environmental Supervisor	Mr. K K Lau	6055 9878	2682 3222
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

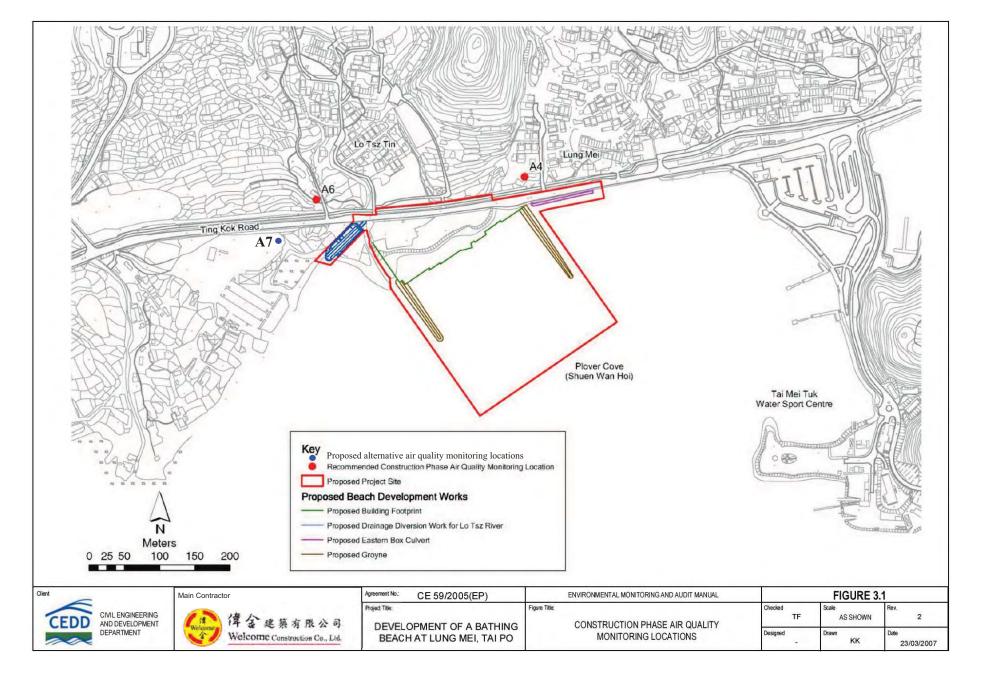
Legend:

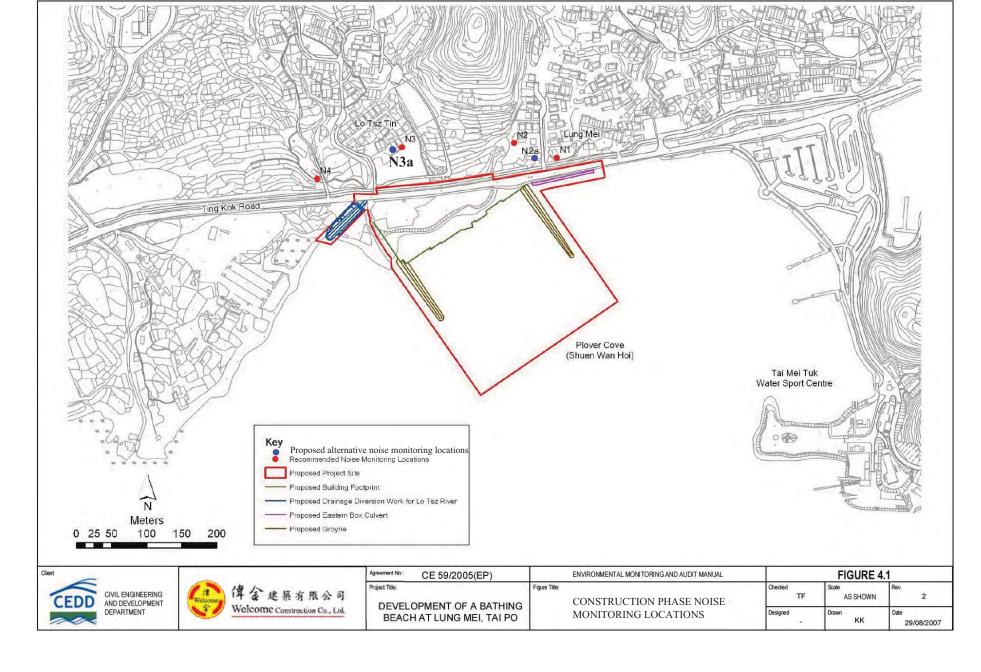
CEDD (Engineer) – Civil Engineering and Development Department Welcome (Contractor) – Welcome Construction Company Limited ERM (IEC) – Environmental Resources Management AUES (ET) – Action-United Environmental Services & Consulting

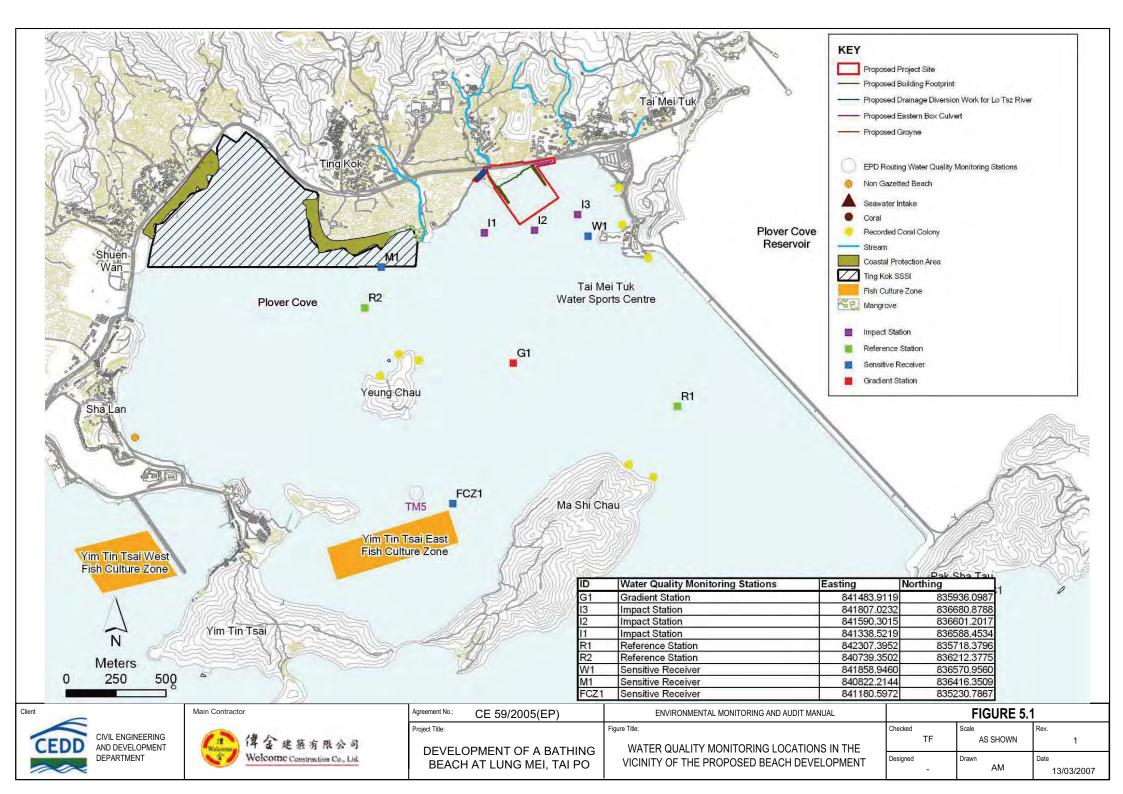
Appendix C

3-Month Rolling Construction Program

3-month Construction Program (February to April 2020)


Construction Work	February	March	April
	2020	2020	2020
Site Formation	✓	✓	√
Construction of East Groyne	✓	✓	
Construction of Western Open Channel	✓	✓	
(Slope formation and footpath			
construction)			
Construction of Eastern Box Culvert	✓	✓	
(Installation of railings and preparation			
of planter soil)			
Retaining Wall Bay 5	✓	✓	
Sewage Holding Tank	✓	✓	
Construction of Drainage System at	✓	✓	✓
Carpark			
Construction of Carpark	✓	✓	✓
Road widening	✓	✓	✓
Petrol interceptor	✓	✓	✓
Construction of underwater sill		✓	✓
Structure above Groyne		✓	√
Sand Laying			✓
E&M Works	√	✓	√




Appendix D

Monitoring Location

(The Figures of Appendix D are modified from the previous EM&A Manual - Development of a Bathing Beach at Lung Mei, Tai Po (Register No. AEIAR-123/2008): Environmental Monitoring and Audit (EM&A) Manual (November 2007))

Photograph Records for Air Quality Monitoring

Air Quality Monitoring (24-Hour TSP & 1-Hour TSP)

Photograph Records for Noise Monitoring

Noise Monitoring

N1

N2a

Noise Monitoring

N4

Appendix E

Calibration Certificate of Monitoring Equipment

MONITORING EQUIPMENT CALIBRATION CERTIFICATES

Items	Aspect	Description of Equipment	Date of Calibration	Date of Next Calibration
1		TISCH High Volume Air Sampler, HVS Model TE-5170 TSP Sampler Calibration Spreadsheet for A4	1 Feb 20	1 Apr 20
2		TISCH High Volume Air Sampler, HVS Model TE-5170 TSP Sampler Calibration Spreadsheet for A7	1 Feb 20	1 Apr 20
3	Air	Calibration Kit TISCH Model TE-5025A Orifice ID 1941 and Rootsmeter S/N 438320	5 Feb 19	5 Feb 20
4		Calibration Kit TISCH Model TE-5025A Orifice ID 1612 and Rootsmeter S/N 438320	7 Feb 20	7 Feb 21
5		Laser Dust Monitor, Model LD-3B (Serial No. 456658) – EQ115	18 Mar 19	18 Mar 20
6		Laser Dust Monitor, Model LD-3B (Serial No. 456659) – EQ116	18 Mar 19	18 Mar 20
7		Brüel & Kjær 2238 Sound Level Meter (Serial No. 2285721) – EQ010	20 Jun 19	20 Jun 20
8		Brüel & Kjær 2250 Sound Level Meter (Serial No. 3012330) – EQ017	12 Jun 19	12 Jun 20
9	Noise	Rion Sound Level Calibrator NC-74 (Serial No.: 34657231) - EQ087	10 Sep 19	10 Sep 20
10		Brüel & Kjær 4231 Calibrator (Serial No. 2713428) – EQ082	12 Jun 19	12 Jun 20
11	Water	Valeport Current Meter 106CM (Serial No. 67738)	5 Sep 18	
12	water	YSI EXO-3 Multi-parameter Water Quality Meter (Serial No. 19A105807)	9 Dec 19	8 Mar 20

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: No. 101 Lung Mei Tsuen Date of Calibration: 1-Feb-20

Location ID: A4 Next Calibration Date: 1-Apr-20 Name and Model: TISCH HVS Model TE-5170 Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) 1022.4 Corrected Pressure (mm Hg) 766.8 Temperature (°C) 16.0 Temperature (K) 289

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.10	6.10	12.2	1.699	44	45.57	Slope = 26.7955
13	4.60	4.60	9.2	1.476	38	39.36	Intercept = -0.2406
10	3.10	3.10	6.2	1.212	31	32.11	Corr. coeff. = 0.9987
7	2.30	2.30	4.6	1.044	26	26.93	
5	1.10	1.10	2.2	0.722	19	19.68	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

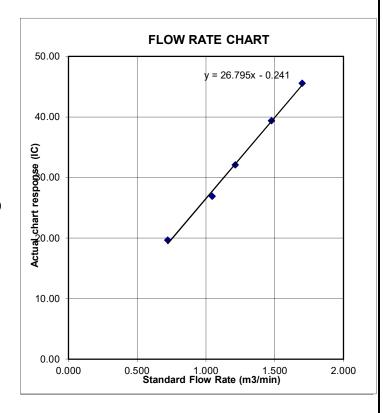
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Hong Kong Eco-Farm

Date of Calibration: 1-Feb-20

Location ID: A7

Next Calibration Date: 1-Apr-20

Name and Model: TISCH HVS Model TE-5170 Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1022.4

Corrected Pressure (mm Hg)
Temperature (K)

766.8 289

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.90	5.90	11.8	1.671	54	55.93	Slope = 44.6063
13	4.60	4.60	9.2	1.476	45	46.61	Intercept = -19.1519
10	3.40	3.40	6.8	1.269	36	37.29	Corr. coeff. = 0.9979
7	2.60	2.60	5.2	1.110	28	29.00	
5	1.60	1.60	3.2	0.870	20	20.71	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

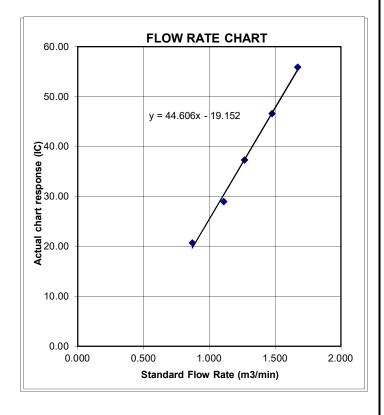
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

TE-5025A

RECALIBRATION
DUE DATE:

February 5, 2020

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 5, 2019

Rootsmeter S/N: 438320

Ta: 293
Pa: 753.1

Ϋ́

Operator: Jim Tisch

mm Hg

Calibration Model #:

Calibrator S/N: 1941

4	Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
	1	1	2	1	1.4830	3.2	2.00
	2	3	4	1	1.0430	6.4	4.00
Γ	3	5	6	1	0.9300	7.9	5.00
	4	7	8	1	0.8870	8.7	5.50
	5	9	10	1	0.7320	12.7	8.00

	Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$	
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)	
1.0036	0.6767	1.4197	0.9958	0.6714	0.8821	
0.9993	0.9581	2.0078	0.9915	0.9506	1.2475	
0.9973	1.0723	2.2448	0.9895	1.0640	1.3947	
0.9962	1.1231	2.3544	0.9884	1.1144	1.4628	
0.9908	1.3536	2.8395	0.9831	1.3431	1.7642	
	m=	2.09680		m=	1.31298	
QSTD	b=	-0.00065	QA	b=	-0.00040	
	r=	0.99999		6 r=	0.99999	

Calculations						
Vstd= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va= ΔVol((Pa-ΔP)/Pa)					
Qstd= Vstd/ΔTime	Qa= Va/ΔTime					
For subsequent f	For subsequent flow rate calculations:					
Qstd= $1/m \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} - b \right)$	$\mathbf{Qa} = 1/m \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$					

Standard Conditions					
Tstd:	13				
Pstd:	760 mm Hg				
	Key				
ΔH: calibrate	or manometer reading (in H2O)				
ΔP: rootsmeter manometer reading (mm Hg)					
Ta: actual absolute temperature (°K)					
Pa: actual barometric pressure (mm Hg)					
b: intercept					
m: slope					

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

Operator:

Jim Tisch

RECALIBRATION DUE DATE:

February 7, 2021

°K

mm Hg

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 7, 2020 Rootsmeter S/N: 438320

Pa: 745.5

Ta: 295

Calibration Model #: TE-5025A Calibrator S/N: 1612

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3730	3.2	2.00
2	3	4	1	0.9820	6.4	4.00
3	5	6	1	0.8780	8.0	5.00
4	7	8	1	0.8340	8.8	5.50
5	9	10	1	0.6900	12.8	8.00

	Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H \Big(Ta/Pa \Big)}$	
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)	
0.9866	0.7186	1.4078	0.9957	0.7252	0.8896	
0.9824	1.0004	1.9909	0.9914	1.0096	1.2581	
0.9802	1.1165	2.2259	0.9893	1.1267	1.4066	
0.9792	1.1741	2.3345	0.9882	1.1849	1.4753	
0.9739	1.4114	2.8155	0.9828	1.4244	1.7792	
	m=	2.03014		m=	1.27124	
QSTD	b=	-0.04616	QA	b=	-0.02917	
	r=	0.99995		r=	0.99995	

Calculations					
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime		
For subsequent flow rate calculations:					
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$		

Standard Conditions					
Tstd:	298.15 °K				
Pstd:	760 mm Hg				
	Key				
ΔH: calibrate	or manometer reading (in H2O)				
ΔP: rootsmeter manometer reading (mm Hg)					
Ta: actual absolute temperature (°K)					
Pa: actual barometric pressure (mm Hg)					
b: intercept					
m: slope					

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610 FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

HK1912135 WORK ORDER CONTACT : MR BEN TAM

CLIENT : ACTION UNITED ENVIRONMENT SERVICES AND

CONSULTING

: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, SUB-BATCH **ADDRESS**

> : 20-MAR-2019 DATE RECEIVED KWAI CHUNG, N.T. HONG KONG

: 22-MAR-2019 DATE OF ISSUE

PROJECT NO. OF SAMPLES : 1

CLIENT ORDER

General Comments

Sample(s) were received in ambient condition.

Sample(s) analysed and reported on an as received basis.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

: HK1912135 WORK ORDER

SUB-BATCH

: 1 : ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING CLIENT

PROJECT

ALS Lab	ALS Lab Client's Sample ID		Sample Date	External Lab Report No.
ID		Туре		
HK1912135-001	S/N: 456658	AIR	20-Mar-2019	S/N: 456658

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 456658

Equipment Ref: EQ115

Job Order HK1912135

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 12 February 2019

Equipment Verification Results:

Calibration Date: 11 March 2019

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr00min	09:21 ~ 11:21	18.4	1014.9	0.021	3301	27.5
2hr00min	11:30 ~ 13:30	18.4	1014.9	0.025	3813	31.8
2hr00min	13:40 ~ 15:40	18.4	1014.9	0.032	4311	35.9

Sensitivity Adjustment Scale Setting (Before Calibration)
Sensitivity Adjustment Scale Setting (After Calibration)

705 (CPM) 705 (CPM)

Linear Regression of Y or X

 Slope (K-factor):
 0.0008

 Correlation Coefficient (R)
 0.9914

Date of Issue <u>18 March 2019</u>

Remarks:

- 1. **Strong** Correlation (R>0.8)
- 2. Factor 0.0008 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.035					
0.03					
0.025					
0.02				/	
0.015			$-\!\!/-$	y = 0.0008x - 0	0006
0.01		$-\!/$		$R^2 = 0.982$	
0.005					
0 4			-	1	
	0	10	20	30	40

Operator : Fai So Signature : Date : 18 March 2019

QC Reviewer : Ben Tam Signature : Date : 18 March 2019

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 12-Feb-19

Location ID: Calibration Room Next Calibration Date: 12-May-19

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1024.2 19.0

Corrected Pressure (mm Hg)
Temperature (K)

768.15 292

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Calibration Date->	13-Feb-18

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.02017 -0.03691 13-Feb-19

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4	7.7	11.7	1.738	60	60.94	Slope = 35.5369
13	2.8	6.9	9.7	1.584	52	52.81	Intercept = -1.8924
10	1.9	5.4	7.3	1.377	46	46.72	Corr. coeff. = 0.9951
8	0.6	4	4.6	1.097	38	38.59	
5	-0.4	3.1	2.7	0.844	27	27.42	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

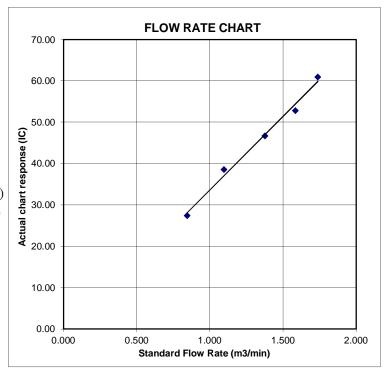
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION DUE DATE:

February 13, 2019

Pertificate d alibration

Calibration Certification Information

Cal. Date: February 13, 2018

Calibration Model #: TE-5025A

Rootsmeter S/N: 438320

Ta: 293

°K

Operator: Jim Tisch

Calibrator S/N: 1612

Pa: 763.3 mm Hg

	Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
Г	1	1	2	1	1.3970	3.2	2.00
Г	2	3	4	1	1.0000	6.3	4.00
Г	3	5	6	1	0.8900	7.9	5.00
Г	4	7	8	1	0.8440	8.7	5.50
	5	9	10	1	0.7010	12.6	8.00

Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)			
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)			
1.0172	0.7281	1.4293	0.9958	0.7128	0.8762			
1.0130	1.0130	2.0213	0.9917	0.9917	1.2392			
1.0109	1.1358	2.2599	0.9896	1.1120	1.3854			
1.0098	1.1964	2.3702	0.9886	1.1713	1.4530			
1.0046	1.4331	2.8586	0.9835	1.4030	1.7524			
	m=	2.02017		m=	1.26500			
QSTD	b=	-0.03691	QA	b=	-0.02263			
	r=	0.99988		r=	0.99988			

Calculations							
Vstd=	ΔVoI((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)				
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime				
For subsequent flow rate calculations:							
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$				

Standard Conditions						
Tstd: 298.15 °K						
Pstd:	760 mm Hg					
	Key					
	or manometer reading (in H2O)					
ΔP: rootsme	ΔP: rootsmeter manometer reading (mm Hg)					
Ta: actual absolute temperature (°K)						
Pa: actual barometric pressure (mm Hg)						
b: intercept						
m: slope						

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.cor

TOLL FREE: (877)263-7610

FAX: (513)467-900

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

HK1912136 WORK ORDER CONTACT : MR BEN TAM

CLIENT : ACTION UNITED ENVIRONMENT SERVICES AND

CONSULTING

: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, SUB-BATCH **ADDRESS**

> : 20-MAR-2019 DATE RECEIVED KWAI CHUNG, N.T. HONG KONG

: 22-MAR-2019 DATE OF ISSUE

PROJECT NO. OF SAMPLES : 1

CLIENT ORDER

General Comments

Sample(s) were received in ambient condition.

Sample(s) analysed and reported on an as received basis.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

: HK1912136 WORK ORDER

SUB-BATCH

: 1 : ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING CLIENT

PROJECT

ALS Lab	Client's Sample ID		Sample Date	External Lab Report No.
שו		Туре		
HK1912136-001	S/N: 456659	AIR	20-Mar-2019	S/N: 456659

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 456659

Equipment Ref: EQ116

Job Order HK1912136

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 12 February 2019

Equipment Verification Results:

Calibration Date: 11 March 2019

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr00min	09:21 ~ 11:21	18.4	1014.9	0.021	3011	25.1
2hr00min	11:30 ~ 13:30	18.4	1014.9	0.025	3546	29.6
2hr00min	13:40 ~ 15:40	18.4	1014.9	0.032	4101	34.2

Sensitivity Adjustment Scale Setting (Before Calibration)
Sensitivity Adjustment Scale Setting (After Calibration)

726 (CPM) 724 (CPM)

Linear Regression of Y or X

Slope (K-factor): 0.0009

Correlation Coefficient (R) 0.9950

Date of Issue <u>18 March 2019</u>

Remarks:

- 1. **Strong** Correlation (R>0.8)
- 2. Factor 0.0009 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 10 20 30 40

Operator : _____ Fai So ____ Signature : ____ Date : ____ 18 March 2019

QC Reviewer : Ben Tam Signature : Date : 18 March 2019

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 12-Feb-19

Location ID: Calibration Room Next Calibration Date: 12-May-19

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1024.2 19.0

Corrected Pressure (mm Hg)
Temperature (K)

768.15 292

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Calibration Date->	13-Feb-18

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.02017 -0.03691 13-Feb-19

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4	7.7	11.7	1.738	60	60.94	Slope = 35.5369
13	2.8	6.9	9.7	1.584	52	52.81	Intercept = -1.8924
10	1.9	5.4	7.3	1.377	46	46.72	Corr. coeff. = 0.9951
8	0.6	4	4.6	1.097	38	38.59	
5	-0.4	3.1	2.7	0.844	27	27.42	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

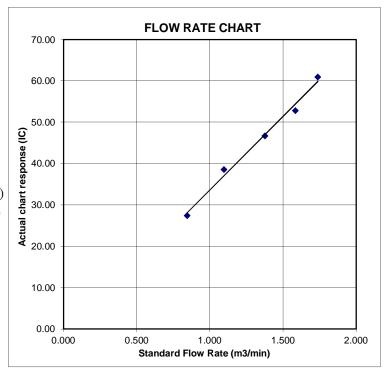
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION DUE DATE:

February 13, 2019

Pertificate d alibration

Calibration Certification Information

Cal. Date: February 13, 2018

Calibration Model #: TE-5025A

Rootsmeter S/N: 438320

Ta: 293

°K

Operator: Jim Tisch

Calibrator S/N: 1612

Pa: 763.3 mm Hg

	Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
Г	1	1	2	1	1.3970	3.2	2.00
Г	2	3	4	1	1.0000	6.3	4.00
Г	3	5	6	1	0.8900	7.9	5.00
Г	4	7	8	1	0.8440	8.7	5.50
	5	9	10	1	0.7010	12.6	8.00

	Data Tabulation									
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)					
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)					
1.0172	0.7281	1.4293	0.9958	0.7128	0.8762					
1.0130	1.0130	2.0213	0.9917	0.9917	1.2392					
1.0109	1.1358	2.2599	0.9896	1.1120	1.3854					
1.0098	1.1964	2.3702	0.9886	1.1713	1.4530					
1.0046	1.4331	2.8586	0.9835	1.4030	1.7524					
	m=	2.02017		m=	1.26500					
QSTD	b=	-0.03691	QA	b=	-0.02263					
	r=	0.99988		r=	0.99988					

Calculations							
$Vstd = \Delta Vol((Pa-\Delta P)/Pstd)(Tstd/Ta) $ $Va = \Delta Vol((Pa-\Delta P)/Pa)$							
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime				
	For subsequent flow ra	te calculatio	ns:				
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$				

Standard Conditions							
Tstd:	298.15 °K						
Pstd:	760 mm Hg						
	Key						
	or manometer reading (in H2O)						
ΔP: rootsme	ter manometer reading (mm Hg)						
1	osolute temperature (°K)						
Pa: actual barometric pressure (mm Hg)							
b: intercept							
m: slope							

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.cor

TOLL FREE: (877)263-7610

FAX: (513)467-900

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C193171

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC19-1098)

Date of Receipt / 收件日期: 14 June 2019

Description / 儀器名稱

Integrating Sound Level Meter (EO010)

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號

2238

Serial No./編號

2285721

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS/測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

19 June 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By

測試

K P Cheuk

Assistant Engineer

Certified By 核證

K C/Lee Engineer Date of Issue 簽發日期

20 June 2019

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laborator

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 一 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C193171

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID

Description

Certificate No.

CL280

40 MHz Arbitrary Waveform Generator

C190176

CL281

Multifunction Acoustic Calibrator

CDK1806821

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

	UUT	Setting	Applied	Value	UUT	
Range	Parameter	Frequency	Level	Freq.	Reading	
(dB)	(dB) Weighting Weighting				(kHz)	(dB)
50 - 130	L_{AFP}	A	94.00	1	94.1	

6.1.1.2 After Self-calibration

	-	Applied	d Value	UUT	IEC 60651		
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)	(dB) Weighting Weighting				(kHz)	(dB)	(dB)
50 - 130	L_{AFP}	A	F	94.00	1	94.1	± 0.7

6.1.2 Linearity

	UU	Γ Setting	Applie	d Value	UUT	
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L_{AFP}	A	F	94.00	1	94.1 (Ref.)
				104.00		104.1
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laborator

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C193171

證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

		Applied Value		UUT	IEC 60651		
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L_{AFP}	A	F	94.00	1	94.1	Ref.
	L_{ASP}		S			94.1	± 0.1
	L_{AIP}		I			94.2	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	UUT Setting				Applied Value		IEC 60651
Range	Parameter	Frequency	Time	Level	Burst	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	L_{AFP}	A	F	106.0	Continuous	106.0	Ref.
	L _{AFMax}				200 ms	105.0	-1.0 ± 1.0
	L _{ASP}		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

		Setting		Appl	ied Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L_{AFP}	A	F	94.00	31.5 Hz	54.8	-39.4 ± 1.5
					63 Hz	67.9	-26.2 ± 1.5
					125 Hz	77.9	-16.1 ± 1.0
					250 Hz	85.4	-8.6 ± 1.0
					500 Hz	90.8	-3.2 ± 1.0
					1 kHz	94.1	Ref.
					2 kHz	95.3	$+1.2 \pm 1.0$
					4 kHz	95.1	$+1.0 \pm 1.0$
					8 kHz	93.0	-1.1 (+1.5; -3.0)
					12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: (

C193171

證書編號

6.3.2 C-Weighting

		Applied Value		UUT	IEC 60651			
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.	
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)	
50 - 130	L_{CFP}	C	F	94.00	31.5 Hz	91.2	-3.0 ± 1.5	
			,		63 Hz	93.3	-0.8 ± 1.5	
					125 Hz	93.9	-0.2 ± 1.0	
					250 Hz	94.1	0.0 ± 1.0	
					500 Hz	94.1	0.0 ± 1.0	
					1 kHz	94.1	Ref.	
					2 kHz	93.9	-0.2 ± 1.0	
					4 kHz	93.3	-0.8 ± 1.0	
					8 kHz	91.0	-3.0 (+1.5; -3.0)	
					12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)	

6.4 Time Averaging

UUT Setting				Applied Value					UUT	IEC 60804
Range	Parameter	Frequency	Integrating	Frequency	Burst	Burst	Burst	Equivalent	Reading	Type 1
(dB)		Weighting	Time	(kHz)	Duration	Duty	Level	Level	(dB)	Spec.
					(ms)	Factor	(dB)	(dB)		(dB)
30 - 110	L_{Aeq}	Α	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						1/10 ²		90	89.9	± 0.5
			60 sec.			1/10 ³		80	79.9	± 1.0
			5 min.			1/10 ⁴		70	69.8	± 1.0

Remarks: - UUT Microphone Model No.: 4188 & S/N: 2812707

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : 31.5 Hz - 125 Hz : \pm 0.35 dB

12.5 kHz : $\pm 0.45 \text{ dB}$: $\pm 0.70 \text{ dB}$

104 dB : 1 kHz : $\pm 0.10 \text{ dB}$ (Ref. 94 dB) 114 dB : 1 kHz : $\pm 0.10 \text{ dB}$ (Ref. 94 dB) Burst equivalent level : $\pm 0.2 \text{ dB}$ (Ref. 110 dB)

continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Tel/電話: (852) 2927 2606

Only the original copy or the laboratory's certified true copy is valid.

Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C192957

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC19-1098)

Date of Receipt / 收件日期: 30 May 2019

Description / 儀器名稱

Sound Level Meter (EQ017)

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號

2250

Serial No. / 編號

3012330

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

7 June 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試

HT Wong

Technical Officer

Certified By 核證

C Lee Engineer Date of Issue

12 June 2019

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 一 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓

Fax/傳真: (852) 2744 8986 Tel/電話: (852) 2927 2606

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Page 1 of 4

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C192957

證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test 6.1.1.2 to 6.3.2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID

Description

Certificate No.

CL280

40 MHz Arbitrary Waveform Generator

C190176

CL281

Multifunction Acoustic Calibrator

CDK1806821

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

UUT	Setting	Applied Value		UUT Reading
Range (dB)	Main	Level (dB) Freq. (kHz)		(dB)
20 - 140	LAF (SPL)	94.00	1	94.1

6.1.1.2 After Self-calibration

UUT Setting		Applied Value		UUT Reading	IEC 61672 Class 1
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	Spec. (dB)
20 - 140	LAF (SPL)	94.00	1	94.0	± 1.1

6.1.2 Linearity

Tel/電話: (852) 2927 2606

UUT S	Setting	Applied Value		UUT Reading
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)
20 - 140	LAF (SPL)	94.00	1	94.0 (Ref.)
		104.00		104.0
		114.00		114.0

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Fax/傳真: (852) 2744 8986

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C192957

證書編號

6.2 Time Weighting

UUT	Setting	Applie	ed Value	UUT Reading	IEC 61672 Class 1
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	Spec. (dB)
20 - 140	LAF (SPL)	94.00	1	94.0	Ref.
	LAS (SPL)			94.0	± 0.3

6.3 Frequency Weighting

6.3.1 A-Weighting

A-weighting					
UUT Setting Applied		d Value	UUT Reading	IEC 61672 Class 1 Spec.	
Range (dB)	Main	Level (dB)	Freq.	(dB)	(dB)
20 - 140	LAF (SPL)	94.00	63 Hz	67.8	-26.2 ± 1.5
			125 Hz	77.8	-16.1 ± 1.5
			250 Hz	85.3	-8.6 ± 1.4
			500 Hz	90.7	-3.2 ± 1.4
			1 kHz	94.0	Ref.
			2 kHz	95.2	$+1.2 \pm 1.6$
			4 kHz	95.0	$+1.0 \pm 1.6$
			8 kHz	92.9	-1.1(+2.1; -3.1)
			12.5 kHz	89.3	-4.3(+3.0; -6.0)

6.3.2 C-Weighting

UUT Se	etting	Applie	Applied Value		IEC 61672 Class 1 Spec.
Range (dB)	Main	Level (dB)	Freq.	(dB)	(dB)
20 - 140	LCF (SPL)	94.00	63 Hz	93.2	-0.8 ± 1.5
			125 Hz	93.8	-0.2 ± 1.5
			250 Hz	94.0	0.0 ± 1.4
			500 Hz	94.0	0.0 ± 1.4
			1 kHz	94.0	Ref.
			2 kHz	93.8	-0.2 ± 1.6
			4 kHz	93.2	-0.8 ± 1.6
			8 kHz	91.0	-3.0 (+2.1; -3.1)
			12.5 kHz	87.4	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Fax/傳真: (852) 2744 8986

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里—號四樓

Tel/電話: (852) 2927 2606

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration

C192957 Certificate No.:

證書編號

Remarks: - UUT Microphone Model No.: 4189 & S/N: 3130396

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : \pm 0.35 dB

 $250 \text{ Hz} - 500 \text{ Hz} : \pm 0.30 \text{ dB}$ 1 kHz $: \pm 0.20 \text{ dB}$ 2 kHz - 4 kHz $: \pm 0.35 \text{ dB}$ $: \pm 0.45 \text{ dB}$ 8 kHz $: \pm 0.70 \text{ dB}$ 12.5 kHz

 $: \pm 0.10 \text{ dB (Ref. 94 dB)}$ 104 dB : 1 kHz : 1 kHz $: \pm 0.10 \text{ dB (Ref. 94 dB)}$ 114 dB

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C194819

證書編號

Date of Receipt / 收件日期: 27 August 2019

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC19-1098)

Description / 儀器名稱

Sound Calibrator (EQ087)

Manufacturer / 製造商

Rion

Model No. / 型號

NC-74

Serial No. / 編號

34657231

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 : $(50 \pm 25)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

Line Voltage / 電壓

DATE OF TEST / 測試日期

7 September 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong Technical Officer

Certified By 核證

Lee Engineer Date of Issue 簽發日期

10 September 2019

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 一 校正及檢測實驗所

c/o 香港新界屯門興安里一號四樓

Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Page 1 of 2

Certificate of Calibration 校正證書

Certificate No.:

C194819

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID CL130 CL281 TST150A <u>Description</u> Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier Certificate No. C193756 CDK1806821 C181288

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.1	± 0.3	± 0.2

5.2 Frequency Accuracy

1 requestey recuracy			
UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C192956

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC19-1098)

Date of Receipt / 收件日期: 30 May 2019

Description / 儀器名稱

Sound Calibrator (EQ082)

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號

4231

Serial No. / 編號

2713428

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 温度 :

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

7 June 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試

HT Wong

Technical Officer

Certified By 核證

K C Lee

Date of Issue 簽發日期

12 June 2019

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

written approval of this laboratory 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

輝 創 工 程 有 限 公 司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration

Certificate No.:

C192956

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement 1. of the test.

The results presented are the mean of 3 measurements at each calibration point. 2.

3. Test equipment:

> Equipment ID CL130

CL281 TST150A Description

Universal Counter

Multifunction Acoustic Calibrator Measuring Amplifier

Certificate No.

C183775 CDK1806821

C181288

Test procedure: MA100N.

5. Results:

Sound Level Accuracy 5.1

Sound Level Meediacy			
UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.1		

Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓 Tel/電話: (852) 2927 2606

Page 2 of 2

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 142626WA192593(1)A

Page 1 of 3

Report on Calibration of YSI EXO-3 Multi-parameter Water Quality Meter

Information Supplied by Client

Client : Fugro Technical Services Limited (MCL)

Client's address : Rm. 723-726, 7/F, Profit Industrial Building, No. 1-15,

Kwai Fung Crescent, Kwai Chung, N.T.

Sample description : One YSI EXO-3 Multi-parameter Water Quality Meter

Client sample ID : Serial No. 19A105807

Test required : Calibration of the YSI EXO-3 Multi-parameter Water Quality Meter

Laboratory Information

Lab. sample ID : WA192593/2

Date sample received : 02/12/2019

Date of calibration : 09/12/2019

Next calibration date : 08/03/2020

Test method used : In-house comparison method

Note: This report refers only to the sample(s) tested.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 142626WA192593(1)A

Page 2 of 3

Results:

A. pH calibration

pH reading at 21°C for Q.C. solution(6.86) and at 21°C for Q.C. solution(9.18)					
Theoretical	Measured	Deviation			
9.18	9.19	+0.01			
6.86	6.86	0.00			

B. Salinity calibration

	Salinity, ppt					
Theoretical	Measured	Deviation	Maximum acceptable Deviation			
10	10.04	+0.04	± 0.5			
20	20.30	+0.30	± 1.0			
30	29.95	-0.05	± 1.5			
40	40.92	+0.92	± 2.0			

C. Dissolved Oxygen calibration

Trial No.	Dissolved oxyg	Dissolved oxygen content, mg/L			
Triat No.	By Titration	By D.O. meter			
1	8.35	8.50			
2	8.30	8.45			
3	8.43	8.50			
Average	8.36	8.48			

Differences of D.O. Content between Wrinkler Titration and D.O. meter should be less than 0.2 mg/L

Remark: This report is to supersede our former report #142626WA192593(1).

Certified by:

Approved Signatory: WONG I wok Fung, Raymond

Manager – €hemistry Department

Date

Note: This report refers only to the sample(s) tested.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 142626WA192593(1)A

Page 3 of 3

Results:

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
22.0	21.55

E. Turbidity calibration

	Turbidity, N.T.U.								
Theoretical	Measured	Deviation	Maximum acceptable Deviation						
0	-	-	± 0.5						
4	3.95	-0.05	± 0.6						
8	8.50	+0.50	± 0.8						
40	40.33	+0.33	± 3.0						
80	81.29	+1.29	± 4.0						

Remark: This report is to supersede our former report #142626WA192593(1).

Certified by:

Approved Signatory: WONG Kwok Fung, Raymond

Manager ≠ Chemistry Department(

** End of Report **

Note: This report refers only to the sample(s) tested.

This document certifies that the instrument detailed below has been calibrated according to Valeport Limited's Standard Procedures, using equipment with calibrations traceable to UKAS or National Standards.

Calibration Certificate Number:

55566

Instrument Type:

106CM

Instrument Serial Number:

67738

Calibrated By:

P.HARRINGTON

Date:

05/09/2018

Signed:

de

Full details of the results from the calibration procedure applied to each fitted sensor are available, on request, via email. This summary certificate should be kept with the instrument.

Valeport Limited St. Peter's Quay Totnes Devon TQ9 5EW UK +44 (0) 1803 869292 sales@valeport.co.uk www.valeport.co.uk

Appendix F

Event and Action Plan

Event and Action Plan for Air Quality

EXTENT		ACTION				
EVENT	ET	IEC	ER	Contractor		
Action Level Exceedance for One Sample	 Identify source(s) of impact; Inform the IEC and the ER; Repeat measurement to confindings; Carry out investigation for the cause of exceedance, if the exceedance is project-related increase monitoring frequencially 	method	1. Notify Contractor	 Rectify any unacceptable practice; Amend working methods if appropriate 		
Action Level Exceedance for Two or More Consecutive Samples	 Identify source(s) of impact; Inform the IEC and ER; Repeat measurement to confindings; Carry out investigation for the cause of exceedance, if the exceedance is project-related increase monitoring frequencially Discuss with IEC and Contra on remedial action required; If exceedance continues, arrameeting with IEC and ER; If exceedance stops, cease additional monitoring 	method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the ER on the effectiveness of the proposed remedial measures; 5. Supervise implementation of	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented	 Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate 		
Limit Level Exceedance for One Sample	 Identify source(s) of impact; Inform the EPD and the ER; Repeat measurement to confindings; Carry out investigation for the cause of exceedance, if the exceedance is project-related increase monitoring frequency daily 	method; 3. Discuss with ET and Contractor on possible remedial measures;	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if 		

EVENT	ET		ACTION				
	E I		IEC		ER		Contractor
Cor kee of r	ssess effectiveness of ontractor's remedial actions and ep IEC, EPD and ER informed results	5.	remedial measures; Supervise implementation of remedial measures				appropriate
Exceedance for Two or More Consecutive Samples 4. Can cau exc incidaii 5. Can woo pos imp 6. Arr ER acti 7. Ass Con kee of t 8. If e	entify source(s) of impact; epeat measurement to confirm adings; arry out investigation for the use of exceedance, if the ceedance is project-related, crease monitoring frequency to	 2. 3. 	Discuss amongst ER, ET and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures	 2. 3. 4. 5. 	Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	 2. 3. 4. 5. 	problem still not under control;

Event and Action Plan for Construction Noise

EVCEEDANCE		ACTION	
EXCEEDANCE	ET	IEC ER	Contractor
Action Level	 Notify IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals
Limit Level	mitigation effectiveness 1. Notify IEC, ER, EPD and Contractor; 2. Identify source; 3. Carry out investigation; 4. Report the results of investigation to the IEC and Contractor; 5. Discuss with the Contractor and formulate remedial measures; 6. Increase monitoring frequency to check mitigation effectiveness	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures Ensure remedial measures are properly implemented 	Submit noise mitigation proposals to IEC; Implement noise mitigation proposals

Event and Action Plan for Water Quality

				ACT	IOI	N		
EVENT		ET		IEC		ER		Contractor
Action Level being exceeded by one sampling day	 2. 3. 4. 5. 	Inform the IEC and the Contractor; Check monitoring data, all plant, equipment and the Contractor's working methods;	 2. 3. 	Discuss with the ET and the Contractor on the mitigation measures; Review proposals on mitigation measures submitted by the Contractor; Assess the effectiveness of the implemented mitigation measures.	1. 2.	Discuss with the IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented.	 2. 3. 4. 6. 	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET and the IEC and propose mitigation measures to the IEC and ER; Implement the agreed mitigation measures.
Action Level being exceeded by more than one consecutive sampling days	1. 2. 3. 4. 5.	Inform the IEC and the Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with the IEC and the Contractor;	1. 2. 3.	Discuss with the ET and the Contractor on the mitigation measures; Review proposals on mitigation measures submitted by the Contractor accordingly; Assess the effectiveness of the implemented mitigation measures.	1. 2. 3.	Discuss with the IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess effectiveness of the implemented mitigation measures.	1. 2. 3. 4. 5.	Inform the ER and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET and the IEC and propose mitigation measures to the IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit Level being exceeded by one consecutive sampling day	1. 2. 3. 4.	confirm findings; Identify source(s) of impact; Inform the IEC, the Contractor and the EPD; Check monitoring data, all plant, equipment and the Contractor's working methods;	 2. 3. 	Discuss with the ET / Contractor on the mitigation measures; Review proposals on mitigation measures submitted by the Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures.	 2. 3. 	Discuss with the IEC, the ET and the Contractor on the proposed mitigation measures; Request the Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented;	1. 2. 3. 4. 5.	Inform the ER and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, the IEC and the ER and propose mitigation

CEDD Contract No. CV/2012/05 – Development of a Bathing Beach at Lung Mei, Tai Po Monthly Environmental Monitoring & Audit Report – February 2020

DYDNE		ACT	TION			
EVENT	ET	IEC	ER	Contractor		
	the IEC, the ER and the Contractor; 6. Ensure mitigation measures are implemented.		4. Assess the effectiveness of the implemented mitigation measures.	measures to the IEC and the ER within 3 working days; 6. Implement the agreed mitigation measures.		
Limit Level being exceeded by more than one consecutive sampling days	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform the IEC, the Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with the IEC, the ER and the Contractor; Ensure mitigation measures are implemented 	on the mitigation measures; 2. Review proposals on mitigation measures submitted by the Contractor and advise the ER accordingly;	 Discuss with the IEC, the ET and the Contractor on the proposed mitigation measures; Request Contractor to critically review working methods; Make agreement on the mitigation measures to be implemented; Assess effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit Level. 	notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with the ET, the IEC and the ER and propose mitigation measures to the IEC and the ER within 3 working days; 6. Implement the agreed mitigation measures;		

Appendix G

Impact Monitoring Schedule

Impact Monitoring Schedule for the Reporting Period

		Noise Monitoring	Air Quality	Monitoring	
	Date	(0700 – 1900)	1-hour TSP	24-hour TSP	Water Quality*
Sat	1-Feb-20				
Sun	2-Feb-20				
Mon	3-Feb-20				
Tue	4-Feb-20	✓	✓		✓
Wed	5-Feb-20			✓	
Thu	6-Feb-20				✓
Fri	7-Feb-20				
Sat	8-Feb-20				✓
Sun	9-Feb-20				
Mon	10-Feb-20	✓	✓		✓
Tue	11-Feb-20			✓	
Wed	12-Feb-20				✓
Thu	13-Feb-20				
Fri	14-Feb-20				✓
Sat	15-Feb-20		✓		
Sun	16-Feb-20				
Mon	17-Feb-20			✓	✓
Tue	18-Feb-20				
Wed	19-Feb-20				✓
Thu	20-Feb-20				
Fri	21-Feb-20	✓	✓		✓
Sat	22-Feb-20			✓	
Sun	23-Feb-20				
Mon	24-Feb-20				✓
Tue	25-Feb-20				
Wed	26-Feb-20				✓
Thu	27-Feb-20	✓	✓		
Fri	28-Feb-20			✓	✓
Sat	29-Feb-20				

Remark:

^{*} Water Quality Monitoring Schedule was provided by Fugro Technical Services Limited

✓	Monitoring Day
	Sunday or Public Holiday

Marine Water Quality Monitoring Schedule

Impact Monitoring Schedule (February 2020)

Sun	Mon	Tue	Wed	Thu	Fri	Sat
						1
2	3	4 WQM Mid-Ebb (08:31-09:31) Mid-Flood(12:34-15:34)	5	6 WQM Mid-Ebb (09:20-12:20) Mid-Flood(14:26-17:26)	7	8 WQM Mid-Flood(05:26-08:26) Mid-Ebb (10:35-13:35)
9	10 WQM Mid-Flood(06:40-09:40) Mid-Ebb (12:14-15:14)	11	12 WQM Mid-Flood(08:00-11:00) Mid-Ebb (13:49-16:49)	13	14 WQM Mid-Flood(09:24-12:24) Mid-Ebb (15:28-18:28)	15
16	17 WQM Mid-Ebb (08:59-08:59) Mid-Flood(11:56-17:49)	18	19 WQM Mid-Ebb (08:51-11:51) Mid-Flood(14:02-17:02)	20	21 WQM Mid-Flood(05:58-07:58) Mid-Ebb (10:26-13:28)	22
23	24 WQM Mid-Flood(06:33-09:33) Mid-Ebb (12:16-15:16)	25	26 WQM Mid-Flood(07:35-10:35) Mid-Ebb (13:25-16:25)	27	28 WQM Mid-Ebb (08:33-11:33) Mid-Flood(14:36-17:36)	29

- Remarks

 1. Monitoring Locations G1, R1, R2, I1, I2, I3, W1, M1 and FCZ1

 2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition

Impact Monitoring Schedule for next Reporting Period

		Noise Monitoring	Air Quality	Water Oralites*		
	Date	(0700 – 1900)	1-hour TSP	24-hour TSP	Water Quality*	
Sun	1-Mar-20					
Mon	2-Mar-20				✓	
Tue	3-Mar-20					
Wed	4-Mar-20	✓	✓		✓	
Thu	5-Mar-20			✓		
Fri	6-Mar-20				✓	
Sat	7-Mar-20					
Sun	8-Mar-20					
Mon	9-Mar-20				✓	
Tue	10-Mar-20	✓	✓			
Wed	11-Mar-20			✓	✓	
Thu	12-Mar-20					
Fri	13-Mar-20				✓	
Sat	14-Mar-20					
Sun	15-Mar-20					
Mon	16-Mar-20	✓	✓		✓	
Tue	17-Mar-20			✓		
Wed	18-Mar-20				✓	
Thu	19-Mar-20					
Fri	20-Mar-20				✓	
Sat	21-Mar-20		✓			
Sun	22-Mar-20					
Mon	23-Mar-20			✓	✓	
Tue	24-Mar-20					
Wed	25-Mar-20				✓	
Thu	26-Mar-20					
Fri	27-Mar-20	✓	✓		✓	
Sat	28-Mar-20			✓		
Sun	29-Mar-20					
Mon	30-Mar-20				✓	
Tue	31-Mar-20					

Remark:

* Water Quality Monitoring Schedule was provided by Fugro Technical Services Limited

✓	Monitoring Day
	Sunday or Public Holiday

Marine Water Quality Monitoring Schedule

Impact Monitoring Schedule (March 2020)

	Worldoning Schedule (
Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	2 WQM Mid-Ebb (10:03-13:03) Mid-Flood(16:50-18:00)	3	4 WQM Mid-Flood(06:00-07:09) Mid-Ebb (11:48-14:46)	5	6 WQM Mid-Ebb (09:17-12:17) Mid-Flood(13:52-16:52)	7
8	9 WQM Mid-Flood(06:00-08:37) Mid-Ebb (11:20-14:20)	10	11 WQM Mid-Flood(06:51-09:51) Mid-Ebb (12:48-15:48)	12	13 WQM Mid-Ebb (08:08-11:08) Mid-Flood(14:03-17:03)	14
15	16 WQM Mid-Flood(06:00-07:21) Mid-Ebb (10:13-17:49)	17	18 WQM Mid-Flood(09:32-11:32) Mid-Ebb (20:20-21:50)	19	20 WQM Mid-Ebb (10:00-12:33) Mid-Flood(14:53-17:53)	21
22	23 WQM Mid-Flood(06:00-08:31) Mid-Ebb (11:22-14:22)	24	25 WQM Mid-Flood(06:29-09:29) Mid-Ebb (12:28-15:28)	26	27 WQM Mid-Flood(07:24-10:24) Mid-Ebb (13:34-16:34)	28
29	30 WQM Mid-Ebb (08:41-11:41) Mid-Flood(15:27-18:27)	31				29

- Remarks

 1. Monitoring Locations G1, R1, R2, I1, I2, I3, W1, M1 and FCZ1

 2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition

Appendix H

Database of Monitoring Result

24-hour TSP Monitoring Data

DATE	SAMPLE NUMBER	Е	LAPSED TIMI	E	CHAR	T REA	DING	AVG TEMP	AVG AIR PRESS	STANDAR D FLOW RATE	AIR VOLUME	FILTER W	(O)	DUST WEIGHT COLLECTED	24-Hr TSP (μg/m³)	ACTION LEVEL	LIMIT LEVEL
		INITIAL	FINAL	(min)	MIN	MAX	AVG	$(^{\circ}\mathbb{C})$	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	(,)	(μg/m³)	$(\mu g/m^3)$
A4 - No. 10	l Lung Me	i Tsuen															
5-Feb-20	25276	15513.55	15537.55	1440.00	31	32	31.5	15.9	1019.7	1.21	1738	2.7939	2.8734	0.0795	46	142	260
11-Feb-20	25400	15537.55	15561.55	1440.00	31	32	31.5	17.6	1020.5	1.20	1733	2.7648	2.8222	0.0574	33	142	260
17-Feb-20	25345	15561.55	15585.55	1440.00	30	30	30.0	19	1017.3	1.14	1645	2.8075	2.8369	0.0294	18	142	260
22-Feb-20	25334	15561.55	15585.55	1440.00	30	32	31.0	20.1	1025.7	1.18	1703	2.8198	2.8750	0.0552	32	142	260
28-Feb-20	25392	15585.55	15609.55	1440.00	30	31	30.5	15.1	1018.4	1.17	1684	2.7840	2.8339	0.0499	30	142	260
A7 - Hong K	Kong Eco-F	arm															
5-Feb-20	25273	15272.48	15296.48	1440.00	32	33	32.5	15.9	1019.7	1.17	1687	2.8029	2.9357	0.1328	79	141	260
11-Feb-20	25399	15296.48	15320.48	1440.00	30	32	31.0	17.6	1020.2	1.14	1635	2.7999	2.8988	0.0989	60	141	260
17-Feb-20	25346	15320.48	15344.48	1440.00	32	32	32.0	19	1017.3	1.16	1664	2.8004	2.8785	0.0781	47	141	260
22-Feb-20	25333	15344.48	15368.48	1440.00	30	32	31.0	20.1	1025.7	1.13	1633	2.7805	2.9046	0.1241	76	141	260
28-Feb-20	25393	15368.48	15392.48	1440.00	31	32	31.5	15.1	1018.4	1.15	1655	2.7620	2.8460	0.0840	51	141	260

1-hour TSP Monitoring Data

Date	Start Time	End Time	1 st reading	2 nd reading	3 rd reading	Action Level (μg/m³)	Limit Level (μg/m³)
A4 - No. 101 I	Lung Mei Tsuen						
4-Feb-20	13:14	15:14	33	33	31	275	500
10-Feb-20	11:01	14:01	39	42	41	275	500
15-Feb-20	10:18	13:18	74	80	70	275	500
21-Feb-20	9:58	12:58	50	44	52	275	500
27-Feb-20	9:21	12:21	55	50	50	275	500
A7 - Hong Ko	ng Eco-Farm						
4-Feb-20	10:05	12:05	32	27	30	274	500
10-Feb-20	14:10	17:10	42	40	44	274	500
15-Feb-20	10:29	13:29	70	65	76	274	500
21-Feb-20	13:22	16:22	56	64	67	274	500
27-Feb-20	12:53	15:53	59	62	64	274	500

Construction Noise Monitoring Results, dB(A)

Date	Start Time	1 st Leq _{5min}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction	Limit Level (dB(A))
N1 - Villago	e house -	No. 165	A Lung	Mei																		
4-Feb-20	11:12	61.8	65.0	52.5	58.9	62.0	48.0	60.3	64.0	48.5	57.4	60.5	48.0	61.2	65.0	48.5	61.6	64.5	50.5	60	63	75
10-Feb-20	11:10	67.9	72.5	55.5	66.9	70.5	56.0	60.3	64.0	52.0	60.9	63.0	53.5	56.4	60.0	48.0	57.6	61.5	48.0	64	67	75
21-Feb-20	+	57.0	58.4	47.8	67.9	65.7	49.7	57.0	60.5	50.2	55.7	59.4	48.7	56.6	60.8	50.0	54.5	58.2	47.9	63	66	75
27-Feb-20		55.4	59.0	50.1	57.1	59.9	51.0	55.4	59.0	48.6	59.1	63.0	52.0	58.3	61.8	48.9	60.3	64.3	51.3	58	61	75
N2a - Villaş											1								1			
4-Feb-20		57.5	59.5	44.5	56.7	60.5	44.5	56.2	60.0	43.0	55.7	59.5	42.0	56.1	59.5	44.0	55.6	59.5	43.0	56	N/A	75
10-Feb-20	+	59.9	63.0	46.5	57.9	62.0	44.5	61.0	64.5	50.5	61.4	65.5	47.0	60.9	65.0	47.5	61.2	64.0	53.0	61	N/A	75
21-Feb-20		59.6	62.9	50.6	58.9	62.8	47.9	60.3	63.4	49.1	61.3	65.0	51.8	60.3	64.6	49.9	59.8	63.7	49.4	60	N/A	75
27-Feb-20			60.7	50.2	57.9	61.2	51.7	57.1	61.5	46.5	59.8	64.4	51.0	57.9	61.8	51.4	58.4	61.8	51.4	58	N/A	75
N3a - Villaş														T T			T T			I		
4-Feb-20		51.6	54.0	46.0	50.3	52.5	47.0	52.7	55.0	46.5	52.0	53.5	47.0	50.5	52.0	48.5	51.7	53.5	49.0	52	55	75
10-Feb-20	+	60.0	64.5	43.5	52.5	56.0	43.0	59.8	62.5	44.5	62.5	61.5	45.0	58.1	61.5	45.0	62.6	66.0	53.0	60	63	75
21-Feb-20		64.5	68.0	59.4	64.0	67.7	59.2	64.8	68.2	59.4	65.5	69.0	60.1	64.2	68.5	58.0	67.3	71.5	61.3	65	68	75
27-Feb-20			55.4	49.7	54.8	58.0	50.7	60.9	63.4	58.1	59.1	60.3	58.0	60.1	61.4	57.2	60.4	63.0	57.3	59	62	75
N4 - Villago											1 - 1											
4-Feb-20		61.6	65.0	51.0	58.5	61.5	51.0	57.1	60.0	51.0	57.3	60.5	50.0	57.7	61.0	49.5	57.5	60.5	50.5	59	N/A	75
10-Feb-20	1	57.6	61.5	45.5	59.3	63.0	47.0	61.8	66.0	47.5	59.9	64.0	46.0	59.3	63.0	46.5	59.1	62.5	47.5	60	N/A	75
21-Feb-20	1	66.6	68.7	60.4	64.1	66.6	60.6	65.4	67.4	62.9	65.9	68.7	58.8	65.5	67.3	57.8	64.3	66.5	58.4	65	N/A	75
27-Feb-20	13:43	66.8	67.7	62.8	66.0	69.0	62.9	63.0	64.5	61.4	64.3	66.5	61.8	66.5	69.4	56.7	60.2	62.5	56.2	65	N/A	75

Remark:

Sound level meter set at N1 and N3a are made free-field measurement, façade correction (+3dB(A)) has added according to acoustical principles and EPD guidelines;

mpling Date							ter Quality									
Weather: a Condition:																
			Co-or	dinates	Water	Sampling	Current	Current	Temp	DO	Saturatio	Turbidit	Salinity	рН	ss	Chlorophyll
Date / Time	Location	Tide*	East	North	Depth m	Depth m	Direction degrees	Speed m/s	℃	Conc mg/L	%	y NTU	ppt	unit	mg/L	μg/L
						1.00			18.4 18.5	7.37 7.33	94.9 94.4	0.3	32.11 32.15	8.01 8.00	6	3.6 3.9
8:40	G1	ME	841483.9	835936.1	5.0		108		16.5	7.33	94.4	0.3	32.13	6.00	0	3.9
						4.00			18.3 18.3	6.95 6.99	90.2	0.7	32.25 32.28	7.98	6	3.8
						1.00			18.5	7.29	90.7 94.0	0.8	32.18	7.99 8.02	6 7	3.6 5.2
									18.5	7.26	93.7	0.4	32.20	8.00	7	4.7
8:53	R1	ME	842307.4	835718.4	5.4	2.70	160	0.162	10.2	7.02	01.1	0.9	32.30	7.07	·	E 2
						4.40			18.3 18.4	6.96	91.1 90.5	0.8	32.35	7.95	8 8	5.2 4.6
						1.00			18.4 18.4	7.41 7.38	95.3 95.0	0.3	32.17 32.15	8.02 8.01	4	2.8 2.9
8:14	R2	ME	840739.4	836212.4	4.8		140	0.123								
						3.80			18.3 18.3	7.06 7.00	91.1 90.7	0.8	32.29 32.31	7.96 7.98	4	2.9 2.9
						1.00			18.4	7.28	94.1	0.2	32.13	8.02	5	4.1
7:56	l1	ME	841338.5	836588.5	4.2		168	0.159	18.4	7.33	94.7	0.2	32.15	8.01	4	4.3
7.50		IVIL	041330.3	030300.3	7.2	2.00	100	0.100	18.4	7.10	91.8	0.9	32.20	7.96	4	4.2
						3.20			18.4 18.4 18.5	7.06 7.39	91.4 95.1	1.0	32.20 32.23 32.10	7.97 8.00	4	4.1 3.3
						1.00			18.4	7.42	95.4	0.3	32.08	7.98	4	3.2
7:42	12	ME	841590.3	836601.2	6.0	3.00	143	0.169	18.4 18.4	7.16 7.19	92.4 92.7	0.7 0.7	32.18 32.20	7.96 7.95	3	3.0 3.1
						5.00			18.4 18.4	6.64 6.62	88.5 88.2	1.0 1.0	32.28 32.31	7.94 7.93	4	3.1 3.1
						1.00			18.5 18.5	7.31 7.31	94.4 94.7	0.4	32.13 32.14	7.97 7.96	6	3.1 3.1
7:03	13	ME	841807.0	836680.9	4.4		157	0.168	16.5	7.31	94.7	0.4	32.14	7.90	0	3.1
	.~		2007.0			3.40		50	18.4	7.13	92.1	1.1	32.18	7.94	5	3.0
									18.4 18.5	7.10 7.35	92.5 94.5	1.1 0.4	32.20 32.26	7.93	5 6	3.0 5.0
						1.00			18.6	7.32	94.2	0.4	32.25	7.99	6	5.4
9:07	W1	ME	841858.9	836571.0	6.5	3.25	201	0.111	18.5 18.5	7.23 7.21	93.2 93.0	0.6	32.35 32.36	7.97 7.98	4	5.0 5.9
						5.50			18.4 18.3	6.82	89.1 89.9	0.7 0.8	32.36 32.38 32.39	7.96	6	5.5 5.4
									10.5	0.30	05.5	0.0	32.33	7.33		J.4
8:09	M1	ME	840822.2	836416.4	1.7	0.85	169	0.196	18.5	7.40	95.2 95.7	0.5	32.11	8.01	3	2.3
0.09	IVII	IVIL	040022.2	030410.4	1.7	0.65	105	0.190	18.4	7.44	95.7	0.4	32.13	8.00	3	2.3 2.3
									40.4	7.00	05.0	0.4	00.40	7.00	_	0.7
						1.00			18.4 18.4	7.36 7.33	95.3 95.0	0.4	32.10 32.07	7.99 7.98	5	3.7 3.4
8:27	FCZ1	ME	841180.6	835230.8	4.5		14938	0.155								
						3.50			18.3 18.3	6.94 6.98	91.1 90.7	0.7 0.7	32.28 32.32	7.95 7.97	5 4	3.6 3.5
									10.3	0.90		0.7				
						1.00			18.8 18.8	7.67 7.65	98.2 98.0	0.4	32.31 32.34		4	3.9 3.6
13:46	G1	MF	841483.9	835936.1	5.3		152	0.155	10.0	7.00	00.0	0	02.01	0.00		0.0
						4.30			18.6	6.79 6.77	90.1	1.1	32.78 32.84	7.99	4	3.8 3.8
						1.00			18.6 18.8	6.77 7.62	89.8 97.7	1.1 0.4	32.84 32.38	8.01 8.06	4	3.8 4.8
									18.8	7.52	97.3	0.3	32.44	8.08	4	4.5
13:59	R1	MF	842307.4	835718.4	5.7	2.85	189	0.145	40.7	0.70	00.4	0.0	00.75	7.00		
						4.70			18.7 18.6	6.73 6.70	89.4 89.1	0.8	32.75 32.76	7.98 7.99	7	5.1 4.5
						1.00			18.8 18.8	7.63 7.59	97.7 97.3	0.3	32.66 32.70	8.03 8.05	3	2.6 2.6
13:20	R2	MF	840739.4	836212.4	5.1		163	0.173	10.0	7.00	37.0	0.0	02.70	0.00		2.0
						4.10			18.5	7.04	91.0	0.9	32.85		3	2.7
						1.00			18.5 18.8	7.08 7.55	91.5 96.9	1.0 0.3	32.39 32.41	8.00 8.07	3 4	2.5 4.1
40			04:00	000=0-		1.00			18.9	7.52	96.6	0.4	32.39	8.05	4	4.1
13:01	I1	MF	841338.5	836588.5	4.5		127	0.125	40.0	0.70	00.4	0.0	00.00	0.00	_	4.0
						3.50			18.8 18.8	6.70 6.74	89.1 89.5	0.9	32.69 32.71	8.00 8.01	5 5	4.0 3.9
						1.00			18.9 18.9	7.49 7.53	96.2 96.7	0.3	32.38 32.40	8.06 8.05	5 5	3.1 3.1
12:47	12	MF	841590.3	836601.2	6.8	3.40	140	0.119	18.8	7.13 7.10	92.1 92.2	0.5	32.60	8.02	5	3.1
						5.80			18.8 18.7	6.65	88.6	0.6	32.63 32.68	8.01 7.98	6 5	3.0 3.1
						1.00			18.6 18.9	6.61 7.48	88.1 96.1	0.8	32.70 32.40	7.97 8.04	<u>6</u> 5	3.1 2.9
						1.00			18.9	7.52	96.5	0.3	32.70	8.03	6	2.8
12:35	13	MF	841807.0	836680.9	4.6		142	0.162	40.0	7.00	64.5	2.0	00.50	7.0-		
						3.60			18.6 18.6	7.06 7.09	91.2 91.6	0.8 1.0	32.58 32.60		4	2.7 2.9
						1.00			18.8 18.7	7.57 7.54	97.1 96.8	0.3	32.35 32.39	8.06 8.03	6 5	4.8 4.0
14:02	W1	MF	841858.9	836571.0	6.9	3.45	191	0.176	18.7 18.6	7.27	94.0 93.6	0.5	32.45 32.41	8.01 7.99	6 5	4.5
						5.90			18.6	6.69	89.0	0.5	32.80	7.97	5	4.4 4.6
	1					3.30			18.6	6.65	88.6	1.0	32.82	7.95	5	4.9
									10.0	7.55	06.0	0.4	32.65	8 U4	2	2.0
13:13	M1	MF	840822.2	836416.4	1.8	0.90	138	0.195	18.8 18.8	7.55 7.58	96.9 97.2	0.4 0.4	32.65 32.60	8.04 8.05	3	2.0 1.7
						1.00			18.8 18.9	7.65 7.69	97.9 98.3	0.4 0.4	32.69 32.72	8.03 8.05	4 5	3.1 3.3
13:34	FCZ1	MF	841180.6	835230.8	4.8		150	0.123	18.9	7.09	96.3	0.4	32.12	0.05	5	3.3
	- 5		250.0			0.00			18.5	6.72	89.3	1.2	32.91	7.99	4	3.4
	1				İ	3.80		1	18.5	6.70	89.1	1.2	32.93		5	3.5

Remarks: MF - Middle Flood tide
ME - Middle Ebb tide
For SS, if the monitoring result is less than Limit of Report 2mg/L, the result value will be assumed as 2 for the calculation.
For Chorophyll-a, if the monitoring result is less than Limit of Report 0.1µg/L, the result value will be assumed as 0.1 for the calculation.

mpling Date)				Impact Wa	,									
Weather: Condition:																
Condition.	Sillootii		Co.or	dinates	Water	Sampling	Current	Current	T	DO	Catumatia	Turbidit	Salinity			Chlasanhull
Date / Time	Location	Tide*			Depth	Depth	Direction	Speed	Temp	Conc	Saturatio	y NTU		pH	SS	Chlorophyll
			East	North	m	m 1.00	degrees	m/s	℃ 18.1	mg/L 7.44	% 95.0	0.9	ppt 32.19	unit 8.07	mg/L 6	μ g/L 5.5
						1.00			18.1	7.39	95.1	0.8	32.17	8.06	5	5.2
10:40	G1	ME	841483.9	835936.1	5.0		116	0.190					22.45		_	
						4.00			18.1 18.1	7.22 7.24	92.7 92.9	0.7 0.9	32.15 32.19	8.01 8.02	7 6	4.6 4.9
						1.00			18.1 18.2	7.46 7.51	96.9 96.5	0.3	32.27 32.29	8.09 8.07	7 6	5.0 4.7
10:53	R1	ME	842307.4	835718.4	5.6	2.80	144	0.173	10.2	7.01	90.5	0.4	32.23	0.01	Ü	4.7
						4.60			18.1	7.20	90.7	0.9	32.46	8.04	6	4.8
									18.0	7.23 7.41 7.44	90.9	0.9 0.3	32.49 32.08 32.11	8.05	6 5	5.0 5.0
						1.00			18.2 18.2	7.44	95.0 95.3	0.4	32.11	8.03 8.04	6	4.5
10:14	R2	ME	840739.4	836212.4	5.1		141	0.167								
						4.10			18.1 18.1	7.11 7.09	91.3 91.1	1.2	32.30 32.36	8.04 8.03	7 6	4.5 4.9
						1.00			18.2	7.43 7.41	95.2 95.0	0.4	32.16	8.04 8.04	6 7	4.9
9:56	11	ME	841338.5	836588.5	4.2		163	0.156	18.2	7.41	95.0	0.5	32.18	6.04	_	4.6
			011000.0	000000.0		2.20			18.1	7.18	92.1	0.8	32.21	8.01	7	4.9
						3.20			18.1 18.1 18.2	7.15 7.36	91.8 94.5	0.9	32.19 32.13	7.98 8.04	6	4.8 4.9
						1.00			18.2	7.39	94.8	0.3	32.15	8.04	6	4.8
9:44	12	ME	841590.3	836601.2	6.4	3.20	130	0.112	18.2 18.2	7.26 7.24	93.3 93.1	0.6	32.21 32.23	8.00 8.01	6	4.7 4.8
						5.40			18.0	6.92	88.7	1.0 0.9	32 40	7.93	6	4.7
						1.00			18.0 18.2 18.2	6.90 7.29 7.32	88.4 93.6 93.9	0.4	32.39 32.10 32.11	7.97 7.95 7.96	6 6 5	4.8 4.8
0.20	10	ME	044007.0	026600.0	2.7	1.00	142	0.109	18.2	7.32	93.9	0.4	32.11	7.96	5	4.4
9:30	13	ME	841807.0	836680.9	3.7		142	0.109	18.1	7.14	91.8	1.2	32.20	7.92	5	5.0
						2.70			18.1	7.11	91.5	1.1	32.21	7.92	7	4.8
						1.00			18.2 18.2	7.37	94.7 94.5	0.4 0.5	32.20 32.22	8.07 8.06	6 7	5.2 5.6
11:07	W1	ME	841858.9	836571.0	7.1	3.55	133	0.420	18.1	7.35 7.21 7.18 7.10	92.6	0.7	32.28 32.30	8.05	6	4.6
						6.10			18.1 18.0	7.18	92.2 91.1	0.7 0.9	32.41	8.04 7.98	6 5	5.0 5.2
						0.10			18.0	7.13	91.4	1.0	32.42	7.99	5	5.4
									10.0	7.47	OF 0	0.5	22.22	9.04	6	E 4
10:08	M1	ME	840822.2	836416.4	1.7	0.85	156	0.205	18.2 18.2	7.43	95.8 95.3	0.5 0.4	32.33 32.31	8.04 8.02	6 6	5.4 4.7
						1.00			18.2	7.30 7.26	93.7 93.3	0.4 0.4	32.08 32.10	8.03 8.04	7 6	4.9 4.9
10:27	FCZ1	ME	841180.6	835230.8	4.8		144	0.129	10.2	7.20	93.3	0.4	32.10	0.04	0	4.3
	. 02.		011100.0	000200.0		3.80			18.1	7.15	91.7	1.1	32.25	7.99	8	5.1
						3.60			18.1	7.13	91.5	1.0	32.32	7.96	7	5.6
						1.00				7.65	97.7	0.3	32.39	8.09	7	4.2
45.40	0.4		0.44.400.0	005000.4		1.00	470	0.450	18.5	7.66	97.8	0.3	32.41	8.10	8	4.3
15:46	G1	MF	841483.9	835936.1	5.3		170	0.158	40.0	0.04	00.0	0.0	20.00	0.04	_	4.4
						4.30			18.3 18.3	6.94 6.90	88.8 88.4	0.9 1.0	32.60 32.57	8.04 8.02	6 5	4.1 4.3
						1.00			18.4 18.5	7.75 7.72	98.8 98.5	0.3	32.25 32.21	8.11 8.09	6 7	4.5 4.4
15:59	R1	MF	842307.4	835718.4	5.8	2.90	160	0.133	10.0		00.0	0.0	OZ.Z.	0.00		
						4.80			18.2	6.99	90.0	1.2	32.46	8.04	6	4.5
									18.2 18.5	6.96 7.57	89.6 96.9	1.1 0.4	32.50 32.42	8.03 8.07	5 7	4.4 3.0
						1.00			18.5	7.53	96.5	0.3	32.42 32.44	8.06	7	3.0 2.3
15:21	R2	MF	840739.4	836212.4	5.1		172	0.118								
						4.10			18.3 18.3	7.06	90.7 95.9	0.8	32.64 32.62	8.01 8.02	7 6	2.6 2.5
						1.00			18.7	7.49	95.9	0.3	32.42	8.06	7	4.2
14:55	l1	MF	841338.5	836588.5	4.8		132	0.171	18.6	7.42	96.3	0.3	32.45	8.07	8	4.6
. 7.55		IVII-	0-1000.0	000000.0	7.0	0.00	102	3.171	18.4	7.12	91.3	0.7	32.72	8.00	6	4.7
					 	3.80		ļ	18.4	7.09	91.0	0.8	32.74	7.99	7	4.8
						1.00			18.7 18.7	7.44 7.48	95.4 95.8	0.3	32.42 32.44	8.06 8.05	6 7	4.6 5.0
14:43	12	MF	841590.3	836601.2	4.5	2.25	144	0.141	18.6 18.6	7.19 7.23	92.3 92.8	0.7 0.7	32.51 32.55	8.02 8.01	7 6	5.1 4.7
						3.50			18.4	6.82	87.6	1.0	32.70 32.69	7.96	7	4.4
						1.00			18.4 18.8	6.78 7.22	87.2 92.7	0.9 0.3	32.40	7.98 8.02	6 6	4.8 4.4
44:00	10		044007.0	000000		1.00	440	0.400	18.8	7.19	92.3	0.4	32.41	8.03	7	4.4
14:30	13	MF	841807.0	836680.9	6.9		116	0.138	10.7	7.00	00.5	10	22.00	7.05	_	4.5
						5.90			18.7 18.6	7.02 6.98	90.5 90.1	1.0 0.9	32.68 32.71	7.95 7.94	6 5	4.5 4.9
						1.00			18.5 18.5	7.71 7.67	98.4 98.0	0.3	32.28 32.30	8.10 8.09	8 7	2.7 3.2
16:12	W1	MF	841858.9	836571.0	7.4	3.70	162	0.111	18.4	7.35 7.33	94.5	0.5	32.40 32.41	8.06 8.05	8 7	2.6 2.3
						6.40			18.5 18.2	7.00	94.0 89.4	0.5 0.8	32.56	8.01	7	2.6
					 	5.40		 	18.2	7.02	89.6	0.8	32.65	8.00	7	3.2
									40.0	7.55	00.7	0.1	20.50	0.00	_	2.0
15:08	M1	MF	840822.2	836416.4	1.6	0.80	169	0.211	18.6 18.6	7.55 7.52	96.7 96.4	0.4 0.4	32.59 32.61	8.08 8.06	6 5	2.2 2.2
						1.00			18.5	7.59	96.9	0.4	32.15	8.07	6	2.5
15:34	FCZ1	MF	841180.6	835230.8	4.6		137	0.150	18.6	7.63	96.5	0.3	32.44	8.06	7	2.5
13.34	1 021	IVII"	0.001170	0.0230.0	4.0		13/	0.130	18.2	6.87	90.7	0.8	32.65	8.01	7	2.8
						3.60										

MF - Middle Flood tide
ME - Middle Ebb tide
For SS, if the monitoring result is less than Limit of Report 2mg/L, the result value will be assumed as 2 for the calculation.
For Chorophyll-a, if the monitoring result is less than Limit of Report 0.1µg/L, the result value will be assumed as 0.1 for the calculation.

impling Date	8-Feb-20	<u> </u>														
Weather:	Cloudy															
a Condition:	Smooth		0-	lineter	Water	Sampling	Current	Current		DO	50	Turbidit	0-11 11			01.1
Date / Time	Location	Tide*		dinates	Depth	Depth	Direction	Speed	Temp	Conc	Saturatio	у	Salinity	pН	SS	Chlorophyl
	1		East	North	m	m 1.00	degrees	m/s	℃ 18.2	mg/L 7.52	% 96.3	NTU 2.5	ppt 32.10	unit 8.12	mg/L 11	μ g/L 4.3
						1.00			18.2	7.52	96.6	2.6	32.10	8.12	11	4.1
12:24	G1	ME	841483.9	835936.1	5.4		112	0.032		- 10			22.45		_	
						4.40			18.2 18.2	7.16 7.16	92.2 92.1	1.1	32.15 32.15	8.07 8.08	5 4	4.4 4.1
						1.00			18.2 18.2	7.15 7.16	91.8 91.8	0.9	32.18 32.18	8.09 8.09	4	3.8 3.7
12:40	R1	ME	842307.4	835718.4	5.6	2.80	110	0.054	10.2	7.10	01.0	0.0	02.10	0.00		0.7
						4.60			18.2	6.82	88.0	1.2	32.25	8.07	5	3.5
	1					1.00			18.2 18.2	6.80 7.29	87.7 93.8	1.1	32.25 32.08	8.07 8.03	5 5	3.6 3.4
						1.00			18.2	7.29	93.8	1.1	32.08	8.03	5	3.5
11:50	R2	ME	840739.4	836212.4	5.6		117	0.045	40.0	7.05	20.0	1.0	00.00	0.00	4	
						4.60			18.2 18.2	7.25 7.25	93.2 93.2	1.0 1.0	32.08 32.08	8.02 8.02	4 5	3.3 3.5
						1.00			18.2 18.2	7.04	90.6 90.7	1.6 1.5	32.10 32.10	8.00	5 5	4.0 3.6
11:18	l1	ME	841338.5	836588.5	4.6		195	0.022				- 11				
						3.60			18.2	6.98	89.6	1.7	32.10	7.99	5	3.8
									18.2 18.2	6.97 7.13	89.6 91.8	1.7	32.11 32.09	7.99 7.98	5 5	3.9 3.7
40.5-	,_		044555	0000000		1.00	0		18.2	7.14 6.98	91.8 89.6	1.2	32.09 32.10	7.98 7.98	5	3.5 3.6
10:57	12	ME	841590.3	836601.2	6.9	3.45	216	0.025	18.3	7.00	89.9	1.1	32.12	7.98	5	3.9
						5.90			18.3 18.3	6.21 6.20	79.9 79.9	2.0	32.24 32.24	7.96 7.96	5 4	3.6 3.8
						1.00			18.2 18.2	7.06 7.07	90.8 90.9	1.1 1.1	32.11 32.11	7.91 7.91	5 5	3.6 3.5
10:40	13	ME	841807.0	836680.9	3.8		195	0.018								
						2.80			18.3	6.40	83.0	1.5	32.23	7.87	5	3.8
									18.3 18.3	6.39 7.12	82.9 91.7	1.5 1.2	32.23 32.11	7.87 8.06	5 5	3.9 3.6
						1.00			18.3 18.3	7.11 6.70	91.6 88.1	1.3	32.11 32.12	8.06 8.08	5 4	3.7 3.7
12:58	W1	ME	841858.9	836571.0	7.1	3.55	105	0.084	18.3	6.90	88.6	1.1	32.12	8.08	4	3.6
						6.10			18.3 18.3	6.14	79.3 79.2	4.3 4.2	32.28 32.28	8.04 8.04	5 5	3.5 3.5
11:36	M1	ME	840822.2	836416.4	0.7	0.35	256	0.044	18.2	6.95	89.5	1.5	32.10	8.00	5	2.9
									18.2	6.95	89.4	1.5	32.10	7.99	5	3.0
	.								18.2	7.17	92.1	1.2	32.14	8.05	4	3.4
						1.00			18.2	7.17	92.1	1.3	32.14	8.05	4	3.5
12:07	FCZ1	ME	841180.6	835230.8	5.3		116	0.032								
						4.30			18.2 18.2	7.13 7.13	91.7 91.7	1.9 1.8	32.14 32.14	8.04 8.04	5 5	3.5 3.3
						1.00			18.2 18.2	7.28 7.28	93.6 93.6	1.1 1.1	32.15 32.15	8.09 8.09	6	4.2 4.2
7:10	G1	MF	841483.9	835936.1	5.7		175	0.036								
						4.70			18.2 18.2	7.22 7.23	93.2 93.1	1.0 1.0	32.15 32.15	8.08 8.08	5 5	4.3 4.2
						1.00			18.2	7.22	93.0	0.9	32.16	8.07	5	4.3
7:27	R1	MF	842307.4	835718.4	5.8	2.90	196	0.064	18.2	7.23	93.0	0.9	32.16	8.07	5	4.2
1.21	KI	IVII	042307.4	0337 10.4	5.0		190	0.004	18.2	7.15	91.9	0.9	32.18	8.08	5	3.9
						4.80			18.2	7.15	91.9	0.9	32.18	8.08	5	3.9
						1.00			17.8 17.9	7.39 7.30	95.8 95.3	1.1 1.0	32.11 32.11	8.02 8.02	5 5	3.5 3.5
6:33	R2	MF	840739.4	836212.4	5.8		195	0.037								-
						4.80			18.2	7.29	93.8	1.1 1.0	32.08	8.02	4 5	3.6
						1.00			18.2 17.8	7.29 7.56	93.8 96.8	1.7	32.08 32.13	8.02 7.99	5	3.5 3.9
6.03	14	ME	841338.5	026E00 E	E 1		264	0.044	17.9	7.39	95.3	1.6	32.12	7.99	5	3.9
6:03	I1	MF	041338.5	836588.5	5.1		264	0.044	18.3	7.50	90.7	1.8	32.11	7.99	6	3.9
						4.10			18.3	7.04	90.6	1.9	32.10	7.99	6	3.8
						1.00			18.2 18.2	7.27 7.26	93.6 93.3	1.1 1.1	32.10 32.10	7.96 7.96	4 5	3.6 3.7
5:47	12	MF	841590.3	836601.2	7.2	3.60	235	0.024	18.2 18.2	7.15 7.15	92.2 92.1	1.2 1.3	32.11 32.11	7.97 7.97	5 5	3.8 3.6
						6.20			18.3	6.34	81.7	2.3	32.25	7.96	4	3.8
						1.00			18.3 18.2	6.34 7.45	81.7 96.2	2.7 1.1	32.26 32.12	7.96 7.81	5 4	3.9 3.8
						1.00		0.054	18.2	7.44	95.9	1.2	32.12	7.81	4	3.8
5:30	13	MF	841807.0	836680.9	4.1		116	0.054	100	6.70	07.7	1.0	22.04	7.00	6	0.7
						3.10			18.2 18.2	6.76 6.74	87.7 87.0	1.9 1.8	32.21 32.21	7.86 7.86	6 7	3.7 3.6
	1					1.00		1	18.1 18.2	7.29 7.28	94.3 94.0	1.3 1.3	32.13 32.13	8.05 8.05	5 5	3.8 3.6
7:41	W1	MF	841858.9	836571.0	7.4	3.70	211	0.037	18.2 18.2	7.19 7.19	92.4 92.5	1.2	32.13	8.07 8.07	6	3.7
	1					6.40		1	18.3	6.57	85.2	3.9	32.13 32.28	8.04	6	3.4 3.8
	 					3. 10		1	18.3	6.50	83.9	4.1	32.28	8.04	4	3.8
	1								10.2	7.07	01.1	1.4	32.12	7.00	E	22
6:19	M1	MF	840822.2	836416.4	1.0	0.50	265	0.020	18.2 18.2	7.07 7.06	91.1 91.0	1.4 1.4	32.12 32.12	7.99 7.99	5 5	3.3 3.1
						1.00			18.1 18.2	7.25 7.24	93.7 93.4	1.2	32.14 32.14	8.05 8.05	4	3.4 3.4
							l	l	10.2	1.24	33.4	1.∠	JZ.14	0.00	4	3.4
6:52	FCZ1	MF	841180.6	835230.8			217	0.018		_			-			

Remarks: MF - Micfalle Flood ide

ME - Middle Ebb tide

For SS, if the monitoring result is less than Limit of Report 2mg/L, the result value will be assumed as 2 for the calculation.

For Chorophyll-a, if the monitoring result is less than Limit of Report 0.1µg/L, the result value will be assumed as 0.1 for the calculation.

Sampling Date Weather:	Cloudy	20				impact W	ater Quality	wonitori	ng Kesi	ult						
Date / Time	Smooth	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Current Direction	Current Speed	Temp	DO Conc	Saturatio	Turbidit y	Salinity	pН	ss	Chlorophyll-
			East	North	m	m 1.00	degrees	m/s	°C 18.4	mg/L 7.49 7.56	% 96.1	NTU 0.3	ppt 32.48 32.52	unit 8.06	mg/L 5	μg/L 3.5 3.5
13:33	G1	ME	841483.9	835936.1	5.3	4.30	137	0.145	18.4	6.96	96.8 89.1	0.3	32.52	8.08	4	3.5
						1.00			18.3 18.4 18.4	6.70 7.63 7.62	89.4 97.5 97.4	1.1 0.4 0.4	32.64 32.31 32.48	8.00 8.08 8.07	4 4 4	3.3 3.4 3.2
13:45	R1	ME	842307.4	835718.4	5.4	4.40	133	0.172	18.3	7.05	90.1	0.9	32.65	8.00	5	3.0
						1.00			18.3 18.4 18.3	7.11 7.35 7.44	90.6 95.1 95.6	0.8 0.3 0.3	32.46 32.44 32.47	7.99 8.06 8.00	566	3.4 3.6 3.3
13:06	R2	ME	840739.4	836212.4	5.2	4.20	126	0.116	18.2 18.2	6.96 6.92	89.1	0.8	32.56 32.60	8.00 7.98	5	3.3
						1.00			18.2 18.6 18.7	7.70 7.12	88.7 90.1 90.6	0.9 0.3 0.3	32.60 32.45 32.46	7.98 8.02 8.03	5 7 7	3.3 3.1 3.4
12:46	I1	ME	841338.5	836588.5	4.8	3.80	144	0.143	18.5	7.70	84.1	0.7	32.66	7.92	6	3.1
						1.00			18.4 18.6 18.6	7.75 7.00 7.04	84.6 89.5 89.8	0.7 0.3 0.3	32.70 32.43 32.45	7.90 7.99 8.03	6 5 6	3.3 3.1 3.8
12:35	I2	ME	841590.3	836601.2	6.5	3.25 5.50	156	0.163	18.6 18.4	6.83 6.87 6.43	87.5 87.9 83.1	0.5 0.5 0.7	32.50 32.54 32.62	7.96 7.95 7.94	6 6 6	3.6 3.4 3.3
						1.00			18.4 18.6 18.6	6.46 6.78 6.71	83.4 87.1 86.9	0.7 0.3 0.4	32.56 32.41 32.39	7.94 7.97 7.98	6 6 6	3.2 3.3 3.6
12:20	13	ME	841807.0	836680.9	4.4	3.40	127	0.126	18.4	7.65	85.8	0.8	32.44	7.90	5	3.3
						1.00			18.4 18.5 18.5	7.59 7.59 7.92	85.2 97.1 97.4	0.8 0.4 0.4	32.48 32.46 32.44	7.88 8.08 8.06	5 5 4	3.6 3.2 3.3
13:58	W1	ME	841858.9	836571.0	7.0	3.50 6.00	165	0.154	18.4 18.3 18.3	7.97 7.33 6.71	94.9 94.5 89.5 89.1	0.6 0.7 0.9	32.51 32.56 32.62	8.02 8.03 7.99	5 4 4 4	3.4 3.0 3.2 3.0
									18.4	7.03	89.8	0.4	32.65	8.00	6	3.5
12:58	M1	ME	840822.2	836416.4	1.5	0.75	170	0.192	18.4	6.99	89.4	0.4	32.45	8.05	6	3.5
13:19	FCZ1	ME	841180.6	835230.8	4.8	1.00	134	0.109	18.4 18.4	7.46 7.50	95.8 96.2	0.3	32.49 32.44	8.04 8.02	4	3.4 3.2
13.13	1021	IVIL	041100.0	033230.0	4.0	3.80	104	0.103	18.2 18.2	7.07 7.11	90.2 90.6	1.0 1.0	32.44 32.42	8.00 7.99	5 4	3.4 3.6
						1.00			18.1 18.1		93.1 93.5	0.4 0.5	32.15 32.18	8.04 8.06	6	3.3 3.3
8:53	G1	MF	841483.9	835936.1	5.4	4.40	159	0.194	18.0	7.07	90.6	0.8 0.9	32.18	7.98	6	2.9
						1.00			18.0 18.1 18.1	7.02 7.26 7.31	90.1 92.9 93.5	0.3	32.20 32.21 32.20	7.96 8.05 8.04	6 4 5	3.0 3.0 3.0
9:06	R1	MF	842307.4	835718.4	5.7	4.70	164	0.161	18.0 18.0	6.93 6.90	88.8 88.5	0.9	32.30 32.35	8.01 8.00	6	3.4 3.1
8:26	D2	МЕ	940720 4	936343.4	5.4	1.00	165	0.157	18.1 18.1	7.26	93.8 94.1	0.3 0.4	32.11 32.13	8.03 8.04	<u>4</u> 5	3.3 3.1
0.20	R2	MF	840739.4	836212.4	3.4	4.40	103	0.137	18.0 18.0	6.87 6.82	88.0 87.5	0.8	32.18 32.16	7.98 7.96	8 7	3.3 3.3
8:07	11	MF	841338.5	836588.5	5.0	1.00	153	0.101	18.1 18.1	6.80 6.86	87.6 87.9	0.3 0.4	32.15 32.17	8.01 8.00	6	3.1 3.1
						4.00			18.0 18.0	6.50 6.46	83.8 83.4	0.9	32.30 32.35 32.13	7.94 7.92	5 5	3.2 3.0
7:54	12	MF	841590.3	836601.2	6.8	1.00 3.40	130	0.126	18.1 18.1 18.1	6.92 6.90 6.80	88.8 88.6 87.3	0.4 0.4 0.9	32.11 32.19	8.01 8.02 7.96	6 6	3.1 3.4 3.2
						5.80			18.1 18.0 18.0		87.0 84.7 84.1	0.9 1.4 1.3	32.24 32.29 32.31	7.97 7.93 7.91	6 6	3.1 3.1 3.3
7:40	13	MF	841807.0	836680.9	4.8	1.00	134	0.181	18.1 18.1	6.87	88.1 88.6	0.4	32.14 32.16	7.94 7.95	5	3.1 3.2
						3.80			18.1 18.1 18.2	7.78 7.75 7.28	87.1 86.8 93.2	0.8 0.8 0.4	32.21 32.22 32.11	7.91 7.90 8.04	5 4 4	3.1 3.2 3.3
9:20	W1	MF	841858.9	836571.0	7.4	3.70	193	0.108	18.2 18.1 18.1	7.30 7.06 7.11	93.2 93.0 90.4 90.9	0.4 0.4 0.5 0.5	32.24 32.28 32.31	8.05 8.02 8.01	4 5 5	3.5 3.2 3.3
						6.40			18.0 18.0	6.87	88.2 88.5	0.8 0.9	32.32 32.35	7.99 7.98	4	3.6 3.2
8:20	M1	MF	840822.2	836416.4	1.9	0.95	115	0.126	18.0 18.0	6.94 6.91	88.9 88.5	0.5 0.4	32.11 32.10	8.02 8.01	5 5	3.2 3.2
						1.00			18.1		94.2	0.6	32.12	8.04	7	3.2
8:40	FCZ1	MF	841180.6	835230.8	5.1	50	130	0.129	18.1	7.32	94.4	0.4	32.11	8.03	6	3.2
Pamarks:	MF - Mia	dle Flor	od tide			4.10			18.0 18.0	6.81 6.78	87.4 87.1	0.9	32.22 32.21	7.96 7.98	5 6	3.1 2.4

MF - Middle Flood tide
ME - Middle Ebb tide
For SS, if the monitoring result is less than Limit of Report 2mg/L, the result value will be assumed as 2 for the calculation.
For Chorophyll-a, if the monitoring result is less than Limit of Report 0.1µg/L, the result value will be assumed as 0.1 for the calculation.

ampling Date	12-Feb-2	20					Vater Quality									
Weather:	Cloudy															
a Condition:			Co-ore	dinates	Water	Sampling	Current	Current	Temp	DO	Saturatio	Turbidit	Salinity	pН	ss	Chlorophyll
Date / Time	Location	Tide*	East	North	Depth m	Depth m	Direction degrees	Speed m/s	℃	Conc mg/L	%	y NTU	ppt	unit	mg/L	μg/L
						1.00			18.3 18.3	7.05 7.06	90.7 90.8	0.9	32.04 32.06	8.08	4 4	2.9 3.9
15:00	G1	ME	841483.9	835936.1	5.8		146	0.130	10.3	7.06	90.8	0.8	32.00	6.00	4	3.9
						4.80			18.2	6.46	83.5	2.2	32.18	8.04	5	3.5
						1.00			18.2 18.3	6.47 7.11	83.4 91.5	2.3 0.8	32.17 32.05	8.03 8.10	5 5	3.9 5.3
15:10	D4	ME	842307.4	025740.4	F 0		246	0.132	18.3	7.10	91.4	0.8	32.06	8.11	5	4.7
15:10	R1	ME	842307.4	835718.4	5.8	2.90	246	0.132	18.3	6.83	88.0	1.0	32.17	8.07	7	4.9
						4.80			18.3 18.4	6.84 6.94	88.1 89.1	1.1	32.18 31.96	8.06 8.03	7 5	4.9 4.1
						1.00			18.4	6.93	89.0	1.0	31.95	8.03	5	4.1
14:36	R2	ME	840739.4	836212.4	5.8		135	0.109								
						4.80			18.3 18.3	6.55 6.54	84.4 84.3	1.6 1.6	32.05 32.06	8.02 8.02	4	4.2 4.4
						1.00			18.4 18.5	7.23 7.22	93.2 93.2	1.0	31.56 31.55	8.08 8.08	3 4	4.7 5.0
14:14	I1	ME	841338.5	836588.5	5.0		321	0.105								
						4.00			18.4 18.4	6.77 6.76	87.3 87.2	1.1 1.2	32.11 32.12	8.03 8.03	6 5	4.6 4.5
						1.00			18.4 18.4	7.09 7.08	91.3 91.2	0.8	31.98 31.99	8.06 8.05	7	7.7 7.0
14:02	12	ME	841590.3	836601.2	7.9	3.95	225	0.114	18.3	6.95	89.3	1.1	32.09	8.03	5	7.9
						6.90			18.3 18.3	6.94 6.56	89.2 84.5	1.1	32.10 32.16	8.02 8.00	5 7	7.4 7.6
						1.00			18.3 18.4	6.55 7.19 7.18	84.4 92.6 92.5	1.2 0.8	32.17 31.99 32.99	8.01 8.03	7 6	8.0 5.4
13:50	13	ME	841807.0	836680.9	3.3	1.00	105	0.099	18.4	7.18	92.5	0.8	32.99	8.03	5	4.5
13.30	13	IVIE	0-1007.0	0.00000.9	٥.٥	2.20	103	0.039	18.4	7.11	91.6	1.3	32.04	8.02	6	4.9
						2.30			18.4	7.10	91.5 90.9	1.3	32.05	8.02	6	4.3 4.8
						1.00			18.3 18.3	7.07	90.8	0.9	32.01 32.00	8.11 8.10	7	5.2
15:30	W1	ME	841858.9	836571.0	8.7	4.35	225	0.111	18.3 18.3	6.79 6.78	87.4 87.3	1.0 1.0	32.10 32.11	8.07 8.08	6 6	5.5 4.6
						7.70			18.2 18.3	6.40	82.5 82.4	1.6 1.6	32.19 32.20	8.04 8.03	6	5.4 5.4
14:26	M1	ME	840822.2	836416.4	0.6	0.30	276	0.108	18.6 18.6	7.21 7.20	93.2 93.2	1.1 1.1	31.98 31.99	8.07 8.07	4	4.0 4.0
									10.0	7.20	95.2	1.1	31.33	0.07		4.0
						1.00			18.3	7.18	92.4	0.7	31.99	8.07	5	3.1
14:48	FCZ1	ME	841180.6	835230.8	5.6		146	0.041	18.3	7.17	92.3	0.7	31.98	8.06	5	3.2
	1021	IVIL	041100.0	000200.0	0.0	4.60	1.0	0.011	18.3	6.51	87.6	1.5	32.08	8.03	4	3.2
						4.00			18.3	6.50	87.5	1.5	32.09	8.02	4	4.0
						1.00				7.25		0.9	31.99		4	3.6
10:15	G1	MF	841483.9	835936.1	5.9		241	0.120	18.4	7.24	93.4	0.9	31.98	8.07	4	3.1
						4.90			18.3	6.57	84.6	2.0	31.17	8.04	4	5.0
						1.00			18.3 18.7	6.56 7.54	84.5 97.6	2.1 0.7	31.16 31.89	8.03 8.13	4 5	5.1 2.8
10:25	R1	MF	842307.4	835718.4	5.9	2.95	325	0.141	18.7	7.53	97.5	0.7	31.88	8.12	4	3.8
10.25	KI	IVIF	042307.4	0337 10.4	5.9		325	0.141	18.3	6.73	86.7	1.1	32.15	8.08	4	4.7
						4.90			18.3 18.7	6.72	86.6 93.0	1.1	32.16 31.89	8.07 8.03	4	4.4 4.1
						1.00			18.7	7.20 7.19	92.9	1.0	31.88		4	4.0
9:48	R2	MF	840739.4	836212.4	5.9		246	0.111								
						4.90			18.4 18.4	6.70 6.69	86.3 86.2	1.7 1.7	32.06 32.05	8.01 8.01	5 5	3.2 2.8
						1.00			18.9 18.9	7.43 7.42	95.8 95.7	0.8	31.94 31.95	8.08 8.07	5 5	4.4 4.5
9:22	I1	MF	841338.5	836588.5	5.1		143	0.132								
						4.10			18.4 18.3	6.81 6.80	87.8 87.7	1.1	32.11 32.12	8.03 8.02	3	4.6 4.4
						1.00			18.2	7.55	91.7	0.7	31.86	8.08	6	6.8
9:12	12	MF	841590.3	836601.2	8.1	4.05	177	0.121	18.2 18.4	7.54	97.6 94.5	0.7	31.87 32.04	8.08 8.05	6 5	6.7 6.7
						7.10			18.4 18.2	7.32 6.51	94.4 83.8	0.9 1.1	32.05 32.15	8.06 8.00	5 7	6.6 6.1
						1.00			18.3 18.7	6.50 7.18	93.7 92.8	1.1 0.9	32.16 31.92	8.01 7.96	7 6	6.5 3.9
0.00	10	N 47	044007.0	9900000	4.4	1.00	105	0.404	18.7		92.7	1.0	31.93	7.95	6	3.2
9:00	I3	MF	841807.0	836680.9	4.1		125	0.101	18.3	7.00	90.0	1.3	32.05	8.01	6	3.2
						3.10			18.3	7.01	90.1	1.3	32.06	8.01	6	3.2
						1.00			18.8 18.9	7.40	95.8 95.7	0.9	31.71	8.13 8.13	6	5.4 4.5
10:40	W1	MF	841858.9	836571.0	8.8	4.40	243	0.104	18.3 18.4	6.85 6.84	88.2 88.1	1.1	32.07 32.05	8.07 8.06	10 10	4.7 4.9
						7.80			18.3 18.3	6.38 6.37	82.3 82.2	1.5 1.5	32.13 32.14	8.05 8.04	5 5	4.8 4.6
9:32	M1	MF	840822.2	836416.4	0.7	0.35	315	0.038	18.7 18.7	7.27 2.26	94.1 94.0	1.2 1.2	31.95 31.96	8.07 8.07	4	4.0 3.6
									10.7	2.20	J-1.U	1.4	31.30	0.07	Ť	3.0
						1.00			18.4	7.42	95.5	0.7	31.95	8.08	4	3.3
10:04	FCZ1	MF	841180.6	835230.8	5.7		321	0.124	18.4	7.41	95.4	0.7	31.96	8.07	4	3.1
10.04	1021	IVIF	0-1100.0	000200.0	5.1	4.55	JE 1	J.124	18.3	6.79	87.4	1.5	32.16	8.05	4	3.3
	I		1	l		4.70	l	l	18.3		87.3	1.5	32.17	8.04	4	3.2

MF - Middle Flood tide
ME - Middle Ebb tide
For SS, if the monitoring result is less than Limit of Report 2mg/L. the result value will be assumed as 2 for the calculation.
For Chorophyll-a, if the monitoring result is less than Limit of Report 0.1µg/L, the result value will be assumed as 0.1 for the calculation.

Sampling Date		:0				,	ater Quality		J							
Weather: ea Condition:	Fine Moderate	е	·	·				-								
Date / Time	Location		Co-ord	linates	Water Depth	Sampling Depth	Current Direction	Current Speed	Temp	DO Conc	Saturatio	Turbidit V	Salinity	рН	ss	Chlorophyll-
			East	North	m	m	degrees	m/s	℃ 19.6	mg/L 7.35	% 95.4	NTU 0.6	ppt 31.30	unit 8.10	mg/L	μg/L 4.5
						1.00			19.7	7.30	94.8	0.6	31.26	8.11	4	4.6
16:48	G1	ME	841483.9	835936.1	5.8		172	0.036	19.1	6.62	85.2	0.9	31.72	8.02	3	4.3
						4.80			19.1	6.57	84.8	0.9	31.70	8.05	3	4.4
						1.00			19.8 19.8	7.18 7.15	94.8 94.2	0.6 0.6	31.35 31.36	8.12 8.11	3	4.6 4.3
16:59	R1	ME	842307.4	835718.4	5.6	2.80	188	0.045	10.0		0.5					
						4.60			19.3 19.4	6.72 6.79	87.4 88.6	0.8	31.62 31.69	8.08 8.06	3	4.4 4.9
						1.00			19.4 19.4	7.35 7.21	97.8 96.8	0.7 0.7	31.32 31.30	8.10 8.10	3	5.1 5.6
16:23	R2	ME	840739.4	836212.4	5.7		307	0.035								
						4.70			19.3 19.3	6.98 6.86	90.2 89.3	1.0 1.0	31.66 31.58	8.08 8.06	4	5.5 4.8
						1.00			19.4 19.3	7.60 7.64	89.3 99.5 98.4	0.6	31.20 31.19	8.06 8.10 8.13	5 5	6.6 6.5
15:51	I1	ME	841338.5	836588.5	5.7		142	0.035								
						4.70			19.0 19.0	7.05 6.98	94.2 93.7	1.0 1.0	31.52 31.43	8.05 8.06	3	6.1 6.4
						1.00			19.2 19.2	7.49 7.44	97.2 96.5	0.8	30.56 30.52	8.07 8.06	<u>4</u> 5	6.2 5.6
15:40	12	ME	841590.3	836601.2	7.6	3.80	104	0.032	19.1 19.1	7.24 7.20	92.4 91.8	0.9	31.09 31.10	8.09 8.08	3	6.0 6.1
						6.60			18.6 18.6	6.84 6.80	86.4 85.2	1.0 1.0	31.84 31.80	8.10 8.08	4	6.0 5.8
						1.00			19.1	7.57 7.50	98.4 97.4	0.7	31.38 31.35	8.09 8.07	4	6.2 6.4
15:28	13	ME	841807.0	836680.9	4.9		142	0.025				-				
						3.90			18.7 18.7	6.56 6.62	87.4 88.4	0.9	31.72 31.79	8.04 8.06	3	6.5 6.1
						1.00			19.9 19.8	7.45 7.38	96.4 95.7	0.6 0.6	31.35 31.36	8.15 8.12	3	5.4 4.9
17:12	W1	ME	841858.9	836571.0	9.0	4.50	150	0.034	19.3	6.84	92.5	0.7	31.55	8.04	8	5.1
						8.00			19.3 18.7	6.92 6.45	93.1 84.4	0.7	31.62 32.12	8.05 8.03	8 7	4.9 5.0
									18.9	6.43	83.6	0.7	32.06	8.06	7	4.9
16:09	M1	ME	840822.2	836416.4	1.1	0.55	255	0.025	19.8	7.52	98.4	1.2	31.04	8.10	3	5.8
									19.8	7.50	98.1	1.2	31.06	8.09	3	5.4
						1.00			19.6	7.53	96.4	0.6	31.40	8.10	3	4.9
16:38	FCZ1	ME	841180.6	835230.8	5.6	1.00	287	0.032	19.7	7.50	95.2	0.6	31.43	8.12	3	4.6
10.50	1021	IVIL	041100.0	033230.0	3.0	4.60	201	0.002	19.3	7.01	89.9	0.7	31.65	8.10	4	4.9
						4.00			19.4	7.09	90.2	0.7	31.69	8.06	4	4.9
						1.00			19.7 19.6	7.42 7.38	96.8 96.2	0.7 0.7	31.32 31.30	8.16 8.15	3	4.0 4.2
11:30	G1	MF	841483.9	835936.1	5.4		142	0.042	13.0	7.50	90.2	0.7	31.30	0.10		7.2
						4.40			19.2 19.1	6.67	87.6	0.9	31.88 31.84	8.03	2	4.1
						1.00			19.8 19.8	7.26 7.29	86.9 95.4 95.9	0.6 0.6	31.41 31.44	8.02 8.14	3	3.8 4.2
11:45	R1	MF	842307.4	835718.4	5.8	2.90	194	0.029	19.0	7.29	95.9	0.6	31.44	8.15	3	4.6
						4.80			19.1	6.96	90.5	0.6	31.87	8.13	3	4.4
						1.00			19.1 19.4	6.90 7.54	91.2 98.6	0.6 0.7	31.82 31.44	8.14 8.12	3	4.5 5.2
10:56	R2	MF	840739.4	836212.4	5.6		207	0.029	19.4	7.51	98.4	0.7	31.49	8.10	3	4.8
						4.60			19.4	7.08	94.2	0.8	31.60	8.09	3	5.1
						1.00			19.3 19.6	6.89 7.52	93.2 97.4	0.8	31.62 31.03	8.10 8.14	3	5.2 5.8
10:29	l1	MF	841338.5	836588.5	5.6		205	0.036	19.2	7.70	100.2	0.9	31.06	8.14	3	5.8
10.20			041000.0	000000.0	0.0	4.60	200	0.000	19.2	7.44	97.1	0.8	31.50	8.12	3	6.3
						1.00			19.2 19.2	7.40 7.54	96.2 98.1	0.8 0.9	31.52 30.64	8.11 8.13	4	6.4 5.5
10:17	12	MF	841590.3	836601.2	8.6	4.30	104	0.044	19.2 19.1	7.50 7.06	97.6 93.2	0.9	30.66 31.78	8.14 8.06	3	5.4 5.6
10.17	IZ.	IVII-	C.UEC1 FO	000001.2	0.0	7.60	104	0.044	19.1 18.6	7.02 6.14	93.2 79.9	0.8	31.75 32.07	8.06 8.02	3	5.7 5.1
									18.6 19.1	6.12 7.62	79.8 99.2	0.7 0.7	32.08 31.46	8.02 8.08	4 3	5.3 4.7
40.00	10		044657.5	200555		1.00	40.	0.005	19.1	7.58	98.4	0.7	31.40	8.07	3	5.2
10:02	13	MF	841807.0	836680.9	4.4		194	0.035	18.8	6.86	89.4	0.7	31.86	8.01	2	5.2
						3.40			18.8 19.8	6.80 7.52	88.3 97.6	0.7 0.7 0.7	31.86 31.34	8.02 8.17	3	5.3 5.9 4.8
						1.00			19.8 19.8 19.1	7.52 7.53 6.97	97.8 91.0	0.7	31.34 31.36 31.85	8.17 8.15 8.08	6	4.6 4.5
12:12	W1	MF	841858.9	836571.0	8.8	4.40	210	0.025	19.1	7.04	91.8	0.7 0.7	31.86	8.09	3	4.4
						7.80			18.8 18.8	6.51 6.54	85.5 85.9	0.7 0.7	32.01 31.03	8.06 8.07	7	4.9 4.4
									40.0		67.2		01.6=	0.11		5.0
10:41	M1	MF	840822.2	836416.4	0.9	0.45	216	0.022	19.8 19.8	7.48 7.65	97.6 99.7	1.1 1.1	31.07 31.11	8.14 8.14	3	5.8 5.7
									46.5	7	05 :		04 12			
				· —		4.00	· -	1	19.6	7.40	95.4	0.6	31.49	8.14	3	4.6
						1.00			19.6	7.31	94.8	0.6	31.50	8.15	4	4.3
11:10	FCZ1	MF	841180.6	835230.8	5.5	1.00	232	0.040	19.6	7.31	94.8	0.6	31.50	8.15		4.3

MF - Middle Flood tide
ME - Middle Ebb tide
For SS, if the monitoring result is less than Limit of Report 2mg/L, the result value will be assumed as 2 for the calculation.
For Chorophyll-a, if the monitoring result is less than Limit of Report 0.1µg/L, the result value will be assumed as 0.1 for the calculation.

Sampling Date		20				Impact Wa	ater Quality	Monitori	ng Resu	lt						
Weather: ea Condition:	Fine Moderate	Δ														
	Location		Co-ord	dinates	Water Depth	Sampling Depth	Current Direction	Current Speed	Temp	DO Conc	Saturatio	Turbidit v	Salinity	рН	ss	Chlorophyll-a
			East	North	m	m	degrees	m/s	°C	mg/L	%	NTU	ppt	unit	mg/L	μg/L
						1.00			17.9 17.9	7.72 7.64	98.5 97.2	0.7 0.7	31.67 31.64	8.08 8.10	4	3.5 3.9
8:09	G1	ME	841483.9	835936.1	4.9		310	0.084								
						3.90			18.3 18.3	6.64 6.69	86.3 87.2	1.3 1.3	32.02 32.01	8.00 8.01	4	3.6 3.6
						1.00			18.0 18.0	6.90 6.91	89.3 88.8	0.7 0.7	31.91 31.92	8.06 8.06	3	3.6 3.6
8:20	R1	ME	842307.4	835718.4	5.6		352	0.082								
						4.60			18.4 18.4	6.50 6.59	84.3 85.9	0.8	31.89 31.88	8.06 8.05	3 4	3.6 3.6
						1.00			17.8 17.8	7.91 7.94	100.2 100.4	0.6 0.6	31.21 31.24	8.09 8.10	4	3.4 3.4
7:38	R2	ME	840739.4	836212.4	4.8		205	0.032								
						3.80			18.1 18.1	6.72 6.75	86.3 86.9	1.1 1.1	31.87 31.84	7.99 7.99	3	3.4 3.5
						1.00			18.4 18.4	7.92 7.95	98.4 99.5	0.7 0.7	31.98 31.99	8.06 8.04	3	3.2 3.5
7:18	11	ME	841338.5	836588.5	5.6		203	0.052	10.4	7.00	55.5	0.7	01.00	0.04	Ŭ	0.0
						4.60			18.4 18.4	6.88	89.2	1.0 1.0	31.72	8.04	<2	3.5
						1.00			18.8	6.80 6.77	88.4 81.8	0.7	31.77	8.03 8.01	<2 3 3	3.2 3.5
7:10	12	ME	841590.3	836601.2	8.1	4.05	212	0.026	18.8 18.6	6.81	82.2 77.8	0.7 0.6	31.37	8.03 8.02	5	3.4 3.3
						7.10			18.7 18.6	6.19 6.20	79.2 80.4	0.6 1.0	31.56 31.12	8.04 8.00	5 2	3.3 3.4
						1.00			18.6 17.5	6.32 7.79	81.4 97.4	1.0 0.7	32.11 31.61	8.01 7.79	3	3.4 3.0
6:59	13	ME	841807.0	836680.9	4.2		261	0.023	17.5	7.83	98.2	0.7	31.63	7.80	3	3.1
						3.20			17.8	7.19	89.4	1.0	31.02	7.82	3	3.0
						1.00			17.8 18.1	7.20 7.13	89.9 91.6	1.0 0.7	31.09 31.78	7.83 8.06	3	3.6 3.2
8:35	W1	ME	841858.9	836571.0	8.4	4.20	307	0.035	18.1 18.4	7.29 6.34	94.2 81.7	0.7 1.0	31.79 32.07	8.05 8.01	3	3.2 3.1
0.33	VV1	IVIE	841858.9	836571.0	0.4		307	0.035	18.4	6.44 5.83	82.5 75.6	1.0	32.06 32.17	8.02 8.05	4	3.4 3.3
						7.40			18.8	5.80	75.4	2.2	32.12	8.05	3	3.5
									17.9	7.79	98.8	0.8	31.25	8.05	3	3.2
7:25	M1	ME	840822.2	836416.4	1.1	0.55	147	0.023	17.9	7.69	98.2	0.8	31.26	8.05	3	3.4
									47.0	7.50	00.5	0.0	24.04	0.05	2	2.2
						1.00			17.9 17.7	7.50 7.42	96.5 95.4	0.9 1.0	31.84 31.82	8.05 8.05	3	3.3 3.8
7:50	FCZ1	ME	841180.6	835230.8	4.6		282	0.036								
						3.60			18.2 18.3	6.75 6.71	86.7 85.8	1.1 1.1	31.78 31.77	8.05 8.05	3	3.8 4.0
						1.00			17.9	7.29	93.4	0.6	31.67	8.08	3	3.6
13:10	C1	MF	944492.0	025026 4	F 4	1.00	145	0.042	17.9	7.38	94.5	0.6	31.64	8.09	3	3.6
13.10	G1	IVIF	841483.9	835936.1	5.4	4.40	145	0.042	18.3	5.55	76.4	1.1	32.02	8.00	4	3.4
						4.40			18.3	5.94 6.70	77.4 86.5	1.1	32.01 31.91	8.09 8.06	4 5	3.6
						1.00			18.0	6.63	85.2	0.7	31.92	8.06	5	3.5
13:21	R1	MF	842307.4	835718.4	5.2		211	0.059	18.5	6.47	83.3	0.7	31.89	8.06	4	3.2
						4.20			18.4 17.8	6.58 7.35	84.9 93.2	0.7 0.6	31.88 31.21	8.05 8.09	3	3.3 3.1
						1.00			17.8	7.35	93.3	0.6	31.24	8.10	6	3.1
12:49	R2	MF	840739.4	836212.4	4.9		142	0.037	40.4	5.04	70.0	4.0	04.07	7.00	4	0.0
						3.90			18.1 18.1	5.91 5.64	76.3 77.4	1.0	31.87 31.84	7.98 7.99	5	2.9 3.2
						1.00			18.4 18.4	8.08 8.12	103.4 104.5	0.7 0.7	31.98 31.99	8.06 8.04	3	3.2 3.0
12:21	l1	MF	841338.5	836588.5	4.7		172	0.037								
						3.70			18.4 18.4	7.47 7.42	95.3 94.3	0.7 0.7	31.72 31.77	8.04 8.03	4	2.9 3.0
						1.00			17.6 17.6	7.27 7.35	93.5 94.4	0.7 0.7	31.36 31.37	8.01 8.03	3	3.1 3.1
12:07	12	MF	841590.3	836601.2	7.7	3.85	121	0.032	18.0 18.0	7.02 7.05	90.4 91.3	0.7 0.7	31.57 31.56	8.02 8.04	4	3.2 3.1
						6.70			18.4 18.4	6.44 6.50	83.2 84.4	0.8	32.12 32.11	8.00 8.01	7	3.1 3.1
						1.00			17.6 17.6	7.85 7.84	100.4 101.4	0.7	31.61 31.63	7.79 7.80	5	2.9 2.8
11:56	13	MF	841807.0	836680.9	4.5		173	0.034								
						3.50			18.0 18.0	7.30 7.38	93.2 94.5	1.0	31.02 31.09	7.82 7.83	12 13	3.0 2.6
						1.00			18.2 18.2	6.93 6.98	89.3 89.9	0.7 0.7	31.78 31.79	8.06 8.05	5 4	3.0
13:38	W1	MF	841858.9	836571.0	9.1	4.55	311	0.033	18.1	5.90	76.6	1.1	32.07	8.01	4	3.3 3.2
						8.10			18.2 18.6	5.99	77.2 74.9	1.1	32.06 32.17	8.03 8.05	3	2.9 3.1
									18.6	5.71	75.4	1.5	32.12	8.05	3	3.1
12:35	M1	MF	840822.2	836416.4	0.8	0.40	123	0.012	17.9	7.26	92.4	0.7	31.25	8.05	4	3.0
							-		18.0	7.19	91.9	0.7	31.26	8.05	5	3.0
						1.00			18.2	6.91	89.4	0.9	31.84	8.05	4	3.3
40.00	FCZ1	MF	841180.6	835230.8	5.2	1.00	207	0.045	18.2	6.82	88.5	1.0	31.82	8.05	4	3.2
13.00		IVIT	0.001140	030230.8	J.2		201	0.045								
13:00	. 02.					4.20			18.3	6.53	84.0	1.2	31.78	8.05	4	3.5

MF - Middle Flood tide
ME - Middle Ebb tide
For SS, if the monitoring result is less than Limit of Report 2mg/L, the result value will be assumed as 2 for the calculation.
For Chorophyll-a, if the monitoring result is less than Limit of Report 0.1µg/L, the result value will be assumed as 0.1 for the calculation.

Weather:	19-Feb-2	20				pact W	ater Quality	UIII	ษ เงฮอน							
	Fine															
a Condition:	Calm				Water	Sampling	Current	Current		DO	ا مر	Turbidit	1 1			
Date / Time	Location	Tide*	Co-ore	dinates	Depth	Depth	Direction	Speed	Temp	Conc	Saturatio	y v	Salinity	pН	SS	Chlorophyll-
			East	North	m	m	degrees	m/s	°C	mg/L	%	NTU	ppt	unit	mg/L	μg/L
10:39						1.00			18.1 18.1	7.31 7.30	94.3 94.0	0.9	31.79 31.79	7.31 8.10	4	3.6 3.4
	G1	ME	841483.9	835936.1	5.5		108	0.410								
						4.50			18.2 18.2	7.11	91.8	1.5	31.82	7.11	5	3.7
									18 1	7.10 8.07	91.5 103.1	1.6 0.6	31.82 31.47	8.09 8.19	5 4	3.7 4.4
						1.00			18.1	8.06	103.0	0.6	31.47	8.19	4	4.7
10:57	R1	ME	842307.4	835718.4	5.5		178	0.044								
						4.50			18.2	6.32	81.5 80.6	2.7	32.03 32.03	8.03 8.03	3	4.8 4.8
			 			1.00			18.2 18.1 18.1	6.24 7.63	97.8 97.7	2.7 0.7	31.63 31.63	8.11 8.11	3 4	3.4 3.2
0.50						1100			18.1	7.63	97.7	0.7	31.63	8.11	4	3.2
9:59	R2	ME	840739.4	836212.4	5.4		206	0.104	10.0	0.15	22.2		21.22	2.22		
						4.40			18.3 18.3	6.45 6.44	83.6 83.4	2.1 2.2	31.92 31.93	8.02 8.01	4	3.5 3.5
9:34						1.00			17.9 17.9	7.73 7.74	98.4 98.4	0.7 0.6	31.54 31.54	8.15 8.15	5 5	4.0 4.2
	11	ME	841338.5	836588.5	5.2		245	0.092	17.9	1.14	30.4	0.0	31.34	0.13		4.2
			011000.0	000000.0					18.0	7.70	98.2	0.7	31.50	8.15	3	3.9
						4.20			18.0	7.70	98.1	0.7	31.50	8.15	3	3.6
						1.00			18.0 18.0	7.70 7.69	98.2 98.0	0.6	31.58 31.57	8.14 8.14	<u>4</u> 5	4.1 4.1
9:16	12	ME	841590.3	836601.2	7.6	3.80	799	0.046	18.0	7.47	95.9	1.6	31.68	8.11	7	4.1
						6.60			18.0 18.1	7.45 6.74	95.5 87.1	1.8 1.3	31.68 31.94	8.11 8.03	7 4	4.4 4.3
	 							-	18.1 18.0	6.69	86.1 99.0	1.3 0.6	31.94	8.03 8.09	4 5	4.5 4.1
						1.00			18.0	7.73 7.73	98.7	0.0	31.63 31.64	8.09	5	4.3
8:55	13	ME	841807.0	836680.9	3.7		332	0.072								
						2.70			18.0	7.11	90.8	1.4	31.70	8.06	5	4.0
						1.00			18.0 18.1	7.13 7.71	90.9 99.0	1.4 0.7	31.71 31.65	8.06 8.15	5 4	3.9 4.1
									18.2	7.69 7.51	98.8 96.4	0.6	31.65 31.77	8.15	4	4.2 4.4
11:16	W1	ME	841858.9	836571.0	9.6	4.80	104	0.082	18.2 18.2 18.2	7.51 7.51 6.09	96.3	0.9	31.77	8.14 8.14 8.04	4	4.3
						8.60			18.2 18.3	6.09 6.07	80.0 79.8	4.0 4.0	32.04 32.04	8.04 8.04	8 8	4.3 3.9
									10.5	0.07	73.0	7.0	32.04	0.04		5.3
9:47			0.400000.0	0004404		0.00	0.45		18.1	7.73	98.7	0.8	31.44	8.13	6	3.3
	M1	ME	840822.2	836416.4	0.6	0.30	345	0.099	18.1	7.73	98.7	0.8	31.44	8.13	6	3.5
						1.00			17.8	7.60	98.0	0.8	31.82	8.09	3	3.4 3.4
10:15	FCZ1	ME	841180.6	835230.8	5.1		108	0.064	17.8	7.58	97.6	0.8	31.86	8.09	3	3.4
10.15	FCZI	IVIE	041100.0	033230.0	5.1		100	0.064	10.0	7.0F	90.6	2.2	24 04	0.00	2	2.5
						4.10			18.2 18.2	7.05 7.05	90.5	2.2 2.1	31.81 31.81	8.08 8.08	3	3.5 3.7
									10.0		94.5	0.6	21 42	0.15	2	3.6
	G1	MF	841483.9	835936.1	5.8	1.00	226		18.2 18.1	7.43 7.41	94.8	0.6	31.42 31.42	8.15 8.15	3	3.5
15:54								0.096								
						4.80			18.2 18.2	6.34 6.32	82.1	3.7	31.61	8.01	4	3.5 3.3
										6.32	81.8 98.7	3.5	31.61	8.01		
						4.00							31.58		4	4.3
						1.00			18.1 18.1	7.75 7.76	98.8	0.6 0.6	31.58 31.58	8.18 8.18		4.3 4.8
16:12	R1	MF	842307.4	835718.4	5.9	1.00	293	0.095	18.1	7.76	98.8	0.6	31.58 31.58	8.18	4 5	
16:12	R1	MF	842307.4	835718.4	5.9	4.90	293	0.095	18.1 18.1 18.4	5.87	98.8 76.0	1.6	31.58	8.18 8.18 8.03	4 5 5 7	4.8
16:12	R1	MF	842307.4	835718.4	5.9	4.90	293	0.095	18.1 18.1 18.4 18.4 18.2	7.76 5.87 5.86 7.21	76.0 75.9 91.4	1.6 1.6 0.7	31.58 32.02 32.01 31.61	8.18 8.18 8.03 8.03 8.11	4 5 5 7 7 3	4.8 4.6 4.3
									18.1 18.1 18.4 18.4	5.87 5.86	76.0 75.9	1.6 1.6	31.58 32.02 32.01	8.18 8.18 8.03 8.03	4 5 5 7 7	4.8
16:12 15:16	R1	MF MF	842307.4 840739.4	835718.4	5.9	4.90	293 288	0.095	18.1 18.1 18.4 18.4 18.2 18.2	5.87 5.86 7.21 7.23	76.0 75.9 91.4 91.9	1.6 1.6 0.7 0.7	31.58 32.02 32.01 31.61 31.61	8.18 8.18 8.03 8.03 8.11 8.11	7 7 7 3 3	4.8 4.6 4.3 3.3 3.2
						4.90			18.1 18.1 18.4 18.4 18.2 18.2	7.76 5.87 5.86 7.21 7.23	76.0 75.9 91.4 91.9	1.6 1.6 0.7	31.58 32.02 32.01 31.61	8.18 8.18 8.03 8.03 8.11 8.11	4 5 5 7 7 3	4.8 4.6 4.3 3.3 3.2 3.3
						4.90			18.1 18.1 18.4 18.4 18.2 18.2 18.3 18.3	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8	1.6 1.6 0.7 0.7 1.3 1.3	31.58 32.02 32.01 31.61 31.61 31.85 31.85 31.54	8.18 8.18 8.03 8.03 8.11 8.11 8.06 8.06 8.16	7 7 7 3 3 4 3	4.8 4.6 4.3 3.3 3.2 3.3 3.3 3.3 3.4
15:16	R2	MF	840739.4	836212.4	5.8	4.90 1.00 4.80	288	0.094	18.1 18.1 18.4 18.4 18.2 18.2	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75	98.8 76.0 75.9 91.4 91.9 80.1 80.5	0.6 1.6 1.6 0.7 0.7 1.3	31.58 32.02 32.01 31.61 31.61 31.85 31.85	8.18 8.18 8.03 8.03 8.11 8.11 8.06 8.06	7 7 7 3 3 4	4.8 4.6 4.3 3.3 3.2 3.3 3.3
						4.90 1.00 4.80 1.00			18.1 18.4 18.4 18.2 18.2 18.3 18.3 18.0 18.0	5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9	1.6 1.6 0.7 0.7 1.3 1.3 0.5 0.6	31.58 32.02 32.01 31.61 31.85 31.85 31.54 31.54	8.18 8.03 8.03 8.11 8.11 8.11 8.06 8.06 8.16 8.16	7 7 7 3 3 4 3 3	4.8 4.6 4.3 3.3 3.2 3.3 3.3 3.4 3.6
15:16	R2	MF	840739.4	836212.4	5.8	4.90 1.00 4.80	288	0.094	18.1 18.4 18.4 18.2 18.2 18.3 18.0 18.0	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.8 97.9	1.6 1.6 0.7 0.7 1.3 1.3 0.5 0.6	31.58 32.02 32.01 31.61 31.85 31.85 31.54 31.54	8.18 8.03 8.03 8.11 8.11 8.06 8.06 8.16 8.15	7 7 7 3 3 3 4 3 3 3	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1
15:16	R2	MF	840739.4	836212.4	5.8	4.90 1.00 4.80 1.00	288	0.094	18.1 18.4 18.4 18.2 18.2 18.3 18.0 18.0 17.9 17.9 18.0	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.68 7.69 7.69	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.8 97.9 96.9	0.6 1.6 1.6 0.7 0.7 1.3 1.3 0.5 0.6 0.7 0.7	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.58 31.59 31.58	8.18 8.18 8.03 8.03 8.01 8.11 8.11 8.06 8.06 8.16 8.16 8.15 8.15 8.14	7 7 7 3 3 4 3 3 5	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1 4.0
15:16	R2	MF	840739.4	836212.4	5.8	4.90 1.00 4.80 1.00	288	0.094	18.1 18.4 18.4 18.2 18.2 18.3 18.0 18.0 17.9 17.9 18.0 18.0 18.1	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.69 7.60 7.60 6.92	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.9 96.9 96.8 87.8	0.6 1.6 1.6 0.7 0.7 1.3 1.3 0.5 0.6 0.7 0.7 0.7 1.3	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.54 31.59 31.58 31.59 31.59	8.18 8.03 8.03 8.11 8.11 8.11 8.16 8.16 8.16 8.15 8.15 8.14 8.14 8.14	4 5 5 7 7 7 3 3 3 4 3 3 3 5 5	4.8 4.6 4.3 3.3 3.2 3.3 3.3 3.4 3.6 3.8 4.1 4.0 3.8 4.2
15:16 14:47	R2	MF	840739.4 841338.5	836212.4 836588.5	5.8	4.90 1.00 4.80 1.00 4.30 1.00 4.00	288	0.094	18.1 18.4 18.4 18.2 18.2 18.3 18.0 18.0 17.9 17.9 18.0 18.0 18.1 18.2	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.69 7.69 7.60 6.92 6.95 6.18	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.8 97.9 96.9 96.9 96.9 87.8 87.8 88.4	0.6 1.6 1.6 0.7 0.7 1.3 1.3 0.5 0.6 0.7 0.7 0.7 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	31.58 32.02 32.01 31.61 31.85 31.85 31.54 31.58 31.59 31.66 31.66 31.66	8.18 8.18 8.03 8.03 8.11 8.11 8.06 8.06 8.16 8.16 8.15 8.14	4 5 5 7 7 7 3 3 3 4 3 3 3 3 4 4 3 3 5 4 4 4 4 4 4 4	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1 4.0 3.8 4.2 3.7 3.6
15:16 14:47	R2	MF	840739.4 841338.5	836212.4 836588.5	5.8	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00	288	0.094	18.1 18.4 18.4 18.2 18.2 18.3 18.0 18.0 17.9 17.9 18.0 18.1 18.1 18.2 18.3	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.69 7.69 7.60 6.92 6.95 6.18	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.8 97.9 96.9 96.9 96.9 87.8 87.8 88.4	0.6 1.6 1.6 0.7 0.7 1.3 1.3 0.5 0.6 0.7 0.7 0.7 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.59 31.58 31.59 31.66 31.66 31.96 31.96	8.18 8.03 8.03 8.11 8.11 8.16 8.06 8.16 8.15 8.15 8.14 8.12 8.12 8.02	3 3 3 3 3 3 4 3 3 3 4 4 4 4 4	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1 4.0 3.8 4.2 3.7 3.6
15:16 14:47	R2	MF	840739.4 841338.5	836212.4 836588.5	5.8	4.90 1.00 4.80 1.00 4.30 1.00 4.00	288	0.094	18.1 18.4 18.4 18.2 18.2 18.3 18.0 18.0 17.9 17.9 18.0 18.0 18.1 18.2	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.69 7.60 6.92 6.95	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.8 97.9 96.9 96.8 87.8 88.8	0.6 1.6 1.6 0.7 0.7 1.3 1.3 0.5 0.6 0.7 0.7 0.7 0.7 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	31.58 32.02 32.01 31.61 31.85 31.85 31.54 31.58 31.59 31.66 31.66 31.66	8.18 8.03 8.03 8.11 8.11 8.16 8.06 8.16 8.16 8.15 8.15 8.14 8.12 8.12 8.02	4 5 5 7 7 7 3 3 3 4 4 3 3 3 3 4 4 3 3 4 4 3 4	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1 4.0 3.8 4.2 3.7
15:16	R2	MF	840739.4 841338.5	836212.4 836588.5	5.8	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00	288	0.094	18.1 18.4 18.4 18.2 18.2 18.3 18.0 17.9 17.9 17.9 18.0 18.0 18.1 18.1 18.2	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.60 7.60 6.92 6.92 6.18 6.13 7.45	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.9 96.9 96.9 87.8 88.4 80.0 79.1	0.6 1.6 1.6 0.7 0.7 1.3 1.3 0.5 0.6 0.7 0.7 0.7 1.3 1.3 1.5 1.5 1.5 1.5	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.58 31.59 31.66 31.96 31.96 31.96	8.18 8.03 8.03 8.11 8.11 8.16 8.06 8.16 8.15 8.15 8.14 8.14 8.12 8.12 8.02 8.02	4 5 5 7 7 7 3 3 3 4 4 3 3 3 5 5	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 4.0 3.8 4.1 4.0 3.8 4.2 3.7 3.6 3.7 3.8
15:16 14:47 14:26	R2	MF MF	840739.4 841338.5 841590.3	836212.4 836588.5 836601.2	5.8	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00	288	0.094	18.1 18.4 18.4 18.2 18.2 18.3 18.0 18.0 17.9 17.9 18.0 18.0 18.1 18.2 18.3 18.0	7.76 5.87 5.86 7.21 7.23 7.68 7.69 7.60 7.60 7.60 6.92 6.95 6.13 7.45 7.43	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.8 97.9 96.8 87.8 88.4 80.0 79.1 95.3 94.9	0.6 1.6 1.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1.3 1.3 1.5 1.5 0.7 0.7 0.7 1.3 1.5 1.5 1.5 0.7 0.7	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.54 31.59 31.66 31.96 31.96 31.96 31.64 31.64	8.18 8.03 8.03 8.11 8.11 8.06 8.06 8.16 8.16 8.15 8.14 8.14 8.14 8.12 8.02 8.02 8.11 8.11	7 7 7 3 3 4 3 3 3 3 4 4 3 3 3 4 4 4 5 5	4.8 4.6 4.3 3.3 3.3 3.3 3.4 3.6 4.1 4.0 3.8 4.2 3.7 3.6 3.7 3.8 3.8 3.8
15:16 14:47 14:26	R2	MF MF	840739.4 841338.5 841590.3	836212.4 836588.5 836601.2	5.8	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00 1.00	288	0.094	18.1 18.4 18.4 18.4 18.2 18.3 18.0 18.0 17.9 17.9 18.0 18.1 18.2 18.3 18.0	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.60 7.60 7.60 6.92 6.95 6.18 6.13 7.45 7.43	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.8 97.9 96.8 87.8 88.4 80.0 79.1 95.3 94.9	0.6 1.6 0.7 0.7 1.3 1.3 0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	31.58 32.02 32.01 31.61 31.61 31.85 31.85 31.54 31.59 31.59 31.66 31.66 31.96 31.96 31.96 31.64 31.71	8.18 8.03 8.03 8.03 8.11 8.11 8.06 8.06 8.16 8.15 8.15 8.14 8.12 8.12 8.12 8.12 8.11 8.11 8.11 8.12 8.12	3 3 3 3 3 3 3 4 4 3 3 3 5 5	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1 4.0 3.8 4.2 3.7 3.6 3.7 3.8 3.8 3.8 3.8 3.8
15:16 14:47 14:26 14:04	R2	MF MF	840739.4 841338.5 841590.3	836212.4 836588.5 836601.2 836680.9	5.8 5.3 8.0	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00	288 110 157	0.094 0.058 0.071	18.1 18.4 18.2 18.2 18.3 18.0 17.9 17.9 17.9 18.0 18.0 18.0 18.1 18.2 18.3 18.3 18.3 18.3 18.3	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.69 7.60 7.60 6.92 6.18 6.13 7.45 7.43 7.18 7.62 7.62	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 96.9 97.8 97.9 96.8 87.9 96.8 88.4 80.0 79.1 95.3 94.9 91.6 97.6	0.6 1.6 1.6 0.7 0.7 1.3 0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.54 31.59 31.59 31.59 31.66	8.18 8.03 8.03 8.03 8.11 8.11 8.16 8.16 8.16 8.15 8.15 8.14 8.12 8.12 8.02 8.02 8.01 8.11 8.11 8.11 8.11 8.12 8.02 8.03	3 3 4 3 3 3 4 4 4 4 5 5	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1 4.0 3.8 4.2 3.7 3.6 3.8 3.9 3.7 4.1
15:16 14:47 14:26	R2	MF MF	840739.4 841338.5 841590.3	836212.4 836588.5 836601.2	5.8	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00 1.00	288	0.094	18.1 18.4 18.4 18.2 18.2 18.3 18.0 18.0 17.9 17.9 17.9 18.0	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.69 7.60 7.60 6.92 6.18 6.13 7.45 7.43 7.18 7.62 7.62	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.8 97.9 96.9 96.9 96.8 87.9 96.9 96.9 97.9 96.9 96.9 96.9 97.9 96.9 96.9 96.9 97.9 96.9 96.9 96.9 96.9 96.9 96.9	0.6 1.6 1.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1.3 1.5 1.5 0.7 0.7 1.3 1.5 0.7 0.7 0.7 1.3 1.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.59 31.58 31.59 31.66 31.96 31.96 31.96 31.64 31.64 31.71 31.71	8.18 8.18 8.03 8.03 8.01 8.11 8.11 8.06 8.06 8.16 8.16 8.15 8.14 8.12 8.12 8.02 8.11 8.11 8.11 8.12 8.02 8.11 8.11 8.11 8.11	3 3 3 3 3 3 3 4 4 3 3 3 5 5	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1 4.0 3.8 4.2 3.7 3.6 3.8 3.9 3.7 4.1
15:16 14:47 14:26 14:04	R2	MF MF	840739.4 841338.5 841590.3	836212.4 836588.5 836601.2 836680.9	5.8 5.3 8.0	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00 1.00	288 110 157	0.094 0.058 0.071	18.1 18.4 18.4 18.2 18.2 18.3 18.3 18.3 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.68 7.69 7.69 6.92 6.93 6.13 7.43 7.43 7.43	98.8 76.0 75.9 91.4 91.9 91.8 96.9 97.8 97.9 96.8 88.4 80.0 97.8 88.4 80.0 91.6 91.6 91.6 97.6 98.8	0.6 1.6 1.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.59 31.58 31.59 31.66 31.66 31.66 31.64 31.64 31.51 31.51 31.51 31.52 31.53 31.53 31.54	8.08 8.03 8.03 8.03 8.03 8.03 8.03 8.03	3 3 3 3 3 3 3 3 3 3 4 4 4 5 5	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1 4.0 3.8 4.2 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8
15:16 14:47 14:26 14:04	R2	MF MF	840739.4 841338.5 841590.3	836212.4 836588.5 836601.2 836680.9	5.8 5.3 8.0	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00 1.00 3.00 1.00 4.95	288 110 157	0.094 0.058 0.071	18.1 18.4 18.4 18.4 18.2 18.2 18.3 18.3 18.0 18.0 17.9 18.0 18.1 18.2 18.3 18.3 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.69 7.60 6.95 6.18 7.45 7.43 7.18 7.18 7.18 7.18 7.18 7.18 7.18 7.18 7.18 7.18 7.18	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.9 96.9 96.8 87.9 96.9 96.8 87.9 96.9 96.9 96.9 96.9 97.9 96.9	0.6 1.6 1.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.54 31.58 31.59 31.58 31.59 31.66 31.66 31.66 31.66 31.64 31.71 31.71 31.71 31.71 31.71 31.71 31.71	8.18 8.03 8.03 8.03 8.03 8.03 8.11 8.11 8.06 8.06 8.16 8.15 8.14 8.12 8.12 8.12 8.12 8.12 8.13 8.11 8.12 8.13 8.14 8.15	4 5 5 7 7 7 3 3 3 4 4 3 3 3 3 3 3 4 4 4 5 5 5	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1 4.0 3.8 4.1 4.0 3.8 3.7 3.8 3.8 3.8 3.8 3.8 3.8
15:16 14:47 14:26 14:04	R2	MF MF MF	840739.4 841338.5 841590.3 841807.0	836212.4 836588.5 836601.2 836680.9	5.8 5.3 8.0 4.0	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00 1.00 3.00 1.00 4.95 8.90	288 110 157 149	0.094 0.058 0.071 0.048	18.1 18.4 18.4 18.2 18.2 18.3 18.3 18.3 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	7.76 5.87 5.86 7.21 7.23 7.23 7.23 7.24 7.60 7.60 7.60 7.69 7.69 7.69 7.43 7.43 7.18 7.18 7.18 7.18 7.18 7.18 7.18 7.18	98.8 76.0 75.9 91.9 80.1 80.5 98.8 98.9 97.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 97.9 94.9 94.9 94.9 94.9 94.9	0.6 1.6 1.6 0.7 1.3 1.3 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7	31.58 32.02 32.01 31.61 31.85 31.85 31.54 31.54 31.59 31.59 31.59 31.66 31.66 31.96 31.96 31.96 31.64 31.71 31.71 31.71 31.71 31.71 31.71 31.71 31.71 31.72 31.55 31.55 31.55 31.55 31.64 31.64	8.08 8.03 8.03 8.03 8.03 8.03 8.03 8.03	3 3 4 3 3 3 3 4 4 3 3 3 5 5 5 5	4.8 4.6 4.3 3.3 3.3 3.4 3.6 3.8 4.1 4.0 3.7 3.8 3.8 3.8 3.9 3.7 4.1 3.8 3.9 4.1 4.0 4.2 4.2 4.2
15:16 14:47 14:26 14:04	R2	MF MF	840739.4 841338.5 841590.3	836212.4 836588.5 836601.2 836680.9	5.8 5.3 8.0	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00 1.00 3.00 1.00 4.95	288 110 157	0.094 0.058 0.071	18.1 18.4 18.4 18.2 18.2 18.3 18.3 18.3 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.68 7.69 7.69 6.92 6.93 6.13 7.43 7.43 7.43	98.8 76.0 75.9 91.4 91.9 91.8 96.9 97.8 97.9 96.8 88.4 80.0 97.8 88.4 80.0 91.6 91.6 91.6 97.6 98.8	0.6 1.6 1.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.59 31.58 31.59 31.66 31.66 31.66 31.64 31.64 31.51 31.51 31.51 31.52 31.53 31.53 31.54	8.08 8.03 8.03 8.03 8.03 8.03 8.03 8.03	3 3 3 3 3 3 3 3 3 3 4 4 4 5 5	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1 4.0 3.8 4.2 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8
15:16 14:47 14:26 14:04	R2	MF MF MF	840739.4 841338.5 841590.3 841807.0	836212.4 836588.5 836601.2 836680.9	5.8 5.3 8.0 4.0	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00 1.00 3.00 1.00 4.95 8.90	288 110 157 149	0.094 0.058 0.071 0.048	18.1 18.1 18.4 18.4 18.2 18.2 18.2 18.3 18.0 18.0 17.9 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.69 6.18 6.18 6.18 7.45 7.43 7.43 7.45 7.69 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.60	98.8 76.0 75.9 91.4 91.9 80.1 80.1 80.5 98.8 98.9 97.8 97.9 96.9 96.8 87.8 88.4 80.0 79.1 91.6 97.6 91.6 97.6 91.8	0.6 1.6 1.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1.3 1.5 1.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.54 31.59 31.55 31.55 31.55 31.73 31.72 32.04 32.04 32.04 32.04	8.18 8.03 8.03 8.03 8.03 8.11 8.11 8.16 8.16 8.16 8.16 8.16 8.17 8.12 8.12 8.12 8.12 8.12 8.12 8.13 8.11 8.15	3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1 4.0 3.8 4.2 3.7 3.8 3.8 3.9 3.7 4.1 3.8 3.9 3.7 4.1 3.8 3.9 3.7 4.1 3.8 3.8 3.9 3.7 4.1 3.8 3.8 3.9 3.7 4.1 3.8 3.8 3.9 3.7 4.1 3.8 3.8 3.9 3.7 4.1
15:16 14:47 14:26 14:04	R2	MF MF MF	840739.4 841338.5 841590.3 841807.0	836212.4 836588.5 836601.2 836680.9	5.8 5.3 8.0 4.0	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00 1.00 4.95 8.90	288 110 157 149	0.094 0.058 0.071 0.048	18.1 18.4 18.4 18.2 18.2 18.3 18.3 18.0 18.0 17.9 18.0 18.1 18.2 18.3 18.4 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.69 7.60 7.43 7.18 7.18 7.62 7.76 7.76 7.76 7.76 7.76 7.76 7.76	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.8 97.9 96.9 96.8 88.4 80.0 79.1 91.6 91.6 97.6 98.1 91.8 91.9 74.5 74.4	0.6 1.6 1.6 0.7 0.7 1.3 0.5 0.6 0.7 0.7 0.7 0.7 1.3 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.54 31.59 31.59 31.59 31.59 31.59 31.59 31.59 31.59 31.66 31.66 31.66 31.64 31.71 31.71 31.71 31.71 31.72 32.04 31.42 31.42 31.42	8.18 8.03 8.03 8.03 8.03 8.03 8.11 8.11 8.06 8.06 8.16 8.15 8.14 8.12 8.12 8.12 8.12 8.13 8.11 8.12 8.13 8.13 8.13 8.13 8.13 8.13 8.14 8.15	4 5 5 7 7 7 3 3 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3	4.8 4.6 4.3 3.3 3.2 3.3 3.4 4.1 4.0 3.8 4.1 4.0 3.8 4.1 4.0 3.8 4.1 4.0 3.7 3.6 3.7 3.7 3.8 3.8 3.9 3.7 4.1 3.8 3.9 3.7 4.1 3.8 3.8 3.8 3.9 3.7 4.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3
15:16 14:47 14:26 14:04 16:29	R2 I1 I2 I3 W1 M1	MF MF MF	840739.4 841338.5 841590.3 841807.0 841858.9	836212.4 836588.5 836601.2 836680.9 836571.0	5.8 5.3 8.0 4.0 9.9	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00 1.00 3.00 1.00 4.95 8.90	288 110 157 149 983	0.094 0.058 0.071 0.048	18.1 18.4 18.4 18.2 18.2 18.3 18.3 18.3 18.3 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.69 7.69 7.60 6.13 7.45 7.43 7.48 7.62 7.75 7.76 7.76 7.76 7.76 7.76 7.76 7.76	98.8 76.0 75.9 91.4 91.9 91.9 96.9 96.8 97.9 96.8 87.8 88.4 80.0 79.1 95.3 94.9 91.6 91.6 91.6 91.6 91.9	0.6 1.6 1.6 0.7 0.7 0.7 0.7 0.7 0.7 1.3 1.3 1.5 0.6 0.7 0.7 0.7 1.3 1.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.59 31.58 31.59 31.66 31.66 31.66 31.66 31.64 31.71 31.71 31.71 31.71 31.71 31.71 31.72 32.04 31.42	8.08 8.03 8.03 8.03 8.03 8.03 8.03 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 3 3 3 3 3 3 3 3 3 3 4 4 5 5	4.8 4.6 4.3 3.3 3.2 3.3 3.4 3.6 3.8 4.1 4.0 3.8 3.7 3.8 3.8 3.8 3.7 3.8 3.8
15:16 14:47 14:26 14:04	R2	MF MF MF	840739.4 841338.5 841590.3 841807.0	836212.4 836588.5 836601.2 836680.9	5.8 5.3 8.0 4.0	4.90 1.00 4.80 1.00 4.30 1.00 4.00 7.00 1.00 4.95 8.90	288 110 157 149	0.094 0.058 0.071 0.048	18.1 18.4 18.4 18.2 18.2 18.3 18.3 18.0 18.0 17.9 18.0 18.1 18.2 18.3 18.4 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	7.76 5.87 5.86 7.21 7.23 6.26 6.28 7.75 7.76 7.69 7.60 7.43 7.18 7.18 7.62 7.76 7.76 7.76 7.76 7.76 7.76 7.76	98.8 76.0 75.9 91.4 91.9 80.1 80.5 98.8 98.9 97.8 97.9 96.9 96.8 88.4 80.0 79.1 91.6 91.6 97.6 98.1 91.8 91.9 74.5 74.4	0.6 1.6 1.6 0.7 0.7 1.3 0.5 0.6 0.7 0.7 0.7 0.7 1.3 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	31.58 32.02 32.01 31.61 31.61 31.85 31.54 31.54 31.54 31.59 31.59 31.59 31.59 31.59 31.59 31.59 31.59 31.66 31.66 31.66 31.64 31.71 31.71 31.71 31.71 31.72 32.04 31.42 31.42 31.42	8.18 8.03 8.03 8.03 8.03 8.03 8.11 8.11 8.06 8.06 8.16 8.15 8.14 8.12 8.12 8.12 8.12 8.13 8.11 8.12 8.13 8.13 8.13 8.13 8.13 8.13 8.14 8.15	4 5 5 7 7 7 3 3 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3	4.8 4.6 4.3 3.3 3.2 3.3 3.4 4.1 4.0 3.8 4.1 4.0 3.8 4.1 4.0 3.8 4.1 4.0 3.7 3.6 3.7 3.7 3.8 3.8 3.9 3.7 4.1 3.8 3.9 3.7 4.1 3.8 3.8 3.8 3.9 3.7 4.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3

MF - Middle Flood tide
ME - Middle Ebb tide
For SS, if the monitoring result is less than Limit of Report 2mg/L, the result value will be assumed as 2 for the calculation.
For Chorophyll-a, if the monitoring result is less than Limit of Report 0.1µg/L, the result value will be assumed as 0.1 for the calculation.

	21-Feb-2	20				Impact W	later Quality	WOIIICOII	ng Res	ult						
Weather:		.0														
ea Condition:	Moderat	е	1		Water	Compling	Current	Current		DO	ьо	Turbidit				ſ
Date / Time	Location	Tide*	Co-ord	linates	Depth	Sampling Depth	Direction	Speed	Temp	Conc	Saturatio	Turbidit y	Salinity	pН	SS	Chlorophyll-a
			East	North	m	m	degrees	m/s	℃ 18.1	mg/L 7.71	% 99.1	NTU 0.9	ppt	unit 8.11	mg/L	μg/L
						1.00			18.1	7.73	99.1	0.9	32.28 32.27	8.11	5 5	3.2 3.0
11:40	G1	ME	841483.9	835936.1	5.1		192	0.038								
						4.10			18.2 18.2	7.65 7.64	98.4 98.3	1.0 1.0	32.34	8.15	4	3.3
						1.00			18.1	7.99	100.4	0.6	32.39 31.58	8.16 8.13	5	3.3 3.4
11:47	R1	ME	842307.4	835718.4	4.1	2.05	272	0.030	18.1	7.90	100.5	0.7	31.59	8.14	5	3.4
11.47		ME	042307.4	0337 10.4	4.1		212	0.030	18.3	6.47	83.3	0.8	31.78	8.08	4	3.3
						3.10			18.3	6.46	83.2	0.8	31.77	8.09	5	3.2
	R2					1.00			18.1 18.1	7.71 7.72	98.6 98.7	0.7 0.7	31.46 31.32	8.09 8.08	4	3.7 3.4
11:19		ME	840739.4	836212.4	4.6		174	0.030								
						3.60			18.3	7.62	97.7 97.9	0.6	31.52	8.12 8.13	5	3.4 3.4
						1.00			18.3 18.2	7.58 7.63	97.8	0.6 1.0	31.48 31.18	8.08	5 6	3.4
40.50	14		044000 5	000500.5	4.7	1100	40	0.017	18.2	7.62	97.9	1.0	31.17	8.07	6	3.6
10:56	l1	ME	841338.5	836588.5	4.7		42	0.017	10 E	6.61	96.4	2.1	31.49	8.09	4	3.3
						3.70			18.5 18.5	6.60	86.4 86.7	2.1	31.48	8.09	4	3.5
						1.00			18.4 18.4	7.54 7.55	97.3 97.2	0.6	31.48 31.46	8.08 8.07	5 5	3.1 3.3
10:47	12	ME	841590.3	836601.2	7.2	3.60	173	0.021	18.5	7.18	93.3 93.5	0.7	31.59	8.11	6	3.2
						6.20			18.5 18.2	7.20 6.13	78.6	0.7 2.1	31.58 31.68	8.10 8.09	6	3.7 3.1
									18.2 18.5	6.15 7.66	78.9 98.7	2.1 0.8	31.66 31.48	8.08 8.02	6	3.6 3.1
						1.00			18.6	7.67	98.7 98.8	0.8	31.48 31.49	8.03	6	3.3
10:30	13	ME	841807.0	836680.9	5.3		129	0.043								
						4.30			18.6 18.6	7.62 7.63	98.3 98.4	0.8	31.57 31.56	8.05 8.06	5 5	3.6 3.1
						1.00			18.1	7.70	98.9	0.8	31.88	8.11	3	3.4
11:56	W1	ME	841858.9	836571.0	8.6	4.30	151	0.021	18.1 18.4	7.68 7.58	98.8 97.9	0.9 1.1	31.84 31.92	8.09 8.13	3 4	3.3 3.5
		IVIL	041000.0	000071.0					18.3 18.6	7.57 7.51	97.8 97.5	1.1 1.2	31.91 32.18	8.14 8.12	<u>4</u> 5	3.2 3.5
						7.60			18.6	7.50	97.4	1.2	32.17	8.11	5	3.3
11:08	M1	ME	840822.2	836416.4	0.4	0.20	135	0.013	18.2 18.2	7.76 7.75	99.3 99.2	2.1 2.5	31.52 31.53	8.14 8.11	4	3.2 3.4
						1.00			18.3	7.44	95.2	0.6	31.58	8.09	4	3.6
11:28	FCZ1	ME	0444006	025220.0	F 2	1.00	156	0.014	18.3	7.39	95.1	0.7	31.55	8.08	4	3.5
11.20	FCZI	IVIE	841180.6	835230.8	5.2		156	0.014	18.1	7.34	93.8	1.1	31.79	8.10	3	3.5
						4.20			18.1		93.9	1.1	31.78	8.11	4	3.3
						4.00			18.1	7.88	100.8	0.6	31.62	8.16	4	3.7
						1.00			18.1		100.7	0.6	31.61	8.17	4	3.6
7:28	G1	MF	841483.9	835936.1	5.3		271	0.023								
						4.30			18.1 18.1	7.86 7.85	100.5 100.4	0.6	31.63 31.64	8.17 8.18	<u>6</u> 5	3.2 3.1
	R1	MF	842307.4			1.00			18.1	7.95	101.6 101.5	0.6	31.62 31.61	8.17 8.18	5	3.2 3.0
7:35				835718.4	4.4	2.20	312	0.018	10.1	7.93	101.5	0.0	31.01	0.10		3.0
							l									
									18.2	6.21	79.7	0.8	32.06	8.05	7	3.4
						3.40			18.2 18.2	6.21 6.14	79.7 79.6	0.8 0.8	32.06 32.05	8.05 8.05	7	3.4 3.2
						1.00				6.14 7.61				8.05 8.14		
7:11	R2	MF	840739.4	836212.4	4.8		55	0.018	18.2 18.3	6.14 7.61	79.6	0.8 0.7	32.05 31.57	8.05 8.14	7 6	3.2 3.2
7:11	R2	MF	840739.4	836212.4	4.8		55	0.018	18.2 18.3 18.2	7.61 7.60 7.58	79.6 97.6 97.5	0.8 0.7 0.7	32.05 31.57 31.58 31.58	8.05 8.14 8.13 8.13	7 6 5	3.2 3.2 3.2 3.2
7:11	R2	MF	840739.4	836212.4	4.8	1.00	55	0.018	18.2 18.3 18.2 18.3 18.3 18.2	7.61 7.60 7.58 7.57 7.80	79.6 97.6 97.5 97.2 97.1 100.1	0.8 0.7 0.7 0.6 0.6 1.0	32.05 31.57 31.58 31.58 31.57 31.59	8.05 8.14 8.13 8.13 8.14 8.13	7 6 5 5 5	3.2 3.2 3.2 3.2 3.3 2.8
						3.80			18.2 18.3 18.2 18.3 18.3	7.61 7.60 7.58 7.57 7.80	79.6 97.6 97.5 97.2 97.1	0.8 0.7 0.7 0.6 0.6	32.05 31.57 31.58 31.58 31.57	8.05 8.14 8.13 8.13 8.14	7 6 5 5	3.2 3.2 3.2 3.2 3.3
7:11 6:50	R2	MF MF	840739.4 841338.5	836212.4 836588.5	4.8	1.00 3.80 1.00	55 89	0.018	18.2 18.3 18.2 18.3 18.3 18.2 18.2	7.58 7.57 7.80 7.78	97.6 97.5 97.2 97.1 100.1 99.9	0.8 0.7 0.7 0.6 0.6 1.0	32.05 31.57 31.58 31.58 31.57 31.59 31.54	8.05 8.14 8.13 8.13 8.14 8.13 8.11	7 6 5 5 5 6	3.2 3.2 3.2 3.2 3.3 2.8 3.0
						1.00 3.80 1.00 3.90			18.2 18.3 18.2 18.3 18.3 18.2 18.2	7.58 7.57 7.80 7.78 7.78 6.84 6.88	97.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4	0.8 0.7 0.7 0.6 0.6 1.0 1.0	32.05 31.57 31.58 31.57 31.59 31.54 31.70 31.70	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.10 8.10	7 6 5 5 5 6 8 8	3.2 3.2 3.2 3.3 2.8 3.0 3.0 3.0
						1.00 3.80 1.00			18.2 18.3 18.2 18.3 18.2 18.2 18.2 18.6 18.6 18.3 18.3	7.58 7.57 7.80 7.78 7.78 6.84 6.84 7.66 7.67	79.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.3	0.8 0.7 0.7 0.6 0.6 1.0 1.1 1.1 0.6 0.5	32.05 31.57 31.58 31.57 31.59 31.54 31.70 31.71 31.57 31.58	8.05 8.14 8.13 8.14 8.13 8.14 8.13 8.11 8.11 8.11 8.11	7 6 5 5 5 6 8 8 8 5	3.2 3.2 3.2 3.2 3.3 2.8 3.0 3.0 3.0 2.9 2.8
						1.00 3.80 1.00 3.90			18.2 18.3 18.2 18.3 18.2 18.2 18.6 18.6 18.6 18.3 18.3	7.58 7.57 7.80 7.78 6.84 6.86 7.67 7.47	79.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.3 95.7	0.8 0.7 0.7 0.6 0.6 1.0 1.0 1.1 1.1 0.6 0.5 0.6	32.05 31.57 31.58 31.57 31.59 31.54 31.70 31.71 31.57 31.58 31.58	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.11 8.11 8.11 8.11	7 6 5 5 5 6 8 8 8 8 5 6	3.2 3.2 3.2 3.2 3.3 2.8 3.0 3.0 2.9 2.9 2.8
6:50	I1	MF	841338.5	836588.5	4.9	3.80 1.00 3.90 1.00	89	0.036	18.2 18.3 18.2 18.3 18.3 18.2 18.6 18.6 18.3 18.3 18.3 18.3	7.58 7.57 7.80 7.58 7.57 7.80 7.78 6.84 6.84 7.66 7.67 7.47 7.49 5.55	79.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.3 95.7 95.9 71.3	0.8 0.7 0.7 0.6 0.6 1.0 1.0 1.1 1.1 0.6 0.5 0.6 0.6 0.5	32.05 31.57 31.58 31.58 31.57 31.59 31.54 31.70 31.71 31.58 31.58 31.58 31.58 31.58	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.11 8.11 8.11 8.11 8.10 7.97	7 6 5 5 5 6 8 8 8 5 6 6 5	3.2 3.2 3.2 3.3 3.3 3.0 3.0 3.0 2.9 2.9 3.0 3.0 3.0 3.0
6:50	I1	MF	841338.5	836588.5	4.9	3.80 1.00 3.90 1.00 3.75 6.50	89	0.036	18.2 18.3 18.2 18.3 18.3 18.2 18.6 18.6 18.3 18.3 18.3 18.3 18.3 18.3	6.14 7.61 7.60 7.58 7.57 7.80 7.78 6.84 6.88 7.66 7.67 7.49 5.55 5.55	79.6 97.6 97.5 97.2 97.1 100.1 99.9 88.4 98.2 98.3 95.7 95.9 71.3 71.3 99.4	0.8 0.7 0.7 0.6 0.6 1.0 1.1 1.1 0.6 0.5 0.6 0.6 2.3 2.3	32.05 31.57 31.58 31.58 31.57 31.59 31.54 31.70 31.71 31.71 31.58 31.61 32.17 32.18 31.59	8.13 8.13 8.13 8.14 8.13 8.11 8.10 8.11 8.10 8.10 7.97 7.96 8.08	7 6 5 5 5 6 8 8 8 5 6 6 6	3.2 3.2 3.2 3.3 2.8 3.0 3.0 3.0 2.9 2.9 3.0 2.9 3.0 2.8 2.9
6:50	11	MF MF	841338.5 841590.3	836588.5 836601.2	4.9 7.5	3.80 1.00 3.90 1.00 3.75	89 225	0.036	18.2 18.3 18.2 18.3 18.3 18.2 18.2 18.6 18.6 18.3 18.3 18.3 18.3 18.3	6.14 7.61 7.60 7.58 7.57 7.80 7.78 6.84 6.88 7.66 7.67 7.49 5.55 5.55	79.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.3 95.7 95.9 71.3	0.8 0.7 0.7 0.6 0.6 1.0 1.1 1.1 0.6 0.5 0.6 0.6 2.3	32.05 31.57 31.58 31.58 31.57 31.59 31.54 31.70 31.71 31.58 31.58 31.58 31.58 31.58	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.11 8.11 8.11 8.11 8.10 7.97	7 6 5 5 5 6 8 8 8 5 6 6 5	3.2 3.2 3.2 3.3 3.3 3.0 3.0 3.0 2.9 2.9 3.0 3.0 3.0 3.0
6:50	I1	MF	841338.5	836588.5	4.9	3.80 1.00 3.90 1.00 3.75 6.50	89	0.036	18.2 18.3 18.2 18.3 18.2 18.2 18.2 18.6 18.3 18.3 18.3 18.3 18.3 18.3	6.14 7.60 7.58 7.57 7.80 7.78 6.84 6.88 7.67 7.47 7.49 5.55 5.54 7.74 7.74	79.6 97.5 97.5 97.2 97.1 100.1 99.9 88.4 98.2 98.3 96.7 95.7 95.9 97.1 99.9	0.8 0.7 0.7 0.6 0.6 1.0 1.0 1.1 1.1 1.1 1.1 0.6 0.5 0.6 2.3 2.3 2.3 0.8	32.05 31.57 31.58 31.58 31.57 31.59 31.54 31.70 31.71 31.58 31.58 31.58 31.58 31.58 31.58 31.58 31.58 31.58	8.05 8.14 8.13 8.14 8.13 8.11 8.11 8.11 8.10 8.10 8.10 8.10 8.10	7 6 5 5 5 5 6 8 8 5 6 6 6 7	3.2 3.2 3.2 3.3 3.3 2.8 3.0 3.0 3.0 2.9 2.8 2.9 3.0 3.1 2.8 2.9 3.0
6:50	11	MF MF	841338.5 841590.3	836588.5 836601.2	4.9 7.5	3.80 1.00 3.90 1.00 3.75 6.50	89 225	0.036	18.2 18.3 18.2 18.3 18.2 18.2 18.6 18.6 18.3 18.3 18.3 18.3 18.3 18.3 18.3	7.58 7.57 7.80 7.78 7.78 7.78 6.84 6.88 7.66 7.67 7.47 7.49 5.55 5.54 7.74 7.73	79.6 97.6 97.5 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.3 95.7 95.9 71.3 99.2	0.8 0.7 0.6 0.6 0.6 1.0 1.0 1.1 1.1 0.6 0.6 0.6 0.6 0.6 0.8 0.8	32,05 31,57 31,58 31,58 31,57 31,59 31,54 31,70 31,70 31,57 31,58 31,57 31,58 31,58 31,58 31,58 31,58 31,58 31,58 31,57 31,58 31,57 31,58 31,57 31,58 31,57 31,58 31,57 31,58 31,57 31,58 31,57 31,58 31,57 31,58 31,57 31,57 31,58 31,57 31,57 31,58 31,57 31,57 31,58 31,57 31,57 31,57 31,57 31,57 31,57 31,57 31,58 31,57 31,58 31,57 31,58 31,57 31,58 31,57 31,58 31,57 31,58	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.11 8.11 8.11 8.10 7.97 7.96 8.08 8.07	7 6 5 5 5 6 8 8 8 5 6 6 6	3.2 3.2 3.2 3.3 2.8 3.0 3.0 3.0 2.9 2.9 3.0 2.9 3.0 2.8 2.9
6:50	11	MF MF	841338.5 841590.3	836588.5 836601.2	4.9 7.5	3.80 1.00 3.90 1.00 3.75 6.50	89 225	0.036	18.2 18.3 18.3 18.3 18.2 18.6 18.6 18.6 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	7.58 7.58 7.57 7.80 7.78 7.80 7.78 6.84 6.88 7.66 7.47 7.47 7.49 5.55 5.54 7.74 7.74 7.75 7.76	79.6 97.6 97.5 97.2 97.1 100.1 99.9 88.4 98.2 98.3 95.9 71.3 71.3 99.4 99.2	0.8 0.7 0.6 0.6 1.0 1.1 1.1 0.6 0.6 0.6 0.6 2.3 2.3 0.8	32.05 31.57 31.58 31.58 31.57 31.59 31.59 31.70 31.71 31.57 31.58 31.58 31.58 31.58 31.58 31.58 31.58 31.58 31.59 31.58	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.11 8.10 8.11 8.11 8.10 7.97 7.96 8.08 8.07	7 6 5 5 5 5 6 8 8 8 5 6 6 6 7	3.2 3.2 3.2 3.2 3.3 2.8 3.0 3.0 3.0 2.9 2.8 3.0 3.1 2.8 2.9 3.0 3.1 2.8 2.9 3.0
6:50	11	MF MF	841338.5 841590.3	836588.5 836601.2	4.9 7.5	3.80 1.00 3.90 1.00 3.75 6.50 1.00	89 225	0.036	18.2 18.3 18.2 18.3 18.2 18.2 18.2 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	7.61 7.60 7.58 7.58 7.57 7.80 7.78 6.84 6.88 7.66 7.67 7.47 7.47 7.74 7.73 7.64 7.76 7.76 7.76	79.6 97.6 97.5 97.2 97.1 100.1 99.9 88.4 98.2 98.3 95.7 95.9 71.3 99.4 99.2	0.8 0.7 0.6 0.6 1.0 1.0 1.1 1.1 1.1 2.3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	32.05 31.57 31.58 31.58 31.59 31.59 31.54 31.70 31.71 31.57 31.58 31.61 32.17 32.18 31.58 31.51 32.17 32.18 31.59 31.59	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.11 8.11 8.11 8.11 8.11 8.10 8.09 8.08 8.07	7 6 5 5 5 6 8 8 5 5 6 6 7	3.2 3.2 3.2 3.3 3.3 2.8 3.0 3.0 3.0 2.9 2.8 2.9 3.0 3.1 2.8 2.9 3.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
6:50 6:41 6:30	l1 l2 l3	MF MF	841338.5 841590.3 841807.0	836588.5 836601.2 836680.9	7.5	3.80 1.00 3.90 1.00 3.75 6.50 1.00 4.60 1.00	89 225 73	0.036	18.2 18.3 18.2 18.3 18.2 18.6 18.6 18.6 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	7.61 7.60 7.57 7.80 7.78 7.78 7.80 7.78 6.84 6.88 7.66 7.67 7.47 7.49 5.55 5.54 7.74 7.74 7.75 7.76 7.76 7.76 7.70 6.41	79.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.3 95.7 95.9 71.3 99.4 99.2 98.6 99.5 99.4 99.9	0.8 0.7 0.6 0.6 1.0 1.0 1.1 1.1 1.1 1.1 0.6 0.5 0.6 0.6 2.3 2.3 0.8 0.8	32.05 31.57 31.58 31.57 31.59 31.54 31.70 31.71 31.71 31.58 31.58 31.58 31.58 31.58 31.59 31.58 31.59 31.58 31.59 31.58 31.59 31.58 31.59 31.58 31.59 31.58	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.11 8.11 8.11 8.10 7.97 7.96 8.08 8.07 8.09 8.08 8.16 8.16 8.17 8.16	7 6 5 5 5 5 6 8 8 8 5 5 6 6 6 7 7	3.2 3.2 3.2 3.3 3.3 2.8 3.0 3.0 2.9 2.9 2.9 3.0 2.9 3.1 2.8 2.9 3.0 3.1 3.1 3.1 3.3 3.3 3.3 3.3 3.3 3.3 3.3
6:50 6:41 6:30	l1 l2 l3	MF MF	841338.5 841590.3 841807.0	836588.5 836601.2 836680.9	7.5	3.80 1.00 3.90 1.00 3.75 6.50 1.00 4.60	89 225 73	0.036	18.2 18.3 18.2 18.2 18.2 18.2 18.2 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	7.51 7.60 7.58 7.57 7.80 7.78 6.84 6.88 7.66 7.67 7.49 5.55 5.55 7.74 7.74 7.73	79.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.2 98.3 95.7 95.9 71.3 71.3 99.4 99.2	0.8 0.7 0.6 0.6 0.6 1.0 1.0 1.1 1.1 1.1 1.1 0.6 0.5 0.6 0.6 2.3 2.3 0.8 0.8	32.05 31.57 31.58 31.58 31.59 31.59 31.54 31.70 31.71 31.58	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.11 8.11 8.11 8.11 8.10 7.97 7.96 8.08 8.07 8.08 8.07	7 65 5 5 6 8 8 8 5 6 6 5 5 6 7 7	3.2 3.2 3.2 3.3 2.8 3.0 3.0 3.0 2.9 3.0 2.8 2.9 3.0 3.1 2.8 2.9 3.0 3.1 2.8 2.9 3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
6:50 6:41 6:30	11 12 13 W1	MF MF	841338.5 841590.3 841807.0 841858.9	836588.5 836601.2 836680.9	7.5 5.6 8.9	1.00 3.80 1.00 3.90 1.00 3.75 6.50 1.00 4.60 1.00 4.45 7.90	225 73 313	0.036 0.018 0.037	18.2 18.3 18.2 18.3 18.2 18.6 18.6 18.6 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	6.14 7.61 7.60 7.58 7.57 7.80 7.78 6.84 6.88 7.66 7.67 7.47 7.49 5.55 5.54 7.73 7.64 7.75 7.75 7.70 6.41 6.40	79.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.2 95.7 95.9 97.3 71.3 99.4 99.2 98.6 98.5 99.5 99.4 99.9 82.3 82.3	0.8 0.7 0.6 0.6 1.0 1.1 1.1 0.6 0.6 0.6 0.6 0.8 0.8 0.8	32.05 31.57 31.58 31.57 31.59 31.54 31.57 31.70 31.70 31.70 31.71 31.57 31.58	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.11 8.11 8.11 8.11 8.10 8.10 8.10	7 6 5 5 5 5 5 5 6 6 6 6 7 7 7 5 5 5 6 6 7 7 7 7	3.2 3.2 3.2 3.3 2.8 3.0 3.0 3.0 2.9 2.9 3.1 2.8 2.9 3.0 3.1 2.8 2.9 3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
6:50 6:41 6:30	l1 l2 l3	MF MF	841338.5 841590.3 841807.0	836588.5 836601.2 836680.9	7.5	3.80 1.00 3.90 1.00 3.75 6.50 1.00 4.60 1.00	89 225 73	0.036	18.2 18.3 18.2 18.3 18.2 18.6 18.6 18.6 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	7.61 7.60 7.57 7.80 7.78 7.78 7.80 7.78 6.84 6.88 7.66 7.67 7.47 7.49 5.55 5.54 7.74 7.74 7.75 7.76 7.76 7.76 7.70 6.41	79.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.3 95.7 95.9 71.3 99.4 99.2 98.6 99.5 99.4 99.9	0.8 0.7 0.6 0.6 1.0 1.0 1.1 1.1 1.1 1.1 0.6 0.5 0.6 0.6 2.3 2.3 0.8 0.8	32.05 31.57 31.58 31.57 31.59 31.54 31.70 31.71 31.71 31.58 31.58 31.58 31.58 31.58 31.59 31.58 31.59 31.58 31.59 31.58 31.59 31.58 31.59 31.58 31.59 31.58	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.11 8.11 8.11 8.10 7.97 7.96 8.08 8.07 8.09 8.08 8.16 8.16 8.17 8.16	7 6 5 5 5 5 6 8 8 8 5 5 6 6 6 7 7	3.2 3.2 3.2 3.3 3.3 2.8 3.0 3.0 2.9 2.8 2.9 3.0 2.9 2.9 3.1 2.8 2.9 3.1 3.1 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
6:50 6:41 6:30	11 12 13 W1	MF MF	841338.5 841590.3 841807.0 841858.9	836588.5 836601.2 836680.9	7.5 5.6 8.9	1.00 3.80 1.00 3.90 1.00 3.75 6.50 1.00 4.60 1.00 4.45 7.90	225 73 313	0.036 0.018 0.037	18.2 18.3 18.2 18.3 18.2 18.6 18.6 18.6 18.6 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	7.58 7.57 7.80 7.57 7.80 7.80 7.80 7.86 6.84 7.66 7.67 7.47 7.49 7.74 7.74 7.74 7.74 7.74 7.7	79.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.3 95.7 95.9 71.3 99.2 98.6 98.5 99.5 99.5 99.5 99.5 99.7	0.8 0.7 0.6 0.6 1.0 1.0 1.1 1.1 1.1 1.1 0.6 0.5 0.6 0.6 2.3 2.3 0.8 0.8 0.6 0.6 0.6 1.0 0.6 1.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0	32.05 31.57 31.58 31.57 31.59 31.59 31.54 31.70 31.71 31.57 31.58 31.61 32.17 32.17 32.17 32.18 31.58 31.61 32.18 31.58 31.61 32.18 31.58 31.61 32.18 31.58	8.05 8.14 8.13 8.13 8.14 8.13 8.14 8.13 8.14 8.13 8.11 8.10 8.10 8.11 8.11 8.11 8.11 8.11	7 6 5 5 5 5 5 5 6 6 6 6 5 5 5 5 5 6 6 7 7	3.2 3.2 3.2 3.3 2.8 3.0 3.0 3.0 2.9 2.8 2.9 3.0 3.1 2.8 2.9 3.0 3.1 2.8 3.0 3.1 3.1 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
6:50 6:41 6:30	11 12 13 W1	MF MF	841338.5 841590.3 841807.0 841858.9	836588.5 836601.2 836680.9	7.5 5.6 8.9	1.00 3.80 1.00 3.90 1.00 3.75 6.50 1.00 4.60 1.00 4.45 7.90	225 73 313	0.036 0.018 0.037	18.2 18.3 18.2 18.3 18.2 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	7.58 7.57 7.80 7.57 7.80 7.78 6.84 7.66 7.67 7.47 7.47 7.49 7.47 7.49 7.74 7.74 7.7	79.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.3 95.7 95.9 71.3 71.3 99.4 99.2 98.5 99.5 99.5 99.5 99.5 99.9 98.2	0.8 0.7 0.6 0.6 1.0 1.0 1.1 1.1 1.1 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	32.05 31.57 31.58 31.57 31.59 31.59 31.54 31.57 31.59 31.57 31.58 31.61 31.57 31.58 31.58 31.58 31.59 31.58 31.58 31.59 31.59 31.58 31.59	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.11 8.11 8.11 8.11 8.11 8.11	7 6 5 5 5 5 5 6 6 6 7 7 5 5 5 5 6 6 6 7 7 7 7	3.2 3.2 3.2 3.2 3.3 2.8 3.0 3.0 2.9 3.0 2.9 3.0 3.1 2.8 2.9 3.0 3.1 2.8 2.9 3.0 3.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
6:50 6:41 6:30 7:49	I1 I2 I3 W1 M1	MF MF MF	841338.5 841590.3 841807.0 841858.9	836588.5 836601.2 836680.9 836571.0	7.5 5.6 8.9	1.00 3.80 1.00 3.90 1.00 3.75 6.50 1.00 4.60 1.00 4.45 7.90 0.30	89 225 73 313	0.036 0.018 0.037	18.2 18.3 18.2 18.3 18.3 18.2 18.6 18.6 18.6 18.3	6.14 7.61 7.61 7.58 7.57 7.80 7.78 6.84 6.88 7.66 7.74 7.74 9.555 5.54 7.74 7.73 7.73 7.74 7.75 7.76 7.74 7.75 7.76 7.74 7.74 7.75 7.76 7.76 7.76 7.77 7.77	79.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.3 96.7 95.9 97.3 71.3 71.3 71.3 99.4 99.2 98.5 99.5 99.5 99.5 99.5 99.5	0.8 0.7 0.7 0.6 0.6 1.0 1.1 1.1 0.6 0.6 0.6 2.3 2.3 2.3 0.8 0.8 0.6 0.6 0.6 0.6 1.0	32.05 31.57 31.58 31.57 31.59 31.57 31.57 31.70 31.71 31.71 31.57 31.58	8.05 8.14 8.13 8.13 8.13 8.14 8.13 8.11 8.10 8.10 7.97 7.79 8.08 8.07 8.09 8.08 8.16 8.17 8.16 8.17 8.18 8.19 8.19 8.19 8.19 8.19 8.19 8.19	7 6 5 5 5 5 5 6 6 8 8 8 8 5 5 5 6 6 7 7 7 5 5 5 5 5 6 7 7 7 7 7 7	3.2 3.2 3.2 3.2 3.3 3.3 2.8 3.0 3.0 2.9 2.9 2.9 3.1 2.8 2.9 3.0 3.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
6:50 6:41 6:30	11 12 13 W1	MF MF	841338.5 841590.3 841807.0 841858.9	836588.5 836601.2 836680.9	7.5 5.6 8.9	1.00 3.80 1.00 3.90 1.00 3.75 6.50 1.00 4.60 1.00 4.45 7.90 0.30	225 73 313	0.036 0.018 0.037	18.2 18.3 18.2 18.3 18.2 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	6.14 7.61 7.58 7.57 7.80 7.78 6.84 6.88 7.66 7.67 7.47 7.49 7.57 7.70 7.74 7.73 7.64 7.75 7.70 6.41 6.40	79.6 97.6 97.5 97.2 97.1 100.1 99.9 87.9 88.4 98.2 98.3 95.7 95.9 71.3 71.3 99.4 99.2 98.5 99.5 99.5 99.5 99.5 99.9 98.2	0.8 0.7 0.6 0.6 1.0 1.0 1.1 1.1 1.1 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	32.05 31.57 31.58 31.57 31.59 31.59 31.54 31.57 31.59 31.57 31.58 31.61 31.57 31.58 31.58 31.58 31.59 31.58 31.58 31.59 31.59 31.58 31.59	8.05 8.14 8.13 8.13 8.14 8.13 8.11 8.11 8.11 8.11 8.11 8.11 8.11	7 6 5 5 5 5 5 6 6 6 7 7 5 5 5 5 6 6 6 7 7 7 7	3.2 3.2 3.2 3.2 3.3 2.8 3.0 3.0 2.9 3.0 2.9 3.0 3.1 2.8 2.9 3.0 3.1 2.8 2.9 3.0 3.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

MF - Middle Flood tide
ME - Middle Ebb tide
For SS, if the monitoring result is less than Limit of Report 2mg/L, the result value will be assumed as 2 for the calculation.
For Chorophyll-a, if the monitoring result is less than Limit of Report 0.1µg/L, the result value will be assumed as 0.1 for the calculation.

ampling Date	24-Feb-2	20				pact V	Vater Quality	,	9 1165	wit.						
Weather:	Fine															
a Condition:	Moderat	е			Water	Sampling	Current	Current	1	DO	ьо	Turbidit			1	1
Date / Time	Location	Tide*	Co-ord		Depth	Depth	Direction	Speed	Temp	Conc	Saturatio	у	Salinity	pН	SS	Chlorophyll-
			East	North	m	m	degrees	m/s	℃ 19.0	mg/L 7.80	% 101.4	NTU 0.7	ppt 31.68	unit 8.20	mg/L 4	μ g/L 1.8
13:20						1.00			19.0	7.81	101.3	0.6	31.67	8.20	4	2.2
	G1	ME	841483.9	835936.1	5.2		161	0.041								
						4.20			19.1 19.1	7.75 7.73	100.9 100.8	0.6 0.6	31.69 31.68	8.19 8.18	4	2.2 1.8
						1.00			19.1 19.1	7.80 7.82	101.8 102.0	0.5 0.5	31.65 31.64	8.19 8.18	3	2.0 1.8
13:32	R1	ME	842307.4	835718.4	4.9	2.45	83	0.023	19.1	7.02	102.0	0.5	31.04	0.10	-	1.0
						3.90			19.1	7.76	101.1	0.4	31.66	8.18	3	1.9
									19.1 19.4	7.78 7.56	101.2 99.2	0.4 0.5	31.67 31.59	8.19 8.15	3	2.1 1.6
						1.00		0.038	19.4	7.55	99.1	0.5	31.58	8.14	3	1.8
12:58	R2	ME	840739.4	836212.4	5.0		69		40.0		20.0		24.52			
						4.00			19.2 19.2	7.55 7.54	98.9 98.9	0.5 0.7	31.59 31.58	8.15 8.14	4	1.5 1.6
12:40						1.00			19.2 19.2	7.62 7.61	99.4 99.3	0.7 0.7	31.90 31.80	8.11 8.11	5 5	1.4 1.3
	I1	ME	841338.5	836588.5	4.6		134	0.033	10.2	1.01	00.0	0.7	01.00	0.11	Ľ	110
						3.60			19.1	7.57	99.1	0.7	32.30	8.10	4	1.4
						1.00			19.2 19.2	7.58 7.65	99.1 99.7	0.7 0.5	32.40 31.48	8.08 8.18	3 5	1.6 1.8
40.00	10		044500 5	00000: 5				6.00	19.2	7.63 7.66	99.7 100.1	0.5	31.49 31.72	8.17 8.08	5	1.7
12:28	12	ME	841590.3	836601.2	6.4	3.20	63	0.014	19.2	7.68	100.3	0.7	31.73	8.21	4	1.8
						5.40			19.2 19.2	7.73 7.74	100.9 100.8	0.5 0.5	31.60 31.80	8.14 8.17	3 4	1.8 1.8
						1.00			19.3 19.3	7.68 7.64	100.1 99.8	0.6 0.7	31.44 31.50	8.09 8.10	5 5	2.3 1.7
12:20	13	ME	841807.0	836680.9	4.5		81	0.021								
						3.50			19.2	7.56	99.1	0.9	31.72	8.13	3	1.7
						1.00			19.1 19.2	7.59 7.76	99.3 101.0	0.9 0.5	31.70 31.57	8.13 8.18	3 4	1.8 2.0
13:44	W1	ME	841858.9	0005=: :	9.6		223	0.018	19.2 19.3	7.78 7.74	101.5 100.7	0.5 0.5	31.58 31.60	8.17 8.19	3	1.9 2.0
13:44				836571.0	8.6	4.30	223	0.018	19.2	7.75	100.9	0.5	31.60	8.18	3	2.1
						7.60			18.2 18.2	7.68 7.67	100.3 100.2	0.6 0.6	31.62 31.61	8.18 8.17	9	2.1
								Į.								
11:49	M1	ME	840822.2	836416.4	0.3	0.15	164	0.029	19.4 19.4	7.49 7.50	90.2 98.1	1.2 1.3	31.56 31.57	8.13 8.14	5 6	1.7 1.7
									19.4	7.50	90.1	1.5	31.37	0.14		1.7
						1.00			19.5	7.42	97.2	0.4	31.61	8.14	2	2.4
40.00	FCZ1	ME	841180.6	835230.8	4.1	1.00	43	0.027	19.5	7.46	97.1	0.4	31.62	8.13	2	2.8
13:09	FCZ1						43	0.027	19.2	6.81	89.1	1.0	31.69	8.10	3	2.9
						3.10			19.2	6.81		1.1	31.68		3	2.7
						1.00			19.0	7.84	102.1	0.5	31.70	8.20	3	2.1
	0.4					1.00			19.0		101.8	0.5	31.68		3	1.0
7:35	G1	MF	841483.9	835936.1	5.7		165	0.024	10.0	7.70	101.1	0.0	04.00	0.40	4	4.0
						4.70			19.0 19.0	7.78 7.77	101.4 101.3	0.6 0.5	31.69 31.68	8.19 8.18	4	1.8 2.0
		MF	842307.4			1.00			19.0 19.1	7.83 7.81	102.1 102.0	0.4	31.68 31.69	8.18 8.17	3	1.5 1.9
7:49	R1			835718.4	5.2	2.60	232	0.019								
						4.20			19.1	7.77	101.5	0.4	31.67	8.18	3	1.9
						1.00			19.1 19.4	7.76 7.53	101.4 98.8	0.4 0.5	31.68 31.58	8.17 8.14	3	2.0 1.6
7.47	D.O.	MF	840739.4	000040 4		1.00	400	0.004	19.4	7.52	98.7	0.5	31.59	8.14	3	1.7
7:17	R2			836212.4	5.3		168	0.034	10.4	7.5.1	00.0	0.5	21.50	0.14	,	1.7
						4.30			19.4 19.4	7.54 7.54	98.8 98.7	0.5 0.5	31.59 31.85	8.14 8.15	3	1.7 1.7
		MF	841338.5	836588.5	5.2	1.00			19.2 19.2	7.57 7.56	99.1 99.0	0.6	31.60 31.59	8.13 8.12	4	1.4 1.5
6:55	I1						237	0.031								
						4.20			19.3 19.3	7.58 7.59	99.2 99.5	0.5 0.5	31.62 31.64	8.14 8.15	3	1.4 1.4
						1.00			19.2	7.65	100.0	0.7	31.61	8.12	5	1.7
6:47	12	MF	841590.3	836601.2	4.8	2.40	271	0.027	19.2 19.3	7.66 7.66	99.9 100.0	0.7 0.6	31.62 31.62	8.11 8.13	5 3	1.9 1.6
0.47	12	IVIF	041590.3	030001.2	4.0		2/ 1	0.021	19.3	7.66	100.1 100.3	0.5	31.61 31.61	8.14 8.14	3	1.7
						3.80			19.3	7.69	100.3	0.5	31.61	8.15	4	1.7
						1.00			19.2 19.3	7.62 7.61	99.6 99.5	0.8	31.59 31.58	8.05 8.06	6 6	1.9 1.8
6:35	13	MF	841807.0	836680.9	4.4		191	0.031								
						3.40			19.2	7.57	99.2	1.3	31.64	8.09	3	1.7
	W1	MF	841858.9	836571.0		1.00			19.2 18.9	7.56 7.78	99.1 101.7	1.4 0.5	31.65 31.63	8.19	3	1.9 1.9
8:00					8.9	4.45	308	0.013	18.9 19.2	7.79 7.74	101.5 101.1	0.5 0.5	31.64 31.60	8.18 8.17	3 4	1.9 1.8
0.00	VV 1	IVII	0-1000.9	000011.0	0.5		500	0.013	19.2 19.2	7.71 7.70	100.8 100.5	0.6 0.5	31.68 31.62	8.16 8.18	4	1.8 1.8
						7.90			19.2	7.18	100.6	0.5	31.61	8.14	4	1.9
7:04	M1	MF	840822.2	836416.4	0.4	0.20	174	0.024	19.4 19.4	7.52 7.50	98.7 98.5	1.2 1.3	31.57 31.58	8.13 8.14	4	1.7 1.6
										7.50	10.0		50	3		
						1.00			19.3	7.71	100.9	0.4	31.64	8.14	3	2.3
7:26	FCZ1	MF	841180.6	835230.8	4.4		237	0.013	19.4	7.64	100.6	0.4	31.62	8.15	3	2.3
1.20	FUZI	IVIF	041100.0	030230.6	4.4		231	0.013	10.5	7 20	0/1.2	11	31.66	8 10	3	2.2
		i l		1	1	3.40	l	l	19.5 19.5	7.20 7.21	94.3 93.9	1.1	31.66	8.10 8.10	3	2.2

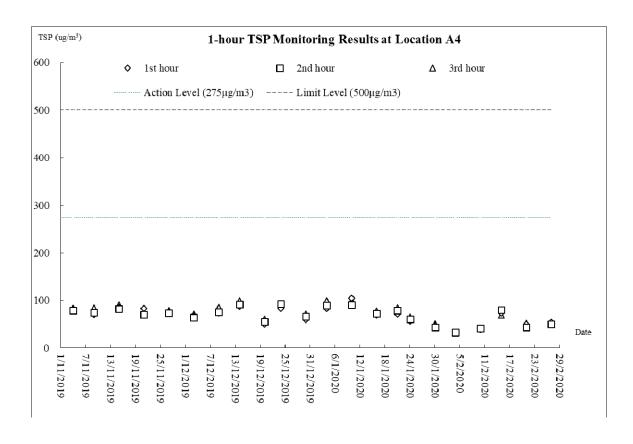
MF - Middle Flood tide
ME - Middle Ebb tide
For SS, if the monitoring result is less than Limit of Report 2mg/L. the result value will be assumed as 2 for the calculation.
For Chorophyll-a, if the monitoring result is less than Limit of Report 0.1µg/L, the result value will be assumed as 0.1 for the calculation.

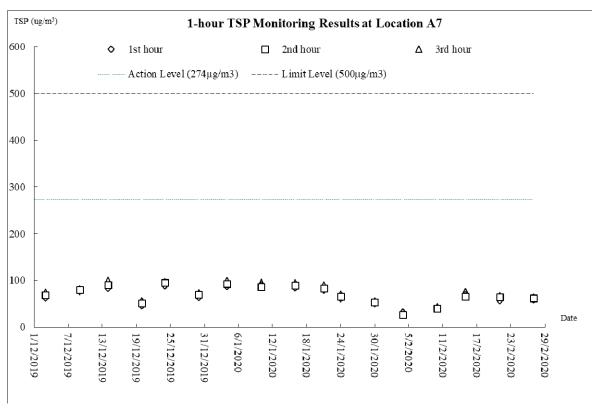
Batning Beach	_					Impact W	ater Quality	Monitori	ng Resu	lt						
Sampling Date Weather:	26-Feb-2 Fine	20														
ea Condition:		е	1		l ne			_	1		- 50					T
Date / Time	Location	Tide*	Co-ord		Water Depth	Sampling Depth	Current Direction	Current Speed	Temp	DO Conc	Saturatio	Turbidit y	Salinity	pН	SS	Chlorophyll-a
			East	North	m	m 1.00	degrees	m/s	℃ 21.5 21.4	7.35 7.40	% 99.0 99.5	0.4 0.4	9pt 31.68 31.70	8.12 8.13	mg/L 4 4	μg/L 3.9 3.7
14:35	G1	ME	841483.9	835936.1	4.6		169	0.112	21.4	7.40	99.5	0.4	31.70	0.13	4	3.1
						3.60			19.6 19.6	5.92 5.83	76.8 76.1	1.0 1.0	32.02 32.01	8.08 8.07	4	3.8 3.7
						1.00			21.4	7.33 7.29	99.2 98.8	0.4	31.58 31.61	8.18 8.17	5 5	3.8 3.9
14:48	R1	ME	842307.4	835718.4	5.0	2.50	127	0.181								
						4.00			19.6 19.7	5.96 5.99	77.2 77.4	0.9 0.9	32.11 32.13	8.09 8.06	5 5	4.2 4.1
						1.00			21.2 21.3	7.02 7.08	94.9 95.6	0.3 0.4	31.60 31.66	8.19 8.20	3	3.7 3.8
14:08	R2	ME	840739.4	836212.4	5.4		137	0.150	19.6	6.32	82.6	0.9	32.12	8.11	6	3.6
						4.40			19.6 21.1 21.1	6.27 7.39 7.36	82.1	0.9	32.14 31.78 31.80	8.09 8.18	6 4	3.7 4.0
12,57	I1	ME	044220 5	926599 F	4.7	1.00	132	0.160	21.1	7.36	99.4 99.1	0.5 0.4	31.80	8.18 8.17	4	4.0
13:57	"	IVIE	841338.5	836588.5	4.7	3.70	132	0.160	19.2	6.69	88.2	0.7	32.08	8.10	5	4.3
						1.00			19.2 21.1	6.64 7.43	87.5 99.8	0.7 0.4	32.11 31.30	8.08 8.16	5 5	4.0 3.6
13:42	12	ME	841590.3	836601.2	6.2	3.10	129	0.136	21.1	7.37 7.13	99.2 95.0 95.2	0.4 0.6	31.75 31.86	8.15 8.12	5 4	4.1 3.3 3.7
						5.20			19.9 19.1 19.1	7.15 5.69 5.71	74.0 74.2	0.6 1.0 0.9	31.88 32.11 32.16	8.13 8.05 8.06	4 7 7	3.7 4.0 3.8
						1.00			21.2	7.36 7.41	99.0 99.6	0.9 0.4 0.4	31.69 31.70	8.14 8.15	9	4.1 4.2
13:30	13	ME	841807.0	836680.9	4.4		168	0.116	21.2	7.41	33.0	0.4	31.70	0.13	3	7.2
						3.40			19.3 19.4	7.23 7.17	96.0 95.4	0.7 0.7	31.98 32.01	8.03 8.01	5 5	4.2 4.0
						1.00			21.5 21.3	7.28 7.21	98.7 98.1	0.5 0.4	31.62 31.65	8.20 8.19	4	4.0 3.4
15:01	W1	ME	841858.9	836571.0	6.9	3.45	120	0.143	19.8 19.8	6.87 6.85	94.3 94.1	0.6 0.6	31.86 31.90	8.16 8.14	5 5	3.7 3.7
						5.90			19.5 19.5	6.06 6.08	78.1 78.3	1.1 1.1	32.08 32.10	8.11 8.10	6 6	4.0 4.1
									04.0	7.40	00.0	0.5	04.50	0.40		
14:10	M1	ME	840822.2	836416.4	1.6	0.80	138	0.211	21.6 21.6	7.13 7.17	96.8 97.2	0.5 0.5	31.58 31.61	8.16 8.18	4 5	4.4 3.8
									21.3	6.97	94.5	0.3	31.59	8.18	6	3.8
						1.00			21.3	6.92	94.0	0.3	31.61	8.16	6	3.7
14:21	FCZ1	ME	841180.6	835230.8	5.1	4.10	158	0.168	19.7	5.75	75.2	0.8	32.16	8.10	4	3.8
						4.10			19.6	5.70	74.7	0.8	32.14	8.07	4	4.0
						1.00			21.2 22.2	7.36 7.39	100.2 100.5	0.3	31.40 31.42	8.15 8.13	7	2.5 2.4
9:17	G1	MF	841483.9	835936.1	4.9		130	0.160								
						3.90			19.2 19.2	5.98 5.95	77.7 77.4	0.7 0.8	31.96 31.92	8.09 8.10	6 7	2.3 2.5
						1.00			21.1 21.1	7.31 7.27	99.7 99.2	0.4 0.4	31.42 31.40	8.16 8.14	3	2.5 2.5
9:31	R1	MF	842307.4	835718.4	5.3	2.65	135	0.184	19.2	6.29	81.1	0.8	31.96	0.11	5	2.8
						4.30			19.2	6.29 6.35 7.33	81.7 98.8	0.8 0.9 0.3	31.98 31.68	8.11 8.09 8.12	5 3	2.3 2.4
0,54	D0		840739.4	000040 4	F.6	1.00	160	0.474	21.1	7.28	98.3	0.3	31.70	8.14	4	2.4
8:51	R2	MF	840739.4	836212.4	5.6	4.60	169	0.171	19.6	6.46	84.6	0.9	31.96	8.08	5	2.5
						1.00			19.6 20.8	6.41 7.35	84.1 98.9	0.9 0.3	31.97 31.60	8.09 8.11	5 4	2.7 3.6
8:30	l1	MF	841338.5	836588.5	5.0	1.00	156	0.111	20.8	7.38	99.2	0.3	31.62	8.12	4	3.8
						4.00			19.5	6.73	88.6	0.8	32.01	8.07	5	3.9
						1.00			19.5 20.8	7.32	98.4	0.9 0.4	32.04 31.55	8.08 8.12	5 4 4	3.6 3.7
8:18	12	MF	841590.3	836601.2	6.4	3.20	162	0.123	20.7 19.7 19.8	7.29 7.24 7.21	98.1 96.1 95.8	0.4	31.56 31.70	8.13 8.10	4 4 4	3.4 3.7
						5.40			18.8 18.8	6.06 6.05	78.7 78.6	0.6 1.1 1.0	31.70 32.00 32.04	8.11 8.08 8.06	4 4	3.7 3.7 3.9
						1.00			21.0	7.31 7.34	98.5 98.8	0.4 0.3	31.52 31.54	8.08 8.07	5	3.5 3.4
8:04	13	MF	841807.0	836680.9	4.6		137	0.143								
						3.60			19.1 19.2	7.27 7.30	96.4 96.7	0.9 0.9	31.73 31.73	8.03 8.01	7	4.1 3.9
						1.00			21.2	7.26 7.24	99.1 98.6	0.4	31.38 31.41	8.14 8.17	4	2.6 2.6
9:44	W1	MF	841858.9	836571.0	7.1	3.55	122	0.117	19.7 19.9	7.13 7.15	95.0 95.2	0.5 0.6	31.72 31.74	8.11 8.10	4	2.6 2.6
						6.10			19.2 19.2	6.39 6.42	82.1 82.4	0.8 0.8	31.94 31.91	8.08 8.07	5 5	2.7 2.8
			0.400000			0.67	45-		21.5	6.93	95.0	0.4	31.46	8.11	3	2.6
8:44	M1	MF	840822.2	836416.4	1.7	0.85	130	0.108	21.5	6.99	95.7	0.4	31.48	8.08	3	2.8
						1.00			21.1	7.04	96.1	0.3	31.43	8.12	5	2.8
9:03	FCZ1	MF	841180.6	835230.8	5.4	1.00	137	0.156	21.1	7.09	96.5	0.4	31.46	8.10	5	2.9
0.00	. 521	.***	3.1150.0	555250.0	0.7	4.40		350	19.6	5.81	76.0	0.6	31.93	8.07	4	2.5
Remarks:		dle Floo		<u>I</u>	ı			I	19.6	5.85	76.4	0.7	31.92	8.05	5	2.6

MF - Middle Flood tide
ME - Middle Ebb tide
For SS, if the monitoring result is less than Limit of Report 2mg/L, the result value will be assumed as 2 for the calculation.
For Chorophyll-a, if the monitoring result is less than Limit of Report 0.1µg/L, the result value will be assumed as 0.1 for the calculation.

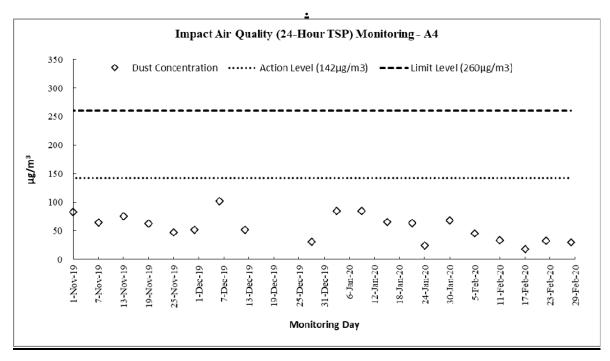
ampling Date		20					later Quality									
Weather: a Condition:	Fine Moderate	e														
			Co-ord	linates	Water	Sampling	Current	Current	Temp	DO	Saturatio	Turbidit	Salinity	рН	ss	Chlorophyl
Date / Time	Location	Tide*	East	North	Depth m	Depth m	Direction degrees	Speed m/s	°C	Conc mg/L	%	y NTU	ppt	unit	mg/L	μg/L
						1.00			20.5 20.5	7.19 7.18	96.1 96.0	0.3	31.70 31.72	8.15 8.15	3	1.9
10:45	G1	ME	841483.9	835936.1	5.5		244	0.086	20.5	7.10	96.0	0.3	31.72	6.15	3	2.0
						4.50			20.2	6.83	91.0	0.4	31.78	8.15	3	1.6
						1.00			20.2 19.9	6.79 7.42	90.4 98.2	0.3	31.78 31.82	8.15 8.20	3	1.9 1.6
40.57	R1	ME	842307.4	005740.4	5.9		294	0.106	19.9	7.40	98.0	0.3	31.80	8.20	3	1.5
10:57	KI	IVIE	042307.4	835718.4	5.9	2.95	294	0.106	19.7	7.31	96.5	0.4	31.86	8.20	2	1.5
						4.90			19.7	7.28	96.3 95.1	0.4	31.90 31.62	8.20 8.13	3	1.6 1.6
						1.00			20.9	7.05	95.1	0.4	31.66	8.12	3	1.7
10:21	R2	ME	840739.4	836212.4	5.6		175	0.076	40.0	0.45	05.5	0.0	24.70	0.40	2	4.0
						4.60			19.9 19.9	6.45 6.43	85.5 85.2	0.6 0.6	31.78 31.76	8.13 8.13	3 3	1.6 1.6
						1.00			20.4 20.4	7.26 7.28	96.9 97.1	0.4 0.4	31.71 31.72	8.15 8.15	3	1.6 1.7
10:01	I1	ME	841338.5	836588.5	5.6		101	0.072								
						4.60			19.9 19.9	6.91 6.90	91.7 91.5	0.8	31.82 31.83	8.15 8.16	3	1.6 1.7
						1.00			20.3	7.24 7.23	96.4 96.4	0.4	31.70 31.70	8.14 8.14	3	1.7 1.7
9:52	12	ME	841590.3	836601.2	7.5	3.75	170	0.071	19.9	7.00	92.9 92.8	0.6	31.78 31.76	8.14 8.14	3	1.6 1.8
						6.50			19.7 19.7	6.68	88.1 88.2	0.7 0.8	31.88 31.90	8.13 8.13	3	1.7 1.8
						1.00			20.3	7.23	96.2	0.3	31.69	8.13	3	1.6
9:45	13	ME	841807.0	836680.9	4.5		145	0.045	20.3	7.23	96.3	0.3	31.68	8.12	3	1.8
						3.50			20.0	6.81	90.4	2.2	31.73	8.10	3	1.6
						1.00			20.0 20.0	6.79 7.09	90.0 94.0	2.1 0.4	31.74 31.74	8.10 8.16	4	1.6 1.7
11:10	W1	ME	841858.9	836571.0	8.4	4.20	117	0.062	20.0 19.7	7.10 6.93	94.0 91.6	0.4	31.75 31.80	8.15 8.17	3	1.7 1.7
11.10	VVI	IVIE	041000.9	030371.0	0.4		117	0.002	19.7 19.5	6.91 6.24	91.5 82.1	0.5 0.6	31.82 31.93	8.16 8.13	2	1.6 1.8
						7.40			19.5	6.22	82.0	0.6	31.94	8.14	2	1.6
									20.7	7.02	04.5	1.2	24.67	0.11	2	1.0
10:12	M1	ME	840822.2	836416.4	1.0	0.50	212	0.031	20.7 20.7	7.03 7.03	94.5 94.4	1.3 1.3	31.67 31.68	8.11 8.11	2	1.8 1.8
						1.00			20.8	6.95 6.93	93.5 93.4	0.2 0.2	31.63 31.64	8.11 8.11	7	1.7 1.8
10:33	FCZ1	ME	841180.6	835230.8	5.4			0.017								
						4.40			20.6 20.5	7.13 7.14	95.5 95.6	0.3	31.72 31.73	8.16 8.15	2	1.9 2.0
						4.00			20.5	7.19	96.2	0.3	31 70	8.15	3	1.8
						1.00			20.5	7.17	96.1	0.3 0.3	31.70 31.72	8.15	3	1.8
15:43	G1	MF	841483.9	835936.1	5.4		241	0.089	20.2	6.07	02.0	0.4	24.77	0.15	2	1.0
						4.40			20.3	6.97 6.95	93.0 92.8	0.4	31.77	8.15 8.14	2	1.9 1.9
						1.00			19.8 19.9	7.43 7.41	98.3 98.2	0.3 0.3	31.82 31.83	8.19 8.18	3	1.5 1.5
15:52	R1	MF	842307.4	835718.4	5.8	2.90	285	0.110								
						4.80			19.7 19.7	7.33	96.8 96.6	0.4	31.85 31.83	8.20 8.20	3	1.5 1.4
						1.00			20.8	7.08	95.2 95.3	0.3	31.62 31.63	8.12 8.12	2	1.5 1.7
15:23	R2	MF	840739.4	836212.4	5.5		177	0.053	20.0	7.00	00.0	0.0	01.00	0.12		111
						4.50			19.9 19.9	6.38	84.5 84.4	0.7 0.7	31.85 31.86	8.12 8.13	3	1.7 1.8
						1.00			20.4	6.38 7.24	96.7	0.4	31.68	8.15	4	1.5
15:02	11	MF	841338.5	836588.5	5.4		101	0.068	20.4	7.24	96.7	0.4	31.70	0.10	3	1.6
						4.40			19.9	6.90	91.5	0.6	31.80	8.14	3	1.5
						1.00			19.9 20.3	6.89 7.23	91.3 96.4	0.6 0.4	31.82 31.69	8.15 8.14	3	1.6 1.4
14:50	12	MF	841590.3	836601.2	7.2	3.60	130	0.062	20.3 19.9	7.26 7.05	96.6 93.5	0.4 0.6	31.71 31.71	8.15 8.14	3 4	1.7 1.5
14.50	ız	IVII	041030.5	030001.2	7.2		130	0.002	19.9 19.7	7.03 6.73	93.4 89.0	0.5 0.7	31.72 31.86	8.14 8.13	3	1.6 1.4
						6.20			19.7 20.2	6.72 7.20	88.7 95.8	0.8 0.4	31.88 31.72	8.14 8.13	3	1.4 1.5
						1.00			20.2	7.22	95.1	0.4	31.72	8.13	2	1.6
14:41	13	MF	841807.0	836680.9	4.4		129	0.042	10.0	6.60	90 F	2.4	21 75	0.40	2	4.4
						3.40			19.9 19.9	6.68	88.5 88.5	2.1 2.1	31.75	8.10 8.10	3	1.4 1.4
						1.00			20.0	7.10 7.11	94.2 94.2	0.4 0.4	31.75 31.76	8.16 8.15	3	1.7
16:05	W1	MF	841858.9	836571.0	8.3	4.15	113	0.053	19.7 19.7	6.91 6.90	91.1 91.1	0.5 0.5	31.85 31.88	8.17 8.15	3	1.6 1.8
						7.30			19.4 19.5	6.38 6.37	84.0 84.0	0.6 0.6	31.92 31.83	8.16 8.16	4	1.7 1.7
15:14	M1	MF	840822.2	836416.4	1.1	0.55	218	0.032	20.7	7.02 7.00	94.2 94.0	2.1	31.66 31.68	8.11 8.11	3	1.9 1.6
											J		250		Ě	1.0
						1.00			20.8	6.98 6.96	93.8 93.6	0.3	31.67 31.66	8.11	2	1.7
		i l	i	i	1			ĺ	20.8	0.90	ჟა.ნ	0.3	31.00	8.10		1.8
15:32	FCZ1	MF	841180.6	835230.8	5.6		146	0.021								

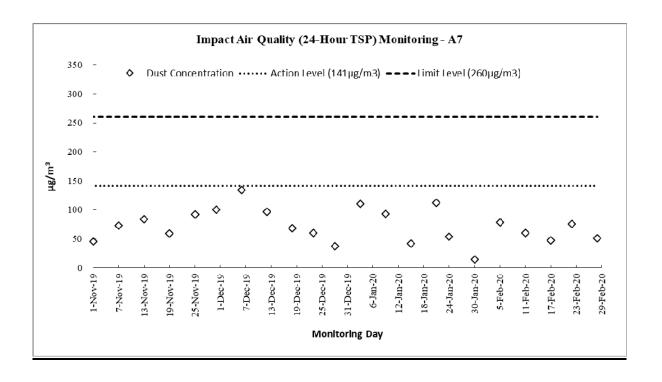
Remarks: MF - Middle Flood tide
ME - Middle Ebb tide
For SS, if the monitoring result is less than Limit of Report 2mg/L, the result value will be assumed as 2 for the calculation.
For Chorophyll-a, if the monitoring result is less than Limit of Report 0.1µg/L, the result value will be assumed as 0.1 for the calculation.

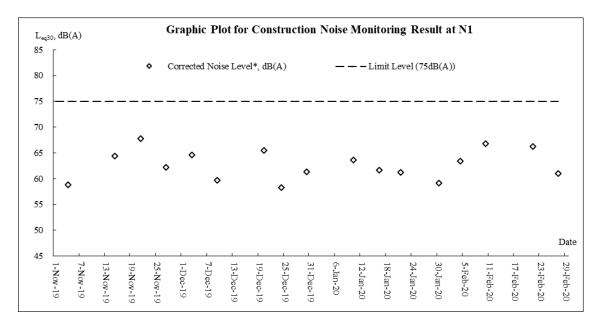


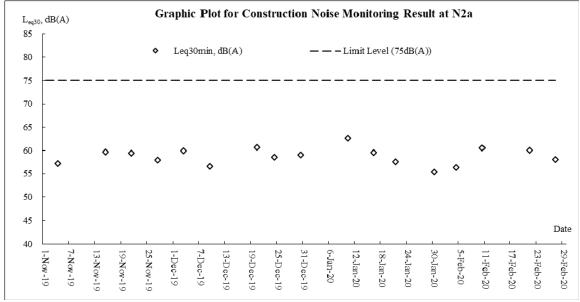

Appendix I

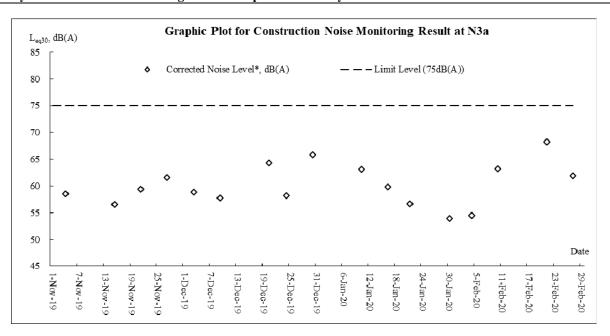
Graphical Plots for Monitoring Results

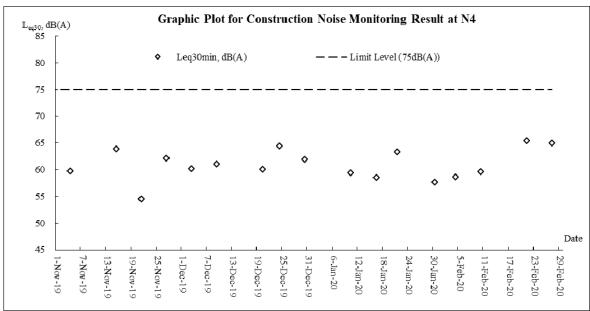

Air Quality - 1-hour TSP

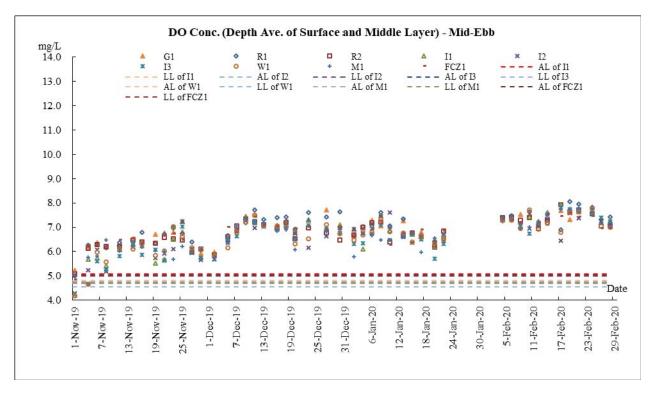


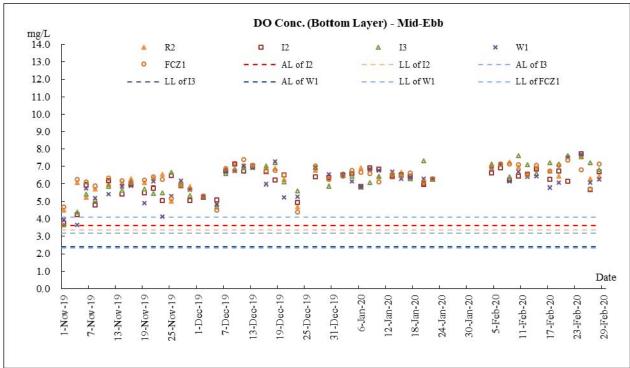

Air Quality - 24-hour TSP

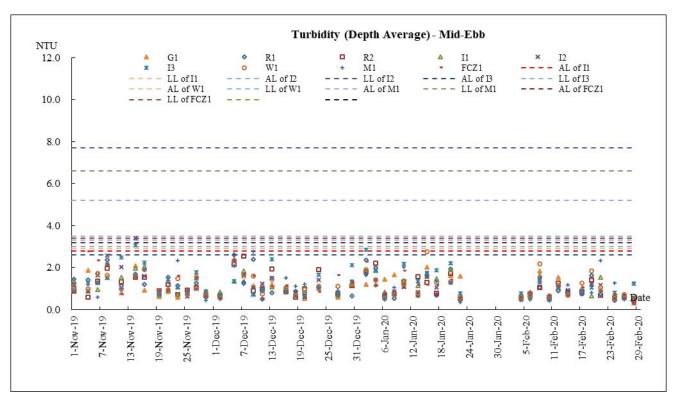


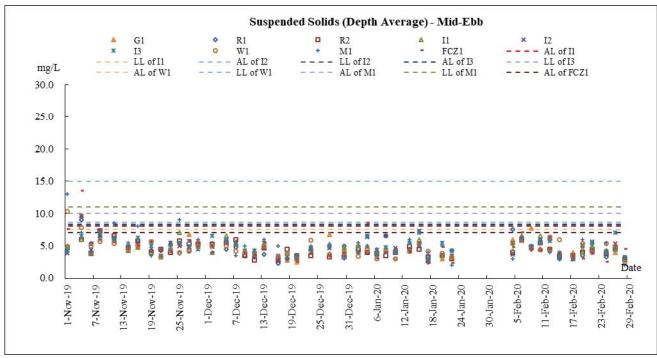


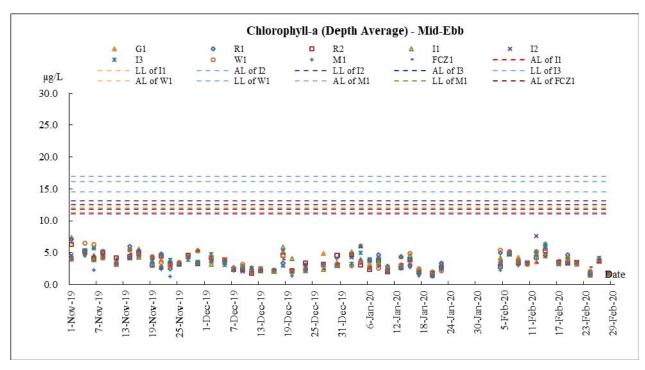

Construction Noise

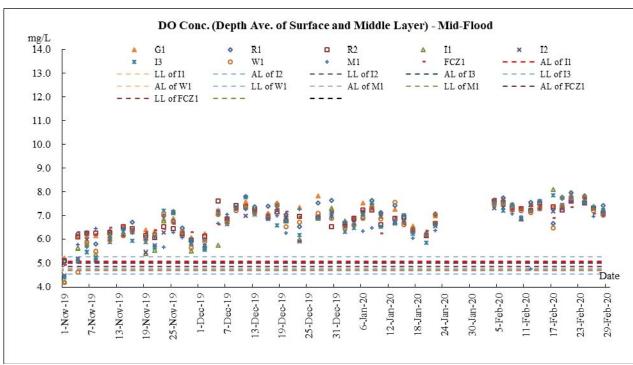


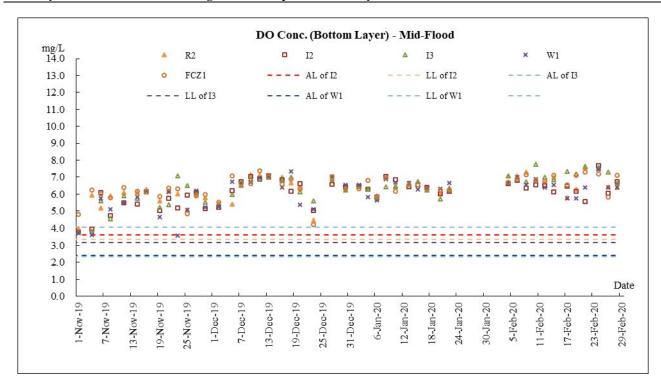


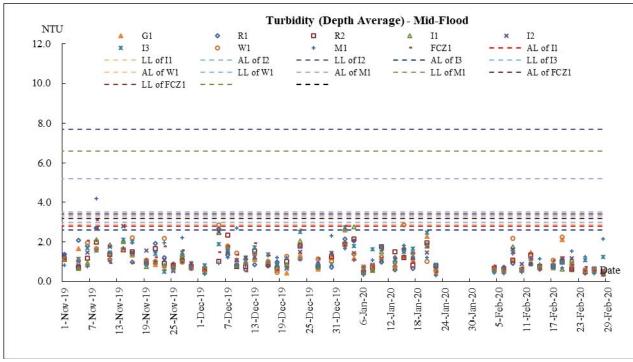


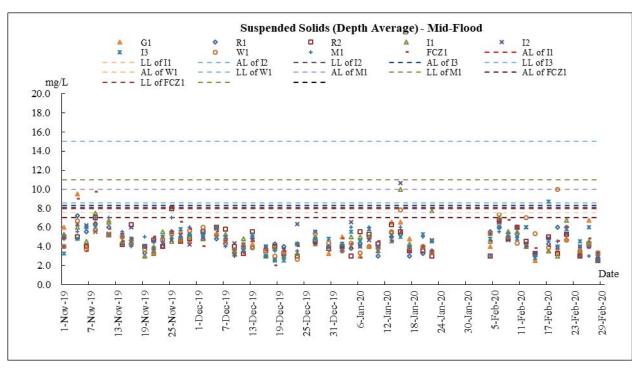

Water Quality

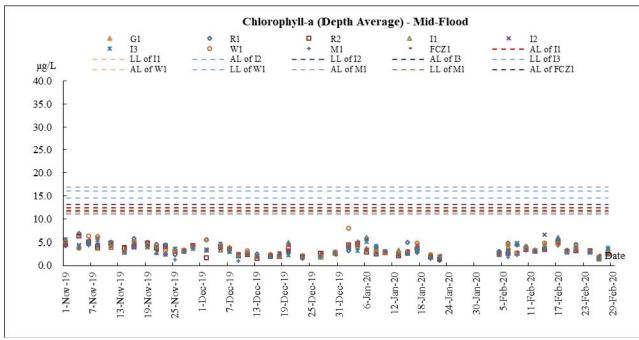












Appendix J

Meteorological Data

				Tai Po	Station	Tai Mei T	uk Station
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Mean Relative Humidity (%)	Wind Speed (km/h)	Wind Direction
1-Feb-20	Sat	Mainly cloudy. Bright periods in the afternoon.	0	13.9	69.5	8.9	E/NE
2-Feb-20	Sun	One or two light rain patches tonight.	0	17.2	73.5	11.7	E/NE
3-Feb-20	Mon	Moderate to fresh easterly winds, occasionally strong offshore.	Trace	17.5	77.2	14.5	E/NE
4-Feb-20	Tue	Mainly cloudy with light rain.	0.8	15.7	82.5	11.0	E/NE
5-Feb-20	Wed	Moderate southeasterly winds	1	16.8	82.5	16.2	Е
6-Feb-20	Thu	Mainly cloudy with light rain.	Trace	16.7	75.5	22.5	Е
7-Feb-20	Fri	Fresh easterly winds, strong offshore at first	0	17.8	81	8.0	E/NE
8-Feb-20	Sat	One or two light rain patches tonight.	0	16.1	79.5	10.5	E/NE
9-Feb-20	Sun	Mainly cloudy. Bright periods in the afternoon.	Trace	15.1	70	11.0	E/NE
10-Feb-20	Mon	Light winds, moderate south to southeasterly winds	0	16.1	74	9.0	NE
11-Feb-20	Tue	Showers will be heavier with a few squally thunderstorms during.	0.8	17.2	83.5	9.5	E/NE
12-Feb-20	Wed	Becoming cloudy with a few showers and fog patches.	0	20.6	85.5	7.5	E/SE
13-Feb-20	Thu	Mainly cloudy with a few showers.	41.6	19	93.5	10.5	E/NE
14-Feb-20	Fri	Moderate to fresh northerly winds	9.7	20.2	92	8.2	E/NE
15-Feb-20	Sat	Cold in the morning.	Trace	20.6	75	10.5	E/NE
16-Feb-20	Sun	Moderate to fresh northerly winds	25.5	15.3	62	19.5	N
17-Feb-20	Mon	Fine and very dry	0	12	49.5	20.0	NE
18-Feb-20	Tue	Light winds, moderate south to southeasterly winds	0	12.6	63.7	15.0	E/SE
19-Feb-20	Wed	Showers will be heavier with a few squally thunderstorms during.	0	14.8	66	12.0	E/NE
20-Feb-20	Thu	Becoming cloudy with a few showers and fog patches.	0	16.4	68.5	12.5	E/NE
21-Feb-20	Fri	Mainly cloudy with a few showers.	0	18.2	71.7	14.0	E/NE
22-Feb-20	Sat	Moderate to fresh northerly winds	0	19.4	67	10.5	E/SE
23-Feb-20	Sun	Moderate to fresh northerly winds	0	20.6	67	13.6	E/SE
24-Feb-20	Mon	Fine and very dry	0	19.6	70.7	14.3	E/NE
25-Feb-20	Tue	Cold in the morning.	Trace	21.6	83.2	8.0	E/NE
26-Feb-20	Wed	Fine and very dry	0	23.2	77.5	7.5	E/SE
27-Feb-20	Thu	Mainly cloudy. One or two rain patches tonight.	0.4	19.9	83.5	18.7	E/NE
28-Feb-20	Fri	Mainly cloudy with light rain.	0	20.7	78.2	14.5	E/SE
29-Feb-20	Sat	Moderate to fresh easterly winds.	0	21.7	75	10.5	E/SE

Appendix K

Waste Flow Table

		Actual	Quantities of In	ert C&D Mater	ials Generated N	Monthly	Actual Ouantities of	Actual	Quantities of No	n-inert C&D W	aste Generated	Monthly
Year	Month	Total Quantities Generated	Broken Concrete (see Note 3)	Reused in the Contract	Reused in Other Projects	Disposed in Public Fill	Import Fill	Metal	Paper / Cardboard Packaging	Plastics (see Note 2)	Chemical Waste	Others: tree branches, root and leaves
		(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2013- 2016	Jun 13- Dec16	0	0	0	0	0	0	0	0	0	0	0
	Jan	0	0	0	0	0	0	0	0	0	0	0
	Feb	0	0	0	0	0	0	0	0	0	0	0.0024
	Mar	0	0	0	0	0	0	0	0	0	0	0
	Apr May	0	0	0	0	0	0	0 4.97	0	0	0	0.103644
	Jun	0	0	0	0	0	0	0	0	0	0	0.103644
2017	Sub-total:	0	0	0	0	0	0	4.97	0	0	0	0.112444
30	Jul	0	0	0	0	0	0	0	0	0	0	0.01104
	Aug	0	0	0	0	0	0	0	0	0	0	0
	Sep	0	0	0	0	0	0	0	0	0	0	0.02883
	Oct	0	0	0	0	0	0	0	0	0	0	0
	Nov	0.04875	0	0	0	0.04875	0	0	0	0	0	0.26
	Dec	0	0	0	0	0	0	0	0	0	0	0.0325
	Total: Jan	0.04875	0	0	0	0.04875	0	4.97 0	0	0	0	0.444814
	Feb	0	0	0	0	0	0	0	0	0	0	0.078
	Mar	1.633125	0	0	0	1.633125	0	0	0	0	0	0.0065
	Apr	1.31625	0	0	0	1.31625	0	0	0	0	0	0
	May	0	0	0	0	0	1.648	0	0	0	0	0.0065
∞	Jun	0	0	0	0	0	2.728	0	0	0	0	0
2018	Sub-total:	2.998125	0	0	0	2.998125	4.376	4.97	0	0	0	0.535814
	Jul	0	0	0	0	0	4.88	0	0	0	0	0
	Aug	1.14	0	0	0	1.14	4.832	0	0	0	0	0
	Sep Oct	1.08	0	0	0	1.08	2.472 2.304	0	0	0	0	0.0195
	Nov	0.224	0	0	0	0.224	0.664	0	0	0	0	0.0065
	Dec	0.904	0	0	0	0.904	0.224	0	0	0	0	0
	Total:	6.346125	0	0	0	6.346125	19.752	4.97	0	0	0	0.561814
	Jan	0.384	0	0	0	0.384	0.504	0	0	0	0	0.0065
	Feb	0	0	0	0	0	0.36	0	0	0	0	0
	Mar	0	0	0	0	0	1.2	0	0	0	0	0
	Apr May	0	0	0	0	0	1.512 0.8	0	0	0	0	0.0065 0.0065
	Jun	0.712	0	0	0	0.712	5.104	0	0	0	0	0.0065
2019	Sub-total:	7.442125	0	0	0	7.442125	29.232	4.97	0	0	0	0.587814
2(Jul	0.728	0	0	0	0.728	0	0	0	0	0	0.0065
	Aug	0.672	0	0	0	0.672	0	0	0	0	0	0.013
	Sep	0.968	0	0	0	0.968	0	0	0	0	0	0.026
	Oct	1.112	0	0	0	1.112	0.056	0	0	0	0	0.026
	Nov	0.32	0	0	0	0.32	0.32	0	0	0	0	0.013
	Dec Total:	1.08 12.322125	0	0	0	1.08 12.322125	1.832 31.44	0 4.97	0	0	0	0.0195 0.691814
	Jan	0.208	0	0	0	0.208	1.112	0	0	0	0	0.691814
	Feb	0.392	0	0	0	0.208	1.864	0	0	0	0	0.013
	Mar	0.572	Ŭ	Ŭ	Ŭ	0.072	1.001	Ŭ	Ŭ	Ŭ	Ü	0.007
	Apr			<u> </u>								
	May										-	
0;	Jun											
2020	Sub-total:											
	Jul			1				-	-			1
	Aug Sep											-
	Oct	 		1					1			1
	Nov	 										†
	Dec	† †										İ
-	Total:	12.922125	0	0	0	12.922125	34.416	4.97	0	0	0	0.743814

Appendix L

Implementation Schedule for Environmental Mitigation Measures

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage Des C O Dec	Relevant Legislation Guidelines
Air Qu	ality – Cor	nstruction Phase					
4.5.1	-	Dust Control					
		 Vehicle washing facilities should be provided at the designated vehicle exit point; 	To ensure dust emission is controlled and compliance with relevant statutory requirements	Project Site / During construction	Contractor	✓	Air Pollution Control (Construction Dust)
		b Every vehicle should be washed to remove any dusty materials from its body and wheels immediately before leaving the worksite;	requirements				Regulations
		c The load carried by the trucks should be covered entirely to ensure no leakage from the vehicles;					
		d Hoarding of not less than 2.4 m high from ground level should be provided along the entire length of that portion of the site boundary adjoining a road or other area accessible to the public except for a site entrance or exit;					
		e The main haul road should be kept clear of dusty materials and should be sprayed with water so as to maintain the entire road surface wet at all the time;					
		f The stockpile of dusty materials should be either covered entirely by					

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage Des C O Dec	Relevant Legislation Guidelines
		impervious sheets; place in an area sheltered on the top and three sides; or sprayed with water to maintain the entire surface wet at all the time;					
		g Belt conveyor system should be enclosed on the top and two sides;					
		h The height of the belt conveyor should be kept as low as possible to avoid delivery at height; and					
		i All the exposed area should be kept wet always to minimise dust emission.					
4.5.1	-	Air Quality Control					
		a All dump trucks entering or leaving the Project Site should be provided with mechanical covers in good service condition; and	To ensure air quality standards compliance with relevant statutory requirements	Project Site / During construction	Contractor	✓	ETWB TCW No 19/2005
		b Ultra-low-sulphur diesel (ULSD) should be used for all construction plant on site.					
4.7.1	-	EM&A Requirements					
		Regular site audits (at a frequency of not					

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	•	Stag	Legislation
		less than once every two weeks) are recommended.	To ensure that appropriate dust control measures are implemented and good site practices are adopted	Project Site / During construction	ET and Contractor		√	Air Pollution Control (Construction Dust) Regulations
4.7.1	3.0-3.7	Implementation of a construction dust monitoring in every six days	To ensure compliance with the relevant criterion during the construction works.	ASRs A4 (No. 101 Lung Mei Tsuen) and A6 (No. 79 Lo Tsz Tin tsuen) / during construction	ET and Contractor		✓	Air Pollution Control (Construction Dust) Regulations
Noise -	- Construc	tion Phase						
5.6.1		Site hoardings at the particular work site boundary may be provided for achieving screening effect, provided that the hoardings have no openings or gaps and meet the same specifications for movable noise barriers. The proposed movable noise barriers should be at least 3m high with a surface density of not less than 7 kg m ⁻² , which could provide a minimum of 5 dB(A) attenuation. Skid footing of movable noise barriers should be located at a distance not more than a few metres of stationary plant and mobile plant such that the NSRs would not have direct line of sight to the plant. The length of the barriers should also be at least five times greater than its height.	To reduce the construction noise impact.	Project Site / During construction	ET and Contractor		✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1	-	The following Quiet Powered Mechanical	To reduce the construction	Project Site / During	Contractor		✓	Noise Control

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Impl	emen Stag		Legislation
			& Main Concerns to address	Completion of Measures		Des	C () Dec	Guidelines
(Table 5.12)		Equipment (PME) should be used during the construction Phase.	noise impact.	construction phase					Ordinance (NCO) and
		 Mobile Crane, SWL listed in the data base of quality powered mechanical equipment prepared by the Noise Control Authority, 107 dB(A); 							Annex 5 of the EIAO-TM
		 Tracked Loader, British Standard 5228 – Table C3, Reference No. 16, 104 dB(A); 							
		 Pneumatic breaker, British Standard 5228 – Table C2, Reference No. 10, 110 dB(A); 							
		 Concrete Lorry Mixer British Standard 5228 – Table C6, Reference No. 23, 100 dB(A); and 							
		• Excavator British Standard 5228 - Table C3, Reference No. 97, 105 dB(A).							
5.7.1	-	Construction Works on Land							
(Table 5.13)		Movable noise barrier should be provided for excavator and mobile crane;	To reduce the construction noise impact.	Project Site / During the Site Formation,	Contractor		✓		Noise Control Ordinance
		Timber sawing machine should be operated behind site hoarding/ movable noise barrier; and		construction of seawall, ramp, staircase, retaining					(NCO) and Annex 5 of the EIAO-TM
		Concrete lorry mixer should be operated behind site hoarding/movable noise barrier.		walls, sump tanks for grey water system and superstructure					

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures foundation	Implementation Agent	Implementation Stage Des C O Dec	Legislation
5.7.1 (Table 5.13)	-	Timber sawing machine should be operated behind movable noise barrier; and Movable noise barrier should be provided for excavator and mobile crane.	To reduce the construction noise impact.	Project Site / During the localised road widening works along Ting Kok Road	Contractor	✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1 (Table 5.13)	-	Car Park Paving Movable noise barrier should be provided for excavator.	To reduce the construction noise impact.	Project Site / During the car park paving	Contractor	√	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1 (Table 5.13)	-	Building Works Movable noise barrier should be provided for excavator, mobile crane and earth auger; and Timber sawing machine should be operated behind site hoarding/ movable noise barrier.	To reduce the construction noise impact.	Project Site / During foundation and tanking works	Contractor	✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1 (Table 5.13)	-	Movable noise barrier should be provided for mobile crane; and Timber sawing machine should be operated behind site hoarding/ movable noise barrier.	To reduce the construction noise impact.	Project Site / During superstructure works	Contractor	✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of Completion of	Implementation Agent	Implementation Stage	Relevant Legislation Guidelines
			address	Measures		Des C O Dec	Guidennes
5.7.1 (Table 5.13)	-	Movable noise barrier should be provided for mobile crane.	To reduce the construction noise impact.	Project Site / During building finishes & internal fitting-out	Contractor	✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1	-	Rock filling for the Groynes					
(Table 5.13)		Movable noise barrier should be provided for excavator and derrick lighter.	To reduce the construction noise impact.	Project Site / During the construction of gabion channel	Contractor	✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1	-	Box Culvert Construction					
(Table 5.13)		Movable noise barrier should be provided for excavator.	To reduce the construction noise impact.	Project Site / During the construction of gabion channel	Contractor	✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1 (Table	-	Movable noise barrier should be provided for excavator, mobile crane; and	To reduce the construction	Project Site / During the construction of	Contractor	✓	Noise Control Ordinance
5.13)		Concrete lorry mixer should be operated	noise impact.	western culvert			(NCO) and
		behind site hoarding/movable noise barrier.					Annex 5 of the EIAO-TM
5.7.1 (Table 5.13)	-	Concrete lorry mixer should be operated behind site hoarding/movable noise barrier.	To reduce the construction noise impact.	Project Site / During the construction of eastern culvert	Contractor	✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1	-	Site hoarding should be provided for work	To reduce the construction	Project Site / During	Contractor	✓	Noise Control

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage Des C O Dec	Relevant Legislation Guidelines
(Table 5.13)		site.	noise impact.	the construction of 90m box culvert			Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1	-	Sand Filling					
(Table 5.13)		Movable noise barrier should be provided for excavator.	To reduce the construction noise impact.	Project Site / During the construction of gabion channel	Contractor	✓	Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
5.7.1	_	Good Site Practice					
		Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;	To reduce the construction noise impact.	Project Site / Throughout the construction period	Contractor	√	Noise Control Ordinance (NCO) and Annex 5 of the
		Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction programme;					EIAO-TM
		Mobile plant, if any, should be sited as far from NSRs as possible;					
		Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;					
		Plant known to emit noise strongly in one direction should, wherever possible, be					

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Impl	eme Staş		Legislation
			& Main Concerns to address	Completion of Measures		Des	C	O Dec	Guidelines
		orientated so that the noise is directed away from the nearby NSRs; and							
		Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.							
5.9.1	4.1	EM&A Requirements							
		Implementation of weekly construction noise monitoring at the representative NSRs.	To ensure compliance with the relevant criterion during the construction works.	N1, N2/N2a, N3 & N4/ Throughout the construction period	ET and Contractor		✓		Noise Control Ordinance (NCO) and Annex 5 of the EIAO-TM
Water (Quality – C	Construction Phase							
6.6.1	-	Dredging and Sandfilling Operations	To further minimise the SS	Project Site / During	Contractor		✓		-
		Sandfilling works should be carried out after the completion of groyne construction.	level during sandfilling works	sandfilling					
6.6.1 and Figure 6.20	-	A movable cage type / metal frame type silt curtain will be deployed around the dredging area next to the grab dredger prior to commencement of dredging works.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor		✓		Annex 6 of the EIAO-TM
6.6.1 and Figure 6.21	-	Standing type silt curtains will be deployed around the proposed sandfilling extent prior to commencement of sandfilling works.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor		✓		Annex 6 of the EIAO-TM
6.6.1	-	A hourly dredging rate of a closed grab dredger (with a minimum grab size of 3 m ³) should be less than 31 m ³ hr ⁻¹ , with	To further minimise the SS level during the dredging works	Project Site / During dredging	Contractor		✓		-

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of Completion of	Implementation Agent	Implementation Stage Des C O Dec	Relevant Legislation Guidelines
		reference to the maximum rate for dredging, which was derived in the EIA.	address	Measures			
5.6.1	-	A daily filling rate should be less than 1,000 m ³ day ⁻¹ , which was defined in the EIA.	To further minimise the SS level during the sandfilling works	Project Site / During sandfilling	Contractor	✓	-
.6.1	-	Mechanical grabs should be designed and maintained to avoid spillage and should seal tightly while being lifted.	To further minimise the SS level during the dredging works	Project Site / During dredging	Contractor	✓	-
.6.1	-	Barges or hoppers should have tight fitting seals to their bottom openings to prevent leakage of material.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor	✓	-
.6.1	-	Loading of barges or hoppers shall be controlled to prevent splashing of dredged material to the surrounding water.	To further minimise the SS level during the dredging works	Project Site / During dredging	Contractor	✓	-
.6.1	-	Barges or hoppers should not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor	✓	-
.6.1	-	Excess material should be cleaned from the decks and exposed fittings of barges or hoppers before the vessel is moved.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor	✓	-
5.6.1	-	Adequate freeboard should be maintained on barges to reduce the likelihood of decks being washed by wave action.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor	✓	-
.6.1	-	All vessels should be sized such that adequate clearance is maintained between vessels and the seabed at all states of the	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor	✓	-

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Imp	leme Sta		tion	Legislation
			& Main Concerns to address	Completion of Measures		Des	C	0	Dec	Guidelines
		tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.								
6.6.1	-	The works should not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the Project Site.	To further minimise the SS level during the dredging and sandfilling works	Project Site / During dredging and sandfilling	Contractor		✓			ProPECC PN 1/94
6.6.1	-	Construction Site Runoff The excavation works for the drainage diversions should be carried out to minimise any seawater influx entering the works area and hence to keep the works area dry as much as possible.	To ensure the works area will be kept dry as much as possible and hence avoid construction site runoff	Project Site / During excavation for the drainage diversions	Contractor		✓			-
6.6.1 and Figure 6.21	-	Silt curtains at the inshore waters should be deployed to enclose the works area before the commencement of the excavation works for two drainage diversions until the completion of the diversions.	To avoid any adverse water quality impacts resulting from the site runoff due to heavy rainfall	Project Site / During excavation for the drainage diversions	Contractor		✓			-
6.6.1	-	At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed and internal drainage works and erosion and sedimentation control facilities implemented. Channels, earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of efficient silt removal facilities should be based on the guidelines in <i>Appendix A1</i> of <i>ProPECC PN 1/94</i> .	To minimise the construction site runoff	Project Site / During land based construction works	Contractor		•			ProPECC PN 1/94
6.6.1	-	All the surface runoff should be collected by	To minimise the	Project Site / During	Contractor		✓			ProPECC PN

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Imp	emei Stag		tion	Legislation
			& Main Concerns to address	Completion of Measures		Des	C	O 1	Dec	Guidelines
		the on-site drainage system and diverted through the silt traps prior to discharge into storm drain.	construction site runoff	land based construction works						1/94
6.6.1	-	All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks, where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or by other means.	To minimise the construction site runoff	Project Site / During land based construction works	Contractor		✓			ProPECC PN 1/94
6.6.1	-	All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rainstorms. Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas.	To minimise the construction site runoff	Project Site / During land based construction works	Contractor		✓			ProPECC PN 1/94
6.6.1	-	Measures should be taken to reduce the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal	To minimise the construction site runoff	Project Site / During land based construction works	Contractor		✓			ProPECC PN 1/94

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Imp	leme Sta		tion	Legislation
			& Main Concerns to address	Completion of Measures		Des	C	О	Dec	Guidelines
		facilities.								
6.6.1		Open stockpiles of construction materials	To minimise the	Project Site / During	Contractor		√			ProPECC PN
0.0.1	-	(for example, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	construction site runoff	land based construction works	Contractor		•			1/94
6.6.1	-	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system.	To minimise the construction site runoff	Project Site / During land based construction works	Contractor		✓			ProPECC PN 1/94
6.6.1	-	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarised in <i>Appendix A2</i> of <i>ProPECC PN 1/94</i> . Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.	To minimise the construction site runoff	Project Site / During land based construction works	Contractor		√			ProPECC PN 1/94
6.6.1	-	Oil interceptors should be provided in the	To minimise the	Project Site / During	Contractor		✓			ProPECC PN

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage Des C O Dec	Legislation
		drainage system and regularly emptied to prevent the release of oil and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	construction site runoff	land based construction works			1/94
6.6.1	-	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment traps should be regularly cleaned and maintained. The temporary diverted drainage should be reinstated to the original condition when the construction work has finished or the temporary diversion is no longer required.	To minimise the construction site runoff	Project Site / During land based construction works	Contractor	√	ProPECC PN 1/94
6.6.1	-	Sewage Generated by Workforce					
		Sewage from toilets should be collected by a licensed waste collector.	To prevent contamination to nearby environment	Project Site / During land based construction works	Contractor	✓	Water Pollution Control Ordinance
6.6.1	-	Storage and Handling of Oil, Other Petroleum Products and Chemicals	To prevent contamination to	Project Site / During	Contractor	✓	Waste Disposal
		Waste streams classifiable as chemical wastes should be properly stored, collected and treated for compliance with Waste Disposal Ordinance or Disposal (Chemical Waste) (General) Regulation requirements.	nearby environment	land based construction works	Contractor	·	Ordinance
6.6.1	-	All fuel tanks and chemical storage areas should be provided with locks and be sited	To prevent contamination to	Project Site / During land based construction	Contractor	✓	Waste Disposal

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage Des C O Dec	Relevant Legislation Guidelines
		on paved areas.	nearby environment	works			Ordinance
6.6.1	-	The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled oil, fuel and chemicals from reaching the receiving waters.	To prevent contamination to nearby environment	Project Site / During land based construction works	Contractor	✓	Waste Disposal Ordinance
6.6.1	-	Oil leakage or spillage should be contained and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal, in accordance with the <i>Waste Disposal Ordinance</i> . The Contractors should prepare guidelines and procedures for immediate clean-up actions following any spillages of oil, fuel or chemicals.	To prevent contamination to nearby environment	Project Site / During land based construction works	Contractor	✓	Waste Disposal Ordinance
6.6.1	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should, as far as possible, be located within roofed areas. The drainage in these covered areas should be connected to foul sewers via a petrol interceptor.	To prevent contamination to nearby environment	Project Site / During land based construction works	Contractor	√	Waste Disposal Ordinance
6.9.1 and 11.6.1	5.1	EM&A Requirements Monitoring of marine water quality during the construction phase is considered necessary to evaluate whether any impacts would be posed by these marine works on the surrounding waters during the operation of dredging and filling works.	To ensure the construction works would not arise any impacts to the surrounding waters	Marine water outside the Project Site / During dredging and filling works	ET and Contractor	✓	-

EIA	EM&A	Environmental Protection Measures	Objectives of the	Location/Duration of	Implementation	Implementation	Relevant
Ref.	Ref		Recommended Measure	Measures/Timing of	Agent	Stage	Legislation
			& Main Concerns to	Completion of		Des C O Dec	Guidelines
			address	Measures		Des C O Dec	

6.9.2	5.2	EM&A Requirements						
and 11.6.2		E. coli monitoring should be conducted at the outlet of two diverted drains and at EPD's beach water monitoring stations for the identification of pollution loading and to establish relationship between the loading and EPD's beach monitoring programme.	To investigate the pollution loading of <i>E. coli</i> and to establish relationship with EPD's beach monitoring data	Two diverted drains and the Bathing Beach/ Within six weeks after the completion of the construction works	ET	n Phase the corr of the constru before	onstructio e (After appletion action and the on of the	-
Water	Quality –	Operational Phase						
6.6.2	_	Surface Runoff from Project Site						
		A petrol interceptor should be provided in the drainage system and regularly emptied to prevent the release of oil and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain. Where appropriate, the design should follow or of similar functions as stated in the <i>ProPECC PN</i>	To prevent contamination to nearby environment	Beach Park area / During operation	Operator	✓	✓	Water Pollution Control Ordinance and ProPECC PN 1/94

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	•	Sta	entation age O Dec	Relevant Legislation Guidelines
		1/94.							
6.6.2	-	Oil leakage or spillage should be contained and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal in accordance with the <i>Waste Disposal Ordinance</i> .	To prevent contamination to nearby environment	Beach Building Facility / During operation	Operator	✓		✓	Waste Disposal Ordinance
Waste	Manageme	ent – Construction Phase							
7.6	-	The Contractor should submit the plan to Project Proponent's Engineer Representative for endorsement prior to the commencement of the construction works. The plan should incorporate site-specific factors, such as the designation of areas for the segregation and temporary storage of reusable and recyclable materials.	To ensure that adverse environmental impacts are prevented	Project Site / Contract mobilisation and during construction	Contractor	√	√		-
7.6	-	It will be the Contractor's responsibility to ensure that only reputable licensed waste collectors are used and that appropriate measures to reduce adverse impacts, including windblown litter and dust from the transportation of these wastes, are employed.	To ensure that adverse environmental impacts are prevented	Project Site / Contract mobilisation and during construction	Contractor	√	✓		-
7.6	-	The Contractor must ensure that all the necessary permits or licences required under the Waste Disposal Ordinance are obtained for the construction phase.	To ensure compliance with relevant statutory requirements	Project Site / Contract mobilisation and during construction	Contractor	✓	✓		-
7.6	-	 Waste Management Hierarchy Nomination of approved personnel to be responsible for good site practices, 	To ensure that adverse environmental impacts are prevented	Project Site / Contract mobilisation and during construction	Contractor	✓	✓		Waste Disposal (Charges for Disposal of

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage Des C O Dec	Relevant Legislation Guidelines
		arrangements for collection and effective disposal to an appropriate facility of all wastes generated at the site;	audicss	Measures			Construction Waste) Regulation;
		 Training of site personnel in proper waste management and chemical handling procedures; 					ETWB TCW No.31/2004; and Appendix C of
		 Provision of sufficient waste disposal points and regular collection for disposal; 					ETWB TCW No. 19/2005
		 Appropriate measures to reduce windblown litter and dust transportation of waste by either covering trucks or by transporting wastes in enclosed containers; 					
		 Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Centre; 					
		 Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and 					
		 A recording system for the amount of wastes generated/recycled and disposal sites. 					
	-	 Waste Reduction Measures Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse 	To reduce construction waste generation	Project Site / During construction	Contractor	✓	-

EIA Ref.	EM&A Ref	ef 1	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Implementation Stage	Legislation
			& Main Concerns to address	Completion of Measures		Des C O Dec	Guidelines
		or recycling of material and their proper disposal;					
		 Encourage collection of aluminium cans and waste paper by individual collectors during construction with separate labelled bins being provided to allow the segregation of these wastes from other general refuse generated by the workforce; 					
		 Any unused chemicals and those with remaining functional capacity be recycled as far as possible; 					
		 Use of reusable non-timber formwork to reduce the amount of C&D materials; 					
		 Prior to disposal of construction waste, wood, steel and other metals should be separated, to the extent practical for re-use and/or recycling to reduce the quantity of waste to be disposed at landfills; 					
		 Proper storage and site practices to reduce the potential for damage or contamination of construction materials; and 					
		 Plan and stock construction materials carefully to reduce amount of waste generated and avoid unnecessary generation of waste. 					

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of Completion of	Implementation Agent	Stage	Legislation
			address	Measures		Des C O De	Culdennes
7.6.1	-	Dredging Materials					
		The final disposal site for the dredged sediments should be determined by the MFC and a dumping licence should be obtained from EPD prior to the commencement of the dredging works. Uncontaminated sediments should be disposed of at open sea disposal sites designated by the MFC. For contaminated sediments requiring Type 2 confined marine disposal, relevant contract documents should specify the allocation conditions of the MFC and EPD.	To ensure adverse environmental impacts are prevented	Dredging area / During construction	Contractor	√	Dumping at Sea Ordinance
7.6.2	-	Excavated Materials and C&D Waste					
		Management of Waste Disposal		Contractor	✓	Waste Disposal	
		The contractor should open a billing account with EPD in accordance with the Waste Disposal (Charges for Disposal of Construction Waste) Regulation for the payment of disposal charges. Every waste load transferred to Government waste disposal facilities such as public fill, sorting facilities, or landfills should require a valid "chit" which contains the information of the account holder to facilitate waste transaction recording and billing to the waste producer. A trip-ticket system should be established in accordance with TCW No. 6/2010 to monitor the reuse of surplus excavated materials off-site and disposal of construction waste and general refuse at	excavated materials and C&D waste and thus avoid any adverse impacts	construction			(Charges for Disposal of Construction Waste) Regulation

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Imp	emen Stag		Legislation
			& Main Concerns to address	Completion of Measures		Des	C () De	Guidelines
		transfer stations/landfills, and to control fly-tipping. The billing "chit" and trip-ticket system should be included as one of the contractual requirements and implemented by the contractor. Regular audits of the waste management measures implemented on-site as described in the Waste Management Plan should be conducted.							
		A recording system (similar to summary table as shown in Annex 4 and Annex 5 of <i>Appendix C</i> of ETWB TWC No. 19/2005) for the amount of waste generated, recycled and disposed of (including the disposal sites) will be established during the construction phase.							
7.6.2	-	Reduction of C&D Materials Generation	To reduce the generation of		Contractor		✓	-	-
7.6.2		Public fill and construction waste should be segregated and stored in different containers or skips to facilitate reuse or recycling of the public fill and proper disposal of the construction waste. Specific areas of the work site should be designated for such segregation and storage if immediate use is not practicable.	C&D waste	construction					
		To reduce the potential dust and water quality impacts of site formation works, C&D materials should be wetted as quickly as possible to the extent practicable after excavation/filling.							

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage Des C O Dec	Relevant Legislation Guidelines
7.6.3		 Chemical Waste The Contractor should register as a chemical waste producer with the EPD. Chemical waste, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes should: Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; Have a capacity of less than 450 L unless the specifications have been approved by the EPD; and Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulations. The storage area for chemical wastes will: Be clearly labelled and used solely for the storage of chemical waste; Be enclosed on at least 3 sides; 	To ensure proper handling of chemical waste	Project Site / During construction	Contractor		Code of Practice on the Packaging, Handling and Storage of Chemical Wastes

EIA	EM&A	Environmental Protection Measures	Objectives of the	Location/Duration of	Implementation	Implementation	Relevant
Ref.	Ref		Recommended Measure	Measures/Timing of	Agent	Stage	Legislation
			& Main Concerns to	Completion of		Des C O Dec	Guidelines
			address	Measures		Des C O Dec	

- Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest;
- Have adequate ventilation;
- Be covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and
- Be arranged so that incompatible materials are appropriately separated.

Chemical waste should be collected by a licensed chemical waste collector to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Facility.

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of Completion of	Implementation Agent	Implementation Relevant Stage Legislation Guidelin	
			address	Measures		Des C O Dec	Guidennes
7.6.4	-	Sewage An adequate number of portable toilets should be provided for the on-site construction workforce during construction phase. All portable toilets should be maintained in a state that will not deter the users from using them. Night soil should be regularly collected by a licensed collector for disposal. The sewage generated from the visitors during operation of the Proposed Beach Development should be discharged to the adjacent foul sewer conveying to Tai Po Sewage Treatment Works for treatment.	To ensure proper handling of sewage	Project Site / During construction	Contractor	✓	-
7.6.5		General Refuse General refuse should be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector should be employed to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to reduce odour, pest and litter impacts. The burning of refuse on construction sites is prohibited by law. Recycling bins should be provided at strategic locations to facilitate recovery of aluminium cans and waste paper from the Project Site. Materials recovered should be sold for recycling.	To ensure proper handling of general refuse	Project Site / During construction	Contractor		

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Imp	emer Stag		Legislation
			& Main Concerns to address	Completion of Measures		Des	C () Dec	Guidelines
7.6.6	-	Staff Training Training should be provided to workers on the concept of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycling at the beginning of the construction works.	To ensure that adverse environmental impacts are prevented	Project Site / Contract mobilisation and during construction	Contractor	✓	✓		-
.7	6.1	EM&A Requirements Joint site audits by the Environmental Team and the Contractor should be undertaken on a weekly basis. Particular attention should be given to the Contractor's provision of sufficient spaces, adequacy of resources and facilities for on-site sorting and temporary storage of C&D materials. The C&D materials to be disposed of from the Project Site should be visually inspected. The public fill for delivery to the off-site stockpiling area should contain no observable non-inert materials (e.g., general refuse, timber, etc).	To ensure that adverse environmental impacts are prevented	Project Site / During construction	ET and Contractor		•		
		The waste to be disposed of at refuse transfer stations or landfills should as far as possible contains no observable inert or reusable/recyclable C&D materials (e.g., soil, broken rock, metal, and paper/cardboard packaging, etc). Any irregularities observed during the weekly site audits should be raised promptly to the Contractor for rectification.							

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage Des C O Dec	Relevant Legislation Guidelines
Ecolog _.	y – Cons	truction Phase					
8.10.2	7.1	Measures for Common Rat Snake To undertake a search of the Common Rat Snake within the land based Project Site just before the commencement of the construction works. Due to the small size of the Project Site and given that there are no optimal habitats for Common Rat Snake, one day-time search is considered sufficient. The surveyor(s) should actively search the areas within the Project Site and pay special attention to the leaf litters and rocks. All recorded Common Rat Snake should be caught by hand and translocated to the shrubland at the north of the Study Area, immediately after the search. The Common Rat Snake search and translocation works should be undertaken by a qualified ecologist with relevant experience in faunal translocation works.	To ensure that adverse impacts arising from the Project to Common Rat Snake are prevented	Project Site (land based) / prior to commencement of construction works	ET / Qualified Ecologist		
-	7.2	Measures for marine ecology (1) To translocate target marine fauna, including fishes, starfish, sea urchins and sea cucumbers, from the intertidal area of the Site at Lung Mei to the intertidal area at the reception site of Ting Kok East before commencement of sand filling works or any other works that may cause disturbances to the	To ensure that adverse impacts arising from the Project to marine ecology	Project Site (marine based) / prior to commencement of marine works	ET / Qualified Ecologist	✓	

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage Des C O Dec	Relevant Legislation Guidelines
		existing marine ecology. The translocation works shall cover capturing, handling, holding transporting and releasing of the captured target marine fauna.					
		(2) Translocation of seahorses, including identifying, capturing, handling, protecting, transporting and placing the target seahorse species from Site at Lung Mei to the reception site of Ting Kok East, as well as pre- and post-translocation monitoring and post-construction monitoring shall be conducted. Seahorse translocation shall be undertaken before the commencement of marine construction works. The identifying, capturing, handling, protecting, transporting and placing of seahorses shall be led and supervised by the Fish Specialist.					
8.10.2	-	Dredging and Sand Filling Operations It is predicted that the sediment plume and the sediment deposition will not be large in extent and no unacceptable water impacts including DO depletion, release of contaminants and nutrients are expected. Although no unacceptable water quality impacts would result, the following good construction site practice and proactive precautionary measures are recommended to	To minimise ecological impacts arising from dredging and sand filling works	Project Site / During dredging and sand filling works	Contractor	√	

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of	Implementation Agent	Implementation Stage	Legislation
			address	Completion of Measures		Des C O Dec	Guidelines
		ensure dredging and sandfilling operations would be undertaken in such a manner as to avoid any uncontrolled or unexpected incidents during the marine works:					
		 A movable cage type / metal frame type silt curtain should be deployed around the dredging area next to the grab dredger prior to commencement of dredging works; 					
		 Standing type silt curtains should be deployed around the proposed sandfilling extent prior to commencement of sandfilling works; and 					
		Proper equipment, dredging rate, filling rate and good construction practices should be implemented, details refer to <i>Section 6.6.1</i> .					
8.10.2	-	Measures for Controlling Construction Runoff • Storm water run-off from the construction site should be directed into existing drainage channel via adequately designed sand/silt removal facilities such as sand/silt traps and oil interceptors. Channels, earth bunds or sand bag	To minimise ecological impacts of construction runoff	Project Site / During dredging and filling works	Contractor	✓	-

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Imp	eme Sta		tion	Legislation
			& Main Concerns to address	Completion of Measures		Des	C	О	Dec	Guidelines
		barriers should be provided on site to properly direct storm water to such silt removal facilities.								
8.10.2	-	Planting along the Western Drainage Diversion • Provide tree/ shrub/ climber planting along the gabion wall of the new drainage channel. Regular monitoring and removal of the weed plant <i>Mikania micrantha</i> during the establishment and maintenance period.	To provide an ecological habitat	Along gabion wall of the new western drainage channel/ After completion of the gabion	Contractor		✓	✓		-
8.10.2	-	 Good Construction Practices Erect fences along the boundary of the Extension Site before the commencement of works to prevent vehicle movements, and encroachment of personnel, onto adjacent areas; and Regularly check the work site boundaries to ensure that they are not breached and that damage does not occur to surrounding areas. 	To avoid any adverse ecological impacts	Project Site / During construction works	Contractor		✓			-
Fisheri	ies – Const	ruction Phase								
9.10.1	-	EM&A Requirements EM&A is not required during the	To ensure that no water quality deterioration in the	Details refer to Section 12.6 of the EM&A	ET and Contractor		✓			Environmental Impact

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure	Location/Duration of Measures/Timing of	Implementation Agent	Imp		entatio ige	Legislation
			& Main Concerns to address	Completion of Measures		Des	C	O De	c Guidelines
		construction phase of the Project. However, water quality monitoring will be conducted at the Yim Tin Tsai Fish Culture Zone. Details should be referred to the Water Quality Section.	Fish Culture Zone as a result of the dredging and sandfilling works	Manual.					Assessment Ordinance, Annex 21 of the EIAO-TM
Landsc	cape and V	isual Impact – Construction Phase							
10.5.1	-	Landscape Mitigation							
		A Landscape Plan will be submitted before the commencement of Works.	To provide landscaping work.	Before commencement of construction phase	ET and Contractor	✓			-
10.6.10) -	Cultivation of areas impacted during construction. Areas impacted during the construction phase that are not required during the operation phase, are to be cultivated to a depth of 300mm in accordance with accepted Hong Kong practice and guidelines. The cultivation shall involve ripping of compacted soil by mechanical means and the addition gypsum and/or organic fertiliser if required.	To improve the soil allowing plants to thrive	Project Site / During construction	Contractor		•		-
10.6.10) -	Car Park Tree Planting. Advanced trees are to be planted in the car park.	To provide shade to the carpark areas and to reduce the mass of the paved areas	Project Site / During construction	Contractor		✓		-
10.6.10) -	Tree and shrub planting. All planting of trees and shrubs is to be carried out in accordance with the relevant best practice guidelines. Plant densities are to be provided in future detailed design documents and are to be selected so as to achieve a finished landscape that matches	To improve the appearance of the development	Project Site / During construction	Contractor			√	-

CEDD Contract No. CV/2012/05 – Development of a Bathing Beach at Lung Mei, Tai Po Monthly Environmental Monitoring & Audit Report – February 2020

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of Completion of	Implementation Agent		Stage		Legislation
		the surrounding, undisturbed, equivalent landscape types. Regular monitoring and removal of the weed plant <i>Mikania micrantha</i> during the establishment and maintenance period.	address	Measures				Bec	
10.6.10	-	Roof Terrace Planting. Trees, shrubs and climbers shall be established in planters on the roof terraces of the new structures where possible.	To improve the appearance of the development by softening the building element	Project Site / During construction	Contractor	٧	•		-
10.6.10	-	Natural Rock Groynes New rock groynes are needed to contain the sand of the new beach. Natural stones will be used for construction of the Groynes.	To improve the appearance of the development to make the man-made feature be more compatible with the surroundings	Project Site / During construction	Contractor	•			-
10.6.10	-	Inter-Tidal Re-generation. It is likely that a build up of sediment and sand will occur at the outer edges of the rock groyne. This is a natural process and the development proponent has no control over the implementation of this mitigation measure.	To improve the appearance of the development	Adjacent areas	Nil		✓		-
10.6.10	-	Mangrove Re-generation. Mangroves of similar species to existing to be manually established by planting of droppings.	To improve the ecological value of the project	Project Site / During post-construction	Contractor	٧	/		-
10.6.10	-	Buffer Planting. Trees and shrubs are to be planted along Ting Kok road to screen the development from the nearby Village/Developed Areas.	To improve the appearance of the development	Project Site / During post-construction	Contractor	٧	′		-

CEDD Contract No. CV/2012/05 – Development of a Bathing Beach at Lung Mei, Tai Po Monthly Environmental Monitoring & Audit Report – February 2020

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage Des C O Dec	Relevant Legislation Guidelines
10.6.10	-	Early Planting Works Where technically feasible, new plantings are to be installed during the construction works to reduce landscape impacts.	To improve the appearance of the development	Project Site / During construction	Contractor	✓	-
10.6.10	-	Tree Protection/Transplantation. Where technically feasible, existing trees in the Trees/Backshore Vegetation LR are to be retained. Those trees that cannot be retained that are of value are to be transplanted.	To improve the appearance of the development	Project Site / Before commencement of construction	Contractor	✓	-
10.7.9	-	Visual Mitigation					-
		Design of Structures. The structure shown in the photomontages are to illustrate the mass of the structures only. During the design phase of the development, features such as the location of doors, windows, eaves etc. will be detailed. All of these elements will greatly improve the appearance of the structures. Where possible, built structures will utilise appropriate designs to complement the surrounding landscape. Materials and finishes will also be considered during detailed design.	To reduce visual impacts and improve the appearance of the development	Project Site / During construction	Architect	✓	
10.7.9	-	Colour Scheme. Colours for the structures can be used to complement the surrounding area. Lighter colours such as shades of light grey, off-white and light brown may be utilised where technically feasible to reduce the visibility of the structures.	To reduce visual impacts and improve the appearance of the development	Project Site / During construction	Architect	✓	-
10.7.9	_	<i>Plantings</i> . In addition to the landscape	To help integrate the new	Project Site / During	Contractor	✓	_

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage				Relevant Legislation
						Des	C	О	Dec	Guidelines
		mitigation plantings proposed in Section 10.5.9 of the EIA report, appropriate new plantings will be installed as appropriate to help integrate the new structures into the surrounding landscape.	structures into the surrounding landscape	post-construction						
10.7.9	-	Colour of Site Hoardings. In order to mitigate the visual impact of these temporary hoardings, it is recommended that the hoardings be erected at a uniform height, with a uniform colour that complements the existing surrounding landscape.	To mitigate the visual impact of temporary hoardings	Project Site / During construction	Contractor		✓			-
	9.2	EM&A Requirements								
		A specialist Landscape Sub-Contractor should be employed for the implementation of landscape construction works and subsequent maintenance operations during a 12-month establishment period.	To check the implementation and maintenance of landscape mitigation measures and ensure that they are fully	Project Site / During construction and post-construction phase	Specialist Landscape e Sub-contractor,R egistered Landscape Architect and ET	✓	✓			-
		A Registered Landscape Architect should be employed to supervise the specialist Landscape Sub-contractor for the implementation of landscape works, both hard and soft, involved.	realised and that potential conflicts between the proposed landscape measures and any other project works and operational requirements							
		Measures undertaken by both the Contractor(s) and the specialist Landscape Sub-Contractor during the construction phase and first year post-construction will be audited by the Registered Landscape Architect of the ET.	are resolved at the earliest practical date and without compromise to the							
		Site inspections should be undertaken at								

EIA Ref.	EM&A Ref		Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage				Legislation
						Des	C	ОГ)ec	Guidelines
		least once every two weeks throughout the landscaping plants establishment period when planting works are being undertaken.								
		A tree survey should be prepared, for DLO submission, and for the purpose of existing trees protection. Removal of existing trees to be minimized. The Contractor should consider to employ a certified arborist when sizable and valuable existing tree(s) protection of transplant is required.								
		Post-construction phase auditing will be restricted to the 12-month establishment works of the landscaping proposals.								
		Advance planting- monitoring of implementation and maintenance of planting, and against potential incursion, physical damage, fire, pollution, surface erosion, etc.								
		Protection of trees to be retained-identification and demarcation of trees / vegetation to be retained, erection of physical protection (e.g. fencing), monitoring against potential incursion, physical damage, fire, pollution, surface erosion, etc.								
		Clearance of existing vegetation-identification and demarcation of trees / vegetation to be cleared, checking of								

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to	Location/Duration of Measures/Timing of Completion of	Implementation Agent	Implementation Stage Des C O Do	Legislation
		extent of works to reduce damage, monitoring of adjacent areas against potential incursion, physical damage, fire, pollution, surface erosion, etc.	address	Measures		Des C O Di	
		Transplanting of trees-identification and demarcation of trees / vegetation to be transplanted, monitoring of extent of pruning / lifting works to reduce damage, timing of operations, implementation of the stages of preparatory and translocation works, and maintenance of transplanted vegetation, etc.					
		Plant supply-monitoring of operations relating to the supply of specialist plant material (including the collecting, germination and growth of plants from seed) to ensure that plants will be available in time to be used within the construction works.					
		Soiling, planting, etc-monitoring of implementation and maintenance of soiling and planting works and against potential incursion, physical damage, fire, pollution, surface erosion, etc.					
		Architectural design and treatment of all structures (where practicable), retaining walls, elevated road structures and other engineering works-implementation and maintenance of mitigation measures, to ensure conformity with agreed designs. Erection of Site Hoardings/Fences-					

CEDD Contract No. CV/2012/05 – Development of a Bathing Beach at Lung Mei, Tai Po Monthly Environmental Monitoring & Audit Report – February 2020

EIA Ref.	EM&A Ref	Environmental Protection Measures	Objectives of the Recommended Measure & Main Concerns to address	Location/Duration of Measures/Timing of Completion of Measures	Implementation Agent	Implementation Stage Des C O Dec	Relevant Legislation Guidelines
		Erection of site hoardings/fences during the construction phase to reduce visual impacts.					
		Establishment Works- monitoring of implementation of maintenance operations during Establishment Period.					

Remark: Des – Design; C – Construction; O – Operation; Dec – Decommissioning