AECOM

Main Wealth Development Ltd.

Yau Tong Bay – Decommissioning of Shipyard Sites

Monthly EM&A Report for April 2014

[05/2014]

	Name	Signature
Prepared & Checked:	Joanne Ko	JoAnoppo.
Reviewed, Approved & Certified:	Y T Tang (ETL)	Canto Cing

Version:	Rev. 0	Date:	16 May 2014	
Disclaimer				

This report is prepared for Main Wealth Development Ltd. and is given for its sole benefit in relation to and pursuant to Yau Tong Bay – Decommissioning of Shipyard Sites and may not be disclosed to, quoted to or relied upon by any person other than Main Wealth Development Ltd. without our prior written consent. No person (other than Main Wealth Development Ltd.) into whose possession a copy of this report comes may rely on this report without our express written consent and Main Wealth Development Ltd. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd. 15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Our ref AFK/EC/TK/jn/bw/T329531/22.01/0014

- т 2828 5919
- terence.kong@mottmac.com.hk

Your ref

Main Wealth Development Limited 71/F Two International Finance Centre 8 Finance Street Central Hong Kong

14 May 2014

Attn : Ms. Amy Chan / Mr. Gregory Chan

Dear Madam/ Sir,

Yau Tong Bay – Decommissioning of Shipyard Sites Environmental Permit No. EP-409/2010 Condition 5.4 – Monthly EM&A Report for April 2014 (version: Rev. 0)

Further to the receipt from Environmental Team (ET) of the captioned Monthly EM&A Report on 9 May 2014 via email, pursuant to Condition 5.4 of Environmental Permit I hereby verify the captioned report (Rev. 0) for Yau Tong Bay.

Yours faithfully for MOTT MACDONALD HONG KONG LIMITED

in kont

Terence Kong Independent Environmental Checker (IEC)

NATURE & TECHNOLOGIES (HK) LIMITED

科技環保(香港)有限公司 Lot 12, Tam Kon Shan Road, North Tsing Yi, New Territories, Hong Kong 香港新界北青衣担杆山路 12 號地段 Tel 電話: (852) 2877 3122 Fax 傳真: (852) 25110922 Email 電郵: enquiry@nt.com.hk Website 網址: http://www.nt.com.hk

Our Ref: 3.14/018/2009/at

14 May 2014

Main Wealth Development Ltd. 72 – 76/F, Two International Finance Centre 8 Finance Street Central Hong Kong

Attn: Ms. Amy Chan

Dear Ms. Chan,

Yau Tong Bay – Decommissioning of Shipyard Sites Environmental Permit No. EP-409/2010 Monthly EM&A Report for April 2014 (Version: Rev.0)

With reference to the captioned document verified by IEC on 14 May 2014, we are pleased to provide our confirmation for the document on sections that is specific to soil remediation work pursuant to Condition 5.4 of the Environmental Permit No. EP-409/2010.

Yours faithfully, Nature & Technologies (HK) Limited

Ir Dr Gabriel C K Lam Independent Environmental Auditor

TABLE OF CONTENTS

	_		Page
EXE	CUTI	VE SUMMARY	1
行政	摘要		2
1	INTF	RODUCTION	3
	1.3	Background Scope of Report Project Organization Summary of Construction Works Summary of EM&A Programme Requirements	3 4 4 5 5
2	NOIS	SE MONITORING	6
	2.4 2.5	Monitoring Requirements Monitoring Equipment Monitoring Locations Monitoring Parameters, Frequency and Duration Monitoring Methodology Monitoring Schedule for the Reporting Period Monitoring Results	6 6 6 7 7 7
3	WAT	ER QUALITY MONITORING	9
	3.1	Monitoring Status	9
4	LAN	D CONTAMINATION	9
		Monitoring Status Excavation Progress Cement Solidification / Stabilization and Biopiling Progress Monitoring Testing Results	9 9 14 14
5	ENV	IRONMENTAL SITE INSPECTION AND AUDIT	20
	5.1 5.2 5.3 5.4 5.5 5.6	Site Inspection Advice on the Solid and Liquid Waste Management Status Environmental Licenses and Permits Implementation Status of Environmental Mitigation Measures Summary of Exceedances of the Environmental Quality Performance Limit Summary of Complaints, Non-compliances, Notification of Summons and Successful Prosect 22	20 20 21 21 22 utions
6	FUT	URE KEY ISSUES	23
	6.1 6.2 6.3	Construction Programme for the Coming Months Key Issues for the Coming Month Monitoring Schedule for the Coming Month	23 23 23
7	CON	IMENTS, RECOMMENDATIONS AND CONCLUSIONS	24
	7.1 7.2 7.3	Comments on Mitigation Measures Recommendations on EM&A Programme Conclusions	24 24 25

List of Tables

- Table 1.1Contact Information of Key Personnel
- Table 2.1 Noise Monitoring Equipment
- Table 2.2
 Locations of Impact Noise Monitoring Stations
- Table 2.3
 Noise Monitoring Parameters, Frequency and Duration
- Table 2.4Summary of Noise Monitoring Results in the Reporting Period
- Table 4.1
 Summary of Progress of Excavation and Verification Sampling
- Table 4.2 Results of Spot-check Samples and Corresponding Verification Samples
- Table 4.3 Results of TCLP Test of Cement S/S Treated Soil
- Table 4.4Results of UCS Test of Cement S/S Treated Soil
- Table 4.5
 Sampling Plan for Bioremediation Progress Monitoring
- Table 4.6Results for Biopile Monitoring Sample (Zones R1-R4 and A2)
- Table 4.7Results for Biopile Monitoring Sample (Zones T35C and T32E)
- Table 5.1 Summary of Environmental Licensing and Permit Status

List of Figures

- Figure 1 Site Location Plan
- Figure 2 Noise Monitoring Locations
- Figure 3 Environmental Complaint Handling Procedure
- Figure 4 Locations of Contamination Zones
- Figure 5 Locations of Confirmatory Sampling (Zones R5 & R6)
- Figure 6 Locations of Confirmatory Sampling (Zones R1 & R7)
- Figure 7 Locations of Confirmatory Sampling (Zones R2 & R3)
- Figure 8 Locations of Confirmatory Sampling (Zones R4 & R8)
- Figure 9 Locations of Confirmatory Sampling (Zone A1)
- Figure 10 Locations of Confirmatory Sampling (Zones A2, A3, A4 & A5)
- Figure 11 Locations of Confirmatory Sampling (Zones T32C, T32D, T32E, T35C & T36A)
- Figure 12 Locations of Confirmatory Sampling (Zones T19A, T22BA, T22BB)
- Figure 13 Locations of Confirmatory Sampling (Zone T32E)
- Figure 14 Locations of Confirmatory Sampling (Zone T35C)
- Figure 15 Sampling Plan for Biopile Monitoring

List of Appendices

- Appendix A Project Organization Structure
- Appendix B Construction Programme
- Appendix C Implementation Schedule of Environmental Mitigation Measures (EMIS)
- Appendix D Summary of Action and Limit Levels
- Appendix E Calibration Certificates of Monitoring Equipments
- Appendix F EM&A Monitoring Schedules
- Appendix G Impact Daytime Construction Noise Monitoring Results and their Graphical Presentation
- Appendix H Event Action Plan
- Appendix I Site Inspection Summaries
- Appendix J Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions
- Appendix K Laboratory Testing Reports
- Appendix L Summary Table of Testing Results

EXECUTIVE SUMMARY

The proposed "Yau Tong Bay – Decommissioning of Shipyard Sites" (hereinafter referred to as "the Project") is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) Schedule 2 and is governed by the Environmental Permit No. EP-409/2010. The Project aims to demolish the past and existing shipyards and their building structures and marine structures and decontaminate identified contaminated spots.

The demolition works of the building structures on land commenced on 21 November 2011 and was completed in September 2012. The demolition works of marine structures are yet to commence.

The impact Environmental Monitoring and Audit (hereinafter referred to as "EM&A") programme for the Project commenced on 21 November 2011. The EM&A works was suspended from November 2012 for the captioned Project and the EM&A works has been resumed on 28 October 2013. The impact EM&A programme includes daytime construction noise and water quality monitoring, soil remediation works monitoring and auditing and site auditing. The remediation method statement was approved by the EPD on 20 December 2013. The soil remediation works commenced on 23 December 2013.

This report documents the findings of EM&A works conducted in the period between 1 and 30 April 2014.

As informed by the Contractor, the major construction activities carried out in the reporting period were:

- Excavation of Contaminated Soil in Zones A3, A4, A5, R6 and R7;
- Backfill to Zones R2, R3, R4, R6, R7, A1, A4, A5, T22BA, T22BB, T32C, T32E (inner) and T35C;
- Cleanup progress monitoring of Biopile; and
- Cement solidification treatment for Zones A3, A4, A5, R6 and R7.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

Daytime noise monitoring	3 sessions
Water quality monitoring	0 session
Environmental site inspection	5 sessions

Breaches of Action and Limit Levels for Daytime Construction Noise

No Action Level exceedance was recorded since no construction noise related complaint was received in the reporting period.

No Limit Level exceedance of construction noise was recorded in the reporting period.

Breaches of Action and Limit Levels for Water Quality

Water quality monitoring was not conducted in the reporting period as the demolition of marine structures has not yet commenced. No Action/Limit Level exceedance of water quality was recorded in the reporting period.

Environmental Complaint, Non-compliance, Notification of Summons and Successful Prosecution

No complaint, non-compliance, notification of summons and successful prosecution was received in the reporting period.

Reporting Change

There was no reporting change required in the reporting period.

Future Key Issues

Excavation of contaminated soil will continue to take place in May 2014.

1

行政摘要

「油塘灣-船廠拆卸工程」(以下簡稱「本工程項目」)是一項被臚列於環境影響評估條例(第 499 章)附表 2 中的 指定工程項目並受到環境許可證編號 EP-409/2010 所管制。本工程項目的主要目的是要拆除位於油塘灣的舊有 和現有的船廠及其建築物和海事結構,以及處理指定的已受污染點。

船廠陸上建築物的拆卸工程於二零一一年十一月二十一日展開,並於二零一二年九月完工。船廠海上建築物的拆除工作尚未開始。

本工程項目的施工期間環境監察及審核計劃亦由二零一一年十一月二十一日開始。由二零一二年十一月起,本 工程項目之施工期間環境監察與審核工作暫停,並於二零一三年十月二十八日恢復。施工期間環境監察與審核 計劃包括:日間建築噪音監測,水質監測,已受污染泥復育工作的監察與審核及工地審核巡查。環保署在二零 一三年十二月二十日批准了土地整治方法聲明。土壤修復工程於二零一三年十二月二十三日開始。

本報告記錄了於二零一四年四月一日至四月三十日期間所進行的環境監察與審核工作。

根據承建商提供的資料,在上述的期間的主要建築活動為:

- 1. 在區域 A3、A4、A5、A6、R6 和 R7 污染土壤的挖掘、
- 2. 在區域 R2、R3、R4、R6、R7、A1、A4、A5、T22BA、T22BB、T32E(内部)和T35C的回填、
- 3. 生物堆清理進度監控,以及
- 4. 在區域 A3、A4、A5、R6 和 R7 的水泥固化處理。

在上述的期間有下列次數的監察及審核活動進行:

日間建築噪音監測	3 次
水質監測	0 次
環境巡查	5 次

違反監測標準

日間建築噪音

在上述的期間沒有收到有關建築噪音的投訴,所以噪音監測結果皆符合行動水平。

在上述的期間的所有日間建築噪音監測結果皆符合極限水平。

水質

因為相關的海事結構拆除工程仍未開始,故沒有水質監測在上述的期間進行。因此,沒有違反水質行動水平和極限水平的記錄。

有關收到的環境的投訴,傳票及檢控

在上述的期間沒有收到有關環境的投訴,傳票及檢控。

報告修訂

本報告期間並沒有修訂報告。

預計要注意的事項

污染土壤的挖掘將在 2014 年 5 月繼續。

1 INTRODUCTION

1.1 Background

- 1.1.1. The Project Site of "Yau Tong Bay-Decommissioning of Shipyard Sites" (hereinafter referred to as "the Project") is located along the shore of Yau Tong Bay (which is also known as Kwun Tong Tsai Wan) in East Kowloon within the Kwun Tong District and the Project Site together with its adjacent land is zoned Comprehensive Development area ("CDA") on the Approved Cha Kwo Ling, Yau Tong, Lei Yue Mun Outline Zoning Plan (OZP) No. S/K15/19. It faces Victoria Harbour to the southwest and is bounded by the Eastern Harbour Crossing Ventilation Building to the west, Cha Kwo Ling Road to the north and east, and Ko Fai Road to the south. The site is also adjacent to the former Yau Tong Industrial Area, which is at present mainly occupied by obsolete industrial buildings.
- 1.1.2. The Project is a designated project and is governed by the Environmental Permit No. EP-409/2010 (hereinafter referred to as "the EP").
- 1.1.3. Major works to be undertaken in the Project include:-
 - Demolition of past and existing shipyard and building structures;
 - Demolition of marine structure of shipyards; and
 - Decontamination of identified contaminated spots.
- 1.1.4. For the decommissioning of past and existing shipyard lots, there is a total of 39 Marine Lots along the shore of Yau Tong Bay are under the control of the Project Proponent (Main Wealth Development Limited) and covered in this Project. These 39 lots (or the 'concerned lots'), with a total area of over 1 hectare (ha), as listed below and highlighted in **Figure 1**, are hereinafter referred to as the 'Project Site'. The land uses for the Project Site had been industrial and various land uses including shipyards, timber yards, sawmills and concrete batching plant.
 - YTML No. 1
 - YTMLs No. 5-14
 - YTML No. 15
 - YTMLs No. 19-24
 - YTMLs No. 27-38
 - YTMLs No. 41-46
 - YTML No. 54
- 1.1.5. Main Wealth Development Limited (the Project Proponent) has commissioned AECOM Asia Company Limited as the Engineer of the Project and Kin Wing Construction Co., Ltd was commissioned as the Decontamination Contractor of the Project (hereafter referred to as "the Contractor").
- 1.1.6. AECOM Asia Company Limited was appointed to undertake the Environmental Team (hereafter referred to as "ET") services for implementation of all the Environmental Monitoring and Audit (hereafter referred to as "EM&A") works under the Project. Mott MacDonald Hong Kong Limited and Nature & Technologies (HK) Limited act as the Independent Environmental Checker (hereafter referred to as "IEC") and Independent Environmental Auditor (hereafter referred to as "IEA") for the Project respectively.
- 1.1.7. According to the updated programme, the demolition works of the Project commenced on 21 November 2011. Hoarding and demolition works for the Project were completed in September 2012. The remediation method statement was approved by the EPD on 20 December 2013. The soil remediation works commenced on 23 December 2013.
- 1.1.8. In accordance with the updated Environmental Monitoring and Audit Manual (hereinafter referred to as "the EM&A Manual") of the Project, there is a need of an impact EM&A programme includes daytime construction noise and water quality monitoring, soil remediation works monitoring and auditing and site auditing. The impact EM&A Programme for the Project commenced on 21 November 2011. The EM&A works was suspended from November 2012 for the captioned Project and the EM&A works has been resumed on 28 October 2013.

1.2 Scope of Report

1.2.1 This is the nineteenth monthly EM&A Report for the Project "Yau Tong Bay – Decommissioning of Shipyard Sties". This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project from 1 to 30 April 2014.

1.3 **Project Organization**

1.3.1 The project organization structure is shown in **Appendix A**. The key personnel contact names and numbers are summarized in **Table 1.1**.

Party	Name	Telephone	Fax
Project Proponent (Main Wealth Development Limited)	Gregory Chan	2908 8679	2562 0029
Engineer (AECOM Asia Co. Ltd.)	Jeremy Yuen	3922 9000	3922 9797
Decontamination Contractor (Contractor) (Kin Wing Construction Co., Ltd)	Lee Kam Hung	2717 9139	2725 9316
Independent Environmental Checker (IEC) (Mott MacDonald Hong Kong Limited)	Terence Kong	2828 5919	2827 1823
Independent Environmental Auditor (IEA) (Nature & Technologies (HK) Limited)	Gabriel Lam	2877 3122	2511 0922
Environmental Team Leader (ETL) (AECOM Asia Co. Ltd.)	Y T Tang	3922 9393	3922 9797

 Table 1.1
 Contact Information of Key Personnel

4

1.4 Summary of Construction Works

- 1.4.1 The demolition works of the Project commenced on 21 November 2011 and was completed in September 2012.
- 1.4.2 The remediation method statement was approved by the EPD on 20 December 2013. The soil remediation works commenced on 23 December 2013.
- 1.4.3 As informed by the Contractor, the major construction activities carried out in the reporting period were:
 - Excavation of Contaminated Soil in Zones A3, A4, A5, R6 and R7;
 - Backfill to Zones R2, R3, R4, R6, R7, A1, A4, A5, T22BA, T22BB, T32C, T32E (inner) and T35C;
 - Cleanup progress monitoring of Biopile; and
 - Cement solidification treatment for Zones A3, A4, A5, R6 and R7.
- 1.4.4 The general layout plan of the Project site is shown in **Figure 1**.
- 1.4.5 The latest Construction Programme is shown in **Appendix B**.
- 1.4.6 The environmental mitigation measures **implementation** schedule are presented in **Appendix C**.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for daytime construction noise and water quality, soil remediation works monitoring and auditing and environmental site inspections for air quality, water quality, noise, waste management and landscape and visual impact. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming months;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA study final report; and
 - Environmental requirement in contract documents.

2 NOISE MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the EM&A Manual, impact noise monitoring was conducted for at least once per two weeks at designated noise monitoring stations during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in **Appendix D**.

2.2 Monitoring Equipment

2.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 2.1**.

 Table 2.1
 Noise Monitoring Equipment

Equipment	Brand and Model	
Integrated Sound Level Meter	Rion NL-31 (00320528); B&K 2238 (2800927)	
Acoustic Calibrator	Rion NC-73 (10307223)	

2.3 Monitoring Locations

- 2.3.1 Monitoring stations NM1 to NM3 were set up at the proposed locations in accordance with the EM&A Manual.
- 2.3.2 **Figure 2** shows the locations of the monitoring stations. **Table 2.2** describes the details of the monitoring stations.

Table 2.2	Locations of Imp	pact Noise Mo	onitoring Stations
-----------	------------------	---------------	--------------------

Monitoring Station	Location	Description	
NM1	Yau Lai Estate Hong Lai House	1m from the exterior of the roof top façade of the building	
NM2	S.K.H. Yau Tong Kei Hin Primary School	1m from the exterior of the roof top façade of the building	
NM3	C.C.C. Kei Faat Primary School (Yau Tong)	1m from the exterior of the roof top façade of the building	

2.4 Monitoring Parameters and Frequency

2.4.1 **Table 2.3** summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 2.3 Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. L_{eq},L_{10} and L_{90} would be recorded.	At least once per two weeks

2.5 Monitoring Methodology

- 2.5.1 Monitoring Procedure
 - (a) Façade measurements were made at all monitoring locations.
 - (b) The battery condition was checked to ensure the correct functioning of the meter.
 - (c) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:-
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: $L_{eq(30-minutes)}$ during non-restricted hours i.e. 07:00 1900 on normal weekdays; $L_{eq(5-minutes)}$ during restricted hours i.e. 19:00 23:00 and 23:00 07:00 of normal weekdays, whole day of Sundays and Public Holidays
 - (d) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
 - (e) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
 - (f) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
 - (g) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.
- 2.5.2 Maintenance and Calibration
 - (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
 - (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
 - (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix E.

2.6 Monitoring Schedule for the Reporting Period

2.6.1 The schedule for environmental monitoring in April 2014 is provided in Appendix F.

2.7 Monitoring Results

2.7.1 The monitoring results for noise are summarized in **Table 2.4** and the monitoring data is provided in **Appendix G**.

Table 2.4	Summary of Noise Monitoring Results in the Reporting Period
-----------	---

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq (30 mins)}
NM1	61.8	55.2 – 64.8	75
NM2	64.0	61.7 – 64.8	70 [#]
NM3	64.4	62.6 - 65.8	70 [#]

Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.

- 2.7.2 No Action Level exceedance was recorded since no construction noise related complaint was received in the reporting period.
- 2.7.3 No Limit Level exceedance was recorded at all monitoring stations in the reporting month.
- 2.7.4 Major noise sources during the noise monitoring included construction activities of the Project, construction activities by other contracts and nearby traffic noise.
- 2.7.5 The event action plan is annexed in **Appendix H**.

3 WATER QUALITY MONITORING

3.1 Monitoring Status

3.1.1 Water quality monitoring was not conducted in the reporting period as demolition of marine structures was not commenced.

4 LAND CONTAMINATION

4.1 Monitoring Status

- 4.1.1 The remediation method statement was approved by the EPD on 20 December 2013. The soil remediation works were commenced on 23 December 2013.
- 4.1.2 Cement Solidification and Stabilization was commenced on 21 January 2014 and biopile remediation was commenced on 24 March 2014. Monitoring works has been conducted accordingly.

4.2 Excavation Progress

- 4.2.1 Excavation has been carried out and completed in zones A3, A4, A5, R6 and R7 in the reporting period. The excavated soils were transferred to the cement mixing facility and undergone cement solidification and stabilization. 14 samples of cement treated soil were collected for Toxicity Characteristic Leaching Procedure (TCLP) and Unconfined Compressive Strength (UCS) tests respectively. All the soil requiring biopiling treatment has been transferred to the biopile and the biopilng treatment was commenced on 24 March 2014. 27 monitoring samples of the biopile were collected in the reporting period. The biopile and cement solidification progress are presented in Section 4.3.
- 4.2.2 Verification sampling has been conducted according to the corresponding CAR/RAPs ((a) Appendix 7C Remediation Action Plan for Yau Tong Bay Marine Lots in the Reclamation of Yau Tong Bay Final EIA Report (January 2002); (b) Yau Tong Bay Decommissioning of Shipyard Sites Contamination Assessment Report and Remediation Action Plan (YTML 1, 6-11, 15, 28, 29, 38 and 41-43; (c) Yau Tong Bay Decommissioning of Shipyard Sites Supplementary Contamination Assessment Report and Remediation Action Plan for Previously Inaccessible Lots (YTML 27, 44, 45-46, 54 and Underground Oil Tank at YTML 6-11)) to define the contamination extent. The locations of the contamination zones are shown in Figure 4 and the sampling locations are indicated in Figures 5 to 14. 1 verification sample has been collected by the Contractor under AECOM's supervision in April 2014. The sampling results have shown no exceedance of the relevant standards. The excavation extends for all the zones have been confirmed. The status of excavation and confirmatory sampling are summarized in Table 4.1. All testing results, including those for the samples collected in previous months have been received and are presented in Appendix L.
- 4.2.3 Independent Environmental Auditor (IEA) has conducted spot check sampling for biopile (Sample ID: BP6/T/1/IEA) on 23 April 2014 which is pending for test result. The testing results of the IEA samples and the corresponding verification samples collected since December 2013 are summarized in **Table 4.2** and are found to be in order with the results of the Contractor.

Zone ID	Status of Excavation	Verification samples	Verification samples Additional samples		Testing Result (Pass/Fail)	
		Тор	-	-	-	
		T19A.1/SW (Sidewall)	-	✓	Pass	
		T19A.2/SW (Sidewall)	T19A.2.1/SW (Sidewall)	✓	Pass	
T19A	Excavation Completed	Excavation Completed	T19A.3/SW (Sidewall)	T19A.3.1/SW (Sidewall)	✓	Pass
	Completed		T19A.4.1/SW (Sidewall)		Dava	
		T19A.4/SW (Sidewall)	T19A.4.2/SW (Sidewall)		Pass	
		T19A/B (Base)	-	✓	Pass	

Table 4.1 Summary of Progress of Excavation and Verification Sampling

P:\60048283\1.01\Deliverables\Impact Monitoring Report\Monthly\1404\Rev.0 - 1404.docx

9

		T19A/B1 (Base)	-	~	Pass
		Тор	-	-	-
		T22BA.1/SW (Sidewall)	-	\checkmark	Pass
		T22BA.2/SW (Sidewall)	-	\checkmark	Pass
			T22BA.3.1/SW (Sidewall)		
			T22BA.3.2/SW (Sidewall)		
T22BA	Excavation Completed	T22BA.3/SW (Sidewall)	T22BA.3.3/SW (Sidewall)	\checkmark	Pass
	Completed		T22BA.3.4/SW (Sidewall)		
		T22BA.4/SW (Sidewall)	T22BA.4.1/SW (Sidewall)	✓	Pass
		T22BA/B (Base)	-	✓	Pass
			T22BA/B1.1 (Base)		
		T22BA/B1 (Base)	T22BA/B1.2 (Base)	\checkmark	Pass
		Тор	-	-	-
		T22BB.1/SW (Sidewall)	-	✓	Pass
		T22BB.2/SW (Sidewall)	_	✓	Pass
	Excavation	. ,	T22BB.3.1/SW (Sidewall)		-
T22BB	Completed	T22BB.3/SW (Sidewall)	T22BB.3.2/SW (Sidewall)	\checkmark	Pass
		T22BB.4/SW (Sidewall)	_	✓	Pass
		T22BB/B (Base)	_	✓	Pass
		T22BB/B1 (Base)	_	✓	Pass
		Тор	_	-	-
		T32C.1/SW (Sidewall)	T32C.1.1/SW (Sidewall)	✓	Pass
		T32C.2/SW (Sidewall)	-	✓	Pass
T32C	Excavation	T32C.3/SW (Sidewall)	_	✓	Pass
	Completed	T32C.4/SW (Sidewall)	T32C.4.1/SW (Sidewall)	✓	Pass
		T32C/B (Base)	-	✓	Pass
		T32C/B1 (Base)		✓	Pass
		T32D/T (Top)		✓	Pass
		T32D.1/SW (Sidewall)		✓	Pass
		T32D.2/SW (Sidewall)		✓	Pass
T32D	Not Excavated	T32D.3/SW (Sidewall)	-	✓	Pass
		T32D.4/SW (Sidewall)		✓	Pass
		T32D/B (Base)	_	✓	Pass
		Тор	<u> </u>	_	-
		T32E.1A/SW (Sidewall)		✓	Pass
		T32E.2A/SW (Sidewall)	_	✓	Pass
T32E			T32E.3A.1/SW (Sidewall)		1 400
(PCB	Excavation	T32E.3A/SW (Sidewall)	T32E.3A.2/SW (Sidewall)	\checkmark	Pass
Contamina ted Zone)	Completed		T32E.4A.1/SW (Sidewall)		
- /		T32E.4A/SW (Sidewall)	T32E.4A.2/SW (Sidewall)	✓	Pass
		ICLE. NOW (Oldewall)	T32E.4A.3/SW (Sidewall)	-	1 400
		T32E/B (Base)		✓	Pass
		Top		-	- F d55
T32E	Excavation	T32E.1/SW – T32E.58/SW	- T32E.10,11,15-19,25,26,30- 32, 34,37 .1 (Sidewall)	-	
	Completed	(Sidewall)	T32E.(11,15-17,26,30- 32,34) .2 (Sidewall)	√	Pass

	1		T32E.11.3 (Sidewall)		
		T32E/B/1-14 (Base)	-	√	Pass
		T32E/B/15-18 (Base)	T32E/B/17.1	√	Pass
		Тор	-	-	-
			-		
		T35C.1/SW – T35C.77/SW (Sidewall)	-	\checkmark	Pass
T35C	Excavation	(Oldewaii)	-		
	Completed	T35C/B1 – T35C/B26 (Base)	T35C/B5.1	\checkmark	Pass
		T35C/B27 – T35C/B47 (Base)	T35C/B27.1	~	Pass
		T35C/B48 – T35C/B66 (Base)	-	1	Pass
		Тор	-	-	-
		T36A.1/SW (Sidewall)	-	✓	Pass
		T36A.2/SW (Sidewall)	-	✓	Pass
T36A	Excavation Completed	T36A.3/SW (Sidewall)	-	\checkmark	Pass
	Completed	T36A.4/SW (Sidewall)	-	\checkmark	Pass
		T36A/B (Base)	-	\checkmark	Pass
		T36A/B1 (Base)	-	\checkmark	Pass
		Тор	-	-	-
		A1.1-A1.2/SW (Sidewall)	-	~	Pass
	Excavation	A1.1-A1.4/SW (Sidewall)	-	~	Pass
AT	A1 Excavation Completed	A1.2-A1.3/SW (Sidewall)	-	✓	Pass
		A1.3-A1.4/SW (Sidewall)	-	✓	Pass
		A1/B (Base)	-	~	Pass
		A2/T (Top)	-	~	Pass
		A2.1-A2.2/SW (Sidewall)	A2.1-A2.2.1/SW (Sidewall)	~	Pass
A2	Excavation	A2.1-A2.4/SW (Sidewall)	-	~	Pass
AZ	Completed	A2.2-A2.3/SW (Sidewall)	-	~	Pass
		A2.3-A2.4/SW (Sidewall)	-	\checkmark	Pass
		A2/B (Base)	-	\checkmark	Fail*
		Тор	-	-	-
		A3.1-A3.2/SW (Sidewall)	A3.1-A3.2.1/SW (Sidewall)	✓	Pass
A3	Excavation	A3.2-A3.3/SW (Sidewall)	A3.2-A3.3.1/SW (Sidewall)	✓	Pass
A3	Completed	A3.3-A3.4/SW (Sidewall)	-	\checkmark	Pass
		A3.1-A3.4/SW (Sidewall)	-	✓	Pass
		A3/B (Base)	-	~	Pass
		A4/T (Top)	-	✓	Pass
		A4.1-A4.2/SW (Sidewall)	-	~	Pass
		A4.1-A4.4/SW (Sidewall)	-	✓	Pass
	Everyother	A4.2-A4.3/SW (Sidewall)	A4.2-A4.3.1/SW (Sidewall)	~	Pass
A4	Excavation Completed		A4.3-A4.4.1/SW (Sidewall)		
		A4.3-A4.4/SW (Sidewall)	A4.3-A4.4.2/SW (Sidewall)	\checkmark	Pass
			A4.3-A4.4.3/SW (Sidewall)		
			A4.3-A4.4.4/SW (Sidewall)		
		A4/B (Base)	-	✓	Pass
A5	Excavation	А5/Т (Тор)	-	\checkmark	Pass

Yau Tong Bay – Decommissioning of Shipyard Sites

	Completed		A5.1-A5.2.1/SW (Sidewall)		
		A5.1-A5.2/SW (Sidewall)	A5.1-A5.2.2/SW (Sidewall)	\checkmark	Pass
			A5.1-A5.4.1/SW (Sidewall)		
			A5.1-A5.4.2/SW (Sidewall)		
		A5.1-A5.4/SW (Sidewall)	A5.1-A5.4.3/SW (Sidewall)	\checkmark	Pass
			A5.1-A5.4.4/SW (Sidewall)		
		A5.2-A5.3/SW (Sidewall)	A5.2-A5.3.1/SW (Sidewall)	✓	Pass
		A5.3-A5.4/SW (Sidewall)		✓	Pass
		A5/B (Base)	_	✓	Pass
		Тор	_	-	-
		R1.1-R1.2/SW (Sidewall)	_	✓	Pass
	– <i>– –</i>	R1.1-R1.4/SW (Sidewall)	_	✓	Pass
R1	Excavation Completed	R1.2-R1.3/SW (Sidewall)		✓	Pass
		R1.3-R1.4/SW (Sidewall)		· · · · · · · · · · · · · · · · · · ·	Pass
		R1/B (Base)	_	· · · · · · · · · · · · · · · · · · ·	Pass
		Тор	_	-	- 1 d35
				-	Pass
		R2.1-R2.2/SW (Sidewall)	-	v ✓	
R2	Excavation	R2.1-R2.4/SW (Sidewall)		v	Pass
R2	Completed	R2.2-R2.3/SW (Sidewall)	R2.2-R2.3.1/SW (Sidewall)	\checkmark	Pass
			R2.2-R2.3.2/SW (Sidewall)	/	
	R2.3-R2.4/SW (Sidewall)	-	✓ ✓	Pass	
		R2/B (Base)	-	V	Pass
		Тор	-	-	-
R3 (0-1m		R3.1-R3.2/SW (Sidewall)	-	✓	Pass
below ground	Excavation	R3.1-R3.4/SW (Sidewall)	-	✓	Pass
surface)	Completed	R3.2-R3.3/SW (Sidewall)	-	\checkmark	Pass
		R3.3-R3.4/SW (Sidewall)	-	\checkmark	Pass
		R3/B (Base)	-	\checkmark	Pass
		Тор	-	-	-
R3 (1-		R3.1-R3.2/SW (Sidewall)	-	\checkmark	Pass
3.95m below	Excavation	R3.1-R3.4/SW (Sidewall)	-	\checkmark	Pass
ground	Completed	R3.2-R3.3/SW (Sidewall)	-	\checkmark	Pass
surface)		R3.3-R3.4/SW (Sidewall)	-	\checkmark	Pass
		R3/B (Base)	-	\checkmark	Pass
		Тор	-	-	-
		R4.1-R4.2/SW (Sidewall)	-	\checkmark	Pass
R4	Excavation	R4.1-R4.4/SW (Sidewall)	-	\checkmark	Pass
R4 Completed	R4.2-R4.3/SW (Sidewall)	-	\checkmark	Pass	
		R4.3-R4.4/SW (Sidewall)	-	\checkmark	Pass
		R4/B (Base)	-	\checkmark	Pass
		Тор	-	-	-
		R5.1-R5.2/SW (Sidewall)	-	\checkmark	Pass
RF					
R5	Excavation Completed	R5.1-R5.4/SW (Sidewall)	R5.1-R5.4.1/SW (Sidewall)	✓	Pass
R5	Excavation Completed		R5.1-R5.4.1/SW (Sidewall) -	√ √	Pass Pass

		R5/B (Base)	-	~	Pass
		R6/T (Top)	-	\checkmark	Pass
	R6.1-R6.2/SW (Sidewall)	-	✓	Pass	
DC	Excavation	R6.1-R6.4/SW (Sidewall)	-	✓	Pass
R6	Completed	R6.2-R6.3/SW (Sidewall)	-	✓	Pass
		R6.3-R6.4/SW (Sidewall)	-	✓	Pass
		R6/B (Base)	-	✓	Pass
		R7/T (Top)	-	\checkmark	Pass
		R7.1-R7.2/SW (Sidewall)	R7.1-R7.2.1/SW ([#] R7/SW/1.1-1.2) (Sidewall)	~	Pass
R7	Excavation	R7.1-R7.4/SW (Sidewall)	-	✓	Pass
	Completed	R7.2-R7.3/SW (Sidewall)	-	✓	Pass
		R7.3-R7.4/SW (Sidewall)	-	✓	Pass
		R7/B (Base)	-	✓	Pass
		R8/T (Top)	R8/T.1 (Top)	✓	Pass
		R8.1-R8.2/SW (Sidewall)	-	✓	Pass
R8	Excavation	R8.1-R8.4/SW (Sidewall)	-	✓	Pass
RO	Completed	R8.2-R8.3/SW (Sidewall)	-	✓	Pass
		R8.3-R8.4/SW (Sidewall)	-	✓	Pass
		R8/B (Base)	-	✓	Pass
		Тор	-	-	-
		U01/SW (Sidewall)	-	\checkmark	Pass
	Tank	U02/SW (Sidewall)	-	✓	Pass
UG Tank	Removed	U03/SW (Sidewall)	-	✓	Pass
		U04/SW (Sidewall)	-	~	Pass
		U05/B (Base)	-	\checkmark	Pass

Note:

✓: Sampled

- : Sampling not required

^: Where applicable, the indicated testing results represent the status of the most recent additional sample taken for the same location.

*: Additional base sampling for A2 is not required as that part of soil is included in A3.

[#]: Sample ID shown in the Laboratory Report in Appendix K.

Parameters		Lead (Dutch B Standard) (mg/kg)		TPH (Dutch	n B Standard	l) (µg/kg)		PCR(F (µg/		TCLP (mg/kg)	
			Lead	C6-C9	C10-C14	C15-C28	C29- C36	Total TPH	C9-C16	C17- C35	Lead
	Limit of Reporting (LOR)		1	2	50	100	100	252	200	500	0.1
	Standard limits		150	-	-	-	-	1,000	2,240	10,000	0.75
Zone ID	Sampling ID	Sampling Date									
	T22BA.4.1/SW/0.75	4/12/2014	131	-	-	-	-	-	-	-	-
T22BA	T22BA.4.1/ SW/0.75/IEA*	4/12/2014	112	-	-	-	-	-	-	-	-
R3	R3.1-R3.2/ SW/2.475	19/12/2013	-	-	-	-	-	-	299	9,030	-
1.5	R3.1-R3.2/ SW/2.475/IEA*	19/12/2013	-	-	-	-	-	-	266	9,270	-
T35C	T35C.56/SW/1.25	9/1/2014	-	<2	<50	<100	<100	<252	-	-	-

Table 4.2 Results of Spot-check Samples and Corresponding Verification Samples

AECOM

	T35C.56/ SW/1.25/IEA*	9/1/2014	-	<2	<50	<100	<100	<252	-	-	-
R5	R5/TCLP	22/1/2014	-	-	-	-	-	-	<0.1	<0.1	<0.1
КЭ	R5/TCLP/IEA*	22/1/2014	-	-	-	-	-	-	<0.1	<0.1	<0.1
T32E	T32E/B/5	24/2/2014	-	<2	<50	<100	<100	<252	-	-	-
132E	T32E/B/5/IEA*	24/2/2014	-	<2	<50	<100	<100	<252	-	-	-
T19A	T19A/TCLP.2	14/3/2014	-	-	-	-	-	-	-	-	<0.1
119A	T19A/TCLP.2/IEA*	14/3/2014	-	-	-	-	-	-	-	-	<0.1

Note:

*: Spot check samples collected by IEA

4.3 Cement Solidification / Stabilization and Biopiling Progress

- 4.3.1 Cement solidification and stabilization has been conducted for the contaminated soils from zones A3, A4, A5, R6 and R7 in the reporting period. Monitoring samples of the treated soil were collected for Toxicity Characteristic Leaching Procedure (TCLP) and Unconfined Compressive Strength (UCS) tests to verify if the treatment standard is achieved. The TCLP and UCS test results received in April are summarized in **Table 4.3** and **Table 4.4** respectively. The results indicate that all the cement treated soil comply with the relevant standards. The cement solidification treatments have been completed for all the required zones (T19A, T22BA, T22BB, T32C, T36A, A1, A3, A4, A5, R5, R6, R7, and R8) except A2. Since the soil in zone A2 is contaminated with bis-(2-ethylhexyl)phthalate and lead, biopiling treatment is required and cement solidification will be conducted after biopiling treatment has been completed.
- 4.3.2 The set up of the biopiling facility has been completed in March. Excavated soil from zones A2, R1, R2, R3, R4, T32E and T35C have been transferred to the facility and piled up as indicated in Figure 15. The biopiling treatment is in progress. 27 monitoring samples were collected from the biopile in the reporting period. The results received as of 30 April are summarized in Table 4.6 and 4.7.

4.4 Monitoring Testing Results

Excavation

- 4.4.1 In accumulation, 408 verification samples have been collected at this stage, of which 407 samples were collected from November 2013 to March 2014; while 1 verification sample was collected in the reporting period from zone R7. As of 30 April 2014, the results for all the 408 verification samples were received, of which 399 results were received from December 2013 to March 2014, and 9 results were received in the reporting period. The testing results for all verification samples collected since November 2013 have been received and summarized in **Appendix L**. The laboratory report for the result received in April has been annexed in **Appendix K**. According to the test results, the excavation extends for all the contaminated zones have been verified and all excavation works on site is completed except for zone T32D. The soil in T32D will be excavated and disposed to landfill in a later phase. The excavation status of each zone is presented in **Table 4.1**.
- 4.4.2 1 set of QA/QC sample (EB/FB 21) was collected in April 2014. The result has not been received as of 30 April 2014 and will be included in the next monthly report.

Solidification / Stabilization (S/S)

- 4.4.3 A total of 42 sets of monitoring samples (TCLP & UCS) were collected since the commencement of cement solidification, of which 28 set of samples were collected in February and March 2014, and 14 samples were collected in April 2014. 23 results for TCLP and 26 results for UCS test were received in the reporting period. The results are summarized in **Table 4.3** and **4.4**. The testing results show that all the cement treated soils have met the relevant treatment targets. The relevant laboratory reports received in the reporting period are annexed in **Appendix K**.
- 4.4.4 For the soil of A- and R- zones, QA/QC samples are required for every 20 samples collected for TCLP tests. 2 sets of QA/QC samples have been collected since the commencement of cement

solidification / stabilization. The results are not yet received and will be included in the next monthly report.

Table 4.3	able 4.3 Results of TCLP Test of Cement S/S Treated Soil Parameter TCLP (Lead) TCLP (Copper)							
	LOR (mg/kg)		0.1	(Copper) 0.1				
Tre	atment Target Limit	(ma/ka)	<0.75	<7.8				
Zone ID	Sample ID	Date of Sampling	\$0.10	\$1.0				
Zone iD	A1/TCLP	21/1/2014	<0.1					
A1	A1/TCLP	21/1/2014	<0.1	-				
			-	-				
	A3/TCLP A3/TCLP.1	2/4/2014	<0.1 <0.1	-				
A3	A3/TCLP.1 A3/TCLP.2	4/3/2014	<0.1	-				
	A3/TCLP.3	4/3/2014	<0.1	-				
	A4/TCLP	9/4/2014	<0.1	-				
A4	A4/TCLP	9/4/2014	<0.1	-				
A4	A4/TCLP.1 A4/TCLP.2	9/4/2014	<0.1	-				
				-				
<u>م ح</u>	A5/TCLP	7/4/2014	<0.1	-				
A5	A5/TCLP.1	7/4/2014	<0.1	-				
	A5/TCLP.2	7/4/2014	<0.1	-				
R5	R5/TCLP	22/1/2014	<0.1	-				
	R5/TCLP.1	22/1/2014	<0.1	-				
R6	R6/TCLP	4/16/2014	<0.1	-				
	R6/TCLP.1	4/16/2014	<0.1	-				
R7	R7/TCLP	14/4/2014	<0.1	-				
	R7/TCLP.1	14/4/2014	<0.1	-				
5.0	R8/TCLP	28/2/2014	<0.1	-				
R8	R8/TCLP.1	28/2/2014	<0.1	-				
	R8/TCLP.2	28/2/2014	<0.1	-				
T19A	T19A/TCLP.1	12/3/2014	<0.1	-				
	T19A/TCLP.2	14/3/2014	<0.1	-				
	T22BA/TCLP	17/3/2014	<0.1	-				
	T22BA/TCLP.1	17/3/2014	<0.1	-				
T22BA	T22BA/TCLP.2	17/3/2014	<0.1	-				
	T22BA/TCLP.3	17/3/2014	<0.1	-				
	T22BA/TCLP.4	20/3/2014	<0.1	-				
	T22BA/TCLP.5	20/3/2014	<0.1	-				
	T22BB/TCLP	25/3/2014	<0.1	<0.1				
Taaba	T22BB/TCLP.1	25/3/2014	<0.1	<0.1				
T22BB	T22BB/TCLP.2	25/3/2014	<0.1	<0.1				
	T22BB/TCLP.3	27/3/2014	<0.1	<0.1				
	T22BB/TCLP.4	27/3/2014	<0.1	<0.1				
	T32C/TCLP	4/3/2014	<0.1	-				
T32C	T32C/TCLP.1	4/3/2014	<0.1	-				
	T32C/TCLP.2	5/3/2014	<0.1	-				
	T32C/TCLP.3	5/3/2014	<0.1	-				

Parameter			TCLP (Lead)	TCLP (Copper)
LOR (mg/kg)			0.1	0.1
Trea	atment Target Limit	: (mg/kg)	<0.75	<7.8
Zone ID	Sample ID	Date of Sampling		
	T36A/TCLP	25/2/2014	<0.1	-
T36A	T36A/TCLP.1	26/2/2014	<0.1	-
	T36A/TCLP.2	26/2/2014	<0.1	-

Table	4.4	

Results of UCS Test of Cement S/S Treated Soil

	Parameter		UCS			
	LOR (kPa)		0.5			
Treatment Target Limit (kPa)						
Zone ID	Sample ID	Date of Sampling				
	A1/TCLP	21/1/2014	3.5			
A1	A1/TCLP.1	21/1/2014	1.7			
	A3/TCLP	2/4/2014	2			
۸۵	A3/TCLP.1	2/4/2014	2.1			
A3	A3/TCLP.2	4/3/2014	2.9			
	A3/TCLP.3	2/4/2014 2/4/2014	2.6			
	A4/TCLP	9/4/2014	1.6			
A4	A4/TCLP.1	9/4/2014	1.8			
	A4/TCLP.2	9/4/2014	1.8			
	A5/TCLP	7/4/2014	2.6			
A5	A5/TCLP.1	7/4/2014	2.3			
	A5/TCLP.2	7/4/2014	2.3			
Dr	R5/TCLP	22/1/2014	2.5			
R5	R5/TCLP.1	22/1/2014	2.5			
R6	R6/TCLP	4/16/2014	3.3			
κυ	R6/TCLP.1	4/16/2014	3.2			
R7	R7/TCLP	14/4/2014	7.9			
Γ /	R7/TCLP.1	14/4/2014	8.2			
	R8/TCLP	28/2/2014	1.5			
R8	R8/TCLP.1	28/2/2014	1.3			
	R8/TCLP.2	28/2/2014	1.4			
T10A	T19A/TCLP.1	12/3/2014	1.6			
T19A	T19A/TCLP.2	14/3/2014	1.5			
	T22BA/TCLP	17/3/2014	1.5			
	T22BA/TCLP.1	17/3/2014	1.8			
T22BA	T22BA/TCLP.2	17/3/2014	1.8			
IZZDA	T22BA/TCLP.3	17/3/2014	1.6			
	T22BA/TCLP.4	20/3/2014	1.6			
	T22BA/TCLP.5	20/3/2014	1.9			
	T22BB/TCLP	25/3/2014	1.9			
T22BB	T22BB/TCLP.1	25/3/2014	1.5			
	T22BB/TCLP.2	25/3/2014	1.5			

	Parameter					
	LOR (kPa)					
Tre	Treatment Target Limit (kPa)					
Zone ID	Sample ID	Date of Sampling				
	T22BB/TCLP.3	27/3/2014	1.5			
	T22BB/TCLP.4	27/3/2014	1.2			
	T32C/TCLP	4/3/2014	1.1			
T32C	T32C/TCLP.1	4/3/2014	1.6			
1520	T32C/TCLP.2	5/3/2014	1.2			
	T32C/TCLP.3	5/3/2014	1.2			
	T36A/TCLP	25/2/2014	1.1			
T36A	T36A/TCLP.1	26/2/2014	2			
	T36A/TCLP.2	26/2/2014	2.1			

Bioremediation

- 4.4.5 Biopiling treatment was commenced on 24 March 2014. Progress monitoring samples are required for every 20m³ contaminated soils from zones R1-R4 and A2 per month; and every 360m³ soils from zones T32E and T35C per fortnight. The sampling plan for biopile monitoring is summarized in Table 4.5. In total, 20 sampling locations were identified for the biopile as indicated in Figure 15 and monitoring samples are taken from these locations according to the abovementioned schedule. 20 and 27 monitoring samples were collected from the biopile in March and April 2014 respectively. 27 results were received and summarized in Table 4.6 and Table 4.7.
- 4.4.6 Bioremediation system closure assessment will be conducted once satisfactory results are obtained during progress monitoring. Soil samples will be taken for every 20m³ soils from zones R1-R4 and A2; and every 76.5m³ soils from zones T32E and T35C for closure assessment. The sampling plan is indicated in **Table 4.5**.
- 4.4.7 According to the testing results of the sample collected in the first monitoring (T0), remediation target has already been met for the contaminated soil from Zone R1, R2, R4, A2 and R3. This may be due to localized contaminants in the soil. As a conservative approach, the soil from R1, R2, R4, A2 and R3 will be treated in the biopile for at least 2 months before conducting closure assessment even the treatment target has already been met in the first monitoring.
- 4.4.8 For the soil of A- and R- zones, QA/QC samples are required for every 20 samples collected for monitoring tests. 1 set of QA/QC samples was collected in the reporting period. The result is not yet received and will be included in the next monthly report.

_	Volume of	Pro	ogress Monitorin	g	Closure Assessment
Zone	Soil (m ³)	Minimum No. of samples required	Sampling Frequency	Respective Samples	Minimum No. of samples required
R1, R2, & R4 [#]	80	4	Monthly	BP1-BP4	4
R3	98.75	5	Monthly	BP14-BP19*	5
A2	46.78	3	Monthly	BP5, BP6, BP6A	3
T35C	1435.07	4	Fortnightly	BP7-BP10	19
T32E	775.43	3	Fortnightly	BP11-BP13	11

 Table 4.5
 Sampling Plan for Bioremediation Progress Monitoring

The soil volume of R1, R2 and R4 are 25m³, 30m³ and 25m³ respectively.

* BP19 is an extra sample taken by the Contractor.

Note:

Table 4.6 Results for Biopile Monitoring Sample (Zones R1-R4 and A2)							
Monitoring Sampling Location	Corresponding Contaminated Zone	Target Contaminant	Remediation target (mg/kg)	LOR (mg/kg)	T0 (24-25/3/2014)		
BP1	R1,R2,R4	Bis-(2-ethlhexyl)-phthalate	30	5	<5		
BP2	R1,R2,R4	Bis-(2-ethlhexyl)-phthalate	30	5	9.01		
BP3	R1,R2,R4	Bis-(2-ethlhexyl)-phthalate	30	5	11.7		
BP4	R1,R2,R4	Bis-(2-ethlhexyl)-phthalate	30	5	<5		
BP5	A2	Bis-(2-ethlhexyl)-phthalate	30	5	<5		
BP6	A2	Bis-(2-ethlhexyl)-phthalate	30	5	<5		
BP6A	A2	Bis-(2-ethlhexyl)-phthalate	30	5	<5		
		Bis-(2-ethlhexyl)-phthalate	30	5	<5		
BD44	Da	Benzene	0.704	0.2	<0.2		
BP14	R3	PCR C9-C16	2240	200	<200		
		PCR C17-C35	10000	500	638		
		Bis-(2-ethlhexyl)-phthalate	30	5	<5		
DD46	R3	Benzene	0.704	0.2	<0.2		
BP15		PCR C9-C16	2240	200	<200		
		PCR C17-C35	10000	500	1290		
	R3	Bis-(2-ethlhexyl)-phthalate	30	5	<5		
BD16		Benzene	0.704	0.2	<0.2		
BP16		PCR C9-C16	2240	200	<200		
		PCR C17-C35	10000	500	930		
		Bis-(2-ethlhexyl)-phthalate	30	5	<5		
BP17	DO	Benzene	0.704	0.2	<0.2		
BP17	R3	PCR C9-C16	2240	200	<200		
		PCR C17-C35	10000	500	1860		
		Bis-(2-ethlhexyl)-phthalate	30	5	5.98		
DD10	R3	Benzene	0.704	0.2	<0.2		
BP18	КЭ	PCR C9-C16	2240	200	<200		
		PCR C17-C35	10000	500	1000		
		Bis-(2-ethlhexyl)-phthalate	30	5	<5		
DD40	DO	Benzene	0.704	0.2	<0.2		
BP19	R3	PCR C9-C16	2240	200	<200		
		PCR C17-C35	10000	500	2210		

Table 4.6 Results for Biopile Monitoring Sample (Zone)	s R1-R4 and A2)
--	-----------------

Table 4.7	Results for Biopile Monitoring Sample (Zones T35C and T32E)
-----------	---

Monitoring Sampling Location	Corresponding Contaminated Zone	Target Contaminant	Remediation target (mg/kg)	LOR (mg/kg)	T0 (24- 25/3/2014)	T1 (7/4/2014)
BP7	T35C	TPH	1000	252	<252	<u>2580</u>
BP8	T35C	TPH	1000	252	<252	<252
BP9	T35C	TPH	1000	252	<252	<252
BP10	T35C	TPH	1000	252	<252	<252

P:\60048283\1.01\Deliverables\Impact Monitoring Report\Monthly\1404\Rev.0 - 1404.docx

18

Yau Tong Bay – Decommissioning of Shipyard Sites

BP11	T32E	TPH	1000	252	<u>1163</u>	931
BP12	T32E	TPH	1000	252	840	<u>3196</u>
BP13	T32E	TPH	1000	252	<u>1223</u>	<u>1365</u>

Note:

The data exceeding relevant remediation target is indicated in **bold and underlined**.

5 ENVIRONMENTAL SITE INSPECTION AND AUDIT

5.1 Site Inspection

- 5.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting period, 5 site inspections were carried out on 4, 11, 17, 23 and 30 April respectively.
- 5.1.2 The environmental site inspection summary is provided in **Appendix I**.
- 5.1.3 Particular observations during the site inspection are described below:-

Air Quality

5.1.4 Regular spraying of water has been maintained for areas not covered by water sprinklers (Reminder).

Noise

5.1.5 No adverse observation was identified in the reporting period.

Water Quality

5.1.6 No adverse observation was identified in the reporting period.

Land Contamination

5.1.7 IEA has collected spot check samples and the results are in order with the verification samples collected by the Contractor. The IEA sample results are listed with its corresponding test samples in Table 4.2. The laboratory report of IEA sample is included in Appendix K.

Chemical and Waste Management

5.1.8 Label is missing for an oil drum on site. The oil drum should be properly labelled.

Landscape and Visual Impact

5.1.9 No adverse observation was identified in the reporting period.

Miscellaneous

- 5.1.10 No adverse observation was identified in the reporting period.
- 5.1.11 The Contractor has partially rectified observations as identified during environmental site inspection in the reporting month within agreed time frame. Rectifications of remaining identified items are undergoing by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly.

5.2 Advice on the Solid and Liquid Waste Management Status

- 5.2.1 The Contractor had submitted the application form for registration as a chemical waste producer for the Project.
- 5.2.2 As advised by the Contractor, 636m³ of soil (of which 101m³ was artificial hard material) was excavated on site; it will be either mixed with cement or transferred to biopile for treatment. No general refuse was generated on site and disposed of at the South East New Territories (SENT) Landfill. 500m³ and 0m³ of inert C&D materials were reused on site and reused in SENT for backfilling purpose respectively. No metals, paper/cardboard packaging or plastics were generated and collected by the registered recycling collectors. No chemical waste was collected by the licensed contractor in the reporting period.

- 5.2.3 The Contractor is advised to properly maintain on-site C&D materials, wastes collection, and sorting and recording systems. The Contractor is also advised to maximize the reuse / recycling of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.2.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage areas on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.3 Environmental Licenses and Permits

5.3.1 The environmental licenses and permits for Stage 1 of the Project and valid in the reporting month is summarized in **Table 5.1**.

Statutory Reference	License/ Permit	License or Permit No.	Valid I	Period	Remarks
			From	То	
EIAO	Environmental Permit EP-409/2010 10/01/2011		N/A	Yau Tong Bay – Decommissioning of Shipyard Sites	
WDO	Chemical Waste Producer Registration	5213-290- K2822-04	22/10/2013	N/A	Whole Construction Site
WDO	Billing Account for Disposal of Construction Waste	7018469	N/A	N/A	Whole Construction Site
APCO	Notification Pursuant to Section 3(1) of The Air Pollution Control (Construction Dust) Regulation	365200	02/10/2013	N/A	Whole Construction Site

 Table 5.1
 Summary of Environmental Licensing and Permit Status

5.4 Implementation Status of Environmental Mitigation Measures

- 5.4.1 In response to the site audit findings, the Contractor carried out corrective actions.
- 5.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in **Appendix C**. Many recommended mitigation measures were implemented properly.

5.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 5.5.1 No Action Level exceedance was recorded since no construction noise related complaint was received in the reporting period.
- 5.5.2 No Limit Level exceedance of construction noise was recorded in the reporting period.
- 5.5.3 Water quality monitoring was not conducted in the reporting period as the demolition of marine structures has not yet commenced. No Action/Limit Level exceedance of water quality was recorded in the reporting period.
- 5.6 Summary of Complaints, Non-compliances, Notification of Summons and Successful Prosecutions
- 5.6.1 The Environmental Complaint Handling Procedure is annexed in **Figure 3**.
- 5.6.2 No environmental complaint, non-compliance, notification of summons and prosecution was received in the reporting period.
- 5.6.3 Cumulative statistics on complaints, non-compliance, notifications of summons and successful prosecutions are summarized in **Appendix J**.

6 FUTURE KEY ISSUES

6.1 Construction Programme for the Coming Months

- 6.1.1 The proposed major construction works for the Project in May and June 2014 include:-
 - Operation and maintenance of Biopile System;
 - Backfill to the outstanding zones; and
 - Excavation and disposal of PCBs-contaminated Soil in Zones T32D and T32E to Landfill.

6.2 Key Issues for the Coming Month

6.2.1 Excavation of contaminated soil will continue to take place in May 2014.

6.3 Monitoring Schedule for the Coming Month

6.3.1 The tentative schedule for environmental monitoring in May 2014 is provided in **Appendix F**.

7 COMMENTS, RECOMMENDATIONS AND CONCLUSIONS

7.1 Comments on Mitigation Measures

7.1.1 According to the environmental site inspections performed in the reporting month, the following comments are provided:-

Air Quality Impact

• Regular spraying of water should be maintained for areas not covered by water sprinklers.

Construction Noise Impact

• Nil.

Water Quality Impact

• Nil.

Chemical and Waste Management

• Oil drums should be properly labelled.

Landscape and Visual Impact

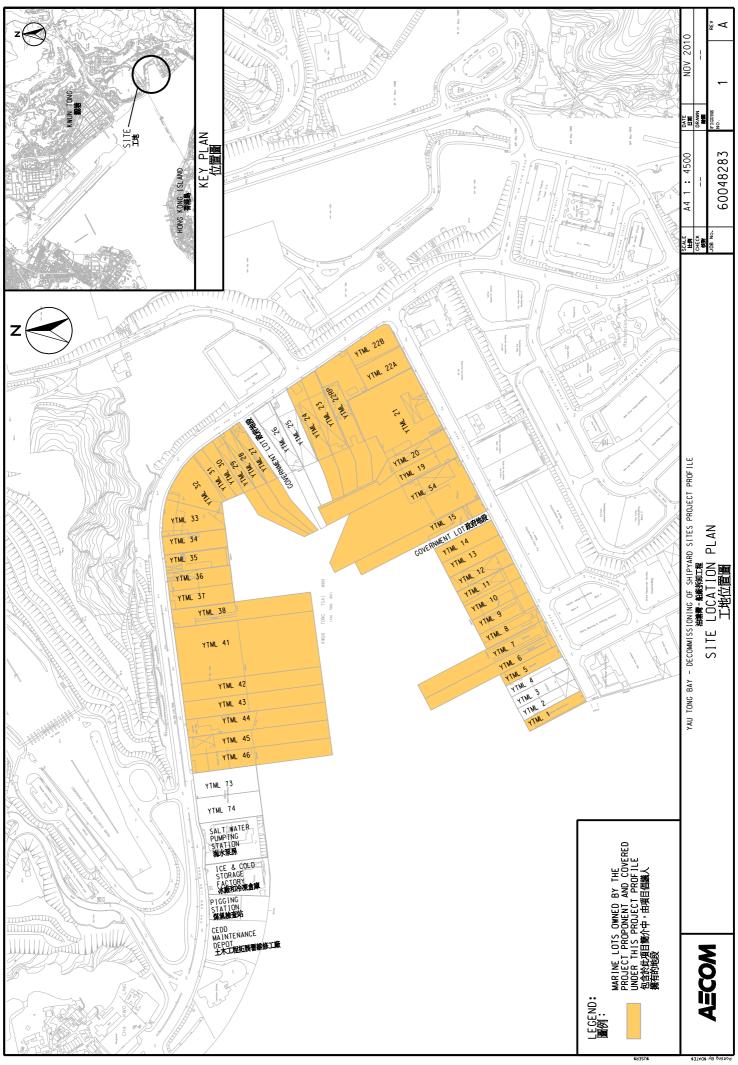
• Nil.

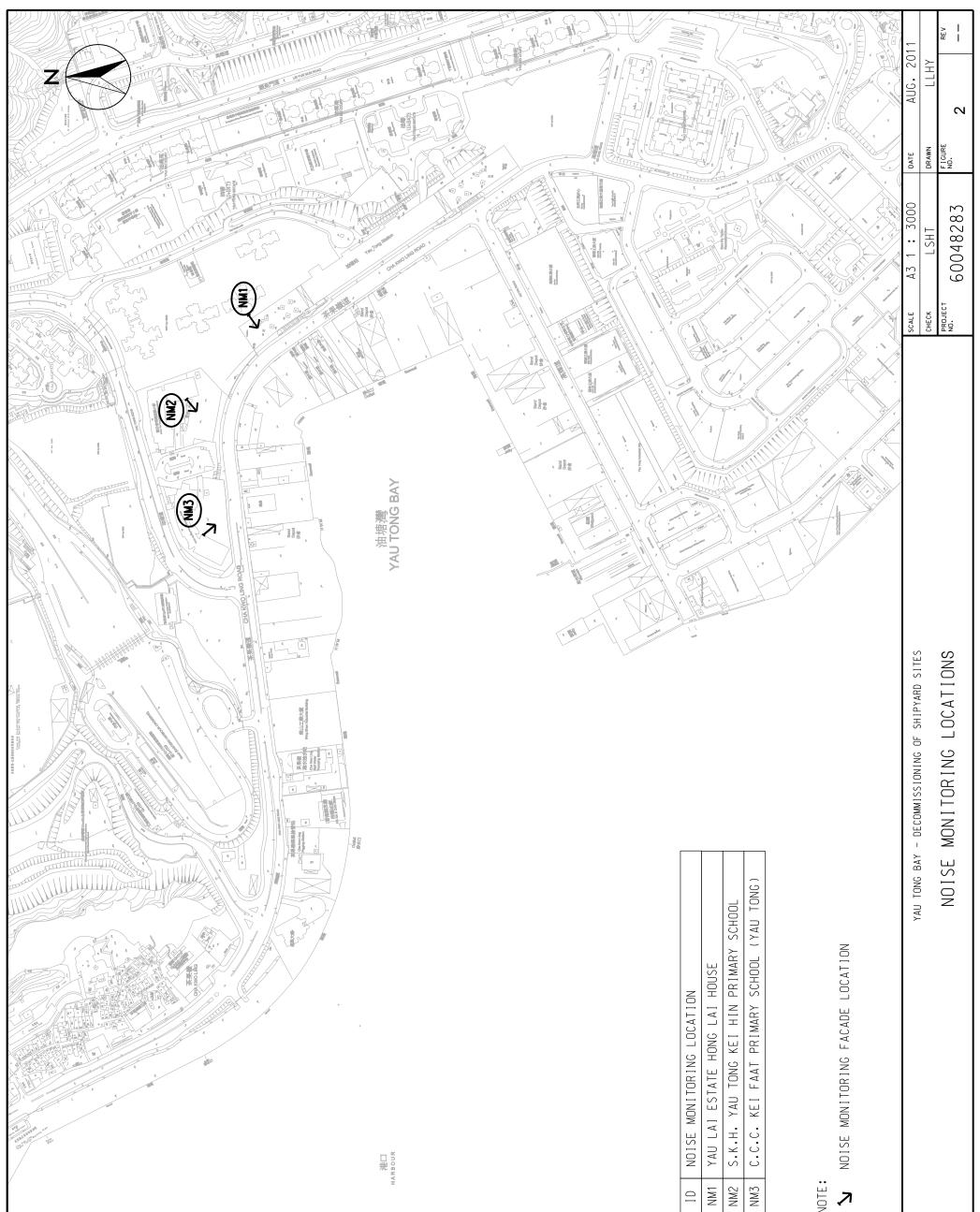
Miscellaneous

• Nil.

7.2 Recommendations on EM&A Programme

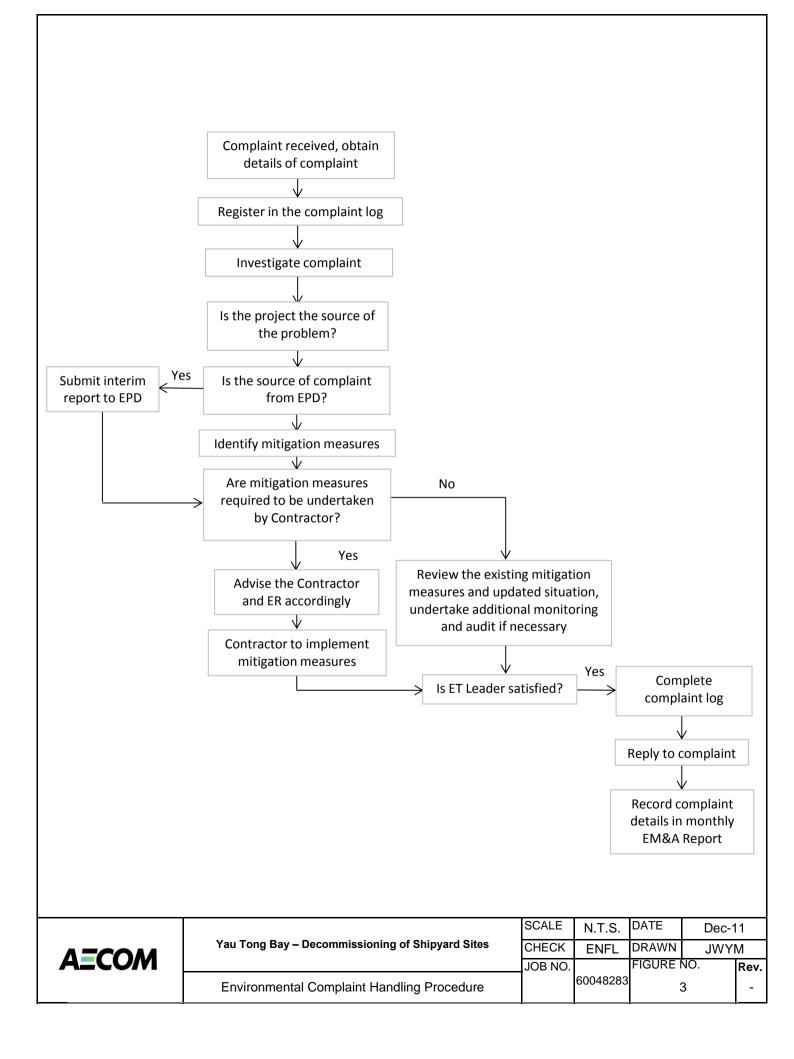
- 7.2.1 The impact noise monitoring programme ensured that any environmental impact to the receivers would be readily detected and timely actions could be taken to rectify any non-compliance. Assessment and analysis of monitoring results collected demonstrated the environmental acceptability of the Project. The weekly site inspection and soil remediation monitoring and auditing ensured that all the environmental mitigation measures recommended in the EIA report were effectively implemented.
- 7.2.2 The EM&A programme effectively monitored the environmental impacts from the construction activities and no particular recommendation was advised for the improvement of the programme.

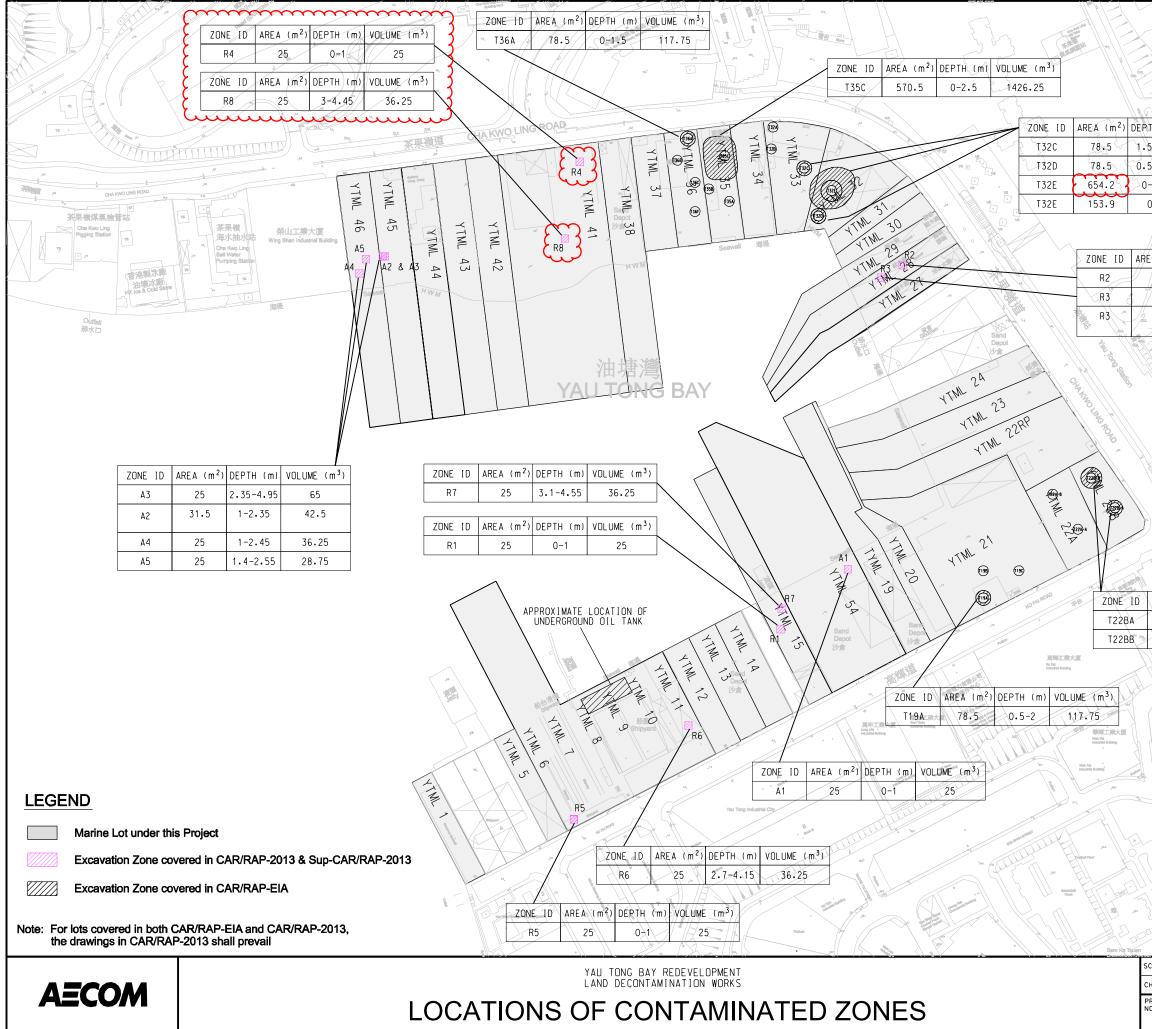



7.3 Conclusions

- 7.3.1 Noise monitoring was carried out 3 times in the reporting period.
- 7.3.2 No Action Level exceedance was recorded since no construction noise related complaint was received in the reporting period.
- 7.3.3 No Limit Level exceedance of construction noise was recorded in the reporting period.
- 7.3.4 Water quality monitoring was not conducted in the reporting period as the demolition of marine structures has not yet commenced. No Action/Limit Level exceedance of water quality was recorded in the reporting period.
- 7.3.5 Environmental site inspection was carried out 5 times in April 2014. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audits.
- 7.3.6 No environmental complaint, non-compliance, notification of summons and prosecution was received in the reporting period.

FIGURES

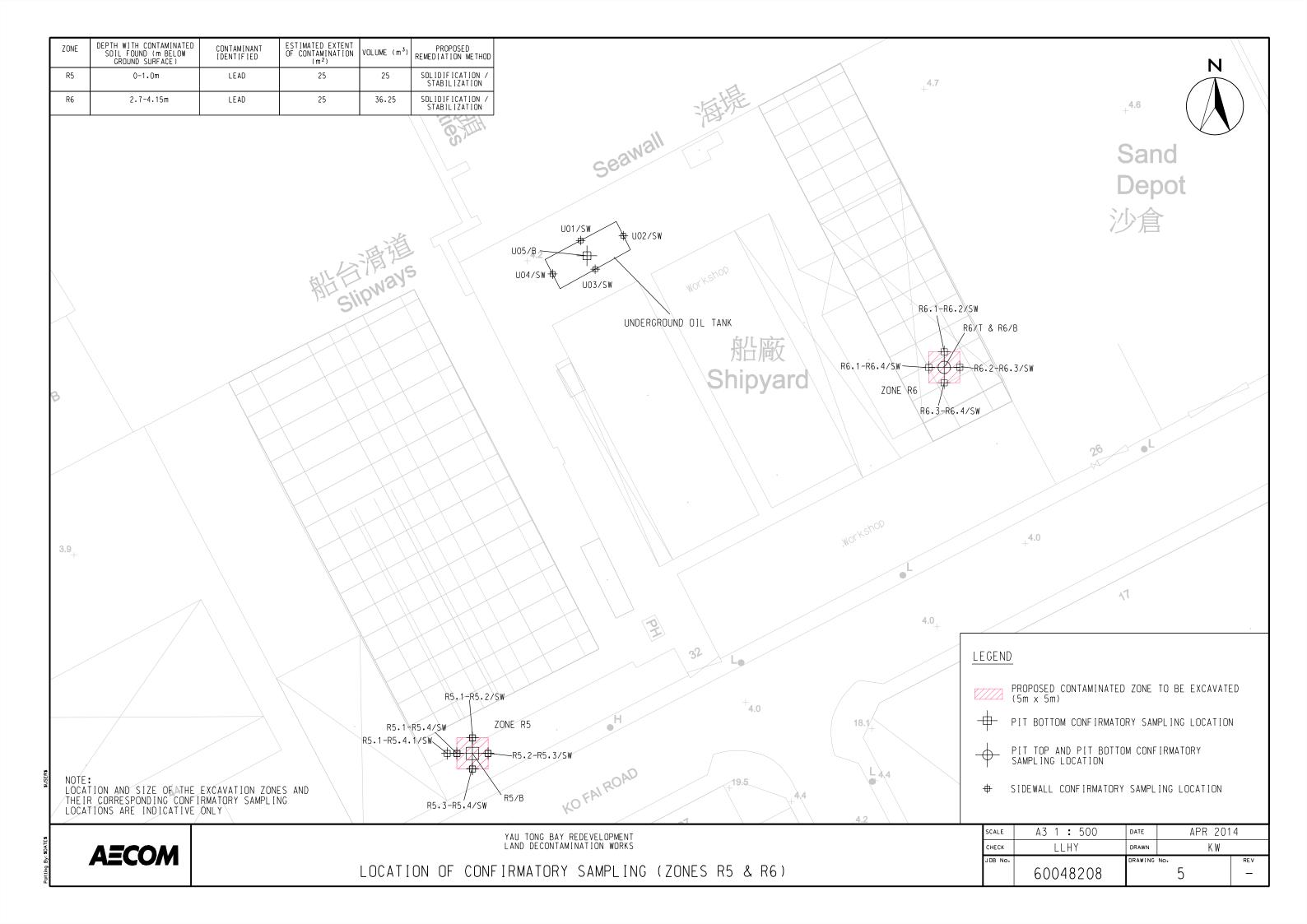


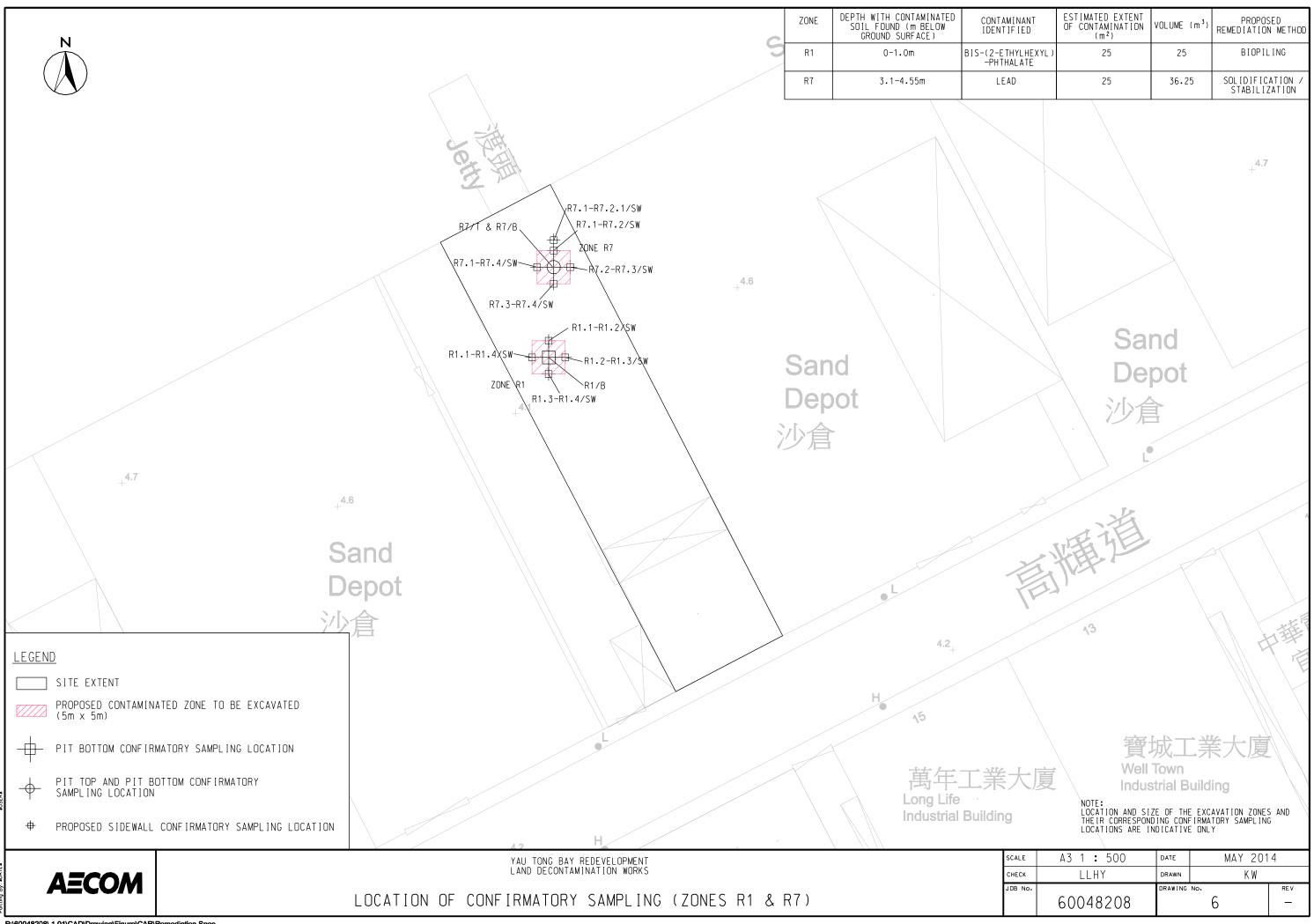

NOTE:

10	ΤA	Ī	Ŀ	
I NO	ES.	γαυ Τι	kei f	
NOISE MONITO	YAU LAI ESTA	S.К.Н.	C.C.C.	
ID	NM1	NM2	NM3	

市 Ш HARBOUR

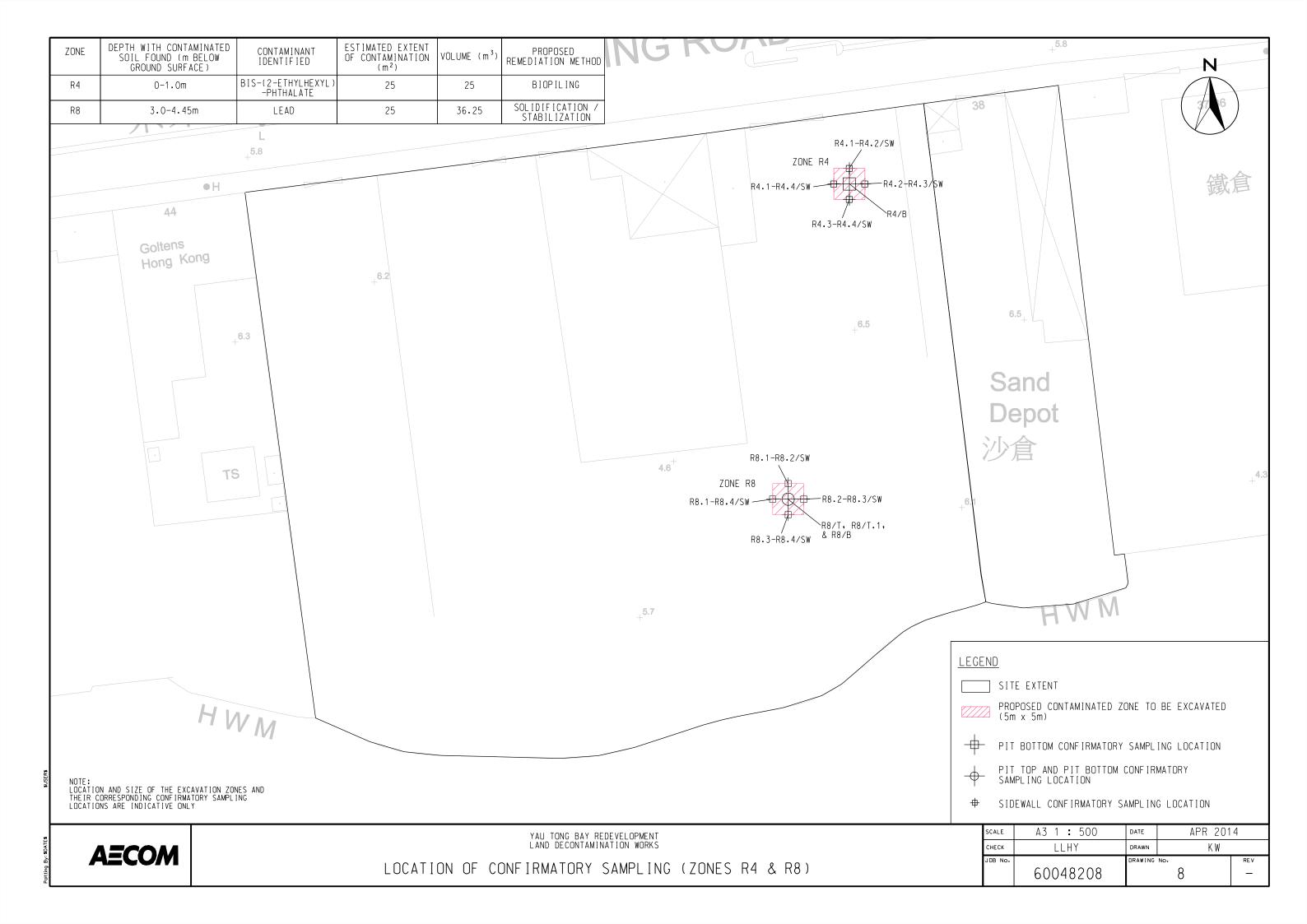
維多利亞港 VICTORIA HARBOUR

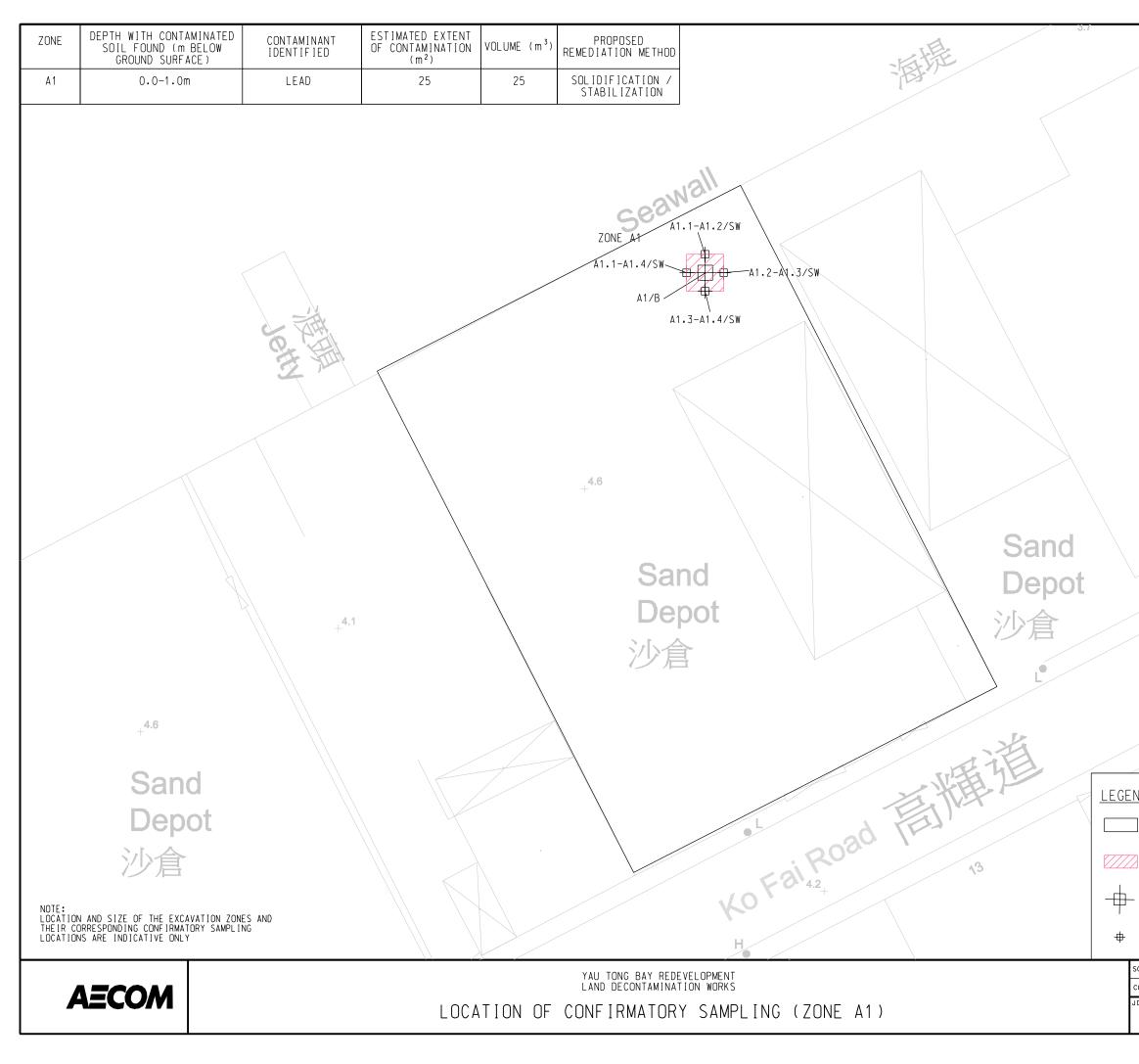

P:\60048208\ 1.01\CAD\Drawing\Figure\Remediation Spec

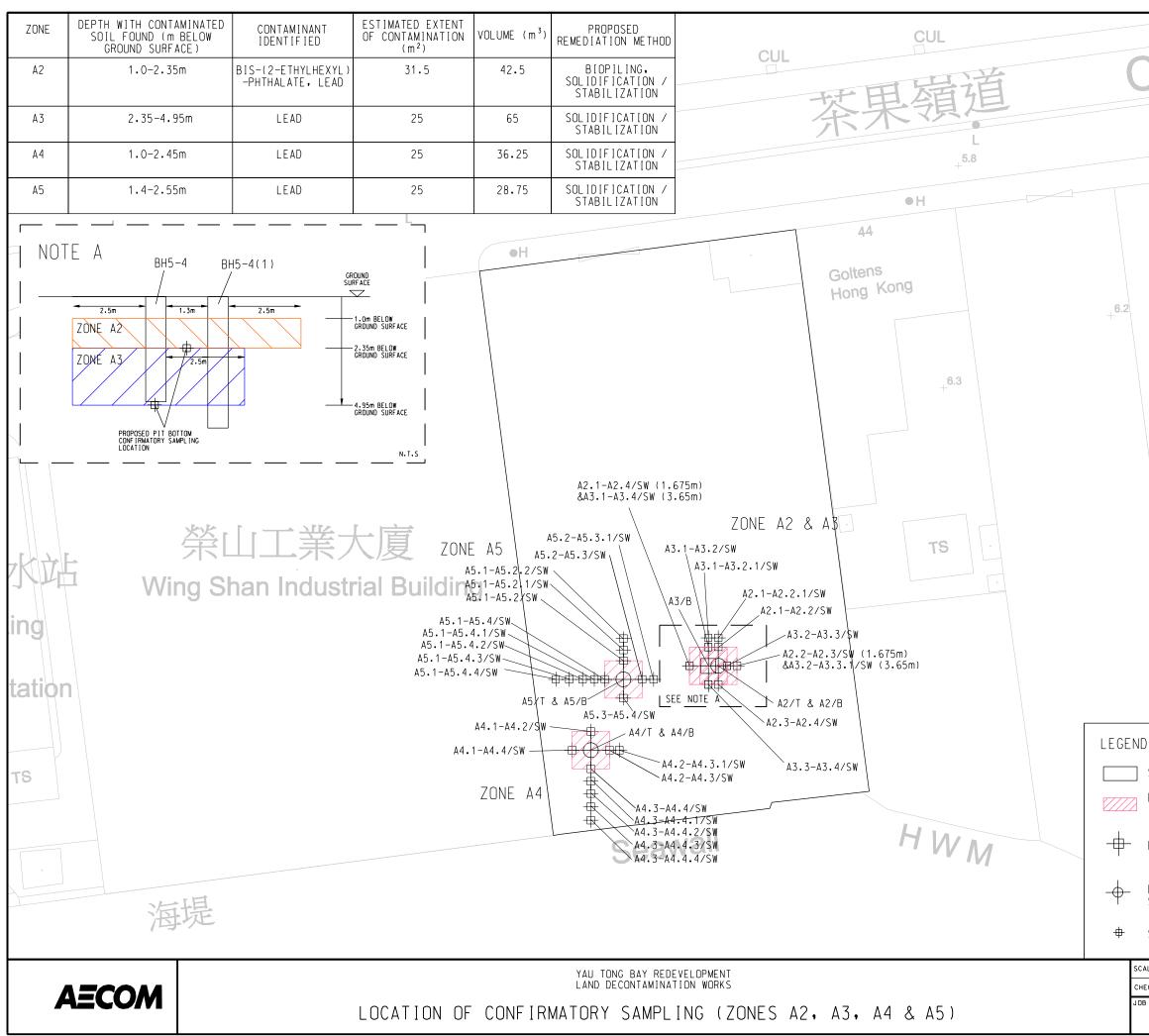

E Prix You	· 油塘	B w.
TH (m)	VOLUME (m ³)	
5-3.5	157	
5-1.5	78.5	
-1.5	750.51	
0-3	461.58	101
Reis	I I I I I I I I I I I I I I I I I I I	

N

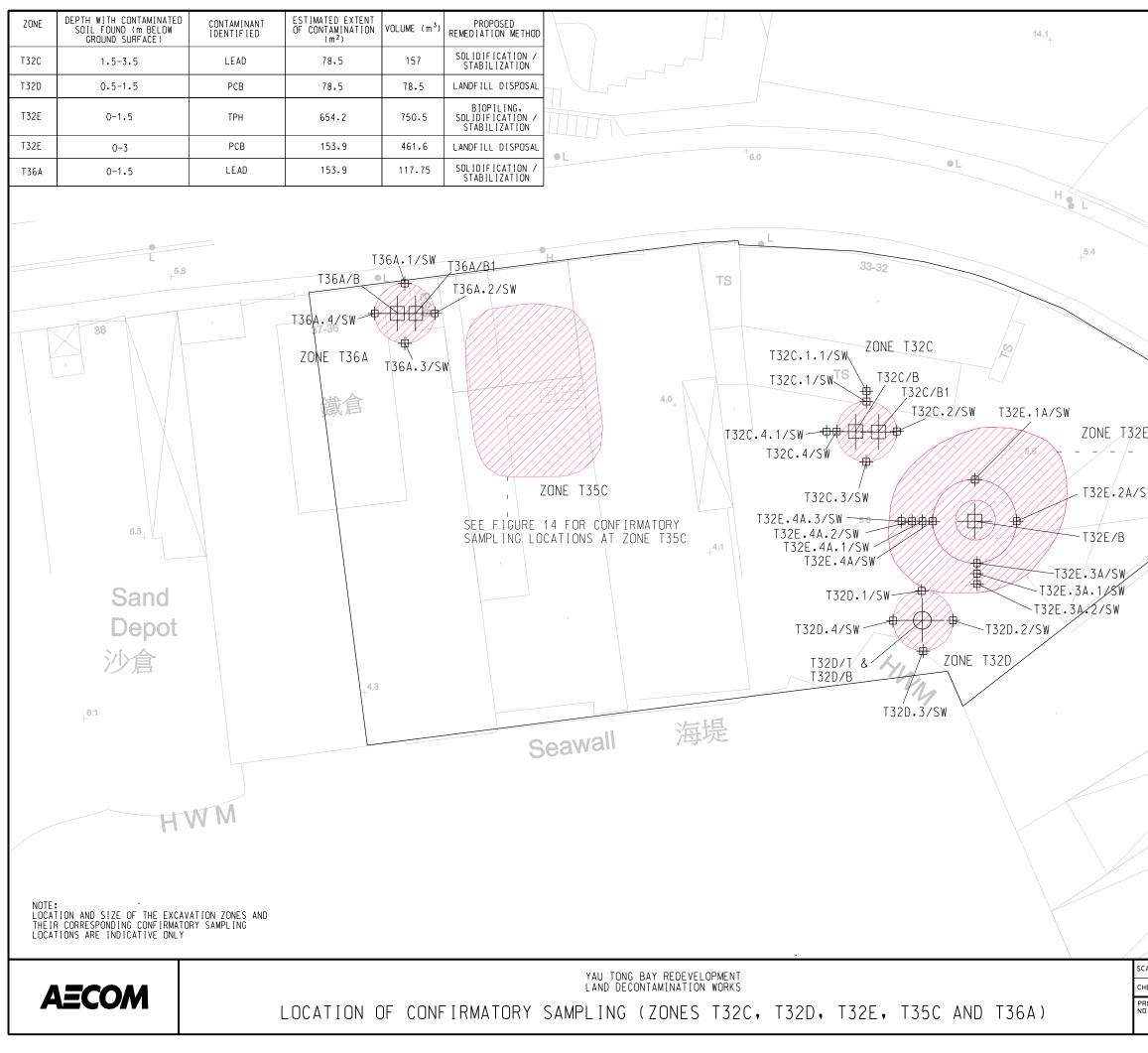
11 16		
EA (m²)	DEPTH (m)	VOLUME (m ³)
25	0-1	25
25	0-1	. 25
25	1-3.95	73.75
		·m

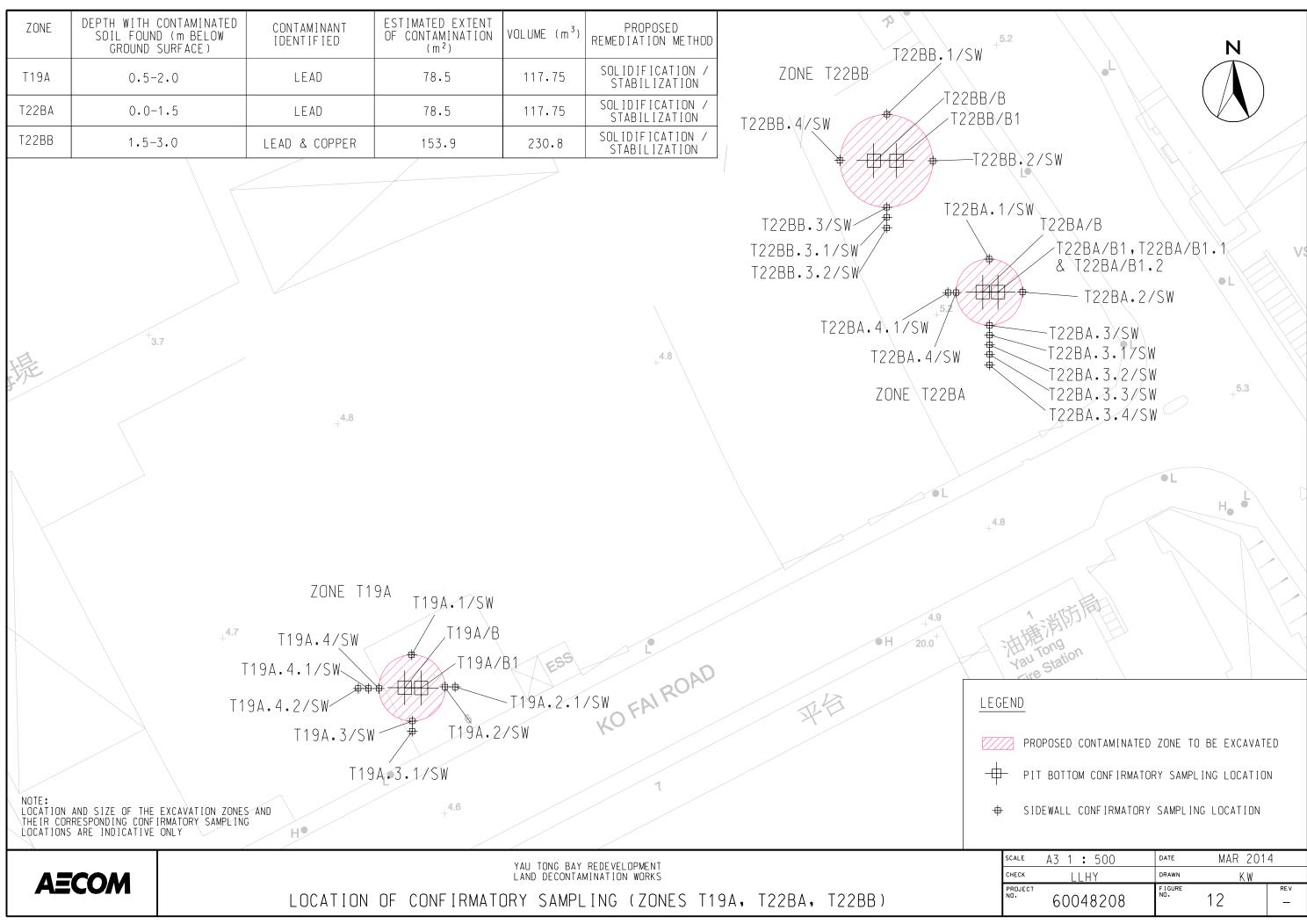

INE)	, n	1947 -			à		
AREA (m	2) DE	PTH (m)	VOLUME (m [:]	³)	\square	**、油美 YAUWEICO	·····································
78.5		0-1.5	117.75)	-	250
153.9		1.5-3	230.79				
Burray Industrial Co 注意增加了	深中心 seree 读大厦第 lindustial lindustial			100 Apr 2000		er and a second se	
Physonal	10 .710		in the second se	A A ROD OTTOER		100 Million Arman	
		A	AMENDMENT A	1110	LLHY	LSHT	SEP 2013 MAY 2013
5	ONN NIO	REV	TENDER DRAW		LLHY DRAWN	L SH T CHECKED	DATE
SCALE	A3	5 1 : 25	00	DATE	MAY	201	3
СНЕСК		LSHT		DRAWN		LLHY	
PROJECT NO.	60	0482	208	F IGURE NO•		4	

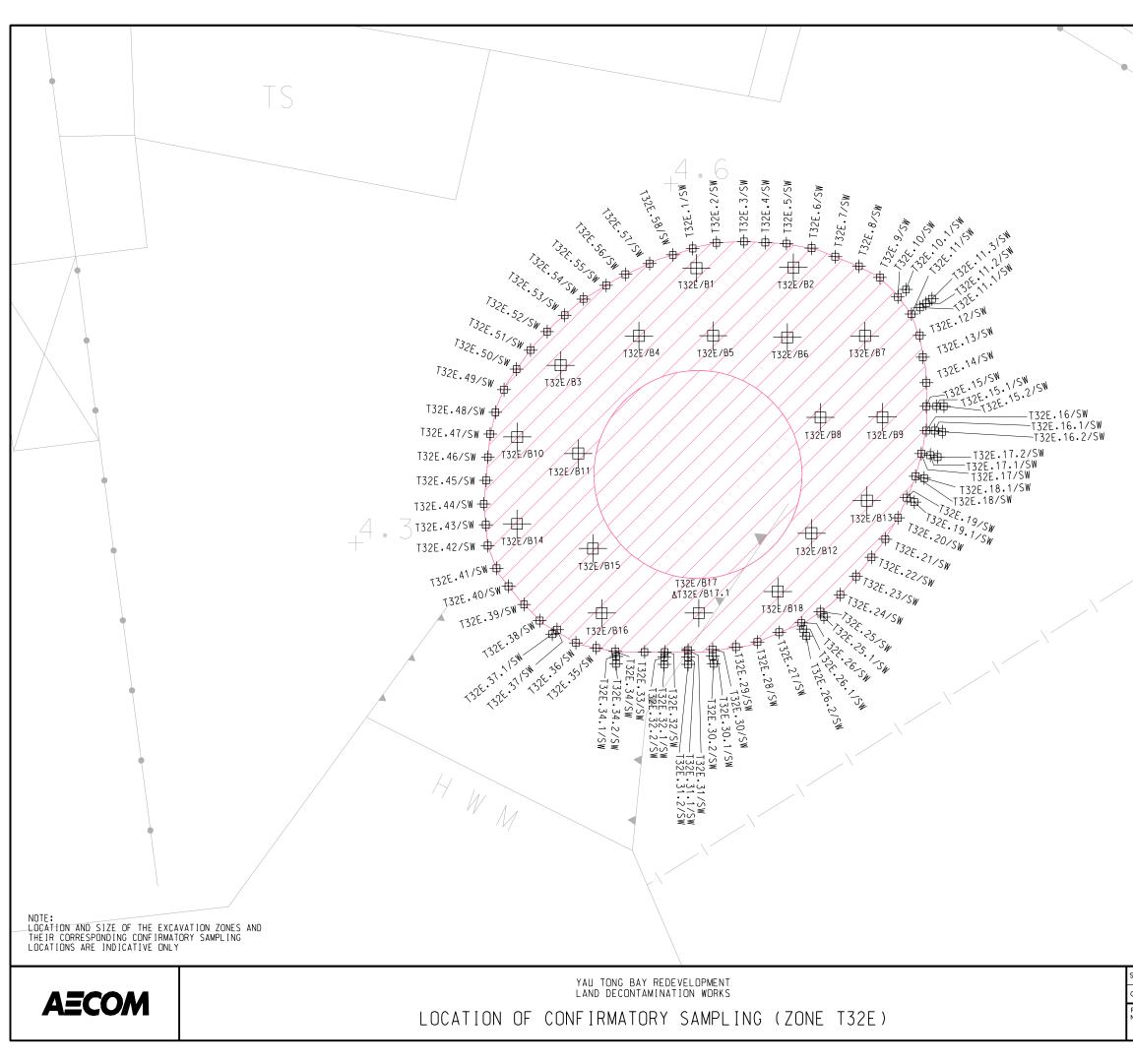


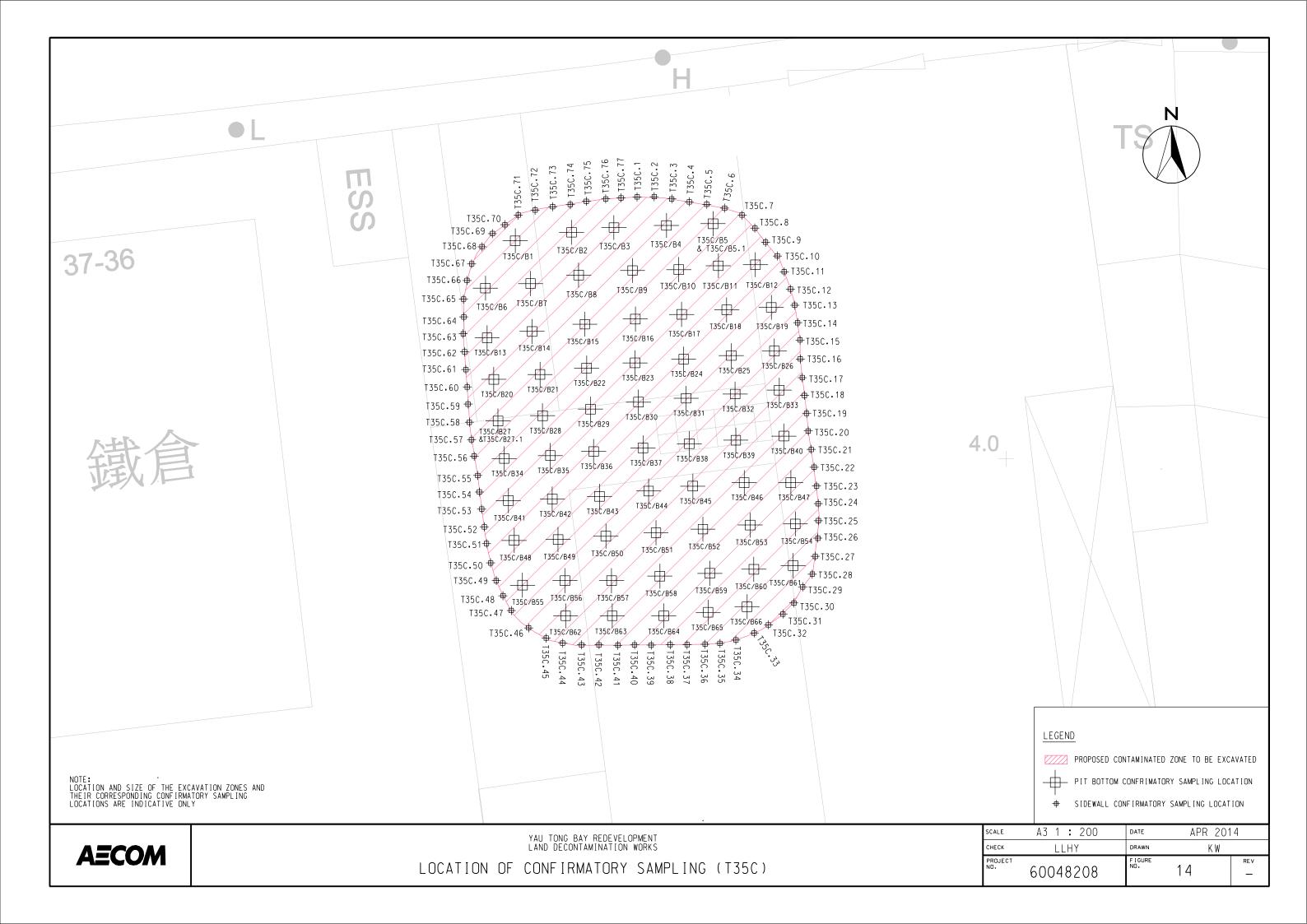

P:\60048208\ 1.01\CAD\Drawing\Figure\CAR\Remediation Spec

	DEPTH WITH CONTAMINATED SOIL FOUND (m BELOW GROUND SURFACE)	CONTAMINANT IDENTIFIED	ESTIMATED EXTEN OF CONTAMINATIO (m²)	VOLUME (m ³)	PROPOSED REMEDIATION METHOD			VO		
R2	0-1.0m	BIS-(2-ETHYLHEXYL) -PHTHALATE	25	25	BIOPILING					
R3	0-1.Om	BIS-(2-ETHYLHEXYL) -PHTHALATE	25	25	BIOPILING		VS	•	VS	
	1.0-3.95m	PCR (C17 - C35)	25	73.75	BIOPILING					
	2.5-3.95m	PCR (C9 - C16)	25	36.25	BIOPILING	+5.3		VS		
	2.5-3.95M	BENZENE	25	36.25	BIOPILING	Ster				
	44	3/14			ZON R2.1-R2.4/SW R3.2/SW(0.5m) -R3.2/SW(2.475m)	R2.1-R2.2/SW R2 R2 R2.2-R2.3/SW R2.2-R2.3.1/SW R2.2-R2.3.2/SW R2/B			S	
			R3.1-R3. &R3.1-R3	4/SW(0.5m) .4/SW(2.475m) ZONE R3 R3/B(1m) &R3/B(3.95m	&R3.2-	R2.3-R2.4/SW 3/SW(0.5m) .3/SW(2.475m)	.6			
NOTI LOC THF	TION AND SIZE OF THE	EXCAVATION ZONES /	O	ZONE R3 R3/B(1m) &R3/B(3.95m	n)	R2.3-R2.4/SW 3/SW(0.5m) .3/SW(2.475m)	6		CEND PROP (5m	POSE × 5
NOTI LOC, THE LOC,	E: ATION AND SIZE OF THE IR CORRESPONDING CONFI ATIONS ARE INDICATIVE	EXCAVATION ZONES A RMATORY SAMPLING ONLY	O	ZONE R3 R3/B(1m) &R3/B(3.95m	n)	R2.3-R2.4/SW 3/SW(0.5m) .3/SW(2.475m)		D Z 沙 - f	CEND PROP (5m	POSE × 5
LOC, THE LOC,	E: ATION AND SIZE OF THE IR CORRESPONDING CONFI ATIONS ARE INDICATIVE	EXCAVATION ZONES A RMATORY SAMPLING ONLY	O	ZONE R3 R3/B(1m) &R3/B(3.95m	n) R3.3-R3.4/SW(0.5m &R3.3-R3.4/SW(2.4)	R2.3-R2.4/SW 3/SW(0.5m) .3/SW(2.475m)		D Z 沙 - f	GEND PROP (5m	POSEI × 51 BOT

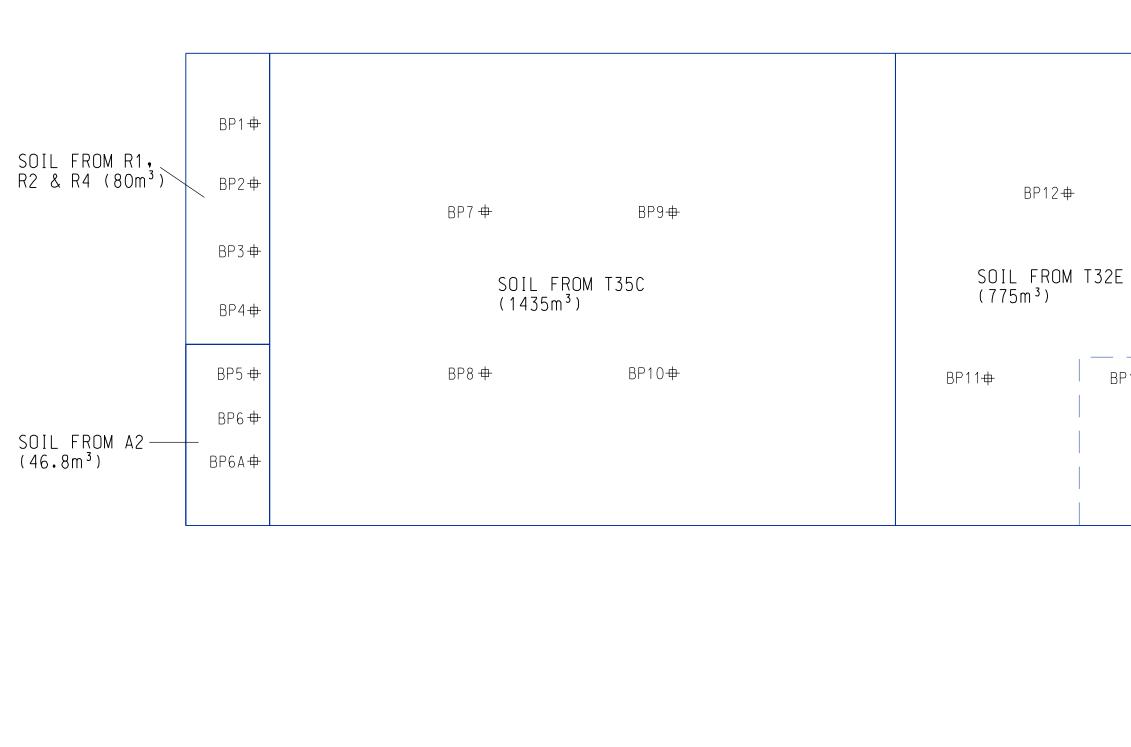



			NI	
			N	
	+4.(В		
+4	.7			
Т				
			•	
				6
			+4.6	
	H			
				Podil
	11			
<u>ND</u>				
] sit	E EXTENT			
PRO (5m	POSED CONTAMINATED Z(1 x 5m)	ONE TO	BE EXCAVATED	
- PIT	BOTTOM CONFIRMATORY	SAMPL	ING LOCATION	
۲IN	EWALL CONFIRMATORY S		G L OCATION	
SCALE	A3 1 : 500		MAR 201	4
CHECK	LLHY	DRAWN	KW	Г
JOB No.		DRAWING	No.	REV
	60048208		9	-

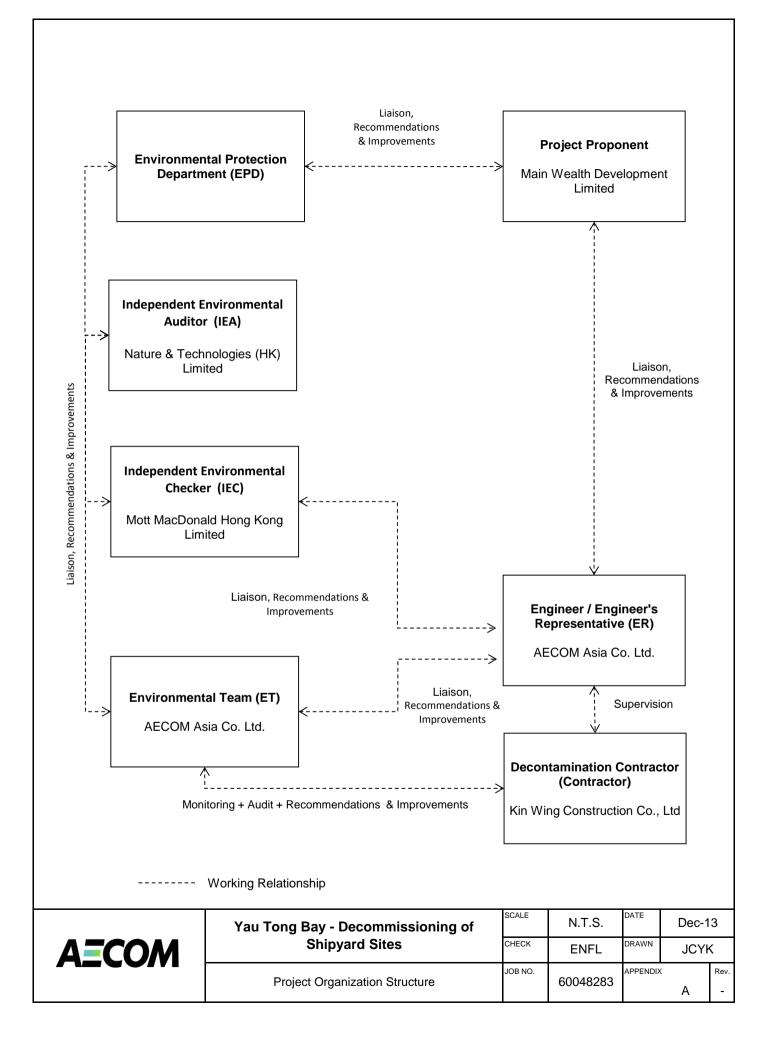

Cl	HA KW	0	+5.	G
				4.6
ND				+
	E EXTENT			
→ ↗ PRO	POSED CONTAMINATED ZC x 5m))NE TO	BE EXCAVATED	
PIT	BOTTOM CONFIRMATORY	SAMPL	ING LOCATION	
SAM	TOP AND PIT BOTTOM (PLING LOCATION EWALL CONFIRMATORY SA			
SCALE	A3 1 : 500	DATE	MAY 201	4
CHECK JOB No.	LLHY	DRAWN DRAWING	K W	REV
	60048208		10	-


/		_
	Ν	
CUL		
	H	/
	平台	
	+ ^{5.3} •L	
2E SEE FIGURE 13 FOR	CONFIRMATORY SAMPLING	
LOCATIONS ON THE	ØUTER BOUNDARY OF T32E	
	+5.3	
5.3 +	THE A	
	HIT KAN	
AFF KAT ST	wmit Batts	\geq
	awmill	\langle
LEGEND		
	EXTENT DSED CONTAMINATED ZONE TO BE EXCAVATED	
	BOTTOM CONFIRMATORY SAMPLING LOCATION	
T SAMPL	ALL CONFIRMATORY SAMPLING LOCATION	
scale A3 1 : 600) date MAR 2014	
CHECK LLHY	DRAWN KW	\neg
PROJECT 60048208	F I GURE REV	┥
00040200		

SCALE	A3 1 : 500	date MAR 201	4
СНЕСК	LLHY	drawn K.W	
PROJECT NO.	60048208	^{FIGURE} 12	RE V



				Ì
			5.	\geq
			+ •	
		N		
		\backslash		
			\bigvee	
		\sim		
				•
				\sim
				$\langle \rangle$
			\sim	
		. /	/	
		\sim		
	\			
	\`\			
,				
/	/			
$\langle \rangle$				
	LEGEND			
	PROPOSED CON			
	— П РІТ ВОТТОМ С	CONF I RMATORY	SAMPLING LO	CATION
	⊕ SIDEWALL CON	NFIRMATORY S	AMPLING LOCA	TION
SCALE	A3 1:250	DATE	APR 201	4
СНЕСК	LLHY	DRAWN	KW	
PROJECT		1		
ND	0040000	FIGURE	7	REV
ND. 6	50048208	FIGURE NO. 1	3	RE V


YAU TONG BAY REDEVELOPMENT LAND DECONTAMINATION WORKS SAMPLING PLAN FOR BIOPILE MONITORING

NOTE: THE SAMPLING LOCATIONS ARE INDICATIVE ONLY

		——SOII (98	L FROM •8m³)	R3
°13 ⊕				
	F			
			BIOPILE SET-UI AMPLING LOCAT	ION
scale A3 1 check LL	: 200 .HY	DATE DRAWN	APR 201 KW	4
PROJECT 6004		FIGURE NO•	15	RE V

APPENDIX A PROJECT ORGANIZATION STRUCTURE

APPENDIX B CONSTRUCTION PROGRAMME

Yau Tong Bay Redevelopment Land Decontamination Works

Construction Programme (Rev. 3)

I.D		Start	Finish			2013								2014						2015
No.		Start	Filish	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan
10	Submission of Method Statement for Biopiling and Cement Solidification	13-Sep-13	27-Nov-13																	
20	Approval of the Method Statement for Biopiling and Cement Solidification by EPD	30-Sep-13	16-Dec-13																	
30	Submission of ELS Plan	13-Sep-13	23-Oct-13																	
40	BD Approval and Consent of ELS Plan	24-Oct-13	23-Jan-14																	
42	EM & A by ET	28-Oct-13	5-Jan-15																	
45	Pre-sampling of the sidewall samples	11-Nov-13	16-Dec-13																	
50	Setting up biopile base liner and cement solidification mixing pit	28-Oct-13	23-Nov-13																	
60	Excavation of Contaminated Soil in Zone R1, R2, R4, A2 for Biopiling	17-Dec-13	23-Jan-14																	
70	Excavation of Contaminated Soil in Zone R3, T32E and T35C for Biopiling	24-Jan-14	23-Mar-14																	
80	Cement Solidification Pilot Test	17-Dec-13	31-Dec-13																	
90	Excavation of Contaminated Soil in Zone A1, A2, A4, A5, R5, T19A, T22BA, T36A for Cement Solidification	17-Dec-13	23-Jan-14																	
100	Excavation of Contaminated Soil in Zone A3, R6, R7, R8, T22BB and T32C for Cement Solidification	24-Jan-14	23-Mar-14																	
110	Cement Solidification Treatment Process	17-Dec-13	7-Apr-14																	
120	Operation and maintenance of Biopile System	24-Mar-14	2-Nov-14																	
130	Sample collection for TCLP test for PCB Contaminated Soil	11-Nov-13	29-Nov-13																	
132	Submission of TCLP test results to EPD	30-Nov-13	2-Dec-13																	
134	Approval by EPD for Landfill disposal	3-Dec-13	2-Jan-14																	
136	Excavation and disposal of PCBs Contaminated Soil in Zone T32D and T32E to Landfill	3-Jan-14	2-Nov-14																	
140	Submission and approval of method statement for clearance of the Underground Oil Tank	30-Sep-13	2-Nov-13																	
143	Clearance of the Underground Oil Tank	4-Nov-13	9-Nov-13																	
147	Submission and approval of method statement for demolition of Underground Oil Tank	25-Oct-13	9-Nov-13							_										
148	Removal of Underground Oil Tank	11-Nov-13	23-Nov-13																	
150	Confirmation Sampling & Testing in the vincinity of the Underground Oil Tank	25-Nov-13	10-Dec-13																	
160	Submission of Supplementary Contamination Assessment Report	11-Dec-13	10-Jan-14																	
170	Submission of Remediation Report	18-Nov-14	21-Dec-14																	
180	Remove all plants and equipment for decontamination works.	23-Dec-14	5-Jan-15																	

APPENDIX C IMPLEMENTATION SCHEDULE OF ENVIRONMENTAL MITIGATION MEASURES (EMIS)

Appendix C - Implementation Schedule of Environmental Mitigation Measures (EMIS)

Air Quality - Schedule of Recommended Mitigation Measures

Impact	Mitigation Measures	Timing	Implementation Status	
Air Quality during	• Careful sitting of construction activities which generate substantial amount of dust can effectively reduce the overall impact.	During construction	V	
Construction	• Use of regular watering, with complete coverage if possible, to reduce dust emissions from exposed site surfaces and unpaved roads and for dusty construction areas and areas close to ASRs, particularly during dry weather.			V
	• Open stockpiles shall be avoided. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where possible, prevent placing dusty material storage piles near ASRs. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines.		V	
	 No free falling construction debris should be allowed; debris should be let down by hoist or enclosed tunnel to the ground. 	-		N/A
	 All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet. 			V
	• Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading points, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods.		V	
	• Height from which dusty materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading.]	N/A	
	• Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations.		V	
	 Skip hoist for material transport should be totally enclosed by impervious sheeting. 		V	
	• Establishment and use of vehicle wheel and body washing facilities at the exit points of the site and public roads, combined with cleaning of public roads wherever necessary and practical.	-	V	
	• The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.		V	
	• Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit.		V	
	• Imposition of speed controls for vehicles on site haul roads. Where feasible, routing of vehicles and positioning of construction plants should be at a maximum possible distances from sensitive receivers.		V	
	• Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.		N/A	
	 Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise. 		V	

Noise - Sched	ule of Recommende	d Mitigation Measures
---------------	-------------------	-----------------------

Impact	Mitigation Measures	Timing	Implementation Status
Construction Noise during Construction	 In order to reduce the excessive noise impacts at the affected NSRs during normal daytime working hours, the following mitigation measures shall be implemented:- adopting quiet powered mechanical equipment; scheduling of works; erect a 3m tall moveable noise barriers along the site boundary; and noise enclosure. 	During construction	V
	Only well-maintained plant should be operated on-site and plant should be serviced regularly.		V
	 Silencers or mufflers on construction equipment should be utilized and should be properly maintained. 		V
	 Mobile plant, if any, should be sited as far away from NSRs as possible. 		V
	 Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. 		V
	• Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.		V
	 Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities. 		V
	 Use of acoustic barriers as close to the source as possible. Equipment to be shielded: air compressor, water pump, concrete pump, dumper, dump truck, generator, various hand tools, saw, excavator, loader, truck mixer, mobile crane, vibrator and breaker. 	During examination periods of the school nearby	V

Impact	Mitigation Measures	Timing	Implementation Status
Water	Construction works at or close to the seafront		•
Quality during Construction	• Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel), chemical waste storage area and temporary stockpile of construction and demolition materials should be located well away from the seawater front and storm drainage during carrying out of the works.	During construction	V
	• Stockpiling of construction and demolition materials and dusty materials should be covered and located away from the seawater front and storm drainage.		V
	• Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby receiving waters.		V
	Construction run-off and Drainage		
	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" shall be followed as far as practicable in order to minimise surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge. These practices include, inter alia, the following items:- • Provision of perimeter channels to intercept storm-runoff from outside the site. These shall be	During construction	V
	 constructed in advance of site formation works and earthworks. Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as possible be located within roofed areas. The drainage in these covered areas should be connected to foul sewers via a petrol interceptor and/or oil/grease separator. Oil leakage or spillage should be contained and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance. 		V
	 Sand/silt removal facilities such as sand traps, silt traps and sediment basins shall be provided to remove sand/silt particles from runoff to meet the requirements of the Technical Memorandum standard under the Water Pollution Control Ordinance. The design of silt removal facilities should be based on the guidelines provided in ProPECC PN 1/94. All drainage facilities and erosion and sediment control structures should be inspected monthly, regularly cleaned and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. 		V
	 Careful programming of the works to minimise the potential of soil erosion during the rainy season. Other measures that need to be implemented before, during, and after rainstorms are summarized in ProPECC PN 1/94. 		V
	• Exposed soil surface shall be protected by paving as soon as possible to reduce the potential of soil erosion.		V
	Open stockpiles of construction materials on site shall be covered with tarpaulin or similar fabric during rainstorm.	1	V
	General Construction Activities		
	• Debris and rubbish generated on-site shall be collected, handled and disposed of properly to avoid entering the nearby nullah and stormwater drains. Stockpiles of cement and other construction material should be kept covered when not being used.	During construction	V

Water Quality - Schedule of Recommended Mitigation Measures

Impact	Mitigation Measures	Timing	Implementation Status
Water Quality during Construction	• Oils and fuels should only be used and stored in designated areas which have pollution prevention facilities. All fuel tanks and storage areas shall be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event.		V
	Sewage Effluent		
	• Temporary sanitary facilities, such as portable chemical toilets, shall be employed on-site. A licensed contractor would be responsible for appropriate disposal and maintenance of these facilities.	During construction	V
	• Effluent discharged from the construction site should comply with the standards stipulated in the TM-DSS.		V
	• Subject to the sampling results of Contamination Assessment Plan of the site, any contaminated land treatments are subjected to EPD's requirements on handling, treatment and disposal. Should effluent stream and/or extracted ground water be discharged from the site, the discharge shall comply with the WPCO and any EPD special requirements.		N/A
	• Establishment of baseline and impact monitoring program to establish the baseline water quality condition and monitor the construction process in order to enforce controls and modify method of work if any adverse impacts on the water sensitive receivers are detected.		V

Waste Management- Schedule of Recommended Mitigation Measures

Impact	Mitigation Measures	Timing	Implementation Status
Waste	Good Site Practice		
Management during Construction	• Nominate an approved personnel, such as a site manager, to be responsible for good site practices and effective arrangements for collection and disposal to an appropriate facility of all wastes generated at the works area. Training of site personnel in proper waste management and handling procedures shall be undertaken.	During construction	V
	 Construction materials should be planned and stocked carefully to minimise and avoid unnecessary generation of waste. 		V
	• General refuse shall be stored and collected separately from other construction and chemical wastes. Provide on-site refuse collection facilities and enclosed transfer facility for storage and containment.		V
	Waste points should be provided sufficiently and waste should be collected regularly.		V
	• Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.		V
	• Separate chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Centre located at Tsing Yi. Chemical waste shall be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.		@

Impact	Mitigation Measures	Timing	Implementation Status
Waste	• Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.	During	V
Management during	 Develop procedures such as a trip-ticket system to monitor the disposal of C&D material and solid wastes at public filling areas and landfills, and to control fly-tipping. 		V
Construction	 A recording system for the amount of wastes generated, recycled and disposed should be proposed. 		V
	Waste Reduction Measures		
	Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:-	During construction	
	 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal. 		V
	• Encourage collection of aluminum cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the work force.		V
	 Any unused chemicals or those with remaining functional capacity shall be recycled. 		V
	 Use of reusable non-timber formwork to reduce the amount of C&D material. 		V
	 Prior to disposal of C&D waste, it is recommended that wood, steel and other metals shall be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill. 		V
	 Proper storage and site practices to minimise the potential for damage or contamination of construction materials. 		V
	 Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. 		V
	General Site Wastes	•	
	 Collection area for construction site waste should be provided where waste can be stored prior to removal from site. 	During construction	V
	 An enclosed and covered area for the collection of the waste is recommended to reduce 'wind blow' of light material. 		V
	 An open area used for storage or loading/unloading of wastes should be bunded and all the polluted surface run-off collected within this area should be diverted into sewers. 		V
	 General refuse should be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. 		V
	Workforce Wastes		
	 Suitable collection sites around site offices and canteen should be required. 	During construction	V
	 Waste should be removed daily or as often as required. 		V

Impact	Mitigation Measures	Timing	Implementation Status		
Waste	Chemical Waste				
Management during Construction	• After use, chemical waste (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes.	During construction	@		
Construction	• Waste should be properly stored on site within suitably designed containers and should be collected by approved licensed waste collectors for disposal at the Chemical Waste Treatment Centre (CWTC) or other licensed facility in accordance with the Waste Disposal Chemical Waste (General) Regulation.		V		
	• Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided.	During construction	N/A		
	• Provision of appropriate on-site temporary storage facility for any asbestos containing materials (ACM) where necessary. Storage facilities shall be designed in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.		V		
	• Employ registered contractors for removal of ACM off-site and disposal at a designated landfill site.		V		
	Construction and Demolition Material				
	• The selective demolition method is recommended to be employed to minimize the effort of sorting mixed C&D materials.	During construction	V		
	• In order to minimise the impact resulting from collection and transportation of C&D material for off- site disposal, it is recommended that the public fill material generated from demolition works shall be re-used on-site as far as possible.		V		
	• A suitable area should be designated to facilitate the sorting process and a temporary stockpiling area will be required for the separated materials. Separate construction and demolition material into C&D waste (non-inert material) and public fill (inert material) for appropriate disposal. Public fill disposed at a public filling area shall only consist of earth, building debris, broken rock and concrete. The material shall be free from marine mud, household refuse, plastic, metals, industrial and chemical waste, animal and vegetable matter, and other material considered to be unsuitable by the Filling Supervisor. Small quantities of timber mixed with otherwise suitable material would be permitted. C&D waste, such as wood, glass, plastic, steel and other metals, shall be reused or recycled and, as a last resort, disposed to landfill.		V		

Land Contamination - Schedule of Recommended Mitigation Measures

Impact	Mitigation Measures	Timing	Implementation Status
		work has been completed.	
Land Contamination (For inaccessible lots and lots which the Permit Holder opt to re- assess in accordance with the Risk- Based Remediation Goals (RBRGs) approach)	 A method statement detailing the following shall be submitted to EPD for endorsement:- Methodology, monitoring and verification process to ascertain the concrete mix receipe and leachability of the product; The sample size for the verification soil test to be conducted by IEA for spot check purpose; The notification system for notifying the Director the satisfactory completion of the excavation and treatment of contaminated soil; and Provision and operation requirements of equipment and personnel decontamination facilities. 	All areas identified to require solidification of soil as land remediation / The pilot test results and method statement shall be submitted and endorsed at least one month prior to the full scale solidification works. All soil identified and to be identified as contaminated with TPH / The method statement shall be submitted and endorsed at least one month prior to the commencement of the biopiling works.	V (A method statement for biopiling and solidification has been submitted to EPD on 2 Oct 2013. The method statement is endorsed by EPE on 20 Dec 2013.)

Impact	Mitigation Measures	Timing	Implementation Status
Land Contamination (For inaccessible lots and lots which the Permit Holder opt to re- assess in accordance with the Risk- Based Remediation Goals (RBRGs) approach)	A Soil Remediation Report should be submitted to EPD to demonstrate that the remediation work has been properly carried out.	All areas identified to require soil and groundwater remediation / The Remediation Report shall be submitted and endorsed prior to the commencement of the development construction works.	N/A
	 Inspections for dioxin. Should there be signs of incineration facilities, burn pits or facilities that utilises high temperature burning, soil sampling for dioxin will be carried out. Details regarding such sampling shall be approved by EPD. A detailed proposal for dealing with dioxin contaminated material, if found, shall also be submitted to EPD for approval. 	All the Yau Tong Bay marine lots inspection and testing shall commence upon availability of site.	V
Land Contamination (For lots and facilities assessed under EIA with approved CAP, CAR and RAP based on Dutch B levels	 A pilot test shall be conducted to ascertain the concrete mix receipe and leachability of the product prior to a full scale solidification and a method statement detailing the solidification procedure (including the sampling proposal for process monitoring) shall be submitted to EPD for endorsement. 	All areas identified to require solidification of soil as land remediation / The pilot test results and method	V (A pilot test to ascertain the concrete mix recipe was conducted on 30 Dec 2013. The method statement for solidification has

Impact	Mitigation Measures	Timing	Implementation Status
referenced to ProPECC PN3/94 – Contaminated Land Assessment and Remediation)		statement shall be submitted and endorsed prior to the full scale solidification works.	been submitted to EPD on 2 Oct 2013 and subsequently endorsed by EPD on 20 Dec 2013.)
Land Contamination (For lots and facilities assessed under EIA with approved CAP, CAR and RAP based on Dutch B levels referenced to ProPECC PN3/94 – Contaminated Land	 A method statement detailing the biopiling methodology, monitoring and verification procedures shall be submitted to EPD for endorsement. 	All soil identified and to be identified as contaminated with TPH / The method statement shall be submitted and endorsed prior to the commencement of the biopiling works.	V (The method statement for biopiling has been submitted to EPD on 2 Oct 2013 and subsequently endorsed by EPD on 20 Dec 2013.)
Assessment and Remediation)	 A Soil Remediation Report should be submitted to EPD to demonstrate that the remediation work has been properly carried out. 	All areas identified to require soil and groundwater remediation / The Remediation Report shall be submitted and endorsed prior to the commencement of the development construction	N/A

Impact	Mitigation Measures	Timing	Implementation Status
		works.	

Landscape and Visual Impact - Schedule of Recommended Mitigation Measures

Impact	Mitigation Measures	Timing	Implementation Status
Landscape and Visual	• On-site mature trees within the Project boundary shall be retained. Any mature tree shall not be transplanted or fell unless permission has been given by the EPD.	During construction	V
Impact	• During the biopiling process, the biopiles shall be limited to a height of less than 3m.	1	V
during Construction	• Erection and maintenance of decorative screen/colour hoarding around the site.		V

Legend: V = implemented; X = not implemented;

@ = partially implemented; N/A = not applicable - No such work was undertaken or no such material was used on site.

APPENDIX D SUMMARY OF ACTION AND LIMIT LEVELS

Appendix D - Summary of Action and Limit Levels

Location	Action Level	Limit Level
NM1	When one documented complaint,	75 dB(A)
NM2	related to 0700 – 1900 hours on normal weekdays, is received from	65/70 dB(A)*
NM3	any one of the sensitive receivers.	65/70 dB(A)*

Table 1 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

*Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

APPENDIX E CALIBRATION CERTIFICATES OF MONITORING EQUIPMENTS

Website: www.cigismec.com

E-mail: smec@cigismec.com

Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

13CA1107 01-01			Page	1	of	2
Rion Co., Ltd. NL-31		1 1 1 1	Microphone Rion Co., Ltd. UC-53A 90565 -			
AECOM ASIA CO., - - 07-Nov-2013	, LTD.		12			
08-Nov-2013						
used in the calibr	ation					
Model: B&K 4226	Serial No. 2288444		Expiry Date: 22-Jun-2014			
DS 360 DS 360	33873 61227		15-Apr-2014 15-Apr-2014		CEPREI CEPREI	
22 ± 1 °C						
60 ± 10 % 1000 ± 10 hPa						
	Sound Level Meter Rion Co., Ltd. NL-31 00320528 / N.007.0 - AECOM ASIA CO. - 07-Nov-2013 08-Nov-2013 08-Nov-2013 Used in the calibr Model: B&K 4226 DS 360 DS 360 22 ± 1 °C 60 ± 10 %	Sound Level Meter (Type 1) Rion Co., Ltd. NL-31 00320528 / N.007.03A - AECOM ASIA CO., LTD. - 07-Nov-2013 08-Nov-2013 08-Nov-2013 Used in the calibration Model: Serial No. B&K 4226 2288444 DS 360 33873 DS 360 61227 22 ± 1 °C 60 ± 10 %	Sound Level Meter (Type 1) Rion Co., Ltd. NL-31 00320528 / N.007.03A - AECOM ASIA CO., LTD. - 07-Nov-2013 08-Nov-2013 08-Nov-2013 Used in the calibration Model: Serial No. B&K 4226 2288444 DS 360 33873 DS 360 61227 22 ± 1 °C 60 ± 10 %	Sound Level Meter (Type 1) Microphone Rion Co., Ltd. Rion Co., Ltd. NL-31 UC-53A 00320528 / N.007.03A 90565 - - AECOM ASIA CO., LTD. - - - 07-Nov-2013 - 08-Nov-2013 - Used in the calibration Expiry Date: B&K 4226 2288444 22-Jun-2014 DS 360 33873 15-Apr-2014 DS 360 61227 15-Apr-2014 22 ± 1 °C 60 ± 10 % -	Sound Level Meter (Type 1) Microphone Rion Co., Ltd. Rion Co., Ltd. NL-31 UC-53A 00320528 / N.007.03A 90565 - - AECOM ASIA CO., LTD. - - 07-Nov-2013 08-Nov-2013 Used in the calibration Model: Serial No. Expiry Date: B&K 4226 2288444 DS 360 33873 15-Apr-2014 DS 360 61227 15-Apr-2014 22 ± 1 °C 60 ± 10 %	Sound Level Meter (Type 1) Microphone Rion Co., Ltd. Rion Co., Ltd. NL-31 UC-53A 00320528 / N.007.03A 90565 - - AECOM ASIA CO., LTD. - - - 07-Nov-2013 08-Nov-2013 used in the calibration Expiry Date: Traceat B&K 4226 2288444 DS 360 33873 15-Apr-2014 CIGISME DS 360 61227 15-Apr-2014 CEPREI DS 360 61227

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian Min/Feng Jun Qi

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date: 11-Nov-2013

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	13CA0617 01-01			Page	1	of	2
Item tested							
Description:	Sound Level Meter	(Type 1)	,	Microphone			
Manufacturer:	B & K		,	B&K			
Type/Model No.:	2238			4188			
Serial/Equipment No.:	2800927 / N.009.06	5	,	2791211			
Adaptors used:	-		,	-			
Item submitted by							
Customer Name:	AECOM ASIA CO.	LTD.					
Address of Customer:							
Request No.:	-						
Date of receipt:	17-Jun-2013						
Date of test:	18-Jun-2013						
		ation					
Reference equipment		ation Serial No.		Expiry Date:		Traceat	ole to:
Reference equipment	used in the calibra			Expiry Date: 22-Jun-2013		Traceat CIGISME	
Reference equipment Description: Multi function sound calibrator	used in the calibra Model:	Serial No.					
Date of test: Reference equipment Description: Multi function sound calibrator Signal generator Signal generator	used in the calibra Model: B&K 4226	Serial No. 2288444		22-Jun-2013		CIGISME	
Reference equipment Description: Multi function sound calibrator Signal generator	used in the calibra Model: B&K 4226 DS 360	Serial No. 2288444 33873		22-Jun-2013 15-Apr-2014		CIGISME CEPREI	
Reference equipment Description: Multi function sound calibrator Signal generator Signal generator Ambient conditions	used in the calibra Model: B&K 4226 DS 360	Serial No. 2288444 33873		22-Jun-2013 15-Apr-2014		CIGISME CEPREI	
Reference equipment Description: Multi function sound calibrator Signal generator Signal generator	Model: B&K 4226 DS 360 DS 360	Serial No. 2288444 33873		22-Jun-2013 15-Apr-2014		CIGISME CEPREI	

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

1 Huang Jian M ⊮Feng Jun Qi

18-Jun-2013 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	13CA1107 01-02		Page:	1	of	2
Item tested	1999 - 1999 - 1997 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -					
Description:	Acoustical Calibrat	or (Class 1)				
Manufacturer:	Rion Co., Ltd.					
Type/Model No.:	NC-73					
Serial/Equipment No .:	10307223 / N.004.	08				
Adaptors used:						
Item submitted by						
Curstomer:	AECOM ASIA CO.	, LTD.				
Address of Customer:	-	55				
Request No.:	-					
Date of receipt:	07-Nov-2013					
Date of test:	08-Nov-2013				<u>3877 - 200 - 20</u>	
		ration				
Date of test: Reference equipment ^{Description:}		ration Serial No.	Expiry Date:	т	raceabl	e to:
Reference equipment	used in the calib		17-Apr-2014	S	SCL	e to:
Reference equipment Description: Lab standard microphone Preamplifier	used in the calib Model: B&K 4180 B&K 2673	Serial No. 2341427 2239857	17-Apr-2014 16-Apr-2014	S	CL EPREI	e to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier	used in the calib Model: B&K 4180 B&K 2673 B&K 2610	Serial No. 2341427 2239857 2346941	17-Apr-2014 16-Apr-2014 24-Apr-2014	S C C	CL EPREI EPREI	e to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360	Serial No. 2341427 2239857 2346941 61227	17-Apr-2014 16-Apr-2014 24-Apr-2014 15-Apr-2014	S C C C	CL EPREI EPREI EPREI	e to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A	Serial No. 2341427 2239857 2346941 61227 US36087050	17-Apr-2014 16-Apr-2014 24-Apr-2014 15-Apr-2014 10-Dec-2013		CL EPREI EPREI EPREI EPREI	e to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360	Serial No. 2341427 2239857 2346941 61227	17-Apr-2014 16-Apr-2014 24-Apr-2014 15-Apr-2014		CL EPREI EPREI EPREI	e to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A	Serial No. 2341427 2239857 2346941 61227 US36087050	17-Apr-2014 16-Apr-2014 24-Apr-2014 15-Apr-2014 10-Dec-2013		CL EPREI EPREI EPREI EPREI	e to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	Serial No. 2341427 2239857 2346941 61227 US36087050 GB41300350	17-Apr-2014 16-Apr-2014 24-Apr-2014 15-Apr-2014 10-Dec-2013 15-Apr-2014		CL EPREI EPREI EPREI EPREI EPREI	e to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer Universal counter	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	Serial No. 2341427 2239857 2346941 61227 US36087050 GB41300350	17-Apr-2014 16-Apr-2014 24-Apr-2014 15-Apr-2014 10-Dec-2013 15-Apr-2014		CL EPREI EPREI EPREI EPREI EPREI	e to:
Reference equipment Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer Universal counter Ambient conditions	used in the calib Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B 53132A	Serial No. 2341427 2239857 2346941 61227 US36087050 GB41300350	17-Apr-2014 16-Apr-2014 24-Apr-2014 15-Apr-2014 10-Dec-2013 15-Apr-2014		CL EPREI EPREI EPREI EPREI EPREI	e to:

Test specifications

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Date: 11-Nov-2013

Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

APPENDIX F EM&A MONITORING SCHEDULES

Yau Tong Bay - Decomissioning of Shipyard Sites Impact Noise Monitoring Schedule for April 2014

	1-Apr	. .			Saturday
	І-Арі	2-Apr	3-Apr	4-Apr	5-Apr
		N			
		NOISE			
7-Apr	8-Apr	9-Apr	10-Apr	11-Apr	12-Apr
14-Apr	15-Apr	16-Apr	17-Apr	18-Apr	19-Apr
Noice					
NUISE					
21-Apr	22-Apr	23-Apr	24-Apr	25-Apr	26-Apr
28-Apr	29-Apr	30-Apr			
·	· · ·	· ·			
	Noise				
		14-Apr15-AprNoise21-Apr21-Apr22-Apr	14-Apr 15-Apr 16-Apr Noise 21-Apr 22-Apr 23-Apr 21-Apr 22-Apr 23-Apr 28-Apr 29-Apr 30-Apr	7-Apr 8-Apr 9-Apr 10-Apr 7-Apr 10-Apr 10-Apr 14-Apr 15-Apr 16-Apr 17-Apr Noise 21-Apr 22-Apr 23-Apr 24-Apr 21-Apr 22-Apr 30-Apr 24-Apr 28-Apr 29-Apr 30-Apr 10-Apr	7-Apr 8-Apr 9-Apr 10-Apr 11-Apr 14-Apr 15-Apr 16-Apr 17-Apr 18-Apr Noise 21-Apr 22-Apr 23-Apr 24-Apr 25-Apr 28-Apr 29-Apr 30-Apr 10-Apr 10-Apr 10-Apr

Yau Tong Bay - Decomissioning of Shipyard Sites Tentative Impact Noise Monitoring Schedule for May 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-May	2-May	3-May
4-May	5-May	6-May	7-May	8-May	9-May	10-May
11-May	12-May	13-May	14-May	15-May	16-May	17-May
, ,	,	, ,	, ,	,	,	,
				Noise		
18-May	19-May	20-May	21-May	22-May	23-May	24-May
						_ · ····
05 May					20 May	04 May
25-May	26-May	27-May	28-May	29-May	30-May	31-May
		Noise				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

APPENDIX G IMPACT DAYTIME CONSTRUCTION NOISE MONITORING RESULTS AND THEIR GRAPHICAL PRESENTATION

Appendix G Impact Daytime Construction Noise Monitoring Results

Location : NM1 (Yau Lai Estate Hong Lai House Rooftop - Façade) Day time 07:00-19:00 hrs Normal Weekdays Impact Noise Monitoring Results

Date	Start Time	End Time	Weather		sured I el for 30 dB(A))-min,	Baseline Noise Level, dB(A)	Corrected Construction Noise Level, dB(A) **	Limit Level, dB(A)	Major Noise Source(s) Observed	Exceedanc e (Y/N)	Mean Temp. (°C)	Mean Wind Speed (m/s)	Noise Meter Model / ID	Calibrator Model / ID
				Leq	L10	L90	ub(A)	Eevel, ab(A)	ub(л)	Observed		(0)	(11/3)		
2-Apr-14	10:30	11:00	Sunny	65.8	60.7	64.2	65.4	55.2	75.0	Construciton Noise	Ν	19.4	<5 m/s	Rion NL-31 (00320528)	Rion NC-73 (10307223)
17-Apr-14	10:30	11:00	Sunny	64.8	66.2	61.7	65.4	64.8	75.0	Construciton Noise	N	24.1	<5 m/s	Rion NL-31 (00320528)	Rion NC-73 (10307223)
29-Apr-14	10:18	10:48	Fine	60.7	62.5	58.6	65.4	60.7	75.0	Construciton Noise and Road Traffic Noise	N	23.9	<5 m/s	B&K 2238 (2800927)	Rion NC-73 (10307223)
							Average	61.8							
							Min.	55.2							
							Max.	64.8							

Location : NM2 (S.K.H. Yau Tong Kei Hin Primary School Rooftop - Façade) Day time 07:00-19:00 hrs Normal Weekdays Impact Noise Monitoring Results

Date	Start Time	End Time	Weather	Leve	sured N el for 30 dB(A) L10)-min,	Baseline Noise Level, dB(A)	Corrected Construction Noise Level, dB(A) **	Limit Level, dB(A) [#]	Major Noise Source(s) Observed	Exceedanc e (Y/N)	Mean Temp. (°C)	Mean Wind Speed (m/s)	Noise Meter Model / ID	Calibrator Model / ID
2-Apr-14	13:45	14:15	Sunny	Leq 64.7	60.0	62.8	65.4	64.7	70.0	Construciton Noise	Ν	19.4	<5 m/s	Rion NL-31 (00320528)	Rion NC-73 (10307223)
17-Apr-14	13:45	14:15	Sunny	64.8	66.4	61.9	65.4	64.8	70.0	Construciton Noise	N	24.1	<5 m/s	Rion NL-31 (00320528)	Rion NC-73 (10307223)
29-Apr-14	11:09	11:39	Fine	61.7	63.5	59.0	65.4	61.7	70.0	Construciton Noise and Road Traffic Noise	N	23.9	<5 m/s	B&K 2238 (2800927)	Rion NC-73 (10307223)
							Average	64.0							
							Min.	61.7							
							Max.	64.8							

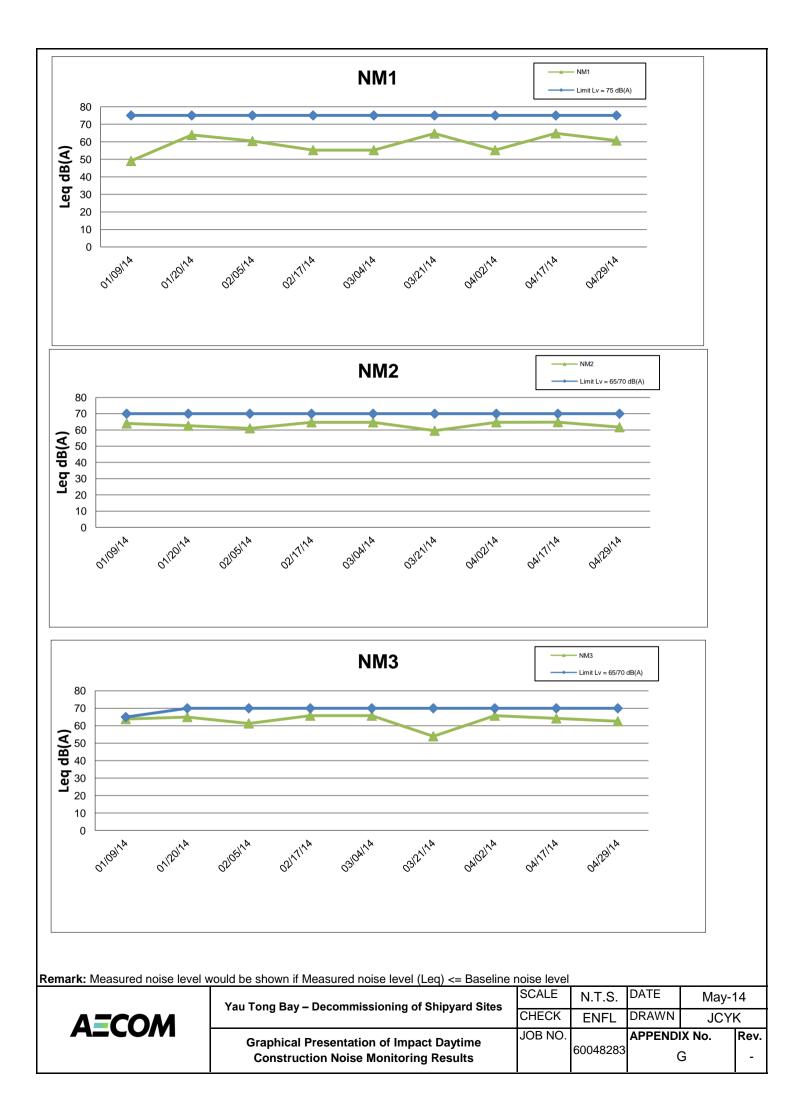
Remarks:

- Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.
** Construction noise level is only calculated when Measured noise level (Leq) > Baseline noise level.

If Measured noise level < Baseline noise level, Corrected noise level = Measured noise level

Appendix G Impact Daytime Construction Noise Monitoring Results

Location : NM3 (C.C.C. Kei Faat Primary School (Yau Tong) Rooftop - Façade) Day time 07:00-19:00 hrs Normal Weekdays Impact Noise Monitoring Results


Date	Start Time	End Time	Weather		sured N el for 30 dB(A))-min,	Baseline Noise Level, dB(A)	Corrected Construction Noise Level, dB(A) **	Limit Level, dB(A) [#]	Major Noise Source(s) Observed	Exceedanc e (Y/N)	Mean Temp. (°C)	Mean Wind Speed (m/s)	Noise Meter Model / ID	Calibrator Model / ID
				Leq	L10	L90	uB(N)		ub(л)	observed					
2-Apr-14	14:00	14:30	Sunny	68.6	59.7	65.7	65.4	65.8	70.0	Construciton Noise	Ν	19.4	<5 m/s	Rion NL-31 (00320528)	Rion NC-73 (10307223)
17-Apr-14	14:30	15:00	Sunny	64.2	66.9	61.6	65.4	64.2	70.0	Construciton Noise	N	24.1	<5 m/s	Rion NL-31 (00320528)	Rion NC-73 (10307223)
29-Apr-14	13:29	13:59	Fine	62.6	64.3	60.5	65.4	62.6	70.0	Construciton Noise and Road Traffic Noise	N	23.9	<5 m/s	B&K 2238 (2800927)	Rion NC-73 (10307223)
							Average	64.4							
							Min.	62.6							

Max. 65.8

Remarks:

** Construction noise level is only calculated when Measured noise level (Leq) > Baseline noise level. If Measured noise level < Baseline noise level, Corrected noise level = Measured noise level

^{# -} Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.

APPENDIX H EVENT ACTION PLAN

Appendix H – Event Action Plan

Event / Action Plan for Noise

Event		Actior	ı	
Limit Level	ET Leader	IEC	ER	Contractor
Action Level	 Notify IEC, ER and Contactor; Carry out investigation and identify the source; Report the results of investigation to the IEC, ER and Contactor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. 	 Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals.
Limit Level	 Inform IEC, ER, EPD and Contractor; Repeat measurement to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor" s working procedures; Discuss with the IEC, Contractor and ER on remedial measures require; Assess effectiveness of Contractor"s remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Review the investigation results submitted by the ET; Check the Contractor"s working procedures; Discuss amongst ER, ET and Contractor on the potential remedial actions; Review Contractor"s remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Discuss with ET, IEC and ER on proper remedial measures; Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals ; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated .

APPENDIX I SITE INSPECTION SUMMARIES

Inspection Informa	ation
Date:	4 April 2014
Time:	16:00
Inspection No.:	72
Non-compliance	
Nil	
Observations	
	Observations
_{1.} Regular spr	aying of water has been maintained for areas not covered by water sprinklers (Closed).
<u>New Observ</u> Nil.	<u>vations</u>
Remarks	
Nil	

P:\60048283\1.01\Deliverables\Impact Monitoring Report\Monthly\1404\App\App_I - Site Inspection Summaries.doc Page 1 of 5

Inspection Informa	ation
Date:	11 April 2014
Time:	16:00
Inspection No.:	73
Non-compliance	
Nil	
Observations	
Follow Up O	bservations
1. Regular spra	aying of water has been maintained for areas not covered by water sprinklers (Closed).
New Observ	rations
INEW ODSEIN	
Nil.	
Demerks	
Remarks	
Nil	

Inspection Information	on
Date: 1	17 April 2014
Time: 1	16:00
Inspection No.: 7	74

Non-compliance

Nil

Observations

Follow Up Observations

1. Regular spraying of water has been maintained for areas not covered by water sprinklers (Closed).

New Observations

Nil.

Remarks

Nil

Inspection	Information
IIISpection	momanon

mopootion mionna	
Date:	23 April 2014
Time:	16:00
Inspection No.:	75

Non-compliance

Nil

Observations

Follow Up Observations

1. Regular spraying of water has been maintained for areas not covered by water sprinklers (Closed).

New Observations

2. Label is missing for an oil drum on site. The oil drum should be properly labelled.

Remarks

Nil

Inspection	Information
IIISDECUUII	IIIIOIIIIauoii

mopoodon mionne	
Date:	30 April 2014
Time:	13:30
Inspection No.:	76

Non-compliance

Nil

Observations

Follow Up Observations

1. Regular spraying of water has been maintained for areas not covered by water sprinklers (Closed).

New Observations

Nil.

Remarks

Nil

APPENDIX J STATISTICS ON COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

Appendix J

Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. in this reporting period	Total no. since project commencement
Environmental complaints	-	-	-	0	4
Notification of summons	-	-	-	0	0
Successful Prosecutions	-	-	-	0	0

APPENDIX K LABORATORY TESTING RESULTS

RESULTS FROM THE CONTRACTOR

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Client	: KIN WING CONSTRUCTION COMPANY LIMITED	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 4
Contact	: MR KAM HUNG LEE	Contact	:Fung Lim Chee, Richard	Work Order	HK1408243
ddress	: FLAT A, BLOCK 2, 6/F.,	Address	:11/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	KIN HO INDUSTRIAL BUILDING,		Yip Street, Kwai Chung, N.T., Hong Kong		
	14-24 AU PUI WAN STREET,				
	FOTAN, SHATIN, N.T. HONG KONG				
-mail	: khlee425@yahoo.com.hk	E-mail	: Richard.Fung@alsglobal.com		
ephone	: +852 2785 8152	Telephone	÷ +852 2610 1044		
acsimile	: +852 2725 9316	Facsimile	: +852 2610 2021		
roject	: YAU TONG BAY REDEVELOPMENT - LAND	Quote number	:	Date Samples Received	: 18-MAR-2014
	DECONTAMINATION WORKS				
rder number	:			Issue Date	: 01-APR-2014
-O-C number	: H017955			No. of samples received	: 4
ite	: YAU TONG BAY			No. of samples analysed	: 4

CERTIFICATE OF ANALYSIS

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

	•	•			•	0.	•	
Signatories				Position				

-			
Wong	Wing.	Kenneth	

Assistant Supervisor - Metals

Authorised results for Inorganics

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

Campbell Brothers Limited Company

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 22-MAR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1408243

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Sample(s) analysed and reported on an as received basis.

TCLP leachate sample(s) were filtered prior to dissolved metal analysis.

The metal concentrations reported are those determined on the TCLP leachate. Extraction Fluid #1 pH 4.88 - 4.98.

Analytical Results

,								
Sub-Matrix: TCLP LEACHATE Client sample ID			T22BA/TCLP	T22BA/TCLP.1	T22BA/TCLP.2	T22BA/TCLP.3		
Client sampling date / time				[17-MAR-2014]	[17-MAR-2014]	[18-MAR-2014]	[18-MAR-2014]	
Compound	CAS Number	LOR	Unit	HK1408243-001	HK1408243-002	HK1408243-003	HK1408243-004	
EG: Metals and Major Cations - Filtered								
EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	
Sample Preparation Method								
E-TCLP: Extraction Fluid Number		-		1	1	1	1	

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	
EG: Metals and Maj	or Cations - Filtered (QC Lot	: 3351821)							
HK1407712-002	Anonymous	EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	0.0	
HK1408243-001	T22BA/TCLP	EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	0.0	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB)	Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC L	ot: 3351821)										
EG020: Lead	7439-92-1	0.001	mg/L	<0.1	1 mg/L	92.2		82	104		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER	Matrix: WATER				Matrix Sp	ike (MS) and Matriz	x Spike Duplic	ate (MSD) Re	port	
					Spike Re	ecovery (%)	Recovery	Limits (%)	RPE	D (%)
Laboratory	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control
sample ID			Number							Limit
EG: Metals an	d Major Cations - Filtered (QC Lot: 33	51821)								
HK1407712-001	Anonymous	EG020: Lead	7439-92-1	1 mg/L	80.5	79.2	75	125	1.7	

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

	CERTIFICATE OF ANALYSIS											
Client Contact	: KIN WING CONSTRUCTION COMPANY LIMITED : MR KAM HUNG LEE	Laboratory Contact	:ALS Technichem HK Pty Ltd :Fung Lim Chee, Richard	Page Work Order	: 1 of 4 • HK1408497							
Address	ELAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET, FOTAN, SHATIN, N.T. HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong									
E-mail Felephone	: khlee425@yahoo.com.hk : +852 2785 8152	E-mail Telephone	: Richard.Fung@alsglobal.com : +852 2610 1044									
acsimile	: +852 2725 9316	Facsimile	: +852 2610 2021									
roject	: YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	Quote number	:	Date Samples Received	: 19-MAR-2014							
Order number	:			Issue Date	: 03-APR-2014							
-O-C number	: H017957			No. of samples received	: 6							
Site	: YAU TONG BAY			No. of samples analysed	: 6							

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 28-MAR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1408497

Sample(s) were received in a chilled condition.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-09 based on ASTM D3974-09, prior to determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.		by those names that appear on this report and are the authorised signato Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6	
Hong Kong Accreditation Service (HKAS) has accedited this	Signatories	Position	Authorised results for
laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong	Lin Wai Yu, Iris	Senior Chemist - Inorganics	Inorganics
Laboratory Accreditation Scheme (HOKLAS) for specific laboratory	Wong Wing, Kenneth	Assistant Supervisor - Metals	Inorganics
activities as listed in the HOKLAS Directory of Accredited			
Laboratories. The results shown in this certificate were			
determined by this laboratory in accordance with its terms of			
accreditation.			

Page Number : 2 of 4 Client : KIN WING CONSTRUCTION COMPANY LIMITED Work Order HK1408497

Analytical Results

· ····································								
Sub-Matrix: SOIL			Client sample ID	R7/SW/1.1-1.2/3.825	R7/SW/1.2-1.3/3.825	R7/SW/1.3-1.4/3.825	R7/SW/1.4-1.1/3.825	R7/B/4.55
		Client sa	ampling date / time	[18-MAR-2014]	[18-MAR-2014]	[18-MAR-2014]	[18-MAR-2014]	[18-MAR-2014]
Compound	CAS Number	LOR	Unit	HK1408497-001	HK1408497-002	HK1408497-003	HK1408497-004	HK1408497-005
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @		0.1	%	26.9	24.1	24.2	23.6	25.4
103°C)								
EG: Metals and Major Cations								
EG020: Lead	7439-92-1	1	mg/kg	264	92	115	200	163

Page Number : 3 of 4 Client : KIN WING CONSTRUCTION COMPANY LIMITED Work Order HK1408497

Sub-Matrix: SOIL		Client sa	Client sample ID	R7/T/3.1 [18-MAR-2014]		
Compound	CAS Number	LOR	Unit	HK1408497-006		
EA/ED: Physical and Aggregate Properties						
EA055: Moisture Content (dried @ 103°C)		0.1	%	31.8		
EG: Metals and Major Cations						
EG020: Lead	7439-92-1	1	mg/kg	153		

Laboratory Duplicate (DUP) Report

Matrix: SOIL			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EA/ED: Physical and	d Aggregate Properties (Q	C Lot: 3352019)								
HK1408497-001	R7/SW/1.1-1.2/3.825	EA055: Moisture Content (dried @ 103°C)		0.1	%	26.9	24.7	8.4		
HK1408577-002	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	51.0	51.2	0.2		
EG: Metals and Majo	or Cations (QC Lot: 335471	2)								
HK1408471-001	Anonymous	EG020: Lead	7439-92-1	1	mg/kg	9	8	0.0		
HK1408566-001	Anonymous	EG020: Lead	7439-92-1	1	mg/kg	25	30	16.6		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB	Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RF	PD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EG: Metals and Major Cations (QC Lot:	EG: Metals and Major Cations (QC Lot: 3354712)											
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	100		80	104			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL						Matrix Sp	ike (MS)	and Matrix	x Spike I	Duplica	ate (MSD) Re	port	
				Spike		Spike Re	ecovery (%)	Rec	overy l	Limits (%)	RPD	(%)
Laboratory	Client sample ID	Method: Compound	CAS	Concentration		MS	Λ	ISD	Lo	N	High	Value	Control
sample ID			Number										Limit
EG: Metals and	Major Cations (QC Lot: 3354712)												
HK1408465-001	Anonymous	EG020: Lead	7439-92-1	50 mg/kg	9	90.5			75	i	125		

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Client	: KIN WING CONSTRUCTION COMPANY LIMITED	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 4
Contact	: MR KAM HUNG LEE	Contact	: Fung Lim Chee, Richard	Work Order	HK1408676
ddress	: FLAT A, BLOCK 2, 6/F.,	Address	:11/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	KIN HO INDUSTRIAL BUILDING,		Yip Street, Kwai Chung, N.T., Hong Kong		
	14-24 AU PUI WAN STREET,				
	FOTAN, SHATIN, N.T. HONG KONG				
-mail	: khlee425@yahoo.com.hk	E-mail	: Richard.Fung@alsglobal.com		
ephone	: +852 2785 8152	Telephone	: +852 2610 1044		
csimile	: +852 2725 9316	Facsimile	: +852 2610 2021		
roject	: YAU TONG BAY REDEVELOPMENT - LAND	Quote number	:	Date Samples Received	: 20-MAR-2014
	DECONTAMINATION WORKS				
rder number	:			Issue Date	: 04-APR-2014
-O-C number	: H017958			No. of samples received	: 2
Site	: YAU TONG BAY			No. of samples analysed	: 2

CERTIFICATE OF ANALYSIS

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

•	•	•			0	0.	•	
Signatories				Position				

Signatories	Position	Authorised results for
Wong Wing, Kenneth	Assistant Supervisor - Metals	Inorganics

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 02-APR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1408676

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Sample(s) analysed and reported on an as received basis.

TCLP leachate sample(s) were filtered prior to dissolved metal analysis.

The metal concentrations reported are those determined on the TCLP leachate. Extraction Fluid #1 pH 4.88 - 4.98.

Analytical Results

ub-Matrix: TCLP LEACHATE			Client sample ID	T22BA/TCLP.4	T22BA/TCLP.5	
			mpling date / time	[20-MAR-2014]	[20-MAR-2014]	
Compound	CAS Number	LOR	Unit	HK1408676-001	HK1408676-002	
EG: Metals and Major Cations - Filtered						
EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	
Sample Preparation Method						
E-TCLP: Extraction Fluid Number		-		1	1	

Page Number: 4 of 4Client: KIN WING CONSTRUCTION COMPANY LIMITEDWork OrderHK1408676

Laboratory Duplicate (DUP) Report

Natrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
EG: Metals and Major	Cations - Filtered (QC	Lot: 3366523)									
HK1408676-002	T22BA/TCLP.5	EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	0.0			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPI	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC Lo	t: 3366523)										
EG020: Lead	7439-92-1	0.001	mg/L	<0.001	1 mg/L	89.6		82	104		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER	trix: WATER			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report								
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPL) (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit		
EG: Metals and	d Major Cations - Filtered (QC Lot: 33	66523)										
HK1408676-001	T22BA/TCLP.4	EG020: Lead	7439-92-1	1 mg/L	87.9	90.3	75	125	2.7			

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Contact	: KIN WING CONSTRUCTION COMPANY LIMITED : MR KAM HUNG LEE	Laboratory Contact	:ALS Technichem HK Pty Ltd :Fung Lim Chee, Richard	Page Work Order	: 1 of 4 • HK1408901
Address	EFLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET, FOTAN, SHATIN, N.T. HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: khlee425@yahoo.com.hk	E-mail	: Richard.Fung@alsglobal.com		
Telephone	: +852 2785 8152	Telephone	: +852 2610 1044		
acsimile	: +852 2725 9316	Facsimile	: +852 2610 2021		
Project	: YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	Quote number	:	Date Samples Received	: 24-MAR-2014
Order number	:			Issue Date	: 07-APR-2014
C-O-C number	: H017959			No. of samples received	: 6
Site	YAU TONG BAY			No. of samples analysed	: 6

General Comments

accreditation.

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 31-MAR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1408901**

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-09 based on ASTM D3974-09, prior to determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.		This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.							
Hong Kong Accreditation Service (HKAS) has accedited this	Signatories	Position	Authorised results for						
laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong	Anh Ngoc Huynh	Senior Chemist - Organics	Organics						
Laboratory Accreditation Scheme (HOKLAS) for specific laboratory	Chan Siu Ming, Vico	Manager - Inorganics	Inorganics						
activities as listed in the HOKLAS Directory of Accredited	Wong Wing, Kenneth	Assistant Supervisor - Metals	Inorganics						
Laboratories. The results shown in this certificate were									
determined by this laboratory in accordance with its terms of									

Page Number : 2 of 4 Client : KIN WING CONSTRUCTION COMPANY LIMITED Work Order HK1408901

Analytical Results

Sub-Matrix: SOIL			Client sample ID	A3.1-3.2.1/SW/3.65	A3.2-A3.3.1/SW/3.65	BP1/TO/1.0	BP4/TO/1.0	BP5/TO/1.0
		Client sa	ampling date / time	[24-MAR-2014]	[24-MAR-2014]	[24-MAR-2014]	[24-MAR-2014]	[24-MAR-2014]
Compound	CAS Number	LOR	Unit	HK1408901-001	HK1408901-002	HK1408901-003	HK1408901-004	HK1408901-005
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @ 103°C)		0.1	%	6.1	5.4	8.8	7.2	6.2
EG: Metals and Major Cations								
EG020: Lead	7439-92-1	1	mg/kg	97	87			
EP-076B: Phenol, Hexachlorobenzene and Bis	s(2-ethylhexyl) Phtl	nalate						
Bis(2-ethylhexyl)phthalate	117-81-7	5.00	mg/kg			<5.00	<5.00	<5.00
EP-076S: Polycyclic Aromatics Hydrocarbons	(PAHs) Surrogate	s					Surrogate control lin	nits listed at end of this report.
2-Fluorobiphenyl	321-60-8	0.1	%			65.7	71.4	85.5
4-Terphenyl-d14	1718-51-0	0.1	%			90.0	86.9	106

Page Number : 3 of 4 Client **: KIN WING CONSTRUCTION COMPANY LIMITED** Work Order HK1408901

Sub-Matrix: SOIL	Client sample ID			BP6/TO/1.0						
	Client sampling date / time		[24-MAR-2014]							
Compound	CAS Number	LOR	Unit	HK1408901-006						
EA/ED: Physical and Aggregate Properties	A/ED: Physical and Aggregate Properties									
EA055: Moisture Content (dried @		0.1	%	8.0						
103°C)										
EP-076B: Phenol, Hexachlorobenzene and Bis	s(2-ethylhexyl) Phth	nalate								
Bis(2-ethylhexyl)phthalate	117-81-7	5.00	mg/kg	<5.00						
EP-076S: Polycyclic Aromatics Hydrocarbons	(PAHs) Surrogates	5					Surrogate control lim	its listed at end of this report.		
2-Fluorobiphenyl	321-60-8	0.1	%	79.6						
4-Terphenyl-d14	1718-51-0	0.1	%	99.6						

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EA/ED: Physical ar	nd Aggregate Properties (0	QC Lot: 3358304)								
HK1408901-001	A3.1-3.2.1/SW/3.65	EA055: Moisture Content (dried @ 103°C)		0.1	%	6.1	5.8	4.5		
HK1408982-002	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	8.9	8.9	0.0		
EG: Metals and Ma	jor Cations (QC Lot: 33591	181)								
HK1408901-002	A3.2-A3.3.1/SW/3.65	EG020: Lead	7439-92-1	1	mg/kg	87	73	16.5		
HK1408999-001	Anonymous	EG020: Lead	7439-92-1	1	mg/kg	63	67	5.2		
EP-076B: Phenol, H	lexachlorobenzene and Bi	s(2-ethylhexyl) Phthalate (QC Lot: 3355306)								
HK1408745-010	Anonymous	Bis(2-ethylhexyl)phthalate	117-81-7	1000	µg/kg	<1000	<1000	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 3359181)											
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	97.5		80	104		
EP-076B: Phenol, Hexachlorobenzene and B	is(2-ethylhexyl) P	hthalate (QC Lot: 3355306	5)							
Bis(2-ethylhexyl)phthalate	117-81-7	25	µg/kg		25 µg/kg	99.6		76	117		
				<1000							

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPL	D (%)	
Laboratory	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control	
sample ID			Number							Limit	
EG: Metals and	Major Cations (QC Lot: 3359181)										
HK1408901-001	A3.1-3.2.1/SW/3.65	EG020: Lead	7439-92-1	5 mg/kg	# Not		75	125			
					Determined						

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP-076S: Polycyclic Aromatics Hydrocarbo	ons (PAHs) Surrogates			
2-Fluorobiphenyl	321-60-8	50	130	
4-Terphenyl-d14	1718-51-0	50	130	

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Client	: KIN WING CONSTRUCTION COMPANY LIMITED	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 9
Contact	: MR KAM HUNG LEE	Contact	: Fung Lim Chee, Richard	Work Order	[:] HK1409086
Address	: FLAT A, BLOCK 2, 6/F.,	Address	: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	KIN HO INDUSTRIAL BUILDING,		Yip Street, Kwai Chung, N.T., Hong Kong		
	14-24 AU PUI WAN STREET,				
	FOTAN, SHATIN, N.T. HONG KONG				
E-mail	: khlee425@yahoo.com.hk	E-mail	: Richard.Fung@alsglobal.com		
Telephone	: +852 2785 8152	Telephone	: +852 2610 1044		
Facsimile	: +852 2725 9316	Facsimile	: +852 2610 2021		
Project	: YAU TONG BAY REDEVELOPMENT - LAND	Quote number	:	Date Samples Received	: 25-MAR-2014
	DECONTAMINATION WORKS				
Order number	:			Issue Date	: 09-APR-2014
C-O-C number	: H017960-H017961			No. of samples received	: 18
Site	: YAU TONG BAY			No. of samples analysed	: 18

CERTIFICATE OF ANALYSIS

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Anh Ngoc Huynh	Senior Chemist - Organics	Organics
Lin Wai Yu, Iris	Senior Chemist - Inorganics	Inorganics
Wong Wing, Kenneth	Assistant Supervisor - Metals	Inorganics

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 02-APR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1409086

The metal concentrations reported are those determined on the TCLP leachate. Extraction Fluid #1 pH 4.88 - 4.98.

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Sample(s) analysed and reported on an as received basis.

TCLP leachate sample(s) were filtered prior to dissolved metal analysis.

Page Number : 3 of 9 Client : KIN WING CONSTRUCTION COMPANY LIMITED Work Order HK1409086

Analytical Results

Analytical Nesults			_					
Sub-Matrix: SOIL			Client sample ID	BP2/TO/1.0	BP3/TO/1.0	BP7/TO/1.0	BP8/TO/1.0	BP9/TO/1.0
		Client sa	ampling date / time	[25-MAR-2014]	[25-MAR-2014]	[25-MAR-2014]	[25-MAR-2014]	[25-MAR-2014]
Compound	CAS Number	LOR	Unit	HK1409086-001	HK1409086-002	HK1409086-003	HK1409086-004	HK1409086-005
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @		0.1	%	4.5	4.3	13.0	14.8	14.8
103°C)								
EP-076B: Phenol, Hexachlorobenzene and B	is(2-ethylhexyl) Phtł	nalate						
Bis(2-ethylhexyl)phthalate	117-81-7	5.00	mg/kg	9.01	11.7			
EP-071_SR: Total Petroleum Hydrocarbons ((TPH)							
C6 - C9 Fraction		2	mg/kg			<2	<2	<2
C10 - C14 Fraction		50	mg/kg			<50	<50	<50
C15 - C28 Fraction		100	mg/kg			<100	<100	<100
C29 - C36 Fraction		100	mg/kg			<100	<100	<100
EP-076S: Polycyclic Aromatics Hydrocarbon	s (PAHs) Surrogates	s					Surrogate control lin	nits listed at end of this report
2-Fluorobiphenyl	321-60-8	0.1	%	89.9	84.6			
4-Terphenyl-d14	1718-51-0	0.1	%	91.9	78.6			
EP-080_SRS: TPH(Volatile)/BTEX Surrogate							Surrogate control lin	nits listed at end of this report
Dibromofluoromethane	1868-53-7	0.1	%			90.4	91.8	91.5
Toluene-D8	2037-26-5	0.1	%			98.6	103	99.8
4-Bromofluorobenzene	460-00-4	0.1	%			105	104	109

Page Number : 4 of 9 Client : KIN WING CONSTRUCTION COMPANY LIMITED

Work Order HK1409086

Sub-Matrix: SOIL			Client sample ID	BP10/TO/1.0	BP11/TO/1.0	BP12/TO/1.0	BP13/TO/1.0	BP14/TO/1.0
		Client sa	ampling date / time	[25-MAR-2014]	[25-MAR-2014]	[25-MAR-2014]	[25-MAR-2014]	[25-MAR-2014]
Compound	CAS Number	LOR	Unit	HK1409086-006	HK1409086-007	HK1409086-008	HK1409086-009	HK1409086-010
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @ 103°C)		0.1	%	14.9	11.1	12.2	10.7	11.1
EP-076B: Phenol, Hexachlorobenzene and Bis	s(2-ethylhexyl) Pht	nalate						
Bis(2-ethylhexyl)phthalate	117-81-7	5.00	mg/kg					<5.00
EP-071_SR: Total Petroleum Hydrocarbons (T	PH)						1	
C6 - C9 Fraction		2	mg/kg	<2	<2	<2	<2	
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	
C15 - C28 Fraction		100	mg/kg	<100	601	421	661	
C29 - C36 Fraction		100	mg/kg	<100	510	367	510	
EP-071HK_SR: Total Petroleum Hydrocarbons	s (TPH)							
C9 - C16 Fraction		200	mg/kg					<200
C17 - C35 Fraction		500	mg/kg					638
EP-074_SR-A: Monocyclic Aromatic Hydrocar	bons (MAH)							
Benzene	71-43-2	0.2	mg/kg					<0.2
EP-076S: Polycyclic Aromatics Hydrocarbons	(PAHs) Surrogate	s					Surrogate control lin	nits listed at end of this report.
2-Fluorobiphenyl	321-60-8	0.1	%					89.0
4-Terphenyl-d14	1718-51-0	0.1	%					98.0
EP-080_SRS: TPH(Volatile)/BTEX Surrogate					-		Surrogate control lin	nits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	90.7	90.2	92.5	90.1	
Toluene-D8	2037-26-5	0.1	%	101	103	108	104	
4-Bromofluorobenzene	460-00-4	0.1	%	101	93.0	106	105	
EP-074_SR-S: VOC Surrogates							Surrogate control lin	nits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%					90.7
Toluene-D8	2037-26-5	0.1	%					104
4-Bromofluorobenzene	460-00-4	0.1	%					94.4

Page Number : 5 of 9 Client : KIN WING CONSTRUCTION COMPANY LIMITED

Work Order HK1409086

_

Sub-Matrix: SOIL			Client sample ID	BP15/TO/1.0	BP16/TO/1.0	BP17/TO/1.0	BP18/TO/1.0	BP19/TO/1.0
		Client sa	mpling date / time	[25-MAR-2014]	[25-MAR-2014]	[25-MAR-2014]	[25-MAR-2014]	[25-MAR-2014]
Compound	CAS Number	LOR	Unit	HK1409086-011	HK1409086-012	HK1409086-013	HK1409086-014	HK1409086-015
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @ 103°C)		0.1	%	10.1	10.7	14.3	14.4	14.6
EP-076B: Phenol, Hexachlorobenzene and Bi	s(2-ethylhexyl) Phtl	nalate						
Bis(2-ethylhexyl)phthalate	117-81-7	5.00	mg/kg	<5.00	<5.00	<5.00	5.98	<5.00
EP-071HK_SR: Total Petroleum Hydrocarbon	is (TPH)							
C9 - C16 Fraction		200	mg/kg	<200	<200	<200	<200	<200
C17 - C35 Fraction		500	mg/kg	1290	930	1860	1000	2210
EP-074_SR-A: Monocyclic Aromatic Hydroca	rbons (MAH)							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EP-076S: Polycyclic Aromatics Hydrocarbon	s (PAHs) Surrogates	5					Surrogate control lin	nits listed at end of this report.
2-Fluorobiphenyl	321-60-8	0.1	%	78.8	84.7	90.3	83.9	89.3
4-Terphenyl-d14	1718-51-0	0.1	%	83.4	95.2	108	93.0	108
EP-074_SR-S: VOC Surrogates							Surrogate control lin	nits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	90.8	91.3	90.0	90.6	91.6
Toluene-D8	2037-26-5	0.1	%	102	104	99.6	107	99.8
4-Bromofluorobenzene	460-00-4	0.1	%	105	90.0	104	104	104

Page Number : 6 of 9 Client : KIN WING CONSTRUCTION COMPANY LIMITED Work Order HK1409086

Sub-Matrix: TCLP LEACHATE			Client sample ID	T22BB/TCLP	T22BB/TCLP.1	T22BB/TCLP.2	
		Client sa	mpling date / time	[25-MAR-2014]	[25-MAR-2014]	[25-MAR-2014]	
Compound	CAS Number	LOR	Unit	HK1409086-016	HK1409086-017	HK1409086-018	
EG: Metals and Major Cations - Filtered							
EG020: Copper	7440-50-8	0.1	mg/L	<0.1	<0.1	<0.1	
EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	<0.1	
Sample Preparation Method							
E-TCLP: Extraction Fluid Number		-		1	1	1	

Page Number: 7 of 9Client: KIN WING CONSTRUCTION COMPANY LIMITEDWork OrderHK1409086

Laboratory Duplicate (DUP) Report

Matrix: SOIL						Laboratory Duplicate (DUP) Re	port	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical ar	nd Aggregate Properties	s (QC Lot: 3361173)						
HK1409025-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	6.1	5.6	7.2
HK1409088-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	13.2	11.8	11.0
EP-076B: Phenol, I	lexachlorobenzene and	Bis(2-ethylhexyl) Phthalate (QC Lot: 3359837)						
HK1409086-001	BP2/TO/1.0	Bis(2-ethylhexyl)phthalate	117-81-7	5000	µg/kg	9010	8710	3.4
EP-071_SR: Total F	Petroleum Hydrocarbon	s (TPH) (QC Lot: 3355373)						
HK1408723-001 Anonymous C15		C15 - C28 Fraction		100	mg/kg	<100	<100	0.0
		C29 - C36 Fraction		100	mg/kg	<100	<100	0.0
		C10 - C14 Fraction		50	mg/kg	<50	<50	0.0
EP-071_SR: Total F	Petroleum Hydrocarbon	s (TPH) (QC Lot: 3355386)						
HK1408723-001	Anonymous	C6 - C9 Fraction		2	mg/kg	<2	<2	0.0
EP-071HK_SR: Tot	al Petroleum Hydrocart	oons (TPH) (QC Lot: 3359838)						
HK1409086-010	BP14/TO/1.0	C9 - C16 Fraction		200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction		500	mg/kg	638	694	8.4
EP-074_SR-A: Mon	ocyclic Aromatic Hydro	ocarbons (MAH) (QC Lot: 3352055)						
HK1408467-001	Anonymous	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
latrix: WATER				· · · · · · · · · · · · · · · · · · ·		Laboratory Duplicate (DUP) Re	port	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EG: Metals and Ma	jor Cations - Filtered (0							
HK1408676-002	Anonymous	EG020: Copper	7440-50-8	0.001	mg/L	0.018	0.016	7.6
		EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report				Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike Spike Rec	ecovery (%)	Recovery Limits (%)		RPD (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EP-076B: Phenol, Hexachlorobenzer	ne and Bis(2-ethylhexyl) P	hthalate (QC Lot: 3359837)								
Bis(2-ethylhexyl)phthalate	117-81-7	25	µg/kg		25 µg/kg	103		76	117			
				<1000								
EP-071_SR: Total Petroleum Hydroc	arbons (TPH) (QC Lot: 33	55373)										
C10 - C14 Fraction		50	mg/kg	<50	22.5 mg/kg	122		23	155			
C15 - C28 Fraction		100	mg/kg	<100	52.5 mg/kg	108		12	154			
C29 - C36 Fraction		100	mg/kg	<100	52.5 mg/kg	76.0		0	131			
EP-071_SR: Total Petroleum Hydroc	arbons (TPH) (QC Lot: 33	55386)										
C6 - C9 Fraction		2	mg/kg	<2	6 mg/kg	101		72	123			
EP-071HK_SR: Total Petroleum Hyd	rocarbons (TPH) (QC Lot	: 3359838)										
C9 - C16 Fraction		200	mg/kg	<200	32 mg/kg	100		51	122			
C17 - C35 Fraction		500	mg/kg	<500	90 mg/kg	75.1		11	129			

: 8 of 9 Page Number Client : KIN WING CONSTRUCTION COMPANY LIMITED

Work Order HK1409086

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-074_SR-A: Monocyclic Aromatic	Hydrocarbons (MAH) (QC	C Lot: 3352	2055)								
Benzene	71-43-2	0.1	mg/kg	<0.1	0.25 mg/kg	105		55	128		
Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Red	overy (%)	Recovery Limits (%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filter	red (QC Lot: 3366523)										
EG020: Copper	7440-50-8	0.001	mg/L	<0.001	1 mg/L	90.3		83	105		
EG020: Lead	7439-92-1	0.001	mg/L	<0.001	1 mg/L	89.6		82	104		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

				Matrix Sp	oike (MS) and Matr	ix Spike Duplic	cate (MSD) Re	port	
			Spike	Spike R	ecovery (%)	Recovery	' Limits (%)	RPI	D (%)
Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control
		Number							Limit
otal Petroleum Hydrocarbons (TPH)	(QC Lot: 3355373)								
Anonymous	C10 - C14 Fraction		23 mg/kg	125		50	130		
	C15 - C28 Fraction		53 mg/kg	102		50	130		
	C29 - C36 Fraction		53 mg/kg	104		50	130		
otal Petroleum Hydrocarbons (TPH)	(QC Lot: 3355386)								
Anonymous	C6 - C9 Fraction		6 mg/kg	102		50	130		
: Total Petroleum Hydrocarbons (TPI	H) (QC Lot: 3359838)								
BP15/TO/1.0	C9 - C16 Fraction		32 mg/kg	79.6		50	130		
	C17 - C35 Fraction		90 mg/kg			50	130		
				Matrix Sp	oike (MS) and Matr	ix Spike Duplic	cate (MSD) Re	port	
			Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPI	D (%)
Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control
-		Number							Limit
d Major Cations - Filtered (QC Lot: 3	366523)								
Anonymous	EG020: Copper	7440-50-8	1 mg/L	90.7	89.5	75	125	1.3	
	Anonymous Anonymous Total Petroleum Hydrocarbons (TPH) Anonymous Total Petroleum Hydrocarbons (TPH) BP15/TO/1.0 Client sample ID Major Cations - Filtered (QC Lot: 3:	Anonymous C10 - C14 Fraction C15 - C28 Fraction C29 - C36 Fraction Anonymous C6 - C9 Fraction Anonymous C6 - C9 Fraction Anonymous C6 - C9 Fraction C10 - C14 Fraction C10 - C14 Fraction C10 - C14 Fraction C29 - C36 Fraction Anonymous C6 - C9 Fraction C10 - C14 Fraction C10 - C14 Fraction C10 - C14 Fraction C10 - C14 Fraction C10 - C14 Fraction C10 - C16 Fraction C10 - C16 Fraction C17 - C35 Fraction Client sample ID Method: Compound Major Cations - Filtered (QC Lot: 3366523) C10 - C11 - C12 - C	Number Detail Petroleum Hydrocarbons (TPH) (QC Lot: 3355373) Anonymous C10 - C14 Fraction C15 - C28 Fraction C29 - C36 Fraction Detail Petroleum Hydrocarbons (TPH) (QC Lot: 3355386) Anonymous C6 - C9 Fraction C13 Petroleum Hydrocarbons (TPH) (QC Lot: 3359838) Stall Petroleum Hydrocarbons (TPH) (QC Lot: 3359838) C16 Fraction C17 - C35 Fraction Client sample ID Method: Compound CAS Number Major Cations - Filtered (QC Lot: 3366523)	Client sample ID Method: Compound CAS Number Concentration Anonymous C10 - C14 Fraction 23 mg/kg C15 - C28 Fraction 53 mg/kg C29 - C36 Fraction 53 mg/kg Anonymous C6 - C9 Fraction Anonymous C9 - C16 Fraction Petroleum Hydrocarbons (TPH) (QC Lot: 3359838) 90 mg/kg BP15/TO/1.0 C9 - C16 Fraction 32 mg/kg C17 - C35 Fraction 90 mg/kg Client sample ID Method: Compound CAS Number Spike Concentration Major Cations - Filtered (QC Lot: 336523)	Client sample ID Method: Compound CAS Number Spike Concentration Spike MS Spike MS Spike Concentration Spike MS SpiKe M	Spike Spike Spike Spike Spike Concentration MS MSD Client sample ID Method: Compound CAS Number MS MSD Anonymous C10 - C14 Fraction 53 mg/kg 102 C15 - C28 Fraction 53 mg/kg 102 C29 - C36 Fraction 53 mg/kg 102 Anonymous C6 - C9 Fraction 6 mg/kg 102 Anonymous C6 - C9 Fraction 6 mg/kg 102 Total Petroleum Hydrocarbons (TPH) (QC Lot: 3359838) 6 mg/kg 102 BP15/TO/1.0 C9 - C16 Fraction 32 mg/kg 79.6 EVENT C17 - C35 Fraction 90 mg/kg Client sample ID Method: Compound CAS Spike Spike Recovery (%) MSD Client sample ID Method: Compound CAS Number <td< td=""><td>Spike Client sample ID Method: Compound CAS Number Spike Concentration Spike Concentration Spike MSD Recovery (%) Recovery Recovery (%) Anonymous C10 - C14 Fraction 23 mg/kg 125 50 C15 - C28 Fraction 53 mg/kg 102 50 C29 - C36 Fraction 53 mg/kg 104 50 Anonymous C6 - C9 Fraction 53 mg/kg 104 50 Anonymous C6 - C9 Fraction 6 mg/kg 102 50 Anonymous C6 - C9 Fraction 6 mg/kg 102 50 Total Petroleum Hydrocarbons (TPH) (QC Lot: 3359838) 50 50 50 EP15/TO/1.0 C9 - C16 Fraction 90 mg/kg 79.6 50 Client sample ID Method: Compound CAS Spike Spike Rovery (%) Recovery (%) Major Cations - Filtered (QC Lot: 336523) -</td><td>Spike Client sample IDSpike CompoundSpike ConcentrationSpike ConcentrationSpike ConcentrationRecovery (%)Recovery Limits (%)Recovery (%)Recovery Limits (%)Hightal Petroleum Hydrocarbons (TPH)(QC Lot: 3355373)</td><td>Client sample ID Method: Compound CAS Number Concentration Number MS MSD Low High Value tal Petroleum Hydrocarbons (TPH) (QC Lot: 3355373) C10 - C14 Fraction 23 mg/kg 125 50 130 </td></td<>	Spike Client sample ID Method: Compound CAS Number Spike Concentration Spike Concentration Spike MSD Recovery (%) Recovery Recovery (%) Anonymous C10 - C14 Fraction 23 mg/kg 125 50 C15 - C28 Fraction 53 mg/kg 102 50 C29 - C36 Fraction 53 mg/kg 104 50 Anonymous C6 - C9 Fraction 53 mg/kg 104 50 Anonymous C6 - C9 Fraction 6 mg/kg 102 50 Anonymous C6 - C9 Fraction 6 mg/kg 102 50 Total Petroleum Hydrocarbons (TPH) (QC Lot: 3359838) 50 50 50 EP15/TO/1.0 C9 - C16 Fraction 90 mg/kg 79.6 50 Client sample ID Method: Compound CAS Spike Spike Rovery (%) Recovery (%) Major Cations - Filtered (QC Lot: 336523) -	Spike Client sample IDSpike CompoundSpike ConcentrationSpike ConcentrationSpike ConcentrationRecovery (%)Recovery Limits (%)Recovery (%)Recovery Limits (%)Hightal Petroleum Hydrocarbons (TPH)(QC Lot: 3355373)	Client sample ID Method: Compound CAS Number Concentration Number MS MSD Low High Value tal Petroleum Hydrocarbons (TPH) (QC Lot: 3355373) C10 - C14 Fraction 23 mg/kg 125 50 130

7439-92-1

1 mg/L

87.9

90.3

75

125

2.7

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)								
Compound	CAS Number	Low	High							
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surrogates										
2-Fluorobiphenyl	321-60-8	50	130							
4-Terphenyl-d14	1718-51-0	50	130							
EP-080_SRS: TPH(Volatile)/BTEX Surrogate										

EG020: Lead

Page Number : 9 of 9 Client : KIN WING CONSTRUCTION COMPANY LIMITED Work Order HK1409086

Sub-Matrix: SOIL		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP-080_SRS: TPH(Volatile)/BTEX Surrogate	- Continued				
Dibromofluoromethane	1868-53-7	80	120		
Toluene-D8	2037-26-5	81	117		
4-Bromofluorobenzene	460-00-4	74	121		
EP-074_SR-S: VOC Surrogates					
Dibromofluoromethane	1868-53-7	80	120		
Toluene-D8	2037-26-5	81	117		
4-Bromofluorobenzene	460-00-4	74	121		

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Authorised results for

Inorganics

Client	: KIN WING CONSTRUCTION COMPANY LIMITED	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 4
Contact	: MR KAM HUNG LEE	Contact	: Fung Lim Chee, Richard	Work Order	HK1409520
ddress	ELAT A, BLOCK 2, 6/F.,	Address	:11/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	KIN HO INDUSTRIAL BUILDING,		Yip Street, Kwai Chung, N.T., Hong Kong		
	14-24 AU PUI WAN STREET,				
	FOTAN, SHATIN, N.T. HONG KONG				
mail	∶ khlee425@yahoo.com.hk	E-mail	: Richard.Fung@alsglobal.com		
ephone	: +852 2785 8152	Telephone	÷ +852 2610 1044		
simile	: +852 2725 9316	Facsimile	: +852 2610 2021		
oject	: YAU TONG BAY REDEVELOPMENT - LAND	Quote number	:	Date Samples Received	: 27-MAR-2014
	DECONTAMINATION WORKS				
der number	:			Issue Date	: 10-APR-2014
O-C number	: H017962			No. of samples received	: 2
te	YAU TONG BAY			No. of samples analysed	: 2

CERTIFICATE OF ANALYSIS

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position

-	
Kwok Ka Yan, Yankee	

Chemist - Metals

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 04-APR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1409520

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Sample(s) analysed and reported on an as received basis.

TCLP leachate sample(s) were filtered prior to dissolved metal analysis.

The metal concentrations reported are those determined on the TCLP leachate. Extraction Fluid #1 pH 4.88 - 4.98.

Client sample ID		T22BB/TCLP.3	T22BB/TCLP.4			
Client sampling date / time			[27-MAR-2014]	[27-MAR-2014]		
CAS Number	LOR	Unit	HK1409520-001	HK1409520-002		
7440-50-8	0.1	mg/L	<0.1	<0.1		
7439-92-1	0.1	mg/L	<0.1	<0.1		
	-		1	1		
	7440-50-8 7439-92-1	CAS Number LOR 7440-50-8 0.1 7439-92-1 0.1	Client sampling date / time CAS Number LOR Unit 7440-50-8 0.1 mg/L 7439-92-1 0.1 mg/L	Client sampling date / time [22:DD1 OL1:3] CAS Number LOR Unit HK1409520-001 7440-50-8 0.1 mg/L <0.1 7439-92-1 0.1 mg/L <0.1	Client sampling date / time I222BBF OLT - 3 I222BBF OLT - 3 Client sampling date / time [27-MAR-2014] [27-MAR-2014] CAS Number LOR Unit HK1409520-001 HK1409520-002 7440-50-8 0.1 mg/L <0.1 <0.1 7439-92-1 0.1 mg/L <0.1 <0.1	Client sampling date / time I122DD110E1-3 I122DD10E1-4 Client sampling date / time [27-MAR-2014] [27-MAR-2014] CAS Number LOR Unit HK1409520-001 HK1409520-002 7440-50-8 0.1 mg/L <0.1 <0.1 7439-92-1 0.1 mg/L <0.1 <0.1

Page Number: 4 of 4Client: KIN WING CONSTRUCTION COMPANY LIMITEDWork OrderHK1409520

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EG: Metals and Major	EG: Metals and Major Cations - Filtered (QC Lot: 3374192)									
HK1409431-001	Anonymous	EG020: Copper	7440-50-8	0.1	mg/L	<0.1	<0.1	0.0		
		EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC L	.ot: 3374192)										
EG020: Copper	7440-50-8	0.001	mg/L	<0.1	1 mg/L	98.4		83	105		
EG020: Lead	7439-92-1	0.001	mg/L	<0.1	1 mg/L	96.1		82	104		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER	trix: WATER			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
					Spike Recovery (%)		Recovery Limits (%)		RPD (%)		
Laboratory	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control	
sample ID			Number							Limit	
EG: Metals and	Major Cations - Filtered (QC Lot: 33	74192)									
HK1409431-001	Anonymous	EG020: Copper	7440-50-8	1 mg/L	101	102	75	125	0.8		
		EG020: Lead	7439-92-1	1 mg/L	93.6	94.4	75	125	0.8		

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Client	: KIN WING CONSTRUCTION COMPANY LIMITED	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR KAM HUNG LEE	Contact	: Fung Lim Chee, Richard	Work Order	HK1409525
Address	: FLAT A, BLOCK 2, 6/F.,	Address	:11/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	KIN HO INDUSTRIAL BUILDING,		Yip Street, Kwai Chung, N.T., Hong Kong		
	14-24 AU PUI WAN STREET,				
	FOTAN, SHATIN, N.T. HONG KONG				
-mail	: khlee425@yahoo.com.hk	E-mail	: Richard.Fung@alsglobal.com		
elephone	: +852 2785 8152	Telephone	: +852 2610 1044		
acsimile	: +852 2725 9316	Facsimile	: +852 2610 2021		
Project	: YAU TONG BAY REDEVELOPMENT - LAND	Quote number	:	Date Samples Received	: 28-MAR-2014
	DECONTAMINATION WORKS				
Order number	:			Issue Date	: 11-APR-2014
C-O-C number	: H017963			No. of samples received	: 1
Site	: YAU TONG BAY			No. of samples analysed	: 1

CERTIFICATE OF ANALYSIS

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 03-APR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1409525**

 $\label{eq:sample} Sample(s) \mbox{ were picked up from client by ALS Technichem (HK) staff in a chilled condition.}$

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

This report may not be reproduced except with prior written approval from the testing laboratory.	This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.							
Hong Kong Accreditation Service (HKAS) has accedited this	Signatories	Position	Authorised results for					
laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong	Anh Ngoc Huynh	Senior Chemist - Organics	Organics					
Laboratory Accreditation Scheme (HOKLAS) for specific laboratory	Chan Siu Ming, Vico	Manager - Inorganics	Inorganics					
activities as listed in the HOKLAS Directory of Accredited								
Laboratories. The results shown in this certificate were								
determined by this laboratory in accordance with its terms of								
accreditation.								

Page Number : 2 of 3 Client : KIN WING CONSTRUCTION COMPANY LIMITED Work Order HK1409525

		Client sample ID	BP6A/TO/1.0							
	Client sa	ampling date / time	[28-MAR-2014]							
CAS Number	LOR	Unit	HK1409525-001							
	0.1	%	6.3							
ethylhexyl) Phtl	nalate									
117-81-7	5.00	mg/kg	<5.00							
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surrogates										
321-60-8	0.1	%	92.6							
1718-51-0	0.1	%	100							
	 ethylhexyl) Phti 117-81-7 AHs) Surrogate: 321-60-8	CAS Number LOR 0.1 ethylhexyl) Phthalate 117-81-7 117-81-7 5.00 AHs) Surrogates 321-60-8	Client sampling date / time CAS Number LOR Unit 0.1 % 0.1 % ethylhexyl) Phth-late	Client sampling date / time IBPOATIOT1.0 Client sampling date / time [28-MAR-2014] CAS Number LOR Unit HK1409525-001 0.1 % 6.3 ethylhexyl) Phthalate 5.00 mg/kg <5.00	Client sampling date / time [28-MAR-2014] CAS Number LOR Unit HK1409525-001 0.1 % 6.3 ethylhexyl) Phthatate 5.00 mg/kg <5.00 AHS, Surrogates % 92.6 92.6	Client sampling date / time Ise back 1 0/1.0 Ise ba	Client same line Brown roll Image line I			

Page Number: 3 of 3Client: KIN WING CONSTRUCTION COMPANY LIMITEDWork OrderHK1409525

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)				
EA/ED: Physical and	Aggregate Properties (Q	C Lot: 3368636)										
HK1409513-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	12.4	12.9	4.2				
HK1409515-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	37.3	35.2	5.8				
EP-076B: Phenol, He	exachlorobenzene and Bis	2-ethylhexyl) Phthalate (QC Lot: 3359837)										
HK1409086-001	Anonymous	Bis(2-ethylhexyl)phthalate	117-81-7	5000	µg/kg	9010	8710	3.4				

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
						Spike Recovery (%)		Recovery Limits (%)		RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EP-076B: Phenol, Hexachlorobenzene and Bis(2-ethylhexyl) Phthalate (QC Lot: 3359837)												
Bis(2-ethylhexyl)phthalate	117-81-7	25	µg/kg		25 µg/kg	103		76	117			
				<1000								

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery Limits (%)									
Compound	CAS Number	Low	High							
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surrogates										
2-Fluorobiphenyl	321-60-8	50	130							
4-Terphenyl-d14	1718-51-0	50	130							

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Authorised results for

Inorganics

Client	: KIN WING CONSTRUCTION COMPANY LIMITED	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 4
Contact	: MR KAM HUNG LEE	Contact	: Fung Lim Chee, Richard	Work Order	HK1410034
Address	: FLAT A, BLOCK 2, 6/F.,	Address	:11/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	KIN HO INDUSTRIAL BUILDING,		Yip Street, Kwai Chung, N.T., Hong Kong		
	14-24 AU PUI WAN STREET,				
	FOTAN, SHATIN, N.T. HONG KONG				
-mail	: khlee425@yahoo.com.hk	E-mail	: Richard.Fung@alsglobal.com		
ephone	: +852 2785 8152	Telephone	÷ +852 2610 1044		
simile	: +852 2725 9316	Facsimile	: +852 2610 2021		
roject	: YAU TONG BAY REDEVELOPMENT - LAND	Quote number	:	Date Samples Received	: 02-APR-2014
	DECONTAMINATION WORKS				
der number	:			Issue Date	: 16-APR-2014
O-C number	: H017964			No. of samples received	: 2
te	: YAU TONG BAY			No. of samples analysed	: 2

CERTIFICATE OF ANALYSIS

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position

Kwok Ka Yan,	Yankee

Chemist - Metals

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 12-APR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1410034

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Sample(s) analysed and reported on an as received basis.

TCLP leachate sample(s) were filtered prior to dissolved metal analysis.

The metal concentrations reported are those determined on the TCLP leachate. Extraction Fluid #1 pH 4.88 - 4.98.

Sub-Matrix: TCLP LEACHATE		Client sample ID		A3/TCLP	A3/TCLP.1	
				A3/TCLP	A3/TCLP.1	
Client sampling date / time			[02-APR-2014]	[02-APR-2014]		
Compound	CAS Number	LOR	Unit	HK1410034-001	HK1410034-002	
EG: Metals and Major Cations - Filtered						
EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	
Sample Preparation Method						
E-TCLP: Extraction Fluid Number		-		1	1	

Page Number: 4 of 4Client: KIN WING CONSTRUCTION COMPANY LIMITEDWork OrderHK1410034

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	
EG: Metals and Major	Cations - Filtered (QC Lot	:: 3388839)							
HK1410034-002	A3/TCLP.1	EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	0.0	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPL	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC Lot: 3388839)											
EG020: Lead	7439-92-1	0.001	mg/L	<0.1	1 mg/L	100		82	104		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER	Matrix: WATER			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
			Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit	
EG: Metals an	EG: Metals and Major Cations - Filtered (QC Lot: 3388839)										
HK1410034-001	A3/TCLP	EG020: Lead	7439-92-1	1 mg/L	98.4	98.6	75	125	0.2		

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Authorised results for

Inorganics

Client	: KIN WING CONSTRUCTION COMPANY LIMITED	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 4
Contact	: MR KAM HUNG LEE	Contact	: Fung Lim Chee, Richard	Work Order	HK1410306
Address	: FLAT A, BLOCK 2, 6/F.,	Address	:11/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	KIN HO INDUSTRIAL BUILDING,		Yip Street, Kwai Chung, N.T., Hong Kong		
	14-24 AU PUI WAN STREET,				
	FOTAN, SHATIN, N.T. HONG KONG				
-mail	: khlee425@yahoo.com.hk	E-mail	: Richard.Fung@alsglobal.com		
ephone	: +852 2785 8152	Telephone	: +852 2610 1044		
csimile	: +852 2725 9316	Facsimile	: +852 2610 2021		
roject	: YAU TONG BAY REDEVELOPMENT - LAND	Quote number	:	Date Samples Received	: 03-APR-2014
	DECONTAMINATION WORKS				
order number	:			Issue Date	: 17-APR-2014
C-O-C number	: H017965			No. of samples received	: 2
Site	: YAU TONG BAY			No. of samples analysed	: 2

CERTIFICATE OF ANALYSIS

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position

Kwok Ka Yan, Yankee	ŧ

Chemist - Metals

ALS La	aboratory Gr	oup
Trading Name: ALS	Technichem	(HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 12-APR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1410306

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Sample(s) analysed and reported on an as received basis.

TCLP leachate sample(s) were filtered prior to dissolved metal analysis.

The metal concentrations reported are those determined on the TCLP leachate. Extraction Fluid #1 pH 4.88 - 4.98.

-						
Sub-Matrix: TCLP LEACHATE			Client sample ID	A3/TCLP.2	A3/TCLP.3	
Client sampling date / time			[03-APR-2014]	[03-APR-2014]		
Compound	CAS Number	LOR	Unit	HK1410306-001	HK1410306-002	
EG: Metals and Major Cations - Filtered						
EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	
Sample Preparation Method						
E-TCLP: Extraction Fluid Number		-		1	1	

Page Number: 4 of 4Client: KIN WING CONSTRUCTION COMPANY LIMITEDWork OrderHK1410306

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EG: Metals and Majo	EG: Metals and Major Cations - Filtered (QC Lot: 3388862)									
HK1410548-009	Anonymous	EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC Lot: 3388862)											
EG020: Lead	7439-92-1	0.001	mg/L	<0.1	1 mg/L	98.6		82	104		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
			Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and	EG: Metals and Major Cations - Filtered (QC Lot: 3388862)									
HK1410306-001	A3/TCLP.2	EG020: Lead	7439-92-1	1 mg/L	107	108	75	125	1.2	

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Client	: KIN WING CONSTRUCTION COMPANY LIMITED	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 7
Contact	: MR KAM HUNG LEE	Contact	: Fung Lim Chee, Richard	Work Order	[:] HK1410548
ddress	ELAT A, BLOCK 2, 6/F.,	Address	:11/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	KIN HO INDUSTRIAL BUILDING,		Yip Street, Kwai Chung, N.T., Hong Kong		
	14-24 AU PUI WAN STREET,				
	FOTAN, SHATIN, N.T. HONG KONG				
-mail	: khlee425@yahoo.com.hk	E-mail	: Richard.Fung@alsglobal.com		
ephone	: +852 2785 8152	Telephone	÷ +852 2610 1044		
acsimile	: +852 2725 9316	Facsimile	: +852 2610 2021		
roject	: YAU TONG BAY REDEVELOPMENT - LAND	Quote number	:	Date Samples Received	: 07-APR-2014
	DECONTAMINATION WORKS				
rder number	:			Issue Date	: 23-APR-2014
C-O-C number	: H017966			No. of samples received	: 10
Site	: YAU TONG BAY			No. of samples analysed	: 10

CERTIFICATE OF ANALYSIS

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Anh Ngoc Huynh	Senior Chemist - Organics	Organics
Chan Siu Ming, Vico	Manager - Inorganics	Inorganics
Kwok Ka Yan, Yankee	Chemist - Metals	Inorganics
Wong Wing, Kenneth	Manager - Metals	Inorganics

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 12-APR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1410548

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Sample(s) analysed and reported on an as received basis.

TCLP leachate sample(s) were filtered prior to dissolved metal analysis.

The metal concentrations reported are those determined on the TCLP leachate. Extraction Fluid #1 pH 4.88 - 4.98.

Page Number : 3 of 7 Client : KIN WING CONSTRUCTION COMPANY LIMITED Work Order HK1410548

Analytical Nesalis								
Sub-Matrix: SOIL			Client sample ID	BP7/T1/1.0	BP8/T1/1.0	BP9/T1/1.0	BP10/T1/1.0	BP11/T1/1.0
	Client sampling date / time			[07-APR-2014]	[07-APR-2014]	[07-APR-2014]	[07-APR-2014]	[07-APR-2014]
Compound	CAS Number	LOR	Unit	HK1410548-001	HK1410548-002	HK1410548-003	HK1410548-004	HK1410548-005
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @ 103°C)		0.1	%	16.4	12.6	14.6	17.9	14.8
EP-071_SR: Total Petroleum Hydrocarbons (TPH)							
C6 - C9 Fraction		2	mg/kg	<2	<2	<2	<2	<2
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	1550	<100	<100	<100	454
C29 - C36 Fraction		100	mg/kg	978	<100	<100	<100	425
EP-080_SRS: TPH(Volatile)/BTEX Surrogate							Surrogate control lin	nits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	90.9	93.5	89.9	90.1	91.5
Toluene-D8	2037-26-5	0.1	%	95.4	94.8	94.8	95.1	96.3
4-Bromofluorobenzene	460-00-4	0.1	%	96.9	103	94.7	96.6	107

Page Number : 4 of 7 Client : KIN WING CONSTRUCTION COMPANY LIMITED

Work Order HK1410548

Sub-Matrix: SOIL			Client sample ID	BP12/T1/1.0	BP13/T1/1.0		
		Client sa	ampling date / time	[07-APR-2014]	[07-APR-2014]		
Compound	CAS Number	LOR	Unit	HK1410548-006	HK1410548-007		
EA/ED: Physical and Aggregate Properties							
EA055: Moisture Content (dried @ 103°C)		0.1	%	16.3	15.6		
EP-071_SR: Total Petroleum Hydrocarbons (TPH)							
C6 - C9 Fraction		2	mg/kg	<2	<2		
C10 - C14 Fraction		50	mg/kg	<50	<50		
C15 - C28 Fraction		100	mg/kg	2210	736		
C29 - C36 Fraction		100	mg/kg	934	577		
EP-080_SRS: TPH(Volatile)/BTEX Surrogate						Surrogate control lin	nits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	91.3	92.1		
Toluene-D8	2037-26-5	0.1	%	95.9	95.7		
4-Bromofluorobenzene	460-00-4	0.1	%	110	106		

Page Number : 5 of 7 Client : KIN WING CONSTRUCTION COMPANY LIMITED Work Order HK1410548

Sub-Matrix: TCLP LEACHATE			Client sample ID	A5/TCLP	A5/TCLP.1	A5/TCLP.2	
		Client sa	mpling date / time	[07-APR-2014]	[07-APR-2014]	[07-APR-2014]	
Compound	CAS Number	LOR	Unit	HK1410548-008	HK1410548-009	HK1410548-010	
EG: Metals and Major Cations - Filtered							
EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	<0.1	
Sample Preparation Method							
E-TCLP: Extraction Fluid Number		-		1	1	1	

Page Number: 6 of 7Client: KIN WING CONSTRUCTION COMPANY LIMITEDWork OrderHK1410548

Laboratory Duplicate (DUP) Report

Matrix: SOIL						Laboratory Duplicate (DUP) Re	eport	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical a	nd Aggregate Properties	s (QC Lot: 3383997)						
HK1408281-006	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	11.4	11.7	2.9
HK1408281-016	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	21.4	21.2	1.3
EA/ED: Physical a	nd Aggregate Properties	s (QC Lot: 3383998)						
HK1410548-004	BP10/T1/1.0	EA055: Moisture Content (dried @ 103°C)		0.1	%	17.9	17.4	3.2
HK1410627-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	68.5	68.7	0.2
EP-071_SR: Total I	Petroleum Hydrocarbon	s (TPH) (QC Lot: 3383405)						
	C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	
		C15 - C28 Fraction		50	mg/kg	<50	<50	0.0
		C29 - C36 Fraction		50	mg/kg	<50	<50	0.0
EP-071_SR: Total I	Petroleum Hydrocarbon	s (TPH) (QC Lot: 3383407)						
HK1410548-005	BP11/T1/1.0	C15 - C28 Fraction		100	mg/kg	454	453	0.0
		C29 - C36 Fraction		100	mg/kg	425	439	3.2
		C10 - C14 Fraction		50	mg/kg	<50	<50	0.0
EP-071_SR: Total I	Petroleum Hydrocarbon	s (TPH) (QC Lot: 3383430)						
HK1408281-003	Anonymous	C6 - C9 Fraction		2	mg/kg	<2	<2	0.0
Matrix: WATER						Laboratory Duplicate (DUP) Re	eport	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EG: Metals and Ma	jor Cations - Filtered (QC Lot: 3388862)	1			1	· · · · · ·	
HK1410548-009	A5/TCLP.1	EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB) Report		Laboratory Co	ntrol Spike (LCS) and Lai	boratory Control S	oike Duplicate (DC	S) Report	
					Spike	Spike Recovery (%)		Recovery Limits (%)		RI	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-071_SR: Total Petroleum Hyd	rocarbons (TPH) (QC Lot: 33	883405)									
C10 - C14 Fraction		50	mg/kg	<50	22.5 mg/kg	92.9		23	155		
C15 - C28 Fraction		100	mg/kg	<100	52.5 mg/kg	95.2		12	154		
C29 - C36 Fraction		100	mg/kg	<100	52.5 mg/kg	60.3		0	131		
EP-071_SR: Total Petroleum Hyd	rocarbons (TPH) (QC Lot: 33	883407)									
C10 - C14 Fraction		50	mg/kg	<50	22.5 mg/kg	97.5		23	155		
C15 - C28 Fraction		100	mg/kg	<100	52.5 mg/kg	104		12	154		
C29 - C36 Fraction		100	mg/kg	<100	52.5 mg/kg	63.2		0	131		
EP-071_SR: Total Petroleum Hyd	rocarbons (TPH) (QC Lot: 33	883430)									
C6 - C9 Fraction		2	mg/kg	<2	6 mg/kg	105		72	123		
Matrix: WATER			Method Blank (MB) Report		Laboratory Co	ntrol Spike (LCS) and Lai	boratory Control S	oike Duplicate (DC	S) Report	
					Spike	Spike Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit

Page Number : 7 of 7 Client **: KIN WING CONSTRUCTION COMPANY LIMITED** Work Order HK1410548

Method Blank (MB) Report Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report Matrix: WATER Spike Recovery Limits (%) RPD (%) Spike Recovery (%) Concentration CAS Number LOR Unit Result LCS DCS Low High Value **Control Limit** Method: Compound EG: Metals and Major Cations - Filtered (QC Lot: 3388862) 7439-92-1 0.001 mg/L <0.1 1 mg/L 98.6 82 104 EG020: Lead ------------

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix:	SOIL
---------	------

Matrix: SOIL					Matrix Sp	oike (MS) and Matr	ix Spike Duplic	ate (MSD) Rej	port	
				Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPL) (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
	otal Petroleum Hydrocarbon	s (TPH) (QC Lot: 3383405)								
HK1408281-004	Anonymous	C10 - C14 Fraction		22.5 mg/kg	80.9		50	130		
		C15 - C28 Fraction		53 mg/kg	96.3		50	130		
		C29 - C36 Fraction		45 mg/kg	107		50	130		
EP-071_SR: To	otal Petroleum Hydrocarbon	s (TPH) (QC Lot: 3383407)								
HK1410548-006 BP12/T1/1.0	BP12/T1/1.0	C10 - C14 Fraction		22.5 mg/kg	77.9		50	130		
		C15 - C28 Fraction		53 mg/kg	-		50	130		
		C29 - C36 Fraction		45 mg/kg	-		50	130		
EP-071_SR: To	otal Petroleum Hydrocarbon	s (TPH) (QC Lot: 3383430)								
HK1408280-004	Anonymous	C6 - C9 Fraction		6 mg/kg	108		50	130		
Matrix: WATER					Matrix Sp	oike (MS) and Matr	ix Spike Duplic	ate (MSD) Rej	port	
				Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPL) (%)
Laboratory	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control
sample ID			Number							Limit
EG: Metals and	d Major Cations - Filtered (G	QC Lot: 3388862)								
HK1410306-001	Anonymous	EG020: Lead	7439-92-1	1 mg/L	107	108	75	125	1.2	

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery Limits (%)				
Compound	CAS Number	Low	High		
EP-080_SRS: TPH(Volatile)/BTEX Surrogate					
Dibromofluoromethane	1868-53-7	80	120		
Toluene-D8	2037-26-5	81	117		
4-Bromofluorobenzene	460-00-4	74	121		

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Authorised results for

Inorganics

Client	: KIN WING CONSTRUCTION COMPANY LIMITED	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 4
Contact	: MR KAM HUNG LEE	Contact	: Fung Lim Chee, Richard	Work Order	⁺ HK1410944
Address	: FLAT A, BLOCK 2, 6/F.,	Address	11/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	KIN HO INDUSTRIAL BUILDING,		Yip Street, Kwai Chung, N.T., Hong Kong		
	14-24 AU PUI WAN STREET,				
	FOTAN, SHATIN, N.T. HONG KONG				
E-mail	: khlee425@yahoo.com.hk	E-mail	: Richard.Fung@alsglobal.com		
Telephone	: +852 2785 8152	Telephone	: +852 2610 1044		
Facsimile	: +852 2725 9316	Facsimile	: +852 2610 2021		
Project	: YAU TONG BAY REDEVELOPMENT - LAND	Quote number	:	Date Samples Received	: 09-APR-2014
	DECONTAMINATION WORKS				
Order number	:			Issue Date	: 25-APR-2014
C-O-C number	: H017967			No. of samples received	: 3
Site	: YAU TONG BAY			No. of samples analysed	: 3

CERTIFICATE OF ANALYSIS

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position

Signationes	1 USINON
Wong Wing, Kenneth	Manager - Metals

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 17-APR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1410944

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Sample(s) analysed and reported on an as received basis.

TCLP leachate sample(s) were filtered prior to dissolved metal analysis.

The metal concentrations reported are those determined on the TCLP leachate. Extraction Fluid #1 pH 4.88 - 4.98.

, malfieur recourto							
Sub-Matrix: TCLP LEACHATE	ib-Matrix: TCLP LEACHATE		Client sample ID	A4/TCLP	A4/TCLP.1	A4/TCLP.2	
Client			mpling date / time	[09-APR-2014]	[09-APR-2014]	[09-APR-2014]	
Compound	CAS Number	LOR	Unit	HK1410944-001	HK1410944-002	HK1410944-003	
EG: Metals and Major Cations - Filtered							
EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	<0.1	
Sample Preparation Method							
E-TCLP: Extraction Fluid Number		-		1	1	1	

Page Number : 4 of 4 Client : KIN WING CONSTRUCTION COMPANY LIMITED Work Order HK1410944

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result Duplicate Result		RPD (%)		
EG: Metals and Major Cations - Filtered (QC Lot: 3395911)										
HK1411082-002	Anonymous	EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER Method Blank (MB) Report					Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EG: Metals and Major Cations - Filtered (QC Lot: 3395911)												
EG020: Lead	7439-92-1	0.001	mg/L	<0.1	1 mg/L	98.5		82	104			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER			port							
			Spike		Spike Recovery (%)		Recovery Limits (%)		D (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and	d Major Cations - Filtered (QC Lot: 33	95911)								
HK1411082-001	Anonymous	EG020: Lead	7439-92-1	1 mg/L	93.8	94.7	75	125	1.0	

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS									
Client Contact	: KIN WING CONSTRUCTION COMPANY LIMITED : MR KAM HUNG LEE	Laboratory Contact	: ALS Technichem HK Pty Ltd : Fung Lim Chee, Richard	Page Work Order	: 1 of 3 HK1411428				
Address	: FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET, FOTAN, SHATIN, N.T. HONG KONG	Address	: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong						
E-mail Telephone Facsimile	∶ khlee425@yahoo.com.hk : +852 2785 8152 : +852 2725 9316	E-mail Telephone Facsimile	: Richard.Fung@alsglobal.com : +852 2610 1044 : +852 2610 2021						
Project	: YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	Quote number	:	Date Samples Received	: 11-APR-2014				
Order number	:			Issue Date	: 25-APR-2014				
C-O-C number	: H017968			No. of samples received	: 1				
Site	: YAU TONG BAY			No. of samples analysed	: 1				

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 17-APR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1411428

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-09 based on ASTM D3974-09, prior to determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.	This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.							
Hong Kong Accreditation Service (HKAS) has accedited this	Signatories	Authorised results for						
laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong	Wong Wing, Kenneth	Manager - Metals	Inorganics					
Laboratory Accreditation Scheme (HOKLAS) for specific laboratory								
activities as listed in the HOKLAS Directory of Accredited								
Laboratories. The results shown in this certificate were								
determined by this laboratory in accordance with its terms of								
accreditation.								

Page Number : 2 of 3 Client : KIN WING CONSTRUCTION COMPANY LIMITED Work Order HK1411428

Sub-Matrix: SOIL			Client sample ID	R7/SW/1.1-1.2/3.825		
		Client sa	mpling date / time	[11-APR-2014]		
Compound	CAS Number	LOR	Unit	HK1411428-001		
EA/ED: Physical and Aggregate Properties						
EA055: Moisture Content (dried @		0.1	%	40.8		
103°C)						
EG: Metals and Major Cations						
EG020: Lead	7439-92-1	1	mg/kg	108		

Laboratory Duplicate (DUP) Report

Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	
EA/ED: Physical an	d Aggregate Properties (C	C Lot: 3392682)							
HK1411313-007	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	62.2	61.8	0.7	
HK1411384-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	16.4	17.2	4.7	
EG: Metals and Maj	or Cations (QC Lot: 33924	80)							
HK1411384-001	Anonymous	EG020: Lead	7439-92-1	1	mg/kg	72	72	0.0	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPL	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 339248	0)										
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	90.0		80	104		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

			Matrix Sp	oike (MS) and Matrix	Spike Duplica	ate (MSD) Re	port			
				Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPI	D (%)
Laboratory	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control
sample ID			Number							Limit
EG: Metals and	d Major Cations (QC Lot: 3392480)									
HK1411313-020	Anonymous	EG020: Lead	7439-92-1	50 mg/kg	92.0		75	125		

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Authorised results for

Inorganics

Client	: KIN WING CONSTRUCTION COMPANY LIMITED	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 4
Contact	: MR KAM HUNG LEE	Contact	: Fung Lim Chee, Richard	Work Order	[:] HK1411545
Address	FLAT A, BLOCK 2, 6/F.,	Address	:11/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	KIN HO INDUSTRIAL BUILDING,		Yip Street, Kwai Chung, N.T., Hong Kong		
	14-24 AU PUI WAN STREET,				
	FOTAN, SHATIN, N.T. HONG KONG				
E-mail	: khlee425@yahoo.com.hk	E-mail	: Richard.Fung@alsglobal.com		
Telephone	: +852 2785 8152	Telephone	: +852 2610 1044		
Facsimile	: +852 2725 9316	Facsimile	: +852 2610 2021		
Project	: YAU TONG BAY REDEVELOPMENT - LAND	Quote number	:	Date Samples Received	: 14-APR-2014
	DECONTAMINATION WORKS				
Order number	:			Issue Date	: 30-APR-2014
C-O-C number	: H017969			No. of samples received	: 2
Site	: YAU TONG BAY			No. of samples analysed	: 2

Wong Wing,

CERTIFICATE OF ANALYSIS

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position

Kenneth	Manager - Metals

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 25-APR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1411545

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Sample(s) analysed and reported on an as received basis.

TCLP leachate sample(s) were filtered prior to dissolved metal analysis.

The metal concentrations reported are those determined on the TCLP leachate. Extraction Fluid #1 pH 4.88 - 4.98.

Sub-Matrix: TCLP LEACHATE			Client sample ID	R7/TCLP	R7/TCLP.1	
			mpling date / time	[14-APR-2014]	[14-APR-2014]	
Compound	CAS Number	LOR	Unit	HK1411545-001	HK1411545-002	
EG: Metals and Major Cations - Filtered						
EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	
Sample Preparation Method						
E-TCLP: Extraction Fluid Number		-		1	1	

Laboratory Duplicate (DUP) Report

• No Laboratory Duplicate (DUP) Results are required to be reported.

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER	[Method Blank (MB) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Ree	covery (%)	Recovery	Limits (%)	RF	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC Lo	ot: 3406304)										
EG020: Lead	7439-92-1	0.001	mg/L	<0.1	1 mg/L	93.0		82	104		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER		Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report				ort				
		Spike		Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
Laboratory	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control
sample ID			Number							Limit
EG: Metals and	Major Cations - Filtered (QC Lot: 34	06304)								
HK1410572-001	Anonymous	EG020: Lead	7439-92-1	1 mg/L	92.1	91.9	75	125	0.2	

ALS L	Technichem (HK) Pty l aboratory Group	_td	ALS
	SUB-CONTRACTING R	EPORT	
CONTACT	: MR KAM HUNG LEE	WORK ORDER	HK1408271
CLIENT ADDRESS	KIN WING CONSTRUCTION COMPANY LIMITED FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET,	SUB-BATCH DATE RECEIVED DATE OF ISSUE	1 18-MAR-2014 1-APR-2014
PROJECT	FOTAN, SHATIN, N.T. HONG KONG YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	NO. OF SAMPLES CLIENT ORDER	1

• Sample(s) were picked up from client by ALS Technichem (HK) staff in an ambient condition.

• Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

UCS was subcontracted to and analysed by Geotechnics & Concrete Engineering (H.K.) Ltd (GCE).

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	
Richard Fung	General Manager	

Richard Fung

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

> Trading Name: ALS Technichem (HK) Pty Ltd 11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com A Campbell Brothers Limited Company

: HK1408271

SUB-BATCH CLIENT PROJECT

: KIN WING CONSTRUCTION COMPANY LIMITED : YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1408271-001	T19A/UCS.2	CONCRETE	14-MAR-2014	GCD140304314

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CUBE

Report No. : GCD	140304314				Dat	e of Issue	: 25-	-03-2014
Sample Details as Supp	lied by Client :							
Client : ALS	Technichem (HK) Pty Ltd.	C	Contract No.	:	W.0	O. No. / Job No.	:	
Address : 11/F	, Chung Shun Knitting Centre,	1-3 Wing Yip St., Kw	wai Chung, N.T	Г., Hong Kong	Auc	dit / Request No.	: -	
Project / Site :								
Location in Works of Cor	crete Batch Sampled	-						
Supplier	:	Plant	:					
Source of Coarse Agg.	:	Source of Fine Ag	g. :					
Cement Brand	:	Admixture Brand	:		Dosage		:	
Concrete Mix I.D. No.	:	Concrete Grade	:		Designed /	Measured Slump	:	
Cement Content	:	W/C Ratio	:		A/C Ratio		:	
PFA Content	:	PFA Source	:					
Date Cast	: 14-03-2014	Time of Adding W		:				
Date of Sampling	: 14-03-2014	Time of Sampling		:				
Place of Sampling	:	Place / Time of Ma		:				
Method of Compaction	:	Name of Person M	-					
Site Curing Method No. of Cubes	- 1	Site Max. / Min. Te Nominal Size	emperature : 150 mm	:	Test at Ag	f	:	7 days
A Certificate of Sampling	<u>, Slump Test, Cube Making ar</u> , Slump Test, Cube Making and		able.					
A Certificate of Sampling	, Slump Test, Cube Making and <u>s :</u>	d Curing is not availa			005 7-11			
A Certificate of Sampling Laboratory Test Result: Date Received :	, Slump Test, Cube Making and <u>s :</u> 20-03-2014	d Curing is not availa	d : 21-03-20	014 18:21		Unit Reg. No.	5 800	14022
A Certificate of Sampling <u>aboratory Test Result</u> Date Received : Curing Method :	, Slump Test, Cube Making and <u>s :</u> 20-03-2014 In Air	d Curing is not availa Date / Time Teste Max. / Min. Temp.	d : 21-03-20	014 18:21 /	GCE Test Cube Age	Unit Reg. No.	: MI :	
A Certificate of Sampling Laboratory Test Results Date Received : Curing Method : Test Location :	, Slump Test, Cube Making and <u>s :</u> 20-03-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not availa Date / Time Teste Max. / Min. Temp.	d : 21-03-20	014 18:21 / g Kong	Cube Age	Unit Reg. No. at Test	:	14022 7 days
A Certificate of Sampling Laboratory Test Results Date Received : Curing Method : Test Location :	, Slump Test, Cube Making and <u>s :</u> 20-03-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not availa Date / Time Teste Max. / Min. Temp.	d : 21-03-20	014 18:21 /		Unit Reg. No.	5 800	14022
A Certificate of Sampling aboratory Test Results Date Received : Curing Method : Fest Location : Laboratory Reference Nu	, Slump Test, Cube Making and <u>s :</u> 20-03-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom,	d : 21-03-20	014 18:21 / g Kong	Cube Age	Unit Reg. No. at Test	:	14022 7 days
A Certificate of Sampling <u>aboratory Test Result</u> Date Received : Curing Method : Fest Location : Laboratory Reference Nu Cube Mark	, Slump Test, Cube Making and <u>s :</u> 20-03-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom,	ed : 21-03-20 : Kowloon, Hong HK1408271-001	014 18:21 / g Kong	Cube Age	Unit Reg. No. at Test 	:	14022 7 days
A Certificate of Sampling <u>Laboratory Test Results</u> Date Received : Curing Method : Test Location : Laboratory Reference Nu Cube Mark Mould No.	, Slump Test, Cube Making and <u>s :</u> 20-03-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom,	d : 21-03-20 Kowloon, Hong HK1408271-001 T19A/UCS.2	014 18:21 / g Kong	Cube Age	Unit Reg. No. at Test 	:	14022 7 days
A Certificate of Sampling Laboratory Test Result: Date Received : Curing Method : Test Location : Laboratory Reference Nu Cube Mark Mould No. Mass of Specimen in Air	, Slump Test, Cube Making and <u>5 :</u> 20-03-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom,	ed : 21-03-20 Kowloon, Hong HK1408271-001 T19A/UCS.2 	014 18:21 / g Kong	Cube Age 	Unit Reg. No. at Test 	:	14022 7 days
A Certificate of Sampling Laboratory Test Results Date Received : Curing Method : Test Location : Laboratory Reference Nu Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wa	, Slump Test, Cube Making and <u>5 :</u> 20-03-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom, kg	ed : 21-03-20 : Kowloon, Hong HK1408271-001 T19A/UCS.2 5.968	014 18:21 / g Kong	Cube Age 	Unit Reg. No. at Test 	-	14022 7 days
A Certificate of Sampling Laboratory Test Results Date Received : Curing Method : Test Location : Laboratory Reference Nu Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wa Length of Specimen	, Slump Test, Cube Making and <u>5 :</u> 20-03-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom, kg	ed : 21-03-20 : Kowloon, Hong HK1408271-001 T19A/UCS.2 5.968 	014 18:21 / g Kong	Cube Age 	Unit Reg. No. at Test 	-	14022 7 days
A Certificate of Sampling <u>aboratory Test Results</u> Date Received : Curing Method : Fest Location : Laboratory Reference Nu Laboratory Reference Nu Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wa Length of Specimen Width of Specimen	, Slump Test, Cube Making and <u>5 :</u> 20-03-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom, kg kg mm mm	d : 21-03-20 Kowloon, Hong HK1408271-001 T19A/UCS.2 5.968 150.5	014 18:21 / g Kong	Cube Age 	Unit Reg. No. at Test 	-	14022 7 days
A Certificate of Sampling Laboratory Test Result: Date Received : Curing Method : Test Location : Laboratory Reference Nu Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wa Length of Specimen Width of Specimen Height of Specimen	, Slump Test, Cube Making and <u>s :</u> 20-03-2014 In Air No. 6, Ko Shan Road, Ground Imber	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom, Kg kg mm mm	ed : 21-03-20 Kowloon, Hong HK1408271-001 T19A/UCS.2 5.968 150.5 150.7 149.0	014 18:21 / g Kong	Cube Age 	Unit Reg. No. at Test 	-	14022 7 days
A Certificate of Sampling Laboratory Test Result: Date Received : Curing Method : Test Location : Laboratory Reference Nu Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wa Length of Specimen Width of Specimen Height of Specimen	, Slump Test, Cube Making and <u>s</u> : 20-03-2014 In Air No. 6, Ko Shan Road, Ground umber tter	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom, I Floor, Hung Mom, kg kg mm mm kg/m ³	ed : 21-03-20 : Kowloon, Hong HK1408271-001 T19A/UCS.2 5.968 150.5 150.7 149.0 1770	014 18:21 / g Kong	Cube Age	Unit Reg. No. at Test 	-	14022 7 days -
A Certificate of Sampling <u>aboratory Test Results</u> Date Received : Curing Method : Test Location : Laboratory Reference Nu Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wa Length of Specimen Height of Specimen As-received Density	, Slump Test, Cube Making and s: 20-03-2014 In Air No. 6, Ko Shan Road, Ground umber ter -Vol. by Calculation -Vol. by Water Displacement	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom, kg kg mm mm kg/m ³ kg/m ³	ed : 21-03-20 Kowloon, Hong HK1408271-001 T19A/UCS.2 5.968 150.5 150.7 149.0 1770 	014 18:21 / g Kong	Cube Age	Unit Reg. No. at Test 		14022 7 days
A Certificate of Sampling <u>aboratory Test Results</u> Date Received : Curing Method : Fest Location : Laboratory Reference Nu Laboratory Reference Nu Laboratory Reference Nu Cube Mark Mould No. Mass of Specimen in Wa Length of Specimen Height of Specimen Height of Specimen As-received Density Maximum Load at Failure	, Slump Test, Cube Making and s: 20-03-2014 In Air No. 6, Ko Shan Road, Ground umber ter -Vol. by Calculation -Vol. by Water Displacement	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom, Kg kg mm mm kg/m ³ kg/m ³ kN	ed : 21-03-20 Kowloon, Hong HK1408271-001 T19A/UCS.2 5.968 150.5 150.7 149.0 1770 32.9	014 18:21 / g Kong	Cube Age	Unit Reg. No. at Test 		14022 7 days -
A Certificate of Sampling Laboratory Test Results Date Received : Curing Method : Test Location : Laboratory Reference Nu Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wa Length of Specimen Width of Specimen Height of Specimen As-received Density Maximum Load at Failure Compressive Strength	, Slump Test, Cube Making and s: 20-03-2014 In Air No. 6, Ko Shan Road, Ground umber ter -Vol. by Calculation -Vol. by Water Displacement	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom, kg kg mm mm kg/m ³ kg/m ³	ed : 21-03-20 : Kowloon, Hong HK1408271-001 T19A/UCS.2 5.968 150.5 150.7 149.0 1770 32.9 1.5	014 18:21 / g Kong	Cube Age	Unit Reg. No. at Test 		14022 7 days
A Certificate of Sampling Laboratory Test Result: Date Received : Curing Method :	, Slump Test, Cube Making and s: 20-03-2014 In Air No. 6, Ko Shan Road, Ground umber ter -Vol. by Calculation -Vol. by Water Displacement	d Curing is not availa Date / Time Teste Max. / Min. Temp. I Floor, Hung Hom, Kg kg mm mm kg/m ³ kg/m ³ kN	ed : 21-03-20 Kowloon, Hong HK1408271-001 T19A/UCS.2 5.968 150.5 150.7 149.0 1770 32.9	014 18:21 / g Kong	Cube Age	Unit Reg. No. at Test 		14022 7 days

A - Dry on Receipt; B - Poor Compaction; C - Honeycombing; D - Damaged Edge; E - Damaged Corner; F - Irregular; G - Oversize;

H - Undersize; P - No Irregularity in Squareness; S - Satisfactory Failure; U - Unsatisfactory Failure.

Remarks: 1) Martix : Cement Cube

2) The maximum load at failure of the specimens are lower than the minimum calibrated range of compression machine (i.e. 50kN).

			END	
Tested By	: H.K. C	Cheng		Approved Signatory
Checked By	:	F		Post

LAU SUN HUNG, IVAN

5

: Senior Testing Manager

Form No. : CON-P3/R1 Issue 4 Rev 1 (06-05-2003) Page 9 of 12

ALS L	Technichem (HK) Pty l aboratory Group	Ltd	ALS
	SUB-CONTRACTING R	EPORT	
CONTACT	MR KAM HUNG LEE	WORK ORDER	HK1408394
CLIENT ADDRESS	KIN WING CONSTRUCTION COMPANY LIMITED FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET,	SUB-BATCH DATE RECEIVED DATE OF ISSUE	1 19-MAR-2014 1-APR-2014
PROJECT	FOTAN, SHATIN, N.T. HONG KONG : YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	NO. OF SAMPLES CLIENT ORDER	2

- Sample(s) were picked up from client by ALS Technichem (HK) staff in an ambient condition.
- Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
- UCS was subcontracted to and analysed by Geotechnics & Concrete Engineering (H.K.) Ltd (GCE).

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position
Richard Fung	General Manager

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

> Trading Name: ALS Technichem (HK) Pty Ltd 11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com A Campbell Brothers Limited Company

> > Page: 1 of 2

HK1408394

SUB-BATCH CLIENT PROJECT

: 1 : KIN WING CONSTRUCTION COMPANY LIMITED

: YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1408394-001	T22BA/UCS	CONCRETE	17-MAR-2014	GCD140304322
HK1408394-002	T22BA/UCS.1	CONCRETE	17-MAR-2014	GCD140304322

ь

4

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CUBE

							Page 1 o
Report No. : GCD	140304322			Date of Issue	:	25-03	-2014
Sample Details as Supp	lied by Client :						
Client : ALS	Technichem (HK) Pty Ltd.	Contract No.	:	W.O. No. / Job No.	:		
		, 1-3 Wing Yip St., Kwai Chung, N.	T., Hong Kong	Audit / Request No.	:		
Project / Site :							
ocation in Works of Cor	crete Batch Sampled	:					
Supplier	:	Plant :					
Source of Coarse Agg.	:	Source of Fine Agg. :					
Cement Brand	:	Admixture Brand :		Dosage	:		
Concrete Mix I.D. No.	;	Concrete Grade :		Designed / Measured Slump	:		
ement Content	;	W/C Ratio :		A/C Ratio	:		
FA Content	·	PFA Source :					
Date Cast	: 17-03-2014	Time of Adding Water to Mix	:				
ate of Sampling	: 17-03-2014	Time of Sampling	-				
Place of Sampling	:	Place / Time of Making Cube	:				
lethod of Compaction	: -	Name of Person Making Cubes	i				
Site Curing Method	:	Site Max. / Min. Temperature	:				
lo. of Cubes	: 2	Nominal Size : 150 mr	n	Test at Age of	:	7	days
Certificate of Sampling	, Slump Test, Cube Making	and Curing :					
A Certificate of Sampling	, Slump Test, Cube Making a	nd Curing is not available.					
aboratory Test Result	<u>s :</u>						
Date Received :	20-03-2014	Date / Time Tested : 24-03-2	014 16:23	GCE Test Unit Reg. No.	:	MI14	022
Curing Method :	In Air	Max. / Min. Temp. :	/	Cube Age at Test	:	7	days
Juring Method							

Laboratory Reference N	Number				 		
Cube Mark			HK1408394-001 T22BA/UCS	HK1408394-002 T22BA/UCS.1	 		
Mould No.					 		
Mass of Specimen in A	ir	kg	6.394	6.322	 		
Mass of Specimen in W	Vater	kg			 		
Length of Specimen		mm	150.5	150.6	 		
Width of Specimen		mm	150.6	150.7	 		
Height of Specimen		mm	150.1	150.0	 		-
As-received Density	-Vol. by Calculation	kg/m ³	1880	1860	 	-	
	-Vol. by Water Displacement	kg/m ³			 	-	
Maximum Load at Failu	ire	kN	41.6	41.8	 		
Compressive Strength		MPa	1.8	1.8	 		
Observation Code			Р	Р	 		
Failure Mode			S	S	 		

Legend :

A - Dry on Receipt; B - Poor Compaction; C - Honeycombing; D - Damaged Edge; E - Damaged Corner; F - Irregular; G - Oversize;

H - Undersize; P - No Irregularity in Squareness; S - Satisfactory Failure; U - Unsatisfactory Failure.

Remarks: 1) Martix : Cement Cube

2) The maximum load at failure of the specimens are lower than the minimum calibrated range of compression machine (i.e. 50kN).

			-	-END	
Tested By	: Y.K. Char				
		A			
Checked By	:	1			
Form No. : CON-	P3/R1 Issue 4 Re	1 (06-05-2003) Page 9 of 12			

Approved Signatory

Post

LAU SUN HUNG, IVAN

: Senior Testing Manager

ALS L	Technichem (HK) Pty L aboratory Group	.td	ALS
	SUB-CONTRACTING RE	PORT	
CONTACT	MR KAM HUNG LEE	WORK ORDER	HK1408579
CLIENT ADDRESS	KIN WING CONSTRUCTION COMPANY LIMITED FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET,	SUB-BATCH DATE RECEIVED DATE OF ISSUE	1 20-MAR-2014 1-APR-2014
PROJECT	FOTAN, SHATIN, N.T. HONG KONG YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	NO. OF SAMPLES CLIENT ORDER	2

• Sample(s) were picked up from client by ALS Technichem (HK) staff in an ambient condition.

• Sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

UCS was subcontracted to and analysed by Geotechnics & Concrete Engineering (H.K.) Ltd (GCE).

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position
Richard Fung	General Manager

Trading Name: ALS Technichem (HK) Pty Ltd 11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com A Campbell Brothers Limited Company

: HK1408579

SUB-BATCH CLIENT PROJECT : 1 : KIN WING CONSTRUCTION COMPANY LIMITED

: YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1408579-001	T22BA/UCS.2	CONCRETE	18-MAR-2014	GCD140304330
HK1408579-002	T22BA/UCS.3	CONCRETE	18-MAR-2014	GCD140304330

GEOTECHNICS & CONCRETE ENGINEERING (H.K.) LTD. 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG. TEL.: 852-2365 9123 FAX NO.: 852-2765 8034

Page 1 of 1

1

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CUBE

Report No. : GCD140304330 Date of Issue : 26-03-2014 Sample Details as Supplied by Client : Client : ALS Technichem (HK) Pty Ltd. Contract No. W.O. No. / Job No. : -• : 11/F., Chung Shun Knitting Centre, 1-3 Wing Yip St., Kwai Chung, N.T., Hong Kong Address Audit / Request No. : Project / Site : -Location in Works of Concrete Batch Sampled : --Supplier : -Plant : --Source of Coarse Agg. : --Source of Fine Agg. : --Cement Brand : --Admixture Brand : ---Dosage : -: -Concrete Mix I.D. No. Concrete Grade : --Designed / Measured Slump Cement Content : --W/C Ratio : --: -A/C Ratio PFA Content : --PFA Source : -Date Cast : 18-03-2014 Time of Adding Water to Mix : -Date of Sampling : 18-03-2014 Time of Sampling : --Place of Sampling Place / Time of Making Cube :-: -Method of Compaction : --Name of Person Making Cubes : -Site Curing Method : --Site Max. / Min. Temperature : -No. of Cubes : 2 Nominal Size : 150 mm Test at Age of 7 days

.

Certificate of Sampling, Slump Test, Cube Making and Curing :

A Certificate of Sampling, Slump Test, Cube Making and Curing is not available.

Laboratory Test Results :

Date Received	:	22-03-2014	Date / Time Tested	: 25	-03-2014	19:41	GCE Test Unit Reg. No.	:	MI14025	5
Curing Method	:	in Air .	Max. / Min. Temp.	;		-/-	Cube Age at Test	:	7	days
Test Location	:	No. 6, Ko Shan Road, Groun	d Floor, Hung Hom, Ko	wloon,	Hong Ko	ong				

Laboratory Reference N	lumber		-					
Cube Mark			HK1408579-001 T22BA/UCS.2	HK1408579-002 T22BA/UCS.3	-	-	-	-
Mould No.			~		-	-	-	_
Mass of Specimen in Ai	r	kg	6.227	6.213	_	-	_	_
Mass of Specimen in W	ater	kg	-		· _	-	-	-
Length of Specimen		mm	150.1	149.6	-	-	-	-
Width of Specimen		mm	149.8	150.8	-	-		-
Height of Specimen		mm	150.2	149.6		-	-	_
As-received Density	-Vol. by Calculation	kg/m ³	1840	1840	-	-	-	_
	-Vol. by Water Displacement	kg/m ³		-	-	-	-	-
Maximum Load at Fallur	e	kN	36.6	36.9	-	-		-
Compressive Strength MPa		MPa	1.6	1.6	-	-	-	-
Observation Code		P	Р	-		-	-	
Failure Mode			S	S	-	-		-

Legend :

A - Dry on Receipt; B - Poor Compaction; C - Honeycombing; D - Damaged Edge; E - Damaged Corner; F - Irregular; G - Oversize; H - Undersize; P - No Irregularity in Squareness; S - Satisfactory Failure; U - Unsatisfactory Failure.

Remarks : 1) Martix : Cement Cube

2) The maximum load at failure of the specimens are lower than the minimum calibrated range of compression machine (i.e. 50kN).

Tested By	: K.P. Lam		END	Approved Signatory	
Checked By	:	7		Post	LAU SUN HUNG, IVAN : Senior Testing Manager

Form No. : CON-P3/R1 Issue 4 Rev/1 (06-05-2003) Page 9 of 12

ALS L	Technichem (HK) Pty L aboratory Group	.td	ALS
	SUB-CONTRACTING RE	EPORT	
CONTACT	: MR KAM HUNG LEE	WORK ORDER	HK1408915
CLIENT ADDRESS	KIN WING CONSTRUCTION COMPANY LIMITED FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET,	SUB-BATCH DATE RECEIVED DATE OF ISSUE	1 24-MAR-2014 7-APR-2014
PROJECT	FOTAN, SHATIN, N.T. HONG KONG YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	NO. OF SAMPLES CLIENT ORDER	2

1

- Sample(s) were picked up from client by ALS Technichem (HK) staff in an ambient condition.
- Sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
- UCS was subcontracted to and analysed by Geotechnics & Concrete Engineering (H.K.) Ltd (GCE).

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	17	Position	
Richard Fung	Rilly	General Manager	
	1		

Page: 1 of 2

: HK1408915

SUB-BATCH CLIENT PROJECT

: 1 : KIN WING CONSTRUCTION COMPANY LIMITED

YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1408915-001	T22BA/UCS.4	CONCRETE	20-MAR-2014	GCD140305124
HK1408915-002	T22BA/UCS.5	CONCRETE	20-MAR-2014	GCD140305124

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CUBE

						Pa	age 1 of 1
Report No. : GC	D140305124			Date of Issue	: 2	27-03-201	14
Sample Details as Su	oplied by Client :						
Client : AL	S Technichem (HK) Pty Ltd.	Contract N	o. :	W.O. No. / Job No.	: -	-	
Address : 11/	F., Chung Shun Knitting Cen	tre, 1-3 Wing Yip St., Kwai Chung	, N.T., Hong Kong	Audit / Request No.	: .	-	
Project / Site :							
Location in Works of C	oncrete Batch Sampled	2 I					
Supplier	:)	Plant :					
Source of Coarse Agg.	:	Source of Fine Agg. :					
Cement Brand	1	Admixture Brand :		Dosage	: •		
Concrete Mix I.D. No.	:	Concrete Grade :		Designed / Measured Slump	: •	-	
Cement Content	:	W/C Ratio :		A/C Ratio	: -		
PFA Content	:	PFA Source :					
Date Cast	: 20-03-2014	Time of Adding Water to M	ix :				
Date of Sampling	: 20-03-2014	Time of Sampling	:				
Place of Sampling		Place / Time of Making Cub	e :				
Method of Compaction	;	Name of Person Making Cu	bes :				
Site Curing Method		Site Max. / Min. Temperatur	e :				

Certificate of Sampling, Slump Test, Cube Making and Curing :

A Certificate of Sampling, Slump Test, Cube Making and Curing is not available.

Laboratory Test Results :

Date Received	:	26-03-2014	Date / Time Tested	: 27-03-2	014 16:40	GCE Test Unit Reg. No.	:	MI14027	7
Curing Method	2	In Air	Max. / Min. Temp.	:	/	Cube, Age at Test	:	7	days
Test Location	÷	No. 6, Ko Shan Road, Ground	d Floor, Hung Hom, Ko	wloon, Hon	ig Kong				

Laboratory Reference Number		1 <u></u> 1						
Cube Mark			HK1408915-001 T22BA/UCS.4	HK1408915-002 T22BA/UCS.5			.75	-
Mould No.			-					
Mass of Specimen in A	ir	kg	6.023	6.002			-	
Mass of Specimen in Water kg				1.00				
Length of Specimen mm			150.1	150.5	-			122
Width of Specimen	Width of Specimen mm		150.0	150.2			-	
Height of Specimen		mm	149.8	149.3				
As-received Density	-Vol. by Calculation	kg/m ³	1790	1780	-	10000 1000	1000	
	-Vol. by Water Displacement	kg/m ³	(1 111))					
Maximum Load at Failure kN		42.3	43.3	-	12.00	<u> (45</u>		
Compressive Strength MPa		1.9	1.9			-		
Observation Code		Р	Р					
Failure Mode			S	S	-			

Legend :

A - Dry on Receipt; B - Poor Compaction; C - Honeycombing; D - Damaged Edge; E - Damaged Corner; F - Irregular; G - Oversize;

H - Undersize; P - No Irregularity in Squareness; S - Satisfactory Failure; U - Unsatisfactory Failure.

Remarks: 1) Martix : Cement Cube

2) The maximum load at failure of the specimens are lower than the minimum calibrated range of compression machine (i.e. 50kN).

Tested By	: H.K. Cheng	
Checked By	:	P
		/

--END--

Approved Signatory

LAU SUN HUNG, IVAN : Senior Testing Manager

Post

Form No. : CON-P3/R1 Issue 4 Rev. 1 (06-05-2003) Page 9 of 12

ALS ALS L ANALYTICAL	ALS		
	SUB-CONTRACTING RE	EPORT	
CONTACT	: MR KAM HUNG LEE	WORK ORDER	HK1409498
CLIENT ADDRESS	KIN WING CONSTRUCTION COMPANY LIMITED FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET,	SUB-BATCH DATE RECEIVED DATE OF ISSUE	1 27-MAR-2014 8-APR-2014
PROJECT	FOTAN, SHATIN, N.T. HONG KONG YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	NO. OF SAMPLES CLIENT ORDER	3

- Sample(s) were picked up from client by ALS Technichem (HK) staff in an ambient condition.
- Sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
- UCS was subcontracted to and analysed by Geotechnics & Concrete Engineering (H.K.) Ltd (GCE).

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	,17	Position	
Richard Fung	Rilly	General Manager	
	X		
	0		

:HK1409498 : 1

SUB-BATCH CLIENT PROJECT

: KIN WING CONSTRUCTION COMPANY LIMITED

: YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1409498-001	T22BB/UCS	CONCRETE	25-MAR-2014	GCD140400110
HK1409498-002	T22BB/UCS.1	CONCRETE	25-MAR-2014	GCD140400110
HK1409498-003	T22BB/UCS.2	CONCRETE	25-MAR-2014	GCD140400110

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CUBE

	2						.•	Page 1 of
Report No. ;	GCD140400110		•		Da	ate of Issue	: 01	-04-2014
Sample Details as	Supplied by Client :							*****
Client :	ALS Technichem (HK) Pty Ltd.		Contract No.	: -	w	.O. No. / Job No	. : -	
Address :	11/F., Chung Shun Knitting Centre,	1-3 Wing Yip St.,	Kwai Chung, N	I.T., Hong Kong	g Au	dit / Request No	. :	
Project / Site :								5 .
Location in Works of	Concrete Batch Sampled	:-					i	
Supplier	:-	Plant	:					x.
Source of Coarse Ag	19. : -	Source of Fine A	Agg. : — `					
Cement Brand	: -	Admixture Brand	d :		Dosage		· :-	
Concrete Mix I.D. No). : -	Concrete Grade	:		Designed	/ Measured Slur	mp :	
Cement Content	:	W/C Ratio	· :-		A/C Ratio		:	
PFA Content	: -	PFA Source	:				1	
Date Cast	: 25-03-2014	Time of Adding		: -				
Date of Sampling	: 25-03-2014	Time of Samplin	Salar and service and	: -				
Place of Sampling	:	Place / Time of I		:				
Method of Compactio		Name of Person		s : -				
Site Curing Method	:-	Site Max. / Min.	CONTRACTOR OF STREET	:				•
No. of Cubes	: 3	Nominal Size	: 150 m	m	Test at Ag	je of	:	7 days
	ling, Slump Test, Cube Making an oling, Slump Test, Cube Making and	4 H H H	ilable.					
Laboratory Test Res	sults :							
Date Received	: 31-03-2014	Date / Time Tesi	ted : 01-04-3	2014 18:45	GCE Test	Unit Reg. No.	: M11	4028
Curing Method	: In Air	Max. / Min. Tem		-/-	Cube Age	1.2		7 days
Test Location	: No. 6, Ko Shan Road, Ground	I Floor, Hung Hom	, Kowloon, Hoi	ng Kong	_			99 997 99 9 77 99
Laboratory Reference	Number		-		-	-	_	-
Cube Mark			HK1409498-001 T2288/UCS	HK1409498-002 T228B/UCS.1	HK1409498-003 T22BB/UCS.2	-	-	-
Mould No.			-	-		<u> </u>		_
Mass of Specimen in	Air-	kg	6.223	6.235	6.244	-	-	-
Mass of Specimen in	Water	kg	_		-		_	_
Length of Specimen	а •	mm	150.4	150.6	150.6	_	_	1 · _
Width of Specimen		mm	150.2	150.2	150.2	_	_	
Height of Specimen			150.0					_
N	Vol. by Calculation	mm		150.0	150.0	-		-
As-received Density	-Vol. by Calculation	kg/m ³	1840	1840	1840	-	-	
	-Vol. by Water Displacement	kg/m ³	-	-	-	-	-	-
Maximum Load at Fai	lure	kN	33.6	34.6	34.6	-		-
Compressive Strength	1	MPa	1.5	1.5	1.5	-		-
Observation Code			P	Р	Р	-		-
Failure Mode	-		s	S	s	_		
		Contraction of the second second	3	5	5	-	~	-

Legend :

A - Dry on Recelpt; B - Poor Compaction; C - Honeycombing; D - Damaged Edge; E - Damaged Corner; F - Irregular; G - Oversize; H - Undersize; P - No Irregularity in Squareness; S - Satisfactory Failure; U - Unsatisfactory Failure.

Remarks: 1) Martix : Cement Cube

2) The maximum load at failure of the specimens are lower than the minimum calibrated range of compression machine (i.e. 50kN).

		-END-			
Tested By	: Y.K. CHAN		Approved Signatory	:	
Checked By	:l	<i>w</i>	Post	LAU SUN HUNG, IVAN : Senior Testing Manager	8
Form No. : CON-F	23/R1 Issue 4 Rev. 1 (06-05-2003) Page 9 of 12		8 ³² 8	848	
	1				

ALS ALS L	ALS		
	SUB-CONTRACTING RE	EPORT	
CONTACT	: MR KAM HUNG LEE	WORK ORDER	HK1409678
CLIENT ADDRESS	KIN WING CONSTRUCTION COMPANY LIMITED FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET,	SUB-BATCH DATE RECEIVED DATE OF ISSUE	1 31-MAR-2014 8-APR-2014
PROJECT	FOTAN, SHATIN, N.T. HONG KONG YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	NO. OF SAMPLES CLIENT ORDER	2

- Sample(s) were picked up from client by ALS Technichem (HK) staff in an ambient condition.
- Sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
- UCS was subcontracted to and analysed by Geotechnics & Concrete Engineering (H.K.) Ltd (GCE).

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories		Position	
Richard Fung	Rillh	General Manager	
	ł		
	()		

WORK ORDER SUB-BATCH

CLIENT

PROJECT

: HK1409678

: 1

KIN WING CONSTRUCTION COMPANY LIMITED

: YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1409678-001	T22BB/UCS.3	CONCRETE	27-MAR-2014	GCD140400128
HK1409678-002	T22BB/UCS.4	CONCRETE	27-MAR-2014	GCD140400128

4

4

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CUBE

				Page 1 of 1
Report No. : GCD1	40400128		Date of Issue	: 03-04-2014
Sample Details as Suppl	ied by Client :			
Client : ALS 1	Fechnichem (HK) Pty Ltd.	Contract No. :	W.O. No. / Job No.	:
Address : 11/F.,	Chung Shun Knitting Centre	e, 1-3 Wing Yip St., Kwai Chung, N.T., Hong Kong	Audit / Request No.	:
Project / Site :				
Location in Works of Cond	crete Batch Sampled	:-		
Supplier	:	Plant :		
Source of Coarse Agg.	:	Source of Fine Agg. :		
Cement Brand	i	Admixture Brand :	Dosage	1
Concrete Mix I.D. No.	:	Concrete Grade :	Designed / Measured Slump	()
Cement Content	:	W/C Ratio :	A/C Ratio	:
PFA Content	:	PFA Source :		
Date Cast	: 27-03-2014	Time of Adding Water to Mix :		
Date of Sampling	: 27-03-2014	Time of Sampling :		
Place of Sampling	;	Place / Time of Making Cube :		
Method of Compaction	:	Name of Person Making Cubes :		
Site Curing Method	:	Site Max. / Min. Temperature :		
No. of Cubes	: 2	Nominal Size : 150 mm	Test at Age of	: 7 days
Certificate of Sampling,	Slump Test, Cube Making	and Curing :		
A Certificate of Sampling,	Slump Test, Cube Making a	and Curing is not available.		
Laboratory Test Results	<u>.</u>			
Data Dasaiyad	02 04 2014	Data / Time Testad + 03 04 2014 19:42	CCE Toot Unit Rog No.	· MI14020

Date Received	:	02-04-2014	Date / Time Tested	: 03-04-201	14 18:42	GCE Test Unit Reg. No.	:	MI14029	9
Curing Method	:	In Air	Max. / Min. Temp.	:	/	Cube Age at Test	3	7	days
Test Location	:	No. 6, Ko Shan Road, Groun	No. 6, Ko Shan Road, Ground Floor, Hung Hom, Kowloon, Hong Kong						

Laboratory Reference N	umber			1999				
Cube Mark			HK1409678-001 T22BB/UCS.3	HK1409678-002 T22BB/UCS.4	12	-	122	
Mould No.						-	3. 717 .5	
Mass of Specimen in Ai	r	kg	6.190	6.198				
Mass of Specimen in W	ater	kg	772					
Length of Specimen		mm	150.1	150.2				
Width of Specimen		mm	149.3	149.9	-	-		
Height of Specimen		mm	150.7	150.3				
As-received Density	-Vol. by Calculation	kg/m ³	1830	1830				
	-Vol. by Water Displacement	kg/m ³						
Maximum Load at Failu	re	kN	26.3	24.9				
Compressive Strength		MPa	1.2	1.1	1700			
Observation Code			Р	Р				
Failure Mode			S	S			<u></u>	

Legend :

A - Dry on Receipt; B - Poor Compaction; C - Honeycombing; D - Damaged Edge; E - Damaged Corner; F - Irregular; G - Oversize;

H - Undersize; P - No Irregularity in Squareness; S - Satisfactory Failure; U - Unsatisfactory Failure.

Remarks: 1) Martix : Cement Cube

2) The maximum load at failure of the specimens are lower than the minimum calibrated range of compression machine (i.e. 50kN).

		END	
Tested By	: Y.K. CHAN	Approved Signatory	:
	.710		LAU SUN HUNG, IVAN
Checked By		Post	: Senior Testing Manager
Form No. : CON-F	P3/R1 Issue 4 Rev. 1 (06-05-2003) Page 9 of 12		

ALS L	Technichem (HK) Pty l aboratory Group	_td	ALS)
	SUB-CONTRACTING R	EPORT	
CONTACT	: MR KAM HUNG LEE	WORK ORDER	HK1410356
CLIENT ADDRESS	KIN WING CONSTRUCTION COMPANY LIMITED FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET,	SUB-BATCH DATE RECEIVED DATE OF ISSUE	1 4-APR-2014 16-APR-2014
PROJECT	FOTAN, SHATIN, N.T. HONG KONG VAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	NO. OF SAMPLES CLIENT ORDER	2

- Sample(s) were picked up from client by ALS Technichem (HK) staff in an ambient condition. .
- Sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
- UCS was subcontracted to and analysed by Geotechnics & Concrete Engineering (H.K.) Ltd (GCE). •

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	,17	Position	
Richard Fung	Rilly	General Manager	

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

A Campbell Brothers Limited Company

: HK1410356

SUB-BATCH CLIENT PROJECT

: KIN WING CONSTRUCTION COMPANY LIMITED : YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1410356-001	A3/UCS	CONCRETE	02-APR-2014	GCD140401043
HK1410356-002	A3/UCS.1	CONCRETE	02-APR-2014	GCD140401043

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CUBE

									Page 1 of
Report No. : GCD	140401043				Date	e of Issue	:	11-04	-2014
Sample Details as Supp	lied by Client :								
	Technichem (HK) Pty Ltd. ., Chung Shun Knitting Centre,		Contract No. wai Chung, N.	: - T., Hong Kong). No. / Job No. it / Request No.	:	-	
Location in Works of Con	crete Batch Sampled	: -							
Supplier	:	Plant	:						
Source of Coarse Agg.	:-	Source of Fine Ag							
Cement Brand		Admixture Brand	:		Dosage				
Concrete Mix I.D. No.	:-	Concrete Grade	:		and the second second second	Measured Slump			
Cement Content	:-	W/C Ratio	:		A/C Ratio				
PFA Content	:-	PFA Source	:						
Date Cast	: 02-04-2014	Time of Adding W	ater to Mix	: -					
Date of Sampling	: 02-04-2014	Time of Sampling		: -					
Place of Sampling	:	Place / Time of M		:					
Method of Compaction	:	Name of Person I	Making Cubes	:					
Site Curing Method	:	Site Max. / Min. T		:					
No. of Cubes	: 2	Nominal Size	: 150 mm	ı	Test at Age	of	:	7	days
	Slump Test, Cube Making an		lable.						
A Certificate of Sampling, Laboratory Test Results	, Slump Test, Cube Making and			014 16:42	GCE Test I	Jnit Rea, Na,		MI14()41
A Certificate of Sampling, Laboratory Test Results Date Received :	Slump Test, Cube Making and	d Curing is not avai	ed : 09-04-2	014 16:42 /		Jnit Reg. No. at Test	:	MI140 7	
A Certificate of Sampling, <u>aboratory Test Results</u> Date Received : Curing Method :	Slump Test, Cube Making and	d Curing is not avai Date / Time Teste Max. / Min. Temp	ed : 09-04-20	-1	GCE Test (Cube Age a		: :	MI140 7	
A Certificate of Sampling, Laboratory Test Results Date Received : Curing Method : Fest Location :	Slump Test, Cube Making and 08-04-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not avai Date / Time Teste Max. / Min. Temp	ed : 09-04-20	-1			:		
A Certificate of Sampling, aboratory Test Results Date Received : Curing Method : Fest Location : aboratory Reference Nu	Slump Test, Cube Making and 08-04-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not avai Date / Time Teste Max. / Min. Temp	ed : 09-04-20 . : Kowloon, Hon	/ g Kong 	Cube Age a	at Test			days
A Certificate of Sampling, <u>aboratory Test Results</u> Date Received : Curing Method : Fest Location : Jaboratory Reference Nu Cube Mark	Slump Test, Cube Making and 08-04-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not avai Date / Time Teste Max. / Min. Temp	ed : 09-04-20 . : Kowloon, Hon HK1410356-001	- / g Kong 	Cube Age a	at Test			days
A Certificate of Sampling, Laboratory Test Results Date Received : Curing Method : Fest Location : Laboratory Reference Nur Cube Mark Mould No.	Slump Test, Cube Making and 08-04-2014 In Air No. 6, Ko Shan Road, Ground	d Curing is not avai Date / Time Teste Max. / Min. Temp I Floor, Hung Hom,	ed : 09-04-20 . : Kowloon, Hon HK1410356-001	- / g Kong 	Cube Age a		-		days
A Certificate of Sampling, Laboratory Test Results Date Received : Curing Method : Fest Location : Laboratory Reference Nu Cube Mark Mould No. Mass of Specimen in Air	Slump Test, Cube Making and S: 08-04-2014 In Air No. 6, Ko Shan Road, Ground mber	d Curing is not avai Date / Time Teste Max. / Min. Temp I Floor, Hung Hom, kg	ed : 09-04-20 . : Kowloon, Hon HK1410356-001 A3/UCS 	- / g Kong HK1410356-002 A3/UCS.1	Cube Age a		-		days
A Certificate of Sampling, Laboratory Test Results Date Received : Curing Method : Test Location : Laboratory Reference Nul Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wat	Slump Test, Cube Making and S: 08-04-2014 In Air No. 6, Ko Shan Road, Ground mber	d Curing is not avai Date / Time Teste Max. / Min. Temp I Floor, Hung Hom,	ed : 09-04-20 . : Kowloon, Hon HK1410356-001 A3/UCS 7.031	- / g Kong HK1410356-002 A3/UCS.1	Cube Age a		-		days
A Certificate of Sampling, <u>aboratory Test Results</u> Date Received : Curing Method : Fest Location : Laboratory Reference Num Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wat Length of Specimen	Slump Test, Cube Making and S: 08-04-2014 In Air No. 6, Ko Shan Road, Ground mber	d Curing is not avai Date / Time Teste Max. / Min. Temp I Floor, Hung Hom, kg kg	ed : 09-04-20 Kowloon, Hon HK1410356-001 A3/UCS 7.031 150.2	- / g Kong HK1410356-002 A3/UCS.1 - 7.074 150.1	Cube Age a		-		days
A Certificate of Sampling, <u>aboratory Test Results</u> Date Received : Curing Method : Fest Location : aboratory Reference Nu Laboratory Reference Nu Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wat Length of Specimen Width of Specimen	Slump Test, Cube Making and S: 08-04-2014 In Air No. 6, Ko Shan Road, Ground mber	d Curing is not avai Date / Time Teste Max. / Min. Temp I Floor, Hung Hom, kg kg mm	ed : 09-04-24 Kowloon, Hon HK1410356-001 A3/UCS 7.031 150.2 150.3	- / g Kong HK1410356-002 A3/UCS.1 - 7.074 150.1 150.7	Cube Age a		-		days
A Certificate of Sampling, Laboratory Test Results Date Received : Curing Method : Fest Location : Laboratory Reference Num Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wat Length of Specimen Height of Specimen	, Slump Test, Cube Making and 2: 08-04-2014 In Air No. 6, Ko Shan Road, Ground mber ter	d Curing is not avai Date / Time Teste Max. / Min. Temp I Floor, Hung Hom, kg kg mm mm	ed : 09-04-20 . : Kowloon, Hon HK1410356-001 A3/UCS 7.031 150.2 150.3 149.7	- / g Kong HK1410356-002 A3/UCS.1 - 7.074 150.1 150.7 149.3	Cube Age a		-		days
A Certificate of Sampling, aboratory Test Results Date Received : Curing Method : Fest Location : aboratory Reference Num Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wat Length of Specimen Height of Specimen	Slump Test, Cube Making and Si 08-04-2014 In Air No. 6, Ko Shan Road, Ground mber ter -Vol. by Calculation	d Curing is not avai Date / Time Teste Max. / Min. Temp I Floor, Hung Hom, kg kg mm	ed : 09-04-24 Kowloon, Hon HK1410356-001 A3/UCS 7.031 150.2 150.3	- / g Kong HK1410356-002 A3/UCS.1 - 7.074 150.1 150.7	Cube Age a		-		days
A Certificate of Sampling, aboratory Test Results Date Received : Curing Method : Fest Location : aboratory Reference Num Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wat Length of Specimen Height of Specimen	, Slump Test, Cube Making and 2: 08-04-2014 In Air No. 6, Ko Shan Road, Ground mber ter	d Curing is not avai Date / Time Teste Max. / Min. Temp I Floor, Hung Hom, kg kg mm mm	ed : 09-04-20 . : Kowloon, Hon HK1410356-001 A3/UCS 7.031 150.2 150.3 149.7	- / g Kong HK1410356-002 A3/UCS.1 - 7.074 150.1 150.7 149.3	Cube Age a		-		days
A Certificate of Sampling, aboratory Test Results Date Received : Curing Method : Fest Location : aboratory Reference Nu Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Wat Length of Specimen Width of Specimen Height of Specimen No-received Density	Slump Test, Cube Making and Si 08-04-2014 In Air No. 6, Ko Shan Road, Ground mber ter -Vol. by Calculation -Vol. by Water Displacement	d Curing is not avai Date / Time Teste Max. / Min. Temp I Floor, Hung Hom, kg kg mm mm mm kg/m ³	ed : 09-04-20 Kowloon, Hon HK1410356-001 A3UCS 7.031 150.2 150.3 149.7 2080	- / g Kong HK1410356-002 A3/UCS.1 7.074 150.1 150.7 149.3 2090	Cube Age a		-		days
A Certificate of Sampling, Laboratory Test Results Date Received : Curing Method : Curing Method : Test Location : Laboratory Reference Null Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Air Mass of Specimen Nidth of Specimen Height of Specimen Height of Specimen As-received Density Maximum Load at Failure	Slump Test, Cube Making and Si 08-04-2014 In Air No. 6, Ko Shan Road, Ground mber ter -Vol. by Calculation -Vol. by Water Displacement	d Curing is not avai Date / Time Teste Max. / Min. Temp I Floor, Hung Hom, kg mm mm mm kg/m ³ kg/m ³	ed : 09-04-20 Kowloon, Hon HK1410356-001 A3UCS 7.031 150.2 150.3 149.7 2080 	- / g Kong HK1410356-002 A3/UCS.1 - 7.074 150.1 150.7 149.3 2090 	Cube Age a		-		days
A Certificate of Sampling, Laboratory Test Results Date Received : Curing Method : Test Location : Laboratory Reference Null Cube Mark Mould No. Mass of Specimen in Air Mass of Specimen in Air Mass of Specimen Nidth of Specimen Height of Specimen Height of Specimen As-received Density Maximum Load at Failure Compressive Strength	Slump Test, Cube Making and Si 08-04-2014 In Air No. 6, Ko Shan Road, Ground mber ter -Vol. by Calculation -Vol. by Water Displacement	d Curing is not avai Date / Time Teste Max. / Min. Temp I Floor, Hung Hom, kg mm mm mm kg/m ³ kg/m ³	ed : 09-04-24 Kowloon, Hon HK1410356-001 A3/UCS 7.031 150.2 150.3 149.7 2080 43.9 2.0	- / g Kong HK1410356-002 A3/UCS.1 - 7.074 150.1 150.7 149.3 2090 46.5 2.1	Cube Age a		-		days
A Certificate of Sampling, Laboratory Test Results Date Received : Curing Method :	Slump Test, Cube Making and Solution 08-04-2014 In Air No. 6, Ko Shan Road, Ground mber ter -Vol. by Calculation -Vol. by Water Displacement	d Curing is not avai Date / Time Teste Max. / Min. Temp I Floor, Hung Hom, kg mm mm mm kg/m ³ kg/m ³	ed : 09-04-20 Kowloon, Hon HK1410356-001 A3/UCS 7.031 150.2 150.3 149.7 2080 43.9	- / g Kong HK1410356-002 A3/UCS.1 - 7.074 150.1 150.7 149.3 2090 46.5	Cube Age a		-		days

Legend :

A - Dry on Receipt; B - Poor Compaction; C - Honeycombing; D - Damaged Edge; E - Damaged Corner; F - Irregular; G - Oversize;

H - Undersize; P - No Irregularity in Squareness; S - Satisfactory Failure; U - Unsatisfactory Failure.

Remarks : 1) Martix : Cement Cube

Martix : Cement Cube
 The maximum load at failure of the specimens are lower than the minimum calibrated range of compression machine (i.e. 50kN).

			END		
Tested By	: C. LEE			Approved Signatory	
		R			LAU SUN HL
Checked By	:			Post	: Senior Testin
		h			

UNG, IVAN ng Manager

Form No. : CON-P3/R1 Issue 4 Rev./1 (06-D5-2003) Page 9 of 12

ALS L	Technichem (HK) Pty L aboratory Group	td	ALS)
	SUB-CONTRACTING RE	PORT	
CONTACT	: MR KAM HUNG LEE	WORK ORDER	HK1410538
CLIENT ADDRESS	KIN WING CONSTRUCTION COMPANY LIMITED FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET,	SUB-BATCH DATE RECEIVED DATE OF ISSUE	1 7-APR-2014 16-APR-2014
PROJECT	FOTAN, SHATIN, N.T. HONG KONG YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	NO. OF SAMPLES CLIENT ORDER	2

- Sample(s) were picked up from client by ALS Technichem (HK) staff in an ambient condition.
- Sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
- UCS was subcontracted to and analysed by Geotechnics & Concrete Engineering (H.K.) Ltd (GCE).

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	1/7	Position	
Richard Fung	Rillh	General Manager	
	Ì		

A Campbell Brothers Limited Company

: HK1410538

SUB-BATCH CLIENT PROJECT

: 1 : KIN WING CONSTRUCTION COMPANY LIMITED

: YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1410538-001	A3/UCS.2	CONCRETE	03-APR-2014	GCD140401051
HK1410538-002	A3/UCS.3	CONCRETE	03-APR-2014	GCD140401051

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CUBE

						, ugu	e 1 of
Report No. : G	CD140401051			Date of Issue	:	11-04-2014	
Sample Details as Su	upplied by Client :						
Client : Al	LS Technichem (HK) Pty Ltd.	Co	ntract No. :	W.O. No. / Job No.	8		
Address : 11	1/F., Chung Shun Knitting Cent	re, 1-3 Wing Yip St., Kwa	i Chung, N.T., Hong Kon	g Audit / Request No.	5		
Project / Site : -							
ocation in Works of C	Concrete Batch Sampled	:					
		- 90					
Supplier	:-	Plant	:				
Source of Coarse Agg	. :-	Source of Fine Agg.	:				
		Adaptivity Descal	:	Dosage			
Cement Brand	:	Admixture Brand		Dosage			
	:-	Concrete Grade	:	Designed / Measured Slump		-	
Concrete Mix I.D. No.			12 Constant and a con		;		
Concrete Mix I.D. No. Cement Content	:-	Concrete Grade	:	Designed / Measured Slump	;		
Concrete Mix I.D. No. Cement Content PFA Content	: - : -	Concrete Grade W/C Ratio	:	Designed / Measured Slump	;		
Concrete Mix I.D. No. Cement Content PFA Content Date Cast	: : :	Concrete Grade W/C Ratio PFA Source	:	Designed / Measured Slump	;		
Concrete Mix I.D. No. Cement Content PFA Content Date Cast Date of Sampling	: : : 03-04-2014	Concrete Grade W/C Ratio PFA Source Time of Adding Wate	: : erto Mix : :-	Designed / Measured Slump	;		
Concrete Mix I.D. No. Cement Content PFA Content Date Cast Date of Sampling Place of Sampling	: : : 03-04-2014 : 03-04-2014 :	Concrete Grade W/C Ratio PFA Source Time of Adding Wate Time of Sampling	: : er to Mix : : ng Cube :	Designed / Measured Slump	;		
Cement Brand Concrete Mix I.D. No. Cement Content PFA Content Date Cast Date of Sampling Place of Sampling Method of Compactior Site Curing Method	: : : 03-04-2014 : 03-04-2014 :	Concrete Grade W/C Ratio PFA Source Time of Adding Wate Time of Sampling Place / Time of Maki	: : er to Mix : : ng Cube : king Cubes :	Designed / Measured Slump	;		

A Certificate of Sampling, Slump Test, Cube Making and Curing is not available.

Laboratory Test Results :

Date Received : 09-04-2014 Date / Time Tester		ed : 10-04-2	014 16:26	GCE Tes	:	MI1404	2		
Curing Method	: In Air	Max. / Min. Temp) . :	-/	Cube Age	e at Test	:	7	days
Test Location	: No. 6, Ko Shan Road, Gr	ound Floor, Hung Hom.	, Kowloon, Hor	ig Kong					
Laboratory Reference	Number		-			•••			-
Cube Mark			HK1410538-001 A3/UCS.2	HK1410538-002 A3/UCS.3	-		-		-
Mould No.			-	-		-	-	1	
Mass of Specimen in	Air	kg	7.071	7.077				ł	-
Mass of Specimen in	Water	kg	-	1	1000			Ì	-
Length of Specimen		mm	150.1	150.0		-	-	ļ	-
Width of Specimen		ոտ	150.7	150.7			-		
Height of Specimen		mm	150.0	150.2				ľ	-
As-received Density	-Vol. by Calculation	kg/m ³	2080	2080		-	-		-
	-Vol. by Water Displacem	ient kg/m ³	-		-	-	-		
Maximum Load at Fa	ilure	kN	64.5	59.8		-			
Compressive Strengt	h	MPa	2.9	2.6		_	-		
Observation Code			Р	Р	-	- I			
Failure Mode			S	S		·			-

Legend :

A - Dry on Receipt; B - Poor Compaction; C - Honeycombing; D - Damaged Edge; E - Damaged Corner; F - Irregular; G - Oversize; H - Undersize; P - No Irregularity in Squareness; S - Satisfactory Failure; U - Unsatisfactory Failure.

Remarks: 1) Martix : Cement Cube

			END		
Tested By	: C. LEE			Approved Signatory	:
Checked By	:			Post	LAU SUN HUNG, IVAN : Senior Testing Manager
Form No. : CON-F	P3/R1 Issue 4 Re	ev. 1 (06-05-2003) Page 9 of 12			

ALS Technichem (HK) Ptų Ltd								
	SUB-CONTRACTING RE	PORT						
CONTACT	: MR KAM HUNG LEE	WORK ORDER	HK1411015					
ADDRESS	KIN WING CONSTRUCTION COMPANY LIMITED FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET,	SUB-BATCH DATE RECEIVED DATE OF ISSUE	1 9-APR-2014 24-APR-2014					
PROJECT	FOTAN, SHATIN, N.T. HONG KONG YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	NO. OF SAMPLES CLIENT ORDER	3					

- Sample(s) were picked up from client by ALS Technichem (HK) staff in an ambient condition.
- Sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
- UCS was subcontracted to and analysed by Geotechnics & Concrete Engineering (H.K.) Ltd (GCE).

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories

A. Richard Fung

General Manager

Position

Trading Name: ALS Technichem (HK) Pty Ltd 11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com A Campbell Brothers Limited Company

Page: 1 of 2

WORK ORDER SUB-BATCH

: HK1411015

CLIENT PROJECT : 1

: KIN WING CONSTRUCTION COMPANY LIMITED

YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK1411015-001	A5/UCS	CONCRETE	07-APR-2014	GCD140401881	
HK1411015-002	A5/UCS.1	CONCRETE	07-APR-2014	GCD140401881	
HK1411015-003	A5/UCS.2	CONCRETE	07-APR-2014	GCD140401881	

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CUBE

							F	Page 1 of 1
Report No. : GCD1-	40401881				Date of Issue	:	17-04-20)14
Sample Details as Suppli	ed by Client :							
Client : ALS To	echnichem (HK) Pty Ltd.	C	ontract No.	: -	W.O. No. / Job No.	: .	-	
Address : 11/F., Project / Site :	Chung Shun Knitting Cent	re, 1-3 Wing Yip St., Kw	ai Chung, N.T	., Hong Kong	Audit / Request No.	: .		
Location in Works of Conci	ete Batch Sampled	:						
Supplier	:	Plant	: -					
Source of Coarse Agg.	: -	Source of Fine Agg	. :					
Cement Brand	:	Admixture Brand	:		Dosage	: •		
Concrete Mix I.D. No.	:	Concrete Grade	:		Designed / Measured Slump	: •	-	
Cement Content	:	W/C Ratio	:		A/C Ratio		-	
PFA Content	:	PFA Source	:					
Date Cast	: 07-04-2014	Time of Adding Wa	ter to Mix	:				
Date of Sampling	: 07-04-2014	Time of Sampling		:				
Place of Sampling	:	Place / Time of Mal	king Cube	:				
Method of Compaction	:	Name of Person Ma	aking Cubes	:				
Site Curing Method	:	Site Max. / Min. Ter	mperature	:				
No. of Cubes	: 3	Nominal Size	: 150 mm		Test at Age of	:	7	days

Certificate of Sampling, Slump Test, Cube Making and Curing :

A Certificate of Sampling, Slump Test, Cube Making and Curing is not available.

Laboratory Test Results :

Date Received	:	11-04-2014	Date / Time Tested	: 14-0	4-2014	17:03	GCE Test Unit Reg. No.	:	MI14047	7
Curing Method	:	In Air	Max. / Min. Temp.	6		/	Cube Age at Test	:	7	days
Test Location	5	No. 6, Ko Shan Road, Gro	und Floor, Hung Hom, Ko	wloon, H	long Ko	ng				

Laboratory Reference I	Number				-			
Cube Mark			HK1411015-001 A5/UCS	HK1411015-002 A5/UCS.1	HK1411015-003 A5/UCS.2	-	-	-
Mould No.			-	-				
Mass of Specimen in A	ir	kg	7.631	7.612	7.642	-		
Mass of Specimen in W	Vater	kg			-	-		
Length of Specimen		mm	150.4	150.8	150.1	-		
Width of Specimen		mm	150.3	150.4	150.7	-		
Height of Specimen		mm	150.1	150.0	149.7	-		
As-received Density	-Vol. by Calculation	kg/m ³	2250	2240	2260	;	-	
	-Vol. by Water Displacement	kg/m ³		-	-	-		-
Maximum Load at Failu	ire	kN	59.5	52.7	52.0	-		-
Compressive Strength		MPa	2.6	2.3	2.3			
Observation Code			Р	Р	P	-		
Failure Mode			S	S	S	-	-	-

Legend :

A - Dry on Receipt; B - Poor Compaction; C - Honeycombing; D - Damaged Edge; E - Damaged Corner; F - Irregular; G - Oversize;

H - Undersize; P - No Irregularity in Squareness; S - Satisfactory Failure; U - Unsatisfactory Failure.

Remarks: 1) Martix : Cement Cube

Tested By	: T.T. HO
Checked By	:

-END--

: LAU SUN HUNG, IVAN

Approved Signatory

Post

: Senior Testing Manager

Form No. : CON-P3/R1 Issue 4 Rev. 1 (06-05-2003) Page 9 of 12

Zh

ALS L	Technichem (HK) Pty L aboratory Group	.td	ALS
	SUB-CONTRACTING RE	PORT	
CONTACT	: MR KAM HUNG LEE	WORK ORDER	HK1411317
CLIENT ADDRESS	 KIN WING CONSTRUCTION COMPANY LIMITED FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET, FOTAN, SHATIN, N.T. HONG KONG 	SUB-BATCH DATE RECEIVED DATE OF ISSUE	1 11-APR-2014 24-APR-2014
PROJECT	YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	NO. OF SAMPLES CLIENT ORDER	3

- Sample(s) were picked up from client by ALS Technichem (HK) staff in an ambient condition.
- Sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
- UCS was subcontracted to and analysed by Geotechnics & Concrete Engineering (H.K.) Ltd (GCE).

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Richard Fung

General Manager

Position

PROJECT

:HK1411317 : 1

SUB-BATCH CLIENT

: KIN WING CONSTRUCTION COMPANY LIMITED

YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1411317-001	A4/UCS	CONCRETE	09-APR-2014	GCD140402162
HK1411317-002		CONCRETE	09-APR-2014	GCD140402162
HK1411317-003	A4/UCS.2	CONCRETE	09-APR-2014	GCD140402162

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CUBE

						Page	e 1 of
Report No. : GCD1	40402162			Date of Issue	:	17-04-2014	
Sample Details as Suppl	ied by Client :						
Client : ALS T	echnichem (HK) Pty Ltd.	Contract No.	: -	W.O. No. / Job No.	5		
Address : 11/F.,	Chung Shun Knitting Cent	tre, 1-3 Wing Yip St., Kwai Chung,	N.T., Hong Kong	Audit / Request No.	:		
Project / Site :		5					
Location in Works of Conc		1 -					
Supplier		Plant ·					
	:-	Plant : Source of Fine Aga :					
Source of Coarse Agg.	• x=50	Plant : Source of Fine Agg. : Admixture Brand :		Dosage		_	
Source of Coarse Agg. Cement Brand	:-	Source of Fine Agg. :		Dosage Desianed / Measured Slump	:		
Source of Coarse Agg. Cement Brand Concrete Mix I.D. No.	: :	Source of Fine Agg. : Admixture Brand :		Dosage Designed / Measured Slump A/C Ratio			
Source of Coarse Agg. Cement Brand Concrete Mix I.D. No. Cement Content	:- :- :-	Source of Fine Agg. : Admixture Brand : Concrete Grade :		Designed / Measured Slump	:		
Source of Coarse Agg. Cement Brand Concrete Mix I.D. No. Cement Content PFA Content	: : :	Source of Fine Agg. : Admixture Brand : Concrete Grade : W/C Ratio :	:	Designed / Measured Slump	:		
Source of Coarse Agg. Cement Brand Concrete Mix I.D. No. Cement Content PFA Content Date Cast	: : : :	Source of Fine Agg. : Admixture Brand : Concrete Grade : W/C Ratio : PFA Source :	:	Designed / Measured Slump	:		
Source of Coarse Agg. Cement Brand Concrete Mix I.D. No. Cement Content PFA Content Date Cast Date of Sampling	: : : : : 09-04-2014	Source of Fine Agg. : Admixture Brand : Concrete Grade : W/C Ratio : PFA Source : Time of Adding Water to Mix		Designed / Measured Slump	:		
Source of Coarse Agg. Cement Brand Concrete Mix I.D. No. Cement Content PFA Content Date Cast Date of Sampling Place of Sampling	: : : : 09-04-2014 : 09-04-2014	Source of Fine Agg. : Admixture Brand : Concrete Grade : W/C Ratio : PFA Source : Time of Adding Water to Mix Time of Sampling	: -	Designed / Measured Slump	:		
Supplier Source of Coarse Agg. Cement Brand Concrete Mix I.D. No. Cement Content PFA Content Date Cast Date of Sampling Place of Sampling Method of Compaction Site Curing Method	 : 09-04-2014 : 09-04-2014 :	Source of Fine Agg. : Admixture Brand : Concrete Grade : W/C Ratio : PFA Source : Time of Adding Water to Mix Time of Sampling Place / Time of Making Cube	: -	Designed / Measured Slump	:		

Certificate of Sampling, Slump Test, Cube Making and Curing :

A Certificate of Sampling, Slump Test, Cube Making and Curing is not available.

Laboratory Test Results :

Date Received	;	15-04-2014	Date / Time Tested	: 16-04-2	2014 19	9:58	GCE Test Unit Reg. No.	2	MI14050	
Curing Method	:	In Air	Max. / Min. Temp.	:	- /	-	Cube Age at Test	:	7	days
Test Location	:	No. 6, Ko Shan Road, Grou	nd Floor, Hung Hom, Ko	wloon, Ho	ng Kong					

Laboratory Reference I	Number					-		-
Cube Mark			HK1411317-001 A4/UCS	HK1411317-002 A4/UCS.1	HK1411317-003 A4/UCS.2	-	-	-
Mould No.			-	-			-	
Mass of Specimen in A	ir	kg	6.869	6.780	6.834		-	-
Mass of Specimen in W	Vater	kg	-			-	-	-
Length of Specimen		mm	150.6	150.7	150.6		-	_
Width of Specimen		mm	150.4	150.5	150.5		-	
Height of Specimen		mm	150.0	150.1	150.1		-	
As-received Density	-Vol. by Calculation	kg/m ³	2020	1990	2010	-		-
	-Vol. by Water Displacement	kg/m ³			-			
Maximum Load at Failu	ire	kN	35.5	39.7	40.3	-		
Compressive Strength		MPa	1.6	1.8	1.8		-	-
Observation Code			Р	Р	Р	-		
Failure Mode	e		S	S	S	-	-	

Legend :

A - Dry on Receipt; B - Poor Compaction; C - Honeycombing; D - Damaged Edge; E - Damaged Corner; F - Irregular; G - Oversize;

H - Undersize; P - No Irregularity In Squareness; S - Satisfactory Failure; U - Unsatisfactory Failure.

Remarks: 1) Martix : Cement Cube

Martix : Cement Cube
 The maximum load at failure of the specimens are lower than the minimum calibrated range of compression machine (i.e. 50kN).

		END	\subset
Tested By	: Y.K. CHAN	Approved Signatory	:
	24		LAU SUN HUNG, IVAN
Checked By		Post	: Senior Testing Manager

Form No. : CON-P3/R1 Issue 4 Rev. 1 (06-05-2003) Page 9 of 12

ALS L	Technichem (HK) Pty L aboratory Group	.td	ALS
	SUB-CONTRACTING RE	PORT	
CONTACT	MR KAM HUNG LEE	WORK ORDER	HK1411942
CLIENT ADDRESS	 KIN WING CONSTRUCTION COMPANY LIMITED FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET, FOTAN, SHATIN, N.T. HONG KONG 	SUB-BATCH DATE RECEIVED DATE OF ISSUE	1 16-APR-2014 24-APR-2014
PROJECT	YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	NO. OF SAMPLES CLIENT ORDER	2

Sample(s) were picked up from client by ALS Technichem (HK) staff in an ambient condition.

- Sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
- UCS was subcontracted to and analysed by Geotechnics & Concrete Engineering (H.K.) Ltd (GCE).

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories

Richard Fung

General Manager

Position

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

> Trading Name: ALS Technichem (HK) Pty Ltd 11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com A Campbell Brothers Limited Company

∶ HK1411942 ∶ 1

SUB-BATCH CLIENT PROJECT

.

: KIN WING CONSTRUCTION COMPANY LIMITED

YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1411942-001	R7/UCS	CONCRETE	14-APR-2014	GCD140402170
HK1411942-002	R7/UCS.1	CONCRETE	14-APR-2014	GCD140402170

L

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CUBE

				~					Page 1 of 1
Report No.	: GCD1	40402170				Date of Issue	:	23-04	1-2014
Sample Details	as Suppli	ed by Client :							
Client	: ALS T	echnichem (HK) Pty Ltd.	(Contract No.	: -	W.O. No. / Job No.	:		
Address	: 11/F.,	Chung Shun Knitting Cer	tre, 1-3 Wing Yip St., Ki	wai Chung, N.T	., Hong Kong	Audit / Request No.	:		
Project / Site	:								
Location in Work	ts of Conc	rete Batch Sampled	: Plant	:					
Source of Coars	e Agg		Source of Fine Ag						
Cement Brand		; ;	Admixture Brand	:		Dosage		-	
Concrete Mix I.D	. No.	:-	Concrete Grade	:		Designed / Measured Slump	:		
Cement Content		:	W/C Ratio	:		A/C Ratio	:		
PFA Content		:	PFA Source	:					
Date Cast		: 14-04-2014	Time of Adding W	ater to Mix	:				
Date of Sampling	9	: 14-04-2014	Time of Sampling		:				
Place of Samplin	ng	: -	Place / Time of Ma	aking Cube	:				
Method of Comp	action	: -	Name of Person M	laking Cubes	:				
Site Curing Meth	bo	:	Site Max. / Min. Te	emperature	:				
No. of Cubes		: 2	Nominal Size	: 150 mm		Test at Age of	:	7	days

Certificate of Sampling, Slump Test, Cube Making and Curing :

A Certificate of Sampling, Slump Test, Cube Making and Curing is not available.

Laboratory Test Results :

Date Received	:	19-04-2014	Date / Time Tested	: 22-04-20	014 17:40	GCE Test Unit Reg. No.	:	MI14052	2
Curing Method	:	In Air	Max. / Min. Temp.	:	- /	Cube Age at Test	:	7	days
Test Location	:	No. 6, Ko Shan Road, Grour	id Floor, Hung Hom, Ko	wloon, Hon	g Kong				

Laboratory Reference N	lumber			-		-	-	
Cube Mark			HK1411942-001 R7/UCS	HK1411942-002 R7/UCS.1	-	-		-
Mould No.				-	-	-		-
Mass of Specimen in Ai	r	kg	6.713	6.797	-	-		-
Mass of Specimen in W	ater	kg					-	
Length of Specimen		mm	150.6	150.5	-	-		
Width of Specimen		mm	150.5	150.4		-		
Height of Specimen		mm	150.1	150.1	-	-	-	-
As-received Density	-Vol. by Calculation	kg/m ³	1970	2000		-		-
	-Vol. by Water Displacement	kg/m ³		-	-	-		
Maximum Load at Failur	e	kN	179.3	185.6	-		-	-
Compressive Strength		MPa	7.9	8.2		-		-
Observation Code		Р	Р	-	-	-	-	
Failure Mode			S	S			-	-

Legend :

A - Dry on Receipt; B - Poor Compaction; C - Honeycombing; D - Damaged Edge; E - Damaged Corner; F - Irregular; G - Oversize;

H - Undersize; P - No Irregularity in Squareness; S - Satisfactory Failure; U - Unsatisfactory Failure.

Remarks: 1) Martix : Cement Cube

		END	
Tested By	: Y.K. CHAN	Approved Signatory	:)
Checked By		Post	LAU SUN HUNG, IVAN : Senior Testing Manager
Form No. : CON-P3	/ B/R1 Issue 4 Rev. 1 (06-05-2003) Page 9 of 12		

ALS L	Technichem (HK) Pty L aboratory Group CHEMISTRY & TESTING SERVICES	.td	ALS
	SUB-CONTRACTING RE	PORT	
CONTACT	: MR KAM HUNG LEE	WORK ORDER	HK1412074
CLIENT ADDRESS	 KIN WING CONSTRUCTION COMPANY LIMITED FLAT A, BLOCK 2, 6/F., KIN HO INDUSTRIAL BUILDING, 14-24 AU PUI WAN STREET, FOTAN, SHATIN, N.T. HONG KONG 	SUB-BATCH DATE RECEIVED DATE OF ISSUE	1 17-APR-2014 30-APR-2014
PROJECT	YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS	NO. OF SAMPLES CLIENT ORDER	2

- Sample(s) were picked up from client by ALS Technichem (HK) staff in an ambient condition.
- Sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
- UCS was subcontracted to and analysed by Geotechnics & Concrete Engineering (H.K.) Ltd (GCE).

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	117	Position	
Richard Fung	Rillop	General Manager	
	X		

: HK1412074

SUB-BATCH CLIENT PROJECT

_

KIN WING CONSTRUCTION COMPANY LIMITED

: YAU TONG BAY REDEVELOPMENT - LAND DECONTAMINATION WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1412074-001	R6/UCS	CONCRETE	16-APR-2014	GCD140402196
HK1412074-002	R6/UCS.1	CONCRETE	16-APR-2014	GCD140402196

1.5

W.L

REPORT ON DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE CUBE

								Ρ	age 1 of 1
Report No.	: GCD1404	02196				Date of Issue	:	25-04-20	14
Sample Details	as Supplied	by Client :							
Client	: ALS Tech	nichem (HK) Pty Ltd.	Co	ntract No.	:	W.O. No. / Job No.	i.		
Address	: 11/F., Chi	ung Shun Knitting Centre	e, 1-3 Wing Yip St., Kwa	i Chung, N.T.	., Hong Kong	Audit / Request No.	:		
Project / Site	; -								
Location in Wor	ks of Concrete	Batch Sampled	: -						
Supplier		:	Plant	:					
Source of Coars	se Agg.	;	Source of Fine Agg.	:					
Cement Brand		:	Admixture Brand	:		Dosage	į	-	
Concrete Mix I.I	D. No.	:	Concrete Grade	:		Designed / Measured Slump	8		
Cement Conten	nt	:	W/C Ratio	:		A/C Ratio	;		
PFA Content		5	PFA Source	:					
Date Cast		: 16-04-2014	Time of Adding Wat	ter to Mix	:				
Date of Samplin	ng	: 16-04-2014	Time of Sampling		:				
Place of Sampli	ing	:	Place / Time of Mak	ing Cube	:				
i lace of Sampli									
Method of Com	paction	:	Name of Person Ma	king Cubes	1 I				
CONTRACTOR AND ADDRESS OF	• • • • • • • • • • • • • • • • • • • •	:	Name of Person Ma Site Max. / Min. Ten		: :				

Certificate of Sampling, Slump Test, Cube Making and Curing :

A Certificate of Sampling, Slump Test, Cube Making and Curing is not available.

Laboratory Test Results :

Date Received	:	23-04-2014	Date / Time Tested	: 23-04-20	014 16:39	GCE Test Unit Reg. No.	:	MI14054	4
Curing Method	:	In Air	Max. / Min. Temp.	:	/	Cube Age at Test	3	7	days
Test Location	:	No. 6, Ko Shan Road, Groun	d Floor, Hung Hom, Ko	wloon, Hon	g Kong				

Laboratory Reference N	lumber		<u></u>		1000		7.0000	
Cube Mark			HK1412074-001 R6/UCS	HK1412074-002 R6/UCS.1		-	₩.	1.75
Mould No.					3		5.000	-
Mass of Specimen in Ai	r	kg	6.519	6.530	(1 <u>111</u> 1)		112220	
Mass of Specimen in W	later	kg						
Length of Specimen		mm	150.6	150.8				
Width of Specimen		mm	150.3	150.5				
Height of Specimen		mm	150.2	150.0				
As-received Density	-Vol. by Calculation	kg/m ³	1920	1920				
	-Vol. by Water Displacement	kg/m ³						
Maximum Load at Failu	re	kN	74.6	72.0	11		1	
Compressive Strength		MPa	3.3	3.2			2. :	
Observation Code			Р	Р		-		
Failure Mode			S	S				80 775 6

Legend :

A - Dry on Receipt; B - Poor Compaction; C - Honeycombing; D - Damaged Edge; E - Damaged Corner; F - Irregular; G - Oversize;

H - Undersize; P - No Irregularity in Squareness; S - Satisfactory Failure; U - Unsatisfactory Failure.

Remarks: 1) Martix : Cement Cube

Tested By

: T.T. HO

---END---

Approved Signatory

Checked By

24 Form No. : CON-P3/R1 Issue 4 Rev. 1 (06-05-2003) Page 9 of 12

Post

LAU SUN HUNG, IVAN : Senior Testing Manager

TESTING RESULTS OF IEA SPOT-CHECK SAMPLES

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Contact	: NATURE & TECHNOLOGIES (HK) LTD : MR GABRIEL LAM	Laboratory Contact	: ALS Technichem HK Pty Ltd : Fung Lim Chee, Richard	Page Work Order	: 1 of 3 : HK1333796
Address	E UNIT B, 11/F, GRANDION PLAZA, 932 CHEUNG SHA WAN ROAD, CHEUNG SHA WAN, KOWLOON HONG KONG	Address	 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 		
E-mail Telephone Facsimile	: glam@nt.com.hk : +852 2877 3122 : +852 2511 0922	E-mail Telephone Facsimile	: Richard.Fung@alsglobal.com : +852 2610 1044 : +852 2610 2021		
Project Order number C-O-C number Site	: YAU TONG BAY DEVELOPMENT : 3.14/018/2009 : :	Quote number	:	Date Samples Received Issue Date No. of samples received No. of samples analysed	: 04-DEC-2013 : 18-DEC-2013 : 1 : 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 18-DEC-2013

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1333796**

Sample(s) were received in a chilled condition.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-09 based on ASTM D3974-09, prior to determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.	This document has been electronically signed by those names that ap out in compliance with procedures specified in the Electronic Transact		ic signing has been carried
	Signatories	Position	Authorised results for
	Fung Lim Chee, Richard	General Manager	Inorganics

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd 11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

Campbell Brothers Linned Company

Sub-Matrix: SOIL			Client sample ID	T22BA.4.1/SW/0.75/IEA		
	Client sampling date / time		[04-DEC-2013]			
Compound	CAS Number	LOR	Unit	HK1333796-001		
EA/ED: Physical and Aggregate Properties						
EA055: Moisture Content (dried @ 103°C)		0.1	%	8.6		
EG: Metals and Major Cations						
EG020: Lead	7439-92-1	1	mg/kg	112		

Laboratory Duplicate (DUP) Report

Matrix: SOIL	atrix: SOIL					Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)						
EA/ED: Physical and	d Aggregate Properties	(QC Lot: 3205194)												
HK1333810-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	18.2	17.6	3.2						
HK1333810-002	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	16.1	15.7	2.7						
EG: Metals and Majo	or Cations (QC Lot: 32	03602)												
HK1333644-008	Anonymous	EG020: Lead	7439-92-1	1	mg/kg	126	140	10.6						
HK1333810-003	Anonymous	EG020: Lead	7439-92-1	1	mg/kg	110	90	19.1						

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Rec	overy (%)	Recovery Lin	nits (%)	RP	°D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 3203	602)										
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	88.5		84	106		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Sp	ike (MS) and Matrix	c Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPD	(%)
Laboratory	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control
sample ID			Number							Limit
EG: Metals and	Major Cations (QC Lot: 3203602)									
HK1333644-007	Anonymous	EG020: Lead	7439-92-1	5 mg/kg	# Not		75	125		
					Determined					

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Contact	: NATURE & TECHNOLOGIES (HK) LTD : MR GABRIEL LAM	Laboratory Contact	: ALS Technichem HK Pty Ltd : Fung Lim Chee, Richard	Page Work Order	: 1 of 3 • HK1335631
Address	E UNIT B, 11/F, GRANDION PLAZA, 932 CHEUNG SHA WAN ROAD, CHEUNG SHA WAN, KOWLOON HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail Telephone Facsimile	: glam@nt.com.hk : +852 2877 3122 : +852 2511 0922	E-mail Telephone Facsimile	: Richard.Fung@alsglobal.com : +852 2610 1044 : +852 2610 2021		
Project Order number C-O-C number Site	: YAU TONG BAY DEVELOPMENT : 3.14/018/2009 : :	Quote number	:	Date Samples Received Issue Date No. of samples received No. of samples analysed	: 20-DEC-2013 : 08-JAN-2014 : 1 : 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 27-DEC-2013

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1335631**

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

This report may not be reproduced except with prior written approval from the testing laboratory.	This document has been electronically signed by those names that out in compliance with procedures specified in the Electronic Transa		onic signing has been carried
	Signatories	Position	Authorised results for
	Anh Ngoc Huynh	Senior Chemist	Organics
	Fung Lim Chee, Richard	General Manager	Inorganics

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

Analytical Results						
Sub-Matrix: SOIL			Client sample ID	R3.1 -		
				R3.2/SW/2.475/IEA		
		Client sa	mpling date / time	[19-DEC-2013]		
Compound	CAS Number	LOR	Unit	HK1335631-001		
EA/ED: Physical and Aggregate Properties						
EA055: Moisture Content (dried @		0.1	%	31.6		
103°C)						
EP-071HK_SR: Total Petroleum Hydrocarbons (TP	H)					
C9 - C16 Fraction		200	mg/kg	266		
C17 - C35 Fraction		500	mg/kg	9270		

Page Number: 3 of 3Client: NATURE & TECHNOLOGIES (HK) LTDWork OrderHK1335631

Laboratory Duplicate (DUP) Report

Matrix: SOIL	atrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)				
EA/ED: Physical an	d Aggregate Properties	s (QC Lot: 3230696)										
HK1335715-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	24.6	23.9	2.8				
HK1335715-004	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	29.5	29.6	0.4				
EP-071HK_SR: Tota	al Petroleum Hydrocart	oons (TPH) (QC Lot: 3224594)										
HK1335577-023	Anonymous	C9 - C16 Fraction		200	mg/kg	3000	2810	6.7				
		C17 - C35 Fraction		500	mg/kg	2360	2250	4.7				

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB) Report		Laboratory Cor	ntrol Spike (LCS) and Labo	oratory Control Sp	oike Duplicate (D	CS) Report	
					Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-071HK_SR: Total Petroleum Hydr	ocarbons (TPH) (QC Lot	: 3224594)									
C9 - C16 Fraction		200	mg/kg	<200	32 mg/kg	63.0		36	118		
C17 - C35 Fraction		500	mg/kg	<500	90 mg/kg	52.0		28	110		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Spi	ike (MS) and Matrix	Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPL	D (%)
Laboratory	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control
sample ID			Number							Limit
EP-071HK_SR:	Total Petroleum Hydrocarbons (TPH)	(QC Lot: 3224594)								
HK1335577-024	Anonymous	C9 - C16 Fraction		32 mg/kg			50	130		
		C17 - C35 Fraction		90 mg/kg			50	130		

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Contact	: NATURE & TECHNOLOGIES (HK) LTD : MR GABRIEL LAM	Laboratory Contact	:ALS Technichem HK Pty Ltd :Fung Lim Chee, Richard	Page Work Order	: 1 of 4 • HK1401194
Address	E UNIT B, 11/F, GRANDION PLAZA, 932 CHEUNG SHA WAN ROAD, CHEUNG SHA WAN, KOWLOON HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail Telephone Facsimile	: glam@nt.com.hk : +852 2877 3122 : +852 2511 0922	E-mail Telephone Facsimile	: Richard.Fung@alsglobal.com : +852 2610 1044 : +852 2610 2021		
Project Order number C-O-C number Site	: YAU TONG BAY DEVELOPMENT : 3.14/018/2009 : :	Quote number	:	Date Samples Received Issue Date No. of samples received No. of samples analysed	: 09-JAN-2014 : 23-JAN-2014 : 1 : 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 14-JAN-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1401194**

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

This report may not be reproduced except with prior written approval from the testing laboratory.	This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.						
	Signatories	Position	Authorised results for				
	Anh Ngoc Huynh	Senior Chemist	Organics				
	Fung Lim Chee, Richard	General Manager	Inorganics				

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

Page Number: 2 of 4Client: NATURE & TECHNOLOGIES (HK) LTDWork OrderHK1401194

-							
Sub-Matrix: SOIL			Client sample ID	T35C.56/SW/1.25/IEA			
		Client sa	ampling date / time	[09-JAN-2014]			
Compound	CAS Number	LOR	Unit	HK1401194-001			
EA/ED: Physical and Aggregate Properties							
EA055: Moisture Content (dried @ 103°C)		0.1	%	7.6			
EP-071_SR: Total Petroleum Hydrocarbons (TF	PH)						
C6 - C9 Fraction		2	mg/kg	<2			
C10 - C14 Fraction		50	mg/kg	<50			
C15 - C28 Fraction		100	mg/kg	<100			
C29 - C36 Fraction		100	mg/kg	<100			
EP-080_SRS: TPH(Volatile)/BTEX Surrogate						Surrogate control lin	nits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	94.3			
Toluene-D8	2037-26-5	0.1	%	101			
4-Bromofluorobenzene	460-00-4	0.1	%	105			

Page Number: 3 of 4Client: NATURE & TECHNOLOGIES (HK) LTDWork OrderHK1401194

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)				
EA/ED: Physical ar	nd Aggregate Propertie	s (QC Lot: 3249105)										
HK1401212-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	0.7	0.6	17.0				
HK1401212-002	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	0.5	0.5	0.0				
EP-071_SR: Total F	Petroleum Hydrocarbor	s (TPH) (QC Lot: 3244382)										
HK1400969-008	Anonymous	C15 - C28 Fraction		100	mg/kg	<100	<100	0.0				
		C29 - C36 Fraction		100	mg/kg	<100	<100	0.0				
		C10 - C14 Fraction		50	mg/kg	<50	<50	0.0				
EP-071_SR: Total F	Petroleum Hydrocarbor	s (TPH) (QC Lot: 3244433)										
HK1400969-008	Anonymous	C6 - C9 Fraction		2	mg/kg	<2	<2	0.0				

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

latrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EP-071_SR: Total Petroleum Hydrocarbor	is (TPH) (QC Lot: 32	44382)										
C10 - C14 Fraction		50	mg/kg	<50	22.5 mg/kg	65.1		31	125			
C15 - C28 Fraction		100	mg/kg	<100	52.5 mg/kg	35.3		28	116			
C29 - C36 Fraction		100	mg/kg	<100	52.5 mg/kg	19.0		6	108			
EP-071_SR: Total Petroleum Hydrocarbor	is (TPH) (QC Lot: 32	44433)										
C6 - C9 Fraction		2	mg/kg	<2	6 mg/kg	96.3		58	127			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPL) (%)	
Laboratory	Client sample ID	Method: Compound	CAS	oncentration	MS	MSD	Low	High	Value	Control	
sample ID			Number							Limit	
EP-071_SR: T	otal Petroleum Hydrocarbons	(TPH) (QC Lot: 3244382)									
HK1400969-009	Anonymous	C10 - C14 Fraction		16 mg/kg	88.8		50	130			
		C15 - C28 Fraction		53 mg/kg	61.8		50	130			
		C29 - C36 Fraction		45 mg/kg	76.3		50	130			
EP-071_SR: T	otal Petroleum Hydrocarbons	(TPH) (QC Lot: 3244433)									
HK1400969-009	Anonymous	C6 - C9 Fraction		6 mg/kg	93.8		50	130			

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP-080_SRS: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117

Page Number: 4 of 4Client: NATURE & TECHNOLOGIES (HK) LTDWork OrderHK1401194

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP-080_SRS: TPH(Volatile)/BTEX Surrogate - Continued			
4-Bromofluorobenzene	460-00-4	74	121

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Contact	: NATURE & TECHNOLOGIES (HK) LTD : MR GABRIEL LAM	Laboratory Contact	: ALS Technichem HK Pty Ltd : Fung Lim Chee, Richard	Page Work Order	^{: 1 of 4} HK1402447
Address	: UNIT B, 11/F, GRANDION PLAZA, 932 CHEUNG SHA WAN ROAD, CHEUNG SHA WAN, KOWLOON HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail Telephone Facsimile	: glam@nt.com.hk : +852 2877 3122 : +852 2511 0922	E-mail Telephone Facsimile	: Richard.Fung@alsglobal.com : +852 2610 1044 : +852 2610 2021		
Project Order number C-O-C number Site	: YAU TONG BAY DEVELOPMENT : 3.14/018/2009 : :	Quote number	:	Date Samples Received Issue Date No. of samples received No. of samples analysed	: 22-JAN-2014 : 04-FEB-2014 : 1 : 1

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Position

Signatories

Fung Lim Chee, Richard General Manager

Authorised results for

Inorganics

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 29-JAN-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1402447

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Sample(s) analysed and reported on an as received basis.

TCLP Leachate sample(s) were filtered prior to dissolved metal analysis.

The metal concentrations reported are those determined on the TCLP leachate. Extraction Fluid #1 pH 4.88 - 4.98.

Sub-Matrix: TCLP LEACHATE			Client sample ID	R5/TCLP/IEA		
		Client sa	mpling date / time	[22-JAN-2014]		
Compound	CAS Number	LOR	Unit	HK1402447-001		
EG: Metals and Major Cations - Filtered						
EG020: Lead	7439-92-1	0.1	mg/L	<0.1		
Sample Preparation Method						
E-TCLP: Extraction Fluid Number		-		1		

Page Number: 4 of 4Client: NATURE & TECHNOLOGIES (HK) LTDWork OrderHK1402447

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EG: Metals and Major	Cations - Filtered (QC Lot:	3269082)								
HK1402484-003	Anonymous	EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	0.0		
L	-		1		3	1		1		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report		Laboratory Cont	rol Spike (LCS) and Labora	tory Control Sp	oike Duplicate (D	CS) Report	
					Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RF	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC Lo	t: 3269082)										
EG020: Lead	7439-92-1	0.001	mg/L	<0.001	1 mg/L	101		82	104		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER		Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report			ort					
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPL	D (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and	d Major Cations - Filtered (QC Lot: 32	69082)								
HK1401992-001	Anonymous	EG020: Lead	7439-92-1	1 mg/L	94.8	92.2	75	125	2.9	

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Contact	: NATURE & TECHNOLOGIES (HK) LTD : MR GABRIEL LAM	Laboratory Contact	:ALS Technichem HK Pty Ltd :Fung Lim Chee, Richard	Page Work Order	: 1 of 4 • HK1406103
Address	E UNIT B, 11/F, GRANDION PLAZA, 932 CHEUNG SHA WAN ROAD, CHEUNG SHA WAN, KOWLOON HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail Telephone Facsimile	: glam@nt.com.hk : +852 2877 3122 : +852 2511 0922	E-mail Telephone Facsimile	: Richard.Fung@alsglobal.com : +852 2610 1044 : +852 2610 2021		
Project Order number C-O-C number Site	: YAU TONG BAY DEVELOPMENT : 3.14/018/2009 : :	Quote number	:	Date Samples Received Issue Date No. of samples received No. of samples analysed	: 24-FEB-2014 : 12-MAR-2014 : 1 : 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 04-MAR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1406103**

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

This report may not be reproduced except with prior written approval from the testing laboratory.	This document has been electronically signed by those names that out in compliance with procedures specified in the Electronic Trans		onic signing has been carried
	Signatories	Position	Authorised results for
	Anh Ngoc Huynh	Senior Chemist	Organics
	Fung Lim Chee, Richard	General Manager	Inorganics

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

Page Number: 2 of 4Client: NATURE & TECHNOLOGIES (HK) LTDWork OrderHK1406103

Sub-Matrix: SOIL			Client sample ID	T32E/B5/1.5/IEA			
		Client sa	ampling date / time	[24-FEB-2014]			
Compound	CAS Number	LOR	Unit	HK1406103-001			
EA/ED: Physical and Aggregate Properties							
EA055: Moisture Content (dried @		0.1	%	10.8			
103°C)							
EP-071_SR: Total Petroleum Hydrocarbons (TF	PH)						
C6 - C9 Fraction		2	mg/kg	<2			
C10 - C14 Fraction		50	mg/kg	<50			
C15 - C28 Fraction		100	mg/kg	<100			
C29 - C36 Fraction		100	mg/kg	<100			
EP-080_SRS: TPH(Volatile)/BTEX Surrogate						Surrogate control lin	nits listed at end of this repor
Dibromofluoromethane	1868-53-7	0.1	%	96.0			
Toluene-D8	2037-26-5	0.1	%	98.2			
4-Bromofluorobenzene	460-00-4	0.1	%	103			

Page Number: 3 of 4Client: NATURE & TECHNOLOGIES (HK) LTDWork OrderHK1406103

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Lai	ooratory Duplicate (DUP) Re	port	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical ar	nd Aggregate Propertie	s (QC Lot: 3320029)						
HK1406053-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	16.8	16.9	0.8
HK1406125-002	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	13.2	14.0	5.8
EP-071_SR: Total F	Petroleum Hydrocarbor	is (TPH) (QC Lot: 3311610)						
HK1405718-001	Anonymous	C15 - C28 Fraction		100	mg/kg	<100	<100	0.0
		C29 - C36 Fraction		100	mg/kg	<100	<100	0.0
		C10 - C14 Fraction		50	mg/kg	<50	<50	0.0
EP-071_SR: Total I	Petroleum Hydrocarbor	is (TPH) (QC Lot: 3311614)						
HK1405718-001	Anonymous	C6 - C9 Fraction		2	mg/kg	<2	<2	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (ME	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Re					CS) Report		
					Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RI	PD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EP-071_SR: Total Petroleum Hydro	carbons (TPH) (QC Lot: 33	311610)										
C10 - C14 Fraction		50	mg/kg	<50	22.5 mg/kg	97.3		38	105			
C15 - C28 Fraction		100	mg/kg	<100	52.5 mg/kg	80.7		18	103			
C29 - C36 Fraction		100	mg/kg	<100	52.5 mg/kg	35.0		0	94			
EP-071_SR: Total Petroleum Hydro	carbons (TPH) (QC Lot: 33	311614)										
C6 - C9 Fraction		2	mg/kg	<2	6 mg/kg	96.6		72	123			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Sp	port				
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPL	D (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP-071_SR: To	otal Petroleum Hydrocarbons (TPH)	(QC Lot: 3311610)								
HK1405718-002	Anonymous	C10 - C14 Fraction		16 mg/kg	106		50	130		
		C15 - C28 Fraction		53 mg/kg	67.2		50	130		
		C29 - C36 Fraction		45 mg/kg	56.1		50	130		
EP-071_SR: To	otal Petroleum Hydrocarbons (TPH)	(QC Lot: 3311614)								
HK1405718-002	Anonymous	C6 - C9 Fraction		6 mg/kg	106		50	130		

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery I	Limits (%)
Compound	CAS Number	Low	High
EP-080_SRS: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117

Page Number: 4 of 4Client: NATURE & TECHNOLOGIES (HK) LTDWork OrderHK1406103

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP-080_SRS: TPH(Volatile)/BTEX Surrogate - Continued			
4-Bromofluorobenzene	460-00-4	74	121

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Authorised results for

Inorganics

CERTIFICATE OF ANALYSIS

Client Contact	: NATURE & TECHNOLOGIES (HK) LTD : MR GABRIEL LAM	Laboratory Contact	: ALS Technichem HK Pty Ltd : Fung Lim Chee, Richard	Page Work Order	: 1 of 4 • HK1408239
Address	: UNIT B, 11/F, GRANDION PLAZA, 932 CHEUNG SHA WAN ROAD, CHEUNG SHA WAN, KOWLOON HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail Telephone	: glam@nt.com.hk : +852 2877 3122	E-mail Telephone	:Richard.Fung@alsglobal.com :+852 2610 1044		
Facsimile Project Order number	: +852 2511 0922 : YAU TONG BAY DEVELOPMENT : 3.14/018/2009	Facsimile Quote number	: +852 2610 2021 :	Date Samples Received Issue Date	: 14-MAR-2014 : 27-MAR-2014
C-O-C number Site	:			No. of samples received No. of samples analysed	: 1 : 1

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Position

Signatories

Fung Lim Chee, Richard General Manager

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 22-MAR-2014

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1408239

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Sample(s) analysed and reported on an as received basis.

TCLP Leachate sample(s) were filtered prior to dissolved metal analysis.

The metal concentrations reported are those determined on the TCLP leachate. Extraction Fluid #1 pH 4.88 - 4.98.

Sub-Matrix: TCLP LEACHATE		Client sample ID	T19A/TCLP.2/IEA			
Ci			mpling date / time	[14-MAR-2014]		
Compound	CAS Number	LOR	Unit	HK1408239-001		
EG: Metals and Major Cations - Filtered						
EG020: Lead	7439-92-1	0.1	mg/L	<0.1		
Sample Preparation Method						
E-TCLP: Extraction Fluid Number		-		1		

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	
EG: Metals and Majo	EG: Metals and Major Cations - Filtered (QC Lot: 3351821)								
HK1407712-002	Anonymous	EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	0.0	
HK1408243-001	Anonymous	EG020: Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	0.0	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike Spike Recov		covery (%)	Recovery	ery Limits (%) RP		PD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EG: Metals and Major Cations - Filtered (QC L	.ot: 3351821)											
EG020: Lead	7439-92-1	0.001	mg/L	<0.1	1 mg/L	92.2		82	104			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER	atrix: WATER					Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
					Spike Recovery (%)		Recovery Limits (%)		RPD (%)				
Laboratory	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control			
sample ID			Number							Limit			
EG: Metals an	EG: Metals and Major Cations - Filtered (QC Lot: 3351821)												
HK1407712-001	Anonymous	EG020: Lead	7439-92-1	1 mg/L	80.5	79.2	75	125	1.7				

APPENDIX L LABORATORY RESULTS OF VERIFICATION SAMPLES

	Parameter		Benzene	bis- (2- Ethylhexyl) phthalate	PCR (C9-C16)	PCR (C17-C35)	Lead
	LOR (mg/kg)		0.2	5	200	500	1
RBRGs (Urban Residential) (n	ng/kg)	0.704	30	2240	10000	258
Sample ID	Sampling Depth (m bgs)	Date of Sampling					
A1.1-A1.2/SW	0.5	18/11/2013					72
A1.1-A1.4/SW	0.5	18/11/2013					86
A1.2-A1.3/SW	0.5	18/11/2013					180
A1.3-A1.4/SW	0.5	18/11/2013					70
A1/B	1	9/12/2013					71
A2/T	1	4/12/2013		<5			26
A2.1-A2.2/SW	1.675	2/12/2013		6.46			<u>443</u>
A2.1-A2.2.1/SW	1.675	19/12/2013					87
A2.1-A2.4/SW	1.675	2/12/2013		<5			248
A2.2-A2.3/SW	1.675	2/12/2013		<5			49
A2.3-A2.4/SW	1.675	2/12/2013		<5			150
A2/B*	2.35	12/12/2013		<5			<u>294</u>
A3.1-A3.2/SW	3.65	3/7/2014					<u>406</u>
A3.1-A3.2.1/SW	3.65	24/3/2014					97
A3.1-A3.4/SW	3.65	3/7/2014					35
A3.2-A3.3/SW	3.65	3/7/2014					<u>353</u>
A3.2-A3.3.1/SW	3.65	24/3/2014					87
A3.3-A3.4/SW	3.65	3/7/2014					176
A3/B	4.95	3/7/2014					60
A4/T	1	4/12/2013					78
A4.1-A4.2/SW	1.725	2/12/2013					137
A4.1-A4.4/SW	1.725	2/12/2013					165
A4.2-A4.3/SW	1.725	2/12/2013					<u>586</u>
A4.2-A4.3.1/SW	1.725	19/12/2013					222
A4.3-A4.4/SW	1.725	2/12/2013					<u>7060</u>
A4.3-A4.4.1/SW	1.725	19/12/2013					<u>394</u>
A4.3-A4.4.2/SW	1.725	24/1/2014					<u>1420</u>
A4.3-A4.4.3/SW	1.725	12/2/2014					<u>2480</u>
A4.3-A4.4.4/SW	1.725	4/3/2014					99
A4/B	2.45	12/12/2013					184
A5/T	1.4	4/12/2013					118
A5.1-A5.2/SW	1.975	2/12/2013					<u>2980</u>
A5.1-A5.2.1/SW	1.975	19/12/2013					<u>595</u>
A5.1-A5.2.2/SW	1.975	24/1/2014					174

Table L.1 Summary of Laboratory Results of Verification Samples with Reference to RBRG

	Parameter		Benzene	bis- (2- Ethylhexyl) phthalate	PCR (C9-C16)	PCR (C17-C35)	Lead
	LOR (mg/kg)		0.2	5	200	500	1
RBRGs (Urban Residential) (m	ng/kg)	0.704	30	2240	10000	258
Sample ID	Sampling Depth (m bgs)	Date of Sampling					
A5.1-A5.4/SW	1.975	2/12/2013					<u>361</u>
A5.1-A5.4.1/SW	1.975	19/12/2013					<u>391</u>
A5.1-A5.4.2/SW	1.975	24/1/2014					<u>500</u>
A5.1-A5.4.3/SW	1.975	12/2/2014					<u>1540</u>
A5.1-A5.4.4/SW	1.975	4/3/2014					103
A5.2-A5.3/SW	1.975	2/12/2013					<u>398</u>
A5.2-A5.3.1/SW	1.975	19/12/2013					51
A5.3-A5.4/SW	1.975	2/12/2013					117
A5/B	2.55	12/12/2013					148
R1.1-R1.2/SW	0.5	18/11/2013		<5			
R1.1-R1.4/SW	0.5	18/11/2013		<5			
R1.2-R1.3/SW	0.5	18/11/2013		6.52			
R1.3-R1.4/SW	0.5	18/11/2013		18.5			
R1/B	1	9/12/2013		<5			
R2.1-R2.2/SW	0.5	22/11/2013		8.36			
R2.1-R2.4/SW	0.5	22/11/2013		19.7			
R2.2-R2.3/SW	0.5	22/11/2013		<u>42</u>			
R2.2-R2.3.1/SW	0.5	9/12/2013		<u>75.8</u>			
R2.2-R2.3.2/SW	0.5	27/12/2013		19.7			
R2.3-R2.4/SW	0.5	22/11/2013		17.7			
R2/B	1	4/12/2013		16.4			
R3.1-R3.2/SW	0.5	22/11/2013		<5			
R3.1-R3.4/SW	0.5	22/11/2013		7.4			
R3.2-R3.3/SW	0.5	22/11/2013		<5			
R3.3-R3.4/SW	0.5	22/11/2013		<5			
R3/B	1	4/12/2013		<5			
R3.1-R3.2/SW	2.475	19/12/2013	<0.2		299	9030	
R3.1-R3.4/SW	2.475	19/12/2013	<0.2		244	6190	
R3.2-R3.3/SW	2.475	19/12/2013	<0.2		<200	1480	
R3.3-R3.4/SW	2.475	19/12/2013	<0.2		291	8060	
R3/B	3.95	19/2/2014	<0.2		<200	<500	
R4.1-R4.2/SW	0.5	2/12/2013		<5			
R4.1-R4.4/SW	0.5	2/12/2013		6.78			
R4.2-R4.3/SW	0.5	2/12/2013		<5			

	Parameter		Benzene	bis- (2- Ethylhexyl) phthalate	PCR (C9-C16)	PCR (C17-C35)	Lead
	LOR (mg/kg)		0.2	5	200	500	1
RBRGs (Urban Residential) (m	ng/kg)	0.704	30	2240	10000	258
Sample ID	Sampling Depth (m bgs)	Date of Sampling					
R4.3-R4.4/SW	0.5	2/12/2013		<5			
R4/B	1	4/12/2013		<5			
R5.1-R5.2/SW	0.5	20/11/2013					104
R5.1-R5.4/SW	0.5	20/11/2013					<u>340</u>
R5.1-R5.4.1/SW	0.5	9/12/2013					101
R5.2-R5.3/SW	0.5	20/11/2013					184
R5.3-R5.4/SW	0.5	20/11/2013					120
R5/B	1	4/12/2013					73
R6/T	2.7	27/12/2013					200
R6.1-R6.2/SW	3.425	23/12/2013					196
R6.1-R6.4/SW	3.425	23/12/2013					57
R6.2-R6.3/SW	3.425	23/12/2013					179
R6.3-R6.4/SW	3.425	23/12/2013					159
R6/B	4.15	6/3/2014					68
R7/T	3.1	18/3/2014					153
R7.1-R7.2/SW	3.825	18/3/2014					264
R7/SW/1.1-1.2	3.825	4/11/2014					108
R7.1-R7.4/SW	3.825	18/3/2014					92
R7.2-R7.3/SW	3.825	18/3/2014					115
R7.3-R7.4/SW	3.825	18/3/2014					200
R7/B	4.55	18/3/2014					163
R8/T	3	12/12/2013					394
R8/T.1	2.5	2/1/2014					68
R8.1-R8.2/SW	3.725	12/12/2013					102
R8.1-R8.4/SW	3.725	12/12/2013					90
R8.2-R8.3/SW	3.725	12/12/2013					62
R8.3-R8.4/SW	3.725	12/12/2013					96
R8/B	4.45	19/12/2013					162

Notes:
 m bgs = meter below ground surface
 Gray cell indicates that the parameter is not being tested in the corresponding sample.
 Values exceeding RBRG/Dutch limits are indicated in <u>bold and underline</u>.
 * Additional base sampling for A2 is not required as that part of soil is included in A3.

	Parameter		Lead (mg/kg)	Copper (mg/kg)	TPH C6-C9 (µg/kg)	TPH C10-C14 (μg/kg)	TPH C15-C28 (μg/kg)	TPH C29-C36 (μg/kg)	Total TPH (µg/kg)	PCBs (mg/kg)
	LOR		1	1	2	50	100	100	252	0.1
Dutch L	ist (Dutch B Stand	ard)	150	100	-	-	-	-	1000	1
Sample ID	Sampling Depth (m bgs)	Date of Sampling								
T19A.1/SW	1.25	20/11/2013	125							
T19A.2/SW	1.25	20/11/2013	<u>190</u>							
T19A.2.1/SW	1.25	9/12/2013	40				· · · · · · · · · · · ·			
T19A.3/SW	1.25	20/11/2013	<u>213</u>							
T19A.3.1/SW	1.25	9/12/2013	108				· · · · · · · · · · · · · · · · · · ·			
T19A.4/SW	1.25	20/11/2013	<u>168</u>							
T19A.4.1/SW	1.25	9/12/2013	<u>163</u>							
T19A.4.2/SW	1.25	27/12/2013	87							
T19A/B	2	4/12/2013	74							
T19A/B1	2	4/12/2013	75							
T22BA.1/SW	0.75	18/11/2013	131							
T22BA.2/SW	0.75	18/11/2013	142							
T22BA.3/SW	0.75	18/11/2013	<u>328</u>							
T22BA.3.1/SW	0.75	4/12/2013	<u>154</u>				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
T22BA.3.2/SW	0.75	23/12/2013	<u>194</u>							
T22BA.3.3/SW	0.75	10/1/2014	<u>172</u>							
T22BA.3.4/SW	0.75	27/1/2014	129							
T22BA.4/SW	0.75	18/11/2013	<u>303</u>							
T22BA.4.1/SW	0.75	4/12/2013	126				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
T22BA/B	1.5	4/12/2013	102							
T22BA/B1	1.5	4/12/2013	<u>151</u>							
T22BA/B1.1	2	23/12/2013	<u>779</u>							
T22BA/B1.2	2.5	10/1/2014	144							
T22BB.1/SW	2.25	20/11/2013	107	1						
T22BB.2/SW	2.25	11/1/2014	39	2						
T22BB.3/SW	2.25	20/11/2013	<u>199</u>	1						
T22BB.3.1/SW	2.25	9/12/2013	<u>209</u>							
T22BB.3.2/SW	2.25	27/12/2013	119							
T22BB.4/SW	2.25	22/11/2013	66	3						
T22BB/B	3	16/12/2013	49	2						
T22BB/B1	3	16/12/2013	40	2						
T32C.1/SW	2.5	26/11/2013	<u>167</u>							
T32C.1.1/SW	2.5	19/12/2013	64							
T32C.2/SW	2.5	26/11/2013	69							

Table L.2 Summary of Laboratory Results of Verification Samples with Reference to Dutch B

	Parameter		Lead (mg/kg)	Copper (mg/kg)	TPH C6-C9 (µg/kg)	TPH C10-C14 (μg/kg)	TPH C15-C28 (μg/kg)	TPH C29-C36 (μg/kg)	Total TPH (µg/kg)	PCBs (mg/kg)
	LOR		1	1	2	50	100	100	252	0.1
Dutch L	ist (Dutch B Stand	ard)	150	100	-	-	-	-	1000	1
Sample ID	Sampling Depth (m bgs)	Date of Sampling								
T32C.3/SW	2.5	26/11/2013	61							
T32C.4/SW	2.5	26/11/2013	<u>306</u>							
T32C.4.1/SW	2.5	19/12/2013	105							
T32C/B	3.5	9/12/2013	142							
T32C/B1	3.5	9/12/2013	141							
T32D/T	0.5	26/11/2013								<0.1
T32D.1/SW	1	22/11/2013					· · · · · · · · · · · · · · · · · · ·			0.4
T32D.2/SW	1	22/11/2013								0.3
T32D.3/SW	1	22/11/2013								0.2
T32D.4/SW	1	22/11/2013								0.2
T32D/B	1.5	9/12/2013								0.4
T32E.1/SW	0.75	20/1/2014			<2	<50	253	145	450	
T32E.2/SW	0.75	20/1/2014			<2	<50	224	130	406	
T32E.3/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.4/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.5/SW	0.75	20/1/2014			<2	<50	203	146	401	
T32E.6/SW	0.75	20/1/2014			<2	<50	123	101	276	
T32E.7/SW	0.75	20/1/2014			<2	<50	118	<100	270	
T32E.8/SW	0.75	20/1/2014			<2	<50	132	102	286	
T32E.9/SW	0.75	20/1/2014			<2	<50	151	132	335	
T32E.10/SW	0.75	20/1/2014			<2	105	828	686	<u>1621</u>	
T32E.10.1/SW	0.75	17/2/2014			<2	59	466	242	769	
T32E.11/SW	0.75	20/1/2014			<2	55	716	709	<u>1482</u>	
T32E.11.1/SW	0.75	17/2/2014			<2	<50	928	1170	<u>2150</u>	
T32E.11.2/SW	0.75	28/2/2014			<2	263	1590	860	<u>2715</u>	
T32E.11.3/SW	0.75	7/3/2014			<2	<50	<100	<100	252	
T32E.12/SW	0.75	20/1/2014			<2	<50	274	304	630	
T32E.13/SW	0.75	20/1/2014			<2	<50	173	240	465	
T32E.14/SW	0.75	20/1/2014			<2	<50	420	352	824	
T32E.15/SW	0.75	20/1/2014			<2	117	702	403	<u>1224</u>	
T32E.15.1/SW	0.75	17/2/2014			<2	<50	629	412	<u>1093</u>	
T32E.15.2/SW	0.75	28/2/2014			<2	<50	456	<100	608	
T32E.16/SW	0.75	20/1/2014			<2	<50	4720	3350	<u>8122</u>	
T32E.16.1/SW	0.75	17/2/2014			<2	<50	937	1310	2299	
T32E.16.2/SW	0.75	28/2/2014			<2	<50	<100	<100	252	

	Parameter		Lead (mg/kg)	Copper (mg/kg)	TPH C6-C9 (μg/kg)	TPH C10-C14 (μg/kg)	TPH C15-C28 (μg/kg)	TPH C29-C36 (μg/kg)	Total TPH (µg/kg)	PCBs (mg/kg)
	LOR		1	1	2	50	100	100	252	0.1
Dutch L	ist (Dutch B Stand	ard)	150	100	-	-	-	-	1000	1
Sample ID	Sampling Depth (m bgs)	Date of Sampling								
T32E.17/SW	0.75	20/1/2014			<2	141	7790	4920	<u>12853</u>	
T32E.17.1/SW	0.75	17/2/2014			<2	<50	839	1130	<u>2021</u>	
T32E.17.2/SW	0.75	28/2/2014			<2	<50	<100	<100	252	
T32E.18/SW	0.75	20/1/2014			<2	70	1420	948	<u>2440</u>	
T32E.18.1/SW	0.75	17/2/2014			<2	<50	269	162	483	
T32E.19/SW	0.75	20/1/2014			<2	145	4460	2280	<u>6887</u>	
T32E.19.1/SW	0.75	17/2/2014			<2	<50	152	110	314	
T32E.20/SW	0.75	20/1/2014			<2	<50	179	139	370	
T32E.21/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.22/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.23/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.24/SW	0.75	20/1/2014			<2	112	<100	<100	314	
T32E.25/SW	0.75	20/1/2014			<2	<50	1140	738	<u>1930</u>	
T32E.25.1/SW	0.75	17/2/2014			<2	300	370	213	885	
T32E.26/SW	0.75	20/1/2014			<2	<50	1030	737	<u>1819</u>	
T32E.26.1/SW	0.75	17/2/2014			<2	109	815	562	<u>1488</u>	
T32E.26.2/SW	0.75	28/2/2014			<2	<50	<100	<100	252	
T32E.27/SW	0.75	20/1/2014			<2	<50	301	246	599	
T32E.28/SW	0.75	20/1/2014			<2	<50	230	225	507	
T32E.29/SW	0.75	20/1/2014			<2	<50	143	<100	295	
T32E.30/SW	0.75	20/1/2014			<2	<50	1200	732	<u>1984</u>	
T32E.30.1/SW	0.75	17/2/2014			<2	<50	1130	1110	<u>2292</u>	
T32E.30.2/SW	0.75	28/2/2014			<2	<50	<100	<100	252	
T32E.31/SW	0.75	20/1/2014			<2	<50	908	530	<u>1490</u>	
T32E.31.1/SW	0.75	17/2/2014			<2	<50	524	431	<u>1007</u>	
T32E.31.2/SW	0.75	28/2/2014			<2	<50	<100	<100	252	
T32E.32/SW	0.75	20/1/2014			<2	<50	812	472	<u>1336</u>	
T32E.32.1/SW	0.75	17/2/2014			<2	56	978	965	<u>2001</u>	
T32E.32.2/SW	0.75	28/2/2014			<2	<50	<100	<100	252	
T32E.33/SW	0.75	20/1/2014			<2	<50	398	248	698	
T32E.34/SW	0.75	20/1/2014			<2	<50	5100	3630	<u>8782</u>	
T32E.34.1/SW	0.75	17/2/2014			<2	62	1480	1090	<u>2634</u>	
T32E.34.2/SW	0.75	28/2/2014			<2	<50	<100	<100	252	
T32E.35/SW	0.75	20/1/2014			<2	<50	476	304	832	
T32E.36/SW	0.75	20/1/2014			<2	<50	359	211	622	

	Parameter		Lead (mg/kg)	Copper (mg/kg)	TPH C6-C9 (µg/kg)	TPH C10-C14 (μg/kg)	TPH C15-C28 (μg/kg)	ТРН C29-C36 (µg/kg)	Total TPH (µg/kg)	PCBs (mg/kg)
	LOR		1	1	2	50	100	100	252	0.1
Dutch L	ist (Dutch B Stand	ard)	150	100	-	-	-	-	1000	1
Sample ID	Sampling Depth (m bgs)	Date of Sampling								
T32E.37/SW	0.75	20/1/2014			<2	<50	1300	912	<u>2264</u>	
T32E.37.1/SW	0.75	17/2/2014			<2	<50	<100	<100	252	
T32E.38/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.39/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.40/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.41/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.42/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.43/SW	0.75	20/1/2014			<2	<50	327	254	633	
T32E.44/SW	0.75	20/1/2014			<2	<50	371	203	626	
T32E.45/SW	0.75	20/1/2014			<2	<50	334	109	495	
T32E.46/SW	0.75	20/1/2014			<2	<50	105	<100	257	
T32E.47/SW	0.75	20/1/2014			<2	<50	123	<100	275	
T32E.48/SW	0.75	20/1/2014			<2	<50	107	<100	259	
T32E.49/SW	0.75	20/1/2014			<2	<50	111	<100	263	
T32E.50/SW	0.75	20/1/2014			<2	<50	286	224	562	
T32E.51/SW	0.75	20/1/2014			<2	<50	266	253	571	
T32E.52/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.53/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.54/SW	0.75	20/1/2014			<2	<50	<100	<100	252	
T32E.55/SW	0.75	20/1/2014			<2	<50	272	156	480	
T32E.56/SW	0.75	20/1/2014			<2	<50	284	169	505	
T32E.57/SW	0.75	20/1/2014			<2	<50	308	154	514	
T32E.58/SW	0.75	20/1/2014			<2	<50	208	145	405	
T32E/B1	1.5	24/2/2014			<2	<50	<100	<100	252	
T32E/B2	1.5	24/2/2014			<2	<50	<100	<100	252	
T32E/B3	1.5	24/2/2014			<2	<50	<100	<100	252	
T32E/B4	1.5	24/2/2014			<2	<50	<100	<100	252	
T32E/B5	1.5	24/2/2014			<2	<50	<100	<100	252	
T32E/B6	1.5	24/2/2014			<2	<50	<100	<100	252	
T32E/B7	1.5	24/2/2014			<2	<50	<100	<100	252	
T32E/B8	1.5	24/2/2014			<2	<50	<100	<100	252	
T32E/B9	1.5	24/2/2014			<2	<50	<100	<100	252	
T32E/B10	1.5	24/2/2014			<2	<50	<100	<100	252	
T32E/B11	1.5	24/2/2014			<2	<50	284	225	561	
T32E/B12	1.5	24/2/2014			<2	<50	118	<100	270	

Parameter			Lead (mg/kg)	Copper (mg/kg)	TPH C6-C9 (µg/kg)	TPH C10-C14 (μg/kg)	TPH C15-C28 (μg/kg)	TPH C29-C36 (μg/kg)	Total TPH (µg/kg)	PCBs (mg/kg)
			1 150	1	2	50	100	100	252	0.1
Dutch List (Dutch B Standard)		100		-	-	-	-	1000	1	
Sample ID	Sampling Depth (m bgs)	Date of Sampling								
T32E/B13	1.5	24/2/2014			<2	<50	<100	<100	252	
T32E/B14	1.5	24/2/2014			<2	<50	<100	<100	252	
T32E/B15	1.5	25/2/2014			<2	<50	225	159	436	
T32E/B16	1.5	25/2/2014			<2	<50	311	194	557	
T32E/B17	1.5	25/2/2014			<2	<50	1150	604	<u>1806</u>	
T32E/B17.1	2	13/3/2014			<2	<50	<100	<100	252	
T32E/B18	1.5	25/2/2014			<2	<50	187	<100	339	
T32E.1A/SW	1.5	26/11/2013	96							0.5
T32E.2A/SW	1.5	26/11/2013	47							<0.1
T32E.3A/SW	1.5	26/11/2013	<u>1320</u>							<u>1.1</u>
T32E.3A.1/SW	1.5	19/12/2013	<u>208</u>							<u>44.1</u>
T32E.3A.2/SW	1.5	8/1/2014	65							0.4
T32E.4A/SW	1.5	26/11/2013	<u>204</u>							1
T32E.4A.1/SW	1.5	19/12/2013	<u>233</u>							
T32E.4A.2/SW	1.5	8/1/2014	<u>336</u>							
T32E.4A.3/SW	1.5	23/1/2014	96							
T32E/B	3	9/12/2013	144							0.4
T35C.1/SW – T35C.8/SW	1.25	7/1/2014			<2	<50	<100	<100	252	
T35C.9/SW	1.25	7/1/2014			<2	<50	114	<100	266	
T35C.10/SW – T35C.77/SW	1.25	7/1/2014			<2	<50	<100	<100	252	
T35C.B1	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B2	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B3	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B4	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B5	2.5	24/1/2014			<2	<50	1030	1070	<u>2152</u>	
T35C/B5.1	3	12/2/2014			<2	<50	<100	<100	252	
T35C.B6	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B7	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B8	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B9	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B10	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B11	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B12	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B13	2.5	24/1/2014			<2	<50	<100	<100	252	

	Parameter			Copper (mg/kg)	TPH C6-C9 (μg/kg)	TPH C10-C14 (μg/kg)	TPH C15-C28 (μg/kg)	ТРН C29-C36 (µg/kg)	Total TPH (µg/kg)	PCBs (mg/kg)
	LOR			1	2	50	100	100	252	0.1
Dutch	Dutch List (Dutch B Standard)		150	100	-	-	-	-	1000	1
Sample ID	Sampling Depth (m bgs)	Date of Sampling								
T35C.B14	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B15	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B16	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B17	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B18	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B19	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B20	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B21	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B22	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B23	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B24	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B25	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C.B26	2.5	24/1/2014			<2	<50	<100	<100	252	
T35C/B27	2.5	19/2/2014			<2	1600	336	299	2237	
T35C/B27.1	3	7/3/2014			<2	<50	<100	<100	252	
T35C/B28	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B29	2.5	19/2/2014			<2	176	<100	<100	378	
T35C/B30	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B31	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B32	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B33	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B34	2.5	19/2/2014	·		<2	<50	<100	<100	252	
T35C/B35	2.5	19/2/2014			<2	268	<100	<100	470	
T35C/B36	2.5	19/2/2014			<2	344	139	108	593	
T35C/B37	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B38	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B39	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B40	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B41	2.5	19/2/2014			<2	351	107	<100	560	
T35C/B42	2.5	19/2/2014			<2	508	164	129	803	
T35C/B43	2.5	19/2/2014			<2	122	<100	<100	324	
T35C/B44	2.5	19/2/2014			<2	85	<100	<100	287	
T35C/B45	2.5	19/2/2014			<2	68	<100	<100	270	
T35C/B46	2.5	19/2/2014			<2	<50	<100	<100	252	

	Parameter LOR			Copper (mg/kg)	TPH C6-C9 (µg/kg)	TPH C10-C14 (μg/kg)	TPH C15-C28 (μg/kg)	TPH C29-C36 (μg/kg)	Total TPH (µg/kg)	PCBs (mg/kg)
				1	2	50	100	100	252	0.1
Dutch I	Dutch List (Dutch B Standard)			100	-	-	-	-	1000	1
Sample ID	Sampling Depth (m bgs)	Date of Sampling								
T35C/B47	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B48	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B49	2.5	19/2/2014			<2	620	173	123	918	
T35C/B50	2.5	19/2/2014			<2	236	<100	<100	438	
T35C/B51	2.5	19/2/2014			<2	92	<100	<100	294	
T35C/B52	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B53	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B54	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B55	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B56	2.5	19/2/2014			<2	224	<100	<100	426	
T35C/B57	2.5	19/2/2014			<2	53	<100	<100	255	
T35C/B58	2.5	19/2/2014			<2	236	104	<100	442	
T35C/B59	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B60	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B61	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B62	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B63	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B64	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B65	2.5	19/2/2014			<2	<50	<100	<100	252	
T35C/B66	2.5	19/2/2014			<2	<50	<100	<100	252	
T36A.1/SW	0.75	26/11/2013	49							
T36A.2/SW	0.75	26/11/2013	82							
T36A.3/SW	0.75	26/11/2013	80							
T36A.4/SW	0.75	26/11/2013	51							
T36A/B	1.5	9/12/2013	67							
T36A/B1	1.5	9/12/2013	39							

Notes:
 m bgs = meter below ground surface
 Gray cell indicates that the parameter is not being tested in the corresponding sample.
 Values exceeding RBRG/Dutch limits are indicated in <u>bold and underline</u>.