Proposed Road Improvement Works in West Kowloon Reclamation Development – Phase 1

Environmental Monitoring & Audit Report

01/07/2016 - 31/07/2016

The Contents of this report have been certified by:

Ms. Goldie Fung

(Environmental Team Leader)

Environmental Pioneers & Solutions Limited

Flat A, 8/F, Chaiwan Industrial Centre, 20 Lee Chung Street, Chai Wan, Hong Kong

Tel: 2556 9172 Fax: 2856 2010

TABLE OF CONTENT

Exe	ecutive	e Summary	3
1	Intr	oduction	5
	1.1	The Project	5
	1.2	Construction Programme and Activities	6
	1.3	Project Organization	6
	1.4	Status of Environmental Licences, Notification and Permits	6
2	Air	Quality Monitoring	8
	2.1	Monitoring Locations	8
	2.2	Monitoring Frequency	9
	2.3	Monitoring Equipment	10
	2.4	Monitoring Methodology and Parameters	10
	2.5	Maintenance and Calibration	12
	2.6	Quality Assurance / Quality Control Results and Detection Limits	12
	2.7	Action and Limit Level for 1-hr TSP and 24-hr TSP	12
	2.8	Monitoring Results and Observations	15
	2.9	Monitoring Schedule for Next Reporting Month	15
3	Nois	se Monitoring	16
	3.1	Monitoring Locations	16
	3.2	Monitoring Frequency	16
	3.3	Monitoring Equipment	16
	3.4	Monitoring Methodology and Parameters	17
	3.5	Maintenance and Calibration	18
	3.6	Quality Assurance / Quality Control Results and Detection Limits	18
	3.7	Action and Limit Level for Construction Noise	18
	3.8	Monitoring Results and Observations	20
	3.9	Monitoring Schedule for Next Reporting Month	21
4	Soli	d and Liquid Waste Management Status	21
5	Lan	dscape and Visual Impact	23
6	Env	ironmental Site Inspection	24
	6.1	Site Audit	24
	6.2	Implementation Status of Environmental Mitigation Measures	24
7	Env	ironmental Non-Conformance	27
	7.1	Summary of Environmental Exceedances	27
	7.2	Summary of Environmental Non-Compliance	27
	7.3	Summary of Environmental Complaint	27
	7.4	Summary of Notification of Summons and Successful Prosecution	
8	Futi	ıre Key Issues	28

9	Con	Comment, Recommendations and Conclusions			
	9.1	Comment	29		
	9.2	Recommendations	29		
	9.3	Conclusions	30		

LIST OF APPENDICES

- Appendix A: Construction Programme and Project Layout Plan
- Appendix B: Project Organization Chart
- Appendix C: Monitoring Locations
- Appendix D: Calibration Certification
- Appendix E: TSP Monitoring Data
- Appendix F1: Noise Monitoring Data
- Appendix F2: School Schedule
- Appendix G: Waste Management Record
- Appendix H: Environmental Mitigation Implementation Schedule
- Appendix I: Cumulative Log for Environmental Exceedance, Complaints, Notification of Summons and Successful Prosecutions

Executive Summary

This is the sixth monthly Environmental Monitoring and Audit (EM&A) Report for Proposed Road Improvement Works in West Kowloon Reclamation Development – Phase 1. The project commenced on 6th February 2016. This report documents the finding of EM&A Works conducted from 1st July 2016 to 31st July 2016.

Environmental Monitoring and Audit Progress

Air Quality Monitoring

1-hr Total Suspended Particulates (TSP) monitoring and 24-hr TSP monitoring were carried out on 5th, 11th, 15th, 21st, and 27th July 2016.

Noise Monitoring

30-min LEQ noise monitoring was carried out on 5th, 11th, 15th, 21st, and 27th July 2016.

Waste Management

According to Contractor's waste flow data, 5031.54 tonnes of inert C&D materials and 17.12 tonnes of general refuse were generated and disposed of.

Landscape and Visual Impact

Bi-weekly inspections were conducted on 12th and 29th July 2016. Most of the necessary mitigation measures have been implemented. Details of the audit findings and implementation status are presented in Section 6.

Environmental Site Inspection

Joint weekly inspections were conducted by representatives of the Contract Administrator, Engineer, Contractor and ET on 4th, 11th, 20th and 25th July 2016. The representative of the IEC joined the site inspection on 20th July 2016. Details of the audit findings and implementation status are presented in Section 6.

<u>Environmental Exceedance / Non-conformance / Compliant / Summons and Successful Prosecution</u>

No exceedance of action level and limit level was recorded for TSP. Six exceedances were recorded at NM2 on 21st July 2016 and NM4 on 5th, 11th, 15th, 21st and 27th July

2016 for Noise. No Non-compliance event, environmental complaint, notification of summons and successful prosecution against the Project were received in this reporting month.

Variation in Construction Method

No variation in construction method from the proposed construction programme was made and affected the EM&A.

Future Key Issues

The major construction works to be undertaken in the next reporting month include:

- Portion I Underground Investigation Works
- Portion I Utilities Diversion Works
- Portion HA Underground Investigation Works
- Portion HA Utilities Diversion Works
- Portion J Utilities Diversion Works
- Portion J Construction of Retaining Walls
- Portion Q Road Works (excavation, drainage construction and utilities diversion)

1 Introduction

1.1 The Project

This is a road improvement project in West Kowloon Reclamation Development (WKRD) for completing the developments and the commissioning of the new transport facilities.

Apart from the additional traffic impacts arising from the major development and transport facilities in WKRD, several major junctions in the area are currently operating with insufficient capacity causing serious congestion to some existing major road corridors such as Jordan Road (JRD), Ferry Street (FST) and Canton Road (CRD).

To enhance the road network of the area, Transport Department commissioned the "West Kowloon Reclamation Development Traffic Study" which identified and recommended Core and Additional Schemes together with the improvement works at the junction of CRD/FST/JRD. Implementation of these schemes would enable most of the key road junctions in the study area to operate with spare capacity, and the traffic queue length would also be reduced avoiding blockage to the upstream junctions

The Environmental Team (ET), Environmental Pioneers & Solutions Limited (EPSL), was appointed by Vibro Construction Co. Ltd. to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Proposed Road Improvement Works in West Kowloon Reclamation Development – Phase 1. The project proponent is Highways Department. This is a Designated Project under the Environmental Impact Assessment Ordinance (Cap.499). The No. of Environment Permit is EP-455/2013.

The construction works and EM&A programme of this project was commenced on 6th February 2016. The construction programme and project layout plan are shown in **Appendix A**.

1.2 Construction Programme and Activities

A summary of the major construction activities undertaken in this reporting period is shown as follows.

- Portion I Underground Investigation Works
- Portion I Utilities Diversion Works
- Portion HA Underground Investigation Works
- Portion HA Utilities Diversion Works
- Portion J Utilities Diversion Works
- Portion J Construction of Retaining Walls
- Portion Q Road Works (excavation, drainage construction and utilities diversion)

1.3 Project Organization

The project organization chart and contact details are shown in **Appendix B**.

1.4 Status of Environmental Licences, Notification and Permits

A summary of the relevant permits, licences, and notifications on environmental protection for this Project is presented in Table 1.5.1.

Table 1.5.1 Summary of the Status of Environmental Licences, Notification and Permits

D	Valid 1	Period	G4.4	D 1		
Permit / License No.	From	То	Status	Remark		
Notification pursuant to Air Pollution Control (Construction Dust) Regulation						
Ref. No. 386894	23/03/2015	N/A	Valid	/		
Effluent Discharge License						
WT00021818-2015	18/06/2015	30/06/2020	Valid	Portion I		
WT00021822-2015	18/06/2015	30/06/2020	Valid	Portion HA		
WT00021825-2015	18/06/2015	30/06/2020	Valid	Portion J		
WT00021826-2015	18/06/2015	30/06/2020	Valid	Portion Q		
WT00021903-2015	26/06/2015	30/06/2020	Valid	Works area 1		
Waste Disposal (Charges for	Waste Disposal (Charges for Disposal of Construction Waste) Regulation					
Billing Account No.7022012	31/03/2015	N/A	Valid	/		
Registration of Chemical Waste Producer						
WPN5213-229-V2215-01	01/06/2015	N/A	Valid	/		

Construction Noise Permit					
GW-RE1183-15	04/12/2015	03/06/2016	Expire	Portion HA	
GW-RE0469-16	04/06/2016	03/12/2016	Valid	Portion HA	

2 Air Quality Monitoring

2.1 Monitoring Locations

According to the EM&A Manual Section 3.5, four impact monitoring locations have been established for air quality monitoring, which are summarized in Table 2.1.1.

Table 2.1.1 Air Quality Monitoring Locations

Identification	Monitoring Location	Description	Parameter
No.			
AM1	Marine Department New	Ground Floor	1-hr TSP
	Yau Ma Tei Public Cargo	Face to Hoi Po Road	24-hr TSP
	Working Area		
	Administrative Building		
AM2	Garden Building	Ground Floor	1-hr TSP
		Face to Canton Road	24-hr TSP
AM3	The Cullinan I	Ground Floor	1-hr TSP
		Face to Nga Cheung Road	24-hr TSP
AM4	Lai Chack Middle School	Ground Floor	1-hr TSP
		Face to Canton Road	24-hr TSP

Due to the rejection from the representatives/ property management of the premises, high volume samplers are not feasible to be installed at AM3 and AM4 for the 24-hr TSP monitoring. Alternative locations AM3-A and AM4-A are proposed accordingly. Installation of high volume sampler at AM4-A is completed after the coordination with the representatives of premises. 24-hr TSP monitoring at AM4-A will be started in August 2016. The monitoring locations are summarized in Table 2.1.2. The details of monitoring location plan are shown in **Appendix C**.

Table 2.1.2 Air Quality Monitoring Locations

ID No.	Monitoring Location	Description	Coordinates	Parameter
AM1	Marine Department New	Ground Floor	22°18'44.8''N	1-hr TSP
	Yau Ma Tei Public Cargo	Face to Hoi Po	114°09'37.4"E	
	Working Area	Road		
	Administrative Building			
AM2	Garden Building	Ground Floor	22°18'12.7"N	1-hr TSP
		Face to Canton	114°10'05.7"E	

		Road		
AM3	The Cullinan I	Ground Floor	22°18'22.0"N	1-hr TSP
		Face to Nga	114°09'39.3"E	
		Cheung Road		
AM4	Lai Chack Middle School	Ground Floor	22°18'05.4"N	1-hr TSP
		Face to Canton	114°10'05.3"E	
		Road		
AM1	Marine Department New	Rooftop Face to	22°18'44.8"N	24-hr TSP
	Yau Ma Tei Public Cargo	Hoi Po Road	114°09'37.4"E	
	Working Area			
	Administrative Building			
AM2	Garden Building	Ground Floor	22°18'12.7"N	24-hr TSP
		Face to Canton	114°10'05.7"E	
		Road		
AM3-A	International Commerce	Ground Floor	22°18'10.5"N	24-hr TSP
	Centre (Works Area 4)	Near to	114°09'34.5"E	
		International		
		Commerce		
		Centre		
		Roundabout on		
		Nga Cheung		
		Road and		
AM4-A*	Tsim Sha Tsui Fire	Ground Floor	22°18'05.5"N	24-hr TSP
	Station	Face to Canton	114°10'04.0"E	
		Road		

^{*}Remark: 24-hr TSP monitoring at AM4-A will be started in August 2016.

2.2 Monitoring Frequency

For 1-hr TSP monitoring, the sampling frequency is at least three times in every six days when the highest dust impact occurs.

For 24-hr TSP monitoring, the sampling frequency is once in every six days when the highest dust impact occurs.

Monitoring was carried out on 5^{th} , 11^{th} , 15^{th} , 21^{st} , and 27^{th} July 2016.

2.3 Monitoring Equipment

1-hr TSP monitoring was carried out by the portable dust meters. A comparison test for the portable dust meters with the HVS was carried out to ensure the accuracy for direct reading of the portable dust meter. 24-hr TSP monitoring was carried out by the high volume samplers. The monitoring equipment is listed in Table 2.3.1 and Calibration Certificates of the equipment are shown in **Appendix D**.

Table 2.3.1 Air Quality Monitoring Equipment

Equipment	Manufacturer &	Serial No.	Latest Calibration	Next Calibration
	Model No.		Date	Date
		11510002	02/10/2015	01/10/2016
Portable Dust	TSI AM510	11510003	02/10/2015	01/10/2016
Meter		11510004	02/10/2015	01/10/2016
		11510005	02/10/2015	01/10/2016
		0001	15/07/2016	14/09/2016
High Volume Sampler	Tisch TE-5170	0002	15/07/2016	14/09/2016
Bumpion		0003	15/07/2016	14/09/2016
Calibration Kit	Tisch TE-5028A	2137	11/02/2016	10/02/2017

2.4 Monitoring Methodology and Parameters

1-hr TSP and 24-hr TSP air quality monitoring has been carried out during the reporting period.

Measurements of 1-hr TSP monitoring were taken by a Dust Trak aerosol monitor or its equivalent that is a portable and battery-operated laser photometer capable of performing real time 1-hr TSP measurements.

Field monitoring procedures are as follows:

- The monitoring station was set at a point 1m from the exterior of the sensitive receivers building façade and set at a position 1.2m above the ground.
- The battery condition was checked to ensure good functioning of the dust monitor.

- Zero Cal was conducted to the dust monitor to each test for ensuring more accurate data.
- Logging setup and Instrument setup such as log interval, test length, number of test and impactor adaptor will set as follows:

log interval : 1mintest length : 60minsnumber of test : 3

- Impactor adaptor: 10μ (PM₁₀)

- Start the monitoring lasting 3 hours for each monitoring location
- At the end of the monitoring period, the Average, Maximum and Minimum of each TSP test shall be recorded. In addition on a standard record sheet.

Measurements of 24-hr TSP monitoring were taken by High Volume Samplers (HVSs).

HVSs fitted with appropriate sampling inlets were employed for air quality monitoring. Each sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

Installation of HVSs:

- A horizontal platform with appropriate support to secure the samplers against gusty wind should be provided;
- No two samplers should be placed less than 2 meters apart;
- The distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler;
- A minimum of 2 meters of separation from walls, parapets and penthouses is required for rooftop samplers;
- A minimum of 2 meters separation from any supporting structure, measured horizontally is required;
- No furnace or incinerator flue is nearby;
- Airflow around the sampler is unrestricted;
- The sampler is more than 20 meters from the dripline;
- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring;
- Permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
- A secured supply of electricity is needed to operate the samplers.

Data of wind speed and wind direction was extracted from King's Park Meteorological Station of Hong Kong Observatory. The collection of wind data meets the prescribed criteria in S.3.4.3 of the EM&A Manual.

Other relevant data such as monitoring location, time, weather conditions and any other special phenomena at the construction site were recorded during the measurement period.

2.5 Maintenance and Calibration

Dust Trak aerosol monitors were calibrated by the manufacturer or a HOKLAS Laboratory for every year and on-site Zero Cal before every monitoring. HVSs were calibrated after installation and re-calibrated on bi-monthly basis.

2.6 Quality Assurance / Quality Control Results and Detection Limits

The portable dust meter was calibrated annually by the manufacturer or a HOKLAS laboratory. HVSs were first been calibrated after installation and repeated on bi-monthly basis. Calibration Kit for HVSs was calibrated annually by the manufacturer or a HOKLAS laboratory. The detection limits of the HVSs meet with the prescribed standard. Calibration details and current Calibration Certificates are shown in **Appendix D**.

2.7 Action and Limit Level for 1-hr TSP and 24-hr TSP

The Action and Limit levels for air quality impact monitoring results at all monitoring locations are summarized in Table 2.7.1, which would be applied for compliance assessment of air quality for this project. If the air quality monitoring results at any monitoring stations exceeded the criteria, the actions in accordance with the Event and Action Plan in Table 2.7.2 shall be taken.

Table 2.7.1 Established TSP Actions and Limit Level

Monitoring Locations	Monitoring Parameter	Action Level (µg/m³)	Limit Level (µg/m³)
AM1		288	500
AM2	1-hr TSP	299	500
AM3		299	500
AM4		303	500
AM1	24-hr TSP	157	260
AM2		183	260
AM3-A		177	260

Table 2.7.2 Event and action Plan for Air Quality

EVENT			ACTION	
EVENT	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one	1. Inform IEC, ER and Contractor;	1. Check monitoring data	Notify Contractor.	Rectify any unacceptable practice;
sample	2. Identify source, investigate the causes	submitted by ET;		2. Amend working methods if appropriate.
	of exceedance and propose remedial	2. Check Contractor's working		
	measures;	method.		
	3. Repeat measurement to confirm			
	finding.			
2. Exceedance for	1. Inform IEC, ER and Contractor;	Check monitoring data	1. Confirm receipt of	1. Submit proposals for remedial to ER and IEC
two or more	2. Identify source;	submitted by ET;	notification of failure in	within 3 working days of notification;
consecutive samples	3. Advise the ER on the effectiveness of	2. Check Contractor's working	writing;	2. Implement the agreed proposals;
	the proposed remedial measures;	method;	2. Notify Contractor;	3. Amend proposal if appropriate.
	4. Repeat measurements to confirm	3. Discuss with ET and	3. Ensure remedial measures	
	findings;	Contractor on possible remedial	properly implemented.	
	5. Increase monitoring frequency to	measures;		
	daily;	4. Advise the ET/ER on the		
	6. Discuss with IEC, ER and Contractor	effectiveness of the proposed		
	on remedial actions required;	remedial measures;		
	7. If exceedance continues, arrange	5. Supervise Implementation of		
	meeting with IEC and ER;	remedial measures.		
	8. If exceedance stops, cease additional			
	monitoring.			

1.Exceedance for one	1. Inform IEC, ER, Contractor and EPD;	Check monitoring data	1. Confirm receipt of	1. Take immediate action to avoid further
sample	2. Identify source, investigate the causes	submitted by ET;	notification of failure in	exceedance;
	of exceedance and propose remedial	2. Check Contractor's working	writing;	2. Discuss with ET and IEC on remedial actions
	measures;	method;	2. Notify Contractor;	3. Submit proposals for remedial actions to IEC
	3. Repeat measurement to confirm	3. Discuss with ET and	3. Ensure remedial measures	within 3 working days of notification;
	finding;	Contractor on possible remedial	properly implemented.	4. Implement the agreed proposals;
	4. Increase monitoring frequency to	measures;		5. Amend proposal if appropriate.
	daily;	4. Advise the ER on the		
	5. Assess effectiveness of Contractor's	effectiveness of the proposed		
	remedial actions and keep IEC, EPD and	remedial measures;		
	ER informed of the results.	5. Supervise implementation		
		of remedial measures.		
2.Exceedance for two	1. Notify IEC, ER, Contractor and EPD;	Check monitoring data	1. Confirm receipt of	1. Take immediate action to avoid further
or more consecutive	2. Identify source;	submitted by ET;	notification of failure in	exceedance;
samples	3. Repeat measurement to confirm	2. Check Contractor's working	writing;	2. Discuss with ET and IEC on remedial actions
	findings;	method;	2. Notify Contractor;	3. Submit proposals for remedial actions to ER a
	4. Increase monitoring frequency to	3. Discuss amongst ER, ET,	3. In consultation with the	IEC within 3 working days of notification;
	daily;	and Contractor on the potential	IEC, agree with the Contractor	4. Implement the agreed proposals;
	5. Carry out analysis of Contractor's	remedial actions;	on the remedial measures to	5. Resubmit proposals if problem still not under
	working procedures to determine	4. Review Contractor's	be implemented;	control;
	possible mitigation to be implemented;	remedial actions whenever	4. Ensure remedial measures	6. Stop the relevant portion of works as determine
	6. Arrange meeting with IEC and ER and	necessary to assure their	properly implemented;	by the ER until the exceedance ceases.
	Contractor to discuss the remedial	effectiveness and advise the ER	5. If exceedance continues,	
	actions to be taken;	accordingly;	consider what portion of the	
	7. Assess effectiveness of Contractor's	5. Supervise the implementation	work is responsible and	
	remedial actions and keep IEC, EPD and	of remedial measures.	instruct the Contractor to	
	ER informed of the results;		terminate that portion of work	
	8. If exceedance stops, cease additional		until the exceedance ceases.	
	monitoring.			

2.8 Monitoring Results and Observations

24-hr TSP monitoring was conducted at four monitoring locations. The monitoring results are summarized in Table 2.8.1. 24-hr TSP monitoring was conducted at three monitoring locations. The monitoring results are summarized in Table 2.8.2. Detailed impact monitoring data of 1-hr TSP, 24-hr TSP and meteorological data are shown in **Appendix E**.

Table 2.8.1 Summary of average 1-hr TSP monitoring data

Monitoring Locations	Average 1-hr TSP (µg/m³)	Range 1-hr TSP (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
AM1	44	27 – 62	288	500
AM2	32	16 – 62	299	500
AM3	39	28 - 57	299	500
AM4	43	17 – 67	303	500

Table 2.8.2 Summary of average 24-hr TSP monitoring data

Monitoring Locations	Average 24-hr TSP (µg/m³)	Range 24-hr TSP (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
AM1	28	15 – 42	157	260
AM2	81	36 – 152	183	260
AM3-A	61	40 – 90	177	260

In accordance with the established action and limited levels for impact monitoring, there was no exceedance recorded in the reporting period.

During the monitoring period, vehicle emissions were identified as one of the dust sources for AM1, AM2, AM3, AM4 and AM3-A. TSP levels of AM2 and AM4 may be affected by the construction activities from other construction sites near Canton Road. TSP level of AM3-A may be affected by construction activities from other construction sites near Nga Cheung Road.

2.9 Monitoring Schedule for Next Reporting Month

The monitoring schedule for next reporting month is scheduled on 2nd, 8th, 13th, 19th, 25th and 31st August 2016.

3 Noise Monitoring

3.1 Monitoring Locations

According to the EM&A Manual Section 4.5, five impact monitoring locations have been established for noise impact monitoring during the construction phase of the project, which are summarized in Table 3.1.1. The details of monitoring location plan are shown in **Appendix C**.

Table 3.1.1 Noise Monitoring Locations

Identification No.	Noise Monitoring Location	Description	Measurement Type	
NM1	Sorrento - Tower 1	Podium Level	Façade	
		Face to Nga Cheung Road	1 uçuac	
NM2	Yau Ma Ti Catholic	Ground Floor		
	Primary School (Hoi	Face to Hoi Ting Road	Façade	
	Wang Road)			
NM3	The Cullinan I	Ground Floor	Façade	
		Face to Nga Cheung Road	raçade	
NM4	Lai Chack Middle	Ground Floor	Facada	
	School	Face to Canton Road	Façade	
NM5	Yue Tak Building	Ground Floor	Foods	
		Face to Jordan Road	Façade	

3.2 Monitoring Frequency

The regular monitoring for each location was performed on a weekly basis.

Monitoring was carried out on 5th, 11th, 15th, 21st, and 27th July 2016.

3.3 Monitoring Equipment

Noise monitoring was conducted by using BSWA 806 which complied with the International Electrotechnical Commission Publications 61672:2002 (Type 1), 60651:1979 (Type 1) and 60804:1985 (Type 1) Specifications as referred to the Technical Memorandum to the Noise Control Ordinance. The equipment was calibrated and verified by certified laboratory to ensure they can perform to the same level of accuracy as stated in the manufacturer's specification. Before and after the baseline

measurement, the reading of sound level meter was checked with the acoustic calibrator and the measurements were accepted as valid if the calibration levels before and after the noise measurement agreed to within 1.0 dB. The measurement equipment is listed in Table 3.3.1 and Calibration Certificates of the equipment are shown in **Appendix D**.

Table 3.3.1 Equipment List for Noise Monitoring

Equipment	Manufacturer	Precision	Serial	Latest	Next
	& Model No.	Grade	No.	Calibration	Calibration Date
				Date	
Sound level	SVANTEK	IEC61672	34350	28/12/2015	27/12/2016
meter	971	Type 1			
Acoustical	SVANTEK	IEC 942	29085	28/12/2015	27/12/2016
calibrator	SV30A	Type 1			

3.4 Monitoring Methodology and Parameters

The construction noise level was measured in terms of the A-weighted equivalent continuous sound pressure level, L_{Aeq} . L_{Aeq} (30minutes) was used as the monitoring parameter for the impact monitoring in the time period between 0700 to 1900 hours on normal weekdays.

In case of non-compliance with the construction noise criteria, more frequent monitoring, as specified in the Action plan in Table 3.6.2, shall be carried out. This additional monitoring shall be carried out until the recorded noise levels are rectified or proved to be irrelevant to the construction activities.

Field monitoring procedures are as follows:

- The monitoring station was set at a point 1m from the exterior of the sensitive receivers building façade and set at a position 1.2m above the ground.
- The battery condition was checked to ensure good functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time will set as follows:
 - frequency weighting: A
 - time weighting: Fast
- Prior to and after noise measurement, the meter shall be calibrated using the calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement will

- considered invalid and repeat of noise measurement is required after re-calibration or repair of the equipment.
- The wind speed at the monitoring station shall be checked with the portable wind meter.
- Noise monitoring should be cancelled in the presence of fog, rain, and wind with
 a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Noise
 measurement should be paused during periods of high intrusive
 noise if possible and observation shall be recorded when intrusive noise is not
 avoided.
- At the end of the monitoring period, the Leq, L₁₀ and L₉₀ shall be recorded. In addition, site conditions and noise sources should be recorded on a standard record sheet.

3.5 Maintenance and Calibration

Monitoring equipment was calibrated by the HOKAS Laboratory for every year and on-site calibrated before and after every monitoring.

3.6 Quality Assurance / Quality Control Results and Detection Limits

The sound level meter and calibrator were calibrated annually by the HOKLAS laboratory. The detection limits of the sound level meter meet with the prescribed standard. Calibration details and current Calibration Certificates are shown in **Appendix D**.

3.7 Action and Limit Level for Construction Noise

The Action and Limit levels for construction noise are defined in Table 3.7.1. Should exceedance of the criteria occur, action in accordance with the Action Plan in Table 3.7.2 shall be carried out.

Table 3.7.1 Action and Limit Levels for Construction Noise at all Sensitive Receivers

Monitoring Locations	Building Type	Time Period	Action Level	Limit Level
NM1	Residential	Daytime 0700 – 1900	When one	75 dB(A)
NM2	Education	hrs on normal	documented complaint is	70 dB(A) / 65dB(A)*

NM3	Residential	weekdays	received	75 dB(A)
NM4	Education			70 dB(A) / 65dB(A)*
NM5	Residential			75 dB(A)

^{*}Remark: 70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

Table 3.7.2 Event / Action Plan for Construction Noise

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Action	1. Notify IEC, ER and Contractor of exceedance;	Review the analysed results	1. Confirm receipt of notification of	Submit noise mitigation
Level	2. Identify source	submitted by the ET;	failure in writing;	proposals to ER with copy to
	3. Investigate the causes of exceedance and	2. Review the proposed remedial	2. Notify Contractor;	ET and IEC;
	propose remedial measures;	measures by the Contractor and	3. Require Contractor to propose	2. Implement noise mitigation
	4. Report the results of investigation to the IEC,	advise the ER accordingly;	remedial measures for the analysed	proposals.
	ER and Contractor;	3. Supervise the implementation of	noise problem;	
	5. Discuss with the IEC, ER and Contractor and	remedial measures.	4. Ensure remedial measures are	
	formulate remedial measures;		properly implemented	
	6. Increase monitoring frequency to check			
	mitigation effectiveness.			
Limit	1. Inform IEC, ER, EPD and Contractor;	1. Discuss amongst ER, ET, and	1. Confirm receipt of notification of	1. Take immediate action to
Level	2. Identify source;	Contractor on the potential	failure in writing;	avoid further exceedance;
	3. Repeat measurements to confirm findings;	remedial actions;	2. Notify Contractor;	2. Submit proposals for
	4. Increase monitoring frequency;	2. Review Contractor's remedial	3. Require Contractor to propose	remedial actions to ER with
	5. Carry out analysis of Contractor's working	actions whenever necessary to	remedial measures for the analysed	copy to ET and IEC within 3
	procedures to determine possible mitigation to be	assure their effectiveness and	noise problem;	working days of notification;
	implemented;	advise the ER accordingly;	4. Ensure remedial measures are	3. Implement the agreed
	6. Inform IEC, ER and EPD the causes and	3. Supervise the implementation of	properly implemented;	proposals;
	actions taken for the exceedances;	remedial measures.	5. If exceedance continues,	4. Resubmit proposals if
	7. Assess effectiveness of Contractor's remedial		investigate what portion of the work	problem still not under control;
	actions and keep IEC, EPD and ER informed of		is responsible and instruct the	5. Terminate the relevant
	the results;		Contractor to terminate that portion	portion of works as determined
	8. If exceedance stops, cease additional		of work until the exceedance	by the ER until the exceedance
	monitoring.		ceases.	ceases.

3.8 Monitoring Results and Observations

Noise impact monitoring was conducted at five monitoring locations. The monitoring results are summarized in Table 3.8.1. Detailed impact monitoring data of noise are shown in **Appendix F1**.

Table 3.8.1 Summary of average noise monitoring data

Monitoring Locations	Monitoring Date	Baseline Level	L _{Aeq} *1 (dB(A))	Re-M* ² L _{Aeq}	Action Level	Limit Level (dB(A))
		(dB(A))	(* ())	(dB(A))	(dB(A))	
	5/7/2016		65.8	N/A	When one	
	11/7/2016		66.1	N/A	documented	
NM1	15/7/2016	75.1	66.1	N/A	complaint is	75 dB(A)
	21/7/2016		65.7	N/A	received	
	27/7/2016		66.2	N/A	received	
	5/7/2016		65.5	N/A	When one	$70 \text{ dB(A)} *^3$
	11/7/2016		66.9	N/A	When one documented	$70 \text{ dB(A)} *^3$
NM2	15/7/2016	66.5	67.7	N/A		$70 \text{ dB(A)} *^3$
	21/7/2016		74.0	74.6	complaint is received	$70 \text{ dB(A)} *^3$
	27/7/2016		67.8	N/A	received	$70 \text{ dB(A)} *^3$
	5/7/2016	74.5	74.1	N/A	When one documented complaint is received	
	11/7/2016		73.5	N/A		
NM3	15/7/2016		74.1	N/A		75 dB(A)
	21/7/2016		73.4	N/A		
	27/7/2016		74.1	N/A		
	5/7/2016		73.6	74.1	33 71	$70 \text{ dB(A)} *^3$
	11/7/2016		73.3	73.9	When one	$70 \text{ dB(A)} *^3$
NM4	15/7/2016	73.3	74.4	74.1	documented	70 dB(A) * ³
	21/7/2016		74.0	73.4	complaint is received	$70 \text{ dB(A)} *^3$
	27/7/2016		75.1	74.4	received	$70 \text{ dB(A)} *^3$
	5/7/2016		69.4	N/A	W/h acc	
	11/7/2016		72.6	N/A	When one	
NM5	15/7/2016	71.8	71.1	N/A	documented	75 dB(A)
	21/7/2016		72.3	N/A	complaint is received	
	27/7/2016		71.0	N/A	received	

Remark:

^{*1} Measured result would be rounded down before comparison with the limit level

^{*2} Repeat noise measurement when exceedance is recorded

In accordance with the established action and limited levels for impact monitoring, six exceedances were recorded at NM2 on 21st July 2016 and NM4 on 5th, 11th, 15th, 21st and 27th July 2016. Noise measurement was repeated for confirming the findings and identifying the noise source for each exceedance according to the event and action plan.

The noise source for causing exceedances at NM2 was from other construction site, Design and Construction of West Kowloon Government Offices (DCWKGO), which located at No.11 Hoi Ting Road. The construction site of DCWKGO is located between Portion J and the NM2 and close to the NM2. The NM2 was directly affected by the noise generated from the construction site of DCWKGO. The exceedances were not caused by this project construction works.

The noise source for causing exceedances at NM4 was from the traffic of Canton Road. The NM4 was directly affected by the noise generated from the traffic. The recorded monitoring results at the NM4 were near the baseline noise level. The exceedances were not caused by this project construction works.

During the monitoring period, traffic noise was identified as one of the noise source for NM1, NM2, NM3, NM4 and NM5. Noise levels of NM1 and NM3 may be influenced by the construction activities from other construction sites near Nga Cheung Road. Noise level of NM2 may be influenced by construction activities from other construction sites near Hoi Ting Road. Noise levels of NM4 and NM5 may be influenced by the construction activities from other construction sites near Canton Road.

3.9 Monitoring Schedule for Next Reporting Month

The monitoring schedule for next reporting month is scheduled on 2nd, 8th, 13th, 19th, 25th and 31st August 2016.

4 Solid and Liquid Waste Management Status

With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised

^{*3 70}dB(A) for schools during normal teaching periods. School schedule is shown in **Appendix F2**

^{*4 65}dB(A) for schools examination periods. School schedule is shown in **Appendix F2**

in Table 4.1. During this reporting month, inert C&D materials and general refuse were generated and disposed. No mixed waste was generated. No chemical waste was generated and collected by licensed collector. No paper, plastic and metal was recycled. Detail of waste management data is presented in **Appendix G**.

Table 4.1 Quantities of Waste Disposed from the Project

	Quantity							
	Cen		C&D Materials (non-inert) (b)					
Donauting	C&D Materials (inert) (a)	Cananal	Missad		Recyc	led materi	ials	
Reporting Month		General Refuse	Mixed Waste		Paper/cardboard	Plastics	Metals	
	(in	(in	(in	(in	(in	(in	(in	
	'000kg)	'000kg)	'000kg)	'000kg)	'000kg)	'000kg)	'000kg)	
July 2016	5031.54	17.12	0	0	0	0	0	

Notes:

- (a) Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil.
- (b) Non-inert C&D materials include steel, paper/cardboard packaging waste, plastics and other wastes such as general refuse and vegetative wastes. Steel metal generated from the Project are grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials.

Waste materials were generated during this reporting period, such as excavated waste, demolition waste and general refuse. Contractor handled, stored and disposed in accordance with good waste management practice and EPD's regulation and requirements.

5 Landscape and Visual Impact

In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented to minimize the landscape and visual impacts during the construction works. The proposed monitoring program for landscape and visual impact is detailed in Table 5.1.

Table 5.1 Proposed Monitoring Program

Stage	Monitoring Task	Frequency	Report	Approval
Construction	Mitigation measures	Bi-weekly	Landscape and	Registered
stage	implementation		Visual Impact	Landscape
			Assessment	Architect &
			Checklist	ET Leader

Bi-weekly site inspections were conducted by representatives of the Engineer, Contractor and ET on 12th and 29th July 2016. The observations, reminders and recommendations made during the site inspections are summarized in Section 6, Table 6.1.

The implementation status of the proposed mitigation measures for landscape and visual impacts is given in **Appendix H**. Should non-conformity on one occur, action in accordance with the Action Plan in Table 5.2 shall be carried out.

Table 5.2 Event / Action Plan for Landsscape and Visual Impact

	ACTION							
EVENT	ET	IEC	ER	CONTRACTOR				
Non-conformity on	1. Identify Source	1. Check report	1. Notify Contractor	1. Amend working methods				
one occasion	2. Inform IEC and ER	2. Check Contractor's working method	2. Ensure remedial measures are	2. Rectify damage and				
	3. Discuss remedial actions with IEC, ER and	3. Discuss with ET and Contractor on possible	properly implemented	undertake any necessary				
	Contractor	remedial measures		replacement				
	4. Monitor remedial actions until rectification has been	4. Advise ER on effectiveness of proposed						
	completed	remedial measures.						
		5. Check implementation of remedial measures.						
Repeated	1. Identify Source	Check monitoring report	1. Notify Contractor	1. Amend working methods				
Non-conformity	2. Inform IEC and ER	2. Check Contractor's working method	2. Ensure remedial measures are	2. Rectify damage and				
	3. Increase monitoring frequency	3. Discuss with ET and Contractor on possible	properly implemented	undertake any necessary				
	4. Discuss remedial actions with IEC, ER and	remedial measures		replacement				
	Contractor	4. Advise ER on effectiveness of proposed						
	5. Monitor remedial actions until rectification has been	remedial measures						
	completed	5. Supervise implementation of remedial						
	6. If non-conformity stops, cease additional monitoring	measures.						

6 Environmental Site Inspection

6.1 Site Audit

Site audit was carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site.

Joint weekly inspections were conducted by representatives of the Contract Administrator, Engineer, Contractor and ET on 4th, 11th, 20th and 25th July 2016. The representative of the IEC joined the site inspection on 20th July 2016. Observations were recorded and summarized in table 6.1.

During site inspection in the reporting month, no non-compliance was identified.

6.2 Implementation Status of Environmental Mitigation Measures

According to the EM&A Manual of the Project, the mitigation measures detailed in the documents shall be implemented during the construction phase. Updated status summary of the Environmental Mitigation Implementation Schedule is provided in **Appendix H**.

The observations, reminders and recommendations made during the audit sessions are summarized in table 6.1.

Table 6.1 Summary results of site inspections findings.

	ore ori builling results	<u></u>			
Date	Findings	Identification	Advice from ET	Action taken	Closing date
22 Jun 16	Exposed surface and unpaved areas appeared dry. (Scheme I & Scheme J)	Observation	Contractor was advised to frequently implement the water spraying and cover the exposed surface as possible.	Exposed areas were sprayed with water for dust control or cover with tarpaulin as possible.	4 Jul 16
	Stagnant water was accumulated in areas of underground works (Scheme J).	Observation	Contractor was advised to set up the pumps and drainage system for collecting and directing the water from the underground areas.	Pumps were set up for collecting and directing the water from underground areas.	11 Jul 16
22 Jun 16	Sand and silt were accumulated in the drip tray of the generator near the slope (Scheme J)	Observation	Contractor was advised to remove the sand and silt from the drip tray and also relocate the generator for preventing close to the slope.	The generator was relocated. The sand and silt from the drip tray was removed.	4 Jul 16
27 Jun 16	A bag of cement was exposed (Scheme Q)	Observation	Contractor was advised to remove the cement and properly store the dusty materials.	The exposed cement was removed.	4 Jul 16
11 Jul 16	Wet season was being started.	Reminder	Contractor was reminded to frequently remove the stagnant water during wet season for prevention and control of mosquito and keeping the site clean and tidy.	N/A	N/A
20 Jul 16	The tarpaulin sheets covering the exposed slope were eroded. (Scheme J)	Observation	Contractor was advised to replace the tarpaulin sheets and properly protect the slope.	Exposed slope were properly covered.	25 Jul 16
	There is inadequate interception along the edge of excavation. (Scheme Q)	Observation	Contractor was advised to provide sandbags along the edge of the excavation area such to prevent the dust from entering the neighbouring roads.	The edge of the excavated area was properly intercepted by using the sandbags.	25 Jul 16
	A stockpile of waste materials due to illegal dumping from others was observed near out of the site boundary.	Reminder	Contractor was reminded to remove the waste materials as these materials fall within the site area.	N/A	N/A
	and Visual Impact				
10 Jun 16	Construction materials were piled within TPZ (Scheme HA)	Observation	Contractor was reminded to relocate the construction materials which were piled within the TPZ	status will be reported in the next reporting period.	N/A
24 Jun 16	TPZ was collapsed (Scheme J)	Observation	Contractor was reminded to properly maintain the TPZ.	TPZ was proved for the retained trees.	12 Jul 16
12 Jul 16 29 Jul 16	Construction works were being started within Scheme J and Scheme HA	Reminder	Contractor was reminded to provide TPZ with robust fence at the dripline of all	N/A	N/A

Date	Findings	Identification	Advice from ET	Action taken	Closing date
			retained and		
			to-be-transplanted trees.		
			No works were allowed to		
			undertake within the TPZ		
	Transplanting works were		Contractor was reminded to		
12 Jul 16	being started with Scheme		provide sufficient		
29 Jul 16	J and Scheme HA	Reminder	stabilization system and	N/A	N/A
29 Jul 10			mulching to the		
			transplanted trees.		
	Tree crown of some of		Contractor was advised to	The follow-up	
12 Jul 16	transplanted trees was tied.		remove the ties.	status will be	
29 Jul 16		Observation		reported in the	N/A
29 Jul 10				next reporting	
				period.	
	Tree crown of T24 was		Contractor was advised to	The follow-up	
12 Jul 16	conflicted with existing		conduct crown pruning for	status will be	
29 Jul 16	trees.	Observation	the existing tree which next	reported in the	N/A
29 Jul 10			to T24.	next reporting	
				period.	

7 Environmental Non-Conformance

7.1 Summary of Environmental Exceedances

No exceedance of action level and limit level was recorded for TSP. Six exceedances were recorded at NM2 on 21st July 2016 and NM4 on 5th, 11th, 15th, 21st and 27th July 2016 for Noise.

7.2 Summary of Environmental Non-Compliance

No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaint

No environment project-related complaint was received in the reporting period.

7.4 Summary of Notification of Summons and Successful Prosecution

There was no successful environmental prosecution or notification of summons received since the Project commencement.

The cumulative log for environmental exceedance, non-compliance, complaint and summon and successful prosecution since the commencement of the Project is presented in **Appendix I**.

8 Future Key Issues

The major construction activities in the coming month will include:

- Portion I Underground Investigation Works
- Portion I Utilities Diversion Works
- Portion HA Underground Investigation Works
- Portion HA Utilities Diversion Works
- Portion J Utilities Diversion Works
- Portion J Construction of Retaining Walls
- Portion Q Road Works (excavation, drainage construction and utilities diversion)

Potential environmental impacts arising from the above construction activities are mainly associated with dust, construction noise, water quality and waste management. The Contractor has been reminded to properly implement dust, construction noise and water quality control measures as well as proper waste management in order to minimize the potential environmental impacts due to the construction works of the Project.

9 Comment, Recommendations and Conclusions

9.1 Comment

The recommended mitigation measures accordance with the EM&A Manual had been effectively implemented to minimize the environmental impacts due to the construction. The contractor had implemented the mitigation measures to control the dust and noise impacts. No dust and noise impacts obviously affected to the environment and sensitive receivers. The environmental performance during the reporting period was considered satisfactory.

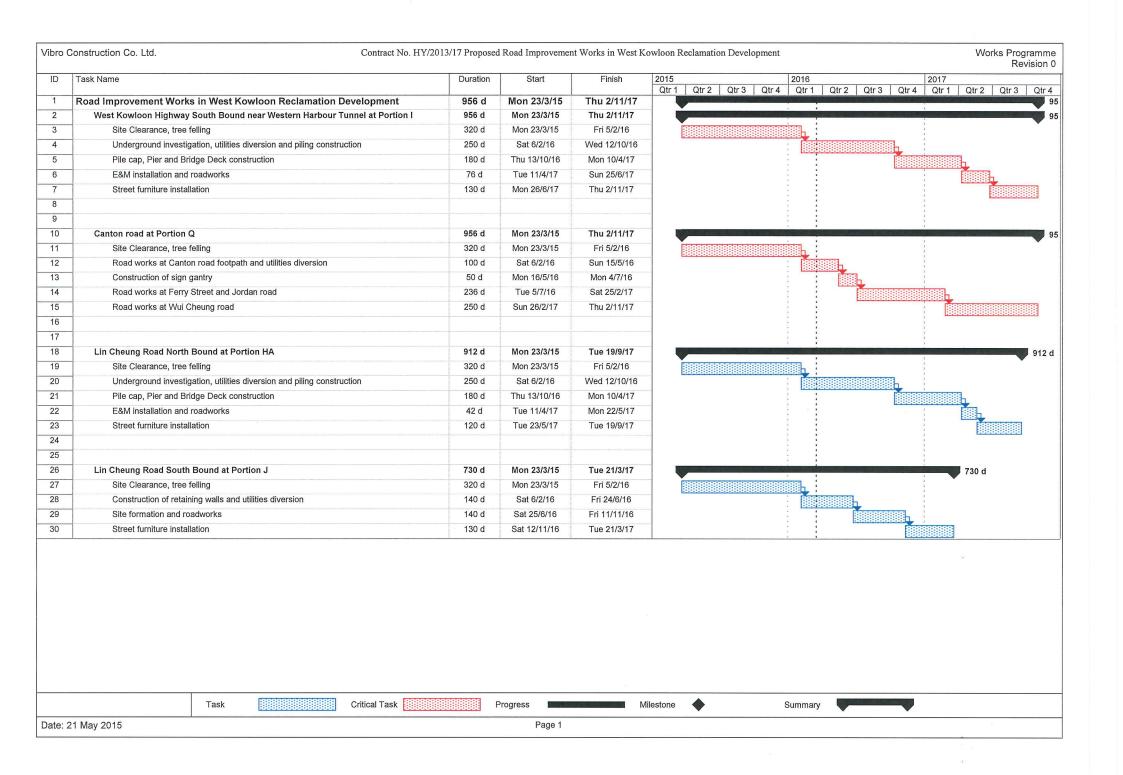
9.2 Recommendations

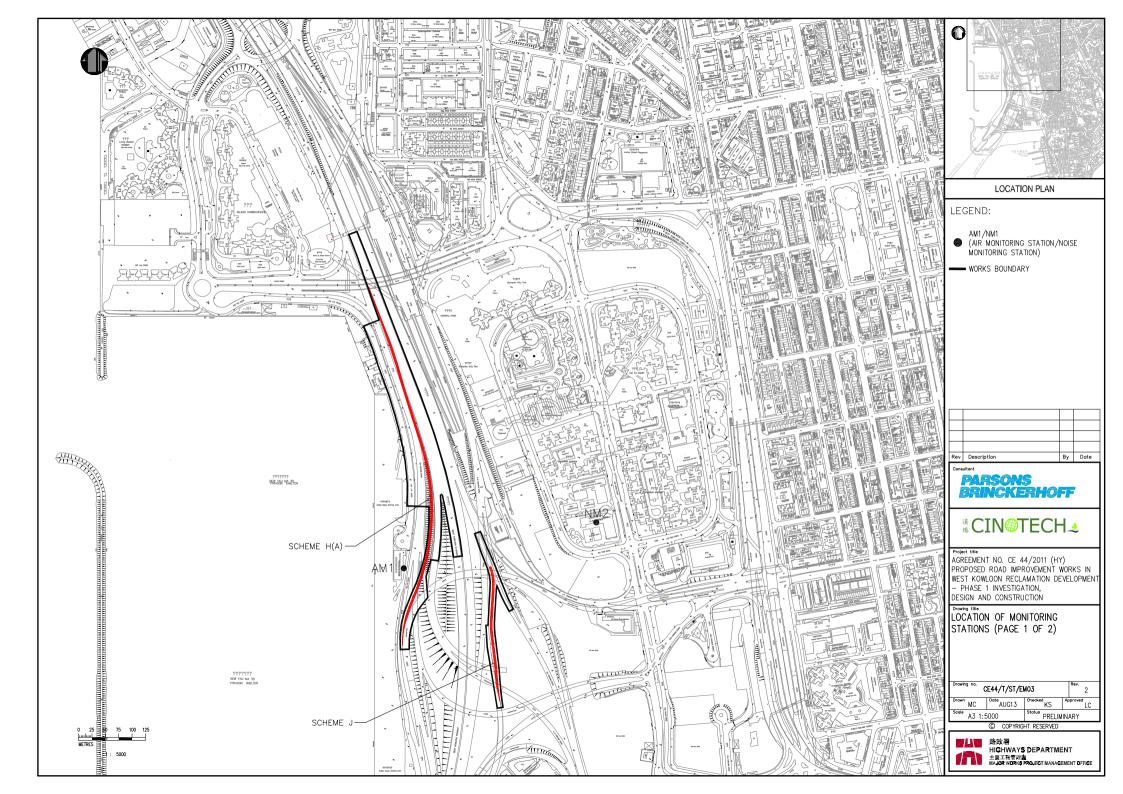
According to the environmental audit performed in the reporting month, the following recommendation was made:

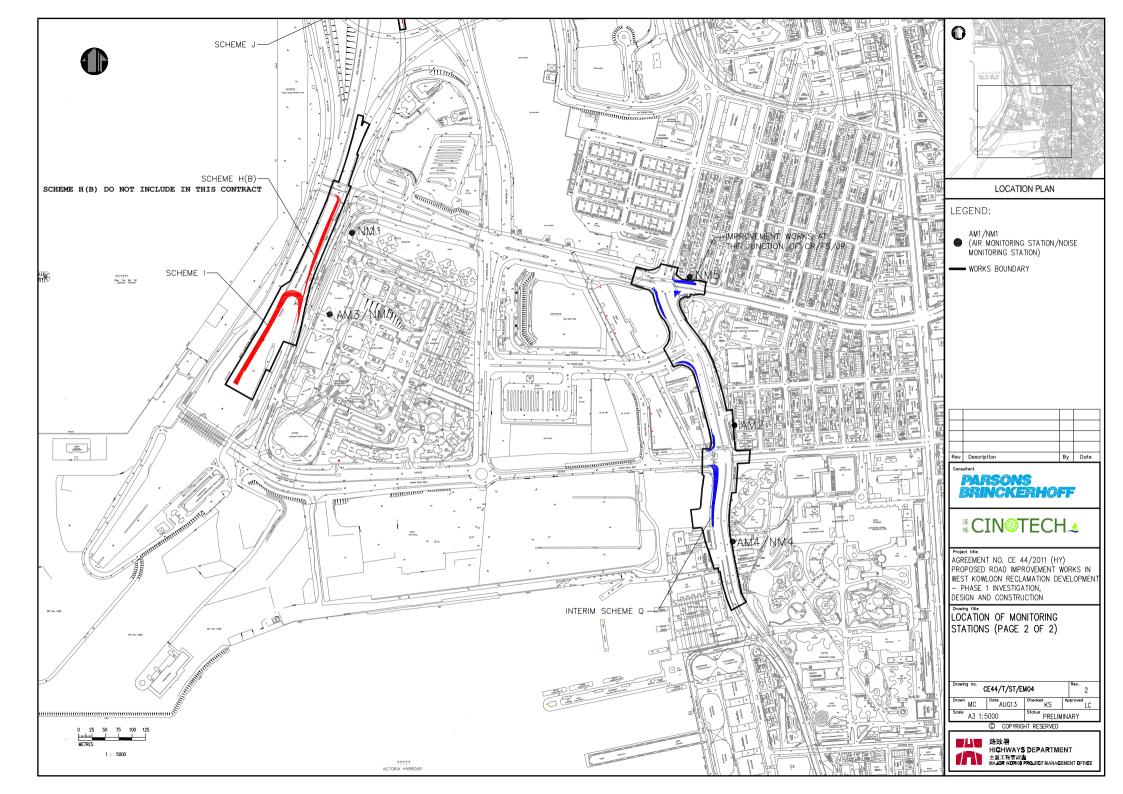
- To frequently implement the water spraying and cover the exposed surface as possible;
- To set up the pumps and drainage system for collecting and directing the water from the underground areas;
- To remove the sand and silt from the drip tray and also relocate the generator for preventing close to the slope;
- To remove the cement and properly store the dusty materials;
- To frequently remove the stagnant water during wet season for prevention and control of mosquito and keeping the site clean and tidy;
- To replace the tarpaulin sheets and properly protect the slope;
- To provide sandbags along the edge of the excavation area such to prevent the dust from entering the neighbouring roads;
- To remove the waste materials as these materials fall within the site area;
- To relocate the construction materials which were piled within the TPZ;
- No properly maintain the TPZ;
- To provide TPZ with robust fence at the dripline of all retained and to-be-transplanted trees;
- To provide sufficient stabilization system and mulching to the transplanted trees.
- To remove the ties;
- To conduct crown pruning for the existing tree which next to T24.

9.3 Conclusions

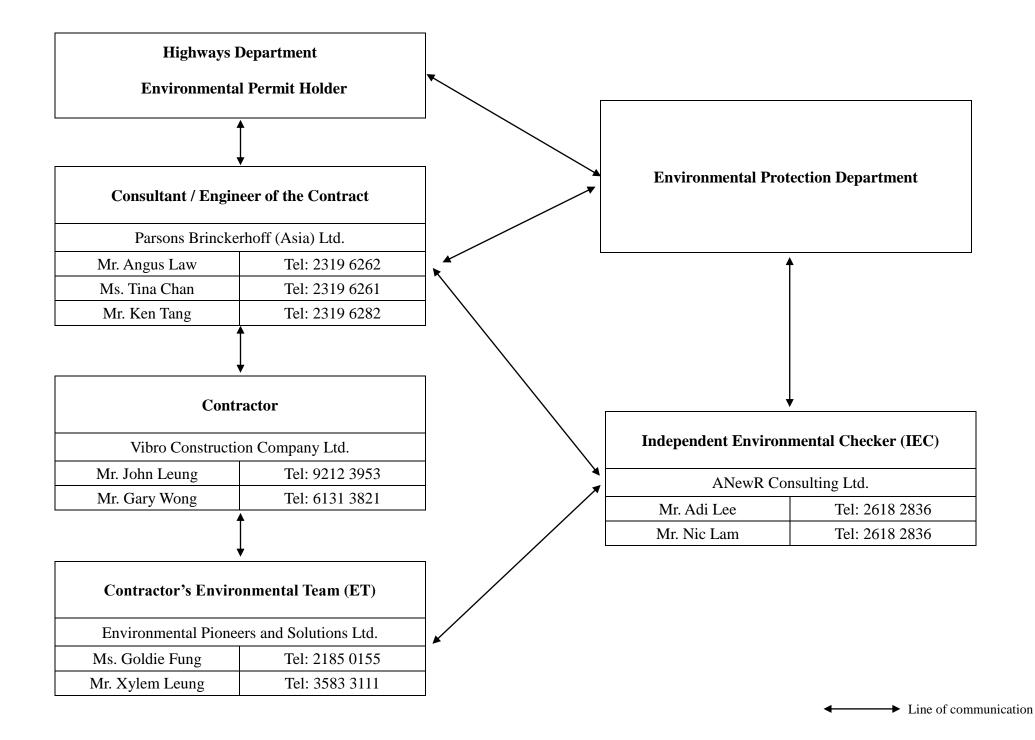
This is the monthly Environmental Monitoring and Audit (EM&A) Report presenting the EM&A works undertaken during 1st July 2016 to 31st July 2016 in accordance with the EM&A Manual.

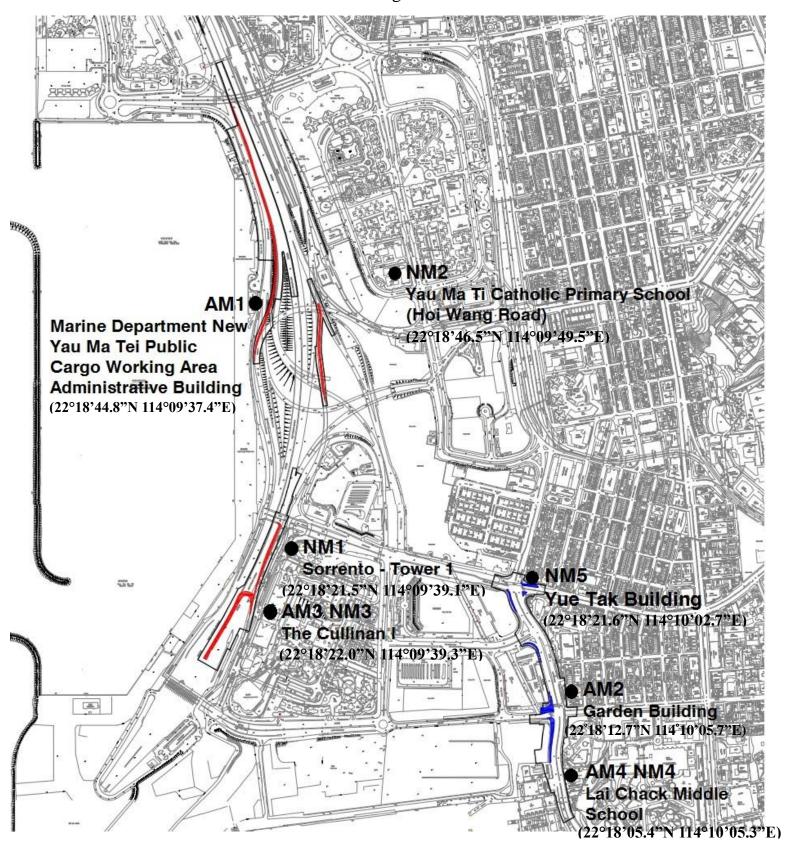

No exceedance of action level and limit level was recorded for TSP. Six exceedances were recorded at NM2 on 21st July 2016 and NM4 on 5th, 11th, 15th, 21st and 27th July 2016 for Noise. No Non-compliance event, environmental complaint, notification of summons and successful prosecution against the Project were received in this reporting month.


4 nos. of environmental site inspections and 2 nos. of landscape and visual inspections were carried out in this reporting month. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.

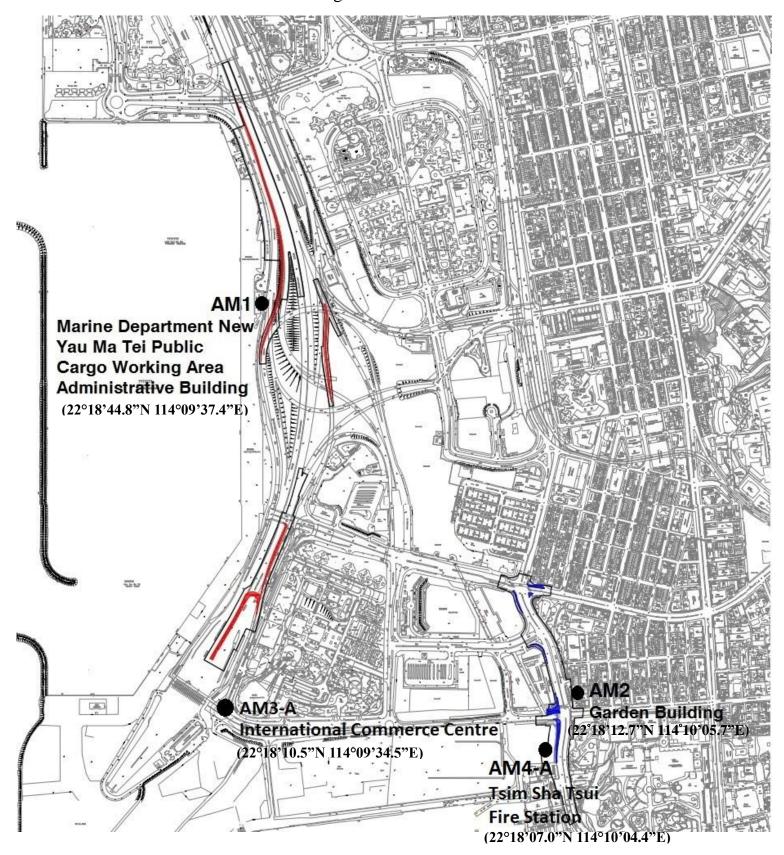

ET has reminded the contractor to provided environmental pollution control measures, waste management measures and good site practice

The ET will keep tracking of the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all the necessary mitigation measures.


Appendix A: Construction Programme	and Project Layout Plan	



Appendix B: Project Organization Cha	urt	


Locations for 1-hr TSP and Noise monitoring

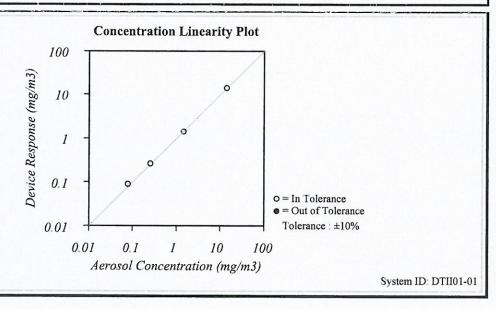
Monitoring Location	Photo Record
AM1 Marine Department New Yau Ma Tei Public Cargo Working Area Administrative Building	
AM2 Garden Building	TURNTURE Another Station
AM3 The Cullinan I	
AM4 Lai Chack Middle School	

Monitoring Location	Photo Record
NM1	Filoto Necord
Sorrento - Tower 1	
NM2	
Yau Ma Ti Catholic Primary School (Hoi Wang Road)	
NM3 The Cullinan I	
NM4 Lai Chack Middle School	
NM5 Yue Tak Building	写 \$20a \$30a \$40a

Locations for 24-hr TSP monitoring

Monitoring Location	Photo Record
AM1 Marine Department New Yau Ma Tei Public Cargo Working Area Administrative Building	
AM2 Garden Building	
AM3-A International Commerce Centre (Contractor Work Area 4)	100 00 to 100 to

Appendix D: Calibration Certification	


CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condition			
Temperature	74.2 (23.4)	°F (°C)	
Relative Humidity	29	%RH	
Barometric Pressure	29.45 (997.3)	inHg (hPa)	1

Model	AM510
Serial Number	11510002

☐ As Left ☐ In Tolerance ☐ Out of Tolerance

TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass of standard ISO 12103-1, Al test dust (Arizona dust). Our calibration ratio is greater than 1.2:1

Measurement Variable Photometer DC Voltage(Keithley) Temp/Humidity	System ID E003433 E002859 E005409	Last Cal 09-09-15 06-18-15 04-16-15	Cal Due 03-09-16 06-18-16 04-16-16	Measurement Variable Flowmeter Microbalance Temp/Humidity	System ID E002371 M001324 E005410	Last Cal. 03-02-15 01-05-15 04-17-15	Cal Due 03-02-16 01-05-17 04-17-16
Pressure	E003409 E003440	08-04-15	04-16-16 08-04-16	Temp/Humidity	E005410	04-17-15	04-13

Lide Hillshumen Final Function Check

October 2, 2015

Date

豐盛創建成員 Member of FSE Holdings

REPORT OF EQUIPMENT CALIBRATION

INSTRUMENT DESCRIPTION

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler.

Instrument:

TSP meter

Brand Name:

TSI

Model No.:

AM510

Serial No.:

11510002

Date of Issue:

27/10/2015

Date of Calibration:

12/10/2015

Date of Next Calibration:

11/10/2016

ISSUING ORGANISATION

Environmental Pioneers & Solutions Limited

Flat A 19/F. Chaiwan Industrial Centre 20 Lee Chung Street Chai Wan, Hong Kong

Phone:

852 - 2556 9172

Fax:

852 - 2856 2010

Mr. Ip Wing Hong, John

Manager

大成環境科技拓展有限公司 ENVIRONMENTAL PIONEERS & SOLUTIONS LIMITED

豐盛創建環保科技集團附屬公司 Subsidiary of FSE Environmental Technologies Group 豐盛創建成員 Member of FSE Holdings

Brand Name:

TSI

Model No.:

AM510

Serial No.:

11510002

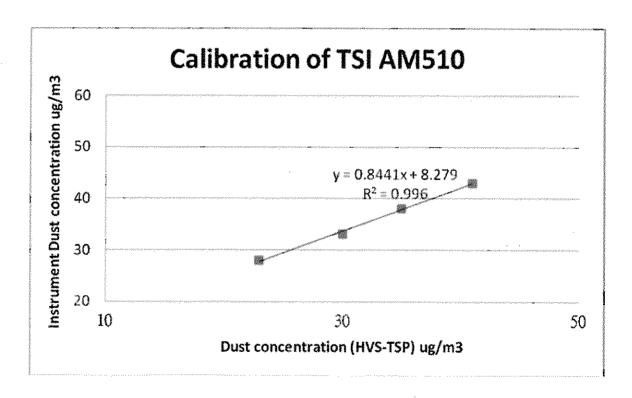
HVS No.:

TE-5028A

HVS Calibration Kit No.:

TISCH 2137

Date of Calibration:


12/10/2015

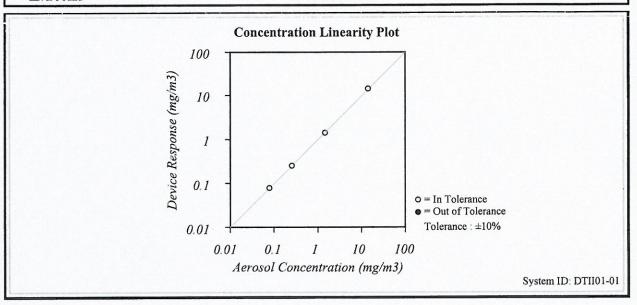
Date of next Calibration:

11/10/2016

Calibration Record

HVS - TSP	23	30	35	41
TSI AM510	28	33	38	43

Mr. Ip Wing Hong, John Manager


CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condition		
Temperature	74.2 (23.4)	°F (°C)
Relative Humidity	29	%RH
Barometric Pressure	29.45 (997.3)	inHg (hPa)

Model	AM510
Serial Number	11510003

⊠ As Left	☐ In Tolerance
☐ As Found	☐ Out of Tolerance

TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass of standard ISO 12103-1, Al test dust (Arizona dust). Our calibration ratio is greater than 1.2:1

Measurement Variable System ID Last Cal Cal. Due Measurement Variable System ID Last Cal. Cal Due E003433 09-09-15 03-09-16 Flowmeter E002371 03-02-15 03-02-16 Photometer 01-05-15 01-05-17 Microbalance M001324 06-18-15 06-18-16 DC Voltage(Keithley) E002859 04-17-15 04-17-16 Temp/Humidity E005409 04-16-15 04-16-16 Temp/Humidity E005410 E003440 08-04-15 08-04-16 Pressure

Linda HUlsheimer

Final Function Check

October 2, 2015

Date

豐盛創建環保科技集團附屬公司 Subsidiary of FSE Environmental Technologies Group 豐盛創建成員 Member of FSE Holdings

REPORT OF EQUIPMENT CALIBRATION

INSTRUMENT DESCRIPTION

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler.

Instrument:

TSP meter

Brand Name:

TSI

Model No.:

AM510

Serial No.:

11510003

Date of Issue:

27/10/2015

Date of Calibration:

12/10/2015

Date of Next Calibration:

11/10/2016

ISSUING ORGANISATION

Environmental Pioneers & Solutions Limited

Flat A 19/F. Chaiwan Industrial Centre 20 Lee Chung Street Chai Wan, Hong Kong

Phone:

852 - 2556 9172

Fax:

852 - 2856 2010

Mr. Ip Wing Hong, John

Manager

大成環境科技拓展有限公司 ENVIRONMENTAL PIONEERS & SOLUTIONS LIMITED

豐盛創建環保科技集團附屬公司 Subsidiary of FSE Environmental Technologies Group 豐盛創建成員 Member of FSE Holdings

Brand Name:

TSI

Model No.:

AM510

Serial No.:

11510003

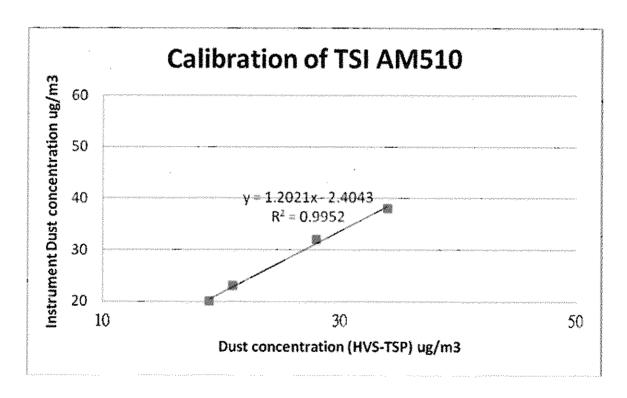
HVS No.:

TE-5028A

HVS Calibration Kit No.:

TISCH 2137

Date of Calibration:


12/10/2015

Date of next Calibration:

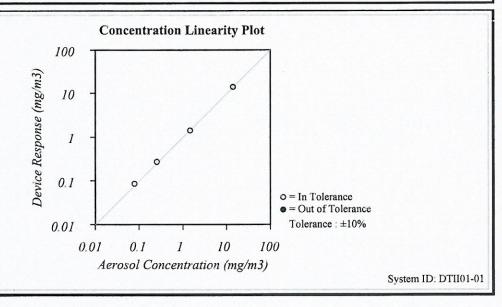
11/10/2016

Calibration Record

HVS - TSP	19	21	28	34
TSI AM510	20	23	32	38

Mr. Ip Wing Hong, John

Manager


CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condition	Model		
Temperature	- Wiodei		
Relative Humidity	29	%RH	Serial Number
Barometric Pressure	29.45 (997.3)	inHg (hPa)	Serial Number

Model	AM510		
Serial Number	11510004		

AND DESCRIPTION OF THE PROPERTY OF THE PROPERT		
⊠ As Left	☐ In Tolerance	
☐ As Found	Out of Tolerance	

TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass of standard ISO 12103-1, Al test dust (Arizona dust). Our calibration ratio is greater than 1.2:1

Measurement Variable	System ID	Last Cal.	Cal_Due	Measurement Variable	System ID	Last Cal.	Cal. Due
Photometer	E003433	09-09-15	03-09-16	Flowmeter	E002371	03-02-15	03-02-16
DC Voltage(Keithley)	E002859	06-18-15	06-18-16	Microbalance	M001324	01-05-15	01-05-17
Temp/Humidity	E005409	04-16-15	04-16-16	Temp/Humidity	E005410	04-17-15	04-17-16
Pressure	E003440	08-04-15	08-04-16				

Krida Hillshumon

Final Function Check

October 2, 2015

Date

豐盛創建成員 Member of FSE Holdings

REPORT OF EQUIPMENT CALIBRATION

INSTRUMENT DESCRIPTION

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler.

Instrument:

TSP meter

Brand Name:

TSI

Model No.:

AM510

Serial No.:

11510004

Date of Issue:

27/10/2015

Date of Calibration:

13/10/2015

Date of Next Calibration:

12/10/2016

ISSUING ORGANISATION

Environmental Pioneers & Solutions Limited

Flat A 19/F. Chaiwan Industrial Centre 20 Lee Chung Street Chai Wan, Hong Kong

Phone:

852 - 2556 9172

Fax:

852 - 2856 2010

Mr. Ip Wing Hong, John Manager

1

大成環境科技拓展有限公司 ENVIRONMENTAL PIONEERS & SOLUTIONS LIMITED

豐盛創建環保科技集團附屬公司 Subsidiary of FSE Environmental Technologies Group 豐盛創建成員 Member of FSE Holdings

Brand Name:

TSI

Model No.:

AM510

Serial No.:

11510004

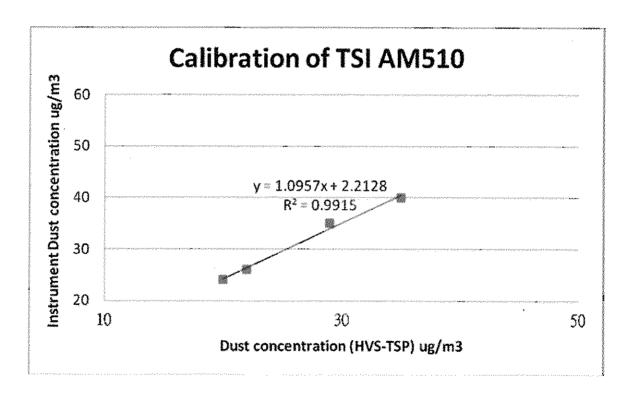
HVS No.:

TE-5028A

HVS Calibration Kit No.:

TISCH 2137

Date of Calibration:


13/10/2015

Date of next Calibration:

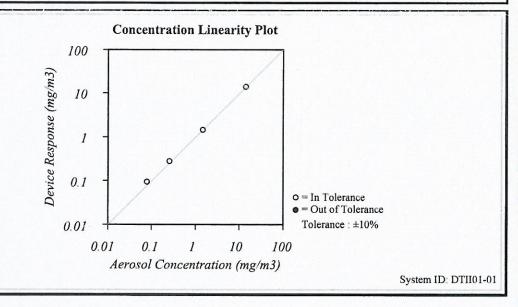
12/10/2016

Calibration Record

HVS - TSP	20	22	29	35
TSI AM510	24	26	35	40

Mr. Ip Wing Hong, John

Manager


CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condition				
Temperature 74.2 (23.4) °F (°C)				
Relative Humidity	29	%RH		
Barometric Pressure	29.45 (997.3)	inHg (hPa)	Se	

Model	AM510			
Serial Number	11510005			

⊠ As Left	☑ In Tolerance
☐ As Found	Out of Tolerance

TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass of standard ISO 12103-1, A1 test dust (Arizona dust). Our calibration ratio is greater than 1.2:1

Measurement Variable	System ID	Last Cal.	Cal. Due	ii Measurement Variable	System ID	Last Cal.	Cal. Due
Photometer	E003433	09-09-15	03-09-16	Flowmeter	E002371	03-02-15	03-02-16
DC Voltage(Keithley)	E002859	06-18-15	06-18-16	Microbalance	M001324	01-05-15	01-05-17
Temp/Humidity	E005409	04-16-15	04-16-16	Temp/Humidity	E005410	04-17-15	04-17-16
Pressure	E003440	08-04-15	08-04-16				

Hills Henry Calibrated

Final Function Check

October 2, 2015

Date

豐盛創建成員 Member of FSE Holdings

REPORT OF EQUIPMENT CALIBRATION

INSTRUMENT DESCRIPTION

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler.

Instrument:

TSP meter

Brand Name:

TSI

Model No.:

AM510

Serial No.:

11510005

Date of Issue:

27/10/2015

Date of Calibration:

13/10/2015

Date of Next Calibration:

12/10/2016

ISSUING ORGANISATION

Environmental Pioneers & Solutions Limited

Flat A 19/F. Chaiwan Industrial Centre 20 Lee Chung Street Chai Wan, Hong Kong

Phone:

852 - 2556 9172

Fax:

852 - 2856 2010

Mr. Ip Wing Hong, John Manager

1

大成環境科技拓展有限公司 ENVIRONMENTAL PIONEERS & SOLUTIONS LIMITED

豐盛創建環保科技集團附屬公司 Subsidiary of FSE Environmental Technologies Group 豐盛創建成員 Member of FSE Holdings

Brand Name:

TSI

Model No .:

AM510

Serial No.:

11510005

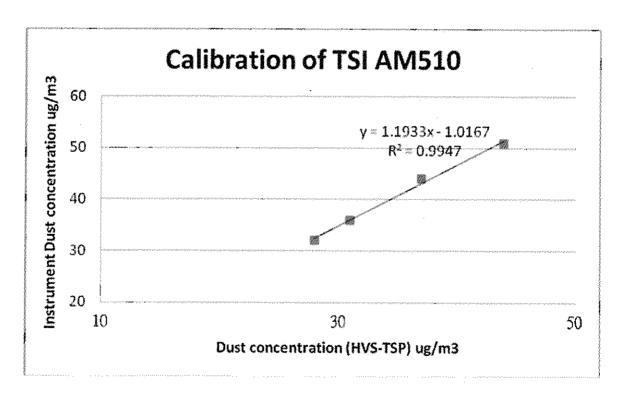
HVS No.:

TE-5028A

HVS Calibration Kit No.:

TISCH 2137

Date of Calibration:


13/10/2015

Date of next Calibration:

12/10/2016

Calibration Record

HVS - TSP	28	31	37 .	44
TSI AM510	32	36	44	51

Mr. Ip Wing Hong, John Manager

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5028A

Date - Feb 11, 2016 Rootsmeter S/N				0438320	Ta (K) -	294
Operator Tisch Orifice I.D				2137	Pa (mm) -	- 758.19
PLATE OR VDC # 1 2 3 4 5	VOLUME START (m3) NA NA NA NA NA	VOLUME STOP (m3) NA NA NA NA NA NA NA	DIFF VOLUME (m3) 1.00 1.00 1.00 1.00	DIFF TIME (min) 1.3380 1.0270 0.9420 0.8730 0.6630	METER DIFF Hg (mm) 4.2 6.9 8.2 9.6 16.5	ORFICE DIFF H2O (in.) 1.50 2.50 3.00 3.50 6.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0055 1.0019 1.0002 0.9983 0.9891	0.7515 0.9756 1.0618 1.1436 1.4919	1.2316 1.5900 1.7417 1.8813 2.4632		0.9944 0.9908 0.9891 0.9873 0.9781	0.7432 0.9648 1.0500 1.1309 1.4754	0.7627 0.9846 1.0786 1.1650 1.5253
Qstd slop intercept coefficie	t (b) = ent (r) =	1.66881 -0.02897 0.99983	ı e n	Qa slope intercept coefficie	t (b) =	1.04498 -0.01794 0.99983
y axis =	SQRT[H20(E	Pa/760)(298/T	'a)]	y axis =	SQRT[H2O(T	[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Tisch Environmental, Inc. TSP Sampler Calibration (Dickson recorder)

SITE

Location: YMT Public Cargo Working Area Date: 15-Jul-16 Sampler: TE-5170 MFC Tech: Andy Tsang

Barometric Pressure (in Hg): 26.00 Corrected Pressure (mm Hg): 660 Temperature (deg F): 79 Temperature (deg K): 299 Average Press. (in Hg): 26.00 Corrected Average (mm Hg): 660 Average Temp. (deg F): 79 Average Temp. (deg K): 299

CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.01000 Model: TE-5028A Qstd Intercept: -0.02003 Serial#: 2137 Date Certified: 11-Feb-16

			CALIBR	ATIONS	
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEAR REGRESSION
1	0.40	0.303	18.0	16.75	Slope = 138.901
2	0.50	0.337	22.0	20.47	Intercept = -26.1809
3	0.80	0.424	34.0	31.63	Corr. coeff.= 0.9983
4	1.00	0.473	42.0	39.08	
5	1.40	0.558	56.0	52.10	# of Observations: 5

Calculations

```
Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate
IC = corrected chart response
I = actual chart response
m = calibrator Qstd slope
b = calibrator Qstd intercept
Ta = actual temperature during calibration (deg K)
Pa = actual pressure during calibration (mm Hg)
Tstd = 298 deg K
Pstd = 760 mm Hg
For subsequent calculation of sampler flow:
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope
b = sampler intercept
I = chart response
Tav = daily average temperature
Pav = daily average pressure
```

Tisch Environmental, Inc. TSP Sampler Calibration (Dickson recorder)

SITE

Location: Canton Road Date: 15-Jul-16 Sampler: TE-5170 MFC Tech: Andy Tsang

CONDITIONS Barometric Pressure (in Hg): 26.00 Corrected Pressure (mm Hg): Temperature (deg F): 79 Temperature (deg K): 299 Average Press. (in Hg): 26.00 Corrected Average (mm Hg): 660 Average Temp. (deg F): Average Temp. (deg K):

CALIBRATION ORIFICE

Qstd Slope: 2.01000 Qstd Intercept: -0.02003 Tisch Make: Model: TE-5028A Date Certified: 11-Feb-16 Serial#: 2137

			CALIBR	ATIONS		
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEAR REGRESSI	
1	0.30	0.264	16.0	14.89	Slope =	85.6881
2	0.60	0.369	26.0	24.19	Intercept =	-7.9379
3	1.50	0.577	42.0	39.08	Corr. coeff.=	0.9902
4	1.80	0.631	48.0	44.66		
5	2.00	0.665	56.0	52.10	# of Observations:	5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K Pstd = 760 mm Hg

For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

= sampler slope

= sampler intercept = chart response b

Т

Tav = daily average temperature Pav = daily average pressure

Tisch Environmental, Inc. TSP Sampler Calibration (Dickson recorder)

SITE

Location: Nga Cheung Road Date: 15-Jul-16 Sampler: TE-5170 MFC Tech: Andy Tsang

CONDITIONS Barometric Pressure (in Hg): 26.00 Corrected Pressure (mm Hg): 660 Temperature (deg F): 79 Temperature (deg K): 299 Average Press. (in Hg): 26.00 Corrected Average (mm Hg): 660 Average Temp. (deg F): 79 Average Temp. (deg K): 299

CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.01000 Model: TE-5028A Qstd Intercept: -0.02003 Serial#: 2137 Date Certified: 11-Feb-16

CALIBRATIONS								
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEA REGRESS			
1	0.40	0.303	20.0	18.61	Slope =	115.9310		
2	0.80	0.424	30.0	27.91	Intercept =	-18.1581		
3	1.00	0.473	40.0	37.22	Corr. coeff.=	0.9923		
4	1.40	0.558	50.0	46.52				
5	1.80	0.631	60.0	55.83	# of Observations:	5		

Calculations

```
Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate
IC = corrected chart response
I = actual chart response
m = calibrator Qstd slope
b = calibrator Qstd intercept
Ta = actual temperature during calibration (deg K)
Pa = actual pressure during calibration (mm Hg)
Tstd = 298 deg K
Pstd = 760 mm Hg
For subsequent calculation of sampler flow:
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope
b = sampler intercept
I = chart response
Tav = daily average temperature
Pav = daily average pressure
```


G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港 黄 竹 坑 道 3 7 號 利 達 中 心 地 下 , 9 樓 , 1 2 樓 , 1 3 樓 及 2 0 樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA1228 01-01

Page

Item tested

Description: Manufacturer: Sound Level Meter (Type 1) SVANTEK, Poland

Microphone

Type/Model No.:

971

ACO, Japan

Serial/Equipment No.:

7052E

Adaptors used:

34350 / EPS OE0032

54635

Item submitted by

Customer Name:

Environmental Pioneers & Solutions Ltd.

Address of Customer:

Flat A, 8/F., Chai Wan Industrial Centre., 20 Lee Chung Street, Chaiwan, Hong Kong

Request No. Date of receipt:

28-Dec-2015

Date of test:

28-Dec-2015

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to: CIGISMEC

Multi function sound calibrator Signal generator Signal generator

B&K 4226 DS 360 DS 360

2288444 33873

61227

19-Jun-2016 16-Apr-2016 16-Apr-2016

CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C 55 ± 10 %

Relative humidity: Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

04-Jan-2016

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F, 9/F, 12/F, 13/F. & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

15CA1228 01-01

Page

2

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Calf annual advanta	٥		0.0	
Self-generated noise	A	Pass	0.3	
	С	Pass	0.6	
No. of the state o	Lin	Pass	1.0	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

fung Chi Yip 28-Dec-2015 End -

Checked by:

Date:

Lam Tze Wai 04-Jan-2016

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

Tel: (852) 2873 6860

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

A CIGIS GROUP COMPANY

Test Data for Sound Level Meter

Page 1 of 5

Sound level meter type:

971

Serial No.

34350 / EPS OE0032 Date

Fax: (852) 2555 7533

28-Dec-2015

Microphone

type:

7052E

Serial No.

54635

Report: 15CA1228 01-01

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting 11.9 dB
Noise level in C weighting 11.9 dB
Noise level in Lin (Z) 16.9 dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actua	Actual level		Deviation		
Notoronoo/Expedica fever	non-integrated	integrated		non-integrated	integrated	
dB	dB	dB	+/- dB	dB	dB	
94.0	94.0	94.0	0.7	0.0	0.0	
99.0	99.0	99.0	0.7	0.0	0.0	
104.0	104.0	104.0	0.7	0.0	0.0	
109.0	109.0	109.0	0.7	0.0	0.0	
114.0	114.0	114.0	0.7	0.0	0.0	
115.0	115.0	115.0	0.7	0.0	0.0	
116.0	116.0	116.0	0.7	0.0	0.0	
117.0	117.0	117.0	0.7	0.0	0.0	
118.0	118.0	118.0	0.7	0.0	0.0	
119.0	119.0	119.0	0.7	0.0	0.0	
120.0	120.0	120.0	0.7	0.0	0.0	
89.0	89.0	89.0	0.7	0.0	0.0	
84.0	84.0	84.0	0.7	0.0	0.0	
79.0	79.0	79.0	0.7	0.0	0.0	
74.0	74.0	74.0	0.7	0.0	0.0	
69.0	69.0	69.0	0.7	0.0	0.0	
64.0	64.0	64.0	0.7	0.0	0.0	
59.0	59.0	59.0	0.7	0.0	0.0	
54.0	54.0	54.0	0.7	0.0	0.0	
49.0	49.0	49.0	0.7	0.0	0.0	
44.0	43.9	43.9	0.7	-0.1	-0.1	
39.0	38.9	38.9	0.7	-0.1	-0.1	
34.0	33.7	33.7	0.7	-0.3	-0.3	
33.0	32.7	32.7	0.7	-0.3	-0.3	

Tel: (852) 2873 6860 Fax: (852) 2555 7533 A CIGI

A CIGIS GROUP COMPANY

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 2 of 5

Sound level me Microphone	ter type: type:	971 7052E		Serial No. Serial No.	34350 / EPS OE0032 54635	Date 28-Dec-2015 Report: 15CA1228 01-01
32.0		31.6	31.6	0.7	-0.4	-0.4
31.0		30.5	30.5	0.7	-0.5	-0.5
30.0		29.6	29.6	0.7	-0.4	-0.4
29.0		28.5	28.5	0.7	-0.5	-0.5
28.0		27.3	27.3	0.7	-0.7	-0.7

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
40-140	94.0	94.0	0.7	0.0
25-120	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
40-140	42.0	42.0	0.7	0.0
40-140	138.0	138.0	0.7	0.0
25-120	28.0	27.3	0.7	-0.7
25-120	118.0	118.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL. Frequency weighting A:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	54.7	1.5	1.5	0.1
63.1	94.0	67.8	67.9	1.5	1.5	0.1
125.9	94.0	77.9	77.9	1.0	1.0	0.0
251.2	94.0	85.4	85.4	1.0	1.0	0.0
501.2	94.0	90.8	90.8	1.0	1.0	0.0
1995.0	94.0	95.2	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	95.1	1.0	1.0	0.1
7943.0	94.0	92.9	93.0	1.5	3.0	0.1
12590.0	94.0	89.7	89.6	3.0	6.0	-0.1

Frequency weighting C:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	_	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	91.1	1.5	1.5	0.1
63.1	94.0	93.2	93.1	1.5	1.5	-0.1

Tel : (852) 2873 6860

G/F, 9/F, 12/F, 13/F. & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑這37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Fax : (852) 2873 6860 Fax : (852) 2555 7533 A CIGIS GROUP COMPANY

Test Data for Sound Level Meter

Page 3 of 5

Sound level me	ter type:	971		Serial No.	34	350 / EPS OE0032	Date	28-Dec-2015
Microphone	type:	7052E		Serial No.	54	1635	_	
							Report:	15CA1228 01-01
125.9	94.0		93.8	93.8	1.0	1.0	0.0	
251.2	94.0		94.0	94.0	1.0	1.0	0.0	
501.2	94.0		94.0	94.0	1.0	1.0	0.0	
1995.0	94.0		93.8	93.8	1.0	1.0	0.0	
3981.0	94.0		93.2	93.2	1.0	1.0	0.0	
7943.0	94.0		91.0	91.1	1.5	3.0	0.1	
12590.0	94.0		87.8	87.7	3.0	6.0	-0.1	

Frequency weighting Z:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	94.0	1.5	1.5	0.0
63.1	94.0	94.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	94.0	1.0	1.0	0.0
7943.0	94.0	94.0	94.0	1.5	3.0	0.0
12590.0	94.0	94.0	93.9	3.0	6.0	-0.1

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
81.0	80.0	80.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	_	dB
81.0	76.9	76.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range. Positive polarities: (Weighting Z, set the generator signal to single, Lzpeak)

G/F, 9/F, 12/F, 13/F. & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com C||G||S||V||E

A CIGIS GROUP COMPANY

Test Data for Sound Level Meter

Page 4 of 5

Sound level meter type:

971

Serial No.

34350 / EPS OE0032 Date

Fax: (852) 2555 7533

28-Dec-2015

Microphone

type:

7052E

Serial No.

54635

Report: 15CA1228 01-01

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
84.0	84.0	84.0	2.0	0.0
Negative polarities:				
Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
84.0	84.0	84.0	2.0	0.0

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency: 40

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz. (Set to INT)

	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation
Time wighting	dB	dB	indication(dB)	+/- dB	dB
Slow	83.0+6.6	83.0	83.0	0.5	0.0

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency:

2000 Hz

Amplitude:

The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burst	t indication	Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
85.0	76.2	76.1	2.0	-0.1

Repeated at 100 Hz

Ref. Level	Repeated burst indication		Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
85.0	82.3	82.2	1.0	-0.1

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:

4000 Hz

Duration of tone burst:

1 ms

Repetition T		vel of burst	Expected Leq	Actual Leg	Tolerance	Deviation	Remarks
msec		dB	dB	dB	+/- dB	dB	
1000	9	0.0	90.0	89.9	1.0	-0.1	60s integ.
10000	8	0.0	0.08	79.9	1.0	-0.1	6min. integ.

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 A CIG

A CIGIS GROUP COMPANY

Test Data for Sound Level Meter

Page 5 of 5

Sound level meter type:

971

Serial No.

34350 / EPS OE0032 Date

28-Dec-2015

Microphone

type:

7052E

Serial No.

54635

Report: 15CA1228 01-01

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference rar

Test frequency:

4000 Hz

Integration time:

10 sec

The integrating sound level meter set to Leg:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	88.0	58.0	57.9	1.7	-0.1

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	88.0	68.0	68.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
117.9	116.9	113.9	3.0	1.0	0.0

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as follow The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference rar

Test frequency:

4000 Hz

Integration time:

10 sec 1 msec

Single burst duration:

 Level reduced by
 Expected level
 Actual level
 Tolerance
 Deviation

 1 dB
 dB
 dB
 dB
 dB

 123.5
 83.5
 83.4
 2.2
 -0.1

ACOUSTIC TEST

Rms level

at overload (dB)

124.5

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Tolerar	nce (dB)	Deviation
Hz	dB	Measured (dB)	+	-	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.0	1.0	1.0	0.1
8000	92.9	92.6	1.5	3.0	-0.3

-----END-----

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA1228 01-02

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Type 1)

Manufacturer: Type/Model No.: SVANTEK SV30A

Serial/Equipment No.:

SV30A 29085

Adaptors used:

_

Item submitted by

Curstomer:

Environmental Pioneers & Solutions Ltd.

Address of Customer:

Flat A, 8/F., Chai Wan Industrial Centre., 20 Lee Chung Street, Chaiwan, Hong Kong

Request No.:

0-

Date of receipt:

28-Dec-2015

Date of test:

28-Dec-2015

Reference equipment used in the calibration

Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	Serial No. 2341427 2239857 2346941 61227 US36087050 GB41300350	Expiry Date: 15-Apr-2016 22-Apr-2016 22-Apr-2016 16-Apr-2016 17-Apr-2016	Traceable to: SCL CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI
•	8903B 53132A		17-Apr-2016 16-Apr-2016	

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

55 ± 5 %

Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Date:

04-Jan-2016

Company Chop:

Huang Jian Min/Feng Jun Qi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev D/01/03/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

15CA1228 01-02

Page:

Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties

			(Output level in dB re 20 µPa)
Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Hz	dB	dB	dB
1000	94.00	93.67	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.001 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.0 Hz

Estimated expanded uncertainty

0 1 Hz

Coverage factor k = 2.2

Total Noise and Distortion 4,

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.4 %

Estimated expanded uncertainty

0.7%

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip

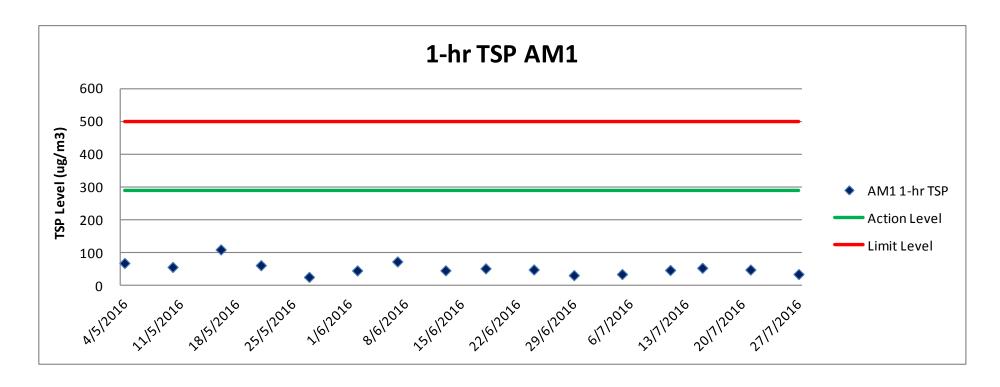
Checked by:


Lam Tze Wai

28-Dec-2015

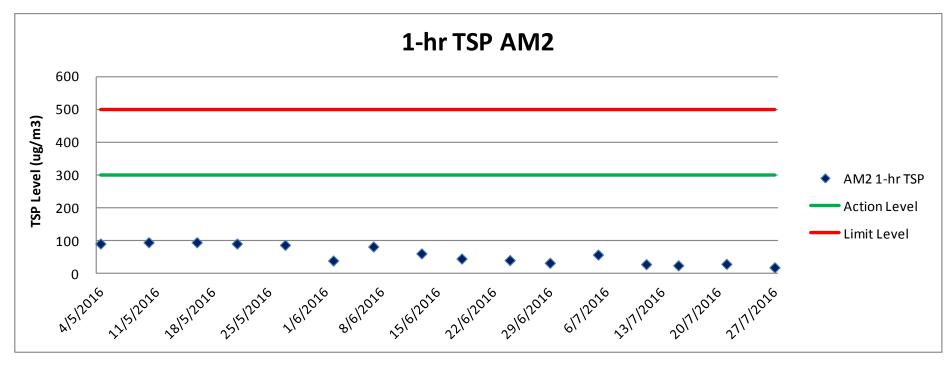
Date:

04-Jan-2016


The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

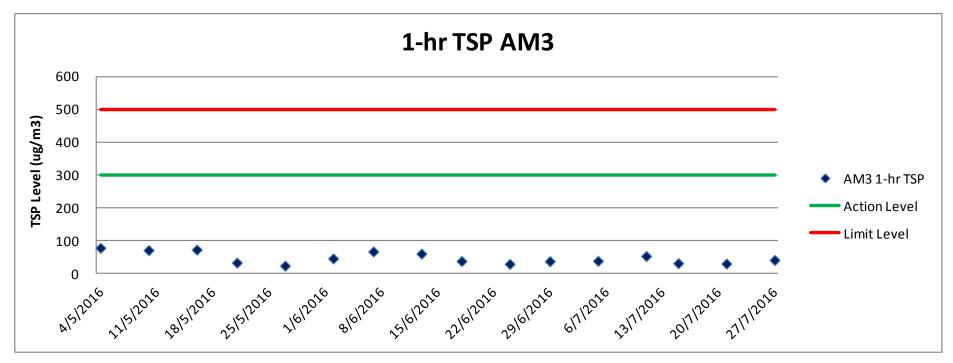
1-hr TSP Monitoring Result for AM1

Date Weather	Temperature (°C) Wind		Wind Speed	Sampling Time			Reading (µ g/m³)				
	*	Direction *	(m/s) *	1	2	3	1	2	3	Average	
5/7/2016	Sunny	25.3 - 31.0	SE	0.0 - 5.8	14:14	15:15	16:16	33	32	39	35
11/7/2016	Cloudy	25.3 - 31.0	W	0.0 - 5.0	13:50	14:51	15:52	47	47	47	47
15/7/2016	Sunny	28.0 - 32.1	W	0.0 - 5.0	9:17	10:18	11:19	62	52	47	54
21/7/2016	Sunny	27.3 - 32.3	W	0.0 - 4.4	15:06	16:07	17:08	32	55	58	48
27/7/2016	Sunny	27.3 - 32.8	SW	0.0 - 4.2	13:06	14:07	15:08	27	33	44	35


^{*}Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

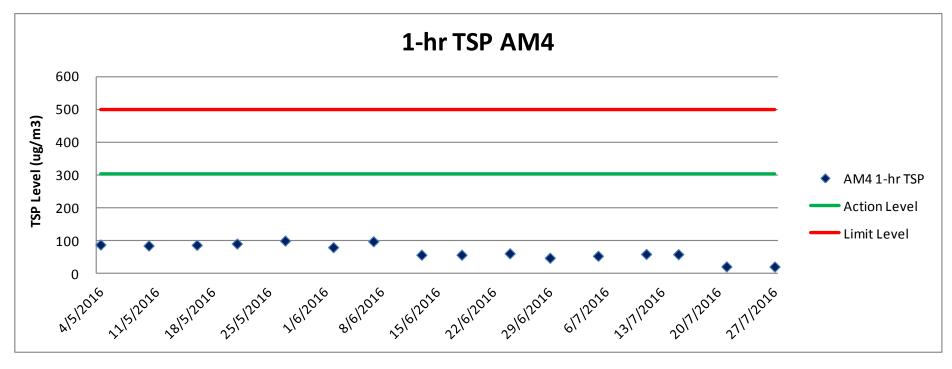
1-hr TSP Monitoring Result for AM2

Date Weather	Temperature (°C) Wind		Wind Speed	Sampling Time			Reading (µ g/m³)				
	*	Direction *	(m/s) *	1	2	3	1	2	3	Average	
5/7/2016	Sunny	25.3 - 31.0	SE	0.0 - 5.8	9:23	10:24	11:25	62	54	56	57
11/7/2016	Cloudy	25.3 - 31.0	W	0.0 - 5.0	9:38	10:39	11:40	30	26	29	28
15/7/2016	Sunny	28.0 - 32.1	W	0.0 - 5.0	9:40	10:41	11:42	26	27	21	25
21/7/2016	Sunny	27.3 - 32.3	W	0.0 - 4.4	9:56	10:57	11:58	34	28	25	29
27/7/2016	Sunny	27.3 - 32.8	SW	0.0 - 4.2	10:30	11:31	12:32	20	20	16	19


^{*}Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

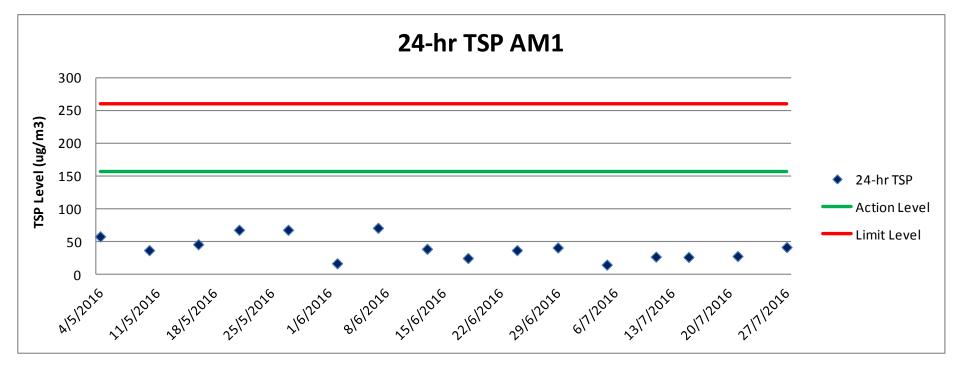
1-hr TSP Monitoring Result for AM3

Date Weather		Temperature (°C)	Wind	Wind Speed	Sa	ampling Tin	ne	Reading (µ g/m³)				
Date	weamer	*	Direction *	(m/s) *	1	2	3	1	2	3	Average	
5/7/2016	Sunny	25.3 - 31.0	SE	0.0 - 5.8	14:50	15:51	16:52	36	39	40	38	
11/7/2016	Cloudy	25.3 - 31.0	W	0.0 - 5.0	14:34	15:35	16:36	50	52	57	53	
15/7/2016	Sunny	28.0 - 32.1	W	0.0 - 5.0	10:04	11:05	12:06	33	30	31	31	
21/7/2016	Sunny	27.3 - 32.3	W	0.0 - 4.4	15:40	16:41	17:42	30	28	32	30	
27/7/2016	Sunny	27.3 - 32.8	SW	0.0 - 4.2	13:36	14:37	15:38	48	41	34	41	


^{*}Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

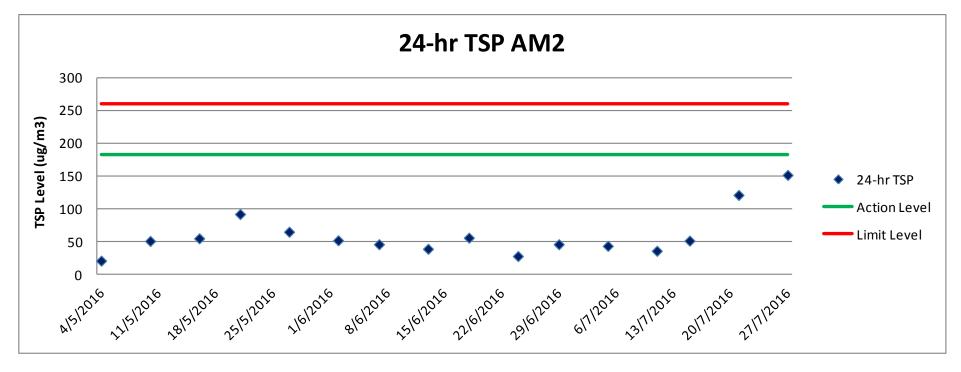
1-hr TSP Monitoring Result for AM4

Date Weather		Temperature (°C)	Temperature (°C) Wind		d Sampling Time			Reading (µ g/m³)				
Date	weamer	*	Direction *	(m/s) *	1	2	3	1	2	3	Average	
5/7/2016	Sunny	25.3 - 31.0	SE	0.0 - 5.8	9:25	10:26	11:27	51	48	62	54	
11/7/2016	Cloudy	25.3 - 31.0	W	0.0 - 5.0	13:57	14:58	15:59	58	67	53	59	
15/7/2016	Sunny	28.0 - 32.1	W	0.0 - 5.0	14:01	15:02	16:03	60	59	57	59	
21/7/2016	Sunny	27.3 - 32.3	W	0.0 - 4.4	13:53	14:54	15:55	22	25	17	21	
27/7/2016	Sunny	27.3 - 32.8	SW	0.0 - 4.2	13:51	14:52	15:53	18	18	27	21	


^{*}Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

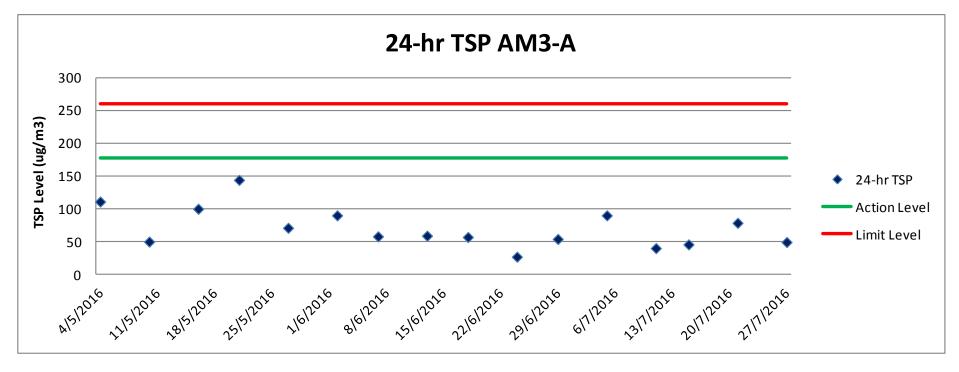
24-hr TSP Monitoring Result for AM1

	Wind		Wind Wind		W	t. of paper	· (g)	Flow Rate (CFM)			Total	TSP
Sampling ID & Paper No.	Temperature (°C) *	Diection *	Speed (m/s) *	Sampling Date	Initial Wt.	Final Wt.	Wt. of dust	Initial	Final	Avg Flow Rate	Volume (m³)	Concentration (µg/m3)
AM10705 201062	25.3 - 31.0	SE	0.0 - 5.8	05/07/16	2.8095	2.8430	0.0335	55	55	55.0	2242.69	15
AM10711 201059	25.3 - 31.0	W	0.0 - 5.0	11/07/16	2.8193	2.8801	0.0608	55	55	55.0	2242.69	27
AM10715 201060	28.0 - 32.1	W	0.0 - 5.0	15/07/16	2.8160	2.8757	0.0597	55	55	55.0	2242.69	27
AM10721 201063	27.3 - 32.3	W	0.0 - 4.4	21/07/16	2.7963	2.8592	0.0629	55	55	55.0	2242.69	28
AM10727 201292	27.3 - 32.8	SW	0.0 - 4.2	27/07/16	2.7414	2.8349	0.0935	55	55	55.0	2242.69	42


^{*}Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

24-hr TSP Monitoring Result for AM2

		Wind Wind			W	t. of paper	· (g)	Flow	Rate	(CFM)	Total	TSP
Sampling ID & Paper No.	Temperature (°C) *	Diection *		Sampling Date	Initial Wt.	Final Wt.	Wt. of dust	Initial	Final	Avg Flow Rate	Volume (m³)	Concentration (µg/m3)
AM20705 201055	25.3 - 31.0	SE	0.0 - 5.8	05/07/16	2.8309	2.9373	0.1064	60	60	60.0	2446.58	43
AM20711 201066	25.3 - 31.0	W	0.0 - 5.0	11/07/16	2.7955	2.8836	0.0881	60	60	60.0	2446.58	36
AM20715 201065	28.0 - 32.1	W	0.0 - 5.0	15/07/16	2.7915	2.9174	0.1259	60	60	60.0	2446.58	51
AM20721 201068	27.3 - 32.3	W	0.0 - 4.4	21/07/16	2.7949	3.0911	0.2962	60	60	60.0	2446.58	121
AM20727 201052	27.3 - 32.8	SW	0.0 - 4.2	27/07/16	2.8134	3.1841	0.3707	60	60	60.0	2446.58	152


^{*}Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

24-hr TSP Monitoring Result for AM3-A

		Wind	Wind		W	t. of paper	(g)	Flow	Rate	(CFM)	Total	TSP
Sampling ID & Paper No.	Temperature (°C) *	Diection *	Speed (m/s) *	Sampling Date	Initial Wt.	Final Wt.	Wt. of dust	Initial	Final	Avg Flow Rate	Volume (m³)	
AM3-A0705 201061	25.3 - 31.0	SE	0.0 - 5.8	05/07/16	2.7982	3.0000	0.2018	55	55	55.0	2242.69	90
AM3-A0711 201057	25.3 - 31.0	W	0.0 - 5.0	11/07/16	2.8313	2.9212	0.0899	55	55	55.0	2242.69	40
AM3-A0715 201058	28.0 - 32.1	W	0.0 - 5.0	15/07/16	2.8120	2.9146	0.1026	55	55	55.0	2242.69	46
AM3-A0721 201064	27.3 - 32.3	W	0.0 - 4.4	21/07/16	2.7961	2.9723	0.1762	55	55	55.0	2242.69	79
AM3-A0727 201291	27.3 - 32.8	SW	0.0 - 4.2	27/07/16	2.7549	2.8656	0.1107	55	55	55.0	2242.69	49

^{*}Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

ALS Technichem (HK) Pty Ltd

ALS

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ENVIRONMENTAL PIONEERS & SOLUTION LTD : ALS Technichem (HK) Pty Ltd : 1 of 2 Work Order Contact : ANDY TSANG Contact : Fung Lim Chee, Richard HK1625964 Address Address : FLAT A, 8/F, CHAI WAN INDUSTRIAL CENTRE, : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing 20 LEE CHUNG STREET, Yip Street, Kwai Chung, N.T., Hong Kong **CHAI WAN HONG KONG** E-mail E-mail : kytsang@fsenv.com.hk : Richard.Fung@alsglobal.com Telephone Telephone : +852 2185 0159 : +852 2610 1044 Facsimile Facsimile : +852 2258 0568 : +852 2610 2021 Project Quote number Date Samples Received : PROPOSED ROAD IMPROVEMENT WORKS IN 27-JUL-2016 WEST KOWLOON RECLAMATION **DEVELOPMENT - PHASE 1** Order number Issue Date : 01-AUG-2016 C-O-C number No. of samples received : 5 No. of samples analysed : 5

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 28-JUL-2016

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1625964

Sample(s) were received in an ambient condition.

Sample(s) analysed and reported on an as received basis.

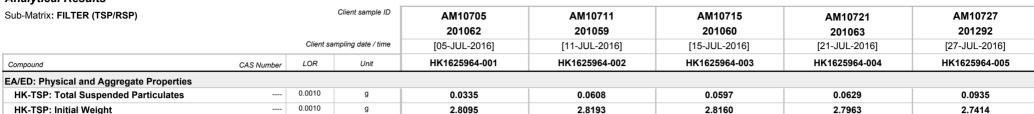
This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 2


Client : ENVIRONMENTAL PIONEERS & SOLUTION LTD

Work Order HK1625964

HK-TSP: Initial Weight

HK-TSP: Final Weight

Analytical Results

2.8430

2.8193

2.8801

2.8160

2.8757

2.7963

2.8592

g

g

0.0010

2.8349

ALS Technichem (HK) Pty Ltd

ALS

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ENVIRONMENTAL PIONEERS & SOLUTION LTD : ALS Technichem (HK) Pty Ltd : 1 of 2 Work Order Contact : ANDY TSANG Contact : Fung Lim Chee, Richard HK1630454 Address Address : FLAT A, 8/F, CHAI WAN INDUSTRIAL CENTRE, : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing 20 LEE CHUNG STREET, Yip Street, Kwai Chung, N.T., Hong Kong **CHAI WAN HONG KONG** E-mail E-mail : kytsang@fsenv.com.hk : Richard.Fung@alsglobal.com Telephone Telephone : +852 2185 0159 : +852 2610 1044 Facsimile Facsimile : +852 2258 0568 : +852 2610 2021 Project Quote number Date Samples Received : PROPOSED ROAD IMPROVEMENT WORKS IN 28-JUL-2016 WEST KOWLOON RECLAMATION **DEVELOPMENT - PHASE 1** Order number Issue Date : 01-AUG-2016 C-O-C number No. of samples received : 5 No. of samples analysed : 5

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 28-JUL-2016

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1630454

Sample(s) were received in an ambient condition.

Sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

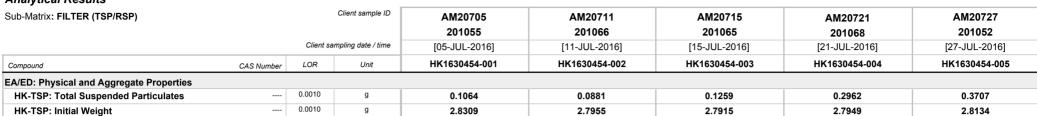
This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 2

Client : ENVIRONMENTAL PIONEERS & SOLUTION LTD


0.0010

g

Work Order HK1630454

Analytical Results

HK-TSP: Final Weight

2.8836

2.9174

3.0911

2.9373

3.1841

ALS Technichem (HK) Pty Ltd

ALS

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ENVIRONMENTAL PIONEERS & SOLUTION LTD : ALS Technichem (HK) Pty Ltd : 1 of 2 Work Order Contact : ANDY TSANG Contact : Fung Lim Chee, Richard HK1630462 Address Address : FLAT A, 8/F, CHAI WAN INDUSTRIAL CENTRE, : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing 20 LEE CHUNG STREET, Yip Street, Kwai Chung, N.T., Hong Kong **CHAI WAN HONG KONG** E-mail E-mail : kytsang@fsenv.com.hk : Richard.Fung@alsglobal.com Telephone Telephone : +852 2185 0159 : +852 2610 1044 Facsimile Facsimile : +852 2258 0568 : +852 2610 2021 Project Quote number Date Samples Received : PROPOSED ROAD IMPROVEMENT WORKS IN 27-JUL-2016 WEST KOWLOON RECLAMATION **DEVELOPMENT - PHASE 1** Order number Issue Date : 01-AUG-2016 C-O-C number No. of samples received : 5

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 28-JUL-2016

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1630462

Sample(s) were received in an ambient condition.

Sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories Position Authorised results for

No. of samples analysed

: 5

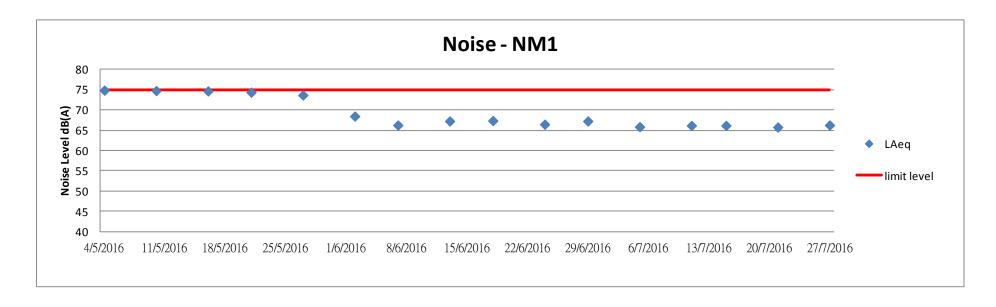
Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 2

Client : ENVIRONMENTAL PIONEERS & SOLUTION LTD

Work Order HK1630462

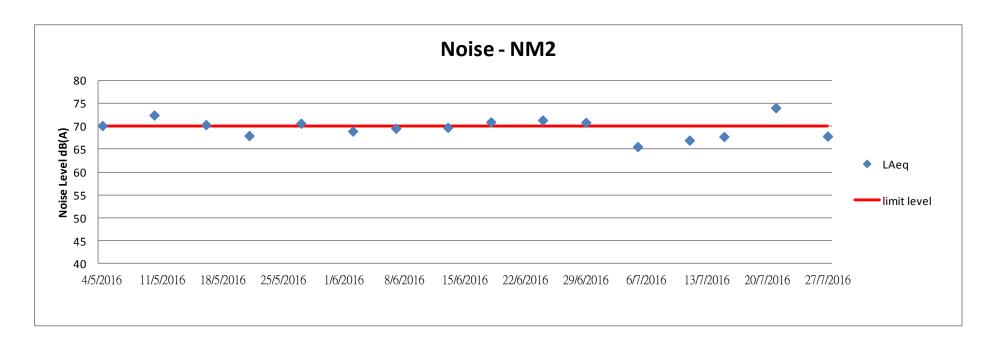
ALS


Analytical Results

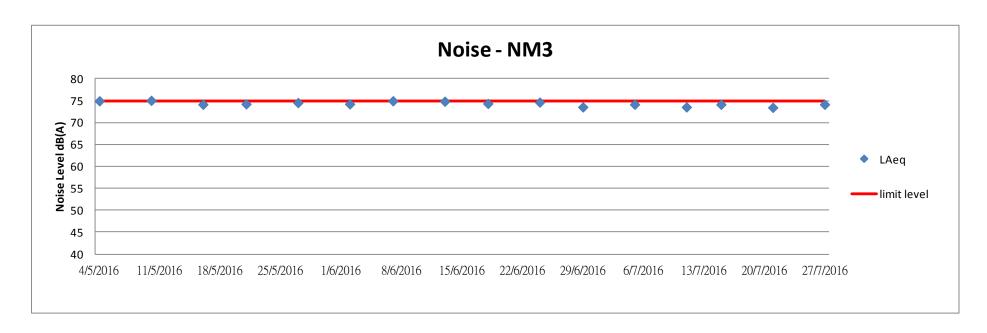
, mary trous recourte								
Sub-Matrix: FILTER (TSP/RSP)			Client sample ID	AM3-A0705	AM3-A0711	AM3-A0715	AM3-A0721	AM3-A0727
				201061	201057	201058	201064	201291
		Client sa	mpling date / time	[05-JUL-2016]	[11-JUL-2016]	[15-JUL-2016]	[21-JUL-2016]	[27-JUL-2016]
Compound	CAS Number	LOR	Unit	HK1630462-001	HK1630462-002	HK1630462-003	HK1630462-004	HK1630462-005
EA/ED: Physical and Aggregate Properties								
HK-TSP: Total Suspended Particulates		0.0010	g	0.2018	0.0899	0.1026	0.1762	0.1107
HK-TSP: Initial Weight		0.0010	g	2.7982	2.8313	2.8120	2.7961	2.7549
HK-TSP: Final Weight		0.0010	g	3.0000	2.9212	2.9146	2.9723	2.8656

Appendix F1: Noise Monitoring Data			
Appendix F1: Noise Monitoring Data			
Appendix F1: Noise Monitoring Data			
Appendix F1: Noise Monitoring Data			
	Appendix F1: Noise Mo	onitoring Data	

Noise Monitoring Result for NM1

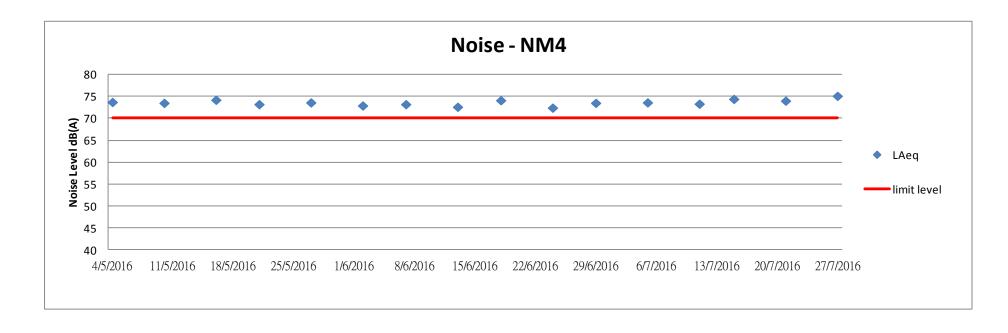

Location	NM1								
Date	5/7/2016	11/7/2016	15/7/2016	21/7/2016	27/7/2016				
Weather Condition	Sunny	Cloudy	Sunny	Sunny	Sunny				
Start Time	15:33	15:39	11:07	16:59	15:18				
Measurement Period	30min	30min	30min	30min	30min				
Baseline Level			75.1						
L_{Aeq}	65.8	66.1	66.1	65.7	66.2				
L_{10}	67.3	67.6	67.6	66.9	67.8				
L ₉₀	63.8	63.3	63.5	63.6	63.7				

Noise Monitoring Result for NM2

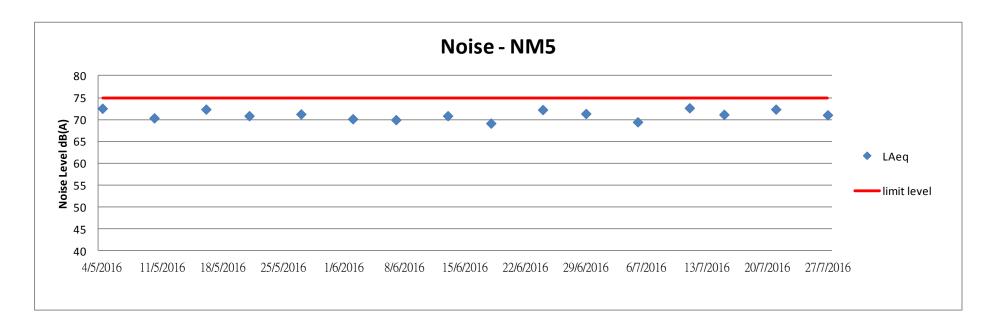

Location				NM2 (Re-measurement)*		
Date	5/7/2016	11/7/2016	15/7/2016	21/7/2016	27/7/2016	21/7/2016
Weather Condition	Sunny	Cloudy	Sunny	Sunny	Sunny	Sunny
Start Time	15:24	9:01	10:26	10:33	13:47	11:15
Measurement Period	30min	30min	30min	30min	30min	30min
Baseline Level			66.5			66.5
L_{Aeq}	65.5	66.9	67.7	74.0	67.8	74.6
L_{10}	66.2	68.3	69.3	77.7	67.2	78.1
L ₉₀	61.8	63.5	63.4	65.0	62.2	64.7

^{*} Repeat noise measurement when exceedance is recorded. The result is used to confirm the findings and it would not be showed on the graph plot

Noise Monitoring Result for NM3


Location		NM3									
Date	5/7/2016	11/7/2016	15/7/2016	21/7/2016	27/7/2016						
Weather Condition	Sunny	Cloudy	Sunny	Sunny	Sunny						
Start Time	15:06	14:51	10:16	16:08	14:30						
Measurement Period	30min	30min	30min	30min	30min						
Baseline Level			74.5								
$L_{ m Aeq}$	74.1	73.5	74.1	73.4	74.1						
L_{10}	77.2	76.1	76.8	75.8	75.4						
L ₉₀	69.1	70.0	70.4	70.4	73.0						

Noise Monitoring Result for NM4


Location			NM4			NM4 (Re-measurement) *					
Date	5/7/2016	11/7/2016	15/7/2016	21/7/2016	27/7/2016	5/7/2016	11/7/2016	15/7/2016	21/7/2016	27/7/2016	
Weather Condition	Sunny	Cloudy	Sunny	Sunny	Sunny	Sunny	Cloudy	Sunny	Sunny	Sunny	
Start Time	9:43	13:03	14:25	14:03	11:29	9:43	14:41	16:16	10:31	13:31	
Measurement Period	30min	30min	30min	30min	30min	30min	30min	30min	30min	30min	
Baseline Level			73.3			73.3					
L_{Aeq}	73.6	73.3	74.4	74.0	75.1	74.1	73.9	74.1	73.4	74.4	
L_{10}	78.2	77.0	77.1	76.7	79.0	77.9	77.7	78.2	77.1	78.3	
L ₉₀	66.2	66.9	68.4	70.4	70.8	67.0	65.2	67.9	68.4	68.7	

^{*} Repeat noise measurement when exceedance is recorded. The result is used to confirm the findings and it would not be showed on the graph plot

Noise Monitoring Result for NM5

Location	NM5									
Date	5/7/2016	11/7/2016	15/7/2016	21/7/2016	27/7/2016					
Weather Condition	Sunny	Cloudy	Sunny	Sunny	Sunny					
Start Time		13:42	15:45	15:09	10:23					
Measurement Period	30min	30min	30min	30min	30min					
Baseline Level			71.8							
$L_{ m Aeq}$	69.4	72.6	71.1	72.3	71.0					
L_{10}	74.1	75.8	74.3	76.9	74.1					
L ₉₀	66.1	64.1	66.9	68.2	65.3					

油蘇地天主教小學(海泓道) 二零一五至二零一六年度校曆表(九月至二月)

月份	周次	日	-	-	٤	-	3	=	g	9	35		六	行事曆
	-				1	S	2	S	3		4	S	5	1/9 開學 3/9 额外公眾假期
九	=	6	7	S	8	S	9	A	10	B	11	C	12	11/9 求思禮
	Ξ	13	14	D	15	E	16	F	17	A	18	В	19	
月	四	20	21	C	22	D	23	E	24	F	25	A	26	
	五	27	28		29	B	30	C						27/9 教育日 28/9 中秋節翌日
									1		2	D	3	1/10 國慶 3/10 我和班主任有個約會/J6 升中面試講座
+	六	4	5	E	6	F	7	A	8	B	9	C	10	
	七	11	12	D	13	E	14	F.	15	A	16	B	17	
月	八	18	19	S	20	C	21		22	D	23	E	24	19/10 水運會 21/10 重陽節 23/10 J6 升中座談會(1)
	九	25	26	F	27	A	28	В	29	C	30	D	31	30/10 九西水運會 第九周英文串字(J1 - J6).
	+	1	2	E	3	F	4	S	5	S	6	S	7	5/11 - 10/11 J1 評估、J2 - 6第一段考(J6 呈分試)
+	+-	8	9	S	10	S	11	S	12	S	13	A	14	11/11 綠色旅行(J1-3) 12/11 綠色旅行(J4-6)
	+=	15	16	B	17	C	18	D	19	E	20	e ²	21	
月	十三	22	23	A	24	B	25	C	26	D	27	E	28	
•	十四	29	30	F			F Lylin							30/11 - 11/12 全方位學習周
لـــــــــــــــــــــــــــــــــــــ					1	A	2	В	3	C	4	D	5	3/12 九西陸運會
+	十五	6	7	E	8	F	9	A	10	В	11	C	12	
=	十六	13	14	D	15	E	16	F	17	A	18	S	19	18/12 聖誕祈禱禮 19/12 家長日
月		20	21		22		23		24		25		26	21/12/15 - 3/1/16 聖誕及新年假期 21/12 教師發展日(1)
		27	28		29		30		31					
											1		2	1/1 元旦
	十七	3	4	В	5	C	6	D	7	E	8	F	9	
-	十八	10	11	A	12	Œ	13	O	14	D	15	E	16	
月	十九	17	18	F	19	A	20	B	21	C	22	D	23	18/1 下學期開始 23/1 家教會周年大會暨頒獎禮
	二 +	24	25	E	26	F	27	A	28	S	29	В	30	28/1 陸運會
		31												
	廿一		1	C	2	D	3	S	4		5		6	3/2 送舊迎新大掃除 4/2-17/2 農曆新年假期
_		7	8		9		10		11		12		13	8/2-10/2 初一至初三
_	廿二	14	15		16		17		18	E	19	F	20	20/2 新春團拜
月	廿三	21	22	A	23	B	24	C	25	D	26	E	27	25/2 畢業照及班照 第廿三周英文串字(J1-J6)
	廿四	28	29	F	Will.		DO WATER	1					Maria	

油蘇地天主教小學(海泓道) 二零一五至二零一六年度校曆表(三月至八月)

月份	周次	B	11-					1	T v	9	3		六	行事曆
	廿四				1	A	2	S	3	S	4	S	5	3/3 - 8/3 J1 - 6 第二段考(J6 呈分試)
=	廿五	6	7	S	8	S	9	B	10	C	11	D	12	9/3 - 18/3 全方位學習周
	廿六	13	14	E	15	F	16	A	17	B	18	C	19	16/3 - 18/3 J5 教育營
月	廿七	20	21	D	22	E	23	F	24		25		26	22/3 復活節祈禱聚會 24/3 - 4/4 復活節假期
		27	28		29		30		31		THE US			27/3 復活主日
								Tracks			1		2	
四	廿八	3	4		5	A	6	В	7	C	8	D	9	4/4 清明節
		10	11	E	12	F	13	A	14	В	15	C	16	16/4 J6 升中座談會 (2)
月	三十	17	18	D	19	E	20	F	21	A	22	В	23)	23/4 成長見證日
	卅一	24	25	C	26	D	27	E	28	F	29	A	30	
	卅二	1	2		3	В	4	C	5	D	6	E	7	2/5 勞動節翌日 3/5 - 4/5 J3 TSA說話及視訊評估 6/5 J5 升中座談會
五	卅三	8	9	F	10	A	11	В	12	S	13	S	14	12/5 學藝薈萃耀油天綵排 13/5 學藝薈萃耀油天 14/5 佛誕
	卅四	15	16	C	17		18	D	19	E	20	F	21	17/5 天主教學校教師日
月	卅五	22	23	A	24	B	25	C	26	D	27	E	28	第卅五周英文串字(J1-J6)
	卅六	29	30	F	31	A		Sing				1		
							1	S	2	S	3	S	4	2/6-7/6 J1-6 期終考(J5 呈分試、J6 畢業試)
六	卅七	5	6	S	7	S	8	B	9		10	O	11	9/6 端午節
	卅八	12	13	D	14	E	15	F	16	A	17	B	18	15/6 - 16/6 J3 TSA紙筆評估
月	卅九	19	20	C	21	D	22	E	23	F	24	A	25	25/6 聖保祿堂主保瞻禮
	四十	26	27		28	В	29	S	30	S				27/6 主保瞻禮假期 29/6 畢業禮綵排 30/6 畢業禮
									-		1		2	1/7 特別行政區成立日
	四一	3	4	S	5	S	6	S	7	S	8	S	9	5/7 升中派位 7/7 - 8/7 升中派位註册 8/7 感恩禮
t	四二	10	11	S	12	S	13	S	14		15		16	11/7 頒獎禮 12/7 J6中一入學前測驗 14/7 教師發展日(2)
月		17	18		19		20		21		22		23	14/7-31/8 暑假(2016年9月1日開課)
		24	25		26		27		28		29		30	
		31												
			1		2		3		4		5		6	備註:
八		7	8		9		10		11		12		13	考試前夕 (4/11,2/3,1/6) 半天上課
		14	15		16		17		18		19		20	12/5 - 13/5 學藝薈萃耀油天 (半天上課)
月		21	22		23		24		25		26		27	
		28	29		30		31						- 9	

2016年7月

周次	Ħ		1 1	11]	四	五	六
						1	2
	3	4	5	6	7	8	9
	10	11	12	13	14	15	16
	17	18	19	20	21	22	23
	24	25	26	27	28	29	30
	31						

 全校活動及考試:
 學校假期:

 5/7 歌唱比賽
 1/7 香港特別行政區成立紀念日

 11/7 - 23/8 暑假

備註: 學校活動 學校考試 **公**眾假期 學校假期 學校自訂假期

Appendix G: Waste Management Record	

Monthly Summary Waste Flow Table for <u>2016</u> (year)

	Actual Qua	antities of Ine	rt C&D Mate	rials Generate	ed Monthly	<u>Actua</u>	l Quantities o	of Non-inert Co	&D Wastes G	enerated Mor	<u>nthly</u>
Month	Total Quantity Generated	Hard Rocks & Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Mixed Waste Disposal at Sorting Facility	Metals	Paper / cardboard packaging	Plastics	Chemical Waste	Others (general refuse)
	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)
Jan											
Feb	521.76	0	0	0	521.76	0	0	0	0	0	38.34
Mar	1527.37	0	0	0	1527.37	0	0	0	0	0	188.63
Apr	2676.73	0	0	0	2676.73	0	0	0	0	0	87.72
May	2028.43	0	0	0	2028.43	0	0	0	0	0	47.78
June	2058.16	0	0	0	2058.16	0	0	0	0	0	81.13
Sub-total	8812.45	0	0	0	8812.45	0	0	0	0	0	443.6
July	5031.54	0	0	0	5031.54	0	0	0	0	0	17.12
Aug											
Sept											
Oct											
Nov											
Dec											
Total	13843.99	0	0	0	13843.99	0	0	0	0	0	460.72
Grand Total	13843.99	0	0	0	13843.99	0	0	0	0	0	460.72

Appendix H: Environmental Mitigation Implementation Schedule

Implementation Schedule for Environmental Mitigation Measures

EIA	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Implementation
Ref.	Ref.		Recommended	Implement	the measure	implement	requirements or	Status
			Measure &	the measure		the measure	standard for the	
			Main Concerns to				measure to	
			address				achieve	
Air Qual	ity Impact (Construction Phase)						
4.8	A1	housekeeping to minimize dust generation,	To minimize dust	HyD's	Whole	Throughout	EIAO-TM,	*
		e.g. by properly handling and storing dusty	generation	Contractor	construction	construction	APCO	
		materials			site	phase		
4.8	A2	Adopt dust control measures, such as dust	To minimize dust	HyD's	Whole	Throughout	EIAO-TM,	*
		suppression using water spray on exposed	generation	Contractor	construction	construction	APCO	
		soil (at least 8 times per day), in areas with	due to erosion		site	phase		
		dusty construction activities and during						
		material handling						
4.8	A3	Store cement bags in shelter with 3 sides	To prevent leakage of	HyD's	Whole	Throughout	EIAO-TM,	N/A
		and the top covered by impervious materials	cement	Contractor	construction	construction	APCO	
		if the stack exceeds 20 bags			site	phase		
4.8	A4	Maintain a reasonable height when dropping	To minimize dust	HyD's	Whole	Throughout	EIAO-TM,	V
		excavated materials to limit dust generation	generation	Contractor	construction	construction	APCO	
			during movement of		site	phase		
			excavated materials					
4.8	A5	Limit vehicle speed within site to 10km/hr	To minimize dust	HyD's	Whole	Throughout	EIAO-TM,	V
		and confine vehicle movement in haul road	generation	Contractor	construction	construction	APCO	
			due to traffic		site	phase		
			movement					

4.8	A6	Minimize exposed earth after completion of	To minimize dust	HyD's	Whole	Throughout	EIAO-TM,	*
		work in a certain area by hydroseeding,	generation	Contractor	construction	construction	APCO	
		vegetating, soil compacting or covering with	due to erosion		site	phase		
		bitumen						
4.8	A7	Provide wheel washing at site exit to clean	To prevent dust from	HyD's	Whole	Throughout	EIAO-TM,	V
		the vehicle body and wheel	being	Contractor	construction	construction	APCO	
			brought offsite		site	phase		
4.8	A8	Hard pave the area at site exit with concrete,	To prevent dust from	HyD's	Whole	Throughout	EIAO-TM,	V
		bitumen or hardcores	being	Contractor	construction	construction	APCO	
			brought offsite		site	phase		
4.8	A9	Cover materials on trucks before leaving the	To prevent falling of	HyD's	Whole	Throughout	EIAO-TM,	V
		site to prevent debris from dropping during	debris during traffic	Contractor	construction	construction	APCO	
		traffic movement or being blown away by	movement and by		site	phase		
		wind	wind					
4.8	A11	Regular maintenance of plant equipment to	To minimize black	HyD's	Whole	Throughout	EIAO-TM,	V
		prevent black smoke emission	smoke emission	Contractor	construction	construction	APCO	
					site	phase		
4.8	A12	Throttle down or switch off unused	To minimize	HyD's	Whole	Throughout	EIAO-TM,	V
		machines or machine in intermittent use	unnecessary emission	Contractor	construction	construction	APCO	
					site	phase		
4.8	A13	Carry out regular site inspection to audit the	To check the	HyD's	Whole	Throughout	EIAO-TM,	·
		implementation of mitigation measures	implemenation	Contractor	construction	construction	APCO	
			status and		site	phase		
			effectiveness of					
			mitigation measures					

4.8	A14	Carry out air quality monitoring throughout	To monitor	HyD's	At representative	Prior to and	EIAO-TM	~
		the construction period	construction dust	Contractor	ASRs	throughout		
			level			construction		
						phase		
Noise I	mpact (Con	astruction Phase)		•	•	•	•	•
3.8	N1	Adopt good site practice, such as regular	To minimize	HyD's	Whole	Throughout	NCO,EIAO-TM	~
		maintenance of plant equipment, throttle	construction	Contractor	construction	construction		
		down unused machines	noise level		site	phase		
3.8	N2	Use Quality Powered Mechanical	To minimize	HyD's	Whole	Throughout	NCO,EIAO-TM	N/A
		Equipment (QPME) which produces lower	construction	Contractor	construction	construction		
		noise level (e.g. Excavator/Loader	noise level		site	phase		
		(EPD-01431), Asphalt Paver (EPD-01226),						
		Road Roller						
		(EPD-00244) and Mobile Crane						
		(EPD-01477))						
3.8	N3	Erect movable noise barrier at significant	To lower noise	HyD's	Whole	Throughout	NCO,EIAO-TM	N/A
		noise source(e.g. Concrete Pump, Concrete	transmission	Contractor	construction	construction		
		Lorry Mixer, Excavator/Loader, Road			site	phase		
		Sweeper, Asphalt Paver, Road						
		Roller, Lorry, Breaker and Poker)						
3.8	N5	Regular maintenance of plant equipment to	To prevent noise	HyD's	Whole	Throughout	NCO,EIAO-TM	~
		prevent noise emission due to impair	emission	Contractor	construction	construction		
			due to impair		site	phase		
3.8	N6	Position mobile noisy equipment in location	To minimize noise	HyD's	Whole	Throughout	NCO,EIAO-TM	N/A
		and direction away from NSR	transmission to NSR	Contractor	construction	construction		
					site	phase		

3.8	N7	Use silencer or muffler on plant equipment	To minimize noise	HyD's	Whole	Throughout	NCO,EIAO-TM	V
		and should be properly maintained	transmission	Contractor	construction	construction		
					site	phase		
3.8	N8	Throttle down or switch off unused	To mimize noise	HyD's	Whole	Throughout	NCO,EIAO-TM	✓
		machines or machine in intermittent use	production	Contractor	construction	construction		
		between work			site	phase		
3.8	N9	Make good use of stockpiles or other	To minimize noise	HyD's	Whole	Throughout	NCO,EIAO-TM	N/A
		structures for noise screening	transmission	Contractor	construction	construction		
					site	phase		
3.8	N10	Avoid carrying out noisy activities at the	To mimize noise	HyD's	Whole	Throughout	NCO,EIAO-TM	V
		same time	production	Contractor	construction	construction		
					site	phase		
3.8	N11	Reduce the percentage on-time for some	To mimize noise	HyD's	Whole	Throughout	NCO,EIAO-TM	V
		noisy PMEs	production	Contractor	construction	construction		
					site	phase		
3.8	N12	Carry out noise monitoring	To monitor	HyD's	At representative	Prior to and	EIAO-TM	~
			construction	Contractor	NSRs	throughout		
			noise level			construction		
						phase		
Water I	mpact (Con	struction Phase)			•			
5.8	W1	Recirculate settled water for ground boring	To minimize	HyD's	Whole	Throughout	ProPECC PN	~
		and drilling	wastewater	Contractor	construction	construction	1/94, EIAO-TM	
		during site investigation or rock/soil	generation		site	phase		
		anchoring.						
5.8	W2	Set up sedimentation tank for settling	To reduce the amount	HyD's	Whole	Throughout	ProPECC PN	V
		suspended solids in wastewater before	of suspended solid in	Contractor	construction	construction	1/94, EIAO-TM	
		discharge into storm drains. Sand/silt	wastewater		site	phase		

		removal facilities such as sand traps, silt						
		traps and sedimentation basin should be						
		provided with adequate capacity.						
5.8	W3	Pave the construction road between the	To prevent soil and	HyD's	Whole	Throughout	ProPECC PN	✓
		wheel washing bay and the public road with	site	Contractor	construction	construction	1/94, EIAO-TM	
		backfall	runoff from leaving		site	phase		
			the site					
5.8	W4	Follow ProPECC PN 1/94 "Construction	To minimize surface	HyD's	Whole	Throughout	ProPECC PN	V
		Site Drainage" as far as practicable	runoff and chance of	Contractor	construction	construction	1/94, EIAO-TM	
			erosion		site	phase		
5.8	W5	Provide perimeter channels at site	To stop offsite storm	HyD's	Whole	Throughout	ProPECC PN	~
		boundaries.	runoff from entering	Contractor	construction	construction	1/94, EIAO-TM	
			the site		site	phase		
5.8	W6	Construct catchpits and perimeter channels	To stop runoff from	HyD's	Whole	Throughout	ProPECC PN	*
		prior to commencement of site formation	flowing across the site	Contractor	construction	construction	1/94, EIAO-TM	
		works and earthworks.			site	phase		
5.8	W7	Maintain silt removal facilities, channels,	To prevent failure that	HyD's	Whole	Throughout	ProPECC PN	✓
		manholes before and after rainstorm.	may lead to flooding	Contractor	construction	construction	1/94, EIAO-TM	
					site	phase		
5.8	W8	Remove sediment from silt and grit at	To prevent blockage	HyD's	Whole	Throughout	ProPECC PN	~
		regular interval.	the may lead to	Contractor	construction	construction	1/94, EIAO-TM	
			flooding		site	phase		
5.8	W9	Consider environmental requirements when	To ensure adequate	HyD's	Whole	Throughout	ProPECC PN	~
		diverting or realigning drainage.	hydraulic capacity of	Contractor	construction	construction	1/94, EIAO-TM	
			all drains		site	phase		

5.8	W10	Maintain a minimum distance of 100m between discharge point of construction site runoff and the existing saltwater intakes. No effluent will be discharged into typhoon	To prevent mixing	HyD's Contractor	Whole construction site	Throughout construction phase	ProPECC PN 1/94, EIAO-TM	~
		shelter. (for loations of seawater intakes, please refer to Figure 5.1 in EIA Report)						
5.8	W11	Arrange soil excavation works outside rainy seasons (April to September) as far as possible. If this cannot beachieved, the following measures should be implemented:	To minimize surface runoff and chance of erosion	HyD's Contractor	Whole construction site	Throughout construction phase	ProPECC PN 1/94, EIAO-TM	
		-Cover temporary exposed slope surfaces with impermeable materials, e.g. tarpaulin						~
		- Protect temporary access roads by crushed stone or gravel						N/A
		- Proved intercepting channels along crest/edge of excavation						N/A
		- Carry out adequate surface protection measures well before the arrival of a rainstorm						N/A
5.8	W12	Compact soil after earthwork. Provide permanent work or surface protection with appropriate drainage channels immediately after forming the final surfaces.	To prevent soil erosion under rainstorm	HyD's Contractor	Whole construction site	Throughout construction phase	ProPECC PN 1/94, EIAO-TM	•
5.8	W13	Prevent rainwater from entering trenches. Excavation of trenches should be dug and backfilled in short sections during rainy	To prevent soil erosion under rainstorm	HyD's Contractor	Whole Construction site	Throughout construction phase	ProPECC PN 1/94, EIAO-TM	N/A

		seasons. Remove silt in rainwater collected						
		from the trenches or foundation excavations						
		prior to discharge to storm drains.						
5.8	W14	Cover open stockpiles of construction	To prevent soil erosion	HyD's	Whole	Throughout	ProPECC PN	V
		materials (e.g. aggregates, sand and fill	under rainstorm	Contractor	construction	construction	1/94, EIAO-TM	
		materials) with impermeable materials such			site	phase		
		as tarpaulin during rainstorms.						
5.8	W15	Cover and temporary seal manholes	To prevent	HyD's	Whole	Throughout	ProPECC PN	~
		(including newly constructed ones) to	overloading of foul	Contractor	construction	construction	1/94, EIAO-TM	
		prevent silt, construction materials or debris	sewers		site	phase		
		and surface runoff from entering foul						
		sewers.						
5.8	W16	Remove waste from the site regularly.	To prevent waste	HyD's	Whole	Throughout	ProPECC PN	V
			accumulation	Contractor	construction	construction	1/94, EIAO-TM	
					site	phase		
5.8	W17	Apply discharge license for effluent	To ensure compliance	HyD's	Whole	Throughout	WPCO,TM-DSS,	~
		discharge. Treat the discharge to comply	with effluent discharge	Contractor	construction	construction	EIAO-TM	
		with the requirement in TM-DSS.	requirement		site	phase		
5.8	W18	Reuse treated effluent onsite, e.g. dust	To minimize	HyD's	Whole	Throughout	Waste Disposal	✓
		suppression, wheel washing and general	wastewater	Contractor	construction	construction	Ordinance,	
		cleaning.	generation		site	phase	EIAO-TM	
5.8	W19	Monitor effluent water quality.	To ensure compliance	HyD's	Whole	Throughout	WPCO,	~
			with effluent discharge	Contractor	construction	construction	EIAO-TM	
			requirement		site	phase		
5.8	W20	Register as chemical waste producer if	To control chemical	HyD's	Whole	Throughout	Waste Disposal	~
		chemical waste will be generated.	waste	Contractor	construction	construction	(Chemical	
					site	phase	Waste) (General)	

							Regulation,	
							EIAO-TM	
5.8	W21	Perform maintenance of vehicles and	To prevent oil leakage	HyD's	Whole	Throughout	Waste Disposal	~
		equipment that have oil leakage and spillage	or spillage	Contractor	construction	construction	(Chemical	
		potential on hard standings within a bunded			site	phase	Waste) (General)	
		area with sumps and oil interceptors.					Regulation,	
							EIAO-TM	
5.8	W22	Dispose chemical waste in accordance to	To avoid accident in	HyD's	Whole	Throughout	Waste Disposal	V
		Waste Disposal Ordinance. Follow the Code	waste storage and	Contractor	construction	construction	Ordinance,	
		of Practice on the Packaging, Labelling and	handling		site	phase	EIAO-TM	
		Storage of Chemical Wastes ,examples as						
		follows:						
		- Store chemical wastes with suitable						
		containers to avoid						
		leakage or spillage during storage, handling						
		and transport						
		- Label chemical waste containers according						
		to the CoP to notify and warn the waste						
		handlers						
		- Store chemical wastes at designated safe						
		location with						
		adequate space						

5.8	W23	Provide sufficient chemical toilets with regular maintenance by licensed chemical waste collector	To proper collection of taskforce waste	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO-TM	'
Water I	mpact (Oper	rational Phase)				1		<u> </u>
5.8	W24	Direct surface runoff for silt removal through silt trap before flowing to public storm water drainage system	To remove silt in surface runoff	HyD	Whole construction site	Throughout construction phase	WPCO, EIAO-TM	~
5.8	W25	Regularly maintain the silt traps	To prevent blockage	HyD	Whole construction site	Throughout construction phase	WPCO, EIAO-TM	V
Waste I	Management	t (Construction Phase)			•	1		-
6.5	WM1	Allocate an area for waste sorting and storage of C&D materials into the following categories for reuse, recycle or disposal: - excavated material suitable for reuse - inert C&D material for disposal offsite - non-inert C&D materials for disposal at landfills - chemical waste - general refuse	To minimize waste generation	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO-TM	~
6.5	WM2	Adopt good site practice as follows: - Provide training to workers on site cleanliness, waste management (waste	To proper handling of waste	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO-TM	V

		reduction, reuse and recycle) and chemical handling procedures - Provide sufficient waste collection points and regular removal - Cover waste materials with tarpaulin or in enclosure during transportation - Maintain drainage systems, sumps and oil interceptors - Sort out chemical waste for proper handling and treatment						
6.5	WM3	Adopt waste reduction measures as follows: - Allocate area/containers for sorting, recovering and storing waste for reuse, recycle or disposal (e.g. demolition debris and excavated materials, general refuse like aluminium cans) - Allocate area for proper storage of construction materials to prevent contamination - Minimize wastage through careful planning and avoiding over-purchase of construction materials	To minimize waste generation	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO-TM	•
6.5	WM4	Prepare and implement a site specific Waste Management Plan (WMP) as part of Environmental Management Plan (EMP) in accordance with ETWB TCW No. 19/25. Detail waste management method in the form of avoidance, reuse, recoverery,	To provide guidance to waste management	HyD's Contractor	Whole construction site	Throughout construction phase	ETWB TCW No. 19/2005, EIAO-TM	•

		recycling, storage, collection, treatment and disposal according to the recommendations on the EIA						
		and EM&A Manual. It should be approved by the ER and						
6.5	WM5	Store waste materials properly as follows:	To properly store	HyD's	Whole	Throughout	ProPECC PN	~
		- Avoid contamination by proper handling	waste	Contractor	construction	construction	1/94, EIAO-TM	
		and storing waste			site	phase		
		- Prevent erosion by covering waste or						
		applying water spray						
		- Maintain and clean storage area regularly						
		- Sort and stockpile different materials at						
		designated location to enhance reuse						
6.5	WM6	Apply for relevant waste disposal permits in	To properly dispose	HyD's	Whole	Throughout	Waste Disposal	·
		accordance with the Waste Disposal	waste	Contractor	construction	construction	Ordinance	
		Ordinance (Cap. 354), Waste			site	phase	(Cap. 354),	
		Disposal (Charges for Disposal of					Waste Disposal	
		Construction Waste)					(Charges for	
		Regulation (Cap. 345) and the Land					Disposal of	
		(Miscellaneous					Construction	
		Provisions) Ordinance (Cap. 28).					Waste)	
							Regulation	
							(Cap. 345) and	
							the Land	
							(Miscellaneous	
							Provisions)	
							Ordinance (Cap.	
							28), EIAO-TM	

6.5	WM7	Hire licensed waste disposal contractors for waste collection and removal. Dispose waste at licensed waste disposal facilities	To properly dispose waste	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO-TM	~
6.5	WM8	Implement trip-ticket system for recording the amount of waste generated, recycled and disposed, including chemical wastes	To monitor movement of waste	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal (Chemical Waste) (General) Regulation, Waste Disposal Ordinance, EIAO-TM	~
6.5	WM9	Provide wheel washing bay at site exit to clean the vehicle body and wheel	To prevent dust from being brought offsite	HyD's Contractor	Whole construction site	Throughout construction phase	ProPECC PN 1/94, EIAO-TM	~
6.5	WM10	Reduce water content in wet spoil generated from piling work by mixing with dry materials. Only dispose treated spoil with less than 25% dry density to Public Fill Reception Facilities	To minimize load to reception facilities	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO-TM	~
6.5	WM11	Dispose dry waste or waste with less than 70% water content by weight to landfill	To minimize load to reception facilities	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO-TM	~
6.5	WM12	Follow the Code of Practice on the Packaging, Labelling and Storage of Chemical Waste as follows: - Store chemical wastes with suitable	To avoid accident in waste storage and handling	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO-TM	~

		containers. Seal and maintain the container						
		to avoid leakage or spillage during						
		storage, handling and transport						
		- Label chemical waste containers in both						
		English and Chinese with instructions in						
		accordance to Schedule 2 of						
		the Waste Disposal (Chemical Waste)						
		(General) Regulation						
		- The container capacity should be smaller						
		than 450 litres						
		unless agreed by the EPD						
6.5	WM13	Comply with the requirement of the	To ensure proper	HyD's	Whole	Throughout	Waste Disposal	V
		chemical storage area:	storage of chemical	Contractor	construction	construction	Ordinance,	
		- Store only chemical waste and label	waste		site	phase	EIAO-TM	
		clearly the chemical characters of the waste						
		- Have at least 3 sides enclosed and						
		protected from rainfall with cover						
		- Provide sufficient ventilation						
		- Have impermeable floor and has bunds to						
		contain 110% of the capacity of the largest						
		container or 20% of the total volume of the						
		stored waste in the area, whichever is larger						
		- Adequately spaced incompatible materials						
6.5	WM14	Transfer used lubricants, waste oils and	To ensure proper	HyD's	Whole	Throughout	Waste Disposal	N/A
		other chemicals to oil recycling companies,	disposal of	Contractor	construction	construction	(Chemical	
		if possible, and empty oil drums for reuse or	chemical waste		site	phase	Waste) (General)	
		refill. No direct or indirect discharge is					Regulation,	
		permitted					EIAO-TM	

6.5	WM15	Hire licensed chemical waste disposal	To ensure proper	HyD's	Whole	Throughout	Waste Disposal	N/A
		contractors for waste collection and	disposal of	Contractor	construction	construction	(Chemical	
		removal. Dispose chemical waste at the	chemical waste		site	phase	Waste) (General)	
		approved CWTC at Tsing Yi or other					Regulation,	
		licensed facility					EIAO-TM	
6.5	WM16	Hire reputable waste collector to separately	To ensure proper	HyD's	Whole	Throughout	Waste Disposal	·
		collect and dispose general refuse from	disposal of	Contractor	construction	construction	(Chemical	
		other wastes. Cover the waste to prevent	general refuse		site	phase	Waste) (General)	
		being blown away					Regulation,	
							EIAO-TM	
6.5	WM17	Provide recycling bins for sorting out	To ensure proper	HyD's	Whole	Throughout	Waste Disposal	'
		recyclables for collection by recycling	recycling	Contractor	construction	construction	Ordinance,	
		companies. Non-recyclables should be	and disposal of general		site	phase	EIAO-TM	
		removed to designated landfills every day	refuse					
		by licensed collectors to prevent						
		environmental and health nuisance.						
6.5	WM18	Organize training and reminders to site staff	To ensure proper	HyD's	Whole	Throughout	EIAO-TM	~
		on waste minimization through avoidance	management of	Contractor	construction	construction		
		and reduction, reusing and recycling	general		site	phase		
			refuse					
6.5	WM19	Carry out testing to verify sediment quantity	To verify the	HyD's GI	Drillholes	Throughout	ETWB TC(W)	N/A
		and quality	categories of sediment	Contractor	CB1 to 5 as shown	construction	No. 34/2002	
			to be disposed in		in Sediment	phase		
			accordance with		Sampling and			
			ETWB		Testing Plan			
			TC(W) No. 34/2002					

Landscap	e and Vis	ual						
7.9.3	CM1	Shorten the construction period	To minimize duration of landscape and visual impact	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM	N/A
7.9.3	CM2	Limit work within site area without encroaching into the landscape resources offsite.	To minimize landscape and visual impact	HyD's Contractor	Whole construction site	Throughout construction phase	EIAO-TM	V
7.9.3	CM3	Protect retained trees from damage during construction work according to the recommended in the detailed tree assessment report and the approval of Tree Removal Application under ETWB TCW No. 3/2006 Tree Preservation	To maintain and minimize damage to existing greenery	HyD's Contractor	Whole construction site	Throughout construction phase	ETWB TCW 3/2006, EIAOTM	#
7.9.3	CM4	Transplant unavoidably affected trees wherever possible in accordance with ETWB TCW No. 3/2006 Tree Preservation. Maintain transplanted trees to ensure healthy development during the establishment period	To minimize tree loss and ensure survival of transplanted trees	HyD's Contractor	Whole construction site	Throughout construction phase	ETWB TCW 3/2006, EIAOTM	N/A
7.9.2.6	OM1	Carry out compensatory planting in areas proposed in the Tree Survey and Landscape and Greening Study Report in accordance to ETWB TCW 3/2006, which will be subjected to refinement in detailed design stage. Compensatory planting of a ratio no less than 1:1 in terms of quality and quantity will be provided for any potential tree	To compensate for loss greenery	HyD's Contractor	Whole construction site/Offsite	Construction phase	ETWB TCW 3/2006, EIAOTM	N/A

		felling within the site. Offsite planting may be required due to land constraint. 410 nos. of compensatory trees have been proposed						
7.9.2.6	OM2	Provide vertical greening at piers of elevated	To soften hard	HyD's	Whole	Construction	ETWB TCW	N/A
		roads and shrub planting near amenity	landscape	Contractor	construction	phase	36/2004	
		planting strips to soften the hard landscape			site			
		(e.g. climber and shrub for hiding central						
		divider and enclosures). Early comments						
		from the ACABAS and relevant						
		departments, implementation and						
		maintenance agents shall be sought at the						
		earlier stage.						
7.9.2.6	OM3	Match the design and materials of road	To match with existing	HyD's	Whole	Construction	ETWB TCW	N/A
		structure with the surrounding environment	landscape character	Contractor	construction	phase	36/2004	
		and with the schematic theme			site			
		paving of the future West Kowloon						
		Reclamation Development and the Advisory						
		Committee on the Appearance of Bridges						
		and Associated Structures (ACABAS)						

Remarks:

✓ Compliance of mitigation measure

X Non-compliance of mitigation measure

• Non-compliance but rectified by the contractor

* Recommendation was made during site audit but improved/rectified by the contractor

Waiting for improving/rectifying by the contractor

N/A Not Applicable

Appendix I: Cumulative Log for Environmental Exceedance, Complaints,
Notification of Summons and Successful Prosecutions

Cumulative Log for Environmental Exceedance, Complaints, Notification of Summons and Successful Prosecution

Reporting	Number of Exceedance	Number of Environmental	Number of Notification of	Number of Successful
Month	Number of Exceedance	Complaints	Summons	Prosecutions
February 2016	0	0	0	0
March 2016	0	0	0	0
April 2016	0	2	0	0
May 2016	7	0	0	0
June 2016	11	0	0	0
July 2016	6	0	0	0
Grand Total	24	2	0	0