

JOB NO.: TCS00975/18

CEDD CONTRACT AGREEMENT NO. EDO/04/2018 - ENVIRONMENTAL TEAM FOR CROSS BAY LINK, TSEUNG KWAN O

MONTHLY ENVIRONMENTAL MONITORING & AUDITING REPORT OF THE PROJECT – JULY 2019

PREPARED FOR
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT
(CEDD)

Date Reference No. Prepared By Certified By

9 August 2019 TCS00975/18/600/R0227v2

Martin Li (Environmental Consultant)

Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks
1	6 August 2019	First Submission
2	9 August 2019	Amended against IEC's comments

Acuity Sustainability Consulting Limited – Nature & Technologies (HK) Limited Joint Venture

Our ref: ASCL-2018009

AECOM Asia Company Limited 8/F., Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, New Territories, Hong Kong

Attention: Mr. Conrad NG

12 August 2019

Dear Sir,

Contract No. NE/2017/07
Cross Bay Link, Tseung Kwan O – Main Bridge and Associated Works
Monthly EM&A Report for July 2019

I refer to the email of ET concerning the Monthly EM&A Report for July 2019 (Version 2) with Ref. No. TCS00975/18/600/R0227v2. We have no adverse comment on it and verify the captioned according to section 1.9 of Environmental Permit with No. EP-459-2013.

Yours faithfully,

Li Wai Ming Kevin

Independent Environmental Checker

cc. Mr. Tam (ETL)
Galen Tse (CEDD)

EXECUTIVE SUMMARY

- ES01 Civil Engineering and Development Department (hereafter referred as "CEDD") is the Project Proponent and the Permit Holder of the Project Cross Bay Link, Tseung Kwan O (hereinafter referred as "the Project") which is a Designated Project to be implemented under Environmental Permit number EP-459/2013 (hereinafter referred as "the EP-459/2013" or "the EP").
- ES02 AUES was awarded the CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O (hereinafter called "the Service Contract"). The Services under the Service Contract is to provide environmental monitoring and audit (EM&A) services for the Works Contracts pursuant to the requirement of Environmental Team (ET) under the Approved EM&A Manual to ensure that the environmental performance of the Works Contracts comply with the requirement specified in the EM&A Manual and EIA Report of Agreement No. CE 43/2008 (HY) Cross Bay Link, Tseung Kwan O Investigation and other relevant statutory requirements.
- ES03 To facilitate management, the proposed Works of the project was divided into two Civil Engineering and Development Department (CEDD) Works contracts included *Contract 1* (*Contract No. NE/2017/07*) and *Contract 2* (*Contract No. NE/2017/08*). The date for commencement of Contract 1 was 3rd December 2018 while the date for commencement of Contract 2 was 17th January 2019.
- ES04 According to the Approved Environmental Monitoring & Audit (EM&A) Manual, air quality, noise and water quality monitoring are required to be conducted during the construction phase of the Project. As part of the EM&A programme, baseline monitoring shall undertake before the Project construction work commencement to determine the ambient environment condition. The baseline air quality, background noise and water quality monitoring has been carried out between 21st September 2018 and 13th November 2018 at the designated and interim locations. The baseline monitoring report under the EP-459/2013 has been compiled by the ET and verified by Independent Environmental Checker (hereinafter the "IEC") prior submitted to EPD on 19th November 2018 for endorsement.
- ES05 This is the 8th Monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from 1st to 31th July 2019 (hereinafter 'the Reporting Period').

CONSTRUCTION WORKS CONDUCTED AT THE REPORTING MONTH

- ES06 The major construction activities of Contract 1 (Contract No. NE/2017/07) undertaken in this Reporting Period are:-
 - Piling works at Portion II
 - Welding of steel bracket for precast shell installation at Portion II
 - Preparation of precast shell fabrication at Portion II
- ES07 The major construction activities of Contract 2 (Contract No. NE/2017/08) undertaken in this Reporting Period are:-
 - Trial Pit Work at Portion III
 - Pre-drill and Bored Pile Work at Portion III
 - UU Detection Work at Portion III
 - · Excavation Work at Portion III

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES08 Environmental monitoring activities under the EM&A program in this Reporting Period are summarized in the following table.

Table ES-4 Summary Environmental Monitoring Activities Undertaken in the Reporting Period

Issues	Enviro	Sessions	
Air Quality	1-Hour TSF		15
All Quality	24-Hr TSP		5
Construction Noise	Leq (30min) Daytime	5
Construction Noise	Leq (15min) Evening		2
Water Quality	Marine Water Sampling ^(Note 1)		13
	Contract 1	ET Regular Environmental Site Inspection	4
Inspection / Audit	Contract 1	Joint site audit with Project Consultant and IEC	1
Inspection / Audit	G + +2	ET Regular Environmental Site Inspection	4
	Contract 2	Joint site audit with Project Consultant and IEC	1

Note 1 Total sessions are counted by monitoring days

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES09 No air quality monitoring exceedance was recorded in this Reporting Period. No daytime construction noise monitoring exceedance was recorded while two (2) evening additional construction noise monitoring exceedances were recorded in this Reporting Period. For marine water quality monitoring, two (2) Action Level and two (2) Limit Level exceedances for the parameter Suspended Solid were recorded in the reporting period. NOEs were issued to notify EPD, IEC, the Contractor and the Project Consultant. The statistics of environmental exceedance and investigation of exceedance are summarized in the following table.

Table ES-5 Summary Environmental Monitoring Parameter Exceedance in the Reporting Period

Environmental	Monitoring	Action	Limit	Event & Action	
Issues	Parameters	Level	Level	Investigation Results	Corrective Actions
Air Ovolity	1-Hour TSP	0	0		
Air Quality	24-Hr TSP	0	0		
Construction	Leq _{30min} Daytime	0	0		
Noise	Leq _{15min} Evening	0	2	Not project related	NA
Water Quality	DO	0	0		
(Marine Water)	Turbidity	0	0		
(Marine Water)	SS	2	2	Refer to ES.11	Refer to ES.11

ES10 For the evening construction noise monitoring exceedances recorded in the reporting period, investigations were carried out and it was considered that the exceedances recorded are unlikely caused by the Project.

ES11 For the marine water quality exceedance recorded on 12 and 19 July 2019, investigation was undertaken by ET and it was considered that the exceedances recorded are unlikely caused by the Project. For the marine water quality exceedance recorded on 29 July 2019, investigation is underway by ET and the investigation result will be presented in next Monthly EM&A Report.

ENVIRONMENTAL COMPLAINT

ES12 No environmental complaint was recorded in this Reporting Period for the Project. The statistics of environmental complaint are summarized in the following table.

Table ES-6 Summary Environmental Complaint Records in the Reporting Period

Donouting		Environn	Related with		
Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	the Works Contract(s)
1 – 31 July	1	0	1	NA	NA
2019	2	0	0	NA	NA

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES13 No environmental summons or prosecutions was received in this Reporting Period for the Project. The statistics of environmental summons or prosecutions are summarized in the following tables.

Table ES-7 Summary Environmental Summons Records in the Reporting Period

Donouting			Environn	Related with		
	Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	the Works Contract(s)
	1 – 31 July	1	0	0	NA	NA
	2019	2	0	0	NA	NA

Table ES-8 Summary Environmental Prosecutions Records in the Reporting Period

Donouting		Environm	Related with		
Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	the Works Contract(s)
1 – 31 July	1	0	0	NA	NA
2019	2	0	0	NA	NA

REPORTING CHANGE

ES14 There is no reporting change made for this monthly report.

SITE INSPECTION BY EXTERNAL PARTIES

ES15 No site inspection was undertaken by AFCD and EPD within the Reporting Period.

FUTURE KEY ISSUES

- ES16 Due to wet season has approached, the Contractor was reminded that all the works to undertaking must be fulfill environmental statutory requirement, especially water quality mitigation measures to prevent surface runoff into nearby water bodies or public areas.
- ES17 In regards to the marine works, special attention should be paid on excavation works for the bridge pier foundations underway in which water quality mitigation measures such as erection of silt curtain should be properly implemented and maintained.

Table of Contents

1.	INTRODUCTION	N	3
		T BACKGROUND	3
	1.2 REPORT	STRUCTURE	3
2.	PROJECT ORGA	NIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION	5
	2.1 PROJEC	T ORGANIZATION	5
		RUCTION PROGRESS	6
	2.3 SUMMA	RY OF ENVIRONMENTAL SUBMISSIONS	7
3.	SUMMARY OF E	NVIRONMENTAL MONITORING PROGRAMMES AND	
	REQUIREMENT		9
	3.1 GENERA		9
		DRING PARAMETERS	9
		DRING LOCATIONS	9
		DRING FREQUENCY AND PERIOD	10
		DRING EQUIPMENT DRING PROCEDURES	11
			12 15
		MINATION OF ACTION/LIMIT (A/L) LEVELS IANAGEMENT AND DATA QA/QC CONTROL	17
4.	AIR QUALITY M		18
	4.1 GENERA		18
	4.2 RESULT	S OF AIR QUALITY MONITORING IN THE REPORTING MONTH	18
5.	CONSTRUCTION	N NOISE MONITORING	19
	5.1 GENERA		19
	5.2 RESULT	S OF NOISE MONITORING	19
6.	WATER QUALIT	Y MONITORING	20
	6.1 GENERA	AL	20
	6.2 RESULT	S OF WATER QUALITY MONITORING	20
7.	WASTE MANAG	EMENT	25
	7.1 GENERA	AL WASTE MANAGEMENT	25
	7.2 RECORI	DS OF WASTE QUANTITIES	25
8.	SITE INSPECTIO)N	26
		EMENTS	26
	8.2 FINDING	GS / DEFICIENCIES DURING THE REPORTING MONTH	26
9.	LANDFILL GAS	MONITORING	28
		AL REQUIREMENT	28
	9.2 LIMIT L	EVELS AND EVENT AND ACTION PLAN	28
	9.3 LANDFI	LL GAS MONITORING	28
10.	ENVIRONMENT	AL COMPLAINT AND NON-COMPLIANCE	29
	10.1 ENVIRO	NMENTAL COMPLAINT, SUMMONS AND PROSECUTION	29
11.	IMPLEMENTAT	ION STATUS OF MITIGATION MEASURES	30
		AL REQUIREMENTS	30
		IVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	30
	11.3 IMPACT	FORECAST	31
12.	CONCLUSIONS	AND RECOMMENDATIONS	32
_,	12.1 CONCLU		32
	12.2 RECOM	MENDATIONS	32

LIST OF TABLES

LIST OF TABL	<u>ÆS</u>
TABLE 2-1	DOCUMENTS SUBMISSION UNDER ENVIRONMENTAL PERMIT REQUIREMENT
TABLE 2-2	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE PROJECT WORKS (CONTRACT 1)
TABLE 2-3	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE PROJECT WORKS (CONTRACT 2)
TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	DESIGNATED AIR QUALITY MONITORING LOCATION RECOMMENDED IN EM&A MANUAL
TABLE 3-3	DESIGNATED CONSTRUCTION NOISE MONITORING LOCATION RECOMMENDED IN EM&A MANUAL
TABLE 3-4	INTERIM ALTERNATIVE LOCATION FOR AIR QUALITY AND NOISE MONITORING
TABLE 3-5	LOCATION OF WATER QUALITY MONITORING STATION
TABLE 3-6	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-7	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-8	WATER MONITORING EQUIPMENT
TABLE 3-9	TESTING METHOD AND REPORTING LIMIT OF THE CHEMICAL ANALYSIS
TABLE 3-10	ACTION AND LIMIT LEVELS FOR AIR QUALITY
TABLE 3-11	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-12	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	1-HOUR AND 24-HOUR TSP AIR QUALITY IMPACT MONITORING RESULTS
TABLE 5-1	CONSTRUCTION NOISE IMPACT MONITORING RESULTS
Table 6-1	RESULT SUMMARY OF DEPTH AVERAGE (SURFACE & MIDDLE LAYER) OF DO (MG/L)
TABLE 6-2	RESULT SUMMARY OF BOTTOM DEPTH OF DO (MG/L)
TABLE 6-3	RESULT SUMMARY OF DEPTH AVERAGE OF TURBIDITY (NTU)
Table 6-4	RESULT SUMMARY OF DEPTH AVERAGE OF SUSPENDED SOLID (MG/L)
TABLE 6-5	RESULT SUMMARY OF DEPTH AVERAGE OF TEMPERATURE (°C)
Table 6-6	RESULT SUMMARY OF DEPTH AVERAGE OF SALINITY (PPT)
Table 6-7	RESULT SUMMARY OF DEPTH AVERAGE OF PH
Table 6-8	SUMMARY OF WATER QUALITY EXCEEDANCE
Table 7-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
Table 7-2	SUMMARY OF QUANTITIES OF C&D WASTES
TABLE 8-1	SITE OBSERVATIONS OF CONTRACT 1
TABLE 8-2	SITE OBSERVATIONS OF CONTRACT 1
Table 9-1	ACTIONS IN THE EVENT OF LANDFILL GAS BEING DETECTED IN EXCAVATIONS
Table 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
TARI F 11-1	ENVIRONMENTAL MITIGATION MEASURES IN THE REPORTING MONTH

LIST OF APPENDICES

APPENDIX A	PROJECT LAYOUT PLAN
APPENDIX B	PROJECT ORGANIZATION CHART & CONTACT DETAILS OF KEY PERSONNEL
APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
APPENDIX D	MONITORING LOCATION (AIR QUALITY, NOISE AND WATER QUALITY)
APPENDIX E	EVENT AND ACTION PLAN
APPENDIX F	IMPACT MONITORING SCHEDULE OF THE REPORTING MONTH AND COMING MONTH
APPENDIX G	CALIBRATION CERTIFICATES OF EQUIPMENT AND THE ACCREDITATION LABORATORY CERTIFICATE
APPENDIX H	DATABASE OF MONITORING RESULTS
APPENDIX I	GRAPHICAL PLOTS OF MONITORING RESULTS
APPENDIX J	METEOROLOGICAL DATA
APPENDIX K	WASTE FLOW TABLE
APPENDIX L	IMPLEMENTATION RECORD OF WATER MITIGATION MEASURES IN THE REPORTING MONTH
APPENDIX M	IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES (ISEMM)

1. INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department (hereafter referred as "CEDD") is the Project Proponent and the Permit Holder of the Project Cross Bay Link, Tseung Kwan O (hereinafter referred as "the Project") which is a Designated Project to be implemented under Environmental Permit number EP-459/2013 (hereinafter referred as "the EP-459/2013" or "the EP").
- 1.1.2 AUES was awarded the CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O (hereinafter called "the Service Contract"). The Services under the Service Contract is to provide environmental monitoring and audit (EM&A) services for the Works Contracts pursuant to the requirement of Environmental Team (ET) under the Approved EM&A Manual to ensure that the environmental performance of the Works Contracts comply with the requirement specified in the EM&A Manual and EIA Report of Agreement No. CE 43/2008 (HY) Cross Bay Link, Tseung Kwan O Investigation and other relevant statutory requirements.
- 1.1.3 To facilitate management, the proposed Works of *Cross Bay Link, Tseung Kwan O* (hereinafter called "the Project") was divided into two Civil Engineering and Development Department (CEDD) Works contracts included *Contract 1 (Contract No. NE/2017/07)* and *Contract 2 (Contract No. NE/2017/08)*. The details of each contract Works are summarized below and the delineation of each contract is shown in *Appendix A*.

Contract 1 (Contract No. NE/2017/07)

- (i) 400m section of marine viaducts of steel deck sections including the Eternal Arch Bridge;
- (ii) 600m section of marine viaducts of concrete deck sections;
- (iii) An E&M Plantroom and associated building services; and
- (iv) E&M provisions.

Contract 2 (Contract No. NE/2017/08)

- (i) Elevated deck structures along Road D9;
- (ii) A 210m section of cycle track and footpath ramp bridge;
- (iii) A 630m section of noise semi-enclosure covering the entire length of Road D9, and;
- (iv) Lift, staircase, modification of existing seawall along Road D9, landscaping and miscellaneous works.
- 1.1.4 The date for commencement of Contract 1 is 3rd December 2018 while the date for commencement of Contract 2 is 17th January 2019.
- 1.1.5 As part of the EM&A programme, baseline monitoring shall be undertaken before the Project construction work commencement to determine the ambient environmental condition. The baseline air quality, background noise and water quality monitoring has been carried out between 21st September 2018 and 13th November 2018 at the designated and interim locations. The baseline monitoring report under the EP-459/2013 has been compiled by the ET and verified by Independent Environmental Checker (hereinafter the "IEC") prior submitted to EPD on 19th November 2018 for endorsement.
- 1.1.6 This is the 8^{th} Monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from I^{st} to $3I^{th}$ July 2019 (hereinafter 'the Reporting Period').

1.2 REPORT STRUCTURE

1.2.1 The Environmental Monitoring and Audit (EM&A) Monthly Report is structured into the following sections:-

Section 1 Introduction

Section 2 Project Organization and Construction Progress

Section 3 Summary of Impact Monitoring Requirements

Section 4 Air Quality Monitoring

Section 5	Construction Noise Monitoring
Section 6	Water Quality Monitoring
Section 7	Waste Management
Section 8	Site Inspections
Section 9	Landfill Gas Monitoring
Section 10	Environmental Complaints and Non-Compliance
Section 11	Implementation Status of Mitigation Measures
Section 12	Conclusions and Recommendations

2. PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION

2.1 PROJECT ORGANIZATION

2.1.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

The Project Consultant

- 2.1.2 The Project Consultant (hereinafter "the Consultant") is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Consultant with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors', ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation

The Contractor(s) of Works Contract(s)

- 2.1.3 There will be one contractor for each individual works contract. The Contractor(s) should report to the Consultant. The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.1.4 ET shall not be in any way an associated body of the Contractor(s) and employed by the Permit Holder (i.e., CEDD) to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitable qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. ET shall report to the Project Proponent and the duties shall include:
 - Conduct baseline monitoring, impact monitoring and post-construction monitoring and the associated in-situ and laboratory tests to monitor various environmental parameters as required in the EM&A Manual and the EP
 - Analyze the environmental monitoring and audit data, review the success of EM&A
 programme and the adequacy of mitigation measures implemented, confirm the validity of
 the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications

- Audit environmental conditions on site
- Report on the environmental monitoring and audit results to EPD, the Consultant, the IEC and Contractor(s) or their delegated representatives
- Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
- Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
- Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
- Adhere to the procedures for carrying out complaint investigation
- Set up a dedicated web site where the project information, all environmental monitoring and audit data and reports described in Condition 5.2 of the EP, and all finalized submissions and plans required under the EP are to be placed for public inspection
- Upload the environmental monitoring results to the dedicated web site in accordance with requirements of the EP and EM&A Manual
- To carry out the Operational Phase Landfill Gas monitoring during effluent drainage system maintenance for one year

<u>Independent Environmental Checker (IEC)</u>

- 2.1.5 IEC will be employed for this Project. The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor(s) or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 7 years' experience in EM&A and have relevant professional qualifications. The duty of IEC should be:
 - Provide proactive advice to the Project Consultant and the Project Proponent on EM&A
 matters related to the project, independent from the management of construction works, but
 empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the Project Consultant and Project Proponent on a monthly basis

2.2 CONSTRUCTION PROGRESS

2.2.1 3-month rolling construction program of the each Works Contract is enclosed in *Appendix C*; and the major construction activities undertaken in the Reporting Period is presented in below sub-sections.

Contract 1 (Contract No. NE/2017/07)

- 2.2.2 The major construction activities of Contract 1 undertaken in this Reporting Period are:-
 - Piling works at Portion II
 - Welding of steel bracket for precast shell installation at Portion II
 - Preparation of precast shell fabrication at Portion II

Contract 2 (Contract No. NE/2017/08)

- 2.2.3 The major construction activities of Contract 2 undertaken in this Reporting Period are:-
 - Trial Pit Work at Portion III
 - Pre-drill and Bored Pile Work at Portion III
 - UU Detection Work at Portion III
 - Excavation Work at Portion III

2.3 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.3.1 The required documents list below shall be to submit to EPD for retention:

Table 2-1 Documents Submission under Environmental Permit Requirement

EP condition	Submission to EPD	Requirement	Situation
1.11		no later than 1 month prior to the commencement of construction of the Project	
2.3	the Community Liaison	commencement of construction of the Project	CLG setting has submitted to EPD on 9 Oct 2018
2.4	Organization of Main	No later than 2 weeks before the commencement of construction of the Project	8
2.5	Waste Management Plan (WMP)	No later than 1 month before commencement of construction of the Project	 WMP of Contract 1 was submitted to EPD in 11 October 2018 WMP of Contract 2 was submitted to EPD in 14 December 2018
2.6	Landscape Mitigation Plan (LSMP)	No later than 1 month before commencement of construction of the Project	• LSMP was submitted on 1 Nov 2018
2.7	Landfill Gas Hazards	No later than 1 month before commencement of construction of the Project	 QLGHA of the Project was submitted to EPD on 1 November 2018

- 2.3.2 Upon completed baseline monitoring, a Baseline Monitoring Report was verified by IEC on 19 November 2018 and submitted to EPD on that day for endorsement.
- 2.3.3 The notification of Project dedicated web site to EPD was made on 9 January 2019 (http://www.envcbltko.hk/).
- 2.3.4 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project are presented in *Table 2-2*.

Table 2-2 Status of Environmental Licenses and Permits of the Project Works (Contract 1)

			License/Per	mit Status	
Item	Description	Permit no./	Valid 1	Period	
Item	Description	Account no./ Ref. no.	From	То	Status
1	Notification pursuant to Air pollution Control (Construction Dust) Regulation				Notified on 11 July 2018
2	Chemical Waste Producer Registration	5213-839-C1232 -19	28 Aug 2018	N/A	
3	Water Pollution Control Ordinance - Discharge	WT00032842-20 18	1 Mar 2019	31 Mar 2024	Valid until 31 March 2024
	License	In progress (Ref:438585)	!		Application submitted on 23 October 2018
4	Billing Account for Disposal of Construction Waste	7031412	24 Jul 2018	N/A	
	Billing Account for Disposal of Construction Waste (through Vessel delivering)	7032666	10 Jan 2019	10 Apr 2019	Valid until 10 April 2019
5	Marine Dumping Permit	EP-MD-19-066	24 Apr 2019	30 Sep 2019	Valid until 30 Sep 2019
6	Construction Noise Permit	GW-RE0403-19	24 May 2019	23 Jul 2019	Valid until 23 July 2019
		GW-RE0594-19	23 Jul 2019	22 Sep 2019	Valid until 22 Sep 2019

Remark: Evening marine work at Portion II for Contract 1 was scheduled on 2 – 6 and 8-13 July 2019

Table 2-3 Status of Environmental Licenses and Permits of the Project Works (Contract 2)

			License/Permit Status		
Item	Description	Permit no./	Valid Period		
Ittin	Description	Account no./ Ref. no.	From	То	Status
1	Notification pursuant to Air pollution Control (Construction Dust) Regulation				Notified on 31 October 2018
2	Chemical Waste Producer Registration	5213-839-B2500 -04	22 Nov 2018	N/A	
3	Water Pollution Control Ordinance - Discharge License	WT00034244-20 19	8 Jul 2019	31 Jul 2024	Valid until 31 July 2024
4	Billing Account for Disposal of Construction Waste	7032702	8 Nov 2018	N/A	
5	Marine Dumping Permit	EP/MD/19-103	26 Apr 2019	30 Sep 2019	Valid until 30 Sep 2019

Remark: No evening work and night work was carried out for Contract 2

3. SUMMARY OF ENVIRONMENTAL MONITORING PROGRAMMES AND REQUIREMENTS

3.1 GENERAL

3.1.1 The Environmental Monitoring and Audit Programmes and requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project. A summary of EM&A programmes and requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

3.2.1 Monitoring parameters of air quality, noise and water quality are summarized in *Table 3-1*.

Table 3-1 Summary of EM&A Requirements

Environmental Issue	Parameters		
Air Quality	1-hour TSP by Real-Time Portable Dust Meter; and 24-hour TSP by High Volume Air Sampler Leq (30min) in six consecutive Leq(5 min) between 07:00-19:00 on normal weekdays Supplementary information for data auditing, statistical results such as L ₁₀ and L ₉₀ shall also be obtained for reference.		
Noise			
Water Quality	 In-situ measurement – Dissolved Oxygen (DO) concentration (mg/L) & saturation (%), pH, Salinity (mg/L), Temperature (°C) and Turbidity (NTU); and Laboratory analysis – SS (mg/L) 		

3.3 MONITORING LOCATIONS

Air Quality and Construction Noise

3.3.1 According to the Approved EM&A Manual Section 5.4 and Section 6.3, three (3) representative air sensitive receivers (ASR) and four (4) representative noise sensitive receivers were designated as monitoring stations. The designated air quality and noise monitoring locations are listed in *Table 3-2* and *Table 3-3*, and illustrated in *Appendix D*.

Table 3-2 Designated Air Quality Monitoring Location recommended in EM&A Manual

ID	Location in the EM&A Manual	Currently Situation
AM1	Tung Wah Group of Hospitals Aided Primary School & Secondary School	Not yet construct
AM2	Lohas Park Stage 2 (Planned Development in Area 86)	Under Construction
AM3	Lohas Park Stage 3 (Planned Development in Area 86)	Under Construction

Table 3-3 Designated Construction Noise Monitoring Location recommended by EM&A Manual

ID	Location	Currently Situation
CNMS-1	Lohas Park Stage 1(Planned Development in Area 86, Package 5) (Southeast facade)	Under Construction
CNMS-2	Lohas Park Stage 1 (Planned Development in Area 86, Package 6) (Southeast facade)	Under Construction
CNMS-3	Lohas Park Stage 3 (Planned Development in Area 86,Package 11) (West facade)	Under Construction
CNMS-4	Tung Wah Group of Hospitals Aided Primary School & Secondary School (Southwest facade)	Not yet construct

3.3.2 As observed and confirmed by ET and IEC during the joint site visit on 29th August 2018, the designated air quality and noise monitoring locations are under construction or yet to construct. It is considered that these designated locations are not appropriate to perform air quality and noise monitoring. In this regard, alternative locations were proposed as interim arrangement to carry out air quality and noise monitoring before occupation of the designated monitoring location. A letter enclosed with the alternative location proposal and IEC verification (Our Ref: TCS00975/18/300/L0038) was sent to EPD on 19th October 2018 and the proposal was agreed by

EPD. Therefore, air quality and construction noise impact monitoring would be performed at the agreed alternative locations until the designated sensitive receivers occupied and granted the premises.

3.3.3 The agreed alternative monitoring location for impact air quality and noise monitoring are summarized in Table 3-4 and illustrated in *Appendix D*.

Table 3-4 Interim alternative location for air quality and noise monitoring

Location ID	Monitoring Parameter	Location
AM4	1-Hour TSP Air Quality	Podium of Lohas Park Phase 2A (Le Prestige)
AM5	24-Hour TSP Air Quality	Boundary of Site Office near Junction of Wan Po Road and Wan O Road
CNMS-5	Noise (L _{eq} , L ₁₀ & L ₉₀)	Podium of Lohas Park Phase 2A (Le Prestige)

Remark: Since 24-Hour TSP Air Quality monitoring is not granted at AM4 Lohas Park Phase 2A, the 24-Hour TSP monitoring was therefore proposed at AM5 which is located at the boundary of the project site office.

Water Quality

3.3.4 According to Table 7.1 of the approved EM&A Manual Section 7.4, two Control Stations (C3 & C4), six (6) sensitive receivers (CC1, CC2, CC3, CC4, CC13 & SWI1) and one (1) Gradient station (I1) are recommended to perform water quality monitoring. Details and coordinate of these water quality monitoring stations are described in *Table 3-5* and the locations is shown in *Appendix D*.

Table 3-5 Location of Water Quality Monitoring Station

Ctation	Coord	linates	Description
Station	Easting	Northing	Description
CC1	843201	816416	Sensitive Receiver – Coral Sites at Chiu Keng Wan
CC2	844076	817091	Sensitive Receiver – Coral Sites at Junk Bay
CC3	844606	817941	Sensitive Receiver – Coral Sites at Junk Island
CC4	845444	815595	Sensitive Receiver – Coral Sites at Fat Tong Chau West
CC13	844200	817495	Sensitive Receiver – Coral Sites at Junk Bay near Chiu Keng Wan
SWI1	845512	817442	Sensitive Receiver – Tseung Kwan O Salt Water Intake
C3	843821	816211	Control Station (Ebb Tide) – within Junk Bay
C4	844621	815770	Control Station (Flood Tide) – within Junk Bay
I1	844602	817675	Gradient Station – in between Lam Tin Tunnel (LTT) and CBL

3.4 MONITORING FREQUENCY AND PERIOD

3.4.1 To according with the approved *EM&A Manual*, impact monitoring requirements are presented as follows.

Air Quality Monitoring

- 3.4.2 Air quality impact monitoring frequency is as follows:
 - Once every 6 days of 24-hour TSP and 3 times of 1-hour TSP monitoring; during course of works throughout the construction period

Construction Noise Monitoring

- 3.4.3 Construction noise monitoring frequency is as follows:
 - One set of Leq_(30min) measurements in a weekly basis between 07:00 and 19:00 hours on normal weekdays during course of works as throughout the construction period
 - If construction works are extended to include works during the hours of 1900-0700, additional weekly impact monitoring shall be carried out during evening and night-time works. Applicable permits under the NCO shall be obtained by the Contractor.

Water Quality (Marine Water) Monitoring

- 3.4.4 Marine water impact monitoring frequency is as follows:
 - Three days a week, at mid ebb and mid flood tides during course of pile excavation works for the bridge pier foundations underway. Moreover, the intervals between 2 consecutive sets of monitoring day shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

Air Quality Monitoring

3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50)*, Appendix *B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to prove that the instrument is capable of achieving a comparable results to the HVS. The instrument should be calibrated regularly, and the 1-hour sampling shall be determined on yearly basis by the HVS to check the validity and accuracy of the results measured by direct reading method. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory. The equipment used for air quality monitoring is listed in *Table 3-6*.

Table 3-6 Air Quality Monitoring Equipment

Equipment		Model
24-hour TSP	High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170
	Calibration Kit	TISCH Model TE-5025A (S/N: 438320)
1- hour TSP	Portable Dust Meter	Laser Dust Monitor Sibata LD-3B Laser Dust Monitor (S/N: 3Y6503)

Noise Monitoring

3.5.2 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in ms⁻¹. Noise equipment will be used for impact monitoring is listed in *Table 3-7*.

Table 3-7 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	Rion NL-52 (S/N:00464681)
Calibrator	Rion NC-74 (S/N:34657231)
Portable Wind Speed Indicator	Anemometer AZ Instrument 8908

Water Quality Monitoring

- 3.5.3 For water quality monitoring, the equipment should fulfill the requirement under the Approved *EM&A Manual Section 7.2*. The requirement is summarized below:
 - Dissolved Oxygen and Temperature Measuring Equipment The instrument should be a portable, weatherproof dissolved oxygen measuring instrument completed with cable, sensor, comprehensive operation manuals, and should be operable from a DC power source. It should be capable of measuring: dissolved oxygen levels in the range of 0-20 mg/L and 0-200% saturation; and a temperature of 0-45 degrees Celsius. It should have a membrane electrode with automatic temperature compensation complete with a cable of not less than 35 m in length. Sufficient stocks of spare electrodes and cable should be available for replacement where necessary.
 - *Turbidity Measurement Equipment* The instrument shall be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment shall use a DC power source. It shall have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
 - Salinity Measurement Instrument A portable salinometer capable of measuring salinity in the range of 0-40 ppt should be provided for measuring salinity of the water at each monitoring location.

- Water Depth Detector A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. A detector affixed to the bottom of the works boat, if the same vessel is to be used throughout the monitoring programme, is preferred.
- **Positioning Device** hand-held or boat-fixed type digital Global Positioning System (GPS) with way point bearing indication or other equipment instrument of similar accuracy, should be provided and used during water quality monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- Water Sampling Equipment A water sampler, consisting of a transparent PVC or glass cylinder of not less than two liters, which can be effectively sealed with cups at both ends, should be used. The water sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.5.4 Equipment used for water quality impact monitoring is listed in *Table 3-8*.

Table 3-8 Water Monitoring Equipment

Equipment	Model	
A Digital Global Positioning System	GPS12 Garmin	
Water Depth Detector	Eagle Sonar CUDA 300	
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both	
water Sampler	ends	
Thermometer & DO meter		
pH meter	YSI ProDSS Digital Sampling System Water Quality Meter	
Turbidimeter	(S/N: 15H102620/15H103928)	
Salinometer		
Sample Container	High density polythene bottles (provided by laboratory)	
Storage Container	'Willow' 33-litter plastic cool box with Ice pad	

3.6 MONITORING PROCEDURES

Air Quality

1-hour TSP

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3 Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.

24-hour TSP

- 3.6.2 The equipment used for 24-hour TSP measurement is TISCH, Model TE-5170 TSP High Volume Air Sampler, which complied with *EPA Code of Federal Regulation, Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:
 - (a.) An anodized aluminum shelter;
 - (b.) A 8"x10" stainless steel filter holder;
 - (c.) A blower motor assembly;
 - (d.) A continuous flow/pressure recorder;
 - (e.) A motor speed-voltage control/elapsed time indicator;
 - (f.) A 7-day mechanical timer, and
 - (g.) A power supply of 220v/50 Hz
- 3.6.3 For HVS for 24-hour TSP monitoring, the HVS is mounted in a metallic cage with a top for protection and also it is sat on the existing ground or the roof of building. The flow rate of the HVS between 0.6m³/min and 1.7m³/min will be properly set in accordance with the manufacturer's instruction to within the range recommended in *EPA Code of Federal*

Regulation, Appendix B to Part 50. Glass Fiber Filter 8" x 10" of TE-653 will be used for 24-Hour TSP monitoring and would be supplied by laboratory. The general procedures of sampling are described as below:-

- A horizontal platform with appropriate support to secure the samples against gusty wind should be provided;
- No two samplers should be placed less than 2 meters apart;
- The distance between the sampler and an obstacle, such as building, must be at least twice the height that the obstacle protrudes above the sample;
- A minimum of 2 meters of separation from any supporting structure, measured horizontally is required;
- Before placing any filter media at the HVS, the power supply will be checked to ensure the sampler work properly;
- The filter paper will be set to align on the screen of HVS to ensure that the gasket formed an air tight seal on the outer edges of the filter. Then filter holder frame will be tightened to the filter hold with swing bolts. The holding pressure should be sufficient to avoid air leakage at the edge.
- The mechanical timer will be set for a sampling period of 24 hours (00:00 mid-night to 00:00 mid-night next day). Information will be recorded on the field data sheet, which would be included the sampling data, starting time, the weather condition at current and the filter paper ID with the initial weight;
- After sampling, the filter paper will be collected and transfer from the filter holder of the HVS to a sealed envelope and sent to a local HOKLAS accredited laboratory for quantifying.
- 3.6.4 All the sampled 24-hour TSP filters will be kept in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C, for six months prior to disposal.
- 3.6.5 The HVS used for 24-hour TSP monitoring will be calibrated in two months interval for in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A) to establish a relationship between the follow recorder meter reading in cfm (cubic feet per minute) and the standard flow rate, Qstd, in m³/min. Motor brushes of HVS will be regularly replaced. The calibration certificates of the air quality monitoring equipment used for the impact monitoring and the HOKLAS accredited certificate of laboratory was provided in Appendix G.

Noise Monitoring

- 3.6.6 As referred to in the Technical Memorandum (TM) issued under the NCO, sound level meters in compliance with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications shall be used for carrying out the noise monitoring. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.
- 3.6.7 All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq_(30 min) in six consecutive Leq_(5 min) measurements will be used as the monitoring parameter for the time period between 07:00-19:00 hours on weekdays throughout the construction period.
- 3.6.8 The sound level meter will be mounted on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield will be fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point would normally be at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point would be at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.

- 3.6.9 Immediately prior to and following each noise measurement the accuracy of the sound level meter will be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration level from before and after the noise measurement agrees to within 1.0 dB.
- 3.6.10 Noise measurements will not be made in fog, rain, wind with a steady speed exceeding 5m/s or wind with gusts exceeding 10m/s. The wind speed will be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.6.11 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis. The calibration certificates of noise monitoring equipment used for the impact monitoring was provided in Appendix G.

Marine Water Quality

- 3.6.12 Marine water quality monitoring would be conducted at all designated locations in accordance with Table 7.1 of the approved EM&A Manual. The procedures of water sampling, in-situ measurement and chemical analysis are described as below:
 - A Global Positioning System (GPS) will be used to ensure that the correct location was selected prior to sample collection. A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.
 - The marine water sampler will be lowered into the water body at a predetermined depth. The trigger system of the sampler is activated with a messenger and opening ends of the sampler are closed accordingly then the sample of water is collected.
 - During the sampling, the sampling container will be rinsed to use a portion of the marine water sample before the water sample is transferred to the container. Upon sampling completion, the container will be sealed with a screw cap.
 - Before the sampling process, general information such as the date and time of sampling, weather condition and tidal condition as well as the personnel responsible for the monitoring will be recorded on the monitoring field data sheet.
 - In-situ measurement including water temperature, turbidity, dissolved oxygen, salinity, pH and water depth will be recorded at the identified monitoring station and depth. At each station, marine water samples will be collected at three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m. Samples at 1m below water surface and 1m above sea bottom will be collected when the water depth is between 3m and 6m. And sample at mid-depth will be taken when the water depth is below 3m.
 - For the in-situ measurement, two consecutive measurements of sampling depth, temperature, dissolved oxygen, salinity, turbidity and pH concentration will be measured at the sea. The YSI ProDSS Multifunctional Meter will be retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set is more than 25% of the value of the first reading, the reading is discarded and further readings is taken.
 - Marine water sample will be collected by using a water sampler. The high-density polythene bottles will be filled after the water sample collected from the sea. Before the water sample being fills into the sampling bottles, the sampling bottles will be pre-rinsed with the same water sample. The sampling bottles will then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to HOKLAS accredited laboratory for the chemical analysis as followed APHA Standard Methods for the Examination of Water and Wastewater 19ed 2540D, unless otherwise specified.
- 3.6.13 Before each round of monitoring, the dissolved oxygen probe will be calibrated by wet bulb method; a zero check in distilled water will be performed with the turbidity and salinity probes. The turbidity probe also will be checked with a standard solution of known NTU and known value of the pH standard solution were used to check the accuracy of pH value before each

monitoring day. Moreover, all in-situ measurement equipment used marine water monitoring will be calibrated at three months interval.

Laboratory Analysis

3.6.14 All water samples included the duplicate samples, was tested with chemical analysis as specified in the EM&A Manual by a HOKALS accredited laboratory - ALS Technichem (HK) Pty Ltd. The chemicals analysis method and reporting limit show *Table 3-9*.

Table 3-9 Testing Method and Reporting Limit of the Chemical Analysis

Parameter	ALS Method Code	In-house Method Reference (1)	Reporting Limit
Total Suspended Solids	EA025	APHA 2540D	1 mg/L

Note:

- 1. The exact method shall depend on the laboratory accredited method. APHA = Standard Methods for the Examination of Water and Wastewater by the American Public Health Association.
- 3.6.15 The determination works will start within 24 hours after collection of the water samples or within the holding time as advised by the laboratory.

Meteorological Information

- 3.6.16 The meteorological information including wind direction, wind speed, humidity and temperature etc. of impact monitoring is extracted from the closest Tseung Kwan O Hong Kong Observatory Station. Moreover, the data of rainfall and air pressure would be extracted from King's Park Station.
- 3.6.17 For marine water quality monitoring, tidal information would be referred to tide gauge at Tai Miu Wan.

3.7 DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.7.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. A summary of the Action/Limit (A/L) Levels for air quality, construction noise and water quality are shown in *Tables 3-10*, *3-11* and *3-12* respectively.

Table 3-10 Action & Limit Levels of Air Quality (1-Hour & 24-Hr TSP)

Monitoring Station	Action Level (μg /m³)		Limit Level (μg/m³)	
Monitoring Station	1-Hour TSP	24-Hr TSP	1-Hour TSP	24-Hr TSP
AM4	278	NA	500	NA
AM5	NA	190	NA	260
Note: 1-Hour & 24-Hr	1-Hour & 24-Hr TSP of Action Level = (Average Baseline Results \times 1.3 + Limit level)/2			

Table 3-11 Action and Limit Levels for Construction Noise, dB(A)

Monitoring Location	Action Level	Limit Level
	Time Period: 0700-1900 hours o	on normal weekdays (Leq30min)
CNMS-5	When one or more documented complaints are received	75 dB(A)
CIVINIS-5	Time Period: 1900-2300 hours on all days (Leq15min)	
	When one or more documented complaints are received	<i>55</i> dB(A)

Remarks:

- 1. Construction noise monitoring will be resumed at the designated locations CNMS-1, CNMS-2, CNMS-3 and CNMS4 once they are available and permission are granted;
- 2. The designated locations CNMS-1, CNMS-2 and CNMS-3 are located at residential building which are still under construction, Limit Level of 75dB(A) will be adopted until they are occupied;
- 3. The designated location CNMS-4 is located at planned school and still not yet to construction. When the school occupied and operated, Limit Level of 70dB(A) should be adopted and should be reduced to 65dB(A) during examination period; and
- 4. If construction works are required during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority shall be followed.

Table 3-12 Action and Limit Levels for Water Quality

1 able 5-12	Action and Limit I	Levels for water Quali	.ty			
Monitoring		Depth Average	of SS (mg/L)			
Station	Actio	on Level	L	imit Level		
CC1	7.8	OR 120% of	9.3	OR 130% of		
CC2	9.0	upstream control station at the same	9.2	upstream control station at the same		
CC3	8.2	tide of the same day (Control Station C3	9.0	tide of the same day (Control Station C3		
CC4	13.8	at Ebb tide and Control Station C4 at	15.4	at Ebb tide and Control Station C4 at		
CC13	8.9	Flood tide), whichever is higher	10.3	Flood tide), whichever is higher		
SWI1	8	mg/L		10 mg/L		
		Dissolved Oxy	gen (mg/L)			
Monitoring	Depth Average of S	Surface and Mid-depth	<u> </u>	Bottom		
Location	Action Level	Limit Level	Action Leve	el Limit Level		
CC1	5.8	5.7	5.3	5.2		
CC2	5.8	5.7	5.3	5.1		
CC3	5.5	5.4	4.9	4.7		
CC4	5.7	5.7	5.5	5.4		
CC13	5.6	5.5	5.3	5.2		
SWI1	5.4	4.8	5.1	5.0		
Monitoring		Depth Average of T	Turbidity (NTU	J)		
Location	Actio	on Level		imit Level		
CC1	5.8	OR 120% of	6.0	OR 130% of		
CC2	4.6	upstream control station at the same	5.5	upstream control station at the same		
CC3	4.8	tide of the same day (Control Station C3	5.4	tide of the same day		
CC4	6.1	at Ebb tide and	7.1	(Control Station C3 at Ebb tide and		
CC13	6.0	Control Station C4 at Flood tide),	6.3	Control Station C4 at Flood tide),		
SWI1	6.1	whichever is higher	7.1	whichever is higher		

3.7.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix E*.

3.8 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.8.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database properly maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.
- 3.8.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4. AIR QUALITY MONITORING

4.1 GENERAL

- 4.1.1 In the Reporting Period, 1-Hour TSP and 24-Hr TSP of air quality monitoring were respectively performed at interim alternative monitoring locations AM4 and AM5. The air quality monitoring schedule is presented in *Appendix F*.
- 4.1.2 Valid calibration certificates of monitoring equipment are shown in *Appendix G* and the monitoring results are summarized in the following sub-sections

4.2 RESULTS OF AIR QUALITY MONITORING IN THE REPORTING MONTH

4.2.1 During the Reporting Period, *15* sessions of 1-hour TSP and *5* sessions of 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Table 4-1*. The detailed 24-hour TSP monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

Table 4-1 1-Hour and 24-Hour TSP Air Quality Impact Monitoring Results

AI	M5	AM4								
24-Hr TS	$SP(\mu g/m^3)$	1-Hour TSP (μg/m³)								
Date	Meas. Result	Date	Start Time	1st Meas.	2 nd Meas.	3 rd Meas.				
3-Jul-19	65	5-Jul-19	9:46	69	71	73				
9-Jul-19	100	11-Jul-19	9:21	98	106	89				
15-Jul-19	172	17-Jul-19	9:27	59	58	60				
20-Jul-19	109	23-Jul-19	13:04	60	65	71				
26-Jul-19	124	29-Jul-19 9:26		66	64	62				
Average (Range)	113 (65 - 172)		rage nge)	71 (58 – 106)						

- 4.2.2 As shown in *Table 4-1*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action / Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.3 The meteorological data during impact monitoring period is summarized in *Appendix J*.

5. CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction noise quality monitoring was performed at interim alternative monitoring location **CNMS-5**. The noise quality monitoring schedule is presented in *Appendix F*.
- 5.1.2 Valid calibration certificates of monitoring equipment is shown in *Appendix G* and the construction noise monitoring results are summarized in the following sub-sections

5.2 RESULTS OF NOISE MONITORING

5.2.1 **5** sessions of daytime construction noise monitoring were performed at the interim alternative location CNMS-5 in the reporting period. The daytime noise monitoring results at interim alternative location is summarized in **Table 5-1**. The detailed noise monitoring data are presented in **Appendix H** and the relevant graphical plots are shown in **Appendix I**.

Table 5-1 Daytime Construction Noise Impact Monitoring Results

Doto	Time of	Time of	Measurement	Result (dB(A))
Date	Starting	Finishing	$ m L_{eq30min}$	Façade Correction
5-Jul-19	10:08	10:38	63.4	NA
11-Jul-19	11:21	11:51	65.6	NA
17-Jul-19	10:14	10:44	64.6	NA
23-Jul-19	14:48	15:18	69.4	NA
29-Jul-19	9:36	10:06	65.3	NA

- 5.2.2 As shown in *Table 5-1*, all the measured results were below 75dB(A) of the acceptance criteria. Furthermore, no complaint on daytime construction noise was registered, indicating no exceedance of Action Level.
 - 5.2.3 In the reporting period, evening marine work by Contractor of Contract 1 at Portion II was scheduled from 2 6 and 8 13 July 2019. Additional weekly evening construction noise monitoring were performed at the interim alternative location CNMS-5 in the reporting period. The evening noise monitoring results at interim alternative location is summarized in *Table 5-2*. The detailed noise monitoring data are presented in *Appendix H*.

Table 5-2 Evening Construction Noise Impact Monitoring Results

Doto	Date Time of		Measurement Result (dB(A))				
Date	Starting	Finishing	$L_{ m eq15min}$	Façade Correction			
3-Jul-19	19:41	19:56	61.6	NA			
10-Jul-19	19:23	19:38	61.0	NA			

- 5.2.4 According to Table 5-2, the measured results on 3 and 10 July 2019 were higher than 55dB(a) of the acceptance criteria, Therefore a total of two (2) limit level evening noise monitoring exceedances were recorded in the reporting period and investigations were undertaken by ET accordingly.
- 5.2.5 For the evening noise monitoring exceedances on 3 and 10 July 2019, since the monitoring result obtained were within the range of evening noise obtained from baseline monitoring and external noise source such as traffic noise was noted during the course of monitoring, it was considered the exceedances recorded were unlikely due to the Project.

6. WATER QUALITY MONITORING

6.1 GENERAL

- 6.1.1 The water quality monitoring schedule is presented in Appendix F and the monitoring results are summarized in the following sub-sections.
- 6.1.2 Valid calibration certificates of monitoring equipment and the laboratory accredited certificate is shown in *Appendix G*. The water quality monitoring results are summarized in the following sub-sections.

6.2 RESULTS OF WATER QUALITY MONITORING

6.2.1 Due to adverse weather condition (Strong Wind Signal Number 8) was encountered on 31 July 2019, the marine water sampling event on 31 July 2019 was cancelled. In this Reporting Period, a total of 13 sampling days were performed for marine water monitoring at the nine designated locations. Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids are summarized in *Tables 6-1* to 6-4.

Table 6-1 Results Summary of Depth Average (Surface & Middle Layer) of DO (mg/L)

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I1
	2-Jul-19	7.8	6.8	7.6	6.9	7.3	7.5	7.3	6.4	7.6
	4-Jul-19	5.8	5.8	5.8	5.9	5.7	6.1	5.9	5.7	5.7
	6-Jul-19	5.8	5.8	5.6	6.2	5.7	5.8	5.8	5.5	5.6
	8-Jul-19	6.0	6.1	6.7	5.8	6.0	6.8	5.6	5.9	5.8
	10-Jul-19	6.0	6.1	6.4	7.2	6.0	5.8	5.6	5.5	6.3
	12-Jul-19	6.6	6.8	7.2	5.9	6.6	6.5	6.7	6.5	7.0
Mid-Ebb	15-Jul-19	7.8	7.5	7.8	8.8	7.6	8.3	7.1	6.5	7.9
	17-Jul-19	7.8	7.9	7.8	7.9	8.9	9.8	6.6	6.0	9.4
	19-Jul-19	7.7	7.3	8.8	7.4	7.9	8.7	7.3	6.7	8.8
	22-Jul-19	6.5	6.2	5.8	5.9	6.1	6.6	5.9	5.9	6.1
	24-Jul-19	6.0	5.8	5.9	6.1	5.8	6.0	5.8	5.7	5.8
	26-Jul-19	5.9	6.8	7.0	7.3	7.8	6.7	6.1	7.3	7.3
	29-Jul-19	7.8	6.7	7.6	6.3	7.6	6.7	7.5	6.5	6.8
	2-Jul-19	7.8	6.7	7.6	6.7	6.7	7.2	6.9	6.4	7.3
	4-Jul-19	5.9	5.8	5.6	5.9	5.7	5.8	5.6	5.5	5.6
	6-Jul-19	5.9	6.3	5.7	6.2	5.6	5.7	5.8	5.8	5.7
	8-Jul-19	5.9	6.0	6.2	5.9	5.9	6.9	5.7	5.8	6.0
	10-Jul-19	6.1	6.0	6.0	5.9	6.0	6.0	6.4	6.6	6.1
	12-Jul-19	8.0	6.8	5.9	6.1	7.0	7.6	7.0	6.9	6.1
Mid-Flood	15-Jul-19	7.3	7.2	6.2	7.5	6.4	7.2	6.9	6.7	7.9
	17-Jul-19	5.8	6.8	6.4	6.1	6.8	10.2	5.8	7.7	5.7
	19-Jul-19	6.0	7.0	7.2	7.5	8.0	6.9	6.1	7.5	7.5
	22-Jul-19	5.9	5.9	5.8	5.9	5.7	5.8	5.8	5.7	5.6
	24-Jul-19	6.6	6.2	5.8	5.8	6.2	6.7	5.8	6.0	6.1
	26-Jul-19	7.5	7.1	8.6	7.2	7.7	8.5	7.1	6.5	8.6
	29-Jul-19	7.2	6.6	6.7	6.2	6.6	5.5	6.4	6.8	7.5

Table 6-2 Results Summary of Bottom Depth of DO (mg/L)

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I1
	2-Jul-19	6.6	5.4	5.5	NA	5.9	7.1	5.7	5.1	4.6
	4-Jul-19	5.3	5.3	5.2	NA	5.4	5.4	5.3	5.4	5.3
	6-Jul-19	5.4	5.3	5.1	NA	5.4	5.4	5.2	5.2	5.2
Mid-Ebb	8-Jul-19	5.4	5.4	5.4	NA	5.5	6.2	5.2	5.2	5.3
	10-Jul-19	5.4	5.6	5.2	NA	5.3	5.6	5.4	5.3	5.6
	12-Jul-19	5.4	5.5	5.2	NA	5.3	5.9	5.4	5.2	5.4
	15-Jul-19	5.5	5.7	5.5	NA	5.4	7.4	5.3	5.7	5.4
	17-Jul-19	5.7	5.3	5.3	NA	5.5	9.1	5.5	5.7	5.8
	19-Jul-19	6.7	5.4	6.8	NA	5.6	8.8	5.7	5.1	5.5

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I1
	22-Jul-19	5.5	5.5	5.2	NA	5.3	5.5	5.3	5.4	5.7
	24-Jul-19	5.4	5.5	5.3	NA	5.4	5.7	5.3	5.3	5.4
	26-Jul-19	5.5	5.6	5.3	NA	6.0	6.8	5.4	5.4	5.4
	29-Jul-19	5.4	5.3	6.2	NA	6.7	6.6	5.8	5.3	5.6
	2-Jul-19	6.7	5.6	5.8	NA	5.3	6.8	5.2	5.4	4.4
	4-Jul-19	5.4	5.3	5.4	NA	5.3	5.5	5.4	5.3	5.2
	6-Jul-19	5.5	5.5	5.2	NA	5.4	5.2	5.5	5.2	5.5
	8-Jul-19	5.3	5.3	5.5	NA	5.4	5.6	5.3	5.4	5.4
	10-Jul-19	5.4	5.5	5.1	NA	5.3	5.5	5.7	5.7	5.3
	12-Jul-19	5.4	5.4	5.0	NA	5.4	6.6	5.2	5.2	5.3
Mid-Flood	15-Jul-19	5.7	5.4	5.6	NA	5.3	5.5	5.7	5.5	5.4
	17-Jul-19	5.5	5.7	5.3	NA	5.4	6.1	5.5	5.9	5.3
	19-Jul-19	5.4	5.6	5.5	NA	6.2	7.0	5.2	5.4	5.6
	22-Jul-19	5.4	5.3	5.2	NA	5.4	5.4	5.3	5.4	5.3
	24-Jul-19	5.7	5.4	5.1	NA	5.5	5.8	5.3	5.4	5.3
	26-Jul-19	6.5	5.4	6.6	NA	5.4	8.6	5.5	5.4	5.4
	29-Jul-19	5.4	5.5	5.4	NA	5.3	5.2	5.3	5.4	5.6

Remark: No Dissolved Oxygen (Bottom) monitoring data available for CC4 due to the water depth measured at CC4 during the monitoring days were less than 3 meters.

Italic and bold value indicated Action Level exceedance

Underlined and bold value indicated Limit Level exceedance

Table 6-3 Results Summary of Depth Average of Turbidity (NTU)

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I1
	2-Jul-19	0.8	2.3	1.9	2.0	1.6	2.2	2.2	2.5	2.1
	4-Jul-19	0.8	1.1	1.0	0.6	0.9	0.4	2.0	1.0	0.8
	6-Jul-19	0.7	1.2	0.8	0.7	0.7	0.4	1.9	0.9	0.8
	8-Jul-19	0.9	1.5	1.1	0.7	0.9	0.5	1.8	1.9	1.7
	10-Jul-19	1.1	2.2	1.4	0.6	1.0	0.7	1.7	2.1	1.7
	12-Jul-19	0.7	1.3	1.1	0.8	0.7	0.5	1.4	1.4	1.9
Mid-Ebb	15-Jul-19	1.3	2.1	3.1	2.8	1.6	1.1	2.0	2.1	2.6
	17-Jul-19	1.2	1.8	0.9	1.6	1.2	0.9	1.3	1.6	1.1
	19-Jul-19	1.0	1.1	1.0	1.1	0.9	0.9	1.4	1.6	1.1
	22-Jul-19	0.8	1.4	1.2	0.8	1.2	1.0	1.8	1.1	2.4
	24-Jul-19	2.4	1.8	2.5	0.8	1.2	0.8	1.2	1.0	2.3
	26-Jul-19	1.1	0.9	1.0	0.9	0.7	1.2	2.1	1.9	1.1
	29-Jul-19	1.9	1.8	1.2	1.3	1.2	1.2	1.7	1.9	1.2
	2-Jul-19	2.1	2.3	1.9	2.8	2.0	2.0	2.2	1.9	2.2
	4-Jul-19	0.8	1.0	0.7	0.6	0.8	0.4	2.2	1.0	1.0
	6-Jul-19	2.0	0.7	0.7	1.5	1.0	0.6	1.0	0.5	0.6
	8-Jul-19	1.4	1.5	0.9	0.6	0.7	0.5	1.8	1.8	1.3
	10-Jul-19	1.2	1.5	2.5	4.8	1.2	0.6	2.1	1.6	2.2
	12-Jul-19	0.8	1.7	1.3	0.9	0.8	0.7	1.3	1.9	1.4
Mid-Flood	15-Jul-19	1.4	1.8	2.4	1.8	2.4	1.2	1.6	2.4	2.9
	17-Jul-19	3.3	1.8	1.3	0.9	1.1	0.6	2.2	1.2	1.4
	19-Jul-19	1.1	0.9	0.9	0.8	0.7	1.1	2.0	1.9	1.1
	22-Jul-19	2.3	1.6	2.7	0.7	1.0	0.6	1.0	0.9	2.3
	24-Jul-19	0.9	1.5	1.3	0.9	1.3	1.1	2.0	1.2	2.5
	26-Jul-19	1.0	1.2	1.0	1.2	0.9	0.9	1.5	1.6	1.2
	29-Jul-19	1.4	2.0	1.8	2.2	2.3	3.3	1.8	2.0	2.1

Table 6-4 Results Summary of Depth Average of Suspended Solids (mg/L)

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I 1
	2-Jul-19	3.8	5.9	7.8	6.2	6.1	4.7	3.8	3.9	6.9
	4-Jul-19	3.7	3.7	4.5	4.4	2.4	3.3	2.6	2.2	2.8
	6-Jul-19	1.4	2.9	6.5	1.7	1.6	2.2	1.7	1.5	3.5
	8-Jul-19	4.2	4.4	3.0	3.9	4.2	4.2	4.4	5.2	3.5
	10-Jul-19	2.7	3.1	3.1	2.9	3.6	5.4	3.1	4.9	7.2
	12-Jul-19	5.2	5.8	<u>9.5</u>	4.9	6.1	6.1	6.1	6.9	7.3
Mid-Ebb	15-Jul-19	6.4	6.4	4.9	5.8	6.1	5.6	6.0	5.9	5.1
	17-Jul-19	5.4	4.2	4.0	5.3	7.7	5.0	5.5	5.2	7.2
	19-Jul-19	9.0	5.4	5.1	5.2	8.2	8.5	7.9	7.2	7.3
	22-Jul-19	3.3	2.6	2.4	2.9	6.9	7.0	6.2	6.7	4.7
	24-Jul-19	6.7	6.8	7.3	6.2	6.4	6.0	6.8	7.0	6.9
	26-Jul-19	3.2	3.5	2.8	3.3	3.4	3.4	4.0	3.4	4.8
	29-Jul-19	5.4	7.6	8.7	9.3	5.9	5.4	6.2	7.9	6.8
	2-Jul-19	8.3	7.1	8.2	6.2	8.6	6.5	6.7	10.0	10.6
	4-Jul-19	1.8	2.2	5.0	4.4	2.1	2.7	2.2	2.3	3.2
	6-Jul-19	2.1	3.1	4.7	2.4	3.0	3.1	3.3	2.5	4.1
	8-Jul-19	3.2	3.3	4.0	3.9	4.2	3.6	6.0	5.7	6.3
	10-Jul-19	4.7	4.9	7.1	4.7	2.8	4.2	1.5	2.1	1.9
	12-Jul-19	4.4	4.9	6.0	6.2	5.7	5.1	5.0	4.5	5.5
Mid-Flood	15-Jul-19	4.2	4.5	5.1	5.7	4.9	4.0	5.6	5.6	6.4
	17-Jul-19	5.1	3.8	4.7	3.7	6.6	5.0	5.6	4.6	6.1
	19-Jul-19	4.3	3.7	2.7	2.9	3.8	2.5	3.4	3.3	3.4
	22-Jul-19	6.9	5.8	5.5	5.2	6.9	5.5	4.7	5.0	6.1
	24-Jul-19	6.2	5.4	6.3	5.0	5.8	5.4	4.9	5.3	5.7
	26-Jul-19	3.5	3.7	3.2	3.3	4.5	4.5	4.4	3.7	3.7
	29-Jul-19	5.2	7.1	7.2	8.6	8.8	<u>10.8</u>	9.6	7.3	6.8

Remark: Italic an

Italic and bold value indicated Action Level exceedance Underlined and bold value indicated Limit Level exceedance

Table 6-5 Results Summary of Depth Average of Temperature (°C)

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I1
Tidal Mid-Ebb	2-Jul-19	27.0	25.7	26.7	26.5	26.4	27.1	25.7	25.5	25.8
Mid-Ebb	4-Jul-19	25.2	24.4	25.2	25.5	25.2	25.9	24.0	24.6	25.2
	6-Jul-19	25.3	24.5	25.1	25.3	25.4	26.0	24.0	24.8	25.2
	8-Jul-19	25.2	24.5	24.7	26.0	24.8	26.3	24.1	24.1	24.7
	10-Jul-19	24.3	23.7	24.2	25.5	24.6	25.5	23.6	23.7	24.0
	12-Jul-19	24.7	24.3	25.1	25.5	24.7	25.1	23.8	23.7	25.0
Mid-Ebb	15-Jul-19	24.7	23.6	24.9	26.3	24.2	26.5	23.8	23.5	24.6
	17-Jul-19	23.8	23.2	23.9	24.8	24.0	24.9	23.1	22.8	24.0
	19-Jul-19	23.8	23.3	24.3	24.2	24.0	24.4	23.6	22.8	24.5
	22-Jul-19	23.4	22.9	22.9	24.1	23.3	23.6	22.9	23.0	23.0
	24-Jul-19	23.4	22.9	22.9	24.1	23.3	23.6	22.9	23.0	22.9
	26-Jul-19	23.1	23.6	23.7	24.1	24.2	24.3	22.6	23.2	23.5
	29-Jul-19	24.3	23.7	24.4	25.1	24.6	24.6	23.4	23.2	23.9
	2-Jul-19	27.4	25.5	26.3	26.4	26.0	26.7	25.4	25.1	26.1
	4-Jul-19	25.1	24.6	25.2	25.3	25.3	25.9	24.1	24.6	25.1
	6-Jul-19	24.0	25.4	25.2	24.4	24.5	25.6	24.6	25.6	25.3
	8-Jul-19	24.2	24.3	25.0	26.2	25.1	26.4	24.2	24.2	25.1
Mid-Flood	10-Jul-19	24.6	23.9	24.0	25.7	24.2	25.6	23.8	23.8	23.9
Mid-Flood	12-Jul-19	25.1	24.0	24.1	25.4	24.2	26.0	23.9	24.0	24.2
	15-Jul-19	24.2	23.7	22.8	26.1	23.4	25.3	23.7	23.2	25.1
	17-Jul-19	22.9	22.9	23.3	23.3	23.1	24.5	22.3	23.2	23.1
	19-Jul-19	23.3	23.8	23.9	24.3	24.4	24.5	22.8	23.4	23.7

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I1
	22-Jul-19	23.5	23.1	23.5	23.3	23.1	24.0	22.6	23.1	23.1
	24-Jul-19	23.5	23.1	23.5	23.3	23.1	24.0	22.6	23.1	23.1
	26-Jul-19	23.6	23.1	24.1	24.0	23.8	24.2	23.4	22.6	24.3
	29-Jul-19	23.5	23.2	24.3	24.1	23.4	24.1	23.3	23.2	23.9

Table 6-6 Results Summary of Depth Average of Salinity (ppt)

	Commitme			I		I				
Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Jul-19	29.2	31.0	30.0	30.0	30.0	28.6	31.2	31.7	30.7
	4-Jul-19	32.0	33.6	31.8	31.4	32.1	30.0	34.2	33.1	32.0
	6-Jul-19	31.9	33.5	32.0	31.8	31.6	29.8	34.4	32.9	31.8
	8-Jul-19	32.1	33.7	33.0	30.0	32.9	30.4	34.1	33.8	32.9
	10-Jul-19	32.9	34.1	33.4	30.1	32.5	30.5	34.4	33.7	33.6
	12-Jul-19	32.5	33.1	31.3	30.5	32.2	31.6	34.2	34.0	31.7
Mid-Ebb	15-Jul-19	32.0	33.9	31.8	29.3	32.8	29.3	33.8	34.0	32.2
	17-Jul-19	34.1	34.8	34.0	32.1	33.9	33.0	34.6	35.1	33.9
	19-Jul-19	34.8	35.2	34.3	34.6	34.6	34.3	34.9	35.7	34.4
	22-Jul-19	35.3	35.4	35.0	35.0	35.4	34.7	35.8	35.4	35.4
	24-Jul-19	34.0	34.5	35.6	34.4	35.3	34.7	35.4	35.4	35.4
	26-Jul-19	35.4	35.0	34.8	34.4	34.7	34.1	35.7	35.5	35.1
	29-Jul-19	33.8	34.2	33.5	32.1	33.1	32.9	34.7	34.7	34.0
	2-Jul-19	28.2	31.6	30.6	30.2	30.3	29.6	31.8	32.2	30.6
	4-Jul-19	32.2	33.4	32.0	31.8	31.7	29.9	34.4	33.3	32.1
	6-Jul-19	34.4	31.6	31.8	33.8	33.6	31.2	32.9	30.7	31.8
	8-Jul-19	33.7	33.8	32.5	30.0	32.3	30.0	33.9	33.9	32.3
	10-Jul-19	32.7	33.8	33.6	30.0	33.3	30.4	33.9	34.0	33.9
	12-Jul-19	32.4	33.9	33.6	31.5	33.1	31.0	34.2	34.0	33.1
Mid-Flood	15-Jul-19	32.9	34.0	35.0	28.8	34.3	31.7	33.6	34.2	31.7
	17-Jul-19	34.9	35.1	34.7	34.5	34.8	32.9	35.9	34.9	34.9
	19-Jul-19	35.2	34.8	34.6	34.2	34.5	33.9	35.5	35.3	34.9
	22-Jul-19	34.9	35.4	35.4	34.2	35.0	34.5	35.3	35.1	35.3
	24-Jul-19	34.7	35.7	34.7	37.3	35.5	35.4	35.7	36.4	35.2
	26-Jul-19	35.0	35.4	34.5	34.8	34.8	34.5	35.1	35.9	34.6
	29-Jul-19	34.9	34.9	33.8	33.6	34.6	33.7	34.7	35.0	34.2

Table 6-7 Results Summary of Depth Average of pH

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I1
	2-Jul-19	8.5	8.5	8.5	8.4	8.5	8.5	8.4	8.4	8.5
	4-Jul-19	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.1	8.2
	6-Jul-19	8.2	8.2	8.2	8.2	8.2	8.2	8.1	8.2	8.2
	8-Jul-19	8.2	8.2	8.2	8.3	8.2	8.4	8.2	8.2	8.3
	10-Jul-19	8.2	8.2	8.3	8.3	8.3	8.3	8.2	8.2	8.3
	12-Jul-19	8.3	8.3	8.3	8.2	8.3	8.3	8.3	8.3	8.3
Mid-Ebb	15-Jul-19	8.5	8.4	8.5	8.6	8.5	8.6	8.5	8.4	8.5
	17-Jul-19	8.4	8.4	8.4	8.4	8.5	8.5	8.3	8.3	8.5
	19-Jul-19	8.4	8.4	8.5	8.4	8.5	8.5	8.4	8.4	8.5
	22-Jul-19	8.3	8.3	8.3	8.3	8.3	8.4	8.3	8.3	8.3
	24-Jul-19	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	26-Jul-19	8.4	8.4	8.4	8.4	8.5	8.2	8.4	8.4	8.4
	29-Jul-19	8.4	8.4	8.4	8.3	8.5	8.3	8.3	8.3	8.4
Mid Dland	2-Jul-19	8.6	8.4	8.5	8.5	8.5	8.5	8.4	8.4	8.5
Mid-Flood	4-Jul-19	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.1	8.2

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I 1
	6-Jul-19	8.1	8.2	8.2	8.2	8.2	8.2	8.2	8.1	8.2
	8-Jul-19	8.2	8.2	8.2	8.2	8.2	8.3	8.2	8.2	8.2
	10-Jul-19	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
	12-Jul-19	8.4	8.3	8.2	8.3	8.3	8.3	8.3	8.3	8.3
	15-Jul-19	8.5	8.4	8.3	8.6	8.4	8.6	8.5	8.5	8.5
	17-Jul-19	8.3	8.3	8.3	8.4	8.4	8.3	8.3	8.3	8.3
	19-Jul-19	8.3	8.4	8.4	8.4	8.4	8.2	8.3	8.4	8.4
	22-Jul-19	8.3	8.3	8.2	8.2	8.3	8.2	8.3	8.2	8.2
	24-Jul-19	8.2	8.2	8.1	8.2	8.2	8.2	8.1	8.2	8.1
	26-Jul-19	8.5	8.5	8.5	8.5	8.5	8.5	8.4	8.4	8.5
	29-Jul-19	8.4	8.4	8.4	8.4	8.3	8.4	8.4	8.4	8.4

- 6.2.2 The monitoring results including in-situ measurements and laboratory testing results are provided in *Appendix H*. The graphical plots are shown in *Appendix I*.
- 6.2.3 A summary of exceedances for the four parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) are shown in *Table 6-8*.

Table 6-8 Summary of Water Quality Exceedance

Station	(Ave of	O f Top & depth)	`	O ttom oth)		idity h Ave)		S h Ave)		tal ance for tation
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
CC1	0	0	0	0	0	0	0	0	0	0
CC2	0	0	0	0	0	0	0	0	0	0
CC3	0	0	0	0	0	0	1	1	1	1
CC4	0	0	NA	NA	0	0	0	0	0	0
CC13	0	0	0	0	0	0	0	0	0	0
SWI1	0	0	0	0	0	0	1	1	1	1
No of Exceedance	0	0	0	0	0	0	2	2	2	2

- 6.2.4 In this Reporting Period, two (2) Action Level and two (2) Limit Level exceedances of Suspended Solid were recorded.
- 6.2.5 Upon confirmation of the monitoring result, Notification of Exceedances (NOEs) have been issued to relevant parties. Investigation for the cause of exceedance was carried out by ET subsequently.
- 6.2.6 For suspended solid (SS) exceedances recorded on 12 and 19 July 2019, since silt curtains as water quality mitigation measure were properly implemented, no abnormal and turbid discharge made from the construction site was observed during the course of marine water sampling, it is considered that the exceedances of suspended solid recorded in this period were unlikely caused by the Project. Nevertheless, the Contractor was reminded to check the implementation of silt curtain regularly to ensure no seepage of muddy water into the marine water body.
- 6.2.7 For SS exceedance recorded on 29 July 2019, the investigation is underway by ET and the investigation findings will be presented in next Reporting Period.

7. WASTE MANAGEMENT

7.1 GENERAL WASTE MANAGEMENT

7.1.1 Waste management would be carried out by an on-site Environmental Officer or an Environmental Consultant from time to time.

7.2 RECORDS OF WASTE QUANTITIES

- 7.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste; and
 - General Refuse
- 7.2.2 According to the information provided by Contractor of Contract 1 and Contract 2, waste disposal was made in the Reporting period are summarized in *Tables 7-1* and *7-2*.

Table 7-1 Summary of Quantities of Inert C&D Materials

	Cont	ract 1	Contract 2	
Type of Waste	Quantity	Disposal Location	Quantity	Disposal Location
Total C&D Materials (Inert) ('000m ³)	1.122	-	2.468	-
Reused in this Contract (Inert) ('000m ³)	0	-	0	-
Reused in other Projects (Inert) ('000m ³)	0	-	0	-
Disposal as Public Fill (Inert) ('000m ³)	1.122	TKO 137	1.879	TKO 137
Imported Fill ('000m ³)	0	-	0.589	-

Table 7-2 Summary of Quantities of C&D Wastes

	Cont	ract 1	Contract 2	
Type of Waste	Quantity	Disposal Location	Quantity	Disposal Location
Recycled Metal ('000kg)	0	-	0	-
Recycled Paper / Cardboard Packing ('000kg)	0.060	Collected by paper recycling company	0	-
Recycled Plastic ('000kg)	0	-	0	-
Chemical Wastes ('000kg)	0	-	0	-
General Refuses ('000m ³)	0.083	NENT	0.031	NENT

7.2.3 The Monthly Summary Waste Flow Table of the Contracts 1 and Contract 2 are shown in *Appendix K*.

8. SITE INSPECTION

8.1 REQUIREMENTS

8.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

8.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH Contract 1

- 8.2.1 In this Reporting Month, weekly joint site inspection to evaluate site environmental performance for the *Contract 1* was carried out by the Project Consultant, ET and the Contractor on 4, 10, 18, & 25 July 2019. Moreover, the Independent Environmental Checker (IEC) perform monthly site inspection was on 10 July 2019.
- 8.2.2 The findings / deficiencies of *Contract 1* that observed during the weekly site inspection are listed in *Table 8-1* and the site layout plan was provided in **Appendix A**.

Table 8-1 Site Observations of the Contract 1

Date	Findings / Deficiencies	Follow-Up Status
4 July 2019	Observation: • General refuse inside the sediment storage tank should be removed. (Portion II)	General refuse inside the sediment storage tank was removed. (Rectified on 4 July 2019)
	Oil stain on the ground should be cleaned. (Works Area A)	Oil stain on the ground was cleaned. (Rectified on 4 July 2019)
10 July 2019	No environmental issue was observed during the site inspection	• Nil
18 July 2019	Observation: Oil leakage inside the drip tray and the decking should be cleaned. (Portion II – Crane Barge)	Oil leakage inside the drip tray and the decking was cleaned. (Rectified on 19 July 2019)
25 July 2019	Observation: Tarpaulin covered area between the hopper barge and derrick barge should be increased during transfer marine sediment to the hopper barge to prevent leakage. (Portion II) C&D material cumulated at the edge of the derrick barge should be cleaned.	Tarpaulin covered area between the hopper barge and derrick barge was increased during transfer marine sediment to the hopper barge to prevent leakage. (Rectified on 25 July 2019)
	(Portion II)	C&D material cumulated at the edge of the derrick barge was cleaned. (Rectified on 25 July 2019)

Contract 2

- 8.2.3 In this Reporting Month, weekly joint site inspection to evaluate site environmental performance for the *Contract 2* were carried out by the Project Consultant, ET and the Contractor on 4, 10, 18, & 25 July 2019. Moreover, the Independent Environmental Checker (IEC) perform monthly site inspection was on 10 July 2019.
- 8.2.4 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 8-2* and the site layout plan was provided in **Appendix A**.

Table 8-2 Site Observations of the Contract 2

Date	Findings / Deficiencies	Follow-Up Status
4 July 2019	Observation: • Engine cover should be closed properly during the plant is operating to reduce noise impact. (Portion IV)	The engine cover was covered properly. (Rectified on 4 July 2019)
10 July 2019	Observation: • Sand and mud cumulated inside the drip tray should be cleaned. (Portion IV)	Sand and mud cumulated inside the drip tray was removed. (Rectified on 10 July 2019)
18 July 2019	No environmental issue was observed during the site inspection	• Nil
25 July 2019	Observation: • Lifting eyes of the concrete slab should be filled with sand to prevent stagnant water accmulation. (Portion VI)	Lifting eyes of the concrete slab was backfilled. (Rectified on 25 July 2019)

9. LANDFILL GAS MONITORING

9.1 GENERAL REQUIREMENT

- 9.1.1 Pursuant to Section 13 of the Project's EM&A Manual, landfill gas monitoring shall perform during excavation work within the 250m Consultation Zone of Tseung Kwan O Stage II & III Landfill. For landfill gas monitoring requirements, pre entry and routine measurement shall be undertaken in accordance with the *Factories and Industrial Undertaking (Confined Spaces) Regulation*.
- 9.1.2 According to Environmental Mitigation Implementation Schedule (EMIS) S14.7.6, portable monitoring equipment can be used to conduct landfill gas monitoring. Moreover, the frequency and areas to be monitored should be set down prior to commencement of the works either by the Safety Officer or by an appropriately qualified person.

9.2 LIMIT LEVELS AND EVENT AND ACTION PLAN

9.2.1 In event of the trigger levels specified in Table 14.6 of the EIA report being exceeded, a person, such as the Safety Officer, shall be nominated, with deputies, to be responsible for dealing with any emergency which may occur due to LFG. In an emergency situation the nominated person, or his deputies, shall have the necessary authority and shall ensure that the confined space is evacuated and the necessary works implemented for reducing the concentrations of gas. The Limit levels and relevant Action Plans for landfill gas detected in utilities and any on-site areas following construction is listed in *Table 9-1*.

Table 9-1 Actions in the Event of Landfill Gas Being Detected in Excavations

Parameter	Limit Level	Actions
	>10% LEL (i.e.	Post "No Smoking" signs
	>0.5% by volume)	Prohibit hot works
Methane		Ventilate to restore methane to <10% LEL
Methane	>20% LEL (i.e.	Stop excavation works
	>1% by volume)	Evacuate personnel/prohibit entry
		• Increase ventilation to restore methane to <10% LEL
	>0.5%	• Ventilate to restore carbon dioxide to <0.5%
Carbon	>1.5%	Stop excavation works
dioxide		Evacuate personnel/prohibit entry
		• Increase ventilation to restore carbon dioxide to <0.5%
	<19%	Ventilation to restore oxygen >19%
Owwan	<18%	Stop excavation works
Oxygen		Evacuate personnel/prohibit entry
		• Increase ventilation to restore oxygen to >19%

9.2.2 In the event of the trigger levels specified in Table 9-1 being exceeded, the Safety Officer shall be responsible for dealing with any emergency which may occur due to landfill gas.

9.3 LANDFILL GAS MONITORING

9.3.1 Since no excavation work was conducted within the 250m Consultation Zone of Tseung Kwan O Stage II & III Landfill, no landfill gas monitoring was undertaken by the Contractors in the Reporting Period.

10. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 Environmental Complaint, Summons and Prosecution

10.1.1 In the Reporting Period, no environmental complaint, summons and prosecution under the EM&A Programme was lodged for the project. The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1 Statistical Summary of Environmental Complaints

Donauting Daviad	Contract	Environmental Complaint Statistics				
Reporting Period	Contract	Frequency	Cumulative	Complaint Nature		
1 – 31 July 2019	1	0	1	NA		
1 – 31 July 2019	2	0	0	NA		

Table 10-2 Statistical Summary of Environmental Summons

Donartina Dariad	Contract	Environmental Summons Statistics				
Reporting Period	Contract	Frequency	Cumulative	Summons Nature		
1 – 31 July 2019	1	0	0	NA		
1 – 31 July 2019	2	0	0	NA		

Table 10-3 Statistical Summary of Environmental Prosecution

Ī	Donauting David	Contract	Environmental Prosecution Statistics				
	Reporting Period	Contract	Frequency	Cumulative	Prosecution Nature		
ĺ	1 – 31 July 2019	1	0	0	NA		
ĺ	1 – 31 July 2019	2	0	0	NA		

11. IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL REQUIREMENTS

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- 11.1.2 The Contractors had been implementing the required environmental mitigation measures according to the Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by the Contractors in this Reporting Month are summarized in *Table 11-1* and photo record of water mitigation measure was provided in **Appendix L**.

Table 11-1 Environmental Mitigation Measures in the Reporting Month

Table 11-1	Environmental Mitigation Measures in the Reporting Month
Issues	Environmental Mitigation Measures
Construction Noise	 Regularly to maintain all plants, so only the good condition plants were used on-site; If possible, all mobile plants onsite operation has located far from NSRs; When machines and plants (such as trucks) were not in using, it was switched off; Wherever possible, plant was prevented oriented directly the nearby NSRs; Provided quiet powered mechanical equipment to use onsite;
	Weekly noise monitoring was conducted to ensure construction noise meet the criteria.
Air Quality	 Stockpile of dusty material was covered entirely with impervious sheeting or sprayed with water so as to maintain the entire surface wet; The construction plants regularly maintained to avoid the emissions of black smoke;
	The construction plants switched off when it not in use;
	Water spraying on haul road and dry site area was provided regularly;
	• Where a vehicle leaving the works site is carrying a load of dusty materials, the load has covered entirely with clean impervious sheeting; and
	Before any vehicle leaving the works site, wheel watering has been performed.
Water Quality	Debris and refuse generated on-site collected daily;
	Oils and fuels were stored in designated areas;
	The chemical waste storage as sealed area provided;
	• Site hoarding with sealed foot were provided surrounding the boundary of working site to prevent wastewater or site surface water runoff get into public areas; and
	• Portable chemical toilets were provided on-site. A licensed contractor was regularly disposal and maintenance of these facilities.
	Silt curtain was installed and maintained in accordance with EP condition
Waste and	• Excavated material reused on site as far as possible to minimize off-site disposal.
Chemical	 Scrap metals or abandoned equipment should be recycled if possible;
Management	 Waste arising kept to a minimum and be handled, transported and disposed of in a suitable manner;
	 Disposal of C&D wastes to any designated public filling facility and/or landfill followed a trip ticket system; and
	 Chemical waste handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes.
General	 The site is generally kept tidy and clean. Mosquito control is performed to prevent mosquito breeding on site.

11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 Tentative construction activities to be undertaken in August 2019 should be included:-

Contract 1

- Piling works at Portion II
- Welding of steel bracket for precast shell installation at Portion II
- Preparation of precast shell fabrication at Portion II

Contract 2

- Trial Pit Work at Portion III
- Pre-drill and Bored Pile Work at Portion III
- UU Detection Work at Portion III
- Excavation Work at Portion III

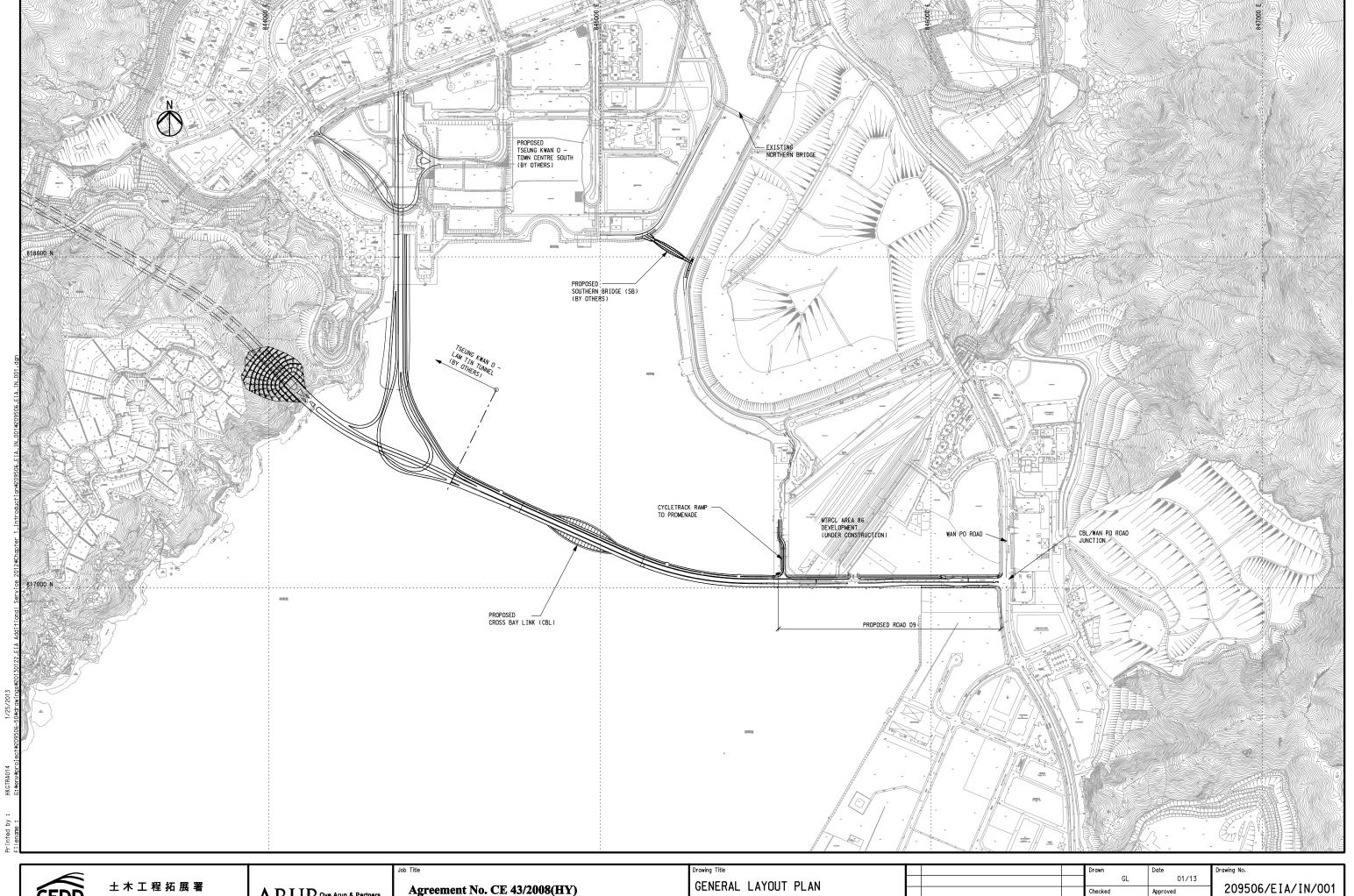
11.3 IMPACT FORECAST

- 11.3.1 Potential environmental impacts arising from the works of the Contracts 1 and Contract 2 include:
 - Construction waste
 - Air quality
 - Construction noise
 - Water quality
- 11.3.2 Environmental mitigation measures will be properly implemented and maintained as per the Mitigation Implementation Schedule in **Appendix L** to ensure site environmental performance is acceptable.

12. CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

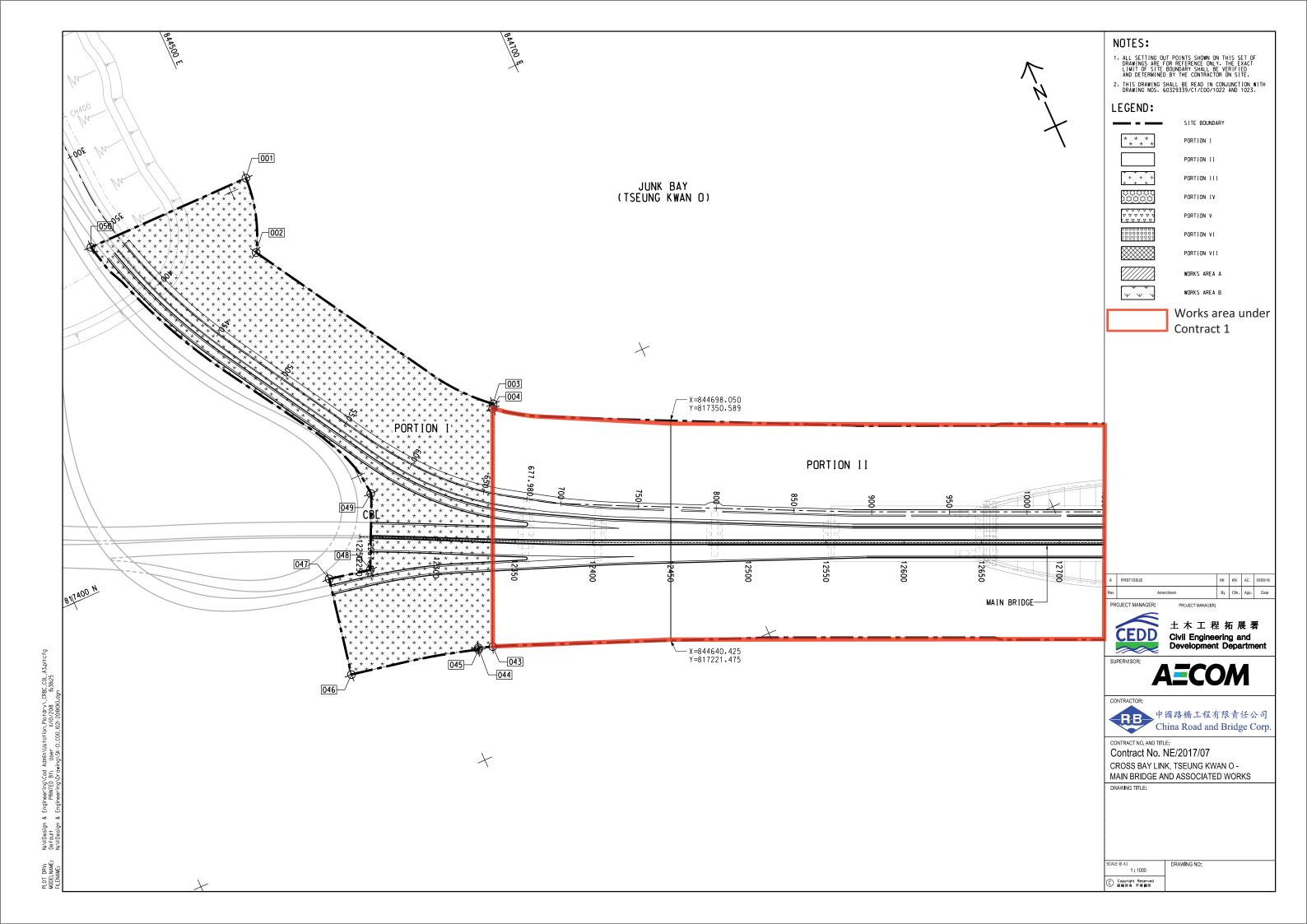
- 12.1.1 This is the monthly EM&A report as presented the monitoring results and inspection findings for the reporting period from *1*st to *31*st *July 2019*.
- 12.1.2 In the Reporting Period, no daytime construction noise monitoring results that triggered the Limit Level was recorded and no noise complaint (which is an Action Level exceedance) was received by the Project Consultant, EPD and the Contractors. However, two (2) evening additional construction noise monitoring results triggered the Limit Level. Investigation was undertaken by ET and it was considered that the exceedances recorded are unlikely caused by the Project.
- 12.1.3 In this Reporting Period, no 1-Hour TSP or 24-Hr TSP air quality monitoring exceedance was recorded. No NOE or the associated corrective actions were therefore issued.
- 12.1.4 For water quality monitoring, two (2) Action Level and two (2) Limit Level exceedance were recorded for Suspended Solid in the reporting period. Investigation for exceedance on 12 and 19 July 2019 were undertaken by ET and it was considered that the exceedances recorded are unlikely caused by the Project. For the exceedance recorded on 29 July 2019, the investigation is underway by ET and the investigation findings will be presented in next Reporting Period.
- 12.1.5 No documented complaint, notification of summons or prosecution were received and recorded for the Project.

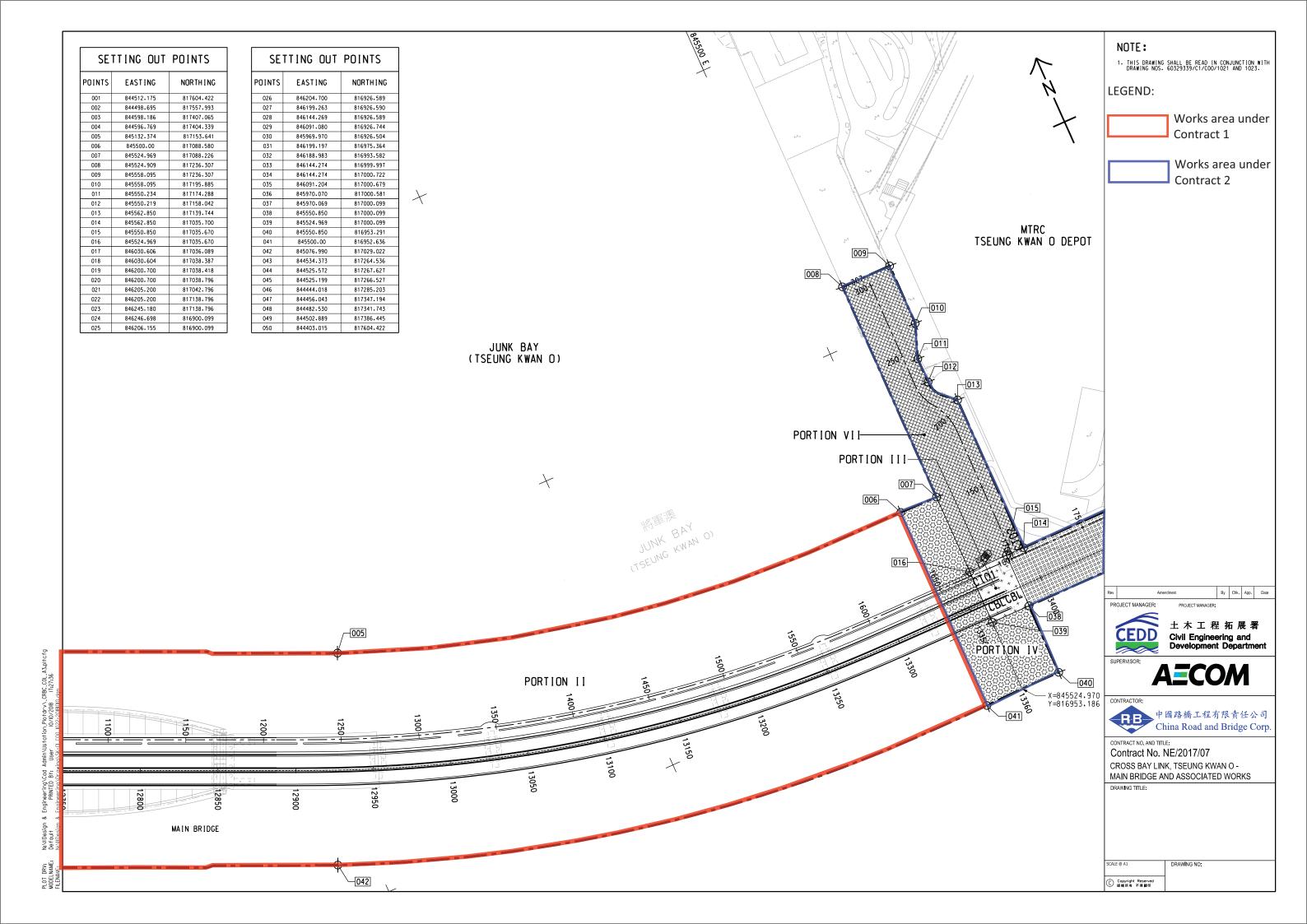

12.2 RECOMMENDATIONS

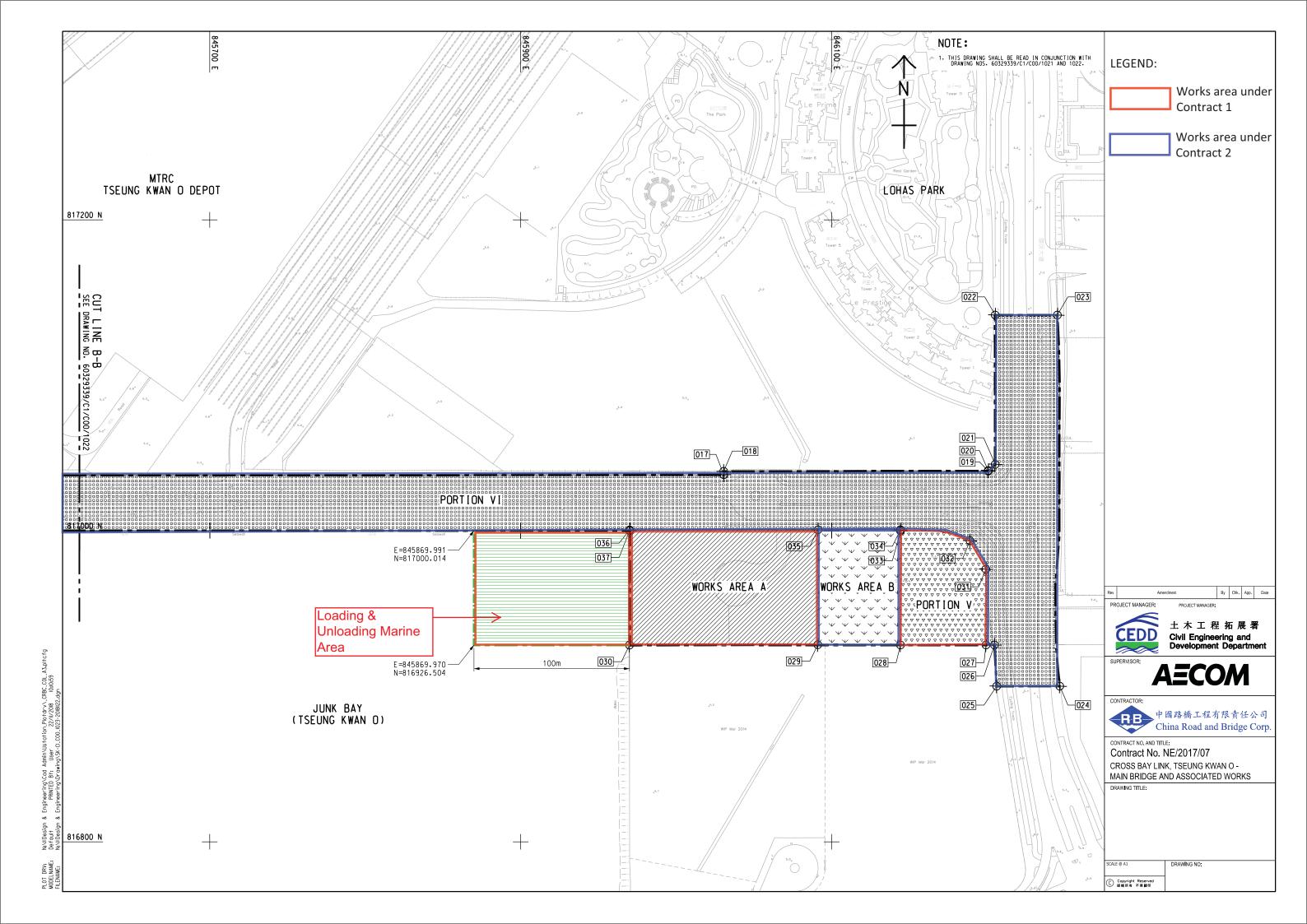
- 12.2.1 Due to wet season has approached, the Contractor was reminded that all the works to undertaking must be fulfill environmental statutory requirement, especially water quality mitigation measures to prevent surface runoff into nearby water bodies or public areas.
- 12.2.2 In regards to the marine works, special attention should be paid on excavation works for the bridge pier foundations underway in which water quality mitigation measures such as erection of silt curtain should be properly implemented and maintained.

Appendix A

Project Layout Plan

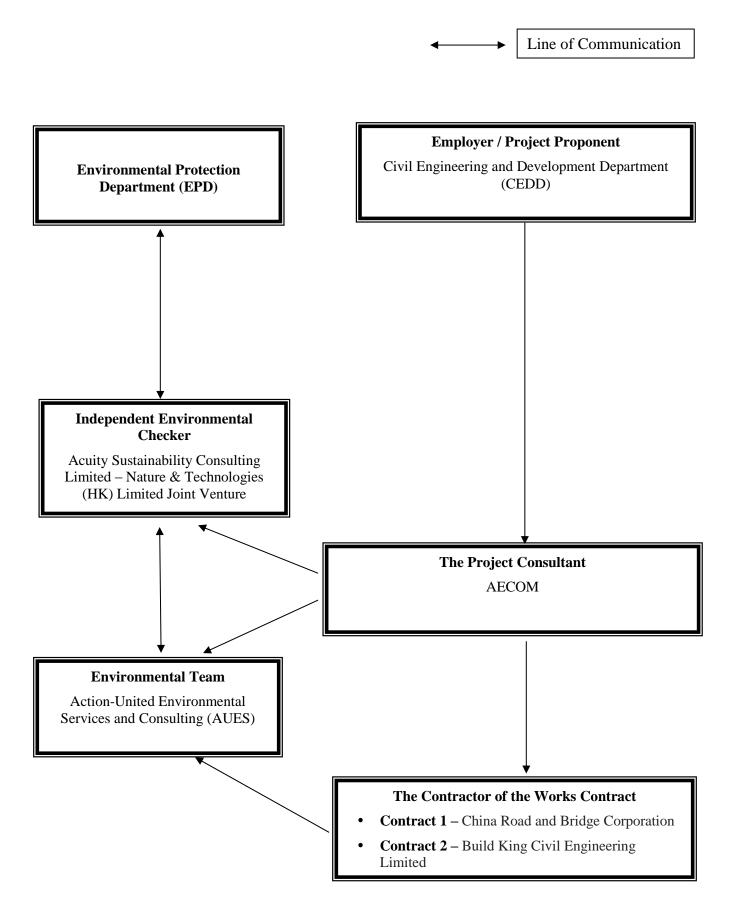



Civil Engineering and Development Department


ARUP Ove Arup & Partners Hong Kong Limited

Agreement No. CE 43/2008(HY) Cross Bay Link, Tseung Kwan O – Investigation

B SECOND ISSUE A FIRST ISSUE Scale 1:5000 on A1 & 1:10000 on A3 FINAL



Appendix B

Project Organization Chart & Contact Details of Key Personnel for the Project

Project Organization Structure

Contact Details of Key Personnel for the Project

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
CEDD	Project Proponent	CK Lam	2301 1398	2714 5174
CEDD	Project Proponent	Simon Wong	2301 1398	2714 5174
AECOM	Senior Resident Engineer	Jackie Chan	3595 8045	3596 6118
AECOM	Resident Engineer	Kingman Chan	3595 8045	3596 6118
ASC – N&T JV	Independent Environmental Checker	Kevin Li	2698 6833	2698 9383
ASC – N&T JV	Senior Environmental Consultant	Tandy Tse	2698 6833	2698 9383
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Martin Li	2959 6059	2959 6079
CRBC	Site Agent	Raymond Cheng	6026 5971	2283 1689
CRBC	Environmental Officer	Calvin So	9724 6254	2283 1689
CRBC	Environmental Supervisor	Lila Lui	9790 5433	2283 1689
Build King	Site Agent	Stephen Leung	9071 7657	TBA
Build King	Environmental Officer	Stephen Leung	9071 7657	TBA
Build King	Environmental Supervisor	Walter Wong	6584 7065	TBA

Legend:

CEDD (Employer) - Civil Engineering and Development Department

AECOM (Project Consultant) – AECOM Asia Co. Ltd.

ASC – N&T JV (IEC) – Acuity Sustainability Consulting Limited – Nature & Technologies (HK) Limited Joint Venture

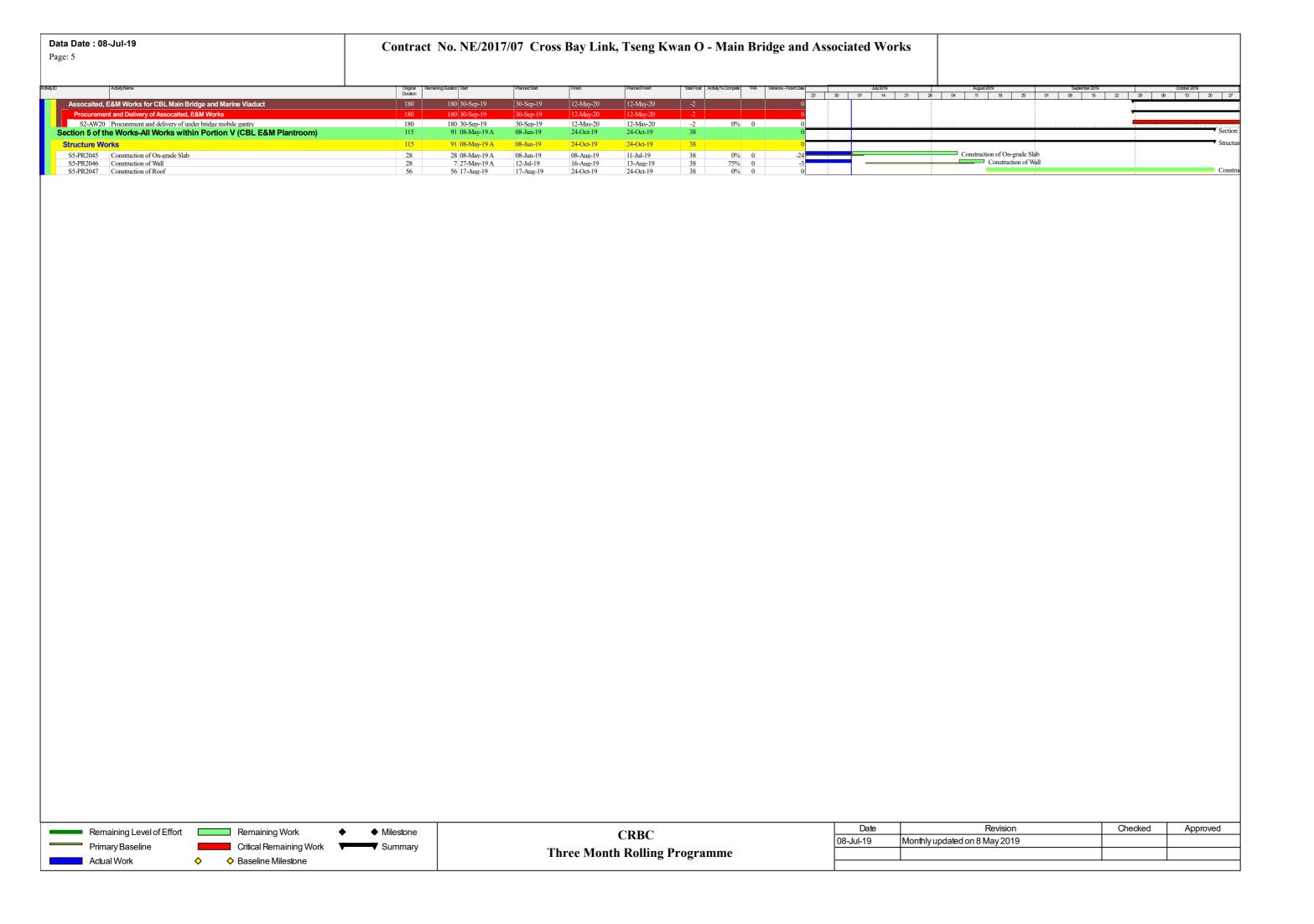
AUES (ET) – Action-United Environmental Services & Consulting

CRBC (the Main Contractor of the Works Contract 1) – China Road and Bridge Corporation

Build King (the Main Contractor of the Works Contract 2) - Build King Civil Engineering Limited

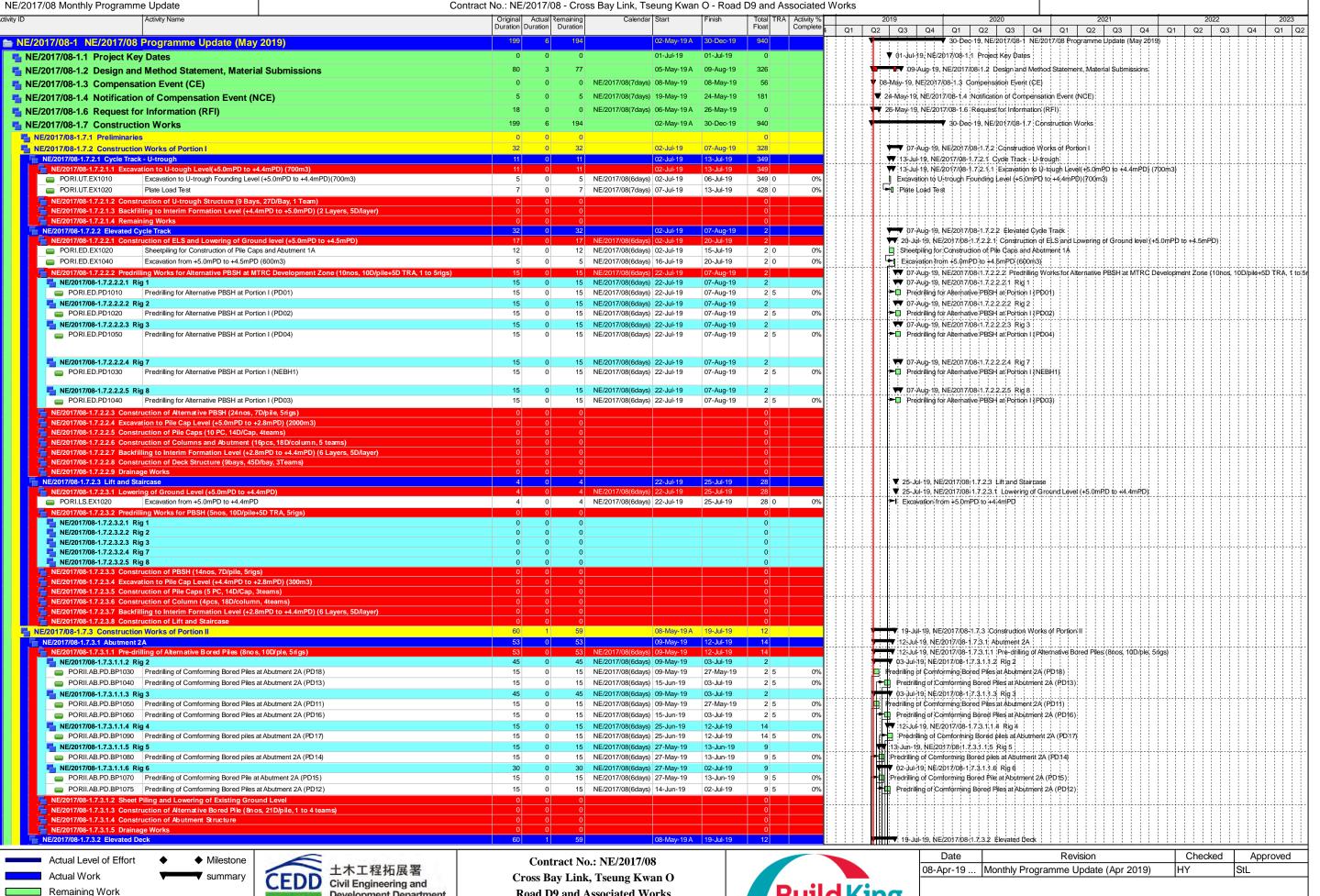
Appendix C

3-Month Rolling Construction Programme


Contract 1

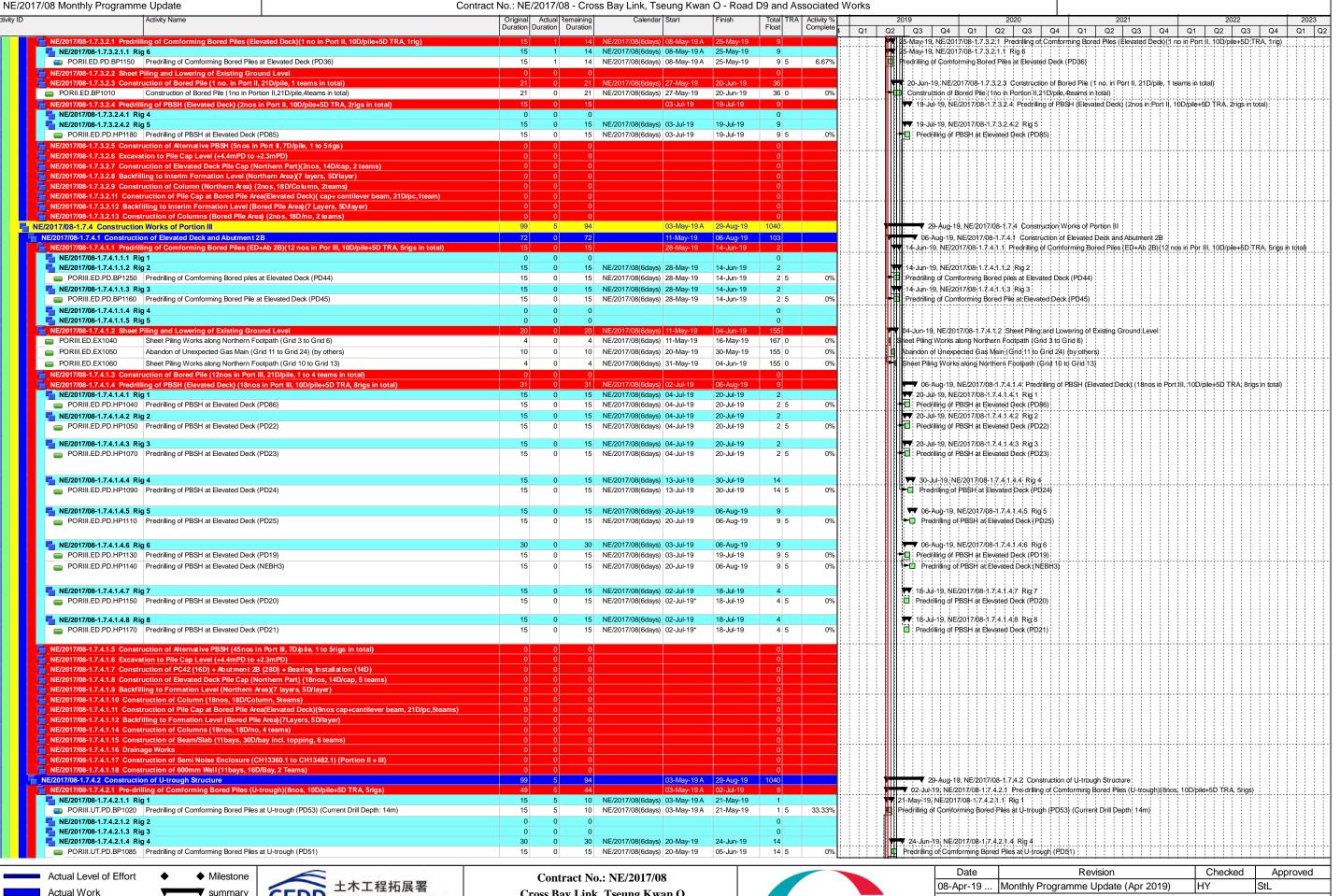
1		No. NE/2017		•	. 0			•				
AcheyName	Original Re	maining Duration Start	Planned Start	Finish	Planned Finish	Total Float	Activity%Complete TRA Vari	nce-FinishDate	July 201	19 August 2019	September 2019	October 2019
ss Bay Link, Tseung Kwan O Main Bridge and Associated Works Jul -19 E&M	Original Rei	1042 29-Jun-18 A	29-Jun-18	14-May-22	21-Jul-22	-91		23 30	07 14	4 21 28 04 11 18 25 01	08 15 22 29	06 13 20
	1484	1042 29-Jun-18 A	29-Jun-18	14-May-22	21-Jul-22	-91		68				
ecutive Summary Programme SP Section 2 of Works-All Works within Portion II,III,IV and VI	1240	1042 17-Sep-18 A	28-Feb-19	14-May-22	21-Jul-22	-91		68				
ESP10920 CBL Main Bridge and Marine Viaduct	1240	1042 17-Sep-18 A	28-Feb-19	14-May-22	21-Jul-22	-91	15.97% 0	68				
ESP10960 Piling Works	671	215 17-Nov-18 A	18-Apr-19	07-Feb-20	16-Feb-21	109	67.96% 0	375				
ESP10980 Pile Cap ESP11160 E&M Works for CBL Main Bridge and Marine Viaduct	958	331 08-Jul-19 958 30-Sep-19	02-Jul-19 30-Sep-19	02-Jun-20 14-May-22	28-May-20 14-May-22	123 -91	0% 0 0% 0	-5			<u>:</u>	
SP Section 5 of the Works-All Works within Portion V (CBL E&M Plantroom)	232	109 01-Apr-19 A	16-Apr-19	24-Oct-19	03-Dec-19	44		40				
ESP11260 Structural Works reliminaries, Contractor's Design & Method Statement Submission & Approval	232 1072	109 01-Apr-19 A 698 29-Jun-18 A	16-Apr-19 29-Jun-18	24-Oct-19 04-Jun-21	03-Dec-19 04-Jun-21	253	53.02% 0	40				
ESP10400 Temporary Works Design	695	514 13-Aug-18 A	13-Aug-18	02-Dec-20	07-Jul-20	34	26.04% 0	-148			<u></u>	
ESP10420 Method Statement Submission for Major Construction Works	736 869	563 27-Aug-18 A	27-Aug-18	20-Jan-21	31-Aug-20 21-Dec-20	13 90	23.51% 0	-142 -127				
ESP10440 Contractor's Design Submission and Approval ESP10460 Alternative Design Submission and Approval	397	660 06-Aug-18 A 38 07-Aug-18 A	06-Aug-18 07-Aug-18	27-Apr-21 14-Aug-19	07-Sep-19	146	24.05% 0 90.43% 0	24		Alternative Design Submission a	nd Approval	
ESP10480 General Submission ESP10500 Project Manager's Acceptance of Subcontractors	843 556	469 29-Jun-18 A 239 14-Aug-18 A	29-Jun-18 21-Feb-19	18-Oct-20 02-Mar-20	18-Oct-20 29-Aug-20	58 346	44.37% 0 57.01% 0	0				
ESP10520 Preliminaries	234	115 12-Jul-18 A	08-Jan-19	30-Oct-19	29-Aug-19	836	50.85% 0	-62				
ESP10560 Procurement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment ESP10600 Precasting of Precast Shell	604 745	604 10-Oct-19 555 08-Nov-18 A	10-Oct-19 28-Apr-19	04-Jun-21 12-Jan-21	04-Jun-21 11-May-21	16 155	0% 0 25.5% 0	0				
ESP10620 Fabrication of Precast Box Girder	713	553 10-Nov-18 A	13-May-19	10-Jan-21	24-Apr-21	27	22.44% 0	104			<u> </u>	
ESP10640 Fabrication of Steel Arch Bridge and Side Spans ocurement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Eq	623 uin 45	531 28-Mar-19 A 45 10-Oct-19	08-Apr-19 10-Oct-19	19-Dec-20 30-Nov-19	20-Dec-20 30-Nov-19	-51 15	14.77% 0	1				¥
rocurement	uip 45	45 10-Oct-19	10-Oct-19	30-Nov-19	30-Nov-19	15		0				¥
P-PC10120 Procurement of LV Switch Board	45	45 10-Oct-19	10-Oct-19	30-Nov-19	30-Nov-19	15	0% 0	0				
P-PC10160 Procurement of Genset	30	30 10-Oct-19	10-Oct-19	13-Nov-19	13-Nov-19 23-Jan-20	15 751	0% 0	0				
eliminaries, Contractor's Design & Method Statement Submission & Approval	291 133	200 28-Mar-19 A 119 06-Jun-19 A	08-Apr-19	23-Jan-20 22-Nov-19	23-Jan-20 21-Nov-19	177		1				
emporary Works Design TDS2010 Formwork design for V-shaped pier and crossbeam construction (incl. 21 days TRA)	63	119 06-Jun-19 A 11 06-Jun-19 A	08-Jun-19 21-Jun-19	22-Nov-19 27-Jul-19	02-Sep-19	21	82.54% 21	31		Formw	ork design for V-shaped pier and o	crossbeam construction (
TDS2020 Temporary falsework design for V-shaped pier and crossbeam construction (incl. 21 days TRA)	56	56 03-Aug-19	15-Jun-19	07-Oct-19	19-Aug-19	21	0% 21	42		10.11.11	in design for v shaped piet and v	Temporary falsewo
TDS2080 Design of lifting frame for full-span lifting of precast box girder (incl. 35 days TRA) TDS2160 Steel mould design for precast segments of TKOI viaducts (incl. 21 days TRA)	63	63 10-Sep-19 63 08-Jul-19	10-Sep-19 08-Jun-19	21-Nov-19 18-Sep-19	21-Nov-19 20-Aug-19	178 13	0% 35 0% 21	-25			Steel mould désign	for precast segments of T
TDS2180 Design of Pier bracket for erection of pier-head segments (incl. 21 days TRA)	56	56 19-Sep-19	21-Aug-19	22-Nov-19	24-Oct-19	13	0% 21	-25			:	1 8
lethod Statement Submission for Major Construction Works	164	102 28-Mar-19 A	26-Apr-19	02-Nov-19	22-Oct-19	193		-10		M. d.	(1 21 d TDA)	
MDS1110 Method statement submission for fabrication of steel deck (incl. 21 days TRA) MDS1130 Method statement submission for fabrication of arch ribs (incl. 21 days TRA)	77 70	6 28-Mar-19 A 6 28-Mar-19 A	29-Apr-19 08-May-19	13-Jul-19 13-Jul-19	26-Jul-19 27-Jul-19	28 28	92.21% 21 91.43% 21	11 :		Method statement submission for fabrication of steel deck Method statement submission for fabrication of arch ribs	(incl. 21 days TRA)	
MDS1135 Method statement submission for geometry control (incl. 21 days TRA)	67	20 28-Mar-19 A	26-Apr-19	30-Jul-19	12-Jul-19	14	70.15% 21	-15		Method statement submission for geometry control (ncl. 21 days TRA)	
MDS1140 Method statement submission for assembly of steel arch bridge (incl. 35 days TRA) ontractor's Design Submission and Approval	96 241	96 15-Jul-19 200 15-Apr-19 A	03-Jul-19 28-May-19	02-Nov-19 23-Jan-20	22-Oct-19 23-Jan-20	193 4	0% 35	-10 : —				
CDS1040 Design of arch rib inspection cradle + Under bridge gantry	86	86 30-Sep-19	30-Sep-19	07-Jan-20	07-Jan-20	-80	0% 0	0				
CDS1060 Design of access facilities (incl. 14 days TRA) CDS1080 Design of Tuned Mass Damper(TMD) (incl. 7 days TRA)	125 150	69 05-May-19 A 110 15-Apr-19 A	28-May-19 08-Jul-19	25-Sep-19 12-Nov-19	19-Oct-19 28-Dec-19	1 21	44.8% 14 26.67% 7	21 ;		<u> </u>		Des
CDS1100 Design of de-humidification system	83	83 10-Oct-19	10-Oct-19	14-Jan-20	14-Jan-20	-33	0% 0	0				
CDS1160 Design of Electrical system for the E&M plant room CDS1180 Design of Building Services system for the E&M plant room	100	100 30-Sep-19 100 10-Sep-19	30-Sep-19 10-Sep-19	07-Jan-20 18-Dec-19	07-Jan-20 18-Dec-19	-38 -38	0% 0 0% 0	0			:	
CDS1200 Design of Structural health monitoring system (incl. 14 days TRA)	172	172 12-Jun-19 A	08-Jul-19	23-Jan-20	23-Jan-20	3	0% 14	0 :				
Iternative Design Submission and Approval	111	33 30-Mar-19 A	08-Apr-19	14-Aug-19	14-Aug-19	125	70.279/ 25	0		Alternative Design Submission a DDA submission for bridge deck	:	duot (incl. 25 dove TDA)
ADS1030 DDA submission for bridge deck of entrusted works of TKOI Viaduct (incl. 35 days TRA) reliminaries. Submission. Subcontracting and Procurement	111 206	33 30-Mar-19 A 115 28-Mar-19 A	08-Apr-19 08-Apr-19	14-Aug-19 30-Oct-19	14-Aug-19 30-Sep-19	125 836	70.27% 35	-30		DDA submission for orage deck	of chirusted works of TKOT via	duct (life). 33 days TRA)
General Submission	140	69 28-Mar-19 A	08-Apr-19	14-Sep-19	25-Aug-19	-30		-20			General Submission	
P-GS1480 Steel main bridge shop drawings submission and approval (incl. 7 days TRA)	140	69 28-Mar-19 A	08-Apr-19	14-Sep-19	25-Aug-19	-30	50.71% 7	-20			Steel main bridge shop di	rawings submission and ect Manager's Acceptance
Project Manager's Acceptance of Subcontractors P-SP1280 Physical Model CBL Bridge	85	77 03-Jun-19 A	20-Jun-19	30-Sep-19 30-Sep-19	30-Sep-19 30-Sep-19	866 866	0%	0			; *	sical Model CBL Bridge
P-SP1340 Design, supply and installation of SHMS (EW 011)	0	0		03-Jun-19 A	06-Jul-19		100% 0	34	Oesign, supply	ly and installation of SHMS (EW 011)	Ĭ	8
P-SP1400 Transportation and installation of precast box girder P-SP1440 Transportation and installation of steel side spans and steel arch bridge	0	0		30-Jul-19 31-Jul-19	26-Jun-19 31-Jul-19	107 -41	0% 0 0% 0	-34		 Transportation and installation of precast box girder Transportation and installation of steel side spans ar 	d steel arch bridge	
P-SP1500 R.C. structure for pilecap, pier and in-situ deck	0	0		15-Jul-19	20-Jun-19	24	0% 0	-25	◆ R	R.C. structure for pilecap, pier and in-situ deck	:	
P-SP1540 Waterproofing Works P-SP1600 Supply and installation of under bridge mobile gantry	0	0		30-Aug-19 29-Sep-19	29-Jul-19 29-Sep-19	291 -45	0% 0 0% 0	-32		◆ Waterproof		ly and installation of uno
P-SP1620 Design, supply and installation of arch inspection cradle	0	0		29-Sep-19	29-Sep-19	-94	0% 0	0	mmks and installat	ation of dehumification system	\$ Desig	gn, supply and installation
P-SP1660 Design, supply and installation of dehumification system P-SP1680 Design, supply and installation of SCADA	0	0		12-Jun-19 A 29-Sep-19	26-Jun-19 29-Sep-19	-45	100% 0 0% 0	0 :	ppiy and instanai	ation of denuminication system	Desig	gn, supply and installation
P-SP1700 Electrical installation works for CBL Main bridge and Marine Viaduct	0	0		29-Sep-19	29-Sep-19	-45 20	0% 0	0				rical installation works for ling services for E&M pl
P-SP1760 Building services for E&M plantroom Preliminaries	96	96 08-Jul-19	08-Jun-19	29-Sep-19 30-Oct-19	29-Sep-19 30-Sep-19	-38 678	0% 0	-24			♦ ;Build	iling services for Eccivi pi
P-P11160 Design & Erection of Community liasion centre (PMI 001)	96	96 08-Jul-19	08-Jun-19	30-Oct-19	30-Sep-19	678	0% 0	-24				
P-P11220 Physical Model for the marine viaducts of Cross Bay Link casting & Fabrication Works	5 292	5 08-Jul-19 201 08-Dec-18 A	08-Jun-19 08-Apr-19	12-Jul-19 24-Jan-20	13-Jun-19 24-Jan-20	769 45	0%	-24	Physic	ical Model for the marine viaducts of Cross Bay Link		
PS9000 Information of TCSS for Cast-in Items (provide by others)(RFI-0087, RFI-0160)	0	0	00.141.15	14-May-19 A	08-Jun-19		100% 7	25 S for Cast-in I	tems (provide by	y others)(RFI-0087, RFI-0160)		
abrication of Precast Shell and Precast Segments	141	139 23-May-19 A	08-Jun-19	23-Nov-19	24-Oct-19	107		-30	1			
Precast Shell	141	139 23-May-19 A	08-Jun-19	23-Nov-19	24-Oct-19	107		-30				
CBL - Batch 1 (4nos.) P-PS3070 Fabrication of Shell E5	28	0 23-May-19 A 0 23-May-19 A	12-Jun-19 06-Jul-19	19-Jun-19 A 10-Jun-19 A	02-Aug-19 02-Aug-19		100%	45 - Batch 1 (4no	s.)	Fabrication of Shell E5		
P-PS3111 Fabrication of Shell E3	21	0 02-Jun-19 A	12-Jun-19	19-Jun-19 A	02-Jul-19		100%	14 Fa	brication of Shel			
CBL - Batch 2 (4nos.)	75	75 06-Jul-19 A	08-Jun-19	20-Sep-19	21-Aug-19	21		-30	*	Tatabara.	CBL - Batch 2 (4 of Shell E1 (1/2) + Modification	
P-PS3135 Fabrication of Shell E1 (1/2) + Modification of Casting Bed (2 weeks) P-PS3137 Fabrication of Shell E1 (2/2) + Modification of Casting Bed (2 weeks)	55 55	55 08-Jul-19 55 28-Jul-19	08-Jun-19 28-Jun-19	31-Aug-19 20-Sep-19	01-Aug-19 21-Aug-19	21	0% 0%	-30 -30		-		ell E1 (2/2) + Modificati
P-PS3140 Fabrication of Shell E6	28	26 06-Jul-19 A	23-Jun-19	02-Aug-19	20-Jul-19	38	7.14%	-13		Fabrication of Shell E6 Fabrication of Shell E7		
P-PS3144 Fabrication of Shell E7 CBL - Batch 3 (4nos.)	28 69	28 24-Jul-19 69 16-Sep-19	11-Jul-19 17-Aug-19	20-Aug-19 23-Nov-19	07-Aug-19 24-Oct-19	38 107	0%	-13 -30		raprication of Shell E/	·	
P-PS3068 Fabrication of Shell W1 (1/2)	28	28 16-Sep-19	17-Aug-19	13-Oct-19	13-Sep-19	52	0%	-30				Fabrication
P-PS3069 Fabrication of Shell W1 (2/2)	28	28 09-Oct-19	09-Sep-19	05-Nov-19	06-Oct-19	52	0%	-30			T	
Remaining Level of Effort Remaining Work	Milestone				CRBC				Date	Revision	Checked	d Approv
Primary Baseline Critical Remaining Work	Summary		78	Th 3.4		D		<u> 08</u>	8-Jul-19	Monthly updated on 8 May 2019		
,	,		Ί	nree Mon	th Rolling	rrogra	mme					

Date : 08-Jul-19 2	Contract 1	No. NE/201	7/07 Cro	ss Bay Lin	k, Tseng Kv	van O - Main Bridge a	nd Associated W	orks	
AdM/Name	Original Remainin	ng Duration Start	PlannedStart	Finish	PlannedFinish	Total Float Achte/% Complete TRA Vasarres. Fin	h Date Intervente	9 August 2019 Sentember 2019	October 2019
P-PS3138 Fabrication of Shell E2	Duration 28	28 27-Oct-19	27-Sep-19	23-Nov-19	24-Oct-19	107 0%	23 30 07 14 -30	4 21 28 04 11 18 25 01 08 15 22 29	06 13 20
CBL - E1 and W1 Side Shells (4nos.)	100	100 15-Jul-19	15-Jul-19	22-Oct-19	22-Oct-19	69	0		 (
P-PS9010 Casting Bed Preparation for Side Shells (small) - Additional Casting Beds P-PS9020 Fabrication of Side Shells (small) x2 Sides E1	60 40	60 15-Jul-19 40 13-Sep-19	15-Jul-19 13-Sep-19	12-Sep-19 22-Oct-19	12-Sep-19 22-Oct-19	69 0% 69 0%	0	Casting Bed Preparation fo	r Side Shells (small) - Add F
abrication of Precast Box Girder	194	153 08-Dec-18 A	28-May-19	07-Dec-19	06-Dec-19	77	-1		
P-BG1415 Setting Up Precasting Yard for Box Girder - Stage 2 (Storage) P-BG1435 Design, Procurement and Delivery of Structure Health Monitoring Sensors for Box Griders	120 80	79 08-Dec-18 A 55 12-Jun-19 A	28-May-19 12-Jun-19	24-Sep-19 31-Aug-19	24-Sep-19 30-Aug-19	151 34.17% 27 31.25%	0 :	Setting Up Design, Procurement and Delivery of Struc	Precasting Yard for Box C ture Health Monitoring Se
Box Girder Fabrication - 1st Batch (8 Pieces)	187	153 05-Apr-19 A	04-Jun-19	07-Dec-19	06-Dec-19	27	-1		
P-BG1380 Fabrication of Precast box girder, Including Cast-in Items and Prestressing -Span E4-E5(South) P-BG1381 Fabrication of Precast box girder, Including Cast-in Items and Prestressing -Span W4-W5(North)	75 75	16 05-Apr-19 A 41 28-May-19 A	30-Jun-19 04-Jun-19	31-Jul-19 17-Aug-19	12-Sep-19 17-Aug-19	74 78.67% 0 48 45.33% 0	43	Fabrication of Precast box girder, Including Cast-in Items and	
P-BG1382 Fabrication of Precast box girder, Including Cast-in Items and Prestressing -Span E4-E5(North)	75	66 05-Jun-19 A	05-Jul-19	11-Sep-19	17-Sep-19	39 12% 0	6		t box girder, Including Ca
P-BG1383 Fabrication of Precast box girder, Including Cast-in Items and Prestressing -Span W3-W4(South) P-BG1384 Fabrication of Precast box girder, Including Cast-in Items and Prestressing -Span E5-E6 (North)	75 75	75 05-Aug-19 75 30-Aug-19	04-Aug-19 29-Aug-19	18-Oct-19 12-Nov-19	17-Oct-19 11-Nov-19	27 0% 0 27 0% 0	-1 -1		- Fabri
P-BG1385 Fabrication of Precast box girder, Including Cast-in Items and Prestressing -Span W4-W5(South)	75 167	75 24-Sep-19 167 16-Jul-19	23-Sep-19 27-Jun-19	07-Dec-19 29-Dec-19	06-Dec-19 29-Dec-19	27 0% 0	-1		
P-PF1220 Setting up precasting yard for precast pier (incl. 18 days TRA)	87	87 16-Jul-19	27-Jun-19	10-Oct-19	21-Sep-19	24 0% 18	-19		Setting up prec
P-PF1230 Fabrication of Precast pier (1st batch 4 nos) - E4, E5, E6, E7 abrication of Steel Arch Bridge and Side Spans	99	99 22-Sep-19 201 28-Mar-19 A	22-Sep-19 08-Apr-19	29-Dec-19 24-Jan-20	29-Dec-19 24-Jan-20	24 0% 0	0		
Fabrication of Steel Arch Bridge	292	201 28-Mar-19 A	08-Apr-19	24-Jan-20	24-Jan-20	-29	0		
P-PF1035 1st batch of shop drawing submission & approval (NCE 014)(EW014)	50	2 28-Mar-19 A	08-Apr-19	09-Jul-19	27-May-19	-95 96% 0	43 1st batch o	of shop drawing submission & approval (NCE 014)(EW014)	
P-PF1040 Setting up steel work fabrication yard P-PF1045 Remaining shop drawing submission & approval (NCE 014)	60	60 20-Sep-19 65 29-Jun-19 A	20-Sep-19 21-Nov-19	18-Nov-19 24-Jan-20	18-Nov-19 24-Jan-20	-95 0% 0 -29 0% 0	0		
P-PF1047 Procurement and delivrey of welding materials	90 125	29 06-Jun-19 A	08-Jun-19 12-Jun-19	05-Aug-19 09-Oct-19	05-Sep-19 14-Oct-19	-95 67.78% -95 26.4% 35	31	Procurement and delivrey of welding	g materials Procurem
P-PF1055 1st batch of on site material sampling & testing	20	92 19-Apr-19 A 20 25-Jun-19 A	10-Oct-19	29-Oct-19	29-Oct-19	-95 0% 0	0		riocurent
P-PF1065 Welding Procedure trials tion 2 of Works-All Works within Portion II,III,IV and VI	90 391	90 29-Jun-19 A 310 02-Nov-18 A	06-Aug-19 18-Apr-19	03-Nov-19 12-May-20	03-Nov-19 12-May-20	-95 0% 0 84	0		
BL Main Bridge and Marine Viaduct	391	310 02-Nov-18 A	18-Apr-19	12-May-20	12-May-20	84	0		
Pre-drilling Works	8	0 02-Nov-18 A	23-Jul-19	29-Nov-18 A	31-Jul-19		195		
Pre-drilling Works for Pier E3 (52m length,4m socket)	8	0 02-Nov-18 A	23-Jul-19	29-Nov-18 A	31-Jul-19	1000/	195	Mobilization of Jack up barge/ working platform	
S2-PD22 Mobilization of Jack up barge/ working platform S2-PD22 Deploy silt curtain	2 2	0 02-Nov-18 A 0 03-Nov-18 A	23-Jul-19 25-Jul-19	02-Nov-18 A 05-Nov-18 A	24-Jul-19 26-Jul-19	100% 0 100% 0	212	Mobilization of Jack up barge/ working platform Deploy silt curtain	
S2-PD227 Pre-drilling Works for E3- P1 (52m length,4m socket) - rig No.2	4	0 06-Nov-18 A	27-Jul-19	13-Nov-18 A	31-Jul-19	100% 0	209	Pre-drilling Works for E3- P1 (52m length,4m socket) - rig No.2 Pre-drilling Works for E3- P2 (52m length,4m socket) - rig No.2	
S2-PD40(Pre-drilling Works for E3- P2 (52m length,4m socket) - rig No.2 S2-PD40: Pre-drilling Works for E3- P3 (52m length,4m socket) - rig No.2	4	0 15-Nov-18 A 0 24-Nov-18 A	23-Jul-19 23-Jul-19	23-Nov-18 A 29-Nov-18 A	26-Jul-19 26-Jul-19	100% 0 100% 0	196 191	Pre-drilling Works for E3- P3 (52m length,4m socket) - rig No.2	
Piling Works	204	123 23-Nov-18 A	18-Apr-19	07-Nov-19	02-Nov-19	43	-5	nt and delivery of steel casing (CE004)(CE005)(CE006)(CE008)(NCE 018 & 019)	
S2-PW1010 Procurement and delivery of steel casing (CE004)(CE005)(CE006)(CE008)(NCE 018 & 019) Piling Works for Pier E2	75 74	0 23-Nov-18 A 74 26-Aug-19	18-Apr-19 21-Aug-19	08-Jul-19 07-Nov-19	01-Jul-19 02-Nov-19	29 100% 0 7	-5	in and derivery of seer casing (CE004)(CE005)(CE000)(CE000)(NCE 016 & 017)	
S2-PW85 Piling platform installation -E2 (CE006)	4	4 26-Aug-19	21-Aug-19	29-Aug-19	24-Aug-19	6 0% 0	4	Piling platform installation -E2 (CE006)	
Pile E2 -P1 S2-PW\ Drive Casing & Grab to excavate the soil (40.4m length) -E2-P1	3	10 30-Aug-19 3 30-Aug-19	26-Aug-19 26-Aug-19	10-Sep-19 02-Sep-19	05-Sep-19 28-Aug-19	6 0% 0	4	Drive Casing & Grab to excavate the soil	l (40.4m length) -E2-P1
S2-PWi Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting S2-PWi Install steel cage and concreting -E2-P1	ng - 4	4 03-Sep-19 3 07-Sep-19	29-Aug-19 03-Sep-19	06-Sep-19 10-Sep-19	02-Sep-19 05-Sep-19	6 0% 0 10 0% 0	4	Install RCD and excavate the rock Install steel cage and concreting	
Pile E2 -P2	11	11 03-Sep-19	29-Aug-19	16-Sep-19	10-Sep-19	9	4	Pile E2 -P2	
S2-PW\ Drive Casing & Grab to excavate the soil (40.4m length) -E2-P2 S2-PW\ Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	3 no - 4	3 03-Sep-19 4 07-Sep-19	29-Aug-19 03-Sep-19	05-Sep-19 11-Sep-19	31-Aug-19 06-Sep-19	7 0% 0 6 0% 0	4 4	Drive Casing & Grab to excavate the Install RCD and excavate the	
S2-PW\ Install steel cage and concreting -E2-P2	3	3 12-Sep-19	07-Sep-19	16-Sep-19	10-Sep-19	9 0% 0	4	Install steel cage and o	concreting -E2-P2
Pile E2 -P3 S2-PW{ Drive Casing & Grab to excavate the soil (40.4m length) -E2-P3	3	12 06-Sep-19 3 06-Sep-19	02-Sep-19 02-Sep-19	20-Sep-19 09-Sep-19	16-Sep-19 04-Sep-19	8 0% 0	4 4	Drive Casing & Grab to excava	ate the soil (40.4m length
S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	ng - 4	4 12-Sep-19	07-Sep-19	17-Sep-19	11-Sep-19	6 0% 0	4	Install RCD and exc	
S2-PWi Install steel cage and concreting -E2-P3 Pile E2 -P4	13	3 18-Sep-19 13 10-Sep-19	12-Sep-19 05-Sep-19	20-Sep-19 25-Sep-19	16-Sep-19 20-Sep-19	8 0% 0	4	▼ Pile E2 -P	4
S2-PWi Drive Casing & Grab to excavate the soil (40.4m length) -E2-P4 S2-PWi Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	3 ng. 4	3 10-Sep-19 4 18-Sep-19	05-Sep-19 12-Sep-19	12-Sep-19 21-Sep-19	07-Sep-19 17-Sep-19	9 0% 0 6 0% 0	4	— Drive Casing & Grab to ex — Install RCD an	
S2-PWt Install steel cage and concreting -E2-P4	3	3 23-Sep-19	18-Sep-19	25-Sep-19	20-Sep-19	7 0% 0	4	── Insta‡l stee	l cage and concreting -E
Pile E2 -P5 S2-PW\ Drive Casing & Grab to excavate the soil (40.4m length) -E2-P5	3	14 13-Sep-19 3 13-Sep-19	09-Sep-19 09-Sep-19	30-Sep-19 17-Sep-19	25-Sep-19 11-Sep-19	10 0% 0	4 4	Drive Casing & Gral	E2 -P5 to excavate the soil (40
S2-PW\ Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting		4 23-Sep-19	18-Sep-19	26-Sep-19	21-Sep-19	6 0% 0	4	Install Re	CD and excavate the roc all steel cage and concre
S2-PWi Install steel cage and concreting -E2-P5 Pile E2 -P6	10	3 27-Sep-19 10 02-Oct-19	23-Sep-19 26-Sep-19	30-Sep-19 14-Oct-19	25-Sep-19 09-Oct-19	6 0% 0	4		Pile E2 -I
S2-PWt Drive Casing & Grab to excavate the soil (40.4m length) -E2-P6 S2-PWt Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	3	3 02-Oct-19 4 05-Oct-19	26-Sep-19 30-Sep-19	04-Oct-19 10-Oct-19	28-Sep-19 04-Oct-19	6 0% 0 6 0% 0	4	— <u> </u>	Drive Casing & Grab t Install RCD ar
S2-PW\ Install steel cage and concreting -E2-P6	3	3 11-Oct-19	05-Oct-19	14-Oct-19	09-Oct-19	6 0% 0	4		Install stee
Testing S2-PW\ Sonic Test, interface core and full core for bored pile -E2	21	21 15-Oct-19 21 15-Oct-19	10-Oct-19 10-Oct-19	07-Nov-19 07-Nov-19	02-Nov-19 02-Nov-19	6 0% 0	4		·····
Piling Works for Pier W3	4	4 15-Oct-19	10-Oct-19	18-Oct-19	14-Oct-19	54	_4		Pilin
S2-PW21: Piling platform installation -W3 Piling Works for Pier W1	4 64	4 15-Oct-19 64 02-Aug-19	10-Oct-19 29-Jul-19	18-Oct-19 18-Oct-19	14-Oct-19 14-Oct-19	54 0% 0 7	4	-	Pilin
S2-PW20 Piling platform installation -W1	4	4 02-Aug-19	29-Jul-19	06-Aug-19	01-Aug-19	5 0% 0	4	Piling platform installation -WI	
Pile W1 -P1 S2-PW: Drive Casing & Grab to excavate the soil (42.4m length) -W1-P1	4	11 07-Aug-19 4 07-Aug-19	02-Aug-19 02-Aug-19	19-Aug-19 10-Aug-19	14-Aug-19 06-Aug-19	5 0% 0	4	Pile W1 -P1 Drive Casing & Grab to excavate the soil (42.4m length) -W1-P1	
S2-PW: Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting		4 12-Aug-19	07-Aug-19	15-Aug-19	10-Aug-19	5 0% 0	4	 Install RCD and exeavate the rock under rockhead level to found Install steel cage and concreting -W1-P1 	ding level (4m socket) - 1
S2-PW. Install steel cage and concreting -W1-P1 Pile W1 -P10	3 11	3 16-Aug-19 11 19-Sep-19	12-Aug-19 13-Sep-19	19-Aug-19 02-Oct-19	14-Aug-19 26-Sep-19	20 0% 0	4	▼ F	ile W1 -P10
S2-PW Drive Casing & Grab to excavate the soil (42.4m length) -W1-P10 S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4 ng 4	4 19-Sep-19 4 24-Sep-19	13-Sep-19 19-Sep-19	23-Sep-19 27-Sep-19	18-Sep-19	5 0% 0 5 0% 0	4 4	———— Drive Casing ———— Install F	g & Grab to excavate the RCD and excavate the ro
S2-PW- Install steel cage and concreting -W1-P10	3	3 28-Sep-19	24-Sep-19	27-Sep-19 02-Oct-19	23-Sep-19 26-Sep-19	11 0% 0	4		nstall steel cage and con-
Pile W1 -P11 S2-PW Drive Casing & Grab to excavate the soil (42.4m length) -W1-P11	11 4	11 24-Sep-19 4 24-Sep-19	19-Sep-19 19-Sep-19	08-Oct-19 27-Sep-19	02-Oct-19 23-Sep-19	5 0% 0	4	— Drive C	Pile W1 -P11 asing & Grab to excava
S2-PW4 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting		4 28-Sep-19	24-Sep-19	03-Oct-19	27-Sep-19	5 0% 0	4	· · · · · · · · · · · · · · · · · · ·	Install RCD and excava
S2-PW- Install steel cage and concreting -W1-P11 Pile W1-P12	3 11	3 04-Oct-19 11 28-Sep-19	28-Sep-19 24-Sep-19	08-Oct-19 12-Oct-19	02-Oct-19 08-Oct-19	10 0% 0	4	= -	Install steel cage a
S2-PW4 Drive Casing & Grab to excavate the soil (42.4m length) -W1-P12	4	4 28-Sep-19	24-Sep-19	03-Oct-19	27-Sep-19	5 0% 0	4		Drive Casing & Grab to
S2-PW- Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	ng 4	4 04-Oct-19	28-Sep-19	09-Oct-19	03-Oct-19	5 0% 0	4 : 1		Install RCD and
■ Remaining Level of Effort Remaining Work ♦ ♦ I	Milestone				CRBC		Date	Revision Checker	d Approv
Primary Baseline Critical Remaining Work	Summary		7	Three Man	th Rolling P	raaramma	08-Jul-19	Monthly updated on 8 May 2019	
					un ixviiiilig l'	i uzi aiiiilit	1		1


	I											
	ActivityName	Original Rema	ning Duration Start	Planned Start	Finish	Planned Finish	Total Float Activity% Complete TRA	Variance - Finish Date	July2019			
Marie Principal Principa	S2-PW- Install steel cage and concreting -W1-P12		3 10-Oct-19	04-Oct-19	12-Oct-19	08-Oct-19	9 0% 0	23 30	07 14	21 28 04 11 18 25 01 08		Install steel
Company Comp		11						-4				
Company Comp								-4 -4				Install F
Company Comp		3						-4			,	
Company Comp		4					-	4				
Column C	S2-PW- Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	- 4	4 15-Oct-19	10-Oct-19	18-Oct-19	14-Oct-19		-4				
March		4					5 0% 0	4				
Second Column				07-Aug-19			19	-4		: :		
Column C								-4				ding level (4m s
Column C	S2-PW: Install steel cage and concreting -W1-P2	3						4		Install steel cage and concret		ing lever (init
Column C		11						4			te the soil (42 Am length) -WI_P	ġ
The content of the		-						-4				
Section of the control and production of the control of the cont	S2-PW: Install steel cage and concreting -W1-P3	3		21-Aug-19	28-Aug-19	23-Aug-19	18 0% 0	-4			concreting -W1-P3	
Column		4						-4		:	cavate the soil (42.4in length) -V	W1-P4
The content of the	S2-PW: Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	- 4	4 26-Aug-19	21-Aug-19	29-Aug-19	24-Aug-19	5 0% 0	-4		install RCD and exc	cavate the rock under rockhead le	
Second Application contact and Sign Individual Control of Application (Second Application Control of Control		3						<u>-4</u>				
Color Color Color	S2-PW Drive Casing & Grab to excavate the soil (42.4m length) -W1-P5		4 26-Aug-19	21-Aug-19	29-Aug-19	24-Aug-19	5 0% 0	-4		— Drive Casing & Gra	ab to excavate the soil (42.4m leng	
The color of the	S2-PW4 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	- 4		26-Aug-19	03-Sep-19	29-Aug-19	5 0% 0	4				nead level to for
Series Control Age Anthrop Series Contr		11						4		Pile	e W1 -P6	
See Best Annual				26-Aug-19	03-Sep-19			4				
## Company of the Co		3						-4 -4		Inst	stall steel cage and concreting -W1	
1.0 1.0	Pile W1 -P7	11	11 04-Sep-19	30-Aug-19	17-Sep-19	11-Sep-19	14	-4		\	Pile W1 -P7	
Section Continue								4				
Style 19 19 19 19 19 19 19 1	S2-PW- Install steel cage and concreting -W1-P7	3				11-Sep-19	14 0% 0	4			Install steel cage and concret	
Second 19 1		11						-4				the soil (42 Am
1								4				
Sept Control Contr		3						-4		=		oncreting -W1-l
Sept.		4		-		-		-4				xcavate the soil
Company of the Comp	S2-PW- Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	- 4	4 19-Sep-19	13-Sep-19	23-Sep-19	18-Sep-19	5 0% 0	-4		-		
\$\frac{1}{2} \$P\$ \$P\$		4					12 0% 0	151			install steel cage	and concreting
March Mar		4						151				
The color of the								151	— Driv			
Section Continue	<u> </u>							-25 -25		: •		
Compared to the season and the season of t								-25				
Section 19	_ -							-5	F7	▼ Piling Works for Pier E7		
Septile Texal Compare Compa								-12	Pile E7 -P1			
2.5 PW Intelligent 1.5 PW 2.5 m/s 2		4						8 Casing & Grab	to excavate the soil	il (40.4m length) -E7-P1	Life E7 D1 (NCE012)	
15 15 15 15 15 15 15 15		3						-11			mung-E/-F1 (NCE012)	
SPV Intall RCD and excavate the read under reachand level to founding level (dan secket) - ing No.2 & air filling 47.72 SPV Intall and cap and excerning 17.72 SPV Intall and cap and excerning 17.72 SPV Intall and cap and excerning 47.72 SPV Intall RCD and excavate the read without interval int	Pile E7 -P2		7 06-Jun-19 A	18-Jun-19	15-Jul-19	29-Jun-19	5	-12				
S.P.P. Isolated seque and concenting = 2-172 7-1, Isolate								12 rive Casing &			t) - rig No.2 & air lifting -E7-P2	
S.P.W. Intell RCD and excavate the cold (4.64 in length) 17-73 18 0.06 dum 19 0.74 mil 19	S2-PW: Install steel cage and concreting -E7-P2	3						-12 —	Insta		, ., .,	
S.P.P.W Issuell RCD and excounte the rock under nockhoal evel to founding level (4m socket) - rig No.2 & air lifting - £7-£7 5 06.5m.h 9 05.b.h 9							1000/ 0	-1 :		everte the soil (40 Am length) E7 D2		
Fig. 2.44 30 7 0.6.lin-19 0.6.lin-								-2 Dive Ca			o.2 & air lifting -E7-P3	
2.2.PW Total fill (an length) E7-P4 4 0.6.6.bm 19 0.7.bm	S2-PW Install steel cage and concreting -E7-P3	5	0 06-Jul-19 A	03-Jul-19	08-Jul-19 A	05-Jul-19	100% 0	-1 -	Install steel cag	ge and concreting -E7-P3		
S.2.PW Install RCD and eccavance the rock under rockhoad level to founding level (4m socket) - fig No.2 & air filling - E7-P4 1.0 his 19 10. his 19 10		30						-8 20 D				
S2-PW Price Casing & Grab to executate the soil (40-4m length) ±7-P5 4 0.06-Ju-19 0.0-Ju-19	S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting		4 12-Jul-19	03-Jul-19	16-Jul-19	06-Jul-19	3 0% 0	-8 -	Ins	stall RCD and excavate the rock under rockhead level to founding level (4m	socket) - rig No.2 & air lifting -J	E7-P4
2-2-PW prive Casing & Grab to excevate the soil (40-m length) ±2-PS 4 0 0.6-lin-19 A 0.6-lin-19		30					4 0% 0	-8				
\$2.PW Install RCD and cavarate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - E7-P5 \$2.PW Salar RCD and cavarate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - E7-P5 \$2.PW Pric Casing & Grib to excavate the soil (40.4m length) - E7-P6 \$2.PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - E7-P5 \$2.PW Install RCD and excavate the soil (40.4m length) - E7-P6 \$2.PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - E7-P5 \$2.PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - E7-P5 \$2.PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - E7-P5 \$2.PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - E7-P5 \$2.PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - E7-P5 \$2.PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - E7-P5 \$2.PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - E7-P5 \$2.PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - E7-P5 \$2.PW Install RCD and excavate the soil (40.4m length) - E7-P6 \$2.PW Install RCD and excavate the soil (40.4m length) - E7-P6 \$2.PW Install RCD and excavate the soil (40.4m length) - E7-P6 \$2.PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) & air lifting - E1-P1 No.2 &			0 06-Jun-19 A					24 —		Grab to excavate the soil (40.4m length) -E7-P5		
Fig. 12 Fig. 15 Fig.	S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	4	4 17-Jul-19	08-Jul-19	20-Jul-19	11-Jul-19	3 0% 0	-8			l (4m socket) - rig No.2 & air lift	ing -E7-P5
S2-PW Drive Cissing & Grab to excavate the soil (40.4m length) .E7-P6		37					3 0% 0	-8 -4				
S2-PW Install steel cage and concreting -E7-P6 3 3 3 3 3 1 9 2 5 2 1 2 2 2 2 2 2 2 2	S2-PW. Drive Casing & Grab to excavate the soil (40.4m length) -E7-P6		0 06-Jun-19 A	16-Jul-19	07-Jun-19 A	19-Jul-19		35	_			
1		3						<u>-4</u>	· ·		unging level (4m socket) - rig No	o.2 & air lifting
124 78 17Amys19 A 30-Mys-19 23-Sep-19 18-Sep-19 0 5 5	Testing		21 02-Aug-19	29-Jul-19	26-Aug-19	21-Aug-19	3	4		Testing		
S2-PW75 Piling platform installation -E1 4 0 17-May-19 A 30-May-19 08-Jul-19 0 100% 0 -27 Piling platform installation -E1								4		Sonic Test, interface core	e and full core for bored pile -E7 Piling Works for Dia	er E1
Pile El-Pl 10 10 10 10 10 10 10 1	_ 	_						-27			i ming tyorks for the	
S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) & air lifting -E1-P1 (NCE 006) S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) & air lifting -E1-P1 (NCE 006) S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) & air lifting -E1-P1 (NCE 006) S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) & air lifting -E1-P1 (NCE 006) S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) & air lifting -E1-P1 (NCE 006) S2-PW Install RCD and excavate the soil (42.4m length) -E1-P10 S2-PW Install RCD and excavate the soil (42.4m length) -E1-P10 S2-PW Install RCD and excavate the soil (42.4m length) -E1-P10 S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E1-P10 S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E1-P10 S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E1-P10 S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E1-P10 S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E1-P10 S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E1-P10 S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E1-P10 S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E1-P10 S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) & air lifting -E1-P10 S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) & air lifting -E1-P10 S2-PW Insta	Pile E1 -P1	10	10 08-Jul-19	30-May-19	18-Jul-19	20-Jun-19	9	-23	I	Pile E1 -P1		
S2-PW Install steel cage and concreting -E1-P1 18-Jul-19 18-Jul-19 18-Jul-19 18-Jul-19 18-Jul-19 19-Jun-19 19											socket) & air lifting -F1-P1 (NCF	E 006)
S2-PWI Drive Casing & Grab to excavate the soil (42.4m length) -E1-P10 S2-PWI Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E1-P10 S2-PWI Install steel cage and concreting -E1-P10 Remaining Level of Effort Remaining Level of Effort Remaining Level of Effort Remaining Level of S2-PWI Drive Casing & Grab to excavate the soil (42.4m length) -E1-P10 3 0 05-Jun-19 A 26-Jun-19 A 24-Jul-19 100% 0 35	S2-PW Install steel cage and concreting -E1-P1	3	3 16-Jul-19					-28			.,	/
S2-PWI Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - 3	Pile E1 -P10	43	0 05-Jun-19 A	26-Jun-19	21-Jun-19 A				Cooma & Cont.	vocueta the coil (42 Am langth). EL BIO		
S2-PW1 Install steel cage and concreting -E1-P10 7 0 14-Jun-19 A 25-Jul-19 21-Jun-19 A 27-Jul-19 100% 0 31 — Install steel cage and concreting -E1-P10 Remaining Level of Effort		3 3						19 — Drive C			g level (4m socket) - rig No.2 & a	air lifting -E1-P
Remaining Level of Effort Remaining Work Willestone CRBC Oit feel Demaining Work Willestone CRBC		7						31				
Remaining Level of Effort Remaining Work Willestone CRBC Office Demoising Work Willestone CRBC	Pamaining Level of Effort Demaining 197-1	ilootona				~~~~~·		I	Date	Revision	Checked	Appr
						CRBC		<u> </u>			5531.04	1
	Primary Baseline Critical Remaining Work	ummary		Т	Three Mon	th Rolling	Programme		10			

ActivityName	Original Rema	iring Duration Start	Planned Start	Finish	Planned Finish	Total Float A	ctivity% Complete TRA Variano	e-FinishDate	July2019	August 2019 Septi	ember 2019	October 2019
Pile E1 -P11	14	7 08-Jul-19 A	29-Jun-19	06-Aug-19	01-Aug-19	5		23 30	07 14	21 28 04 11 18 25 01 08 Pile E1 -P11	15 22 29 06	6 13
S2-PW\ Drive Casing & Grab to excavate the soil (42.4m length) -E1-P11	3	0 08-Jul-19 A	29-Jun-19	08-Jul-19 A	03-Jul-19		100% 0	-3	Drive Casing &	: Grab to excavate the soil (42.4m length) -E1-P11 Install RCD and excavate the rock under rockhead leve	.14. 6 1 1 1 1	.:!:A: E1 D11
S2-PWI Install RCD and excavate the rock under rockhead level to founding level (4m socket) air lifting -E1-P11 (No S2-PWI Install steel cage and concreting -E1-P11	3	4 30-Jul-19 3 03-Aug-19	25-Jul-19 30-Jul-19	02-Aug-19 06-Aug-19	29-Jul-19 01-Aug-19	5	0% 0 0% 0	4 4		Install steel cage and concreting -E1-P11	i to founding level (4in socket) a	air iiiuiig -E1-F1
Pile E1 -P12	18	18 22-Jul-19	04-Jul-19	10-Aug-19	06-Aug-19	4		-4		Pile E1 -P12	:	
S2-PWi Drive Casing & Grab to excavate the soil (42.4m length) -E1-P12 S2-PWi Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	- 4	3 22-Jul-19 4 03-Aug-19	04-Jul-19 30-Jul-19	24-Jul-19 07-Aug-19	06-Jul-19 02-Aug-19	8	0% 0 0% 0	-15		Drive Casing & Grab to excavate the soil (42.4m length) -E1-P12 Install RCD and excavate the rock under rockhe		ocket) - rig No.2
S2-PW\ Install steel cage and concreting -E1-P12	3	3 08-Aug-19	03-Aug-19	10-Aug-19	06-Aug-19	4	0% 0	-4		Install steel cage and concreting -E1-P12		, 5
Pile E1 -P13 (Dia. 1000mm) S2-PWi Drive Casing & Grab to excavate the soil (43.4m length) -E1-P13	19	19 25-Jul-19 3 25-Jul-19	08-Jul-19 08-Jul-19	15-Aug-19 27-Jul-19	10-Aug-19 10-Jul-19	9	0% 0	4	<u></u>	Pile E1 -P13 (Dia. 1000mm) Drive Casing & Grab to excavate the soil (43.4m length) -E1-I-	ē13	
S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	- 4	4 08-Aug-19	03-Aug-19	12-Aug-19	07-Aug-19	0	0% 0	-13	_	Install RCD and excavate the rock under	rockhead level to founding level ((4m socket) - rig
S2-PW{ Install steel cage and concreting -E1-P13 Pile E1 -P14 (Dia. 1000mm)	3 20	3 13-Aug-19	08-Aug-19	15-Aug-19	10-Aug-19	3	0% 0	-4		Install steel cage and concreting -E1-F Pile E1 -P14 (Dia, 1000mm)	13	
S2-PW Drive Casing & Grab to excavate the soil (43.4m length) -E1-P14	3	20 29-Jul-19 3 29-Jul-19	11-Jul-19 11-Jul-19	20-Aug-19 31-Jul-19	15-Aug-19 13-Jul-19	10	0% 0	-15	_	Drive Casing & Grab to excavate the soil (43.4m length)	-E1-P14	
S2-PW1 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	- 4	4 13-Aug-19	08-Aug-19	16-Aug-19	12-Aug-19	0	0% 0	4		Install RCD and excavate the rock u Install steel cage and concreting		level (4m socket
S2-PW{ Install steel cage and concreting -E1-P14 Pile E1-P15 (Dia. 1000mm)	21	3 17-Aug-19 21 01-Aug-19	13-Aug-19 15-Jul-19	20-Aug-19 24-Aug-19	15-Aug-19 20-Aug-19	2	0% 0	4		Pile E1 -P15 (Dia. 1000m		
S2-PW\ Drive Casing & Grab to excavate the soil (43.4m length) -E1-P15	3	3 01-Aug-19	15-Jul-19	03-Aug-19	17-Jul-19	11	0% 0	-15	_	Drive Casing & Grab to excavate the soil (43.4m leng		1: 1 1/4
S2-PWI Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting S2-PWI Install steel cage and concreting -E1-P15	- 4	4 17-Aug-19 3 22-Aug-19	13-Aug-19 17-Aug-19	21-Aug-19 24-Aug-19	16-Aug-19 20-Aug-19	0	0% 0 0% 0	4		Install RCD and excavate the		.nding level (4m
Pile E1 -P16 (Dia. 1000mm)	22	22 05-Aug-19	18-Jul-19	29-Aug-19	24-Aug-19	0		-4		Pile E1 -P16 (Dia.	1000mm)	
S2-PWi Drive Casing & Grab to excavate the soil (43.4m length) -E1-P16 S2-PWi Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	3	3 05-Aug-19 4 22-Aug-19	18-Jul-19	07-Aug-19	20-Jul-19 21-Aug-19	12 0	0% 0	-15 -4	_	Drive Casing & Grab to excavate the soil (43.4n		el to founding leve
S2-PW1 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - ng No.2 & air lifting S2-PW1 Install steel cage and concreting E1-P16	3	4 22-Aug-19 3 27-Aug-19	17-Aug-19 22-Aug-19	26-Aug-19 29-Aug-19	21-Aug-19 24-Aug-19	0	0% 0 0% 0	-4		instan RCD and excav	nd concreting E1-P16	
Testing	21	21 30-Aug-19	26-Aug-19	23-Sep-19	18-Sep-19	0		-4		<u></u>	Testing	00 00m om J £-11
S2-PW Sonic Test, interface core and full core for bored pile -E1	21	21 30-Aug-19 11 11-Jul-19	26-Aug-19 03-Jun-19	23-Sep-19 23-Jul-19	18-Sep-19 19-Jun-19	0 8	0% 0	-4 -28		Pile E1 -P2	Sonic Test, interface	e core and full o
S2-PW. Drive Casing & Grab to excavate the soil (42.4m length) -E1-P2	3	3 11-Jul-19	03-Jun-19	13-Jul-19	05-Jun-19	1	0% 0	-31		asing & Grab to excavate the soil (42.4m length) -E1-P2		
S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting S2-PW Install steel cage and concreting -E1-P2	- 4	4 16-Jul-19 3 20-Jul-19	12-Jun-19	19-Jul-19 23-Jul-19	15-Jun-19 19-Jun-19	0 8	0% 0 0% 0	-28 -28		Install RCD and excavate the rock under rockhead level to founding level Install steel cage and concreting -E1-P2	(4m socket) - rig No.2 & air lifti	ing -E1-P2
S2-PW. Install steel cage and concreting -E1-P2 Pile E1-P3	21	0 05-Jun-19 A	17-Jun-19 10-Jun-19	23-Jul-19 28-Jun-19 A	19-Jun-19 24-Jun-19	8	0% 0	-3 Pile E1 -P3				
S2-PW Drive Casing & Grab to excavate the soil (42.4m length) -E1-P3	3	0 05-Jun-19 A	10-Jun-19	06-Jun-19 A	12-Jun-19		100% 0	5 & Grab to excavate			A: E1 D2	
S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting S2-PW Install steel cage and concreting -E1-P2	- 9 7	0 14-Jun-19 A 0 27-Jun-19 A	17-Jun-19 21-Jun-19	26-Jun-19 A 28-Jun-19 A	20-Jun-19 24-Jun-19		100% 0 100% 0	-3 Install RCD and		ock under rockhead level to founding level (4m socket):- rig No.2 & air li	iting -E1-P2	
Pile E1 -P4	5	0 07-Jun-19 A	21-Jun-19	13-Jun-19 A	25-Jun-19		10070	11				
S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting Pile E1-P5	- 5	0 07-Jun-19 A	21-Jun-19	13-Jun-19 A	25-Jun-19 04-Jul-19	7	100% 0	11 — Install RCD and	excavate the ro	ock under rockhead level to founding level (4m socket) - rig No.2 & air lil	ting -E1-P4	
S2-PW Drive Casing & Grab to excavate the soil (42.4m length) -E1-P5	3	12 15-Jul-19 3 15-Jul-19	15-Jun-19 15-Jun-19	27-Jul-19 17-Jul-19	04-Jul-19 18-Jun-19	2	0% 0	-20 -24	Dr	ive Casing & Grab to excavate the soil (42.4m length) :E1-P5		
S2-PW Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	- 4	4 20-Jul-19	26-Jun-19	24-Jul-19	29-Jun-19	0	0% 0	-20 —		Install RCD and excavate the rock under rockhead level to founding	ıg level (4m socket) - rig No.2 &	air lifting -E1-P5
S2-PW Install steel cage and concreting -E1-P5	3	3 25-Jul-19 13 18-Jul-19	02-Jul-19 19-Jun-19	27-Jul-19 01-Aug-19	04-Jul-19 09-Jul-19	6	0% 0	-20	_	Install steel cage and concreting -E1-P5 ✓ Pile E1 -P6		
S2-PW Drive Casing & Grab to excavate the soil (42.4m length) -E1-P6	3	3 18-Jul-19	19-Jun-19	20-Jul-19	21-Jun-19	3	0% 0	-24	_	Drive Casing & Grab to excavate the soil (42.4m length) -E1-P6		
S2-PW' Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	- 4	4 25-Jul-19	02-Jul-19	29-Jul-19	05-Jul-19	0	0% 0	-20		Install RCD and excavate the rock under rockhead level to f	ounding level (4m socket) - rig N	No.2 & air lifting
S2-PW Install steel cage and concreting -E1-P6	30	3 30-Jul-19 0 16-Jun-19 A	06-Jul-19 06-Jul-19	01-Aug-19 05-Jul-19 A	09-Jul-19 13-Jul-19	6	0% 0	-20 Pie	E1 -P7	■ Install steel cage and concreting -E1-P6		
S2-PW. Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting		0 16-Jun-19 A	06-Jul-19	02-Jul-19 A	10-Jul-19		100% 0	8		and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E1-P7	
S2-PW Install steel cage and concreting -E1-P7	3 22	0 03-Jul-19 A 0 11-Jun-19 A	11-Jul-19 11-Jul-19	05-Jul-19 A 19-Jun-19 A	13-Jul-19 18-Jul-19		100% 0	8 25 E1 -P8	— Install st	teel cage and concreting -E1-P7		
S2-PW: Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	- 16	0 11-Jun-19 A	11-Jul-19 11-Jul-19	15-Jun-19 A	15-Jul-19		100% 0	25		RCD and excavate the rock under rockhead level to founding level (4m	socket) - rig No.2 & air lifting -F	€1- P 8
S2-PW\ Install steel cage and concreting -E1-P8	3	0 17-Jun-19 A	16-Jul-19	19-Jun-19 A	18-Jul-19		100% 0	25 Pile E1 -P9	— Ir	nstall steel cage and concreting -E1-P8		***************************************
Pile E1 -P9 S2-PWi Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	- 3	0 14-Jun-19 A 0 14-Jun-19 A	16-Jul-19 16-Jul-19	26-Jun-19 A 24-Jun-19 A	23-Jul-19 19-Jul-19		100% 0	22		Install RCD and excavate the rock under rockhead level to founding leve	l (4m socket) - rig No.2 & air lifti	ting -E1-P9
S2-PW\ Install steel cage and concreting -E1-P9	6	0 25-Jun-19 A	20-Jul-19	26-Jun-19 A	23-Jul-19		100% 0	23		Install steel cage and concreting -E1-P9		
Cap le Cap for Pier E5	112	91 25-May-19 A 54 08-Jul-19	02-Jul-19 02-Jul-19	24-Oct-19 07-Sep-19	18-Nov-19 02-Sep-19	230		21		Pile Ca	p for Pier E5	
S2-PC254 Installation of precast shell -E5	10	10 08-Jul-19	02-Jul-19 02-Jul-19	18-Jul-19	12-Jul-19	204 198	0% 0	-5	Ir	nstallation of precast shell -E5) for the ES	
S2-PC256 Pilehead treatment -E5	14	14 19-Jul-19	13-Jul-19	03-Aug-19	29-Jul-19	204	0% 0	-5		Pilehead treatment -E5	E.S.	
S2-PC258 Rebar fixing and 1st stage Concreting -E5 S2-PC282 Preparation works for pier installation -E5	10 10	10 05-Aug-19 10 28-Aug-19	30-Jul-19 22-Aug-19	15-Aug-19 07-Sep-19	09-Aug-19 02-Sep-19	204 204	0% 0 0% 0	-5 -5		Rebar fixing and 1st stage Concreting Prepara	g -E5 ation works for pier installation -E	E5
le Cap for Pier E6	70	70 18-Jun-19 A	11-Jul-19	24-Oct-19	19-Oct-19	180		-4				
S2-PC255 Welding of Steel Bracket -E6 (6nos.)	14	7 18-Jun-19 A	11-Jul-19	08-Aug-19	26-Jul-19	18	50%	-11		Welding of Steel Bracket -E6 (6nos.)	Installation of prec	acact chall EZ
S2-PC261 Installation of precast shell -E6 S2-PC262 Pilehead treatment -E6	10 14	10 12-Sep-19 14 25-Sep-19	07-Sep-19 20-Sep-19	24-Sep-19 12-Oct-19	19-Sep-19 08-Oct-19	180 180	0% 0 0% 0	-4 -4			installation of prec	ecast shell -E6 Pilehead tr
S2-PC264 Rebar fixing and 1st stage Concreting -E6	10	10 14-Oct-19	09-Oct-19	24-Oct-19	19-Oct-19	180	0% 0	-4				
le Cap for Pier E7	48 14	48 27-Aug-19	22-Aug-19	24-Oct-19	19-Oct-19	215	00/	4		711	Velding of Steel Bracket -E7 (6nos	ne)
S2-PC265 Welding of Steel Bracket -E7 (6nos.) S2-PC266 Installation of precast shell -E7	14	14 27-Aug-19 10 12-Sep-19	22-Aug-19 07-Sep-19	11-Sep-19 24-Sep-19	06-Sep-19 19-Sep-19	3 19	0% 0% 0	4			Installation of prec	
S2-PC268 Pilehead treatment -E7	14	14 25-Sep-19	20-Sep-19	12-Oct-19	08-Oct-19	215	0% 0	-4			:	Pilehead tr
S2-PC27(Rebar fixing and 1st stage Concreting -E7	10 55	10 14-Oct-19 91 25-May-19 A	09-Oct-19 07-Sep-19	24-Oct-19 24-Oct-19	19-Oct-19 18-Nov-19	215 185	0% 0	-4 21		<u>-</u>		
S2-PC198 Welding of Steel Bracket -W2 (6nos.)	14	7 25-May-19 A	02-Nov-19	15-Jul-19	18-Nov-19	32	50%	105				
S2-PC200 Installation of precast shell -W2	10	10 12-Sep-19	07-Sep-19	24-Sep-19	19-Sep-19	185	0% 0	_4			Installation of prec	ecast shell -W2 Pilehead tr
S2-PC202 Pilehead treatment -W2 S2-PC204 Rebar fixing and 1st stage Concreting -W2	14 10	14 25-Sep-19 10 14-Oct-19	20-Sep-19 09-Oct-19	12-Oct-19 24-Oct-19	08-Oct-19 19-Oct-19	185 185	0% 0 0% 0	- 4 -4				Pilehead tr
le Cap for Pier E1	28	28 17-Sep-19	17-Sep-19	21-Oct-19	21-Oct-19	0		0				
S2-PC241 Welding of Steel Bracket -E1 (16nos.) e Cap for Pier E3	28 62	28 17-Sep-19 34 24-Jun-19 A	17-Sep-19 27-Jul-19	21-Oct-19 24-Oct-19	21-Oct-19 19-Oct-19	230	0%	0				
S2-PC235 Welding of Steel Bracket -E3 (6nos.)	14	0 24-Jun-19 A	27-Jul-19 27-Jul-19	09-Jul-19 A	19-Oct-19	230	100%	30				
S2-PC236 Installation of precast shell -E3	10	10 12-Sep-19	07-Sep-19	24-Sep-19	19-Sep-19	206	0% 0	-4		· · · · · · · · · · · · · · · · · · ·	Installation of prec	
S2-PC238 Pilehead treatment -E3 S2-PC240 Rebar fixing and 1st stage Concreting -E3	14 10	14 25-Sep-19 10 14-Oct-19	20-Sep-19 09-Oct-19	12-Oct-19 24-Oct-19	08-Oct-19 19-Oct-19	230 230	0% 0 0% 0	<u>-4</u> -4				Pilehead tr
le Cap for Pier E4	54	54 08-Jul-19	02-Jul-19	07-Sep-19	02-Sep-19	198	570 U	-5			up for Pier E4	_
S2-PC248 Installation of precast shell -E4	10	10 08-Jul-19	02-Jul-19	18-Jul-19	12-Jul-19	198	0% 0	-5		nstallation of precast shell -E4		
S2-PC250 Pilehead treatment -E4 S2-PC252 Rebar fixing and 1st stage Concreting -E4	14 10	14 19-Jul-19 10 05-Aug-19	13-Jul-19 30-Jul-19	03-Aug-19 15-Aug-19	29-Jul-19 09-Aug-19	198 198	0% 0 0% 0	-5 -5		Pilchead treatment -E4 Rebar fixing and 1st stage Concreting	;-E4	
S2-PC252 Repair IXINg and 18 stage Concreting -54 S2-PC280 Preparation works for pier installation -E4	10	10 03-Aug-19 10 28-Aug-19	22-Aug-19	07-Sep-19	02-Sep-19	198	0% 0	-5		Prepara	ation works for pier installation -E	34
Demoising Level of Effort	iloote :								Date	Revision	Checked	Appro
<u> </u>	ilestone				CRBC			08-Ju		Monthly updated on 8 May 2019	- Cristian	1 , , , , ,
Primary Baseline Critical Remaining Work	ummary	1						100-00		I AND ADDRESS OF TO INICIA FOR IN	1	

Contract 2

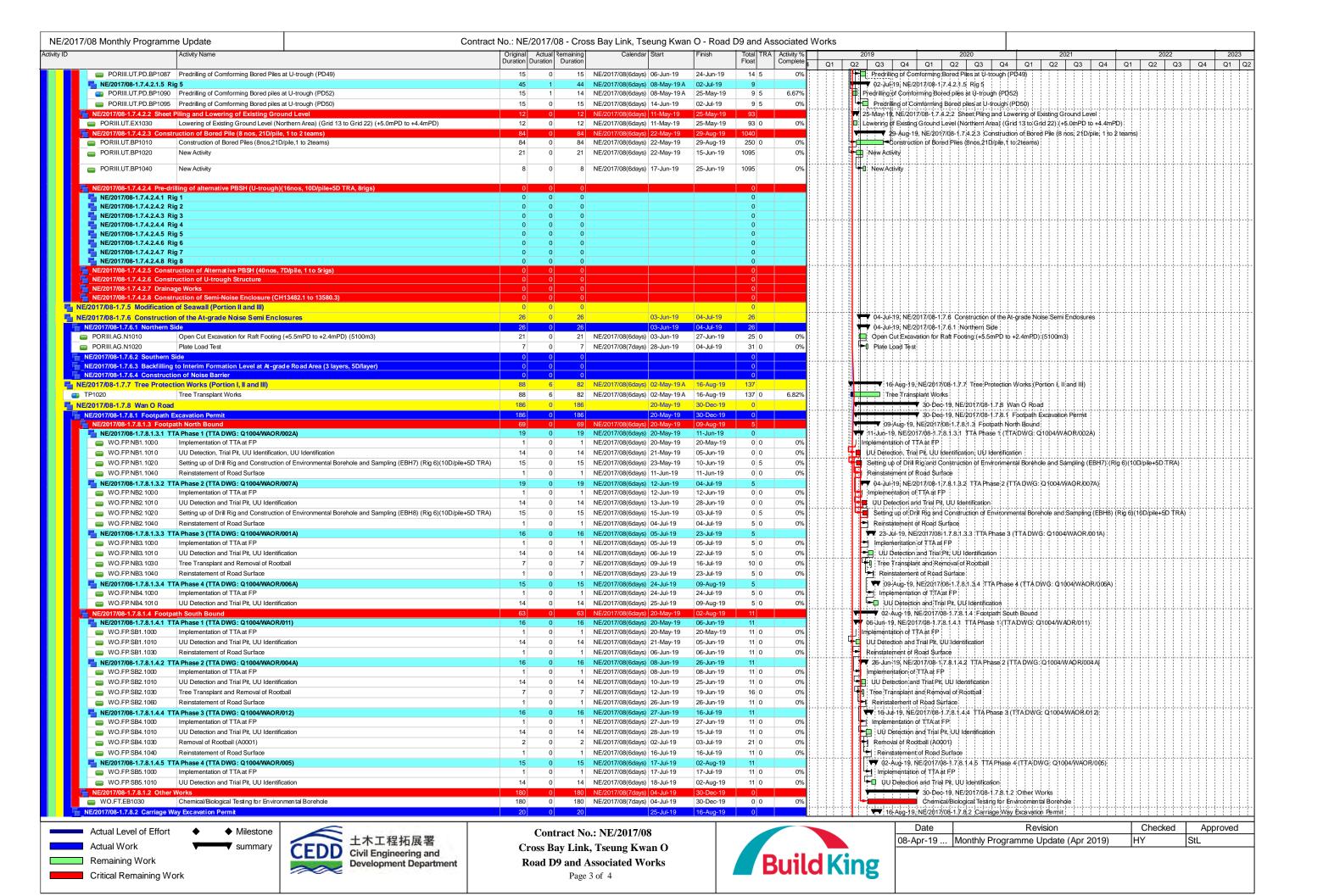


Page 1 of 4

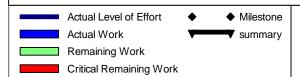
Development Department

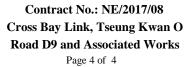
Critical Remaining Work

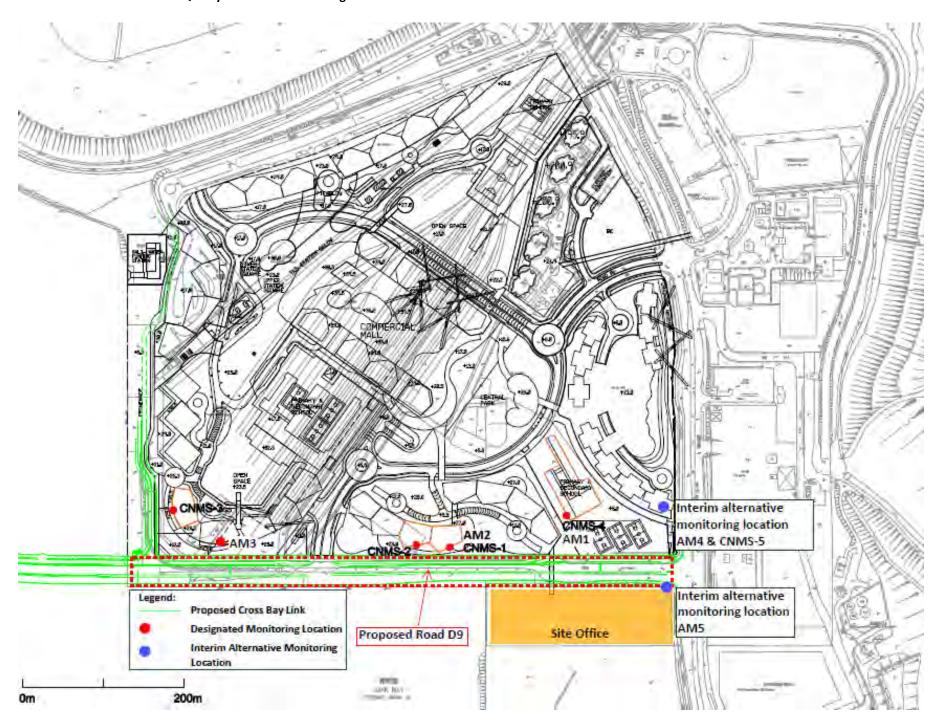
Build King Road D9 and Associated Works

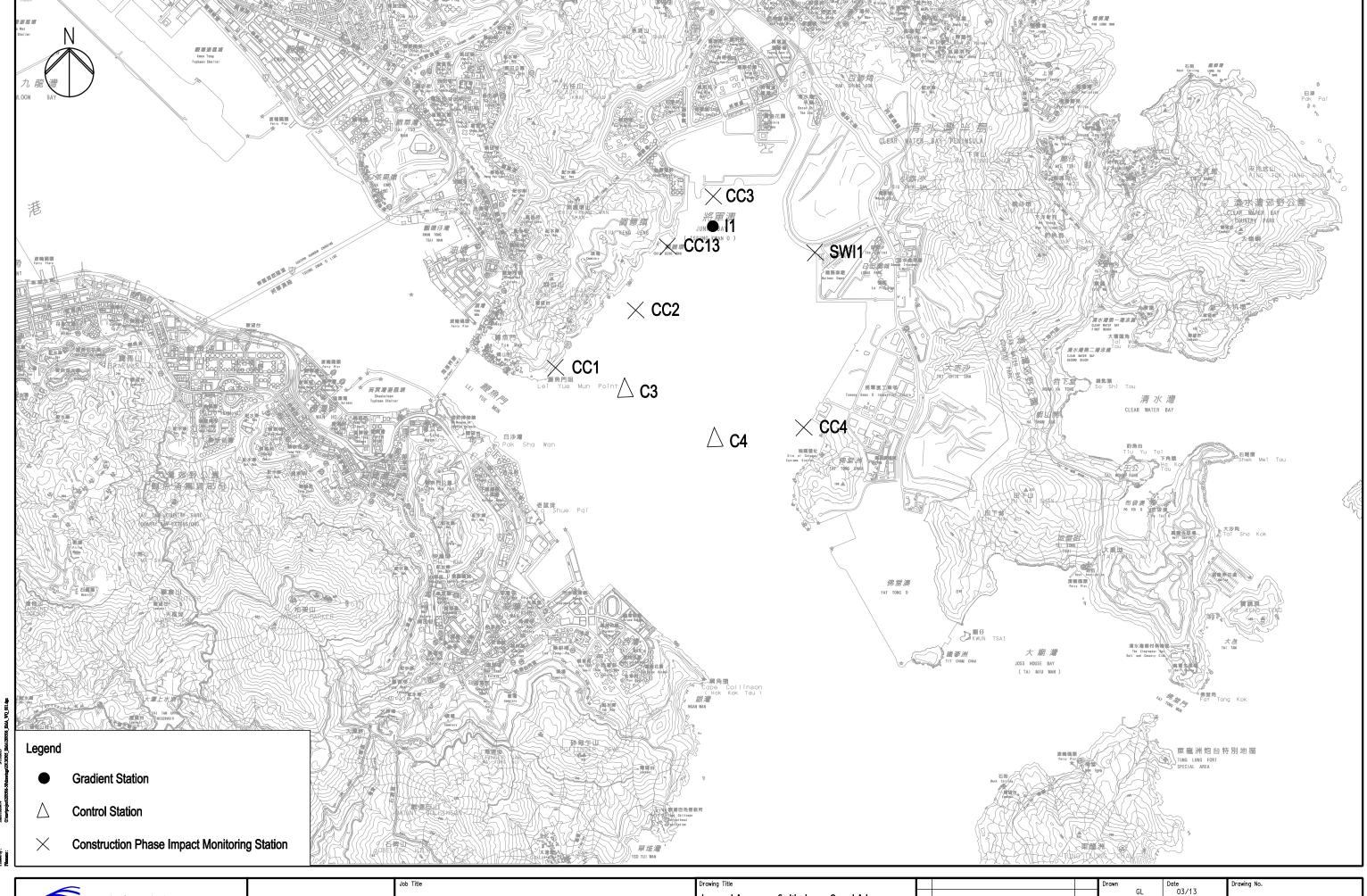


Contract No.: NE/2017/08
Cross Bay Link, Tseung Kwan O
Road D9 and Associated Works


Page 2 of 4


Date	Revision	Checked	Approved
08-Apr-19	Monthly Programme Update (Apr 2019)	HY	StL


Date	Revision	Checked	Approved
08-Apr-19	Monthly Programme Update (Apr 2019)	HY	StL



Appendix D

Monitoring Location (Air Quality, Noise and Water Quality)

ARUP Ove Arup & Partners Hong Kong Limited Civil Engineering and Development Department

Agreement No. CE 43/2008(HY) Cross Bay Link, Tseung Kwan O - Investigation Locations of Water Quality Monitoring Stations

			Drawn		Date	Drawing No.	
				GL	03/13	200500 /544 /₩	0./004
С	THIRD ISSUE	03/13	Checked		Approved	209506/EMA/W	u/001
В	SECOND ISSUE	01/13		JP	\$1		
Α	FIRST ISSUE	03/11	Scale			Status	Rev.
lev.	Description	Date	1:30000 (A3)		30000 (A3)	FINAL	· ·

Appendix E

Event and Action Plan

CEDD Contract Agreement No. EDO/04/2018 - Environmental Team for Cross Bay Link, Tseung Kwan O Event and Action Plan for Air Quality Monitoring

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
ACTION LEVEL				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and Project Consultant; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	Check monitoring data submitted by ET; Check Contractor's working method.	1. Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for	1. Identify source;	Check monitoring data	1. Confirm receipt of	1. Submit proposals for
two or more consecutive samples	 Inform IEC and Project Consultant; Advise the Project Consultant on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and Project Consultant; If exceedance stops, cease additional monitoring. 	submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the ET on the effectiveness of the proposed remedial measures; 5. Supervise Implementation of remedial measures.	notification of exceedance in writing; 2. Notify Contractor; 3. Ensure remedial measures properly implemented.	remedial actions to IEC within 3 working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate.

CEDD Contract Agreement No. EDO/04/2018 - Environmental Team for Cross Bay Link, Tseung Kwan O Event and Action Plan for Air Quality Monitoring

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
LIMIT LEVEL				
Exceedance for one sample	I. Identify source, investigate the causes of exceedance and propose remedial measures; Inform Project Consultant, Contractor, IEC and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Project Consultant informed of the results.	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the Project Consultant on the effectiveness of the proposed remedial measures; 5. Supervise implementation of remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; 4. Amend proposal if appropriate.

CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O Event and Action Plan for Air Quality Monitoring

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
LIMIT LEVEL		. , ,		
Exceedance for two or more consecutive samples	1. Notify IEC, Project Consultant, Contractor and EPD; 2. Identify source; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and Project Consultant to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Project Consultant informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Discuss amongst Project Consultant, ET, and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the Project Consultant accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of exceedance in writing; 2. Notify Contractor; 3. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the Project Consultant until the exceedance is abated.

CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O Event and Action Plan for Construction Noise Monitoring

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
Action Level	 Notify IEC and contractor; Carry out investigation; Report the results of investigation to the IEC, Project Consultant and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	1. Review the analysed results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the Project Consultant accordingly; 3. Supervise the implementation of remedial measures.	Confirm receipt of notification of exceedance in writing; 2. Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented	Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.
Limit Level	1. Identify source; 2. Inform IEC, Project Consultant, EPD and Contractor; 3. Repeat measurements to confirm findings; 4. Increase monitoring frequency; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Inform IEC, Project Consultant and EPD the causes and actions taken for the exceedances; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Project Consultant informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Discuss amongst Project Consultant, ET, and Contractor on the potential remedial actions; 2. Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the Project Consultant accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of exceedance in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the Project Consultant until the exceedance is abated.

CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O Event and Action Plan for Marine Water Quality Monitoring

	ACTION						
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor			
Action level being exceeded by one sampling day at water sensitive receiver(s)	1. Identify the source(s) of impact by comparing the results with those collected at the gradient stations and the control stations as appropriate; 2. If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; 3. Inform IEC and contractor; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. If exceedance occurs at WSD salt water intake, inform WSD; 6. Discuss mitigation measures with IEC and Contractor; 7. Repeat measurement on next day of exceedance.	1. Discuss mitigation measures with ET and Contractor; 2. Review proposal on mitigation measures submitted by Contractor and advise the Project Consultant accordingly; 3. Assess the effectiveness of the implemented mitigation measures.	Discuss proposed mitigation measures with IEC; Make agreement on the mitigation proposal.	1. Inform the Project Consultant and confirm notification of the non- compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Amend working methods if appropriate; 5. Discuss with ET and IEC and propose mitigation measures to IEC and Project Consultant; 6. Implement the agree mitigation measures.			
Action level being exceeded by two or more consecutive sampling days at water sensitive receiver(s)	1. Identify the source(s) of impact by comparing the results with those collected at the gradient stations and the control stations as appropriate; 2. If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; 3. Inform IEC and contractor; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, and Contractor; 6. Ensure mitigation measures are	1. Discuss mitigation measures with ET and Contractor; 2. Review proposal on mitigation measures submitted by Contractor and advise the Project Consultant accordingly; 3. Assess the effectiveness of the implemented mitigation measures.	1. Discuss proposed mitigation measures with IEC; 2. Make agreement on the mitigation proposal; 3. Assess the effectiveness of the implemented mitigation measures.	1. Inform the Project Consultant and confirm notification of the noncompliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment and consider changes of working methods; 4. Discuss with ET, IEC and Project Consultant and propose mitigation measures to IEC and Project Consultant within 3 working			

CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O Event and Action Plan for Marine Water Quality Monitoring

	ACTION						
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor			
	implemented; 7. Prepare to increase the monitoring frequency to daily; 8. If exceedance occurs at WSD salt water intake, inform WSD; 9. Repeat measurement on next day of exceedance.			days; 5. Implement the agreed mitigation measures.			
Limit level being exceeded by one sampling day at water sensitive receiver(s)	1. Identify the source(s) of impact by comparing the results with those collected at the gradient stations and the control stations as appropriate; 2. If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; 3. Inform IEC, contractor and EPD 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. If exceedance occurs at WSD salt water intake, inform WSD. 8. ET should contact AFCD if the limit level is exceeded by one sampling day or two or more consecutive sampling days at water sensitive receiver(s).	1.Discuss mitigation measures with ET and Contractor; 2. Review proposal on mitigation measures submitted by Contractor and advise the Project Consultant accordingly; 3. Assess the effectiveness of the implemented mitigation measures.	1. Discuss proposed mitigation measures with IEC, ET and Contractor; 2. Request Contractor to critically review the working methods; 3. Make agreement on the mitigation measures to be implemented; 4. Assess the effectiveness of the implemented mitigation measures.	1. Inform the Project Consultant and confirm notification of the noncompliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment and consider changes of working methods; 4. Discuss with ET, IEC and Project Consultant and submit proposal of mitigation measures to IEC and Project Consultant within 3 working days of notification; 5. Implement the agreed mitigation measures.			
Limit level	1. Identify the source(s) of impact by	1. Discuss mitigation	1. Discuss proposed	1. Inform the Project			
being exceeded	comparing the results with those	measures with ET and	mitigation measures with	Consultant and confirm			
by two or more	collected at the gradient stations and the	Contractor;	IEC, ET and Contractor;	notification of the			

CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O Event and Action Plan for Marine Water Quality Monitoring

	ACTION						
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor			
consecutive	control stations as appropriate;	2. Review proposal on	2. Request Contractor to	noncompliance in writing;			
sampling days at	2. If exceedance is found to be caused	mitigation measures	critically review the	2. Rectify unacceptable			
water sensitive	by the marine works, repeat <i>in-situ</i>	submitted by Contractor	working methods;	practice;			
receiver(s)	measurement to confirm findings;	and advise the Project	3. Make agreement on the	3. Check all plant and			
	3. Inform IEC, contractor and EPD;	Consultant	mitigation measures to be	equipment and consider			
	4. Check monitoring data, all plant,	accordingly;	implemented;	changes of working methods;			
	equipment and Contractor's working	3. Assess the effectiveness of	4. Assess the effectiveness	4. Discuss with ET, IEC and			
	methods;	the implemented mitigation	of the implemented	Project Consultant and			
	5. Discuss mitigation measures with	measures.	mitigation measures;	submit proposal of mitigation			
	IEC, and Contractor;		5. Consider and instruct, if	measures to IEC and Project			
	6. Ensure mitigation measures are		necessary, the Contractor	Consultant within 3 working			
	implemented;		to slow down or to stop all	days of notification;			
	7. Prepare to increase the monitoring		or part of the marine work	5. Implement the agreed			
	frequency to daily;		until no exceedance of	mitigation measures;			
	8. If exceedance occurs at WSD salt		Limit level.	6. As directed by the			
	water intake, inform WSD;			Engineer, to slow down or to			
	9. Repeat measurement on next day of			stop all or part of the			
	exceedance.			construction activities.			

Appendix F

Impact Monitoring Schedule of the Reporting Month and Coming Month

Impact Monitoring Schedule for coming month – July 2019

Date		Noise Monitoring	Air Quality	y Monitoring	Water Quality
		(Leq30min)	1-Hour TSP	24-Hour TSP	
Mon	1-Jul-19				
Tue	2-Jul-19				✓
Wed	3-Jul-19			✓	
Thu	4-Jul-19				✓
Fri	5-Jul-19	✓	✓		
Sat	6-Jul-19				✓
Sun	7-Jul-19				
Mon	8-Jul-19				✓
Tue	9-Jul-19			✓	
Wed	10-Jul-19				✓
Thu	11-Jul-19	✓	✓		
Fri	12-Jul-19				✓
Sat	13-Jul-19				
Sun	14-Jul-19				
Mon	15-Jul-19			✓	✓
Tue	16-Jul-19				
Wed	17-Jul-19	✓	✓		✓
Thu	18-Jul-19				
Fri	19-Jul-19				✓
Sat	20-Jul-19			✓	
Sun	21-Jul-19				
Mon	22-Jul-19				✓
Tue	23-Jul-19	✓	✓		
Wed	24-Jul-19				✓
Thu	25-Jul-19				
Fri	26-Jul-19			✓	✓
Sat	27-Jul-19				
Sun	28-Jul-19				
Mon	29-Jul-19	✓	✓		✓
Tue	30-Jul-19				
Wed	31-Jul-19				*
-	✓	Monitoring Day			
		Sunday or Public Hol	iday		

^{*} Cancelled due to adverse weather condition

Marine Water Quality Monitoring Schedule

Scheduled Monitoring Day		Tides of Tai Miu Wan		Proposed Sampling Time (#)	
		Mid-Ebb	Mid-Flood	Mid-Ebb	Mid-Flood
2-Jul-19	Tue	11:51	18:53*	10:06 - 13:36	16:30 - 20:38*
4-Jul-19	Thu	13:26	06:17*	11:41 – 15:11	08:00 - 09:00*
6-Jul-19	Sat	15:07	08:01*	13:22 – 16:52	08:00 - 09:46*
8-Jul-19	Mon	16:54	10:01	15:09 – 18:39	08:16 - 11:46
10-Jul-19	Wed	18:56*	12:37	16:30 - 20:41*	10:52 - 14:22
12-Jul-19	Fri	09:07*	15:36	08:00 - 10:52*	13:51 – 17:21
15-Jul-19	Mon	11:25	18:32*	09:40 - 13:10	16:30 - 20:17*
17-Jul-19	Wed	12:40	05:34*	10:55 - 14:25	08:00 - 09:00*
19-Jul-19	Fri	13:50	06:48*	12:05 - 15:35	08:00 - 09:00*
22-Jul-19	Mon	15:23	08:39*	13:38 - 17:08	08:00 - 10:24*
24-Jul-19	Wed	16:34	10:15*	14:49 – 18:19	08:30 - 12:00
26-Jul-19	Fri	07:23*	13:13	08:00 - 09:08*	11:28 - 14:58
29-Jul-19	Mon	10:02	17:10	08:17 - 11:47	15:25 – 18:55

Remark: The water quality sampling will be undertaken within a three and half hour window of 1.75 hour before and 1.75 hour after mid flood and mid-ebb tides.

^(*) Due to safety reason, the sampling time will be started at 08:00 or 16:30

Impact Monitoring Schedule for coming month – August 2019

Date		Noise Monitoring	Air Quality	y Monitoring	W-4 O P4
		(L _{eq} 30min)	1-Hour TSP	24-Hour TSP	Water Quality
Thu	1-Aug-19	_		✓	
Fri	2-Aug-19				✓
Sat	3-Aug-19		✓		
Sun	4-Aug-19				
Mon	5-Aug-19				✓
Tue	6-Aug-19				
Wed	7-Aug-19			✓	✓
Thu	8-Aug-19	✓	✓		
Fri	9-Aug-19				✓
Sat	10-Aug-19				
Sun	11-Aug-19				
Mon	12-Aug-19				✓
Tue	13-Aug-19			✓	
Wed	14-Aug-19	✓	✓		✓
	15-Aug-19				
Fri	16-Aug-19				✓
Sat	17-Aug-19				
Sun	18-Aug-19				
Mon	19-Aug-19			✓	✓
Tue	20-Aug-19	✓	✓		
Wed	21-Aug-19				✓
	22-Aug-19				
Fri	23-Aug-19				✓
Sat	24-Aug-19			✓	
Sun	25-Aug-19				
	26-Aug-19	✓	✓		✓
	27-Aug-19				
	28-Aug-19				✓
Thu	29-Aug-19				
Fri	30-Aug-19			✓	✓
Sat	31-Aug-19		✓		
	✓	Monitoring Day			
		Sunday or Public Holi	iday		

Marine Water Quality Monitoring Schedule

Warme Water Quanty Womtoring Benedule					
Scheduled Monitoring Day		Tides of Tai Miu Wan		Proposed Sampling Time (#)	
		Mid-Ebb	Mid-Flood	Mid-Ebb	Mid-Flood
2-Aug-19	Fri	13:14	6:14*	11:29 – 14:59	08:00 - 09:00*
5-Aug-19	Mon	15:37	8:58*	13:52 – 17:22	08:00 - 10:43*
7-Aug-19	Wed	11:04	17:20	9:19 - 13:04	15:35 – 19:05
9-Aug-19	Fri	7:37*	14:16	08:00 - 9:22*	12:31 – 16:01
12-Aug-19	Mon	10:32	17:50	08:47 - 12:17	16:05 - 19:35
14-Aug-19	Wed	11:45	18:56*	10:00 - 13:30	16:30 - 20:41*
16-Aug-19	Fri	6:01*	12:53	08:00 - 08:45*	11:08 - 14:38
19-Aug-19	Mon	14:27	7:56*	12:42 – 16:12	08:00 - 9:41*
21-Aug-19	Wed	9:22*	15:32	08:00 - 11:07*	13:47 - 17:17
23-Aug-19	Fri	17:03	11:28	15:18 - 18:48	9:43 – 13:13
26-Aug-19	Mon	8:45*	16:17	08:00 - 10:30	14:32 - 18:02
28-Aug-19	Wed	10:26	17:44	8:41 – 12:11	15:59 – 19:29
30-Aug-19	Fri	12:08	18:58*	10:23 - 13:53	16:30 - 20:43*

Remark: The water quality sampling will be undertaken within a three and half hour window of 1.75 hour before and 1.75 hour after mid flood and mid-ebb tides.

^(*) Due to safety reason, the sampling time will be started at 08:00 or 16:30

Appendix G

Calibration Certificates of Equipment and Accreditation Laboratory Certificate

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025: 2005 - General requirements for the competence 此實驗所符合ISO / IEC 17025: 2005 -《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing

環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025: 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇,國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator

執行幹事 陳成城 Issue Date: 5 May 2009

簽發日期:二零零九年五月五日

註冊號碼:

Registration Number: HOKLAS 066

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Junction of Wan Po Road and Wan O Road

Date of Calibration: 2-Jul-19

Location ID: AM5

Next Calibration Date: 2-Sep-19

Name and Model: TISCH HVS Model TE-5170

Technician: Ho

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1001.4 28.9

Corrected Pressure (mm Hg)
Temperature (K)

751.05 302

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.10	5.10	10.2	1.505	57	55.93	Slope = 24.9705
13	3.50	3.50	7.0	1.247	51	50.04	Intercept = 18.5718
10	2.40	2.40	4.8	1.032	45	44.16	Corr. coeff. = 0.9992
7	1.80	1.80	3.6	0.894	42	41.21	
5	1.30	1.30	2.6	0.760	38	37.29	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

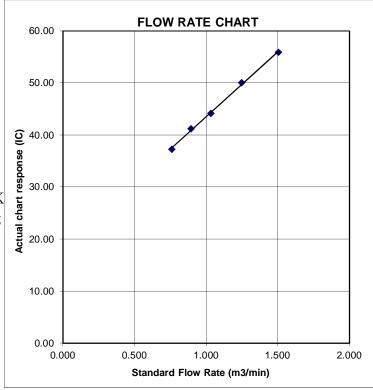
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K

Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION
DUE DATE:

February 5, 2020

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 5, 2019

Rootsmeter S/N: 438320

Ta: 293

°K

Operator: Jim Tisch

Pa: 753.1

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 1941

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4830	3.2	2.00
2	3	4	1	1.0430	6.4	4.00
3	5	6	1	0.9300	7.9	5.00
4	7	8	1	0.8870	8.7	5.50
5	9	10	1	0.7320	12.7	8.00

	Data Tabulation									
Vstd (m3)	Qstd (x-axis)	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ (y-axis)	Va	Qa (x-axis)	$\sqrt{\Delta H \Big(Ta/Pa \Big)}$ (y-axis)					
1.0036	0.6767	1.4197	0.9958	0.6714	0.8821					
0.9993	0.9581	2.0078	0.9915	0.9506	1.2475					
0.9973	1.0723	2.2448	0.9895	1.0640	1.3947					
0.9962	1.1231	2.3544	0.9884	1.1144	1.4628					
0.9908	1.3536	2.8395	0.9831	1.3431	1.7642					
M TOLK	m=	2.09680	1000	m=	1.31298					
QSTD	b=	-0.00065	QA	b=	-0.00040					
	r=	0.99999		r=	0.99999					

	Calculation	ons		
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/∆Time	Qa= Va/ΔTime		
	For subsequent flow ra	ate calculatio	ns:	
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$	

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT : MR BEN TAM WORK ORDER : HK1908930

CLIENT : ACTION UNITED ENVIRONMENT SERVICES AND

CONSULTING

ADDRESS : RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, SUB-BATCH :

KWAI CHUNG, N.T. HONG KONG

DATE RECEIVED : 25-FEB-2019

DATE OF ISSUE : 4-MAR-2019

PROJECT : --- NO. OF SAMPLES : 1

CLIENT ORDER : --

General Comments

• Sample(s) were received in ambient condition.

Sample(s) analysed and reported on an as received basis.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung

Fung General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

: HK1908930 WORK ORDER

SUB-BATCH

: 1 : ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING CLIENT

PROJECT

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1908930-001	S/N: 3Y6503	AIR	25-Feb-2019	S/N: 3Y6503

 $\mathsf{Page}: 2 \text{ of } 2$

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 3Y6503

Equipment Ref: EQ112

Job Order HK1908930

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 21 December 2018

Equipment Verification Results:

Testing Date: 7 January 2019

Hour	Time	Mean Temp °C	Pressure		Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	09:01 ~ 11:08	18.5	1021.4	0.045	2403	19.0
2hr11min	11:13 ~ 13:24	18.5	1021.4	0.032	1577	12.1
2hr07min	13:30 ~ 15:37	18.5	1021.4	0.089	5129	40.5

Sensitivity Adjustment Scale Setting (Before Calibration) 655 (CPM)

Sensitivity Adjustment Scale Setting (After Calibration) 655 (CPM)

Linear Regression of Y or X

 Slope (K-factor):
 0.0022

 Correlation Coefficient
 0.9975

 Date of Issue
 14 January 2019

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0,1					
0.09				*	
0.08			2	-	
0.07			-/-		_
0.06			/		
0.05		_/			_
0.04		1	y = 0.002	2x + 0.0027	-
0.03	*		R2 = 1	0.9951	
0.02	/				
0.01	/				_
0		-0-	- 1	- 1-	-
0	10	20	30	40	50

Operator : Martin Li Signature : Date : 14 January 2019

QC Reviewer : Ben Tam Signature : Date : 14 January 2019

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 21-Dec-18

Location ID: Calibration Room Next Calibration Date: 21-Mar-19

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1016.1 22.4 Corrected Pressure (mm Hg)
Temperature (K)

762.075 295

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Calibration Date->	13-Feb-18

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.02017 -0.03691 13-Feb-19

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.7	5.7	11.4	1.699	56	56.32	Slope = 34.0074
13	4.4	4.4	8.8	1.495	51	51.29	Intercept = -0.4093
10	3.4	3.4	6.8	1.317	45	45.26	Corr. coeff. = 0.9972
8	2.3	2.3	4.6	1.086	36	36.21	
5	1.4	1.4	2.8	0.851	28	28.16	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

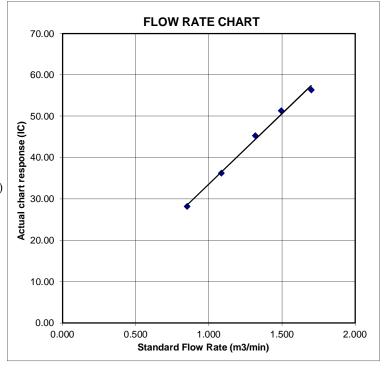
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C193189

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC19-1098)

Date of Receipt / 收件日期: 18 June 2019

Description / 儀器名稱 Sound Level Meter (EQ016)

Manufacturer / 製造商 Rion Model No. / 型號 NL-52

Serial No. / 編號 00464681

Supplied By / 委託者 Action-United Environmental Services and Consulting

> Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 温度 : $(23 \pm 2)^{\circ}C$ $(50 \pm 25)\%$ Relative Humidity / 相對濕度:

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規節

Calibration check

DATE OF TEST / 測試日期 20 June 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

E-mail/電郵: callab@suncreation.com

- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試

K P Cheuk

Assistant Engineer

Certified By 核證

C Lee

Date of Issue : 簽發日期

20 June 2019

Engineer

written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 一 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C193189

證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment IDDescriptionCertificate No.CL28040 MHz Arbitrary Waveform GeneratorC190176CL281Multifunction Acoustic CalibratorCDK1806821

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

	UUT	Setting		Applie	d Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting		Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)	
30 - 130	LA	A	Fast	94.00	1	93.5	± 1.1

6.1.2 Linearity

	UU'	T Setting	Applie	UUT		
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	L_A	A	Fast	94.00	1	93.5 (Ref.)
		1 - 3		104.00		103.5
				114.00		113.5

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

	Setting		Applie	d Value	UUT	IEC 61672		
Range Function Frequency (dB) Weighting V		Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)		
30 - 130	L _A	A	Fast	94.00	1	93.5	Ref.	
			Slow			93.5	± 0.3	

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the print written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C193189

證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

UUT Setting					ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	63 Hz	67.3	-26.2 ± 1.5
	11 11 11		19.9	1	125 Hz	77.4	-16.1 ± 1.5
					250 Hz	84.8	-8.6 ± 1.4
					500 Hz	90.3	-3.2 ± 1.4
					1 kHz	93.5	Ref.
					2 kHz	94.8	$+1.2 \pm 1.6$
					4 kHz	94.5	$+1.0 \pm 1.6$
					8 kHz	92.5	-1.1 (+2.1; -3.
					12.5 kHz	89.1	-4.3 (+3.0; -6.0

6.3.2 C-Weighting

	UUT	Setting		Appl	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _C	C	Fast	94.00	63 Hz	92.7	-0.8 ± 1.5
	1 1 1 1 1				125 Hz	93.4	-0.2 ± 1.5
					250 Hz	93.5	0.0 ± 1.4
					500 Hz	93.6	0.0 ± 1.4
				/	1 kHz	93.5	Ref.
					2 kHz	93.4	-0.2 ± 1.6
		8		()	4 kHz	92.8	-0.8 ± 1.6
					8 kHz	90.6	-3.0 (+2.1; -3.1)
					12.5 kHz	87.2	-6.2 (+3.0; -6.0)

Remarks: - UUT Microphone Model No.: UC-59 & S/N: 07619

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value: 94 dB: 63 Hz - 125 Hz: ± 0.35 dB

104 dB: 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB: 1 kHz : ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, I Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 核正及檢測實驗所 c/o 香港新界屯門興安里—號四樓

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C185603

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC18-0867) Date of Receipt / 收件日期: 26 September 2018

Description / 儀器名稱 : Sound Calibrator (EQ087)

Manufacturer / 製造商 : Rion Model No. / 型號 : NC-74 Serial No. / 編號 : 34657231

Supplied By / 委託者 : Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Relative Humidity / 相對濕度 : (50 ± 25)%

Line Voltage / 電壓 : ---

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 14 October 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

Engineer

Certified By

核證

H C Chan Engineer 19 October 2018

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories. Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里—號四樓

Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No.: C185603

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement
of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

Test equipment :

Equipment ID CL130 CL281 TST150A

Description
Universal Counter
Multifunction Acoustic Calibrator
Measuring Amplifier

Certificate No. C183775 CDK1806821 C181288

Test procedure : MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value (dB)
Nominal Value	(dB)	(dB)	
94 dB, 1 kHz	94.0	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value (Hz)
(kHz)	(kHz)	Spec.	
1	1.001	1 kHz ± 1 %	±1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited — Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 却創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里—號四樓 Tel電話: (852) 2977 2606 Fax/傳真: (852) 2744 8986 E-mail/

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: BEN TAM WORK ORDER: HK1921097

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND

CONSULTING

ADDRESS: RM A 20/F., GOLD KING IND BLDG, SUB-BATCH: 0

NO. 35-41 TAI LIN PAI ROAD, LABORATORY: HONG KONG KWAI CHUNG, N.T. HONG KONG DATE RECEIVED: 20-May-2019 DATE OF ISSUE: 05-Jun-2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test: Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature

Equipment Type: Multifunctional Meter

Brand Name: YSI

Model No.: Professional DSS

Serial No.: 15H102620/15H103928

Equipment No.: EQW018

Date of Calibration: 24-May-2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Ali

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK1921097

SUB-BATCH: C

DATE OF ISSUE: 05-Jun-2019

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

Equipment Type: Multifunctional Meter

Brand Name: YSI

Model No.: Professional DSS

Serial No.: 15H102620/15H103928

Equipment No.: EQW018

Date of Calibration: 24-May-2019 Date of Next Calibration: 24-Aug-2019

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.51	2.45	-0.06
5.46	5.36	-0.10
7.69	7.72	+0.03
	Tolerance Limit (mg/L)	±0.20

pH Value Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)		
4.0	4.04	+0.04		
7.0	7.06	+0.06		
10.0	10.14	+0.14		
	Tolerance Limit (pH unit)	±0.20		

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Air

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK1921097

SUB-BATCH: 0

DATE OF ISSUE: 05-Jun-2019

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

Equipment Type: Multifunctional Meter

Brand Name: YSI

Model No.: Professional DSS

Serial No.: 15H102620/15H103928

Equipment No.: EQW018

Date of Calibration: 24-May-2019 Date of Next Calibration: 24-Aug-2019

PARAMETERS:

Turbidity Method Ref: APHA (21st edition), 2130B

,		
Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.02	-
4	4.12	+3.0
40	39.59	-1.0
80	76.58	-4.3
400	400.82	+0.2
800	800.15	+0.0
	Tolerance Limit (%)	±10.0

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.03	
10	9.93	-O.7
20	20.58	+2.9
30	31.00	+3.3
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Sig

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK1921097

SUB-BATCH:

05-Jun-2019

DATE OF ISSUE: CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

Equipment Type: Multifunctional Meter

Brand Name: YSI

Model No.: Professional DSS

Serial No.: 15H102620/ 15H103928

Equipment No.: EQW018

Date of Next Calibration: Date of Calibration: 24-May-2019 24-Aug-2019

PARAMETERS:

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
11.5	10.8	-0.7
19.0	20.1	+1.1
41.5	40.9	-0.6
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Ma Sign

Mr Chan Siu Ming, Vico Manager - Inorganic

Appendix H

Database of Monitoring Results

24-hour TSF	24-hour TSP Monitoring Data for AM5														
DATE	SAMPLE	·-	CHAI	RT REA	DING	AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER WI	EIGHT (g)	DUST WEIGHT COLLECTED	24-hr TSP		
NUMBER NUMBER	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	AVG	(℃)	(hPa)	(m³/min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$
3-Jul-19	24361	14898.42	14922.42	1440.00	40	40	40.0	28.8	1006.5	0.84	1213	2.6283	2.7075	0.0792	65
9-Jul-19	24457	14922.42	14946.46	1442.40	42	44	43.0	30	1003.4	0.96	1378	2.6981	2.8360	0.1379	100
15-Jul-19	24420	14946.46	14970.52	1443.60	48	49	48.5	30.4	1004.8	1.17	1693	2.6940	2.9845	0.2905	172
20-Jul-19	24421	14970.52	14994.52	1440.00	44	46	45.0	28.6	1005.2	1.04	1498	2.6960	2.8599	0.1639	109
26-Jul-19	24529	14994.52	15018.61	1445.40	40	42	41.0	30.7	1006.9	0.88	1268	2.6914	2.8484	0.1570	124

Daytime No	ise Mea	asureme	ent Resu	ılts (dB)	of CNN	MS5														
	C4a-r4	1st	Leq (5n	nin)	2nd	Leq (51	nin)	3rd	Leq (5r	nin)	4th	Leq (5r	nin)	5th	Leq (5n	nin)	6th	Leq (5r	nin)	
Date	Start Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq30min, dB(A)
	Time	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
5-Jul-19	10:08	62.6	63.3	61.4	63.8	66.7	62.6	64.0	65.2	61.9	63.7	66.1	61.8	63.2	65.6	60.4	62.8	64.2	61.3	63.4
11-Jul-19	11:21	64.9	67.3	62.1	66.2	69.9	61.2	65.3	69.5	62.3	64.5	67.2	60.3	65.4	68.9	59.9	66.9	70.3	62.1	65.6
17-Jul-19	10:14	64.6	66.3	61.5	64.1	65.7	61.9	66.0	68.0	62.6	63.0	64.7	60.4	64.6	66.7	62.2	64.6	66.1	62.4	64.6
23-Jul-19	14:48	66.7	70.5	59.5	71.1	75.5	59.5	69.3	73.5	58.5	69.6	74.5	59.5	69.7	74.0	57.5	68.7	73.1	59.4	69.4
29-Jul-19	9:36	64.9	67.1	62.3	65.0	66.7	60.9	64.6	66.5	62.3	64.0	66.4	61.4	66.8	69.4	63.2	65.7	67.5	63.3	65.3

Evening No	ise Mea	surement Resu	lts (dB) of CNM	1S5							
	Start		1st Leq (5min)			2nd Leq (5min))		3rd Leq (5min)		
Date	Time	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq30min, dB(A)
3-Jul-19	19:41	61.8	65.1	57.4	61.1	64.1	57.0	61.8	65.1	57.7	61.6
10-Jul-19	19:23	61.3	63.8	57.0	61.3	64.8	56.5	60.4	63.6	55.9	61.0

mpung Date	2-Jul-19												
Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiue	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/L
						1.00	28.4 28.4	8.08 8.09	120.1 120.3	0.66	26.01 26.01	8.6 8.6	3.6
11:57	CC1	ME	843201	816416	15.77	7.89	26.5 26.5	7.53 7.45	111.1 109.9	0.73 0.77	30.28 30.32	8.6 8.59	4 3.5
						14.77	26.0	6.63	97.5	1.04	31.33	8.45	3.5
						1.00	25.9 27.7	6.56 7.84	96.4 115.6	1.11 1.47	31.42 26.59	8.45 8.55	4.1
						+	27.7 25.0	8.07 5.65	118.9 82.4	1.45 1.47	26.58 32.74	8.56 8.46	4 5.4
12:11	CC2	ME	844076	817091	11.68	5.84	25.0	5.59	81.5	1.55	32.75	8.45	5.2
						10.68	24.5 24.4	5.37 5.35	77.9 77.7	3.82 4.06	33.59 33.68	8.35 8.34	8.3 7.9
						1.00	27.4 27.4	8.08 8.13	119.1 119.9	1.43	27.48 27.51	8.51 8.51	6.3
12:22	CC3	ME	844606	817941	8.42	4.21	27.0	7.10	105.9	1.59	30.76	8.50	8
						7.42	26.8 25.8	7.02 5.52	104.5 81.0	1.64 2.41	30.94 31.54	8.50 8.40	7.6 9.4
						7.42	25.7	5.39	79.2	2.63	31.76	8.39	9.2
							26.5	6.94	102.0	1.97	30.02	8.43	6.2
11:37	CC4	ME	845444	815595	2.35	1.18	26.5	6.92	102.0	1.94	29.99	8.43	6.1
						1.00	27.4	8.04	118.4	1.77	27.45	8.55	5.3
12.15	CC12	ME	844200	917405	0.52	-	27.4 27.0	8.05 6.65	118.7 98.8	1.74	27.48 30.17	8.55 8.54	5.4 6.2
12:15	CC13	ME	844200	817495	8.53	4.27	26.8 25.0	6.32 5.97	93.8 86.8	1.51 1.55	30.44 32.19	8.54 8.40	5.8
						7.53	25.0	5.82	84.6	1.63	32.31	8.39	6.9
						1.00	27.4 27.2	7.47	110.3 110.3	1.92 2.00	28.01 28.30	8.50 8.50	3.5
11:31	SWI1	ME	845512	817442	3.98								
						2.98	26.9	7.12	105.0	2.35	29.06	8.48	5.6
						-	26.9 27.9	7.11 8.24	104.9 122.1	2.37 0.71	29.20 26.92	8.48 8.58	5.9 3.5
						1.00	27.9 25.1	8.27	122.5	0.71	26.92 32.21	8.58 8.42	3.7
11:47	C3	ME	843821	816211	15.88	7.94	24.9	6.60	96.1 88.5	1.10 1.28	32.51	8.40	4.2
						14.88	24.2	5.72 5.69	83.0 82.6	4.33 4.82	34.21 34.29	8.33 8.32	4 3.8
						1.00	27.6	7.53	111.4	0.87	27.78	8.52 8.52	3.7
11:41	C4	ME	844621	815770	15.48	7.74	27.6 24.4	7.54 5.22	111.7 75.7	0.89 3.29	27.78 33.67	8.52 8.30	3.5 4
11:41	C4	NIE	644021	813770	13.46		24.4	5.20 5.09	75.5 73.9	3.30 3.45	33.66 33.77	8.29 8.26	4.2
						14.48	24.3	5.07	73.6	3.39	33.80	8.26	4.2
						1.00	27.4 27.4	8.32 8.62	123.5 127.8	1.34 1.37	28.56 28.53	8.56 8.56	6.6 7
12:20	I1	ME	844602	817675	9.75	4.88	25.9	7.06	102.9	1.35	30.25	8.56	7.2
						8.75	25.9 24.1	6.39 4.76	93.5 68.5	1.37 3.15	30.95 32.89	8.51 8.33	7.1 6.9
						0.75	24.2	4.44	63.8	4.24	33.12	8.33	6.6
						1.00	28.1	7.94	117.7	1.39	26.43	8.62	6.7
15.04	991		0.42204	016416			28.1	7.97 7.67	118.2 113.4	1.37 2.34	26.44 28.15	8.62 8.60	6.9 7.8
17:04	CC1	MF	843201	816416	8.4	4.20	27.3 26.7	7.67	113.4 99.1	2.42 2.46	28.39 29.67	8.59	8 10.1
						7.40	26.6	6.72	97.2	2.39	29.99	8.56 8.55	10.2
						1.00	27.1 27.1	7.74 7.73	114.2 114.0	1.65	28.43 28.47	8.57 8.56	7.4
17:09	CC2	MF	844076	817091	12.18	6.09	24.8	5.71	83.2 81.9	1.54 1.59	32.98 33.03	8.40 8.40	6.8 7.1
						11.18	24.8 24.6	5.63 5.59	81.2	3.41	33.31	8.37	7.2
						+	24.6	5.57 8.19	80.9 121.2	4.01 2.11	33.36 29.10	8.36 8.52	6.8
						1.00	27.1	8.19	121.1	2.07	29.11	8.52	6.8
17:27	CC3	MF	844606	817941	8.5	4.25	26.7 26.6	7.02 6.95	103.6 102.5	1.73	29.74 29.88	8.51 8.50	8.9 8.6
						7.50	25.0 25.0	5.87 5.68	85.7 83.0	1.73 1.85	33.01 33.05	8.49 8.39	8.9 9.2
							23.0	3.00	03.0	1.03	33.03	0.55	7.2
16:51	CC4	MF	845444	815595	2.76	1.38	26.4	6.70	98.5	2.75	30.22	8.45	6
10.51	CC4	WII	043444	613393	2.70	1.56	26.3	6.70	98.5	2.79	30.23	8.45	6.4
						1.00	26.7	7.14 7.13	105.1 104.8	1.95 1.95	29.29 29.30	8.51 8.51	7.8 8.2
17:21	CC13	MF	844200	817495	8.07	4.04	26.5 26.4	6.30	92.7 90.6	1.87 1.86	29.77 29.98	8.49 8.49	8.6 8.7
						7.07	24.9	5.34	77.2	2.22	31.54	8.47	9.4
						+	24.9 26.8	5.27 7.19	76.2 105.9	2.34	31.79 29.23	8.47 8.49	9.1 6
						1.00	26.8	7.17	105.6	1.98	29.26	8.49	6.4
16:41	SWI1	MF	845512	817442	4.11								
						3.11	26.5 26.5	6.84 6.82	100.6 100.3	1.95 1.89	29.87 29.92	8.49 8.49	6.6 7
						1.00	27.5 27.5	8.33	123.1 123.1	0.97	27.69 27.71	8.58	6.6
17:01	C3	MF	843821	816211	13.93	6.97	24.4	8.33 5.51	80.0	0.99 1.70	33.68	8.58 8.37	6.4
17.01		1411,	0+3021	010211	13.93		24.4 24.3	5.47 5.19	79.4 75.4	1.88 3.64	33.69 33.90	8.36 8.34	7 6.7
						12.93	24.3	5.19	75.2	3.88	33.92	8.34	7.1
						1.00	27.1 27.1	7.25 7.25	107.0 107.0	1.23	28.78 28.78	8.50 8.51	9.2
16:56	C4	MF	844621	815770	15.87	7.94	24.8 24.8	5.65 5.60	82.1 81.5	1.45 1.53	32.89 32.94	8.39 8.38	10 10.3
						14.87	23.3	5.49	78.7	2.99	34.78	8.32	10.6
						-	23.3 27.1	5.30 7.88	76.0 116.3	3.09 1.71	34.92 28.68	8.31 8.54	10.9 10.2
						1.00	27.0 26.7	7.80 6.71	115.0 98.9	1.64 1.63	28.76 29.43	8.54 8.53	9.7 11.1
17:24	I1	MF	844602	817675	9.34	4.67	26.6	6.64	97.8	1.59	29.68	8.53	10.8
							24.5	4.40	64.0	3.37 3.35	33.60	8.34	10.8

	4-Jul-19		1		137-4	Cor		1	DO.	Г			
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
			East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
						1.00	25.8 25.8	5.94 5.87	86.8 85.7	0.60 0.57	30.83 30.80	8.17 8.17	2.9 2.9
12:11	CC1	ME	843201	816416	7.68	3.84	25.7 25.7	5.72 5.71	83.6 83.5	0.58 0.57	30.95 31.00	8.18 8.18	3.4
						6.68	24.1 24.1	5.36 5.33	77.6 77.1	1.18 1.22	34.29 34.38	8.15 8.15	4.5 4.4
						1.00	25.6	5.86	85.5	0.66	31.05	8.19	4.8
12:19	CC2	ME	844076	817091	12.06	6.03	25.6 23.9	5.91 5.78	86.2 83.9	0.66 1.09	31.07 34.80	8.19 8.17	4.4 3.8
12:19	CC2	ME	844076	817091	12.00		23.9	5.76 5.33	83.4 77.1	1.11 1.48	34.79 34.96	8.16 8.15	3.8 2.9
						11.06	23.8	5.29	76.5	1.64	35.05	8.15	2.6
						1.00	25.9 25.9	5.80 5.84	84.7 85.1	0.59 0.59	30.27 30.24	8.19 8.19	4.9
12:42	CC3	ME	844606	817941	9.13	4.57	25.6 25.5	5.78 5.75	84.3 83.7	0.71 0.75	30.91 31.11	8.19 8.19	4.3
						8.13	24.2 24.2	5.22 5.23	75.5 75.8	1.65 1.60	34.01 34.06	8.13 8.13	4.4
							24.2	3.23	73.0	1.00	34.00	0.13	7.
11:48	CC4	ME	845444	815595	2.35	1.18	25.5	5.89	85.9	0.53	31.32	8.15	4.:
11.40	CC4	IVIL	043444	813393	2.33	1.18	25.4	5.86	85.4	0.62	31.54	8.15	4.
							25.6	5.74	83.7	0.65	31.13	8.16	2.
						1.00	25.7	5.76	84.0	0.63	30.95	8.17	2.
12:28	CC13	ME	844200	817495	7.86	3.93	25.4 25.4	5.59 5.58	81.6 81.2	0.70 0.70	31.44 31.60	8.18 8.18	2.
						6.86	24.8 24.0	5.37 5.33	77.8 77.1	1.09 1.80	32.91 34.60	8.17 8.16	2. 2.
						1.00	26.1	6.09	88.9	0.38	29.49	8.19	3.
11:42	SWI1	ME	845512	817442	4.14		26.1	6.08	88.7	0.35	29.49	8.19	3
11.42	SWII	IVIL	043312	017442	4.14		25.7	5.41	78.8	0.47	30.48	8.18	3.
						3.14	25.7	5.40	78.6	0.49	30.71	8.18	3.
						1.00	25.3 25.3	6.14 6.11	89.4 88.9	0.84 0.84	31.72 31.77	8.16 8.16	2.
12:04	C3	ME	843821	816211	14.94	7.47	23.4	5.64 5.61	80.9 80.7	1.98 2.15	34.91 35.20	8.15 8.15	2.
						13.94	23.3	5.35	76.9	3.04	35.78	8.14	3.
						1.00	23.3 25.9	5.34 5.80	76.8 84.7	3.12 0.68	35.80 30.27	8.14 8.15	3. 2.
							25.9 24.2	5.81 5.62	84.8 81.5	0.70 0.83	30.26 34.20	8.15 8.15	2.
11:56	C4	ME	844621	815770	13.92	6.96	24.2	5.53	80.2	0.87	34.18	8.15	- 2
						12.92	23.9	5.37 5.34	77.7 77.1	1.30 1.58	34.78 35.11	8.14 8.13	2.
						1.00	25.9 25.9	5.71 5.70	83.3 83.1	0.56 0.54	30.23 30.30	8.20 8.20	2.
12:30	I1	ME	844602	817675	9.4	4.70	25.6	5.63	82.0	0.55	31.01	8.19	2.
						8.40	25.5 24.1	5.62 5.35	82.0 77.5	0.60 1.07	31.17 34.51	8.19 8.18	2.
							24.1	5.31	76.8	1.18	34.53	8.18	3.
						1.00	25.8	6.01	87.8	0.59	30.88	8.19	2.
0.12	CCI	ME	0.42201	01/41/	7.0		25.8 25.5	5.98 5.75	87.5 83.9	0.57 0.64	30.88 31.38	8.19 8.18	2.
8:12	CC1	MF	843201	816416	7.8	3.90	25.5 24.1	5.73 5.38	83.7 77.8	0.66 1.18	31.54 34.07	8.18 8.17	1.
						6.80	24.1	5.36	77.5	1.26	34.27	8.17	1.
						1.00	25.8 25.8	5.89 5.88	86.0 85.9	0.58 0.59	30.76 30.76	8.20 8.20	1.
8:24	CC2	MF	844076	817091	12.12	6.06	24.0 24.0	5.78 5.73	83.8 82.9	0.93 1.01	34.62 34.60	8.19 8.18	1.
						11.12	23.9	5.31	77.0	1.34	34.87	8.17	2
						1.00	23.9 25.9	5.3 5.79	76.6 84.4	1.41 0.51	34.93 30.27	8.16 8.21	3. 5.
							25.9 25.4	5.76 5.49	84.1 80.0	0.53 0.62	30.27 31.30	8.20 8.19	5. 5.
8:59	CC3	MF	844606	817941	9.48	4.74	25.5	5.52	80.4	0.61	31.27	8.19	4.
						8.48	24.1 24.1	5.38 5.34	78.0 77.2	0.95 1.08	34.51 34.51	8.18 8.18	4.
8:04	CC4	MF	845444	815595	2.42	1.21	25.2 25.3	5.89 5.89	85.9 85.7	0.63 0.63	31.88 31.79	8.15 8.16	4.
							23.3	5.67	03.7	0.03	31.77	0.10	7
						1.00	25.9	5.83	85.2	0.50	30.55	8.20	2
9.25	0013	ME	0.44000	017407	7.00		25.9 25.6	5.83 5.58	85.2 81.5	0.50 0.58	30.55 31.21	8.20 8.20	2.
8:25	CC13	MF	844200	817495	7.22	3.61	25.2 24.8	5.57	81.1 77.8	0.78 1.11	31.95 32.89	8.18 8.17	2
						6.22	24.6	5.31	77.1	1.20	33.23	8.17	1
						1.00	26.0 26.0	5.82 5.79	84.8 84.4	0.28 0.26	29.48 29.49	8.23 8.22	2
8:00	SWI1	MF	845512	817442	3.78								
						2.78	25.8	5.50	80.1	0.46	30.25	8.16	3.
						1.00	25.7 25.5	5.44 5.66	79.2 82.9	0.54 1.02	30.56 32.00	8.16 8.17	2.
0.00			0.4207	01/2::			25.3 23.6	5.59 5.53	81.8 79.9	1.00 2.35	32.01 35.20	8.17 8.15	1.
8:08	C3	MF	843821	816211	14.9	7.45	23.4 23.3	5.51	79.4	2.71 3.10	35.63	8.14	1.
						13.90	23.3	5.44 5.43	78.5 78.2	3.16	35.74 35.77	8.14 8.14	2.
						1.00	25.8 25.8	5.67 5.66	82.6 82.5	0.72 0.71	30.31 30.32	8.16 8.16	3. 2.
8:06	C4	MF	844621	815770	12.23	6.12	24.2	5.38	78.1 78.1	1.05 1.06	34.14 34.12	8.14 8.14	2.
						11.23	23.7	5.29	76.5	1.39	35.31	8.13	1.
	+ +						23.7 25.8	5.28 5.67	76.3 82.8	1.35 0.61	35.31 30.37	8.13 8.20	1. 4.
						1.00	25.8 25.6	5.65 5.43	82.5 79.2	0.63 0.70	30.41 30.99	8.19 8.19	3.
8:31	I1	MF	844602	817675	9.61	4.81	25.5	5.45	79.5	0.72	31.14	8.19	3.
	1		1		ı	8.61	23.9	5.26	76.1	1.68	34.86	8.17	2.

ampling Date:	6-Jul-19						,	,	1	•			
Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Dute / Time	Documon	1.00	East	North	m	m	C	mg/L	%	NTU	ppt	unit	mg/I
						1.00	25.6 25.6	5.91 5.93	86.2 86.7	0.62 0.59	31.22 31.13	8.17 8.18	1.1
13:56	CC1	ME	843201	816416	7.8	3.90	25.4 25.3	5.78 5.75	84.2 83.8	0.67 0.69	31.61 31.70	8.18 8.18	1.1
						6.80	25.0 24.6	5.43 5.38	79.0 78.1	0.83 0.96	32.41 33.33	8.17 8.16	1.6 1.9
						1.00	25.9 25.9	5.95 5.95	87.1 87.1	0.59 0.62	30.64 30.65	8.19 8.19	2.8
14:00	CC2	ME	844076	817091	12.09	6.05	23.9	5.70	82.5	1.01	34.78	8.18	3
						11.09	23.9	5.74 5.32	83.2 76.9	1.10 1.68	34.79 35.00	8.18 8.16	2.6
						-	23.8 25.8	5.29 5.64	76.6 82.2	2.01 0.60	35.10 30.25	8.16 8.19	2.8
						1.00	25.8 25.6	5.61 5.58	81.7 81.3	0.60 0.66	30.20 31.01	8.19 8.18	3.5
14:19	CC3	ME	844606	817941	9.56	4.78	25.5	5.50	80.2	0.66	31.14	8.18	7.1
						8.56	24.0 24.0	5.13 5.13	74.2 74.3	1.00 1.10	34.77 34.69	8.18 8.17	8.9 9.1
13:32	CC4	ME	845444	815595	2.15	1.08	25.3 25.3	6.16 6.15	89.7 89.7	0.65 0.65	31.78 31.80	8.15 8.15	1.7
							23.3	0.13	89.7	0.03	31.80	8.13	1.0
						1.00	25.8	5.77	84.3	0.52	30.76	8.19	1.2
							25.8 25.5	5.77 5.56	84.3 81.0	0.54 0.59	30.77 31.28	8.19 8.19	1.3
14:05	CC13	ME	844200	817495	7.29	3.65	25.4 25.0	5.55 5.39	80.9	0.59 1.03	31.40 32.43	8.19 8.18	1.5
						6.29	24.8	5.32	78.4 77.2	1.14	32.82	8.18	1.7
						1.00	26.1 26.1	5.77 5.81	84.1 84.6	0.41 0.42	29.40 29.36	8.16 8.17	1.8
13:25	SWI1	ME	845512	817442	4.29								
						3.29	25.9 25.8	5.42	79.0	0.50	29.97 30.34	8.17	2.6
						1.00	25.2	5.38 6.10	78.4 88.8	0.46 0.90	31.85	8.17 8.15	1.3
13:38	C3	ME	843821	816211	14.83	7.42	25.3 23.4	6.12 5.44	89.1 78.4	0.86 1.60	31.75 35.72	8.15 8.15	1.4
13:36	CS	ME	643621	810211	14.63		23.4	5.39 5.24	77.7 75.5	1.82 3.04	35.71 35.80	8.15 8.14	1.9 1.9
						13.83	23.3	5.19	74.8 81.4	3.26	35.83 30.41	8.14 8.16	2
						1.00	25.9	5.58	81.4	0.60 0.61	30.42	8.16	<1.
13:32	C4	ME	844621	815770	12.24	6.12	24.8 24.5	5.39 5.37	78.2 78.1	0.84 0.89	32.98 33.56	8.15 8.15	1.3
						11.24	23.9	5.21 5.16	75.3 74.6	1.32 1.41	34.85 35.09	8.14 8.14	1.8
						1.00	25.9 25.9	5.65 5.65	82.4 82.4	0.48 0.49	30.20 30.19	8.20 8.20	2.7
14:13	I1	ME	844602	817675	9.44	4.72	25.8	5.63	82.2	0.52	30.39	8.19	3.9
						8.44	25.7 24.0	5.55 5.19	81.0 75.3	0.57 1.39	30.72 34.54	8.19 8.17	3.6 4.1
						8.44	24.0	5.18	74.9	1.44	34.55	8.17	3.9
						1.00	25.3	6.03	87.7	0.83	31.73	8.15	1.8
8:29	CC1	MF	843201	816416	14.63	7.32	25.3 23.4	6.03 5.76	87.8 82.9	0.83 1.91	31.71 35.67	8.15 8.15	1.7
6:29	CCI	MIF	643201	810410	14.03		23.4 23.3	5.72 5.47	82.5 78.8	2.14 3.13	35.66 35.76	8.15 8.14	2.3
						13.63	23.3 25.6	5.44 6.46	78.3 94.3	3.28 0.64	35.79 31.22	8.14 8.18	2.2
						1.00	25.6	6.48	94.6	0.60	31.20	8.18	2.6
8:36	CC2	MF	844076	817091	7.39	3.70	25.5 25.5	6.16	90.0 88.7	0.61	31.35 31.47	8.18 8.18	3.2
						6.39	25.2 25.1	5.56 5.5	80.9 80.1	0.75 0.79	32.02 32.31	8.18 8.18	3.1
						1.00	25.8 25.9	5.74 5.76	83.6 84.0	0.64 0.57	30.24 30.15	8.18 8.18	4.2
8:59	CC3	MF	844606	817941	9.22	4.61	25.7	5.58	81.5	0.57	30.67	8.18	4.8
						8.22	25.6 24.1	5.59 5.26	81.4 76.3	0.57 0.84	30.80 34.58	8.18 8.18	4.9 5.1
						0.22	24.0	5.21	75.5	0.96	34.59	8.18	5.3
							24.5	6.18	89.6	1.40	33.51	8.17	2.4
8:02	CC4	MF	845444	815595	7.57	3.79	24.3	6.14	89.0	1.64	33.99	8.17	2.4
<u>-</u>						1.00	25.8 25.8	5.74 5.72	83.9 83.6	0.55 0.53	30.71 30.73	8.19 8.19	3 2.6
8:44	CC13	MF	844200	817495	12.35	6.18	23.9 23.9	5.56 5.49	80.6 79.4	0.73 0.83	34.78 34.77	8.19 8.19	2.7 3.2
						11.35	23.8	5.37	77.7	1.64 1.98	35.15	8.17	3.1
						1.00	25.8	5.34 5.70	77.2 83.2	0.55	35.21 30.76	8.17 8.19	3.4
9-A1	сил	MF	8/5512	817440	167	1.00	25.8	5.72	83.5	0.54	30.75	8.19	2.9
8:01	SWI1	IVIT	845512	817442	4.67		25.3	5.22	75.9	0.70	31.66	8.19	3.1
						3.67	25.4	5.27	76.8	0.59	31.56	8.18	3.3
						1.00	25.8 25.8	5.83 5.83	85.1 85.1	0.66 0.64	30.38 30.37	8.16 8.16	2.6
8:21	C3	MF	843821	816211	14.03	7.02	24.2 24.2	5.76 5.79	83.1 83.5	0.84 0.87	33.20 33.65	8.15 8.15	2.9
						13.03	23.9	5.49 5.47	79.3 79.0	1.34 1.42	34.82 34.96	8.14 8.14	3.9
						1.00	25.9	5.82	84.6	0.36	29.87	8.15	2.1
8:08	C4	MF	844621	815770	2.23	1.12	26.0 25.6	5.91 5.75	86.1 83.7	0.35 0.50	29.68 30.90	8.15 8.15	2.4 2.6
0.00	C4	1911	044021	013170	2.23		25.6 25.3	5.79 5.18	84.3 75.5	0.51 0.66	30.82 31.61	8.14 8.15	2.5
						1.23	25.3 25.9	5.19	75.7	0.63	31.61	8.15	2.8
						1.00	25.9	5.71 5.70	83.3 83.2	0.47 0.45	30.20 30.20	8.20 8.20	3.3
8:54	I1	MF	844602	817675	9.72	4.86	25.8 25.8	5.67 5.64	82.7 82.3	0.48 0.48	30.47 30.59	8.20 8.20	3.7
			1		1	8.72	24.1 24.1	5.53	80.1 79.0	0.78	34.52 34.54	8.19 8.19	5.2

Remarks: MF - Middle Flood tide

ME - Middle Ebb tide

For SS, if the monitoring result is less than Limit of Report Img/L, the result value will be assumed as 1 for the calculation.

mpling Date:	8-Jul-19												
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	S
			East	North	m	m	్రి	mg/L	% 90.9	NTU	ppt	unit	mg
						1.00	26.2 26.2	6.18 6.16	90.5	0.59 0.59	30.64 30.69	8.22 8.22	2.
15:39	CC1	ME	843201	816416	10.27	5.14	25.9 25.8	5.82 5.74	85.3 84.0	0.63	30.99 31.17	8.21 8.21	3.
						9.27	23.5 23.5	5.46 5.41	78.3 77.7	1.32 1.48	34.45 34.67	8.2 8.19	6
						1.00	26.3	6.39	94.0	0.57	30.55	8.23	3
15.44	CC2	ME	844076	817001	12.74		26.2 23.8	6.38 5.85	93.7 84.6	0.58 0.87	30.59 34.90	8.23 8.21	3
15:44	CC2	ME	844076	817091	12.74	6.37	23.8	5.74 5.39	82.9 77.8	0.93 2.80	34.99 35.39	8.21 8.18	
						11.74	23.4	5.39	77.6	3.36	35.48	8.18	(
						1.00	26.2 26.2	7.32 7.34	107.2 107.5	0.78 0.76	29.78 29.79	8.25 8.26	2
16:01	CC3	ME	844606	817941	9.4	4.70	24.5 24.3	6.09 5.97	88.4 86.7	0.74 0.80	33.38 34.25	8.25 8.25	2
						8.40	23.6	5.44	78.4	1.51	35.29	8.23	- 2
							23.6	5.37	77.4	1.80	35.34	8.22	3
							26.0	5.84	85.4	0.70	29.99	8.26	3
15:16	CC4	ME	845444	815595	2.37	1.19	26.0	5.82	85.1	0.69	30.04	8.26	
							26.2	6.37	93.6	0.72	30.42	8.25	
						1.00	26.1	6.31	92.6	0.62	30.51	8.24	
15:54	CC13	ME	844200	817495	8.94	4.47	24.7 24.2	5.87 5.47	85.8 78.6	0.77 0.87	31.79 34.24	8.23 8.23	4
						7.94	23.7	5.50 5.45	79.5 78.7	1.13 1.19	35.09 35.11	8.21 8.21	5
						1.00	26.3	6.76	99.3	0.58	30.35	8.41	
15:10	SWII	ME	845512	817442	3.74		26.3	6.77	99.4	0.51	30.35	8.40	3
15.10	5411	IVIL	043312	017442	3.74	2.74	26.2	6.31	92.7	0.51	30.36	8.39	
						2.74	26.2 25.9	6.09 5.79	89.4 84.7	0.51 0.62	30.39 30.73	8.39 8.21	
						1.00	25.9	5.77	84.4	0.64	30.76	8.21	- 3
15:30	C3	ME	843821	816211	14.92	7.46	23.4	5.50 5.46	79.2 78.7	1.31	35.51 35.53	8.19 8.19	4
						13.92	23.0 23.0	5.23 5.24	75.0 75.2	3.28 3.34	35.88 35.90	8.16 8.16	- 4
						1.00	25.8	6.23	90.8	0.74	30.31	8.21	3
15.10	C4	ME	844621	915770	11.50		25.7	6.12 5.57	89.2 80.1	0.76 2.39	30.36 35.44	8.21 8.18	3
15:19	C4	ME	644021	815770	11.59	5.80	23.3	5.55 5.20	79.9 74.8	2.38 2.46	35.46 35.52	8.18 8.17	
						10.59	23.3	5.19	74.5	2.45	35.54	8.17	(
						1.00	26.3 26.3	6.09	89.4 89.2	1.22 1.22	30.16 30.18	8.28 8.28	2
15:58	11	ME	844602	817675	10.42	5.21	24.6 24.1	5.59 5.58	80.6 81.0	1.33 1.46	31.68 34.54	8.28 8.27	-2
						9.42	23.5	5.39	77.6	2.25	35.52	8.25	5
							23.4	5.27	75.9	2.98	35.55	8.24	4
						1.00	25.8 25.7	6.15 5.96	90.4 87.4	0.81 0.73	31.49 31.56	8.16 8.16	2
10:57	CCI	MF	843201	816416	9.61	4.81	23.5	5.7	81.6	1.22	34.24	8.16	
							23.5 23.4	5.61 5.3	80.3 76.1	1.30 1.99	34.39 35.09	8.16 8.15	3
						8.61	23.3 26.1	5.3 6.16	76.3 90.3	2.32 0.56	35.40 30.69	8.15 8.20	2
						1.00	26.0	6.13	90.0	0.54	30.70	8.20	
11:02	CC2	MF	844076	817091	11.72	5.86	23.5	5.77 5.74	83.2 82.8	1.41 1.40	35.26 35.26	8.17 8.16	3
						10.72	23.4	5.31	76.5 76.3	2.52 2.76	35.53 35.59	8.15 8.15	- 3
						1.00	26.3	6.83	99.7	0.56	28.94	8.22	3
11:20	CC3	MF	844606	817941	9.52	4.76	26.3 25.0	6.81 5.65	99.3 83.5	0.60	29.13 32.27	8.22 8.21	3
11.20	ccs	.*11	044000	01/241	7.52		24.8	5.57 5.47	81.0 79.1	0.83 1.31	33.99 35.23	8.20 8.19	
						8.52	23.6	5.43	78.4	1.54	35.32	8.19	
							26.2	5.07	061	0.60	20.00	0.24	
10:39	CC4	MF	845444	815595	2.21	1.11	26.2 26.2	5.87 5.84	86.1 85.6	0.60	30.00 30.04	8.24 8.24	3
						1.00	26.0 26.0	6.16 6.15	90.3 90.1	0.48 0.50	30.66 30.68	8.21 8.21	2
11:14	CC13	MF	844200	817495	8.27	4.14	25.9	5.61	82.2	0.66	30.78	8.20	- 3
						7.27	25.8 23.5	5.53 5.34	80.9 77.1	0.66 1.04	30.84 35.34	8.20 8.19	4
							23.5 26.6	5.36 6.87	77.3 101.1	1.12 0.53	35.33 29.74	8.19 8.31	
						1.00	26.5	6.90	101.6	0.51	29.76	8.31	3
10:32	SWII	MF	845512	817442	4.12		26.2	5.00	99.7	0.55	20.10	0.20	
						3.12	26.3 26.2	5.63 5.55	82.7 81.4	0.55 0.54	30.10 30.25	8.30 8.29	
						1.00	25.9 25.8	5.99 5.97	87.6 87.2	0.76 0.74	30.59 30.71	8.19 8.19	2
10:54	C3	MF	843821	816211	11.9	5.95	23.4	5.42 5.40	78.1	2.08	35.42	8.15	(
						10.90	23.3	5.27	77.6 75.9	2.45	35.48 35.61	8.15 8.15	
							23.3 26.1	5.25 6.13	75.7 89.9	2.46 0.55	35.62 30.56	8.15 8.22	-
						1.00	26.1	6.11	89.6	0.57	30.58	8.22	
10:43	C4	MF	844621	815770	16.04	8.02	23.6 23.6	5.51 5.49	79.4 79.0	1.34 1.38	35.00 35.02	8.19 8.19	
						15.04	23.0	5.35 5.35	76.7 76.8	3.35 3.67	35.96 36.01	8.17 8.17	- 4
			1		1	-	26.1	6.30	92.3	0.51	30.40	8.21	6
						1.00			00.0	0.50	20.42	0.01	
11:18	I1	MF	844602	817675	9.89	1.00	26.1 25.8 25.7	6.28 5.64 5.62	92.0 82.5 82.2	0.53 1.15 1.27	30.43 30.88 31.08	8.21 8.21 8.20	5

	npling Date:	10-341-17												
17:01	Date / Time	Location	Tide*	Co-oro	linates			Temp	DO Conc		Turbidity	Salinity	pН	S
				East	North	m								mg
17.06							1.00	25.2	6.11	88.6	0.82	31.13	8.24	1.
1706	17:01	CC1	ME	843201	816416	7.5	3.75	24.7	5.77	83.6	0.95	32.42	8.24	3
1700							6.50	22.8	5.34	76.0	1.67	35.34	8.22	3
17.00							1.00	25.4	6.43	93.3	0.91	30.66	8.27	2
1721	17:06	CC2	ME	844076	817091	11.24	5.62							2
17-21							10.24		5.64	80.6		36.01	8.2	- 3
17-21							1.00	25.7	6.97	101.3	1.01	29.94	8.29	- 2
16-38	17:21	CC3	ME	844606	817941	9.19	4.60	23.8	5.81	83.8	1.05	34.60	8.29	
16-38							8 19	23.3	5.24	75.4	2.12	35.39	8.24	-
17-30							0.17	23.3	5.23	75.3	2.32	35.47	8.23	
17-10	16-29	CC4	ME	945444	915505	2.19	1.00	25.3	7.18	103.7	0.62	30.13	8.29	
17-10	10.36	CC4	IVIL	043444	813393	2.10	1:09	25.6	7.14	103.5	0.64	29.98	8.29	:
17:10							1.00		6.61		0.82	30.40	8.28	3
16-32 SWII ME	17.10	9913		0.44200	015105									
16-32 SWII ME	17:10	CC13	ME	844200	817495	8.31	-	25.1	5.49	79.5	0.92	31.37		2
16-32 SWII ME							7.31	23.0	5.31	76.0	1.50	35.74	8.24	4
16-58 C3 ME							1.00							4
16-58 C3 ME	16:32	SWI1	ME	845512	817442	4.39								
16-58 C3							3.39							
16-58 C3 ME 843821 816211 16-58 8.29 229 5.54 79.6 1.58 3.509 8.21 16-42 C4 ME 844621 815770 13.26 6.33 231 5.32 79.4 5.12 8.20 16-42 C4 ME 844621 815770 13.26 6.63 231 5.46 79.2 13.5 8.30 9.825 16-42 C4 ME 844621 815770 13.26 6.63 231 5.46 79.2 13.5 8.30 9.825 17-19 11 ME 844622 817675 9.29 4.65 23.6 6.3 19.1 8.25 8.20 17-19 11 ME 844692 817675 9.29 4.65 23.6 5.64 81.3 1.62 35.0 8.30 9.825 18-29 23.2 5.55 79.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2							1.00							
15.58 22.8 5.43 77.7 2.42 33.89 8.20 16.42	16:58	C3	ME	843821	816211	16.58	8.29	22.9	5.56	79.6	1.58	35.69	8.21	
16-42							15.58	22.8	5.43	77.7	2.42	35.89	8.20	
16-42 C4 ME 844621 815770 13.26 6.63 23.0 5.36 76.6 17.5 35.47 8.19 17:19 III ME 844602 817675 9.29 4.65 23.6 5.64 81.3 1.62 35.00 8.21 17:19 III ME 844602 817675 9.29 4.65 23.6 5.64 81.3 1.62 35.00 8.21 17:19 III ME 844602 817675 9.29 4.65 23.6 5.64 81.3 1.62 35.00 8.21 18:29 23.2 5.56 79.8 2.81 35.53 8.24 10.0 25.3 6.83 9.95 0.90 30.41 8.29 10.0 25.3 6.83 9.5 0.90 30.41 8.29 10.0 25.3 6.83 9.5 0.90 30.41 8.29 10.0 25.3 6.83 9.5 0.90 30.41 8.29 10.0 25.3 6.83 9.5 0.90 30.41 8.29 10.0 25.3 6.83 9.5 0.90 30.41 8.29 10.0 25.3 6.83 9.5 0.90 30.41 8.29 10.0 25.3 6.83 9.5 0.90 30.41 8.29 10.0 25.3 6.83 9.5 0.90 30.41 8.29 10.0 25.3 6.83 9.5 0.90 30.41 8.29 10.0 25.3 6.83 9.5 0.90 30.41 8.29 10.0 25.3 6.31 9.6 0.70 31.06 8.24 10.0 25.6 6.38 9.5 0.90 30.41 8.24 10.0 25.6 6.38 9.5 0.90 30.41 8.24 10.0 25.6 6.38 9.5 0.90 30.41 8.29 10.0 25.6 6.38 9.5 0.90 30.41 8.29 10.0 25.6 6.38 9.5 0.90 30.41 8.29 10.0 25.6 6.38 9.5 0.90 30.41 8.29 10.0 25.6 6.38 9.5 0.90 30.41 8.29 10.0 25.6 6.38 9.5 0.90 30.41 8.29 10.0 25.6 6.38 9.5 0.90 30.41 8.29 10.0 25.6 6.38 9.5 0.90 30.41 8.29 10.0 25.6 6.38 9.5 0.90 30.41 8.35 8.81 10.0 25.7 6.56 9.7 8.4 1.65 35.55 8.81 10.0 25.7 6.56 9.7 8.9 8.7 8.9 8.7 9.9 9.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8							1.00	25.1	5.52	79.4	5.12	30.11	8.25	
17:19	16.42	C4	ME	944621	915770	12.26	-							
17:19	10:42	C4	ME	844021	813770	13.20	-							-
17:19							12.26	23.0	5.33	76.2	1.95	35.58	8.18	
13.36 CC1 MF							1.00	25.3	6.88	99.5	0.90	30.41	8.29	
13:36 CC1 MF	17:19	I1	ME	844602	817675	9.29	4.65							
13:36 CC1 MF							8.29							
13:36 CC1 MF								25.3	6.31	91.6	0.70	31.06	8.24	
13:41							1.00	25.3	6.3	91.5	0.71	31.06	8.24	
13:41 CC2 MF 844076 817091 12.2	13:36	CC1	MF	843201	816416	7.25	3.63	25.1	5.8	84.1	0.81	31.60	8.23	
13.41							6.25	23.3	5.3	76.3	2.32	35.40	8.15	Ė
13:41 CC2 MF 84406 81791 12.2							1.00							- 2
13:57 CC3 MF 844606 817941 8.7 4.35 23.3 5.48 78.6 1.97 35.74 8.18 8.18 1.57 CC3 MF 844606 817941 8.7 4.35 23.3 5.69 82.0 1.95 35.56 82.3 1.15 23.3 5.60 81.5 2.34 35.56 82.3 1.15 23.0 5.60 81.5 2.34 35.56 82.3 1.15 23.0 5.60 81.5 2.34 35.56 82.3 1.15 23.0 5.60 81.5 2.34 35.56 82.3 1.15 23.0 5.60 81.5 2.34 35.56 82.3 1.15 25.6 5.86 81.5 2.34 35.56 82.3 1.15 25.6 5.86 81.5 2.34 35.56 82.3 1.15 25.6 5.86 81.5 2.34 35.56 82.3 1.15 25.6 5.86 81.5 2.34 35.56 82.3 1.15 25.6 5.86 81.5 2.34 35.56 82.3 1.15 25.6 5.86 85.0 0.91 30.05 82.0 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.	13:41	CC2	MF	844076	817091	12.2	6.10							-
13:57 CC3 MF 844606 817941 8.7 4.35 25.7 6.36 92.1 1.09 29.48 8.25 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.0							11.20	23.0				35.74 35.81		
13:57 CC3 MF 844606 817941 8.7 4.35 23.3 5.69 82.0 1.95 35.56 8.23 7.70 23.0 5.16 81.5 2.34 35.56 8.21 7.70 23.0 5.16 73.9 4.26 35.88 8.16 7.70 23.0 5.00 71.7 4.14 35.88 8.16 8.10 7.70 23.0 5.00 71.7 4.14 35.88 8.16 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.7							1.00	25.7				29.48		
13:11 CC4 MF 845444 815595 2.3 1.15 25.8 5.97 86.9 8.77 29.94 8.20 25.6 5.86 85.0 0.91 30.05 8.20 25.6 6.28 91.1 0.67 30.18 82.5 25.6 6.28 91.1 0.67 30.18 8.25 25.6 6.28 91.1 0.67 30.18 8.25 25.6 6.28 91.1 0.67 30.18 8.25 25.6 6.28 91.1 0.67 30.18 8.25 25.6 6.28 91.1 0.67 30.18 8.25 25.6 6.28 91.1 0.67 30.18 8.25 25.6 6.28 91.1 0.67 30.18 8.25 25.6 6.28 91.1 0.67 30.18 8.25 25.6 6.28 91.1 0.67 30.18 8.25 25.6 6.28 91.1 0.67 30.18 8.25 25.6 25.6 6.28 91.1 0.67 30.18 8.25 25.6 25.6 6.28 91.1 0.67 30.18 8.25 25.7 25.8 25.1 1.5 34.39 8.25 25.7 25.8 25.1 1.5 34.39 8.25 25.7 25.8 25.1 1.5 25.8 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1	13:57	CC3	MF	844606	817941	8.7	4.35	23.3	5.69	82.0	1.95	35.56	8.23	
13:11 CC4 MF 845444 815595 2.3 1.15							7.70	23.0	5.16	73.9	4.26	35.88	8.16	
13:45 CC13 MF 84320 817495 8.35								23.0	5.00	71.7	4.14	35.88	8.16	
13:45 CC13 MF 844200 817495 8.35	13:11	CC4	MF	845444	815595	2.3	1.15							
13:45 CC13 MF 844200 817495 8.35								25.0	3.80	85.0	0.91	30.03	8.20	
13:45 CC13 MF 844200 817495 8.35 4.18 23.7 5.73 82.5 1.15 34.39 8.22 7.35 23.3 7.562 80.9 1.21 34.45 82.1 34.5 82.1 7.35 23.3 5.31 76.2 1.62 35.30 8.17 7.35 23.3 5.31 76.2 1.64 35.40 8.17 1.00 25.9 5.99 87.4 0.56 30.01 8.17 1.00 25.7 5.98 87.1 0.56 30.09 8.17 1.00 25.9 5.99 87.4 0.56 30.09 8.17 1.00 25.9 5.99 87.4 0.56 30.09 8.17 1.00 25.9 5.99 87.4 0.56 30.09 8.17 1.00 25.9 5.99 87.4 0.56 30.09 8.17 1.00 25.9 5.99 87.4 0.56 30.09 8.17 1.00 25.9 5.99 87.4 0.56 30.09 8.17 1.00 25.9 5.99 87.4 0.56 30.09 8.16 1.00 25.9 5.99 87.4 0.56 30.09 8.16 1.00 25.9 5.99 87.4 0.56 30.09 8.16 1.00 25.9 5.99 87.4 0.56 30.09 8.16 1.00 25.9 5.90 6.62 96.5 0.69 30.02 82.8 1.00 25.9 5.90 6.62 96.5 0.69 30.09 8.16 1.00 25.9 5.90 6.62 96.5 0.69 30.09 8.16 1.00 25.9 5.90 6.00 8.00 1.34 35.69 8.21 1.00 25.9 5.90 85.3 1.36 35.69 8.21 1.00 22.6 5.67 80.8 4.24 36.16 8.20 1.00 22.6 5.67 80.8 4.24 36.16 8.20 1.00 22.6 5.67 80.8 4.24 36.16 8.20 1.00 25.9 7.07 103.1 0.70 30.18 8.27 1.00 25.9 7.07 103.1 0.70 30.18 8.27 1.00 25.9 7.07 103.1 0.70 30.18 8.27 1.00 25.9 5.98 85.6 1.31 35.62 8.19 1.00 25.8 6.60 97.4 0.68 29.99 8.27 1.00 25.8 6.67 97.0 0.70 30.3 8.26 1.00 25.8 6.67 97.4 0.68 29.99 8.27 1.00 25.8 6.67 97.4 0.68 29.99 8.27 1.00 25.8 6.67 97.4 0.68 29.99 8.27							1.00							-
13:05 SWI1 MF 845512 817442 4.18 13:05 SWI1 MF 845512 817442 4.18 13:05 SWI1 MF 845512 817442 4.18 13:06 SWI1 MF 845512 817442 4.18 13:07 SWI1 MF 845512 817442 4.18 13:08 SWI1 MF 845512 817442 4.18 13:09 SWI1 MF 845512 817442 4.18 13:00 SWI1 MF 845512 817442 4.18 13:00 SWII MF 845512 81744 78.8 0.63 30.09 8.17 13:00 SWII MF 845512 817442 4.18 13:00 SWII MF 845512 81744 78.8 0.63 30.99 8.27 13:10 SWII MF 845512 817442 4.18 13:10 SWII MF 845512 81744 78.8 0.63 30.99 8.27 13:10 SWII MF 845512 817442 4.18 13:10 SWII MF 845512 81744 78.8 0.63 30.99 8.27 13:10 SWII MF 845512 817442 4.18 13:10 SWII MF 845512 81.14	13:45	CC13	MF	844200	817495	8.35	4.18	23.7	5.73	82.5	1.15	34.39	8.22	
13:05 SWI1 MF 845512 817442 4.18 13:05 SWI1 MF 845512 817442 4.18 13:05 SWI1 MF 845512 817442 4.18 13:06 SWI1 MF 845512 817442 4.18 13:07 SWI1 MF 845512 817442 4.18 13:08 SWI1 MF 845512 817442 4.18 13:09 SWI1 MF 845512 817442 4.18 13:00 SWII MF 845512 8.18 13:00 SWII M							-	23.3	5.37	77.1	1.62	35.30	8.17	
13:05 SWI1 MF 845512 817442 4.18 3.18 25.5 5.46 79.3 0.63 30.94 8.16 25.3 5.44 78.8 0.65 30.90 8.16 25.3 5.44 78.8 0.65 30.90 8.16 25.9 7.00 102.0 0.66 29.92 8.28 81.00 25.9 7.00 102.0 0.66 29.92 8.28 81.00 25.9 7.00 102.0 0.66 1.34 35.69 8.21 81.331 C3 MF 843821 816211 13.9 6.95 23.0 5.95 85.3 1.36 35.69 8.21 81.00 25.9 7.45 108.7 0.72 30.08 8.27 81.100 25.9 7.45 108.7 0.72 30.08 8.27 81.100 25.9 7.45 108.7 0.72 30.08 8.27 81.100 25.9 7.45 108.7 0.72 30.08 8.27 81.100 25.9 7.45 108.7 0.72 30.08 8.27 81.100 25.9 7.45 108.7 0.72 30.08 8.27 81.100 25.9 7.45 108.7 0.72 30.08 8.27 81.100 25.9 7.45 108.7 0.72 30.08 8.27 81.100 25.9 7.45 108.7 0.72 30.08 8.27 81.100 25.9 85.6 1.31 35.62 8.19 81.100 25.8 6.70 97.4 0.68 29.99 8.27 81.100 25.8 6.70 97.4 0.68 29.99 8.27 81.100 25.8 6.70 97.4 0.68 29.99 8.27 81.100 25.8 6.70 97.4 0.68 29.99 8.27								25.9	5.99	87.4	0.56	30.01	8.17	
13:31 C3 MF 843821 816211 13.9	13:05	SWII	ME	8/15512	817442	/1 1º	1.00	25.7	5.98	87.1	0.56	30.09	8.17	
13:31 C3 MF 843821 816211 13.9	15.05	51111	1911	5 (5512	0./744	7.10	2 10	25.5	5.46	79.3	0.63	30.54	8.16	
13:31 C3 MF 843821 816211 13.9								25.3	5.44	78.8	0.65	30.90	8.16	
13:16 C4 MF 844621 815770 14.47							1.00	25.9	6.62	96.5	0.69	30.02	8.28	
13:16 C4 MF 844621 815770 14.47 7.24 23.0 5.98 85.6 1.31 35.62 8.19 13:47 22.6 5.69 81.3 2.97 36.15 8.18 12.84 36.15 8.18 36.15 8	13:31	C3	MF	843821	816211	13.9	6.95	23.0	5.95	85.3	1.36	35.69	8.21	
13:16 C4 MF 844621 815770 14.47 7.24 23.0 5.99 85.7 1.28 35.53 8.19 23.0 5.98 85.6 1.31 35.62 8.19 13.47 22.6 5.69 81.1 2.84 36.15 8.18 13.47 22.6 5.69 81.3 2.97 36.15 8.18 11.00 25.8 6.70 97.4 0.68 29.99 82.7 25.8 6.67 97.0 0.70 30.03 8.26 13.54 14.54 14.55							12.90	22.6	5.68	81.1	4.46	36.17	8.20	
13:16 C4 MF 844621 815770 14.47 7.24 23.0 5.99 85.7 1.28 35.53 8.19 23.0 5.99 85.6 1.31 35.62 8.19 13.47 22.6 5.69 81.1 2.84 36.15 8.18 12.6 5.69 81.3 2.97 36.15 8.18 12.84 13.61 8.18 12.84 13.61 8.18 13.62 8.19 13.62 81.81 81.8 13.62 81.81 81.8 13.62 81.81 81.8 13.62 81.81 81.8 13.62 81.81 81.8 13.62 81.81 81.8 13.62 81.81 81.8 13.62 81.81 81.8 13.62 81.81 81.8 81.8 81.8 81.8 81.8 81.8 81							1.00		7.45					
13.47 22.6 5.69 81.1 2.84 36.15 8.18 22.6 5.69 81.3 2.97 36.15 8.18 1.00 25.8 6.70 97.4 0.68 29.99 8.27 25.8 6.67 97.0 0.70 30.03 8.26 25.8 6.67 97.0 0.70 30.03 8.26 25.8 6.67 97.0 0.70 30.3 8.26	13:16	C4	MF	844621	815770	14.47	7.24	23.0	5.99	85.7	1.28	35.53	8.19	Ι.
1.00 25.8 6.70 97.4 0.68 29.99 8.27 25.8 6.67 97.0 0.70 30.03 82.6 1.00 25.8 6.67 97.0 0.70 30.03 82.6 23.1 5.55 79.6 1.93 35.65 8.23							13.47	22.6	5.69	81.1	2.84	36.15	8.18	
25.8 6.67 97.0 0.70 30.03 8.26 25.8 23.1 25.55 79.6 1.93 35.65 8.23							1.00	25.8	6.70	97.4	0.68	29.99	8.27	
13.57 11 NII 044002 01/0/3 7.73 4.7/	13:54	71	ME	844603	817675	0.02		23.1	5.55	79.6	1.93	35.65	8.23	-
8.93 22.9 5.23 74.8 3.69 35.92 8.18 8.22 8.93 22.9 5.23 74.8 3.69 35.92 8.18	15.54	11	ML	044002	01/0/3	9.93		23.2	5.47	78.6 74.8	2.15	35.63	8.22 8.18	

mpling Date:	12-Jul-19												
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiuc	East	North	m	m	r	mg/L	%	NTU	ppt	unit	mg/l
						1.00	25.4 25.4	7.29 7.28	106.1 106.1	1.04 1.04	31.34 31.34	8.33 8.33	4.4
9:32	CCI	ME	843201	816416	7.57	3.79	24.3 24.3	5.87 5.89	84.7 85.0	0.59 0.58	33.10 32.97	8.3 8.29	5.1 5.3
						6.57	24.3	5.41	78.0	0.60	32.97	8.28	6.4
							24.3	5.35 7.60	77.2 111.4	0.63 0.88	33.02 30.63	8.27 8.35	6.2 5.1
						1.00	25.9 23.6	7.64 6.02	111.9 86.1	0.81 0.78	30.70 33.44	8.35 8.32	5.4 5.2
9:37	CC2	ME	844076	817091	12.26	6.13	23.6	5.87	83.9	0.75	33.68	8.32	5.4
						11.26	23.3	5.50 5.43	78.9 77.9	2.10 2.54	34.95 35.09	8.3 8.29	6.8 7
						1.00	26.3	7.95	115.9	1.32	28.86	8.31	8.9
9:52	CC3	ME	844606	817941	8.61	4.31	26.3 26.2	8.03 6.67	117.1 97.4	1.20 1.15	28.99 29.52	8.31 8.31	8.9 9.6
9.32	ccs	WILL	844000	817941	8.01		25.0 23.3	6.23 5.19	91.0 74.5	1.09 0.94	30.42 35.14	8.31 8.19	9.8 9.7
						7.61	23.3	5.13	73.7	0.99	35.12	8.19	10.
9:09	CC4	ME	845444	815595	2.83	1.42	25.5 25.5	5.90 5.86	85.7 85.1	0.77 0.80	30.50 30.51	8.24 8.23	4.7 5.1
							20.0	2.00	03.1	0.00	30.31	0.23	5.1
						1.00	25.7	7.35	107.4	0.69	31.06	8.35	5.1
							25.6 25.1	7.37 5.80	107.6 84.2	0.70 0.62	31.08 31.67	8.35 8.33	5.3 6.2
9:45	CC13	ME	844200	817495	8.15	4.08	25.0	5.72	83.0	0.66	31.82	8.33	6.4
						7.15	23.4	5.36 5.32	76.3 75.7	0.76 0.79	33.65 33.89	8.31 8.31	6.7
						1.00	25.1	6.56	95.1	0.44	31.45	8.34	6
9:02	SWII	ME	845512	817442	4.4		25.1	6.45	93.4	0.44	31.50	8.34	6.
9:02	SWII	ME	643312	617442	4.4		25.0	5.92	85.8	0.63	31.73	8.31	6.3
						3.40	25.0	5.90	85.5	0.64	31.75	8.31	5.
						1.00	25.7 25.7	7.65 7.66	111.8 111.9	0.98 0.96	31.25 31.25	8.33 8.33	5.
9:18	C3	ME	843821	816211	15.37	7.69	23.0 23.0	5.85	83.7	0.76	35.50	8.33	6.
						14.37	22.8	5.75 5.37	82.2 76.8	0.80 2.29	35.51 35.82	8.32 8.27	6. 6.
							22.8 25.8	5.36 7.37	76.4 107.9	2.58 0.85	35.85 31.13	8.27 8.28	6.
						1.00	25.8	7.39	108.1	0.81	31.16	8.28	6.
9:13	C4	ME	844621	815770	15.71	7.86	22.7	5.60 5.56	79.5 78.9	1.19 1.30	34.84 35.07	8.27 8.27	6.
						14.71	22.7	5.21	74.3	2.12	35.96	8.25	7.
							22.7 26.0	5.20 7.52	74.2 109.4	2.17 1.98	35.97 29.36	8.24 8.35	7. 6.
						1.00	26.0	7.57	110.1	1.93	29.46	8.35	6.
9:49	11	ME	844602	817675	9.99	5.00	25.7 25.7	6.60	96.0 92.5	1.68	29.99 30.09	8.35 8.34	7.
						8.99	23.2	5.37 5.34	77.1 76.5	1.90 2.32	35.48 35.58	8.23 8.23	7. 7.
							23.1	3.34	70.5	2.32	33.36	0.23	7.
						1.00	26.2 26.2	8.24 8.3	121.6 122.4	0.58 0.59	31.08 31.12	8.37 8.37	4. 4.
14:26	CCI	MF	843201	816416	8.23	4.12	26.0	7.87	115.8	0.59	31.12	8.37	4
11.20	cci		013201	010110	0.23		25.9 23.1	7.6 5.43	111.6 77.3	0.61 1.04	31.42 34.71	8.37 8.34	4.
						7.23	23.1	5.38	76.6	1.09	34.87	8.34	4.0
						1.00	26.2 26.1	7.94 7.99	117.0 117.5	0.85 0.87	30.91 30.98	8.38 8.37	4.:
14:30	CC2	MF	844076	817091	11.6	5.80	23.0	5.55 5.55	79.0 79.1	1.03 1.04	34.96 35.14	8.33 8.33	4.
						10.60	22.8	5.39	77.1	2.97	35.82	8.17	5
							22.8 25.6	5.37 6.56	76.6 95.4	3.25 1.02	35.82 30.44	8.17 8.25	5.
						1.00	25.5	6.46	93.9	0.84	30.79	8.26	5.
14:47	CC3	MF	844606	817941	9.41	4.71	23.5	5.33 5.27	76.7 75.7	1.16 1.21	34.92 34.95	8.25 8.24	5. 6.
						8.41	23.3 23.3	5.02 5.07	72.1 72.8	1.67 1.94	35.22 35.30	8.24 8.23	6.
							23.3	5.07	72.0	1.94	33.30	6.23	6
14.00	001		0.5111	015505	2.25	1.60	25.4	6.23	90.8	0.92	31.44	8.29	6.
14:09	CC4	MF	845444	815595	3.37	1.69	25.3	5.99	87.2	0.95	31.50	8.29	6
]					1.00	26.0 26.0	8.47 8.44	124.3 123.9	0.66 0.70	31.01 31.01	8.37 8.37	4.
14:35	CC13	MF	844200	817495	8.28	4.14	23.6	5.62 5.52	80.2	0.75	33.15	8.37	6.
						7.28	23.2	5.40	78.9 77.1	0.75 0.96	33.34 34.46	8.37 8.25	6.
	 						23.0 26.1	5.34 7.56	76.3 111.0	1.24 0.70	35.39 30.75	8.25 8.31	6. 4.
						1.00	26.1	7.56	111.1	0.63	30.86	8.31	4.
14:03	SWI1	MF	845512	817442	4.14								
						3.14	25.9 25.8	6.71 6.42	98.4 94.1	0.63 0.65	31.09 31.19	8.31 8.31	5. 6.
						1.00	26.0	8.34	122.6	0.64	31.06	8.38	3.
14.10			0.4207	01.52			26.0 22.9	8.34 5.60	122.5 79.9	0.64 1.01	31.09 35.67	8.37 8.34	3. 4.
14:18	C3	MF	843821	816211	15.8	7.90	22.9	5.52	78.9	1.07	35.72	8.34	4
	<u> </u>					14.80	22.7 22.7	5.21 5.21	74.4 74.3	2.24 2.41	35.91 35.92	8.30 8.30	7. 7
						1.00	26.2	8.29	122.2	1.29	31.01	8.36	4.
14:13	C4	MF	844621	815770	15.26	7.63	26.0 23.1	8.36 5.51	122.9 78.7	1.08 1.57	31.13 35.19	8.37 8.27	4.
	54		0.7021	0.5770	15.20		23.0 22.7	5.50 5.19	78.6 74.1	1.59 2.84	35.25 35.82	8.26 8.23	4.
						14.26	22.7	5.19	74.0	3.06	35.86	8.23	4.
						1.00	25.4 25.4	6.68	97.3 97.0	1.21 1.21	31.25 31.28	8.33 8.33	5.2
14:45	11	MF	844602	817675	9.58	4.79	23.8 23.8	5.51 5.55	78.7 79.4	1.03	33.11 33.19	8.32 8.31	5.4
14.45													

mulina Date	15-Tel 10							ng Result					
ampling Date:			Co-ore	linates	Water	Sampling	Temp	DO Conc	DO	Turbidity	Salinity	pН	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	ຶ່	mg/L	Saturation %	NTU	ppt	unit	mg/I
						1.00	26.9 26.8	8.13 8.28	119.9 121.9	1.07 1.07	28.97 28.97	8.71 8.72	6.2 5.9
12:14	CC1	ME	843201	816416	7.85	3.93	24.7 24.5	7.52 7.11	108.5 102.5	1.38	31.80 32.16	8.47 8.46	6.2
						6.85	22.7	5.49 5.41	77.8 76.7	1.33	34.61 35.31	8.43 8.4	6.7
						1.00	25.7	8.83	128.5	1.46	30.17	8.61	6.1
12:19	CC2	ME	844076	817091	11.09	5.55	25.6 23.0	8.80 6.30	127.7 90.0	1.49 1.46	30.24 35.16	8.61 8.36	6 6.4
						10.09	22.8 22.2	6.23 5.67	88.8 80.3	1.48 3.17	35.39 36.21	8.35 8.24	6.2
						1.00	22.2 27.4	5.66 8.31	80.2 122.7	3.76 8.26	36.22 27.84	8.24 8.61	6.6 4.1
12.27	GG2	N.E.	044606	017041	7.01	-	27.4 24.6	8.62 7.19	127.4 103.6	1.08	27.96 31.95	8.72 8.58	4.4
12:37	CC3	ME	844606	817941	7.61	3.81	24.5 22.7	7.09 5.52	102.1 78.4	1.45 3.17	32.04 35.58	8.56 8.41	5.1 5.4
		ĺ		ĺ	ĺ	6.61	22.7	5.47	77.8	3.23	35.59	8.39	5.5
							26.2	8.72	127.2	2.95	29.34	8.57	5.7
12:06:00	CC4	ME	845444	815595	2.21	1.11	26.3	8.96	130.9	2.68	29.27	8.58	5.8
						1.00	26.3 26.3	8.61 8.41	126.2 123.2	1.48 1.46	29.61 29.66	8.64 8.64	4.7
12:24	CC13	ME	844200	817495	7.84	3.92	23.9 24.0	6.74 6.70	96.4 96.0	1.42	32.69 32.90	8.45 8.44	5.7 5.8
						6.84	22.4 22.4	5.40 5.39	76.8 76.4	1.84 1.80	36.10 36.10	8.36 8.35	7.5
						1.00	27.2 27.2	8.28 8.31	122.5 123.0	0.95 0.88	28.92 28.91	8.59 8.62	5.2
11:55	SWI1	ME	845512	817442	4.13								
						3.13	25.7 25.7	7.49 7.33	108.7 106.4	1.28 1.34	29.79 29.77	8.59 8.57	5.8
						1.00	27.0	8.41	124.3	1.11	29.23	8.68	5.
12:10	C3	ME	843821	816211	13.58	6.79	27.0 22.5	8.42 5.81	124.4 82.5	1.13	29.23 35.79	8.69 8.40	5.9
12.10	03		013021	010211	15.50	12.58	22.4 22.0	5.73 5.34	81.5 75.5	1.07 3.94	35.89 36.31	8.38 8.28	5.0
							22.0 26.4	5.33 7.05	75.4 103.1	3.89 1.18	36.31 29.30	8.28 8.64	6.1 5.1
						1.00	26.4 22.0	7.15 5.84	104.6 82.5	1.18 2.04	29.31 36.25	8.64 8.27	5.: 5.:
12:08	C4	ME	844621	815770	15.56	7.78	22.1	5.83	82.4	1.94	36.21	8.27	5.
						14.56	21.9	5.67 5.67	80.1 80.0	3.07 3.21	36.34 36.35	8.25 8.25	6.9
						1.00	27.1 27.1	8.22 8.16	121.3 120.5	1.24 1.25	28.75 28.75	8.67 8.67	4.4
12:27	I1	ME	844602	817675	9.14	4.57	24.5 24.5	7.62 7.42	109.4 106.6	2.59 3.00	31.55 31.74	8.53 8.52	4.7
						8.14	22.2	5.40 5.30	76.6 75.2	3.84 3.96	36.19 36.22	8.36 8.35	6.2
		ſ		ſ	ſ		26.2	8.35	122.2	1.43	29.74	8.58	4.3
						1.00	26.1	8.22	120.1	1.42	29.89	8.58	4.4
16:51	CC1	MF	843201	816416	8.17	4.09	23.4	6.44	92.1 87.5	1.46 1.40	34.25 34.20	8.41 8.41	4.1
						7.17	23.1	5.81 5.68	83.0 81.0	1.45 1.50	34.66 34.91	8.38 8.37	3.9
						1.00	26.2 26.2	8.71 8.79	127.6 128.8	1.50 1.53	29.92 29.88	8.62 8.63	4.4
16:55	CC2	MF	844076	817091	9.71	4.86	22.5 22.5	5.72 5.72	81.3 81.4	1.55 1.50	35.95 35.95	8.39 8.39	4.:
						8.71	22.3	5.43 5.41	77.0 76.7	2.30 2.15	36.12 36.11	8.29 8.28	4.0
						1.00	23.9	6.75	96.6	1.82	33.01	8.49	4.8
17:09	CC3	MF	844606	817941	8.39	4.20	24.0	6.91 5.67	99.1 80.4	1.86	33.09 35.92	8.48 8.28	5.5
						7.39	22.2	5.61 5.53	79.3 78.3	2.24 3.02	36.01 36.07	8.23 8.21	5.
							22.3	5.58	79.0	3.27	36.09	8.21	5
16:41	CC4	MF	845444	815595	1.95	0.98	26.1	7.43	108.0	1.74	28.78	8.63	5.
10.41	CC4	IVII	043444	813393	1.93	0.98	26.1	7.48	108.7	1.76	28.80	8.63	5.0
							25.2	7.13	103.5	3.75	31.28	8.55	5.0
						1.00	25.0 23.0	7.16 5.71	103.7 81.3	3.39 1.30	31.52 34.71	8.53 8.45	5
16:59	CC13	MF	844200	817495	8.46	4.23	22.4 22.4	5.70	80.9	1.34	35.93	8.35	4.3
						7.46	22.3	5.33 5.29	75.6 75.0	2.69	36.01 36.06	8.32 8.31	4.
						1.00	27.1 27.1	7.36 7.10	108.8 104.9	0.95 0.91	28.95 28.97	8.70 8.71	4.
16:34	SWI1	MF	845512	817442	4								
						3.00	23.5 23.4	5.53 5.49	79.3 78.6	1.55 1.50	34.36 34.46	8.46 8.44	3.
						1.00	26.1 26.0	8.42 8.40	123.0 122.5	1.56 1.52	29.85 29.90	8.65 8.66	4.
16:48	C3	MF	843821	816211	13.9	6.95	22.5	4.61	65.4	1.53	35.41 35.69	8.41 8.41	5.
						12.90	22.4	5.66	86.6 80.0	1.61	35.32	8.46	5.
						1.00	22.4 25.4	5.67 7.51	80.2 108.7	1.55 1.59	35.59 30.46	8.45 8.62	4.
16.44	C4	МГ	9,44201	915770	10.60	-	25.4 22.2	7.60 5.85	110.1 82.8	1.57 2.13	30.40 35.93	8.63 8.39	4. 6.
16:44	C4	MF	844621	815770	12.62	6.31	22.2	5.87 5.49	83.1 77.6	2.20 3.41	35.98 36.23	8.38 8.35	5.3 6.
						11.62	22.0 26.4	5.48 9.13	77.3 133.8	3.72	36.26 29.36	8.34 8.58	6.4
						1.00	26.4	9.20	134.8	3.99	29.43	8.58	5.8
17:02	I1	MF	844602	817675	9.15	4.58	26.7 26.6	6.71 6.64	98.9 97.8	1.63	29.43 29.68	8.53 8.53	6.4
	1	I		ĺ	ĺ	8.15	22.3 22.3	5.45 5.31	77.3 75.3	3.17 3.60	36.08 36.11	8.36 8.35	6.5

mpling Date:	17. Inl. 10							ng Result					
		Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/
						1.00	24.8 24.6	8.07 8.17	117.6 118.7	1.26 1.30	33.22 33.38	8.4 8.41	4.9
11:25	CC1	ME	843201	816416	7.65	3.83	23.9	7.47 7.39	107.7 106.3	1.22	33.89 33.97	8.42 8.42	5.4
						6.65	23.2	5.90	84.3	1.05	34.77	8.4	5.8
						1.00	24.5	5.41 10.06	76.7 145.7	1.31 1.20	35.31 33.23	8.4 8.52	6.1 4.4
11:29	CC2	ME	844076	817091	11.9	-	24.5 22.8	10.12 5.66	146.6 80.6	1.17	33.23 35.28	8.54 8.33	4.1
11:29	CC2	ME	844076	817091	11.9	5.95	22.8	5.67 5.33	80.8 75.4	1.39 2.50	35.26 35.96	8.32 8.29	4.3
						10.90	22.2	5.29 9.74	74.8	2.94 0.76	36.12 32.28	8.29 8.55	4.2
						1.00	25.9	9.78	143.8 144.5	0.76	32.28	8.55	3.
11:41	CC3	ME	844606	817941	9.78	4.89	23.4 23.5	5.89 5.76	84.3 82.5	0.67 0.62	34.33 34.25	8.34 8.33	3. 4.
						8.78	22.3 22.3	5.34 5.35	75.4 75.6	1.14	35.40 35.59	8.32 8.31	4.
11:12	CC4	ME	845444	815595	2.15	1.08	24.8 24.7	7.89 7.96	114.1 115.1	1.61 1.56	32.11 32.10	8.43 8.43	5. 5.
							24.7	7.96	113.1	1.36	32.10	0.43	3.
						1.00	24.6	9.88	143.4	1.09	33.19	8.55	7.
	agus		044200	015105	704	-	24.6 24.3	9.93 8.00	144.1 115.8	1.11	33.19 33.47	8.55 8.55	7. 8.
11:34	CC13	ME	844200	817495	7.84	3.92	24.2 23.1	7.88 5.53	113.8 79.1	1.10	33.60 34.89	8.54 8.38	7.
						6.84	22.9	5.54	79.1	1.40	35.17	8.37	7.
						1.00	25.7 25.7	9.61 9.93	141.6 146.3	0.86 0.83	32.45 32.43	8.34 8.49	4
11:01	SWI1	ME	845512	817442	4.25								
						3.25	24.2 24.1	9.16 8.95	132.2 129.2	0.87 0.88	33.55 33.58	8.49 8.49	4 5
						1.00	24.2	7.05	101.4	1.78	32.85	8.37	4
11:21	C3	ME	843821	816211	13.29	6.65	24.1 22.9	7.02 6.11	100.9 87.0	1.80 1.07	32.91 35.06	8.38 8.35	5
11.21	CS	ML	043021	010211	13.27		22.8 22.5	6.06 5.44	86.3 77.2	0.96 1.01	35.15 35.70	8.34 8.31	5
						12.29	22.3 23.8	5.46 6.30	77.4 90.4	1.11 1.65	35.97 33.34	8.30 8.39	5 4
						1.00	23.6	6.01	85.9	1.58	33.64	8.37	- 4
11:16	C4	ME	844621	815770	13.49	6.75	22.4 22.4	5.80 5.78	82.1 81.9	1.58 1.56	35.64 35.75	8.33 8.32	5 5
						12.49	22.2	5.69 5.68	80.6 80.3	1.75 1.73	35.97 36.04	8.29 8.28	5
						1.00	25.5 25.4	10.39 10.48	152.7 153.8	1.00	32.74 32.75	8.56 8.57	4
11:38	I1	ME	844602	817675	9.79	4.90	24.3	8.38	121.2	0.99	33.63	8.57	6
						8.79	24.3 22.4	8.22 5.80	119.0 82.2	0.99 1.14	33.64 35.30	8.57 8.41	9
						****	22.3	5.72	81.0	1.35	35.54	8.39	10
						1.00	23.3	6.04	86.5	7.23	34.74	8.31	6
8:27	CCI	MF	843201	816416	8.02	4.01	23.2 23.5	5.96 5.7	85.3 83.2	5.71 1.01	34.77 33.44	8.31 8.35	5
0.27	001		0.0201	010110	0.02	-	23.5 21.9	5.65 5.49	82.6 77.3	1.00 2.24	33.41 36.37	8.35 8.24	4
						7.02	21.9 24.2	5.47 7.71	77.2 111.4	2.32 0.97	36.38 33.60	8.24 8.35	3
						1.00	24.2	7.69	109.2	0.99	33.69	8.34	3
8:34	CC2	MF	844076	817091	11.99	6.00	22.5 22.5	5.95 5.8	84.3 82.3	1.08	35.31 35.53	8.36 8.35	3
						10.99	22.0 22.0	5.71 5.68	80.6 80.3	3.35 3.08	36.31 36.31	8.24 8.23	3
						1.00	24.7 24.6	7.05 6.99	102.4 101.5	0.81 0.78	33.18 33.18	8.34 8.35	3
8:55	CC3	MF	844606	817941	9.37	4.69	22.8	5.81	82.6	1.21	35.34	8.31	5
						8.37	22.8 22.5	5.80 5.31	82.5 75.3	1.17 1.87	35.29 35.67	8.30 8.26	5
						0.57	22.4	5.30	75.2	2.15	35.83	8.26	4
							23.3	6.08	86.9	0.90	34.51	8.36	3
8:10	CC4	MF	845444	815595	2.41	1.21	23.3	6.05	86.4	0.90	34.53	8.35	3
							24.1	9.01	115.5	111	22.52	0.41	
						1.00	24.1 24.1	8.01 8.06	115.5 116.2	1.14 1.09	33.53 33.53	8.41 8.42	5
8:40	CC13	MF	844200	817495	7.87	3.94	22.7 22.7	5.62 5.64	79.7 80.1	1.04 1.06	35.01 35.11	8.41 8.40	6
						6.87	22.5 22.4	5.37	76.2 75.7	1.07	35.74 35.87	8.34 8.32	8
	1					1.00	25.8	10.17	149.3	0.59	31.67	8.39	4
8:04	SWI1	MF	845512	817442	4.45		25.7	10.13	148.6	0.60	31.79	8.40	5
0.07	5.711		5.5512	0.,772		2.45	23.3	6.54	93.3	0.67	33.93	8.30	4
						3.45	23.1	5.56	79.1	0.67 3.40	34.20 35.09	8.28 8.34	5
						1.00	22.6	6.10	86.7 85.6	2.02	35.39	8.31	5
8:20	C3	MF	843821	816211	11.64	5.82	22.1 22.1	5.63 5.62	79.5 79.4	2.00 1.99	36.11 36.12	8.24 8.24	5
						10.64	22.1	5.47 5.47	77.3 77.2	1.95 1.91	36.20 36.21	8.23 8.23	
						1.00	25.3 25.2	9.03 9.08	131.9	1.06	32.42 32.42	8.47 8.48	- 4
8:14	C4	MF	844621	815770	15.49	7.75	22.4	6.29	132.6 89.3	0.82	35.82	8.29	4
				2.2770	-5.0	14.49	22.4 22.1	6.30 5.93	89.4 83.7	0.82 1.52	35.84 36.24	8.28 8.26	4
	1						22.0	5.91 5.94	83.6 85.6	1.95 0.95	36.38 33.95	8.25 8.33	4
						1.00	23.9	6.01	86.5 79.3	0.95 1.31	33.93 34.91	8.33 8.32	5
8:51	I1	MF	844602	817675	9.37	4.69	22.9	5.49	78.4	1.31	35.09	8.31	6
	Ī		ĺ		ĺ	8.37	22.4 22.4	5.35 5.34	75.9 75.7	1.85 2.03	35.79 35.91	8.28 8.28	6

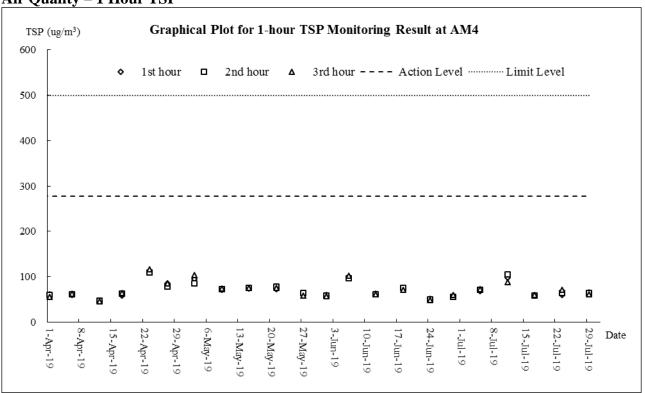
ampling Date	19-Jul-19				***	Ia '		Т				1	1
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
			East	North	m	m	<u>ሮ</u> 24.1	mg/L 7.98	% 115.8	NTU 0.96	ppt 34.64	unit 8.43	mg
						1.00	24.1	8.02 7.48	116.4 108.3	0.89	34.65 34.69	8.44 8.44	9.3
13:36	CC1	ME	843201	816416	8.85	4.43	23.9	7.46 6.67	108.0	0.97	34.71 35.00	8.44 8.42	9.7
						7.85	23.4	6.69	96.1	1.06	35.01	8.42	8.3
						1.00	24.6 24.6	8.91 8.90	130.3 130.2	0.70 0.71	34.38 34.39	8.48 8.48	5. 5.
13:41	CC2	ME	844076	817091	12.57	6.29	22.8 22.8	5.83 5.72	83.2 81.6	0.77 0.76	35.56 35.56	8.47 8.47	5.
						11.57	22.6 22.6	5.39 5.36	76.7 76.1	1.64 2.18	35.69 35.74	8.33 8.32	5.
						1.00	25.1 25.0	8.76 8.84	128.9 129.8	0.69 0.71	33.88 33.92	8.46 8.46	4.
13:55	CC3	ME	844606	817941	8.49	4.25	24.3 24.2	8.81 8.79	128.0 127.6	0.83	34.35 34.37	8.48 8.48	5
						7.49	23.7	6.81	98.3	1.48	34.72	8.46	5
							23.7	6.85	98.7	1.49	34.74	8.46	5
13:13	CC4	ME	845444	815595	2.24	1.12	24.2	7.36	107.1	1.13	34.64	8.42	
							24.2	7.37	107.2	1.15	34.64	8.42	5
						1.00	24.5	8.85	129.1	0.78	34.35	8.49	6
							24.4 24.1	8.85 7.04	129.0 102.2	0.76 0.84	34.37 34.56	8.49 8.49	7
13:44	CC13	ME	844200	817495	8.77	4.39	24.0 23.6	6.84 5.67	99.1 81.8	0.87 0.92	34.60 34.86	8.48 8.47	7
						7.77	23.5	5.44 8.70	78.3 126.6	0.94 0.86	34.94	8.46 8.47	10
						1.00	24.4 24.4	8.72	126.9	0.87	34.34 34.33	8.47	8
13:08	SWI1	ME	845512	817442	3.97		24.4	0.50	127.0	0.05	24.22	0.47	
						2.97	24.4 24.4	8.78 8.78	127.8 127.9	0.85 0.85	34.32 34.32	8.47 8.47	8
						1.00	24.1 24.1	7.98 8.00	115.8 116.0	1.35 1.27	34.58 34.58	8.41 8.42	7 8
13:23	C3	ME	843821	816211	16.15	8.08	23.7	6.54 6.52	94.3 93.9	1.23	34.81 34.84	8.41 8.41	7
						15.15	23.1	5.76 5.62	82.6 80.4	1.71 1.88	35.26 35.34	8.40 8.39	7 8
						1.00	24.0 24.0	7.34 7.33	106.4 106.3	1.08	34.75 34.75	8.42 8.42	6
13:17	C4	ME	844621	815770	15.02	7.51	22.3	6.02	85.4	1.45	36.06	8.41	7
						14.02	22.3 22.2	5.95 5.10	84.4 72.3	1.50 2.25	36.07 36.14	8.40 8.30	7
						1.00	22.2 25.0	5.09 9.16	72.1 134.7	2.28 0.75	36.14 34.22	8.30 8.47	7
13:53	I1	ME	844602	817675	9.23		25.0 24.6	9.23 8.34	135.6 121.8	0.79 0.82	34.23 34.35	8.47 8.49	7
13:53	11	ME	844002	81/6/5	9.23	4.62	24.5 23.9	8.29 5.69	120.9 82.3	0.84 1.62	34.36 34.67	8.49 8.48	7 8
						8.23	23.7	5.25	75.9	1.90	34.79	8.37	8
						1.00	23.6	6.49	93.6	0.87	34.97	8.34	
8:35	CC1	MF	843201	816416	8.29	4.15	23.6	6.47 5.53	93.2 79.4	0.91 1.07	34.98 35.14	8.34 8.34	3 4
0.55	cci	.,,,,	043201	010410	0.27		23.3	5.55 5.4	79.7 77.3	1.09	35.18 35.40	8.33 8.33	4
						7.29	22.9 24.6	5.31 7.59	75.9 110.9	1.29 0.66	35.50 34.39	8.33 8.38	3
						1.00	24.5 24.1	7.61 6.89	111.1 100.0	0.67 0.77	34.40 34.55	8.38 8.39	3
8:40	CC2	MF	844076	817091	12.34	6.17	23.3	6.05	86.8	0.76	34.98	8.37	3
						11.34	23.3	5.52	79.1 81.7	1.05	35.07 35.13	8.35 8.35	4
						1.00	24.4	8.05 8.03	117.1 116.8	0.72 0.74	34.21 34.22	8.42 8.42	2
8:53	CC3	MF	844606	817941	9.49	4.75	24.0 23.9	6.49	93.9 90.1	0.86 0.86	34.51 34.58	8.42 8.42	2
						8.49	23.3	5.55 5.42	79.8 77.6	1.14	35.08 35.20	8.31 8.30	2
8:11	CC4	MF	845444	815595	2.77	1.39	24.3 24.3	7.59 7.34	110.2 106.7	0.83 0.82	34.18 34.19	8.35 8.35	2
	<u> </u>												
_						1.00	24.7 24.7	8.22 8.24	120.3 120.6	0.67 0.68	34.33 34.36	8.44 8.44	2
8:45	CC13	MF	844200	817495	8.53	4.27	24.4	7.86 7.70	114.6 112.1	0.70	34.40 34.42	8.45 8.45	4
						7.53	24.0	6.30	91.4 87.6	0.72	34.57 34.67	8.45 8.45	4
	1					1.00	24.7	6.92	100.9	1.22	33.70	8.13	- 2
8:04	SWI1	MF	845512	817442	4.18		24.6	6.94	101.1	1.16	33.85	8.15	2
						3.18	24.4	6.99	101.5	1.07	33.98	8.18	2
						1.00	24.3 23.8	6.98 6.87	101.4 99.1	1.04 1.72	34.06 34.57	8.18 8.38	2
8:21	C3	MF	843821	816211	15.92	7.96	23.8 22.3	6.84 5.43	98.7 77.0	1.58 1.99	34.58 35.95	8.38 8.35	3
0:41	C3	WiF	043821	610211	13.92		22.3 22.2	5.41 5.20	76.8 73.7	2.09 2.40	35.96 36.09	8.34 8.29	3
	1					14.92	22.2 25.0	5.18 8.78	73.2 129.0	2.43	36.10 34.11	8.28 8.43	4
						1.00	24.9 22.9	8.83 6.35	129.0 129.7 90.7	0.60	34.11 34.15 35.62	8.43 8.44	3
8:14	C4	MF	844621	815770	15.34	7.67	22.9	6.05	86.4	0.64	35.62	8.44	3
						14.34	22.2 22.2	5.38 5.37	76.3 76.2	4.41 4.47	36.19 36.19	8.31 8.31	3
						1.00	24.3 24.3	8.04 8.06	117.0 117.2	0.86 0.88	34.42 34.42	8.42 8.43	2
8:50	I1	MF	844602	817675	9.69	4.85	24.2 24.1	7.06 6.81	102.5 98.7	0.94	34.49 34.53	8.43 8.43	3
	1		1		ı		22.6	5.58	79.3	1.36	35.72	8.32	3

ampling Date:	:122-Jul-19												
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit	Salinity	pН	SS
Date / Time	Location	1 ide	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/L
						1.00	23.5 23.7	6.85 6.85	100.3 100.4	0.59 0.55	34.35 34.37	8.29 8.3	2.8
14:19	CC1	ME	843201	816416	9.45	4.73	23.6	6.18 5.94	88.9 85.1	0.64	35.47 35.56	8.31 8.31	2.8 3.1
						8.45	23.1	5.58 5.46	79.4 77.7	1.08	35.91 35.97	8.3 8.3	4.1
						1.00	23.5	6.62	96.0 95.9	0.64	34.71 34.72	8.33 8.33	2.3
14:23	CC2	ME	844076	817091	12.06	6.03	22.8	5.75	82.0	1.23	35.62	8.3	2.7
						11.06	22.7 22.3	5.76 5.45	82.1 77.3	1.24 2.18	35.63 35.87	8.3 8.27	2.5 2.7
							22.3	5.46 6.00	77.6 87.5	2.55 0.57	35.92 34.04	8.27 8.24	2.2
						1.00	23.4 22.9	6.10 5.67	88.9 81.8	0.55 0.76	34.15 34.76	8.25 8.27	2.3
14:33	CC3	ME	844606	817941	9.97	4.99	22.9 22.4	5.59	80.6	0.83	34.83	8.27	2
						8.97	22.4	5.21 5.12	73.9 72.5	1.93 2.42	36.04 36.06	8.28 8.28	3.1 2.9
14:08	CC4	ME	845444	815595	2.61	1.31	24.1	5.92 5.85	84.9 83.9	0.81	35.01 35.02	8.31 8.31	3.1 2.7
						1.00	23.7	6.47 6.44	93.3 92.8	0.67 0.69	34.84 34.87	8.32 8.33	3.7 4.3
14:27	CC13	ME	844200	817495	8.12	4.06	23.4	5.63	80.6	1.12	35.29	8.32	7.6
						7.12	23.3 22.9	5.66 5.30	80.9 75.4	1.12	35.32 35.85	8.32 8.29	7.9 9.2
							22.8 23.8	5.30 6.59	75.3 95.8	1.71 0.74	35.93 34.53	8.28 8.34	8.9 7.1
				0		1.00	23.8	6.62	96.2	0.75	34.56	8.35	6.9
14:03	SWI1	ME	845512	817442	4.11		23.3	5.67	82.0	1.13	34.77	8.36	6.8
						3.11	23.3	5.41	78.3	1.26	34.84	8.36	7.3
						1.00	23.5 23.5	6.08 5.90	87.2 84.5	1.03	35.35 35.38	8.30 8.30	4.8 5.4
14:15	C3	ME	843821	816211	15.99	8.00	22.8 22.7	5.77 5.82	82.1 82.8	1.94 2.06	35.77 35.83	8.29 8.29	5.7 5.6
						14.99	22.4	5.26 5.26	74.4 74.2	2.43	36.23 36.23	8.23 8.23	7.7
						1.00	23.5	6.20	89.7	0.66	34.74	8.34	5
14:11	C4	ME	844621	815770	15.78	7.89	23.5 23.0	6.19 5.59	89.4 80.0	0.66 0.87	34.76 35.29	8.34 8.33	5.4 6.9
14.11	C4	IVIL	044021	813770	15.78		23.0 22.6	5.50 5.42	78.7 76.9	0.89 1.62	35.35 35.98	8.33 8.30	6.7 8
						14.78	22.5 23.5	5.40 6.20	76.6 89.8	1.77	36.02 34.82	8.29 8.28	8.2 4
						1.00	23.5	6.17	89.3	1.38	34.89	8.28	4.1
14:30	I1	ME	844602	817675	9.16	4.58	23.2	5.91 5.95	84.2 84.8	2.66 2.70	35.71 35.71	8.27 8.27	4.9 4.6
						8.16	22.8	5.68 5.66	80.9 80.6	3.10	35.75 35.77	8.26 8.25	5.3
							24.0	6.14	99.2	0.50	24 77	0.20	6.0
						1.00	24.8 24.7	6.14 5.9	88.2 85.0	9.58 0.63	34.77 34.70	8.28 8.29	6.9 6.7
9:15	CC1	MF	843201	816416	9.05	4.53	23.2	5.76 5.71	82.9 82.2	0.67	34.76 34.80	8.29 8.29	6.6 7.2
						8.05	22.5	5.4 5.36	77.2 76.5	1.14	35.17 35.25	8.29 8.28	6.7 7.1
						1.00	24.0 24.0	5.95 5.94	85.5 85.3	1.22	34.81 34.81	8.29 8.29	6.4
9:20	CC2	MF	844076	817091	12.37	6.19	22.7	5.83	83.0	1.29	35.48	8.28	5.5
						11.37	22.7 22.5	5.77 5.35	82.3 75.7	1.41 2.24	35.56 35.92	8.28 8.26	5.1 6
							22.4 24.6	5.33 6.05	75.6 87.0	2.41 0.78	35.95 34.81	8.26 8.22	5.7
						1.00	24.5 23.7	5.87 5.63	84.3 80.4	0.74 2.48	34.87 35.37	8.22 8.22	6.2 5.3
9:31	CC3	MF	844606	817941	9.69	4.85	23.7	5.69	81.2	2.68	35.42	8.22	5.1
						8.69	22.2 22.2	5.25 5.24	74.6 74.4	4.83 4.93	35.89 35.90	8.22 8.22	5.3 5
9:05	CC4	MF	845444	815595	2.34	1.17	23.3	5.95 5.92	86.0 85.6	0.64	34.13 34.17	8.23 8.23	5.1
						1.00	23.7	5.73	82.6	0.71	34.65	8.28	4.4
9:24	CC13	MF	844200	817495	8.75	4.38	23.6	5.70 5.62	82.2 80.6	0.73	34.68 34.89	8.28 8.28	7.4
						7.75	23.0 22.5	5.67 5.37	81.3 76.7	0.91 1.46	34.98 35.42	8.28 8.28	7.2 8.9
							22.4 24.2	5.35 5.84	76.4 84.0	1.61 0.56	35.50 34.08	8.28 8.19	9.2 5.6
						1.00	24.2	5.84	84.0	0.58	34.10	8.19	5.9
9:00	SWI1	MF	845512	817442	4.16		22.0		70.2	0.50	24.02	0.10	
						3.16	23.9 23.8	5.46 5.43	78.3 77.9	0.70 0.72	34.82 34.89	8.19 8.19	5.2 5.3
					<u> </u>	1.00	23.1	5.89 5.85	84.7 84.1	0.66 0.65	34.68 34.70	8.27 8.27	3.6
9:12	C3	MF	843821	816211	15.77	7.89	22.6	5.77 5.73	82.1 81.5	1.06	35.42 35.46	8.26 8.26	5.3
						14.77	22.1	5.32	75.6	1.36	35.83	8.24	5.4
						1.00	22.1	5.30 5.75	75.1 82.6	0.68	35.89 34.66	8.24 8.26	5.1
9:08	C4	MF	944621	915770	16 50		23.8	5.75 5.66	82.6 80.9	0.67 0.80	34.68 35.11	8.26 8.25	4.3 4.7
9:08	- (4	WIP	844621	815770	16.58	8.29	23.0 22.3	5.62 5.35	80.2 76.1	0.79 1.10	35.14 35.56	8.25 8.24	4.9 5.8
	1					15.58	22.3 23.9	5.38 5.64	76.5 81.1	1.20	35.65 34.83	8.23 8.25	6.1
						1.00	23.8	5.67	81.5	1.17	34.86	8.26	6.5
9:28	I1	MF	844602	817675	9.63	4.82	22.7 22.7	5.48 5.48	78.5 78.4	1.71 1.75	35.14 35.18	8.26 8.26	5.8 5.7
	1		i				22.6 22.6	5.38	76.7	2.60	35.47	8.25	6.1

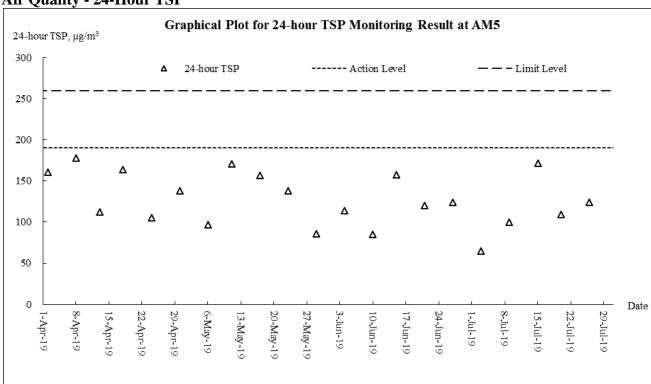
mpling Date:	24-Jul-19		1		*** .	la				Im	,		
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit y	Salinity	pН	SS
			East	North	m	m	℃ 23.5	mg/L	% 88.4	NTU	ppt 32.51	unit	mg/
						1.00	23.7	6.27	85.2	9.70 0.75	32.44	8.14 8.15	5.4
11:15	CC1	ME	843201	816416	9.26	4.63	23.6	5.79 5.74	81.5 80.8	0.79 0.79	34.50 34.54	8.15 8.15	6.1
						8.26	23.1	5.43 5.39	75.6 74.9	1.26	34.91 34.99	8.15 8.14	8.5 8.7
						1.00	23.5	5.98 5.97	84.2	1.34	33.55	8.15	5.5
11:20	CC2	ME	844076	817091	12.58	6.29	22.8	5.66	84.0 78.4	1.41	33.55 35.48	8.15 8.14	6.7
11.20	CC2	IVIL	844070	817091	12.36		22.7 22.3	5.60 5.48	77.6 75.3	1.53 2.36	34.56 34.92	8.14 8.12	7 8.2
						11.58	22.3	5.46 6.18	75.1 86.9	2.53 0.90	34.95 35.07	8.12 8.08	7.9 7.3
						1.00	23.4	6.00	84.1	0.86	35.13	8.08	7
11:38	CC3	ME	844606	817941	9.9	4.95	22.9 22.9	5.66 5.62	78.5 77.9	2.60 2.80	35.63 35.68	8.08 8.08	7.5 7.6
						8.90	22.4 22.4	5.28 5.27	72.8 72.6	3.95 3.85	36.15 36.16	8.08 8.08	6.9 7.2
							22.4	3.21	72.0	3.63	30.10	0.00	7.2
11.05	CC4	ME	845444	815595	2.55	1.28	24.1	6.08	86.2	0.76	34.39	8.09	6
11:05	CC4	ME	845444	815595	2.55	1.28	24.0	6.05	85.8	0.80	34.43	8.09	6.4
							22.5	5.05	04.0	0.02	24.04	0.14	
11:24						1.00	23.7	5.96 5.93	84.2 83.8	0.83 0.85	34.91 34.94	8.14 8.14	5.2 4.8
	CC13	ME	844200	817495	8.96	4.48	23.4	5.75 5.60	80.6 78.4	0.98 1.03	35.15 35.24	8.14 8.14	6.3
						7.96	22.9	5.40	75.0	1.58	35.68	8.14	8.3
						1.00	22.8 23.8	5.38 5.97	74.7 84.2	1.73 0.68	35.76 34.34	8.14 8.05	4.8
10.50	CMI	ME	045510	017440	4.27	1.00	23.8	5.97	84.2	0.70	34.36	8.05	5
10:58	SWI1	ME	845512	817442	4.37		23.3	5.69	79.7	0.82	35.08	8.05	7.
						3.37	23.3	5.66	79.3	0.84	35.15	8.05	7
						1.00	23.5	6.02 5.98	84.9 84.3	0.78 0.77	34.94 34.96	8.13 8.13	6.
11:12	C3	ME	843821	816211	15.98	7.99	22.8 22.7	5.60 5.66	77.7 78.4	1.18 1.23	35.68 35.72	8.12 8.12	7 6.
						14.98	22.4	5.35	73.9	1.48	36.09	8.10	7.
							22.3 23.5	5.33 5.79	73.4 81.5	1.53 0.80	34.89 34.92	8.10 8.12	7.
11:08						1.00	23.5 23.0	5.75 5.68	80.9 79.3	0.79 0.92	34.94 35.37	8.12 8.11	5. 7.
	C4	ME	844621	815770	16.79	8.40	23.0	5.68	79.1	0.91	35.40	8.11	7.
						15.79	22.6 22.5	5.38 5.31	74.4 73.4	1.22	35.82 35.91	8.10 8.09	7. 7.
11:28				817675	9.77	1.00	23.5 23.5	5.97 5.90	84.1 83.0	1.12 1.29	35.09 35.12	8.11 8.12	6.
	I1	ME	844602			4.89	23.2	5.64	78.8	1.83	35.40	8.12	6. 7.
	-					8.77	23.1	5.58 5.42	77.9 74.3	1.87 3.73	35.44 36.43	8.12 8.06	7.
						6.77	22.1	5.41	74.0	3.84	35.19	8.06	7.
			ſ			1.00	24.8	6.98	100.5	0.71	33.35	8.15	4.
							24.7 23.2	6.98	100.6 89.1	0.67 0.76	33.37 34.47	8.16 8.17	5. 5.
15:08	CC1	MF	843201	816416	9.66	4.83	23.1	6.07	85.3	0.80	34.56	8.17	5.
						8.66	22.5 22.5	5.71	79.3 77.6	1.20 1.27	36.17 36.23	8.16 8.16	7.
						1.00	24.0 24.0	6.75 6.75	96.2 96.1	0.76 0.75	34.97 34.98	8.19 8.19	5.
15:12	CC2	MF	844076	817091	12.27	6.14	22.7	5.68	78.8	1.35	35.88	8.16	5.
						11.27	22.7 22.5	5.69 5.38	78.9 74.0	1.36 2.30	35.89 36.13	8.16 8.13	5.
							22.4 24.6	5.33 6.13	73.5 87.7	2.67 0.69	36.18 33.78	8.13 8.10	5. 5.
						1.00	24.5	6.23	89.1	0.67	33.89	8.11	6.
15:27	CC3	MF	844606	817941	10.18	5.09	23.7	5.50 5.42	77.7 76.5	0.88 0.95	34.50 34.57	8.13 8.13	6.
						9.18	22.2	5.14 5.15	70.9 70.9	2.05 2.54	35.78 35.80	8.14 8.14	6.
14:57	CC4	MF	845444	815595	2.82	1.41	23.3	5.85	82.2	0.93	37.27	8.17	5.
							23.3	5.78	81.2	0.92	37.28	8.17	4.
	+ +					1.05	23.7	6.60	93.5	0.79	35.10	8.18	4.
						1.00	23.6	6.57 5.86	93.0 82.1	0.81	35.13 35.55	8.19 8.18	5.
15:16	CC13	MF	844200	817495	8.33	4.17	23.0	5.86	82.0	1.24	35.58	8.18	5.
	<u>L</u>					7.33	22.5 22.4	5.53 5.51	76.4 76.1	1.74 1.83	35.85 35.67	8.15 8.14	6. 6.
						1.00	24.2	6.72	96.0 96.4	0.86	34.79 34.82	8.20 8.21	4.
14:50	SWI1	MF	845512	817442	4.32		27.2	0.73	70.4	5.67	J7.02	3.21	
						3.32	23.9	5.80	82.2	1.25	35.03	8.22	5.
	1						23.8 23.1	5.84 5.91	82.8 83.0	1.38 1.15	37.10 36.35	8.22 8.16	6. 4.
						1.00	23.1	5.93	83.1	1.27	35.12	8.16	4.
15:04	C3	MF	843821	816211	16.2	8.10	22.6 22.5	5.70 5.65	78.9 78.1	2.06 2.18	35.51 35.57	8.15 8.15	5. 5.
						15.20	22.1 22.1	5.33 5.33	73.0 72.9	2.55 2.56	35.97 35.97	8.09 8.09	5. 5.
						1.00	23.9	6.33	89.9	0.78	35.74	8.20	4.
15:00	C4	MF	844621	815770	15.99	8.00	23.8 23.1	6.32 5.72	89.6 79.9	0.78 0.99	35.76 36.29	8.20 8.19	5. 4.
15:00	C4	WIL	044021	013770	13.99	-	23.0 22.3	5.73 5.45	79.9 75.1	1.01 1.74	36.35 36.98	8.19 8.16	4. 5.
						14.99	22.3	5.43	74.8	1.89	37.02	8.15	6.
						1.00	23.9 23.8	6.33	89.7 89.2	1.41 1.50	34.56 34.63	8.14 8.14	5.3
15:19	I1	MF	844602	817675	9.37	4.69	22.7 22.7	5.84 5.88	80.8 81.4	2.78 2.82	35.45 35.45	8.13 8.13	5.5

	26-Jul-19					Ç		g Result					
TD 4 /70"	·	m: 1 +	Co-ord	linates	Water	Sampling	Temp	DO Conc	DO	Turbidit	Salinity	pН	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	°	mg/L	Saturation %	NTU	ppt	unit	mg/l
						1.00	23.4	6.29 6.27	93.4 93.0	0.90	35.17	8.37 8.37	3
8:31	CC1	ME	843201	816416	8.42	4.21	23.1	5.63	83.8	1.10	35.18 35.34	8.37	3.8 2.4
						7.42	23.1	5.55 5.50	82.5 82.0	1.12 1.27	35.38 35.60	8.36 8.36	3.2 2.9
							22.7 24.4	5.41 7.39	80.6 110.7	1.32 0.69	35.70 34.59	8.36 8.41	3.9 3.6
8:36			ļ			1.00	24.3	7.41	110.9	0.70	34.60	8.41	2.6
	CC2	ME	844076	817091	12.47	6.24	23.9	6.69 5.85	99.8 86.6	0.80	34.75 35.18	8.42 8.4	3.7
			ļ			11.47	23.1	5.52 5.60	82.2 83.5	1.08	35.27 35.33	8.38 8.38	3.4
8:52						1.00	24.2 24.2	7.85 7.83	116.9 116.6	0.75 0.77	34.41 34.42	8.45 8.45	3.6 2.6
	CC3	ME	844606	817941	9.62	4.81	23.8	6.29	93.7	0.89	34.71	8.45	3.5
						8.62	23.7	6.03 5.35	89.9 80.2	0.89 1.17	34.78 35.28	8.45 8.34	3.2
						0.02	22.9	5.22	78.1	1.27	35.40	8.33	1.8
							24.1	7.39	110.0	0.86	34.38	8.38	3.8
8:17	CC4	ME	845444	815595	2.9	1.45	24.1	7.14	106.5	0.85	34.39	8.38	2.8
						1.00	24.5 24.5	8.02 8.04	120.1 120.4	0.70	34.53 34.56	8.47 8.47	3.2
8:41	CC13	ME	844200	817495	8.66	4.33	24.2 24.2	7.66 7.50	114.4 111.9	0.73 0.73	34.60 34.62	8.48 8.48	4.2 3.2
						7.66	23.8	6.10	91.2	0.75	34.77	8.48	2.8
						1.00	23.7 24.5	5.85 6.72	87.4 100.7	0.76 1.25	34.87 33.90	8.48 8.16	3.2
						1.00	24.4	6.74	100.9	1.19	34.05	8.18	2.6
8:06	SWI1	ME	845512	817442	4.31		24.2	6.70	101.2	1.10	24.19	9.21	4.3
						3.31	24.2 24.1	6.79 6.78	101.3 101.2	1.10	34.18 34.26	8.21 8.21	3.4
						1.00	23.6	6.67 6.64	98.9 98.5	1.75	34.77 34.78	8.41 8.41	4.5
8:27	C3	ME	843821	816211	16.05	8.03	22.1 22.1	5.63	83.3	2.02 2.12	36.15	8.38	4.7 4.4
		•				15.05	22.0	5.61 5.40	83.2 80.1	2.43	36.16 36.29	8.37 8.32	3.3
							22.0 24.8	5.38 8.58	79.6 128.8	2.46 0.63	36.30 34.31	8.31 8.46	3.1
8:21	C4	ME	844621	815770	15.47	1.00	24.7	8.63	129.5	0.63	34.35	8.46	4
						7.74	22.7 22.7	6.15 5.85	90.5 86.2	0.64	35.82 35.82	8.47 8.47	3.1
						14.47	22.0 22.0	5.38 5.37	79.8 79.7	4.44 4.50	36.39 36.39	8.34 8.34	2.8
		ME	844602	817675	9.82	1.00	24.1	7.84	116.8	0.89	34.62	8.45	3.6
8:44	II					4.91	24.1 24.0	7.86 6.86	117.0 102.3	0.91 0.97	34.62 34.69	8.46 8.46	4.6 5.4
	11						23.9	6.61 5.38	98.5 79.7	1.02	34.73 35.92	8.46 8.35	5.8 5.3
						8.82	22.4	5.32	78.9	1.43	35.93	8.35	4.3
				1	1		23.9	7.78	115.6	0.99	34.84	8.46	3.4
	CC1	MF	843201		8.98	1.00	23.9	7.82	116.2	0.92	34.85	8.47	3
13:07				816416		4.49	23.7	7.28 7.26	108.1 107.8	0.99 1.00	34.89 34.91	8.47 8.47	2.5
						7.98	23.2	6.47	95.6 95.9	1.09	35.20 35.21	8.45 8.45	4.3
	CC2	MF	844076			1.00	24.4	8.71	130.1	0.73	34.58	8.51	4.4
13:12				817001	12.7			8.7	130.0				
13.12					12.7	6.35	24.4 22.6	5.63	83.0	0.80	34.59 35.76	8.51 8.50	3.5
		MF	844070	817091	12.7	6.35	22.6 22.6	5.63 5.52	81.4	0.80 0.79	35.76 35.76	8.51 8.50 8.50	3.7
		MF	844070	817091	12.7	6.35	22.6	5.63		0.80	35.76	8.51 8.50	3.7 3.6
		MF	844070	817091	12.7		22.6 22.6 22.4 22.4 24.9 24.8	5.63 5.52 5.36 5.36 8.56 8.64	81.4 79.7 79.7 128.7 129.6	0.80 0.79 1.67 2.21 0.72 0.74	35.76 35.76 35.89 35.94 34.08 34.12	8.51 8.50 8.50 8.36	3.7 3.6 2.8 3 2.3
13:31	CC3	MF	844606	817091	12.7 8.62	11.70	22.6 22.6 22.4 22.4 24.9 24.8 24.1	5.63 5.52 5.36 5.36 8.56 8.64 8.61	81.4 79.7 79.7 128.7 129.6 127.8	0.80 0.79 1.67 2.21 0.72 0.74 0.86	35.76 35.76 35.89 35.94 34.08 34.12 34.55	8.51 8.50 8.50 8.36 8.35 8.49 8.49 8.51	3.6 3.6 2.8 3 2.3 3.9
13:31	CC3					11.70	22.6 22.6 22.4 22.4 24.9 24.8 24.1 24.0 23.5	5.63 5.52 5.36 5.36 8.56 8.64 8.61 8.59 6.61	81.4 79.7 79.7 128.7 129.6 127.8 127.4 98.1	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51	35.76 35.76 35.89 35.94 34.08 34.12 34.55 34.57 34.92	8.51 8.50 8.50 8.36 8.35 8.49 8.49 8.51 8.51	3.0 3.6 2.8 3 2.3 3.9 4 2.5
13:31	CC3					11.70 1.00 4.31	22.6 22.6 22.4 22.4 24.9 24.8 24.1 24.0	5.63 5.52 5.36 5.36 8.56 8.64 8.61 8.59	81.4 79.7 79.7 128.7 129.6 127.8 127.4	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90	35.76 35.76 35.89 35.94 34.08 34.12 34.55 34.57	8.51 8.50 8.50 8.36 8.35 8.49 8.49 8.51 8.51	3.0 3.0 2.8 3 2.3 3.9 4 2.3
		MF	844606	817941	8.62	11.70 1.00 4.31 7.62	22.6 22.6 22.4 22.4 24.9 24.8 24.1 24.0 23.5	5.63 5.52 5.36 5.36 8.56 8.64 8.61 8.59 6.61	81.4 79.7 79.7 128.7 129.6 127.8 127.4 98.1	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51	35.76 35.76 35.89 35.94 34.08 34.12 34.55 34.57 34.92	8.51 8.50 8.50 8.36 8.35 8.49 8.49 8.51 8.51	3.0 3.6 2.8 3 2.3 3.9 4 2.5
13:31	CC3					11.70 1.00 4.31	22.6 22.6 22.4 22.4 24.9 24.8 24.1 24.0 23.5 23.5	5.63 5.52 5.36 5.36 8.56 8.64 8.61 8.61 6.65	81.4 79.7 79.7 128.7 129.6 127.8 127.4 98.1	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52	35.76 35.76 35.89 35.94 34.08 34.12 34.55 34.57 34.92 34.94	8.51 8.50 8.50 8.36 8.35 8.49 8.49 8.51 8.51 8.49	4 3.5 3.6 2.8 3 2.3 3.9 4 2.5 3.5
		MF	844606	817941	8.62	11.70 1.00 4.31 7.62	22.6 22.6 22.4 22.4 22.4 24.9 24.8 24.1 24.0 23.5 23.5	5.63 5.52 5.36 5.36 8.56 8.64 8.59 6.61 6.65	81.4 79.7 79.7 128.7 129.6 127.8 127.4 98.1 98.5	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18	35.76 35.76 35.89 35.94 34.08 34.12 34.55 34.57 34.92 34.94 34.84 34.84	8.51 8.50 8.36 8.36 8.35 8.49 8.49 8.51 8.51 8.49 8.49	4 3.0 2.8 3 2.3 4 2.3 3.9 4 2.3 3.6
		MF	844606	817941	8.62	11.70 1.00 4.31 7.62	22.6 22.6 22.4 22.4 24.9 24.8 24.1 24.0 23.5 23.5 24.0 24.0 24.0	5.63 5.52 5.36 5.36 8.56 8.64 8.61 8.59 6.61 6.65	81.4 79.7 79.7 128.7 129.6 127.8 127.4 98.1 98.5 106.9 107.0	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52	35.76 35.76 35.89 35.89 35.94 34.08 34.12 34.55 34.57 34.92 34.94 34.84 34.84	8.51 8.50 8.50 8.36 8.35 8.49 8.49 8.51 8.51 8.49 8.49	4 3.3 3.6 2.8 3 2.3 4 2.3 3.5 4 2.3 3.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
		MF	844606	817941	8.62	11.70 1.00 4.31 7.62	22.6 22.6 22.4 22.4 24.9 24.8 24.1 24.0 23.5 23.5 24.0 24.0 24.3 24.3 24.2 23.9	5.63 5.52 5.36 8.56 8.64 8.61 8.59 6.61 6.65 7.16 7.17	81.4 79.7 79.7 128.7 129.6 127.8 127.4 98.1 98.5 106.9 107.0	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18 0.81 0.79 0.87	35.76 35.76 35.89 35.89 35.94 34.08 34.12 34.55 34.57 34.94 34.84 34.84 34.55 34.57 34.76	8.51 8.50 8.36 8.36 8.35 8.49 8.49 8.51 8.49 8.49 8.49 8.45 8.45 8.45 8.45	4.9 3.3 3.6 2.8 3.5 4.9 3.5 3.5 3.5 3.5 3.5 3.5 3.5 4.9 4.9
12:55	CC4	MF	844606 845444	817941 815595	8.62	11.70 1.00 4.31 7.62 1.19	22.6 22.6 22.4 22.4 24.9 24.8 24.1 24.0 23.5 23.5 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	5.63 5.52 5.36 8.56 8.64 8.61 8.59 6.61 6.65 7.16 7.17	81.4 79.7 79.7 128.7 129.8 127.8 127.4 98.5 106.9 107.0 128.9 128.8 102.0 98.9 81.6	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18 0.81 0.79 0.87 0.95	35.76 35.76 35.89 35.89 35.94 34.08 34.12 34.55 34.57 34.92 34.94 34.84 34.84 34.84 34.84 34.55 34.76 34.76 34.76 34.76 34.76	8.51 8.50 8.36 8.36 8.35 8.49 8.51 8.51 8.49 8.49 8.45 8.45 8.45 8.45 8.45 8.52 8.52 8.52	4.9 3.5 3.6 2.8 3.9 4 2.7 3.9 4 2.7 3.9 4.9 4.9 4.9 4.9
12:55	CC4	MF	844606 845444	817941 815595	8.62	11.70 1.00 4.31 7.62 1.19 1.00 4.45 7.90	22.6 22.6 22.4 22.4 24.8 24.1 24.0 23.5 23.5 23.5 24.0 24.0 24.3 24.2 23.9 23.9 23.8 23.4 23.4 23.4 23.4 23.4 23.4	5.63 5.52 5.36 5.36 8.56 8.64 8.61 6.65 7.16 6.65 8.65 8.65 6.64 5.47 5.24	81.4 79.7 79.7 128.7 129.7 129.8 127.8 127.4 98.5 106.9 107.0 128.9 128.8 102.0 98.9 81.6 78.1 126.4	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18 0.81 0.79 0.87 0.90 0.95 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	35.76 35.76 35.89 35.89 35.94 34.12 34.55 34.57 34.92 34.94 34.84 34.84 34.84 34.55 34.57 34.76 34.76 35.06 35.16	8.51 8.50 8.36 8.36 8.49 8.49 8.51 8.51 8.49 8.45 8.45 8.45 8.51 8.49 8.45 8.45 8.51 8.51 8.49 8.49 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40	4.1. 3.3. 3.3. 3.3. 4.2. 3.3. 3.3. 4.4. 4.4
12:55	CC4	MF MF	844606 845444 844200	817941 815595 817495	2.37	11.70 1.00 4.31 7.62 1.19	22.6 22.6 22.4 22.4 24.9 24.8 24.1 24.0 23.5 23.5 24.0 24.0 24.0 24.0 24.3 24.2 23.9 23.8 23.8 23.8	5.63 5.52 5.36 5.36 8.56 8.64 8.61 8.59 6.61 6.65 7.16 7.17	81.4 79.7 79.7 128.7 129.6 127.8 127.4 98.5 106.9 107.0 128.9 128.8 102.0 98.9 81.6 78.1	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18 0.81 0.79 0.87 0.90 0.95 0.90	35.76 35.76 35.89 35.94 34.02 34.12 34.55 34.92 34.94 34.84 34.84 34.84 34.84 34.84 34.84 34.85 34.57 34.76 34.80 35.06	8.51 8.50 8.36 8.35 8.49 8.49 8.51 8.51 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.51 8.51 8.51 8.51 8.45	4 3 3 3 3 6 4 2 2 2 3 4 4 4 3 3 4 4 4 4 4 4 4 4 4 4
12:55	CC4	MF	844606 845444	817941 815595	8.62	11.70 1.00 4.31 7.62 1.19 1.00 4.45 7.90	22.6 22.6 22.4 22.4 24.9 24.9 24.0 23.5 23.5 24.0 24.0 24.0 24.3 24.2 23.8 23.8 23.3 24.2 23.8 23.4 24.2 23.8 23.8	5.63 5.52 5.36 5.36 8.56 8.64 8.61 8.59 6.61 7.16 7.17 8.65 8.65 8.65 8.65 8.64 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65	81,4 79,7 79,7 128,7 129,6 127,8 127,8 127,8 106,9 107,0 106,9 107,0 128,9 102,0 98,9 81,6 78,1 126,4 126,7	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18 0.81 0.79 0.87 0.95 0.95 0.95 0.95	35,76 35,76 35,89 35,94 34,08 34,12 34,12 34,57 34,92 34,94 34,84 34,84 34,84 34,84 34,57 34,96 34,87 34,94 34,84 34,57 34,94 34,84 34,57 34,94 34,84 34,57 34,94 34,84 34,84 34,57 34,84	8.51 8.50 8.50 8.36 8.35 8.49 8.51 8.51 8.49 8.51 8.49 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.52 8.52 8.52 8.52 8.52 8.52 8.52 8.53	4.3.3.3.6.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.3.3.5.5.3.5.5.3.5
12:55	CC4	MF MF	844606 845444 844200	817941 815595 817495	2.37	11.70 1.00 4.31 7.62 1.19 1.00 4.45 7.90	22.6 22.6 22.4 22.4 24.9 24.8 24.1 24.0 24.0 24.0 24.0 24.0 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2	5.63 5.52 5.36 5.36 8.58 8.64 8.61 8.59 6.61 6.65 7.16 7.17 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65	81,4 79,7 79,7 79,7 128,7 129,6 127,8 127,4 98,1 98,5 106,9 107,0 128,9 102,0 98,9 81,6 78,1 126,4 126,7	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18 0.81 0.79 0.87 0.90 0.87 0.90 0.89	35,76 35,76 35,89 35,94 34,08 34,12 34,57 34,57 34,92 34,94 34,84 34,84 34,84 34,84 34,55 34,57 34,76 34,86 35,14 34,55 34,55 34,55 34,53	8.51 8.50 8.50 8.36 8.35 8.49 8.51 8.51 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.50	4.3.3.3.6.3.3.9.3.3.3.3.3.3.3.3.3.3.3.3.3
12:55	CC4	MF MF	844606 845444 844200	817941 815595 817495	2.37	11.70 1.00 4.31 7.62 1.19 1.00 4.45 7.90	22.6 22.6 22.4 22.4 24.9 24.9 24.1 24.0 23.5 23.5 23.5 24.0 24.0 24.3 24.2 23.8 23.4 23.3 24.2 23.9 24.2 23.5	5.63 5.52 5.36 5.36 8.56 8.64 8.61 8.59 6.61 6.65 7.16 7.17 8.65 8.65 8.65 8.64 5.47 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50	81.4 79.7 79.7 79.7 79.7 128.7 129.6 127.8 127.4 98.1 98.5 106.9 107.0 128.9 128.8 102.0 98.9 81.6 78.1 126.4 126.4 126.7 127.6 127.6	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 0.81 0.79 0.87 0.90 0.95 0.90 0.90 0.90 0.87 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	35,76 35,76 35,89 35,94 34,08 34,12 34,57 34,57 34,92 34,84 34,84 34,84 34,57	8.51 8.50 8.50 8.35 8.49 8.51 8.49 8.51 8.49 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.51 8.51 8.51 8.49 8.51 8.52 8.52 8.52 8.50	4 3.3. 3.6 2.8 2.8 3.3 3.3 3.3 3.5 4 4 2.7 3.5 4 4 4.9 4 4 4.9 4 4 4.9 4 4 4.9 4 4 4 4
12:55	CC4	MF MF	844606 845444 844200	817941 815595 817495	2.37	11.70 1.00 4.31 7.62 1.19 1.00 4.45 7.90 1.00	22.6 22.6 22.4 22.4 22.4 24.9 24.8 24.1 24.0 23.5 23.5 23.5 24.0 24.0 24.0 24.2 23.9 23.8 23.8 24.2 23.9 23.9 23.9 23.9 23.9 23.9	5.63 5.52 5.36 5.36 8.56 8.64 8.61 8.59 6.61 6.65 7.16 7.17 8.65 8.65 8.65 8.68 4.664 5.47 5.24 8.50 8.58 8.59 8.61 8.63 8.64 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65	81.4 79.7 79.7 79.7 79.7 128.7 129.6 127.8 127.4 98.1 98.5 106.9 107.0 128.9 128.8 128.8 128.8 126.4 126.4 126.4 126.4 127.6 1	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18 0.81 0.79 0.87 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	35,76 35,76 35,76 35,89 35,94 34,08 34,12 34,57 34,92 34,57 34,94 34,84 34,84 34,84 34,57 34,57 34,57 34,78 34,53 34	8.51 8.50 8.50 8.35 8.49 8.49 8.51 8.49 8.49 8.49 8.45 8.51 8.49 8.49 8.49 8.49 8.49 8.51 8.49 8.49 8.49 8.49 8.51 8.49 8.49 8.51 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.51 8.49 8.51 8.51 8.49 8.51 8.51 8.51 8.51 8.49 8.51 8.52 8.52 8.52 8.50	4 4 3.3.3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3
12:55 13:15 12:49	CC4 CC13	MF MF	844606 845444 844200 845512	817941 815595 817495	8.62 2.37 8.9	11.70 1.00 4.31 7.62 1.19 1.00 4.45 7.90 1.00 3.10 1.00	22.6 22.6 22.4 22.4 22.4 24.9 24.8 24.1 24.0 23.5 23.5 24.0 24.0 24.0 24.3 24.2 23.9 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.9 24.9 23.9 23.8 23.8 23.9 23.8 24.2 23.9 24.2 23.9 24.2	5.63 5.52 5.36 5.36 8.56 8.64 8.61 8.59 6.61 7.17 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65	81,4 79,7 79,7 128,7 129,6 127,8 127,4 98,1 98,5 106,9 107,0 128,9 102,0 98,9 81,6 78,1 126,4 126,7 127,7 115,6 115,8 94,1 93,7 93,7	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18 0.81 0.79 0.87 0.87 0.95 0.87 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	35,76 35,76 35,76 35,89 35,94 34,12 34,12 34,12 34,57 34,94 34,84 34,84 34,84 34,84 34,84 34,84 34,57 34,78 34,57 34,78 34,57 34,78 34,52 34,53 34,53	8.51 8.50 8.50 8.36 8.36 8.49 8.51 8.51 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.51 8.51 8.51 8.52 8.52 8.52 8.52 8.52 8.52 8.51 8.50	4 3.3.3 3.8.3 2.2.2 3.5.5 4 4.2 2.7.3 3.5.5 4.9.4 4.9.4 2.7.2 2.1.3 6.8.6 6.8.6 4.9.4 4.4.4 4.4.4 4.4.4 4.4.4 4.4.4 4.4.4
12:55 13:15 12:49	CC4 CC13	MF MF	844606 845444 844200 845512	817941 815595 817495	8.62 2.37 8.9	11.70 1.00 4.31 7.62 1.19 1.00 4.45 7.90 1.00 8.14 15.28	22.6 22.6 22.4 22.4 22.4 24.9 24.8 24.1 24.0 23.5 23.5 24.0 24.0 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.9	5.63 5.52 5.36 5.36 8.56 8.64 8.61 8.59 6.61 6.65 7.16 7.17 8.65 8.65 8.65 8.64 5.47 5.24 8.50 8.52 8.59 8.59 6.61 7.17	81.4 77.7 79.7 79.7 128.6 127.8 127.8 127.8 106.9 107.0 128.9 128.8 102.0 98.1 128.8 102.0 128.8 102.0 126.4 126.4 126.7 127.6 127.6 127.6 127.6 127.8 127.6 127.8 127.8 127.8 128.8	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18 0.81 0.79 0.87 0.89 0.90 0.89 0.90	35,76 35,76 35,76 35,89 35,94 34,08 34,12 34,57 34,92 34,57 34,94 34,84 34,84 34,84 34,55 34,57 34,76 34,76 34,80 35,06 35,14 34,53 34,53 34,53 34,53 34,53 34,53 34,53 34,53 34,53 34,53 34,53 34,53 34,53 34,53 34,53	8.51 8.50 8.50 8.50 8.35 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.51 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.52 8.52 8.50	4 3.3.3 3.8.6 3.3.3 3.3.3 3.3.3 3.3.3 3.3.3 4.4.9 4.4.4 4.4.
12:55 13:15 12:49	CC4 CC13 SWII	MF MF	844606 845444 844200 845512	817941 815595 817495	8.62 2.37 8.9	11.70 1.00 4.31 7.62 1.19 1.00 4.45 7.90 1.00 3.10 1.00	22.6 22.6 22.4 22.4 22.4 24.9 24.8 24.1 24.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 24.0	5.63 5.52 5.36 8.56 8.64 8.61 8.59 6.61 7.16 7.17 8.65 8.65 8.65 8.65 8.65 8.65 8.78 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.5	81.4 77.7 79.7 79.7 128.7 129.6 127.8 127.8 127.8 106.9 107.0 128.9 128.8 102.0 128.8 102.0 126.4 126.4 126.7 127.6 127.6 127.7 115.6 115.6 115.6 115.8 106.2 106.2	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 0.81 0.79 0.87 0.87 0.87 0.89 0.90	35,76 35,76 35,76 35,89 35,94 34,08 34,12 34,57 34,92 34,57 34,92 34,84 34,84 34,84 34,57 34,76 34,80 35,06 35,14 34,53 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,78 35,04	8.51 8.50 8.36 8.36 8.37 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.51 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.51 8.49 8.51 8.52 8.52 8.50	4 3.7.3 3.6.3 3.6.2 2.8.2 3.9.3 4.2 2.7.3 3.5 4.9.3 4.4 4.2 2.7.2 2.1 4.3 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4
12:55 13:15 12:49	CC4 CC13	MF MF	844606 845444 844200 845512	817941 815595 817495	8.62 2.37 8.9	11.70 1.00 4.31 7.62 1.19 1.00 4.45 7.90 1.00 8.14 15.28	22.6 22.6 22.4 22.4 22.4 24.9 24.8 24.1 24.0 23.5 23.5 23.5 24.0 24.0 24.3 24.2 23.9 23.8 23.3 24.2 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9	5.63 5.52 5.36 5.36 8.64 8.61 8.59 6.61 6.65 7.16 7.17 8.65 8.65 8.68 4.664 5.47 5.24 8.50 8.58 8.58 8.58 8.59 8.59 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50	81.4 79.7 79.7 79.7 79.7 128.7 129.6 127.8 127.4 98.1 98.5 106.9 107.0 128.9 128.8 102.0 98.9 81.6 78.1 126.4 126.4 126.7 115.6 115.8 94.1 93.7 83.8 94.1 93.7 83.8 106.2 106.	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18 0.81 0.79 0.87 0.97 0.95 0.95 0.95 0.95 0.95 1.51 1.10 1.10 1.10 1.10 1.10 1.10 1.1	35,76 35,76 35,76 35,89 35,94 34,08 34,12 34,55 34,57 34,94 34,84 34,84 34,84 34,84 34,84 34,55 34,76 34,86 35,14 34,54 34,52 34,53 34,54 34,54 34,54 34,54 34,55 34,57 34,96 35,14 36,16 36,16 36,16 36,16 36,16 36,16 36,17 36,18 36	8.51 8.50 8.50 8.35 8.49 8.51 8.49 8.51 8.49 8.49 8.51 8.49 8.49 8.51 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.51 8.51 8.49 8.51 8.52 8.52 8.52 8.52 8.50	4 4 3.7.3 3.6 4.9 4.2 2.7. 2.1 6.8.8 3.8 4 4.4 4.4 3.8 8.3 8.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4
12:55 13:15 12:49	CC4 CC13 SWII	MF MF MF	844606 845444 844200 845512	817941 815595 817495 817442	8.62 2.37 8.9 4.1	11.70 1.00 4.31 7.62 1.19 1.00 4.45 7.90 1.00 3.10 1.00 8.14 15.28	22.6 22.6 22.4 22.4 22.4 24.9 24.1 24.0 23.5 23.5 23.5 24.0	5.63 5.52 5.36 5.36 8.64 8.61 8.59 6.61 6.65 7.16 7.17 7.17 8.65 8.65 8.65 8.65 8.65 8.63 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65	81.4 79.7 79.7 79.7 128.7 129.6 127.8 127.8 127.8 106.9 107.0 128.9 128.8 102.0 98.1 128.8 102.0 128.8 102.0 128.8 102.0 128.6 127.7 127.6 127.7 127.6 127.7 127.7 127.8 128.8	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18 0.81 0.81 0.87 0.90 0.87 0.90 0.87 0.90 0.95 0.87 0.90 0.95 1.18 1.18	35,76 35,76 35,89 35,94 34,08 34,12 34,57 34,57 34,92 34,94 34,84 34,84 34,84 34,85 34,57 34,76 34,76 34,76 34,76 34,76 34,76 34,76 34,76 34,76 35,14 34,53	8.51 8.50 8.50 8.50 8.49 8.49 8.51 8.49 8.49 8.49 8.49 8.51 8.49 8.49 8.51 8.49 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.52 8.52 8.52 8.52 8.50	4 4 3.7.3 3.6 4.9 4.2 2.7. 2.1 6.8.8 3.8 4 4.4 4.4 3.8 8.3 8.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4
12:55 13:15 12:49	CC4 CC13 SWII	MF MF MF	844606 845444 844200 845512	817941 815595 817495 817442	8.62 2.37 8.9 4.1	11.70 1.00 4.31 7.62 1.19 1.00 4.45 7.90 1.00 3.10 1.00 8.14 15.28 1.00 7.58	22.6 22.6 22.4 22.4 22.4 24.9 24.1 24.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 24.0	5.63 5.52 5.36 8.64 8.61 8.61 8.65 8.65 7.16 7.17 8.65 8.65 8.65 8.65 8.64 5.24 8.50 8.52 8.58 8.58 8.59 6.61 7.17	81.4 79.7 79.7 79.7 128.6 127.8 127.8 127.8 106.9 107.0 128.9 128.8 102.0 98.1 128.8 102.0 128.8 102.0 126.4 126.7 127.6 127.6 127.6 127.6 127.8 127.6 127.8 128.8 108.0 128.8 108.0 128.8 108.0 128.8	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.16 1.18 0.81 0.79 0.90 0.95 0.90 0.95 0.90 0.95 0.90 1.51 1.16 1.18	35.76 35.76 35.76 35.89 35.94 34.08 34.12 34.57 34.92 34.57 34.92 34.84 34.84 34.84 34.87 34.57 34.57 34.76 34.80 35.06 35.06 35.06 35.06 35.06 35.06 35.06 35.06 35.06 35.06 35.06 35.06 35.06 35.06 35.06 35.06 35.06 36.27 36.37 36	8.51 8.50 8.50 8.50 8.50 8.49 8.51 8.49 8.51 8.49 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.49 8.51 8.51 8.49 8.51 8.51 8.51 8.49 8.51 8.52 8.52 8.52 8.50	4.4.4.4.4.7.1.3.8.3.3.4.4.4.4.3.8.3.3.3.3.3.3.3.3.3.3
12:55 13:15 12:49	CC4 CC13 SWII	MF MF MF	844606 845444 844200 845512	817941 815595 817495 817442	8.62 2.37 8.9 4.1	11.70 1.00 4.31 7.62 1.19 1.00 4.45 7.90 1.00 8.14 15.28 1.00 7.58	22.6 22.6 22.4 22.4 22.4 24.9 24.1 24.0 23.5 23.5 24.0 24.0 24.0 24.3 24.2 23.9 23.8 23.8 23.3 24.2 24.2 23.9 23.5 24.2 24.2 24.9 23.8 23.8 23.8 23.8 23.8 23.8 23.8 24.9 24.9 24.9 25.0 26.0 27.0	5.63 5.52 5.36 5.36 8.64 8.61 8.59 6.61 6.65 7.16 7.17 8.65 8.65 8.68 6.64 5.47 5.24 8.50 8.58 8.58 8.58 8.58 8.59 8.59 8.59 8.59	81.4 79.7 79.7 79.7 79.7 128.7 129.6 127.8 127.4 98.1 98.5 106.9 107.0 128.9 128.8 100.0 98.9 81.6 126.4 126.4 126.4 126.4 127.7 115.6 115.8 94.1 93.7 83.0 80.8 106.2 106.1 83.7 84.7 84.7 84.7 86.8	0.80 0.79 1.67 2.21 0.72 0.74 0.86 0.90 1.51 1.52 1.16 1.18 0.81 0.79 0.87 0.95 0.95 0.97 0.95	35,76 35,76 35,76 35,89 35,94 34,03 34,01 34,02 34,57 34,92 34,84 34,84 34,84 34,84 34,84 34,87 34,57 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,78 34,93 35,04 35,04 35,54 34,95 36,66 35,54 34,95 36,66 36,27 36,34 36,34	8.51 8.50 8.50 8.36 8.35 8.49 8.51 8.51 8.49 8.49 8.49 8.49 8.45 8.45 8.52 8.52 8.52 8.52 8.52 8.52 8.52 8.51 8.50 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.51 8.49 8.49 8.51 8.51 8.51 8.51 8.51 8.52 8.52 8.52 8.52 8.50	4.3.7.3.6.6.8.3.5.5.6.6.2.6.6.8.6.2.6.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.6.8.6.2.6.2

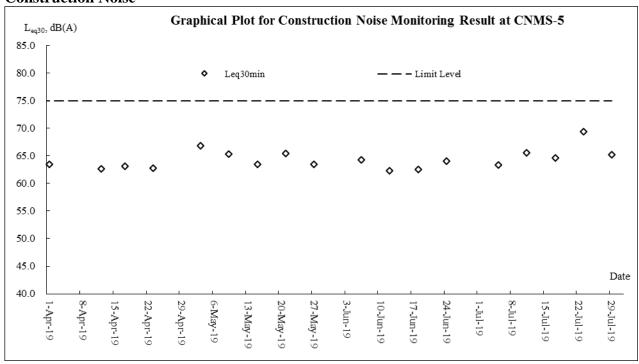
imping Date:	29-Jul-19	1						ng Result					
Date / Time	Location	Tide*	Co-ordinates		Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit	Salinity	pН	SS
			East	North	m	m	℃ 25.1	mg/L 8.57	% 125.5	NTU 0.98	ppt 33.15	unit 8.48	mg/L 7.3
						1.00	25.1 24.4	8.60 6.96	125.9 101.0	0.92	33.14 33.71	8.48 8.46	8.1 4.5
11:05	CC1	ME	843201	816416	9.22	4.61	24.4 23.5	6.98 5.45	101.4 78.3	1.06	33.75 34.62	8.46 8.41	3.5 4.2
						8.22	23.5	5.42 7.66	77.8 111.3	3.74 1.21	34.67 33.00	8.4 8.49	4.8
						1.00	24.7 24.1	7.66 5.73	111.3	1.21	33.00 33.69	8.49 8.47	6.7
11:10	CC2	ME	844076	817091	11.79	5.90	24.1	5.71	82.5 75.6	1.36	33.78 35.72	8.47 8.31	7.9 8.6
						10.79	22.2 24.8	5.33 8.41	75.4 122.4	3.10 0.94	35.78 33.07	8.31 8.47	9.6 11.9
						1.00	24.8 24.4	8.42 6.78	122.5 98.2	0.98 1.30	33.11 33.42	8.47 8.47	12.5
11:19	CC3	ME	844606	817941	8.06	4.03	24.4 24.0	6.76	97.9 88.6	1.30	33.43 33.97	8.47 8.40	6.8 7.3
						7.06	24.0	6.25	90.2	1.46	33.98	8.41	6.9
	GG4	ME	0.45444	015505	2.15	1.00	25.1	6.25	91.0	1.32	32.04	8.32	8.8
10:50	CC4	ME	845444	815595	2.15	1.08	25.0	6.25	90.9	1.34	32.11	8.32	9.8
						1.00	25.0	7.88	114.9	1.02	32.79	8.51	7.1
11.14	GG12	ME	0.44200	017405	0.14	1.00	24.9 24.5	8.04 7.20	117.0 104.3	1.13 1.18	32.67 33.33	8.51 8.48	6.2 5
11:14	CC13	ME	844200	817495	8.14	4.07	24.5 24.4	7.21 6.76	104.4 97.9	1.19	33.31 33.34	8.48 8.48	5.3 6
						7.14	24.4 24.6	6.55 6.74	94.9 97.8	1.24 1.11	33.38 32.90	8.47 8.27	5.5 5.8
10.20	CMII	ME	845512	817442	4.25	1.00	24.6	6.68	96.9	1.13	32.91	8.27	4.8
10:38	SWI1	ME	845512	81/442	4.25	2.25	24.5	6.63	95.9	1.22	32.94	8.28	6
						3.25	24.5 25.1	6.65 8.53	96.2 124.7	1.24 0.89	32.96 32.96	8.28 8.44	5.1 6
	C3	ME	843821	816211	15.45	1.00	25.1 23.0	8.56 6.48	125.2 92.4	0.88 0.85	32.96 35.03	8.45 8.32	5 6.5
11:01						7.73	23.0	6.45 5.84	91.9 82.5	0.82 3.22	35.07 36.08	8.32 8.19	5.5
						14.45	22.1 25.1	5.84 7.46	82.5 108.7	3.56 1.64	36.10 32.57	8.19 8.38	7.5 9.6
10:52						1.00	24.9 22.6	7.56 5.57	110.1 78.9	1.46 1.59	32.68 35.31	8.40 8.24	8.7 7.3
	C4	ME	844621	815770	15.07	7.54	22.6 22.1	5.55 5.34	79.0 75.3	1.54 2.50	35.34 36.01	8.24 8.20	8.3 6.8
						14.07	22.1 25.0	5.33 7.67	75.3 112.0	2.64	36.02 32.87	8.20 8.50	6.9
11:17		ME	844602	817675	9.9	1.00	25.0 24.0	7.68	112.1 86.6	1.05	32.92 33.90	8.50 8.46	8 6.8
	I1					4.95	23.9	5.99 5.65	86.4 81.3	1.19	33.93 34.96	8.46 8.34	6.2
						8.90	22.6	5.63	79.9	1.45	35.21	8.32	6.8
15:52						1.00	25.1	8.65	126.7	0.94	33.38	8.47	4.3
	CC1	MF	843201	816416	9.43	4.72	25.1	8.69 5.8	127.3 82.7	0.96 1.37	33.38 35.28	8.47 8.35	5.3
						8.43	23.0 22.5 22.4	5.8 5.41	82.9 76.9	1.40	35.29 35.88	8.35 8.31	6.3 5.2
						1.00	25.0	5.38 7.24	76.5 105.7	1.95	35.97 32.99	8.31 8.49	5 6.2
15:57	CC2	MF	844076	817091	12.04	6.02	24.9	7.26 5.99	105.8 84.6	1.18	33.06 35.24	8.49 8.38	5.2 6.6
						11.04	22.4 22.2 22.1	5.92 5.49 5.49	83.7 77.8	1.74 3.11 3.29	35.34 36.26	8.36 8.19 8.19	6.1 8.7
						1.00	25.0 24.9	7.70	77.6 112.4	1.40	36.27 33.04 33.08	8.48	9.6 7.6 7.2
16:14	CC3	MF	844606	817941	8.25	4.13	24.4	5.82	112.0 84.5	1.39	33.60	8.48 8.47	8 7
						7.25	24.3 23.7 23.6	5.70 5.39 5.32	82.6 77.8 76.5	1.62 2.25 2.44	33.69 34.53 34.68	8.46 8.33 8.33	6.1
							23.0	5.32	/6.5	2.44	34.08	8.33	
15:40	CC4	MF	845444	815595	2.34	1.17	24.1 24.0	6.18	89.1 88.8	2.19 2.24	33.53 33.59	8.40 8.39	8.5 8.7
							24.0	0.10	00.0	2.24	33.39	6.39	6.7
						1.00	24.7 24.6	7.36 7.34	107.0 106.6	1.40	33.21 33.25	8.45 8.45	7 7.9
16:01	CC13	MF	844200	817495	8.11	4.06	23.3 23.4	5.86	83.9 83.9	2.05	33.25 34.74 34.65	8.29	7.9 8.4 9.3
						7.11	23.4 22.2 22.2	5.85 5.36 5.30	75.6 74.8	2.14 3.29 3.45	35.91 35.98	8.29 8.29 8.29	9.3 10.2 9.9
						1.00	24.2 24.1	5.52 5.50	79.7 79.3	2.98 3.01	33.62 33.66	8.29 8.37 8.37	9.9 11.2 10.3
15:35	SWI1	MF	845512	817442	4.22		24.1	0.30	19.3	3.01	00.00	0.3/	10.3
						3.22	24.0 23.9	5.14	74.0	3.48	33.80	8.37 8.37	11.4 10.4
						1.00	24.8	5.17 7.40	74.5 107.9	3.74 1.07	33.85 33.21	8.37 8.48	11.5
15:50	C3	MF	843821	816211	14.71	7.36	24.8 22.7 22.7	7.30 5.52	78.3	1.09	33.24 35.05	8.48 8.35	9.1
						13.71	22.7 22.4 22.4	5.51 5.28	78.3 75.0	1.39 2.67	35.13 35.77	8.34 8.32	9.3
						1.00	24.8	5.23 7.72	74.3 112.6	3.24 0.98	35.89 33.31	8.31 8.50	8.3 7.5
15:43	C4	MF	844621	815770	15	7.50	24.8	7.76 5.95	113.1 84.4	1.02	33.36 35.29	8.50 8.34	8.5 7.4
						14.00	22.6 22.2	5.87 5.37	83.1 76.0	1.79 3.39	35.34 36.19	8.34 8.30	7.2 6.8
						1.00	22.1 25.1	5.34 9.08	75.5 132.6	3.23 1.07	36.21 32.91	8.30 8.50	6.1 6.9
	1		ĺ		I	1.00	25.1 24.0	9.01 6.04	131.7 87.2	1.13	32.93 34.14	8.50 8.47	7.9 7
16:05	11	MF	844602	817675	8.73	4.37	24.0			1.70	34.14	0.77	



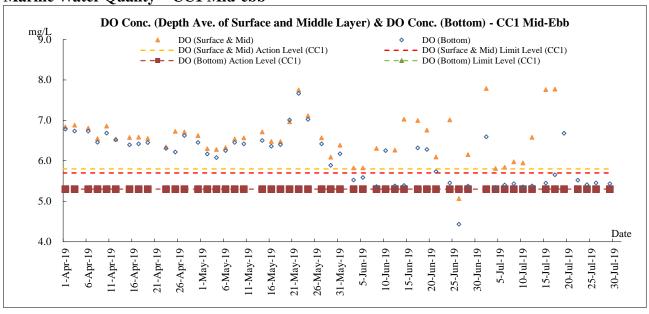
Appendix I

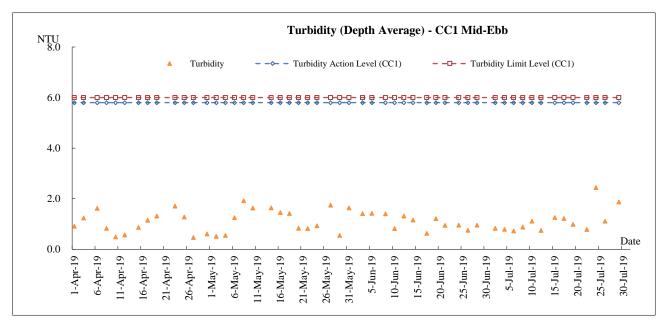

Graphical Plots of Monitoring Results

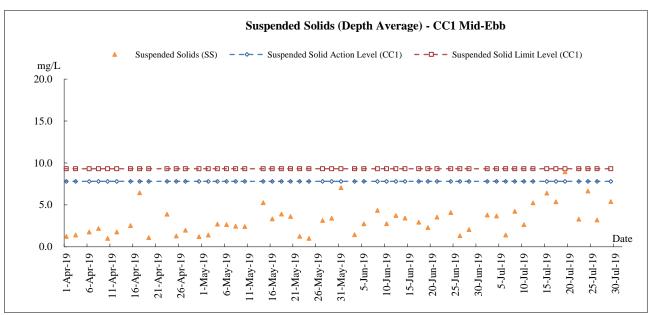
Air Quality - 1 Hour TSP



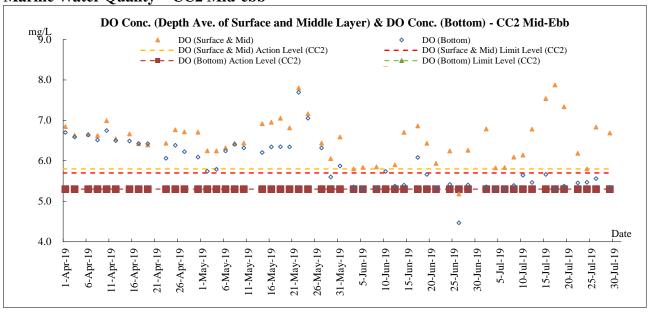
Air Quality - 24-Hour TSP

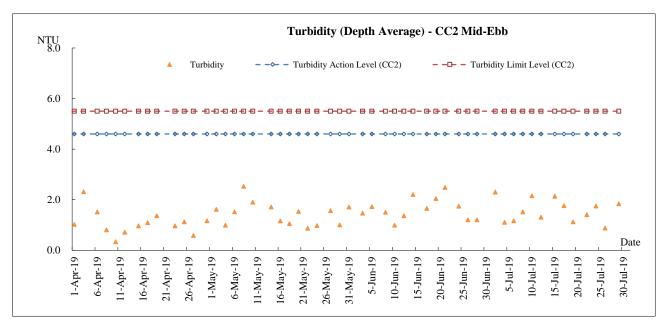


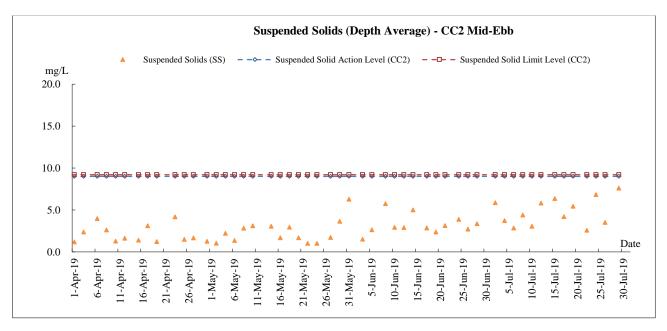

Construction Noise



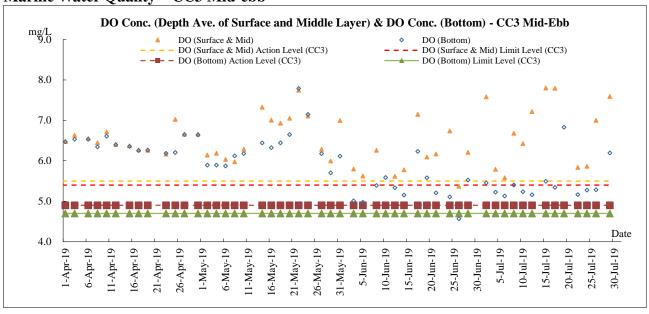
Marine Water Quality - CC1 Mid-ebb

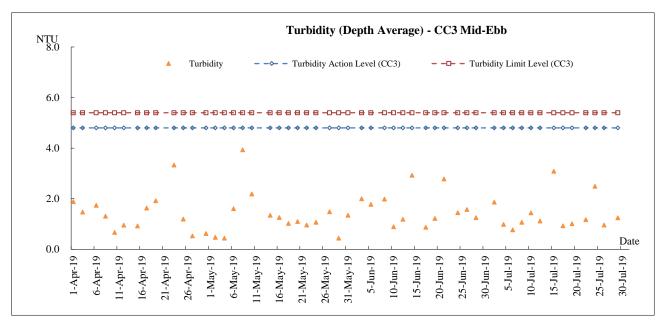






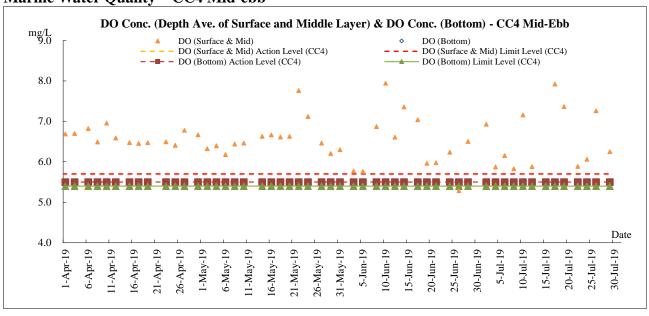
Marine Water Quality - CC2 Mid-ebb



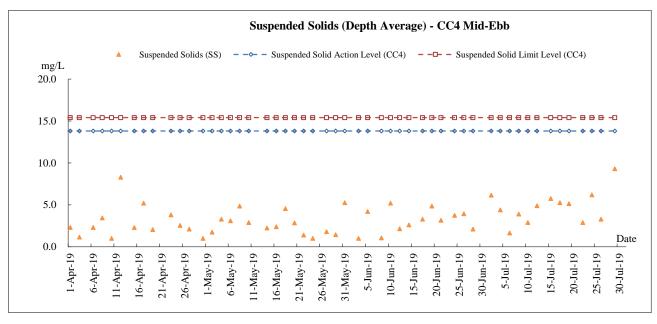




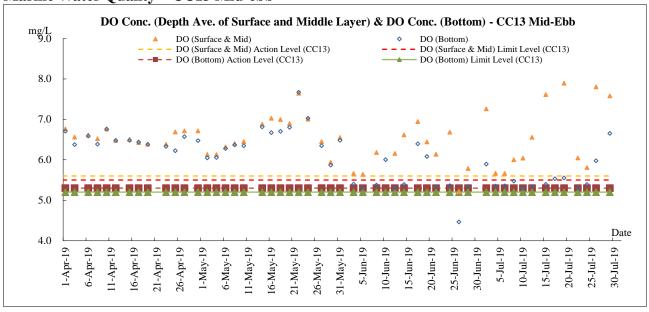
Marine Water Quality - CC3 Mid-ebb

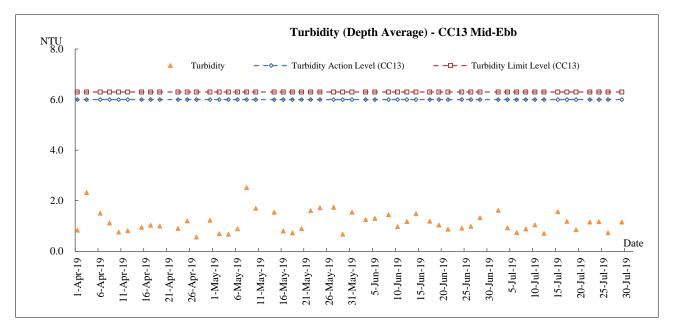


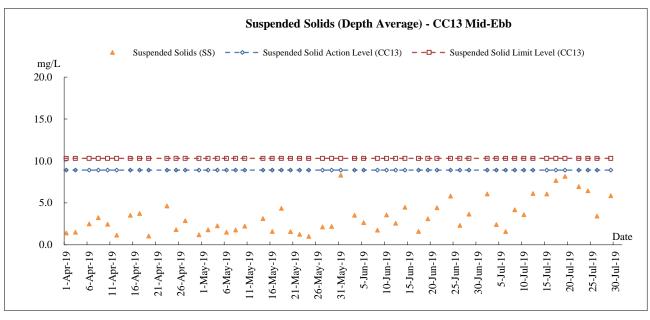




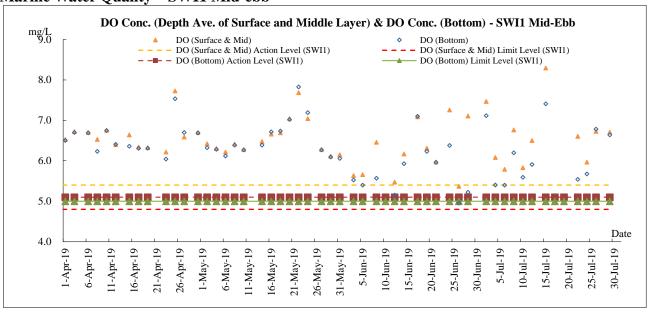
Marine Water Quality - CC4 Mid-ebb

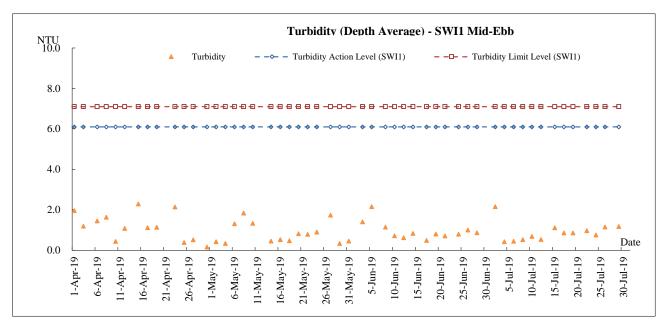


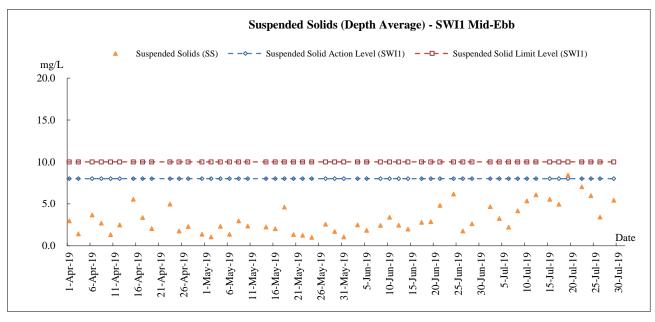




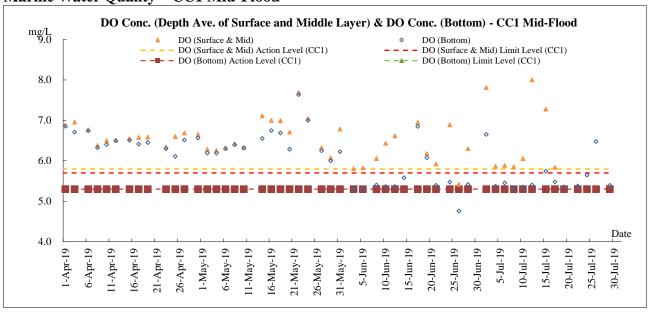
Marine Water Quality - CC13 Mid-ebb







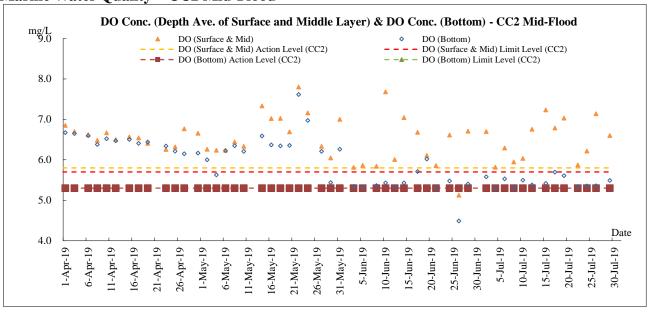
Marine Water Quality - SWI1 Mid-ebb

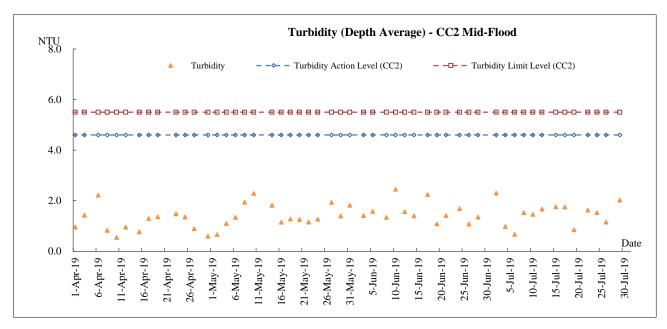


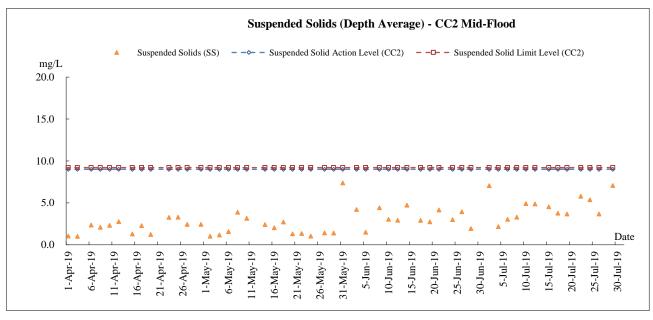




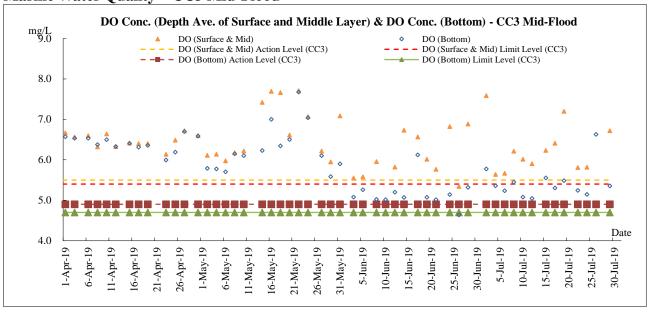
Marine Water Quality - CC1 Mid-Flood

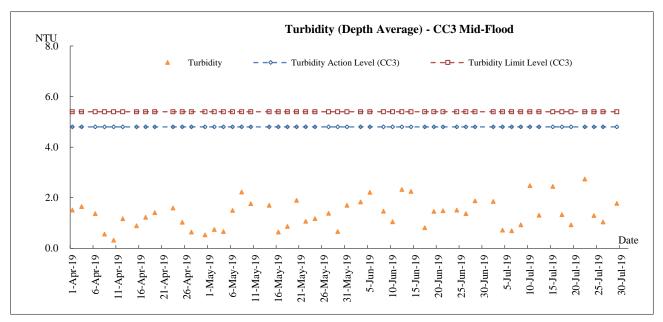


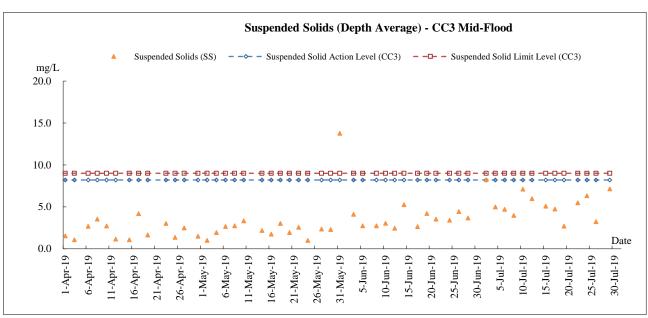




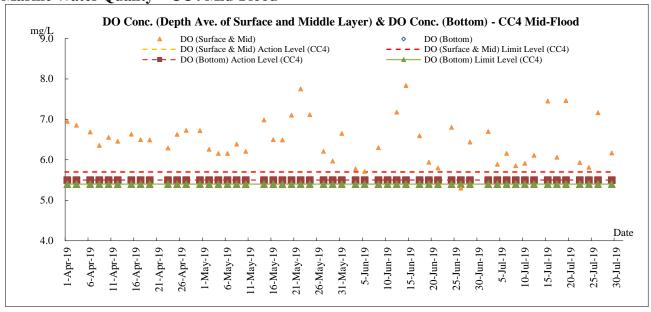
Marine Water Quality - CC2 Mid-Flood

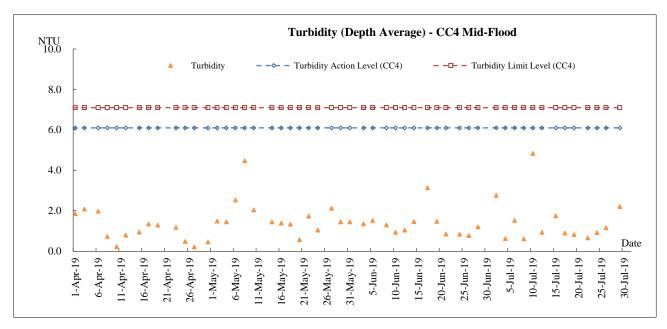


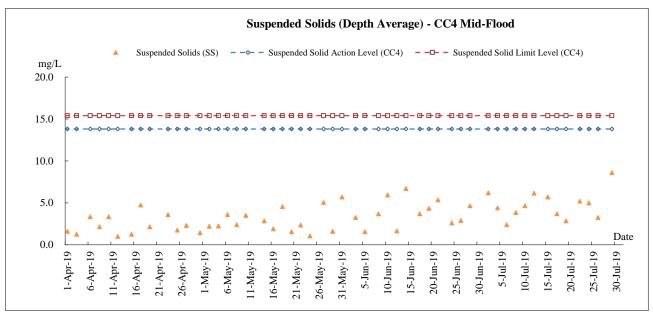




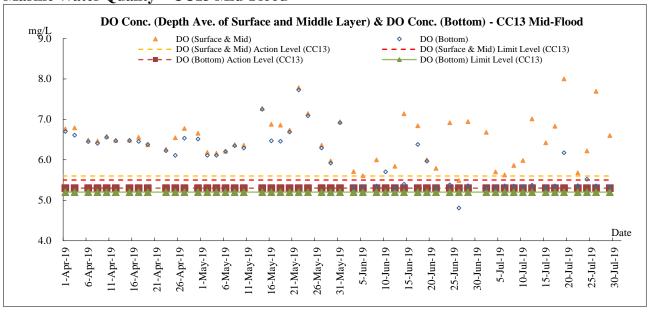
Marine Water Quality - CC3 Mid-Flood

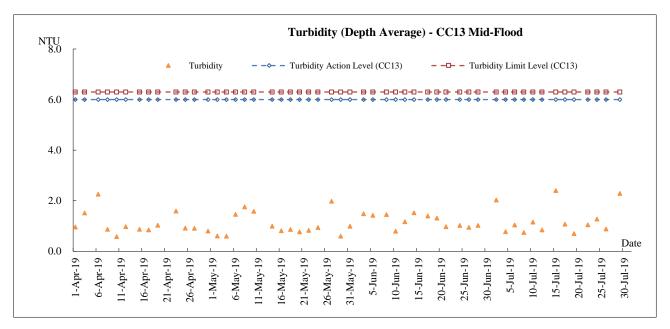


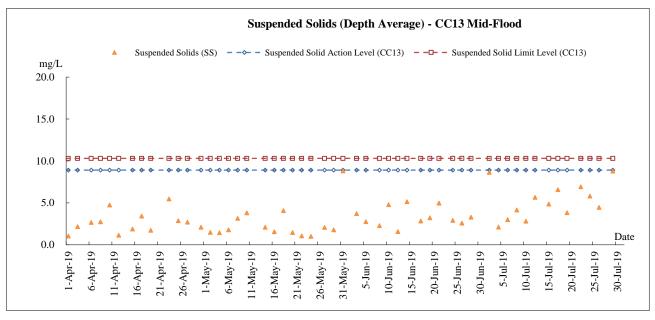




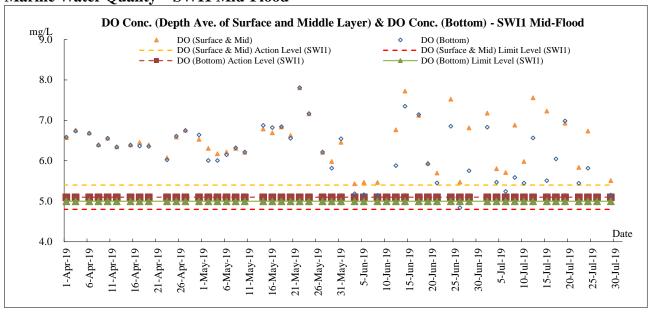
Marine Water Quality - CC4 Mid-Flood

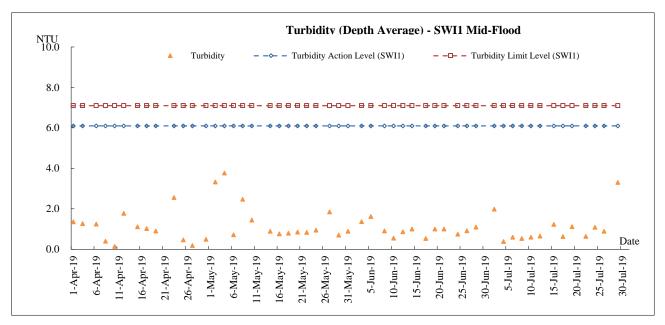


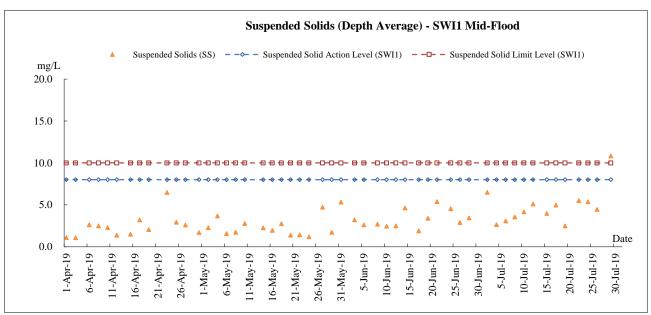




Marine Water Quality - CC13 Mid-Flood







Marine Water Quality - SWI1 Mid-Flood

Appendix J

Meteorological Data

				1	Tseung I	Kwan O Sta	tion
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction (degree)
1-Jul-19	Mon	Hot with sunny periods and a few showers.	15.3	29	10.4	77	E/NE
2-Jul-19	Tue	Hot with sunny periods and one or two showers	19.1	28.3	8	86.5	N/NE
3-Jul-19	Wed	Cloudy with occasional heavy squally showers and thunderstorms.	79.1	26.7	7	96.5	N/NE
4-Jul-19	Thu	Hot with sunny periods and a few showers.	13	28.7	6.1	82.5	S/SW
5-Jul-19	Fri	Mainly cloudy tonight. Moderate southwesterly winds, fresh offshore.	1.3	29.1	7.5	80	S/SW
6-Jul-19	Sat	Moderate south to southwesterly winds, occasionally fresh offshore.	1.5	29	7.2	80.5	S/SW
7-Jul-19	Sun	Hot with sunny periods and one or two showers	4.3	29.9	6.6	81	S/SW
8-Jul-19	Mon	Hot with sunny intervals in the afternoon.	0.1	29.9	6.9	78.7	S/SW
9-Jul-19	Tue	Mainly cloudy with a few showers.	6	29.3	9.2	81	S/SW
10-Jul-19	Wed	Mainly cloudy with a few showers.	14.3	27.5	6.4	89.2	S/SW
11-Jul-19	Thu	Isolated thunderstorms in the afternoon.	6	27.8	5.5	87.5	S
12-Jul-19	Fri	Mainly fine. Very hot in the afternoon.	2.6	30	8	78.2	S/SW
13-Jul-19	Sat	Isolated thunderstorms in the afternoon.	Trace	30.2	7.2	81.2	S/SW
14-Jul-19	Sun	Hot with sunny periods and one or two showers	Trace	29.4	6.5	82.5	S/SW
15-Jul-19	Mon	Mainly fine. Very hot in the afternoon. Light to moderate southerly winds.	0	29.8	6.1	80.5	S/SW
16-Jul-19	Tue	Fine and very hot. Light to moderate southerly winds.	0	29.5	5.6	81.2	S/SW
17-Jul-19	Wed	Mainly fine and very hot apart from some haze. Light winds.	0	30.1	7.5	80	S/SW
18-Jul-19	Thu	Moderate west to southwesterly winds.	Trace	30.5	6.1	81	S/SW
19-Jul-19	Fri	Mainly cloudy with showers and a few thunderstorms.	22.6	29.8	6.5	82.5	S/SW
20-Jul-19	Sat	Territories with isolated thunderstorms.	6.4	28.9	10.5	79.2	S/SW
21-Jul-19	Sun	Hot with sunny intervals in the afternoon	0.1	29	6.5	82.5	S/SW
22-Jul-19	Mon	Mainly cloudy with a few showers.	0.4	28.3	6.1	84.5	S/SW
23-Jul-19	Tue	Hot with sunny periods and a few showers.	Trace	28.7	5.4	82	N/NE
24-Jul-19	Wed	Isolated thunderstorms in the morning. Moderate southeasterly winds.	Trace	29.1	6.5	85.7	N/NE
25-Jul-19	Thu	Very hot in the afternoon.	1	30.1	6.6	78.2	S/SW
26-Jul-19	Fri	Mainly fine apart from isolated showers	Trace	30.7	6.6	74.5	S/SW
27-Jul-19	Sat	Mainly fine and very hot with isolated showers.	0	31.2	6.2	69.5	S/SW
28-Jul-19	Sun	Mainly fine and very hot with isolated showers	0.5	29.8	6.5	78.2	N/NE
29-Jul-19	Mon	Hot with sunny intervals and a few showers.	1	28.1	6.9	87.2	N/NE
30-Jul-19	Tue	Hot with sunny intervals in the afternoon.	12.8	28.7	11.9	83	E/NE
31-Jul-19	Wed	Cloudy with occasional squally showers and thunderstorms	121.1	5.9	12.6	86.7	N/NE

Appendix K

Waste Flow Table

Contract 1

Monthly Summary Waste Flow Table for 2018 (year)

Name of Person completing the record: Kanny Cho (EO)

Project: Cross Bay Link, TKO, Main Bridge and Associated Works Contract No.: NE/2017/07

	Actual Quantities of Inert C&D Materials Generated Monthly Actual Quantities of C&D Wastes Generated Monthly Actual Quantities of C&D Wastes Generated Monthly										
	A	ctual Quantitie	s of Inert C&I	O Materials G	enerated Month	ıly	Actua	al Quantities o	of C&D Waste	s Generated M	Ionthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	$(in '000m^3)$	(in '000m ³)	$(in '000m^3)$	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	$(in '000 m^3)$
Jan											
Feb											
Mar											
Apr											
May											
Jun											
Sub-total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.837
Sep	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.305
Oct	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.065	0.000	0.000	0.008
Nov	0.000	0.000	0.000	0.000	0.000	0.320	0.000	0.000	0.000	0.000	0.009
Dec	0.000	0.000	0.000	0.000	0.276	0.000	0.000	0.000	0.000	0.000	0.004
Total	0.000	0.000	0.000	0.000	0.276	0.320	0.000	0.065	0.000	0.000	1.163

Note:

- For non-inert portion of C&D material, assume the density of 1 m³ general refuse is equal to 200 kg.
 For inert portion of C&D material, assume 6 m³ per each full-filled dump truck.
 All values are round off to the third decimal places.

Monthly Summary Waste Flow Table for <u>2019</u> (year)

Name of Person completing the record: <u>Calvin So (EO)</u>

Project : C	Project: Cross Bay Link, TKO, Main Bridge and Associated Works Contract No.: NE/2017/07								E/2017/07		
	A	ctual Quantitie	s of Inert C&I	D Materials G	enerated Month	nly	Actua	al Quantities o	of C&D Waste	es Generated M	Ionthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	$(in '000m^3)$	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	$(in '000 m^3)$
Jan	0.845	0.000	0.000	0.000	0.845	0.000	0.000	0.023	0.000	0.000	0.077
Feb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.032	0.000	0.000	0.036
Mar	0.042	0.000	0.000	0.000	0.042	0.000	0.000	0.029	0.000	0.000	0.081
Apr	1.760	0.000	0.000	0.000	1.760	0.000	0.000	0.509	0.000	0.000	0.012
May	1.026	0.000	0.000	0.000	1.026	0.000	0.000	0.094	0.000	0.000	0.030
Jun	0.354	0.000	0.000	0.000	0.354	0.000	0.000	0.087	0.000	0.000	0.050
Sub-total	4.027	0.000	0.000	0.000	4.027	0.000	0.000	0.774	0.000	0.000	0.286
Jul	1.122	0.000	0.000	0.000	1.122	0.000	0.000	0.060	0.000	0.000	0.083
Aug											
Sep											
Oct											
Nov											
Dec											
Total	5.149	0.000	0.000	0.000	5.149	0.000	0.000	0.834	0.000	0.000	0.369

Note:

- For non-inert portion of C&D material, assume the density of 1 m³ general refuse is equal to 200 kg. For inert portion of C&D material, assume 6 m³ per each full-filled dump truck.
- 3. All values are round off to the third decimal places.

Contract 2

Monthly Summary Waste Flow Table for 2019 Year

		Actual Qua	ntities of Inert C&I	Materials Generat	ted Monthly			Actual Quantities	of C&D Wastes G	enerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Jan	0.358	0.000	0.358	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.357
Feb	0.022	0.000	0.000	0.000	0.022	0.000	0.000	0.000	0.000	0.000	0.728
Mar	0.106	0.000	0.000	0.000	0.106	0.000	0.000	0.000	0.000	0.000	0.229
Apr	3.013	0.000	0.000	0.000	3.013	0.000	0.000	0.000	0.000	0.000	0.013
May	3.621	0.000	0.000	0.000	3.621	0.000	0.000	0.000	0.000	0.000	0.022
June	1.127	0.000	0.000	0.000	1.127	0.000	0.000	0.000	0.000	0.000	0.019
SUB- TOTAL	8.247	0.000	0.358	0.000	7.889	0.000	0.000	0.000	0.000	0.000	1.368
Jul	2.468	0.000	0.000	0.000	1.879	0.589	0.000	0.000	0.000	0.000	0.031
Aug											
Sep											
Oct											
Nov				·			·		•		
Dec											
TOTAL	10.715	0.000	0.358	0.000	9.768	0.589	0.000	0.000	0.000	0.000	1.399

Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

 $Conversion \ to \ 1000 m^3 \ for \ Inert \ C\&D \ is \ weight \ in \ 1000 kg \ multiply \ by \ 0.0005$ $Plastics \ refer \ to \ plastic \ bottles \ / \ containers, \ plastic \ sheets \ / \ foam \ from \ packaging \ material$

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Assume the loaded volume of a dump truck for internal inert waste transfer is 17.9 m^3

Appendix L

Implementation Record of Water Mitigation Measures in the Reporting Month

Water Quality Mitigation Measures under NE/2017/07 (Contract 1)

Earth bund was provided at the site boundary to prevent muddy surface run-off leakage into the water body.

Silt curtain was installed to prevent the muddy water leakage into the water body.

Cut-off drainage was provided at the site boundary to prevent muddy surface run-off leakage into the water body.

Concrete the exposed surface to reduce to create muddy water during rainstorm.

Silt-curtain had been provided for the pilling platform.

Water Quality Mitigation Measures under NE/2017/08 (Contract 2)

Gap between the concrete block and the sea front was sealed up.

WetSept had been provided to treat any runoff water at Works

Area A after the discharge licence is granted.

Sand bags had been provided for the existing manhole.

WetSept had been provided to treat any runoff water at Portion VI.

Part of the temporary drainage was installed to divert the site runoff to the de-silting facilities.

Appendix M

Implementation Schedule for Environmental Mitigation Measures

		Objectives of the		Implementation		Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
Dust Impa	ct (Contraction Phase)					
S5.5.5.1	Regular watering under good site practice shall be adopted. In accordance with the "Control of Open Fugitive Dust Sources" (USEPA AP-42), watering once per hour on exposed worksites and haul road is recommended to achieve dust removal efficiency of 91.7%.	Good construction site practices to control the dust impact on the nearby sensitive receivers to within the relevant criteria	All construction sites	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation
S5.5.5.3	 The following dust suppression measures shall also be incorporated by the Contractor to control the dust nuisance throughout the construction phase: Any excavated or stockpiled dusty material shall be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed shall be wetted with water and cleared from the surface of roads; A stockpile of dusty material shall not extend beyond the pedestrian barriers, fencing or traffic cones; The load of dusty materials on a vehicle leaving a construction site shall be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet shall be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point shall be paved with concrete, bituminous materials or hardcores; When there are open excavation and reinstatement works, hoarding of not less than 2.4m high shall be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period; The portion of any road leading to the construction site that is within 30m of a vehicle entrance or exit shall be kept clear 	Good construction site practices to control the dust impact on the nearby sensitive receivers to within the relevant criteria	All construction sites	Contractor	Construction stage	APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation

EIA Ref Environmental Protection Measures/ Mitigation Measures Main Concerns to Address of dusty materials; Surfaces where any pneumatic or power driven drilling, cutting, polishing or other mechanical breaking operation takes place shall be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities shall be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting shall be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport shall be totally enclosed by impervious sheeting; Exposed earth shall be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. S5.5.5.4 For the barging facilities at the site compound, the following Good construction site Site compound	Agent	t Stage	and/or Standards to be Achieved
of dusty materials; Surfaces where any pneumatic or power driven drilling, cutting, polishing or other mechanical breaking operation takes place shall be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities shall be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting shall be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport shall be totally enclosed by impervious sheeting; Exposed earth shall be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. S5.5.5.4 For the barging facilities at the site compound, the following Good construction site Site compound		2 mgr	be Achieved
Surfaces where any pneumatic or power driven drilling, cutting, polishing or other mechanical breaking operation takes place shall be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities shall be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting shall be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport shall be totally enclosed by impervious sheeting; Exposed earth shall be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. S5.5.5.4 For the barging facilities at the site compound, the following Good construction site Site compound			
S5.5.5.4 For the barging facilities at the site compound, the following Good construction site Site compound			
 good site practice is required: All road surfaces within the barging facilities shall be paved. Vehicles should pass through designated wheel wash facilities. Continuous water spray shall be installed at the loading point. 	Contractor	Construction stage	APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation
An audit and monitoring programme during the construction phase should be implemented by the Contractor to ensure that the construction dust impacts are controlled to within the HKAQO. Detailed requirements for the audit and monitoring programmes are given separately in the EM&A manual. Noise Impact (Contraction Phase) Monitor the 1-Hour and 24-Hr TSP levels at the representative dust monitoring stations to ensure compliance with relevant criteria throughout the construction period		tor Construction stage	APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
S6.6.4.3	 Good site practice and noise management techniques: Only well-maintained plant shall be operated on-site and the plant shall be serviced regularly during the construction programme; Machines and plant (such as trucks, cranes) that are in intermittent use shall be shut down between work periods or throttled down to a minimum; Plant known to emit noise strongly in one direction, where possible, shall be orientated so that the noise is directed away from nearby NSRs; Silencers or mufflers on construction equipment shall be properly fitted and maintained during the construction works; Mobile plant shall be sited as far away from NSRs as possible and practicable; and Material stockpiles, site office and other structures shall be effectively utilised, where practicable, to screen noise from on-site construction activities. 	To minimize construction noise impact arising from the Project on the affected NSRs	All construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
S6.6.4.5-6	Use of quiet powered mechanical equipment and working methods	Reduce noise levels of plant items	All construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
S6.6.4.7	Install site hoarding at the site boundaries between noisy construction activities and NSRs	Reduce the construction noise levels at low-level zone of NSRs through partial screening	All construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
S6.6.4.8-11	Use of temporary or movable noise barriers and full enclosure for relatively fixed plant source		For plant items listed in Table 6.7 and Appendix 6.1 of the EIA report at all construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
	Implement a noise monitoring programme under the EM&A manual	noise levels at the selected representative locations	Selected representative noise monitoring stations (Drawing no. 209506/EMA/NS/001 & 209506/EMA/NS/002)	Contractor	Construction stage	• Annex 5, TM-EIAO
S6.7.3.1	Partial enclosures along Road D9 and application of low noise surfacing material along CBL and Road D9	To minimize road traffic noise impact arising from the CBL and Road D9 on the affected NSRs	CBL and Road D9 (Drawing no. 209506/EMA/NS/003)	CEDD/ Contractor	During operational stage	• Annex 5, TM-EIAO

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures &	Location/ Timing	Agent	Stage	and/or Standards to
***		Main Concerns to Address		8	~	be Achieved
	lity Impact (Contraction Phase)				a :	TDA FILA O 1
S8.6.4.3	Marine Piling and Pile Excavation Works Marine piling and	To control potential		Contractor	Construction	• TM-EIAO; and
	pile excavation works shall be undertaken in such a manner as	impacts from marine piling	and pile excavation		stage	• WPCO
	to minimize re-suspension of sediments. Standard good	and pile excavation works	works			
	practice measures shall be implemented, including the					
	following requirements:					
	• All marine piling and pile excavation works shall be					
	conducted within a floating single silt curtain.					
	• Mechanical closed grabs (with a size of5m3) shall be					
	designed and maintained to avoid spillage and should seal					
	tightly while being lifted.Barges shall have tight fitting seals to their bottom openings					
	to prevent leakage of material.					
	Any pipe leakages shall be repaired quickly. Plant should not					
	be operated with leaking pipes.					
	• Loading of barges shall be controlled to prevent splashing of					
	dredged material to the surrounding water. Barges shall not					
	be filled to a level which will cause overflow of materials or					
	pollution of water during loading or transportation.					
	• Excess material shall be cleaned from the decks and exposed					
	fittings of barges before the vessel is moved.					
	• Adequate freeboard shall be maintained on barges to reduce					
	the likelihood of decks being washed by wave action.					
	• All vessels shall be sized such that adequate clearance is					
	maintained between vessels and the sea bed at all states of					
	the tide to ensure that undue turbidity is not generated by					
	turbulence from vessel movement or propeller wash.					
	• The works shall not cause foam, oil, grease, litter or other					
	objectionable matter to be present in the water within and					
	adjacent to the works site.					
S8.6.4.4	Construction Site Runoff	Control potential water	All construction sites	Contractor	Construction	 TM-EIAO; and
	In accordance with the Practice Note for Professional Persons	quality impacts from			stage	• WPCO
	on Construction Site Drainage, Environmental Protection	construction site run-off				
	Department, 1994 (ProPECC PN 1/94), construction phase					
	mitigation measures, where appropriate, shall include the					
	following:					
	• The design of efficient silt removal facilities shall be based					
	on the guidelines in Appendix A1 of ProPECC PN 1/94. The					

		Objectives of the		Implementation		Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	detailed design of the sand/silt traps shall be undertaken by the contractor prior to the commencement of construction; Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m3 shall be covered with tarpaulin or similar fabric during rainstorms. Measures shall be taken to prevent the washing away of construction materials, soil, silt or debris into any marine water bodies; All vehicles and plant shall be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities shall be provided at every construction site exit where practicable. Wash-water shall have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road shall be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains; Construction solid waste, debris and rubbish on site shall be collected, handled and disposed of properly to avoid water quality impacts; All fuel tanks and storage areas shall be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby; and Regular environmental audit on the construction site shall be carried out in order to prevent any malpractices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the meander, wetlands and fish ponds.						
S8.6.4.6	Sewage from workforce Portable chemical toilets and sewage holding tanks shall be provided for handling the construction sewage generated by the workforce; A licensed contractor shall be employed to provide	Control potential water quality impacts from sewage	All construction sites	Contractor	Construction stage	TM-EIAO; and WPCO	

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.					
	Monitoring Implement a marine water quality monitoring programme under the EM&A on level of suspended solids (SS) / turbidity and dissolved oxygen (DO) shall be carried out.	Control potential water quality impacts from marine piling and pile excavation works	Selected monitoring stations (Drawing no. 209506/EMA/WQ/001)	Contractor	Construction station	TM-EIAO; and WPCO
S8.7.3.2	Operational phase – Runoff from road surface Proper drainage systems with silt traps and oil interceptors shall be installed, maintained and cleaned at regular intervals.	Control potential water quality impacts from road surface runoff	CBL and Road D9	Contractor	Construction and operational stage	TM-EIAO; and WPCO
Waste Mai	nagement (Contraction Phase)					
\$9.5.2	 Good Site Practices Recommendations for good site practices: Nomination of an approved personnel to be responsible for the implementation of good site practices, arrangements for collection and effective deposal to an appropriate facility of all wastes generated at the site; Training of site personnel in proper waste management and chemical handling procedures; Provision of sufficient waste disposal points and regular collection for disposal; Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Centre; Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and Implementation of a recording system for the amount of wastes generated/recycled and disposal sites. 	Good site practices which ensure waste generated during construction phase is properly managed	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures &	Location/ Timing	Agent	Stage	and/or Standards to
00.5.4	W (D) () M	Main Concerns to Address	A 11	Ü		be Achieved
S9.5.4	 Waste Reduction Measures Recommendations for achieving waste reduction include: On-site reuse of any material excavated as far as practicable; Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of material and their proper disposal; Collection of aluminum cans and waste paper by individual collectors during construction should be encouraged. Separately labelled recycling bins should also be provided to segregate these wastes from other general refuse by the workforce; Recycling of any unused chemicals and those with remaining functional capacity as far as possible; Prevention of the potential damage or contamination to the construction materials though proper storage and good site practices; Planning and stocking of construction materials should be made carefully to minimize amount of waste generated avoid unnecessary generation of waste; and Training on the importance of appropriate waste management procedures, including waste reduction, reuse and recycling should be provided to workers. 	To reduce amount of waste generated during construction phase	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005
S9.5.5-6	 Storage, Collection and Transportation of Waste Recommendations for proper storage include: Waste such as soil should be handled and stored well to ensure secure containment; Stockpiling area should be provided with covers and water spraying system to prevent materials from being washed away and to reduce wind-blown litter; and Different locations should be designated to stockpile each material to enhance reuse. With respect to the collection and transportation of waste from the construction works, the following is recommended: Remove waste in a timely manner; Employ trucks with cover or enclosed containers for waste transportations; Obtain relevant waste disposal permits from the appropriate 	To reduce the environmental implications of improper storage	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005

		Objectives of the		Implementation		Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	authorities; andDisposal of waste should be done at licensed waste disposal facilities.						
S9.5.8-11	 C&D Materials The following mitigation measures shall be implemented in handling the waste: Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; Disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation; Standard formwork or pre-fabrication order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Metal hoarding should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage; and The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites should be considered for such segregation and storage. 	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005 ETWB TCW No. 06/2010 	
S9.5.13	Excavated Marine Sediments During transportation and disposal of the excavated marine sediments, the following measures shall be taken to minimize potential environmental impacts: • Bottom opening of barges should be fitted with tight fitting	To minimize potential impacts on water quality	All construction sites where applicable	Contractor	Construction stage	• ETWBTC (Works) No. 34/2002	

		Objectives of the	Location/ Timing	Implementation		Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address		Agent	Stage	and/or Standards to be Achieved
	seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved; • Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation; • Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP; and • Barges should not be filled to a level that would cause the overflow of materials or sediment-laden water during loading or transportation.					
S9.5.14-17	For those processes which generate chemical waste, the Contractor shall identify any alternatives that generate reduced quantities or even no chemical waste, or less dangerous types of chemical waste.	To ensure proper management of chemical waste	All construction sites	Contractor	Construction stage	• Waste Disposal (Chemical Waste) (General) Regulation;
	If chemical waste is produced at the construction site, the Contractor is required to register with EPD as chemical waste producers. Chemical waste shall be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows. Containers used for storage of chemical wastes shall: • Be suitable for the substance they are holding, resistant to					Code of Practice on the Packaging, Labelling and Storage of Chemical Waste
	corrosion, maintained in a good condition, and securely closed;Have a capacity of less than 450 L unless the specification					
	 have been approved by EPD; and Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulations. 					
	 The storage area for chemical wastes shall: Be clearly labelled and used solely for the storage of chemical wastes; Be enclosed on at least 3 sides; 					
	• Have an impermeable floor and bunding of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest;					

		Objectives of the		Implen	nentation	Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	 Have adequate ventilation; Be covered to prevent rainfall entering (water collected within the bund must be tested and disposed as chemical waste, if necessary); and Be arranged so that incompatible materials are adequately separated. Disposal of chemical waste shall: Be via a licensed waste collector; and Be to a facility licensed to receive chemical waste, such as the CWTC which also offers a chemical waste collection service and can supply the necessary storage containers; or Be to a re-user of the waste, under approval from EPD. 					be remeved	
S9.5.18	Sewage An adequate number of portable toilets shall be provided for the on-site construction workers. Any waste shall be transferred to a sewage treatment works by a licensed collector.	Proper handling of sewage from worker to avoid odour, pest and litter impacts	All construction sites	Contractor	Construction stage	• Waste Disposal Ordinance (Cap. 54)	
S9.5.19	General Refuse General refuse generated on-site shall be stored in enclosed bins or compaction units separately from construction and chemical wastes. Recycling bins shall also be provided to encourage recycling. A reputable waste collector shall be employed by the Contractor to remove general refuse from the site on a daily basis separately from the construction and chemical wastes. Burning of refuse on construction sites is prohibited by law.	Minimize production of general refuse and avoid odour, pest and litter impacts	All construction sites	Contractor	Construction stage	• Waste Disposal Ordinance (Cap. 54)	
S10.7.2.4	Good Site Practices – The integrity and effectiveness of all silt curtains shall be regularly inspected. Effluent monitoring should be incorporated to make sure that the discharged effluent from construction sites meets the relevant effluent discharge guidelines.	To minimize potential impacts on water quality and protect marine communities within Junk Bay	All construction sites	Contractor	Construction stage	TM-EIAO; and WPCO	
S10.7.2.5	Site runoff control – For works on land, standard site runoff control measures will be established and strictly enforced to ensure that discharge of contaminated or silt-laden runoff into marine waters is minimized.	To minimize potential impacts on water quality and protect marine communities within Junk Bay		Contractor	Construction stage	TM-EIAO; and WPCO	
S10.9.1.1	The marine water quality monitoring programme recommended in Chapter 8 of this EIA report and this EMIS would also serve to protect the marine communities inside Junk Bay.	To minimize potential impacts on water quality and protect marine	Selected monitoring stations (Drawing no. 209506/EMA/WQ/001)	Contractor	Construction stage	TM-EIAO; and WPCO	

		Objectives of the		Implementation		Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
		communities within Junk Bay					
S11.6.2.2	Good Site Practices: – The integrity and effectiveness of all silt curtains should be regularly inspected. Effluent monitoring shall be incorporated to make sure that the discharged effluent from construction sites meets the relevant effluent discharge guidelines.	To minimize potential impacts on water quality and protect fishery resources	All construction sites	Contractor	Construction stage	• TM-EIAO; and • WPCO	
S11.6.2.3	Site runoff control - For works on land, standard site runoff control measures will be established and strictly enforced to ensure that discharge of contaminated or silt-laden runoff is minimized.	To minimize potential impacts on water quality and protect fishery resources		Contractor	Construction stage	• TM-EIAO; and • WPCO	
S11.8.1.1	The marine water quality monitoring programme recommended in Chapter 8 of this EIA report and this EMIS would also serve to protect the fishery resources.	To minimize potential impacts on water quality and protect fishery resources	Selected monitoring stations (Drawing no. 209506/EMA/WQ/001)	Contractor	Construction stage	• TM-EIAO; and • WPCO	
Landscape	and Visual						
S13.8.1.2	 The following mitigation measures should be implemented in the construction stage CM1 – The construction area and contractor's temporary works areas should be minimized to avoid impacts on adjacent landscape. CM2 – Reduction of construction period to practical minimum. CM3 – Topsoil, where identified, should be stripped and stored for re-use in the construction of the soft landscape works, where the soil material meets acceptable criteria and where practical. The Contract Specification shall include storage and reuse of topsoil as appropriate. CM4 – Existing trees on boundary of the Project Area shall be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection measures will be detailed at Tree Removal Application stage). 	Minimize effects of landscape and visual impacts	Work site/during construction	Funded and implemented by CEDD			

		Objectives of the		Implementation		Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 CM5 – Trees unavoidably affected by the works shall be transplanted where practical. Trees should be transplanted straight to their final receptor site and not held in a temporary nursery. A detailed Tree Transplanting Specification shall be provided in the Contract Specification, if applicable. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme. CM6 – Advance screen planting to proposed roads and associated structures. CM7 – hydroseeding or sheeting of soil stockpiles with visually unobtrusive material (in earth tone). CM8 – Screening of construction works by hoardings/noise barriers around works area in visually unobtrusive colours, to screen Works. CM9 – Control night-time lighting and glare by hooding all lights. CM10 – Ensure no run-off into water body adjacent to the Project Area. CM11 – Avoidance of excessive height and bulk of buildings and structures 					
S13.8.1.2 S13.8.1.2	OM1 – Compensatory tree planting for all felled trees shall be provided to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006. The following mitigation measures should be implemented in	Minimize effects of landscape and visual impacts Minimize effects of	Within the site boundary of the proposed works CBL and Road	Funded and implemented by CEDD. Maintained by CEDD and LCSD. Funded and	construction and operational stages	
	 the operational stage: OM2 – A continuous belt of screen planting along the roads. Planting of the belt of trees shall be carried out as advance works ahead of other site formation and building works. OM3 – Maximise soft landscape of the site, where space permits, roadside berms /slope treatment works should be created. OM4 – During detailed design, refine structure layout to create a planting strips along the roads to enhance greenery. OM5 – Use appropriate (visually unobtrusive and 	landscape and visual impacts	D9/during construction and operation	implemented by CEDD. Maintained by CEDD and LCSD.	operational	

		Objectives of the		Implementation		Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	 non-reflective) building materials and colours, and aesthetic design in built structures. OM6 – Streetscape elements (e.g. paving, signage, street furniture, lighting etc.) shall be sensitively designed in a manner that responds to the local context, and minimizes potential negative landscape and visual impacts. Lighting units should be directional and minimize unnecessary light spill. OM7 – Avoidance of excessive height and bulk of buildings and structures 						
Landfill G	as						
S14.7.5	 Precautionary measures The following guidance has been extracted from the EPD's Landfill Gas Hazard Assessment Guidance Note Guidance to ensure a robust and comprehensive set of measures to protect workers are provided. During all works, safety procedures shall be implemented to minimize the risks of fires and explosions, asphyxiation of workers (especially in confined space) and toxicity effects resulting from contact with contaminated soils and groundwater. Safety officers who are specifically trained with regard to LFG and leachate related hazards and the appropriate actions to take in adverse circumstances shall be present on all worksites throughout the works. All personnel who work on site and all visitors to the site shall be made aware of the possibility of ignition of gas in the vicinity of the works, the possible presence of contaminated water and the need to avoid physical contact with it. Those staff who work in, or have responsibility for "at risk" areas, including all excavation workers, supervisors and engineers working within the consultation zone, shall receive appropriate training on working in areas susceptible to LFG hazards. Enhanced personal hygiene practices including washing thoroughly after working and eating only in "clean" areas shall be adopted where contact may have been made with 	Health and safety of the workers	Construction sites within 250m Consultation Zone (Drawing no. 209506/EMA/LFG/001)	Contractor	Construction stage	• Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97)	

		Objectives of the		Implementation		Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	leachate. Ground level construction plant shall be fitted with vertical exhausts at least 0.6m above ground level and with spark arrestors. During piping assembly or ducting construction, all valves/seals shall be closed immediately after installation. As construction progresses, all valves/seals should be closed as installed to prevent the migration of gases through the pipeline/conduit. All piping /ducting shall be capped at the end of each working day. Mobile offices, equipment stores, mess rooms etc. shall be located on an area which has been proven to be gas free (by survey with portable gas detectors) and ongoing monitoring shall be carried out to ensure that these areas remain gas free. Alternatively, such buildings shall be raised clear of the ground. If buildings are raised clear of the ground, the minimum, clear separation distance (as measured from the highest point on the ground surface to the underside of the lowest floor joist) shall be 500mm. However, in this case, it is highly recommended that all the site offices, equipment stores and mess rooms should be located outside the 250m Consultation Zone. Smoking and naked flames shall be prohibited within confined spaces. "No Smoking" and "No Naked Flame" notices in Chinese and English shall be posted prominently around the construction site. Safety notices shall be posted warning of the potential hazards. Welding, flame-cutting or other hot works may only be carried out in confined spaces when controlled by a "permit to work" procedure, properly authorized by the Safety Office. The permit to work procedure shall set down clearly the requirements for continuous monitoring of methane, carbon dioxide and oxygen throughout the period during which the hot works are in progress. The procedure shall also require the presence of an appropriately qualified person who shall be responsible for reviewing the gas measurements as they are made, and who shall have executive			Agent	Stage	

		Objectives of the		Implementation		Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	 unacceptable or hazardous conditions. Only those workers who are appropriately trained and fully aware of the potentially hazardous conditions which may arise shall be permitted to carry out hot works in confined areas. During the construction works, adequate fire extinguishers and breathing apparatus sets shall be made available on site and appropriate training given in their use. 						
S14.7.6	 Landfill gas monitoring The following monitoring shall be undertaken when construction works are carried out in confined space within the 250m Consultation Zone: The works area shall be monitored for methane, carbon dioxide and oxygen using appropriately calibrated portable gas detection equipment. The monitoring requirements and procedures specified in Paragraphs 8.23 to 8.28 of EPD's Guidance Note shall be followed. The monitoring frequency and areas to be monitored shall be set down prior to commencement of the works. Depending on the results of the measurements, actions required will vary. As a minimum these shall encompass the actions specified in Table 14.6 of the EIA report. When portable monitoring equipment is used, the frequency and areas to be monitored should be set down prior to commencement of the works either by the Safety Officer or by an appropriately qualified person. All measurements shall be made with the monitoring tube located not more than 10mm from the surface. A standard form, detailing the location, time of monitoring and equipment used together with the gas concentrations measured, shall be used when undertaking manual monitoring to ensure that all relevant data are recorded. If methane (flammable gas) or carbon dioxide concentrations are in excess of the trigger levels or that of oxygen is below the level specified in the Emergency Management in the 	Health and safety of the workers	Confined space of construction sites within 250m Consultation Zone	Contractor	Construction stage	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97)	
S14.7.8-9	following section, then evacuation shall be initiated. Emergency management In the event of the trigger levels specified in Table 14.6 of the	Health and safety of the workers	Confined space of construction sites within	Contractor	Construction	• Landfill Gas	
	EIA report being exceeded, a person, such as the Safety	WOLKEIS	250m Consultation Zone		stage	Hazard Assessment	

		Objectives of the		Implementation		Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	Officer, shall be nominated, with deputies, to be responsible for dealing with any emergency which may occur due to LFG.					Guidance Note (EPD/TR8/97)
	In an emergency situation the nominated person, or his deputies, shall have the necessary authority and shall ensure that the confined space is evacuated and the necessary works implemented for reducing the concentrations of gas.					
S14.7.16	 Protection measures – Operational phase An assumed presence of landfill gas shall be adopted at all times by maintenance workers; all maintenance workers inspecting any manhole shall be fully trained in the issue of LFG hazard; any manhole which is large enough to permit to access to personnel shall be subject to entry safety procedure; Code of Practice on Safety and Health at Work in Confined Spaces shall be followed to ensures compliance with the Factories and Industrial Undertakings (Confined Spaces) Regulations of the Factories and Industrial Undertakings Ordinance; a strictly regulated "work permit procedure" shall be implemented and the relevant safety procedures must be rigidly followed; and Adequate communication with maintenance staff shall be maintained with respect to LFG. 	Health and safety of the workers	Utility maintenance areas within 250m Consultation Zone/during operational period	Utility companies	Operational stage	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97); and Code of Practice on Safety and Health at Work in Confined Space
S14.7.17	General recommended precautionary & protection measures – Operational phase LGF surveillance exercise shall be undertaken by the utility companies at the utility manholes/inspection chambers. The surveillance exercise shall be undertaken for the duration of the site occupancy, or until such time that EPD agree that surveillance is no longer required and this shall be based on all the available monitoring data for methane, carbon dioxide and oxygen.	Health and safety of the workers	Utility maintenance areas within 250m Consultation Zone/during operational period	Utility companies	Operational stage	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97); and Code of Practice on Safety and Health at Work in Confined Space