

JOB NO.: TCS00975/18

CEDD CONTRACT AGREEMENT NO. EDO/04/2018 -ENVIRONMENTAL TEAM FOR CROSS BAY LINK, TSEUNG KWAN O

MONTHLY ENVIRONMENTAL MONITORING & AUDITING Report of the Project – September 2019

PREPARED FOR CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT (CEDD)

Date	Reference No.	Prepared By	Certified By
14 October 2019	TCS00975/18/600/R0269v2	Http	Am

Martin Li (Environmental Consultant)

Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks
1	8 October 2019	First Submission
2	14 October 2019	Amended against IEC's comment

Acuity Sustainability Consulting Limited – Nature & Technologies (HK) Limited Joint Venture

Our ref: ASCL-2018009

AECOM Asia Company Limited 8/F., Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, New Territories, Hong Kong

Attention: Mr. Conrad NG

13 September 2019

Dear Sir,

Contract No. NE/2017/07 Cross Bay Link, Tseung Kwan O – Main Bridge and Associated Works Monthly EM&A Report for September 2019

I refer to the email of the ET concerning the revised Monthly EM&A Report for September 2019 (Version 2) with Ref. No. TCS00975/18/600/R0269v2. We have no adverse comment on it and verify the captioned according to section 1.9 of Environmental Permit with No. EP-459-2013.

Yours faithfully,

Li Wai Ming Kevin Independent Environmental Checker

cc. Mr. T.W. TAM (ETL) Ms. Sheri S.Y. LEUNG (CEDD)

EXECUTIVE SUMMARY

- ES01 Civil Engineering and Development Department (hereafter referred as "CEDD") is the Project Proponent and the Permit Holder of the Project Cross Bay Link, Tseung Kwan O (hereinafter referred as "the Project") which is a Designated Project to be implemented under Environmental Permit number EP-459/2013 (hereinafter referred as "the EP-459/2013" or "the EP").
- ES02 AUES was awarded the CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O (hereinafter called "the Service Contract"). The Services under the Service Contract is to provide environmental monitoring and audit (EM&A) services for the Works Contracts pursuant to the requirement of Environmental Team (ET) under the Approved EM&A Manual to ensure that the environmental performance of the Works Contracts comply with the requirement specified in the EM&A Manual and EIA Report of Agreement No. CE 43/2008 (HY) Cross Bay Link, Tseung Kwan O - Investigation and other relevant statutory requirements.
- ES03 To facilitate management, the proposed Works of the project was divided into two Civil Engineering and Development Department (CEDD) Works contracts included Contract 1 (Contract No. NE/2017/07) and Contract 2 (Contract No. NE/2017/08). The date for commencement of Contract 1 was 3rd December 2018 while the date for commencement of Contract 2 was 17th January 2019.
- ES04 According to the Approved Environmental Monitoring & Audit (EM&A) Manual, air quality, noise and water quality monitoring are required to be conducted during the construction phase of the Project. As part of the EM&A programme, baseline monitoring shall undertake before the Project construction work commencement to determine the ambient environment condition. The baseline air quality, background noise and water quality monitoring has been carried out between 21st September 2018 and 13th November 2018 at the designated and interim locations. The baseline monitoring report under the EP-459/2013 has been compiled by the ET and verified by Independent Environmental Checker (hereinafter the "IEC") prior submitted to EPD on 19th November 2018 for endorsement.
- ES05 This is the 10^{th} Monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from I^{st} to 30^{th} September 2019 (hereinafter 'the Reporting Period').

CONSTRUCTION WORKS CONDUCTED AT THE REPORTING MONTH

- ES06 The major construction activities of Contract 1 (Contract No. NE/2017/07) undertaken in this Reporting Period are:-
 - Piling works at Portion II
 - Welding of steel bracket for precast shell installation at Portion II
 - Precast shell fabrication at Portion II
 - Precast shell erection at Portion II
- ES07 The major construction activities of Contract 2 (Contract No. NE/2017/08) undertaken in this Reporting Period are:-
 - Trial Pit Work at Portion VI
 - Pre-drill Work at Portion VI
 - Bored Pile Work at Portion III, VI & VII
 - Excavation Work at Portion VI
 - Pre-bored socket H pile at Portion VI

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES08 Environmental monitoring activities under the EM&A program in this Reporting Period are summarized in the following table.

Table ES-4 Summary Environmental Monitoring Activities Undertaken in the Reporting Period

Issues	Enviro	Sessions	
Air Quality	1-Hour TSF	15	
Air Quality	24-Hr TSP		5
Construction Noise	Leq (30min) Daytime	5
Construction Noise	Leq (15min) Evening		4
Water Quality	Marine Water Sampling ^(Note 1)		13
Inspection / Audit	Contract 1	ET Regular Environmental Site Inspection	4
		Joint site audit with Project Consultant and IEC	1
		ET Regular Environmental Site Inspection	4
	Contract 2	Joint site audit with Project Consultant and IEC	1

Note 1 Total sessions are counted by monitoring days

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES09 No air quality monitoring exceedance was recorded in this Reporting Period. No daytime construction noise monitoring exceedance was recorded while four (4) evening additional construction noise monitoring exceedances were recorded in this Reporting Period. For marine water quality monitoring, two (2) Action Level and four (4) Limit Level exceedances for the parameter Suspended Solid were recorded in the reporting period. NOEs were issued to notify EPD, IEC, the Contractor and the Project Consultant. The statistics of environmental exceedance and investigation of exceedance are summarized in the following table.

Table ES-5	Summary Environmental Monitoring Parameter Exceedance in the Reporting
	Period

Environmental	Monitoring	Action	Limit	Event & Action		
Issues	Parameters	Level	Level	Investigation Results	Corrective Actions	
Air Quality	1-Hour TSP	0	0			
Air Quality	24-Hr TSP	0	0			
Construction	Leq _{30min} Daytime	0	0			
Noise	Leq _{15min} Evening	0	4	Not project related	NA	
Water Quality (Marine Water)	DO	0	0			
	Turbidity	0	0			
	SS	2	4	Not project related	NA	

ES10 For the marine water and evening construction noise monitoring exceedances recorded in the reporting period, investigations were carried out and it was considered that the exceedances recorded are unlikely caused by the Project.

ENVIRONMENTAL COMPLAINT

ES11 No environmental complaint was recorded in this Reporting Period for the Project. The statistics of environmental complaint are summarized in the following table.

 Table ES-6
 Summary Environmental Complaint Records in the Reporting Period

Donosting		Environn	Related with		
Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	the Works Contract(s)
1 - 30	1	0	1	NA	NA
September 2019	2	0	0	NA	NA

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES12 No environmental summons or prosecutions was received in this Reporting Period for the Project. The statistics of environmental summons or prosecutions are summarized in the following tables.

Table ES-7 Sumn	nary Environmental Summons	Records in the Reporting Period
-----------------	----------------------------	---------------------------------

Departing		Environn	Related with		
Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	the Works Contract(s)
1 - 30	1	0	0	NA	NA
September 2019	2	0	0	NA	NA

Table ES-8 Summary Environmental Prosecutions Records in the Report

Doporting		Environm	Related with		
Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	the Works Contract(s)
1 - 30	1	0	0	NA	NA
September 2019	2	0	0	NA	NA

REPORTING CHANGE

ES13 There is no reporting change made for this monthly report.

SITE INSPECTION BY EXTERNAL PARTIES

ES14 No site inspection was undertaken by AFCD and EPD within the Reporting Period.

FUTURE KEY ISSUES

- ES15 Due to the coming month is dry and windy season for Hong Kong, the Contractor was reminded that all the works to undertaking must be fulfill environmental statutory requirement, especially construction dust come from working sites of the Project.
- ES16 In regards to the marine works, special attention should be paid on excavation works for the bridge pier foundations underway in which water quality mitigation measures such as erection of silt curtain should be properly implemented and maintained.

Table of Contents

1.	INTRODU	CTION	3
		PROJECT BACKGROUND	3
	1.2	Report Structure	3
2.	PROJECT	ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION	5
		PROJECT ORGANIZATION	5
		CONSTRUCTION PROGRESS	6
	2.3	SUMMARY OF ENVIRONMENTAL SUBMISSIONS	7
3.	SUMMARY	Y OF ENVIRONMENTAL MONITORING PROGRAMMES AND	
	REQUIRE	MENTS	9
		General	9
		MONITORING PARAMETERS	9
		MONITORING LOCATIONS	9
		Monitoring Frequency and Period Monitoring Equipment	10 11
		MONITORING EQUIPMENT MONITORING PROCEDURES	12
		DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	15
		DATA MANAGEMENT AND DATA QA/QC CONTROL	17
4.		JITY MONITORING	18
4.	-	GENERAL	18
		RESULTS OF AIR QUALITY MONITORING IN THE REPORTING MONTH	18
5.	CONSTRU	ICTION NOISE MONITORING	19
		GENERAL	19
	5.2	RESULTS OF NOISE MONITORING	19
6.	WATER O	UALITY MONITORING	21
0.	•	GENERAL	21
		RESULTS OF WATER QUALITY MONITORING	21
7.	WASTE M	ANAGEMENT	26
7.		GENERAL WASTE MANAGEMENT	26
		RECORDS OF WASTE QUANTITIES	26
8.	SITE INSP		27
0.		REQUIREMENTS	27
		FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	27
9.		L GAS MONITORING	28
9.		GENERAL REQUIREMENT	20 29
		LIMIT LEVELS AND EVENT AND ACTION PLAN	29
		LANDFILL GAS MONITORING	29
10.	ENVIRON	MENTAL COMPLAINT AND NON-COMPLIANCE	30
100		ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	30
11	IMPLEME	ENTATION STATUS OF MITIGATION MEASURES	31
		GENERAL REQUIREMENTS	31
		TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	31
	11.3	IMPACT FORECAST	32
12.	CONCLUS	SIONS AND RECOMMENDATIONS	33
		Conclusions	33
	12.2 I	RECOMMENDATIONS	33

1

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report - September 2019

LIST OF TABI	LES
TABLE 2-1	DOCUMENTS SUBMISSION UNDER ENVIRONMENTAL PERMIT REQUIREMENT
TABLE 2-2	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE PROJECT WORKS (CONTRACT 1)
TABLE 2-3	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE PROJECT WORKS (CONTRACT 2)
TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	DESIGNATED AIR QUALITY MONITORING LOCATION RECOMMENDED IN EM&A MANUAL
TABLE 3-3	DESIGNATED CONSTRUCTION NOISE MONITORING LOCATION RECOMMENDED IN EM&A MANUAL
TABLE 3-4	INTERIM ALTERNATIVE LOCATION FOR AIR QUALITY AND NOISE MONITORING
TABLE 3-5	LOCATION OF WATER QUALITY MONITORING STATION
TABLE 3-6	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-7	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-8	WATER MONITORING EQUIPMENT
TABLE 3-9	TESTING METHOD AND REPORTING LIMIT OF THE CHEMICAL ANALYSIS
TABLE 3-10	ACTION AND LIMIT LEVELS FOR AIR QUALITY
TABLE 3-11	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-12	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	1-HOUR AND 24-HOUR TSP AIR QUALITY IMPACT MONITORING RESULTS
TABLE 5-1	CONSTRUCTION NOISE IMPACT MONITORING RESULTS
TABLE 6-1	Result Summary of Depth Average (Surface & Middle Layer) of DO (mg/L)
TABLE 6-2	RESULT SUMMARY OF BOTTOM DEPTH OF DO (MG/L)
TABLE 6-3	RESULT SUMMARY OF DEPTH AVERAGE OF TURBIDITY (NTU)
TABLE 6-4	RESULT SUMMARY OF DEPTH AVERAGE OF SUSPENDED SOLID (MG/L)
TABLE 6-5	RESULT SUMMARY OF DEPTH AVERAGE OF TEMPERATURE (°C)
TABLE 6-6	RESULT SUMMARY OF DEPTH AVERAGE OF SALINITY (PPT)
TABLE 6-7	RESULT SUMMARY OF DEPTH AVERAGE OF PH
TABLE 6-8	SUMMARY OF WATER QUALITY EXCEEDANCE
TABLE 7-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
TABLE 7-2	SUMMARY OF QUANTITIES OF C&D WASTES
TABLE 8-1	SITE OBSERVATIONS OF CONTRACT 1
TABLE 8-2	SITE OBSERVATIONS OF CONTRACT 1
TABLE 9-1	ACTIONS IN THE EVENT OF LANDFILL GAS BEING DETECTED IN EXCAVATIONS
TABLE 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
TABLE 11-1	ENVIRONMENTAL MITIGATION MEASURES IN THE REPORTING MONTH

LIST OF APPENDICES

- APPENDIX A PROJECT LAYOUT PLAN
- PROJECT ORGANIZATION CHART & CONTACT DETAILS OF KEY PERSONNEL APPENDIX B
- APPENDIX C **3-MONTH ROLLING CONSTRUCTION PROGRAM**
- APPENDIX D MONITORING LOCATION (AIR QUALITY, NOISE AND WATER QUALITY)
- APPENDIX E EVENT AND ACTION PLAN
- APPENDIX F IMPACT MONITORING SCHEDULE OF THE REPORTING MONTH AND COMING MONTH
- APPENDIX G CALIBRATION CERTIFICATES OF EQUIPMENT AND THE ACCREDITATION LABORATORY CERTIFICATE
- APPENDIX H DATABASE OF MONITORING RESULTS
- APPENDIX I GRAPHICAL PLOTS OF MONITORING RESULTS
- APPENDIX J METEOROLOGICAL DATA
- APPENDIX K WASTE FLOW TABLE
- APPENDIX L IMPLEMENTATION RECORD OF WATER MITIGATION MEASURES IN THE REPORTING MONTH
- APPENDIX M IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES (ISEMM)

1. INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department (hereafter referred as "CEDD") is the Project Proponent and the Permit Holder of the Project Cross Bay Link, Tseung Kwan O (hereinafter referred as "the Project") which is a Designated Project to be implemented under Environmental Permit number EP-459/2013 (hereinafter referred as "the EP-459/2013" or "the EP").
- 1.1.2 AUES was awarded the CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O (hereinafter called "the Service Contract"). The Services under the Service Contract is to provide environmental monitoring and audit (EM&A) services for the Works Contracts pursuant to the requirement of Environmental Team (ET) under the Approved EM&A Manual to ensure that the environmental performance of the Works Contracts comply with the requirement specified in the EM&A Manual and EIA Report of Agreement No. CE 43/2008 (HY) Cross Bay Link, Tseung Kwan O - Investigation and other relevant statutory requirements.
- 1.1.3 To facilitate management, the proposed Works of *Cross Bay Link, Tseung Kwan O* (hereinafter called "the Project") was divided into two Civil Engineering and Development Department (CEDD) Works contracts included *Contract 1 (Contract No. NE/2017/07)* and *Contract 2 (Contract No. NE/2017/08)*. The details of each contract Works are summarized below and the delineation of each contract is shown in *Appendix A*.

Contract 1 (Contract No. NE/2017/07)

- (i) 400m section of marine viaducts of steel deck sections including the Eternal Arch Bridge;
- (ii) 600m section of marine viaducts of concrete deck sections;
- (iii) An E&M Plantroom and associated building services; and
- (iv) E&M provisions.

Contract 2 (Contract No. NE/2017/08)

- (i) Elevated deck structures along Road D9;
- (ii) A 210m section of cycle track and footpath ramp bridge;
- (iii) A 630m section of noise semi-enclosure covering the entire length of Road D9, and;
- (iv) Lift, staircase, modification of existing seawall along Road D9, landscaping and miscellaneous works.
- 1.1.4 The date for commencement of Contract 1 is 3^{rd} December 2018 while the date for commencement of Contract 2 is 17^{th} January 2019.
- 1.1.5 As part of the EM&A programme, baseline monitoring shall be undertaken before the Project construction work commencement to determine the ambient environmental condition. The baseline air quality, background noise and water quality monitoring has been carried out between **21**st September 2018 and 13th November 2018 at the designated and interim locations. The baseline monitoring report under the EP-459/2013 has been compiled by the ET and verified by Independent Environmental Checker (hereinafter the "IEC") prior submitted to EPD on 19th November 2018 for endorsement.
- 1.1.6 This is the 10^{th} Monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from I^{st} to 30^{th} September 2019 (hereinafter 'the Reporting Period').

1.2 REPORT STRUCTURE

- 1.2.1 The Environmental Monitoring and Audit (EM&A) Monthly Report is structured into the following sections:-
 - Section 1IntroductionSection 2Project Organization and Construction ProgressSection 3Summary of Impact Monitoring RequirementsSection 4Air Quality MonitoringSection 5Construction Noise Monitoring

Section 6	Water Quality Monitoring
Section 7	Waste Management
Section 8	Site Inspections
Section 9	Landfill Gas Monitoring
Section 10	Environmental Complaints and Non-Compliance
Section 11	Implementation Status of Mitigation Measures
Section 12	Conclusions and Recommendations

2. PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION

2.1 **PROJECT ORGANIZATION**

2.1.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

The Project Consultant

- 2.1.2 The Project Consultant (hereinafter "the Consultant") is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Consultant with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors', ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation

The Contractor(s) of Works Contract(s)

- 2.1.3 There will be one contractor for each individual works contract. The Contractor(s) should report to the Consultant. The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.1.4 ET shall not be in any way an associated body of the Contractor(s) and employed by the Permit Holder (i.e., CEDD) to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitable qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. ET shall report to the Project Proponent and the duties shall include:
 - Conduct baseline monitoring, impact monitoring and post-construction monitoring and the associated in-situ and laboratory tests to monitor various environmental parameters as required in the EM&A Manual and the EP
 - Analyze the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications

- Audit environmental conditions on site
- Report on the environmental monitoring and audit results to EPD, the Consultant, the IEC and Contractor(s) or their delegated representatives
- Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
- Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
- Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
- Adhere to the procedures for carrying out complaint investigation
- Set up a dedicated web site where the project information, all environmental monitoring and audit data and reports described in Condition 5.2 of the EP, and all finalized submissions and plans required under the EP are to be placed for public inspection
- Upload the environmental monitoring results to the dedicated web site in accordance with requirements of the EP and EM&A Manual
- To carry out the Operational Phase Landfill Gas monitoring during effluent drainage system maintenance for one year

Independent Environmental Checker (IEC)

- 2.1.5 IEC will be employed for this Project. The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor(s) or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 7 years' experience in EM&A and have relevant professional qualifications. The duty of IEC should be:
 - Provide proactive advice to the Project Consultant and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the Project Consultant and Project Proponent on a monthly basis

2.2 CONSTRUCTION PROGRESS

2.2.1 3-month rolling construction program of the each Works Contract is enclosed in *Appendix C*; and the major construction activities undertaken in the Reporting Period is presented in below sub-sections.

Contract 1 (Contract No. NE/2017/07)

- 2.2.2 The major construction activities of Contract 1 undertaken in this Reporting Period are:-
 - Piling works at Portion II
 - Welding of steel bracket for precast shell installation at Portion II
 - Precast shell fabrication at Portion II
 - Precast shell erection at Portion II

Contract 2 (Contract No. NE/2017/08)

- 2.2.3 The major construction activities of Contract 2 undertaken in this Reporting Period are:-
 - Trial Pit Work at Portion VI
 - Pre-drill Work at Portion VI
 - Bored Pile Work at Portion III, VI & VII
 - Excavation Work at Portion VI
 - Pre-bored socket H pile at Portion VI

2.3 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.3.1 The required documents list below shall be to submit to EPD for retention:

Table 2-1 Documents Submission under Environmental Permit Requirement

EP condition	Submission to EPD	Requirement	Situation
1.11		no later than 1 month prior to the commencement of construction of the Project	
	the Community Liaison	commencement of construction of the Project	• CLG setting has submitted to EPD on 9 Oct 2018
2.4	Organization of Main	No later than 2 weeks before the commencement of construction of the Project	8 8
2.5	Waste Management Plan (WMP)	No later than 1 month before commencement of construction of the Project	 WMP of Contract 1 was submitted to EPD in 11 October 2018 WMP of Contract 2 was submitted to EPD in 14 December 2018
	1 0	No later than 1 month before commencement of construction of the Project	 LSMP was submitted on 1 Nov 2018
2.7	Landfill Gas Hazards	No later than 1 month before commencement of construction of the Project	

- 2.3.2 Upon completed baseline monitoring, a Baseline Monitoring Report was verified by IEC on 19 November 2018 and submitted to EPD on that day for endorsement.
- 2.3.3 The notification of Project dedicated web site to EPD was made on 9 January 2019 (http://www.envcbltko.hk/).
- 2.3.4 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project are presented in *Table 2-2*.

Table 2-2 Status of Environmental	Licenses and Permits o	of the Project Works (Contract 1)
-----------------------------------	------------------------	-----------------------------------

		License/Permit Status				
Item	Description	Permit no./	ermit no./ Valid Period			
Item	Description	Account no./ Ref. no.	From	То	Status	
1	Notification pursuant to Air pollution Control (Construction Dust) Regulation				Notified on 11 July 2018	
2	Chemical Waste Producer Registration	5213-839-C1232 -19	28 Aug 2018	N/A		
3	Water Pollution Control Ordinance - Discharge	WT00032842-20 18	1 Mar 2019	31 Mar 2024	Valid until 31 March 2024	
	License	WT00034178-20 19	15 Jul 2019	31 Jul 2024	Valid until 31 July 2024	
4	BillingAccountforDisposalofConstruction Waste	7031412	24 Jul 2018	N/A		
	BillingAccountforDisposalofConstructionWaste(throughVesseldelivering)	7032666	10 Jul 2019	10 Oct 2019	Valid until10 Oct 2019	
5	Marine Dumping Permit	EP-MD-19-066	24 Apr 2019	30 Sep 2019	Valid until 30 Sep 2019	
		EP-MD-20-045	30 Aug 2019	29 Sep 2019	Valid until 29 Sep 2019	
6	Construction Noise Permit	GW-RE0594-19	23 Jul 2019	22 Sep 2019	Valid until 22 Sep 2019	
	. Evaning maring work at Dartign	GW-RE0759-19	22 Sep 2019	30 Oct 2019	Valid until 30 Oct 2019	

Remark: Evening marine work at Portion II for Contract 1 was scheduled from 2 – 7, 9 – 13, 16 – 21, 24 - 28 and 30 September 2019

			License/Per	mit Status	
Item	Description	Permit no./	Valid Period		
Ium	Description	Account no./ Ref. no.	From	То	Status
1	Notification pursuant to Air pollution Control (Construction Dust) Regulation				Notified on 31 October 2018
2	Chemical Waste Producer Registration	5213-839-B2500 -04	22 Nov 2018	N/A	
3	Water Pollution Control Ordinance - Discharge License	WT00034244-20 19	8 Jul 2019	31 Jul 2024	Valid until 31 July 2024
4	BillingAccountforDisposalofConstruction Waste	7032702	8 Nov 2018	N/A	
5	Marine Dumping Permit	EP/MD/20-033	8 Aug 2019	30 Sep 2019	Valid until 30 September 2019
6	Construction Noise Permit	GW-RE0596-19	30 Jul 2019	4 Sep 2019	Valid until 4 Sep 2019
		GW-RE0683-19	4 Sep 2019	30 Oct 2019	Valid until 30 Oct 2019

Remark: No evening work and night work was carried out for Contract 2

3. SUMMARY OF ENVIRONMENTAL MONITORING PROGRAMMES AND REQUIREMENTS

3.1 GENERAL

3.1.1 The Environmental Monitoring and Audit Programmes and requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project. A summary of EM&A programmes and requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

3.2.1 Monitoring parameters of air quality, noise and water quality are summarized in *Table 3-1*.

Tuble 5.1 Summary of Liver's Requirements			
Environmental Issue	Parameters		
Air Quality	1-hour TSP by Real-Time Portable Dust Meter; and24-hour TSP by High Volume Air Sampler		
Noise	 Leq (30min) in six consecutive Leq(5 min) between 07:00-19:00 on normal weekdays Supplementary information for data auditing, statistical results such as L₁₀ and L₉₀ shall also be obtained for reference. 		
Water Quality	 In-situ measurement – Dissolved Oxygen (DO) concentration (mg/L) & saturation (%), pH, Salinity (mg/L), Temperature (°C) and Turbidity (NTU); and Laboratory analysis – SS (mg/L) 		

Table 3-1 Summary of EM&A Requirements

3.3 MONITORING LOCATIONS

Air Quality and Construction Noise

3.3.1 According to the Approved EM&A Manual Section 5.4 and Section 6.3, three (3) representative air sensitive receivers (ASR) and four (4) representative noise sensitive receivers were designated as monitoring stations. The designated air quality and noise monitoring locations are listed in *Table 3-2* and *Table 3-3*, and illustrated in *Appendix D*.

Table 3-2 Designated Air Quality Monitoring Location recommended in EM&A Manual

ID	Location in the EM&A Manual	Currently Situation
AM1	Tung Wah Group of Hospitals Aided Primary School & Secondary School	Not yet construct
AM2	Lohas Park Stage 2 (Planned Development in Area 86)	Under Construction
AM3	Lohas Park Stage 3 (Planned Development in Area 86)	Under Construction

Table 3-3 Designated Construction Noise Monitoring Location recommended by EM&A Manual

ID	Location	Currently Situation
CNMS-1	Lohas Park Stage 1(Planned Development in Area 86, Package 5) (Southeast facade)	Under Construction
CNMS-2	Lohas Park Stage 1 (Planned Development in Area 86, Package 6) (Southeast facade)	Under Construction
CNMS-3	Lohas Park Stage 3 (Planned Development in Area 86,Package 11) (West facade)	Under Construction
CNMS-4	Tung Wah Group of Hospitals Aided Primary School & Secondary School (Southwest facade)	Not yet construct

3.3.2 As observed and confirmed by ET and IEC during the joint site visit on 29th August 2018, the designated air quality and noise monitoring locations are under construction or yet to construct. It is considered that these designated locations are not appropriate to perform air quality and noise monitoring. In this regard, alternative locations were proposed as interim arrangement to carry out air quality and noise monitoring before occupation of the designated monitoring location. A letter enclosed with the alternative location proposal and IEC verification (Our Ref: TCS00975/18/300/L0038) was sent to EPD on 19th October 2018 and the proposal was agreed by EPD. Therefore, air quality and construction noise impact monitoring would be performed at the

agreed alternative locations until the designated sensitive receivers occupied and granted the premises.

3.3.3 The agreed alternative monitoring location for impact air quality and noise monitoring are summarized in Table 3-4 and illustrated in *Appendix D*.

Location ID Monitoring Parameter Location		Location
AM4	1-Hour TSP Air Quality	Podium of Lohas Park Phase 2A (Le Prestige)
AM5	24-Hour TSP Air Quality	Boundary of Site Office near Junction of Wan Po Road and Wan O Road
CNMS-5	Noise (L _{eq} , L ₁₀ & L ₉₀)	Podium of Lohas Park Phase 2A (Le Prestige)

Table 3-4Interim alternative location for air quality and noise monitoring

Remark: Since 24-Hour TSP Air Quality monitoring is not granted at AM4 Lohas Park Phase 2A, the 24-Hour TSP monitoring was therefore proposed at AM5 which is located at the boundary of the project site office.

Water Quality

3.3.4 According to Table 7.1 of the approved EM&A Manual Section 7.4, two Control Stations (C3 & C4), six (6) sensitive receivers (CC1, CC2, CC3, CC4, CC13 & SWI1) and one (1) Gradient station (I1) are recommended to perform water quality monitoring. Details and coordinate of these water quality monitoring stations are described in *Table 3-5* and the locations is shown in *Appendix D*.

Table 3-5	Location of Water Quality Monitoring Station
-----------	--

Station	Coord	linates	Description	
Station	Easting	Northing	Description	
CC1	843201	816416	Sensitive Receiver – Coral Sites at Chiu Keng Wan	
CC2	844076	817091	Sensitive Receiver – Coral Sites at Junk Bay	
CC3	844606	817941	Sensitive Receiver – Coral Sites at Junk Island	
CC4	845444	815595	Sensitive Receiver – Coral Sites at Fat Tong Chau West	
CC13	844200	817495	Sensitive Receiver – Coral Sites at Junk Bay near Chiu Keng Wan	
SWI1	845512	817442	Sensitive Receiver – Tseung Kwan O Salt Water Intake	
C3	843821	816211	Control Station (Ebb Tide) – within Junk Bay	
C4	844621	815770	Control Station (Flood Tide) – within Junk Bay	
I1	844602	817675	Gradient Station – in between Lam Tin Tunnel (LTT) and CBL	

3.4 MONITORING FREQUENCY AND PERIOD

3.4.1 To according with the approved *EM&A Manual*, impact monitoring requirements are presented as follows.

<u>Air Quality Monitoring</u>

- 3.4.2 Air quality impact monitoring frequency is as follows:
 - Once every 6 days of 24-hour TSP and 3 times of 1-hour TSP monitoring; during course of works throughout the construction period

Construction Noise Monitoring

- 3.4.3 Construction noise monitoring frequency is as follows:
 - One set of Leq_(30min) measurements in a weekly basis between 07:00 and 19:00 hours on normal weekdays during course of works as throughout the construction period
 - If construction works are extended to include works during the hours of 1900-0700, additional weekly impact monitoring shall be carried out during evening and night-time works. Applicable permits under the NCO shall be obtained by the Contractor.

Water Quality (Marine Water) Monitoring

- 3.4.4 Marine water impact monitoring frequency is as follows:
 - Three days a week, at mid ebb and mid flood tides during course of pile excavation works for the bridge pier foundations underway. Moreover, the intervals between 2 consecutive sets of monitoring day shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

<u>Air Quality Monitoring</u>

3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50)*, Appendix *B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to prove that the instrument is capable of achieving a comparable results to the HVS. The instrument should be calibrated regularly, and the 1-hour sampling shall be determined on yearly basis by the HVS to check the validity and accuracy of the results measured by direct reading method. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory. The equipment used for air quality monitoring is listed in *Table 3-6*.

	Equipment	Model
24-hour TSP	High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170
	Calibration Kit	TISCH Model TE-5025A (S/N: 438320)
1- hour TSP	Portable Dust Meter	Laser Dust Monitor Sibata LD-3B Laser Dust Monitor (S/N: 3Y6503)

 Table 3-6
 Air Quality Monitoring Equipment

Noise Monitoring

3.5.2 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in ms⁻¹. Noise equipment will be used for impact monitoring is listed in *Table 3-7*.

 Table 3-7
 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	Rion NL-52 (S/N:00464681)
Calibrator	Rion NC-74 (S/N:34657231)
Portable Wind Speed Indicator	Anemometer AZ Instrument 8908

Water Quality Monitoring

- 3.5.3 For water quality monitoring, the equipment should fulfill the requirement under the Approved *EM&A Manual Section 7.2.* The requirement is summarized below:
 - **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable, weatherproof dissolved oxygen measuring instrument completed with cable, sensor, comprehensive operation manuals, and should be operable from a DC power source. It should be capable of measuring: dissolved oxygen levels in the range of 0-20 mg/L and 0-200% saturation; and a temperature of 0-45 degrees Celsius. It should have a membrane electrode with automatic temperature compensation complete with a cable of not less than 35 m in length. Sufficient stocks of spare electrodes and cable should be available for replacement where necessary.
 - *Turbidity Measurement Equipment* The instrument shall be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment shall use a DC power source. It shall have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
 - *Salinity Measurement Instrument* A portable salinometer capable of measuring salinity in the range of 0-40 ppt should be provided for measuring salinity of the water at each monitoring location.

- *Water Depth Detector* A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. A detector affixed to the bottom of the works boat, if the same vessel is to be used throughout the monitoring programme, is preferred.
- **Positioning Device** hand-held or boat-fixed type digital Global Positioning System (GPS) with way point bearing indication or other equipment instrument of similar accuracy, should be provided and used during water quality monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- *Water Sampling Equipment* A water sampler, consisting of a transparent PVC or glass cylinder of not less than two liters, which can be effectively sealed with cups at both ends, should be used. The water sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.

3.5.4 Equipment used for water quality impact monitoring is listed in *Table 3-8*.

Equipment	Model			
A Digital Global Positioning System	GPS12 Garmin			
Water Depth Detector	Eagle Sonar CUDA 300			
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends			
Thermometer & DO meter				
pH meter	YSI ProDSS Digital Sampling System Water Quality Meter			
Turbidimeter	(S/N: 15H102620/15H103928)			
Salinometer				
Sample Container	High density polythene bottles (provided by laboratory)			
Storage Container	'Willow' 33-litter plastic cool box with Ice pad			

Table 3-8Water Monitoring Equipment

3.6 MONITORING PROCEDURES <u>Air Quality</u>

1-hour TSP

- 3.6.1 The 1-hour TSP monitor was a brand named "*Sibata LD-3 Laser Dust monitor Particle Mass Profiler & Counter*" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.

24-hour TSP

- 3.6.2 The equipment used for 24-hour TSP measurement is TISCH, Model TE-5170 TSP High Volume Air Sampler, which complied with *EPA Code of Federal Regulation, Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:
 - (a.) An anodized aluminum shelter;
 - (b.) A 8"x10" stainless steel filter holder;
 - (c.) A blower motor assembly;
 - (d.) A continuous flow/pressure recorder;
 - (e.) A motor speed-voltage control/elapsed time indicator;
 - (f.) A 7-day mechanical timer, and
 - (g.) A power supply of 220v/50 Hz
- 3.6.3 For HVS for 24-hour TSP monitoring, the HVS is mounted in a metallic cage with a top for protection and also it is sat on the existing ground or the roof of building. The flow rate of the HVS between 0.6m³/min and 1.7m³/min will be properly set in accordance with the manufacturer's instruction to within the range recommended in *EPA Code of Federal*

Regulation, Appendix B to Part 50. Glass Fiber Filter 8" x 10" of TE-653 will be used for 24-Hour TSP monitoring and would be supplied by laboratory. The general procedures of sampling are described as below:-

- A horizontal platform with appropriate support to secure the samples against gusty wind should be provided;
- No two samplers should be placed less than 2 meters apart;
- The distance between the sampler and an obstacle, such as building, must be at least twice the height that the obstacle protrudes above the sample;
- A minimum of 2 meters of separation from any supporting structure, measured horizontally is required;
- Before placing any filter media at the HVS, the power supply will be checked to ensure the sampler work properly;
- The filter paper will be set to align on the screen of HVS to ensure that the gasket formed an air tight seal on the outer edges of the filter. Then filter holder frame will be tightened to the filter hold with swing bolts. The holding pressure should be sufficient to avoid air leakage at the edge.
- The mechanical timer will be set for a sampling period of 24 hours (00:00 mid-night to 00:00 mid-night next day). Information will be recorded on the field data sheet, which would be included the sampling data, starting time, the weather condition at current and the filter paper ID with the initial weight;
- After sampling, the filter paper will be collected and transfer from the filter holder of the HVS to a sealed envelope and sent to a local HOKLAS accredited laboratory for quantifying.
- 3.6.4 All the sampled 24-hour TSP filters will be kept in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C, for six months prior to disposal.
- 3.6.5 The HVS used for 24-hour TSP monitoring will be calibrated in two months interval for in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A) to establish a relationship between the follow recorder meter reading in cfm (cubic feet per minute) and the standard flow rate, Qstd, in m³/min. Motor brushes of HVS will be regularly replaced. The calibration certificates of the air quality monitoring equipment used for the impact monitoring and the HOKLAS accredited certificate of laboratory was provided in Appendix G.

Noise Monitoring

- 3.6.6 As referred to in the Technical Memorandum (TM) issued under the NCO, sound level meters in compliance with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications shall be used for carrying out the noise monitoring. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.
- 3.6.7 All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq_(30 min) in six consecutive Leq_(5 min) measurements will be used as the monitoring parameter for the time period between 07:00-19:00 hours on weekdays throughout the construction period.
- 3.6.8 The sound level meter will be mounted on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield will be fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point would normally be at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point would be at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.

- 3.6.9 Immediately prior to and following each noise measurement the accuracy of the sound level meter will be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration level from before and after the noise measurement agrees to within 1.0 dB.
- 3.6.10 Noise measurements will not be made in fog, rain, wind with a steady speed exceeding 5m/s or wind with gusts exceeding 10m/s. The wind speed will be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.6.11 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis. The calibration certificates of noise monitoring equipment used for the impact monitoring was provided in Appendix G.

Marine Water Quality

- 3.6.12 Marine water quality monitoring would be conducted at all designated locations in accordance with Table 7.1 of the approved EM&A Manual. The procedures of water sampling, in-situ measurement and chemical analysis are described as below:
 - A Global Positioning System (GPS) will be used to ensure that the correct location was selected prior to sample collection. A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.
 - The marine water sampler will be lowered into the water body at a predetermined depth. The trigger system of the sampler is activated with a messenger and opening ends of the sampler are closed accordingly then the sample of water is collected.
 - During the sampling, the sampling container will be rinsed to use a portion of the marine water sample before the water sample is transferred to the container. Upon sampling completion, the container will be sealed with a screw cap.
 - Before the sampling process, general information such as the date and time of sampling, weather condition and tidal condition as well as the personnel responsible for the monitoring will be recorded on the monitoring field data sheet.
 - In-situ measurement including water temperature, turbidity, dissolved oxygen, salinity, pH and water depth will be recorded at the identified monitoring station and depth. At each station, marine water samples will be collected at three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m. Samples at 1m below water surface and 1m above sea bottom will be collected when the water depth is between 3m and 6m. And sample at mid-depth will be taken when the water depth is below 3m.
 - For the in-situ measurement, two consecutive measurements of sampling depth, temperature, dissolved oxygen, salinity, turbidity and pH concentration will be measured at the sea. The YSI ProDSS Multifunctional Meter will be retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set is more than 25% of the value of the first reading, the reading is discarded and further readings is taken.
 - Marine water sample will be collected by using a water sampler. The high-density polythene bottles will be filled after the water sample collected from the sea. Before the water sample being fills into the sampling bottles, the sampling bottles will be pre-rinsed with the same water sample. The sampling bottles will then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to HOKLAS accredited laboratory for the chemical analysis as followed APHA *Standard Methods for the Examination of Water and Wastewater* 19ed 2540D, unless otherwise specified.
- 3.6.13 Before each round of monitoring, the dissolved oxygen probe will be calibrated by wet bulb method; a zero check in distilled water will be performed with the turbidity and salinity probes. The turbidity probe also will be checked with a standard solution of known NTU and known value of the pH standard solution were used to check the accuracy of pH value before each

monitoring day. Moreover, all in-situ measurement equipment used marine water monitoring will be calibrated at three months interval.

Laboratory Analysis

3.6.14 All water samples included the duplicate samples, was tested with chemical analysis as specified in the EM&A Manual by a HOKALS accredited laboratory - ALS Technichem (HK) Pty Ltd. The chemicals analysis method and reporting limit show *Table 3-9*.

Table 3-9	Testing Method and Reporting Limit of the Chemical Analysis
-----------	---

Parameter	ALS Method Code	In-house Method Reference (1)	Reporting Limit
Total Suspended Solids	EA025	APHA 2540D	1 mg/L

Note: 1.

The exact method shall depend on the laboratory accredited method. APHA = Standard Methods for the Examination of Water and Wastewater by the American Public Health Association.

3.6.15 The determination works will start within 24 hours after collection of the water samples or within the holding time as advised by the laboratory.

Meteorological Information

- 3.6.16 The meteorological information including wind direction, wind speed, humidity and temperature etc. of impact monitoring is extracted from the closest Tseung Kwan O Hong Kong Observatory Station. Moreover, the data of rainfall and air pressure would be extracted from King's Park Station.
- 3.6.17 For marine water quality monitoring, tidal information would be referred to tide gauge at Tai Miu Wan.

3.7 DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.7.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. A summary of the Action/Limit (A/L) Levels for air quality, construction noise and water quality are shown in *Tables 3-10*, *3-11* and *3-12* respectively.

Monitoring Station	Action Lev	vel (µg /m ³)	Limit Level (µg/m ³)			
Monitoring Station	1-Hour TSP 24-Hr TSP		1-Hour TSP	24-Hr TSP		
AM4	278	NA	500	NA		
AM5	NA	A 190		260		
Note: 1-Hour & 24-Hr TSP of Action Level = $(Average Baseline Results \times 1.3 + Limit level)/2$						

 Table 3-10
 Action & Limit Levels of Air Quality (1-Hour & 24-Hr TSP)

Table 3-11 Action and Limit Levels for Construction Noise, dB(A)

Monitoring Location	Action Level	Limit Level			
	Time Period: 0700-1900 hours o	on normal weekdays (Leq30min)			
CNMS-5	When one or more documented complaints are received	75 dB(A)			
CINIVID-5	Time Period: 1900-2300 hours on all days (Leq15min)				
	When one or more documented complaints are received	55 dB(A)			
Remarks:					
	e monitoring will be resumed at the d S4 once they are available and permission	lesignated locations CNMS-1, CNMS-2,			

CNMS-3 and CNMS4 once they are available and permission are granted;

The designated locations CNMS-1, CNMS-2 and CNMS-3 are located at residential building which are still under construction, Limit Level of 75dB(A) will be adopted until they are occupied;

- 3. The designated location CNMS-4 is located at planned school and still not yet to construction. When the school occupied and operated, Limit Level of 70dB(A) should be adopted and should be reduced to 65dB(A) during examination period; and
- If construction works are required during restricted hours, the conditions stipulated in the 4construction noise permit issued by the Noise Control Authority shall be followed.

Table 3-12 Action and Limit Levels for Water Quality

Monitoring	Depth Average of SS (mg/L)							
Station	Actio	on Level	Li	mit Level				
CC1	7.8	OR 120% of upstream control	9.3	OR 130% of upstream control				
CC2	9.0	station at the same	9.2	station at the same				
CC3	8.2	tide of the same day (Control Station C3 at Ebb tide and	9.0	tide of the same day (Control Station C3 at Ebb tide and				
CC4	13.8	Control Station C4 at	15.4	Control Station C4 at				
CC13	8.9	Flood tide), whichever is higher	10.3	Flood tide) , whichever is higher				
SWI1	8	mg/L		10 mg/L				
		Dissolved Oxy	gen (mg/L)					
Monitoring	Depth Average of S	Surface and Mid-depth	<u> </u>	Bottom				
Location	Action Level	Limit Level	Action Leve					
CC1	5.8	5.7	5.3	5.2				
CC2	5.8	5.7	5.3	5.1				
CC3	5.5	5.4	4.9	4.7				
CC4	5.7	5.7	5.5	5.4				
CC13	5.6	5.5	5.3	5.2				
SWI1	5.4	4.8	5.1	5.0				
Monitoring		Depth Average of T	urbidity (NTU)				
Location	Actio	on Level		mit Level				
CC1	5.8	OR 120% of	6.0	OR 130% of				
CC2	4.6	upstream control station at the same	5.5	upstream control station at the same				
CC3	4.8	tide of the same day	5.4	tide of the same day				
CC4	6.1	(Control Station C3 at Ebb tide and	7.1	(Control Station C3 at Ebb tide and				
CC13	6.0	Control Station C4 at Flood tide),	6.3	Control Station C4 at Flood tide),				
SWI1	6.1	whichever is higher	7.1	whichever is higher				

3.7.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix E*.

3.8 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.8.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database properly maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.
- 3.8.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4. AIR QUALITY MONITORING

4.1 GENERAL

- 4.1.1 In the Reporting Period, 1-Hour TSP and 24-Hr TSP of air quality monitoring were respectively performed at interim alternative monitoring locations AM4 and AM5. The air quality monitoring schedule is presented in *Appendix F*.
- 4.1.2 Valid calibration certificates of monitoring equipment are shown in *Appendix G* and the monitoring results are summarized in the following sub-sections

4.2 **RESULTS OF AIR QUALITY MONITORING IN THE REPORTING MONTH**

4.2.1 During the Reporting Period, 15 sessions of 1-hour TSP and 5 sessions of 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Table 4-1*. The detailed 24-hour TSP monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

AN	И5	AM4				
24-Hr TSP (μg/m ³)		1-Hour TSP (µg/m ³)				
Date	Meas. Result	Date	Start Time	1 st Meas.	2 nd Meas.	3 rd Meas.
5-Sep-19	164	6-Sep-19	13:29	66	69	65
11-Sep-19	73	12-Sep-19	9:14	71	73	68
17-Sep-19	52	18-Sep-19	13:47	116	119	124
23-Sep-19	174	24-Sep-19	9:09	60	68	65
28-Sep-19	56	30-Sep-19	9:35	71	74	68
Average	104	Ave	rage	60		
(Range)	(52 - 174)	(Rai	nge)	(78 – 124)		

 Table 4-1
 1-Hour and 24-Hour TSP Air Quality Impact Monitoring Results

- 4.2.2 As shown in *Table 4-1*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action / Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.3 The meteorological data during impact monitoring period is summarized in *Appendix J*.

5. CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction noise quality monitoring was performed at interim alternative monitoring location CNMS-5. The noise quality monitoring schedule is presented in *Appendix F*.
- 5.1.2 Valid calibration certificates of monitoring equipment is shown in *Appendix G* and the construction noise monitoring results are summarized in the following sub-sections

5.2 **RESULTS OF NOISE MONITORING**

5.2.1 **5** sessions of daytime construction noise monitoring were performed at the interim alternative location CNMS-5 in the reporting period. The daytime noise monitoring results at interim alternative location is summarized in *Table 5-1*. The detailed noise monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

Data	Time of Time of		Measurement Result (dB(A))			
Date	Starting	Finishing	L _{eq30min}	Façade Correction		
6-Sep-19	13:23	13:53	65.6	NA		
12-Sep-19	9:12	9:42	64.4	NA		
18-Sep-19	13:46	14:16	64.9	NA		
24-Sep-19	9:10	9:40	64.7	NA		
30-Sep-19	9:28	9:58	63.6	NA		

Table 5-1Daytime Construction Noise Impact Monitoring Results

- 5.2.2 As shown in *Table 5-1*, all the measured results were below 75dB(A) of the acceptance criteria. No adverse weather condition which may affect the monitoring result was encountered during the course of noise monitoring in the reporting period. Furthermore, no complaint on daytime construction noise was registered, indicating no exceedance of Action Level.
- 5.2.3 In the reporting period, evening marine work by Contractor of Contract 1 at Portion II was scheduled from 2 7, 9 13, 16 21, 24 28 and 30 September 2019. Additional weekly evening construction noise monitoring were performed at the interim alternative location CNMS-5 in the reporting period. The evening noise monitoring results at interim alternative location is summarized in *Table 5-2*. The detailed noise monitoring data are presented in *Appendix H*.

Date Time of T		Time of	Measurement Result (dB(A))			
Date	Starting	Finishing	L _{eq15min}	Façade Correction		
5-Sep-19	19:03	19:18	62.5	NA		
11-Sep-19	19:33	19:48	62.0	NA		
16-Sep-19	19:26	19:41	61.5	NA		
27-Sep-19	19:20	19:35	61.9	NA		

 Table 5-2
 Evening Construction Noise Impact Monitoring Results

- 5.2.4 According to Table 5-2, the measured results on 5, 11, 16 and 27 September 2019 were higher than 55dB(a) of the acceptance criteria, Therefore a total of four (4) limit level evening noise monitoring exceedances were recorded in the reporting period and investigations were undertaken by ET accordingly.
- 5.2.5 For the evening noise monitoring exceedances on 5, 16 and 27 September 2019, since the marine work at Junk Bay were ceased before 7:00pm and there was no construction works carried out after 7:00 pm at the Project site, it was considered the exceedances recorded on 5, 16 and 27 September 2019 were unlikely due to the Project.
- 5.2.6 For evening noise monitoring exceedances on 11 September 2019, investigation were undertaken by ET. Since only one group of powered mechanical equipment stated in the Construction Noise Permit (CNP) GW-RE0594-19 was used during the evening marine work, the monitoring result obtained were within the range of evening noise obtained from baseline monitoring and external noise source such as traffic noise was noted during the course of monitoring, it is considered that

the evening noise monitoring exceedances recorded on 11 September 2019 was unlikely caused by the Project. Nevertheless, the Contractor was reminded to strictly follow the requirement stipulated in the applied CNP so as to minimise the noise impact to the surrounding noise sensitive receiver.

6. WATER QUALITY MONITORING

6.1 GENERAL

- 6.1.1 The water quality monitoring schedule is presented in *Appendix F* and the monitoring results are summarized in the following sub-sections.
- 6.1.2 Valid calibration certificates of monitoring equipment and the laboratory accredited certificate is shown in *Appendix G*. The water quality monitoring results are summarized in the following sub-sections.

6.2 **RESULTS OF WATER QUALITY MONITORING**

6.2.1 In this Reporting Period, a total of *13* sampling days were performed for marine water monitoring at the nine designated locations. Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids are summarized in *Tables 6-1* to *6-4*.

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I1
	3-Sep-19	5.8	5.8	5.5	5.9	5.9	6.2	5.8	5.7	5.5
	5-Sep-19	5.8	6.0	5.6	5.9	5.9	5.7	5.9	6.0	5.8
	7-Sep-19	6.1	5.9	5.8	6.2	5.9	6.3	5.9	5.8	5.7
	9-Sep-19	10.2	8.3	8.1	6.3	9.9	7.2	8.2	7.2	8.2
	11-Sep-19	7.0	6.2	5.9	5.8	6.2	6.7	5.9	5.8	6.5
	13-Sep-19	7.3	6.9	7.9	6.0	7.0	8.4	7.0	6.3	8.1
Mid-Ebb	16-Sep-19	5.9	5.8	5.7	5.9	5.8	5.8	5.8	6.0	5.5
	18-Sep-19	6.0	5.9	5.7	5.9	5.7	6.2	5.9	6.1	5.7
	20-Sep-19	5.8	5.9	5.8	5.9	5.6	6.2	5.8	5.8	5.7
	23-Sep-19	6.0	5.9	5.7	5.9	5.7	5.8	5.7	5.8	5.5
	25-Sep-19	5.8	5.9	5.7	5.9	5.7	6.0	5.8	5.8	5.5
	27-Sep-19	6.1	5.8	5.6	5.8	5.8	5.7	6.0	5.5	5.6
	30-Sep-19	6.1	5.9	5.9	5.8	5.9	6.1	5.8	6.1	5.8
	3-Sep-19	5.8	5.8	5.7	5.9	5.8	6.0	5.8	5.8	5.6
	5-Sep-19	5.8	5.9	5.7	5.8	5.8	5.6	5.8	5.8	5.6
	7-Sep-19	6.0	5.9	5.9	6.2	6.0	6.0	6.5	6.0	5.9
	9-Sep-19	8.7	8.1	7.3	6.0	6.9	8.0	8.4	6.2	7.1
	11-Sep-19	6.3	7.2	7.3	6.1	8.5	7.7	7.5	6.9	7.2
	13-Sep-19	8.0	7.0	7.7	6.3	7.9	8.7	7.0	6.3	7.9
Mid-Flood	16-Sep-19	5.9	5.9	5.7	6.1	5.7	6.2	5.9	6.0	5.7
	18-Sep-19	5.8	5.9	5.6	5.9	5.9	6.5	6.0	6.0	5.5
	20-Sep-19	6.0	5.8	5.8	6.3	5.8	6.2	5.8	5.8	5.7
	23-Sep-19	5.9	5.8	5.7	6.0	5.6	5.9	5.7	5.8	5.6
	25-Sep-19	5.8	6.0	5.7	5.8	5.6	5.8	5.9	5.8	5.7
	27-Sep-19	5.9	5.9	5.7	5.9	5.7	6.0	5.6	5.4	5.9
	30-Sep-19	6.0	5.8	5.8	5.8	5.7	6.0	6.1	6.1	5.6

 Table 6-1
 Results Summary of Depth Average (Surface & Middle Layer) of DO (mg/L)

Table 6-2	Results Summary of Bottom Depth of DO (mg/L)
-----------	---

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	3-Sep-19	5.4	5.3	5.2	NA	5.4	5.6	5.3	5.5	5.1
	5-Sep-19	5.4	5.4	5.2	NA	5.5	5.7	5.5	5.7	5.7
	7-Sep-19	5.5	5.3	5.4	NA	5.7	6.0	5.6	5.3	5.4
	9-Sep-19	6.4	5.5	5.4	NA	6.1	7.1	5.5	5.5	5.5
	11-Sep-19	6.3	5.6	5.5	NA	5.4	6.3	5.5	5.4	5.4
Mid-Ebb	13-Sep-19	5.9	5.7	5.5	NA	5.8	8.5	5.5	5.4	6.3
	16-Sep-19	5.6	5.4	5.2	NA	5.3	5.6	5.4	5.5	5.2
	18-Sep-19	5.5	5.4	5.2	NA	5.3	5.8	5.4	5.5	5.5
	20-Sep-19	5.5	5.5	5.4	NA	5.4	5.8	5.5	5.5	5.2
	23-Sep-19	6.0	5.7	5.3	NA	5.6	5.3	5.5	5.6	5.4
	25-Sep-19	5.4	5.4	5.4	NA	5.5	6.0	5.3	5.3	5.2

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report – September 2019

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	27-Sep-19	5.7	5.7	5.1	NA	5.7	5.5	5.7	5.4	5.6
	30-Sep-19	6.0	5.8	5.3	NA	5.9	5.8	5.9	5.9	5.6
	3-Sep-19	5.4	5.4	5.2	NA	5.3	5.6	5.3	5.3	5.3
	5-Sep-19	5.4	5.5	5.4	NA	5.4	5.5	5.5	5.3	5.3
	7-Sep-19	5.6	5.5	5.4	NA	5.3	5.8	5.5	5.6	5.4
	9-Sep-19	5.7	5.5	5.3	NA	5.5	6.2	5.4	5.4	5.3
	11-Sep-19	5.5	5.4	5.4	NA	6.8	6.3	5.7	5.5	5.4
	13-Sep-19	6.6	5.5	5.3	NA	6.1	8.4	5.6	5.4	5.5
Mid-Flood	16-Sep-19	5.4	5.4	5.4	NA	5.4	5.6	5.6	5.7	5.3
	18-Sep-19	5.3	5.3	5.3	NA	5.4	6.2	5.3	5.4	5.3
	20-Sep-19	5.5	5.4	5.4	NA	5.4	5.7	5.4	5.4	5.3
	23-Sep-19	5.8	5.6	5.1	NA	5.6	5.8	5.5	5.6	5.5
	25-Sep-19	5.4	5.3	5.5	NA	5.4	5.6	5.4	5.4	5.3
	27-Sep-19	5.8	5.6	5.1	NA	5.5	5.5	5.6	5.4	5.6
	30-Sep-19	5.9	5.8	5.3	NA	5.9	5.8	6.0	5.9	5.6

Remark: No Dissolved Oxygen (Bottom) monitoring data available for CC4 due to the water depth measured at CC4 during the monitoring days were less than 3 meters.

Italic and bold value indicated Action Level exceedance

Underlined and bold value indicated Limit Level exceedance

 Table 6-3
 Results Summary of Depth Average of Turbidity (NTU)

Tidal	Sampling	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	date	2.4	15	0.0	27	0.6	1.2	2.2	2.1	2.2
	3-Sep-19	2.4	1.5	0.9	2.7	0.6	1.3	2.2	2.1	2.2
	5-Sep-19	0.7	3.3	2.5	0.7	1.2	4.2	3.3	0.9	2.3
	7-Sep-19	2.9	1.2	3.1	1.4	1.0	2.4	3.0	3.6	3.3
	9-Sep-19	3.3	4.1	3.9	0.6	2.0	3.2	2.7	3.9	2.7
	11-Sep-19	1.0	1.7	2.2	1.4	1.5	1.2	2.1	2.2	1.6
	13-Sep-19	1.6	2.0	2.3	4.3	2.2	1.0	1.5	2.6	1.4
Mid-Ebb	16-Sep-19	1.9	1.9	3.1	1.5	1.5	3.0	3.4	3.1	3.0
	18-Sep-19	1.7	2.2	2.8	2.8	2.1	2.4	1.3	3.2	3.1
	20-Sep-19	1.6	2.6	3.6	2.5	2.7	3.6	1.8	2.0	4.1
	23-Sep-19	2.4	3.5	4.4	3.5	3.9	4.8	3.3	2.4	3.9
	25-Sep-19	2.0	3.1	3.3	2.9	1.7	3.1	3.6	3.8	3.2
	27-Sep-19	2.3	3.6	2.9	4.1	3.1	4.8	3.2	5.1	4.2
	30-Sep-19	3.5	2.5	1.9	2.2	2.2	1.8	2.1	2.1	3.0
	3-Sep-19	2.3	1.8	0.8	1.6	0.5	0.3	2.6	1.9	0.6
	5-Sep-19	3.7	1.2	1.1	0.4	2.2	0.6	1.6	2.7	3.1
	7-Sep-19	3.3	3.1	3.0	4.7	1.6	2.6	2.7	3.5	3.6
	9-Sep-19	2.5	3.7	2.4	3.4	3.5	2.1	3.7	3.6	3.4
	11-Sep-19	1.6	1.5	2.1	1.6	1.1	1.2	2.0	2.3	1.7
	13-Sep-19	1.2	1.5	2.6	4.4	1.1	1.1	1.4	2.2	1.8
Mid-Flood	16-Sep-19	4.0	2.8	2.5	2.1	1.9	2.6	1.3	1.6	2.6
	18-Sep-19	2.9	3.7	2.8	2.9	2.4	5.2	1.9	2.8	3.0
	20-Sep-19	2.4	3.2	3.2	2.4	2.3	1.8	2.1	2.3	2.0
	23-Sep-19	2.6	3.3	4.2	6.1	4.0	3.0	2.4	3.0	3.5
	25-Sep-19	3.7	3.8	3.5	3.7	2.6	3.4	3.6	3.8	4.1
	27-Sep-19	2.9	4.6	3.1	4.4	4.3	2.8	5.7	3.8	3.7
	30-Sep-19	2.4	2.4	1.7	4.1	2.5	1.8	2.0	2.3	2.8

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	3-Sep-19	4.9	4.0	6.8	10.3	3.0	5.4	5.8	5.8	4.2
	5-Sep-19	4.5	4.0	2.1	2.4	4.4	2.5	1.8	2.3	2.9
	7-Sep-19	2.4	3.7	3.7	4.4	3.1	3.0	3.7	5.0	4.8
	9-Sep-19	4.4	4.8	3.5	3.8	3.6	3.1	6.4	4.6	5.0
	11-Sep-19	3.1	3.8	1.9	3.4	2.9	3.5	6.1	2.6	2.6
	13-Sep-19	1.4	1.4	2.2	3.9	3.4	5.0	3.1	1.9	3.5
Mid-Ebb	16-Sep-19	2.8	3.8	2.8	2.7	3.2	1.8	3.7	1.5	1.6
	18-Sep-19	3.7	2.6	3.7	5.5	4.4	2.4	2.6	4.4	5.0
	20-Sep-19	6.1	6.4	7.0	<u>18.1</u>	9.9	7.6	5.4	6.2	8.5
	23-Sep-19	7.1	5.8	8.2	11.5	11.7	<u>15.4</u>	10.7	6.1	8.7
	25-Sep-19	6.5	6.2	5.7	8.8	6.7	5.8	8.6	7.9	5.6
	27-Sep-19	5.8	5.7	5.1	8.2	5.6	4.5	4.5	6.1	4.8
	30-Sep-19	6.8	7.5	6.7	5.8	5.1	4.4	3.8	3.2	3.6
	3-Sep-19	5.0	6.2	5.3	5.2	4.3	6.0	6.3	6.2	3.7
	5-Sep-19	3.6	4.0	2.0	2.9	3.6	3.9	2.7	2.6	1.6
	7-Sep-19	4.0	4.1	4.3	6.7	2.0	3.7	2.9	3.0	2.6
	9-Sep-19	5.3	6.9	6.4	6.2	6.0	3.9	5.3	7.0	5.7
	11-Sep-19	3.1	2.7	3.0	2.6	2.3	2.9	2.4	2.8	3.4
	13-Sep-19	2.2	1.6	2.3	5.1	2.5	1.7	2.2	2.4	2.5
Mid-Flood	16-Sep-19	2.9	2.8	1.8	2.0	2.3	2.3	3.5	1.7	2.8
	18-Sep-19	4.1	4.4	4.4	5.5	4.1	6.5	4.2	4.6	4.7
	20-Sep-19	5.9	4.8	5.7	7.1	4.8	4.3	5.6	5.2	4.7
	23-Sep-19	9.2	8.4	10.7	14.2	<u>14.6</u>	<u>12.4</u>	8.7	10.6	12.1
	25-Sep-19	8.3	7.7	5.7	9.8	6.4	7.4	10.4	8.9	8.4
	27-Sep-19	5.8	7.5	3.6	5.6	6.2	4.3	8.1	6.0	6.3
	30-Sep-19	3.1	3.6	3.2	3.3	3.9	2.5	3.0	3.3	4.5

Table 6-4Results Summary of Depth Average of Suspended Solids (mg/L)

Remark: Italic and bold value indicated Action Level exceedance

Underlined and bold value indicated Limit Level exceedance

Table 6-5 Results Summary of Depth Average of Temperature (°C)

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I1
	3-Sep-19	26.7	26.9	26.7	26.7	26.8	26.9	26.8	27.0	27.0
	5-Sep-19	27.2	27.3	27.1	27.2	27.2	27.1	27.2	27.3	27.2
	7-Sep-19	28.1	27.8	27.8	28.1	28.1	28.2	27.8	27.7	27.9
	9-Sep-19	29.1	28.4	28.5	28.2	28.8	28.5	28.0	27.9	28.4
	11-Sep-19	28.2	27.8	27.7	27.8	27.7	28.2	27.6	27.6	27.9
	13-Sep-19	28.3	28.2	28.2	28.0	28.2	28.5	28.0	27.6	28.5
Mid-Ebb	16-Sep-19	28.2	28.1	28.2	27.9	28.2	28.1	27.9	28.1	28.1
	18-Sep-19	28.4	28.5	28.3	28.4	28.5	28.5	28.5	28.5	28.5
	20-Sep-19	28.6	28.6	28.6	28.8	28.6	28.7	28.6	28.7	28.6
	23-Sep-19	27.9	27.8	28.1	28.2	27.9	27.9	28.0	28.0	28.0
	25-Sep-19	27.9	27.9	28.0	28.0	27.9	27.9	27.9	27.9	28.0
	27-Sep-19	28.3	28.0	28.2	28.1	28.0	28.0	28.1	27.9	28.2
	30-Sep-19	27.9	28.1	28.2	28.3	28.1	28.2	28.0	28.0	28.1
	3-Sep-19	26.7	26.7	26.8	26.6	26.7	26.7	26.8	26.9	26.8
	5-Sep-19	27.1	27.1	27.0	27.1	27.2	26.9	27.2	27.2	27.1
	7-Sep-19	28.1	27.8	27.9	28.1	28.1	28.0	27.9	27.6	27.8
	9-Sep-19	28.8	28.5	28.4	28.6	28.3	29.0	28.2	27.9	28.2
Mid-Flood	11-Sep-19	27.9	28.2	28.0	28.1	28.5	28.7	27.6	27.5	28.1
	13-Sep-19	28.6	28.2	28.2	27.6	28.5	28.6	28.0	27.7	28.3
	16-Sep-19	27.6	28.0	28.3	27.9	28.0	28.0	28.1	28.2	28.0
	18-Sep-19	28.3	28.3	28.2	28.3	28.3	28.2	28.5	28.4	28.2
	20-Sep-19	28.6	28.5	28.6	28.4	28.5	28.4	28.4	28.5	28.5

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	23-Sep-19	28.0	27.9	28.1	27.9	28.0	28.1	27.9	27.9	28.0
	25-Sep-19	28.1	28.1	28.1	28.3	28.3	28.5	28.0	27.9	28.1
	27-Sep-19	28.3	28.1	28.2	28.1	28.0	28.5	27.9	28.0	28.2
	30-Sep-19	27.9	28.1	28.1	28.0	28.0	28.1	27.9	28.0	28.1

 Table 6-6
 Results Summary of Depth Average of Salinity (ppt)

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	3-Sep-19	31.0	30.8	30.7	31.0	30.9	30.9	31.0	31.1	30.7
	5-Sep-19	30.9	31.2	30.8	30.8	31.1	31.1	31.2	31.2	31.2
	7-Sep-19	31.1	31.2	31.0	31.0	31.0	30.9	31.5	31.5	31.0
	9-Sep-19	30.7	31.1	30.9	30.7	30.9	31.0	31.6	31.6	31.0
	11-Sep-19	32.8	33.2	32.9	33.2	33.3	33.0	33.4	33.1	33.1
	13-Sep-19	33.2	33.3	33.0	33.3	33.3	33.2	33.3	33.6	33.0
Mid-Ebb	16-Sep-19	33.6	33.5	33.2	33.4	33.4	33.5	33.9	33.6	33.4
	18-Sep-19	33.9	33.8	33.5	33.7	33.8	33.6	33.9	33.8	33.5
	20-Sep-19	34.1	34.2	34.0	34.1	34.2	34.0	34.2	34.1	33.9
	23-Sep-19	34.3	34.4	34.3	34.3	34.3	34.4	34.4	34.4	34.3
	25-Sep-19	34.4	34.5	34.4	34.5	34.4	34.5	34.5	34.4	34.4
	27-Sep-19	34.4	34.4	34.4	34.4	34.4	34.4	34.5	34.4	34.3
	30-Sep-19	34.8	34.6	34.4	34.4	34.6	34.3	34.6	34.7	34.6
	3-Sep-19	30.9	30.9	30.5	30.9	30.8	30.9	31.1	31.1	30.4
	5-Sep-19	31.3	31.1	30.3	30.5	30.9	30.8	31.2	31.3	30.6
	7-Sep-19	31.2	31.2	31.1	31.1	31.1	31.0	31.4	31.4	31.1
	9-Sep-19	31.0	31.1	30.8	30.8	31.2	30.7	31.5	31.4	31.0
	11-Sep-19	32.9	33.2	33.0	32.9	33.0	33.0	33.6	33.4	32.9
	13-Sep-19	33.1	33.3	32.9	33.6	33.2	33.2	33.3	33.5	33.1
Mid-Flood	16-Sep-19	34.1	33.6	33.1	33.4	33.4	33.5	33.6	33.7	33.4
	18-Sep-19	33.7	33.7	33.5	33.7	33.7	33.7	34.0	34.0	33.5
	20-Sep-19	34.0	34.0	33.9	34.0	34.0	33.9	34.0	34.3	33.8
	23-Sep-19	34.3	34.3	34.2	34.4	34.3	34.4	34.4	34.5	34.3
	25-Sep-19	34.4	34.4	34.4	34.4	34.4	34.4	34.4	34.3	34.4
	27-Sep-19	34.3	34.4	34.3	34.3	34.4	34.4	34.4	34.3	34.4
	30-Sep-19	34.7	34.6	34.4	34.5	34.6	34.3	34.8	34.7	34.5

Table 6-7Results Summary of Depth Average of pH

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	3-Sep-19	8.3	8.3	8.3	8.3	8.3	8.4	8.3	8.4	8.3
	5-Sep-19	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3
	7-Sep-19	8.3	8.3	8.3	8.3	8.3	8.2	8.3	8.3	8.3
	9-Sep-19	8.5	8.4	8.4	8.3	8.5	8.4	8.4	8.3	8.4
	11-Sep-19	8.1	8.1	8.1	8.0	8.1	7.8	8.1	8.0	8.1
	13-Sep-19	8.2	8.2	8.2	8.1	8.2	8.2	8.2	8.1	8.2
Mid-Ebb	16-Sep-19	8.1	8.1	8.0	8.1	8.0	8.1	8.1	8.1	8.0
	18-Sep-19	8.1	8.1	8.0	8.1	8.1	8.1	8.1	8.1	8.0
	20-Sep-19	8.1	8.1	8.1	8.0	8.1	8.1	8.1	8.1	8.1
	23-Sep-19	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	25-Sep-19	8.1	8.1	8.1	8.1	8.1	7.8	8.1	8.1	8.1
	27-Sep-19	8.2	8.2	8.2	8.1	8.2	8.0	8.2	8.1	8.2
	30-Sep-19	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
M. 1 El 1	3-Sep-19	8.3	8.3	8.3	8.3	8.3	8.3	8.4	8.3	8.3
Mid-Flood	5-Sep-19	8.3	8.3	8.2	8.3	8.3	8.3	8.3	8.3	8.3

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	7-Sep-19	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3
	9-Sep-19	8.5	8.4	8.4	8.3	8.4	8.5	8.4	8.3	8.4
	11-Sep-19	8.2	8.2	8.2	8.2	8.2	8.2	8.1	8.1	8.2
	13-Sep-19	8.2	8.2	8.2	8.1	8.2	8.2	8.2	8.1	8.2
	16-Sep-19	8.1	8.0	8.0	8.0	8.0	8.0	8.1	8.0	8.0
	18-Sep-19	8.1	8.1	8.0	8.0	8.1	8.0	8.1	8.1	8.0
	20-Sep-19	8.1	8.0	8.1	8.1	8.1	8.0	8.1	8.1	8.1
	23-Sep-19	8.1	8.1	8.1	8.1	8.1	8.2	8.1	8.1	8.1
	25-Sep-19	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	27-Sep-19	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
	30-Sep-19	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2

- 6.2.2 The monitoring results including in-situ measurements and laboratory testing results are provided in *Appendix H*. The graphical plots are shown in *Appendix I*.
- 6.2.3 A summary of exceedances for the four parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) are shown in *Table 6-8*.

Station	on DO (Ave of Top & mid-depth)		DO (Bottom Depth)		Turbidity (Depth Ave)		SS (Depth Ave)		Total Exceedance for the Station	
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
CC1	0	0	0	0	0	0	0	0	0	0
CC2	0	0	0	0	0	0	0	0	0	0
CC3	0	0	0	0	0	0	0	0	0	0
CC4	0	0	NA	NA	0	0	1	1	1	1
CC13	0	0	0	0	0	0	1	1	1	1
SWI1	0	0	0	0	0	0	0	2	0	2
No of Exceedance	0	0	0	0	0	0	2	4	2	4

 Table 6-8
 Summary of Water Quality Exceedance

- 6.2.4 In this Reporting Period, two (2) Action Level and four (4) Limit Level exceedances of Suspended Solid were recorded.
- 6.2.5 Upon confirmation of the monitoring result, Notification of Exceedances (NOEs) have been issued to relevant parties. Investigation for the cause of exceedance was carried out by ET subsequently.
- 6.2.6 For SS exceedance recorded on 20 and 23 September 2019, investigation were undertaken by ET. Since silt curtains as water quality mitigation measure were properly implemented, no abnormal and turbid discharge made from the construction site was observed during the course of marine water sampling, it is considered that the exceedances of suspended solid recorded in this period were unlikely caused by the Project. Nevertheless, the Contractor was reminded to check the implementation of silt curtain regularly to ensure no seepage of muddy water into the marine water body.
- 6.2.7 For suspended solid (SS) exceedances recorded in last reporting period (30 August 2019), since silt curtains as water quality mitigation measure were properly implemented, no abnormal and turbid discharge made from the construction site was observed during the course of marine water sampling, it is considered that the exceedances of suspended solid recorded in this period were unlikely caused by the Project.

7. WASTE MANAGEMENT

7.1 GENERAL WASTE MANAGEMENT

7.1.1 Waste management would be carried out by an on-site Environmental Officer or an Environmental Consultant from time to time.

7.2 **RECORDS OF WASTE QUANTITIES**

- 7.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste; and
 - General Refuse
- 7.2.2 According to the information provided by Contractor of Contract 1 and Contract 2, waste disposal was made in the Reporting period are summarized in *Tables 7-1* and *7-2*.

	Cont	tract 1	Cont	ract 2
Type of Waste	Quantity	Disposal Location	Quantity	Disposal Location
Total C&D Materials (Inert) ('000m ³)	0.762	-	1.912	-
Reused in this Contract (Inert) ('000m ³)	0	-	0	-
Reused in other Projects (Inert) ('000m ³)	0	-	0.046	-
Disposal as Public Fill (Inert) ('000m ³)	0.762	TKO 137	1.866	TKO 137
Imported Fill ('000m ³)	0	-	0	-

Table 7-1Summary of Quantities of Inert C&D Materials

Table 7-2Summary of Quantities of C&D Wastes

	Contract 1		Contract 2	
Type of Waste	Quantity	Disposal Location	Quantity	Disposal Location
Recycled Metal ('000kg)	0	-	0	-
Recycled Paper / Cardboard Packing ('000kg)	0.085	Collected by paper recycling company	0	-
Recycled Plastic ('000kg)	0	-	0	-
Chemical Wastes ('000kg)	0	-	0	-
General Refuses ('000m ³)	0.054	NENT	0.009	NENT

7.2.3 The Monthly Summary Waste Flow Table of the Contracts 1 and Contract 2 are shown in *Appendix K*.

8. SITE INSPECTION

8.1 **REQUIREMENTS**

8.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

8.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH Contract 1

- 8.2.1 In this Reporting Month, weekly joint site inspection to evaluate site environmental performance for the *Contract 1* was carried out by the Project Consultant, ET and the Contractor on 4, 11, 18, & 26 September 2019. Moreover, the Independent Environmental Checker (IEC) perform monthly site inspection was on 11 September 2019.
- 8.2.2 The findings / deficiencies of *Contract 1* that observed during the weekly site inspection are listed in *Table 8-1* and the site layout plan was provided in **Appendix A**.

Date	Findings / Deficiencies	Follow-Up Status		
4 September 2019	 <u>Observation:</u> Oil stain on the ground should be cleaned. (Works Area A) Marine sediment leakage on the deck during transfer to hopper barge should be cleaned before departing. (Portion II – Hopper Barge) 	 Oil stain on the ground was cleaned. (Rectified on 4 September 2019) Marine sediment leakage on the deck during transfer to hopper barge was cleaned before departing. (Rectified on 4 September 2019) 		
11 September 2019	 <u>Observation:</u> Turbidity water from pipe washing should be diverted to de-silting facilities prior discharge. Also, sand bags should be provided to prevent turbidity water leakage into the water body. (Portion II – Crane Barge) Several chemical containers without drip tray was observed. Drip tray should be provided for all chemical storage on-site. (Portion II – Crane Barge) 	 Sand bags was provided to prevent turbidity water leakage into the water body. (Rectified on 11 September 2019) Chemical containers was removed. (Rectified on 11 September 2019) 		
18 September 2019	 <u>Observation:</u> Engine cover should be closed during the plant is operating. (Portion II – Crane Barge) Dark smoke emitted from power pack was observed. Proper maintenance should be provided. (Portion II – Crane Barge) 	 Engine cover was closed during the plant is operating. (Rectified on 18 September 2019) Proper maintenance was provided for power pack. 		
26 September 2019	 <u>Observation:</u> Drip tray should be provided for chemical storage on-site. (Portion II – Derrick Barge) Stagnant water cumulated inside the drip tray should be cleaned. (Portion II – Derrick Barge) 	 The Derrick Barge was off site already. The Derrick Barge was off site already. 		

Table 8-1 Site Observations of the Contract 1 (Contract No. NE/2017/07)

Contract 2

- 8.2.3 In this Reporting Month, weekly joint site inspection to evaluate site environmental performance for the *Contract 2* were carried out by the Project Consultant, ET and the Contractor on 4, 11, 18, & 26 September 2019. Moreover, the Independent Environmental Checker (IEC) perform monthly site inspection was on 11 September 2019.
- 8.2.4 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 8-2* and the site layout plan was provided in **Appendix A**.

Date	Findings / Deficiencies	Follow-Up Status
4 September 2019	• No environmental issue was observed during the site inspection	• Nil
11 September 2019	 <u>Observation:</u> Stagnant water cumulated inside the drip tray should be cleaned. (Portion VI & VII) 	• Stagnant water inside drip tray was removed. (Rectified on 11 September 2019)
18 September 2019	• No environmental issue was observed during the site inspection	• Nil
26 September 2019	 <u>Observation:</u> Hole under the drip tray should be plugged properly. (Portion VI) 	• The hole under the drip tray has been plugged. (3 October 2019)
	• Drip tray should be provided for chemical storage on-site. (Portion VI)	• Drip tray has been provided for chemical storage on-site. (2 October 2019)

Table 8-2Site Observations of the Contract 2 (Contract No. NE/2017/08)

8.3 IMPLEMENTATION STATUS OF SURFACE RUNOFF MITIGATION MEASURES DURING THE REPORTING MONTH

8.3.1 During the inspection of the reporting month, implementation of surface runoff mitigation measures were observed in both Contracts. The surface runoff mitigation measures observed during the weekly site inspection of Contract 1 and Contract 2 are summarized below and the photo recorded was provided in **Appendix L**.

Contract 1 (Contract No. NE/2017/07)

- 8.3.2 The surface runoff mitigation measures of Contract 1 implemented in this Reporting Period are:-
 - Cut-off drainage had been installed in the sea front to divert the surface run-off to the treatment facilities.
 - Silt-curtain had been provided to prevent muddy water overflow from the piling platform.
 - De-silting facilities had been provided to treat the site generated water prior discharge.

Contract 2 (Contract No. NE/2017/08)

- 8.3.3 The surface runoff mitigation measures of Contract 2 implemented in this Reporting Period are:
 Sand bags had been provide to prevent site runoff overflow to the existing manhole.
 - Treatment facilities was installed at site to treat the site generated water prior discharge.
 - Gap between the concrete block and the sea front was sealed up.
 - Using tarpaulin cover the exposed area to prevent generate turbidity runoff during rainstorm.
 - Trench had been provided to divert the surface runoff to the de-silting facilities.
- 8.3.4 Overall, the surface runoff mitigation measures of Contract 1 and Contract 2 observed during the inspection of the reporting period are efficient.

9. LANDFILL GAS MONITORING

9.1 GENERAL REQUIREMENT

- 9.1.1 Pursuant to Section 13 of the Project's EM&A Manual, landfill gas monitoring shall perform during excavation work within the 250m Consultation Zone of Tseung Kwan O Stage II & III Landfill. For landfill gas monitoring requirements, pre entry and routine measurement shall be undertaken in accordance with the *Factories and Industrial Undertaking (Confined Spaces) Regulation.*
- 9.1.2 According to Environmental Mitigation Implementation Schedule (EMIS) S14.7.6, portable monitoring equipment can be used to conduct landfill gas monitoring. Moreover, the frequency and areas to be monitored should be set down prior to commencement of the works either by the Safety Officer or by an appropriately qualified person.

9.2 LIMIT LEVELS AND EVENT AND ACTION PLAN

9.2.1 In event of the trigger levels specified in Table 14.6 of the EIA report being exceeded, a person, such as the Safety Officer, shall be nominated, with deputies, to be responsible for dealing with any emergency which may occur due to LFG. In an emergency situation the nominated person, or his deputies, shall have the necessary authority and shall ensure that the confined space is evacuated and the necessary works implemented for reducing the concentrations of gas. The Limit levels and relevant Action Plans for landfill gas detected in utilities and any on-site areas following construction is listed in *Table 9-1*.

Parameter	Limit Level	Actions	
	>10% LEL (i.e.	Post "No Smoking" signs	
	>0.5% by volume)	Prohibit hot works	
Methane		• Ventilate to restore methane to <10% LEL	
wieulalle	>20% LEL (i.e.	Stop excavation works	
	>1% by volume)	 Evacuate personnel/prohibit entry 	
		• Increase ventilation to restore methane to <10% LEL	
	>0.5%	• Ventilate to restore carbon dioxide to <0.5%	
Carbon	>1.5%	Stop excavation works	
dioxide		 Evacuate personnel/prohibit entry 	
		 Increase ventilation to restore carbon dioxide to <0.5% 	
	<19%	Ventilation to restore oxygen >19%	
Oxygen	<18%	Stop excavation works	
Oxygen		 Evacuate personnel/prohibit entry 	
		 Increase ventilation to restore oxygen to >19% 	

 Table 9-1
 Actions in the Event of Landfill Gas Being Detected in Excavations

9.2.2 In the event of the trigger levels specified in Table 9-1 being exceeded, the Safety Officer shall be responsible for dealing with any emergency which may occur due to landfill gas.

9.3 LANDFILL GAS MONITORING

9.3.1 Since no excavation work was conducted within the 250m Consultation Zone of Tseung Kwan O Stage II & III Landfill, no landfill gas monitoring was undertaken by the Contractors in the Reporting Period.

10. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION

10.1.1 In the Reporting Period, no environmental complaint, summons and prosecution under the EM&A Programme was lodged for the project. The statistical summary table of environmental complaint is presented in *Tables 10-1, 10-2* and *10-3*.

 Table 10-1
 Statistical Summary of Environmental Complaints

Departing Deviad	Contract	Environmental Complaint Statistic		Statistics
Reporting Period Contract		Frequency	Cumulative	Complaint Nature
1 – 30 September 2019	1	0	1	NA
1 – 30 September 2019	2	0	0	NA

Table 10-2 Statistical Summary of Environmental Summons

Departing Daried	Contract	Environmental Summons Statistics		
Reporting Period	Contract	Frequency	Cumulative	Summons Nature
1 – 30 September 2019	1	0	0	NA
1 – 30 September 2019	2	0	0	NA

Table 10-3 Statistical Summary of Environmental Prosecution

Departing Daried	Contract	Environmental Prosecution Statistics		
Reporting Period Contract		Frequency	Cumulative	Prosecution Nature
1 – 30 September 2019	1	0	0	NA
1 – 30 September 2019	2	0	0	NA

11. IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL REQUIREMENTS

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- 11.1.2 The Contractors had been implementing the required environmental mitigation measures according to the Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by the Contractors in this Reporting Month are summarized in *Table 11-1* and photo record of water mitigation measure was provided in Appendix L.

Issues	Environmental Mitigation Measures
Construction	• Regularly to maintain all plants, so only the good condition plants were used
Noise	on-site;
	• If possible, all mobile plants onsite operation has located far from NSRs;
	• When machines and plants (such as trucks) were not in using, it was switched off;
	• Wherever possible, plant was prevented oriented directly the nearby NSRs;
	 Provided quiet powered mechanical equipment to use onsite;
	· Weekly noise monitoring was conducted to ensure construction noise meet the
	criteria.
Air Quality	• Stockpile of dusty material was covered entirely with impervious sheeting or
	sprayed with water so as to maintain the entire surface wet;
	 The construction plants regularly maintained to avoid the emissions of black smoke;
	• The construction plants switched off when it not in use;
	• Water spraying on haul road and dry site area was provided regularly;
	• Where a vehicle leaving the works site is carrying a load of dusty materials, the
	load has covered entirely with clean impervious sheeting; and
	• Before any vehicle leaving the works site, wheel watering has been performed.
Water Quality	Debris and refuse generated on-site collected daily;
	Oils and fuels were stored in designated areas;
	• The chemical waste storage as sealed area provided;
	• Site hoarding with sealed foot were provided surrounding the boundary of working site to prevent wastewater or site surface water runoff get into public areas; and
	• Portable chemical toilets were provided on-site. A licensed contractor was
	regularly disposal and maintenance of these facilities.
	• Silt curtain was installed and maintained in accordance with EP condition
Waste and	• Excavated material reused on site as far as possible to minimize off-site disposal.
Chemical	 Scrap metals or abandoned equipment should be recycled if possible;
Management	• Waste arising kept to a minimum and be handled, transported and disposed of in a
	suitable manner;
	• Disposal of C&D wastes to any designated public filling facility and/or landfill
	followed a trip ticket system; and
	• Chemical waste handled in accordance with the Code of Practice on the Packaging,
	Handling and Storage of Chemical Wastes.The site is generally kept tidy and clean.
General	 The site is generally kept they and clean. Mosquito control is performed to prevent mosquito breeding on site.

 Table 11-1
 Environmental Mitigation Measures in the Reporting Month

11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 Tentative construction activities to be undertaken in October 2019 should be included:-

Contract 1

- Piling works at Portion II
- Welding of steel bracket for precast shell installation at Portion II
- Precast shell fabrication at Portion II
- Precast shell erection at Portion II

Contract 2

- Trial Pit Work at Portion VI
- Pre-drill Work at Portion VI
- Bored Pile Work at Portion III, VI & VII
- Excavation Work at Portion VI
- Pre-bored socket H pile at Portion VI

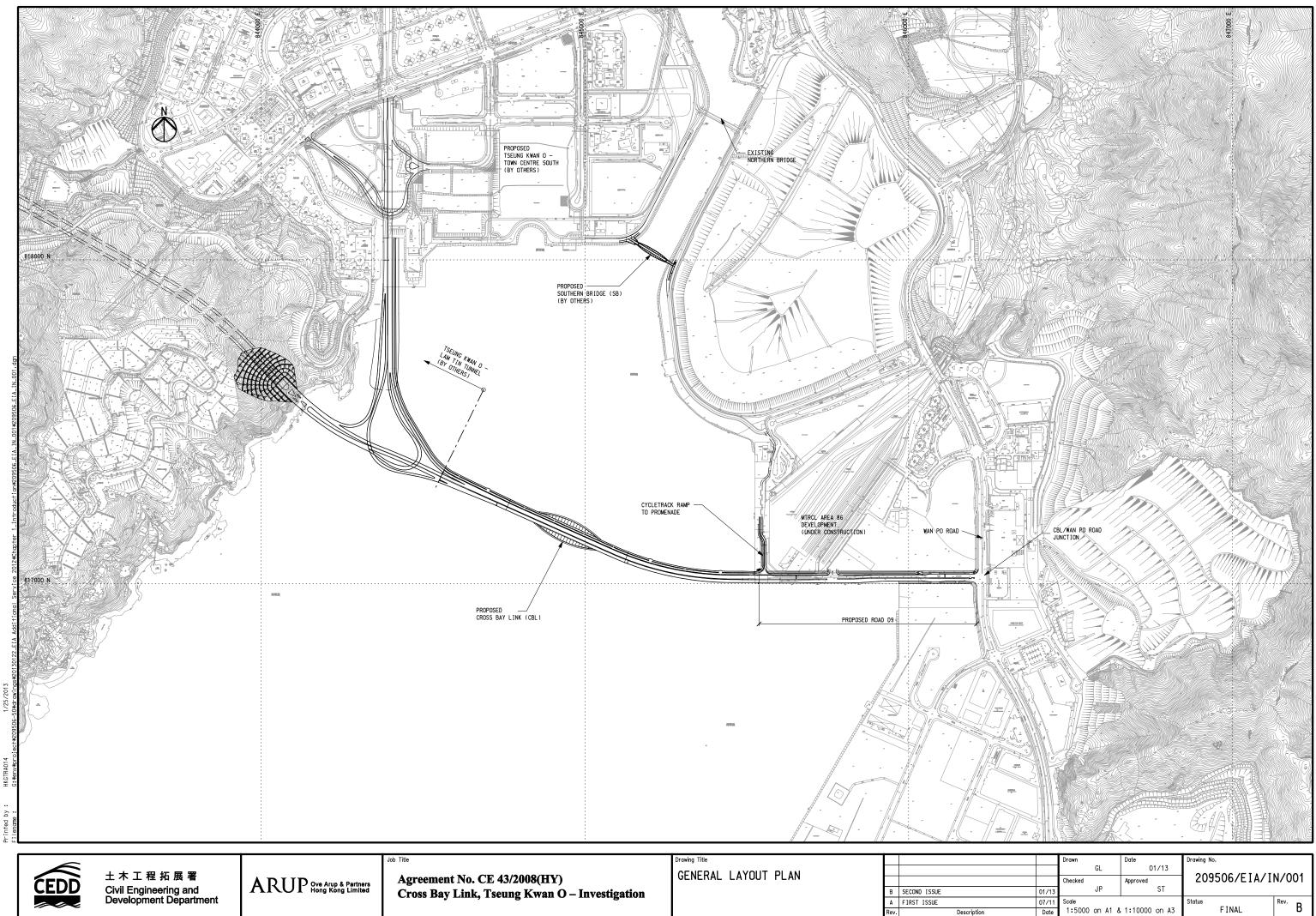
11.3 IMPACT FORECAST

- 11.3.1 Potential environmental impacts arising from the works of the Contracts 1 and Contract 2 include:
 - Construction waste
 - Air quality
 - Construction noise
 - Water quality
- 11.3.2 Environmental mitigation measures will be properly implemented and maintained as per the Mitigation Implementation Schedule in Appendix L to ensure site environmental performance is acceptable.

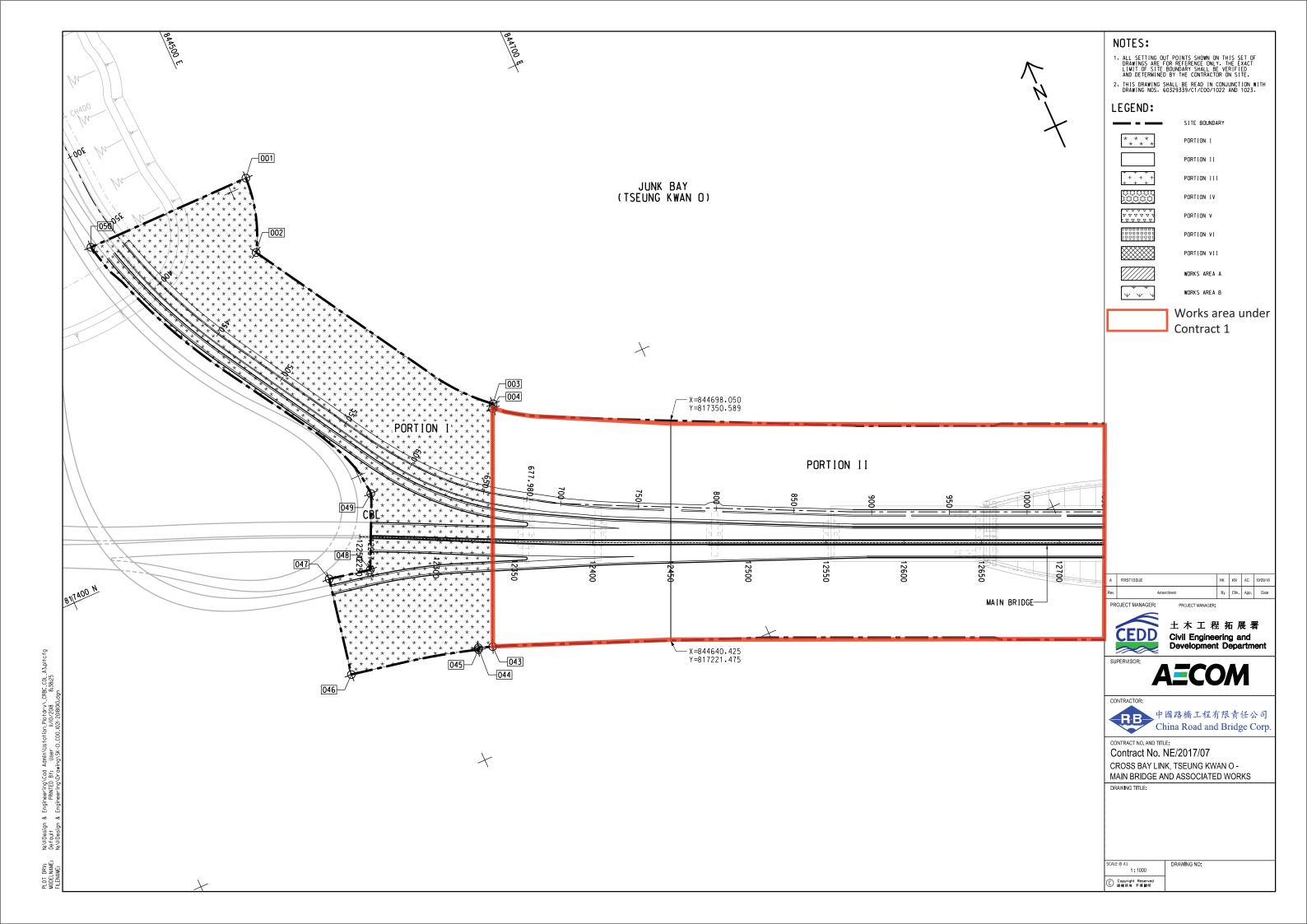
12. CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

- 12.1.1 This is the monthly EM&A report as presented the monitoring results and inspection findings for the reporting period from 1^{st} to 30^{th} September 2019.
- 12.1.2 In the Reporting Period, no daytime construction noise monitoring results that triggered the Limit Level was recorded and no noise complaint (which is an Action Level exceedance) was received by the Project Consultant, EPD and the Contractors. However, four (4) evening additional construction noise monitoring results triggered the Limit Level. Investigation was undertaken by ET and it was considered that the exceedances recorded are unlikely caused by the Project.
- 12.1.3 In this Reporting Period, no 1-Hour TSP or 24-Hr TSP air quality monitoring exceedance was recorded. No NOE or the associated corrective actions were therefore issued.
- 12.1.4 For water quality monitoring, two (2) Action Level and four (4) Limit Level exceedances were recorded for Suspended Solid in the reporting period. Investigations were carried out and it was considered that the exceedances recorded are unlikely caused by the Project.
- 12.1.5 No documented complaint, notification of summons or prosecution were received and recorded for the Project.

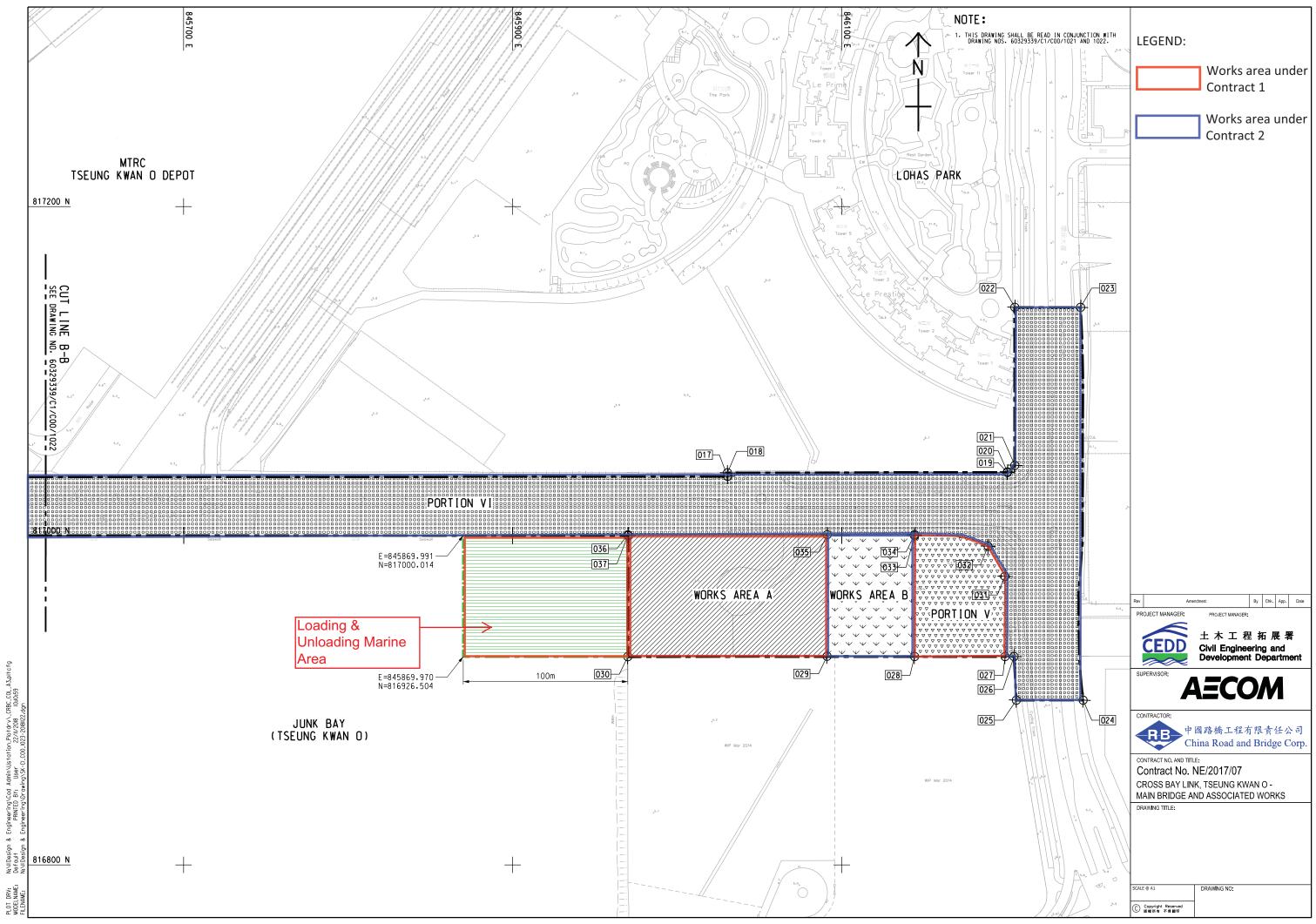

12.2 RECOMMENDATIONS

- 12.2.1 Due to the coming month is dry and windy season for Hong Kong, the Contractor was reminded that all the works to undertaking must be fulfill environmental statutory requirement, especially construction dust come from working sites of the Project.
- 12.2.2 In regards to the marine works, special attention should be paid on excavation works for the bridge pier foundations underway in which water quality mitigation measures such as erection of silt curtain should be properly implemented and maintained.



Appendix A

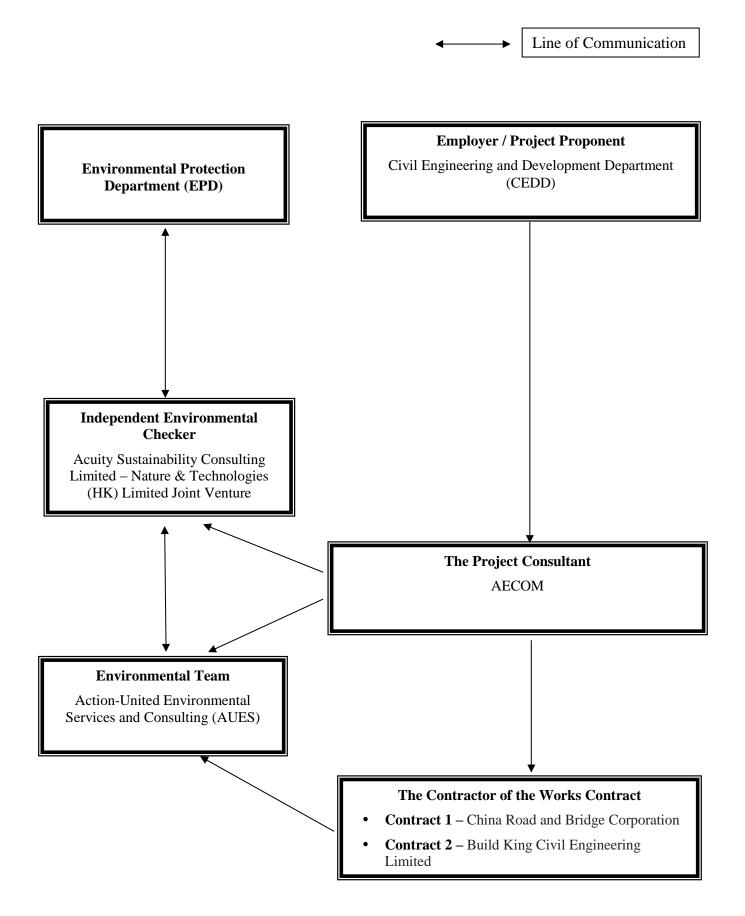
Project Layout Plan



	Drawn	Date	Drawing No.	
	GL	01/13		
	Checked	Approved	209506/EIA/II	N/001
01/13	JP	ST		
07/11	Scale		Status	Rev. D
Date	1:5000 on A1 &	1:10000 on A3	FINAL	D

		845500 E	the second secon
SETTING OUT POINTS	SETTING OUT POINTS	lo r	
POINTS EASTING NORTHING	POINTS EASTING NORTHING		
001 844512.175 817604.422 002 844498.695 817557.993	026 846204.700 816926.589 027 846199.263 816926.590	-	
003 844598.186 817407.065	021 0461331263 016260.336 028 846144.269 816926.589		
004 844596.769 817404.339 005 845132.374 817153.641	029 846091.080 816926.744 030 845969.970 816926.504	-	
006 845500.00 817088.580	031 846199.197 816975.364		
007 845524.969 817088.226 008 845524.909 817236.307	032 846188.983 816993.582		
008 845524.909 817236.307 009 845558.095 817236.307	033 846144.274 816999.997 034 846144.274 817000.722	-	
010 845558.095 817195.885	035 846091.204 817000.679		
011 845550.234 817174.288 012 845550.219 817158.042	036 845970.070 817000.581 037 845970.069 817000.099	+ $+$	
013 845562.850 817139.744 014 845562.850 817035.700	038 845550.850 817000.099 039 845524.969 817000.099		
015 845550.850 817035.670	040 845550.850 816953.291	-	
016 845524.969 817035.670 017 846030.606 817036.089	041 845500.00 816952.636	-	***
017 846030.606 817036.089 018 846030.604 817038.387	042 845076.990 817029.022 043 844534.373 817264.536	-	E00
019 846200.700 817038.418	044 844525.572 817267.627	-	008
020 846200.700 817038.796 021 846205.200 817042.796	045 844525.199 817266.527 046 844444.018 817285.203	-	
022 846205.200 817138.796	047 844456.043 817347.194	-	
023 846245.180 817138.796 024 846246.698 816900.099	048 844482.530 817341.743 049 844502.889 817386.445	-	
025 846206.155 816900.099	050 844403.015 817604.422]	
		JUNK BAY	
		(TSEUNG KWAN D)	\times
			PORTION VII
			PORTION III
		t	
		將軍運 JUNK BAY JUNK KWAN ON	
		将軍决、	
		NK BANN O	
		JULY KWAN	
		(TSEUL	016
			8
	005		550
	\$		
			13300
		PORTION II	
		1400	13250
	5 5	350	
1100	1250		13200
	· · · · · · · · · · · · · · · · · · ·	13150	
IB] IT		13 00 1	
		13000	
12800	12950	0	
MAIN BRIDGE			
		The second of the second in the second second	
		·	

N:VIDesign & Engineering/Cod Admin/Ustation_Plotary/.CR8C.COL.A3.pltcfg Default PRNTED BY: User 22/11/2018 (0:40:59 M:VIDesign & Engineering/Incruiten/SC4-ft fr01.1073-37018172 Am



Appendix B

Project Organization Chart & Contact Details of Key Personnel for the Project

Project Organization Structure

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
CEDD	Project Proponent	CK Lam	2301 1398	2714 5174
CEDD	Project Proponent	Sheri Leung	2301 1398	2714 5174
AECOM	Senior Resident Engineer	Jackie Chan	3595 8045	3596 6118
AECOM	Resident Engineer	Kingman Chan	3595 8045	3596 6118
ASC – N&T JV	Independent Environmental Checker	Kevin Li	2698 6833	2698 9383
ASC – N&T JV	Senior Environmental Consultant	Tandy Tse	2698 6833	2698 9383
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Martin Li	2959 6059	2959 6079
CRBC	Site Agent	Raymond Suen	9779 8871	2283 1689
CRBC	Environmental Officer	Calvin So	9724 6254	2283 1689
CRBC	Environmental Supervisor	Lila Lui	9790 5433	2283 1689
Build King	Site Agent	Stephen Leung	9071 7657	TBA
Build King	Environmental Officer	Chris Cheng	9487 8108	TBA
Build King	Environmental Supervisor	Kenneth Hung	6170 9304	TBA

Contact Details of Key Personnel for the Project

Legend:

CEDD (Employer) – Civil Engineering and Development Department

AECOM (Project Consultant) – AECOM Asia Co. Ltd.

ASC – N&T JV (IEC) – Acuity Sustainability Consulting Limited – Nature & Technologies (HK) Limited Joint Venture

AUES (ET) – Action-United Environmental Services & Consulting

CRBC (the Main Contractor of the Works Contract 1) – China Road and Bridge Corporation

Build King (the Main Contractor of the Works Contract 2) - Build King Civil Engineering Limited

Appendix C

3-Month Rolling Construction Programme

Contract 1

Page: 1

	ActivityName	Original Duration	Remaining Duration Start	Planned Start	Finish	Planned Finish	Total Float /	Activity% Complete TRA Variance -	Finish Date	August2019 September 2019 04 11 18 25 01 08 15
ross <u>Bay Lin</u>	k,Tseung Kwan O Main Bridge and Associated Works Aug -19 Piling Sequen	1484	1011 29-Jun-18 A	29-Jun-18	14-May-22	21-Jul-22	274		68	
	mmary Programme	1484	1011 29-Jun-18 A	29-Jun-18	14-May-22	21-Jul-22	-91		68	
	2 of Works-All Works within Portion II.III.IV and VI	1240	1011 17-Sep-18 A	28-Feb-19	14-May-22	21-Jul-22	-91		68	
ESP10920	CBL Main Bridge and Marine Viaduct	1240	1011 17-Sep-18 A	28-Feb-19	14-May-22	21-Jul-22	-91	18.47% 0	68	
ESP10960	Piling Works	671	208 17-Nov-18 A	18-Apr-19	02-Mar-20	16-Feb-21	85	69% 0	351	
ESP10980 ESP11160	Pile Cap E&M Works for CBL Main Bridge and Marine Viaduct	321 962	311 23-Jul-19 A 962 26-Sep-19	08-Jul-19 30-Sep-19	13-Jun-20 14-May-22	02-Jun-20 14-May-22	-91	3.12% 0 0% 0	-11	
	5 of the Works-All Works within Portion V (CBL E&M Plantroom)	264	150 01-Apr-19 A	16-Apr-19	04-Jan-20	16-Dec-19	32	070	-19	
ESP11260	Structural Works	232	94 01-Apr-19 A	16-Apr-19	09-Nov-19	03-Dec-19	28	59.48% 0	24	
ESP11280	Architectural & External Works	55	55 11-Nov-19	25-Oct-19	04-Jan-20	16-Dec-19	32	0% 0	-19	
	s, Contractor's Design & Method Statement Submission & Approval	1105 695	700 29-Jun-18 A	29-Jun-18	07-Jul-21	04-Jun-21	19	20.78% 0	-33	
ESP10400 ESP10420	Temporary Works Design Method Statement Submission for Major Construction Works	736	488 13-Aug-18 A 532 27-Aug-18 A	13-Aug-18 27-Aug-18	07-Dec-20 20-Jan-21	07-Jul-20 31-Aug-20	29	29.78% 0 27.72% 0	-153 -142	
ESP10440	Contractor's Design Submission and Approval	869	629 06-Aug-18 A	06-Aug-18	27-Apr-21	21-Dec-20	90	27.62% 0	-127	
ESP10460 ESP10480	Alternative Design Submission and Approval General Submission	397 843	7 07-Aug-18 A 438 29-Jun-18 A	07-Aug-18 29-Jun-18	14-Aug-19 18-Oct-20	07-Sep-19 18-Oct-20	146 58	98.24% 0 48.04% 0	24	Alternative Design Submission and Approval
ESP10500	Project Manager's Acceptance of Subcontractors	556	208 14-Aug-18 A	21-Feb-19	02-Mar-20	29-Aug-20	346	62.59% 0	180	
ESP10560	Procurement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment	637 745	637 10-Oct-19	10-Oct-19	07-Jul-21	04-Jun-21	-17	0% 0 29.66% 0	-33 119	
ESP10600 ESP10620	Precasting of Precast Shell Fabrication of Precast Box Girder	713	524 08-Nov-18 A 528 10-Nov-18 A	28-Apr-19 13-May-19	12-Jan-21 16-Jan-21	11-May-21 24-Apr-21	155	29.66% 0 25.95% 0	98	
ESP10640	Fabrication of Steel Arch Bridge and Side Spans	623	483 28-Mar-19 A	08-Apr-19	02-Dec-20	20-Dec-20	-34	22.47% 0	18	
W, NCE, CE	and PMI	0	0 18-Jan-19 A		08-Aug-19		1285			EW, NCE, CE and PMI
Early Warnin	ig EW	0	0 18-Jan-19 A		15-Jul-19 A				ng EW	
EW0341	EW014 - No Early access to Contract Road P2 and Contract 6	0	0 18-Jan-19 A					100%		
EW0361 EW0381	EW015 - Delay due to design and Production of the Mastic Asphalt and the 11mm Stone Mastic Asphalt EW016 - Delay due to Late Subcontracting Work for Main Arch Bridge and Steel Side Span	0	0 18-Jan-19 A 0 15-Feb-19 A					100%		
EW0401	EW017 - Late Issuance of Operating License of 1000t Crane Bridge for Precast Shell Installation	0	0 14-Jun-19 A					100%		for Precast Shell Installation
EW0421	EW018 - Cable Hanger Connection Details	0	0 28-Jun-19 A					100%	on Details	l Erection of Steel Bridge in Typhoon Season
EW0441 Notification	EW019 -Transportation and Erection of Steel Bridge in Typhoon Season of Compensation Event NCE	0	0 15-Jul-19 A 0 11-Jun-19 A		08-Aug-19		1285	100%	ansportation and	Notification of Compensation Event NCE
NCE0441	NCE023 - Testing of Prestressing Strands, Bolts and Nuts - Duration Required by the Public Works Laboratori	0	0 11-Jun-19 A					100%	s - Duration Rec	quired by the Public Works Laboratories
NCE0461	NCE024 - Change in Works Information arisen from Project Manager's Response to Request for Information	0	0 12-Jun-19 A					100%		s Response to Request for Information (RFI-00128)
NCE0501 NCE0521	NCE026 - Inconsistency in strength requirement of grout used to fill core holes (RFI-00207) NCE027 - Change in Works Information arisen from Project Manager's Responses to Requests for Informatio	0	0 14-Jun-19 A 0 19-Jun-19 A					100%		core holes (RFI-00207) Manager's Responses to Requests for Information (RFI-001
NCE0521 NCE0541	NCE027 - Change in works information arisen non rolect wanager's responses to reduces for minimato NCE028 - Inconsistency among Works Information with respect to civil works provisions for TCSS (RFI-000)		0 17-Jul-19 A					100%	- Inconsistency	among Works Information with respect to civil works prov
NCE0561	NCE029 - Change in Works Information arisen from Project Manager's Responses to Requests for Informatio		0 04-Jul-19 A				1005	100%	ks Information a	 arisen from Project Manager's Responses to Requests for I NCE030 - Weather Conditions (Rainstorm Warnings)
NCE0581 NCE0601	NCE030 - Weather Conditions (Rainstorm Warnings) affecting the Site in June 2019 NCE031 - Increased Premium of Employees' Compensation Insurance	0	0 08-Aug-19 0 15-Jul-19 A				1285	0%	ncreased Premi	um of Employees' Compensation Insurance
NCE0621	NCE032 - Addition of B283 mesh to all exposed face of draw pit (RFI-00068A)	0	0 17-Jul-19 A					100%	- Addition of B	283 mesh to all exposed face of draw pit (RFI-00068A)
NCE0641	NCE033 - Revised Setting - out of Box Girder W5-W4 (Response to RFI-00079A)	0	0 01-Aug-19 A		05 4 10 4			100%		033 - Revised Setting - out of Box Girder W5-W4 (Respo Compensation Event (CE)
Ceonpensation CE0161	on Event (CE) CE010 - Electronic Site Inspection System (ESIS)	0	0 11-Jul-19 A 0 16-Jul-19 A		05-Aug-19 A			100%		Ispection System (ESIS)
CE0181	CE010 - Electronic Site hispection System (ESIS) CE011 - Deeper Rockhead Level as Revealed by Marine GI (PD-E1-P8)	0	0 10-Jul-19 A 0 11-Jul-19 A					100%		as Revealed by Marine GI (PD-E1-P8)
CE0201	CE012 - Provision of Additional Office Equipment and Computer Facilities for Additional Resident Site Staff	0	0 16-Jul-19 A					100%		itional Office Equipment and Computer Facilities for Addi
CE0221 CE0241	CE013 - Determination of Bond Property of Steel Reinforcing Bars by Surface Geometry Duration	0	0 27-Jul-19 A					100%		etermination of Bond Property of Steel Reinforcing Bars by of Stainless Steel Reinforcing Bars Duration Required at the
CE0241 CE0261	CE014 - Testing of Stainless Steel Reinforcing Bars Duration Required at the Public Works Laboratories CE015 - Change in Works Information arisen form Project Manager's Response to Request for Information (R		0 23-Jul-19 A 0 05-Aug-19 A					100%		CE015 - Change in Works Information arisen form Projec
CE0281	CE016 - Testing of Couplers to AC133 Duration Required at the Public Works Laboratories	0	0 05-Aug-19 A					100%		CE016 - Testing of Couplers to AC133 Duration Required
CE0301	CE017 - Testing of Prestressing Strands, Bolts and Nuts - Duration Required by the Public Works Laboratories	0 45	0 05-Aug-19 A 45 10-Oct-19	10-Oct-19	30-Nov-19	30-Nov-19	15	100%	0	CE017 - Testing of Prestressing Strands, Bolts and Nuts -
	Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equip	45	45 10-Oct-19	10-Oct-19	30-Nov-19	30-Nov-19	15			
Procuremen P-PC10120	Procurement of LV Switch Board	45	45 10-Oct-19 45 10-Oct-19	10-Oct-19	30-Nov-19	30-Nov-19 30-Nov-19	15	0% Procu	0	
P-PC10120 P-PC10160	Procurement of Lv Switch Board Procurement of Genset	30	30 10-Oct-19	10-Oct-19	13-Nov-19	13-Nov-19	15	0% Procu	0	
reliminaries,	Contractor's Design & Method Statement Submission & Approval	353	231 28-Mar-19 A	08-Apr-19	25-Mar-20	25-Mar-20	83		0	
	Vorks Design	239	198 06-Jun-19 A	21-Jun-19	25-Mar-20	25-Mar-20	71		0	
TDS2010	Formwork design for V-shaped pier and crossbeam construction (incl. 21 days TRA)	63	11 06-Jun-19 A	21-Jun-19	20-Aug-19	02-Sep-19	21	82.54% Design	11	Formwork design fo
TDS2020	Temporary falsework design for V-shaped pier and crossbeam construction (incl. 21 days TRA)	36 63	36 27-Aug-19	03-Aug-19	07-Oct-19	07-Oct-19	21	0% Design	0	
TDS2080 TDS2140	Design of lifting frame for full-span lifting of precast box girder (incl. 35 days TRA) Design of temporary works for superstructure of steel bridge (incl. 35 days TRA)	141	63 10-Sep-19 141 14-Oct-19	10-Sep-19 14-Oct-19	21-Nov-19 25-Mar-20	21-Nov-19 25-Mar-20	178 70	0%	0	
TDS2160	Steel mould design for precast segments of TKOI viaducts (incl. 21 days TRA)	63	63 08-Aug-19	08-Jul-19	19-Oct-19	18-Sep-19	-14	0% Design	-27	
TDS2180	Design of Pier bracket for erection of pier-head segments (incl. 21 days TRA) ement Submission for Major Construction Works	56 185	56 21-Oct-19 96 28-Mar-19 A	19-Sep-19 26-Apr-19	24-Dec-19 27-Nov-19	22-Nov-19 26-Oct-19	-14 172	0%	-27	
MDS1135	Method statement submission for geometry control (incl. 21 days TRA)	67	15 28-Mar-19 A	26-Apr-19	24-Aug-19	12-Jul-19	-8	77.61% struction	-37	Method statement submission fo
MDS1140	Method statement submission for geometry control (net. 21 days TRA) Method statement submission for assembly of steel arch bridge (incl. 35 days TRA)	96	96 08-Aug-19	08-Jul-19	27-Nov-19	26-Oct-19	172	0% struction	-27	
Contractor's	Design Submission and Approval	241	169 15-Apr-19 A	28-May-19	23-Jan-20	23-Jan-20	4		0	
CDS1040	Design of arch rib inspection cradle + Under bridge gantry	86	86 08-Aug-19	30-Sep-19	15-Nov-19	07-Jan-20	-35	0% 0	45	
CDS1060 CDS1080	Design of access facilities (incl. 14 days TRA) Design of Tuned Mass Damper(TMD) (incl. 7 days TRA)	125 150	42 05-May-19 A 83 15-Apr-19 A	28-May-19 08-Jul-19	25-Sep-19 12-Nov-19	19-Oct-19 28-Dec-19	21	66.4% Design 44.67% Design	21	:
CDS1080	Design of de-humidification system	83	83 10-Oct-19 A	10-Oct-19	14-Jan-20	14-Jan-20	-33	0% 0	0	
CDS1160	Design of Electrical system for the E&M plant room	100	100 30-Sep-19	30-Sep-19	07-Jan-20	07-Jan-20	-38	0% 0	0	
CDS1180 CDS1200	Design of Building Services system for the E&M plant room Design of Structural health monitoring system (incl. 14 days TRA)	100 172	100 10-Sep-19 145 12-Jun-19 A	10-Sep-19 08-Jul-19	18-Dec-19 23-Jan-20	18-Dec-19 23-Jan-20	-38	0% 0 15.7% Design	0	
	Design Submission and Approval	111	6 30-Mar-19 A	08-Apr-19	14-Aug-19	14-Aug-19	125	15.776 Design	0	Alternative Design Submission and Approval
ADS1030	DDA submission for bridge deck of entrusted works of TKOI Viaduct (incl. 35 days TRA)	111	6 30-Mar-19 A	08-Apr-19	14-Aug-19	14-Aug-19	125	94.59% Design	0	DDA submission for bridge deck of entrusted
	s,Submission, Subcontracting and Procurement	205	83 28-Mar-19 A	08-Apr-19	29-Oct-19	29-Oct-19	231		0	
General Sub	mission	140	38 28-Mar-19 A	08-Apr-19	14-Sep-19	25-Aug-19	-30		-20	Gen
P-GS1480		140	38 28-Mar-19 A	08-Apr-19	14-Sep-19	25-Aug-19	-30	72.86% Design	-20	Stee
	ager's Acceptance of Subcontractors	102	83 19-Jul-19 A	15-Jul-19	29-Oct-19	29-Oct-19	231	001 77 11 -	0	Transportation and installation of a state is a
P-SP1400 P-SP1440	Transportation and installation of precast box girder Transportation and installation of steel side spans and steel arch bridge	0	0		08-Aug-19 06-Aug-19 A	30-Jul-19 31-Jul-19	99	0% PMAS 100% PMAS	-8 0	 Transportation and installation of precast box girder Transportation and installation of steel side spans and steel
P-SP1440 P-SP1500	R.C. structure for pilecap,pier and in-situ deck	0	0		01-Aug-19 A	15-Jul-19		100% PMAS		structure for pilecap,pier and in-situ deck
					~				1	Data
Dom	naining Level of Effort 🛛 🔜 Remaining Work 🔶 🔶 Mi	lestone				CRBC				Date Re
Ren	ъ така стана и на								100	Aug 10 Manthhundatad an 0 Au
		mmary		-	Three Mont		D		00	-Aug-19 Monthly updated on 8 Au

October 2019			November 2019	
22 29 06 13	20 27	03	10 17	24
			C . 1117 1	
			Structural Works	S :
				:
ns for TCSS (RFI-00068)				
nation (RFI-00133)				
ting the Site in June 2019				
o RFI-00079A)				
l Resident Site Staff				
face Geometry Duration				
Iblic Works Laboratories				
nager's Response to Request for Infor	mation (RFI-0	0128)		
ne Public Works Laboratories ation Required by the Public Works La	boratoriac			
iuon Required by the Fubic Works La	iooraiories			
			Procureme	nt of Gens
haped pier and crossbeam constructio	n (incl. 21 dav	s TRA)		
Temporary false			pier and crossbea	m construc
1 ,	0	1 -		Design of l
	Steel mould de	sign for pre	cast segments of	TKOI viad
				Me
ometry control (incl. 21 days TRA)				
				Me
	Design of acce	ss facilities	(incl. 14 days TR	A)
				1
				1
				i
ks of TKOI Viaduct (incl. 35 days TR	A)			
		reliminaries	Submission, Sub	contracting
Submission			,, ouo	e
Submission	1	1 - 1		
n bridge shop drawings submission a				f C.1
		ioject Mana	ger's Acceptance	or Subcont
h huidaa				
h bridge				
ion	Chec	ked	Approv	ed
)19				
	I			

Page: 2

Activit	tyName	Original Rema Duration	aining Duration Start	Planned Start	Finish	Planned Finish	Total Float A	ctivity%Complete TRA Var	ance - Finish Date	28 04	August2019 11 18 25	September 2019 01 08 15 2
	terproofing Works	0	0		30-Sep-19	30-Aug-19	260	0% PMAS	-31		• • • • • • • • • • • • • • • • • • •	>
	pply and installation of steel parapet and sign gantry	0	0		29-Oct-19	29-Oct-19	-75	0% PMAS 100% PMAS	0 72			
	pply and installation of under bridge mobile gantry sign, supply and installation of arch inspection cradle	0	0		19-Jul-19 A 19-Jul-19 A	29-Sep-19 29-Sep-19		100% PMAS	72			
P-SP1680 Des	sign, supply and installation of SCADA (SP-021)	0	0		29-Sep-19	29-Sep-19	-45	0% PMAS	0			
	ctrical installation works for CBL Main bridge and Marine Viaduct (SP-021)	0	0		29-Sep-19	29-Sep-19	-45 -38	0% PMAS	0			
	Iding services for E&M plantroom(SP-021) rication Works	297	167 08-Dec-18 A	08-Apr-19	29-Sep-19 21-Jan-20	29-Sep-19 24-Jan-20	-38	0% PMAS	3			
	ecast Shell and Precast Segments	175	140 25-Jul-19 A	08-Jul-19	25-Dec-19	29-Dec-19	97		4			
recast Shell	ecast Shell and Precast Segments											
CBL - Batch 2 (4		175 75	140 25-Jul-19 A 75 08-Aug-19	08-Jul-19 08-Jul-19	25-Dec-19 21-Oct-19	29-Dec-19 20-Sep-19	97		21			
	rication of Shell E1 (1/2) + Modification of Casting Bed (2 weeks)	55	55 08-Aug-19	08-Jul-19	01-Oct-19	20-Sep-19 31-Aug-19	11	0% struction	-31 -31			
	rication of Shell E1 $(2/2)$ + Modification of Casting Bed (2 weeks)	55	55 28-Aug-19	28-Jul-19	21-Oct-19	20-Sep-19	11	0% struction	-31			
CBL - Batch 3 (4	·	69	69 04-Aug-19 A	16-Sep-19	24-Dec-19	23-Nov-19	84		-31	-		
	rication of Shell W1 (1/2)	28	28 17-Oct-19	16-Sep-19	13-Nov-19	13-Oct-19	51	0%	-31			
	rication of Shell W1 (2/2) rication of Shell E2	28 28	28 09-Nov-19 28 04-Aug-19 A	09-Oct-19 27-Oct-19	06-Dec-19 24-Dec-19	05-Nov-19 23-Nov-19	51 84	0%	-31			
CBL - Batch 4 (2)		28	0 25-Jul-19 A	02-Dec-19	08-Aug-19 A	29-Dec-19	01	070	143	CB	BL - Batch 4 (2nos.)	
	rication of Shell W4	28	0 25-Jul-19 A	02-Dec-19	08-Aug-19 A	29-Dec-19		100%	143			
	Side Shells (4nos.)	140	140 08-Aug-19	15-Jul-19	25-Dec-19	01-Dec-19	104		-24			
	ting Bed Preparation for Side Shells (small) - Additional Casting Beds rication of Side Shells (small) x2 Sides E1	60 40	60 08-Aug-19 40 07-Oct-19	15-Jul-19 13-Sep-19	06-Oct-19 15-Nov-19	12-Sep-19 22-Oct-19	70 70	0% struction 0%	-24 -24			
	rication of Side Shells (small) x2 Sides E1 rication of Side Shells (small) x2 Sides W1	40 40	40 07-Oct-19 40 16-Nov-19	23-Oct-19	25-Dec-19	01-Dec-19	104	0%	-24 -24			
	ecast Box Girder	225	153 08-Dec-18 A	28-May-19	07-Jan-20	01-Jan-20	46		-6			
	ing Up Precasting Yard for Box Girder - Stage 2 (Storage)	120	48 08-Dec-18 A	28-May-19	24-Sep-19	24-Sep-19	151	60% struction	0			<u> </u>
	sign, Procurement and Delivery of Structure Health Monitoring Sensors for Box Griders	80	30 12-Jun-19 A	08-Jul-19	06-Sep-19	25-Sep-19	21	62.5% imercial	19			
	cation - 1st Batch (8 Pieces)	218	153 28-May-19 A	04-Jun-19	07-Jan-20	01-Jan-20	21	50 (70)	-6			Fabrication of Precast
	rication of Precast box girder, Including Cast-in Items and Prestressing -Span W4-W5(North) rication of Precast box girder, Including Cast-in Items and Prestressing -Span E4-E5(North)	75 75	31 28-May-19 A 46 05-Jun-19 A	04-Jun-19 08-Jul-19	07-Sep-19 22-Sep-19	17-Aug-19 20-Sep-19	47 28	58.67% struction 38.67% struction	-21			Fabrication of Precast
P-BG1383 Fab	rication of Precast box girder, Including Cast-in Items and Prestressing -Span W3-W4(South)	75	75 11-Aug-19	05-Aug-19	24-Oct-19	18-Oct-19	21	0% struction	-6			
	rication of Precast box girder, Including Cast-in Items and Prestressing -Span E5-E6 (North)	75	75 05-Sep-19	30-Aug-19	18-Nov-19	12-Nov-19	21	0% 0	-6		-	
	rication of Precast box girder, Including Cast-in Items and Prestressing -Span W4-W5(South) rication of Precast box girder, Including Cast-in Items and Prestressing -Span E6-E7(South)	75 75	75 30-Sep-19 75 25-Oct-19	24-Sep-19 19-Oct-19	13-Dec-19 07-Jan-20	07-Dec-19 01-Jan-20	21 21	0% 0	-6			-
rication of Pr		167	167 08-Aug-19	16-Jul-19	21-Jan-20	29-Dec-19	1	0/0	-23			
	ing up precasting yard for precast pier (incl. 18 days TRA)	87	87 08-Aug-19	16-Jul-19	02-Nov-19	10-Oct-19	1	0% struction	-23			
PF1230 Fab	rication of Precast pier (1st batch 4 nos) - E4, E5, E6, E7	99	99 15-Oct-19	22-Sep-19	21-Jan-20	29-Dec-19	1	0% 0	-23			_
rication of St	eel Arch Bridge and Side Spans	292	133 28-Mar-19 A	08-Apr-19	18-Dec-19	24-Jan-20	8		37			
brication of Ste	eel Arch Bridge	292	133 28-Mar-19 A	08-Apr-19	18-Dec-19	24-Jan-20	8		37			
	batch of shop drawing submission & approval (NCE 014)(EW014)	50	2 28-Mar-19 A	08-Apr-19	09-Aug-19	27-May-19	-90	96% struction	-74	1 s	t batch of shop drawing s	submission & approval (NCE 014
	ting up steel work fabrication yard naining shop drawing submission & approval (NCE 014)	60 65	60 20-Sep-19 65 29-Jun-19 A	20-Sep-19 21-Nov-19	18-Nov-19 03-Dec-19	18-Nov-19 24-Jan-20	-95 23	0% 0 0% struction	52			
	curement and delivrey of welding materials	90	29 06-Jun-19 A	08-Jun-19	05-Sep-19	05-Sep-19	-95	67.78% struction	0			Procurement and delivre
-PF1050 Pro	curement and delivery of steel material (incl. 35 days TRA)	125	61 19-Apr-19 A	12-Jun-19	09-Oct-19	14-Oct-19	-90	51.2% struction	5			
	batch of on site material sampling & testing	20 90	15 25-Jun-19 A	10-Oct-19	24-Oct-19 03-Nov-19	29-Oct-19 03-Nov-19	-90	25% 0 34.44% 0	5			
	lding Procedure trials -production Trials (e.g. Flame Cutting)	10	59 29-Jun-19 A 10 15-Oct-19	06-Aug-19 20-Oct-19	24-Oct-19	29-Oct-19	-95 -90	34.44% 0 0%	5			
	terial Pre-Treatment	50	50 30-Oct-19	30-Oct-19	18-Dec-19	18-Dec-19	-95	0%	0			
on 2 of Work	s-All Works within Portion II,III,IV and VI	427	315 23-Nov-18 A	18-Apr-19	17-Jun-20	08-Aug-20	68		52			
L Main Bridge	and Marine Viaduct	427	315 23-Nov-18 A	18-Apr-19	17-Jun-20	08-Aug-20	68		52		i i i i i i i i i i i i i i i i i i i	
iling Works		254	142 23-Nov-18 A	18-Apr-19	27-Dec-19	07-Feb-20	109		42			:
	curement and delivery of steel casing (CE004)(CE005)(CE006)(CE008)(NCE 018 & 019)	75	1 23-Nov-18 A	18-Apr-19	08-Aug-19	01-Jul-19	31	98.67% struction	-38	⁰ Pro	curement and delivery of	f steel casing (CE004)(CE005)(Cl
Piling Works for		56	56 26-Jul-19 A	29-Nov-19	02-Oct-19	07-Feb-20	195		128			
S2-PW50 Pilin Pile W4-P1	ng platform installation -W4	4	0 26-Jul-19 A 7 29-Jul-19 A	29-Nov-19 04-Dec-19	29-Jul-19 A 15-Aug-19	03-Dec-19 14-Dec-19	21	100% 0	107	-	Pile W4-P1	
	ve Casing & Grab to excavate the soil (40.4m length) -W4-P1	3	0 29-Jul-19 A	04-Dec-19	29-Jul-19 A	06-Dec-19	21	100% 0	101	•		
S2-PW: Inst	all RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	4	4 08-Aug-19	07-Dec-19	12-Aug-19	11-Dec-19	17	0% 0	101		۱	
	all steel cage and concreting -W4-P1	3	3 13-Aug-19	12-Dec-19	15-Aug-19	14-Dec-19	21	0% 0	101		Pile W4 -P2	,
Pile W4 -P2 S2-PW' Driv	ve Casing & Grab to excavate the soil (40.4m length) -W4-P2	7	7 29-Jul-19 A 0 29-Jul-19 A	07-Dec-19 07-Dec-19	20-Aug-19 29-Jul-19 A	19-Dec-19 10-Dec-19	20	100% 0	101 112	•	• r ne w4 -P2	
	all RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	4	4 13-Aug-19	12-Dec-19	16-Aug-19	16-Dec-19	17	0% 0	101			
S2-PW: Inst	all steel cage and concreting -W4-P2	3	3 17-Aug-19	17-Dec-19	20-Aug-19	19-Dec-19	20	0% 0	101			
Pile W4 -P3	w Coving & Coult to present the coll (40 Am lowed) W/4 D2	7	7 29-Jul-19 A 0 29-Jul-19 A	11-Dec-19	24-Aug-19 29-Jul-19 A	24-Dec-19	19	1000/ 0	101 115		Pile W	4-P3
	ve Casing & Grab to excavate the soil (40.4m length) -W4-P3 all RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	3	4 17-Aug-19	11-Dec-19 17-Dec-19	29-Jul-19 A 21-Aug-19	13-Dec-19 20-Dec-19	17	100% 0 0% 0	101			
	all steel cage and concreting -W4-P3	3	3 22-Aug-19	21-Dec-19	24-Aug-19	24-Dec-19	19	0% 0	101		-	
Pile W4 -P4		7	7 30-Jul-19 A	14-Dec-19	29-Aug-19	31-Dec-19	18		101			Pile W4 -P4
	ve Casing & Grab to excavate the soil (40.4m length) -W4-P4 all RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	3 4	0 30-Jul-19 A 4 22-Aug-19	14-Dec-19 21-Dec-19	30-Jul-19 A 26-Aug-19	17-Dec-19 27-Dec-19	17	100% 0 0% 0	118 101	1	_	
	all steel cage and concreting -W4-P4	3	3 27-Aug-19	21-Dec-19 28-Dec-19	20-Aug-19 29-Aug-19	31-Dec-19	17	0% 0	101		-	
Pile W4 -P5		8	7 30-Jul-19 A	18-Dec-19	03-Sep-19	06-Jan-20	17		101	*		Pile W4 -P5
	ve Casing & Grab to excavate the soil (40.4m length) -W4-P5	3	0 30-Jul-19 A	18-Dec-19	30-Jul-19 A	20-Dec-19		100% 0	120	•	_	
	all RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting - all steel cage and concreting -W4-P5	4 3	4 27-Aug-19 3 31-Aug-19	28-Dec-19 03-Jan-20	30-Aug-19 03-Sep-19	02-Jan-20 06-Jan-20	17	0% 0	101			
Pile W4 -P6		4	4 04-Sep-19	10-Jan-20	07-Sep-19	14-Jan-20	17	570 0	101			Pile W4 -P6
	all RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	1	1 04-Sep-19	10-Jan-20	04-Sep-19	10-Jan-20	17	0% 0	104			'_
S2-PW: Inst Testing	all steel cage and concreting -W4-P6	3	3 05-Sep-19	11-Jan-20	07-Sep-19	14-Jan-20 07 Eeb 20	17	0% 0	104			
	ic Test, interface core and full core for bored pile -W4	21 21	21 09-Sep-19 21 09-Sep-19	15-Jan-20 15-Jan-20	02-Oct-19 02-Oct-19	07-Feb-20 07-Feb-20	167 167	0% 0	110 110			
Piling Works for		74	74 09-Sep-19	26-Aug-19	21-Nov-19	07-Nov-19	20	570 U	-14			·
S2-PW85 Pilin	ng platform installation -E2 (CE006)	4	4 09-Sep-19	26-Aug-19	12-Sep-19	29-Aug-19	17	0% 0	-12			Piling platform
Pile E2 -P1		10	10 13-Sep-19	30-Aug-19	25-Sep-19	10-Sep-19	21	0.1	-12			
	ve Casing & Grab to excavate the soil (40.4m length) -E2-P1 all RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -	3 4	3 13-Sep-19 4 18-Sep-19	30-Aug-19 03-Sep-19	17-Sep-19 21-Sep-19	02-Sep-19 06-Sep-19	17	0% 0 0% 0	-12 -12		-	Drive Ca
52-1 W(HISt	an rees and excavate the rock under rockiteau iever to rounding iever (4111 Socket) - ing 100.2 & all illing -	7	- 10-36p-19	00-0cp-19	21-3cp-19	00-3cp-19	1/	U/0 U	-12	: 1		•
Remaini	ng Level of Effort 📃 Remaining Work 🔶 🔶 Mile	stone				CRBC					ate	Revision
			1			CINDU				08-Aug-	19 Monthly	y updated on 8 Aug 2019
Primary I	Baseline Critical Remaining Work VIII Sur	moni			hree Mont					loo , ag		, _paawa 0110/huy 2016

October 2019		November 2019
22 29 06 13 • Waterproofing Works	20 27 0	
Supply and installation of	under bridge mobile ga	nd installation of steel parapet an intry
 Design, supply and installa Design, supply and installa 	ation of arch inspection ation of SCADA (SP-02	cradle 1)
 Electrical installation work Building services for E&P 		e and Marine Viaduct (SP-021)
Exhrication of Shall E1	CBL - Batch 2 (4nd	· · · · · · · · · · · · · · · · · · ·
Fabrication of Shell E1		f Casting Bed (2 weeks) E1 (2/2) + Modification of Cast
		Fabrication of Shell W
Conting Pad Pro	normian for Sido Shallo	(cmall) Additional Casting Pag
		(small) - Additional Casting Bed Fabrication of Side
 Setting Up Precasting Yard for E Design, Procurement and Deliv 		orage) Monitoring Sensors for Box Gr
		-
cast box girder, Including Cast-in Iter Fabrication of Precast box girder, In	ncluding Cast-in Items	and Prestressing -Span E4-E5(No
	Fabrication of F	recast box girder, Including Cast Fabrication of I
=		
	Set	ing up precasting yard for precas
014)(EW014)		Setting up steel
Ļ.		01
ivrey of welding materials		
		steel material (incl. 35 days TRA of on site material sampling & to
	1st batch W	of on site material sampling & te elding Procedure trials
	1st batch W	of on site material sampling & te
ivrey of welding materials Procu	1st batch W	of on site material sampling & te elding Procedure trials
Procu	1st batch W	of on site material sampling & te elding Procedure trials
	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
)(CE006)(CE008)(NCE 018 & 019)	Pre-prod	of on site material sampling & te elding Procedure trials
(CE006)(CE008)(NCE 018 & 019) Piling Works for Pier Piling Works for Pier	Pre-prod	of on site material sampling & te elding Procedure trials
CE006)(CE008)(NCE 018 & 019) Piling Works for Pier Piling Works for Pier Testing minstallation -E2 (CE006) Pile E2 -P1	W4	of on site material sampling & te elding Procedure trials action Trials (e.g. Flame Cutting)
V(CE006)(CE008)(NCE 018 & 019) Piling Works for Pier Piling Works for Pier Testing	W4 W4 (40.4m length)-E2-P1	of on site material sampling & te elding Procedure trials action Trials (e.g. Flame Cutting)
(CE006)(CE008)(NCE 018 & 019) Piling Works for Pier Piling Works for Pier Testing Testing Testing Piling E2-P1 e Casing & Grab to excavate the soil	W4 W4 (40.4m length)-E2-P1	of on site material sampling & te elding Procedure trials action Trials (e.g. Flame Cutting)
V(CE006)(CE008)(NCE 018 & 019) Piling Works for Pier Piling Works for Pier Testing Testing Testing Pile E2-P1 c Casing & Grab to excavate the soil Install ACD and excavate the rock u	Ist batch W Pre-prod W4	of on site material sampling & to elding Procedure trials tetion Trials (e.g. Flame Cutting)

Page: 3

	ActivityName	Original Duration	Remaining Duration Start	Planned Start	Finish	Planned Finish	Total Float Ac	tivity % Complete	TRA V	ariance - Finish Dat		August20		September 2019
S2-PW	Install steel cage and concreting -E2-P1	3	3 23-Sep-19	07-Sep-19	25-Sep-19	10-Sep-19	21	0%	0	-12	28	04 11	18 25	01 08 15
Pile E2 -F	2	11	11 18-Sep-19	03-Sep-19	30-Sep-19	16-Sep-19	20			-12	2			
	Drive Casing & Grab to excavate the soil (40.4m length) -E2-P2 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -	3	3 18-Sep-19 4 23-Sep-19	03-Sep-19 07-Sep-19	20-Sep-19 26-Sep-19	05-Sep-19 11-Sep-19	18	0% 0%	0	-12 -12				D
	Install steel cage and concreting -E2-P2	3	3 27-Sep-19	12-Sep-19	30-Sep-19	16-Sep-19	20	0%		-12				
Pile E2 -F		12	12 21-Sep-19	06-Sep-19	05-Oct-19	20-Sep-19	19			-12	2			
	Drive Casing & Grab to excavate the soil (40.4m length) -E2-P3	3	3 21-Sep-19	06-Sep-19	24-Sep-19	09-Sep-19	19	0%		-12				_ =
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - Install steel cage and concreting -E2-P3	4	4 27-Sep-19 3 03-Oct-19	12-Sep-19 18-Sep-19	02-Oct-19 05-Oct-19	17-Sep-19 20-Sep-19	17		0	-12 -12				
Pile E2 -F		13	13 25-Sep-19	10-Sep-19	11-Oct-19	25-Sep-19	18	070	U	-12				
	Drive Casing & Grab to excavate the soil (40.4m length) -E2-P4	3	3 25-Sep-19	10-Sep-19	27-Sep-19	12-Sep-19	20	0%	0	-12				_
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -	4	4 03-Oct-19	18-Sep-19	08-Oct-19	21-Sep-19	17	0%		-12				_
Pile E2 -F	Install steel cage and concreting -E2-P4 5	3	3 09-Oct-19 14 28-Sep-19	23-Sep-19 13-Sep-19	11-Oct-19 16-Oct-19	25-Sep-19 30-Sep-19	18	0%	0	-12 -12				
	Drive Casing & Grab to excavate the soil (40.4m length) -E2-P5	3	3 28-Sep-19	13-Sep-19	02-Oct-19	17-Sep-19	21	0%	0	-12				
S2-PW	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -	4	4 09-Oct-19	23-Sep-19	12-Oct-19	26-Sep-19	17	0%		-12	2			
	Install steel cage and concreting -E2-P5	3	3 14-Oct-19	27-Sep-19	16-Oct-19	30-Sep-19	17	0%	0	-12				
Pile E2 -F	Drive Casing & Grab to excavate the soil (40.4m length) -E2-P6	10 3	10 17-Oct-19 3 17-Oct-19	02-Oct-19 02-Oct-19	28-Oct-19 19-Oct-19	14-Oct-19 04-Oct-19	17	0%	0	-12 -12				
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -	4	4 21-Oct-19	05-Oct-19	24-Oct-19	10-Oct-19	17		0	-12				
	Install steel cage and concreting -E2-P6	3	3 25-Oct-19	11-Oct-19	28-Oct-19	14-Oct-19	17	0%	0	-12	2			
Testing		21	21 29-Oct-19	15-Oct-19	21-Nov-19	07-Nov-19	17	00/	0	-12				
	Sonic Test, interface core and full core for bored pile -E2 s for Pier W3	21	21 29-Oct-19 26 29-Oct-19	15-Oct-19 15-Oct-19	21-Nov-19 27-Nov-19	07-Nov-19 13-Nov-19	17 61	0%	0	-12				
	Piling platform installation -W3	4	4 29-Oct-19	15-Oct-19	01-Nov-19	18-Oct-19	61	0%	0	-12	,			
Pile W3 -		10	10 02-Nov-19	19-Oct-19	13-Nov-19	30-Oct-19	64			-12				
	Drive Casing & Grab to excavate the soil (42m length) -W3-P1	3	3 02-Nov-19	19-Oct-19	05-Nov-19	22-Oct-19	61		0	-12				
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting - Install steel case and concreting .W3_P1	4 3	4 06-Nov-19 3 11-Nov-19	23-Oct-19 28-Oct-19	09-Nov-19 13-Nov-19	26-Oct-19 30-Oct-19	61 64	0%		-12				
Pile W3 -	Install steel cage and concreting -W3-P1	3	3 11-Nov-19 11 06-Nov-19	28-Oct-19 23-Oct-19	13-Nov-19 18-Nov-19	04-Nov-19	64	0%	U	-12 -12				
S2-PW	Drive Casing & Grab to excavate the soil (42m length) -W3-P2	3	3 06-Nov-19	23-Oct-19	08-Nov-19	25-Oct-19	62	0%	0	-12				
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	4	4 11-Nov-19	28-Oct-19	14-Nov-19	31-Oct-19	61		0	-12	2			
S2-PW Pile W3 -	Install steel cage and concreting -W3-P2	3	3 15-Nov-19 12 09-Nov-19	01-Nov-19 26-Oct-19	18-Nov-19 22-Nov-19	04-Nov-19 08-Nov-19	63 62	0%	0	-12 -12				
	Drive Casing & Grab to excavate the soil (42m length) -W3-P3	3	3 09-Nov-19	26-Oct-19	12-Nov-19	29-Oct-19	63	0%	0	-12				
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	4	4 15-Nov-19	01-Nov-19	19-Nov-19	05-Nov-19	61		0	-12	2			
	Install steel cage and concreting -W3-P3	3	3 20-Nov-19	06-Nov-19	22-Nov-19	08-Nov-19	62	0%	0	-12				
Pile W3 -		13 3	13 13-Nov-19	30-Oct-19	27-Nov-19	13-Nov-19	61	00/	0	-12				
	Drive Casing & Grab to excavate the soil (42m length) -W3-P4 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	4	3 13-Nov-19 4 20-Nov-19	30-Oct-19 06-Nov-19	15-Nov-19 23-Nov-19	01-Nov-19 09-Nov-19	64 61	0%		-12 -12				
	Install steel cage and concreting -W3-P4	3	3 25-Nov-19	11-Nov-19	27-Nov-19	13-Nov-19	61	0%		-12				
Pile W3 -		7	7 16-Nov-19	02-Nov-19	23-Nov-19	09-Nov-19	64			-12				
	Drive Casing & Grab to excavate the soil (42m length) -W3-P5	3	3 16-Nov-19	02-Nov-19	19-Nov-19	05-Nov-19	64	0%		-12				
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting - ss for Pier W1	4	4 20-Nov-19 115 04-Sep-19	06-Nov-19 02-Aug-19	23-Nov-19 27-Dec-19	09-Nov-19 25-Nov-19	64	0%	0	-12 -32				
	Piling platform installation -W1	4	1	02-Aug-19	07-Sep-19	06-Aug-19	2	0%	0	-28				Piling platform inst
Pile W1 -		11	11 09-Sep-19	07-Aug-19	21-Sep-19	19-Aug-19	17			-28				• • • • • • • •
	Drive Casing & Grab to excavate the soil (42.4m length) -W1-P1	4	4 09-Sep-19	07-Aug-19	12-Sep-19	10-Aug-19	2		0	-28		<u> </u>		Drive Casing
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting - Install steel cage and concreting -W1-P1	4 3	4 13-Sep-19 3 19-Sep-19	12-Aug-19 16-Aug-19	18-Sep-19 21-Sep-19	15-Aug-19 19-Aug-19	2 17	0%		-28			_	
Pile W1 -		11	11 24-Oct-19	19-Sep-19	05-Nov-19	02-Oct-19	8	070	0	-28				
S2-PW	Drive Casing & Grab to excavate the soil (42.4m length) -W1-P10	4	4 24-Oct-19	19-Sep-19	28-Oct-19	23-Sep-19	2	0%	0	-28				
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	4 29-Oct-19	24-Sep-19	01-Nov-19	27-Sep-19	2	0%		-28				
S2-PW Pile W1 -	Install steel cage and concreting -W1-P10	3	3 02-Nov-19 11 29-Oct-19	28-Sep-19 24-Sep-19	05-Nov-19 09-Nov-19	02-Oct-19 08-Oct-19	8	0%	0	-28 -28				
	Drive Casing & Grab to excavate the soil (42.4m length) -W1-P11	4	4 29-Oct-19	24-Sep-19	01-Nov-19	27-Sep-19	2	0%	0	-28				
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	4 02-Nov-19	28-Sep-19	06-Nov-19	03-Oct-19	2		0	-28				
	Install steel cage and concreting -W1-P11	3	3 07-Nov-19	04-Oct-19	09-Nov-19	08-Oct-19	7	0%	0	-28				
Pile W1 -	Drive Casing & Grab to excavate the soil (42.4m length) -W1-P12	11 4	11 02-Nov-19 4 02-Nov-19	28-Sep-19 28-Sep-19	14-Nov-19 06-Nov-19	12-Oct-19 03-Oct-19	6	0%	0	-28 -28				
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	4 02-Nov-19 4 07-Nov-19	04-Oct-19	11-Nov-19	09-Oct-19	2	0%		-28				
S2-PW	Install steel cage and concreting -W1-P12	3	3 12-Nov-19	10-Oct-19	14-Nov-19	12-Oct-19	6	0%		-28	3			
	P13 (Dia. 1000mm)	11	11 07-Nov-19	04-Oct-19	19-Nov-19	17-Oct-19	5			-28				
	 Drive Casing & Grab to excavate the soil (43.4m length) -W1-P13 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting - 	4	4 07-Nov-19 4 12-Nov-19	04-Oct-19 10-Oct-19	11-Nov-19 15-Nov-19	09-Oct-19 14-Oct-19	2	0%		-28				
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - ng No.1 & air lifting - Install steel cage and concreting -W1-P13	3	4 12-Nov-19 3 16-Nov-19	10-Oct-19 15-Oct-19	15-Nov-19 19-Nov-19	14-Oct-19 17-Oct-19	5	0%		-28				
	P14 (Dia. 1000mm)	11	11 12-Nov-19	10-Oct-19	23-Nov-19	22-Oct-19	4			-28				
	Drive Casing & Grab to excavate the soil (43.4m length) -W1-P14	4	4 12-Nov-19	10-Oct-19	15-Nov-19	14-Oct-19	2	0%		-28				
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	4	4 16-Nov-19 3 21-Nov-19	15-Oct-19 19-Oct-19	20-Nov-19 23-Nov-19	18-Oct-19 22-Oct-19	2 4	0% 0%		-28				
	Install steel cage and concreting -W1-P14 P15 (Dia. 1000mm)	11	11 16-Nov-19	19-Oct-19	23-Nov-19	22-Oct-19	3	070	0	-28				
	Drive Casing & Grab to excavate the soil (43.4m length) -W1-P15	4	4 16-Nov-19	15-Oct-19	20-Nov-19	18-Oct-19	2	0%	0	-28				
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	4	4 21-Nov-19	19-Oct-19	25-Nov-19	23-Oct-19	2	0%		-28	3			
	Install steel cage and concreting -W1-P15	3	3 26-Nov-19	24-Oct-19	28-Nov-19	26-Oct-19	3	0%	0	-28				
	P16 (Dia. 1000mm) Drive Casing & Grab to excavate the soil (43.4m length) -W1-P16	11 4	11 21-Nov-19 4 21-Nov-19	19-Oct-19 19-Oct-19	03-Dec-19 25-Nov-19	31-Oct-19 23-Oct-19	2	0%	0	-28 -28				
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	4	4 26-Nov-19	24-Oct-19	29-Nov-19	23-Oct-19 28-Oct-19	2	0%		-28	3			
S2-PW	Install steel cage and concreting -W1-P16	3	3 30-Nov-19	29-Oct-19	03-Dec-19	31-Oct-19	2	0%		-28	3			
Testing	Comis That interface cam and full cam for here 1 - 3 - 301	21	21 04-Dec-19	01-Nov-19	27-Dec-19	25-Nov-19	2	0.04	0	-28				
Pile W1 -	Sonic Test, interface core and full core for bored pile -W1	21 11	21 04-Dec-19 11 13-Sep-19	01-Nov-19 12-Aug-19	27-Dec-19 26-Sep-19	25-Nov-19 23-Aug-19	2 16	0%	U	-28				
	Drive Casing & Grab to excavate the soil (42.4m length) -W1-P2	4	4 13-Sep-19	12-Aug-19	18-Sep-19	15-Aug-19	2	0%	0	-28		—		Driv
S2-PW	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	4	4 19-Sep-19	16-Aug-19	23-Sep-19	20-Aug-19	2	0%	0	-28	3	-	_	_
	Install steel cage and concreting -W1-P2	3	3 24-Sep-19	21-Aug-19	26-Sep-19	23-Aug-19	16	0%	0	-28			_	
Pile W1 -		11 4	11 19-Sep-19 4 19-Sep-19	16-Aug-19	02-Oct-19 23-Sep-19	28-Aug-19 20-Aug-19	15	0%	0	-28 -28		_	_	
	Drive Casing & Grab to excavate the soil (42.4m length) -W1-P3 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	4	4 19-Sep-19 4 24-Sep-19	16-Aug-19 21-Aug-19	23-Sep-19 27-Sep-19	20-Aug-19 24-Aug-19	2		0	-28				
					, ,			27.9		24		Date		Revisio
	naining Level of Effort 📃 Remaining Work 🔶 🔶 Mile	estone				CRBC						08-Aug-19	Manth	updated on 8 Aug 20
Rei														
	ary Baseline Critical Remaining Work VIII Sur	nmary			hree Mont	יייותו	D					00-Aug-10	IVIOITUITy	upualed on OAug 20

		November 2019
20 27 -E2-P1	03	10 17 24
oil (40.4m len	oth) -E2-P2	
ock under rock	khead level	to founding level (4m socket
the soil (40.41	n length) -I	2-P3
nd concreting -		ad level to founding level (4n
vate the soil (4		
l cage and con		
o excavate the		
all steel cage a	nd concretir	
		xcavate the soil (40.4m lengt cavate the rock under rockhe
		ge and concreting -E2-P6 Testing
_		Sonic Test, Pili
	Piling pl	atform installation -W3 Pile W3 -P1
_		ve Casing & Grab to excavat
		Install RCD and excavate t Install steel cage and
_		Pile W3 -P2 Drive Casing & Grab to exc
		Install RCD and exc
_	ľ	Pile W3 - Drive Casing & Grab t
		Install RCD a
_	-	Drive Casing & Gr
		Install R
		👝 🗖 Ins
	_	Pile W3 Drive Casing
		Pile W3
		Pile W3 Drive Casing
		Pile W3 Drive Casing
P1	to foundin Pile	g level (4m socket) - rig No.
P1	to foundin Pile ive Casing Install R	g level (4m socket) - rig No. W1 -P10 & Grab to excavate the soil (CD and excavate the rock un
P1	to foundin Pile ive Casing Install R Install R	g level (4m socket) - rig No. W1 -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting
P1	to foundin Pile ive Casing Install R Install R	g level (4m socket) - rig No. WI -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile WI -P11 sing & Grab to excavate the
P1	to foundin Pile ive Casing Install R Inst Drive Ca	Pile W3 Drive Casing Install R g level (4m socket) - rig No. W1 -P10 & Grab to excavate the soil (CD and excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1 -P11 sing & Grab to excavate the stall RCD and excavate the install steel cage and concret
P1	to foundin Pile ive Casing Install R Drive Casing	g level (4m socket) - rig No. WI -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile WI -P11 ising & Grab to excavate the r stall RCD and excavate the rol Install steel cage and concreting Pile WI -P12 ive Casing & Grab to excavate
P1	to foundin Pile ive Casing Install R Drive Casing	Pile W3 Drive Casing Install R g level (4m socket) - rig No. W1 -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1 -P11 using & Grab to excavate the stall RCD and excavate the rock and concreting Pile W1 -P12 install steel cage and concret Install RCD and excavat Install RCD and excavat
P1	to foundin Pile ive Casing Install R Drive Casing	Pile W3 Drive Casing Install R g level (4m socket) - rig No. W1 -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1 -P11 Sing & Grab to excavate the stall RCD and excavate the p Install steel cage and concre Pile W1 -P12 rive Casing & Grab to excava Install RCD and excavate Pile W1 -P12 rive Casing & Grab to excava Install steel cage and Pile W1 -P13 Drive Casing & Grab to excava
P1	to foundin Pile ive Casing Install R Drive Casing	Pile W3 Drive Casing Install R W1 -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1 -P11 using & Grab to excavate the stall RCD and excavate the stall RCD and excavate Install steel cage and concreting Pile W1 -P12 vie Casing & Grab to excavate the Install steel cage and excavat Install RCD and excavat Install RCD and excavat Install RCD and to Install RCD and te Install RCD and te Install RCD and te Install RecD and te
P1	to foundin Pile ive Casing Install R Drive Casing	Pile W3 Drive Casing Install R Grah to excavate the soil (D and excavate the soil (D and excavate the rock un all steel cage and concreting Pile W1-P11 sing & Grab to excavate the stall RCD and excavate the stall RCD and excavate the install steel cage and concreting Pile W1-P12 rive Casing & Grab to excava Install RCD and excavat Install RCD and excavat Install Steel cage and Thistall Steel cage Thistall
P1	to foundin Pile ive Casing Install R Drive Casing	Pile W3 Drive Casing Install R g level (4m socket) - rig No. WI -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1-P11 using & Grab to excavate the r Install steel cage and concreting Pile W1-P12 rive Casing & Grab to excavate Install RCD and excavat Install RCD Insta
P1	to foundin Pile ive Casing Install R Drive Casing	Pile W3 Drive Casing Install R Grab to excavate the soil (D and excavate the soil (D and excavate the rock un all steel cage and concreting Pile W1-P11 sing & Grab to excavate the stall RCD and excavate the stall RCD and excavate the install steel cage and concreting Pile W1-P12 rive Casing & Grab to excavat Install RCD and excava Install RCD and excava Install RCD and excavat Install RCD and excava Install RCD and excavat Install R
P1	to foundin Pile ive Casing Install R Drive Casing	Pile W3 Drive Casing Install R g level (4m socket) - rig No. W1 -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1-P11 sing & Grab to excavate the r tall RCD and excavate the r install steel cage and concre Pile W1-P12 vive Casing & Grab to excavat Install steel cage and to Pile W1-P13 Drive Casing & Grab to Install steel cage and concreting Pile W1 Drive Casing & Grab to Install steel cage and r Pile W1 Drive Casing & Grab to Install RCD and excavate for Pile W1-P13 Drive Casing & Grab to Install RCD and excavate for Install RCD and excava
P1	to foundin Pile ive Casing Install R Drive Casing	pile W3 Drive Casing Install R g level (4m socket) - rig No. WI -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1 -P11 using & Grab to excavate the r Install steel cage and concre Pile W1 -P12 rive Casing & Grab to excavate Install steel cage and concreting Pile W1 -P12 rive Casing & Grab to excavate Install steel cage and Pile W1 -P13 Drive Casing & Grab to Install RCD and excavate Install RCD Install RCD Install RCD Install RCD
P1	to foundin Pile ive Casing Install R Drive Casing	pile W3 Drive Casing Install R g level (4m socket) - rig No. W1 -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1 -P11 sing & Grab to excavate the p Install steel cage and concre pile W1 -P12 rive Casing & Grab to excava Install steel cage and concre Pile W1 -P12 rive Casing & Grab to excava Install steel cage and Install steel cage and Pile W1 -P13 Drive Casing & Grab to Install steel cage and Pile W1 -P13 Drive Casing & Grab to Install steel cage and Pile W1 -P13 Drive Casing & Grab to Install RCD and excava Install steel cage and Drive Casing & Grab to Install RCD and excava Install steel cage and Drive Casing & Grab to Install RCD and excava Install steel cage and Drive Casing & Grab to Install RCD and excava Install steel cage and Install RCD and excava Install RCD and excava Install steel cage and Install RCD and excava Install steel cage and Install RCD and excava Install Install steel cage and Install RCD and excava Install Install Install Install Install Install
P1	to foundin Pile ive Casing Install R Drive Casing	pile W3 Drive Casing Install R g level (4m socket) - rig No. W1 -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1 -P11 sing & Grab to excavate the p Install steel cage and concre pile W1 -P12 rive Casing & Grab to excava Install steel cage and concre Pile W1 -P12 rive Casing & Grab to excava Install steel cage and Install steel cage and Pile W1 -P13 Drive Casing & Grab to Install steel cage and Pile W1 -P13 Drive Casing & Grab to Install steel cage and Pile W1 -P13 Drive Casing & Grab to Install RCD and excava Install steel cage and Drive Casing & Grab to Install RCD and excava Install steel cage and Drive Casing & Grab to Install RCD and excava Install steel cage and Drive Casing & Grab to Install RCD and excava Install steel cage and Install RCD and excava Install RCD and excava Install steel cage and Install RCD and excava Install steel cage and Install RCD and excava Install Install steel cage and Install RCD and excava Install Install Install Install Install Install
(42.4m length	 to foundin Pile Install R Install R Drive Casing Drive C	Pile W3 Drive Casing Install R Install R Install R W1 -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1 -P11 sing & Grab to excavate the restall RCD and excavate the rock un all steel cage and concreting Pile W1 -P12 rive Casing & Grab to excavate Install RCD and excavate Install steel cage and concreting Pile W1 -P12 rive Casing & Grab to excavate Install steel cage and concreting Pile W1 -P12 Drive Casing & Grab to excavate Install steel cage and concreting Pile W1 -P13 Drive Casing & Grab to excavate Install steel cage and Install RCD and excavate Install steel cage and Drive Casing & Grab to Install RCD and excavate Install RCD and excavate Install steel cage Install steel cage Install RCD and excavate Install steel cage Install RCD and excavate Install RCD and excavate Install steel cage Install RCD and excavate Install steel cage Install RCD
(42.4m length	 to foundin Pile Install R Install R Drive Casing Drive C	pile W3 Drive Casing Install R g level (4m socket) - rig No. W1 -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1 -P11 sing & Grab to excavate the p Install steel cage and concre pile W1 -P12 rive Casing & Grab to excava Install steel cage and concre Pile W1 -P12 rive Casing & Grab to excava Install steel cage and Install steel cage and Pile W1 -P13 Drive Casing & Grab to Install steel cage and Pile W1 -P13 Drive Casing & Grab to Install steel cage and Pile W1 -P13 Drive Casing & Grab to Install RCD and excava Install steel cage and Drive Casing & Grab to Install RCD and excava Install steel cage and Drive Casing & Grab to Install RCD and excava Install steel cage and Drive Casing & Grab to Install RCD and excava Install steel cage and Install RCD and excava Install RCD and excava Install steel cage and Install RCD and excava Install steel cage and Install RCD and excava Install Install steel cage and Install RCD and excava Install Install Install Install Install Install
(42.4m length under rockhea g -W1-P2 he soil (42.4m	ito foundin Pile ive Casing Install R Drive Cc In Drive Cc In Dri Drive Cc In Drive Cc In	g level (4m socket) - rig No. WI -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1 -P11 using & Grab to excavate the stall RCD and excavate the stall RCD and excavate the stall RCD and excavate Install steel cage and concre- install steel cage and concre- Pile W1 -P12 rive Casing & Grab to excava- Install RCD and excavate Install steel cage and concre- Pile W1 -P12 rive Casing & Grab to excava- Install RCD and excavate Drive Casing & Grab to excava- Install RCD and excavate Drive Casing & Grab to Install RCD and excava- Install RCD and excava- Drive Casing & Grab to Drive Drive Casing & Grab to Drive Drive Drive Drive Drive Drive Drive Drive
(42.4m length under rockhea g -W1-P2 he soil (42.4m) -W1-P2 d level to fa	g level (4m socket) - rig No. WI -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1 -P11 sing & Grab to excavate the rock stall RCD and excavate the rock un all steel cage and concre- pile W1 -P12 rive Casing & Grab to excavate Install steel cage and concre- Pile W1 -P12 rive Casing & Grab to excavate Install steel cage and concre- Pile W1 -P12 Drive Casing & Grab to excavate Install steel cage and Drive Casing & Grab to excavate Install steel cage and Drive Casing & Grab to excavate Drive Casing & Grab to excavate Install steel cage and Drive Casing & Grab to Install RCD and excavate Drive Casing & Install RCD Drive Casing & In
(42.4m length under rockhea g -W1-P2 he soil (42.4m rock under ro) -W1-P2 d level to fa	g level (4m socket) - rig No. WI -P10 & Grab to excavate the soil (CD and excavate the rock un all steel cage and concreting Pile W1 -P11 using & Grab to excavate the stall RCD and excavate the stall RCD and excavate the stall RCD and excavate Install steel cage and concre- install steel cage and concre- Pile W1 -P12 rive Casing & Grab to excava- Install RCD and excavate Install steel cage and concre- Pile W1 -P12 rive Casing & Grab to excava- Install RCD and excavate Drive Casing & Grab to excava- Install RCD and excavate Drive Casing & Grab to Install RCD and excava- Install RCD and excava- Drive Casing & Grab to Drive Drive Casing & Grab to Drive Drive Drive Drive Drive Drive Drive Drive
	-E2-P1 oil (40.4m len ock under rock reting -E2-P2 the soil (40.4n tate the rock ur dd concreting - t vate the soil (4 d excavate the cage and com E2 -P5 o excavate the D and excava all steel cage an V Pil Drive Casing Install R	-E2-P1 oil (40.4m length) -E2-P2 ock under rockhead level reting -E2-P2 the soil (40.4m length) -E tate the rock under rockhead d concreting -E2-P3 vate the soil (40.4m length d excavate the rock under cage and concreting -E2- E2 -P5 o excavate the soil (40.4m D and excavate the rock under cage and concreting -E2- E2 -P5 o excavate the soil (40.4m D and excavate the rock under cage and concreting -E2- E2 -P5 o excavate the soil (40.4m D and excavate the rock under pile E2 -P6 Drive Casing & Grab to e Install RCD and ex Piling pla piling pla

Page: 4

ActivityID		ActivityName	Original Duration	Remaining Duration Start	Planned Start	Finish	Planned Finish	Total Float	Activity% Complete TRA	Variance - Finish Date	August 2019	September 2019 18 25 01 08 15 2
	S2-PW.	Install steel cage and concreting -W1-P3	3	3 28-Sep-19	26-Aug-19	02-Oct-19	28-Aug-19	15	0% 0	-28	04 11	18 25 01 08 15 2
	Pile W1 -P		11	11 24-Sep-19	21-Aug-19	08-Oct-19	02-Sep-19	14		-28		T
		Drive Casing & Grab to excavate the soil (42.4m length) -W1-P4 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	4	4 24-Sep-19 4 28-Sep-19	21-Aug-19 26-Aug-19	27-Sep-19 03-Oct-19	24-Aug-19 29-Aug-19	2	0% 0	-28 -28		•
		Install steel cage and concreting -W1-P4	3	3 04-Oct-19	30-Aug-19	03-Oct-19	02-Sep-19	14	0% 0	-28		
	Pile W1 -P	5	- 11	11 28-Sep-19	26-Aug-19	12-Oct-19	06-Sep-19	13		-28		
	S2-PW4		4	4 28-Sep-19 4 04-Oct-19	26-Aug-19	03-Oct-19	29-Aug-19	2	0% 0	-28		—
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting - Install steel cage and concreting -W1-P5	3	3 10-Oct-19	30-Aug-19 04-Sep-19	09-Oct-19 12-Oct-19	03-Sep-19 06-Sep-19	2 13	0% 0	-28		
	Pile W1 -P		11	11 04-Oct-19	30-Aug-19	17-Oct-19	11-Sep-19	12		-28		
		Drive Casing & Grab to excavate the soil (42.4m length) -W1-P6	4	4 04-Oct-19	30-Aug-19	09-Oct-19	03-Sep-19	2	0% 0	-28		<u> </u>
	S2-PW4 S2-PW4	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting - Install steel cage and concreting -W1-P6	4	4 10-Oct-19 3 15-Oct-19	04-Sep-19 09-Sep-19	14-Oct-19 17-Oct-19	07-Sep-19 11-Sep-19	2	0% 0	-28		—
	Pile W1 -P		11	11 10-Oct-19	04-Sep-19	22-Oct-19	17-Sep-19	11	070 0	-28		
		Drive Casing & Grab to excavate the soil (42.4m length) -W1-P7	4	4 10-Oct-19	04-Sep-19	14-Oct-19	07-Sep-19	2	0% 0	-28		—
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting - Install steel cage and concreting -W1-P7	4	4 15-Oct-19 3 19-Oct-19	09-Sep-19 13-Sep-19	18-Oct-19 22-Oct-19	12-Sep-19 17-Sep-19	2	0% 0	-28		
	Pile W1 -P		11	11 15-Oct-19	09-Sep-19	22-Oct-19 26-Oct-19	21-Sep-19	10	076 0	-28		
		Drive Casing & Grab to excavate the soil (42.4m length) -W1-P8	4	4 15-Oct-19	09-Sep-19	18-Oct-19	12-Sep-19	2	0% 0	-28		
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting - Install steel cage and concreting -W1-P8	4	4 19-Oct-19 3 24-Oct-19	13-Sep-19 19-Sep-19	23-Oct-19 26-Oct-19	18-Sep-19 21-Sep-19	2 10	0% 0	-28 -28		
	Pile W1 -P		11	11 19-Oct-19	13-Sep-19	31-Oct-19	26-Sep-19	9	076 0	-28		
		Drive Casing & Grab to excavate the soil (42.4m length) -W1-P9	4	4 19-Oct-19	13-Sep-19	23-Oct-19	18-Sep-19	2	0% 0	-28		
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -	4	4 24-Oct-19	19-Sep-19	28-Oct-19	23-Sep-19	2	0% 0	-28		
		Install steel cage and concreting -W1-P9 ss for Pier W5	3	3 29-Oct-19 12 04-Dec-19	24-Sep-19 01-Nov-19	31-Oct-19 17-Dec-19	26-Sep-19 14-Nov-19	9 67	0% 0	-28 -28		
		Piling platform installation -W5	4	4 04-Dec-19	01-Nov-19	07-Dec-19	05-Nov-19	67	0% 0			
	Pile W5 -P	1	8	8 09-Dec-19	06-Nov-19	17-Dec-19	14-Nov-19	67		-28		
		Drive Casing & Grab to excavate the soil (40.4m length) -W5-P1	4	4 09-Dec-19	06-Nov-19	12-Dec-19	09-Nov-19	67	0% 0	-28		
	S2-PW: Pile W5 -P	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting - 2	4	4 13-Dec-19 4 13-Dec-19	11-Nov-19 11-Nov-19	17-Dec-19 17-Dec-19	14-Nov-19 14-Nov-19	67 67	0% 0	-28		
	S2-PW:	Drive Casing & Grab to excavate the soil (40.4m length) -W5-P2	4	4 13-Dec-19	11-Nov-19	17-Dec-19	14-Nov-19	67	0% 0			
		is for Pier E7	29	24 06-Jun-19 A	08-Jul-19	31-Aug-19	05-Sep-19	20		5		Piling Works for Pier E7
	Pile E7 -P1		3	0 09-Jul-19 A	08-Jul-19	11-Jul-19 A	10-Jul-19		1000/ 0	-1 _1 and concretir	- D7 D1	
	Pile E7 -P2	Install steel cage and concreting -E7-P1	3	0 09-Jul-19 A 0 08-Jul-19 A	08-Jul-19 08-Jul-19	11-Jul-19 A 20-Jul-19 A	10-Jul-19 15-Jul-19		100% 0	-5 E7 -P2	ig -n /-r i	
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -	4	0 08-Jul-19 A	08-Jul-19	18-Jul-19 A	11-Jul-19		100% 0	-6 RCD and exc		rockhead level to founding level (4m socket) - r
	S2-PW	Install steel cage and concreting -E7-P2	3	0 19-Jul-19 A	12-Jul-19	20-Jul-19 A	15-Jul-19		100% 0		nd concreting -E7-P2	2
	Pile E7 -P4	Drive Casing & Grab to excavate the soil (40.4m length) -E7-P4	8	0 06-Jun-19 A 0 06-Jun-19 A	17-Jul-19 12-Aug-19	16-Jul-19 A 07-Jun-19 A	15-Aug-19 15-Aug-19		100% 0	26 ⁴ 58	Driv	e Casing & Grab to excavate the soil (40.4m let
	S2-PW		3	0 15-Jul-19 A	17-Jul-19	16-Jul-19 A	19-Jul-19		100% 0	3 steel cage an	d concreting -E7-P4	e Casing & Glab to excavate the son (40.411 le
	Pile E7 -P5		8	0 06-Jun-19 A	17-Jul-19	24-Jul-19 A	20-Aug-19			23 Pile E7 -P5		
		Drive Casing & Grab to excavate the soil (40.4m length) -E7-P5	4	0 06-Jun-19 A	16-Aug-19	07-Jun-19 A	20-Aug-19		100% 0	62		 Drive Casing & Grab to excavate the soil (40 nder rockhead level to founding level (4m sock)
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting Install steel cage and concreting -E7-P5	4	0 15-Jul-19 A 0 23-Jul-19 A	17-Jul-19 22-Jul-19	22-Jul-19 A 24-Jul-19 A	20-Jul-19 24-Jul-19		100% 0 100% 0		age and concreting -F	
	Pile E7 -P6		10	0 06-Jun-19 A	25-Jul-19	13-Jul-19 A	05-Sep-19			46		
		Drive Casing & Grab to excavate the soil (40.4m length) -E7-P6	4	0 06-Jun-19 A	02-Sep-19	07-Jun-19 A	05-Sep-19		100% 0	76	PCD and avaavata t	Drive Casing & Grab to he rock under rockhead level to founding level
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting Install steel cage and concreting -E7-P6	4	0 05-Jul-19 A 0 12-Jul-19 A	25-Jul-19 30-Jul-19	11-Jul-19 A 13-Jul-19 A	29-Jul-19 01-Aug-19		100% 0 100% 0		stall steel cage and co	
	Testing		21	21 08-Aug-19	02-Aug-19	31-Aug-19	26-Aug-19	17		-5	-	Testing
		Sonic Test, interface core and full core for bored pile -E7	21	21 08-Aug-19	02-Aug-19	31-Aug-19	26-Aug-19	17	0% 0	-5 —		Sonic Test, interface core and f
		ss for Pier E1 Piling platform installation -E1	124 4	51 08-May-19 A 1 17-May-19 A	30-May-19 30-May-19	27-Sep-19 08-Aug-19	30-Sep-19 03-Jun-19	19 2	75% 0	-55	Piling platform	n installation -E1
	Pile E1 -P1		5	0 18-Jul-19 A	11-Jul-19	10-Aug-19 A	18-Jul-19	2	7370 0	-20	Pile E1 -P1	
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) & air lifting -E1-P1 (Nt	4	0 18-Jul-19 A	11-Jul-19	08-Aug-19 A	15-Jul-19		100% 0	-21		nd excavate the rock under rockhead level to fo
	S2-PW Pile E1 -P1	Install steel cage and concreting -E1-P1	3 19	0 09-Aug-19 A 0 07-Jun-19 A	16-Jul-19 20-Aug-19	10-Aug-19 A 21-Jun-19 A	18-Jul-19 10-Sep-19		100% 0	-20	 Install steel 	cage and concreting -E1-P1
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -	3	0 07-Jun-19 A	20-Aug-19 20-Aug-19	13-Jun-19 A	22-Aug-19		100% 0	59		 Install RCD and excavate the rock under rock
	S2-PW	Install steel cage and concreting -E1-P10	7	0 14-Jun-19 A	03-Sep-19	21-Jun-19 A	10-Sep-19		100% 0	68		Install steel cage a
	Pile E1 -P1		7	0 09-Jul-19 A	30-Jul-19	25-Jul-19 A	06-Aug-19		1000/ 0	10 Pile E1 -P1		vate the rock under rockhead level to founding
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) air lifting -E1-P11 (NCI Install steel cage and concreting -E1-P11	4	0 09-Jul-19 A 0 24-Jul-19 A	30-Jul-19 03-Aug-19	23-Jul-19 A 25-Jul-19 A	02-Aug-19 06-Aug-19		100% 0 100% 0	10		and concreting -E1-P11
	Pile E1 -P1		31	0 09-Jul-19 A	22-Jul-19	06-Aug-19 A	10-Aug-19		10070	4	Pile E1 -P12	
		Drive Casing & Grab to excavate the soil (42.4m length) -E1-P12	3	0 09-Jul-19 A	22-Jul-19	10-Jul-19 A	24-Jul-19		100% 0	12 Drive Casing		the soil (42.4m length) -E1-P12 d excavate the rock under rockhead level to fou
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - Install steel cage and concreting -E1-P12	4	0 18-Jul-19 A 0 03-Aug-19 A	03-Aug-19 08-Aug-19	02-Aug-19 A 06-Aug-19 A	07-Aug-19 10-Aug-19		100% 0 100% 0	4		cage and concreting -E1-P12
		IS (Dia. 1000mm)	10	10 09-Aug-19 A	25-Jul-19	20-Aug-19 A	15-Aug-19	5	10070 0	-4		Pile E1 -P13 (Dia. 1000mm)
		Drive Casing & Grab to excavate the soil (43.4m length) -E1-P13	3	3 09-Aug-19	25-Jul-19	12-Aug-19	27-Jul-19	2	0% 0	-13		asing & Grab to excavate the soil (43.4m length tall RCD and excavate the rock under rockhead
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - Install steel cage and concreting -E1-P13	4	4 13-Aug-19 3 17-Aug-19	08-Aug-19 13-Aug-19	16-Aug-19 20-Aug-19	12-Aug-19 15-Aug-19	2 5	0% 0 0% 0	4		Install steel cage and concreting -E1-P13
		I4 (Dia. 1000mm)	11	11 13-Aug-19	29-Jul-19	24-Aug-19	20-Aug-19	4		-4		Pile E1 -P14 (Dia. 1000mm)
		Drive Casing & Grab to excavate the soil (43.4m length) -E1-P14	3	3 13-Aug-19	29-Jul-19	15-Aug-19	31-Jul-19	3	0% 0	-13 —		e Casing & Grab to excavate the soil (43.4m len
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - Install steel cage and concreting -E1-P14	4	4 17-Aug-19 3 22-Aug-19	13-Aug-19 17-Aug-19	21-Aug-19 24-Aug-19	16-Aug-19 20-Aug-19	2 4	0% 0 0% 0	-4		Install RCD and excavate the rock under roc Install steel cage and concreting -E1-P14
		Its (Dia. 1000mm)	12	12 16-Aug-19	01-Aug-19	29-Aug-19	24-Aug-19	3	070 0	-4	····	Pile E1 -P15 (Dia. 1000mm)
	S2-PW	Drive Casing & Grab to excavate the soil (43.4m length) -E1-P15	3	3 16-Aug-19	01-Aug-19	19-Aug-19	03-Aug-19	4	0% 0	-13		Drive Casing & Grab to excavate the soil (43.4
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - Install steel cage and concreting -E1-P15	4	4 22-Aug-19 3 27-Aug-19	17-Aug-19 22-Aug-19	26-Aug-19	21-Aug-19 24-Aug-19	2 3	0% 0	4		Install RCD and excavate the rock un Install steel cage and concreting -
		Install steel cage and concreting -E1-P15	13	3 27-Aug-19 13 20-Aug-19	22-Aug-19 05-Aug-19	29-Aug-19 03-Sep-19	24-Aug-19 29-Aug-19	2	070 0	-4	-	Pile E1 -P16 (Dia. 1000m
	S2-PW	Drive Casing & Grab to excavate the soil (43.4m length) -E1-P16	3	3 20-Aug-19	05-Aug-19	22-Aug-19	07-Aug-19	5	0% 0	-13	-	 Drive Casing & Grab to excavate the soil (
		Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -	4	4 27-Aug-19	22-Aug-19	30-Aug-19	26-Aug-19	2	0% 0	4		Install RCD and excavate the ro
	S2-PW	Install steel cage and concreting E1-P16	3 21	3 31-Aug-19 21 04-Sep-19	27-Aug-19 30-Aug-19	03-Sep-19 27-Sep-19	29-Aug-19 23-Sep-19	2	0% 0	-4		
		Sonic Test, interface core and full core for bored pile -E1	21	21 04-Sep-19	30-Aug-19	27-Sep-19	23-Sep-19	16	0% 0	-4		
	Pile E1 -P2		14	0 08-May-19 A	11-Jul-19	02-Aug-19 A	23-Jul-19				Pile E1 -P2	a lanath) E1 B2
	S2-PW	Drive Casing & Grab to excavate the soil (42.4m length) -E1-P2	3	0 08-May-19 A	11-Jul-19	10-Jun-19 A	13-Jul-19		100% 0	28 & Grab to ex	cavate the soil (42.4m	n lengui)-E1-P2
	Rom	aaining Level of Effort Remaining Work \blacklozenge \blacklozenge Mile	stone				CDDC				Date	Revisior
		5					CRBC			la la	8-Aug-19	Monthly updated on 8 Aug 201
	- Prim	ary Baseline Critical Remaining Work VIII Sur	nmary		Т	hree Mont	h Rolling	Progra	mme	F		
	Actu	al Work 🔷 🔷 Baseline Milestone						5- "				1
				I								

October 2019 22 29 06 13	20 27	03	November 2019	24
Install steel cage and co			10 17	24
Pile W1 -P4 Drive Casing & Grab to excav	vate the soil (4	2,4m lenot	n) -W1-P4	
Install RCD and exca	vate the rock u	inder rockh	ead level to founding	level (4
Install steel cag		ng -W1-P4		
Drive Casing & Grab		e soil (42.4	m length) -W1-P5	
			er rockhead level to fo	ounding
	el cage and co W1 -P6	icreung - w	1-1-3	
			oil (42.4m length) -W	
	tall steel cage		ck under rockhead lev ing -W1-P6	el to Io
T	Pile W1 -F			
			e the soil (42.4m leng he rock under rockhea	
	Install stee	l cage and c	concreting -W1-P7	
	Pile			1
D			cavate the soil (42.4m avate the rock under r	
	Instal	l steel cage	and concreting -W1-I	
		' Pile W1 -l	9 to excavate the soil	(47 Am
-	Ins	tall RCD a	nd excavate the rock u	under re
-	-	Install stee	el cage and concreting	-W1-P
			•	
			_	
			_	
- rig No.2 & air lifting -E7-P2				
length) -E7-P4				
(40.4m length) -E7-P5				
cket) - rig No.2 & air lifting -E7-P5				
to excavate the soil (40.4m length) -				
el (4m socket) - rig No.2 & air lifting	-E7-P6			
d full core for bored pile -E7 Piling Works for Pier E1				
· Fining works for Fiel E1				
founding level (4m socket) & air lifti	ng -E1-P1 (NG	CE 006)		
r rockhead level to founding level (4n	n socket) - rig	No.2 & air	lifting -E1-P10	
ge and concreting -E1-P10				
ng level (4m socket) air lifting -E1-P1	I (NCE 011)			
founding level (4m socket) - rig No.2	& air lifting -E	1-P12		
gth) -E1-P13				
ad level to founding level (4m socket) - rig No.2 &	air lifting -l	E1-P13	
length) -E1-P14				
rockhead level to founding level (4m	socket) - rig N	lo.2 & air li	fting -E1-P14	
P14				
3.4m length) -E1-P15				
under rockhead level to founding leve g-E1-P15	el (4m socket)	- rig No.2	& air lifting -E1-P15	
mm)				
il (43.4m length) -E1-P16	a lavel (A	akat) •	Jo 2 & cin 1:4: 11	D14
rock under rockhead level to foundin ncreting E1-P16	g ievei (4m so	cket) - rig I	NO.2 & air lifting -E1-	1'10
Testing				
Sonic Test, interface core and	tull core for b	ored pile -E	1	
	<u>c</u> i	ادمعا	A	
on	Chec	ked	Approved	
)19				

Page: 5

	ActivityName	Original Duration	Remaining Duration Start	Planned Start	Finish	Planned Finish	Total Float Activity%	6 Complete 1	RA Varia	ance - Finish Date	August 2019 September 2019
			0 21 1 1 10 4	20 1 1 10	02.4 10.4	22 7 1 10		1000/	0	28	04 11 18 25 01 08 15 2 Install steel cage and concreting -E1-P2
Pile E1 -P4	Install steel cage and concreting -E1-P2	3	0 31-Jul-19 A 0 07-Jun-19 A	20-Jul-19 01-Aug-19	02-Aug-19 A 13-Jun-19 A	23-Jul-19 06-Aug-19		100%	0	-9	nisun soor eage and concreaning -1:1-1.2
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -	5	0 07-Jun-19 A	01-Aug-19	13-Jun-19 A	06-Aug-19		100%	0	45	Install RCD and excavate the rock under rockhead level to found
Pile E1 -P		12	0 05-Jul-19 A	15-Jul-19	22-Jul-19 A	27-Jul-19			-	5 le E1 -P5	
S2-PW	Drive Casing & Grab to excavate the soil (42.4m length) -E1-P5	3	0 05-Jul-19 A	15-Jul-19	08-Jul-19 A	17-Jul-19		100%	0		b to excavate the soil (42.4m length) -E1-P5
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -	4	0 09-Jul-19 A	20-Jul-19	19-Jul-19 A	24-Jul-19		100%	0		D and excavate the rock under rockhead level to founding level (4m soc
	Install steel cage and concreting -E1-P5	3	0 20-Jul-19 A	25-Jul-19	22-Jul-19 A	27-Jul-19		100%	0		steel cage and concreting -E1-P5
Pile E1 -P6		13	0 16-Jul-19 A	18-Jul-19	27-Jul-19 A	01-Aug-19		1000/	~	5 Pile E1 -	
	Drive Casing & Grab to excavate the soil (42.4m length) -E1-P6 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -	3	0 16-Jul-19 A 0 19-Jul-19 A	18-Jul-19 25-Jul-19	18-Jul-19 A 25-Jul-19 A	20-Jul-19 29-Jul-19			0		Grab to excavate the soil (42.4m length) -E1-P6 all RCD and excavate the rock under rockhead level to founding level (4
	Install steel cage and concreting -E1-P6	3	0 26-Jul-19 A	30-Jul-19	27-Jul-19 A	01-Aug-19			0		Install steel cage and concreting -E1-P6
Pile E1 -P7		30	0 16-Jun-19 A	21-Aug-19	05-Jul-19 A	25-Sep-19		10070		69	8 8
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	30	0 16-Jun-19 A	21-Aug-19	02-Jul-19 A	25-Sep-19		100%	0	72	
S2-PW	Install steel cage and concreting -E1-P7	3	0 03-Jul-19 A	31-Aug-19	05-Jul-19 A	03-Sep-19		100%	0	51	Install steel cage and concre
Pile E1 -P8		22	0 11-Jun-19 A	04-Sep-19	19-Jun-19 A	30-Sep-19				86	
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -		0 11-Jun-19 A	11-Sep-19	15-Jun-19 A	30-Sep-19			0	89	
	Install steel cage and concreting -E1-P8	3	0 17-Jun-19 A	04-Sep-19	19-Jun-19 A	06-Sep-19		100%	0	67	 Install steel cage and con
Pile E1 -PS		6	0 14-Jun-19 A	09-Aug-19	26-Jun-19 A	15-Aug-19		1000/	<u>_</u>	42	Install RCD and excavate the rock under rockhead level
	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting - Install steel cage and concreting -E1-P9	3	0 14-Jun-19 A 0 25-Jun-19 A	10-Aug-19 09-Aug-19	24-Jun-19 A 26-Jun-19 A	13-Aug-19 15-Aug-19			0	42 42	Install RCD and excavate the rock under rockhead level Install steel cage and concreting -E1-P9
Pile Cap	Install steel cage and concreting -E1-F9	142	136 25-May-19 A	09-Aug-19	20-Jan-20	09-Jan-20	175	100%	0	-9	insul steel eage and controlling ETTy
Pile Cap	Pier E5	44	44 08-Aug-19	19-Jul-19	28-Sep-19	07-Sep-19	187			-17	-
	Pilehead treatment -E5	14	14 08-Aug-19	19-Jul-19	28-Sep-19 23-Aug-19	07-Sep-19 03-Aug-19	187	0%	0	-17	Pilehead treatment -E5
	Pilehead treatment -ES Rebar fixing and 1st stage Concreting -E5	14	14 08-Aug-19 10 24-Aug-19	05-Aug-19	04-Sep-19	03-Aug-19 15-Aug-19	187		0	-17	Rebar fixing and 1st stage
	Preparation works for pier installation -E5	10	10 24-Aug-19 10 18-Sep-19	28-Aug-19	28-Sep-19	07-Sep-19	187	0%		-17	
Pile Cap for		95	89 18-Jun-19 A	01-Aug-19	22-Nov-19	16-Nov-19	175	070		-5	
	Welding of Steel Bracket -E6 (6nos.)	14	7 18-Jun-19 A	01-Aug-19	15-Aug-19	16-Aug-19	30	50%			Welding of Steel Bracket -E6 (6nos.)
	Installation of precast shell -E6	10	10 19-Sep-19	12-Sep-19	30-Sep-19	24-Sep-19	175		0	-5	
S2-PC262	Pilehead treatment -E6	14	14 02-Oct-19	25-Sep-19	18-Oct-19	12-Oct-19	175	0%	0	-5	-
	Rebar fixing and 1st stage Concreting -E6	10	10 19-Oct-19	14-Oct-19	30-Oct-19	24-Oct-19	175		0	-5	
	Preparation works for pier installation -E6	10	10 12-Nov-19	06-Nov-19	22-Nov-19	16-Nov-19	175	0%	0	-5	
Pile Cap for		68	68 02-Sep-19	27-Aug-19	22-Nov-19	16-Nov-19	210			-3	Welding
	Welding of Steel Bracket -E7 (6nos.)	14	14 02-Sep-19	27-Aug-19	18-Sep-19	11-Sep-19	16	0% 0%	0	-0	weiding
	Installation of precast shell -E7 Pilehead treatment -E7	10	10 19-Sep-19 14 02-Oct-19	12-Sep-19 25-Sep-19	30-Sep-19 18-Oct-19	24-Sep-19 12-Oct-19	32 210		0	-5	
	Rebar fixing and 1st stage Concreting -E7	10	10 19-Oct-19	14-Oct-19	30-Oct-19	24-Oct-19	210		0	-5	
	Preparation works for pier installation -E7	10	10 12-Nov-19	06-Nov-19	22-Nov-19	16-Nov-19	210	0%		-5	
Pile Cap for	Pier W2	54	54 25-May-19 A	12-Sep-19	22-Nov-19	18-Nov-19	180			-4	
S2-PC198	Welding of Steel Bracket -W2 (6nos.)	14	0 25-May-19 A	02-Nov-19	07-Aug-19 A	18-Nov-19		100%		85	
	Installation of precast shell -W2	10	10 19-Sep-19	12-Sep-19	30-Sep-19	24-Sep-19	180		0	-5	
	Pilehead treatment -W2	14	14 02-Oct-19	25-Sep-19	18-Oct-19	12-Oct-19	180		0	-5	-
	Rebar fixing and 1st stage Concreting -W2	10	10 19-Oct-19	14-Oct-19	30-Oct-19	24-Oct-19	180		0	-5	
Pile Cap for	Preparation works for pier installation -W2 Pior E1	99	10 12-Nov-19 99 21-Sep-19	06-Nov-19 17-Sep-19	22-Nov-19 20-Jan-20	16-Nov-19 09-Jan-20	49	0%	0	-3	
	Welding of Steel Bracket -E1 (16nos.)	28	28 21-Sep-19	17-Sep-19	25-Oct-19	21-Oct-19	14	0%		4	
	Installation of precast shell -E1	18	18 01-Nov-19	22-Oct-19	23-Oct-19 21-Nov-19	11-Nov-19	9		0	-9	
	Installation of pre-cast side shell (small) and construction of structure gap x2 sides -E1	40	40 26-Nov-19	12-Nov-19	14-Jan-20	30-Dec-19	54	0%		-12	
	Pilehead treatment -E1	48	48 22-Nov-19	12-Nov-19	20-Jan-20	09-Jan-20	9	0%	0	-9	
Pile Cap for	Pier E2	14	14 22-Nov-19	08-Nov-19	07-Dec-19	23-Nov-19	17			-12	
S2-PC225	Welding of Steel Bracket -E2 (6nos.)	14	14 22-Nov-19	08-Nov-19	07-Dec-19	23-Nov-19	17	0%		-12	
Pile Cap for		84	51 24-Jun-19 A	10-Aug-19	19-Nov-19	13-Nov-19	225			-5	
	Welding of Steel Bracket -E3 (6nos.)	14	0 24-Jun-19 A	10-Aug-19	09-Jul-19 A	26-Aug-19		100%		41	
	Installation of precast shell -E3	10	10 19-Sep-19	12-Sep-19	30-Sep-19	24-Sep-19	201		0	-5	
	Pilehead treatment -E3 Rebar fixing and 1st stage Concreting -E3	14	14 02-Oct-19 10 19-Oct-19	25-Sep-19 14-Oct-19	18-Oct-19 30-Oct-19	12-Oct-19 24-Oct-19	225		0	-5	-
	Preparation works for pier installation -E3	10	10 19-Oct-19 10 08-Nov-19	02-Nov-19	19-Nov-19	13-Nov-19	225	0%		-5	
Pile Cap for		44	44 23-Jul-19 A	02-100-19 08-Jul-19	28-Sep-19	07-Sep-19	181	0/0		-17	
	Installation of precast shell -E4	10	0 23-Jul-19 A	08-Jul-19	23-Jul-19 A	18-Jul-19		100%	0	_4 Installation c	of precast shell -E4
	Pilehead treatment -E4	10	14 08-Aug-19	19-Jul-19	23-Aug-19	03-Aug-19	181	0%		-17	Pilehead treatment -E4
S2-PC252	Rebar fixing and 1st stage Concreting -E4	10	10 24-Aug-19	05-Aug-19	04-Sep-19	15-Aug-19	181	0%		-17	Rebar fixing and 1st stage
	Preparation works for pier installation -E4	10	10 18-Sep-19	28-Aug-19	28-Sep-19	07-Sep-19	181	0%	0	-17	
	E&M Works for CBL Main Bridge and Marine Viaduct	214	214 26-Sep-19	30-Sep-19	17-Jun-20	08-Aug-20	-33			43	
Procureme	nt and Delivery of Assocaited, E&M Works	214	214 26-Sep-19	30-Sep-19	17-Jun-20	08-Aug-20	-33			43	
	Procurement and delivery of under bridge mobile gantry	180	180 26-Sep-19	30-Sep-19	08-May-20	12-May-20	1	0%		3	
	Procurement and delivery of arch inspection cradle	210	210 02-Oct-19	22-Nov-19	17-Jun-20	08-Aug-20	-34	0%	0	43	
Section 5 of t	ne Works-All Works within Portion V (CBL E&M Plantroom)	174	123 08-May-19 A	08-Jun-19	04-Jan-20	16-Dec-19	24			-14	
Structure Wo	rks	129	78 08-May-19 A	08-Jun-19	09-Nov-19	24-Oct-19	24			-14	
S5-PR2045	Construction of On-grade Slab	28	15 08-May-19 A	08-Jun-19	24-Aug-19	11-Jul-19		46.43%	0	-38	Construction of On-grade Slab
S5-PR2046	Construction of Wall	28	7 27-May-19 A	12-Jul-19	02-Sep-19	13-Aug-19	24 4	75%		-17	Construction of Wall
S5-PR2047	Construction of Roof	56	56 03-Sep-19	17-Aug-19	02-Nov-19	24-Oct-19	24	0%		-14	
		45	45 11-Nov-19	25-Oct-19	04-Jan-20	16-Dec-19	24			-14	
Finish Works						16 0 10					
Finish Works S5-PR2080	Architectural works	45	45 11-Nov-19	25-Oct-19	04-Jan-20	16-Dec-19	24	0%	0	-14	

Remaining Level of Effort Remaining Wor	k ♦ ♦ Milestone	CRBC	Date	Revision
Primary Baseline Critical Remaining			08-Aug-19	Monthly updated on 8 Aug 2019
	б ў	Three Month Rolling Programme		
Actual Work \diamond \diamond Baseline Milestr	one			

			Octobe	er 2019							Nover	nber 20	19		
22	29	06	1	13	20		27		03		10		17		24
ounding le	vel (4m	socket) - rig 1	No.2	& air li	fting	-E1	-P4							
i socket) -	rig No.2	& air	lifting	-E1-F	95										
vel (4m so	cket) - ri	g No.2	2 & air		g-E1-I	P6									
Insta		and ex	cavate	the ro	ock un	der ro	ockh	ead	leve	l to f	ound	ing l	evel (4m s	ocket)
d concretii	- Install ng -E1-F		and ex	cavat	e the r	ock u	nder	r roc	khea	nd lev	vel to	four	nding	leve	l (4m s
level to fo	unding l	evel (4	m soci	ket) - 1	rig No	.2 &	air li	iftin	g -El	-P9					
age Conc		5													
	Preparati			-			E5							▼ Pil	e Cap
	Install	ation c			Pilehea	d trea				ing a	and 1				eting -I
ding of St	eel Brac Install				ell-E7										e Cap
				- F	Pilehea					ing a	and 1		-	Pre	eting -I
	Install	ation c						_							e Cap i of Ste
			-		Pilehea					ing a	and 1	st sta			eting -V paratic
						We	ldin	g of	Stee	el Bra	acket	-E1			allation
													▼ Pi	le Ca	up for F
os.)	Install	ation c	of preca		ell -E3 Pilehea	d trea									
	Pile Cap	for Pie	er E4				_ 1	Reb	ar fix						eting -I ation w
age Conc	reting -E Preparati		rks for	pier i	nstalla	tion -	E4								
-															
	_							_							
										•	Struc	ture '	Work	s	
										— (Cons	ructi	on of	fRoo	ſ
ion					1	Ch	ecl	(er	4	Т		Anı	orov	/ed	
)19					\vdash	01	50		<i>.</i>	+		' 'YI		Ju	

Contract 2

 $Z: \label{eq:loss} 2018 \ CS00975 \ (EDO-04-2018) \ (600 \ EM\&A \ Report \ Submission \ Monthly \ EM\&A \ Report \ September \ 2019 \ R0269v2. \ docx$

/ ID	Activity Name		Original	Actual Rema	ining	s Bay Link, Tse _{Calendar}	0	Finish	Total TR/	A Activity %		2019		2020	
			Duration [Duration Dur	ation				Float	Complete	4 Q1	Q2 Q3	Q4 Q1		Q4
	8 Programme Update (Ma	y 2019)	199	6	194		02-May-19 A	30-Dec-19	940					>19, NE/2017/08-1 N	
NE/2017/08-1.1 Project K			0	0	0		01-Jul-19	01-Jul-19	0					1 Project Key Dates	1 1 1
	nd Method Statement, Mater	ial Submissions	80	3	77		05-May-19 A	09-Aug-19	326				C 1 1 1 1 1	08-1.2 Design and N	1 1 1
NE/2017/08-1.3 Compension	· · ·		0	0	0	NE/2017/08(7days)	-	08-May-19	56					ompensation Event (1 1 1
	on of Compensation Event (NCE)	5	0	5	NE/2017/08(7days)	-	24-May-19	181				L L L	Notification of Compe	
NE/2017/08-1.6 Request	· · ·		18	0	0	NE/2017/08(7days)	06-May-19 A	26-May-19	0			26-May-19, N		Request for Informat	
NE/2017/08-1.7 Construc	tion Works		199	6	194		02-May-19 A	30-Dec-19	940			•	😽 🗘 30-Dec	-19, NE/2017/08-1.7	' Constru
NE/2017/08-1.7.1 Preliminar			0	0	0				0						
NE/2017/08-1.7.2 Construct			32	0	32		02-Jul-19	07-Aug-19	328					08-1.7.2 Construction	
NE/2017/08-1.7.2.1 Cycle Tra	ack - U-trougn avation to U-tough Level(+5.0mPD to -	+4.4mPD) (700m3)	11	0	11 11		02-Jul-19 02-Jul-19	13-Jul-19 13-Jul-19	349 349		+-+-+-+			1.7 2.1 Cycle Track -	
PORI.UT.EX1010	Excavation to U-trough Founding Lev		5	0	5	NE/2017/08(6days)		06-Jul-19	349 0	0%		Excavatio	n to U-trough F	ounding Level (+5:0m	
PORI.UT.EX1020	Plate Load Test		7	0	7	NE/2017/08(7days)	07-Jul-19	13-Jul-19	428 0	0%		L ⇒ ∎ Plate Lo	ad Test		
	struction of U-trough Structure (9 Bay	ys, 27D/Bay, 1 Team) .4mPD to +5.0mPD) (2 Layers, 5D/layer)	0	0	0				0						
NE/2017/08-1.7.2.1.3 Bac		.4mrD to +5.0mrD) (2 Layers, 5D/layer)	0		0				0		+				
NE/2017/08-1.7.2.2 Elevated			32	0	32		02-Jul-19	07-Aug-19	2					08-1.7.2.2 Elevated (
	struction of ELS and Lowering of Gro		17	0		NE/2017/08(6days)		20-Jul-19	2					1.7.2.2.1 Constructio	
PORI.ED.EX1020	Sheetpiling for Construction of Pile Ca Excavation from +5.0mPD to +4.5mP	•	12	0		NE/2017/08(6days) NE/2017/08(6days)		15-Jul-19 20-Jul-19	2 0	0%				tion of Pile Caps and PD to +4.5mPD (600r	
		MTRC Development Zone (10nos, 10D/pile+5D TRA, 1 to 5rigs)	15			NE/2017/08(6days)		07-Aug-19	2 0	070				08-1.7.2.2.2 Predrillir	1 4 1
NE/2017/08-1.7.2.2.2.1	Rig 1		15	0	15	NE/2017/08(6days)	22-Jul-19	07-Aug-19	2			🐨 07-AL	g-19, NE/2017/	08-1.7.2.2.2.1 Rig 1	
PORI.ED.PD1010	Predrilling for Alternative PBSH at Po	rtion I (PD01)	15	0		NE/2017/08(6days)		07-Aug-19	2 5	0%				ive PBSH at Portion I	
PORI.ED.PD1020	Rig 2 Predrilling for Alternative PBSH at Po	rtion I (PD02)	15 15	0		NE/2017/08(6days) NE/2017/08(6days)		07-Aug-19 07-Aug-19	2 2 5	0%				08-1.7.2.2.2.2 Rig 2 ive PBSH at Portion I	
NE/2017/08-1.7.2.2.2.3			15	0	15	NE/2017/08(6days)		07-Aug-19	2 3	078				08-1.7.2.2.2.3 Rig 3	
PORI.ED.PD1050	Predrilling for Alternative PBSH at Po	rtion I (PD04)	15	0		NE/2017/08(6days)		07-Aug-19	2 5	0%				ive PBSH at Portion I	
The NE/2017/08-1.7.2.2.2.4	Rig 7		15	0	15	NE/2017/08(6days)	22-Jul-19	07-Aug-19	2			👿 D7-AL	ig-19, NE/2017/	08-1.7.2.2.2.4 Rig 7	/
PORI.ED.PD1030	Predrilling for Alternative PBSH at Po	rtion I (NEBH1)	15	0	15	NE/2017/08(6days)	22-Jul-19	07-Aug-19	2 5	0%		► Predr	illing for Alterhat	ive PBSH at Portion I	I (NEBH1)
T NE/2017/08-1.7.2.2.2.5	Pig 8		15	0	15	NE/2017/08(6days)	22- Jul-19	07-Aug-19	2			17- 4	h-19 NE/2017/	08-1.7.2.2.2.5 Rig 8	
PORI.ED.PD1040	Predrilling for Alternative PBSH at Po	rtion I (PD03)	15	0		NE/2017/08(6days)		07-Aug-19	2 5	0%				ive PBSH at Portion I	
NE/2017/08-1.7.2.2.3 Con	struction of Alternative PBSH (24nos,	7D/pile, 5rigs)	0	0	0				0						
	avation to Pile Cap Level (+5.0mPD to		0	0	0				0						
	struction of Pile Caps (10 PC, 14D/Cap struction of Columns and Abutment (0	0	0				0						
·		.8mPD to +4.4mPD) (6 Layers, 5D/layer)	0		0				0						
	struction of Deck Structure (9bays, 45	5D/bay, 3Teams)	0		0				0						
NE/2017/08-1.7.2.2.9 Drai			4		0		22-Jul-19	25-Jul-19	0 28			▼ 25 Iul	10 NE/2017/09	1.7.2.3 Lift and Stair	irpada
	rering of Ground Level (+5.0mPD to +4	l.4mPD)	4	0	4	NE/2017/08(6days)		25-Jul-19	28					1.7.2.3.1 Lowering c	
PORI.LS.EX1020	Excavation from +5.0mPD to +4.4mP	D	4	0	4	NE/2017/08(6days)	22-Jul-19	25-Jul-19	28 0	0%		►I Excava	tion from +5.0m	PD to +4.4mPD	
	Irilling Works for PBSH (5nos, 10D/pile	e+5D TRA, 5rigs)	0	0	0				0						
NE/2017/08-1.7.2.3.2.1			0	0	0				0						
NE/2017/08-1.7.2.3.2.3			0	0	0				0						
NE/2017/08-1.7.2.3.2.4			0	0	0				0						
NE/2017/08-1.7.2.3.2.5	Rig 8 struction of PBSH (14nos, 7D/pile, 5ri	ns)	0	0	0				0						
	avation to Pile Cap Level (+4.4mPD to		0	0	0				0						
	struction of Pile Caps (5 PC, 14D/Cap		0		0				0				·		
	struction of Column (4pcs, 18D/colun	nn, 4teams) .8mPD to +4.4mPD) (6 Layers, 5D/layer)	0	0	0				0						
	struction of Lift and Staircase		0	0	0				0						
ME/2017/08-1.7.3 Construct	ion Works of Portion II		60	1	59		08-May-19 A	19-Jul-19	12			19-Jul-1	9, NE/2017/08-	1.7.3 Construction W	Norks of F
NE/2017/08-1.7.3.1 Abutmer			53		53		09-May-19	12-Jul-19	14		.	12-Jul-1	9, NE/2017/08-1	1.7.3.1 Abutment 2A	
NE/2017/08-1.7.3.1.1 Pre-	drilling of Alternative Bored Piles (8no Rig 2	rs, rodrpie, sings)	53 45	0		NE/2017/08(6days) NE/2017/08(6days)		12-Jul-19 03-Jul-19	14 2			03-Jul-19	9, NE/2017/08-1	1.7.3.1.1 Pre-drilling o 7.3.1.1.2 Rig 2	or Alterna
	 Predrilling of Comforming Bored Piles 	s at Abutment 2A (PD18)	15	0		NE/2017/08(6days)	-	27-May-19	2 5	0%				red Piles at Abutment	t 2A (PD1
PORII.AB.PD.BP104	0 Predrilling of Comforming Bored Piles	s at Abutment 2A (PD13)	15	0	15	NE/2017/08(6days)	15-Jun-19	03-Jul-19	2 5	0%				Bored Piles at Abutm	ment 2A (F
NE/2017/08-1.7.3.1.1.3			45	0		NE/2017/08(6days)		03-Jul-19	2					7.3.1.1.3 Rig 3	
	 Predrilling of Comforming Bored Piles Predrilling of Comforming Bored Piles 		15	0		NE/2017/08(6days)		27-May-19	2 5	0%				red Piles at Abutment	
PORII.AB.PD.BP1060	Predrilling of Comforming Bored Piles	s at Abutifielii ZA (דט וס)	15	0	15 15	NE/2017/08(6days) NE/2017/08(6days)		03-Jul-19 12-Jul-19	2 5 14	0%				Bored Piles at Abutm 1.7.3.1.1.4 Rig 4	nent ZA (
	Predrilling of Comforming Bored piles	s at Abutment 2A (PD 17)	15	0		NE/2017/08(6days)		12-Jul-19	14 5	0%				g Bored piles at Abutr	ment 2A (
Page 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Rig 5		15	0	15	NE/2017/08(6days)	27-May-19	13-Jun-19	9			13-Jun-19,	NE/2017/08-1.7	.3.1.1,5 Rig 5	
	Predrilling of Comforming Bored piles	s at Abutment 2A (PD 14)	15	0		NE/2017/08(6days)		13-Jun-19	9 5	0%				ored piles at Abutmer	nt 2A (PD
PORILAB PD BP107	Rig 6 0 Predrilling of Comforming Bored Pile	at Abutment 2A (PD15)	30 15	0	30 15	NE/2017/08(6days) NE/2017/08(6days)	•	02-Jul-19 13-Jun-19	9 9 5	0%				7.3.1.1.6 Rig 6 ored Pile at Abutmen	nt 24 (PD
	5 Predrilling of Comforming Bored Pile 5 Predrilling of Comforming Bored Pile		15	0		NE/2017/08(6days)		02-Jul-19	9 5	0%		· • • • • • • • • • • • • • • • • • • •		Bored Piles at Abutmen Bored Piles at Abutm	1 1 1
	et Piling and Lowering of Existing Gro		0		0	(ouuys)			0	0,0			,,		
NE/2017/08-1.7.3.1.3 Con	struction of Alternative Bored Pile (8n		0	0	0				0						
	struction of Abutment Structure		0		0				0						
NE/2017/08-1.7.3.1.5 Drai			0 60		0 59		08-May-19A	19-Jul-19	0 12			19- Jul-	9. NE/2017/08-	1.7.3.2 Elevated Dec	eck
							Jo may 1974								<u> </u>
Actual Level of Effor	t Milestone 			Contrac	t No	.: NE/2017/08	3					_	Date		
Actual Work	summary	CEDD 土木工程拓展署	Cr	oss Bav I		, Tseung Kwa	an O						08-Apr-19 .	Monthly Pro	ogramr
	··· ·· ,	CEDD Civil Engineering and Development Department		-						.		ing			
Remaining Work		Development Department	K	uau Dy al	ua A	ssociated Wo	JIKS			<111					
Remaining Work Critical Remaining V	M I				D	1 of 4				JUIL					

												_												_	_			
	Q1			Q2)21	Q3	_		Q4			Q1			Q2	_	22	Q3			Q4	_		2 Q1	023	3 Q	2
		Pro)																
Sta	ate	me	ht,	Ма	ter	ial :	Sut	mi	ssic	ns																		
. 6	100	nt (NC	E)																								
 	<u>.</u>		INC.	(_)																								
		n V	Vor	ks																								
		ort	ion	I																								
gh Jg		eve	el(+	5.0	mF	D	lo 1	4.4	mF	PD)	(7	00r	n3)															
		'nΡ[
ra																												
	an 1/	d L	ow	erir	ig (of C	ro	unc	l le	vel	(+5	.0r	nPl	D to) +	4.5	mΡ	D)										
ks	fo	Alt	err	hati	ve	PB	SН	at I	мт	RC	De	eve	ор	me	nt	Zor	le (10	hos	, 10	D/	pile	+5	ТD	R/	\ , 1	to	5r
)																												
`																												
·																											••••	
)																												
11)																												
)	·																											
nd	Le	ve	(+	5.0	mF	D	ko +	4.4	mF	PD)																		
fΡ	or	ion	Ш																									
nat	ive	Bc	red	I P	les	(8	hos	, 10	D/	ple	5r	igs																
01	8)																											
		13)																										
D1	5																											
		16)																										
. (PD	17)																										
D	14																											
	5)																											
(F	D	12)																										
-	R	ev	isi	on	1									_	С	he	ck	ec	1	T		A	рр	ro	ve	ed		
_	_	۶L				(A	۱p	r 2	201	19))			Н						3	StL				_		_	
		_	_	_	_	_	_	_	_		_	_		_	_	_	_	_	_		_	_	_	_	_	_	_	

	Activity Name	Original Actu	al Remaining	Calendar Sta	art	Finish	Total TRA	A Activity %		2019		2020
		Duration Duratio		ouchdu ou		1 Inon	Float	Complete	i Q1	Q2 Q3	Q4 Q1 (Q2 Q3
	illing of Comforming Bored Piles (Elevated Deck)(1 no in Port II, 10D/pile+5D TRA, 1rig)	15		NE/2017/08(6days) 08			9				-19, NE/2017/08-1.7.3.2	
ME/2017/08-1.7.3.2.1.1		15		NE/2017/08(6days) 08			9				19, NE/2017/08-1.7.3.2.	
	Predrilling of Comforming Bored Piles at Elevated Deck (PD36)	15		NE/2017/08(6days) 08-	3-May-19 A	25-May-19	95	6.67%		H Predrillin	ng of Comforming Bored	Piles at Elev
	t Piling and Lowering of Existing Ground Level truction of Bored Pile (1 no. in Port II, 21D/pile, 1 teams in total)		0 0 0 21	NE/2017/08(6days) 27-	7-May-19	20-Jun-19	0			20-10	in-19, NE/2017/08-1.7.3.	23 Constr
PORII.ED.BP1010	Construction of Bored Pile (1no in Portion II,21D/pile,4teams in total)			NE/2017/08(6days) 27		20-Jun-19	36 0	0%			truction of Bored Pile (1h	
NE/2017/08-1.7.3.2.4 Prec	illing of PBSH (Elevated Deck) (2nos in Port II, 10D/pile+5D TRA, 2rigs in total)	15	0 15			19-Jul-19	9		1-1-1-1-1	19	-Jul-19, NE/2017/08-1.7	.3.2.4 Prec
NE/2017/08-1.7.3.2.4.1	Rig 4		0 0				0					
E/2017/08-1.7.3.2.4.2				NE/2017/08(6days) 03-		19-Jul-19	9				Jul-19, NE/2017/08-1.7	
	Predrilling of PBSH at Elevated Deck (PD85)		0 15	NE/2017/08(6days) 03-	3-Jul-19	19-Jul-19	95	0%		Pre	edrilling of PBSH at Eleve	ated Deck
	truction of Alternative PBSH (5nos in Port II, 7D/pile, 1 to 5rigs)		0 0				0					
	vation to Pile Cap Level (+4.4mPD to +2.3mPD) truction of Elevated Deck Pile Cap (Northern Part)(2nos, 14D/cap, 2 teams)		0 0 0 0				0					
	filling to Interim Formation Level (Northern Area)(7 layers, 5D/layer)		0 0				0					
	truction of Column (Northern Area) (2nos, 18D/Column, 2teams)		0 0				0					
E/2017/08-1.7.3.2.11 Co	struction of Pile Cap at Bored Pile Area(Elevated Deck)(cap+ cantilever beam, 21D/pc,1team)	0	0 0				0					
	kfilling to Interim Formation Level (Bored Pile Area) (7 Layers, 5D/layer)		0 0				0					
	struction of Columns (Bored Plle Area) (2nos, 18D/no, 2 teams)		0 0				0					
E/2017/08-1.7.4 Construct			5 94		3-May-19 A		1040				29-Aug-19, NE/2017/0	
_	tion of Elevated Deck and Abutment 2B illing of Comforming Bored Piles (ED+Ab 2B)(12 nos in Por III, 10D/pile+5D TRA, 5rigs in total)	<u>72</u>	0 72 0 15			06-Aug-19 14-Jun-19	103 2				06-Aug-19, NE/2017/08- n-19, NE/2017/08-1.7.4.	1.7.4.1 CO
NE/2017/08-1.7.4.1.1.1			0 0		5-Iviay-13	TH-Jun-13	0		+		1-13, 142/2017/00-1.7.4.	
NE/2017/08-1.7.4.1.1.2				NE/2017/08(6days) 28-	3-May-19	14-Jun-19	2			14-Jur	n-19, NE/2017/08-1.7.4;	1.1.2 Rig 2
	Predrilling of Comforming Bored piles at Elevated Deck (PD44)		0 15		-	14-Jun-19	2 5	0%			illing of Comforming Bore	
Hereit NE/2017/08-1.7.4.1.1.3	Rig 3			NE/2017/08(6days) 28-		14-Jun-19	2				n-19, NE/2017/08-1.7.4.	
PORIII.ED.PD.BP116	Predrilling of Comforming Bored Pile at Elevated Deck (PD45)	15	0 15	NE/2017/08(6days) 28	3-May-19	14-Jun-19	2 5	0%		Predri	illing of Comforming Bore	d Pile at E
HE/2017/08-1.7.4.1.1.4			0 0				0					
Heven Physical Representation Physical Representation Physical Representation and the second			0 0				0					
	Piling and Lowering of Existing Ground Level			NE/2017/08(6days) 11-		04-Jun-19	155				-19, NE/2017/08-1.7.4.1	
PORIII.ED.EX1040	Sheet Piling Works along Northern Footpath (Grid 3 to Grid 6)			NE/2017/08(6days) 11-	-	16-May-19	167 0	0%			ling Works along Norther on of Unexpected Gas Ma	
	Abandon of Unexpected Gas Main (Grid 11 to Grid 24) (by others)			NE/2017/08(6days) 20	-	30-May-19	155 0					
PORIII.ED.EX1060	Sheet Piling Works along Northern Footpath (Grid 10 to Grid 13)		_	NE/2017/08(6days) 31-	I-May-19	04-Jun-19	155 0	0%		Sheet	Piling Works along North	ern ⊢ootpa
	truction of Bored Pile (12nos in Port III, 21D/pile, 1 to 4 teams in total) illing of PBSH (Elevated Deck) (18nos in Port III, 10D/pile+5D TRA, 8rigs in total)		0 0 0 31	NE/2017/08(6days) 02-	2- 101-19	06-Aug-19	0				06-Aug-19, NE/2017/08-	17414
NE/2017/08-1.7.4.1.4 Free				NE/2017/08(6days) 04		20-Jul-19	2				-Jul-19, NE/2017/08-1.7.	
	Predrilling of PBSH at Elevated Deck (PD86)			NE/2017/08(6days) 04		20-Jul-19	2 5	0%			edrilling of PBSH at Eleve	
NE/2017/08-1.7.4.1.4.2		15		NE/2017/08(6days) 04		20-Jul-19	2				Jul-19, NE/2017/08-1.7	
	Predrilling of PBSH at Elevated Deck (PD22)	15	0 15			20-Jul-19	2 5	0%			edrilling of PBSH at Eleva	
NE/2017/08-1.7.4.1.4.3	Rig 3 Predrilling of PBSH at Elevated Deck (PD23)			NE/2017/08(6days) 04		20-Jul-19	2 2 5	09/)-Jul-19, NE/2017/08-1.7 edtilling of PBSH at Eleva	
PORIII.ED.PD.HP10	Predrilling of PBSH at Elevated Deck (PD23)	15	0 15	NE/2017/08(6days) 04	+-Jul-19	20-Jul-19	2 5	0%		Pre	adrilling of PBSH at Eleva	ated Deck
Hereit NE/2017/08-1.7.4.1.4.4				NE/2017/08(6days) 13		30-Jul-19	14				0-Jul-19, NĘ/2017/08-1.	
PORIII.ED.PD.HP109	D Predrilling of PBSH at Elevated Deck (PD24)	15	0 15	NE/2017/08(6days) 13-	s-Jul-19	30-Jul-19	14 5	0%			redrilling of PBSH at Elev	vated Deck
The NE/2017/08-1.7.4.1.4.5	Rig 5	15	0 15	NE/2017/08(6days) 20-)-, lul-19	06-Aug-19	9				06-Aug-19, NE/2017/08-	174115
	Predrilling of PBSH at Elevated Deck (PD25)		0 15			06-Aug-19	9 5	0%			Predrilling of PBSH at Ele	
						U -						
H NE/2017/08-1.7.4.1.4.6	Rig 6	30	0 30	NE/2017/08(6days) 03-	3-Jul-19	06-Aug-19	9				06-Aug-19, NE/2017/08-	1.7.4.1.4.6
	Predrilling of PBSH at Elevated Deck (PD19)		0 15			19-Jul-19	9 5	0%			edrilling of PBSH at Eleva	
	Predrilling of PBSH at Elevated Deck (NEBH3)		0 15			06-Aug-19	9 5	0%	†	1	Predrilling of PBSH at Ele	
_						-						
NE/2017/08-1.7.4.1.4.7	Rig 7	15	0 15	NE/2017/08(6days) 02-	2-Jul-19	18-Jul-19	4			18	-Jul-19, NE/2017/08-1.7.	4.1.4 7 R
	Predrilling of PBSH at Elevated Deck (PD20)		0 15			18-Jul-19	4 5	0%		Pre	edrilling of PBSH at Eleva	ated Deck
NE/2017/08-1.7.4.1.4.8				NE/2017/08(6days) 02-		18-Jul-19	4				Jul-19, NE/2017/08-1.7	
PORIII.ED.PD.HP117	Predrilling of PBSH at Elevated Deck (PD21)	15	0 15	NE/2017/08(6days) 02-	2-Jul-19*	18-Jul-19	4 5	0%		Prie	edrilling of PBSH at Eleva	ited Deck
NE/2017/08-1.7.4.1.5 Con	truction of Alternative PBSH (45nos in Port III, 7D/pile, 1 to 5rigs in total)	0	0 0				0					
	vation to Pile Cap Level (+4.4mPD to +2.3mPD)		0 0				0					
	truction of PC42 (16D) + Abutment 2B (28D) + Bearing Installation (14D)		0 0				0					
NE/2017/08-1.7.4.1.8 Con	truction of Elevated Deck Pile Cap (Northern Part) (18nos, 14D/cap, 5 teams)		0 0				0					
	filling to Formation Level (Northern Area)(7 layers, 5D/layer)		0 0				0					
	struction of Column (18nos, 18D/Column, 5teams)		0 0				0					
	struction of Pile Cap at Bored Pile Area(Elevated Deck)(9nos cap+cantilever beam, 21D/pc,5team		0 0 0 0				0					
	kfilling to Formation Level (Bored Pile Area)(7Layers, 5D/layer) struction of Columns (18nos, 18D/no, 4 teams)		0 0				0					
	struction of Beam/Slab (11bays, 30D/bay incl. topping, 6 teams)		0 0				0					
NE/2017/08-1.7.4.1.16 Dra			0 0				0					
NE/2017/08-1.7.4.1.17 Co	struction of Semi Noise Enclosure (CH13360.1 to CH13482.1) (Portion II + III)	0	0 0				0					
	struction of 600mm Wall (11bays, 16D/Bay, 2 Teams)		0 0				0					
NE/2017/08-1.7.4.2 Constru			5 94		3-May-19 A						29-Aug-19, NE/2017/0	
NE/2017/08-1.7.4.2.1 Pre- NE/2017/08-1.7.4.2.1.1	rilling of Comforming Bored Piles (U-trough)(8nos, 10D/pile+5D TRA, 5rigs)		5 44 5 10	03 NE/2017/08(6days) 03-	3-May-19 A		9				Jul-19, NE/2017/08-1.7.4 19, NE/2017/08-1.7.4.2.	
	Predrilling of Comforming Bored Piles at U-trough (PD53) (Current Drill Depth: 14m)		5 10 5 10			21-May-19 21-May-19	1 5	33.33%			g of Comforming Bored	
NE/2017/08-1.7.4.2.1.2			0 0	00\000y3/ 00			0	50.0070			5	
NE/2017/08-1.7.4.2.1.2			0 0				0					
NE/2017/08-1.7.4.2.1.4			0 30	NE/2017/08(6days) 20-)-May-19	24-Jun-19	14			24-Ju	un-19 NE/2017/08-1 7.4	.2.1.4 Rig
PORIII.UT.PD.BP108	Predrilling of Comforming Bored Piles at U-trough (PD51)	15	0 15	NE/2017/08(6days) 20)-May-19	05-Jun-19	14 5	0%		Predrill	ling of Comforming Bore	J Piles at U
Actual Level of Effor	♦ Milestone	Co	ntract N	o.: NE/2017/08							Date	<u> </u>
					0						08-Apr-19	Month
Actual Work	Summary CEDD Civil Engineering and		Bay Lini	k, Tseung Kwan	I U					ing		
Remaining Work	Development Department			Associated Worl				_				

					20)21						-)22						2023 3 Q4 Q1 Q2 TRA, 1rig)				
				Q2			Q3			Q4			Q1			Q2			Q3						Q1		Q	2
ling	jв	ore	aı	Pile	\$ (E	Lie/	ate	aı	pec	<u>k)(</u>	1 n	p in	P	ort	II, 1	IUL	/pi	le+	50	IR	Α,	iriç	<u>)</u>				• • • •	
סי	36)																											
ed	Pil	e (1	n). ir	i Pr	brt	II. 2	210	l/pil	е.	te	am	s i	h to	(tal)													
ea	ms	in	tot	al)				İ.,																				
+ (Ele	va	ed	De	ck)	(2	nos	s in	Po	rt Î	, 1	DD/	pile	+5	D	rr/	۹, 2	2rig	s in	to	al)					-		
1		f Po	i	i	i																							
lev mii	ati ha	ed I Bo	De	¢k a I Pil	and les	Ab F	ប់tn ឯ+A	her Nb 2	it 2 2B)	B 112	no	s in	Р	or I	1		/ni	le+	5D	TR	Δ	5rie	ns i	h to	tal			
	9	00				1									2-	0L	<u> </u>		,0				J J 1		i ca			
(P	40	4)																										
("	4)																										
PC	945)																										
		of E	xis	ting	ĢG	rou	nd	Le	vel																			
id (ers	5)																									
1		ier: 13)	• •																									
																	_											
SS	H (Ele	va	ted	De	ick)	(1	8no	os ir	ηΡ	ort	111,	10	D/p	ile-	-5D	T	RA	8r	gs	in t	ota	1)					
fU	-tr	DU	h s	Stru	lct	ire																						
orn	nin	g E	ore	ed	Pile	s (I	U-ti	ou	gh)	(8r	os	10	D/	pile	+5	DТ	R/	1 , 5	rigs)								
(0	ur	ren	tΠ	rill) Dei	oth	14	łm)																				
								,																				
1)		• • •																• • •										
		~	ic.	~~~			-		-				_		<u> </u>	ha	<u>ح</u> ا	-	1	Т		^	n ~					_
						()	\n	r 0	0.4	0	<u>, </u>		_	Ч		he	Ck	ec	ı	-	StL		pp	oro	ve	b		
n	IE	; L	νp	ua	ιe	(7	۱q	ı 2	201	19)			Η	ĭ					1	זו	-						

	Activity Name	Original Actua	al Remaining	Calenda	r Start	Finish	Total TRA	Activity %		2019			2020
		Duration Duration	n Duration	Calorida			Float	Complete	1 Q1	Q2 Q3	Q4 (Q1 Q2	
PORIII.UT.PD.BP10	Predrilling of Comforming Bored Piles at U-trough (PD49)	15 (0 15	NE/2017/08(6days) 06-Jun-19	24-Jun-19	14 5	0%		Predri	illing of Comfor	ming Bored F	Piles at
ME/2017/08-1.7.4.2.1.		45	1 44			02-Jul-19	9	0.070/			ul 19 NE/2017		
	D90 Predrilling of Comforming Bored piles at U-trough (PD52) D95 Deschilling of Comforming Deschilling at U-trough (PD52)			NE/2017/08(6days		25-May-19	9 5	6.67%			g of Comformir rilling of Comfo		
	Predrilling of Comforming Bored piles at U-trough (PD50) eet Piling and Lowering of Existing Ground Level			NE/2017/08(6days NE/2017/08(6days		02-Jul-19 25-May-19	9 5 93	0%		and the second	19, NE/2017/08		
PORIII.UT.EX1030	Lowering of Existing Ground Level (Northern Area) (Grid 13 to Grid 22) (+5.0mPD to +4.4mPD)			NE/2017/08(6days		25-May-19 25-May-19	93 0	0%			of Existing Gro		
	instruction of Bored Pile (8 nos, 21D/pile, 1 to 2 teams)			NE/2017/08(6days		29-Aug-19	1040				29-Aug-19, NI		
PORIII.UT.BP1010	Construction of Bored Piles (8nos,21D/pile,1 to 2teams)	84 (NE/2017/08(6days		29-Aug-19	250 0	0%			Construction p		
PORIII.UT.BP1020	New Activity	21 (0 21	NE/2017/08(6days	i) 22-May-19	15-Jun-19	1095	0%		🕂 🔲 New Ac	tivity		
PORIII.UT.BP1040	New Activity	8	0 8	NE/2017/08(6days	i) 17-Jun-19	25-Jun-19	1095	0%		🕂 🛛 New A	Activity		
	e-drilling of alternative PBSH (U-trough)(16nos, 10D/pile+5D TRA, 8rigs)	0	0 0				0						
NE/2017/08-1.7.4.2.4.	1 Rig 1	0	0 0				0						
NE/2017/08-1.7.4.2.4.2			0 0				0						
NE/2017/08-1.7.4.2.4.3			0 0				0		<u> </u>	+- -		-+-+-+-+-	
NE/2017/08-1.7.4.2.4.			0 0				0						
NE/2017/08-1.7.4.2.4.		0	0 0				0						
E/2017/08-1.7.4.2.4.	•		0 0				0						
NE/2017/08-1.7.4.2.4.8	<u> </u>	-	0 0				0		↓↓↓↓	÷-84444			
· •	Instruction of Alternative PBSH (40nos, 7D/pile, 1 to 5rigs)	Y	0 0 0 0				0						
NE/2017/08-1.7.4.2.7 Dr			0 0				0						
	Instruction of Semi-Noise Enclosure (CH13482.1 to 13580.3)		0 0				0						
NE/2017/08-1.7.5 Modifica	tion of Seawall (Portion II and III)		0 0				0						
	ction of the At-grade Noise Semi Enclosures	26	0 26		03-Jun-19	04-Jul-19	26				ul-19, NE/2017		
NE/2017/08-1.7.6.1 Northe			0 26		03-Jun-19	04-Jul-19	26				ul-19, NE/2017		
PORIII.AG.N1010	Open Cut Excavation for Raft Footing (+5.5mPD to +2.4mPD) (5100m3)		0 21			27-Jun-19	25 0	0%			Cut Excavation	tor Raft For	oting (+
PORIII.AG.N1020	Plate Load Test			NE/2017/08(7days	i) 28-Jun-19	04-Jul-19	31 0	0%		►1 Plate	Load Test		
NE/2017/08-1.7.6.2 Southe	rn Side ling to Interim Formation Level at At-grad e Road Area (3 layers, 5D/layer)						0			+			
NE/2017/08-1.7.6.4 Constr			0 0				0						
	tection Works (Portion I, II and III)	88	6 82	NE/2017/08(6days) 02-May-19 A	16-Aug-19	137			1	16-Aug-19, NE	/2017/08-1.7	.7 Tre
TP1020	Tree Transplant Works	88	6 82	NE/2017/08(6days) 02-May-19 A	16-Aug-19	137 0	6.82%		7	Tree Transplan	t Works	
NE/2017/08-1.7.8 Wan O R	oad	186 (0 186		20-May-19	30-Dec-19	0				▼ 30	J-Dec-19, NF	=/2017
NE/2017/08-1.7.8.1 Footpa		186 (0 186		20-May-19	30-Dec-19	0				30	0-Dec-19, NE	E/201/7
NE/2017/08-1.7.8.1.3 Fo				NE/2017/08(6days		09-Aug-19	5				9-Aug-19, NE/		
NE/2017/08-1.7.8.1.3.7 WO.FP.NB1.1000	1 TTA Phase 1 (TTA DWG: Q1004/WAOR/002A) Implementation of TTA at FP		0 19 0 1	NE/2017/08(6days NE/2017/08(6days		11-Jun-19 20-May-19	0	0%			19, NE/2017/0 ntation of TTA a		
WO.FP.NB1.1010	UU Detection, Trial Pit, UU Identification, UU Identification		0 14			05-Jun-19	0 0	0%		- 	ection, Trial Pit,		ation
WO.FP.NB1.1020	Setting up of Drill Rig and Construction of Environmental Borehole and Sampling (EBH7) (Rig 6)(10D/pile+5D T			NE/2017/08(6days		10-Jun-19	0 5	0%			up of Drill Rig		
WO.FP.NB1.1040	Reinstatement of Road Surface		0 1	NE/2017/08(6days		11-Jun-19	0 0	0%			tement of Roa		
NE/2017/08-1.7.8.1.3.2		19	0 19	NE/2017/08(6days) 12-Jun-19	04-Jul-19	5				ul-19, NE/2017		2 TT/
WO.FP.NB2.1000	Implementation of TTA at FP	1 (0 1	NE/2017/08(6days		12-Jun-19	0 0	0%			entation of TT/		
🔲 WO.FP.NB2.1010	UU Detection and Trial Pit, UU Identification	14 (0 14	NE/2017/08(6days	i) 13-Jun-19	28-Jun-19	0 0	0%		ອີບັບ ອ	etection and Tr	rial Pit, UU ld	lehtifica
WO.FP.NB2.1020	Setting up of Drill Rig and Construction of Environmental Borehole and Sampling (EBH8) (Rig 6)(10D/pile+5D T	TRA) 15 0	0 15	NE/2017/08(6days	i) 15-Jun-19	03-Jul-19	0 5	0%		Settir	ng up of Drill Ri	g and Constr	uction
WO.FP.NB2.1040	Reinstatement of Road Surface	1 (0 1	NE/2017/08(6days	i) 04-Jul-19	04-Jul-19	5 0	0%		Reins	statement of Ro	oad Surface	
	3 TTA Phase 3 (TTA DWG: Q1004/WAOR/001A)	16	0 16	NE/2017/08(6days		23-Jul-19	5				Jul-19, NE/201		.3.3 T
WO.FP.NB3.1000	Implementation of TTA at FP		0 1	NE/2017/08(6days		05-Jul-19	5 0	0%		- Imple	ementation of T Detection and	TAatFP	
WO.FP.NB3.1010	UU Detection and Trial Pit, UU Identification		0 14	NE/2017/08(6days		22-Jul-19	5 0	0%	····				
WO.FP.NB3.1030	Tree Transplant and Removal of Rootball Reinstatement of Road Surface		0 7 0 1	NE/2017/08(6days		16-Jul-19 23-Jul-19	10 0 5 0	0%			e Transplant ar instatement of		
	4 TTA Phase 4 (TTA DWG: Q1004/WAOR/006A)		-	NE/2017/08(6days NE/2017/08(6days	-	23-Jul-19 09-Aug-19	5 0	0%		· · · · · · · · · · · · · · · · · · ·	9-Aug-19, NE/		
WO.FP.NB4.1000	Implementation of TTA at FP		0 15	NE/2017/08(6days		24-Jul-19	5 0	0%			plementation of		5.1.3.4
WO.FP.NB4.1010	UU Detection and Trial Pit, UU Identification			NE/2017/08(6days		09-Aug-19	5 0	0%			JU Detection ar		U Iden
NE/2017/08-1.7.8.1.4 Fo			-	NE/2017/08(6days		02-Aug-19	11		1-1-1-1-	· · · · · · · · · · · · · · · · · · ·	2-Aug-19, NE/2		
	1 TTA Phase 1 (TTA DWG: Q1004/WAOR/011)	16		NE/2017/08(6days	<u> </u>	06-Jun-19	11			🕶 06-Jun-	19, NE/2017/0	8-1.7 8.1.4.1	
WO.FP.SB1.1000	Implementation of TTA at FP			NE/2017/08(6days		20-May-19	11 0	0%			ntation of TTA a		
WO.FP.SB1.1010	UU Detection and Trial Pit, UU Identification		0 14	. ,		05-Jun-19	11 0	0%			ection and Trial		tificatio
WO.FP.SB1.1030	Reinstatement of Road Surface		0 1	. ,		06-Jun-19	11 0	0%			tement of Road		
MO EP SP2 1000			0 16 0 1			26-Jun-19	11 0	00/			n-19, NE/2017		.2 TT
WO.FP.SB2.1000	Implementation of TTA at FP UU Detection and Trial Pit, UU Identification		0 1 0 14	NE/2017/08(6days NE/2017/08(6days		08-Jun-19 25-Jun-19	11 0 11 0	0%			entation of TTA etection and Tr		entifica
WO.FP.SB2.1010	Tree Transplant and Removal of Rootball		-	NE/2017/08(6days NE/2017/08(6days		25-Jun-19 19-Jun-19	11 0	0%			ransplant and		
WO.FP.SB2.1030	Reinstatement of Road Surface		0 7	NE/2017/08(6days		26-Jun-19	11 0	0%			tatement of Ro		Joing
NE/2017/08-1.7.8.1.4.4			-	NE/2017/08(6days	-	16-Jul-19	11 0	0,0	+-+-+-		Jul-19, NE/201		4,4 T
WO.FP.SB4.1000	Implementation of TTA at FP		0 1	NE/2017/08(6days		27-Jun-19	11 0	0%		- Impler	mentation of T	TA at FP	
WO.FP.SB4.1010	UU Detection and Trial Pit, UU Identification	14 (0 14	NE/2017/08(6days		15-Jul-19	11 0	0%		►□ ∪⊍	Detection and	Trial Pit, UU	Identifi
WO.FP.SB4.1030	Removal of Rootball (A0001)	2 (0 2	NE/2017/08(6days	i) 02-Jul-19	03-Jul-19	21 0	0%		+I Rem	oval of Rootbal	I (A0001)	
WO.FP.SB4.1040	Reinstatement of Road Surface	1 (0 1	NE/2017/08(6days	i) 16-Jul-19	16-Jul-19	11 0	0%		·	nstatement of F		
	5 TTA Phase 4 (TTA DWG: Q1004/WAOR/005)		0 15			02-Aug-19	11				2-Aug-19, NE/2		.1.4.5
WO.FP.SB5.1000	Implementation of TTA at FP		0 1	NE/2017/08(6days		17-Jul-19	11 0	0%			ementation of		
WO.FP.SB5.1010	UU Detection and Trial Pit, UU Identification		0 14			02-Aug-19	11 0	0%			U Detection an		
NE/2017/08-1.7.8.1.2 Ot WO.FT.EB1030	her Works Chemical/Biological Testing for Environmental Borehole			NE/2017/08(7days NE/2017/08(7days	/	30-Dec-19	0	00/			30	0-Dec-19, NE hemical/Biolo	-/2017
WO.F I.EB1030		20	0 180 0 20	INE/2017/08(70ays) 04-Jul-19 25-Jul-19	30-Dec-19 16-Aug-19	0 0	0%	+	+	16-Aug-19, NE		
					<u></u>					<u> </u>			<u> , -</u> , - , - , - , - , - , - , - , -
 Actual Level of Efformation 	ort Milestone	Сог	ntract No	.: NE/2017/0)8						Dat		
Actual Work	summary summary 土木工程拓展署			, Tseung Kw							08-Apr-	19 M	lonth
	Civil Engineering and		-					•					_
Remaining Work	Development Department	Road	D9 and A	Associated W	orks			<u>{ 1 </u>	U K	ling			
	Work					1					1		

		20)21					_						20	22					_		2	023	\$	
Q1	Qź		_	23		(Q4		1	Q1			Q2			Q3		(Q4			Q1	_	Q	2
49)																							_		
050)																									
ring of E							1.46	~D	וח																
13 to Gi of Bore		2						- 1		am	is)														
2teams)																									
		1																							
									{																
rade No	ise Se	mi	En¢	los	ure	s																	• • •		
.4mPD)	(5100	Jma	9																						
orks (Po	ortion	і, II	anc	ı II)																				
O Roa otpath E		tion	De				-+																		
n Bjouind				111	"																				
owg: c	1004	WA	\OF	2/00)2/	4)																			
n																									
l Boreho	le and	S	mp	linģ	(E	BH	17)	(R	g 6)(1	0D	/pil	e+5	D	TR	A)									
ADWG:	Q100	4///	VAC)R/	00	7A)																			
ital Bore	hole a	ind	Sar	npli	ng	(E	знį	3) (Rig	j 6)(1	לסנ	pile	+5	D٦	R/	A)								
TADWO	5: Q1	004	w		م/ ۶	01	A)																		
		ļ																							
(TTA D	wĠ:	ģ10	04	w	0	R/0	06¥	۹)																	
Bound																									
WG: Q	1004	WA	OR	/01	1)																				
ADWG:	Q100	04/V	VAC	R/	00	4 A)																			
		{																							
ADWG	: Q10	04/	WA	OR	/0	2)																			
		10		N/A	0		<u>ا جر</u>																		
(TTA DV	v O: C	cru	υ4/ \	VA		.,00	(0																		
Other, W romment		ehr	he																						
xcavatio	!!	÷ !	<u></u>																						
	visior											C	he	ck	ec	1	Т		A	рр	oro	NVF	d		
nme L			(A	pr	2	01	9)				H			51				StL		۲۳					
		-	<u>, , , , , , , , , , , , , , , , , , , </u>		_		- /				-						-17								

	Activity Name		Original		Remaining		Start	Finish	Total TF	RA Activity %			2019			2	2020			2021				2022		
			Duration	Duration	Duration				Float	Complete 4	Q1	Q2	Q	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2 (Q3 Q	4 Q1	1 Q2	Q3	Q4	
NE/2017/08-1.7.8.	2.1 TTA, Chain Link Fence, UU Detection, Trial	Pit	20	0	20	NE/2017/08(6days)	25-Jul-19	16-Aug-19	0					16-Aug-1	19, NE/20	017/08-1.7.	.8.2.1 TT	TA, Chain Li	nk Fence, l	U Detect	ion, Trial P	.t			1 1 1	-
WO.CW.TTA1	10 Implementation of TTA at Carriagewa	у	1	0	1	NE/2017/08(6days)	25-Jul-19	25-Jul-19	0 0	0%			i i i	mplemente	ation of T	TA at Carrie	iageway									
WO.CW.TTA1	20 Utility Detection and Trial Pit for Carria	ageway (including UU Identification)	20	0	20	NE/2017/08(6days)	25-Jul-19	16-Aug-19	0 0	0%				Utility De	tection a	nd Trial Pit f	for Carria	ageway (inc	luqing UU I	dentificatio	on)					
WO.CW.TTA1	30 Erection of Chain Link Fence and Veh	icular Gate at Entrance	20	0	20	NE/2017/08(6days)	25-Jul-19	16-Aug-19	0 0	0%			╘╾┢╸	Erection	of Chain	Link Fence	and Veh	hioular Gate	at Entraho							
NE/2017/08-1.7.8.	2.2 Predrilling of PBSH		0	0	0				0			111										1111	1 1 1 1 1	1111	111	1
NE/2017/08-1.7.8.	2.3 Construction of PBSH		0	0	0				0																	
NE/2017/08-1.7.8.	2.5 Construction of ELS		0	0	0				0																	
NE/2017/08-1.7.8.	2.6 Structural Works		0	0	0				0																	
NE/2017/08-1.7.8.	2.7 Noise Barrier		0	0	0				0																	
NE/2017/08-1.7.8.	2.8 Remaining Works		0	0	0				0													1 1 1 1	1 1 1 1 1			1

Remaining Work

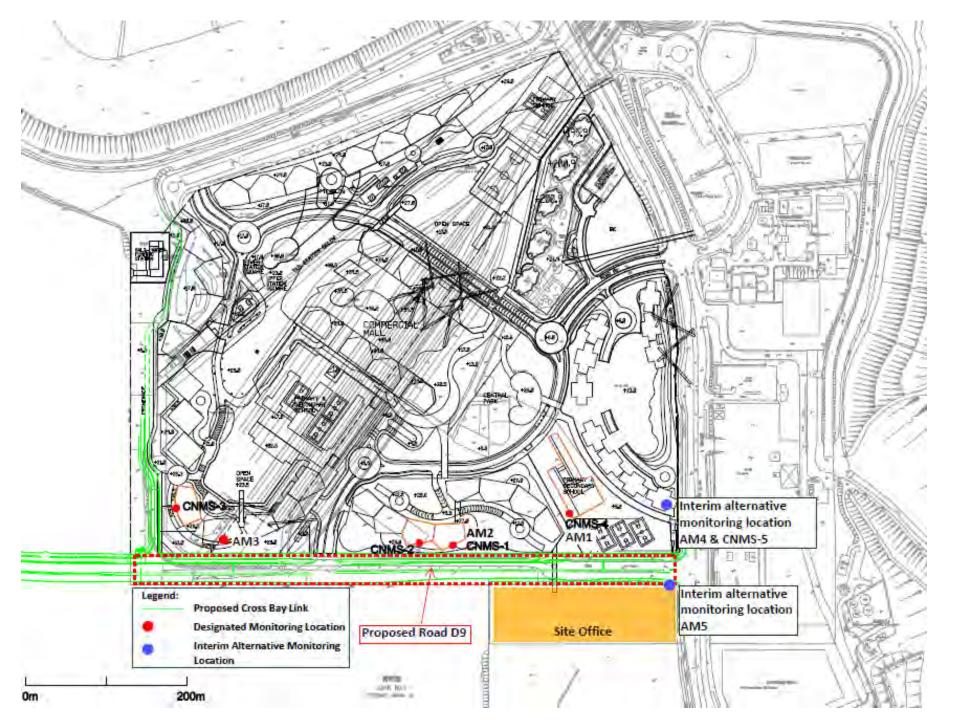
 Actual Level of Effort • Actual Work Critical Remaining Work

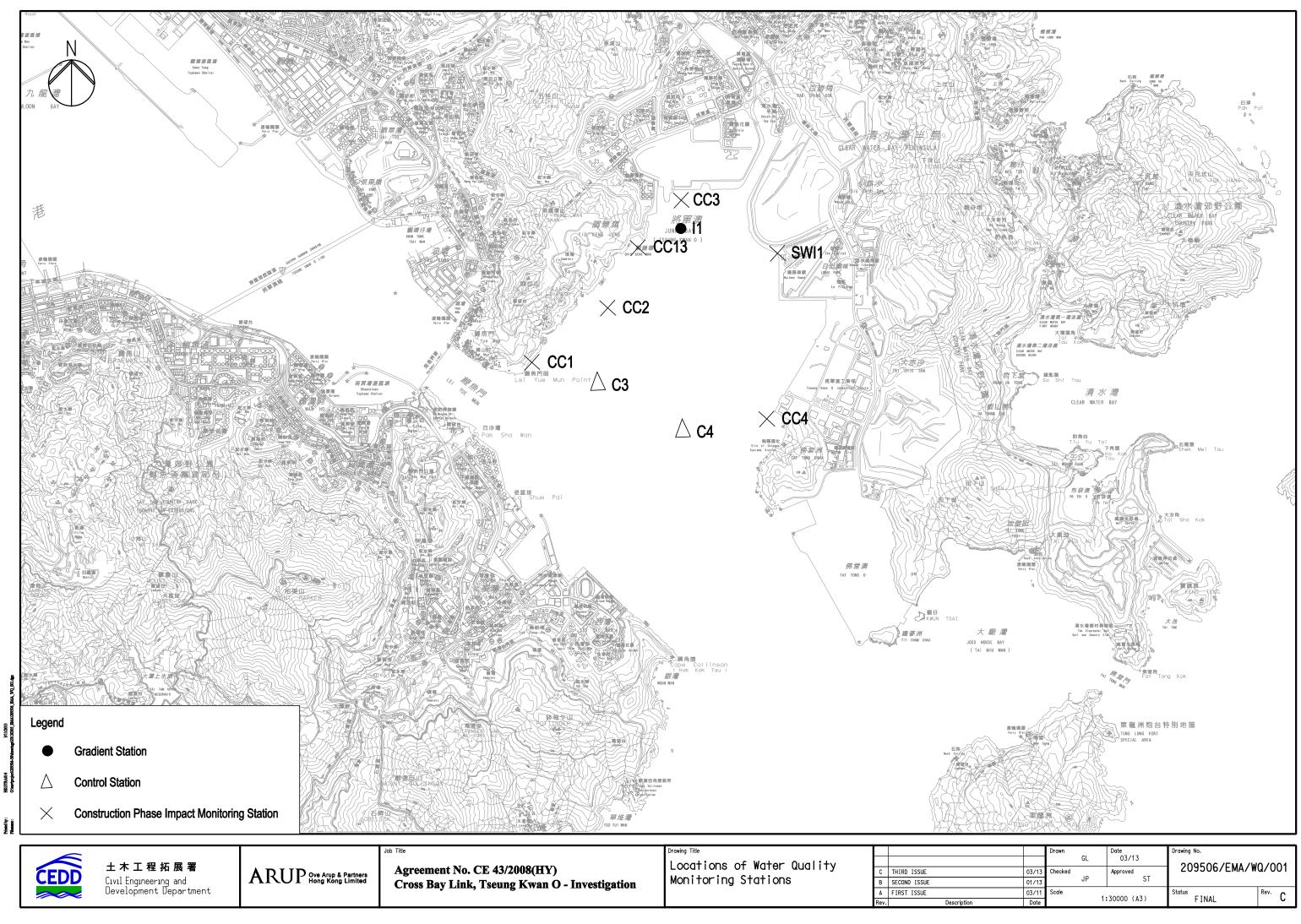
 Milestone summary

Contract No.: NE/2017/08 Cross Bay Link, Tseung Kwan O Road D9 and Associated Works Page 4 of 4

Date 08-Apr-19 ... Monthly Program

Revision	Checked	Approved
mme Update (Apr 2019)	HY	StL




Appendix D

Monitoring Location (Air Quality, Noise and Water Quality)

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Designated and Interim Alternative Air Quality and Noise Monitoring Location

AUES

		UL.	03/13		0/001
03/13	Checked	10	Approved	209506/EMA/W	u/001
01/13		JP	ST		
03/11	Scale	4.	20000 (17)	Status	Rev. C
Date		13	30000 (A3)	FINAL	U U

Appendix E

Event and Action Plan

 $Z: \label{eq:loss} 2018 \ CS00975 \ (EDO-04-2018) \ (600 \ EM\&A \ Report \ Submission \ Monthly \ EM\&A \ Report \ September \ 2019 \ R0269 \ v2. \ docx$

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
ACTION LEVEL				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and Project Consultant; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and Project Consultant; Advise the Project Consultant on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and Project Consultant; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial actions to IEC within working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
LIMIT LEVEL				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform Project Consultant, Contractor, IEC and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Project Consultant informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the Project Consultant on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Event and Action Plan for Air Quality Monitoring

		ACTION							
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor					
LIMIT LEVEL		1							
Exceedance for two or more consecutive samples	 Notify IEC, Project Consultant, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and Project Consultant to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Project Consultant informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst Project Consultant, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the Project Consultant accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the Project Consultant until the exceedance is abated. 					

		ACTION			
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor	
Action Level	 Notify IEC and contractor; Carry out investigation; Report the results of investigation to the IEC, Project Consultant and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the Project Consultant accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; 2. Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals. 	
Limit Level	 Identify source; Inform IEC, Project Consultant, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, Project Consultant and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Project Consultant informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst Project Consultant, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the Project Consultant accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the Project Consultant until the exceedance is abated. 	

		ACTION			
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor	
Action level being exceeded by one sampling day at water sensitive receiver(s)	 Identify the source(s) of impact by comparing the results with those collected at the gradient stations and the control stations as appropriate; If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; Inform IEC and contractor; Check monitoring data, all plant, equipment and Contractor's working methods; If exceedance occurs at WSD salt water intake, inform WSD; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	 Discuss mitigation measures with ET and Contractor; Review proposal on mitigation measures submitted by Contractor and advise the Project Consultant accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC; Make agreement on the mitigation proposal. 	 Inform the Project Consultant and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Amend working methods if appropriate; Discuss with ET and IEC and propose mitigation measures to IEC and Project Consultant; Implement the agree mitigation measures. 	
Action level being exceeded by two or more consecutive sampling days at water sensitive receiver(s)	 Identify the source(s) of impact by comparing the results with those collected at the gradient stations and the control stations as appropriate; If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; Inform IEC and contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, and Contractor; Ensure mitigation measures are 	 Discuss mitigation measures with ET and Contractor; Review proposal on mitigation measures submitted by Contractor and advise the Project Consultant accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC; Make agreement on the mitigation proposal; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Project Consultant and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and Project Consultant and propose mitigation measures to IEC and Project Consultant within 3 working 	

		ACTION			
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor	
	 implemented; 7. Prepare to increase the monitoring frequency to daily; 8. If exceedance occurs at WSD salt water intake, inform WSD; 9. Repeat measurement on next day of exceedance. 			days; 5. Implement the agreed mitigation measures.	
Limit level being exceeded by one sampling day at water sensitive receiver(s)	 Identify the source(s) of impact by comparing the results with those collected at the gradient stations and the control stations as appropriate; If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; Inform IEC, contractor and EPD Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; If exceedance occurs at WSD salt water intake, inform WSD. ET should contact AFCD if the limit level is exceeded by one sampling day or two or more consecutive sampling days at water sensitive receiver(s). 	 Discuss mitigation measures with ET and Contractor; Review proposal on mitigation measures submitted by Contractor and advise the Project Consultant accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Project Consultant and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and Project Consultant and submit proposal of mitigation measures to IEC and Project Consultant within 3 working days of notification; Implement the agreed mitigation measures. 	
Limit level	1. Identify the source(s) of impact by	1. Discuss mitigation	1. Discuss proposed	1. Inform the Project	
being exceeded	comparing the results with those	measures with ET and	mitigation measures with	Consultant and confirm	
by two or more	collected at the gradient stations and the	Contractor;	IEC, ET and Contractor;	notification of the	

	ACTION							
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor				
sampling days at 2	control stations as appropriate; 2. If exceedance is found to be caused	2. Review proposal on mitigation measures	2. Request Contractor to critically review the	noncompliance in writing;2. Rectify unacceptable				
water sensitive receiver(s) m 3 4 4 6 1 1 5 1 1 6 6 1 1 7 7 6 8 8 9	by the marine works, repeat <i>in-situ</i> measurement to confirm findings; 3. Inform IEC, contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, and Contractor; 6. Ensure mitigation measures are implemented; 7. Prepare to increase the monitoring frequency to daily; 8. If exceedance occurs at WSD salt water intake, inform WSD; 9. Repeat measurement on next day of exceedance.	submitted by Contractor and advise the Project Consultant accordingly; 3. Assess the effectiveness of the implemented mitigation measures.	 working methods; 3. Make agreement on the mitigation measures to be implemented; 4. Assess the effectiveness of the implemented mitigation measures; 5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. 	practice; 3. Check all plant and equipment and consider changes of working methods; 4. Discuss with ET, IEC and Project Consultant and submit proposal of mitigation measures to IEC and Project Consultant within 3 working days of notification; 5. Implement the agreed mitigation measures; 6. As directed by the Engineer, to slow down or to stop all or part of the construction activities.				

Appendix F

Impact Monitoring Schedule of the Reporting Month and Coming Month

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report – September 2019

Impact Monitoring Schedule for coming month – August 2019

Date		Noise Monitoring	Air Quality	y Monitoring	Water Quality
		(L _{eq} 30min)	1-Hour TSP	24-Hour TSP	Water Quality
Sun	1-Sep-19				
Mon	2-Sep-19				
Tue	3-Sep-19				✓
Wed	4-Sep-19				
Thu	5-Sep-19			✓	✓
Fri	6-Sep-19	✓	\checkmark		
Sat	7-Sep-19				✓
Sun	8-Sep-19				
Mon	9-Sep-19				✓
Tue	10-Sep-19				
Wed	11-Sep-19			✓	✓
Thu	12-Sep-19	✓	\checkmark		
Fri	13-Sep-19				✓
Sat	14-Sep-19				
Sun	15-Sep-19				
Mon	16-Sep-19				✓
Tue	17-Sep-19			✓	
Wed	18-Sep-19	✓	\checkmark		✓
Thu	19-Sep-19				
Fri	20-Sep-19				✓
Sat	21-Sep-19				
Sun	22-Sep-19				
Mon	23-Sep-19			✓	✓
Tue	24-Sep-19	✓	✓		
Wed	25-Sep-19				✓
Thu	26-Sep-19				
Fri	27-Sep-19				✓
Sat	28-Sep-19			✓	
Sun	29-Sep-19				
Mon	30-Sep-19	✓	✓		✓
	✓	Monitoring Day			
		Sunday or Public Hol	iday		

* Cancelled due to adverse weather condition

Marine Water Quality Monitoring Schedule

Schodulod Monito	ning Dov	Tides of Ta	i Miu Wan	Proposed Sampling Time (#)	
Scheuuleu Monito	Scheduled Monitoring Day		Mid-Flood	Mid-Ebb	Mid-Flood
3-Sep-19	Tue	15:11	08:53*	13:16 - 16:46	08:00 - 10:38*
5-Sep-19	Thu	16:50	10:56	15:05 - 18:35	09:11 - 12:41
7-Sep-19	Sat	07:13*	14:47	08:00-09:00*	13:02 - 16:32
9-Sep-19	Mon	09:25*	17:02	08:00 - 11:10*	15:17 – 18:47
11-Sep-19	Wed	10:45	17:56	09:00 - 12:30	16:11 - 19:41
13-Sep-19	Fri	11:56	18:47*	10:11 - 13:41	16:30 - 20:32*
16-Sep-19	Mon	13:31	07:12*	11:46 - 15:16	08:00-09:00*
18-Sep-19	Wed	14:35	08:32*	12:45 - 16:15	08:00 - 10:17*
20-Sep-19	Fri	15:47	10:13	14:02 - 17:32	08:28 - 11:58
23-Sep-19	Mon	06:58*	19:35*	08:00-09:00*	16:30 - 21:20*
25-Sep-19	Wed	09:13*	16:41	08:00 - 10:58*	14:56 - 18:26
27-Sep-19	Fri	11:01	17:47	09:16 - 12:46	16:02 - 19:32
30-Sep-19	Mon	13:22	07:04*	11:36 - 15:06	08:00-09:00*

Remark: The water quality sampling will be undertaken within a three and half hour window of 1.75 hour before and 1.75 hour after mid flood and mid-ebb tides.

(*) Due to safety reason, the sampling time will be started at 08:00 or 16:30

Impact Monitoring Schedule for coming month – September 2019

Date		Noise Monitoring	Air Quality	Water Quality	
		(Leq30min)	1-Hour TSP	24-Hour TSP	water Quanty
Tue	1-Oct-19				
Wed	2-Oct-19				✓
Thu	3-Oct-19			✓	
Fri	4-Oct-19		✓		✓
Sat	5-Oct-19				
Sun	6-Oct-19				
Mon	7-Oct-19				
Tue	8-Oct-19				✓
Wed	9-Oct-19			✓	
Thu	10-Oct-19	\checkmark	\checkmark		✓
Fri	11-Oct-19				
Sat	12-Oct-19				✓
Sun	13-Oct-19				
Mon	14-Oct-19				✓
Tue	15-Oct-19			✓	
Wed	16-Oct-19	\checkmark	\checkmark		✓
Thu	17-Oct-19				
Fri	18-Oct-19				✓
Sat	19-Oct-19				
Sun	20-Oct-19				
Mon	21-Oct-19			✓	✓
Tue	22-Oct-19	\checkmark	\checkmark		
Wed	23-Oct-19				✓
Thu	24-Oct-19				
Fri	25-Oct-19				✓
Sat	26-Oct-19			✓	
Sun	27-Oct-19				
Mon	28-Oct-19	\checkmark	✓		✓
Tue	29-Oct-19				
Wed	30-Oct-19				✓
Thu	31-Oct-19				
-	√	Monitoring Day			
		Sunday or Public Hol	iday		

Marine Water Quality Monitoring Schedule

Schoduled Monito	Scheduled Monitoring Day		Tides of Tai Miu Wan		pling Time (#)
Scheduled Monitoring Day		Mid-Ebb	Mid-Flood	Mid-Ebb	Mid-Flood
2-Oct-19	Wed	14:48	08:47*	13:03 - 16:33	08:00 - 10:32*
4-Oct-19	Fri	16:23	10:52	14:38 - 18:08	09:07 - 12:37
8-Oct-19	Tue	08:32*	16:29	08:00 - 10:17*	14:44 - 18:14
10-Oct-19	Thu	10:12	17:17	08:27 - 11:57	15:32 - 19:02
12-Oct-19	Sat	11:27	18:01	09:42 - 13:12	16:16 - 19:46
14-Oct-19	Mon	12:32	6:25*	10:47 - 14:17	08:00-09:00*
16-Oct-19	Wed	13:35	07:44*	11:50 - 15:20	08:00 - 09:29*
18-Oct-19	Fri	14:40	09:14*	12:55 - 16:25	08:00 - 10:59*
21-Oct-19	Mon	04:07*	16:42	08:00-09:00*	14:57 - 18:27
23-Oct-19	Wed	07:44*	15:24	08:00-09:29*	13:39 - 17:09
25-Oct-19	Fri	09:47	16:34	08:02 - 11:32*	14:49 - 18:19
28-Oct-19	Mon	12:17	06:08*	10:32 - 14:02*	08:00-09:00*
30-Oct-19	Wed	13:44	07:52*	11:59 - 15:29	08:00-09:37*

Remark: The water quality sampling will be undertaken within a three and half hour window of 1.75 hour before and 1.75 hour after mid flood and mid-ebb tides.

(*) Due to safety reason, the sampling time will be started at 08:00 or 16:30

Appendix G

Calibration Certificates of Equipment and Accreditation Laboratory Certificate

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong

香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 –《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date : 5 May 2009 簽發日期:二零零九年五月五日

Registration Number: HOKLAS 066 註冊號碼:

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location :	: Junctior	ı of Wan	Po Roa	d and Wan () Ro	oad	Date of C	Calibr	ation: 2-Sep	5- 19		
Location 1	ID :	AM5				N			Date: 2-No	v - 19		
Name and	l Model: '	<u>TISCH H</u>	<u>IVS Mo</u>	del TE-5170				Techn	ician: Ho			
					С	ONDIT	IONS					
	G	T 11	D	(1.D.) [1007					TT \	
	Se	a Level I				1007		(Corrected Pr			
Temperature (°C)						26.9			Tempe	erature (K	x)	300
				CA	LIB	RATIO						
				F		T						
				Make->		+			Qstd Sl	-		2.0968
				Model->					Qstd Intere	cept ->		-0.00065
				Serial # ->	194	1						
					C	ALIBR	ATION					
Plate	H20 (L)	H2O (R)	H20	Qstd		Ι	IC			LINEA	R	
No.	(in)	(in)	(in)	(m3/min)	(cł	hart)	corrected		R	EGRESS	ION	
18	5.20	5.20	10.4	1.529	59		58.44		Slope = 27.3875			
13	3.40	3.40	6.8	1.236		52	51.51		Intercept = 16.9762			
10	2.30	2.30	4.6	1.017		45	44.57		Corr. coeff. = 0.9983			
7	1.60	1.60	3.2	0.848		41 40.61						
5	1.20	1.20	2.4	0.734		37	36.65					
Calculatio	ons :								FLOW RATI	E CHART		
Qstd = 1/1	n[Sart(H	20(Pa/Ps	std)(Tstd	/Ta))-b]		70.0	0					
IC = I[Squ												
						60.0	0				•	
Qstd = sta	indard flo	w rate										
IC = corrections	ected char	rt respon	es			50.0	0					
I = actual	chart res	ponse				(jc)						
m = calibr	-	-				8 6 40.0	0		y			
b = calibr	-	_				resp			4			
	-		_	bration (deg		30.0	0					
Pstd = act	ual press	ure durin	ig calibra	ation (mm H	lg	Actual chart response (IC)						
For subsequent calculation of sampler flow:					Pcti 20.0	0						
1/m((I)[S	- Sart(298/	Tav)(Pav	/760)]-ł)								
	1			,		10.0	0					
m = samp	ler slope											
b = sampler intercept						0.0						
I = chart r	-					0.0	0.000	0.50	00 1.0	000	1.500	2.000
Tav = dai	ly averag	e temper	ature					S	tandard Flow	Rate (m3/mi	in)	
Pav = dail	ly averag	e pressur	e									

RECALIBRATION DUE DATE: February 5, 2020

0

			Calibration (Certificatio	n Informat	ion		
Cal. Date:	February 5,	2019	Rootsn	neter S/N:	438320	Ta:	293	°K
Operator:	Jim Tisch					Pa:	753.1	mm Hg
		TE-5025A	Calib	rator S/N:	1941			5
		Mal Init	Vol Engl	AV-1	ATIMA	40	A11	Ĩ
	Run	Vol. Init (m3)	Vol. Final	ΔVol.	∆Time (min)			
	Kun 1	(m5) 1	(m3) 2	(m3)	(min) 1.4830	(mm Hg) 3.2	(in H2O) 2.00	
	2	3	4	1	1.4830	6.4	4.00	
	3	5	6	1	0.9300	7.9	5.00	
	4	7	8	1	0.8870	8.7	5.50	
	5	9	10	1	0.7320	12.7	8.00	
				ata Tabulat				1
	-	1			1011			0
	Vstd	Qstd	√∆H(<u>Pa</u> Pstd)(Tstd Ta)	(1997)	Qa	√∆H(Ta/Pa)	1
	(m3)	(x-axis)	(y-axi	s)	Va	(x-axis)	(y-axis)	
	1.0036	0.6767	1.4197		0.9958	0.6714	0.8821	
	0.9993	0.9581	2.007	/8	0.9915	0.9506	1.2475	
	0.9973	1.0723	2.244	8	0.9895	1.0640	1.3947	be
	0.9962	1.1231	2.354	4	0.9884	1.1144	1.4628	
	0.9908	1.3536	2.839	95	0.9831	1.3431	1.7642	
	17.72.6	m=	2.096	80	1.056.11	m=	1.31298	
	QSTD	b=	-0.000	65	QA	b=	-0.00040	
		r=	0.99999			r=	0.99999	1
				Calculation	IS		1.	
	Vstd=	$\Delta Vol((Pa-\Delta P))$	/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
	Qstd=	Vstd/∆Time			Qa=	Va/∆Time		
			For subsequ	ent flow rat	e calculation	ns:		
	Qstd=	1/m ((\\ \ \ \ \ \ \ H (Pa <u>(Tstd</u> Pstd Ta)-b)	Qa=	$1/m \left(\sqrt{\Delta H} \right)$	(Ta/Pa))-b)	
	Standard	Conditions						5. U
Tsto						RECAL	IBRATION	
Psto		mm Hg		1			1	100
		ley	112.01				inual recalibratio	
	tor manomet						egulations Part	
	eter manome absolute temp						Reference Meth	
							ended Particulat	
the second second second second second		cooure (mm	16/		th	e Atmosphe	re, 9.2.17, page	30
Pa: actual b: intercep m: slope	barometric pr t	essure (mm	Hg)				re, 9.2.17, page	

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR BEN TAM	WORK ORDER	HK1908930
CLIENT	ACTION UNITED ENVIRONMENT SERVICES AND		
	CONSULTING		
ADDRESS	: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD,	SUB-BATCH	: 1
	KWAI CHUNG, N.T. HONG KONG	DATE RECEIVED	: 25-FEB-2019
		DATE OF ISSUE	: 4-MAR-2019
PROJECT	:	NO. OF SAMPLES	: 1
		CLIENT ORDER	:

General Comments

- Sample(s) were received in ambient condition.
- Sample(s) analysed and reported on an as received basis.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Kidand Juny.		
Richard Fung	General Manager	

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH

CLIENT

PROJECT

: HK1908930

¹ ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING :

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1908930-001	S/N: 3Y6503	AIR	25-Feb-2019	S/N: 3Y6503

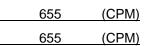
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	3Y6503
Equipment Ref:	EQ112
Job Order	HK1908930

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	21 December 2018


Equipment Verification Results:

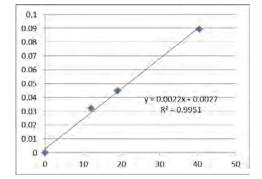
Testing Date:

7 January 2019

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	09:01 ~ 11:08	18.5	1021.4	0.045	2403	19.0
2hr11min	11:13 ~ 13:24	18.5	1021.4	0.032	1577	12.1
2hr07min	13:30 ~ 15:37	18.5	1021.4	0.089	5129	40.5

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X


Slope (K-factor):	0.0022		
Correlation Coefficient	0.9975		
Date of Issue	14 January 2019		

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Gold King Industrial B Location ID : Calibration Room	uilding, Kwai	ai Chung		Calibration: 21-Dec-18 ation Date: 21-Mar-19
	CC	ONDITIONS		
Sea Level Pressure (hPa) Temperature (°C)		16.1 22.4	Corrected Pressure (Temperature (
	CALIBR	RATION ORIFIC	E	
Mal Mod Calibration Da	el-> 5025A	A	Qstd Slope -> Qstd Intercept -> Expiry Date->	2.02017 -0.03691 13-Feb-19
	CA	LIBRATION		
Plate H20 (L)H2O (R) H20 Qst No. (in) (in) (in) (m3/n		t) IC corrected	LINE REGRES	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95 51 7 45 36 36	56.32 51.29 45.26 36.21 28.16	Slope = 34.0074 Intercept = -0.4093 Corr. coeff. = 0.9972	
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration Pstd = actual pressure during calibration (For subsequent calculation of sampler flow 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	(deg K) mm Hg)	70.00 60.00 50.00 50.00 40.00 20.00 10.00 0.000	FLOW RATE CHAN	1.500 2.000

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C193189 證書編號

(Job No. / 序引編號: IC19-1098)	Date of Receipt / 收件日期: 18 June 2019
Sound Level Meter (EQ016)	
Rion	
NL-52	
00464681	
Action-United Environmental Services and	d Consulting
Unit A, 20/F., Gold King Industrial Buildi	ng,
35-41 Tai Lin Pai Road, Kwai Chung, N.T	
	Sound Level Meter (EQ016) Rion NL-52 00464681 Action-United Environmental Services and Unit A, 20/F., Gold King Industrial Buildi

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50 ± 25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 20 June 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies

ł

- Fluke Everett Service Center, USA

Tested By 測試

11.00

K P Cheuk Assistant Engineer

K C Lee Engineer

Certified By 核證 Date of Issue : 簽發日期 20 June 2019

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 枝正及檢測實驗所 c/o 香港新界屯門興安里—號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com Page 1 of 3

Certificate of Calibration 校正證書

Certificate No. : C193189 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- Self-calibration was performed before the test. 2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C190176
CL281	Multifunction Acoustic Calibrator	CDK1806821

- 5. Test procedure : MA101N.
- 6. Results :

- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

UUT Setting		Applied Value		UUT	IEC 61672		
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	93.5	± 1.1

6.1.2 Linearity

	UU	T Setting		Applie	d Value	UUT
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	LA	A	Fast	94.00	1	93.5 (Ref.)
		1 1 2 3 4 1		104.00		103.5
				114.00		113.5

IEC 61672 Class 1 Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

6.2 Time Weighting

UUT Setting			Applied Value		UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130 L _A	L _A		Fast	94.00	1	93.5	Ref.
			Slow	1		93.5	± 0.3

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prine written approval of this laboratory.

Certificate of Calibration 校正證書

Certificate No. : C193189 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT Setting			Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	63 Hz	67.3	-26.2 ± 1.5
	1.				125 Hz	77.4	-16.1 ± 1.5
					250 Hz	84.8	-8.6 ± 1.4
					500 Hz	90.3	-3.2 ± 1.4
					1 kHz	93.5	Ref.
					2 kHz	94.8	$+1.2 \pm 1.6$
					4 kHz	94.5	$+1.0 \pm 1.6$
					8 kHz	92.5	-1.1 (+2.1;-3.1)
					12.5 kHz	89.1	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

	UUT Setting			Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _C	C	Fast	94.00	63 Hz	92.7	-0.8 ± 1.5
	1111111111				125 Hz	93.4	-0.2 ± 1.5
					250 Hz	93.5	0.0 ± 1.4
					500 Hz	93.6	0.0 ± 1.4
					1 kHz	Iz 93.5	Ref.
					2 kHz	93.4	-0.2 ± 1.6
					4 kHz	92.8	-0.8 ± 1.6
			· · · · · · · · · · · · · · · · · · ·		8 kHz	90.6	-3.0 (+2.1;-3.1)
					12.5 kHz	87.2	-6.2 (+3.0 ; -6.0)

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 07619

- Mfr's Spec. : IEC 61672 Class 1

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

....

1

輝創工程有限公司 Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C185603 證書編號

ITEM TESTED / 送檢項	目目	(Job No. / 序引編號: IC18-0867) Date of Receipt / 收件日期: 26 September 2018	per 2018
Description / 儀器名稱	:	Sound Calibrator (EQ087)	
Manufacturer / 製造商	:	Rion	
Model No. / 型號	1	NC-74	
Serial No. / 編號	1	34657231	
Supplied By / 委託者	÷	Action-United Environmental Services and Consulting	
		Unit A, 20/F., Gold King Industrial Building,	
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50±25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 14 October 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

核證

Tested By 測試 K C Lee Engineer Certified By

Date of Issue 簽發日期 19 October 2018

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

H C Chan Engineer

輝創工程有限公司 Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C185603 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C183775 CDK1806821 C181288

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.3	

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: CLIENT:	MR BEN TAM ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	WORK ORDER:	HK1936450
ADDRESS:	RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T. HONG KONG	SUB-BATCH: LABORATORY: DATE RECEIVED: DATE OF ISSUE:	0 HONG KONG 26-Aug-2019 02-Sep-2019

<u>COMMENTS</u>

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client. The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:Conductivity, Dissolved Oxygen, pH Value, Turbidity, Salinity and TemperatureEquipment Type:Multifunctional MeterBrand Name/ Model No.:YSI Professional DSSSerial No./ Equipment No.:15H102620/ 15H103928 (EQW018)

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

30-Aug-2019

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ma Ani

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Date of Calibration:

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1936450			
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 02-Sep-2019 ACTION UNITED ENVIRONMEN	IT SERVICES AND CONSULTING		
Equipment Type:	Multifunctional Meter			
Brand Name/ Model No.:	YSI Professional DSS			
Serial No./ Equipment No.:	15H102620/ 15H103928 (EQ	W018)		
Date of Calibration:	30-Aug-2019	Date of Next Calibration:	30-Nov-2019	

PARAMETERS:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)				
146.9	160.7	+9.4				
6667	6485	-2.7				
12890	12380	-4.0				
58670	55669	-5.1				
	Tolerance Limit (%)	±10.0				

Dissolved Oxygen Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
7.43	7.41	-0.02
4.06	4.07	+0.01
2.05	2.20	+0.15
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.15	+0.15
7.0	7.07	+0.07
10.0	9.90	-0.10
	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Alin

Mr Chan Siu Ming, Vico Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1936450			AL
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 02-Sep-2019 ACTION UNITED ENVIRONMEN	T SERVICES AND CONSULTING		
Equipment Type:	Multifunctional Meter			
Brand Name/ Model No.:	YSI Professional DSS			
Serial No./ Equipment No.:	15H102620/ 15H103928 (EQ)	W018)		
Date of Calibration:	30-Aug-2019	Date of Next Calibration:	30-Nov-2019	

PARAMETERS: Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.02	
4	3.76	-6.0
40	37.23	-6.9
80	73.56	-8.1
400	401.38	+0.3
800	780.12	-2.5
	Tolerance Limit (%)	±10.0

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.30	+3.0
20	20.32	+1.6
30	31.32	+ 4.4
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Li

Mr Chan Siu Ming, Vico Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1936450			ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 02-Sep-2019 ACTION UNITED ENVIRONMEN	T SERVICES AND CONSULTING		
Equipment Type:	Multifunctional Meter			
Brand Name/ Model No.:	YSI Professional DSS			
Serial No./ Equipment No.:	15H102620/ 15H103928 (EQ)	V018)		
Date of Calibration:	30-Aug-2019	Date of Next Calibration:	30-Nov-2019	
PARAMETERS:	Mathad Dafi Saction 6 of Intern	ational Accreditation New Zealand	Technical	
Temperature	Method Ker: Section 6 of Interna	ational Accieditation New Zealand	rechnical	

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.Expected Reading (°C)Displayed Reading (°C)Tolerance (°C)10.09.9-0.120.018.9-1.138.036.4-1.6Tolerance Limit (°C)±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Sin

Mr Chan Siu Ming, Vico Manager - Inorganic

Appendix H

Database of Monitoring Results

 $Z: Jobs \\ 2018 \\ TCS \\ 00975 \\ (EDO-04-2018) \\ 600 \\ EM\& \\ A \ Report \ Submission \\ Monthly \ EM\& \\ A \ Report \\ September \ 2019 \\ R0269 \\ v2. \\ dox \\ R0269 \\$

24-hour TSP	Monitoring	Data for A	M5												
DATE	SAMPLE NUMBER	ELA	APSED TIN	ſΕ	CHART REA		DING	AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER WI	EIGHT (g)	DUST WEIGHT COLLECTED	24-hr TSP
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$
5-Sep-19	24527	15162.52	15186.51	1439.40	44	45	44.5	28.2	1007	0.99	1427	2.6916	2.9250	0.2334	164
11-Sep-19	24712	15186.51	15210.51	1440.00	41	41	41.0	28	1008.3	0.87	1247	2.6957	2.7866	0.0909	73
17-Sep-19	24567	15210.51	15234.51	1440.00	38	39	38.5	27.8	1009	0.78	1118	2.7129	2.7715	0.0586	52
23-Sep-19	24277	15234.51	15258.63	1447.20	44	44	44.0	27.7	1016.2	0.98	1421	2.6586	2.9060	0.2474	174
28-Sep-19	24740	15258.63	15282.64	1440.60	39	40	39.5	28.2	1015	0.82	1175	2.6912	2.7565	0.0653	56

Daytime No	ise Mea	asureme	ent Rest	ılts (dB)) of CNI	MS5														
	Start	1st	Leq (5n	nin)	2nd	Leq (51	min)	3rd Leq (5min)			4th Leq (5min)			5th Leq (5min)			6th	Leq (5r	nin)	
Date	Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq30min, dB(A)
	Time	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
6-Sep-19	13:23	66.5	68.1	62.8	65.4	68.3	62.2	66.2	68.4	62.5	65.1	68.5	61.8	64.7	67.3	61.4	65.7	68.6	62.4	65.6
12-Sep-19	9:12	64.5	65.8	62.2	64.7	66.3	61.4	65.6	68.2	61.3	62.8	64.6	61.4	64.0	66.1	62.2	64.2	67.1	60.8	64.4
18-Sep-19	13:46	64.5	67.8	60.5	65.6	67.4	60.9	64.5	67.2	60.5	65.4	68.3	61.3	65.0	68.5	61.6	64.2	67.5	60.4	64.9
24-Sep-19	9:10	63.2	64.8	60.9	66.7	69.5	62.5	64.2	65.4	62.8	65.5	67.4	62.7	64.3	67.5	62.3	62.9	64.2	61.3	64.7
30-Sep-19	9:28	65.2	68.0	61.0	62.7	63.9	61.3	64.3	67.5	59.5	61.7	62.7	60.4	63.1	65.0	60.5	63.6	65.5	60.0	63.6

Evening Noi	se Mea	surement Resu	lts (dB) of CNN	185							
	Start		1st Leq (5min)			2nd Leq (5min)					
Date	Time	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq30min, dB(A)
5-Sep-19	19:03	62.9	66.1	58.0	63.1	66.7	57.6	61.1	64.4	56.5	62.5
11-Sep-19	19:33	63.0	65.5	59.4	62.2	64.8	57.1	60.3	62.8	56.4	62.0
16-Sep-19	19:26	62.3	65.9	56.9	61.0	63.9	57.3	61.1	63.7	57.3	61.5
27-Sep-19	19:20	61.5	64.9	57.9	61.1	63.7	57.0	62.8	65.5	58.1	61.9

mpling Date:	3-Sep-19		1		***	a			-				1
Date / Time	Location	Tide*	Co-or	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Dute / Time	Locution	That	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
						1.00	26.5 26.6	5.89 5.84	87.7 86.8	2.17 2.19	31.20 31.15	8.32 8.32	5.4
14:09	CC1	ME	0	0	10.11	5.06	26.8	5.84	86.5	2.30	30.96	8.32	5.2
						9.11	26.8 26.8	5.81 5.42	86.1 80.6	2.29 2.65	30.96 30.97	8.32 8.32	4.2 4.2
							26.7 27.0	5.39 5.89	80.3 87.6	2.74 0.52	30.97 30.78	8.32 8.31	4.4
						1.00	27.0	5.87	87.3	0.52	30.78	8.31	3.5
14:14	CC2	ME	0	0	12.02	6.01	26.9 26.8	5.78 5.75	86.1 85.8	0.70 0.73	30.83 30.84	8.31 8.31	3.8 2.4
						11.02	26.7 26.7	5.35 5.32	79.7 79.2	2.89 3.61	30.91 30.92	8.31 8.31	5 5.4
						1.00	26.6	5.60	83.2	0.76	30.54	8.29	7.3
			-	_			26.7 26.8	5.56 5.44	82.6 80.4	0.72 0.36	30.51 30.66	8.29 8.30	8 6.1
14:32	CC3	ME	0	0	9.98	4.99	26.8	5.42	80.3	0.29	30.71	8.30	7
						8.98	26.8 26.7	5.18 5.19	77.0 77.1	1.07 2.03	30.91 30.95	8.30 8.30	5.6
13:50	CC4	ME	0	0	2.4	1.20	26.7	5.94	88.4	2.68	30.99	8.34	10.8
				-			26.7	5.94	88.3	2.65	31.00	8.34	9.8
							26.9	5.99	89.0	0.39	30.81	8.31	2.3
						1.00	26.9	5.98	88.9	0.39	30.81	8.31	2.5
14:26	CC13	ME	0	0	8.12	4.06	26.8 26.8	5.81 5.81	86.3 86.5	0.55 0.59	30.86 30.87	8.31 8.31	2.7
						7.12	26.7	5.37	79.9	0.71	30.88	8.31	3.2
							26.7 26.9	5.36 6.19	79.5 92.0	0.74 1.32	30.88 30.88	8.31 8.44	3.3 5.3
						1.00	26.9	6.17	91.7	1.31	30.88	8.44	4.3
13:37	SWI1	ME	0	0	4.18								
						3.18	26.8 26.8	5.63 5.62	83.9 83.7	1.37	30.87 30.87	8.43 8.42	6.4 5.5
						1.00	26.7	5.83	86.6	1.90	31.15	8.34	5.2
13:57	C3	ME	0	0	15.16	7.58	26.9 26.9	5.75 5.74	85.7 85.3	1.95 1.99	30.99 30.99	8.34 8.34	6.2
15.57	CS	WIL	0	0	15.10		26.9 26.8	5.71 5.32	85.1 79.2	2.01 2.49	31.00 31.01	8.34 8.33	6.4 4.8
						14.16	26.8	5.31	78.9	2.63	31.01	8.33	5.3
						1.00	26.9 27.0	5.87 5.85	87.1 86.8	2.12 2.13	31.07 31.00	8.36 8.36	2.8
13:53	C4	ME	0	0	13.97	6.99	27.1 27.1	5.62 5.62	84.1	2.02	31.05 31.05	8.36	7.7
						12.97	27.0	5.53	84.1 82.6	2.04 1.98	31.07	8.36 8.36	7.1
							26.9 27.2	5.52 5.61	82.3 83.8	2.01 1.42	31.07 30.49	8.36 8.30	6.1 5.8
						1.00	27.2	5.58	83.3	1.45	30.51	8.30	4.9
14:30	I1	ME	0	0	10.34	5.17	27.0 26.9	5.38 5.34	80.2 79.5	2.04 2.20	30.74 30.79	8.31 8.31	4.8
						9.34	26.7 26.7	5.17 5.12	76.8 76.1	2.86 2.98	30.91 30.94	8.31 8.31	2.5
							20.7	5.12	70.1	2.98	30.94	8.51	3.4
						1.00	26.8	5.92	88.1	1.83	30.95 30.93	8.33	3.3
9:51	CC1	MF	0	0	8.95	4.48	26.8 26.8	5.9 5.79	87.9 86.1	1.80	30.93	8.33 8.33	4.1
9.51	cer	WII.	0	0	8.95		26.7 26.6	5.76 5.39	85.6 79.9	2.33 2.93	30.90 30.90	8.33 8.32	5.7 4.8
						7.95	26.6	5.38	79.8	2.96	30.91	8.32	5.8
						1.00	26.8	5.88 5.86	87.5 87.2	1.17 1.20	30.84 30.84	8.33 8.33	5.5
9:55	CC2	MF	0	0	11.93	5.97	26.7 26.6	5.76 5.73	85.4 85.0	1.61	30.84 30.85	8.33 8.33	6.2 6.1
						10.93	26.5	5.36	79.4	2.46	30.91	8.31	7.9
							26.5	5.36	79.3	2.48	30.91 29.66	8.31	6.9 5.7
						1.00	26.9	5.77	85.3	0.28	29.76	8.27	4.7
10:13	CC3	MF	0	0	9.97	4.99	26.8 26.8	5.68 5.69	84.4 84.5	0.58	30.84 30.88	8.30 8.30	4.8
						8.97	26.7 26.7	5.22 5.24	77.6 77.8	1.41 1.95	30.99 31.00	8.31 8.31	5
9:37	CC4	MF	0	0	2.35	1.18	26.6	5.94	88.1	1.60	30.92	8.30	4.6
9.51	CC4	WII.	0	0	2.35	1.18	26.6	5.91	87.6	1.68	30.91	8.30	5.7
													1
						1.00	26.7 26.7	5.83 5.82	86.6 86.4	0.31 0.33	30.77 30.77	8.33 8.33	5.4 4.5
9:59	CC13	MF	0	0	8.17	4.09	26.7	5.76	85.6	0.37	30.80	8.33	4.7
						7.17	26.7 26.6	5.74 5.30	85.1 78.6	0.37 0.85	30.80 30.83	8.33 8.32	3.7
							26.6 26.7	5.30 5.95	78.6 88.4	0.96	30.84 30.89	8.32 8.25	4.2
						1.00	26.7	5.98	88.8	0.33	30.89	8.26	5.6
9:23	SWI1	MF	0	0	4.14								
						3.14	26.7 26.7	5.64 5.65	83.7 83.7	0.16 0.18	30.89 30.89	8.29 8.29	5.5 6.5
						1.00	26.9	5.81	86.7	2.42	31.06	8.35	7.4
				_			26.9 26.8	5.81 5.72	86.6 85.2	2.43 2.67	31.06 31.06	8.35 8.35	6.5 7.4
	C3	MF	0	0	11.23	5.62	26.8	5.72	85.2	2.66	31.06	8.35	6.5
9:46						10.23	26.8 26.8	5.31 5.30	79.0 79.0	2.67 2.70	31.05 31.05	8.35 8.35	4.6
9:46						1.00	26.9	5.91	88.0	1.58	31.02	8.33	6.4
9:46				1			26.9	5.89 5.76	87.7 85.9	1.55	31.02 31.07	8.33 8.34	5.6 5.5
	C/	ME	0	0	14.07	7.40							
9:46	C4	MF	0	0	14.97	7.49	26.8	5.76	85.9 79.4	1.63	31.07	8.34	
	C4	MF	0	0	14.97	7.49 13.97	26.8 26.9 26.9	5.33 5.33	79.4 79.4	2.55 2.62	31.09 31.09	8.34 8.34	7.3 6
	C4	MF	0	0	14.97		26.8 26.9 26.9 26.9	5.33 5.33 5.71	79.4 79.4 84.4	2.55 2.62 0.43	31.09 31.09 29.62	8.34 8.34 8.31	7.3 6 4.2
	C4	MF	0	0	14.97	13.97	26.8 26.9 26.9	5.33 5.33	79.4 79.4	2.55 2.62	31.09 31.09	8.34 8.34	6.5 7.3 6 4.2 3.3 4.6 4.4

mpling Date:	5-Sep-19					a			D		,		1
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Thile	Location	The	East	North	m	m	r	mg/L	%	NTU	ppt	unit	mg/l
						1.00	26.9 27.0	5.89 5.88	88.4 88.1	0.59	31.02 30.94	8.28 8.28	4.4
15:58	CC1	ME	0	0	8.93	4.47	27.3	5.79	87.0	0.59	30.77	8.28	4.1
10.00			0	0	0.75		27.4 27.3	5.78 5.39	86.9 80.8	0.61 0.88	30.78 31.04	8.28 8.28	4.1
						7.93	27.2	5.37	80.6	0.94	31.09	8.28	4.5
						1.00	27.3 27.3	6.02 6.02	90.4 90.4	3.18 3.17	30.86 30.87	8.29 8.29	4.5 4.3
16:02	CC2	ME	0	0	11.99	6.00	27.2 27.2	5.96 5.95	89.3 89.0	2.80 2.72	31.11 31.16	8.29 8.3	3.4
						10.99	27.2	5.41	81.2	3.76	31.62	8.31	3.9
							27.3 27.2	5.40 5.66	81.1 85.2	3.93 0.73	31.63 29.82	8.31 8.24	3.7
						1.00	27.2	5.62	84.5	0.70	29.91	8.25	2.3
16:20	CC3	ME	0	0	8.55	4.28	27.1 27.1	5.54 5.53	82.5 82.4	2.32 2.81	31.02 31.09	8.27 8.27	1.7
						7.55	27.1 27.1	5.20 5.22	77.6 78.1	4.11 4.20	31.38 31.41	8.27 8.27	1.4
							27.1	3.22	78.1	4.20	31.41	8.27	2.1
15.10		105			2.20	1.10	27.2	5.88	88.1	0.70	30.76	8.28	1.9
15:40	CC4	ME	0	0	2.38	1.19	27.2	5.86	87.6	0.73	30.78	8.28	2.8
						1.00	27.2 27.2	5.98 5.97	90.0 89.8	1.59 1.57	30.79 30.81	8.29 8.29	4.3
16:06	CC13	ME	0	0	8.05	4.03	27.2	5.89	88.2	1.27	31.20	8.30	4.6
10.00		MIL	U	U	0.00		27.2 27.2	5.88 5.46	88.1 81.8	1.24 0.88	31.24 31.41	8.30 8.31	4.8
						7.05	27.2	5.46	81.9	0.88	31.41	8.31	3.7
	7					1.00	27.1 27.1	5.70 5.71	85.2 84.2	2.50 2.41	30.99 30.99	8.29 8.29	2.3
15:22	SWI1	ME	0	0	4.11		2014				20.77	5.001	1.0
							27.1	5.64	84.5	5.72	31.22	8.28	3.5
						3.11	27.1	5.66	84.8	6.03	31.25	8.28	2.5
						1.00	27.3 27.3	6.02 6.01	90.9 90.9	2.98 2.97	30.76 30.76	8.28 8.28	1.1
15:55	C3	ME	0	0	15.34	7.67	27.1 27.1	5.76	86.3	3.13	31.26	8.29 8.29	2
						14.34	27.2	5.76 5.54	86.3 83.1	3.14 3.65	31.26 31.47	8.30	1.7
							27.2 27.3	5.54 6.13	83.0 91.7	3.76 0.68	31.52 30.69	8.30 8.29	2
						1.00	27.3	6.11	91.5	0.68	30.69	8.28	2.4
15:42	C4	ME	0	0	14.3	7.15	27.2 27.2	5.95 5.93	89.2 88.9	0.77 0.84	31.18 31.19	8.30 8.30	2.5
						13.30	27.4	5.64	84.5	1.21	31.82	8.31	2.7
							27.4 27.2	5.66 5.84	85.0 87.7	1.14	31.91 30.82	8.31 8.26	2.4
						1.00	27.2	5.82	87.4	1.08	30.85	8.27	3.8
16:18	I1	ME	0	0	10.25	5.13	27.2 27.1	5.76 5.73	86.2 85.8	1.47	31.00 31.03	8.28 8.28	2.2
						9.25	27.3	5.67	84.8	4.36	31.61	8.29	3.5
							27.3	5.70	85.3	4.60	31.63	8.30	2.5
						1.00	27.2	5.86	87.8	2.09	31.01	8.30	3
							27.2 27.1	5.85 5.81	87.7 87.0	2.17 3.92	31.02 31.33	8.30 8.30	2.6
11:45	CC1	MF	0	0	9.03	4.52	27.1	5.78	86.6	4.04	31.35	8.30	4.4
						8.03	27.1 27.1	5.43 5.43	81.5 81.4	5.11 5.04	31.49 31.49	8.30 8.30	3.6
						1.00	27.1	6.01	89.7	1.27	30.76	8.29	4
12.00	662	ME	0	0	12.04	6.02	27.1 27.1	5.98 5.88	89.5 88.1	1.24 1.05	30.77 31.09	8.29 8.29	4.1
12:00	CC2	MF	0	0	12.04	6.02	27.1	5.88	88.0	0.98	31.15	8.30	4.1
						11.04	27.2 27.2	5.48 5.47	82.2 82.2	1.18 1.32	31.43 31.50	8.30 8.30	4.4
						1.00	27.1 27.1	5.71 5.69	84.4 84.1	0.56	28.89 29.07	8.20 8.21	3
12:10	CC3	MF	0	0	9.17	4.59	27.0	5.68	84.8	0.59	30.95	8.26	1.3
			Ŭ	v			27.0 27.0	5.70 5.41	85.0 80.8	0.62	30.97 31.04	8.26 8.28	2
						8.17	27.0	5.44	80.3	2.23	31.04	8.28	1.5
11:31	CC4	MF	0	0	2.32	1.16	27.1	5.83	87.0	0.39	30.44	8.26	2.7
							27.1	5.81	86.7	0.41	30.49	8.26	3.1
							27.2	5.91	88.0	2.24	30.09	8.28	3.4
						1.00	27.1	5.87	87.5	2.32	30.35	8.28	4.4
12:04	CC13	MF	0	0	7.99	4.00	27.1 27.1	5.67 5.66	84.9 84.8	2.83 2.74	31.09 31.12	8.29 8.29	3.2
						6.99	27.2	5.37	80.7	1.39	31.46	8.31	3.7
							27.2 26.9	5.37 5.63	80.7 83.9	1.41 0.35	31.46 30.77	8.31 8.27	4
						1.00	26.9	5.63	83.9	0.34	30.77	8.27	4.5
11:15	SWI1	MF	0	0	4.32								
						3.32	26.9 26.9	5.55 5.52	82.7 82.3	0.77	30.81 30.83	8.26 8.26	2.4
						1.00	27.2	5.87	87.8	1.15	30.56	8.29	2.8
							27.2 27.1	5.82 5.75	87.1 86.2	1.09 0.61	30.59 31.28	8.29 8.30	3.3
11:41	C3	MF	0	0	15.66	7.83	27.1	5.75	86.2	0.59	31.32	8.30	2
						14.66	27.3 27.3	5.51 5.50	82.9 82.8	2.70 3.16	31.74 31.78	8.32 8.32	2.5
						1.00	27.2	5.86	87.7	2.02	30.47	8.27	3.5
			_	_			27.2	5.83 5.77	87.2 86.7	2.07	30.49 31.49	8.27 8.30	2.2
11.05	C4	MF	0	0	15.61	7.81	27.2	5.75	86.4	1.81	31.52	8.31	2
11:37			1			14.61	27.3	5.31	80.0	3.94	31.79	8.32	3
11:37						1	27.3	5.31	80.0	4.30	31.83	8.32	2.9
11:37						1.00	27.1	5.72	85.1	2.08	30.16	8.25	1.8
11:37	11	MF	0	0	10.29								2.9 1.8 1.9

ampling Date:	7-Sep-19												
D ()	. .	10° 1 *	Co-ore	linates	Water	Sampling	Temp	DO Conc	DO	Turbidity	Salinity	pН	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	ະ	mg/L	Saturation %	NTU	ppt	unit	mg/L
						1.00	28.6	6.31	96.7	2.47	30.77	8.28	1
8:36	CC1	ME	0	0	4.28	2.14	28.6 27.9	6.31 5.92	96.6 89.8	2.46 2.98	30.77 31.17	8.28 8.29	<1.0
8.30	cer	ME	0	0	4.26		27.9 27.8	5.92 5.55	89.9 84.2	2.97 3.25	31.16 31.28	8.29 8.29	3.5
						3.28	27.8	5.52	83.7	3.31	31.33	8.29	2.1
						1.00	28.2 28.1	5.97 5.97	90.8 90.8	1.02 0.97	30.90 30.97	8.28 8.28	5.2 4.2
8:40	CC2	ME	0	0	2.88	1.44	27.7	5.74	86.8	0.66	31.27	8.29	3.8
0.10	002		Ŭ	0	2.00		27.7 27.5	5.76 5.37	87.2 81.1	0.71 2.03	31.29 31.46	8.3 8.28	4.3
						1.88	27.5	5.32	80.2	1.72	31.45	8.28	2.4
						1.00	28.1 28.2	5.99 5.99	90.6 90.9	2.04 2.10	30.22 30.39	8.26 8.27	4 3.1
8:58	CC3	ME	0	0	5.54	2.77	27.7	5.70	86.2	2.65	31.27	8.29	3.3
						4.54	27.7 27.5	5.68 5.35	85.9 80.6	2.69 4.24	31.27 31.37	8.29 8.27	4.3
						4.34	27.5	5.38	81.3	4.84	31.39	8.27	4.3
8:17	CC4	ME	0	0	2.44	1.22	28.1 28.1	6.17 6.17	93.9 93.9	1.48 1.40	31.05 31.04	8.26 8.26	4.7
									,,,,,			0.20	
						1.00	28.5	6.04	92.3	1.03	30.74	8.28	2.2
						1.00	28.4	6.03	92.1	1.06	30.77	8.28	1.5
8:45	CC13	ME	0	0	2.17	1.09	28.0 28.0	5.83 5.84	88.6 88.6	0.89 0.87	31.05 31.07	8.28 8.28	2.5 2.8
						1.17	27.7	5.77 5.71	87.3	1.06	31.26 31.30	8.29	4.3
						1.00	27.7 28.3	6.32	86.3 96.3	2.36	30.87	8.29 8.23	5.3
_						1.00	28.3	6.23	95.1	2.37	30.88	8.23	4.1
8:02	SWI1	ME	0	0	3.42								
						2.42	28.1 28.0	5.97 5.97	90.8 90.7	2.39 2.45	30.89 30.90	8.24 8.24	1.9
			1			1.00	28.1	6.11	93.0	2.16	31.19	8.30	4.8
0.05		ME	_		471		28.1 27.9	6.12 5.72	93.2 86.9	2.15 2.80	31.17 31.36	8.30 8.30	5.8 3.4
8:25	C3	ME	0	0	4.74	2.37	27.8	5.69	86.3	3.18	31.46	8.30	3.3
						3.74	27.5 27.5	5.64 5.63	85.2 85.1	3.66 3.81	31.81 31.84	8.30 8.30	2 2.6
						1.00	28.0 28.0	6.06 6.03	92.0 91.5	2.67 2.68	31.01 31.02	8.28 8.28	4.9
8:20	C4	ME	0	0	5.49	2.75	28.0	5.57	91.5 84.1	3.53	31.60	8.28	5.3
8.20	C4	MIL	0	0	5.49		27.5 27.5	5.56 5.51	83.9 83.3	3.54 4.72	31.61	8.28 8.29	4.4
						4.49	27.5	5.10	77.1	4.25	31.76 31.80	8.29	6.2
						1.00	28.2 28.2	5.86 5.83	89.1 88.6	3.08 3.10	30.44 30.54	8.27 8.28	3.9 3.6
8:56	I1	ME	0	0	4.46	2.23	27.8	5.62	85.1	3.38	31.18	8.29	5.2
			-	-			27.8	5.61 5.43	84.9 82.1	3.40 3.45	31.19 31.27	8.29 8.29	4.8
						3.46	27.7	5.39	81.5	3.47	31.31	8.29	5.1
							28.5	6.16	93.2	2.92	30.99	8.29	3.9
						1.00	28.6	6.16	93.1	2.90	30.98	8.29	4.8
13:33	CC1	MF	0	0	4.56	2.28	28.0 27.9	5.75 5.75	87.9 88.0	3.35 3.42	31.22 31.25	8.29 8.29	3.4 4.3
						3.56	27.8	5.64	85.6	3.54	31.30	8.29	3.7
							27.8 28.1	5.62 5.92	85.3 89.7	3.58 2.82	31.30 31.03	8.29 8.30	3.8 5.2
						1.00	28.1	5.99	90.7	2.84	31.03	8.30	5.5
13:37	CC2	MF	0	0	4.59	2.30	27.8 27.8	5.87 5.85	89.2 88.9	2.96 3.03	31.20 31.23	8.30 8.30	4.1
						3.59	27.6	5.5	83.3	3.50	31.37	8.30	2.8 3.8
						1.00	27.5 28.0	5.47 5.91	82.8 89.4	3.67 2.35	31.39 30.95	8.30 8.29	2.2
							28.0 28.0	5.89 5.84	89.1 88.6	2.32 2.34	30.92 30.94	8.29 8.29	2.7
13:54	CC3	MF	0	0	5.44	2.72	28.0	5.82	88.3	2.34	30.94	8.29	4
						4.44	27.6 27.6	5.43 5.36	82.3 81.4	4.48 4.39	31.29 31.35	8.29 8.29	7.3
							2710	5.50	01.1	1.59	51.55	0.2)	0.1
				_			28.1	6.19	94.0	4.52	31.06	8.30	6.9
13:16	CC4	MF	0	0	5.65	2.83	28.1	6.15	93.4	4.78	31.04	8.29	6.5
						1.00	28.7 28.6	6.13	92.5 92.1	1.59	30.74	8.28	1.1
13:41	CC13	MF	0	0	2.73	1.37	28.6 27.8	6.10 5.89	90.3	1.61 1.36	30.76 31.21	8.28 8.30	2
13.41		1411,	0	U	2.13		27.8 27.7	5.81 5.34	89.0 80.9	1.37 1.64	31.20 31.27	8.30 8.31	2.5 2.6
						1.73	27.7	5.28	79.9	1.81	31.31	8.31	2.3
			_			1.00	28.0 28.1	5.96 5.95	89.8 89.9	2.60 2.60	30.94 30.95	8.26 8.26	3.4
13:07	SWI1	MF	0	0	3.59		30.1	2.72		2.00	20.20	5.20	
						0.50	28.0	5.83	88.5	2.58	31.00	8.26	3.2
						2.59	28.0	5.83	88.5	2.59	31.02	8.27	4.2
						1.00	28.4 28.4	5.86 8.54	88.5 129.0	1.77 1.74	31.12 31.12	8.30 8.30	2.1
	C3	MF	0	0	5.03	2.52	27.9 27.8	5.81 5.77	88.8 88.2	2.25 2.52	31.30 31.40	8.30 8.30	3 3.9
13:30						4.03	27.5	5.48	83.4	3.92	31.74	8.31	3
13:30							27.5 27.6	5.46 6.19	82.7 94.2	4.14 2.91	31.78 31.23	8.31 8.29	3.6 5.6
13:30			1			1.00	27.7	6.12	93.1	2.87	31.16	8.29	5.7
13:30							27.6	5.88	88.8	3.21	31.39	8.29	2
13:30	C4	MF	0	0	5.45	2.73	27.6		88.8				1.1
	C4	MF	0	0	5.45		27.5 27.5	5.87 5.61	88.8 84.9	3.27 4.34	31.46 31.68	8.29 8.29	1.1 2.3
	C4	MF	0	0	5.45	4.45	27.5 27.5 27.5	5.87 5.61 5.60	84.9 84.7	3.27 4.34 4.56	31.46 31.68 31.70	8.29 8.29 8.29	2.3 1.5
	C4	MF	0	0	5.45		27.5 27.5 27.5 27.8 27.9	5.87 5.61 5.60 5.98 5.91	84.9 84.7 90.5 89.4	3.27 4.34 4.56 4.02 4.15	31.46 31.68 31.70 31.10 30.99	8.29 8.29 8.29 8.29 8.29 8.29	2.3 1.5 2.1 3
	C4	MF	0	0	5.45 4.45	4.45	27.5 27.5 27.5 27.8	5.87 5.61 5.60 5.98	84.9 84.7 90.5	3.27 4.34 4.56 4.02	31.46 31.68 31.70 31.10	8.29 8.29 8.29 8.29	2.3 1.5 2.1

Remarks: MF - Middle Flood tide ME - Middle Ebb tide

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

ampling Date:	9-Sep-19					er Quality I		3uit					
			Co-ore	linates	Water	Sampling	Temp	DO Conc	DO	Turbidity	Salinity	pН	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	ĉ	mg/L	Saturation %	NTU	ppt	unit	mg/I
						1.00	29.7	11.18	174.1	3.38	30.59	8.64	4.9
10:25	CCI	ME	0	0	8.26	4.13	29.7 29.4	11.69 9.07	182.0 140.6	3.40 3.37	30.59 30.64	8.64 8.5	5 4.3
10.25			Ŭ	0	0.20		29.2 28.4	8.79 6.46	136.1 98.7	3.35 3.28	30.68 30.92	8.47 8.4	4.2 4.2
						7.26	28.3 29.1	6.33 10.35	96.5 159.8	3.24 3.25	30.99 30.76	8.39 8.59	3.9 4.3
						1.00	29.1	10.38	160.1	3.18	30.76	8.58	4.3
10:29	CC2	ME	0	0	11.94	5.97	28.5 28.4	6.17 6.16	94.5 94.1	3.21 3.24	30.95 31.04	8.4 8.38	4.4 4.9
						10.94	27.8 27.7	5.48 5.47	83.1 82.9	5.45 6.52	31.53 31.63	8.33 8.33	5.2 5.4
						1.00	29.5	10.21	158.1	3.48	30.23	8.59	2.6
10:47	CC3	ME	0	0	8.33	4.17	29.5 28.4	10.51 5.76	162.9 88.0	3.47 3.82	30.27 30.96	8.60 8.33	2.9 3.5
10.47	ces	MIL	0	0	8.55		28.0 27.7	5.72 5.41	87.0 82.0	3.94 4.23	31.14 31.42	8.33 8.27	3.7
						7.33	27.7	5.42	82.1	4.16	31.41	8.26	4.2
							29.1	6.22	05.0	0.58	20.77	8.25	2.0
10:15	CC4	ME	0	0	2.11	1.06	28.1 28.2	6.32 6.27	95.9 95.2	0.58 0.57	30.77 30.69	8.25 8.25	3.9 3.7
						1.00	29.1 29.1	10.63 10.76	164.2 166.3	2.25 2.20	30.79 30.79	8.60 8.60	2.8
10:34	CC13	ME	0	0	8.34	4.17	29.0	9.27	142.9	2.07	30.79	8.51	3.5
10.51	0015		Ŭ	0	0.51		28.9 28.4	9.09 6.18	140.0 94.4	2.06	30.82 31.00	8.49 8.43	3.8
						7.34	28.2 28.6	6.11 7.19	93.1 110.2	1.72 3.32	31.09 30.96	8.40 8.34	4.3
						1.00	28.5	7.26	111.2	3.33	30.96	8.35	2.3
10:01	SWI1	ME	0	0	3.88								
					L	2.88	28.5 28.4	7.26 6.89	111.2 105.4	2.95 3.01	30.97 30.99	8.36 8.36	3.6 3.9
						1.00	28.9	10.48	161.4	2.77	30.83	8.58	7.9
10:22	C3	ME	0	0	13.55	6.78	28.9 27.7	10.46 5.86	160.9 88.9	2.71 2.13	30.84 31.68	8.57 8.33	8.3 6.2
10.22	0	MIL	0	0	15.55		27.7 27.5	5.81 5.46	88.2 82.7	2.16 3.29	31.76 32.28	8.33 8.27	6.6 4.5
						12.55	27.5	5.45	82.7	3.32	32.29	8.27	5.1
						1.00	28.5 28.5	8.54 8.73	130.7 133.5	4.05 4.38	30.87 30.87	8.43 8.44	5.2 5
10:18	C4	ME	0	0	15.97	7.99	27.7 27.7	5.83 5.79	88.4 87.7	3.40 3.47	31.58 31.61	8.28 8.28	4.9 4.9
						14.97	27.5	5.47	82.9	4.15	32.30	8.27	3.8
						1.00	27.5 29.5	5.44 10.71	82.7 165.9	4.01 1.20	32.38 30.20	8.26 8.59	3.6
							29.5 28.0	10.79 5.68	167.2 86.3	1.15 2.20	30.34 31.16	8.59 8.35	4.2
10:45	11	ME	0	0	5.04	2.52	28.0	5.66	85.9	2.15	31.16	8.34	4.6
						4.04	27.6	5.48 5.45	83.0 82.4	4.64 4.78	31.71 31.71	8.28 8.27	6.4 6.8
							29.6	9.82	152.8	2.36	30.72	8.61	3.8
						1.00	29.6	10.06	156.5	2.38	30.72	8.61	3.5
15:51	CC1	MF	0	0	7.15	3.58	28.8 28.6	7.5 7.44	115.5 114.1	2.48 2.53	30.94 31.01	8.45 8.45	4.8
						6.15	28.0 27.9	5.68 5.62	87.5 86.2	2.64 2.64	31.30 31.37	8.30 8.30	7
						1.00	29.3	10.42	161.2	3.03	30.58	8.61	7.8
15:55	CC2	MF	0	0	11.07	5.54	29.3 28.7	10.4 5.84	160.9 90.3	2.99 3.58	30.60 30.90	8.61 8.38	7.4 6.7
15.55	002	MI	Ū	0	11.07		28.4 27.6	5.79 5.48	88.5 84.7	3.90 4.23	31.03 31.82	8.36 8.31	6.5 6.6
						10.07	27.6	5.43	83.0	4.37	31.90	8.30	6.4
						1.00	28.6	7.94 8.02	121.3 122.8	2.15	30.36 30.30	8.50	6.7
16:13	CC3	MF	0	0	9.05	4.53	28.2 28.2	6.56 6.54	100.0 99.7	2.44 2.42	31.03 31.03	8.41 8.40	6.7
						8.05	28.2 28.1	5.33 5.28	81.3 80.3	2.53 2.54	31.06	8.37 8.36	6.5
							26.1	3.28	80.3	2.34	31.11	8.30	0
15:34	CC4	MF	0	0	2.09	1.05	28.6	6.01	92.0	3.38	30.77	8.35	5.8
15.54	004		Ū	0	2.07	1.05	28.6	6.01	92.1	3.41	30.75	8.34	6.5
							28.8	7.92	121.7	3.26	30.76	8.47	6.4
						1.00	28.8	7.95	121.9	3.15	30.79	8.44	6.1
	CC13	MF	0	0	10.63	5.32	28.4 28.3	5.96 5.86	91.2 89.4	3.12 3.09	30.93 30.95	8.32 8.31	6 5.7
15:59						9.63	27.7 27.6	5.55 5.50	84.9 83.9	4.05 4.09	31.75 31.90	8.29 8.29	5.9
15:59							27.6	7.96	123.2	1.84	30.66	8.46	3.1
15:59						1.00				1.84	30.67	8.46	3
		ME	0	0	4 20	1.00	29.3	8.00	123.9	1.84			
15:59	SWI1	MF	0	0	4.32		29.3				30.81		<u>4</u> A
		MF	0	0	4.32	1.00 3.32	29.3 28.8 28.7	6.28 6.17	96.7 94.7	2.32 2.47	30.81 30.85	8.45 8.44	4.9
		MF	0	0	4.32		29.3 28.8 28.7 29.3 29.3	6.28 6.17 11.06 11.12	96.7 94.7 171.4 172.2	2.32 2.47 3.33 3.28	30.85 30.84 30.84	8.45 8.44 8.61 8.61	4.9 6.4 6.5
		MF	0	0	4.32	3.32	29.3 28.8 28.7 29.3 29.3 27.7	6.28 6.17 11.06 11.12 5.82	96.7 94.7 171.4 172.2 90.2	2.32 2.47 3.33 3.28 3.18	30.85 30.84 30.84 31.72	8.45 8.44 8.61 8.61 8.37	4.9 6.4 6.5 4.9
15:19	SWI1					3.32 1.00	29.3 28.8 28.7 29.3 29.3 27.7 27.7 27.6	6.28 6.17 11.06 11.12 5.82 5.79 5.40	96.7 94.7 171.4 172.2 90.2 89.7 82.0	2.32 2.47 3.33 3.28 3.18 3.14 4.77	30.85 30.84 30.84 31.72 31.69 32.03	8.45 8.44 8.61 8.61 8.37 8.35 8.31	4.9 6.4 6.5 4.9 4.8 4.5
15:19	SWI1					3.32 1.00 7.02 13.03	29.3 28.8 28.7 29.3 29.3 27.7 27.7	6.28 6.17 11.06 11.12 5.82 5.79	96.7 94.7 171.4 172.2 90.2 89.7 82.0 81.3 103.6	2.32 2.47 3.33 3.28 3.18 3.14	30.85 30.84 30.84 31.72 31.69	8.45 8.44 8.61 8.61 8.37 8.35	4.9 6.4 6.5 4.9 4.8 4.5 4.8
15:19 15:40	SWI1 C3	MF	0	0	14.03	3.32 1.00 7.02 13.03 1.00	29.3 28.8 28.7 29.3 27.7 27.7 27.6 27.6 27.6 28.4 28.4	6.28 6.17 11.06 11.12 5.82 5.79 5.40 5.36 6.79 6.72	96.7 94.7 171.4 172.2 90.2 89.7 82.0 81.3 103.6 102.5	2.32 2.47 3.33 3.28 3.18 3.14 4.77 4.68 3.07 3.08	30.85 30.84 30.84 31.72 31.69 32.03 32.12 30.80 30.80	8.45 8.44 8.61 8.37 8.35 8.31 8.31 8.31 8.37 8.36	4.9 6.4 6.5 4.9 4.8 4.5 4.8 10.5 10.9
15:19	SWI1					3.32 1.00 7.02 13.03	29.3 28.8 28.7 29.3 29.3 27.7 27.7 27.7 27.6 27.6 28.4 28.4 28.4 27.8 27.7	6.28 6.17 11.06 11.12 5.82 5.79 5.40 5.36 6.79 6.72 5.63 5.59	96.7 94.7 171.4 172.2 90.2 89.7 82.0 81.3 103.6 102.5 85.9 85.3	2.32 2.47 3.33 3.28 3.18 3.14 4.77 4.68 3.07 3.08 3.36 3.38	30.85 30.84 30.84 31.72 31.69 32.03 32.12 30.80 30.80 31.34 31.47	8.45 8.44 8.61 8.37 8.35 8.31 8.31 8.31 8.37 8.36 8.32 8.31	4.9 6.4 6.5 4.9 4.8 4.5 4.8 10.5 5.9 5.9 5.6
15:19 15:40	SWI1 C3	MF	0	0	14.03	3.32 1.00 7.02 13.03 1.00	29.3 28.8 28.7 29.3 27.7 27.7 27.6 27.6 27.6 28.4 28.4 28.4 27.8	$\begin{array}{c} 6.28\\ 6.17\\ 11.06\\ 11.12\\ 5.82\\ 5.79\\ 5.40\\ 5.36\\ 6.79\\ 6.72\\ 5.63\end{array}$	96.7 94.7 171.4 172.2 90.2 89.7 82.0 81.3 103.6 102.5 85.9	2.32 2.47 3.33 3.28 3.18 3.14 4.77 4.68 3.07 3.08 3.36	30.85 30.84 30.84 31.72 31.69 32.03 32.12 30.80 30.80 31.34	8.45 8.44 8.61 8.37 8.35 8.31 8.31 8.31 8.31 8.36 8.32	4.9 6.4 6.5 4.9 4.8 4.5 4.8 10.5 5.9 5.6 4.3
15:19 15:40	SWI1 C3	MF	0	0	14.03	3.32 1.00 7.02 13.03 1.00 7.02	29.3 28.8 28.7 29.3 27.7 27.7 27.7 27.6 27.6 28.4 28.4 27.8 27.7 27.6 27.6 28.4 27.8 27.7 27.6 28.4 27.8 27.7 27.6 28.4 27.8 27.7 27.6 28.4 27.8 27.7 27.8 27.7 27.7 27.7 27.7 27.7	$\begin{array}{c} 6.28\\ 6.17\\ 11.06\\ 11.12\\ 5.82\\ 5.79\\ 5.40\\ 5.36\\ 6.79\\ 6.72\\ 5.63\\ 5.59\\ 5.37\\ 5.38\\ 8.60\\ \end{array}$	96.7 94.7 171.4 172.2 90.2 89.7 82.0 81.3 103.6 102.5 85.9 85.9 85.3 81.6 81.6 131.7	2.32 2.47 3.33 3.28 3.18 3.14 4.77 4.68 3.07 3.08 3.36 3.38 4.35 4.52 3.11	$\begin{array}{r} 30.85\\ 30.84\\ 30.84\\ 31.72\\ 31.69\\ 32.03\\ 32.12\\ 30.80\\ 30.80\\ 31.34\\ 31.47\\ 31.81\\ 32.02\\ 30.85\\ \end{array}$	8.45 8.44 8.61 8.37 8.35 8.31 8.31 8.31 8.32 8.32 8.32 8.31 8.27 8.52	6.5 4.9 4.8 4.5 10.5 5.9 5.6 4.3 4.9 6.3
15:19 15:40	SWI1 C3	MF	0	0	14.03	3.32 1.00 7.02 13.03 1.00 7.02 13.03	29.3 28.8 28.7 29.3 27.7 27.7 27.6 27.6 28.4 28.4 28.4 27.8 27.7 27.6 27.6	6.28 6.17 11.06 11.12 5.82 5.79 5.40 5.36 6.79 6.72 5.63 5.59 5.37 5.38	96.7 94.7 171.4 172.2 90.2 89.7 82.0 81.3 103.6 102.5 85.9 85.3 81.6 81.6	2.32 2.47 3.33 3.28 3.18 4.77 4.68 3.07 3.08 3.36 3.38 4.35 4.52	30.85 30.84 30.84 31.72 31.69 32.03 32.12 30.80 30.80 30.80 31.34 31.47 31.81 32.02	8.45 8.44 8.61 8.37 8.35 8.31 8.31 8.31 8.36 8.32 8.31 8.32 8.31 8.27	4.9 6.4 6.5 4.9 4.8 4.5 4.8 10.5 5.9 5.6 4.3 4.9

ampling Date:	11-Sep-19											·	
Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	рН	SS
			East	North	m	m	Ĵ	mg/L	%	NTU	ppt	unit	mg/I
						1.00	28.6 28.6	7.02 7.05	108.7 109.1	0.83 0.83	32.74 32.75	8.12 8.12	2.6
11:36	CC1	ME	0	0	8.82	4.41	28.3 28.0	7.09 6.98	109.4 107.1	0.96	32.79 32.83	8.13 8.14	3.5
						7.82	28.0	6.38	97.8	1.15	32.86	8.14	2.1
						1.00	27.9 28.3	6.28 6.53	96.3 100.8	1.17 1.02	32.88 32.92	8.14 8.15	3.2
							28.3 27.7	6.46 5.93	99.6 90.6	1.07 1.42	32.94 33.20	8.15 8.13	3.3
11:40	CC2	ME	0	0	11.99	6.00	27.6	5.88	89.9	1.44	33.23	8.12	3.8
						10.99	27.4 27.3	5.59 5.58	85.1 85.1	2.47 2.91	33.51 33.61	8.1 8.09	4.1
						1.00	28.0 27.9	5.96 5.94	91.1 90.9	1.59	32.36 32.48	8.09 8.09	1.4
11:59	CC3	ME	0	0	9.33	4.67	27.7	5.82	88.9	1.92	32.90	8.09	2.2
						8.33	27.7 27.4	5.76 5.47	88.0 83.3	1.93 2.93	32.98 33.39	8.09 8.01	1.5
						0.55	27.4	5.46	83.2	3.09	33.41	8.01	2.3
							25.0	5 .00	00.5	1.05	22.16	0.04	
11:24	CC4	ME	0	0	2.39	1.20	27.8 27.8	5.90 5.79	90.5 88.6	1.37 1.45	33.16 33.19	8.04 8.04	3.9 2.9
						1.00	28.2	6.64	102.4	1.14	33.04	8.14	2.3
11.44	0012	ME	0	0	0 55		27.9 27.6	6.60 5.85	101.2 89.3	1.19 1.66	33.05 33.30	8.14 8.12	3.2
11:44	CC13	ME	U	0	8.55	4.28	27.6 27.4	5.86 5.44	89.5 83.1	1.70 1.54	33.29 33.43	8.11 8.08	3 2.4
						7.55	27.4	5.44	83.1	1.50	33.45	8.08	3.4
						1.00	28.6 28.6	6.71 6.74	104.0 104.5	0.99 1.01	32.82 32.84	7.77 7.78	4.2
11:09	SWI1	ME	0	0	4.38								
						3.38	27.8	6.31	96.5	1.34	33.07	7.88	2.8
							27.7 28.0	6.28 6.09	96.1 93.4	1.37 1.36	33.08 32.86	7.89 8.08	3.8 5.1
						1.00	28.0	6.10	93.4	1.35	32.86	8.08	6.1
11:33	C3	ME	0	0	15.75	7.88	27.5 27.4	5.80 5.78	88.5 88.2	1.59 1.58	33.38 33.43	8.07 8.07	5.6 6.4
						14.75	27.2 27.2	5.48 5.43	83.4 82.5	3.02 3.47	33.76 33.84	8.05 8.05	6.1 7
						1.00	27.8	5.89	90.0	1.66	32.75	8.05	3.7
							27.8 27.6	5.88 5.67	89.9 86.5	1.67	32.76 33.04	8.05 8.04	2.7
11:26	C4	ME	0	0	16.42	8.21	27.6	5.64	86.0	1.41	33.01	8.04	2.5
						15.42	27.3 27.2	5.40 5.34	82.2 81.2	3.14 3.95	33.58 33.69	8.06 8.05	2.6
						1.00	28.6 28.5	6.93 6.90	107.2 106.8	1.04 1.06	32.71 32.74	8.14 8.14	2.3
11:48	11	ME	0	0	9.49	4.75	27.7	6.00	91.8	1.58	33.23	8.12	3
						8.49	27.6 27.5	5.99 5.42	91.5 82.7	1.60 1.97	33.27 33.37	8.12 8.10	2
						0.47	27.5	5.40	82.3	2.21	33.41	8.09	2.5
						1.00	28.2	6.7	103.1	1.29	33.07	8.16	2.5
							28.2 27.7	6.67 5.87	102.8 90.3	1.30	33.07 33.32	8.15 8.13	3.1
16:43	CC1	MF	0	0	8.46	4.23	27.6	5.8	89.4	1.75	33.35	8.12	2.9
						7.46	27.5 27.9	5.45 5.62	83.3 86.2	1.88 1.90	33.45 31.37	8.11 8.30	3.9 4.2
						1.00	29.0 28.9	8.51 8.5	132.8 132.4	0.86	32.97 32.98	8.21 8.21	2.3
16:47	CC2	MF	0	0	11.42	5.71	28.3	5.89	91.0	1.19	33.08	8.21	2.7
				-			28.2 27.5	5.75 5.37	88.6 83.0	1.30 2.44	33.12 33.37	8.20 8.16	2.4
						10.42	27.4	5.37	82.7	2.64	33.40	8.15	3.3
						1.00	28.5 28.5	8.72 8.74	134.7 135.0	1.22 1.24	32.67 32.65	8.23 8.23	2.5
17:05	CC3	MF	0	0	9.36	4.68	28.0 27.8	5.83 5.86	90.1 90.5	1.58	32.94 33.02	8.21 8.21	3.2
						8.36	27.5 27.4	5.44	83.5	3.59	33.32	8.13	3.4
							27.4	5.40	82.8	3.18	33.38	8.12	2.5
			_	_			28.1	6.14	94.3	1.59	32.85	8.17	2.1
16:34	CC4	MF	0	0	2.1	1.05	28.1	6.14	94.3	1.64	32.85	8.16	3.1
						1.00	28.5 28.5	8.48 8.87	131.3 137.3	1.05	33.01 33.01	8.23 8.23	2.2
16:52	CC13	MF	0	0	8.17	4.09	28.5	8.35	129.2	1.10	33.01	8.23	2.1
							28.5 28.4	8.21 6.89	127.0 106.4	1.12 1.23	33.01 33.04	8.23 8.23	2.5
						7.17	28.3	6.74	104.0	1.28	33.06 32.95	8.23	2.6
						1.00	28.9 28.9	7.61 7.78	118.5 121.1	1.16 1.21	32.95	8.18 8.21	3.3
16:19	SWI1	MF	0	0	3.93								
						2.93	28.6	6.34	98.7	1.15	32.98	8.25	2.8
					-		28.5 28.8	6.35 8.90	98.8 138.4	1.15 0.87	32.98 33.00	8.25 8.19	3.1
						1.00	28.8 27.0	8.92 6.15	138.6 95.6	0.88 1.59	33.01 33.85	8.19 8.09	1.8
16:40	C3	MF	0	0	16.06	8.03	27.0	6.11	94.9	1.67	33.85	8.08	1.9
						15.06	26.9 26.9	5.69 5.65	86.3 85.7	3.42 3.46	33.99 34.03	8.06 8.06	2.2
						1.00	28.3	7.70	118.8	1.11	32.93	8.18	2.7
	1	MF	0	0	15.91	7.96	28.3 27.2	7.80 6.13	120.3 94.6	1.14 2.33	32.95 33.49	8.18 8.06	3.7
16-27	C4	IVIE	U	U	13.91	1.90	27.2	6.12	94.4	2.38	33.49	8.05	3.3
16:37	C4							5 54	84.2	3 34	33.76	8.03	26
16:37	C4					14.91	27.0 27.0	5.54 5.51	84.2 83.7	3.34 3.78	33.76 33.86	8.03 8.03	2.6
16:37	C4					14.91 1.00	27.0		83.7 133.9 134.0		33.86 32.46 32.50	8.03 8.24 8.24	
16:37 17:02	C4 11	MF	0	0	9.5		27.0 27.0 28.8	5.51 8.64	83.7 133.9	3.78 0.95	33.86 32.46	8.03 8.24	1.6 3.4

Remarks: MF - Middle Flood tide ME - Middle Ebb tide

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

ampling Date:	13-Sep-19			1111	puce mal	er Quality I	.1011011						
	-	771 1	Co-ore	linates	Water	Sampling	Temp	DO Conc	DO	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	ະ ະ	mg/L	Saturation %	NTU	ppt	- unit	mg/I
						1.00	28.6 28.6	7.51 7.53	116.4 116.8	1.35 1.30	33.07 33.08	8.18 8.18	1.2
13:06	CC1	ME	0	0	9.8	4.90	28.2	7.01	108.1	1.65	33.24	8.17	1
				-		8.80	28.2 28.1	7.06	108.8 91.8	1.69 1.87	33.25 33.26	8.17 8.16	1.6
							28.1 28.6	5.89 7.71	90.7 119.8	1.96 0.58	33.28 33.22	8.15 8.18	<1.0
						1.00	28.6	7.71	119.7	0.67	33.23	8.19	<1.0
13:10	CC2	ME	0	0	12.47	6.24	28.4 28.3	6.21 5.90	96.0 91.0	1.64	33.11 33.15	8.18 8.18	1.3
						11.47	27.6 27.6	5.70 5.65	87.2 86.4	3.47 3.64	33.46 33.52	8.15 8.15	1.4 1.8
						1.00	28.6	7.78	120.1	1.06	32.29	8.16	1.9
12.20		1.07			0.40		28.6 28.1	7.88 8.02	121.7 123.4	1.08	32.41 33.14	8.17 8.19	2.8
13:28	CC3	ME	0	0	9.49	4.75	28.1	8.03	123.6	1.47	33.14 33.37	8.19 8.12	2.4
						8.49	27.8 27.7	5.55 5.53	85.0 84.6	3.83 4.81	33.40	8.11	1.8
12:47	CC4	ME	0	0	2.18	1.09	28.0 28.0	5.99 5.98	92.0 92.0	4.35 4.22	33.31 33.31	8.12 8.12	3.4 4.4
							28.0	5.98	92.0	4.22	55.51	8.12	4.4
						1.00	28.9	7.75	120.8	0.55	33.21	8.20	3.1
						1.00	28.9	7.75	120.9	0.55	33.21	8.20	4
13:14	CC13	ME	0	0	8.34	4.17	27.9 27.9	6.23 6.21	95.5 95.2	1.38 1.42	33.21 33.21	8.17 8.16	3.5 4.4
						7.34	27.7	5.88 5.80	90.0 88.7	4.51 4.88	33.41 33.42	8.12 8.12	3.2
						1.00	28.6	8.43	130.9	1.00	33.21	8.24	3.8
12:32	SWI1	ME	0	0	4.46		28.6	8.46	131.4	1.01	33.21	8.24	4.8
12.32	5.011	MIL	0	0	4.40		28.4	8.50	131.5	1.03	33.20	8.24	5.2
						3.46	28.4	8.49	131.3	1.06	33.20	8.24	6.3
						1.00	28.4 28.4	7.66 7.66	118.5 118.6	1.03	33.20 33.20	8.18 8.18	4.6
12:54	C3	ME	0	0	15.22	7.61	28.0 27.9	6.21 6.27	95.6 96.3	1.47 1.49	33.23 33.25	8.17 8.17	2.5
						14.22	27.7	5.51	84.3	1.94	33.39	8.13	2.4
							27.6 28.3	5.46 6.71	83.5 103.7	2.02 0.93	33.42 33.31	8.13 8.15	2.5
						1.00	28.3 27.7	6.72 5.81	103.8 88.9	0.91 1.80	33.31 33.41	8.15 8.12	2.2
12:50	C4	ME	0	0	15.58	7.79	27.7	5.76	88.3	1.84	33.41	8.12	1.9
						14.58	26.8 26.8	5.45 5.41	82.6 81.9	4.93 5.45	33.96 34.00	8.07 8.07	2.1
						1.00	29.0 28.9	8.37	130.5	1.52	32.80	8.21	2
13:26	11	ME	0	0	9.55	4.78	28.9	8.46 7.73	131.8 119.9	1.48	32.86 33.00	8.21 8.22	4.2
13.20		MIL	0	0	9.55		28.5 28.1	7.70 6.38	119.3 98.2	1.17 1.45	33.02 33.16	8.22 8.21	3.3 4.6
						8.55	28.0	6.25	96.2	1.53	33.18	8.20	3.6
							28.7	8.12	126.3	1.12	33.08	8.21	2.8
						1.00	28.7	8.16	126.8	1.13	33.08	8.21	3.7
16:58	CC1	MF	0	0	10.82	5.41	28.7 28.6	8.07 7.73	125.4 119.9	1.12	33.08 33.09	8.21 8.21	1.3
						9.82	28.4 28.3	6.75 6.52	104.6 100.9	1.32 1.41	33.13 33.15	8.21 8.20	1.7
						1.00	28.8	7.89	123.0	0.65	33.19	8.22	1.4
17:02	CC2	MF	0	0	12		28.8 28.2	7.9 6.12	122.9 94.4	0.69	33.19 33.19	8.22 8.22	2.4
17:02	CC2	MF	0	0	12	6.00	28.1 27.5	6.05 5.52	93.3 85.1	1.46 2.25	33.21 33.52	8.21 8.15	1.2
						11.00	27.5	5.46	84.2	2.33	33.55	8.14	1.5
						1.00	28.4 28.5	8.44 8.43	130.2	1.79	32.68 32.66	8.22 8.22	<1.0
17:21	CC3	MF	0	0	9.42	4.71	28.4	6.97	107.5	1.65	32.75	8.22	1.6
						8.42	28.3 27.9	6.95 5.33	107.2 82.2	1.56 4.53	32.80 33.27	8.22 8.06	2.6
						0.42	27.8	5.31	81.9	4.61	33.30	8.05	2.7
							27.6	6.32	97.9	4.34	33.54	0.12	4.7
16:49	CC4	MF	0	0	2.38	1.19	27.6 27.5	6.29	97.9	4.34	33.56	8.12 8.12	5.5
						1.00	28.8	8.04	125.2	0.72	33.14	8.22	1.9
17:06	CC13	MF	0	0	8.8	4.40	28.8 28.7	8.04 7.73	125.3 120.2	0.73 0.79	33.14 33.14	8.22 8.23	2.7
		1411.	0	0	0.0		28.7 28.1	7.63 6.11	118.6 94.0	0.81 1.73	33.14 33.23	8.23 8.21	2.1
						7.80	28.0	6.08	93.5	1.84	33.24	8.20	3.2
						1.00	28.6 28.6	8.67 8.71	134.5 135.0	1.10 1.08	33.18 33.18	8.18 8.19	2.1
			0	0	4.69								
16:33	SWI1	MF	0			3.69	28.5	8.47	131.2	1.11	33.17	8.20	<1.0
16:33	SWII	MF	0					8.42	130.4	1.10	33.17	8.20	1.3
16:33	SWII	MF	0				28.5 28.5	7.56	117.2	0.81	33.23	8.19	
						1.00	28.5 28.5	7.56 7.60	117.2 117.9	0.82	33.23	8.19	
16:33	SWI1 C3	MF	0	0	14.26		28.5 28.5 27.9 27.9	7.56 7.60 6.46 6.45	117.2 117.9 99.0 99.0	0.82 1.63 1.58	33.23 33.18 33.18	8.19 8.16 8.16	2 2.1
				0	14.26	1.00	28.5 28.5 27.9 27.9 27.7	7.56 7.60 6.46 6.45 5.60	117.2 117.9 99.0 99.0 85.8	0.82 1.63 1.58 1.74	33.23 33.18 33.18 33.34	8.19 8.16 8.16 8.14	2 2.1 1.5
				0	14.26	1.00 7.13	28.5 28.5 27.9 27.9 27.7 27.7 28.3	7.56 7.60 6.46 6.45 5.60 5.52 6.74	117.2 117.9 99.0 99.0 85.8 84.7 104.3	0.82 1.63 1.58 1.74 1.86 1.13	33.23 33.18 33.18 33.34 33.37 33.29	8.19 8.16 8.16 8.14 8.14 8.14 8.16	2 2.1 1.5 2.3 2
16:55	C3	MF	0			1.00 7.13 13.26 1.00	28.5 28.5 27.9 27.7 27.7 27.7 28.3 28.3 27.8	7.56 7.60 6.46 6.45 5.60 5.52 6.74 6.76 5.81	117.2 117.9 99.0 85.8 84.7 104.3 104.5 89.9	0.82 1.63 1.58 1.74 1.86 1.13 1.12 1.69	33.23 33.18 33.34 33.34 33.37 33.29 33.29 33.29 33.38	8.19 8.16 8.14 8.14 8.14 8.16 8.16 8.16 8.15	2 2.1 1.5 2.3 2 2.5 2.5
				0	14.26	1.00 7.13 13.26 1.00 7.56	28.5 28.5 27.9 27.9 27.7 27.7 28.3 28.3 27.8 27.7	7.56 7.60 6.46 6.45 5.60 5.52 6.74 6.76 5.81 5.79	117.2 117.9 99.0 85.8 84.7 104.3 104.5 89.9 89.5	0.82 1.63 1.58 1.74 1.86 1.13 1.12 1.69 1.76	33.23 33.18 33.18 33.34 33.37 33.29 33.29 33.29 33.38 33.41	8.19 8.16 8.14 8.14 8.14 8.16 8.16 8.16 8.15 8.15	2 2.1 1.5 2.3 2 2.5 2.5 2.5 2.4
16:55	C3	MF	0			1.00 7.13 13.26 1.00	28.5 28.5 27.9 27.7 27.7 28.3 28.3 27.7 27.7 27.0 26.9	7.56 7.60 6.46 6.45 5.60 5.52 6.74 6.76 5.79 5.42 5.34	117.2 117.9 99.0 85.8 84.7 104.3 104.5 89.9 89.5 83.2 81.9	0.82 1.63 1.74 1.86 1.13 1.12 1.69 1.76 3.77 3.81	33.23 33.18 33.34 33.37 33.29 33.29 33.29 33.38 33.41 33.84 33.84 33.91	8.19 8.16 8.16 8.14 8.14 8.16 8.16 8.15 8.15 8.15 8.11 8.11	2 2.1 1.5 2.3 2 2.5 2.5 2.4 2.4 2.4 2.4
16:55	C3	MF	0			1.00 7.13 13.26 1.00 7.56	28.5 28.5 27.9 27.9 27.7 27.7 28.3 28.3 27.8 27.7 27.0	7.56 7.60 6.46 6.45 5.60 5.52 6.74 6.76 5.81 5.79 5.42	117.2 117.9 99.0 99.0 85.8 84.7 104.3 104.5 89.9 89.5 83.2	0.82 1.63 1.58 1.74 1.86 1.13 1.12 1.69 1.76 3.77	33.23 33.18 33.18 33.34 33.37 33.29 33.29 33.29 33.29 33.38 33.41 33.84	8.19 8.16 8.14 8.14 8.14 8.16 8.16 8.16 8.15 8.15 8.15 8.11	2.1 1.5 2.3 2 2.5 2.5 2.5 2.4 2.4
16:55	C3	MF	0			1.00 7.13 13.26 1.00 7.56 14.12	28.5 28.5 27.9 27.7 27.7 28.3 28.3 27.7 27.7 27.0 26.9 28.6	7.56 7.60 6.46 6.45 5.60 5.52 6.74 6.76 5.81 5.79 5.42 5.34 8.34	117.2 117.9 99.0 99.0 85.8 84.7 104.3 104.5 89.9 89.5 83.2 81.9 129.3	0.82 1.63 1.58 1.74 1.86 1.13 1.12 1.69 1.76 3.77 3.81 1.49	33.23 33.18 33.18 33.34 33.37 33.29 33.29 33.38 33.41 33.84 33.84 33.91 32.93	8.19 8.16 8.16 8.14 8.14 8.16 8.16 8.15 8.15 8.15 8.11 8.11 8.24	2 2.1 1.5 2.3 2 2.5 2.5 2.4 2.4 2.4 2.4 2.4 2.4 2.4

Sampling Date:	16-Sep-19							ng Result					
			Co-ore	linates	Water	Sampling	Temp	DO Conc	DO	Turbidity	Salinity	pН	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	ະ	mg/L	Saturation %	NTU	ppt	unit	mg/L
			Lust	110111		1.00	28.4	5.96	91.4	1.57	33.48	8.07	2
14:27	CC1	ME	0	0	8.27	4.14	28.4 28.2	5.96 5.84	91.6 90.4	1.59 1.94	33.47 33.58	8.07 8.06	2.9 3.1
14:27	cci	ME	0	0	8.27		28.2 28.0	5.83 5.60	90.3 86.5	2.01 2.27	33.61 33.68	8.06 8.06	2.9 2.8
						7.27	28.0	5.60	86.5	2.31	33.70	8.06	2.8
						1.00	28.5 28.4	5.88 5.86	90.6 90.2	1.72 1.71	33.27 33.29	8.06 8.06	3.1
14:32	CC2	ME	0	0	12.3	6.15	28.1 28.1	5.79 5.77	89.7 89.4	1.73 1.74	33.46 33.48	8.06 8.06	3.4 4.3
						11.30	27.6	5.40	83.2	2.13	33.76	8.05	4
							27.6 28.5	5.38 5.70	82.9 87.3	2.11 2.25	33.78 33.00	8.05 8.00	3.7 3.6
						1.00	28.4 28.2	5.69 5.65	87.3 87.4	2.29 2.53	33.07 33.19	8.00 8.00	3 3.4
14:52	CC3	ME	0	0	9.38	4.69	28.2	5.63	87.0	2.79	33.23	8.00	3.7
						8.38	27.9 27.9	5.20 5.20	80.2 80.2	4.06 4.73	33.40 33.46	8.00 8.00	1.1
14:19	CC4	ME	0	0	2.54	1.27	27.9	5.93	91.3	1.51	33.39	8.07	2.2
14.17	004	MIL	Ū	0	2.54	1.27	27.9	5.92	91.2	1.53	33.39	8.07	3.2
							20.2	6.04	00.0	1.72	22.24	0.04	
						1.00	28.3 28.4	5.86 5.87	89.8 89.8	1.73 1.72	33.26 33.24	8.04 8.04	3.2 4
14:37	CC13	ME	0	0	8.28	4.14	28.1 28.1	5.70 5.71	88.1 88.2	1.46 1.41	33.48 33.49	8.05 8.05	3.8 3.2
						7.28	28.1	5.32	82.1	1.45	33.49	8.05	2.1
						1.00	28.0 28.1	5.33 5.85	82.3 89.8	1.47 2.82	33.49 33.45	8.05 8.14	2.7
						1.00	28.1	5.84	89.6	2.82	33.45	8.14	1.1
14:04	SWI1	ME	0	0	4.56								
						3.56	28.0 28.0	5.55 5.55	85.5 85.5	3.08 3.41	33.45 33.46	8.13 8.12	2.2 2.3
						1.00	28.2	5.82	89.4	2.35	33.71	8.06	1.5
14:24	C3	ME	0	0	16.61	8.31	28.2 27.9	5.81 5.72	89.4 88.3	2.35 3.72	33.71 33.88	8.06 8.06	1.3 3.6
14.24	0	MIL	0	0	10.01		27.8 27.7	5.72 5.40	88.5 83.1	3.93 4.16	33.91 34.05	8.06 8.05	4.6
						15.61	27.7	5.39	82.9	4.01	34.06	8.05	6
						1.00	28.6 28.5	6.10 6.08	93.7 93.4	1.03 1.06	33.29 33.30	8.06 8.06	1.8
14:21	C4	ME	0	0	11.77	5.89	27.9 27.9	5.88 5.88	91.2 91.1	3.62 3.68	33.71 33.72	8.07 8.07	2
						10.77	27.8	5.47	84.1	4.57	33.77	8.06	1.1
							27.8 28.5	5.46 5.65	84.0 87.1	4.78 1.78	33.77 33.09	8.06 8.04	1.5
						1.00	28.3 28.1	5.59	86.1	2.05	33.25	8.04	1.3
14:50	I1	ME	0	0	10.06	5.03	28.0	5.40 5.38	83.7 83.1	2.47 2.63	33.34 33.37	8.04 8.04	1.8 1.5
						9.06	27.7 27.7	5.23 5.21	80.5 80.2	4.66 4.59	33.58 33.60	8.04 8.04	<1.0
						1.00	27.7 27.7	5.95 5.96	91.5 91.5	3.43 3.43	33.96 33.95	8.05 8.05	2.2 2.5
8:31	CC1	MF	0	0	9.34	4.67	27.6	5.86	90.0	4.12	34.12	8.05	2.8
			-				27.6	5.82 5.37	89.4 82.5	4.10 4.45	34.11 34.18	8.05 8.05	3.1
						8.34	27.6 28.3	5.36 6.03	82.4 93.3	4.48	34.19 33.31	8.05 8.02	4 2.6
						1.00	28.3	6.03	93.3	1.74	33.31	8.03	3.6
8:36	CC2	MF	0	0	11.99	6.00	27.9 27.8	5.8 5.78	89.1 88.8	2.00 2.07	33.54 33.56	8.04 8.04	2.4 3.2
						10.99	27.7 27.7	5.39	82.8	4.62	33.80	8.04	2 2.9
						1.00	28.5	5.39 5.71	82.6 88.3	4.85	33.81 32.92	8.04 8.03	1.6
			_	_			28.5 28.5	5.71 5.62	88.4 86.8	1.14	32.89 32.92	8.03 8.03	2.3 1.9
8:56	CC3	MF	0	0	9.56	4.78	28.3	5.62	86.7	2.11	33.11	8.02	1
						8.56	27.9 27.8	5.44 5.45	83.5 83.6	4.56 4.51	33.45 33.50	8.02 8.02	1.9 2.2
8:20	CC4	MF	0	0	2.33	1.17	27.9	6.08	93.4	2.05	33.39	8.00	2.1
							27.9	6.07	93.2	2.08	33.39	8.00	1.9
		1					28.1	5.70	87.9	1.84	33.34	8.04	3
						1.00	28.1	5.70	87.9	1.84	33.34	8.04	2.1
8:41	CC13	MF	0	0	8.22	4.11	28.0 28.0	5.68 5.67	87.3 87.2	1.74	33.38 33.40	8.04 8.04	2.1
						7.22	27.8 27.8	5.45 5.44	83.6 83.4	2.00	33.53 33.54	8.04 8.04	2
						1.00	28.1	6.15	94.8	2.40	33.46	7.96	2.4
0.07			0			1.00	28.0	6.16	94.8	2.46	33.47	7.97	2.5
8:05	SWI1	MF	0	0	4.56		25.0		96.1	2.72	22.50	1.00	
						3.56	27.9 27.9	5.61 5.60	86.4 86.0	2.73 2.64	33.50 33.50	7.99 7.99	1.7
						1.00	28.2 28.2	6.00 5.98	92.6 92.3	0.97 0.97	33.42 33.42	8.06 8.06	3.9 4.1
8:27	C3	MF	0	0	16.32	8.16	28.1	5.88	90.7	1.07	33.53	8.06	3.7
0.27		1411	v	U U	.0.32		28.1 27.9	5.86 5.58	90.4 85.9	1.08 1.62	33.58 33.80	8.06 8.06	2.7
						15.32	27.9	5.54	85.4	1.79	33.82	8.06	2.8
						1.00	28.5 28.5	6.20 6.18	96.0 95.7	1.00 0.85	33.31 33.31	8.03 8.03	<1.0 <1.0
8:23	C4	MF	0	0	16.02	8.01	28.4 28.4	5.86 5.84	90.7 90.6	0.75	33.44 33.47	8.05 8.06	<1.0
						15.02	27.8	5.65	87.1	3.06	34.24	8.06	2.1
							27.7 28.3	5.66 5.83	87.1 90.0	3.14 1.93	34.30 33.15	8.06 8.02	1.2
						1.00	28.3 27.9	5.79	89.4	1.90	33.15	8.03	2.6
8:53	11	MF	0	0	9.75	4.88	27.8	5.66 5.65	87.0 86.8	2.51	33.45 33.46	8.03 8.03	3.3
							27.7	5.32	81.5	3.44	33.59	8.02	2.3

Remarks: MF - Middle Flood tide ME - Middle Ebb tide

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

ampling Date:	18-Sep-19					I				r.			-
Date / Time	Location	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Thile	Location	Thue	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/I
						1.00	28.6 28.6	6.15 6.15	95.6 95.7	1.89 1.96	33.89 33.89	8.09 8.09	5.6 4.7
13:15	CC1	ME	0	0	9.43	4.72	28.4	5.86	91.2	1.74	33.94	8.09	3.6
			-				28.4 28.4	5.85 5.45	91.1 84.6	1.69 1.61	33.94 33.95	8.09 8.09	2.7
						8.43	28.0 28.5	5.60 5.98	86.5 92.9	1.60 2.11	33.70 33.60	8.06 8.07	3.4
						1.00	28.5	5.88	91.3	2.32	33.63	8.07	2.6
13:19	CC2	ME	0	0	12.28	6.14	28.5 28.5	5.79 5.79	90.0 89.9	1.99 1.92	33.86 33.90	8.07	2.2
						11.28	28.5	5.38	83.6	2.25	33.99	8.08	2.6
						1.00	28.5 28.5	5.37 5.86	83.5 90.7	2.51 2.05	34.00 33.33	8.09 8.03	3.3
							28.5 28.3	5.85 5.59	90.5 86.7	2.06 2.32	33.33 33.51	8.03 8.03	2.7
13:33	CC3	ME	0	0	9.81	4.91	28.2	5.56	86.2	2.60	33.62	8.03	4.3
						8.81	28.2 28.2	5.26 5.15	81.5 79.7	3.82 4.17	33.66 33.66	8.01 8.01	4.2
13:06	CC4	ME	0	0	2.59	1.30	28.4	5.87	91.0	2.75	33.66	8.06	5
15.00			0	0	2.57	1.50	28.4	5.84	90.6	2.85	33.68	8.06	6
							20 5	5.05	0 2 (0.04	22.54	0.05	
						1.00	28.7 28.7	5.95 5.87	92.6 91.3	2.34 2.41	33.54 33.55	8.05 8.05	4.3
13:23	CC13	ME	0	0	8.32	4.16	28.4 28.4	5.51 5.51	85.8 85.9	2.51 2.53	33.81 33.80	8.06 8.07	4.8 4.3
						7.32	28.5	5.37	83.3	1.58	33.96	8.08	3.7
							28.5 28.6	5.32 6.22	82.5 96.1	1.38 2.02	33.97 33.58	8.09 8.15	4.7
						1.00	28.5	6.21	95.9	2.12	33.58	8.15	2
12:55	SWI1	ME	0	0	4.93								
						3.93	28.4 28.4	5.84 5.82	90.8 90.4	2.69 2.77	33.59 33.59	8.12 8.12	2.1
						1.00	28.6	6.03	93.7	1.15	33.87	8.09	1.6
12.12	C3	ME	0	0	16.66		28.6 28.5	6.05 5.79	94.0 90.3	1.07	33.87 33.86	8.10 8.10	2.6
13:12	C5	IVIE	0	0	16.66	8.33	28.5 28.5	5.79 5.36	90.2 83.3	1.15	33.86 33.92	8.10 8.10	2.5
						15.66	28.5	5.36	83.4	1.73	33.94	8.10	3.4
						1.00	28.7 28.6	6.14 6.13	95.3 95.1	2.67	33.61 33.62	8.07 8.07	4.1
13:09	C4	ME	0	0	16.59	8.30	28.5	5.99	93.3	1.76	33.73	8.07	4.4
						15.59	28.5 28.4	5.99 5.48	93.3 85.3	1.79 4.61	33.76 34.04	8.08 8.09	3.9 4.2
							28.4 28.8	5.48 5.72	85.2 89.0	5.40 2.06	34.08 33.33	8.09 8.04	5.2 3.5
						1.00	28.7	5.69	88.5	2.08	33.34	8.04	3.7
13:26	11	ME	0	0	10.11	5.06	28.6 28.5	5.62 5.61	87.4 87.3	2.41 2.51	33.43 33.46	8.03 8.03	5.1
						9.11	28.3 28.3	5.58 5.50	86.7 85.4	4.37 5.15	33.70 33.79	8.04 8.04	5.4 6.1
							20.5	5.50	05.4	5.15	55.17	0.04	0.1
						1.00	28.3 28.3	5.94 5.95	92.0 92.1	2.15 2.12	33.64 33.64	8.06 8.06	3.6
9:35	CC1	MF	0	0	10.14	5.07	28.3	5.73	88.7	2.62	33.71	8.06	3.5
1.55	cer	1011	0	0	10.14		28.3 28.3	5.69 5.35	88.2 82.8	3.07 3.64	33.77 33.84	8.06 8.07	4.2
						9.14	28.3	5.34	82.9	3.75	33.84	8.07	4.8
						1.00	28.3 28.3	5.99 5.96	92.7 92.2	1.67 1.67	33.53 33.53	8.06 8.06	5.3 4.4
9:41	CC2	MF	0	0	12.51	6.26	28.3 28.3	5.83 5.83	90.2 90.3	3.65 3.81	33.76 33.77	8.08 8.08	5.1 4.3
						11.51	28.3	5.34	82.7	5.45	33.90	8.08	3.8
							28.3 28.2	5.34 5.68	82.7 87.9	5.85 2.34	33.94 33.40	8.08	3.7
						1.00	28.2 28.2	5.68 5.54	87.7 85.7	2.37 2.31	33.40 33.56	8.03 8.03	3 4.8
9:57	CC3	MF	0	0	10.15	5.08	28.2	5.56	85.7	2.31	33.59	8.03	4.8
						9.15	28.2 28.2	5.25 5.29	81.1 81.7	3.40 3.86	33.65 33.65	8.03	4.8
												0101	
9:22	CC4	MF	0	0	2.23	1.12	28.3	5.90	91.5	2.81	33.66	8.00	5.7
9.22	004	WII ⁺	0	0	2.23	1.12	28.3	5.86	90.7	2.97	33.67	8.00	5.2
						1.00	28.3 28.3	5.94 5.90	92.0 91.4	2.05 2.09	33.62 33.62	8.06 8.06	3.7 4.3
9:45	CC13	MF	0	0	8.68	4.34	28.2	5.86	90.6 90.6	1.85	33.66 33.66	8.07 8.07	4.4
						7.68	28.3	5.86 5.35	82.8	1.84 3.03	33.73	8.07	3.6
							28.3 28.2	5.35 6.48	82.8 99.9	3.34 4.11	33.75 33.66	8.07 8.02	4.7
						1.00	28.2	6.48	100.1	4.03	33.66	8.02	5.2
9:10	SWI1	MF	0	0	4.5								
						3.50	28.1	6.18 6.18	95.5 95.4	6.09 6.55	33.65 33.65	8.02 8.02	7.5
						1.00	28.4	6.24	96.8	1.78	33.82	8.07	3.8
0.21		ME.	0	0	16.20		28.4 28.5	6.23 5.81	96.6 90.5	1.77 1.36	33.81 34.04	8.07 8.11	2.9
9:31	C3	MF	0	0	16.32	8.16	28.5 28.5	5.81 5.29	90.6 82.4	1.33 2.54	34.04 34.09	8.11 8.11	4.4
						15.32	28.5	5.29	82.3	2.84	34.10	8.11	4.2
						1.00	28.4 28.4	6.24 6.24	96.8 96.9	2.00 2.01	33.88 33.88	8.05 8.05	4.3
9:26	C4	MF	0	0	15.45	7.73	28.4	5.72	88.9	1.82	33.95	8.08	4.5
							28.4 28.4	5.74 5.37	89.1 83.6	1.81 4.32	33.96 34.13	8.08 8.09	4.8
						14.45	28.4	5.36	83.3	4.88	34.16	8.09	4.9
						1.00	28.3 28.2	5.63 5.61	87.0 86.6	2.38 2.59	33.32 33.34	8.04 8.03	6.3 5.3
9:49	11	MF	0	0	10.3	5.15	28.2 28.2	5.42 5.44	83.6 84.0	3.29 3.29	33.58 33.60	8.03 8.03	5.2 5
							20.2	5.28	81.7	3.29	33.66	5.05	3.6

Remarks: MF - Middle Flood tide ME - Middle Ebb tide

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

ampling Date:	20-Sep-19							g Result					
			Co-ore	linates	Water	Sampling	Temp	DO Conc	DO	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	°	mg/L	Saturation %	NTU	ppt	unit	mg/L
						1.00	28.7	5.82	90.7	1.86	34.13	8.12	5.6
14:35	CC1	ME	0	0	8.45	4.23	28.7 28.6	5.82 5.82	90.9 91.0	1.86 1.48	34.13 34.11	8.12 8.12	5.9 6.5
14.55	cer	ML	0	0	0.45		28.6	5.81 5.50	90.8 85.7	1.42	34.11 34.13	8.12 8.13	6.3 6.2
						7.45	28.6	5.48	85.4	1.51	34.15	8.13	5.8
						1.00	28.8 28.8	5.90 5.90	91.9 91.9	2.46 2.37	34.05 34.05	8.11 8.11	6 6.4
14:39	CC2	ME	0	0	12.32	6.16	28.6 28.6	5.86 5.86	91.7 91.7	2.05 1.97	34.17 34.21	8.12 8.13	6.7 6.1
						11.32	28.5	5.49	85.7	3.25	34.40	8.13	6
						1.00	28.5 28.7	5.47 5.82	85.4 90.5	3.68 3.33	34.42 33.84	8.13 8.10	7 6.9
							28.7 28.6	5.80 5.74	90.3 89.6	3.34 3.10	33.84 33.96	8.10 8.10	6.4 7.3
15:04	CC3	ME	0	0	9.42	4.71	28.6	5.72	89.1	3.11	34.00	8.10	6.5
						8.42	28.5 28.5	5.43 5.39	84.6 84.0	4.20 4.70	34.07 34.07	8.10 8.10	7.5 7.2
14:26	CC4	ME	0	0	2.24	1.12	28.8	5.93	92.5	2.49	34.09	7.95	17.6
							28.8	5.85	91.3	2.48	34.10	7.99	18.5
							28.7	5.70	88.9	3.04	33.91	7.98	10.5
						1.00	28.7	5.64	88.0	3.03	33.92	7.99	11.4
14:51	CC13	ME	0	0	8.16	4.08	28.5 28.5	5.62 5.55	87.6 86.7	3.06 2.62	34.33 34.29	8.13 8.13	10.3
						7.16	28.5 28.5	5.37 5.37	83.8 83.8	2.35 2.38	34.24 34.25	8.13 8.13	8.4 7.4
						1.00	28.7	6.16	95.8	3.21	34.01	8.04	6.7
14.12	0117-	ME			10		28.7	6.14	95.6	3.24	34.01	8.05	5.7
14:13	SWI1	ME	0	0	4.63		<u> 28 ≮</u>	5.82	90.9	3.83	34.01	8.09	8.8
						3.63	28.6 28.6	5.80	90.6	3.92	34.01	8.09	9
						1.00	28.7 28.7	5.92 5.91	92.5 92.3	1.44 1.45	34.10 34.11	8.13 8.13	4.6
14:33	C3	ME	0	0	14.77	7.39	28.6	5.64	87.9	1.55	34.15	8.13	5.8
							28.6 28.6	5.64 5.51	87.9 85.9	1.55 2.21	34.16 34.28	8.14 8.14	5.7 5.5
						13.77	28.6 28.8	5.47 5.99	85.4 93.6	2.42 2.14	34.32 33.94	8.14 8.11	5 6.5
						1.00	28.8	5.99	93.5	2.15	33.94	8.11	5.5
14:29	C4	ME	0	0	13.95	6.98	28.7 28.7	5.70 5.68	89.1 88.7	2.05	34.02 34.07	8.12 8.12	6.2 6.2
						12.95	28.6	5.53	86.3	1.85	34.24	8.12	6.1
						1.00	28.6 28.7	5.49 5.80	85.7 90.4	1.93 3.12	34.30 33.63	8.12 8.08	6.6 6
							28.8 28.7	5.74 5.64	89.5 87.9	3.11 4.39	33.65 33.85	8.08 8.09	6.6 7.7
15:02	11	ME	0	0	9.46	4.73	28.6	5.69	88.7	4.81	33.91	8.09	8.5
						8.46	28.5 28.5	5.25 5.24	81.8 81.6	4.53 4.67	34.16 34.17	8.10 8.10	11.2 10.9
						1.00	28.6	6.14 6.13	95.6 95.5	2.15 2.29	33.86 33.90	8.11 8.10	5
10:37	CC1	MF	0	0	8.62	4.31	28.6 28.6	5.82 5.81	90.8 90.6	2.35 2.36	34.10 34.13	8.11 8.11	5.5 6.5
						7.62	28.6	5.48	85.5	2.48	34.14	8.11	5.7
							28.6 28.5	5.47 5.95	85.3 92.5	2.63	34.15 33.79	8.11 7.94	6.4 4.5
						1.00	28.5 28.6	5.91 5.75	92.0 89.6	1.38 2.52	33.79 34.08	7.97 8.03	5.1
10:41	CC2	MF	0	0	12.78	6.39	28.6	5.73	89.6 89.4	2.52	34.08	8.03	5 5.2
						11.78	28.5 28.5	5.35 5.39	83.5 83.9	5.60 5.62	34.17 34.18	8.07 8.08	4.3 4.6
						1.00	28.7	5.87	91.5	1.77	33.74	8.10	6.4
11:09	CC3	MF	0	0	9.89	4.95	28.7 28.6	5.83 5.72	90.8 89.1	1.84 2.16	33.76 33.91	8.10 8.10	6 5.7
11:09	ccs	MF	0	0	9.89	4.93	28.6 28.5	5.71 5.43	88.9 84.5	2.23 5.31	33.96 34.12	8.10 8.08	5 5.6
						8.89	28.5	5.36	83.5	5.62	34.12	8.08	5.3
10:28	CC4	MF	0	0	2.13	1.07	28.4 28.4	6.33 6.28	98.3 97.5	2.39 2.42	33.98 33.98	8.06 8.07	6.6 7.6
							28.4	0.28	97.3	2.42	33.98	8.07	7.0
	+					1.05	28.6	5.80	90.3	1.66	33.94	8.12	4.8
						1.00	28.6	5.82	90.6	1.55	33.93	8.12	4
10:55	CC13	MF	0	0	7.57	3.79	28.5 28.5	5.72 5.78	89.1 90.1	1.95 2.11	34.01 34.03	8.12 8.12	4.6 5.6
						6.57	28.5 28.5	5.40 5.35	84.1 83.3	3.26 3.29	34.06 34.09	8.12 8.11	5.3 4.3
						1.00	28.4	6.17	95.8	1.78	33.87	8.04	4.9
10-15	SW111	ME	0	0	1 -==		28.4	6.13	95.2	1.76	33.87	8.04	4
10:15	SWI1	MF	0	0	4.65		28.4	5.66	88.0	1.85	33.88	8.05	4.7
						3.65	28.4	5.64	87.6	1.87	33.88	8.05	3.7
						1.00	28.3 28.3	5.81 5.75	90.1 89.0	1.28 1.37	33.75 33.77	8.10 8.11	5.4 4.9
10:34	C3	MF	0	0	14.47	7.24	28.4	5.75	89.3	1.57	33.94	8.11	5.1
						13.47	28.4 28.4	5.73 5.44	88.9 84.6	1.62 3.13	33.99 34.22	8.11 8.11	5.9 6
							28.5 28.4	5.42 5.94	84.4 92.4	3.85	34.28 34.02	8.11 8.10	6.3 5.2
						1.00	28.5	5.87	91.3	1.60	34.03	8.10	5.5
10:31	C4	MF	0	0	13.63	6.82	28.5 28.5	5.78 5.78	90.0 90.2	1.77 1.80	34.25 34.32	8.11 8.11	5.3 5.1
						12.63	28.5	5.41	84.4	3.12	34.48	8.13	5.2
						1.00	28.5 28.5	5.39 5.77	84.1 89.5	3.64 1.95	34.52 33.60	8.13 8.10	5 4.6
							28.5 28.5	5.79 5.64	90.0 87.7	1.97 1.81	33.60 33.77	8.10 8.10	4.2 5.3
11:06	I1	MF	0	0	10.15	5.08	28.5	5.62	87.4	1.80	33.81	8.10	4.8
					1	9.15	28.5 28.5	5.32 5.30	82.7 82.4	2.11 2.31	33.95 34.00	8.10 8.10	5.1 4.1

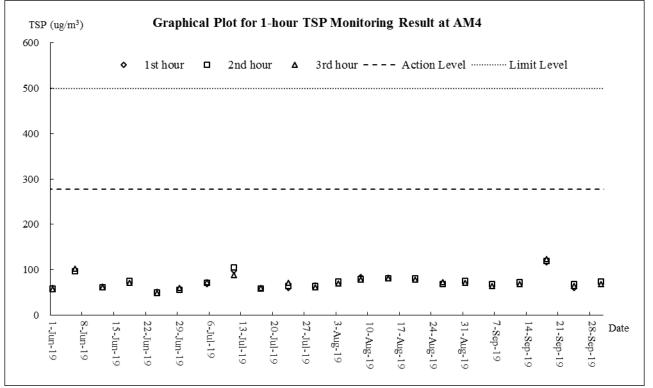
ampling Date	: 23-Sep-19)				Let .		1					
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit v	Salinity	pH	SS
Dute / Time	Locution	The	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
						1.00	27.9 27.9	5.97 5.98	92.2 92.4	2.37 2.35	34.31 34.30	8.13 8.13	6.8 6.5
8:30	CC1	ME	0	0	8.24	4.12	27.9 27.9	5.99 6.00	92.6 92.6	2.34 2.36	34.30 34.30	8.13 8.13	6.5 6.6
						7.24	28.0	5.98	92.4 92.2	2.38	34.31	8.13	8.4
						1.00	28.0 27.8	5.99	92.4	2.38 3.56	34.32 34.37	8.13 8.13	7.9 5.3
			_	-			27.8 27.8	5.99 5.81	92.4 89.6	3.51 3.38	34.36 34.34	8.13 8.13	4.4 5.8
8:35	CC2	ME	0	0	10.11	5.06	27.8 27.8	5.81 5.69	89.6 87.8	3.29 3.42	34.34 34.36	8.13 8.13	5.4 7.1
						9.11	27.8	5.67	87.3	3.68	34.39	8.13	6.6
						1.00	28.4 28.4	5.83 5.78	90.7 89.9	2.81 2.84	34.14 34.17	8.11 8.10	5.9 6.1
8:56	CC3	ME	0	0	9.35	4.68	27.9 27.9	5.55 5.54	85.6 85.5	4.42 4.38	34.44 34.44	8.10 8.10	8.7 8.6
						8.35	27.9	5.27	81.4	5.92	34.45	8.10	10.4
							27.9	5.27	81.4	6.13	34.45	8.09	9.5
8.10	664	ME	0	0	1.02	0.00	28.2	5.86	90.8	3.39	34.34	8.12	11.2
8:19	CC4	ME	0	0	1.98	0.99	28.1	5.85	90.7	3.59	34.34	8.12	11.8
						1.00	27.9 27.9	5.71 5.69	88.2 87.9	3.26 3.23	34.27 34.27	8.12 8.12	14 13.5
8:39	CC13	ME	0	0	7.77	3.89	27.9 27.9	5.66 5.65	87.4 87.2	3.55 3.75	34.28 34.30	8.12 8.12	11.4
						6.77	27.8	5.62	86.6	4.74	34.35	8.12	10.2
						1.00	27.8 27.9	5.61 5.77	86.5 89.2	4.90 4.09	34.35 34.37	8.12 8.13	10.2
			_	-		1.00	27.9	5.74	88.7	4.12	34.37	8.12	16.5
8:02	SWI1	ME	0	0	4.33		27.8	5.34	82.4	5.10	34.35	8.10	14.7
						3.33	27.8	5.31	81.9	5.86	34.36	8.09	13.9
						1.00	28.1 28.0	5.80 5.77	89.8 89.3	2.10 2.15	34.36 34.36	8.13 8.12	12
8:26	C3	ME	0	0	14.77	7.39	27.9 27.9	5.63 5.59	87.0 86.4	2.35 2.36	34.40 34.41	8.12 8.12	10.9
						13.77	27.9	5.48	84.6	5.10	34.46	8.12	9.1
							27.9 28.1	5.46 5.89	84.3 91.2	5.66 1.84	34.47 34.30	8.12 8.12	9.4 6.9
						1.00	28.1	5.88	91.0	1.81	34.30	8.12	7.2
8:22	C4	ME	0	0	15.05	7.53	27.9 27.9	5.66 5.64	87.4 87.0	1.92 1.95	34.40 34.42	8.12 8.12	6.1 6.6
						14.05	27.9 27.9	5.59 5.57	86.3 86.1	3.20 3.61	34.49 34.51	8.12 8.12	4.7
						1.00	28.2	5.73	88.8	2.89	34.15	8.13	6.1
8:53	11	ME	0	0	9.69	4.85	28.2 27.9	5.70 5.35	88.3 82.7	2.95 3.90	34.12 34.40	8.12 8.11	6.1 8
8.33	11	NIE	0	0	9.09		27.9 27.8	5.35 5.42	82.6 83.6	3.97 4.53	34.40 34.40	8.11 8.12	8.7
						8.69	27.8	5.45	84.1	5.14	34.41	8.12	12
							28.0	5.95	92.0	2.45	34.24	8.14	8.6
						1.00	28.0	5.95	91.9	2.51	34.24	8.14	8
17:03	CC1	MF	0	0	8.13	4.07	28.0 28.0	5.9 5.88	91.3 91.0	2.50 2.50	34.27 34.27	8.14 8.14	9.1 9.8
						7.13	27.9 27.9	5.8 5.79	89.5 89.4	2.73 2.77	34.31 34.32	8.13 8.13	10.3 9.5
						1.00	28.0	5.93 5.92	91.5 91.4	2.99 3.02	34.31	8.14	5.2
17:08	CC2	MF	0	0	12.32	6.16	28.0 27.9	5.78	91.4 89.3	3.24	34.30 34.31	8.13 8.13	5.9 7.8
17.00	002		0	0	12:02		27.9 27.9	5.76 5.63	89.0 86.8	3.33 3.51	34.32 34.35	8.14 8.14	7.1
						11.32	27.8	5.61	86.6	3.56	34.36	8.14	11.7
						1.00	28.2	5.80	89.8	3.44	34.00	8.11	8.6
17:29	CC3	MF	0	0	9.11	4.56	28.1 28.0	5.60 5.60	86.6 86.7	4.04 4.19	34.19 34.26	8.11 8.11	11.1
						8.11	27.9 27.9	5.13 5.16	79.4 79.8	5.08	34.45 34.44	8.10 8.10	12.5
							21.9	3.10	79.8	3.09	34.44	8.10	12.5
16:53	CC4	MF	0	0	2.22	1.11	27.9	5.97	92.3	6.07	34.39	8.14	13.9
10.55	004		Ū	0	2.22	1.11	27.9	5.94	92.0	6.05	34.40	8.14	14.4
							28.0	5.63	87.0	3.70	34.27	8.13	11
						1.00	28.0	5.63	87.1	3.70	34.27	8.13	10.1
17:12	CC13	MF	0	0	8.78	4.39	28.0 28.0	5.62 5.61	86.9 86.7	3.58 3.44	34.28 34.30	8.13 8.13	15 15.1
						7.78	27.9 27.9	5.57 5.55	86.0 85.7	4.46	34.33 34.35	8.13 8.13	18.3
						1.00	28.0	5.89	91.1	2.89	34.42	8.19	11.5
16:36	SWI1	MF	0	0	4.65		28.1	5.87	90.8	2.87	34.33	8.18	10.7
10:30	3w11	1VII'	U	U	4.03		28.1	5.78	89.4	3.14	34.33	8.17	13.2
	┥ ┥					3.65	28.0	5.74	88.9	3.23	34.33	8.17	14.1
						1.00	27.9 27.9	5.79 5.77	89.5 89.2	1.80 1.78	34.37 34.37	8.14 8.14	6.4 7.1
17:00	C3	MF	0	0	13.57	6.79	27.9 27.9	5.68 5.67	87.8 87.6	1.73 1.72	34.40 34.40	8.13 8.13	7.7
						12.57	27.9	5.54	85.6	3.83	34.49	8.13	10.9
	+		-				27.9 28.0	5.53 5.90	85.5 91.3	3.77 1.98	34.49 34.36	8.13 8.15	11.9
						1.00	28.0 27.9	5.89 5.70	91.1 88.1	2.00 2.33	34.38 34.44	8.15 8.15	11.8
16:56	C4	MF	0	0	15.14	7.57	27.9	5.68	87.9	2.30	34.46	8.15	9.8
						14.14	27.8 27.8	5.62 5.60	86.7 86.5	4.33 4.93	34.53 34.55	8.14 8.14	9.7 9.4
						1.00	28.1 28.2	5.73	88.7 87.4	3.09	34.19 34.16	8.13 8.13	15.5
17:27	11	MF	0	0	9.84	4.92	28.0	5.48	84.7	3.53	34.26	8.13	11.9
							27.9	5.50	84.9	3.62	34.31	8.13	11

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

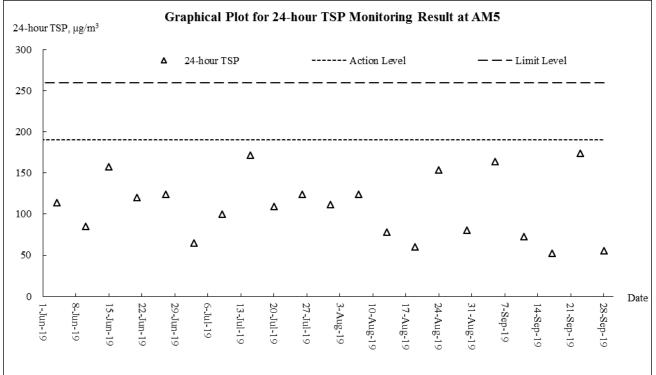
imping Date	25-Sep-19)			***	a		1		m • · · · ·	_		-
Date / Time	Location	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit y	Salinity	pН	SS
			East	North	m	m	°C 28.0	mg/L 5.91	% 91.4	NTU 1.53	ppt 34.29	unit 8.12	mg/I 4.6
						1.00	28.0	5.88	91.0	1.59	34.31	8.12	5
10:17	CC1	ME	0	0	8.18	4.09	27.9 27.9	5.80 5.76	89.6 89.1	2.01 2.09	34.40 34.43	8.12 8.12	7 6.7
						7.18	27.9 27.9	5.38 5.36	83.0 82.8	2.26	34.51 34.52	8.12 8.12	7.8
						1.00	28.0	5.95	92.0	1.84	34.36	8.12	6.2
10:22	CC2	ME	0	0	12.06	6.03	28.0 27.9	5.97 5.77	92.2 89.3	1.75 3.77	34.39 34.59	8.12 8.13	6.4 6.4
10:22	CC2	NIE	0	0	12.00		27.9 27.9	5.77 5.40	89.3 83.5	3.70 3.75	34.58 34.61	8.13 8.13	6.1 6.2
						11.06	27.9	5.36	82.9	3.88	34.62	8.13	6
						1.00	28.2 28.2	5.72 5.70	88.6 88.3	2.28	34.26 34.26	8.10 8.10	5 4.6
10:32	CC3	ME	0	0	9.26	4.63	28.0 27.9	5.63 5.61	87.0 86.7	3.65 3.69	34.43 34.48	8.10 8.10	5.7 5.8
						8.26	27.9	5.44	84.1	4.05	34.57	8.10	6.8
							27.9	5.41	83.6	3.97	34.57	8.10	6.5
							28.0	5.87	90.9	2.89	34.46	8.05	8.9
10:07	CC4	ME	0	0	2.3	1.15	28.0 28.0	5.87	90.9	2.89	34.46 34.46	8.05	8.9
						1.00	28.0	5.78	89.4	1.99	34.31	8.12	6
10:26	CC13	ME	0	0	7.42	2.71	28.0 27.9	5.77 5.66	89.2 87.4	2.00 1.46	34.32 34.46	8.12 8.13	5.8 7
10:20	CC15	MIE	U	U	1.42	3.71	27.9 27.9	5.67 5.48	87.6 84.6	1.51 1.58	34.45 34.46	8.13 8.13	7.4 7.2
						6.42	27.9	5.47	84.5	1.58	34.47	8.13	6.8
						1.00	27.9 27.9	6.06 6.02	93.5 92.9	2.92 2.93	34.44 34.44	7.74	5.8 6.3
10:02	SWI1	ME	0	0	4.75								
						3.75	27.9	5.96	92.2	3.34	34.47	7.90	5.7
							27.9 27.9	5.97 5.88	92.3 90.9	3.39 2.77	34.48 34.50	7.90 8.11	5.5 7.9
						1.00	27.9	5.85	90.5	2.75	34.50	8.11	8.2
10:14	C3	ME	0	0	15.25	7.63	27.9 27.9	5.76 5.76	89.1 89.0	2.84 2.83	34.54 34.54	8.12 8.12	8.6 8.8
						14.25	27.9 27.9	5.33 5.32	82.3 82.1	5.09 5.55	34.56 34.57	8.13 8.13	9.3 8.9
						1.00	27.9	5.90	91.1	3.03	34.32	8.09	6.8
10.10					15.00		27.9 27.9	5.89 5.74	91.0 88.6	3.00 3.67	34.32 34.48	8.09 8.10	6.9 8.4
10:10	C4	ME	0	0	15.77	7.89	27.9	5.74	88.6	3.64	34.49	8.10	8
						14.77	27.9 27.9	5.34 5.34	82.5 82.5	4.49 4.67	34.50 34.50	8.11 8.11	8.7 8.8
						1.00	28.1 28.1	5.60 5.57	86.7 86.2	1.41 1.43	34.13 34.15	8.07 8.07	4.9
10:29	11	ME	0	0	10.2	5.10	27.9	5.49	84.8	2.50	34.49	8.10	6.1
						9.20	27.9 27.9	5.49 5.25	84.9 81.1	2.66 5.08	34.54 34.58	8.10 8.12	6.4 5.5
						9.20	27.9	5.22	80.7	6.21	34.60	8.12	5.8
						1.00	28.3	5.9	91.2	4.44	34.33	8.13	8.3
						1.00	28.3 28.1	5.89 5.78	91.0 89.9	4.41 2.29	34.34 34.41	8.13 8.12	8.2 7.9
15:17	CC1	MF	0	0	14.33	7.17	28.1	5.75	89.3	2.72	34.44	8.13	7.8
						13.33	28.0 28.0	5.38 5.37	83.4 83.3	4.22 4.31	34.47 34.47	8.12 8.12	8.7 8.6
						1.00	28.3	6.08	94.0 93.8	4.77	34.37	8.13	6.3
15:21	CC2	MF	0	0	11.48	5.74	28.3 28.0	6.06 5.84	90.8	4.75 2.98	34.38 34.43	8.13 8.12	6.4 7.2
10.21	002		0	0	11110		28.0 28.0	5.84 5.34	90.9 82.7	3.07 3.39	34.45 34.48	8.12 8.12	7.4 9.6
						10.48	27.9	5.33	82.5	3.99	34.50	8.12	9.2
						1.00	28.3 28.3	5.70 5.68	88.3 87.9	2.91 2.80	34.23 34.20	8.12 8.12	5.2 4.9
15:29	CC3	MF	0	0	9.32	4.66	28.1 28.0	5.63 5.62	87.4 87.3	3.32 3.70	34.34 34.43	8.09 8.10	5 5.1
						8.32	27.9	5.53	85.7	4.02	34.58	8.09	6.8
							27.9	5.54	85.8	4.11	34.58	8.08	7
						<u>г</u>	28.3	5.84	90.8	3.64	34.36	8.12	9.7
15:08	CC4	MF	0	0	1.55	0.78	28.3	5.83	90.6	3.66	34.36	8.12	9.9
						1.00	28.3 28.3	5.70 5.69	88.3 88.1	2.47 2.48	34.40 34.40	8.12 8.12	5.6 6
15:25	CC13	MF	0	0	7.82	3.91	28.3	5.57	86.6	2.61	34.40	8.12	5.6
							28.3 28.2	5.55 5.40	86.3 83.9	2.65 2.81	34.40 34.42	8.12 8.12	5.9 7.5
						6.82	28.1	5.40	83.7	2.75	34.43 34.39	8.12	7.8
						1.00	28.7 28.6	5.79 5.77	89.5 89.2	2.16 2.19	34.39 34.43	8.03 8.04	7.2
15:03	SWI1	MF	0	0	4.45								
						3.45	28.3	5.59	87.5	4.14	34.47	8.06	7.5
	+					1.00	28.2	5.57 5.92	87.1 91.3	5.08 2.33	34.50 34.34	8.07 8.12	7.8
							28.2 28.0	5.87	90.5 90.7	2.83 3.35	34.35 34.36	8.12 8.12	10.4 10.2
15:14	C3	MF	0	0	14.3	7.15	27.9	5.85 5.84	90.5	3.42	34.36	8.12	10.1
						13.30	27.9 27.9	5.41 5.40	83.6 83.5	4.98 4.87	34.41 34.44	8.12 8.12	10.7
	1 1					1.00	28.0	5.87	91.3	2.86	34.28	8.11	7.9
15.10	64	ME	0		12.5		28.0 27.9	5.86 5.72	91.1 88.5	2.92 3.75	34.28 34.28	8.11 8.11	8.1 8.9
15:10	C4	MF	0	0	13.5	6.75	27.9 27.9	5.70 5.40	88.2 83.4	3.95 4.51	34.28 34.33	8.11 8.11	9 9.6
						12.50	27.9	5.41	83.5	4.70	34.35	8.11	9.8
	_					1.00	28.4 28.4	5.71 5.71	88.7 88.5	4.52 4.33	34.07 34.07	8.09 8.09	7.8
15:25	11	MF	0	0	9.52	4.76	28.2	5.63	87.5	3.50	34.39	8.11	8.3
	1			1	1	L	28.0	5.62 5.27	90.0 81.7	3.76 4.23	34.47 34.60	8.11 8.10	7.8

amping Date	: 27-Sep-19)						1					
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit v	Salinity	pH	SS
Bute / Time	Locution	Thue	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
						1.00	28.4 28.4	6.11 6.08	95.1 94.7	2.20 2.22	34.41 34.42	8.16 8.16	5 4.7
11:48	CC1	ME	0	0	8.72	4.36	28.4 28.4	6.03 6.01	94.0 93.6	2.25 2.26	34.41 34.41	8.16 8.16	5.9 6.2
						7.72	28.2	5.70	88.5	2.44	34.43	8.16	6.3
						1.00	28.2 28.2	5.70 5.88	88.4 91.2	3.10	34.44 34.30	8.16 8.18	6.4 5.5
			-	-			28.2 27.9	5.84 5.76	90.6 89.0	3.15 2.79	34.32 34.47	8.18 8.18	5.5 6.2
11:52	CC2	ME	0	0	11.12	5.56	27.9	5.76	89.0	2.70	34.48	8.18	5.8
						10.12	27.8 27.8	5.66 5.67	87.4 87.6	4.88 4.83	34.56 34.56	8.19 8.19	5.7 5.6
						1.00	28.6 28.6	5.56 5.54	86.9 86.4	1.66 1.72	34.17 34.20	8.16 8.16	4.4 4.2
12:12	CC3	ME	0	0	8.72	4.36	28.1 28.1	5.55 5.56	86.1 86.1	2.93 3.23	34.41 34.43	8.17 8.17	5.2 5.4
						7.72	27.9	5.09	78.6	4.01	34.51	8.17	5.7
							27.9	5.09	78.6	4.09	34.51	8.17	5.9
11.00						1.01	28.1	5.76	89.2	4.04	34.40	8.08	8
11:39	CC4	ME	0	0	2.41	1.21	28.1	5.75	89.1	4.21	34.40	8.09	8.4
						1.00	28.1 28.1	5.80 5.80	89.9 89.9	2.89 2.87	34.36 34.36	8.18 8.18	5.4 5.2
11:56	CC13	ME	0	0	8.37	4.19	28.0 28.0	5.76 5.76	89.3 89.2	3.05	34.41 34.42	8.19 8.19	5.8 5.6
						7.37	27.9	5.71	88.4	3.26	34.46	8.19	5.6
						1.00	27.9 28.0	5.71 5.69	88.3 88.0	3.26 4.72	34.46 34.38	8.19 8.00	6 3.9
						1.00	28.0	5.68	87.9	4.80	34.38	8.00	3.5
11:23	SWI1	ME	0	0	3.93		27.9	5.54	85.6	4.68	34.43	8.03	5.4
						2.93	27.9	5.51	85.2	4.96	34.44	8.03	5.3
						1.00	28.4 28.4	6.17 6.15	96.1 95.8	1.94 1.94	34.37 34.38	8.15 8.15	4.6
11:46	C3	ME	0	0	14.87	7.44	28.0 28.0	5.81 5.81	89.9 89.9	2.17 2.20	34.42 34.43	8.16 8.16	4.6 4.7
						13.87	27.8	5.68	87.7	5.32	34.56	8.17	4.1
							27.8 27.9	5.68 5.48	87.7 84.6	5.43 4.58	34.56 34.35	8.17 8.13	3.9 4.6
						1.00	27.9	5.47	84.6	4.59	34.35	8.13	5
11:42	C4	ME	0	0	15.12	7.56	27.9 27.9	5.46 5.45	84.3 84.3	4.86 4.74	34.35 34.35	8.13 8.14	6.5 6.8
						14.12	27.9 27.9	5.44 5.44	84.0 84.0	5.78 5.85	34.35 34.35	8.14 8.14	6.7 7.1
						1.00	28.3	5.55	86.1	3.03	34.13	8.17	3.9
12:10	11	ME	0	0	9.92	4.96	28.2 28.2	5.55 5.55	86.1 86.0	3.44 3.74	34.18 34.27	8.17 8.18	3.8 5
12:10	11	NIE	0	0	9.92		28.2 28.0	5.56 5.60	86.2 86.6	4.07 5.08	34.30 34.45	8.18 8.18	5.3 5.1
						8.92	28.0	5.60	86.7	5.54	34.46	8.18	5.4
							28.3	5.96	92.6	2.68	34.25	8.19	4.9
						1.00	28.3	5.94	92.3	2.64	34.25	8.19	4.6
16:43	CC1	MF	0	0	9.24	4.62	28.3 28.3	5.87 5.85	91.2 90.9	2.79 2.84	34.27 34.28	8.19 8.19	5.9 6.1
						8.24	28.2 28.2	5.77 5.76	89.6 89.4	3.08	34.32 34.32	8.20 8.20	6.9 6.6
						1.00	28.2	5.99	92.9	3.31	34.38	8.20	6
16:47	CC2	MF	0	0	11.83	5.92	28.2 28.0	5.9 5.79	91.7 89.8	3.21 4.89	34.39 34.38	8.20 8.20	6.3 7.6
10.47	002	MI	Ŭ	0	11.05		28.0 28.0	5.79 5.6	90.0 86.6	4.87 5.58	34.38 34.43	8.20 8.20	8 8.5
						10.83	28.0	5.6	86.6	5.65	34.44	8.20	8.8
						1.00	28.5	5.88	91.5	1.32	34.11 34.10	8.15	2.7
17:09	CC3	MF	0	0	9.07	4.54	28.1 28.0	5.52 5.52	85.6 85.6	2.98 3.11	34.41 34.44	8.18 8.18	2.7 3.1
						8.07	27.9 27.9	5.13	79.3 79.7	4.86	34.50 34.50	8.18 8.18	4.9
							21.9	3.10	19.1	3.01	34.30	8.18	3.2
16:34	CC4	MF	0	0	2.21	1.11	28.1	5.86	91.4	4.36	34.30	8.18	5.7
10:54	CC4	MF	0	0	2.21	1.11	28.1	5.85	91.0	4.46	34.30	8.18	5.5
							20.1	571	80.0	2.76	24.24	8.10	
						1.00	28.1 28.1	5.74 5.73	89.0 88.7	2.76 2.77	34.36 34.36	8.19 8.19	5.4 5.2
16:52	CC13	MF	0	0	8.39	4.20	28.0 28.0	5.59 5.57	86.5 86.3	4.29 4.55	34.37 34.37	8.19 8.19	6 5.8
						7.39	28.0 28.0	5.54 5.54	85.8	5.56	34.37 34.38	8.19 8.19	7.4
				L		1.00	28.6	6.00	85.7 93.6	2.15	34.34	8.16	4
16:17	SWI1	MF	0	0	3.93		28.6	6.00	93.7	2.14	34.35	8.16	3.8
10.17	3W11	wir	U	0	5.95		28.5	5.49	85.6	3.26	34.36	8.17	4.8
						2.93	28.4	5.41	84.2	3.80	34.38	8.18	4.5
						1.00	28.0 28.0	5.77 5.73	89.3 88.6	3.73 3.68	34.33 34.34	8.17 8.17	7.1
16:40	C3	MF	0	0	14.98	7.49	27.9 27.9	5.51 5.50	85.1 85.1	5.31 5.45	34.38 34.38	8.19 8.19	7.6 7.7
						13.98	27.9	5.60	86.5	8.07	34.49	8.20	9.5
							27.9 28.1	5.61 5.49	86.6 85.0	8.16 2.65	34.49 34.25	8.20 8.18	9.9 5.2
						1.00	28.1 27.9	5.49 5.39	84.9 83.2	2.64	34.25 34.33	8.18 8.18	5.4
16:37	C4	MF	0	0	15.1	7.55	27.9	5.38	83.1	3.58	34.33	8.18	5.9
				L	L	14.10	27.9 27.9	5.38 5.40	83.2 83.3	4.77 5.40	34.37 34.39	8.18 8.19	6.8 7
						1.00	28.3	6.06	94.2	2.68	34.37	8.20	5.2
17:06	11	MF	0	0	9.49	4.75	28.3 28.2	6.01 5.85	93.5 90.8	2.68 3.54	34.38 34.39	8.20 8.20	4.9 5.6
17.00	11	1411	0	0	2.47		28.2 28.0	5.82 5.65	90.3 87.3	3.67 4.61	34.39 34.46	8.20 8.20	5.8 8.2
						8.49	27.9	5.62	86.9	4.82	34.40	8.20	8.3

ampling Date	: 30-Sep-19)											
Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit v	Salinity	pН	SS
Date / Time	Location	The	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
						1.00	27.9 27.9	6.27 6.19	97.1 95.8	4.19 4.17	34.78 34.78	8.23 8.23	6.1 6.2
12:08	CC1	ME	0	0	9.26	4.63	27.9 27.9	6.00 5.99	92.8 92.7	3.19 3.25	34.84 34.84	8.23 8.23	7 6.7
						8.26	27.9	5.98	92.6	3.27	34.85	8.23	7.3
						1.00	27.9 28.2	5.98 6.00	92.5 93.2	3.21 2.11	34.85 34.50	8.23 8.22	7.4 7
			_	_			28.2 28.1	5.97 5.83	92.8 90.4	2.14 2.38	34.50 34.60	8.22 8.21	7.3
12:13	CC2	ME	0	0	11.74	5.87	28.0 27.9	5.81 5.80	90.1 89.8	2.47 2.89	34.63 34.71	8.21 8.21	7.4 7.8
						10.74	27.9	5.81	90.0	3.05	34.74	8.21	7.7
						1.00	28.3 28.3	6.14 6.11	95.5 95.1	1.61 1.62	34.35 34.36	8.19 8.19	6.3 6
12:32	CC3	ME	0	0	9.78	4.89	28.2 28.2	5.74 5.71	89.1 88.7	1.79 1.83	34.39 34.41	8.19 8.19	6.3 6.1
						8.78	28.1 28.1	5.33 5.23	82.6 81.1	2.08	34.47 34.50	8.19 8.19	7.9 7.5
							20.1	5.25	01.1	2.1)	54.50	0.17	1.5
11:57	CC4	ME	0	0	1.7	0.85	28.3	5.84	90.7	2.27	34.35	8.17	5.6
11.57	CC4	WIL:	0	0	1.7	0.85	28.3	5.76	89.5	2.07	34.37	8.17	6
							28.2	6.03	93.7	2.46	34.51	8.20	4.8
						1.00	28.2	5.98	92.8	2.44	34.52	8.20	5.2
12:16	CC13	ME	0	0	7.9	3.95	28.1 28.1	5.83 5.83	90.3 90.3	2.31 2.30	34.57 34.57	8.20 8.20	5.3 5.1
						6.90	27.9 27.9	5.89 5.90	91.1 91.3	1.75	34.68 34.69	8.21 8.21	4.9
						1.00	28.4 28.3	6.08 6.03	94.6 93.8	1.55	34.34 34.34	8.19 8.19	3.7
11:41	SWI1	ME	0	0	4.77		20.3	0.05	73.0	1.09	.)4.)4	0.19	4.2
		-				3.77	28.1	5.76	89.3	1.88	34.33	8.18	4.8
							28.1 28.0	5.75 5.75	89.1 89.0	1.90 2.38	34.33 34.50	8.18 8.19	4.7
						1.00	28.0	5.72	88.6	2.38	34.51	8.19	3.6
12:05	C3	ME	0	0	14.92	7.46	28.0 28.0	5.82 5.84	90.0 90.5	1.96 1.82	34.64 34.64	8.20 8.20	3.2 3.4
						13.92	27.9 27.9	5.87 5.89	90.9 91.2	1.94 2.18	34.70 34.74	8.21 8.21	4.2
						1.00	28.2	6.39	99.3	1.45	34.57	8.21	3
12:00	C4	ME	0	0	13.4	6.70	28.2 27.9	6.35 5.92	98.7 91.7	1.42 2.56	34.59 34.73	8.21 8.23	2.8 3.9
12:00	C4	NIE	0	0	15.4		27.9 27.9	5.91 5.91	91.5 91.4	2.44 2.34	34.70 34.73	8.23 8.23	3.7
						12.40	27.9	5.91	91.5	2.47	34.77	8.23	3.1
						1.00	28.1 28.1	5.97 5.89	92.6 91.3	2.05	34.47 34.46	8.20 8.20	2.8
12:30	11	ME	0	0	10.04	5.02	28.1 28.0	5.78 5.61	89.5 86.9	2.56 2.68	34.51 34.60	8.20 8.20	4.2 4.1
						9.04	28.0	5.61	86.9	4.18	34.63	8.20	3.5
							28.0	5.63	87.2	4.51	34.67	8.20	3.8
						1.00	28.0	6.14	95.0	2.31	34.63	8.20	3.1
8:32	CC1	MF	0	0	8.6	4.30	28.0 27.9	6.08 5.94	94.1 91.9	2.39 2.23	34.66 34.76	8.21 8.21	3.1
0.52	cer	1011	0	0	0.0		27.9 27.9	5.93 5.89	91.8 91.1	2.18 2.57	34.76 34.78	8.21 8.22	3.3 3.2
						7.60	27.9	5.88	91.1 91.4	2.61	34.78	8.22	3
						1.00	28.2 28.2	5.89 5.83	90.6	2.33 2.28	34.48 34.48	8.21 8.20	3.3 3.2
8:38	CC2	MF	0	0	11.88	5.94	28.1 28.0	5.77 5.78	89.4 89.5	2.29 2.32	34.56 34.58	8.20 8.20	3.1
						10.88	27.9 27.9	5.83 5.85	90.2 90.6	2.52 2.71	34.67 34.71	8.21 8.21	4.4
						1.00	28.2	6.01	93.3	1.58	34.33	8.20	2.6
9:00	CC3	MF	0	0	9.53		28.2 28.1	5.95 5.70	92.4 88.3	1.54 1.69	34.31 34.45	8.19 8.19	3.2
9:00	ccs	MF	0	0	9.53	4.77	28.1 28.1	5.70 5.32	88.4 82.5	1.75 1.87	34.46 34.50	8.19 8.19	3.9 2.6
						8.53	28.1	5.29	82.1	1.92	34.52	8.19	2.0
8:20	CC4	MF	0	0	2.13	1.07	28.0	5.81 5.80	90.0 89.7	4.01 4.09	34.52 34.52	8.19 8.18	3.2
							2010					0110	
						1.00	28.1	5.67	87.8	2.72	34.52	8.19	3.7
0.10	0012	ME			0.40		28.1 28.0	5.66 5.69	87.8 88.1	2.78 2.79	34.52 34.56	8.19 8.20	3.9 3.6
8:42	CC13	MF	0	0	8.49	4.25	28.0 27.9	5.70 5.89	88.3 91.1	2.77 1.88	34.58 34.73	8.20 8.21	3.8 4
						7.49	27.9	5.91	91.4	1.93	34.73	8.21	4.4
						1.00	28.2 28.1	6.03 5.99	93.5 92.9	1.76	34.33 34.33	8.19 8.19	2.1
8:03	SWI1	MF	0	0	4.65								
						3.65	28.1	5.81	89.9 80.2	1.88	34.34	8.19	2.7
						1.00	28.1 27.9	5.76 6.13	89.2 94.8	1.91 1.58	34.34 34.62	8.19 8.22	2.9 2.9
			_	_			27.9 27.9	6.10 5.99	94.4 92.7	1.62 2.09	34.62 34.82	8.22 8.22	3.2
8:29	C3	MF	0	0	15.47	7.74	27.9	5.99	92.7	2.04	34.82	8.23	2.9
						14.47	27.9 27.9	5.98 5.97	92.5 92.4	2.27 2.52	34.82 34.83	8.23 8.23	3.1 2.9
						1.00	28.2 28.2	6.31 6.27	98.0 97.3	1.55	34.58 34.57	8.20 8.20	3 2.8
8:24	C4	MF	0	0	15.42	7.71	28.0	5.94	92.0	1.94	34.62	8.20	3
			-				28.0 27.9	5.92 5.85	91.6 90.6	1.86 3.08	34.63 34.74	8.21 8.21	3.4
						14.42	27.9 28.1	5.86 5.63	90.7 87.3	3.56	34.78 34.44	8.21 8.20	3.9
						1.00	28.1	5.62	87.1	2.02	34.45	8.19	3.5
8:57	I1	MF	0	0	10.32	5.16	28.1 28.1	5.58 5.56	86.5 86.2	2.34 2.58	34.49 34.51	8.18 8.18	4.9 5.2
	1		1	l I	1	-	28.0	5.54	85.8	3.87	34.67	8.19	4.6


Appendix I

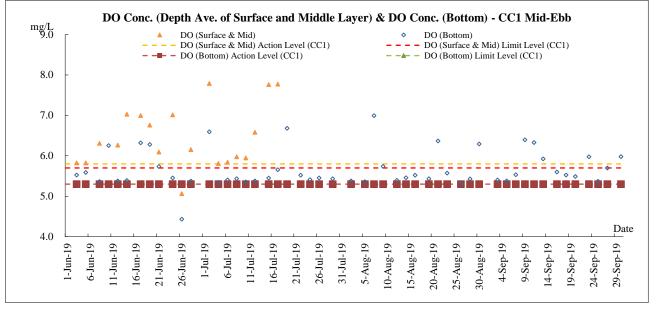
Graphical Plots of Monitoring Results

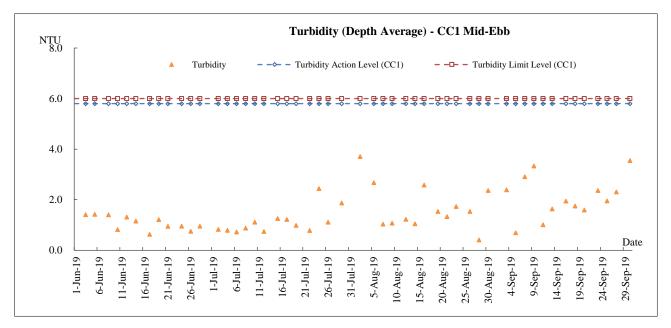

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report – September 2019

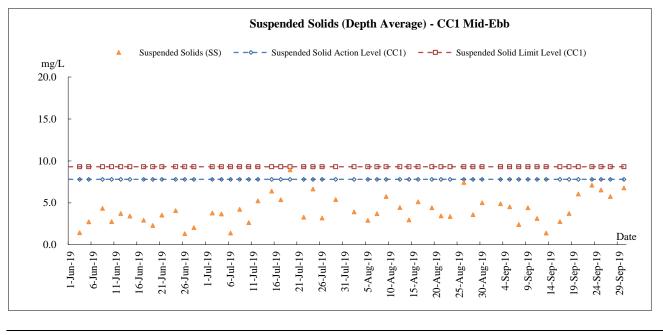
Air Quality – 1 Hour TSP

Air Quality - 24-Hour TSP

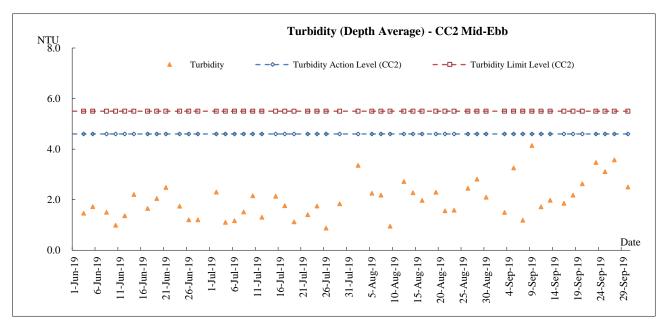
CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report - September 2019

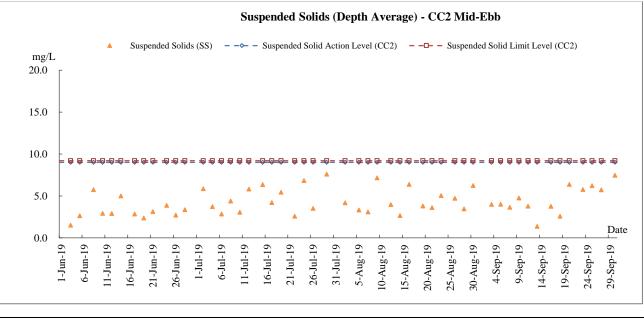



Graphical Plot for Construction Noise Monitoring Result at CNMS-5 $L_{eq30}, dB(A)$ 85.0 Leq30min — — — Limit Level 80.0 ٥ 75.0 70.0 ٥ ٥ ٥ ٥ 65.0 ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ 60.0 55.0 50.0 45.0 Date 40.0 20-Jul-19 3-Aug-19 7-Sep-19 6-Jul-19 8-Jun-19 22-Jun-19 29**-.**Jun-19 13-Jul-19 27-Jul-19 24-Aug-19 31-Aug-19 21-Sep-19 28-Sep-19 17-Aug-19 14-Sep-19 15-Jun-19 10-Aug-19 I-Jun-19

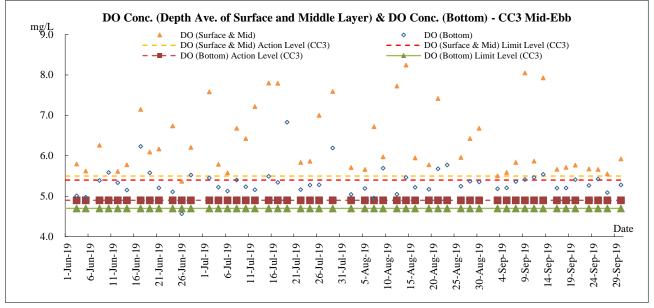

Construction Noise

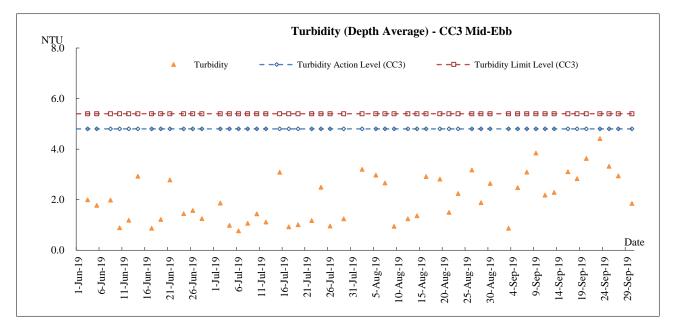
Marine Water Quality - CC1 Mid-ebb

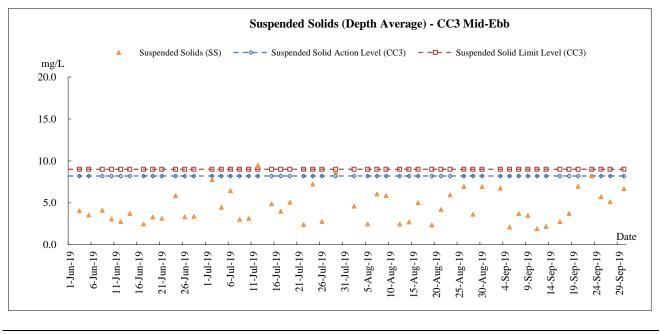



Z:\Jobs\2018\TCS00975 (EDO-04-2018)\600\EM&A Report Submission\Monthly EM&A Report\September 2019\R0269v2.docx

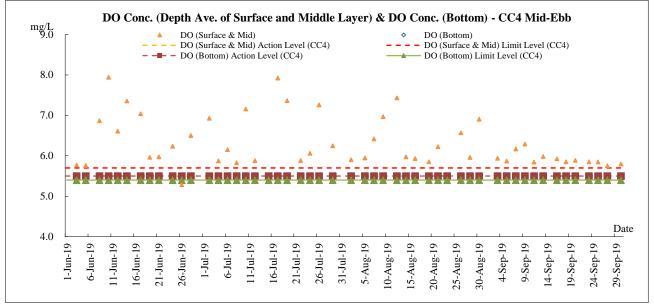
Marine Water Quality – CC2 Mid-ebb

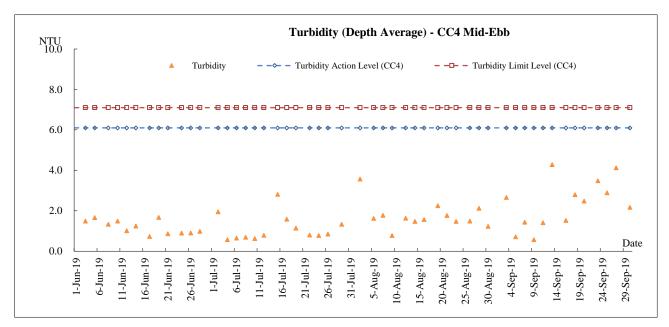


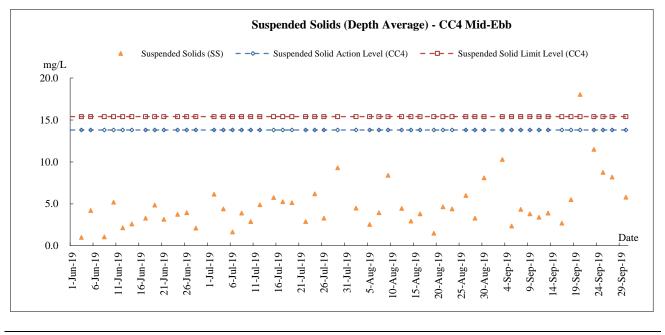




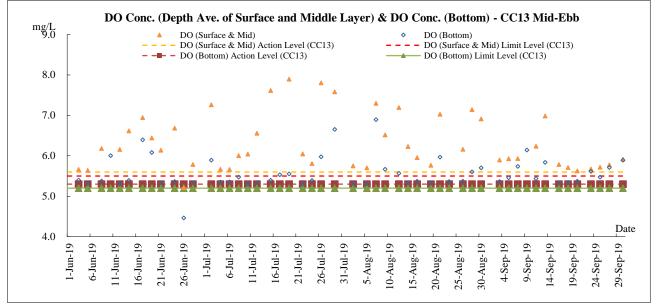
Marine Water Quality – CC3 Mid-ebb

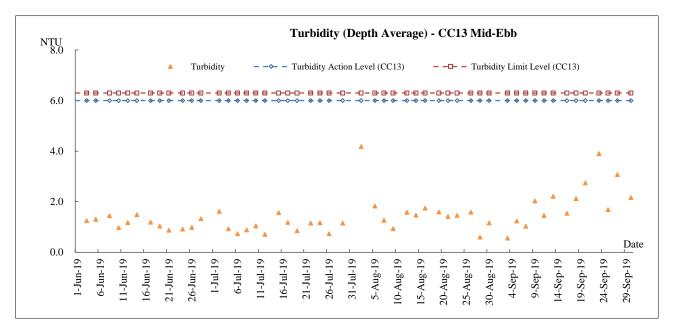


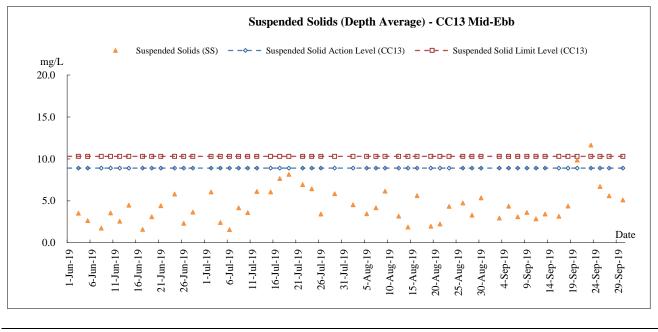




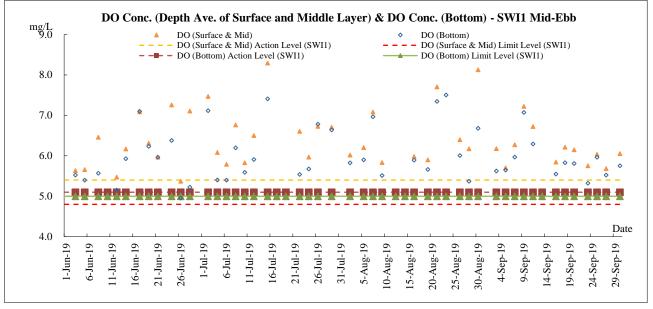
Marine Water Quality – CC4 Mid-ebb

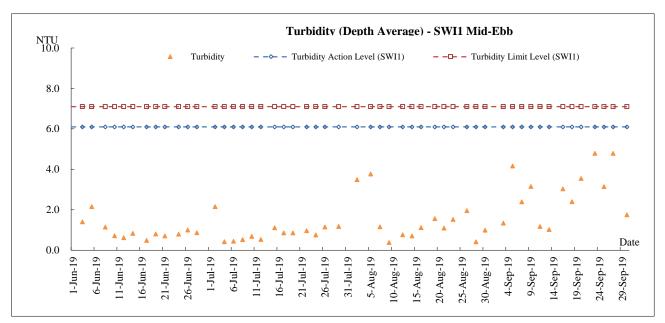


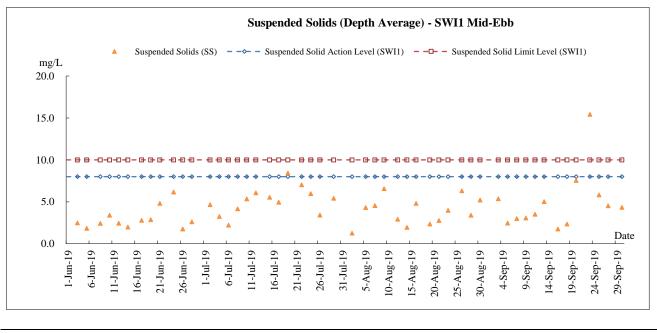




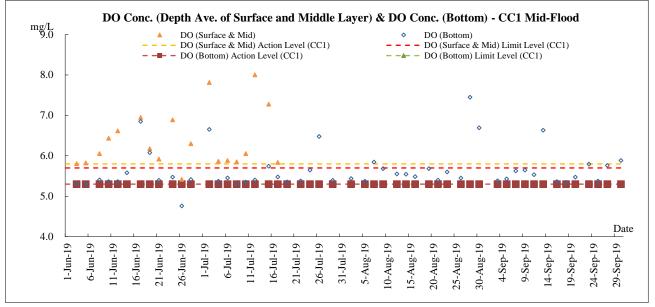
Marine Water Quality – CC13 Mid-ebb

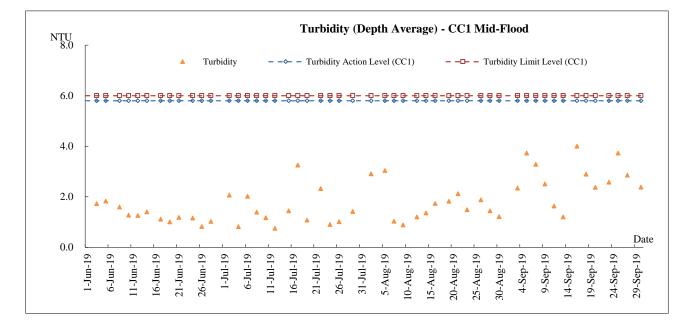


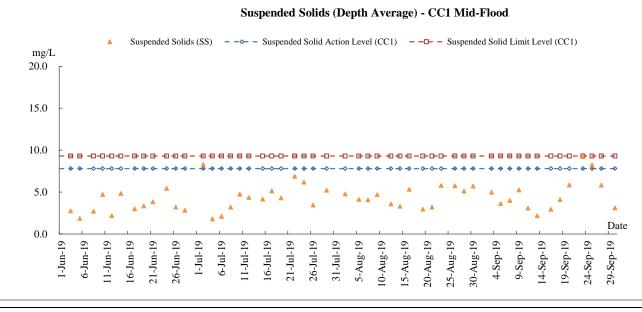




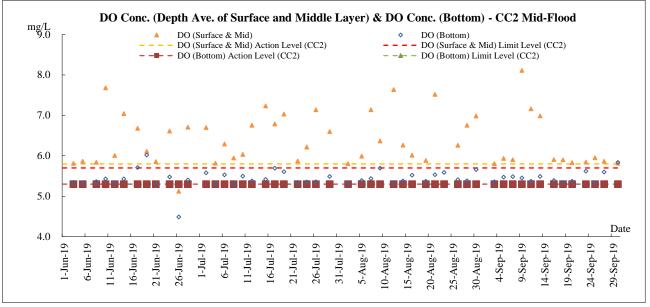
Marine Water Quality – SWI1 Mid-ebb

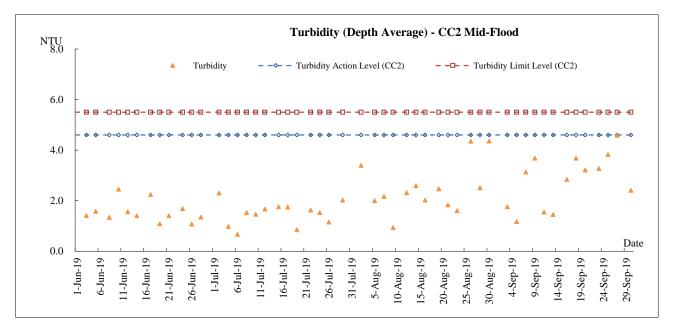


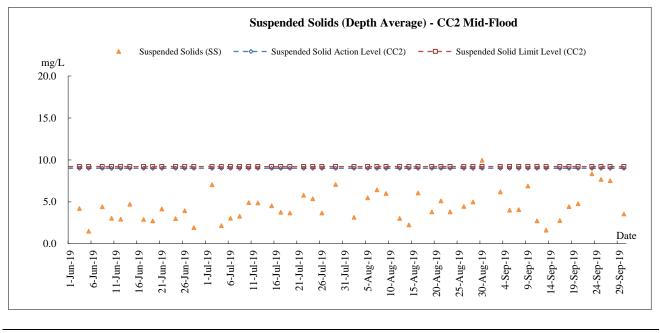




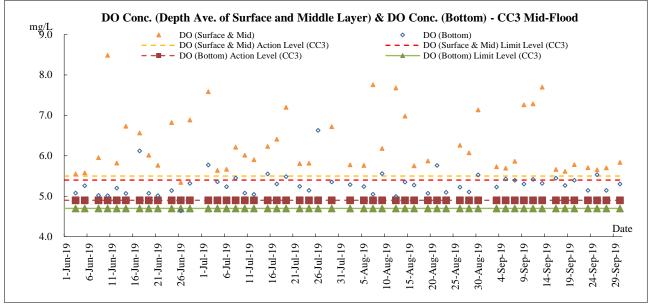
Marine Water Quality - CC1 Mid-Flood

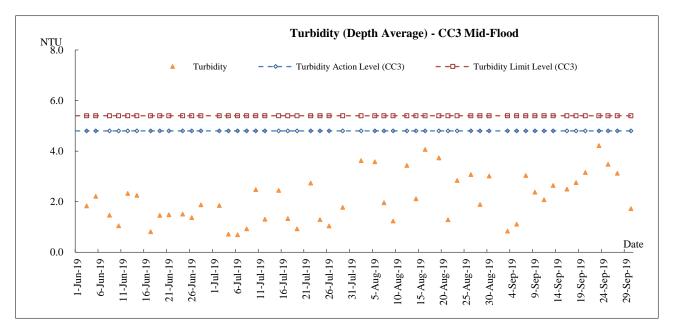


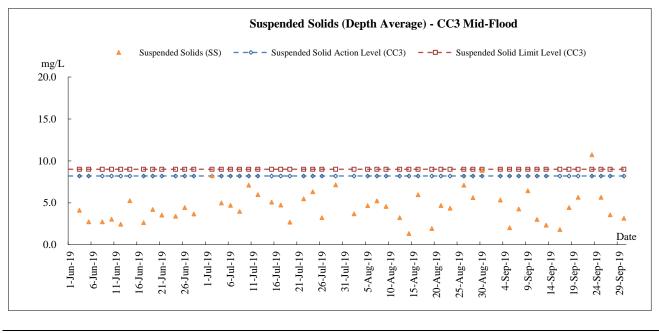




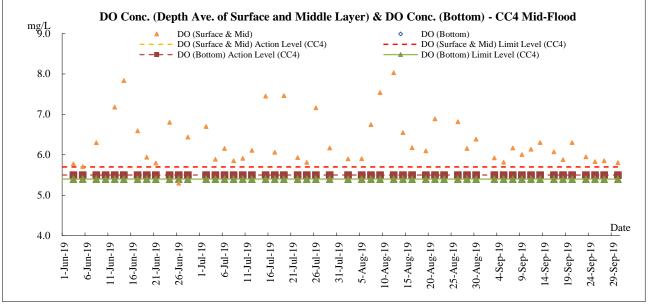
Marine Water Quality – CC2 Mid-Flood

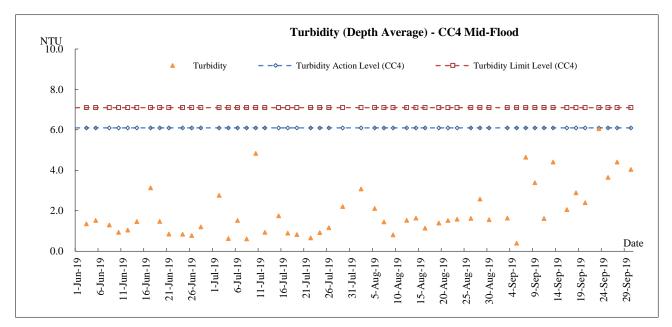


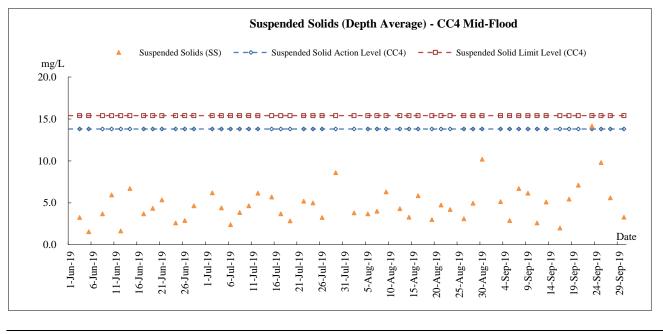




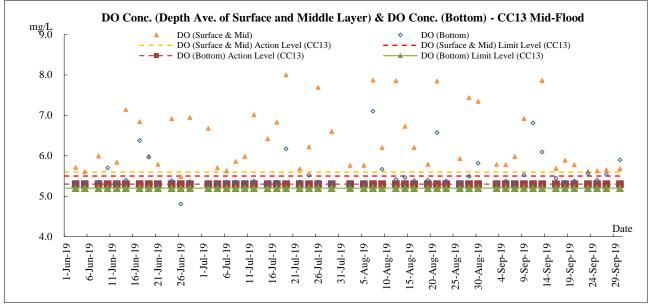
Marine Water Quality – CC3 Mid-Flood

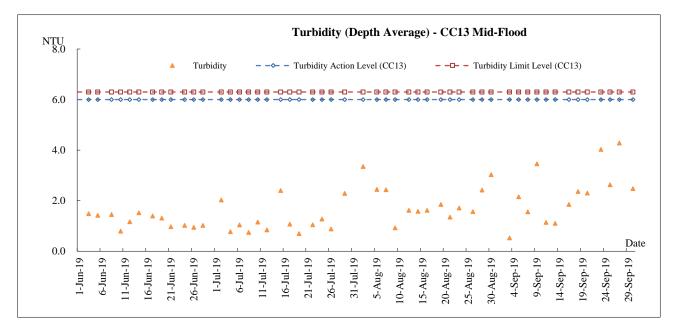


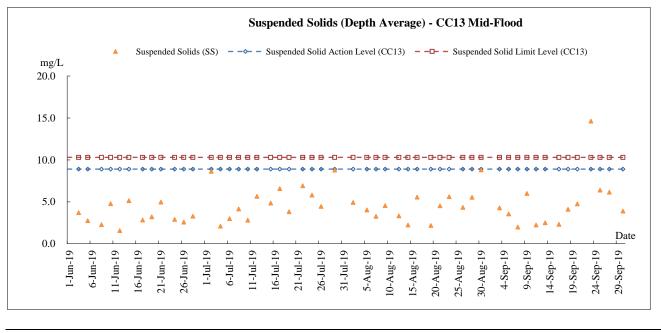




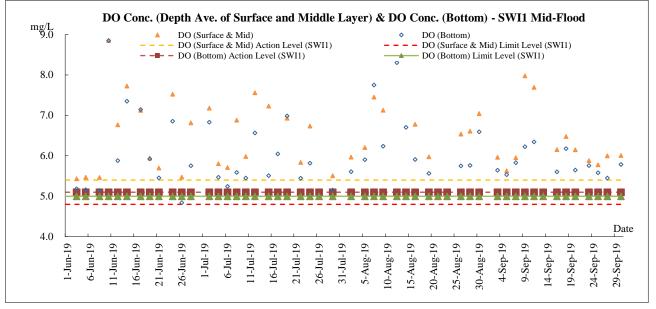
Marine Water Quality – CC4 Mid-Flood

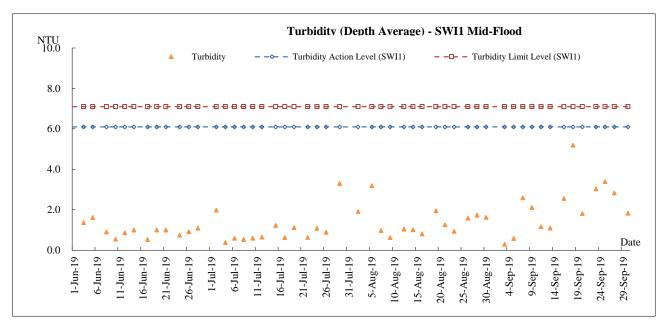


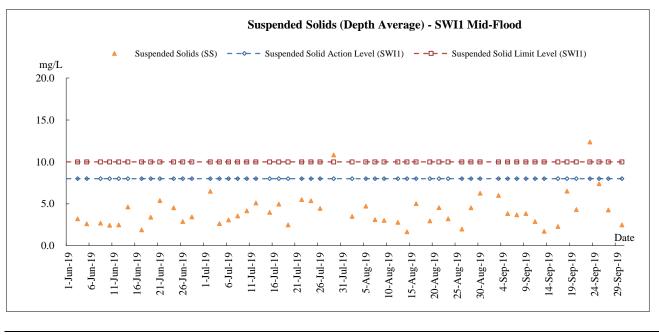




Marine Water Quality – CC13 Mid-Flood







Marine Water Quality – SWI1 Mid-Flood

Appendix J

Meteorological Data

 $Z: Jobs \\ 2018 \\ TCS00975 \\ (EDO-04-2018) \\ 600 \\ EM\&A \\ Report \\ Submission \\ Monthly \\ EM\&A \\ Report \\ September \\ 2019 \\ R0269 \\ v2.docx \\ Routher \\ September \\ 2019 \\ R0269 \\ v2.docx \\ Routher \\ September

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report – September 2019

				i	Tseung H	Kwan O Sta	tion
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction (degree)
1-Sep-19	Sun	Sunny periods and isolated showers in the afternoon	8.5	28.7	12.8	74.5	N/NE
2-Sep-19	Mon	Mainly fine tonight. Moderate east to northeasterly winds.	38.4	26.5	9.5	85	E/NE
3-Sep-19	Tue	Mainly fine tonight. Light to moderate southerly winds.	12.9	27.8	9.5	76.2	N/NE
4-Sep-19	Wed	Mainly fine and very hot apart from isolated showers.	62.2	26.3	9.8	86.5	N/NE
5-Sep-19	Thu	Temperatures will range between 28 and 33 degrees. Light winds.	31.8	27	8.3	83	E/NE
6-Sep-19	Fri	Mainly fine tonight. Moderate east to northeasterly winds.	0.2	28.3	10.2	79.5	E/NE
7-Sep-19	Sat	Sunny periods and isolated showers in the afternoon	0.4	29.9	7.2	76.2	N/NE
8-Sep-19	Sun	Very hot with sunny periods and isolated showers in the afternoon	0.4	29.9	6.1	74	S/SW
9-Sep-19	Mon	Mainly fine tonight. Light to moderate southerly winds.	0	29.4	5.3	75.2	S/SW
10-Sep-19	Tue	Mainly fine and very hot apart from isolated showers.	0	29.4	7.9	74	E/SE
11-Sep-19	Wed	Temperatures will range between 28 and 33 degrees. Light winds.	Trace	29.5	8.1	69.8	E/SE
12-Sep-19	Thu	Moderate east to northeasterly winds. Mainly fine.	0	Maintenance	Maintenance	Maintenance	Maintenance
13-Sep-19	Fri	Mainly fine tonight. Moderate east to northeasterly winds.	Trace	Maintenance	Maintenance	Maintenance	Maintenance
14-Sep-19	Sat	Mainly fine tonight. Light to moderate southerly winds.	Trace	29.6	4.2	71.2	SW
15-Sep-19	Sun	Mainly fine and very hot apart from isolated showers.	11	28.8	3	77.5	SW
16-Sep-19	Mon	Temperatures will range between 28 and 33 degrees. Light winds.	4.3	28.7	8	75	E/NE
17-Sep-19	Tue	Mainly fine tonight. Moderate east to northeasterly winds.	2.1	29.5	6.6	67.7	E/SE
18-Sep-19	Wed	Sunny periods and isolated showers in the afternoon	18	28.6	6.5	76.5	E/NE
19-Sep-19	Thu	Very hot with sunny periods and isolated showers in the afternoon	8.7	27.9	6.5	70	E/NE
20-Sep-19	Fri	Mainly fine tonight. Light to moderate southerly winds.	0	27.5	9.4	60.5	E/NE
21-Sep-19	Sat	Moderate east to northeasterly winds. Mainly fine.	0	27.6	7.2	62.7	E/NE
22-Sep-19	Sun	Mainly fine tonight. Light to moderate southerly winds.	0	27.4	11.3	42.5	NE
23-Sep-19	Mon	Moderate east to northeasterly winds. Mainly fine.	0	26.5	8.7	52.5	NE
24-Sep-19	Tue	Moderate east to northeasterly winds. Mainly fine.	0	26.4	7.6	71.2	E/NE
25-Sep-19	Wed	Mainly fine. Moderate east to northeasterly winds.	Trace	26.7	5.8	69	E/NE
26-Sep-19	Thu	Hot and dry in the afternoon. Light to moderate southwesterly winds.	0	26.2	5.9	71.5	E/NE
27-Sep-19	Fri	Moderate east to northeasterly winds. Mainly fine.	Trace	27.4	6.6	69	E/NE
28-Sep-19	Sat	Mainly fine. Moderate east to northeasterly winds.	0	27.4	5.9	67.5	E/NE
29-Sep-19	Sun	Moderate east to northeasterly winds.Mainly fine. Temperatures will range between 28 and 33	0	28.2	5.6	64.7	W/NW
30-Sep-19	Mon	degrees. Light winds.	0	29.6	6	64.7	W/NW

Appendix K

Waste Flow Table

Contract 1

Monthly Summary Waste Flow Table for <u>2018</u> (year)

Name of Person completing the record: Kanny Cho (EO)

Project : Cross Bay Link, TKO, Main Bridge and Associated Works

2	A	ctual Quantitie	s of Inert C&I	O Materials G	enerated Month	ly	Actua	al Quantities o	of C&D Waste	s Generated M	lonthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	$(in '000m^3)$	$(in '000m^3)$	$(in '000m^3)$	$(in '000m^3)$	(in '000m ³)	$(in '000m^3)$	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan											
Feb											
Mar											
Apr											
May											
Jun											
Sub-total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.837
Sep	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.305
Oct	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.065	0.000	0.000	0.008
Nov	0.000	0.000	0.000	0.000	0.000	0.320	0.000	0.000	0.000	0.000	0.009
Dec	0.000	0.000	0.000	0.000	0.276	0.000	0.000	0.000	0.000	0.000	0.004
Total	0.000	0.000	0.000	0.000	0.276	0.320	0.000	0.065	0.000	0.000	1.163

Contract No.: NE/2017/07

Note:

1. For non-inert portion of C&D material, assume the density of 1 m^3 general refuse is equal to 200 kg.

2. For inert portion of C&D material, assume 6 m^3 per each full-filled dump truck.

3. All values are round off to the third decimal places.

Monthly Summary Waste Flow Table for <u>2019</u> (year)

Name of Person completing the record: Calvin So (EO)

Project : Cross Bay Link, TKO, Main Bridge and Associated Works

Contract No.: NE/2017/07

	A	ctual Quantitie	es of Inert C&I	O Materials G	enerated Month	ıly	Actua	al Quantities of	of C&D Waste	es Generated M	Ionthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	$(in '000m^3)$	(in '000m ³)	$(in '000m^3)$	$(in '000m^3)$	(in '000m ³)	$(in '000m^3)$	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	$(in '000 m^3)$
Jan	0.845	0.000	0.000	0.000	0.845	0.000	0.000	0.023	0.000	0.000	0.077
Feb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.032	0.000	0.000	0.036
Mar	0.042	0.000	0.000	0.000	0.042	0.000	0.000	0.029	0.000	0.000	0.081
Apr	1.760	0.000	0.000	0.000	1.760	0.000	0.000	0.509	0.000	0.000	0.012
May	1.026	0.000	0.000	0.000	1.026	0.000	0.000	0.094	0.000	0.000	0.030
Jun	0.354	0.000	0.000	0.000	0.354	0.000	0.000	0.087	0.000	0.000	0.050
Sub-total	4.027	0.000	0.000	0.000	4.027	0.000	0.000	0.774	0.000	0.000	0.286
Jul	1.122	0.000	0.000	0.000	1.122	0.000	0.000	0.060	0.000	0.000	0.095
Aug	1.290	0.000	0.000	0.000	1.290	0.000	0.000	0.075	0.000	0.000	0.058
Sep	0.762	0.000	0.000	0.000	0.762	0.000	0.000	0.085	0.000	0.000	0.054
Oct											
Nov											
Dec											
Total	7.201	0.000	0.000	0.000	7.201	0.000	0.000	0.994	0.000	0.000	0.493

Note:

For non-inert portion of C&D material, assume the density of 1 m³ general refuse is equal to 200 kg.
 For inert portion of C&D material, assume 6 m³ per each full-filled dump truck.
 All values are round off to the third decimal places.

Contract 2

 $Z: Jobs \\ 2018 \\ TCS00975 \\ (EDO-04-2018) \\ 600 \\ EM\& A Report Submission \\ Monthly EM\& A Report \\ September 2019 \\ R0269v2. \\ docx \\ R0269v2. \\ R0269v2. \\ docx \\ R0269v2. \\ R$

		Actual Qua	ntities of Inert C&I	Materials Generat	ed Monthly			Actual Quantities	of C&D Wastes Ge	enerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Jan	0.358	0.000	0.358	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.357
Feb	0.022	0.000	0.000	0.000	0.022	0.000	0.000	0.000	0.000	0.000	0.728
Mar	0.106	0.000	0.000	0.000	0.106	0.000	0.000	0.000	0.000	0.000	0.229
Apr	3.013	0.000	0.000	0.000	3.013	0.000	0.000	0.000	0.000	0.000	0.013
May	3.621	0.000	0.000	0.000	3.621	0.000	0.000	0.000	0.000	0.000	0.022
June	1.127	0.000	0.000	0.000	1.127	0.000	0.000	0.000	0.000	0.000	0.019
SUB- TOTAL	8.247	0.000	0.358	0.000	7.889	0.000	0.000	0.000	0.000	0.000	1.368
Jul	2.468	0.000	0.000	0.000	1.879	0.589	0.000	0.000	0.000	0.000	0.031
Aug	4.401	0.000	0.000	0.000	4.262	0.140	0.000	0.000	0.000	0.000	0.004
Sep	1.912	0.000	0.000	0.046	1.866	0.000	0.000	0.000	0.000	0.000	0.009
Oct											
Nov											
Dec											
TOTAL	17.028	0.000	0.358	0.046	15.895	0.728	0.000	0.000	0.000	0.000	1.412

Monthly Summary Waste Flow Table for 2019 Year

Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Assume the loaded volume of a dump truck for internal inert waste transfer is 17.9 m³

Appendix L

Implementation Record of Water Mitigation Measures in the Reporting Month

Water Quality Mitigation Measures under NE/2017/07 (Contract 1)

Cut-off drainage had been installed in the sea front to divert the surface run-off to the treatment facilities.

De-silting facilities had been provided to treat the site generated water prior discharge.

Silt-curtain had beed provided to prevent muddy water overflow from the piling platform.

Silt-curtain had beed provided to prevent muddy water overflow from the piling platform.

Sand bags had been provide to prevent site runoff Treatment facilities was installed at site to treat the site overflow to the existing manhole. generated water prior discharge. Trench had been provided to divert the surface runoff to the Gap between the concrete block and the sea front was sealed de-silting facilities. up. Using tarpaulin cover the exposed area to prevent

generate turbidity runoff during rainstorm.

Water Quality Mitigation Measures under NE/2017/08 (Contract 2)

Appendix M

Implementation Schedule for Environmental Mitigation Measures

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
Dust Impa	ct (Contraction Phase)					
\$5.5.5.1	Regular watering under good site practice shall be adopted. In accordance with the "Control of Open Fugitive Dust Sources" (USEPA AP-42), watering once per hour on exposed worksites and haul road is recommended to achieve dust removal efficiency of 91.7%.	practices to control the dust impact on the nearby sensitive receivers to within the relevant criteria	All construction sites	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation
\$5.5.3	 The following dust suppression measures shall also be incorporated by the Contractor to control the dust nuisance throughout the construction phase: Any excavated or stockpiled dusty material shall be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed shall be wetted with water and cleared from the surface of roads; A stockpile of dusty material shall not extend beyond the pedestrian barriers, fencing or traffic cones; The load of dusty materials on a vehicle leaving a construction site shall be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet shall be provided at every discernible or designated vehicle exit point. The area where vehicle washing facilities and the exit point shall be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction site that is within 30m of a vehicle entrance or exit shall be kept clear 	practices to control the dust impact on the nearby sensitive receivers to within the relevant criteria	All construction sites	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 of dusty materials; Surfaces where any pneumatic or power driven drilling, cutting, polishing or other mechanical breaking operation takes place shall be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities shall be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting shall be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport shall be totally enclosed by impervious sheeting; Exposed earth shall be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 					
\$5.5.5.4	 For the barging facilities at the site compound, the following good site practice is required: All road surfaces within the barging facilities shall be paved. Vehicles should pass through designated wheel wash facilities. Continuous water spray shall be installed at the loading point. 	Good construction site practices to control the dust impact on the nearby sensitive receivers to within the relevant criteria	Site compound	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation
\$5.5.5.5	An audit and monitoring programme during the construction phase should be implemented by the Contractor to ensure that the construction dust impacts are controlled to within the HKAQO. Detailed requirements for the audit and monitoring programmes are given separately in the EM&A manual.	Monitor the 1-Hour and 24-Hr TSP levels at the representative dust monitoring stations to ensure compliance with relevant criteria throughout the construction period	Selected representative dust monitoring station (Drawing no. 209506/EMA/ AIR/001)	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
S6.6.4.3	 Good site practice and noise management techniques: Only well-maintained plant shall be operated on-site and the plant shall be serviced regularly during the construction programme; Machines and plant (such as trucks, cranes) that are in intermittent use shall be shut down between work periods or throttled down to a minimum; Plant known to emit noise strongly in one direction, where possible, shall be orientated so that the noise is directed away from nearby NSRs; Silencers or mufflers on construction equipment shall be properly fitted and maintained during the construction works; Mobile plant shall be sited as far away from NSRs as possible and practicable; and Material stockpiles, site office and other structures shall be effectively utilised, where practicable, to screen noise from on-site construction activities. 	To minimize construction noise impact arising from the Project on the affected NSRs	All construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
\$6.6.4.5-6	Use of quiet powered mechanical equipment and working methods	Reduce noise levels of plant items	All construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
S6.6.4.7	Install site hoarding at the site boundaries between noisy construction activities and NSRs	Reduce the construction noise levels at low-level zone of NSRs through partial screening	All construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
S6.6.4.8-11	Use of temporary or movable noise barriers and full enclosure for relatively fixed plant source	· · ·	For plant items listed in Table 6.7 and Appendix 6.1 of the EIA report at all construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
	Implement a noise monitoring programme under the EM&A manual	Monitor the construction noise levels at the selected representative locations	Selected representative noise monitoring stations (Drawing no. 209506/EMA/NS/001 & 209506/EMA/NS/002)	Contractor	Construction stage	• Annex 5, TM-EIAO
\$6.7.3.1	Partial enclosures along Road D9 and application of low noise surfacing material along CBL and Road D9	To minimize road traffic noise impact arising from the CBL and Road D9 on the affected NSRs	CBL and Road D9 (Drawing no. 209506/EMA/NS/003)	CEDD/ Contractor	During operational stage	• Annex 5, TM-EIAO

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
Water Qua	ality Impact (Contraction Phase)	·	·	•	•	
S8.6.4.3	 Marine Piling and Pile Excavation Works Marine piling and pile excavation works shall be undertaken in such a manner as to minimize re-suspension of sediments. Standard good practice measures shall be implemented, including the following requirements: All marine piling and pile excavation works shall be conducted within a floating single silt curtain. Mechanical closed grabs (with a size of5m3) shall be designed and maintained to avoid spillage and should seal tightly while being lifted. Barges shall have tight fitting seals to their bottom openings to prevent leakage of material. Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes. Loading of barges shall be controlled to prevent splashing of dredged material to the surrounding water. Barges shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation. Excess material shall be cleaned from the decks and exposed fittings of barges before the vessel is moved. Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action. All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash. The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site. 	To control potential impacts from marine piling and pile excavation works	During marine piling and pile excavation works	Contractor	Construction stage	TM-EIAO; and WPCO
\$8.6.4.4	 Construction Site Runoff In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN 1/94), construction phase mitigation measures, where appropriate, shall include the following: The design of efficient silt removal facilities shall be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The 	Control potential water quality impacts from construction site run-off	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 detailed design of the sand/silt traps shall be undertaken by the contractor prior to the commencement of construction; Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m3 shall be covered with tarpaulin or similar fabric during rainstorms. Measures shall be taken to prevent the washing away of construction materials, soil, silt or debris into any marine water bodies; All vehicles and plant shall be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities shall be provided at every construction site exit where practicable. Wash-water shall have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road shall be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains; Construction solid waste, debris and rubbish on site shall be collected, handled and disposed of properly to avoid water quality impacts; All fuel tanks and storage areas shall be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby; and Regular environmental audit on the construction site shall be carried out in order to prevent any malpractices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the meander, wetlands and fish ponds. 					
S8.6.4.6	 Sewage from workforce Portable chemical toilets and sewage holding tanks shall be provided for handling the construction sewage generated by the workforce; A licensed contractor shall be employed to provide 	Control potential water quality impacts from sewage	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.					
	Monitoring Implement a marine water quality monitoring programme under the EM&A on level of suspended solids (SS) / turbidity and dissolved oxygen (DO) shall be carried out.	Control potential water quality impacts from marine piling and pile excavation works	Selected monitoring stations (Drawing no. 209506/EMA/WQ/001)	Contractor	Construction station	TM-EIAO; andWPCO
S8.7.3.2	Operational phase – Runoff from road surface Proper drainage systems with silt traps and oil interceptors shall be installed, maintained and cleaned at regular intervals.	Control potential water quality impacts from road surface runoff	CBL and Road D9	Contractor	Construction and operational stage	TM-EIAO; andWPCO
Waste Mar	nagement (Contraction Phase)					
\$9.5.2	 Good Site Practices Recommendations for good site practices: Nomination of an approved personnel to be responsible for the implementation of good site practices, arrangements for collection and effective deposal to an appropriate facility of all wastes generated at the site; Training of site personnel in proper waste management and chemical handling procedures; Provision of sufficient waste disposal points and regular collection for disposal; Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Centre; Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and Implementation of a recording system for the amount of wastes generated/recycled and disposal sites. 	Good site practices which ensure waste generated during construction phase is properly managed	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
\$9.5.4	 Waste Reduction Measures Recommendations for achieving waste reduction include: On-site reuse of any material excavated as far as practicable; Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of material and their proper disposal; Collection of aluminum cans and waste paper by individual collectors during construction should be encouraged. Separately labelled recycling bins should also be provided to segregate these wastes from other general refuse by the workforce; Recycling of any unused chemicals and those with remaining functional capacity as far as possible; Prevention of the potential damage or contamination to the construction materials though proper storage and good site practices; Planning and stocking of construction materials should be made carefully to minimize amount of waste generated avoid unnecessary generation of waste; and Training on the importance of appropriate waste management procedures, including waste reduction, reuse and recycling should be provided to workers. 	To reduce amount of waste generated during construction phase	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005
89.5.5-6	 Storage, Collection and Transportation of Waste Recommendations for proper storage include: Waste such as soil should be handled and stored well to ensure secure containment; Stockpiling area should be provided with covers and water spraying system to prevent materials from being washed away and to reduce wind-blown litter; and Different locations should be designated to stockpile each material to enhance reuse. With respect to the collection and transportation of waste from the construction works, the following is recommended: Remove waste in a timely manner; Employ trucks with cover or enclosed containers for waste transportations; Obtain relevant waste disposal permits from the appropriate 	To reduce the environmental implications of improper storage	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 authorities; and Disposal of waste should be done at licensed waste disposal facilities. 					
\$9.5.8-11	 C&D Materials The following mitigation measures shall be implemented in handling the waste: Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; Disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation; Standard formwork or pre-fabrication order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Metal hoarding should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage; and The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites should be considered for such segregation and storage. 	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005 ETWB TCW No. 06/2010
\$9.5.13	 Excavated Marine Sediments During transportation and disposal of the excavated marine sediments, the following measures shall be taken to minimize potential environmental impacts: Bottom opening of barges should be fitted with tight fitting 	To minimize potential impacts on water quality	All construction sites where applicable	Contractor	Construction stage	• ETWBTC (Works) No. 34/2002

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved; Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation; Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP; and Barges should not be filled to a level that would cause the overflow of materials or sediment-laden water during loading or transportation. 					
S9.5.14-17	For those processes which generate chemical waste, the Contractor shall identify any alternatives that generate reduced quantities or even no chemical waste, or less dangerous types of chemical waste.	To ensure proper management of chemical waste	All construction sites	Contractor	Construction stage	• Waste Disposal (Chemical Waste) (General) Regulation;
	If chemical waste is produced at the construction site, the Contractor is required to register with EPD as chemical waste producers. Chemical waste shall be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows. Containers used for storage of chemical wastes shall:					 Code of Practice on the Packaging, Labelling and Storage of Chemical Waste
	• Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed;					
	 Have a capacity of less than 450 L unless the specification have been approved by EPD; and Display a label in English and Chinese in accordance with 					
	 Display a laber in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulations. The storage area for chemical wastes shall: 					
	• Be clearly labelled and used solely for the storage of chemical wastes;					
	 Be enclosed on at least 3 sides; Have an impermeable floor and bunding of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest; 					

		Objectives of the		Implementation		Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	 Have adequate ventilation; Be covered to prevent rainfall entering (water collected within the bund must be tested and disposed as chemical waste, if necessary); and Be arranged so that incompatible materials are adequately separated. Disposal of chemical waste shall: Be via a licensed waste collector; and Be to a facility licensed to receive chemical waste, such as the CWTC which also offers a chemical waste collection service and can supply the necessary storage containers; or 					Je Acmeveu	
\$9.5.18	Be to a re-user of the waste, under approval from EPD. Sewage An adequate number of portable toilets shall be provided for the on-site construction workers. Any waste shall be transferred to a sewage treatment works by a licensed collector.	Proper handling of sewage from worker to avoid odour, pest and litter impacts	All construction sites	Contractor	Construction stage	• Waste Disposal Ordinance (Cap. 54)	
S9.5.19	<u>General Refuse</u> General refuse generated on-site shall be stored in enclosed bins or compaction units separately from construction and chemical wastes. Recycling bins shall also be provided to encourage recycling. A reputable waste collector shall be employed by the Contractor to remove general refuse from the site on a daily basis separately from the construction and chemical wastes. Burning of refuse on construction sites is prohibited by law.	Minimize production of general refuse and avoid odour, pest and litter impacts	All construction sites	Contractor	Construction stage	• Waste Disposal Ordinance (Cap. 54)	
S10.7.2.4	Good Site Practices – The integrity and effectiveness of all silt curtains shall be regularly inspected. Effluent monitoring should be incorporated to make sure that the discharged effluent from construction sites meets the relevant effluent discharge guidelines.	To minimize potential impacts on water quality and protect marine communities within Junk Bay	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO	
S10.7.2.5	Site runoff control – For works on land, standard site runoff control measures will be established and strictly enforced to ensure that discharge of contaminated or silt-laden runoff into marine waters is minimized.	To minimize potential impacts on water quality and protect marine communities within Junk Bay	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO	
\$10.9.1.1	The marine water quality monitoring programme recommended in Chapter 8 of this EIA report and this EMIS would also serve to protect the marine communities inside Junk Bay.	To minimize potential impacts on water quality and protect marine	Selected monitoring stations (Drawing no. 209506/EMA/WQ/001)	Contractor	Construction stage	TM-EIAO; andWPCO	

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
		communities within Junk Bay				
\$11.6.2.2	Good Site Practices: – The integrity and effectiveness of all silt curtains should be regularly inspected. Effluent monitoring shall be incorporated to make sure that the discharged effluent from construction sites meets the relevant effluent discharge guidelines.	To minimize potential impacts on water quality and protect fishery resources	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO
\$11.6.2.3	Site runoff control - For works on land, standard site runoff control measures will be established and strictly enforced to ensure that discharge of contaminated or silt-laden runoff is minimized.	To minimize potential impacts on water quality and protect fishery resources	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO
\$11.8.1.1	The marine water quality monitoring programme recommended in Chapter 8 of this EIA report and this EMIS would also serve to protect the fishery resources.	To minimize potential impacts on water quality and protect fishery resources	Selected monitoring stations (Drawing no. 209506/EMA/WQ/001)	Contractor	Construction stage	TM-EIAO; andWPCO
Landscape	and Visual	•				
S13.8.1.2	 The following mitigation measures should be implemented in the construction stage CM1 – The construction area and contractor's temporary works areas should be minimized to avoid impacts on adjacent landscape. CM2 – Reduction of construction period to practical minimum. CM3 – Topsoil, where identified, should be stripped and stored for re-use in the construction of the soft landscape works, where the soil material meets acceptable criteria and where practical. The Contract Specification shall include storage and reuse of topsoil as appropriate. CM4 – Existing trees on boundary of the Project Area shall be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection stage). 	Minimize effects of landscape and visual impacts	Work site/during construction	Funded and implemented by CEDD	Construction stage	

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 CM5 – Trees unavoidably affected by the works shall be transplanted where practical. Trees should be transplanted straight to their final receptor site and not held in a temporary nursery. A detailed Tree Transplanting Specification shall be provided in the Contract Specification, if applicable. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme. CM6 – Advance screen planting to proposed roads and associated structures. CM7 – hydroseeding or sheeting of soil stockpiles with visually unobtrusive material (in earth tone). CM8 – Screening of construction works by hoardings/noise barriers around works area in visually unobtrusive colours, to screen Works. CM9 – Control night-time lighting and glare by hooding all lights. CM10 – Ensure no run-off into water body adjacent to the Project Area. CM11 – Avoidance of excessive height and bulk of buildings and structures 					
\$13.8.1.2	OM1 – Compensatory tree planting for all felled trees shall be provided to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006.	landscape and visual impacts	Within the site boundary of the proposed works	and LCSD.	construction and operational stages	
\$13.8.1.2	 The following mitigation measures should be implemented in the operational stage: OM2 – A continuous belt of screen planting along the roads. Planting of the belt of trees shall be carried out as advance works ahead of other site formation and building works. OM3 – Maximise soft landscape of the site, where space permits, roadside berms /slope treatment works should be created. OM4 – During detailed design, refine structure layout to create a planting strips along the roads to enhance greenery. OM5 – Use appropriate (visually unobtrusive and 	Minimize effects of landscape and visual impacts	CBL and Road D9/during construction and operation	Funded and implemented by CEDD. Maintained by CEDD and LCSD.	construction and operational	

		Objectives of the		Implementation		Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	 non-reflective) building materials and colours, and aesthetic design in built structures. OM6 – Streetscape elements (e.g. paving, signage, street furniture, lighting etc.) shall be sensitively designed in a manner that responds to the local context, and minimizes potential negative landscape and visual impacts. Lighting units should be directional and minimize unnecessary light spill. OM7 – Avoidance of excessive height and bulk of buildings and structures 						
Landfill G				C	Const. :	T 1011 C	
S14.7.5	 Precautionary measures The following guidance has been extracted from the EPD's Landfill Gas Hazard Assessment Guidance Note Guidance to ensure a robust and comprehensive set of measures to protect workers are provided. During all works, safety procedures shall be implemented to minimize the risks of fires and explosions, asphyxiation of workers (especially in confined space) and toxicity effects resulting from contact with contaminated soils and groundwater. Safety officers who are specifically trained with regard to LFG and leachate related hazards and the appropriate actions to take in adverse circumstances shall be present on all worksites throughout the works. All personnel who work on site and all visitors to the site shall be made aware of the possibility of ignition of gas in the vicinity of the works, the possible presence of contaminated water and the need to avoid physical contact with it. Those staff who work in, or have responsibility for "at risk" areas, including all excavation workers, supervisors and engineers working within the consultation zone, shall receive appropriate training on working in areas susceptible to LFG hazards. Enhanced personal hygiene practices including washing thoroughly after working and eating only in "clean" areas shall be adopted where contact may have been made with any groundwater which is thought to be contaminated with 	Health and safety of the workers	Construction sites within 250m Consultation Zone (Drawing no. 209506/EMA/LFG/001)	Contractor	Construction stage	• Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97)	

		Objectives of the		Implementation		Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	leachate.					
	• Ground level construction plant shall be fitted with vertical exhausts at least 0.6m above ground level and with spark arrestors.					
	• During piping assembly or ducting construction, all valves/seals shall be closed immediately after installation. As construction progresses, all valves/seals should be closed as installed to prevent the migration of gases through the pipeline/conduit. All piping /ducting shall be capped at the end of each working day.					
	• Mobile offices, equipment stores, mess rooms etc. shall be located on an area which has been proven to be gas free (by survey with portable gas detectors) and ongoing monitoring shall be carried out to ensure that these areas remain gas free. Alternatively, such buildings shall be raised clear of the ground. If buildings are raised clear of the ground, the minimum, clear separation distance (as measured from the					
	highest point on the ground surface to the underside of the lowest floor joist) shall be 500mm. However, in this case, it is highly recommended that all the site offices, equipment stores and mess rooms should be located outside the 250m Consultation Zone.					
	• Smoking and naked flames shall be prohibited within confined spaces. "No Smoking" and "No Naked Flame" notices in Chinese and English shall be posted prominently around the construction site. Safety notices shall be posted warning of the potential hazards.					
	• Welding, flame-cutting or other hot works may only be carried out in confined spaces when controlled by a "permit to work" procedure, properly authorized by the Safety Office. The permit to work procedure shall set down clearly the requirements for continuous monitoring of methane,					
	carbon dioxide and oxygen throughout the period during which the hot works are in progress. The procedure shall also require the presence of an appropriately qualified person who shall be responsible for reviewing the gas measurements					
	as they are made, and who shall have executive responsibility for suspending the work in the event of					

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 unacceptable or hazardous conditions. Only those workers who are appropriately trained and fully aware of the potentially hazardous conditions which may arise shall be permitted to carry out hot works in confined areas. During the construction works, adequate fire extinguishers and breathing apparatus sets shall be made available on site and appropriate training given in their use. 					
S14.7.6	Landfill gas monitoring	Health and safety of the	Confined space of	Contractor	Construction	• Landfill Gas
	 The following monitoring shall be undertaken when construction works are carried out in confined space within the 250m Consultation Zone: The works area shall be monitored for methane, carbon dioxide and oxygen using appropriately calibrated portable gas detection equipment. The monitoring requirements and procedures specified in Paragraphs 8.23 to 8.28 of EPD's Guidance Note shall be followed. The monitoring frequency and areas to be monitored shall be set down prior to commencement of the works. Depending on the results of the measurements, actions required will vary. As a minimum these shall encompass the actions specified in Table 14.6 of the EIA report. When portable monitoring equipment is used, the frequency and areas to be monitored should be set down prior to commencement of the works either by the Safety Officer or by an appropriately qualified person. All measurements shall be made with the monitoring tube located not more than 10mm from the surface. A standard form, detailing the location, time of monitoring and equipment used together with the gas concentrations measured, shall be used when undertaking manual monitoring to ensure that all relevant data are recorded. If methane (flammable gas) or carbon dioxide concentrations are in excess of the trigger levels or that of oxygen is below 	workers	construction sites within 250m Consultation Zone		stage	Hazard Assessment Guidance Note (EPD/TR8/97)
	the level specified in the Emergency Management in the following section, then evacuation shall be initiated.					
S14.7.8-9	Emergency management In the event of the trigger levels specified in Table 14.6 of the EIA report being exceeded, a person, such as the Safety	Health and safety of the workers	Confined space of construction sites within 250m Consultation Zone	Contractor	Construction stage	• Landfill Gas Hazard Assessment

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	Officer, shall be nominated, with deputies, to be responsible for dealing with any emergency which may occur due to LFG.					Guidance Note (EPD/TR8/97)
	In an emergency situation the nominated person, or his deputies, shall have the necessary authority and shall ensure that the confined space is evacuated and the necessary works implemented for reducing the concentrations of gas.					
\$14.7.16	 Protection measures - Operational phase An assumed presence of landfill gas shall be adopted at all times by maintenance workers; all maintenance workers inspecting any manhole shall be fully trained in the issue of LFG hazard; any manhole which is large enough to permit to access to personnel shall be subject to entry safety procedure; Code of Practice on Safety and Health at Work in Confined Spaces shall be followed to ensures compliance with the Factories and Industrial Undertakings (Confined Spaces) Regulations of the Factories and Industrial Undertakings Ordinance; a strictly regulated "work permit procedure" shall be implemented and the relevant safety procedures must be rigidly followed; and Adequate communication with maintenance staff shall be maintained with respect to LFG. 	Health and safety of the workers	Utility maintenance areas within 250m Consultation Zone/during operational period	Utility companies	Operational stage	 Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97); and Code of Practice on Safety and Health at Work in Confined Space
S14.7.17	General recommended precautionary & protection measures – Operational phase LGF surveillance exercise shall be undertaken by the utility companies at the utility manholes/inspection chambers. The surveillance exercise shall be undertaken for the duration of the site occupancy, or until such time that EPD agree that surveillance is no longer required and this shall be based on all the available monitoring data for methane, carbon dioxide and oxygen.	Health and safety of the workers	Utility maintenance areas within 250m Consultation Zone/during operational period	Utility companies	Operational stage	 Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97); and Code of Practice on Safety and Health at Work in Confined Space