

JOB NO.: TCS00975/18

CEDD CONTRACT AGREEMENT NO. EDO/04/2018 -ENVIRONMENTAL TEAM FOR CROSS BAY LINK, TSEUNG KWAN O

MONTHLY ENVIRONMENTAL MONITORING & AUDITING REPORT OF THE PROJECT – OCTOBER 2019

PREPARED FOR CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT (CEDD)

Date	Reference No.	Prepared By	Certified By
11 November 2019	TCS00975/18/600/R0290v2	Http	Am

Martin Li (Environmental Consultant)

Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks
1	6 November 2019	First Submission
2	11 November 2019	Amended against IEC's comments

Acuity Sustainability Consulting Limited – Nature & Technologies (HK) Limited Joint Venture

Our ref: ASCL-2018009

AECOM Asia Company Limited 8/F., Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, New Territories, Hong Kong

Attention: Mr. Conrad NG

12 November 2019

Dear Sir,

Contract No. NE/2017/07 Cross Bay Link, Tseung Kwan O – Main Bridge and Associated Works Monthly EM&A Report for October 2019

I refer to the email of the ET concerning the revised Monthly EM&A Report for October 2019 (Version 2) with Ref. No. TCS00975/18/600/R0290v2. We have no adverse comment on it and verify the captioned according to section 1.9 of Environmental Permit with No. EP-459-2013.

Yours faithfully,

Li Wai Ming Kevin Independent Environmental Checker

cc. Mr. T.W. TAM (ETL) Ms. Sheri S.Y. LEUNG (CEDD)

EXECUTIVE SUMMARY

- ES01 Civil Engineering and Development Department (hereafter referred as "CEDD") is the Project Proponent and the Permit Holder of the Project Cross Bay Link, Tseung Kwan O (hereinafter referred as "the Project") which is a Designated Project to be implemented under Environmental Permit number EP-459/2013 (hereinafter referred as "the EP-459/2013" or "the EP").
- ES02 AUES was awarded the CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O (hereinafter called "the Service Contract"). The Services under the Service Contract is to provide environmental monitoring and audit (EM&A) services for the Works Contracts pursuant to the requirement of Environmental Team (ET) under the Approved EM&A Manual to ensure that the environmental performance of the Works Contracts comply with the requirement specified in the EM&A Manual and EIA Report of Agreement No. CE 43/2008 (HY) Cross Bay Link, Tseung Kwan O - Investigation and other relevant statutory requirements.
- ES03 To facilitate management, the proposed Works of the project was divided into two Civil Engineering and Development Department (CEDD) Works contracts included Contract 1 (Contract No. NE/2017/07) and Contract 2 (Contract No. NE/2017/08). The date for commencement of Contract 1 was 3rd December 2018 while the date for commencement of Contract 2 was 17th January 2019.
- ES04 According to the Approved Environmental Monitoring & Audit (EM&A) Manual, air quality, noise and water quality monitoring are required to be conducted during the construction phase of the Project. As part of the EM&A programme, baseline monitoring shall undertake before the Project construction work commencement to determine the ambient environment condition. The baseline air quality, background noise and water quality monitoring has been carried out between 21st September 2018 and 13th November 2018 at the designated and interim locations. The baseline monitoring report under the EP-459/2013 has been compiled by the ET and verified by Independent Environmental Checker (hereinafter the "IEC") prior submitted to EPD on 19th November 2018 for endorsement.
- ES05 This is the 11^{th} Monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from 1^{st} to 31^{st} October 2019 (hereinafter 'the Reporting Period').

CONSTRUCTION WORKS CONDUCTED AT THE REPORTING MONTH

- ES06 The major construction activities of Contract 1 (Contract No. NE/2017/07) undertaken in this Reporting Period are:-
 - Piling works at Portion II
 - Welding of steel bracket for precast shell installation at Portion II
 - Fabrication of bottom deck panels, top deck panels and diaphragm panels at Portion II
 - Precast shell fabrication at Portion II
 - Precast shell erection at Portion II
- ES07 The major construction activities of Contract 2 (Contract No. NE/2017/08) undertaken in this Reporting Period are:-
 - Pre-drill Work at Portion VI
 - Bored Pile Work at Portion III, VI & VII
 - Excavation Work at Portion VI
 - Pre-bored socket H pile at Portion VI
 - Drainage Installation (Portion III)

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES08 Environmental monitoring activities under the EM&A program in this Reporting Period are summarized in the following table.

Table ES-4 Summary Environmental Monitoring Activities Undertaken in the Reporting Period

Issues	Enviro	Sessions	
Air Quality	1-Hour TSF	15	
Air Quality	24-Hr TSP		5
Construction Noise	Leq (30min) Daytime	4
Construction Noise	Leq (15min	5	
Water Quality	Marine Water Sampling ^(Note 1)		13
	Contract 1	ET Regular Environmental Site Inspection	5
Increation (Audit		Joint site audit with Project Consultant and IEC	1
Inspection / Audit		ET Regular Environmental Site Inspection	5
	Contract 2	Joint site audit with Project Consultant and IEC	1

Note 1 Total sessions are counted by monitoring days

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES09 No air quality monitoring exceedance was recorded in this Reporting Period. No daytime construction noise monitoring exceedance was recorded while five (5) evening additional construction noise monitoring exceedances were recorded in this Reporting Period. For marine water quality monitoring, four (4) Action Level exceedances for the parameter Suspended Solid were recorded in the reporting period. NOEs were issued to notify EPD, IEC, the Contractor and the Project Consultant. The statistics of environmental exceedance and investigation of exceedance are summarized in the following table.

Table ES-5	Summary Environmental Monitoring Parameter Exceedance in the Reporting
	Period

Environmental Monitoring Action		Action	Limit	Event & Action	
Issues	Parameters	Level	Level	Investigation Results	Corrective Actions
Air Quality	1-Hour TSP	0	0		
Air Quality	24-Hr TSP	0	0		
Construction	Leq _{30min} Daytime	0	0		
Noise	Leq _{15min} Evening	0	5	Not project related	NA
Water Quality	DO	0	0		
(Marine Water)	Turbidity	0	0		
	SS	4	0	Not project related	NA

ES10 For the marine water and evening construction noise monitoring exceedances recorded in the reporting period, investigations were carried out and it was considered that the exceedances recorded are unlikely caused by the Project.

ENVIRONMENTAL COMPLAINT

ES11 No environmental complaint was recorded in this Reporting Period for the Project. The statistics of environmental complaint are summarized in the following table.

 Table ES-6
 Summary Environmental Complaint Records in the Reporting Period

Departing		Environn	Related with		
Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	the Works Contract(s)
1 – 31 October	1	0	1	NA	NA
2019	2	0	0	NA	NA

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES12 No environmental summons or prosecutions was received in this Reporting Period for the Project. The statistics of environmental summons or prosecutions are summarized in the following tables.

Table ES-7 Summary Environmental Summons Records in the Reporting Period

Departing		Environn	Related with		
Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	the Works Contract(s)
1 – 31 October	1	0	0	NA	NA
2019	2	0	0	NA	NA

Table ES-8 Summary Environmental Prosecutions Records in the Reporting Period

Departing		Environm	Related with		
Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	the Works Contract(s)
1 – 31 October	1	0	0	NA	NA
2019	2	0	0	NA	NA

REPORTING CHANGE

ES13 There is no reporting change made for this monthly report.

SITE INSPECTION BY EXTERNAL PARTIES

ES14 No site inspection was undertaken by AFCD within the Reporting Period. However, EPD inspection was undertaken on 31 October 2019.

FUTURE KEY ISSUES

- ES15 Due to the coming month is dry and windy season for Hong Kong, the Contractors were reminded that all the works to undertaking must be fulfill environmental statutory requirement, especially construction dust come from working sites of the Project.
- ES16 In regards to the marine works, special attention should be paid on excavation works for the bridge pier foundations underway in which water quality mitigation measures such as erection of silt curtain should be properly implemented and maintained.

Table of Contents

1.	INTRODU	JCTION	3
	1.1	PROJECT BACKGROUND	3
	1.2	REPORT STRUCTURE	3
2.	PROJECT	GORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION	5
	2.1	PROJECT ORGANIZATION	5
	2.2	CONSTRUCTION PROGRESS	6
	2.3	SUMMARY OF ENVIRONMENTAL SUBMISSIONS	7
3.	SUMMAR	RY OF ENVIRONMENTAL MONITORING PROGRAMMES AND	
	REQUIRE		9
	3.1	GENERAL	9
	3.2	MONITORING PARAMETERS	9
	3.3	MONITORING LOCATIONS	9
	3.4	MONITORING FREQUENCY AND PERIOD	10
	3.5	MONITORING EQUIPMENT	11
	3.6	MONITORING PROCEDURES	12
	3.7	DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	15
	3.8	DATA MANAGEMENT AND DATA QA/QC CONTROL	17
4.	AIR QUA	LITY MONITORING	18
	4.1	GENERAL	18
	4.2	RESULTS OF AIR QUALITY MONITORING IN THE REPORTING MONTH	18
5.	CONSTRU	UCTION NOISE MONITORING	19
	5.1	GENERAL	19
	5.2	RESULTS OF NOISE MONITORING	19
6.	WATER O	QUALITY MONITORING	21
	6.1	GENERAL	21
	6.2	RESULTS OF WATER QUALITY MONITORING	21
7.	WASTE N	IANAGEMENT	26
· •	7.1	GENERAL WASTE MANAGEMENT	26
	7.2	RECORDS OF WASTE QUANTITIES	26
0			
8.	SITE INS 8.1	REQUIREMENTS	27 27
	8.2	FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	27
9.		L GAS MONITORING	29
	9.1	GENERAL REQUIREMENT	30
	9.2	LIMIT LEVELS AND EVENT AND ACTION PLAN	30
	9.3	LANDFILL GAS MONITORING	30
10.		MENTAL COMPLAINT AND NON-COMPLIANCE	32
	10.1	ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	32
11.	IMPLEM	ENTATION STATUS OF MITIGATION MEASURES	33
	11.1	GENERAL REQUIREMENTS	33
	11.2	TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	33
	11.3	IMPACT FORECAST	34
12.	CONCLU	SIONS AND RECOMMENDATIONS	35
	12.1	Conclusions	35
	12.2	RECOMMENDATIONS	35

1

LIST OF TABL	ES
TABLE 2-1	DOCUMENTS SUBMISSION UNDER ENVIRONMENTAL PERMIT REQUIREMENT
TABLE 2-2	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE PROJECT WORKS (CONTRACT 1)
TABLE 2-3	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE PROJECT WORKS (CONTRACT 2)
TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	DESIGNATED AIR QUALITY MONITORING LOCATION RECOMMENDED IN EM&A MANUAL
TABLE 3-3	DESIGNATED CONSTRUCTION NOISE MONITORING LOCATION RECOMMENDED IN EM&A MANUAL
TABLE 3-4	INTERIM ALTERNATIVE LOCATION FOR AIR QUALITY AND NOISE MONITORING
TABLE 3-5	LOCATION OF WATER QUALITY MONITORING STATION
TABLE 3-6	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-7	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-8	WATER MONITORING EQUIPMENT
TABLE 3-9	TESTING METHOD AND REPORTING LIMIT OF THE CHEMICAL ANALYSIS
TABLE 3-10	ACTION AND LIMIT LEVELS FOR AIR QUALITY
TABLE 3-11	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-12	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	1-HOUR AND 24-HOUR TSP AIR QUALITY IMPACT MONITORING RESULTS
TABLE 5-1	CONSTRUCTION NOISE IMPACT MONITORING RESULTS
TABLE 6-1	RESULT SUMMARY OF DEPTH AVERAGE (SURFACE & MIDDLE LAYER) OF DO (MG/L)
TABLE 6-2	RESULT SUMMARY OF BOTTOM DEPTH OF DO (MG/L)
TABLE 6-3	RESULT SUMMARY OF DEPTH AVERAGE OF TURBIDITY (NTU)
TABLE 6-4	RESULT SUMMARY OF DEPTH AVERAGE OF SUSPENDED SOLID (MG/L)
TABLE 6-5	Result Summary of Depth Average of Temperature (°C)
TABLE 6-6	RESULT SUMMARY OF DEPTH AVERAGE OF SALINITY (PPT)
TABLE 6-7	RESULT SUMMARY OF DEPTH AVERAGE OF PH
TABLE 6-8	SUMMARY OF WATER QUALITY EXCEEDANCE
TABLE 7-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
TABLE 7-2	SUMMARY OF QUANTITIES OF C&D WASTES
TABLE 8-1	SITE OBSERVATIONS OF CONTRACT 1
TABLE 8-2	SITE OBSERVATIONS OF CONTRACT 1
TABLE 9-1	ACTIONS IN THE EVENT OF LANDFILL GAS BEING DETECTED IN EXCAVATIONS
TABLE 9-2	SUMMARY OF LANDFILL GAS MEASUREMENT RESULTS
TABLE 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION

TABLE 11-1 ENVIRONMENTAL MITIGATION MEASURES IN THE REPORTING MONTH

LIST OF APPENDICES

APPENDIX A	PROJECT LAYOUT PLAN
APPENDIX B	PROJECT ORGANIZATION CHART & CONTACT DETAILS OF KEY PERSONNEL
APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
APPENDIX D	MONITORING LOCATION (AIR QUALITY, NOISE AND WATER QUALITY)
APPENDIX E	EVENT AND ACTION PLAN
APPENDIX F	IMPACT MONITORING SCHEDULE OF THE REPORTING MONTH AND COMING MONTH
APPENDIX G	CALIBRATION CERTIFICATES OF EQUIPMENT AND THE ACCREDITATION LABORATORY CERTIFICATE

- APPENDIX H DATABASE OF MONITORING RESULTS
- APPENDIX I GRAPHICAL PLOTS OF MONITORING RESULTS
- APPENDIX J METEOROLOGICAL DATA
- APPENDIX K WASTE FLOW TABLE
- APPENDIX L IMPLEMENTATION RECORD OF WATER MITIGATION MEASURES IN THE REPORTING MONTH
- APPENDIX M IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES (ISEMM)

1. INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department (hereafter referred as "CEDD") is the Project Proponent and the Permit Holder of the Project Cross Bay Link, Tseung Kwan O (hereinafter referred as "the Project") which is a Designated Project to be implemented under Environmental Permit number EP-459/2013 (hereinafter referred as "the EP-459/2013" or "the EP").
- 1.1.2 AUES was awarded the CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O (hereinafter called "the Service Contract"). The Services under the Service Contract is to provide environmental monitoring and audit (EM&A) services for the Works Contracts pursuant to the requirement of Environmental Team (ET) under the Approved EM&A Manual to ensure that the environmental performance of the Works Contracts comply with the requirement specified in the EM&A Manual and EIA Report of Agreement No. CE 43/2008 (HY) Cross Bay Link, Tseung Kwan O Investigation and other relevant statutory requirements.
- 1.1.3 To facilitate management, the proposed Works of *Cross Bay Link, Tseung Kwan O* (hereinafter called "the Project") was divided into two Civil Engineering and Development Department (CEDD) Works contracts included *Contract 1 (Contract No. NE/2017/07)* and *Contract 2 (Contract No. NE/2017/08)*. The details of each contract Works are summarized below and the delineation of each contract is shown in *Appendix A*.

Contract 1 (Contract No. NE/2017/07)

- (i) 400m section of marine viaducts of steel deck sections including the Eternal Arch Bridge;
- (ii) 600m section of marine viaducts of concrete deck sections;
- (iii) An E&M Plantroom and associated building services; and
- (iv) E&M provisions.

Contract 2 (Contract No. NE/2017/08)

- (i) Elevated deck structures along Road D9;
- (ii) A 210m section of cycle track and footpath ramp bridge;
- (iii) A 630m section of noise semi-enclosure covering the entire length of Road D9, and;
- (iv) Lift, staircase, modification of existing seawall along Road D9, landscaping and miscellaneous works.
- 1.1.4 The date for commencement of Contract 1 is 3^{rd} December 2018 while the date for commencement of Contract 2 is 17^{th} January 2019.
- 1.1.5 As part of the EM&A programme, baseline monitoring shall be undertaken before the Project construction work commencement to determine the ambient environmental condition. The baseline air quality, background noise and water quality monitoring has been carried out between **21**st September 2018 and 13th November 2018 at the designated and interim locations. The baseline monitoring report under the EP-459/2013 has been compiled by the ET and verified by Independent Environmental Checker (hereinafter the "IEC") prior submitted to EPD on 19th November 2018 for endorsement.
- 1.1.6 This is the 11^{th} Monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from I^{st} to 31^{th} October 2019 (hereinafter 'the Reporting Period').

1.2 REPORT STRUCTURE

- 1.2.1 The Environmental Monitoring and Audit (EM&A) Monthly Report is structured into the following sections:-
 - Section 1IntroductionSection 2Project Organization and Construction ProgressSection 3Summary of Impact Monitoring RequirementsSection 4Air Quality MonitoringSection 5Construction Noise Monitoring

Section 6	Water Quality Monitoring
Section 7	Waste Management
Section 8	Site Inspections
Section 9	Landfill Gas Monitoring
Section 10	Environmental Complaints and Non-Compliance
Section 11	Implementation Status of Mitigation Measures
Section 12	Conclusions and Recommendations

2. PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION

2.1 **PROJECT ORGANIZATION**

2.1.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

The Project Consultant

- 2.1.2 The Project Consultant (hereinafter "the Consultant") is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Consultant with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors', ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation

The Contractor(s) of Works Contract(s)

- 2.1.3 There will be one contractor for each individual works contract. The Contractor(s) should report to the Consultant. The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.1.4 ET shall not be in any way an associated body of the Contractor(s) and employed by the Permit Holder (i.e., CEDD) to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitable qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. ET shall report to the Project Proponent and the duties shall include:
 - Conduct baseline monitoring, impact monitoring and post-construction monitoring and the associated in-situ and laboratory tests to monitor various environmental parameters as required in the EM&A Manual and the EP
 - Analyze the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications

- Audit environmental conditions on site
- Report on the environmental monitoring and audit results to EPD, the Consultant, the IEC and Contractor(s) or their delegated representatives
- Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
- Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
- Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
- Adhere to the procedures for carrying out complaint investigation
- Set up a dedicated web site where the project information, all environmental monitoring and audit data and reports described in Condition 5.2 of the EP, and all finalized submissions and plans required under the EP are to be placed for public inspection
- Upload the environmental monitoring results to the dedicated web site in accordance with requirements of the EP and EM&A Manual
- To carry out the Operational Phase Landfill Gas monitoring during effluent drainage system maintenance for one year

Independent Environmental Checker (IEC)

- 2.1.5 IEC will be employed for this Project. The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor(s) or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 7 years' experience in EM&A and have relevant professional qualifications. The duty of IEC should be:
 - Provide proactive advice to the Project Consultant and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the Project Consultant and Project Proponent on a monthly basis

2.2 CONSTRUCTION PROGRESS

2.2.1 3-month rolling construction program of the each Works Contract is enclosed in *Appendix C*; and the major construction activities undertaken in the Reporting Period is presented in below sub-sections.

Contract 1 (Contract No. NE/2017/07)

- 2.2.2 The major construction activities of Contract 1 undertaken in this Reporting Period are:-
 - Piling works at Portion II
 - Welding of steel bracket for precast shell installation at Portion II
 - Fabrication of bottom deck panels, top deck panels and diaphragm panels at Portion II
 - Precast shell fabrication at Portion II
 - Precast shell erection at Portion II

Contract 2 (Contract No. NE/2017/08)

- 2.2.3 The major construction activities of Contract 2 undertaken in this Reporting Period are:-
 - Pre-drill Work at Portion VI
 - Bored Pile Work at Portion III, VI & VII
 - Excavation Work at Portion VI
 - Pre-bored socket H pile at Portion VI
 - Drainage Installation (Portion III)

2.3 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.3.1 The required documents list below shall be to submit to EPD for retention:

Table 2-1 Documents Submission under Environmental Permit Requirement

EP condition	Submission to EPD	Requirement	Situation
	construction of the	no later than 1 month prior to the commencement of construction of the Project	
	the Community Liaison	At least 1 month before the commencement of construction of the Project	-
	Organization of Main	No later than 2 weeks before the commencement of construction of the Project	
2.5	(WMP)	No later than 1 month before commencement of construction of the Project	
	Plan (LSMP)	No later than 1 month before commencement of construction of the Project	 LSMP was submitted on 1 Nov 2018
	Landfill Gas Hazards	No later than 1 month before commencement of construction of the Project	 QLGHA of the Project was submitted to EPD on 1 November 2018

- 2.3.2 Upon completed baseline monitoring, a Baseline Monitoring Report was verified by IEC on 19 November 2018 and submitted to EPD on that day for endorsement.
- 2.3.3 The notification of Project dedicated web site to EPD was made on 9 January 2019 (http://www.envcbltko.hk/).
- 2.3.4 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project are presented in *Table 2-2*.

		License/Permit Status			
Item	Description	Permit no./	Valid Period		
Item	Description	Account no./ Ref. no.	From	То	Status
1	Notification pursuant to Air pollution Control (Construction Dust) Regulation				Notified on 11 July 2018
2	Chemical Waste Producer Registration	5213-839-C1232 -19	28 Aug 2018	N/A	
3	Water Pollution Control Ordinance - Discharge	WT00032842-20 18	1 Mar 2019	31 Mar 2024	Valid until 31 March 2024
	License	WT00034178-20 19	15 Jul 2019	31 Jul 2024	Valid until 31 July 2024
4	BillingAccountforDisposalofConstruction Waste	7031412	24 Jul 2018	N/A	
	BillingAccountforDisposalofConstructionWaste(throughVesseldelivering)	7032666	10 Jul 2019	10 Oct 2019	Application of renewal was submitted on 2 Oct 2019
5	Marine Dumping Permit	EP-MD-20-080	30 Oct 2019	29 Apr 2020	Valid until 29 Apr 2020
6	Construction Noise Permit	GW-RE0759-19	22 Sep 2019	30 Oct 2019	Valid until 30 Oct 2019

Table 2-2 Status of Environmental Licenses and Permits of the Project Works (Contract 1)

Remark: Evening marine work at Portion II for Contract 1 was scheduled from 2 – 5, 7 – 12, 14 – 19, 21 - 26 and 28-30 October 2019

	License/Permit Status				
Item	Description	Permit no./ Va		Period	
Item	Description	Account no./ Ref. no.	From	То	Status
1	Notification pursuant to Air pollution Control (Construction Dust) Regulation				Notified on 31 October 2018
2	Chemical Waste Producer Registration	5213-839-B2500 -04	22 Nov 2018	N/A	
3	Water Pollution Control Ordinance - Discharge License	WT00034244-20 19	8 Jul 2019	31 Jul 2024	Valid until 31 July 2024
4	BillingAccountforDisposalofConstruction Waste	7032702	8 Nov 2018	N/A	
5	Marine Dumping Permit	EP/MD/20-073	24 Oct 2019	23 Apr 2020	Valid until 30 September 2019
6	Construction Noise Permit	GW-RE0683-19	4 Sep 2019	30 Oct 2019	Valid until 30 Oct 2019

Remark: No evening work and night work was carried out for Contract 2

3. SUMMARY OF ENVIRONMENTAL MONITORING PROGRAMMES AND REQUIREMENTS

3.1 GENERAL

3.1.1 The Environmental Monitoring and Audit Programmes and requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project. A summary of EM&A programmes and requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

3.2.1 Monitoring parameters of air quality, noise and water quality are summarized in *Table 3-1*.

tuble 5.1 Summary of Effect Requirements				
Environmental Issue	Parameters			
Air Quality	1-hour TSP by Real-Time Portable Dust Meter; and24-hour TSP by High Volume Air Sampler			
Noise	 Leq (30min) in six consecutive Leq(5 min) between 07:00-19:00 on normal weekdays Supplementary information for data auditing, statistical results such as L₁₀ and L₉₀ shall also be obtained for reference. 			
Water Quality	 In-situ measurement – Dissolved Oxygen (DO) concentration (mg/L) & saturation (%), pH, Salinity (mg/L), Temperature (°C) and Turbidity (NTU); and Laboratory analysis – SS (mg/L) 			

Table 3-1 Summary of EM&A Requirements

3.3 MONITORING LOCATIONS

Air Quality and Construction Noise

3.3.1 According to the Approved EM&A Manual Section 5.4 and Section 6.3, three (3) representative air sensitive receivers (ASR) and four (4) representative noise sensitive receivers were designated as monitoring stations. The designated air quality and noise monitoring locations are listed in *Table 3-2* and *Table 3-3*, and illustrated in *Appendix D*.

Table 3-2 Designated Air Quality Monitoring Location recommended in EM&A Manual

ID	Location in the EM&A Manual Currently Situation	
AM1	Tung Wah Group of Hospitals Aided Primary School & Secondary School	Not yet construct
AM2	Lohas Park Stage 2 (Planned Development in Area 86)	Under Construction
AM3	Lohas Park Stage 3 (Planned Development in Area 86)	Under Construction

Table 3-3 Designated Construction Noise Monitoring Location recommended by EM&A Manual

ID	Location	Currently Situation
CNMS-1	Lohas Park Stage 1(Planned Development in Area 86, Package 5) (Southeast facade)	Under Construction
CNMS-2	Lohas Park Stage 1 (Planned Development in Area 86, Package 6) (Southeast facade)	Under Construction
CNMS-3	Lohas Park Stage 3 (Planned Development in Area 86,Package 11) (West facade)	Under Construction
CNMS-4	Tung Wah Group of Hospitals Aided Primary School & Secondary School (Southwest facade)	Not yet construct

3.3.2 As observed and confirmed by ET and IEC during the joint site visit on 29th August 2018, the designated air quality and noise monitoring locations are under construction or yet to construct. It is considered that these designated locations are not appropriate to perform air quality and noise monitoring. In this regard, alternative locations were proposed as interim arrangement to carry out air quality and noise monitoring before occupation of the designated monitoring location. A letter enclosed with the alternative location proposal and IEC verification (Our Ref: TCS00975/18/300/L0038) was sent to EPD on 19th October 2018 and the proposal was agreed by EPD. Therefore, air quality and construction noise impact monitoring would be performed at the

agreed alternative locations until the designated sensitive receivers occupied and granted the premises.

3.3.3 The agreed alternative monitoring location for impact air quality and noise monitoring are summarized in Table 3-4 and illustrated in *Appendix D*.

Location ID	Monitoring Parameter	Location		
AM4	1-Hour TSP Air Quality	Podium of Lohas Park Phase 2A (Le Prestige)		
AM5	24-Hour TSP Air Quality	Boundary of Site Office near Junction of Wan Po Road and Wan O Road		
CNMS-5	Noise $(L_{eq}, L_{10} \& L_{90})$	Podium of Lohas Park Phase 2A (Le Prestige)		

Table 3-4Interim alternative location for air quality and noise monitoring

Remark: Since 24-Hour TSP Air Quality monitoring is not granted at AM4 Lohas Park Phase 2A, the 24-Hour TSP monitoring was therefore proposed at AM5 which is located at the boundary of the project site office.

Water Quality

3.3.4 According to Table 7.1 of the approved EM&A Manual Section 7.4, two Control Stations (C3 & C4), six (6) sensitive receivers (CC1, CC2, CC3, CC4, CC13 & SWI1) and one (1) Gradient station (I1) are recommended to perform water quality monitoring. Details and coordinate of these water quality monitoring stations are described in *Table 3-5* and the locations is shown in *Appendix D*.

Station	Coord	linates	Description	
Station	Easting	Northing	Description	
CC1	843201	816416	Sensitive Receiver – Coral Sites at Chiu Keng Wan	
CC2	844076	817091	Sensitive Receiver – Coral Sites at Junk Bay	
CC3	844606	817941	Sensitive Receiver – Coral Sites at Junk Island	
CC4	845444	815595	Sensitive Receiver – Coral Sites at Fat Tong Chau West	
CC13	844200	817495	Sensitive Receiver – Coral Sites at Junk Bay near Chiu Keng Wan	
SWI1	845512	817442	Sensitive Receiver – Tseung Kwan O Salt Water Intake	
C3	843821	816211	Control Station (Ebb Tide) – within Junk Bay	
C4	844621	815770	Control Station (Flood Tide) – within Junk Bay	
I1	844602	817675	Gradient Station – in between Lam Tin Tunnel (LTT) and CBL	

3.4 MONITORING FREQUENCY AND PERIOD

3.4.1 To according with the approved *EM&A Manual*, impact monitoring requirements are presented as follows.

<u>Air Quality Monitoring</u>

- 3.4.2 Air quality impact monitoring frequency is as follows:
 - Once every 6 days of 24-hour TSP and 3 times of 1-hour TSP monitoring; during course of works throughout the construction period

Construction Noise Monitoring

- 3.4.3 Construction noise monitoring frequency is as follows:
 - One set of Leq_(30min) measurements in a weekly basis between 07:00 and 19:00 hours on normal weekdays during course of works as throughout the construction period
 - If construction works are extended to include works during the hours of 1900-0700, additional weekly impact monitoring shall be carried out during evening and night-time works. Applicable permits under the NCO shall be obtained by the Contractor.

Water Quality (Marine Water) Monitoring

- 3.4.4 Marine water impact monitoring frequency is as follows:
 - Three days a week, at mid ebb and mid flood tides during course of pile excavation works for the bridge pier foundations underway. Moreover, the intervals between 2 consecutive sets of monitoring day shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

<u>Air Quality Monitoring</u>

3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50)*, Appendix *B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to prove that the instrument is capable of achieving a comparable results to the HVS. The instrument should be calibrated regularly, and the 1-hour sampling shall be determined on yearly basis by the HVS to check the validity and accuracy of the results measured by direct reading method. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory. The equipment used for air quality monitoring is listed in *Table 3-6*.

	Equipment	Model
24-hour TSP	High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170
	Calibration Kit	TISCH Model TE-5025A (S/N: 438320)
1- hour TSP	Portable Dust Meter	Laser Dust Monitor Sibata LD-3B Laser Dust Monitor (S/N: 3Y6503)

 Table 3-6
 Air Quality Monitoring Equipment

Noise Monitoring

3.5.2 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in ms⁻¹. Noise equipment will be used for impact monitoring is listed in *Table 3-7*.

 Table 3-7
 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	Rion NL-52 (S/N:00464681)
Calibrator	Rion NC-74 (S/N:34657231)
Portable Wind Speed Indicator	Anemometer AZ Instrument 8908

Water Quality Monitoring

- 3.5.3 For water quality monitoring, the equipment should fulfill the requirement under the Approved *EM&A Manual Section 7.2.* The requirement is summarized below:
 - **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable, weatherproof dissolved oxygen measuring instrument completed with cable, sensor, comprehensive operation manuals, and should be operable from a DC power source. It should be capable of measuring: dissolved oxygen levels in the range of 0-20 mg/L and 0-200% saturation; and a temperature of 0-45 degrees Celsius. It should have a membrane electrode with automatic temperature compensation complete with a cable of not less than 35 m in length. Sufficient stocks of spare electrodes and cable should be available for replacement where necessary.
 - *Turbidity Measurement Equipment* The instrument shall be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment shall use a DC power source. It shall have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
 - *Salinity Measurement Instrument* A portable salinometer capable of measuring salinity in the range of 0-40 ppt should be provided for measuring salinity of the water at each monitoring location.

- *Water Depth Detector* A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. A detector affixed to the bottom of the works boat, if the same vessel is to be used throughout the monitoring programme, is preferred.
- **Positioning Device** hand-held or boat-fixed type digital Global Positioning System (GPS) with way point bearing indication or other equipment instrument of similar accuracy, should be provided and used during water quality monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- Water Sampling Equipment A water sampler, consisting of a transparent PVC or glass cylinder of not less than two liters, which can be effectively sealed with cups at both ends, should be used. The water sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.

3.5.4 Equipment used for water quality impact monitoring is listed in *Table 3-8*.

Equipment	Model		
A Digital Global Positioning System	GPS12 Garmin		
Water Depth Detector	Eagle Sonar CUDA 300		
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends		
Thermometer & DO meter			
pH meter	YSI ProDSS Digital Sampling System Water Quality Meter		
Turbidimeter	(S/N: 15H102620/15H103928)		
Salinometer			
Sample Container	High density polythene bottles (provided by laboratory)		
Storage Container	'Willow' 33-litter plastic cool box with Ice pad		

Table 3-8Water Monitoring Equipment

3.6 MONITORING PROCEDURES <u>Air Quality</u>

1-hour TSP

- 3.6.1 The 1-hour TSP monitor was a brand named "*Sibata LD-3 Laser Dust monitor Particle Mass Profiler & Counter*" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.

24-hour TSP

- 3.6.2 The equipment used for 24-hour TSP measurement is TISCH, Model TE-5170 TSP High Volume Air Sampler, which complied with *EPA Code of Federal Regulation, Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:
 - (a.) An anodized aluminum shelter;
 - (b.) A 8"x10" stainless steel filter holder;
 - (c.) A blower motor assembly;
 - (d.) A continuous flow/pressure recorder;
 - (e.) A motor speed-voltage control/elapsed time indicator;
 - (f.) A 7-day mechanical timer, and
 - (g.) A power supply of 220v/50 Hz
- 3.6.3 For HVS for 24-hour TSP monitoring, the HVS is mounted in a metallic cage with a top for protection and also it is sat on the existing ground or the roof of building. The flow rate of the HVS between 0.6m³/min and 1.7m³/min will be properly set in accordance with the manufacturer's instruction to within the range recommended in *EPA Code of Federal*

Regulation, Appendix B to Part 50. Glass Fiber Filter 8" x 10" of TE-653 will be used for 24-Hour TSP monitoring and would be supplied by laboratory. The general procedures of sampling are described as below:-

- A horizontal platform with appropriate support to secure the samples against gusty wind should be provided;
- No two samplers should be placed less than 2 meters apart;
- The distance between the sampler and an obstacle, such as building, must be at least twice the height that the obstacle protrudes above the sample;
- A minimum of 2 meters of separation from any supporting structure, measured horizontally is required;
- Before placing any filter media at the HVS, the power supply will be checked to ensure the sampler work properly;
- The filter paper will be set to align on the screen of HVS to ensure that the gasket formed an air tight seal on the outer edges of the filter. Then filter holder frame will be tightened to the filter hold with swing bolts. The holding pressure should be sufficient to avoid air leakage at the edge.
- The mechanical timer will be set for a sampling period of 24 hours (00:00 mid-night to 00:00 mid-night next day). Information will be recorded on the field data sheet, which would be included the sampling data, starting time, the weather condition at current and the filter paper ID with the initial weight;
- After sampling, the filter paper will be collected and transfer from the filter holder of the HVS to a sealed envelope and sent to a local HOKLAS accredited laboratory for quantifying.
- 3.6.4 All the sampled 24-hour TSP filters will be kept in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C, for six months prior to disposal.
- 3.6.5 The HVS used for 24-hour TSP monitoring will be calibrated in two months interval for in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A) to establish a relationship between the follow recorder meter reading in cfm (cubic feet per minute) and the standard flow rate, Qstd, in m³/min. Motor brushes of HVS will be regularly replaced. The calibration certificates of the air quality monitoring equipment used for the impact monitoring and the HOKLAS accredited certificate of laboratory was provided in Appendix G.

Noise Monitoring

- 3.6.6 As referred to in the Technical Memorandum (TM) issued under the NCO, sound level meters in compliance with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications shall be used for carrying out the noise monitoring. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.
- 3.6.7 All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq_(30 min) in six consecutive Leq_(5 min) measurements will be used as the monitoring parameter for the time period between 07:00-19:00 hours on weekdays throughout the construction period.
- 3.6.8 The sound level meter will be mounted on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield will be fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point would normally be at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point would be at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.

- 3.6.9 Immediately prior to and following each noise measurement the accuracy of the sound level meter will be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration level from before and after the noise measurement agrees to within 1.0 dB.
- 3.6.10 Noise measurements will not be made in fog, rain, wind with a steady speed exceeding 5m/s or wind with gusts exceeding 10m/s. The wind speed will be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.6.11 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis. The calibration certificates of noise monitoring equipment used for the impact monitoring was provided in Appendix G.

Marine Water Quality

- 3.6.12 Marine water quality monitoring would be conducted at all designated locations in accordance with Table 7.1 of the approved EM&A Manual. The procedures of water sampling, in-situ measurement and chemical analysis are described as below:
 - A Global Positioning System (GPS) will be used to ensure that the correct location was selected prior to sample collection. A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.
 - The marine water sampler will be lowered into the water body at a predetermined depth. The trigger system of the sampler is activated with a messenger and opening ends of the sampler are closed accordingly then the sample of water is collected.
 - During the sampling, the sampling container will be rinsed to use a portion of the marine water sample before the water sample is transferred to the container. Upon sampling completion, the container will be sealed with a screw cap.
 - Before the sampling process, general information such as the date and time of sampling, weather condition and tidal condition as well as the personnel responsible for the monitoring will be recorded on the monitoring field data sheet.
 - In-situ measurement including water temperature, turbidity, dissolved oxygen, salinity, pH and water depth will be recorded at the identified monitoring station and depth. At each station, marine water samples will be collected at three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m. Samples at 1m below water surface and 1m above sea bottom will be collected when the water depth is between 3m and 6m. And sample at mid-depth will be taken when the water depth is below 3m.
 - For the in-situ measurement, two consecutive measurements of sampling depth, temperature, dissolved oxygen, salinity, turbidity and pH concentration will be measured at the sea. The YSI ProDSS Multifunctional Meter will be retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set is more than 25% of the value of the first reading, the reading is discarded and further readings is taken.
 - Marine water sample will be collected by using a water sampler. The high-density polythene bottles will be filled after the water sample collected from the sea. Before the water sample being fills into the sampling bottles, the sampling bottles will be pre-rinsed with the same water sample. The sampling bottles will then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to HOKLAS accredited laboratory for the chemical analysis as followed APHA *Standard Methods for the Examination of Water and Wastewater* 19ed 2540D, unless otherwise specified.
- 3.6.13 Before each round of monitoring, the dissolved oxygen probe will be calibrated by wet bulb method; a zero check in distilled water will be performed with the turbidity and salinity probes. The turbidity probe also will be checked with a standard solution of known NTU and known value of the pH standard solution were used to check the accuracy of pH value before each

monitoring day. Moreover, all in-situ measurement equipment used marine water monitoring will be calibrated at three months interval.

Laboratory Analysis

3.6.14 All water samples included the duplicate samples, was tested with chemical analysis as specified in the EM&A Manual by a HOKALS accredited laboratory - ALS Technichem (HK) Pty Ltd. The chemicals analysis method and reporting limit show *Table 3-9*.

Table 3-9	Testing Method and Reporting Limit of the Chemical Analysis

Parameter	ALS Method Code	In-house Method Reference (1)	Reporting Limit
Total Suspended Solids	EA025	APHA 2540D	1 mg/L

Note: 1.

The exact method shall depend on the laboratory accredited method. APHA = Standard Methods for the Examination of Water and Wastewater by the American Public Health Association.

3.6.15 The determination works will start within 24 hours after collection of the water samples or within the holding time as advised by the laboratory.

Meteorological Information

- 3.6.16 The meteorological information including wind direction, wind speed, humidity and temperature etc. of impact monitoring is extracted from the closest Tseung Kwan O Hong Kong Observatory Station. Moreover, the data of rainfall and air pressure would be extracted from King's Park Station.
- 3.6.17 For marine water quality monitoring, tidal information would be referred to tide gauge at Tai Miu Wan.

3.7 DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.7.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. A summary of the Action/Limit (A/L) Levels for air quality, construction noise and water quality are shown in *Tables 3-10*, *3-11* and *3-12* respectively.

Monitoring Station	Action Lev	vel (µg /m ³)	Limit Level (µg/m ³)					
Monitoring Station	1-Hour TSP	24-Hr TSP	1-Hour TSP	24-Hr TSP				
AM4	278	NA	500	NA				
AM5	NA	190	NA	260				
Note: 1-Hour & 24-Hr TSP of Action Level = $(Average Baseline Results \times 1.3 + Limit level)/2$								

 Table 3-10
 Action & Limit Levels of Air Quality (1-Hour & 24-Hr TSP)

Table 3-11 Action and Limit Levels for Construction Noise, dB(A)

Monitoring Location	Action Level	Limit Level				
	Time Period: 0700-1900 hours on normal weekdays (Leq30min)					
CNMS-5	When one or more documented complaints are received	75 dB(A)				
CININIS-5	Time Period: 1900-2300 hours on all days (Leq15min)					
	When one or more documented complaints are received	55 dB(A)				
Remarks:						
	e monitoring will be resumed at the d IS4 once they are available and permissio	lesignated locations CNMS-1, CNMS-2, m are granted;				

The designated locations CNMS-1, CNMS-2 and CNMS-3 are located at residential building which are still under construction, Limit Level of 75dB(A) will be adopted until they are occupied;

- 3. The designated location CNMS-4 is located at planned school and still not yet to construction. When the school occupied and operated, Limit Level of 70dB(A) should be adopted and should be reduced to 65dB(A) during examination period; and
- 4. If construction works are required during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority shall be followed.

Table 3-12Action and Limit Levels for Water Quality

Monitoring	Depth Average of SS (mg/L)								
Station	Actio	on Level	Li	mit Level					
CC1	7.8	OR 120% of upstream control	9.3	OR 130% of upstream control					
CC2	9.0	station at the same	9.2	station at the same					
CC3	8.2	tide of the same day (Control Station C3 at Ebb tide and	9.0	tide of the same day (Control Station C3 at Ebb tide and					
CC4	13.8	Control Station C4 at	15.4	Control Station C4 at					
CC13	8.9	Flood tide), whichever is higher	10.3	Flood tide) , whichever is higher					
SWI1	8	mg/L		10 mg/L					
		Dissolved Oxy	gen (mg/L)						
Monitoring	Depth Average of S	Surface and Mid-depth	<u> </u>	Bottom					
Location	Action Level	Limit Level	Action Leve						
CC1	5.8	5.7	5.3	5.2					
CC2	5.8	5.7	5.3	5.1					
CC3	5.5	5.4	4.9	4.7					
CC4	5.7	5.7	5.5	5.4					
CC13	5.6	5.5	5.3	5.2					
SWI1	5.4	4.8	5.1	5.0					
Monitoring		Depth Average of T	urbidity (NTU)					
Location	Actio	on Level	Limit Level						
CC1	5.8	OR 120% of	6.0	OR 130% of					
CC2	4.6	upstream control station at the same	5.5	upstream control station at the same					
CC3	4.8	tide of the same day	5.4	tide of the same day					
CC4	6.1	(Control Station C3 at Ebb tide and	7.1	(Control Station C3 at Ebb tide and					
CC13	6.0	Control Station C4 at Flood tide),	6.3	Control Station C4 at Flood tide),					
SWI1	6.1	whichever is higher	7.1	whichever is higher					

3.7.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix E*.

3.8 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.8.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database properly maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.
- 3.8.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4. AIR QUALITY MONITORING

4.1 GENERAL

- 4.1.1 In the Reporting Period, 1-Hour TSP and 24-Hr TSP of air quality monitoring were respectively performed at interim alternative monitoring locations AM4 and AM5. The air quality monitoring schedule is presented in *Appendix F*.
- 4.1.2 Valid calibration certificates of monitoring equipment are shown in *Appendix G* and the monitoring results are summarized in the following sub-sections

4.2 **RESULTS OF AIR QUALITY MONITORING IN THE REPORTING MONTH**

4.2.1 During the Reporting Period, 15 sessions of 1-hour TSP and 5 sessions of 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Table 4-1*. The detailed 24-hour TSP monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

AN	M5	AM4					
24-Hr TS	Ρ (μg/m ³)	1-Hour TSP (µg/m ³)					
Date	Meas. Result	Date Start Time		1 st Meas.	2 nd Meas.	3 rd Meas.	
3-Oct-19	148	4-Oct-19	9:13	104	112	95	
9-Oct-19	115	10-Oct-19	13:28	91	104	104	
15-Oct-19	164	16-Oct-19	13:39	109	107	112	
21-Oct-19	167	22-Oct-19	9:18	83	76	80	
26-Oct-19	85	28-Oct-19	9:28	72	70	68	
Average (Range)	136 (85 - 167)	Average (Range)		92 (68 – 112)			

 Table 4-1
 1-Hour and 24-Hour TSP Air Quality Impact Monitoring Results

- 4.2.2 As shown in *Table 4-1*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action / Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.3 The meteorological data during impact monitoring period is summarized in *Appendix J*.

5. CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction noise quality monitoring was performed at interim alternative monitoring location CNMS-5. The noise quality monitoring schedule is presented in *Appendix F*.
- 5.1.2 Valid calibration certificates of monitoring equipment is shown in *Appendix G* and the construction noise monitoring results are summarized in the following sub-sections

5.2 **RESULTS OF NOISE MONITORING**

5.2.1 **4** sessions of daytime construction noise monitoring were performed at the interim alternative location CNMS-5 in the reporting period. The daytime noise monitoring results at interim alternative location is summarized in **Table 5-1**. The detailed noise monitoring data are presented in **Appendix H** and the relevant graphical plots are shown in **Appendix I**.

Dete	Time of	Time of	Measurement Result (dB(A))				
Date	Starting	Finishing	L _{eq30min}	Façade Correction			
10-Oct-19	13:27	13:57	64.9	NA			
16-Oct-19	13:43	14:13	65.6	NA			
22-Oct-19	9:33	10:03	65.3	NA			
28-Oct-19	9:19	9:49	65.0	NA			

 Table 5-1
 Daytime Construction Noise Impact Monitoring Results

- 5.2.2 As shown in *Table 5-1*, all the measured results were below 75dB(A) of the acceptance criteria. No adverse weather condition which may affect the monitoring result was encountered during the course of noise monitoring in the reporting period. Furthermore, no complaint on daytime construction noise was registered, indicating no exceedance of Action Level.
- 5.2.3 In the reporting period, evening marine work by Contractor of Contract 1 at Portion II was scheduled from 2 5, 7 12, 14 19, 21 26 and 28 30 October 2019. Additional weekly evening construction noise monitoring were performed at the interim alternative location CNMS-5 in the reporting period. The evening noise monitoring results at interim alternative location is summarized in *Table 5-2*. The detailed noise monitoring data are presented in *Appendix H*.

Date	Time of	Time of	Measurement Result (dB(A))				
Date	Starting	Finishing	Leq15min	Façade Correction			
3-Oct-19	19:05	19:20	63.3	NA			
8-Oct-19	19:33	19:48	62.4	NA			
17-Oct-19	19:08	19:23	62.3	NA			
21-Oct-19	19:31	19:46	62.1	NA			
28-Oct-19	19:06	19:21	60.6	NA			

 Table 5-2
 Evening Construction Noise Impact Monitoring Results

- 5.2.4 According to Table 5-2, the measured results on 3, 8, 17, 21 and 28 October 2019 were higher than 55dB(a) of the acceptance criteria, Therefore a total of five (5) limit level evening noise monitoring exceedances were recorded in the reporting period and investigations were undertaken by ET accordingly.
- 5.2.5 For the evening noise monitoring exceedances on 21 October 2019, since the marine work at Junk Bay were ceased before 7:00pm and there was no construction works carried out after 7:00 pm at the Project site, it was considered the exceedances recorded on 21 October 2019 were unlikely due to the Project.
- 5.2.6 For evening noise monitoring exceedances on 3, 8, 17 and 28 October 2019, investigation were undertaken by ET. Since only one group of powered mechanical equipment stated in the Construction Noise Permit (CNP) GW-RE0594-19 was used during the evening marine work, the monitoring result obtained were within the range of evening noise obtained from baseline monitoring and external noise source such as traffic noise was noted during the course of

monitoring, it is considered that the evening noise monitoring exceedances recorded on 3, 8, 17 and 28 October 2019 was unlikely caused by the Project. Nevertheless, the Contractor was reminded to strictly follow the requirement stipulated in the applied CNP so as to minimise the noise impact to the surrounding noise sensitive receiver.

6. WATER QUALITY MONITORING

6.1 GENERAL

- 6.1.1 The water quality monitoring schedule is presented in *Appendix F* and the monitoring results are summarized in the following sub-sections.
- 6.1.2 Valid calibration certificates of monitoring equipment and the laboratory accredited certificate is shown in *Appendix G*. The water quality monitoring results are summarized in the following sub-sections.

6.2 **RESULTS OF WATER QUALITY MONITORING**

6.2.1 In this Reporting Period, a total of *13* sampling days were performed for marine water monitoring at the nine designated locations. Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids are summarized in *Tables 6-1* to *6-4*.

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Oct-19	6.0	5.9	6.1	6.0	6.1	6.3	5.8	5.9	6.0
	4-Oct-19	5.9	5.9	6.0	5.9	6.1	6.2	5.7	5.9	6.2
	8-Oct-19	7.3	7.0	6.0	6.4	6.9	7.0	6.2	6.1	6.0
	10-Oct-19	6.9	6.9	5.8	6.4	6.7	6.0	6.3	6.4	6.1
	12-Oct-19	6.0	6.1	5.6	6.0	6.2	6.0	5.8	5.8	6.2
	14-Oct-19	5.9	5.9	5.7	5.8	6.0	5.7	5.5	5.8	5.8
Mid-Ebb	16-Oct-19	6.2	6.1	5.9	6.0	5.8	6.2	6.2	6.1	5.9
	18-Oct-19	5.9	6.0	5.6	6.1	6.5	6.2	6.1	6.0	5.8
	21-Oct-19	6.3	6.1	5.9	5.9	6.1	6.2	6.0	6.1	6.0
	23-Oct-19	6.2	6.0	5.7	6.4	6.0	5.9	6.0	6.0	5.6
	25-Oct-19	6.5	6.3	6.0	6.3	6.3	6.1	6.3	6.0	6.0
	28-Oct-19	6.3	6.3	6.2	6.3	6.3	6.0	6.4	6.2	6.3
	30-Oct-19	6.3	6.2	6.2	6.3	6.2	6.5	6.3	6.3	6.2
	2-Oct-19	6.0	5.8	5.8	5.8	5.8	6.0	6.1	5.9	5.9
	4-Oct-19	6.0	5.8	6.0	5.9	5.7	5.8	5.8	5.7	5.8
	8-Oct-19	7.3	7.0	5.9	6.2	6.9	7.0	6.2	6.1	6.1
	10-Oct-19	7.5	7.1	6.2	6.8	7.2	6.8	6.5	6.4	6.9
	12-Oct-19	6.2	6.2	5.9	6.4	6.3	6.0	5.8	5.9	6.4
	14-Oct-19	5.9	5.9	5.6	5.8	5.9	5.5	5.6	5.9	5.6
Mid-Flood	16-Oct-19	6.1	6.1	5.7	6.2	6.1	6.0	6.1	6.1	5.9
	18-Oct-19	6.1	6.0	5.8	6.0	6.0	6.0	6.0	6.0	5.9
	21-Oct-19	6.3	6.1	6.1	6.0	6.2	6.4	6.2	6.1	6.0
	23-Oct-19	6.2	6.2	5.8	6.3	6.1	6.0	6.0	5.9	5.9
	25-Oct-19	6.4	6.2	6.1	6.3	6.3	5.9	6.2	6.1	6.1
	28-Oct-19	6.6	6.4	6.3	6.3	6.3	6.4	6.2	6.3	6.3
	30-Oct-19	6.2	6.0	6.1	6.1	6.1	6.3	6.2	6.3	6.1

 Table 6-1
 Results Summary of Depth Average (Surface & Middle Layer) of DO (mg/L)

Table 6-2	Results Summary of Bottom Depth of DO (mg/L)
-----------	---

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Oct-19	5.9	5.8	5.4	NA	5.8	5.6	5.9	5.9	5.8
	4-Oct-19	5.5	5.6	5.3	NA	5.7	5.8	5.6	5.5	5.4
	8-Oct-19	6.5	5.5	5.7	NA	6.5	6.1	5.9	5.8	5.6
	10-Oct-19	6.7	6.1	5.8	NA	6.6	6.0	6.1	6.3	5.9
	12-Oct-19	6.0	6.0	5.5	NA	6.0	5.6	5.8	5.8	5.8
Mid-Ebb	14-Oct-19	5.6	5.5	5.4	NA	5.8	5.5	5.6	5.5	5.6
	16-Oct-19	6.1	6.0	5.5	NA	6.0	6.0	6.1	6.2	5.7
	18-Oct-19	6.0	6.2	5.0	NA	6.0	6.1	6.1	6.1	6.1
	21-Oct-19	6.1	5.8	5.5	NA	6.1	6.1	5.9	6.0	5.9
	23-Oct-19	6.0	6.0	5.1	NA	6.0	5.8	6.0	5.9	5.7
	25-Oct-19	6.4	6.2	5.7	NA	6.3	6.1	6.2	6.0	6.0

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report – October 2019

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I1
	28-Oct-19	6.3	6.2	6.0	NA	6.3	6.0	6.2	6.2	6.2
	30-Oct-19	6.2	6.2	6.0	NA	6.1	6.2	6.3	6.3	5.8
	2-Oct-19	5.9	5.7	5.1	NA	5.7	5.8	6.0	6.0	5.6
	4-Oct-19	5.4	5.6	5.1	NA	5.5	5.3	5.6	5.6	5.3
	8-Oct-19	6.5	5.9	5.5	NA	6.4	6.3	5.9	5.8	5.7
	10-Oct-19	7.4	6.3	5.7	NA	7.2	6.1	6.1	6.2	6.2
	12-Oct-19	6.8	5.9	5.5	NA	6.1	5.7	5.8	5.8	6.1
	14-Oct-19	5.6	5.5	5.4	NA	5.7	5.6	5.7	5.7	5.3
Mid-Flood	16-Oct-19	6.0	6.0	5.6	NA	5.8	5.9	6.1	6.2	5.7
	18-Oct-19	6.0	5.9	5.6	NA	5.9	5.9	6.0	6.1	5.9
	21-Oct-19	6.0	5.9	5.4	NA	6.0	6.3	6.0	6.1	5.8
	23-Oct-19	6.2	6.1	5.5	NA	6.1	5.9	5.8	5.9	5.5
	25-Oct-19	6.3	6.2	5.7	NA	6.2	5.9	6.2	6.0	6.1
	28-Oct-19	6.3	6.4	5.6	NA	6.3	6.4	6.2	6.2	6.2
	30-Oct-19	6.1	6.1	5.9	NA	5.9	6.1	6.2	6.3	6.0

Remark: No Dissolved Oxygen (Bottom) monitoring data available for CC4 due to the water depth measured at CC4 during the monitoring days were less than 3 meters.

Italic and bold value indicated Action Level exceedance

Underlined and bold value indicated Limit Level exceedance

 Table 6-3
 Results Summary of Depth Average of Turbidity (NTU)

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Oct-19	2.6	2.8	2.6	1.7	2.2	3.0	2.6	2.0	3.8
	4-Oct-19	2.6	2.3	3.1	2.8	1.7	1.6	2.7	2.4	1.9
	8-Oct-19	1.5	2.4	3.6	2.7	1.8	1.8	1.9	1.9	3.2
	10-Oct-19	1.2	2.8	2.6	2.2	1.5	1.1	4.0	2.2	2.3
	12-Oct-19	1.8	2.4	3.6	2.2	1.6	1.7	3.0	2.4	2.7
	14-Oct-19	2.1	2.3	1.7	1.6	1.5	1.6	3.5	2.5	2.2
Mid-Ebb	16-Oct-19	3.0	2.4	2.6	2.6	3.0	1.9	2.5	3.1	2.8
	18-Oct-19	2.5	3.6	3.3	2.0	2.3	2.0	2.4	2.2	3.0
	21-Oct-19	1.3	2.0	2.0	2.7	1.5	1.4	2.0	1.9	1.7
	23-Oct-19	1.2	1.2	2.3	1.7	1.2	1.5	2.3	2.0	1.6
	25-Oct-19	1.3	1.8	1.6	2.3	1.5	1.5	2.3	3.4	1.9
	28-Oct-19	1.5	2.5	2.3	2.3	1.3	2.3	2.1	3.4	1.6
	30-Oct-19	1.8	1.8	1.5	1.7	2.3	1.6	1.7	1.5	3.1
	2-Oct-19	2.4	3.3	2.5	1.5	2.6	1.7	2.6	2.7	2.0
	4-Oct-19	2.5	2.9	2.4	2.2	2.5	3.4	2.2	2.5	3.2
	8-Oct-19	1.4	1.9	3.0	2.7	1.9	2.0	2.3	1.9	3.1
	10-Oct-19	1.5	1.7	2.7	1.3	1.5	2.4	2.7	3.1	1.9
	12-Oct-19	1.6	2.4	2.6	1.8	1.7	1.5	3.2	2.9	1.6
	14-Oct-19	3.0	1.9	2.1	3.0	1.6	1.2	2.3	2.1	2.4
Mid-Flood	16-Oct-19	2.7	2.8	3.0	2.9	2.6	2.2	2.6	2.5	2.4
	18-Oct-19	1.8	2.3	2.7	2.0	2.2	2.1	4.3	2.5	1.9
	21-Oct-19	1.7	2.2	1.6	2.2	1.7	1.6	1.7	2.3	1.8
	23-Oct-19	1.3	1.3	2.6	2.3	1.3	1.8	2.1	3.2	2.0
	25-Oct-19	1.4	3.0	2.2	2.3	2.3	3.9	3.5	2.9	2.3
	28-Oct-19	1.2	2.1	1.9	2.2	1.6	1.3	2.8	2.1	1.6
	30-Oct-19	1.9	3.2	2.1	2.1	2.1	1.7	2.3	2.7	1.7

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Oct-19	5.5	6.2	4.7	5.3	7.2	5.3	7.8	8.8	8.4
	4-Oct-19	5.0	3.2	4.1	6.9	4.8	3.5	4.5	3.5	3.2
	8-Oct-19	4.5	4.8	6.3	2.7	3.6	6.2	3.8	3.9	3.8
	10-Oct-19	5.6	6.6	7.9	7.9	8.4	8.1	9.8	6.5	13.1
	12-Oct-19	4.4	2.9	2.4	4.1	3.1	2.4	5.3	4.3	3.5
	14-Oct-19	3.0	2.5	3.6	2.6	4.4	3.6	5.9	3.8	4.0
Mid-Ebb	16-Oct-19	4.9	3.3	3.9	5.5	5.9	2.9	3.6	4.0	3.0
	18-Oct-19	6.7	8.7	7.0	10.0	6.9	6.8	10.5	11.0	8.2
	21-Oct-19	6.0	5.4	12.1	9.2	9.9	6.9	10.9	8.9	9.5
	23-Oct-19	4.0	6.3	7.0	6.2	5.9	5.9	5.9	6.9	4.4
	25-Oct-19	4.4	4.6	4.6	3.7	4.7	3.7	3.6	6.4	4.2
	28-Oct-19	4.4	2.9	2.6	4.5	2.1	2.5	2.4	5.2	2.4
	30-Oct-19	3.9	3.4	3.0	4.6	3.2	2.4	4.6	2.8	2.9
	2-Oct-19	7.8	7.7	4.8	6.9	4.9	5.2	5.3	6.1	7.9
	4-Oct-19	4.0	3.6	3.0	2.8	3.3	3.8	3.1	4.8	4.2
	8-Oct-19	4.0	4.3	3.6	5.0	5.6	6.1	3.2	3.9	5.6
	10-Oct-19	6.5	7.3	7.1	9.2	9.2	9.0	7.2	6.4	8.0
	12-Oct-19	2.8	2.5	2.3	3.7	3.4	2.1	4.6	3.9	2.1
	14-Oct-19	3.2	2.4	3.2	5.0	2.9	3.2	3.6	3.8	4.9
Mid-Flood	16-Oct-19	3.7	2.9	3.0	3.9	2.5	2.9	2.9	2.8	2.5
	18-Oct-19	6.8	6.5	6.1	6.7	8.8	6.8	6.9	7.5	7.8
	21-Oct-19	9.9	7.2	6.4	10.1	7.4	6.7	7.3	7.9	6.9
	23-Oct-19	6.0	5.3	6.3	8.9	8.6	7.9	7.7	6.6	5.9
	25-Oct-19	3.8	4.6	5.0	6.4	5.6	7.2	5.8	5.0	5.9
	28-Oct-19	1.5	1.7	1.3	3.7	3.2	2.7	5.6	4.6	4.2
	30-Oct-19	6.0	4.1	3.0	2.8	4.2	4.0	4.1	2.8	3.0

Table 6-4Results Summary of Depth Average of Suspended Solids (mg/L)

Remark: Italic and bold value indicated Action Level exceedance

Underlined and bold value indicated Limit Level exceedance

Table 6-5 Results Summary of Depth Average of Temperature (°C)

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Oct-19	28.0	28.1	28.2	28.6	28.4	28.2	28.0	28.1	28.2
	4-Oct-19	28.2	28.2	28.4	28.3	28.5	28.7	28.2	28.4	28.3
	8-Oct-19	27.9	27.8	28.0	28.0	27.9	28.2	27.8	27.8	27.9
	10-Oct-19	27.7	27.7	27.8	27.8	27.7	27.7	27.7	27.7	27.8
	12-Oct-19	28.0	28.0	27.9	27.8	28.0	28.2	27.8	27.8	28.0
	14-Oct-19	27.7	27.7	27.9	27.9	27.7	27.8	27.7	27.7	27.9
Mid-Ebb	16-Oct-19	27.3	27.3	27.4	27.3	27.3	27.4	27.3	27.3	27.4
	18-Oct-19	27.2	27.3	27.2	27.4	27.2	27.3	27.2	27.3	27.2
	21-Oct-19	27.2	27.1	27.3	27.1	27.2	27.5	27.1	27.0	27.2
	23-Oct-19	26.6	26.8	26.9	26.8	26.7	26.7	26.8	26.7	26.9
	25-Oct-19	26.5	26.5	26.7	26.6	26.6	26.6	26.6	26.6	26.7
	28-Oct-19	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3
	30-Oct-19	25.8	25.8	25.7	25.9	25.8	25.8	25.8	25.8	25.7
	2-Oct-19	28.0	28.0	28.1	28.1	28.1	28.2	28.0	28.0	28.2
	4-Oct-19	28.4	28.1	28.4	28.5	28.2	28.2	28.3	28.2	28.2
	8-Oct-19	27.9	27.8	28.0	28.0	27.9	28.0	27.8	27.8	27.9
	10-Oct-19	28.2	28.0	28.0	28.0	28.1	28.1	27.8	27.7	27.9
Mid-Flood	12-Oct-19	28.1	27.9	28.1	28.2	28.0	28.3	27.9	27.9	28.1
	14-Oct-19	27.7	27.7	27.8	27.8	27.8	27.7	27.7	27.6	27.7
	16-Oct-19	27.2	27.3	27.3	27.3	27.2	27.3	27.3	27.3	27.3
	18-Oct-19	27.2	27.2	27.2	27.2	27.2	27.1	27.2	27.2	27.1
	21-Oct-19	27.2	27.1	27.4	27.0	27.1	27.3	27.1	27.0	27.3

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	23-Oct-19	26.9	26.8	27.0	26.9	26.8	26.8	26.8	26.8	26.9
	25-Oct-19	26.7	26.6	26.8	26.7	26.7	26.6	26.6	26.6	26.7
	28-Oct-19	26.3	26.3	26.3	26.3	26.3	26.4	26.3	26.2	26.3
	30-Oct-19	25.7	25.8	25.7	25.7	25.8	25.6	25.8	25.7	25.7

 Table 6-6
 Results Summary of Depth Average of Salinity (ppt)

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Oct-19	34.8	34.7	34.4	34.2	34.6	34.4	34.7	34.6	34.6
	4-Oct-19	34.5	34.5	34.2	34.3	34.3	34.1	34.5	34.4	34.3
	8-Oct-19	34.5	34.6	34.5	34.3	34.6	34.6	34.5	34.4	34.6
	10-Oct-19	34.7	34.8	34.6	34.8	34.7	34.7	34.7	34.7	34.6
	12-Oct-19	34.6	34.6	34.6	34.7	34.6	34.5	34.7	34.6	34.7
	14-Oct-19	34.1	34.4	34.1	34.2	34.3	34.4	34.6	34.0	34.2
Mid-Ebb	16-Oct-19	34.6	34.5	34.4	34.6	34.4	34.5	34.6	34.6	34.4
	18-Oct-19	34.5	34.4	34.5	34.4	28.7	34.4	34.6	34.6	34.3
	21-Oct-19	34.4	34.5	34.5	34.5	34.4	34.4	34.6	34.6	34.5
	23-Oct-19	34.6	34.6	34.6	34.6	34.6	34.6	34.8	34.7	34.4
	25-Oct-19	34.8	34.8	34.7	34.8	34.8	34.9	34.8	34.7	34.8
	28-Oct-19	34.8	34.8	34.8	34.8	34.8	34.9	34.9	34.8	34.8
	30-Oct-19	35.0	34.8	34.7	34.7	34.8	34.7	34.9	34.9	34.8
	2-Oct-19	34.6	34.6	34.4	34.2	34.5	34.2	34.7	34.7	34.4
	4-Oct-19	34.3	34.5	34.2	33.9	34.3	34.2	34.3	34.5	34.3
	8-Oct-19	34.5	34.5	34.5	34.3	34.5	34.6	34.5	34.4	34.6
	10-Oct-19	34.7	34.7	34.6	34.5	34.7	34.7	34.7	34.6	34.6
	12-Oct-19	34.7	34.7	34.4	34.6	34.6	34.4	34.5	34.6	34.6
	14-Oct-19	34.7	34.3	34.0	34.6	34.4	33.9	34.5	34.1	34.3
Mid-Flood	16-Oct-19	34.5	34.5	34.3	34.5	34.5	34.5	34.6	34.6	34.4
	18-Oct-19	34.4	34.4	34.5	34.4	34.4	34.4	34.7	34.6	34.4
	21-Oct-19	34.5	34.6	34.4	34.6	34.5	34.4	34.6	34.6	34.4
	23-Oct-19	34.6	34.6	34.6	34.5	34.6	34.7	34.7	34.7	34.6
	25-Oct-19	34.8	34.8	34.8	34.7	34.8	34.9	34.8	34.7	34.8
	28-Oct-19	34.8	34.9	34.8	34.9	34.9	34.8	34.9	34.9	34.8
	30-Oct-19	34.7	34.8	34.8	34.7	34.7	34.7	34.9	35.0	34.7

Table 6-7Results Summary of Depth Average of pH

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Oct-19	8.2	8.2	8.2	8.1	8.2	8.1	8.2	8.2	8.2
	4-Oct-19	8.1	8.1	8.1	8.0	8.1	7.9	8.1	8.1	8.1
	8-Oct-19	8.2	8.2	8.1	8.1	8.2	8.2	8.1	8.1	8.2
	10-Oct-19	8.2	8.2	8.1	8.2	8.2	8.2	8.2	8.2	8.2
	12-Oct-19	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	14-Oct-19	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
Mid-Ebb	16-Oct-19	8.1	8.1	8.1	8.1	8.1	8.2	8.1	8.1	8.1
	18-Oct-19	8.3	8.4	8.4	8.4	8.3	8.3	8.4	8.4	8.4
	21-Oct-19	8.4	8.3	8.4	8.3	8.3	8.3	8.3	8.4	8.3
	23-Oct-19	8.4	8.4	8.3	8.4	8.4	8.4	8.4	8.4	8.3
	25-Oct-19	8.2	8.2	8.2	8.2	8.2	8.1	8.2	8.2	8.2
	28-Oct-19	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
	30-Oct-19	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
Mid Elsed	2-Oct-19	8.2	8.2	8.2	8.2	8.2	8.1	8.2	8.2	8.2
Mid-Flood	4-Oct-19	8.0	8.1	8.1	7.8	8.1	7.5	8.0	8.0	8.1

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	8-Oct-19	8.2	8.2	8.1	8.1	8.2	8.2	8.1	8.1	8.2
	10-Oct-19	8.2	8.2	8.2	8.2	8.2	8.3	8.2	8.2	8.2
	12-Oct-19	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.2
	14-Oct-19	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	16-Oct-19	8.1	8.1	8.1	8.2	8.1	8.2	8.1	8.1	8.1
	18-Oct-19	8.4	8.4	8.4	8.3	8.4	8.2	8.4	8.4	8.4
	21-Oct-19	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4
	23-Oct-19	8.4	8.4	8.3	8.4	8.4	8.4	8.4	8.4	8.4
	25-Oct-19	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
	28-Oct-19	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
	30-Oct-19	8.2	8.2	8.2	8.2	8.2	8.3	8.2	8.2	8.2

- 6.2.2 The monitoring results including in-situ measurements and laboratory testing results are provided in *Appendix H*. The graphical plots are shown in *Appendix I*.
- 6.2.3 A summary of exceedances for the four parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) are shown in *Table 6-8*.

Station	(Ave of	O f Top & depth)	(Bot	DO (Bottom Depth)		Turbidity (Depth Ave)		S h Ave)	Total Exceedance for the Station	
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
CC1	0	0	0	0	0	0	1	0	1	0
CC2	0	0	0	0	0	0	0	0	0	0
CC3	0	0	0	0	0	0	0	0	0	0
CC4	0	0	NA	NA	0	0	0	0	0	0
CC13	0	0	0	0	0	0	1	0	1	0
SWI1	0	0	0	0	0	0	2	0	2	0
No of Exceedance	0	0	0	0	0	0	4	0	4	0

 Table 6-8
 Summary of Water Quality Exceedance

- 6.2.4 In this Reporting Period, four (4) Action Level exceedances of Suspended Solid were recorded.
- 6.2.5 Upon confirmation of the monitoring result, Notification of Exceedances (NOEs) have been issued to relevant parties. Investigation for the cause of exceedance was carried out by ET subsequently.
- 6.2.6 For SS exceedance recorded on 10 and 21 October 2019, investigation were undertaken by ET. Since silt curtains as water quality mitigation measure were properly implemented, no abnormal and turbid discharge made from the construction site was observed during the course of marine water sampling, it is considered that the exceedances of suspended solid recorded in this period were unlikely caused by the Project. Nevertheless, the Contractor was reminded to check the implementation of silt curtain regularly to ensure no seepage of muddy water into the marine water body.

7. WASTE MANAGEMENT

7.1 GENERAL WASTE MANAGEMENT

7.1.1 Waste management would be carried out by an on-site Environmental Officer or an Environmental Consultant from time to time.

7.2 **RECORDS OF WASTE QUANTITIES**

- 7.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste; and
 - General Refuse
- 7.2.2 According to the information provided by Contractor of Contract 1 and Contract 2, waste disposal was made in the Reporting period are summarized in *Tables 7-1* and *7-2*.

	Cont	tract 1	Cont	ract 2
Type of Waste	Quantity	Disposal Location	Quantity	Disposal Location
Total C&D Materials (Inert) ('000m ³)	1.002	-	4.384	-
Reused in this Contract (Inert) ('000m ³)	0	-	0	-
Reused in other Projects (Inert) ('000m ³)	0	-	0	-
Disposal as Public Fill (Inert) ('000m ³)	1.002	TKO 137	4.384	TKO 137
Imported Fill ('000m ³)	0	_	0	_

Table 7-1Summary of Quantities of Inert C&D Materials

Table 7-2Summary of Quantities of C&D Wastes

	Cont	ract 1	Cont	ract 2
Type of Waste	Quantity	Disposal Location	Quantity	Disposal Location
Recycled Metal ('000kg)	0	-	0	-
Recycled Paper / Cardboard Packing ('000kg)	0.080	Collected by paper recycling company	0	-
Recycled Plastic ('000kg)	0	-	0	-
Chemical Wastes ('000kg)	0	-	0	-
General Refuses ('000m ³)	0.106	NENT	0.007	NENT

7.2.3 The Monthly Summary Waste Flow Table of the Contracts 1 and Contract 2 are shown in *Appendix K*.

8. SITE INSPECTION

8.1 **REQUIREMENTS**

8.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

8.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH Contract 1

- 8.2.1 In this Reporting Month, weekly joint site inspection to evaluate site environmental performance for the *Contract 1* was carried out by the Project Consultant, ET and the Contractor on 2, 9, 16, 23 & 31 October 2019. Moreover, the Independent Environmental Checker (IEC) perform monthly site inspection was on 9 October 2019.
- 8.2.2 The findings / deficiencies of *Contract 1* that observed during the weekly site inspection are listed in *Table 8-1* and the site layout plan was provided in **Appendix A**.

Date	Findings / Deficiencies	Follow-Up Status
2 October 2019	 <u>Observation:</u> Drip tray should be provided for chemical storage on-site. (Portion II – Crane Barge) 	 Chemical container was removed from site. (Rectified on 2 October 2019)
9 October 2019	 <u>Observation:</u> Stagnant water cumulated inside the drip tray after rainstorm should be cleaned. (Portion V) 	• Stagnant water cumulated inside the drip tray after rainstorm was cleaned. (Rectified on 10 October 2019)
	• Water spraying should be provided for the exposed area to reduce dust impact. (Portion V)	• Water spraying is provided for the exposed area to reduce dust impact. (Rectified on 9 October 2019)
	• Chemical waste cabinet should be locked properly. Moreover, stagnant water cumulated inside should be cleaned. (Portion V)	Chemical waste cabinet was locked properly. Stagnant water accumulated was cleaned. (Rectified on 10 October 2019)
16 October 2019	 <u>Observation:</u> Earth bund should be provided along the edge of the roro-barge to prevent cement washing water overflow into the water body. (Portion II – Roro-Barge) 	• Sand bags were provided along the edge of the roro-barge to prevent cement washing water overflow into the water body. (Rectified on 17 October 2019)
23 October 2019	 <u>Observation:</u> Drip tray should be provided for chemical storage on-site. (Portion II – Crane Barge) Valid NEL should be displayed properly for the air compressor using on-site. (Portion II – Crane Barge) 	 Chemical was removal from site. (Rectified on 23 October 2019) Valid NEL was displayed properly for the air compressor using in-site. (Rectified on 23 October 2019)
31 October 2019	 <u>Observation:</u> Drip tray should be provided for chemical storage on-site. (Portion II – Derrick Barge) 	• To be follow up in next reporting period.
	• Sediment cumulated beside the	

 Table 8-1
 Site Observations of the Contract 1 (Contract No. NE/2017/07)

Date	Findings / Deficiencies	Follow-Up Status
	WepSep should be cleaned. (Portion II – Flat Top Barge)	
	• Muddy water and oil stain spillage on the pilling platform should be cleaned to prevent overflow into the water body. (Portion II – Pilling Platform)	

Contract 2

- 8.2.3 In this Reporting Month, weekly joint site inspection to evaluate site environmental performance for the *Contract 2* were carried out by the Project Consultant, ET and the Contractor on 2, 9, 16, 23 & 31 October 2019. Moreover, the Independent Environmental Checker (IEC) perform monthly site inspection was on 9 October 2019.
- 8.2.4 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 8-2* and the site layout plan was provided in **Appendix A**.

Date	Findings / Deficiencies	Follow-Up Status	
2 October 2019	 <u>Observation:</u> Sand and mud cumulated near the existing manhole should be cleaned. (Portion VI) 	• Sand and mud cumulated near the existing manhole has been cleaned (Rectified on 11 October 2019)	
9 October 2019	 <u>Observation:</u> Hole under the drip tray should be plugged properly. (Portion VI) Stagnant water cumulated inside the drip tray after rainstorm should be cleaned. (Portion III) Stockpile of bag cement should be covered with tarpaulin. (Portion VI) 	 Hole under the drip tray have been plugged poperly. (Rectified on 11 October 2019) Stagnant water cumulated inside the drip tray has been cleaned. (Rectified on 11 October 2019) Stockpile of bag cement has been removed. (Rectified on 11 October 2019) 	
16 October 2019	 <u>Observation:</u> Drip tray should be provided for chemical storage on-site. (Portion VI) Engine cover for the air compressor should be closed properly during operation to reduce noise impact. (Portion VI) 	 Drip tray has been provided for chemical storage on-site. (Rectified on 16 October 2019) Engine cover for the air compressor has been closed entirely during operation to reduce the noise impact. (Rectified on 17 October 2019) 	
23 October 2019	 <u>Observation:</u> Engine cover for the plant should be closed properly during the plant is operating to reduce noise impact. (Portion VI) 	• Engine cover was closed properly during operation (Rectified on 23 October 2019)	
31 October 2019	 <u>Observation:</u> Stagnant water cumulated inside the drip tray should be cleaned. (Portion VI) 	• To be follow up in next reporting period.	

Table 8-2Site Observations of the Contract 2 (Contract No. NE/2017/08)

Proper maintenance should be provided for the wheel washing and water spraying system to make sure the system is functional. (Portion VI)
 Sediment cumulated around the generator should be cleaned. (Portion VI)
• Water spraying should be covered at all exposed area to reduce dust impact. (Portion III)

8.3 IMPLEMENTATION STATUS OF SURFACE RUNOFF MITIGATION MEASURES DURING THE REPORTING MONTH

8.3.1 During the inspection of the reporting month, implementation of surface runoff mitigation measures were observed in both Contracts. The surface runoff mitigation measures observed during the weekly site inspection of Contract 1 and Contract 2 are summarized below and the photo recorded was provided in **Appendix L**.

Contract 1 (Contract No. NE/2017/07)

- 8.3.2 The surface runoff mitigation measures of Contract 1 implemented in this Reporting Period are:Cut-off drainage had been installed in the sea front to divert the surface run-off to the treatment facilities.
 - Silt-curtain had been provided to prevent muddy water overflow from the piling platform.
 - De-silting facilities had been provided to treat the site generated water prior discharge.

Contract 2 (Contract No. NE/2017/08)

- 8.3.3 The surface runoff mitigation measures of Contract 2 implemented in this Reporting Period are:-
 - Exposed area had been covered to prevent crate muddy surface run-off during rainstorm.
 Treatment facilities was installed at site to treat the site generated water prior discharge.
 - Gap between the concrete block and the sea front was sealed up.
 - Using tarpaulin cover the exposed area to prevent generate turbidity runoff during rainstorm.
 - Trench had been provided to divert the surface runoff to the de-silting facilities.
- 8.3.4 Overall, the surface runoff mitigation measures of Contract 1 and Contract 2 observed during the inspection of the reporting period are efficient.

9. LANDFILL GAS MONITORING

9.1 GENERAL REQUIREMENT

- 9.1.1 Pursuant to Section 13 of the Project's EM&A Manual, landfill gas monitoring shall perform during excavation work within the 250m Consultation Zone of Tseung Kwan O Stage II & III Landfill. For landfill gas monitoring requirements, pre entry and routine measurement shall be undertaken in accordance with the *Factories and Industrial Undertaking (Confined Spaces) Regulation.*
- 9.1.2 According to Environmental Mitigation Implementation Schedule (EMIS) S14.7.6, portable monitoring equipment can be used to conduct landfill gas monitoring. Moreover, the frequency and areas to be monitored should be set down prior to commencement of the works either by the Safety Officer or by an appropriately qualified person.

9.2 LIMIT LEVELS AND EVENT AND ACTION PLAN

9.2.1 In event of the trigger levels specified in Table 14.6 of the EIA report being exceeded, a person, such as the Safety Officer, shall be nominated, with deputies, to be responsible for dealing with any emergency which may occur due to LFG. In an emergency situation the nominated person, or his deputies, shall have the necessary authority and shall ensure that the confined space is evacuated and the necessary works implemented for reducing the concentrations of gas. The Limit levels and relevant Action Plans for landfill gas detected in utilities and any on-site areas following construction is listed in *Table 9-1*.

Parameter	Limit Level	Actions	
Methane	>10% LEL (i.e.	Post "No Smoking" signs	
	>0.5% by volume)	Prohibit hot works	
		• Ventilate to restore methane to <10% LEL	
	>20% LEL (i.e.	Stop excavation works	
	>1% by volume)	• Evacuate personnel/prohibit entry	
		• Increase ventilation to restore methane to <10% LEL	
	>0.5%	• Ventilate to restore carbon dioxide to <0.5%	
Carbon	>1.5%	Stop excavation works	
dioxide		Evacuate personnel/prohibit entry	
		• Increase ventilation to restore carbon dioxide to <0.5%	
	<19%	Ventilation to restore oxygen >19%	
Oxygen	<18%	Stop excavation works	
		• Evacuate personnel/prohibit entry	
		 Increase ventilation to restore oxygen to >19% 	

 Table 9-1
 Actions in the Event of Landfill Gas Being Detected in Excavations

9.2.2 In the event of the trigger levels specified in Table 9-1 being exceeded, the Safety Officer shall be responsible for dealing with any emergency which may occur due to landfill gas.

9.3 LANDFILL GAS MONITORING

- 9.3.1 In the Reporting Period, landfill gas monitoring was conducted at the zone Wan O Road which excavation work of Contract 2 was carried out. A Crowcon gas detector was used for the landfill gas monitoring and the valid calibration certificate is presented in **Appendix G**.
- 9.3.2 There were a total of **9** days monitoring were carried by the Safety Officer or an approved and qualified persons. The results of landfill gas measurement are summarized in *Table 9-2*. Moreover, database of monitoring result is attached in **Appendix H**.

Landfill Gas	A ation I anal		Detectable at LMR	
Parameter	Action Level	Limit Level	Min	Max
Methane	>10% LEL (>0.5% v/v)	>20% LEL (>1% v/v)	0.1%	0.1%
Oxygen	<19%	<18%	20.8%	21.1%
Carbon Dioxide	>0.5%	>1.5%	0.1%	0.2%

Table 9-2Summary of Landfill Gas Measurement Results

9.3.3 The measurement results shown that slightly methane concentration was detected, oxygen concentration measured was over 19.0 % and Carbon Dioxide was between 0.1% and 0.2 %. No exceedance was triggered and therefore no corrective action was required accordingly.

10. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION

10.1.1 In the Reporting Period, no environmental complaint, summons and prosecution under the EM&A Programme was lodged for the project. The statistical summary table of environmental complaint is presented in *Tables 10-1, 10-2* and *10-3*.

Table 10-1 Statistical Summary of Environmental Complaints

Departing David	Contract	Enviro	Environmental Complaint Statistics										
Reporting Period	eporting Period Contract		Frequency Cumulative Comp										
1 – 31 October 2019	1	0	1	NA									
1 – 31 October 2019	2	0	0	NA									

Table 10-2 Statistical Summary of Environmental Summons

Departing Daried	Contract	Enviro	Environmental Summons Statistics										
Reporting Period	Contract	Frequency	Cumulative	Summons Nature									
1 – 31 October 2019	1	0	0	NA									
1 – 31 October 2019	2	0	0	NA									

Table 10-3 Statistical Summary of Environmental Prosecution

Donorting Doriod	Contract	Enviro	Environmental Prosecution Statistics										
Reporting Period	Contract	Frequency	Cumulative	Prosecution Nature									
1 – 31 October 2019	1	0	0	NA									
1 – 31 October 2019	2	0	0	NA									

11. IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL REQUIREMENTS

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- 11.1.2 The Contractors had been implementing the required environmental mitigation measures according to the Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by the Contractors in this Reporting Month are summarized in *Table 11-1* and photo record of water mitigation measure was provided in Appendix L.

Issues	Environmental Mitigation Measures
Construction	• Regularly to maintain all plants, so only the good condition plants were used
Noise	on-site;
110150	 If possible, all mobile plants onsite operation has located far from NSRs;
	• When machines and plants (such as trucks) were not in using, it was switched off;
	• Wherever possible, plant was prevented oriented directly the nearby NSRs;
	• Provided quiet powered mechanical equipment to use onsite;
	· Weekly noise monitoring was conducted to ensure construction noise meet the
	criteria.
Air Quality	• Stockpile of dusty material was covered entirely with impervious sheeting or
	sprayed with water so as to maintain the entire surface wet;
	• The construction plants regularly maintained to avoid the emissions of black smoke;
	• The construction plants switched off when it not in use;
	• Water spraying on haul road and dry site area was provided regularly;
	• Where a vehicle leaving the works site is carrying a load of dusty materials, the
	load has covered entirely with clean impervious sheeting; and
	• Before any vehicle leaving the works site, wheel watering has been performed.
Water Quality	Debris and refuse generated on-site collected daily;
	• Oils and fuels were stored in designated areas;
	• The chemical waste storage as sealed area provided;
	• Site hoarding with sealed foot were provided surrounding the boundary of working site to prevent wastewater or site surface water runoff get into public areas; and
	• Portable chemical toilets were provided on-site. A licensed contractor was
	regularly disposal and maintenance of these facilities.
	Silt curtain was installed and maintained in accordance with EP condition
	• Excavated material reused on site as far as possible to minimize off-site disposal.
	 Scrap metals or abandoned equipment should be recycled if possible;
Management	• Waste arising kept to a minimum and be handled, transported and disposed of in a suitable manner;
	• Disposal of C&D wastes to any designated public filling facility and/or landfill
	followed a trip ticket system; and
	• Chemical waste handled in accordance with the Code of Practice on the Packaging,
	Handling and Storage of Chemical Wastes.
General	The site is generally kept tidy and clean.Mosquito control is performed to prevent mosquito breeding on site.
	· Mosquito control is performed to prevent mosquito breading on site.

 Table 11-1
 Environmental Mitigation Measures in the Reporting Month

11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 Tentative construction activities to be undertaken in **November 2019** should be included:-

Contract 1

- Piling works at Portion II
- Welding of steel bracket for precast shell installation at Portion II
- Fabrication of bottom deck panels, top deck panels and diaphragm panels at Portion II
- Precast shell fabrication at Portion II
- Precast shell erection at Portion II

Contract 2

- Pre-drill Work at Portion VI
- Bored Pile Work at Portion III, VI & VII
- Excavation Work at Portion VI
- Pre-bored socket H pile at Portion VI
- Drainage Installation (Portion III)
- Sheet Piling (Portion III)

11.3 IMPACT FORECAST

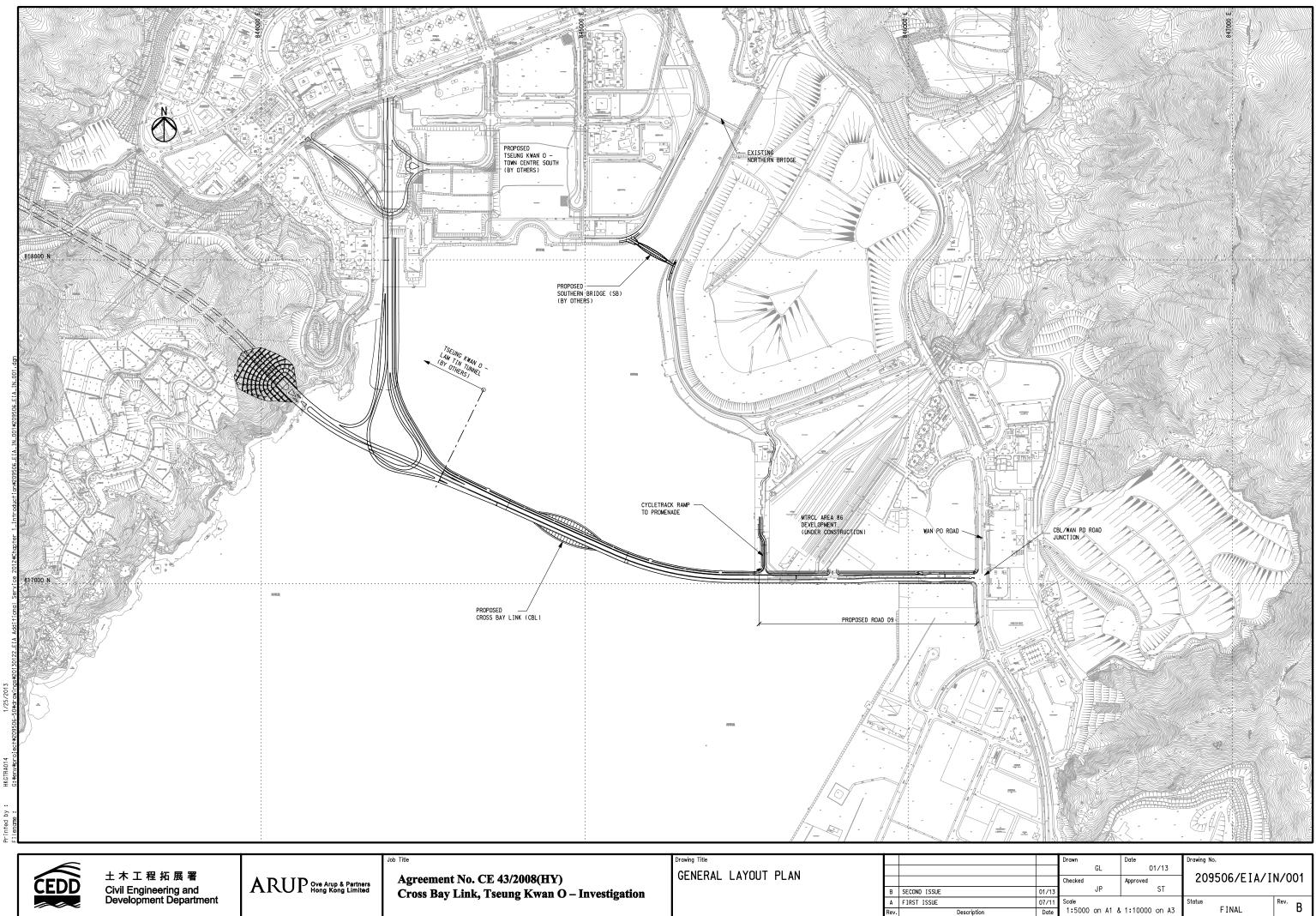
- 11.3.1 Potential environmental impacts arising from the works of the Contracts 1 and Contract 2 include:
 - Construction waste
 - Air quality
 - Construction noise
 - Water quality
- 11.3.2 Environmental mitigation measures will be properly implemented and maintained as per the Mitigation Implementation Schedule in Appendix L to ensure site environmental performance is acceptable.

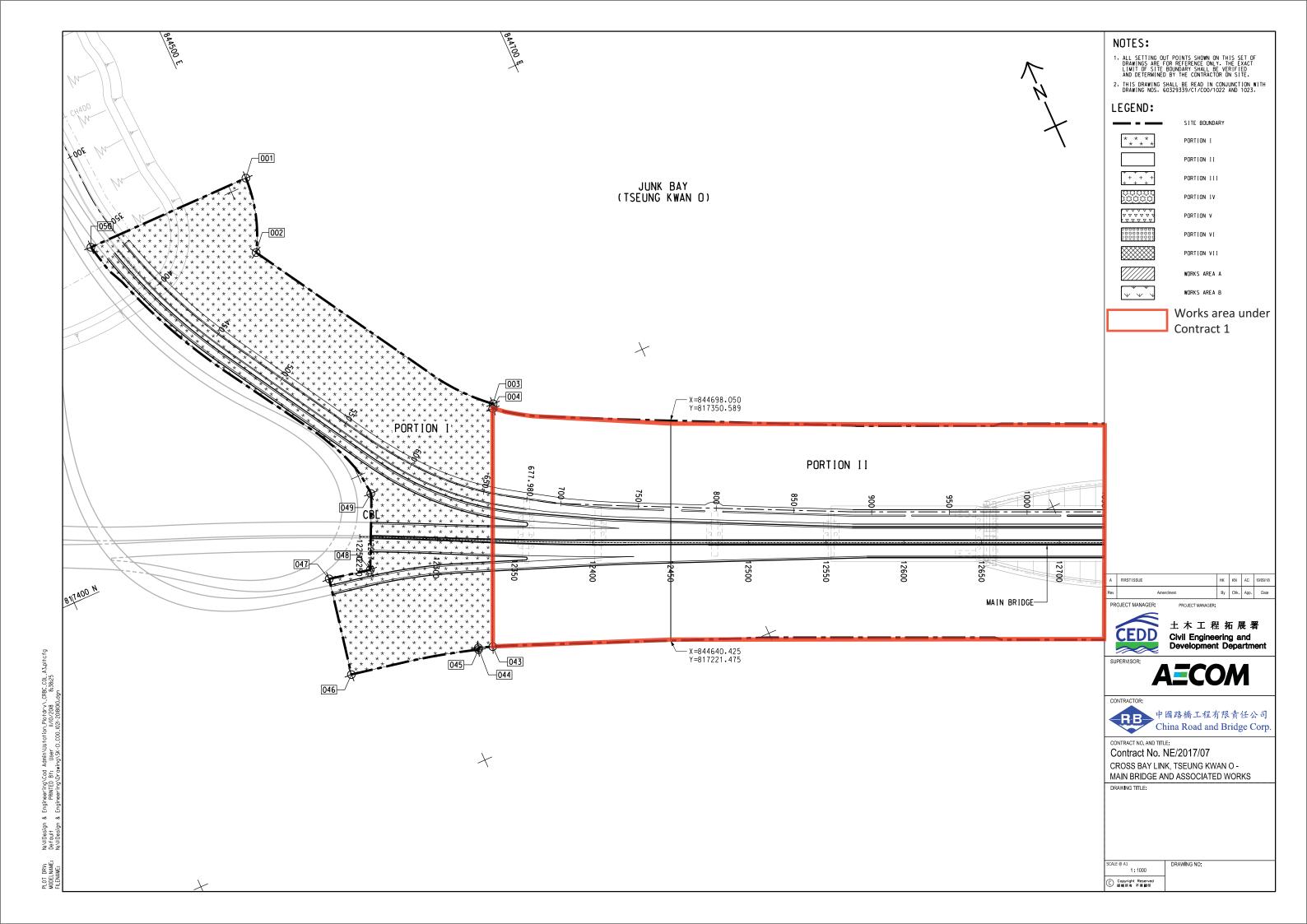
12. CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

- 12.1.1 This is the monthly EM&A report as presented the monitoring results and inspection findings for the reporting period from 1^{st} to 31^{st} October 2019.
- 12.1.2 In the Reporting Period, no daytime construction noise monitoring results that triggered the Limit Level was recorded and no noise complaint (which is an Action Level exceedance) was received by the Project Consultant, EPD and the Contractors. However, five (5) evening additional construction noise monitoring results triggered the Limit Level. Investigation was undertaken by ET and it was considered that the exceedances recorded are unlikely caused by the Project.
- 12.1.3 In this Reporting Period, no 1-Hour TSP or 24-Hr TSP air quality monitoring exceedance was recorded. No NOE or the associated corrective actions were therefore issued.
- 12.1.4 For water quality monitoring, four (4) Action Level exceedances were recorded for Suspended Solid in the reporting period. Investigations were carried out and it was considered that the exceedances recorded are unlikely caused by the Project.
- 12.1.5 No documented complaint, notification of summons or prosecution were received and recorded for the Project.

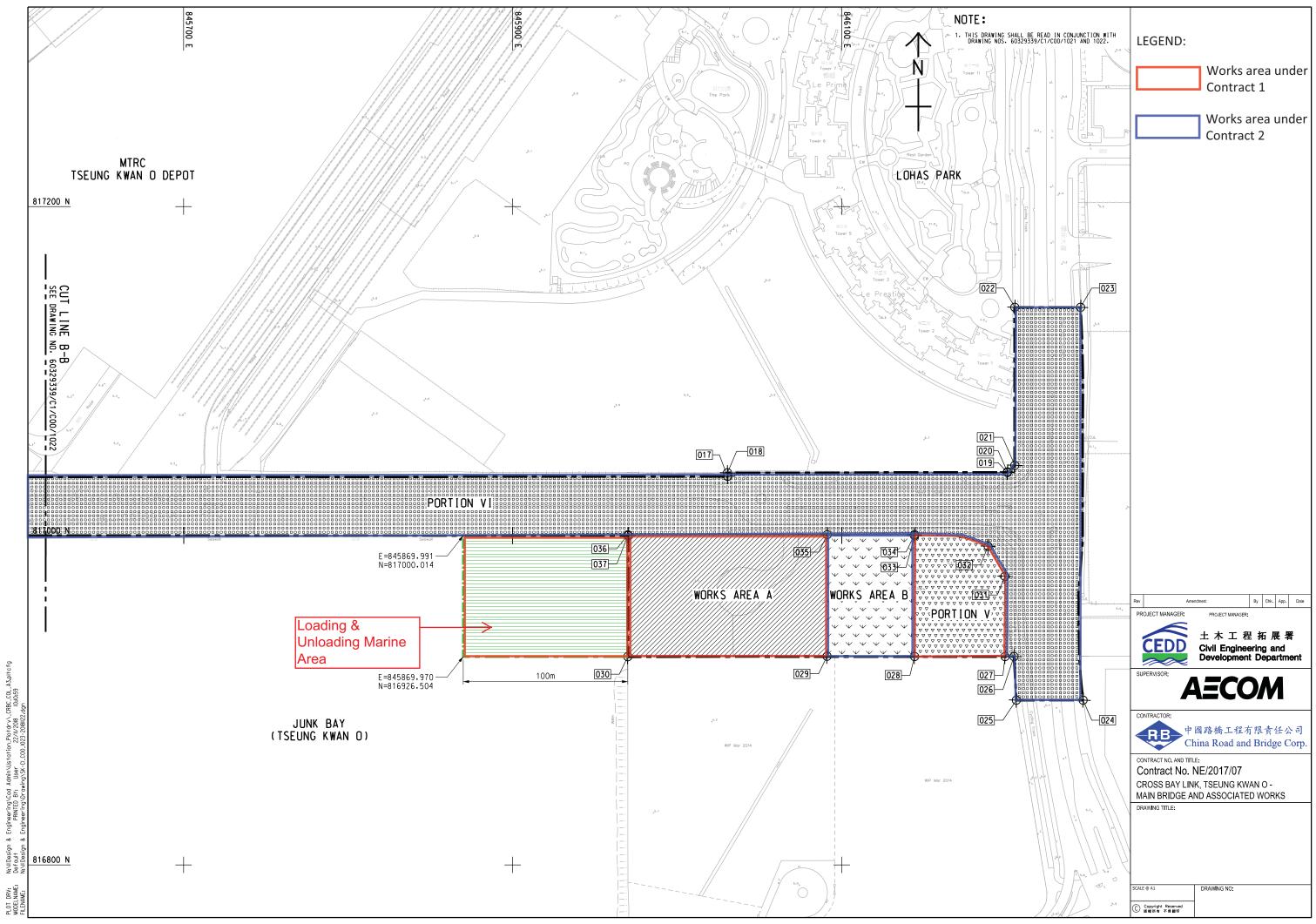
12.2 **RECOMMENDATIONS**


- 12.2.1 Due to the coming month is dry and windy season for Hong Kong, the Contractors were reminded that all the works to undertaking must be fulfill environmental statutory requirement, especially construction dust come from working sites of the Project.
- 12.2.2 In regards to the marine works, special attention should be paid on excavation works for the bridge pier foundations underway in which water quality mitigation measures such as erection of silt curtain should be properly implemented and maintained.


Appendix A

Project Layout Plan

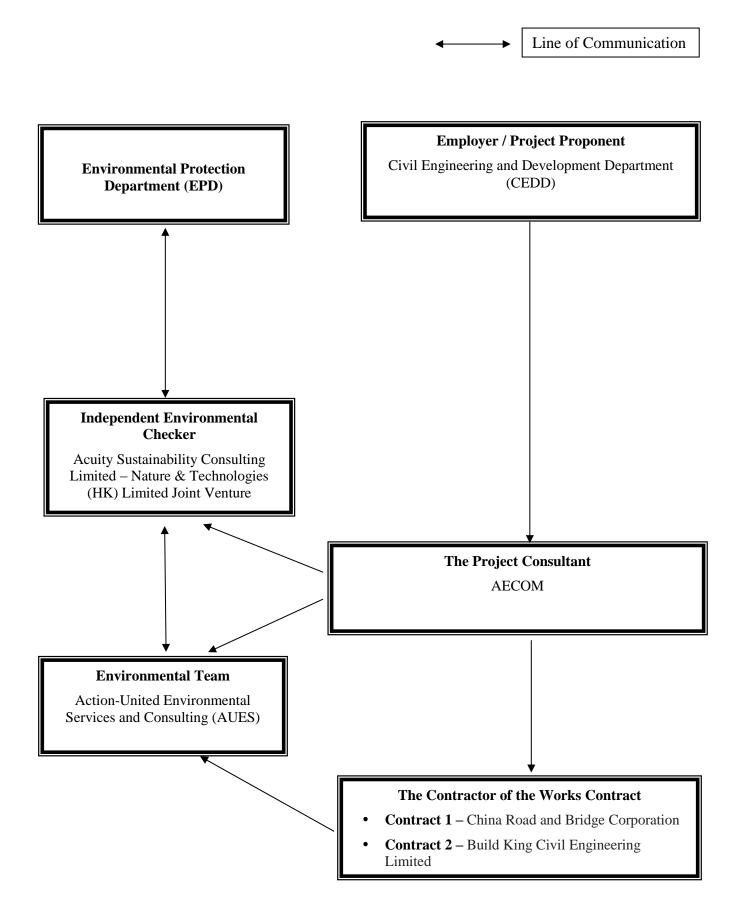
 $Z: \label{eq:loss} 2018 \ CS00975 \ (EDO-04-2018) \ (600 \ EM\&A \ Report \ Submission \ Monthly \ EM\&A \ Report \ October \ 2019 \ R0290v \ 2.docx \ 2.doc$



	Drawn	Date	Drawing No.	
	GL	01/13		
	Checked	Approved	209506/EIA/II	N/001
01/13	JP	ST		
07/11	Scale		Status	Rev. D
Date	1:5000 on A1 &	1:10000 on A3	FINAL	D

		845500 E	the second secon
SETTING OUT POINTS	SETTING OUT POINTS	lo r	
POINTS EASTING NORTHING	POINTS EASTING NORTHING		
001 844512.175 817604.422 002 844498.695 817557.993	026 846204.700 816926.589 027 846199.263 816926.590	-	
003 844598.186 817407.065	021 0461331263 016260.336 028 846144.269 816926.589		
004 844596.769 817404.339 005 845132.374 817153.641	029 846091.080 816926.744 030 845969.970 816926.504	-	
006 845500.00 817088.580	031 846199.197 816975.364		
007 845524.969 817088.226 008 845524.909 817236.307	032 846188.983 816993.582		
008 845524.909 817236.307 009 845558.095 817236.307	033 846144.274 816999.997 034 846144.274 817000.722	-	
010 845558.095 817195.885	035 846091.204 817000.679		
011 845550.234 817174.288 012 845550.219 817158.042	036 845970.070 817000.581 037 845970.069 817000.099	+ $+$	
013 845562.850 817139.744 014 845562.850 817035.700	038 845550.850 817000.099 039 845524.969 817000.099		
015 845550.850 817035.670	040 845550.850 816953.291	-	
016 845524.969 817035.670 017 846030.606 817036.089	041 845500.00 816952.636	-	***
017 846030.606 817036.089 018 846030.604 817038.387	042 845076.990 817029.022 043 844534.373 817264.536	-	E00
019 846200.700 817038.418	044 844525.572 817267.627	-	008
020 846200.700 817038.796 021 846205.200 817042.796	045 844525.199 817266.527 046 844444.018 817285.203	-	
022 846205.200 817138.796	047 844456.043 817347.194	-	
023 846245.180 817138.796 024 846246.698 816900.099	048 844482.530 817341.743 049 844502.889 817386.445	-	
025 846206.155 816900.099	050 844403.015 817604.422]	
		JUNK BAY	
		(TSEUNG KWAN D)	\times
			PORTION VII
			PORTION III
		t	
		將軍運 JUNK BAY JUNK KWAN ON	
		将軍决、	
		NK BANN O	
		JULY KWAN	
		(TSEUL	016
			8
	005		550
	\$		
			13300
		PORTION II	
		1400	13250
	5 5	350	
1100	1250		13200
	· · · · · · · · · · · · · · · · · · ·	13150	
IB] IT		13 00 1	
		13000	
12800	12950	0	
MAIN BRIDGE			
		The second of the second in the second second	
		·	

N:VIDesign & Engineering/Cod Admin/Ustation_Plotary/.CR8C.COL.A3.pltcfg Default PRNTED BY: User 22/11/2018 (0:40:59 M:VIDesign & Engineering/Incruiten/SC4-ft fr01.1073-37018172 Am



Appendix B

Project Organization Chart & Contact Details of Key Personnel for the Project

Project Organization Structure

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
CEDD	Project Proponent	CK Lam	2301 1398	2714 5174
CEDD	Project Proponent	Sheri Leung	2301 1398	2714 5174
AECOM	Senior Resident Engineer	Jackie Chan	3595 8045	3596 6118
AECOM	Resident Engineer	Kingman Chan	3595 8045	3596 6118
ASC – N&T JV	Independent Environmental Checker	Kevin Li	2698 6833	2698 9383
ASC – N&T JV	Senior Environmental Consultant	Tandy Tse	2698 6833	2698 9383
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Martin Li	2959 6059	2959 6079
CRBC	Site Agent	Raymond Suen	9779 8871	2283 1689
CRBC	Environmental Officer	Calvin So	9724 6254	2283 1689
CRBC	Environmental Supervisor	Lila Lui	9790 5433	2283 1689
Build King	Site Agent	Stephen Leung	9071 7657	TBA
Build King	Environmental Officer	Michael Lam	6476 4299	TBA
Build King	Environmental Supervisor	Kenneth Hung	6170 9304	TBA

Contact Details of Key Personnel for the Project

Legend:

CEDD (Employer) – Civil Engineering and Development Department

AECOM (Project Consultant) – AECOM Asia Co. Ltd.

ASC – N&T JV (IEC) – Acuity Sustainability Consulting Limited – Nature & Technologies (HK) Limited Joint Venture

AUES (ET) – Action-United Environmental Services & Consulting

CRBC (the Main Contractor of the Works Contract 1) – China Road and Bridge Corporation

Build King (the Main Contractor of the Works Contract 2) - Build King Civil Engineering Limited

Appendix C

3-Month Rolling Construction Programme

Contract 1

Page: 1

		Original Duration	Remaining Dura		Planned Start	1 1131	Planned Finish	Total Float /	Activity % Complete	TRA Variance-Finish	22		9 20 27	November 2019 7 03 10 17
oss Bay Linl	r, Tseung Kwan O Main Bridge and Associated Works	1484	930	29-Jun-18 A	29-Jun-18	25-Apr-22	21-Jul-22	321			87			
xecutive Su	nmary Programme	1484	930	29-Jun-18 A	29-Jun-18	25-Apr-22	21-Jul-22	-72			87			
ESP Section	2 of Works-All Works within Portion II,III,IV and VI	1240	930	17-Sep-18 A	28-Feb-19	25-Apr-22	21-Jul-22	-72			87			
ESP10920	CBL Main Bridge and Marine Viaduct	1240	930	17-Sep-18 A	28-Feb-19	25-Apr-22	21-Jul-22	-72	25%	0	87			
ESP10960	Piling Works	671	155	17-Nov-18 A	18-Apr-19	11-Mar-20	16-Feb-21	61	76.9%	0	342			
ESP10980	Pile Cap	321	258	23-Jul-19 A	08-Aug-19	22-Jun-20	23-Jun-20	37	19.63%	0	1			
ESP11000	Pier	256	256	20-Dec-19	01-Feb-20	31-Aug-20	06-Nov-20	120	0%	0	67			
ESP11160	E&M Works for CBL Main Bridge and Marine Viaduct	901	901	07-Nov-19	08-Oct-19	25-Apr-22	25-Apr-22	-72	0%	0	0			
ESP Section	5 of the Works-All Works within Portion V (CBL E&M Plantroom)	638	462	01-Apr-19 A	16-Apr-19	12-Jan-21	23-Dec-20	0			-20			
ESP11260	Structural Works	232	56	01-Apr-19 A	16-Apr-19	03-Dec-19	03-Dec-19	-4	75.86%	0	0			
ESP11280	Architectural & External Works	60	60	14-Dec-19	19-Nov-19	11-Feb-20	13-Jan-20	-4	0%	0	-29			
ESP11300	E&M Works and FSD Inspection	336	336	12-Feb-20	14-Jan-20	12-Jan-21	23-Dec-20	0	0%	0	-20			
Preliminaries	Contractor's Design & Method Statement Submission & Approval	1072	605	29-Jun-18 A	29-Jun-18	04-Jun-21	05-Aug-21	52			62			
ESP10400	Temporary Works Design	695	379	13-Aug-18 A	13-Aug-18	21-Oct-20	07-Jul-20	76	45.47%	0 -	106			
ESP10420	Method Statement Submission for Major Construction Works	736	464	27-Aug-18 A	27-Aug-18	14-Jan-21	31-Aug-20	20	36.96%	0 -	136			
ESP10440	Contractor's Design Submission and Approval	869	556	06-Aug-18 A	06-Aug-18	16-Apr-21	21-Dec-20	101	36.02%	0 -	116			
ESP10460	Alternative Design Submission and Approval	397	58	07-Aug-18 A	07-Aug-18	05-Dec-19	07-Sep-19	33	85.39%		-89			
ESP10480	General Submission	843	376	29-Jun-18 A	29-Jun-18	18-Oct-20	18-Oct-20	58	55.4%		0			
ESP10500	Project Manager's Acceptance of Subcontractors	556	146	14-Aug-18 A	21-Feb-19	02-Mar-20	29-Aug-20	346	73.74%		180			
ESP10560	Procurement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment	605	605	09-Oct-19	04-Oct-19	04-Jun-21	05-Aug-21	16	0%		62			
ESP10600	Precasting of Precast Shell	745	462	08-Nov-18 A	28-Apr-19	12-Jan-21	11-May-21	155	37.99%		119			
ESP10620	Fabrication of Precast Box Girder	713	405	10-Nov-18 A	13-May-19	12 van 21 16-Nov-20	24-Apr-21	7	43.2%		159			
ESP10640	Fabrication of Steel Arch Bridge and Side Spans	623	442	28-Mar-19 A	08-Apr-19	23-Dec-20	20-Dec-20	-55	29.05%		-3			
		025	0	09-Oct-19	08-Sep-19	09-Oct-19	08-Sep-19	1251	27.0576		-31	▼ EW, NCE,	CE and PMI	
W, NCE, CE		0	0	09-Oct-19	08-Sep-19	09-Oct-19	08-Sep-19	1251			-31			ion Event NCE
NCE0581	of Compensation Event NCE NCE030 - Weather Conditions (Rainstorm Warnings) affecting the Site in June 2019		0	09-Oct-19		09-00-19	06-3cp-19		09/		-31		*	ions (Rainstorm Warnings) affecti
		0			08-Sep-19			1251	0%		-51			ions affecting the Site in August 2
NCE0781	NCE040 - Weather Conditions affecting the Site in August 2019		0	09-Oct-19					0%		_			ions (Red Rainstorm Warning) aff
NCE0801	NCE041 - Weather Conditions (Red Rainstorm Warning) affecting the Site on 26 August 2019	0	0	09-Oct-19	01.0.10	04.77 10	10.0	1251	0%	0	-	• INCED41 -	weather Conditi	
	Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equip	49	49	09-Oct-19	04-Oct-19	04-Dec-19	12-Dec-19	43			7			
rocuremen		49	49	09-Oct-19	04-Oct-19	04-Dec-19	12-Dec-19	43			7			
P-PC10120	Procurement of LV Switch Board	45	45	09-Oct-19	04-Oct-19	29-Nov-19	26-Nov-19	18	0%	0	-3			<u></u>
P-PC10140	Procurement of AHU for Dehumidification System	30	30	31-Oct-19	08-Nov-19	04-Dec-19	12-Dec-19	43	0%	0	7			
P-PC10160	Procurement of Genset	30	30	09-Oct-19	04-Oct-19	12-Nov-19	08-Nov-19	18	0%		-3			Procurement of
eliminaries,	Contractor's Design & Method Statement Submission & Approval	398	214	28-Mar-19 A	08-Apr-19	09-May-20	08-Apr-20	118			-31			
Temporary V	lorks Design	239	145	06-Jun-19 A	21-Jun-19	25-Mar-20	25-Mar-20	70			0			
TDS2010	Formwork design for V-shaped pier and crossbeam construction (incl. 21 days TRA)	63	11	06-Jun-19 A	21-Jun-19	21-Oct-19	02-Sep-19	11	82.54%	21	-42		Formwork	design for V-shaped pier and cro
TDS2020	Temporary falsework design for V-shaped pier and crossbeam construction (incl. 21 days TRA)	36	36	28-Oct-19	27-Sep-19	07-Dec-19	07-Nov-19	11	0%	21	-26			
TDS2080	Design of lifting frame for full-span lifting of precast box girder (incl. 35 days TRA)	63	63	09-Oct-19	10-Sep-19	20-Dec-19	21-Nov-19	140	0%	35	-25			
TDS2140	Design of temporary works for superstructure of steel bridge (incl. 35 days TRA)	141	141	14-Oct-19	14-Oct-19	25-Mar-20	25-Mar-20	70	0%	35	0			
TDS2160	Steel mould design for precast segments of TKOI viaducts (incl. 21 days TRA)	63	63	09-Oct-19	09-Sep-19	20-Dec-19	20-Nov-19	13	0%	21	-26			
TDS2180	Design of Pier bracket for erection of pier-head segments (incl. 21 days TRA)	56	56	21-Dec-19	21-Nov-19	24-Feb-20	24-Jan-20	13	0%	21	-26			
Method State	ement Submission for Major Construction Works	326	184	28-Mar-19 A	26-Apr-19	09-May-20	08-Apr-20	31			-27			
MDS1135	Method statement submission for geometry control (incl. 21 days TRA)	67	15	28-Mar-19 A	26-Apr-19	25-Oct-19	12-Jul-19	-16	77.61%	21	-90		Meth	od statement submission for geon
MDS1140	Method statement submission for assembly of steel arch bridge (incl. 35 days TRA)	96	96	09-Oct-19	09-Sep-19	28-Jan-20	28-Dec-19	119	0%	35	-26			
MDS1170	Method statement submission for delivery of precast box girder (incl. 35 days TRA)	61	61	06-Feb-20	06-Jan-20	16-Apr-20	16-Mar-20	39	0%	35	-27			
MDS1210	Method statement submission for installation of precast box girder (incl. 35 days TRA)	81	81	06-Feb-20	06-Jan-20	09-May-20	08-Apr-20	19	0%	35	-27			
Contractor's	Design Submission and Approval	241	134	15-Apr-19 A	28-May-19	19-Feb-20	23-Jan-20	0			-27			
CDS1040	Design of arch rib inspection cradle + Under bridge gantry	86	65	16-Sep-19 A	09-Sep-19	23-Dec-19	17-Dec-19	-22	24.42%	0	-5			
													1	:
Rem	aining Level of Effort Remaining Work \blacklozenge \blacklozenge Mile	estone					CRBC					Date	N A	Revision
	ary Baseline Critical Remaining Work VIII Su	nmary										08-Oct-19	livionthl	y updated on 08 Oct 201

24	01	De 08	cember 2019 15	2	2	29		05		Jary 202 12		19		26
														_
														-
	Stru	ctural W	/orks											
	A	lternativ	e Desig	n Subrr	nission a	and A	ppro	oval						
														_
cting the	Site in Jur	e 2019												
t 2019	ha Cita au	- 26 Am		n										
affecting			nt, Facto		entance	Test.	Del	iverv	and	Tem	oora	rv Ste	orag	e of
		ocureme		.,	1					,				
	Procurem	ent of I	V Switc	h Boar	d									
		1	Procurer	nent of	AHU f	ör De	ehun	nidifi	catior	1 Sys	tem			
t of Gense	t													
macha	oorst	ion C-	1 21 4-	TDA										
rossbeam			n 21 day arary fals			for V-	shar	ned n	ier an	ıd crr	ossh	eam a	cons	struct
			nury nuis			1								
				Steel	mould	desig	gn fo	r pred	cast s	egm	ents	of Tł	KOI	viac
cometry co	ntrol (inc	1. 21 day	/s TRA)											
														Me
							_							
						-								
				– I	Design o	of arc	h rib	insp	ection	n cra	dle ·	+ Uno	ler l	oridg
on					Cha	: ckc	Ч			٨٣	n ~		1	
on 019				-	Che	ure	u	+		лρ	μı	oveo	<u>к</u>	

Page: 2

	1 A ali yi Monoa		Bomoria	o Chat	Dispersion	Einich	Diserved	1.00	And a grant and	104	non Ersteller		October 201		
	AchilyName	Original Duration	Remaining Durate	n Start	Planned Start	Finsh	Planned Finish	IOTALFICAE	Activity % Complete	IRA Vana		2 29	06 13	-	
CDS1060	Design of access facilities (incl. 14 days TRA)	125	25	05-May-19 A	28-May-19	06-Nov-19	19-Oct-19	56	80%	14	-15				Design of access facilities
CDS1080	Design of Tuned Mass Damper(TMD) (incl. 7 days TRA)	150	53	15-Apr-19 A	08-Jul-19	09-Dec-19	28-Dec-19	62	64.67%		17				
CDS1100	Design of de-humidification system	83	75	26-Sep-19 A	04-Oct-19	03-Jan-20	08-Jan-20	20	9.64%		4				
CDS1160	Design of Electrical system for the E&M plant room	100	100	09-Oct-19	30-Sep-19	16-Jan-20	07-Jan-20	9	0%	0	-9				
CDS1180	Design of Building Services system for the E&M plant room	100	94	02-Sep-19 A	02-Sep-19	10-Jan-20	10-Dec-19	21	6%		-31				
CDS1200	Design of Structural health monitoring system (incl. 14 days TRA)	172	115	12-Jun-19 A	08-Jul-19	19-Feb-20	23-Jan-20	-20	33.14%	14	-23				
	esign Submission and Approval	111	50	30-Mar-19 A	08-Apr-19	05-Dec-19	14-Aug-19	28			-97				
ADS1030	DDA submission for bridge deck of entrusted works of TKOI Viaduct (incl. 35 days TRA)	111	50	30-Mar-19 A	08-Apr-19	05-Dec-19	14-Aug-19	28	54.95%	35	-97				
	s,Submission, Subcontracting and Procurement	205	21	28-Mar-19 A	08-Apr-19	29-Oct-19	29-Oct-19	311			0				Preliminaries, Submission, Subcontr
General Subr		140	20	28-Mar-19 A	08-Apr-19	28-Oct-19	25-Aug-19	-71			-64				eneral Submission
	Steel main bridge shop drawings submission and approval (incl. 7 days TRA)	140	20	28-Mar-19 A	08-Apr-19	28-Oct-19	25-Aug-19	-71	85.71%	7	-64				teel main bridge shop drawings sub
	ager's Acceptance of Subcontractors	21	21	08-Oct-19	08-Sep-19	29-Oct-19	29-Oct-19	311			0				Project Manager's Acceptance of Su
P-SP1400	Transportation and installation of precast box girder	0	0			08-Oct-19	08-Sep-19	22	0%	0	-31		-		on of precast box girder
P-SP1540	Waterproofing Works	0	0			08-Oct-19	30-Sep-19	237	0%	0	-8	٥	 Waterproofi 	-	
P-SP1560-0	Supply and installation of steel parapet and sign gantry	0	0			29-Oct-19	29-Oct-19	311	0%	0	0			•	Supply and installation of steel parage
P-SP1680	Design, supply and installation of SCADA (SP-021)	0	0			08-Oct-19	29-Sep-19	283	0%	0	-9				on of SCADA (SP-021)
P-SP1700	Electrical installation works for CBL Main bridge and Marine Viaduct (SP-021)	0	0			08-Oct-19	29-Sep-19	78	0%	0	-9	٥	 Electrical in 	stallation works	for CBL Main bridge and Marine V
P-SP1760	Building services for E&M plantroom(SP-021)	0	0			08-Oct-19	29-Sep-19	9	0%	0	-9	٥	 Building ser 	vices for E&M p	plantroom(SP-021)
recasting & F	Fabrication Works	441	307	08-Dec-18 A	28-May-19	10-Aug-20	20-May-20	19			-82				
Fabrication o	of Precast Shell and Precast Segments	189	140	25-Jul-19 A	21-Aug-19	25-Feb-20	29-Jan-20	66			-27				
Precast Shell	l de la constante de	189	140	25-Jul-19 A	21-Aug-19	25-Feb-20	29-Jan-20	66			-27				
CBL - Batch	1 2 (4nos.)	56	15	21-Aug-19 A	21-Aug-19	23-Oct-19	15-Oct-19	51			-8			CBL-B	Batch 2 (4nos.)
P-PS3135	Fabrication of Shell E1 (1/2) + Modification of Casting Bed (2 weeks)	55	15	21-Aug-19 A	21-Aug-19	23-Oct-19	14-Oct-19	51	72.73%	0	-9			Fabricati	ion of Shell E1 (1/2) + Modification
P-PS3137	Fabrication of Shell E1 (2/2) + Modification of Casting Bed (2 weeks)	55	8	22-Aug-19 A	22-Aug-19	16-Oct-19	15-Oct-19	23	85.45%	0	-1		F	abrication of She	ell E1 (2/2) + Modification of Castin
CBL - Batch	n 3 (4nos.)	62	51	04-Aug-19 A	15-Oct-19	13-Dec-19	24-Dec-19	96			11				
P-PS3068	Fabrication of Shell W1 (1/2)	28	28	24-Oct-19	15-Oct-19	20-Nov-19	11-Nov-19	51	0%	0	-9				Fabrica
P-PS3069	Fabrication of Shell W1 (2/2)	28	28	16-Nov-19	07-Nov-19	13-Dec-19	04-Dec-19	51	0%	0	-9				
P-PS3138	Fabrication of Shell E2	28	0	04-Aug-19 A	27-Nov-19	16-Aug-19 A	24-Dec-19		100%	0	130				
CBL - Batch	1 4 (2nos.)	57	42	25-Jul-19 A	25-Nov-19	14-Jan-20	29-Jan-20	108			15				
P-PS3142	Fabrication of Shell W4	28	0	25-Jul-19 A	02-Jan-20	08-Aug-19 A	29-Jan-20		100%	0	174				
P-PS3143	Fabrication of Shell W5 + Modification of Casting Bed (2 weeks)	42	42	04-Dec-19	25-Nov-19	14-Jan-20	05-Jan-20	108	0%	0	-9				-
CBL - E1 an	nd W1 Side Shells (4nos.)	140	140	09-Oct-19	08-Sep-19	25-Feb-20	25-Jan-20	49			-31		-		
P-PS9010	Casting Bed Preparation for Side Shells (small) - Additional Casting Beds	60	60	09-Oct-19	08-Sep-19	07-Dec-19	06-Nov-19	15	0%	0	-31				: :
P-PS9020	Fabrication of Side Shells (small) x2 Sides E1	40	40	08-Dec-19	07-Nov-19	16-Jan-20	16-Dec-19	15	0%	0	-31				
P-PS9040	Fabrication of Side Shells (small) x2 Sides W1	40	40	17-Jan-20	17-Dec-19	25-Feb-20	25-Jan-20	49	0%	0	-31				
Fabrication o	of Precast Box Girder	284	150	08-Dec-18 A	28-May-19	06-Mar-20	01-Mar-20	111			-5				
P-BG1415	Setting Up Precasting Yard for Box Girder - Stage 2 (Storage)	120	30	08-Dec-18 A	28-May-19	07-Nov-19	24-Sep-19	193	75%	0	-44				Setting Up Precasting Y
P-BG1435	Design, Procurement and Delivery of Structure Health Monitoring Sensors for Box Griders	80	15	12-Jun-19 A	08-Jul-19	23-Oct-19	25-Sep-19	63	81.25%	0	-28			Design,	Procurement and Delivery of Struct
Box Girder F	abrication - 1st Batch (8 Pieces)	194	150	26-Aug-19 A	21-Aug-19	06-Mar-20	01-Mar-20	111			-5				
P-BG1383	Fabrication of Precast box girder, Including Cast-in Items and Prestressing -Span W3-W4(S	outh) 75	53	04-Sep-19 A	10-Sep-19	30-Nov-19	23-Nov-19	51	29.33%	0	-7				
P-BG1384	Fabrication of Precast box girder, Including Cast-in Items and Prestressing -Span E5-E6 (No	orth) 75	75	08-Nov-19	21-Aug-19	21-Jan-20	03-Nov-19	7	0%	0	-79				: :
P-BG1390	Fabrication of Precast box girder, Including Cast-in Items and Prestressing -Span E6-E7(Sou	uth) 75	75	09-Oct-19	04-Oct-19	22-Dec-19	17-Dec-19	111	0%	0	-5				
P-BG1406	Fabrication of Precast box girder, Including Cast-in Items and Prestressing -Span E5-E6(Sou	uth) 75	30	26-Aug-19 A	26-Aug-19	07-Nov-19	08-Nov-19	7	60%	0	1				Fabrication of Precast l
P-BG1408	Fabrication of Precast box girder, Including Cast-in Items and Prestressing -Span E6-E7(No	orth) 75	75	23-Dec-19	18-Dec-19	06-Mar-20	01-Mar-20	111	0%	0	-5				
	abrication - 2nd Batch (5 Pieces)	75	75	01-Dec-19	24-Nov-19	13-Feb-20	06-Feb-20	51			-7				
			75	01-Dec-19	24-Nov-19	13-Feb-20	06-Feb-20	51	0%	0	-7				
	of Precast Pier	217	217	16-Sep-19 A	04-Oct-19	07-Jun-20	20-May-20	12			-18				
P-PF1230	Fabrication of Precast pier (1st batch 4 nos) - E4, E5, E6, E7 (Include 10 days TRA)	110	80	16-Sep-19 A	04-Oct-19	22-Jan-20	10-Jan-20	12	27.27%	10	-12				
Rem	aining Level of Effort Remaining Work	♦ Milestone					CRBC						Date		Revision
	ary Baseline Critical Remaining Work	Summary				hree Mont						0	8-Oct-19	Monthly	updated on 08 Oct 2019
1 1 1 1 1 1															

	December 2019			January 2020
24 cilities (inc	01 08 15 1. 14 days TRA)	22	29 05	12 19 26
		De		ed Mass Damper(TMD) (inc
			I	Design of de-humidification
				Design of Electric Design of Building Servic
				Design of Building Servic
	 Alternative Design S 	Submission a	nd Approval	
	DDA submission for	r bridge deck	of entrusted	works of TKOI Viaduct (in
contractin	g and Procurement		• • •	
	on and approval (incl. 7 day	s TRA)	- - - - - - -	
of Subcon	tractors			
parapet ar	id sign gantry		- - - - - -	
1 1			- - - - -	
ine Viadu	t (SP-021)			
			*	
ration of C	asting Bed (2 weeks)			
	ed (2 weeks)		•	
Ũ	CBL - Ba	utch 3 (4nos.)		
abrication	of Shell W1 (1/2)		•	
	Fabricatio	on of Shell W	1 (2/2)	
_		— Fabricat	ion of Shell	E2
			2 2 2 2 2 2	CBL - Batch 4 (2nos
				Entrication of Shall 1
				Fabrication of Shell
	Casting Bed Prep	aration for S	ide Shells (sr	nall) - Additional Casting Be
				Fabrication of Sid
	or Box Girder - Stage 2 (Sto			
Structure I	lealth Monitoring Sensors fo	or Box Gride	rs	
	Fabrication of Precast box	oirder. Includ	ling Cast-in	Items and Prestressing -Spar
		6,		Fabrication
		Fabrication	a of Precast b	oox girder, Including Cast-in
cast box g	irder, Including Cast-in Item	ns and Prestre	ssing -Span	E5-E6(South)
			-	
				Fabrication
				Fabrication
ion		Cheo	cked	Approved
019				

Page: 3

PF1420 Fabrication of Precast pier (2nd batch 4 nos) - W2, W3, E2, E3 (include 10 days TRA)	Original Duration 180	Remaining Durat	11-Dec-19	Planned Start 01-Feb-20	07-Jun-20	Planned Finish 20-May-20	12	Activity%Complete 1 0%	RA Variance-Finish	-18	29	October 2019 06 13 20 2	27 03 10 17
brication of Steel Arch Bridge and Side Spans	430	307	19-Apr-19 A	08-Jun-19	10-Aug-20	15-Mar-20	19		-	148		+	
abrication of Side Spans	183	183	13-Dec-19	07-Nov-19	12-Jun-20	15-Mar-20	-44			-89			
P-PF1080 Fabrication of steel deck of Side Spans - C01 to C07	148	148	13-Dec-19	07-Nov-19	08-May-20	25-Jan-20	-64	0%	7 -	104			
P-PF1081 Sub-assembly of Side Span - C01 to C07	80	80	25-Mar-20	27-Dec-19	12-Jun-20	15-Mar-20	-44	0%	0	-89			
abrication of Steel Arch Bridge	430	307	19-Apr-19 A	08-Jun-19	10-Aug-20	06-Mar-20	19		-	157		+	
Design, Drawing, Procurement	231	80	19-Apr-19 A	08-Jun-19	27-Dec-19	24-Jan-20	-26			28		+	
P-PF1040 Setting up steel work fabrication yard	60	29	08-Aug-19 A	08-Aug-19	06-Nov-19	06-Oct-19	-40	51.67%	0	-31			Setting up stee
P-PF1045 Remaining shop drawing submission & approval (NCE 014)	65	80	29-Jun-19 A	21-Nov-19	27-Dec-19	24-Jan-20	-26	0%	0	28			
P-PF1047 Procurement and delivrey of welding materials	90	20	06-Jun-19 A	08-Jun-19	28-Oct-19	05-Sep-19	-56	77.78%	0	-53		F	Procurement and delivrey
P-PF1050 Procurement and delivery of steel material (incl. 35 days TRA)	125	30	19-Apr-19 A	12-Jun-19	07-Nov-19	14-Oct-19	-48	76%	35	-24			Procurement
Fabrication and sub-assembly Work	371	307	25-Jun-19 A	06-Aug-19	10-Aug-20	06-Mar-20	19		-	157			
P-PF1055 1st batch of on site material sampling & testing	20	17	25-Jun-19 A	10-Oct-19	25-Oct-19	29-Oct-19	-48	15%	0	4			1st batch of on site mater
P-PF1065 Welding Procedure trials	90	25	29-Jun-19 A	06-Aug-19	02-Nov-19	03-Nov-19	-56	72.22%	0	1			Welding Procedure
P-PF1095 Material Pre-Treatment	41	10	30-Aug-19 A	30-Aug-19	18-Oct-19	09-Oct-19	-71	75.61%	0	-9	:	Material Pre-T	reatment
P-PF1097 U-Rib Fabrication	30	10	30-Aug-19 A	30-Aug-19	18-Oct-19	28-Sep-19	-71	66.67%	0	-20		U-Rib Fabrica	tion
P-PF1101 Fabrication of panel plate for C08 to C14	164	125	30-Aug-19 A	30-Aug-19	10-Feb-20	27-Nov-19	-71	23.78%	7	-75			
P-PF1110 Sub-assembly of Main Span - Decking C08 to C14	120	120	28-Dec-19	28-Oct-19	25-Apr-20	25-Jan-20	-14	0%	0	-91			
P-PF1120 Fabrication of Main Span - Decking C15- C21	177	177	11-Feb-20	18-Dec-19	05-Aug-20	06-Mar-20	-71	0%	7 -	152			
P-PF1170 Fabrication of Main Span - Arch rib NG01 to NG19	237	237	13-Nov-19	08-Sep-19	06-Jul-20	26-Nov-19	-64	0%	7 -	223			
P-PF1175 Sub-assembly of Main Span - Arch rib(1st batch)	125	125	08-Apr-20	28-Oct-19	10-Aug-20	25-Jan-20	19	0%	0 -	198			
P-PF1190 Fabrication of Main Span - Arch rib SG01 to NG19	237	237	13-Dec-19	18-Dec-19	05-Aug-20	06-Mar-20	-21	0%	7 -	152			
ion 2 of Works-All Works within Portion II,III,IV and VI	484	310	23-Nov-18 A	18-Apr-19	13-Aug-20	18-Aug-20	357			5			
3L Main Bridge and Marine Viaduct	484	310	23-Nov-18 A	18-Apr-19	13-Aug-20	18-Aug-20	357			5			
illing Works	292	118	23-Nov-18 A	18-Apr-19	03-Feb-20	23-Jan-20	58			-11			
S2-PW1010 Procurement and delivery of steel casing (CE004)(CE005)(CE006)(CE008)(NCE 018 & 019)	75	1	23-Nov-18 A	18-Apr-19	09-Oct-19	01-Jul-19	30	98.67%	0 -	100		Procurement and delivery	
Piling Works for Pier W4	21	21	09-Oct-19	09-Sep-19	01-Nov-19	02-Oct-19	124			-26			Piling Works for Pie
Testing	21	21	09-Oct-19	09-Sep-19	01-Nov-19	02-Oct-19	124			-26			Testing
S2-PW49 Sonic Test, interface core and full core for bored pile -W4	21	21	09-Oct-19	09-Sep-19	01-Nov-19	02-Oct-19	124	0%	0	-26	—		Sonic Test, interface
Piling Works for Pier E2	71	71	09-Oct-19	28-Oct-19	18-Dec-19	06-Jan-20	58			19			
S2-PW851(Piling platform installation -E2 (CE006)	4	4	09-Oct-19	28-Oct-19	12-Oct-19	31-Oct-19	47	0%	0	16			 Piling platform instal
Pile E2 -P1	10	10	14-Oct-19	01-Nov-19	24-Oct-19	12-Nov-19	51			16		Pile E	
S2-PW85Drive Casing & Grab to excavate the soil (40.4m length) -E2-P1	3	3	14-Oct-19	01-Nov-19	16-Oct-19	04-Nov-19	47	0%		16			Drive Casing & Install RCI
S2-PW85 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E2-P1	4	4	17-Oct-19	05-Nov-19	21-Oct-19	08-Nov-19	47	0%		16			— Install RCI — Instal
S2-PW86 Install steel cage and concreting -E2-P1	3	3	22-Oct-19	09-Nov-19	24-Oct-19	12-Nov-19	51	0%	0	16			
Pile E2 -P2	11	11	17-Oct-19	05-Nov-19	29-Oct-19	16-Nov-19	50		0	16			Pile E2 -P2 — Drive Casin
S2-PW86 Drive Casing & Grab to excavate the soil (40.4m length) -E2-P2	3	3	17-Oct-19	05-Nov-19	19-Oct-19	07-Nov-19	48	0%		16			Insta
S2-PW86 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting E2-PV2 S2-PV2 Level 4 concerting F2-P2	4	4	22-Oct-19	09-Nov-19	25-Oct-19	13-Nov-19	47		0	16			
S2-PW86 Install steel cage and concreting -E2-P2 Pile E2 -P3	3	3	26-Oct-19	14-Nov-19	29-Oct-19 02-Nov-19	16-Nov-19 21-Nov-19	50	0%	0	16			Pile E2 -P3
S2-PW86 Drive Casing & Grab to excavate the soil (40.4m length) -E2-P3	12 3	12	21-Oct-19 21-Oct-19	08-Nov-19 08-Nov-19	23-Oct-19	11-Nov-19	49 49	0%	0	16			Drive
S2-FW60Dive Casing & Grab to excavate the soli (40.4th length) -E2-FS S2-PW87 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting	4	4	21-Oct-19 26-Oct-19	14-Nov-19	30-Oct-19	11-Nov-19 18-Nov-19	49	0%		16			
S2-PW87 Install steel cage and concreting -E2-P3 S2-PW87 Install steel cage and concreting -E2-P3	3	3	31-Oct-19	14-Nov-19 19-Nov-19	02-Nov-19	21-Nov-19	47	0%		16			
Pile E2 -P4		-						078	0	16		— —	Pile E2 -P4
S2-PW87 Drive Casing & Grab to excavate the soil (40.4m length) -E2-P4	13 3	13	24-Oct-19 24-Oct-19	12-Nov-19 12-Nov-19	07-Nov-19 26-Oct-19	26-Nov-19 14-Nov-19	48 50	0%	0	16		-	- The E2 -14
		-								_			
S2-PW87 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E2-P4 S2 PW27 Install text and constraints E2 P4	4	4	31-Oct-19 05-Nov-19	19-Nov-19 23-Nov-19	04-Nov-19 07-Nov-19	22-Nov-19 26-Nov-19	47	0%		16			
S2-PW87 Install steel cage and concreting -E2-P4 Pile E2 -P5	3	3					48	0%	0	16			Pile I
	14	14	28-Oct-19	15-Nov-19	12-Nov-19	30-Nov-19	4/			10			- 110
										,			
Remaining Level of Effort Remaining Work	estono				1	CRBC						Date	F

December 2019 24 01 06 15	22	29 05	January20	20	26
		:	-		
	_				
	De	sign, Drawin	7 Procure	ment	
			5,		
k fabrication yard					
					Remaini
lding materials					
lelivery of steel material (incl. 35 days	TRA)				
, , ,	,				
mpling & testing					
s					
		:			
5)(CE006)(CE008)(NCE 018 & 019)					
nd full core for bored pile -W4					
Pi	ing Works fo	r Pier E2			
E2 (CE006)					
to excavate the soil (40.4m length) -E2	2-P1				
excavate the rock under rockhead leve	l to founding	level (4m so	cket) - rig	No.2 & a	ir lifting
cage and concreting -E2-P1					
0					
rab to excavate the soil (40.4m length)	-E2-P2				
D and excavate the rock under rockhe	ad level to fo	unding level	(4m socke	t) - rig No	.2 & air
steel cage and concreting -E2-P2					
& Grab to excavate the soil (40.4m le	ength) -E2-P3	3			
all RCD and excavate the rock under r	ockhead leve	: el to founding	g level (4m	socket) -	rig No.2
Install steel cage and concreting -E2-P					
	-				
sing & Grab to excavate the soil (40.4	m length) -E	2-P4			
Install RCD and excavate the rock un	nder rockhea	: d level to fou	nding leve	l (4m soci	ket) - rig
— Install steel cage and concreting			-		
insun soor cage and concreting	, 12-17				
	<i>.</i>		-		
ion	Che	cked	Ap	prove	a
019					

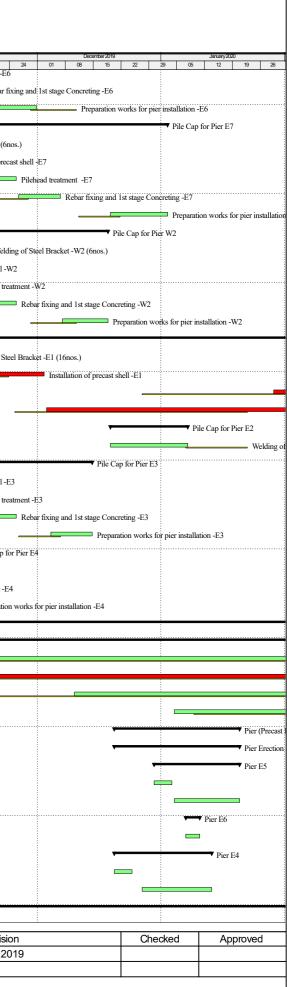
Page: 4

ActivityName	Original Duration	Remaining Dura	ton Start	Planned Start	Finish	Planned Finish	Total Float	Activity% Complete	TRA Varia	ance-FinishDate	22	29	October 2019 06 13 20 27	
S2-PW88Drive Casing & Grab to excavate the soil (40.4m length) -E2-P5	3	3	28-Oct-19	15-Nov-19	30-Oct-19	18-Nov-19	51	0%	0	16				— Dri
S2-PW88 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E2-P5	4	4	05-Nov-19	23-Nov-19	08-Nov-19	27-Nov-19	47	0%	0	16				
S2-PW88 Install steel cage and concreting -E2-P5	3	3	09-Nov-19	28-Nov-19	12-Nov-19	30-Nov-19	47	0%	0	16				
ile E2 -P6	10	10	13-Nov-19	02-Dec-19	23-Nov-19	12-Dec-19	47			16				*
S2-PW88 Drive Casing & Grab to excavate the soil (40.4m length) -E2-P6	3	3	13-Nov-19	02-Dec-19	15-Nov-19	04-Dec-19	47	0%	0	16				
S2-PW88 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.2 & air lifting -E2-P6	4	4	16-Nov-19	05-Dec-19	20-Nov-19	09-Dec-19	47	0%	0	16				
S2-PW89 Install steel cage and concreting -E2-P6	3	3	21-Nov-19	10-Dec-19	23-Nov-19	12-Dec-19	47	0%	0	16				t
esting	21	21	25-Nov-19	13-Dec-19	18-Dec-19	06-Jan-20	50			16				
S2-PW85 Sonic Test, interface core and full core for bored pile -E2	21	21	25-Nov-19	13-Dec-19	18-Dec-19	06-Jan-20	50	0%	0	16				
ng Works for Pier W3	45	24	09-Sep-19 A	13-Sep-19	01-Nov-19	20-Nov-19	122			19				Piling Works for Pier W2
lie W3 -P1	7	0	09-Sep-19 A	13-Sep-19	18-Oct-19 A	25-Sep-19				-18			Pile W3 -P1	
S2-PW32 Drive Casing & Grab to excavate the soil (42m length) -W3-P1	3	0	09-Sep-19 A	13-Sep-19	10-Oct-19 A	17-Sep-19		100%	0	-18			Drive Casing & Grab to e	excavate the soil (42m length
S2-PW32 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W3-P1	4	0	11-Oct-19 A	18-Sep-19	15-Oct-19 A	21-Sep-19		100%	0	-18			Install RCD and ex	cavate the rock under rockh
S2-PW32 Install steel cage and concreting -W3-P1	3	0	16-Oct-19 A	23-Sep-19	18-Oct-19 A	25-Sep-19		100%	0	-18	-		Install steel cag	e and concreting -W3-P1
ile W3 -P2	11	0	09-Sep-19 A	18-Sep-19	25-Sep-19 A	30-Sep-19				4	Pile V	V3 -P2		
S2-PW32 Drive Casing & Grab to excavate the soil (42m length) -W3-P2	3	0	09-Sep-19 A	18-Sep-19	14-Sep-19 A	20-Sep-19		100%	0	5	ve Casin	g & Grał	to excavate the soil (42m leng	th) -W3-P2
S2-PW33 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	0	16-Sep-19 A	23-Sep-19	23-Sep-19 A	26-Sep-19		100%	0	3	Inst	ll RCD a	and excavate the rock under roc	khead level to founding lev
-W3-P2 S2-PW33 Install steel cage and concreting -W3-P2	3	0	24-Sep-19 A	27-Sep-19	25-Sep-19 A	30-Sep-19		100%	0	4		Install s	teel cage and concreting -W3-P	2
ile W3 -P3	10	0	09-Sep-19 A	21-Sep-19	08-Oct-19 A	05-Oct-19				-1			Pile W3 -P3	
S2-PW33 Drive Casing & Grab to excavate the soil (42m length) -W3-P3	3	0	09-Sep-19 A	21-Sep-19	21-Sep-19 A	24-Sep-19		100%	0	2	Drive	Casing &	Grab to excavate the soil (42m	length) -W3-P3
S2-PW34 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	0	23-Sep-19 A	27-Sep-19	04-Oct-19 A	02-Oct-19		100%	0	-2		Ins	tall RCD and excavate the rock	k under rockhead level to fo
-W3-P3 S2-PW34 Install steel cage and concreting -W3-P3	3	0	05-Oct-19 A	03-Oct-19	08-Oct-19 A	05-Oct-19		100%	0	-1			Install steel cage and concret	ing -W3-P3
rile W3 -P4	13	0	09-Sep-19 A	25-Sep-19	04-Oct-19 A	11-Oct-19				5		• Pil	e W3 -P4	
S2-PW34 Drive Casing & Grab to excavate the soil (42m length) -W3-P4	3	0	09-Sep-19 A	25-Sep-19	24-Sep-19 A	27-Sep-19		100%	0	3	— Dr	ve Casin	g & Grab to excavate the soil (42m length) -W3-P4
S2-PW34 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	0	25-Sep-19 A	03-Oct-19	02-Oct-19 A	08-Oct-19		100%	0	4		_	Install RCD and excavate th	e rock under rockhead leve
-W3-P4 S2-PW35 Install steel cage and concreting -W3-P4	3	0	03-Oct-19 A	09-Oct-19	04-Oct-19 A	11-Oct-19		100%	0	5			 Install steel cage and cor 	creting -W3-P4
	13	0	09-Sep-19 A	28-Sep-19	20-Sep-19 A	15-Oct-19			-	19	W3 -P5			
S2-PW35Drive Casing & Grab to excavate the soil (42m length) -W3-P5	3	0	09-Sep-19 A	28-Sep-19	12-Sep-19 A	02-Oct-19		100%	0	15	_	 Drive 	Casing & Grab to excavate th	e soil (42m length) -W3-P5
S2-PW35 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	0	13-Sep-19 A	03-Oct-19	12 Sep-19 A	02-Oct-19		100%		15			Install RCD and excavate th	
-W3-P5 S2-PW35 Install steel cage and concreting -W3-P5	3	0	19-Sep-19 A	12-Oct-19	20-Sep-19 A	15-Oct-19		100%		19			— Install steel cage an	
the W3-P6	10	0	09-Sep-19 A	12-Oct-19	30-Sep-19 A	26-Oct-19		10070	0	21		Pile W3		
	3	0	09-Sep-19 A	16-Oct-19	•	18-Oct-19		100%	0	21		1 110 113		Grab to excavate the soil (
S2-PW36Drive Casing & Grab to excavate the soil (42.m length) -W3-P6		0	1		16-Sep-19 A		_				_		-	CD and excavate the rock u
S2-PW36 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W3-P6	4	0	17-Sep-19 A	19-Oct-19	27-Sep-19 A	23-Oct-19		100%						Il steel cage and concreting
S2-PW36 Install steel cage and concreting -W3-P6	3	0	28-Sep-19 A	24-Oct-19	30-Sep-19 A	26-Oct-19		100%	0	21			- Insta	
esting	21	21	09-Oct-19	28-Oct-19	01-Nov-19	20-Nov-19	104			16				Testing
S2-PW21 Sonic Test, interface core and full core for bored pile -W3	21	21	09-Oct-19	28-Oct-19	01-Nov-19	20-Nov-19	104	0%	0	16				<u> </u>
ng Works for Pier W1	90	90	11-Sep-19 A	09-Sep-19	06-Jan-20	30-Dec-19	1			-7				
2-PW206(Piling platform installation -W1	4	2	11-Sep-19 A	09-Sep-19	10-Oct-19	12-Sep-19	1	50%	0	-21			 Piling platform installation 	
ile W1 -P1	10	10	11-Oct-19	13-Sep-19	22-Oct-19	25-Sep-19	21			-21			Pile W1 -I	
S2-PW36Drive Casing & Grab to excavate the soil (42.4m length) -W1-P1	4	4	11-Oct-19	13-Sep-19	15-Oct-19	18-Sep-19	1	0%	0	-21				ab to excavate the soil (42.4
S2-PW37 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W1-P1	4	4	16-Oct-19	19-Sep-19	19-Oct-19	23-Sep-19	1	0%	0	-21				nd excavate the rock under
S2-PW37 Install steel cage and concreting -W1-P1	2	2	21-Oct-19	24-Sep-19	22-Oct-19	25-Sep-19	21	0%	0	-21	-		Install stee	el cage and concreting -W1-
ilie W1 -P10	10	0	16-Sep-19 A	29-Oct-19	26-Dec-19 A	08-Nov-19				-39				
S2-PW44 Drive Casing & Grab to excavate the soil (42.4m length) -W1-P10	4	0	16-Sep-19 A	29-Oct-19	19-Sep-19 A	01-Nov-19		100%	0	35				Drive Casing & Grab to
S2-PW44 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W1-P10	4	0	20-Sep-19 A	02-Nov-19	24-Sep-19 A	06-Nov-19		100%	0	35	1			Install RCD and
S2-PW44 Install steel cage and concreting -W1-P10	2	0	25-Sep-19 A	07-Nov-19	26-Dec-19 A	08-Nov-19		100%	0	-39	_			_
Nie W1 -P11	14	11	16-Sep-19 A	02-Nov-19	23-Nov-19	13-Nov-19	7			-9				
S2-PW44 Drive Casing & Grab to excavate the soil (42.4m length) -W1-P11	4	3	16-Sep-19 A	02-Nov-19	14-Nov-19	06-Nov-19	1	25%	0	-7				— Drive C
											:	1	Dit.	:
Remaining Level of Effort Remaining Work \blacklozenge Mile	estone					CRBC							Date Dat 10 Manthh	Revi
Primary Baseline Critical Remaining Work V	nmary					h Rolling I	_					108-0	Oct-19 Monthly	updated on 08 Oct2

	December 2019			January20	
24	01 08 15 & Grab to excavate the soil		29 05	12	19 26
Ins	tall RCD and excavate the	rock under ro	ckhead level	to foundin	ıg level (4m socke
_	Install steel cage and conc	reting -E2-P5			
	, e				
Pile E2	-P6				
	- Drive Casing & Grab	to excavate	: the soil (40.4	m length)	-E2-P6
	-				
	Install RCD ar	nd excavate th	e rock unde	r rockhead	level to founding
	 Install stee 	l cage and co	ncreting -E2	-P6	
		-	, i i i i i i i i i i i i i i i i i i i		
•	Te	sting			
			Soi	nic Test, int	terface core and fu
-W3-P1					
d level to	founding level (4m socket)	- rig No.1 &	air lifting -W	3-P1	
(4m socke	t) - rig No.1 & air lifting -W	V3-P2			
ding level	(4m socket) - rig No.1 & ai	ir lifting -W3-	P3		
founding	level (4m socket) - rig No.1	& air lifting	-W3-P4		
founding	level (4m socket) - rig No.1	& oir lifting	W2 D5		
lounding	iever (Hill Socket) - lig 140.1	a an mung			
m length)	-W3-P6				
er rockhe	ad level to founding level (4	m socket) - r	o No 1 & air	· lifting -W	3-P6
. I Coulde		in sound) in		initing it	510
/3-P6					
onic Test,	interface core and full core f	for bored pile	-W3		
			- Pili	ng Works i	for Pier W1
				e	
length) -V	V1-P1				
khead lev	el to founding level (4m so	cket) - rig No	1 & air liftir	ig -W1-P1	
	Ű,	, ,			
		Pile V	W1 -P10		
	1/40.4				
cavate the	soil (42.4m length) -W1-P	10			
avate the	rock under rockhead level to	o founding le	vel (4m sock	et) - rig No	o.1 & air lifting -V
			-		ting -W1-P10
Pile W1	-P11				
		1	71 011		
ang & Gra	ib to excavate the soil (42.4)	m length) -W	1-11		
	;		·		;
on		Cheo	cked	Ap	proved
019					•
010					

Page: 5

ActivityName	Original Duration	Remaining Du	ation Start	Planned Start	Finish	Planned Finish	Total Float	Activity % Complete	TRA	Variance - Finish Date	29	October 2019 06 13 20 27	November
S2-PW45 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	4	18-Nov-19	07-Nov-19	21-Nov-19	11-Nov-19	1	0%	0	-9	20	~ 10 20 21	
-W1-P11 S2-PW45Install steel cage and concreting -W1-P11	2	2	22-Nov-19	12-Nov-19	23-Nov-19	13-Nov-19	7	0%	0	-9			_
lie W1 -P12	14	12	16-Sep-19 A	07-Nov-19	28-Nov-19	18-Nov-19	5			-9			
S2-PW45Drive Casing & Grab to excavate the soil (42.4m length) -W1-P12	4	3	16-Sep-19 A	07-Nov-19	18-Nov-19	11-Nov-19	1	25%	0	-6			
		5								-0			
S2-PW46 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W1-P12	4	4	22-Nov-19	12-Nov-19	26-Nov-19	15-Nov-19	1		0	-9			_
S2-PW46 Install steel cage and concreting -W1-P12	2	2	27-Nov-19	16-Nov-19	28-Nov-19	18-Nov-19	5	0%	0	-9			
Pile W1 -P13 (Dia. 1000mm)	12	12	19-Nov-19	12-Nov-19	02-Dec-19	21-Nov-19	4			-9			
S2-PW46 Drive Casing & Grab to excavate the soil (43.4m length) -W1-P13	4	4	19-Nov-19	12-Nov-19	22-Nov-19	15-Nov-19	1	0%	0	-6			_
S2-PW46 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W1-P13	3	3	27-Nov-19	16-Nov-19	29-Nov-19	19-Nov-19	1	0%	0	-9			
S2-PW47 Install steel cage and concreting -W1-P13	2	2	30-Nov-19	20-Nov-19	02-Dec-19	21-Nov-19	4	0%	0	-9			
Pile W1 -P14 (Dia. 1000mm)	11	11	23-Nov-19	16-Nov-19	05-Dec-19	26-Nov-19	3			-8			
S2-PW47 Drive Casing & Grab to excavate the soil (43.4m length) -W1-P14	4	4	23-Nov-19	16-Nov-19	27-Nov-19	20-Nov-19	1	0%	0	-6			
S2-PW47 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	3	3	30-Nov-19	21-Nov-19	03-Dec-19	23-Nov-19	1	0%	0	-8			
-W1-P14 S2-PW47 Install steel cage and concreting -W1-P14	2	2	04-Dec-19	25-Nov-19	05-Dec-19	26-Nov-19	3	0%	0	-8			
Pile W1 -P15 (Dia. 1000mm)	10	10	28-Nov-19	21-Nov-19	09-Dec-19	30-Nov-19	2	070	Ū	7			
								00/	-	-7			
S2-PW48 Drive Casing & Grab to excavate the soil (43.4m length) -W1-P15	4	4	28-Nov-19	21-Nov-19	02-Dec-19	25-Nov-19	1		0	-6			
S2-PW48 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W1-P15	3	3	04-Dec-19	26-Nov-19	06-Dec-19	28-Nov-19	1	0%	0	-7			
S2-PW48 Install steel cage and concreting -W1-P15	2	2	07-Dec-19	29-Nov-19	09-Dec-19	30-Nov-19	2	0%	0	-7			
Pile W1 -P16 (Dia. 1000mm)	9	9	03-Dec-19	26-Nov-19	12-Dec-19	05-Dec-19	1			-6			
S2-PW48Drive Casing & Grab to excavate the soil (43.4m length) -W1-P16	4	4	03-Dec-19	26-Nov-19	06-Dec-19	29-Nov-19	1	0%	0	-6			
S2-PW49 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	3	3	07-Dec-19	30-Nov-19	10-Dec-19	03-Dec-19	1	0%	0	-6			
-W1-P16 S2-PW49 Install steel cage and concreting -W1-P16	2	2	11-Dec-19	04-Dec-19	12-Dec-19	05-Dec-19	1	0%	0	-6			
Testing	21	21	13-Dec-19	06-Dec-19	06-Jan-20	30-Dec-19	1			-6			
S2-PW21 Sonic Test, interface core and full core for bored pile -W1	21	21	13-Dec-19	06-Dec-19	06-Jan-20	30-Dec-19	1	0%	0	-6			
Pie W1 -P2	10	10	16-Oct-19	19-Sep-19	26-Oct-19	30-Sep-19	19	070	Ū	-21		Pile	W1 -P2
				<u>^</u>		<u>^</u>		00/	-				& Grab to excavate
S2-PW37Drive Casing & Grab to excavate the soil (42.4m length) -W1-P2	4	4	16-Oct-19	19-Sep-19	19-Oct-19	23-Sep-19	1	0%		-21			
S2-PW38 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W1-P2	4	4	21-Oct-19	24-Sep-19	24-Oct-19	27-Sep-19	1	0%	0	-21			RCD and excavate
S2-PW38 Install steel cage and concreting -W1-P2	2	2	25-Oct-19	28-Sep-19	26-Oct-19	30-Sep-19	19	0%	0	-21 -	-	Insta	all steel cage and co
Pile W1 -P3	10	10	21-Oct-19	24-Sep-19	31-Oct-19	05-Oct-19	17			-21		*	Pile W1 -P3
S2-PW38 Drive Casing & Grab to excavate the soil (42.4m length) -W1-P3	4	4	21-Oct-19	24-Sep-19	24-Oct-19	27-Sep-19	1	0%	0	-21		Drive (Casing & Grab to e
S2-PW38 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	4	25-Oct-19	28-Sep-19	29-Oct-19	03-Oct-19	1	0%	0	-21 -			Install RCD and exc
-W1-P3 S2-PW39 Install steel cage and concreting -W1-P3	2	2	30-Oct-19	04-Oct-19	31-Oct-19	05-Oct-19	17	0%	0	-21	-	-	Install steel cage
Pile W1 -P4	10	10	25-Oct-19	28-Sep-19	05-Nov-19	11-Oct-19	15			-21		·	Pile W1 -F
S2-PW39 Drive Casing & Grab to excavate the soil (42.4m length) -W1-P4	4	4	25-Oct-19	28-Sep-19	29-Oct-19	03-Oct-19	1	0%	0	-21 -	<u></u>		Drive Casing & Gra
S2-PW39 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	4	30-Oct-19	04-Oct-19	02-Nov-19	09-Oct-19	1		0	-21	_		Install RCD a
-W1-P4 S2-PW39 Install steel cage and concreting -W1-P4	2	2	04-Nov-19	10-Oct-19	05-Nov-19	11-Oct-19	15		0	-21			Install stee
		2					15	070	0		Pile W1 -F	-	instan see
Pile W1 -P5	10	0	16-Sep-19 A	04-Oct-19	28-Sep-19 A	16-Oct-19							. 1 . 1/10
S2-PW40 Drive Casing & Grab to excavate the soil (42.4m length) -W1-P5	4	0	16-Sep-19 A	04-Oct-19	20-Sep-19 A	09-Oct-19		100%	0	14		 Drive Casing & Grab to ex 	
S2-PW40 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W1-P5	4	0	21-Sep-19 A	10-Oct-19	25-Sep-19 A	14-Oct-19		100%	0	14		— Install RCD and exc	avate the rock und
S2-PW40 Install steel cage and concreting -W1-P5	2	0	26-Sep-19 A	15-Oct-19	28-Sep-19 A	16-Oct-19		100%	0	13		 Install steel cage a 	and concreting -W1
Pile W1 -P6	6	0	16-Sep-19 A	10-Oct-19	05-Oct-19 A	21-Oct-19				12	P	ie W1 -P6	
S2-PW40 Drive Casing & Grab to excavate the soil (42.4m length) -W1-P6	4	0	16-Sep-19 A	10-Oct-19	21-Sep-19 A	14-Oct-19		100%	0	17		Drive Casing & Gra	b to excavate the so
S2-PW41 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	0	23-Sep-19 A	15-Oct-19	02-Oct-19 A	18-Oct-19		100%	0	13	-	Install RCD an	d excavate the rock
-W1-P6 S2-PW41 Install steel cage and concreting -W1-P6	2	0	03-Oct-19 A	19-Oct-19	05-Oct-19 A	21-Oct-19		100%	0	12	-	- Install steel	cage and concretin
Pie W1 -P7	10	10	30-Oct-19 A	15-Oct-19	09-Nov-19	25-Oct-19	13	10070		-13			Pile
		10							0				
S2-PW41 Drive Casing & Grab to excavate the soil (42.4m length) -W1-P7	4	4	30-Oct-19	15-Oct-19	02-Nov-19	18-Oct-19	1		0	-13			Drive Casing
S2-PW42 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W1-P7	4	4	04-Nov-19	19-Oct-19	07-Nov-19	23-Oct-19	1	0%	0	-13			Install I
S2-PW42 Install steel cage and concreting -W1-P7	2	2	08-Nov-19	24-Oct-19	09-Nov-19	25-Oct-19	13	0%	0	-13		-	Insta
												- 	i
Remaining Level of Effort Remaining Work	estone					CRBC					00.4	Date	undated are f
Primary Baseline Critical Remaining Work V	mmary				hree Mont						108-0	Oct-19 Monthly	updated on


December 2019 24 01 08 15	22	29 05	January2020 12 19	26
Install RCD and excavate the rock un		level to foun	ding level (4m socke	t) - rig l
Install steel cage and concreting -W	/1-P11			
Pile W1 -P12	(12) Ann 1 an art	WI D12		
e Casing & Grab to excavate the soil	-		- f	1
Install RCD and excavate the ro			o founding level (4m	1 SOCKE
Install steel cage and concrete Dia W1 D12 (Dia 100)	-			
Pile W1 -P13 (Dia. 100	,		D12	
Drive Casing & Grab to excavate the		-		
Install RCD and excavate t			vei to tounding level	(4m so
Install steel cage and co	-	-P13		
Pile W1 -P14 (Dia.	,	2 4 1	N71 D14	
Drive Casing & Grab to excav				11 (4
 Install RCD and excav 			ad level to founding	level (4
Install steel cage and Dillo W1 DIS.				
Pile W1 -P15			1 4) 101 101 5	
Drive Casing & Grab to		,	•	ľ 1
Install RCD and e				ing iev
- Install steel can ✓ Pile W1 -F	-	-		
		, i	2 4 1	V.
Drive Casing & G				
			er rockhead level to	loundin
- Install stee	i cage and co	Tes		
			uic Test, interface cor	and fi
		50	ne rest, internet to	e une n
2.4m length) -W1-P2				
der rockhead level to founding level (4m socket) -	rig No.1 & a	ir lifting -W1-P2	
V1-P2		, in the second s	-	
soil (42.4m length) -W1-P3				
ock under rockhead level to founding	level (4m so	cket) - rig No	.1 & air lifting -W1-	P3
ting -W1-P3				
ate the soil (42.4m length) -W1-P4				
the rock under rockhead level to four	nding level (4	m socket) - 1	ig No.1 & air lifting	-W1-P4
concreting -W1-P4				
-W1-P5				
level to founding level (4m socket) -	rig No.1 & a	r lifting -Wl	-P5	
ength) -W1-P6				
chead level to founding level (4m soch	ket) - rig No.1	& air lifting	-W1-P6	
excavate the soil (42.4m length) -W1-	P7			
cavate the rock under rockhead level	to founding l	evel (4m soc	ket) - rig No.1 & air	lifting -
and concreting -W1-P7				
on 010	Che	cked	Approved	1
019				
			l	

Page: 6

Activity/Name	Original Duration	Remaining Dura	ation Start	Planned Start	Finish	Planned Finish	Total Float	Activity%Complete	TRA	Variance - Finish Da	ate 22	29	October 2019 06 13 20 :	November 2019 27 03 10
Pile W1 -P8	10	10	04-Nov-19	19-Oct-19	14-Nov-19	30-Oct-19	11			-1	_	~		Pile
S2-PW42 Drive Casing & Grab to excavate the soil (42.4m length) -W1-P8	4	4	04-Nov-19	19-Oct-19	07-Nov-19	23-Oct-19	1	0%	0	-1	3			Drive Casing
S2-PW42 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	4	08-Nov-19	24-Oct-19	12-Nov-19	28-Oct-19	1	0%	0	-1	3			Install
-W1-P8 S2-PW43 Install steel cage and concreting -W1-P8	2	2	13-Nov-19	29-Oct-19	14-Nov-19	30-Oct-19	11		0	-1	_		_	- Inst
le W1 -P9	10	10	16-Sep-19 A	24-Oct-19	19-Nov-19	04-Nov-19	9	0,0	Ŭ	-1				
			•	24-Oct-19				250/	0		-			Drive C
S2-PW43Drive Casing & Grab to excavate the soil (42.4m length) -W1-P9	4	3	16-Sep-19 A		11-Nov-19	28-Oct-19	1	25%		-1				
S2-PW43 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W1-P9	4	4	13-Nov-19	29-Oct-19	16-Nov-19	01-Nov-19	1	0%		-1	_		-	
S2-PW43 Install steel cage and concreting -W1-P9	2	2	18-Nov-19	02-Nov-19	19-Nov-19	04-Nov-19	9	0%	0	-1	3			
ing Works for Pier W5	39	39	13-Dec-19	06-Dec-19	03-Feb-20	23-Jan-20	50				-6			
32-PW539(Piling platform installation -W5	4	4	13-Dec-19	06-Dec-19	17-Dec-19	10-Dec-19	48	0%	0	-	-6			
Pile W5 -P1	11	11	18-Dec-19	11-Dec-19	02-Jan-20	23-Dec-19	51			-	-6			
S2-PW54 Drive Casing & Grab to excavate the soil (40.4m length) -W5-P1	4	4	18-Dec-19	11-Dec-19	21-Dec-19	14-Dec-19	48	0%	0	-	-6			
S2-PW54 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	4	23-Dec-19	16-Dec-19	28-Dec-19	19-Dec-19	48	0%	0	-	-6			
-W5-P1 S2-PW54 Install steel cage and concreting -W5-P1	3	3	30-Dec-19	20-Dec-19	02-Jan-20	23-Dec-19	51	0%	0	-	-6			
Pile W5 -P2	11	11	23-Dec-19	16-Dec-19	07-Jan-20	30-Dec-19	50			-	-6			
S2-PW55Drive Casing & Grab to excavate the soil (40.4m length) -W5-P2	4	4	23-Dec-19	16-Dec-19	28-Dec-19	19-Dec-19	48	0%	0		6			
S2-PW55 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting			30-Dec-19	20-Dec-19	03-Jan-20	24-Dec-19	48	0%			6			
-W5-P2	4	4								-	-0			
S2-PW55 Install steel cage and concreting -W5-P2	3	3	04-Jan-20	27-Dec-19	07-Jan-20	30-Dec-19	50	0%	0	-	-6			
Pile W5 -P3	11	11	30-Dec-19	20-Dec-19	11-Jan-20	04-Jan-20	49			-	-6			
S2-PW55Drive Casing & Grab to excavate the soil (40.4m length) -W5-P3	4	4	30-Dec-19	20-Dec-19	03-Jan-20	24-Dec-19	48	0%	0	-	-6			
S2-PW55 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	4	04-Jan-20	27-Dec-19	08-Jan-20	31-Dec-19	48	0%	0	-	-6			
-W5-P3 S2-PW56 Install steel cage and concreting -W5-P3	3	3	09-Jan-20	02-Jan-20	11-Jan-20	04-Jan-20	49	0%	0	-	-6			
Pile W5 -P4	11	11	04-Jan-20	27-Dec-19	16-Jan-20	09-Jan-20	48			-	-6			
S2-PW56 Drive Casing & Grab to excavate the soil (40.4m length) -W5-P4	4	4	04-Jan-20	27-Dec-19	08-Jan-20	31-Dec-19	48	0%	0	-	-6			
S2-PW56 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	4	09-Jan-20	02-Jan-20	13-Jan-20	06-Jan-20	48	0%	0	-	-6			
-W5-P4 S2-PW56 Install steel cage and concreting -W5-P4	3	3	14-Jan-20	07-Jan-20	16-Jan-20	09-Jan-20	48	0%						
Pile W5 -P5	11	11	17-Jan-20	10-Jan-20	01-Feb-20	22-Jan-20	51	070	Ū		6			
										-	-0			
S2-PW56 Drive Casing & Grab to excavate the soil (40.4m length) -W5-P5	4	4	17-Jan-20	10-Jan-20	21-Jan-20	14-Jan-20	48	0%	0	-	-6			
S2-PW57 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W5-P5	4	4	22-Jan-20	15-Jan-20	29-Jan-20	18-Jan-20	50	0%	0	-	-6			
S2-PW57 Install steel cage and concreting -W5-P5	3	3	30-Jan-20	20-Jan-20	01-Feb-20	22-Jan-20	51	0%	0	-	-6			
Pile W5 -P6	8	8	22-Jan-20	15-Jan-20	03-Feb-20	23-Jan-20	50			-	-6			
S2-PW57 Drive Casing & Grab to excavate the soil (40.4m length) -W5-P6	4	4	22-Jan-20	15-Jan-20	29-Jan-20	18-Jan-20	48	0%	0	-	-6			
S2-PW57 Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	4	30-Jan-20	20-Jan-20	03-Feb-20	23-Jan-20	50	0%	0	-	-6			
-W5-P6 Pile W5 -P7	4	4	30-Jan-20	20-Jan-20	03-Feb-20	23-Jan-20	48			-	-6			
S2-PW93 Drive Casing & Grab to excavate the soil (40.4m length) -W5-P7	4	4	30-Jan-20	20-Jan-20	03-Feb-20	23-Jan-20	48	0%	0	-	-6			
ling Works for Pier E7	21	3	28-Sep-19 A	09-Sep-19	11-Oct-19	02-Oct-19	6	-		_	8		Piling Works for Pier I	
Testing	21	2	28-Sep-19 A	09-Sep-19	11-Oct-19	02-Oct-19	6				•		Testing	
-		3						05.510/	0	-	-0			ore and full core for bore
S2-PW70 Sonic Test, interface core and full core for bored pile -E7	21	3	28-Sep-19 A	09-Sep-19	11-Oct-19	02-Oct-19	6	85.71%	0	-	-8			
ling Works for Pier E1	21	7	24-Sep-19 A	09-Sep-19	16-Oct-19	02-Oct-19	6			-1	.2		 Piling Works for 	Pier E1
Testing	21	7	24-Sep-19 A	09-Sep-19	16-Oct-19	02-Oct-19	6			-1	2		Testing	
S2-PW74 Sonic Test, interface core and full core for bored pile -E1	21	7	24-Sep-19 A	09-Sep-19	16-Oct-19	02-Oct-19	6	66.67%	0	-1	2	:	Sonic Test, inter	face core and full core for
Сар	180	130	25-May-19 A	08-Aug-19	14-Mar-20	15-Feb-20	72			-2	.4			
le Cap for Pier W1	28	28	07-Jan-20	31-Dec-19	11-Feb-20	05-Feb-20	1				-5			
S2-PC2057 Welding of Steel Bracket -W1 (16nos.)	28	28	07-Jan-20	31-Dec-19	11-Feb-20	05-Feb-20	1	0%	0	-	-5			
le Cap for Pier E5	10	10	16-Sep-19 A	18-Sep-19	28-Oct-19	24-Oct-19	151			-	3			Pile Cap for Pier E5
S2-PC2580 Rebar fixing and 1st stage Concreting -E5	10	0	16-Sep-19 A	18-Sep-19	03-Oct-19 A	28-Sep-19		100%	0		3	Reb:	r fixing and 1st stage Concr	
			-				161			-				Preparation works for p
S2-PC2820 Preparation works for pier installation -E5	10	10	17-Oct-19	14-Oct-19	28-Oct-19	24-Oct-19	151	0%	0	-	·.)			i reparauon works for p
le Cap for Pier E6	24	29	12-Sep-19 A	21-Oct-19	30-Nov-19	10-Dec-19	137				8			
													Date	
	estone					CRBC							Date	
Remaining Level of Effort Remaining Work	0010110	1				CILDC							Oct-19 Month	ly updated on 08

24	December 2019 01 06 15	22	29 05	January2020 12 19 26
P8		11/1 DO		
	ivate the soil (42.4m length)		nding level (4m socket) - rig No.1 & air l
	a concreting -W1-P8		inding lever (in sockety ing to the unit
e W1 -P9	-			
& Grab to	excavate the soil (42.4m le	ength) -W1-P	9	
RCD and	excavate the rock under roc	khead level to	o founding le	evel (4m socket) - rig No.1 &
tall steel c	age and concreting -W1-P9			
	•			
	— Pilin	ng platform i	nstallation - W	V5
			Pile W5	-P1
			-	excavate the soil (40.4m len
	—			d excavate the rock under ro
	_			eel cage and concreting -W5
		• 		ile W5 -P2 & Grab to excavate the soil (4
		D		RCD and excavate the rock
		_		istall steel cage and concretin
		-		▼ Pile W5 -P3
	_		Drive 0	Casing & Grab to excavate th
				Install RCD and excavate the
			_ •	Install steel cage and con
				Pile W5 -P4
			I	Drive Casing & Grab to exca
			•	Install RCD and excav
			_	Install steel cage a
				*
			,	Drive Casin
				E
				=
				=
37				
pile -E1				
			-	
		-		
lation -E5				
	Pile Cap for Pier E6			
		-		-
on 019		Che	cked	Approved
013				
		I		I

ActivityName	Original	Remaining Dura	ion Start	Planned Start	Finish	PlannedFinish	Total Float	Activity%Complete TRA	Varianne Einin	hDate	Octobe	er 2019	N₀
S2-PC2620 Pilehead treatment -E6	Duration 14		12-Sep-19 A	21-Oct-19	27-Sep-19 A	05-Nov-19	Idal Fida	100% 0	Valial De - Fillis	22		3 20 2	
S2-PC2640 Rebar fixing and 1st stage Concreting -E6	10	9	07-Oct-19 A	06-Nov-19	07-Nov-19	16-Nov-19	137	10% 0		8			
S2-PC2840 Preparation works for pier installation -E6	10	10	20-Nov-19	29-Nov-19	30-Nov-19	10-Dec-19	137	0% 0		8			
Pile Cap for Pier E7	121	68	08-Aug-19 A	08-Aug-19	02-Jan-20	21-Dec-19	122			-7			
S2-PC2650 Welding of Steel Bracket -E7 (6nos.)	14	14	08-Aug-19 A	08-Aug-19	28-Oct-19	23-Aug-19	6	0% 0		-53		, "	Welding of Steel B
S2-PC2660 Installation of precast shell -E7	10	10	29-Oct-19	21-Oct-19	08-Nov-19	31-Oct-19	6	0% 0		-7			Insta
S2-PC2680 Pilehead treatment -E7	14	14	09-Nov-19	01-Nov-19	25-Nov-19	16-Nov-19	122	0% 0		-7			
S2-PC2700 Rebar fixing and 1st stage Concreting -E7	10	10	26-Nov-19	18-Nov-19	06-Dec-19	28-Nov-19	122	0% 0		-7			
S2-PC2860 Preparation works for pier installation -E7	10	10	19-Dec-19	11-Dec-19	02-Jan-20	21-Dec-19	122	0% 0		-7			
Pile Cap for Pier W2	51	44	25-May-19 A	21-Oct-19	18-Dec-19	10-Dec-19	141			-7			
S2-PC1980 Welding of Steel Bracket -W2 (6nos.)	14	0	25-May-19 A	02-Nov-19	03-Jul-19 A	18-Nov-19		100%		115			
S2-PC2000 Installation of precast shell -W2	10	0	27-Aug-19 A	21-Oct-19	27-Aug-19 A	31-Oct-19		100% 0		54			 Installation of p
S2-PC2020 Pilehead treatment -W2	14	14	29-Oct-19	21-Oct-19	13-Nov-19	05-Nov-19	141	0% 0		-7			
S2-PC2040 Rebar fixing and 1st stage Concreting -W2	10	10	14-Nov-19	06-Nov-19	25-Nov-19	16-Nov-19	141	0% 0		-7			
S2-PC2050 Preparation works for pier installation -W2	10	10	07-Dec-19	29-Nov-19	18-Dec-19	10-Dec-19	141	0% 0		-7			
Pile Cap for Pier E1	129	129	10-Oct-19	26-Sep-19	14-Mar-20	15-Feb-20	11			-24			
S2-PC2410 Welding of Steel Bracket -E1 (16nos.)	28	28	10-Oct-19	26-Sep-19	11-Nov-19	30-Oct-19	6	0% 0		-10			
S2-PC2420 Installation of precast shell -E1	18	18	12-Nov-19	04-Nov-19	02-Dec-19	23-Nov-19	6	0% 0		-7			
S2-PC2430 Installation of pre-cast side shell (small) and construction of structure gap x2 sides -E1	40	40	29-Jan-20	27-Dec-19	14-Mar-20	15-Feb-20	11	0% 0		-24			
S2-PC2440 Pilehead treatment -E1	48	48	03-Dec-19	25-Nov-19	03-Feb-20	22-Jan-20	6	0% 0		-7			
Pile Cap for Pier E2	14	14	19-Dec-19	07-Jan-20	07-Jan-20	22-Jan-20	44			13			
S2-PC2290 Welding of Steel Bracket -E2 (6nos.)	14	14	19-Dec-19	07-Jan-20	07-Jan-20	22-Jan-20	44	0% 0		13			
Pile Cap for Pier E3	48	41	27-Aug-19 A	21-Oct-19	14-Dec-19	06-Dec-19	125			-7			
S2-PC2360 Installation of precast shell -E3	10	0	27-Aug-19 A	21-Oct-19	27-Aug-19 A	31-Oct-19		100% 0		53			 Installation of j
S2-PC2380 Pilehead treatment -E3	14	14	29-Oct-19	21-Oct-19	13-Nov-19	05-Nov-19	125	0% 0		-7			
S2-PC2400 Rebar fixing and 1st stage Concreting -E3	10	10	14-Nov-19	06-Nov-19	25-Nov-19	16-Nov-19	125	0% 0		-7			
S2-PC2920 Preparation works for pier installation -E3	10	10	04-Dec-19	26-Nov-19	14-Dec-19	06-Dec-19	125	0% 0		-7			
Pile Cap for Pier E4 S2-PC2500 Pilehead treatment -E4	32	32	24-Jul-19 A 24-Jul-19 A	09-Sep-19	14-Nov-19 10-Oct-19	01-Nov-19	130 130	85.71% 0		-11	🔲 Pilehe	ad treatment -E4	
S2-PC2520 Rebar fixing and 1st stage Concreting -E4	14	2	11-Oct-19	09-Sep-19 26-Sep-19	22-Oct-19	25-Sep-19 09-Oct-19	130	0% 0		-11			xing and 1st stage
S2-PC2800 Preparation works for pier installation -E4	10	10	04-Nov-19	22-3cp-19 22-Oct-19	14-Nov-19	03-00-19 01-Nov-19	130	0% 0		-11			
ssocaited, E&M Works for CBL Main Bridge and Marine Viaduct	227	227	07-Nov-19	08-Oct-19	13-Aug-20	18-Aug-20	290	070 0		4			
Procurement and Delivery of Assocaited, E&M Works	227	227	07-Nov-19	08-Oct-19	13-Aug-20	18-Aug-20	290			4			
S2-AW200(Procurement and Delivery Under Bridge mobile gantry	180	180	07-Nov-19	08-Oct-19	17-Jun-20	18-May-20	53	0% 0		-26			
S2-AW2000 Procurement and delivery of arch inspection cradle	210	210	07-Nov-19	01-Nov-19	24-Jul-20	18-Jul-20	9	0% 0		-5			
S2-AW201(Procurement and delivery of of TMD	120	120	10-Dec-19	09-Nov-19	11-May-20	03-Apr-20	369	0% 0		-26			_
S2-AW2011 Procurement and delivery of dehumification system	180	180	04-Jan-20	09-Jan-20	13-Aug-20	18-Aug-20	281	0% 0		4			
er (Precast Pier under CSD)	24	24	20-Dec-19	01-Feb-20	20-Jan-20	28-Feb-20	101			31			
Pier Erection using Crane Barge <1000T	24	24	20-Dec-19	01-Feb-20	20-Jan-20	28-Feb-20	101			31			
Pier E5	18	18	30-Dec-19	08-Feb-20	20-Jan-20	28-Feb-20	100			31			
S2-PR36 Installation of Pier -E5	4	4	30-Dec-19	08-Feb-20	03-Jan-20	12-Feb-20	100	0% 0		31			
S2-PR36 Rebar fixing and 2nd stage Concreting for connection between pier and pile cap -E5	14	14	04-Jan-20	13-Feb-20	20-Jan-20	28-Feb-20	100	0% 0		31			
Pier E6	4	4	07-Jan-20	15-Feb-20	10-Jan-20	19-Feb-20	109			31			
S2-PR36 Installation of Pier -E6	4	4	07-Jan-20	15-Feb-20	10-Jan-20	19-Feb-20	109	0% 0		31			
Pior E4	18	18	20-Dec-19	01-Feb-20	13-Jan-20	21-Feb-20	106			31			
S2-PR35 Installation of Pier -E4	4	4	20-Dec-19	01-Feb-20	24-Dec-19	05-Feb-20	100	0% 0		31			
S2-PR35 Rebar fixing and 2nd stage Concreting for connection between pier and pile cap -E4	14	14	27-Dec-19	06-Feb-20	13-Jan-20	21-Feb-20	106	0% 0		31			
on 5 of the Works-All Works within Portion V (CBL E&M Plantroom)	374	285	03-Sep-19 A	19-Nov-19	19-Jul-20	13-May-20	157			-67			
											· ·		

Page: 8

ctivity ID	ActivityName	Original Duration	Remaining Duratio	n Start	Planned Start	Finish	Planned Finish	Total Float	Activity % Complete	TRA	Variance - Finish Date	22	29		er2019 13 20	27	November 2019 03 10 17
Structure	Works	144	71	03-Sep-19 A		02-Jan-20		-3					29		13 20	21	03 10 17
S5-PR2051	Construction of Wall & Coloumn for North Wing Building	21	0	03-Sep-19 A		08-Oct-19 A			100%	0				Constru	ction of Wall	& Colo	umn for North Wing Building
S5-PR2052	2 Construction of Lower Floor for North Wing Building	21	18	08-Sep-19 A		29-Oct-19		-3	14.29%	0						— c	onstruction of Lower Floor for N
S5-PR2053	3 Construction of Upper Roof for North Wing Building	30	30	30-Oct-19		03-Dec-19		-3	0%	0						-	
S5-PR206	Construction of Wall & Coloumn for South Wing Building	21	7	03-Sep-19 A		16-Oct-19		10	66.67%	0					Constructi	ion of W	all & Coloumn for South Wing B
S5-PR2062	2 Construction of Lower Roof and 1st Floor for South Wing Building	21	21	22-Oct-19		14-Nov-19		6	0%	0							Construction
S5-PR2063	Construction of Upper Roof for South Wing Building	30	30	26-Nov-19		02-Jan-20		-3	0%	0							I
Finish Wo	rks	45	45	14-Dec-19	19-Nov-19	11-Feb-20	13-Jan-20	-3			-22						
S5-PR2080	0 Architectural works	45	45	14-Dec-19	19-Nov-19	11-Feb-20	13-Jan-20	-3	0%	0	-22						
S5-PR2090	0 Cladding works	30	30	14-Dec-19	19-Nov-19	21-Jan-20	23-Dec-19	-3	0%	0	-22						
E&M and	Remaining Works	192	192	10-Jan-20	12-Dec-19	19-Jul-20	13-May-20	157			-67						
S5-PR2120	D External works	90	90	12-Feb-20	14-Jan-20	02-Jun-20	07-May-20	-3	0%	0	-22						
S5-PR2140	Submission of WWO46 and WWW0132 to WSD	180	180	22-Jan-20	23-Dec-19	19-Jul-20	23-Dec-19	80	0%	0	-209						
S5-PR2150	Submission of FSI/314 to FSD	180	180	22-Jan-20	23-Dec-19	19-Jul-20	23-Dec-19	157	0%	0	-209						
S5-PR2160	Building services for E&M plantroom	120	120	10-Jan-20	12-Dec-19	08-Jun-20	13-May-20	-3	0%	0	-22						

Remaining Level of Effort	Remaining Work	•	Milestone	CDDC	Date	Revision
Primary Baseline	Critical Remaining Work		Summarv	CRBC	08-Oct-19	Monthly updated on 08 Oct 2019
,	9	•	▼ Summary	Three Month Rolling Programme		
Actual Work	Baseline Milestone					-

24	December 2019 01 06 15	22	29 05	January2020 12	19 26
		_	Structure		
,					
or North W	ing Building				
	Construction of Upper				
ıg Building	5				
ion of Lov	ver Roof and 1st Floor for S	outh Wing B	uilding		
_			Construc	tion of Upper	Roof for Sout
	*				
		_			Cladding wo
			•		
ion		Che	cked	Appr	oved
019					

Contract 2

	Activity Name	Original Duration	Actual Re Duration	emaining Duration	Calendar Start	Finish	Late Start	Late Finish	Total TRA Float	A Activity % Complete				2019
PU20190908 NE/2017/	08 Programme Update (Sep 2019)	277	59	233	02-Jul-19 A	23-Jun-20	20-Aug-19	20-Apr-21	244		_			
/IPU20190908.7 Constru	ction Works	277	59	233	02-Jul-19 A	23-Jun-20	20-Aug-19	20-Apr-21	244					<u> </u>
MPU20190908.7.1 Prelimina		200	0	200	NE/2017/08(6days) 21-Oct-19	23-Jun-20	14-Dec-19	20-Apr-21	244					<u> </u>
PREL1150	Procurement, factory acceptance test and delivery for lift and assoicated	120	0	120	NE/2017/08(6days) 29-Jan-20*	23-Jun-20	21-Nov-20	20-Apr-21	244 0	0%				
PREL1250	Procurement, Factory Acceptance Test and Delivery of Bearing	120	0	120	NE/2017/08(6days) 21-Oct-19	14-Mar-20	14-Dec-19	15-May-20	47 0	0%				
MPU20190908.7.2 Construc	tion Works of Portion I	220	59	167	02-Jul-19 A	31-Mar-20	06-Sep-19	28-Jan-21	246					
PORI.A1000	Provide Access to MTRC P10 at Elevated Cycle Track Area	274	69	205	NE/2017/08(7days) 02-Jul-19 A	31-Mar-20	09-Nov-19	31-May-20	61 0	25.18%				
MPU20190908.7.2.1 Cycle Tr	ack - U-trough	154	0	154	NE/2017/08(6days) 09-Sep-19	16-Mar-20	27-Jul-20	28-Jan-21	259					_
	avation to U-tough Level(+5.0mPD to +4.4mPD) (700m3)	40	0	40	NE/2017/08(6days) 03-Dec-19	21-Jan-20	19-Oct-20	04-Dec-20	259					
PORI.UT.EX1030	Excavation to U-trough Founding Level for Construction of Bay 3-5 (+5.0mPD to	10	0	10		13-Dec-19	19-Oct-20	30-Oct-20	259 0	0%		-		
PORI.UT.EX1040	+4.4mPD) Utilities Diversion for Bay 3-5	30	0	30	NE/2017/08(6days) 14-Dec-19	21-Jan-20	31-Oct-20	04-Dec-20	259 0	0%				
_						16-Mar-20	27-Jul-20	28-Jan-21		0,0				
PORI.UT.ST1010	struction of U-trough Structure (9 Bays, 27D/Bay, 1 Team) Construction of U-trough Structure Bay 6-9 (14D/bay, 1 team)	154 56	0	154		15-Mar-20	27-Jul-20 27-Jul-20		259 259 0	0%				
				56				29-Sep-20						
PORI.UT.ST1020	Access Road Modification	14	0	14		02-Dec-19	30-Sep-20	17-Oct-20	259 0	0%				
PORI.UT.ST1030	Construction of Blinding Layer for Bay 3-5	2	0	2		23-Jan-20	05-Dec-20	07-Dec-20	259 0	0%				
PORI.UT.ST1040	Construction of U-trough Structure Bay 3-5 (14D/bay, 1 team)	42	0	42		16-Mar-20			259 0	0%				
MPU20190908.7.2.2 Elevated	I Cycle Track	75	3	72	NE/2017/08(6days) 05-Sep-19	04-Dec-19	02-Mar-20	30-May-20	141					
MPU20190908.7.2.2.2 Pree	drilling Works for Alternative PBSH at MTRC Development Zone (10nos, 10D/pile	+5 75	3	72	NE/2017/08(6days) 05-Sep-19	04-Dec-19	02-Mar-20	30-May-20	141		-			
MPU20190908.7.2.2.2.2	Rig 3	75	3	72	NE/2017/08(6days) 05-Sep-19	04-Dec-19	02-Mar-20	30-May-20	141					
PORI.ED.PD1020	Predrilling for Alternative PBSH at Portion I (PD08)	15	3	12	NE/2017/08(6days) 05-Sep-19	23-Sep-19	02-Mar-20	14-Mar-20	141 5	20%			Alternative PBSH at Po	1
PORI.ED.PD1030	Predrilling for Alternative PBSH at Portion I (PD04)	15	0	15	NE/2017/08(6days) 24-Sep-19	12-Oct-19	16-Mar-20	01-Apr-20	141 5	0%		-	Predrilling for Alte	terna
PORI.ED.PD1050	Predrilling for Alternative PBSH at Portion I (PD02)	15	0	15	NE/2017/08(6days) 18-Nov-19	04-Dec-19	14-May-20	30-May-20	141 5	0%				
PORI.ED.PD1070	Predrilling for Alternative PBSH at Portion I (PD97)	15	0	15	NE/2017/08(6days) 31-Oct-19	16-Nov-19	24-Apr-20	13-May-20	141 5	0%			-	-
PORI.ED.PD1080	Predrilling for Alternative PBSH at Portion I (PD03)	15	0	15	NE/2017/08(6days) 14-Oct-19	30-Oct-19	02-Apr-20	23-Apr-20	141 5	0%				
MPU20190908.7.2.3 Lift and	Staircase	60	0	60	NE/2017/08(6days) 27-Sep-19	07-Dec-19	06-Sep-19	16-Nov-20	278					-
MPU20190908.7.2.3.2 Pred	drilling Works for PBSH (5nos, 10D/pile+5D TRA, 1-5rigs)	60	0	60	NE/2017/08(6days) 27-Sep-19	07-Dec-19	06-Sep-19	16-Nov-20	278					
MPU20190908.7.2.3.2.1	Rig 2	60	0	60	NE/2017/08(6days) 27-Sep-19	07-Dec-19	04-Sep-20	16-Nov-20	278					_
PORI.LS.PD1010	Predrilling for PBSH at Lift and Staircase (PD09)	15	0	15	NE/2017/08(6days) 27-Sep-19	16-Oct-19	04-Sep-20	21-Sep-20	278 5	0%		-	Predrilling fo	or P
PORI.LS.PD1020	Predrilling for PBSH at Lift and Staircase (PD94)	15	0	15	NE/2017/08(6days) 17-Oct-19	02-Nov-19	22-Sep-20	10-Oct-20	278 5	0%				
PORI.LS.PD1040	Predrilling for PBSH at Lift and Staircase (PD95)	15	0	15	NE/2017/08(6days) 04-Nov-19	20-Nov-19	12-Oct-20	29-Oct-20	278 5	0%				[
PORI.LS.PD1050	Predrilling for PBSH at Lift and Staircase (PD96)	15			NE/2017/08(6days) 21-Nov-19	07-Dec-19	30-Oct-20	16-Nov-20	278 5	0%				
MPU20190908.7.2.3.2.2		15	0		NE/2017/08(6days) 27-Sep-19	16-Oct-19	06-Sep-19		-17	078			▼ 16-Oct-19, I	MÞ
PORI.LS.PD1030	Predrilling for PBSH at Lift and Staircase (PD10)	15		15		16-Oct-19		24-Sep-19	-17 5	0%			Predrilling fo	
MPU20190908.7.3 Construct										0 /8			Predrining id	1
		172		151	15-Aug-19			18-May-20	51					
MPU20190908.7.3.1 Abutme		141	21	120	15-Aug-19,				34					
	sstruction of Alternative Bored Pile (8nos, 21D/pile, 1-2 teams)	134		113				08-Mar-20	34					
MPU20190908.7.3.1.3.1		104			NE/2017/08(6days) 15-Aug-19				30					
PORII.AB.BP1040	Construction of Alternative Bored Pile (P4) (CE010)	26	21	5	NE/2017/08(6days) 15-Aug-19	13-Sep-19	17-Oct-19	22-Oct-19	30 5	80.77%	Const	tructon of Alternativ	ive Bored Pile (P4) (CE0	J10)
PORII.AB.BP1060	Construction of Alternative Bored Pile (P8)	26	0	26	NE/2017/08(6days) 16-Sep-19	17-Oct-19	23-Oct-19	21-Nov-19	30 5	0%	L=		Constructio	ono
PORII.AB.BP1070	Construction of Alternative Bored Pile (P3) (CE014)	26	0	26	NE/2017/08(6days) 18-Oct-19	16-Nov-19	22-Nov-19	21-Dec-19	30 5	0%			L=	-
PORII.AB.BP1080	Construction of Alternative Bored Pile (P7)	26	0	26	NE/2017/08(6days) 18-Nov-19	17-Dec-19	23-Dec-19	24-Jan-20	30 5	0%				
MPU20190908.7.3.1.3.2	Team 5	78	2	76	NE/2017/08(6days) 06-Sep-19	09-Dec-19	25-Oct-19	24-Jan-20	37					+
PORII.AB.BP1090	Construction of Alternative Bored Pile (P6)	26	2	24	NE/2017/08(6days) 06-Sep-19	09-Oct-19	25-Oct-19	21-Nov-19	37 5	7.69%			Construction of Alter	ernati

Actual Level of Effort Actual Work Remaining Work Critical Remaining Work

•

Contract No.: NE/2017/08 Cross Bay Link, Tseung Kwan O Road D9 and Associated Works Page 1 of 4

Q4				2020 Q1		
					_	
	-				🗸 21-Jan-2	
	Excavati	on to U-tr	ouah Foun	dina Leve	l for Constru	
					Utilities D	<u>.</u>
					-	
Construction o	f U-trough Structure Bay	6-9 (140)/bay, 1 tea	m)		
- -	Access Road Modific					
					Constr	uct
					- [
	• 04-Dec-19, MPU2	0190908	7.2.2 Eleva	ated Cycle	e Track	
	04-Dec-19, MPU2	0190908	7.2.2.2 Pre	edrilling W	orks for Alter	rna
	▼ 04-Dec-19, MPU2	0190908	7.2.2.2.2 F	Rig 3		
Portion I (PD04)						
▶	Predrilling for Alter	native PB	SH at Porti	on I (PDC	02)	
Predrilling for	Alternative PBSH at Por	tion I (PD	97)			
Alternative PBSH	at Portion I (PD03)					
	07-Dec-19, MF	201909	08.7.2.3 L	ift and Sta	aircase	
	• 07-Dec-19, MF	201909	08.7.2.3.2	Predrillin	g Works for I	PB
	🗸 07-Dec-19, MF	PU201909	08.7.2.3.2.	1 Rig 2		
d Staircase (PD09	9)					
or PBSH at Lift ar	nd Staircase (PD94)					
	g for PBSH at Lift and St					
	Predrilling for F	PBSH at L	ift and Staiı	rcase (PD	96)	
2.3.2.2 Rig 5						
d Staircase (PD10	0)					
					2	
	17-[)ec-19 M	IPI 1201909	08731:	3.1 Team 6	
ored Pile (P8)						
Construction	of Alternative Bored Pile	(P3) (CE	014)			
[Con			e Bored I	Pile (P7)	
	09-Dec-19, N					
(P6)						
						:
Revision		Che	ecked	Ар	proved	_
Programme	(Sep to Nov)	ΗY		AY		

	Activity Name	Original Actua Duration Duration	I Remaining Duration	Calenda	r Start	Finish	Late Start	Late Finish	Total TR. Float	A Activity % Complete				20	019
PORII.AB.BP1100	Construction of Alternative Bored Pile (P1)	26 (NE/2017/08(6days	s) 10-Oct-19	08-Nov-19	22-Nov-19	21-Dec-19	37 5	0%	1				_
PORII.AB.BP1110	Construction of Alternative Bored Pile (P5)	26 0	26	NE/2017/08(6days	s) 09-Nov-19	09-Dec-19	23-Dec-19	24-Jan-20	37 5	0%					[
MPU20190908.7.3.1.3.3 T		42 (NE/2017/08(7days	·	28-Jan-20	27-Jan-20	08-Mar-20	40						
	Interface Core/Sonic Test	42 (NE/2017/08(7days		28-Jan-20	27-Jan-20	08-Mar-20	40 0	0%					
-	truction of Abutment Structure	7	7 7	NE/2017/08(6days		05-Feb-20	09-Mar-20		34	078					
PORII.AB.ST1010		7 0		NE/2017/08(6days		05-Feb-20			34 0	0%					
MPU20190908.7.3.2 Elevated [Excavation to Pile Cap Founding Level (+4.4 to +2.3mPD) (500m3)			NE/2017/06(60ays						0%					
		112 (112		27-Oct-19	12-Mar-20		18-May-20							
<mark></mark>	truction of Bored Pile (1 no. in Port II, 21D/pile, 1 teams)	42 (NE/2017/08(7days		07-Dec-19		20-Feb-20	75						
MPU20190908.7.3.2.3.2 T		42 (NE/2017/08(7days		07-Dec-19	10-Jan-20		75						
PORII.ED.BP1030	Interface Core/Sonic Test (Elevated Deck)	42 0) 42	NE/2017/08(7days	s) 27-Oct-19	07-Dec-19	10-Jan-20	20-Feb-20	75 0	0%					
MPU20190908.7.3.2.4 Predri	illing of PBSH (Elevated Deck) (2nos in Port II, 10D/pile+5D TRA, 2rigs in total)	21 (21	NE/2017/08(6days	s) 28-Oct-19	20-Nov-19	29-Nov-19	10-Feb-20	64						
MPU20190908.7.3.2.4.2 F	lig 1	15 0) 15	NE/2017/08(6days	s) 28-Oct-19	13-Nov-19	29-Nov-19	16-Dec-19	28						
PORII.ED.PD.HP1010	Predrilling of PBSH at Elevated Deck (PD26)	15 () 15	NE/2017/08(6days	i) 28-Oct-19	13-Nov-19	29-Nov-19	16-Dec-19	28 5	0%					
MPU20190908.7.3.2.4.1 R	ig 5	15 () 15	NE/2017/08(6days) 04-Nov-19	20-Nov-19	21-Jan-20	10-Feb-20	64						-
PORII.ED.PD.HP1020	Predrilling of PBSH at Elevated Deck (PD85)	15 () 15	NE/2017/08(6days	s) 04-Nov-19	20-Nov-19	21-Jan-20	10-Feb-20	64 5	0%					-
MPU20190908.7.3.2.5 Cons	truction of Alternative PBSH (5nos in Port II, 7D/pile, 1 to 5rigs)	97 (97		14-Nov-19	12-Mar-20	17-Dec-19	18-May-20	51						
PORII.ED.HP1010	Construction of Alternative PBSH (5nos in Port II,7D/pile, 1 rig)	35 () 35	NE/2017/08(6days	s) 14-Nov-19	24-Dec-19	17-Dec-19	01-Feb-20	28 0	0%					
PORII.ED.HP1060	Pile Loading Test (28 Concrete Cube + 14D Setup)	42 () 42	NE/2017/08(7days	s) 31-Jan-20	12-Mar-20	07-Apr-20	18-May-20	67 0	0%					
MPU20190908.7.3.2.6 Excav	ration to Pile Cap Level (+4.4mPD to +2.3mPD)	16 () 16	NE/2017/08(6days	s) 31-Jan-20	18-Feb-20	03-Feb-20	20-Feb-20	2						
PORII.ED.1060	Excavation to Pile Cap Founding Level (Bored Pile Area) (+4.4mPD to +2.3mPD)	16 0) 16	NE/2017/08(6days	s) 31-Jan-20	18-Feb-20	03-Feb-20	20-Feb-20	2 0	0%					
PU20190908.7.4 Construction	on Works of Portion III	204 44	160		19-Jul-19 A	23-Mar-20	20-Aug-19	09-Sep-20	138	-	_			+	_
MPU20190908.7.4.1 Construct	ion of Elevated Deck and Abutment 2B	170 19	9 151		17-Aug-19 A	12-Mar-20	20-Aug-19	18-May-20	51	_	_			4 4	_
MPU20190908.7.4.1.2 Sheet	Piling and Lowering of Existing Ground Level	14 () 14	NE/2017/08(6days	s) 09-Sep-19	25-Sep-19	19-Dec-19	07-Jan-20	84	-		▼ 25-Sep-19, MPI	J20190908.7	4.1.2 St	heet
PORIII.ED.EX1050	Abandon of Unexpected Gas Main (Grid 11 to Grid 24) (by others)	10 0	0 10	NE/2017/08(6days) 09-Sep-19	20-Sep-19	19-Dec-19	02-Jan-20	84 0	0%		Abandon of Unexpec	tec Gas Mair	Grid 11	to G
PORIII.ED.EX1060	Sheet Piling Works along Northern Footpath (Grid 10 to Grid 13)	4 (NE/2017/08(6days		25-Sep-19	03-Jan-20		84 0	0%		Sheet Piling Wo			
<u> </u>	truction of Bored Pile (12nos in Port III, 21D/pile, 1 to 5 teams in total)	94 19			17-Aug-19 A	07-Dec-19	20-Aug-19		23						
MPU20190908.7.4.1.3.1 T				NE/2017/08(6days					-17						• •
<u> </u>										26.02%		Canatru	ation of Confu	-	
PORIII.ED.BP1255	Construction of Conforming Bored Pile at Elevated Deck (PL122)	26 7		NE/2017/08(6days		02-Oct-19		10-Sep-19	-17 5	26.92%		Constru	ction of Confo	пппу Бо	
PORIII.ED.BP1258	Construction of Conforming Bored Pile at Elevated Deck (PL128)	26 0		NE/2017/08(6days	·	02-Nov-19		14-Oct-19	-17 5	0%					
MPU20190908.7.4.1.3.3 T		52 19		NE/2017/08(6days		19-Oct-19	27-Aug-19		-11					-Oct-19,	
PORIII.ED.BP1145	Construction of Comforming Bored Pile at Abutment 2B (PL133) (NCE025)	26 19		NE/2017/08(6days		17-Sep-19	27-Aug-19		-11 5	73.08%		onstruction of Comform			
PORIII.ED.BP1150	Construction of Conforming Bored Pile at Abutment 2B (PL132) (NCE024)	26 0	26	NE/2017/08(6days	s) 18-Sep-19	19-Oct-19	04-Sep-19	05-Oct-19	-11 5	0%			Co	onstruction	n of (
MPU20190908.7.4.1.3.4 T	eam 4	52 13	3 39	NE/2017/08(6days	s) 24-Aug-19 A	26-Oct-19	20-Aug-19	05-Oct-19	-17					▼ 26-0	Oct-
PORIII.ED.BP1140	Construction of Conforming Bored Pile at Elevated Deck (PL104)	26 13	3 13	NE/2017/08(6days	s) 24-Aug-19 A	24-Sep-19	20-Aug-19	03-Sep-19	-17 5	50%		Construction of C	or forming Bo	ired Pile	at E
PORIII.ED.BP1250	Construction of Conforming Bored Pile at Elevated Deck (PL113) (NCE028)	26 0	26	NE/2017/08(6days	s) 25-Sep-19	26-Oct-19	04-Sep-19	05-Oct-19	-17 5	0%		L.	+	Con	nstruc
MPU20190908.7.4.1.3.7 T	esting	42 () 42	NE/2017/08(7days	s) 27-Oct-19	07-Dec-19	27-Nov-19	07-Jan-20	31					-	H
PORIII.ED.BP1200	Interface Core/Sonic Test (Elevated Deck)	42 () 42	NE/2017/08(7days	i) 27-Oct-19	07-Dec-19	27-Nov-19	07-Jan-20	31 0	0%				4-	Ħ
MPU20190908.7.4.1.4 Predr	illing of PBSH (Elevated Deck) (18nos in Port III, 10D/pile+5D TRA, 1-6rigs in tota	l) 51 6	6 45	NE/2017/08(6days	i) 02-Sep-19 A	02-Nov-19	20-Aug-19	14-Oct-19	-17				-		•
MPU20190908.7.4.1.4.1 R	lig 1	45 6	6 39	NE/2017/08(6days	s) 02-Sep-19 A	26-Oct-19	20-Aug-19	05-Oct-19	-17		_		+	26-0	Oct-I
PORIII.ED.PD.HP1200	Predrilling of PBSH at Elevated Deck (PD19)	15 6	6 9	NE/2017/08(6days	s) 02-Sep-19A	19-Sep-19	20-Aug-19	29-Aug-19	-17 5	40%		Predrilling of PBSH at	Elevated Dec	k (PD19)	ò
PORIII.ED.PD.HP1240	Predrilling of PBSH at Elevated Deck (PD24)	15 0) 15	NE/2017/08(6days	s) 20-Sep-19	09-Oct-19	30-Aug-19	17-Sep-19	-17 5	0%	-		Predrilling of F	PBSH at	Eleva
	Predrilling of PBSH at Elevated Deck (PD25)	15 () 15	NE/2017/08(6days	s) 10-Oct-19	26-Oct-19	18-Sep-19	05-Oct-19	-17 5	0%			┿━━━	Pret	¢rillirg
PORIII.ED.PD.HP1245															

Actual Level of Effort Actual Work Remaining Work

Critical Remaining Work

•

CEDD 土木工程拓展署 Civil Engineering and Development Department Contract No.: NE/2017/08 Cross Bay Link, Tseung Kwan O Road D9 and Associated Works Page 2 of 4

Q4			2020 Q1	
onstruction of Alternative Bored Pile P1)			QI	
Construction	of Alternat	ive Bored	Pile (P5)	
				▼ 28-、
				Inte
			[
			4	
▼ 07-Dec-19, MP	U2019090	8.7.3.2.3	Construction of B	ored Pi
07-Dec-19, MP	U201909	8.7.3.2.3.	2 Testing	
Interface Core/	Sonic Test	(Elevated	Deck)	
20-Nov-19, MPU20190908.7.3.2.	4 Predrilli	ng of PBSH	H (Elevated Deck)	(2nos
▼ 13-Nov-19, MPU20190908.7.3.2.4.2 Rig	1			
Predrilling of PB\$H at Elevated Deck (PD	26)			
20-Nov-19, MPU20190908.7.3.2.				
Predrilling of PBSH at Elevated De	eck (PD85)		
V				
►	Constr	uction of A	ternative PBSH (5	onos in
				-
				-
				-
and Lowering of Existing Ground Level				
(by others)				
d 10 to Grid 13)				-
▼ 07-Dec-19, MP	U2019090	08.7.4.1.3	Construction of B	cred Pi
19, MPU20190908.7.4.1.3.1 Team 1				
Elevated Deck (PL122)				
ction of Conforming Bored Pile at Elevated De	eck (PL12	3)		
908.7.4.1.3.3 Team 3				
L133) (NCE025)				
ming Bored Pile at Abutment 2B (PL132) (NC	E024)			
J20190908.7.4.1.3.4; Team 4				
Deck (PL104)				
Conforming Bored Pile at Elevated Deck (PL1				
▼ 07-Dec-19, MP	U2019090	8.7.4.1.3.	7 Testing	
Interface Core/	Sonic Test	(Elevated	Deck)	
19, MPU20190908.7.4.1.4 Predrilling of PBS	H (Elevate	ed Deck) (18nos in Port III, 1	0D/pite
J20190908.7.4.1.4.1 Rig 1				
eck (PD24)				
SH at Elevated Deck (PD25)				
19, MPU20190908.7.4.1.4.5 Rig 5				
19, MF 020190906.7.4.1.4.5 Fig 5				
Revision	Che HY	cked	Approve	d
ng Programme (Sep to Nov)	111		AY	

	Activity Name	Original Duration		al Remaining	Calenda	Start	Finish	Late Start	Late Finish	Float	Activity % Complete					2019
PORIII.ED.PD.HP12	230 Predrilling of PBSH at Elevated Deck (PD23)	15			NE/2017/08(6days	06-Sep-19 A	26-Sep-19	20-Aug-19	05-Sep-19	-17 5	0%			Predrilling of P	BSH at Elevated	d Deck (PD2
PORIII.ED.PD.HP12	235 Predrilling of PBSH at Elevated Deck (PD99)	15		0 15	NE/2017/08(6days	17-Oct-19	02-Nov-19	25-Sep-19	14-Oct-19	-17 5	0%	\mathbf{N}			╘╼═┿	Pr
	.6 Rig 6	15		6 9	NE/2017/08(6days	02-Sep-19A	19-Sep-19	20-Aug-19	29-Aug-19	-17			1 9-S	ep-19, MPU20190	.0908.7.4.1.4.6	Rig 6
-	220 Predrilling of PBSH at Elevated Deck (PD22)	15		6 9	NE/2017/08(6days		19-Sep-19		29-Aug-19	-17 5	40%			rilling of PBSH at		
	onstruction of Alternative PBSH (45nos in Port III, 7D/pile, 1-5rigs in total)	112		0 112		28-Oct-19	12-Mar-20	08-Oct-19	18-May-20	51	1070					
PORIII.ED.HP1000				0 6					14-Oct-19	-17 0	08/				l	
	Mobilization of Piling Rigs to Elevated Deck	6					02-Nov-19	08-Oct-19			0%				-	- Mo
PORIII.ED.HP1010	Construction of Alternative PBSH (5nos in Port II + 45 nos in Port III,7D/pile,1 to 5rigs)	70		0 70			30-Jan-20	15-Oct-19	07-Jan-20	-17 0	0%					
PORIII.ED.HP1470	Pile Loading Test (28 Days Concrete Cube + 14D Setup)	42		0 42			12-Mar-20	07-Apr-20	18-May-20	67 0	0%					
- <u>-</u>	xcavation to Pile Cap Level (+4.4mPD to +2.3mPD)	14		0 14	NE/2017/08(6days	31-Jan-20	15-Feb-20	08-Jan-20	23-Jan-20	-17						
PORIII.ED1060	Excavation to Pile Cap Founding Level incl. Abutment 2B (+4.4mPD to +2.3mPD) (Bored Pile Area)	14		0 14	NE/2017/08(6days	31-Jan-20	15-Feb-20	08-Jan-20	23-Jan-20	-17 0	0%					
MPU20190908.7.4.2 Constr	ruction of U-trough Structure	204	4	44 160		19-Jul-19 A	23-Mar-20	20-Aug-19	09-Sep-20	138			++			
MPU20190908.7.4.2.3 Co	onstruction of Bored Pile (8 nos, 21D/pile, 1-5 teams)	107	4	44 63		19-Jul-19 A	23-Nov-19	20-Aug-19	19-Jul-20	190						
MPU20190908.7.4.2.3.	.2 Team 2	71	4	44 27	NE/2017/08(6days	19-Jul-19 A	12-Oct-19	20-Aug-19	20-Sep-19	-17			╺╋━╾┿		▼ 12-Oct-19, M	1PU2019090
PORIII.UT.BP1100	Construction of Conforming Bored Pile at U-trough (PL140) (CE018)	26	4	14 1	NE/2017/08(6days	19-Jul-19 A	09-Sep-19	20-Aug-19	20-Aug-19	-17 5	96.15%	Col	nstruction of	Conforming Bore	d Pile at U-troug	gh (PL 140) (
PORIII.UT.BP1102	Construction of Conforming Bored Pile at U-trough (PL137)	26		0 26	NE/2017/08(6days	10-Sep-19	12-Oct-19	21-Aug-19	20-Sep-19	-17 5	0%				Construction	of Conform
MPU20190908.7.4.2.3.	.7 Testing	42		0 42	NE/2017/08(7days	13-Oct-19	23-Nov-19	08-Jun-20	19-Jul-20	239						
PORIII.UT.BP1030	Interface Core/Sonic Test (U-trough)	42		0 42	NE/2017/08(7days	13-Oct-19	23-Nov-19	08-Jun-20	19-Jul-20	239 0	0%			L,	►	
MPU20190908.7.4.2.4 Pr	re-drilling of alternative PBSH (U-trough)(16nos, 10D/pile+5D TRA, 1-6rigs)	30		0 30	NE/2017/08(6days	20-Sep-19	26-Oct-19	30-Aug-19	05-Oct-19	-17						▼ 26-Oct-19
MPU20190908.7.4.2.4.		30		0 30			26-Oct-19		05-Oct-19	-17			-			▼ 26-Oct-1
<u> </u>	185 Predrilling of PBSH at U-trough (PD67)	15		0 15			09-Oct-19		17-Sep-19	-17 5	0%				Predrilling of PBS	
	187 Predrilling of PBSH at U-trough (PD65)	15			NE/2017/08(6days	· · · · · · · · · · · · · · · · · · ·	26-Oct-19		05-Oct-19	-17 5	0%					Predrilling
											078					- Frequining
	onstruction of Alternative PBSH (40nos, 7D/pile, 1 to 5rigs)	133		11 133			23-Mar-20	21-Sep-19	09-Sep-20	138						
PORIII.UT.HP1010	Construction of Alternative PBSH (8nos,7D/pile,1 to 2rigs)	28	1	11 18	NE/2017/08(6days	27-Aug-19 A	02-Nov-19	21-Sep-19	14-Oct-19	-17 0	35.71%		$\boldsymbol{\succ}$			-0
PORIII.UT.HP1020	Construction of Alternative PBSH (32nos, 7D/pile, 1 to 5rigs)	45		0 45	NE/2017/08(6days	31-Jan-20	23-Mar-20	20-Jul-20	09-Sep-20	138 0	0%					
MPU20190908.7.6 Constru	uction of the At-grade Noise Semi Enclosures	182	2	26 156	NE/2017/08(6days	09-Aug-19 A	18-Mar-20	21-Sep-19	30-Mar-20	10						
PORIII.AG.1010	Excavation from +5.5mPD to +3.5mPD for SMH003 to SMH006 (inlcude Demolition of existing manhole)	30	2	26 4	NE/2017/08(6days	09-Aug-19 A	12-Sep-19	21-Sep-19	25-Sep-19	10 0	86.67%		Excavation fr	rom +5.5mPD to +	⊦3.5mPD for SM	IH003 to SN
PORIII.AG.1020	Excavation of Drainage Trench (maximum up to +2.0mPD) for SMH003 to SMH006	7		0 7	NE/2017/08(6days	13-Sep-19	21-Sep-19	26-Sep-19	04-Oct-19	10 0	0%	╘╾═		cavation of Draina	age Trench (max	kimum up to
PORIII.AG.1030	Manhole Construction for SMH003 to SMH006 (14D/manhole, 2 teams)	28		0 28	NE/2017/08(6days	23-Sep-19	26-Oct-19	05-Oct-19	07-Nov-19	10 0	0%					Manhole
PORIII.AG.1035	Laying of Drainage Pipe SMH003 to SMH006	14		0 14	NE/2017/08(6days	28-Oct-19	12-Nov-19	08-Nov-19	23-Nov-19	10 0	0%				L,	-
PORIII.AG.1040	Backfilling of Drainage Trench (4 layers, 5D/layer)	20		0 20	NE/2017/08(6days	13-Nov-19	05-Dec-19	25-Nov-19	17-Dec-19	10 0	0%					
PORIII.AG.1050	Plate Load Test after Backfilling of Draiange Trench	7		0 7	NE/2017/08(6days	06-Dec-19	13-Dec-19	18-Dec-19	27-Dec-19	10 0	0%					
PORIII.AG.1055	Utilities Ducts Laying along Road D9	30		0 30	NE/2017/08(6days	26-Nov-19	02-Jan-20	07-Dec-19	14-Jan-20	10 0	0%					
PORIII.AG.1057	Cable Laying and Decomissioning of Existing Cross Road UUs at Wan O Road	53		0 53	NE/2017/08(6days	03-Jan-20	07-Mar-20	15-Jan-20	19-Mar-20	10 0	0%					
PORIII.AG.1060	Construction of SMH004-SMH006 Footing (North and South) (14D/bay, 2-4 teams, 18	76		0 76	NE/2017/08(6days	14-Dec-19	18-Mar-20	28-Dec-19	30-Mar-20	10 0	0%					
PORIII.AG.1070	bays) Shifting of Site Vehicle Access to Seawall Side	7		0 7	NE/2017/08(6days		15-Jan-20	08-Jan-20	15-Jan-20	0 0	0%					
PORIII.AG.1080	Excavation from +5.5mPD to +3.5mPD (inlcude Demolition of existing manhole)	15		0 15			24-Jan-20	08-Jan-20	24-Jan-20	0 0	0%					
	(SMH006-SMH007 & SMH001A-SMH003)	7		0 7												
PORIII.AG.1090	Excavation of Drainage Trench (maximum up to +2.0mPD) for SMH006-SMH007 & SMH001A to SMH003				NE/2017/08(6days		05-Feb-20	29-Jan-20	05-Feb-20	0 0	0%					
MPU20190908.7.8 Wan OF		232	2	27 206		08-Aug-19 A	22-May-20	05-Sep-19		10						
MPU20190908.7.8.1 Footpa	ath Excavation Permit	21		0 21	NE/2017/08(7days	09-Sep-19	29-Sep-19	30-Nov-19	20-Dec-19	82					, MPU20190908.	
MPU20190908.7.8.1.2 Ot	ther Works	21		0 21	NE/2017/08(7days	09-Sep-19	29-Sep-19	30-Nov-19	20-Dec-19	82				29-Sep-19,	, MPU20190908.	.7.8.1.2 O
🛑 WO.FT.EB1030	Chemical/Biological Testing for Environmental Borehole	21		0 21	NE/2017/08(7days	09-Sep-19	29-Sep-19	30-Nov-19	20-Dec-19	82 0	0%			Chemical/B	Biological Testing	for Environ
MPU20190908.7.8.2 Carria	ge Way Excavation Permit	232	2	27 206	NE/2017/08(6days	08-Aug-19 A	22-May-20	05-Sep-19	03-Jun-20	10						
MPU20190908.7.8.2.1 TT	TA Stage 1	117	2	27 91	NE/2017/08(6days	08-Aug-19 A	28-Dec-19	05-Sep-19	18-Jan-20	17			+			
													I			
Actual Level of Effo					Contra	ct No.: N	E/2017/08	;							Date ep-19 3	Month
Actual Work	www.summary cEDD 土木工程拓展				Cross Bay	Link, Tse	eung Kwa	n O			-				<u>5 61-45</u>	
Remaining Work	Development D	Jana		1	Road D9			I	1 1				Kin			

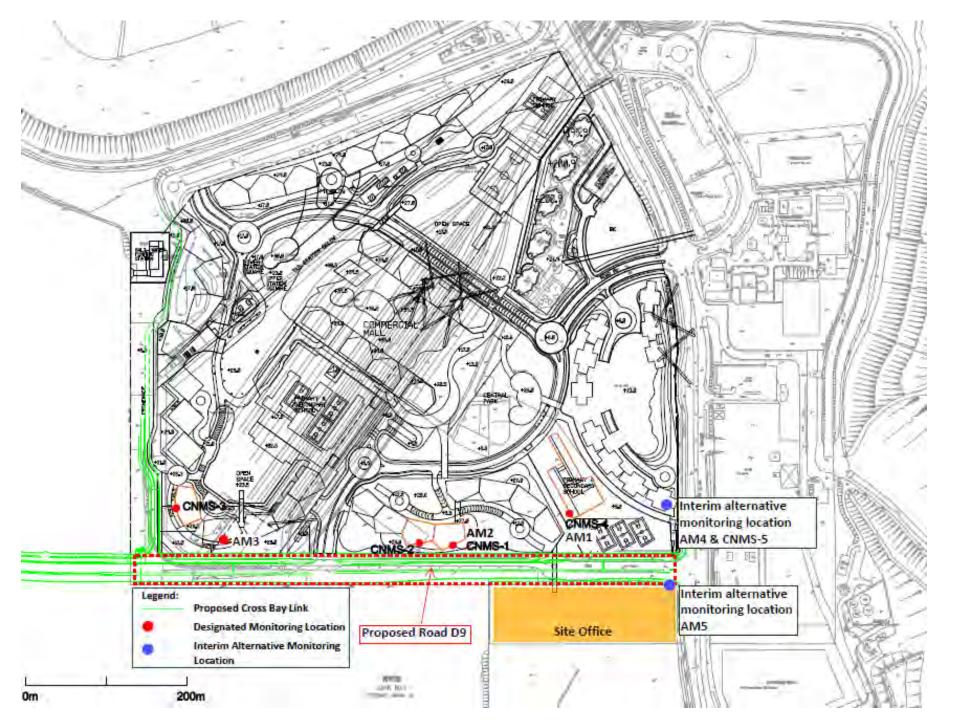
24						202		
24						Q1		
of PBSH at Elevat	nd Dook (D							
n r bori al Lieval	EU DECK (FL	555)						
of Diling Digo to	Elevisted De	ak						
of Piling Rigs to	Lievateu De	UK .						
								-C
								►
								+
23-No	v-19, MPU2	20190908.7.	4.2.3 Co	nstru	ction	of Bored	Pile (8 nos	21D/
.2 Team 2								
Pile at U-trough	(PL137)							
23-N	v-19, MPU2	20190908.7.	4.2.3.7 T	estinę)			
Interf	ace Core/Sc	onic Test (U-1	rough)					
190908.7.4.2.4							D/pile+5D	RA 1
		allernative	1 0011 (0	li ou	gii)(i	01103, 101	Б/ріютов	
190908.7.4.2.4.6	Rig 6							
7)								
at U-trough (PD	65)							
n of Alternative P	BSH (8nos,7	7D/pile,1 to 2	trigs)					
								┕╼┢═
lcude Demolition	nf existing m	anhole)						
		lannoloj						
D) for SMH003 to	SMH006							
ion for SMH003 t	o SMH006 (14D/manhol	e, 2 team	s)				
Laying of Drainag	e Pipe SMH	1003 to SMH	006					
	Back	filling of Drai	nage Tre	nch (4 lave	ars 5D/la	ver)	
	· F	Plate Lo	ad Test a	fter E	Backfil	ling of Dr	aiange Tre	nch
-					Jtilitie	s Ducts L	aying along	Roac
				•				
		▶						
					_		hiftir - ()	
						S	Shifting of S	nte ver
								cavati
							ـ ا	-
wation Day 1								
vation Permit								
S								
orehole								
						MPUISS	00000 = -	
			2	8-De	c-19,	MPU201	90908.7.8	.2.1; T
Revision			Che	cke	d	A	oprovec	ł
Programme	(Sep to	Nov)	HY	-		AY		
			•					

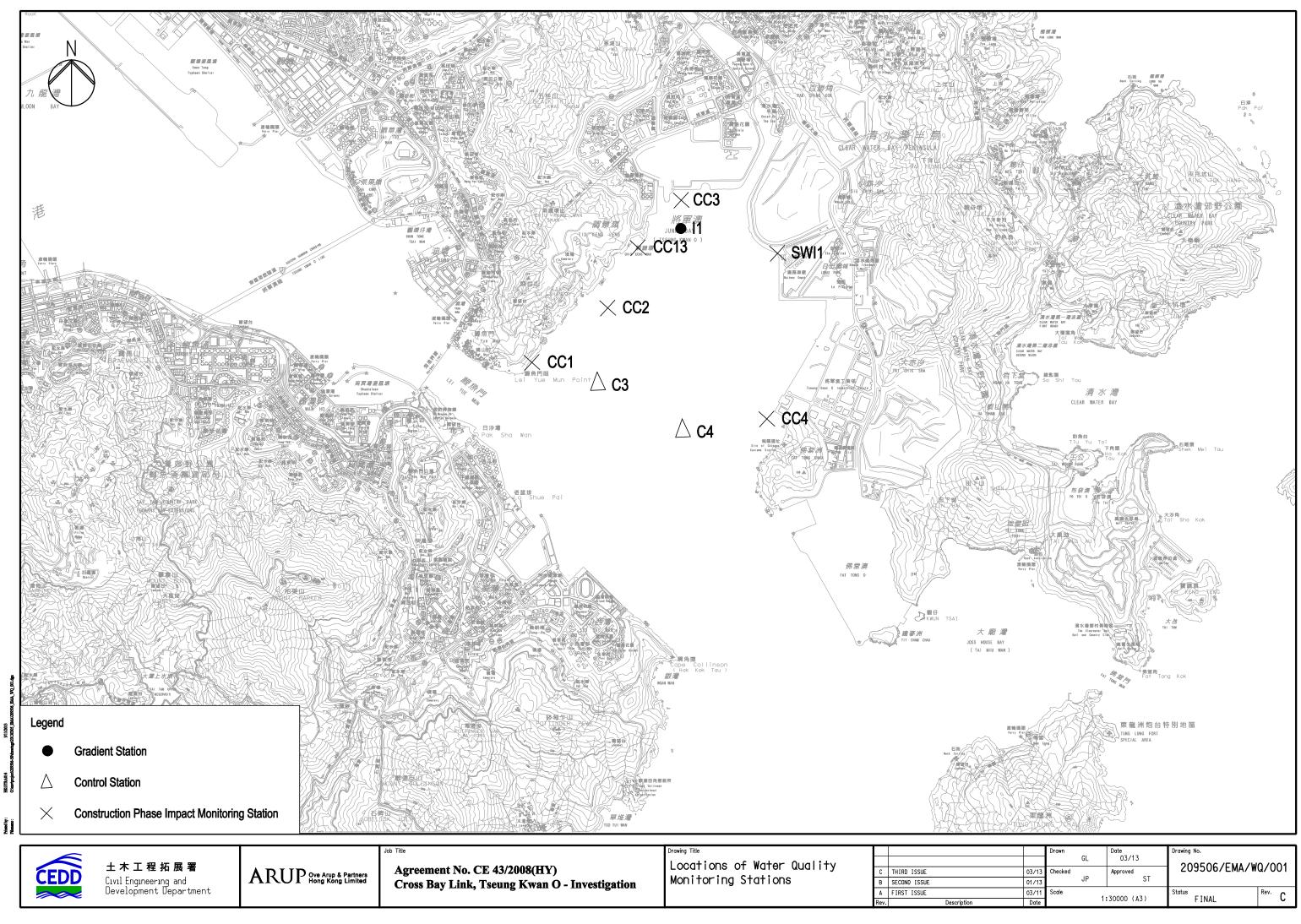
	Activity Name	Original Duration		Remaining Duration	Calendar	Start	Finish	Late Start	Late Finish	Total TR Float	A Activity % Complete	 	2019
WO.CA.TTA1010	Implementation of TTA Stage 1	1	C	1	NE/2017/08(6days)	17-Oct-19	17-Oct-19	06-Nov-19	06-Nov-19	17 0	0%	Imr	plementation of TTA Stage
WO.CA.TTA1030	UU Diversion and Installation of Sheet Pile at Northern Footpath (Except Roundabout	38	0	38	NE/2017/08(6days)	17-Oct-19	29-Nov-19	06-Nov-19	19-Dec-19	17 0	0%	 +	
WO.CA.TTA1040	Installation of Utility/Ground Settlement Points	15	C	15	NE/2017/08(6days)	17-Oct-19	02-Nov-19	06-Nov-19	22-Nov-19	17 0	0%	┝━	Installation of
WO.CA.TTA1060	Demolition of Central Barrier	15	0	15	NE/2017/08(6days)	18-Oct-19	04-Nov-19	27-Nov-19	13-Dec-19	34 0	0%	►	Demolitio
WO.CA.TTA1065	Obtain Approval from HyD Lighting Department	0	C	0	NE/2017/08(6days)		10-Oct-19		25-Nov-19	40 0	0%	🔫 Obtain App	proval from HyD Lighting D
WO.CA.TTA1070	Temporary Street Lighting Installation	21	C	21	NE/2017/08(6days)	18-Oct-19	11-Nov-19	26-Nov-19	19-Dec-19	33 0	0%	-	
WO.CA.TTA1080	Removal of Existing Street Lighting	12	0	12	NE/2017/08(6days)	12-Nov-19	25-Nov-19	20-Dec-19	06-Jan-20	33 0	0%	 	
wo.ca.tta1090	Predrilling for PBSH at Northern Footpath (Except Roundabout) (11 nos, 10D/oile+5DTRA, 1-2 rigs)	83	27	56	NE/2017/08(6days)	08-Aug-19 A	15-Nov-19	05-Sep-19	12-Nov-19	-3 28	32.53%		
WO.CA.TTA1100	Preparation of Traffic Signal Pole Relocation	12	0	12	NE/2017/08(6days)	18-Oct-19	31-Oct-19	13-Dec-19	28-Dec-19	48 0	0%	►	Preparation o
WO.CA.TTA1110	Relocation of Traffic Signal	6	C	6	NE/2017/08(6days)	12-Nov-19	18-Nov-19	30-Dec-19	06-Jan-20	39 0	0%		-
MPU20190908.7.8.2.1.2	TTA Stage 1A	40	C	40	NE/2017/08(6days)	11-Nov-19	28-Dec-19	19-Dec-19	18-Jan-20	17			-
WO.CA.TTA1A010	Implementation of TTA Stage 1A	1	C	1	NE/2017/08(6days)	11-Nov-19*	11-Nov-19	19-Dec-19	19-Dec-19	33 0	0%	 	۱ <u>. in</u>
WO.CA.TTA1A050	Inspection pit for Remaining Predrilling for PBSH Work (46nrs) (2pit/hole, 1 team)	23	C	23	NE/2017/08(6days)	30-Nov-19	28-Dec-19	20-Dec-19	18-Jan-20	17 0	0%		
WO.CA.TTA1A060	Concrete Block Installation as Lateral Support on top of Box Culvert	18	0	18	NE/2017/08(6days)	30-Nov-19	20-Dec-19	28-Dec-19	18-Jan-20	22 0	0%		
MPU20190908.7.8.2.3 TTA \$	Stage 2	109	C	109	NE/2017/08(6days)	07-Jan-20	22-May-20	07-Jan-20	03-Jun-20	10			
wo.ca.tta2010	Implementation of TTA Stage 2	1	C	1	NE/2017/08(6days)	07-Jan-20*	07-Jan-20	07-Jan-20	07-Jan-20	0 0	0%		
MPU20190908.7.8.2.3.1	Northern Portion	108	0	108	NE/2017/08(6days)	08-Jan-20	22-May-20	20-Jan-20	03-Jun-20	10		 	
WO.CA.TTA2NP.1020	Construction of PBSH (Northern Footpath except Roundabout) (46nos, 7D/pile, 2 to 4rigs)	108	C	108	NE/2017/08(6days)	08-Jan-20	22-May-20	20-Jan-20	03-Jun-20	10 0	0%		
WO.CA.TTA2NP.1035	Inspection Pit for Predrilling Works at Northern Roundabout	4	0	4	NE/2017/08(6days)	08-Jan-20	11-Jan-20	20-Jan-20	23-Jan-20	10 0	0%		
WO.CA.TTA2NP.1040	Predrilling for PBSH for Northern Roundabout (4nos, 15D/hole, 3 rigs)	20	0	20	NE/2017/08(6days)	13-Jan-20	07-Feb-20	24-Jan-20	19-Feb-20	10 7	0%		
MPU20190908.7.8.2.3.2	Southern Portion and Central Barrier	30	0	30	NE/2017/08(6days)	08-Jan-20	14-Feb-20	22-Apr-20	28-May-20	83			

Actual Level of Effort
 Actual Work
 Remaining Work
 Critical Remaining Work

Contract No.: NE/2017/08 Cross Bay Link, Tseung Kwan O Road D9 and Associated Works Page 4 of 4

Q4		2020 Q1
e 1		<u>.</u>
-ΨU Diversion and Inst	allation of \$heet	Pile at Northern Footpath (Exc
of Utility/Ground Settlement Points		
on of Central Earrier		
Department,		
emporary Street Lighting Installation		
Removal of Existing Street		
Predrilling for PBSH at Northern Foot	path (Except Ro	undabout) (11 nos, 10D/pile‡5l
of Traffic Signal Pole Relocation		
Relocation of Traffic Signal		
	28-De	>19, MPU20190908.7.8.2.1 2
nplementation of TTA Stage 1A		
-	Inspec	ion pit for Remaining Predrilling
.		Installation as Lateral Support
		Implementation of TTA Sta
		V
		-
		Inspection Pit for Predi
		-
		-
Revision	Checke	d Approved
Programme (Sep to Nov)	HY	AY
<u> </u>		I




Appendix D

Monitoring Location (Air Quality, Noise and Water Quality)

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Designated and Interim Alternative Air Quality and Noise Monitoring Location

AUES

		UL.	03/13		0/001
03/13	Checked	10	Approved	209506/EMA/W	u/001
01/13		JP	ST		
03/11	Scale	4.	20000 (17)	Status	Rev. C
Date		13	30000 (A3)	FINAL	U U

Appendix E

Event and Action Plan

 $Z: \label{eq:loss} 2018 \ CS00975 \ (EDO-04-2018) \ (600 \ EM\&A \ Report \ Submission \ Monthly \ EM\&A \ Report \ October \ 2019 \ R0290 \ v2. \ docx$

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
ACTION LEVEL				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and Project Consultant; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and Project Consultant; Advise the Project Consultant on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and Project Consultant; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial actions to IEC within working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
LIMIT LEVEL				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform Project Consultant, Contractor, IEC and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Project Consultant informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the Project Consultant on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	notification of failure in writing; 2. Notify Contractor;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Event and Action Plan for Air Quality Monitoring

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
LIMIT LEVEL		1		
Exceedance for two or more consecutive samples	 Notify IEC, Project Consultant, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and Project Consultant to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Project Consultant informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst Project Consultant, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the Project Consultant accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the Project Consultant until the exceedance is abated.

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
Action Level	 Notify IEC and contractor; Carry out investigation; Report the results of investigation to the IEC, Project Consultant and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the Project Consultant accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; 2. Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IEC, Project Consultant, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, Project Consultant and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Project Consultant informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst Project Consultant, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the Project Consultant accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the Project Consultant until the exceedance is abated.

	ACTION			
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
Action level being exceeded by one sampling day at water sensitive receiver(s)	 Identify the source(s) of impact by comparing the results with those collected at the gradient stations and the control stations as appropriate; If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; Inform IEC and contractor; Check monitoring data, all plant, equipment and Contractor's working methods; If exceedance occurs at WSD salt water intake, inform WSD; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	 Discuss mitigation measures with ET and Contractor; Review proposal on mitigation measures submitted by Contractor and advise the Project Consultant accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC; Make agreement on the mitigation proposal. 	 Inform the Project Consultant and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Amend working methods if appropriate; Discuss with ET and IEC and propose mitigation measures to IEC and Project Consultant; Implement the agree mitigation measures.
Action level being exceeded by two or more consecutive sampling days at water sensitive receiver(s)	 Identify the source(s) of impact by comparing the results with those collected at the gradient stations and the control stations as appropriate; If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; Inform IEC and contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, and Contractor; Ensure mitigation measures are 	 Discuss mitigation measures with ET and Contractor; Review proposal on mitigation measures submitted by Contractor and advise the Project Consultant accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC; Make agreement on the mitigation proposal; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Project Consultant and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and Project Consultant and propose mitigation measures to IEC and Project Consultant within 3 working

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
	 implemented; 7. Prepare to increase the monitoring frequency to daily; 8. If exceedance occurs at WSD salt water intake, inform WSD; 9. Repeat measurement on next day of exceedance. 			days; 5. Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day at water sensitive receiver(s)	 Identify the source(s) of impact by comparing the results with those collected at the gradient stations and the control stations as appropriate; If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; Inform IEC, contractor and EPD Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; If exceedance occurs at WSD salt water intake, inform WSD. ET should contact AFCD if the limit level is exceeded by one sampling day or two or more consecutive sampling days at water sensitive receiver(s). 	 Discuss mitigation measures with ET and Contractor; Review proposal on mitigation measures submitted by Contractor and advise the Project Consultant accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Project Consultant and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and Project Consultant and submit proposal of mitigation measures to IEC and Project Consultant within 3 working days of notification; Implement the agreed mitigation measures.
Limit level	1. Identify the source(s) of impact by	1. Discuss mitigation	1. Discuss proposed	1. Inform the Project
being exceeded	comparing the results with those	measures with ET and	mitigation measures with	Consultant and confirm
by two or more	collected at the gradient stations and the	Contractor;	IEC, ET and Contractor;	notification of the

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
sampling days at 2	control stations as appropriate; 2. If exceedance is found to be caused	2. Review proposal on mitigation measures	2. Request Contractor to critically review the	noncompliance in writing;2. Rectify unacceptable
water sensitive receiver(s) m 3 4 4 e m 5 1 1 6 6 iii 7 ff 8 8 9	by the marine works, repeat <i>in-situ</i> measurement to confirm findings; 3. Inform IEC, contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, and Contractor; 6. Ensure mitigation measures are implemented; 7. Prepare to increase the monitoring frequency to daily; 8. If exceedance occurs at WSD salt water intake, inform WSD; 9. Repeat measurement on next day of exceedance.	submitted by Contractor and advise the Project Consultant accordingly; 3. Assess the effectiveness of the implemented mitigation measures.	 working methods; 3. Make agreement on the mitigation measures to be implemented; 4. Assess the effectiveness of the implemented mitigation measures; 5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. 	practice; 3. Check all plant and equipment and consider changes of working methods; 4. Discuss with ET, IEC and Project Consultant and submit proposal of mitigation measures to IEC and Project Consultant within 3 working days of notification; 5. Implement the agreed mitigation measures; 6. As directed by the Engineer, to slow down or to stop all or part of the construction activities.

Appendix F

Impact Monitoring Schedule of the Reporting Month and Coming Month

Impact Monitoring Schedule for the reporting month – October 2019

	Date	Noise Monitoring	Air Quality	y Monitoring	Water Quality
		(Leq30min)	1-Hour TSP	24-Hour TSP	water Quanty
Tue	1-Oct-19				
Wed	2-Oct-19				✓
Thu	3-Oct-19			√	
Fri	4-Oct-19		✓		✓
Sat	5-Oct-19				
Sun	6-Oct-19				
Mon	7-Oct-19				
Tue	8-Oct-19				✓
Wed	9-Oct-19			✓	
Thu	10-Oct-19	✓	\checkmark		✓
Fri	11-Oct-19				
Sat	12-Oct-19				✓
Sun	13-Oct-19				
Mon	14-Oct-19				✓
Tue	15-Oct-19			✓	
Wed	16-Oct-19	✓	√		✓
Thu	17-Oct-19				
Fri	18-Oct-19				✓
Sat	19-Oct-19				
Sun	20-Oct-19				
Mon	21-Oct-19			✓	✓
Tue	22-Oct-19	✓	√		
Wed	23-Oct-19				✓
Thu	24-Oct-19				
Fri	25-Oct-19				✓
Sat	26-Oct-19			✓	
Sun	27-Oct-19				
Mon	28-Oct-19	✓	✓		✓
Tue	29-Oct-19				
Wed	30-Oct-19				✓
Thu	31-Oct-19				
	✓	Monitoring Day		•	•
		Sunday or Public Hol	iday		
* (ancelled due	to adverse weather con	<u>,</u>		

Cancelled due to adverse weather condition

|--|

Schoduled Menite	Scheduled Monitoring Day		i Miu Wan	Proposed Sampling Time (#)		
Scheduled Molito	ring Day	Mid-Ebb	Mid-Flood	Mid-Ebb	Mid-Flood	
2-Oct-19	Wed	14:48	08:47*	13:03 - 16:33	08:00 - 10:32*	
4-Oct-19	Fri	16:23	10:52	14:38 - 18:08	09:07 - 12:37	
8-Oct-19	Tue	08:32*	16:29	08:00 - 10:17*	14:44 - 18:14	
10-Oct-19	Thu	10:12	17:17	08:27 - 11:57	15:32 - 19:02	
12-Oct-19	Sat	11:27	18:01	09:42 - 13:12	16:16 - 19:46	
14-Oct-19	Mon	12:32	6:25*	10:47 - 14:17	08:00-09:00*	
16-Oct-19	Wed	13:35	07:44*	11:50 - 15:20	08:00-09:29*	
18-Oct-19	Fri	14:40	09:14*	12:55 - 16:25	08:00 - 10:59*	
21-Oct-19	Mon	04:07*	16:42	08:00-09:00*	14:57 - 18:27	
23-Oct-19	Wed	07:44*	15:24	08:00-09:29*	13:39 - 17:09	
25-Oct-19	Fri	09:47	16:34	08:02 - 11:32*	14:49 – 18:19	
28-Oct-19	Mon	12:17	06:08*	10:32 - 14:02*	08:00-09:00*	
30-Oct-19	Wed	13:44	07:52*	11:59 - 15:29	08:00-09:37*	

Remark: The water quality sampling will be undertaken within a three and half hour window of 1.75 hour before and 1.75 hour after mid flood and mid-ebb tides.

(*) Due to safety reason, the sampling time will be started at 08:00 or 16:30

Z:\Jobs\2018\TCS00975 (EDO-04-2018)\600\EM&A Report Submission\Monthly EM&A Report\October 2019\R0290v2.docx

Impact Monitoring Schedule for coming month – November 2019

	Date	Noise Monitoring		y Monitoring	Water Quality
		(Leq30min)	1-Hour TSP	24-Hour TSP	
Fri	1-Nov-19			✓	✓
Sat	2-Nov-19		\checkmark		
Sun	3-Nov-19				
Mon	4-Nov-19				✓
Tue	5-Nov-19				
Wed	6-Nov-19				✓
Thu	7-Nov-19			✓	
Fri	8-Nov-19	✓	\checkmark		✓
Sat	9-Nov-19				
Sun	10-Nov-19				
Mon	11-Nov-19				✓
Tue	12-Nov-19				
Wed	13-Nov-19			✓	✓
Thu	14-Nov-19	✓	√		
Fri	15-Nov-19				✓
Sat	16-Nov-19				
Sun	17-Nov-19				
Mon	18-Nov-19				✓
Tue	19-Nov-19			✓	
Wed	20-Nov-19	✓	✓		✓
Thu	21-Nov-19				
Fri	22-Nov-19				✓
Sat	23-Nov-19				
Sun	24-Nov-19				
Mon	25-Nov-19			✓	✓
Tue	26-Nov-19	✓	✓		
Wed	27-Nov-19				✓
Thu	28-Nov-19				
Fri	29-Nov-19				✓
Sat	30-Nov-19			✓	
<u>L</u>	✓	Monitoring Day			1
		Sunday or Public Hol	iday		

Marine Water Quality Monitoring Schedule

Sahadulad Manita	Scheduled Monitoring Day		i Miu Wan	Proposed Sampling Time (#)		
Scheuneu Momito	ring Day	Mid-Ebb	Mid-Flood	Mid-Ebb	Mid-Flood	
1-Nov-19	Fri	15:08	09:41*	13:23 - 16:53	08:00 - 11:26*	
4-Nov-19	Mon	05:17*	17:46	08:00-09:00*	16:01 - 19:31	
6-Nov-19	Wed	07:29*	15:39	08:00-09:14*	13:54 - 17:24	
8-Nov-19	Fri	09:25*	16:29	08:00 - 11:10*	14:44 - 18:14	
11-Nov-19	Mon	11:26	17:29	09:41 - 13:11	15:44 - 19:14	
13-Nov-19	Wed	12:34	6:56*	10:49 - 14:19	08:00-09:00*	
15-Nov-19	Fri	13:38	08:21*	11:53 - 15:23	08:00 - 10:06*	
18-Nov-19	Mon	15:55	11:17	14:10 - 17:40	09:32 - 13:02	
20-Nov-19	Wed	18:54*	13:46	16:30 - 20:39*	12:01 - 15:31	
22-Nov-19	Fri	08:23*	15:24	08:00 - 10:08*	13:39 - 17:09	
25-Nov-19	Mon	17:02	11:10	15:17 - 18:47	09:25 - 12:55	
27-Nov-19	Wed	12:43	18:09*	10:58 - 14:28	16:24 - 19:54	
29-Nov-19	Fri	14:04	08:43*	12:19 - 15:49	08:00 - 10:28*	

Remark: The water quality sampling will be undertaken within a three and half hour window of 1.75 hour before and 1.75 hour after mid flood and mid-ebb tides.

(*) Due to safety reason, the sampling time will be started at 08:00 or 16:30

Appendix G

Calibration Certificates of Equipment and Accreditation Laboratory Certificate

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong

香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 –《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date : 5 May 2009 簽發日期:二零零九年五月五日

Registration Number: HOKLAS 066 註冊號碼:

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location :	: Junctior	ı of Wan	Po Roa	d and Wan () Ro	oad	Date of C	Calibr	ation: 2-Sep	5- 19		
Location 1	ID :	AM5				N			Date: 2-No	v - 19		
Name and	l Model: '	<u>TISCH H</u>	<u>IVS Mo</u>	del TE-5170				Techn	ician: Ho			
					С	ONDIT	IONS					
	G	T 11	D	(1.D.) [1007					TT \	
	Se	a Level I				1007		(Corrected Pr			
		Temp	berature	(°C)		26.9			Tempe	erature (K	x)	300
				CA	LIB	RATIO						
				F		T						
				Make->		+			Qstd Sl	-		2.0968
				Model->					Qstd Intere	cept ->		-0.00065
				Serial # ->	194	1						
					C	ALIBR	ATION					
Plate	H20 (L)	H2O (R)	H20	Qstd		Ι	IC			LINEA	R	
No.	(in)	(in)	(in)	(m3/min)	(cł	hart)	corrected		R	EGRESS	ION	
18	5.20	5.20	10.4	1.529	-	59	58.44		S	Slope = 2	27.3875	
13	3.40	3.40	6.8	1.236		52	51.51		Intercept = 16.9762			
10	2.30	2.30	4.6	1.017		45	44.57		Corr. c	oeff. =	0.9983	
7	1.60	1.60	3.2	0.848		41	40.61					
5	1.20	1.20	2.4	0.734		37	36.65					
Calculatio	ons :								FLOW RATI	E CHART		
Qstd = 1/1	n[Sart(H	20(Pa/Ps	std)(Tstd	/Ta))-b]		70.0	0					
IC = I[Squ												
						60.0	0				•	
Qstd = sta	indard flo	w rate										
IC = corrections	ected char	rt respon	es			50.0	0					
I = actual	chart res	ponse				(jc)						
m = calibr	-	-				8 6 40.0	0		y			
	b = calibrator Qstd intercept								4			
Ta = actual temperature during calibration (deg K						30.0	0					
Pstd = act	ual press	ure durin	ig calibra	ation (mm H	lg	Actual chart response (IC)						
For subsequent calculation of sampler flow:						Pcti 20.0	0					
1/m((I)[S	- Sart(298/	Tav)(Pav	/760)]-ł)								
	1			,		10.0	0					
m = samp	ler slope											
b = sampler intercept						0.0						
I = chart r	-					0.0	0.000	0.50	00 1.0	000	1.500	2.000
Tav = dai	ly averag	e temper	ature					S	tandard Flow	Rate (m3/mi	in)	
Pav = dail	ly averag	e pressur	e									

RECALIBRATION DUE DATE: February 5, 2020

0

			Calibration (Certificatio	n Informat	ion		
Cal. Date:	February 5,	2019	Rootsn	neter S/N:	438320	Ta:	293	°K
Operator:	Jim Tisch					Pa:	753.1	mm Hg
		TE-5025A	Calib	rator S/N:	1941			5
		Mal Init	Vol Engl	AV-1	ATIMA	40	A11	Ĩ
	Run	Vol. Init (m3)	Vol. Final	ΔVol.	∆Time (min)			
	Kun 1	(m5) 1	(m3) 2	(m3)	(min) 1.4830	(mm Hg) 3.2	(in H2O) 2.00	
	2	3	4	1	1.4830	6.4	4.00	
	3	5	6	1	0.9300	7.9	5.00	
	4	7	8	1	0.8870	8.7	5.50	
	5	9	10	1	0.7320	12.7	8.00	
				ata Tabulat				1
	-	1			1011			0
	Vstd	Qstd	√∆H(<u>Pa</u> Pstd)(Tstd Ta)	(1997)	Qa	√∆H(Ta/Pa)	1
	(m3)	(x-axis)	(y-axi	s)	Va	(x-axis)	(y-axis)	
	1.0036	0.6767	1.419		0.9958	0.6714	0.8821	
	0.9993	0.9581	2.007	/8	0.9915	0.9506	1.2475	
	0.9973	1.0723	2.244	2.2448		1.0640	1.3947	be
	0.9962	1.1231	2.354	4	0.9884	1.1144	1.4628	
	0.9908	1.3536	2.839	95	0.9831	1.3431	1.7642	
	17.72.6	m=	2.096	80	1.056.11	m=	1.31298	
	QSTD	b=	-0.000	65	QA	b=	-0.00040	
		r=	0.999	99		r=	0.99999	1
				Calculation	IS		1.	
	Vstd=	∆Vol((Pa-∆P)	/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
	Qstd=	Vstd/∆Time			Qa=	Va/∆Time		
			For subsequ	ent flow rat	e calculation	ns:		
	Qstd=	1/m ((\\ \ \ \ \ \ \ H (Pa <u>(Tstd</u> Pstd Ta)-b)	Qa=	$1/m \left(\sqrt{\Delta H} \right)$	(Ta/Pa))-b)	
	Standard	Conditions						5. U
Tsto						RECAL	IBRATION	
Psto		mm Hg		1			1	100
		ley	112.01				inual recalibratio	
	tor manomet						egulations Part	
	eter manome						Reference Meth	
							ended Particulat	
the second second second second second		cooure (mm	16/		th	e Atmosphe	re, 9.2.17, page	30
b: intercep	a: actual absolute temperature (°K) a: actual barometric pressure (mm Hg) : intercept a: slope						re, 9.2.17, page	

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR BEN TAM	WORK ORDER	HK1908930
CLIENT	ACTION UNITED ENVIRONMENT SERVICES AND		
	CONSULTING		
ADDRESS	: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD,	SUB-BATCH	: 1
	KWAI CHUNG, N.T. HONG KONG	DATE RECEIVED	: 25-FEB-2019
		DATE OF ISSUE	: 4-MAR-2019
PROJECT	:	NO. OF SAMPLES	: 1
		CLIENT ORDER	:

General Comments

- Sample(s) were received in ambient condition.
- Sample(s) analysed and reported on an as received basis.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Kidand Juny.		
Richard Fung	General Manager	

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH

CLIENT

PROJECT

: HK1908930

¹ ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING :

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1908930-001	S/N: 3Y6503	AIR	25-Feb-2019	S/N: 3Y6503

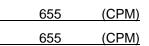
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	3Y6503
Equipment Ref:	EQ112
Job Order	HK1908930

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	21 December 2018


Equipment Verification Results:

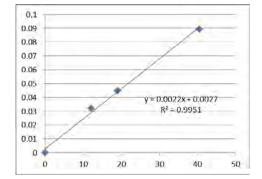
Testing Date:

7 January 2019

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	09:01 ~ 11:08	18.5	1021.4	0.045	2403	19.0
2hr11min	11:13 ~ 13:24	18.5	1021.4	0.032	1577	12.1
2hr07min	13:30 ~ 15:37	18.5	1021.4	0.089	5129	40.5

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X


Slope (K-factor):	0.0022			
Correlation Coefficient	0.9975			
Date of Issue	14 January 2019			

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Gold King Industrial B Location ID : Calibration Room		Calibration: 21-Dec-18 ation Date: 21-Mar-19		
	CC	ONDITIONS		
Sea Level Pressure (hPa) Temperature (°C)		16.1 22.4	Corrected Pressure (Temperature (
	CALIBR	RATION ORIFIC	E	
Mal Mod Calibration Da	el-> 5025A	A	Qstd Slope -> Qstd Intercept -> Expiry Date->	2.02017 -0.03691 13-Feb-19
	CA	LIBRATION		
Plate H20 (L)H2O (R) H20 Qst No. (in) (in) (in) (m3/n		t) IC corrected	LINE REGRES	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95 51 7 45 36 36	56.32 51.29 45.26 36.21 28.16	Slope = Intercept = Corr. coeff. =	34.0074 -0.4093 0.9972
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration Pstd = actual pressure during calibration (For subsequent calculation of sampler flow 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	(deg K) mm Hg)	70.00 60.00 50.00 50.00 40.00 20.00 10.00 0.000	FLOW RATE CHAN	1.500 2.000

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C193189 證書編號

(Job No. / 序引編號: IC19-1098)	Date of Receipt / 收件日期: 18 June 2019
Sound Level Meter (EQ016)	
Rion	
NL-52	
00464681	
Action-United Environmental Services and	d Consulting
Unit A, 20/F., Gold King Industrial Buildi	ng,
35-41 Tai Lin Pai Road, Kwai Chung, N.T	
	Sound Level Meter (EQ016) Rion NL-52 00464681 Action-United Environmental Services and Unit A, 20/F., Gold King Industrial Buildi

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50 ± 25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 20 June 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies

ł

- Fluke Everett Service Center, USA

Tested By 測試

11.00

K P Cheuk Assistant Engineer

K C Lee Engineer

Certified By 核證 Date of Issue : 簽發日期 20 June 2019

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 枝正及檢測實驗所 c/o 香港新界屯門興安里—號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com Page 1 of 3

Certificate of Calibration 校正證書

Certificate No. : C193189 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- Self-calibration was performed before the test. 2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C190176
CL281	Multifunction Acoustic Calibrator	CDK1806821

- 5. Test procedure : MA101N.
- 6. Results :

- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

UUT Setting			Applied Value		UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	93.5	± 1.1

6.1.2 Linearity

	UU	T Setting	Applie	d Value	UUT	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	LA	A	Fast	94.00	1	93.5 (Ref.)
		1 1 2 3 4 1		104.00		103.5
				114.00		113.5

IEC 61672 Class 1 Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

6.2 Time Weighting

UUT Setting			Applied Value		UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130 L _A	A	Fast	94.00	1	93.5	Ref.	
		Slow	1		93.5	± 0.3	

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prine written approval of this laboratory.

Certificate of Calibration 校正證書

Certificate No. : C193189 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Applied Value		UUT	IEC 61672			
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)			
30 - 130 L _A A	A	Fast	94.00	63 Hz	67.3	-26.2 ± 1.5				
				125 Hz	77.4	-16.1 ± 1.5				
					250 Hz	84.8	-8.6 ± 1.4			
					500 Hz	90.3	-3.2 ± 1.4			
					1 kHz	93.5	Ref.			
								2 kHz	94.8	$+1.2 \pm 1.6$
					4 kHz	94.5	$+1.0 \pm 1.6$			
					8 kHz	92.5	-1.1 (+2.1;-3.1)			
					12.5 kHz	89.1	-4.3 (+3.0 ; -6.0)			

6.3.2 C-Weighting

	UUT	Setting		Applied Value		UUT	IEC 61672			
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	ng Class 1 Spec. (dB)			
30 - 130 L _C	C	Fast	94.00	63 Hz	92.7	-0.8 ± 1.5				
	1111111111				125 Hz	93.4	-0.2 ± 1.5			
							250 Hz	93.5	0.0 ± 1.4	
					500 Hz	93.6	0.0 ± 1.4			
					1 kHz	93.5	Ref.			
									2 kHz	93.4
	5			4 kHz	92.8	-0.8 ± 1.6				
			· · · · · · · · · · · · · · · · · · ·		8 kHz	90.6	-3.0 (+2.1;-3.1)			
				12.5 kHz	87.2	-6.2 (+3.0 ; -6.0)				

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 07619

- Mfr's Spec. : IEC 61672 Class 1

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C194819 證書編號

ITEM TESTED / 送檢項	目月	(Job No. / 序引編號:IC19-1098)	Date of Receipt / 收件日期: 27 August 2019
Description / 儀器名稱	:	Sound Calibrator (EQ087)	
Manufacturer / 製造商	:	Rion	
Model No. / 型號	:	NC-74	
Serial No. / 編號	:	34657231	
Supplied By / 委託者	:	Action-United Environmental Services and	d Consulting
		Unit A, 20/F., Gold King Industrial Building	ng,
		35-41 Tai Lin Pai Road, Kwai Chung, N.T	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50 ± 25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 7 September 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試	:H T Wong Technical Officer		
Certified By	K C Lee	Date of Issue :	10 September 2019
核證	Engineer	簽發日期	

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里—號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C194819 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C193756 CDK1806821 C181288

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.1	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: CLIENT:	MR BEN TAM ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	WORK ORDER:	HK1936450
ADDRESS:	RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T. HONG KONG	SUB-BATCH: LABORATORY: DATE RECEIVED: DATE OF ISSUE:	0 HONG KONG 26-Aug-2019 02-Sep-2019

<u>COMMENTS</u>

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client. The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:Conductivity, Dissolved Oxygen, pH Value, Turbidity, Salinity and TemperatureEquipment Type:Multifunctional MeterBrand Name/ Model No.:YSI Professional DSSSerial No./ Equipment No.:15H102620/ 15H103928 (EQW018)

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

30-Aug-2019

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ma Ani

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Date of Calibration:

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1936450			
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 02-Sep-2019 ACTION UNITED ENVIRONMEN	IT SERVICES AND CONSULTING		
Equipment Type:	Multifunctional Meter			
Brand Name/ Model No.:	YSI Professional DSS			
Serial No./ Equipment No.:	15H102620/ 15H103928 (EQ	W018)		
Date of Calibration:	30-Aug-2019	Date of Next Calibration:	30-Nov-2019	

PARAMETERS:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)		
146.9	160.7	+9.4		
6667	6485	-2.7		
12890	12380	-4.0		
58670	55669	-5.1		
	Tolerance Limit (%)	±10.0		

Dissolved Oxygen Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
7.43	7.41	-0.02
4.06	4.07	+0.01
2.05	2.20	+0.15
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)	
4.0	4.15	+0.15	
7.0	7.07	+0.07	
10.0	9.90	-0.10	
	Tolerance Limit (pH unit)	±0.20	

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Alin

Mr Chan Siu Ming, Vico Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1936450			AL
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 02-Sep-2019 ACTION UNITED ENVIRONMEN	T SERVICES AND CONSULTING		
Equipment Type:	Multifunctional Meter			
Brand Name/ Model No.:	YSI Professional DSS			
Serial No./ Equipment No.:	15H102620/ 15H103928 (EQ)	W018)		
Date of Calibration:	30-Aug-2019	Date of Next Calibration:	30-Nov-2019	

PARAMETERS: Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)		
0	0.02			
4	3.76	-6.0		
40	37.23	-6.9		
80	73.56	-8.1		
400	401.38	+0.3		
800	780.12	-2.5		
	Tolerance Limit (%)	±10.0		

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.30	+3.0
20	20.32	+1.6
30	31.32	+ 4.4
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Li

Mr Chan Siu Ming, Vico Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1936450			ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 02-Sep-2019 ACTION UNITED ENVIRONMEN	T SERVICES AND CONSULTING		
Equipment Type:	Multifunctional Meter			
Brand Name/ Model No.:	YSI Professional DSS			
Serial No./ Equipment No.:	15H102620/ 15H103928 (EQ)	V018)		
Date of Calibration:	30-Aug-2019	Date of Next Calibration:	30-Nov-2019	
PARAMETERS:	Mathad Dafi Saction 6 of Intern	ational Accreditation New Zealand	Technical	
Temperature	Method Ker: Section 6 of Interna	ational Accieditation New Zealand	rechnical	

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.Expected Reading (°C)Displayed Reading (°C)Tolerance (°C)10.09.9-0.120.018.9-1.138.036.4-1.6Tolerance Limit (°C)±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Sin

Mr Chan Siu Ming, Vico Manager - Inorganic

Crowcon Detection Instruments

172 Brook DriveMilton ParkAbingdonOX14 4SDTelephone:+44 (0)1235 557700EMailWeb:www.crowcon.com

A HALMA COMPANY

Gas-Pro Calibration And Configuration Report

Method of calibration

This gas detector has been calibrated in accordance with the methods and procedures set out in Crowcons LRQA validated ISO9001 quality manual.

The test equipment used has been UKAS calibrated and is traceable to national standards. Standard Calibration gas mixtures have been prepared in accordance with BS EN ISO 6145-1-2008.

This Gas Detector must be used in accordance to the instruction manual.

Printed on 15 Jar	Calibration date Result	548062/01-001 15/01/2019 16 Pass	.07:32
Name	CO (Dual Toxic)	Pre cal reading	0
Units	ppm	Post cal reading	248.3
Calibration level	250	Last calibration	15/01/2019
Alarm 1 level	30	Alarm 2 level	100
Result	Passed	NextCalibration	14/07/2019
Bump Enabled	No		rated to ATEX standards
Name	H2S (Dual Toxic)	Pre cal reading	0
Units	ppm	Post cal reading	25.03
Calibration level	25	Last calibration	15/01/2019
Alarm 1 level	5	Alarm 2 level	10
Result	Passed	NextCalibration	14/07/2019
Bump Enabled	No		rated to ATEX standards
Name	CH4	Pre cal reading	0
Units	%LEL	Post cal reading	57.0
Calibration level	57	Last calibration	15/01/2019
Alarm 1 level	20	Alarm 2 level	40
Result	Passed	NextCalibration	14/07/2019
Bump Enabled	No		orated to ATEX standards
Name	CO2	Pre cal reading	0
Units	%VOL	Post cal reading	1.92
Calibration level	2	Last calibration	15/01/2019
Alarm 1 level	0.5	Alarm 2 level	1.5
Result	Passed	NextCalibration	14/07/2019
Bump Enabled	No		prated to ATEX standards
Name	O2 3yr	Pre cal reading	0
Units	%VOL	Post cal reading	20.5
Calibration level	20.9	Last calibration	15/01/2019
Alarm 1 level	19.5	Alarm 2 level	23.5
Result	Passed	NextCalibration	14/07/2019
Bump Enabled	No		prated to ATEX standards
Action on startup	Auto zero confirm	Allow user config	uration Yes
Pellistor Saver leve		Pumped	Yes
Follow on Cal inter	rval '30	Lock on bump fail	
Lock on cal due	No	Bump type	None
Prevent switch off	No	Calibrate after bur	np No
Region	UK		
Calibration report nu	mber 37135		

Technician/Date

Appendix H

Database of Monitoring Results

 $Z: \label{eq:loss} 2018 \ CS00975 \ (EDO-04-2018) \ (600 \ EM\&A \ Report \ Submission \ Monthly \ EM\&A \ Report \ October \ 2019 \ R0290v \ 2.docx \ 2.doc$

24-hour TSP	[•] Monitoring	Data for A	M5												
DATE	SAMPLE NUMBER	ELA	APSED TIM	1E	CHAI	RT REA	DING	AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER WI	EIGHT (g)	DUST WEIGHT COLLECTED	24-hr TSP
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	(µg/m³)
3-Oct-19	24765	15282.64	15306.64	1440.00	43	43	43.0	26.8	1012.4	0.94	1360	2.6863	2.8880	0.2017	148
9-Oct-19	24901	15306.64	15330.71	1444.20	42	43	42.5	26.3	1013.3	0.93	1341	2.8384	2.9921	0.1537	115
15-Oct-19	24902	15330.71	15354.71	1440.00	42	43	42.5	26	1019	0.93	1345	2.8485	3.0685	0.2200	164
21-Oct-19	24811	15354.71	15378.93	1453.20	45	45	45.0	25.3	1014	1.02	1487	2.6984	2.9473	0.2489	167
26-Oct-19	24812	15378.93	15403.02	1445.40	43	44	43.5	24.3	1015.4	0.97	1405	2.6997	2.8195	0.1198	85

Daytime No	ise Mea	asureme	ent Resu	ilts (dB)	of CNN	MS5														
	Start	1st	Leq (5n	nin)	2nd	Leq (51	min)	3rd	Leq (5r	nin)	4th	Leq (5r	nin)	5th	Leq (5r	nin)	6th	Leq (5n	nin)	
Date	Time Leq, LI	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq30min, dB(A)	
	Time	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
10-Oct-19	13:27	64.1	66.3	60.4	65.4	67.3	61.7	65.5	67.0	61.5	64.5	66.6	60.4	64.6	66.5	60.1	65.3	67.5	61.1	64.9
16-Oct-19	13:43	66.7	68.3	61.5	65.6	67.4	60.6	64.2	66.0	59.9	65.5	67.6	60.9	65.1	67.0	60.0	66.1	68.4	61.4	65.6
22-Oct-19	9:33	65.9	68.0	61.0	66.8	69.7	62.3	64.2	67.2	61.5	65.8	68.0	63.0	64.6	65.8	63.1	63.7	65.1	61.7	65.3
28-Oct-19	9:19	66.9	69.0	63.5	65.3	67.1	63.2	63.5	64.6	62.4	65.8	66.3	63.7	64.2	67.5	61.5	63.4	64.4	62.3	65.0

Evening Not	ise Mea	surement Resu	lts (dB) of CNM	185							
	Start		1st Leq (5min)			2nd Leq (5min)			3rd Leq (5min)		
Date	Time Leq, dB(A) L	L10, dB(A)	L90, dB(A)	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq30min, dB(A)	
3-Oct-19	19:05	63.8	66.2	59.7	62.8	65.3	59.7	63.1	59.9	59.3	63.3
8-Oct-19	19:33	62.9	65.6	59.4	63.0	66.6	57.9	61.2	64.6	58.1	62.4
17-Oct-19	19:08	63.4	66.7	56.2	61.5	65.1	54.4	61.6	65.1	55.2	62.3
21-Oct-19	19:31	62.0	64.7	58.4	62.6	65.6	58.9	61.8	64.6	58.1	62.1
28-Oct-19	19:06	61.3	64.5	56.6	60.6	64.7	55.7	59.9	63.1	56.2	60.6

	2-Oct-19				T			1					
Date / Time	Location	Tide*	Co-or	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	ss
Date / Thile	Location	The	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
						1.00	28.1 28.0	6.05 5.96	93.9 92.4	2.43 2.50	34.70 34.76	8.17 8.18	4.5
13:32	CC1	ME	0	0	9.86	4.93	28.0	5.92	91.8	2.53	34.78	8.18	4.9
						8.86	28.0 27.9	5.91 5.86	91.6 90.7	2.52 2.77	34.79 34.83	8.19 8.2	5.1 6.7
							27.9 28.4	5.85 6.08	90.6 94.7	2.85	34.83 34.51	8.2 8.2	6.7 4.9
						1.00	28.4	6.07	94.6	2.09	34.51	8.2	5.3
13:36	CC2	ME	0	0	12.1	6.05	28.0 28.0	5.77 5.77	89.5 89.5	2.89 2.96	34.63 34.64	8.2 8.2	5.7
						11.10	27.9 27.9	5.84 5.84	90.5 90.4	3.18 3.37	34.84 34.84	8.21 8.21	7.6
						1.00	28.4	6.45	100.3	1.65	34.26	8.20	4.3
13:45	CC3	ME	0	0	10.09		28.4 28.1	6.45 5.81	100.3 90.1	1.68 2.00	34.31 34.42	8.20 8.19	4.4
13:45	CC3	ME	0	0	10.09	5.05	28.0 28.0	5.80 5.42	89.8 84.0	2.00 3.89	34.43 34.58	8.19 8.18	4.5 4.9
						9.09	28.0	5.47	84.7	4.65	34.62	8.18	5.1
13:20	CC4	ME	0	0	2.47	1.24	28.6 28.6	5.99 5.98	93.5 93.3	1.74	34.20 34.20	8.14 8.14	5.4 5.2
							28.0	3.98	93.3	1./1	34.20	8.14	3.2
							28.8	6.11	95.7	1.75	34.46	8.19	7.5
						1.00	28.7	6.09	95.5	1.78	34.47	8.19	7.6
13:40	CC13	ME	0	0	8.97	4.49	28.6 28.5	6.06 6.05	94.8 94.4	1.93 2.00	34.47 34.47	8.19 8.19	7
						7.97	28.0 28.0	5.84 5.85	90.6 90.6	2.92 3.00	34.70 34.74	8.20 8.20	6.9 6.7
						1.00	28.2	6.31	98.0	1.90	34.32	8.10	3.9
12.16	CWILL	ME	0	0	4.33		28.2	6.28	97.5	1.90	34.32	8.11	3.7
13:15	SWI1	ME	0	0	4.55		28.2	5.58	86.6	3.64	34.37	8.12	6.9
						3.33	28.1	5.53	85.7	4.69	34.40	8.12	6.7
						1.00	28.0 28.0	5.88 5.76	91.0 89.2	2.79 2.78	34.61 34.62	8.19 8.19	6.6
13:28	C3	ME	0	0	15.32	7.66	28.0	5.79	89.7	2.53	34.72	8.20	7.8
						14.32	27.9 27.9	5.80 5.89	89.8 91.2	2.50 2.57	34.73 34.86	8.20 8.21	8.1
							27.9 28.2	5.89 5.91	91.2 91.7	2.65 2.48	34.86 34.33	8.21 8.13	9 8.1
						1.00	28.2	5.87	91.1	2.42	34.34	8.14	8.3
13:23	C4	ME	0	0	14.05	7.03	28.1 28.1	6.00 6.01	93.1 93.2	1.68	34.61 34.61	8.20 8.20	8.5
						13.05	28.0 28.0	5.95 5.94	92.2 92.0	1.78	34.73 34.73	8.21 8.21	9.5 9.6
						1.00	28.3	6.05	94.0	2.60	34.49	8.20	6.9
			-	_			28.2	6.04 5.96	93.8 92.5	2.63 3.20	34.50 34.53	8.20 8.19	7.1
13:43	11	ME	0	0	9.44	4.72	28.2 28.0	5.93 5.84	92.1 90.5	3.31 5.48	34.54 34.73	8.19 8.20	7.1
						8.44	28.0	5.83	90.5 90.4	5.48	34.73	8.20	11.2
							20.1	6.07	010	2.12	24.61	0.10	
						1.00	28.1 28.1	6.07 6.06	94.3 94.0	2.43 2.44	34.61 34.61	8.18 8.18	6.9 6.7
9:51	CC1	MF	0	0	10.3	5.15	28.0 28.0	5.94 5.92	92.1 91.8	2.43 2.46	34.65 34.66	8.18 8.19	6.7 7.2
						9.30	28.0	5.87	90.9	2.47	34.67	8.19	9.8
						1.00	28.0 28.1	5.86 5.88	90.7 91.2	2.45 2.30	34.68 34.44	8.19 8.17	9.5 5.3
							28.1 28.0	5.85 5.66	90.8 87.7	2.28 3.51	34.44 34.63	8.17 8.18	4.9
9:55	CC2	MF	0	0	12.74	6.37	28.0	5.66	87.7	3.58	34.63	8.18	8.1
						11.74	28.0	5.69 5.71	88.2 88.5	3.97 4.16	34.70 34.73	8.19 8.19	9.6 9.8
						1.00	28.3 28.3	5.85 5.89	90.9 91.4	1.61 1.66	34.32 34.35	8.17 8.17	4.6
10:10	CC3	MF	0	0	10.12	5.06	28.0	5.63	87.2	2.23	34.44	8.17	4.7
10.10	005		0	Ū	10.12		28.0 28.0	5.66 5.18	87.7 80.2	2.22 3.15	34.43 34.47	8.17 8.17	5 4.6
						9.12	28.0	4.93	76.3	4.05	34.49	8.17	5.1
9:40	CC4	MF	0	0	2.28	1.14	28.1 28.1	5.84 5.82	90.5 90.2	1.48	34.17 34.17	8.17 8.17	7 6.7
							20.1	5.62	90.2	1.55	54.17	0.17	0.7
						1.00	28.3	5.83	90.5	2.13	34.46	8.18	5.2
							28.2 28.1	5.80 5.72	90.2 88.6	2.10 2.39	34.46 34.49	8.18 8.18	5.4 5.1
9:59	CC13	MF	0	0	8.84	4.42	28.0	5.71	88.5	2.37	34.49	8.18	5
						7.84	28.0 28.0	5.69 5.67	88.1 87.8	3.20 3.55	34.54 34.57	8.18 8.18	4.2
						1.00	28.2	5.97	92.5	1.45	34.12	8.09	4.5
9:30	SWI1	MF	0	0	4.03		28.2	5.93	92.0	1.55	34.16	8.10	4.8
2.30	3 11	1411,	U	U	+.03		28.2	5.83	90.4	1.81	34.22	8.12	5.7
						3.03	28.2	5.79	89.8	1.94	34.23	8.13	5.9
						1.00	28.1 28.1	6.15 6.13	95.5 95.2	1.76	34.58 34.59	8.16 8.16	5.3
9:47	C3	MF	0	0	16.27	8.14	28.0 28.0	6.02 6.01	93.3 93.2	2.00 2.08	34.70 34.74	8.17	4.6
						15.27	27.9	5.98	92.7	3.66	34.89	8.18 8.20	6
							27.9 28.2	5.98 5.94	92.6 92.2	4.02 1.98	34.89 34.50	8.20 8.17	6.1 6
						1.00	28.2	5.92	91.8	1.93	34.50	8.17	5.6
9:43	C4	MF	0	0	15.6	7.80	28.0 28.0	5.88 5.89	91.1 91.2	2.23 2.27	34.68 34.72	8.18 8.18	5.4 5.2
						14.60	27.8	5.96	92.3	3.70	35.03	8.21	7.2
							27.8 28.2	5.96 5.99	92.4 93.0	3.91 1.89	35.05 34.41	8.21 8.18	7.3
						1.00	28.2	5.97	92.7	1.90	34.41	8.18	6.8
10:02	11	MF	0	0	9.25	4.63	28.2 28.1	5.86 5.85	90.9 90.7	2.05 2.08	34.43 34.43	8.18 8.18	8
	1				1	8.25	28.1 28.1	5.57 5.54	86.3 85.9	2.17 2.19	34.48 34.49	8.17 8.17	8.9 9.1

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

> Remarks: MF - Middle Flood tide ME - Middle Ebb tide

ampling Date:	4-Oct-19												
		771 1	Co-or	dinates	Water	Sampling	Temp	DO Conc	DO	Turbidity	Salinity	pН	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	°.	mg/L	Saturation %	NTU	ppt	unit	mg/I
						1.00	28.5 28.5	5.99 5.95	92.8 92.1	1.82 1.82	34.26 34.29	8.07 8.07	5.8 5.7
15:14	CC1	ME	0	0	10.1	5.05	28.1	5.84	91.1	2.70	34.55	8.08	4.5
10.11			0	Ű	10.1		28.1 28.0	5.82 5.49	90.8 85.0	2.78 3.07	34.57 34.64	8.08 8.08	4.7
						9.10	28.0 28.8	5.48 6.11	84.9 95.7	3.14 1.37	34.66 34.17	8.08 8.08	4.9 3.4
						1.00	28.8	6.10	95.4	1.36	34.17	8.08	3.1
15:18	CC2	ME	0	0	11.87	5.94	28.0 28.0	5.67 5.66	87.8 87.6	2.08 2.11	34.65 34.66	8.1 8.1	3.1 2.8
						10.87	27.9 27.9	5.56	86.1 85.8	3.40 3.70	34.76 34.78	8.1 8.1	3.3
						1.00	28.9	5.54 6.45	100.9	1.26	33.80	8.09	3.5 3.2
			_	_			28.8 28.4	6.43 5.50	100.5 85.6	1.30 2.35	33.85 34.13	8.09 8.09	3 3.8
15:27	CC3	ME	0	0	9.94	4.97	28.3	5.44	84.5	2.83	34.23	8.09	4.2
						8.94	28.1 28.0	5.34 5.33	82.8 82.5	5.11 5.95	34.51 34.59	8.09 8.08	5.2 5
15:04	CC4	ME	0	0	2.17	1.09	28.3 28.3	5.87	91.7 91.6	2.74	34.30 34.30	8.04	6.8
							28.3	5.87	91.6	2.79	34.30	8.05	6.9
							28.8	6.07	95.0	1.38	34.09	8.08	3.5
						1.00	28.8	6.07	95.0	1.41	34.09	8.08	4
15:22	CC13	ME	0	0	8.61	4.31	28.7 28.6	6.07 6.06	94.7 94.5	1.55	34.17 34.20	8.08 8.08	5.4 5.1
						7.61	28.2 28.1	5.68 5.67	88.2 88.0	2.00 2.08	34.48 34.57	8.09 8.09	5.4 5.2
						1.00	28.8	6.19	96.8	1.47	34.12	7.79	2.1
14.50	0117-	ME					28.8	6.17	96.5	1.44	34.12	7.82	2.5
14:59	SWI1	ME	0	0	4.44		29 F	5 77	90.1	1.72	34.11	7.89	4.6
						3.44	28.6 28.6	5.77 5.75	89.7	1.76	34.12	7.90	4.6
						1.00	28.6 28.6	5.75 5.73	89.7 89.4	1.30 1.34	34.07 34.09	8.05 8.05	3.1
15:10	C3	ME	0	0	15.23	7.62	28.1	5.66	87.8	1.84	34.51	8.07	4
							28.1 27.9	5.66 5.57	87.8 86.3	1.81 4.67	34.55 34.84	8.07 8.09	4.3
						14.23	27.9 28.9	5.55 6.11	85.9 95.7	5.24 1.27	34.88 33.95	8.09 8.04	6.2 3.1
						1.00	28.9	5.92	92.8	1.21	33.93	8.04	3.4
15:06	C4	ME	0	0	14.56	7.28	28.4 28.3	5.79 5.77	90.1 89.8	1.54	34.23 34.28	8.05 8.06	3.7
						13.56	28.0	5.49	85.0	4.01	34.81	8.07	3.5
						1.00	27.9 28.8	5.49 6.62	85.0 103.5	4.80 1.43	34.97 34.00	8.08 8.11	3.7
							28.7 28.1	6.62 5.77	103.4 89.4	1.44 1.94	34.01 34.26	8.11 8.10	2.8
15:25	11	ME	0	0	10.45	5.23	28.1	5.74	88.9	2.03	34.28	8.10	3
						9.45	28.0 28.0	5.39 5.38	83.5 83.4	2.36 2.41	34.57 34.65	8.09 8.09	3.7
						1.00	28.6 28.5	6.1 6.02	95.0 93.9	1.68	34.13 34.14	8.03 8.03	4.3
11:23	CC1	MF	0	0	8.74	4.37	28.4	5.93 5.94	92.3 92.5	2.36 2.33	34.32 34.31	8.05	3.9
						7.74	28.5 28.2	5.38	83.5	3.23	34.41	8.05 8.06	3.6 4.1
							28.2 28.5	5.37 6.05	83.3 94.3	3.44	34.44 34.14	8.06 8.06	4.3
						1.00	28.5 28.0	6.02 5.57	93.7 86.3	1.59	34.15	8.06	2.6
11:27	CC2	MF	0	0	12.7	6.35	28.0	5.57	86.3	2.55 2.65	34.58 34.62	8.06 8.06	3
						11.70	27.9 27.9	5.56 5.56	86.2 86.0	4.25 4.71	34.79 34.82	8.07 8.08	5.2
						1.00	28.7	6.19	96.7	1.46	34.03	8.08	2.8
11:36	CC3	MF	0	0	9.75	4.88	28.7 28.4	6.20 5.82	96.8 90.6	1.46	34.02 34.11	8.08 8.08	2.7
11.50	ces	WII.	0	0	9.15		28.4 28.1	5.81 5.20	90.3 80.6	1.78 3.67	34.13 34.34	8.08 8.07	3
						8.75	28.1	4.93	76.4	4.43	34.34	8.07	3.4
11:13	CC4	MF	0	0	2.58	1.29	28.5 28.4	5.86 5.85	91.2 90.9	2.16	33.92 33.94	7.83	2.9
							28.4	5.85	90.9	2.18	33.94	7.83	2.7
							28.5	6.06	94.3	1.83	34.08	8.07	2.8
						1.00	28.3	5.86	90.9	2.00	34.19	8.07	2.8
11:31	CC13	MF	0	0	8.19	4.10	28.2 28.2	5.50 5.47	85.4 84.8	2.36 2.53	34.24 34.28	8.07 8.07	2.9 3.2
						7.19	28.0 28.0	5.51 5.53	85.4 85.7	3.17 3.29	34.58 34.65	8.07 8.07	4.2
						1.00	28.3	5.80	90.0	2.65	34.06	7.38	2.3
10.59	CN/11	ME	0	0	3.80		28.3	5.79	89.7	2.79	34.07	7.42	2.4
10:58	SWI1	MF	0	0	3.89		28.1	5.34	82.6	4.03	34.25	7.61	5.1
						2.89	28.1	5.32	82.6	4.02	34.29	7.62	5.3
						1.00	28.6 28.6	5.90 5.87	92.0 91.5	1.45 1.44	33.95 33.96	8.01 8.01	2.2
11:20	C3	MF	0	0	15.8	7.90	28.2	5.65	87.8	1.64	34.33	8.01	3
						14.80	28.1 28.0	5.65 5.61	87.5 86.9	1.67 3.14	34.40 34.68	8.02 8.04	2.5
							28.0 28.8	5.60 5.62	86.7 87.8	3.59 1.38	34.73 33.91	8.04 7.92	4.4
						1.00	28.8	5.61	87.6	1.39	33.91	7.92	3.8
11:16	C4	MF	0	0	15.5	7.75	28.0 28.0	5.69 5.68	88.1 88.1	2.20 2.20	34.70 34.69	8.04 8.04	4.4
						14.50	27.9	5.62	87.1	3.47	34.94	8.05	6.1
						1.00	27.8 28.4	5.60 5.91	86.7 92.0	4.14 1.93	35.01 34.15	8.05 8.08	5.8 3.4
							28.4 28.2	5.82 5.70	90.5 88.4	1.83 2.31	34.19 34.28	8.07 8.07	3.1 4.2
11:33	I1	MF	0	0	10.15	5.08	28.2	5.65	87.7	2.52	34.31	8.07	3.9
	1					9.15	28.0 28.0	5.32 5.32	82.4 82.4	5.04 5.50	34.53 34.59	8.07 8.07	5.1 5.3

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

Remarks: MF - Middle Flood tide ME - Middle Ebb tide

Sampling Date:	8-Oct-19												
Data / These	Landing	TLL.*	Co-ore	linates	Water	Sampling	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	r	mg/L	Saturation %	NTU	ppt	unit	mg/I
						1.00	28.1 28.1	7.19 7.19	111.3 111.4	0.81 0.80	34.36 34.36	8.19 8.19	3 3.4
9:21	CC1	ME	0	0	9.13	4.57	27.8	7.37	113.8	0.95	34.51	8.2	4.7
			-				27.8 27.7	7.36 6.46	113.6 99.7	1.04 2.66	34.51 34.59	8.2 8.19	4.6
						8.13	27.7 27.9	6.49 7.23	100.0	2.74	34.60 34.43	8.19 8.2	5.6 3.6
						1.00	27.9	7.26	112.1	1.15	34.46	8.2	3.7
9:25	CC2	ME	0	0	12.02	6.01	27.8 27.7	6.77 6.77	104.5	1.60	34.61 34.63	8.2 8.2	5.1
						11.02	27.8	5.55	85.7	4.16	34.71	8.18	5.6
						1.00	27.8 28.1	5.42 6.06	83.7 93.8	4.88 1.57	34.73 34.23	8.18 8.12	5.5
							28.1 27.9	6.08 5.89	94.2 91.1	1.59 3.13	34.24 34.66	8.13 8.14	6.3 6.2
9:42	CC3	ME	0	0	9.06	4.53	27.9	5.90	91.4	3.14	34.66	8.14	5.8
						8.06	27.9 27.9	5.69 5.65	88.6 87.8	5.78 6.13	34.73 34.73	8.12 8.12	6.7 6.9
9:10	CC4	ME	0	0	2.23	1.12	28.0	6.47	100.1	2.73	34.34	8.12	2.7
							28.0	6.25	96.6	2.71	34.34	8.12	2.6
							28.0	6.96	107.6	1.33	34.36	8.19	3.4
						1.00	28.0	6.98	108.0	1.27	34.37	8.19	3.3
9:29	CC13	ME	0	0	7.98	3.99	27.8 27.8	6.82 6.88	105.2 106.1	1.55 1.41	34.64 34.63	8.19 8.20	3.3 3.2
						6.98	27.8	6.46 6.49	99.7 100.1	2.58 2.46	34.67 34.67	8.19	4.1 4.2
						1.00	27.7 28.3	7.02	109.2	1.09	34.55	8.18 8.18	4.2
			_	-		1.00	28.4	7.01	109.2	1.22	34.52	8.17	5
9:02	SWI1	ME	0	0	4.25		20.0	6.00	011	2.24	24.64	0.15	
						3.25	28.0 27.9	6.08 6.13	94.1 94.9	2.26 2.56	34.64 34.65	8.15 8.14	7.4
						1.00	28.0 28.0	6.39 6.39	98.9 98.8	0.92 0.94	34.37 34.37	8.14 8.14	3.1
9:17	C3	ME	0	0	14.58	7.29	27.7	5.92	91.3	1.81	34.59	8.13	3.6
			-				27.7 27.7	5.91 5.86	91.1 90.4	1.85 2.93	34.59 34.66	8.13 8.13	3.8
						13.58	27.7 27.9	5.86 6.43	90.4 99.3	2.88 0.91	34.68 34.24	8.13 8.14	4.4
						1.00	27.9	6.40	98.8	0.94	34.24	8.13	3.6
9:13	C4	ME	0	0	13.85	6.93	27.7 27.7	5.80 5.79	89.4 89.2	2.11 2.14	34.53 34.53	8.12 8.12	4.3
						12.85	27.7	5.79	89.2	2.60	34.54	8.12	3.6
						1.00	27.7 28.0	5.79 6.10	89.3 94.3	2.65 2.83	34.55 34.52	8.12 8.16	3.8
							28.0 27.8	6.09 5.91	94.2 91.3	2.86 3.08	34.52 34.67	8.15 8.15	3.6
9:31	11	ME	0	0	9.2	4.60	27.8	5.90	91.2	3.12	34.67	8.15	3.7
						8.20	27.8 27.8	5.61 5.61	86.6 86.7	3.67 3.93	34.69 34.70	8.15 8.15	3.9 4.3
						1.00	28.1 28.1	7.16 7.18	110.9 111.2	0.83	34.36 34.36	8.19 8.19	3.2
15:01	CC1	MF	0	0	9.18	4.59	27.8	7.41 7.39	114.4	0.91 0.92	34.49 34.50	8.20	3.6 3.8
						8.18	27.8 27.8	6.53	114.1 100.7	2.31	34.56	8.20 8.20	5
							27.7 27.9	6.48 7.15	100.0 110.4	2.54 1.05	34.58 34.33	8.19 8.20	5.4
						1.00	27.9	7.19	111.1	1.09	34.34	8.20	3.1
15:05	CC2	MF	0	0	11.91	5.96	27.8 27.8	6.84 6.8	105.6 104.9	1.51 1.59	34.58 34.60	8.21 8.21	4.4
						10.91	27.7 27.7	5.94 5.85	91.6 90.3	2.80 3.30	34.68 34.69	8.19 8.19	5.1
						1.00	28.1	6.01	93.0	1.54	34.19	8.12	2.8
15:24	CC3	MF	0	0	8.96	4.48	28.1 28.0	6.03 5.89	93.5 91.2	1.55 2.18	34.23 34.42	8.12 8.13	3.1 4.1
13:24	ces	MF	0	0	8.90		27.9 27.9	5.86 5.44	90.6 84.7	3.02 4.65	34.65 34.70	8.13 8.13	3.9 3.9
						7.96	27.9	5.46	84.8	5.10	34.70	8.13	3.9
14:50	CC4	MF	0	0	2.26	1.13	28.0 27.9	6.24 6.24	96.5 96.5	2.74 2.65	34.34 34.33	8.12 8.12	4.9
							21.9	0.24	90.5	2.05	54.55	8.12	5.1
						1.00	28.0	6.90	106.7	1.43	34.33	8.19	4.9
						1.00	28.0	6.93	107.2	1.43	34.34	8.19	5.1
15:09	CC13	MF	0	0	7.99	4.00	27.9 27.9	7.03 6.74	108.8 104.1	1.30 1.34	34.48 34.51	8.19 8.19	4.7
						6.99	27.8 27.8	6.42 6.44	99.1 99.3	2.91 2.78	34.67 34.67	8.19 8.19	7.1
						1.00	28.3	7.03	109.4	1.19	34.57	8.17	5.9
14:45	SWI1	MF	0	0	4.22		28.2	7.05	109.7	1.17	34.59	8.17	6.2
17.73	5,411	1411	0	0	7.22		27.8	6.15	95.0	2.93	34.67	8.14	5.8
						3.22	27.8	6.40	98.9	2.87	34.67	8.14	6.3
						1.00	28.0 28.0	6.42 6.41	99.2 99.1	0.83 0.89	34.38 34.38	8.14 8.14	2.2
14:57	C3	MF	0	0	14.75	7.38	27.8 27.7	5.94 5.93	91.7 91.5	1.65	34.57 34.58	8.13 8.13	3.3
						13.75	27.7	5.87	90.5	4.23	34.63	8.13	4.2
							27.7 27.9	5.87 6.39	90.5 98.6	4.41 0.98	34.65 34.24	8.13 8.13	4.3
						1.00	27.9	6.38	98.6	0.98	34.23	8.13	2.4
14:53	C4	MF	0	0	13.85	6.93	27.7 27.7	5.78 5.78	89.0 89.0	2.32 2.31	34.53 34.53	8.12 8.12	3.6 3.8
						12.85	27.7 27.7	5.78	89.0	2.45 2.53	34.53	8.12 8.12	5.8
						1.00	28.0	5.78 6.14	89.1 95.0	2.70	34.54 34.51	8.16	5.6 5.1
							28.0 27.9	6.12 6.04	94.6 93.4	2.79 2.98	34.52 34.58	8.16 8.15	5.2 5.8
15:12	11	MF	0	0	9.33	4.67	27.8	5.94	91.8	3.10	34.66	8.15	5.7
	1	1	1		1	8.33	27.8 27.8	5.87 5.60	90.8 86.6	3.37 3.49	34.68 34.68	8.15 8.15	6

ampling Date:	10-Oct-19			1111	pace mal	er Quality I		-g result					
Date / Time		Tide*	Co-ore	linates	Water	Sampling	Тетр	DO Conc	DO Sotupotion	Turbidity	Salinity	pH	SS
Date / Time	Location	1 ide*	East	North	Depth m	Depth m	ĉ	mg/L	Saturation %	NTU	ppt	unit	mg/L
						1.00	27.7 27.7	6.89 6.89	106.2 106.3	0.85 0.92	34.63 34.65	8.19 8.19	5 4.2
11:06	CC1	ME	0	0	9.25	4.63	27.7	6.83	105.4	1.10	34.71	8.19	5
11.00			0	0	7.25		27.7 27.7	6.81 6.68	105.0	1.14	34.71 34.73	8.19 8.18	4.8 6.9
						8.25	27.7	6.66	102.6	1.47	34.73	8.18	7.8
						1.00	27.7 27.7	7.05 7.05	108.8 108.9	1.35 1.27	34.71 34.71	8.21 8.21	5.3 5.5
11:10	CC2	ME	0	0	11.84	5.92	27.7 27.7	6.70 6.66	103.3 102.7	1.36	34.72 34.73	8.2 8.2	7.1 6.4
						10.84	27.7	6.09	94.0	5.31	34.92	8.19	7.8
						1.00	27.7 27.9	6.07 5.83	93.7 90.0	5.95 1.33	34.93 34.48	8.18 8.10	7.5 6.9
						1.00	27.9 27.9	5.55 5.86	85.8 90.6	1.39 1.60	34.48 34.62	8.10 8.11	7.8 8
11:31	CC3	ME	0	0	9.36	4.68	27.8	5.83	90.0	1.73	34.65	8.11	7.5
						8.36	27.7 27.7	5.79 5.73	89.3 88.4	4.66 4.92	34.77 34.78	8.12 8.12	8.7 8.4
10:55	CC4	ME	0	0	2.42	1.21	27.8	6.35	98.1	2.15	34.79	8.16	7.3
10.55			0	0	2.12	1.21	27.8	6.35	98.1	2.27	34.79	8.16	8.4
							27.9	6.60	102.4	1.58	24.71	8.10	8.2
						1.00	27.8 27.8	6.69 6.71	103.4 103.6	1.64	34.71 34.72	8.19 8.19	8.7
11:14	CC13	ME	0	0	8.46	4.23	27.7 27.7	6.66 6.67	102.8	1.44	34.74 34.74	8.19 8.19	7.4
						7.46	27.7	6.61	101.8	1.49	34.75	8.19	7.8
						1.00	27.7 27.7	6.59 6.02	101.5 92.9	1.49 0.98	34.76 34.67	8.19 8.15	9.2 7
						1.00	27.7	6.02	92.9	1.00	34.68	8.15	7.8
10:49	SWI1	ME	0	0	4.51			1					
						3.51	27.7 27.7	6.04 6.04	93.1 93.2	1.13	34.70 34.70	8.15 8.15	9.3 8.4
						1.00	27.7	6.40	98.7 98.5	3.06	34.68	8.18	7.8
11:03	C3	ME	0	0	15.81	7.91	27.7 27.7	6.39 6.28	96.8	2.98 3.46	34.68 34.71	8.18 8.17	8.1 10.6
11.05	05	ML	0	0	15.01		27.7 27.7	6.26 6.15	96.4 94.9	3.61 5.13	34.72 34.85	8.17 8.17	9.7 11.6
						14.81	27.7	6.13	94.6	5.53	34.85	8.17	10.8
						1.00	27.7 27.7	6.43 6.40	99.1 98.7	2.02 2.06	34.67 34.69	8.17 8.17	6.7 5.9
10:58	C4	ME	0	0	16.11	8.06	27.7 27.7	6.33 6.32	97.7 97.5	2.18 2.28	34.76 34.77	8.17 8.17	7 6.8
						15.11	27.7	6.28	96.9	2.40	34.80	8.17	5.8
							27.7 27.8	6.28 6.30	96.8 97.2	2.49 1.35	34.80 34.36	8.17 8.16	6.6 13.2
						1.00	27.8	6.31	97.3 91.2	1.37	34.40	8.16	12
11:17	I1	ME	0	0	9.73	4.87	27.8 27.7	5.91 5.89	90.9	1.84 2.01	34.61 34.64	8.16 8.16	13.7 14
						8.73	27.7 27.7	5.88 5.88	90.8 90.8	3.27 3.91	34.77 34.80	8.16 8.16	13.3
					1		27.7		70.0		51.00		12.0
						1.00	28.2 28.2	7.45 7.49	115.8 116.5	1.12	34.66 34.67	8.22 8.22	5.6 6.5
15:48	CC1	MF	0	0	9.29	4.65	28.2	7.47	116.0	1.55	34.68	8.22	7.1
15.10			0	0	,,		28.2 28.1	7.45	115.7 115.0	1.59	34.68 34.68	8.22 8.22	6.2 6.7
						8.29	28.1	7.39	114.8 114.1	1.93 1.24	34.68 34.64	8.22	7
						1.00	28.1 28.1	7.35 7.37	114.4	1.28	34.64	8.22 8.22	8.3 7
15:52	CC2	MF	0	0	12	6.00	28.0 28.0	6.9 6.89	106.9 106.7	1.29	34.64 34.65	8.22 8.22	6.7 6
						11.00	27.8	6.31	97.4	2.29	34.73	8.21	8.2
							27.7 28.3	6.26 6.62	96.6 102.9	2.84 0.98	34.75 34.38	8.21 8.14	7.6
						1.00	28.3 27.9	6.65 5.66	103.4 87.5	0.97 2.66	34.39 34.71	8.14 8.16	4.6
15:59	CC3	MF	0	0	9.32	4.66	27.8	5.67	87.7	2.91	34.73	8.16	8.3
						8.32	27.7 27.7	5.73 5.73	88.4 88.5	4.27 4.66	34.80 34.81	8.16 8.16	9.2 8.4
15:39	CC4	MF	0	0	2.31	1.16	28.0	6.81	105.5	1.34	34.54	8.18	9.6
			-	-			28.0	6.81	105.4	1.35	34.54	8.18	8.8
							20.2	7.00	112.6	150	24.70	0.11	11.2
						1.00	28.3 28.3	7.29 7.28	113.5 113.4	1.56 1.56	34.70 34.70	8.21 8.21	11.3
15:55	CC13	MF	0	0	8.43	4.22	28.1 28.1	7.19 7.19	111.7 111.6	1.60 1.63	34.69 34.69	8.21 8.21	8.8 9.4
						7.43	27.9	7.17	111.0	1.47	34.68	8.22	7.7
							27.9 28.3	7.15 6.74	110.6 105.0	1.44 2.10	34.69 34.56	8.22 8.27	7.1
						1.00	28.2	6.77	105.2	2.17	34.68	8.27	8.6
15:34	SWI1	MF	0	0	3.93								
						2.93	28.0 27.9	6.10 6.05	94.6 93.7	2.70 2.82	34.73 34.75	8.26 8.25	8.8 9.5
						1.00	27.9	6.73	104.0	1.27	34.56	8.19	8.3
16.46		ME		0	16.10		27.9 27.7	6.73 6.28	104.0 96.9	1.39 2.37	34.57 34.65	8.19 8.17	8.3 6.8
15:45	C3	MF	0	0	15.12	7.56	27.7	6.27	96.7	2.48	34.66	8.17	6.5
						14.12	27.7 27.7	6.14 6.12	94.7 94.4	4.59 4.14	34.81 34.82	8.17 8.17	7.1 6.3
						1.00	27.8 27.8	6.65 6.63	102.6	1.46 1.48	34.52 34.53	8.18 8.18	6.3 5.8
15:41	C4	MF	0	0	15.21	7.61	27.7	6.19	95.3	2.35	34.60	8.17	6.3
		-	-				27.7 27.7	6.18 6.19	95.2 95.4	2.35 5.14	34.61 34.77	8.17 8.16	6.5 7
						14.21	27.7	6.19	95.4	5.94	34.79	8.17	6.4
						1.00	27.9	6.96	107.6 108.2	1.70	34.51	8.18	8.1 8.8
						1.00	28.0	7.00	106.2	1.70	34.51	8.19	0.0
15:58	11	MF	0	0	9.07	4.54	28.0 27.8 27.8	6.80 6.77	108.2 105.1 104.6	1.78	34.64 34.65	8.19 8.19 8.19	7.7

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

> Remarks: MF - Middle Flood tide ME - Middle Ebb tide

ampling Date:	12-Oct-19												
Date / Time	Location	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	The	East	North	m	m	ŗ	mg/L	%	NTU	ppt	unit	mg/L
						1.00	28.0 28.0	6.01 5.98	93.2 92.7	1.77	34.61 34.61	8.12 8.12	4
12:23	CC1	ME	0	0	7.62	3.81	28.0	5.96	92.4	1.89	34.63	8.12	4.5
			-	-			28.0 28.0	5.96 5.97	92.4 92.5	1.86 1.68	34.63 34.64	8.12 8.13	5.3 4.9
						6.62	28.0 28.1	5.99 6.42	92.8 99.6	1.55	34.67 34.58	8.13 8.15	4.1
						1.00	28.1	5.97	92.2	1.18	34.47	8.1	2.9
12:27	CC2	ME	0	0	12.13	6.07	28.0 28.0	6.08 6.08	94.3 94.1	1.76	34.62 34.65	8.15	3.3
						11.13	27.8	5.98	92.5	3.76	34.76	8.14	3
						1.00	27.8 28.0	5.93 6.03	91.6 93.3	4.67	34.81 34.55	8.14 8.13	2.5 2.3
							28.0 28.0	6.03 5.14	93.3 79.6	1.56 3.42	34.51 34.54	8.13 8.13	2.7
12:41	CC3	ME	0	0	9.67	4.84	27.9	5.05	78.1	4.45	34.59	8.12	2.1
						8.67	27.8 27.9	5.50 5.51	85.0 85.3	5.26 5.33	34.80 34.66	8.11 8.11	2.8 2.4
12:11	CC4	ME	0	0	2.25	1.13	27.8	6.05	93.4	2.16	34.66	8.12	3.6
							27.8	6.00	92.6	2.22	34.67	8.12	4.5
							28.2	6.29	97.7	1.46	34.51	8.14	2.7
						1.00	28.1	6.28	97.5	1.43	34.53	8.14	2.6
12:31	CC13	ME	0	0	8.06	4.03	28.0 27.9	6.19 6.14	95.8 94.9	1.72	34.62 34.66	8.14 8.14	3.1
						7.06	27.8	6.04 6.03	93.3 93.1	1.65	34.72 34.73	8.14 8.14	3.2 3.5
						1.00	28.3	6.04	94.0	0.62	34.41	8.13	2.2
						1.00	28.3	6.03	93.8	0.63	34.41	8.12	2.1
12:03	SWI1	ME	0	0	4.33		20.4		07.0	2.12	24.51		
						3.33	28.1 28.0	5.61 5.61	87.0 86.9	2.43 2.98	34.51 34.54	8.11 8.11	2.8 2.5
						1.00	27.9 27.9	5.83 5.82	90.0 89.9	3.02 3.02	34.50 34.50	8.11 8.11	5.4 5.3
12:19	C3	ME	0	0	14.51	7.26	27.8	5.78	89.2	3.25	34.69	8.11	5.1
			-				27.7 27.7	5.78 5.82	89.2 89.9	3.24 2.89	34.74 34.81	8.12 8.13	5.7 5.4
						13.51	27.7 27.8	5.84 5.87	90.2 90.7	2.70 2.37	34.82 34.55	8.13 8.12	5 3.4
						1.00	27.8	5.86	90.5	2.33	34.56	8.12	4.4
12:15	C4	ME	0	0	13.89	6.95	27.8 27.8	5.83 5.83	89.9 90.0	2.52 2.42	34.65 34.67	8.12 8.12	4.5
						12.89	27.8	5.84	90.1	2.24	34.68	8.13	4.6
						1.00	27.8 28.3	5.84 6.47	90.1 100.6	2.35	34.68 34.49	8.13 8.16	4 2.1
							28.2 28.0	6.45 5.89	100.3 91.3	1.14	34.49 34.61	8.15 8.15	2.7
12:34	11	ME	0	0	10.13	5.07	27.9	5.88	91.0	1.96	34.64	8.15	2.9
						9.13	27.8 27.8	5.78 5.76	89.3 89.0	4.64 5.77	34.82 34.87	8.14 8.14	5 5.5
						1.00	27.7 28.4	5.79 6.36	89.3 99.1	1.29	34.94 34.62	8.14 8.11	2.8 2.3
16:48	CC1	MF	0	0	7.45	3.73	28.3	6.31	98.2	1.30	34.65	8.12	2.9
						6.45	28.0 28.0	6.24 6.21	96.8 96.2	1.36 2.15	34.66 34.66	8.13 8.13	2.4
							28.1 27.8	7.39 5.84	114.8 90.2	1.93 1.38	34.68 34.74	8.22 8.14	3.5 2.5
						1.00	27.7	6.6	101.8	1.46	34.88	8.16	2.4
16:51	CC2	MF	0	0	9.52	4.76	28.2 28.0	6.46 6.07	100.2 94.1	1.94 2.04	34.54 34.61	8.15 8.15	2.4
						8.52	28.0 27.9	6.07 5.78	94.0 89.3	3.43 4.32	34.62 34.72	8.15 8.14	2.5
						1.00	27.8	6.02	93.1	0.88	34.76	8.15	1.6
17.02		105		0			28.4 28.4	5.98 6.00	92.8 93.1	0.89 1.45	33.77 33.99	8.10 8.11	2
17:02	CC3	MF	0	0	7.6	3.80	28.2	5.66	88.0	1.84	34.39	8.11	2.2
						6.60	28.1 27.8	5.53 5.49	85.7 84.9	5.11 5.68	34.49 34.76	8.11 8.12	2.9
16:40	CC4	MF	0	0	2.18	1.09	28.2	6.43	99.9	1.60	34.52	8.09	3.3
							28.1	6.27	97.4	2.09	34.59	8.10	4.1
							27.8	5.72	88.5	1.38	34.76	8.14	3.4
						1.00	28.3	6.57	102.2	1.35	34.53	8.15	2.8
16:56	CC13	MF	0	0	6.66	3.33	28.3 27.9	6.56 6.19	102.0 95.8	1.68	34.52 34.62	8.15 8.15	3.5 4.3
						5.66	27.9	6.18	95.6	1.96	34.63	8.15	2.9
						1.00	27.9 28.4	6.06 6.03	93.7 93.9	1.95 0.66	34.68 34.37	8.14 8.09	3.5 1.9
			_	_		1.00	28.4	6.04	94.1	0.65	34.38	8.09	1.8
16:35	SWI1	MF	0	0	4.16		00.5	6.75	00.5	1.01		6.15	
						3.16	28.2 28.1	5.72 5.70	88.9 88.4	1.96 2.69	34.46 34.50	8.10 8.10	2.2 2.5
						1.00	28.0 28.0	5.81 5.75	89.9 88.9	2.28 2.34	34.27 34.31	8.09 8.09	5.2 4.6
16:47	C3	MF	0	0	11.73	5.87	28.0	5.75	88.9	2.57	34.31	8.09	4.2
10.77	0	1411	0	0	11./.3		27.8 27.8	5.74 5.75	88.7 88.8	2.64 4.38	34.54 34.57	8.11 8.11	4.4
						10.73	27.7	5.80	89.5	4.93	34.94	8.13	4.5
						1.00	28.1 27.9	6.24 5.82	96.7 89.9	2.21 2.62	34.62 34.47	8.11 8.10	4.1 4.8
16:40	C4	MF	0	0	15.34	7.67	27.8	5.79	89.3 89.3	2.97 2.99	34.62	8.11	3.3
						14.34	27.8	5.80	89.5	3.20	34.64 34.67	8.11 8.12	4
							27.8 27.9	5.80 6.04	89.5 93.4	3.30 0.98	34.68 34.69	8.12 8.14	3.5 1.7
						1.00	28.4	6.67	104.0	1.00	34.46	8.16	1.6
16:59	11	MF	0	0	7.25	3.63							

ampling Date:	14-Oct-19												
		T14-*	Co-ore	linates	Water	Sampling	Temp	DO Conc	DO	Turbidity	Salinity	рН	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	ະ	mg/L	Saturation %	NTU	ppt	unit	mg/L
						1.00	27.7	6.13	93.8	1.52	33.55	8.13	2.6
13:32	CC1	ME	0	0	9.13	4.57	27.7 27.7	6.11 5.77	93.5 88.6	1.48 1.62	33.54 34.00	8.13 8.12	3.1
15.52	cer	ML	Ū	0	2.15		27.7	5.76 5.59	88.5 86.1	1.69 2.96	34.19 34.71	8.12 8.12	3 3.3
						8.13	27.7	5.58	86.1	3.03	34.71	8.12	2.7
						1.00	27.7 27.7	6.06 6.04	93.1 92.7	1.56 1.57	33.84 33.85	8.12 8.12	2.3 2.2
13:36	CC2	ME	0	0	11.86	5.93	27.7 27.7	5.76 5.74	88.7 88.4	1.54 1.54	34.61 34.62	8.12 8.12	2.3 2.4
						10.86	27.7	5.53	85.3	3.88	34.74	8.12	3
							27.7 28.0	5.50 5.86	84.8 90.0	3.60 1.65	34.76 33.02	8.12 8.10	3 3.2
						1.00	28.0	5.86	90.0	1.67	32.95	8.10	3.5
13:57	CC3	ME	0	0	9.85	4.93	27.8 27.8	5.54 5.55	85.6 85.8	1.56 1.58	34.63 34.64	8.10 8.10	3.9 3.5
						8.85	27.8 27.8	5.41 5.39	83.6 83.3	2.01 1.95	34.70 34.72	8.09 8.09	3.7 3.9
							2110					0105	
13:22	CC4	ME	0	0	2.25	1.12	27.9	5.78	89.2	1.57	34.15	8.11	2.9
13:22	004	ME	0	0	2.25	1.13	27.9	5.77	89.0	1.58	34.18	8.11	2.2
						1.00	27.8 27.8	6.14 6.11	94.4 94.0	1.59 1.68	33.98 33.92	8.12 8.12	4.2
13:40	CC13	ME	0	0	8.35	4.18	27.7 27.7	5.88	90.6 90.5	1.46 1.44	34.33 34.34	8.12 8.13	3.9 4.6
						7.35	27.7	5.88 5.78	89.1	1.34	34.56	8.13	4.9
							27.7 27.8	5.77 5.70	88.9 88.0	1.34 1.39	34.58 34.37	8.13 8.14	4.5
						1.00	27.8	5.75	88.7	1.34	34.33	8.13	3.8
13:06	SWI1	ME	0	0	4.54								
						3.54	27.8 27.8	5.52 5.47	85.1 84.3	1.68 1.91	34.37 34.41	8.12 8.12	4.3
						1.00	27.7	5.54	85.4	3.17	34.37	8.11	5.4
12.20					14.00		27.7 27.7	5.53 5.53	85.3 85.2	3.16 3.60	34.38 34.67	8.11 8.11	4.9
13:29	C3	ME	0	0	16.02	8.01	27.7	5.53	85.3	3.64	34.68	8.11	5.3
						15.02	27.7 27.7	5.57 5.57	85.8 85.9	3.86 3.80	34.73 34.73	8.12 8.12	7.2
						1.00	27.7 27.7	5.98 5.95	91.5 91.1	1.82 1.85	33.38 33.41	8.12 8.12	2.9
13:25	C4	ME	0	0	12.15	6.08	27.7	5.58	85.9	2.34	34.27	8.10	3.2
				-			27.7 27.7	5.58 5.55	85.9 85.4	2.38 3.05	34.27 34.42	8.10 8.10	4.1 5.1
						11.15	27.7	5.54	85.4	3.27	34.47	8.10	5.7
						1.00	27.9 27.9	5.83 5.81	89.5 89.4	2.12 2.02	33.47 33.53	8.11 8.11	3.1
13:55	I1	ME	0	0	10.23	5.12	27.9 27.8	5.73 5.65	88.4 87.3	1.64 1.46	34.11 34.66	8.10 8.10	3.7
						9.23	27.8	5.56	85.9	3.05	34.73	8.10	4.8
							27.8	5.54	85.5	3.00	34.74	8.11	5
						1.00	27.7	5.91	91.1	2.85	34.67	8.12	3.5
0.20					10.07		27.7 27.7	5.88 5.82	90.6 89.7	2.77 2.86	34.67 34.72	8.12 8.12	3.1
8:30	CC1	MF	0	0	10.06	5.03	27.7	5.82	89.7	2.88	34.72	8.12	3.5
						9.06	27.7 27.7	5.61 5.61	86.4 86.4	3.17 3.18	34.73 34.74	8.12 8.12	3.2
						1.00	27.6 27.6	6.06 6.01	92.9 92.1	1.52	33.79 33.88	8.12 8.12	2
8:34	CC2	MF	0	0	12.32	6.16	27.7	5.84	89.8	1.57	34.39	8.12	2.3
						11.32	27.7 27.7	5.81 5.47	89.4 84.4	1.58 2.41	34.46 34.64	8.12 8.12	2.5
				-			27.7	5.46	84.2	2.82	34.67	8.12	3
						1.00	27.9	5.56	85.1	1.45	33.12	8.09	2.0
8:54	CC3	MF	0	0	9.48	4.74	27.8 27.8	5.57 5.58	85.9 86.1	1.34	34.19 34.39	8.09 8.09	3.4
						8.48	27.8	5.35	82.7	3.48	34.73	8.09	3.7 3.3
							27.8	5.36	82.8	3.66	34.73	8.08	3.3
							27.8	5.79	89.3	3.01	34.64	8.11	5.3
8:21	CC4	MF	0	0	2.22	1.11	27.8	5.77	89.1	3.07	34.64	8.11	4.7
						1.00	27.7 27.8	6.06 6.02	93.2 92.7	1.67 1.62	34.23 34.24	8.13 8.13	2.3 2.7
8:37	CC13	MF	0	0	8.57	4.29	27.8	5.82	89.7	1.54	34.39	8.13	2.7
				-			27.8 27.7	5.79 5.73	89.2 88.3	1.51 1.60	34.45 34.59	8.12 8.12	2.9
						7.57	27.7	5.73	88.2	1.62	34.60	8.12	3.2
						1.00	27.7 27.7	5.55 5.54	85.0 84.9	1.12 1.14	33.57 33.76	8.15 8.15	3 2.6
8:04	SWI1	MF	0	0	4.52								
						3.52	27.7	5.55	85.2	1.21	34.09	8.14	3.4
							27.7 27.8	5.55 5.60	85.4 86.1	1.26 2.04	34.20 34.07	8.13 8.11	3.7
						1.00	27.8 27.7	5.58 5.60	85.8	2.09 2.30	34.18 34.57	8.11	3.8
8:28	C3	MF	0	0	15.86	7.93	27.7	5.62	86.3 86.5	2.26	34.58	8.11 8.11	3.8 3.6
						14.86	27.7 27.7	5.67 5.67	87.3 87.4	2.54 2.64	34.69 34.70	8.12 8.12	3.1
						1.00	27.4	5.97	90.7	1.53	32.81	8.13	3.8
				-	15.45		27.4 27.7	5.99 5.78	90.8 89.1	1.54 1.43	32.64 34.62	8.13 8.12	3.1 3.9
8:24	C4	MF	0	0	15.45	7.73	27.7	5.77	88.9	1.44	34.63	8.12	3.8
						14.45	27.6 27.6	5.71 5.71	88.1 88.1	3.15 3.22	34.80 34.80	8.13 8.13	3.8 4.2
						1.00	27.7	5.91	90.6	1.70	33.60	8.13	3.4
8:52	11	MF	0	0	9.1		27.7 27.8	5.86 5.41	89.9 83.5	1.66 2.07	33.62 34.42	8.13 8.11	4.1
0.32	11	IVII'	U	U	9.1	4.55	27.8	5.39	83.2	2.23 3.58	34.60 34.77	8.11	4.8
	1		I	[1	8.10	27.7 27.7	5.29 5.28	81.7 81.5	3.58	34.77	8.10 8.10	6.3 6.8

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

> Remarks: MF - Middle Flood tide ME - Middle Ebb tide

Sampling Date:	16-Oct-19												
			Co-ord	linates	Water	Sampling	Temp	DO Conc	DO	Turbidity	Salinity	pН	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	°C	mg/L	Saturation %	NTU	ppt	unit	mg/L
			Lust	1101 11		1.00	27.2	6.33	96.8	2.80	34.56	8.14	4.8
12.20	001	ME	0	0	8.02		27.3 27.3	6.28 6.08	96.0 93.0	2.90 3.17	34.56 34.58	8.14 8.14	4.9 5.1
12:28	CC1	ME	0	0	8.92	4.46	27.3 27.3	6.07 6.06	92.9 92.7	2.98 3.05	34.58 34.59	8.14	4.7
						7.92	27.3	6.06	92.7	3.12	34.59	8.14	4.8
						1.00	27.3 27.3	6.24 6.19	95.4 94.7	1.93 1.87	34.39 34.39	8.15 8.15 8.15 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.10 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.13 8.13 8.13 8.14 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.16 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13	3.2
12:32	CC2	ME	0	0	11.04	5.52	27.3	6.05	92.5	1.89	34.43	8.14 8.14 8.14 8.15 8.15 8.15 8.14 8.14 8.14 8.14 8.14 8.14 8.10 8.10 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.13 8.13 8.13 8.13 8.13 8.13 8.14 8.14 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.10 8.10 8.110 8.10 8.12 </td <td>3.1</td>	3.1
						10.04	27.3 27.2	6.02 6.00	92.2 91.8	2.00 3.39	34.47 34.59		3.8 3.1
							27.2 27.4	6.00 5.99	91.7 91.8	3.35 2.18	34.61 34.20		3.4
						1.00	27.5	5.92	90.7	2.14	34.21	8.10	2.7
12:53	CC3	ME	0	0	10.2	5.10	27.3 27.3	5.74 5.75	87.9 87.9	2.54 2.55	34.44 34.44	8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.10 8.11 8.11 8.11 8.11 8.11 8.11 8.13 8.13 8.13 8.13 8.14 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.16 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.14 8.15 8.12 8.13 8.14 8.15	3.3 3.6
						9.20	27.3 27.3	5.48 5.43	83.9 83.0	3.15 3.11	34.45 34.46		5.1 5.6
							21.3	5.45	85.0	3.11	34.40	8.11	5.0
12.10	684	1.05		0	2.25	1.10	27.3	5.99	91.6	2.64	34.56	8.14	5.9
12:19	CC4	ME	0	0	2.35	1.18	27.3	5.96	91.2	2.46	34.56		5.1
						1.00	27.3 27.3	5.82 5.82	89.1 89.0	3.48 3.43	34.38 34.38		5.1 5.3
12:36	CC13	ME	0	0	8.11	4.06	27.3	5.82	89.1	3.12	34.39	8.13	6.1
							27.3 27.2	5.84 5.96	89.3 91.1	2.93 2.48	34.40 34.55		6
						7.11	27.2	5.98	91.5	2.57	34.58	8.14	6.9
						1.00	27.5 27.4	6.26 6.20	96.0 95.1	1.76	34.44 34.44		2.5 2.2
12:03	SWI1	ME	0	0	4.91								
						3.91	27.4	6.01	92.0	2.01	34.46		3.5
							27.3 27.3	5.95 6.33	91.1 96.9	2.07 2.11	34.46 34.55		3.3 3.6
						1.00	27.3	6.30	96.5	2.07	34.55	8.14	3.9
12:25	C3	ME	0	0	12.55	6.28	27.3 27.3	6.15 6.13	94.1 93.8	2.27 2.35	34.61 34.62		3.8
						11.55	27.2 27.2	6.10 6.09	93.4 93.2	3.09 3.24	34.63 34.63	8.14 8.15 8.15 8.14 8.15 8.14 8.14 8.14 8.14 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.13 8.13 8.13 8.13 8.13 8.14 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.16 8.13 8.13 8.13 8.13 8.13 8.13 8.13	3.5
						1.00	27.2	6.23	95.4	3.58	34.65		3.6
							27.4 27.3	6.17 6.07	94.6 93.0	3.84 2.09	34.44 34.52	8.10 8.10 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.13 8.13 8.13 8.13 8.14 8.15 8.14 8.15 8.15 8.15 8.15 8.15 8.15 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.10 8.10 8.11 8.12 8.12 8.12 8.12	4
12:22	C4	ME	0	0	12.24	6.12	27.3	6.08	93.1	2.03	34.56		4.1
						11.24	27.2 27.2	6.24 6.25	95.6 95.7	3.40 3.49	34.69 34.69		4.4
						1.00	27.4	6.07	92.8	2.17	34.21	8.13	3.4
12:51		ME	0	0	10.42	-	27.4 27.4	6.01 5.76	92.0 88.3	2.17 2.42	34.25 34.42		2.9
12:51	I1	ME	0	0	10.42	5.21	27.4	5.73	87.8	2.50	34.44	8.12	2.6 3.1
						9.42	27.4 27.3	5.67 5.63	86.8 86.2	3.71 3.59	34.46 34.47		3.1
						1.00	27.2 27.2	6.26 6.23	95.6 95.1	2.25 2.27	34.39 34.39		3.4 3.8
8:43	CC1	MF	0	0	8.54	4.27	27.3	6.06	92.6	2.51	34.43	8.13	3.6
						7.54	27.3 27.2	6.01 5.95	91.8 91.0	2.65 3.39	34.46 34.53		3.8 3.8
							27.2 27.3	5.95 6.32	91.0 96.5	3.41 1.83	34.54 34.37		3.5 3.3
						1.00	27.3	6.25	95.5	1.84	34.38	8.12	2.8
8:47	CC2	MF	0	0	11.22	5.61	27.3 27.3	5.99 5.93	91.6 90.7	2.82 3.18	34.42 34.43		2.6 2.8
						10.22	27.2	5.95	91.0	3.32	34.58	8.10 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.11 8.13 8.13 8.13 8.13 8.13 8.14 8.14 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.16 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.13 8.14 8.15	3
						1.00	27.2 27.4	5.97 5.72	91.3 87.4	3.63 2.01	34.59 34.03		2.7
							27.4 27.3	5.69 5.63	86.9 86.1	2.00	34.03 34.38		3.2
9:08	CC3	MF	0	0	9.39	4.70	27.2	5.64	86.2	3.65 3.65	34.44	8.10	3.4
						8.39	27.2 27.2	5.63 5.61	86.0 85.8	3.84 3.14	34.45 34.46		2.9
							2112						
8.22	CC4	MF	0	0	2.01	1.01	27.3	6.28	96.1	2.82	34.51	8.17	4.1
8:33	CC4	ivir	0	0	2.01	1.01	27.3	6.20	94.9	2.89	34.51	8.16	3.6
						1.00	26.9 27.1	6.21 6.15	94.5 93.7	1.81 1.85	34.69 34.52		2.9
8:51	CC13	MF	0	0	8.28	4.14	27.3	5.94	90.8	2.31	34.41	8.12	2.2
							27.3 27.3	5.91 5.84	90.4 89.3	2.39 3.54	34.41 34.45		2.3
						7.28	27.3 27.3	5.83 6.02	89.1 92.2	3.88 2.07	34.47 34.46	8.12	3 2.4
						1.00	27.3	5.96	92.2	2.07	34.46 34.46		3.1
8:16	SWI1	MF	0	0	4.65								
						3.65	27.3	5.88	89.9	2.26	34.46		2.7
							27.3 27.3	5.85 6.06	89.4 92.8	2.30 2.53	34.46 34.50		3.3 2.5
						1.00	27.3	6.04	92.5 92.7	2.55 2.30	34.50	8.13	3.1
8:40	C3	MF	0	0	15.15	7.58	27.3 27.3	6.06 6.08	93.0	2.20	34.57 34.59	8.14	2.7
						14.15	27.2	6.14 6.15	93.8 94.1	2.87 3.29	34.64 34.65		3.2
						1.00	27.4	6.04	92.5	2.28	34.48	8.13	2.2
			_	_			27.4 27.3	6.02 6.07	92.2 92.9	2.25 2.48	34.48 34.57	8.13 8.13	2.3
8:36	C4	MF	0	0	14.91	7.46	27.3	6.10	93.3	2.56	34.59	8.14	2.9
						13.91	27.2 27.2	6.22 6.25	95.2 95.6	2.81 2.75	34.69 34.70	8.15 8.15	3.1 3.5
						1.00	27.2	6.00	91.5	2.30	34.33	8.12	2
9:05	11	MF	0	0	9.82	4.91	27.2 27.4	5.96 5.75	90.9 88.0	2.35 2.45	34.32 34.44	8.12 8.11	2.3 2.5
7.00	11	wir	U	0	7.64		27.4 27.4	5.78 5.72	88.3 87.5	2.33 2.55	34.43 34.46	8.11 8.11	2.7 2.6
	1					8.82	27.4	5.72	87.5	2.55	34.40	8.11	2.0

mpling Date:	19-Oct-19	1			Water	Sampling		1	DO				
Date / Time	Location	Tide*	Co-ord	linates	Depth	Depth	Temp	DO Conc	Saturation	Turbidity	Salinity	pH	SS
			East	North	m	m	27.2	mg/L 5.95	% 90.9	NTU 2.00	ppt 34.46	unit 8.38	mg/ 6.8
						1.00	27.2	5.95	90.8	2.13	34.46	8.38	7.3
13:14	CC1	ME	0	0	8.87	4.44	27.2 27.2	5.93 5.92	90.6 90.5	2.32 2.47	34.48 34.49	8.37 8.37	6.5 6.7
						7.87	27.2	5.91 6.06	90.3 92.7	2.87 3.12	34.55 34.59	8.37 8.14	6.5 6.2
						1.00	27.3	6.16	94.2	1.74	34.39	8.37	7.4
13:18	CC2	ME	0	0	12.24	6.12	27.2	6.11 5.90	93.6 90.2	1.76 2.97	34.40 34.53	8.37 8.37	6.6 9.1
15.10	002	ML	0	0	12.24		27.2 27.4	5.87 6.26	89.7 95.9	3.31 5.58	34.55 34.39	8.38 8.37	9.9 9.7
						11.24	27.4 27.2	6.23 6.00	95.4 91.6	6.47 1.68	34.40 34.31	8.37 8.38	9.5 6.1
						1.00	27.2	5.99	91.4	1.73	34.35	8.37	5.5
13:37	CC3	ME	0	0	9.75	4.88	27.2 27.2	5.16 5.08	78.8 77.7	3.56 3.58	34.62 34.66	8.37 8.36	7
						8.75	27.2 27.2	5.02 5.05	76.7 77.3	4.32 4.83	34.65 34.65	8.35 8.34	8.4 7.5
							27.2	5.05	11.5	1.05	51.05	0.51	7.5
13:04	CC4	ME	0	0	2.67	1.34	27.4	6.06	92.9	2.02	34.39	8.36	9.7
15.04	004	ML	0	0	2.07	1.54	27.4	6.04	92.5	2.03	34.39	8.36	10.
							27.2	5.84	89.2	1.48	34.56	8.37	5.2
						1.00	26.9	7.88	99.1	1.03	0.57	8.00	5.2
13:21	CC13	ME	0	0	8.3	4.15	27.2 27.3	6.16 6.08	94.0 92.9	2.99 2.71	34.30 34.30	8.37 8.37	6.8 5.6
						7.30	27.2 27.2	5.99 5.98	91.5 91.3	2.86 2.80	34.37 34.37	8.36 8.37	8.9 9.6
						1.00	27.3	6.23	95.3	1.89	34.41	8.33	7
12:58	SWI1	ME	0	0	4.81		27.3	6.17	94.4	1.97	34.41	8.33	7.5
12:38	3W11	ML	0	0	4.61		27.3	6.12	93.6	2.03	34.41	8.34	6.0
						3.81	27.3	6.10	93.3	1.99	34.41	8.35	6.
						1.00	27.3 27.3	6.08 6.07	93.1 93.0	1.93 1.94	34.53 34.53	8.38 8.38	9 9.5
13:10	C3	ME	0	0	8.4	4.20	27.2	6.05 6.05	92.5 92.5	1.95 1.99	34.59 34.63	8.38 8.38	10.
						7.40	27.2	6.07	92.8	3.40	34.74	8.39	11.
						1.00	27.2 27.4	6.06 6.06	92.5 92.9	3.11 1.82	34.46 34.48	8.39 8.37	11. 11.
			_	_			27.4 27.2	6.05 6.04	92.8 92.3	1.84 1.92	34.49 34.57	8.37 8.38	10. 10.
13:07	07 C4 ME 0 0	0	15.1	7.55	27.2	6.04	92.4	1.92	34.59	8.38	10.		
						14.10	27.2 27.2	6.06 6.07	92.7 92.8	2.71 3.27	34.70 34.73	8.38 8.39	11.
						1.00	27.2 27.1	5.95 5.94	90.8 90.7	1.80 1.84	34.39 34.40	8.37 8.37	7.
13:26	I1	ME	0	0	9.77	4.89	27.1	5.65 5.59	86.2	3.11	34.49	8.37	6.
						8.77	27.2 27.4	6.06	85.3 92.7	3.98 3.58	34.54 34.09	8.37 8.38	7.3
							27.4	6.05	92.5	3.57	34.11	8.38	10
						1.00	27.2	6.11	93.2	1.70	34.39	8.38	5.9
10:20	CC1	MF	0	0	8.48	4.24	27.2 27.2	6.08 6.05	92.9 92.3	1.70 1.77	34.39 34.39	8.38 8.38	5.
10.20	cer	MI	0	0 0	8.48		27.2 27.1	6.04 6.01	92.1 91.6	1.83 1.91	34.40 34.42	8.38 8.38	7.0
						7.48	27.1	5.99	91.4	2.02	34.42	8.37	7.1
						1.00	27.2	6 6	91.5 91.5	1.78 1.79	34.33 34.32	8.37 8.37	5.
10:24	CC2	MF	0	0	12.58	6.29	27.2	5.94 5.92	90.7 90.3	2.12 2.16	34.43 34.46	8.38 8.38	6. 6.
						11.58	27.2	5.86	89.4	2.70	34.52	8.38	7.0
						1.00	27.2 27.3	5.84 5.79	89.2 88.5	3.14	34.56 34.29	8.38 8.37	7. 4.
			_	_			27.3 27.2	5.74 5.76	87.8 88.1	1.80 2.34	34.35 34.55	8.37 8.37	4.
10:38	CC3	MF	0	0	9.56	4.78	27.2	5.73	87.6	2.48	34.58	8.37	6.
						8.56	27.2 27.2	5.60 5.55	85.6 84.8	3.62 4.19	34.63 34.65	8.37 8.37	7. 6.
10:09	CC4	MF	0	0	2.46	1.23	27.2	6.00 5.95	91.5 90.9	2.03	34.35	8.33	6.
							21.2	5.95	90.9	2.01	34.35	8.33	6.
							27.2	6.11	93.3	2.26	34.37	8.38	7.
						1.00	27.2	6.05	92.3	2.09	34.35	8.38	6.
10:27	CC13	MF	0	0	8.98	4.49	27.2 27.2	5.90 5.88	90.1 89.8	2.30 2.24	34.43 34.44	8.37 8.37	9.1 9.1
						7.98	27.2	5.88 5.87	89.7 89.6	2.21 2.20	34.44 34.45	8.37 8.37	9. 10
						1.00	27.1 27.1	6.00	91.4 91.4	2.03	34.42 34.41	8.19 8.19	7.
9:59	SWI1	MF	0	0	4.66		27.1	6.00	91.4	2.03	54.41	6.19	6.
	2		v	v		24	27.1	5.94	90.6	2.19	34.44	8.25	6.
						3.66	27.1	5.94	90.6	2.13	34.44	8.25	7
						1.00	27.2 27.2	6.03 6.00	92.1 91.7	2.17 2.16	34.51 34.52	8.37 8.37	6. 6.
10:16	C3	MF	0	0	14.18	7.09	27.2 27.2	6.04 6.05	92.4 92.5	4.06 4.27	34.77 34.77	8.38 8.38	7.
						13.18	27.2	6.02	92.2 92.1	6.49	34.77	8.39	7.
						1.00	27.2	6.02 5.97	91.3	6.82 1.95	34.77 34.46	8.39 8.36	6.
10.1-			_	-			27.2 27.2	5.97 5.97	91.2 91.1	1.93 2.03	34.46 34.54	8.36 8.36	6. 7.
10:12	C4	MF	0	0	13.43	6.72	27.2	5.98	91.3	2.09	34.58	8.36	8.
						12.43	27.1 27.1	6.11 6.12	93.4 93.6	3.64 3.58	34.79 34.79	8.38 8.39	8.
						1.00	27.1 27.1	5.99 5.94	91.2 90.4	1.75 1.74	34.18 34.21	8.37 8.37	7 6.
10:31	11	MF	0	0	9.6	4.80	27.1	5.90	89.8	1.87	34.37	8.37	7.
	1		-				27.1 27.1	5.90 5.90	89.8 90.0	1.90 2.07	34.40 34.51	8.37 8.38	7.8
						8.60							

Sampling Date:	21-Oct-19)						g Result						
			Co-or	linates	Water	Sampling	Temp	DO Conc	DO	Turbidity	Salinity	pН	SS	
Date / Time	Location	Tide*	East	North	Depth m	Depth m	ື	mg/L	Saturation %	NTU	ppt		mg/L	
						1.00	27.2 27.2	6.37 6.33	97.3 96.6	1.16 1.20	34.36 34.37	8.36	4.6	
8:31	CC1	ME	0	0	9.02	4.51	27.2	6.20	94.6	1.35	34.41	8.36	5.9	
						8.02	27.2 27.2	6.17 6.14	94.3 93.7	1.39 1.44	34.42 34.45	8.35	5.3 8	
							27.2 27.2	6.11 6.13	93.2 93.6	1.49 1.60	34.47 34.39	8.35 8.34	7.4 5.2	
						1.00	27.2	6.10	93.2	1.62	34.40	8.36 8.36 8.35 8.35 8.35 8.34 8.34 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.36 8.37 8.38 8.39 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.35 8.35 8.36 8.37 8.36 8.37 8.37 8.37 8.37 8.37 8.36 8.37 8.37 8.37 8.37	4.2	
8:35	CC2	ME	0	0	11.87	5.94	27.1 27.0	6.07 6.07	92.5 92.5	1.60 1.65	34.46 34.47		5.4 5.6	
						10.87	27.0 27.0	5.80 5.79	88.4 88.3	2.89 2.74	34.57	8.35	5.7 6.1	
						1.00	27.4	6.21	95.1	1.35	34.32	8.34 8.34 8.34 8.34 8.34 8.34 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.36 8.37 8.38 8.32 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.36 8.37 8.37 8.37 8.37	11.5	
0.54							27.4 27.3	6.16 5.55	94.3 85.0	1.34 2.06		8.35 8.35 8.36 8.35 8.36 8.37 8.37 8.37 8.36 8.35 8.37 8.37 8.35 8.37 8.36 8.37 8.37 8.37 8.39 8.37 8.39 8.37 8.37 8.37 8.36 8.36 8.37 8.37 8.36 8.36 8.36 8.36 8.37 8.37 8.36 8.36 8.36 8.36 8.37 8.37 8.36 8.36 8.36 8.36 8.37 8.37 8.37 8.37 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.37 8.36 8.36 8.36 8.36 8.37 8.37 8.36 <td>11.8</td>	11.8	
8:56	CC3	ME	0	0	9.28	4.64	27.3	5.52	84.4	2.31	34.56	8.35	11.6	
						8.28	27.2 27.2	5.49 5.50	84.0 84.0	2.38 2.59	34.61	8.35 8.35 8.35 8.35 8.36 8.36 8.35 8.36 8.36 8.36 8.35 8.36 8.35 8.35 8.35 8.35 8.35 8.35 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.35 8.35 8.35 8.35 8.36 8.34 8.35 8.35 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.36 <td>13.6 12.8</td>	13.6 12.8	
8:20	CC4	ME	0	0	2.01	1.01	27.1 27.1	5.89 5.88	89.8 89.6	2.64 2.66	34.48		9.4 8.9	
							27.1	5.88	89.0	2.00	34.48	8.32	8.9	
							27.2	6.09	93.0	1.50	34.41	8.34	8.9	
						1.00	27.2	6.08	92.8	1.49	34.40	8.34	8.1	
8:39	CC13	ME	0	0	8.64	4.32	27.2 27.2	6.03 6.03	92.2 92.1	1.47 1.48	34.40 34.41		10.3 10.5	
						7.64	27.1 27.1	6.05 6.06	92.3 92.4	1.57 1.57	34.44	8.35 8.35 8.35 8.34 8.34 8.34 8.35 8.35 8.36 8.36 8.37 8.36 8.38 8.37 8.39 8.35 8.34 8.35 8.35 8.35 8.36 8.35 8.37 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.35 8.35 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.37 8.37 8.37 8.36 8.36 8.36 8.36 8.36 <td>10.5 10.8</td>	10.5 10.8	
						1.00	27.6	6.17	94.9	1.34	34.41		7.5	
8.02	SWI1	ME	0	0	4.56		27.6	6.13	94.1	1.32	34.41	8.27	7.1	
8:03	5W11	ME	0	0	4.56		27.4	6.09	93.4	1.44	3/1 30	8 29	6.1	
						3.56	27.3	6.11	93.5	1.61	34.39	8.29	6.7	
						1.00	27.2 27.2	6.02 5.99	91.8 91.5	1.54 1.62			8.8 8.1	
8:28	C3	ME	0	0	14.79	7.40	27.0	5.93	90.4	1.55	34.53	8.34	11	
						13.79	27.0 27.0	5.93 5.89	90.4 89.7	1.56 2.57	34.75	8.35 8.34 8.34 8.34 8.34 8.34 8.35 8.35 8.36 8.35 8.37 8.36 8.38 8.35 8.34 8.35 8.35 8.35 8.36 8.35 8.37 8.32 8.38 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.35 8.35 8.35 8.34 8.35 8.35 8.35 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 <td>10.7 13.1</td>	10.7 13.1	
							27.0 27.2	5.88 6.20	89.6 94.7	2.98 1.47	34.77		13.8 7.7	
						1.00	27.2	6.18	94.3	1.46	34.43	8.34	7.9	
8:24	C4	ME	0	0	15.5	7.75	27.0 27.0	6.08 6.07	92.6 92.4	1.46 1.40		8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.34 8.34 8.34 8.34 8.34 8.34 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 <td>9.5 8.6</td>	9.5 8.6	
						14.50	26.9 26.9	6.01 6.02	91.5 91.6	2.67 2.99	34.78		9.4 10.3	
						1.00	27.4	6.05	92.5	1.47	34.29	8.34	7.9	
8:54			0	0			27.4 27.1	6.00 5.90	91.9 90.1	1.45 1.78			8.2 9.2	
	11	ME	0	0	9.43	4.72	27.2	5.93	90.5	1.85	34.50	8.35	8.8	
						8.43	27.1 27.1	5.92 5.88	90.4 89.7	1.89 2.03	34.52 34.55		11.7	
							25.2	6.40	00.1	1.20	24.49	0.00		
							1.00	27.3 27.3	6.48 6.45	99.1 98.7	1.30 1.34	34.40 34.41		7.9 7.4
15:27	CC1	MF	0	0	8.42	4.21	27.2 27.2	6.08 6.08	92.9 92.8	1.60 1.70	34.46	8.36 8.36 8.36 8.35 8.35 8.35 8.34 8.32 8.35 8.34 8.32 8.32 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.35 8.35 8.34 8.34 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.36 8.36 8.37 8.37 8.37 8.37 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.37 8.37 8.37 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.37 <td>9.6 10.2</td>	9.6 10.2	
						7.42	27.1	5.96	90.9	2.10	34.52		11.9	
							27.1 27.2	5.96 6.33	90.8 96.7	2.08 1.62	34.52 34.42		12.5	
						1.00	27.3 27.1	6.3 5.92	96.2 90.3	1.57 2.49	34.41		5.8 6.4	
15:31	CC2	MF	0	0	12.78	6.39	27.0	5.91	90.1	2.84	34.56	8,36 8,36 8,36 8,35 8,35 8,35 8,35 8,35 8,34 8,35 8,37 8,36	6.6	
						11.78	27.0 26.9	5.88 5.86	89.6 89.3	2.17 2.56			8.7 9.6	
						1.00	27.6 27.6	6.18 6.18	94.9 95.0	1.19 1.22	34.24	8.36	5.5	
15:51	CC3	MF	0	0	9.69	4.85	27.3	6.09	93.2	1.49	34.42	8.36	6.3 6.9	
10.01	005		0	0	,,		27.3 27.2	6.09 5.36	93.2 82.0	1.49 2.10	34.57 8.35 34.57 8.35 34.52 8.36 34.32 8.36 34.32 8.36 34.32 8.36 34.32 8.36 34.48 8.32 34.61 8.35 34.62 8.34 34.48 8.32 34.48 8.32 34.41 8.34 34.41 8.34 34.41 8.34 34.41 8.34 34.41 8.34 34.41 8.34 34.41 8.34 34.41 8.34 34.41 8.34 34.41 8.27 34.43 8.34 34.44 8.34 34.45 8.34 34.45 8.35 34.45 8.34 34.45 8.34 34.45 8.35 34.46 8.34 34.47 8.35 34.48 8.36 </td <td>6.8 6.7</td>	6.8 6.7		
						8.69	27.2	5.35	81.8	2.23		8,35 8,36 8,36 8,35 8,35 8,35 8,35 8,35 8,35 8,35 8,35	6	
15:18	CC4	MF	0	0	2.24	1.12	27.0 27.0	6.00 5.97	91.4 90.9	2.19 2.19			9.8 10.4	
							27.0		70.7	2.17		3.50	10.4	
						1.00	27.2	6.26	95.5	1.48	34.40	8.37	7.1	
						1.00	27.2 27.1	6.23 6.12	95.2 93.4	1.42	34.40	8.37	6.4 6.9	
15:34	CC13	MF	0	0	8.44	4.22	27.1	6.11	93.2	1.54 1.61	34.46	8.36	6.8	
						7.44	27.1 27.1	6.03 5.97	92.0 91.0	2.21 2.15			8.6 8.7	
						1.00	27.4	6.38	97.6	1.44	34.34	8.38	6.3	
15:01	SWI1	MF	0	0	4.59		27.3	6.36	97.3	1.55	54.56	8.58	6.9	
15.01	5 11	1411,	0	0	4.37		27.3	6.33	96.7	1.57	34.38	8 38	7.2	
						3.59	27.2	6.30	96.2	1.64	34.38	8.38	6.5	
						1.00	27.2 27.2	6.27 6.25	95.8 95.4	1.26			6.2 6.5	
15:24	C3	MF	0	0	15.02	7.51	27.1	6.18	94.3	1.30	34.50	8.37	7.1	
						14.02	27.1 27.0	6.15 6.04	93.9 92.0	1.29 2.66	34.68	8.37	7.9 7.6	
							27.0 27.1	5.99 6.16	91.3 93.9	2.47 1.88	34.74	8.37	8.4 6.1	
						1.00	27.1	6.11	93.3	1.90	34.45	8.36	5.8	
15:20	C4	MF	0	0	15.82	7.91	27.0 27.0	6.09 6.10	92.8 93.0	2.07 2.21			8.4 8.2	
						14.82	26.9 26.9	6.08	92.6 92.2	2.61	34.82	8.37	8.9 9.7	
						1.00	27.5	6.06 6.21	95.3	1.50	34.30	8.36	5.4	
			_	-			27.5 27.3	6.17 5.86	94.6 89.7	1.53 1.55	34.32 34.41	8.36 8.36	4.9 7.7	
15:49	11	MF	0	0	9.53	4.77	27.2	5.84	89.2	1.55	34.44	8.36	7.1	
						8.53	27.1 27.1	5.77 5.76	88.1 87.9	2.16 2.31	34.55 34.58	8.36 8.36	8.4 7.8	

inping Date	: 23-Oct-19	,			***	la -		1					
Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit v	Salinity	pН	SS
			East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
						1.00	26.6 26.6	6.28 6.24	94.9 94.4	1.08 1.09	34.54 34.55	8.39 8.38	3.9 3
8:21	:21 CC1 ME	0	0	10.77	5.39	26.6 26.6	6.11 6.08	92.4 92.1	1.13 1.16	34.60 34.61	8.37 8.37	4.7	
						9.77	26.7	6.01 5.98	91.0 90.7	1.35	34.69 34.72	8.36	4.2
						1.00	26.8	6.09	92.4	1.26	34.51	8.37	4
			_	_			26.8	6.04 6.00	91.7 91.0	1.24	34.51 34.60		3.2
8:26	CC2	ME	0 0	0	11.23	5.62	26.7 26.8	6.01 6.01	91.1 91.3	1.14 1.20	34.63 34.77	8.36	6 9.4
						10.23	26.8	6.00	91.2	1.21	34.80	8.36 8.37 8.36 8.37 8.36 8.37 8.36 8.37 8.34 8.33 8.34 8.33 8.34 8.33 8.34 8.33 8.34 8.33 8.34 8.35 8.35 8.35 8.35 8.35 8.35 8.36 8.35 8.36 8.35 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37	8.8
						1.00	26.9 26.9	5.83 5.82	88.6 88.6	1.05	34.50 34.50	8.37 8.37 8.37 8.37 8.34 8.34 8.33 8.33 8.34 8.33 8.33 8.33 8.34 8.33 8.33 8.33 8.34 8.33 8.35 8.35 8.36 8.35 8.35 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 <td>4.2</td>	4.2
8:40	CC3	ME	0	0	8.78	4.39	26.9 26.9	5.66	86.1 86.1	1.32	34.68 34.66	8.34 8.34 8.33 8.33 8.33 8.33 8.34 8.35 8.36 8.37 8.36 8.37 8.36 8.37 8.36 8.37 8.36 8.36 8.37 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37	7.8
						7.78	26.8	5.67 5.14	78.2	3.96	34.76	8.34	9.6
							26.8	5.11	77.8	4.95	34.79	8.34	9
8:11	CC4	ME	0	0	2.14	1.07	26.8 26.8	6.46 6.42	98.1 97.4	1.63 1.70	34.62 34.63		6.5 5.8
												8 3.38 8 3.37 8.37 8.36 8.37 8.36 8.37 8.36 8.37 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.33 8.33 8.34 8.33 8.34 8.33 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37	
						1.00	26.7 26.7	6.00 5.98	90.8 90.6	0.96	34.45 34.46		4.3
8:29	CC13	ME	0	0	8.56	4.28	26.7 26.7	6.07 6.08	92.0 92.2	1.03 1.07	34.64 34.64		4.9
						7.56	26.7	6.04	91.7	1.43	34.71	8.36	8.4
						1.00	26.8 26.7	6.01 5.93	91.3 89.9	1.54 1.53	34.74 34.61	8.35	7.6
						1.00	26.7	5.91	89.5	1.50	34.62	8.35	5.7
8:01	SWI1	ME	0	0	4.23		26.6	5.05	00.6	1.40	24.62	0.04	
						3.23	26.6 26.6	5.85 5.83	88.6 88.3	1.49 1.57	34.63 34.63	8.36 8.37 8.36 8.37 8.36 8.37 8.36 8.37 8.34 8.33 8.34 8.35 8.35 8.35 8.36 8.37 8.38 8.39 8.36 8.37 8.36 8.36 8.36 8.36 8.37 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37	6.2 6
						1.00	26.8 26.8	6.05 6.05	92.0 92.0	1.38 1.38	34.77 34.78		5.6
8:18	C3	ME	0	0	15.26	7.63	26.8	6.02	91.4	1.50	34.79	8.36	5.2
						14.26	26.8 26.8	6.01 5.99	91.4 91.1	1.51 3.65	34.79 34.91	8.6 8.37 8.37 8.37 8.37 8.37 8.36 8.37 8.36 8.37 8.37 8.34 8.33 8.33 8.34 8.33 8.35 8.35 8.36 8.35 8.37 8.34 8.33 8.34 8.33 8.35 8.35 8.35 8.36 8.35 8.36 8.35 8.36 8.35 8.36 8.35 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 <td>5.6</td>	5.6
							26.8 26.7	5.97 6.04	90.8 91.6	4.58 1.71	34.94 34.48		6.9
						1.00	26.7	6.01	91.2	1.70	34.49	8.36	6.4
8:14	C4	ME	0	0	15.78	7.89	26.7 26.7	5.94 5.94	90.2 90.1	1.74 1.73	34.68 34.71	8.33 8.33 8.33 8.34 8.34 8.34 8.35 8.35 8.36 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.36 8.35 8.37 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.35 <td>6.1 5.7</td>	6.1 5.7
						14.78	26.8 26.8	5.89 5.83	89.5 89.6	2.76	34.85 34.74		8.4
						1.00	26.8	5.53	83.6	0.99	33.60	8.34	5.3
8:32	11	ME	0	0	10.09	5.05	26.8 26.9	5.56 5.63	84.1 85.5	1.03 1.29	33.91 34.53		5.8
6.32	11	NIE	0	0	10.09		26.9 26.9	5.64 5.66	85.8 86.1	1.43 2.17	34.60 34.76		4.5
						9.09	26.9	5.64	85.9	2.59	34.79		3.3
							26.9	6.24	95.0	1.28	34.57	8.37	4.5
						1.00	27.0	6.22	94.6	1.31	34.57	8.37	4.9
14:03	CC1	MF	0	0 0	9.93	4.97	26.9 26.9	6.15 6.15	93.5 93.4	1.24	34.60 34.61		5.6
						8.93	26.8 26.8	6.15 6.16	93.5 93.5	1.24	34.63 34.64		7.6
						1.00	26.8	6.14	93.3 93.3	1.08	34.40	8.37	4.4
14:07	CC2	MF	0	0	12.27	6.14	26.8 26.8	6.15 6.17	93.7	1.05	34.45 34.62	8.36 8.36 8.37 8.37 8.33 8.33 8.34 8.34 8.33 8.33 8.34 8.34 8.34 8.34 8.35 8.35 8.36 8.35 8.35 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37	5.1
11.07	002		0	0	12.27		26.7 26.7	6.18 6.14	93.7 93.2	1.19 1.49	34.64 34.69		5.9
						11.27	26.7	6.11	92.8	1.71	34.71	0.05	5.7
						1.00	27.1 27.1	6.04	92.1 91.7	0.80	34.47	8.35	5.2
14:25	CC3	MF	0	0	9.65	4.83	27.0 26.9	5.69 5.61	86.6 85.4	1.19 1.40	34.62 34.67		6 5.7
						8.65	26.9 26.9	5.51 5.46	83.8 83.0	5.82 5.71	34.78 34.81	8.37 8.37 8.37 8.37 8.36 8.37 8.37 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.33 8.33 8.34 8.33 8.33 8.34 8.33 8.33 8.33 8.33 8.35 8.35 8.36 8.35 8.36 8.35 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 <td>7.8</td>	7.8
							26.0	6.33	0.6.0	2.20	24.52	0.00	
13:54	CC4	MF	0	0	2.22	1.11	26.9 26.9	6.30	96.3 95.7	2.30 2.39	34.52 34.52		8.6 9.1
	┥					1.00	26.8	6.10	92.5	1.18	34.47	8.36	6.7
						1.00	26.8 26.8	6.09 6.09	92.5 92.4	1.15	34.46 34.57	8.36	6.4 7.3
14:10	CC13	MF	0	0	8.92	4.46	26.8	6.09	92.4	1.19	34.60	8.36	7.2
						7.92	26.7 26.7	6.06 6.05	92.0 91.8	1.43 1.47	34.71 34.73		11.
						1.00	26.8 26.8	5.97 5.94	90.7 90.3	1.66 1.76	34.67 34.69	8.40	7.8
13:48	SWI1	MF	0	0	4.13		20.0	5.74		1.1.0	2 1.07	5.57	, , , , , , , , , , , , , , , , , , ,
						3.13	26.8	5.91	89.8	1.89	34.70		8.2
	┥						26.8 26.9	5.89 6.14	89.5 93.4	2.01 1.42	34.71 34.60		7.0
						1.00	26.9 26.8	6.13 5.94	93.3 90.2	1.45	34.60 34.68	8.37 8.34 8.34 8.33 8.34 8.33 8.33 8.33 8.34 8.33 8.33 8.34 8.33 8.34 8.33 8.34 8.35 8.35 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37	8.5
14:00	C3	MF	0	0	14.64	7.32	26.8	5.91	89.7	1.59	34.69	8.35	7.6
						13.64	26.8 26.8	5.83 5.83	88.6 88.6	3.16 3.19	34.82 34.82		6.6
-						1.00	26.9 26.9	6.02 6.00	91.4 91.2	1.47	34.54 34.54	8.35	4.3
13:57	C4	MF	0	0	14.98	7.49	26.7	5.81	88.2	1.70	34.63	8.35	7
			v	Ŭ	1		26.7 26.8	5.81 5.88	88.1 89.5	1.67 6.25	34.63 34.95		7.5
	┥					13.98	26.8 27.0	5.89	89.6 91.3	6.84 1.42	34.96 34.43	8.36	8
						1.00	27.0	5.97	90.9	1.12	34.47	8.35	6.1
14:13	I1	MF	0	0	10.48	5.24	26.9 26.9	5.91 5.86	89.9 89.2	1.24 1.38	34.65 34.71	8.35 8.35	5.6 5.4
	1			1		9.48	26.8	5.54	84.3	2.86	34.80	8.35	5.5

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

impling Date	: 25-Oct-19					a		1		m • · · · ·			1
Date / Time	Location	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit v	Salinity	pН	SS
			East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
						1.00	26.5 26.5	6.54 6.53	98.9 98.7	1.16	34.77 34.78	8.24 8.24	2.8 3.3
10:18	CC1	ME	0	0	10.52	5.26	26.5 26.5	6.41 6.42	97.0 97.0	1.29 1.33	34.79 34.79	8.23 8.23	4.3
						9.52	26.5 26.5	6.41 6.40	96.9 96.8	1.36 1.35	34.80 34.80	8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.24 8.25 8.25 8.21 8.21 8.21 8.21 8.21 8.21 8.21 8.21 8.21 8.21 8.21 8.21 8.22 8.23 8.24 8.20 8.20 8.21 8.22 8.23 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.22 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23	5.7 4.8
						1.00	26.6	6.35	96.1	2.40	34.64	8.23	4
10.00							26.6	6.34 6.31	95.9 95.3	1.14 0.91	34.66 34.83		3.8
10:22	CC2	ME	0	0	11.75	5.88	26.4 26.5	6.31 6.22	95.3 94.2	0.93 2.50	34.83 34.92		4.1
						10.75	26.5	6.20	93.8	2.96	34.94	8.25	5.9
						1.00	26.8	5.74 5.76	87.1 87.5	0.89 0.91	34.43 34.56		4
10:41	CC3	ME	0	0	9.15	4.58	26.7 26.7	6.17 6.16	93.7 93.4	1.02	34.78 34.80		4.4
						8.15	26.6	5.70	86.4	2.46	34.86 34.89	8.22	5.4
							20.0	5.00	85.8	3.32	34.89	8.22	3.9
10:07	CC4	ME	0	0	2.4	1.20	26.6 26.6	6.28 6.27	95.1 95.2	2.26 2.31	34.75 34.75		4 3.4
						1.00	26.6	6.25	94.7	1.37	34.69	8.23	4.4
							26.6 26.6	6.26 6.26	94.9 94.8	1.32 1.42	34.74 34.76		4.6
10:26	CC13	ME	0	0	8.49	4.25	26.6	6.26	94.9	1.40	34.77	8.24	4.2
						7.49	26.5 26.5	6.29 6.29	95.3 95.1	1.76 1.92	34.87 34.88	76 8.24 87 8.24 88 8.24 88 8.24 88 8.24 88 8.24 88 8.07 83 8.07 83 8.08 88 8.15 88 8.15 88 8.15 88 8.15 88 8.15 88 8.15 88 8.16 75 8.22 83 8.22 83 8.22 84 8.21 74 8.21 74 8.21 74 8.21 74 8.21 74 8.21 74 8.21 74 8.22 74 8.22 74 8.23 71 8.23 71 8.23 73 8.23 74 8.23 75	5.2 5.3
						1.00	26.6 26.6	6.14 6.14	93.1 93.0	1.38 1.41	34.83 34.83		2.9
10:01	SWI1	ME	0	0	4.1								
						3.10	26.6 26.6	6.15 6.13	93.2 92.9	1.51 1.50	34.88 34.88		4.9
						1.00	26.6 26.6	6.35 6.33	96.2 96.0	1.70 1.73	34.75 34.76	8.25 8.25 8.25 8.27 8.21 8.21 8.21 8.21 8.21 8.21 8.21 8.21 8.21 8.21 8.22 8.22 8.23 8.23 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.25 8.22 8.22 8.22 8.23 8.23 8.21 8.21 8.21 8.21 8.22 8.22 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 <td>3.5</td>	3.5
10.14	C3	ME	0	0	15.36	7.68	26.6	6.18	93.6	1.62	34.83	8.22	3.1
10.11	05		0	0	15.50		26.6 26.5	6.17 6.18	93.4 93.4	1.58 4.34	34.83 34.85		2.9
						14.36	26.5	6.18	93.5	3.09	34.85	8.23	4.4
						1.00	26.6 26.6	6.04 6.03	91.4 91.3	3.20 3.20	34.74 34.74	8.21	5.8
10:10	C4	ME	0	0	15.03	7.52	26.6 26.6	6.00 6.00	90.8 90.8	3.31 3.32	34.74 34.74		5.8
						14.03	26.6	5.98	90.6	3.68	34.74	8.21	7.2
							26.6 26.7	5.98 6.06	90.5 91.9	3.75 1.03	34.74 34.65	8.22	6.5
			_			1.00	26.7 26.7	6.04 6.01	91.6 91.2	1.10 1.41	34.67 34.74	8.22	2.7
10:29	I1	ME	0	0	9.07	4.54	26.7	6.02	91.3	1.61	34.78	8.22	4.1
						8.07	26.6 26.6	6.04 6.04	91.5 91.5	3.14 3.39	34.92 34.94		6.3
							26.8	6.42	97.5	1.30	34.71	8.23	4
						1.00	26.7	6.41	97.3	1.29	34.71	8.23	3.6
15:21	CC1	MF	0	0	9.91	4.96	26.7	6.37 6.36	96.5 96.4	1.32	34.74 34.75		4.1
						8.91	26.6 26.5	6.29 6.29	95.3 95.2	1.49 1.56	34.81 34.82	8.22 8.22 8.23 8.23 8.23 8.21 8.21 8.21 8.21 8.21 8.21 8.21 8.21 8.22 8.22 8.23	3.6
						1.00	26.6	6.21	94.2	2.51	34.78	8.23	4.7
15:25	CC2	MF	0	0	11.9	5.95	26.6 26.6	6.21 6.21	94.1 94.2	2.50	34.78 34.81		5.2 4.3
13.23	CC2	WIF	0	0	11.9	-	26.6 26.6	6.22 6.2	94.3 93.9	2.09 4.23	34.85 34.89		4.8
						10.90	26.5	6.18	93.6	4.46	34.90	8.20 8.23 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.21 8.22 8.22 8.21 8.21 8.21 8.21 8.21 8.21 8.22 8.23	4.1
						1.00	26.9	6.16 6.29	93.8 95.8	0.95	34.66 34.72		3.2
10:01 10:14 10:10 10:29 15:21 15:24 15:11 15:28	CC3	MF	0	0	9.51	4.76	26.8 26.7	5.95 5.92	90.4 90.0	1.45	34.80 34.83	8.23	4.4
						8.51	26.6 26.6	5.84 5.60	88.5 85.0	1.68 4.18 4.12	34.93 34.93	8 8.21 60 8.21 66 8.22 99 8.23 5 8.20 5 8.20 5 8.20 5 8.20 9 8.23 44 8.24 7 8.24 7 8.24 7 8.24 7 8.24 7 8.24 7 8.24 8 8.15 8 8.15 8 8.21 4 8.21 4 8.21 4 8.21 4 8.21 4 8.21 4 8.21 4 8.21 4 8.22 7 8.22 8 8.22 2 8.23 11 8.23 12 8.23 13 8.23 14 8.24 </td <td>6.4</td>	6.4
15:11	CC4	MF	0	0	2.47	1.24	26.7 26.7	6.30 6.25	95.5 94.7	2.33 2.34	34.67 34.67		6.6 6.2
	+						26.7	6.33	96.1	2.08	34.83	8.23	6.4
						1.00	26.7	6.32	95.8	2.03	34.81	8.23	6.1
15:28	CC13	MF	0	0	8.61	4.31	26.7 26.7	6.25 6.25	94.9 94.9	1.78 1.77	34.82 34.82	8.23	5.9
						7.61	26.6 26.6	6.22 6.22	94.4 94.2	2.78 3.11	34.86 34.88		4.6
						1.00	26.6 26.6	5.85	88.7 88.8	3.96	34.90 34.90	8.22	6.6
15:06	SWI1	MF	0	0	4.57		20.0	0.00	00.0	3.13		0.22	
						3.57	26.6	5.86	88.9	3.79 3.94	34.90	8.22	7.7
						1.00	26.6	5.88 6.25	89.2 94.8	2.16	34.91 34.75	8.23	7.3
15.17		ME		~	14.71		26.7 26.6	6.23 6.15	94.6 93.2	2.30 3.21	34.76 34.83	8.23	4.1
15:17	C3	MF	0	0	14.71	7.36	26.6 26.5	6.16 6.17	93.3 93.4	3.27 4.87	34.84 34.88	8.23	6.9
						13.71	26.5	6.17	93.4	5.08	34.88	8.24	6.7
						1.00	26.6 26.6	6.13 6.11	92.7 92.5	1.89 1.83	34.59 34.59		4.4
15:13	C4	MF	0	0	15.67	7.84	26.6	6.01	90.8	2.52	34.66	8.20	5.1
						14.67	26.5 26.5	5.99 5.95	90.6 90.0	2.70 4.00	34.68 34.71	8.21 8.21	5.2 5
	+						26.5 26.7	5.95 6.19	90.0 94.0	4.30 2.04	34.71 34.81	8.21 8.23	5.2
						1.00	26.7	6.16	93.6	2.03	34.80	8.23	6.7
15:32	I1	MF	0	0	9.53	4.77	26.7	6.11 6.11	92.8 92.8	2.07 2.10	34.82 34.83	8.23 8.23	6.1
					1	8.53	26.6 26.6	6.14 6.12	93.0 92.7	2.58 2.99	34.89 34.91	8.23 8.24	4.5

impling Date:	28-Oct-19)											
Date / Time	Location	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit v	Salinity	рН	SS
Date / Time	Location	1 ide*	East	North	m	m	ĉ	mg/L	Saturation %	NTU	ppt	unit	mg/I
						1.00	26.3 26.3	6.35 6.35	95.8 95.8	1.54 1.57	34.76 34.76	8.22 8.22	4.3
13:17	CC1	ME	0	0	9.65	4.83	26.3	6.34	95.7	1.52	34.76	8.22	4.5
						8.65	26.3 26.3	6.34 6.34	95.7 95.6	1.50 1.56	Sainnity ppt 34.76 34.76 34.76 34.76 34.76 34.76 34.76 34.76 34.76 34.76 34.76 34.82 34.82 34.83 34.84 34.83 34.83 34.84 34.85 34.56 34.56 34.57 34.80 34.89 34.90 34.77 34.80 34.80 34.80 34.82 34.83 34.81 34.82 34.83 34.83 34.83 34.83 34.83 34.83 34.83 34.83 34.83 34.83 34.83 34.83 34.83 34.83<	8.22 8.22	4.3 3.9
							26.3 26.3	6.34 6.31	95.5 95.0	1.57		8.22 8.23	4.3
						1.00	26.3 26.3	6.30 6.26	94.9 94.4	1.37 1.45	34.72	8.23 8.23	3.5 2.7
13:20	CC2	ME	0	0	11.74	5.87	26.3	6.26	94.4	1.53	34.86	8.23	2.6
						10.74	26.2 26.2	6.24 6.19	94.0 93.3	4.91 4.55		8.23 8.23	2.8 2.6
						1.00	26.4	6.29	94.8	1.13	34.56	8.17	2.2
13:29	CC3	ME	0	0	9.63	4.82	26.4 26.3	6.31 6.03	95.1 90.9	1.02 1.47		8.17 8.18	2.4
13.29	ces	NIE	0	0	9.05		26.3 26.3	6.01 6.00	90.6 90.5	1.75 3.44		8.19 8.20	3 2.9
						8.63	26.3	6.01	90.6	4.70	34.92	8.20	2.6
													_
13:09	CC4	ME	0	0	2.07	1.04	26.3 26.3	6.27 6.26	94.6 94.4	2.34 2.33		8.22 8.22	4.8
						1.00	26.3	6.39	96.2	1.18		8.16	2
				-			26.3 26.3	6.36 6.30	95.9 95.0	1.20		8.17 8.19	1.7
13:25	CC13	ME	0	0	8.56	4.28	26.3	6.29	94.8	1.37	34.82	8.20	2.2
						7.56	26.3 26.3	6.27 6.28	94.6 94.6	1.40 1.39	34.88	8.21 8.21	2.3 2.2
						1.00	26.3 26.3	6.00 6.00	90.4 90.4	1.41		8.22 8.22	2.1
13:03	SWI1	ME	0	0	4.42		20.3	0.00	70.4	1.39	.+.03	0.44	2.4
				-		2.42	26.3	5.99	90.3	3.02	34.87	8.22	2.5
						3.42	26.3 26.4	6.00 6.55	90.5 98.9	3.18 1.34	34.90	8.22 8.24	2.8
						1.00	26.4	6.54	98.7	1.30	34.77	8.24	2.5
13:14	C3	ME	0	0	14.75	7.38	26.3 26.3	6.31 6.30	95.2 94.9	1.52 1.52		8.23 8.23	2.1 2.2
						13.75	26.2	6.25	94.2	3.06	34.94	8.23	2.5
						1.00	26.2 26.3	6.24 6.32	94.1 95.3	3.63 2.14		8.23 8.22	2.8
							26.3 26.3	6.30 6.17	94.9 93.0	2.25 2.77		8.22 8.22	4.9
13:11	C4	ME	0	0	15.29	7.65	26.3	6.16	92.9	2.79	34.78	8.21	5.7
						14.29	26.3 26.3	6.15 6.15	92.6 92.7	4.87 5.63		8.21 8.21	5.8 5.4
						1.00	26.3 26.3	6.42 6.41	96.8 96.6	1.10 1.12	34.63	8.22 8.22	1.9 1.7
13:27	11	ME	0	0	10.12	5.06	26.3	6.29	94.8	1.32	34.75	8.21	2.4
15.27			0	0	10.12		26.3 26.2	6.26 6.22	94.4 93.7	1.39 2.01		8.21 8.22	2.7
						9.12	26.2	6.22	93.8	2.47		8.22	3
							26.3	6.67	100.3	1.09	34.77	8.21	1.6
						1.00	26.3	6.61	99.6	1.06	34.72	8.21	1.3
8:24	CC1	MF	0	0	10.25	5.13	26.3 26.3	6.49 6.46	98.0 97.4	1.13 1.20		8.21 8.21	1.8 1.6
						9.25	26.3 26.2	6.35 6.32	95.7 95.3	1.41		8.21 8.21	1.4
						1.00	26.3	6.44	97.1	2.86	34.76	8.22	<1.0
8:28	CC2	MF	0	0	11.72	5.86	26.3 26.3	6.39 6.36	96.4 95.8	2.69		8.21 8.22	<1.0
0.20	CC2	IVII	0	0	11.72		26.2 26.2	6.37 6.35	96.0 95.7	1.27 2.30		8.22 8.22	1.2
						10.72	26.3	6.36	95.6	2.10		8.21	2.2
						1.00	26.3 26.3	6.16 6.22	92.8 93.7	0.78 0.87	34.73 34.72	8.19 8.19	<1.0
8:37	CC3	MF	0	0	9.3	4.65	26.4	6.35	95.8	0.99	34.72	8.20	1.1
						8.30	26.3 26.3	6.33 5.60	95.5 84.6	1.03 3.75	34.91	8.20 8.19	1.4
						8.50	26.3	5.62	84.8	4.05	34.92	8.19	1.4
							26.3	6.33	05.4	2.20	24.00	0.21	3.6
8:14	CC4	MF	0	0	2.43	1.22	26.3 26.3	6.33 6.32	95.4 95.2	2.20 2.20	34.90 34.90	8.21 8.21	3.5 3.8
						1.00	26.3	6.33	95.4	1.99	34.83	8.22	3
8:31	CC13	MF	0	0	8.28	4.14	26.3 26.3	6.31 6.29	95.2 94.8	1.72 1.64	34.84 34.84	8.22 8.22	2.9 3.5
0.51	CC15	1VII'	U	U	0.28		26.3 26.2	6.28 6.28	94.6 94.6	1.62 1.39	34.85 34.90	8.22 8.22	3.6 3.1
						7.28	26.2	6.29	94.7	1.29	34.91	8.22	3.2
						1.00	26.4	6.43 6.42	97.0 96.9	1.24	34.75 34.75	8.25 8.24	2.6 2.3
8:09	SWI1	MF	0	0	4.98								
						3.98	26.3	6.40	96.5	1.36	34.75	8.23	3.2
							26.3 26.3	6.38 6.24	96.2 94.1	1.35 2.89	34.75 34.80	8.23 8.21	2.7
						1.00	26.3 26.3	6.19	93.3 93.1	2.91 2.79	34.80 34.83	8.20	5.4
8:21	C3	MF	0	0	15.9	7.95	26.3	6.18 6.17	93.1	2.75	34.84	8.20 8.20	5.7
						14.90	26.2 26.2	6.18 6.18	93.1 93.2	2.83 2.89	34.92 34.93	8.20 8.20	6 5.1
						1.00	26.3	6.41	96.5	2.06	34.84	8.22	4.3
8:17	C4	MF	0	0	15.38	7.69	26.3 26.2	6.38 6.23	96.1 93.9	2.06 2.02	34.83 34.89	8.22 8.21	4.6 4.4
0.17	C4	1 VI I'	U	U	13.38		26.2 26.2	6.23 6.23	93.9 93.9	2.04 2.15	34.89 34.91	8.21 8.21	4.2
						14.38	26.2	6.24	94.0	2.16	34.91	8.21	5.3
						1.00	26.3 26.3	6.31 6.34	95.1 95.5	1.00 0.99	34.70 34.69	8.21 8.21	3.3 3.8
	1	ME		0	10.02	5.01	26.3	6.26	94.3	1.34	34.80	8.21	4.8
8:35	I1	MF	0	0	10.02	5.01	26.3	6.24	94.0	1.39	34.81	8.21	4.5

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

> Remarks: MF - Middle Flood tide ME - Middle Ebb tide

mpling Date	: 30-Oct-19)											
Date / Time	Location	Tide*	Co-ore	linates	Water	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit v	Salinity	pН	SS
Date / Time	Location	1 lde*	East	North	Depth m	m	°C	mg/L	Saturation %	NTU	ppt	unit	mg/
						1.00	25.8 25.8	6.32 6.30	94.5 94.1	1.85 1.81	34.95 34.96	8.24 8.24	3.5
12:49	CC1	ME	0	0	7.89	3.95	25.8	6.25	93.5	1.88	34.96	8.23	3.8
12.17			0	0	1.05		25.8 25.8	6.25 6.25	93.6 93.5	1.85 1.84	34.96 34.96	8.23 8.23	3.9
						6.89	25.8	6.24	93.4	1.86	34.96	8.23	4.5
						1.00	25.8 25.8	6.25 6.22	93.4 92.9	1.57 1.54	34.72 34.72	8.23 8.23	2.4
12:54	CC2	ME	0	0	11.96	5.98	25.8 25.8	6.16 6.15	92.1 92.0	1.49 1.43	34.77 34.80	8.23 8.22	3.4
						10.96	25.8	6.15	92.1	2.11	34.94	8.23	4
							25.8 25.8	6.15 6.32	92.1 94.4	2.52	34.98 34.65	8.23 8.21	4.6
						1.00	25.8 25.7	6.31	94.3 91.7	1.19 1.38	34.65	8.21	3.4
13:14	CC3	ME	0	0	8.88	4.44	25.7	6.14 6.12	91.4	1.41	34.73 34.73	8.21 8.21	3.5
						7.88	25.7 25.7	6.07 6.02	90.6 89.9	1.78 1.99	34.77 34.78	8.21 8.21	2.2
12:40	CC4	ME	0	0	2.45	1.23	25.9	6.30	94.3	1.71	34.70	8.22	4.4
12.40	004	ML	0	0	2.45	1.25	25.9	6.27	93.9	1.71	34.71	8.21	4.7
						1.00	25.8 25.8	6.30 6.26	94.1 93.6	2.33 2.38	34.74 34.74	8.23 8.23	3.3
12:57	CC13	ME	0	0	8.41	4.21	25.8 25.8	6.14	91.8 91.7	2.32 2.24	34.76 34.77	8.23 8.23	3 3.4
						7.41	25.8	6.13 6.12	91.5	2.19	34.86	8.22	3
	-						25.8 25.8	6.13 6.50	91.7 97.1	2.29	34.90 34.69	8.22 8.23	3.2
						1.00	25.8	6.46	96.5	1.58	34.69	8.23	2.4
12:35	SWI1	ME	0	0	4.1								
						3.10	25.8 25.8	6.23 6.20	93.1 92.5	1.54	34.69 34.69	8.23 8.23	2.2
						1.00	25.9	6.38	95.5	1.31	34.80	8.23	2.6
			_	-			25.9 25.8	6.35 6.32	95.0 94.5	1.33	34.80 34.98	8.23 8.22	2.4
12:46	C3	ME	0	0	15.04	7.52	25.8	6.33	94.6	1.35	35.00	8.23	5.4
						14.04	25.8 25.8	6.25 6.25	93.5 93.5	2.46 2.49	35.03 35.03	8.23 8.23	6.4 5.7
						1.00	25.9 25.9	6.34 6.30	94.9 94.3	1.36	34.77 34.77	8.24 8.24	2.8
12:42	C4	ME	0	0	13.79	6.90	25.9	6.25	94.5	1.36	34.77	8.24	2.0
12:42	04	NIE	0	0	15.79	0.90	25.8 25.7	6.26 6.30	93.5 94.2	1.23 1.79	34.88 35.05	8.23 8.24	2.4
						12.79	25.7	6.30	94.3	1.84	35.05	8.24	3.1
						1.00	25.7 25.7	6.38 6.34	95.1 94.6	1.57 1.56	34.73 34.73	8.23 8.23	2.6
13:01	I1	ME	0	0	9.74	4.87	25.7	5.99	89.3	2.55	34.80	8.21	2.3
							25.7 25.7	5.97 5.79	89.1 86.5	2.55 5.23	34.80 34.84	8.21 8.21	2.5
						8.74	25.7	5.79	86.4	5.19	34.84	8.21	3.8
						1.00	25.7	6.25	93.3	1.69	34.68	8.23	5.3
						1.00	25.7	6.22	92.8	1.69	34.69	8.23	4.7
9:05	CC1	MF	0	0	7.44	3.72	25.7 25.7	6.07 6.07	90.6 90.5	1.90 1.92	34.71 34.71	8.21 8.21	5.6
						6.44	25.8 25.8	6.06 6.06	90.5 90.5	1.99 2.01	34.76 34.78	8.21 8.21	7.5
						1.00	25.8	6.07	90.7	1.88	34.71	8.22	2.6
0.00					12.01		25.8 25.8	6.06 6	90.6 89.6	1.75 2.87	34.71 34.77	8.22 8.22	2.2
9:09	CC2	MF	0	0	12.01	6.01	25.8	6	89.6	2.81	34.76	8.22	4.6
						11.01	25.8 25.8	6.12 6.15	91.6 92.0	4.73 4.88	34.99 34.99	8.22 8.23	5.5
						1.00	25.7 25.8	6.20 6.17	92.6 92.1	1.55 1.53	34.74 34.75	8.22 8.22	2.7
9:24	CC3	MF	0	0	9.01	4.51	25.7	6.03	90.0	1.96	34.81	8.21	2.4
			-				25.7 25.7	5.98 5.88	89.3 87.8	2.09 2.82	34.82 34.84	8.21 8.21	2.6
						8.01	25.7	5.85	87.4	2.88	34.84	8.21	3.7
8:52	CC4	MF	0	0	2.54	1.27	25.7 25.7	6.13 6.09	91.5 90.9	2.09 2.05	34.70 34.70	8.23 8.23	3.5
	+ -					1.00	25.8	6.15	91.9	1.73	34.69	8.22	3.8
						1.00	25.8 25.8	6.10	91.2 90.0	1.70	34.69 34.70	8.21	4.1
9:13	CC13	MF	0	0	8.54	4.27	25.8	6.03 6.02	89.9	1.79 1.84	34.70	8.21 8.20	4.3
						7.54	25.7 25.7	5.95 5.93	88.8 88.6	2.73 2.91	34.75 34.76	8.20 8.20	4.5
						1.00	25.6	6.29	93.6	1.74	34.66	8.30	3.9
8:47	SWI1	MF	0	0	4.17		25.6	6.25	93.1	1.69	34.66	8.29	3.0
0:47	3W11	wir	0	0	4.17		25.6	6.15	91.6	1.71	34.67	8.27	4.4
						3.17	25.6	6.11	91.0	1.72	34.68	8.26	4.2
	_					1.00	25.8 25.8	6.23 6.21	93.2 92.8	1.61 1.57	34.77 34.77	8.24 8.24	3.5
9:01	C3	MF	0	0	15.14	7.57	25.8	6.14	91.8	1.71	34.84	8.23	3.8
							25.8 25.8	6.14 6.20	91.8 92.7	1.69 3.36	34.84 35.01	8.23 8.23	4.6
						14.14	25.8	6.24	93.4	3.89	35.05	8.25	4.6
						1.00	25.7 25.7	6.42 6.37	95.9 95.2	1.86	34.82 34.83	8.25 8.24	2.3
8:55	C4	MF	0	0	14.09	7.05	25.8 25.8	6.26 6.26	93.7 93.7	2.16 2.06	35.01 35.01	8.24 8.25	2.6
						13.09	25.7	6.26	93.6	4.30	35.04	8.25	3
	+ -						25.7 25.7	6.26 6.15	93.6 91.8	4.29 1.67	35.04 34.64	8.25 8.22	3.6
						1.00	25.8	6.11	91.2	1.66	34.64	8.21	2.7
		MF	0	0	8.92	1 4 4 6	25.7	6.06	90.4	1.64	34.66	8.21	3.4
9:17	I1	NIF	0	0	8.92	4.46	25.7	6.05	90.2	1.66	34.67	8.21	2.6

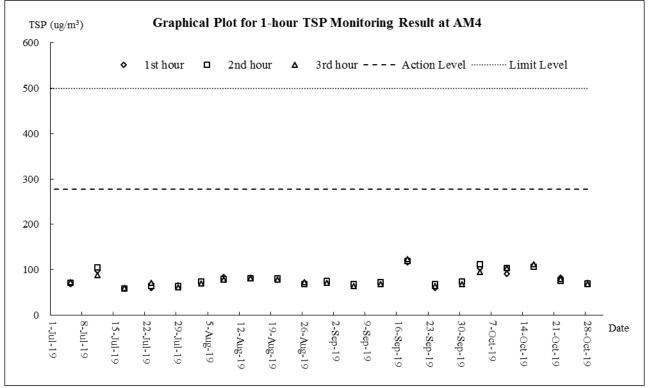
Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

> Remarks: MF - Middle Flood tide ME - Middle Ebb tide

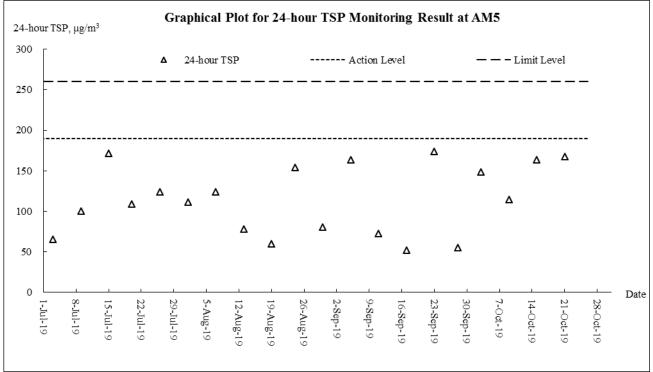
							g Results (Wan O Road)					
Monitoring						thane (%)		0	(%) (%)		Carbo	n Dioxide (%	ó)
Location	Date	Time	Weather	Temperature (°C)	Measurement	Action	Limit	Measurement	Action	Limit	Measurement	Action	Limit
Location					Result	Level	Level	Result	Level	Level	Result	Level	Level
	22/10/2019	8:30	Sunny	23	0.1	10	20	21	19	18	0.1	0.5	1.5
	22/10/2019	14:05	Sullity	28	0.1	10	20	20.9	19	18	0.2	0.5	1.5
	23/10/2019	8:30	Hazy	24	0.1	10	20	20.9	19	18	0.1	0.5	1.5
	23/10/2019	14:00	паzy	29	0.1	10	20	20.8	19	18	0.1	0.5	1.5
	24/10/2019	8:30	Fine	23	0.1	10	20	21	19	18	0.1	0.5	1.5
	24/10/2019	14:15	Fine	29	0.1	10	20	21	19	18	0.1	0.5	1.5
	25/10/2019	8:30	Cloudy	24	0.1	10	20	21.1	19	18	0.2	0.5	1.5
	25/10/2019	14:00	Cloudy	28	0.1	10	20	20.9	19	18	0.1	0.5	1.5
Wan O Road	26/10/2019	8:30	Fine	25	0.1	10	20	21	19	18	0.1	0.5	1.5
wan O Road	26/10/2019	14:00	Fille	28	0.1	10	20	21.1	19	18	0.2	0.5	1.5
	28/10/2019	8:30	Fine	22	0.1	10	20	20.9	19	18	0.1	0.5	1.5
	28/10/2019	14:00	Fine	29	0.1	10	20	21	19	18	0.1	0.5	1.5
	29/10/2019	8:30	Sunny	20	0.1	10	20	21	19	18	0.2	0.5	1.5
	29/10/2019	14:00	Sullity	25	0.1	10	20	20.9	19	18	0.1	0.5	1.5
	30/10/2019	8:30	C	21	0.1	10	20	21	19	18	0.1	0.5	1.5
	30/10/2019	14:05	Sunny	26	0.1	10	20	21	19	18	0.1	0.5	1.5
	31/10/2019	8:30	Fine	23	0.1	10	20	20.8	19	18	0.1	0.5	1.5
	31/10/2019	14:00	riffe	27	0.1	10	20	21	19	18	0.1	0.5	1.5

Landfill Gas Monitoring Results (Wan O Road)

Remark:	Parameter	Criteria	Measurement
	Oxygen	Action Level	< 19%
	Oxygen	Limit Level	< 18%
	Methane	Action Level	> 10% LEL (> 0.5% v/v)
	Methane	Limit Level	> 20% LEL (>1% v/v)
	Carbon	Action Level	> 0.5%
	Dioxide	Limit Level	> 1.5%


Appendix I

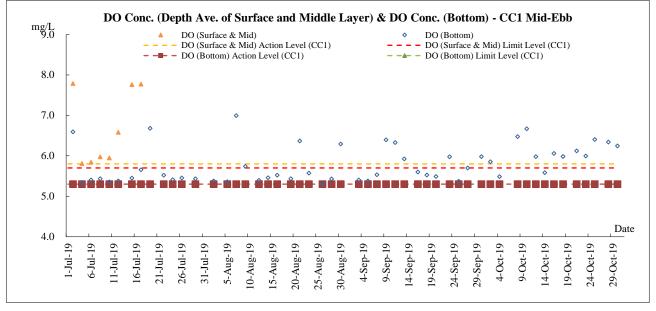
Graphical Plots of Monitoring Results

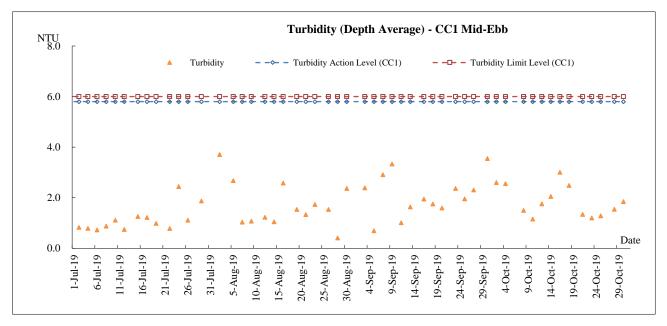

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report – October 2019

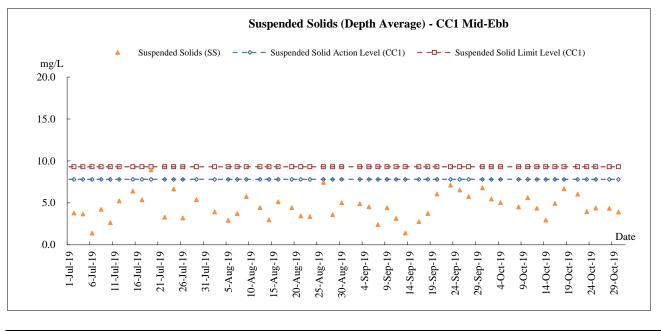
Air Quality – 1 Hour TSP

Air Quality - 24-Hour TSP

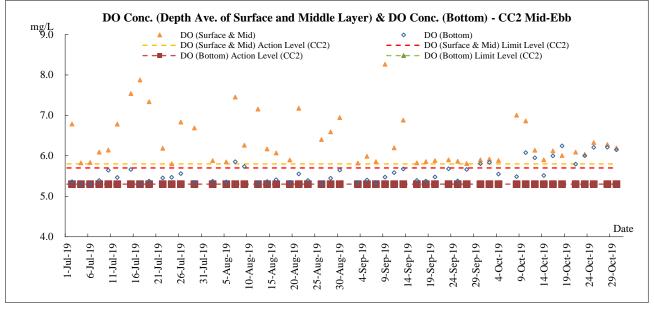
CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report - October 2019

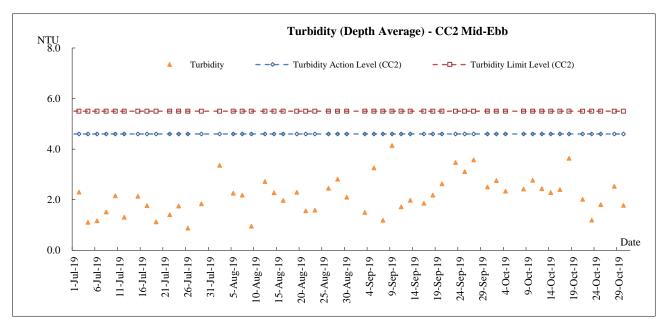


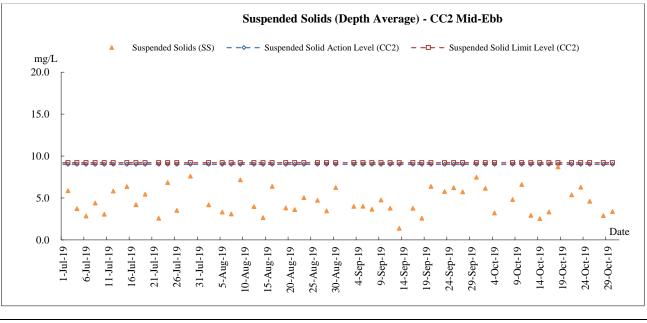

Graphical Plot for Construction Noise Monitoring Result at CNMS-5 $L_{eq30}, dB(A)$ 85.0 — — — Limit Level 80.0 Leq30min ٥ 75.0 70.0 ٥ ٥ ٥ ٥ ٥ ٥ 65.0 ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ہ 0 60.0 55.0 50.0 45.0 Date 40.0 7-0ct-19 29-Jul-19 5-Aug-19 2-Sep-19 9-Sep-19 8-Jul-19 1**5-**Jul-19 22-Jul-19 12-Aug-19 19-Aug-19 26-Aug-19 23-Sep-19 30-Sep-19 21-Oct-19 28-Oct-19 1-Jul-19 16-Sep-19 14-Oct-19


Construction Noise

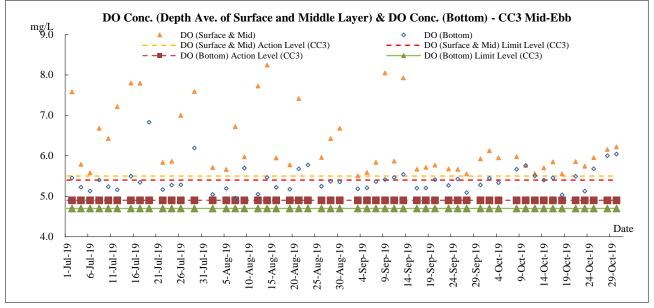
Marine Water Quality - CC1 Mid-ebb

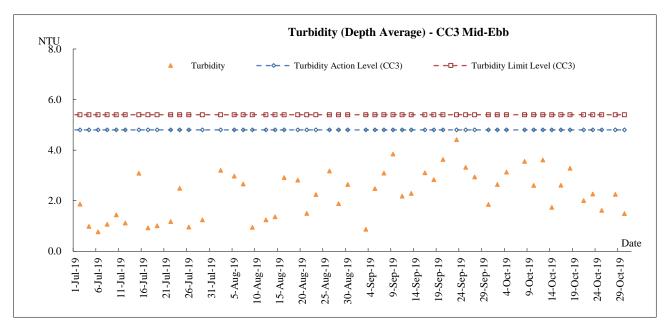


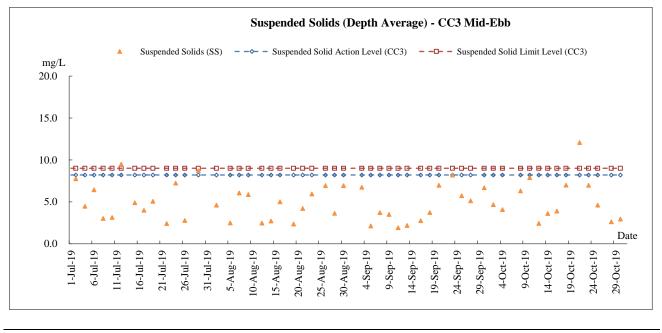




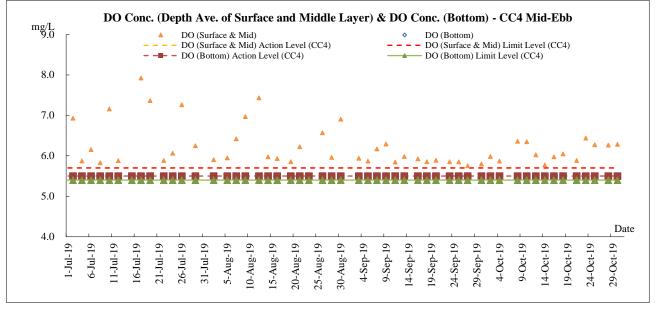
Marine Water Quality – CC2 Mid-ebb

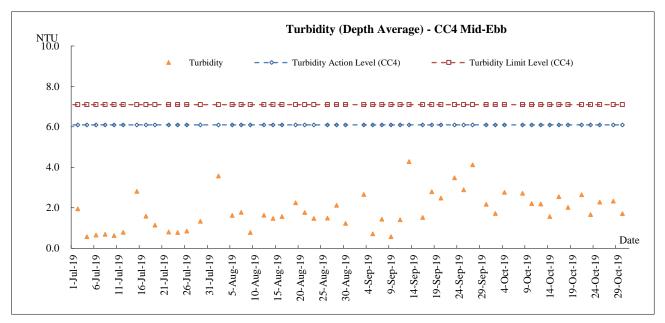


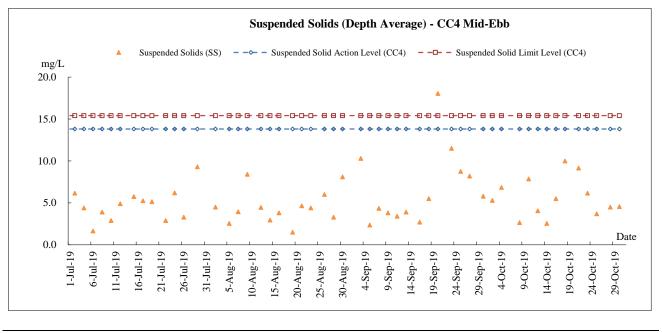




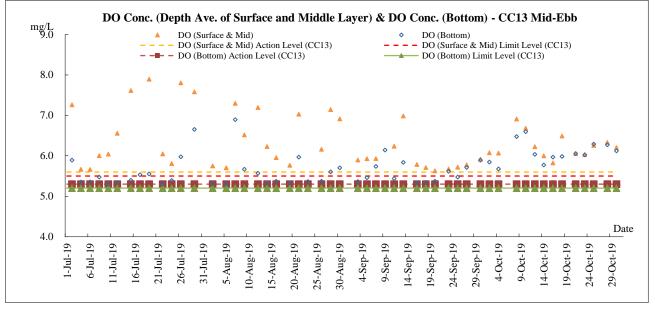
Marine Water Quality – CC3 Mid-ebb

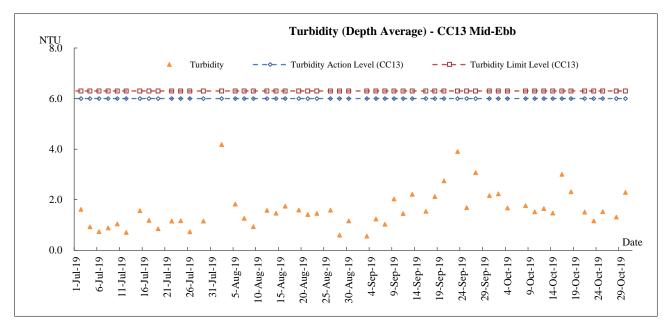


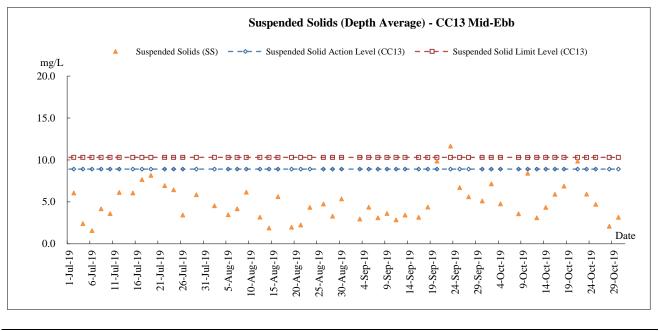




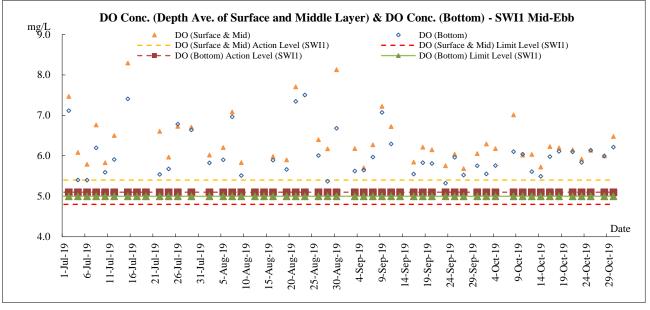
Marine Water Quality – CC4 Mid-ebb

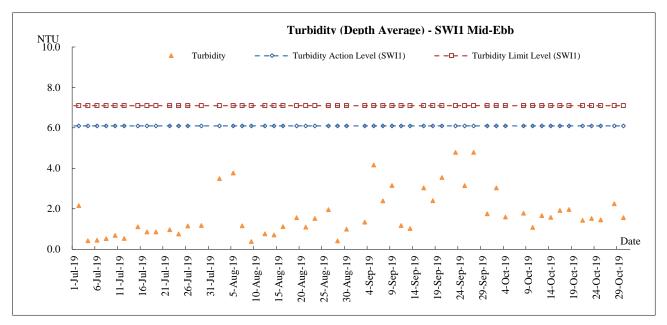


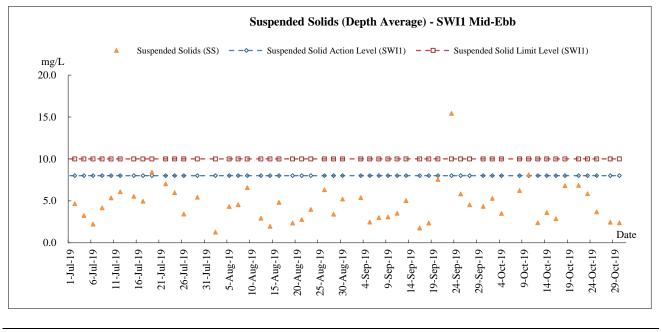




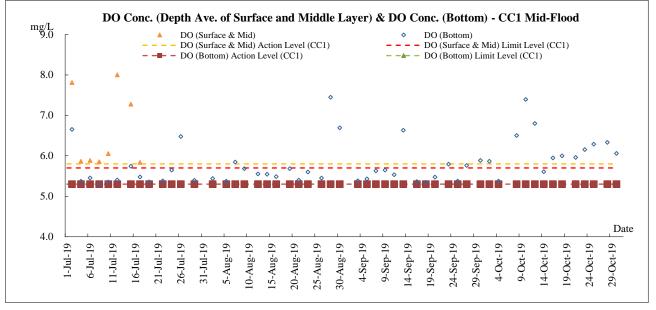
Marine Water Quality – CC13 Mid-ebb

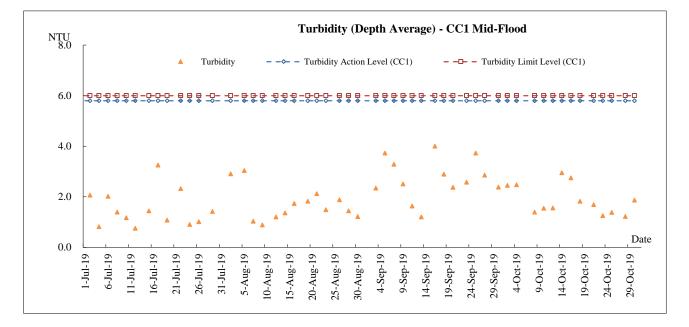


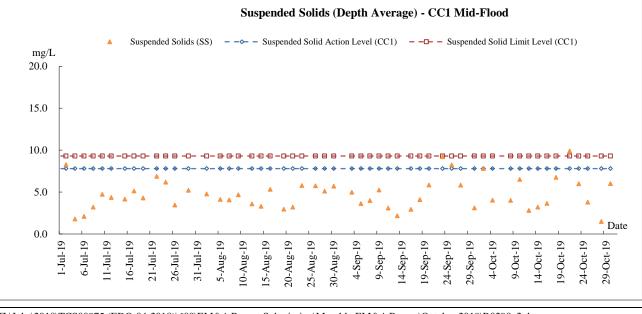




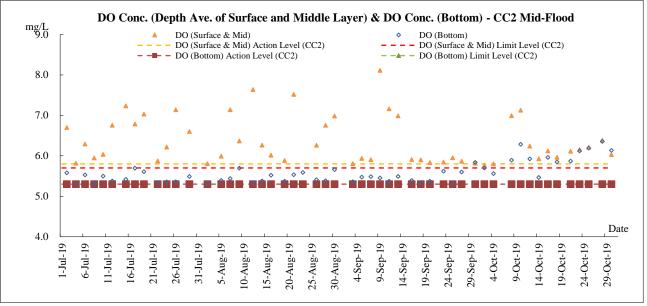
Marine Water Quality – SWI1 Mid-ebb

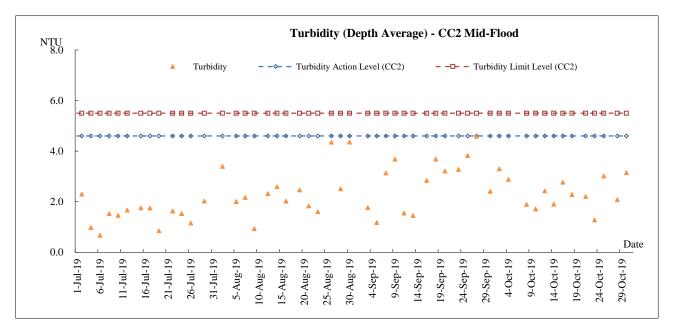


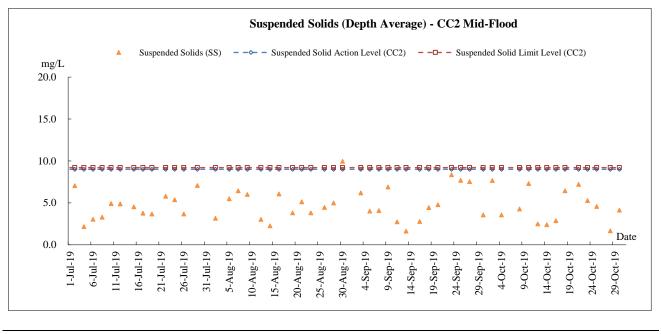




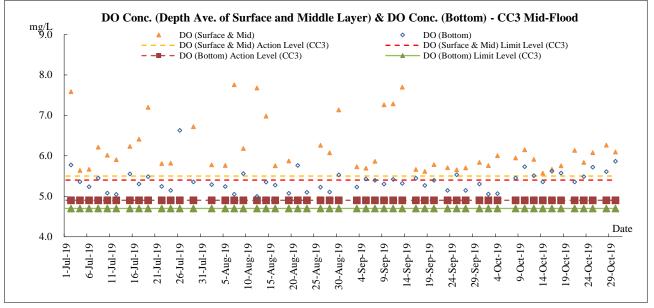
Marine Water Quality - CC1 Mid-Flood

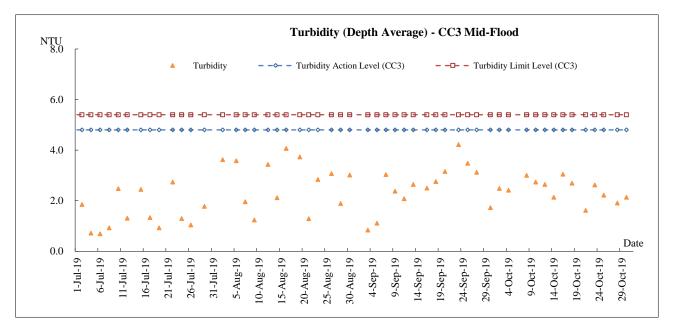


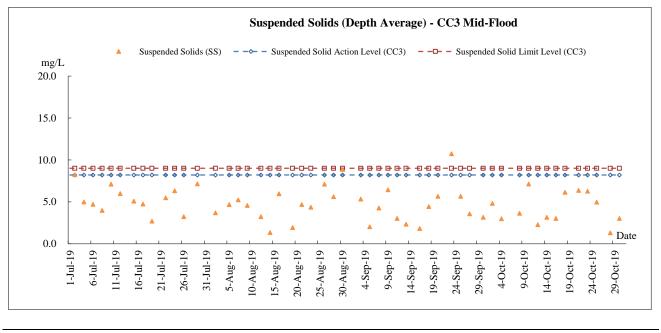




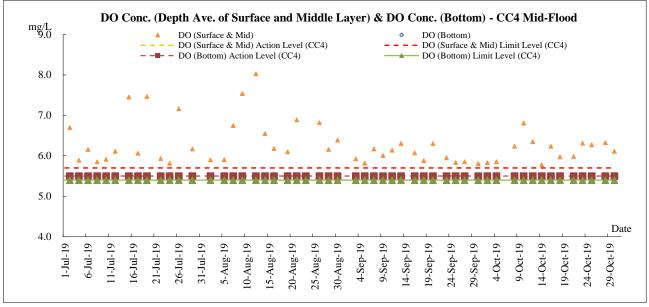
Marine Water Quality – CC2 Mid-Flood

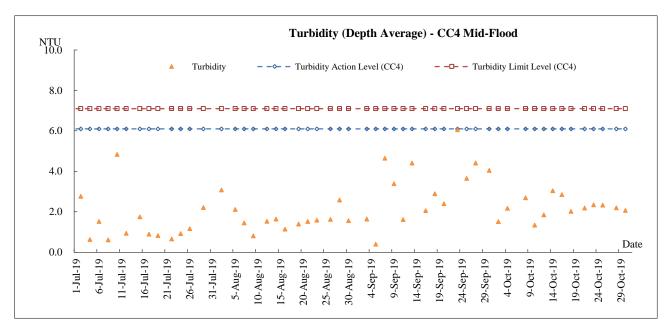


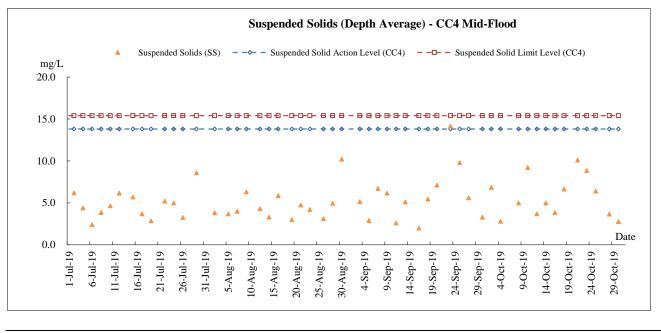




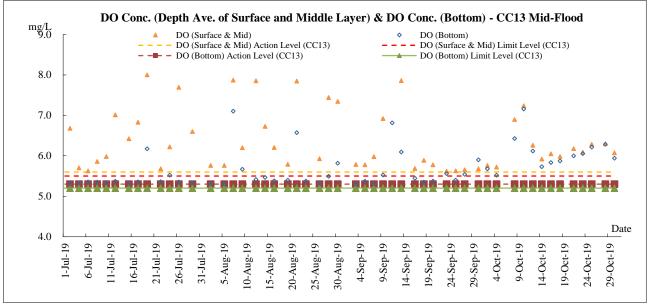
Marine Water Quality – CC3 Mid-Flood

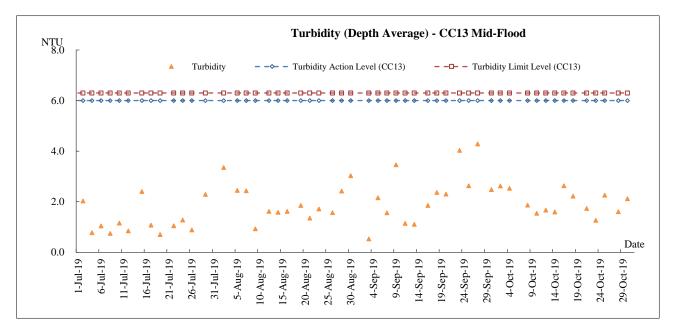


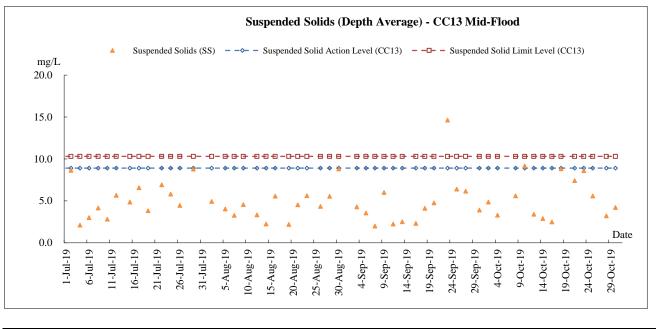




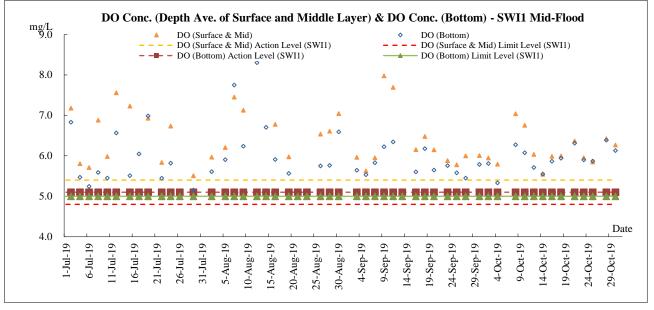
Marine Water Quality – CC4 Mid-Flood

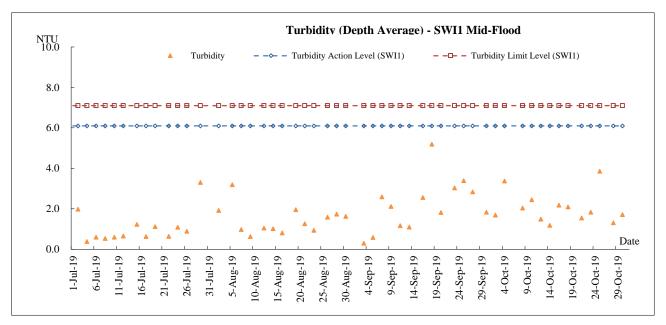


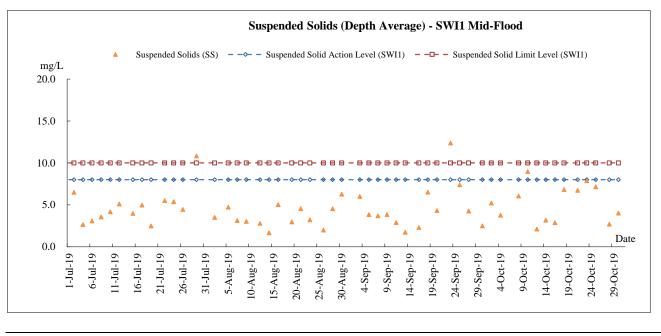




Marine Water Quality - CC13 Mid-Flood







Marine Water Quality – SWI1 Mid-Flood

Appendix J

Meteorological Data

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report – October 2019

					Tseung H	Kwan O Sta	tion
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction (degree)
1-Oct-19	Tue	Sunny periods. Isolated showers in the morning.	0	29.8	8.4	55.2	S/SW
2-Oct-19	Wed	Moderate easterly winds, fresh offshore later.	0	30.1	6.5	62.5	S/SW
3-Oct-19	Thu	Sunny periods. Isolated showers in the morning.	0	29.1	4.6	65.5	S/SW
4-Oct-19	Fri	Sunny periods. Isolated showers in the morning.	0	27.7	5.6	72.5	SW
5-Oct-19	Sat	Mainly fine. Hot in the afternoon.	0	28.2	7.2	69.7	S/SW
6-Oct-19	Sun	Mainly fine. Hot in the afternoon.	46.8	25.7	6.7	80.2	E/NE
7-Oct-19	Mon	Isolated showers later. Light winds.	17.9	25.6	7.1	81.7	E/NE
8-Oct-19	Tue	Moderate easterly winds, fresh offshore later.	4.9	27.5	7.6	74.2	NE
9-Oct-19	Wed	Isolated showers later. Light winds.	Trace	28	7.8	70	E/NE
10-Oct-19	Thu	Isolated showers later. Light winds.	0	27.6	6.5	71.2	E/SE
11-Oct-19	Fri	Mainly fine. Hot in the afternoon.	0	27.7	4.4	77.2	S/SW
12-Oct-19	Sat	Fine. Dry in the afternoon.	0.3	28.3	6.5	79.5	N/NE
13-Oct-19	Sun	Mainly fine and dry. Moderate easterly winds.	13.6	26.3	6.0	82.5	N/NE
14-Oct-19	Mon	Isolated showers later. Light winds.	52.1	26.1	8.2	78	N/NE
15-Oct-19	Tue	Fresh east to northeasterly winds, strong offshore.	10.4	25.6	9.5	71.2	E/NE
16-Oct-19	Wed	Mainly fine. Hot in the afternoon.	0	25.2	8.6	58.5	E/NE
17-Oct-19	Thu	Isolated showers later. Light winds.	0	25.7	8	66.2	NE
18-Oct-19	Fri	Moderate easterly winds, fresh offshore later.	Trace	25.7	6.6	67.5	NE
19-Oct-19	Sat	Isolated showers later. Light winds.	0	25.2	7.5	71.5	NE
20-Oct-19	Sun	Fresh east to northeasterly winds, strong offshore.	3.5	24.4	7.1	70.5	E/NE
21-Oct-19	Mon	Mainly fine and dry. Moderate easterly winds.	0	24.6	6.1	72.5	E/NE
22-Oct-19	Tue	Mainly fine and dry. Moderate easterly winds.	0	23.7	7.4	67.5	E/SE
23-Oct-19	Wed	Moderate northeasterly winds, occasionally fresh offshore.	0	24.2	7.6	71.7	NE
24-Oct-19	Thu	Mainly fine. Cloudy periods tonight.	0	25.9	9.3	64	N/NE
25-Oct-19	Fri	Mainly fine and dry. Moderate easterly winds.	0	25.2	8.2	72.2	N/NE
26-Oct-19	Sat	Mainly fine and dry. Moderate easterly winds.	Trace	25.6	7.7	69	N/NE
27-Oct-19	Sun	Moderate northeasterly winds, occasionally fresh offshore.	Trace	25	5.4	74	E/NE
28-Oct-19	Mon	Mainly fine. Cloudy periods tonight.	Trace	21.8	6.6	81.2	N/NE
29-Oct-19	Tue	Sunny periods. Moderate to fresh easterly winds	0	29.9	8.7	65	NE
30-Oct-19	Wed	Dry with bright periods. Moderate to fresh east to northeasterly winds	0	23.1	7.8	63.2	N/NE
31-Oct-19	Thu	Sunny periods. Moderate to fresh easterly winds	0	23.9	8	64	NE

Appendix K

Waste Flow Table

Contract 1

Monthly Summary Waste Flow Table for <u>2018</u> (year)

Name of Person completing the record: Kanny Cho (EO)

Project : Cross Bay Link, TKO, Main Bridge and Associated Works

2	A	ctual Quantitie	s of Inert C&I	O Materials G	enerated Month	ly	Actua	al Quantities o	of C&D Waste	s Generated M	lonthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	$(in '000m^3)$	$(in '000m^3)$	$(in '000m^3)$	$(in '000m^3)$	(in '000m ³)	$(in '000m^3)$	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan											
Feb											
Mar											
Apr											
May											
Jun											
Sub-total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.837
Sep	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.305
Oct	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.065	0.000	0.000	0.008
Nov	0.000	0.000	0.000	0.000	0.000	0.320	0.000	0.000	0.000	0.000	0.009
Dec	0.000	0.000	0.000	0.000	0.276	0.000	0.000	0.000	0.000	0.000	0.004
Total	0.000	0.000	0.000	0.000	0.276	0.320	0.000	0.065	0.000	0.000	1.163

Contract No.: NE/2017/07

Note:

1. For non-inert portion of C&D material, assume the density of 1 m^3 general refuse is equal to 200 kg.

2. For inert portion of C&D material, assume 6 m^3 per each full-filled dump truck.

3. All values are round off to the third decimal places.

Monthly Summary Waste Flow Table for <u>2019</u> (year)

Name of Person completing the record: Calvin So (EO)

Project : Cross Bay Link, TKO, Main Bridge and Associated Works

Contract No.: NE/2017/07

	A	ctual Quantitie	s of Inert C&I	O Materials G	enerated Month	ıly	Actua	al Quantities of	of C&D Waste	s Generated M	Ionthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	$(in '000m^3)$	$(in '000m^3)$	(in '000m ³)	$(in '000m^3)$	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	$(in '000 m^3)$
Jan	0.845	0.000	0.000	0.000	0.845	0.000	0.000	0.023	0.000	0.000	0.077
Feb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.032	0.000	0.000	0.036
Mar	0.042	0.000	0.000	0.000	0.042	0.000	0.000	0.029	0.000	0.000	0.081
Apr	1.760	0.000	0.000	0.000	1.760	0.000	0.000	0.509	0.000	0.000	0.012
May	1.026	0.000	0.000	0.000	1.026	0.000	0.000	0.094	0.000	0.000	0.030
Jun	0.354	0.000	0.000	0.000	0.354	0.000	0.000	0.087	0.000	0.000	0.050
Sub-total	4.027	0.000	0.000	0.000	4.027	0.000	0.000	0.774	0.000	0.000	0.286
Jul	1.122	0.000	0.000	0.000	1.122	0.000	0.000	0.060	0.000	0.000	0.095
Aug	1.290	0.000	0.000	0.000	1.290	0.000	0.000	0.075	0.000	0.000	0.058
Sep	0.762	0.000	0.000	0.000	0.762	0.000	0.000	0.085	0.000	0.000	0.054
Oct	1.002	0.000	0.000	0.000	1.002	0.000	0.000	0.080	0.000	0.000	0.106
Nov											
Dec											
Total	8.203	0.000	0.000	0.000	8.203	0.000	0.000	1.074	0.000	0.000	0.599

Note:

For non-inert portion of C&D material, assume the density of 1 m³ general refuse is equal to 200 kg.
 For inert portion of C&D material, assume 6 m³ per each full-filled dump truck.

3. All values are round off to the third decimal places.

Contract 2

		Actual Qua	ntities of Inert C&I	Materials Generat	ed Monthly			Actual Quantities	of C&D Wastes Ge	enerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Jan	0.358	0.000	0.358	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.357
Feb	0.022	0.000	0.000	0.000	0.022	0.000	0.000	0.000	0.000	0.000	0.728
Mar	0.106	0.000	0.000	0.000	0.106	0.000	0.000	0.000	0.000	0.000	0.229
Apr	3.013	0.000	0.000	0.000	3.013	0.000	0.000	0.000	0.000	0.000	0.013
May	3.621	0.000	0.000	0.000	3.621	0.000	0.000	0.000	0.000	0.000	0.022
June	1.127	0.000	0.000	0.000	1.127	0.000	0.000	0.000	0.000	0.000	0.019
SUB- TOTAL	8.247	0.000	0.358	0.000	7.889	0.000	0.000	0.000	0.000	0.000	1.368
Jul	2.468	0.000	0.000	0.000	1.879	0.589	0.000	0.000	0.000	0.000	0.031
Aug	4.401	0.000	0.000	0.000	4.262	0.140	0.000	0.000	0.000	0.000	0.004
Sep	1.912	0.000	0.000	0.046	1.866	0.000	0.000	0.000	0.000	0.000	0.009
Oct	4.384	0.000	0.000	0.000	4.384	0.000	0.000	0.000	0.000	0.000	0.007
Nov											
Dec											
TOTAL	21.412	0.000	0.358	0.046	20.280	0.728	0.000	0.000	0.000	0.000	1.420

Monthly Summary Waste Flow Table for 2019 Year

Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Assume the loaded volume of a dump truck for internal inert waste transfer is 17.9 m³

Appendix L

Implementation Record of Water Mitigation Measures in the Reporting Month

Water Quality Mitigation Measures under NE/2017/07 (Contract 1)

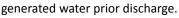
Cut-off drainage had been installed in the sea front to divert the surface run-off to the treatment facilities.

De-silting facilities had been provided to treat the site

generated water prior discharge.

Silt-curtain had beed provided to prevent muddy water overflow from the piling platform.

Silt-curtain had beed provided to prevent muddy water overflow from the piling platform.


Water Quality Mitigation Measures under NE/2017/08 (Contract 2)

Exposed area had been covered to prevent crate muddy surface run-off during rainstorm.

Treatment facilities was installed at site to treat the site

Trench had been installed beside the sea front to prevent muddy surface run-off overflow during rainstorm.

Gap between the concrete block and the sea front was sealed up.

Using tarpaulin cover the exposed area to prevent generate turbidity runoff during rainstorm.

Appendix M

Implementation Schedule for Environmental Mitigation Measures

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
Dust Impa	ct (Contraction Phase)		•			-
S5.5.5.1	Regular watering under good site practice shall be adopted. In accordance with the "Control of Open Fugitive Dust Sources" (USEPA AP-42), watering once per hour on exposed worksites and haul road is recommended to achieve dust removal efficiency of 91.7%.	Good construction site practices to control the dust impact on the nearby sensitive receivers to within the relevant criteria	All construction sites	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation
S5.5.3	 The following dust suppression measures shall also be incorporated by the Contractor to control the dust nuisance throughout the construction phase: Any excavated or stockpiled dusty material shall be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed shall be wetted with water and cleared from the surface of roads; A stockpile of dusty material shall not extend beyond the pedestrian barriers, fencing or traffic cones; The load of dusty materials on a vehicle leaving a construction site shall be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet shall be provided at every discernible or designated vehicle exit point. The area where vehicle washing facilities and the exit point shall be paved with concrete, bituminous materials or hardcores; When there are open excavation and reinstatement works, hoarding of not less than 2.4m high shall be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction site that is within 30m of a vehicle entrance or exit shall be kept clear 	Good construction site practices to control the dust impact on the nearby sensitive receivers to within the relevant criteria	All construction sites	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation

		Objectives of the		Implen	nentation	Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	 of dusty materials; Surfaces where any pneumatic or power driven drilling, cutting, polishing or other mechanical breaking operation takes place shall be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities shall be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting shall be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport shall be totally enclosed by impervious sheeting; Exposed earth shall be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 						
S5.5.5.4	 For the barging facilities at the site compound, the following good site practice is required: All road surfaces within the barging facilities shall be paved. Vehicles should pass through designated wheel wash facilities. Continuous water spray shall be installed at the loading point. 	Good construction site practices to control the dust impact on the nearby sensitive receivers to within the relevant criteria	Site compound	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation 	
\$5.5.5.5	An audit and monitoring programme during the construction phase should be implemented by the Contractor to ensure that the construction dust impacts are controlled to within the HKAQO. Detailed requirements for the audit and monitoring programmes are given separately in the EM&A manual.	Monitor the 1-Hour and 24-Hr TSP levels at the representative dust monitoring stations to ensure compliance with relevant criteria throughout the construction period	Selected representative dust monitoring station (Drawing no. 209506/EMA/ AIR/001)	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation 	

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
S6.6.4.3	 Good site practice and noise management techniques: Only well-maintained plant shall be operated on-site and the plant shall be serviced regularly during the construction programme; Machines and plant (such as trucks, cranes) that are in intermittent use shall be shut down between work periods or throttled down to a minimum; Plant known to emit noise strongly in one direction, where possible, shall be orientated so that the noise is directed away from nearby NSRs; Silencers or mufflers on construction equipment shall be properly fitted and maintained during the construction works; Mobile plant shall be sited as far away from NSRs as possible and practicable; and Material stockpiles, site office and other structures shall be effectively utilised, where practicable, to screen noise from on-site construction activities. 	To minimize construction noise impact arising from the Project on the affected NSRs	All construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
S6.6.4.5-6	Use of quiet powered mechanical equipment and working methods	Reduce noise levels of plant items	All construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
S6.6.4.7	Install site hoarding at the site boundaries between noisy construction activities and NSRs	Reduce the construction noise levels at low-level zone of NSRs through partial screening	All construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
S6.6.4.8-11	Use of temporary or movable noise barriers and full enclosure for relatively fixed plant source	Screen the noisy plant items to be used at all construction sites	For plant items listed in Table 6.7 and Appendix 6.1 of the EIA report at all construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
	Implement a noise monitoring programme under the EM&A manual	Monitor the construction noise levels at the selected representative locations	Selected representative noise monitoring stations (Drawing no. 209506/EMA/NS/001 & 209506/EMA/NS/002)	Contractor	Construction stage	• Annex 5, TM-EIAO
\$6.7.3.1	Partial enclosures along Road D9 and application of low noise surfacing material along CBL and Road D9	To minimize road traffic noise impact arising from the CBL and Road D9 on the affected NSRs	CBL and Road D9 (Drawing no. 209506/EMA/NS/003) (Drawing no.	CEDD/ Contractor	During operational stage	• Annex 5, TM-EIAO

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
Water Qua	ality Impact (Contraction Phase)	·	·	•	•	
S8.6.4.3	 Marine Piling and Pile Excavation Works Marine piling and pile excavation works shall be undertaken in such a manner as to minimize re-suspension of sediments. Standard good practice measures shall be implemented, including the following requirements: All marine piling and pile excavation works shall be conducted within a floating single silt curtain. Mechanical closed grabs (with a size of5m3) shall be designed and maintained to avoid spillage and should seal tightly while being lifted. Barges shall have tight fitting seals to their bottom openings to prevent leakage of material. Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes. Loading of barges shall be controlled to prevent splashing of dredged material to the surrounding water. Barges shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation. Excess material shall be cleaned from the decks and exposed fittings of barges before the vessel is moved. Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action. All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash. The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site. 	To control potential impacts from marine piling and pile excavation works	During marine piling and pile excavation works	Contractor	Construction stage	TM-EIAO; and WPCO
\$8.6.4.4	 Construction Site Runoff In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN 1/94), construction phase mitigation measures, where appropriate, shall include the following: The design of efficient silt removal facilities shall be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The 	Control potential water quality impacts from construction site run-off	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO

detailed des the contract Open stock aggregates, be covered Measures si construction water bodie: All vehicles construction is deposited sited wheel construction have sand a weekly bas process. Th from, the w with suffic prevent veh roads and di Construction collected, h quality impa All fuel tanl and sited on 110% of the spilled fuel nearby; and Regular env carried out shall be po workers not meander, we		Objectives of the		Implen	nentation	Requirements
 the contract. Open stock aggregates, be covered with aggregates, be covered with aggregates, be covered with a survey set in the construction water bodies. All vehicles construction is deposited sited wheel construction have sand weekly bas process. The from, the with suffic prevent veh roads and dhe Construction collected, he quality impates. All fuel tank and sited on 110% of the spilled fuel nearby; and Regular envent carried out shall be poworkers not meander, weekly workers not meander, weekly be shown with suffic prevent we we with suffic prevent we with suffic prevent we with suffic prevent we we with suffic prevent we with suffic prevent we we	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 detailed design of the sand/silt traps shall be undertaken by the contractor prior to the commencement of construction; Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m3 shall be covered with tarpaulin or similar fabric during rainstorms. Measures shall be taken to prevent the washing away of construction materials, soil, silt or debris into any marine water bodies; All vehicles and plant shall be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities shall be provided at every construction site exit where practicable. Wash-water shall have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road shall be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains; Construction solid waste, debris and rubbish on site shall be collected, handled and disposed of properly to avoid water quality impacts; All fuel tanks and storage areas shall be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby; and Regular environmental audit on the construction site shall be carried out in order to prevent any malpractices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the meander, wetlands and fish ponds. 					
Portable che provided for	 Sewage from workforce Portable chemical toilets and sewage holding tanks shall be provided for handling the construction sewage generated by the workforce; 	Control potential water quality impacts from sewage	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.					
	Monitoring Implement a marine water quality monitoring programme under the EM&A on level of suspended solids (SS) / turbidity and dissolved oxygen (DO) shall be carried out.	Control potential water quality impacts from marine piling and pile excavation works	Selected monitoring stations (Drawing no. 209506/EMA/WQ/001)	Contractor	Construction station	TM-EIAO; andWPCO
\$8.7.3.2	Operational phase – Runoff from road surface Proper drainage systems with silt traps and oil interceptors shall be installed, maintained and cleaned at regular intervals.	Control potential water quality impacts from road surface runoff	CBL and Road D9	Contractor	Construction and operational stage	TM-EIAO; andWPCO
Waste Mar	nagement (Contraction Phase)					
\$9.5.2	 Good Site Practices Recommendations for good site practices: Nomination of an approved personnel to be responsible for the implementation of good site practices, arrangements for collection and effective deposal to an appropriate facility of all wastes generated at the site; Training of site personnel in proper waste management and chemical handling procedures; Provision of sufficient waste disposal points and regular collection for disposal; Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Centre; Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and Implementation of a recording system for the amount of wastes generated/recycled and disposal sites. 	Good site practices which ensure waste generated during construction phase is properly managed	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
\$9.5.4	 Waste Reduction Measures Recommendations for achieving waste reduction include: On-site reuse of any material excavated as far as practicable; Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of material and their proper disposal; Collection of aluminum cans and waste paper by individual collectors during construction should be encouraged. Separately labelled recycling bins should also be provided to segregate these wastes from other general refuse by the workforce; Recycling of any unused chemicals and those with remaining functional capacity as far as possible; Prevention of the potential damage or contamination to the construction materials though proper storage and good site practices; Planning and stocking of construction materials should be made carefully to minimize amount of waste generated avoid unnecessary generation of waste; and Training on the importance of appropriate waste management procedures, including waste reduction, reuse and recycling should be provided to workers. 	To reduce amount of waste generated during construction phase	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005
89.5.5-6	 Storage, Collection and Transportation of Waste Recommendations for proper storage include: Waste such as soil should be handled and stored well to ensure secure containment; Stockpiling area should be provided with covers and water spraying system to prevent materials from being washed away and to reduce wind-blown litter; and Different locations should be designated to stockpile each material to enhance reuse. With respect to the collection and transportation of waste from the construction works, the following is recommended: Remove waste in a timely manner; Employ trucks with cover or enclosed containers for waste transportations; Obtain relevant waste disposal permits from the appropriate 	To reduce the environmental implications of improper storage	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005

		Objectives of the		Implementation		Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 authorities; and Disposal of waste should be done at licensed waste disposal facilities. 					
S9.5.8-11	 C&D Materials The following mitigation measures shall be implemented in handling the waste: Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; Disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation; Standard formwork or pre-fabrication order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Metal hoarding should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage; and The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites 	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005 ETWB TCW No. 06/2010
S9.5.13	 should be considered for such segregation and storage. Excavated Marine Sediments During transportation and disposal of the excavated marine sediments, the following measures shall be taken to minimize potential environmental impacts: • Bottom opening of barges should be fitted with tight fitting 	To minimize potential impacts on water quality	All construction sites where applicable	Contractor	Construction stage	• ETWBTC (Works) No. 34/2002

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved; Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation; Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP; and Barges should not be filled to a level that would cause the overflow of materials or sediment-laden water during loading or transportation. 					
S9.5.14-17	For those processes which generate chemical waste, the Contractor shall identify any alternatives that generate reduced quantities or even no chemical waste, or less dangerous types of chemical waste.	To ensure proper management of chemical waste	All construction sites	Contractor	Construction stage	• Waste Disposal (Chemical Waste) (General) Regulation;
	If chemical waste is produced at the construction site, the Contractor is required to register with EPD as chemical waste producers. Chemical waste shall be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows. Containers used for storage of chemical wastes shall:					Code of Practice on the Packaging, Labelling and Storage of Chemical Waste
	 Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; Have a capacity of less than 450 L unless the specification 					
	 have been approved by EPD; and Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulations. The storage area for chemical wastes shall: 					
	 Be clearly labelled and used solely for the storage of chemical wastes; Be enclosed on at least 3 sides; 					
	• Have an impermeable floor and bunding of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest;					

		Objectives of the		Implementation		Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	 Have adequate ventilation; Be covered to prevent rainfall entering (water collected within the bund must be tested and disposed as chemical waste, if necessary); and Be arranged so that incompatible materials are adequately separated. Disposal of chemical waste shall: Be via a licensed waste collector; and Be to a facility licensed to receive chemical waste, such as the CWTC which also offers a chemical waste collection service and can supply the necessary storage containers; or Be to a re-user of the waste, under approval from EPD. 						
S9.5.18	Sewage An adequate number of portable toilets shall be provided for the on-site construction workers. Any waste shall be transferred to a sewage treatment works by a licensed collector.	Proper handling of sewage from worker to avoid odour, pest and litter impacts	All construction sites	Contractor	Construction stage	• Waste Disposal Ordinance (Cap. 54)	
\$9.5.19	General Refuse General refuse generated on-site shall be stored in enclosed bins or compaction units separately from construction and chemical wastes. Recycling bins shall also be provided to encourage recycling. A reputable waste collector shall be employed by the Contractor to remove general refuse from the site on a daily basis separately from the construction and chemical wastes. Burning of refuse on construction sites is prohibited by law.	Minimize production of general refuse and avoid odour, pest and litter impacts	All construction sites	Contractor	Construction stage	• Waste Disposal Ordinance (Cap. 54)	
\$10.7.2.4	Good Site Practices – The integrity and effectiveness of all silt curtains shall be regularly inspected. Effluent monitoring should be incorporated to make sure that the discharged effluent from construction sites meets the relevant effluent discharge guidelines.	To minimize potential impacts on water quality and protect marine communities within Junk Bay	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO	
\$10.7.2.5	Site runoff control – For works on land, standard site runoff control measures will be established and strictly enforced to ensure that discharge of contaminated or silt-laden runoff into marine waters is minimized.	To minimize potential impacts on water quality and protect marine communities within Junk Bay	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO	
\$10.9.1.1	The marine water quality monitoring programme recommended in Chapter 8 of this EIA report and this EMIS would also serve to protect the marine communities inside Junk Bay.	To minimize potential impacts on water quality and protect marine	Selected monitoring stations (Drawing no. 209506/EMA/WQ/001)	Contractor	Construction stage	TM-EIAO; andWPCO	

		Objectives of the		Implementation		Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
		communities within Junk Bay					
S11.6.2.2	Good Site Practices: – The integrity and effectiveness of all silt curtains should be regularly inspected. Effluent monitoring shall be incorporated to make sure that the discharged effluent from construction sites meets the relevant effluent discharge guidelines.	To minimize potential impacts on water quality and protect fishery resources	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO	
\$11.6.2.3	Site runoff control - For works on land, standard site runoff control measures will be established and strictly enforced to ensure that discharge of contaminated or silt-laden runoff is minimized.	To minimize potential impacts on water quality and protect fishery resources	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO	
\$11.8.1.1	The marine water quality monitoring programme recommended in Chapter 8 of this EIA report and this EMIS would also serve to protect the fishery resources.	To minimize potential impacts on water quality and protect fishery resources	Selected monitoring stations (Drawing no. 209506/EMA/WQ/001)	Contractor	Construction stage	TM-EIAO; andWPCO	
Landscape	and Visual	•					
\$13.8.1.2	 The following mitigation measures should be implemented in the construction stage CM1 – The construction area and contractor's temporary works areas should be minimized to avoid impacts on adjacent landscape. CM2 – Reduction of construction period to practical minimum. CM3 – Topsoil, where identified, should be stripped and stored for re-use in the construction of the soft landscape works, where the soil material meets acceptable criteria and where practical. The Contract Specification shall include storage and reuse of topsoil as appropriate. CM4 – Existing trees on boundary of the Project Area shall be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection stage). 	Minimize effects of landscape and visual impacts	Work site/during construction	Funded and implemented by CEDD			

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 CM5 – Trees unavoidably affected by the works shall be transplanted where practical. Trees should be transplanted straight to their final receptor site and not held in a temporary nursery. A detailed Tree Transplanting Specification shall be provided in the Contract Specification, if applicable. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme. CM6 – Advance screen planting to proposed roads and associated structures. CM7 – hydroseeding or sheeting of soil stockpiles with visually unobtrusive material (in earth tone). CM8 – Screening of construction works by hoardings/noise barriers around works area in visually unobtrusive colours, to screen Works. CM9 – Control night-time lighting and glare by hooding all lights. CM10 – Ensure no run-off into water body adjacent to the Project Area. CM11 – Avoidance of excessive height and bulk of buildings and structures 					
\$13.8.1.2	OM1 – Compensatory tree planting for all felled trees shall be provided to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006.	Minimize effects of landscape and visual impacts	of the proposed works	by CEDD. Maintained	Design, construction and operational stages	
\$13.8.1.2	 The following mitigation measures should be implemented in the operational stage: OM2 – A continuous belt of screen planting along the roads. Planting of the belt of trees shall be carried out as advance works ahead of other site formation and building works. OM3 – Maximise soft landscape of the site, where space permits, roadside berms /slope treatment works should be created. OM4 – During detailed design, refine structure layout to create a planting strips along the roads to enhance greenery. OM5 – Use appropriate (visually unobtrusive and 	Minimize effects of landscape and visual impacts		Funded and	construction and operational	

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 non-reflective) building materials and colours, and aesthetic design in built structures. OM6 – Streetscape elements (e.g. paving, signage, street furniture, lighting etc.) shall be sensitively designed in a manner that responds to the local context, and minimizes potential negative landscape and visual impacts. Lighting units should be directional and minimize unnecessary light spill. OM7 – Avoidance of excessive height and bulk of buildings and structures 					
Landfill G				C. t. t		L 1011 C
S14.7.5	 Precautionary measures The following guidance has been extracted from the EPD's Landfill Gas Hazard Assessment Guidance Note Guidance to ensure a robust and comprehensive set of measures to protect workers are provided. During all works, safety procedures shall be implemented to minimize the risks of fires and explosions, asphyxiation of workers (especially in confined space) and toxicity effects resulting from contact with contaminated soils and groundwater. Safety officers who are specifically trained with regard to LFG and leachate related hazards and the appropriate actions to take in adverse circumstances shall be present on all worksites throughout the works. All personnel who work on site and all visitors to the site shall be made aware of the possibility of ignition of gas in the vicinity of the works, the possible presence of contaminated water and the need to avoid physical contact with it. Those staff who work in, or have responsibility for "at risk" areas, including all excavation workers, supervisors and engineers working within the consultation zone, shall receive appropriate training on working in areas susceptible to LFG hazards. Enhanced personal hygiene practices including washing thoroughly after working and eating only in "clean" areas shall be adopted where contact may have been made with any groundwater which is thought to be contaminated with 	Health and safety of the workers	Construction sites within 250m Consultation Zone (Drawing no. 209506/EMA/LFG/001)	Contractor	Construction stage	• Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97)

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	leachate.					
	• Ground level construction plant shall be fitted with vertical exhausts at least 0.6m above ground level and with spark arrestors.					
	• During piping assembly or ducting construction, all valves/seals shall be closed immediately after installation. As construction progresses, all valves/seals should be closed as installed to prevent the migration of gases through the pipeline/conduit. All piping /ducting shall be capped at the end of each working day.					
	• Mobile offices, equipment stores, mess rooms etc. shall be located on an area which has been proven to be gas free (by survey with portable gas detectors) and ongoing monitoring shall be carried out to ensure that these areas remain gas free. Alternatively, such buildings shall be raised clear of the ground. If buildings are raised clear of the ground, the minimum, clear separation distance (as measured from the					
	highest point on the ground surface to the underside of the lowest floor joist) shall be 500mm. However, in this case, it is highly recommended that all the site offices, equipment stores and mess rooms should be located outside the 250m Consultation Zone.					
	• Smoking and naked flames shall be prohibited within confined spaces. "No Smoking" and "No Naked Flame" notices in Chinese and English shall be posted prominently around the construction site. Safety notices shall be posted warning of the potential hazards.					
	• Welding, flame-cutting or other hot works may only be carried out in confined spaces when controlled by a "permit to work" procedure, properly authorized by the Safety Office. The permit to work procedure shall set down clearly the requirements for continuous monitoring of methane,					
	carbon dioxide and oxygen throughout the period during which the hot works are in progress. The procedure shall also require the presence of an appropriately qualified person who shall be responsible for reviewing the gas measurements					
	as they are made, and who shall have executive responsibility for suspending the work in the event of					

		Objectives of the		Impler	nentation	Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	 unacceptable or hazardous conditions. Only those workers who are appropriately trained and fully aware of the potentially hazardous conditions which may arise shall be permitted to carry out hot works in confined areas. During the construction works, adequate fire extinguishers and breathing apparatus sets shall be made available on site and appropriate training given in their use. 						
\$14.7.6	 Landfill gas monitoring The following monitoring shall be undertaken when construction works are carried out in confined space within the 250m Consultation Zone: The works area shall be monitored for methane, carbon dioxide and oxygen using appropriately calibrated portable gas detection equipment. The monitoring requirements and procedures specified in Paragraphs 8.23 to 8.28 of EPD's Guidance Note shall be followed. The monitoring frequency and areas to be monitored shall be set down prior to commencement of the works. Depending on the results of the measurements, actions required will vary. As a minimum these shall encompass the actions specified in Table 14.6 of the EIA report. When portable monitoring equipment is used, the frequency and areas to be monitored should be set down prior to commencement of the works either by the Safety Officer or by an appropriately qualified person. All measurements shall be made with the monitoring tube located not more than 10mm from the surface. A standard form, detailing the location, time of monitoring and equipment used together with the gas concentrations measured, shall be used when undertaking manual monitoring to ensure that all relevant data are recorded. 	Health and safety of the workers	Confined space of construction sites within 250m Consultation Zone	Contractor	Construction stage	• Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97)	
	• If methane (flammable gas) or carbon dioxide concentrations are in excess of the trigger levels or that of oxygen is below the level specified in the Emergency Management in the following section, then evacuation shall be initiated.						
S14.7.8-9	Emergency management In the event of the trigger levels specified in Table 14.6 of the EIA report being exceeded, a person, such as the Safety	Health and safety of the workers	Confined space of construction sites within 250m Consultation Zone	Contractor	Construction stage	• Landfill Gas Hazard Assessment	

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	Officer, shall be nominated, with deputies, to be responsible for dealing with any emergency which may occur due to LFG.					Guidance Note (EPD/TR8/97)
	In an emergency situation the nominated person, or his deputies, shall have the necessary authority and shall ensure that the confined space is evacuated and the necessary works implemented for reducing the concentrations of gas.					
\$14.7.16	 Protection measures - Operational phase An assumed presence of landfill gas shall be adopted at all times by maintenance workers; all maintenance workers inspecting any manhole shall be fully trained in the issue of LFG hazard; any manhole which is large enough to permit to access to personnel shall be subject to entry safety procedure; Code of Practice on Safety and Health at Work in Confined Spaces shall be followed to ensures compliance with the Factories and Industrial Undertakings (Confined Spaces) Regulations of the Factories and Industrial Undertakings Ordinance; a strictly regulated "work permit procedure" shall be implemented and the relevant safety procedures must be rigidly followed; and Adequate communication with maintenance staff shall be maintained with respect to LFG. 	Health and safety of the workers	Utility maintenance areas within 250m Consultation Zone/during operational period	Utility companies	Operational stage	 Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97); and Code of Practice on Safety and Health at Work in Confined Space
S14.7.17	General recommended precautionary & protection measures – Operational phase LGF surveillance exercise shall be undertaken by the utility companies at the utility manholes/inspection chambers. The surveillance exercise shall be undertaken for the duration of the site occupancy, or until such time that EPD agree that surveillance is no longer required and this shall be based on all the available monitoring data for methane, carbon dioxide and oxygen.	Health and safety of the workers	Utility maintenance areas within 250m Consultation Zone/during operational period	Utility companies	Operational stage	 Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97); and Code of Practice on Safety and Health at Work in Confined Space