

JOB NO.: TCS00975/18

CEDD CONTRACT AGREEMENT NO. EDO/04/2018 -ENVIRONMENTAL TEAM FOR CROSS BAY LINK, TSEUNG KWAN O

MONTHLY ENVIRONMENTAL MONITORING & AUDITING Report of the Project – January 2020

PREPARED FOR CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT (CEDD)

Date	Reference No.	Prepared By	Certified By
25 May 2020	TCS00975/18/600/R0339v3	Http	Am

Martin Li (Environmental Consultant)

Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks
1	7 February 2020	First Submission
2	14 February 2020	Amended against IEC's comment
3	25 May 2020	Amended against EPDs comment

Acuity Sustainability Consulting Limited – Nature & Technologies (HK) Limited Joint Venture

Our ref: ASCL-2018009

AECOM Asia Company Limited 8/F., Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, New Territories, Hong Kong

Attention: Mr. Conrad NG

10 July 2020

Dear Sir,

Contract No. NE/2017/07 & NE/2017/08 Cross Bay Link, Tseung Kwan O Monthly EM&A Reports for January to May 2020

I refer to the email of the ET concerning the Revised Monthly EM&A Report for: January 2020 (Version 3 with Ref. No. TCS00975/18/600/R0339v3), February 2020 (Version 3 with Ref. No. TCS00975/18/600/R0344v3), March 2020 (Version 2 with Ref. No. TCS00975/18/600/R0362v2), April 2020 (Version 3 with Ref. No. TCS00975/18/600/R0375v3), and May 2020 (Version 4 with Ref. No. TCS00975/18/600/R0399v4). We have no adverse comment on it and verify the captioned reports according to section 1.9 of Environmental Permit with No. EP-459-2013.

Yours faithfully,

Li Wai Ming Kevin Independent Environmental Checker

cc. Mr. T.W. TAM (ETL) Ms. Sheri S.Y. LEUNG (CEDD)

EXECUTIVE SUMMARY

- ES01 Civil Engineering and Development Department (hereafter referred as "CEDD") is the Project Proponent and the Permit Holder of the Project Cross Bay Link, Tseung Kwan O (hereinafter referred as "the Project") which is a Designated Project to be implemented under Environmental Permit number EP-459/2013 (hereinafter referred as "the EP-459/2013" or "the EP").
- ES02 AUES was awarded the CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O (hereinafter called "the Service Contract"). The Services under the Service Contract is to provide environmental monitoring and audit (EM&A) services for the Works Contracts pursuant to the requirement of Environmental Team (ET) under the Approved EM&A Manual to ensure that the environmental performance of the Works Contracts comply with the requirement specified in the EM&A Manual and EIA Report of Agreement No. CE 43/2008 (HY) Cross Bay Link, Tseung Kwan O - Investigation and other relevant statutory requirements.
- ES03 To facilitate management, the proposed Works of the project was divided into two Civil Engineering and Development Department (CEDD) Works contracts included Contract 1 (Contract No. NE/2017/07) and Contract 2 (Contract No. NE/2017/08). The date for commencement of Contract 1 was 3rd December 2018 while the date for commencement of Contract 2 was 17th January 2019.
- ES04 According to the Approved Environmental Monitoring & Audit (EM&A) Manual, air quality, noise and water quality monitoring are required to be conducted during the construction phase of the Project. As part of the EM&A programme, baseline monitoring shall undertake before the Project construction work commencement to determine the ambient environment condition. The baseline air quality, background noise and water quality monitoring has been carried out between 21st September 2018 and 13th November 2018 at the designated and interim locations. The baseline monitoring report under the EP-459/2013 has been compiled by the ET and verified by Independent Environmental Checker (hereinafter the "IEC") prior submitted to EPD on 19th November 2018 for endorsement.
- ES05 This is the 14^{th} Monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from I^{st} to 31^{th} January 2020 (hereinafter 'the Reporting Period').

CONSTRUCTION WORKS CONDUCTED AT THE REPORTING MONTH

- ES06 The major construction activities of Contract 1 (Contract No. NE/2017/07) undertaken in this Reporting Period are:-
 - Piling works at Portion II
 - Welding of steel bracket for precast shell installation at Portion II
 - Fabrication of bottom deck panels, top deck panels and diaphragm panels at Portion II
 - Fabrication of arch panel
 - Precast shell fabrication at Portion II
- ES07 The major construction activities of Contract 2 (Contract No. NE/2017/08) undertaken in this Reporting Period are:-
 - Bored-Piling Works (Portion III, VI & VII)
 - Pre-bored Socket H-Pile (Portion VI)
 - Pre-drilling Works (Portion VI)
 - Excavation Work (Portion VI)
 - Drainage Installation Work (Portion III)
 - Sheet pile Work (Portion VI)
 - Footing construction (Portion III)

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES08 Environmental monitoring activities under the EM&A program in this Reporting Period are summarized in the following table.

reriou				
Issues	Enviro	Sessions		
A in One liter	1-Hour TSF)	18	
Air Quality	24-Hr TSP		6	
Construction Notes	Leq (30min) Daytime	11	
Construction Noise	Leq (5min)	Evening ^(Note 1)	4	
Water Quality	Marine Wat	13		
	Contract 1	ET Regular Environmental Site Inspection	4	
Inspection (Audit		Joint site audit with Project Consultant and IEC	1	
Inspection / Audit		ET Regular Environmental Site Inspection	4	
	Contract 2	Joint site audit with Project Consultant and IEC	1	

Table ES-4 Summary Environmental Monitoring Activities Undertaken in the Reporting Period

Note 1 Total sessions are counted by every 3 consecutive Leq5min

Note 2 Total sessions are counted by monitoring days

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES09 No air quality monitoring exceedance was recorded in this Reporting Period. Two (2) daytime construction noise monitoring action level exceedance was recorded and two (2) sessions of evening construction noise monitoring limit level exceedances were recorded in this Reporting Period. For marine water quality monitoring, no Action Level and Limit Level exceedances was recorded in the reporting period. NOEs were issued to notify EPD, IEC, the Contractor and the Project Consultant. The statistics of environmental exceedance and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action Level		Event & Action		
Issues	Parameters		Limit Level	Investigation Results	Corrective Actions	
Air Quality	1-Hour TSP	0	0			
All Quality	24-Hr TSP	0	0			
Construction Noise	Leq _{30min} Daytime	2	0	Project related	Mitigation measures were enhanced.	
Noise	Leq _{5min} Evening	0	2	Not project related	NA	
Water Quality	DO	0	0			
(Marine Water)	Turbidity	0	0			
(Marme water)	SS	0	0			

 Table ES-5
 Summary Environmental Monitoring Parameter Exceedance in the Reporting Period

ES10 For the evening construction noise monitoring, two exceedances were recorded in the reporting period, investigations were carried out and it was considered that the exceedances recorded are unlikely caused by the Project.

ENVIRONMENTAL COMPLAINT

ES11 Two (2) environmental complaints were recorded in this Reporting Period for the Project. The statistics of environmental complaint are summarized in the following table.

Table ES-6 Summary Environmental Complaint Records in the Reporting Period

-	Donorting	Environmental Complaint Statistics			Related with	
	Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	the Works Contract(s)
	1 – 31 January	1	0	1	NA	NA
	2020	2	2	2	Noise	2

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES12 No environmental summons or prosecutions was received in this Reporting Period for the Project. The statistics of environmental summons or prosecutions are summarized in the following tables.

Table ES-7 Summary Environmental Summons Records in the Reporting Period

Departing		Environn	Related with		
Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	the Works Contract(s)
1 – 31 January	1	0	0	NA	NA
2020	2	0	0	NA	NA

Table ES-8 St	mmary Environmental Prosecutions Records in the Reporting Period
---------------	--

Departing		Environm	Related with		
Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	the Works Contract(s)
1 – 31 January	1	0	0	NA	NA
2020	2	0	0	NA	NA

REPORTING CHANGE

ES13 Evening noise is now presented as Leq (5min) and each session is counted per three consecutive Leq (5min).

SITE INSPECTION BY EXTERNAL PARTIES

ES14 No site inspection was undertaken by AFCD within the Reporting Period. EPD inspection was undertaken on 8 January 2020.

FUTURE KEY ISSUES

- ES15 Due to the dry and windy season has begun in Hong Kong, the Contractors were reminded that all the works being undertaken must fulfill environmental statutory requirements, especially construction dust coming from the work sites of the Project.
- ES16 Construction noise would be the key environmental issue as Lohas Park Phase 4 was already available for resident occupation. The noise mitigation measures such as use of quiet plants and installation of temporary noise barrier at the construction noise predominate area should be fully implemented in accordance with the EM&A requirement.

Table of Contents

1.	INTROD	UCTION	3
	1.1	PROJECT BACKGROUND	3
	1.2	REPORT STRUCTURE	3
2.	PROJEC	T ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION	5
	2.1	PROJECT ORGANIZATION	5
	2.2	CONSTRUCTION PROGRESS	6
	2.3	SUMMARY OF ENVIRONMENTAL SUBMISSIONS	7
3.	SUMMA	RY OF ENVIRONMENTAL MONITORING PROGRAMMES AND	
	-	EMENTS	9
	3.1	GENERAL	9
	3.2	MONITORING PARAMETERS	9 9
	3.3 3.4	Monitoring Locations Monitoring Frequency and Period	9 10
	3.5	MONITORING EQUIPMENT	11
	3.6	Monitoring Procedures	12
	3.7	DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	15
	3.8	DATA MANAGEMENT AND DATA QA/QC CONTROL	17
4.	AIR OUA	ALITY MONITORING	18
	4.1	GENERAL	18
	4.2	RESULTS OF AIR QUALITY MONITORING IN THE REPORTING MONTH	18
5.	CONSTR	UCTION NOISE MONITORING	19
	5.1	GENERAL	19
	5.2	RESULTS OF NOISE MONITORING	19
6.	WATER	QUALITY MONITORING	21
	6.1	GENERAL	21
	6.2	RESULTS OF WATER QUALITY MONITORING	21
7.	WASTE N	MANAGEMENT	26
	7.1	GENERAL WASTE MANAGEMENT	26
	7.2	RECORDS OF WASTE QUANTITIES	26
8.	SITE INS	SPECTION	27
	8.1	REQUIREMENTS	27
	8.2	FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	27
9.	LANDFI	LL GAS MONITORING	28
	9.1	GENERAL REQUIREMENT	29
	9.2	LIMIT LEVELS AND EVENT AND ACTION PLAN	29
	9.3	LANDFILL GAS MONITORING	29
10.	ENVIRO	NMENTAL COMPLAINT AND NON-COMPLIANCE	31
	10.1	ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	31
11.	IMPLEM	IENTATION STATUS OF MITIGATION MEASURES	33
	11.1	GENERAL REQUIREMENTS	33
	11.2	TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	33
	11.3	IMPACT FORECAST	34
12.	CONCLI	JSIONS AND RECOMMENDATIONS	35
	12.1	Conclusions	35
	12.2	RECOMMENDATIONS	35

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report – January 2020

LIST OF TABLES

LIST OF TAB	
TABLE 2-1	DOCUMENTS SUBMISSION UNDER ENVIRONMENTAL PERMIT REQUIREMENT
TABLE 2-2	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE PROJECT WORKS (CONTRACT 1)
TABLE 2-3	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE PROJECT WORKS (CONTRACT 2)
TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	DESIGNATED AIR QUALITY MONITORING LOCATION RECOMMENDED IN EM&A MANUAL
TABLE 3-3	DESIGNATED CONSTRUCTION NOISE MONITORING LOCATION RECOMMENDED IN EM&A MANUAL
TABLE 3-4	DESIGNATED AND INTERIM ALTERNATIVE LOCATION FOR AIR QUALITY AND NOISE MONITORING IN THE REPORTING PERIOD
TABLE 3-5	LOCATION OF WATER QUALITY MONITORING STATION
TABLE 3-6	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-7	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-8	WATER MONITORING EQUIPMENT
TABLE 3-9	TESTING METHOD AND REPORTING LIMIT OF THE CHEMICAL ANALYSIS
TABLE 3-10	ACTION AND LIMIT LEVELS FOR AIR QUALITY
TABLE 3-11	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-12	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	1-HOUR AND 24-HOUR TSP AIR QUALITY IMPACT MONITORING RESULTS
TABLE 5-1	DAYTIME CONSTRUCTION NOISE IMPACT MONITORING RESULTS AT CNMS-1
TABLE 5-2	DAYTIME CONSTRUCTION NOISE IMPACT MONITORING RESULTS AT CNMS-5
TABLE 5-3	EVENING CONSTRUCTION NOISE IMPACT MONITORING RESULTS AT CNMS-1
TABLE 5-4	EVENING CONSTRUCTION NOISE IMPACT MONITORING RESULTS AT CNMS-5
TABLE 6-1	RESULT SUMMARY OF DEPTH AVERAGE (SURFACE & MIDDLE LAYER) OF DO (MG/L)
TABLE 6-2	RESULT SUMMARY OF BOTTOM DEPTH OF DO (MG/L)
TABLE 6-3	RESULT SUMMARY OF DEPTH AVERAGE OF TURBIDITY (NTU)
TABLE 6-4	RESULT SUMMARY OF DEPTH AVERAGE OF SUSPENDED SOLID (MG/L)
TABLE 6-5	Result Summary of Depth Average of Temperature (°C)
TABLE 6-6	RESULT SUMMARY OF DEPTH AVERAGE OF SALINITY (PPT)
TABLE 6-7	RESULT SUMMARY OF DEPTH AVERAGE OF PH
TABLE 6-8	SUMMARY OF WATER QUALITY EXCEEDANCE
TABLE 7-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
TABLE 7-2	SUMMARY OF QUANTITIES OF C&D WASTES
TABLE 8-1	SITE OBSERVATIONS OF CONTRACT 1
TABLE 8-2	SITE OBSERVATIONS OF CONTRACT 1
TABLE 9-1	ACTIONS IN THE EVENT OF LANDFILL GAS BEING DETECTED IN EXCAVATIONS
TABLE 9-2	SUMMARY OF LANDFILL GAS MEASUREMENT RESULTS
TABLE 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
TABLE 11-1	ENVIRONMENTAL MITIGATION MEASURES IN THE REPORTING MONTH
LIST OF APP	ENDICES
APPENDIX A	PROJECT LAYOUT PLAN
APPENDIX B	PROJECT ORGANIZATION CHART & CONTACT DETAILS OF KEY PERSONNEL
APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
APPENDIX D	MONITORING LOCATION (AIR QUALITY, NOISE AND WATER QUALITY)
APPENDIX E	EVENT AND ACTION PLAN
APPENDIX F	IMPACT MONITORING SCHEDULE OF THE REPORTING MONTH AND COMING MONTH
APPENDIX G	CALIBRATION CERTIFICATES OF EQUIPMENT AND THE ACCREDITATION LABORATORY CERTIFICATE
APPENDIX H	DATABASE OF MONITORING RESULTS
APPENDIX I	GRAPHICAL PLOTS OF MONITORING RESULTS
APPENDIX J	METEOROLOGICAL DATA
APPENDIX K	WASTE FLOW TABLE
APPENDIX L	IMPLEMENTATION RECORD OF WATER MITIGATION MEASURES IN THE REPORTING MONTH

APPENDIX L IMPLEMENTATION RECORD OF WATER MITIGATION MEASURES IN THE REPORTING MONTH

APPENDIX M IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES (ISEMM)

1. INTRODUCTION

1.1 **PROJECT BACKGROUND**

- 1.1.1 Civil Engineering and Development Department (hereafter referred as "CEDD") is the Project Proponent and the Permit Holder of the Project Cross Bay Link, Tseung Kwan O (hereinafter referred as "the Project") which is a Designated Project to be implemented under Environmental Permit number EP-459/2013 (hereinafter referred as "the EP-459/2013" or "the EP").
- 1.1.2 AUES was awarded the CEDD Contract Agreement No. EDO/04/2018 Environmental Team for Cross Bay Link, Tseung Kwan O (hereinafter called "the Service Contract"). The Services under the Service Contract is to provide environmental monitoring and audit (EM&A) services for the Works Contracts pursuant to the requirement of Environmental Team (ET) under the Approved EM&A Manual to ensure that the environmental performance of the Works Contracts comply with the requirement specified in the EM&A Manual and EIA Report of Agreement No. CE 43/2008 (HY) Cross Bay Link, Tseung Kwan O - Investigation and other relevant statutory requirements.
- 1.1.3 To facilitate management, the proposed Works of *Cross Bay Link, Tseung Kwan O* (hereinafter called "the Project') was divided into two Civil Engineering and Development Department (CEDD) Works contracts included *Contract 1 (Contract No. NE/2017/07)* and *Contract 2 (Contract No. NE/2017/08)*. The details of each contract Works are summarized below and the delineation of each contract is shown in *Appendix A*.

Contract 1 (Contract No. NE/2017/07)

- (i) 400m section of marine viaducts of steel deck sections including the Eternal Arch Bridge;
- (ii) 600m section of marine viaducts of concrete deck sections;
- (iii) An E&M Plantroom and associated building services; and
- (iv) E&M provisions.

Contract 2 (Contract No. NE/2017/08)

- (i) Elevated deck structures along Road D9;
- (ii) A 210m section of cycle track and footpath ramp bridge;
- (iii) A 630m section of noise semi-enclosure covering the entire length of Road D9, and;
- (iv) Lift, staircase, modification of existing seawall along Road D9, landscaping and miscellaneous works.
- 1.1.4 The date for commencement of Contract 1 is 3^{rd} December 2018 while the date for commencement of Contract 2 is 17^{th} January 2019.
- 1.1.5 As part of the EM&A programme, baseline monitoring shall be undertaken before the Project construction work commencement to determine the ambient environmental condition. The baseline air quality, background noise and water quality monitoring has been carried out between **21**st September 2018 and 13th November 2018 at the designated and interim locations. The baseline monitoring report under the EP-459/2013 has been compiled by the ET and verified by Independent Environmental Checker (hereinafter the "IEC") prior submitted to EPD on 19th November 2018 for endorsement.
- 1.1.6 This is the 14^{th} Monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from I^{st} to 31^{st} January 2020 (hereinafter 'the Reporting Period').

1.2 REPORT STRUCTURE

- 1.2.1 The Environmental Monitoring and Audit (EM&A) Monthly Report is structured into the following sections:-
 - Section 1IntroductionSection 2Project Organization and Construction ProgressSection 3Summary of Impact Monitoring RequirementsSection 4Air Quality MonitoringSection 5Construction Noise Monitoring

Section 6	Water Quality Monitoring
Section 7	Waste Management
Section 8	Site Inspections
Section 9	Landfill Gas Monitoring
Section 10	Environmental Complaints and Non-Compliance
Section 11	Implementation Status of Mitigation Measures
Section 12	Conclusions and Recommendations

2. PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION

2.1 **PROJECT ORGANIZATION**

2.1.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

The Project Consultant

- 2.1.2 The Project Consultant (hereinafter "the Consultant") is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Consultant with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors', ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation

The Contractor(s) of Works Contract(s)

- 2.1.3 There will be one contractor for each individual works contract. The Contractor(s) should report to the Consultant. The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.1.4 ET shall not be in any way an associated body of the Contractor(s) and employed by the Permit Holder (i.e., CEDD) to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitable qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. ET shall report to the Project Proponent and the duties shall include:
 - Conduct baseline monitoring, impact monitoring and post-construction monitoring and the associated in-situ and laboratory tests to monitor various environmental parameters as required in the EM&A Manual and the EP
 - Analyze the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications

- Audit environmental conditions on site
- Report on the environmental monitoring and audit results to EPD, the Consultant, the IEC and Contractor(s) or their delegated representatives
- Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
- Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
- Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
- Adhere to the procedures for carrying out complaint investigation
- Set up a dedicated web site where the project information, all environmental monitoring and audit data and reports described in Condition 5.2 of the EP, and all finalized submissions and plans required under the EP are to be placed for public inspection
- Upload the environmental monitoring results to the dedicated web site in accordance with requirements of the EP and EM&A Manual
- To carry out the Operational Phase Landfill Gas monitoring during effluent drainage system maintenance for one year

Independent Environmental Checker (IEC)

- 2.1.5 IEC will be employed for this Project. The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor(s) or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 7 years' experience in EM&A and have relevant professional qualifications. The duty of IEC should be:
 - Provide proactive advice to the Project Consultant and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the Project Consultant and Project Proponent on a monthly basis

2.2 CONSTRUCTION PROGRESS

2.2.1 3-month rolling construction program of the each Works Contract is enclosed in *Appendix C*; and the major construction activities undertaken in the Reporting Period is presented in below sub-sections.

Contract 1 (Contract No. NE/2017/07)

- 2.2.2 The major construction activities of Contract 1 undertaken in this Reporting Period are:-
 - Piling works at Portion II
 - Welding of steel bracket for precast shell installation at Portion II
 - Fabrication of bottom deck panels, top deck panels and diaphragm panels at Portion II
 - Fabrication of arch panel
 - Precast shell fabrication at Portion II

Contract 2 (Contract No. NE/2017/08)

- 2.2.3 The major construction activities of Contract 2 undertaken in this Reporting Period are:-
 - Pre-bored Socket H-Pile (Portion VI)
 - Pre-drilling Works (Portion VI)
 - Excavation Work (Portion VI)
 - Sheet Piling (Portion III)
 - Footing construction (Portion VI)
 - Excavation & RC works (Superstructure) (Portion III)
 - Installation of temporary road lightings & removal of existing road lightings (Portion III)

2.3 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.3.1 The required documents list below shall be to submit to EPD for retention:

Table 2-1 Documents Submission under Environmental Permit Requirement

EP condition	Submission to EPD	Requirement	Situation
	construction of the Project	no later than 1 month prior to the commencement of construction of the Project	Oct 2018Contract 2 notified EPD on 12 Dec 2018
	the Community Liaison	At least 1 month before the commencement of construction of the Project	 CLG setting has submitted to EPD on 9 Oct 2018
	Organization of Main	construction of the Project	8 8
2.5	Waste Management Plan (WMP)	No later than 1 month before commencement of construction of the Project	
	Plan (LSMP)	No later than 1 month before commencement of construction of the Project	 LSMP was submitted on 1 Nov 2018
	Landfill Gas Hazards	No later than 1 month before commencement of construction of the Project	- 0

- 2.3.2 Upon completed baseline monitoring, a Baseline Monitoring Report was verified by IEC on 19 November 2018 and submitted to EPD on that day for endorsement.
- 2.3.3 The notification of Project dedicated web site to EPD was made on 9 January 2019 (http://www.envcbltko.hk/).
- 2.3.4 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project are presented in *Table 2-2*.

		License/Permit Status				
Item	Description	Permit no./	Valid	Period		
Item	Description	Account no./ Ref. no.	From	То	Status	
1	Notification pursuant to Air pollution Control (Construction Dust) Regulation				Notified on 11 July 2018	
2	Chemical Waste Producer Registration	5213-839-C1232 -19	28 Aug 2018	N/A		
3	Water Pollution Control Ordinance - Discharge	WT00032842-20 18	1 Mar 2019	31 Mar 2024	Valid until 31 March 2024	
	License	WT00034178-20 19	15 Jul 2019	31 Jul 2024	Valid until 31 July 2024	
4	BillingAccountforDisposalofConstructionWaste	7031412	24 Jul 2018	N/A		
	Billing Account for Disposal of Construction Waste (through Vessel delivering)	7032666	07 Nov 2019	07 Feb 2020	Valid until 07 Feb 2020	
5	Marine Dumping Permit (Uncontaminated)	EP-MD-20-080	30 Oct 2019	29 Apr 2020	Valid until 29 Apr 2020	
	Marine Dumping Permit (Contaminated)	EP-ND-20-111	27 Dec 2019	15 Jan 2020	Valid until 15 Jan 2020	
6	Construction Noise Permit	GW-RE1077-19	6 Jan 2020	28 Feb 2020	Valid until 28 Feb 2020	

Table 2-2 Status of Environmental Licenses and Permits of the Project Works (Contract 1)

Remark: Evening marine work at Portion II for Contract 1 was scheduled from 6 - 11 and 20 - 23 January 2020

Table 2-3 Status of Environmental Licenses and Permits of the Project Works (Contract 2)

		License/Permit Status					
Item	Description	Permit no./	Valid	Period	Status		
num	Description	Account no./ Ref. no.	From	То			
1	Notification pursuant to Air pollution Control (Construction Dust) Regulation				Notified on 31 October 2018		
2	Chemical Waste Producer Registration	5213-839-B2500 -04	22 Nov 2018	N/A			
3	Water Pollution Control Ordinance - Discharge License	WT00034244-20 19	8 Jul 2019	31 Jul 2024	Valid until 31 July 2024		
4	Billing Account for Disposal of Construction Waste	7032702	8 Nov 2018	N/A			
5	Marine Dumping Permit	EP/MD/20-073	24 Oct 2019	23 Apr 2020	Valid until 23 April 2020		
6	Construction Noise	GW-RE1021-19	23 Dec 2019	1 Jun 2020	Valid until 1 Jun 2020		
	Permit	GW-RE1018-19	5 Jan 2020	1 Mar 2020	Valid until 1 Mar 2020		

Remark: No evening work and night work was carried out for Contract 2

3. SUMMARY OF ENVIRONMENTAL MONITORING PROGRAMMES AND REQUIREMENTS

3.1 GENERAL

3.1.1 The Environmental Monitoring and Audit Programmes and requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project. A summary of EM&A programmes and requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

3.2.1 Monitoring parameters of air quality, noise and water quality are summarized in *Table 3-1*.

	uninary of ElviceA Requirements
Environmental Issue	Parameters
Air Quality	1-hour TSP by Real-Time Portable Dust Meter; and24-hour TSP by High Volume Air Sampler
Noise	 Leq (30min) in six consecutive Leq(5 min) between 07:00-19:00 on normal weekdays Supplementary information for data auditing, statistical results such as L₁₀ and L₉₀ shall also be obtained for reference.
Water Quality	 In-situ measurement – Dissolved Oxygen (DO) concentration (mg/L) & saturation (%), pH, Salinity (mg/L), Temperature (°C) and Turbidity (NTU); and Laboratory analysis – SS (mg/L)

Table 3-1 Summary of EM&A Requirements

3.3 MONITORING LOCATIONS

Air Quality and Construction Noise

3.3.1 According to the Approved EM&A Manual Section 5.4 and Section 6.3, three (3) representative air sensitive receivers (ASR) and four (4) representative noise sensitive receivers were designated as monitoring stations. The designated air quality and noise monitoring locations are listed in *Table 3-2* and *Table 3-3*, and illustrated in *Appendix D*.

Table 3-2 Designated Air Quality Monitoring Location recommended in EM&A Manual

ID	Location in the EM&A Manual	Currently Situation
AM1	Tung Wah Group of Hospitals Aided Primary School & Secondary School	Not yet construct
AM2	Lohas Park Stage 2 (Planned Development in Area 86)	Under Construction
AM3	Lohas Park Stage 3 (Planned Development in Area 86)	Under Construction

Table 3-3 Designated Construction Noise Monitoring Location recommended by EM&A Manual

ID	Location	Currently Situation			
CNMS-1	Lohas Park Stage 1(Planned Development in Area 86, Package 4) (Southeast facade)	Available for resident occupation in November 2019			
CNMS-2	Lohas Park Stage 1 (Planned Development in Area 86, Package 6) (Southeast facade) Under Construction				
CNMS-3	Lohas Park Stage 3 (Planned Development in Area 86,Package 11) (West facade) Under Construction				
CNMS-4	Tung Wah Group of Hospitals Aided Primary School & Secondary School (Southwest facade)Not yet construct				

3.3.2 As observed and confirmed by ET and IEC during the joint site visit on 29th August 2018, the designated air quality and noise monitoring locations are under construction or yet to construct. It is considered that these designated locations are not appropriate to perform air quality and noise monitoring. In this regard, alternative locations were proposed as interim arrangement to carry out air quality and noise monitoring before occupation of the designated monitoring location. A letter enclosed with the alternative location proposal and IEC verification (Our Ref: TCS00975/18/300/L0038) was sent to EPD on 19th October 2018 and the proposal was agreed by

EPD. Therefore, air quality and construction noise impact monitoring would be performed at the agreed alternative locations until the designated sensitive receivers occupied and granted the premises.

3.3.3 The designated and interim alternative monitoring location for impact air quality and noise monitoring in the Reporting Period are summarized in Table 3-4 and illustrated in *Appendix D*.

Table 3-4	Designated	and	interim	alternative	location	for	air	quality	and	noise
	monitoring i	n the	Reportir	ng Period						

Location ID	Monitoring Parameter	Location
AM4	1-Hour TSP Air Quality	Podium of Lohas Park Phase 2A (Le Prestige)
AM5	24-Hour TSP Air Quality	Boundary of Site Office near Junction of Wan Po Road and Wan O Road
CNMS-1	Noise (L _{eq} , L ₁₀ & L ₉₀)	Podium of Lohas Park Package 4
CNMS-5	Noise (L _{eq} , L ₁₀ & L ₉₀)	Podium of Lohas Park Phase 2A (Le Prestige)

Remark: Since 24-Hour TSP Air Quality monitoring is not granted at AM4 Lohas Park Phase 2A, the 24-Hour TSP monitoring was therefore proposed at AM5 which is located at the boundary of the project site office.

Water Quality

3.3.4 According to Table 7.1 of the approved EM&A Manual Section 7.4, two Control Stations (C3 & C4), six (6) sensitive receivers (CC1, CC2, CC3, CC4, CC13 & SWI1) and one (1) Gradient station (I1) are recommended to perform water quality monitoring. Details and coordinate of these water quality monitoring stations are described in *Table 3-5* and the locations is shown in *Appendix D*.

 Table 3-5
 Location of Water Quality Monitoring Station

Station	Coord	linates	Description
Station	Easting	Northing	Description
CC1	843201	816416	Sensitive Receiver – Coral Sites at Chiu Keng Wan
CC2	844076	817091	Sensitive Receiver – Coral Sites at Junk Bay
CC3	844606	817941	Sensitive Receiver – Coral Sites at Junk Island
CC4	845444	815595	Sensitive Receiver – Coral Sites at Fat Tong Chau West
CC13	844200	817495	Sensitive Receiver – Coral Sites at Junk Bay near Chiu Keng Wan
SWI1	845512	817442	Sensitive Receiver – Tseung Kwan O Salt Water Intake
C3	843821	816211	Control Station (Ebb Tide) – within Junk Bay
C4	844621	815770	Control Station (Flood Tide) – within Junk Bay
I1	844602	817675	Gradient Station – in between Lam Tin Tunnel (LTT) and CBL

3.4 MONITORING FREQUENCY AND PERIOD

3.4.1 To according with the approved *EM&A Manual*, impact monitoring requirements are presented as follows.

Air Quality Monitoring

- 3.4.2 Air quality impact monitoring frequency is as follows:
 - Once every 6 days of 24-hour TSP and 3 times of 1-hour TSP monitoring; during course of works throughout the construction period

Construction Noise Monitoring

- 3.4.3 Construction noise monitoring frequency is as follows:
 - One set of Leq_(30min) measurements in a weekly basis between 07:00 and 19:00 hours on normal weekdays during course of works as throughout the construction period
 - If construction works are extended to include works during the hours of 1900-0700, additional weekly impact monitoring shall be carried out during evening and night-time works. Applicable permits under the NCO shall be obtained by the Contractor.

Water Quality (Marine Water) Monitoring

- 3.4.4 Marine water impact monitoring frequency is as follows:
 - Three days a week, at mid ebb and mid flood tides during course of pile excavation works for the bridge pier foundations underway. Moreover, the intervals between 2 consecutive sets of monitoring day shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

<u>Air Quality Monitoring</u>

3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50)*, Appendix *B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to prove that the instrument is capable of achieving a comparable results to the HVS. The instrument should be calibrated regularly, and the 1-hour sampling shall be determined on yearly basis by the HVS to check the validity and accuracy of the results measured by direct reading method. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory. The equipment used for air quality monitoring is listed in *Table 3-6*.

	Equipment	Model
24-hour TSP	High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170
	Calibration Kit	TISCH Model TE-5025A (S/N: 438320)
1- hour TSP	Portable Dust Meter	Laser Dust Monitor Sibata LD-3B Laser Dust Monitor (S/N: 3Y6501)

Table 3-6Air Quality Monitoring Equipment

Noise Monitoring

3.5.2 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in ms⁻¹. Noise equipment will be used for impact monitoring is listed in *Table 3-7*.

 Table 3-7
 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	B&K 2238 (S/N: 2285762), Rion NL-52 (S/N:00464681)
Calibrator	Rion NC-74 (S/N:34657231)
Portable Wind Speed Indicator	Anemometer AZ Instrument 8908

Water Quality Monitoring

- 3.5.3 For water quality monitoring, the equipment should fulfill the requirement under the Approved *EM&A Manual Section 7.2.* The requirement is summarized below:
 - **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable, weatherproof dissolved oxygen measuring instrument completed with cable, sensor, comprehensive operation manuals, and should be operable from a DC power source. It should be capable of measuring: dissolved oxygen levels in the range of 0-20 mg/L and 0-200% saturation; and a temperature of 0-45 degrees Celsius. It should have a membrane electrode with automatic temperature compensation complete with a cable of not less than 35 m in length. Sufficient stocks of spare electrodes and cable should be available for replacement where necessary.
 - *Turbidity Measurement Equipment* The instrument shall be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment shall use a DC power source. It shall have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
 - Salinity Measurement Instrument A portable salinometer capable of measuring salinity in the range of 0-40 ppt should be provided for measuring salinity of the water at each monitoring location.

- *Water Depth Detector* A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. A detector affixed to the bottom of the works boat, if the same vessel is to be used throughout the monitoring programme, is preferred.
- **Positioning Device** hand-held or boat-fixed type digital Global Positioning System (GPS) with way point bearing indication or other equipment instrument of similar accuracy, should be provided and used during water quality monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- *Water Sampling Equipment* A water sampler, consisting of a transparent PVC or glass cylinder of not less than two liters, which can be effectively sealed with cups at both ends, should be used. The water sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.

3.5.4 Equipment used for water quality impact monitoring is listed in *Table 3-8*.

Equipment	Model	
A Digital Global Positioning System	GPS12 Garmin	
Water Depth Detector	Eagle Sonar CUDA 300	
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends	
Thermometer & DO meter		
pH meter	YSI ProDSS Digital Sampling System Water Quality Meter	
Turbidimeter	(S/N: 15H102620/15H103928)	
Salinometer		
Sample Container	High density polythene bottles (provided by laboratory)	
Storage Container	'Willow' 33-litter plastic cool box with Ice pad	

Table 3-8Water Monitoring Equipment

3.6 MONITORING PROCEDURES <u>Air Quality</u>

1-hour TSP

- 3.6.1 The 1-hour TSP monitor was a brand named "*Sibata LD-3 Laser Dust monitor Particle Mass Profiler & Counter*" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.

24-hour TSP

- 3.6.2 The equipment used for 24-hour TSP measurement is TISCH, Model TE-5170 TSP High Volume Air Sampler, which complied with *EPA Code of Federal Regulation, Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:
 - (a.) An anodized aluminum shelter;
 - (b.) A 8"x10" stainless steel filter holder;
 - (c.) A blower motor assembly;
 - (d.) A continuous flow/pressure recorder;
 - (e.) A motor speed-voltage control/elapsed time indicator;
 - (f.) A 7-day mechanical timer, and
 - (g.) A power supply of 220v/50 Hz
- 3.6.3 For HVS for 24-hour TSP monitoring, the HVS is mounted in a metallic cage with a top for protection and also it is sat on the existing ground or the roof of building. The flow rate of the HVS between 0.6m³/min and 1.7m³/min will be properly set in accordance with the manufacturer's instruction to within the range recommended in *EPA Code of Federal*

Regulation, Appendix B to Part 50. Glass Fiber Filter 8" x 10" of TE-653 will be used for 24-Hour TSP monitoring and would be supplied by laboratory. The general procedures of sampling are described as below:-

- A horizontal platform with appropriate support to secure the samples against gusty wind should be provided;
- No two samplers should be placed less than 2 meters apart;
- The distance between the sampler and an obstacle, such as building, must be at least twice the height that the obstacle protrudes above the sample;
- A minimum of 2 meters of separation from any supporting structure, measured horizontally is required;
- Before placing any filter media at the HVS, the power supply will be checked to ensure the sampler work properly;
- The filter paper will be set to align on the screen of HVS to ensure that the gasket formed an air tight seal on the outer edges of the filter. Then filter holder frame will be tightened to the filter hold with swing bolts. The holding pressure should be sufficient to avoid air leakage at the edge.
- The mechanical timer will be set for a sampling period of 24 hours (00:00 mid-night to 00:00 mid-night next day). Information will be recorded on the field data sheet, which would be included the sampling data, starting time, the weather condition at current and the filter paper ID with the initial weight;
- After sampling, the filter paper will be collected and transfer from the filter holder of the HVS to a sealed envelope and sent to a local HOKLAS accredited laboratory for quantifying.
- 3.6.4 All the sampled 24-hour TSP filters will be kept in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C, for six months prior to disposal.
- 3.6.5 The HVS used for 24-hour TSP monitoring will be calibrated in two months interval for in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A) to establish a relationship between the follow recorder meter reading in cfm (cubic feet per minute) and the standard flow rate, Qstd, in m³/min. Motor brushes of HVS will be regularly replaced. The calibration certificates of the air quality monitoring equipment used for the impact monitoring and the HOKLAS accredited certificate of laboratory was provided in Appendix G.

Noise Monitoring

- 3.6.6 As referred to in the Technical Memorandum (TM) issued under the NCO, sound level meters in compliance with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications shall be used for carrying out the noise monitoring. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.
- 3.6.7 All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq_(30 min) in six consecutive Leq_(5 min) measurements will be used as the monitoring parameter for the time period between 07:00-19:00 hours on weekdays throughout the construction period.
- 3.6.8 The sound level meter will be mounted on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield will be fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point would normally be at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point would be at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.

- 3.6.9 Immediately prior to and following each noise measurement the accuracy of the sound level meter will be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration level from before and after the noise measurement agrees to within 1.0 dB.
- 3.6.10 Noise measurements will not be made in fog, rain, wind with a steady speed exceeding 5m/s or wind with gusts exceeding 10m/s. The wind speed will be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.6.11 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis. The calibration certificates of noise monitoring equipment used for the impact monitoring was provided in Appendix G.

Marine Water Quality

- 3.6.12 Marine water quality monitoring would be conducted at all designated locations in accordance with Table 7.1 of the approved EM&A Manual. The procedures of water sampling, in-situ measurement and chemical analysis are described as below:
 - A Global Positioning System (GPS) will be used to ensure that the correct location was selected prior to sample collection. A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.
 - The marine water sampler will be lowered into the water body at a predetermined depth. The trigger system of the sampler is activated with a messenger and opening ends of the sampler are closed accordingly then the sample of water is collected.
 - During the sampling, the sampling container will be rinsed to use a portion of the marine water sample before the water sample is transferred to the container. Upon sampling completion, the container will be sealed with a screw cap.
 - Before the sampling process, general information such as the date and time of sampling, weather condition and tidal condition as well as the personnel responsible for the monitoring will be recorded on the monitoring field data sheet.
 - In-situ measurement including water temperature, turbidity, dissolved oxygen, salinity, pH and water depth will be recorded at the identified monitoring station and depth. At each station, marine water samples will be collected at three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m. Samples at 1m below water surface and 1m above sea bottom will be collected when the water depth is between 3m and 6m. And sample at mid-depth will be taken when the water depth is below 3m.
 - For the in-situ measurement, two consecutive measurements of sampling depth, temperature, dissolved oxygen, salinity, turbidity and pH concentration will be measured at the sea. The YSI ProDSS Multifunctional Meter will be retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set is more than 25% of the value of the first reading, the reading is discarded and further readings is taken.
 - Marine water sample will be collected by using a water sampler. The high-density polythene bottles will be filled after the water sample collected from the sea. Before the water sample being fills into the sampling bottles, the sampling bottles will be pre-rinsed with the same water sample. The sampling bottles will then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to HOKLAS accredited laboratory for the chemical analysis as followed APHA *Standard Methods for the Examination of Water and Wastewater* 19ed 2540D, unless otherwise specified.
- 3.6.13 Before each round of monitoring, the dissolved oxygen probe will be calibrated by wet bulb method; a zero check in distilled water will be performed with the turbidity and salinity probes. The turbidity probe also will be checked with a standard solution of known NTU and known value of the pH standard solution were used to check the accuracy of pH value before each

monitoring day. Moreover, all in-situ measurement equipment used marine water monitoring will be calibrated at three months interval.

Laboratory Analysis

3.6.14 All water samples included the duplicate samples, was tested with chemical analysis as specified in the EM&A Manual by a HOKALS accredited laboratory - ALS Technichem (HK) Pty Ltd. The chemicals analysis method and reporting limit show *Table 3-9*.

Table 3-9	Testing Method and Reporting Limit of the Chemical Analysis
I WOIC C >	resting internou and reporting mine of the entimetry in

Parameter	ALS Method Code	In-house Method Reference (1)	Reporting Limit
Total Suspended Solids	EA025	APHA 2540D	1 mg/L

Note: 1.

The exact method shall depend on the laboratory accredited method. APHA = Standard Methods for the Examination of Water and Wastewater by the American Public Health Association.

3.6.15 The determination works will start within 24 hours after collection of the water samples or within the holding time as advised by the laboratory.

Meteorological Information

- 3.6.16 The meteorological information including wind direction, wind speed, humidity and temperature etc. of impact monitoring is extracted from the closest Tseung Kwan O Hong Kong Observatory Station. Moreover, the data of rainfall and air pressure would be extracted from King's Park Station.
- 3.6.17 For marine water quality monitoring, tidal information would be referred to tide gauge at Tai Miu Wan.

3.7 DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.7.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. A summary of the Action/Limit (A/L) Levels for air quality, construction noise and water quality are shown in *Tables 3-10*, *3-11* and *3-12* respectively.

Monitoring Station	Action Lev	vel (µg /m ³)	Limit Level (µg/m ³)		
Monitoring Station	1-Hour TSP	24-Hr TSP	1-Hour TSP	24-Hr TSP	
AM4	278	NA	500	NA	
AM5	NA	190	NA	260	
<i>Note:</i> 1-Hour & 24-Hr TSP of Action Level = $(Average Baseline Results \times 1.3 + Limit level)/2$					

 Table 3-10
 Action & Limit Levels of Air Quality (1-Hour & 24-Hr TSP)

Table 3-11 Action and Limit Levels for Construction Noise, dB(A)

Monitoring Location	Action Level	Limit Level			
	Time Period: 0700-1900 hours o	on normal weekdays (Leq30min)			
CNMS-1	When one or more documented complaints are received	75 dB(A)			
CNMS-5	Time Period: 1900-2300 hours on all days (Leq15min)				
	When one or more documented complaints are received	55 dB(A)			
Remarks:					
CNMS4 once they	are available and permission are granted	gnated locations CNMS-2, CNMS-3 and ; ed at residential building which are still			
	L^{+}	÷			

- under construction, Limit Level of 75dB(A) will be adopted until they are occupied;
- The designated location CNMS-4 is located at planned school and still not yet to construction. When the school occupied and operated, Limit Level of 70dB(A) should be adopted and should be reduced to 65dB(A) during examination period; and
 If construction works are required during restricted hours the conditions stipulated in the
 - 4. If construction works are required during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority shall be followed.

Table 3-12Action and Limit Levels for Water Quality

Monitoring	Depth Average of SS (mg/L)							
Station	Actio	on Level	Li	mit Level				
CC1	7.8	OR 120% of upstream control	9.3	OR 130% of upstream control				
CC2	9.0	station at the same	9.2	station at the same				
CC3	8.2	tide of the same day (Control Station C3 at Ebb tide and	9.0	tide of the same day (Control Station C3 at Ebb tide and				
CC4	13.8	Control Station C4 at	15.4	Control Station C4 at				
CC13	8.9	Flood tide), whichever is higher	10.3	Flood tide) , whichever is higher				
SWI1	8	mg/L		10 mg/L				
		Dissolved Oxy	gen (mg/L)					
Monitoring Location	Depth Average of S	Surface and Mid-depth		Bottom				
Location	Action Level	Limit Level	Action Leve	l Limit Level				
CC1	5.8	5.7	5.3	5.2				
CC2	5.8	5.7	5.3	5.1				
CC3	5.5	5.4	4.9	4.7				
CC4	5.7	5.7	5.5	5.4				
CC13	5.6	5.5	5.3	5.2				
SWI1	5.4	4.8	5.1	5.0				
Monitoring		Depth Average of T						
Location	Actio	on Level	Li	mit Level				
CC1	5.8	OR 120% of	6.0	OR 130% of				
CC2	4.6	upstream control station at the same	5.5	upstream control station at the same				
CC3	4.8	tide of the same day (Control Station C3	5.4	tide of the same day (Control Station C3				
CC4	6.1	at Ebb tide and	7.1	at Ebb tide and				
CC13	6.0	Control Station C4 at Flood tide),	6.3	Control Station C4 at Flood tide),				
SWI1	6.1	whichever is higher	7.1	whichever is higher				

3.7.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix E*.

3.8 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.8.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database properly maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.
- 3.8.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4. AIR QUALITY MONITORING

4.1 GENERAL

- 4.1.1 In the Reporting Period, 1-Hour TSP and 24-Hr TSP of air quality monitoring were respectively performed at interim alternative monitoring locations AM4 and AM5. The air quality monitoring schedule is presented in *Appendix F*.
- 4.1.2 Valid calibration certificates of monitoring equipment are shown in *Appendix G* and the monitoring results are summarized in the following sub-sections

4.2 **RESULTS OF AIR QUALITY MONITORING IN THE REPORTING MONTH**

4.2.1 During the Reporting Period, *18* sessions of 1-hour TSP and *6* sessions of 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Table 4-1*. The detailed 24-hour TSP monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

AI	AM5			AM4	AM4			
24-Hr TS	$P(\mu g/m^3)$	1-Hour TSP (µg/m ³)						
Date	Meas. Result	Date	Start Time	1 st Meas.	2 nd Meas.	3 rd Meas.		
3-Jan-20	162	2-Jan-20	13:40	71	76	84		
9-Jan-20	149	8-Jan-20	10:15	96	93	84		
15-Jan-20	146	14-Jan-20	13:47	114	103	86		
21-Jan-20	77	18-Jan-20	9:45	85	81	84		
24-Jan-20	84	23-Jan-20	9:30	84	90	91		
30-Jan-20	99	29-Jan-20	10:21	73	76	81		
Average (Range)	120 (77 - 162)	Average (Range)						

 Table 4-1
 1-Hour and 24-Hour TSP Air Quality Impact Monitoring Results

- 4.2.2 As shown in *Table 4-1*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action / Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.3 The meteorological data during impact monitoring period is summarized in *Appendix J*.

5. CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction noise quality monitoring was performed at designated monitoring location **CNMS-1** and interim alternative monitoring location **CNMS-5**. The construction noise monitoring schedule is presented in *Appendix F*.
- 5.1.2 Valid calibration certificates of monitoring equipment is shown in *Appendix G* and the construction noise monitoring results are summarized in the following sub-sections

5.2 **RESULTS OF NOISE MONITORING**

5.2.1 **11** sessions of daytime construction noise monitoring were performed at both the designated monitoring location CNMS-1 and the interim alternative location CNMS-5 in the reporting period. The daytime noise monitoring results are summarized in **Table 5-1** and **Table 5-2**. The detailed noise monitoring data are presented in **Appendix H** and the relevant graphical plots are shown in **Appendix I**.

 Table 5-1
 Daytime Construction Noise Impact Monitoring Results at CNMS-1

Dete	Time of Time of		Measurement	t Result (dB(A))		
Date	Starting	Finishing	Leq30min	Façade Correction		
2-Jan-20	14:21	14:51	65.4	NA		
8-Jan-20	9:20	9:50	65.5	NA		
14-Jan-20	14:49	15:19	64.6	NA		
23-Jan-20	10:30	11:00	63.5	NA		
29-Jan-20	9:32	10:02	57.9	NA		

 Table 5-2
 Daytime Construction Noise Impact Monitoring Results at CNMS-5

Date	Time of	Time of	Measurement	t Result (dB(A))
Date	Starting	Finishing	L _{eq30min}	Façade Correction
2-Jan-20	13:38	14:08	65.2	NA
8-Jan-20	10:18	10:48	68.7	NA
10-Jan-20*	11:04	11:34	70.5	NA
14-Jan-20	13:48	14:18	69.9	NA
23-Jan-20	9:32	10:02	66.7	NA
29-Jan-20	10:27	10:57	65.4	NA

Remarks: (*) Additional noise monitoring was carried out upon compliant was received.

- 5.2.2 As shown in *Table 5-1* and *Table 5-2*, all the measured results were below 75dB(A) of the acceptance criteria. No adverse weather condition which may affect the monitoring result was encountered during the course of noise monitoring in the reporting period. Two (2) noise complaint on daytime construction noise were received in the reporting period, two (2) exceedances of Action Level were registered.
- 5.2.3 In the reporting period, evening marine work by Contractor of Contract 1 at Portion II was scheduled from 6 11 and 20 23 January 2020. *4* session of additional weekly evening construction noise monitoring were performed at both the designated monitoring location CNMS-1 and the interim alternative location CNMS-5 in the reporting period. The evening noise monitoring results at interim alternative location is summarized in *Table 5-3* and *Table 5-4*. The detailed noise monitoring data are presented in *Appendix H*.

Table 5-3Evening Construction Noise Impact Monitoring Results at CNMS-1

Date	Start Time	tart Time 1st Leq (5min) 2nd Leq (5min)		3rd Leq (5min)	
Date	Start Time	Leq, dB(A)	Leq, dB(A)	Leq, dB(A)	
8-Jan-20	19:37	52.4	53.0	52.5	
22-Jan-20	19:08	53.3	53.9	53.5	

Table 5-4	Evening Construction Noise Impact Monitoring Results at CNMS-5
Idolee	L'ening construction rouse impact fromtoring results at craits c

Date	Start Time 1st Leq (5min)		2nd Leq (5min)	3rd Leq (5min)	
Date	Start Time	Leq, dB(A)	Leq, dB(A)	Leq, dB(A)	
8-Jan-20	19:05	62.7	62.4	62.7	
22-Jan-20	19:42	61.6	60.8	60.4	

- 5.2.4 According to Table 5-3 and Table 5-4, two (2) sessions of evening noise monitoring results triggered the Limit Level (55 dB(A)) in the reporting period and investigations were undertaken by ET accordingly.
- 5.2.5 For the evening noise monitoring exceedances recorded on 8 and 22 January 2022 at CNMS-5, since the marine work at Junk Bay were ceased before the evening noise monitoring event, it was considered the exceedances recorded were unlikely due to the Project.

6. WATER QUALITY MONITORING

6.1 GENERAL

- 6.1.1 The water quality monitoring schedule is presented in *Appendix F* and the monitoring results are summarized in the following sub-sections.
- 6.1.2 Valid calibration certificates of monitoring equipment and the laboratory accredited certificate is shown in *Appendix G*. The water quality monitoring results are summarized in the following sub-sections.

6.2 **RESULTS OF WATER QUALITY MONITORING**

6.2.1 In this Reporting Period, a total of *13* sampling days were performed for marine water monitoring at the nine designated locations. Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids are summarized in *Tables 6-1* to *6-4*.

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I1
	2-Jan-20	7.4	7.3	7.2	7.4	7.4	7.4	7.3	7.4	7.3
	4-Jan-20	7.3	7.3	7.1	7.1	7.4	7.2	7.1	7.0	7.2
	6-Jan-20	7.4	7.3	7.1	7.6	7.3	7.4	7.5	7.6	7.3
	8-Jan-20	7.3	7.3	7.4	7.3	7.3	7.3	7.2	7.3	7.2
	10-Jan-20	7.6	7.5	7.5	7.6	7.5	7.6	7.5	7.8	7.5
	13-Jan-20	7.7	7.6	7.7	7.5	7.6	7.7	7.8	7.7	7.7
Mid-Ebb	15-Jan-20	7.8	7.7	7.9	7.7	7.8	7.8	7.9	7.8	7.8
	17-Jan-20	8.2	8.3	8.2	8.2	8.3	8.3	8.0	8.2	8.2
	20-Jan-20	7.7	7.9	7.8	7.9	8.0	7.7	7.6	7.9	7.8
	22-Jan-20	7.5	7.4	7.6	7.5	7.5	7.6	7.5	7.7	7.7
	24-Jan-20	7.4	7.5	7.8	7.5	7.6	7.6	7.6	7.8	7.6
	29-Jan-20	7.7	7.7	7.6	7.6	7.7	7.5	7.6	7.6	7.7
	31-Jan-20	8.0	8.2	8.1	8.0	8.1	8.4	7.9	8.0	8.0
	2-Jan-20	7.4	7.3	7.1	7.3	7.3	7.3	7.3	7.4	7.3
	4-Jan-20	7.2	7.3	7.2	7.2	7.4	7.2	7.1	7.0	7.2
	6-Jan-20	7.5	7.4	7.2	7.6	7.4	7.4	7.6	7.6	7.3
	8-Jan-20	7.5	7.3	7.4	7.5	7.3	7.4	7.2	7.4	7.4
	10-Jan-20	7.7	7.5	7.5	7.6	7.6	7.6	7.5	7.7	7.5
	13-Jan-20	7.5	7.6	7.8	7.5	7.6	7.5	7.7	7.6	7.6
Mid-Flood	15-Jan-20	7.7	7.7	7.9	7.6	7.8	7.6	7.9	7.8	7.8
	17-Jan-20	8.0	8.2	8.1	8.0	8.2	8.2	7.9	8.0	8.0
	20-Jan-20	7.8	8.0	7.8	7.8	8.0	7.7	7.7	7.9	7.9
	22-Jan-20	7.8	7.5	7.5	7.7	7.6	7.9	7.5	8.0	7.8
	24-Jan-20	7.5	7.6	7.8	7.5	7.6	7.6	7.5	7.6	7.6
	29-Jan-20	7.7	7.6	7.7	7.7	7.6	7.6	7.6	7.6	7.7
	31-Jan-20	8.2	8.3	8.1	8.2	8.3	8.3	8.0	8.2	8.2

 Table 6-1
 Results Summary of Depth Average (Surface & Middle Layer) of DO (mg/L)

Table 6-2	Results Summary of Bottom Depth of DO (mg/L)
-----------	---

					1	<u>8</u> /	,			
Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Jan-20	7.3	7.2	7.2	NA	7.3	7.4	7.3	7.4	7.3
	4-Jan-20	7.2	7.1	7.1	NA	7.3	7.2	7.1	7.0	7.1
	6-Jan-20	7.3	7.3	7.1	NA	7.3	7.4	7.4	7.4	7.2
	8-Jan-20	7.3	7.3	6.7	NA	7.3	7.3	7.3	7.4	6.9
	10-Jan-20	7.5	7.5	7.5	NA	7.5	7.6	7.5	7.7	7.3
Mid-Ebb	13-Jan-20	7.7	7.6	7.6	NA	7.5	7.7	7.7	7.7	7.6
	15-Jan-20	7.9	7.7	7.7	NA	7.7	7.8	7.9	7.9	7.7
	17-Jan-20	7.8	8.2	7.8	NA	8.2	8.3	7.8	7.8	7.8
	20-Jan-20	7.6	7.5	7.2	NA	7.9	7.6	7.5	7.5	7.5
	22-Jan-20	7.4	7.3	6.9	NA	7.4	7.6	7.4	7.5	7.4
	24-Jan-20	7.4	7.5	6.9	NA	7.5	7.6	7.4	7.5	7.0

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report – January 2020

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	29-Jan-20	7.7	7.5	7.4	NA	7.5	7.5	7.5	7.5	7.5
	31-Jan-20	8.0	7.9	7.8	NA	8.2	8.2	7.7	7.9	7.8
	2-Jan-20	7.4	7.2	7.2	NA	7.3	7.3	7.3	7.4	7.3
	4-Jan-20	7.2	7.2	6.8	NA	7.3	7.2	7.1	7.0	7.0
	6-Jan-20	7.4	7.4	7.1	NA	7.4	7.4	7.4	7.3	7.2
	8-Jan-20	7.4	7.3	7.2	NA	7.4	7.6	7.2	7.4	7.3
	10-Jan-20	7.5	7.5	7.4	NA	7.5	7.6	7.5	7.7	7.4
	13-Jan-20	7.5	7.5	7.5	NA	7.5	7.6	7.7	7.7	7.6
Mid-Flood	15-Jan-20	7.7	7.6	7.7	NA	7.7	7.7	7.9	7.8	7.7
	17-Jan-20	8.0	7.9	7.7	NA	8.2	8.2	7.7	7.8	7.7
	20-Jan-20	7.6	7.6	7.1	NA	7.9	7.4	7.6	7.2	7.5
	22-Jan-20	7.6	7.4	6.9	NA	7.5	7.8	7.5	7.8	6.8
	24-Jan-20	7.4	7.4	7.2	NA	7.4	7.6	7.4	7.4	7.4
	29-Jan-20	7.5	7.5	7.5	NA	7.5	7.5	7.5	7.5	7.6
	31-Jan-20	7.8	8.2	7.8	NA	8.3	8.3	7.8	7.9	7.8

Remark: No Dissolved Oxygen (Bottom) monitoring data available for CC4 due to the water depth measured at CC4 during the monitoring days were less than 3 meters.

Table 6-3	Results Summary of Depth Average of Turbidity (NTU)
-----------	---

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Jan-20	1.2	1.3	1.7	0.9	1.0	1.6	1.5	1.0	2.1
	4-Jan-20	1.2	1.3	1.1	1.4	0.8	1.1	1.4	1.4	1.4
	6-Jan-20	1.8	2.0	2.1	1.5	1.6	1.2	1.4	1.0	3.6
	8-Jan-20	1.5	1.3	2.0	1.3	1.2	0.9	1.2	1.2	3.2
	10-Jan-20	1.1	1.4	1.0	1.2	1.1	1.2	1.2	0.9	1.1
	13-Jan-20	0.9	1.3	1.0	1.0	1.1	1.0	0.9	1.0	1.1
Mid-Ebb	15-Jan-20	1.0	1.1	1.2	1.2	1.2	1.3	1.0	1.0	1.4
	17-Jan-20	0.9	0.8	1.5	0.8	0.8	1.1	1.0	0.8	1.5
	20-Jan-20	1.0	1.9	1.5	1.5	1.2	2.0	1.0	1.0	1.5
	22-Jan-20	1.2	2.2	1.8	1.0	2.2	1.1	1.2	1.0	1.3
	24-Jan-20	1.4	1.3	1.6	1.4	1.0	0.9	1.1	0.9	2.0
	29-Jan-20	0.9	1.1	1.2	1.0	1.0	1.5	1.3	1.0	1.1
	31-Jan-20	0.7	0.8	1.1	1.2	0.9	1.2	1.1	0.8	1.3
	2-Jan-20	0.9	1.4	1.9	1.0	1.1	1.9	1.6	1.1	2.2
	4-Jan-20	1.5	1.1	1.5	1.1	1.0	1.2	1.1	1.5	1.9
	6-Jan-20	1.5	1.4	2.0	1.2	1.4	1.3	1.3	1.2	2.0
	8-Jan-20	0.9	1.2	1.4	1.0	1.3	0.9	1.2	1.0	1.4
	10-Jan-20	1.0	1.4	1.2	1.1	1.1	1.1	1.1	1.0	1.4
	13-Jan-20	1.2	1.3	1.1	1.0	1.0	1.1	1.0	1.1	1.1
Mid-Flood	15-Jan-20	1.0	1.1	1.2	1.5	1.0	0.9	0.9	0.9	1.4
	17-Jan-20	0.8	0.8	1.1	1.1	0.9	1.2	1.2	0.8	1.3
	20-Jan-20	1.0	1.5	1.7	1.7	1.1	1.8	1.2	1.3	1.5
	22-Jan-20	1.2	1.9	2.5	1.1	1.6	1.0	1.3	0.9	1.5
	24-Jan-20	1.2	1.4	1.7	1.6	1.3	0.8	1.3	1.3	1.4
	29-Jan-20	1.0	1.2	1.2	0.9	1.0	1.4	1.1	1.0	1.0
	31-Jan-20	0.9	0.7	1.4	0.9	0.8	1.2	1.0	0.7	1.3

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Jan-20	1.0	1.5	1.0	1.0	1.0	2.5	1.6	1.4	1.7
	4-Jan-20	4.2	3.6	5.1	2.6	3.4	3.7	3.8	3.5	2.2
	6-Jan-20	3.1	4.1	3.7	3.6	4.4	2.8	2.5	2.8	5.2
	8-Jan-20	2.7	2.5	3.2	3.6	2.8	3.8	3.1	2.8	3.0
	10-Jan-20	1.3	2.4	1.8	2.2	1.6	2.6	2.3	1.4	1.4
	13-Jan-20	4.3	3.0	2.7	3.7	3.6	4.9	4.4	4.3	3.4
Mid-Ebb	15-Jan-20	7.5	2.2	4.3	2.8	4.7	5.9	3.1	3.9	2.7
	17-Jan-20	3.6	4.0	2.4	1.9	3.8	4.4	3.9	3.5	5.4
	20-Jan-20	2.9	3.7	4.1	5.3	3.0	4.2	4.8	3.0	2.6
	22-Jan-20	2.5	3.0	3.5	2.3	3.3	2.7	3.1	1.3	2.5
	24-Jan-20	1.8	2.7	3.5	4.7	3.6	2.2	2.8	2.1	2.2
	29-Jan-20	1.1	1.7	1.4	1.4	1.3	2.3	1.4	1.1	1.1
	31-Jan-20	2.6	2.3	2.8	4.1	2.6	3.9	3.2	3.3	3.0
	2-Jan-20	1.1	1.0	1.5	1.0	1.1	1.7	1.4	1.0	2.0
	4-Jan-20	4.1	2.4	1.7	2.3	2.7	3.2	1.7	3.0	3.5
	6-Jan-20	3.5	6.3	3.2	4.0	4.3	5.4	3.7	3.2	4.9
	8-Jan-20	2.8	2.3	2.3	4.0	3.3	4.1	1.8	1.7	2.5
	10-Jan-20	1.7	2.5	1.1	2.2	1.8	2.1	2.2	1.9	2.6
	13-Jan-20	4.2	4.6	3.4	3.7	4.6	3.3	3.8	5.0	3.4
Mid-Flood	15-Jan-20	3.0	2.8	2.7	2.3	2.4	2.8	2.5	2.3	3.0
	17-Jan-20	3.1	3.4	1.7	3.7	2.6	2.7	2.9	2.6	3.6
	20-Jan-20	2.9	3.6	3.0	4.5	3.7	4.7	3.1	3.5	2.6
	22-Jan-20	2.1	4.0	2.3	2.4	1.7	2.2	2.6	1.5	2.7
	24-Jan-20	3.8	2.6	2.1	2.9	2.2	2.6	2.0	3.4	3.1
	29-Jan-20	1.3	1.2	1.3	1.3	1.6	2.5	1.4	1.2	1.2
	31-Jan-20	2.8	2.0	2.9	4.4	3.7	2.5	3.6	3.2	5.1

 Table 6-4
 Results Summary of Depth Average of Suspended Solids (mg/L)

Table 6-5	Results Summary of Depth Average of Temperature (°C)
	results Summary of Depth Hyerage of Temperature (C)

	Active and the second											
Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1		
	2-Jan-20	18.62	18.60	18.67	18.80	18.63	18.63	18.45	18.53	18.60		
	4-Jan-20	18.60	18.63	18.77	18.70	18.63	18.65	18.55	18.60	18.70		
	6-Jan-20	18.90	18.70	18.85	18.80	18.77	18.75	18.70	18.68	18.82		
	8-Jan-20	18.87	18.87	19.00	18.90	18.95	18.95	18.83	18.92	18.93		
	10-Jan-20	18.87	18.82	18.83	18.80	18.82	18.85	18.77	18.82	18.85		
	13-Jan-20	18.70	18.77	18.77	18.80	18.77	18.85	18.70	18.67	18.80		
Mid-Ebb	15-Jan-20	19.30	19.37	19.37	19.40	19.37	19.45	19.30	19.27	19.40		
	17-Jan-20	18.32	18.00	18.10	18.10	17.97	18.03	18.07	18.03	18.03		
	20-Jan-20	18.50	18.45	18.53	18.50	18.40	18.45	18.48	18.45	18.47		
	22-Jan-20	18.63	18.60	18.60	18.60	18.60	18.60	18.60	18.57	18.60		
	24-Jan-20	18.90	18.88	18.87	19.05	18.90	18.90	18.97	19.03	18.90		
	29-Jan-20	18.40	18.37	18.40	18.40	18.37	18.18	18.33	18.32	18.27		
	31-Jan-20	18.07	17.87	18.07	18.05	17.88	17.75	18.03	17.98	17.87		
	2-Jan-20	18.67	18.58	18.67	18.70	18.63	18.65	18.50	18.50	18.60		
	4-Jan-20	18.60	18.67	18.82	18.70	18.70	18.70	18.57	18.60	18.70		
	6-Jan-20	19.00	18.70	18.85	18.60	18.77	18.78	18.70	18.60	18.90		
	8-Jan-20	19.05	18.88	19.02	18.90	19.03	19.10	18.82	18.87	19.07		
	10-Jan-20	18.95	18.78	18.90	18.80	18.78	18.85	18.77	18.83	18.83		
Mid-Flood	13-Jan-20	18.70	18.80	18.80	18.80	18.80	18.83	18.70	18.68	18.80		
	15-Jan-20	19.30	19.40	19.40	19.40	19.40	19.43	19.30	19.28	19.40		
	17-Jan-20	18.07	17.87	18.07	18.10	17.87	17.80	18.03	17.97	17.88		
	20-Jan-20	18.53	18.50	18.57	18.50	18.40	18.40	18.53	18.55	18.50		
	22-Jan-20	18.53	18.43	18.53	18.50	18.48	18.45	18.43	18.52	18.52		
	24-Jan-20	18.90	18.90	18.90	18.90	18.87	18.98	18.93	19.02	18.87		

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	29-Jan-20	18.37	18.35	18.33	18.50	18.30	18.20	18.33	18.32	18.28
	31-Jan-20	18.12	18.00	18.10	18.10	17.98	17.95	18.10	18.03	18.08

 Table 6-6
 Results Summary of Depth Average of Salinity (ppt)

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Jan-20	34.29	34.27	34.28	34.26	34.27	34.33	34.33	34.31	34.28
	4-Jan-20	34.19	34.24	34.15	34.14	34.22	34.26	34.20	34.19	34.18
	6-Jan-20	34.20	34.22	34.12	34.26	34.19	34.20	34.23	34.27	34.21
	8-Jan-20	34.22	34.18	34.12	34.20	34.17	34.16	34.18	34.19	34.09
	10-Jan-20	34.25	34.23	34.22	34.28	34.24	34.22	34.25	34.30	34.24
	13-Jan-20	34.29	34.24	34.21	34.18	34.23	34.21	34.30	34.31	34.24
Mid-Ebb	15-Jan-20	34.51	34.46	34.43	34.40	34.45	34.43	34.52	34.53	34.46
	17-Jan-20	34.90	34.93	34.95	34.96	34.91	34.90	35.01	35.02	34.92
	20-Jan-20	34.43	34.44	34.44	34.45	34.41	34.49	34.45	34.48	34.41
	22-Jan-20	34.59	34.56	34.52	34.48	34.51	34.52	34.59	34.60	34.52
	24-Jan-20	34.68	34.57	34.43	34.58	34.50	34.37	34.55	34.57	34.48
	29-Jan-20	34.85	34.83	34.86	34.81	34.80	34.86	34.92	34.90	34.84
	31-Jan-20	34.95	34.96	34.95	34.91	34.95	34.94	35.01	35.01	34.92
	2-Jan-20	34.28	34.28	34.25	34.27	34.26	34.36	34.33	34.32	34.28
	4-Jan-20	34.22	34.22	34.14	34.10	34.21	34.25	34.21	34.18	34.21
	6-Jan-20	34.21	34.21	34.14	34.26	34.19	34.22	34.25	34.29	34.19
	8-Jan-20	34.25	34.18	34.13	34.22	34.13	34.12	34.26	34.28	34.13
	10-Jan-20	34.23	34.24	34.21	34.22	34.25	34.22	34.26	34.29	34.24
	13-Jan-20	34.23	34.23	34.25	34.18	34.22	34.21	34.31	34.30	34.24
Mid-Flood	15-Jan-20	34.45	34.45	34.47	34.40	34.44	34.43	34.53	34.52	34.46
	17-Jan-20	34.95	34.95	34.95	34.91	34.95	34.94	35.02	35.02	34.93
	20-Jan-20	34.42	34.43	34.44	34.44	34.40	34.46	34.42	34.56	34.39
	22-Jan-20	34.62	34.67	34.65	34.60	34.63	34.59	34.70	34.66	34.63
	24-Jan-20	34.49	34.51	34.38	34.57	34.47	34.34	34.63	34.65	34.39
	29-Jan-20	34.92	34.83	34.85	34.80	34.82	34.84	34.92	34.91	34.83
	31-Jan-20	34.97	34.93	34.95	34.96	34.91	34.92	35.00	35.03	34.91

Table 6-7

Results Summary of Depth Average of pH

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	C3	C4	I1
	2-Jan-20	7.96	7.97	7.97	7.98	7.97	7.98	7.98	7.98	7.97
	4-Jan-20	7.96	7.97	7.96	7.96	7.97	7.97	7.94	7.93	7.96
	6-Jan-20	7.94	7.95	7.95	7.97	7.96	7.92	7.95	7.96	7.96
	8-Jan-20	7.94	7.95	7.94	7.93	7.94	7.91	7.93	7.94	7.94
	10-Jan-20	7.97	7.97	7.97	7.99	7.97	7.97	7.97	7.99	7.97
	13-Jan-20	8.01	8.00	8.00	7.99	8.00	8.00	8.02	8.01	8.00
Mid-Ebb	15-Jan-20	8.07	8.06	8.06	8.05	8.06	8.06	8.08	8.07	8.06
	17-Jan-20	8.05	8.06	8.03	7.97	8.06	7.86	8.03	8.01	8.04
	20-Jan-20	8.01	8.03	8.02	8.04	8.04	8.06	8.01	8.02	8.02
	22-Jan-20	8.00	8.00	7.99	8.06	7.99	8.10	8.00	8.01	8.00
	24-Jan-20	7.97	7.98	7.97	7.96	7.98	7.98	7.97	7.98	7.98
	29-Jan-20	8.02	8.02	8.02	8.01	8.00	7.99	8.02	8.02	8.02
	31-Jan-20	8.04	8.05	8.04	8.04	8.06	7.80	8.03	8.04	8.04
	2-Jan-20	7.96	7.96	7.96	7.99	7.96	8.05	7.96	7.97	7.96
	4-Jan-20	7.95	7.97	7.96	7.97	7.97	7.96	7.95	7.93	7.97
Mid Elsed	6-Jan-20	7.95	7.96	7.95	7.99	7.96	7.96	7.97	7.98	7.96
Mid-Flood	8-Jan-20	7.94	7.95	7.95	7.88	7.95	7.89	7.92	7.93	7.95
	10-Jan-20	7.97	7.98	7.97	7.98	7.98	7.99	7.98	8.00	7.97
	13-Jan-20	7.99	8.00	8.00	7.98	7.99	8.03	8.02	8.01	7.99

Tidal	Sampling date	CC1	CC2	CC3	CC4	CC13	SWI1	С3	C4	I1
	15-Jan-20	8.05	8.06	8.06	8.04	8.05	8.09	8.08	8.07	8.05
	17-Jan-20	8.04	8.05	8.04	8.04	8.06	8.02	8.03	8.04	8.04
	20-Jan-20	8.02	8.04	8.02	8.04	8.05	8.04	8.03	8.03	8.03
	22-Jan-20	7.98	7.98	7.96	8.00	7.97	8.02	7.98	8.00	7.97
	24-Jan-20	7.97	7.97	7.97	7.96	7.97	7.97	7.96	7.97	7.96
	29-Jan-20	8.02	8.03	8.01	7.88	8.02	8.02	8.02	8.03	8.03
	31-Jan-20	8.04	8.06	8.04	7.95	8.05	7.68	8.04	8.01	8.05

- 6.2.2 The monitoring results including in-situ measurements and laboratory testing results are provided in *Appendix H*. The graphical plots are shown in *Appendix I*.
- 6.2.3 A summary of exceedances for the four parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) are shown in *Table 6-8*.

Station	DO (Ave of Top & mid-depth)		DO (Bottom Depth)		Turbidity (Depth Ave)		SS (Depth Ave)		Total Exceedance for the Station	
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
CC1	0	0	0	0	0	0	0	0	0	0
CC2	0	0	0	0	0	0	0	0	0	0
CC3	0	0	0	0	0	0	0	0	0	0
CC4	0	0	NA	NA	0	0	0	0	0	0
CC13	0	0	0	0	0	0	0	0	0	0
SWI1	0	0	0	0	0	0	0	0	0	0
No of Exceedance	0	0	0	0	0	0	0	0	0	0

 Table 6-8
 Summary of Water Quality Exceedance

Remark: No Dissolved Oxygen (Bottom) monitoring data available for CC4 due to the water depth measured at CC4 during the monitoring days were less than 3 meters.

6.2.4 In this Reporting Period, no Action and Limit Level exceedances was recorded.

7. WASTE MANAGEMENT

7.1 GENERAL WASTE MANAGEMENT

7.1.1 Waste management would be carried out by an on-site Environmental Officer or an Environmental Consultant from time to time.

7.2 **RECORDS OF WASTE QUANTITIES**

- 7.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste; and
 - General Refuse
- 7.2.2 According to the information provided by Contractor of Contract 1 and Contract 2, waste disposal was made in the Reporting period are summarized in *Tables 7-1* and *7-2*.

	Cont	tract 1	Cont	Contract 2	
Type of Waste	Quantity	Disposal Location	Quantity	Disposal Location	
Total C&D Materials (Inert) ('000m ³)	1.020	-	1.732	-	
Reused in this Contract (Inert) ('000m ³)	0	-	0.358	-	
Reused in other Projects (Inert) ('000m ³)	0	-	0	-	
Disposal as Public Fill (Inert) ('000m ³)	1.020	TKO 137	1.374	TKO 137	
Imported Fill ('000m ³)	0	-	0	-	

Table 7-1Summary of Quantities of Inert C&D Materials

Table 7-2Summary of Quantities of C&D Wastes

	Contract 1		Contract 2	
Type of Waste	Quantity	Disposal Location	Quantity	Disposal Location
Recycled Metal ('000kg)	0	-	0	-
Recycled Paper / Cardboard Packing ('000kg)	0.088	Collected by paper recycling company	0	-
Recycled Plastic ('000kg)	0	-	0	-
Chemical Wastes ('000kg)	0	-	0.036	-
General Refuses ('000m ³)	0.100	NENT	0.019	NENT

7.2.3 The Monthly Summary Waste Flow Table of the Contracts 1 and Contract 2 are shown in *Appendix K*.

8. SITE INSPECTION

8.1 **REQUIREMENTS**

8.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

8.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

8.2.1 In response to the Government's appeal on special work arrangement and minimize the spread of the novel coronavirus, all the Resident Site Staff (RSS) of the project would work at home from 29 January 2020 to 2 February 2020. Moreover, the Contractors were instructed to restrict site works and there would not have major construction activities / continue site closure during the concerned period. In light of the abovementioned arrangement, the environmental site inspection by Environmental Team for the week 27 January 2020 to 1 February 2020 was cancelled.

<u>Contract 1</u>

- 8.2.2 In this Reporting Month, weekly joint site inspection to evaluate site environmental performance for the *Contract 1* was carried out by the Project Consultant, ET and the Contractor on 2, 6, 13 & 22 January 2020. Moreover, the Independent Environmental Checker (IEC) perform monthly site inspection was on 13 January 2020.
- 8.2.3 The findings / deficiencies of *Contract 1* that observed during the weekly site inspection are listed in *Table 8-1* and the site layout plan was provided in **Appendix A**.

Date	Findings / Deficiencies	Follow-Up Status
2 January 2020	 <u>Observation:</u> Turbidity water from drilling works overflow into the water body was observed. Proper mitigation measures should be provided to prevent turbidity water generated from the construction works leakage into the water body. (Portion II) 	• Water pump was provided immediately to prevent the turbidity water generated from the construction works leak into the water body. (Rectified on 2 January 2020)
6 January 2020	 <u>Observation:</u> Sediment cumulated at the edge of the barge should be cleaned. (Portion II – Derrick Barge) Poly-foam from the broken silt-curtain floating in the water body should be cleaned. (Portion II – Drilling Platform) 	 The barge was removed from site. (Rectified on 7 January 2020) Poly-foam from the broken silt-curtain floating in the water body was cleaned. (Rectified on 7 January 2020)
13 January 2020	 <u>Observation:</u> Empty chemical containers should be stored at proper storage area. (Work Area A) 	• Empty chemical containers were removed and treated as chemical waste. (Rectified on 13 January 2020)
22 January 2020	 <u>Observation:</u> Drip tray should be provided for chemical storage on-site. (Portion II – Pre-casted shell) 	• Chemical container was removed from site. (Rectified on 22 January 2020)

 Table 8-1
 Site Observations of the Contract 1 (Contract No. NE/2017/07)

Contract 2

8.2.4 In this Reporting Month, weekly joint site inspection to evaluate site environmental performance for the *Contract 2* were carried out by the Project Consultant, ET and the Contractor on 2, 6, 13 & 22 January 2020. Moreover, the Independent Environmental Checker (IEC) perform monthly site inspection was on 13 January 2020.

8.2.5 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 8-2* and the site layout plan was provided in **Appendix A**.

Date	Findings / Deficiencies	Follow-Up Status
2 January 2020	• No adverse environmental issue was observed.	• NA
6 January 2020	 <u>Observation:</u> Stockpile of loose materials storage on-site should be covered with tarpaulin to reduce dust impact. (Portion VI) Soil and sebris cumulated inside the temporary drainage should be cleaned. 	 Stockpile was covered with tarpaulin (Rectified on 7 January 2020) Soil and debris were removed from the temporary drainage.
13 January 2020	 (Portion VI) <u>Observation:</u> Sediment accumulated at drip tray under generator should be removed. (Portion III) 	 (Rectified on 7 January 2020) Sediment acumulated at drip tray was removed. (Rectified on 17 January 2020)
22 January 2020	 Hole of drip tray should be plugged. (Wan O Road) No adverse environmental issue was observed. 	 Drip tray was plugged. (Rectified on 17 January 2020) NA

Table 8-2Site Observations of the Contract 2 (Contract No. NE/2017/08)

8.3 IMPLEMENTATION STATUS OF SURFACE RUNOFF MITIGATION MEASURES DURING THE REPORTING MONTH

8.3.1 During the inspection of the reporting month, implementation of surface runoff mitigation measures were observed in both Contracts. The surface runoff mitigation measures observed during the weekly site inspection of Contract 1 and Contract 2 are summarized below and the photo recorded was provided in **Appendix L**.

Contract 1 (Contract No. NE/2017/07)

- 8.3.2 The surface runoff mitigation measures of Contract 1 implemented in this Reporting Period are:-
 - Silt-curtain had been provided to prevent muddy water overflow from the piling platform.
 - Temporary trench had been installed at the sea fount to prevent muddy run-off overflow into the water body during
 - Treatment facilities was installed at site to treat the site generated water prior discharge.

Contract 2 (Contract No. NE/2017/08)

- 8.3.3 The surface runoff mitigation measures of Contract 2 implemented in this Reporting Period are:-
 - Exposed area had been covered to prevent generation of muddy surface run-off during rainstorm.
 - Treatment facilities was installed at site to treat the site generated water prior discharge.
 - Gap between the concrete block and the sea front was sealed up.
 - Trench had been provided to divert the surface runoff to the de-silting facilities.
- 8.3.4 Overall, the surface runoff mitigation measures of Contract 1 and Contract 2 observed during the inspection of the reporting period are efficient.

9. LANDFILL GAS MONITORING

9.1 GENERAL REQUIREMENT

- 9.1.1 Pursuant to Section 13 of the Project's EM&A Manual, landfill gas monitoring shall perform during excavation work within the 250m Consultation Zone of Tseung Kwan O Stage II & III Landfill. For landfill gas monitoring requirements, pre entry and routine measurement shall be undertaken in accordance with the *Factories and Industrial Undertaking (Confined Spaces) Regulation.*
- 9.1.2 According to Environmental Mitigation Implementation Schedule (EMIS) S14.7.6, portable monitoring equipment can be used to conduct landfill gas monitoring. Moreover, the frequency and areas to be monitored should be set down prior to commencement of the works either by the Safety Officer or by an appropriately qualified person.

9.2 LIMIT LEVELS AND EVENT AND ACTION PLAN

9.2.1 In event of the trigger levels specified in Table 14.6 of the EIA report being exceeded, a person, such as the Safety Officer, shall be nominated, with deputies, to be responsible for dealing with any emergency which may occur due to LFG. In an emergency situation the nominated person, or his deputies, shall have the necessary authority and shall ensure that the confined space is evacuated and the necessary works implemented for reducing the concentrations of gas. The Limit levels and relevant Action Plans for landfill gas detected in utilities and any on-site areas following construction is listed in *Table 9-1*.

Parameter	Limit Level	Actions		
Methane	>10% LEL (i.e.	Post "No Smoking" signs		
	>0.5% by volume)	Prohibit hot works		
		• Ventilate to restore methane to <10% LEL		
	>20% LEL (i.e.	Stop excavation works		
	>1% by volume)	 Evacuate personnel/prohibit entry 		
		• Increase ventilation to restore methane to <10% LEL		
	>0.5%	• Ventilate to restore carbon dioxide to <0.5%		
Carbon	>1.5%	Stop excavation works		
dioxide		Evacuate personnel/prohibit entry		
		• Increase ventilation to restore carbon dioxide to <0.5%		
<19%		Ventilation to restore oxygen >19%		
Ovugan	<18%	Stop excavation works		
Oxygen		• Evacuate personnel/prohibit entry		
		 Increase ventilation to restore oxygen to >19% 		

 Table 9-1
 Actions in the Event of Landfill Gas Being Detected in Excavations

9.2.2 In the event of the trigger levels specified in Table 9-1 being exceeded, the Safety Officer shall be responsible for dealing with any emergency which may occur due to landfill gas.

9.3 LANDFILL GAS MONITORING

- 9.3.1 In the Reporting Period, landfill gas monitoring was conducted at the zone Wan O Road which excavation work of Contract 2 was carried out. A Crowcon gas detector was used for the landfill gas monitoring and the valid calibration certificate is presented in **Appendix G**.
- 9.3.2 There were a total of *20* days monitoring were carried by the Safety Officer or an approved and qualified persons. The results of landfill gas measurement are summarized in *Table 9-2*. Moreover, database of monitoring result is attached in **Appendix H**.

Landfill Gas	A ation I anal		Detectable at LMR		
Parameter	Action Level	Limit Level	Min	Max	
Methane	>10% LEL (>0.5% v/v)	>20% LEL (>1% v/v)	0.1%	0.1%	
Oxygen	<19%	<18%	20.7%	21.0%	
Carbon Dioxide	>0.5%	>1.5%	0.1%	0.2%	

Table 9-2Summary of Landfill Gas Measurement Results

9.3.3 The measurement results shown that slightly methane concentration was detected, oxygen concentration measured was over 19.0 % and Carbon Dioxide was between 0.1% and 0.2 %. No exceedance was triggered and therefore no corrective action was required accordingly.

10. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION

10.1.1 In the Reporting Period, two (2) environmental complaints were received with respect to construction noise arising from Contract 2 of the Project. Besides, no summons and prosecution under the EM&A Programme was lodged for the project. Investigation for the complaints was undertaken by the ET and presented below.

Complaint received on 4 January 2020

- 10.1.2 A complaint was received by CEDD on 4 January 2020 morning regarding on the noise generated from the construction works at Wan O Road near Wan Po Road affecting a local resident residing at the Lohas Park Phase 2A. Noise mitigation measure such as wrapped the head of the breaker with acoustic material was implemented on the day of complaint received to minimize the impact to resident nearby. Movable noise barrier was provided on site, but it was not adopted due to miscommunication of workers.
- 10.1.3 Upon received the complaint, the Contractor has immediately adopted the movable noise barrier for road breaking work as noise mitigation measure to further minimize the noise impact. Joint site inspection of Project Consultant, IEC, ET and Contractor was carried out on 13 January 2020 and it was observed that the noise mitigation measures were implemented properly. Additional noise monitoring was also carried out at CNMS-5 (Lohas Park Phase 2A) and the implementation of movable noise barrier is considered effective. Nevertheless, the Contractor of Contract 2 was reminded to implement the noise mitigation measures as stated in EP and EM&A Manual as far as practicable. Investigation Report has been completed by ET and verified by IEC.

Complaint received on 15 January 2020

- 10.1.4 A complaint was received by CEDD on 15 January 2020 regarding on the noise generated from the construction works at Wan O Road near Wan Po Road affecting a local resident residing at the Lohas Park Phase 2A. Noise mitigation measure such as wrapped the head of the breaker with acoustic material was implemented on the day of complaint received to minimize the impact to resident nearby.
- 10.1.5 As checked by the Contractor, the movable noise barrier was not immediately adopted after relocation of the road breaker on 15 January 2020. Upon received the complaint, the Contractor has immediately adopted the noise barrier as noise mitigation measure for the road breaking work to minimize the noise impact. In addition, the Contractor has issued a warning letter to the relevant subcontractor for poor environmental performance and requested their worker to strictly implement the use of movable noise barrier.
- 10.1.6 In order to prevent the incident happens again, ET also advised that the Contractor should dedicate a worker to ensure the noise barrier is implemented prior to road breaking activities. The Contractor of Contract 2 was also reminded to strictly implement the use of movable noise barrier for future road breaking activities. The Contractor should keep all checking records for ET and IEC checking on site. Investigation Report has been completed by ET and verified by IEC.
- 10.1.7 As the information of the complainants were not disclosed, thus the investigation result and subsequent actions cannot be reported to the complainants in the above complaints.
- 10.1.8 The statistical summary table of environmental complaint is presented in *Tables 10-1, 10-2* and *10-3*.

Depending Devied	Contract	Environmental Complaint Statistics			
Reporting Period	Contract	Frequency	Cumulative	Complaint Nature	
1 – 31 January 2020	1	0	1	NA	
1 – 31 January 2020	2	2	2	Noise	

 Table 10-1
 Statistical Summary of Environmental Complaints

Table 10-2 Statistical Summary of Environmental Summons

Donouting Douiod	Contract	Enviro	nmental Summons St	tatistics
Reporting Period	Contract	Frequency	Cumulative	Summons Nature
1 – 31 January 2020	1	0	0	NA
1 – 31 January 2020	2	0	0	NA

Table 10-3 Statistical Summary of Environmental Prosecution

Departing Daried	Contract	Environ	Environmental Prosecution Statistics								
Reporting Period	Contract	Frequency	Frequency Cumulative Pr								
1 – 31 January 2020	1	0	0	NA							
1 – 31 January 2020	2	0	0	NA							

11. IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL REQUIREMENTS

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- 11.1.2 The Contractors had been implementing the required environmental mitigation measures according to the Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by the Contractors in this Reporting Month are summarized in *Table 11-1* and photo record of water mitigation measure was provided in Appendix L.

Issues	Environmental Mitigation Measures
Construction	· Regularly to maintain all plants, so only the good condition plants were used
Noise	on-site ;
	• If possible, all mobile plants onsite operation has located far from NSRs;
	• When machines and plants (such as trucks) were not in using, it was switched off;
	• Wherever possible, plant was prevented oriented directly the nearby NSRs;
	• Provided quiet powered mechanical equipment to use onsite;
	 Weekly noise monitoring was conducted to ensure construction noise meet the criteria.
Air Quality	
	 Stockpile of dusty material was covered entirely with impervious sheeting or sprayed with water so as to maintain the entire surface wet;
	• The construction plants regularly maintained to avoid the emissions of black smoke;
	• The construction plants switched off when it not in use;
	• Water spraying on haul road and dry site area was provided regularly;
	• Where a vehicle leaving the works site is carrying a load of dusty materials, the
	load has covered entirely with clean impervious sheeting; and
	• Before any vehicle leaving the works site, wheel watering has been performed.
Water Quality	Debris and refuse generated on-site collected daily;
	• Oils and fuels were stored in designated areas;
	 The chemical waste storage as sealed area provided;
	• Site hoarding with sealed foot were provided surrounding the boundary of working site to prevent wastewater or site surface water runoff get into public areas; and
	 Portable chemical toilets were provided on-site. A licensed contractor was
	regularly disposal and maintenance of these facilities.
	• Silt curtain was installed and maintained in accordance with EP condition
Waste and	• Excavated material reused on site as far as possible to minimize off-site disposal.
Chemical	 Scrap metals or abandoned equipment should be recycled if possible;
Management	• Waste arising kept to a minimum and be handled, transported and disposed of in a suitable manner;
	• Disposal of C&D wastes to any designated public filling facility and/or landfill
	followed a trip ticket system; and
	• Chemical waste handled in accordance with the Code of Practice on the Packaging,
	Handling and Storage of Chemical Wastes.
General	The site is generally kept tidy and clean.Mosquito control is performed to prevent mosquito breeding on site.

 Table 11-1
 Environmental Mitigation Measures in the Reporting Month

11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 Tentative construction activities to be undertaken in February 2020 should be included:-

Contract 1

- Bored piling works at Portion II
- Welding of steel bracket for precast shell installation at Portion II
- Installation of pre-cast shell
- 1st Stage Pile Cap Casting at Portion II

Contract 2

- Pre-bored Socket H-Pile (Portion VI)
- Pre-drilling Works (Portion VI)
- Excavation Work (Portion VI)
- Sheet Pilling Work (Portion III)
- Drainage Installation Work (Portion III)
- Footing construction Work (Portion VI)
- Excavation & RC works (Superstructure Portion III)
- Installation of temporary road lightings (Portion III)
- Bored Pile Testing (Portion VI)

11.3 IMPACT FORECAST

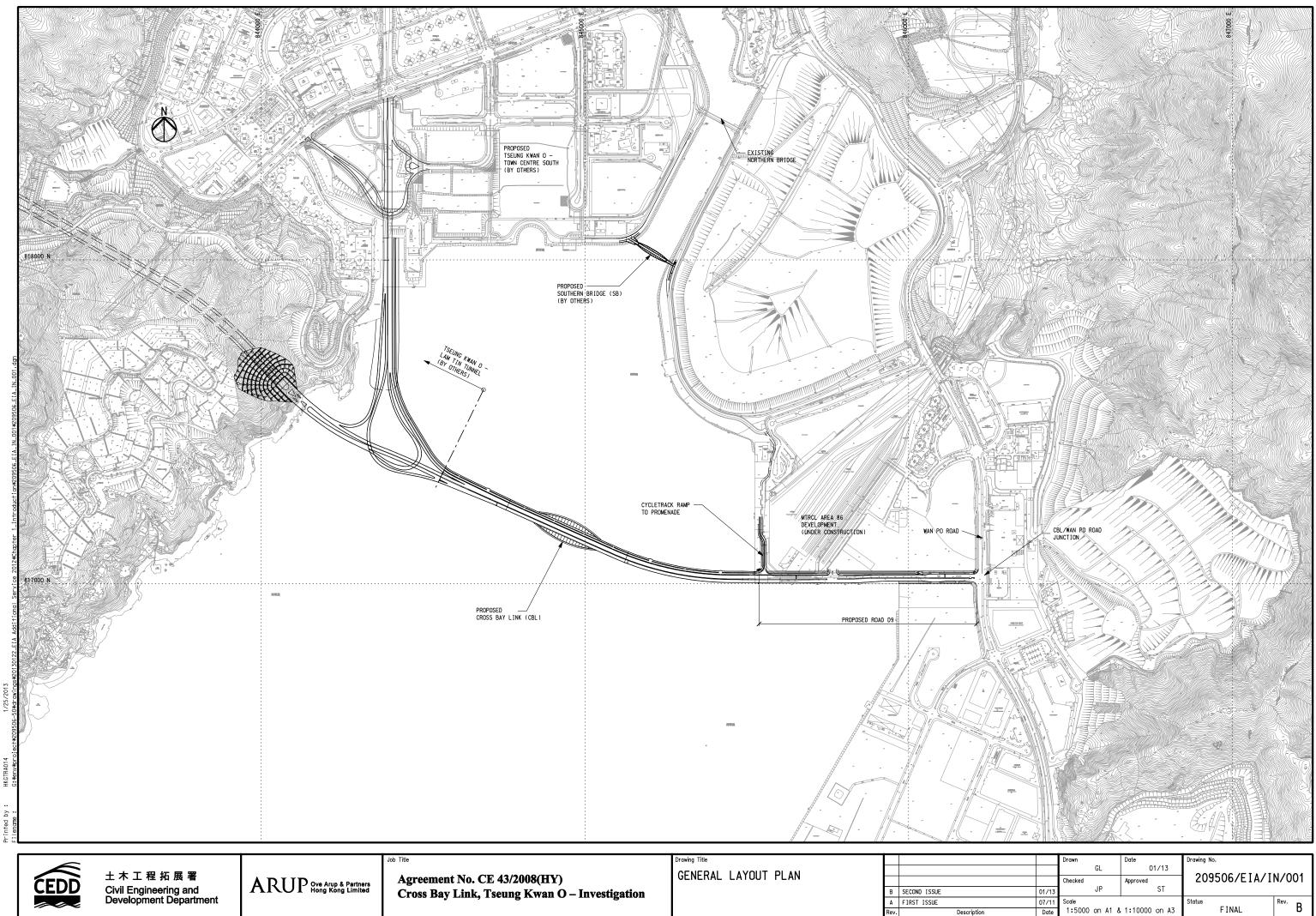
- 11.3.1 Potential environmental impacts arising from the works of the Contracts 1 and Contract 2 include:
 - Construction waste
 - Air quality
 - Construction noise
 - Water quality
- 11.3.2 Environmental mitigation measures will be properly implemented and maintained as per the Mitigation Implementation Schedule in Appendix L to ensure site environmental performance is acceptable.

AUES

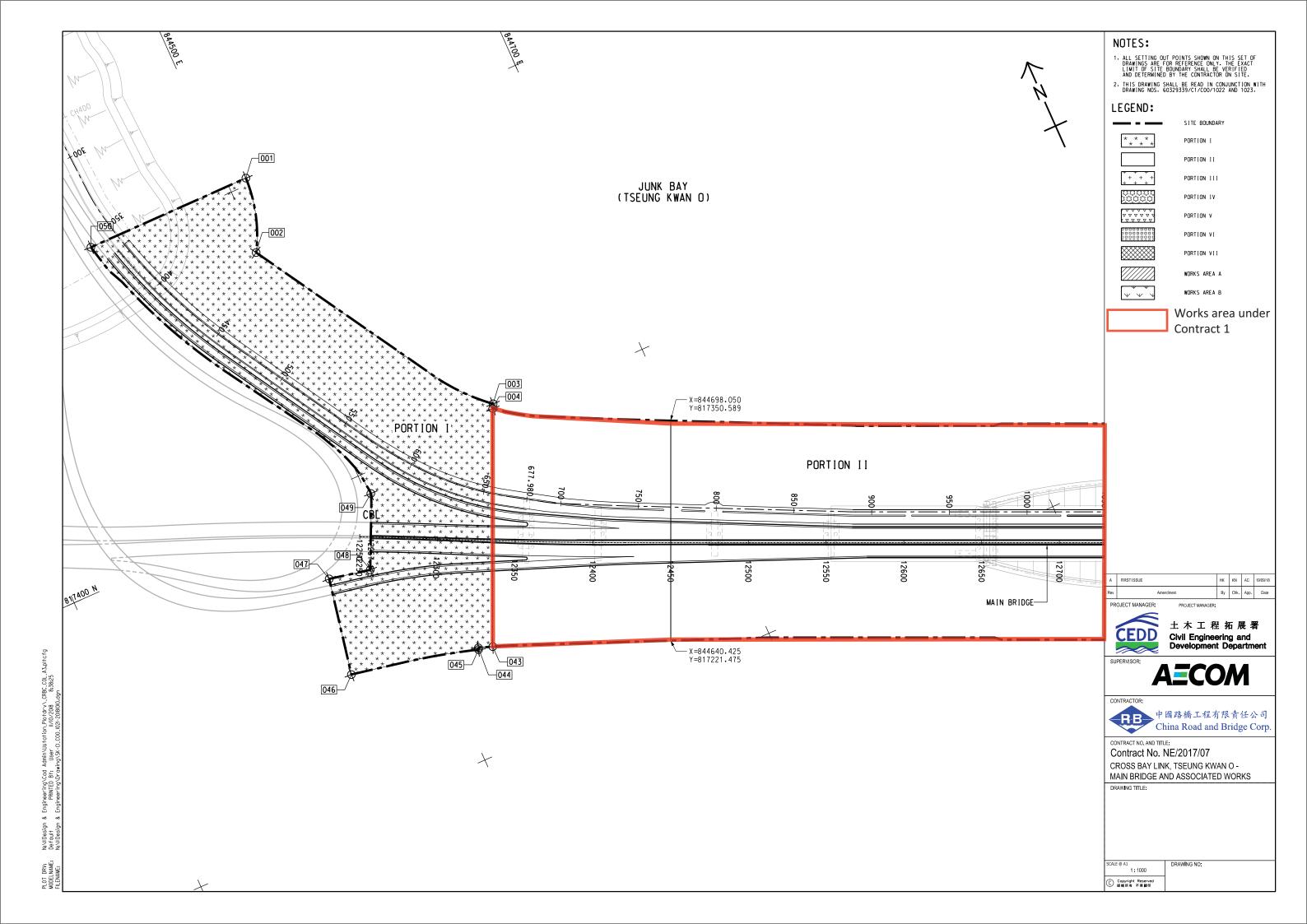
12. CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

- 12.1.1 This is the monthly EM&A report as presented the monitoring results and inspection findings for the reporting period from 1st to 31st January 2020.
- 12.1.2 In the Reporting Period, two (2) daytime construction noise action level exceedances were recorded due to two (2) noise complaints were received. In addition, two (2) sessions of construction noise monitoring results triggered the Limit Level. Investigation was undertaken by ET and it was considered that the evening construction noise limit level exceedances recorded are unlikely caused by the Project.
- 12.1.3 In this Reporting Period, no 1-Hour TSP or 24-Hr TSP air quality monitoring exceedance was recorded. No NOE or the associated corrective actions were therefore issued.
- 12.1.4 For water quality monitoring, no Action and Limit Level exceedances was recorded in the reporting period.
- 12.1.5 In the Reporting Period, two (2) environmental complaint were received with respect to the construction noise arising from the Contract 2 of the Project. Investigations for the complaint were undertaken by ET and mitigation measures were enhanced by the Contractor. Nevertheless, the Contractor of Contract 2 was reminded to implement the noise mitigation measures as stated in EP and EM&A Manual as far as practicable.
- 12.1.6 No notification of summons or prosecution were received and recorded for the Project.

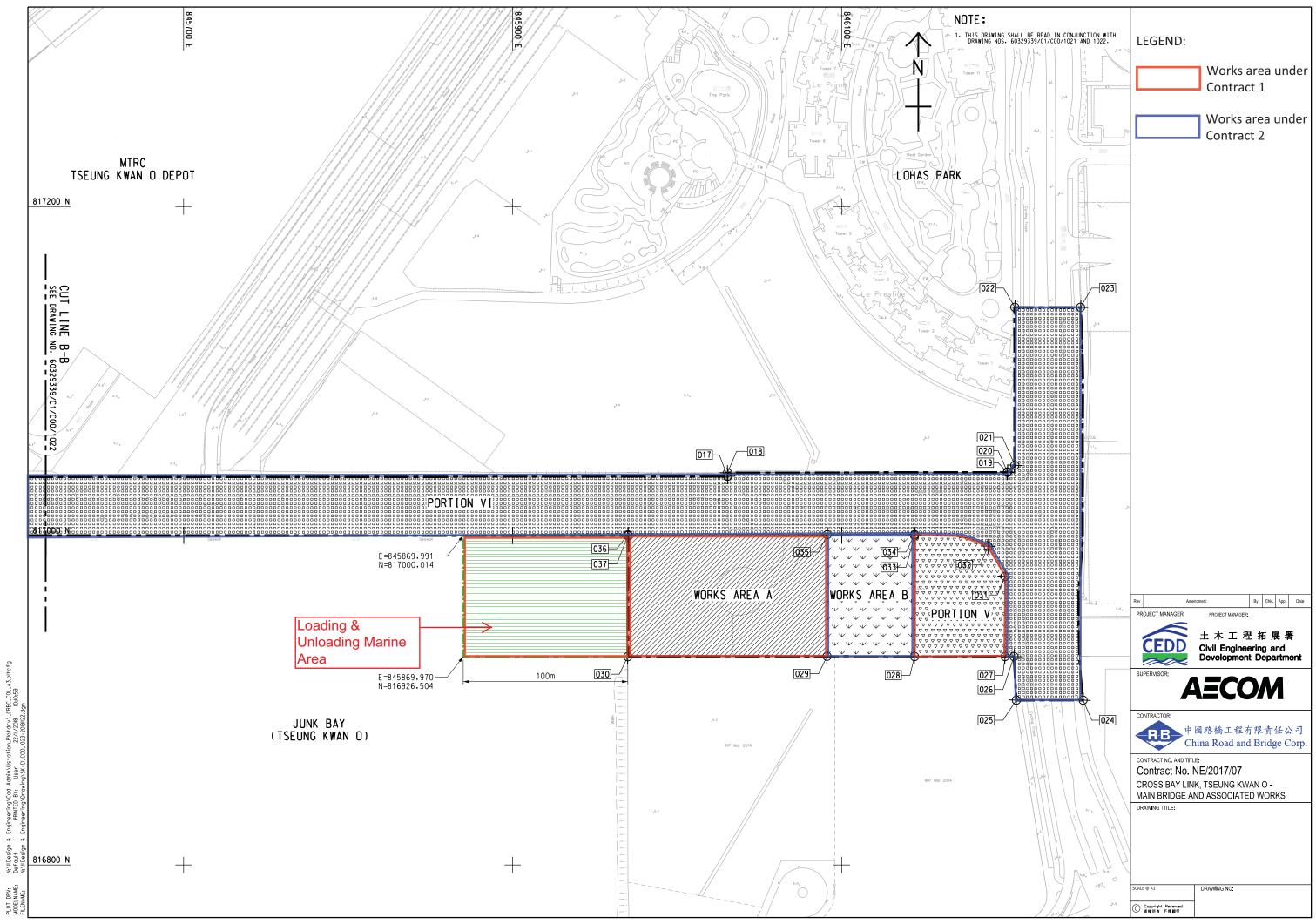

12.2 **RECOMMENDATIONS**

- 12.2.1 Due to the dry and windy season has begun in Hong Kong, the Contractors were reminded that all the works being undertaken must fulfill environmental statutory requirements, especially construction dust coming from the work sites of the Project.
- 12.2.2 Construction noise would be the key environmental issue as Lohas Park Phase 4 was already available for resident occupation. The noise mitigation measures such as use of quiet plants and installation of temporary noise barrier at the construction noise predominate area should be fully implemented in accordance with the EM&A requirement.



Appendix A

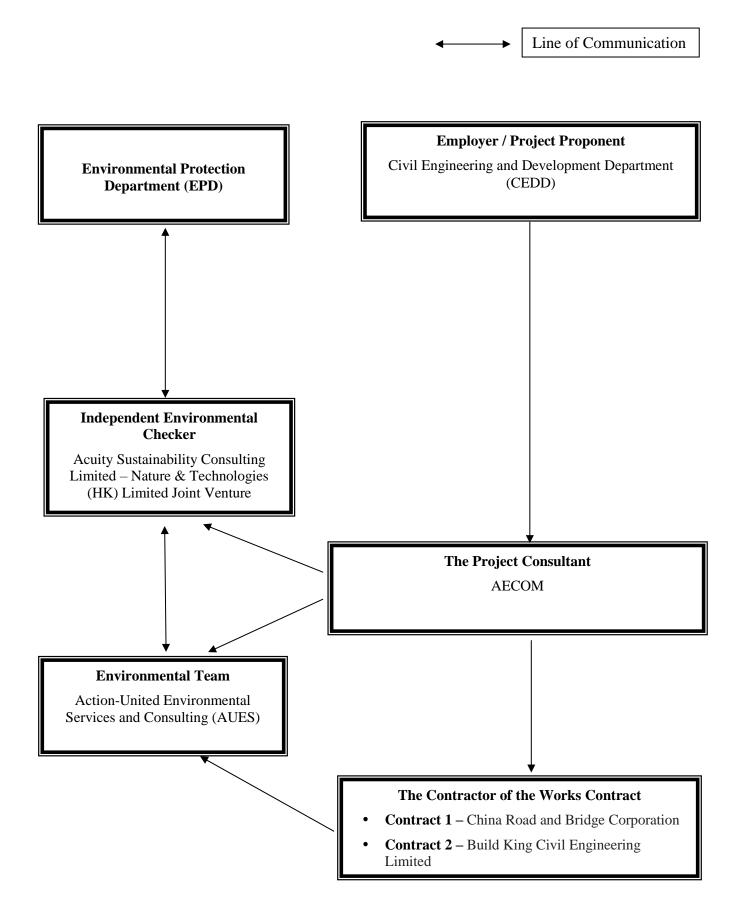

Project Layout Plan



	Drawn	Date	Drawing No.	
	GL	01/13		
	Checked	Approved	209506/EIA/II	N/001
01/13	JP	ST		
07/11	Scale		Status	Rev. D
Date	1:5000 on A1 &	1:10000 on A3	FINAL	D

		845500 E	the second secon
SETTING OUT POINTS	SETTING OUT POINTS	lo r	
POINTS EASTING NORTHING	POINTS EASTING NORTHING		
001 844512.175 817604.422 002 844498.695 817557.993	026 846204.700 816926.589 027 846199.263 816926.590	-	
003 844598.186 817407.065	021 0461331263 016260.336 028 846144.269 816926.589		
004 844596.769 817404.339 005 845132.374 817153.641	029 846091.080 816926.744 030 845969.970 816926.504	-	
006 845500.00 817088.580	031 846199.197 816975.364		
007 845524.969 817088.226 008 845524.909 817236.307	032 846188.983 816993.582		
008 845524.909 817236.307 009 845558.095 817236.307	033 846144.274 816999.997 034 846144.274 817000.722	-	
010 845558.095 817195.885	035 846091.204 817000.679		
011 845550.234 817174.288 012 845550.219 817158.042	036 845970.070 817000.581 037 845970.069 817000.099	+ $+$	
013 845562.850 817139.744 014 845562.850 817035.700	038 845550.850 817000.099 039 845524.969 817000.099		
015 845550.850 817035.670	040 845550.850 816953.291	-	
016 845524.969 817035.670 017 846030.606 817036.089	041 845500.00 816952.636	-	***
017 846030.606 817036.089 018 846030.604 817038.387	042 845076.990 817029.022 043 844534.373 817264.536	-	E00
019 846200.700 817038.418	044 844525.572 817267.627	-	008
020 846200.700 817038.796 021 846205.200 817042.796	045 844525.199 817266.527 046 844444.018 817285.203	-	
022 846205.200 817138.796	047 844456.043 817347.194	-	
023 846245.180 817138.796 024 846246.698 816900.099	048 844482.530 817341.743 049 844502.889 817386.445	-	
025 846206.155 816900.099	050 844403.015 817604.422]	
		JUNK BAY	
		(TSEUNG KWAN D)	\times
			PORTION VII
			PORTION III
		t	
		將軍運 JUNK BAY JUNK KWAN ON	
		将軍决、	
		NK BANN O	
		JULY KWAN	
		(TSEUL	016
			8
	005		550
	\$		
			13300
		PORTION II	
		1400	13250
	5 5	350	
1100	1250		13200
	· · · · · · · · · · · · · · · · · · ·	13150	
IB] IT		13 00 1	
		13000	
12800	12950	0	
MAIN BRIDGE			
		The second of the second in second second	
		·	

N:VIDesign & Engineering/Cod Admin/Ustation_Plotary/.CR8C.COL.A3.pltcfg Default PRNTED BY: User 22/11/2018 (0:40:59 M:VIDesign & Engineering/Inc.wino.KSK-fr (fn) (0:7--2018/127 Am



Appendix B

Project Organization Chart & Contact Details of Key Personnel for the Project

Project Organization Structure

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.	
CEDD	Project Proponent	CK Lam	2301 1398	2714 5174	
CEDD Project Proponent		Sheri Leung	2301 1398	2714 5174	
AECOM Senior Resident Engineer		Jackie Chan	3595 8045	3596 6118	
AECOM	Resident Engineer	Kingman Chan	3595 8045	3596 6118	
ASC – N&T Independent Environmental JV Checker		Kevin Li	2698 6833	2698 9383	
ASC – N&T JV	Senior Environmental Consultant	Tandy Tse	2698 6833	2698 9383	
AUES Environmental Team Leader		T. W. Tam	2959 6059	2959 6079	
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079	
AUES	Environmental Consultant	Martin Li	2959 6059	2959 6079	
CRBC	Site Agent	Raymond Suen	9779 8871	2283 1689	
CRBC	Environmental Officer	Calvin So	9724 6254	2283 1689	
CRBC	Environmental Supervisor	Lila Lui	9790 5433	2283 1689	
Build King	Site Agent	Stephen Leung	9071 7657	TBA	
Build King	Environmental Officer	Michael Lam	6476 4299	TBA	
Build King Environmental Supervisor		Kenneth Hung	6170 9304	TBA	

Contact Details of Key Personnel for the Project

Legend:

CEDD (Employer) – Civil Engineering and Development Department

AECOM (Project Consultant) – AECOM Asia Co. Ltd.

ASC – N&T JV (IEC) – Acuity Sustainability Consulting Limited – Nature & Technologies (HK) Limited Joint Venture

AUES (ET) – Action-United Environmental Services & Consulting

CRBC (the Main Contractor of the Works Contract 1) – China Road and Bridge Corporation

Build King (the Main Contractor of the Works Contract 2) - Build King Civil Engineering Limited

Appendix C

3-Month Rolling Construction Programme

Contract 1

Page: 1

Contract No. NE/2017/07 Cross Bay Link, Tseng Kwan O - Main Bridge and Associated Works

Executive Summary ProgrESP Section 2 of Works ofESP10920CBL1ESP10960PilingESP10980Pile CESP10980Pile CESP11000PierESP11160E&MESP1280ArchitPreliminaries, ContractorContraESP10400TempESP10420MethodESP10420ProjecESP10420ProjecESP10420ProjecESP10420ProjecESP10400FarcinESP10400ProjecESP10500ProjecESP10600ProcutESP10600ProcutProcurement, Factory AcceptanceProcutP-PC10140ProcutP-PC10160ProcutP-PC10160FactorP-PC10060FactorP-PC10080Factor	All Works within Portion II,III,IV and VI Main Bridge and Marine Viaduct g Works	Duration 1434 1240 1240 671 321 224 856 145 1048 695 736 869 843 556 421 745	856 856 856 856 28 265 224 856 145 145 474 352 422 369 284 54 421	29-Jun-18 A 29-Jun-18 A 17-Sep-18 A 17-Sep-18 A 17-Nov-18 A 23-Jul-19 A 23-Jul-19 A 21-Jan-20 09-Jan-20 09-Jan-20 29-Jun-18 A 13-Aug-18 A 27-Aug-18 A 06-Aug-18 A 29-Jun-18 A	29-Jun-18 29-Jun-18 28-Feb-19 28-Feb-19 18-Apr-19 08-Aug-19 23-Dec-19 23-Dec-19 23-Dec-19 23-Dec-19 23-Dec-19 23-Dec-19 23-Dec-19 23-Dec-19 24-Dec-19 25-Dec-19 27-Dec-19 29-Jun-18 13-Aug-18 06-Aug-18	13-May-22 13-May-22 13-May-22 13-May-22 13-May-22 05-Feb-20 29-Sep-20 31-Aug-20 13-May-22 01-Jun-20 26-Apr-21 25-Dec-20 05-Mar-21	21-Jul-22 21-Jul-22 21-Jul-22 21-Jul-22 21-Jul-22 16-Feb-21 23-Jun-20 01-Aug-20 04-May-22 18-May-20 18-May-20 18-May-20 11-May-21 07-Jul-20	290 -90 -90 201 77 136 -90 85 85 85 91 11	30.97% 0 95.83% 0 17.45% 0 0% 0 0% 0	377 -98 -30 -10 -14 -14 -14			19 26 02 09 16
ESP Section 2 of Works-4 ESP10920 CBL1 ESP10960 Piling ESP10980 Pile C ESP10980 Pile C ESP11000 Pier ESP11160 E&M ESP1280 Archit Preliminaries, Contractor Contra ESP10400 Temp ESP10400 Gener ESP10400 Projec ESP10400 Projec ESP10500 Projec ESP10500 Projec ESP10600 Procut ESP10600 Fabric Procurement, Factory Acceptance Fabric P-PC10120 Procut P-PC10140 Procut P-PC10160 Procut P-PC10060 Factor P-PC10060 Factor P-PC10080 Factor	All Works within Portion II,III,IV and VI Main Bridge and Marine Viaduet g Works Cap A Works for CBL Main Bridge and Marine Viaduet rks-All Works within Portion V (CBL E&M Plantroom) itectural & External Works r's Design & Method Statement Submission & Approval porary Works Design tood Statement Submission for Major Construction Works rractor's Design Submission and Approval erral Submission tet Manager's Acceptance of Subcontractors arement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Box Girder cation of Precast Box Girder	1240 1240 671 321 224 856 145 1048 695 736 869 843 556 421 745 713	856 856 28 265 224 856 145 145 474 352 269 284 54	17-Sep-18 A 17-Sep-18 A 17-Nov-18 A 23-Jul-19 A 21-Jan-20 09-Jan-20 09-Jan-20 29-Jun-18 A 13-Aug-18 A 27-Aug-18 A 06-Aug-18 A	28-Feb-19 28-Feb-19 18-Apr-19 08-Aug-19 23-Dec-19 27-Aug-18 27-Aug-18	13-May-22 13-May-22 05-Feb-20 29-Sep-20 31-Aug-20 13-May-22 01-Jun-20 26-Apr-21 25-Dec-20	21-Jul-22 21-Jul-22 16-Feb-21 23-Jun-20 01-Aug-20 04-May-22 18-May-20 18-May-20 11-May-21	-90 -90 201 77 136 -90 85 85 85 91	95.83% 0 17.45% 0 0% 0 0% 0 0% 0	377 -98 -30 -10 -14 -14 -14			Piling Works
ESP10920CBL1ESP10960PilingESP10980Pile CESP11000PierESP11160E&MESP Section 5 of the WorESP Section 5 of the WorESP1280ArchitPreliminaries, ContractorESP10400TempESP10400GenerESP10440ContraESP10440ProjecESP10450ProjecESP10500ProjecESP10600ProcurESP10600FabricProcurement, Factory AcceProcurP-PC10120ProcurP-PC10140ProcurP-PC10160ProcurP-PC10160FactorP-PC10060FactorP-PC10080Factor	Main Bridge and Marine Viaduct g Works Cap A Works for CBL Main Bridge and Marine Viaduct rks-All Works for CBL Main Bridge and Marine Viaduct rks-All Works within Portion V (CBL E&M Plantroom) itectural & External Works or's Design & Method Statement Submission & Approval porary Works Design od Statement Submission for Major Construction Works rractor's Design Submission and Approval rral Submission set Manager's Acceptance of Subcontractors arement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Box Girder cation of Steel Arch Bridge and Side Spans	1240 671 321 224 856 145 145 1048 695 736 869 843 556 421 745 713	856 28 265 224 856 145 474 352 422 369 284 54	17-Sep-18 A 17-Nov-18 A 23-Jul-19 A 21-Jan-20 09-Jan-20 09-Jan-20 09-Jan-20 09-Jan-20 29-Jun-18 A 13-Aug-18 A 27-Aug-18 A 06-Aug-18 A	28-Feb-19 18-Apr-19 08-Aug-19 23-Dec-19 09-Dec-19 23-Dec-19 23-Dec-19 23-Dec-19 23-Dec-19 29-Jun-18 13-Aug-18 27-Aug-18	13-May-22 05-Feb-20 29-Sep-20 31-Aug-20 13-May-22 01-Jun-20 01-Jun-20 26-Apr-21 25-Dec-20	21-Jul-22 16-Feb-21 23-Jun-20 01-Aug-20 04-May-22 18-May-20 18-May-20 11-May-21	-90 201 77 136 -90 85 85 91	95.83% 0 17.45% 0 0% 0 0% 0 0% 0	377 -98 -30 -10 -14 -14 -14			Piling Works
ESP10960PilingESP10980Pile CESP11000PierESP11160E&MESP Section 5 of the WordMarchitESP1280ArchitPreliminaries, ContractorESP10400ESP10400TempESP10420MetholESP10420GenerESP10480GenerESP10500ProjectESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastESP10600PrecastP-PC10120PrecastP-PC10160PrecastP-PC10060FactorP-PC10080Factor	g Works Cap A Works for CBL Main Bridge and Marine Viaduet rks-All Works within Portion V (CBL E&M Plantroom) itectural & External Works r's Design & Method Statement Submission & Approval porary Works Design tod Statement Submission for Major Construction Works ractor's Design Submission and Approval eral Submission set Manager's Acceptance of Subcontractors urement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Box Girder cation of Precast Box Girder	671 321 224 856 145 145 1048 695 736 869 843 556 421 745 713	28 265 224 856 145 145 474 352 422 369 284 54	17-Nov-18 A 23-Jul-19 A 21-Jan-20 09-Jan-20 09-Jan-20 09-Jan-20 29-Jun-18 A 13-Aug-18 A 27-Aug-18 A 06-Aug-18 A	18-Apr-19 08-Aug-19 23-Dec-19 09-Dec-19 23-Dec-19 27-Aug-18	05-Feb-20 29-Sep-20 31-Aug-20 13-May-22 01-Jun-20 01-Jun-20 26-Apr-21 25-Dec-20	16-Feb-21 23-Jun-20 01-Aug-20 04-May-22 18-May-20 18-May-20 11-May-21	201 77 136 -90 85 85 85 91	95.83% 0 17.45% 0 0% 0 0% 0 0% 0	377 -98 -30 -10 -14 -14 -14			Piling Works
ESP10980Pile CESP11000PierESP11160E&MESP11160E&MESP11280ArchitPreliminaries, ContractorESP10420MethoESP10420MethoESP10440ContraESP10440GenerESP10500ProjecESP10500ProjecESP10600ProcutESP10600ProcutProcurement, Factory AcceProcurementProcutP-PC10120ProcutP-PC10160ProcutP-PC10160FactorP-PC10060FactorP-PC10080Factor	Cap A Works for CBL Main Bridge and Marine Viaduct rks-All Works within Portion V (CBL E&M Plantroom) itectural & External Works r's Design & Method Statement Submission & Approval porary Works Design tood Statement Submission for Major Construction Works ractor's Design Submission and Approval eral Submission tert Manager's Acceptance of Subcontractors arement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Box Girder cation of Precast Box Girder cation of Steel Arch Bridge and Side Spans	321 224 856 145 145 1048 695 736 869 843 556 421 745 713	265 224 856 145 145 474 352 422 369 284 54	23-Jul-19 A 21-Jan-20 09-Jan-20 09-Jan-20 09-Jan-20 29-Jun-18 A 13-Aug-18 A 27-Aug-18 A 06-Aug-18 A	08-Aug-19 23-Dec-19 09-Dec-19 23-Dec-19 27-Aug-18 27-Aug-18	29-Sep-20 31-Aug-20 13-May-22 01-Jun-20 01-Jun-20 26-Apr-21 25-Dec-20	23-Jun-20 01-Aug-20 04-May-22 18-May-20 18-May-20 11-May-21	77 136 -90 85 85 85 91	17.45% 0 0% 0 0% 0 0% 0	-98 -30 -10 -14 -14 -14 -14			Piling Works
ESP11000PierESP11160E&MESP11160E&MESP11280ArchitPreliminaries, ContractorESP10400ESP10400TempESP10420MethoESP10420GenerESP10480GenerESP10500ProjecESP10500ProjecESP10600PrecasESP10600FabricProcurement, FactorContraP-PC10120ProcurP-PC10160ProcurP-PC10160ProcurP-PC10160FactorP-PC10060FactorP-PC10080Factor	A Works for CBL Main Bridge and Marine Viaduct rks-All Works within Portion V (CBL E&M Plantroom) itectural & External Works r's Design & Method Statement Submission & Approval porary Works Design iod Statement Submission for Major Construction Works ractor's Design Submission and Approval eral Submission ert Manager's Acceptance of Subcontractors arement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Box Girder ication of Steel Arch Bridge and Side Spans	224 856 145 145 695 736 869 843 556 421 745 713	224 856 145 145 474 352 422 369 284 54	21-Jan-20 09-Jan-20 09-Jan-20 09-Jan-20 29-Jun-18 A 13-Aug-18 A 27-Aug-18 A 06-Aug-18 A	23-Dec-19 09-Dec-19 23-Dec-19 23-Dec-19 29-Jun-18 13-Aug-18 27-Aug-18	31-Aug-20 13-May-22 01-Jun-20 01-Jun-20 26-Apr-21 25-Dec-20	01-Aug-20 04-May-22 18-May-20 18-May-20 11-May-21	136 -90 85 85 91	0% 0 0% 0 0% 0	-30 -10 -14 -14 -14			
ESP11160E&MESP Section 5 of the WordESP1280ArchitPreliminaries, ContractorESP10400TempESP10420MethoESP10440ContraESP10480GenerESP10480GenerESP10500ProjectESP10600ProcurESP10600ProcurProcurement, Factory AcceptanceP-PC10120ProcurP-PC10160ProcurP-PC10060FactorP-PC10080Factor	rks-All Works within Portion V (CBL E&M Plantroom) itectural & External Works r's Design & Method Statement Submission & Approval porary Works Design and Statement Submission for Major Construction Works ractor's Design Submission and Approval eral Submission ret Manager's Acceptance of Subcontractors urement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Shell icetion of Precast Box Girder	856 145 145 1048 695 736 869 843 556 421 745 713	856 145 145 474 352 422 369 284 54	09-Jan-20 09-Jan-20 09-Jan-20 29-Jun-18 A 13-Aug-18 A 27-Aug-18 A 06-Aug-18 A	09-Dec-19 23-Dec-19 23-Dec-19 29-Jun-18 13-Aug-18 27-Aug-18	13-May-22 01-Jun-20 01-Jun-20 26-Apr-21 25-Dec-20	04-May-22 18-May-20 18-May-20 11-May-21	-90 85 85 91	0% 0 0% 0	-10 -14 -14 15			
ESP Section 5 of the WorESP11280ArchitPreliminaries, ContractorESP10400TempESP10420MethoESP10420GenerESP10480GenerESP10500ProjecESP10500ProjecESP10600PrecasESP10620FabricESP10640FabricProcurement, Factory AcceProcurementP-PC10120ProcureP-PC10160ProcureP-PC10160ProcureP-PC10060FactorP-PC10080Factor	rks-All Works within Portion V (CBL E&M Plantroom) itectural & External Works r's Design & Method Statement Submission & Approval porary Works Design and Statement Submission for Major Construction Works ractor's Design Submission and Approval eral Submission ret Manager's Acceptance of Subcontractors urement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Shell icetion of Precast Box Girder	145 145 1048 695 736 869 843 556 421 745 713	145 145 474 352 422 369 284 54	09-Jan-20 09-Jan-20 29-Jun-18 A 13-Aug-18 A 27-Aug-18 A 06-Aug-18 A	23-Dec-19 23-Dec-19 29-Jun-18 13-Aug-18 27-Aug-18	01-Jun-20 01-Jun-20 26-Apr-21 25-Dec-20	18-May-20 18-May-20 11-May-21	85 85 91	0% 0	-14 -14 15			
ESP11280ArchitPreliminaries, ContractorESP10400TempESP10420MethoESP10440ContraESP10480GenerESP10500ProjecESP10500ProcutESP10600ProcutESP10640FabricProcurement, Factory AcceptanceP-PC10120ProcutP-PC10160ProcutP-PC10060FactorP-PC10080Factor	itectural & External Works at's Design & Method Statement Submission & Approval porary Works Design and Statement Submission for Major Construction Works ractor's Design Submission and Approval eral Submission eret Manager's Acceptance of Subcontractors atrement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Shell ication of Precast Box Girder ication of Steel Arch Bridge and Side Spans	145 1048 695 736 869 843 556 421 745 713	145 474 352 422 369 284 54	09-Jan-20 29-Jun-18 A 13-Aug-18 A 27-Aug-18 A 06-Aug-18 A	23-Dec-19 29-Jun-18 13-Aug-18 27-Aug-18	01-Jun-20 26-Apr-21 25-Dec-20	18-May-20	85 91		-14			
Preliminaries, ContractorESP10400TempESP10420MethoESP10440ContraESP10480GenerESP10500ProjecESP10500ProjecESP10600ProcurESP10600FabricProcurement, Factory AcceProcurement, Factory AcceP-PC10120ProcurP-PC10160ProcurP-PC10160ProcurP-PC10160FactorP-PC10060FactorP-PC10080Factor	rr's Design & Method Statement Submission & Approval porary Works Design tod Statement Submission for Major Construction Works ractor's Design Submission and Approval ral Submission set Manager's Acceptance of Subcontractors urement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Box Girder faction of Steel Arch Bridge and Side Spans	1048 695 736 869 843 556 421 745 713	474 352 422 369 284 54	29-Jun-18 A 13-Aug-18 A 27-Aug-18 A 06-Aug-18 A	29-Jun-18 13-Aug-18 27-Aug-18	26-Apr-21 25-Dec-20	11-May-21	91		15			
ESP10400TempESP10420MethoESP10420ContraESP10480GenerESP10500ProjecESP10500ProcutESP10600PrecasESP10600FabricESP10640FabricProcurement, Factory AccP-PC10120ProcutP-PC10140ProcutP-PC10160ProcutP-PC10160ProcutP-PC10060FactorP-PC10080Factor	porary Works Design iod Statement Submission for Major Construction Works ractor's Design Submission and Approval eral Submission ret Manager's Acceptance of Subcontractors urement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Shell icetion of Precast Box Girder icetion of Steel Arch Bridge and Side Spans	695 736 869 843 556 421 745 713	352 422 369 284 54	13-Aug-18 A 27-Aug-18 A 06-Aug-18 A	13-Aug-18 27-Aug-18	25-Dec-20			40.050/	15			
ESP10420 Metho ESP10440 Contra ESP10440 Gener ESP10500 Projec ESP10500 Procua ESP10600 Precas ESP10640 Fabric ESP10640 Fabric Procurement, Factory Acc Procurement Procua P-PC10120 Procua P-PC10140 Procua P-PC10160 Procua	and Statement Submission for Major Construction Works ractor's Design Submission and Approval eral Submission ext Manager's Acceptance of Subcontractors urement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Shell ceation of Precast Box Girder ceation of Steel Arch Bridge and Side Spans	736 869 843 556 421 745 713	422 369 284 54	27-Aug-18 A 06-Aug-18 A	27-Aug-18		07-Jul-20	11	40.250/				
ESP10440ContraESP10480GenerESP10500ProjecESP10500ProcutESP10600PrecasESP10620FabricProcurement, Factory AcceProcurement, Factory AcceP-PC10120ProcutP-PC10140ProcutP-PC10160ProcutP-PC10060FactorP-PC10080Factor	ractor's Design Submission and Approval eral Submission eet Manager's Acceptance of Subcontractors urement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Shell feation of Precast Box Girder feation of Steel Arch Bridge and Side Spans	869 843 556 421 745 713	369 284 54	06-Aug-18 A	-	05-Mar-21			49.35% 0	-171			
ESP10480GenerESP10500ProjecESP10500ProcusESP10600PrecasESP10620FabricESP10640FabricProcurement, Factory AcceProcurementProcusP-PC10120ProcusP-PC10140ProcusP-PC10160ProcusFactory AcceptanceFactorP-PC10060FactorP-PC10080Factor	eral Submission cet Manager's Acceptance of Subcontractors urement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Shell ceation of Precast Box Girder ceation of Steel Arch Bridge and Side Spans	843 556 421 745 713	284 54	-	06-Aug-19		31-Aug-20	-30	42.66% 0	-186			
ESP10500 Project ESP10500 Procus ESP10600 Precas ESP10620 Fabric ESP10640 Fabric Procurement, Factory Acco Procurement P-PC10120 Procus P-PC10140 Procus P-PC10160 Procus Factory Acceptance Test P-PC10060 Factor	ect Manager's Acceptance of Subcontractors urement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Shell ication of Precast Box Girder ication of Steel Arch Bridge and Side Spans	556 421 745 713	54	29-Jun-18 A	00-Aug-10	11-Jan-21	21-Dec-20	196	57.54% 0	-21			
ESP10560 Procu ESP10600 Precas ESP10620 Fabric ESP10640 Fabric Procurement, Factory Acc Procurement P-PC10120 Procu P-PC10140 Procu P-PC10160 Procu Factory Acceptance Test P-PC10060 Factor	urement, Factory Acceptance Test, Delivery and Temporary Storage of Major E&M Equipment asting of Precast Shell ceation of Precast Box Girder ceation of Steel Arch Bridge and Side Spans	421 745 713			29-Jun-18	18-Oct-20	18-Oct-20	58	66.31% 0				
ESP10600 Precas ESP10620 Fabric ESP10640 Fabric Procurement, Factory Acc Procurement Procur P-PC10120 Procur P-PC10140 Procur P-PC10160 Procur Factory Acceptance Test P-PC10060 Factor	asting of Precast Shell cation of Precast Box Girder cation of Steel Arch Bridge and Side Spans	745 713	421	14-Aug-18 A	21-Feb-19	02-Mar-20	29-Aug-20	346	90.29% 0				
ESP10620 Fabric ESP10640 Fabric Procurement, Factory Acc Procurement P-PC10120 Procu P-PC10140 Procu P-PC10160 Procu Factory Acceptance Test P-PC10060 Factor	cation of Precast Box Girder cation of Steel Arch Bridge and Side Spans	713		09-Jan-20	09-Dec-19	04-Mar-21	30-Jan-21	108	0% 0				
ESP10640 Fabric Procurement, Factory Acc Procurement P-PC10120 Procur P-PC10140 Procur P-PC10160 Procur Factory Acceptance Test P-PC10060 Factor	ication of Steel Arch Bridge and Side Spans		474	08-Nov-18 A	28-Apr-19	26-Apr-21	11-May-21	51	36.38% 0				
Procurement, Factory Acc Procurement P-PC10120 Procur P-PC10140 Procur P-PC10160 Procur Factory Acceptance Test P-PC10060 Factor P-PC10080 Factor			320	10-Nov-18 A	13-May-19	23-Nov-20	24-Apr-21	33	55.12% 0				
Procurement Procur P-PC10120 Procur P-PC10140 Procur P-PC10160 Procur Factory Acceptance Test P-PC10060 P-PC10080 Factor	ceptance Test, Delivery and Temporary Storage of Major E&M Equipment	623	354	28-Mar-19 A	08-Apr-19	27-Dec-20	20-Dec-20	-59	43.18% 0	-			
P-PC10120 Procus P-PC10140 Procus P-PC10160 Procus Factory Acceptance Test P-PC10060 P-PC10080 Factor		150	150	09-Jan-20	09-Dec-19	14-Jul-20	13-Jun-20	128		-24			
P-PC10140 Procus P-PC10160 Procus Factory Acceptance Test P-PC10060 Factor P-PC10080 Factor		90	90	09-Jan-20	09-Dec-19	02-May-20	28-Mar-20	128		-24			
P-PC10160 Procus Factory Acceptance Test P-PC10060 Factor P-PC10080 Factor	urement and Manufacture of LV Switch Board	90	90	09-Jan-20	09-Dec-19	02-May-20	28-Mar-20	128	0% 0				
Factory Acceptance Test P-PC10060 Factor P-PC10080 Factor	urement and Manufacture of AHU for Dehumidification System	75	75	09-Jan-20	09-Dec-19	09-Apr-20	11-Mar-20	13	0% 0				
P-PC10060 Factor P-PC10080 Factor	urement and Manufacture of Generator	90	90	09-Jan-20	09-Dec-19	02-May-20	28-Mar-20	85	0% 0				
P-PC10080 Factor		75	75	14-Apr-20	12-Mar-20	14-Jul-20	13-Jun-20	128	00(0	-24			
	ry Acceptance Test for LV Switch Board	60	60	04-May-20	30-Mar-20	14-Jul-20	13-Jun-20	128	0% 0				
P-PC10100 Factor	ry Acceptance Test for AHU for Dehumidification System	30	30	14-Apr-20	12-Mar-20	20-May-20	20-Apr-20	13	0% 0				
Derlinden der Orenter der	ry Acceptance Test for Generator	60	60	04-May-20	30-Mar-20	14-Jul-20	13-Jun-20	85	0% 0	-24			
	's Design & Method Statement Submission & Approval	680 193	422	28-Mar-19 A	08-Apr-19 09-Nov-19	05-Mar-21 20-Jun-20	15-Feb-21 15-Jun-20	13 77		-10			
Temporary Works Design TDS2080 Design	n gn of lifting frame for full-span lifting of precast box girder (incl. 35 days TRA)	63	45	14-Oct-19 A	09-Nov-19	29-Feb-20	21-Jan-20	173	28.57% 35	5 -34			
	gn of temporary works for superstructure of steel bridge (incl. 35 days TRA)	141	141	09-Jan-20	09-Dec-19	29-Jun-20	20-May-20	-5	0% 35				_
	mould design for precast segments of TKOI viaducts (incl. 21 days TRA)	63	63	21-Jan-20	20-Dec-19	02-Apr-20	02-Mar-20	-5	0% 21				
	gn of Pier bracket for erection of pier-head segments (incl. 21 days TRA)	56	56	13-Mar-20	11-Feb-20	16-May-20	15-Apr-20	9	0% 21				
~	gn for temporary works for full span erection for TKOI viaducts (incl. 21 days TRA)	90	90	03-Mar-20	03-Mar-20	15-Jun-20	15-Apr-20	43	0% 21				
	nission for Major Construction Works	567	362	28-Mar-19 A	26-Apr-19	05-Mar-21	15-Feb-21	-26	070 21	-16			
	id statement submission for geometry control (incl. 21 days TRA)	67	7	28-Mar-19 A	26-Apr-19	16-Jan-20	12-Jul-19	-21	89.55% 21	-161		Me	ethod statement submission for geometry cont
	and statement submission for assembly of steel arch bridge (incl. 35 days TRA)	96	50	15-Jul-19 A	09-Nov-19	06-Mar-20	28-Feb-20	86	47.92% 35				
	too statement submission for delivery of precast box girder (incl. 35 days TRA)	61	35	19-Oct-19 A	09-Mar-20	26-Mar-20	18-May-20	151	42.62% 35				
	tool statement submission for installation of precase box girder (net. 35 days TRA)	81	55	04-Nov-19 A	09-Mar-20	18-Apr-20	10-Jun-20	131	32.1% 35			-	
	too statement submission for delivery of steel bridge deck of side span (incl. 35 days TRA)	81	47	15-Jul-19 A	13-Nov-20	05-Mar-21	15-Feb-21	-26	41.98% 35				
	tool statement submission for delivery of steel arch bridge deet of shee span (incl. 2) days TRA)	82	60	15-Aug-19 A	24-Sep-20	30-Jan-21	28-Dec-20	-19	26.83% 21				
	and statement submission for installation of the steel bridge deck of side span (incl. 21 days TRA)	67	40	15-Jul-19 A	13-Nov-20	25-Feb-21	29-Jan-21	-19	40.3% 21			-	
	and statement submission for installation of steel arch bridge (incl. 21 days TRA)	82	62	15-Jul-19 A	29-Sep-20	06-Feb-21	01-Jan-21	-13	24.39% 21			-	
Contractor's Design Subi		465	239	15-Apr-19 A	29 Sep 20 28-May-19	03-Sep-20	03-Sep-20	196					
	gn of arch rib inspection cradle + Under bridge gantry	86	65	16-Sep-19 A	09-Oct-19	24-Mar-20	16-Jan-20	-70	24.42% 0	-58			
	gn of access facilities (incl. 14 days TRA)	125	14	05-May-19 A	28-May-19	24-Jan-20	19-Oct-19	-12	88.8% 14			_	Design of access facilities (incl. 14 da
~	gn of Tuned Mass Damper(TMD) (incl. 7 days TRA)	150	21	15-Apr-19 A	08-Jul-19	01-Feb-20	28-Dec-19	15	86% 14				Design of Tuned Mass Da
	gn of Isolation panel and its structural frame (incl. 7 days TRA)	97	60	19-Nov-20 A	27-Mar-20	18-Mar-20	17-Jul-20	90	38.14% 7				
, i i i i i i i i i i i i i i i i i i i	gn of Functional lighting system, road lighting system, etc (incl. 7 days TRA)	97	97	19-Mar-20	17-Feb-20	09-Jul-20	08-Jun-20	90	0% 7				
	gn of Electrical system for the E&M plant room	100	50	09-Oct-19 A	09-Dec-19	27-Feb-20	17-Mar-20	78	50% 0				
Remaining Leve	el of Effort Remaining Work						CRBC					Date	Revis
Primary Baseline	e Critical Remaining Work VIII Summary	,	1		T						100	1	Monthly updated on 08 Jan 2
Actual Work	A Saseline Milestone						h Rolling P) ma			08	-Jan-20	

6	23	01	Ma 08	rch 2020 15	22		29	05	P	vpril 2020 12	19		26
		- - - - -											
		* * * *											
		Proje	ect Manage	r's Accep	otance of	Subc	ontrac	tors					
						_							
									Proc	ureme	nt and	Mar	ufact
						_							
						_							
			-										
						-							
		During			6.11	1.0.				-1 C	1.25	1	TDA
		Design	of lifting fr	ame for	iun-span	mun	g or pr	ecast t	ox gi	rder (ir	1CI. 33	days	IKA
							5	teel ma	wld d	ecian f	for pre	naet e	eame
							_ 3	leer mc	ouia a	esign i	or pre	casts	segme
ontr	ol (incl. 21	davs TR	(A)										
			Method st	atement	submissi	ion for	assen	nbly of	steel	arch b	ridge (incl.	35 da
											5 (
											i		
					D	esign	of arcl	n rib ins	spectio	on crae	dle + U	Jnder	r bridg
l da	ys TRA)												
Daı	nper(TMI) (incl. 7	days TRA)									
		:											
							i						
				Des	sign of E	lectric	al syst	tem for	the E	&M p	lant ro	om	
	ior	:				N	:			Ac		محا	
	ion 020					nec	ked			Ар	prove	eα	
12	020				-								

	ActivityName	Original Duration	Remaining Dura	tion Start	Planned Start	Finish	Planned Finish	Total Float	Activity% Complete	TRA Variance	- Finish Date	29 0	January2020 05 12 19	9 26	
CDS1180	Design of Building Services system for the E&M plant room	100	40	02-Sep-19 A	02-Sep-19	17-Feb-20	10-Dec-19	15	60%	0	-69				
CDS1200	Design of Structural health monitoring system (incl. 14 days TRA)	172	40	12-Jun-19 A	08-Jul-19	24-Feb-20	23-Jan-20	-24	76.74%		-27				
CDS1220	Design of SCADA system(SCADAS) (incl. 14 days TRA)	171	171	18-Feb-20	18-Feb-20	03-Sep-20	03-Sep-20	168	0%	14	0				
	Submission and Approval	111	10	30-Mar-19 A	08-Apr-19	20-Jan-20	14-Aug-19	6	20.2201	25	-136				esign Submission and
ADS1030	DDA submission for bridge deck of entrusted works of TKOI Viaduct (incl. 35 days TRA)	111	10	30-Mar-19 A	08-Apr-19	20-Jan-20	14-Aug-19	6	90.99%	35	-136			JDA submiss	sion for bridge deck of
	mission, Subcontracting and Procurement	379	103	28-Mar-19 A	08-Apr-19	20-Apr-20	20-Apr-20	297			0				
General Submissio		379	103	28-Mar-19 A	08-Apr-19	20-Apr-20	20-Apr-20	106	07.149/		0			Steel	main bridge shop drav
P-GS1480	Steel main bridge shop drawings submission and approval (incl. 7 days TRA)	140	18	28-Mar-19 A	08-Apr-19	26-Jan-20	25-Aug-19	-95	87.14%		-154			Steel I	main bridge snop drav
P-GS1680	Submit the details of proposed precast yard for precast segment (incl. 21 days TRA)	49	49	03-Mar-20	03-Mar-20	20-Apr-20	20-Apr-20	106	0%	21	0				
	Acceptance of Subcontractors	54	54	17-Oct-19 A	08-Dec-19	02-Mar-20	02-Mar-20	346			0				
P-SP1460	Fabrication and transportation of precast segment	0	0			02-Mar-20	02-Mar-20	50	0%		0				
P-SP1470	Fabrication of Precast Pile Cap Shelll for TKOI Viaduct	0	0			02-Mar-20	02-Mar-20	51	0%		0				
P-SP1480	Erection of precast segment	0	0			02-Mar-20	02-Mar-20	346	0%		0				
P-SP1540	Waterproofing Works	0	0			08-Jan-20	08-Dec-19	254	0%	0	-31		 Waterproofing Wo 		
P-SP1580	Supply and installation of steel parapet and sign gantry	0	0			08-Jan-20	08-Dec-19	240	0%	0	-31		 Supply and installa 	ation of steel	parapet and sign gan
P-SP1770	Flexible pavement works	0	0			03-Feb-20	03-Feb-20	0	0%	0	0				Flexible pavem
P-SP1810	Fabricate and transport precast v-piers with crossbeam	0	0			17-Oct-19 A	02-Mar-20		100%	0	137				
casting & Fabri	cation Works	546	312	08-Dec-18 A	28-May-19	15-Nov-20	04-Nov-20	-33			-12				
abrication of Pre	cast Shell and Precast Segments	169	140	19-Nov-19 A	11-Dec-19	27-May-20	08-May-20	79			-19				
Precast Shell		169	140	19-Nov-19 A	11-Dec-19	27-May-20	08-May-20	79			-19				
CBL - Batch 4 (3n	os.)	42	24	19-Nov-19 A	11-Dec-19	01-Feb-20	21-Jan-20	195			-11				CBL - Batch 4 (31
P-PS3143	Fabrication of Shell W5 + Modification of Casting Bed (2 weeks)	42	24	19-Nov-19 A	11-Dec-19	01-Feb-20	21-Jan-20	195	42.86%	0	-11				Fabrication of She
CBL - E1 and W1	Side Shells (2nos.)	140	140	09-Jan-20	21-Dec-19	27-May-20	08-May-20	8			-19				
P-PS9010	Casting Bed Preparation for Side Shells (small) - Additional Casting Beds	60	60	09-Jan-20	21-Dec-19	08-Mar-20	18-Feb-20	8	0%	0	-19				:
P-PS9020	Fabrication of Side Shells (C Shape) E1	40	40	09-Mar-20	19-Feb-20	17-Apr-20	29-Mar-20	8	0%	0	-19				
P-PS9040	Fabrication of Side Shells (C Shape) W1	40	40	18-Apr-20	30-Mar-20	27-May-20	08-May-20	8		0	-19				
	cast Box Girder	381	155	08-Dec-18 A	28-May-19	11-Jun-20	05-Jul-20	23		-	23				
P-BG1415	Setting Up Precasting Yard for Box Girder - Stage 2 (Storage)	120	25	08-Dec-18 A	28-May-19	02-Feb-20	24-Sep-19	23	79.17%	0	-131				Setting Up Preca
	ation - 1st Batch (7 Pieces)	20	15	03-Jan-20 A	28-Jan-20	17-Feb-20	17-Feb-20	23	79.1770	0	-151				8 -1
P-BG1395	Transfer to Stockpiling Area - 1st Batch (by STMP)	20	15	03-Jan-20 A	28-Jan-20	17-Feb-20	17-Feb-20	23	25%	0	-1				
			-						2370	0	-1				
	ation - 2nd Batch (6 Pieces)	125	125	08-Dec-19 A	07-Feb-20	11-Jun-20	05-Jul-20	23	2004		25				
P-BG1408	Fabrication of Precast box girder, Including Cast-in Items -Span E6-E7(North)	75	60	08-Dec-19 A	29-Mar-20	27-May-20	11-Jun-20	23	20%		15				
P-BG1409	Fabrication of Precast box girder, Including Cast-in Items -Span W3-W4(North)	75	75	04-Mar-20	03-Mar-20	17-May-20	17-May-20	23	0%		-1				
P-BG1425	Fabrication of Precast box girder, Including Cast-in Items -Span E7-Abut(North)	75	75	08-Feb-20	07-Feb-20	22-Apr-20	22-Apr-20	23	0%		-1				
P-BG1445	Fabrication of Precast box girder, Including Cast-in Items -Span E3-E4(North)	75	75	29-Mar-20	21-Apr-20	11-Jun-20	05-Jul-20	23	0%	0	23				
abrication of Pre	cast Pier	236	236	04-Oct-19 A	09-Dec-19	31-Aug-20	31-Jul-20	43			-31				
P-PF1230	Fabrication of Precast pier (1st batch 3 nos) - E4, E5, E6 (Include 10 days TRA)	110	20	04-Oct-19 A	20-Jan-20	28-Jan-20	08-May-20	11	81.82%	10	101		1		
P-PF1420	Fabrication of Precast pier (2nd batch 4 nos) - E7 W3, W4, W5(include 10 days TRA)	150	150	09-Jan-20	09-Dec-19	06-Jun-20	06-May-20	11	0%	10	-31				
P-PF1430	Fabrication of Precast pier (3rd batch 3 nos) (incl. 10 days TRA) - W2,E2, E3	60	60	18-Apr-20	18-Mar-20	16-Jun-20	16-May-20	119	0%	10	-31				
P-PF1440	Fabrication of Precast Cross Beam (4th Batch 2 nos.) (Incl. 10 days TRA) - E1, W1- including modification of	140	140	14-Apr-20	14-Mar-20	31-Aug-20	31-Jul-20	11	0%	10	-31				
brication of Ste	leasting bed el Arch Bridge and Side Spans	531	312	19-Apr-19 A	12-Jun-19	15-Nov-20	04-Nov-20	-95			-12				
Fabrication of Side	e Spans	333	294	14-Nov-19 A	27-Dec-19	15-Nov-20	04-Nov-20	-95			-12				
P-PF1080	Fabrication of steel deck of Side Spans - C01 to C07	161	129	14-Nov-19 A	27-Dec-19	03-Jun-20	04-Jun-20	-95	19.88%	7	1		¢		
P-PF1081	Sub-assembly of Side Span - C01 to C07	80	80	20-Apr-20	31-Mar-20	08-Jul-20	19-Jun-20	-70	0%	0	-20				
P-PF1082	Fabrication of steel deck of Side Spans - C22 to C28	173	165	23-Dec-19 A	15-May-20	15-Nov-20	04-Nov-20	-95	4.62%	7	-12		•		
Fabrication of Stee		468	257	19-Apr-19 A	12-Jun-19	21-Sep-20	07-Sep-20	-68			-14		<u> </u>		
Design, Drawing,		227	60	19-Apr-19 A	12-Jun-19	08-Mar-20	24-Jan-20	-31			-44		───		
P-PF1045	Remaining shop drawing submission & approval (NCE 014)	65	60	29-Jun-19 A	21-Nov-19	08-Mar-20	24-Jan-20	-31	7.69%	0	-44				
													Dent	cilipment or	d delivery of steel ma
P-PF1050	Procurement and delivery of steel material (incl. 35 days TRA)	125	10	19-Apr-19 A	12-Jun-19	18-Jan-20	14-Oct-19	-87	92%	55	-96		Proc	arement and	derivery of steel ma
	ub-assembly Work	413	257	29-Jun-19 A	06-Aug-19	21-Sep-20	07-Sep-20	-68			-14				
P-PF1065	Welding Procedure trials	90	10	29-Jun-19 A	06-Aug-19	18-Jan-20	03-Nov-19	-87	88.89%		-76		Weld	lding Procedu	ire trials
P-PF1101	Fabrication of panel plate for C08 to C14	177	40	30-Aug-19 A	30-Aug-19	17-Feb-20	22-Feb-20	-77	77.4%	7	5				
											i		Date		
Remainin	ig Level of Effort 📃 Remaining Work 🔶 🔶 Milestone		1				CRBC					<u> </u>		t	updated on 08

20	March 2020			April 2020
16 23 Design of Build	01 08 15 ding Services system for the I		29 05 m	12 19 26
	in of Structural health monito			TRA)
240.6		ning system (i	ion i r days	
Approval				
entrusted works o	ef TKOI Viaduct (incl. 35 day	s TRA)		
	0 * * *			Preliminaries
	2 2 2 2 2			General Sub
ings submission a	and approval (incl. 7 days TR	A)		
				Submit the d
	Project Manager's Accept	tance of Subco	ontractors	
	Fabrication and transport	ation of precas	st segment	
	Fabrication of Precast Pil	e Cap Shelll f	or TKOI Via	duct
	Erection of precast segm			
	♦ Election of precase segme	спt		
Ý				
t works				
	Fabricate and transport particular sectors are sectors and transport particular sectors are sectors	recast v-piers v	with crossbe	am
	*			
s.)				
	on of Casting Bed (2 weeks)			
w 3 i wooncatio	an of Casulig Deu (2 weeks)			
	Casting Bed Pre	paration for Si	de Shells (sr	nall) - Additional Casting Bed
K				Fabrication of Si
		-		
	* * * *			
ing Yard for Box	Girder - Stage 2 (Storage)			
Box Girder Fat	prication - 1st Batch (7 Pieces)		
Transfer to Sto	ekpiling Area - 1st Batch (by	STMP)		
	2 2 2 2 2 2 2 2			
	_			
	-			Eshmanta
				Fabricatio
	-			
	- 			
	-			
	_			
		-		
	-			
	 Design, Drawing 	g, Procuremen	t	
	Remaining shop	drawing subn	nission & ap	proval (NCE 014)
ial (incl. 35 days	TRA)			
	- 8 8 8 8 8 8			
Fabricati	ion of panel plate for C08 to 0	C14		
1 autreau	in or parter plate 101 C00 10 C			
Revision		Chec	ked	Approved
an 2020				

	ata Date : 08-Jan- ge: 3	-20 Co	ntrac	t No.	NE/2017	7/07 Cross	s Bay Link	, Tseng Kv	van O -	Main B	idge a	nd A	ssocia	ted Worl	KS	
ActivityID	-	ActivityName	Original Duration	Remaining Durat	ion Start	Planned Start	Finish	Planned Finish	Total Float	Activity% Complete TR4	Variance - Fi	nish Date	29	January2020 05 12	10 26	February2020 02 09 16
	P-PF1110	Sub-assembly of Main Span - Decking C08 to C14	120	110	23-Dec-19 A	25-Jan-20	05-May-20	24-May-20	-24	8.33% 0		18	20		19 20	10 10
	P-PF1120	Fabrication of Main Span - Decking C15- C21	190	110	10-Oct-19 A	02-Mar-20	12-Jul-20	07-Sep-20	-47	42.11% 7		57	:			
	P-PF1170	Fabrication of Main Span - Arch rib NG01 to NG19	257	252	25-Nov-19 A	09-Dec-19	16-Sep-20	21-Aug-20	-77	1.95% 7		-26				
	P-PF1190	Fabrication of Main Span - Arch rib SG01 to SG19	257	257	09-Jan-20	25-Dec-19	21-Sep-20	06-Sep-20	-68	0% 7		-15				
	Section 2 of Works-	All Works within Portion II,III,IV and VI	331	286	24-Sep-19 A	25-Nov-19	07-Jan-21	19-Sep-20	289			-110		+		
	CBL Main Bridge a	nd Marine Viaduct	331	286	24-Sep-19 A	25-Nov-19	07-Jan-21	19-Sep-20	289			-110				
	Piling Works		73	28	27-Nov-19 A	25-Nov-19	07-Jan-21	25-Feb-20	201			-317				
	Piling Works for Pi	er E2	21	3	27-Nov-19 A	25-Nov-19	11-Jan-20	18-Dec-19	173			-21		Piling Wor	rks for Pier E2	
	Testing		21	3	27-Nov-19 A	25-Nov-19	11-Jan-20	18-Dec-19	173			-21		 Testing 		
	S2-PW8500	Sonic Test, interface core and full core for bored pile -E2	21	3	27-Nov-19 A	25-Nov-19	11-Jan-20	18-Dec-19	173	85.71% 0		-21		Sonic Test	, interface core ar	d full core for bored pile -
	Piling Works for Pi		21	5	28-Dec-19 A	08-Jan-20	14-Jan-20	31-Jan-20	-5			15		- Piling	Works for Pier W	71
	Testing		21	5	28-Dec-19 A	08-Jan-20	14-Jan-20	31-Jan-20	-5			15		Testing	g	
	S2-PW2100	Sonic Test, interface core and full core for bored pile -W1	21	5	28-Dec-19 A	08-Jan-20	14-Jan-20	31-Jan-20	-5	76.19% 0		15				Sonic Test, interface core a
	Piling Works for Pi		28	28	29-Nov-19 A	09-Jan-20	07-Jan-21	25-Feb-20	201	1011770 0		-317				
	Pile W5 -P5		7	0	30-Dec-19 A	09-Jan-20	08-Jan-20 A	16-Jan-20	201			7	.	Pile W5 -P5		
	S2-PW5700	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	0	30-Dec-19 A	09-Jan-20	08-Jan-20 A 06-Jan-20 A	10-Jan-20 13-Jan-20		100% 0		6			CD and execute	e the rock under rockhead
		-W5-P5										0				concreting -W5-P5
	S2-PW5720	Install steel cage and concreting -W5-P5	3	0	07-Jan-20 A	14-Jan-20	08-Jan-20 A	16-Jan-20		100% 0		7		- Inst	all steel cage and	concreting - w 5-P5
	Pile W5 -P6		7	0	09-Dec-19 A	14-Jan-20	12-Dec-19 A	21-Jan-20				31				
	S2-PW5760	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W5-P6	4	0	09-Dec-19 A	14-Jan-20	10-Dec-19 A	17-Jan-20		100% 0		30				cavate the rock under rock
	S2-PW5780	Install steel cage and concreting -W5-P6	3	0	11-Dec-19 A	18-Jan-20	12-Dec-19 A	21-Jan-20		100% 0		31			 Install steel ca 	ge and concreting -W5-P6
	Pile W5 -P7		6	3	09-Jan-20 A	10-Jan-20	07-Jan-21	24-Jan-20	161			-282		v		
	S2-PW9360	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting -W5-P7	4	0	28-Dec-20 A	10-Jan-20	07-Jan-21 A	14-Jan-20		100% 0		-291		—		
	S2-PW9380	Install steel cage and concreting -W5-P7	3	3	09-Jan-20	22-Jan-20	11-Jan-20	24-Jan-20	161	0% 0		11			Install ste	el cage and concreting -W
	Pile W5 -P8		14	0	29-Nov-19 A	11-Jan-20	19-Dec-19 A	31-Jan-20				31/5 -P	28			
	S2-PW9400	Drive Casing & Grab to excavate the soil (40.4m length) -W5-P8	4	0	29-Nov-19 A	13-Jan-20	11-Dec-19 A	16-Jan-20		100% 0		28		Driv	ve Casing & Gra ¹	to excavate the soil (40.4
	S2-PW9420	Install RCD and excavate the rock under rockhead level to founding level (4m socket) - rig No.1 & air lifting	4	0	12-Dec-19 A	11-Jan-20	17-Dec-19 A	15-Jan-20		100% 0	_	22		Instal	ll RCD and excar	vate the rock under rockhe
	S2-PW9440	-W5-P8 Install steel cage and concreting -W5-P8	3	0	18-Dec-19 A	29-Jan-20	19-Dec-19 A	31-Jan-20		100% 0	_	31			_	Install steel cage and conc
	Testing		21	21	13-Jan-20	01-Feb-20	05-Feb-20	25-Feb-20	172			17				Testing
	S2-PW5380	Sonic Test, interface core and full core for bored pile -W5	21	21	13-Jan-20	01-Feb-20	05-Feb-20	25-Feb-20	172	0% 0		17				
	Pile Cap		105	80	24-Sep-19 A	09-Dec-19	18-Apr-20	25-Apr-20	194			6				
	Pile Cap (L+R) for	Pier W1	76	76	09-Jan-20	16-Jan-20	14-Apr-20	21-Apr-20	-11			6				
	S2-PC2057	Welding of Steel Bracket -W1 (12nos.)	28	28	09-Jan-20	16-Jan-20	13-Feb-20	20-Feb-20	-11	0% 0		6				
	S2-PC2060	Installation of precast shell -WI (L+R)	18	18	14-Feb-20	21-Feb-20	05-Mar-20	12-Mar-20	-11	0% 0	_	6				
	S2-PC2080	Pilehead treatment -W1(L+R)	30	30	06-Mar-20	13-Mar-20	14-Apr-20	21-Apr-20	-11	0% 0		6				
							-	-		0/0 0		24			 Pile Cap for Pie 	ar F5
	Pile Cap for Pier E		10	10	09-Jan-20	09-Dec-19	20-Jan-20	19-Dec-19	173	01/ 0		-24				rks for pier installation -E5
	S2-PC2820	Preparation works for pier installation -E5	10	10	09-Jan-20	09-Dec-19	20-Jan-20	19-Dec-19	173	0% 0		-24				-
	Pile Cap for Pier E		10	10	09-Jan-20	09-Dec-19	20-Jan-20	19-Dec-19	179			-24		·	 Pile Cap for Pie 	
	S2-PC2840	Preparation works for pier installation -E6	10	10	09-Jan-20	09-Dec-19	20-Jan-20	19-Dec-19	179	0% 0		-24				rks for pier installation -E6
	Pile Cap for Pier E7		10	10	09-Jan-20	14-Dec-19	20-Jan-20	27-Dec-19	194			-19			 Pile Cap for Pie 	
	S2-PC2860	Preparation works for pier installation -E7	10	10	09-Jan-20	14-Dec-19	20-Jan-20	27-Dec-19	194	0% 0		-19			Preparation wo	rks for pier installation -E7
	Pile Cap (C Side Ca	ap) for Pier E1	21		11-Nov-19 A	13-Feb-20	16-Nov-19 A	07-Mar-20				90				
	S2-PC2460	Welding of Steel Bracket -E1 (4nos.)	21	0	11-Nov-19 A	13-Feb-20	16-Nov-19 A	07-Mar-20		100% 0		90				
	Pile Cap for Pier W	2	10	10	09-Jan-20	09-Dec-19	20-Jan-20	19-Dec-19	269			-24			 Pile Cap for Pie 	er W2
	S2-PC2050	Preparation works for pier installation -W2	10	10	09-Jan-20	09-Dec-19	20-Jan-20	19-Dec-19	269	0% 0		-24			Preparation wo	rks for pier installation -W
	Pile Cap for Pier W	3	44	24	31-Oct-19 A	12-Feb-20	02-Apr-20	14-Apr-20	141			6		+		
	S2-PC2110	Welding of Steel Bracket -W3 (6nos.)	14	0	31-Oct-19 A	12-Feb-20	08-Dec-19 A	27-Feb-20		100% 0		64				
	S2-PC2120	Installation of precast shell -W3	10	0	27-Nov-19 A	28-Feb-20	27-Nov-19 A	10-Mar-20		100% 0	_	83				
	S2-PC2140	Pilehead treatment -W3	14	14	06-Mar-20	13-Mar-20	21-Mar-20	28-Mar-20	141	0% 0		6				
	S2-PC2160	Rebar fixing and 1st stage Concreting -W3	10	10	23-Mar-20	30-Mar-20	02-Apr-20	14-Apr-20	141	0% 0		6				
	Pile Cap for Pier W	4	44	10	24-Sep-19 A	28-Feb-20	19-Mar-20	23-Apr-20	177			26		+		
	S2-PC2170	Welding of Steel Bracket -W4 (6nos.)	14	0	24-Sep-19 A	28-Feb-20	03-Oct-19 A	14-Mar-20		100% 0		133				
	S2-PC2180	Installation of precast shell -W4	10	0	10-Oct-19 A	09-Apr-20	10-Oct-19 A	23-Apr-20		100% 0		158				
		· ·				···· T·· 20										
	Remaining	g Level of Effort Remaining Work \blacklozenge Milestone	;					CRBC						Date		Rev
-	Primary Ba					ניזף							08	-Jan-20	Monthly	pdated on 08 Jan
	Actual Wo	rk 🔷 🔷 Baseline Milestone				11	hree Montl	i Koning P	rogran	mne						

	March 2020			April 2020	
6 23	01 06 15	22	29 05	April 2020 12 19	26
	-				
	* * *				
	- 				
-E2					
1.0.11					
and full core	for bored pile -W1				
d level to foun	ding level (4m socket) - rig N	lo.1 & air liftir	ng -W5-P5		
ckhead level to	founding level (4m socket)	- rig No.1 & ai	r lifting -W5	5-P6	
P6					
W5-P7					
v5-17					
411	25 DQ				
.4m length) -V					
	unding level (4m socket) - ri	g No.1 & air li	fting -W5-P	8	
creting -W5-P	8				
Son	c Test, interface core and ful	l core for bore	l pile -W5		
	- - 			Pile C	Cap
				Pile Cap (L	+R) for F
 Welding of 	Steel Bracket -W1 (12nos.)				
	Installation	of precast she	11 -W1 (L+R	R)	
				P	ilehead tre
E5					
-					
-6					
E6					
E7	-				
	Welding of Steel	Bracket -E1 (4	nos.)		
W2					
	*		 Pile Cap 	o for Pier W3	
v	Velding of Steel Bracket -W3	(6nos.)			
	Installation of	precast shell -	W3		
		Pil		nent -W3	
				Rebar fixin	g and let
	·			Redai IIAlli	151 C
	*	ile Cap for Pie			
	Welding	of Steel Brac	ket -W4 (6no		
					Installati
vision		Chec	ked	Approve	d
n 2020				, 4561040	-

Page: 4

Contract No. NE/2017/07 Cross Bay Link, Tseng Kwan O - Main Bridge and Associated Works

S2-PC2200	Pilehead treatment -W4	Original Duration 14	0	20-Nov-19 A	12-Mar-20	25-Nov-19 A	27-Mar-20		100% 0	10	2 29 0	05 12	19 26 02 0	09 16
S2-PC2220	Rebar fixing and 1st stage Concreting -W4	10	0	30-Nov-19 A	28-Mar-20	09-Dec-19 A	09-Apr-20		100% 0	9	8			
S2-PC2760	Preparation works for pier installation -W4	10	10	09-Mar-20	28-Mar-20	19-Mar-20	09-Apr-20	177	0% 0	1	7			
Pile Cap for Pier V		48	48	14-Feb-20	21-Feb-20	14-Apr-20	21-Apr-20	137			6			•
S2-PC2230	Welding of Steel Bracket -W5 (8nos.)	20	20	14-Feb-20	21-Feb-20	07-Mar-20	14-Mar-20	137	0% 0		6			
S2-PC2240	Installation of precast shell -W5 (8nos.)	10	10	09-Mar-20	16-Mar-20	19-Mar-20	26-Mar-20	137	0% 0		6			
S2-PC2260	Pilehead treatment -W5	18	18	20-Mar-20	27-Mar-20	14-Apr-20	21-Apr-20	137	0% 0		6			
Pile Cap (L+R) for		61	30	28-Dec-19 A	12-Dec-19	27-Feb-20	09-Mar-20	25	1000/ 0		9		Pilehead treatment -E1 (L+R)	
S2-PC2440	Pilehead treatment -E1 (L+R) Rebar fixing and Concreting -E1 (L+R)	30	0	28-Dec-19 A	12-Dec-19 04-Feb-20	08-Jan-20 A	18-Jan-20	25	100% 0 0% 0		9			
S2-PC2450 Pile Cap for Pier E		30 34	30	21-Jan-20 06-Mar-20	13-Mar-20	27-Feb-20 18-Apr-20	09-Mar-20 25-Apr-20	25 163	0% 0		6			
S2-PC2300	Installation of precast shell -E2	10	10	06-Mar-20	13-Mar-20	17-Mar-20	23-Apr-20 24-Mar-20	142	0% 0		6			
S2-PC2320	Pilehead treatment -E2	10	10	18-Mar-20	25-Mar-20	02-Apr-20	14-Apr-20	163	0% 0		6			
S2-PC2340	Rebar fixing and 1st stage Concreting -E2	14	14	03-Apr-20	15-Apr-20	18-Apr-20	25-Apr-20	163	0% 0		6			
Pile Cap for Pier E		10	10	09-Jan-20	09-Dec-19	20-Jan-20	19-Dec-19	249	0/10	-	4		Pile Cap for Pier E3	
S2-PC2920	Preparation works for pier installation -E3	10	10	09-Jan-20	09-Dec-19	20-Jan-20	19-Dec-19	249	0% 0				Preparation works for pier ins	stallation -E3
Pile Cap for Pier E		10	10	09-Jan-20	09-Dec-19	20-Jan-20	19-Dec-19	167				-	➡ Pile Cap for Pier E4	
S2-PC2800	Preparation works for pier installation -E4	10	10	09-Jan-20	09-Dec-19	20-Jan-20	19-Dec-19	167	0% 0				Preparation works for pier ins	stallation -E4
	Works for CBL Main Bridge and Marine Viaduct	232	232	09-Jan-20	09-Dec-19	20-Oct-20	19 Dec 19	234		-1				
	Delivery of Assocaited, E&M Works	232	232	09-Jan-20	09-Dec-19	20-Oct-20	19-Sep-20	234		-		•		
S2-AW2006	Procurement and Delivery Under Bridge mobile gantry	180	180	29-Jan-20	27-Dec-19	03-Sep-20	06-Aug-20	-12	0% 0					
S2-AW2008	Procurement and delivery of arch inspection cradle	210	210	07-Feb-20	07-Jan-20	20-Oct-20	19-Sep-20	-64	0% 0					
S2-AW2010	Procurement and delivery of of TMD	120	120	03-Feb-20	02-Jan-20	29-Jun-20	30-May-20	328	0% 0					
S2-AW2012	Procurement and delivery of dehumification system	180	180	09-Jan-20	09-Dec-19	18-Aug-20	21-Jul-20	277	0% 0	-2	4			
Pier (Precast Pier u		94	94	21-Jan-20	23-Dec-19	23-Apr-20	05-Apr-20	174		-1	8		•	
Pier Erection using	ng Crane Barge <1000T	74	74	21-Jan-20	23-Dec-19	23-Apr-20	19-Mar-20	143		-4	6		•	
Pier E5		23	23	31-Jan-20	02-Jan-20	26-Feb-20	31-Jan-20	168		-2	2		•	
S2-PR3600	Installation of Pier -E5	4	4	31-Jan-20	02-Jan-20	04-Feb-20	06-Jan-20	167	0% 0	-	2 —	-	Installatio	on of Pier -E
S2-PR3620	Rebar fixing and 2nd stage Concreting for connection between pier and pile cap -E5	14	14	05-Feb-20	07-Jan-20	20-Feb-20	22-Jan-20	168	0% 0	-2	2			
S2-PR3640	Installation of temp. bearing/jacking system -E5	5	5	21-Feb-20	23-Jan-20	26-Feb-20	31-Jan-20	168	0% 0	-2	2)
Pier E6		23	23	07-Feb-20	09-Jan-20	04-Mar-20	07-Feb-20	167		-2	2			
S2-PR3660	Installation of Pier -E6	4	4	07-Feb-20	09-Jan-20	11-Feb-20	13-Jan-20	167	0% 0	-2	2			Installation
S2-PR3680	Rebar fixing and 2nd stage Concreting for connection between pier and pile cap -E6	14	14	12-Feb-20	14-Jan-20	27-Feb-20	01-Feb-20	167	0% 0	-2	2			
S2-PR3700	Installation of temp. bearing/jacking system -E6	5	5	28-Feb-20	03-Feb-20	04-Mar-20	07-Feb-20	167	0% 0	-2	2			
Pier E7		23	23	24-Mar-20	22-Feb-20	23-Apr-20	19-Mar-20	143		-2	6			
S2-PR3720	Installation of Pier -E7	4	4	24-Mar-20	22-Feb-20	27-Mar-20	26-Feb-20	143	0% 0		6			
S2-PR3740	Rebar fixing and 2nd stage Concreting for connection between pier and pile cap -E7	14	14	28-Mar-20	27-Feb-20	17-Apr-20	13-Mar-20	143	0% 0	-2	6			
S2-PR3760	Installation of temp. bearing/ jacking system -E7	5	5	18-Apr-20	14-Mar-20	23-Apr-20	19-Mar-20	143	0% 0	-2	6			
Pier E4		23	23	21-Jan-20	23-Dec-19	19-Feb-20	21-Jan-20	174		-2	2		*	
S2-PR3540	Installation of Pier -E4	4	4	21-Jan-20	23-Dec-19	24-Jan-20	28-Dec-19	167	0% 0	-2	2		Installation of Pier -E4	
S2-PR3560	Rebar fixing and 2nd stage Concreting for connection between pier and pile cap -E4	14	14	29-Jan-20	30-Dec-19	13-Feb-20	15-Jan-20	174	0% 0	-2	2	<u> </u>		Rebar fix
S2-PR3580	Installation of tem. bearing/ Jacking System -E4	5	5	14-Feb-20	16-Jan-20	19-Feb-20	21-Jan-20	174	0% 0	-2	2		-	
Pier Erection usin	ig Crane Barge >1000T	10	10	20-Mar-20	27-Mar-20	29-Mar-20	05-Apr-20	173			7			
S2-CB2000	Mobilization of crane barge (~3200T) (incl.3days TRA)	10	10	20-Mar-20	27-Mar-20	29-Mar-20	05-Apr-20	173	0% 3		7			
Pier (In-situ Pier un	nder Conforming Design)	65	65	28-Feb-20	10-Mar-20	20-May-20	30-May-20	25			9			
Pier E1		65	65	28-Feb-20	10-Mar-20	20-May-20	30-May-20	25			9			
S2-PR3490	Construction of In-situ Pier Legs - E1	65	65	28-Feb-20	10-Mar-20	20-May-20	30-May-20	25	0% 0		9			
ection 5 of the Wo	orks-All Works within Portion V (CBL E&M Plantroom)	202	202	24-Dec-19 A	14-Dec-19	28-Jul-20	02-Jul-20	148		-4	6			
Structure Works		21	10	24-Dec-19 A	14-Dec-19	20-Jan-20	10-Jan-20	75			8		Structure Works	
S5-PR2063	Construction of Upper Roof for South Wing Building	21	10	24-Dec-19 A	14-Dec-19	20-Jan-20	10-Jan-20	75	52.38% 0		8		Construction of Upper Roof f	or South Wir
ABWF Work		115	115	09-Jan-20	23-Dec-19	01-Jun-20	18-May-20	71		-1	2	-		
S5-PR2080	ABWF Work	115	115	09-Jan-20	23-Dec-19	01-Jun-20	18-May-20	71	0% 0	-1	2			
		A'l			,	1			1			Date		Revis
	0	lilestone					CRBC				C	8-Jan-20	Monthly updated on	
	Baseline Critical Remaining Work V S	Summary	1			ree Month								

^	23	01	March 06	12020	22		29 05	April 2020	26
Б	23	и	06	15	22	_	head treatme		26
								Rebar fixing and 1st s	stage C
						_		Preparation works for	pier ir
								Pile Cap for Pi	ier W5
_			V	Welding	g of Steel	Brac	ket -W5 (8n	os.)	
			L			Instal	lation of pre	cast shell -W5 (8nos.)	
						_		Pileh	ead tre
	P	ile Cap (L+R) for Pie	r El					
			Rebar fi	xing ar	nd Coner	eting	E1 (L+R)		
		-						Pile Cap	for Pie
					Ins	tallati	on of precas	t shell -E2	
							_	Pilehead treatm	nent -E
									Rebar
3									
~									
34									
54									
						_			
								Pi	er (Pre
								Pi	er Ere
	Pie	r E5							
-E5									
R	lebar fixin	g and 2n	nd stage Conc	reting f	for conne	ection	between pie	r and pile cap -E5	
	Ins	tallation	of temp. bear	ing/jac	king syst	em -	E5		
		— Р	ier E6						
on of	Pier -E6								
	R	ebar fixi	ng and 2nd st	tage Co	oncreting	for co	onnection be	tween pier and pile cap	-E6
			nstallation of t					1 1 1	
					·····		system Eo	P	er E7
						Inst	lation of Di		CIL/
-	_					msta	ullation of Pi		
	_							Rebar fixi	
				_				In	stallati
• Pie	er E4								
~									
			oncreting for			veen	pier and pile	cap -E4	
Ins	stallation o	f tem. be	earing/ Jackin	g Syste	m -E4				
						P	ier Erection	using Crane Barge >10	T00
						-	Mol	bilization of crane barge	e (~320
	·····								
	-								
		:							
Ving	Building								
0	0								
visi	on				C	hec	ked	Approved	
	020								

Page: 5

Contract No. NE/2017/07 Cross Bay Link, Tseng Kwan O - Main Bridge and Associated Works

Activity)	ActivityName		Remaining Duration	Start	Planned Start	Finish	PlannedFinish	Total Float	Activity % Complete	TRA	Variance - Finish Date		January 20	20			February2020
			Duration	-								2	29 05	6 12	19 2	26	02 (09 16
	Major Services Sys	tem	135	135	16-Mar-20	02-Mar-20	28-Jul-20	02-Jul-20	148			-26						
	Electrical System		88	88	16-Mar-20	02-Mar-20	04-Jul-20	10-Jun-20	140			-19						
	UPS Room		55	55	28-Apr-20	01-Apr-20	04-Jul-20	10-Jun-20	130			-19						
	S5-PR2580	E&M Installation for UPS Room	55	55	28-Apr-20	01-Apr-20	04-Jul-20	10-Jun-20	130	0%	0	-19						
	Transformer Room	1 and Room 2	26	26	16-Mar-20	02-Mar-20	18-Apr-20	31-Mar-20	134			-12						
	S5-PR2360	E&M installation for Transformer Room	26	26	16-Mar-20	02-Mar-20	18-Apr-20	31-Mar-20	134	0%	0	-12						
	Generator Room &	Fuel Tank Room	40	40	29-Apr-20	15-Apr-20	16-Jun-20	02-Jun-20	154			-12						
	S5-PR2520	E&M Installation for Fuel Tank Room	40	40	29-Apr-20	15-Apr-20	16-Jun-20	02-Jun-20	154	0%	0	-12						
	Fire Services Syste	m	124	124	27-Mar-20	02-Mar-20	28-Jul-20	02-Jul-20	148			-26						
	Statutory Submiss	ion	30	30	14-Apr-20	14-Mar-20	13-May-20	12-Apr-20	224			-31						
	S5-PR2660	Submission of WWO46 to WSD	30	30	14-Apr-20	14-Mar-20	13-May-20	12-Apr-20	203	0%	0	-31						
	S5-PR2680	Submission of FSI/314 to FSD	30	30	14-Apr-20	14-Mar-20	13-May-20	12-Apr-20	224	0%	0	-31						
	Installation of Fire	Services	98	98	27-Mar-20	02-Mar-20	28-Jul-20	02-Jul-20	61			-22						
	S5-PR2720	Fire services installation on Transformer Room	26	26	27-Mar-20	02-Mar-20	02-May-20	31-Mar-20	61	0%	0	-22						
	S5-PR2740	Fire services installation on others' Area (except Transformer Room)	72	72	04-May-20	01-Apr-20	28-Jul-20	02-Jul-20	61	0%	0	-22						

Remaining Level of Effort Remaining Work	♦ Milestone	CRBC	Date	Revi
Primary Baseline Critical Remaining Work	Summarv	CKDC	08-Jan-20	Monthly updated on 08 Jan 2
		Three Month Rolling Programme		
Actual Work \diamond \diamond Baseline Milestone		0 0		1

20 March 2020 16 23 01 06 15	22 29 05	April 2020 12 19 26
· · · · · · · · · · · · · · · · · · ·		
		Transformer Re
		-
	•	
	· · · · · · · · · · · · · · · · · · ·	
Revision	Checked	Approved
an 2020		

Contract 2

Z:\Jobs\2018\TCS00975 (EDO-04-2018)\600\EM&A Report Submission\Monthly EM&A Report\2020\January 2020\R0339v3.docx

	Activity Name	Original Duration		Remaining Duration	Calendar	Start	Finish	Late Start	Late Finish	Total TR/ Float	A Activity % Complete	6 2019
PU20190908 NE/2017/0	08 Programme Update (Sep 2019)	277	59	233		02-Jul-19 A	23-Jun-20	20-Aug-19	20-Apr-21	244	Complete	
MPU20190908.7 Constru		277	59	233		02-Jul-19 A	23-Jun-20	20-Aug-19	20-Apr-21	244		
MPU20190908.7.1 Prelimina		200	0		NE/2017/08(6days)		23-Jun-20	14-Dec-19		244		
PREL1150	Procurement, factory acceptance test and delivery for lift and assoicated	120	0	120			23-Jun-20	21-Nov-20		244 0	0%	z l
PREL1250	Procurement, Factory Acceptance Test and Delivery of Bearing	120	0	120			14-Mar-20	14-Dec-19	-	47 0	0%	
MPU20190908.7.2 Construc		220	59	167		02-Jul-19 A	31-Mar-20	06-Sep-19		246		
PORI.A1000	Provide Access to MTRC P10 at Elevated Cycle Track Area	274	69	205	NE/2017/08(7days)	02-Jul-19 A	31-Mar-20	09-Nov-19	31-May-20	61 0	25.18%	
MPU20190908.7.2.1 Cycle Tr	ack - U-trough	154	0	154	NE/2017/08(6days)	09-Sep-19	16-Mar-20	27-Jul-20	28-Jan-21	259		
MPU20190908.7.2.1.1 Exc	avation to U-tough Level(+5.0mPD to +4.4mPD) (700m3)	40	0	40	NE/2017/08(6days)	03-Dec-19	21-Jan-20	19-Oct-20	04-Dec-20	259		
PORI.UT.EX1030	Excavation to U-trough Founding Level for Construction of Bay 3-5 (+5.0mPD to +4.4mPD)	10	0	10	NE/2017/08(6days)	03-Dec-19	13-Dec-19	19-Oct-20	30-Oct-20	259 0	0%	6
PORI.UT.EX1040	Utilities Diversion for Bay 3-5	30	0	30	NE/2017/08(6days)	14-Dec-19	21-Jan-20	31-Oct-20	04-Dec-20	259 0	0%	%
MPU20190908.7.2.1.2 Cor	struction of U-trough Structure (9 Bays, 27D/Bay, 1 Team)	154	0	154	NE/2017/08(6days)	09-Sep-19	16-Mar-20	27-Jul-20	28-Jan-21	259		• • • • • • • • • • • • • • • • • • •
PORI.UT.ST1010	Construction of U-trough Structure Bay 6-9 (14D/bay, 1 team)	56	0	56	NE/2017/08(6days)	09-Sep-19	15-Nov-19	27-Jul-20	29-Sep-20	259 0	0%	6
PORI.UT.ST1020	Access Road Modification	14	0	14	NE/2017/08(6days)	16-Nov-19	02-Dec-19	30-Sep-20	17-Oct-20	259 0	0%	%
PORI.UT.ST1030	Construction of Blinding Layer for Bay 3-5	2	0	2	NE/2017/08(6days)	22-Jan-20	23-Jan-20	05-Dec-20	07-Dec-20	259 0	0%	6
PORI.UT.ST1040	Construction of U-trough Structure Bay 3-5 (14D/bay, 1 team)	42	0	42	NE/2017/08(6days)	24-Jan-20	16-Mar-20	08-Dec-20	28-Jan-21	259 0	0%	%
MPU20190908.7.2.2 Elevated		75	3	72	NE/2017/08(6days)	05-Sep-19 A	04-Dec-19	02-Mar-20	30-May-20	141		
<u>'</u>	drilling Works for Alternative PBSH at MTRC Development Zone (10nos, 10D/pile+		3	72	NE/2017/08(6days)				30-May-20	141		
MPU20190908.7.2.2.2.2		75	3	72	NE/2017/08(6days)				30-May-20	141		
<u> </u>	-								-			
PORI.ED.PD1020	Predrilling for Alternative PBSH at Portion I (PD08)	15	3		NE/2017/08(6days)		· · · ·	02-Mar-20		141 5	20%	
PORI.ED.PD1030	Predrilling for Alternative PBSH at Portion I (PD04)	15	0	15	NE/2017/08(6days)	24-Sep-19	12-Oct-19	16-Mar-20	01-Apr-20	141 5	0%	% ↓ Predrilling for Alternative I
PORI.ED.PD1050	Predrilling for Alternative PBSH at Portion I (PD02)	15	0	15	NE/2017/08(6days)	18-Nov-19	04-Dec-19	14-May-20	30-May-20	141 5	0%	%
PORI.ED.PD1070	Predrilling for Alternative PBSH at Portion I (PD97)	15	0	15	NE/2017/08(6days)	31-Oct-19	16-Nov-19	24-Apr-20	13-May-20	141 5	0%	
PORI.ED.PD1080	Predrilling for Alternative PBSH at Portion I (PD03)	15	0	15	NE/2017/08(6days)	14-Oct-19	30-Oct-19	02-Apr-20	23-Apr-20	141 5	0%	% Predr
MPU20190908.7.2.3 Lift and	Staircase	60	0	60	NE/2017/08(6days)	27-Sep-19	07-Dec-19	06-Sep-19	16-Nov-20	278		· · · · · · · · · · · · · · · · · · ·
MPU20190908.7.2.3.2 Pred	drilling Works for PBSH (5nos, 10D/pile+5D TRA, 1-5rigs)	60	0	60	NE/2017/08(6days)	27-Sep-19	07-Dec-19	06-Sep-19	16-Nov-20	278		····
MPU20190908.7.2.3.2.1	Rig 2	60	0	60	NE/2017/08(6days)	27-Sep-19	07-Dec-19	04-Sep-20	16-Nov-20	278		
PORI.LS.PD1010	Predrilling for PBSH at Lift and Staircase (PD09)	15	0	15	NE/2017/08(6days)	27-Sep-19	16-Oct-19	04-Sep-20	21-Sep-20	278 5	0%	% Predrilling for PBSH
PORI.LS.PD1020	Predrilling for PBSH at Lift and Staircase (PD94)	15	0	15	NE/2017/08(6days)	17-Oct-19	02-Nov-19	22-Sep-20	10-Oct-20	278 5	0%	%
PORI.LS.PD1040	Predrilling for PBSH at Lift and Staircase (PD95)	15	0	15	NE/2017/08(6days)	04-Nov-19	20-Nov-19	12-Oct-20	29-Oct-20	278 5	0%	6
PORI.LS.PD1050	Predrilling for PBSH at Lift and Staircase (PD96)	15	0		NE/2017/08(6days)		07-Dec-19	30-Oct-20	16-Nov-20	278 5	0%	
MPU20190908.7.2.3.2.2		15	0		NE/2017/08(6days)		16-Oct-19	06-Sep-19		-17	070	▼ 16-Oct-19, MPU2019
			0									
PORI.LS.PD1030	Predrilling for PBSH at Lift and Staircase (PD10)	15	0	15	NE/2017/08(6days)		16-Oct-19	06-Sep-19	·	-17 5	0%	% Predrilling for PBSH
MPU20190908.7.3 Construc		172	21	151		15-Aug-19 A		17-Oct-19		51		
MPU20190908.7.3.1 Abutme	nt 2A	141	21	120		15-Aug-19 A	05-Feb-20	17-Oct-19	16-Mar-20	34		
MPU20190908.7.3.1.3 Cor	struction of Alternative Bored Pile (8nos, 21D/pile, 1-2 teams)	134	21	113		15-Aug-19 A	28-Jan-20	17-Oct-19	08-Mar-20	34		
MPU20190908.7.3.1.3.1	Team 6	104	21	83	NE/2017/08(6days)	15-Aug-19 A	17-Dec-19	17-Oct-19	24-Jan-20	30		
PORII.AB.BP1040	Construction of Alternative Bored Pile (P4) (CE010)	26	21	5	NE/2017/08(6days)	15-Aug-19 A	13-Sep-19	17-Oct-19	22-Oct-19	30 5	80.77%	Construct on of Alternative Bored Pile (P4) (CE010)
PORII.AB.BP1060	Construction of Alternative Bored Pile (P8)	26	0	26	NE/2017/08(6days)	16-Sep-19	17-Oct-19	23-Oct-19	21-Nov-19	30 5	0%	Construction of Alter
PORII.AB.BP1070	Construction of Alternative Bored Pile (P3) (CE014)	26	0	26	NE/2017/08(6days)	18-Oct-19	16-Nov-19	22-Nov-19	21-Dec-19	30 5	0%	
PORII.AB.BP1080	Construction of Alternative Bored Pile (P7)	26	0	26	NE/2017/08(6days)	18-Nov-19	17-Dec-19	23-Dec-19	24-Jan-20	30 5	0%	%
MPU20190908.7.3.1.3.2	Team 5	78	2	76	NE/2017/08(6days)	06-Sep-19A	09-Dec-19	25-Oct-19	24-Jan-20	37		
PORII.AB.BP1090	Construction of Alternative Bored Pile (P6)	26	2		NE/2017/08(6days)			25-Oct-19		37 5	7.69%	6 Construction of Alternative B

Actual Level of Effort Actual Work Remaining Work Critical Remaining Work

•

Contract No.: NE/2017/08 Cross Bay Link, Tseung Kwan O Road D9 and Associated Works Page 1 of 4

Q4				2020 Q1)	
					▼ 21-Jan-	
	Excavatio	on to U-tr	ough Foun		el for Constru	<u>.</u>
	►				Utilities	Dive
Construction o	f U-trough Structure Bay		l/bay, 1 teai	m)		
-	Access Road Modific	ation				
					Const	ruct
					-►	
	04-Dec-19, MPU2					
	04-Dec-19, MPU2				Vorks for Alte	erna
	04-Dec-19, MPU2	0190908	7.2.2.2.2 F	Rig 3		
Portion I (PD04)						
-	Predrilling for Altern			on I (PD()2)	
	Alternative PBSH at Port	ion I (PD	97)			
	at Portion I (PD03)					
	• 07-Dec-19, MP					
	07-Dec-19, MP				g Works for	₽B:
	V 07-Dec-19, MP	U201909	08.7.2.3.2.	1 Rig 2		
d Staircase (PD09						
	nd Staircase (PD94)					
	g for PBSH at Lift and Sta	i				
	Predrilling for P	BSH at L	ift and Stair	rcase (PE	96)	
2.3.2.2 Rig 5						
d Staircase (PD10	9)					
						28-5
	▼ 17-L	Jec-19, IV	PU201909	08.7.3.1.	3.1 Team 6	
and Dila (D9)						
ored Pile (P8)						
Г	pf Alternative Bored Pile (- Danad	Dil- (D7)	
~						
(DC)	▼ 09-Dec-19, N	/IPU2019	0908.7.3.1.	3.2 Tear	n 5	
(P6)						-
Decisi			also d	•		
Revision Programme	(Sep to Nov)	Che HY	cked	Ap AY	proved	
0	× 1 - /	I				

	Activity Name		al Remaining		r Start	Finish	Late Start	Late Finish		A Activity %				2019	9
	Construction of Alternative Barry 1914 (D4)	Duration Duratio		ļ	10.0+10	09 No. 10	00 No. 10	01 D- 15	Float	Complete			_		
PORII.AB.BP1100	Construction of Alternative Bored Pile (P1)	26	0 26	NE/2017/08(6days) 10-Oct-19	08-Nov-19		21-Dec-19	37 5	0%			-		Г
PORII.AB.BP1110	Construction of Alternative Bored Pile (P5)	26	0 26	NE/2017/08(6days) 09-Nov-19	09-Dec-19	23-Dec-19	24-Jan-20	37 5	0%					ي م
MPU20190908.7.3.1.3.3	Testing	42	0 42	NE/2017/08(7days) 18-Dec-19	28-Jan-20	27-Jan-20	08-Mar-20	40						
PORII.AB.BP1030	Interface Core/Sonic Test	42	0 42	NE/2017/08(7days) 18-Dec-19	28-Jan-20	27-Jan-20	08-Mar-20	40 0	0%					
MPU20190908.7.3.1.4 Con	struction of Abutment Structure	7	0 7	NE/2017/08(6days) 29-Jan-20	05-Feb-20	09-Mar-20	16-Mar-20	34						
PORII.AB.ST1010	Excavation to Pile Cap Founding Level (+4.4 to +2.3mPD) (500m3)	7	0 7	NE/2017/08(6days) 29-Jan-20	05-Feb-20	09-Mar-20	16-Mar-20	34 0	0%					
MPU20190908.7.3.2 Elevated	Deck	112	0 112		27-Oct-19	12-Mar-20	29-Nov-19	18-May-20	51						
MPU20190908.7.3.2.3 Con	istruction of Bored Pile (1 no. in Port II, 21D/pile, 1 teams)	42	0 42	NE/2017/08(7days) 27-Oct-19	07-Dec-19	10-Jan-20	20-Feb-20	75						
MPU20190908.7.3.2.3.2	Testing	42	0 42	NE/2017/08(7days	i) 27-Oct-19	07-Dec-19	10-Jan-20	20-Feb-20	75					-	_
PORII.ED.BP1030	Interface Core/Sonic Test (Elevated Deck)	42	0 42	NE/2017/08(7days) 27-Oct-19	07-Dec-19	10-Jan-20	20-Feb-20	75 0	0%				-	
		21		NE/2017/08(6days		20-Nov-19		10-Feb-20	64	0,0					
	drilling of PBSH (Elevated Deck) (2nos in Port II, 10D/pile+5D TRA, 2rigs in total)														
MPU20190908.7.3.2.4.2	-			NE/2017/08(6days		13-Nov-19		16-Dec-19	28						
PORII.ED.PD.HP1010	Predrilling of PBSH at Elevated Deck (PD26)	15	0 15	NE/2017/08(6days) 28-Oct-19	13-Nov-19	29-Nov-19	16-Dec-19	28 5	0%			· · · · · · · · · · · · · · · · · · ·		_
MPU20190908.7.3.2.4.1	Rig 5	15	0 15	NE/2017/08(6days) 04-Nov-19	20-Nov-19	21-Jan-20	10-Feb-20	64					▼	
PORII.ED.PD.HP1020	Predrilling of PBSH at Elevated Deck (PD85)	15	0 15	NE/2017/08(6days) 04-Nov-19	20-Nov-19	21-Jan-20	10-Feb-20	64 5	0%				–	-
MPU20190908.7.3.2.5 Con	struction of Alternative PBSH (5nos in Port II, 7D/pile, 1 to 5rigs)	97	0 97		14-Nov-19	12-Mar-20	17-Dec-19	18-May-20	51						
PORII.ED.HP1010	Construction of Alternative PBSH (5nos in Port II,7D/pile, 1 rig)	35	0 35	NE/2017/08(6days) 14-Nov-19	24-Dec-19	17-Dec-19	01-Feb-20	28 0	0%					
PORII.ED.HP1060	Pile Loading Test (28 Concrete Cube + 14D Setup)	42	0 42	NE/2017/08(7days) 31-Jan-20	12-Mar-20	07-Apr-20	18-May-20	67 0	0%					
MPU20190908.7.3.2.6 Exca	avation to Pile Cap Level (+4.4mPD to +2.3mPD)	16	0 16	NE/2017/08(6days) 31-Jan-20	18-Feb-20	03-Feb-20	20-Feb-20	2						
PORII.ED.1060	Excavation to Pile Cap Founding Level (Bored Pile Area) (+4.4mPD to +2.3mPD)	16	0 16	NE/2017/08(6days	i) 31-Jan-20	18-Feb-20	03-Feb-20	20-Feb-20	2 0	0%					
MPU20190908.7.4 Construct	tion Works of Portion III	204 4	4 160		19-Jul-19 A	23-Mar-20	20-Aug-19	09-Sep-20	138			_	┥──┥		
	ction of Elevated Deck and Abutment 2B	170 1	9 151		17-Aug-19 A	12-Mar-20	20-Aug-19	18-May-20	51	_					
	et Piling and Lowering of Existing Ground Level	14		NE/2017/08(6days		25-Sep-19		07-Jan-20	84			▼ 25-Sep-19, MPL	120190908 7	4.1.2 Shee	
PORIII.ED.EX1050	Abandon of Unexpected Gas Main (Grid 11 to Grid 24) (by others)			NE/2017/08(6days		20-Sep-19		02-Jan-20	84 0	0%		Abandon of Unexpect			
					· ·										
PORIII.ED.EX1060	Sheet Piling Works along Northern Footpath (Grid 10 to Grid 13)			NE/2017/08(6days		25-Sep-19	03-Jan-20		84 0	0%		Sheet Piling Wor	ks along Norti	nern Footp	pati
<u> </u>	struction of Bored Pile (12nos in Port III, 21D/pile, 1 to 5 teams in total)		9 75		17-Aug-19 A			07-Jan-20	23						
MPU20190908.7.4.1.3.1	Team 1	26	7 45	NE/2017/08(6days) 31-Aug-19A	02-Nov-19	20-Aug-19	14-Oct-19	-17						02
PORIII.ED.BP1255	Construction of Conforming Bored Pile at Elevated Deck (PL122)	26	7 19	NE/2017/08(6days) 31-Aug-19 A	02-Oct-19	20-Aug-19	10-Sep-19	-17 5	26.92%		Construc	ction of Confor	ming Borec	əd F
PORIII.ED.BP1258	Construction of Conforming Bored Pile at Elevated Deck (PL128)	26	0 26	NE/2017/08(6days) 03-Oct-19*	02-Nov-19	11-Sep-19	14-Oct-19	-17 5	0%					ç
MPU20190908.7.4.1.3.3	Team 3	52 1	9 33	NE/2017/08(6days) 17-Aug-19A	19-Oct-19	27-Aug-19	05-Oct-19	-11	-			 19-0	Oct-19, MPI	PU:
PORIII.ED.BP1145	Construction of Comforming Bored Pile at Abutment 2B (PL133) (NCE025)	26 1	9 7	NE/2017/08(6days) 17-Aug-19A	17-Sep-19	27-Aug-19	03-Sep-19	-11 5	73.08%		onstruction of Comform	ing Bored Pile	at Abutme	ent
PORIII.ED.BP1150	Construction of Conforming Bored Pile at Abutment 2B (PL132) (NCE024)	26	0 26	NE/2017/08(6days) 18-Sep-19	19-Oct-19	04-Sep-19	05-Oct-19	-11 5	0%	┕╼═	-	Con	struction of	of C
MPU20190908.7.4.1.3.4	Team 4	52 1	3 39	NE/2017/08(6days) 24-Aug-19A	26-Oct-19	20-Aug-19	05-Oct-19	-17					▼ 26-Oct-	
PORIII.ED.BP1140	Construction of Conforming Bored Pile at Elevated Deck (PL104)	26 1	3 13	NE/2017/08(6days	i) 24-Aug-19A	24-Sep-19	20-Aug-19	03-Sep-19	-17 5	50%	_	Construction of C	orforming Bo	ed Pile at f	t Ele
PORIII.ED.BP1250	Construction of Conforming Bored Pile at Elevated Deck (PL113) (NCE028)	26	0 26	NE/2017/08(6days) 25-Sep-19	26-Oct-19	04-Sep-19	05-Oct-19	-17 5	0%				Constru	.ruct
	Testing	42	0 42	NE/2017/08(7days	i) 27-Oct-19	07-Dec-19	27-Nov-19	07-Jan-20	31				l l		╇
PORIII.ED.BP1200	Interface Core/Sonic Test (Elevated Deck)			NE/2017/08(7days		07-Dec-19		07-Jan-20	31 0	0%			ŀ	╞╍╧┝	
	drilling of PBSH (Elevated Deck) (18nos in Port III, 10D/pile+SD TRA, 1-6rigs in tot			NE/2017/08(6days		02-Nov-19		14-Oct-19		0,0					02
<u> </u>									-17						
				NE/2017/08(6days		26-Oct-19		05-Oct-19	-17					▼ 26-Oct-	1-19
MPU20190908.7.4.1.4.1	0 Predrilling of PBSH at Elevated Deck (PD19)	15	6 9	NE/2017/08(6days) 02-Sep-19 A	19-Sep-19	20-Aug-19	29-Aug-19	-17 5	40%		Predrilling of PBSH at I			
PORIII.ED.PD.HP1200			0 15	NE/2017/08(6days) 20-Sep-19	09-Oct-19	30-Aug-19	17-Sep-19	-17 5	0%	⊾~ ∎	F F	Predrilling of Pl	BSH at; Elev	evat
PORIII.ED.PD.HP1200	0 Predrilling of PBSH at Elevated Deck (PD24)	15	0 15	112/2011/00(000)			Ŭ								
PORIII.ED.PD.HP1200	O Predrilling of PBSH at Elevated Deck (PD24) Predrilling of PBSH at Elevated Deck (PD25)			NE/2017/08(6days		26-Oct-19		05-Oct-19	-17 5	0%			+	Predrillin	

Actual Level of Effort Actual Work Remaining Work

Critical Remaining Work

•

CEDD 土木工程拓展署 Civil Engineering and Development Department Contract No.: NE/2017/08 Cross Bay Link, Tseung Kwan O Road D9 and Associated Works Page 2 of 4

			2020	
Q4			Q1	
onstruction of Alternative Bored Pile (P1)				
Construction	of Alterna	ative Bored	Pile (P5)	
				- 28-
-				Inte
				-
07-Dec-19, MF	201909	08.7.3.2.3	Construction of	f Bored P
07-Dec-19, MF	U201909	08.7.3.2.3.	2 Testing	
Interface Core/	Sonic Te	st (Elevated	I Deck)	
20-Nov-19, MPU20190908.7.3.2.	4 Predril	ing of PBS	H (Elevated De	ck) (2nos
▼ 13-Nov-19, MPU20190908.7.3.2.4.2 Rig		-	·	
Predrilling of PB\$H at Elevated Deck (PD	26)			
20-Nov-19, MPU20190908.7.3.2.	4.1 Rig 5			
Predrilling of PBSH at Elevated D	eck (PD8	5)		
▼				
►	Const	ruction of A	Iternative PBSI	l (5nosin
				-
				_
and Lowering of Existing Ground Level				
) (by others)				
d 10 to Grid 13)				
07-Dec-19, MF	U201909	08.7.4.1.3	Construction of	f Bored Pi
19, MPU20190908.7.4.1.3.1 Team 1				
Elevated Deck (PL122)				
ction of Conforming Bored Pile at Elevated D	eck (Pl 12	28)		
	50K (1 2 12	,		
908.7.4.1.3.3 Team 3				
2L133) (NCE025)				
ming Bored Pile at Abutment 2B (PL132) (NC	E024)			
J20190908.7.4.1.3.4 Team 4				
Deck (PL104)				
Conforming Bored Pile at Elevated Deck (PL	113) (NC	=028)		
			7 Testing	
▼ 07-Dec-19, MF				
Interface Core	Sonic Te	st (Elevated	I Deck)	
19, MPU20190908.7.4.1.4 Predrilling of PBS	SH (Eleva	ted Deck) (18nos in Port II	I, 10D/pile
J20190908.7.4.1.4.1 Rig 1				
eck (PD24)				
SH at Elevated Deck (PD25)				
19, MPU20190908.7.4.1.4.5 Rig 5				
I				
Revision	Che	cked	Approv	/ed
ng Programme (Sep to Nov)	HY		AY	

	Activity Name	Original		Remaining Duration		r Start	Finish	Late Start	Late Finish	Total TRA Float					20
PORIII.ED.PD.HP1230	Predrilling of PBSH at Elevated Deck (PD23)	Duration 15		ļ		06-Sep-19A	26-Sep-19	20-Aug-19	05-Sep-19	-17 5	Complete 0%			Predrilling of PBSH at Elevation	ted Deck
	Predrilling of PBSH at Elevated Deck (PD99)	15			NE/2017/08(6days		02-Nov-19	25-Sep-19	14-Oct-19	-17 5	0%				
MPU20190908.7.4.1.4.6 R		15	6	; 9	NE/2017/08(6days	02-Sep-19A	19-Sep-19	20-Aug-19	29-Aug-19	-17				9-Sep-19, MPU20190908.7.4.1.4.6	ð Rig 6
PORIII.ED.PD.HP1220	Predrilling of PBSH at Elevated Deck (PD22)	15	6	; 9	NE/2017/08(6days	02-Sep-19A	19-Sep-19	20-Aug-19	29-Aug-19	-17 5	40%		Pi	redrilling of PBSH at Elevated Deck	k (PD22)
MPU20190908.7.4.1.5 Const	truction of Alternative PBSH (45 nos in Port III, 7D/pile, 1-5rigs in total)	112	0	112		28-Oct-19	12-Mar-20	08-Oct-19	18-May-20	51					
PORIII.ED.HP1000	Mobilization of Piling Rigs to Elevated Deck	6	0	6	NE/2017/08(6days	28-Oct-19	02-Nov-19	08-Oct-19	14-Oct-19	-17 0	0%				
PORIII.ED.HP1010	Construction of Alternative PBSH (5nos in Port II + 45 nos in Port III,7D/pile,1 to 5rigs)	70	0	70	NE/2017/08(6days) 04-Nov-19	30-Jan-20	15-Oct-19	07-Jan-20	-17 0	0%				
PORIII.ED.HP1470	Pile Loading Test (28 Days Concrete Cube + 14D Setup)	42	0	42	NE/2017/08(7days) 31-Jan-20	12-Mar-20	07-Apr-20	18-May-20	67 0	0%				
- MPU20190908.7.4.1.6 Excav	ration to Pile Cap Level (+4.4mPD to +2.3mPD)	14	0	14	NE/2017/08(6days	31-Jan-20	15-Feb-20	08-Jan-20	23-Jan-20	-17					
PORIII.ED1060	Excavation to Pile Cap Founding Level incl. Abutment 2B (+4.4mPD to +2.3mPD) (Bored	14	0		NE/2017/08(6days		15-Feb-20		23-Jan-20	-17 0	0%				
MPU20190908.7.4.2 Construct	Pile Area)	204				19-Jul-19 A	23-Mar-20	20-Aug-19		138					
	truction of Bored Pile (8 nos, 21D/pile, 1-5 teams)	107				19-Jul-19 A	23-Nov-19	20-Aug-19		190			_		
MPU20190908.7.4.2.3.2 T		71			NE/2017/08(6days		12-Oct-19	20-Aug-19		-17				▼ 12-Oct-19,	MPU20
PORIII.UT.BP1100	Construction of Conforming Bored Pile at U-trough (PL140) (CE018)	26			NE/2017/08(6days		09-Sep-19	20-Aug-19		-17 5	96.15%		onstruction	of Conforming Bored Pile at U-tro	
PORIII.UT.BP1102	Construction of Conforming Bored Pile at U-trough (PL137)	26	0				12-Oct-19		20-Sep-19	-17 5	0%			Constructio	
MPU20190908.7.4.2.3.7 T		42	-		NE/2017/08(0days)		23-Nov-19	08-Jun-20	19-Jul-20	239	078				
PORIII.UT.BP1030	Interface Core/Sonic Test (U-trough)	42					23-Nov-19	08-Jun-20	19-Jul-20	239 0	0%				
_	rilling of alternative PBSH (U-trough)(16nos, 10D/pile+SD TRA, 1-6rigs)	42		30			26-Oct-19		05-Oct-19	-17	070		-		- 26-0
MPU20190908.7.4.2.4.6 R		30			NE/2017/08(6days		26-Oct-19	30-Aug-19		-17					2 6-0
<u> </u>	Predrilling of PBSH at U-trough (PD67)	15					09-Oct-19		17-Sep-19	-17 5	0%			Predrilling of P	
	Predrilling of PBSH at U-trough (PD65) Predrilling of PBSH at U-trough (PD65)	15			NE/2017/08(6days		26-Oct-19	18-Sep-19		-17 5	0%				
							23-Mar-20	21-Sep-19	09-Sep-20	138	0%				
PORIII.UT.HP1010	ruction of Atternative PBSH (40nos, 7D/pile, 1 to 5rigs) Construction of Atternative PBSH (8nos,7D/pile,1 to 2rigs)	133 28		133			02-Nov-19		14-Oct-19	-17 0	35.71%		$\overline{\mathbf{n}}$		
PORIII.UT.HP1010	Construction of Alternative PBSH (3nos, 7D/pile, 1 to 2ngs)	45						21-Sep-19		138 0			$\boldsymbol{\succ}$		
-	on of the At-grade Noise Semi Enclosures	182					23-Mar-20	20-Jul-20	09-Sep-20	10	0%				
PORIII.AG.1010	Excavation from +5.5mPD to +3.5mPD for SMH003 to SMH006 (inlcude Demolition of	30			NE/2017/08(6days	, č	12-Sep-19		25-Sep-19	10 0	86.67%		Excavatio	n from +5.5mPD to +3.5mPD for S	SUTION
PORIII.AG.1020	existing manhole) Excavation of Drainage Trench (maximum up to +2.0mPD) for SMH003 to SMH006	7			NE/2017/08(6days		21-Sep-19	26-Sep-19		10 0	0%			Excavation of Drainage Trench (m	
-	Manhole Construction for SMH003 to SMH006 (14D/manhole, 2 teams)		0				21-3ep-19 26-Oct-19	05-Oct-19	07-Nov-19	10 0	0%				
PORIII.AG.1030 PORIII.AG.1035	Laving of Drainage Pipe SMH003 to SMH006	28	0	14	NE/2017/08(6days				23-Nov-19	10 0	0%		-1		
	Eaving of Drainage Trench (4 layers, 5D/layer)	20					12-Nov-19 05-Dec-19	25-Nov-19		10 0	0%				
PORIII.AG.1040	Plate Load Test after Backfilling of Draiange Trench	7													
PORIII.AG.1050			0		NE/2017/08(6days		13-Dec-19		27-Dec-19	10 0	0%				
PORIII.AG.1055	Utilities Ducts Laying along Road D9 Cable Laying and Decomissioning of Existing Cross Road UUs at Wan O Road	30					02-Jan-20	07-Dec-19	14-Jan-20	10 0	0%				
PORIII.AG.1057		53					07-Mar-20	15-Jan-20	19-Mar-20	10 0	0%				
PORIII.AG.1060	Construction of SMH004-SMH006 Footing (North and South) (14D/bay, 2-4 teams, 18 bays)	76		-			18-Mar-20	28-Dec-19	30-Mar-20	10 0	0%				
PORIII.AG.1070	Shifting of Site Vehicle Access to Seawall Side Excavation from +5.5mPD to +3.5mPD (inlcude Demolition of existing manhole)	7			NE/2017/08(6days		15-Jan-20	08-Jan-20	15-Jan-20	0 0	0%				
PORIII.AG.1080	(SMH006-SMH007 & SMH001A-SMH003)	15		-			24-Jan-20	08-Jan-20	24-Jan-20	0 0	0%				
PORIII.AG.1090	Excavation of Drainage Trench (maximum up to +2.0mPD) for SMH006-SMH007 & SMH001A to SMH003	7			NE/2017/08(6days		05-Feb-20	29-Jan-20	05-Feb-20	0 0	0%				
MPU20190908.7.8 Wan O Roa		232	27	206		08-Aug-19 A	22-May-20	05-Sep-19		10					
MPU20190908.7.8.1 Footpath		21	0	21	NE/2017/08(7days		29-Sep-19	30-Nov-19	20-Dec-19	82				29-Sep-19, MPU2019090	
MPU20190908.7.8.1.2 Other		21			NE/2017/08(7days		29-Sep-19	30-Nov-19		82				29-Sep-19, MPU2019090	
😑 WO.FT.EB1030	Chemical/Biological Testing for Environmental Borehole	21					29-Sep-19	30-Nov-19		82 0	0%			Chemical/Biological Testir	ig for En∖
MPU20190908.7.8.2 Carriage V		232	27	206			22-May-20	05-Sep-19		10					
MPU20190908.7.8.2.1 TTA S	tage 1	117	27	91	NE/2017/08(6days	08-Aug-19 A	28-Dec-19	05-Sep-19	18-Jan-20	17					
	1														
 Actual Level of Effort 	♦ Milestone	2 99			Contra	ct No.: Nl	E/2017/08							Date 08-Sep-19	3 Mon
Actual Work	www summary summary				Cross Bay	Link, Tse	ung Kwa	n O						ng	
Remaining Work	CEDD Civil Engineerin	d and													

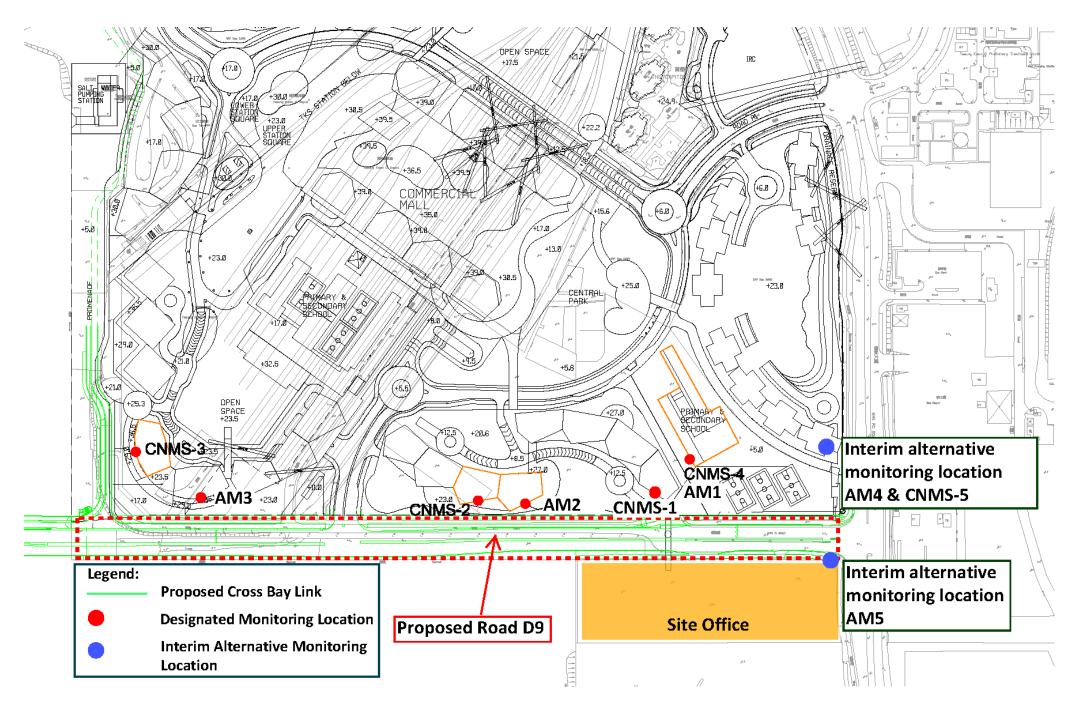
		_		
Q4			2020 Q1	
g of PBSH at Elevat	ed Deck (PD99)			
on of Piling Rigs to	Elevated Deck			⊒ ⊲c
				•
				-
				-
23-No	ov-19, MPU20190908.7.4.2.3 Co	nstruction o	of Bored Pile (8 nos	21D/
2.3.2 Team 2				
)				
ed Pile at U-trough	(PL137)			
	ov-19, MPU20190908.7.4.2.3.7 T			
Interf	ace Core/Sonic Test (U-trough)			
20190908.7.4.2.4	Pre-drilling of alternative PBSH (U	trough)(16	6nos, 10D/pile+5D ⁻	rra, 1
20190908.7.4.2.4.6	Rig 6			
067)				
8H at U-trough (PD	65)			
tion of Alternative P	BSH (8nos,7D/pile,1 to 2rigs)			▶
inlcude Demolition	of existing manhole)			
PD) for SMH003 to	SMH006			
iction for SMH003 t	p SMH006 (14D/manhole, 2 team	is)		
Laying of Drainag	e Pipe SMH003 to SMH006			
	Backfilling of Drainage Tre	nch (4 laye	rs, 5D/layer)	
	Plate Load Test a	fter Backfill	ing of Draiange Tre	nch
-		-Vtilities	s Ducts Laying along	g Roac
	-			
			Shifting of S	lite Ver
			<mark>∕~t</mark>	cavati
			L.	
cavation Permit				
rks				
Borehole				
			MBI 120100000 7 0	24 -
	₹2	о-Dec-19,	MPU20190908.7.8	.2.1; Г
Devision			Ann	4
Revision g Programme		ecked	Approved AY	1
<u> </u>				

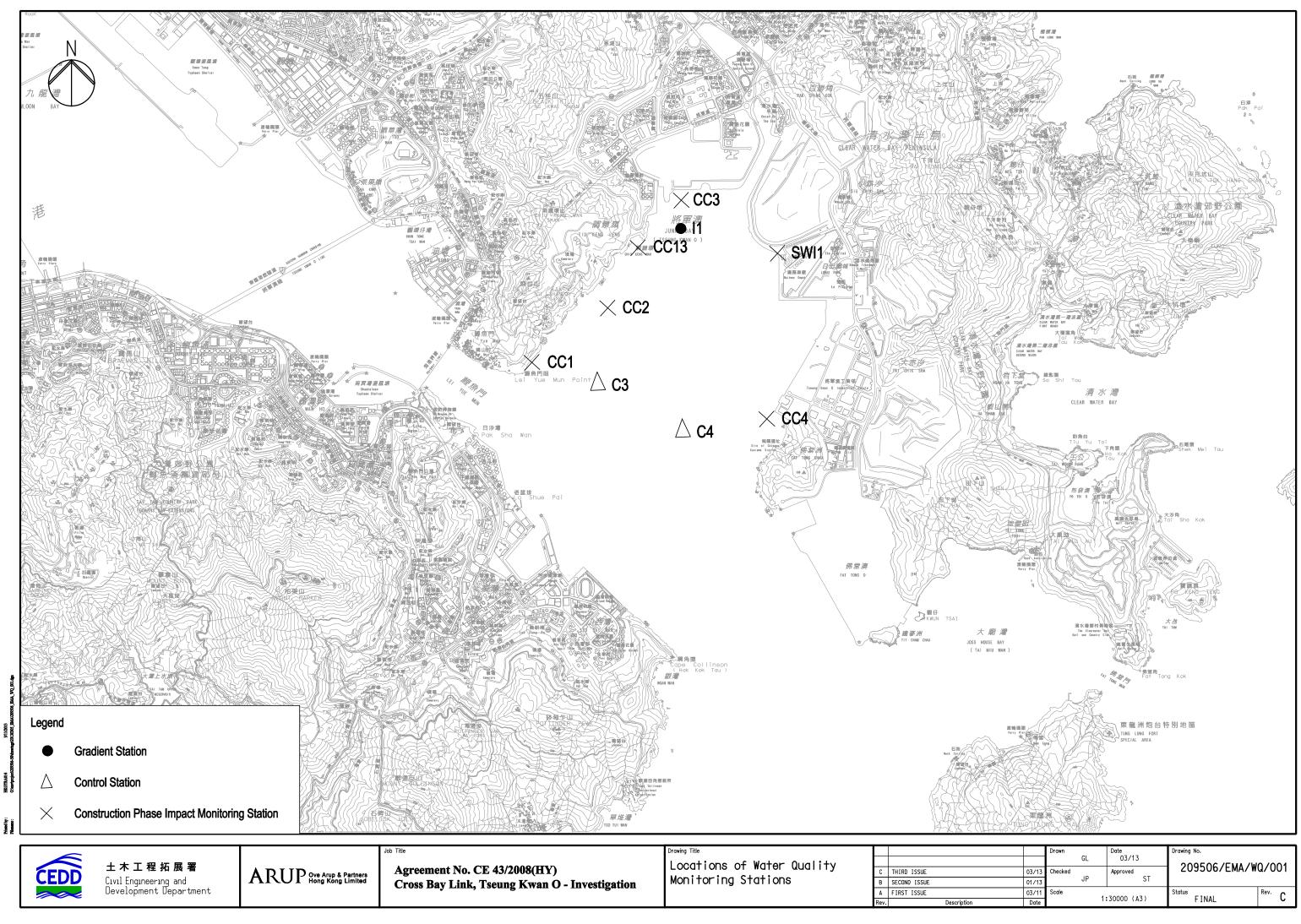
	Activity Name	Original Duration Du		emaining Duration	Calendar	Start	Finish	Late Start	Late Finish	Total TRA	Activity % Complete		20	19 Q
WO.CA.TTA1010	Implementation of TTA Stage 1	1	0	1	NE/2017/08(6days)	17-Oct-19	17-Oct-19	06-Nov-19	06-Nov-19	17 0	0%		Implementation	
WO.CA.TTA1030	UU Diversion and Installation of Sheet Pile at Northern Footpath (Except Roundabou	t) 38	0	38	NE/2017/08(6days)	17-Oct-19	29-Nov-19	06-Nov-19	19-Dec-19	17 0	0%	 	-	
WO.CA.TTA1040	Installation of Utility/Ground Settlement Points	15	0	15	NE/2017/08(6days)	17-Oct-19	02-Nov-19	06-Nov-19	22-Nov-19	17 0	0%	4	-	Installation of
WO.CA.TTA1060	Demolition of Central Barrier	15	0	15	NE/2017/08(6days)	18-Oct-19	04-Nov-19	27-Nov-19	13-Dec-19	34 0	0%	-	►	Demolition
WO.CA.TTA1065	Obtain Approval from HyD Lighting Department	0	0	0	NE/2017/08(6days)		10-Oct-19		25-Nov-19	40 0	0%	⊳ Obta	ain Approval from H	HyD Lighting De
WO.CA.TTA1070	Temporary Street Lighting Installation	21	0	21	NE/2017/08(6days)	18-Oct-19	11-Nov-19	26-Nov-19	19-Dec-19	33 0	0%	-	►	
WO.CA.TTA1080	Removal of Existing Street Lighting	12	0	12	NE/2017/08(6days)	12-Nov-19	25-Nov-19	20-Dec-19	06-Jan-20	33 0	0%	 		
wo.ca.tta1090	Predrilling for PBSH at Northern Footpath (Except Roundabout) (11 nos, 10D/oile+5DTRA, 1-2 rigs)	83	27	56	NE/2017/08(6days)	08-Aug-19 A	15-Nov-19	05-Sep-19	12-Nov-19	-3 28	32.53%			
WO.CA.TTA1100	Preparation of Traffic Signal Pole Relocation	12	0	12	NE/2017/08(6days)	18-Oct-19	31-Oct-19	13-Dec-19	28-Dec-19	48 0	0%	L	►	Preparation of
WO.CA.TTA1110	Relocation of Traffic Signal	6	0	6	NE/2017/08(6days)	12-Nov-19	18-Nov-19	30-Dec-19	06-Jan-20	39 0	0%			-
MPU20190908.7.8.2.1.2	TTA Stage 1A	40	0	40	NE/2017/08(6days)	11-Nov-19	28-Dec-19	19-Dec-19	18-Jan-20	17				-
WO.CA.TTA1A010	Implementation of TTA Stage 1A	1	0	1	NE/2017/08(6days)	11-Nov-19*	11-Nov-19	19-Dec-19	19-Dec-19	33 0	0%	 		[Imj
WO.CA.TTA1A050	Inspection pit for Remaining Predrilling for PBSH Work (46nrs) (2pit/hole, 1 team)	23	0	23	NE/2017/08(6days)	30-Nov-19	28-Dec-19	20-Dec-19	18-Jan-20	17 0	0%			
WO.CA.TTA1A060	Concrete Block Installation as Lateral Support on top of Box Culvert	18	0	18	NE/2017/08(6days)	30-Nov-19	20-Dec-19	28-Dec-19	18-Jan-20	22 0	0%			
MPU20190908.7.8.2.3 TTA	Stage 2	109	0	109	NE/2017/08(6days)	07-Jan-20	22-May-20	07-Jan-20	03-Jun-20	10				
WO.CA.TTA2010	Implementation of TTA Stage 2	1	0	1	NE/2017/08(6days)	07-Jan-20*	07-Jan-20	07-Jan-20	07-Jan-20	0 0	0%			
MPU20190908.7.8.2.3.1	Northern Portion	108	0	108	NE/2017/08(6days)	08-Jan-20	22-May-20	20-Jan-20	03-Jun-20	10		 		
WO.CA.TTA2NP.1020	Construction of PBSH (Northern Footpath except Roundabout) (46nos, 7D/pile, 2 to 4rigs)	108	0	108	NE/2017/08(6days)	08-Jan-20	22-May-20	20-Jan-20	03-Jun-20	10 0	0%			
WO.CA.TTA2NP.1035	Inspection Pit for Predrilling Works at Northern Roundabout	4	0	4	NE/2017/08(6days)	08-Jan-20	11-Jan-20	20-Jan-20	23-Jan-20	10 0	0%			
WO.CA.TTA2NP.1040	Predrilling for PBSH for Northern Roundabout (4nos, 15D/hole, 3 rigs)	20	0	20	NE/2017/08(6days)	13-Jan-20	07-Feb-20	24-Jan-20	19-Feb-20	10 7	0%			
MPU20190908.7.8.2.3.2	Southern Portion and Central Barrier	30	0	30	NE/2017/08(6days)	08-Jan-20	14-Feb-20	22-Apr-20	28-May-20	83				
WO.CA.TTA2SP.1010	Set Back Existing Kerb along Sourthern Portion	30	0	30	NE/2017/08(6days)	08-Jan-20	14-Feb-20	22-Apr-20	28-May-20	83 0	0%	 		

Actual Level of Effort Actual Work Remaining Work Critical Remaining Work

CEDD 土木工程拓展署 Civil Engineering and Development Department Contract No.: NE/2017/08 Cross Bay Link, Tseung Kwan O Road D9 and Associated Works Page 4 of 4

24	2020
Q4 9 1	Q1
UU Diversion and Install	ation of Sheet Pile at Northern Footpath (Exc
of Utility/Ground Settlement Points	
on of Central Barrier	
Department,	
emporary Street Lighting Installation	
Removal of Existing Street Li	ghting
Predrilling for PBSH at Northern Footpa	th (Except Roundabout) (11 nos, 10D/pile+5
of Traffic Signal Pole Relocation	
Relocation of Traffic Signal	
	28-Dec-19, MPU20190908.7.8.2.1.2
mplementation of TTA Stage 1A	
•	Inspection pit for Remaining Predrilling
	oncrete Block Installation as Lateral Support
	Implementation of TTA Sta
	Inspection Pit for Pred
i	· · ·
Revision	Checked Approved
	HY AY




Appendix D

Monitoring Location (Air Quality, Noise and Water Quality)

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Designated and Interim Alternative Air Quality and Noise Monitoring Location

AUES

		UL.	03/13		0/001
03/13	Checked		Approved	209506/EMA/W	u/001
01/13		JP	ST		
03/11	Scale	4.	20000 (17)	Status	Rev. C
Date		13	30000 (A3)	FINAL	U U

Appendix E

Event and Action Plan

	ACTION			
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
ACTION LEVEL				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and Project Consultant; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and Project Consultant; Advise the Project Consultant on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and Project Consultant; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial actions to IEC within working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

	ACTION			
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
LIMIT LEVEL				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform Project Consultant, Contractor, IEC and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Project Consultant informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the Project Consultant on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Event and Action Plan for Air Quality Monitoring

	ACTION				
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor	
LIMIT LEVEL		1			
Exceedance for two or more consecutive samples	 Notify IEC, Project Consultant, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and Project Consultant to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Project Consultant informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst Project Consultant, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the Project Consultant accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the Project Consultant until the exceedance is abated. 	

ACTION				
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
Action Level	 Notify IEC and contractor; Carry out investigation; Report the results of investigation to the IEC, Project Consultant and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the Project Consultant accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; 2. Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IEC, Project Consultant, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, Project Consultant and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Project Consultant informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst Project Consultant, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the Project Consultant accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the Project Consultant until the exceedance is abated.

		ACTION		
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
Action level being exceeded by one sampling day at water sensitive receiver(s)	 Identify the source(s) of impact by comparing the results with those collected at the gradient stations and the control stations as appropriate; If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; Inform IEC and contractor; Check monitoring data, all plant, equipment and Contractor's working methods; If exceedance occurs at WSD salt water intake, inform WSD; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	 Discuss mitigation measures with ET and Contractor; Review proposal on mitigation measures submitted by Contractor and advise the Project Consultant accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC; Make agreement on the mitigation proposal. 	 Inform the Project Consultant and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Amend working methods if appropriate; Discuss with ET and IEC and propose mitigation measures to IEC and Project Consultant; Implement the agree mitigation measures.
Action level being exceeded by two or more consecutive sampling days at water sensitive receiver(s)	 Identify the source(s) of impact by comparing the results with those collected at the gradient stations and the control stations as appropriate; If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; Inform IEC and contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, and Contractor; Ensure mitigation measures are 	 Discuss mitigation measures with ET and Contractor; Review proposal on mitigation measures submitted by Contractor and advise the Project Consultant accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC; Make agreement on the mitigation proposal; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Project Consultant and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and Project Consultant and propose mitigation measures to IEC and Project Consultant within 3 working

EVENTEnvironmental Team (ET)Independent Environmental Checker (IEC)Project ConsultantContractorimplemented; 7. Prepare to increase the monitoring frequency to daily; 8. If exceedance occurs at WSD salt water intake, inform WSD; 9. Repeat measurement on next day of exceedance.I. Identify the source(s) of impact by comparing the results with those contractor and EPD 4. Check monitoring masures with 1EC, ER and Contractor; 3. Inform IEC, contractor and EPD 4. Check monitoring receiver(s)1. Discuss mitigation measures with 2. Review proposal on mitigation measures submitted by Contractor; and advise the Project Consultant and accordingly; 3. Inform IEC, contractor and EPD 4. Check monitoring data, all plant, equipment and Contractor; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. If exceedance to corts at WSD salt water intake, inform WSD 8. ET should contact AFCD if the limit level is exceeded by in exessitive receiver(s)1. Discuss mitigation assess the effectiveness of the implemented mitigation measures.1. Discuss proposed mitigation measures with it Discuss mitigation measures with it proposal of mitigation accordingly; 3. Assess the effectiveness of the implemented mitigation measures.1. Inform the Project Consultant and submitted by Contractor and advise the Project Consultant and submitted by contractor; 9. Consultant and submitted by contractor working methods; 5. Discuss mitigation measures with it proposal of mitigation measures.1. Inform the Project Consultant and consider charges of working methods; 6. Ensure mitigation measures are implemented; 7. If exceedance occurs at WSD salt <th></th> <th colspan="5">ACTION</th>		ACTION				
7. Prepare to increase the monitoring frequency to daily;8. If exceedance occurs at WSD salt water intake, inform WSD;9. Repeat measurement on next day of exceedance5. Implement the agreed 	EVENT	Environmental Team (ET)	Environmental Checker	Project Consultant	Contractor	
being exceeded by one sampling day at watercomparing the results with those collected at the gradient stations and the control stations as appropriate; 2. If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; 3. Inform IEC, contractor and EPD 4. Check monitoring data, all plant, equipment and 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures with IEC, RE and Contractor; 6. Ensure mitigation measures are implemented; 7. If exceedance occurs at WSD salt water intake, inform WSD.measures with ET and Contractor; and advise the Project 3. Assess the effectiveness of the implemented mitigation measures.mitigation measures with equipment and consultant and submitted by Contractor and advise the Project 3. Assess the effectiveness of the implemented mitigation measures.Consultant and confirm notification of the noncompliance in writing; a. Rectify unacceptable working methods; 4. Discuss with ET and consultant and submitted by Contractor and advise the Project Consultant and measures.mitigation measures with equipment and consultant and submit proposal of mitigation measures.Consultant and confirm notification a. Check all plant and equipment and submit proposal of mitigation measures.8. ET should contact AFCD if the limit level is exceeded by one sampling days at water sensitive receiver(s).1. Discuss mitigation measures with ET and consultant water intigation measures with ET and consultant water intake, inform WSD.I. Inform the Project Consultant and confirmLimit level being exceeded1. Identify the source(s) of impact by comparing the results with those1. Di		 7. Prepare to increase the monitoring frequency to daily; 8. If exceedance occurs at WSD salt water intake, inform WSD; 9. Repeat measurement on next day of exceedance. 			5. Implement the agreed mitigation measures.	
Limit level being exceeded1. Identify the source(s) of impact by comparing the results with those1. Discuss mitigation measures with ET and1. Discuss proposed mitigation measures with1. Inform the Project Consultant and confirm	being exceeded by one sampling day at water sensitive	 comparing the results with those collected at the gradient stations and the control stations as appropriate; 2. If exceedance is found to be caused by the marine works, repeat <i>in-situ</i> measurement to confirm findings; 3. Inform IEC, contractor and EPD 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. If exceedance occurs at WSD salt water intake, inform WSD. 8. ET should contact AFCD if the limit level is exceeded by one sampling day or two or more consecutive sampling 	 measures with ET and Contractor; Review proposal on mitigation measures submitted by Contractor and advise the Project Consultant accordingly; Assess the effectiveness of the implemented mitigation 	 mitigation measures with IEC, ET and Contractor; 2. Request Contractor to critically review the working methods; 3. Make agreement on the mitigation measures to be implemented; 4. Assess the effectiveness of the implemented mitigation 	Consultant and confirm notification of the noncompliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment and consider changes of working methods; 4. Discuss with ET, IEC and Project Consultant and submit proposal of mitigation measures to IEC and Project Consultant within 3 working days of notification; 5. Implement the agreed	
					5	
by two or more in collected at the gradient stations and the intractor.	being exceeded by two or more	comparing the results with those collected at the gradient stations and the	measures with ET and Contractor;	mitigation measures with IEC, ET and Contractor;	Consultant and confirm notification of the	

	ACTION			
EVENT	Environmental Team (ET)	Independent Environmental Checker (IEC)	Project Consultant	Contractor
sampling days at 2	control stations as appropriate; 2. If exceedance is found to be caused	2. Review proposal on mitigation measures	2. Request Contractor to critically review the	noncompliance in writing;2. Rectify unacceptable
water sensitive receiver(s) m 3 4 4 6 1 1 5 1 1 6 6 1 1 7 7 6 8 8 9	by the marine works, repeat <i>in-situ</i> measurement to confirm findings; 3. Inform IEC, contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, and Contractor; 6. Ensure mitigation measures are implemented; 7. Prepare to increase the monitoring frequency to daily; 8. If exceedance occurs at WSD salt water intake, inform WSD; 9. Repeat measurement on next day of exceedance.	submitted by Contractor and advise the Project Consultant accordingly; 3. Assess the effectiveness of the implemented mitigation measures.	 working methods; 3. Make agreement on the mitigation measures to be implemented; 4. Assess the effectiveness of the implemented mitigation measures; 5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. 	practice; 3. Check all plant and equipment and consider changes of working methods; 4. Discuss with ET, IEC and Project Consultant and submit proposal of mitigation measures to IEC and Project Consultant within 3 working days of notification; 5. Implement the agreed mitigation measures; 6. As directed by the Engineer, to slow down or to stop all or part of the construction activities.

Appendix F

Impact Monitoring Schedule of the Reporting Month and Coming Month

Impact Monitoring Schedule for the reporting month – January 2020

Date		Noise Monitoring		y Monitoring	Water Quality
		(Leq30min)	1-Hour TSP	24-Hour TSP	water Quanty
Wed	1-Jan-20				
Thu	2-Jan-20	\checkmark	\checkmark		\checkmark
Fri	3-Jan-20			✓	
Sat	4-Jan-20				\checkmark
Sun	5-Jan-20				
Mon	6-Jan-20				✓
Tue	7-Jan-20				
Wed	8-Jan-20	\checkmark	✓		✓
Thu	9-Jan-20			✓	
Fri	10-Jan-20	✓			√
Sat	11-Jan-20				
Sun	12-Jan-20				
Mon	13-Jan-20				√
Tue	14-Jan-20	✓	✓		
Wed	15-Jan-20			✓	√
Thu	16-Jan-20				
Fri	17-Jan-20				✓
Sat	18-Jan-20		✓		
Sun	19-Jan-20				
Mon	20-Jan-20				✓
Tue	21-Jan-20			✓	
Wed	22-Jan-20				✓
Thu	23-Jan-20	✓	✓		
Fri	24-Jan-20			✓	√
Sat	25-Jan-20				*
Sun	26-Jan-20				*
Mon	27-Jan-20				*
Tue	28-Jan-20				*
Wed	29-Jan-20	✓	✓		√
Thu	30-Jan-20			✓	
Fri	31-Jan-20				✓
	✓	Monitoring Day			
		Sunday or Public Hol	iday		

Remark: No impact water monitoring was carried out during the period of Lunar New Year due to site closure.

Marine Water Quality Monitoring Schedule

Marine Water Quanty Monitoring Schedule								
Sabadulad Manita	ring Dov	Tides of Ta	i Miu Wan	Proposed Sampling Time (#)				
Scheduled Molillo	Scheduled Monitoring Day		Mid-Flood	Mid-Ebb	Mid-Flood			
2-Jan-2020	Thu	17:55	12:19	16:10 - 19:40	10:34 - 14:04			
4-Jan-2020	Sat	5:16*	13:37	8:00-09:00*	11:42 - 15:22			
6-Jan-2020	Mon	8:16	14:39	8:00-10:01*	12:44 - 16:14			
8-Jan-2020	Wed	10:17	15:42	8:42 - 12:12	13:57 - 17:27			
10-Jan-2020	Fri	11:29	17:01	9:44 - 13:14	15:16 - 18:46			
13-Jan-2020	Mon	14:04	8:50	12:19 - 15:49	8:00 - 10:35*			
15-Jan-2020	Wed	15:50	10:20	14:05 - 17:35	8:35 - 12:05			
17-Jan-2020	Fri	17:55	11:57	16:10 - 19:40	10:12 - 13:42			
20-Jan-2020	Mon	8:35	14:26	08:00 - 10:20*	12:41 - 16:11			
22-Jan-2020	Wed	10:46	15:59	9:01 - 12:31	14:14 - 17:44			
24-Jan-2020	Fri	17:23	12:15	15:38 - 19:08	10:30 - 14:00			
29-Jan-2020	Wed	9:47	15:20	8:02 - 11:32	13:35 - 17:05			
31-Jan-2020	Fri	10:52	16:50	9:07 - 12:37	15:05 - 18:35			

Remark: The water quality sampling will be undertaken within a three and half hour window of 1.75 hour before and 1.75 hour after mid flood and mid-ebb tides.

(*) Due to safety reason, the sampling event will be started at 08:00 at the earliest or 16:30 at the latest to avoid sampling in dark.

Z:\Jobs\2018\TCS00975 (EDO-04-2018)\600\EM&A Report Submission\Monthly EM&A Report\2020\January 2020\R0339v3.docx

Impact Monitoring Schedule for coming month – February 2020

Date		Noise Monitoring	Air Quality	y Monitoring	
		(L _{eq} 30min)	1-Hour TSP	24-Hour TSP	Water Quality
Sat	1-Feb-20				
Sun	2-Feb-20				
Mon	3-Feb-20	✓	✓		
Tue	4-Feb-20				✓
Wed	5-Feb-20			✓	
Thu	6-Feb-20				✓
Fri	7-Feb-20				
Sat	8-Feb-20		✓		✓
Sun	9-Feb-20				
Mon	10-Feb-20				✓
Tue	11-Feb-20			✓	
Wed	12-Feb-20				✓
Thu	13-Feb-20				
Fri	14-Feb-20	✓	√		✓
Sat	15-Feb-20				
Sun	16-Feb-20				
Mon	17-Feb-20			✓	✓
Tue	18-Feb-20				
Wed	19-Feb-20				√
Thu	20-Feb-20	✓	\checkmark		
Fri	21-Feb-20				√
Sat	22-Feb-20			✓	
Sun	23-Feb-20				
Mon	24-Feb-20				✓
Tue	25-Feb-20				
Wed	26-Feb-20	✓	✓		✓
Thu	27-Feb-20				
Fri	28-Feb-20			✓	✓
Sat	29-Feb-20				

✓

Monitoring Day Sunday or Public Holi

Sunday or Public Holiday

Marine Water Quality Monitoring Schedule									
Schodulod Monito	ning Dov	Tides of Ta	u Miu Wan	Proposed Sampling Time (#)					
Scheduled Monito	ring Day	Mid-Ebb	Mid-Flood	Mid-Ebb	Mid-Flood				
4-Feb-2020	Tue	07:22*	13:12	8:00-09:07*	11:27 - 14:57				
6-Feb-2020	Thu	09:59	14:57	08:14 - 11:44	13:12 - 16:42				
8-Feb-2020	Sat	11:40	06:31*	09:55 - 13:25*	08:00-09:00*				
10-Feb-2020	Mon	13:10	07:43*	11:25 - 14:55	08:00-09:28*				
12-Feb-2020	Wed	14:39	08:58*	12:54 - 16:24	08:00 - 10:43*				
14-Feb-2020	Fri	16:20	10:19	14:35 - 18:05	08:34 - 12:04				
17-Feb-2020	Mon	06:53*	12:40	08:00-09:00*	10:55 - 14:25				
19-Feb-2020	Wed	09:43	14:41	08:00 - 11:28	12:56 - 16:26				
21-Feb-2020	Fri	11:25	16:32	09:40 - 13:10	14:47 - 18:17				
24-Feb-2020	Mon	13:08	07:38*	11:23 - 14:53	08:00-09:23*				
26-Feb-2020	Wed	14:09	08:25*	12:24 - 15:54	08:00 - 10:10*				
28-Feb-2020	Fri	15:14	09:11*	13:29 - 16:59	08:00 - 10:56*				

3.4

Remark: The water quality sampling will be undertaken within a three and half hour window of 1.75 hour before and 1.75 hour after mid flood and mid-ebb tides.

(*) Due to safety reason, the sampling event will be started at 08:00 at the earliest or 16:30 at the latest to avoid sampling in dark.

Appendix G

Calibration Certificates of Equipment and Accreditation Laboratory Certificate

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong

香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 –《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date : 5 May 2009 簽發日期:二零零九年五月五日

Registration Number: HOKLAS 066 註冊號碼:

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

			Po Roa	d and Wan () Roa				ation: 2-Jar				
Location]		AM5				N			Date: 2-Ma	ar-20			
Name and	Model:	TISCH F	IVS Mo	del TE-5170				echn	ician: Ho				
					CC	DNDIT	IONS						
	Sa	o I orrol I	J acon	(hDa)	10	25.2		C	Tormo oto d D			76	0 0
Sea Level Pressure (hPa) Temperature (°C))25.2 18.3		C	Corrected P				8.9
Temperature (C)									Temp	erature (K	.)	4	291
				CA	LIBR	RATIO							
				F							i	<u> </u>	
				Make->					-	lope ->		2.0968	
				Model->		A			Qstd Inter	cept ->		-0.0006	5
				Serial # ->	1941								
					CA	LIBR	ATION						
Plate	H20 (L)	H2O (R)	H20	Qstd	I	[IC			LINEAF	ξ		
No.	(in)	(in)	(in)	(m3/min)	(cha	art)	corrected		R	EGRESSI	ON		
18	5.40	5.40	10.8	1.595	5	9	60.71		Slope = 28.8397				
13	3.70	3.70	7.4	1.320	52	2	53.51		Inte	rcept = 1	5.2010		
10	2.50	2.50	5.0	1.085	4	6	47.33		Corr. c	coeff. =	0.9979		
7	1.70	1.70	3.4	0.895	4	0	41.16						
5	1.30	1.30	2.6	0.783	3	6	37.04						
Calculatio													
Qstd = $1/r$		$20(D_{\rm e}/D_{\rm e})$	td)(Tatd	(T_{0}) [1]		70.0	0		FLOW RAT	ECHARI			
$Q_{SIG} = 1/1$ IC = I[Sq1				/1a))-0]									
IC – 1[54]		1)(1510/1	a)]			60.0	0						
Qstd = sta	ndard flo	w rate											
IC = correction			es			50.0	0			/			
I = actual		-			é	<u>(</u>)				•			
m = calibi						95 40.0	0		*				
b = calibra	-	-	t			ods	0		•				
Ta = actua	al temper	ature dur	ing calil	oration (deg	Κ·								
Pstd = act	ual press	ure durin	g calibra	ation (mm H	Ig	Actual chart response (IC 0.05 0.05 0.05	0						
					-	ctua							
For subse	equent ca	alculatio	n of san	npler flow:		⋖ 20.0	0						
1/m((I)[S	Sqrt(298/	Tav)(Pav	r/760)]-t))									
						10.0	0						
m = samp													
b = sampler intercept						0.0	0						
I = chart r	-						0.000	0.50		000 Data (m. 2(m.)	1.500	2.0	00
Tav = dail								St	tandard Flow	Kate (m3/mi	n)		
Pav = dail	iy averag	e pressur	e										

RECALIBRATION DUE DATE: February 5, 2020

0

			Calibration (Certificatio	n Informat	ion		
Cal. Date:	February 5,	2019	Rootsn	neter S/N:	438320	Ta:	293	°K
Operator:	Jim Tisch					Pa:	753.1	mm Hg
		TE-5025A	Calib	rator S/N:	1941			5
		Mal Init	Vol Engl	AV-1	ATIMA	40	A11	Ĩ
	Run	Vol. Init (m3)	Vol. Final	ΔVol.	∆Time (min)			
	Kun 1	(m5) 1	(m3) 2	(m3)	(min) 1.4830	(mm Hg) 3.2	(in H2O) 2.00	
	2	3	4	1	1.4830	6.4	4.00	
	3	5	6	1	0.9300	7.9	5.00	
	4	7	8	1	0.8870	8.7	5.50	
	5	9	10	1	0.7320	12.7	8.00	
				ata Tabulat				1
	-	1			1011			0
	Vstd	Qstd	√∆H(<u>Pa</u> Pstd)(Tstd Ta)	(1997)	Qa	√∆H(Ta/Pa)	1
	(m3)	(x-axis)	(y-axis)		Va	(x-axis)	(y-axis)	
	1.0036	0.6767		1.4197		0.6714	0.8821	
	0.9993	0.9581	2.007	/8	0.9915	0.9506	1.2475	
	0.9973	1.0723	2.2448		0.9895	1.0640	1.3947	be
	0.9962	1.1231	2.354	4	0.9884	1.1144	1.4628	
	0.9908	1.3536	2.839	95	0.9831	1.3431	1.7642	
	17.72.6	m=	2.096	80	1.056.11	m=	1.31298	
	QSTD	b=	-0.000	65	QA	b=	-0.00040	
		r=	0.999	99		r=	0.99999	1
				Calculation	IS		1.1.1.1	
	Vstd=	∆Vol((Pa-∆P)	/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
	Qstd=	Vstd/∆Time			Qa= Va/ATime			
			For subsequ	ent flow rat	e calculation	ns:		
	Qstd=	1/m ((\\ \ \ \ \ \ \ H (Pa <u>(Tstd</u> Pstd Ta)-b)	Qa=	$1/m \left(\sqrt{\Delta H} \right)$	(Ta/Pa))-b)	
	Standard	Conditions						5. U
Tsto						RECAL	IBRATION	
Psto		mm Hg		1			1	100
		ley	112.01				inual recalibratio	
	tor manomet						egulations Part	
	eter manome absolute temp						Reference Meth	
							ended Particulat	
the second second second second second		cooure (mm	16/		th	e Atmosphe	re, 9.2.17, page	30
Pa: actual b: intercep m: slope	barometric pr t	essure (mm	Hg)				re, 9.2.17, page	

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR BEN TAM	WORK ORDER	HK1912133
CLIENT	ACTION UNITED ENVIRONMENT SERVICES AND		
	CONSULTING		
ADDRESS	: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD,	SUB-BATCH	: 1
	KWAI CHUNG, N.T. HONG KONG	DATE RECEIVED	: 20-MAR-2019
		DATE OF ISSUE	: 22-MAR-2019
PROJECT	:	NO. OF SAMPLES	: 1
		CLIENT ORDER	:

General Comments

- Sample(s) were received in ambient condition.
- Sample(s) analysed and reported on an as received basis.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Kidaid Jong		
Richard Fung	General Manager	

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH

CLIENT PROJECT : HK1912133

¹ ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1912133-001	S/N: 3Y6501	AIR	20-Mar-2019	3Y6501

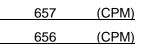
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	3Y6501
Equipment Ref:	EQ111
Job Order	HK1912133

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	12 February 2019


Equipment Verification Results:

Calibration Date:

11 March 2019

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr00min	09:21 ~ 11:21	18.4	1014.9	0.021	3650	30.4
2hr00min	11:30 ~ 13:30	18.4	1014.9	0.025	4111	34.3
2hr00min	13:40 ~ 15:40	18.4	1014.9	0.032	4611	38.4

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

0.035 0.03 0.025 0.02 0.015 y = 0.0008x - 0.0006 0.01 $R^2 = 0.9763$ 0.005 0 10 20 40 50 0 30

Slope (K-factor):

Linear Regression of Y or X

Correlation Coefficient (R) Date of Issue 0.0008 0.9881 18 March 2019

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0008 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Gold King Industrial Building, K Location ID : Calibration Room	ung	Date of Calibration: 12-Feb- Next Calibration Date: 12-May-		
	COND	TIONS		
Sea Level Pressure (hPa) Temperature (°C)	1024.2 19.0		Corrected Pressure (mm Hg) 768 Temperature (K) 2	.15 292
CALI	IBRATI	ON ORIFICE		
	SCH 25A Feb-18		Qstd Slope ->2.0201Qstd Intercept ->-0.0369Expiry Date->13-Feb-	91
	CALIB	RATION		
	I nart)	IC corrected	LINEAR REGRESSION	
18 4 7.7 11.7 1.738 6 13 2.8 6.9 9.7 1.584 4 10 1.9 5.4 7.3 1.377 4 8 0.6 4 4.6 1.097 3	50 52 46 38 27	60.94 52.81 46.72 38.59 27.42	Slope = 35.5369 Intercept = -1.8924 Corr. coeff. = 0.9951	
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	.06 4 Actual cha 20.		FLOW RATE CHART	

Certificate of Calibration 校正證書

Certificate No. : C193753 證書編號

ITEM TESTED / 送檢功	頁目	(Job No./序引編號: IC19-1098)	Date of Receipt / 收件日期: 5 July 2019
Description / 儀器名稱 Manufacturer / 製造商 Model No. / 型號	: : :	Integrating Sound Level Meter (EQ006) Brüel & Kjær 2238	
Serial No. / 編號 Supplied By / 委託者	:	2285762 Action-United Environmental Services and C Unit A, 20/F., Gold King Industrial Building 35-41 Tai Lin Pai Road, Kwai Chung, N.T.	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50±25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 16 July 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試

K P Cheuk

Assistant Engineer

K C Lee Engineer

Certified By 核證

Date of Issue 簽發日期 :

22 July 2019

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No. : C193753 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281 Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator <u>Certificate No.</u> C190176 CDK1806821

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Self-calibration

UUT Setting				Applied	UUT	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.4

6.1.1.2 After Self-calibration

UUT Setting			Applie	d Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	А	F	94.00	1	94.1	± 0.7

6.1.2 Linearity

UUT Setting				Applied	UUT	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	LAFP	А	F	94.00	1	94.1 (Ref.)
		1.1.1	1	104.00		104.1
			· · · · · · · · · · · · · · · · · · ·	114.00	1. Do	114.0

IEC 60651 Type 1 Spec. : ± 0.4 dB per 10 dB step and ± 0.7 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里—號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/額址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C193753 證書編號

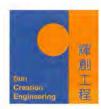
6.2 Time Weighting

6.2.1 Continuous Signal

UUT Setting			Applied Value		UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.1	Ref.
	L _{ASP}		S		1	94.1	± 0.1
	LAIP		I			94.2	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

UUT Setting			Applied Value		UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Type 1 Spec. (dB)
30 - 110	0-110 L _{AFP} A F		106.0	Continuous	106.0	Ref.	
	LAFMax				200 ms	104.9	-1.0 ± 1.0
	LASP		S		Continuous	106.0	Ref.
	L _{ASMax}			_	500 ms	102.0	-4.1 ± 1.0


6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Appl	ied Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	L _{AFP}	А	F	94.00	31.5 Hz	55.2	-39.4 ± 1.5
				63 Hz	68.1	-26.2 ± 1.5	
			125 Hz	78.0	-16.1 ± 1.0		
			250 Hz	85.4	-8.6 ± 1.0		
					500 Hz	90.8	-3.2 ± 1.0
					1 kHz	94.1	Ref.
				2 kHz	95.3	$+1.2 \pm 1.0$	
					4 kHz	95.1	$+1.0 \pm 1.0$
					8 kHz	93.0	-1.1 (+1.5 ; -3.0)
					12.5 kHz	89.9	-4.3 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司 Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C193753 證書編號

6.3.2 C-Weighting

	UUT	Setting		Appl	ied Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	L _{CFP}	С	F	94.00	31.5 Hz	91.5	-3.0 ± 1.5
			63 Hz	93.4	-0.8 ± 1.5		
			125 Hz	93.9	-0.2 ± 1.0		
			250 Hz	94.1	0.0 ± 1.0		
					500 Hz	94.1	0.0 ± 1.0
				1	1 kHz	94.1	Ref.
					2 kHz	93.9	-0.2 ± 1.0
					4 kHz	93.3	-0.8 ± 1.0
			8 kHz	91.1	-3.0 (+1.5 ; -3.0		
					12.5 kHz	88.0	-6.2 (+3.0 ; -6.0

6.4

Time Averaging

	UUT	Setting		Applied Value			UUT	IEC 60804		
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
30 - 110 LAcq A 10 sec.	10 sec.	sec. 4	4 1	1/10	110.0	100	100.0	± 0.5		
and the second						1/10 ²		90	90.0	± 0.5
			60 sec.			1/103		80	79.2	± 1.0
			5 min.			1/104		70	69.2	±1.0

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2658547

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value :	94 dB : 31.5 Hz - 125 Hz	: ± 0.35 dB
Transformed to be a state of the second	250 Hz - 500 Hz	$\pm 0.30 \text{ dB}$
	1 kHz	$\pm 0.20 \text{ dB}$
	2 kHz - 4 kHz	$: \pm 0.35 dB$
	8 kHz	$:\pm 0.45 \text{ dB}$
	12.5 kHz	$:\pm 0.70 \text{ dB}$
	104 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	114 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	Burst equivalent level	: ± 0.2 dB (Ref. 110 dB continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C193189 證書編號

(Job No. / 序引編號: IC19-1098)	Date of Receipt / 收件日期: 18 June 2019
Sound Level Meter (EQ016)	
Rion	
NL-52	
00464681	
Action-United Environmental Services and	d Consulting
Unit A, 20/F., Gold King Industrial Buildi	ng,
35-41 Tai Lin Pai Road, Kwai Chung, N.T	
	Sound Level Meter (EQ016) Rion NL-52 00464681 Action-United Environmental Services and Unit A, 20/F., Gold King Industrial Buildi

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50 ± 25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 20 June 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies

ł

- Fluke Everett Service Center, USA

Tested By 測試

11.00

K P Cheuk Assistant Engineer

K C Lee Engineer

Certified By 核證 Date of Issue : 簽發日期 20 June 2019

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 枝正及檢測實驗所 c/o 香港新界屯門興安里—號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com Page 1 of 3

Certificate of Calibration 校正證書

Certificate No. : C193189 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- Self-calibration was performed before the test. 2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C190176
CL281	Multifunction Acoustic Calibrator	CDK1806821

- 5. Test procedure : MA101N.
- 6. Results :

- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

UUT Setting		Applied Value		UUT	IEC 61672		
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	93.5	± 1.1

6.1.2 Linearity

	UU	T Setting		Applie	d Value	UUT
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	LA	A	Fast	94.00	1	93.5 (Ref.)
		1 1 2 3 4 1		104.00		103.5
				114.00		113.5

IEC 61672 Class 1 Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

6.2 Time Weighting

UUT Setting		Applied Value		UUT	IEC 61672		
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	93.5	Ref.
			Slow	1		93.5	± 0.3

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prine written approval of this laboratory.

Certificate of Calibration 校正證書

Certificate No. : C193189 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

UUT Setting			Applied Value		UUT	IEC 61672					
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)				
30 - 130	0 - 130 L _A A Fast	Fast	94.00	63 Hz	67.3	-26.2 ± 1.5					
				100 C C C C C C C C C C C C C C C C C C			125 Hz	77.4	-16.1 ± 1.5		
				250 Hz	84.8	-8.6 ± 1.4					
				500 Hz	90.3	-3.2 ± 1.4					
					1 kHz	93.5	Ref.				
									2 kHz	94.8	$+1.2 \pm 1.6$
					4 kHz	94.5	$+1.0 \pm 1.6$				
					8 kHz	92.5	-1.1 (+2.1;-3.1)				
					12.5 kHz	89.1	-4.3 (+3.0 ; -6.0)				

6.3.2 C-Weighting

	UUT Setting		Appli	ied Value	UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _C	C	Fast	94.00	63 Hz	92.7	-0.8 ± 1.5
				125 Hz	93.4	-0.2 ± 1.5	
					250 Hz	93.5	0.0 ± 1.4
					500 Hz	93.6	0.0 ± 1.4
					1 kHz	93.5	Ref.
					2 kHz	93.4	-0.2 ± 1.6
		5			4 kHz	92.8	-0.8 ± 1.6
			· · · · · · · · · · · · · · · · · · ·		8 kHz	90.6	-3.0 (+2.1;-3.1)
					12.5 kHz	87.2	-6.2 (+3.0 ; -6.0)

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 07619

- Mfr's Spec. : IEC 61672 Class 1

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C194819 證書編號

ITEM TESTED / 送檢I	頁目	(Job No. / 序引編號: IC19-1098)	Date of Receipt / 收件日期: 27 August 2019	
Description / 儀器名稱	:	Sound Calibrator (EQ087)		
Manufacturer / 製造商	:	Rion		
Model No. / 型號	:	NC-74		
Serial No. / 編號	:	34657231		
Supplied By / 委託者	:	Action-United Environmental Services a	and Consulting	
		Unit A, 20/F., Gold King Industrial Buil	lding,	
		35-41 Tai Lin Pai Road, Kwai Chung, N	J.T.	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± Line Voltage / 電壓 : ---

(23 ± 2)°C

Relative Humidity / 相對濕度 : (50±25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 7 September 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試	• —	H T Wong Technical Officer
Certified By 核證		K C Lee

Date of Issue : 簽發日期 10 September 2019

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lanc, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 枝正及檢測實驗所 c/o 香港新界屯門興安里一號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Engineer

Certificate of Calibration 校正證書

Certificate No.: C194819 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier Certificate No. C193756 CDK1806821 C181288

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.1	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: CLIENT:	MR BEN TAM ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	WORK ORDER:	HK1951766
ADDRESS:	RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T. HONG KONG	SUB-BATCH: LABORATORY: DATE RECEIVED: DATE OF ISSUE:	0 HONG KONG 06-Dec-2019 16-Dec-2019

<u>COMMENTS</u>

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client. The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:Conductivity, Dissolved Oxygen, pH Value, Turbidity, Salinity and TemperatureEquipment Type:Multifunctional MeterBrand Name/ Model No.:YSI Professional DSSSerial No./ Equipment No.:15H102620/15H103928 (EQW018)

Serial No./ Equipment No.: Date of Calibration:

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

13-Dec-2019

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Lin Wai Yu, Iris Assistant Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1951766			ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 16-Dec-2019 ACTION UNITED ENVIRONMEN	IT SERVICES AND CONSULTING		
Equipment Type:	Multifunctional Meter			
Brand Name/ Model No.:	YSI Professional DSS			
Serial No./ Equipment No.:	15H102620/ 15H103928 (EQ	W018)		
Date of Calibration:	13-Dec-2019	Date of Next Calibration:	13-Mar-2020	

PARAMETERS:

Dissolved Oxygen

xygen Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.12	2.30	+0.18
4.98	5.06	+0.08
7.18	7.24	+0.06
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.15	+0.15
7.0	6.98	-0.02
10.0	9.94	-0.06
	Tolerance Limit (pH unit)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance ([°] C)		
12.0	11.3	-0.7		
21.5	20.2	-1.3		
39.0	37.5	-1.5		
	Tolerance Limit (°C)	±2.0		

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris Assistant Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1951766			ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 16-Dec-2019 ACTION UNITED ENVIRONMEN	T SERVICES AND CONSULTING		
Equipment Type:	Multifunctional Meter			
Brand Name/ Model No.:	YSI Professional DSS			
Serial No./ Equipment No.:	15H102620/ 15H103928 (EQ)	W018)		
Date of Calibration:	13-Dec-2019	Date of Next Calibration:	13-Mar-2020	

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)	
0	0.59		
4	4.06	+1.5	
40	36.28	-9.3	
80	78.54	-1.8	
400	418.56	+4.6	
800	753.29	-5.8	
	Tolerance Limit (%)	±10.0	

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.02	
10	10.60	+6.0
20	20.87	+4.4
30	32.60	+8.7
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris Assistant Manager - Inorganic

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

CERTIFICATE OF ANALYSIS

CONTACT:	MR MIKE SHEK	WORK ORDER:	HK1921228
CLIENT:	AECOM ASIA COMPANY LIMITED		
ADDRESS:	1501-10, 15/F, TOWER 1, GRAND CENTRAL PLAZA,	SUB BATCH:	0
	138 SHATIN RURAL COMMITTEE ROAD,	LABORATORY:	HONG KONG
	SHATIN, NEW TERRITORIES, HONG KONG	DATE RECEIVED:	20-May-2019
		DATE OF ISSUE:	31-May-2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results are compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principles as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Carbon dioxide, Methane and Oxygen		
Equipment Type:	Landfill Gas Analyser		
Brand Name:	GEOTECH		
Model No.:	GA2000		
Serial No.:	GA11903/09		
Equipment No.:			
Date of Calibration:	24-May-2019		

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for releas

Ms Chan Ka Yu, Karen Manager - Organics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1921228
Sub-Batch:	0
Client:	AECOM ASIA COMPANY LIMITED
Date of Issue:	31-May-2019
Equipment Type:	Landfill Gas Analyser
Brand Name:	GEOTECH

GA2000

--

GA11903/09

Date of Calibration: 24-May-2019

Parameters:

Model No.:

Serial No.:

Equipment No.:

Methane

Calibrated Gas Standard, %	Monitor Readout, %	% error	Instrument Specification, %
0.0 (Nitrogen)	0.0	0.0	+/- 0.5
1.0	0.9	-0.1	+/- 0.5
10.0	10.0	0.0	+/- 0.5
49.0	49.0	0.0	+/- 3
99.0	99.8	0.8	+/- 3

Date of next Calibration: 24-May-2020

Carbon Dioxide

Calibrated Gas Standard, %	Monitor Readout, %	% error	Instrument Specification, %
0.0 (Nitrogen)	0.0	0.0	+/- 0.5
1.0	1.1	0.1	+/- 0.5
10.0	10.2	0.2	+/- 0.5
47.8	47.8	0.0	+/- 3
99.5	99.9	0.4	+/- 3

Oxygen

Calibrated Gas Standard, %	Monitor Readout, %	% error	Instrument Specification, %
0.0 (Nitrogen)	0.0	0.0	+/- 1
0.5	0.4	-0.1	+/- 1
2.5	2.5	0.0	+/- 1
9.9	9.8	-0.1	+/- 1
20.9	20.9	0.0	+/- 1

Ms Chan Ka Yu, Karen Manager - Organics

Appendix H

Database of Monitoring Results

24-hour TSP	Monitoring	Data for A	M5												
DATE	SAMPLE NUMBER		APSED TIM	ſE	CHA	RT REA	DING	AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER WI	EIGHT (g)	DUST WEIGHT COLLECTED	24-hr TSP
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	(µg/m³)
3-Jan-20	25186	15666.81	15690.81	1440.00	46	48	47.0	18.9	1023	1.13	1623	2.7686	3.0317	0.2631	162
9-Jan-20	25128	15690.81	15714.83	1441.20	43	44	43.5	19.3	1018.1	1.00	1440	2.7756	2.9905	0.2149	149
15-Jan-20	25283	15714.83	15738.83	1440.00	43	44	43.5	19.5	1018.3	1.00	1439	2.8256	3.0357	0.2101	146
21-Jan-20	25233	15738.83	15762.83	1440.00	40	42	41.0	18.8	1022.4	0.92	1319	2.7639	2.8654	0.1015	77
24-Jan-20	25234	15762.83	15786.83	1440.00	40	42	41.0	21.5	1018.1	0.91	1305	2.7724	2.8826	0.1102	84
30-Jan-20	25339	15786.83	15810.84	1440.60	42	44	43.0	14.7	1021.5	1.00	1436	2.7977	2.9393	0.1416	99

Daytime No	ise Mea	asureme	ent Resu	lts (dB)	at CNN	AS1														
	Start	1st	Leq (5n	nin)	2nd	Leq (51	nin)	3rd	Leq (51	nin)	4th	Leq (5r	nin)	5th	Leq (5r	nin)	6th	Leq (5r	nin)	
Date	Start Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq30min, dB(A)
	Time	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
2-Jan-20	14:21	67.0	70.2	62.5	64.1	66.0	61.6	64.8	66.4	62.4	64.2	65.6	62.4	65.5	66.9	62.4	66.1	68.4	62.8	65.4
8-Jan-20	9:20	65.2	69.0	59.5	64.8	67.0	59.0	66.8	70.5	60.5	63.7	69.0	59.5	66.4	68.5	60.0	65.6	69.5	59.5	65.5
14-Jan-20	14:49	64.3	67.0	56.0	65.4	68.0	58.5	66.5	68.0	64.6	64.7	66.8	61.2	61.6	63.4	58.8	63.6	66.3	60.7	64.6
23-Jan-20	10:30	63.8	67.9	59.3	62.2	65.5	60.5	64.6	66.5	61.0	62.1	63.7	59.5	63.5	65.9	59.2	64.3	66.1	62.2	63.5
29-Jan-20	9:32	59.3	62.0	55.0	57.6	60.5	53.5	57.0	58.5	55.0	58.4	60.0	55.5	57.8	58.5	54.0	56.9	57.5	55.5	57.9

Daytime No	ise Mea	asureme	ent Resi	ults (dB)	at CNN	MS5														
	Start	1st	Leq (5n	nin)	2nd	Leq (5r	nin)	3rd	Leq (51	nin)	4th	Leq (5r	nin)	5th	Leq (5r	nin)	6th	Leq (5n	nin)	
Date	Time	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq30min, dB(A)															
2-Jan-20	13:38	64.8	65.6	59.6	65.4	66.5	60.1	65.7	67.4	59.6	66.5	67.7	58.3	62.6	66.8	58.1	65.3	68.7	59.7	65.2
8-Jan-20	10:18	66.7	69.0	61.5	68.7	71.5	63.5	70.5	72.5	66.5	69.4	71.5	65.0	68.8	71.5	64.5	67.3	71.0	62.5	68.7
10-Jan-20	11:04	68.6	70.6	64.2	69.4	71.9	65.6	72.1	74.2	68.9	70.3	72.5	66.7	71.1	73.2	65.4	70.8	72.3	67.2	70.5
14-Jan-20	13:48	67.6	69.3	61.8	71.4	73.3	67.3	69.3	71.4	66.2	71.9	73.6	67.6	65.8	67.9	62.7	70.5	73.3	66.1	69.9
23-Jan-20	9:32	65.9	65.4	62.1	67.3	70.0	62.5	66.5	68.2	62.3	68.0	71.5	58.5	66.3	68.0	63.5	65.8	66.3	63.7	66.7
29-Jan-20	10:27	64.7	68.5	61.5	65.8	68.0	61.0	64.1	66.5	60.5	65.3	68.0	61.0	66.1	68.0	63.5	66.0	68.5	61.5	65.4

Evening No	ise Mea	surement Results	s (dB) at CNMS1							
	Start		1st Leq (5min)			2nd Leq (5min)			3rd Leq (5min)	
Date	Time	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq, dB(A)	L10, dB(A)	L90, dB(A)
8-Jan-20	19:37	52.4	53.4	50.0	53.0	54.1	51.4	52.5	53.7	51.3
22-Jan-20	19:08	53.3	55.3	51.2	53.9	56.7	50.9	53.5	55.5	51.0

Evening No	ise Mea	surement Results	s (dB) at CNMS5							
	Start		1st Leq (5min)			2nd Leq (5min)			3rd Leq (5min)	
Date	Time	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq, dB(A)	L10, dB(A)	L90, dB(A)	Leq, dB(A)	L10, dB(A)	L90, dB(A)
8-Jan-20	19:05	62.7	66.1	55.8	62.4	65.6	56.1	62.7	65.6	56.6
22-Jan-20	19:42	61.6	65.0	55.4	60.8	64.4	55.1	60.4	64.1	55.1

amping Dutter	2-Jan-20												
		T: J. 4	Co-ore	linates	Water	Sampling	Temp	DO Conc	DO Sotupation	Turbidity	Salinity	pН	ss
Date / Time	Location	Tide*	East	North	Depth m	Depth m	°.	mg/L	Saturation %	NTU	ppt	unit	mg/
						1.00	18.7	7.51	98.7	0.88	34.26	7.97	<1.0
16:42	CC1	ME	843201	816416	10.66	5.33	18.8 18.6	7.45 7.25	98.0 95.0	0.79 1.19	34.27 34.31	7.97 7.96	<1.0
10:42	ccr	ME	845201	810410	10.00		18.6 18.5	7.29	95.6 95.2	1.15 1.64	34.30 34.31	7.96 7.96	<1.
						9.66	18.5	7.27	95.2	1.52	34.31	7.95	<1.
						1.00	18.7	7.35	96.5 96.5	0.95 0.97	34.21 34.21	7.97	<1.
16:48	CC2	ME	844076	817091	11.66	5.83	18.6	7.30	95.8	1.21	34.28	7.97	<1
						10.66	18.6 18.5	7.30 7.24	95.7 94.9	1.25	34.29 34.31	7.96	<1.
							18.5 18.8	7.23 7.25	94.8 95.4	1.88	34.31 34.18	7.96 7.98	2.4
						1.00	18.8	7.22	95.1	1.33	34.18	7.97	<1.
17:11	CC3	ME	844606	817941	9.12	4.56	18.6 18.6	7.24 7.25	95.0 95.0	1.66	34.32 34.32	7.97 7.97	<1.
						8.12	18.6 18.6	7.22 7.20	94.6 94.3	2.08	34.33 34.33	7.97 7.97	<1. <1.
							10.0	7.20	74.5	2.12	54.55	1.91	1
16.21	0.01			015505	1.02	0.02	18.8	7.38	97.1	0.98	34.25	7.99	<1.
16:31	CC4	ME	845444	815595	1.83	0.92	18.8	7.33	96.5	0.88	34.26	7.97	<1.
						1.00	18.7 18.7	7.45 7.42	97.8 97.5	1.05	34.23 34.23	7.98	1.
16:52	CC13	ME	844200	817495	8.11	4.06	18.6	7.32	96.0	1.08	34.28	7.97	<1.
						7.11	18.6 18.6	7.32 7.33	96.0 96.1	1.11 0.99	34.28 34.29	7.97 7.97	<1.
						7.11	18.6	7.33	96.2	0.96	34.29	7.97	<1
						1.00	18.7 18.6	7.42 7.43	97.5 97.5	1.46	34.32 34.32	7.98 7.98	2.
16:14	SWI1	ME	845512	817442	4.13								
						3.13	18.6	7.41	97.2	1.61	34.33	7.98	2.
							18.6 18.6	7.35 7.36	96.5 96.5	1.69	34.33 34.30	7.98 7.99	2.
						1.00	18.5	7.31	95.8	1.26	34.31	7.98	1.:
16:38	C3	ME	843821	816211	15.9	7.95	18.4 18.4	7.30 7.31	95.5 95.6	1.55	34.34 34.34	7.98	1.0
						14.90	18.4 18.4	7.31 7.31	95.6 95.6	1.66 1.69	34.34	7.98 7.98	1.8
						1.00	18.4	7.34	96.6	0.93	34.33 34.26	7.97	1.1
							18.6 18.5	7.44	97.5 97.0	0.97	34.29 34.32	7.99 7.98	1.
16:31	C4	ME	844621	815770	15.47	7.74	18.5	7.42	97.1	0.94	34.32	7.98	1.1
						14.47	18.4 18.4	7.43	97.1 97.1	1.23	34.34 34.34	7.99 7.99	2
						1.00	18.7	7.34	96.4	1.57	34.26	7.97	2.2
17:08	11	ME	844602	817675	9.02	4.51	18.7 18.6	7.32 7.30	96.1 95.8	1.61 2.04	34.26 34.27	7.97 7.97	2.
17:08	11	ME	844002	81/6/5	9.02	4.51	18.6 18.5	7.30 7.26	95.8 95.2	2.16	34.28 34.31	7.97 7.97	1.4
						8.02	18.5	7.26	95.0	2.58	34.31	7.97	1.4
							10.7	7.39	97.1	0.95	24.27	7.0(1.4
						1.00	18.7 18.7	7.39	97.1	0.85 0.80	34.27 34.27	7.96 7.96	1.4
13:33	CC1	MF	843201	816416	8.04	4.02	18.7 18.7	7.38 7.37	97.0 96.8	0.89 0.93	34.27 34.28	7.96	<1.
						7.04	18.6	7.36	96.6	1.08	34.29	7.95	<1.
						1.00	18.6 18.7	7.36 7.33	96.6 96.2	1.03	34.29 34.23	7.95	<1.
							18.7 18.6	7.31 7.28	96.0 95.4	1.03	34.24 34.28	7.97 7.96	<1.
13:39	CC2	MF	844076	817091	11.83	5.92	18.5	7.26	95.1	1.02	34.31	7.96	<1.
						10.83	18.5 18.5	7.23	94.7 94.6	1.98 2.14	34.32 34.32	7.96	<1.
						1.00	18.7	7.22	94.8	1.58	34.14	7.96	1.6
14:03	CC3	MF	844606	817941	9.74		18.7	7.11 7.12	93.4 93.5	1.61 1.68	34.20 34.22	7.95	1.5
14:05	ccs	MF	844000	81/941	9.74	4.87	18.7	7.13	93.7	1.59	34.26	7.95	1.0
						8.74	18.6 18.6	7.18 7.18	94.2 94.2	2.58 2.48	34.34 34.34	7.96 7.96	1.4
13:20	CC4	MF	845444	815595	2.23	1.12	18.7	7.31	96.0	0.99	34.27	7.99	<1.
							18.7	7.28	95.7	0.97	34.27	7.99	<1.
							18.7	7.33	96.2	1.12	34.22	7.97	<1.
						1.00	18.7	7.33	96.3	1.07	34.25	7.96	<1.
13:43	CC13	MF	844200	817495	8.75	4.38	18.6 18.6	7.33 7.33	96.2 96.2	1.04 1.06	34.25 34.26	7.96 7.96	1.2
						7.75	18.6	7.32	96.1	1.18	34.29	7.96	1.1
						1.00	18.6 18.7	7.31 7.33	95.9 96.3	1.24	34.30 34.37	7.96 8.09	1.2
						1.00	18.7	7.32	96.1	1.89	34.36	8.06	- 1.9
13:03	SWI1	MF	845512	817442	3.86								
						2.86	18.6 18.6	7.31 7.30	95.9 95.8	1.85	34.35 34.35	8.03 8.01	1.
						1.00	18.6	7.29	95.6	1.25	34.30	7.96	1.
12.20		ME	0.42021	01/011	14.22		18.6 18.5	7.27 7.27	95.4 95.1	1.23	34.30 34.33	7.96	1.
13:29	C3	MF	843821	816211	14.46	7.23	18.5	7.28	95.3	1.66	34.34	7.96	1.4
						13.46	18.4 18.4	7.27	95.2 95.2	1.89	34.34 34.34	7.96 7.96	1.5
						1.00	18.6 18.6	7.33 7.32	96.2 96.0	1.02 1.10	34.29 34.29	7.97 7.97	<1.
13:23	C4	MF	844621	815770	16.03	8.02	18.5	7.41	97.0	1.10	34.33	7.97	<1.
	~	1411.	0 11021	0.0770	.0.05		18.5 18.4	7.41	97.0 96.9	1.19	34.32 34.33	7.97 7.97	
						15.03	18.4	7.41	96.9	1.10	34.34	7.97	1.1
	7					1.00	18.7 18.7	7.27 7.27	95.5 95.5	1.54 1.57	34.24 34.24	7.97 7.96	2.2
14:00	11	MF	844602	817675	9.32	4.66	18.6	7.29	95.6	2.14	34.29	7.96	1.9
							18.6	7.29	95.6	2.15	34.29		1.9
14.00						8.32	18.5	7.25	95.0	2.87	34.31	7.96	2

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

 Remarks:
 MF - Middle Flood tide

 ME - Middle Ebb tide
 ME - Middle Ebb tide

 For SS, if the monitoring result is less than Limit of Report Img/L, the result value will be assumed as 1 for the calculation.

	4-Jan-20												
Date / Time	Location	Tide*	Co-or	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	рН	SS
Date / Thile	Location	The	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/I
						1.00	18.6	7.38 7.36	96.7 96.4	1.17 1.13	34.17 34.17	7.96 7.96	3.2
8:32	CC1	ME	843201	816416	10.1	5.05	18.6 18.6	7.30 7.32	95.6 95.9	1.22 1.23	34.18 34.18	7.96 7.96	4.4 4.3
						9.10	18.6	7.26	95.2	1.33	34.20	7.96	5.4
						1.00	18.6 18.7	7.22 7.37	94.6 96.7	1.36 0.84	34.21 34.21	7.95 7.97	4.9 4.7
						-	18.7 18.6	7.34 7.26	96.3 95.3	0.85	34.22 34.23	7.97 7.97	4.2
8:37	CC2	ME	844076	817091	12.09	6.05	18.6	7.26	95.2	0.97	34.23	7.96	3.5
						11.09	18.6 18.6	7.18 7.11	94.1 93.2	2.02 2.00	34.26 34.28	7.96 7.97	2.6
						1.00	18.9 18.9	7.14 7.13	93.9 93.8	0.75	33.94 33.93	7.96 7.96	1.7
9:03	CC3	ME	844606	817941	8.93	4.47	18.7	7.18	94.4	0.91	34.22	7.96	2.2
						7.93	18.7 18.7	7.14 7.15	93.9 93.8	0.95	34.23 34.27	7.96 7.96	20
						7.95	18.7	7.13	89.1	1.89	34.28	7.96	2.5
8:20	CC4	ME	845444	815595	2.31	1.16	18.7 18.7	7.16 7.10	93.9 93.2	1.51 1.36	34.14 34.14	7.96 7.95	2.2
						1.00	18.7	7.45	97.8	0.76	34.19	7.98	4.1
8:42	CC13	ME	844200	817495	7.91	3.96	18.7 18.6	7.38 7.34	96.9 96.3	0.77 0.82	34.20 34.22	7.98 7.97	3.8 3.5
6:42	CCIS	ME	844200	81/495	7.91		18.6 18.6	7.33 7.31	96.2 95.9	0.82	34.22 34.23	7.97 7.97	3.9
						6.91	18.6	7.28	95.5	0.91	34.24	7.97	2.3
						1.00	18.7 18.7	7.18 7.18	94.3 94.2	0.97	34.25 34.26	7.97 7.97	3.3
8:03	SWI1	ME	845512	817442	3.75								
						2.75	18.6	7.17	94.2	1.15	34.26	7.97	4.6
							18.6 18.7	7.18 7.10	94.3 93.1	1.20 0.99	34.26 34.15	7.97 7.94	4.2
						1.00	18.6	7.04	92.4	1.06	34.16	7.94	2.5
8:28	C3	ME	843821	816211	15.15	7.58	18.5 18.5	7.06 7.06	92.5 92.5	1.09	34.21 34.21	7.94 7.94	3.5
						14.15	18.5 18.5	7.07 7.08	92.6 92.8	2.01 2.05	34.23 34.24	7.94 7.94	5.5 5.1
						1.00	18.7	6.98	91.6	1.06	34.14	7.93	2.9
				015550	15.05		18.7 18.6	6.93 6.97	91.0 91.3	1.14 1.09	34.14 34.19	7.92 7.93	2.2
8:23	C4	ME	844621	815770	15.05	7.53	18.6	7.02	92.0 92.0	1.05	34.20	7.93	2.9
						14.05	18.5 18.5	7.02 7.03	92.0	2.04 2.17	34.22 34.23	7.94	4.5
						1.00	18.8 18.8	7.21 7.19	94.8 94.5	1.14	34.08 34.08	7.97 7.97	2.8
8:59	I1	ME	844602	817675	9.03	4.52	18.7	7.14	93.7	1.68	34.20	7.96	2
						8.03	18.7 18.6	7.13 7.14	93.6 93.7	1.70	34.22 34.26	7.96 7.96	2
						8.03	18.6	7.15	93.8	1.39	34.26	7.96	1.7
						1.00	18.6	7.31	95.8	1.43	34.20	7.96	2.4
							18.6 18.6	7.28 7.18	95.5 94.2	1.43	34.21 34.22	7.96 7.95	2.7
12:16	CC1	MF	843201	816416	9.92	4.96	18.6	7.18	94.2	1.55	34.22	7.95	4
						8.92	18.6 18.6	7.16	93.9 94.1	1.57	34.22 34.22	7.95 7.95	5.4
						1.00	18.8 18.8	7.4 7.38	97.3 97.1	0.71 0.72	34.20 34.20	7.97 7.97	1.2
12:22	CC2	MF	844076	817091	11.25	5.63	18.6	7.28	95.5	0.99	34.23	7.97	2.1
						10.25	18.6 18.6	7.27 7.21	95.4 94.6	1.00	34.22 34.24	7.96 7.96	2.4
							18.6 19.0	7.19 7.23	94.2 95.4	1.73 1.43	34.25 33.92	7.96 7.97	4.1
						1.00	19.0	7.23	95.3	1.11	33.97	7.97	2.2
12:47	CC3	MF	844606	817941	9.08	4.54	18.8 18.7	7.23	95.1 95.0	0.96	34.17 34.21	7.97 7.96	1.8
						8.08	18.7	6.83	89.8	2.24	34.29	7.96	<1.0
							18.7	6.86	90.2	2.39	34.29	7.95	<1.0
							18.7	7.22	94.9	1.15	34.10	7.97	2.4
12:03	CC4	MF	845444	815595	2.23	1.12	18.7	7.12	93.6	1.13	34.10	7.96	2.4
						1.00	18.8 18.8	7.36 7.35	96.9 96.8	0.72 0.71	34.17 34.17	7.97 7.97	2.2
12:27	CC13	MF	844200	817495	7.69	3.85	18.7	7.36	96.7	0.84	34.21	7.97	2.7
	-					6.69	18.7 18.6	7.36 7.25	96.7 95.1	0.84	34.20 34.24	7.97 7.96	2.3
							18.6 18.7	7.25 7.23	95.1 94.9	1.38	34.24 34.24	7.96 7.97	3.8
						1.00	18.7	7.25	95.2	1.28	34.24	7.96	4.1
11:45	SWI1	MF	845512	817442	3.66								
						2.66	18.7	7.24	95.0 95.0	1.09	34.25	7.96	2.7
						1.00	18.7 18.6	7.24 7.16	93.9	1.09 0.98	34.25 34.18	7.96 7.95	1.1
10.17	_						18.6 18.6	7.12 7.12	93.3 93.3	1.02	34.20 34.20	7.95 7.95	1.3
12:12	C3	MF	843821	816211	13.13	6.57	18.6	7.12	93.3	1.05	34.21	7.95	1.7
						12.13	18.5 18.5	7.11 7.12	93.1 93.3	1.34	34.22 34.22	7.95 7.95	2.2
						1.00	18.7	7.01 7.02	92.1 92.2	1.05	34.10 34.14	7.93 7.93	3.7
12:04	C4	MF	844621	815770	14.1	7.05	18.7 18.6	6.96	91.3	1.13	34.17	7.92	4.5
	2.		0.1021				18.6 18.5	6.96 7.01	91.3 91.9	2.19	34.17 34.23	7.92 7.93	2.8
						13.10	18.5	7.03	92.1 95.6	2.38	34.24	7.94	2.2
						1.00	18.8 18.8	7.26	95.0	1.24	34.14 34.16	7.97 7.97	2.8 2.5
12:43	I1	MF	844602	817675	9.22	4.61	18.7 18.7	7.21 7.20	94.7 94.6	1.41	34.19 34.21	7.97 7.97	3.2
	1		1		1	I	18.6	7.00	94.0	3.00	34.21	7.97	4.5

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

 Remarks:
 MF - Middle Flood tide

 ME - Middle Ebb tide
 ME - Middle Ebb tide

 For SS, if the monitoring result is less than Limit of Report Img/L, the result value will be assumed as 1 for the calculation.

Sampling Date:	6-Jan-20												
Data / Time	Lender	T24.+	Co-ore	linates	Water	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	рН	SS
Date / Time	Location	Tide*	East	North	Depth m	m	ະ	mg/L	Saturation %	NTU	ppt	unit	mg/I
						1.00	19.1 19.1	7.49 7.48	99.0 99.0	1.31	34.19 34.19	7.95 7.95	3.7 3.9
8:58	CC1	ME	843201	816416	9.84	4.92	18.8	7.32	96.3	2.23	34.21	7.94	2.7
0.00	001		0.0201	010110	2.01		18.8 18.8	7.30 7.26	96.1 95.5	2.19 2.09	34.21 34.21	7.94 7.93	3.1 2.8
						8.84	18.8 18.9	7.29 7.30	95.9 96.3	1.96 1.66	34.21 34.16	7.93 7.95	2.6
						1.00	18.9	7.30	96.3	1.68	34.16	7.95	3.4
9:07	CC2	ME	844076	817091	12.03	6.02	18.7	7.33	96.3 96.6	1.97	34.21 34.22	7.95	3.5
						11.03	18.5	7.34	96.1	2.56	34.28	7.96	5.2
						1.00	18.5 19.3	7.33 7.20	96.0 95.5	2.49	34.28 33.88	7.96 7.96	5.5
							19.3 18.6	7.17 7.11	95.1 93.3	1.75 2.05	33.90 34.21	7.96	4.5
9:30	CC3	ME	844606	817941	9.54	4.77	18.7	7.09	93.0	2.16	34.20	7.95	4.1
						8.54	18.6 18.6	7.08 7.06	92.9 92.6	2.49 2.35	34.26 34.26	7.95	2.7
8:39	CC4	ME	845444	815595	2.15	1.08	18.9	7.63	100.7	1.61	34.25	7.97	3.5
							18.7	7.62	100.1	1.47	34.26	7.96	3.7
							19.0	7.35	97.0	1.65	34.12	7.97	3.8
						1.00	19.0	7.33	96.7	1.64	34.13	7.97	3.6
9:15	CC13	ME	844200	817495	8.85	4.43	18.7 18.7	7.35 7.35	96.5 96.6	1.63 1.59	34.20 34.20	7.96	4.2
						7.85	18.6	7.33	96.1 96.2	1.47	34.23 34.23	7.95	5.5
						1.00	18.8	7.40	97.3	1.31	34.20	7.92	2.3
0.22			0.000	017417	2.05		18.8	7.41	97.4	1.25	34.20	7.92	2.5
8:32	SWI1	ME	845512	817442	3.96		10.5	5.20	07.0	114	24.20	7.02	
						2.96	18.7 18.7	7.38 7.38	97.0 96.9	1.14	34.20 34.20	7.92	3.3
						1.00	19.0 19.0	7.58 7.58	100.0	0.66	34.20 34.20	7.95 7.95	1.2
8:50	C3	ME	843821	816211	15.69	7.85	18.6	7.40	97.0	0.74	34.21	7.94	2.2
							18.6 18.5	7.39 7.37	96.9 96.5	0.76 2.75	34.21 34.29	7.94	2
						14.69	18.5 19.0	7.36 7.60	96.4 100.4	2.55 0.84	34.29 34.24	7.95 7.96	4.2
						1.00	19.0	7.61	100.5	0.82	34.24	7.96	2.6
8:44	C4	ME	844621	815770	14.62	7.31	18.6 18.5	7.53 7.51	98.6 98.4	0.87 0.85	34.26 34.27	7.96	3.1
						13.62	18.5	7.42	97.2	1.22	34.29	7.96	3.1
						1.00	18.5 19.1	7.42 7.27	97.1 96.3	1.21 1.65	34.29 34.14	7.96 7.96	3
							19.2 18.7	7.26	96.2 95.0	1.66 3.02	34.14 34.21	7.95 7.95	3.7
9:23	11	ME	844602	817675	9.54	4.77	18.7	7.24	95.1	3.09	34.22	7.95	5.3
						8.54	18.6 18.6	7.19 7.18	94.2 94.2	6.08 6.13	34.26 34.26	7.96	6.6 6.9
						1.00	19.1 19.1	7.46 7.48	98.8 99.0	1.28 1.33	34.19 34.19	7.96	3.9
13:49	CC1	MF	843201	816416	10.25	5.13	19.1 19.1	7.48 7.45	98.9 98.5	1.34 1.33	34.20 34.20	7.95 7.95	3.6 3.3
						9.25	18.8	7.37	97.1	1.70	34.22	7.95	3.4
							18.8 18.8	7.33 7.39	96.5 97.4	1.93 1.55	34.23 34.19	7.95 7.97	3 5.4
						1.00	18.8	7.38	97.2	1.57	34.18	7.96	5.2
13:53	CC2	MF	844076	817091	11.79	5.90	18.7 18.7	7.36 7.37	96.8 96.8	1.60 1.64	34.20 34.20	7.96 7.96	5.6 5.7
						10.79	18.6 18.6	7.35 7.35	96.3 96.3	1.05	34.24 34.25	7.96 7.96	7.7
						1.00	19.2	7.18	95.0	1.78	34.02	7.94	3.3
14:03	CC3	MF	844606	817941	10.13	5.07	19.1 19.0	7.18 7.15	95.0 94.4	1.82	34.02 34.08	7.94 7.94	3.8
14:05	ccs	MIF	844000	81/941	10.15		18.6 18.6	7.15 7.10	93.8 93.1	2.00 2.31	34.23 34.25	7.95 7.95	3.3 2.9
						9.13	18.6	7.08	93.1	2.31	34.25	7.95	3.4
13:38	CC4	MF	845444	815595	2.27	1.14	18.6 18.6	7.61 7.60	99.8 99.7	1.16	34.26 34.26	7.99 7.99	4.1
							18.0	7.00	23.1	1.17	34.20	1.99	3.9
						1.00	18.9	7.36	97.1	1.62	34.16	7.96	3.7
						1.00	18.9	7.36	97.0 96.8	1.63	34.16 34.17	7.96	4.1
13:58	CC13	MF	844200	817495	8.64	4.32	18.8	7.36	96.9	1.52	34.18	7.96	4
						7.64	18.6 18.6	7.39 7.39	96.9 96.9	1.09 1.07	34.22 34.22	7.96 7.96	4.8
						1.00	18.9	7.40	97.4	1.25	34.21	7.96	4.7
13:31	SWI1	MF	845512	817442	4.18		18.8	7.40	97.4	1.25	34.21	7.96	4.4
13.31	5 111	ivir	040012	01/442	7.10		18.7	7.37	96.7	1.35	34.22	7.96	6.2
						3.18	18.7	7.37	96.8	1.31	34.22	7.96	6.1
	7					1.00	19.0 19.0	7.65	101.1 101.0	0.81 0.80	34.23 34.23	7.98 7.97	2.2
13:46	C3	MF	843821	816211	16.17	8.09	18.6	7.56	99.3	0.95	34.23	7.97	3.3
						15.17	18.6 18.5	7.51 7.37	98.5 96.5	1.26 2.10	34.25 34.28	7.97 7.97	3.2 5.2
							18.5 18.8	7.34 7.69	96.2 101.2	2.11 1.07	34.28 34.28	7.97 7.99	5.5 2.4
						1.00	18.8	7.69	101.2	1.04	34.28	7.99	2.6
13:41	C4	MF	844621	815770	16.22	8.11	18.5 18.5	7.47 7.45	97.8 97.5	1.16	34.29 34.30	7.98	3.3
						15.22	18.5	7.33 7.32	95.9 95.9	1.28 1.29	34.30 34.30	7.98 7.98	3.8
						1.00	19.1	7.33	97.0	1.64	34.15	7.96	4
14.65				018-55	10		19.1 19.0	7.32 7.28	96.9 96.2	1.63 1.90	34.15 34.16	7.96 7.95	3.7
14:00	11	MF	844602	817675	10.41	5.21	19.0	7.28	96.3	1.84	34.16	7.95	4.1
						9.41	18.6	7.25	95.1 94.9	2.22	34.26	7.96	6.5

Remarks: MF - Middle Flood tide ME - Middle Ebb tide

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

ampling Date:	8-Jan-20												
			Co-or	linates	Water	Sampling	Temp	DO Conc	DO	Turbidity	Salinity	рН	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	°C	mg/L	Saturation %	NTU	ppt	unit	mg/L
			East			1.00	19.2	7.40	98.0	1.07	34.18	7.94	3
11:36	CC1	ME	843201	816416	10.25	5.13	19.1 18.8	7.37 7.29	97.6 95.8	1.21 1.52	34.18 34.23	7.94 7.94	3.3 2.8
							18.7 18.7	7.29 7.26	95.9 95.5	1.52	34.23 34.24	7.94 7.94	2.6
						9.25	18.7 19.0	7.26 7.37	95.4 97.4	1.72 0.98	34.24 34.13	7.94 7.96	2.1 2.3
						1.00	19.0	7.37	97.4	0.99	34.13	7.95	2.4
11:42	CC2	ME	844076	817091	12.1	6.05	18.9 18.8	7.33 7.30	96.6 96.1	1.19 1.27	34.17 34.18	7.95 7.95	2.4
						11.10	18.8 18.7	7.29 7.30	95.9 96.0	1.53 1.63	34.22 34.25	7.95 7.95	2.6 2.9
						1.00	19.2	7.42	98.2	0.94	34.01	7.95	1.2
12:06	CC3	ME	844606	817941	9.36	4.68	19.2 19.0	7.43 7.46	98.4 98.6	0.88 1.27	33.99 34.13	7.95 7.95	1.5 3.8
12.00	005	WIL	011000	017941	7.50		19.0 18.8	7.47 6.71	98.7 88.3	1.31 3.38	34.14 34.23	7.95	3.5 4.8
						8.36	18.8	6.65	87.5	3.95	34.23	7.92	4.6
							18.0	7.20	0(2	1 22	24.10	3.03	2.0
11:24	CC4	ME	845444	815595	2.19	1.10	18.9 18.9	7.30 7.30	96.2 96.2	1.33	34.19 34.20	7.93 7.93	3.8 3.4
						1.00	19.1 19.1	7.33	96.9 96.9	1.00	34.11 34.12	7.94 7.94	2.8 2.6
11:46	CC13	ME	844200	817495	8.58	4.29	19.0	7.32	96.6	1.05	34.14	7.94	2.5
11.10	0015		011200	01/100	0.50		18.9 18.8	7.32	96.6 96.5	1.09	34.15 34.24	7.94 7.94	2.9
						7.58	18.8 19.0	7.34 7.32	96.6 96.7	1.66 0.88	34.24 34.15	7.94 7.90	2.8
						1.00	19.0	7.32	96.8	0.33	34.15	7.90	4.5
11:06	SWI1	ME	845512	817442	4.06								
						3.06	18.9 18.9	7.30 7.29	96.3 96.2	1.02	34.16 34.16	7.91 7.91	3.2 3.4
						1.00	19.0	7.16	94.4	1.35	34.12	7.93	3.2
11:32	C3	ME	843821	816211	15.8	7.90	19.0 18.8	7.16 7.19	94.4 94.7	1.30 0.96	34.12 34.16	7.93 7.92	3.2
11:32	C3	ME	843821	816211	15.8		18.8 18.7	7.20 7.26	94.8 95.4	1.01	34.16 34.23	7.93 7.93	3.5 2.7
						14.80	18.7	7.29	95.8	1.35	34.26	7.93	2.8
						1.00	19.1 19.1	7.34 7.33	97.1 97.0	1.13	34.14 34.14	7.95	2.1
11:27	C4	ME	844621	815770	15.18	7.59	18.9	7.35	97.0	1.10	34.17	7.93	2.8
						14.18	18.9 18.8	7.36 7.37	97.1 97.0	1.08 1.20	34.17 34.24	7.93 7.94	3.1 3
							18.7 19.2	7.38 7.30	97.0 96.6	1.28 1.03	34.26 33.85	7.94	3.3
						1.00	19.2	7.30	96.6	1.11	33.87	7.94	2.2
12:01	11	ME	844602	817675	9.84	4.92	18.8 18.8	7.04 7.04	92.6 92.7	1.31	34.20 34.19	7.93 7.93	3.2
						8.84	18.8 18.8	6.95 6.94	91.5 91.3	7.33 7.11	34.21 34.21	7.93	3.7
						1.00	19.2 19.2	7.5	99.4 99.5	0.87 0.79	34.24 34.23	7.93	2.2
14:32	CC1	MF	843201	816416	10.05	5.03	19.2 19.2	7.5 7.5	99.4 99.4	0.81 0.80	34.24 34.24	7.94 7.94	3.3
						9.05	18.8	7.38	97.2	1.13	34.27	7.94	3.3
							18.7 19.1	7.33 7.38	96.4 97.6	1.27	34.30 34.10	7.94	3.2
						1.00	19.1 18.9	7.37 7.3	97.6 96.1	1.15 1.19	34.10 34.18	7.95 7.95	2.6
14:37	CC2	MF	844076	817091	12	6.00	18.8	7.27	95.7	1.25	34.19	7.95	2.3
						11.00	18.7 18.7	7.33	96.4 96.4	1.34 1.27	34.25 34.24	7.95 7.96	2.1
						1.00	19.2 19.2	7.48 7.48	99.1 99.2	1.09	34.07 34.07	7.96 7.96	1.6
14:59	CC3	MF	844606	817941	9.89	4.95	19.0	7.42	98.0	1.49	34.13	7.95	2
							19.0 18.8	7.39 7.21	97.5 94.9	1.65	34.15 34.18	7.95 7.94	2.2
						8.89	18.9	7.23	95.3	1.42	34.18	7.94	3.4
							18.0	2.61	00.0	0.02	24.22	3.93	2.0
14:05	CC4	MF	845444	815595	2.3	1.15	18.9 18.9	7.51 7.47	99.0 98.6	0.93 1.04	34.22 34.21	7.87 7.88	3.8 4.2
						1.00	19.2	7.34	97.2	1.23	34.07	7.95	2
14:53	CC13	MF	844200	817495	8.19	4.10	19.2 19.0	7.34	97.2 96.9	1.20	34.07 34.13	7.95	2.3
- 1100	2013				5.27		19.0 18.9	7.34 7.35	97.0 96.9	1.30 1.28	34.14 34.19	7.95 7.95	3.3 4.3
						7.19	18.9 19.2	7.36	96.9 98.3	1.28 0.85	34.19 34.02	7.95	4.2
						1.00	19.2	7.42	98.3 98.4	0.85	33.99	7.94	3.3
14:04	SWI1	MF	845512	817442	4.04								
						3.04	19.0	7.59 7.59	100.2 100.1	0.86	34.23 34.23	7.84 7.84	4.9
						1.00	19.2	7.28	96.4	1.05	34.20	7.92	1.6
14:29	C3	мг	942021	816211	15.33		19.1 18.7	7.27 7.22	96.3 94.9	1.03	34.20 34.26	7.92	1.8 1.9
14:29	US .	MF	843821	010211	13.33	7.67	18.7 18.6	7.22 7.23	94.9 95.0	1.15 1.45	34.26 34.30	7.92	1.8
						14.33	18.6	7.26	95.3	1.52	34.33	7.93	1.9
						1.00	19.1 19.1	7.39 7.39	97.8 97.7	1.02 1.06	34.22 34.22	7.93 7.93	1.1 1.3
14:24	C4	MF	844621	815770	13.68	6.84	18.9	7.36	97.1	0.90	34.23	7.92	1.6
						12.68	18.9 18.6	7.35 7.38	97.0 96.9	0.90 1.03	34.23 34.37	7.92 7.93	1.8 2.1
							18.6 19.3	7.40 7.45	97.1 98.9	1.05 0.99	34.38 34.07	7.93 7.95	2.4 2.8
						1.00	19.3	7.45	98.9	0.97	34.07	7.95	2.6
14:56	11	MF	844602	817675	9.96	4.98	19.0 19.0	7.38 7.38	97.4 97.3	1.63 1.68	34.14 34.14	7.95 7.95	2.3 2.3
						8.96	18.9 18.9	7.25 7.28	95.6 95.9	1.46 1.51	34.18 34.18	7.94 7.94	2.5 2.3

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

> Remarks: MF - Middle Flood tide ME - Middle Ebb tide

	10-Jan-20									1			
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	рН	ss
Date / Thire	Location	Thue	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
						1.00	19.0 19.0	7.62	100.7 100.8	0.95 0.92	34.23 34.23	7.97 7.97	<1.0
12:35	CC1	ME	843201	816416	8.38	4.19	18.8 18.8	7.59 7.59	100.0 100.0	1.07 1.06	34.26 34.26	7.97 7.97	1.4
						7.38	18.8	7.56	99.5	1.18	34.27	7.97	1.7
						1.00	18.8 18.9	7.53 7.48	99.0 98.7	1.29 1.40	34.27 34.22	7.97 7.97	1.6 2.4
							18.9 18.8	7.49 7.48	98.7 98.6	1.44	34.22 34.22	7.97 7.97	2.2
12:40	CC2	ME	844076	817091	11.04	5.52	18.8	7.50	98.7	1.23	34.23	7.97	2.4
						10.04	18.8 18.7	7.47 7.44	98.2 97.8	1.39 1.38	34.25 34.25	7.97	2.3
						1.00	18.9 18.9	7.50	98.9 98.8	1.18 1.01	34.20 34.20	7.97 7.97	1.9
13:02	CC3	ME	844606	817941	9.54	4.77	18.8 18.8	7.50 7.50	98.6 98.7	0.98	34.21 34.21	7.97 7.97	1.6
						8.54	18.8	7.51 7.51	98.7	0.93	34.21 34.26	7.97	1.7
							18.8	7.51	97.6	1.21	34.20	7.90	1.8
12:24	CC4	ME	845444	815595	2.35	1.18	18.8	7.63	100.3	1.18	34.28	7.99	2.1
12.24	CC4	IVIL	84,5444	815595	2.55	1.18	18.8	7.63	100.4	1.18	34.28	7.99	2.3
							18.9	7.53	99.3	0.97	34.21	7.97	1.4
						1.00	18.8	7.53	99.1	1.04	34.21	7.97	1.8
12:45	CC13	ME	844200	817495	8.11	4.06	18.8 18.8	7.53 7.53	99.1 99.1	1.12	34.24 34.24	7.97 7.97	1.6
						7.11	18.8 18.8	7.52 7.51	98.9 98.8	1.17	34.25 34.26	7.97 7.97	1.5
						1.00	18.9	7.63	100.6	1.10	34.22	7.97	1.8
12:08	SWI1	ME	845512	817442	3.75		18.9	7.63	100.6	1.22	34.22	7.97	1.9
12.00	5.011	WIL	045512	01/442	5.75	2.76	18.8	7.63	100.5	1.34	34.22	7.97	3.2
						2.75	18.8 18.9	7.62 7.47	100.4 98.5	1.33 1.31	34.22 34.21	7.97 7.97	3.3
						1.00	18.9	7.47	98.4	1.26	34.21	7.97	2.4
12:31	C3	ME	843821	816211	14.92	7.46	18.7 18.7	7.47 7.48	98.2 98.4	1.04 0.95	34.26 34.27	7.97 7.97	2.3
						13.92	18.7 18.7	7.49 7.49	98.5 98.5	1.21 1.49	34.28 34.29	7.97 7.97	2.3
						1.00	18.9	7.84	103.4	0.69	34.29	7.99	1.2
10.05				015550		-	18.9 18.8	7.85 7.80	103.6 102.8	0.70 0.83	34.29 34.29	7.99 7.99	1.5
12:27	C4	ME	844621	815770	14.46	7.23	18.8 18.8	7.79 7.69	102.6	0.80	34.29 34.32	7.99 7.99	1.1
						13.46	18.7	7.67	100.9	1.32	34.32	7.99	1.9
						1.00	19.0 18.9	7.49 7.49	98.9 98.8	0.94	34.20 34.20	7.97 7.97	1.2
12:59	11	ME	844602	817675	9.9	4.95	18.8 18.8	7.49 7.50	98.6 98.7	0.98 0.90	34.21 34.21	7.97 7.97	1.3
						8.90	18.8	7.33	96.4	1.40	34.30	7.97	1.5
							18.8	7.30	96.1	1.65	34.30	7.97	1.7
						1.00	19.1	7.76	102.7	0.77	34.19	7.98	1.6
15:55	CC1	MF	843201	816416	7.87	3.94	19.1 19.0	7.77 7.72	102.7 102.0	0.77 0.91	34.19 34.21	7.98 7.98	1.8
15.55	cer	wii	045201	010410	7.67		18.9 18.9	7.63	100.7 100.2	1.00 0.98	34.22 34.24	7.98 7.98	1.6
						6.87	18.7 18.8	7.33 7.51	96.4 98.9	1.27 1.31	34.30 34.22	7.94 7.98	1.8
						1.00	18.8	7.51	98.9	1.34	34.22	7.98	2.2
15:59	CC2	MF	844076	817091	12.04	6.02	18.8	7.47	98.4 98.4	1.42	34.23 34.23	7.98 7.98	2.4
						11.04	18.8 18.7	7.47	98.3 98.4	1.40 1.41	34.26 34.28	7.98 7.98	3.2
						1.00	19.1	7.43	98.2	0.95	34.14	7.96	1.4
16.20	662	MF	844606	817941	0.02		19.0	7.48	98.8 98.7	0.94	34.17 34.21	7.97	1.1
16:20	CC3	MIF	844606	81/941	9.92	4.96	18.8 18.8	7.48 7.43	98.5 97.8	1.07 1.67	34.21 34.25	7.97 7.97	1
						8.92	18.8	7.36	96.9	1.60	34.28	7.97	<1.0
										1			
15:39	CC4	MF	845444	815595	2.28	1.14	18.8 18.8	7.61 7.62	100.2 100.3	1.07 1.09	34.22 34.22	7.98	2.1 2.3
						1.00	18.9	7.59	100.0 100.0	1.12 1.09	34.21	7.98	1.6
16:15	CC13	MF	844200	817495	7.49	3.75	18.8 18.8	7.59 7.58	99.8	1.08	34.24 34.24	7.98 7.98	1.5
10.115	0015		011200	01/100	7.15		18.8 18.7	7.54 7.53	99.2 99.0	1.15	34.27 34.27	7.98 7.98	1.7
						6.49	18.7 18.9	7.53 7.62	99.0 100.4	1.22	34.27 34.22	7.98 8.00	2.1
						1.00	18.9	7.62	100.4	1.13	34.22	7.99	1.8
15:24	SWI1	MF	845512	817442	3.55								
						2.55	18.8 18.8	7.61 7.62	100.3	1.08	34.22 34.22	7.98 7.98	2.2
						1.00	18.8	7.52	99.0 98.9	1.08	34.23	7.99	1.5
15:51	C3	MF	843821	816211	14.58	7.29	18.8	7.51 7.52	99.0	1.14 1.17	34.24 34.24	7.98 7.98	1.8
			0.0021		- 1.50		18.8 18.7	7.50 7.51	98.7 98.7	1.05	34.25 34.29	7.98 7.98	2.2
		1				13.58	18.7	7.51	98.8	1.00	34.29	7.98	2.7
						1.00	18.8 18.8	7.64 7.63	100.6 100.5	1.02 1.08	34.28 34.28	8.00 8.00	1.6
15:44	C4	MF	844621	815770	12.28	6.14	19.0 18.9	7.85 7.84	103.7 103.5	0.70 0.79	34.27 34.29	8.00 8.00	1.5
						11.28	18.8	7.84	103.3 100.6	0.86	34.30 34.31	8.00	2.2
						1.00	19.0	7.65	98.6	0.92	34.19	7.97	2.4
16.10		мг	844600	817675	0.6		19.0 18.8	7.51 7.52	99.2 99.1	0.93	34.20 34.22	7.97	2.2
16:18	11	MF	844602	817675	9.6	4.80	18.7	7.47	98.2 97.4	1.49	34.24 34.28	7.97	2.6
	1		1			8.60	18.7 18.8	7.40 7.31	97.4	1.77	34.28 34.31	7.97	2.9

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

 Remarks:
 MF - Middle Flood tide

 ME - Middle Ebb tide
 ME - Middle Ebb tide

 For SS, if the monitoring result is less than Limit of Report 1mg/L, the result value will be assumed as 1 for the calculation.

	13-Jan-20				_	ci Quanty i	violiitorii	ng Result					
			Co-or	linates	Water	Sampling	Temp	DO Conc	DO	Turbidity	Salinity	pН	SS
Date / Time	Location	Tide*	East	North	Depth m	Depth m	ເ	mg/L	Saturation %	NTU	ppt	unit	mg/L
						1.00	18.7 18.7	7.65 7.65	100.6 100.6	0.95 0.97	34.25 34.25	8	3.7 3.9
13:49	CC1	ME	843201	816416	9.54	4.77	18.7	7.71	101.3	0.85	34.29 34.29	8 8.01	3.7
						8.54	18.7	7.70	101.2	0.86	34.32	8.01	5.2
						1.00	18.7 18.8	7.70 7.62	101.2 100.2	0.88 1.06	34.32 34.21	8.01 8.01	5.4 2.6
							18.8 18.8	7.61 7.52	100.1 99.0	1.06	34.21 34.22	8.01 8	2.8 2.8
13:53	CC2	ME	844076	817091	11.78	5.89	18.8 18.7	7.52 7.56	99.0 99.4	1.52 1.29	34.22 34.27	8	3.3 3.1
						10.78	18.7	7.58	99.7	1.21	34.30	8	3.6
						1.00	18.8 18.8	7.78 7.82	102.3 102.9	1.19	34.15 34.14	8.01 8.01	3.4 3.2
14:14	CC3	ME	844606	817941	10.01	5.01	18.7	7.68 7.64	101.0 100.4	0.93 0.89	34.22 34.23	8.00 8.00	2.4 2.6
						9.01	18.8 18.8	7.58 7.54	99.8 99.2	1.05 1.12	34.26 34.28	8.00 8.00	2.2 2.3
							1010				0.1120		
13:37	CC4	ME	845444	815595	2.25	1.13	18.8	7.50	98.8	1.03	34.18	7.99	3.9
10.07	001		015111	010000	2.25		18.8	7.50	98.8	1.03	34.18	7.99	3.4
							18.7	7.62	100.1	1.15	34.26	8.00	2.7
						1.00	18.8	7.61	100.1	1.06	34.20	8.00	2.8
13:58	CC13	ME	844200	817495	8.3	4.15	18.8	7.59 7.59	99.8 99.8	0.97	34.21 34.21	8.00 8.00	3.5 3.7
						7.30	18.8 18.7	7.53 7.52	99.1 98.9	1.30	34.25 34.27	8.00 8.00	4.6
						1.00	18.8 18.8	7.65 7.65	100.8 100.8	0.97	34.20 34.20	8.00 8.00	4.3
13:22	SWI1	ME	845512	817442	4.14		10.0	,	100.0		2 1120	5.00	
						3.14	18.9	7.65	100.8	0.98	34.21	8.00	5.7
							18.9 18.7	7.66 7.80	100.9 102.5	0.95 0.77	34.21 34.27	7.99 8.02	5.5 3.6
						1.00	18.7 18.7	7.80 7.77	102.6	0.76 0.83	34.27 34.29	8.02 8.02	3.4 4.4
13:46	C3	ME	843821	816211	15.79	7.90	18.7	7.76	102.0	0.83	34.30	8.02	4.7
						14.79	18.7 18.7	7.72 7.71	101.5 101.4	1.20 1.24	34.33 34.33	8.02 8.02	5.3 4.9
						1.00	18.7 18.7	7.68 7.69	101.1 101.1	0.80	34.27 34.27	8.01 8.01	3.7 3.4
13:41	C4	ME	844621	815770	16.87	8.44	18.7 18.7	7.64 7.65	100.5 100.6	0.91 0.96	34.30 34.32	8.01 8.01	3.6 3.9
						15.87	18.6	7.71	101.2	1.17	34.35	8.02	5.3
						1.00	18.6 18.8	7.71 7.68	101.3	1.09	34.35 34.21	8.02 8.00	5.6 2.5
			0.4.4602	012/25	0.07		18.8 18.8	7.68	101.1 100.9	0.94	34.20 34.23	8.00 8.00	2.8
14:11	11	ME	844602	817675	9.97	4.99	18.8 18.8	7.67 7.60	100.9 100.0	1.16 1.19	34.23 34.28	8.00 8.00	3.5 4
						8.97	18.8	7.57	99.7	1.21	34.30	8.01	4.3
						1.00	18.7	7.54	99.1	1.09	34.21	7.99	4.5
						1.00	18.7 18.7	7.54 7.51	99.1 98.8	1.10	34.21 34.22	7.99 7.98	5 3.4
9:40	CC1	MF	843201	816416	9.55	4.78	18.7	7.51	98.7	1.11	34.22	7.98	3.9
						8.55	18.7 18.7	7.49 7.5	98.5 98.6	1.18 1.29	34.24 34.25	7.99 7.99	4.2
						1.00	18.8 18.8	7.62 7.62	100.2 100.2	1.00	34.22 34.22	8.01 8.01	3.9 3.7
9:46	CC2	MF	844076	817091	11.97	5.99	18.8 18.8	7.55 7.55	99.3 99.4	1.50 1.44	34.23 34.22	8.00 8.00	4.2
						10.97	18.8	7.48	98.4 98.1	1.42	34.24	8.00	5.9 5.6
						1.00	18.8	7.46 7.83	103.1	0.83	34.24 34.20	8.00	2
10:07	CC3	MF	844606	817941	9.74	4.87	18.8 18.8	7.83 7.69	103.1 101.2	0.82	34.20 34.23	8.00 8.00	2.2 3.7
10:07	ccs	IVIF	844000	81/941	9.74		18.8 18.8	7.65 7.55	100.6 99.4	1.21	34.24 34.30	8.00 8.00	3.8 4.4
						8.74	18.8	7.50	98.8	1.55	34.32	7.99	4.5
							10.0						
9:29	CC4	MF	845444	815595	2.39	1.20	18.8 18.8	7.46 7.46	98.2 98.2	0.97 1.00	34.18 34.18	7.98 7.98	3.9 3.5
						1.00	18.8 18.8	7.61 7.61	100.1 100.1	0.93 0.88	34.21 34.21	7.99 7.99	4.2 3.9
9:51	CC13	MF	844200	817495	8.47	4.24	18.8	7.57	99.6	1.00	34.22	7.99	4.6
-	-					7.47	18.8 18.8	7.57 7.52	99.6 99.0	1.00	34.22 34.23	7.99 7.99	4.4 5.2
							18.8 18.8	7.51 7.48	98.8 98.5	1.19 1.18	34.24 34.20	7.99 8.07	5.4 3
						1.00	18.9	7.42	97.7	1.02	34.19	8.05	2.6
9:14	SWI1	MF	845512	817442	3.81		10.2		<u></u>		21.25	0.01	
						2.81	18.8 18.8	7.56 7.57	99.4 99.7	1.17	34.23 34.23	8.01 8.00	4 3.6
						1.00	18.7 18.7	7.75 7.75	101.9 101.9	0.78 0.82	34.27 34.27	8.02 8.02	3.3 3.1
9:37	C3	MF	843821	816211	15.78	7.89	18.7	7.72 7.73	101.5	1.06 1.14	34.32 34.33	8.01 8.02	3.9
						14.78	18.7	7.72	101.6	1.19	34.34	8.02	4
							18.7 18.7	7.71 7.64	101.4 100.4	1.15 0.90	34.34 34.26	8.02 8.01	4.2
						1.00	18.7	7.64 7.61	100.5	0.90	34.26 34.29	8.01 8.01	4.4
							10./					0.01	
9:33	C4	MF	844621	815770	16.05	8.03	18.7	7.62	100.2	1.13	34.29	8.01	5
9:33	C4	MF	844621	815770	16.05	8.03	18.7 18.6	7.66 7.68	100.6 100.9	1.25 1.31	34.33 34.35	8.01 8.02	5.6 5.2
9:33	C4	MF	844621	815770	16.05		18.7 18.6 18.8	7.66 7.68 7.65	100.6 100.9 100.7	1.25 1.31 1.04	34.33 34.35 34.20	8.01 8.02 8.00	5.6 5.2 3
9:33	C4 11	MF MF	844621 844602	815770	9.77	15.05	18.7 18.6	7.66 7.68	100.6 100.9	1.25 1.31	34.33 34.35	8.01 8.02	5.6 5.2

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

> Remarks: MF - Middle Flood tide ME - Middle Ebb tide

	15-Jan-20												
Date / Time	Location	Tido*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation %	Turbidity	Salinity ppt	pH unit	SS mg/L
		Tide*	East	North	m	m	ĉ	mg/L		NTU			
						1.00	19.3 19.3	7.81	101.7 101.7	0.95	34.47 34.47	8.06 8.06	5.8 5.3
14:35	CC1	ME	843201	816416	9.91	4.96	19.3	7.87	102.4	1.01	34.51	8.06	7.5
							19.3 19.3	7.88 7.86	102.6 102.3	1.00 0.98	34.51 34.54	8.07 8.07	7.9
						8.91	19.3 19.4	7.86 7.78	102.3 101.3	0.96	34.54 34.43	8.07 8.07	9.2
						1.00	19.4	7.77	101.2	1.07	34.43	8.07	1.3
14:39	CC2	ME	844076	817091	12.39	6.20	19.4 19.4	7.68 7.68	100.1	0.97	34.44 34.44	8.06 8.06	2.4
						11.39	19.3	7.72	100.5	1.18	34.49	8.06	2.9
							19.3 19.4	7.74 7.94	100.8 103.4	1.17	34.52 34.37	8.06 8.07	3.2 6.3
						1.00	19.4	7.98	104.0	1.24	34.36	8.07	6
15:00	CC3	ME	844606	817941	10.01	5.01	19.3 19.3	7.84 7.80	102.1 101.5	1.10	34.44 34.45	8.06 8.06	4.3
						9.01	19.4 19.4	7.74 7.70	100.9 100.3	1.17	34.48 34.50	8.06 8.06	2.1 2.5
												0.00	
14:23	CC4	ME	845444	815595	2.34	1.17	19.4	7.66	99.9	1.20	34.40	8.05	2.6
	CC4	ME	845444	815595	2.34	1.17	19.4	7.66	99.9	1.20	34.40	8.05	2.9
						1.00	19.3 19.4	7.78	101.2	1.20	34.48 34.42	8.06 8.06	3.2 3.3
14:44	CC13	ME	844200	817495	8.28	4.14	19.4	7.75	100.9	1.18	34.43	8.06	5.1
							19.4 19.4	7.75 7.69	100.9 100.2	1.17 1.30	34.43 34.47	8.06 8.06	4.8 5.9
						7.28	19.3	7.68	100.0	1.30	34.49	8.06	5.6
						1.00	19.4 19.4	7.81 7.81	101.9 101.9	1.00 0.99	34.42 34.42	8.06 8.06	5.1 5.3
14:08	SWI1	ME	845512	817442	3.12								
						2.12	19.5	7.81	101.9	1.58	34.43	8.06	6.4
							19.5 19.3	7.82 7.96	102.0 103.6	1.57 0.97	34.43 34.49	8.05 8.08	6.8 2.4
14:08 14:31						1.00	19.3	7.96	103.7	0.96	34.49	8.08	2.6
14:31	C3	ME	843821	816211	16.06	8.03	19.3 19.3	7.93 7.92	103.2 103.1	0.91 0.91	34.51 34.52	8.08 8.08	3.2
						15.06	19.3	7.88	102.6	0.99	34.55	8.08	3.9
							19.3 19.3	7.87 7.84	102.5 102.2	1.01 1.01	34.55 34.49	8.08 8.07	3.5
	C4	ME	844621	815770	15.33	1.00	19.3	7.85	102.2	0.97	34.49	8.07	2.5
14:26						7.67	19.3 19.3	7.80 7.81	101.6 101.7	0.92	34.52 34.54	8.07 8.07	3.7
						14.33	19.2 19.2	7.87 7.87	102.3 102.4	1.02 0.94	34.57 34.57	8.08 8.08	5.8 5.4
		ME				1.00	19.2	7.84	102.4	1.15	34.57	8.08	2.3
							19.4 19.4	7.84 7.83	102.2	1.16	34.42 34.45	8.06 8.06	2.1
14:57	11	ME	844602	817675	10.41	5.21	19.4	7.83	102.0	1.74	34.45	8.06	2.8
						9.41	19.4 19.4	7.76	101.1 100.8	1.27	34.50 34.52	8.06 8.07	3
								1.15	100.0	1120	51152	0.07	5.5
						1.00	19.3	7.7	100.2	0.97	34.43	8.05	2.2
11:14	CC1	MF	843201	816416	9.97	4.99	19.3 19.3	7.7 7.67	100.2 99.9	0.97 0.97	34.43 34.44	8.05 8.04	2.4
11.14	cei	INIT	845201	810410	9.97		19.3 19.3	7.67 7.65	99.8 99.6	0.97 1.07	34.44 34.46	8.04 8.05	3.3 3.6
						8.97	19.3	7.66	99.7	1.07	34.47	8.05	3.4
						1.00	19.4 19.4	7.78	101.3	0.95	34.44 34.44	8.07 8.07	2.2
11:19	CC2	MF	844076	817091	12.13	6.07	19.4	7.71	100.4	1.09	34.45	8.06	3
						11.12	19.4	7.71	100.5 99.5	1.09	34.44		2.6
							19.4	7.64		1.30	34.46	8.06 8.06	3.4
						11.13	19.4 19.4	7.64	99.2	1.30	34.46 34.46	8.06 8.06	3.4
						1.00						8.06	
11:37	CC3	MF	844606	817941	10.11		19.4 19.4 19.4 19.4	7.62 7.99 7.99 7.85	99.2 104.2 104.2 102.3	1.32 1.00 1.01 1.27	34.46 34.42 34.42 34.45	8.06 8.06 8.06 8.06 8.06	3 2.4 2 2.5
11:37	CC3	MF	844606	817941	10.11	1.00 5.06	19.4 19.4 19.4 19.4 19.4 19.4	7.62 7.99 7.99 7.85 7.81 7.71	99.2 104.2 104.2 102.3 101.7 100.5	1.32 1.00 1.01 1.27 1.29 1.40	34.46 34.42 34.42 34.45 34.46 34.52	8.06 8.06 8.06 8.06 8.06 8.06 8.06	3 2.4 2.5 2.7 3.1
11:37	CC3	MF	844606	817941	10.11	1.00	19.4 19.4 19.4 19.4 19.4	7.62 7.99 7.99 7.85 7.81	99.2 104.2 104.2 102.3 101.7	1.32 1.00 1.01 1.27 1.29	34.46 34.42 34.42 34.45 34.45 34.46	8.06 8.06 8.06 8.06 8.06 8.06	3 2.4 2 2.5 2.7
11:37	CC3	MF	844606	817941	10.11	1.00 5.06	$ 19.4 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.4 $	7.62 7.99 7.99 7.85 7.81 7.71 7.66	99.2 104.2 104.2 102.3 101.7 100.5 99.9	$ \begin{array}{r} 1.32 \\ 1.00 \\ 1.01 \\ 1.27 \\ 1.29 \\ 1.40 \\ 1.43 \\ \end{array} $	34.46 34.42 34.42 34.45 34.46 34.52 34.54	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06	3 2.4 2 2.5 2.7 3.1 3.5
11:37	CC3 CC4	MF	844606 845444	817941 815595	2.25	1.00 5.06	19.4 19.4 19.4 19.4 19.4 19.4	7.62 7.99 7.99 7.85 7.81 7.71	99.2 104.2 104.2 102.3 101.7 100.5	1.32 1.00 1.01 1.27 1.29 1.40	34.46 34.42 34.42 34.45 34.46 34.52	8.06 8.06 8.06 8.06 8.06 8.06 8.06	3 2.4 2.5 2.7 3.1
						1.00 5.06 9.11	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4	7.62 7.99 7.99 7.85 7.81 7.71 7.66	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3	1.32 1.00 1.01 1.27 1.29 1.40 1.43	34.46 34.42 34.42 34.45 34.45 34.46 34.52 34.54 34.40	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06	3 2.4 2 2.5 2.7 3.1 3.5 2.1
						1.00 5.06 9.11 1.13	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4	7.62 7.99 7.99 7.85 7.81 7.71 7.66 7.62 7.62	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 101.2	1.32 1.00 1.01 1.27 1.29 1.40 1.43 1.52 1.57	34.46 34.42 34.45 34.45 34.46 34.52 34.54 34.40 34.40 34.40	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06	3 2.4 2 2.5 2.7 3.1 3.5 2.1 2.5 2.4
11:02	CC4	MF	845444	815595	2.25	1.00 5.06 9.11 1.13 1.00	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4	7.62 7.99 7.99 7.85 7.81 7.71 7.66 7.62 7.62 7.77 7.77	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 101.2 101.2	1.32 1.00 1.01 1.27 1.29 1.40 1.43 1.52 1.57 0.96 1.03	34.46 34.42 34.42 34.45 34.46 34.52 34.54 34.40 34.40 34.40 34.43	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06	3 2.4 2 2.5 2.7 3.1 3.5 2.1 2.5 2.4 2.4 2.2
						1.00 5.06 9.11 1.13	19,4 19,4 19,4 19,4 19,4 19,4 19,4 19,4	7.62 7.99 7.85 7.81 7.76 7.66 7.62 7.62 7.62 7.77 7.73 7.73	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 99.3 101.2 101.2 100.7 100.7	1.32 1.00 1.01 1.27 1.29 1.40 1.43 1.52 1.57 0.96 1.03 1.01 1.02	34.46 34.42 34.42 34.45 34.45 34.46 34.54 34.54 34.54 34.40 34.40 34.43 34.43 34.43	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06	3 2.4 2 2.5 2.7 3.1 3.5 2.1 2.5 2.4 2.4 2.2 2.3 2.4
11:02	CC4	MF	845444	815595	2.25	1.00 5.06 9.11 1.13 1.00	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4	7.62 7.99 7.99 7.85 7.81 7.71 7.66 7.62 7.62 7.62 7.77 7.77	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 101.2 101.2 101.2 100.7	1.32 1.00 1.01 1.27 1.29 1.40 1.43 1.52 1.57 0.96 1.03 1.01	34.46 34.42 34.42 34.45 34.46 34.45 34.46 34.52 34.54 34.40 34.40 34.40 34.43 34.43 34.43	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06	3 2.4 2 2.5 2.7 3.1 3.5 2.1 2.5 2.4 2.4 2.2 2.3 2.4 2.4 2.7
11:02	CC4	MF	845444	815595	2.25	1.00 5.06 9.11 1.13 1.00 3.84	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4	7.62 7.99 7.99 7.85 7.81 7.71 7.76 7.62 7.62 7.62 7.77 7.73 7.73 7.78 7.68 7.64	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 101.2 101.2 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.5 100.7 100.5 100.7	1.32 1.00 1.01 1.27 1.29 1.40 1.43 1.52 1.57 0.96 1.03 1.01 1.02 1.06 0.96	34.46 34.42 34.42 34.45 34.45 34.45 34.52 34.54 34.40 34.40 34.40 34.40 34.40 34.43 34.43 34.43 34.43 34.44 34.44 34.45	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 2.4 2.5 2.7 3.1 3.5 2.1 2.5 2.4 2.2 2.3 2.4 2.7 2.5 2.2
11:02	CC4 CC13	MF MF	845444 844200	815595 817495	2.25	1.00 5.06 9.11 1.13 1.00 3.84 6.68	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4	7.62 7.99 7.99 7.85 7.81 7.71 7.66 7.62 7.62 7.62 7.77 7.73 7.73 7.73 7.73 7.67	99.2 104.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 99.3 101.2 101.2 100.7 100.7 100.1 99.9	1.32 1.00 1.01 1.27 1.40 1.43 1.52 1.57 0.96 1.03 1.01 1.02 1.06	34.46 34.42 34.42 34.45 34.45 34.45 34.54 34.54 34.40 34.40 34.40 34.40 34.40 34.43 34.43 34.43 34.44 34.44 34.44	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.04 8.04 8.04 8.04 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 2.4 2.5 2.7 3.1 3.5 2.1 2.5 2.4 2.2 2.3 2.4 2.7 2.5 2.2
11:02	CC4	MF	845444	815595	2.25	1.00 5.06 9.11 1.13 1.00 3.84 6.68 1.00	19.4 19.5	7.62 7.99 7.99 7.81 7.81 7.71 7.66 7.62 7.62 7.62 7.77 7.73 7.73 7.73 7.68 7.64 7.58	99.2 104.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 101.2 101.2 100.7 100.7 100.7 100.7 100.1 99.9 99.6 98.8	1.32 1.00 1.01 1.27 1.40 1.43 1.52 1.57 0.96 1.03 1.01 1.02 1.06 0.97	$\begin{array}{c} 34.46 \\ 34.42 \\ 34.42 \\ 34.45 \\ 34.46 \\ 34.45 \\ 34.46 \\ 34.51 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.43 \\ 34.43 \\ 34.44 \\ 34.44 \\ 34.45 \\ 34.46 \\ 34.41 \\ 34.41 \\ 34.41 \end{array}$	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06	3 2.4 2 2.5 2.5 2.7 3.1 3.5 2.7 2.5 2.7 2.5 2.2 2.4 2.4 2.5 2.2 2.4
11:02	CC4 CC13	MF MF	845444 844200	815595 817495	2.25	1.00 5.06 9.11 1.13 1.00 3.84 6.68	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4	7.62 7.99 7.99 7.81 7.81 7.71 7.66 7.62 7.62 7.62 7.77 7.73 7.73 7.68 7.64 7.58 7.72 7.73	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 101.2 101.2 100.7 100.7 100.7 100.7 100.7 100.5 100.5 100.5 100.8	1.32 1.00 1.01 1.27 1.40 1.43 1.52 1.57 0.96 1.03 1.01 1.06 1.06 0.96 0.97 0.92 0.93	34.42 34.42 34.42 34.45 34.45 34.45 34.54 34.40 34.40 34.40 34.40 34.40 34.43 34.43 34.44 34.45 34.44 34.45 34.41	8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.05 8.04 8.04 8.04 8.04 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 2.4 2 2.5 2.7 3.1 3.5 2.7 2.5 2.7 3.1 3.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 3.1 2.5 5 2.7 2.7 3.1 2.5 5 2.7 3.1 2.5 5 2.7 3.1 2.5 5 2.7 3.1 2.5 5 2.7 3.1 2.5 5 2.7 3.1 2.5 5 2.7 3.1 2.5 5 2.7 3.1 2.5 5 2.7 7 3.1 2.5 5 2.7 7 3.1 2.5 5 2.7 7 3.1 2.5 5 2.7 7 3.1 2.5 5 2.7 7 2.5 2.5 2.7 7 2.5 2.5 2.5 2.7 7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
11:02	CC4 CC13	MF MF	845444 844200	815595 817495	2.25	1.00 5.06 9.11 1.13 1.00 3.84 6.68 1.00	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4	7.62 7.99 7.99 7.81 7.81 7.71 7.66 7.62 7.62 7.62 7.62 7.62 7.62 7.62	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 101.2 101.2 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.8 8.8	1.32 1.00 1.01 1.27 1.29 1.40 1.43 1.52 1.57 1.57 1.03 1.01 1.02 1.06 1.03 1.01 1.02 1.06 0.96 0.97 0.97 0.92 0.93 0.89	$\begin{array}{r} 34.42\\ 34.42\\ 34.42\\ 34.45\\ 34.45\\ 34.52\\ 34.54\\ 34.54\\ 34.40\\ 34.40\\ 34.40\\ 34.40\\ 34.43\\ 34.44\\ 34.45\\ 34.45\\ 34.41\\ 34.45\\$	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.04 8.04 8.04 8.04 8.04 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 2.4.4 2 2 2.5 2.7 3.1 3.5 2.7 3.1 3.5 2.7 2.5 2.2 2.3 2.4 2.4 2.2 2.3 2.4 2.4 2.5 2.2 2.4 2.4 2.4 2.2 2.4 2.4 2.5 2.2 3.2 2.4 2.5 5.5 2.7 3.1 2.5 5.5 2.7 3.1 2.5 5.5 2.7 3.1 2.5 5.5 2.7 3.1 2.5 5.5 2.7 3.1 2.5 5.5 2.7 3.1 2.5 5.5 2.7 3.1 2.5 5.5 2.7 3.1 2.5 5.5 2.7 3.1 2.5 5.5 2.7 3.1 2.5 5.5 2.7 3.1 2.5 5.5 2.7 5.5 2.7 5.5 2.7 5.5 2.7 5.5 2.7 7.7 2.5 5.5 2.7 7.7 2.5 5.5 2.5 7.7 2.5 5.5 2.5 7.7 2.5 5.5 2.7 7.5 2.5 7.5 2.5 7.5 2.5 7.5 2.5 7.5 7.5 2.5 7.5 7.5 2.5 7.5 7.5 2.5 7.5 7.5 2.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7
11:02 11:24 10:47	CC4 CC13 SW11	MF MF MF	845444 844200 845512	815595 817495 817442	2.25 7.68 3.56	1.00 5.06 9.11 1.13 1.00 3.84 6.68 1.00 2.56 1.00	19.4 19.3 19.3 19.3	7,62 7,99 7,99 7,85 7,81 7,71 7,66 7,62 7,62 7,62 7,62 7,62 7,62 7,62	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.5 101.2 100.7 100.1 100.7 100.1 100.7 100.1 100.2 100.1 100.1 100.1 100.1 100.2 100.1 100.1 100.2 100.2 100.1 100.1 100.2 100.1 100.2 100.1 100.2 100.2 100.1 100.1 100.2 100.5 100.5 100.8 103.0 103	1.32 1.00 1.01 1.27 1.29 1.40 1.43 1.42 1.52 1.57 1.57 1.03 1.01 1.02 1.06 1.03 1.01 1.02 1.06 0.96 0.95 0.97 0.97 0.97 0.98 0.88	$\begin{array}{c} 34.42\\ 34.42\\ 34.42\\ 34.45\\ 34.46\\ 34.46\\ 34.46\\ 34.40\\ 34.40\\ 34.40\\ 34.40\\ 34.43\\ 34.44\\ 34.44\\ 34.45\\ 34.44\\ 34.45\\ 34.45\\ 34.45\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.49\\ 34.59\\$	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.04 8.04 8.04 8.04 8.04 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 2.4.4 2 2.5 2.7 3.1 2.5 2.7 2.5 2.5 2.2 2.4 2.4 2.7 2.5 2.2 2.4 2.4 2.4 2.4 2.4 2.5 2.2 2.4 2.4 2.5 2.5 2.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5
11:02	CC4 CC13	MF MF	845444 844200	815595 817495	2.25	1.00 5.06 9.11 1.13 1.00 3.84 6.68 1.00 2.56 1.00 6.93	19.4 19.3 19.3 19.3 19.3	7.62 7.99 7.99 7.81 7.81 7.62 7.62 7.62 7.62 7.62 7.62 7.62 7.77 7.77	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 99.3 101.2 101.2 101.2 100.7 100.7 100.7 100.7 100.7 100.5 99.9 99.8 8 100.5 100.8 103.0 102.6 102.7	1.32 1.00 1.01 1.27 1.29 1.40 1.43 1.52 1.57 0.96 1.03 1.01 1.02 1.06 0.96 0.97 0.92 0.93 0.88 0.92 0.92	34.42 34.42 34.42 34.45 34.45 34.52 34.54 34.40 34.40 34.40 34.40 34.43 34.43 34.43 34.43 34.44 34.45 34.45 34.45 34.45 34.45 34.45	8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.04 8.04 8.04 8.04 8.04 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 2.4.4 2 2.5 2.7 3.1 3.5 2.1 2.5 2.5 2.2 2.3 2.4 2.4 2.2 2.3 2.4 2.4 2.2 2.4 2.4 2.2 2.4 2.4 2.2 2.4 2.4
11:02 11:24 10:47	CC4 CC13 SW11	MF MF MF	845444 844200 845512	815595 817495 817442	2.25 7.68 3.56	1.00 5.06 9.11 1.13 1.00 3.84 6.68 1.00 2.56 1.00	19.4 19.5 19.4 19.5 19.3 19.3 19.3 19.3 19.3	7.62 7.99 7.99 7.81 7.81 7.62 7.62 7.62 7.62 7.62 7.62 7.62 7.62	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 99.3 101.2 101.2 100.7 100.7 100.7 100.7 100.7 100.7 100.8 100.8 100.8 103.0 102.6 102.5	1.32 1.00 1.01 1.27 1.29 1.40 1.43 1.52 1.57 1.57 1.03 1.01 1.02 1.06 1.03 1.00 1.00 0.96 0.97 0.93 0.89 0.88 0.92 0.92 1.03	$\begin{array}{r} 34.42 \\ 34.42 \\ 34.42 \\ 34.45 \\ 34.45 \\ 34.54 \\ 34.54 \\ 34.54 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.44 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.55 \\ 34.56 \\ 34$	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 2.4 2 2.5 2.7 3.1 3.5 2.7 2.5 2.2 2.3 2.4 2.4 2.7 2.5 2.2 2.4 2.4 2.4 2.5 2.3 2.4 3.4 2.5 2.5 2.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5
11:02 11:24 10:47	CC4 CC13 SW11	MF MF MF	845444 844200 845512	815595 817495 817442	2.25 7.68 3.56	1.00 5.06 9.11 1.13 1.00 3.84 6.68 1.00 2.56 1.00 6.93	19.4 19.5 19.4 19.3 19.3 19.3 19.3	7.62 7.99 7.99 7.81 7.81 7.71 7.66 7.62 7.62 7.62 7.62 7.62 7.77 7.73 7.68 7.64 7.58 7.64 7.58 7.72 7.73 7.91 7.91 7.88 7.89 7.88	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 101.2 101.2 101.2 100.7 100.7 100.7 100.7 100.5 100.5 100.8 100.8 100.5 102.6 102.6 102.6 102.6 102.6 102.6 102.6 104.2	1.32 1.00 1.01 1.27 1.40 1.43 1.52 1.57 0.96 1.03 1.01 1.06 1.06 0.96 0.97 0.92 0.93 0.88 0.92 0.92 0.92 0.92 1.00	$\begin{array}{c} 34.42\\ 34.42\\ 34.42\\ 34.45\\ 34.45\\ 34.46\\ 34.54\\ 34.40\\ 34.40\\ 34.40\\ 34.40\\ 34.40\\ 34.40\\ 34.43\\ 34.44\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.56\\$	8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.05 8.04 8.04 8.04 8.04 8.04 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 2.4.4 2 2.5.5 2.7.7 3.1 3.5 2.7 2.11 3.5 2.2.5 2.5 2.7 2.1 3.5 2.5 2.7 2.5 2.2.4 2.4 2.7 2.5 2.4 2.7 2.4 2.7 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 3.4 3.2 2.4 2.5 2.2 2.4 2.2 2.4 2.2 2.5 2.3 2.8 3 3 2
11:02 11:24 10:47	CC4 CC13 SW11	MF MF MF	845444 844200 845512	815595 817495 817442	2.25 7.68 3.56	1.00 5.06 9.11 1.13 1.00 3.84 6.68 1.00 2.56 1.00 6.93 12.85	19.4 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3	7.62 7.99 7.99 7.81 7.81 7.62 7.62 7.62 7.62 7.62 7.62 7.62 7.62	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 99.3 101.2 101.2 100.7 100.7 100.7 100.7 100.7 100.5 100.8 103.0 103.0 103.0 102.5 101.5 101.6 101.2	1.32 1.00 1.01 1.27 1.29 1.40 1.43 1.52 1.57 0.96 1.03 1.01 1.02 1.05 0.96 0.96 0.97 0.97 0.93 0.92 0.93 0.88 0.92 0.92 0.93 0.88 0.92 0.92 0.93 0.88 0.92 0.92 0.93 0.88 0.92 0.92 0.93 0.88 0.92 0.92 0.93 0.88 0.92 0.92 0.93 0.88 0.92 0.92 0.92 0.93 0.88 0.92 0.92 0.92 0.92 0.93 0.88 0.92 0.92 0.92 0.93 0.88 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.88 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.88 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.88 0.92 0.93 0.92 0.92 0.93 0.92 0.92 0.92 0.93 0.92 0.93 0.92 0.93 0.92 0.93 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	$\begin{array}{c} 34.42\\ 34.42\\ 34.42\\ 34.45\\ 34.45\\ 34.46\\ 34.45\\ 34.54\\ 34.40\\ 34.40\\ 34.40\\ 34.40\\ 34.40\\ 34.40\\ 34.44\\ 34.44\\ 34.44\\ 34.44\\ 34.44\\ 34.44\\ 34.44\\ 34.44\\ 34.44\\ 34.45\\$	8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 2.4.4 2 2.5.5 2.7.7 3.1 3.5 2.7 2.4 2.2.5 2.7 2.4.4 2.7 2.5.5 2.7.7 2.5.5 2.7.7 2.5.5 2.3.3 2.2.2 2.4.4 2.2.2 2.4.3 2.2.2 2.4.3 2.2.2 2.4.3 2.2.2 2.4.3 2.2.2 2.4.3 2.2.2 2.4.3 2.2.2 2.4.3 2.2.2 2.4.3 2.2.2 2.4.3 2.2.2 2.4.3 2.2.2 2.4.3 2.2.2 2.4.3 2.2.2 2.4.1 2.2.2 2.1.1 2.5.5
11:02 11:24 10:47 11:10	CC4 CC13 SW11 C3	MF MF MF MF	845444 844200 845512 843821	815595 817495 817442 816211	2.25 7.68 3.56 13.85	1.00 5.06 9.11 1.13 1.00 3.84 6.68 1.00 2.56 1.00 6.93 12.85 1.00 8.16	19.4 19.3 19.3 19.3 19.3 19.3 19.3	7.62 7.99 7.99 7.81 7.81 7.71 7.66 7.62 7.62 7.62 7.62 7.62 7.62 7.62	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 99.3 101.2 101.2 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.8 103.0 103.0 103.0 102.6 102.6 101.5 101.5 101.6	1.32 1.00 1.01 1.27 1.29 1.40 1.43 1.52 1.57 1.57 1.57 1.57 1.03 1.01 1.02 1.06 1.03 1.01 1.02 1.06 0.96 0.97 0.97 0.97 0.92 0.93 0.89 0.82	$\begin{array}{r} 34.42\\ 34.42\\ 34.42\\ 34.42\\ 34.45\\ 34.54\\ 34.54\\ 34.54\\ 34.40\\ 34.40\\ 34.40\\ 34.40\\ 34.40\\ 34.43\\ 34.44\\ 34.44\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.55\\ 34.55\\ 34.55\\ 34.56\\ 34.48\\$	8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 3 2.4 2 2.5 2.7 3.1 3.5 2 2.5 2.4 2.5 2.4 2.7 2.5 2.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 3.4 3.2 2.8 3 2.8 3 2.2 2.3 2.8 3 2.2.2 2.2 2.3 2.8 3.2 2.8 3.2 2.8 3.2 2.8 3.2 2.8 3.2 2.8 3.2 2.2 2.2 2.2 2.2 2.2 2.2 2.1 2.3 2.3 2.4 2.4
11:02 11:24 10:47 11:10	CC4 CC13 SW11 C3	MF MF MF MF	845444 844200 845512 843821	815595 817495 817442 816211	2.25 7.68 3.56 13.85	1.00 5.06 9.11 1.13 1.00 3.84 6.68 1.00 2.56 1.00 6.93 12.85 1.00	19.4 19.5 19.4 19.3	7.62 7.99 7.99 7.89 7.81 7.71 7.66 7.62 7.62 7.62 7.62 7.62 7.62 7.77 7.73 7.73 7.73 7.73 7.73 7.73 7.7	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 101.2 101.2 101.2 101.2 101.2 100.7 100.7 100.7 100.7 100.5 100.8 103.0 102.6 102.5 101.5 101.5 101.5 101.2 101.5 101.5 101.5 101.7 102.6 102.0	1.32 1.00 1.01 1.27 1.27 1.40 1.43 1.52 1.57 0.96 1.03 1.01 1.02 1.06 1.03 1.01 1.02 1.06 0.96 0.97 0.97 0.92 0.93 0.88 0.92 1.00 1.00 1.00 1.00 1.00 0.96 0.97 0.92 1.00 1.00 0.93 0.88 0.92 0.92 1.00 0.96 0.97 0.92 1.00 0.88 0.92 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.05 0.03	$\begin{array}{c} 34.46\\ 34.42\\ 34.42\\ 34.45\\ 34.45\\ 34.45\\ 34.46\\ 34.52\\ 34.54\\ 34.40\\ 34.40\\ 34.40\\ 34.40\\ 34.40\\ 34.43\\ 34.44\\ 34.44\\ 34.44\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.45\\ 34.55\\ 34.56\\ 34.55\\$	8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 3 2.4.4 2 2.5.5 2.7.7 3.1.1 3.5.5 2.1 2.5.5 2.2.1 2.4.4 2.7.7 2.5.5 2.2.2 2.3.2 2.4.4 2.7.7 2.5.5 2.2.2 2.4.4 2.7.7 2.5.5 2.2.2 2.4.4 3.2.2 2.5.5 2.3.3 2.8.8 3 2.8.3 3.2 2.2.1 2.3.3 2.8.8 3.2.8 2.8.6 2.6.6
11:02 11:24 10:47 11:10	CC4 CC13 SW11 C3	MF MF MF MF	845444 844200 845512 843821	815595 817495 817442 816211	2.25 7.68 3.56 13.85	1.00 5.06 9.11 1.13 1.00 3.84 6.68 1.00 2.56 1.00 6.93 12.85 1.00 8.16	19.4 19.3 19.3	7.62 7.99 7.99 7.81 7.81 7.62 7.62 7.62 7.62 7.62 7.62 7.62 7.62	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 99.3 101.2 101.2 101.2 101.7 100.7 100.7 100.7 100.7 100.7 100.5 99.6 98.8 100.5 100.8 103.0 102.6 102.5 101.2 102.5 101.5 101.5 101.5 101.5 101.5 101.5 101.5 101.2 101.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.8 102.6 102.5 101.2 101.5 101.5 101.5 101.5 101.5 101.5 101.5 101.5 101.5 101.6 101.7 101.7 102.6 101.5 101.6 101.7 101.7 102.7 101.5 101.5 101.5 101.6 101.7 101.7 101.7 102.7 101.5 101.7 101	1.32 1.00 1.01 1.27 1.29 1.40 1.43 1.52 1.57 0.96 1.03 1.01 1.02 1.06 1.03 1.00 1.00 0.96 0.97 0.92 0.93 0.88 0.92 0.92 0.93 0.88 0.82 0.82 0.82 0.97	$\begin{array}{r} 34.42 \\ 34.42 \\ 34.42 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.46 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.40 \\ 34.44 \\ 34.44 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.45 \\ 34.56 \\ 34.56 \\ 34.48 \\ 34.48 \\ 34.48 \\ 34.51 \\ 34.55 \\ 35$	8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 2.4 2 2.5 2.7.7 3.1 3.5 2.7 2.4 2.2 2.3 2.3 2.4 2.7 2.3 2.2 2.3 2.2 2.4 2.7 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 3.2 2.4 3.2 3.4 3.2 3.4 3.2 2.8 3.3
11:02 11:24 10:47 11:10	CC4 CC13 SW11 C3	MF MF MF MF	845444 844200 845512 843821	815595 817495 817442 816211	2.25 7.68 3.56 13.85	1.00 5.06 9.11 1.13 1.00 3.84 6.68 1.00 2.56 1.00 6.93 12.85 1.00 8.16 15.31	19.4 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.4	7.62 7.99 7.99 7.81 7.81 7.62 7.62 7.62 7.62 7.62 7.62 7.62 7.62	99.2 104.2 104.2 102.3 101.7 100.5 99.9 99.3 99.3 99.3 99.3 101.2 101.2 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.8 99.9 99.9 99.8 8 8 100.5 101.2 101.2 101.2 102.7 102.6 102.5 101.6 101.2 101.5 101.5 101.6 101.2 101.1 102.6 102.5 101.6 101.2 101.2 101.2 101.2 101.2 102.5 101.5 101.2 101.5 101.5 101.5 101.6 101.2 101.5 101.5 101.5 101.2 101.5 101.5 101.5 101.6 101.2 101.5 101.5 101.6 101.2 101.5 101.5 101.6 101.5 101.6 101.7 102.6 102.5 101.6 101.2 101.8 101.2 101.5 102.6 102.5 101.6 101.6 101.6 101.6 101.7 102.6 101.2 101.5 101.6 101.2 102.6 101.2 101.5 101.6 102.5 101.6 101.6 101.7 102.6 101.2 101.6 101.2 101.6 102.5 101.6 101.2 101.6 101.2 101.6 101.2 101.6 101.2 101.6 101.6 101.2 101.6 101.2 101.6 101.6 101.2 101.6 101.7 101.6 101.7 101.6 101.7 101.6 101.7 101.6 101.7 101.6 101.7 101.6 101.7 101.6 101.7 101.6 101.7 101.6 101.7 101.6 101.7 101.6 101.7 101.6 101.7 101.6 101.7 101.6 101.7 101.7 101.6 101.7 101.7 101.6 101.7 10.7	$\begin{array}{c} 1.32 \\ 1.30 \\ 1.01 \\ 1.27 \\ 1.29 \\ 1.40 \\ 1.43 \\ 1.43 \\ 1.52 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.57 \\ 1.03 \\ 1.01 \\ 1.02 \\ 1.06 \\ 1.03 \\ 1.01 \\ 1.02 \\ 1.06 \\ 1.03 \\ 1.01 \\ 1.02 \\ 1.06 \\ 0.96 \\ 0.97 \\ 0.92 \\ 0.93 \\ 0.82 \\ 0.82 \\ 0.82 \\ 0.97 \\ 0.93 \\ 1.32 \\ 0.82 \\ 0.97 \\ 0.93 \\ 1.32 \\ 0.82 \\ 0.97 \\ 0.93 \\ 1.32 \\ 0.93 \\ 0.93 \\ 0.97 \\ 0.93 \\ 0.93 \\ 0.97 \\ 0.93 \\ 0.93 \\ 0.97 \\ 0.93 \\ 0.93 \\ 0.97 \\ 0.93 \\ 0.93 \\ 0.97 \\ 0.93 \\ 0.93 \\ 0.97 \\ 0.93 \\ 0.93 \\ 0.97 \\ 0.93 \\ 0.93 \\ 0.97 \\ 0.93 \\ 0.93 \\ 0.93 \\ 0.97 \\ 0.93 \\ 0.93 \\ 0.97 \\ 0.93 \\ 0.$	$\begin{array}{r} 34.42\\ 34.42\\ 34.42\\ 34.45\\ 34.45\\ 34.54\\ \hline \end{array}\\\\ \begin{array}{r} 34.46\\ 34.54\\ \hline \end{array}\\\\ \begin{array}{r} 34.40\\ 34.40\\ 34.40\\ \hline \end{array}\\\\ \begin{array}{r} 34.43\\ 34.40\\ \hline \end{array}\\\\ \begin{array}{r} 34.43\\ 34.44\\ 34.44\\ \hline \end{array}\\\\ \begin{array}{r} 34.43\\ 34.44\\ \hline \end{array}\\\\ \begin{array}{r} 34.45\\ 34.45\\ \hline \end{array}\\\\ \begin{array}{r} 34.45\\ 34.55\\ \hline \end{array}\\\\ \begin{array}{r} 34.55\\ 34.56\\ \hline \end{array}\\\\ \begin{array}{r} 34.48\\ 34.51\\ \hline \end{array}\\\\ \begin{array}{r} 34.55\\ 34.55\\ \hline \end{array}\\\\ \begin{array}{r} 34.55\\ 34.55\\ \hline \end{array}\\\\ \begin{array}{r} 34.55\\ 34.55\\ \hline \end{array}\\\\ \begin{array}{r} 34.42\\ \hline \end{array}\\\\ \begin{array}{r} 34.42\\ \hline \end{array}\\\\ \begin{array}{r} 34.42\\ \hline \end{array}$	8.06 8.06 8.06 8.06 8.06 8.06 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.05	3 3 2.44 2 2.5 2.7 3.1 3.5 2.11 2.5 2.3 2.4 2.2 2.3 2.4 2.7 2.2 2.3 2.4 2.7 2.4 2.7 2.4 2.7 2.4 2.7 2.4 2.7 2.4 2.7 2.4 2.2 2.4 3.4 3.2 2.4 3.4 3.2 2.4 2.2 2.5 2.3 2.8 3 2.8 3 2.8 3 2.8 2.6 2.6 2.8

Remarks: MF - Middle Flood tide ME - Middle Ebb tide

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

ampling Date:	17-Jan-20												
Date / Time	Logation	Tidat	Co-ore	linates	Water	Sampling Depth	Temp	DO Conc	DO Seturation	Turbidity	Salinity ppt	pH unit	SS mg/I
	Location	Tide*	East	North	Depth m	m	ĉ	mg/L	Saturation %	NTU			
						1.00	18.2 18.2	8.20 8.21	107.2 107.3	0.66	34.95 34.95	8.04 8.04	3.2 2.7
16:27	CC1	ME	843201	816416	10.29	5.15	18.1	8.13	106.1	0.79	34.95	8.05	3.8
							18.1 18.0	8.13 7.74	106.1 100.8	0.75	34.96 35.03	8.05 8.04	3.5
						9.29	19.3	7.86	102.3 108.5	0.96	34.54 34.93	8.07	4.6
						1.00	18.0 18.0	8.33 8.33	108.5	0.70 0.70	34.93	8.06 8.06	2.7
16:31	CC2	ME	844076	817091	12.02	6.01	18.0 18.0	8.31 8.32	108.3	0.67	34.93 34.93	8.06 8.06	3.8
						11.02	18.0	8.21	106.8	0.90	34.94	8.06	5.4
							18.0 18.3	8.20 8.07	106.7 105.8	0.96 0.78	34.94 34.92	8.06 8.03	5.2
						1.00	18.3 18.1	8.09 8.31	106.1 108.5	0.80	34.92 34.96	8.03 8.04	2.4
16:48	CC3	ME	844606	817941	10.08	5.04	18.1	8.31	108.5	1.17	34.97	8.04	2.5
						9.08	17.9 17.9	7.78	101.1 100.8	2.63 2.59	34.97 34.97	8.03 8.03	2.4
16:16	CC4	ME	845444	815595	2.23	1.12	18.1	8.24	107.4	0.76	34.96	7.96	1.8
10.10	004	ML	045444	015575	2.25	1.12	18.1	8.24	107.5	0.84	34.96	7.98	1.9
							10.0	0.21	100.2	0.06	24.00	0.05	
						1.00	18.0 18.0	8.31 8.32	108.3 108.4	0.86	34.90 34.90	8.05 8.05	2.7
16:35	CC13	ME	844200	817495	8.44	4.22	18.0 18.0	8.37 8.38	109.0 109.2	0.83 0.98	34.91 34.91	8.06 8.06	3.9 3.7
						7.44	17.9	8.22	107.0	0.67	34.93	8.06	4.8
							17.9 18.1	8.21 8.27	106.8 107.8	0.65	34.93 34.90	8.06 7.84	4.7
						1.00	18.1	8.28	107.9	1.02	34.90	7.85	3.6
16:11	SWI1	ME	845512	817442	3.93								
						2.93	18.0 17.9	8.28 8.28	107.9 107.7	1.14	34.90 34.91	7.87 7.88	5 5.4
						1.00	18.2	8.20	107.1	0.62	34.97	8.04	2.7
							18.2 18.0	8.20 7.84	107.2 102.2	0.61 1.13	34.98 35.03	8.04 8.04	3.1 3.4
16:23	C3	ME	843821	816211	13.68	6.84	18.0	7.83	102.1	1.19	35.03	8.03	3
						12.68	18.0 18.0	7.75	101.0 101.0	1.26	35.03 35.03	8.02 8.02	5.4 5.7
						1.00	18.2 18.2	8.30 8.30	108.4 108.4	0.54 0.52	34.96 34.96	7.99 8.00	2.5
16:19	C4	ME	844621	815770	15.91	7.96	18.0	8.06	104.9	0.68	35.03	8.02	2.9
	C4	MIL	844021	815770	15.91		18.0 17.9	8.06 7.84	105.0	0.69	35.04 35.07	8.02 8.03	2.7
						14.91	17.9	7.82	101.8	1.09	35.07	8.02	5
						1.00	18.2 18.2	8.22 8.22	107.4 107.4	0.94 0.91	34.89 34.89	8.05 8.05	4.4
16:39	11	ME	844602	817675	10.05	5.03	18.1	8.19	106.8	1.05	34.91	8.04	5.3
						9.05	18.1 17.8	8.19 7.84	106.8 101.8	1.01 2.45	34.91 34.96	8.04 8.04	5.2 6.3
						9.05	17.8	7.83	101.7	2.70	34.97	8.04	6.8
						1.00	18.1	8.05	105.0	0.71	34.94	8.04	2.5
							18.1 18.1	8.06 8.04	105.1 104.9	0.72 0.79	34.94 34.94	8.04 8.04	2.2 3.1
12:22	CC1	MF	843201	816416	10.19	5.10	18.1	8.04	104.8	0.72	34.94	8.04	3.4
						9.19	18.0 18.0	7.98 7.98	103.9 103.9	0.83 0.84	34.96 34.96	8.04 8.04	3.6
						1.00	17.9 17.9	8.2	106.7 106.7	0.75 0.78	34.92 34.92	8.06 8.06	2.6 2.4
12:27	CC2	MF	844076	817091	11.7	5.85	17.8	8.2 8.15	105.8	0.69	34.94	8.05	3.3
12.27	002	INIT	844070	817091	11.7		17.8 17.9	8.16 7.93	105.9 103.0	0.73 1.03	34.94 34.99	8.05 8.04	3.5 4.2
						10.70	17.9	7.92	102.9	1.00	34.99	8.04	4.4
						1.00	18.1	8.10 8.11	105.7	0.91 0.87	34.91 34.91	8.04 8.04	2.4
12:45	CC3	MF	844606	817941	10.01	5.01	18.1 18.1	8.14 8.14	106.2 106.2	0.94	34.93 34.93	8.04 8.04	1.7
						9.01	18.1	7.72	106.2	1.55	34.93	8.04	1.1
						9.01	18.0	7.70	100.3	1.55	35.02	8.02	1.2
							10.1	7.09	104.0	1.12	24.01	9.04	26
12:10	CC4	MF	845444	815595	2.17	1.09	18.1 18.1	7.98 7.99	104.0 104.1	1.13	34.91 34.91	8.04 8.04	3.5 3.8
						1.00	17.9	8.12	105.6	0.82	34.95	8.06	2.3
12:32	CC13	MF	MF 844200	817495	8.33	4.17	17.9 17.9	8.13 8.20	105.7 106.6	0.84 0.79	34.95 34.95	8.06 8.06	2.1 2.4
12.32	0.015	ivir	044200	01/493	0.33		17.9 17.8	8.20 8.16	106.6 105.8	0.84 0.98	34.95 34.94	8.06 8.05	2.6
						7.33	17.8	8.17	106.0	0.88	34.94	8.05	3.3
						1.00	17.8 17.8	8.18 8.18	106.1 106.2	1.07 1.10	34.94 34.94	8.01 8.01	3.1
12:05	SWI1	MF	845512	817442	4.08								
						3.08	17.8	8.18	106.1	1.13	34.93	8.02	2.4
			ļ				17.8 18.1	8.18 7.99	106.1 104.3	1.41 0.77	34.93 34.97	8.02 8.04	2.1
						1.00	18.1	7.99	104.3	0.83	34.97	8.04	2.6
12:18	C3	MF	843821	816211	15.96	7.98	18.0 18.0	7.77	101.3 101.1	1.29 1.26	35.04 35.04	8.03 8.03	2.8
						14.96	18.0	7.69	100.2	1.49	35.04	8.02	3.8
							18.0 18.0	7.68 8.04	100.1 104.8	1.56 0.77	35.04 34.98	8.02 8.05	3.3
						1.00	18.0	8.05	104.9	0.71	34.98	8.05	2.2
12:13	C4	MF	844621	815770	14.21	7.11	18.0 18.0	7.95 7.94	103.5 103.4	0.83 0.82	35.01 35.01	8.04 8.04	2.9 2.6
						13.21	17.9 17.9	7.85 7.83	102.2	0.84	35.06 35.07	8.04 8.04	2.9
						1.00	17.9	8.03	104.4	0.92	34.86	8.04	3.2
							18.0 17.9	8.04 8.02	104.5 104.3	0.93	34.86 34.94	8.04 8.04	3.4 3.6
12:35	11	MF	844602	817675	10.03	5.02	17.9	8.04	104.5 100.7	1.16	34.95	8.04	3.4
							17.8	7.75		1.87	34.98	8.03	3.9

Remarks: MF - Middle Flood tide ME - Middle Ebb tide

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

ampling Date:	20-Jan-20					r Quality N							
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
			East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/I
9:47						1.00	18.5 18.5	7.72	101.2 101.2	1.03 0.98	34.42 34.43	8.01 8.01	2.2
	CC1	ME	843201	816416	7.58	3.79	18.5 18.5	7.70	100.9 100.9	0.90 0.93	34.42 34.42	8.01 8.01	2.8
						6.58	18.5 18.5	7.64 7.61	100.1 99.7	1.08 1.12	34.43 34.43	8.01 8.01	3.4 3.9
						1.00	18.4	7.97	104.3	0.80	34.42	8.04	3.3
9:51	CC2	ME	844076	817091	12.04	6.02	18.4 18.4	7.99 7.89	104.5 103.3	0.81 1.26	34.41 34.43	8.04 8.04	2.9 3.3
							18.5	7.86	102.9 99.0	1.32 3.48	34.44 34.48	8.03 8.02	3.8 4.6
						11.04	18.5 18.5	7.52 8.01	98.5 105.0	3.51 0.96	34.48 34.34	8.02 8.03	4.5
10:11						1.00	18.5	8.02	105.1	0.95	34.35	8.03	3.4
	CC3	ME	844606	817941	9.23	4.62	18.5 18.5	7.63 7.60	100.0 99.6	1.13 1.25	34.45 34.47	8.02 8.02	4 4.3
						8.23	18.6 18.6	7.27 7.19	95.5 94.5	2.38 2.57	34.50 34.50	8.00 8.00	4.2 4.5
9:36	CC4	ME	845444	815595	2.3	1.15	18.5 18.5	7.85 7.86	102.8 103.0	1.53 1.48	34.45 34.44	8.04 8.04	5.4 5.1
							18.5	7.80	105.0	1.48	34.44	8.04	5.1
						1.00	18.4	8.03	105.2	1.20	34.41	8.04	2.3
							18.4 18.4	8.03 8.04	105.2 105.2	1.16	34.41 34.41	8.04 8.04	2.5
9:55	CC13	ME	844200	817495	7.51	3.76	18.4	8.04 7.93	105.3 103.8	1.08	34.41 34.42	8.04 8.03	2.7 3.4
						6.51	18.4	7.89	103.3	1.45	34.42	8.03	3.9
						1.00	18.5 18.5	7.75	101.7 101.3	2.12 2.09	34.49 34.49	8.08 8.07	3.8 3.4
9:21	SWI1	ME	845512	817442	4.45								
						3.45	18.4 18.4	7.60 7.55	99.5 98.8	1.98 1.99	34.48 34.48	8.04 8.03	4.8 4.7
						1.00	18.5	7.64	100.1	1.03	34.43	8.02	3
0.42	C2	ME	942921	816211	14.75		18.5 18.5	7.63 7.58	100.0 99.2	1.04 0.98	34.43 34.44	8.02 8.01	3.1 4.5
9:43	C3	ME	843821	816211	14.75	7.38	18.5 18.5	7.57 7.54	99.2 98.8	0.98	34.44 34.47	8.01 8.01	4.7 6.4
						13.75	18.4	7.54	98.8	1.01	34.46	8.01	6.8
9:39	C4	ME	844621	815770	14.11	1.00	18.5 18.4	8.00 8.02	104.8 105.0	0.84 0.86	34.43 34.43	8.04 8.04	2.2 2.4
						7.06	18.4	7.71 7.72	101.0 101.1	0.76 0.75	34.47 34.47	8.02	2.9
						13.11	18.5 18.5	7.54 7.53	98.8 98.7	1.41 1.46	34.54 34.54	8.01 8.01	3.9 3.6
9:58		ME	844602	817675	9.37	1.00	18.5	7.90	103.5	0.92	34.30	8.04	2.2
	11					4.69	18.5 18.4	7.90 7.73	103.4 101.2	0.97 1.53	34.30 34.43	8.03 8.02	2.4 2.8
		ML	044002	01/0/5	2.51		18.4	7.73	101.2 98.9	1.59 1.87	34.43 34.48	8.02	2.6
						8.37	18.5	7.43	97.4	2.07	34.49	8.01	2.8
						1.00	18.6	7.77	101.9	0.95	34.39	8.03	2.2
							18.6 18.5	7.77	101.9 101.5	0.94 0.98	34.40 34.42	8.02 8.02	2.4 2.8
13:06	CC1	MF	843201	816416	8.26	4.13	18.5	7.74	101.4 99.8	0.96	34.42	8.02	3
						7.26	18.5 18.5	7.62 7.61	99.7	1.19 1.17	34.43 34.43	8.01 8.01	3.4 3.6
						1.00	18.5 18.5	8.06 8.06	105.5 105.6	1.30 1.24	34.40 34.40	8.04 8.04	2.8 2.9
13:10	CC2	MF	844076	817091	12.46	6.23	18.5 18.5	7.98 7.9	104.5 103.5	1.28 1.40	34.42 34.43	8.04 8.04	3.6 3.5
						11.46	18.5	7.65	100.3	1.94	34.47	8.03	4.1
						1.00	18.5 18.6	7.56	99.2 103.8	2.09 0.87	34.47 34.35	8.02 8.03	4.6
12.25	662	ME	944606	017041	0.29		18.6	7.93	104.0 101.6	0.87	34.36 34.45	8.03 8.02	2.4
13:25	CC3	MF	844606	817941	9.28	4.64	18.5 18.6	7.64	100.2 93.5	1.31 3.06	34.46 34.50	8.02 8.01	2.9 3.4
						8.28	18.6	7.09	93.1	3.06	34.50	8.00	3.9
12:57	CC4	MF	845444	815595	2.3	1.15	18.5 18.5	7.82 7.84	102.4 102.7	1.72 1.76	34.43 34.45	8.04 8.04	4.7
						1.00	18.4	8.03	105.0	1.02	34.38	8.06	3
13:13	CC13	MF	844200	817495	7.87	3.94	18.4	8.04 8.01	105.2	1.06	34.38 34.40	8.06 8.04	3.2 3.8
	-					6.87	18.4 18.4	8.02 7.91	105.0 103.5	1.11 1.28	34.40 34.41	8.04 8.04	3.6
							18.4 18.4	7.93 7.75	103.7 101.5	1.13 1.77	34.40 34.45	8.03 8.05	4.5
						1.00	18.4	7.74	101.5	1.74	34.45	8.04	3.3
12:46	SWI1	MF	845512	817442	4.32								
12.40						3.32	18.4	7.42 7.43	97.1 97.2	1.92 1.95	34.46 34.46	8.03 8.03	6.3 5.9
12.40		MF	843821			1.00	18.6	7.75	101.6	0.88 0.91	34.39 34.39	8.04 8.03	3.6
12.40				816211	15.14	7.57	18.5	7.66	100.4	0.89	34.41	8.03	2.7
13:03	C3	MF	043021			L	18.5 18.5	7.62	99.8 99.2	0.94 1.46	34.42 34.45	8.02 8.02	2.6 2.9
	C3	MF	645621			14.14							
	C3	MF	643621			14.14	18.5	7.55	98.9 104.7	1.82	34.47 34.42	8.01	3.1
	C3	MF	645621			14.14 1.00	18.5 18.5 18.5	7.55 7.99 8.00	104.7 104.9	1.51 1.16	34.42 34.42	8.04 8.04	3.3 3.5
	C3 C4	MF	844621	815770	14.56		18.5 18.5 18.4 18.4	7.55 7.99 8.00 7.80 7.74	104.7 104.9 102.1 101.3	1.51 1.16 0.77 0.72	34.42 34.42 34.46 34.46	8.04 8.04 8.03 8.03	3.3 3.5 3.5 3.2
13:03				815770	14.56	1.00	18.5 18.5 18.5 18.4 18.4 18.7	7.55 7.99 8.00 7.80	104.7 104.9 102.1	1.51 1.16 0.77	34.42 34.42 34.46 34.46 34.74	8.04 8.04 8.03	3.3 3.5 3.5 3.2
13:03				815770	14.56	1.00 7.28	18.5 18.5 18.5 18.4 18.4 18.7 18.8 18.5	7.55 7.99 8.00 7.80 7.74 7.25 7.19 8.02	104.7 104.9 102.1 101.3 95.5 94.9 105.0	1.51 1.16 0.77 0.72 1.55 1.84 0.87	34.42 34.42 34.46 34.46 34.74 34.85 34.32	8.04 8.04 8.03 8.03 8.02 8.01 8.04	3.3 3.5 3.5 3.2 3.6 4 2.6
13:03				815770	14.56	1.00 7.28 13.56	18.5 18.5 18.5 18.4 18.4 18.7 18.8	7.55 7.99 8.00 7.80 7.74 7.25 7.19	104.7 104.9 102.1 101.3 95.5 94.9	1.51 1.16 0.77 0.72 1.55 1.84	34.42 34.42 34.46 34.46 34.74 34.85	8.04 8.03 8.03 8.02 8.01	3.3 3.5 3.5 3.2 3.6 4

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

Remarks: MF - Middle Flood tide ME - Middle Ebb tide

imping but	: 22-Jan-20)	1			1-		1					
Date / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit v	Salinity	рН	SS
			East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/
						1.00	18.7 18.7	7.53	99.0 99.0	1.07 0.96	34.58 34.57	8	2.4
11:29	CC1	ME	843201	816416	8.48	4.24	18.6 18.6	7.51 7.49	98.8 98.5	1.08 1.20	34.58 34.59	8 8	2.3
						7.48	18.6	7.41	97.4 97.1	1.43	34.61	7.99	2.6
						1.00	18.6	7.39 7.44	97.7	1.92	34.61 34.54	8	2.4
							18.6 18.6	7.42 7.40	97.4 97.3	2.08 2.17	34.54 34.55	8	2.1
11:34	CC2	ME	844076	817091	12.2	6.10	18.6 18.6	7.41 7.30	97.2 95.9	2.21 2.30	34.56 34.58	8 7.99	2.6
						11.20	18.6	7.31	96.0	2.39	34.60	7.99	4.4
						1.00	18.6 18.6	7.65	100.4 100.6	0.96	34.46 34.46	8.00	3.1
11:49	CC3	ME	844606	817941	9.8	4.90	18.6 18.6	7.59 7.50	99.6 98.5	1.07 1.14	34.49 34.51	8.00 7.99	3.2
						8.80	18.6	6.89	90.7	3.25	34.61	7.97	4.4
							18.6	6.86	90.2	3.57	34.60	7.96	4.
11:18	CC4	ME	845444	815595	2.17	1.09	18.6	7.54	98.9	0.99	34.48	8.06	2.2
11:18	CC4	ME	845444	815595	2.17	1.09	18.6	7.54	99.0	1.08	34.48	8.05	2.4
							18.6	7.49	98.3	1.61	34.49	8.00	2.8
						1.00	18.6	7.49	98.4	1.61	34.49	7.99	2.4
11:38	CC13	ME	844200	817495	8.94	4.47	18.6	7.44 7.41	97.7 97.3	2.30 2.40	34.52 34.52	7.99 7.99	3.
						7.94	18.6	7.40 7.38	97.2 96.9	2.53 2.57	34.52 34.53	7.99 7.99	3.
						1.00	18.6 18.6	7.60	99.9	1.03	34.54	8.22	2.:
11.07	CN/11	ME	045510	017440	2.04	1.00	18.6	7.56	99.3	1.20	34.51	8.07	2.
11:07	SWI1	ME	845512	817442	3.94		18.6	7.60	99.8	1.05	34.51	8.06	3.
						2.94	18.6	7.62	100.0	1.16	34.51	8.05	2.
						1.00	18.6 18.6	7.48	98.3 98.3	1.22	34.55 34.56	8.01 8.01	3.
11:25	C3	ME	843821	816211	15.24	7.62	18.6	7.44	97.8	1.09	34.60	8.00	2.
						14.24	18.6 18.6	7.44 7.43	97.7 97.6	1.03 1.22	34.60 34.61	7.99 7.99	2.
							18.6 18.7	7.42 7.78	97.5 102.3	1.48 0.83	34.62 34.53	7.99 8.03	3.
						1.00	18.7	7.79	102.4	0.83	34.53	8.03	1.
11:21	C4	ME	844621	815770	14.43	7.22	18.5	7.57 7.56	99.4 99.3	0.64 0.70	34.61 34.61	8.01 8.01	1.
						13.43	18.5 18.5	7.46 7.44	97.9 97.7	1.57 1.64	34.65 34.65	8.00 8.00	1.
						1.00	18.6	7.72	101.5	1.10	34.49	8.00	1.
11.40			0.44602	012/25	0.00		18.6 18.6	7.74 7.68	101.7 100.9	1.04	34.49 34.50	8.00	1.
11:40	11	ME	844602	817675	8.99	4.50	18.6 18.6	7.60 7.45	99.8 97.9	1.34 1.56	34.51 34.54	8.00 8.00	2.:
						7.99	18.6	7.40	97.2	1.66	34.56	7.99	4.
						1.00	18.6	7.82	102.8	0.96	34.58	7.98	1.1
						1.00	18.6	7.81	102.6	1.00	34.58	7.98	- 1.9
14:36	CC1	MF	843201	816416	8.19	4.10	18.5 18.5	7.73	101.5 100.7	1.24 1.29	34.60 34.62	7.98	2.
						7.19	18.5	7.59	99.6 98.9	1.36	34.65 34.67	7.97	2.
						1.00	18.5	7.53	98.8 99.2	1.89	34.65	7.99 7.98	3.4
14:41	CC2	MF	844076	817091	12.47	6.24	18.5 18.4	7.56	97.4	1.82 1.52	34.60 34.66	7.97	3
	002		011070	01/0/1	12.17		18.4 18.4	7.42	97.3 97.3	1.49 2.15	34.66 34.71	7.97	3.
						11.47	18.4	7.4	97.0	2.54	34.73	7.97	4.
						1.00	18.6	7.69	99.5 101.2	1.85	34.57	7.93	22
15:03	CC3	MF	844606	817941	9.81	4.91	18.4	7.65	100.3 91.4	2.09 2.10	34.61 34.69	7.98	2.
						8.81	18.5 18.5	6.91 6.88	90.8 90.3	3.16 3.97	34.72 34.73	7.96 7.96	2.
							10.5	0.00	7013	3.91	51.75	1.50	2.
14:26	CC4	MF	845444	815595	2.05	1.03	18.5	7.66	100.4	1.06	34.59	8.00	2.
							18.5	7.69	100.9	1.14	34.60	7.99	2.
						1.00	18.5	7.57	99.3	1.46	34.62	7.98	1.
						1.00	18.5	7.58	99.4	1.49	34.61	7.98	1.
14:45	CC13	MF	844200	817495	8.37	4.19	18.5 18.5	7.60 7.51	99.7 98.5	1.49 1.72	34.61 34.64	7.97 7.97	1.
						7.37	18.5 18.4	7.51 7.48	98.4 98.1	1.73	34.64 34.68	7.97 7.97	2.
						1.00	18.5	7.87	103.3	0.93	34.58	8.06	2.
14:20	SWI1	MF	845512	817442	4.22		18.5	7.90	103.6	0.92	34.58	8.05	2.
	511		0.0012			2.22	18.4	7.87	103.1	0.99	34.59	8.00	2.
						3.22	18.4 18.5	7.78	102.0 99.4	1.00	34.59 34.65	7.98 7.99	2.
						1.00	18.5	7.58	99.4	1.11	34.65	7.98	2.
14:33	C3	MF	843821	816211	15.09	7.55	18.4 18.4	7.50 7.49	98.3 98.2	1.05	34.72 34.72	7.98 7.97	2.
						14.09	18.4	7.47	97.9	1.33	34.73	7.97	2.
						1.00	18.4 18.6	7.43 8.02	97.5 105.5	2.18 0.84	34.74 34.63	7.97 8.01	2.
							18.6 18.5	8.04 8.00	105.6 105.1	0.83	34.63 34.65	8.00 8.00	1. 1.
14:29	C4	MF	844621	815770	14.73	7.37	18.5	7.99	105.0	1.02	34.65	8.00	1.:
						13.73	18.5 18.4	7.87 7.74	103.3 101.4	0.86	34.68 34.71	7.99 7.99	1.0
						1.00	18.7 18.6	7.86 7.89	103.4 103.7	1.98	34.55 34.57	7.99	2.
14:48	11	MF	844602	817675	9.77	4.89	18.4	7.65	100.2	1.25	34.62	7.98	2.1
			0.1002				18.4	7.65	100.2 88.9	1.21 1.75	34.62 34.72	7.98	2.
	1		1			8.77	18.5	6.81	89.4	1.72	34.71	7.94	2.

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

> Remarks: MF - Middle Flood tide ME - Middle Ebb tide

	: 24-Jan-20	<u></u>			W	6		1	DO.	T			
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit y	Salinity	pН	SS
			East	North	m	m	°C 18.9	mg/L 7.38	% 97.8	NTU 1.12	ppt 34.66	unit 7.97	mg/I
						1.00	18.9	7.38	97.6	1.33	34.67	7.97	1.8
16:09	CC1	ME	843201	816416	8.83	4.42	18.9 18.9	7.39 7.38	97.8 97.6	1.52 1.53	34.66 34.67	7.97 7.97	1.9 1.6
						7.83	18.9 18.9	7.35	97.3 97.3	1.58 1.58	34.71 34.70	7.97 7.97	1.5
						1.00	18.8 18.9	7.56 7.59	99.8 100.3	1.19	34.50 34.47	7.98 7.98	1.9 2.4
16:13	CC2	ME	844076	817091	11.72	5.86	18.9	7.49	99.0	1.07	34.57	7.97	2
						10.72	18.9 18.9	7.48 7.50	98.8 99.2	0.99 1.48	34.58 34.64	7.97 7.98	3
							18.9 19.0	7.45 7.92	98.6 104.7	1.73 0.70	34.68 34.30	7.97 7.97	3
						1.00	19.0 18.8	7.93 7.73	104.7 101.9	0.72	34.31 34.43	7.97 7.98	2.1
16:29	CC3	ME	844606	817941	9.49	4.75	18.8	7.61	100.3	1.46	34.47	7.98	4.2
						8.49	18.8 18.8	6.96 6.88	91.7 90.7	2.80 2.43	34.52 34.52	7.95 7.95	4.7
15:59	CC4	ME	845444	815595	2.29	1.15	19.1 19.0	7.54 7.53	100.0 99.7	1.30 1.43	34.53 34.62	7.96 7.96	4.8 4.5
						, - ,	18.9	7.57	100.0	1.02	34.44	7.98	6.1
						1.00	18.9	7.63	100.7	1.06	34.42	7.98	5.1
16:17	CC13	ME	844200	817495	7.54	3.77	18.9 18.9	7.61 7.58	100.5 100.2	1.03	34.47 34.50	7.98	2.6
						6.54	18.9 18.9	7.56 7.53	99.9 99.5	1.07 1.03	34.55 34.61	7.98 7.97	2.3
						1.00	18.9 18.9	7.56	99.8 99.9	0.92	34.37 34.37	7.99 7.98	2.3
15:53	SWI1	ME	845512	817442	3.94		18.9	7.37	99.9	0.92	34.37	7.98	2.3
						2.94	18.9	7.56	99.7	0.96	34.37	7.97	2.1
	_						18.9 19.0	7.56	99.8 100.5	0.98	34.37 34.42	7.97 7.96	2.1
						1.00	19.0 18.9	7.66 7.59	101.2 100.2	1.31 0.80	34.42 34.50	7.96 7.98	2
16:04	C3	ME	843821	816211	14.48	7.24	18.9	7.57	100.0	0.83	34.51	7.98	3.7
						13.48	19.0 19.0	7.46 7.41	98.8 98.2	1.29 1.44	34.71 34.75	7.97	3.1 3.2
						1.00	19.1	7.79	103.2	0.84	34.39	7.96	1.8
16:01	C4	ME	844621	815770	14.34	7.17	19.1 19.0	7.82	103.5 102.2	0.86	34.39 34.49	7.97 7.98	2.8 1.8
10.01	0.		011021	010770	1.1.51		19.0 19.0	7.68 7.52	101.6 99.8	0.82 0.98	34.52 34.78	7.98 7.98	2.6
						13.34	19.0 19.0	7.47 7.82	99.1 103.5	1.06	34.82 34.32	7.98 7.98	1.4
						1.00	19.0	7.83	103.5	0.93	34.33	7.98	2.5
16:20	11	ME	844602	817675	9.12	4.56	18.9 18.9	7.43 7.40	98.1 97.7	1.56 1.87	34.49 34.57	7.98	2.7
						8.12	18.8 18.8	7.02 6.99	92.6 92.2	3.02 3.53	34.57 34.57	7.97 7.97	1.7
			1		1		10.0	0.77				1.91	2.5
						1.00	18.9	7.59 7.59	100.2 100.3	1.04 1.02	34.44 34.43	7.98	4.7
11:14	CC1	MF	843201	816416	7.84	3.92	18.9	7.48	98.8 98.7	1.13	34.49 34.49	7.96 7.96	3.2
						6.84	18.9 18.9	7.46 7.38	97.5	1.28	34.55	7.96	3.3
						1.00	18.9 18.9	7.37 7.65	97.3 101.1	1.36 0.92	34.54 34.36	7.95 7.97	3.5
							18.9 18.9	7.66 7.56	101.2 99.7	0.88 1.28	34.35 34.47	7.97 7.97	3.5
11:43	CC2	MF	844076	817091	12.15	6.08	18.9	7.48	98.8	1.37	34.53	7.96	2
						11.15	18.9 18.9	7.39 7.38	97.7 97.7	2.07 2.07	34.67 34.67	7.96 7.96	2.2
						1.00	19.0 19.0	7.85	103.8 103.6	1.15 1.40	34.28 34.29	7.98	1.9
11:59	CC3	MF	844606	817941	9.48	4.74	18.9 18.9	7.80 7.79	103.0 102.8	1.85 1.69	34.35 34.37	7.98 7.98	1.5
						8.48	18.8	7.16	91.8 95.3	2.29	34.48 34.50	7.97	2.5
11:32	CC4	MF	845444	815595	2.39	1.20	18.9 18.9	7.51	99.2 99.3	1.54 1.66	34.56 34.57	7.96 7.96	3.3
							18.9	7.69	101.5	0.93	34.37	7.97	2.2
						1.00	18.9	7.69 7.49	101.5 98.8	0.97	34.37 34.46	7.97	1.9
11:47	CC13	MF	844200	817495	7.29	3.65	18.8	7.49	98.8	1.29	34.46	7.96	2.5
						6.29	18.9 18.9	7.46	98.5 98.0	1.50 1.53	34.55 34.62	7.96 7.96	1.7
						1.00	19.0 19.0	7.60 7.62	100.5 100.8	0.76 0.79	34.32 34.32	7.97 7.97	2.4
11:27	SWI1	MF	845512	817442	4.32								
						3.32	19.0	7.61	100.5	0.86	34.34	7.96	2
						1.00	18.9 18.9	7.59	100.2 100.4	0.87 0.89	34.36 34.48	7.96 7.96	2.6
						-	18.9 18.9	7.60 7.50	100.5 99.2	0.85 1.24	34.48 34.68	7.97 7.96	2.8
11:38	C3	MF	843821	816211	14.15	7.08	18.9	7.45	98.7	1.41	34.71	7.96	1.7
						13.15	19.0 19.0	7.42 7.41	98.2 98.1	1.55 1.58	34.72 34.72	7.96 7.96	1.3
						1.00	19.0 19.0	7.65	101.3 101.5	0.87 0.90	34.40 34.41	7.96 7.96	3.6
11:35	C4	MF	844621	815770	14.39	7.20	19.0	7.54	99.9 99.7	1.02	34.67	7.96	2.5
						13.39	19.0	7.44	98.7	1.71	34.84	7.97	3.6
	+						19.1 19.0	7.36 7.63	97.7 100.7	2.01 1.09	34.88 34.28	7.97 7.96	2.6
						1.00	19.0 18.8	7.64 7.47	100.8 98.5	1.10	34.28 34.43	7.97 7.96	2.1
11:50	11	MF	844602	817675	8.2	4.10	18.8	7.48	98.6	1.42	34.42	7.96	3.2
	1					7.20	18.8	7.41 7.38	97.7 97.2	1.63 1.73	34.47 34.48	7.96	3.9

Remarks: MF - Middle Flood tide ME - Middle Ebb tide

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

	: 29-Jan-20	,	1		N V ·	c		1	D.C.	an			
Date / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit v	Salinity	pН	SS
			East	North	m	m	°C 18.4	mg/L 7.72	% 101.3	NTU 0.89	ppt 34.85	unit 8.02	mg/l
						1.00	18.4	7.72	101.2	0.88	34.85	8.02	1.2
10:43	CC1	ME	843201	816416	10.28	5.14	18.4 18.4	7.71 7.70	101.0 100.9	0.91 0.91	34.85 34.85	8.02 8.02	<1.0
						9.28	18.4 18.4	7.67	100.6 100.5	0.93 0.88	34.86 34.86	8.02 8.02	<1.0
						1.00	18.4 18.4	7.75	101.6 101.0	0.98	34.81 34.81	8.01 8.01	1.1
10:47	CC2	ME	844076	817091	12.15	6.08	18.4	7.63	100.0	0.98	34.83	8.02	1.3
					_		18.4 18.3	7.62 7.53	99.9 98.5	0.92 1.48	34.83 34.84	8.03 8.03	1.7
						11.15	18.3 18.6	7.47 7.64	97.8 100.5	1.54 1.07	34.85 34.88	8.03 8.02	2.6
						1.00	18.5	7.63	100.4	1.14	34.89	8.02	1.7
11:05	CC3	ME	844606	817941	9.77	4.89	18.5 18.4	7.60	99.8 99.4	1.16	34.88 34.86	8.02 8.02	1.2
						8.77	18.2 18.2	7.44 7.43	97.2 97.2	1.30 1.33	34.83 34.83	8.00 8.01	<1.0
10:33	CC4	ME	845444	815595	2.13	1.07	18.4	7.65	100.3	0.99	34.81	8.01	1.6
							18.4	7.63	100.1	0.96	34.81	8.01	1.2
						1.00	18.4	7.84	102.7	0.95	34.73	7.99	1
						1.00	18.4	7.79	102.0	0.94 0.97	34.75	7.99 8.00	1.5
11:00	CC13	ME	844200	817495	8.27	4.14	18.4 18.4	7.67 7.63	100.6 100.0	0.98	34.81 34.82	8.00	1.6
						7.27	18.3 18.3	7.52 7.52	98.3 98.3	0.99	34.83 34.83	8.01 8.02	1
						1.00	18.2 18.2	7.50 7.46	97.8 97.4	1.58	34.85 34.85	7.98 7.98	2.4
10:19	SWI1	ME	845512	817442	4.56		18.2	7.40	27.4	1.39	54.85	7.38	2.9
						3.56	18.2	7.46	97.4	1.43	34.87	7.99	1.7
							18.1 18.4	7.48 7.62	97.6 99.8	1.32 0.96	34.88 34.85	7.99 8.02	2.2
						1.00	18.4	7.61	99.7	0.94	34.85	8.02	1.1
10:39	C3	ME	843821	816211	15.37	7.69	18.3 18.3	7.52 7.51	98.5 98.4	1.19	34.91 34.92	8.02 8.02	1.1
						14.37	18.3 18.3	7.48 7.46	98.0 97.8	1.71 1.85	34.99 34.99	8.02 8.02	1.1
						1.00	18.4	7.60	99.5	0.95	34.86	8.03	1.3
10:36	C4	ME	844621	815770	14.34	7.17	18.4 18.3	7.59 7.56	99.4 99.0	0.95 0.94	34.86 34.89	8.02 8.02	1.2
10.50	C4	ME	844021	813770	14.54		18.3 18.3	7.56 7.53	99.0 98.5	0.87 1.04	34.89 34.95	8.02 8.02	1
						13.34	18.2	7.52	98.3	1.13	34.97	8.02	1
						1.00	18.3 18.3	7.71 7.66	100.9 100.2	0.93 1.02	34.83 34.83	8.03 8.02	1.2
11:02	11	ME	844602	817675	9.92	4.96	18.3 18.3	7.65 7.64	100.1 100.0	0.88 0.87	34.84 34.84	8.02 8.02	<1.0
11:02						8.92	18.2	7.52	98.2 97.5	1.32	34.84	8.02	1
							18.2	/.4/	71.5	1.43	34.84	8.01	<1.0
						1.00	18.4 18.4	7.77 7.73	101.8 101.3	0.91 0.92	34.85 34.85	8.03 8.03	1.1
14:03	CC1	MF	843201	816416	9.84	4.92	18.3	7.63	100.0	0.95	34.92	8.02	1.1
							18.3 18.4	7.6 7.53	99.6 98.7	0.93	34.93 34.97	8.02 8.02	<1.0
	-					8.84	18.4 18.4	7.51 7.69	98.5 100.7	1.15	34.97 34.82	8.02 8.03	<1.0
						1.00	18.4	7.64	100.2	0.95	34.83	8.03	1.2
14:08	CC2	MF	844076	817091	12.29	6.15	18.4 18.3	7.61 7.59	99.7 99.4	1.10 1.13	34.83 34.83	8.03 8.03	<1.0
						11.29	18.3 18.3	7.52 7.5	98.5 98.2	1.53 1.72	34.84 34.84	8.03 8.03	1.1
						1.00	18.5	7.70	101.2	1.18	34.88	8.01	1
14:27	CC3	MF	844606	817941	10.04	5.02	18.5 18.3	7.66 7.64	100.7 100.1	1.16 1.06	34.88 34.83	8.01 8.01	1.5
1.1.27	005		011000	017711	10.01		18.3 18.2	7.63	99.8 98.6	1.04 1.48	34.82 34.83	8.01 8.01	1.2
						9.04	18.2	7.50	97.9	1.40	34.84	8.01	1.1
							10.5	7.73	101.5	0.92	34.80	7.07	
13:53	CC4	MF	845444	815595	2.19	1.10	18.5 18.5	7.69	101.0	0.92	34.80	7.87 7.89	1.6
					1	1.00	18.4 18.4	7.69 7.67	100.8 100.6	0.89 0.92	34.82 34.82	8.03 8.03	<1.
14:13	CC13	MF	844200	817495	8.51	4.26	18.3	7.59	99.4	1.04	34.83	8.02	<1.
-							18.3 18.2	7.57	99.0 98.2	0.99 0.97	34.83 34.82	8.02 8.02	<1.0
	-					7.51	18.2 18.2	7.50 7.62	98.1 99.5	0.98 1.25	34.82 34.81	8.02 8.02	1.6
						1.00	18.2	7.57	98.9	1.22	34.84	8.02	3.6
13:39	SWI1	MF	845512	817442	4.28								
						3.28	18.2 18.2	7.48 7.44	97.7 97.1	1.41 1.65	34.85 34.85	8.02 8.01	<1.1
						1.00	18.4	7.65	100.2	0.96	34.87	8.02	1.3
14:00	C3	MF	843821	816211	15.07	7.54	18.4	7.64 7.60	100.1 99.6	0.95	34.87 34.91	8.02 8.02	1.5
14.00		1411	07,7021	010211	1.3.07		18.3 18.3	7.60 7.53	99.5 98.6	1.00 1.28	34.92 34.98	8.02 8.02	1.1
	1					14.07	18.3	7.50	98.2	1.42	34.99	8.02	<1.
						1.00	18.4 18.4	7.64	100.2 100.1	0.85 0.82	34.87 34.87	8.03 8.03	<1.2
13:57	C4	MF	844621	815770	15.32	7.66	18.3 18.3	7.60 7.58	99.5 99.3	0.91 0.85	34.89 34.90	8.03 8.02	1.3
						14.32	18.3	7.54	98.6	1.21	34.96	8.02	1.1
						1.00	18.2 18.3	7.53 7.70	98.5 100.9	1.27 0.94	34.97 34.83	8.02 8.03	<1.
							18.3 18.3	7.71	100.9	0.97	34.83 34.83	8.03 8.03	1
14:24	11	MF	844602	817675	10.03	5.02	18.3	7.69	100.7	1.00	34.83	8.03	<1.0
	1		1			9.03	18.3 18.2	7.66 7.62	100.3 99.6	0.99 0.98	34.83 34.83	8.03 8.02	<1.

Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

> Remarks: MF - Middle Flood tide ME - Middle Ebb tide

For SS, if the monitoring result is less than Limit of Report 1mg/L, the result value will be assumed as 1 for the calculation.

	: 31-Jan-20	,				L	-	1					
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidit v	Salinity	рН	ss
			East	North	m	m	°C 18.1	mg/L 8.04	% 104.9	NTU 0.70	ppt 34,94	unit 8.04	mg/l
						1.00	18.1	8.04	104.9	0.68	34.94	8.04	
11:22	CC1	ME	843201	816416	10.17	5.09	18.1	8.05 8.05	105.0 104.9	0.73 0.76	34.94 34.94	8.04 8.04	
						9.17	18.0 18.0	8.00 7.99	104.2 104.0	0.75 0.80	34.95 34.96	8.04 8.04	
						1.00	17.9 17.9	8.20 8.21	106.7 106.7	0.78 0.77	34.93 34.92	8.06 8.06	
11:27	CC2	ME	844076	817091	11.5	5.75	17.8	8.16 8.14	105.9	0.76	34.95 34.94	8.06	
						10.50	17.9	7.89	102.5	0.91	35.00	8.04	
						1.00	17.9 18.1	7.90 8.09	102.7 105.5	0.88 0.90	34.99 34.92	8.04 8.04	
							18.1 18.1	8.10 8.13	105.6 106.0	0.89 1.06	34.91 34.93	8.04 8.04	
11:44	CC3	ME	844606	817941	9.92	4.96	18.1	8.14	106.1	1.01	34.93	8.04	
						8.92	18.0 18.0	7.77 7.76	101.1 101.0	1.49 1.48	35.01 35.01	8.03 8.03	
11:10	CC4	ME	845444	815595	2.21	1.11	18.1 18.0	8.00 7.99	104.3 104.1	1.19	34.91 34.91	8.04 8.04	
						1.00	17.9	8.10	105.3	0.81	34.95	8.06	
11:32	CC13	ME	844200	817495	8.65	4.33	17.9 17.9	8.10 8.18	105.4 106.4	0.81 0.79	34.95 34.95	8.06 8.06	
11.52	cers	MIL	044200	017495	0.05	-	17.9 17.9	8.19 8.17	106.5	0.82 0.92	34.95 34.94	8.06 8.05	
						7.65	17.8 17.8	8.15 8.46	105.8 109.7	0.96	34.94 34.94	8.05 7.73	
						1.00	17.8	8.42	109.1	1.12	34.94	7.76	
10:58	SWI1	ME	845512	817442	3.89								
						2.89	17.7	8.25 8.22	106.9 106.6	1.23	34.93 34.93	7.83	
						1.00	18.1 18.1	7.98 7.99	104.1 104.3	0.75 0.76	34.96 34.96	8.05 8.04	
11:18	C3	ME	843821	816211	16.18	8.09	18.0	7.84	102.1	1.15	35.04	8.03	
							18.0 18.0	7.80	101.6 100.5	1.19 1.50	35.04 35.04	8.03 8.02	
						15.18	18.0	7.70	100.3	1.53	35.04	8.02	
						1.00	18.0 18.0	8.03 8.04	104.7 104.8	0.81 0.80	34.98 34.98	8.05 8.05	
11:13	C4	ME	844621	815770	14.56	7.28	18.0 18.0	7.97 7.96	103.8 103.6	0.84 0.87	35.01 35.01	8.04 8.04	
						13.56	18.0	7.89	102.8	0.81	35.04	8.04 8.04	
						1.00	17.9 17.9	7.87 8.02	102.4 104.2	0.82 0.98	35.05 34.85	8.04	
11.25		1.05	0.44600	017/75	10.12	-	17.9 17.9	8.02 8.04	104.3 104.5	0.94	34.85 34.92	8.04 8.04	
11:35	11	ME	844602	817675	10.13	5.07	17.9 17.8	8.02 7.83	104.3 101.7	1.03 1.73	34.94 34.98	8.04 8.03	
						9.13	17.8	7.77	100.9	1.87	34.98	8.03	
							18.2	8.18	106.9	0.70	34.94	8.04	
						1.00	18.2	8.19	107.1	0.59	34.94	8.04	
15:27	CC1	MF	843201	816416	10.26	5.13	18.2 18.1	8.2 8.17	107.1 106.6	0.72 0.78	34.94 34.95	8.05 8.05	
						9.26	18.0 18.0	7.77	101.2 101.0	1.11 1.23	35.02 35.03	8.04 8.04	
						1.00	18.0 18.0	8.32 8.33	108.4 108.5	0.71 0.67	34.93 34.93	8.06 8.06	
15:31	CC2	MF	844076	817091	12.07	6.04	18.0	8.33	108.5	0.70	34.93	8.06	
							18.0 18.0	8.32 8.23	108.4 107.2	0.70 0.83	34.93 34.94	8.06 8.06	
						11.07	18.0	8.22	107.0	0.83	34.94	8.06	
						1.00	18.3	8.01 8.04	104.9	0.81	34.91 34.91	8.03	
15:47	CC3	MF	844606	817941	10.11	5.06	18.1 18.1	8.24 8.27	107.5 108.0	0.99 0.96	34.97 34.96	8.04 8.04	
						9.11	17.9 17.9	7.82 7.80	101.6 101.3	2.33 2.67	34.96 34.97	8.04 8.04	
							2.13					0101	
15:16	CC4	MF	845444	815595	2.26	1.13	18.1	8.21	107.0	0.91	34.96	7.94	
						-	18.1	8.22	107.2	0.79	34.96	7.95	
						1.00	18.0	8.30	108.2	0.77	34.90	8.04	
						1.00	18.0	8.31	108.2	0.77	34.90	8.04	<u> </u>
15:35	CC13	MF	844200	817495	8.47	4.24	18.0 18.0	8.34 8.35	108.7 108.8	0.82 0.81	34.90 34.91	8.05 8.05	1
				L		7.47	18.0 17.9	8.30 8.25	107.9 107.3	0.73 0.71	34.92 34.93	8.06 8.06	\pm
						1.00	18.1	8.25 8.26	107.6	1.03 0.98	34.92 34.92	7.62	—
15:10	SWI1	MF	845512	817442	3.89		10.1	0.20	107.0	0.70	JH.72	/.04	
						2.89	17.8	8.33	108.1	1.39	34.92	7.72	
	-					-	17.8 18.2	8.33 8.18	108.1 106.9	1.45 0.73	34.93 34.97	7.75 8.04	+
						1.00	18.2	8.19	107.0	0.61	34.97	8.04	1
15:23	C3	MF	843821	816211	14.95	7.48	18.1 18.1	7.88 7.84	102.8 102.3	0.83 0.98	35.00 35.01	8.04 8.04	
						13.95	18.0 18.0	7.75 7.75	101.1 101.0	1.48 1.49	35.03 35.03	8.03 8.02	
						1.00	18.2	8.29	108.3	0.53	34.96	7.97	
15:19	C4	MF	844621	815770	16.26	8.13	18.2 18.0	8.29 8.00	108.4 104.2	0.54 0.68	34.96 35.06	7.98 8.02	
13.17	C4	1911	0-14021	013770	10.20	-	18.0 17.9	8.05 7.92	104.8 103.1	0.66 0.95	35.03 35.07	8.02 8.03	-
						15.26	17.9	7.86	102.4	0.97	35.07	8.03	1
						1.00	18.2 18.2	8.22 8.22	107.3 107.3	0.96	34.89 34.89	8.05 8.05	
15:39	11	MF	844602	817675	10.22	5.11	18.1 18.1	8.21 8.20	107.1 107.0	0.99	34.90 34.91	8.05 8.05	F
	1		1		1	9.22	18.1	7.85	107.0	1.05	34.91	8.05	<u> </u>

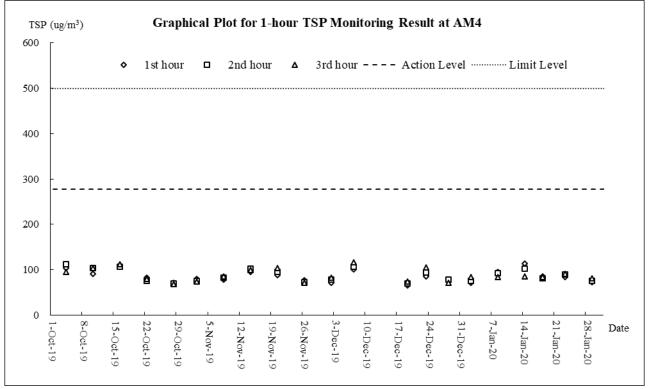
Contract No. EDO/04/2018 Cross Bay Link, Tseung Kwan O

Remarks: MF - Middle Flood tide ME - Middle Ebb tide

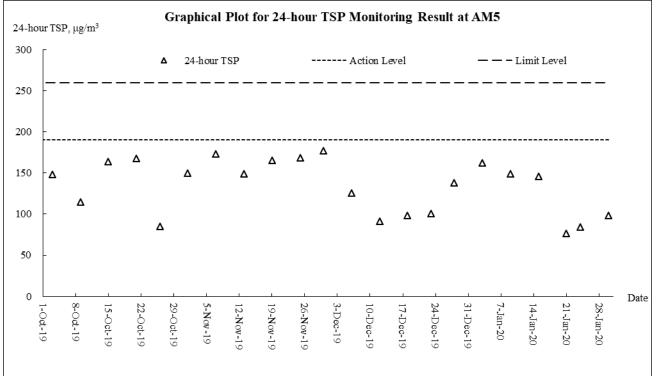
							g Results (Wan O Road)					
Monitoring						thane (%)			ygen (%)			on Dioxide (%	
Location	Date	Time	Weather	Temperature (°C)	Measurement Result	Action Level	Limit Level	Measurement Result	Action Level	Limit Level	Measurement Result	Action Level	Limit Level
	2/1/2020	8:30	D '	17	0.1	10	20	20.8	19	18	0.1	0.5	1.5
I T	2/1/2020	14:00	Fine	21	0.1	10	20	20.9	19	18	0.2	0.5	1.5
I I	3/1/2020	8:30	Fine	17	0.1	10	20	21	19	18	0.1	0.5	1.5
. [3/1/2020	14:00	Fine	22	0.1	10	20	21	19	18	0.1	0.5	1.5
. [4/1/2020	8:30	Fine	18	0.1	10	20	21	19	18	0.1	0.5	1.5
ı l	4/1/2020	14:00	Fille	22	0.1	10	20	21	19	18	0.1	0.5	1.5
	6/1/2020	8:30	Fine	20	0.1	10	20	20.9	19	18	0.1	0.5	1.5
	6/1/2020	14:00	Tille	24	0.1	10	20	20.9	19	18	0.1	0.5	1.5
	7/1/2020	8:30	Sunny	20	0.1	10	20	20.8	19	18	0.2	0.5	1.5
	7/1/2020	14:00	Sumry	25	0.1	10	20	20.9	19	18	0.1	0.5	1.5
	8/1/2020	8:30	Fine	19	0.1	10	20	20.9	19	18	0.1	0.5	1.5
	8/1/2020	14:00	1 me	26	0.1	10	20	20.8	19	18	0.1	0.5	1.5
	9/1/2020	8:30	Fine	18	0.1	10	20	21	19	18	0.2	0.5	1.5
	9/1/2020	14:00		20	0.1	10	20	21	19	18	0.2	0.5	1.5
	10/1/2020	8:30	Fine	18	0.1	10	20	21	19	18	0.1	0.5	1.5
, I	10/1/2020	14:00		21	0.1	10	20	20.9	19	18	0.1	0.5	1.5
, I	11/1/2020	8:30	Fine	18	0.1	10	20	20.8	19	18	0.2	0.5	1.5
, I	11/1/2020	14:00		24	0.1	10	20	21	19	18	0.1	0.5	1.5
, I	13/1/2020	8:30	Fine	17	0.1	10	20	21	19	18	0.1	0.5	1.5
Wan O Road	13/1/2020	14:00		19	0.1	10	20	20.7	19	18	0.1	0.5	1.5
, F	14/1/2020	8:30	Sunny	17	0.1	10	20	20.8 20.9	19	18	0.2	0.5	1.5
, F	14/1/2020	14:00		17	0.1	10	20	20.9	19	18		0.5	1.5
, F	15/1/2020	8:30	Fine			10	20		19	18	0.1		1.5
, F	16/1/2020	14:00 8:30		21	0.1	10	20	21	19 19	18	0.1	0.5	1.5
ı F	16/1/2020	14:00	Fine	22	0.1	10	20	20.9	19	18	0.1	0.5	1.5
	17/1/2020	8:30		17	0.1	10	20	20.9	19	18	0.1	0.5	1.5
	17/1/2020	14:00	Fine	20	0.1	10	20	20.7	19	18	0.2	0.5	1.5
ı F	18/1/2020	8:30		17	0.1	10	20	20.8	19	18	0.1	0.5	1.5
ı F	18/1/2020	14:00	Fine	21	0.1	10	20	20.9	19	18	0.2	0.5	1.5
ı F	20/1/2020	8:30		15	0.1	10	20	20.9	19	18	0.2	0.5	1.5
l F	20/1/2020	14:00	Fine	20	0.1	10	20		19	18	0.1	0.5	1.5
l F	21/1/2020	8:30		17	0.1	10	20	21	19	18	0.1	0.5	1.5
l F	21/1/2020	14:00	Fine	21	0.1	10	20	21	19	18	0.1	0.5	1.5
l F	22/1/2020	8:30		18	0.1	10	20	20.8	19	18	0.2	0.5	1.5
l t	22/1/2020	14:00	Fine	23	0.1	10	20	20.9	19	18	0.1	0.5	1.5
l t	23/1/2020	8:30	E.	20	0.1	10	20	20.8	19	18	0.1	0.5	1.5
l t	23/1/2020	14:00	Fine	25	0.1	10	20	21	19	18	0.1	0.5	1.5
, ľ	24/1/2020	8:30	D'	20	0.1	10	20		19	18	0.1	0.5	1.5
, ľ	24/1/2020	14:00	Fine	23	0.1	10	20	21	19	18	0.1	0.5	1.5

Remark:	Parameter	Criteria	Measurement
	Ommen	Action Level	< 19%
	Oxygen	Limit Level	< 18%
	Methane	Action Level	> 10% LEL (> 0.5% v/v)
	Wiethane	Limit Level	> 20% LEL (>1% v/v)
	Carbon	Action Level	> 0.5%
	Dioxide	Limit Level	> 1.5%

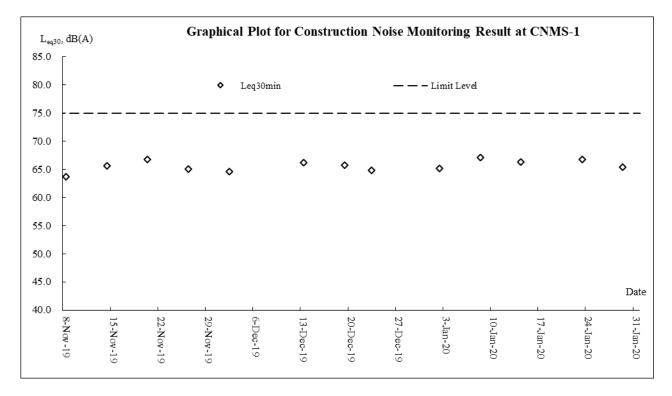
Landfill Gas Monitoring Results (Wan O Road)

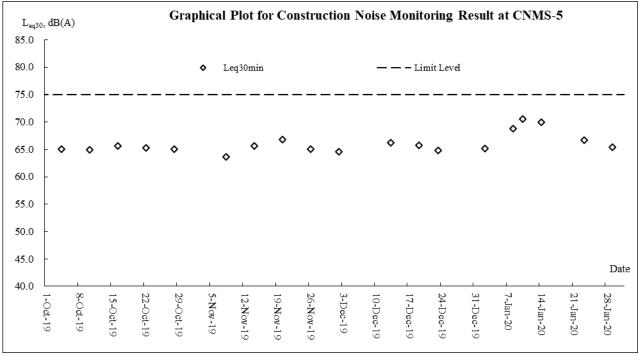

Appendix I

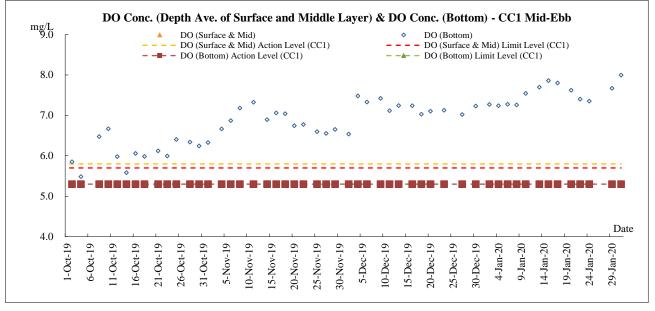
Graphical Plots of Monitoring Results

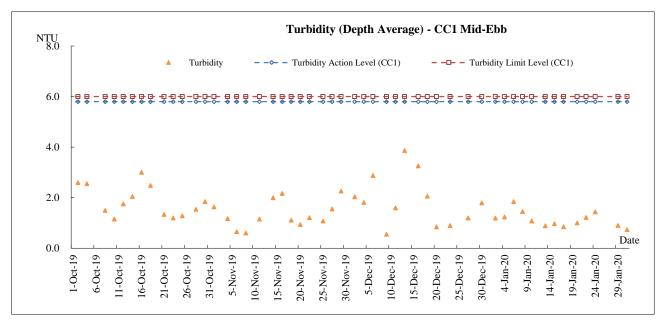

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report – January 2020

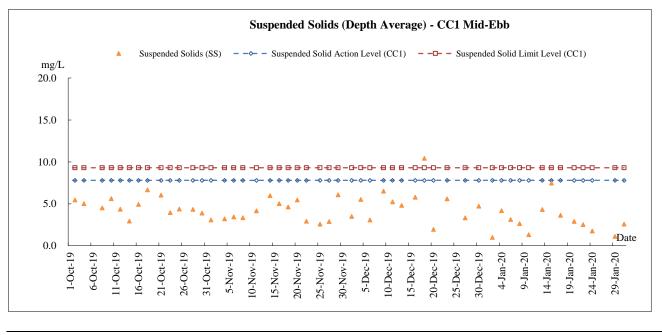
Air Quality – 1 Hour TSP



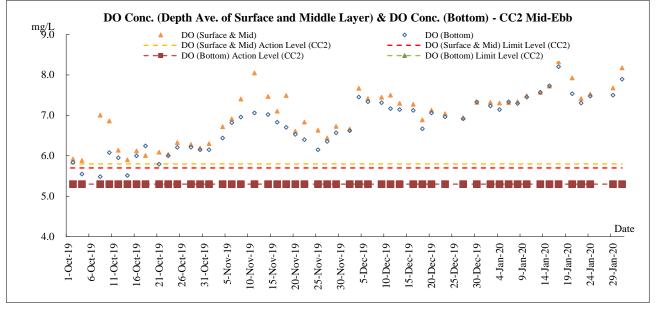

Air Quality - 24-Hour TSP

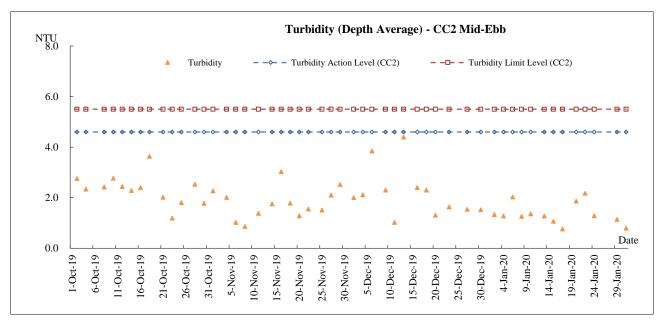

Construction Noise

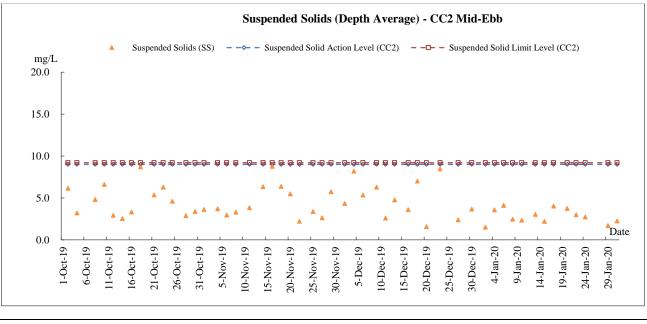




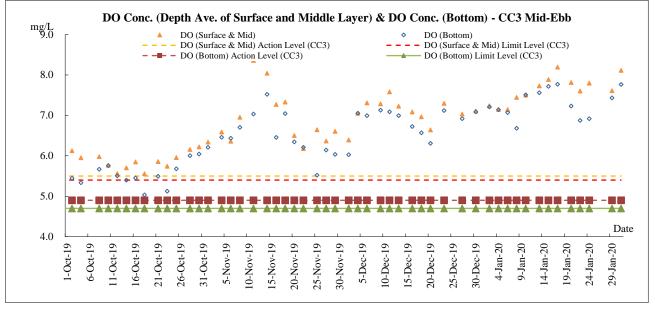
Marine Water Quality – CC1 Mid-ebb

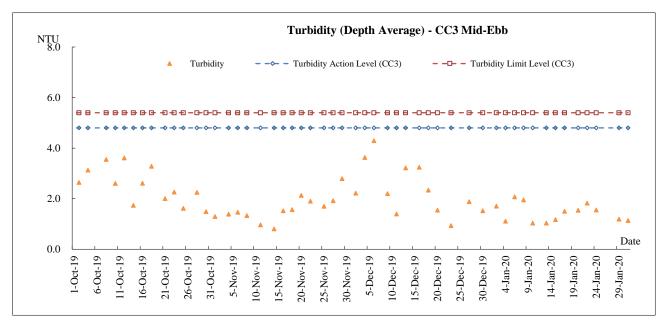


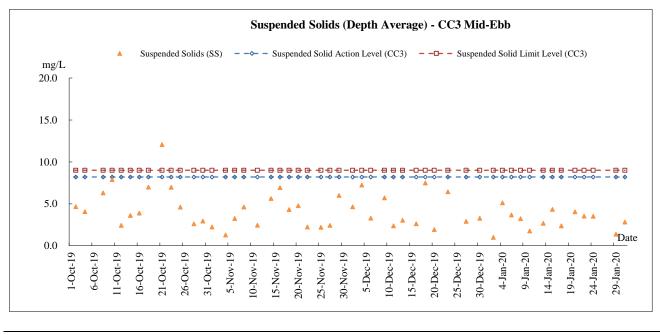




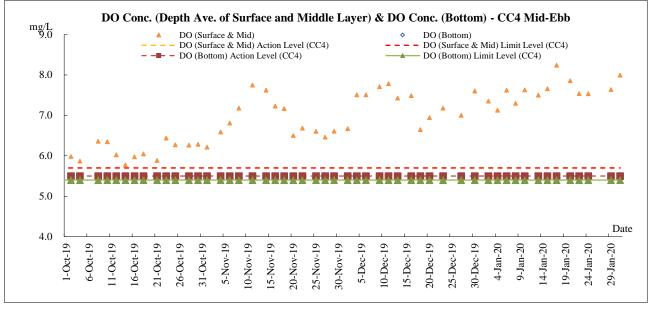
Marine Water Quality – CC2 Mid-ebb

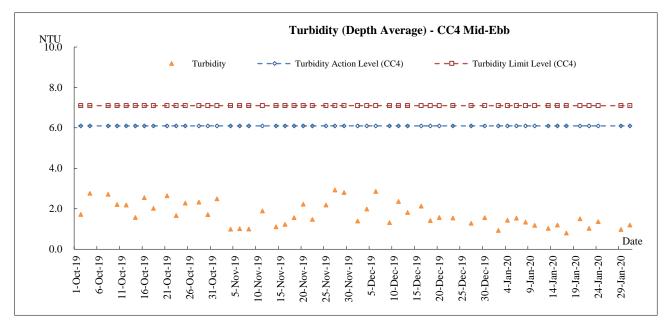


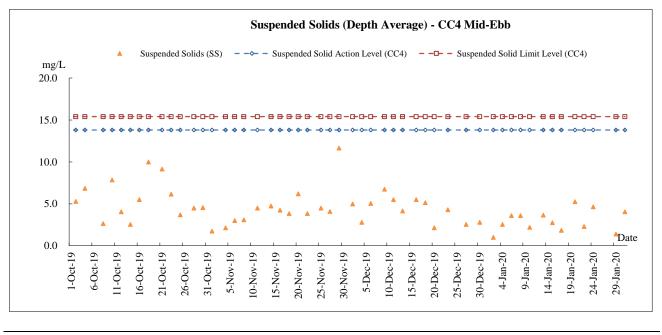




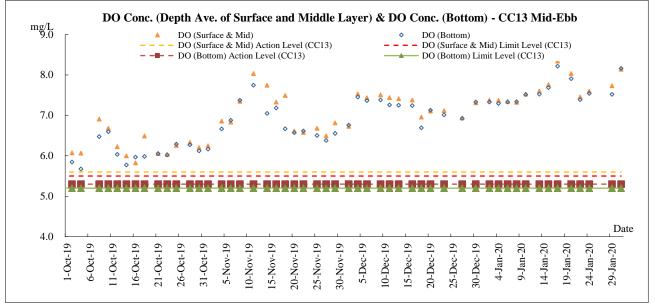
Marine Water Quality – CC3 Mid-ebb

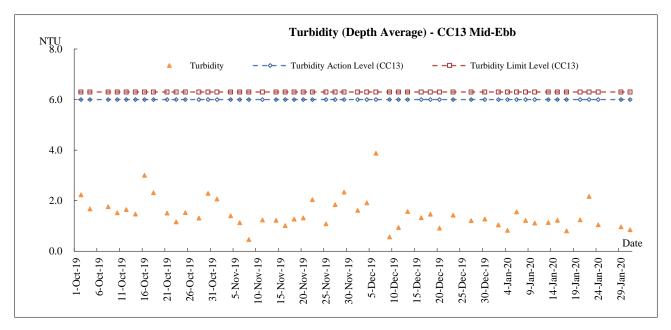


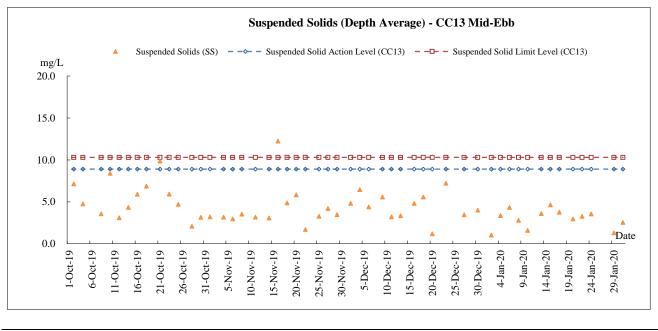




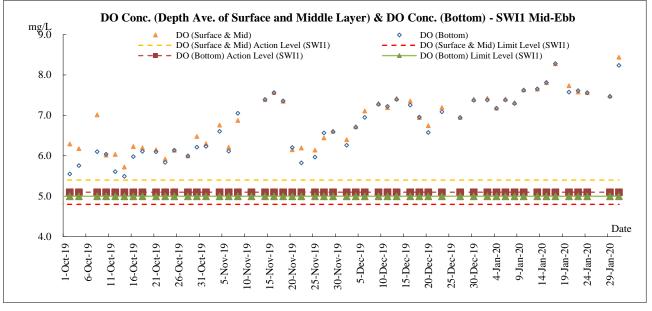
Marine Water Quality – CC4 Mid-ebb

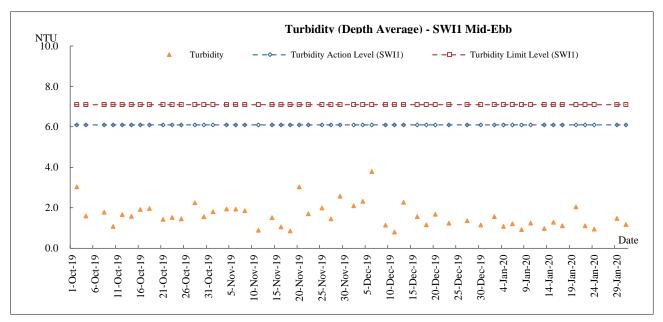


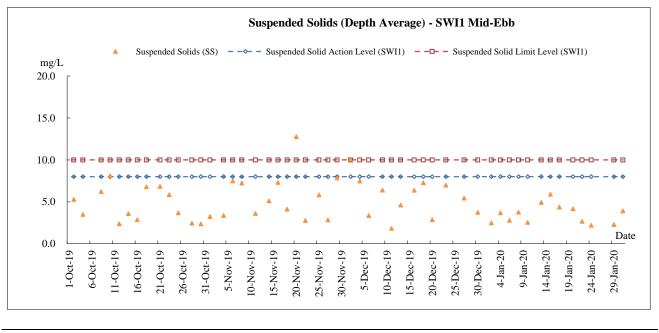




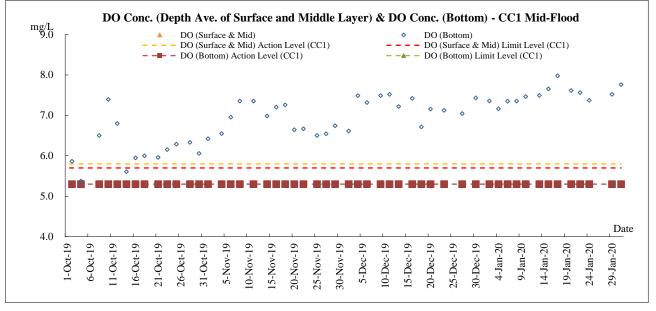
Marine Water Quality – CC13 Mid-ebb

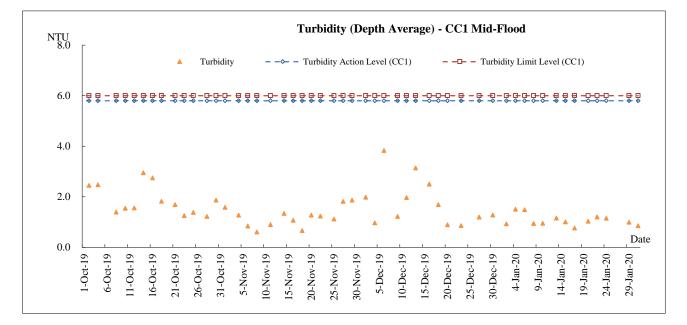


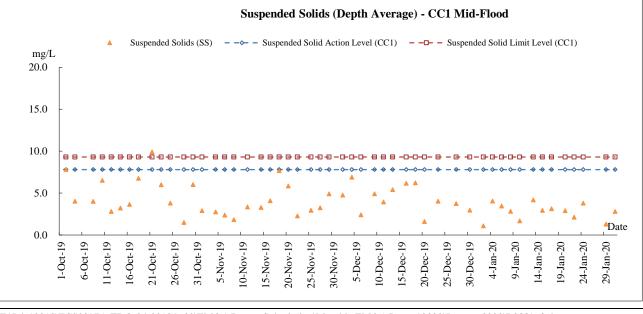




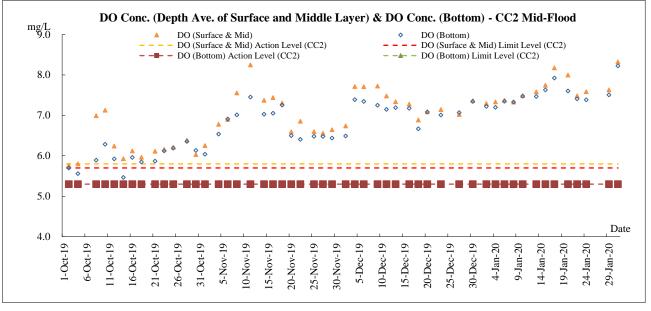
Marine Water Quality – SWI1 Mid-ebb

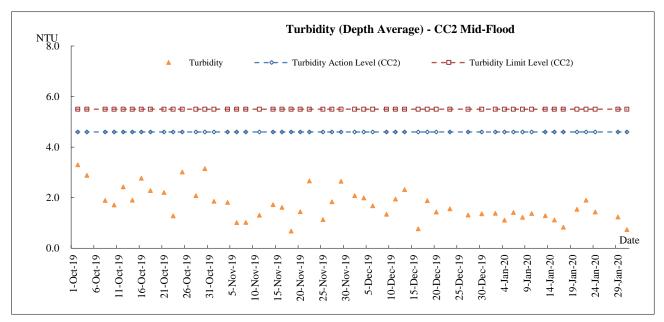


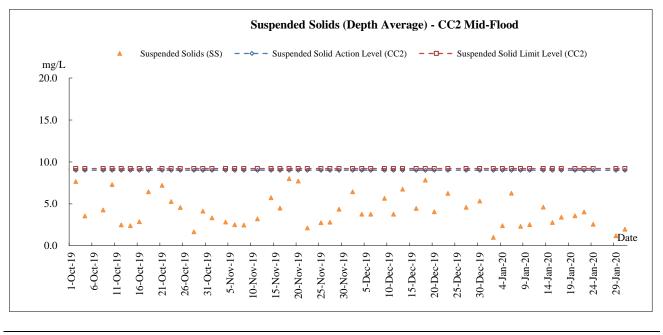




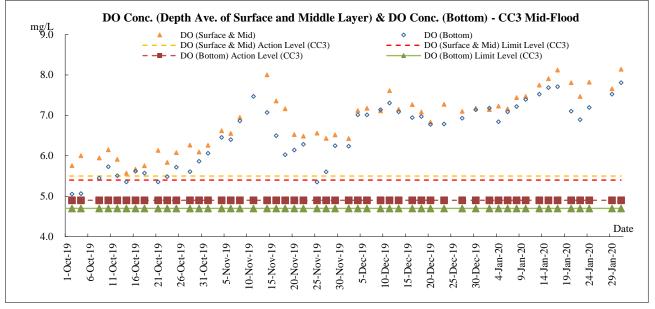
Marine Water Quality – CC1 Mid-Flood

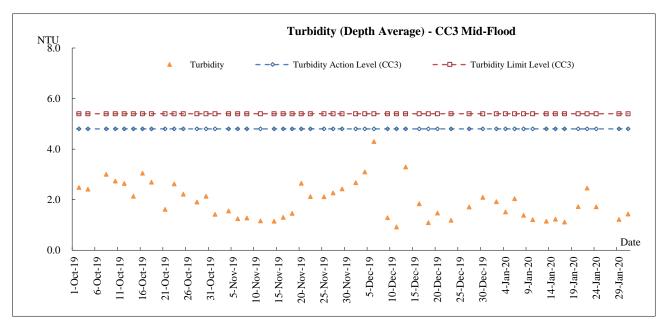


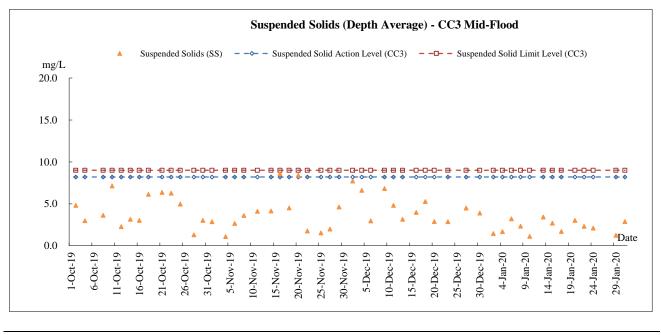




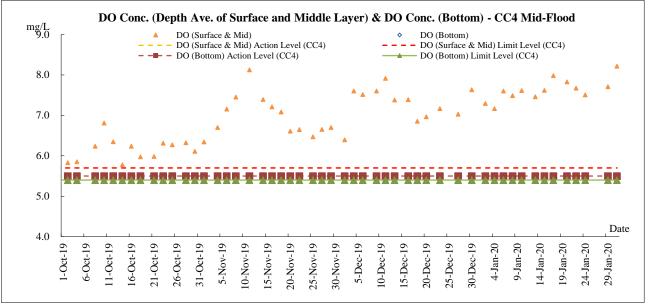
Marine Water Quality – CC2 Mid-Flood

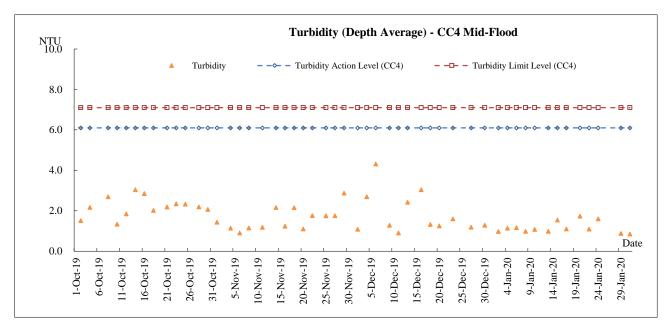


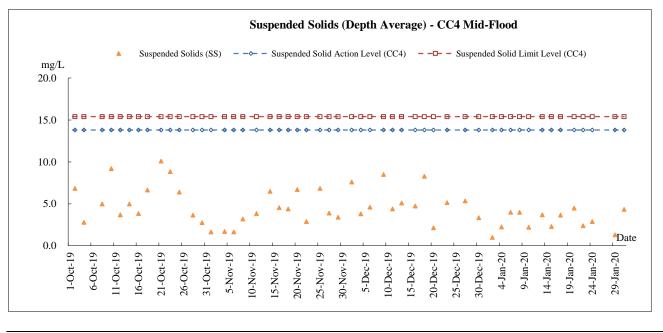




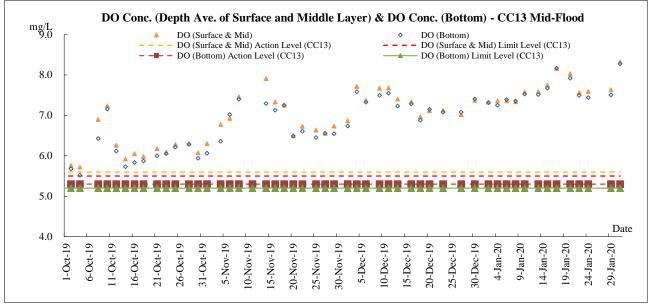
Marine Water Quality – CC3 Mid-Flood

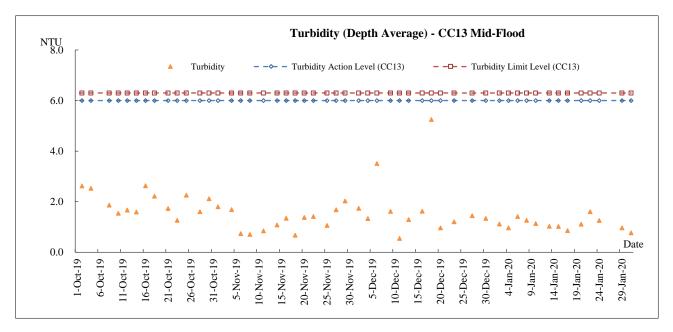




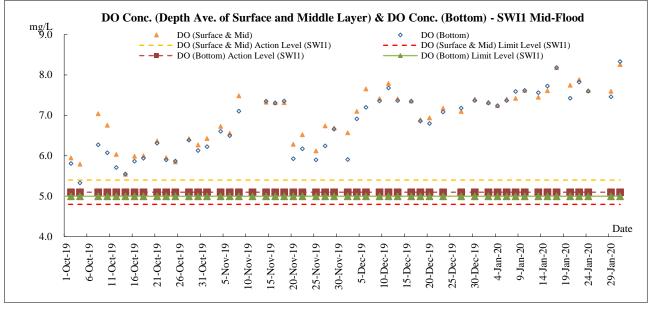


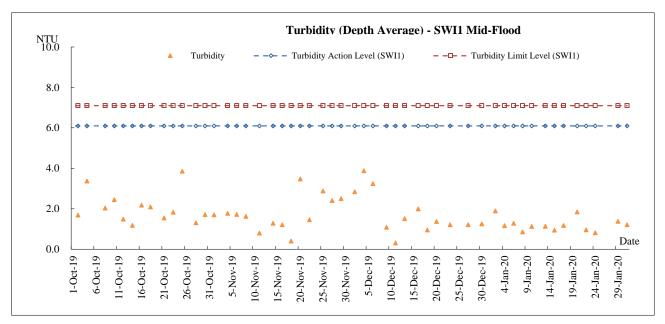
Marine Water Quality – CC4 Mid-Flood

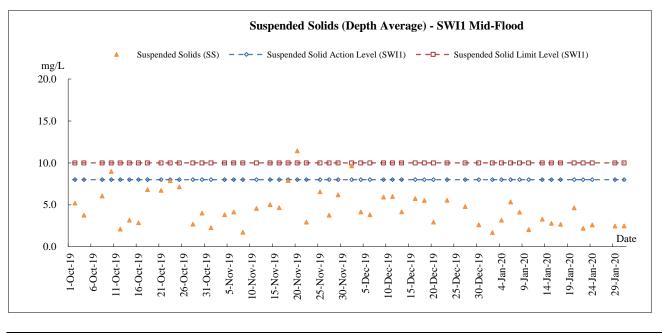




Marine Water Quality - CC13 Mid-Flood







Marine Water Quality – SWI1 Mid-Flood

Appendix J

Meteorological Data

CEDD Contract Agreement No. EDO/04/2018 -Environmental Team for Cross Bay Link, Tseung Kwan O Monthly Environmental Monitoring & Audit Report – January 2020

					Tseung H	Kwan O Sta	tion
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction (degree)
1-Jan-20	Wed	Moderate northerly winds, fresh offshore.	Trace	17.8	6.5	72.5	E/NE
2-Jan-20	Thu	Mainly fine and dry.	0	17.8	75	69	E/NE
3-Jan-20	Fri	Moderate to fresh northerly winds,	0	18.3	7	76.5	NE
4-Jan-20	Sat	Moderate northerly winds, fresh offshore.	0	18.1	6.5	75	NE
5-Jan-20	Sun	Mainly fine and dry.	0	20.5	10	71.2	N/NE
6-Jan-20	Mon	Mainly fine and dry.	0	21.6	5	79	S
7-Jan-20	Tue	Moderate northerly winds, fresh offshore.	Trace	22	7.5	68.5	S
8-Jan-20	Wed	Mainly fine and dry.	0	22.5	9	67	E/NE
9-Jan-20	Thu	Moderate to fresh northerly winds,	0	18.4	8.5	72.2	N/NE
10-Jan-20	Fri	Moderate northerly winds, fresh offshore.	0	19.3	8.5	74.5	N/NE
11-Jan-20	Sat	Mainly fine and dry.	0	20.5	7.8	69.5	N/NE
12-Jan-20	Sun	Very dry during the day. Moderate to fresh northerly winds,	Trace	20.1	10.2	69.5	N/NE
13-Jan-20	Mon	Cloudy with a few rain patches.	0	17.3	13.3	70.0	N/NE
14-Jan-20	Tue	Mainly fine and dry.	0	18.8	8	64.7	N/NE
15-Jan-20	Wed	Moderate to fresh northerly winds,	0.1	19	8.5	71	NE
16-Jan-20	Thu	Mainly fine and dry.	Trace	18.7	8	88.5	NE
17-Jan-20	Fri	Moderate to fresh northerly winds,	0	17.5	7.5	71.7	E/NE
18-Jan-20	Sat	Mainly fine and dry.	0	17.2	7	70	E/NE
19-Jan-20	Sun	Coastal mist tonight. Light winds.	0	17.7	7.5	69.5	N/NE
20-Jan-20	Mon	Mainly cloudy. Sunny periods in the afternoon	0	16.6	4.5	73.5	N/NE
21-Jan-20	Tue	Coastal mist tonight. Light winds.	0	17.8	8.5	77	NE
22-Jan-20	Wed	Mainly cloudy. Sunny periods in the afternoon	Trace	20.1	6	76	E/NE
23-Jan-20	Thu	Moderate to fresh northerly winds,	0	22.5	6	79	E/NE
24-Jan-20	Fri	Moderate northeasterly winds, occasionally fresh offshore.	Trace	19.8	10.5	81	E/NE
25-Jan-20	Sat	Moderate northerly winds, fresh offshore.	2.1	19.6	9.7	72.5	E/NE
26-Jan-20	Sun	Mainly fine and dry.	12.3	15.9	7.5	69.7	N/NE
27-Jan-20	Mon	Moderate to fresh northerly winds,	0.2	13.3	8	71	N/NE
28-Jan-20	Tue	Moderate northerly winds, fresh offshore.	0.1	12.8	10.1	61.2	NE
29-Jan-20	Wed	Mainly fine and dry.	0	13.4	10.5	46.2	E/NE
30-Jan-20	Thu	Very dry during the day. Moderate to fresh northerly winds,	0	14.3	7.9	51	E/NE
31-Jan-20	Fri	Cloudy with a few rain patches.	0	13.6	8.5	45.2	NE

Appendix K

Waste Flow Table

Contract 1

Monthly Summary Waste Flow Table for <u>2018</u> (year)

Name of Person completing the record: Kanny Cho (EO)

Project : Cross Bay Link, TKO, Main Bridge and Associated Works

2	A	ctual Quantitie	s of Inert C&I	O Materials G	enerated Month	ly	Actua	al Quantities o	of C&D Waste	s Generated M	lonthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	$(in '000m^3)$	$(in '000m^3)$	$(in '000m^3)$	$(in '000m^3)$	(in '000m ³)	$(in '000m^3)$	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan											
Feb											
Mar											
Apr											
May											
Jun											
Sub-total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.837
Sep	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.305
Oct	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.065	0.000	0.000	0.008
Nov	0.000	0.000	0.000	0.000	0.000	0.320	0.000	0.000	0.000	0.000	0.009
Dec	0.000	0.000	0.000	0.000	0.276	0.000	0.000	0.000	0.000	0.000	0.004
Total	0.000	0.000	0.000	0.000	0.276	0.320	0.000	0.065	0.000	0.000	1.163

Contract No.: NE/2017/07

Note:

1. For non-inert portion of C&D material, assume the density of 1 m^3 general refuse is equal to 200 kg.

2. For inert portion of C&D material, assume 6 m^3 per each full-filled dump truck.

3. All values are round off to the third decimal places.

Monthly Summary Waste Flow Table for <u>2019</u> (year)

Name of Person completing the record: Calvin So (EO)

Project : Cross Bay Link, TKO, Main Bridge and Associated Works

Contract No.: NE/2017/07

	Quantity Generated Broken Concrete the Cont the Control (in '000m ³) (in '000m ³) (in '000m ³) 0.845 0.000 0.000 0.000 0.000 0.000 0.042 0.000 0.000 1.760 0.000 0.000 1.026 0.000 0.000			D Materials G	enerated Month	ıly	Actua	al Quantities of	of C&D Waste	s Generated N	Ionthly
Month	Quantity	and Large Broken	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	$(in '000m^3)$	$(in '000m^3)$	$(in '000m^3)$	(in '000m ³)	$(in '000m^3)$	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	$(in '000 m^3)$
Jan	0.845	0.000	0.000	0.000	0.845	0.000	0.000	0.023	0.000	0.000	0.077
Feb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.032	0.000	0.000	0.036
Mar	0.042	0.000	0.000	0.000	0.042	0.000	0.000	0.029	0.000	0.000	0.081
Apr	1.760	0.000	0.000	0.000	1.760	0.000	0.000	0.509	0.000	0.000	0.012
May	1.026	0.000	0.000	0.000	1.026	0.000	0.000	0.094	0.000	0.000	0.030
Jun	0.354	0.000	0.000	0.000	0.354	0.000	0.000	0.087	0.000	0.000	0.050
Sub-total	4.027	0.000	0.000	0.000	4.027	0.000	0.000	0.774	0.000	0.000	0.286
Jul	1.122	0.000	0.000	0.000	1.122	0.000	0.000	0.060	0.000	0.000	0.095
Aug	1.290	0.000	0.000	0.000	1.290	0.000	0.000	0.075	0.000	0.000	0.058
Sep	0.762	0.000	0.000	0.000	0.762	0.000	0.000	0.085	0.000	0.000	0.054
Oct	1.002	0.000	0.000	0.000	1.002	0.000	0.000	0.080	0.000	0.000	0.106
Nov	0.744	0.000	0.000	0.000	0.744	0.000	0.000	0.092	0.000	0.000	0.075
Dec	1.104	0.000	0.000	0.000	1.104	0.000	0.000	0.100	0.000	0.000	0.154
Total	10.051	0.000	0.000	0.000	10.051	0.000	0.000	1.266	0.000	0.000	0.828

Note:

For non-inert portion of C&D material, assume the density of 1 m³ general refuse is equal to 200 kg.
 For inert portion of C&D material, assume 6 m³ per each full-filled dump truck.
 All values are round off to the third decimal places.

Monthly Summary Waste Flow Table for <u>2020</u> (year)

Name of Person completing the record: Calvin So (EO)

Project : Cross Bay Link, TKO, Main Bridge and Associated Works

Contract No.: NE/2017/07

	A	ctual Quantitie	es of Inert C&I	D Materials G	enerated Month	ly	Actua	al Quantities of	of C&D Waste	es Generated M	Ionthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	$(in '000m^3)$	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	$(in '000 m^3)$
Jan	1.020	0.000	0.000	0.000	1.020	0.000	0.000	0.088	0.000	0.000	0.100
Feb											
Mar											
Apr											
May											
Jun											
Sub-total	1.020	0.000	0.000	0.000	1.020	0.000	0.000	0.088	0.000	0.000	0.100
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	1.020	0.000	0.000	0.000	1.020	0.000	0.000	0.088	0.000	0.000	0.100
Note:							9				

For non-inert portion of C&D material, assume the density of 1 m³ general refuse is equal to 200 kg.
 For inert portion of C&D material, assume 6 m³ per each full-filled dump truck.
 All values are round off to the third decimal places.

Contract 2

		Actual Qua	ntities of Inert C&I	Materials Generat	ed Monthly			Actual Quantities	of C&D Wastes Ge	enerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Jan	0.358	0.000	0.358	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.357
Feb	0.022	0.000	0.000	0.000	0.022	0.000	0.000	0.000	0.000	0.000	0.728
Mar	0.106	0.000	0.000	0.000	0.106	0.000	0.000	0.000	0.000	0.000	0.229
Apr	3.013	0.000	0.000	0.000	3.013	0.000	0.000	0.000	0.000	0.000	0.013
May	3.621	0.000	0.000	0.000	3.621	0.000	0.000	0.000	0.000	0.000	0.022
June	1.127	0.000	0.000	0.000	1.127	0.000	0.000	0.000	0.000	0.000	0.019
SUB- TOTAL	8.247	0.000	0.358	0.000	7.889	0.000	0.000	0.000	0.000	0.000	1.368
Jul	2.468	0.000	0.000	0.000	1.879	0.589	0.000	0.000	0.000	0.000	0.031
Aug	4.401	0.000	0.000	0.000	4.262	0.140	0.000	0.000	0.000	0.000	0.004
Sep	1.912	0.000	0.000	0.046	1.866	0.000	0.000	0.000	0.000	0.000	0.009
Oct	4.384	0.000	0.000	0.000	4.384	0.000	0.000	0.000	0.000	0.000	0.007
Nov	2.351	0.000	0.000	0.000	2.351	0.000	8.870	0.000	0.000	0.000	0.004
Dec	0.700	0.000	0.000	0.000	0.700	0.000	0.000	0.000	0.000	0.000	0.012
TOTAL	24.463	0.000	0.358	0.046	23.331	0.728	8.870	0.000	0.000	0.000	1.436

Monthly Summary Waste Flow Table for 2019 Year

Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005 Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Assume the loaded volume of a dump truck for internal inert waste transfer is 17.9 m³

		Actual Quan	tities of Inert C&I) Materials Genera	ted Monthly			Actual Quantities	of C&D Wastes G	enerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Jan	1.732	0.000	0.358	0.000	1.374	0.000	0.000	0.000	0.000	0.036	0.019
Feb											
Mar											
Apr											
May											
June											
SUB- TOTAL	1.732	0.000	0.358	0.000	1.374	0.000	0.000	0.000	0.000	0.036	0.019
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
TOTAL	1.732	0.000	0.358	0.000	1.374	0.000	0.000	0.000	0.000	0.036	0.019

Monthly Summary Waste Flow Table for 2020 Year

Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Assume the loaded volume of a dump truck for internal inert waste transfer is 17.9 m³

Appendix L

Implementation Record of Water Mitigation Measures in the Reporting Month

Water Quality Mitigation Measures under NE/2017/07 (Contract 1)

Silt-curtain had beed provided to prevent muddy water overflow from the piling platform.

Temporary trench had been installed at the sea fount to prevent muddy run-off overflow into the water body during

Treatment facilities was installed at site to treat the site generated water prior discharge.

Water Quality Mitigation Measures under NE/2017/08 (Contract 2)

Exposed area had been covered to prevent muddy surface run-off generation during rainstorm.

Trench had been installed beside the sea front to prevent muddy surface run-off overflow during rainstorm.

Treatment facilities was installed at site to treat the site generated water prior discharge.

Gap between the concrete block and the sea front was sealed up.

Appendix M

Implementation Schedule for Environmental Mitigation Measures

EIA Ref	Environmental Protection Measures/ Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Location/ Timing	Implementation		Requirements
				Agent	Stage	and/or Standards to be Achieved
Dust Impa	ct (Contraction Phase)		1			
\$5.5.5.1	Regular watering under good site practice shall be adopted. In accordance with the "Control of Open Fugitive Dust Sources" (USEPA AP-42), watering once per hour on exposed worksites and haul road is recommended to achieve dust removal efficiency of 91.7%.	Good construction site practices to control the dust impact on the nearby sensitive receivers to within the relevant criteria	All construction sites	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation
\$5.5.5.3	 The following dust suppression measures shall also be incorporated by the Contractor to control the dust nuisance throughout the construction phase: Any excavated or stockpiled dusty material shall be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed shall be wetted with water and cleared from the surface of roads; A stockpile of dusty material shall not extend beyond the pedestrian barriers, fencing or traffic cones; The load of dusty materials on a vehicle leaving a construction site shall be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet shall be provided at every discernible or designated vehicle exit point. The area where vehicle washing facilities and the exit point shall be paved with concrete, bituminous materials or hardcores; When there are open excavation and reinstatement works, hoarding of not less than 2.4m high shall be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction site that is within 30m of a vehicle entrance or exit shall be kept clear 	Good construction site practices to control the dust impact on the nearby sensitive receivers to within the relevant criteria	All construction sites	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation

EIA Ref	Environmental Protection Measures/ Mitigation Measures	Objectives of the		Implementation		Requirements
		Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 of dusty materials; Surfaces where any pneumatic or power driven drilling, cutting, polishing or other mechanical breaking operation takes place shall be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities shall be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting shall be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport shall be totally enclosed by impervious sheeting; Exposed earth shall be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 					
\$5.5.5.4	 For the barging facilities at the site compound, the following good site practice is required: All road surfaces within the barging facilities shall be paved. Vehicles should pass through designated wheel wash facilities. Continuous water spray shall be installed at the loading point. 	Good construction site practices to control the dust impact on the nearby sensitive receivers to within the relevant criteria	Site compound	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation
S5.5.5.5	An audit and monitoring programme during the construction phase should be implemented by the Contractor to ensure that the construction dust impacts are controlled to within the HKAQO. Detailed requirements for the audit and monitoring programmes are given separately in the EM&A manual.	Monitor the 1-Hour and 24-Hr TSP levels at the representative dust monitoring stations to ensure compliance with relevant criteria throughout the construction period	Selected representative dust monitoring station (Drawing no. 209506/EMA/ AIR/001)	Contractor	Construction stage	 APCO (Cap. 311); and Air Pollution Control (Construction Dust) Regulation

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
S6.6.4.3	 Good site practice and noise management techniques: Only well-maintained plant shall be operated on-site and the plant shall be serviced regularly during the construction programme; Machines and plant (such as trucks, cranes) that are in intermittent use shall be shut down between work periods or throttled down to a minimum; Plant known to emit noise strongly in one direction, where possible, shall be orientated so that the noise is directed away from nearby NSRs; Silencers or mufflers on construction equipment shall be properly fitted and maintained during the construction works; Mobile plant shall be sited as far away from NSRs as possible and practicable; and Material stockpiles, site office and other structures shall be effectively utilised, where practicable, to screen noise from on-site construction activities. 	To minimize construction noise impact arising from the Project on the affected NSRs	All construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
\$6.6.4.5-6	Use of quiet powered mechanical equipment and working methods	Reduce noise levels of plant items	All construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
S6.6.4.7	Install site hoarding at the site boundaries between noisy construction activities and NSRs	Reduce the construction noise levels at low-level zone of NSRs through partial screening	All construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
S6.6.4.8-11	Use of temporary or movable noise barriers and full enclosure for relatively fixed plant source	· · ·	For plant items listed in Table 6.7 and Appendix 6.1 of the EIA report at all construction sites	Contractor	Construction stage	• Annex 5, TM-EIAO
	Implement a noise monitoring programme under the EM&A manual	Monitor the construction noise levels at the selected representative locations	Selected representative noise monitoring stations (Drawing no. 209506/EMA/NS/001 & 209506/EMA/NS/002)	Contractor	Construction stage	• Annex 5, TM-EIAO
\$6.7.3.1	Partial enclosures along Road D9 and application of low noise surfacing material along CBL and Road D9	To minimize road traffic noise impact arising from the CBL and Road D9 on the affected NSRs	CBL and Road D9 (Drawing no. 209506/EMA/NS/003)	CEDD/ Contractor	During operational stage	• Annex 5, TM-EIAO

		Objectives of the		Impler	nentation	Requirements and/or Standards to be Achieved
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	
Water Qua	ality Impact (Contraction Phase)					
S8.6.4.3	 Marine Piling and Pile Excavation Works Marine piling and pile excavation works shall be undertaken in such a manner as to minimize re-suspension of sediments. Standard good practice measures shall be implemented, including the following requirements: All marine piling and pile excavation works shall be conducted within a floating single silt curtain. Mechanical closed grabs (with a size of5m3) shall be designed and maintained to avoid spillage and should seal tightly while being lifted. Barges shall have tight fitting seals to their bottom openings to prevent leakage of material. Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes. Loading of barges shall be controlled to prevent splashing of dredged material to the surrounding water. Barges shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation. Excess material shall be cleaned from the decks and exposed fittings of barges before the vessel is moved. Aldequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action. All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash. The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site. 	To control potential impacts from marine piling and pile excavation works	During marine piling and pile excavation works	Contractor	Construction stage	TM-EIAO; and WPCO
S8.6.4.4	 Construction Site Runoff In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN 1/94), construction phase mitigation measures, where appropriate, shall include the following: The design of efficient silt removal facilities shall be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The 	Control potential water quality impacts from construction site run-off	All construction sites	Contractor	Construction stage	 TM-EIAO; and WPCO

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	 detailed design of the sand/silt traps shall be undertaken by the contractor prior to the commencement of construction; Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m3 shall be covered with tarpaulin or similar fabric during rainstorms. Measures shall be taken to prevent the washing away of construction materials, soil, silt or debris into any marine water bodies; All vehicles and plant shall be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities shall be provided at every construction site exit where practicable. Wash-water shall have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road shall be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains; Construction solid waste, debris and rubbish on site shall be collected, handled and disposed of properly to avoid water quality impacts; All fuel tanks and storage areas shall be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby; and Regular environmental audit on the construction site shall be carried out in order to prevent any malpractices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the 					
\$8.6.4.6	 meander, wetlands and fish ponds. Sewage from workforce Portable chemical toilets and sewage holding tanks shall be provided for handling the construction sewage generated by the workforce; A licensed contractor shall be employed to provide 	Control potential water quality impacts from sewage	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.					
	Monitoring Implement a marine water quality monitoring programme under the EM&A on level of suspended solids (SS) / turbidity and dissolved oxygen (DO) shall be carried out.	Control potential water quality impacts from marine piling and pile excavation works	Selected monitoring stations (Drawing no. 209506/EMA/WQ/001)	Contractor	Construction station	TM-EIAO; andWPCO
\$8.7.3.2	Operational phase – Runoff from road surface Proper drainage systems with silt traps and oil interceptors shall be installed, maintained and cleaned at regular intervals.	Control potential water quality impacts from road surface runoff	CBL and Road D9	Contractor	Construction and operational stage	TM-EIAO; andWPCO
	nagement (Contraction Phase)					
\$9.5.2	 Good Site Practices Recommendations for good site practices: Nomination of an approved personnel to be responsible for the implementation of good site practices, arrangements for collection and effective deposal to an appropriate facility of all wastes generated at the site; Training of site personnel in proper waste management and chemical handling procedures; Provision of sufficient waste disposal points and regular collection for disposal; Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Centre; Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and Implementation of a recording system for the amount of wastes generated/recycled and disposal sites. 	Good site practices which ensure waste generated during construction phase is properly managed	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
\$9.5.4	 Waste Reduction Measures Recommendations for achieving waste reduction include: On-site reuse of any material excavated as far as practicable; Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of material and their proper disposal; Collection of aluminum cans and waste paper by individual collectors during construction should be encouraged. Separately labelled recycling bins should also be provided to segregate these wastes from other general refuse by the workforce; Recycling of any unused chemicals and those with remaining functional capacity as far as possible; Prevention of the potential damage or contamination to the construction materials though proper storage and good site practices; Planning and stocking of construction materials should be made carefully to minimize amount of waste generated avoid unnecessary generation of waste; and Training on the importance of appropriate waste management procedures, including waste reduction, reuse and recycling should be provided to workers. 	To reduce amount of waste generated during construction phase	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005
S9.5.5-6	 Storage, Collection and Transportation of Waste Recommendations for proper storage include: Waste such as soil should be handled and stored well to ensure secure containment; Stockpiling area should be provided with covers and water spraying system to prevent materials from being washed away and to reduce wind-blown litter; and Different locations should be designated to stockpile each material to enhance reuse. With respect to the collection and transportation of waste from the construction works, the following is recommended: Remove waste in a timely manner; Employ trucks with cover or enclosed containers for waste transportations; Obtain relevant waste disposal permits from the appropriate 	To reduce the environmental implications of improper storage	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005

		Objectives of the		Impler	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	authorities; andDisposal of waste should be done at licensed waste disposal facilities.					Se mente rea
\$9.5.8-11	 <u>C&D Materials</u> The following mitigation measures shall be implemented in handling the waste: Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; Disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation; Standard formwork or pre-fabrication order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Metal hoarding should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage; and The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites 	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	All construction sites	Contractor	Construction stage	 Waste Disposal Ordinance (Cap. 54); ETWB TCW No. 19/2005 ETWB TCW No. 06/2010
\$9.5.13	 should be considered for such segregation and storage. Excavated Marine Sediments During transportation and disposal of the excavated marine sediments, the following measures shall be taken to minimize potential environmental impacts: Bottom opening of barges should be fitted with tight fitting 	To minimize potential impacts on water quality	All construction sites where applicable	Contractor	Construction stage	• ETWBTC (Works) No. 34/2002

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
50.5.14.17	 seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved; Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation; Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP; and Barges should not be filled to a level that would cause the overflow of materials or sediment-laden water during loading or transportation. 			Contractor	Construction	
S9.5.14-17	For those processes which generate chemical waste, the Contractor shall identify any alternatives that generate reduced quantities or even no chemical waste, or less dangerous types of chemical waste.	To ensure proper management of chemical waste	All construction sites	Contractor	Construction stage	• Waste Disposal (Chemical Waste) (General) Regulation;
	If chemical waste is produced at the construction site, the Contractor is required to register with EPD as chemical waste producers. Chemical waste shall be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows. Containers used for storage of chemical wastes shall:					Code of Practice on the Packaging, Labelling and Storage of Chemical Waste
	• Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed;					
	• Have a capacity of less than 450 L unless the specification have been approved by EPD; and					
	• Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulations.					
	 The storage area for chemical wastes shall: Be clearly labelled and used solely for the storage of chemical wastes; 					
	 Be enclosed on at least 3 sides; Have an impermeable floor and bunding of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest; 					

		Objectives of the		Impler	nentation	Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	 Have adequate ventilation; Be covered to prevent rainfall entering (water collected within the bund must be tested and disposed as chemical waste, if necessary); and Be arranged so that incompatible materials are adequately separated. Disposal of chemical waste shall: Be via a licensed waste collector; and Be to a facility licensed to receive chemical waste, such as the CWTC which also offers a chemical waste collection service and can supply the necessary storage containers; or Be to a re-user of the waste, under approval from EPD. 					be Achieved	
\$9.5.18	Sewage An adequate number of portable toilets shall be provided for the on-site construction workers. Any waste shall be transferred to a sewage treatment works by a licensed collector.	Proper handling of sewage from worker to avoid odour, pest and litter impacts	All construction sites	Contractor	Construction stage	• Waste Disposal Ordinance (Cap. 54)	
\$9.5.19	General Refuse General refuse generated on-site shall be stored in enclosed bins or compaction units separately from construction and chemical wastes. Recycling bins shall also be provided to encourage recycling. A reputable waste collector shall be employed by the Contractor to remove general refuse from the site on a daily basis separately from the construction and chemical wastes. Burning of refuse on construction sites is prohibited by law.	Minimize production of general refuse and avoid odour, pest and litter impacts	All construction sites	Contractor	Construction stage	• Waste Disposal Ordinance (Cap. 54)	
S10.7.2.4	Good Site Practices – The integrity and effectiveness of all silt curtains shall be regularly inspected. Effluent monitoring should be incorporated to make sure that the discharged effluent from construction sites meets the relevant effluent discharge guidelines.	To minimize potential impacts on water quality and protect marine communities within Junk Bay	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO	
\$10.7.2.5	Site runoff control – For works on land, standard site runoff control measures will be established and strictly enforced to ensure that discharge of contaminated or silt-laden runoff into marine waters is minimized.		All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO	
S10.9.1.1	The marine water quality monitoring programme recommended in Chapter 8 of this EIA report and this EMIS would also serve to protect the marine communities inside Junk Bay.	To minimize potential impacts on water quality and protect marine	Selected monitoring stations (Drawing no. 209506/EMA/WQ/001)	Contractor	Construction stage	TM-EIAO; andWPCO	

		Objectives of the		Implen	nentation	Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
		communities within Junk Bay					
S11.6.2.2	Good Site Practices: – The integrity and effectiveness of all silt curtains should be regularly inspected. Effluent monitoring shall be incorporated to make sure that the discharged effluent from construction sites meets the relevant effluent discharge guidelines.	To minimize potential impacts on water quality and protect fishery resources	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO	
\$11.6.2.3	Site runoff control - For works on land, standard site runoff control measures will be established and strictly enforced to ensure that discharge of contaminated or silt-laden runoff is minimized.	To minimize potential impacts on water quality and protect fishery resources	All construction sites	Contractor	Construction stage	TM-EIAO; andWPCO	
\$11.8.1.1	The marine water quality monitoring programme recommended in Chapter 8 of this EIA report and this EMIS would also serve to protect the fishery resources.	To minimize potential impacts on water quality and protect fishery resources	Selected monitoring stations (Drawing no. 209506/EMA/WQ/001)	Contractor	Construction stage	TM-EIAO; andWPCO	
Landscape	and Visual	•					
\$13.8.1.2	 The following mitigation measures should be implemented in the construction stage CM1 – The construction area and contractor's temporary works areas should be minimized to avoid impacts on adjacent landscape. CM2 – Reduction of construction period to practical minimum. CM3 – Topsoil, where identified, should be stripped and stored for re-use in the construction of the soft landscape works, where the soil material meets acceptable criteria and where practical. The Contract Specification shall include storage and reuse of topsoil as appropriate. CM4 – Existing trees on boundary of the Project Area shall be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection stage). 	Minimize effects of landscape and visual impacts	Work site/during construction	Funded and implemented by CEDD	Construction stage		

		Objectives of the		Implen	nentation	Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	 CM5 – Trees unavoidably affected by the works shall be transplanted where practical. Trees should be transplanted straight to their final receptor site and not held in a temporary nursery. A detailed Tree Transplanting Specification shall be provided in the Contract Specification, if applicable. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme. CM6 – Advance screen planting to proposed roads and associated structures. CM7 – hydroseeding or sheeting of soil stockpiles with visually unobtrusive material (in earth tone). CM8 – Screening of construction works by hoardings/noise barriers around works area in visually unobtrusive colours, to screen Works. CM9 – Control night-time lighting and glare by hooding all lights. CM10 – Ensure no run-off into water body adjacent to the Project Area. CM11 – Avoidance of excessive height and bulk of buildings and structures 						
\$13.8.1.2	OM1 – Compensatory tree planting for all felled trees shall be provided to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006.	Minimize effects of landscape and visual impacts	Within the site boundary of the proposed works	implemented by CEDD. Maintained by CEDD and LCSD.	construction and operational stages		
\$13.8.1.2	 The following mitigation measures should be implemented in the operational stage: OM2 – A continuous belt of screen planting along the roads. Planting of the belt of trees shall be carried out as advance works ahead of other site formation and building works. OM3 – Maximise soft landscape of the site, where space permits, roadside berms /slope treatment works should be created. OM4 – During detailed design, refine structure layout to create a planting strips along the roads to enhance greenery. OM5 – Use appropriate (visually unobtrusive and 	Minimize effects of landscape and visual impacts	CBL and Road D9/during construction and operation	Funded and implemented by CEDD. Maintained by CEDD and LCSD.	construction and operational		

		Objectives of the		Impler	nentation	Requirements	
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved	
	 non-reflective) building materials and colours, and aesthetic design in built structures. OM6 – Streetscape elements (e.g. paving, signage, street furniture, lighting etc.) shall be sensitively designed in a manner that responds to the local context, and minimizes potential negative landscape and visual impacts. Lighting units should be directional and minimize unnecessary light spill. OM7 – Avoidance of excessive height and bulk of buildings and structures 						
Landfill G						-	
S14.7.5	 Precautionary measures The following guidance has been extracted from the EPD's Landfill Gas Hazard Assessment Guidance Note Guidance to ensure a robust and comprehensive set of measures to protect workers are provided. During all works, safety procedures shall be implemented to minimize the risks of fires and explosions, asphyxiation of workers (especially in confined space) and toxicity effects resulting from contact with contaminated soils and groundwater. Safety officers who are specifically trained with regard to LFG and leachate related hazards and the appropriate actions to take in adverse circumstances shall be present on all worksites throughout the works. All personnel who work on site and all visitors to the site shall be made aware of the possibility of ignition of gas in the vicinity of the works, the possible presence of contaminated water and the need to avoid physical contact with it. Those staff who work in, or have responsibility for "at risk" areas, including all excavation workers, supervisors and engineers working within the consultation zone, shall receive appropriate training on working in areas susceptible to LFG hazards. Enhanced personal hygiene practices including washing thoroughly after working and eating only in "clean" areas shall be adopted where contact may have been made with any groundwater which is thought to be contaminated with 	Health and safety of the workers	Construction sites within 250m Consultation Zone (Drawing no. 209506/EMA/LFG/001)	Contractor	Construction stage	• Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97)	

		Objectives of the		Implen	nentation	Requirements
EIA Ref	Environmental Protection Measures/ Mitigation Measures	Recommended Measures & Main Concerns to Address	Location/ Timing	Agent	Stage	and/or Standards to be Achieved
	leachate.					
	• Ground level construction plant shall be fitted with vertical exhausts at least 0.6m above ground level and with spark arrestors.					
	• During piping assembly or ducting construction, all valves/seals shall be closed immediately after installation. As construction progresses, all valves/seals should be closed as installed to prevent the migration of gases through the pipeline/conduit. All piping /ducting shall be capped at the end of each working day.					
	• Mobile offices, equipment stores, mess rooms etc. shall be located on an area which has been proven to be gas free (by survey with portable gas detectors) and ongoing monitoring shall be carried out to ensure that these areas remain gas free. Alternatively, such buildings shall be raised clear of the ground. If buildings are raised clear of the ground, the minimum, clear separation distance (as measured from the highest point on the ground surface to the underside of the					
	lowest floor joist) shall be 500mm. However, in this case, it is highly recommended that all the site offices, equipment stores and mess rooms should be located outside the 250m Consultation Zone.					
	• Smoking and naked flames shall be prohibited within confined spaces. "No Smoking" and "No Naked Flame" notices in Chinese and English shall be posted prominently around the construction site. Safety notices shall be posted warning of the potential hazards.					
	• Welding, flame-cutting or other hot works may only be carried out in confined spaces when controlled by a "permit to work" procedure, properly authorized by the Safety Office. The permit to work procedure shall set down clearly the requirements for continuous monitoring of methane,					
	carbon dioxide and oxygen throughout the period during which the hot works are in progress. The procedure shall also require the presence of an appropriately qualified person who shall be responsible for reviewing the gas measurements					
	as they are made, and who shall have executive responsibility for suspending the work in the event of					

EIA Ref	Environmental Protection Measures/ Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Location/ Timing	Implementation		Requirements
				Agent	Stage	and/or Standards to be Achieved
	 unacceptable or hazardous conditions. Only those workers who are appropriately trained and fully aware of the potentially hazardous conditions which may arise shall be permitted to carry out hot works in confined areas. During the construction works, adequate fire extinguishers and breathing apparatus sets shall be made available on site and appropriate training given in their use. 					
\$14.7.6	 Landfill gas monitoring The following monitoring shall be undertaken when construction works are carried out in confined space within the 250m Consultation Zone: The works area shall be monitored for methane, carbon dioxide and oxygen using appropriately calibrated portable gas detection equipment. The monitoring requirements and procedures specified in Paragraphs 8.23 to 8.28 of EPD's Guidance Note shall be followed. The monitoring frequency and areas to be monitored shall be set down prior to commencement of the works. Depending on the results of the measurements, actions required will vary. As a minimum these shall encompass the actions specified in Table 14.6 of the EIA report. When portable monitoring equipment is used, the frequency and areas to be monitored should be set down prior to commencement of the works either by the Safety Officer or by an appropriately qualified person. All measurements shall be made with the monitoring tube located not more than 10mm from the surface. A standard form, detailing the location, time of monitoring and equipment used together with the gas concentrations measured, shall be used when undertaking manual monitoring to ensure that all relevant data are recorded. 	Health and safety of the workers	Confined space of construction sites within 250m Consultation Zone	Contractor	Construction stage	• Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97)
	• If methane (flammable gas) or carbon dioxide concentrations are in excess of the trigger levels or that of oxygen is below the level specified in the Emergency Management in the following section, then evacuation shall be initiated.					
S14.7.8-9	Emergency management In the event of the trigger levels specified in Table 14.6 of the EIA report being exceeded, a person, such as the Safety	Health and safety of the workers	Confined space of construction sites within 250m Consultation Zone	Contractor	Construction stage	Landfill Gas Hazard Assessment

EIA Ref	Environmental Protection Measures/ Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Location/ Timing	Implementation		Requirements
				Agent	Stage	and/or Standards to be Achieved
	Officer, shall be nominated, with deputies, to be responsible for dealing with any emergency which may occur due to LFG.					Guidance Note (EPD/TR8/97)
	In an emergency situation the nominated person, or his deputies, shall have the necessary authority and shall ensure that the confined space is evacuated and the necessary works implemented for reducing the concentrations of gas.					
S14.7.16	 Protection measures - Operational phase An assumed presence of landfill gas shall be adopted at all times by maintenance workers; all maintenance workers inspecting any manhole shall be fully trained in the issue of LFG hazard; any manhole which is large enough to permit to access to personnel shall be subject to entry safety procedure; Code of Practice on Safety and Health at Work in Confined Spaces shall be followed to ensures compliance with the Factories and Industrial Undertakings (Confined Spaces) Regulations of the Factories and Industrial Undertakings Ordinance; a strictly regulated "work permit procedure" shall be implemented and the relevant safety procedures must be rigidly followed; and Adequate communication with maintenance staff shall be maintained with respect to LFG. 	Health and safety of the workers	Utility maintenance areas within 250m Consultation Zone/during operational period	Utility companies	Operational stage	 Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97); and Code of Practice on Safety and Health at Work in Confined Space
S14.7.17	General recommended precautionary & protection measures – Operational phase LGF surveillance exercise shall be undertaken by the utility companies at the utility manholes/inspection chambers. The surveillance exercise shall be undertaken for the duration of the site occupancy, or until such time that EPD agree that surveillance is no longer required and this shall be based on all the available monitoring data for methane, carbon dioxide and oxygen.	Health and safety of the workers	Utility maintenance areas within 250m Consultation Zone/during operational period	Utility companies	Operational stage	 Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97); and Code of Practice on Safety and Health at Work in Confined Space