SEVENTH WATER QUALITY IMPACT MONITORING REPORT

CLP 🔂 中電

Proposed 11kV Submarine Cables Replacement Connecting Liu Ko Ngam and Pak Sha Tau Tsui at Kat O -Environmental Monitoring & Audit

Seventh Water Quality Impact Monitoring Report

7 April 2016

Submitted by Environmental Resources Management 16/F Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com

Proposed 11kV Submarine Cables Replacement Connecting Liu Ko Ngam and Pak Sha Tau Tsui at Kat O - Environmental Monitoring & Audit

Environmental Resources Management

16/F Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Seventh Water Quality Impact Monitoring Report

Document Code: 0259952_Seventh Impact Monitoring Report.doc

Client:		Project N	0:		
CLP Po	wer Hong Kong Limited (CLP)	025995	2		
Summary: This document presents the monitoring requirements, methodologies and results of impact water quality measurements in the reporting period from 14 March to 3 April 2016 at the monitoring locations near the proposed 11kV submarine cables replement econocting his Ke March and Bak She Tau Tau of Ket			Date: 7 April 2016 Approved by:		
0.	O.				
v0	Seventh Water Quality Impact Monitoring Report	YL	FZ	TF	7/4/16
Revision	Description	Ву	Checked	Approved	Date
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report is confidential to the client and we accept no responsibility of whatsoever nature			istribution Internal Public		
to third parti on the repor	es to whom this report, or any part thereof, is made known. Any such party relies t at their own risk.	Confidential LSO 9001 Certificate N		0001 : 2008 e No. FS 32515	

Proposed 11kV Submarine Cables Replacement Connecting Liu Ko Ngam and Pak Sha Tau Tsui at Kat O - Environmental Monitoring & Audit Environmental Certification Sheet EP-461/2013

Reference Document/Plan

Document/Plan-to be-Certified/ Verified:	Seventh Water Quality Impact Monitoring Report
Date of Report:	7 April 2016
Date prepared by Environmental Team:	7 April 2016
Date received by IC:	7 April 2016

Reference Project Profile Annex E EM&A Requirement and EP Requirement

 EM&A Requirement:
 Project Profile, Annex E EM&A Requirements, Section E1

 Content:
 Water Quality Monitoring and Reporting

E.1.3 "Impact Monitoring will comprise sampling two times a week during the cable installation works at the same location as the Baseline Monitoring Stations. Samples shall be taken during both mid flood and mid ebb tidal states on each sampling occasion...In case the Impact Monitoring is ceased with reasons such as the operations of the cable installation has no disturbance of seabed or the works are suspended due to safety issue or adverse weather conditions etc. for more than 1 week. The Contractor should send a confirmation letter to EPD and AFCD 1 week before the cessation of Impact Monitoring."

E.1.5 "Schedule for impact monitoring should be submitted to EPD and AFCD at least 1 week before commencement of the monitoring works for agreement. A letter report shall be provided to EPD and AFCD that shall include the monitoring results and an interpretation of monitoring results. The monitoring data should be provided graphically to show the relationship between the Control, Gradient and Impact Stations and compliance or noncompliance with respect to the Action/Limit Levels.... An Impact Monitoring Report shall be provided within one week of completing every weekly monitoring survey for the first three impact monitoring weeks. If there are no exceedances recorded during the first three weeks, a Bi-weekly Impact Monitoring Report shall be provided within 1 week of completing every two weekly monitoring surveys."

 EP Condition:
 Condition No. 2.1

 Content:
 Water Quality Monitoring

2.1 All measures described in the Project Profile (No. PP-489/2013) submitted by the applicant on 30 May 2013 shall be fully implemented.

IC Verification

I hereby verify that the above referenced document/plan complies with the above referenced condition of EP-461/2013.

levor

Terence Fong,

Date:

7 April 2016

Independent Checker

EXECUTIVE SUMMARY

EXECUT	TIVE SUMMARY	Ι
1	INTRODUCTION	1
1.1	PURPOSE OF THE REPORT	1
1.2	STRUCTURE OF THE REPORT	1
2	PROJECT INFORMATION	2
2.1	BACKGROUND	2
2.2	MARINE CONSTRUCTION WORKS UNDERTAKEN DURING	
	Reporting Week	3
2.3	STATUS OF ENVIRONMENTAL APPROVAL DOCUMENTS	3
3	IMPACT WATER QUALITY MONITORING	
	REQUIREMENTS	5
3.1	MONITORING LOCATIONS	5
3.2	MONITORING PARAMETERS	6
3.3	MONITORING EQUIPMENT AND METHODOLOGY	6
3.4	ACTION AND LIMIT LEVELS	8
3.5	EVENT AND ACTION PLAN	9
4	IMPACT WATER QUALITY MONITORING RESULTS	10
5	ENVIRONMENTAL NON-CONFORMANCES	11
5.1	SUMMARY OF ENVIRONMENTAL EXCEEDANCE	11
5.2	SUMMARY OF ENVIRONMENTAL NON-COMPLIANCE	11
5.3	SUMMARY OF ENVIRONMENTAL COMPLAINT	11
5.4	SUMMARY OF ENVIRONMENTAL SUMMONS AND PROSECUTION	11
6	FUTURE KEY ISSUES	12
7	CONCLUSIONS	13

- Table 2.1Summary of Environmental Licensing, Notification, Permit and
Reporting Status
- Table 3.1Water Quality Monitoring Stations
- Table 3.2Equipment Used during Impact Water Quality Monitoring
- Table 3.3Action and Limit Levels of Water Quality
- Table 3.4Event Action Plan for Water Quality

LIST OF FIGURES

- Figure 2.1Alignment of the Proposed 11kV Submarine Cable Circuit from
Liu Ko Ngam to Pak Sha Tau TsuiEi2.1
- Figure 3.1 Water Quality Monitoring Station

LIST OF ANNEXES

- Annex A Impact Water Quality Monitoring Schedule
- Annex B Calibration Reports of Multi-parameter Sensor
- Annex C QA/QC Results for Suspended Solids Testing
- Annex D Water Quality Monitoring Results

EXECUTIVE SUMMARY

The submarine cable installation works for the 11kV submarine cable connecting Liu Ko Ngam to Pak Sha Tau Tsui at Kat O commenced in the week starting 21 December 2015. This is the *Seventh Water Quality Impact Monitoring Report,* presenting results and findings of the water quality impact monitoring conducted during the period from 14 March to 3 April 2016, in accordance with the *Environmental Monitoring and Audit Requirement (EM&A Requirement)*.

Water Quality Monitoring

Four (4) monitoring events were scheduled in the reporting period, on 18, 21, 23 and 29 March 2016 respectively. Monitoring events at designated monitoring stations were performed on schedule.

Cable laying completed within the monitoring period. Impact water quality monitoring will continue when backfilling works start.

Environmental Non-conformance

No exceedances of Action and Limit Levels were recorded during the reporting period.

No complaint and summons/prosecution was received during the reporting period.

1 INTRODUCTION

ERM-Hong Kong, Limited (ERM) was appointed by CLP Power Hong Kong Limited (CLP) as the Environmental Team (ET) to implement the Environmental Monitoring and Audit (EM&A) programme for the installation of an 11kV submarine cable connecting Liu Ko Ngam to Pak Sha Tau Tsui at Kat O (the Project).

1.1 PURPOSE OF THE REPORT

This is the *Seventh Water Quality Impact Monitoring Report* which summarises the results of impact water quality monitoring as part of the EM&A programme during the reporting period from 14 March to 3 April 2016.

1.2 STRUCTURE OF THE REPORT

The structure of the Report is as follows:

Section 1 : Introduction Provides the Project background, purpose and report structure.

Section 2 : Project Information

Summarises background and scope of the project, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.

- Section 3 : Impact Water Quality Monitoring Requirements Summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, and Event Action Plan.
- Section 4: Impact Water Quality Monitoring Results Summarises the water quality monitoring results obtained in the reporting period.
- Section 5 : Environmental Non-conformance Summarises any monitoring exceedance, environmental complaints and environmental summons within the reporting period.
- Section 6 : Future Key Issues Summarises the monitoring schedule for the next reporting period.

1

Section 7 : **Conclusions** Presents the key findings of the impact monitoring results.

CLP

2.1 BACKGROUND

CLP Power Hong Kong Limited (CLP) proposes to enhance the security of power supply to Kat O Island. At present, there is only one set of 11kV submarine cable connecting Liu Ko Ngam to Pak Sha Tau Tsui at Kat O for power supply. The existing 11kV submarine cable is however more than 30 years old and deteriorating, thus potentially limiting the continuous supply of electricity in the future. CLP therefore proposes to replace the existing 11kV submarine cable connecting Liu Ko Ngam to Pak Sha Tau Tsui at Kat O to ensure the continuous power supply for Kat O. The Project involves the installation of an 11kV cable circuit consisting of two individual cables, with an intended burial depth up to 5 m for the submarine cable section and about 1 m for the land section. The two submarine cables (except the shore end sections which will be at only about 1 m separation and joining into a single cable trench at each landing site) will be 30 m away from each other and running parallel along the alignment. In areas (especially near the landing site) where the cable burial depth does not meet the requirements due to seabed geotechnical constraints, a protective cover such as a concrete slab will be adopted. The total length of the proposed cable alignment is approximately 880 m. A map showing the proposed submarine cable route is presented in *Figure 2.1*.

A Project Profile (Register No. PP-489/2013, Replacement of the Existing 11kV Submarine Cable Circuit Connecting Liu Ko Ngam and Pak Sha Tau Tsui at Kat O) which includes an assessment of the potential environmental impacts associated with the installation of the submarine cables was prepared and submitted to the Environmental Protection Department (EPD) according to Section 5(11) of the Environmental Impact Assessment Ordinance (EIAO) for the application for Permission to apply directly for Environmental Permit (EP). On 11 July 2013 EPD approved the Project Profile (PP) and a direct application for EP was submitted on 23 July 2013 (Application No. AEP-461/2013). On 27 August 2013 EPD granted an environmental permit for the Project (EP - 461/2013) pursuant to Section 10 of EIAO.

Pursuant to *Condition 2.1* of the *EP*, Water Quality Sampling, as set out in the approved *PP Annex E Environmental Monitoring & Audit (EM&A) Requirements* (henceforth "*EM&A Requirement*"), is required for this Project. Water Quality Sampling shall be conducted prior to and throughout the cable installation works, and after its completion as set out in the *EM&A Requirement*.

Baseline water quality monitoring was conducted prior to the installation works and results were summarised in the *Baseline Water Quality Monitoring Report* of November 2015.

Impact monitoring started on 22 December 2015, when the cable installation works commenced. Impact monitoring is being conducted twice a week

2

during cable installation works and is suspended when no works are carried out. The water quality impact monitoring is used to reflect the water quality conditions and to identify potential water quality impacts during the cable installation works. With reference to the *EM&A Requirement* reporting will be weekly but if there are no exceedances of Action and Limit Levels during the first three weeks of impact water quality monitoring, a bi-weekly impact monitoring report will be provided within 1 week of completing every two weekly monitoring surveys.

This *Seventh Water Quality Impact Monitoring Report* (the "Report") presents the results and findings for water quality impact monitoring conducted between 14 March and 3 April 2016, at the same locations as the baseline monitoring stations.

2.2 MARINE CONSTRUCTION WORKS UNDERTAKEN DURING REPORTING WEEK

During the reporting period from 14 March to 3 April 2016, cable laying works were completed and some articulated pipes installed. Backfilling has not started.

2.3 STATUS OF ENVIRONMENTAL APPROVAL DOCUMENTS

A summary of the relevant permits, licences and reports on marine water quality for this Project is presented in *Table 2.1*.

Table 2.1Summary of Environmental Licensing, Notification, Permit and Reporting
Status

Permit / Licence /	Reference	Validity Period	Remarks	
Notification / Report				
Project Profile	PP-489/2013	Throughout the	Submitted on 30	
		construction and	May 2013	
		operation stages		
Environmental Permit	EP-461/2013	Throughout the	Granted on 27	
		construction and	August 2013	
		operation stages		
Baseline Water Quality	-	Throughout the	Submitted on 20	
Monitoring Report		construction period	November 2015	
First Weekly Impact Water	-	Construction period of	Submitted on 4	
Quality Monitoring Report		week from 21 to 27	January 2016	
		December 2015		
Second Weekly Impact	-	Construction period of	Submitted on 11	
Water Quality Monitoring		week from 28	January 2016	
Report		December 2015 to 3		
		January 2016		
Third Weekly Impact Water	-	Construction period	Submitted on 18	
Quality Monitoring Report		from 4 to 10 January	January 2016	
		2016		
Bi-weekly Impact	-	Construction period	Submitted on 1	
Monitoring Report (4th		from 11 to 24 January	February 2016	
Report)		2016		

Permit / Licence /	Reference	Validity Period	Remarks
Notification / Report		ý	
Fifth Water Quality Impact	-	Construction period	Submitted on 26
Monitoring Report		from 1 to 7 and 15 to 21	February 2016
		February 2016	
Sixth Water Quality Impact	-	Construction period	Submitted on 18
Monitoring Report		from 22 February to 13	March 2016
		March 2016	

3.1 MONITORING LOCATIONS

In accordance with the *EM&A Requirement,* water quality monitoring samples were collected at the ten (10) stations situated around the cable installation works, following commencement of Project marine installation works. The locations of the sampling stations are shown in *Figure 3.1*.

- C1 is a Control Station to the north of the cable alignment (approximately 1.4 km away) with the same coordinates as EPD routine monitoring station MM2, which is not supposed to be influenced by the construction works due to its remoteness to the Project works area;
- C2 is a Control Station to the south of the cable alignment (over a distance of 1.6 km) with the same coordinates as EPD routine monitoring station MM7, which is not supposed to be influenced by the construction works due to its remoteness to the Project site;
- SR1 is Impact Station used to monitor the effect of the cable installation works on coral communities of high ecological concern at Tsing Chau;
- SR2 is Impact Station used to monitor the effect of the cable installation works on coral communities of high ecological concern at Ngau Shi Wu Wan;
- SR3 is Impact Station used to monitor the effect of the cable installation works on Lai Chi Wo/ Yan Chau Tong Marine Park (to the west of the Project site);
- SR4 is Impact Station used to monitor the effect of the cable installation works on Yan Chau Tong Marine Park (to the south of the Project site);
- SR5 is Impact Station used to monitor the effect of the cable installation works on Sai Lau Kong FCZ;
- G1 is regarded as a Gradient Station in between Impact Station SR1 and the construction work alignment;
- G2 is Gradient Station located between Impact Stations SR2, SR4 and SR5 and construction work alignment; and
- G3 is Gradient Station located between Impact Stations SR3 and the construction work alignment and landing point at Kiu Ko Ngam.

The co-ordinates of the above monitoring stations are listed in *Table 3.1*.

Table 3.1Water Quality Monitoring Stations

Station	Nature	Easting	Northing
C1	Control Station	846615.32	844892.99
C2	Control Station	848633.26	842648.35
SR1	Impact Station	846957.82	843601.61
SR2	Impact Station	847041.35	843125.56
SR3	Impact Station	846208.21	843365.71
SR4	Impact Station	847534.45	842914.89
SR5	Impact Station	847209.44	842883.44
G1	Gradient Station	846580.39	843334.26
G2	Gradient Station	847025.97	843218.44
G3	Gradient Station	847031.21	843538.70

3.2 MONITORING PARAMETERS

The water quality impact monitoring was conducted in accordance with the requirements stated in the *EM&A Requirement*. Monitoring parameters are presented below.

The parameters measured *in situ* were:

- Dissolved Oxygen (DO) (% saturation and mg/L)
- Water temperature (°C)
- Turbidity (Nephelometric Turbidity Units [NTU])
- Salinity (parts per thousand [ppt])

The only parameter to be measured in the laboratory was:

• Suspended solids (SS) (mg/L)

In addition to the water quality parameters, other relevant data were also measured and recorded in field logs, including the location of the sampling stations, water depth, sampling depth, current velocity and direction, time, weather conditions, sea conditions (where appropriate), tidal state (where appropriate), special phenomena and work activities undertaken around the monitoring and Project works area that may have influenced the monitoring results.

These parameters will be monitored at all designated marine water quality monitoring stations throughout the whole impact monitoring phase.

3.3 MONITORING EQUIPMENT AND METHODOLOGY

3.3.1 Monitoring Equipment

Table 3.2 summaries the equipment used for the impact water quality monitoring.

Table 3.2Equipment Used during Impact Water Quality Monitoring

Equipment	Model
Global Positioning Device	GARMIN eTrex 10
Water Depth Gauge	Speedtech Instruments SM-5
Water Sampling Equipment	Wildlife Kemmerer 1520
Salinity, DO, Temperature Measuring Meter	YSI PRO 2030
Current Velocity and Direction	Global Water FP111
Turbidity Meter	HACH 2100Q

3.3.2 Monitoring Frequency and Timing

The water quality monitoring was carried out on two occasions (days) and the intervals between the two sets of monitoring were not less than 36 hours. The water quality sampling was undertaken within a 3 hour window of 1.5 hours before and 1.5 hours after mid flood and mid-ebb tides. The tidal range selected for the baseline monitoring was at least 0.5 m for both flood and ebb tides as far as practicable.

Reference was made to the predicted tides at Ko Lau Wan, which is the tidal station nearest to the Project Site, published on the website of the Hong Kong Observatory ⁽¹⁾. Based on the predicted tidal levels at Ko Lau Wan, the water quality impact monitoring was conducted on 18, 21, 23 and 29 March 2016, following the schedule presented in *Annex A*.

3.3.3 Sampling/Testing Protocol

All *in situ* monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use (see calibration reports in *Annex B*), and subsequently will be re-calibrated at-monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes were checked with certified standard solutions before each use.

For the on-site calibration of field equipment, the *BS* 1427: 1993, *Guide to Field and On-Site Test Methods for the Analysis of Waters* was observed. Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was made available.

Water samples for SS measurements were collected in high density polythene bottles, packed in ice (cooled to 4° C without being frozen), and delivered to a HOKLAS laboratory as soon as possible after collection.

At each measurement / sampling depth, two (2) consecutive *in-situ* measurements (DO concentration and saturation, temperature, turbidity, and salinity) and two water samples for SS were taken for lab analysis.

Hong Kong Observatory (2016) <u>http://www.hko.gov.hk/tide/eQUBtide.htm</u> [Accessed in February and March
 2016]

3.3.4 Laboratory Analysis

All laboratory work was carried out in a HOKLAS accredited laboratory. Water samples of about 1,000 mL were collected at the monitoring and control stations for carrying out the laboratory determinations. The determination work started within the next working day after collection of the water samples. The SS laboratory measurements were provided within two (2) days of the sampling event (i.e. within 48 hours). The analyses followed the standard methods as described in APHA Standard Methods for the *Examination of Water and Wastewater*, 19th Edition, unless otherwise specified (APHA 2540D for SS).

The QA/QC details were in accordance with requirements of HOKLAS or another internationally accredited scheme (*Annex C*).

3.3.5 Sampling Depths & Replication

Each station was sampled and measurements/ water samples were taken at three depths, namely, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth less than 6 m, the mid-depth station may be omitted. For stations that are less than 3 m in depth, only the mid-depth sample was taken.

For *in situ* measurements, duplicate readings were made at each water depth at each station. Duplicate water samples were collected at each water depth at each station.

3.4 ACTION AND LIMIT LEVELS

The Action and Limit levels which were established based on the results of *Baseline Water Quality Monitoring*, are presented in *Table 3.3*.

Table 3.3Action and Limit Levels of Water Quality

Parameter	Action Level	Limit Level
DO in mg/L ^a	Surface and Middle	Surface and Middle
	5%-ile of baseline data for surface and middle layer (4.85 mg/L), and 20% exceedance of value at any impact station compared with corresponding data from control stations	1%-ile of baseline for surface and middle layer (4.57 mg/L) <u>Bottom</u> 1%-ile of baseline data for bottom layer (4.46 mg/L)
	Bottom	
	5%-ile of baseline data for bottom layers (4.72 mg/L), and 20% exceedance of value at any impact station compared with corresponding data from control stations	

Parameter	Action Level	Limit Level
SS in mg/L (Depth- averaged ^b) ^c	95%-ile of baseline data (5.40 mg/L) and 20% exceedance of value at any impact station compared with corresponding data from control stations	99%-ile of baseline data (5.71 mg/L) and 30% exceedance of value at any impact station compared with corresponding data from control stations
Turbidity in NTU (Depth- averaged ª) ^c	95%-ile of baseline data (4.92 NTU) and 20% exceedance of value at any impact station compared with corresponding data from control stations	99%-ile of baseline data(5.11 NUT) and30% exceedance of value at any impact station compared with corresponding data from control stations

Notes:

- a. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- b. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths (at 1 metre below surface, mid-depth and 1 metre above seabed for the definition of sampling water depth).
- c. For SS and turbidity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3.5 EVENT AND ACTION PLAN

The Event and Action Plan for water quality monitoring which was stipulated in *EM&A Requirement* is presented in *Table 3.4*.

Table 3.4Event Action Plan for Water Quality

Event	Contractor				
Action Level	Step 1 - repeat sampling event to confirm findings.				
Exceedance	Step 2 - if findings are confirmed, discuss with cable installation contractor the most appropriate method of reducing suspended solids during cable installation (e.g. reduce cable laying speed/volume of water used during installation ingrease effectiveness of silt gurtain)				
installation, increase effectiveness of silt curtain). Step 3 - repeat measurements after implementation of mitigation is confirmation of compliance.					
	Step 4 - if non-compliance continues - increase measures in Step 2 and repeat measurements in Step 3. If non-compliance occurs at a third time, the cable laying operations should be suspended.				
Limit Level Exceedance	Inform EPD and AFCD and confirm notification of the non-compliance in writing within 24 hours after a limit level exceedance is recorded.				
	Undertake Steps 1-3 immediately, if further non-compliance continues at the Limit Level, suspend cable laying operations until an effective solution is identified.				

9

A total of four (4) monitoring events (days) were scheduled during water quality impact monitoring from 14 March to 3 April 2016 (*Annex A*). In each monitoring day (18, 21, 23 and 29 March 2016), two rounds of water quality measurement and sampling were undertaken, at mid-ebb and mid-flood tidal stage respectively. Monitoring events at all designated monitoring stations were performed on schedule.

The results from the monitoring for water quality impacts between 21 December 2015 and 3 April 2016, and their graphical presentations are included in *Annex D*. No exceedances of Action and Limit Levels were recorded in the monitoring period. The monitoring results of Turbidity, SS and DO are discussed together as follows.

The DO concentrations at all the water depths (surface, mid-depth and bottom) during the impact monitoring were generally above 7.0 mg/L, well above the Action Level of 4.85 mg/L (for surface and mid-depth) and of 4.72 mg/L (for bottom depth) as shown in *Figure D1-D3* of *Annex D*. Recorded DO levels at each water depth were similar among the stations and throughout the reporting period (between 14 March and 3 April 2016). No exceedances of Action and Limit Levels were observed in the reporting period.

Depth-averaged turbidity levels recorded from the initial water quality impact monitoring (22 December 2015) up to the latest monitoring event (29 March 2016) are shown in *Figure D4* of *Annex D*. Turbidity levels in the reporting period (between 14 March and 3 April 2016) were between 1.2 NTU and 3.1 NUT, below the Action Level of 4.92 NTU.

SS levels recorded in the reporting period (between 14 March and 3 April 2016) were on average between 1.4 mg/L and 3.7 mg/L, below the Action Level of 5.4 mg/L (*Figure D5* of *Annex D*). In general, levels of depth-averaged SS measured since impact monitoring started have shown a minor variation over time.

It is noted the overall higher turbidity and SS levels at control station C1 compared to other stations were observed on 18 and 21 March 2016 in the reporting period (14 March to 3 April 2016). Control station C1 is located sufficiently far away from the Project works area that it is not expected to be affected by cable installation works. As such, relatively higher turbidity and SS levels at control station C1 on 18 and 21 March 2016 are not considered as the impact from cable installation works, but a result of natural background variation.

In general, during the reporting period (14 March to 3 April 2016), some variation in water quality (turbidity, and SS levels) was recorded among the stations; however the recorded parameters at the impact stations did not exceed Action or Limit Levels.

5 ENVIRONMENTAL NON-CONFORMANCES

5.1 SUMMARY OF ENVIRONMENTAL EXCEEDANCE

No exceedances of the Action and Limit Levels were recorded during the reporting period.

5.2 SUMMARY OF ENVIRONMENTAL NON-COMPLIANCE

No non-compliance events were recorded during the reporting period.

5.3 SUMMARY OF ENVIRONMENTAL COMPLAINT

No complaints were received during the reporting period.

5.4 SUMMARY OF ENVIRONMENTAL SUMMONS AND PROSECUTION

No summons or prosecution on environmental matters were received during the reporting period.

No exceedances have been recorded in the whole water quality impact monitoring period (from 21 December 2015 to 3 April 2016), and future key issues are not anticipated. As stipulated in the Project Profile *EM&A Requirement,* reporting will be bi-weekly covering two weeks'-worth of monitoring surveys so long as no exceedances are recorded.

CONCLUSIONS

7

This *Seventh Water Quality Impact Monitoring Report* presents the results and findings of water quality impact monitoring undertaken during the period from 14 March to 3 April 2016 in accordance with the *EM&A Requirement* and the requirements under Environmental Permit (*EP - 461/2013*) for the Project.

No exceedances of Action and Limit Levels were recorded during the reporting period (14 March to 3 April 2016). No complaints or summons/prosecutions were received either during the reporting period.

Minor fluctuations and some small differences of Turbidity and SS levels among the sampling stations were recorded in the reporting period. DO levels at each water depth were similar among the stations and throughout the reporting period.

In general, the overall water quality at the impact stations was found to be similar to that at the control stations. It is concluded that there was no deterioration of water quality during the reporting period due the effect of the Project cable installation works.

Overall, no exceedances of Action and Limit Levels have been recorded during the whole water quality impact monitoring period (from 21 December 2015 to 3 April 2016) with some breaks when there were no construction works. As stipulated in the Project Profile *EM&A Requirement*, reporting will continue on a bi-weekly basis so long as no exceedances are recorded.

Annex A

Impact Water Quality Monitoring Schedule

Replacement of the Existing 11 KV Submarine Cable Circuit Connecting Liu Ko Ngam and Pak Sha Tau at Kat O Impact Marine Water Quality Monitoring (WQM) Schedule

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
20-Dec	21-Dec	22-Dec	23-Dec	24-Dec	25-Dec	26-Dec
		Mid-Ebb		Mid-Ebb		
		9:19		11:13		
		(07:34 - 11:04)		(09:28 - 12:58)		
		Mid-Flood		Mid-Flood		
		(13:44 - 17:14)		(15:25 - 18:55)		
27-Dec	28-Dec	29-Dec	30-Dec	31-Dec	01-Jan	02-Jan
		WQM		WQM		
		Mid-Flood		Mid-Flood		
		9.14 (07.29 - 10.59)		(08:59 - 12:29)		
		Mid-Ebb		Mid-Ebb		
		14:31		16:12		
03-Jan	04-Jan	(12:46 - 16:16) 05- Jan	06-Jan	(14:27 - 17:57) 07- Jan	08- Jan	09-Jan
00 001	04 041	00 001	WQM	07 041	WQM	00 0011
			Mid-Ebb		Mid-Ebb	
			9:36		11:09	
			Mid-Flood		Mid-Flood	
			15:05		16:35	
			(13:20 - 16:50)		(14:50 - 18:20)	
10-Jan	11-Jan	12-Jan	13-Jan	14-Jan	15-Jan	16-Jan
			Mid-Flood		Mid-Flood	
			8:57		10:27	
			(08:19 - 11:49)		(08:42 - 12:12)	
			MID-EDD		MID-EDD	
			(12:53 - 16:23)		(14:40 - 18:10)	
17-Jan	18-Jan	19-Jan	20-Jan	21-Jan	22-Jan	23-Jan
			WQM		WQM	
			NID-EDD			
			(07:13 - 10:43)		(09:15 - 12:45)	
			Mid-Flood		Mid-Flood	
			15:00		16:52	
24-Jan	25-Jan	26-Jan	(13.15 - 16.45) 27-Jan	28-Jan	(15.07 - 16.37) 29-Jan	30-Jan
2104.	20 00.	20 04.1	27 04.1	20 04.1	20 04.1	00 04.1
	No	construction works so	cheduled, therefore no	water quality monitorii	ng works were carried o	out.
31-Jan	01-Feb	02-Feb	03-Feb	04-Feb	05-Feb	06-Feb
	Mid-Flood 11:47 (10:02 - 13:32) Mid-Ebb 18:14 (16:29 - 19:59)					
07-Feb	08-Feb	09-Feb	10-Feb	11-Feb	12-Feb	13-Feb
				No construction we monit	orks scheduled, therefo oring works were carrie	ore no water quality ed out.
14-Feb	15-Feb	16-Feb	17-Feb	18-Feb	19-Feb	20-Feb
				WQM		
				Mid-Ebb		
				0.40 (07:03 - 10:33)		
				Mid-Flood		
				14:36		
21_Eob	22-Eob	23-Eob	24-Eob	(12:51 - 16:21) 25-Eob	26-Eob	27-Eob
21-1 60		20-1 60	24-1 60	WQM	20-1 60	WQM
				Mid-Flood		Mid-Flood
				8:12 (06:27 - 09:57)		9:11 (07:26 - 10:56)
				Mid-Ebb		Mid-Ebb
				14:02		15:11
			00.11	(12:17 - 15:47)		(13:26 - 16:56)
28-Feb	29-Feb	01-Mar	02-Mar	03-Mar	04-Mar	05-Mar
	Mid-Flood					
	10:12					
	(08:27 - 11:57) Mid-Ebb					
	16:30					
	(14:45 - 18:15)					

Replacement of the Existing 11 KV Submarine Cable Circuit Connecting Liu Ko Ngam and Pak Sha Tau at Kat O Impact Marine Water Quality Monitoring (WQM) Schedule

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
06-Mar	07-Mar	08-Mar	09-Mar	10-Mar	11-Mar	12-Mar
					WQM Mid-Flood 8:04 (06:19 - 09:49) Mid-Ebb 14:09 (12:24 - 15:54)	
13-Mar	14-Mar	15-Mar	16-Mar	17-Mar	18-Mar	19-Mar
					WQM Mid-Ebb 8:47 (07:20 - 10:15) Mid-Flood 14:16 (12:31 - 16:01)	
20-Mar	21-Mar	22-Mar	23-Mar	24-Mar	25-Mar	26-Mar
	WQM Mid-Ebb 11:21 (09:36 - 13:06) Mid-Flood 17:18 (15:33 - 19:03)		WQM Mid-Ebb 12:34 (10:49 - 14:19) Mid-Flood 18:40 (16:55 - 20:25)			
27-Mar	28-Mar	29-Mar	30-Mar	31-Mar	01-Apr	02-Apr
		WQM Mid-Flood 9:32 (07:47 - 11:17) Mid-Ebb 16:01 (14:16 - 17:46)				

Annex B

Calibration Reports of Multi-parameter Sensor

uipment Ref. No.	: <u>ET/EV</u>	V/008/006			Manufacture	r	: <u>YSI</u>				
odel No.	: Pro 20	30			Serial No.		: 12A 1005	54			
te of Calibration	: 19/03/2	2016		*****	Calibration I	Due Date	: 18/04/201	16			
Temperature Verific	ation	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,					anna ann an ta bha ann an A				
Ref. No. of Reference	e Thermom	eter :	ET/0521	/017							
Ref. No. of Water Ba	th:										
					Tempo	erature (°C)					
Reference Th	ermometer 1	reading	Measure	ed		19.9					
DO M	eter reading	Horanda State Datasconto Horando	Measure	ed	19.8	Difference		0.1			
Standardization of so	odium thios	ulphate (N	a ₂ S ₂ O ₃) s	olution	QAMMAANINA 2000 AMAANINA AMAAN						
Reagent No. of Na ₂ S ₂	₂ O ₃ titrant	CI	PE/012/4.5/0	001/13 R	eagent No. of 0.02	5N K ₂ Cr ₂ O ₇	CPE/012/	4.4/002/08			
					Trial		Tri	al 2			
Initial Vol. of Na_2S_2C) ₃ (ml)				0.00		10.15				
Final Vol. of Na_2S_2O	3 (ml)				10.15		20.	.40			
Vol. of $Na_2S_2O_3$ used	l (ml)				10.15		10.	.25			
Normality of Na ₂ S ₂ O	$_3$ solution (N	٧)			0.0246	3	0.02	439			
Average Normality (N) of Na_2S_2	O ₃ solution	(N)			0.024	51	and the second sector of the second sector of the second sector of the second sector of the second se			
Acceptance criteria, I	Deviation					Less than ±	0.001N				
Lineality Checking			, 11 = 0.2371				<u>- 1997 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19</u>				
Determination of dis	solved oxyg	en content	by Winkler	Titration *							
Purging Time (min)				2		5	1	0			
Trial	2 (1)		1	2	1	2		$\frac{2}{10000}$			
Initial Vol. of Na_2S_2C	$\frac{J_3 \text{ (ml)}}{J_3 \text{ (ml)}}$		0.00	11.10	21.90	0.00	6.70				
Final Vol. of Na_2S_2O	$\frac{3}{3}$ (mi)		11.10	21.90	28.60	6.70	10.20	14.00			
$V OI. (V) OI Na_2 S_2 O_3$	$\frac{1}{1}$		11.10	10.80	6.70	6.70	3.50	3.80			
Dissolved Oxygen (D	Deviation		7.30	1 7.11	4.41	4.41 + 0.3mg/I	I eas then	$\frac{1}{1}$ 2.50 $\frac{2.50}{1}$			
Calculation:	$\frac{DO(ma/L)}{DO(ma/L)}$		8000/298	r = 0.5mg/L		· 0.5mg/L	L Loss man	+ 0.5111g/L			
Calculation.	DO (IIIg/L)	V AIVA	0000/200								
Burging time min	DO	meter readi	ng, mg/L	Wir	kler Titration resu	ılt *, mg/L	Difference	(%) of DC			
	1	2	Avera	ge 1	2	Average	Cor	ntent			
	7.45	7.46	7.46	7.30	7.11	7.21	3.	41			
Z	131	4.28	4.30	4.41	4.41	4.41	2.	53			
5	4.31			1							
<u>5</u> <u>10</u>	2.25	2.38	2.32	2.30	2.50	2.40	3.:	39			

CEP/012/W

Aver 4

Zero Point Checking	2											
	DO meter re	ading, n	ng/L				0.00					
Salinity Checking												
Reagent No. of NaCl	(10ppt)		CPE/0	12/4.7/003/7	19 Reage	nt No. of Na	Cl (30ppt)	CPE/012/4.8/003/19				
Determination of dis	solved oxyg	en cont	ent by V	Vinkler Titro	ution **							
Salinity (ppt)			Γ		10			30				
Trial		na mana mana mana mana kata kata kata kata kata kata kata k	1	1		2	1	2				
Initial Vol. of Na_2S_2	D ₃ (ml)	***************************************		0.00		11.30	22.50	32.10				
Final Vol. of Na ₂ S ₂ O	93 (ml)			11.30		22.50	32.10	41.60				
Vol. (V) of $Na_2S_2O_3$	used (ml)			11.30		11.20	9.60	9.50				
Dissolved Oxygen (I)O), mg/L			7.44		7.37	6.32	6.25				
Acceptance criteria, 1	Deviation		L	Less th	an + 0.3mg/	L	Les	ss than + 0.3mg/L				
Calculation: DO (mg/L) = V x N x $8000/298$												
Salinity (ppt)	DO	meter re	ading, r	ng/L	Winkler	Titration resu	ult**, mg/L	Difference (%) of D				
5 (11)	1	2		Average	1	2	Average	Content				
10	7.55	7.6	0	7.58	7.44	7.37	7.41	2.27				
30	6.43	6.4	6	6.45	6.32	6.25	6.29	2.51				
Acceptance Criteria (1) Differenc betwee (2) Linear regression (3) Zero checking: 0. (4) Difference (%) of	n temperatu coefficient 0mg/L f DO conten	re readir : >0.99 t from th	ngs from ne meter	n temperature	e sensor of D l by winkler	00 probe and titration : wit	reference ther hin $\pm 5\%$	mometer : < 0.5 °C				
The equipment comp / unacceptable [#] for v [†] Delete as appropria	lies [#] / does ise. te	not com	nply [#] wi	ith the specif	ied requiren	nents and is d	eemed accepta	able [#]				

Performa	nce Check of	f Salinity Meter
Equipment Ref. No. : <u>ET/EV</u>	V/008/006	Manufacturer : <u>YSI</u>
Model No. : <u>Pro 20</u>	30	Serial No. : <u>12A 100554</u>
Date of Calibration : <u>19/03/</u>	2016	Due Date : <u>18/04/2016</u>
Ref. No. of Salinity Stan	dard used (30ppt)	S/001/5
Salinity Standard (ppt)	Measured Salinit (ppt)	Difference %
30.0	30.6	2.00
(*) Difference (%) = (Measured	Salinity – Salinity Sta	undard value) / Salinity Standard value x 100
Acceptance Criteria	Difference : -10 %	o to 10 %
The salinity meter complies and is deemed acceptable * national standards.	s * / does not comp / unacceptable * fo	ly * with the specified requirements or use. Measurements are traceable to
Checked by :	Apr	proved by :

Performance C	check of Turbidity	Meter
Equipment Ref. No. : <u>ET/0505/011</u>	Manufacturer	: <u>HACH</u>
Model No. : <u>2100Q</u>	Serial No.	: <u>11110 C 014260</u>
Date of Calibration : <u>19/03/2015</u>	Due Date	: <u>18/04/2016</u>
Ref. No. of Turbidity Standard use	ed (4000NTU)	005/6.1/001/9
Theoretical Value of Turbidity Standard (NTU)	Measured Value (NTU)	Difference % *
20	19.8	-1.00
100	104	4.00
800	780	-2.50
(*) Difference = (Measured Value	e – Theoretical Value) / The	oretical Value x 100
Acceptance Criteria Diffe	erence : -5 % to 5 %	
The turbidity meter complies * / d and is deemed acceptable * / unac national standards.	loes not comply * with the s ceptable * for use. Measure	pecified requirements ments are traceable to
Prepared by :	Checked by :	tdile_

Annex C

QA/QC Results for Suspended Solids Testing

QA/QC Results of Laboratory Analysis of Total Suspended Solids

Sampling Data	QC Sample	Sample	Duplicate	Sample Spike						
Sampling Date	% Recovery *	Sample ID	% Error [#]	Sample ID	% Recovery @					
	104.4	FC1-S1	0.00	FSR3-M2	92.2					
	106.0	FSR3-B1	4.65	FG1-B2	106.0					
2/19/2016	102.3	FG2-M1	1.59	EC2 -B2	96.5					
3/16/2016	99.0	ESR1-M1	0.00	ESR5-M2	92.2					
	97.0	ESR5-B1	0.00	EG3-B2	105.7					
	106.7	EG2-M1	1.67	EC2 -B2	107.1					
Note:	(*)	% Recovery of QC sample sho	ould be between 85.5% to 113	.5%.						

Note:

% Recovery of QC sample should be between 85.5% to 113.5%.

% Error of Sample Duplicate should be between 0% to 10%.

(#)

(@)

(**)

(#)

(@)

(**)

% Recovery of Sample Spike should be between 80% to 120%.

% Error of Sample Duplicate >10% but invalid due to sample results less than PQL (2.0 mg/L).

Sampling Data	QC Sample	Sample I	Duplicate	Sample Spike					
Sampling Date	% Recovery *	Sample ID	% Error [#]	Sample ID	% Recovery @				
	98.9	FC1-S1	0.00	FSR1-M2	97.5				
	106.3	FG3-S1	0.00	FSR4-M2	105.8				
2/21/2016	102.3	FSR4-B1	6.06	FC2 -B2	106.4				
5/21/2010	102.2	EC1-S1	0.00	ESR1-M2	105.0				
	107.8	EG3-S1	4.44	ESR4-M2	101.5				
	107.2	ESR4-B1	0.00	EC2-B2	102.0				
Note: (*)		% Recovery of QC sample sho	ould be between 85.5% to 113	.5%.					

Note:

% Recovery of QC sample should be between 85.5% to 113.5%.

% Error of Sample Duplicate should be between 0% to 10%.

% Recovery of Sample Spike should be between 80% to 120%.

% Error of Sample Duplicate >10% but invalid due to sample results less than PQL (2.0 mg/L).

Sampling Data	QC Sample	Sample	Duplicate	Sample Spike					
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery @				
	97.5	FC1-S1	3.51	FSR3-M2	93.8				
	100.6	FSR3-B1	3.92	FG1-B2	103.3				
2/22/2016	101.3	FG2-M1	7.41	EC2 -B2	99.2				
3/23/2010	92.7	ESR1-M1	4.65	ESR5-M2	99.9				
	103.9	ESR5-B1	3.92	EG3-B2	105.3				
Note:	(*)	% Recovery of QC sample sh	ould be between 85.5% to 113	.5%.					

% Error of Sample Duplicate should be between 0% to 10%.

(**) ([@]) (**)

% Recovery of Sample Spike should be between 80% to 120%.

% Error of Sample Duplicate >10% but invalid due to sample results less than PQL (2.0 mg/L).

Compling Data	QC Sample	Sample I	Duplicate	Sample Spike					
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery @				
	104.7	FC1-S1	8.20	FSR3-M2	103.2				
	104.6	FSR3-B1	1.80	FG1-B2	97.6				
2/20/2016	93.7	FG2-M1	3.36	FG3 -B2	97.1				
3/29/2010	96.6	EC1-M1	7.63	ESR3-M2	100.6				
	102.0	ESR3-B1	3.54	EG1-B2	96.9				
	100.7	EG2-M1	7.08	EG3 -B2	94.9				
Note:	(*)	% Recovery of QC sample sho	uld be between 85.5% to 113	.5%.					

Note:

% Error of Sample Duplicate should be between 0% to 10%.

(#) (@) (**)

% Recovery of Sample Spike should be between 80% to 120%.

% Error of Sample Duplicate >10% but invalid due to sample results less than PQL (2.0 mg/L).

Annex D

Water Quality Monitoring Results

Date:	18-Mar-16
Tide:	Mid-Flood
Weather:	Cloudy
Sea Conditions:	Small Wave

Location	Sampling	Water	Current	Current	Monitoring	Temperature ing		re (°C)		Salinity (ppt)	y		DO (mg/l)		DC) Satura (%)	tion		Turbidity (NTU)				Suspended Solids (mg/l)			
Location	Time	Depth (m)	direction	¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**	
					Surface	17.4	17.4	17.4	28.2	28.2	28.2	8.0	8.0	8.0	98.6	98.0	98.3	2.8	2.8	2.8		3.3	3.4	3.4		
C1	1231-1242	14.6	S	0.2	Middle	17.3	17.3	17.3	28.2	28.2	28.2	7.8	7.8	7.8	96.4	95.7	96.1	2.9	2.9	2.9	3.0	3.7	3.5	3.6	3.6	
					Bottom	17.0	17.0	17.0	28.4	28.4	28.4	7.7	7.7	7.7	95.1	94.5	94.8	3.1	3.2	3.2		3.8	3.9	3.9		
					Surface	17.4	17.4	17.4	28.2	28.2	28.2	7.8	7.8	7.8	96.9	96.2	96.6	1.3	1.3	1.3		1.7	1.5	1.6		
C2	1432-1500	13.8	S	0.2	Middle	17.3	17.3	17.3	28.2	28.2	28.2	7.8	7.7	7.7	95.9	95.3	95.6	1.4	1.4	1.4	1.4	1.6	1.7	1.7	1.7	
					Bottom	17.0	17.0	17.0	28.3	28.4	28.4	7.6	7.6	7.6	94.4	93.9	94.2	1.5	1.6	1.5		2.0	1.7	1.9		
					Surface	17.5	17.5	17.5	28.3	28.3	28.3	7.8	7.8	7.8	96.9	96.4	96.7	1.3	1.4	1.3		1.6	1.6	1.6		
G1	1259-1310	12.4	S	0.1	Middle	17.4	17.4	17.4	28.3	28.3	28.3	7.7	7.7	7.7	95.9	95.1	95.5	1.5	1.6	1.6	1.5	1.9	1.9	1.9	1.9	
					Bottom	17.2	17.1	17.2	28.5	28.5	28.5	7.6	7.6	7.6	93.6	92.9	93.3	1.7	1.8	1.7		2.1	2.1	2.1		
					Surface																					
G2	1335-1342	1.8	S	0.1	Middle	17.2	17.2	17.2	28.2	28.2	28.2	7.8	7.8	7.8	95.9	95.5	95.7	1.9	1.9	1.9	1.9	2.5	2.1	2.3	2.3	
					Bottom																					
					Surface	17.3	17.3	17.3	28.3	28.3	28.3	7.9	7.9	7.9	97.2	96.8	97.0	1.7	1.8	1.8		2.2	2.0	2.1		
G3	1323-1332	12.8	S	0.2	Middle	17.2	17.2	17.2	28.3	28.3	28.3	7.8	7.7	7.7	95.4	94.9	95.2	1.5	1.6	1.6	1.7	1.8	2.0	1.9	2.0	
					Bottom	17.1	17.0	17.1	28.4	28.4	28.4	7.6	7.6	7.6	93.9	93.2	93.6	1.6	1.7	1.7		1.8	2.1	2.0		
					Surface																					
SR1	1313-1319	2.4	S	0.2	Middle	17.3	17.2	17.3	28.2	28.2	28.2	7.7	7.6	7.6	94.4	93.8	94.1	1.7	1.7	1.7	1.7	2.1	1.8	2.0	2.0	
					Bottom																					
					Surface																					
SR2	1345-1351	1.8	S	0.1	Middle	17.3	17.2	17.3	28.2	28.2	28.2	7.7	7.7	7.7	94.6	94.4	94.5	1.9	1.8	1.8	1.8	2.2	2.2	2.2	2.2	
					Bottom																					
					Surface	17.3	17.3	17.3	28.2	28.2	28.2	7.8	7.7	7.7	95.5	95.3	95.4	1.5	1.6	1.6		2.0	2.0	2.0		
SR3	1247-1256	9.2	S	0.1	Middle	17.3	17.3	17.3	28.2	28.2	28.2	7.7	7.7	7.7	95.0	94.6	94.8	1.7	1.7	1.7	1.7	1.8	1.9	1.9	2.0	
					Bottom	17.2	17.1	17.2	28.4	28.4	28.4	7.6	7.6	7.6	94.2	93.8	94.0	1.9	2.0	1.9		2.1	2.4	2.3		
					Surface	17.3	17.3	17.3	28.1	28.1	28.1	7.8	7.7	7.7	95.7	95.0	95.4	1.2	1.2	1.2		1.4	1.6	1.5		
SR4	1412-1425	7.6	S	0.2	Middle	17.3	17.3	17.3	28.2	28.2	28.2	7.7	7.6	7.7	94.8	94.2	94.5	1.3	1.3	1.3	1.4	1.6	1.7	1.7	1.8	
					Bottom	17.2	17.2	17.2	28.3	28.3	28.3	7.5	7.5	7.5	92.4	92.9	92.7	1.8	1.7	1.7		2.1	2.2	2.2		
					Surface	17.3	17.3	17.3	28.1	28.2	28.2	7.9	7.9	7.9	97.9	97.4	97.7	1.6	1.7	1.7		2.1	2.1	2.1		
SR5	1357-1410	9.4	S	0.2	Middle	17.2	17.2	17.2	28.2	28.2	28.2	7.9	7.8	7.8	96.7	96.1	96.4	1.7	1.8	1.7	1.8	2.2	2.1	2.2	2.2	
					Bottom	17.0	17.0	17.0	28.3	28.3	28.3	7.8	7.8	7.8	95.6	95.2	95.4	1.9	1.9	1.9		2.1	2.3	2.2		

Date:	18-Mar-16
Tide:	Mid-Ebb
Weather:	Cloudy
Sea Conditions:	Small Wave

Location	Sampling	Water	Current	Current	Monitoring	Tem	peratur	re (°C)		Salinity (ppt)	y		DO (mg/l)		DC) Saturat (%)	tion	Turbidity (NTU)				Suspended Solids (mg/l)			
Location	Time	Depth (m)	direction	¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	17.0	17.1	17.1	28.3	28.3	28.3	7.9	7.9	7.9	94.2	94.5	94.4	2.9	2.9	2.9		3.2	3.7	3.5	
C1	0820-0833	14.2	S	0.1	Middle	17.0	17.0	17.0	28.3	28.3	28.3	7.7	7.7	7.7	92.1	91.7	91.9	2.9	3.0	3.0	3.1	3.2	3.6	3.4	3.6
					Bottom	16.9	16.8	16.9	28.3	28.3	28.3	7.6	7.7	7.6	90.9	91.0	91.0	3.4	3.4	3.4		4.1	3.7	3.9	
					Surface	17.2	17.1	17.2	28.4	28.4	28.4	7.8	7.8	7.8	92.6	92.7	92.7	1.4	1.4	1.4		1.8	1.6	1.7	
C2	1002-1015	13.5	S	0.1	Middle	17.1	17.1	17.1	28.4	28.4	28.4	7.7	7.7	7.7	91.9	91.6	91.8	1.4	1.4	1.4	1.5	1.8	1.7	1.8	1.8
					Bottom	17.0	17.0	17.0	28.4	28.4	28.4	7.6	7.6	7.6	90.1	90.2	90.2	1.7	1.7	1.7		1.8	2.2	2.0	
					Surface	17.0	16.9	17.0	28.3	28.3	28.3	7.8	7.8	7.8	92.3	92.7	92.5	1.4	1.4	1.4		1.5	1.9	1.7	
G1	0849-0902	12.1	S	0.1	Middle	16.9	17.0	17.0	28.3	28.3	28.3	7.7	7.6	7.7	91.4	90.9	91.2	1.6	1.7	1.7	1.6	2.1	2.0	2.1	2.0
					Bottom	17.0	17.0	17.0	28.3	28.3	28.3	7.6	7.5	7.6	90.0	89.7	89.9	1.8	1.8	1.8		2.2	2.5	2.4	
					Surface																				
G2	0923-0927	1.6	S	0.1	Middle	17.1	17.1	17.1	28.4	28.4	28.4	7.6	7.6	7.6	90.7	90.8	90.8	1.9	1.9	1.9	1.9	2.4	2.5	2.5	2.5
					Bottom																				
					Surface	17.2	17.1	17.2	28.4	28.4	28.4	7.8	7.8	7.8	92.8	93.2	93.0	1.8	1.8	1.8		2.0	2.2	2.1	
G3	0908-0922	12.4	S	0.1	Middle	17.1	17.1	17.1	28.4	28.4	28.4	7.7	7.7	7.7	91.5	91.7	91.6	1.7	1.7	1.7	1.8	2.2	1.9	2.1	2.1
					Bottom	17.0	17.0	17.0	28.4	28.4	28.4	7.6	7.6	7.6	90.2	90.4	90.3	1.8	1.8	1.8		2.1	2.4	2.3	
					Surface																				
SR1	0903-0907	2.0	S	0.1	Middle	1.0	1.0	1.0	28.3	28.3	28.3	7.6	7.6	7.6	90.4	90.2	90.3	1.8	1.9	1.9	1.9	2.2	2.2	2.2	2.2
					Bottom																				
					Surface																				
SR2	0928-0932	1.6	S	0.1	Middle	17.1	17.1	17.1	28.4	28.4	28.4	7.6	7.6	7.6	90.7	90.8	90.8	1.9	1.9	1.9	1.9	2.1	2.1	2.1	2.1
					Bottom																				
					Surface	17.1	17.1	17.1	28.4	28.4	28.4	7.7	7.7	7.7	91.7	91.4	91.6	1.6	1.6	1.6		1.8	1.9	1.9	
SR3	0834-0848	8.9	S	0.1	Middle	17.0	17.1	17.1	28.3	28.3	28.3	7.6	7.6	7.6	90.7	90.9	90.8	1.8	1.8	1.8	1.8	2.2	2.2	2.2	2.2
					Bottom	17.0	17.0	17.0	28.3	28.3	28.3	7.6	7.6	7.6	90.3	90.4	90.4	2.1	2.1	2.1		2.5	2.5	2.5	
					Surface	17.2	17.1	17.2	28.4	28.4	28.4	7.7	7.7	7.7	91.6	91.5	91.6	1.3	1.4	1.3		1.6	1.6	1.6	
SR4	0948-1001	7.3	S	0.1	Middle	17.2	17.0	17.1	28.4	28.4	28.4	7.6	7.6	7.6	90.7	90.2	90.5	1.4	1.4	1.4	1.5	1.5	1.8	1.7	1.9
					Bottom	17.0	17.0	17.0	28.4	28.4	28.4	7.4	7.4	7.4	88.1	87.9	88.0	1.8	1.8	1.8		2.2	2.4	2.3	
					Surface	17.1	17.1	17.1	28.4	28.4	28.4	7.9	7.9	7.9	93.7	93.9	93.8	1.8	1.8	1.8		2.3	2.2	2.3	
SR5	0933-0947	9.0	S	0.1	Middle	17.0	17.1	17.1	28.4	28.4	28.4	7.8	7.8	7.8	93.1	92.8	93.0	1.9	1.8	1.9	1.9	2.4	2.4	2.4	2.4
					Bottom	17.0	17.0	17.0	28.4	28.4	28.4	7.7	7.8	7.8	92.1	92.7	92.4	1.9	1.9	1.9		2.5	2.3	2.4	

1. * Average; ** Depth Average

Date:	21-Mar-16
Tide:	Mid-Flood
Weather:	Cloudy
Sea Conditions:	Small Wave

Location	Sampling	Water	Current	Current	Monitoring	Tem	peratur	re (°C)		Salinity (ppt)	y		DO (mg/l)		DC) Saturat (%)	tion		Turi (N	oidity TU)		Su	spendu m)	led Soli ıg/l)	ds
Location	Time	Depth (m)	direction	¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	17.0	16.9	17.0	28.1	28.2	28.2	7.9	8.0	8.0	97.9	98.1	98.0	2.6	2.7	2.6		3.2	3.2	3.2	
C1	1533-1548	14.7	S	0.2	Middle	16.8	16.8	16.8	28.3	28.4	28.4	7.8	7.8	7.8	95.9	95.7	95.8	2.8	2.8	2.8	2.8	3.0	3.3	3.2	3.3
					Bottom	16.7	16.6	16.7	28.5	28.5	28.5	7.7	7.7	7.7	94.0	94.2	94.1	2.9	2.9	2.9		3.7	3.4	3.6	
					Surface	16.9	16.8	16.9	28.1	28.2	28.2	7.9	7.8	7.8	96.7	96.5	96.6	1.2	1.3	1.2		1.3	1.6	1.5	
C2	1757-1803	13.6	S	0.1	Middle	16.7	16.7	16.7	28.3	28.3	28.3	7.7	7.7	7.7	94.2	94.4	94.3	1.4	1.4	1.4	1.4	1.8	1.7	1.8	1.6
					Bottom	16.6	16.5	16.6	28.4	28.5	28.5	7.6	7.6	7.6	93.4	93.2	93.3	1.5	1.5	1.5		1.7	1.7	1.7	
					Surface	17.0	16.9	17.0	28.1	28.2	28.2	7.9	7.9	7.9	79.9	79.7	79.8	1.8	1.9	1.9		2.2	2.0	2.1	
G1	1614-1633	12.2	S	0.2	Middle	16.9	16.8	16.9	28.3	28.3	28.3	7.8	7.7	7.7	95.0	94.8	94.9	1.9	2.0	2.0	1.9	2.1	2.5	2.3	2.3
					Bottom	16.7	16.7	16.7	28.4	28.5	28.5	7.6	7.6	7.6	93.1	92.9	93.0	2.0	2.1	2.0		2.4	2.5	2.5	
					Surface																				
G2	1710-1720	1.9	S	0.1	Middle	16.7	16.8	16.8	28.3	28.3	28.3	7.8	7.8	7.8	95.0	95.2	95.1	1.8	1.9	1.9	1.9	2.0	2.2	2.1	2.1
					Bottom																				
					Surface	17.1	17.0	17.1	27.9	28.0	28.0	7.9	7.9	7.9	96.7	96.9	96.8	1.7	1.6	1.6		2.2	1.8	2.0	
G3	1658-1708	12.8	S	0.1	Middle	16.9	16.8	16.9	28.2	28.3	28.3	7.7	7.7	7.7	94.2	94.0	94.1	1.8	1.8	1.8	1.8	2.0	2.3	2.2	2.2
					Bottom	16.7	16.6	16.7	28.4	28.4	28.4	7.5	7.6	7.6	92.2	92.4	92.3	1.8	1.9	1.9		2.2	2.4	2.3	
					Surface																				
SR1	1638-1653	2.3	S	0.2	Middle	16.7	16.8	16.8	28.4	28.4	28.4	7.7	7.7	7.7	93.9	94.1	94.0	2.0	2.0	2.0	2.0	2.4	2.6	2.5	2.5
					Bottom																				
					Surface																				
SR2	1722-1732	1.6	S	0.2	Middle	16.9	16.8	16.9	28.2	28.2	28.2	7.7	7.6	7.7	93.9	93.7	93.8	1.5	1.5	1.5	1.5	1.6	1.8	1.7	1.7
					Bottom																				
					Surface	17.1	16.9	17.0	28.0	28.1	28.1	7.8	7.9	7.8	96.5	96.7	96.6	1.8	1.8	1.8		2.0	2.2	2.1	
SR3	1553-1609	8.9	S	0.2	Middle	16.8	16.7	16.8	28.2	28.2	28.2	7.7	7.8	7.7	94.2	94.4	94.3	1.8	1.8	1.8	1.9	2.0	2.0	2.0	2.2
					Bottom	16.6	16.5	16.6	28.3	28.4	28.4	7.5	7.6	7.6	92.2	92.4	92.3	2.0	2.0	2.0		2.4	2.6	2.5	
					Surface	17.0	17.1	17.1	27.9	28.0	28.0	7.8	7.8	7.8	95.8	96.0	95.9	1.1	1.1	1.1		1.3	1.3	1.3	
SR4	1746-1756	7.4	S	0.1	Middle	16.9	16.8	16.9	28.1	28.2	28.2	7.7	7.7	7.7	93.9	94.1	94.0	1.3	1.3	1.3	1.3	1.5	1.4	1.5	1.5
					Bottom	16.6	16.7	16.7	28.4	28.3	28.4	7.5	7.5	7.5	91.9	91.7	91.8	1.4	1.4	1.4		1.7	1.8	1.8	
					Surface	17.1	17.0	17.1	28.1	28.2	28.2	8.0	7.9	7.9	98.0	97.8	97.9	1.8	1.8	1.8		2.1	2.1	2.1	
SR5	1734-1744	9.4	S	0.2	Middle	16.9	16.9	16.9	28.3	28.4	28.4	7.8	7.8	7.8	95.6	95.4	95.5	1.8	1.9	1.9	1.9	2.3	2.5	2.4	2.3
					Bottom	16.7	16.8	16.8	28.5	28.5	28.5	7.6	7.6	7.6	93.1	93.3	93.2	2.0	2.1	2.1		2.4	2.3	2.4	

Date:	21-Mar-16
Tide:	Mid-Ebb
Weather:	Cloudy
Sea Conditions:	Small Wave

Location	Sampling	Water	Current	Current	Monitoring	Tem	peratur	re (°C)		Salinity (ppt)	y		DO (mg/l)		DC) Saturat (%)	ion		Turt (N	oidity TU)		Si	spendu m)	ed Soli g/l)	ids
Location	Time	Depth (m)	direction	¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	17.2	17.3	17.3	28.2	28.3	28.3	7.9	7.9	7.9	97.6	97.0	97.3	2.8	2.9	2.8		3.4	3.5	3.5	
C1	1036-1046	14.4	S	0.1	Middle	17.2	17.1	17.2	28.3	28.2	28.3	7.7	7.7	7.7	95.4	94.6	95.0	2.9	3.0	3.0	3.0	3.8	3.3	3.6	3.7
					Bottom	17.0	16.9	17.0	28.4	28.5	28.5	7.6	7.6	7.6	94.0	93.5	93.8	3.2	3.3	3.2		4.1	3.9	4.0	
					Surface	17.2	17.3	17.3	28.2	28.3	28.3	7.8	7.7	7.7	95.9	95.1	95.5	1.3	1.4	1.4		1.4	1.7	1.6	
C2	1254-1306	13.4	S	0.2	Middle	17.2	17.1	17.2	28.3	28.2	28.3	7.7	7.6	7.7	94.9	94.2	94.6	1.4	1.5	1.5	1.5	1.7	1.6	1.7	1.7
					Bottom	16.9	17.0	17.0	28.4	28.5	28.5	7.6	7.5	7.5	93.4	92.9	93.2	1.6	1.6	1.6		1.9	2.0	2.0	
					Surface	17.4	17.3	17.4	28.1	28.2	28.2	7.7	7.7	7.7	95.9	95.3	95.6	1.4	1.4	1.4		1.5	1.7	1.6	
G1	1106-1116	12.0	S	0.2	Middle	17.3	17.2	17.3	28.3	28.2	28.3	7.7	7.6	7.6	94.9	94.1	94.5	1.6	1.6	1.6	1.6	2.1	2.0	2.1	1.9
					Bottom	17.1	17.0	17.1	28.4	28.5	28.5	7.5	7.5	7.5	92.6	91.9	92.3	1.8	1.8	1.8		2.0	2.2	2.1	
					Surface																				
G2	1151-1159	1.6	S	0.1	Middle	17.1	17.1	17.1	28.1	28.2	28.2	7.7	7.7	7.7	94.9	94.5	94.7	1.9	2.0	2.0	2.0	2.3	2.6	2.5	2.5
					Bottom																				
					Surface	17.2	17.1	17.2	28.2	28.1	28.2	7.8	7.8	7.8	96.2	95.8	96.0	1.8	1.8	1.8		2.2	2.1	2.2	
G3	1134-1146	12.6	S	0.1	Middle	17.1	17.0	17.1	28.2	28.3	28.3	7.7	7.6	7.6	94.4	93.9	94.2	1.6	1.7	1.6	1.7	1.7	2.1	1.9	2.1
					Bottom	17.0	16.9	17.0	28.4	28.3	28.4	7.5	7.5	7.5	92.9	92.1	92.5	1.7	1.7	1.7		2.2	2.3	2.3	
					Surface																				
SR1	1121-1129	2.2	S	0.2	Middle	17.2	17.1	17.2	28.2	28.3	28.3	7.6	7.5	7.6	93.4	92.8	93.1	1.8	1.7	1.8	1.8	2.1	2.1	2.1	2.1
					Bottom																				
					Surface																				
SR2	1204-1212	1.4	S	0.2	Middle	17.2	17.1	17.2	28.2	28.3	28.3	7.6	7.6	7.6	93.5	93.4	93.5	1.9	1.9	1.9	1.9	2.1	2.3	2.2	2.2
					Bottom																				
					Surface	17.2	17.1	17.2	28.2	28.3	28.3	7.7	7.7	7.7	94.4	94.2	94.3	1.6	1.6	1.6		2.1	1.8	2.0	
SR3	1051-1101	8.8	S	0.2	Middle	17.2	17.2	17.2	28.3	28.3	28.3	7.6	7.6	7.6	94.0	93.5	93.8	1.7	1.8	1.7	1.8	2.0	2.0	2.0	2.2
					Bottom	17.0	17.1	17.1	28.5	28.4	28.5	7.5	7.5	7.5	93.2	92.7	93.0	2.0	2.0	2.0		2.4	2.6	2.5	
					Surface	17.2	17.1	17.2	28.1	28.2	28.2	7.7	7.6	7.7	94.6	94.0	94.3	1.2	1.3	1.3		1.6	1.4	1.5	
SR4	1234-1246	7.2	S	0.2	Middle	17.2	17.2	17.2	28.3	28.2	28.3	7.6	7.6	7.6	93.7	93.2	93.5	1.4	1.3	1.4	1.5	1.7	1.5	1.6	1.7
					Bottom	17.1	17.0	17.1	28.4	28.3	28.4	7.4	7.5	7.4	91.4	91.9	91.7	1.8	1.8	1.8		2.1	2.1	2.1	
					Surface	17.2	17.1	17.2	28.0	28.1	28.1	7.8	7.8	7.8	96.9	96.4	96.7	1.7	1.8	1.7		1.9	2.1	2.0	
SR5	1217-1229	9.2	S	0.2	Middle	17.1	17.0	17.1	28.1	28.2	28.2	7.8	7.7	7.8	95.6	95.1	95.4	1.8	1.8	1.8	1.8	2.1	2.4	2.3	2.2
					Bottom	16.9	17.0	17.0	28.3	28.4	28.4	7.7	7.7	7.7	94.6	94.2	94.4	2.0	1.9	1.9		2.4	2.3	2.4	

Remark or Obsevation: 1. * Average; ** Depth Average

Date:	23-Mar-16
Tide:	Mid-Flood
Weather:	Cloudy
Sea Conditions:	Small Wave

Location	Sampling	Water	Current	Current	Monitoring	Tem	peratur	re (°C)		Salinity (ppt)	y		DO (mg/l)		DC) Satura (%)	tion		Turt (N	oidity TU)		Si	uspend (m	led Soli ıg/l)	ids
Location	Time	Depth (m)	direction	¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	17.4	17.5	17.5	28.4	28.5	28.5	7.9	8.0	7.9	98.7	99.1	98.9	2.1	2.2	2.1		2.8	3.0	2.9	
C1	1655-1706	14.4	E	0.2	Middle	17.3	17.2	17.3	28.6	28.5	28.6	7.8	7.8	7.8	97.3	97.6	97.5	2.3	2.2	2.2	2.2	3.0	2.9	3.0	3.0
					Bottom	17.2	17.2	17.2	28.8	28.7	28.8	7.8	7.8	7.8	96.3	96.7	96.5	2.4	2.3	2.3		3.2	3.0	3.1	
					Surface	17.5	17.4	17.5	28.4	28.3	28.4	7.8	7.9	7.9	97.5	97.6	97.6	1.1	1.1	1.1		1.5	1.5	1.5	
C2	1858-1909	14.0	E	0.1	Middle	17.3	17.3	17.3	28.5	28.4	28.5	7.6	7.6	7.6	94.9	94.8	94.9	1.3	1.3	1.3	1.3	1.7	1.8	1.8	1.8
					Bottom	17.2	17.3	17.3	28.6	28.6	28.6	7.5	7.5	7.5	93.7	93.5	93.6	1.5	1.6	1.5		2.0	2.1	2.1	
					Surface	17.3	17.4	17.4	28.4	28.4	28.4	8.0	7.9	8.0	99.1	98.8	99.0	1.7	1.8	1.7		2.2	2.3	2.3	
G1	1727-1730	12.6	E	0.1	Middle	17.4	17.5	17.5	28.5	28.4	28.5	7.7	7.7	7.7	95.9	96.1	96.0	1.5	1.6	1.5	1.6	2.0	2.1	2.1	2.2
					Bottom	17.3	17.2	17.3	28.6	28.5	28.6	7.7	7.7	7.7	95.6	95.2	95.4	1.6	1.6	1.6		2.2	2.1	2.2	
					Surface																				
G2	1809-1815	2.3	E	0.2	Middle	17.5	17.4	17.5	28.3	28.4	28.4	7.9	7.9	7.9	98.5	98.6	98.6	2.1	2.0	2.1	2.1	2.8	2.7	2.8	2.8
					Bottom																				
					Surface	17.3	17.4	17.4	28.5	28.4	28.5	8.0	8.0	8.0	99.2	99.3	99.3	1.9	1.9	1.9		2.6	2.5	2.6	
G3	1754-1805	12.8	E	0.3	Middle	17.4	17.4	17.4	28.6	28.5	28.6	7.9	7.9	7.9	98.6	98.3	98.5	1.9	1.9	1.9	1.9	2.6	2.5	2.6	2.6
					Bottom	17.2	17.3	17.3	28.7	28.8	28.8	7.8	7.8	7.8	97.5	97.1	97.3	1.9	2.0	1.9		2.5	2.6	2.6	
					Surface																				
SR1	1743-1750	2.9	E	0.1	Middle	17.4	17.4	17.4	28.3	28.4	28.4	8.0	7.9	7.9	98.9	98.7	98.8	1.5	1.6	1.6	1.6	2.0	2.1	2.1	2.1
					Bottom																				
			_		Surface																				
SR2	1818-1824	2.2	E	0.2	Middle	17.3	17.4	17.4	28.4	28.3	28.4	7.8	7.8	7.8	97.5	96.9	97.2	2.0	2.0	2.0	2.0	2.6	2.7	2.7	2.7
					Bottom																				
			_		Surface	17.5	17.5	17.5	28.3	28.2	28.3	7.8	7.8	7.8	97.5	97.3	97.4	1.9	1.8	1.9		2.5	2.5	2.5	
SR3	1712-1722	9.1	E	0.2	Middle	17.4	17.5	17.5	28.3	28.4	28.4	7.8	7.7	7.8	96.7	96.3	96.5	1.8	1.8	1.8	1.9	2.3	2.4	2.4	2.5
					Bottom	17.3	17.4	17.4	28.5	28.4	28.5	7.6	7.6	7.6	94.2	94.0	94.1	2.0	1.9	1.9		2.6	2.5	2.6	<u> </u>
	1010 10		_		Surface	17.4	17.3	17.4	28.3	28.2	28.3	7.9	7.9	7.9	98.6	98.7	98.7	1.0	1.1	1.0		1.4	1.4	1.4	
SR4	1842-1852	7.8	E	0.1	Middle	17.5	17.4	17.5	28.3	28.4	28.4	7.9	7.8	7.9	98.1	97.7	97.9	1.3	1.4	1.4	1.3	1.8	1.9	1.9	1.7
					Bottom	17.4	17.3	17.4	28.5	28.4	28.5	7.7	7.7	7.7	95.8	95.9	95.9	1.5	1.4	1.4		2.0	1.9	2.0	
	1007 1000		F		Surface	17.5	17.4	17.5	28.4	28.3	28.4	7.9	7.9	7.9	97.8	98.0	97.9	1.5	1.6	1.6	47	2.0	2.1	2.1	
SR5	1827-1838	9.9	E	0.3	Middle	17.3	17.4	17.4	28.5	28.4	28.5	7.7	7.8	7.8	96.2	96.5	96.4	1.9	1.8	1.9	1.7	2.5	2.5	2.5	2.3
					Bottom	17.3	17.3	17.3	28.6	28.5	28.6	7.7	7.6	7.6	96.1	94.7	95.4	1.7	1.7	1.7		2.3	2.3	2.3	

1. * Average; ** Depth Average

Date:	23-Mar-16
Tide:	Mid-Ebb
Weather:	Cloudy
Sea Conditions:	Small Wave

Location	Sampling	Water	Current	Current	Monitoring	Tem	peratur	re (°C)		Salinity (ppt)	y		DO (mg/l)		DC) Satura (%)	tion		Turi (N	oidity TU)		S	uspend (m	led Soli 1g/l)	ds
Location	Time	Depth (m)	direction	¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	17.6	17.5	17.6	28.2	28.2	28.2	7.9	7.8	7.9	97.6	97.1	97.4	2.1	2.0	2.0		2.8	2.7	2.8	
C1	1149-1201	13.8	S	0.2	Middle	17.4	17.3	17.4	28.4	28.5	28.5	7.8	7.7	7.8	96.2	95.8	96.0	2.3	2.3	2.3	2.3	3.1	3.1	3.1	3.0
					Bottom	17.3	17.3	17.3	28.6	28.5	28.6	7.7	7.7	7.7	95.1	94.5	94.8	2.4	2.4	2.4		3.3	3.2	3.3	
					Surface	17.7	17.7	17.7	28.3	28.3	28.3	7.8	7.8	7.8	96.5	96.9	96.7	1.4	1.3	1.4		1.9	1.8	1.9	
C2	1400-1419	13.6	S	0.2	Middle	17.3	17.3	17.3	28.4	28.4	28.4	7.6	7.6	7.6	93.8	93.5	93.7	1.8	1.8	1.8	1.6	2.4	2.4	2.4	2.1
					Bottom	17.1	17.2	17.2	28.5	28.5	28.5	7.5	7.5	7.5	92.1	91.7	91.9	1.6	1.6	1.6		2.1	2.0	2.1	
					Surface	17.5	17.6	17.6	28.3	28.3	28.3	7.8	7.9	7.8	96.9	97.4	97.2	1.8	1.9	1.8		2.4	2.4	2.4	
G1	1223-1233	12.2	S	0.3	Middle	17.3	17.2	17.3	28.4	28.4	28.4	7.7	7.6	7.6	94.8	94.1	94.5	1.7	1.8	1.7	1.8	2.3	2.4	2.4	2.4
					Bottom	17.2	17.2	17.2	28.5	28.6	28.6	7.6	7.5	7.6	93.3	92.9	93.1	1.7	1.7	1.7		2.4	2.3	2.4	
					Surface																				
G2	1305-1312	1.8	S	0.2	Middle	17.5	17.4	17.5	28.4	28.5	28.5	7.9	7.8	7.9	97.6	97.2	97.4	2.3	2.3	2.3	2.3	3.1	3.0	3.1	3.1
					Bottom																				
					Surface	17.7	17.6	17.7	28.3	28.3	28.3	7.9	8.0	7.9	98.5	98.9	98.7	2.1	2.0	2.0		2.8	2.6	2.7	
G3	1250-1300	12.4	S	0.1	Middle	17.4	17.4	17.4	28.5	28.5	28.5	7.9	7.8	7.9	97.6	97.1	97.4	1.8	1.7	1.8	1.9	2.4	2.4	2.4	2.6
					Bottom	17.3	17.2	17.3	28.6	28.7	28.7	7.7	7.7	7.7	95.4	95.0	95.2	1.9	1.9	1.9		2.6	2.5	2.6	
					Surface																				
SR1	1238-1245	2.4	S	0.2	Middle	17.3	17.4	17.4	28.4	28.5	28.5	7.9	7.8	7.8	97.1	96.8	97.0	1.6	1.7	1.6	1.6	2.1	2.2	2.2	2.2
					Bottom																				
					Surface																				
SR2	1315-1322	1.6	S	0.2	Middle	17.4	17.4	17.4	28.4	28.4	28.4	7.7	7.7	7.7	95.0	95.5	95.3	2.2	2.2	2.2	2.2	3.0	2.9	3.0	3.0
					Bottom																				
					Surface	17.6	17.6	17.6	28.2	28.2	28.2	7.7	7.8	7.8	96.0	96.4	96.2	1.7	1.7	1.7		2.2	2.3	2.3	
SR3	1207-1218	8.6	S	0.3	Middle	17.4	17.4	17.4	28.3	28.4	28.4	7.5	7.5	7.5	92.9	93.4	93.2	1.9	1.9	1.9	1.9	2.6	2.6	2.6	2.5
					Bottom	17.2	17.2	17.2	28.5	28.5	28.5	7.5	7.4	7.5	92.1	91.7	91.9	2.0	2.1	2.1		2.7	2.8	2.8	
					Surface	17.7	17.6	17.7	28.2	28.1	28.2	7.9	7.9	7.9	98.1	97.7	97.9	1.2	1.2	1.2		1.6	1.6	1.6	
SR4	1341-1354	7.4	S	0.3	Middle	17.4	17.3	17.4	28.4	28.3	28.4	7.7	7.6	7.6	94.9	94.2	94.6	1.5	1.6	1.5	1.4	2.0	2.0	2.0	1.9
					Bottom	17.2	17.2	17.2	28.5	28.4	28.5	7.6	7.6	7.6	93.7	94.2	94.0	1.7	1.6	1.6		2.2	2.1	2.2	
	1000 100				Surface	17.6	17.6	17.6	28.3	28.2	28.3	7.8	7.7	7.8	96.6	96.1	96.4	1.8	1.8	1.8		2.3	2.4	2.4	
SR5	1326-1336	9.4	S	0.3	Middle	17.5	17.4	17.5	28.5	28.6	28.6	7.6	7.7	7.6	94.5	95.0	94.8	2.0	1.9	1.9	1.9	2.6	2.6	2.6	2.5
					Bottom	17.3	17.4	17.4	28.6	28.6	28.6	7.6	7.6	7.6	93.8	93.4	93.6	1.9	2.0	2.0		2.5	2.6	2.6	

1. * Average; ** Depth Average

Date:	29-Mar-16
Tide:	Mid-Flood
Weather:	Cloudy
Sea Conditions:	Small Wave

Location	Sampling	Water	Current	Current	Monitoring	Tem	peratur	re (°C)		Salinit (ppt)	y		DO (mg/l)		DC) Saturat (%)	tion		Turt (N	oidity TU)		Sı	uspend (m	led Soli ıg/l)	ds
Location	Time	Depth (m)	direction	¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	17.8	17.7	17.8	28.6	28.7	28.7	7.8	7.9	7.9	97.5	97.8	97.7	2.1	2.1	2.1		2.3	2.5	2.4	
C1	0805-0817	14.6	E	0.2	Middle	17.6	17.5	17.6	28.8	28.7	28.8	7.8	7.7	7.7	96.3	96.0	96.2	2.2	2.3	2.3	2.2	2.7	3.0	2.9	2.7
					Bottom	17.5	17.4	17.5	28.9	28.8	28.9	7.6	7.6	7.6	94.4	94.6	94.5	2.3	2.4	2.4		2.8	3.1	3.0	
					Surface	17.7	17.6	17.7	28.6	28.5	28.6	7.9	7.8	7.8	98.2	98.0	98.1	1.1	1.2	1.2		1.3	1.3	1.3	
C2	1103-1114	14.2	E	0.2	Middle	17.5	17.4	17.5	28.6	28.7	28.7	7.8	7.8	7.8	97.2	97.0	97.1	1.2	1.3	1.3	1.3	1.6	1.7	1.7	1.6
					Bottom	17.4	17.3	17.4	28.8	28.7	28.8	7.6	7.7	7.7	94.9	95.1	95.0	1.3	1.4	1.4		1.6	1.8	1.7	
					Surface	17.7	17.8	17.8	28.6	28.5	28.6	7.8	7.8	7.8	97.2	97.0	97.1	1.8	1.7	1.8		1.9	2.1	2.0	
G1	0837-0848	12.3	E	0.2	Middle	17.7	17.8	17.8	28.7	28.6	28.7	7.8	7.8	7.8	96.4	96.5	96.5	1.8	1.8	1.8	1.8	2.3	2.2	2.3	2.1
					Bottom	17.6	17.5	17.6	28.7	28.8	28.8	7.6	7.6	7.6	94.1	93.7	93.9	1.9	1.9	1.9		2.2	2.1	2.2	
					Surface																				
G2	0931-0949	2.4	E	0.1	Middle	17.7	17.6	17.7	28.6	28.7	28.7	8.0	7.9	7.9	99.0	98.5	98.8	2.0	1.9	1.9	1.9	2.4	2.5	2.5	2.5
					Bottom																				
					Surface	17.7	17.6	17.7	28.5	28.6	28.6	7.9	7.9	7.9	97.8	98.0	97.9	1.7	1.8	1.8		2.3	2.3	2.3	
G3	0915-0926	12.7	E	0.2	Middle	17.5	17.6	17.6	28.7	28.6	28.7	7.8	7.8	7.8	96.3	96.4	96.4	2.0	1.9	1.9	1.9	2.3	2.3	2.3	2.4
					Bottom	17.4	17.5	17.5	28.9	28.8	28.9	7.6	7.5	7.5	93.9	93.7	93.8	1.8	1.9	1.9		2.4	2.5	2.5	
					Surface																				
SR1	0852-0910	2.7	E	0.1	Middle	17.6	17.7	17.7	28.8	28.7	28.8	7.7	7.8	7.7	96.2	96.4	96.3	1.7	1.6	1.7	1.7	2.0	2.1	2.1	2.1
					Bottom																				
					Surface																				
SR2	1014-1023	2.6	E	0.1	Middle	17.8	17.7	17.8	28.7	28.7	28.7	7.9	7.9	7.9	98.6	98.4	98.5	2.0	1.9	1.9	1.9	2.4	2.5	2.5	2.5
					Bottom																				
					Surface	17.7	17.7	17.7	28.5	28.6	28.6	7.8	7.8	7.8	96.9	96.8	96.9	1.7	1.8	1.8		2.3	2.2	2.3	
SR3	0822-0833	9.2	E	0.1	Middle	17.6	17.7	17.7	28.7	28.6	28.7	7.7	7.7	7.7	96.1	95.9	96.0	1.9	1.8	1.9	1.9	2.1	2.0	2.1	2.2
					Bottom	17.5	17.4	17.5	28.8	28.8	28.8	7.6	7.7	7.7	94.9	95.4	95.2	1.9	2.0	1.9		2.2	2.1	2.2	
					Surface	17.6	17.5	17.6	28.7	28.6	28.7	7.9	7.9	7.9	98.5	78.8	88.7	1.1	1.0	1.1		1.3	1.2	1.3	
SR4	1046-1057	7.9	E	0.2	Middle	17.4	17.5	17.5	28.6	28.6	28.6	7.8	7.8	7.8	97.5	97.4	97.5	1.3	1.2	1.2	1.2	1.5	1.5	1.5	1.5
					Bottom	17.5	17.4	17.5	28.7	28.6	28.7	7.8	7.8	7.8	96.8	96.5	96.7	1.4	1.5	1.4		1.7	1.9	1.8	
					Surface	17.7	17.6	17.7	28.7	28.6	28.7	7.8	7.9	7.8	97.4	97.6	97.5	1.7	1.8	1.7		2.2	1.9	2.1	
SR5	1029-1041	9.8	E	0.3	Middle	17.6	17.5	17.6	28.8	28.8	28.8	7.8	7.8	7.8	97.0	96.5	96.8	1.7	1.6	1.7	1.7	2.0	2.0	2.0	2.1
					Bottom	17.3	17.4	17.4	28.9	28.8	28.9	7.7	7.7	7.7	95.7	95.4	95.6	1.8	1.8	1.8		2.2	2.2	2.2	

1. * Average; ** Depth Average

Date:	29-Mar-16
Tide:	Mid-Ebb
Weather:	Cloudy
Sea Conditions:	Small Wave

Location	Sampling	Water	Current	Current	Monitoring	Tem	peratur	re (°C)		Salinity (ppt)	y		DO (mg/l)		DC) Satura (%)	tion		Turt (N	oidity TU)		Si	uspend (m	ed Soli ıg/l)	ids
Location	Time	Depth (m)	direction	¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	18.0	18.1	18.1	28.5	28.5	28.5	7.9	7.8	7.8	97.6	97.0	97.3	2.1	2.1	2.1		2.7	2.3	2.5	
C1	1416-1419	14.2	W	0.1	Middle	18.0	18.0	18.0	28.5	28.5	28.5	7.8	7.8	7.8	96.6	96.2	96.4	2.2	2.1	2.1	2.2	2.6	2.5	2.6	2.6
					Bottom	17.9	17.9	17.9	28.5	28.5	28.5	7.7	7.7	7.7	90.4	94.9	92.7	2.3	2.3	2.3		2.7	2.5	2.6	
					Surface	17.8	17.8	17.8	28.8	28.9	28.9	7.8	7.8	7.8	97.2	96.8	97.0	1.3	1.2	1.2		1.5	1.5	1.5	
C2	1550-1603	14.0	W	0.2	Middle	17.8	17.8	17.8	28.8	28.8	28.8	7.8	7.8	7.8	96.2	96.0	96.1	1.2	1.2	1.2	1.2	1.4	1.4	1.4	1.5
					Bottom	17.8	17.8	17.8	28.7	28.7	28.7	7.7	7.7	7.7	96.0	95.7	95.9	1.3	1.3	1.3		1.5	1.7	1.6	
					Surface	18.0	18.0	18.0	28.6	28.6	28.6	7.8	7.8	7.8	96.8	96.7	96.8	1.9	1.8	1.9		2.3	2.2	2.3	
G1	1434-1447	12.0	W	0.2	Middle	18.0	18.0	18.0	28.6	28.6	28.6	7.8	7.8	7.8	96.1	96.3	96.2	1.8	1.9	1.8	1.9	2.0	2.4	2.2	2.2
					Bottom	17.9	17.9	17.9	28.6	28.6	28.6	7.7	7.7	7.7	95.7	95.5	95.6	1.9	1.8	1.9		2.3	2.0	2.2	
					Surface																				
G2	1508-1513	2.2	W	0.2	Middle	17.9	17.9	17.9	28.7	28.7	28.7	7.9	8.0	8.0	98.3	98.8	98.6	1.9	1.9	1.9	1.9	2.2	2.2	2.2	2.2
					Bottom																				
					Surface	17.9	18.0	18.0	28.6	28.7	28.7	7.8	7.9	7.8	97.0	97.3	97.2	1.8	1.8	1.8		2.0	1.9	2.0	
G3	1454-1507	12.4	W	0.1	Middle	17.9	18.0	18.0	28.6	28.5	28.6	7.8	7.8	7.8	96.6	97.0	96.8	1.8	1.8	1.8	1.8	2.4	2.4	2.4	2.2
					Bottom	18.0	18.0	18.0	28.6	28.6	28.6	7.8	7.8	7.8	96.2	96.3	96.3	1.9	1.8	1.8		2.0	2.2	2.1	
					Surface																				
SR1	1448-1453	2.6	W	0.2	Middle	18.0	18.0	18.0	28.6	28.6	28.6	7.7	7.7	7.7	96.0	95.5	95.8	1.7	1.8	1.7	1.7	1.9	2.1	2.0	2.0
					Bottom																				
					Surface																				
SR2	1514-1519	2.4	W	0.2	Middle	17.8	17.9	17.9	28.7	28.8	28.8	7.9	7.9	7.9	97.8	97.5	97.7	1.8	1.9	1.8	1.8	2.2	2.0	2.1	2.1
					Bottom																				
					Surface	18.0	18.0	18.0	28.5	28.6	28.6	7.7	7.8	7.8	96.0	96.3	96.2	1.8	1.9	1.8		2.2	2.1	2.2	
SR3	1420-1433	9.0	W	0.1	Middle	17.9	18.0	18.0	28.5	28.5	28.5	7.7	7.7	7.7	95.7	95.5	95.6	1.8	1.9	1.9	1.9	2.2	2.1	2.2	2.2
					Bottom	17.9	17.9	17.9	28.6	28.5	28.6	7.7	7.7	7.7	95.6	95.2	95.4	1.9	1.9	1.9		2.2	2.4	2.3	<u> </u>
	1505 1515				Surface	17.9	17.8	17.9	28.8	28.7	28.8	7.9	7.9	7.9	98.1	97.6	97.9	1.1	1.1	1.1		1.3	1.3	1.3	
SR4	1535-1549	7.6	w	0.2	Middle	17.9	17.9	17.9	28.8	28.8	28.8	7.9	7.9	7.9	98.0	97.5	97.8	1.3	1.2	1.2	1.2	1.4	1.5	1.5	1.4
					Bottom	17.9	17.9	17.9	28.7	28.8	28.8	7.8	7.9	7.8	96.9	97.5	97.2	1.2	1.2	1.2		1.6	1.5	1.6	
	4500 450 1				Surface	17.8	17.9	17.9	28.8	28.7	28.8	7.8	7.8	7.8	96.7	96.2	96.5	1.9	2.0	1.9	1.0	2.1	2.6	2.4	
SR5	1520-1534	9.6	vv	0.1	Middle	17.9	17.9	17.9	28.7	28.7	28.7	7.8	7.8	7.8	96.8	96.6	96.7	1.6	1.7	1.6	1.8	2.0	1.8	1.9	2.1
					Bottom	17.9	17.9	17.9	28.8	28.8	28.8	7.7	7.8	7.7	95.7	96.2	96.0	1.8	1.8	1.8		2.0	2.3	2.2	

1. * Average; ** Depth Average

ERM has over 140 offices Across the following countries worldwide

Argentina	New Zealand
Australia	Panama
Belgium	Peru
Brazil	Poland
Canada	Portugal
China	Puerto Rico
Colombia	Romania
France	Russia
Germany	Singapore
Hong Kong	South Africa
Hungary	Spain
India	Sweden
Indonesia	Taiwan
Ireland	Thailand
Italy	The Netherlands
Japan	United Arab Emirates
Kazakhstan	United Kingdom
Korea	United States
Malaysia	Vietnam
Mexico	

Environmental Resources Management

16/F Berkshire House 25 Westlands Road Quarry Bay, Hong Kong

T: 2271 3000 F: 2723 5660

www.erm.com

