

Expansion of Hong Kong International Airport into a Three-Runway System

Contamination Assessment Report for Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

October 2020

Airport Authority Hong Kong

Mott MacDonald 3/F International Trade Tower 348 Kwun Tong Road Kwun Tong Kowloon Hong Kong

T +852 2828 5757 F +852 2827 1823 mottmac.hk

Airport Authority Hong Kong

Expansion of Hong Kong International Airport into a Three-Runway System

Contamination Assessment Report for Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

October 2020

This Contamination Assessment Report for
Terminal 2 Emergency Power Supply System No.2, Emergency Power
Supply System No.3 and Emergency Power Supply System No.5
has been reviewed and certified by
the Environmental Team Leader (ETL)
In accordance with EP Condition 1.9 of the
Environmental Permit
No. EP-489/2014 and Section 7 of
Supplementary Contamination Assessment Plan (August 2018)

Certified by:

Terence Kong

Environmental Team Leader (ETL)
Mott MacDonald Hong Kong Limited

Date 30 October 2020

AECOM

www.aecom.com

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, Hong Kong 香港新界沙田鄉事會路 138 號新城 市中央廣場第 2 座 8 樓

+852 3922 9000 tel +852 2317 7609 fax

Our Ref: 60440482/C/JCHL201030

By Email

Airport Authority Hong Kong HKIA Tower, 1 Sky Plaza Road Hong Kong International Airport Lantau, Hong Kong

Attn: Mr. Lawrence Tsui, Principal Manager, Environmental Compliance

30 October 2020

Dear Sir,

Contract No. 3102 3RS Independent Environmental Checker Consultancy Services

Contamination Assessment Report for Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

Reference is made to the ET's submission of Contamination Assessment Report for Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5 under Section 7 of Supplementary Contamination Assessment Plan and Condition 2.32 (iv) of the Environmental Permit No. EP-489/2014. The subject report was certified by the ET Leader on 30 October 2020.

We would like to inform you that we have no adverse comment on the captioned submission and verify the captioned submission in accordance with the requirement stipulated in Condition 1.9 of EP-489/2014.

Should you have any query, please feel free to contact the undersigned at 3922 9376.

Yours faithfully, AECOM Asia Co. Ltd.

Jackel Law

Independent Environmental Checker

Contents

1	Intro	duction		7
	1.1	Backgro	und	7
	1.2	Scope of	f this CAR	8
	1.3	Objective	9	8
2	Sun	nmary of	Sampling and Testing Strategy	10
	2.1	Propose	d Sampling Method in the SCAP	10
		2.1.1	Proposed Sampling Method of BH5 and BH6	10
	2.2	Alternativ	ve Sampling Method Formulated after Pre-demolition Survey	12
		2.2.1	Alternative Sampling Method of BH5	12
	2.3	Assessm	nent Criteria	12
3	Site	Investiga	ation	13
	3.1	Sand / S	Soil Sampling	13
		3.1.1	Underground Fuel Tank BH5	13
		3.1.2	Underground Fuel Pipeline BH6	13
		3.1.3	Additional Photo Record Upon Demolition Works	15
	3.2	Deconta	mination Procedures	15
	3.3	Quality A	Assurance (QA) / Quality Control (QC) Procedure	15
		3.3.1	QA/QC Procedure	15
		3.3.2	QA/QC Analysis	15
4	Inte	rpretation	n of Laboratory Testing Results	17
	4.1	Sand/So	oil Contamination	17
		4.1.1	Underground Fuel Tank BH5	17
		4.1.2	Underground Fuel Pipeline BH6	18
5	Fina	ıl Inspect	tion and Record Checking Findings	20
	5.1	General		20
		5.1.1	Final Inspection and Record Checking Findings	20
6	Con	clusion		22
App	pendid	es		
	11.		Leave of the Color of the Color of the Color	

- Updated Implementation Schedule of Land Contamination **Construction Phase**
- Location of Emergency Power Supply System of T2 Building B.
 - B.1 Location of Emergency Power Supply Systems of T2 Building (Overview)

- B.2 Location of Emergency Power Supply System No.2 of T2 Building (Zoom-in View of Northern Section of T2 Building)
- B.3 Location of Emergency Power Supply System No.3, Emergency Power Supply System No.4 and Emergency Power Supply System No.5 of T2 Building (Zoom-in View of Southern Section of T2 Building)
- C. Identified Potential Land Contaminated Source of Emergency Power Supply Systems in SCAP
 - C.1 Identified Potential Land Contaminated Source of Emergency Power Supply System No.2 (EPSS2) in SCAP
 - C.2 Identified Potential Land Contaminated Source of Emergency Power Supply System No.3 (EPSS3) in SCAP
 - C.3 Identified Potential Land Contaminated Source of Emergency Power Supply System No.5 (EPSS5) in SCAP
- D. Indicative Sampling Point Selection of 3,000 L Underground Fuel Tank of EPSS3 in SCAP (i.e. BH5)
- E. Indicative Sampling Point of the Underground Pipeline Trench of EPSS3 in SCAP (ie.BH6)
- F. Structure and Actual Sampling Depth of 3,000 L Underground Fuel Tank of EPSS3 (i.e. BH5)
- G. Actual Sampling Point of the Underground Pipeline Trench of EPSS3 (i.e. BH6)
 - G.1 Actual Sampling Point of the Underground Pipeline Trench of EPSS3 (i.e. BH6-S1, BH6-S4, BH6-S5, BH6-S6, BH6-NLTS1)
 - G.2 Site Photo Record of Underground Pipeline Trench of EPSS3 at BH6-S2 and BH6-S3 (Photo Record)
- H. Chain-of-Custody Record
- I. Laboratory Testing Results of BH5 and BH6
- J. Site Photo Record of Final Inspection
 - J.1 Site Photo Record of Final Inspection for EPSS2 BH9 (3000L Above-ground Fuel Tank)
 - J.2 Site Photo Record of Final Inspection for EPSS2 HS1 (2 above-ground Emergency generators)
 - J.3 Site Photo Record of Final Inspection for EPSS3 BH7 (450 L Above-ground Fuel Tank)
 - J.4 Site Photo Record of Final Inspection for EPSS3 BH8 (Above-ground Emergency Generator)
 - J.5 Site Photo Record of Final Inspection for EPSS5 HS4 (Above-ground Fuel Tank) and HS5 (Above-ground Emergency Generator)

1 Introduction

1.1 Background

The Environmental Impact Assessment (EIA) Report (Register No.: AEIAR-185/2014) prepared for the "Expansion of Hong Kong International Airport into a Three-Runway System" (the project) has been approved by the Director of Environmental Protection, and an Environmental Permit (EP) (Permit No.: EP-489/2014) has been issued for the project under the Environmental Impact Assessment Ordinance. As part of the EIA study, a Contamination Assessment Plan (CAP) (hereafter referred to as the Approved CAP) was prepared and presented as Appendix 11.1 of the approved EIA Report. In accordance with Section 8.1.1.1 of the Updated Environmental Monitoring and Audit (EM&A) Manual, which was submitted under Condition 3.1 of the EP, and Section 11.10.1.2 of the EIA Report, six areas (i.e. fuel tank room within Terminal 2 (T2) building, fuel tank room to the west of Civil Aviation Department (CAD) antenna farm, seawater pump house, switching station, pumping station and fire training facility), were inaccessible for site reconnaissance at the time of preparing the EIA Report.

According to Sections 11.5.4.14 and 11.5.4.37 of the EIA Report, it is anticipated that any potential land contamination concern related to possible leakage/ spillage of fuel in the fuel tank room within T2 building and fuel tank room to the west of CAD antenna farm will not cause any insurmountable impact. Furthermore, as mentioned in Sections 11.5.4.38, 11.5.4.47 and 11.5.4.50 of the EIA Report, the seawater pump house, switching station, pumping station and fire training facility are not identified as potential contaminative land use types as given in Table 2.3 of the Practice Guide for Investigation and Remediation of Contaminated Land, hence no potential land contamination along these areas are anticipated.

As part of the ongoing detailed design of the project, relocation of the switching station is no longer required for the modification of existing North Runway. Hence site appraisal process for land contamination potential at the switching station is considered not necessary. Further site reconnaissance was conducted at the remaining five assessment areas (i.e. the fuel tank room within T2 building, fuel tank room to the west of CAD antenna farm, seawater pump house, pumping station and fire training facility) in third quarter of 2016 and May 2017.

Further review on the as-built drawings when taking into account the latest design details of T2 Expansion project and planned site investigation (SI), as well as follow-up site reconnaissance at T2 building have been undertaken in January 2018 and February 2018 (i.e. fuel tanks and generators within the building). Findings and consideration of assessment results after EIA stage have been summarized in the Supplementary Contamination Assessment Plan (SCAP) being approved in August 2018.

Based on the latest construction programme, decommissioning/ demolition of the Emergency Power Supply Systems No.2 (hereafter referred as EPSS2), Emergency Power Supply Systems No.3 (hereafter referred as EPSS3) and Emergency Power Supply Systems No. 5 (hereafter referred as EPSS5) of T2 building is scheduled to commence in 2nd Quarter of 2020.

Mott MacDonald Hong Kong Limited (MMHK), as the project's Environmental Team, was appointed by Airport Authority Hong Kong (AAHK) to prepare the Contamination Assessment Report (CAR) for Terminal 2 EPSS2, EPSS3 and EPSS5 to fulfil part of the SCAP's recommendation as this CAR only covers three concerned areas. The updated Implementation Schedule of Land Contamination – Construction Phase is provided in **Appendix A**.

1.2 Scope of this CAR

T2 building of the Hong Kong International Airport comprises northern and southern sections, where each section consists of a number of Emergency Generator Rooms and Fuel Tank Rooms.

The EPSS2 was located at northern section of T2 Building, the set of emergency power supply system comprises above-ground section only. Whereas EPSS3 and EPSS5 were located at southern section of T2 Building. The EPSS3 comprises underground and above-ground section; and for EPSS5, the system comprises above-ground section only.

The locations of the captioned emergency power supply systems are shown in **Appendix B.** The identified potential land contamination sources are listed in **Table 1.1** below,

Table 1.1: Identified Potential Land Contamination Source of Emergency Power Supply Systems

Emergency Power Supply System	Potential Land Contamination Source Reference ID	Description	Location	
Northern Section				
Emergency Power	Above-ground Section			
Supply System No.2	ВН9	A 3,000 L above-ground fuel tank at Fuel Tank Room		
	HS1	Two emergency generators at Emergency Generator Room, connecting to the 3,000 L above-ground fuel tank (i.e. BH9)	_	
Southern Section			_	
Emergency Power	Underground Section	Underground Section		
Supply System No.3	BH5	A 3,000 L underground fuel tank		
	ВН6	26 m in-length underground fuel pipelines connecting the 3,000 L underground fuel tank (i.e. BH5) and the 450 L above-ground fuel tank (i.e. BH7)	Please refer to	
	Above-ground Section		Appendix C	
	ВН7	A 450 L above-ground fuel tank at Emergency Generator Room	_	
	ВН8	An emergency generator at Emergency Generator Room, connecting to the 450 L above-ground tank (i.e. BH7)	_	
Emergency Power Supply System No.5	Above-ground Section	Above-ground Section		
	HS4	A 1,500 L above-ground fuel tank at Fuel Tank Room	=	
	HS5	An emergency generator at Emergency Generator Room, connecting to the 1,500 L above-ground fuel tank (i.e. HS4)	_	

Layout plans of respective emergency power supply systems included in this CAR are presented in **Appendix C**.

1.3 Objective

According to the approved SCAP, for the above-ground sections including BH7, BH8, BH9, HS1, HS4 and HS5, final inspection and record checking shall be conducted right before decommissioning/ demolition. While for the underground section including BH5 and BH6, enhanced SI programme shall be conducted along with decommissioning/demolition to confirm no potential land contamination taken place.

For the above-ground sections, decommissioning/ demolition works were scheduled in the 2nd Quarter of 2020. Final site inspections and record checking were conducted according to the decommissioning/ demolition schedule of respective Emergency Power Supply Systems. Photo records and findings have been included in this CAR. For underground sections, enhanced SI programme for BH5 and BH6 was carried out between June and August 2020.

This CAR for has been prepared to present the findings of final inspections and record checking of the above-ground sections (i.e. BH7, BH8, BH9, HS1, HS4 and HS5), as well as the sampling procedures and laboratory

Contamination Assessment Report for

Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

testing of enhanced SI for the underground sections (BH5 and BH6) as described in Section 1.2. Testing results have been interpreted based on the Guidance Manual for Use of Risk Based Remediation Goals (RBRGs) for Contaminated Land Management (Guidance Manual) and detailed in Section 4.

2 **Summary of Sampling and Testing Strategy**

2.1 **Proposed Sampling Method in the SCAP**

2.1.1 **Proposed Sampling Method of BH5 and BH6**

According to the SCAP, grab sampling was proposed for the concerned underground facilities of T2 Building, including BH5 and BH6. The proposed sampling and testing plan including the parameters to be tested, sampling locations and sampling depths are presented in **Table 2.1**. Sand and soil samples should be grabbed manually during the decommissioning/demolition process of concerned fuel tanks (i.e. BH5) and underground pipeline trench (i.e. BH6). The whole sampling process should be under the supervision of on-site contamination specialist.

Sampling Selection of Underground Fuel Tank (i.e. BH5)

Sand and soil samples should be collected as follows:

- Sand samples should be collected at 0.5 m, 1.5 m and bottom level inside the concrete chamber of underground fuel tank; and
- Soil sample should be collected right underneath concrete chamber of underground fuel tank.

Sampling Selection of Underground Fuel Pipeline (i.e. BH6)

Sand and soil samples should be collected as follows:

- Sand samples should be taken at every curvature of pipeline inside the concrete trench;
- Additional sampling points inside the concrete trench are set depending on length of pipeline segment (from curvature/connection to curvature):
 - If pipeline segment is ≤10 m, additional sample is considered not required;
 - If pipeline segment is >10 m and ≤20 m, one sample shall be taken at segment mid-point;
 - If pipeline segment is >20 m and ≤30 m, samples shall be collected at 2 points which are evenly spaced with each other and segment ends.
- Soil samples should be taken right underneath concrete trench at every curvature.

Sampling point annotation and indicative sampling point locations of BH5 and BH6 extracted from the SCAP are presented in Table 2.2, Appendix D and Appendix E.

Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No.5

Table 2.1: Enhanced Sampling and Testing Plan for BH5 and BH6 of Emergency Power Supply System No.3 in T2 Building

Proposed Sampling Locations		Sample Matrix	Sampling Point	Parameters to be Tested ^{1 & 2}				Rationale of Sampling	
			Annotation	Heavy Metals	PCRs ³	VOCs ³	SVOCs ³		
BH5 ⁴	Sand⁵	0.5 m, 1.5 m bgs ⁶ and bottom leve inside the concrete chamber	ıl /	Lead only	✓	BTEX ⁷ and MTBE ⁸	PAHs ⁹	Confirm no diesel leakage from underground fuel tank	
	Soil	Right underneath concrete chamber	1	Lead only	✓	BTEX ⁷ and MTBE ⁸	PAHs ⁹	Confirm no leaked diesel (if any) penetrate the concrete chamber	
BH6 ⁴	Sand ⁵	At the level of fuel pipelines	BH6S1 - BH6S4	Lead only	✓	BTEX ⁷ and MTBE ⁸	PAHs ⁹	Confirm no diesel leakage from underground fuel pipelines	
	Soil	Right underneath concrete/brick trench	BH6S1, BH6S4	Lead only	√	BTEX ⁷ and MTBE ⁸	PAHs ⁹	Confirm no leaked diesel (if any) penetrate the concrete /brick trench	

Remarks:

 $^{^{1}\}checkmark$ = testing proposed.

² Having reviewed the potentially polluting activities of the site (use of diesel fuel) and S2.4.3 of Practice Guide, it is recommended to analyse the key COCs (i.e. Lead, PCRs, BTEX, MTBE and PAHs) of "Petrol Filling Station" which is the most relevant land use type for the case of T2. The concerned diesel tanks and pipelines are used for storage and transfer of diesel fuel only and only diesel fuel is used for the generator. It is noted BTEX, MTBE and Lead present in gasoline but unlikely to be found in diesel fuel.

³ PCRs = Petroleum Carbon Ranges; VOCs = Volatile Organic Chemicals; SVOCs = Semi-volatile Organic Chemicals;

⁴ Exact sampling locations will be identified on site during the removal of sand/soil during fuel tank and pipelines decommissioning/demolition.

⁵ All sand samples will be collected within the concrete chamber or concrete/brick trench.

⁶ bgs = Below Ground Surface.

⁷ BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes.

⁸ MTBE = Methyl Tert-Butyl Ether.

⁹ Polyaromatic hydrocarbons (PAHs) in the RBRGs include, acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a) pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene and pyrene.

Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

Table 2.2: Sampling Point Annotation of Underground Fuel Pipeline BH6

Sampling Locations	Sampling Point	Type of Sampling Point (Curvature/ Additional)	Figure No.
ВН6	BH6-S1	Curvature	
	BH6-S2	Additional	Ann an din F
	BH6-S3	Additional	Appendix E
	BH6-S4	Curvature	

2.2 **Alternative Sampling Method Formulated after Pre-demolition Survey**

2.2.1 **Alternative Sampling Method of BH5**

With the sampling experience of BH1 (for Emergency Power Supply System No.1), deviation between as-built drawing and the actual concrete chamber is expected. It is expected that the fuel tank is fully encased in the concrete chamber. However, the top concrete slab would be located at an uncertain level which would be beneath the surface ground and above the fuel tank. In consideration of the actual site condition and safety reasons, borehole sampling for BH5 was proposed by the Contractor, instead of grab sampling as proposed in the SCAP. Discussion was held between amongst the Contractor, AAHK and the land contamination specialist. It was agreed with the land contamination specialist that the borehole would be undertaken by means of rotary drilling method.

Details of sampling depths was presented in Section 3.1.

2.3 **Assessment Criteria**

The chemicals of concern (COCs) listed in EPD's Guidance Manual for Use of Risk-Based Remediation Goals for Contaminated Land Management were referred to when proposing the analytical parameters listed in Table 2.1. According to Section 5.3 of the SCAP, categories of Industrial were adopted for evaluating the contamination level of T2 building.

3 Site Investigation

3.1 Sand / Soil Sampling

3.1.1 Underground Fuel Tank BH5

Site investigation works of BH5 was commenced on 29 June 2020 by DrilTech Ground Engineering Limited. Samples were collected at the level of 0.5m and 1.5m below the top slab of the concrete chamber. However, the borehole drill coring process encountered a hard structure when it reached 1.9m below the top concrete slab. In view of the deviation between as-built drawing and the on-site observation, and with the consideration of incurred safety risk, the sampling by rotary drilling method was temporary stopped.

To confirm with the structure encountered at 1.9m below the top concrete slab, an inspection pit was excavated down to 1.9m below ground surface. An inspection was conducted by the land contamination specialist on 24 July 2020. It was found that there was a second concrete slab inside the concrete chamber and the fuel tank was still fully encased in a at least 300 mm thick concrete chamber, with the top concrete slab right beneath the surface ground level and the second concrete slab located at around 1.9 m below the top concrete slab. The structure is illustrated in **Appendix F**.

Another site investigation was conducted by land contamination specialist on 20 August 2020. It was found that the lower concrete chamber encasing the fuel tank with an inner depth of 1.25m, with 0.7m void right underneath the second concrete slab. A depth of 0.55m sand was filled from the bottom of the second concrete chamber. Since the actual inner depth of concrete chamber is smaller than those shown in the as-built drawing, as decided by the land contamination specialist, it was considered that 1 undisturbed sand samples collected at 1.0m below the second concrete slab of the concrete chamber was adequate and representative to confirm whether there was land contamination impact caused by the underground fuel tank.

One undisturbed soil sample was collected at 0.5m underneath the bottom concrete slab of the concrete chamber. The entire SI programme was supervised by the land contamination specialist. The actual sampling depths are summarized in **Table 3.1** and illustrated in **Appendix F**. All soil/sand samples were analyzed in accordance with the testing schedules detailed in **Table 2.1**.

No ground water was observed during sand and soil sampling work of BH5.

Table 3.1: Summary of Sampling Depth of BH5

Sampling Locations	Sampling Depth	Sampling Date
BH5	0.5m below the top concrete slab of the concrete chamber	29 June 2020
	1.5m below the top concrete slab of the concrete chamber	29 June 2020
	1.0m below the second concrete slab of the concrete chamber	20 August 2020
	0.5m underneath the bottom concrete slab of the concrete chamber	20 August 2020

3.1.2 Underground Fuel Pipeline BH6

Soil sampling of BH6 segments was carried out by land contamination specialist on 24 July 2020. Soil samples were collected at sampling points BH6-S1, BH6-S4, BH6-S5, BH6-S6 and BH6-NLTS1. According to site observation, a segment of underground pipeline with 1.3m in length located between BH5 and BH6-S6 are not laid inside the concrete trench, while the underground pipeline running from BH6-S6 to BH7 is laid inside the concrete trench. The actual sampling points and on-site length measurement of the segments of underground pipeline BH6 are illustrated in **Appendix G**.

BH6 segment between sampling point BH6-S6 and BH7

Based on-site observation, it was found that the concrete trench was filled with concrete rather than sand and no sand samples could be collected inside the concrete trench. Therefore, soil samples were collected at the following sampling points at the depth right underneath the concrete trench, where the curvature of the pipelines located,

- BH6-S1 (Same sampling point proposed in SCAP);
- BH6-S4 (Same sampling point proposed in SCAP);
- BH6-S5 (Newly added according to on-site condition); and
- BH6-S6 (Newly added according to on-site condition).

For indicative sampling points, BH6-S2 and BH6-S3, as no sand samples could be collected at the level of fuel pipelines, the site condition of the concrete trench was examined on-site and the observations are presented in **Appendix G.** No cracks on the concrete-trench nor oil stains were found in the vicinity of these 2 sampling points. However, due to the safety concerns of excavation at the time of on-site inspection, site photos at the sides and bottom of BH6-S2 and BH6-S3 could not be taken on 24 July 2020. However, with consideration of the site observations as presented in **Appendix G** and the laboratory testing results of BH6-S1 and BH6-S4, which are at the same segment and near in location, it is confirmed that no diesel leakage from the underground fuel pipelines laid in concrete trench.

To err on a conservative side, additional site photo records at BH6-S2 and BH6-S3 will be provided to EPD after the pipeline at BH6-S2 and BH6-S3 was removed.

No ground water was observed during soil sampling work of BH6-S1, BH6-S4, BH6-S5 and BH6-S6.

BH6 segment between BH5 and sampling point BH6-S6 (No-concrete-trench segment)

To confirm no diesel leakage from underground fuel pipelines from the 1.3m in length no-concrete-trench segment, 1 soil sample was taken right underneath the particular segment (i.e. BH6-NLTS1). Having considered that the sampling point selection strategy in the SCAP (i.e. If pipeline segment is ≤10 m, an additional sample is considered not required), the site observations where no oil stains being found in the vicinity of BH6-NLTS1, and the laboratory testing result for BH6-S6 (no contamination was found) which is near to the location of BH6-NLTS1, 1 sample collected at the depth right underneath the pipeline was deemed to be sufficient to represent and confirm if any diesel leakage from the 1.3m long (as revealed on-site) of no-concrete-trench segment.

No ground water was observed during soil sampling work of BH6-NLTS1.

The actual sampling points and on-site length measurement of the particular segment of underground pipeline BH6 are summarized in **Table 3.2** and illustrated in **Appendix G**. All soil samples were analyzed in accordance with the analysis schedules detailed in **Table 2.1**.

Table 3.2: Summary of Sampling Point of BH6

Sampling Locations	Sampling Point	Type of Sampling Point (Curvature/ Additional/ No-concrete- trench Segment)	Sampling Date
BH6	BH6-NLTS1	No-concrete-trench Segment	24 July 2020
	BH6-S1	Curvature	24 July 2020
	BH6-S4	Curvature	24 July 2020
	BH6-S5	Curvature	24 July 2020
	BH6-S6	Curvature	24 July 2020

3.1.3 Additional Photo Record Upon Demolition Works

To err on a conservative side, additional site photo records at the sides and bottom of BH6-S2 and BH6-S3 will be submitted to EPD upon the demolition work at these locations to reaffirm the conclusion drawn in **Section 3.1.2** that there was no diesel leakage from the underground fuel pipe.

In case that sign of diesel leakage is spotted during the demolition works, agreement from EPD shall be sought for sampling strategy and subsequent SI shall be arranged in accordance with the agreed sampling plan. A CAR should be submitted to EPD and if remediation is required, a Remediation Action Plan and Remediation Report will also be prepared.

3.2 Decontamination Procedures

Before excavation/ sampling, all equipment in contact with the ground were thoroughly decontaminated between each excavation and sampling event to minimise the potential for cross contamination. The equipment should be decontaminated by steam cleaning or high-pressure hot water jet, then washed by phosphate-free detergent and finally rinsed by distilled water. During decontamination procedures and sampling, disposable latex gloves were worn to prevent the transfer of contaminants from other sources.

3.3 Quality Assurance (QA) / Quality Control (QC) Procedure

3.3.1 QA/QC Procedure

The soil samples taken were placed in sample containers provided by the HOKLAS laboratory. Sufficient sample size was collected for the laboratory analysis. Samples were marked with sampling date, sampling identification number and sampling depth with appropriate chain-of-custody form. Collected samples were then stored in a cool box at a temperature between 0°C and 4°C and transported to the laboratory immediately after completion of the sampling.

The chain-of-custody records are given in **Appendix H**.

3.3.2 QA/QC Analysis

In this enhanced SI programme, QA/QC samples were collected in accordance with the frequency proposed in the SCAP as follows, with a Chain of Custody protocol adopted:

- One equipment blank per 20 samples for full suite analysis*;
- One field blank per 20 samples for full suite analysis*;
- One duplicate sample per 20 samples for full suite analysis*; and
- One trip blank per trip for the analysis of volatile parameters[#].

Note:

- * For the purposes of this enhanced SI programme, the following parameters were tested in a 'full suite analysis'
 - Heavy Metals: Lead only.
 - PCRs: C6-C8; C9-C16; C17-C35.
 - VOCs: Benzene, Toluene, Ethylbenzene, Xylenes and Methyl Tert-Butyl Ether.
 - SVOCs: acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene and pyrene.
- * For the purposes of this Project, the following parameters were tested in the analysis of 'volatile parameters' Benzene, Toluene, Ethylbenzene, Xylenes, Methyl Tert-Butyl Ether and C6-C8.

The duplicate, equipment blank and field blank samples were collected on 29 June 2020 during the sampling for BH5.

The laboratory results for QA/QC samples are presented in **Appendix I**.

Contamination Assessment Report for

Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

All testing parameters were not detected (below the limit of reporting) in all blank samples obtained, except Total Petroleum Hydrocarbons (TPH) C17 - C35 of equipment blank is in mild detected level. Given that the same testing parameters (C17 – C35) in the sand and soil samples are below the limit of reporting, therefore, it is considered that the testing results of sand and soil samples are reliable. QA/QC procedures for sample collection and preparation are considered acceptable.

Interpretation of Laboratory Testing Results 4

4.1 Sand/Soil Contamination

4.1.1 **Underground Fuel Tank BH5**

A total of 3 sand samples and 1 soil sample were collected at BH5 for laboratory testing. The testing results are summarised in Table 4.1 and the testing reports are presented in Appendix I. The testing results of all parameters indicated that all sand/soil samples from BH5 were below the value of RBRGs for Industrial.

Table 4.1: Laboratory Testing Results of Sand and Soil Samples at BH5

	Concentration (mg/kg)						
	BH5	BH5	BH5	BH5	RBRGs for Industrial		
Chemical	•	(1.5 m below the top	\	(0.5m underneath the			
		concrete slab of the		bottom concrete slab			
	concrete chamber)	concrete chamber)	slab of the concrete chamber)	of the concrete chamber)			
Heavy Metals				,			
Lead	8	7	4	7	2290		
PCRs							
C6 - C8	<5	<5	<5	<5	C6 - C8: 10,000		
C9 - C16	<200	<200	<200	<200	C9 - C16: 10,000		
C17 - C35	<500	<500	<500	<500	C17 - C35: 10,000		
VOCs							
Benzene	<0.2	<0.2	<0.2	<0.2	9.21		
Toluene	<0.5	<0.5	<0.5	<0.5	10,000		
Ethylbenzene	<0.5	<0.5	<0.5	<0.5	8,240		
Xylenes (Total)	<2.0	<2.0	<2.0	<2.0	1,230		
Methyl tert-Butyl Ether	<0.2	<0.2	<0.2	<0.2	70.1		
SVOCs							
Naphthalene	<0.500	<0.500	<0.500	<0.500	453		
Acenaphthylene	<0.500	<0.500	<0.500	<0.500	10,000		
Acenaphthene	<0.500	<0.500	<0.500	<0.500	10,000		
Fluorene	<0.500	<0.500	<0.500	<0.500	10,000		
Phenanthrene	<0.500	<0.500	<0.500	<0.500	10,000		
Anthracene	<0.500	<0.500	<0.500	<0.500	10,000		
Fluoranthene	<0.500	<0.500	<0.500	<0.500	10,000		
Pyrene	<0.500	<0.500	<0.500	<0.500	10,000		
Benz(a)anthracene	<0.500	<0.500	<0.500	<0.500	91.8		
Chrysene	<0.500	<0.500	<0.500	<0.500	1140		
Benzo(b)fluoranthene	<0.500	<0.500	<0.500	<0.500	17.8		
Benzo(k)fluoranthene	<0.500	<0.500	<0.500	<0.500	918		
Benzo(a)pyrene	<0.500	<0.500	<0.500	<0.500	9.18		
Indeno(1.2.3.cd)pyrene	<0.500	<0.500	<0.500	<0.500	91.8		
Dibenz(a.h)anthracene	<0.500	<0.500	<0.500	<0.500	9.18		
Benzo(g.h.i)perylene	<0.500	<0.500	<0.500	<0.500	10,000		

Contamination Assessment Report for

Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

4.1.2 **Underground Fuel Pipeline BH6**

A total of 5 soil samples were collected at BH6 for laboratory testing. The testing results are summarised in Table 4.2 and the testing reports are presented in Appendix I. The testing results of all parameters indicated that all soil samples from BH6 were below the value of RBRGs for Industrial.

Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

Table 4.2: Laboratory Testing Results of Soil Samples at BH6

Compound	Concentration (mg/kg)					
	BH6-NLTS1	BH6-S1	BH6-S4	BH6-S5	BH6-S6	RBRGs for Industrial
Heavy Metals						
Lead	62	76	209	71	104	2290
PCRs						
C6 - C8	<5	<5	<5	<5	<5	C6 - C8: 10,000
C9 - C16	<200	<200	<200	<200	<200	C9 - C16: 10,000
C17 - C35	<500	<500	<500	<500	<500	C17 - C35: 10,000
VOCs						
Benzene	<0.2	<0.2	<0.2	<0.2	<0.2	9.21
Toluene	<0.5	<0.5	<0.5	<0.5	<0.5	10,000
Ethylbenzene	<0.5	<0.5	<0.5	<0.5	<0.5	8,240
Xylenes (Total)	<2.0	<2.0	<2.0	<2.0	<2.0	1,230
Methyl tert-Butyl Ether	<0.2	<0.2	<0.2	<0.2	<0.2	70.1
SVOCs						
Naphthalene	<0.500	<0.500	<0.500	<0.500	<0.500	453
Acenaphthylene	<0.500	<0.500	<0.500	<0.500	<0.500	10,000
Acenaphthene	<0.500	<0.500	<0.500	<0.500	<0.500	10,000
Fluorene	<0.500	<0.500	<0.500	<0.500	<0.500	10,000
Phenanthrene	<0.500	<0.500	<0.500	<0.500	<0.500	10,000
Anthracene	<0.500	<0.500	<0.500	<0.500	<0.500	10,000
Fluoranthene	<0.500	<0.500	<0.500	<0.500	<0.500	10,000
Pyrene	<0.500	<0.500	<0.500	<0.500	<0.500	10,000
Benz(a)anthracene	<0.500	<0.500	<0.500	<0.500	<0.500	91.8
Chrysene	<0.500	<0.500	<0.500	<0.500	<0.500	1140
Benzo(b)fluoranthene	<0.500	<0.500	<0.500	<0.500	<0.500	17.8
Benzo(k)fluoranthene	<0.500	<0.500	<0.500	<0.500	<0.500	918
Benzo(a)pyrene	<0.500	<0.500	<0.500	<0.500	<0.500	9.18
Indeno(1.2.3.cd)pyrene	<0.500	<0.500	<0.500	<0.500	<0.500	91.8
Dibenz(a.h)anthracene	<0.500	<0.500	<0.500	<0.500	<0.500	9.18
Benzo(g.h.i)perylene	<0.500	<0.500	<0.500	<0.500	<0.500	10,000

5 **Final Inspection and Record Checking Findings**

5.1 **General**

According to Section 3.2.5 of the SCAP, it is recommended that final inspection and record checking should be conducted right before decommissioning/ demolition of the concerned above-ground fuel tank and the above-ground emergency generator for respective Emergency Power Supply Systems to ensure no contaminative activities during the period from the time of preparation of SCAP till the decommissioning. Summary of final inspection and record checking are given in ensuing paragraphs. Photo records of final inspections are presented in **Appendix J**.

5.1.1 **Final Inspection and Record Checking Findings**

5.1.1.1 **Emergency Power Supply System No.2**

Final Inspection

The above-ground fuel tank (i.e. BH9) and emergency generator (i.e. HS1) of EPSS2 were disconnected in late-May 2020. As advised by the contractor, the fuel inside EPSS2 was removed in late-June 2020. Hence the final inspection of the BH9 and HS1 was conducted on 8 July 2020. During our final inspection, BH9 and HS1 were at the same locations as for the time of preparation of SCAP in 2018. Both facilities were mounted on intact concrete floor with no oil stain observed, and no oil stain was observed inside the drip tray of the above-ground fuel tank (BH9). In addition, bund wall was provided in the access of the fuel tank room.

The fuel pipelines running through BH9 and HS1 were buried by sand inside a concrete and brick trench at floor level. Two sections of the pipelines were checked by removing the chequer plate cover and no sign of leakage was observed. Photo records of final inspections are presented in Appendix J1 and Appendix J2.

Record Checking

Available monthly maintenance records of the BH9 and HS1 from the time of SCAP preparation (i.e. March 2018) to February 2020 (month of last maintenance) were checked. No abnormality on fuel re-filling record was observed and no fuel tank leakage was recorded. It is concluded that there was no fuel leakage for the above-ground facilities BH9 and HS1 from the time of SCAP preparation till decommissioning/ demolition.

5.1.1.2 **Emergency Power Supply System No.3**

Final Inspection

The above-ground fuel tank (i.e. BH7) and emergency generator (i.e. BH8) of EPSS3 were decommissioned in early-April 2020. Final inspection of the BH7 and BH8 was conducted on 1 April 2020. During our final inspection, BH7 and BH8 were at the same locations as for the time of preparation of SCAP in 2018. The above-ground fuel tank (BH7) was surrounded by concrete curb and no oil stain was observed inside its drip tray, and the emergency generator (BH8) was mounted on intact concrete floor with no oil stain observed.

The fuel pipelines running through BH7 and BH8 were buried by sand inside a concrete and brick trench at floor level. Two sections of the pipelines were checked by removing the chequer plate cover and no sign of leakage was observed. Photo records of final inspections are presented in Appendix J3 and Appendix J4.

Record Checking

Available monthly maintenance records of the BH7 and BH8 from the time of SCAP preparation (i.e. March 2018) to March 2020 (month of last maintenance) were checked. No abnormality on fuel re-filling record was observed and no fuel tank leakage was recorded. It is concluded that there was no fuel leakage for the aboveground facilities BH7 and BH8 from the time of SCAP preparation till decommissioning/ demolition.

Contamination Assessment Report for

Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

5.1.1.3 **Emergency Power Supply System No.5**

Final Inspection

The above-ground fuel tank (i.e. HS4) and emergency generator (i.e. HS5) of EPSS5 were decommissioned in late-May 2020. Final inspection of the HS4 and HS5 was conducted on 25 May 2020. During our final inspection, HS4 and HS5 were at the same locations as for the time of preparation of SCAP in 2018. Both facilities are mounted on intact concrete floor with no oil stain observed, and no oil stain was observed inside the drip tray of the above-ground fuel tank (HS4). In addition, curb wall was provided in the access of the fuel tank room.

The fuel pipelines running through HS4 and HS5 were buried by sand inside a concrete and brick trench at floor level. Two sections of the pipelines were checked by removing the chequer plate cover and no sign of leakage was observed. Photo records of final inspections are presented in Appendix J5.

Record Checking

Available monthly maintenance records of the HS4 and HS5 from the time of SCAP preparation (i.e. March 2018) to February 2020 (month of last maintenance) were checked. No abnormality on fuel re-filling record was observed and no fuel tank leakage was recorded. It is concluded that there was no fuel leakage for the above-ground facilities HS4 and HS5 from the time of SCAP preparation till decommissioning/ demolition.

Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

Conclusion 6

Enhanced SI programme have been conducted for the underground sections, BH5 and BH6, during June to August 2020. During the enhanced SI programme, a total of 3 sand samples and 6 soil samples were collected and testing of CoCs was undertaken. The testing results indicated that all the samples at BH5 and BH6 were below the RBRGs standard for industrial. Based on the sample testing results, it is considered that there are no land contamination issues at the BH6, including the segment running through BH6-S2 and BH6-S3 as per the site photo record taken at BH6-S2 and BH6-S3. To sum up, it is considered that there are no land contamination issues at BH5 and BH6, therefore remediation works are not required.

To err on a conservative side, additional site photo records at the sides and bottom of BH6-S2 and BH6-S3 will be submitted to EPD upon the demolition at these two specific sampling points to reaffirm the conclusion drawn in Section 3.1.2 that there was no diesel leakage from the underground fuel pipes. In case that sign of diesel leakage is spotted during the demolition works, agreement from EPD shall be sought for sampling strategy and subsequent SI shall be arranged in accordance with the agreed sampling plan. A CAR should be submitted for the subsequent SI work and if remediation is required, a Remediation Action Plan and Remediation Report will also be prepared for submission to EPD.

Final inspection and record checking were conducted right before decommissioning/ demolition of the aboveground section of EPSS2 (i.e. BH9 and HS1), EPSS3 (i.e. BH7 and BH8) and EPSS5 (i.e. HS4 and HS5). According to the inspection and record checking results, it is concluded that there was no contaminative activities during the period from the preparation of SCAP till decommissioning/demolition of the above-ground facilities.

Appendices

A.	Updated Implementation Schedule of Land Contamination – Construction Phase	24
B.	Location of Emergency Power Supply Systems of T2 Building	25
C.	Identified Potential Land Contaminated Source of Emergency Power Supply Systems in SCAP	26
D.	Indicative Sampling Point Selection of 3,000 L Underground Fuel Tank of EPSS3 in SCAP (i.e. BH5)	27
E.	Indicative Sampling Point of the Underground Pipeline Trench of EPSS3 in SCAP (ie.BH6)	28
F.	Structure and Actual Sampling Depth of 3,000 L Underground Fuel Tank of EPSS3 (i.e. BH5)	29
G.	Actual Sampling Point of the Underground Pipeline Trench of EPSS3 (i.e. BH6-S1, BH6-S4, BH6-S5, BH6-S6, BH6-NLTS1)	30
H.	Chain-of-Custody Record	31
l.	Laboratory Testing Results of BH5 and BH6	32
J.	Site Photo Record of Final Inspection	33

Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

A. Updated Implementation Schedule of Land **Contamination – Construction Phase**

Updated Appendix C Table 1 of EM&A Manual: Implementation Schedule

EIA Ref.	EM&A Ref.	EP Condition	Environmental Protection Measures	Location / Duration of measures Timing of completion of measures	Mitigation Measures Implemented?*	
Land Conta	mination - C	Construction Ph	nase			
11.10.1.2 to 11.10.1.3	8.1	2.32	For areas inaccessible during site reconnaissance survey Further site reconnaissance would be conducted once the areas are accessible in order to identify any land contamination concern for the areas.	Fuel Tank Room to the West of CAD Antenna Farm ⁽¹⁾ / May 2017	ı	
				Fuel Tank Room within T2 Building ⁽¹⁾ / May 2017, Jan and Feb 2018	I	
			Seawater Pump House ⁽¹⁾ / Sep 2016	I (no contaminative land use types were identified and no further site investigation was required.)		
			Switching Station ⁽¹⁾ / Sep 2016	l (relocation of switching station was not required. No site appraisal process for land contamination potential was required)		
				Pumping Station ⁽¹⁾ / Dec 2016	I (no contaminative land use types were identified and no further site investigation was required.)	
					Fire Training Facility ⁽¹⁾ / May 2017	I
			 Subject to further site reconnaissance findings, a supplementary Contamination Assessment Plan (CAP) for additional site investigation (SI) (if necessary) may be prepared and submitted to EPD for endorsement prior to the commencement of SI at these areas. 	Fuel Tank Room to the West of CAD Antenna Farm ⁽²⁾⁽³⁾ / Aug 2018 Fuel Tank Room within T2 Building ⁽²⁾⁽³⁾ / Aug 2018	I (Supplementary CAP was approved in	
					August 2018)	
				Fire Training Facility ⁽²⁾⁽³⁾ / Aug 2018	•	
				Airside Petrol Filling Station ⁽³⁾ / Aug 2018	-	

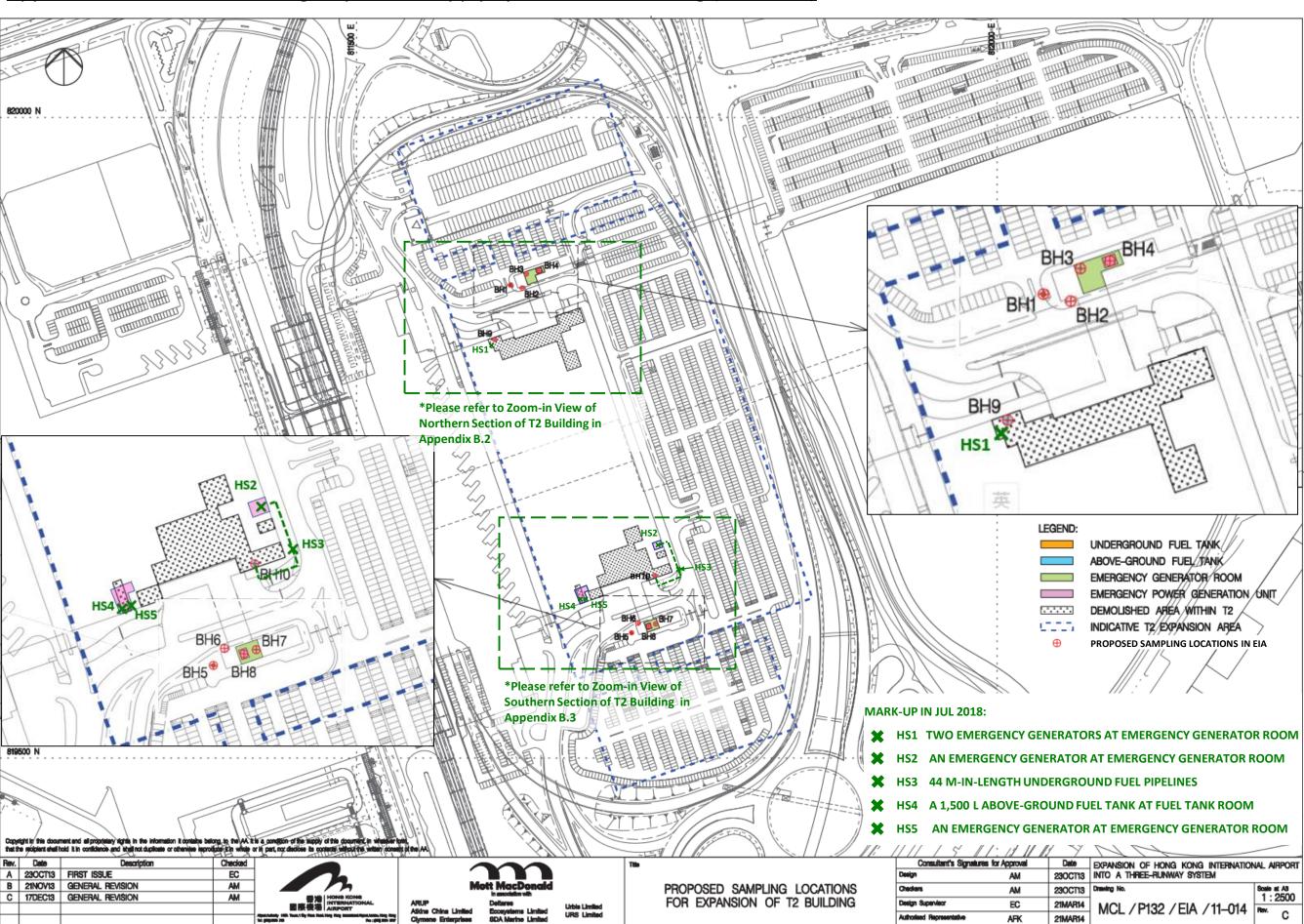
EIA Ref.	EM&A Ref.	EP Condition	Environmental Protection Measures	Location / Duration of measures Timing of completion of measures	Mitigation Measures Implemented?*				
			• After completion of SI, the Contamination Assessment Report (CAR) will be prepared and submitted to EPD for approval prior to start of the proposed construction works at the golf course, the underground and above-ground fuel storage tank areas, emergency power generation units, airside petrol filling station and fuel tank room.	Fuel Tank Room to the West of CAD Antenna Farm ⁽³⁾ / No development programme for this area at this stage	N/A				
				Fuel Tank Rooms within T2 Building ⁽³⁾	(CAR for T2 EPSS No.1 Volumes 1 and 2 was approved on 2 March 2020 and 7 May 2020) (CAR for T2 EPSS Nos.2,.3 and 5 has been submitted to EPD) (CAR for T2 EPSS No.4 is under preparation)				
				Fire Training Facility ⁽³⁾ / No development programme for this area at this stage	N/A				
				Airside Petrol Filling Station ⁽³⁾ / No development programme for this area at this stage	N/A				
				SkyCity Golf Course ⁽⁴⁾	I (CAR for golf course was approved on 6 April 2016)				
			 Should remediation be required, Remediation Action Plan (RAP) and Remediation Report (RR) will be prepared for EPD's approval prior to commencement of the proposed remediation and any construction works respectively. 	Project Site Area where remediation is required	N/A (No remediation is required so far)				
11.8.1.2	8.1	-	-	-	-	If contaminated soil is identified, the following mitigation measures are for the excavation and transportation of contaminated materials (if any):	Project Site Area where contaminated soil is	N/A (No contaminated	
			 To minimize the incidents of construction workers coming in contact with any contaminated materials, bulk earth-moving excavation equipment should be employed; 	identified	soil has been found so far)				
			 Contact with contaminated materials can be minimised by wearing appropriate clothing and personal protective equipment such as gloves and masks (especially when working directly with contaminated material), provision of washing facilities and prohibition of smoking and eating on site; 						
			 Stockpiling of contaminated excavated materials on site should be avoided as far as possible; 						
			 The use of any contaminated soil for landscaping purpose should be avoided unless pre- treatment was carried out; 						

EIA Ref.	EM&A Ref.	EP Condition	Environmental Protection Measures	Location / Duration of measures Timing of completion of measures	Mitigation Measures Implemented?*
			 Vehicles containing any excavated materials should be suitably covered to reduce dust emissions and/or release of contaminated wastewater; 		
			 Truck bodies and tailgates should be sealed to prevent any discharge; 		
			 Only licensed waste haulers should be used to collect and transport contaminated material to treatment/disposal site and should be equipped with tracking system to avoid fly tipping; 		
			 Speed control for trucks carrying contaminated materials should be exercised. 8km/h is the recommended speed limit; 		
			 Strictly observe all relevant regulations in relation to waste handling, such as Waste Disposal Ordinance (Cap 354), Waste Disposal (Chemical Waste) (General) Regulation (Cap 354) and obtain all necessary permits where required; and 		
			 Maintain records of waste generation and disposal quantities and disposal arrangements. 		

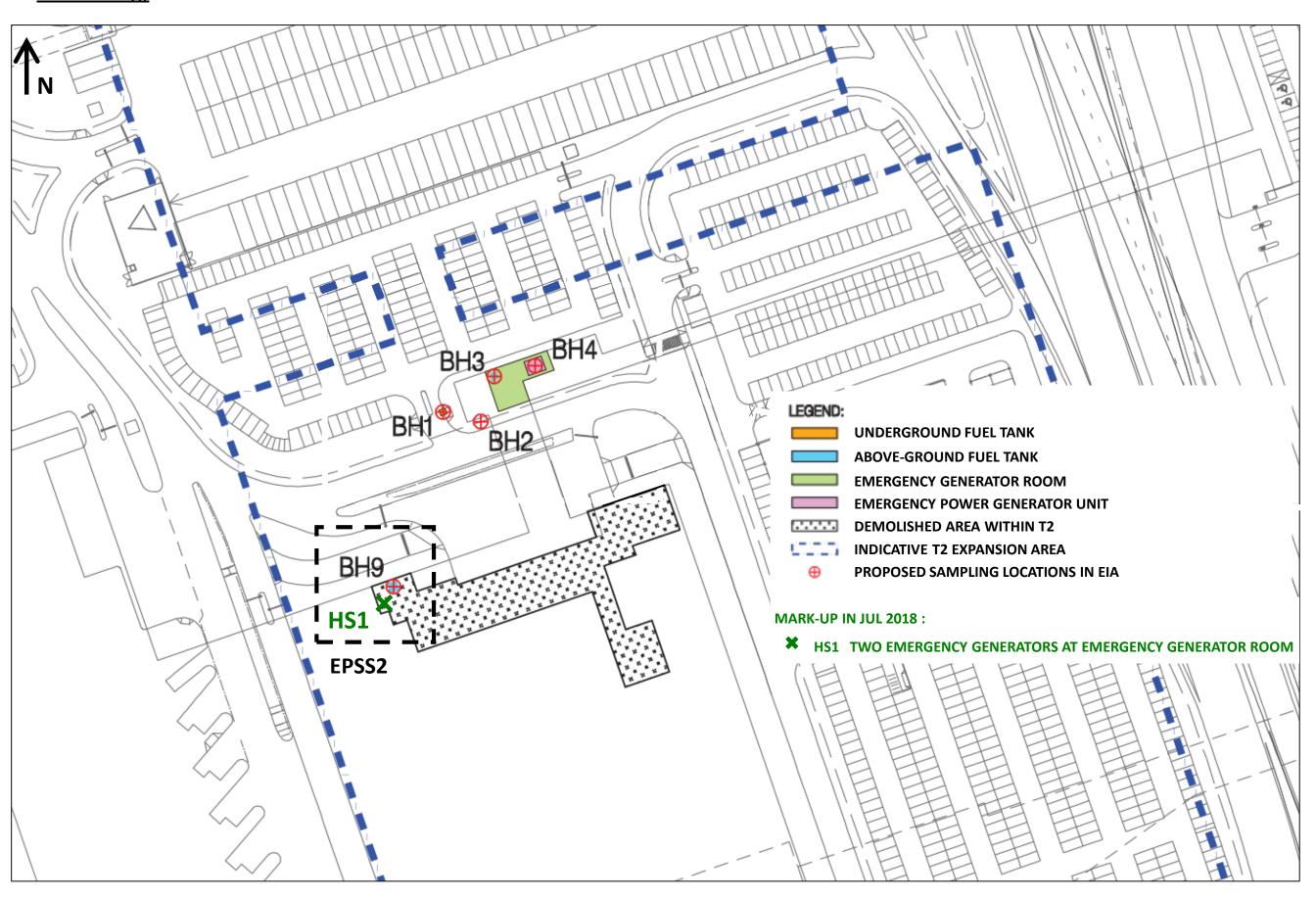
*Notes:

I= implemented where applicable;

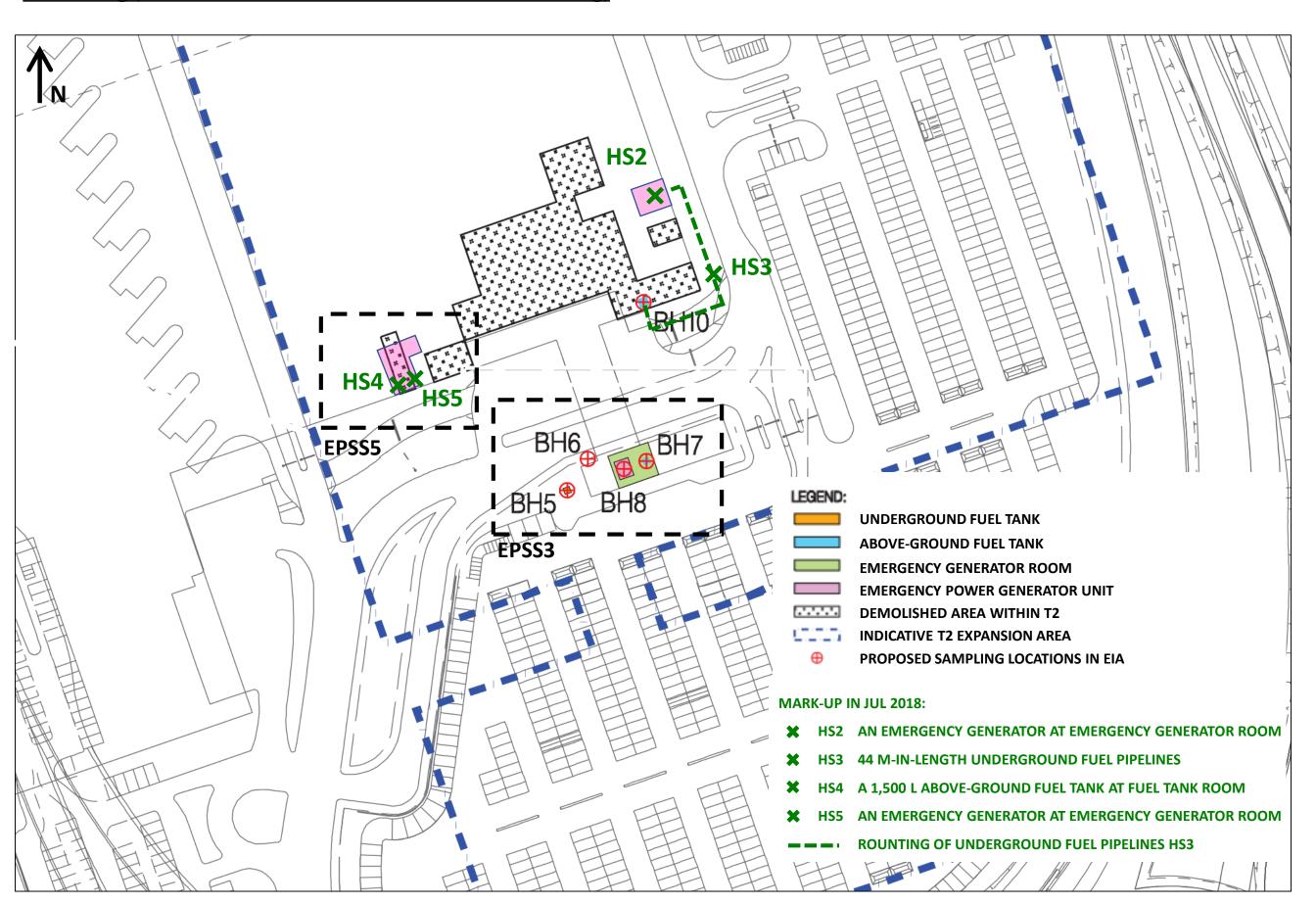
N/A= not applicable


Remarks:

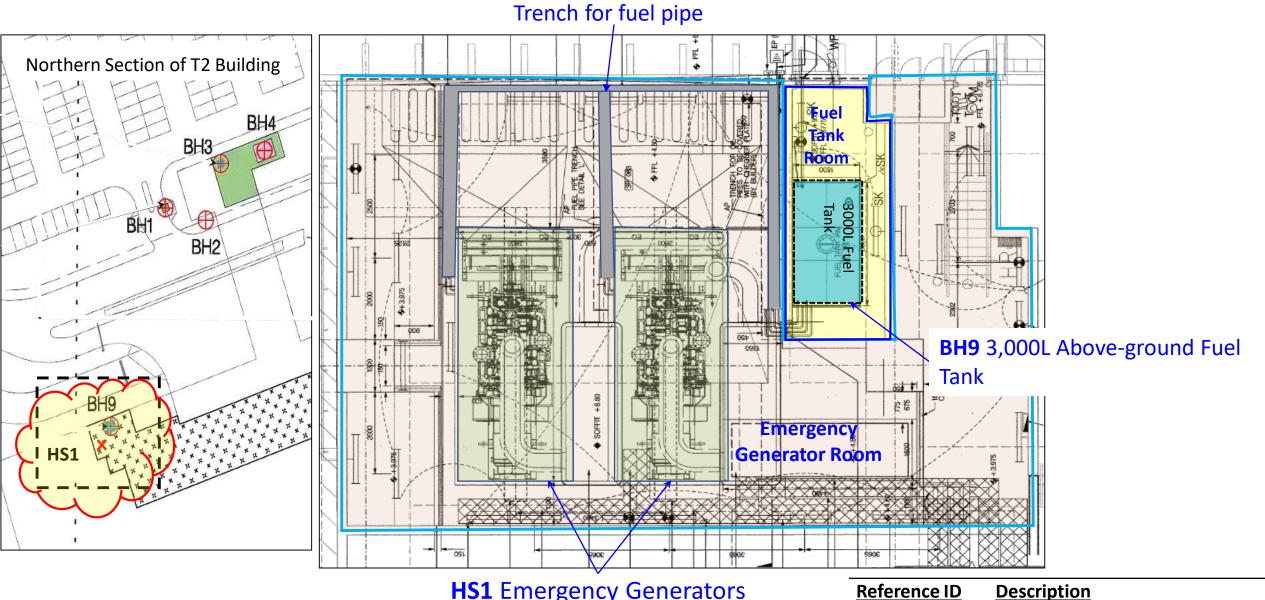
- (1) Project Site Area inaccessible during site reconnaissance in EIA stage according to Section 1.10.1.2. of the EIA Report.
- (2) Project Site Area where the need for Further Site Investigation was evaluated as stipulated in Table 3.2 of the Supplementary Contamination Assessment Plan (SCAP) approved in August 2018.
- Project Site Area where Site Investigation was recommended in Table 3.4 of the SCAP approved in August 2018.
- Project Site Area where Site Investigation to be carried out by Airport Management Services according to Section 11.6.1 of the EIA Report.


B. Location of Emergency Power Supply Systems of T2 Building

- **B.1** Location of Emergency Power Supply Systems of T2 Building (Overview)
- B.2 Location of Emergency Power Supply System No.2 of T2 Building (Zoom-in View of **Northern Section of T2 Building)**
- B.3 Location of Emergency Power Supply System No.3, Emergency Power Supply System No.4 and Emergency Power Supply System No.5 of T2 Building (Zoom-in View of **Southern Section of T2 Building)**


Appendix B.1 Location of Emergency Power Supply Systems of T2 Building (Overview)

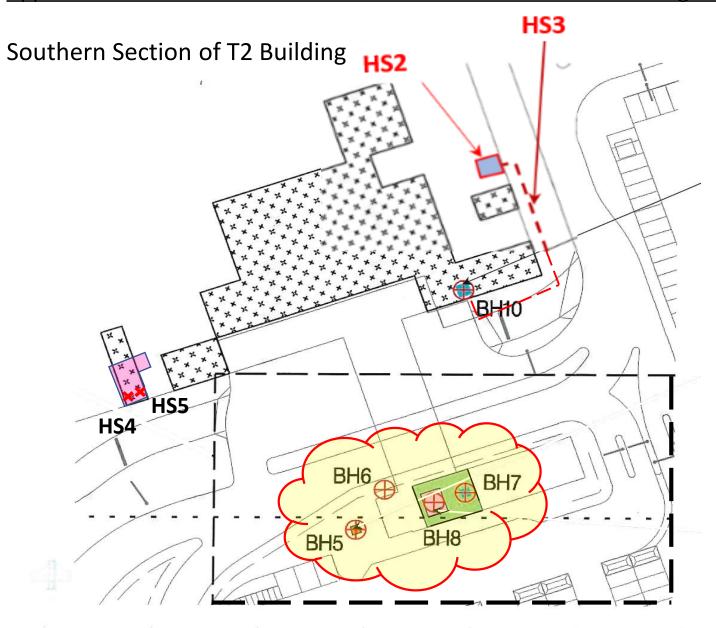
Appendix B.2 Location of Emergency Power Supply System No.2 (EPSS2) of T2 Building (Zoom-in View of Northern Section of T2 Building)



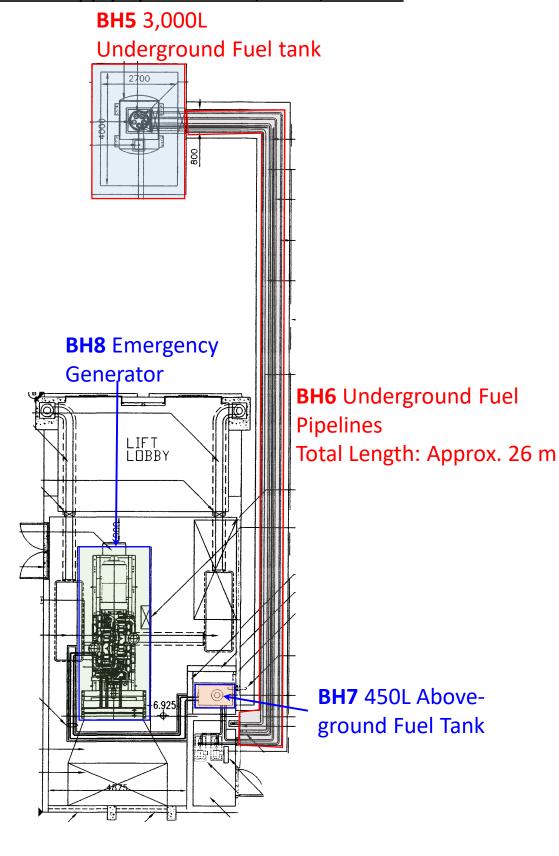
Appendix B.3 Location of Emergency Power Supply System No.3 (EPSS3) and Emergency Power Supply System No.5(EPSS5) of T2 Building (Zoom-in View of Southern Section of T2 Building)

C. Identified Potential Land Contaminated Source of Emergency Power Supply Systems in SCAP

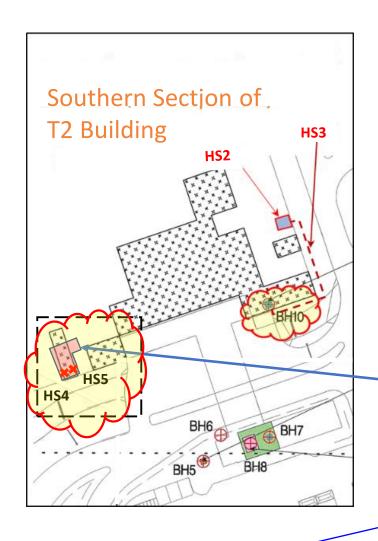
- Identified Potential Land Contaminated Source of Emergency Power Supply System No.2 (EPSS2) in SCAP
- **C.2 Identified Potential Land Contaminated Source of Emergency Power Supply System** No.3 (EPSS3) in SCAP
- **C.3** Identified Potential Land Contaminated Source of Emergency Power Supply System No.5 (EPSS5) in SCAP



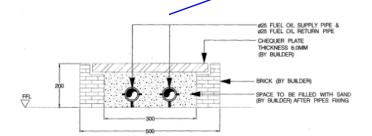
HS1 Emergency Generators (Stand on **200mm-thick concrete plinth**)

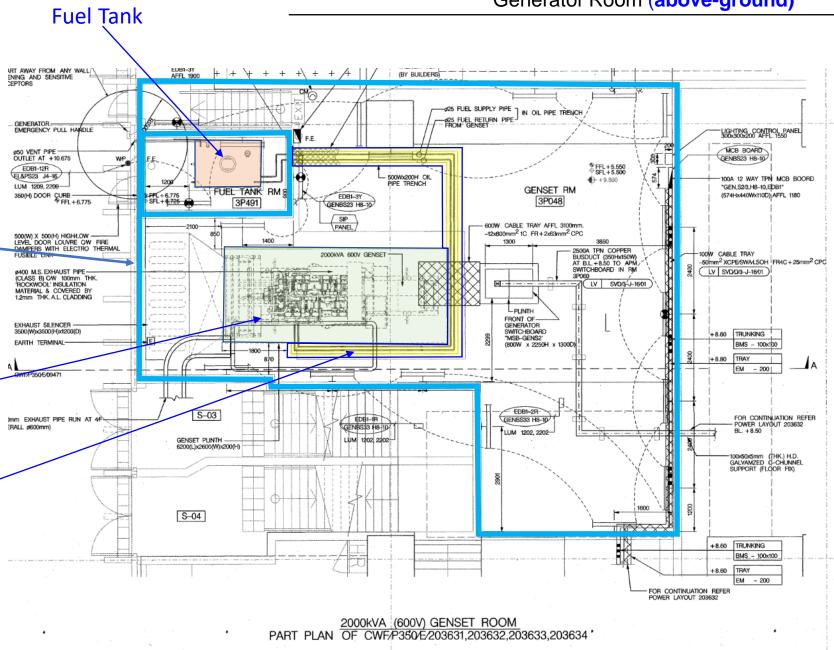

BH9 A 3,000 L above-ground fuel tank at Fuel Tank Room

Two above-ground emergency generators at Emergency Generator Room, connected to 3,000 L above-ground fuel tank (i.e. BH9)


Appendix C.2 Identified Potential Land Contaminated Source of Emergency Power Supply System No.3 (EPSS3) in SCAP

Reference ID	<u>Description</u>
ВН5	A 3,000 L underground fuel tank
ВН7	A 450 L above-ground fuel tank at Emergency Generator Room
вн6	26 m-in-length underground fuel pipelines connecting the 3,000 L underground fuel tank (i.e. BH5) and the 450 L above-ground fuel tank (i.e. BH7)
ВН8	An emergency generator at Emergency Generator Room (above-ground)


HS4

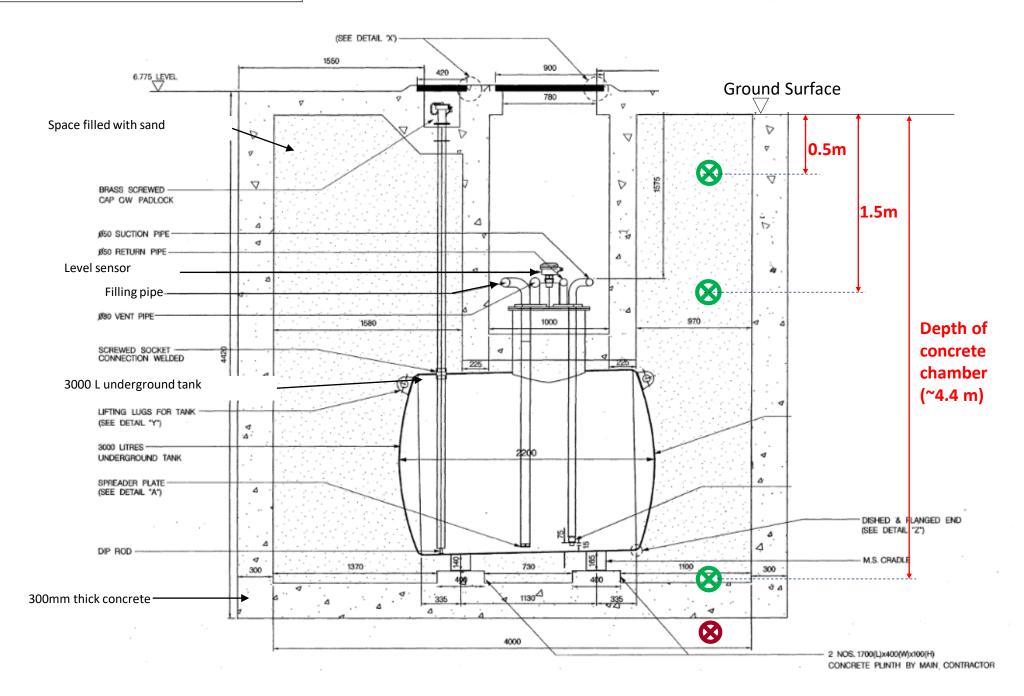

Reference ID Description HS4 A 1,500 L above-ground fuel tank at **Fuel Tank Room** HS₅ An emergency generator at Emergency 1,500L Above-ground Generator Room (above-ground)

> FAN RM 3P054

HS5 Emergency Generator (Mounted on 200mm-thick concrete plinth)

Supply and return pipe from fuel oil tank (Sand Filled Trench at floor level)

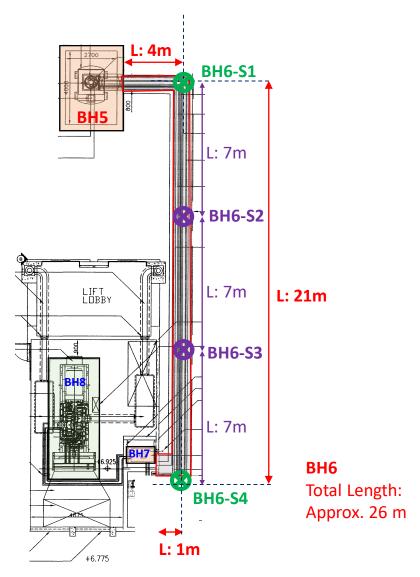
D. Indicative Sampling Point Selection of 3,000 L Underground Fuel Tank of EPSS3 in SCAP (i.e. BH5)


Appendix D Indicative Sampling Point Selection of 3,000 L Underground Fuel Tank of EPSS3 in SCAP (i.e. BH5)

Type of Sample	Sampling Point Selection Strategy
Sand	0.5 m, 1.5 m Below Ground Surface and bottom level inside the concrete chamber
Soil	Right underneath concrete chamber

Legend:

Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

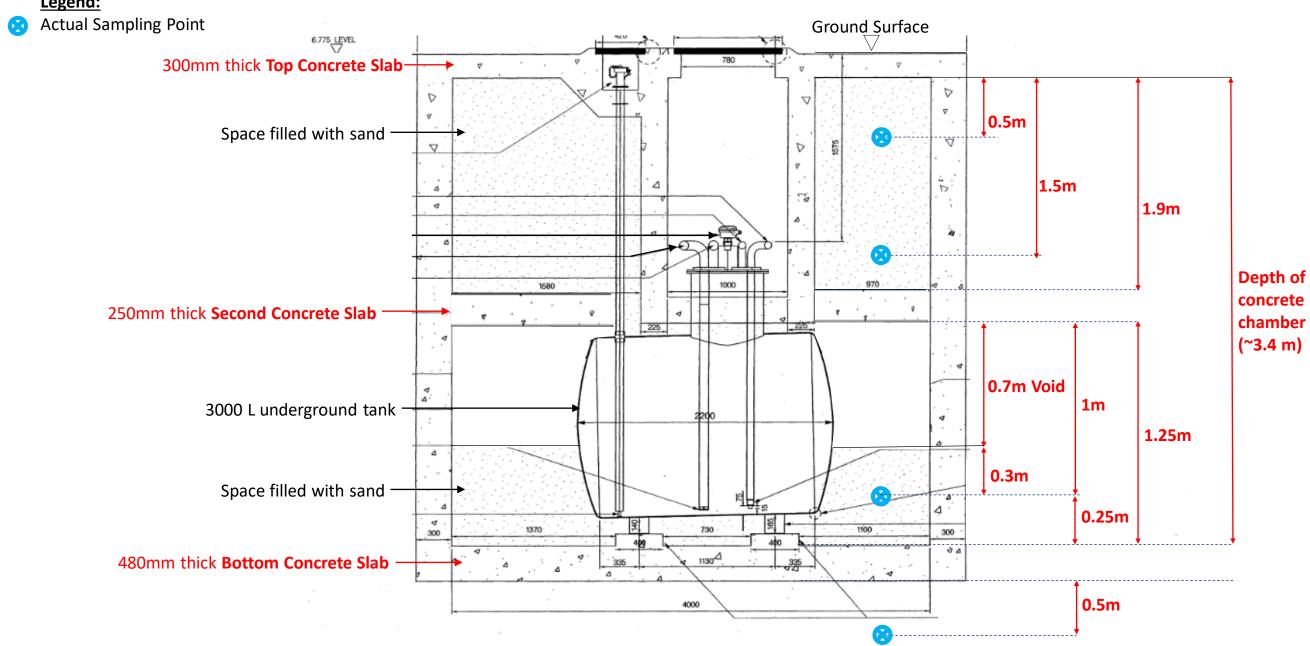

E. Indicative Sampling Point of the Underground Pipeline Trench of EPSS3 in SCAP (ie.BH6)

Appendix E Indicative Sampling Point of the Underground Pipeline Trench of EPSS3 in SCAP (ie.BH6)

<u>Annotation</u>	Type of Sampling	Type of	<u>Sample</u>
of Sampling	Point (Curvature/	At the level of fuel	<u>Right underneath</u>
<u>Point</u>	<u>Additional)</u>	pipelines (Within	concrete trench
		Concrete Trench)	
BH6-S1	Curvature		Soil
BH6-S2	Additional	Sand	-
BH6-S3	Additional	Sallu	•
BH6-S4	Curvature		Soil

LEGEND:

- Curvature Sampling Point
- Additional Sampling Point



F. Structure and Actual Sampling Depth of 3,000 L Underground Fuel Tank of EPSS3 (i.e. BH5)

Appendix F Structure and Actual Sampling Depth of 3,000 L Underground Fuel Tank of EPSS3 (i.e. BH5)

<u>Sample</u>	Sampling Point Selection Strategy
Sand	0.5 m, 1.5 m below top concrete slab, 1.0m below second concrete slab
Soil	0.5m below base concrete slab

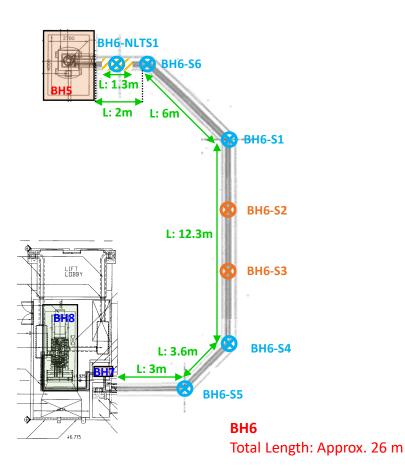
Legend:

Actual Sampling Point Selection of 3,000 L Underground Fuel Tank of Emergency Power Supply System No.3 (i.e. BH5)

G. Actual Sampling Point of the **Underground Pipeline Trench of EPSS3** (i.e. BH6-S1, BH6-S4, BH6-S5, BH6-S6, BH6-NLTS1)

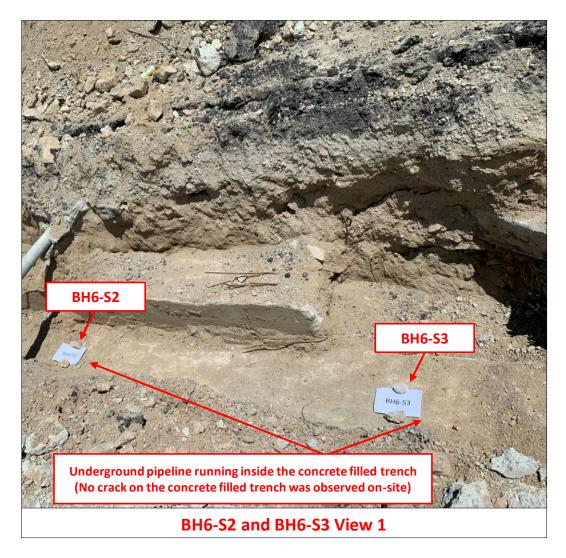
- Actual Sampling Point of the Underground Pipeline Trench of EPSS3 (i.e. BH6-S1, BH6-S4, BH6-S5, BH6-S6, BH6-NLTS1)
- **G.2** Site Photo Record of Underground Pipeline Trench of EPSS3 at BH6-S2 and BH6-S3 (Photo Record)

Appendix G.1 Actual Sampling Point of the Underground Pipeline Trench of EPSS3 (i.e. BH6-S1, BH6-S4, BH6-S5, BH6-S6, BH6-NLTS1)


Annotation of Sampling Point	Type of Sampling Point	Sampling Elevation	Type of Sample	<u>Remarks</u>
BH6-S1 BH6-S4 BH6-S5	Curvature Curvature (Newly added according to	Right underneath concrete trench corner		Same sampling point selection in SCAP
BH6-S6	on-site condition) Curvature (Newly added according to on-site condition)		Soil	Newly added according to on-site condition (Curvature of pipeline)
BH6-NLTS1	Newly added according to on-site condition	Right underneath the segment of underground pipeline		Newly added according to on-site condition (Segment of underground pipeline not laid in concrete trench)

LEGEND:

- Sampling Point proposed in SCAP with photo record taken on 24 Jul 2020
- Actual Sampling Point


TEXT On-site Measurement of Underground Pipeline/ Concrete Trench

Segment of underground pipeline not laid in concrete trench

Actual Sampling Point of Underground Pipeline Trench of Emergency Power Supply System No.3 (i.e. BH6)

Appendix G.2 Site Photo Record of Underground Pipeline Trench of EPSS3 at BH6-S2 and BH6-S3 (Photo Record)

Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

H. Chain-of-Custody Record

CLIENT: Most Mac Donald HK Limited SAMPLER: ADDRESS/OFFICE: Most MacDonald, 3/F International Trade Tower, 348 Known Tangkowd, Koulan Mobile: 9307 9680 (1:2 Lo) PROJECT MANAGER (PM): Thomas Chain ALS Laboratory Group	
ADDRESS/OFFICE: Mott MacDonald, 3/F International Trade Tower, 348 Knyw Taglood, Koulon MOBILE: 9307 9680 (1:2 Lo) PROJECT MANAGER (PM): Thomas Chan ALS Laboratory Group	
THOSE OF MERIVACENTERS. THOSE CARLA PHONE 1878 CF C (L/2) ALS Laboratory Group	ì
PROJECTID: Soil Testing at Hong Kong Airport EMAIL REPORT TO:	
SITE: Contract No. 3503 To Foundation & Sin/ P.O. NO.: EMAIL INVOICE TO: (if different to report)	\neg
RESULTS REQUIRED (Date): QUOTE NO.: HKE/IS 6/2018 ANALYSIS REQUIRED including SUITES (note - suite codes must be listed to attract suite prices)	\neg
FOR LABORATORY USE ONLY COMMENTS / SPECIAL HANDLING / STORAGE OR DIPOSAL:	es
COOLER SEAL (circle appropriate)	~
Intact: Yes No (N/A) Extra volume for QC or trace LORs etc	
SAMPLE TEMPERATURE	
CHILLED: (Yes) No	
SAMPLE INFORMATION (note: S = Soil, W=Water) CONTAINER INFORMATION .	- 1
ALS ID SAMPLE ID MATRIX DATE Time Type / Code Total bottles ead TPH RETX HTBE PAH C6-C8]
1. Trip Blank W 29/6/2000 Vials 2 VV	
2. Equipment Blank W 29/6/2020 IXAmber, 2xVials 1x plastic V V V	
3 - Field Rlank W 29/6/2000 1x Amber 2x Vials Peoplestic VVVV	\neg
4. BHS-500 MMBTS S 29/6/2020 Gloss Jav 1 VVVVV	
1. BH5-500 MMBT S(Duplingle) S 29/6/2020 Glass Jan 1 V V V V	
6. BH5-1500MMBTS S 29/6/220 Glass Jar 1 VVVV	一
- Dict 7500 Min. D. J Lifebra Chass Jack V V V V V V V V V V V V V V V V V V	\dashv
	[
RELINQUISHED BY: METHOD OF SHIPMENT	
Name: Thomas Chan Date: 29 June 2020 Name: Date: 29 June 2020 Name:	
Of: Mott Mae Donald Time: Of: A/C (HK) Time: BETT	
Name: Date: Name: Date: Transport Co:	
Of: Time: Time: Time:	
Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved;	7
V = VOA Vial HCI Preserved; VS = VOA Vial Sulphuric Preserved; SG = Sulfuric Preserved Amber Glass; H = HCI Preserved Plastic; HS = HCI Preserved Speciation Bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soil; B = Unpreserved Bag.	

ALS Laboratory Group

WHITE - LAB COPY YELLOW - CUSTOMER COPY PINK - BOOK COPY

COC Page _i_of _l_

CHAIN OF CUSTODY DOCUMENTATION							I	\dashv	030	091	65			
CLIENT: MOTE MACDONAID HK LIMITED	SAMPI	LER:												
ADDRESS/OFFICE: Mott Mic Davald, 3/F Internation Trade Tower, 348 King Tog	MOBIL	- 1	1307	91	280	(L7	7 La	<u> </u>						(ALS)
PROJECT MANAGER (PM): Thomas Chan	PHON	PHONE 2828 5751 (47-10)							ALS Laboratory Group					
PROJECTIO: SOTI TESTING at Hong Kong Athart	EMAIL	REPO	ORT TO:	Î	1.0	not	fry.	<u> (</u> >	m 1	12.10	o (9)	mot	tou	C. Com
SITE: Contract No. 3503 72 Faintingth & SW P.O. No.:	EMAIL	. INVO	ICE TO:	(if diffe	rent to r	eport)							-	
RESULTS REQUIRED (Date): QUOTE NO .: HVE/186/L/2018	ANAL'	YSIS F	REQUIR	ED inc	uding	SUITES	(note -	suite co	des must	t be liste	ed to a	ttract s	uite pric	es)
FOR LABORATORY USE ONLY COMMENTS / SPECIAL HANDLING / STORAGE OR DIPOSAL:														Notes: e.g. Highly contaminated samples
COOLER SEAL (circle appropriate)														e.g. "High PAHs expected"
Intact: Yes No Qua														Extra volume for QC or trace LORs etc.
SAMPLE TEMPERATURE														
CHILLED: (Yes) No														
SAMPLE INFORMATION (note: S = Soil, W=Water) CONTAINER INFORMATION]	~7.a .												
ALS ID SAMPLE ID MATRIX DATE Time Type / Code Total bottles	izad	ım	BETX	MIRE	PAH	Ub-Uf								
1 Trip Blank W 24/7120 Vials 2			$ \sqrt{\ }$											
2 BHB-NUTSI 5 247120 Glass Jar 1	V	V	ν	V	V									
3 B16-51 S 247/20 Glass Jar 1	V	V	V	V	ン									
4 B16-54 5 247120 GBK Jan 1	V	٧	V	V	√									
5 BH6-S5 5 247/20 Glas Jan 1	V	V	V	V	V									
6 BH6-56 5 247120 Glass Jar 1	V	v	V	V	V									
0,000		<u>_</u>												
			<u> </u>											
					-									
				<u> </u>						\dashv				
										_			 	
	H		<u> </u>							\dashv				
			<u> </u>											
Name: Thanks Chan Date: 241 72020	Name		\overline{X}	<u>/) </u>		REC	EIVED	BY	Data		Π	H	1	METHOD OF SHIPMENT
Of: Mott Marchard HK Linter Time:	Name Of:) .	-Ч	AT	- 1	11	<i>,</i> \		Date:		4+	\mathcal{H}	72	Con' Note No:
Name: Date:	Name	٠	f		> (- 111	\rightarrow		Time: Date:		1 :	-11-	<u> </u>	Transport Co.
Of: Time;	Of:	<u> </u>						-	Time:					Transport Co:
Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC;		odium	Hvdroxi	de/Cd F	reserv	ed: S=	Sodiun	n Hydrox		served !	Plastic	AG =	Amher	Glass Hopreserved
V = VOA Vial HCI Preserved; VS = VOA Vial Sulphuric Preserved; SG = Sulfuric Preserved Amber Glass; H = HCI														•
Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulpha												2		,

ALS Laboratory Group

WHITE - LAB COPY YELLOW - CUSTOMER COPY PINK - BOOK COPY COC Page ____of___

CHAIN OF CUSTODY DOCUMENTATION	H	030966	
CLIENT: Mott MacDonald HK limited	SAMPLER:	00000	-
ADDRESS/OFFICE: Mott MacDonald, 3/F International Typhe Tower, 268 Knyy Tong Roo PROJECT MANAGER (PM): Thomas (Corn.)	MOBILE: 9307 9680 ([12]0)		
PROJECT MANAGER (PM): Thomas Gain Kallon, AK	PHONE 2818 5751 (Liz Lo	7	ALE Laboratory Group
PROJECTID: Soil Testing at Honor Kong Airport	EMAIL REPORT TO:		ALS Laboratory Group
SITE: Contract No. 3503 T2 Faind-tion & Sup.O. NO.:	EMAIL INVOICE TO: (if different to report)		
RESULTS REQUIRED (Date): QUOTE NO.: HKE 11861c (2018	ANALYSIS REQUIRED including SUITES(note - suite	codes must be listed to attract suite or	incol
FOR LABORATORY USE ONLY COMMENTS / SPECIAL HANDLING / STORAGE OR DIPOSAL:		Codes must be nated to attract suite pri	T
COOLER SEAL (circle appropriate)	1		Notes: e.g. Highly contaminated samples
Intact: Yes No (N/A)	1		e.g. "High PAHs expected"
SAMPLE TEMPERATURE	1		Extra volume for QC or trace LORs etc.
CHILLED: Yes No	1		
SAMPLE INFORMATION (note: S = Soil, W=Water) CONTAINER INFORMATION	1		
ALS ID SAMPLE ID MATRIX DATE Time Type / Code Total bottles	LEND THE BETX MITBE PAH CG-CR		,
1. Trip Blank W 298/2020 Vials 2	1/1/		<u> </u>
2. BH5-1000 R2NDS < 208/2020 (Gloss Jay 1		 	
	VVVV	 	
	VVVV		
my.			
RELINQUISHED BY:	RECEIVED BY		METHOD OF SHIPMENT
Name: Thomas Chan Date: 20 Aug 2020	Name: Sanha	Date: 26 A46 2020	Con' Note No:
Of: Mott MacDonald Time:	Of: ALS (4K)	Time: 17:5	
Name: Date:	Name:	Date:	Transport Co:
Of: Time:	Of:	Time:	
Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC;	SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide	roxide Preserved Plastic; AG = Amber	Glass Unpreserved;
V = VOA VIal HCI Preserved; VS = VOA VIal Sulphuric Preserved; SG = Sulfuric Preserved Amber Glass; H = HCI	Preserved Plastic; HS = HCI Preserved Speciation Bottle;	; SP = Sulfuric Preserved Plastic; F =	Formaldehyde Preserved Glass;
Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulph	ate Soil; B = Unpreserved Bag.		

ALS Laboratory Group

WHITE - LAB COPY YELLOW - CUSTOMER COPY PINK - BOOK COPY

COC Page ____of___

Terminal 2 Emergency Power Supply Systems No.2, Emergency Power Supply Systems No.3 and Emergency Power Supply Systems No. 5

I. Laboratory Testing Results of BH5 and **BH6**

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: MOTT MACDONALD HONG KONG LIMITED Client

Laboratory

: ALS Technichem (HK) Pty Ltd

Page

: 1 of 13

Contact

: THOMAS CHAN

Contact

: Richard Fung

Work Order

: HK2024008

Address

: +852 2828 5933

: +852 2828 1823

: 3/F INTERNATIONAL TRADE TOWER, 348 KWUN TONG ROAD,

Address

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Yip Street, Kwai Chung, N.T., Hong Kong

E-mail Telephone

Facsimile

: thomas.chan@mottmac.com

E-mail

: richard.fung@alsglobal.com

Telephone Facsimile

: +852 2610 1044

: +852 2610 2021

Project

Site

: SOIL TESTING AT HONG KONG AIRPORT

KWUN TONG. KOWLOON. HONG KONG

Order number

Quote

Date Samples Received

: 29-Jun-2020

number

: HKE/1861c/2018 V2

Issue Date

: 09-Jul-2020

C-O-C number : H030963

No. of samples received

: 6

: 6

: CONTRACT NO. C3503 TERMINAL 2 FOUNDATION AND SUBSTRUCTURE WORKS

No. of samples analysed

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory, ALS Technichem (HK) Pty Ltd (Reg. No. HOKLAS 066) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories

Authorised results for

Anh Ngoc Huvnh .

Senior Chemist

Organics ENV

Chan Siu Ming, Vico

Manager - Inorganics

Inorganics

Mole

Leung Chak Cheong, Mike

Senior Chemist

Metals_ENV

Page Number : 2 of 13

Client : MOTT MACDONALD HONG KONG LIMITED

Work Order HK2024008

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 29-Jun-2020 to 08-Jul-2020.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2024008

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

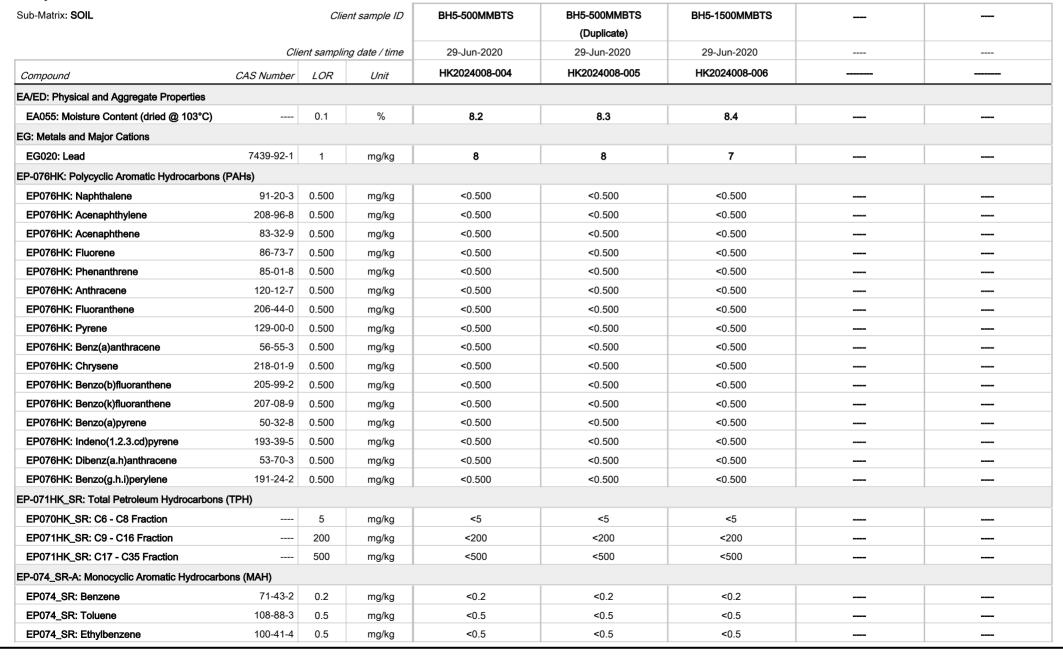
Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.

Result(s) of soil/sediment sample(s) was / were reported on dry weight basis.

Water sample(s) were filtered prior to dissolved metal analysis.

EP070 is the numeric code for internal use. Test method for C6-C9 Fraction of TPH is EP071.

Sample(s) as received, digested by In-house method E-ASTM D3974-09 prior to determination of metals. The In-house method is developed based on ASTM D3974-09 method.


∴ 3 of 13

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order HK2024008

Analytical Results

∴ 4 of 13

Client

: MOTT MACDONALD HONG KONG LIMITED

Sub-Matrix: SOIL		Clie	ent sample ID	BH5-500MMBTS	BH5-500MMBTS (Duplicate)	BH5-1500MMBTS	
	Clie	ent samplii	ng date / time	29-Jun-2020	29-Jun-2020	29-Jun-2020	
Compound	CAS Number	LOR	Unit	HK2024008-004	HK2024008-005	HK2024008-006	
EP-074 SR-A: Monocyclic Aromatic Hydrocart	oons (MAH) - Cor	ntinued					
EP074_SR: meta- & para-Xylene	108-38-3	1.0	mg/kg	<1.0	<1.0	<1.0	
	106-42-3						
EP074_SR: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	
EP074_SR: Xylenes (Total)		2.0	mg/kg	<2.0	<2.0	<2.0	
EP-074_SR-I: Methyl-tert-butyl Ether							
EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.2	<0.2	<0.2	
EP-076S: Polycyclic Aromatics Hydrocarbons (I	PAHs) Surrogates	s					
EP076HK: 2-Fluorobiphenyl	321-60-8	0.1	%	102	97.5	103	
EP076HK: 4-Terphenyl-d14	1718-51-0	0.1	%	104	98.2	104	
EP-080_SRS: TPH(Volatile)/BTEX Surrogate							
EP070HK_SR: Dibromofluoromethane	1868-53-7	0.1	%	96.0	99.7	101	
EP070HK_SR: Toluene-D8	2037-26-5	0.1	%	102	103	104	
EP070HK_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	104	105	105	
EP-074_SR-S: VOC Surrogates							
EP074_SR: Dibromofluoromethane	1868-53-7	0.1	%	96.0	99.7	101	
EP074_SR: Toluene-D8	2037-26-5	0.1	%	102	103	104	
EP074_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	104	105	105	

5 of 13

Client

: MOTT MACDONALD HONG KONG LIMITED

Sub-Matrix: WATER		Clie	nt sample ID	Trip Blank	Equipment Blank	Field Blank		
	Clie	ent samplir	ng date / time	29-Jun-2020	29-Jun-2020	29-Jun-2020		
Compound	CAS Number	LOR	Unit	HK2024008-001	HK2024008-002	HK2024008-003		
EG: Metals and Major Cations - Filtered	·							
EG020: Lead	7439-92-1	1	μg/L		<1	<1		
EP-076HK: Polycyclic Aromatic Hydrocarbon	ns (PAHs)							
EP076HK: Naphthalene	91-20-3	2.0	μg/L		<2.0	<2.0		
EP076HK: Acenaphthylene	208-96-8	2.0	μg/L		<2.0	<2.0		
EP076HK: Acenaphthene	83-32-9	2.0	μg/L		<2.0	<2.0		
EP076HK: Fluorene	86-73-7	2.0	μg/L		<2.0	<2.0		
EP076HK: Phenanthrene	85-01-8	2.0	μg/L		<2.0	<2.0		
EP076HK: Anthracene	120-12-7	2.0	μg/L		<2.0	<2.0		
EP076HK: Fluoranthene	206-44-0	2.0	μg/L		<2.0	<2.0		
EP076HK: Pyrene	129-00-0	2.0	μg/L		<2.0	<2.0		
EP076HK: Benz(a)anthracene	56-55-3	2.0	μg/L		<2.0	<2.0		
EP076HK: Chrysene	218-01-9	1.0	μg/L		<1.0	<1.0		
EP076HK: Benzo(b)fluoranthene	205-99-2	1.0	μg/L		<1.0	<1.0		
EP076HK: Benzo(k)fluoranthene	207-08-9	2.0	μg/L		<2.0	<2.0		
EP076HK: Benzo(a)pyrene	50-32-8	2.0	μg/L		<2.0	<2.0		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	2.0	μg/L		<2.0	<2.0		
EP076HK: Dibenz(a.h)anthracene	53-70-3	2.0	μg/L		<2.0	<2.0		
EP076HK: Benzo(g.h.i)perylene	191-24-2	2.0	μg/L		<2.0	<2.0		
EP-071HK_SR: Total Petroleum Hydrocarbo	ns (TPH)							
EP070HK_SR: C6 - C8 Fraction		20	μg/L	<20	<20	<20	****	
EP071HK_SR: C9 - C16 Fraction		500	μg/L		<500	<500		
EP071HK_SR: C17 - C35 Fraction		500	μg/L		2800	<500		
EP-074_SR-A: Monocyclic Aromatic Hydroca	arbons (MAH)							
EP074_SR: Benzene	71-43-2	5.0	μg/L	<5.0	<5.0	<5.0		
EP074_SR: Toluene	108-88-3	5.0	μg/L	<5.0	<5.0	<5.0		
EP074_SR: Ethylbenzene	100-41-4	5.0	μg/L	<5.0	<5.0	<5.0		
EP074_SR: meta- & para-Xylene	108-38-3	10	μg/L	<10	<10	<10		
	106-42-3							
EP074_SR: ortho-Xylene	95-47-6	5.0	μg/L	<5.0	<5.0	<5.0		
EP074_SR: Xylenes (Total)		20	μg/L	<20	<20	<20		

∴ 6 of 13

Client

: MOTT MACDONALD HONG KONG LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	Trip Blank	Equipment Blank	Field Blank	
	Cli	ent samplii	ng date / time	29-Jun-2020	29-Jun-2020	29-Jun-2020	
Compound	CAS Number	LOR	Unit	HK2024008-001	HK2024008-002	HK2024008-003	
EP-074_SR-I: Methyl-tert-butyl Ether							
EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	μg/L	<0.5	<0.5	<0.5	
EP-076S: Polycyclic Aromatics Hydrocarbons (I	PAHs) Surrogate	s					
EP076HK: 2-Fluorobiphenyl	321-60-8	0.1	%		52.0	57.0	
EP076HK: 4-Terphenyl-d14	1718-51-0	0.1	%		91.4	108	
EP-080_SRS: TPH(Volatile)/BTEX Surrogate							
EP070HK_SR: Dibromofluoromethane	1868-53-7	0.1	%	105	106	104	
EP070HK_SR: Toluene-D8	2037-26-5	0.1	%	102	103	102	
EP070HK_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	104	104	103	
EP-074_SR-S: VOC Surrogates							
EP074_SR: Dibromofluoromethane	1868-53-7	0.1	%	105	106	104	
EP074_SR: Toluene-D8	2037-26-5	0.1	%	102	103	102	
EP074_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	104	104	103	

7 of 13

Client : MOTT MACDONALD HONG KONG LIMITED

Work Order HK2024008

ALS

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Labor	ratory Duplicate (DUP)	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	<i>RPD</i> (%)
EA/ED: Physical and Ag	gregate Properties (QC Lot: 31151	04)						
HK2023994-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	10.8	10.6	1.35
HK2024005-008	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	9.1	9.1	0.00
G: Metals and Major C	cations (QC Lot: 3109627)							
HK2024008-005	BH5-500MMBTS (Duplicate)	EG020: Lead	7439-92-1	1	mg/kg	8	8	0.00
EP-076HK: Polycyclic A	romatic Hydrocarbons (PAHs) (QC	Lot: 3107195)						
HK2023535-001	Anonymous	EP076HK: Naphthalene	91-20-3	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Acenaphthene	83-32-9	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Fluorene	86-73-7	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Phenanthrene	85-01-8	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Anthracene	120-12-7	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Fluoranthene	206-44-0	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Pyrene	129-00-0	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benz(a)anthracene	56-55-3	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Chrysene	218-01-9	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(b)fluoranthene	205-99-2	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(k)fluoranthene	207-08-9	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(a)pyrene	50-32-8	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Dibenz(a.h)anthracene	53-70-3	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(g.h.i)perylene	191-24-2	50	μg/kg	<0.500 mg/kg	<500	0.00
EP-071HK_SR: Total Pe	etroleum Hydrocarbons (TPH) (QC I	_ot: 3097063)						
HK2023240-001	Anonymous	EP071HK_SR: C9 - C16 Fraction		200	mg/kg	<200	<200	0.00
		EP071HK_SR: C17 - C35 Fraction		500	mg/kg	<500	<500	0.00
:P-071HK_SR: Total Pe	etroleum Hydrocarbons (TPH) (QC I	_ot: 3097064)						
HK2023240-001	Anonymous	EP070HK_SR: C6 - C8 Fraction		5	mg/kg	<5	< 5	0.00
:P-074_SR-A: Monocyc	clic Aromatic Hydrocarbons (MAH) (QC Lot: 3110256)						
HK2024063-007	Anonymous	EP074_SR: Benzene	71-43-2	0.1	mg/kg	<0.2	<0.2	0.00
		EP074_SR: Toluene	108-88-3	0.2	mg/kg	<0.5	<0.5	0.00
		EP074_SR: Ethylbenzene	100-41-4	0.2	mg/kg	<0.5	<0.5	0.00

: 8 of 13

Client : MOTT MACDONALD HONG KONG LIMITED

Work Order HK2024008

Matrix: SOIL					Labora	atory Duplicate (DUP)	Report	
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)
sample ID							Result	
EP-074_SR-A: Monocy	clic Aromatic Hydrocarbons ((MAH) (QC Lot: 3110256) - Continued						
HK2024063-007	Anonymous	EP074_SR: ortho-Xylene	95-47-6	0.2	mg/kg	<0.5	<0.5	0.00
		EP074_SR: meta- & para-Xylene	108-38-3	0.4	mg/kg	<1.0	<1.0	0.00
			106-42-3					
		EP074_SR: Xylenes (Total)		1	mg/kg	<2.0	<2.0	0.00
EP-074_SR-I: Methyl-te	ert-butyl Ether (QC Lot: 3110	0256)						
HK2024063-007	Anonymous	EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.2	<0.2	0.00
Matrix: WATER					Labora	atory Duplicate (DUP)	Report	
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)
sample ID							Result	
EG: Metals and Major (Cations - Filtered (QC Lot: 3	109624)						
HK2024008-003	Field Blank	EG020: Lead	7439-92-1	1	μg/L	<1	<1	0.00

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB)	Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Re	covery (%)	Recove	ry Limits(%)	RP	D (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control	
											Limit	
EG: Metals and Major Cations (QC Lot: 310	09627)											
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	108		90.0	110			
EP-076HK: Polycyclic Aromatic Hydrocarbor	ns (PAHs) (QC Lot: 3107	7195)										
EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	25 μg/kg	91.6		54.0	138			
EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	25 μg/kg	94.0		56.0	145			
EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	25 μg/kg	90.0		54.0	139			
EP076HK: Fluorene	86-73-7	50	μg/kg	<50	25 μg/kg	94.3		54.0	140			
EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	25 μg/kg	93.8		51.0	139			
EP076HK: Anthracene	120-12-7	50	μg/kg	<50	25 μg/kg	95.4		54.0	145			
EP076HK: Fluoranthene	206-44-0	50	μg/kg	<50	25 μg/kg	95.4		55.0	142			
EP076HK: Pyrene	129-00-0	50	μg/kg	<50	25 μg/kg	93.1		52.0	141			
EP076HK: Benz(a)anthracene	56-55-3	50	μg/kg	<50	25 μg/kg	93.3		48.0	142			
EP076HK: Chrysene	218-01-9	50	μg/kg	<50	25 μg/kg	91.0		49.0	146			
EP076HK: Benzo(b)fluoranthene	205-99-2	50	μg/kg	<50	25 μg/kg	91.6		46.0	130			

: 9 of 13

HK2024008

Client : MOTT MACDONALD HONG KONG LIMITED

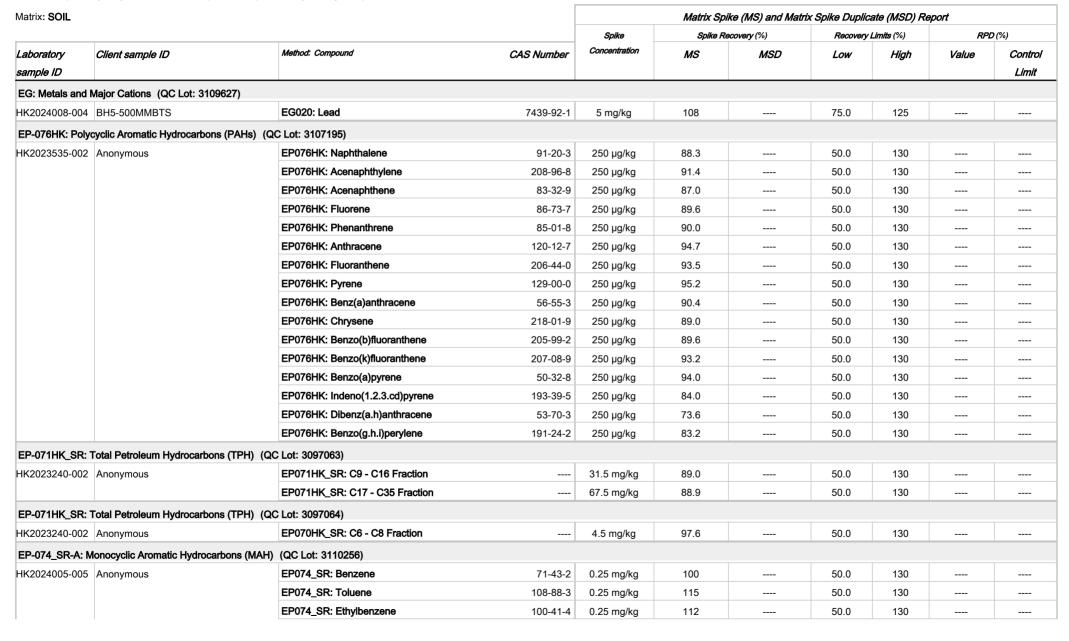
Work Order

Matrix: SOIL			Method Blank (ME	3) Report		Laboratory Con	trol Spike (LCS) and Lab	oratory Control S	pike Duplicate (DCS) Report	
					Spike	Spike R	ecovery (%)	Recove	ery Limits(%)	RF	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EP-076HK: Polycyclic Aromatic Hydrocarbons (F	PAHs) (QC Lot: 310	7195) - Con	tinued								
EP076HK: Benzo(k)fluoranthene	207-08-9	50	μg/kg	<50	25 μg/kg	87.4		42.0	139		
EP076HK: Benzo(a)pyrene	50-32-8	50	μg/kg	<50	25 μg/kg	86.8		26.0	140		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	50	μg/kg	<50	25 μg/kg	69.2		25.0	126		
EP076HK: Dibenz(a.h)anthracene	53-70-3	50	μg/kg	<50	25 μg/kg	66.3		27.0	130		
EP076HK: Benzo(g.h.i)perylene	191-24-2	50	μg/kg	<50	25 μg/kg	61.6		15.0	138		
EP-071HK_SR: Total Petroleum Hydrocarbons (TPH) (QC Lot: 3097	(063)									
EP071HK_SR: C9 - C16 Fraction		200	mg/kg	<200	31.5 mg/kg	87.2		79.0	102		
EP071HK_SR: C17 - C35 Fraction		500	mg/kg	<500	67.5 mg/kg	75.0		59.0	101		
EP-071HK_SR: Total Petroleum Hydrocarbons (TPH) (QC Lot: 3097	(064)									
EP070HK_SR: C6 - C8 Fraction		5	mg/kg	<5	4.5 mg/kg	89.4		80.0	123		
EP-074_SR-A: Monocyclic Aromatic Hydrocarbo	ns (MAH) (QC Lot:	3110256)									
EP074_SR: Benzene	71-43-2	0.1	mg/kg	<0.1	0.25 mg/kg	108		76.0	123		
EP074_SR: Toluene	108-88-3	0.2	mg/kg	<0.2	0.25 mg/kg	110		79.0	121		
EP074_SR: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.25 mg/kg	106		80.0	124		
EP074_SR: meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	0.5 mg/kg	106		83.0	121		
	106-42-3										
EP074_SR: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	0.25 mg/kg	97.3		83.0	121		
EP074_SR: Xylenes (Total)		1	mg/kg	<1.0	0.75 mg/kg	103		84.0	120		
EP-074_SR-I: Methyl-tert-butyl Ether (QC Lot: 3	3110256)										
EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.2	0.25 mg/kg	109		68.0	125		
Matrix: WATER			Method Blank (ME	B) Report		Laboratory Con	trol Spike (LCS) and Lab	oratory Control S	pike Duplicate (DCS) Report	
					Spike	Spike R	ecovery (%)	Recove	ery Limits(%)	RF	የ <i>D</i> (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EG: Metals and Major Cations - Filtered (QC Lo	ot: 3109624)										
EG020: Lead	7439-92-1	1	μg/L	<1	50 μg/L	110		85.0	113		
EP-076HK: Polycyclic Aromatic Hydrocarbons (F	PAHs) (QC Lot: 310	7249)									
EP076HK: Naphthalene	91-20-3	0.1	μg/L	<0.1	0.5 μg/L	90.1		66.0	135		
EP076HK: Acenaphthylene	208-96-8	0.1	μg/L	<0.1	0.5 µg/L	85.0		60.0	136		

: 10 of 13

Client : MOTT MACDONALD HONG KONG LIMITED

Matrix: WATER			Method Blank (ME	3) Report		Laboratory Cond	trol Spike (LCS) and Labo	oratory Control S	Spike Duplicate (DCS) Report	
					Spike	Spike R	ecovery (%)	Recove	ery Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EP-076HK: Polycyclic Aromatic Hydrocarbons (P	AHs) (QC Lot: 310	7249) - Con	tinued								
EP076HK: Acenaphthene	83-32-9	0.1	μg/L	<0.1	0.5 μg/L	90.1		63.0	132		
EP076HK: Fluorene	86-73-7	0.1	μg/L	<0.1	0.5 μg/L	89.8		64.0	135		
EP076HK: Phenanthrene	85-01-8	0.1	μg/L	<0.1	0.5 μg/L	91.8		61.0	132		
EP076HK: Anthracene	120-12-7	0.1	μg/L	<0.1	0.5 μg/L	88.8		61.0	121		
EP076HK: Fluoranthene	206-44-0	0.1	μg/L	<0.1	0.5 μg/L	87.8		65.0	135		
EP076HK: Pyrene	129-00-0	0.1	μg/L	<0.1	0.5 μg/L	86.1		61.0	136		
EP076HK: Benz(a)anthracene	56-55-3	0.1	μg/L	<0.1	0.5 μg/L	80.3		64.0	124		
EP076HK: Chrysene	218-01-9	0.1	μg/L	<0.1	0.5 μg/L	89.3		49.0	140		
EP076HK: Benzo(b)fluoranthene	205-99-2	0.1	μg/L	<0.1	0.5 μg/L	82.7		53.0	135		
EP076HK: Benzo(k)fluoranthene	207-08-9	0.1	μg/L	<0.1	0.5 μg/L	87.6		66.0	128		
EP076HK: Benzo(a)pyrene	50-32-8	0.1	μg/L	<0.1	0.5 μg/L	76.8		45.0	126		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	0.1	μg/L	<0.1	0.5 μg/L	77.5		45.0	129		
EP076HK: Dibenz(a.h)anthracene	53-70-3	0.1	μg/L	<0.1	0.5 μg/L	78.0		47.0	130		
EP076HK: Benzo(g.h.i)perylene	191-24-2	0.1	μg/L	<0.1	0.5 μg/L	84.6		42.0	140		
EP-071HK_SR: Total Petroleum Hydrocarbons (1	TPH) (QC Lot: 3115	268)									
EP071HK_SR: C9 - C16 Fraction		0.5	mg/L	<0.5	0.21 mg/L	101		71.0	121		
EP071HK_SR: C17 - C35 Fraction		0.5	mg/L	<0.5	0.45 mg/L	93.7		68.0	103		
EP-071HK_SR: Total Petroleum Hydrocarbons (1	TPH) (QC Lot: 3115	i975)									
EP070HK_SR: C6 - C8 Fraction		0.02	mg/L	<0.02	0.03 mg/L	106		77.0	120		
EP-074_SR-A: Monocyclic Aromatic Hydrocarbor	ns (MAH) (QC Lot:	3115976)		'			<u>'</u>	'			
EP074_SR: Benzene	71-43-2	0.5	μg/L	<0.5	2 μg/L	87.1		76.0	127		
EP074_SR: Toluene	108-88-3	0.5	μg/L	<0.5	2 μg/L	85.8		77.0	125		
EP074_SR: Ethylbenzene	100-41-4	0.5	μg/L	<0.5	2 μg/L	93.6		79.0	126		
EP074_SR: meta- & para-Xylene	108-38-3	1	μg/L	<1	4 μg/L	90.6		79.0	121		
	106-42-3										
EP074_SR: ortho-Xylene	95-47-6	0.5	μg/L	<0.5	2 μg/L	89.9		77.0	126		
EP074_SR: Xylenes (Total)		2	μg/L	<2	6 μg/L	90.4		79.0	122		
EP-074_SR-I: Methyl-tert-butyl Ether (QC Lot: 3	115976)										
EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	μg/L	<0.5	2 μg/L	90.0		66.0	133		
=,, ()			F-3· -		- F3-			1 22.2			


: 11 of 13

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order HK2024008

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

: 12 of 13

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order HK2024008

Matrix: SOIL					Matrix Spi	ike (MS) and Matr	ix Spike Duplic	ate (MSD) Re	eport	
				Spike	Spike Re	эсоvөгу (%)	Recovery	Limits (%)	RPD	(%)
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EP-074_SR-A: N	Monocyclic Aromatic Hydrocarbons (MAH) (QC Lot: 3110256) - Continued								
HK2024005-005	Anonymous	EP074_SR: meta- & para-Xylene	108-38-3	0.5 mg/kg	110		50.0	130		
			106-42-3							
		EP074_SR: ortho-Xylene	95-47-6	0.25 mg/kg	110		50.0	130		
		EP074_SR: Xylenes (Total)		0.75 mg/kg	110		50.0	130		
EP-074_SR-I: M	ethyl-tert-butyl Ether (QC Lot: 3110256)									
HK2024005-005	Anonymous	EP074_SR: Methyl tert-Butyl Ether	1634-04-4	0.25 mg/kg	102		50.0	130		
		(MTBE)								
Matrix: WATER					Matrix Spi	ike (MS) and Matr	ix Spike Duplic	ate (MSD) Re	eport	
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPD	(%)
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EG: Metals and I	Major Cations - Filtered (QC Lot: 31096	24)								-
HK2024008-002	Equipment Blank	EG020: Lead	7439-92-1	50 μg/L	112		75.0	125		

Surrogate Control Limits

Sub-Matrix: SOIL		Recover	ry Limits (%)
Compound	CAS Number	Low	High
EP-076S: Polycyclic Aromatics Hydrocarbo	ns (PAHs) Surrogates		
2-Fluorobiphenyl	321-60-8	50	130
4-Terphenyl-d14	1718-51-0	50	130
EP-080_SRS: TPH(Volatile)/BTEX Surroga	te		
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121
EP-074_SR-S: VOC Surrogates			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121

: 13 of 13

Client : MOTT MACDONALD HONG KONG LIMITED

ALS

Sub-Matrix: WATER		Recover	ry Limits (%)
Compound	CAS Number	Low	High
EP-076S: Polycyclic Aromatics Hydrocarbons	s (PAHs) Surrogates		
2-Fluorobiphenyl	321-60-8	50	130
4-Terphenyl-d14	1718-51-0	50	130
EP-080_SRS: TPH(Volatile)/BTEX Surrogate	ı		
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115
EP-074_SR-S: VOC Surrogates			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115

ALS Technichem (HK) Pty Ltd

: 3/F INTERNATIONAL TRADE TOWER, 348 KWUN TONG ROAD,

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

Address

CERTIFICATE OF ANALYSIS

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Client : MOTT MACDONALD HONG KONG LIMITED Laboratory : ALS Technichem (HK) Pty Ltd Page : 1 of 15

Address

Contact : THOMAS CHAN Contact : Richard Fung Work Order : HK2027733

KWUN TONG, KOWLOON, HONG KONG

Yip Street, Kwai Chung, N.T., Hong Kong

Tip dieet, Rewiscon, Herte Reite

E-mail : thomas.chan@mottmac.com : richard.fung@alsglobal.com

Project : SOIL TESTING AT HONG KONG AIRPORT Date Samples Received : 24-Jul-2020

Order number : --- Squote Squote : HKE/1861c/2018_V2 Issue Date : 04-Aug-2020

number

C-O-C number : **H030965**No. of samples received : **6**

Site : CONTRACT NO. C3503 TERMINAL 2 FOUNDATION AND SUBSTRUCTURE WORKS No. of samples analysed : 6

Page Number : 2 of 15

Client : MOTT MACDONALD HONG KONG LIMITED

Work Order HK2027733

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory, ALS Technichem (HK) Pty Ltd (Reg. No. HOKLAS 066) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories.

Authorised results for

This document has been signed by those names that appear on this report and are the authorised signatories.

Al-

Signatories

Anh Ngoc Huynh . Senior Chemist Organics_ENV

Position

Ma Lin

Chan Siu Ming , Vico Manager - Inorganics Inorganics

Mole

Leung Chak Cheong , Mike Senior Chemist Metals_ENV

Wong Wing , Kenneth Manager - Metals Metals_ENV

Page Number : 3 of 15

Client : MOTT MACDONALD HONG KONG LIMITED

Work Order HK2027733

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 24-Jul-2020 to 04-Aug-2020.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2027733

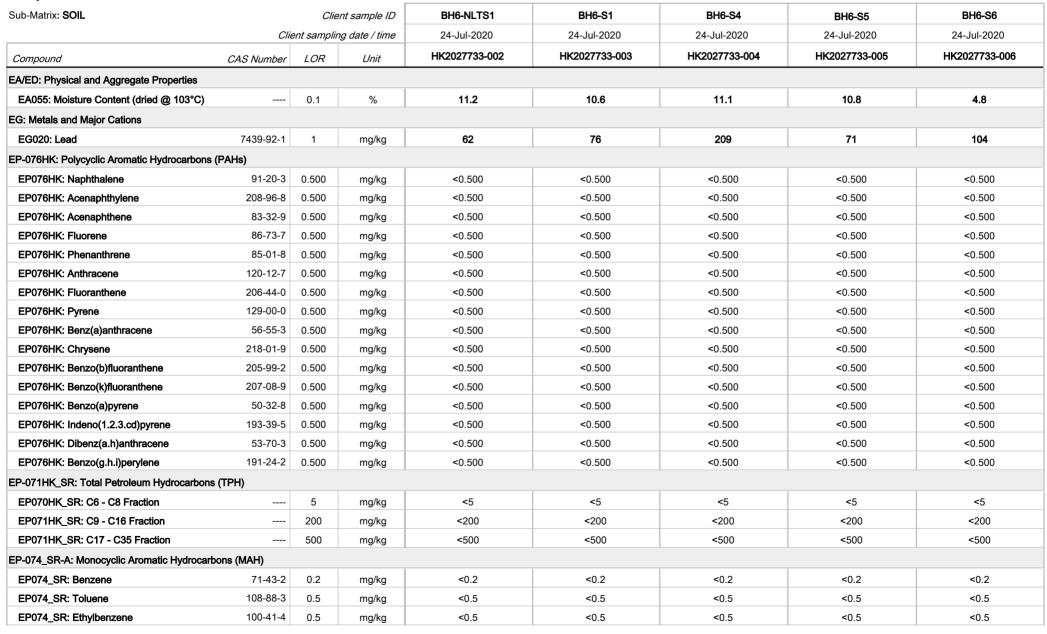
Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.

Result(s) of soil/sediment sample(s) was / were reported on dry weight basis.

EP070 is the numeric code for internal use. Test method for C6-C9 Fraction of TPH is EP071.

Sample(s) as received, digested by In-house method E-ASTM D3974-09 prior to determination of metals. The In-house method is developed based on ASTM D3974-09 method.


: 4 of 15

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order HK2027733

Analytical Results

Work Order

5 of 15

Client : MOTT MACDONALD HONG KONG LIMITED

HK2027733

Sub-Matrix: SOIL		Clie	ent sample ID	BH6-NLTS1	BH6-S1	BH6-S4	BH6-S5	BH6-S6
	Clie	ent samplii	ng date / time	24-Jul-2020	24-Jul-2020	24-Jul-2020	24-Jul-2020	24-Jul-2020
Compound	CAS Number	LOR	Unit	HK2027733-002	HK2027733-003	HK2027733-004	HK2027733-005	HK2027733-006
EP-074 SR-A: Monocyclic Aromatic Hydrocarl	oons (MAH) - Con	ntinued						
EP074_SR: meta- & para-Xylene	108-38-3 106-42-3	1.0	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
EP074_SR: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP074_SR: Xylenes (Total)		2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
EP-074_SR-I: Methyl-tert-butyl Ether								
EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surrogates	S	-					
EP076HK: 2-Fluorobiphenyl	321-60-8	0.1	%	98.8	96.0	95.6	95.3	92.5
EP076HK: 4-Terphenyl-d14	1718-51-0	0.1	%	100	95.5	96.1	97.5	100
EP-080_SRS: TPH(Volatile)/BTEX Surrogate								
EP070HK_SR: Dibromofluoromethane	1868-53-7	0.1	%	92.5	91.7	94.2	93.8	92.6
EP070HK_SR: Toluene-D8	2037-26-5	0.1	%	98.7	98.1	96.8	95.6	95.6
EP070HK_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	95.5	95.1	96.4	94.8	94.4
EP-074_SR-S: VOC Surrogates								
EP074_SR: Dibromofluoromethane	1868-53-7	0.1	%	92.5	91.7	94.2	93.8	92.6
EP074_SR: Toluene-D8	2037-26-5	0.1	%	98.7	98.1	96.8	95.6	95.6
EP074_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	95.5	95.1	96.4	94.8	94.4

∴ 6 of 15

Client : MOTT MACDONALD HONG KONG LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	Trip Blank	 	
	Clie	ent samplii	ng date / time	24-Jul-2020	 	
Compound	CAS Number	LOR	Unit	HK2027733-001	 	
EP-071HK_SR: Total Petroleum Hydrocarbons	(TPH)					
EP070HK_SR: C6 - C8 Fraction		20	μg/L	<20	 	
EP-074_SR-A: Monocyclic Aromatic Hydrocarb	ons (MAH)					
EP074_SR: Benzene	71-43-2	5.0	μg/L	<5.0	 	
EP074_SR: Toluene	108-88-3	5.0	μg/L	<5.0	 	
EP074_SR: Ethylbenzene	100-41-4	5.0	μg/L	<5.0	 	
EP074_SR: meta- & para-Xylene	108-38-3	10	μg/L	<10	 	
	106-42-3					
EP074_SR: ortho-Xylene	95-47-6	5.0	μg/L	<5.0	 	
EP074_SR: Xylenes (Total)		20	μg/L	<20	 	
EP-074_SR-I: Methyl-tert-butyl Ether						
EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	μg/L	<0.5	 	
EP-080_SRS: TPH(Volatile)/BTEX Surrogate						
EP070HK_SR: Dibromofluoromethane	1868-53-7	0.1	%	90.8	 	
EP070HK_SR: Toluene-D8	2037-26-5	0.1	%	101	 	
EP070HK_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	93.5	 	
EP-074_SR-S: VOC Surrogates						
EP074_SR: Dibromofluoromethane	1868-53-7	0.1	%	90.8	 	
EP074_SR: Toluene-D8	2037-26-5	0.1	%	101	 	
EP074_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	93.5	 	

7 of 15

Client : MOTT MACDONALD HONG KONG LIMITED

Work Order HK2027733

ALS

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Lab	oratory Duplicate (DUP) i	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	<i>RPD</i> (%)
EA/ED: Physical and Ac	ggregate Properties (QC Lot	: 3162752)						
HK2027646-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	20.2	20.0	1.10
HK2027733-006	BH6-S6	EA055: Moisture Content (dried @ 103°C)		0.1	%	4.8	4.9	0.00
G: Metals and Major C	Cations (QC Lot: 3162948)							
HK2027733-002	BH6-NLTS1	EG020: Lead	7439-92-1	1	mg/kg	62	61	0.00
:P-076HK: Polycyclic A	romatic Hydrocarbons (PAHs	s) (QC Lot: 3151538)						
HK2027136-001	Anonymous	EP076HK: Naphthalene	91-20-3	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Acenaphthene	83-32-9	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Fluorene	86-73-7	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Phenanthrene	85-01-8	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Anthracene	120-12-7	50	μg/kg	<0.500 mg/kg	<500	0.00
	EP076HK: Fluoranthene EP076HK: Pyrene	EP076HK: Fluoranthene	206-44-0	50	μg/kg	0.576 mg/kg	562	2.51
		129-00-0	50	μg/kg	0.575 mg/kg	552	4.03	
		EP076HK: Benz(a)anthracene	56-55-3	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Chrysene	218-01-9	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(b)fluoranthene	205-99-2	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(k)fluoranthene	207-08-9	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(a)pyrene	50-32-8	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Dibenz(a.h)anthracene	53-70-3	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(g.h.i)perylene	191-24-2	50	μg/kg	<0.500 mg/kg	<500	0.00
EP-076HK: Polycyclic A	romatic Hydrocarbons (PAHs	s) (QC Lot: 3160526)						
HK2027733-004	BH6-S4	EP076HK: Naphthalene	91-20-3	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Acenaphthene	83-32-9	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Fluorene	86-73-7	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Phenanthrene	85-01-8	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Anthracene	120-12-7	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Fluoranthene	206-44-0	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Pyrene	129-00-0	50	μg/kg	<0.500 mg/kg	<500	0.00

: 8 of 15

Client : MOTT MACDONALD HONG KONG LIMITED

Matrix: SOIL					Lab	oratory Duplicate (DUP)	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EP-076HK: Polycyclic A	Aromatic Hydrocarbons (PAHs	e) (QC Lot: 3160526) - Continued						
HK2027733-004	BH6-S4	EP076HK: Benz(a)anthracene	56-55-3	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Chrysene	218-01-9	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(b)fluoranthene	205-99-2	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(k)fluoranthene	207-08-9	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(a)pyrene	50-32-8	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Dibenz(a.h)anthracene	53-70-3	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(g.h.i)perylene	191-24-2	50	μg/kg	<0.500 mg/kg	<500	0.00
P-071HK_SR: Total P	etroleum Hydrocarbons (TPH)) (QC Lot: 3159803)						
HK2027649-001	Anonymous	EP071HK_SR: C9 - C16 Fraction		200	mg/kg	<200	<200	0.00
		EP071HK_SR: C17 - C35 Fraction		500	mg/kg	<500	<500	0.00
:P-071HK_SR: Total P	etroleum Hydrocarbons (TPH)	(QC Lot: 3159804)						
HK2027649-001	Anonymous	EP070HK_SR: C6 - C8 Fraction		5	mg/kg	<5	<5	0.00
P-074_SR-A: Monocy	clic Aromatic Hydrocarbons (N	MAH) (QC Lot: 3151540)						
2-074_SR-A: Monocyclic Aromatic Hydro X2027136-001 Anonymous	Anonymous	EP074_SR: Benzene	71-43-2	0.1	mg/kg	<0.2	<0.2	0.00
		EP074_SR: Toluene	108-88-3	0.2	mg/kg	<0.5	<0.5	0.00
		EP074_SR: Ethylbenzene	100-41-4	0.2	mg/kg	<0.5	<0.5	0.00
		EP074_SR: ortho-Xylene	95-47-6	0.2	mg/kg	<0.5	<0.5	0.00
		EP074_SR: meta- & para-Xylene	108-38-3	0.4	mg/kg	<1.0	<1.0	0.00
			106-42-3					
		EP074_SR: Xylenes (Total)		1	mg/kg	<2.0	<2.0	0.00
:P-074_SR-A: Monocy	clic Aromatic Hydrocarbons (N	MAH) (QC Lot: 3160527)						
HK2027733-004	BH6-S4	EP074_SR: Benzene	71-43-2	0.1	mg/kg	<0.2	<0.2	0.00
		EP074_SR: Toluene	108-88-3	0.2	mg/kg	<0.5	<0.5	0.00
		EP074_SR: Ethylbenzene	100-41-4	0.2	mg/kg	<0.5	<0.5	0.00
		EP074_SR: ortho-Xylene	95-47-6	0.2	mg/kg	<0.5	<0.5	0.00
		EP074_SR: meta- & para-Xylene	108-38-3	0.4	mg/kg	<1.0	<1.0	0.00
			106-42-3					
		EP074_SR: Xylenes (Total)		1	mg/kg	<2.0	<2.0	0.00
EP-074_SR-I: Methyl-te	ert-butyl Ether (QC Lot: 3151	540)						
HK2027136-001	Anonymous	EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.5	<0.5	0.00

: 9 of 15

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order HK2027733

Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)	
sample ID							Result		
EP-074_SR-I: Methyl-tert-t	butyl Ether (QC Lot: 3160527)								
HK2027733-004	BH6-S4	EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.2	<0.2	0.00	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
	CAS Number				Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)	
Method: Compound		LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
EG: Metals and Major Cations (QC Lot: 316	2048)										Limit
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	99.4		90.0	110		
			Hig/kg	<u> </u>	5 Hig/kg	99.4		90.0	110		
EP-076HK: Polycyclic Aromatic Hydrocarbon	· / / ·										
EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	25 μg/kg	93.0		54.0	138		
EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	25 μg/kg	95.3		56.0	145		
EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	25 μg/kg	90.8		54.0	139		
EP076HK: Fluorene	86-73-7	50	μg/kg	<50	25 μg/kg	90.6		54.0	140		
EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	25 μg/kg	95.6		51.0	139		
EP076HK: Anthracene	120-12-7	50	μg/kg	<50	25 μg/kg	97.2		54.0	145		
EP076HK: Fluoranthene	206-44-0	50	μg/kg	<50	25 μg/kg	94.5		55.0	142		
EP076HK: Pyrene	129-00-0	50	μg/kg	<50	25 μg/kg	92.9		52.0	141		
EP076HK: Benz(a)anthracene	56-55-3	50	μg/kg	<50	25 μg/kg	89.3		48.0	142		
EP076HK: Chrysene	218-01-9	50	μg/kg	<50	25 μg/kg	91.2		49.0	146		
EP076HK: Benzo(b)fluoranthene	205-99-2	50	μg/kg	<50	25 μg/kg	93.5		46.0	130		
EP076HK: Benzo(k)fluoranthene	207-08-9	50	μg/kg	<50	25 μg/kg	84.3		42.0	139		
EP076HK: Benzo(a)pyrene	50-32-8	50	μg/kg	<50	25 μg/kg	86.5		26.0	140		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	50	μg/kg	<50	25 μg/kg	80.7		25.0	126		
EP076HK: Dibenz(a.h)anthracene	53-70-3	50	μg/kg	<50	25 μg/kg	77.6		27.0	130		
EP076HK: Benzo(g.h.i)perylene	191-24-2	50	μg/kg	<50	25 μg/kg	81.2		15.0	138		
EP-076HK: Polycyclic Aromatic Hydrocarbon	s (PAHs) (QC Lot: 316	0526)									
EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	25 μg/kg	109		54.0	138		
EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	25 μg/kg	107		56.0	145		
EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	25 μg/kg	104		54.0	139		
EP076HK: Fluorene	86-73-7	50	μg/kg	<50	25 μg/kg	105		54.0	140		

: 10 of 15

Client : MOTT MACDONALD HONG KONG LIMITED

Work Order HK2027733

Matrix: SOIL			Method Blank (MB) Report		Laboratory Cont	trol Spike (LCS) and Labo	oratory Control S	pike Duplicate (DCS) Report	
					Spike	Spike Re	ecovery (%)	Recove	ory Limits(%)	RP	(%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EP-076HK: Polycyclic Aromatic Hydrocarbons (F	PAHs) (QC Lot: 3160	0526) - Con	tinued								
EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	25 μg/kg	111		51.0	139		
EP076HK: Anthracene	120-12-7	50	μg/kg	<50	25 μg/kg	109		54.0	145		
EP076HK: Fluoranthene	206-44-0	50	μg/kg	<50	25 μg/kg	109		55.0	142		
EP076HK: Pyrene	129-00-0	50	μg/kg	<50	25 μg/kg	108		52.0	141		
EP076HK: Benz(a)anthracene	56-55-3	50	μg/kg	<50	25 μg/kg	101		48.0	142		
EP076HK: Chrysene	218-01-9	50	μg/kg	<50	25 μg/kg	108		49.0	146		
EP076HK: Benzo(b)fluoranthene	205-99-2	50	μg/kg	<50	25 μg/kg	99.6		46.0	130		
EP076HK: Benzo(k)fluoranthene	207-08-9	50	μg/kg	<50	25 μg/kg	101		42.0	139		
EP076HK: Benzo(a)pyrene	50-32-8	50	μg/kg	<50	25 μg/kg	94.4		26.0	140		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	50	μg/kg	<50	25 μg/kg	80.6		25.0	126		
EP076HK: Dibenz(a.h)anthracene	53-70-3	50	μg/kg	<50	25 μg/kg	87.3		27.0	130		
EP076HK: Benzo(g.h.i)perylene	191-24-2	50	μg/kg	<50	25 μg/kg	96.9		15.0	138		
EP-071HK_SR: Total Petroleum Hydrocarbons (TPH) (QC Lot: 3159	803)									
EP071HK_SR: C9 - C16 Fraction		200	mg/kg	<200	31.5 mg/kg	95.0		79.0	102		
EP071HK_SR: C17 - C35 Fraction		500	mg/kg	<500	67.5 mg/kg	86.9		59.0	101		
EP-071HK_SR: Total Petroleum Hydrocarbons (TPH) (QC Lot: 3159	804)									
EP070HK_SR: C6 - C8 Fraction		5	mg/kg	<5	4.5 mg/kg	105		77.0	124		
EP-074_SR-A: Monocyclic Aromatic Hydrocarbo	ns (MAH) (QC Lot:	3151540)									
EP074_SR: Benzene	71-43-2	0.1	mg/kg	<0.1	0.25 mg/kg	106		80.0	123		
EP074_SR: Toluene	108-88-3	0.2	mg/kg	<0.2	0.25 mg/kg	108		83.0	126		
EP074_SR: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.25 mg/kg	111		80.0	125		
EP074_SR: meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	0.5 mg/kg	104		82.0	124		
	106-42-3										
EP074_SR: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	0.25 mg/kg	102		79.0	128		
EP074_SR: Xylenes (Total)		1	mg/kg	<1.0	0.75 mg/kg	103		82.0	124		
EP-074_SR-A: Monocyclic Aromatic Hydrocarbo	ns (MAH) (QC Lot:	3160527)									
EP074_SR: Benzene	71-43-2	0.1	mg/kg	<0.1	0.25 mg/kg	98.3		80.0	123		
EP074_SR: Toluene	108-88-3	0.2	mg/kg	<0.2	0.25 mg/kg	106		83.0	126		
EP074_SR: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.25 mg/kg	108		80.0	125		

: 11 of 15

HK2027733

Client : N

: MOTT MACDONALD HONG KONG LIMITED

Work Order

Matrix: SOIL			Method Blank (MB) Report		Laboratory Con	trol Spike (LCS) and Labo	oratory Control S	pike Duplicate (DCS) Report	
					Spike	Spike R	ecovery (%)	Recove	ery Limits(%)	RF	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EP-074_SR-A: Monocyclic Aromatic Hydrocarbor	ns (MAH) (QC Lot:	3160527) -	Continued								
EP074_SR: meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	0.5 mg/kg	110		82.0	124		
	106-42-3										
EP074_SR: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	0.25 mg/kg	110		79.0	128		
EP074_SR: Xylenes (Total)		1	mg/kg	<1.0	0.75 mg/kg	110		82.0	124		
EP-074_SR-I: Methyl-tert-butyl Ether (QC Lot: 3	151540)										
EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.2	0.25 mg/kg	105		78.0	126		
EP-074_SR-I: Methyl-tert-butyl Ether (QC Lot: 3	160527)										
EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.2	0.25 mg/kg	90.9		78.0	126		
Matrix: WATER			Method Blank (MB) Report		Laboratory Con	trol Spike (LCS) and Labo	oratory Control S	pike Duplicate (DCS) Report	
					Spike	Spike R	ecovery (%)	Recove	ory Limits(%)	RF	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EP-071HK_SR: Total Petroleum Hydrocarbons (1	ГРН) (QC Lot: 3154	099)									
EP070HK_SR: C6 - C8 Fraction		0.02	mg/L	<0.02	0.03 mg/L	101		77.0	120		
EP-074_SR-A: Monocyclic Aromatic Hydrocarbor	ns (MAH) (QC Lot:	3154940)									
EP074_SR: Benzene	71-43-2	0.5	μg/L	<0.5	2 μg/L	91.6		76.0	125		
EP074_SR: Toluene	108-88-3	0.5	μg/L	<0.5	2 μg/L	91.2		78.0	126		
EP074_SR: Ethylbenzene	100-41-4	0.5	μg/L	<0.5	2 μg/L	92.7		81.0	120		
EP074_SR: meta- & para-Xylene	108-38-3	1	μg/L	<1	4 μg/L	97.8		77.0	125		
	106-42-3										
EP074_SR: ortho-Xylene	95-47-6	0.5	μg/L	<0.5	2 μg/L	92.7		77.0	125		
EP074_SR: Xylenes (Total)		2	μg/L	<2	6 μg/L	96.1		79.0	123		
EP-074_SR-I: Methyl-tert-butyl Ether (QC Lot: 3	154940)										
EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	μg/L	<0.5	2 μg/L	100		78.0	128		

: 12 of 15

Client : MOTT MACDONALD HONG KONG LIMITED

Work Order HK2027733

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Sp.	ike (MS) and Matr	ix Spike Duplic	ate (MSD) Re	eport	
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPL	7(%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and	Major Cations (QC Lot: 31629	148)								
HK2027683-001	Anonymous	EG020: Lead	7439-92-1	5 mg/kg	98.2		75.0	125		
EP-076HK: Poly	cyclic Aromatic Hydrocarbons	(PAHs) (QC Lot: 3151538)								
HK2027136-001	Anonymous	EP076HK: Naphthalene	91-20-3	250 µg/kg	102		50.0	130		
		EP076HK: Acenaphthylene	208-96-8	250 µg/kg	97.6		50.0	130		
		EP076HK: Acenaphthene	83-32-9	250 μg/kg	96.0		50.0	130		
		EP076HK: Fluorene	86-73-7	250 μg/kg	96.7		50.0	130		
		EP076HK: Phenanthrene	85-01-8	250 μg/kg	72.5		50.0	130		
		EP076HK: Anthracene	120-12-7	250 μg/kg	102		50.0	130		
		EP076HK: Fluoranthene	206-44-0	250 μg/kg	55.3		50.0	130		
		EP076HK: Pyrene	129-00-0	250 μg/kg	54.8		50.0	130		
	EP076HK: Benz(a)anthracene	56-55-3	250 μg/kg	73.4		50.0	130			
	EP07	EP076HK: Chrysene	218-01-9	250 μg/kg	64.8		50.0	130		
		EP076HK: Benzo(b)fluoranthene	205-99-2	250 μg/kg	81.3		50.0	130		
		EP076HK: Benzo(k)fluoranthene	207-08-9	250 μg/kg	76.7		50.0	130		
		EP076HK: Benzo(a)pyrene	50-32-8	250 μg/kg	78.3		50.0	130		
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	250 μg/kg	79.6		50.0	130		
		EP076HK: Dibenz(a.h)anthracene	53-70-3	250 μg/kg	77.9		50.0	130		
		EP076HK: Benzo(g.h.i)perylene	191-24-2	250 μg/kg	72.3		50.0	130		
EP-076HK: Poly	cyclic Aromatic Hydrocarbons	(PAHs) (QC Lot: 3160526)								
HK2027733-005	BH6-S5	EP076HK: Naphthalene	91-20-3	250 µg/kg	98.2		50.0	130		
		EP076HK: Acenaphthylene	208-96-8	250 µg/kg	97.7		50.0	130		
		EP076HK: Acenaphthene	83-32-9	250 µg/kg	95.0		50.0	130		
		EP076HK: Fluorene	86-73-7	250 µg/kg	96.3		50.0	130		
		EP076HK: Phenanthrene	85-01-8	250 µg/kg	97.0		50.0	130		
		EP076HK: Anthracene	120-12-7	250 µg/kg	96.5		50.0	130		
		EP076HK: Fluoranthene	206-44-0	250 µg/kg	101		50.0	130		
		EP076HK: Pyrene	129-00-0	250 µg/kg	99.0		50.0	130		
		EP076HK: Benz(a)anthracene	56-55-3	250 μg/kg	96.6		50.0	130		

: 13 of 15

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order HK2027733

ALS

Matrix: SOIL					Matrix Spi	ike (MS) and Matri	ix Spike Duplica	ate (MSD) Re	eport	
				Spike	Spike Re	ecovery (%)	Recovery I	Limits (%)	RPL	O (%)
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EP-076HK: Poly	ycyclic Aromatic Hydrocarbons (PAHs) (QC Lot: 3160526) - Continued								
HK2027733-005	BH6-S5	EP076HK: Chrysene	218-01-9	250 μg/kg	99.2		50.0	130		
		EP076HK: Benzo(b)fluoranthene	205-99-2	250 μg/kg	103		50.0	130		
		EP076HK: Benzo(k)fluoranthene	207-08-9	250 μg/kg	89.8		50.0	130		
		EP076HK: Benzo(a)pyrene	50-32-8	250 μg/kg	100		50.0	130		
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	250 μg/kg	97.0		50.0	130		
		EP076HK: Dibenz(a.h)anthracene	53-70-3	250 μg/kg	94.8		50.0	130		
		EP076HK: Benzo(g.h.i)perylene	191-24-2	250 μg/kg	94.4		50.0	130		
EP-071HK_SR:	Total Petroleum Hydrocarbons (TPH) (0	QC Lot: 3159803)								
HK2027649-001	Anonymous	EP071HK_SR: C9 - C16 Fraction		31.5 mg/kg	90.6		50.0	130		
		EP071HK_SR: C17 - C35 Fraction		67.5 mg/kg	75.4		50.0	130		
EP-071HK_SR:	Total Petroleum Hydrocarbons (TPH) (0	QC Lot: 3159804)								
HK2027649-001	Anonymous	EP070HK_SR: C6 - C8 Fraction		4.5 mg/kg	101		50.0	130		
EP-074_SR-A: I	Monocyclic Aromatic Hydrocarbons (MAF	H) (QC Lot: 3151540)								
HK2027136-001	Anonymous	EP074_SR: Benzene	71-43-2	0.25 mg/kg	103		50.0	130		
		EP074_SR: Toluene	108-88-3	0.25 mg/kg	100		50.0	130		
		EP074_SR: Ethylbenzene	100-41-4	0.25 mg/kg	105		50.0	130		
		EP074_SR: meta- & para-Xylene	108-38-3	0.5 mg/kg	105		50.0	130		
			106-42-3							
		EP074_SR: ortho-Xylene	95-47-6	0.25 mg/kg	108		50.0	130		
		EP074_SR: Xylenes (Total)		0.75 mg/kg	106		50.0	130		
EP-074_SR-A: I	Monocyclic Aromatic Hydrocarbons (MAF	H) (QC Lot: 3160527)								
	BH6-S5	EP074_SR: Benzene	71-43-2	0.25 mg/kg	87.6		50.0	130		
HK2027733-005	21.10 00						50.0	400		
HK2027733-005		EP074_SR: Toluene	108-88-3	0.25 mg/kg	87.8		50.0	130		
HK2027733-005		EP074_SR: Toluene EP074_SR: Ethylbenzene	108-88-3 100-41-4	0.25 mg/kg 0.25 mg/kg	87.8 102		50.0	130		
HK2027733-005										
HK2027733-005		EP074_SR: Ethylbenzene	100-41-4	0.25 mg/kg	102		50.0	130		
HK2027733-005		EP074_SR: Ethylbenzene	100-41-4 108-38-3	0.25 mg/kg	102		50.0	130		

: 14 of 15

HK2027733

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Re	ecovery (%)	Recovery .	Limits (%)	RPD) (%)	
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	ntration MS	MSD	Low	High	Value	Control	
sample ID										Limit	
EP-074_SR-I: Me	ethyl-tert-butyl Ether (QC Lot: 3151540)	- Continued									
HK2027136-001	Anonymous	EP074_SR: Methyl tert-Butyl Ether	1634-04-4	0.25 mg/kg	113		50.0	130			
		(MTBE)									
EP-074_SR-I: Me	ethyl-tert-butyl Ether (QC Lot: 3160527)										
HK2027733-005	BH6-S5	EP074_SR: Methyl tert-Butyl Ether	1634-04-4	0.25 mg/kg	82.0		50.0	130			
		(MTBE)									

Surrogate Control Limits

CAS Number Hs) Surrogates 321-60-8	Low 50	High
321-60-8	F0	
	E0	
4740 54 0	50	130
1718-51-0	50	130
1868-53-7	80	120
2037-26-5	81	117
460-00-4	74	121
1868-53-7	80	120
2037-26-5	81	117
460-00-4	74	121
	Peccuent	l imite (%)
	2037-26-5 460-00-4 1868-53-7 2037-26-5	2037-26-5 81 460-00-4 74 1868-53-7 80 2037-26-5 81

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP-080_SRS: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115
EP-074_SR-S: VOC Surrogates			
Dibromofluoromethane	1868-53-7	86	118

Page Number : 15 of 15

Client : MOTT MACDONALD HONG KONG LIMITED

Work Order HK2027733

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP-074_SR-S: VOC Surrogates - Continued			
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: MOTT MACDONALD HONG KONG LIMITED Client

Laboratory

: ALS Technichem (HK) Pty Ltd

Page

: 1 of 12

Contact

: THOMAS CHAN

Contact

: Richard Fung

Work Order

: HK2031443

Address

: 3/F INTERNATIONAL TRADE TOWER, 348 KWUN TONG ROAD,

Address

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Yip Street, Kwai Chung, N.T., Hong Kong

E-mail Telephone : thomas.chan@mottmac.com

E-mail

: richard.fung@alsglobal.com

Telephone

: +852 2610 1044

: +852 2828 5933 : +852 2828 1823

Facsimile

: +852 2610 2021

Date Samples Received : 20-Aug-2020

Project

Facsimile

: SOIL TESTING AT HONG KONG AIRPORT

KWUN TONG. KOWLOON. HONG KONG

Order number

Quote

: HKE/1861c/2018 V2

Issue Date

This document has been signed by those names that appear on this report and are the authorised signatories.

: 31-Aug-2020

: 3

C-O-C number : H030966

number

No. of samples received

: 3 No. of samples analysed

Site

: CONTRACT NO. C3503 TERMINAL 2 FOUNDATION AND SUBSTRUCTURE WORKS

Signatories

Authorised results for

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory, ALS Technichem (HK) Pty Ltd (Reg. No. HOKLAS 066) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories.

Anh Ngoc Huvnh .

Senior Chemist

Organics ENV

Chan Siu Ming, Vico

Manager - Inorganics

Inorganics

Wong Wing, Kenneth

Manager - Metals

Metals_ENV

Page Number : 2 of 12

Client : MOTT MACDONALD HONG KONG LIMITED

Work Order HK2031443

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 20-Aug-2020 to 31-Aug-2020.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2031443

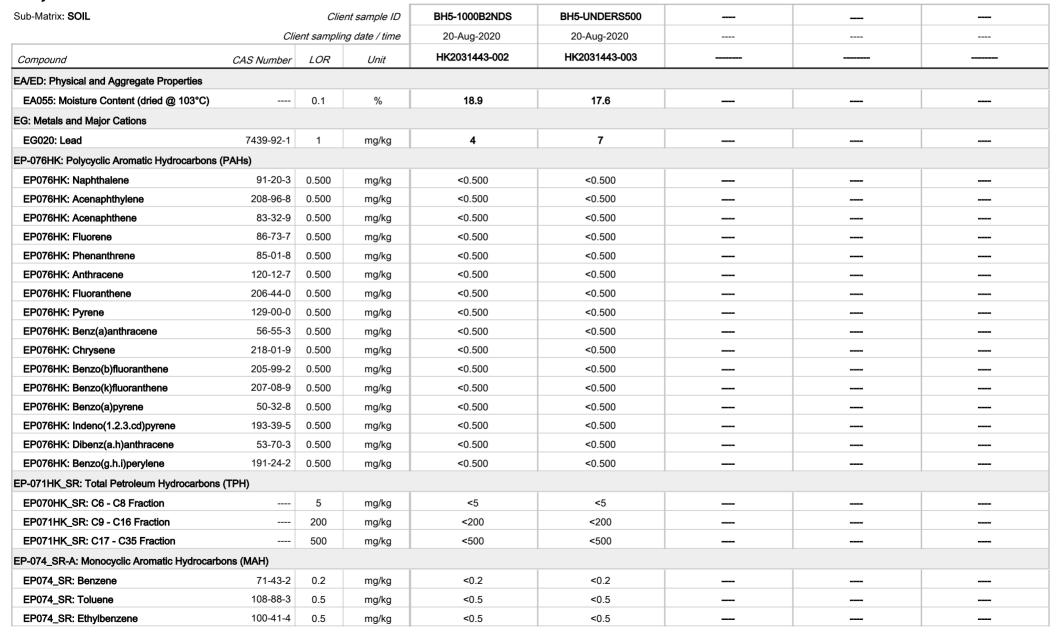
Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.

Result(s) of soil/sediment sample(s) was / were reported on dry weight basis.

EP070 is the numeric code for internal use. Test method for C6-C9 Fraction of TPH is EP071.

Sample(s) as received, digested by In-house method E-ASTM D3974-09 prior to determination of metals. The In-house method is developed based on ASTM D3974-09 method.


3 of 12

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order HK2031443

Analytical Results

4 of 12

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order

HK2031443

Sub-Matrix: SOIL		Clie	ent sample ID	BH5-1000B2NDS	BH5-UNDERS500	 	
	Clie	ent sampli	ng date / time	20-Aug-2020	20-Aug-2020	 	
Compound	CAS Number	LOR	Unit	HK2031443-002	HK2031443-003	 	
EP-074 SR-A: Monocyclic Aromatic Hydrocart	oons (MAH) - Con	tinued					
EP074_SR: meta- & para-Xylene	108-38-3	1.0	mg/kg	<1.0	<1.0	 	
	106-42-3						
EP074_SR: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	 	
EP074_SR: Xylenes (Total)		2.0	mg/kg	<2.0	<2.0	 	
EP-074_SR-I: Methyl-tert-butyl Ether							
EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.2	<0.2	 	
EP-076S: Polycyclic Aromatics Hydrocarbons (I	PAHs) Surrogates	3					
EP076HK: 2-Fluorobiphenyl	321-60-8	0.1	%	95.2	100.0	 	
EP076HK: 4-Terphenyl-d14	1718-51-0	0.1	%	90.5	97.7	 	
EP-080_SRS: TPH(Volatile)/BTEX Surrogate							
EP070HK_SR: Dibromofluoromethane	1868-53-7	0.1	%	92.2	91.7	 	
EP070HK_SR: Toluene-D8	2037-26-5	0.1	%	104	107	 	
EP070HK_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	91.6	95.4	 	
EP-074_SR-S: VOC Surrogates							
EP074_SR: Dibromofluoromethane	1868-53-7	0.1	%	92.2	91.7	 	
EP074_SR: Toluene-D8	2037-26-5	0.1	%	104	107	 	
EP074_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	91.6	95.4	 	

5 of 12

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order

HK2031443

Sub-Matrix: WATER		Clie	nt sample ID	Trip Blank	 	
	Clie	ent samplir	ng date / time	20-Aug-2020	 	
Compound	CAS Number	LOR	Unit	HK2031443-001	 	
EP-071HK_SR: Total Petroleum Hydrocarbons	(TPH)					
EP070HK_SR: C6 - C8 Fraction		20	μg/L	<20	 	
EP-074_SR-A: Monocyclic Aromatic Hydrocart	oons (MAH)					
EP074_SR: Benzene	71-43-2	5.0	μg/L	<5.0	 	
EP074_SR: Toluene	108-88-3	5.0	μg/L	<5.0	 	
EP074_SR: Ethylbenzene	100-41-4	5.0	μg/L	<5.0	 	
EP074_SR: meta- & para-Xylene	108-38-3	10	μg/L	<10	 	
	106-42-3					
EP074_SR: ortho-Xylene	95-47-6	5.0	μg/L	<5.0	 	
EP074_SR: Xylenes (Total)		20	μg/L	<20	 	
EP-074_SR-I: Methyl-tert-butyl Ether						
EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	μg/L	<0.5	 	
EP-080_SRS: TPH(Volatile)/BTEX Surrogate						
EP070HK_SR: Dibromofluoromethane	1868-53-7	0.1	%	107	 	
EP070HK_SR: Toluene-D8	2037-26-5	0.1	%	106	 	
EP070HK_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	91.6	 	
EP-074_SR-S: VOC Surrogates						
EP074_SR: Dibromofluoromethane	1868-53-7	0.1	%	107	 	
EP074_SR: Toluene-D8	2037-26-5	0.1	%	106	 	
EP074_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	91.6	 	

6 of 12

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order HK2031443

ALS

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Lab	oratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and Ac	gregate Properties (QC Lot	: 3217901)						
HK2031199-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	22.6	22.3	1.60
HK2031596-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	31.6	32.2	1.82
EG: Metals and Major C	Cations (QC Lot: 3212907)							
HK2031404-001	Anonymous	EG020: Lead	7439-92-1	1	mg/kg	51	44	15.8
EP-076HK: Polycyclic A	romatic Hydrocarbons (PAHs	s) (QC Lot: 3210491)						
HK2031185-001	Anonymous	EP076HK: Naphthalene	91-20-3	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Acenaphthene	83-32-9	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Fluorene	86-73-7	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Phenanthrene	85-01-8	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Anthracene	120-12-7	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Fluoranthene	206-44-0	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Pyrene	129-00-0	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benz(a)anthracene	56-55-3	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Chrysene	218-01-9	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(b)fluoranthene	205-99-2	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(k)fluoranthene	207-08-9	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(a)pyrene	50-32-8	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Dibenz(a.h)anthracene	53-70-3	50	μg/kg	<0.500 mg/kg	<500	0.00
		EP076HK: Benzo(g.h.i)perylene	191-24-2	50	μg/kg	<0.500 mg/kg	<500	0.00
EP-071HK_SR: Total Po	etroleum Hydrocarbons (TPH) (QC Lot: 3215762)						
HK2031199-001	Anonymous	EP071HK_SR: C9 - C16 Fraction		200	mg/kg	<200	<200	0.00
		EP071HK_SR: C17 - C35 Fraction		500	mg/kg	<500	<500	0.00
EP-071HK_SR: Total Pe	etroleum Hydrocarbons (TPH) (QC Lot: 3215763)						
HK2031199-001	Anonymous	EP070HK_SR: C6 - C8 Fraction		5	mg/kg	<5	<5	0.00
EP-074_SR-A: Monocyc	clic Aromatic Hydrocarbons (I	MAH) (QC Lot: 3204956)						
HK2031051-001	Anonymous	EP074_SR: Benzene	71-43-2	0.1	mg/kg	<0.2	<0.2	0.00
		EP074_SR: Toluene	108-88-3	0.2	mg/kg	<0.5	<0.5	0.00
		EP074_SR: Ethylbenzene	100-41-4	0.2	mg/kg	<0.5	<0.5	0.00

. 7 of 12

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order HK2031443

Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)			
sample ID							Result				
EP-074_SR-A: Monocycl	ic Aromatic Hydrocarbons (M.	AH) (QC Lot: 3204956) - Continued									
HK2031051-001	IK2031051-001 Anonymous	EP074_SR: ortho-Xylene	95-47-6	0.2	mg/kg	<0.5	<0.5	0.00			
		EP074_SR: meta- & para-Xylene	108-38-3	0.4	mg/kg	<1.0	<1.0	0.00			
			106-42-3								
		EP074_SR: Xylenes (Total)		1	mg/kg	<2.0	<2.0	0.00			
EP-074_SR-I: Methyl-ten	t-butyl Ether (QC Lot: 32049	56)									
HK2031051-001	Anonymous	EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.5	<0.5	0.00			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
				Spike	Spike R	Spike Recovery (%)		Recovery Limits(%)		D (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EG: Metals and Major Cations (QC Lot: 3212	2907)										
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	106		90.0	110		
EP-076HK: Polycyclic Aromatic Hydrocarbons	s (PAHs) (QC Lot: 3210	0491)									
EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	25 μg/kg	116		54.0	138		
EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	25 μg/kg	122		56.0	145		
EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	25 μg/kg	111		54.0	139		
EP076HK: Fluorene	86-73-7	50	μg/kg	<50	25 μg/kg	114		54.0	140		
EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	25 μg/kg	113		51.0	139		
EP076HK: Anthracene	120-12-7	50	μg/kg	<50	25 μg/kg	117		54.0	145		
EP076HK: Fluoranthene	206-44-0	50	μg/kg	<50	25 μg/kg	118		55.0	142		
EP076HK: Pyrene	129-00-0	50	μg/kg	<50	25 μg/kg	116		52.0	141		
EP076HK: Benz(a)anthracene	56-55-3	50	μg/kg	<50	25 μg/kg	120		48.0	142		
EP076HK: Chrysene	218-01-9	50	μg/kg	<50	25 μg/kg	113		49.0	146		
EP076HK: Benzo(b)fluoranthene	205-99-2	50	μg/kg	<50	25 μg/kg	101		46.0	130		
EP076HK: Benzo(k)fluoranthene	207-08-9	50	μg/kg	<50	25 μg/kg	91.6		42.0	139		
EP076HK: Benzo(a)pyrene	50-32-8	50	μg/kg	<50	25 μg/kg	82.5		26.0	140		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	50	μg/kg	<50	25 μg/kg	53.6		25.0	126		
EP076HK: Dibenz(a.h)anthracene	53-70-3	50	μg/kg	<50	25 μg/kg	54.9		27.0	130		
EP076HK: Benzo(g.h.i)perylene	191-24-2	50	μg/kg	<50	25 μg/kg	49.8		15.0	138		

8 of 12

Client

HK2031443

Work Order

: MOTT MACDONALD HONG KONG LIMITED

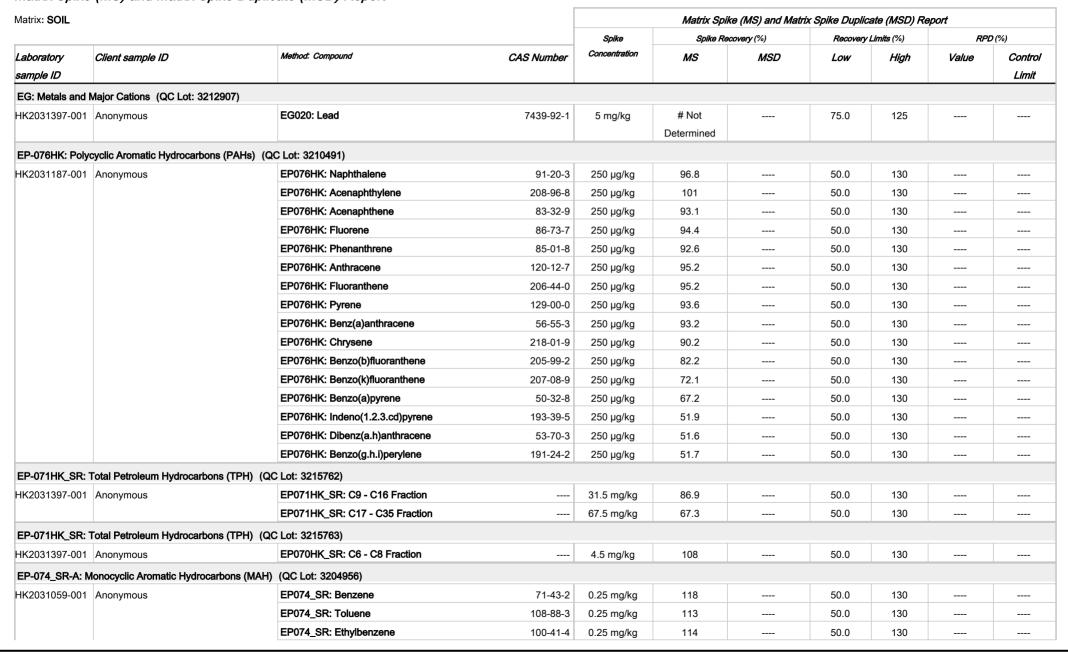
Matrix: SOIL					Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike	Spike Re	ecovery (%)	Recovery Limits(%)		RF	D (%)	
CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control	
										Limit	
TPH) (QC Lot: 3215	5762)										
	200	mg/kg	<200	31.5 mg/kg	95.5		79.0	102			
	500	mg/kg	<500	67.5 mg/kg	73.9		59.0	101			
TPH) (QC Lot: 3215	5763)										
	5	mg/kg	<5	4.5 mg/kg	105		77.0	124			
ns (MAH) (QC Lot:	3204956)										
71-43-2	0.1	mg/kg	<0.1	0.25 mg/kg	111		80.0	123			
108-88-3	0.2	mg/kg	<0.2	0.25 mg/kg	109		83.0	126			
100-41-4	0.2	mg/kg	<0.2	0.25 mg/kg	95.6		80.0	125			
108-38-3	0.4	mg/kg	<0.4	0.5 mg/kg	96.5		82.0	124			
106-42-3											
95-47-6	0.2	mg/kg	<0.2	0.25 mg/kg	92.2		79.0	128			
	1	mg/kg	<1.0	0.75 mg/kg	95.1		82.0	124			
3204956)											
1634-04-4	0.2	mg/kg	<0.2	0.25 mg/kg	91.2		78.0	126			
		Method Blank (MB	l) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
				Spike	Spike Re	ecovery (%)	Recove	ery Limits(%)	RF	RPD (%)	
CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control	
										Limit	
TPH) (QC Lot: 3202	2565)										
	0.02	mg/L	<0.02	0.03 mg/L	91.3		77.0	120			
ns (MAH) (QC Lot:	3213245)										
71-43-2	0.5	μg/L	<0.5	2 μg/L	107		76.0	125			
108-88-3	0.5	μg/L	<0.5	2 μg/L	99.8		78.0	126			
100-41-4	0.5	μg/L	<0.5	2 μg/L	95.3		81.0	120			
		i i			83.4		77.0	125			
108-38-3	1	μg/L	<1	4 μg/L	03.4		11.0	120			
	1	μg/L	<1	4 μg/L	03.4		77.0	123			
108-38-3	0.5	µg/L µg/L	<0.5	4 μg/L 2 μg/L	92.2		77.0	125			
	TPH) (QC Lot: 3218 TPH) (QC Lot: 3218 INS (MAH) (QC Lot: 71-43-2 108-88-3 100-41-4 108-38-3 106-42-3 95-47-6 3204956) 1634-04-4 CAS Number TPH) (QC Lot: 3202 INS (MAH) (QC Lot: 71-43-2 108-88-3	TPH) (QC Lot: 3215762) 200 500 TPH) (QC Lot: 3215763) 5 Ins (MAH) (QC Lot: 3204956) 71-43-2 0.1 108-88-3 0.2 100-41-4 0.2 108-38-3 0.4 106-42-3 95-47-6 0.2 1 3204956) CAS Number LOR TPH) (QC Lot: 3202565) 0.02 Ins (MAH) (QC Lot: 3213245) 71-43-2 0.5 108-88-3 0.5	CAS Number LOR Unit TPH) (QC Lot: 3215762) —— 200 mg/kg —— 500 mg/kg —— 500 mg/kg TPH) (QC Lot: 3215763) —— 5 mg/kg Ins (MAH) (QC Lot: 3204956) —— 5 mg/kg 108-88-3 0.2 mg/kg 108-41-4 0.2 mg/kg 108-38-3 0.4 mg/kg 106-42-3 mg/kg 95-47-6 0.2 mg/kg —— 1 mg/kg 3204956) —— 1 mg/kg CAS Number LOR Unit TPH) (QC Lot: 3202565) —— 0.02 mg/L Ins (MAH) (QC Lot: 3213245) —— 0.5 μg/L 108-88-3 0.5 μg/L —— 108-88-3	TPH) (QC Lot: 3215762) 200 mg/kg <200 500 mg/kg <500 TPH) (QC Lot: 3215763) 5 mg/kg <5 ms (MAH) (QC Lot: 3204956) 71-43-2 0.1 mg/kg <0.2 100-41-4 0.2 mg/kg <0.2 108-38-3 0.4 mg/kg <0.2 108-38-3 0.4 mg/kg <0.4 106-42-3 95-47-6 0.2 mg/kg <0.2 1 mg/kg <1.0 3204956) CAS Number LOR Unit Result TPH) (QC Lot: 3202565) 0.02 mg/L <0.02 ms (MAH) (QC Lot: 3213245) 71-43-2 0.5 µg/L <0.5 108-88-3 0.5 µg/L <0.5	CAS Number LOR Unit Result Concentration	Spike Spike Spike Result Concentration LCS	Spike Spik	Spike Spike Spike Recovery (%) Recover CAS Number LOR Unit Result Result Concentration LCS DCS Low	Spille Spille Spille Spille Recovery (1/4) Re	Spile Spil	

Page Number : 9 of 12
Client : MOTT N

: MOTT MACDONALD HONG KONG LIMITED

Work Order HK2031443

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike	Spike Red	Spike Recovery (%)		Recovery Limits(%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EP-074_SR-I: Methyl-tert-butyl Ether (QC Lot: 3213245) - Continued											
EP074_SR: Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	μg/L	<0.5	2 μg/L	83.7		78.0	128		


: 10 of 12

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order HK2031443

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

: 11 of 12

Client

: MOTT MACDONALD HONG KONG LIMITED

Work Order HK2031443

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPE	7(%)
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EP-074_SR-A: M	Monocyclic Aromatic Hydrocarbons (MAH)	(QC Lot: 3204956) - Continued								
HK2031059-001	Anonymous	EP074_SR: meta- & para-Xylene	108-38-3	0.5 mg/kg	102		50.0	130		
			106-42-3							
		EP074_SR: ortho-Xylene	95-47-6	0.25 mg/kg	112		50.0	130		
		EP074_SR: Xylenes (Total)		0.75 mg/kg	105		50.0	130		
EP-074_SR-I: Me	ethyl-tert-butyl Ether (QC Lot: 3204956)									
HK2031059-001	Anonymous	EP074_SR: Methyl tert-Butyl Ether	1634-04-4	0.25 mg/kg	118		50.0	130		
		(MTBE)								

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)		
Compound	CAS Number	Low	High	
EP-076S: Polycyclic Aromatics Hydrocarb	ons (PAHs) Surrogates			
2-Fluorobiphenyl	321-60-8	50	130	
4-Terphenyl-d14	1718-51-0	50	130	
EP-080_SRS: TPH(Volatile)/BTEX Surrog	ate			
Dibromofluoromethane	1868-53-7	80	120	
Toluene-D8	2037-26-5	81	117	
4-Bromofluorobenzene	460-00-4	74	121	
EP-074_SR-S: VOC Surrogates				
Dibromofluoromethane	1868-53-7	80	120	
Toluene-D8	2037-26-5	81	117	
4-Bromofluorobenzene	460-00-4	74	121	

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP-080_SRS: TPH(Volatile)/BTEX Surrogate	te			
Dibromofluoromethane	1868-53-7	86	118	
Toluene-D8	2037-26-5	88	110	
4-Bromofluorobenzene	460-00-4	86	115	

Page Number : 12 of 12

Client : MOTT MACDONALD HONG KONG LIMITED

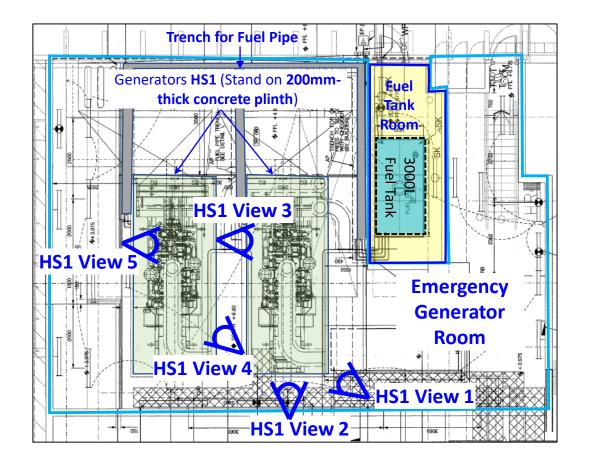
Work Order HK2031443

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP-074_SR-S: VOC Surrogates				
Dibromofluoromethane	1868-53-7	86	118	
Toluene-D8	2037-26-5	88	110	
4-Bromofluorobenzene	460-00-4	86	115	

J. Site Photo Record of Final Inspection

- **J.1** Site Photo Record of Final Inspection for EPSS2 BH9 (3000L Above-ground **Fuel Tank)**
- Site Photo Record of Final Inspection for EPSS2 HS1 **J.2**
- Site Photo Record of Final Inspection for EPSS3 BH7 (450 L Above-ground **J.3 Fuel Tank)**
- **J.4** Site Photo Record of Final Inspection for EPSS3 BH8 (Above-ground **Emergency Generator)**
- **J.5** Site Photo Record of Final Inspection for EPSS5 HS4 (Above-ground Fuel Tank) and HS5 (Above-ground Emergency Generator)

BH9 View 1 - 3000L Above-ground Fuel Tank (BH9)



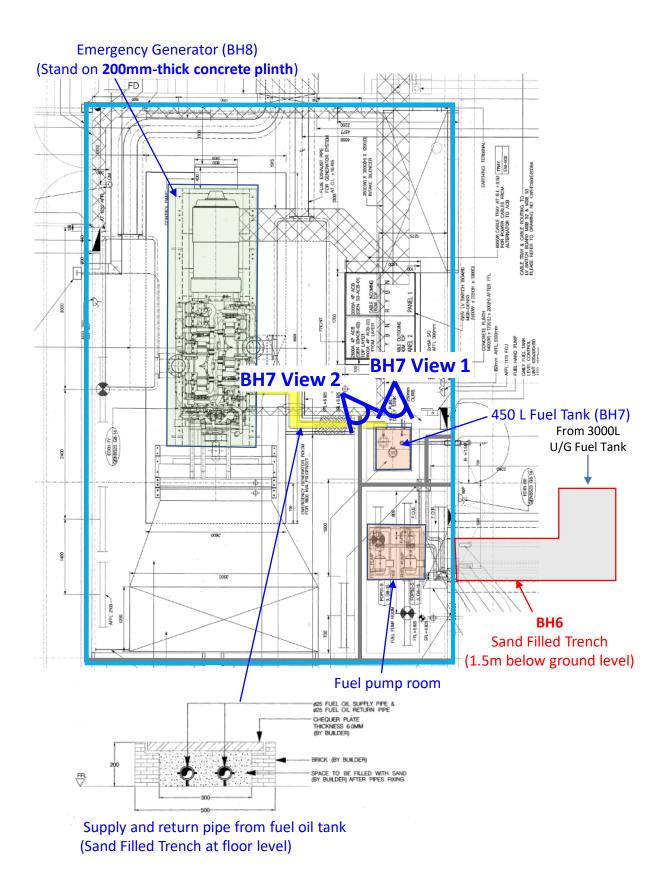
BH9 View 2 - concrete floor condition underneath 3000L Aboveground Fuel Tank

BH9 View 3 - concrete floor condition of fuel tank room with 3000L Above-ground Fuel Tank

Appendix J2 Site Photo Record of Final Inspection for EPSS2 HS1 (2 above-ground Emergency generators connected with 3,000 L Above-ground Fuel Tank inside (BH9))

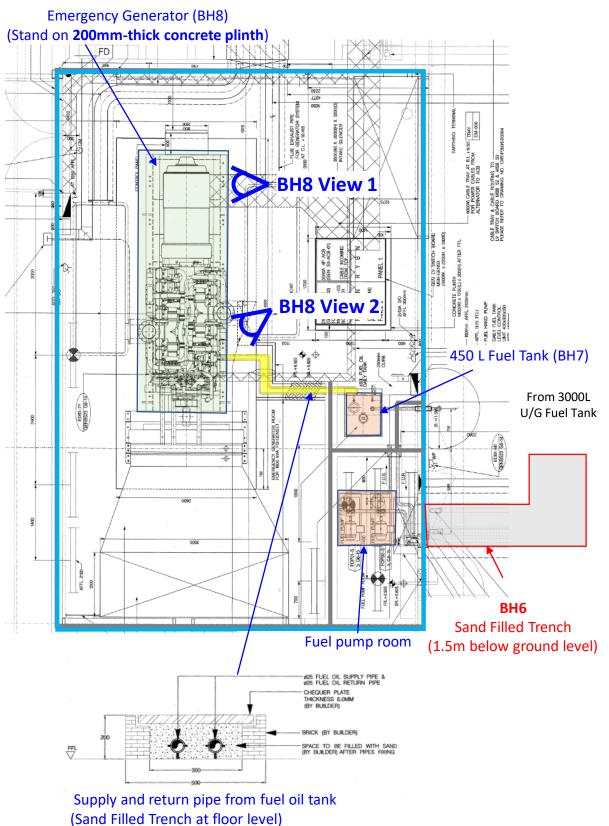
HS1 View 1 - concrete floor condition underneath emergency generators

HS1 View 2 - concrete floor condition underneath emergency generators


HS1 View 3 - concrete floor condition underneath emergency generators

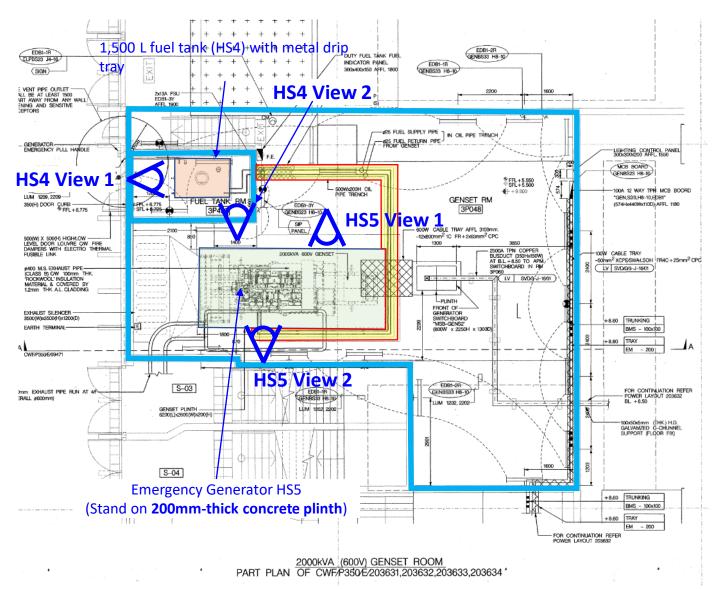
HS1 View 4 - concrete floor condition underneath emergency generators

HS1 View 5 - concrete floor condition underneath emergency generators



BH7 View 1 - 450 L Above-ground Fuel Tank

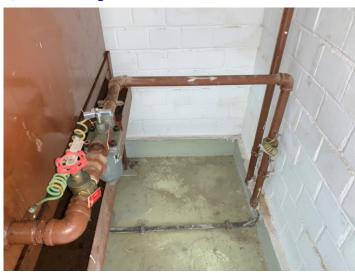
BH7 View 2 – Drip tray condition underneath 450 L Above-ground Fuel Tank



BH8 View 1 - concrete floor condition underneath emergency generator

BH8 View 2 - concrete floor condition underneath emergency generator

Appendix J5 Site Photo Record of Final Inspection for EPSS5 HS4 (Above-ground Fuel Tank) and HS5 (Above-ground Emergency Generator)


HS5 View 1 - concrete floor condition underneath emergency generator

HS5 View 2 - concrete floor condition underneath emergency generator

HS4 View 1 - concrete floor condition underneath 1,500L Above-ground Fuel Tank

HS4 View 2 - concrete floor condition of fuel tank room with 1,500 L above-ground fuel tank