

BASELINE MONITORING REPORT

FOR

IN-SITU REPROVISIONING OF SHA TIN WATER TREATMENT WORKS – SOUTH WORKS

(Rev. 1)

BASELINE MONITORING REPORT

FOR

IN-SITU REPROVISIONING OF SHA TIN WATER TREATMENT WORKS – SOUTH WORKS

	Name	Signature
Prepared by	Mr. K. M. Lok, Kenny	K
Checked & Reviewed by	Mr. C. H. Leung, Jacky	1
Approved & Certified by	Ir. Dr. C.K. Lam, Gabriel Environmental Team Leader (ETL)	Cion
Verified & Confirmed by	Mr. Y. W. Fung. Independent Environmental Checker (IEC)	2

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1.	PROJECT BACKGROUND	1
2.	OBJECTIVES	1
3.	ASSESSMENT METHODLOGY	1
4.	BASELINE MONITORING REQUIREMENTS	3
5.	DESIGNATED MONITORING LOCATIONS	3
6.	MONITORING EQUIPMENT	5
7.	DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	6
8.	BASELINE MONITORING METHODOLOGY	7
9.	BASELINE MONITORING RESULTS	9
10.	CONCLUSIONS	19

LIST OF APPENDICES

	Appendix A -	Location	Plan o	f Air (Quality	Monitoring	Station
--	--------------	----------	--------	---------	---------	------------	---------

- Appendix B Location Plan of Noise Monitoring Station
- Appendix C Location Plan of Water Quality Monitoring Station
- Appendix D Calibration Certificate (Air Monitoring)
- Appendix E Calibration Certificate (Noise)
- Appendix F Calibration Certificate (Water Quality)
- Appendix G The Certification of Laboratory with HOKLAS accredited Analytical Tests
- Appendix H Baseline Monitoring Schedules
- Appendix I Monitoring Data (Noise)
- Appendix J Monitoring Results including In-Situ Measurements and Laboratory Analysis Data (Water Quality)
- Appendix K Event/Action Plan

Acumen Environmental Engineering & Technologies Company Limited

EXECUTIVE SUMMARY

- A.1 Pursuant to the Environmental Impact Assessment (EIA) Ordinance, the Director of Environmental Protection (DEP) granted the Environmental Permit (No. EP- 494/2015) to the Water Supplies Department (WSD) to construct and operate the designated project for õIn-situ Reprovisioning of Sha Tin Water Treatment Works - South Worksö (õThe Projectö).
- A.2 Upon the requirement of the Environmental Permit (EP), the Baseline Monitoring Report shall be submitted to the DEP at least two weeks before the commencement of construction of the Project. The submissions shall be certified by the Environmental Team (ET) Leader, verified by the Independent Environmental Checker (IEC) and complied with the requirements set out in the Environmental Monitoring and Audit (EM&A) Manual before submission to the DEP as stipulated in Condition 3.3 of the EP.
- A.3 For the EP stipulation, baseline monitoring including continuous air quality and noise was conducted from 21 December 2015 to 3 January 2016. Baseline monitoring on water quality conducted from 15 December 2015 to 8 January 2016. During the baseline monitoring period, no construction activities under the Project were observed; it is however the proposed project area closes to the construction site of Sha Tin to Central Link (SCL) for Hin Keng to Diamond Hill Tunnel and the existing railway for MTR Corporation (MTRC).
- A.4 This report summarizes the key findings and presents the process and rationale behind determining a set of Action and Limit Levels (A/L Levels) of construction air quality, noise and water quality based on the baseline data. These A/L Levels will serve as the yardsticks for assessing the acceptability of the environmental impact during construction phase of the Project Works impact monitoring. They are statistical in nature and derived according to the criteria set out in the approved EM&A Manual.
- A.5 Results of the derived Action and Limit Levels for air, noise and water are given in Tables A, B and C as follows:

Monitoring	Action Level (µg/m3)	Limit Level (µg/m3)
Locations	1-Hour	1-Hour
AM1	357	500
AM2	334	500

|--|

Monitoring	Action Level	Limit Level (dB(A))	
Locations			
	0700-1900 Hours	0700-1900 Hours on Normal Weekdays	
NM1		For domestic premises, 75 dB(A)	
NM2	When one or more documented	for NM 1 & 2	
NM3	complaint is received	For schools 70dB(A) but 65 dB(A) during examination for NM 3	

Table B - Action and Limit Levels for Noise Monitoring

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

i

Water monitoring	Diss Oxyge (m	olved en (DO) g/L)	Suspend (SS) (ed Solids mg/L)	Turb (N	oidity ΓU)	p	Н
station	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level
C1	7.51	7.44	4.19	6.73	3.99	4.00	Beyond the range 6.6 to 7.9	Beyond the range 6.5 to 8.0
C2	8.10	7.98	4.33	8.16	3.13	3.28	Beyond the range 6.6 to 8.8	Beyond the range 6.5 to 8.9
C3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
M1	8.90	8.89	3.30	3.56	4.36	4.48	Beyond the range 6.6 to 8.2	Beyond the range 6.5 to 8.3
M2	8.92	8.91	18.84	26.80	12.64	13.72	Beyond the range 6.6 to 11.0	Beyond the range 6.5 to 11.0
M3	9.16	9.15	1.00	1.00	1.10	1.18	Beyond the range 6.6 to 8.6	Beyond the range 6.5 to 8.7

Table C - Action and Limit Levels for Water Quality Monitoring

Remarks: 1. For DO, non-compliance of the water quality limits occurs when monitoring result of either one of the surface, middle or bottom DO is lower than the limits.

2. For pH, action should be taken if the measured pH falls outside the specified range.

3. C3 was recorded dry throughout the sampling period.

A.6 In cases where exceedance of these criteria occurs, actions should be carried out in accordance with the Event Action Plan as shown in the approved EM&A Manual.

1. **PROJECT BACKGROUND**

- 1.1 Pursuant to the Environmental Impact Assessment (EIA) Ordinance, the Director of Environmental Protection (DEP) granted the Environmental Permit (No. EP- 494/2015) to the Water Supplies Department (WSD) to construct and operate the designated project for õIn-situ Reprovisioning of Sha Tin Water Treatment Works South Worksö (õThe Projectö).
- 1.2 Upon the requirement of the Environmental Permit (EP), a Baseline Monitoring Report shall be submitted to the DEP at least two weeks before the commencement of construction of the Project. The submissions shall be certified by the Environmental Team (ET) Leader, verified by the Independent Environmental Checker (IEC) and complied with the requirements set out in the Environmental Monitoring and Audit (EM&A) Manual before submission to the DEP as stipulated in Condition. 3.3 of the EP.
- 1.3 An EIA Report with EM&A Manual (Register No. AEIAR-187/2015) was approved by DEP in January 2015.

2. **OBJECTIVES**

- 2.1 According to the approved EM&A Manual, air quality, noise and water quality baseline monitoring are required to establish ambient conditions before construction work commencement and to demonstrate the suitability of the proposed monitoring stations.
- 2.2 This report summarizes the key findings and presents the process and rationale behind determining a set of Action and Limit Levels (A/L Levels) of construction air quality, noise and water quality based on the baseline data. These A/L Levels will serve as the yardsticks for assessing the acceptability of the environmental impact during construction phase of the Project Works impact monitoring. They are statistical in nature and derived according to the criteria set out in the approved EM&A Manual.

3. ASSESSMENT METHODLOGY

Air Quality

3.1 Baseline monitoring for air quality had been carried out in accordance with Sections 2.24 & 2.25 of the approved EM&A Manual to determine the ambient 1-hour total suspended particulates (TSP) levels at the monitoring locations prior to the commencement of the Project works. TSP baseline monitoring had been carried out for a continuous period of 2 weeks. 1-hour TSP sampling had been done 3 times per day at each monitoring station when the highest dust impacts are expected. General meteorological conditions (wind speed, direction and precipitation) and notes regarding any significant adjacent dust producing sources had also been recorded throughout the baseline monitoring period.

1

<u>Noise</u>

3.2 The baseline noise levels had been measured in accordance with Sections 3.10 & 3.11 of approved EM&A Manual for a continuous period of 14 consecutive days at logging interval of 30 minutes for daytime (between 0700 and 1900 hours of normal weekdays) and 15 minutes (as 3 consecutive L_{eq, 5 min} readings) for evening time (between 1900 and 2300 hours on normal weekdays), general holidays including Sundays (between 0700 and 2300 hours) and night-time (between 2300 and 0700 on all days). The L_{eq}, L₁₀ and L₉₀ had been recorded at the specified intervals. The non-project related construction activity ó Sha Tin to Central Link (SCL) for Hin Keng to Diamond Hill Tunnel, in the vicinity of the monitoring stations during the baseline monitoring had been noted and the source and location of this activity had been recorded.

Water Quality

- 3.3 The baseline monitoring had been taken in accordance with Sections 4.8 & 4.9 of the approved EM&A Manual at all designated monitoring stations in the 2 water courses, 3 days per week, for 4 weeks prior to the commencement of construction works. The interval between 2 sets of monitoring had been more than 36 hours. Replicate in-situ measures had been carried out in each sampling event.
- 3.4 A summary of baseline monitoring programme is presented in Table 1.

Baseline Duration Monitoring		Sampling Parameter	Frequency
Air Quality	Consecutive days of 2 weeks before commencement of major construction works	1-hour TSP	3 times per day
Noise	Consecutive days of 2 weeks before the construction commencement	$L_{eq 30 min}$, $L_{eq 5 min}$, L_{10} and L_{90} as reference.	 Daily of continuous measurement: ↓ L_{eq 30 min} for normal weekdays from 0700 - 1900; ♦ 3 consecutive L_{eq 5 min} for normal weekdays from 1900 - 2300; ♦ 3 consecutive L_{eq 5 min} for all days from 2300 - 0700 next day; and ♦ 3 consecutive L_{eq 5 min} for general holidays including Sundays from 0700 - 2300
Water Quality	4 weeks prior to the commencement of construction works	Duplicate in-situ measurements: Dissolved Oxygen (DO), Turbidity and pH; HOKLAS-accredited laboratory analysis: Suspended Solids (SS).	3 days per week. The interval between 2 monitoring days will be more than 36 hours.

Table1- Summary of Baseline Monitoring Programme

Remark: Sampling Depth for Water Quality:

- (i) 3 depths: Im below water surface, Im above bottom and at mid-depth when the water depth exceeds 6m.
- (ii) If the water depth is between 3m and 6m, 2 depths: 1m below water surface and 1m above bottom.
- (iii) If the water depth is less than 3m, 1 sample at mid-depth is taken.

4. **BASELINE MONITORING REQUIREMENTS**

- 4.1 The EM&A requirements for baseline monitoring are set out in the approved EM&A Manual. Environmental aspects such as the construction air quality, noise and water quality were identified as the key issues during the construction phase of the Project.
- 4.2. A summary of the monitoring parameters is presented in Table 2.

Environmental Issue	Parameter
Air Quality	 1-hour TSP Monitoring by Real-Time Portable Dust Meter
Noise	 L_{eq (30min)} during normal working hours; and L_{eq (15min)} during restricted hours
Water Quality	 In-situ measurement Dissolved Oxygen (mg/L); Dissolved Oxygen Saturation (%); Turbidity (NTU); pH value; Water depth (m); and Temperature (°C) Laboratory analysis Suspended Solids (mg/L)

Table 2 - Summary of the monitoring parameters of EM&A Requirements

5. DESIGNATED MONITORING LOCATIONS

Acumen Environmental Engineering & Technologies Company Limited

Air Quality

- 5.1 2 designated monitoring stations, AM1 located at the L Louey and AM2 located at Hin Keng Estate Hin Wan House, were recommended in Section 2.18 of the approved EM&A Manual. In order to identify and seek for the access of the air monitoring locations designated in the EM&A Manual, site visit was conducted among ET, IEC and Environmental Protection Department (EPD).
- 5.2 During the site visit, all designated monitoring locations were identified. Details of air monitoring stations are described in Table 3. The location plan of air quality monitoring stations is shown in Appendix A.

Air Quality Monitoring Station	Air Sensitive Receiver (ASR) ID in the approved EIA Report	Dust Monitoring Station
AM1	ASR2	The L Louey (at a platform level of about 5m above road level nearby)
AM2	ASR4	Hin Keng Estate - Hin Wan House (at the roof top)

Table 3 - Location of the Air Quali	ity Monitoring Stations
-------------------------------------	-------------------------

Noise

5.3 According to Section 3.7 of the approved EM&A Manual, 3 noise sensitive receivers designated for the construction noise monitoring. The designated monitoring stations are identified and successfully granted by the premises. The details of noise monitoring stations are described in Table 4 and the location plan of noise monitoring stations is shown in Appendix B.

Table 4 -	Details	of Noise	Monitoring	Stations
			0	

Noise Monitoring Station	Noise Sensitive Receiver (NSR) ID in the approved EIA Report	Identified Noise Monitoring Station	
		The L Louey (South)	
NM1	HK2	(at a platform level of	
		about 5m above road level nearby)	
NIM 2	111/5	Hin Keng Estate - Hin Wan House	
INIVIZ	ПКЗ	(at the roof level)	
		C.U.H.K.F.A.A.	
NM3	HK7	Thomas Cheung School	
		(at the roof level)	

Water Quality

- 5.4 3 control and 2 impact stations were recommended in the Section 4.7 of the approved EM&A Manual to carry out water quality monitoring. In order to identify and seek for the access of the water monitoring locations designated in the approved EM&A Manual, site visit was conducted among ET, IEC and EPD.
- 5.5 During the site visit, all designated monitoring locations were identified however one more impact station (M3) along the same water course was introduced due to the concern on multiple site effect, in particular to address the potential impact to M2 from a source at upstream of the water course. Details and coordinates of the monitoring stations are described in Table 5 and the location plan of water quality monitoring stations is shown in Appendix C.

Water Quality	Decemintion	Co-ordinates	
Monitoring Station	Description	Easting	Northing
C1		835110	824716
C2	Control Stations	835403	824470
C3		835642	824386
M1	T (835215	824827
M2	Monitoring Stations	835536	824775
M3		835501	824648

6. MONITORING EQUIPMENT

Air Quality

6.1 1-hour TSP levels had been measured with direct reading dust meter. It has been demonstrated its capability in achieving comparable results with high volume sampling method as set out in the Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50).

<u>Noise</u>

6.2 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications has been used for carrying out the noise monitoring. The sound level meter has been checked using an acoustic calibrator. The wind speed has been checked with a portable wind speed meter capable of measuring the wind speed in m/s.

Water Quality

- 6.3 Dissolved Oxygen and Temperature Measuring Equipment ó The instrument is a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment is capable of measuring as included a DO level in the range of 0 20mg/L and 0 200% saturation; and a temperature of 0 45°C.
- 6.4 pH Meter ó The instrument consists of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It is readable to 0.1 pH in range of 0 to 14.
- 6.5 Turbidity (NTU) Measuring Equipment ó The instrument is a portable and weatherproof turbidity measuring instrument using a DC power source. It has a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 6.6 Sample Containers and Storage Water samples for suspended solids (SS) have been stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 6.7 Suspended Solids Analysis Analysis of SS have been carried out in a HOKLAS or other international accredited laboratory.

7. DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

7.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. A summary of determination of Action/Limit (A/L) Levels for air quality, noise and water quality are shown in Tables 6 - 8 respectively.

Parameter	Action Level (μg/m ³)	Limit Level (µg/m ³)
1-hour TSP (g/m ³)	For Baseline Level Ö884 g/m ³ Action Level= (Baseline Level * 1.3 + Limit Level)/2 For baseline level ×384 g/m ³ Action Level = Limit Level	500

Table 6 -	Determination	of Action	and Limit	Levels for	Air Quality
	Determination		and Linni		7 m Quanty

Table 7 - Determination	of Action and	Limit Levels	for Noise
-------------------------	---------------	--------------	-----------

Monitoring	Action Level	Limit Level (dB(A))			
Location	0700-1900 Hours on Normal Weekdays				
NM1		For domestic premises: 75 dB(A)			
NM2	When one documented	for NM1 & NM2			
NM3	complaint is received	For schools: 70dB(A) during normal teaching periods and 65 dB(A) during examination periods for NM3			

Table 8 - Determination of Action and Limit Levels for Water Quality

Parameters	Action Level	Limit Level
	Surface, middle, bottom DO	Surface, middle DO
	\leq 5 %-ile of baseline data	
DO		\leq 4 mg/L or 1%-ile of baseline data
(mg/L)		for surface and middle layer
		Bottom DO
		$\leq 2 \text{ mg/L or } 1\%$ -ile of baseline data
		for bottom layer
	Depth-average SS	Depth-average SS
SS	⁻ 95 %-ile of baseline data or	⁻ 99 %-ile of baseline or 130% of
(mg/L)	120% of control stationøs SS	control station's SS on the same
	on the same day of	day of measurement
	measurement	

	Depth-average SS	Depth-average SS
Turbidity (NTU)	⁻ 95 %-ile of baseline data or 120% of control stationøs turbidity on the same day of measurement	⁻ 99 %-ile of baseline or 130% of control station's turbidity on the same day of measurement
рН	Beyond the range 6.6 to 8.4	Beyond the range of 6.5 to 8.5

Remarks: For DO, non-compliance of the water quality limits occurs when monitoring result of either one of the surface, middle or bottom DO is lower than the limits.

8. BASELINE MONITORING METHODOLOGY

- 8.1 The baseline monitoring program for continuous air quality and noise were conducted from 21 December 2015 to 3 January 2016 whereas the baseline monitoring on water quality was conducted from 15 December 2015 to 8 January 2016. During the baseline monitoring period, no construction activities under the Project were observed. It was however the proposed project area closes to the construction site of Shatin to Central Link (SCL) for Hin Keng to Diamond Hill Tunnel and the existing railway for MTR Corporation (MTRC).
- 8.2 The monitoring equipment using for the baseline monitoring program was proposed by ET and verified by IEC prior to the commencement of the monitoring work. The details of equipment using for baseline monitoring are listed in Table 9 as below.

Equipment	Model		
Air quality			
Portable dust meter ó 1-hour	Sensidyne Gilian Nephelometer dust meter;		
TSP	TSI DustTrak Aerosol Monitor Model 8532		
Noise			
Sound Level Meter	Pulsar 95 Sound level meter		
Portable Wind Speed Indicator	The Kestrel Pocket Weather Meter		
Water quality			
Thermometer & DO meter	YSI Model ProDSS Multi-parameter Water Quality Monitoring System		
pH meter			
Turbidmeter			
Sample Container	High density polythene bottles (provided by laboratory)		
Storage Container	-Willowø33-liter plastic cool box with Ice pad		
Suspended Solids	HOKLAS-accredited laboratory (Acumen Laboratory and		
	Testing Limited)		

Table 9 - Monitoring Equipment Used in Baseline Monitoring Program

Air Quality

8.3 The 1-hour TSP monitor, portable dust meters (Sensidyne Gilian Nephelometer dust meter or TSI DustTrak Aerosol Monitor Model 8532) were used for baseline monitoring. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:

Acumen Environmental Engineering & Technologies Company Limited

- A pump to draw sample aerosol through the optic chamber where TSP is measured;
- A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
- A built-in data logger compatible with based program to facilitate data collection, analysis and reporting.
- 8.4 The 1-hour TSP meter was calibrated by the manufacturer prior to purchasing. Zero response of the instrument was checked before and after each monitoring event. Operation of the 1-hour TSP meter followed manufacturerøs Operation and Service Manual. A valid calibration certificate is attached in Appendix D.

Noise

- 8.5 Baseline noise monitoring was performed at NM1, NM2 & NM3 from 21 December 2015 to 3 January 2016. The baseline noise monitoring was carried out continuous interval of 5 minutes for 2 weeks.
- 8.6 All noise measurements were the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}).
- 8.7 Prior to the baseline noise measurement, the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Regular checking was conducted in baseline monitoring period. The calibration level before and after the noise measurement is agreed to within 1.0 dB.
- 8.8 An acoustic calibrator and sound level meter using baseline monitoring is within the valid period and were calibrated per year. A set of valid calibration certificates is attached in Appendix E.
- 8.9 Noise measurements should not be made in presence of fog, rain, wind with a steady speed exceeding 5 ms⁻¹ or wind with gusts exceeding 10 ms⁻¹. The wind speed was checked with a portable wind speed meter capable of measuring with speeds in ms⁻¹.

Water Quality

- Before the commencement of the sampling, general information such as the date and time of 8.10 sampling as well as the personnel responsible for monitoring were recorded on the monitoring field data sheet.
- Water temperature, turbidity, DO, pH and water depth were measured in-situ. Since water 8.11 depths at C1, C2, M1, M2 and M3 were less than 3 m, all in-situ measurements and sampling conducted at one water depth such as mid-depth are performed. Moreover, C3 was recorded dry throughout the sampling period. Therefore, in-situ measurements and sampling could not be conducted at C3 in accordance with the water monitoring requirements in the approved EM&A Manual.

8

- 8.12 At each sampling point, 2 consecutive measurements of temperature, DO, turbidity and pH were measured. The Multi-Parameter Water Quality Monitoring Probe were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken. The certification of the Multi-parameter Water Quality Monitoring System is showed in Appendix F.
- 8.13 All water samples were delivered to the Acumen Laboratory and Testing Limited (HOKLAS registration no.: 241). SS testing was used HOKLAS accredited Analytical method APHA 2540 D. The certification of laboratory with HOKLAS accredited analytical tests are provided in Appendix G.

Data Management and Data QA/QC Control

- 8.14 The baseline monitoring data were handled by ETøs in-house data recording and management system.
- 8.15 The monitoring data recorded in the equipment were downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data were input into computerized database properly. The laboratory results were input directly into the computerized database and checked by personnel other than those who had input the data.
- 8.16 For monitoring parameters that require laboratory analysis, the local laboratory had followed the QQA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory testing.

9. BASELINE MONITORING RESULTS

9.1 The baseline monitoring schedules are presented in Appendix H and the monitoring results are detailed in the following sub-sections

Air Quality

9.2 Baseline air quality monitoring was carried out from 21 December 2015 to 3 January 2016. The results for 1-hour TSP are summarized in Tables 10 and 11.

Data	1-hour TSP (μg/m³)				
Date	Start Time	End Time	1 st Measurement	2 nd Measurement	3 rd Measurement
21/12/2015	14:00	17:00	172	186	180
22/12/2015	11:00	14:00	191	188	196
23/12/2015	10:05	13:05	150	155	147
24/12/2015	12:00	15:00	156	154	165
25/12/2015	11:45	14:45	147	132	142
26/12/2015	13:35	16:35	169	172	187
27/12/2015	12:30	15:30	180	168	175

Table 10 - Summary of 1-hour TSP Monitoring Results ó AM1

Acumen Environmental Engineering & Technologies Company Limited

Water Supplies Department In-situ Reprovisioning of Sha Tin Water Treatment Works ó South Works Baseline Monitoring Report

28/12/2015	13:40	16:40	172	165	158
29/12/2015	14:30	17:30	186	177	191
30/12/2015	15:00	18:00	163	178	188
31/12/2015	10:15	13:15	148	144	138
1/1/2016	13:30	16:30	144	134	133
2/1/2016	10:45	13:45	172	160	159
3/1/2016	11:30	14:30	153	162	165
Average (Range)				164.3	

Table 11 - S	Summary of 1-hour	TSP Monitoring	Results ó AM2
--------------	-------------------	----------------	---------------

Data	1-hour TSP (µg/m ³)							
Date	Start Time	End Time	1 st Measurement	2 nd Measurement	3 rd Measurement			
21/12/2015	10:50	14:50	124	119	127			
22/12/2015	14:15	17:15	166	159	160			
23/12/2015	14:45	17:45	119	121	113			
24/12/2015	16:00	19:00	128	141	112			
25/12/2015	08:30	11:30	126	121	101			
26/12/2015	10:15	13:15	102	113	123			
27/12/2015	08:45	11:45	126	119	121			
28/12/2015	10:20	13:20	132	148	135			
29/12/2015	10:45	13:45	114	128	121			
30/12/2015	10:55	13:55	149	146	129			
31/12/2015	14:30	17:30	120	118	118			
1/1/2016	16:45	19:45	127	131	118			
2/1/2016	14:00	17:00	167	170	166			
3/1/2016	15:00	18:00	110	108	104			
	Av	erage (Range)		128.6				

Action/Limit Level for Air Quality

9.3 Following the criteria shown in Tables 10 and 11 of this report, the proposed Action and Limit Levels for 1-hour TSP are listed in Table 12.

 Table 12 - Action and Limit Levels for Air Quality Monitoring

Monitoring Location	Action Level (µg/m ³)	Limit Level (µg/m ³)		
	I-Hour	I-Hour		
AM1	357	500		
AM2	334	500		

<u>Noise</u>

9.4 The baseline noise monitoring was carried out between 21 December 2015 and 3 January 2016. The measurement data are shown in Appendix I and summarized in Tables 13 - 15.

10

Time Period	Parameter	Mean	Max	Min
Normal Weekdays from	L _{eq 5min}	61.5	70.9	49.8
0700-1900	L _{eq 30min}	63.9	67.9	62.2
Normal Weekdays from	L _{eq 5min}	61.6	70.5	49.8
1900-2300	L _{eq 15min}	63.5	64.6	62.1
All Days from 2300-0700	L _{eq 5min}	60.6	68.9	50.0
of next day	L _{eq 15min}	62.7	63.8	61.6
General Holidays including	L _{eq 5min}	61.9	70.7	49.9
Sundays from 0700-2300	L _{eq 15min}	64.5	68.0	62.5

Table	13 -	Summary	of Noise	Monitoring	Results ó	NM1
		2		0		

Table 14 - Summary of Noise Monitoring Results ó NM2

Time Period	Parameter	Mean	Max	Min
Normal Weekdays from	L _{eq 5min}	59.0	67.5	52.2
0700-1900	L _{eq 30min}	59.7	61.7	57.0
Normal Weekdays from	L _{eq 5min}	56.1	62.9	50.8
1900-2300	L _{eq 15min}	55.9	57.6	54.2
All Days from 2300-0700	L _{eq 5min}	53.7	59.1	48.7
of next day	L _{eq 15min}	53.8	54.8	52.7
General Holidays including	L _{eq 5min}	59.5	65.5	53.3
Sundays from 0700-2300	L _{eq 15min}	60.9	62.5	58.2

Table 15 - Summary of Noise Monitoring Results ó NM3

Time Period	Parameter	Mean	Max	Min
Normal Weekdays from	L _{eq 5min}	55.5	65.7	49.6
0700-1900	L _{eq 30min}	56.1	59.5	54.2
Normal Weekdays from	L _{eq 5min}	52.2	57.1	48.1
1900-2300	L _{eq 15min}	51.9	52.5	50.5
All Days from 2300-0700	L _{eq 5min}	51.5	56.7	48.0
of next day	L _{eq 15min}	51.4	53.6	50.3
General Holidays including	L _{eq 5min}	55.1	60.8	49.6
Sundays from 0700-2300	L _{eq 15min}	55.8	57.6	53.6

Action/Limit Level for Noise

9.5 The Action and Limit Levels for noise are illustrated in Table 16.

Monitoring Location	Action Level	Limit Level (dB(A))			
	0700-1900 Hours on Normal Weekdays				
NM1		For domestic premises: 75 dB(A) for			
NM2	When one documented complaint is	NM1 & NM2			
NM3	received	For schools: 70 dB(A) during normal teaching periods and 65 dB(A) during examination periods for NM3			

Remark: If the works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

Water Quality

- 9.6 The baseline quality monitoring at 6 designated monitoring stations was performed for 4 weeks between 15 December 2015 and 8 January 2016. The details of monitoring schedule are shown in Appendix H.
- 9.7 The monitoring results are summarized in Table 17. Detailed monitoring results including in-situ measurements and laboratory analysis data are shown in Appendix J.

Dissolved Oxygen – Mid Depth (mg/L)	C1	C2	C3	M1	M2	M3
5% -ile	7.51	8.10	N/A	8.90	8.92	9.16
1%-ile	7.44	7.98	N/A	8.89	8.91	9.15
Average	8.38	9.29	N/A	9.33	9.11	9.39
Min.	7.44	7.98	N/A	8.89	8.91	9.15
Max.	9.66	10.11	N/A	9.98	9.36	9.80
Turbidity – Mid Depth (NTU)	C1	C2	C3	M1	M2	M3
95% -ile	3.99	3.13	N/A	4.36	12.64	1.10
99%-ile	4.00	3.28	N/A	4.48	13.72	1.18
Average	2.48	1.90	N/A	3.33	5.16	0.93
Min.	1.50	0.70	N/A	1.50	0.70	0.60
Max.	4.00	3.30	N/A	4.50	13.90	1.20
Suspended Solid – Mid depth (mg/L)	C1	C2	C3	M1	M2	M3
95% -ile	5.52	5.70	N/A	4.35	24.80	1.20
99%-ile	8.86	10.74	N/A	4.68	35.27	1.20
Average	1.26	1.44	N/A	1.15	6.83	0.29
Min.	<1	<1	N/A	<1	<1	<1
Max.	9.70	12.00	N/A	4.70	38.00	1.20
pH value (unit)	C1	C2	C3	M1	M2	M3
Min.	7.70	7.83	N/A	7.81	7.67	7.79
Max.	8.24	9.30	N/A	8.57	11.50	9.06

Table 17 - Summary of Water Quality Monitoring Results

Action/Limit Level for Water Quality

9.8 The Action and Limit Levels for water quality are illustrated in Table 18.

Water monitoring	DissolvedSuspendedOxygen (DO)Solids (SS)(mg/L)(mg/L)		Dissolved Oxygen (DO) ^{ig} (mg/L)		ended ls (SS) g/L)	Turbidity (NTU)		p	Н
station	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level*	
C1	7.51	7.44	5.52	8.86	3.99	4.00	Beyond the range 6.6 to 8.2*	Beyond the range 6.5 to 8.3*	
C2	8.10	7.98	5.70	10.74	3.13	3.28	Beyond the range 6.6 to 9.2*	Beyond the range 6.5 to 9.3*	
C3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
M1	8.90	8.89	4.35	4.68	4.36	4.48	Beyond the range 6.6 to 8.5*	Beyond the range 6.5 to 8.6*	
M2	8.92	8.91	24.80	35.27	12.64	13.72	Beyond the range 6.6 to 11.4*	Beyond the range 6.5 to 11.5*	
M3	9.16	9.15	1.20	1.20	1.10	1.18	Beyond the range 6.6 to 9.0*	Beyond the range 6.5 to 9.1*	

 Table 18 - Action and Limit Levels of Water Quality Monitoring

Remarks: 1. For DO, non-compliance of the water quality limits occurs when monitoring result of either one of the surface, middle or bottom DO is lower than the limits.

2. For pH, action should be taken if the measured pH falls outside the specified range.

3. *For pH, the lower action level and limit level at C1, C2, M1, M2 & M3 adopt the suggested levels at Table 4.3 of the approved EM&A Manual while the upper action level and limit level at C1, C2, M1, M2 & M3 follow the results in Table 17.

4. C3 was recorded dry throughout the sampling period.

9.9 As the cause of exceedance may due to the seasonal change, the variation between dry season and wet season is calculated as below for the compensation of seasonal change. As the water quality in the Shing Mun River (also referred to as Tin Sum Nullah) is monitored under the EPD¢ routine river water quality monitoring programme. Ten years (Year 2005 to 2014) of river water quality data at station TR20B Tin Sum Nullah are extracted from EPD¢ database for the calculation of the DO, Turbidity, SS and pH variations between dry season and wet season. Please refer to the map below for the location of TR20B. The raw data are also listed in Table 19 for reference.

Date	DO	Turbidity	SS	nH	
Date	(mg/L)	(NTU)	(mg/L)	pm	
5/1/2005	9.4	1	0.6	8.3	
3/2/2005	9.7	1.4	< 0.5	7.7	
3/3/2005	9.9	1.9	1.8	7.8	
7/4/2005	9	0.1	0.9	7.9	
4/5/2005	8.4	0.3	1.5	8	
1/6/2005	8.4	1.1	1.8	7.5	
4/7/2005	7.7	0.2	2	7.2	
1/8/2005	7.8	2.6	4.2	8	
1/9/2005	7.3	1.8	2	7.4	
3/10/2005	83	4	1	7.4	
2/11/2005	8.8	1.2	21	7.1	
1/12/2005	0.0	1.2	2.1	7.4	
2/1/2005	9	1.0	2.2	1.5	
3/1/2000	9	0.2	0.0	0.2	
9/2/2006	9	0.1	0.8	/.8	
2/3/2006	9.5	10.1	16	7.9	
7/4/2006	8.6	2	1.7	8.3	
10/5/2006	8.1	1.5	0.8	7.5	
1/6/2006	7.7	3.1	2	7.6	
6/7/2006	7.7	13.7	39	7	
7/8/2006	7.9	5.2	5.4	7.5	
8/9/2006	7.7	11.7	31	8	
9/10/2006	8.2	4	2.6	7.8	
8/11/2006	8.2	0.3	3	8.1	
1/12/2006	8.4	2	0.8	8.3	
3/1/2007	8.7	0.3	<0.5	8.1	
1/2/2007	0.7	1.3	1.8	83	
1/2/2007	0.3	1.5	2.3	8.5	
1/3/2007	9.5	1.0	2.3	8.3	
12/4/2007	0.0	0.7	1.2	0.2	
11/5/2007	8.2	0.7	<0.5	8.4	
4/6/2007	7.4	1.4	1.8	8	
9/1/2007	9.2	0.1	<0.5	7.7	
6/8/2007	8.5	1.9	1.4	7.7	
12/9/2007	7.9	0.7	1.4	8	
25/10/2007	8.2	2	2.1	8.1	
16/11/2007	8.7	1.3	1.4	8.2	
12/12/2007	8.8	0.4	1.6	8.2	
24/1/2008	9.5	2.1	0.9	8.3	
22/2/2008	9.9	2.1	0.9	8.6	
12/3/2008	9.2	2.3	1.1	8.2	
16/4/2008	8.7	16.5	0.5	8	
15/5/2008	8.1	0.2	< 0.5	7.5	
16/6/2008	8.2	2.3	8.1	74	
17/7/2008	8.1	1	4.1	7.1	
1/8/2008	7.9	0.6	14	7.6	
10/0/2008	7.5	6.0	6	7.0	
16/10/2008	7.0	0.7	1.2	7.4	
10/10/2000	05	0.2	1.4	/. '	
14/11/2008	0.3	0.1	2.0	0	
10/12/2008	0.9	1.4	1.2	0.0	
14/1/2009	9.8	1.1	5.1	8.2	
18/2/2009	8.8	2.9	3	8	
11/3/2009	9	0.7	2.7	8.1	
15/4/2009	8.5	0.3	0.8	8.1	
14/5/2009	7.9	0.3	0.7	7.9	
19/6/2009	7.6	2.5	4.4	7.9	
16/7/2009	7.4	0.5	0.6	7.8	
19/8/2009	7.8	1	7.6	7.8	
30/9/2009	7.9	2.1	3.5	7.8	
23/10/2009	8	0.4	1.1	8.2	
20/11/2009	9	1.5	1.3	8	

Table 19 - River Water Quality Data (2005-2014)

14/12/2009	8.8	2.7	1.6	8
13/1/2010	9.7	1.6	3	7.8
3/2/2010	9.1	2	2.1	8.4
24/3/2010	9.1	1.2	2.1	8.5
23/4/2010	8.7	0.6	1.5	8.4
14/5/2010	8.3	1.3	1.2	7.8
10/6/2010	8	10.2	14	7.9
21/7/2010	7.1	2	1	7.5
16/9/2010	7.4	<u> </u>	1	7.0 9.1
10/0/2010	7.0	0.4	15	0.1
15/9/2010	7.9	4.3	1./	/.0
13/10/2010	8.1	2.5	0.9	7.9
19/11/2010	8.6	1.2	1.1	7.9
13/12/2010	8.8	1.5	1.9	8.6
17/1/2011	10	3	0.6	8.1
9/2/2011	9.3	1.5	1.8	8.2
9/3/2011	9.3	1.8	< 0.5	8
14/4/2011	8.7	2	2	7.7
19/5/2011	8.3	0.4	0.6	7.8
2/6/2011	8.2	2.8	2.1	7.8
21/7/2011	7.8	2.0	1.1	7.0
10/8/2011	7.0	2.1	0.5	7.0
15/0/2011	/./ 7 7	∠.0 5 1	1.5	7.0
13/9/2011	/./	3.1	1.0	7.9
20/10/2011	8.2	0.9	0.8	/.8
17/11/2011	8.3	10.7	30	4.5
15/12/2011	8.8	0.4	< 0.5	8.1
9/1/2012	9.6	0.9	0.9	8.3
17/2/2012	9.6	1.8	3.3	8.4
9/3/2012	9.1	4.5	5.6	7.7
25/4/2012	8.3	0.9	1.4	8.2
25/5/2012	8	0.3	1.2	7.8
15/6/2012	7.9	1.8	0.6	7.8
6/7/2012	7.8	0.3	1	8
24/8/2012	7.8	0.8	0.6	7.8
6/9/2012	7.8	3.1	13	8
22/10/2012	8.1	0.2	<0.5	77
20/11/2012	0.1	1.0	<0.5	7.7
29/11/2012	0.0	1.9	<0.5	7.9
13/12/2012	9.1	0.5	<0.5	7.9
18/1/2013	9.8	0.6	0.5	7.9
21/2/2013	9.2	0.2	1.3	7.5
15/3/2013	9	0.4	< 0.5	7.4
19/4/2013	8.6	1.7	4.2	7.8
30/5/2013	8.2	1.4	1	7.5
6/6/2013	8	1.6	1.5	7.7
18/7/2013	7.9	1.8	1.5	7.5
19/8/2013	8	1.3	1.5	7.5
18/9/2013	8.1	2.3	0.6	7.9
21/10/2013	8.2	1	0.6	7.7
14/11/2013	8.5	1	0.8	7.5
9/12/2013	9	4.6	26	7.4
10/1/2014	94	1.5	0.8	7.6
20/2/2014	0.0	12.2	/1	9.2
20/2/2014	7.7	12.2 01.6	4 1 11Ω	7.2 0 1
20/3/2014	9.2	21.0	110	0.1
25/4/2014	0.4	2.1	1.0	1.1
20/3/2014	ð.2 7.0	2.4	4./	1.5
18/6/2014	7.9	10.6		/.4
14/7/2014	7.8	5.5	5.7	8.1
15/8/2014	8.1	5	6.8	8.9
15/9/2014	7.7	3.5	1.6	7.9
17/10/2014	8.2	7.5	7.9	8.8
20/11/2014	8.6	6.1	11	9.7
12/12/2014	9	5	23	11.4
	•			

9.10 After analyzed the distributions of the ten years data from the above, median of DO, Turbidity, SS and pH for dry season and wet season are used to calculate their variations to eliminate the effect of the lowest and the highest values. The variations for 4 parameters between dry season and wet season variation are calculated by equation (eqt. 9.1)

Variation = (Dry Season ó Wet Season) / Dry Season (eqt. 9.1)

9.11 According to EP no.: EP-303/2008 - South-East New Territories Landfill Extension, dry season should be defined from October to April; and the wet season should be defined from May to September. The data from October to April are used for the calculation of dry season; the data from May to September are used for the calculation of wet season. Total 2 sets of results of each parameter are calculated for comparison. Both median and mean of each parameter have been calculated for 10 years data - from Year 2005 to 2014. The results can refer to Tables 20 - 23.

Table 20 - DO Variation between Dry Season and Wet Seasonfrom 2005 to 2014 at Station TR20B, Tin Sum Nullah

Collected Data	DO (mg/L)	Wet Season	Dry Season	Variation
Year 2005-2014	Median	7.90	8.85	10.73%
Year 2005-2014	Mean	7.93	8.91	10.98%

9.12 From the results in Table 20, the highest variation value of 10.98% is used to enhance the effect of applying the variation. By applying the variation (10.98%) to the baseline data, a revised set of Action/Limit level for wet season is calculated by equation (eqt. 9.2) and the result are shown in Table 21.

Revised Level = Original Level × (1 – highest variation value) (eqt. 9.2)

Table 21 - New Set of Action/Limit Level of DO by Using the Calculated Variation (10.98%)

Monitoring Station	Origina (Dry S	al Level Season)	Revised Level (Wet Season)	
	Action Level	Limit Level	Action Level	Limit Level
C1	7.51	7.44	6.69	6.62
C2	8.10	7.98	7.21	7.10
C3	N/A	N/A	N/A	N/A
M1	8.90	8.89	7.92	7.91
M2	8.92	8.91	7.94	7.93
M3	9.16	9.15	8.15	8.15

Table 22 - Suspended Solid (SS) Variation between Dry Season and Wet Sea	lson
from 2005 to 2014 at Station TR20B, Tin Sum Nullah	

Collected Data	SS (mg/L)	Wet Season	Dry Season	Variation
Year 2005-2014	Median	1.60	1.65	3.03%
Year 2005-2014	Mean	4.34	5.72	24.03%

9.13 From the results in Table 22, the highest variation value of 24.03% is used to enhance the effect of applying the variation. By applying the variation (24.03%) to the baseline data, a revised set of Action/Limit level is calculated by equation (eqt. 9.2) and the result are shown in Table 23.

Table 23 - New Set of Action/Limit Level of SS by Using the Calculated Variation (24.03%)

Monitoring Station	Origina (Dry S	al Level Season)	Revised Level (Wet Season)		
_	Action Level	Limit Level	Action Level	Limit Level	
C1	5.52	8.86	4.19	6.73	
C2	5.70	10.74	4.33	8.16	
C3	N/A	N/A	N/A	N/A	
M1	4.35	4.68	3.30	3.56	
M2	24.80	35.27	18.84	26.80	
M3	1.20	1.20	1.00*	1.00*	

Remark: According to the analytical method APHA 2540D, the detection limit for suspended solids (SS) is lmg/L.

Table 24 - Turbidity Variation between Dry Season and Wet Season from 2005 to 2014 at Station TR20B, Tin Sum Nullah

Collected Data	Turbidity	Wet Season	Dry Season	Variation
	(mg/L)			
Year 2005-2014	Median	1.85	1.5	-23.33%
Year 2005-2014	Mean	2.89	2.55	-13.21%

9.14 From the results in Table 24, the highest variation value of -23.33% is used to enhance the effect of applying the variation. By applying the variation (-23.33%) to the baseline data, a revised set of Action/Limit level for wet season is calculated by equation (eqt.9.2) and the result are shown in Table 25.

	Origina	l Level	Revised Level		
Monitoring Station	(Dry S	eason)	(Wet Season)		
	Action Level	Limit Level	Action Level	Limit Level	
C1	3.99	4.00	4.92	4.93	
C2	3.13	3.28	3.86	4.05	
C3	N/A	N/A	N/A	N/A	
M1	4.36	4.48	5.38	5.53	
M2	12.64	13.72	15.59	16.92	
M3	1.10	1.18	1.36	1.46	

Table 25 - New Set of Action/Limit Level of Turbidity by Using the Calculated Variation (-23.33%)

Table 26 - pH Variation between Dry Season and Wet Season from 2005 to 2014 at Station TR20B, Tin Sum Nullah

Collected Data	рН	Wet Season	Dry Season	Variation
Year 2005-2014	Median	7.80	8.05	3.11%
Year 2005-2014	Mean	7.74	8.05	3.93%

9.15 From the results in Table 26, the highest variation value of 3.93% is used to enhance the effect of applying the variation. By applying the variation (3.93%) to the baseline data, a revised set of Action/Limit level is calculated by equation (eqt. 9.2) and the result are shown in Table 27.

Table 27 - New Set of Action/Limit Level of pH by Using the Calculated Variation (3.93%)

Monitoring	Origina (Dry S	al Level eason)	Revised Level (Wet Season)		
Station	Action Level	Limit Level	Action Level	Limit Level	
C1	Beyond the range	Beyond the range	Beyond the range	Beyond the range	
CI	6.6 to 8.2	6.5 to 8.3	6.3 to 7.9	6.2 to 8.0	
Beyond the range Beyond the		Beyond the range	Beyond the range	Beyond the range	
C2	6.6 to 9.2	6.5 to 9.3	6.3 to 8.8	6.2 to 8.9	
C3 N/A		N/A	N/A	N/A	
M1	Beyond the range	Beyond the range	Beyond the range	Beyond the range	
101 1	6.6 to 8.5	6.5 to 8.6	6.3 to 8.2	6.2 to 8.3	
MO	Beyond the range	Beyond the range	Beyond the range	Beyond the range	
IVI Z	6.6 to 11.4	6.5 to 11.5	6.3 to 11.0	6.2 to 11.0	
M2	Beyond the range	Beyond the range	Beyond the range	Beyond the range	
1015	6.6 to 9.0	6.5 to 9.1	6.3 to 8.6	6.2 to 8.7	

9.16 Based on the above baseline water quality monitoring results for dry season and wet season, the proposed Action and Limit Levels for 4 parameters are summarized in table below:

Water monitoring	Dissolved St Oxygen (DO) St (mg/L)		Suspo Solid (mş	ended s (SS) g/L) Turbidity (NTU)		I	рН	
station	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level
C1	7.51	7.44	4.19	6.73	3.99	4.00	Beyond the range 6.6 to 7.9	Beyond the range 6.5 to 8.0
C2	8.10	7.98	4.33	8.16	3.13	3.28	Beyond the range 6.6 to 8.8	Beyond the range 6.5 to 8.9
C3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
M1	8.90	8.89	3.30	3.56	4.36	4.48	Beyond the range 6.6 to 8.2	Beyond the range 6.5 to 8.3
M2	8.92	8.91	18.84	26.80	12.64	13.72	Beyond the range 6.6 to 11.0	Beyond the range 6.5 to 11.0
M3	9.16	9.15	1.00	1.00	1.10	1.18	Beyond the range 6.6 to 8.6	Beyond the range 6.5 to 8.7

 Table 28 - Recommended Action and Limit Levels of Water Quality Monitoring

Remarks: 1. For DO, non-compliance of the water quality limits occurs when monitoring result of either one of the surface, middle or bottom DO is lower than the limits.

2. For pH, action should be taken if the measured pH falls outside the specified range.

3. The proposed Action/Limit Levels of Turbidity and SS are adopted to be used 95%-ile /99%-ile of baseline data.

4. C3 was recorded dry throughout the sampling period.

9.17 In cases where exceedance of these criteria occurs, actions should be carried out in accordance with the Event Action Plan in the approved EM&A Manual as shown in Appendix K.

10. CONCLUSIONS

- 10.1 The baseline monitoring program of continuous air and noise were conducted from 21 December 2015 to 3 January 2016. Baseline monitoring on water quality conducted from 15 December 2015 to 8 January 2016 at the designated monitoring stations in accordance with the approved EM&A Manual and the approved EM&A Methodology Proposed EM&A Programme for Baseline and Impact Monitoring. During the baseline monitoring period, no construction activities under the Project were observed. It was however the proposed project area closes to the construction site of Sha Tin to Central Link (SCL) for Hin Keng to Diamond Hill Tunnel and the existing railway for MTR corporation; and these non-project related construction activities in the vicinity of the monitoring stations during the baseline monitoring of noise and air quality had been noted and the source and location of these activities had been recorded.
- 10.2 General meteorological conditions (wind speed, direction and precipitation) and notes regarding any significant adjacent dust producing sources had been recorded throughout the baseline monitoring period of air quality.

10.3 Based on the baseline monitoring results, the recommended environmental performance criteria for monitoring of air quality and noise during construction phase are summarized as follows:

Table 29 - Recommended Action and Limit Levels of Air Quality Monitoring

Monitoring	Action Level (µg/m ³)	Limit Level (µg/m ³)	
Location	1-Hour	1-Hour	
AM1	357	500	
AM2	334	500	

Table 30 - Recommended Action and Limit Levels of Noise Monitoring

Monitoring	Action Level	Limit Level in dB(A)				
Location	0700-1900 Hours on Normal Weekdays					
NM1		For domestic premises: 75 dB(A) for				
NM2	When one decumented	NM1 & NM2				
NM3	complaint is received	For schools: 70 dB(A) during normal teaching periods and 65 dB(A) during examination periods for NM3				

10.4 For the baseline monitoring of water quality, seasonal change had been considered and the variation of 4 parameters between wet season and dry season had been applied. The Action/Limit Level criteria have been adjusted based on the baseline monitoring results so as to reflect the conditions of local river water quality and for the monitoring of the water quality. The recommended environmental performance criteria for water quality during construction phase are summarized as below:

Table 31 - Recommended Action and Limit Levels of Water Quality Monitoring

DissolvedWaterOxygen (DO)monitoring(mg/L)		Suspe Solid (mg	Suspended Solids (SS) (mg/L)		oidity ΓU)	рН		
station	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level
C1	7.51	7.44	4.19	6.73	3.99	4.00	Beyond the range 6.6 to 7.9	Beyond the range 6.5 to 8.0
C2	8.10	7.98	4.33	8.16	3.13	3.28	Beyond the range 6.6 to 8.8	Beyond the range 6.5 to 8.9
C3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
M1	8.90	8.89	3.30	3.56	4.36	4.48	Beyond the range 6.6 to 8.2	Beyond the range 6.5 to 8.3
M2	8.92	8.91	18.84	26.80	12.64	13.72	Beyond the range 6.6 to 11.0	Beyond the range 6.5 to 11.0
M3	9.16	9.15	1.00	1.00	1.10	1.18	Beyond the range 6.6 to 8.6	Beyond the range 6.5 to 8.7

- 10.5 Review of the baseline conditions may need to be conducted regularly if the changes in baseline conditions are evident. The environmental performance criteria should be re-established by agreement of the Engineer Representative and IEC and submit to EPD for endorsement.
- 10.6 According to the approved EM&A Manual, two and three monitoring stations were identified for the impacts monitoring of air quality and noise during construction phase, with locations shown in Appendices A and B respectively. For water quality impact monitoring, 3 control stations C1, C2 and C3 were identified which were located at the upstream and downstream of the works area. Moreover, one more impact station (M3) along the same water course was introduced due to the concern on multiple site effect in particular to address the potential impact to M2 from a source at upstream water course, so as to make it totally three monitoring stations with locations shown in Appendix C.

Appendix A

Location Plan of Air Quality Monitoring Station

P:\Projects\60162073\Drawing\REPORT\EM&A\802.dwg 2012-11-08 13:38 CAIZP

Appendix B Location Plan of Noise Monitoring Station

P:\Projects\60162073\Drawing\REPORT\EM&A\803.dwg 2012-11-08 13:42 CAIZP

Appendix C Location Plan of Water Quality Monitoring Station

Project no.: CJO-3113

Appendix D Calibration Certificates (Air Monitoring)

				90-3824 htt	p://www.tsi.com	8 같은 것은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것
Environment Condition	second in s		Model	1.24		8532
Temperature	74.4 (23	6) °F (°C)				OJJZ
Relative Humidity	42	%RH	Serial Numb	er	8!	532114409
Barometric Pressure	29.02 (98	2.7) inHg (hPa)				
🖾 As Left		ß	In Tolerance		영습이었습	
As Found			Out of Tolerance			
	() Device Kesponse () 0.0	0.01 0.1 Aerosol Conc	0 1 10 1 entration (mg/m3)	o = In Te = Out e Tolera: 00	olerance of Tolerance nce : ±10%	System ID: DTII01-02
FLOW AND PRESSURE V	PRDIRICATION:					
FLOW AND PRESSURE V Parameter Standard	/ERIFICATION Measured	Allowable Range	Parameter	Standard	Measured	SYSTEM DTH01-02
FLOW AND PRESSURE V Parameter Standard Flow lpm 3.1 731 Incorporated does her	VERIFICATION Measured 3.0 reby certify that a	Allowable Range 2.94 ~ 3.25 Il materials, componen	Parameter Pressure kPa	Standard 98.4 used in the	Measured 98.4 manufacture on	Allowable Range 93.48 103.32
FLOW AND PRESSURE V Parameter Standard Flow ipm 3.1 TSI Incorporated does her strict accordance with the performance and ocception NIST standard for optical in nominally adjusted to respin Measurement Variable Temp/Humidity DC Voltage Photometer I um PSL I0 um PSL Flowmeter	VERIFICATION Measured 3.0 reby certify that a e applicable spec ce tests required u mass measurement irable mass of star System ID L E005409 E003314 1 E003319 0 655458 n E002471 0	Allowable Range 2.94 ~ 3.25 Il materials, componentifications agreed upon the rists contract were is calibration of this is teard ISO 12103-1, A1 ast Cal. Cal. Due 4-16-15 04-16-16 2-18-14 12-18-35 2-02-15 08-02-15 /a n/a 4-29-15 04-29-16	Parameter Pressure kPa ats, and workmanship ats, and workmanship by TSI and the cus successfully conducte successfully conducte successfully conducte successfully conducte test dust (Arizona dus Measurement Va Temp/Humidity DC Voltage Microbalance 3 um PSL Pressure	Standard 98.4 used in the icomer and d according ty TSI has b 0. Our calibi Fiable Sys E00 E00 M00 430 E00	Measured 98.4 manufacture of weith all publiss to required spe- sen done using ration ratio is g tem ID Lass 15410 04- 13315 12- 01324 01- 142 n/a 13511 10-2	System D 11101-02 Allowable Range 93.48 - 103.32 this equipment are in hed specifications. All cillcations. There is no immery oil and has been reater than 1.2:1 Cal. Cal. Due (7-15) 04.17-16 8-14 12-18-15 15-15 04-17-16 8-14 12-18-15 15-15 10-52-17 n/a 10-21-15
FLOW AND PRESSURE \ Parameter Standard Flow ipm 3.1 T31 Incorporated does her strict accordance with th performance and occeptann NIST standard for optical i nominally adjusted to respin Measurement Variable Temp/Humidity DC Voltage Photometer 1 un PSL 10 um PSL Flowmeter Standard Standard Sta	VERIFICATION Measured 3.0 eby certify that a e applicable spec et tesis required u mass measuremen irable mass of star System ID L E005409 0 E003314 1 E003319 0 655458 n 42808 n E002471 0	Allowable Range 2.94 ~ 3.25 Il materials, component offications agreed upon inder this contract were ts. Calibration of this inder discontract tadard ISO 12103-1, A1 ast Cal. Cal. Due 4-16-15 04-16-16 2-18-14 12-18-15 2-02-15 08-02-15 7a n/a 14-29-15 04-29-16	Parameter Pressure kPa its, and workmanship its, and workmanship	Standard 98.4 used in the tomer and d according by TSI has b 9. Our calibi riable Sys E00 M0 433 E00	Measured 98.4 manufacture of with all publis to required spe- sen done using i ration ratio is g tem ID Lass 15410 04- 13315 12- 01324 01-d 13251 10-2 June 15, 20	System D 11101-02 Allowable Range 93,48 - 103.32 this equipment are in hed specifications, All ciffcatians, There is no imery oil and has been reater than 1.2:1 Cal. Cal. Due (7-15) (7-15) 04-17-16 18-14 12-18-15 15-15 01-05-17 m/a 17-14 10-27-15 15
FLOW AND PRESSURE \ Parameter Standard Flow ipm 3.1 TSI Incorporated does her strict accordance with the performance and acceptant NIST standard for optical in nominally adjusted to respin Measurement Variable Temp/Humidity DC Voltage Photometer 1 um PSL 10 um PSL Flowmeter Kangana Standard St	VERIFICATION Measured 3.0 eby certify that a e applicable spec erisis required u mass measuremen irable mass of star System ID E005409 0 E003314 1 E003319 0 655458 m E002471 0 Control of the spect the spectrum of the s	Allowable Range 2.94 ~ 3.25 Il materials, component ifications agreed upon inder this contract were ts, Calibration of this in adard ISO 12103-1, A1 ast Cal. Cal. Due 4-16-15 04-16-16 2-18-14 12-18-15 2-05-15 04-02-15 /a n/a /a n/a 4-29-15 04-29-16	Parameter Pressure kPa uts. and workmanship ty: JSI and the cus successfully conducted nstrument performed b test dust (Arizona dus Measurement Va Temp/Humidity DC Voltage Microbalance 3 um PSL Pressure	Standard 98.4 used in the domer and d according ty TSI has b 0. Our calibi riable Sys E00 M0 430 E00	Measured 98.4 manufacture of with all publis to required spe sen done using , ration ratio is g tem ID Lass 15410 04- 13315 12- 01324 01- 142 n/a 13511 10-7 June 15, 20 Date	System D1101-02 Allowable Range 93,48 - 103.32 This equipment are in heed specifications. All collections. All collections for there is no imery oil and has been reater than 1.2:1 Cal. Cal. Due (7-15) 04-17-16 18-4 12-18-15 15-5 01-05-17 17.14 10-27-15 15 10-35-17

Appendix E Calibration Certificates (Noise)

The Government of The Hong Kong Special Administrative Region Standards and Calibration Laboratory 香港特別行政區政府標準及校正實驗所

Certificate No. PA150109 證書編號	Page 1 of 21 pages 第 頁 (共 頁)
Customer / 客戶	Acumen Environmental Engineering & Technologies Co. Ltd. Lot 11, Tam Kon Shan Road, Tsing Yi (N), Hong Kong
Equipment / 儀器	
Description / 名稱	Sound Level Meter
Make / 製造商	Pulsar
Model / 型號	95
Serial No./ 序號	B22507
Date of Receipt / 收件日期	10 July 2015
Test Environment / 測試環境	
Temperature / 温度	(23 ± 1) °C
Relative Humidity / 相對濕度	(45±8) %
Air Pressure / 氣壓	(98.7 to 98.9) kPa
Date of Test / 測試日期	13 July 2015

To calibrate the Sound Level Meter in accordance with the International Standard IEC 61672-3 : 2006

Test Results / 測試結果

The results are detailed in the continuation pages.

Approved Signatory 批簽	Lam Hoi Shan Brunduha	Date: 15J 日期	fuly 2015
Hong Kong Accreditation Service. (HDKLAS) for specific calibration traceable to the International System 省常認可能是目標者考试是可能者考试是不能可能计 计显觉法。	(HKAS) has accredited this laboratory (HOX activities as listed in the HOSCLAS directory of of Units (S.1) or recognized measurement star 前,並可辛苦時行 (HOKLAS 051 - CAL) 時行 (18	KLAS 051 - CAL) under the He faceredited laboratories. The result dards. (実験時間:名冊) 内線形的な正式の	ng Kong Laboratory Accreditation Scheme s shown in this certificate are metrologically + *DERNets DISECTION DESNEL
The copyright of this certificate is unless prior written approval is ob- Region. WRIMENTER EXPRESSION	owned by the Government of the Hong Kong tained from the Head of the Standards and Ca 帽 - 除水亭的版写是常常特别了我在我们就能的学校来及这么	Special Administrative Region. T libratico Laboratory, the Governm Lise臨所王で的:外田社士・※対任我の	his certificate shall only be reproduced <u>in fu</u> ent of the Hong Kong Special Administrativ 加本語型時点的 <u>時份</u> 並行。
Main Laboratory : 36/F, Immigr Branch Laboratory : 664, Pablic V 時分 : 営利時時日士打選 7 総人和国際 当時 : 人民人民時時日勤 1 原本 1 国内	ation Tower, 7 Gloucester Road, Wan Chai, Ho Works Central Laboratory Building, 2B Cheng た頃 36 校 現金 1 2829 443 記述論研入部誌下 04 文 現記:2598 724	ng Kong. Yip Street, Kowicon Bay, Kowico ⁸ 7	n. Tel : 2829 4830 Tel : 2798 7347 M 0 0 9 1 7 9

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No.	PA150109	Page	2
證書編號		第]

Page 2 of 21 pages 第 頁 (共 頁)

- The test equipment (model Pulsar 95 s/n: B22507) is mounted with a detachable microphone (model Pulsar PM1 s/n: 010760C) through a microphone preamplifier (model Pulsar MV200D s/n: 2217).
- The test equipment's User Manual for Pulsar Model 90 Quantifier Sound Level Meter (Reference Number 05/09/MODEL 90/01) was provided by the client for calibration use.
- According to the User Manual, the test equipment conforms with IEC 60651 (1979), IEC 60804 (1985) and IEC 61672-1 (2002) Class 1 or 2 Group X requirements.
- According to the User Manual, the calibration check frequency and reference sound pressure level of the test equipment are 1 kHz and 94 dB respectively.
- The test equipment was allowed to stabilise in the laboratory environment at 23 °C and 45 % RH for over 24 hours before the test.
- 6. The power supply to the instrument under test were two 1.5 V batteries.

Calibrated by : Nor Y.C. Kwan

Checked by : H.S. Lam

Date : 14 July 2015

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No.	PA150109	Page	3	of	21	pages
證書編號		第	頁		(共	頁)

- Procedures from IEC 61672-3:2006 were used to perform the calibration, which included the following tests :
 - 7.1 Acoustic Measurements :
 - (1) Indication at the calibration check frequency

Performance tests were carried out in accordance with Section 9 of IEC 61672-3:2006. At the calibration check frequency and reference sound pressure level, indication of the test equipment was checked and adjusted in accordance with the procedures described in "Calibration Level" section (page 38) of the User Manual. Results obtained before and after the adjustment are presented in Tables 1 and 2.

- (2) <u>Acoustical signal tests of a frequency weighting</u> Relevant tests were carried out in accordance with Section 11 of IEC 61672-3:2006. Measurement results are presented in Table 3.
- 7.2 Electrical Measurements*:

v C. Kwan

- <u>Self-generated noise</u> Relevant tests were carried out in accordance with Section 10 of IEC 61672-3:2006. Measurement results are presented in Tables 4 and 5.
- (2) <u>Electrical signal tests of frequency weightings</u> Relevant tests were carried out in accordance with Section 12 of IEC 61672-3:2006. Measurement results are presented in Tables 6 to 8.

Calibrated by :

Checked by : H.S. Lam

Date : 14 July 2015

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate 證書編號	No. PA150109	Page 第	4 頁	of (21 共	pages 頁)
(3)	Frequency and time weightings at 1 kHz Relevant tests were carried out in accord IEC 61672-3:2006. Measurement resul 9.	iance v ts are j	with prese	Sec	tion d in	13 of Table
(4)	Level linearity on the reference level range Relevant tests were carried out in accord IEC 61672-3:2006. Measurement result 10.	<u>ge</u> lance v ts are j	with press	Sec ente	tion d in	14 of Table
(5)	Level linearity including the level range of Relevant tests were carried out in accord IEC 61672-3:2006. Measurement result 11.	dance v ts are j	with prese	Sec	tion d in	15 of Table
(6)	Toneburst response Relevant tests were carried out in accord IEC 61672-3:2006. Measurement resul 12.	dance v ts are j	with prese	Sec	tion d in	16 of Table
(7)	Peak C sound level Relevant tests were carried out in accord IEC 61672-3:2006. Measurement resul 13.	dance y its are j	with prese	Sec	tion d in	17 of Table
(8)	Overload indication Relevant tests were carried out in accord IEC 61672-3:2006. Measurement resul 14.	dance ts are	with pres	Sec	tion d in	18 of Table
	Note * : Item is not included in the Services in Acoustics Ultr Version 2.0, and is not support.	CIPM asound ed by C	Cla ar CIPN	assif nd 4 M	icati Vibr RA.	on of ation,
Calibrated	by : Checked	by :	н	(A .s. 1	am	
Date : 13 .	July 2015 Date : 14	July 2	015			

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No.	PA150109	Page	5	of	21	pages
證書編號		第	頁		(共	頁

The reported deviations in Tables 1 to 3 and 6 to 13 are defined as:

Deviation = actual meter reading of the test unit - expected meter reading of the test unit

- The tolerance limits listed in Tables 3 and 6 to 14 are the applicable requirements, design goals or tolerance limits given in the corresponding tests in IEC 61672-3:2006.
- 10. The Sound Level Meter submitted for testing has successfully completed the Class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the Sound Level Meter to the full requirements of IEC 61672-1:2002 because evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of Sound Level Meter fully conformed to the requirements in IEC 61672-1:2002 and because the periodic tests of IEC 61672-3:2006 cover only a limited subset of the specifications in IEC 61672-1:2002.
- 11. The measurement uncertainty evaluation has been carried out in accordance with principles in the Evaluation of Measurement Data Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008. The expanded measurement uncertainty U, with its coverage factor k, corresponds to a 95 % probability that the value of the measurand Y lies within the interval y-U to y+U. The combined standard measurement uncertainty u_c can be calculated as u_c = U/k and its degrees of freedom v_{eff} is given by the t-distribution with the respective k value.

Calibrated by : MC Y.C. Kwa

Checked by : H.S. Lam

Date : 14 July 2015

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

6

盲

of 21 pages

)頁)

(共

Certificate No.	PA150109	Page
證書編號		第

- 12. The values given in this Certificate of Calibration only relate to the values measured at the time of the test and any measurement uncertainties quoted will not include allowances for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, or the
- 13. This certificate is consistent with the capabilities that are included in Appendix C of the MRA drawn up by the CIPM. Under the MRA, all participating institutes recognise the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see <u>http://www.bipm.org</u>).

capability of any other laboratory to repeat the measurement.

CIPM	:	International Committee for Weights and Measures
MRA	:	Mutual Recognition Arrangement

Calibrated by : Y.C. Kwan

Checked by : H.S. Làm

Date : 13 July 2015

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No. PA150109 證書編號

Page 7 of 21 pages 第 頁 (共 頁)

Table 1

Test Results: Indication at the Calibration Check Frequency (Before Adjustment)

	Pulsar	95 ^{(1) (2)}	Measured Deviation [b]-[a]		
Test Frequency	Expected Reading (dB) [a]	Meter Reading (dB) [b]	Value y (dB)	Measurement Expanded Measurement Uncertainty U (dB)	Uncertainty Coverage Factor k
1 kHz	94.1	94.4	+0.3	0.3	2.0

Notes (1) : Pulsar 95 Settings: Mcasurement Range : 40-110 dB Frequency Weighting : A Time Weighting : Fast

> (2): Microphone used : Manufacturer : Type : Serial No. :

Pulsar PM1 010760C

Calibrated by : Y.C. Kwan

Checked by :

H.S. Lam

Date : 14 July 2015

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No. PA150109 證書編號 Page 8 of 21 pages 第 頁 (共 頁)

Table 2

Test Results: Indication at the Calibration Check Frequency (After Adjustment)

	Pulsar	95 ^{(1) (2)}	Measured Deviation [b]-[a]		
Test Frequency	Expected Reading (dB) [a]	Meter Reading (dB) [b]	Value y (dB)	Measure Uncerta Expanded Measurement Uncertainty U (dB)	ment inty Coverage Factor k
1 kHz	94.1	94.1	0.0	0.3	2.0

Notes (1) : Pulsar 95 Settings: Measurement Range :

Frequency Weighting :

Time Weighting :

40-110 dB A Fast

(2) : Microphone used : Manufacturer : Type : Serial No. :

Pulsar PM1 010760C

nle Calibrated by : Y.C. Kwan

Date : 13 July 2015

Checked by : H.S. Lam

Certificate No.	PA150109
證書編號	

Table 3
Test Results: Acoustic Signal Tests at Frequency Weighting C (1) (2)

			1	Measured Deviat [b]-[a]	tion	
Test Frequency	Expected Frequency Weighting ⁽³⁾ (dB) [a]	Measured Frequency Weighting (dB) [b]	Value y (dB)	Measurement U Expanded Measurement Uncertainty U (dB)	Uncertainty Coverage Factor k	Tolerance Limits (dB)
125 Hz	-0.2	-0.3	-0.1	0.5	2.0	±1.5
1 kHz	0.0	0.0			-	
4 kHz	-0.8	-0.3	+0.5	0.5	2.0	±1.6
8 kHz	-3.0	-2.2	+0.8	0.6	2.0	+2.1; -3.1

Notes (1): Pulsar 95 Settings : Measurement Range : Frequency Weighting : Time Weighting :

40-110 dB С Fast

(2) : Microphone used : Manufacturer ; Type : Serial No. :

Pulsar PM1 010760C

(3): Refer to Table 2 of IEC 61672-1 (2002) for 'Expected Frequency Weighting'.

Ylle_ Y.C. Kwan Calibrated by :

H.S. Lam Checked by :

Date : 14 July 2015

Table 4

Test Results: Self-generated Noise (With the test equipment's microphone installed)

Pulsar	95 (1)(2)	Maagurament Uncertainty		
Frequency Weighting	Meter Reading y (dB)	Expanded Measurement Uncertainty U (dB)	Coverage Factor k	
А	21.2	0.1	2.0	

Notes (1): Pulsar 95 Settings:

-

Measurement Ra	nge
Time Weighting	

: 10-80 dB Slow

(2): Microphone used : Manufacturer : Type : Serial No. :

Pulsar PM1 010760C

y.C. Kwan Calibrated by :

Checked by :

U H.S. Lam

Date : 13 July 2015

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No. PA150109 證書编號

Page	11	of 21	pages
第	頁	(共	頁

Table 5

Test Results: Self-generated Noise (With the test equipment's microphone replaced by the electrical input signal device)

Pulsa	r 95 ⁽¹⁾	Measurement Uncertainty		
Frequency Weighting	Meter Reading y (dB)	Expanded Measurement Uncertainty U (dB)	Coverage Factor k	
А	14.3	0.1	2.0	
с	17.2	0.1	2.0	
Z	29.4	0.1	2.1	

Note (1): Pulsar 95 Settings:

Measurement Range : Time Weighting : 10-80 dB Slow

Y.C. Kwan Calibrated by :

Ũ Checked by : H.S. Lam

Date : 14 July 2015

Certificate of Calibration (Continuation Page)

校正證書(續頁)

Certificate No. PA150109 證書編號

Page 12 of 21 pages 勶 頁 (共 阗

Table 6

Test Results: Electrical Signal Tests of Frequency Weighting A

	Pulsa	r 95 ⁽¹⁾	1			
Test Frequency	Expected Reading (dB) [a]	Meter Reading (dB) [b]	Value y (dB)	Measurement U Expanded Measurement Uncertainty U (dB)	Jncertainty Coverage Factor k	Tolerance Limits (dB)
63 Hz	64.9	64.8	-0.1	0.1	2.0	±1.5
125 Hz	64.9	64.8	-0.1	0.1	2.0	±1.5
250 Hz	64.9	64.8	-0.1	0.1	2.0	±1.4
500 Hz	64.9	64.9	0.0	0.1	2.0	±1.4
1 kHz	64.9	64.9	0.0	0.1	2.0	±1.1
2 kHz	64.9	64.9	0.0	0.1	2.0	±1.6
4 kHz	64.9	64.7	-0.2	0.1	2.0	±1.6
8 kHz	64.9	64.8	-0.1	0.1	2.0	+2.1; -3.1
16 kHz	64.9	65.6	+0.7	0.1	2.0	+3.5; -17.0

Note (1): Pulsar 95 Settings :

Measurement Range : 40-110 dB Frequency Weighting : A Time Weighting :

Fast

Y/ Y.C. Kwan Calibrated by :

Checked by : L H.S. Lam

Date : 14 July 2015

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No. PA150109 證書編號

Page 13 of 21 pages 第 頁 (共 頁)

Table 7

Test Results: Electrical Signal Tests of Frequency Weighting C

	Pulsar 95 ⁽¹⁾					
Test Frequency	Expected Reading (dB) [a]	Meter Reading (dB) [b]	Value y (dB)	Measurement I Expanded Measurement Uncertainty U (dB)	Uncertainty Coverage Factor k	Tolerance Limits (dB)
63 Hz	65.0	64.9	-0.1	0.1	2.0	±1.5
125 Hz	65.0	65.0	0.0	0.1	2.0	±1.5
250 Hz	65.0	65.0	0.0	0.1	2.0	±1.4
500 Hz	65.0	65.0	0.0	0.1	2.0	±1.4
l kHz	65.0	65.0	0.0	0.1	2.0	±1.1
2 kHz	65.0	64.9	-0.1	0.1	2.0	±1.6
4 kHz	65.0	64.7	-0.3	0.1	2.0	±1.6
8 kHz	65.0	64.6	-0.4	0.1	2.0	+2.1; -3.1
16 kHz	65.0	65.2	+0.2	0.1	2.0	+3.5; -17.0

Note (1): Pulsar 95 Settings :

Measurement Range : 40 Frequency Weighting : C Time Weighting : Fa

40-110 dB Fast

YAC. Y.C. Kwan Calibrated by :

Checked by : H.S. Ilam

Date : 14 July 2015

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No. PA150109 證書編號 Page 14 of 21 pages 第 頁 (共 頁)

Table 8

Test Results: Electrical Signal Tests of Frequency Weighting Z

	Pulsa	95 ^(I)				
Test Frequency	Expected Reading (dB) [a]	Meter Reading (dB) [b]	Value y (dB)	Measurement U Expanded Measurement Uncertainty U (dB)	Jncertainty Coverage Factor k	Tolerance Limits (dB)
63 Hz	65.0	64.9	-0.1	0.1	2.0	±1.5
125 Hz	65.0	65.0	0.0	0.1	2.0	±1.5
250 Hz	65.0	65.0	0.0	0.1	2.0	±1.4
500 Hz	65.0	65.0	0.0	0.1	2.0	±1.4
1 kHz	65.0	65.0	0.0	0.1	2.0	±1.1
2 kHz	65.0	64.9	-0.1	0.1	2.0	±1.6
4 kHz	65.0	64.9	-0.1	0.1	2.0	±1.6
8 kHz	65.0	64.9	-0.1	0.1	2.0	+2.1; -3.1
16 kHz	65.0	65.1	+0.1	0.1	2.0	+3.5; -17.0

Note (1): Pulsar 95 Settings :

Measurement Range : 40-Frequency Weighting : Z Time Weighting : Fas

40-110 dB Fast

y.C. Kwan Calibrated by :

Ũ Checked by : H.S. Lam

Date : 14 July 2015

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No. PA150109 證書編號

Page 15 of 21 pages 第 頁 (共 頁)

Table 9

Test Results: Frequency and Time Weightings at 1 kHz

Pulsar 95			N			
Settings ⁽¹⁾	Expected Reading (dB) [a]	Meter Reading (dB) [b]	Value y (dB)	Measurement U Expanded Measurement Uncertainty U (dB)	Incertainty Coverage Factor k	Tolerance Limits (dB)
S #1	94.0	94.0	0.0	0.1	2.0	±0.3
S #2	94.0	94.0	0.0	0.1	2.0	±0.4
S #3	94.0	94.0	0.0	0.1	2.0	±0.4
S #4	94.0	94.1	+0.1	0.1	2.0	±0.3

Note (1): Table for Pulsar 95 Settings :

	S #1	S #2	S #3	S #4
Measurement Range		40-11	0 dB	
Frequency Weighting	A	C	Z	A
Time Weighting	Slow	Fast	Fast	
Displayed as	-	-	-	LAeqt

Y.C. Kwan Calibrated by :

Checked by : H.S. Lam

Date : 14 July 2015

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No. PA150109 證書編號

Page 16 of 21 pages 第 頁 供 頁)

Table 10					
Test Results: Level Linearity on the Reference Level Range					
(Test Frequency : 8 kHz)					

Pulsar 95 ⁽¹⁾		1			
Expected Reading (dB) [a]	Meter Reading (dB) [b]	Value y (dB)	Measurement U Expanded Measurement Uncertainty U (dB)	Coverage Factor k	Tolerance Limits (dB)
75.0	75.0	0.0	0.1	2.0	
80.0	80.0	0.0	0.1	2.0	
85.0	85.0	0.0	0.1	2.0	
90.0	90.0	0.0	0.1	2.0	
95.0	95.1	+0.1	0.1	2.0	
100.0	100.1	+0.I	0.1	2.0	+11
105.0	105.2	+0.2	0.1	2.0	=1.1
106.0	106.2	+0.2	0.1	2.0	
107.0	107.3	+0.3	0.1	2.0	
108.0	108.3	+0.3	0.1	2.0	
109.0	109.3	+0.3	0.1	2.0	
110.0	110.4	+0.4	0.1	2.0	

Note (1): Pulsar 95 Settings :

Measurement Range : 40-110 dB Frequency Weighting : A Time Weighting : Fa Fast

no-Calibrated by : Y.Ć. Kwan

Checked by : U H.S. Ilam

Date : 14 July 2015

Certificate of Calibration (Continuation Page)

校正證書 (續頁)

Certificate No. PA150109 證書編號 Page 17 of 21 pages 第 頁 (共 頁)

Table 10 (Cont'd)					
Test Results: Level Linearity on the Reference Level Range					
(Test Frequency : 8 kHz)					

Pulsa	Pulsar 95 ⁽¹⁾		Measured Deviation [b]-[a]			
Expected Reading (dB) [a]	Meter Reading (dB) [b]	Value y (dB)	Measurement L Expanded Measurement Uncertainty U (dB)	Coverage Factor k	Tolerance Limits (dB)	
70.0	70.0	0.0	0.1	2.0	1	
65.0	65.1	+0.1	0.1	2.0		
60.0	60.1	+0.1	0.1	2.0		
55.0	55.2	+0.2	0.1	2.0		
50.0	50.4	+0.4	0.1	2.0		
45.0	45.5	+0.5	0.1	2.0	±1.1	
44.0	44.7	+0.7	0.1	2.0		
43.0	43.7	+0.7	0.1	2.0]	
42.0	42.8	+0.8	0.1	2.0		
41.0	41.8	+0.8	0.1	2.0		
40.0	40.9	+0.9	0.1	2.0		

Note (1): Pulsar 95 Settings :

Measurement Range : 40-110 dB Frequency Weighting : A Time Weighting : Fast

YA Y.C. Kwan Calibrated by :

Date : 13 July 2015

N Checked by : H.S. Lam

Certificate of Calibration (Continuation Page)

校正證書 (續頁)

Certificate No. PA150109 證書編號 Page 18 of 21 pages 第 頁 (共 頁)

<u>Table 11</u>

Test Results: Level Linearity Including the Level Range Control (Test Frequency : 1 kHz)

Pulsar 95 ⁽¹⁾			N	on		
Measurement Range (dB)	Expected Reading (dB) [a]	Meter Reading (dB) [b]	Value y (dB)	Measurement Expanded Measurement Uncertainty U (dB)	Uncertainty Coverage Factor k	Tolerance Limits (dB)
10 00	70.0	70.0	0.0	0.1	2.0	
10-80	75.0	75.0	0.0	0.1	2.0	
	70.0	70.0	0.0	0.1	2.0	
20-90	85.0	85.2	+0.2	0.1	2.0	
20 100	70.0	70.0	0.0	0.1	2.0	
30 - 100	95.0	95.2	+0.2	0.1	2.0	
	70.0	70.0	0.0	0.1	2.0	+11
40 - 110	105.0	105.1	+0.1	0.1	2.0	21.1
	70.0	70.1	+0.1	0.1	2.0]
50-120	115.0	115.2	+0.2	0.1	2.0	
60 - 130	70.0	70.3	+0.3	0.1	2.0]
	125.0	125.0	0.0	0.1	2.0	
80.140	70.0	71.0	+1.0	0.1	2.0	
70-140	135.0	135.1	+0.1	0.1	2.0	

Note (1): Pulsar 95 Settings :

Frequency Weighting : A Time Weighting : Fast

Y Y.C. Kwan Calibrated by :

A Checked by : H.S. Lam

Date : 14 July 2015

Certificate of Calibration (Continuation Page)

校正證書 (續頁)

Certificate No. PA150109 證書編號

Page	19	of 21	pages
第	頁	(共	頁)

<u>Table 12</u>

Test Results: Toneburst Response (Test Frequency : 4 kHz)

Test Conditions		Pulsar 95			Ň			
Reference Level (dB)	Burst Duration (ms)	Settings ⁽¹⁾	Expected Reading (dB) [a]	Meter Reading (dB) [b]	Value y (dB)	Measurement Expanded Measurement Uncertainty U (dB)	Uncertainty Coverage Factor k	Tolerance Limits (dB)
	200	1	106.0	106.2	+0.2	0.1	2.0	±0.8
107.0	2	S #1	89.0	88.9	-0.1	0.1	2.0	+1.3; -1.8
	0.25	1	80.0	78.6	-1.4	0.1	2.0	+1.3; -3.3
	200	0.00	99.6	99.9	+0.3	0.1	2.0	±0.8
107.0	2 S #2	S #2	80.0	78.8	-1.2	0.1	2.0	+1.3; -3.3
	200	S #3	82.2	82.3	+0.1	0.1	2.0	±0.8
107.0	2		62.2	62.4	+0.2	0.1	2.0	+1.3; -1.8
	0.25	1	53.2	53.3	+0.1	0.1	2.0	+1.3; -3.3

Note (1) : Table for Pulsar 95 Settings:

	S #1	S #2	S #3
Measurement Range		40-110 dB	
Frequency Weighting	A	A	A
Time Weighting	Fast	Slow	
Displayed as	LAFmax	LASmax	LAeqt
Integration Time			60 s

Calibrated by : Y.C. Kwan

Checked by : U H.S. Lam

Date : 13 July 2015

Certificate of Calibration (Continuation Page)

校正證書(續頁)

Certificate No. PA150109 證書編號

Page 20 of 21 pages 第 頁 (共 頁)

Table 13

Test Results: Peak C Sound Level

Test Conditions		Pulsar 95 ⁽¹⁾		Measured Deviation [b]-[a]			
Test Signal	Reference Level (dB)	Expected Reading (dB) [a]	Meter Reading (dB) [b]	Value y (dB)	Measurement Expanded Measurement Uncertainty U (dB)	Uncertainty Coverage Factor k	Tolerance Limits (dB)
8 kHz, one-complete cycle	132.1	135.5	136.6	+1.1	0.1	2.0	±2.4
500 Hz, positive half-cycle	132.0	134.4	135.4	+1.0	0.1	2.0	±1.4
500 Hz, negative half-cycle	132.0	134.4	135.4	+1.0	0.1	2.0	±1.4

Note (1) : Pulsar 95 Settings :

Measurement Range: 70 Frequency Weighting : C Displayed as : LO

70-140 dB C LCpeak

ma_ Calibrated by : Y.C. Kwan

U Checked by : H.S. Lam

Date : 14 July 2015

Certificate of Calibration (Continuation Page)

校正證書(續頁)

Certificate No. PA150109 證書編號 Page 21 of 21 pages 第 頁 (共 頁)

Table 14

Test Results: Overload Indication

Test Level that Overload Ir Pulsa (d	First Caused an adication on 95 ⁽¹⁾ B)	Measure Levels One-half- Caused	ed Difference bet of Positive and I cycle Test Signal an Overload In Measurement I	Tolerance Limits	
At 4 kHz, positive one-half-cycle [a]	At 4 kHz, negative one-half-cycle [b]	Value y (dB) [b]-[a]	Expanded Measurement Uncertainty U (dB)	Coverage Factor k	(dB)
140.3	139.7	-0.6	0.1	2.0	±1.8

Note (1): Pulsar 95 Settings :

Measurement Range : 70-140 dB Frequency Weighting : A Displayed as : LAeqt

- END -

Calibrated by :

Me Y.C. Kwan

Checked by : H.S. Lam

Date : 13 July 2015

仪止 證書	CIPM MRA
Certificate No. PA150054 證書編號	Page 1 of 6 pages (从Letter Control of 6 pages (法)
Customer / 客戶	Acumen Environmental Engineering & Technologies Co. Ltd. Lot 11, Tam Kon Shan Road, Tsing Yi (N), Hong Kong
Equipment / 儀器	
Description / 名稱	Sound Calibrator
Make / 製造商	Pulsar
Model / 型號	105
Serial No. / 序號	63705
Date of Receipt / 收件日期	17 April 2015
Test Environment / 測試環境	
Temperature / 溫度	(23 ± 1) °C
Relative Humidity / 相對濕度	(45±8) %
Air Pressure / 氣壓	99.4 kPa
Date of Test / 測試日期	20 April 2015

Test Specifications / 測試規格

Calibrate the sound pressure level, frequency and total distortion of the acoustical calibrator at 94 dB.

Test Results / 測試結果

The results are detailed in the continuation pages.

Approved Signatory 批簽	Lam Hoi Shan Wende Lan	Date: 日期	22 April 2015
Hong Kong Accreditation Service (HOKLAS) for specific calibration a traceable to the International System 学校記》中述已初時年刊改新所述可计算 計量符章。	(HKAS) has accredited this laboratory (H activities as listed in the HOKLAS directory of Units (S.1) or recognised measurement s 时 - 起行常常理解所 (HOKLAS 05) - CAL) 组行了 C	OKLAS 051 - CAL) under of accredited laboratories. Th andards. EVORMORPHO: H) PERFERSE	the Hong Keng Laboratory Accreditation Scheme he results shown in this certificate are metrologically usersion - scientificate and science and sciences
The copyright of this certificate is of unless prior written approval is obta- Region. 	wood by the Government of the Hong Kong lained from the Head of the Standards and (e 、1912年前前接行者3015年7月1日前前近行標準定)	y Special Administrative R.eg. Calibration Laboratory, the G 空圧電線線 工作的計畫記述 ~ 7	ion。 This certificate shall only be reproduced in fur overnment of the Hong Kong Special Administrativ S用在我们本22:59年在刘擎的推行。
Main Laboratory : 36/P. Immig	ration Tower, 7 Gloucester Read, Wan Chai, Works Control Laboratory Building, 2B Che	Hong Kong. ung Vip Street, Kowloon Bay.	Tel: 2829 4830 Kowloon, Tel: 2798 7347
图minch Laboratory: 004、Public 原始: 译述增任自士行道了犹入将事件	8大權 16 權 地图: 2829	48.90	M008850

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No. PA150054 證書編號

Page 2 of 6 pages 第 頁 (共 頁)

- The test equipment was allowed to stabilise in the laboratory environment at 23 °C and 45 % RH for over 24 hours before the test.
- 2. The power supply to the instrument under test was one 9 V battery.
- Procedures from IEC 60942 : 2003 Annex B were used to perform the calibration, which included the following tests :
 - (1) Sound pressure level

Performance tests were carried out in accordance with Section B.3.4 of IEC 60942:2003. The sound pressure level generated by the Pulsar 105 was measured by a laboratory B&K 4180 standard microphone. Measurement results are presented in Table 1.

(2) Frequency

Relevant tests were carried out in accordance with Section B.3.5 of IEC 60942 : 2003. The frequency of the acoustic signal was measured by a frequency counter. Measurement results are presented in Table 2.

(3) Total distortion

Relevant tests were carried out in accordance with B.3.6 of IEC 60942 : 2003. The distortion of the acoustic signal was measured by a distortion meter. Measurement results are presented in Table 3.

4. No adjustment was made to the instrument under test.

Calibrated by :

C.H. Au

Checked by : H.S. Lam

Date : 21 April 2015

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No. PA150054 證書編號 Page 3 of 6 pages 第 頁 (共 頁)

- 5. The Sound Calibrator has been shown to conform to the class 1 requirements for periodic testing, described in Annex B of IEC 60942 : 2003 for the sound pressure level, frequency and total distortion stated, for the environmental conditions under which the tests were performed. However, as public evidence was not available, from a testing organization responsible for pattern approval, to demonstrate that the model of sound calibrator conformed to the requirements for pattern evaluation described in Annex A of IEC 60942 : 2003, no general statement or conclusion can be made about conformance of the sound calibrator to the requirements of IEC 60942 : 2003.
- 6. The measurement uncertainty evaluation has been carried out in accordance with principles in the Evaluation of Measurement Data Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008. The expanded measurement uncertainty U, with its coverage factor k, corresponds to a 95 % probability that the value of the measurand Y lies within the interval y-U to y+U. The combined standard measurement uncertainty u_e can be calculated as u_e = U/k and its degrees of freedom v_{eff} is given by the t-distribution with the respective k value.
- 7. The values given in this Certificate of Calibration only relate to the values measured at the time of the test and any measurement uncertainties quoted will not include allowances for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, or the capability of any other laboratory to repeat the measurement.
- This certificate is consistent with the capabilities that are included in Appendix C of the MRA drawn up by the CIPM. Under the MRA, all participating institutes recognise the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see <u>http://www.bipm.org</u>).
 - CIPM : International Committee for Weights and Measures MRA : Mutual Recognition Arrangement

Calibrated by :

Checked by :

H.S. Lam

Date : 20 April 2015

C.H. Au

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No. PA150054 證書編號 Page 4 of 6 pages 第 頁 (共 頁)

Table 1

Sound Pressure Level Test Results

	Measur	ed Sound Pressure L	evel ⁽¹⁾	
		Measurement Uncertainty		
Pulsar 105 Sound Pressure Level Setting	Value y	Expanded Measurement Uncertainty U	Coverage Factor k	
94 dB	93.84 dB	0.06 dB	2.0	

Note (1): Measurement results at measurement conditions were corrected to the following reference conditions :

Temperature :	23 °C
Humidity :	50 % RH
Pressure :	101.325 kPa

Calibrated by : C.H. Au

Checked by : HS Lam

Date : 21 April 2015

Certificate of Calibration (Continuation Page)

校正證書 (續頁)

Certificate No. PA150054 證書編號 Page 5 of 6 pages 第 頁 (共 頁)

Table 2

Frequency Test Results(1)

	Measured Frequency				
Dulaar 105		Measurement Uncertainty			
Sound Pressure Level Setting	Value y	Expanded Measurement Uncertainty U	Coverage Factor k		
94 dB	1 000.319 Hz	0.010 Hz	2.0		

Note (1) : Items not supported by CIPM MRA.

Calibrated by : C.H. Au

Checked by : H.S. Lam

Date : 21 April 2015

Certificate of Calibration (Continuation Page) 校正證書 (續頁)

Certificate No. PA150054 證書編號 Page 6 of 6 pages 第 頁 (共 頁)

Table 3 Total Distortion Test Results⁽¹⁾

Measured Total Distortion Measurement Uncertainty Pulsar 105 Expanded Sound Pressure Coverage Value Measurement Level Setting Factor y Uncertainty k U0.5 % 2.0 94 dB 0.2 %

Note (1): Items not supported by CIPM MRA.

- END -

Calibrated by :

C.H. Au

Checked by : H.S.

Date : 21 April 2015

Appendix F Calibration Certificate (Water Quality)

Acumen Laboratory and Testing Ltd. Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Page 1 of 2

Test Report

Job Number	: CJO-3113

Completion Date : 11/12/2015

Client Information

Company/ Organization	: Acumen Environmental Engineering and Technologies						
	Co. Ltd.						
Address	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.						
Project Name	: CJO-3113-01						
Sample Description	: Certificate of Reference Check						

Test Information

Laboratory ID	: R150211/1-5
Item	: YSI ProDSS Multi-parameter Water Quality Monitoring System
Serial No.	: 14L103139
Receive Date	: 10/12/2015
Test Period	: 11/12/2015-11/12/2015
Test Result	: The results are presented on page 2

Authorized Signature:

Hui Wai Fung, Huntington Laboratory Manager Chemical Division

Acumen Laboratory and Testing Ltd. Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Page 2 of 2

Test Report

Job Number	: CJO-3113

Completion Date : 11/12/2015

Test Result:

pH	Reference Reading	Recorded Reading	Testing Method:
	4.00	4.05	APHA 4500-H*B
	7.00	7.09	
	10.00	10.1	
	Allowing Deviation	±0.2 unit	
			-
Temperature	Reference Reading	Recorded Reading	Testing Method:
	26.5℃	26.8°C	In-house method
	30.6°C	31.0°C	
	Allowing Deviation	±2.0°C	
			-
Turbidity	Reference Reading	Recorded Reading	Testing Method:
	0.0NTU	0.0NTU	APHA 2130B
	4.0NTU	4.0NTU	
	10.0NTU	9.9NTU	
	20.0NTU	20.1NTU	
	50.0NTU	49.8NTU	
	100NTU	100NTU	
	Allowing Deviation	±10%	
			_
Turbidity	Reference Reading	Recorded Reading	Testing Method:
	5.50mg/L	5.45mg/L	APHA 4500-OC & G
	7.80mg/L	7.76mg/L	
	9.30mg/L	9.27mg/L	
	Allowing Deviation	±0.2mg/L	

-----End of Report-----

Appendix G The Certification of Laboratory with HOKLAS accredited Analytical Tests

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation 認可證書

This is to certify that 特此證明

ACUMEN LABORATORY AND TESTING LIMITED 浩科檢測中心有限公司

Lot 12, Tam Kon Shan Road, North Tsing Yi, New Territories, Hong Kong 香港新界青衣北担杆山路12路段

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 在認可諮詢委員會的建議下獲香港認可處執行機關接受為

HOKLAS Accredited Laboratory 「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO/IEC 17025:2005 and it has been accredited for performing specific tests or calibrations as listed in the scope of accreditation within the test category of

Environmental Testing

此實驗所符合ISO/IEC 17025:2005所訂的要求 並獲認可進行載於認可範圍內下述測試類別中的指定測試或校正工作

環境測試

This accreditation to ISO/IEC 17025:2005 demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (see joint IAF-ILAC-ISO Communiqué). 此页 ISO/IEC 17025:2005 的認可資格證明此實驗所認可合作組織及國際標準化組織的聯合公報)。 實施一套實驗所質量管理體系(見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 現經香港認可處執行機關授權在此蓋上香港認可處的印章

Chor

WONG Wang-wah, Executive Administrator 執行幹事 黃宏華 Issue Date:16 July 2014 簽發日期:二零一四年七月十六日

Registration Number : HOKLAS 241 註冊號碼:

This certificate is issued subject to the terms and conditions laid down by HKAS 本證書按照香港認可處訂立的條款及條件發出

Date of First Registration : 16 July 2014 首次註冊日期:二零一四年七月十六日

∟001195

Appendix H The Baseline Monitoring Schedules

Contract No. 3/WSD/15: Baseline Monitoring Schedule for Air and Noise

Dec-15												
Sun	Mon	Тие	Wed	Thur	Fri	Sat						
20	21	22	23	24	25	26						
	Baseline 1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr	Baseline 1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr	Baseline 1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr	Baseline 1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr	Baseline 1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700) 0.25hr	Baseline 1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr						
27	28	29	30	31								
Baseline 1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr Jan-16 Sun	Baseline 1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr	Baseline 1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr	Baseline 1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr	Baseline 1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr	Fri 1 Baseline	Sat 2 Baseline						
				-	1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr	1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr						
3	4	5	6	7	8	9						
Baseline 1-hour TSP for AM1 & 2: 3 hrs Leq, L10, L90 for NM1, NM2 & NM3 (0700-1900): 0.5hr Leq, L10, L90 for NM1, NM2 & NM3 (1900-2300): 0.25hr Leq, L10, L90 for NM1, NM2 & NM3 (2300-0700): 0.25hr												

Contract No. 3/WSD/15: Baseline Monitoring Schedule for Water Quality

Dec-15													
Sun	Mon	Tue	Wed	Thur	Fri	Sat							
13	14	15	16	17	18	19							
		Baseline Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Baseline Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Baseline Water Quality monitoring for C1, C2, C3, M1, M2 & M3							
20	21	22	23	24	25	26							
	Baseline Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Baseline Water Quality monitoring for C1, C2, C3, M1, M2 & M3			Baseline Water Quality monitoring for C1, C2, C3, M1, M2 & M3							
27	28	29	30	31									
	Baseline Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Baseline Water Quality monitoring for C1, C2, C3, M1, M2 & M3										
			Jan-16										
Sun	Mon	Tue	Wed	Thur	Fri	Sat							
					1	2 Baseline Water Quality monitoring for C1, C2, C3, M1, M2 & M3							
3	4	5	6	7	8	9							
	Baseline Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Baseline Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Baseline Water Quality monitoring for C1, C2, C3, M1, M2 & M3								

Appendix I Monitoring Data (Noise)

Noise Level Results at NM1 -The L Louey (South)

Time: 0700-1900 (normal weekdays)

			Noise Level, dB(A)																				
			Reading (1)		Re	Reading (2)		Re	eading	(3)	R	eading (4)	R	eading	(5)	Reading (6)		(6)				
Date	Time	Weather	<u> </u>					1							<u> </u>							L=10 eq-	└ 90 eq-
			L _{eq} -	L _{10eq} -	L _{90eq} -	L _{eq} -	L _{10eq} -	L _{90eq} -	L _{eq} -	L _{10eq} -	L _{90eq} -	L _{eq} - 5min	L _{10eq} -	L _{90eq} -	L _{eq} -	L _{10eq} -	L _{90eq} -	L _{eq} -	L _{10eq} -	L _{90eq} -	L _{eq-30min} ,	30min,	30min,
	12.24		Smin	Smin	Smin	SITIIT	SITIIT	Smin	SITIIT	Smin	SITIIT	SITIIT	SITIIT	Smin	Smin	Smin	Smin	Smin	Smin	Smin	UD(A)	UD(A)	αв(А)
21/12/2015	13:04	Sunny	62.8	67.2	52.5	61.9	66.6	52.7	62.1	66.9	52.9	61.7	67.1	51.8	62.5	67.5	52.2	62.3	66.8	52.1	62.2	67.0	52.4
22/12/2015	12:20-	Cloudy																					
22,12,2010	12:50	olouuy	63.6	68.2	51.8	62.1	66.7	51.6	65.8	70.7	51.5	63.4	67.9	51.3	64.1	68.9	52.4	62.9	67.5	52.9	63.8	68.5	52.0
23/12/2015	15:30- 16:00	Sunny	65.2	69.3	52.8	66.2	68.9	53 1	63 5	68 1	51 9	64 9	68.3	52.0	65 3	69.5	527	63.0	67.2	51.2	64.9	68.6	523
	17.10-		00.2	00.0	52.0	00.2	00.5	55.1	00.0	00.1	51.5	04.0	00.0	52.0	00.0	00.0	52.1	00.0	01.2	01.2	04.5	00.0	52.5
24/12/2015	17:40	Sunny	60.8	63.2	52.5	62.3	68.0	52.9	64.0	69.6	53.1	63.1	68.7	52.8	62.9	67.4	51.8	63.4	68.6	51.8	62.9	68.0	52.5
05/40/0045	07:45-	Claudu																					
25/12/2015	08:15	Cloudy	68.8	70.0	55.7	67.2	68.8	55.3	68.0	69.5	55.5	67.8	68.3	54.5	68.2	69.0	53.9	66.9	69.4	54.1	67.9	69.2	54.9
26/12/2015	10:55-	Cloudy																					
20/12/2013	11:25	Cioudy	60.6	62.4	50.5	64.0	70.1	49.9	62.1	67.2	49.9	65.8	68.9	49.9	63.1	69.1	49.8	63.6	69.4	50.3	63.5	68.4	50.1
27/12/2015	09:40-	Cloudy																					
	10:10	0.00.00	61.3	68.9	52.3	64.3	70.7	52.5	64.5	69.3	53.2	63.2	68.5	54.7	62.8	68.7	52.3	61.7	70.2	51.9	63.1	69.5	52.9
28/12/2015	11:00- 11:30	Cloudy	62.3	67.0	512	62 /	68.0	516	61 /	673	50 /	61 1	67.4	54.2	65 5	70.0	54 5	63.3	68.0	51 5	62.0	68 5	53.0
	11.30		02.5	07.0	J4.2	02.4	00.0	51.0	01.4	07.5	50.4	01.1	07.4	J4.2	05.5	70.3	54.5	05.5	00.3	51.5	02.3	00.5	55.0
29/12/2015	11:45	Sunny	63.6	69.7	53.7	60.7	62.5	53.3	63.0	68.2	53.7	62.6	66.6	54.0	62.5	68.4	54.3	63.7	69.4	53.1	62.8	68.0	53.7
20/12/2015	12:15-	Claudy																					
30/12/2015	12:45	Cloudy	67.0	70.7	50.2	63.2	68.8	50.4	61.2	65.1	50.3	64.1	70.7	50.4	63.1	67.5	50.7	64.1	69.8	50.6	64.2	69.2	50.4
31/12/2015	10:30-	Suppy																					
51/12/2013	11:00	Ounny	62.1	65.7	54.0	64.4	70.0	54.5	63.8	68.5	55.1	63.6	68.5	55.1	63.1	68.4	54.1	61.6	64.9	54.8	63.2	68.0	54.6
1/1/2016	13:30-	Fine																					
1/ 1/2010	14:00	1 110	61.5	62.5	57.5	64.3	70.7	52.5	61.7	70.2	51.9	63.6	69.3	51.8	65.8	68.9	49.9	61.4	65.9	52.3	63.4	68.7	53.4
2/1/2016	10:50-	Fine	63 /	69.1	53.9	62.0	64.0	52 A	63 /	68.8	53 G	62.7	66 5	54.2	62.7	60.1	546	63 /	68.0	52.0	63.1	67.0	53.6
	17.10-		03.4	00.1	55.0	02.0	04.0	52.4	03.4	00.0	55.0	02.7	00.5	J4.Z	03.7	09.1	54.0	03.4	00.9	52.9	05.1	07.9	55.0
3/1/2016	17:40	Cloudy	64.1	66.8	58.3	61.8	64.2	60.5	62.5	68.8	54.8	63.8	69.0	55.6	63.3	66.8	55.4	62.2	68.7	57.8	63.0	67.7	57.5
Noise Level Results at NM2 -Hin Keng Estate - Hin Wan House

Time: 0700-1900 (normal weekdays)

			Noise Level, dB(A)																				
Date	Time	Weather	Re	eading	(1)	Re	eading	(2)	Re	eading	(3)	R	eading (4)	R	eading	(5)	Re	eading	(6)		L _{10 eq-}	L _{90 eq-}
Date	T IIIIC	Weather	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq-30min} , dB(A)	^{30min} , dB(A)	^{30min} , dB(A)
21/12/2015	11:00- 11:30	Fine	58.5	60.9	55.3	58.9	61.7	56.2	58.4	60.8	55.2	59.1	62.4	55.9	58.2	60.3	54.8	59.2	61.1	56.1	58.7	61.3	55.6
22/12/2015	14:20- 14:50	Cloudy	60.0	63.7	55.9	58.4	60.6	56.0	64.6	67.5	55.9	62.5	64.9	54.6	61.8	63.5	55.1	60.3	63.2	54.9	61.7	64.4	55.4
23/12/2015	14:50- 15:20	Sunny	59.0	62.9	54.2	58.9	63.3	56.8	58.7	63.8	55.4	59.1	62.1	53.9	58.9	64.2	54.8	58.9	62.9	52.8	58.9	63.3	54.8
24/12/2015	16:25- 16:55	Sunny	58.1	60.4	55.8	57.8	60.0	55.1	57.9	60.8	55.3	58.9	61.0	54.9	59.1	61.5	55.8	57.3	60.8	54.4	58.2	60.8	55.2
25/12/2015	09:10- 09:40	Cloudy	61.9	65.3	54.2	59.2	63.3	53.8	61.0	64.4	55.7	57.1	59.4	53.8	61.6	65.7	54.6	58.3	59.8	55.7	60.2	63.6	54.7
26/12/2015	10:10- 10:40	Cloudy	58.3	58.8	57.7	62.3	63.4	58.5	64.1	61.2	56.3	58.5	59.2	58.2	59.2	60.0	58.8	58.8	59.5	58.0	60.8	60.7	58.0
27/12/2015	08:55- 09:25	Cloudy	58.1	58.7	57.5	58.9	59.3	57.1	60.8	62.3	58.3	60.4	61.9	58.8	58.7	59.8	57.5	62.1	64.5	59.2	60.1	61.6	58.1
28/12/2015	10:15- 10:45	Cloudy	57.9	59.7	55.9	58.0	60.8	54.9	59.1	60.2	55.7	58.7	59.8	54.9	59.1	60.3	55.2	58.2	59.9	55.8	58.5	60.1	55.4
29/12/2015	10:30- 11:00	Sunny	58.7	60.3	56.0	57.7	59.1	56.5	58.1	59.7	56.6	58.6	60.2	57.1	59.6	60.5	58.2	57.8	58.8	56.5	58.5	59.8	56.9
30/12/2015	10:42- 11:12	Cloudy	59.2	60.7	55.4	60.2	62.3	56.7	58.0	59.8	55.5	60.8	62.7	56.1	59.7	61.9	55.9	58.3	60.9	55.5	59.5	61.5	55.9
31/12/2015	11:10- 11:40	Sunny	60.4	61.0	59.6	60.5	61.6	59.8	60.0	60.9	59.2	60.5	61.6	59.6	60.5	61.6	59.7	60.0	60.9	59.3	60.3	61.3	59.5
1/1/2016	14:10- 14:40	Fine	61.9	63.7	59.8	63.6	65.4	55.9	61.7	65.5	53.3	58.8	63.0	57.4	58.0	62.4	55.9	60.1	64.5	56.2	61.1	64.2	56.9
2/1/2016	11:40- 12:10	Fine	57.9	59.5	56.3	58.8	60.8	56.7	63.3	64.7	57.7	59.0	61.1	57.1	58.8	61.0	57.0	59.7	61.5	57.8	60.0	61.8	57.1
3/1/2016	18:30- 19:00	Cloudy	55.7	56.1	55.1	55.1	56.2	52.2	55.1	56.0	54.4	54.8	56.1	53.7	58.7	60.9	54.6	59.8	62.7	54.5	57.0	59.0	54.2

Noise Level Results at NM3 -C.U.H.K.F.A.A.

Thomas Cheung School

Time: 0700-1900 (normal weekdays)

										I	Noise L	.evel, dE	B(A)										
			R	eading	(1)	Re	eading	(2)	Re	eading	(3)	R	eading (4	4)	Re	eading	(5)	Re	eading	(6)			
Date	Time	Weather		r	r		1.															L=10 eq-	└ 90 eq-
			L _{eq} - 5min	L _{10eq} -	L _{90eq} -	L _{eq} - 5min	L _{10eq} -	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} -	L _{90eq} -	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} -	L _{10eq} -	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} -	L _{eq-30min} , dB(Δ)	30min, dB(Δ)	30min, dB(Δ)
	11.11		JIIIII	JIIIII	JIIIII	JIIIII	JIIIII	JIIIII	511111	511111	511111	JIIIII	JIIIII	JIIIII	JIIIII	511111	JIIIII	Jillin	JIIIII	JIIIII	αв(л)		
21/12/2015	12:11	Sunny	55.4	57.2	53.4	55.9	57.6	53.9	55.2	57.4	53.1	56.2	58.3	54.9	55.3	56.9	53.4	55.9	57.8	53.2	55.7	57.6	53.7
22/12/2015	13:40-	Cloudy																					
22/12/2010	14:10	Cloudy	56.3	59.3	52.4	56.7	59.7	52.2	54.7	56.2	52.5	53.1	54.4	51.7	53.9	55.8	52.0	54.7	56.9	53.0	55.1	57.5	52.3
23/12/2015	14:15- 14:45	Sunny	56.0	58.9	52.9	55.8	58.3	53.1	54.3	57.3	52.9	54.1	58.8	52.3	54.0	59.0	52.7	54.3	58.7	51.4	54.8	58.5	52.6
	15:40-	_	00.0	00.0	02.0	00.0	00.0	00	00	0.10	02.0	•	00.0	02.0	0.10	00.0	0	0.10	00	•	0.110	00.0	02.0
24/12/2015	16:10	Sunny	55.2	56.1	54.3	55.4	56.7	54.0	60.6	62.5	55.1	57.3	60.2	54.9	55.4	57.3	54.2	56.0	59.9	54.7	57.1	59.4	54.6
25/12/2015	09:45-	Cloudy																					
20/12/2010	10:15	Cloudy	55.6	58.1	52.5	56.8	56.2	51.5	57.1	59.4	53.8	54.4	58.7	51.8	55.2	59.3	52.6	58.1	61.3	53.5	56.4	59.1	52.7
26/12/2015	09:30-	Cloudy																					
20/12/2010	10:00	Cloudy	53.0	55.2	50.9	53.8	56.1	50.7	55.7	58.8	50.6	54.6	56.5	51.5	56.2	58.3	52.4	59.7	61.9	55.0	56.1	58.4	52.2
27/12/2015	08:15-	Cloudy	50.4	F4 0	40.0	50 F	50.0	50.0	F 4 7	50.7	50.0	50.0	50.4	54.0	FF 0	F7 4	F0 7	50.0	50.0	50.0	54.0	67.0	54.0
	00:45	-	52.1	54.3	49.6	53.5	56.Z	50.3	54.7	56.7	50.9	50.Z	58.4	51.8	55.3	57.1	50.7	56.3	58.9	52.3	54.9	57.Z	51.0
28/12/2015	10:05	Cloudy	55.1	56.6	52.3	55.4	58.4	52.8	56.0	59.7	53.1	54.8	57.9	52.4	56.1	58.1	52.7	55.7	57.8	51.7	55.5	58.2	52.5
	09:55-	-																		• • • •			
29/12/2015	10:25	Sunny	57.5	60.0	54.2	56.0	58.4	53.9	54.4	55.4	53.5	56.6	58.7	54.0	56.8	59.1	54.1	55.8	57.2	53.5	56.3	58.4	53.9
20/12/2015	11:25-	Cloudy																					
30/12/2015	11:55	Cloudy	54.5	56.3	51.7	53.1	54.9	51.4	54.1	55.1	51.9	56.2	58.0	54.3	55.6	57.3	54.1	54.8	56.9	53.2	54.8	56.6	52.9
31/12/2015	12:00-	Sunny																					
01/12/2010	12:30	Canny	57.2	59.3	54.3	58.3	60.3	56.3	56.7	58.5	55.3	56.0	57.3	55.0	56.0	56.9	54.9	55.8	56.9	55.0	56.8	58.4	55.2
1/1/2016	15:00-	Fine																					
	15:30	1 110	58.1	60.8	55.8	56.7	60.1	55.0	58.0	60.8	55.3	57.1	59.4	53.8	61.6	65.7	54.6	62.3	63.4	58.5	59.5	62.3	55.8
2/1/2016	12:20-	Fine	540	50.0	54.0	54.0	50.0	50.0		50.4	54 5	54.0	50.0	54.0	50.0	4	50.0	50.0		54.0	54.0	50.0	54.5
	12:50		54.2	56.3	51.9	54.6	56.6	52.3	55.3	58.1	51.5	54.3	56.3	51.3	53.0	55.1	50.9	53.2	54.1	51.0	54.2	56.3	51.5
3/1/2016	18:20	Cloudy	55.3	57.8	51.9	56.5	58.9	52.4	54.3	59.2	50.4	55.1	56.4	52.8	52.7	55.1	50.8	54.2	56.1	52.0	54.8	57.5	51.8

Noise Level	Results	at NM1 - II	ne L Lo	ouey (S	outh)					T	ime: 1	900-230	0 (restrie	ct hour)
						Noise	Level,	dB(A)				_	_	
Date	Time	Weather	Re	eading	(1)	Re	eading	(2)	Re	eading	(3)	L _{eq-}	L _{10 eq} .	L _{90 eq-}
Date	Time	weather	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	^{15min,} dB(A)	^{15min,} dB(A)	^{15min,} dB(A)
21/12/2015	19:35- 19:50	Fine	61.9	66.9	52.3	61.8	66.4	52.1	62.5	67.1	53.1	62.1	66.8	52.5
22/12/2015	20:00- 20:15	Cloudy	62.8	67.1	51.1	64.1	68.8	51.5	63.1	68.5	52.1	63.4	68.2	51.6
23/12/2015	21:00- 21:15	Fine	61.5	66.0	50.9	61.9	66.9	51.8	62.8	67.8	53.4	62.1	67.0	52.2
24/12/2015	22:40- 22:55	Fine	61.7	66.5	49.9	63.1	69.6	49.8	67.1	70.5	50.1	64.6	69.2	49.9
25/12/2015	19:00- 19:15	Cloudy	64.3	68.7	53.1	65.2	69.1	53.3	63.8	69.6	52.7	64.5	69.1	53.0
26/12/2015	20:00- 20:15	Cloudy	62.1	66.7	52.1	62.9	67.2	51.9	63.0	68.0	52.2	62.7	67.3	52.1
27/12/2015	19:35- 19:50	Cloudy	63.2	68.9	53.4	63.1	69.3	54.2	62.1	68.3	52.8	62.8	68.9	53.5
28/12/2015	20:20- 20:35	Cloudy	64.2	69.3	54.2	63.7	69.1	54.0	63.1	68.0	52.6	63.7	68.8	53.7
29/12/2015	19:55- 20:10	Fine	63.9	68.7	55.1	64.3	69.1	54.9	63.5	68.2	54.9	63.9	68.7	55.0
30/12/2015	19:35- 19:50	Cloudy	64.9	69.2	54.2	64.2	68.6	53.0	63.4	68.1	53.7	64.2	68.7	53.7
31/12/2015	19:08- 19:23	Fine	62.2	70.0	53.9	63.1	68.9	54.1	62.7	69.6	53.2	62.7	69.5	53.8
1/1/2016	20:00- 20:15	Fine	63.4	70.1	54.8	63.8	69.6	53.8	63.6	69.7	53.9	63.6	69.8	54.2
2/1/2016	19:10- 19:25	Fine	63.0	69.8	53.4	62.8	69.5	53.4	63.1	68.9	52.8	63.0	69.4	53.2
3/1/2016	20:15- 20:30	Cloudy	64.5	68.9	52.8	63.9	67.9	52.1	64.2	68.7	53.1	64.2	68.5	52.7

Noise Level	Results	s at NM2 -I	Hin Ke	ng Esta	ate -Hin	Wan H	louse			Т	ime: 1	900-230	0 (restri	ct hour)
						Noise	Level,	dB(A)						_
Date	Timo	Weather	R	eading	(1)	Re	eading	(2)	Re	eading	(3)	L _{eq-}	L _{10 eq-}	L _{90 eq-}
Date	TIME	Weather	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	^{15min,} dB(A)	^{15min,} dB(A)	^{15min,} dB(A)
21/12/2015	20:15- 20:30	Fine	55.6	58.7	53.9	55.0	57.8	54.0	55.5	57.2	54.9	55.4	57.9	54.3
22/12/2015	20:42- 20:57	Fine	57.6	60.2	56.1	58.2	62.8	53.2	56.9	61.3	54.1	57.6	61.6	54.6
23/12/2015	21:40- 21:55	Fine	56.8	61.8	57.1	56.7	62.9	54.2	55.8	62.3	54.8	56.5	62.4	55.6
24/12/2015	22:10- 22:25	Fine	55.0	60.1	53.7	55.8	60.5	53.0	54.5	58.3	52.7	55.1	59.7	53.2
25/12/2015	19:30- 19:45	Cloudy	56.0	59.8	55.2	56.2	60.1	55.0	55.7	59.5	53.8	56.0	59.8	54.7
26/12/2015	20:25- 20:40	Cloudy	55.1	58.7	54.0	56.8	59.2	54.2	56.1	60.0	55.1	56.1	59.3	54.5
27/12/2015	20:00- 20:15	Cloudy	54.7	57.8	52.8	54.1	57.2	53.0	56.7	60.9	54.8	55.3	59.0	53.6
28/12/2015	20:50- 21:05	Cloudy	53.9	56.7	52.0	54.6	58.3	53.5	54.1	57.1	53.0	54.2	57.4	52.9
29/12/2015	20:26- 20:41	Fine	55.4	59.4	51.9	56.0	59.1	52.3	55.1	58.7	51.8	55.5	59.1	52.0
30/12/2015	20:00- 20:15	Cloudy	54.1	58.1	50.8	54.9	59.4	51.3	54.3	57.6	52.1	54.4	58.4	51.4
31/12/2015	19:40- 19:55	Fine	56.1	59.7	51.2	55.7	58.2	50.9	55.2	58.8	51.0	55.7	58.9	51.0
1/1/2016	20:30- 20:45	Fine	55.0	58.6	52.3	55.5	59.1	51.7	54.8	58.1	51.1	55.1	58.6	51.7
2/1/2016	19:45- 20:00	Fine	56.7	59.9	51.8	56.1	59.0	52.3	56.4	60.0	51.2	56.4	59.7	51.8
3/1/2016	19:00- 19:15	Cloudy	58.1	61.7	55.6	57.2	60.5	54.2	56.6	60.1	54.6	57.3	60.8	54.8

Noise Level Results at NM3 -C.U.H.K.F.A.A.

Time: 1900-2300 (restrict hour)

Thomas Cheung School Noise Level, dB(A) L_{90 eq-} Reading (1) Reading (2) Reading (3) L_{eq-} L_{10 eq-} Weather Date Time L_{90eq}-L_{ea}-L_{eq}-L_{90eq}-L_{eq}-L_{10eq}-L_{90eq}-L_{10eq}-L_{10eq}-15min, 15min, 15min, 5min 5min 5min 5min 5min 5min 5min 5min 5min dB(A) dB(A) dB(A) 20:45-21/12/2015 Fine 21:00 51.2 53.4 49.9 51.8 53.9 50.2 52.1 53.8 49.8 51.7 53.7 50.0 21:20-22/12/2015 Fine 21:35 52.3 54.7 50.1 52.8 55.1 50.9 52.3 54.5 50.7 52.5 54.8 50.6 22:30-23/12/2015 Fine 22:45 49.8 51.9 53.9 52.1 54.3 49.7 53.1 55.6 50.5 52.4 54.7 50.0 21:45-24/12/2015 Fine 22:00 51.9 53.4 50.4 52.1 52.9 50.2 52.9 53.8 50.7 52.3 53.4 50.4 20:00-25/12/2015 Cloudy 20:15 51.2 54.3 50.1 55.3 50.8 50.4 51.5 54.8 50.4 51.9 51.5 54.7 20:55-26/12/2015 Cloudy 21:10 50.5 53.8 48.2 50.8 48.5 53.9 48.1 51.6 54.7 49.1 51.0 54.2 20:30 Cloudy 27/12/2015 20:45 51.8 54.5 49.2 51.6 54.2 49.8 50.9 53.4 50.2 51.5 54.1 49.8 21:25-28/12/2015 Cloudy 21:40 50.1 52.9 49.8 50.5 53.6 49.6 50.8 53.4 49.9 50.5 53.3 49.8 20:55-29/12/2015 Fine 21:10 52.8 55.3 48.9 50.6 53.4 49.1 52.2 53.7 50.1 52.0 54.2 49.4 20:25-30/12/2015 Cloudy 20:40 53.0 56.0 50.6 51.8 54.8 49.8 51.7 54.8 50.2 52.2 55.2 50.2 20:15-31/12/2015 Fine 20:30 55.2 51.6 55.8 50.1 51.8 55.0 50.3 52.7 54.7 50.7 52.1 50.4 21:05-1/1/2016 Fine 21:20 52.2 56.9 50.6 51.7 56.1 52.1 50.3 52.0 50.7 51.1 56.2 56.4 20:05-2/1/2016 Fine 20:20 52.4 57.0 50.3 52.8 57.1 50.7 51.9 56.5 50.2 52.4 56.9 50.4 19:30-3/1/2016 Cloudy 19:45 51.9 56.2 49.9 56.9 50.1 55.7 49.8 52.1 51.2 51.8 56.3 49.9

Noise Level	Results	at NM1 -TI	ne L Lo	ouey (S	outh)				Time:	2300 -	- 0700	next day	/ (restric	t hour
						Noise	Level,	dB(A)					_	_
Date	Time	Weather	R	eading	(1)	Re	eading	(2)	Re	eading	(3)	L _{eq-}	L _{10 eq-}	L _{90 eq-}
Date	Time	Weather	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	^{15min,} dB(A)	^{15min,} dB(A)	^{15min,} dB(A)
21/12/2015	23:05- 23:20	Fine	60.9	65.8	51.9	62.1	66.1	52.6	61.7	66.2	51.8	61.6	66.0	52.1
22/12/2015	23:10- 23:25	Cloudy	61.2	66.1	52.3	62.9	67.2	53.6	61.4	65.8	52.7	61.9	66.4	52.9
23/12/2015	00:30- 00:45	Fine	62.1	67.4	53.2	61.8	65.4	52.1	61.9	67.9	53.1	61.9	67.0	52.8
24/12/2015	23:05- 23:20	Fine	60.6	63.3	50.0	62.8	64.5	50.3	61.9	66.8	50.7	61.9	65.1	50.3
25/12/2015	23:55- 00:10	Cloudy	62.8	65.7	50.0	62.1	64.8	50.1	62.7	66.1	50.2	62.5	65.6	50.1
26/12/2015	00:15- 00:30	Cloudy	61.8	66.0	51.9	62.9	66.6	53.9	61.2	65.8	52.3	62.0	66.1	52.8
27/12/2015	00:40- 00:55	Cloudy	62.9	67.8	52.0	63.3	68.2	52.3	61.7	67.2	53.4	62.7	67.8	52.6
28/12/2015	23:00- 23:15	Cloudy	63.0	68.1	53.1	63.5	68.5	53.4	62.0	67.6	53.7	62.9	68.1	53.4
29/12/2015	00:05- 00:20	Fine	63.9	67.2	54.3	64.1	67.9	53.7	63.4	66.4	52.0	63.8	67.2	53.4
30/12/2015	23:05- 23:20	Cloudy	64.1	68.2	52.9	63.2	67.7	52.8	63.0	68.1	53.0	63.5	68.0	52.9
31/12/2015	23:55- 00:10	Fine	62.1	67.4	51.8	62.8	68.3	52.1	63.7	68.2	54.0	62.9	68.0	52.7
1/1/2016	23:30- 23:45	Fine	63.6	68.9	52.3	62.3	67.1	52.0	63.1	68.0	52.8	63.0	68.1	52.4
2/1/2016	23:01- 23:16	Fine	62.9	67.6	53.1	63.1	67.5	53.6	61.8	66.4	51.9	62.6	67.2	52.9
3/1/2016	23:30- 23:45	Cloudy	62.3	67.1	53.2	63.7	66.8	53.1	63.8	68.9	52.0	63.3	67.7	52.8

Noise Level	Results	s at NM2 -	lin Kei	ng Esta	te - Hi	n Wan	House		Time:	2300 -	- 0700	next day	(restric	t hour)
						Noise	Level,	dB(A)						
Data	Timo	Weathor	Re	eading	(1)	Re	eading	(2)	Re	eading	(3)	L_{eq}	L _{10 eq-}	L _{90 eq-}
Date	Time	weather	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	^{15min,} dB(A)	15min, dB(A)	15min, dB(A)
21/12/2015	23:45- 00:00	Fine	54.8	57.3	52.1	55.1	58.6	52.2	54.6	57.4	52.7	54.8	57.8	52.3
22/12/2015	23:55- 00:10	Fine	53.9	57.1	50.3	54.2	58.0	50.9	53.8	58.1	51.5	54.0	57.8	50.9
23/12/2015	23:50- 00:05	Fine	54.3	56.3	50.1	53.8	57.9	50.2	53.4	56.9	50.8	53.8	57.1	50.4
24/12/2015	23:30- 23:45	Fine	53.0	55.1	49.6	53.6	54.2	51.0	53.5	54.5	49.7	53.4	54.6	50.1
25/12/2015	23:05- 23:20	Cloudy	54.8	55.9	48.7	53.7	54.9	48.9	55.1	57.2	49.8	54.6	56.1	49.2
26/12/2015	23:35- 23:50	Cloudy	53.1	56.2	50.0	52.8	55.8	49.9	53.8	56.7	50.0	53.3	56.2	50.0
27/12/2015	00:20- 00:35	Cloudy	53.7	56.9	49.9	53.1	56.1	49.9	54.2	55.9	49.7	53.7	56.3	49.8
28/12/2015	23:35- 23:50	Cloudy	54.0	57.8	50.1	54.5	57.1	50.7	54.9	58.0	51.0	54.5	57.7	50.6
29/12/2015	23:30- 23:45	Fine	53.9	58.1	50.0	54.2	58.7	50.1	53.8	58.4	50.9	54.0	58.4	50.4
30/12/2015	23:30- 23:45	Cloudy	53.3	57.9	50.3	54.7	57.8	50.0	54.1	58.2	53.1	54.1	58.0	51.4
31/12/2015	00:25- 00:40	Fine	52.9	56.7	49.7	52.5	56.7	49.5	52.7	56.0	49.7	52.7	56.5	49.6
1/1/2016	23:55- 00:10	Fine	52.6	57.1	50.2	53.2	58.2	50.8	53.6	59.1	50.4	53.2	58.2	50.5
2/1/2016	23:25- 23:40	Fine	53.1	56.8	50.3	52.9	57.8	50.0	52.5	56.1	49.9	52.8	57.0	50.1
3/1/2016	23:55- 00:10	Cloudy	52.9	55.8	49.8	52.8	56.0	50.3	53.8	56.5	50.8	53.2	56.1	50.3

Noise Level Results at NM3 -C.U.H.K.F.A.A. Thomas Cheung School

Time: 2300 - 0700 next day (restrict hour)

						Noise	Level,	dB(A)						
Data	Timo	Weather	R	eading	(1)	Re	eading	(2)	Re	eading	(3)	L _{eq-}	L _{10 eq-}	L _{90 eq-}
Date	TIME	Weather	L _{eq} -	L _{10eq} -	L _{90eq} -	L _{eq} -	L _{10eq} -	L _{90eq} -	L _{eq} -	L _{10eq} -	L _{90eq} -	15min,	15min,	15min,
			5min	5min	5min	5min	5min	5min	5min	5min	5min	dB(A)	dB(A)	dB(A)
21/12/2015	00:30- 00:45	Fine	50.9	52.9	48 7	50.4	52.7	48.5	50.2	52.3	48 7	50.5	52.6	48.6
22/12/2015	00:40- 00:55	Fine	51.8	55.6	50.3	51.6	55.8	50.0	52.2	56.1	50.1	51.9	55.8	50.1
23/12/2015	23:00- 23:15	Fine	51.2	54.3	49.9	51.1	53.9	48.6	51.8	55.3	49.3	51.4	54.5	49.3
24/12/2015	23:50- 00:05	Fine	51.1	51.5	50.9	49.8	51.2	50.7	50.2	51.8	50.5	50.4	51.5	50.7
25/12/2015	23:30- 23:45	Cloudy	50.6	52.3	49.6	50.9	52.7	49.9	51.3	53.1	50.4	50.9	52.7	50.0
26/12/2015	23:05- 23:20	Cloudy	50.1	53.2	48.5	50.3	53.7	48.9	50.4	54.1	49.2	50.3	53.7	48.9
27/12/2015	23:50- 00:05	Cloudy	51.0	53.7	48.6	51.9	54.3	48.3	51.1	54.2	49.0	51.4	54.1	48.6
28/12/2015	00:00- 00:15	Cloudy	52.1	54.3	49.6	53.5	56.2	50.3	54.7	56.7	50.9	53.6	55.8	50.3
29/12/2015	23:05- 23:20	Fine	51.5	54.0	48.8	51.8	53.4	48.0	51.3	53.7	48.1	51.5	53.7	48.3
30/12/2015	23:55- 00:10	Cloudy	51.2	53.8	48.7	50.8	52.9	48.1	51.6	53.9	48.5	51.2	53.6	48.4
31/12/2015	00:55- 01:10	Fine	51.8	53.3	48.9	52.3	55.3	49.2	52.0	54.3	49.5	52.0	54.4	49.2
1/1/2016	00:25- 00:40	Fine	51.1	53.0	48.5	51.9	53.2	49.0	51.7	54.0	49.6	51.6	53.4	49.1
2/1/2016	00:00- 00:15	Fine	50.9	52.8	48.5	51.8	53.9	48.9	51.1	53.7	49.0	51.3	53.5	48.8
3/1/2016	00:20- 00:35	Cloudy	51.4	53.8	48.9	51.3	54.0	49.1	51.0	54.0	48.5	51.2	53.9	48.8

Fime: 0700 – 2300 (Sunday or public holiday

						Noise	Level,	dB(A)						
Data	Time	Weether	Re	eading	(1)	Re	eading	(2)	Re	eading	(3)	L _{eq-}	L _{10 eq-}	L _{90 eq-}
Date	Time	weather	L _{eq} -	L _{10eq} -	L _{90eq} -	L _{eq} -	L _{10eq} -	L _{90eq} -	L _{eq} -	L _{10eq} -	L _{90eq} -	15min,	15min,	15min,
			5min	5min	5min	5min	5min	5min	5min	5min	5min	dB(A)	dB(A)	dB(A)
25/12/2015	07:45-	Cloudy												
23/12/2013	08:00	Cloudy	68.8	70.0	55.7	67.2	68.8	55.3	68.0	69.5	55.5	68.0	69.5	55.5
26/12/2015	10:55-	Cloudy												
20/12/2015	11:10	Cloudy	60.6	62.4	50.5	64.0	70.1	49.9	62.1	67.2	49.9	62.5	67.6	50.1
07/40/0045	09:40-	Olavaka												
27/12/2015	09:55	Cloudy	61.3	68.9	52.3	64.3	70.7	52.5	64.5	69.3	53.2	63.6	69.7	52.7
1/1/2016	13:30-	Fine												
1/1/2016	13:45	Fine	61.5	62.5	57.5	64.3	70.7	52.5	61.7	70.2	51.9	62.7	69.0	54.7
2/1/2016	17:10-	Cloudy												
3/1/2016	17:25	Cioudy	64.1	66.8	58.3	61.8	64.2	60.5	62.5	68.8	54.8	62.9	67.0	58.5

Noise Level	Result	s at NM2 -I	lin Kei	ng Esta	nte - Hi	in Wan	House	•	lime: 0	700 – 2	2300 (S	unday c	or public	holiday
						Noise	Level,	dB(A)						
Data	Time	Weather	Re	eading	(1)	Re	eading	(2)	Re	eading	(3)	L_{eq}	L _{10 eq-}	L _{90 eq-}
Date	Time	weather	L _{eq} -	L _{10eq} -	L _{90eq} -	L _{eq} -	L _{10eq} -	L _{90eq} -	L _{eq} -	L _{10eq} -	L _{90eq} -	15min,	15min,	15min,
			5min	5min	5min	5min	5min	5min	5min	5min	5min	dB(A)	dB(A)	dB(A)
25/12/2015	09:10-	Cloudy												
25/12/2015	09:40	Cloudy	61.9	65.3	54.2	59.2	63.3	53.8	61.0	64.4	55.7	60.8	64.4	54.6
26/12/2015	10:10-	Cloudy												
20/12/2013	10:25	Cloudy	58.3	58.8	57.7	62.3	63.4	58.5	64.1	61.2	56.3	62.2	61.5	57.6
27/12/2015	08:55-	Cloudy												
21/12/2015	09:10	Cioudy	58.1	58.7	57.5	58.9	59.3	57.1	60.8	62.3	58.3	59.4	60.4	57.7
1/1/2016	14:10-	Fino												
1/1/2010	14:25	FILLE	61.9	63.7	59.8	63.6	65.4	55.9	61.7	65.5	53.3	62.5	64.9	57.2
3/1/2016	18:45-	Cloudy												
3/1/2010	19:00	Cioudy	54.8	56.1	53.7	58.7	60.9	54.6	59.8	62.7	54.5	58.2	60.7	54.3

Noise Level Results at NM3 -C.U.H.K.F.A.A. Thomas Cheung School

Гіте: 0700 – 2300 (Sunday or public holiday

						Noise	Level,	dB(A)						
Data	Time	Weather	Re	eading	(1)	Re	eading	(2)	Re	eading	(3)	L _{eq-}	L _{10 eq-}	L _{90 eq-}
Date	Time	weather	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	L _{eq} - 5min	L _{10eq} - 5min	L _{90eq} - 5min	^{15min,} dB(A)	^{15min,} dB(A)	^{15min,} dB(A)
25/12/2015	09:45- 10:00	Cloudy	55.6	58.1	52.5	56.8	56.2	51.5	57.1	59.4	53.8	56.5	58.1	52.7
26/12/2015	09:30- 09:45	Cloudy	53.0	55.2	50.9	53.8	56.1	50.7	55.7	58.8	50.6	54.3	57.0	50.7
27/12/2015	08:15- 08:30	Cloudy	52.1	54.3	49.6	53.5	56.2	50.3	54.7	56.7	50.9	53.6	55.8	50.3
1/1/2016	15:00- 15:15	Fine	58.1	60.8	55.8	56.7	60.1	55.0	58.0	60.8	55.3	57.6	60.6	55.4
3/1/2016	17:50- 18:05	Cloudy	55.3	57.8	51.9	56.5	58.9	52.4	54.3	59.2	50.4	55.5	58.7	51.6

Appendix J Monitoring Results including In-Situ Measurements and Laboratory Analysis Data (Water Quality)

Date	Time	Weather	Location	Co-or	dinates	Water Depth	Sample Depth	Те	mp.	DO	con.	DO Sa	turation	Turł	oidity	p	H	SS
				East	North	m	m	c	С	m	g/L		%	N	TU	ur	nit	mg/L
	11:48	Sunny	C1	835110	824716	0.04	0.02	22	22	8.35	8.33	95.6	95.6	3.1	3.8	3 7.97	7.94	9.7
	10:33	Sunny	C2	835403	824470	0.02	0.01	21.5	21.6	8.72	8.70	98.9	98.7	1.8	1.1	7.85	7.83	4.3
15/12/2015	N/A	N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
15/12/2015	12:10	Sunny	M1	835215	824827	0.8	0.4	21.2	21.2	9.11	9.09	102.6	102.4	1.5	1.5	5 8.05	8.05	<1
	11:28	Sunny	M2	835536	824775	0.05	0.025	21.3	21.3	9.03	9.00	101.9	101.6	6.7	6.9	9.94	9.93	17.0
	10:12	Sunny	M3	835501	824648	0.02	0.01	21.3	21.4	9.15	9.16	102.8	103.0	0.9	0.8	8.08	8.1	<1
		1		1		1			1	1	1	1	1		r			
	11:35	Sunny	C1	835110	824716	0.04	0.02	16.8	16.9	9.63	9.66	99.4	99.3	3.9	3.8	8 8.22	8.21	5.3
	11:05	Sunny	C2	835403	824470	0.02	0.01	14.5	14.5	10.03	10.01	98.6	98.4	3.3	3.2	2 8.7	8.69	12.0
17/12/2015	N/A	N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1112/2010	11:45	Sunny	M1	835215	824827	0.8	0.4	16.9	16.9	9.96	9.98	103.2	103	2.0	1.9	8.55	8.57	4.6
	10:35	Sunny	M2	835536	824775	0.05	0.025	19.4	19.3	9.36	9.36	101.8	101.8	10.0	9.9	9 11.27	11.25	25.0
	10:49	Sunny	M3	835501	824648	0.02	0.01	17.5	17.5	9.80	9.78	102.8	102.8	1.1	0.9	8.5	8.2	<1
		a	2 1	005110	00/846	0.01	0.00	10.0	10					1.0				
	11:10	Cloudy	Cl	835110	824/16	0.04	0.02	18.9	19	8.74	8.71	94.3	93.8	1.9	1.9	7.95	7.97	1.1
	10:45	Cloudy	C2	835403	824470	0.02	0.01	15.4	15.3	10.11	10.09	100.5	100.7	2.1	1.9	8.21	8.23	1.7
19/12/2015	N/A	N/A	C3	835642	824386	N/A	<u>N/A</u>	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	11:30	Cloudy	MI	835215	824827	0.8	0.4	16.3	16.2	9.85	9.87	100.4	100.5	3.6	3.4	4 8.35	8.33	4.7
	10:03	Cloudy	M2	835536	824775	0.05	0.025	19.6	19.6	9.29	9.30	101.4	101.4	2.7	2.	0 11.06	11.05	4./
	10:20	Cloudy	M3	835501	824648	0.02	0.01	18.1	18.1	9.61	9.61	101./	101.6	0.9	1.0	9.03	9.06	<1
	12.06	Comment	C1	025110	024716	0.04	0.02	21.5	21.5	0.14	0.14	02.2	02.2	2.0	2.0	ר <i>ד ד</i>	77	2.0
	13:00	Sunny	C1	833110	824/10	0.04	0.02	21.3	21.3	0.14	0.14	92.2	102.4	2.0	2.2	2 7.72	7.01	2.0
	12.33 N/A	NI/A	C2	835642	824470	0.02 N/A	0.01 N/A	10.9 N/A	19.1 N/A	9.27 N/A	9.30 N/A	102.1 N/A	102.4	0.7 N/A	0.0 N/A	N/A	7.91 N/A	NI/A
21/12/2015	13.20	Sunny	M1	835215	824380	0.8	0.4	107	10/	01/	0.17	00 8	007	37	36	5 7.80	7.88	2.1
	12.20	Sunny	M2	835536	824775	0.05	0.1	21.1	21.0	8.07	8.08	100.8	101	3.0	2.5	8 10.14	10.11	73
	12:30	Sunny	M3	835501	824648	0.02	0.025	19.4	193	9.31	9.30	100.0	101 4	1.0	1	8.05	8.03	<1
	12,12	oumy	1015	055501	021010	0.02	0.01	19:1	19.5	9.51	7.50	101.2	101.1	1.0	1.	0.05	0.05	N 1
	15:55	Cloudy	C1	835110	824716	0.04	0.02	22.4	22.2	7.91	7.89	91.4	91.2	2.1	2.0	7.75	7.75	1.9
	15:45	Cloudy	C2	835403	824470	0.02	0.01	19.9	19.9	9.27	9.30	100.9	110.1	1.5	1.0	7 9.27	9.30	<1
22/12/2015	N/A	N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
23/12/2015	16:05	Cloudy	M1	835215	824827	0.8	0.4	20.5	20.4	8.89	8.89	98.7	98.7	3.3	3.4	1 7.90	7.89	1.7
	15:20	Cloudy	M2	835536	824775	0.05	0.025	21.1	21.2	8.91	8.92	100.4	100.2	1.5	1.6	5 9.89	9.87	4.0
	15:28	Cloudy	M3	835501	824648	0.02	0.01	19.8	19.9	9.16	9.17	100.4	100.5	0.9	0.9	8.74	8.73	<1
	13:20	Cloudy	C1	835110	824716	0.04	0.02	18.3	18.50	7.88	7.90	91.1	91.3	2.3	2.4	5 8.05	8.03	<1
	12:55	Cloudy	C2	835403	824470	0.02	0.01	19.4	19.60	9.27	9.30	101.2	101.4	1.1	1.0	8.70	8.70	1.6
26/12/2015	N/A	N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
20/12/2013	13:35	Cloudy	M1	835215	824827	0.8	0.4	18.7	18.6	9.37	9.35	100.2	100.0	3.7	3.6	6 8.36	8.37	1.9
	12:30	Cloudy	M2	835536	824775	0.05	0.025	20.2	20.2	9.13	9.14	101	101.1	4.0	3.9) 11.5	11.49	38.0
	12:43	Cloudy	M3	835501	824648	0.02	0.01	19.1	19.0	9.35	9.37	100.9	110.1	0.9	1.1	8.73	8.72	<1

					1			1			1	1			1		
	12:45 Cloudy	C1	835110	824716	0.04	0.02	20.3	20.4	7.91	7.91	87.7	87.6	1.7	1.8	3 7.73	7.74	1.9
	12:05 Cloudy	C2	835403	824470	0.02	0.01	18.6	18.6	9.49	9.50	101.8	101.9	1.6	1.4	5 7.93	7.92	<1
28/12/2015	N/A N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12:30 Cloudy	M1	835215	824827	0.8	0.4	18.1	18.1	9.49	9.50	100.6	100.6	3.4	3.3	3 7.88	7.89	2.1
	11:35 Cloudy	M2	835536	824775	0.05	0.025	20.1	20.3	9.22	9.19	101.9	102	13.1	13.9) 10.11	10.13	21.0
	11:50 Cloudy	M3	835501	824648	0.02	0.01	18.8	18.8	9.49	9.50	101.9	101.9	0.7	0.6	6 8.26	8.25	<1
	12:46 Cloudy	C1	835110	824716	0.04	0.02	20.5	20.5	8.61	8.60	95.5	95.5	1.8	1.8	3 7.78	7.79	1.5
	12:27 Cloudy	C2	835403	824470	0.02	0.01	18.2	18.2	9.14	9.14	97.6	97.4	2.6	2.7	7.96	7.95	2.3
20/12/2015	N/A N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
30/12/2015	13:02 Cloudy	M1	835215	824827	0.8	0.4	18.5	18.4	9.46	9.45	100.8	100.7	3.5	3.4	4 7.81	7.81	2.0
	10:30 Cloudy	M2	835536	824775	0.05	0.025	20.0	20.0	9.28	9.27	102	102	2.3	2.0	8.2	8.23	1.9
	10:40 Cloudy	M3	835501	824648	0.02	0.01	18.7	18.7	9.49	9.50	101.7	101.8	0.7	0.7	7 7.81	7.79	1.3
	11:35 Fine	C1	835110	824716	0.04	0.02	18.9	18.8	9.22	9.23	98.7	98.8	2.7	2.6	5 7.89	7.88	<1
	12:15 Fine	C2	835403	824470	0.02	0.01	19.9	19.8	9.38	9.39	100.8	100.8	2.1	2.1	7.98	7.99	1.2
2/1/2016	N/A N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2/1/2016	11:19	M1	835215	824827	0.8	0.4	19.0	19.0	9.30	9.28	100.2	100.3	3.3	3.3	8.06	8.05	1.3
	10:47 Fine	M2	835536	824775	0.05	0.025	20.5	20.5	9.06	9.06	100.7	100.7	1.8	1.1	7.67	7.67	<1
	10:55 Fine	M3	835501	824648	0.02	0.01	19.1	19.1	9.37	9.38	101.3	101.4	0.9	1.0	8.19	8.19	1.2
	11:50 Cloudy	C1	835110	824716	0.04	0.02	22.1	22.0	7.45	7.44	85.3	85.4	1.6	1.4	5 7.74	7.74	<1
	11:50 Cloudy 11:38 Cloudy	C1 C2	835110 835403	824716 824470	0.04	0.02	22.1 20.1	22.0 20.0	7.45	7.44	85.3 100.4	85.4	1.6 1.8	1.5	5 7.74 9 7.94	7.74 7.95	<1 1.6
4/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A	C1 C2 C3	835110 835403 835642	824716 824470 824386	0.04 0.02 N/A	0.02 0.01 N/A	22.1 20.1 N/A	22.0 20.0 N/A	7.45 9.41 N/A	7.44 9.42 N/A	85.3 100.4 N/A	85.4 100.3 N/A	1.6 1.8 N/A	1.5 1.9 N/A	5 7.74 9 7.94 N/A	7.74 7.95 N/A	<1 1.6 N/A
4/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy	C1 C2 C3 M1	835110 835403 835642 835215	824716 824470 824386 824827	0.04 0.02 N/A 0.8	0.02 0.01 N/A 0.4	22.1 20.1 N/A 20.1	22.0 20.0 N/A 20.1	7.45 9.41 N/A 9.03	7.44 9.42 N/A 9.03	85.3 100.4 N/A 99.7	85.4 100.3 N/A 99.8	1.6 1.8 N/A 4.1	1.4 1.9 N/A 4.0	5 7.74 9 7.94 N/A 7.87	7.74 7.95 N/A 7.87	<1 1.6 N/A 2.0
4/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy	C1 C2 C3 M1 M2	835110 835403 835642 835215 835536	824716 824470 824386 824827 824775	0.04 0.02 N/A 0.8 0.05	0.02 0.01 N/A 0.4 0.025	22.1 20.1 N/A 20.1 21.2	22.0 20.0 N/A 20.1 21.2	7.45 9.41 N/A 9.03 8.99	7.44 9.42 N/A 9.03 9.00	85.3 100.4 N/A 99.7 101.3	85.4 100.3 N/A 99.8 101.2	1.6 1.8 N/A 4.1 7.5	1.5 1.9 N/A 4.0 7.6	5 7.74 7.94 N/A 7.87 5 10.03	7.74 7.95 N/A 7.87 10.02	<1 1.6 N/A 2.0 10.0
4/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 11:10 Cloudy	C1 C2 C3 M1 M2 M3	835110 835403 835642 835215 835536 835501	824716 824470 824386 824827 824775 824648	0.04 0.02 N/A 0.8 0.05 0.02	0.02 0.01 N/A 0.4 0.025 0.01	22.1 20.1 N/A 20.1 21.2 19.7	22.0 20.0 N/A 20.1 21.2 19.8	7.45 9.41 N/A 9.03 8.99 9.26	7.44 9.42 N/A 9.03 9.00 9.25	85.3 100.4 N/A 99.7 101.3 101.2	85.4 100.3 N/A 99.8 101.2 101.2	1.6 1.8 N/A 4.1 7.5 0.8	1.5 1.9 N/A 4.0 7.6 0.9	5 7.74 7.94 N/A 7.87 5 10.03 9 8.11	7.74 7.95 N/A 7.87 10.02 8.10	<1 1.6 N/A 2.0 10.0 1.1
4/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 11:10 Cloudy	C1 C2 C3 M1 M2 M3	835110 835403 835642 835215 835536 835501	824716 824470 824386 824827 824775 824648	0.04 0.02 N/A 0.8 0.05 0.02	0.02 0.01 N/A 0.025 0.01	22.1 20.1 N/A 20.1 21.2 19.7	22.0 20.0 N/A 20.1 21.2 19.8	7.45 9.41 N/A 9.03 8.99 9.26	7.44 9.42 N/A 9.03 9.00 9.25	85.3 100.4 N/A 99.7 101.3 101.2	85.4 100.3 N/A 99.8 101.2 101.2	1.6 1.8 N/A 4.1 7.5 0.8	1.4 1.9 N/A 4.0 7.6 0.9	5 7.74 9 7.94 N/A 7.87 5 10.03 9 8.11	7.74 7.95 N/A 7.87 10.02 8.10	<1 1.6 N/A 2.0 10.0 1.1
4/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 11:10 Cloudy 11:40 Sunny	C1 C2 C3 M1 M2 M3 C1	835110 835403 835642 835515 835536 835501 835501	824716 824470 824386 824827 824775 824648 824716	0.04 0.02 N/A 0.8 0.05 0.02 0.02	0.02 0.01 N/A 0.4 0.025 0.01 0.02	22.1 20.1 N/A 20.1 21.2 19.7 21.8	22.0 20.0 N/A 20.1 21.2 19.8 21.8	7.45 9.41 N/A 9.03 8.99 9.26 7.88	7.44 9.42 N/A 9.03 9.00 9.25 7.87	85.3 100.4 N/A 99.7 101.3 101.2 89.8	85.4 100.3 N/A 99.8 101.2 101.2 89.8	1.6 1.8 N/A 4.1 7.5 0.8 2.2	1.5 1.5 N/A 4.0 7.6 0.5 2.3	5 7.74 9 7.94 N/A 7.87 5 10.03 9 8.11 3 7.72	7.74 7.95 N/A 7.87 10.02 8.10 7.72	<1 1.6 N/A 2.0 10.0 1.1 <1
4/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 11:10 Cloudy 11:40 Sunny 11:57 Sunny	C1 C2 C3 M1 M2 M3 C1 C2	835110 835403 835642 835515 835536 835501 8355110 835403	824716 824470 824386 824827 824775 824648 824648 824716 824470	0.04 0.02 N/A 0.05 0.05 0.02 0.04 0.04	0.02 0.01 N/A 0.025 0.01 0.02 0.02	22.1 20.1 N/A 20.1 21.2 19.7 21.8 20.8	22.0 20.0 N/A 20.1 21.2 19.8 21.8 20.9	7.45 9.41 N/A 9.03 8.99 9.26 7.88 7.99	7.44 9.42 N/A 9.03 9.00 9.25 7.87 7.98	85.3 100.4 N/A 99.7 101.3 101.2 89.8 99.9	85.4 100.3 N/A 99.8 101.2 101.2 89.8 100.0	1.6 1.8 N/A 4.1 7.5 0.8 2.2 2.3	1.4 1.9 N/A 4.0 7.6 0.9 2.2 2.2	5 7.74 7.94 N/A 7.87 5 10.03 0 8.11 3 7.72 8 8.02	7.74 7.95 N/A 7.87 10.02 8.10 7.72 8.03	<1 1.6 N/A 2.0 10.0 1.1 <1 5.0
4/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 11:10 Cloudy 11:40 Sunny 11:57 Sunny N/A N/A	C1 C2 C3 M1 M2 M3 C1 C2 C2 C3	835110 835403 835642 835215 835536 835501 835501 8355110 835403 835642	824716 824470 824386 824827 824775 824648 824716 824470 824386	0.04 0.02 N/A 0.8 0.05 0.02 0.02 0.04 0.02 N/A	0.02 0.01 N/A 0.025 0.01 0.02 0.01 N/A	22.1 20.1 N/A 20.1 21.2 19.7 21.8 20.8 N/A	22.0 20.0 N/A 20.1 21.2 19.8 21.8 20.9 N/A	7.45 9.41 N/A 9.03 8.99 9.26 7.88 7.99 N/A	7.44 9.42 N/A 9.03 9.00 9.25 7.87 7.98 N/A	85.3 100.4 N/A 99.7 101.3 101.2 89.8 99.9 N/A	85.4 100.3 N/A 99.8 101.2 101.2 89.8 100.0 N/A	1.6 1.8 N/A 4.1 7.5 0.8 2.2 2.3 N/A	1.4 1.9 N/A 4.0 7.6 0.9 2.2 N/A	5 7.74 N/A 5 10.03 9 8.11 3 7.72 8 8.02 N/A	7.74 7.95 N/A 7.87 10.02 8.10 7.72 8.03 N/A	<1 1.6 N/A 2.0 10.0 1.1 <1 5.0 N/A
4/1/2016 6/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 11:10 Cloudy 11:10 Cloudy 11:57 Sunny N/A N/A N/A N/A N/A N/A	C1 C2 C3 M1 M2 M3 C1 C2 C2 C3 M1	835110 835403 835642 835215 835536 835501 835501 835501 835403 835642 835642 835215	824716 824470 824386 824827 824775 824648 824470 824470 824386 824827	0.04 0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A 0.8	0.02 0.01 N/A 0.025 0.01 0.02 0.01 N/A 0.4	22.1 20.1 N/A 20.1 21.2 19.7 21.8 20.8 N/A 21.1	22.0 20.0 N/A 20.1 21.2 19.8 21.8 20.9 N/A 21.1	7.45 9.41 N/A 9.03 8.99 9.26 7.88 7.99 N/A 8.97	7.44 9.42 N/A 9.03 9.00 9.25 7.87 7.98 N/A 8.97	85.3 100.4 N/A 99.7 101.3 101.2 89.8 99.9 N/A 100.9	85.4 100.3 N/A 99.8 101.2 101.2 89.8 100.0 N/A 110.0	1.6 1.8 N/A 4.1 7.5 0.8 2.2 2.3 N/A 4.5	1.4 N/A 4.0 7.6 0.9 2.2 N/A 4.4	5 7.74 N/A 5 10.03 0 8.11 3 7.72 8 8.02 N/A 4 8.36	7.74 7.95 N/A 7.87 10.02 8.10 7.72 8.03 N/A 8.37	<1 1.6 N/A 2.0 10.0 1.1 <1 5.0 N/A 2.0
4/1/2016 6/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 11:10 Cloudy 11:10 Cloudy 11:57 Sunny N/A N/A N/A N/A 11:24 Sunny 11:00 Sunny	C1 C2 C3 M1 M2 M3 C1 C2 C2 C3 M1 M2	835110 835403 835642 835215 835536 835501 835501 835510 8355403 835642 835542 835536	824716 824470 824386 824827 824775 824648 824470 824470 824386 824827 824775	0.04 0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A 0.8 0.05	0.02 0.01 N/A 0.025 0.01 0.02 0.01 N/A 0.04 0.025	22.1 20.1 N/A 20.1 21.2 19.7 21.8 20.8 N/A 21.1 21.0	22.0 20.0 N/A 20.1 21.2 19.8 21.8 20.9 N/A 21.1 21.0	7.45 9.41 N/A 9.03 8.99 9.26 7.88 7.99 N/A 8.97 8.94	7.44 9.42 N/A 9.03 9.00 9.25 7.87 7.98 N/A 8.97 8.94	85.3 100.4 N/A 99.7 101.3 101.2 89.8 99.9 N/A 100.9 100.4	85.4 100.3 N/A 99.8 101.2 101.2 89.8 100.0 N/A 110.0 100.3	1.6 1.8 N/A 4.1 7.5 0.8 2.2 2.3 N/A 4.5 1.4	1.4 N/A 4.0 7.6 0.9 2.2 N/A 4.4 1.2	5 7.74 N/A 7.94 N/A 7.87 5 10.03 0 8.11 8 7.72 8 8.02 N/A 4 8.36 8 10.52	7.74 7.95 N/A 7.87 10.02 8.10 7.72 8.03 N/A 8.37 10.51	<1 1.6 N/A 2.0 10.0 1.1 <1 5.0 N/A 2.0 2.2
4/1/2016 6/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 11:10 Cloudy 11:10 Cloudy 11:57 Sunny 11:57 Sunny N/A N/A 11:24 Sunny 11:00 Sunny 11:00 Sunny	C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3	835110 835403 835642 835215 835536 835501 835501 835403 835642 835542 835536 835501	824716 824470 824386 824827 824775 824648 824470 824470 824386 824827 824775 824648	0.04 0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A 0.8 0.05 0.02	0.02 0.01 N/A 0.025 0.01 0.02 0.01 N/A 0.04 0.025 0.01	22.1 20.1 N/A 21.2 19.7 21.8 20.8 N/A 21.1 21.0 19.5	22.0 20.0 N/A 20.1 21.2 19.8 20.9 N/A 21.1 21.0 19.6	7.45 9.41 N/A 9.03 8.99 9.26 7.88 7.99 N/A 8.97 8.94 9.25	7.44 9.42 N/A 9.03 9.00 9.25 7.87 7.98 N/A 8.97 8.94 9.26	85.3 100.4 N/A 99.7 101.3 101.2 89.8 99.9 N/A 100.9 100.4 100.8	85.4 100.3 N/A 99.8 101.2 101.2 89.8 100.0 N/A 110.0 100.3 100.7	1.6 1.8 N/A 4.1 7.5 0.8 2.2 2.3 N/A 4.5 1.4 1.1	1.4 1.4 N/A 4.0 7.6 0.9 2.2 N/A 4.4 1.2 1.2	5 7.74 N/A 7.87 5 10.03 0 8.11 3 7.72 3 8.02 N/A 4 8.36 3 10.52 2 8.44	7.74 7.95 N/A 7.87 10.02 8.10 7.72 8.03 N/A 8.37 10.51 8.44	<1 1.6 N/A 2.0 10.0 1.1 <1 5.0 N/A 2.0 2.2 1.2
4/1/2016 6/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 11:10 Cloudy 11:10 Cloudy 11:57 Sunny 11:57 Sunny N/A N/A 11:24 Sunny 11:00 Sunny 11:07 Sunny	C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3	835110 835403 835642 835215 835536 835501 835501 835403 835642 835542 835536 835501	824716 824470 824386 824827 824775 824648 824470 824470 824386 824827 824775 824648	0.04 0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A 0.8 0.05 0.02	0.02 0.01 N/A 0.025 0.01 0.02 0.01 N/A 0.04 0.025 0.01	22.1 20.1 N/A 20.1 21.2 19.7 21.8 20.8 N/A 21.1 21.0 19.5	22.0 20.0 N/A 20.1 21.2 19.8 21.8 20.9 N/A 21.1 21.0 19.6	7.45 9.41 N/A 9.03 8.99 9.26 7.88 7.99 N/A 8.97 8.94 9.25	7.44 9.42 N/A 9.03 9.00 9.25 7.87 7.98 N/A 8.97 8.94 9.26	85.3 100.4 N/A 99.7 101.3 101.2 89.8 99.9 N/A 100.9 100.4 100.8	85.4 100.3 N/A 99.8 101.2 101.2 89.8 100.0 N/A 110.0 100.3 100.7	1.6 1.8 N/A 4.1 7.5 0.8 2.2 2.3 N/A 4.5 1.4 1.1	1.4 1.4 N/A 4.0 7.6 0.9 2.2 N/A 4.4 1.2 1.2	5 7.74 7.94 N/A 7.87 5 10.03 0 8.11 3 7.72 8 8.02 N/A 4 8.36 8 10.52 2 8.44	7.74 7.95 N/A 7.87 10.02 8.10 7.72 8.03 N/A 8.37 10.51 8.44	<1 1.6 N/A 2.0 10.0 1.1 <1 5.0 N/A 2.0 2.2 1.2
4/1/2016 6/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 11:10 Cloudy 11:10 Cloudy 11:57 Sunny 11:57 Sunny N/A N/A 11:24 Sunny 11:00 Sunny 11:07 Sunny 11:07 Sunny 10:58 Sunny	C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1	835110 835403 835642 835215 835536 835501 835501 835403 835642 835542 835536 835501 835501 835501	824716 824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824716	0.04 0.02 N/A 0.8 0.05 0.02 0.04 0.04 0.02 N/A 0.8 0.05 0.02	0.02 0.01 N/A 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01	22.1 20.1 N/A 20.1 21.2 19.7 21.8 20.8 N/A 21.1 21.0 19.5 18.8	22.0 20.0 N/A 20.1 21.2 19.8 21.8 20.9 N/A 21.1 21.0 19.6 18.7	7.45 9.41 N/A 9.03 8.99 9.26 7.88 7.99 N/A 8.97 8.94 9.25 8.91	7.44 9.42 N/A 9.00 9.25 7.87 7.98 N/A 8.97 8.94 9.26 8.90	85.3 100.4 N/A 99.7 101.3 101.2 89.8 99.9 N/A 100.9 100.4 100.8 89.3	85.4 100.3 N/A 99.8 101.2 101.2 89.8 100.0 N/A 110.0 100.3 100.7 89.5	1.6 1.8 N/A 4.1 7.5 0.8 2.2 2.3 N/A 4.5 1.4 1.1 4.0	1.4 1.9 N/A 4.0 7.6 0.9 2.3 N/A 4.2 1.3 1.4 4.0	5 7.74 7.94 N/A 7.87 5 10.03 0 8.11 3 7.72 3 8.02 N/A 4 8.36 3 10.52 2 8.44 8.24	7.74 7.95 N/A 7.87 10.02 8.10 7.72 8.03 N/A 8.37 10.51 8.44 8.23	<1 1.6 N/A 2.0 10.0 1.1 <1 5.0 N/A 2.0 2.2 1.2 1.3
4/1/2016 6/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 10:50 Cloudy 11:10 Cloudy 11:20 Sunny 11:57 Sunny N/A N/A 11:24 Sunny 11:00 Sunny 11:07 Sunny 11:07 Sunny 11:15 Sunny	C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C1 C2 C2	835110 835403 835642 835536 835501 835501 835501 8355403 8355403 835501 835501 835501 835501 835501 835501 835501	824716 824470 824386 824827 824775 824648 824470 824386 824470 824386 824827 824775 824648 824716 824470	0.04 0.02 N/A 0.8 0.05 0.02 N/A 0.04 0.04 0.05 0.02 0.02	0.02 0.01 N/A 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01 0.02 0.01	22.1 20.1 N/A 20.1 19.7 21.8 20.8 N/A 21.1 21.0 19.5 18.8 19.5	22.0 20.0 N/A 20.1 19.8 21.8 20.9 N/A 21.1 21.0 19.6 18.7 19.4	7.45 9.41 N/A 9.03 8.99 9.26 7.88 7.99 N/A 8.97 8.94 9.25 8.91 9.41	7.44 9.42 N/A 9.00 9.25 7.87 7.98 N/A 8.97 8.94 9.26 8.90 9.40	85.3 100.4 N/A 99.7 101.3 101.2 89.8 99.9 N/A 100.9 100.4 100.8 89.3 99.8	85.4 100.3 N/A 99.8 101.2 101.2 89.8 100.0 N/A 110.0 100.3 100.7 89.5 99.9	1.6 1.8 N/A 4.1 7.5 0.8 2.2 2.3 N/A 4.5 1.4 1.1 4.0 1.9	1.4 1.5 N/A 4.0 7.6 0.5 2.3 N/A 4.2 1.3 1.4 4.0 1.5 4.0 1.5 4.0	5 7.74 7.94 N/A 7.87 5 10.03 0 8.11 3 7.72 8 8.02 N/A 4 8.36 3 10.52 2 8.44 8.24 8 8.24 8 8.24	7.74 7.95 N/A 7.87 10.02 8.10 7.72 8.03 N/A 8.37 10.51 8.44 8.23 8.39	<1 1.6 N/A 2.0 10.0 1.1 <1 5.0 N/A 2.0 2.2 1.2 1.3 <1
4/1/2016 6/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 10:50 Cloudy 11:10 Cloudy 11:20 Sunny 11:57 Sunny N/A N/A 11:24 Sunny 11:00 Sunny 11:00 Sunny 11:07 Sunny 11:05 Sunny 11:10 Sunny 11:24 Sunny 11:05 Sunny 11:105 Sunny 11:15 Sunny 11:15 Sunny	C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C1 C2 C2 C3 C3	835110 835403 835642 835536 835501 835501 835501 835403 835642 835501 835501 835501 835501 835501 835501 835501 835501	824716 824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824716 824470 824386	0.04 0.02 N/A 0.8 0.05 0.02 N/A 0.04 0.04 0.05 0.02 0.02 0.04 0.04 0.02 N/A	0.02 0.01 N/A 0.025 0.01 0.02 0.01 N/A 0.025 0.01 0.02 0.01 N/A	22.1 20.1 N/A 20.1 19.7 21.8 20.8 N/A 21.1 21.0 19.5 18.8 19.5 N/A	22.0 20.0 N/A 20.1 19.8 21.8 20.9 N/A 21.1 21.0 19.6 18.7 19.4 N/A	7.45 9.41 N/A 9.03 8.99 9.26 7.88 7.99 N/A 8.97 8.94 9.25 8.91 9.41 N/A	7.44 9.42 N/A 9.00 9.25 7.87 7.98 N/A 8.97 8.94 9.26 8.90 9.40 N/A	85.3 100.4 N/A 99.7 101.3 101.2 89.8 99.9 N/A 100.9 100.4 100.8 89.3 99.8 N/A	85.4 100.3 N/A 99.8 101.2 101.2 89.8 100.0 N/A 110.0 100.3 100.7 89.5 99.9 N/A	1.6 1.8 N/A 4.1 7.5 0.8 2.2 2.3 N/A 4.5 1.4 1.1 4.0 1.9 N/A	1.4 1.5 N/A 4.0 7.6 0.9 2.3 N/A 4.2 1.3 4.0 1.5 N/A 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	5 7.74 7.94 N/A 7.87 5 10.03 0 8.11 3 7.72 8 8.02 N/A 4 8.36 3 10.52 2 8.44 8.24 0 8.38 N/A	7.74 7.95 N/A 7.87 10.02 8.10 7.72 8.03 N/A 8.37 10.51 8.44 8.23 8.39 N/A	<1 1.6 N/A 2.0 10.0 1.1 <1 5.0 N/A 2.0 2.2 1.2 1.3 <1 N/A
4/1/2016 6/1/2016 8/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 10:50 Cloudy 11:10 Cloudy 11:20 Sunny 11:57 Sunny N/A N/A 11:24 Sunny 11:00 Sunny 11:00 Sunny 11:07 Sunny 11:05 Sunny 11:15 Sunny 11:15 Sunny 11:15 Sunny 11:15 Sunny 11:15 Sunny	C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 C2 C2 C3 M1	835110 835403 835642 835536 835501 835501 835501 8355403 835642 835536 835501 835502 835501 835501 835502 8	824716 824470 824386 824827 824775 824648 824716 824470 824386 824827 824716 824648 824716 824470 824386 824827	0.04 0.02 N/A 0.8 0.05 0.02 N/A 0.04 0.05 0.02 0.04 0.04 0.02 N/A 0.02 N/A	0.02 0.01 N/A 0.025 0.01 0.02 0.01 N/A 0.025 0.01 0.02 0.01 N/A 0.4 0.02	22.1 20.1 N/A 20.1 19.7 21.8 20.8 N/A 21.1 21.0 19.5 18.8 19.5 N/A 19.0	22.0 20.0 N/A 20.1 19.8 20.9 N/A 21.1 21.0 19.6 18.7 19.4 N/A 19.1	7.45 9.41 N/A 9.03 8.99 9.26 7.88 7.99 N/A 8.97 8.94 9.25 8.91 9.41 N/A 9.33	7.44 9.42 N/A 9.00 9.25 7.87 7.98 N/A 8.97 8.94 9.26 8.90 9.40 N/A 9.33	85.3 100.4 N/A 99.7 101.3 101.2 89.8 99.9 N/A 100.9 100.4 100.8 89.3 99.8 N/A 100.5	85.4 100.3 N/A 99.8 101.2 101.2 89.8 100.0 N/A 110.0 100.3 100.7 89.5 99.9 N/A 100.5	1.6 1.8 N/A 4.1 7.5 0.8 2.2 2.3 N/A 4.5 1.4 1.1 4.0 1.9 N/A 3.8	1.4 1.5 N/A 4.0 7.6 0.9 2.2 N/A 4.2 1.2 1.2 1.2 1.2 N/A 1.2 1.2 1.2 N/A 3.6 N/A	5 7.74 0 7.94 N/A 7.87 5 10.03 0 8.11 3 7.72 3 8.02 N/A 4 4 8.36 3 10.52 2 8.44 0 8.38 N/A 8.38 N/A 8.38	7.74 7.95 N/A 7.87 10.02 8.10 7.72 8.03 N/A 8.37 10.51 8.44 8.23 8.39 N/A 8.43	<1 1.6 N/A 2.0 10.0 1.1 <1 5.0 N/A 2.0 2.2 1.2 1.3 <1 N/A 1.9
4/1/2016 6/1/2016 8/1/2016	11:50 Cloudy 11:38 Cloudy N/A N/A 12:05 Cloudy 10:50 Cloudy 10:50 Cloudy 11:10 Cloudy 11:20 Sunny 11:57 Sunny N/A N/A 11:24 Sunny 11:00 Sunny 11:00 Sunny 11:07 Sunny 11:05 Sunny 11:10 Sunny 11:24 Sunny 11:05 Sunny 11:07 Sunny 11:10 Sunny 11:25 Sunny 10:58 Sunny 11:15 Sunny 10:35 Sunny 10:13 Sunny	C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 C2 C3 M1 M2 C1 C2 C3 M1 M2 M3	835110 835403 835642 835536 835501 835501 835501 835503 8355403 8355403 835501 835536 835501 835510 835510 835510 8355403 835642 8355403 8355403	824716 824470 824386 824827 824775 824648 824470 824386 824827 824775 824648 824716 824470 824386 824775	0.04 0.02 N/A 0.8 0.05 0.02 N/A 0.02 N/A 0.05 0.02 0.04 0.04 0.02 N/A 0.02 N/A 0.05	0.02 0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.025 0.01 N/A 0.02 0.01 N/A 0.4 0.025	22.1 20.1 N/A 20.1 19.7 21.8 20.8 N/A 21.1 21.0 19.5 18.8 19.5 N/A 19.0 20.3	22.0 20.0 N/A 20.1 21.2 19.8 20.9 N/A 21.1 21.0 19.6 18.7 19.4 N/A 19.1 20.3	7.45 9.41 N/A 9.03 8.99 9.26 7.88 7.99 N/A 8.97 8.94 9.25 8.91 9.41 N/A 9.33 9.17	7.44 9.42 N/A 9.00 9.25 7.87 7.98 N/A 8.97 8.94 9.26 8.90 9.40 N/A 9.33 9.17	85.3 100.4 N/A 99.7 101.3 101.2 89.8 99.9 N/A 100.9 100.4 100.8 89.3 99.8 N/A 100.5 101.6	85.4 100.3 N/A 99.8 101.2 101.2 89.8 100.0 N/A 110.0 100.3 100.7 89.5 99.9 N/A 100.5 101.6	1.6 1.8 N/A 4.1 7.5 0.8 2.2 2.3 N/A 4.5 1.4 1.1 4.0 1.9 N/A 3.8 7.9	1.4 1.5 N/A 4.0 7.6 0.9 2.2 N/A 4.0 1.5 1.5 4.0 1.5 N/A 1.5 7.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	5 7.74 Q 7.94 N/A 7.87 5 10.03 Q 8.11 3 7.72 3 8.02 N/A 4 8 10.52 2 8.44 0 8.38 N/A 5 5 8.43 10.12 10.12	7.74 7.95 N/A 7.87 10.02 8.10 7.72 8.03 N/A 8.37 10.51 8.44 8.23 8.39 N/A 8.43 10.13	<1 1.6 N/A 2.0 10.0 1.1 <1 5.0 N/A 2.0 2.2 1.2 1.3 <1 N/A 1.9 <1

Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number	: Q150003aR150246
Job Number	: R150246
Issue Date	: 17/12/2015
Name of Applicant	: Acumen Environmental Engineering and Technologies Co., Ltd.
Address of Applicant	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.
Project Name	: CJO-3113-01
Sample Description	: SS test
Laboratory ID	: R150246/1-5
Date of Sampling	: 15/12/2015
Date Received	: 15/12/2015
Test Period	: 16/12/2015 – 16/12/2015
Test Required	: 1. Suspended Solids (SS)
Method Used	: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington Laboratory Manager **Chemical Division**

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number	: Q150003aR150246		
Job Number	: R150246		

Issue Date : 17/12/2015

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R150246/1	15/12/2015	C1	9.7
R150246/2	15/12/2015	C2	4.3
R150246/3	15/12/2015	M1	<1
R150246/4	15/12/2015	M2	17
R150246/5	15/12/2015	М3	<1

Note: 1. mg/L indicates milligram per liter

2. mg O2/ L indicates milligram oxygen per liter

3. < indicates less than.

4. > indicates more than.

5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number	: Q150003aR150250
Job Number	: R150250
Issue Date	: 18/12/2015
Name of Applicant	: Acumen Environmental Engineering and Technologies Co., Ltd.
Address of Applicant	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.
Project Name	: CJO-3113-02
Sample Description	: SS test
Laboratory ID	: R150250/1-5
Date of Sampling	: 17/12/2015
Date Received	: 17/12/2015
Test Period	: 18/12/2015 – 18/12/2015
Test Required	: 1. Suspended Solids (SS)
Method Used	: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington Laboratory Manager **Chemical Division**

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number	: Q150003aR15025		

Job Number : R150250

Issue Date : 18/12/2015

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R150250/1	17/12/2015	C1	5.3
R150250/2	17/12/2015	C2	12
R150250/3	17/12/2015	M1	4.6
R150250/4	17/12/2015	M2	25
R150250/5	17/12/2015	M3	<1

Note: 1. mg/L indicates milligram per liter

2. mg O₂/ L indicates milligram oxygen per liter

3. < indicates less than.

4. > indicates more than.

5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Acumen Laboratory & Testing Limited | Lot 12 Tam Kon Shan Road, Tsing Yi (N), Hong Kong

Tel: (852) 2333 6823 Fax: (852) 2333 1316

E-mail: htthui@acumenhk.com / jleung@acumenhk.com

Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number	: Q150003aR150256
Job Number	: R150256
Issue Date	: 24/12/2015
Name of Applicant	: Acumen Environmental Engineering and Technologies Co., Ltd.
Address of Applicant	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.
Project Name	: CJO-3113-03
Sample Description	: SS test
Laboratory ID	: R150256/1-5
Date of Sampling	: 19/12/2015
Date Received	: 19/12/2015
Test Period	: 19/12/2015 – 19/12/2015
Test Required	: 1. Suspended Solids (SS)
Method Used	: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington Laboratory Manager **Chemical Division**

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number	: Q150003aR150256

Job Number : R150256

Issue Date : 24/12/2015

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R150256/1	19/12/2015	C1	1.1
R150256/2	19/12/2015	C2	1.7
R150256/3	19/12/2015	M1	4.7
R150256/4	19/12/2015	M2	4.7
R150256/5	19/12/2015	M3	<1

Note: 1. mg/L indicates milligram per liter

2. mg O₂/ L indicates milligram oxygen per liter

3. < indicates less than.

4. > indicates more than.

5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

> Acumen Laboratory & Testing Limited | Lot 12 Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

E-mail: htthui@acumenhk.com / jleung@acumenhk.com

Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number	: Q150003aR150257
Job Number	: R150257
Issue Date	: 24/12/2015
Name of Applicant	: Acumen Environmental Engineering and Technologies Co., Ltd.
Address of Applicant	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.
Project Name	: CJO-3113-04
Sample Description	: SS test
Laboratory ID	: R150257/1-5
Date of Sampling	: 21/12/2015
Date Received	: 21/12/2015
Test Period	: 22/12/2015 – 22/12/2015
Test Required	: 1. Suspended Solids (SS)
Method Used	: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington Laboratory Manager **Chemical Division**

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number	: Q150003aR150257

Job Number : R150257

Issue Date : 24/12/2015

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R150257/1	21/12/2015	C1	2.0
R150257/2	21/12/2015	C2	<1
R150257/3	21/12/2015	M1	2.1
R150257/4	21/12/2015	M2	7.3
R150257/5	21/12/2015	M3	<1

1. mg/L indicates milligram per liter Note:

2. mg O₂/ L indicates milligram oxygen per liter

3. < indicates less than.

4. > indicates more than.

5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Acumen Laboratory & Testing Limited | Lot 12 Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

E-mail: htthui@acumenhk.com / jleung@acumenhk.com

Acumen Laboratory and Testing Limited Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number	: Q150003aR150287
Job Number	: R150287
Issue Date	: 05/01/2016
Name of Applicant	: Acumen Environmental Engineering and Technologies Co., Ltd.
Address of Applicant	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.
Project Name	: CJO-3113-05
Sample Description	: SS test
Laboratory ID	: R150287/1-5
Date of Sampling	: 23/12/2015
Date Received	: 23/12/2015
Test Period	: 24/12/2015 – 24/12/2015
Test Required	: 1. Suspended Solids (SS)
Method Used	: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager **Chemical Division**

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number	: Q150003aR150287

Job Number : R150287

Issue Date : 05/01/2016

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R150287/1	23/12/2015	C1	1.9
R150287/2	23/12/2015	C2	<1
R150287/3	23/12/2015	M1	1.7
R150287/4	23/12/2015	M2	4.0
R150287/5	23/12/2015	M3	<1

Note: 1. mg/L indicates milligram per liter

2. mg O2/ L indicates milligram oxygen per liter

3. < indicates less than.

4. > indicates more than.

5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Acumen Laboratory & Testing Limited | Lot 12 Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

htthui@acumenhk.com / jleung@acumenhk.com E-mail:

Fax: (852) 2333 1316 Tel: (852) 2333 6823

Test Report

Page 1 of 2

Report Number	: Q150003aR150288
Job Number	: R150288
Issue Date	: 05/01/2016
Name of Applicant	: Acumen Environmental Engineering and Technologies Co., Ltd.
Address of Applicant	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.
Project Name	: CJO-3113-06
Sample Description	: SS test
Laboratory ID	: R150288/1-5
Date of Sampling	: 26/12/2015
Date Received	: 26/12/2015
Test Period	: 27/12/2015 – 27/12/2015
Test Required	: 1. Suspended Solids (SS)
Method Used	: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington Laboratory Manager **Chemical Division**

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number	: Q150003aR150288	
Job Number	: R150288	
Issue Date	: 05/01/2016	

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R150288/1	26/12/2015	C1	<1
R150288/2	26/12/2015	C2	1.6
R150288/3	26/12/2015	M1	1.9
R150288/4	26/12/2015	M2	38
R150288/5	26/12/2015	M3	<1

Note: 1. mg/L indicates milligram per liter

2. mg O₂/ L indicates milligram oxygen per liter

3. < indicates less than.

4. > indicates more than.

5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

 Acumen Laboratory & Testing Limited | Lot 12 Tam Kon Shan Road, Tsing Yi (N), Hong Kong

 Tel:
 (852) 2333 6823

 Fax:
 (852) 2333 1316

 E-mail:
 <u>htthui@acumenhk.com</u> / jleung@acumenhk.com

Acumen Laboratory and Testing Limited Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number	: Q150003aR150289
Job Number	: R150289
Issue Date	: 05/01/2016
Name of Applicant	: Acumen Environmental Engineering and Technologies Co., Ltd.
Address of Applicant	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.
Project Name	: CJO-3113-07
Sample Description	: SS test
Laboratory ID	: R150289/1-5
Date of Sampling	: 28/12/2015
Date Received	: 28/12/2015
Test Period	: 29/12/2015 – 29/12/2015
Test Required	: 1. Suspended Solids (SS)
Method Used	: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington Laboratory Manager **Chemical Division**

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited Standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited Standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited Standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited Standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited Standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited Standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited Standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited Standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited Standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory approximation approxima Limited. The result(s) of this report are applied to the sample(s) submitted only.

Fax: (852) 2333 1316 Tel: (852) 2333 6823

Test Report

Page 2 of 2

Report Number	: Q150003aR150289

Job Number : R150289

: 05/01/2016 **Issue Date**

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R150289/1	28/12/2015	C1	1.9
R150289/2	28/12/2015	C2	<1
R150289/3	28/12/2015	M1	2.1
R150289/4	28/12/2015	M2	21
R150289/5	28/12/2015	М3	<1

1. mg/L indicates milligram per liter Note:

2. mg O2/ L indicates milligram oxygen per liter

3. < indicates less than.

4. > indicates more than.

5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number	: Q150003aR150301
Job Number	: R150301
Issue Date	: 14/01/2016
Name of Applicant	: Acumen Environmental Engineering and Technologies Co., Ltd.
Address of Applicant	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.
Project Name	: CJO-3113-08
Sample Description	: SS test
Laboratory ID	: R150301/1-5
Date of Sampling	: 30/12/2015
Date Received	: 30/12/2015
Test Period	: 31/12/2015 – 31/12/2015
Test Required	: 1. Suspended Solids (SS)
Method Used	: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington Laboratory Manager

Chemical Division

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory aclivities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number	: Q150003aR150301
Job Number	: R150301
Issue Date	: 14/01/2016

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R150301/1	30/12/2015	C1	1.5
R150301/2	30/12/2015	C2	2.3
R150301/3	30/12/2015	M1	2.0
R150301/4	30/12/2015	M2	1.9
R150301/5	30/12/2015	МЗ	1.3

Note: 1. mg/L indicates milligram per liter

2. mg O₂/ L indicates milligram oxygen per liter

3. < indicates less than.

4. > indicates more than.

5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

> Acumen Laboratory & Testing Limited | Lot 12 Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

E-mail: <u>htthui@acumenhk.com / jleung@acumenhk.com</u>

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number	: Q150003aR160002
Job Number	: R160002 : 14/01/2016
Issue Dale	. 14/01/2010
Name of Applicant	: Acumen Environmental Engineering and Technologies Co., Ltd.
Address of Applicant	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.
Project Name	: CJO-3113-09
Sample Description	: SS test
Laboratory ID	: R160002/1-5
Date of Sampling	: 02/01/2016
Date Received	: 02/01/2016
Test Period	: 02/01/2016 – 02/01/2016
Test Required	: 1. Suspended Solids (SS)
Method Used	: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington Laboratory Manager Chemical Division

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number	: Q150003aR160002

Job Number : R160002

Issue Date : 14/01/2016

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R160002/1	02/01/2016	C1	<1
R160002/2	02/01/2016	C2	1.2
R160002/3	02/01/2016	M1	1.3
R160002/4	02/01/2016	M2	<1
R160002/5	02/01/2016	M3	1.2

Note: 1. mg/L indicates milligram per liter

2. mg O₂/ L indicates milligram oxygen per liter

3. < indicates less than.

4. > indicates more than.

5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Fax: (852) 2333 1316 Tel: (852) 2333 6823

Test Report

Page 1 of 2

Report Number	: Q150003aR160004
Job Number	: R160004
Issue Date	: 14/01/2016
Name of Applicant	: Acumen Environmental Engineering and Technologies Co., Ltd.
Address of Applicant	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.
Project Name	: CJO-3113-10
Sample Description	: SS test
Laboratory ID	: R160004/1-5
Date of Sampling	: 04/01/2016
Date Received	: 04/01/2016
Test Period	: 05/01/2016 – 05/01/2016
Test Required	: 1. Suspended Solids (SS)
Method Used	: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington Laboratory Manager **Chemical Division**

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number	: Q150003aR160004
Job Number	: R160004

Issue Date : 14/01/2016

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L.
R160004/1	04/01/2016	C1	<1
R160004/2	04/01/2016	C2	1.6
R160004/3	04/01/2016	M1	2.0
R160004/4	04/01/2016	M2	. 10
R160004/5	04/01/2016	M3	1.1

Note:

1. mg/L indicates milligram per liter 2. mg O₂/ L indicates milligram oxygen per liter

3. < indicates less than.

4. > indicates more than.

5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited, The result(s) of this report are applied to the sample(s) submitted only.

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number	: Q150003aR160016
Job Number	: R160016
Issue Date	: 14/01/2016
Name of Applicant	: Acumen Environmental Engineering and Technologies Co., Ltd.
Address of Applicant	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.
Project Name	: CJO-3113-11
Sample Description	: SS test
Laboratory ID	: R160016/1-5
Date of Sampling	: 06/01/2016
Date Received	: 06/01/2016
Test Period	: 07/01/2016 – 07/01/2016
Test Required	: 1. Suspended Solids (SS)
Method Used	: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington Laboratory Manager Chemical Division

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number	:Q150003aR160016
Job Number	: R160016

Issue Date : 14/01/2016

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R160016/1	06/01/2016	C1	<1
R160016/2	06/01/2016	C2	5.0
R160016/3	06/01/2016	M1	2.0
R160016/4	06/01/2016	M2	2.2
R160016/5	06/01/2016	M3	1.2

Note: 1. mg/L indicates milligram per liter

2. mg O2/ L indicates milligram oxygen per liter

3. < indicates less than. 4. > indicates more than.

5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.
Acumen Laboratory and Testing Limited Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong

Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number	: Q150003aR160023
Job Number	: R160023
Issue Date	: 14/01/2016
Name of Applicant	: Acumen Environmental Engineering and Technologies Co., Ltd.
Address of Applicant	: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.
Project Name	: CJO-3113-12
Sample Description	: SS test
Laboratory ID	: R160023/1-5
Date of Sampling	: 08/01/2016
Date Received	: 08/01/2016
Test Period	: 09/01/2016 – 09/01/2016
Test Required	: 1. Suspended Solids (SS)
Method Used	: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington Laboratory Manager **Chemical Division**

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Acumen Laboratory & Testing Limited | Lot 12 Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316 htthui@acumenhk.com / jleung@acumenhk.com E-mail:

Acumen Laboratory and Testing Limited Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number	: Q150003aR160023
Job Number	: R160023

Issue Date : 14/01/2016

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R160023/1	08/01/2016	C1	1.3
R160023/2	08/01/2016	C2	<1
R160023/3	08/01/2016	M1	1.9
R160023/4	08/01/2016	M2	<1
R160023/5	08/01/2016	М3	1.1

Note:

1. mg/L indicates milligram per liter 2. mg O₂/ L indicates milligram oxygen per liter 3. < indicates less than.

4. > indicates more than.

5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Appendix K Event/Action Plan

Air Quality

EVENT	ACTION				
EVENI	ET	IEC	ER	CONTRACTOR	
ACTION LEVEL					
1. Exceedance for one	1. Inform the Contractor, IEC	1. Check monitoring data	1. Confirm receipt of	1. Identify source(s),	
sample	and ER;	submitted by the ET;	notification of exceedance	investigate the causes of	
	2. Discuss with the	2. Check Contractor's	in writing.	exceedance and propose	
	Contractor on the remedial	working method; and		remedial measures;	
	measures required;	3. Review and advise the ET		2. Implement remedial	
	3. Repeat measurement to	and ER on the effectiveness		measures; and	
	confirm findings; and	of the proposed remedial		3. Amend working methods	
	4. Increase monitoring	measures.		agreed with the ER as	
	frequency.			appropriate.	
2. Exceedance for two or	1. Inform the Contractor, IEC	1. Check monitoring data	1. Confirm receipt of	1. Identify source and	
more consecutive samples	and ER;	submitted by the ET;	notification of exceedance	investigate the causes	
	2. Discuss with the ER and	2. Check Contractor's	in writing;	of exceedance;	
	Contractor on the remedial	working method; and	2. Review and agree on the	2. Submit proposals for	
	measures required;	3. Review and advise the ET	remedial measures proposed	remedial measures to	
	3. Repeat measurements to	and ER on the effectiveness	by the Contractor; and	the ER with a copy to	
	confirm findings;	of the proposed remedial	3. Supervise implementation	ET and IEC within three	
	4. Increase monitoring	measures.	of remedial measures.	working days of notification;	
	frequency to daily;			3. Implement the agreed	
	5. If exceedance continues,			proposals; and	

	arrange meeting with the			4. Amend proposal as
	IEC, ER and Contractor; and			appropriate.
	6. If exceedance stops,			
	cease additional monitoring.			
LIMIT LEVEL				
1. Exceedance for one	1. Inform the Contractor,	1. Check monitoring data	1. Confirm receipt of	1. Identify source(s) and
sample	IEC, EPD and ER;	submitted by the ET;	notification of exceedance	investigate the causes
	2. Repeat measurement to	2. Check the Contractor's	in writing;	of exceedance;
	confirm findings;	working method;	2. Review and agree on the	2. Take immediate action to
	3. Increase monitoring	3. Discuss with the ET, ER	remedial measures proposed	avoid further exceedance;
	frequency to daily; and	and Contractor on possible	by the Contractor; and	3. Submit proposals for
	4. Discuss with the ER, IEC	remedial measures; and	3. Supervise implementation	remedial measures to ER
	and contractor on the	4. Review and advise the ER	of remedial measures.	with a copy to ET and IEC
	remedial measures and	and ET on the effectiveness		within three working days of
	assess the effectiveness.	of Contractor's remedial		notification;
		measures.		4. Implement the agreed
				proposals; and
				5. Amend proposal if
				appropriate.
2. Exceedance for two or	1. Notify Contractor, IEC,	1. Check monitoring data	1. Confirm receipt of	1. Identify source(s) and
more consecutive samples	EPD and ER;	submitted by the ET;	notification of exceedance	investigate the causes of
	2. Repeat measurement to	2. Check the Contractor's	in writing;	exceedance;

confirm findings;	working method;	2. In consultation with the ET	2. Take immediate action
3. Increase monitoring	3. Discuss with ET, ER, and	and IEC, agree with the	to avoid further exceedance;
frequency to daily;	Contractor on the potential	Contractor on the remedial	3. Submit proposals for
4. Carry out analysis of the	remedial measures; and	measures to be	remedial measures to the ER
Contractor's working	4. Review and advise the ER	implemented;	with a copy to the IEC and
procedures with the ER to	and ET on the effectiveness	3. Supervise the	ET within three working days
determine possible mitigation	of Contractor's remedial	implementation of remedial	of notification;
to be implemented;	measures.	measures; and	4. Implement the agreed
5. Arrange meeting with the		4. If exceedance continues,	proposals;
IEC and ER to discuss the		consider what portion of the	5. Revise and resubmit
remedial measures to be		work is responsible and	proposals if problem still not
taken;		instruct the Contractor to	under control; and
6. Review the effectiveness		stop that portion of work	6. Stop the relevant portion
of the Contractor's remedial		until the exceedance is	of works as determined by
measures and keep IEC,		abated.	the ER until the exceedance
EPD and ER informed of the			is abated.
results; and			
7. If exceedance stops,			
cease additional monitoring.			

Noise

	ACTION				
	ET	IEC	ER	CONTRACTOR	
ACTION LEVEL	1. Notify the Contractor, IEC	1. Review the investigation	1. Confirm receipt of	1. Investigate the complaint	
	and ER;	results submitted by the	notification of complaint in	and propose remedial	
	2. Discuss with the ER and	Contractor; and	writing;	measures;	
	Contractor on the remedial	2. Review and advise the ET	2. Review and agree on the	2. Report the results of	
	measures required; and	and ER on the effectiveness	remedial measures proposed	investigation to the IEC, ET	
	3. Increase monitoring	of the remedial measures	by the Contractor; and	and ER;	
	frequency to check mitigation	proposed by the Contractor.	3. Supervise implementation	3. Submit noise mitigation	
	effectiveness.		of remedial measures.	proposals to the ER with	
				copy to the IEC and ET	
				within three working days of	
				notification; and	
				4. Implement noise mitigation	
				proposals.	
LIMIT LEVEL	1. Notify the Contractor, IEC,	1. Check monitoring data	1. Confirm receipt of	1. Identify source and	
	EPD and ER;	submitted by the ET;	notification of failure in	investigate the causes of	
	2. Repeat measurement to	2. Check the Contractor's	writing;	exceedance;	
	confirm findings;	working method;	2. In consultation with the ET	2. Take immediate action to	
	3. Increase monitoring	3. Discuss with the ER, ET	and IEC, agree with the	avoid further exceedance;	
	frequency;	and Contractor on the	Contractor on the remedial	3. Submit proposals for	
	4. Carry out analysis of	potential remedial measures;	measures to be	remedial measures to the ER	

Contractor's working	and	implemented:	with copy to the IEC and ET
procedures to determine	4. Review and advise the ET	3. Supervise the	within three working days of
possible mitigation to be	and ER on the effectiveness	implementation of remedial	notification;
implemented;	of the remedial measures	measures; and	4. Implement the agreed
5. Arrange meeting with the	proposed by the Contractor.	4. If exceedance continues,	proposals;
IEC and ER to discuss the		consider what portion of the	5. Revise and resubmit
remedial measures to be		work is responsible and	proposals if problem still not
taken;		instruct the Contractor to	under control; and
6. Review the effectiveness		stop that portion of work until	6. Stop the relevant portion
of Contractor's remedial		the exceedance is abated.	of works as determined by
measures and keep IEC,			the ER until the exceedance
EPD and ER informed of the			is abated.
results; and			
7. If exceedance stops,			
cease			

Water Quality

	ACTION				
EVENI	ET Leader	IEC	ER	CONTRACTOR	
Action level being exceeded	• Repeat in situ	• Discuss with ET and	• Discuss with IEC on the	 Inform the ER and 	
by one sampling day	measurement to	Contractor on the	proposed mitigation	confirm notification of	
	confirm findings;	mitigation measures;	measures;	the non-compliance in	
	Identify reasons for	Review proposals on	Make agreement on the	writing;	
	non-compliance and	mitigation measures	mitigation measures to	Rectify unacceptable	
	source(s) of impact;	submitted by	be implemented.	practice;	
	• Inform IEC and	Contractor and advise	Assess the	• Check all plant and	
	Contractor;	the ER accordingly;	effectiveness of the	equipment;	
	• Check monitoring data,	Assess the	implemented mitigation	• Consider changes of	
	all plant, equipment	effectiveness of the	measures.	working methods;	
	and Contractor's	Implemented mitigation		• Discuss with ET and	
	working methods;	measures.		IEC and propose	
	Discuss mitigation			mitigation measures to	
	measures with IEC and			IEC and ER;	
	Contractor;			• Implement the agreed	
	• Repeat measurement			mitigation measures.	
	on next day of				
	exceedance.				
Action level being exceeded	• Repeat in situ	• Discuss with ET and	• Discuss with IEC on the	• Inform the ER and	
by more than one	measurement to	Contractor on the	proposed mitigation	confirm notification of	

consecutive sampling day confirm findings; mitigation measures; measures; the non-comp	pliance in
 Identify reasons for Review proposals on Make agreement on the writing; 	
non-compliance and mitigation measures mitigation measures to • Rectify unacc	ceptable
source(s) of impact; submitted by be implemented; practice;	
Inform IEC and Contractor and advise Assess the Check all pla	int and
Contractor; the ER accordingly; effectiveness of the equipment;	
Check monitoring data, Assess the implemented mitigation Consider cha	anges of
all plant, equipment effectiveness of the measures. working meth	nods;
and Contractor's implemented mitigation	ET and
working methods; measures. IEC and prop	oose
Discuss mitigation mitigation	easures to
measures with IEC and IEC and ER	within
Contractor; three working	g days;
Ensure mitigation Implement th	e agreed
measures are mitigation me	easures.
implemented;	
Prepare to increase the	
monitoring frequency to	
daily;	
Repeat measurement	
on next day of	
exceedance.	

Limit level being	• Repeat in situ	• Discuss with ET and	• Discuss with IEC, ET	 Inform the ER and
exceeded by one	measurement to	Contractor on the	and Contractor on the	confirm notification of
sampling day	confirm findings;	mitigation measures;	proposed mitigation	the non-compliance in
	 Identify reasons for 	Review proposals on	measures;	writing;
	non-compliance and	mitigation measures	 Request Contractor to 	Rectify unacceptable
	source(s) of impact;	submitted by	critically review the	practice;
	Inform IEC Contractor	Contractor and advise	working methods;	 Check all plant and
	and EPD;	the ER accordingly;	• Make agreement on the	equipment;
	• Check monitoring data,	Assess the	mitigation measures to	• Consider changes of
	all plant, equipment	effectiveness of the	be implemented;	working methods;
	and Contractor's	implemented mitigation	• Assess the	• Discuss with ET, IEC
	working methods;	measures.	effectiveness of the	and ER and propose
	 Discuss mitigation 		implemented mitigation	mitigation measures to
	measures with IEC, ER		measures.	IEC and ER within
	and Contractor;			three working days;
	Ensure mitigation			 Implement the agreed
	measures are			mitigation measures.
	implemented;			
	Increase the monitoring			
	frequency to daily until			
	no exceedance of Limit			
	level.			

Limit level being	• Repeat in situ	• Discuss with ET and	• Discuss with IEC, ET	Inform the ER and
exceeded by more	measurement to	Contractor on the	and Contractor on the	confirm notification of
than one	confirm findings;	mitigation measures;	proposed mitigation	the non-compliance in
consecutive	 Identify reasons for 	Review proposals on	measures;	writing;
sampling day	non-compliance and	mitigation measures	Request Contractor to	Rectify unacceptable
	source(s) of impact;	submitted by	critically review the	practice;
	Inform IEC Contractor	Contractor and advise	working methods;	Check all plant and
	and EPD;	the ER accordingly;	Make agreement on the	equipment;
	• Check monitoring data,	Assess the	mitigation measures to	Consider changes of
	all plant, equipment	effectiveness of the	be implemented;	working methods;
	and Contractor's	implemented mitigation	Assess the	• Discuss with ET, IEC
	working methods;	measures.	effectiveness of the	and ER and propose
	Discuss mitigation		implemented mitigation	mitigation measures to
	measures with IEC, ER		measures;	IEC and ER within
	and Contractor;		• Consider and instruct, if	three working days;
	Ensure mitigation		necessary, the	Implement the agreed
	measures are		Contractor to slow	mitigation measures;
	implemented; Increase		down or to stop all or	• As directed by the ER,
	the monitoring		part of the construction	to slow down or to stop
	frequency to daily until		activities until no	all or part of the
	no exceedance of Limit		exceedance of Limit	construction activities.
	level for two		level.	
	consecutive days.			