

浩科環境工業有限公司

Acumen Environmental Engineering & Technologies Co., Ltd.

香港青衣(北)担杆山路11號地段

Your ref:

Our ref: CJO-3113

By hand

Chief Engineer /Project Management Water Supplies Department 46/F., Immigration Tower 7 Gloucester Road, Wanchai (Attn: Mr. H C Wong, Heinz)

14 August, 2020

Dear Sir,

In-Situ Reprovisioning of Sha Tin Water Treatment Works – South Works Environmental Permit EP-494/2015
Submission of 53rd monthly EM&A Report

In accordance with the Condition 3.4 of the Environmental Permit (No. EP-494/2015), we submit herewith 5 hard copies and 2 electronic copies of the 53rd monthly Environmental Monitoring and Audit (EM&A) Report (Rev.0) for your processing. I certified and confirmed the submission of this monthly EM&A Report had complied with the requirements as set out in the approved Environmental Monitoring and Audit (EM&A) Manual of the EIA Report (Register No.: AEIAR-187/2015).

Yours faithfully,

Ir Leung, Jacky, C. H.

Environmental Team Leader

c.c. Independent Environmental Checker

AECOM 8/F Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, Hong Kong 香港新界沙田鄉事會路 138 號 新城市中央廣場第 2 座 8 樓

www.aecom.com

+852 3922 9000 tel +852 3922 9797 fax

Your Ref:

Our Ref:

60479142/C/fyw2008141

By Hand & By Email

Chief Engineer/Project Management Water Supplies Department 46/F., Immigration Tower 7 Gloucester Road, Wanchai

Attn: Mr. Edmund Huen

14 August 2020

Dear Sir,

Contract No.3/WSD/15q

In-situ reprovisioning of Sha Tin Water Treatment Works (South Works) Advance Works Submission of 53rd Monthly EM&A Report for July 2020

Reference is made to Environmental Team (ET)'s 53rd Monthly EM&A Report for July 2020 (Rev. 0) submitted on 14 August 2020.

In accordance with the Condition 3.4 of the Environmental Permit (No.EP-494/2015), I verified and confirmed the submission of this Monthly EM&A Monitoring Report as compiled with the requirements as set in the approved Environmental Monitoring and Audit (EM&A) Manual of the EIA Report (Register No.: AEIAR-187/2015).

Should you have any queries, please feel free to contact the undersigned at 3922 9366.

Yours faithfully, AECOM Asia Co. Ltd.

Y W Fung

Independent Environmental Checker

c.c. Environmental Team Leader

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (NO. 53)

FOR

CONTRACT NO. 3/WSD/15 IN-SITU REPROVISIONING OF SHA TIN WATER TREATMENT WORKS – SOUTH WORKS

(Rev. 0)

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (NO. 53) –

FOR CONTRACT NO. 3/WSD/15 In-situ Reprovisioning of Sha Tin Water Treatment Works – South Works

	Name	Signature
Prepared by	Mr. Ng Ricky	Teky.
Reviewed by	Mr. Wong, Vega, T. L.	19
Approved & Certified by	Ir Leung, Jacky, C. H. Environmental Team Leader (ETL)	
Verified & Confirmed by	Mr. Fung, Y. W. Independent Environmental Checker (IEC)	y

TABLE OF CONTENTS

EXECUTIVE SUMMARY

- 1. Introduction
 - 1.1 PROJECT BACKGROUND
 - 1.2 ORGANIZATION STRUCTURE
 - 1.3 SCOPE OF REPORT
 - 1.4 SUMMARY OF CONSTRUCTION WORKS
- 2. EM&A RESULTS
 - 2.1 EM&A BACKGROUND
 - 2.2 AIR QUALITY MONITORING
 - 2.3 Noise Monitoring
 - 2.4 WATER QUALITY MONITORING
 - 2.5 ECOLOGY
 - 2.6 WASTE MANAGEMENT STATUS
 - 2.7 DELIVERY, STORAGE AND HANDLING OF CHLORINE
 - 2.8 EM&A SITE INSPECTIONS
 - 2.9 Environmental Licenses and Permits
 - 2.10 IMPLEMENTATION OF ENVIRONMENTAL MITIGATION MEASURES
 - 2.11 SUMMARY IF EXCEEDANCES OF ENVIRONMENTAL QUALITY PERFORMANCE LIMIT
 - 2.12 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

- 2.13 DATA MANAGEMENT AND DATA QA/QC CONTROL
- 3. FUTURE KEY ISSUES
 - 3.1 CONSTRUCTION PROGRAMME FOR COMING MONTHS
 - 3.2 KEY ISSUES FOR THE COMING MONTH
 - 3.3 MONITORING SCHEDULE FOR THE COMING MONTH
- 4. CONCLUSIONS AND RECOMMENDATIONS
 - 4.1 SUMMARY

LIST OF APPENDICES

Appendix A	General Layout Plan				
Appendix B	Project Organization				
Appendix C	Latest Construction Programme				
Appendix D	Location of Construction Activities				
Appendix E	Environmental Sensitive Receivers in the Vicinity of the Project				
Appendix F	Summary of Action and Limit Levels				
Appendix G	Event Action Plan				
Appendix H	Impact Monitoring Schedules				
Appendix I	Location Plan of Air Quality Monitoring Stations				
Appendix J	Calibration Certificates (Air monitoring)				
Appendix K	Impact Air Quality Monitoring Results and Graphical Presentation				
Appendix L	Location Plan of Noise Monitoring Station				
Appendix M	Calibration Certificates (Noise)				
Appendix N	Impact Noise Monitoring Results and Graphical Presentation				
Appendix O	Location Plan of Water Quality Monitoring Station				
Appendix P	Calibration Certificate (Water Quality)				
Appendix Q	The Certification of Laboratory with HOKLAS accredited Analytical Tests				
Appendix R	Impact Water Quality Monitoring Results				
Appendix S	Impact Monitoring report for Ecology				
Appendix T	Monthly Summary of Waste Flow Table				
Appendix U	Implementation Schedule of Environmental Mitigation Measures (EMIS)				
Appendix V	Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions				
Appendix W	Tentative schedule for environmental monitoring				
	1				

EXECUTIVE SUMMARY

- A.1 Pursuant to the Environmental Impact Assessment (EIA) Ordinance, the Director of Environmental Protection (DEP) granted the Environmental Permit (No. EP- 494/2015) to the Water Supplies Department (WSD) to construct and operate the designated project for "In-situ Reprovisioning of Sha Tin Water Treatment Works South Works" ("The Project").
- A.2 Under Contract No. 3/WSD/15, Ming Hing Ming Hing Civil Vasteam Joint Venture (MMVJV) is commissioned by WSD to undertake the construction of the advance works while AECOM Asia Company Limited was appointed by WSD as the Engineer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, Acumen Environmental Engineering & Technologies Company Limited was appointed by MMVJV as the Environmental Team (ET). AECOM Asia Company Limited was also employed by the WSD as the Independent Environmental Checker (IEC).
- A.3 The construction phase of the Contract commenced on 30 October 2015 for completion by 2021. The impact monitoring of the EM&A programme, including air quality, noise, water quality monitoring as well as environmental site inspections, commenced on 17 February 2016.
- A.4 This is the 53rd monthly Environmental Monitoring and Audit Report for this Contract covering the period from 1 July 2020 to 31 July 2020 (the Reporting Period). As informed by the Contractor, major activities in the reporting period included:
 - Architectural Builders Works and Finishes at Logistic Center
 - Architectural Builders Works and Finishes at Alum Tank & Hydro Turbine House
 - Testing and Commissioning Works at Logistic Center
 - Backfilling on Box Culvert for Construction of Carriageway at South Access Entrance
- A.5 Environmental monitoring activities under the EM&A program in this reporting period are summarized below

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air	1-Hour TSP	18
Noise	$L_{eq(30mins)}$ Daytime	6
Water	Water Sampling	14
Quality	water Sampling	14
Inspection /	ET Regular Environmental Site Inspection	5
Audit	IEC Monthly Environmental Site Audit	1

- A.6 No exceedance of air quality, noise and water quality monitoring were recorded in this reporting period.
- A.7 No environmental complaint were received via EPD in this reporting period.
- A.8 No notification of any summons and successful prosecutions was received in this reporting period.
- A.9 No reporting change was made in this reporting period.
- A.10 There was no EPD site inspection conducted in the reporting period.

- A.11 As informed by the Contractor, the major works for this Project in July 2020 will be:
 - Architectural Builders Works and Finishes at Logistic Center
 - Architectural Builders Works and Finishes at Alum Tank & Hydro Turbine House
 - Testing and Commissioning Works at Logistic Center
 - Backfilling on Box Culvert for Construction of Carriageway at South Access Entrance
- A.12 EM&A monitoring for the 53rd reporting period has been completed. The 54th monthly EM&A report will cover the period from 1 August 2020 to 31 August 2020.

I. INTRODUCTION

1.1. PROJECT BACKGROUND

- 1.1.1 Pursuant to the Environmental Impact Assessment (EIA) Ordinance, the Director of Environmental Protection (DEP) granted the Environmental Permit (No. EP- 494/2015) on 28 January 2015, subsequent to approval of the EIA Report (Register No. AEIAR-187/2015), to the Water Supplies Department (WSD) to construct and operate the designated project for "In-situ Reprovisioning of Sha Tin Water Treatment Works South Works" ("The Project").
- 1.1.2 Under Contract No. 3/WSD/15, Ming Hing Ming Hing Civil Vasteam Joint Venture (MMVJV) is commissioned by WSD to undertake the construction of the advance works while AECOM Asia Company Limited was appointed by WSD as the Engineer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, Acumen Environmental Engineering & Technologies Company Limited was appointed by MMVJV as the Environmental Team (ET). AECOM Asia Company Limited was also employed by the WSD as the Independent Environmental Checker (IEC).
- 1.1.3 The construction phase of the Contract commenced on 30 October 2015 for completion by 28 January 2021. The general layout plan of the Contract components is presented in **Appendix A**.
- 1.1.4 ET conducted below baseline monitoring at designated locations according to the EM&A Manual.
 - Air quality and noise: from 21 December 2015 to 3 January 2016.
 - Water quality: from 15 December 2015 to 8 January 2016.
- 1.1.5 Baseline Monitoring Report was issued by the ET and verified by the IEC on 27 January 2016 and submitted to the EPD on 2 February 2016.
- 1.1.6 The impact monitoring of the EM&A programme, including air quality, noise, water quality monitoring as well as environmental site inspections, commenced on 17 February 2016.

1.2. ORGANIZATION STRUCTURE

1.2.1 The organization structure of the Contract is shown in **Appendix B**. Contact details of key personnel are summarized in below table:

Table 1-1: Key Personnel Contact for Environmental Works

Party	Position	Name	Telephone
Water Supplies	Engineer / Project	Mr. Chiu, Aletta C. M.	2829 5653
Department	Management		
AECOM	Senior Resident Engineer	Mr. Ng, Derek, K. H.	9717 1420
	(Civil)		
	Independent	Mr. Fung, Y. W.	3922 9366
	Environmental Checker		
	Deputy Independent	Ms. Lam, Lemon, M.	3922 9381
	Environmental Checker	C.	
Ming Hing - Ming	Project Manager	Mr. Lam, Larry, M. W.	6478 0501
Hing Civil - Vasteam	Site Agent	Mr. To, Eros, W. H.	9223 9590
Joint Venture			
Acumen Env. Eng. &	Project Director	Ir Dr. Lam, Gabriel, C.	2333 6823
Tech. Co. Ltd.		K.	
	Environmental Team	Ir Leung, Jacky, C. H.	9060 2368
	Leader		
	Ecologist	Mr. Liu, Vincent, W. L.	6505 5827

1.3. SCOPE OF REPORT

- 1.3.1 This is the 53rd monthly EM&A Report under the Contract No. 3/WSD/15 In-situ Reprovisioning of Sha Tin Water Treatment Works (South Works) Advance Works covering the period from 1 July 2020 to 31 July 2020 (the reporting period).
- 1.3.2 The EM&A requirements for impact monitoring are set out in the approved EM&A Manual. Environmental aspects such as the construction air quality, noise, water quality and ecology were identified as the key issues during the construction phase of the Project.

1.4. SUMMARY OF CONSTRUCTION WORKS

- 1.4.1 The construction phase of the Contract commenced on 30 October 2015. Latest construction programmes is shown in **Appendix C**.
- 1.4.2 As informed by the Contractor, details of the major works carried out in this reporting month are listed below:
 - Architectural Builders Works and Finishes at Logistic Center
 - Architectural Builders Works and Finishes at Alum Tank & Hydro Turbine House
 - U-channel erection at North Circular Road
 - Construction of carriageway at North Circular Road
 - E&M works at Flowmeter house and valve chamber at M123
 - Backfilling on box culvert for construction of carriageway at South access entrance
- 1.4.3 The locations of the construction activities are shown in **Appendix D**. The Environmental Sensitive Receivers in the vicinity of the Project are shown in **Appendix E**.

2. EM&A RESULTS

2.1. EM&A BACKGROUND

2.1.1 The EM&A programme required environmental monitoring for air quality, noise, water quality and ecology as well as environmental site inspections for air quality, noise, water quality, waste management and ecology impacts. The EM&A requirements and related findings for each component are summarized in the following sections. A summary of impact monitoring programme is presented in Table 2-1.

Table 2-1: Summary of Impact Monitoring Programme

Impact Monitoring	Sampling Parameter	Frequency
Air Quality	1-hour TSP	3 times in every 6 days when documented and valid complaint was received
Noise	$L_{\rm eq~30~min},L_{\rm eq~5~min},L_{10}$ and L_{90} as reference.	1 time per week: ◆ L _{eq 30 min} for normal weekdays from 0700 - 1900;
Water Quality	Duplicate in-situ measurements: Dissolved Oxygen (DO), Turbidity and pH; HOKLAS-accredited laboratory analysis: Suspended Solids (SS).	3 days per week. The interval between 2 monitoring days will be more than 36 hours.
Ecology	-	A detailed at least 6 years post-planting monitoring and maintenance programme

Remark: Sampling Depth for Water Quality:

- (i) 3 depths: 1m below water surface, 1m above bottom and at mid-depth when the water depth exceeds 6m.
- (ii) If the water depth is between 3m and 6m, 2 depths: 1m below water surface and 1m above bottom.
- (iii) If the water depth is less than 3m, 1 sample at mid-depth is taken
- 2.1.2 A summary of the monitoring parameters is presented in Table 2-2.

Table 2-2: Summary of the monitoring parameters of EM&A Requirements

Environmental Issue	Parameter			
Air Quality	1-hour TSP Monitoring by Real-Time Portable Dust Meter			
Noise	Leq (30min) during normal working hours			
	In-situ measurement			
	 Dissolved Oxygen (mg/L); 			
	 Dissolved Oxygen Saturation (%); 			
	• Turbidity (NTU);			
Water Quality	• pH value;			
	• Water depth (m); and			
	• Temperature (°C)			
	Laboratory analysis			
	• Suspended Solids (mg/L)			

- 2.1.3 Summary of determination of Action/Limit (A/L) Levels for air quality, noise and water quality are presented in **Appendix F**.
- 2.1.4 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in **Appendix G**.
- 2.1.5 The impact monitoring schedules are presented in **Appendix H** and the monitoring results are detailed in the following sub-sections.

2.2. AIR QUALITY MONITORING

- 2.2.1 Impact monitoring for air quality had been carried out in accordance with Sections 2.29 of the approved EM&A Manual to determine the ambient 1-hour total suspended particulates (TSP) levels at the monitoring locations. 1-hour TSP sampling should be undertaken at least 3 times in every six-days at each monitoring station when the highest dust impacts are expected. General meteorological conditions (wind speed, direction and precipitation) and notes regarding any significant adjacent dust producing sources had also been recorded throughout the impact monitoring period.
- 2.2.2 Two (2) designated monitoring stations, AM1 located at the L Louey and AM2 located at Hin Keng Estate Hin Wan House, were recommended in Section 2.18 of the approved EM&A Manual. In order to identify and seek for the access of the air monitoring locations designated in the EM&A Manual, site visit was conducted among ET, IEC and EPD.
- 2.2.3 During the site visit, all designated air monitoring locations were identified. Details of air monitoring stations are described in Table 2-3. The location plan of air quality monitoring stations is shown in **Appendix I**.

Table 2-3: Location of the Air Quality Monitoring Stations

Air Quality Monitoring Station	Air Sensitive Receiver (ASR) ID in the approved EIA Report	Dust Monitoring Station
AM1	ASR2	The L Louey (at a platform level of about 5m above road level nearby)
AM2	ASR4	Hin Keng Estate - Hin Wan House (at the roof top)

2.2.4 The monitoring equipment using for the air quality impact monitoring was proposed by ET and verified by IEC. 1-hour TSP levels had been measured with direct reading dust meter. It has been demonstrated its capability in achieving comparable results with high volume sampling method as set out in the Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50). The details of equipment using for impact monitoring are listed in Table 2-4 as below.

Table 2-4: Air Quality Impact Monitoring Equipment

Equipment	Model
Portable dust meter – 1-hour TSP	Sensidyne Model 80570
Portable Wind Speed Indicator	The Kestrel Pocket Weather Meter

- 2.2.5 The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and

- A built-in data logger compatible with based program to facilitate data collection, analysis and reporting.
- 2.2.6 The 1-hour TSP meter was calibrated by the manufacturer prior to purchasing. Zero response of the instrument was checked before and after each monitoring event. Operation of the 1-hour TSP meter followed manufacturer's Operation and Service Manual. A valid calibration certificate is attached in **Appendix J**.
- 2.2.7 In this Reporting Period, a total of six (6) sampling days perform air quality monitoring at the two designated locations. The results for 1-hour TSP are summarized in Table 2-5 and Table 2-6.

Table 2-5: Summary of 1-hour TSP Monitoring Results – AM1

	1-hour TSP (μg/m³)					
Date	Weather	Start	End	1 st	2 nd	3 rd
		Time	Time	Measurement	Measurement	Measurement
4/7/2020	Fine	09:42	12:42	54	43	52
10/7/2020	Sunny	09:25	12:25	61	55	49
15/7/2020	Sunny	13:10	16:10	48	53	53
20/7/2020	Fine	13:45	16:45	55	64	51
24/7/2020	Sunny	09:35	12:35	53	58	60
29/7/2020	Cloudy	09:17	12:17	55	60	58
	Average				54.6	
Range				43 – 64	`	

Table 2-6: Summary of 1-hour TSP Monitoring Results – AM2

		1-hour TSP (μg/m³)				
Date	Weather	Start	End	1 st	2 nd	3 rd
		Time	Time	Measurement	Measurement	Measurement
4/7/2020	Fine	09:52	12:52	49	53	55
10/7/2020	Sunny	09:36	12:36	49	60	48
15/7/2020	Sunny	13:22	16:22	52	48	43
20/7/2020	Fine	13:55	16:55	60	58	54
24/7/2020	Sunny	09:46	12:46	57	52	63
29/7/2020	Cloudy	09:28	12:28	61	57	51
	Average				53.9	
	Range				43 – 63	

2.2.8 In this Reporting Month, all monitoring result were below the action level. Hence, no Action or Limit Level exceedance was triggered during this month. The impact air quality monitoring results and graphical presentation are shown in **Appendix K**.

2.3. NOISE MONITORING

- 2.3.1 Impact monitoring for noise levels had been measured in accordance with Sections 3.13 of approved EM&A Manual on normal weekdays at a frequency of once a week at logging interval of 30 minutes for daytime (between 0700 and 1900 hours of normal weekdays). The Leq had been recorded at the specified intervals. The non-project related construction activity Sha Tin to Central Link (SCL) for Hin Keng to Diamond Hill Tunnel, in the vicinity of the monitoring stations during the impact monitoring had been noted and the source and location of this activity had been recorded.
- 2.3.2 According to Section 3.7 of the approved EM&A Manual, 3 noise sensitive receivers designated for the construction noise monitoring. The designated monitoring stations are identified and successfully granted by the premises. The details of noise monitoring stations are described in Table 2-7 and the location plan of noise monitoring stations is shown in **Appendix L**.

Table 2-7: Details of Noise Monitoring Stations

Noise Monitoring Station	Noise Sensitive Receiver (NSR) ID in the approved EIA Report	Identified Noise Monitoring Station
		The L Louey (South)
NM1	HK2	(at a platform level of
INIVII	TIKZ	about 5m above road level nearby
		- free field measurement)
		Hin Keng Estate –
NM2	HK5	Hin Wan House
		(at the roof level - facade measurement)
		C.U.H.K.F.A.A.
NM3	HK7	Thomas Cheung School
		(at the roof level - free field measurement)

2.3.3 The monitoring equipment using for the noise impact monitoring was proposed by ET and verified by IEC. Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications has been used for carrying out the noise monitoring. The sound level meter has been checked using an acoustic calibrator. The wind speed has been checked with a portable wind speed meter capable of measuring the wind speed in m/s. The details of equipment using for impact monitoring are listed in Table 2-8 as below.

Table 2-8: Noise Impact Monitoring Equipment

Noise	
Sound Level Meter	NTi Audio XL2
Acoustic Calibrator	Rion NC-74
Portable Wind Speed Indicator	The Kestrel Pocket Weather Meter

- 2.3.4 All noise measurements were the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}) .
- 2.3.5 Prior to the impact noise measurement, the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Regular checking

- was conducted in impact monitoring period. The calibration level before and after the noise measurement is agreed to within 1.0 dB.
- 2.3.6 An acoustic calibrator and sound level meter using impact monitoring is within the valid period and were calibrated per year. A set of valid calibration certificates is attached in **Appendix M**.
- 2.3.7 Noise measurements should not be made in presence of fog, rain, wind with a steady speed exceeding 5 ms⁻¹ or wind with gusts exceeding 10 ms⁻¹. The wind speed was checked with a portable wind speed meter capable of measuring with speeds in ms⁻¹.
- 2.3.8 In this Reporting Period, a total six (6) occasions noise monitoring was undertaken in Reporting period. The noise monitoring results at the designated locations are summarized in Tables 2-9 to 2-11.

Table 2-9: Summary of Noise Monitoring Results - NM1

Date	Time	Weather	1 st	2 nd	3 rd	4 th	5 th	6 th	Lag
Date	Time	weather	Leq _{5min}	Leq _{30min}					
4/7/2020	10:08 - 10:38	Fine	62.6	63.4	64.2	63.2	64.2	63.2	63.5
10/7/2020	09:49 - 10:19	Sunny	64.1	63.4	63.8	62.5	64.0	64.2	63.7
15/7/2020	13:38 - 14:08	Sunny	62.6	63.5	64.0	64.8	63.8	61.5	63.5
20/7/2020	14:09 - 14:39	Fine	60.5	63.2	62.1	61.4	62.4	63.0	62.2
24/7/2020	09:59 - 10:29	Sunny	62.1	63.4	62.4	63.2	62.4	61.9	62.6
29/7/2020	09:42 - 10:12	Cloudy	62.5	63.1	63.4	63.8	63.2	64.1	63.4
								Average	63.2
Limit Level	>75dB(A)							Range	62.2 –
									63.7

Table 2-10: Summary of Noise Monitoring Results – NM2

Date	Time	Weather	1 st	2 nd	3 rd	4 th	5 th	6 th	Lag
Date	Time	weather	Leq _{5min}	Leq _{30min}					
4/7/2020	10:54 - 11:24	Fine	58.6	56.6	57.8	58.4	56.7	57.8	57.7
10/7/2020	10:35 - 11:05	Sunny	57.1	58.0	58.9	57.8	59.2	58.1	58.2
15/7/2020	14:23 - 14:53	Sunny	56.4	59.5	60.1	58.0	59.2	56.7	58.5
20/7/2020	14:55 - 15:25	Fine	57.6	58.7	61.0	59.5	56.9	58.9	59.0
24/7/2020	10:44 - 11:14	Sunny	60.5	62.1	59.8	58.0	57.8	59.5	59.9
29/7/2020	10:25 - 10:55	Cloudy	58.3	59.4	58.6	57.8	57.9	58.3	58.4
								Average	58.7
Limit Level	>75dB(A)							Range	57.7 –
									59.9

Table 2-11: Summary of Noise Monitoring Results – NM3

Date	Date Time		Weather	1 st	2 nd	3 rd	4 th	5 th	6 th	Leq _{30min}
Date	111110		Weather	Leq _{5min}	Leqsomin					
4/7/2020	11:32 -	12:02	Fine	53.2	54.2	55.3	54.5	54.5	54.5	54.4
10/7/2020	11:14 -	11:44	Sunny	57.4	56.5	55.3	53.2	56.2	57.0	56.1
15/7/2020	15:02 -	15:32	Sunny	56.5	54.7	56.5	57.4	56.5	55.8	56.3
20/7/2020	15:33 -	16:03	Fine	53.9	54.1	52.8	53.2	56.5	54.5	54.3
24/7/2020	13:12 -	13:42	Sunny	54.5	57.4	56.5	55.4	57.4	56.0	56.3
29/7/2020	11:04 -	11:34	Cloudy	54.2	55.3	55.7	54.6	55.1	55.9	55.2
Limit Level							Average	55.5		
70dB(A) during normal teaching periods or 65dB(A) during examination periods								Range	54.3 –	
									56.3	

2.3.9 As shown in the results were well below the limit level, also no complaint was received by the RE, WSD, EPD and contractor. Hence, no Action or Limit Level exceedance was triggered during this month. The impact noise quality monitoring results and graphical presentation are shown in **Appendix N**.

2.4. WATER QUALITY MONITORING

- 2.4.1 Water Impact monitoring had been taken three days per week with sampling or measurement in accordance with Sections 4.12 of the approved EM&A Manual at all designated monitoring stations in the 2 water courses. The interval between 2 sets of monitoring had been more than 36 hours. Replicate in-situ measures had been carried out in each sampling event.
- 2.4.2 Three (3) control and two (2) impact stations were recommended in the Section 4.7 of the approved EM&A Manual to carry out water quality monitoring. In order to identify and seek for the access of the water monitoring locations designated in the approved EM&A Manual, site visit was conducted among ET, IEC and Environmental Protection Department (EPD).
- 2.4.3 During the site visit, all designated monitoring locations were identified however one more impact stations (M3) along the same water course was introduced due to the concern on multiple site effect, in particular to address the potential impact to M2 from a source at upstream of the water course. Details and coordinates of the monitoring stations are described in Table 2-12 and the location plan of water quality monitoring stations is shown in **Appendix O**.

Table 2-12: Details of Water Quality Monitoring Station

Water Quality	Description	Co-ordinates		
Monitoring Station	Description	Easting	Northing	
C1		835110	824716	
C2	Control Stations	835403	824470	
C3		835642	824386	
M1	Transat	835215	824827	
M2	Impact Monitoring Stations	835536	824775	
M3	Womtoring Stations	835501	824648	

2.4.4 The water monitoring equipment and analysis using for the water quality monitoring were proposed by ET and verified by IEC. The details of equipment using for impact monitoring are listed in the Table 2-13 below:

Table 2-13: Monitoring Equipment Used in Impact Monitoring Program

Water quality	
Horiba Multi Water Quality (Checker U-53
Thermometer & DO meter	The instrument is a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment is capable of measuring as included a DO level in the range of 0 - 20mg/L and 0 - 200% saturation; and a temperature of 0 - 45°C.
pH meter	The instrument consists of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It is readable to 0.1 pH in range of 0 to 14.
Turbidmeter	The instrument is a portable and weatherproof turbidity measuring instrument using a DC power source. It has a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU.
Laboratory Analysis	
Suspended Solids	HOKLAS-accredited laboratory (Acumen Laboratory and Testing Limited)

Remark:

- (i) Water samples for suspended solids (SS) have been stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 2.4.5 Before the commencement of the sampling, general information such as the date and time of sampling as well as the personnel responsible for monitoring were recorded on the monitoring field data sheet.
- 2.4.6 Water temperature, turbidity, DO, pH and water depth were measured in-situ. Since water depths at C1, C2, M1, M2 and M3 were less than 3 m, all in-situ measurements and sampling conducted at one water depth such as mid-depth are performed. Moreover, C3 was recorded dry throughout the sampling period. Therefore, in-situ measurements and sampling could not be conducted at C3 in accordance with the water monitoring requirements in the approved EM&A Manual.
- 2.4.7 At each sampling point, (two) 2 consecutive measurements of temperature, DO, turbidity and pH were measured. The Multi-Parameter Water Quality Monitoring Probe were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken. The certification of the Multi-parameter Water Quality Monitoring System is showed in **Appendix P**.
- 2.4.8 All water samples were delivered to the Acumen Laboratory and Testing Limited (HOKLAS registration no.: 241). SS testing was used HOKLAS accredited Analytical method APHA 2540 D. The certification of laboratory with HOKLAS accredited analytical tests are provided in **Appendix Q**.
- 2.4.9 In this reporting period, a total of fourteen (14) sampling days perform water monitoring at the six designated locations. Monitoring results of 4 key parameters: dissolved oxygen (DO), turbidity, suspended solids and pH in this Reporting Months, are summarized in Table 2-14.

Table 2-14: Summary of Water Quality Monitoring Results

Dissolved Oxygen – Mid Depth (mg/L)	C 1	C2	С3	M1	M2	М3
Average	8.48	8.47	N/A	9.14	9.15	9.42
Min.	8.23	8.26	N/A	8.87	8.82	9.18
Max.	8.65	8.74	N/A	9.34	9.34	9.58
Turbidity – Mid Depth (NTU)	C1	C2	C3	M1	M2	M3
Average	2.52	2.55	N/A	2.20	2.14	0.63
Min.	2.20	2.00	N/A	1.90	1.50	0.30
Max.	2.70	2.80	N/A	2.40	2.70	0.90
Suspended Solid – Mid depth (mg/L)	C1	C2	С3	M1	M2	М3
Average	3.11	3.11	N/A	2.04	3.61	<1
Min.	2.50	2.60	N/A	1.50	2.90	<1
Max.	3.90	3.70	N/A	2.80	5.10	<1
pH value (unit)	C 1	C2	C3	M1	M2	M3
Average	7.52	7.60	N/A	7.71	7.67	7.65
Min.	7.23	7.24	N/A	7.00	7.45	7.45
Max	7.80	7.88	N/A	7.89	8.00	7.81

2.4.10 In this Reporting Month, all monitoring result were below or within the action level. Hence, no Action or Limit Level exceedance was triggered during this month. Detailed monitoring results including insitu measurements, laboratory analysis data are shown in **Appendix R**.

2.5. ECOLOGY

- 2.5.1 Detailed Vegetation Survey Report and Woodland Compensation Plan submitted to EPD and approved on 17 February 2016. To ensure the planting works are properly implemented, bi-weekly monitoring is proposed throughout the planting phase. The frequency of monitoring is proposed to be bi-monthly during the first years of the planting stage, and then reduced to quarterly for the six (6) year post-planting period.
- 2.5.2 A 6 years post-planting review report will be submitted within a month after completion of the at least 6 years post-planting monitoring and maintenance.
- 2.5.3 Monitoring inspections were conducted on 24 July 2020.
- 2.5.4 Three trees TA572, TA326 and TA327 were transplanted to tree compensation area within the Sha Tin Water Treatment Works (STWTW) in 20 June 2016.
- 2.5.5 The condition of TA572 was observed in poor condition due to the damage of two main trunks. TA327 was also in poor condition. The already dead tree TA326 collapsed due to big hit by the Signal No.10 typhoon Mangkhut on 16 September 2018. Tree guying cables have been installed to provide external support to the remaining two transplanted trees. Transplanted Lamb of Tartary (Cibotium barometz) seems to be received too much sunlight. Leaves of them were observed yellowish in colour. On the other hand, young foliage was growing out to replace the old one.
- 2.5.6 Since Sha Tin South Fresh Water Service Reservoir (STSFWSR) was still under preparation, Lamb of Tartary was still temporally stored in a nursery garden at Wang Toi Shan, Kam Tin.
- 2.5.7 In general, all transplanted Lamb of Tartary (Cibotium barometz) were in fair condition while Hong Kong Eagle's Claw (Artabotrys hongkongensis) was observed dead during inspection on 20 August 2016. The survival rate for Lamb of Tartary (Cibotium barometz) and Hong Kong Eagle's Claw (Artabotrys hongkongensis) was 96%. The Summary table for health condition and survival rate was shown in Appendix II.
- 2.5.8 All transplanted Lamb of Tartary (Cibotium barometz) have been severely damaged by Typhon Wipha on 30-31 July 2019; the next few monitoring will be critical to assess their survival and recovery progress.
- 2.5.9 It is recommended to retain transplanted Lamb of Tartary (Cibotium barometz) at the nursery garden under proper maintenance during current recovery stage. Once their condition has recovered to acceptable level, they can be moved to the transplantation site at Sha Tin South Fresh Water Service Reservoir (STSFWSR) when the site is ready.

2.5.10 After transplantation, root ball of TA572 and TA327 tree should be kept moisture especially during non-raining day.

2.6. WASTE MANAGEMENT STATUS

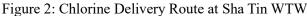
- 2.6.1 The Contractor has submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting. The Waste Producer Number to the Contractor is assigned in respect of the project site.
- 2.6.2 Wastes generated during this reporting period include mainly construction wastes (inert and non-inert). Waste flow table was prepared by the Contractor to record amount of waste generated and disposed (**Appendix T**).
- 2.6.3 The Contractor was advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/recycle of C&D materials and wastes.
- 2.6.4 The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly. For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

2.7. DELIVERY, STORAGE AND HANDLING OF CHLORINE

2.7.1 Chlorine is delivered to Sha Tin WTW in batches of up to 6×1-tonne drums. The transport route from Sham Shui Kok dock on North Lantau is shown in **Figure 1**. The route passes along the North Lantau

Expressway, around the northern edge of Tsing Yi, through Tsuen Wan and along Tai Po Road (Piper's Hill) to Sha Tin (Table 2-15).

Figure 1: Chlorine Transport Route to Sha Tin Water Treatment Works


| Total |

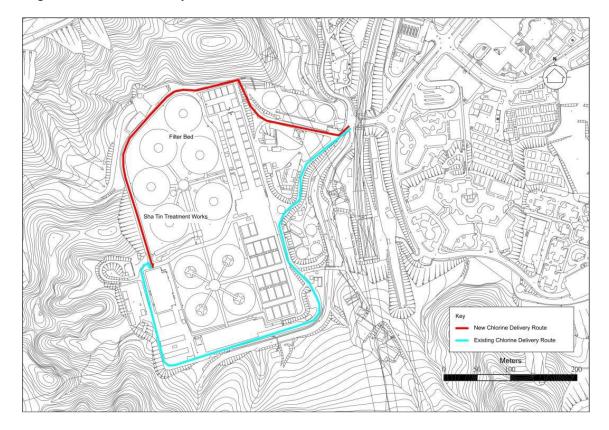

Figure 1: Chlorina Transport Pouta to Sha Tin Water Transment Works

Table 2-15: Chlorine Truck Transport Route

Destination	Route
Dock to Sha	Sham Shui Kok Dock > Cheung Tung Road > Sunny Bay Road > N Lantau Highway > Lantau Link > NW Tsing Yi Interchange > Tsing Yi North Costal road > Tsing
Tin WTW	Tsuen Road > Tsuen Wan Road > Kwai Chung Road > Ching Cheung Road > Tai Po Road > Tai Po Road (Piper's Hill) > Tai Po Road (Sha Tin Heights) > Tai Po
	Road > Tsing Sha Highway (Sha Tin) > Tai Po Rd (Sha Tin) > Sha Tin Rural Committee Rd > Tai Chung Kiu Rd > Che Kung Miu Road > Sha Tin WTW

- 2.7.2 Unloading takes place inside the Chlorination House, with the doors closed, in a designated truck unloading bay. The movement of drums within the storage area and 'drive-through' unloading bay is carried out using a hoist/monorail system with a purpose-built lifting beam. Prior to usage, the drums are stored on cradles within the chlorine storage area.
- 2.7.3 The on-site chlorine delivery route is shown in Figure 2.

- 2.7.4 An emergency chlorine scrubbing system is installed to remove any leaked chlorine in the chlorine handling and storage areas. The system is a packed tower utilising sodium hydroxide as the neutralising agent. The plant and equipment are installed in a separate scrubber room.
- 2.7.5 On detection of chlorine at a concentration of 3 ppm or above in the chlorine handling or storage areas, the scrubbing system will activate automatically. The air/chlorine mixture in the affected areas is drawn into the scrubber by the scrubber fan via ducting connected to the normal ventilation system. An electrically-operated isolating damper is provided in the scrubber intake which opens automatically when the scrubber fan starts up.
- 2.7.6 The scrubber system is normally set at auto standby mode and is activated if the chlorine concentration rises above 3 ppm. A continuous chlorine monitor is installed at a point downstream of the packed tower and upstream of the vent/recycle changeover dampers to monitor the scrubber performance; a "Chlorine concentration high" alarm will be initiated if the concentration of chlorine in the tower exhaust exceeds the preset value.
- 2.7.7 According to the Fire Services Department's fire safety requirements, an emergency repair/stoppage kit for chlorine spillage/leakage is provided and maintained in good working condition at all times for use

- by the trained persons and stowed adjacent to but outside the store/plant room. Regular drills are conducted to train personnel on the proper use of the breathing apparatus and protective clothing.
- 2.7.8 A Hazard Assessment of the risks associated with the storage, handling and transport of chlorine at Sha Tin WTW and the off-site transport of chlorine for the Construction and Operational Phases of the reprovisioning project has been conducted in the approved EIA Report (Register No. AEIAR-187/2015).
- 2.7.9 This In-situ Reprovisioning of Sha Tin WTW is an improvement project, following its completion the chlorine-related risks levels to the general public will be lowered due to the anticipated reduction of the chlorine storage and usage levels.
- 2.7.10 Implementation of the recommended mitigation measures would be regularly audited. No specific Environmental Monitoring would be required.

2.8. EM&A SITE INSPECTION

- 2.8.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting period, five (5) site inspections were carried out on 3, 9, 15, 22, 29 July 2020.
- 2.8.2 One joint site inspection with IEC also undertaken on 22 July 2020. Minor deficiencies were observed during weekly site inspection or joint site inspection. Key observations during the site inspections are summarized in Table 2-16.

Table 2-16: Site Observations

Date	Environmental Observations	Follow-up Status
3 July 2020	1. Sediment was observed in the drainage channel outside logistic center. The Contractor was reminded to provide regular cleaning of the drainage system.	1. Sediment has been removed.
9 July 2020	1. Chemical containers at bar fixing yard were found without mitigation. The Contractor was reminded to provide secondary containers for the chemicals.	Secondary containers were provided.
15 July 2020	1. Muddy water was observed at logistic center. The Contractor was reminded to provide mitigation measure to prevent untreated water runoff.	1. Sandbags were set up.
22 July 2020	1. Muddy trail was observed outside the site boundary at S1. The Contractor was reminded to remove the muddy trail.	1. Muddy trail was removed
29 July 2020	 Stockpile at rebar yard was observed without proper mitigation measure. The Contractor was reminded to provide proper cover for dust suppression. Drainage channel at logistic center was found filled with refuse. The Contractor was reminded to provide regular cleaning of drainage system. 	 Impervious sheeting was provided General refuse have been cleaned up.

i. The Contractor has rectified all of the observations identified during environmental site inspections in the reporting period.

2.9. ENVIRONMENTAL LICENSES AND PERMITS

2.9.1 The status of environmental license and permit is summarized in Table 2-17 below:

Table 2-17: Summary of Environmental License and Permit

License / Permit	License / Permit No.	Date of Issue	Date of Expiry	License / Permit Holder	Remark
Environmental Permit	EP- 494/2015	28/01/2015	N/A	WSD	
Registration of Chemical Waste Producer	WPN5218-759 -M2936-01	31/12/2015	N/A	MMVJV	
Trip Ticket (Chit) Account	7023723	10/12/2015	N/A	MMVJV	
Waste Water Discharge License (Wall C)	WT0023932 -2016	01/04/2016	31/03/2021	MMVJV	
Waste Water Discharge License (Wall D)	WT0024211 -2016	10/06/2016	30/06/2021	MMVJV	
Construction Noise Permit	GW-RN0336-20	12/05/2020	16/12/2020	MMVJV	

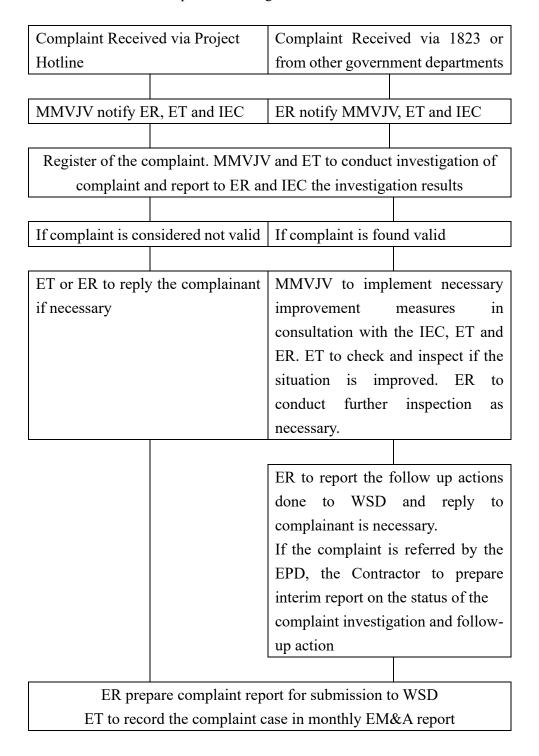
2.10. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

- 2.10.1 In response to the site audit findings, the Contractors carried out corrective actions. A summary of the environmental mitigation measures implemented by the Contractor in this Reporting Period are summarized in Table 2-18.
- 2.10.2 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (EMIS) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are showed **Appendix U**.

Table 2-18: Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Air Quality	 Tarpaulin covering of any dusty materials on a vehicle leaving the site; Imposition of speed controls for vehicles on site haul roads; Use of regular watering to reduce dust emissions from exposed site surfaces and roads; Side enclosure and covering of any aggregate or stockpiling of dusty materials to reduce emissions;
	- Where possible, routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs.
Noise	 Good site practices to limit noise emissions at the sources; Use of quite plant and working methods; Use of site hoarding or other mass materials as noise barrier to screen noise at ground level of NSRs; Scheduling of construction works outside school examination period in critical area.
Water	 Drainage systems were regularly and adequately maintained; Effluent discharged from the construction site should comply with standards stipulated in the TM-DSS; Open stockpiles of construction materials on sites should be covered.
General	- The site was generally kept tidy and clean.

2.10.3 The necessary mitigation measures were implemented properly for this Contract.


2.11. SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

- 2.11.1 Results for 1-hour TSP, noise and water quality monitoring complied with the Action/ Limit levels in the reporting period.
- 2.11.2 Cumulative statistics on exceedances is provided in **Appendix V**.

2.12. SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTIONS

2.12.1 The Environmental Complaint Handling Procedure is shown in below table:

Table 2-19: Environmental Complaint Handling Procedure

- 2.12.2 No environmental complaint were received in the reporting period.
- 2.12.3 No notification of summons and prosecution was received in the reporting period.
- 2.12.4 No visit from EPD in the reporting period.
- 2.12.5 Statistics on complaints, notifications of summons and successful prosecutions are summarized in **Appendix V**.

2.13. DATA MANAGEMENT AND DATA QA/QC CONTROL

- 2.13.1 The impact monitoring data were handled by ET's in-house data recording and management system.
- 2.13.2 The monitoring data recorded in the equipment were downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data were input into computerized database properly. The laboratory results were input directly into the computerized database and checked by personnel other than those who had input the data.
- 2.13.3 For monitoring parameters that require laboratory analysis, the local laboratory had followed the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory testing.

3. FUTURE KEY ISSUES

3.1. CONSTRUCTION PROGRAMME FOR THE COMING MONTHS

- 3.1.1 As informed by the Contractor, the major works for this Project from August 2020 to October 2020 will be:
 - Architectural Builders Works and Finishes at Logistic Center
 - Architectural Builders Works and Finishes at Alum Tank & Hydro Turbine House
 - Testing and Commissioning at Logistic Center
 - Construction of New Carriageway and Associate Work at South Access Entrance

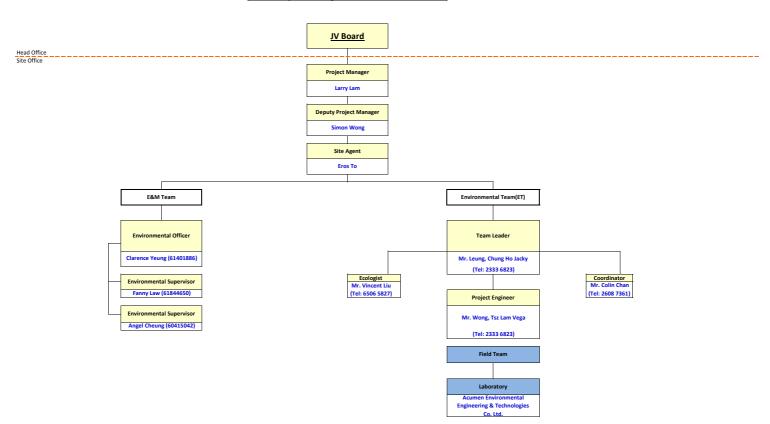
3.2. KEY ISSUES FOR COMING MONTH


- 3.2.1 Potential environmental impacts arising from the above upcoming construction activities in August 2020 are mainly associated with dust, noise, water quality issues and waste management issues.
- 3.2.2 Particular issues to be considered in the coming month include:
 - Architectural Builders Works and Finishes at Logistic Center
 - Architectural Builders Works and Finishes at Alum Tank & Hydro Turbine House
 - Testing and Commissioning Works at Logistic Center
 - Backfilling on Box Carriageway and Associate Work at South Access Entrance
- 3.2.2 The tentative monitoring schedule for August 2020 to October 2020 can be found in **Appendix W**.

4. CONCLUSIONS AND RECOMMENDATIONS

4.1. SUMMARY

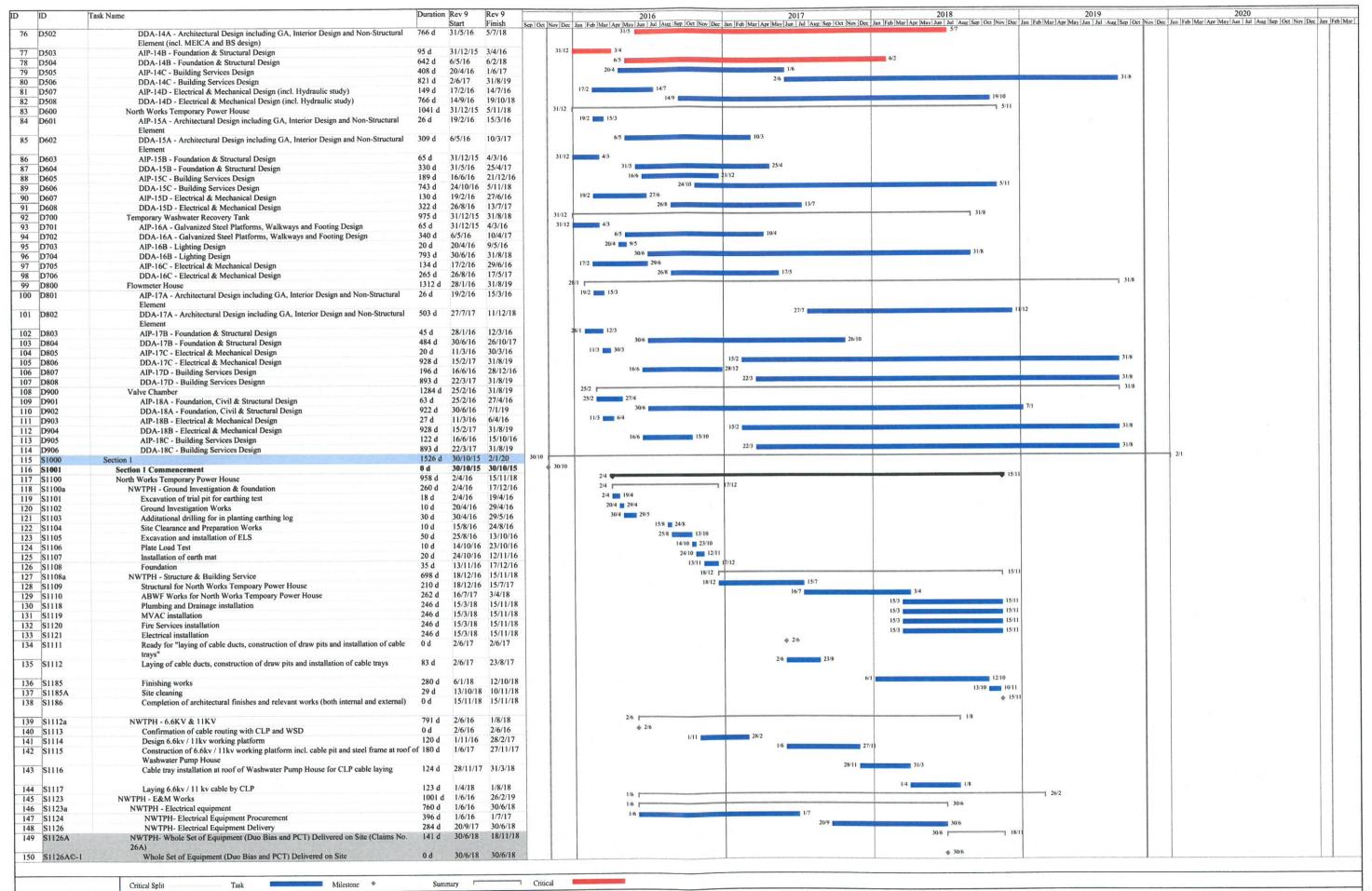
- 4.1.1 Air quality (1-hour TSP), noise, water quality and ecology impact monitoring were carried out in the reporting period. All monitoring results are satisfactory and no NOEs or associated corrective action was therefore issued.
- 4.1.2 Five (5 nos.) environmental site inspection were conducted during the reporting period. Joint site inspection with IEC were carried out on 22 July 2020. Minor deficiencies were observed during site inspection and were rectified within the specified deadlines. The environmental performance of the Project was therefore considered satisfactory.
- 4.1.3 To control the site performance on waste management, the contractor shall ensure that all solid and liquid waste management works are fully in compliance with the relevant license/permit requirements, such as the effluent discharge licence and the chemical waste producer registration. Contractor is also reminded to implement the recommended environmental mitigation measures according to the Environmental Monitoring and Audit Manual.
- 4.1.4 No Environmental complaint were received in reporting period.
- 4.1.5 No notification of summons or prosecution was received since commencement of the Contract.
- 4.1.6 The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.


Appendix A General Layout Plan

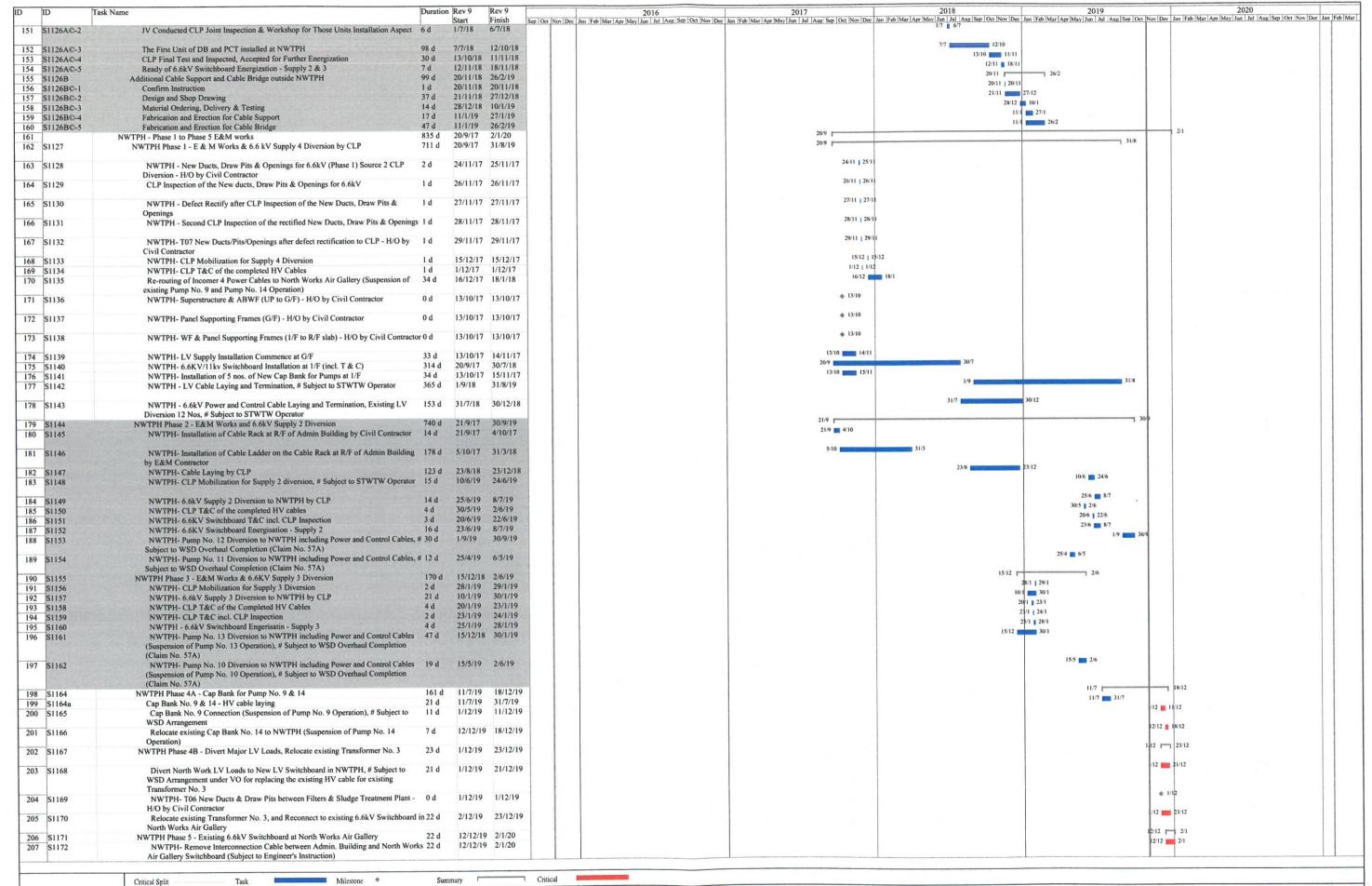
Appendix B Project Organization

Update Date 30/6/2020

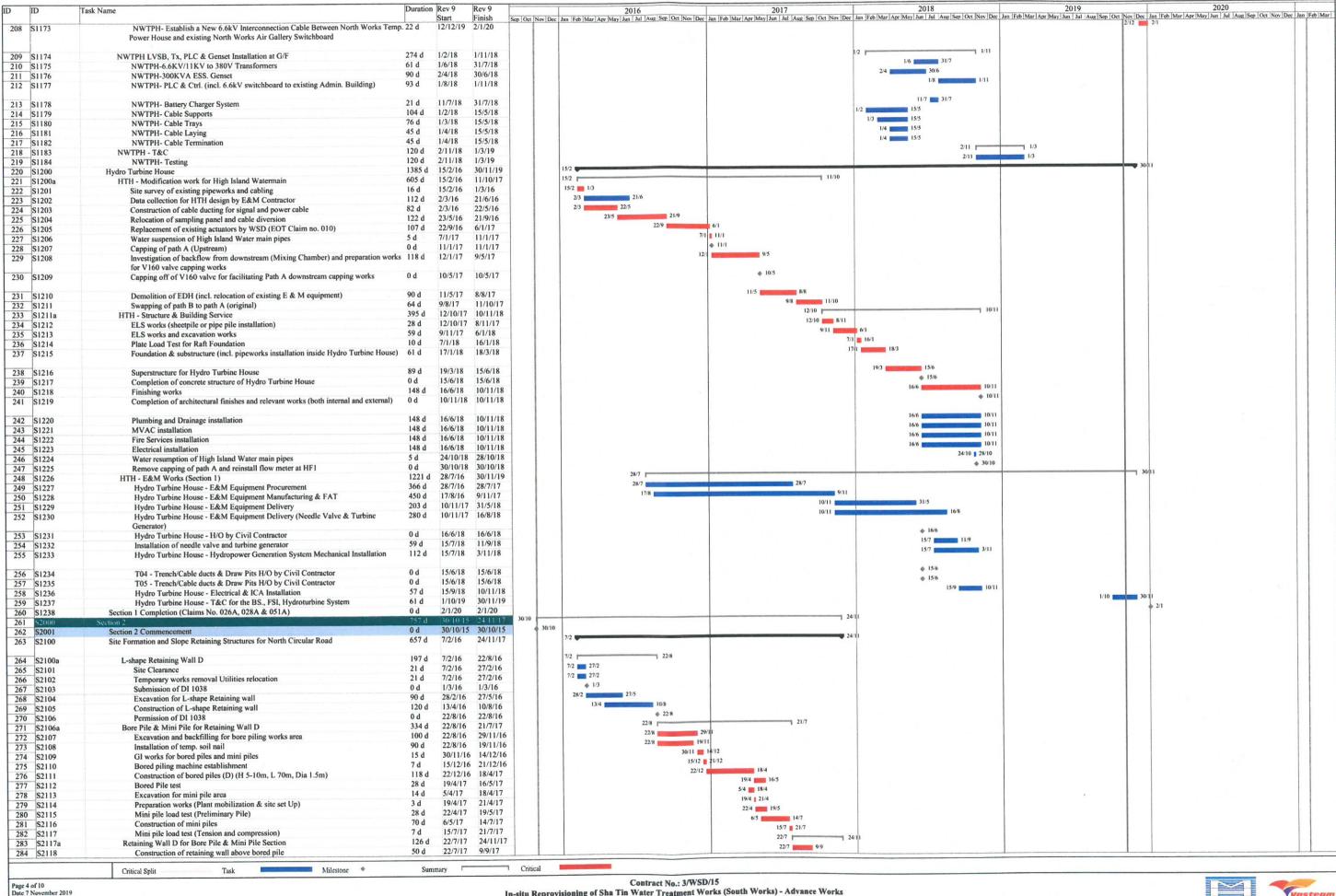
Project Organization Chart



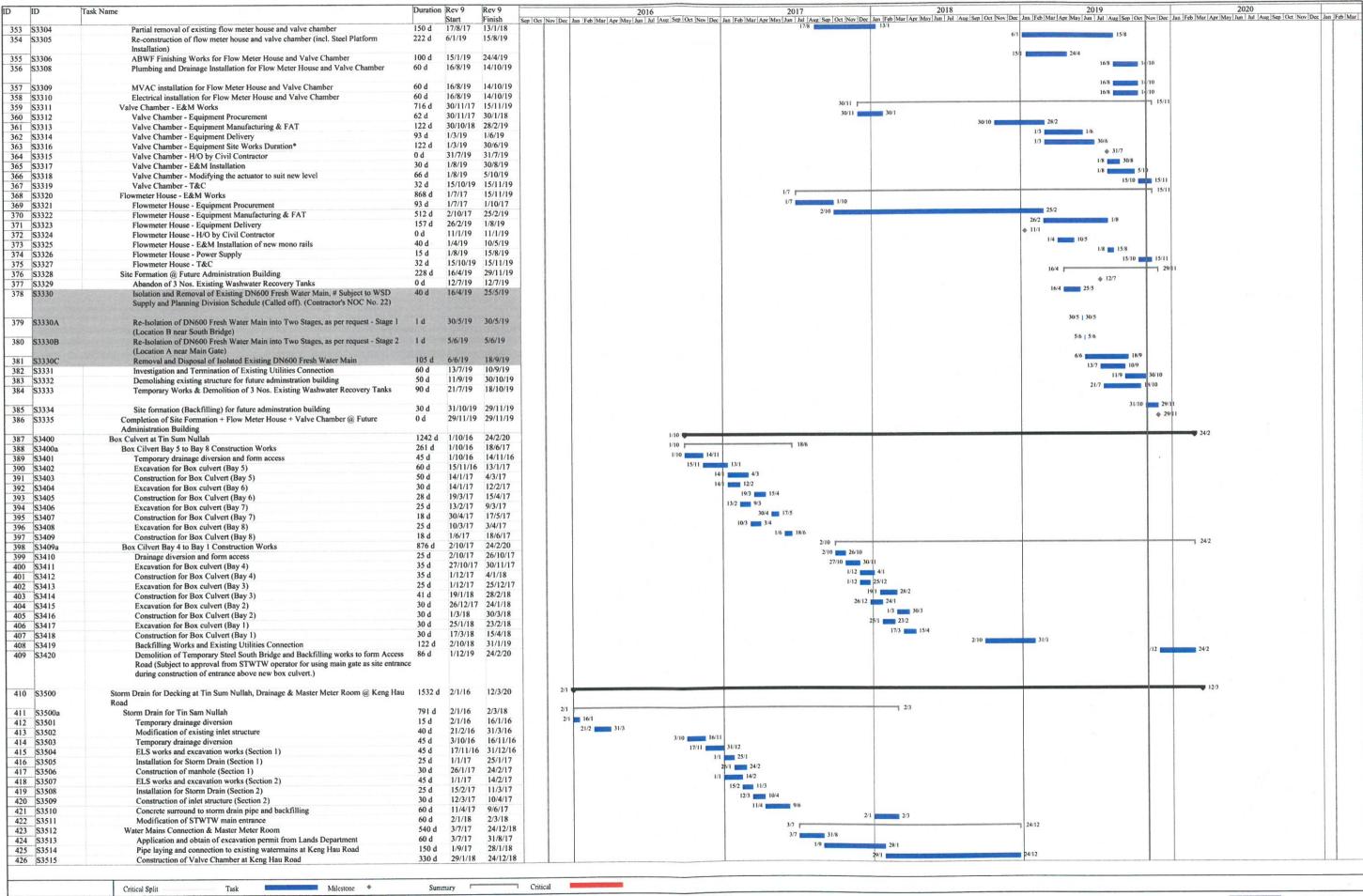
Appendix C Latest Construction Programme

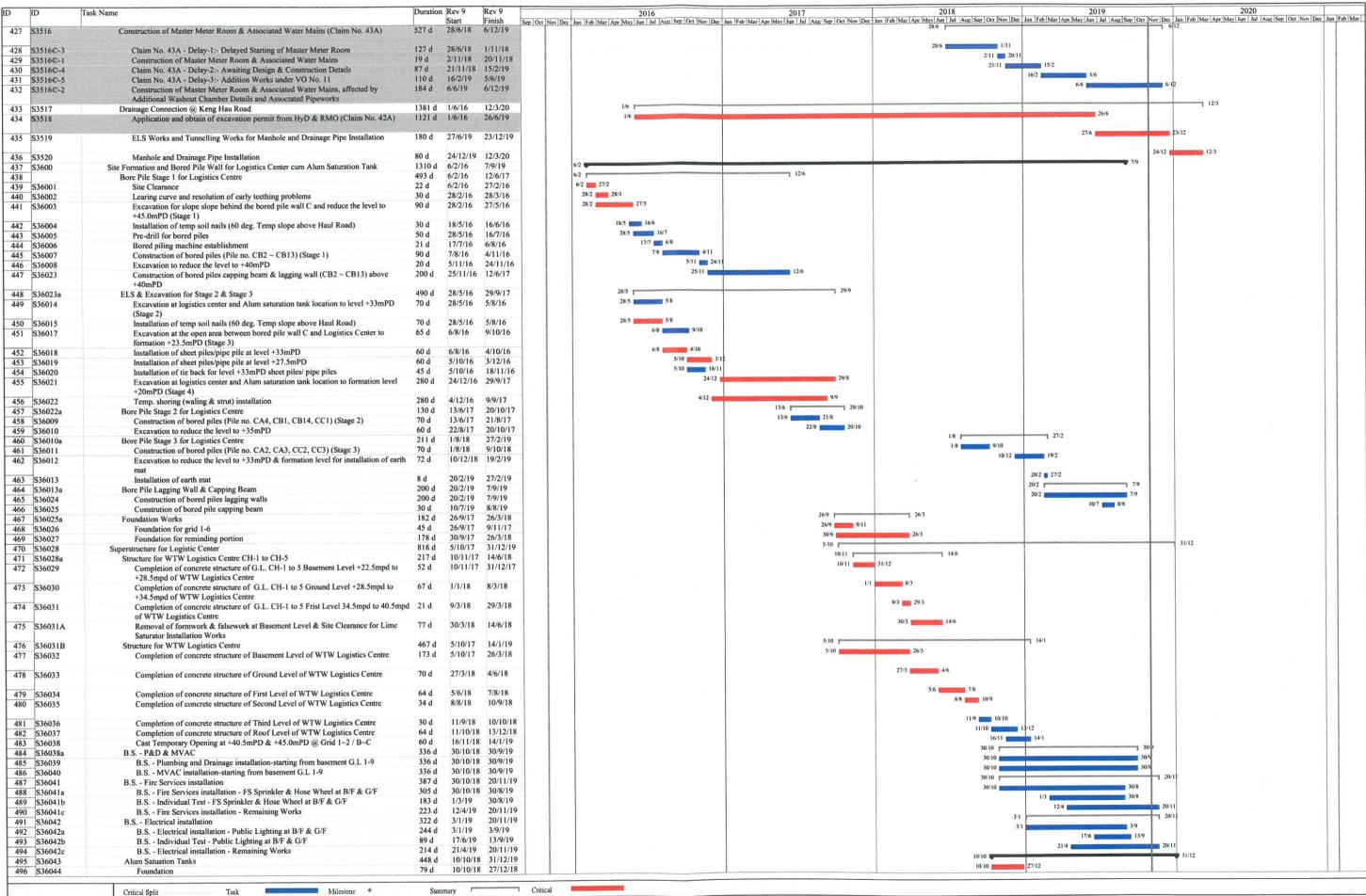


Page 1 of 10 Date 7 November 2019

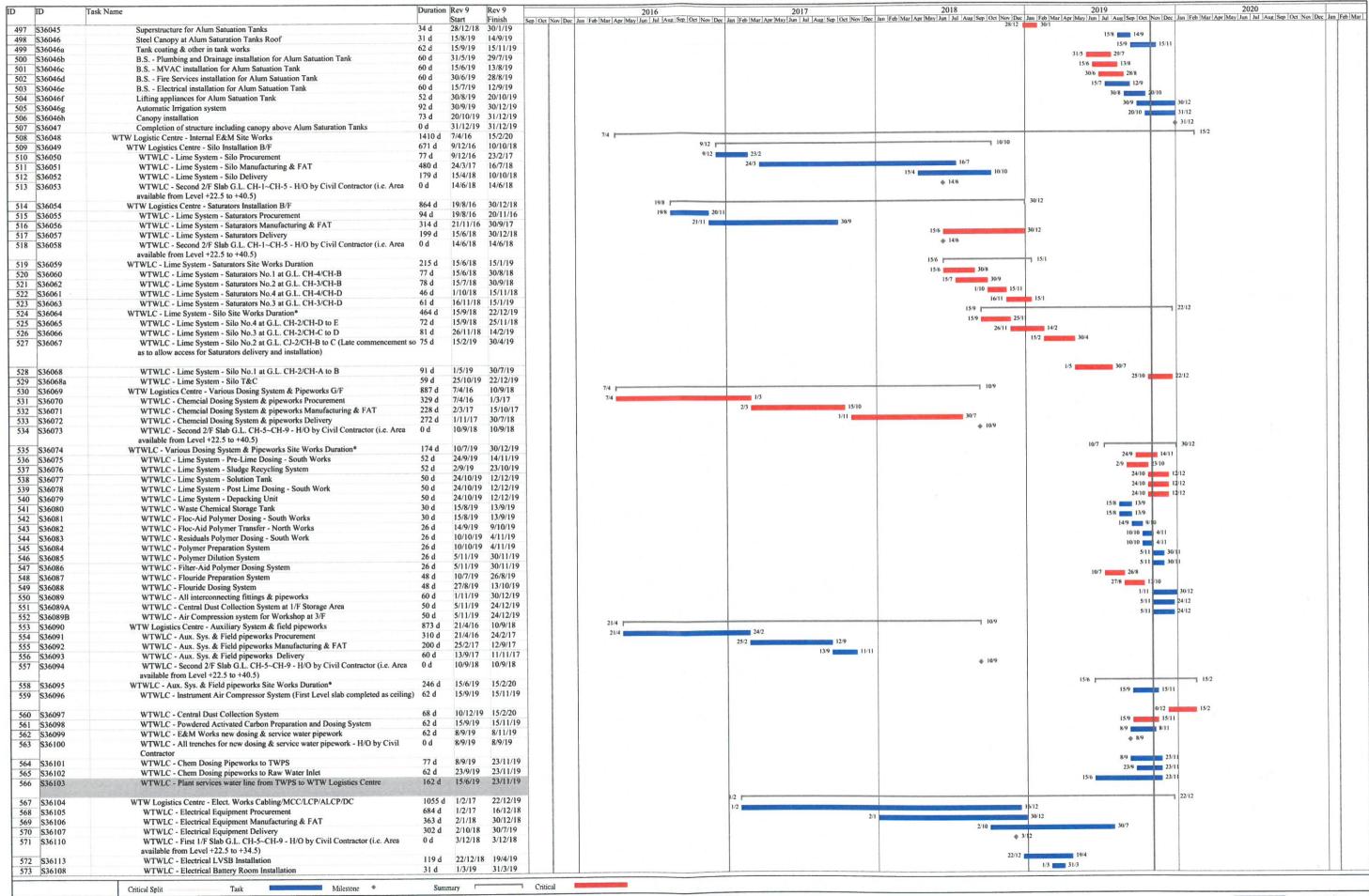


Page 2 of 10 Date 7 November 2019

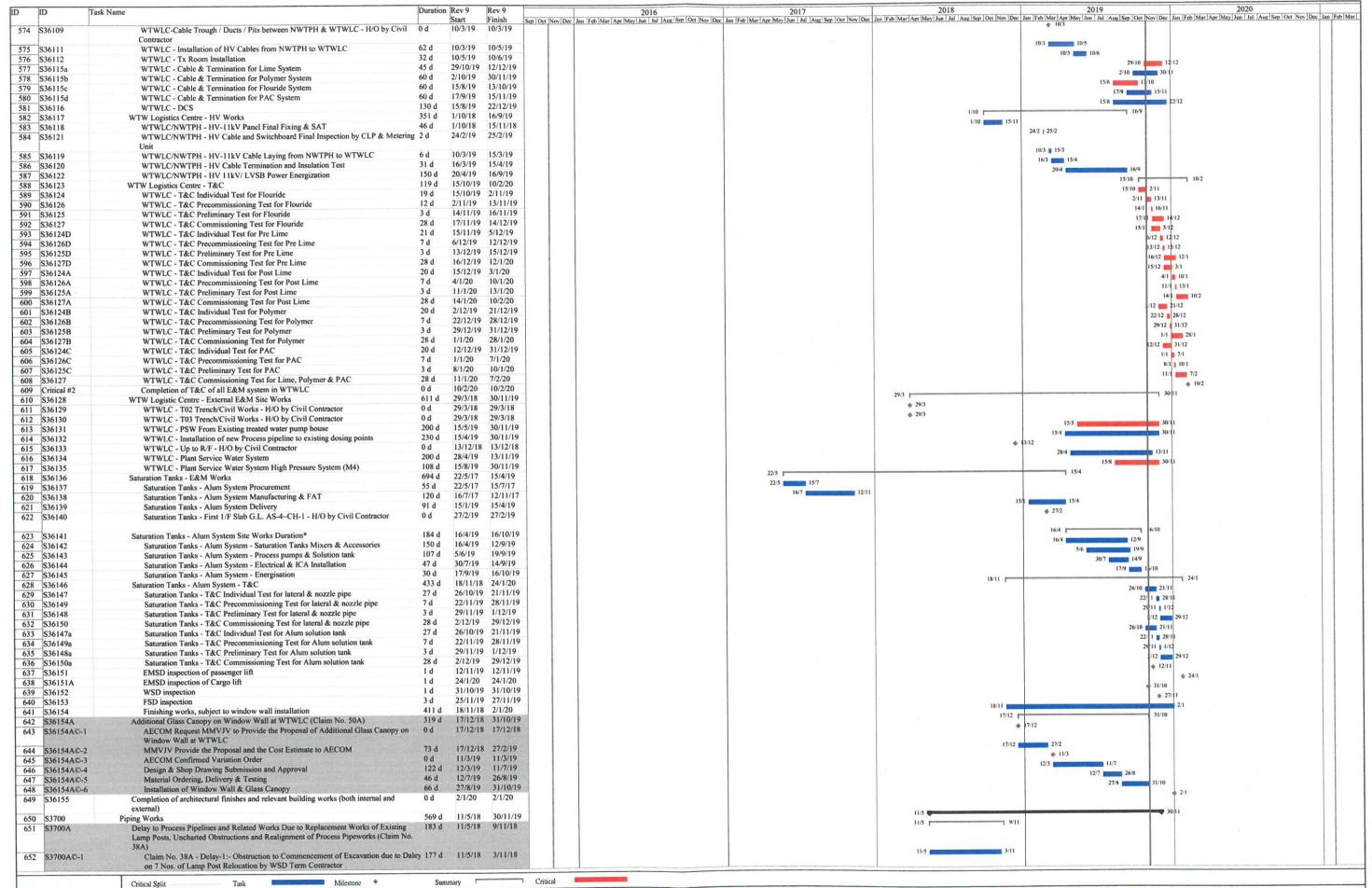

Page 3 of 10 Date 7 November 2019



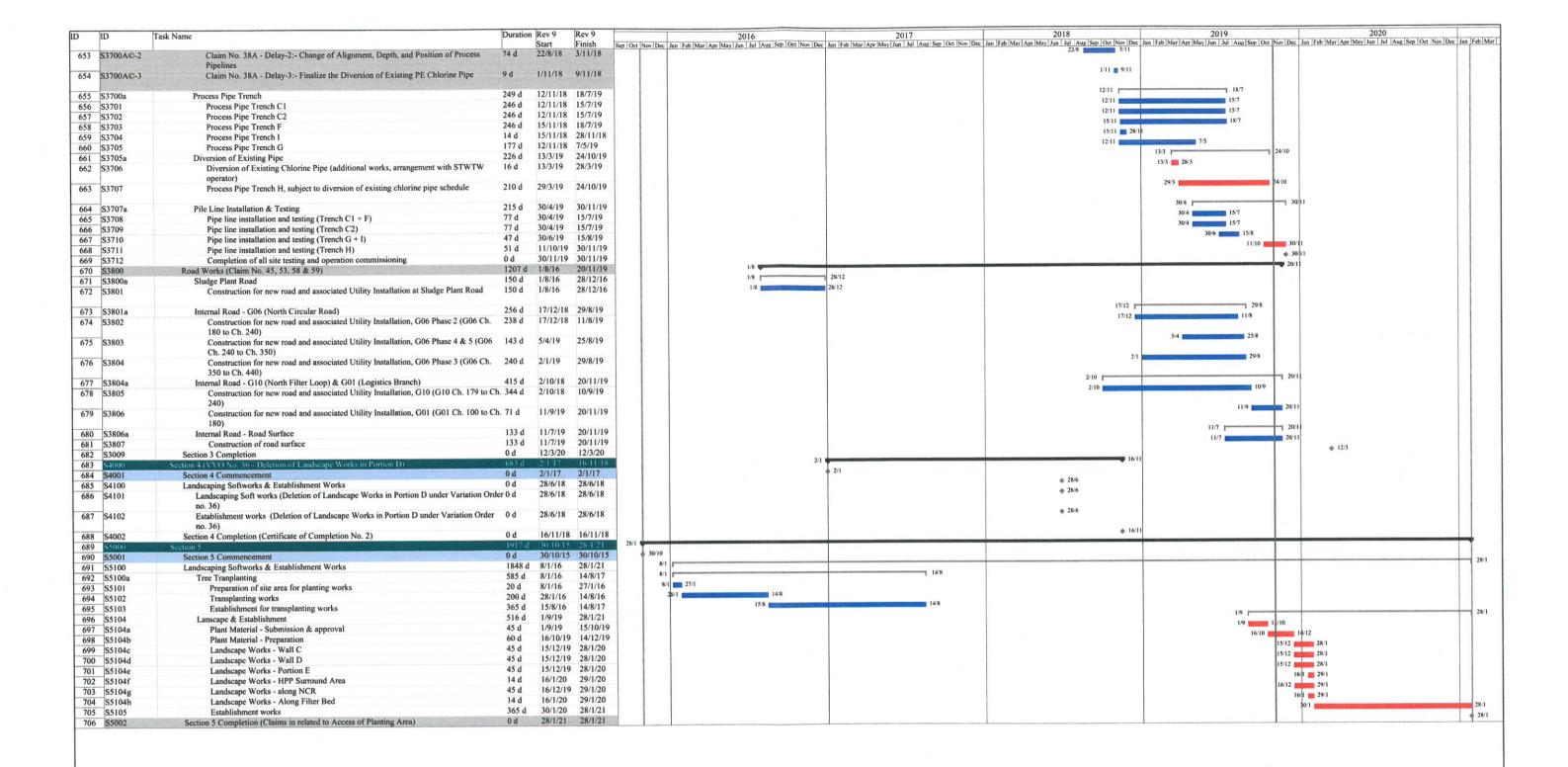
Page 5 of 10 Date 7 November 2019


Page 6 of 10 Date 7 November 2019

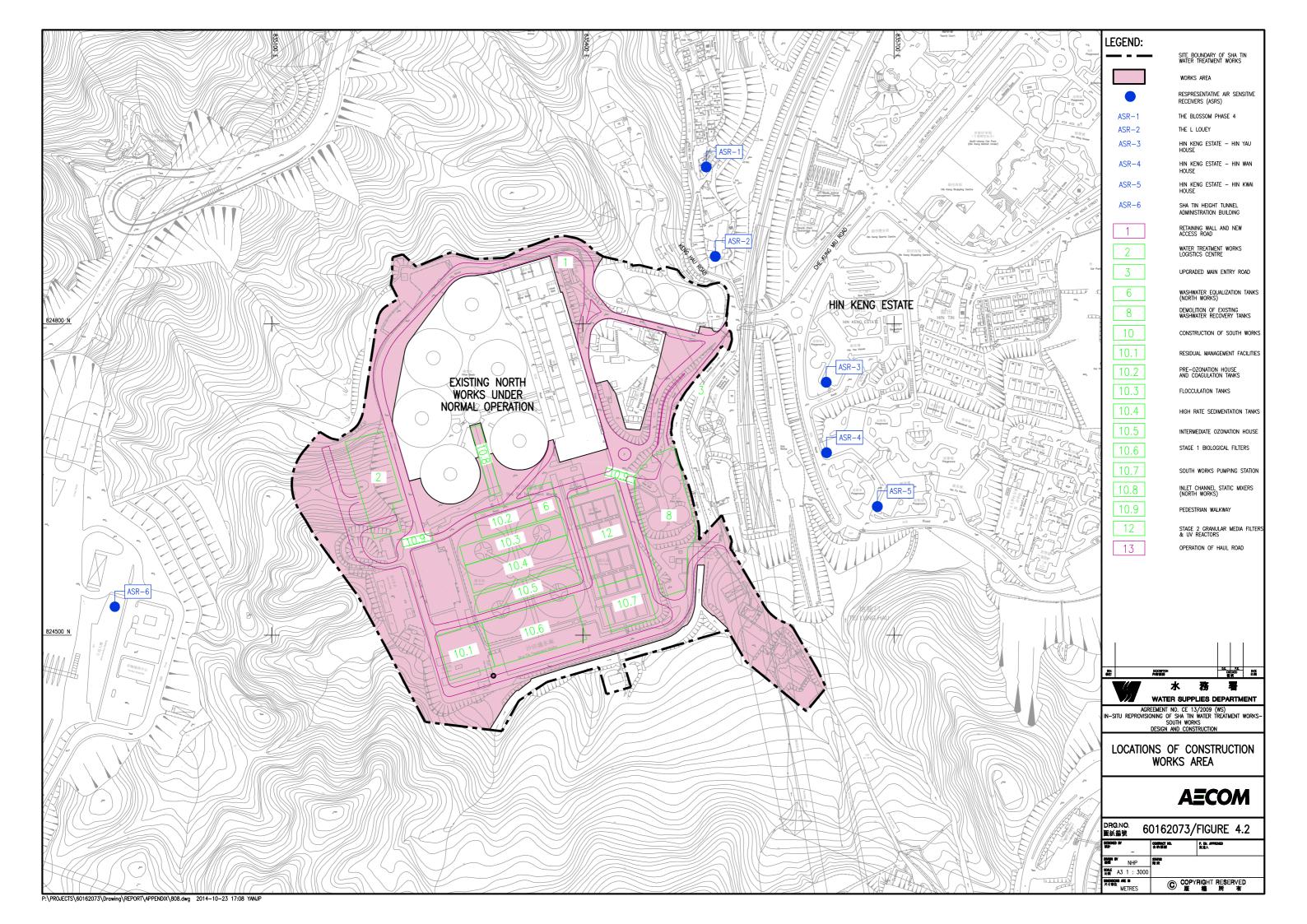
Contract No.: 3/WSD/15
In-situ Reprovisioning of Sha Tin Water Treatment Works (South Works) - Advance Works
Master Programme (Ver.09) - (Accelerated)



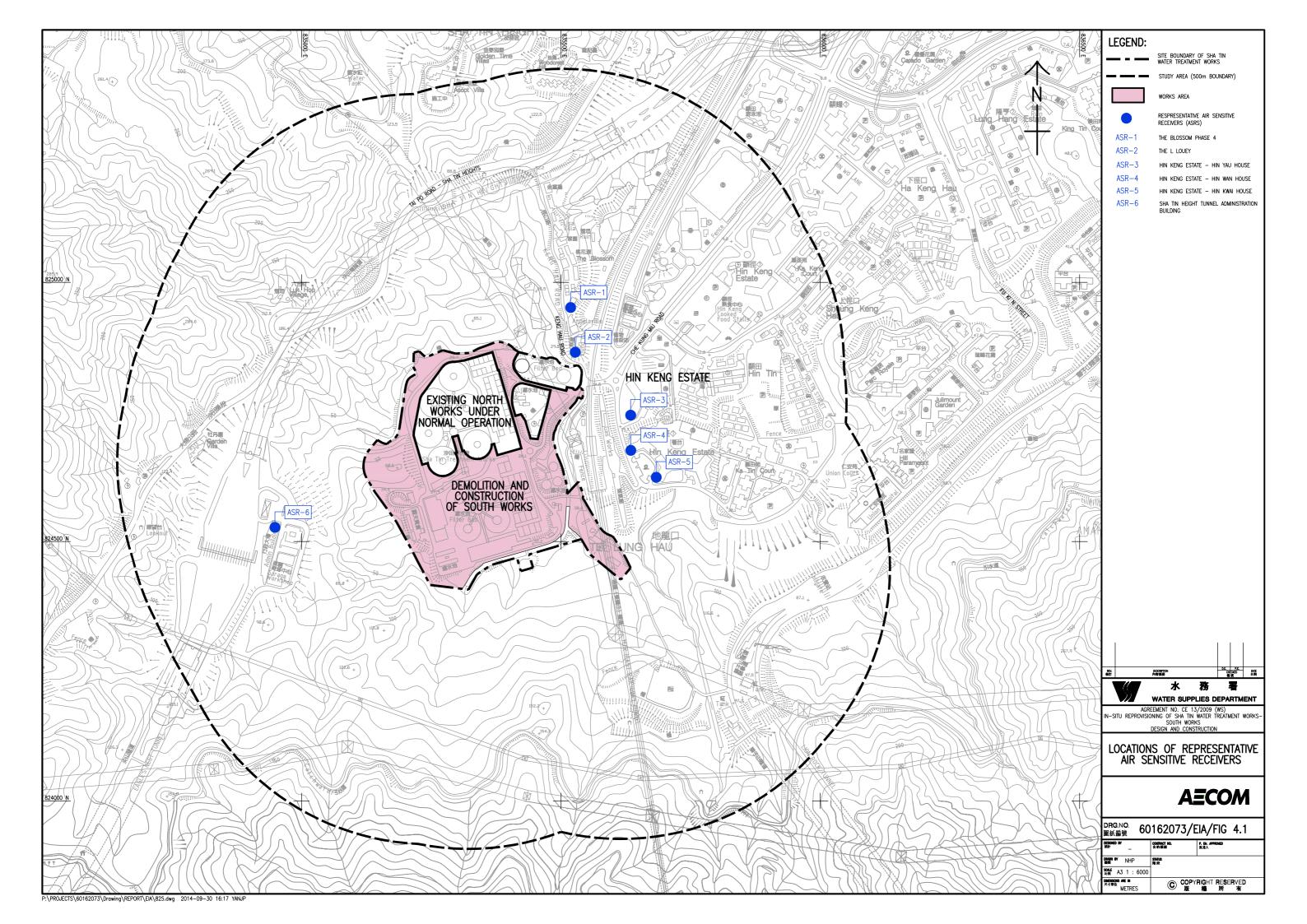
Page 8 of 10 Date 7 November 2019

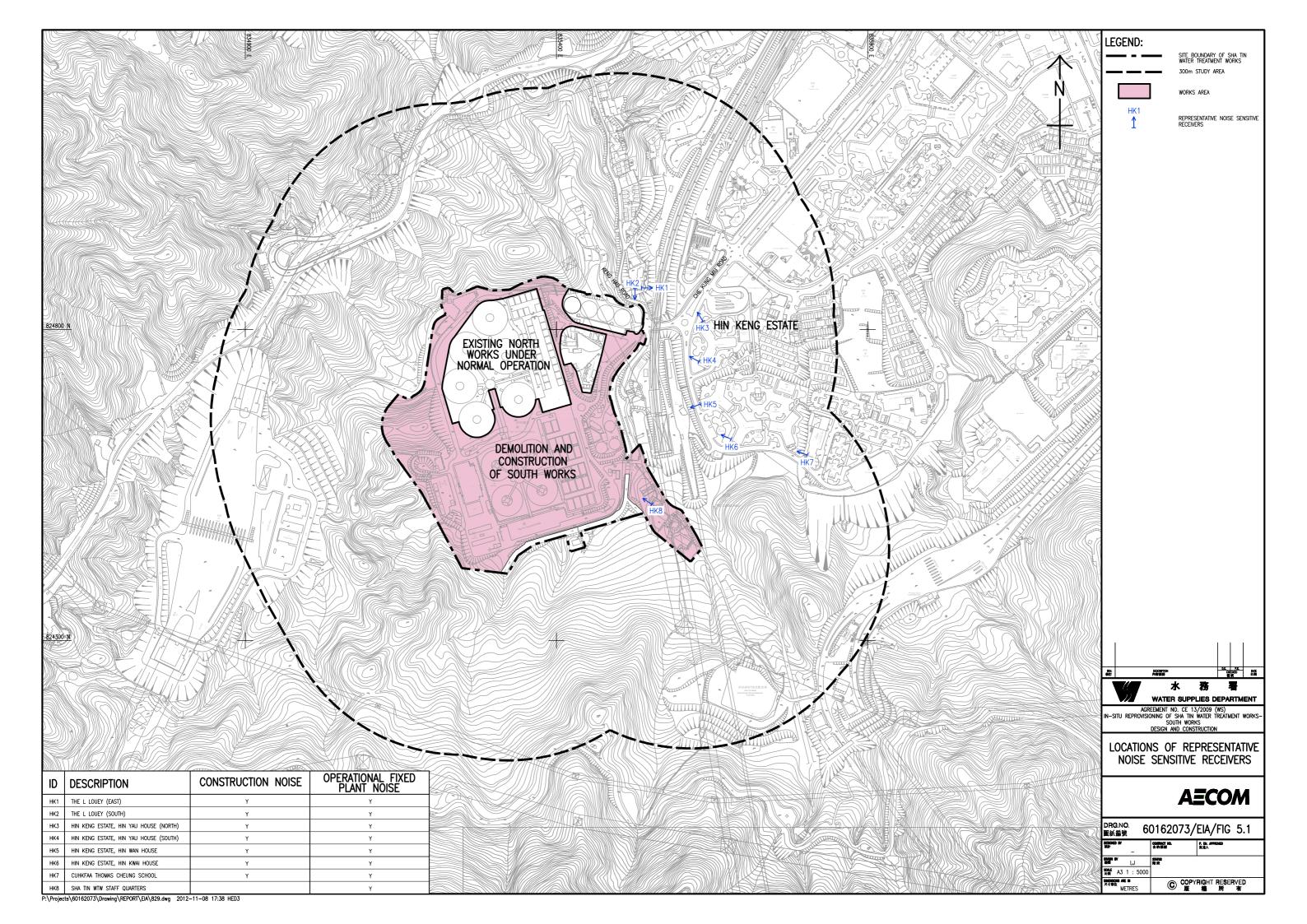


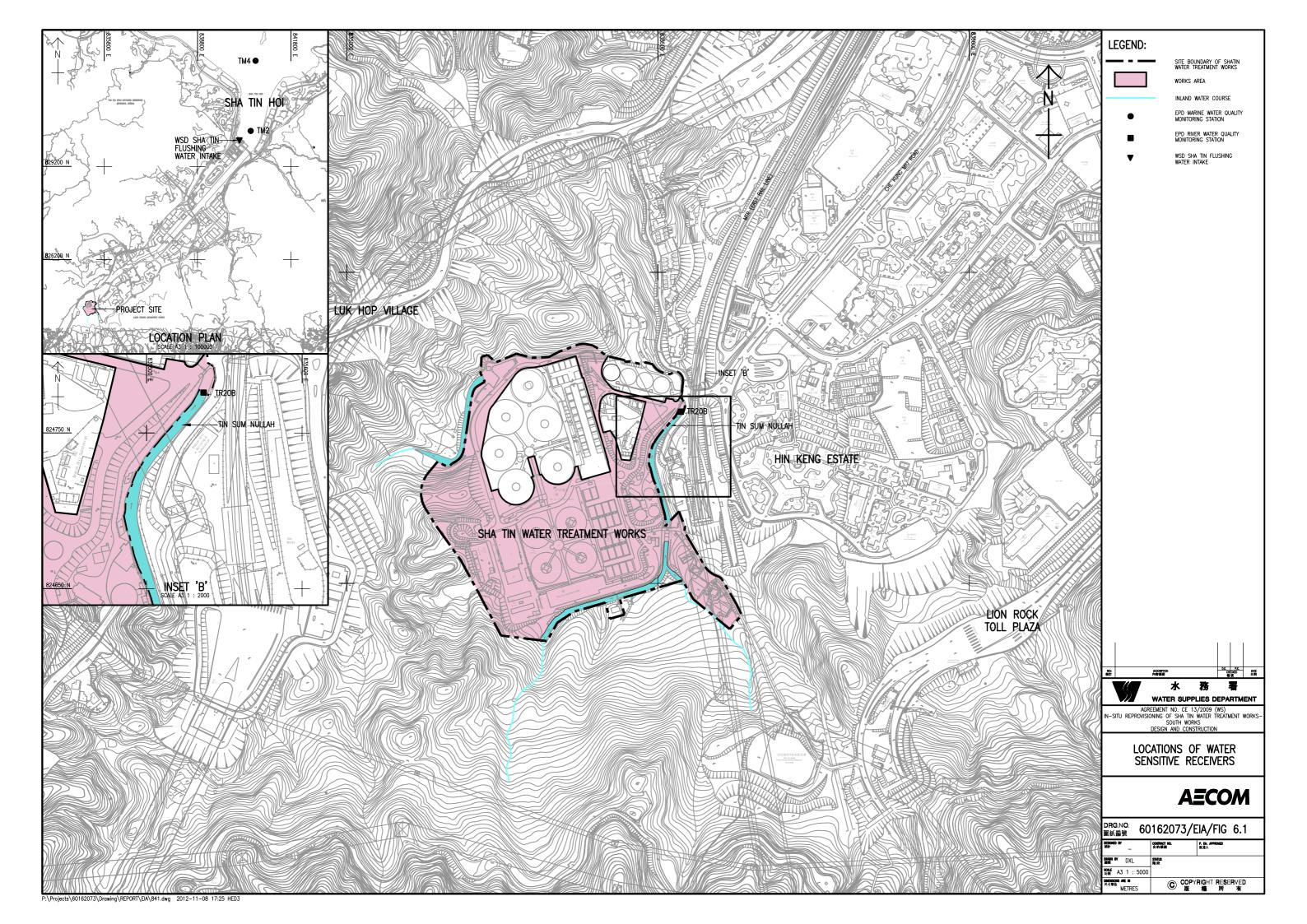
Page 9 of 10 Date 7 November 2019


Critical Split Task Milestone * Summary Critical

Contract No.: 3/WSD/15






Appendix D Location of Construction Activities

Appendix E Environmental Sensitive Receivers in the Vicinity of the Project

Appendix F Summary of Action and Limit Levels

Determination of Action and Limit Levels for Air Quality

Monitoring Locations	Action Level 1-hour TSP, (μg/m³)	Limit Level 1-hour TSP, (μg/m³)		
AM1	357	500		
AM2	334	500		

Determination of Action and Limit Levels for Noise

Monitoring	Action Level	Limit Level in dB(A)			
Location	0700-1900 hours on normal weekdays				
NM1		For domestic premises: 75 dB(A) for NM1 & NM2			
NM2	When one documented				
NM3	complaint is received	For schools: 70dB(A) during normal teaching periods and 65 dB(A) during examination periods for NM3			

Determination of Action and Limit Levels for Water Quality

Water		d Oxygen g/L)	Suspended (mg/		Turbidity	(NTU)	pl	pН	
monitoring	Action	Limit	Action	Limit	Action	Limit	Action	Limit	
stations	Level	Level	Level	Level	Level	Level	Level	Level	
C1	7.51	7.44	4.19	6.73	3.99	4.00	Beyond the range 6.6 to 7.9	Beyond the range 6.5 to 8.0	
C2	8.10	7.98	4.33	8.16	3.13	3.28	Beyond the range 6.6 to 8.8	Beyond the range 6.5 to 8.9	
C3*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
M1	8.90	8.89	3.30	3.56	4.36	4.48	Beyond the range 6.6 to 8.2	Beyond the range 6.6 to 8.3	
M2	8.92	8.91	18.84	26.80	12.64	13.72	Beyond the range 6.6 to 11.0	Beyond the range 6.6 to 11.0	
М3	9.16	9.15	1.00	1.00	1.10	1.18	Beyond the range 6.6 to 8.6	Beyond the range 6.6 to 8.7	

Remark: For DO, action should be taken when monitoring result of either one of the surface, middle or bottom DO is lower than the proposed Action/Limit Levels.

Appendix G Event/Action Plan

Air Quality

FV/FNT		ACT	TION	
EVENT	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one	1. Inform the Contractor, IEC	Check monitoring data	1. Confirm receipt of	1. Identify source(s),
sample	and ER;	submitted by the ET;	notification of exceedance	investigate the causes of
	2. Discuss with the	2. Check Contractor's	in writing.	exceedance and propose
	Contractor on the remedial	working method; and		remedial measures;
	measures required;	3. Review and advise the ET		2. Implement remedial
	3. Repeat measurement to	and ER on the effectiveness		measures; and
	confirm findings; and	of the proposed remedial		3. Amend working methods
	4. Increase monitoring	measures.		agreed with the ER as
	frequency.			appropriate.
2. Exceedance for two or	1. Inform the Contractor, IEC	Check monitoring data	1. Confirm receipt of	1. Identify source and
more consecutive samples	and ER;	submitted by the ET;	notification of exceedance	investigate the causes
	2. Discuss with the ER and	2. Check Contractor's	in writing;	of exceedance;
	Contractor on the remedial	working method; and	2. Review and agree on the	2. Submit proposals for
	measures required;	3. Review and advise the ET	remedial measures proposed	remedial measures to
	3. Repeat measurements to	and ER on the effectiveness	by the Contractor; and	the ER with a copy to
	confirm findings;	of the proposed remedial	3. Supervise implementation	ET and IEC within three
	4. Increase monitoring	measures.	of remedial measures.	working days of notification;
	frequency to daily;			3. Implement the agreed
	5. If exceedance continues,			proposals; and

	arrange meeting with the			4. Amend proposal as
	IEC, ER and Contractor; and			appropriate.
	6. If exceedance stops,			
	cease additional monitoring.			
LIMIT LEVEL				
Event	ET	IEC	ER	CONTRACTOR
1. Exceedance for one	1. Inform the Contractor,	Check monitoring data	1. Confirm receipt of	1. Identify source(s) and
sample	IEC, EPD and ER;	submitted by the ET;	notification of exceedance	investigate the causes
	2. Repeat measurement to	2. Check the Contractor's	in writing;	of exceedance;
	confirm findings;	working method;	2. Review and agree on the	2. Take immediate action to
	3. Increase monitoring	3. Discuss with the ET, ER	remedial measures proposed	avoid further exceedance;
	frequency to daily; and	and Contractor on possible	by the Contractor; and	3. Submit proposals for
	4. Discuss with the ER, IEC	remedial measures; and	3. Supervise implementation	remedial measures to ER
	and contractor on the	4. Review and advise the ER	of remedial measures.	with a copy to ET and IEC
	remedial measures and	and ET on the effectiveness		within three working days of
	assess the effectiveness.	of Contractor's remedial		notification;
		measures.		4. Implement the agreed
				proposals; and
				5. Amend proposal if
				appropriate.

	ET	IEC	ER	CONTRACTOR
2. Exceedance for two or	1. Notify Contractor, IEC, EPD	1. Check monitoring data	1. Confirm receipt of	1. Identify source(s) and
more consecutive samples	and ER;	submitted by the ET;	notification of exceedance	investigate the causes of
	2. Repeat measurement to	2. Check the Contractor's	in writing;	exceedance;
	confirm findings;	working method;	2. In consultation with the ET	2. Take immediate action
	3. Increase monitoring	3. Discuss with ET, ER, and	and IEC, agree with the	to avoid further exceedance;
	frequency to daily;	Contractor on the potential	Contractor on the remedial	3. Submit proposals for
	4. Carry out analysis of the	remedial measures; and	measures to be	remedial measures to the ER
	Contractor's working procedures	4. Review and advise the ER	implemented;	with a copy to the IEC and
	with the ER to determine	and ET on the effectiveness	3. Supervise the	ET within three working days
	possible mitigation to be	of Contractor's remedial	implementation of remedial	of notification;
	implemented;	measures.	measures; and	4. Implement the agreed
	5. Arrange meeting with the IEC		4. If exceedance continues,	proposals;
	and ER to discuss the remedial		consider what portion of the	5. Revise and resubmit
	measures to be taken;		work is responsible and	proposals if problem still not
	6. Review the effectiveness of		instruct the Contractor to	under control; and
	the Contractor's remedial		stop that portion of work	6. Stop the relevant portion
	measures and keep IEC, EPD		until the exceedance is	of works as determined by
	and ER informed of the results;		abated.	the ER until the exceedance
	and			is abated.
	7. If exceedance stops, cease			
	additional monitoring.			

Noise

EVENT	ACTION								
EVENI	ET	IEC	ER	CONTRACTOR					
ACTION LEVEL	1. Notify the Contractor, IEC	Review the investigation	1. Confirm receipt of	Investigate the complaint					
	and ER;	results submitted by the	notification of complaint in	and propose remedial					
	2. Discuss with the ER and	Contractor; and	writing;	measures;					
	Contractor on the remedial	2. Review and advise the ET	2. Review and agree on the	2. Report the results of					
	measures required; and	and ER on the effectiveness	remedial measures proposed	investigation to the IEC, ET					
	3. Increase monitoring	of the remedial measures	by the Contractor; and	and ER;					
	frequency to check mitigation	proposed by the Contractor.	3. Supervise implementation	3. Submit noise mitigation					
	effectiveness.		of remedial measures.	proposals to the ER with					
				copy to the IEC and ET					
				within three working days of					
				notification; and					
				4. Implement noise mitigation					
				proposals.					
LIMIT LEVEL	1. Notify the Contractor, IEC,	Check monitoring data	1. Confirm receipt of	Identify source and					
	EPD and ER;	submitted by the ET;	notification of failure in	investigate the causes of					
	2. Repeat measurement to	2. Check the Contractor's	writing;	exceedance;					
	confirm findings;	working method;	2. In consultation with the ET	2. Take immediate action to					
	3. Increase monitoring	3. Discuss with the ER, ET	and IEC, agree with the	avoid further exceedance;					
	frequency;	and Contractor on the	Contractor on the remedial	3. Submit proposals for					
	4. Carry out analysis of	potential remedial measures;	measures to be	remedial measures to the ER					

Contractor's working	and	implemented;	with copy to the IEC and ET
procedures to determine	4. Review and advise the ET	3. Supervise the	within three working days of
possible mitigation to be	and ER on the effectiveness	implementation of remedial	notification;
implemented;	of the remedial measures	measures; and	4. Implement the agreed
5. Arrange meeting with the	proposed by the Contractor.	4. If exceedance continues,	proposals;
IEC and ER to discuss the		consider what portion of the	5. Revise and resubmit
remedial measures to be		work is responsible and	proposals if problem still not
taken;		instruct the Contractor to	under control; and
6. Review the effectiveness		stop that portion of work until	6. Stop the relevant portion
of Contractor's remedial		the exceedance is abated.	of works as determined by
measures and keep IEC,			the ER until the exceedance
EPD and ER informed of the			is abated.
results; and			
7. If exceedance stops,			
cease			

Water Quality

EVENT		ACTION							
		ET Leader		IEC		ER		CONTRACTOR	
Action level being exceeded	•	Repeat in situ	•	Discuss with ET and	•	Discuss with IEC on the	•	Inform the ER and	
by one sampling day		measurement to		Contractor on the		proposed mitigation		confirm notification of	
		confirm findings;		mitigation measures;		measures;		the non-compliance in	
	•	Identify reasons for	•	Review proposals on	•	Make agreement on the		writing;	
		non-compliance and		mitigation measures		mitigation measures to	•	Rectify unacceptable	
		source(s) of impact;		submitted by		be implemented.		practice;	
	•	Inform IEC and		Contractor and advise	•	Assess the	•	Check all plant and	
		Contractor;		the ER accordingly;		effectiveness of the		equipment;	
	•	Check monitoring data,	•	Assess the		implemented mitigation	•	Consider changes of	
		all plant, equipment		effectiveness of the		measures.		working methods;	
		and Contractor's		Implemented mitigation			•	Discuss with ET and	
		working methods;		measures.				IEC and propose	
	•	Discuss mitigation						mitigation measures to	
		measures with IEC and						IEC and ER;	
		Contractor;					•	Implement the agreed	
	•	Repeat measurement						mitigation measures.	
		on next day of							
		exceedance.							

		ET Leader		IEC		ER		CONTRACTOR
Action level being exceeded	•	Repeat in situ	•	Discuss with ET and	•	Discuss with IEC on the	•	Inform the ER and
by more than one		measurement to		Contractor on the		proposed mitigation		confirm notification of
consecutive sampling day		confirm findings;		mitigation measures;		measures;		the non-compliance in
	•	Identify reasons for	•	Review proposals on	•	Make agreement on the		writing;
		non-compliance and		mitigation measures		mitigation measures to	•	Rectify unacceptable
		source(s) of impact;		submitted by		be implemented;		practice;
	•	Inform IEC and		Contractor and advise	•	Assess the	•	Check all plant and
		Contractor;		the ER accordingly;		effectiveness of the		equipment;
	•	Check monitoring data,	•	Assess the		implemented mitigation	•	Consider changes of
		all plant, equipment		effectiveness of the		measures.		working methods;
		and Contractor's		implemented mitigation			•	Discuss with ET and
		working methods;		measures.				IEC and propose
	•	Discuss mitigation						mitigation measures to
		measures with IEC and						IEC and ER within
		Contractor;						three working days;
	•	Ensure mitigation					•	Implement the agreed
		measures are						mitigation measures.
		implemented;						
	•	Prepare to increase the						
		monitoring frequency to						
		daily;						

	Repeat measurement			
	on next day of			
	exceedance.			
	ET Leader	IEC	ER	CONTRACTOR
Limit level being	Repeat in situ	Discuss with ET and	Discuss with IEC, ET	Inform the ER and
exceeded by one	measurement to	Contractor on the	and Contractor on the	confirm notification of
sampling day	confirm findings;	mitigation measures;	proposed mitigation	the non-compliance in
	 Identify reasons for 	Review proposals on	measures;	writing;
	non-compliance and	mitigation measures	Request Contractor to	Rectify unacceptable
	source(s) of impact;	submitted by	critically review the	practice;
	Inform IEC Contractor	Contractor and advise	working methods;	Check all plant and
	and EPD;	the ER accordingly;	Make agreement on the	equipment;
	Check monitoring data,	Assess the	mitigation measures to	Consider changes of
	all plant, equipment	effectiveness of the	be implemented;	working methods;
	and Contractor's	implemented mitigation	Assess the	Discuss with ET, IEC
	working methods;	measures.	effectiveness of the	and ER and propose
	Discuss mitigation		implemented mitigation	mitigation measures to
	measures with IEC, ER		measures.	IEC and ER within
	and Contractor;			three working days;
	Ensure mitigation			Implement the agreed
	measures are			mitigation measures.
	implemented;			

	Increase the monitoring frequency to daily until no exceedance of Limit level.			
	ET Leader	IEC	ER	CONTRACTOR
Limit level being	Repeat in situ	Discuss with ET and	 Discuss with IEC, ET 	 Inform the ER and
exceeded by more	measurement to	Contractor on the	and Contractor on the	confirm notification of
than one	confirm findings;	mitigation measures;	proposed mitigation	the non-compliance in
consecutive	 Identify reasons for 	Review proposals on	measures;	writing;
sampling day	non-compliance and	mitigation measures	Request Contractor to	Rectify unacceptable
	source(s) of impact;	submitted by	critically review the	practice;
	Inform IEC Contractor	Contractor and advise	working methods;	Check all plant and
	and EPD;	the ER accordingly;	Make agreement on the	equipment;
	 Check monitoring data, 	Assess the	mitigation measures to	Consider changes of
	all plant, equipment	effectiveness of the	be implemented;	working methods;
	and Contractor's	implemented mitigation	Assess the	Discuss with ET, IEC
	working methods;	measures.	effectiveness of the	and ER and propose
	Discuss mitigation		implemented mitigation	mitigation measures to
	measures with IEC, ER		measures;	IEC and ER within
	and Contractor;		Consider and instruct, if	three working days;
	Ensure mitigation		necessary, the	Implement the agreed
	measures are		Contractor to slow	mitigation measures;

implemented; Increase	down or to stop all or	As directed by the ER,
the monitoring	part of the construction	to slow down or to stop
frequency to daily until	activities until no	all or part of the
no exceedance of Limit	exceedance of Limit	construction activities.
level for two	level.	
consecutive days.		

Appendix H Impact Monitoring Schedules

Impact Monitoring Schedule for STWTW

	Impact Monitoring Schedule for STWTW						
Jun 20							
Sun	Mon	Tue	Wed	Thur		Sat	
	1	2	3	4	5	6	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		
7	8	9	10	11	12	13	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		
14	15	16	17	18	19	20	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		
21	22	23	24	25	26	27	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		
28	29	30					
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2						

^{*}Remark: No construction will be performed on public holiday 25/6.

Tentative Impact Monitoring Schedule for STWTW

			entative Impact Monitoring Schedule for STW	1 W			
Jul 20							
Sun	Mon	Tue	Wed	Thur	Fri	Sat	
				Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3	3	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2	
5	6	7	8	9	10	11	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		
12	13	14	15	16	17	18	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		
19	20	21	22	23	24	25	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		
26	27	28	29	30	31		
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		

^{*}Remark: No construction will be performed on public holiday 1/7.

Appendix I Location Plan of Air Quality Monitoring Station

Appendix J Calibration Certificates (Air Monitoring)

Sensidyne 80570 Nephelometer Calibration Certificate

Recommended calibration interval is 24 months from date of shipment and at 24 month intervals thereafter.

Serial #	R14527	
Firmware	80570-8100-V1.0.4	

All work has been successfully completed. (Sign off)

Calibrated By: J. Gist

Date 01-08-2020

Quality Inspector:

JAN 2 8 2020

Next Calibration Due 01-08-2022

Balance Sheath/Sample Flow Rate

Set Sample Flow to 1 lpm

Set Zero (k=1)

Set Gain Set Serial & Model Number

Calibration Concentration, LD-3, µg/m³

Pass/Fail Criteria

 pass
 ± 5%

 pass
 ± 5%

 pass
 ± 5%

 pass
 ± 2 μg/m3

pass ± 5%

X

637

Sensidyne, LP

1000 112th Circle North Suite 100 St. Petersburg, FL 33716 U.S.A.

T 800-451-9444 T+1 727-530-3602 F+1 727-539-0550

Email: info@Sensidyne.com www.Sensidyne.com www.Schauenburg.com

Calibration Standards

Standard	Manufacturer	Model	SN	Cal Due
Nephelometer	Sibata	LD-3B	476795	06-07-2020

The test and calibration results on this report certify that this instrument complies with the product specifications at the time of this report. Calibration was performed using test instruments and standards that are traceable to NMIJ and the International System of Units (SI). Laser safety and anti-static procedures are followed.

80570-9600 Sensidyne Cal Cert Rev C

Sensidyne 80570 Nephelometer Calibration Certificate

Recommended calibration interval is 24 months from date of shipment and at 24 month intervals thereafter.

Serial #	R13214
Firmware	80570-8100-V1.0.4

All work has been successfully completed. (Sign off)

Calibrated By: D. JONES

Date 10-01-2019

Quality Inspector: A 23

Date OCT 0 3 2019

Next Calibration Due 10-01-2021

Balance Sheath/Sample Flow Rate

Set Sample Flow to 1 lpm

Set Zero (k=1)

Set Gain

Set Serial & Model Number

Calibration Concentration, LD-3, µg/m³

Pass/Fail Criteria

pass ± 5%

pass ± 5%

 pass
 ± 2 μg/m3

 pass
 ± 5%

pass X

388

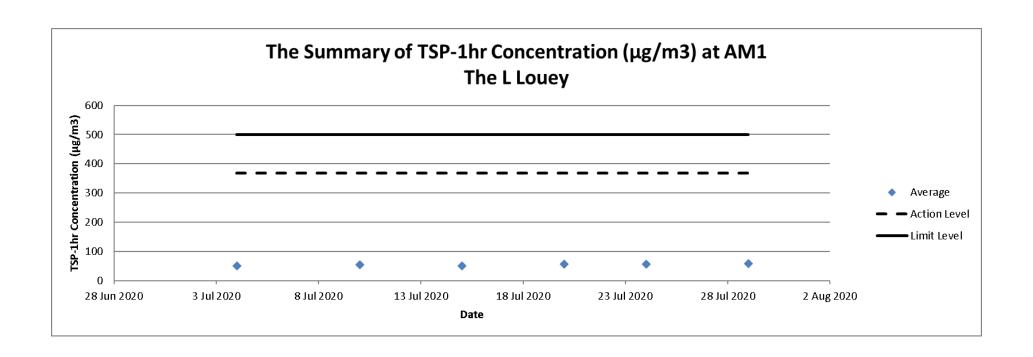
Sensidyne, LP

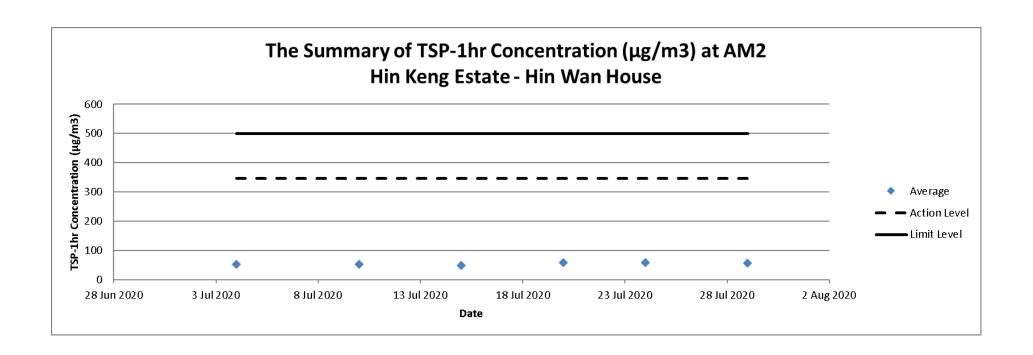
1000 112th Circle North Suite 100 St. Petersburg, FL 33716 U.S.A.

T 800-451-9444 T+1 727-530-3602 F+1 727-539-0550

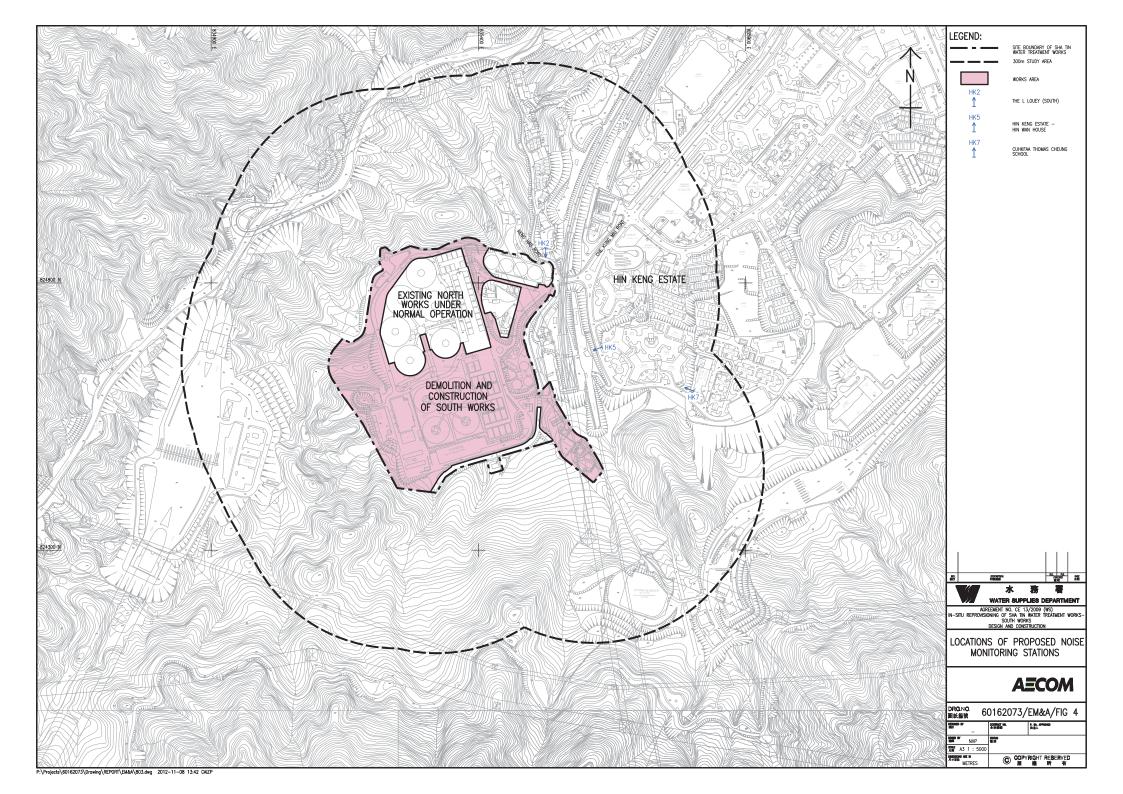
Email: info@Sensidyne.com www.Sensidyne.com www.Schauenburg.com

Calibration Standards


Standard	Manufacturer	Model	SN	Cal Due
Nephelometer	Sibata	LD-3B	6X7759	12/14/2019


The test and calibration results on this report certify that this instrument complies with the product specifications at the time of this report. Calibration was performed using test instruments and standards that are traceable to NMIJ and the International System of Units (SI). Laser safety and anti-static procedures are followed.

80570-9600 Sensidyne Cal Cert Rev C



Appendix K Impact Air Quality Monitoring Results and Graphical Presentation

Appendix L Location Plan of Noise Monitoring Station

Appendix M Calibration Certificates (Noise)

This instrument was produced under rigorous factory production control and documented standard procedures. It was individually visually inspected, leak tested and function tested for display, backlight, button and software performance. The accuracy of each of its primary measurements was individually calibrated and/or tested against standards traceable to the National Institute of Standards and Technology ("NIST") or calibrated intermediary standards. This instrument is certified to have performed at the time of manufacture in compliance with the following specifications as they apply to this meter's specific model, measurements and features.

Methods Used in Calibration and Testing

Wind Speed:

The Kestrel Pocket Weather Meter impeller installed in this unit was individually tested in a subsonic wind tunnel operating at approximately 300 fpm (1.5 m/s) and 1200 fpm (6.1 m/s) monitored by a Gill Instruments Model 1350 ultrasonic time-of-flight anemometer. The Standard's maximum combined uncertainty is +/-1.04% within the airspeed range 706.6 to 3923.9 fpm (3.59 to 19.93 m/s), and +/-1.66% within the airspeed range 166.6 to 706.6 fpm (0.85 to 3.59 m/s).

Temperature:

Temperature response is verified in comparison with a Eutechnics 4600 Precision Thermometer or a standard Kestrel 4000 Weather and Environmental Meter calibrated weekly against the Eutechnics 4600. The Eutechnics 4600 is calibrated annually and is traceable to NIST with a system accuracy of +/- 0.05 °C.

Direction / Heading

The sensitivity of the magnetic directional sensor is verfied at the component level by applying a magnetic field to the sensor and measuring the signal output at 4 points, as well as after assembly by orienting the unit to the cardinal directions and measuring the magnetic field output. In both cases the compass output must be accurate to within +/- 5 degrees.

Relative Humidity:

Relative humidity receives a two-point calibration in humidity and temperature controlled chambers at 75.3% RH and 32.8% RH at 25° C. The calibration tanks are monitored with an Edgetech Model 2002 DewPrime II Standard Chilled Mirror Hygrometer. Following calibration, performance is further verified at an RH of approximately 43.2% against the Edgetech Hygrometer. The Edgetech Hygrometer is calibrated annually and is traceable to NIST with a maximum relative expanded uncertainty of +/- 0.2% RH.

Barometric Pressure:

Pressure response is verified against a Mensor Series 6000 Digital Barometer or a standard Kestrel 4000 Weather and Environmental Meter calibrated weekly against the Mensor Barometer. The Mensor Barometer is calibrated annually and is traceable to NIST with a maximum relative expanded uncertainty of +/- 0.02% F.S.

Approved By:

Michael Naughton, Engineering Manager

SENSOR	1000	2000	2500	3000	3500	3500	4000	4200	4250	4300	4400	4500	4500	ACCURACY (+/-)*	SENSO	SPECIFICATION RANGE	OPERATIONAL RANGE	NOTES
Wind Speed Air Flow	•	•	•	•	•	•			•		•	•	HOR	Larger of 3% of reading, least significant digit or 20 ft/min	0.1 m/s 1 ft/min 0.1 km/h 0.1 mph 0.1 knots 1 B	0.6 to 40.0 m/s 118 to 7,874 ft/min 2.2 to 144.0 km/h 1.3 to 89.5 mph 1.2 to 77.8 knots 0 to 12 B	0.6 to 60.0 m/s 118 to 11,811 ft/min 2.2 to 216.0 km/h 1.3 to 134.2 mph 1.2 to 116.6 knots 0 to 12.8	Inch/25 mm diameter impeller with precision axis and low-friction Zystell bearings. Startup is stated as lower limit, readings may be taken down to 0.4 mis [78 ftmm] [1.5 kmh] [9 mph], after impeller startup, Off-asis accuracy -1% @ 5° off-axis; 2% @ 10° -35% @ 15° -Cashvar off-arit +1% what Pro Hous use at 16 talk[7] mis. Repicement repoler (IRF PL-205)) field installs without took (US Pleared, 7.83) 753). Whird speed calibration and testing about be do with trangle on mapple in Castel at the buffer totated at the buffer for face of the Kesteller Castel at the buffer for face of the Kesteller Castellar the prior face of the Kesteller.
Ambient Temperature					٠	•	٠			•			•	0.9*F 0.5*C	0.1 *F 0.1 *C	-20.0 to 158.0 °F -29.0 to 70.0 °C	14,0.0 to 131.0 °F -10.0 to 55.0 °C	Hermitically-sealed, practision thermition mounted externally and thermally isolated. US Pails 5,536,645 for rapid response, Aufflow of 2.2 mpc/1 mis or greater provides fastest response fastest reproduce fastest reproduced to the provided of the provide
Globe Temperature - Tg														*F 1.4 *C	0.1 °F 0.1 °C	-20.0 to 140.0 °F -29.0 to 60.0 °C	14.0 to 131.0 °F -10.0 to 55.0 °C	Temperature inside 1in 25 mm black powder coated copper globe converted to Tg equivalen standard 6 in 150 mm globe. Closest equivalence obtained with airflow greater than 2.2 mph, m/s.
Relative Humidity								•			•			3.0 %RH	0.1 %RH	5 to 95% non-condensing	0 to 100%	Polymer capacitive humidity sensor mounted in thin-walled chamber external to case for rap accurate response (US Patert 6,257,074). To achieve stated accuracy, unit must be primit qualitate to external temperature when exposed to large, rapid temperature changes and to out of direct suright. Califoration drift +0-2% over 24 months. RIM: PRIVATION sensor may be recall at factory or indusing Kestler Mindfo, Califoration Nrs. RIM: PRIVATION.
Pressure	*		٠	23.5			•		•	•			•	0.03 inHg 1.0 hPalmbar 0.01 PSI	0.01 inHg 0.1 hPa mbar 0.01 PSI	8.86 to 32.49 inHg 300.0 to 1100.0 hPajmbar 4.35 to 15.95 PSI and 32.0 to 185.0 °F 0.0 to 85.0 °C	0.30 to 48.87 inHg 10.0 to 1654.7 hPalmbar 0.14 to 24.00 PSI and 14.0 to 131.0 °F -10.0 to 55.0 °C	Monofilhis silicon piezoresistive pressure sensor with second-order temperature correction. Pressure sensor may be realizabled at factory in field. Adjubbles for infernor, altitude sold splay of station pressure or transmittip pressure connected SNL. Kestelle 4200 displays station pressure or a dedicated screen. Relatel 2500 and 3000 displays station pressure or an edicated screen. Relatel 2500 and 3000 displays continuously update three-hour later matter pressure the relationation management splay, raing, stately, fishing, fishing in Kestell 4000 series only 1000 series only
Compass												٠		5*	1* 1/16th Cardinal Scale	0 to 360°	0 to 360*	2-axis solid-state magnetoresistive sensor mounted perpendicular to unit plane. Accuracy of sensor dependent upon units vertical position. Self-calibration routine eliminates magnetic e from batteries or unit and must be run after every full power-down (batter) removal or charge. Readout indicates direction to which the back of the unit is pointed when held in a vertical orientation. Declinations/variation adjustable for Tun North readout.
														CALCUL	ATED ME	ASUREMENTS		
MEASUREMENT	1000	2000	2500	3000	3500	3500 DT	4000	4200	4250	4300	4400	4500	4500 HOR	ACCURACY (+/-)*	RESOLUTION	SPECIFICATION RANGE	SENSORS EMPLOYED	NOTES
Air Density	i jen	491		W	133	17	ded	٠	•		133			0.0002 lb/ft ³ 0.0033 kg/m ³	0.001 lbs/ft ³ 0.001 kg/m ³	Refer to Ranges for Sensors Employed	Temperature Relative Humidity Pressure	Mass of air per unit volume
Air Flow														6.71%	1 cfm 1 m²/hr 1 m²/m 0.1m²/s 1 L/s	Refer to Ranges for Sensors Employed	Air Flow User Input (Duct Shape & Size)	Volume of air flowing through an opening. Automatically calculated from Air Velocity measure and user-specified duct shape (circle or rectangle) and dimensions (units: in, ft, cm or m). Maximum duct dimension input: 258.0 in 21.5 ft 655.3 cm 6.55 m.
Altitude														typical: 23.6 ft 7.2 m max: 48.2 ft	1 ft 1 m	typical: 750 to 1100 mBar max: 300 to 750 mBar	Pressure User Input (Reference Pressure)	Height above Mean Sea Level ("MSL"). Temperature compensated pressure (barometric) altimeter requires accurate reference barometric pressure to produce maximum absolute accuracy. Both accuracy specs corresponds to a reference pressure anywhere from 850 to mBar.
Barometric Pressure														14.7 m 0.07 inHg 2.4 hPa mbar 0.03 PSI	0.01 inHg 0.1 hPa mbar 0.01 PSI	Refer to Ranges for Sensors Employed	Pressure User Input (Reference Altitude)	imbar. Air pressure that would be present in identical conditions at MSL. Station pressure compens for local elevation provided by reference altitude. Requires accurate reference altitude to promaximum absolute accuracy.
Crosswind & Headwind/Tailwind												•		7.1%	1 mph 1 ft/min 0.1 km/h 0.1 m/s 0.1 knots	Refer to Ranges for Sensors Employed	Wind Speed Compass	Effective wind relative to a target or travel direction. Auto-switching headwindstallwind indicate
Delta T														3.2 °F	0.1 °F 0.1 °C	Refer to Ranges for	Temperature Relative Humidity	Difference between dry bulb temperature and wet bulb temperature. When spraying, indicat
	1XIII	Bysle:	0.0	708	13/3	1200			200					1.8 °C	1ft	Sensors Employed Refer to Ranges for	Pressure Temperature	evaporation rate and droplet lifetime. Safe range for pesticide spraying is 4 to 16 °F / 2 to 9 Local air density converted to equivalent elevation above sea level in a uniform layer consist
Density Altitude			na:											69 m	1 m	Sensors Employed	Relative Humidity Pressure	the International Standard Atmosphere. Temperature that a volume of air must be cooled to at constant pressure for the water vaporation.
Dewpoint				•	•	•	•	•	•	•	٠	•	•	3.4 °F 1.9 °C	0.1 °F 0.1 °C	Refer to Range for Temperature Sensor	Temperature Relative Humidity	present to condense into dewand form on a solid surface. Can also be considered to be the water-to-air saturation temperature.
Evaporation Rate										•				0.01 lb/ft²/hr 0.06 kg/m2/hr	0.01 b/ft²/hr 0.01 kg/m²/hr	Refer to Ranges for Sensors Employed	Wind Speed Temperature Relative Humidity Pressure User Input (Concrete Temperature)	The rate at which moisture is lost from the surface of curing concrete. Requires user measurement and entry of concrete temperature obtained with an accurate IR or probe the contracter of For *C**, not included, Readings should be taken 20 inches above pour surface with the thermister shaded, and averaged for 610 seconds using fusil-in averaging functions.
Heat Index			•	•	٠	-3379	•	•	•	•	•	•	•	7.1 °F 4.0 °C	0.1 °F 0.1 °C	Refer to Ranges for Sensors Employed	Temperature Relative Humidity	Perceived temperature resulting from the combined effect of temperature and relative humic Calculated based on NWS Heat Index (HI) tables. Measurement range limited by extent of published tables.
Moisture Content Humidity Ratio ("Grains")									•					.3 gpp .04 g/kg	0.1 gpp 0.01 g/kg	Refer to Ranges for Sensors Employed	Temperature Relative Humidity Pressure	Mass of water vapor in a mass of air.
Relative Air Density					247	127	1 11						100	0.3%	0.1%	Refer to Ranges for Sensors Employed	Temperature Relative Humidity	The ratio, expressed as a percentage, of measured air density to the air density of a standa atmosphere as defined by the ICAO.
hermal Work Limit (TWL)						La P	197-1		1 01					10.9 W/m²	0.1 W/m²	Refer to Ranges for Sensors Employed	Pressure Wind Speed Temperature Globe Temperature Relative Humidity Pressure	armospere as connect on excession and extended substantial for the conditions and cityling factors. Based off of estimated metabolic rate (Wiln2) for the conditions and cityling factors. Based off of estimated metabolic output of typical human. O screen zone varings.
Outdoor Wet Bulb Globe Temperature (WBGT)								148						1.3 °F 0.7 °C	0.1 °F 0.1 °C	Refer to Ranges for Sensors Employed	Wind Speed Temperature Globe Temperature Relative Humidity	Measure of human heat stress defined as the combination of effects due to radiation, convi and conduction. Outdoor WBGT is calculated from a veighted sum of natural web bull CTM globe temperature (Tg), and dry bulb temperature (Td). User setable on-screen varning zo
Wet Bulb Temperature - aturally Aspirated (Tnwb)			1872			1100	18	B R	is to	25 kg	•	16		1.4 °F 0.8 °C	0.1 °F 0.1 °C	Refer to Ranges for Sensors Employed	Pressure Wind Speed Temperature Globe Temperature Relative Humidity	Similar to psychrometric wer-bubl temporature (see below). However, Trivib only undergoes convection from the arrisent air velocity. Trivib is a measure of the evaporative cooling that will allow. This is accounted for by combining the effects of, mainly, relative humidity and windspeed.
Wet Bulb Temperature - Psychrometric	57	TELL S	5 10							•				3.2 °F 1.8 °C	0.1 °F 0.1 °C	Refer to Ranges for Sensors Employed	Pressure Temperature Relative Humidity	Temperature indicated by a sing psychrometer. Due to nature of the psychrometric ratio for water-air system, this approximates the thermodynamic wet-bulb temperature. The thermody wet-bulb temperature is the temperature a parcel of air would have if cooled adiabatically to
Wind Chill	W.		•				•					•	•	1.6 °F 0.9 °C	0.1 °F 0.1 °C	Refer to Ranges for Sensors Employed	Pressure Wind Speed Temperature	saturation temperature vis water evaporating into it. Perceived temperature resulting from combined effect of wind speed and temperature. Calc based on the NWS Wind Chill Temperature (WCT) Index, revised 2001, with wind speed by a factor of 1.5 to yield equivalent results to wind speed measured at 10 m above ground.
			0.1		133	901	1233	253	MA					ADDITIO	ONAL SEE	CIFICATIONS		Measurement range limited by extent of published tables.
Display & Backlight				•									SCHOOL STATE	Reflective 3 1/2 digit LC	D. Digit height 0:38 in	9 mm. Aviation green electrol	luminescent backlight. Manual activation	on with auto-off. urninescent backlight. Manual activation with auto-off.
Response Time				1,1039	SIXE	SI-N	٠	٠	٠	•	•	•	•	Multifunction, multi-digit	monochrome dot-matri	x display. Choice of aviation	green or visible red (NV models only) e	uminescent backlight. Manual activation with auto-on: hectroluminescent backlight. Automatic or manual activation. nd all measurements which include RH in their calculation may require as long as 1 minute to f
& Display Update						:	•	•	•	•	•	•	•	equilibrate to a large cha	ange in the measurement start of Max Wind Gus	ent environment. Display updat it and Average Wind measure	tes every 1 second. ment.	ed lavel inacogmog act to balliev.
Max/Avg Wind							•	•	•	•	•	٠	•					with all other wind-related functions: air velocity, crosswind, headwind/tailwind, wind chill, WBC
ata Storage & Graphical Display, Min/Max/Avg History									3200 points					Minimum, maximum, ave independently. Auto-stor	erage and logged histo re interval settable from	ry stored and displayed for ew n 2 seconds to 12 hours, over	ery measured value. Large capacity da write on or off. Logs even when display	ata logger with graphical display. Manual and auto data storage. Min/Max/Avg history may be re y off except for 2 and 5 second intervals (code version 4.18 and later). Data capacity shown.
ata Upload & Bluetooth® Data Connect Option							•	•	•	•		•		Bluetooth Data Trans	fer Option: Adjustable	32) or Bluetooth data transfer e power consumption and radi rial Port Protocol for data tran	o range from up to 30 ft 9 meters. Inc	dividual unit ID and 4-digit PIN code preprogrammed for easy identification and data security w
Clock / Calendar			•	•	•	•								Requires optional PC in	terface (USB or RS-23	32) or Bluetooth data transfer 32) or Bluetooth data transfer	option and provided software.	18GPTO CONTROLLED TO THE THE THE
Auto Shutdown	٠	•	•	•	•	•		•						Requires optional PC in Requires optional PC in	terface (USB or RS-23 terface (USB or RS-23	32) or Bluetooth data transfer 32) or Bluetooth data transfer	option and provided software.	
Languages Certifications	•	•	•			•				•				English, French, Germa CE certified, RoHS and	WEEE compliant. Indi	vidually tested to NIST-traceat	ole standards (written certificate of test	ts available at additional charge).
Origin Battery Life	•		•	•			•	•	٠	•	•	•	•	Designed and manufact CR2032, one, included.	ured in the USA from I Average life, 300 hour	JS and imported components. s. Battery life reduced by back	Complies with Regional Value Content slight use in 2000 to 3500 models.	t and Tariff Code Transformation requirements for NAFTA Preference Criterion B.
Shock Resistance	•	•	•			•	•					:		MIL-STD-810g, Transit	Shock, Method 516.5	d. Average life, 400 hours of u Procedure IV; unit only; impact	use, reduced by backlight or Bluetooth t may damage replaceable impeller.	radio transmission use.
Sealing Operational Temperature														Waterproof (IP67 and N 14° F to 131° F -10 °C	to 55 °C Measureme	nts may be taken beyond the li	imits of the operational temperature rai	nge of the display and batteries by maintaining the unit within the operational range and exposi
Limits Storage Temperature	•		•	•	•	•	•	•	•		•		•	-22.0 °F to 140.0 °F -3	0.0 °C to 60.0 °C	num time necessary to take rea		
														48 x 1 0 - 4 4 1- 1400	48 x 2 0 am a a	102 g (including slip-on cover)		

^{*} NOTE: Accuracy calculated as uncertainty of the measurement derived from statistical analysis considering the comined effects from primary sensor specifications, circuit conversions, and all other sources of error using a coverage factor of k=2, or two standard deviations (2Σ).

Certificate of Calibration

Description:

Sound Level Meter

Manufacturer:

NTi Audio

Type No.:

XL2 (Serial No.: A2A-09696-E0)

Microphone:

ACO 7052 (Serial No.: 60997)

Preamplifier:

MA220 (Serial No.: 5287)

Submitted by:

Customer:

Acumen Environmental Engineering and Technologies Co.

Ltd.

Address:

No.12, Tam Kon Shan Road, Tsing Yi Island, Hong Kong

Upon receipt for calibration, the instrument was found to be:

Within.

Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 28 February 2020

Date of calibration: 2 March 2020

Calibrated by:

Certified by: Calibration Technician

Mr. Ng Yan Wa

Laboratory Manager

Date of issue: 2 March 2020

Certificate No.: APJ19-168-CC001

Page 1 of 4

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

23.7°C

Air Pressure:

1008 hPa

Relative Humidity:

54.5 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV180064

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Sett	ing of Ui	nit-under-t	est (UUT)	Appl	ied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. V	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	±0.4

Linearity

Sett	ing of Un	it-under-t	est (UUT)	Appl	lied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. V	Veighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
	30-130 dBA SPL	SPL	Fast	94	1000	94.0	Ref
30-130				104		104.0	±0.3
				114		114.0	±0.3

Time Weighting

Setti	ing of Un	it-under-t	est (UUT)	Appl	ied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	Ref
30-130	uDA	SPL	Slow	94	1000	94.0	±0.3

Certificate No.: APJ19-168-CC001

Page 2 of 4

Acoustics and Air Testing Laboratory Co. Ltd.

聲學及空氣測試實驗室有限公司

Frequency Response

Linear Response

Sett	ing of Unit	-under-t	est (UUT)	Appl	ied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. Wo	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	94.0	±2.0
				63	94.1	±1.5	
					125	94.2	±1.5
			Fast	94	250	94.1	±1.4
30-130	dB	SPL			500	94.1	±1.4
					1000	94.0	Ref
					2000	93.8	±1.6
					4000	93.3	±1.6
		_	_		8000	92.9	+2.1; -3.1

A-weighting

Sett	ing of Uni	t-under-t	est (UUT)	Appl	ied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	55.6	-39.4 ±2.0
					63	67.9	-26.2 ±1.5
					125	78.0	-16.1 ±1.5
					250	85.4	-8.6 ±1.4
30-130	dBA	SPL	Fast	94	500	90.8	-3.2 ±1.4
					1000	94.0	Ref
					2000	95.0	+1.2±1.6
					4000	94.3	+1.0 ±1.6
					8000	91.8	-1.1+2.1; -3.1

C-weighting

Sett	ing of Uni	t-under-t	est (UUT)	Appl	ied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	91.0	-3.0 ±2.0
					63	93.2	-0.8 ±1.5
					125	94.0	-0.2 ±1.5
		SPL	Fast	94	250	94.1	-0.0 ±1.4
30-130	dBC				500	94.1	-0.0 ±1.4
					1000	94.0	Ref
					2000	93.6	-0.2 ±1.6
					4000	92.5	-0.8 ±1.6
					8000	89.9	-3.0 +2.1; -3.1

Certificate No.: APJ19-168-CC001

Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.10
	125 Hz	± 0.10
	250 Hz	± 0.05
	500 Hz	± 0.10
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

(A+A) *L

Page 4 of 4

CALIBRATION CERTIFICATE

Certificate Information

Certificate Number | MLCN192765S **Date of Issue** 22-Oct-2019

Customer Information

Company Name

Address

Acuity Sustainability Consulting Limited Unit 1908, Nos. 301-305 Castle Peak Road,

Kwai Chung, N.T.

Equipment-under-Test (EUT)

Description

Sound Level Calibrator

Manufacturer

Rion NC-74

Model Number Serial Number

34504770

Equipment Number

Calibration Particular

Date of Calibration

22-Oct-2019

Calibration Equipment

4231(MLTE008) / AV180068 / 13-May-20

1357(MLTE190) / MLEC19/05/02 / 26-May-20

Calibration Procedure

MLCG00, MLCG15

Calibration Conditions

Temperature Laboratory

23 °C ± 5 °C

EUT

Relative Humidity

 $55\% \pm 25\%$ Over 3 hours

Stabilizing Time Warm-up Time

Power Supply

Not applicable

Internal battery

Calibration Results

Calibration data were detailed in the continuation pages.

Calibration result was out of EUT specification.

Approved By & Date

K.O. Lo

22-Oct-2019

Statements

- Calibration equipment used for this calibration are traceable to national / international standards.
- The results on this Calibration Certificate only relate to the values measured at the time of the calibration and the uncertainties quoted will not include allowance for the EUT long term drift, variation with environmental changes, vibration and shock during transportation, overloading, mishandling, misuse, and the capacity of any other laboratory to repeat the measurement.
- MaxLab Calibration Centre Limited shall not be liable for any loss or damage resulting from the use of the EUT.
- The copy of this Certificate is owned by MaxLab Calibration Centre Limited. No part of this Certificate may be reproduced without the prior written approval of MaxLab Calibration Centre Limited.

Page 1 of 2

Certificate No.

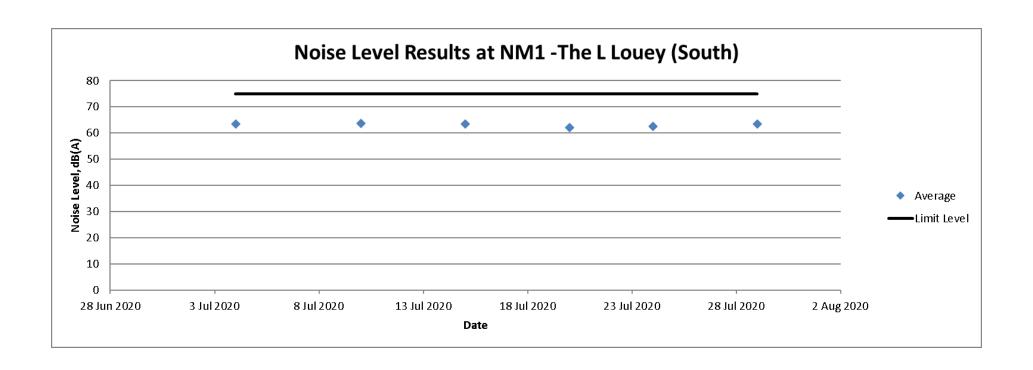
MLCN192765S

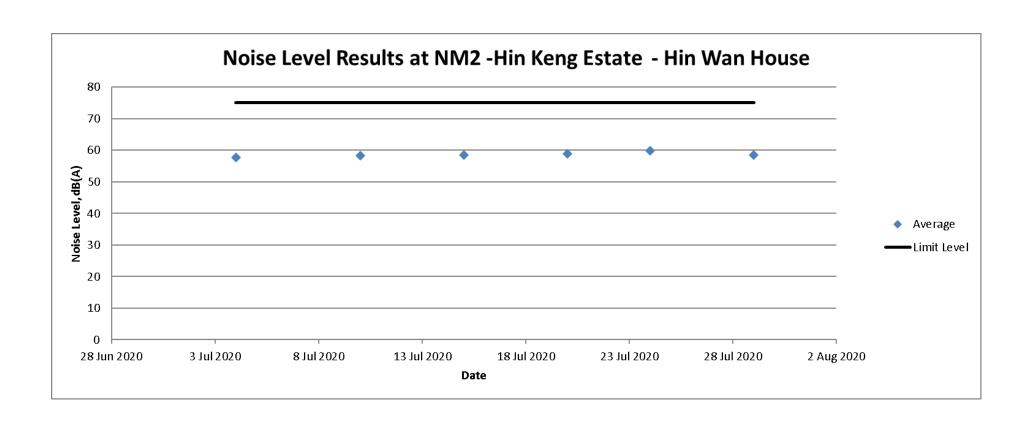
Calibration Data				
EUT Setting	Standard Reading	EUT Error from Setting	Calibration Uncertainty	EUT Specification
94 dB	94.0 dB	0.0 dB	0.20 dB	± 0.3 dB

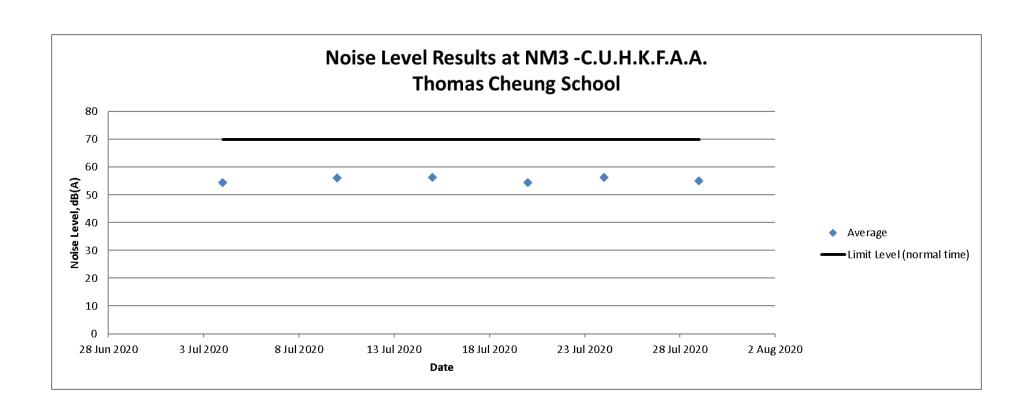
- END -

Calibrated By:

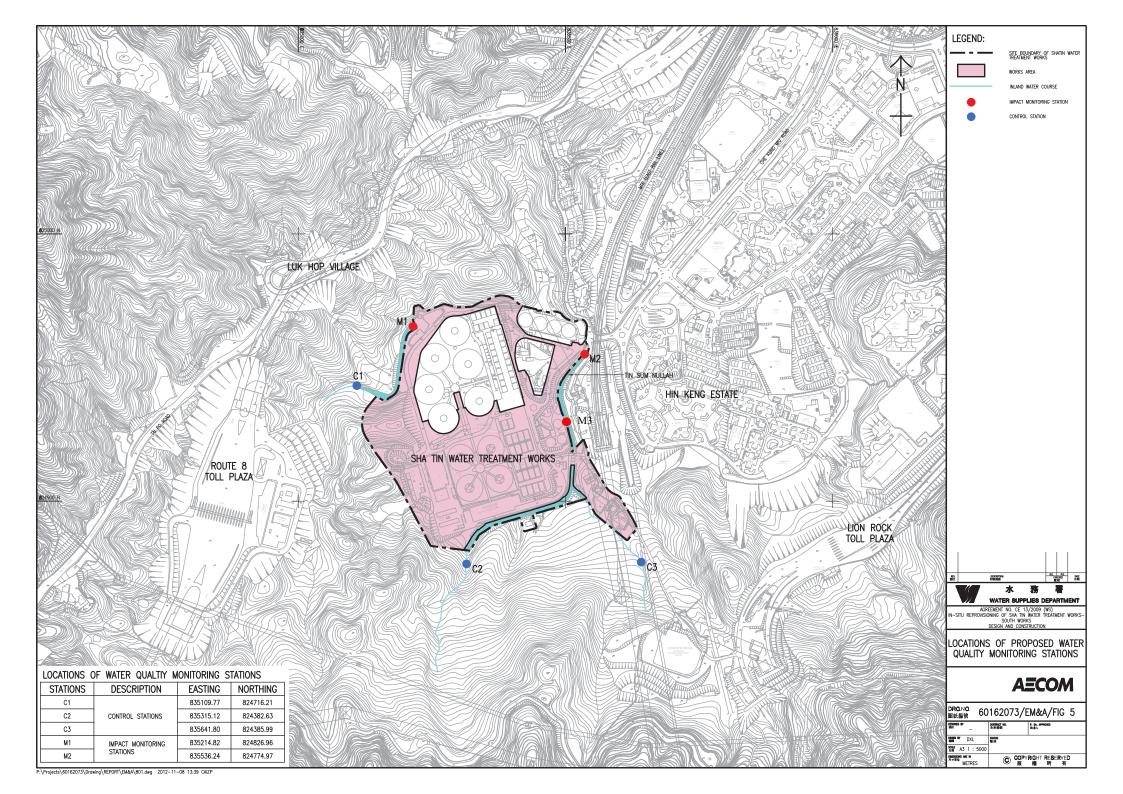
Date:


Dan 22-Oct-19 Checked By:


Date:


K.O. Lo 22-Oct-19

Page 2 of 2


Appendix N Impact Noise Monitoring Results and Graphical Presentation

Appendix O Location Plan of Water Quality Monitoring Station

Appendix P Calibration Certificate (Water Quality)

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AJ040117

Date of Issue

05 May 2020

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited Unit C, 11/F, Ford Glory Plaza 37-39 Wing Hong Street Cheung Sha Wan, Kowloon, Hong Kong

Attn: Mr. Nelson TSUI

PART B - DESCRIPTION

Name of Equipment

Multi Water Quality Checker U-53

Manufacturer

Horiba

Serial Number

A55XB7UP

Date of Received

Apr 28, 2020 May 05, 2020

Date of Calibration

Date of Next Calibration(a)

Aug 04, 2020

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H+ B APHA 21e 4500-O G

Dissolved Oxygen Salinity

APHA 21e 2520 B

Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Oxidation-Reduction Potential

APHA 22e 2580 B

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.09	0.09	Satisfactory
7.42	7.37	-0.05	Satisfactory
10.01	9.94	-0.07	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
18.0	17.7	-0.3	Satisfactory
24.0	24.1	0.1	Satisfactory
35.0	34.7	-0.3	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

> LEE Chun-ning, Desmond Senior Chemist

Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AJ040117

Date of Issue

05 May 2020

Page No.

2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.51	0.78	0.27	Satisfactory
2.28	2.47	0.19	Satisfactory
5.95	6.08	0.13	Satisfactory
8.13	8.23	0.10	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.88	-1.20	Satisfactory
20	19.60	-2.00	Satisfactory
30	30.90	3.00	Satisfactory

Tolerance limit of salinity should be less than ±10.0 (%)

(5) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.73	in ed.	Satisfactory
10	10.7	7.0	Satisfactory
20	20.1	0.5	Satisfactory
100	107	7.0	Satisfactory
800	791	-1.1	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

(6) Oxidation-Reduction Potential

Expected Reading (mV)	Displayed Reading (mV)	Tolerance (mV) ^(g)	Results
222	222	0	Satisfactory

Tolerance limit of Oxidation-Reduction Potential should be less than ± 10 (mV)

~ END OF REPORT ~

Remark(s): -

[&]quot;Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Appendix Q The Certification of Laboratory with HOKLAS accredited Analytical Tests

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ACUMEN LABORATORY AND TESTING LIMITED

浩科檢測中心有限公司

Lot 12, Tam Kon Shan Road, North Tsing Yi, New Territories, Hong Kong 香港新界青衣北担杆山路12路段

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 在認可諮詢委員會的建議下獲香港認可處執行機關接受為

HOKLAS Accredited Laboratory 「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO/IEC 17025:2005 and it has been accredited for performing specific tests or calibrations as listed in the scope of accreditation within the test category of

Environmental Testing

此實驗所符合ISO/IEC 17025:2005所訂的要求 並獲認可進行載於認可範圍內下述測試類別中的指定測試或校正工作

環境測試

This accreditation to ISC/IEC 17025:2005 demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (see joint IAF-ILAC-ISO Communiqué). 此項 ISC/IEC 17025:2005 的部可資格證明此實驗所是明存機能完整時內所領的技術能力並實施一套實驗所質量管理體系(見圖際認可論壇、國際實驗所認可合作組織及圖際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 現經香港認可處執行機關授權在此蓋上香港認可處的印章

WONG Wang-wan, Executive Administrator

報行幹事 黄宏華 Issue Date: 16 July 2014 簽發日期: 二零一四年七月十六日

Registration Number: HOKLAS 241

Date of First Registration: 16 July 2014 首次註冊日期:二零一四年七月十六日

This certificate is issued subject to the terms and conditions laid down by HKAS 本證書按照香港認可處訂立的條款及條件發出

L 001195

Appendix R Impact Water Quality Monitoring Results

Date	Time	Weather	Location	Co-ord	dinates	Water Depth	Sample Depth	Te	mp.	DO	con.	DO Sa	turation	Turl	oidity	ŀ	ЭΗ	SS
				East	North	m	m	(,C	m	g/L		%	N	TU	u	nit	mg/L
	11:16	Cloudy	C1	835110	824716	0.04	0.02	31.1	30.8	8.46	8.46	90.7	90.7	2.3	2.2	7.60	7.61	2.5
	11:43	Cloudy	C2	835403	824470	0.02	0.01	31.2	31.1	8.34	8.34	88.5	88.5	2.5	2.6	7.88	7.88	3.0
2 Jul 2020	N/A	N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2 301 2020	11:03	Cloudy	M1	835215	824827	0.8	0.4	30.3	30.2	8.87	8.87	92.5	92.6	2.3	2.4	7.81	7.82	1.6
	10:30	Cloudy	M2	835536	824775	0.05	0.025	30.2		9.18	9.18	96.3	96.3	2.4	2.5			3.3
	10:42	Cloudy	M3	835501	824648	0.02	0.01	30.2	30.1	9.54	9.54	99.5	99.5	0.6	0.5	7.45	7.45	<1
	,				,	,	,											
		Cloudy	C1	835110	824716	0.04	0.02	29.8		8.61	8.61	93.4			2.5			3.2
	-	Cloudy	C2	835403	824470	0.02	0.01	29.7	29.7	8.67	8.68	91.6						3.3
4 Jul 2020	N/A	N/A	C3	835642	824386	N/A	N/A	N/A	N/A	-	_	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cloudy	M1	835215	824827	0.8	0.4	29.5	29.5	9.12	9.12	97.3	1		2.2			2.0
		Cloudy	M2	835536	824775	0.05	0.025	29.5	29.5	9.21	9.21	95.4		1.6				3.2
	9:32	Cloudy	M3	835501	824648	0.02	0.01	29.3	29.3	9.18	9.18	96.1	96.1	0.7	0.6	7.67	7.68	<1
		Cloudy	C1	835110	824716	0.04	0.02	29.7			8.56							2.7
		Cloudy	C2	835403	824470	0.02	0.01	30.1		8.26	8.26	88.6	1	_				3.2
6 Jul 2020	N/A	N/A	C3	835642	824386	N/A	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Cloudy	M1	835215	824827	0.8	0.4	30.2	30.1	9.18	9.18	96.4	1		2.4			1.7
		Cloudy	M2 M3	835536 835501	824775 824648	0.05	0.025 0.01	29.9 30.1		9.16 9.21	9.17 9.21	95.3 96.7		2.7 0.6				3.6 <1
	9.47	Cloudy	IVIS	833301	024040	0.02	0.01	30.1	30.1	9.21	9.21	90.7	90.0	0.0	0.7	7.59	7.01	\1
	1/1-21	Sunny	C1	835110	824716	0.04	0.02	30.0	30.1	8.54	8.55	89.5	89.5	2.7	2.7	7.45	7.46	2.6
		Sunny	C2	835403	824470	0.04	0.02	30.1	30.1	8.48	8.48	89.5			2.8			2.8
	N/A	N/A	C3	835642		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
8 Jul 2020		Sunny	M1	835215	824827	0.8	0.4	31.1	30.1	9.06	9.01	95.4				<u> </u>		1.5
	13:22	Sunny	M2	835536	824775	0.05	0.025	30.2	30.1	9.32	9.34	98.2	98.3		2.6			3.2
	13:37	Sunny	M3	835501	824648	0.02	0.01	30.0	30.0	9.21	9.21	96.5	96.4	0.4	0.3	+		<1
		,																
	12:53	Sunny	C1	835110	824716	0.04	0.02	30.2	30.3	8.43	8.43	87.5	87.5	2.6	2.7	7.48	7.47	2.7
	13:12	Sunny	C2	835403	824470	0.02	0.01	30.1	30.1	8.53	8.53	89.5	89.6	2.6	2.5	7.50	7.49	2.6
10 101 2020	N/A	N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
10 Jul 2020	12:42	Sunny	M1	835215	824827	0.8	0.4	30.1	30.1	9.14	9.15	96.1	96.2	1.9	1.9	7.63	7.64	2.0
	12:04	Sunny	M2	835536	824775	0.05	0.025	31.1	31.1	8.82	8.82	94.6	94.5	2.2	2.1	7.56	7.56	3.1
	12:23	Sunny	M3	835501	824648	0.02	0.01	30.2	30.2	9.51	9.52	98.6	98.7	0.7	0.6	7.51	7.52	<1
		Sunny	C1	835110	824716	0.04	0.02	30.5		8.65	8.65	92.5	92.5	2.6				3.5
	13:26	Sunny	C2	835403	824470	0.02	0.01	30.5		8.52	8.51	87.6		2.5				3.0
13 Jul 2020	N/A	N/A	C3	835642		N/A	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Sunny	M1	835215	824827	0.8	0.4	30.7		8.93	8.92	93.4	93.4	2.1	2.0		7.66	2.4
		Sunny	M2	835536	824775	0.05	0.025	30.1	30.1	8.88	8.89	95.1	95.1	2.7	2.6		7.59	3.4
	12:40	Sunny	M3	835501	824648	0.02	0.01	30.1	30.0	9.41	9.41	97.5	97.4	0.6	0.5	7.52	7.51	<1

	12:46	Sunny	C1	835110	824716	0.04	0.02	30.4	30.5	8.26	8.27	86.	2 86.2	2.7	2.6	7.78	7.80	3.2
		Sunny	C2	835403	824470	0.04	0.02	30.4		8.74	8.74			2.1			7.66	3.7
	13:55																	
15 Jul 2020	N/A	N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Sunny	M1	835215	824827	0.8	0.4	30.5	30.5	9.16	9.16			2.2			7.64	1.9
	12:03	Sunny	M2	835536	824775	0.05	0.025	30.2	30.2	9.22	9.22	96.	96.8	1.6	1.7	7.90	8.00	3.9
	12:21	Sunny	M3	835501	824648	0.02	0.01	30.5	30.5	9.48	9.48	97.	97.6	0.6	0.7	7.64	7.65	<1
	14:25	Sunny	C1	835110	824716	0.04	0.02	30.2	30.2	8.65	8.65	86.	7 86.6	2.6	2.5	7.67	7.68	3.3
	14:43	Sunny	C2	835403	824470	0.02	0.01	30.1	30.1	8.46	8.46	91.	5 91.5	2.6	2.7	7.78	7.78	2.9
	N/A	N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
17 Jul 2020		Sunny	M1	835215	824827	0.8	0.4	30.2	30.2	9.20	9.20			2.3				2.6
		Sunny	M2	835536	824775	0.05	0.025	30.3	30.3	9.24	9.25			2.5			7.46	3.7
			M3	835501	824648	0.03	0.023	30.3	30.3	9.51	9.51			0.4			7.74	<1
	13:58	Sunny	IVI3	835501	824048	0.02	0.01	30.2	30.2	9.51	9.51	96.	7 96.7	0.2	0.4	7.74	7.74	₹1
	45.04	c	04	005440	004746	0.04	0.00	20.0	20.0	0.50	0.53	0.4	- 04 -	2.5			- 4-	2.5
		Sunny	C1	835110	824716	0.04	0.02	29.9		8.56							7.47	3.6
		Sunny	C2	835403	824470	0.02	0.01	30.1	30.0	8.33	8.34			2.6		7.25	7.24	3.0
20 Jul 2020	N/A	N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Sunny	M1	835215	824827	0.8	0.4	30.0		9.34	9.34			2.0		7.00	7.67	1.6
	14:00	Sunny	M2	835536	824775	0.05	0.025	29.9	29.9	9.12	9.12	95.	95.3	1.6	1.5		7.63	4.5
	14:22	Sunny	M3	835501	824648	0.02	0.01	30.1	30.1	9.40	9.40	95.	7 95.8	0.8	0.9	7.55	7.56	<1
	11:54	Cloudy	C1	835110	824716	0.04	0.02	28.0	28.0	8.54	8.55	91.	91.4	2.4	2.3	7.57	7.58	2.7
	12:11	Cloudy	C2	835403	824470	0.02	0.01	27.8	27.9	8.35	8.36	86.	5 86.5	2.7	2.6	7.65	7.65	3.2
22 1 1 2 2 2 2	N/A	N/A	C3	835642	824386	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
22 Jul 2020	11:42	Cloudy	M1	835215	824827	0.8	0.4	28.8	28.7	9.10	9.20	92.	1 92.5	2.3	2.2	7.80	7.81	2.2
	11:10	Cloudy	M2	835536	824775	0.05	0.025	29.0		9.30	9.20			2.5			7.64	3.2
		Cloudy	M3	835501	824648	0.02	0.01	29.9		9.54	9.54			0.7			7.78	<1
		,			00.00							-			0.0			-
	11.11	Sunny	C1	835110	824716	0.04	0.02	29 7	29.7	8 56	8 56	93	1 93.2	2.4	2.5	7 24	7 23	3.0
		Sunny	C1	835110 835403	824716 824470	0.04	0.02	29.7 30.0		8.56 8.46	8.56 8.47			2.4			7.23 7.88	3.0
	11:24	Sunny	C2	835403	824470	0.02	0.01	30.0	30.1	8.46	8.47	90.	90.6	2.5	2.5	7.86	7.88	2.6
24 Jul 2020	11:24 N/A	Sunny N/A	C2 C3	835403 835642	824470 824386	0.02 N/A	0.01 N/A	30.0 N/A	30.1 N/A	8.46 N/A	8.47 N/A	90. N/A	90.6 N/A	2.5 N/A	2.5 N/A	7.86 N/A	7.88 N/A	2.6 N/A
24 Jul 2020	11:24 N/A 10:50	Sunny N/A Sunny	C2 C3 M1	835403 835642 835215	824470 824386 824827	0.02 N/A 0.8	0.01 N/A 0.4	30.0 N/A 29.0	30.1 N/A 29.1	8.46 N/A 9.31	8.47 N/A 9.31	90. N/A 97.	90.6 N/A 97.5	2.5 N/A 2.3	2.5 N/A 2.2	7.86 N/A 7.88	7.88 N/A 7.86	2.6 N/A 1.5
24 Jul 2020	11:24 N/A 10:50 10:24	Sunny N/A Sunny Sunny	C2 C3 M1 M2	835403 835642 835215 835536	824470 824386 824827 824775	0.02 N/A 0.8 0.05	0.01 N/A 0.4 0.025	30.0 N/A 29.0 29.0	30.1 N/A 29.1 29.0	8.46 N/A 9.31 9.20	8.47 N/A 9.31 9.30	90. N/A 97. 95.	90.6 N/A 5 97.5 2 92.6	2.5 N/A 2.3 2.1	2.5 N/A 2.2 2.2	7.86 N/A 7.88 7.64	7.88 N/A 7.86 7.63	2.6 N/A 1.5 2.9
24 Jul 2020	11:24 N/A 10:50 10:24	Sunny N/A Sunny	C2 C3 M1	835403 835642 835215	824470 824386 824827	0.02 N/A 0.8	0.01 N/A 0.4	30.0 N/A 29.0	30.1 N/A 29.1 29.0	8.46 N/A 9.31	8.47 N/A 9.31	90. N/A 97. 95.	90.6 N/A 5 97.5 2 92.6	2.5 N/A 2.3	2.5 N/A 2.2 2.2	7.86 N/A 7.88 7.64	7.88 N/A 7.86	2.6 N/A 1.5
24 Jul 2020	11:24 N/A 10:50 10:24 10:40	Sunny N/A Sunny Sunny Sunny	C2 C3 M1 M2 M3	835403 835642 835215 835536 835501	824470 824386 824827 824775 824648	0.02 N/A 0.8 0.05 0.02	0.01 N/A 0.4 0.025 0.01	30.0 N/A 29.0 29.0 28.9	30.1 N/A 29.1 29.0 28.9	8.46 N/A 9.31 9.20 9.51	8.47 N/A 9.31 9.30 9.51	90. N/A 97. 95. 98.	5 90.6 N/A 5 97.5 2 92.6 7 98.6	2.5 N/A 2.3 2.1	2.5 N/A 2.2 2.2 0.8	7.86 N/A 7.88 7.64 7.76	7.88 N/A 7.86 7.63 7.77	2.6 N/A 1.5 2.9
24 Jul 2020	11:24 N/A 10:50 10:24 10:40	Sunny N/A Sunny Sunny Sunny Sunny Sunny	C2 C3 M1 M2 M3	835403 835642 835215 835536 835501	824470 824386 824827 824775 824648	0.02 N/A 0.8 0.05 0.02	0.01 N/A 0.4 0.025 0.01	30.0 N/A 29.0 29.0 28.9	30.1 N/A 29.1 29.0 28.9	8.46 N/A 9.31 9.20 9.51	8.47 N/A 9.31 9.30 9.51	90. N/A 97. 95. 98.	5 90.6 N/A 5 97.5 2 92.6 7 98.6	2.5 N/A 2.3 2.1 0.8	2.5 N/A 2.2 2.2 0.8	7.86 N/A 7.88 7.64 7.76	7.88 N/A 7.86 7.63 7.77 7.58	2.6 N/A 1.5 2.9 <1
24 Jul 2020	11:24 N/A 10:50 10:24 10:40 11:23	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny	C2 C3 M1 M2 M3	835403 835642 835215 835536 835501 835110 835403	824470 824386 824827 824775 824648 824716 824470	0.02 N/A 0.8 0.05 0.02	0.01 N/A 0.4 0.025 0.01 0.02	30.0 N/A 29.0 29.0 28.9 29.6 30.0	30.1 N/A 29.1 29.0 28.9 29.6 30.0	8.46 N/A 9.31 9.20 9.51 8.45 8.36	8.47 N/A 9.31 9.30 9.51 8.45 8.36	90. N/A 97. 95. 98. 89.	5 90.6 N/A 5 97.5 2 92.6 7 98.6 4 89.4 5 87.5	2.5 N/A 2.3 2.1 0.8 2.5 2.7	2.5 N/A 2.2 2.2 0.8 2.6 2.6	7.86 N/A 7.88 7.64 7.76 7.57	7.88 N/A 7.86 7.63 7.77 7.58 7.76	2.6 N/A 1.5 2.9 <1 3.4 3.2
24 Jul 2020 27 Jul 2020	11:24 N/A 10:50 10:24 10:40 11:23 11:31	Sunny N/A Sunny Sunny Sunny Sunny Sunny N/A	C2 C3 M1 M2 M3	835403 835642 835215 835536 835501 835110 835403 835642	824470 824386 824827 824775 824648 824716 824470 824386	0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A	30.0 N/A 29.0 29.0 28.9 29.6 30.0 N/A	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A	8.46 N/A 9.31 9.20 9.51 8.45 8.36 N/A	8.47 N/A 9.31 9.30 9.51 8.45 8.36	90. N/A 97. 95. 98. 89. 87. N/A	5 90.6 N/A 5 97.5 2 92.6 7 98.6 4 89.4 5 87.5 N/A	2.5 N/A 2.3 0.8 2.1 0.8	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A
	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A	Sunny N/A Sunny Sunny Sunny Sunny Sunny N/A Sunny Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1	835403 835642 835215 835536 835501 835110 835403 835642 835215	824470 824386 824827 824775 824648 824716 824470 824386 824827	0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A	30.0 N/A 29.0 29.0 28.9 29.6 30.0 N/A	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A	8.46 N/A 9.31 9.20 9.51 8.45 8.36 N/A	8.47 N/A 9.31 9.30 9.51 8.45 8.36 N/A	90. N/A 97. 95. 98. 89. 87. N/A 96.	5 90.6 N/A 5 97.5 2 92.6 7 98.6 4 89.4 5 87.5 N/A 96.5	2.5 N/A 2.3 0.8 2.5 2.7 N/A	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3
	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2	835403 835642 835215 835536 835501 835110 835403 835642 835215 835536	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775	0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A 0.8	0.01 N/A 0.025 0.01 0.02 0.01 N/A 0.04 0.025	30.0 N/A 29.0 28.9 29.6 30.0 N/A 29.7 29.9	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0	8.46 N/A 9.31 9.20 9.51 8.45 8.36 N/A 9.18	8.47 N/A 9.31 9.30 9.51 8.45 8.36 N/A 9.18	90. N/A 97. 95. 98. 89. 87. N/A 96.	90.6 N/A 97.5 2 92.6 7 98.6 4 89.4 5 87.5 N/A 96.5 98.6	2.5 N/A 2.3 0.8 2.5 2.7 N/A	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A 7.81	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0
	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34	Sunny N/A Sunny Sunny Sunny Sunny Sunny N/A Sunny Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1	835403 835642 835215 835536 835501 835110 835403 835642 835215	824470 824386 824827 824775 824648 824716 824470 824386 824827	0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A	30.0 N/A 29.0 29.0 28.9 29.6 30.0 N/A	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0	8.46 N/A 9.31 9.20 9.51 8.45 8.36 N/A	8.47 N/A 9.31 9.30 9.51 8.45 8.36 N/A	90. N/A 97. 95. 98. 89. 87. N/A 96.	90.6 N/A 97.5 2 92.6 7 98.6 4 89.4 5 87.5 N/A 96.5 98.6	2.5 N/A 2.3 0.8 2.5 2.7 N/A	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A 7.81	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3
	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34 11:53	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny Sunny Sunny Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3	835403 835642 835215 835536 835501 835110 835403 835642 835215 835536	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648	0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A 0.8 0.05 0.02	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01	30.0 N/A 29.0 29.0 28.9 29.6 30.0 N/A 29.7 29.9 30.0	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8	8.46 N/A 9.31 9.20 9.51 8.45 8.36 N/A 9.18 9.10	8.47 N/A 9.31 9.30 9.51 8.45 8.36 N/A 9.18 9.12	90. N/A 97. 95. 98. 89. 87. N/A 96. 98.	90.6 N/A 97.5 2 92.6 7 98.6 4 89.4 5 87.5 N/A 5 96.5 98.6 97.5	2.5 N/A 2.3 2.1 0.8 2.5 2.7 N/A 2.2 1.7	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3 1.6 0.8	7.86 N/A 7.88 7.64 7.57 7.57 7.75 N/A 7.81 7.68 7.80	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.67 7.81	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0
	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34 11:53	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3	835403 835642 835215 835536 835501 835110 835403 835642 835215 835536 835501	824470 824386 824827 824775 824648 8244716 824470 824386 824827 824775 824648	0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A 0.8 0.05 0.02 0.04 0.05 0.05 0.05	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01	30.0 N/A 29.0 29.0 28.9 29.6 30.0 N/A 29.7 29.9 30.0	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8	8.46 N/A 9.31 9.20 9.51 8.45 8.36 N/A 9.18 9.34	8.47 N/A 9.31 9.30 9.51 8.45 8.36 N/A 9.12 9.34	90. N/A 97. 95. 89. 87. N/A 96. 98.	90.6 N/A 5 97.5 2 92.6 7 98.6 4 89.4 5 87.5 N/A 5 96.5 97.5 4 89.4 4 89.4	2.5 N/A 2.5 2.1 0.8 2.5 2.7 N/A 2.2 2.7	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3 1.6 0.8	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A 7.81 7.80 7.53	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.81 7.53	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2
	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34 11:53	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 C3 C1 C2 C3 C3 C3 C4 C4 C5 C5 C5 C7	835403 835642 835215 835536 835501 835110 835403 835642 835215 835536	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648	0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A 0.8 0.05 0.02	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01	30.0 N/A 29.0 29.0 28.9 29.6 30.0 N/A 29.7 29.9 30.0	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8	8.465 N/A 9.311 9.20 9.511 8.455 8.366 N/A 9.18 9.10 9.34	8.47 N/A 9.31 9.30 9.51 8.45 8.36 N/A 9.12 9.34	90. N/A 97. 95. 98. 89. 87. N/A 96. 98. 97.	90.6 N/A 97.5 92.6 7 98.6 4 89.4 5 87.5 N/A 96.5 97.5 4 89.4 2 93.2	2.5 N/A 2.3 2.1 0.8 2.5 2.7 N/A 2.2 1.7	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3 1.6 0.8	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A 7.81 7.68 7.80 7.53	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.67 7.81 7.53 7.40	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2 3.2 3.3
27 Jul 2020	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34 11:53	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3	835403 835642 835215 835536 835501 835110 835403 835642 835215 835536 835501	824470 824386 824827 824775 824648 8244716 824470 824386 824827 824775 824648	0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A 0.8 0.05 0.02 0.04 0.05 0.05 0.05	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01	30.0 N/A 29.0 29.0 28.9 29.6 30.0 N/A 29.7 29.9 30.0	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8	8.46 N/A 9.31 9.20 9.51 8.45 8.36 N/A 9.18 9.34	8.47 N/A 9.31 9.30 9.51 8.45 8.36 N/A 9.18 9.34	90. N/A 97. 95. 89. 87. N/A 96. 98.	90.6 N/A 5 97.5 2 92.6 7 98.6 4 89.4 5 87.5 N/A 5 96.5 97.5 4 89.4 6 97.5	2.5 N/A 2.5 2.1 0.8 2.5 2.7 N/A 2.2 2.7	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3 1.6 0.8	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A 7.81 7.80 7.53	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.81 7.53	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2
	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34 11:53 14:57 15:17	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 C3 C1 C2 C3 C3 C3 C4 C4 C5 C5 C5 C7	835403 835642 835215 83536 835501 835110 835403 835642 835215 835536 835501 835110 835403	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824716 824470	0.02 N/A 0.05 0.02 0.04 0.02 N/A 0.05 0.05 0.05 0.05 0.02	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01 0.02 0.01	30.0 N/A 29.0 28.9 29.6 30.0 N/A 29.7 29.9 30.0 30.4 31.2	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8	8.465 N/A 9.311 9.20 9.511 8.455 8.366 N/A 9.18 9.10 9.34	8.47 N/A 9.31 9.30 9.51 8.45 8.366 N/A 9.12 9.34	90. N/A 97. 98. 89. 87. N/A 96. 98. 97. 89. 87. 89.	90.6 N/A 97.5 2 92.6 7 98.6 4 89.4 5 87.5 N/A 96.5 98.6 97.5 4 89.4 89.4 89.4	2.5 N/A 2.5 2.1 0.8 2.5 2.7 N/A 2.2 1.7 0.8	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3 1.6 0.8	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A 7.81 7.68 7.80 7.53 7.42 N/A	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.67 7.81 7.53 7.40	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2 3.2 3.3
27 Jul 2020	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34 11:53 14:57 N/A	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 C3 C1 C2 C3 C3 C1 C2 C3 C3 C1 C2 C3 C3 C3 C1 C2 C3 C3	835403 835642 835215 835536 835501 835110 835403 835642 835215 835536 835501 835110 835403 835403	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824716 824470 824386	0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A 0.8 0.05 0.02 0.04 0.02	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01 N/A 0.025 0.01 0.02	30.0 N/A 29.0 28.9 29.6 30.0 N/A 29.7 30.0 30.4 31.2	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8 30.3 31.2 N/A	8.46 N/A 9.31 9.20 9.51 8.45 8.36 N/A 9.18 9.10 9.34 8.23 8.56 N/A	8.47 N/A 9.31 9.30 9.51 8.45 8.36 N/A 9.12 9.34 8.24 8.56	90. N/A 97. 98. 89. 87. N/A 96. 98. 97. 89. 97.	90.6 N/A 97.5 2 92.6 7 98.6 4 89.4 5 96.5 98.6 97.5 4 89.4 2 93.2 N/A 5 97.5	2.5 N/A 2.5 2.1 0.8 2.5 2.7 N/A 2.2 2.7 N/A	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3 1.6 0.8 2.5 N/A 2.5	7.86 N/A 7.88 7.64 7.76 7.75 7.75 N/A 7.81 7.68 7.80 7.53 7.42 N/A	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.67 7.81 7.53 7.40 N/A	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2 3.3 N/A
27 Jul 2020	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34 11:53 14:57 15:17 N/A 14:42 14:42	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 C3 M1 C2 C3 M1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M3	835403 835642 835215 835536 835501 835110 835403 835642 835215 835536 835501 835110 835403 835403 835642 835215	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824716 824470 824386 824827	0.02 N/A 0.05 0.02 0.04 0.05 0.05 0.02 N/A 0.05 0.05 0.05 0.02 0.04 0.02 N/A 0.02 N/A 0.02	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.04 0.05 0.01 0.02 0.01 N/A	30.0 N/A 29.0 28.9 29.6 30.0 N/A 29.7 29.9 30.0 30.4 31.2 N/A	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8 30.3 31.2 N/A 31.5	8.465 N/A 9.311 9.20 9.51 8.455 8.36 N/A 9.18 9.10 8.23 8.56 N/A 9.18	8.47 8.45 8.45 8.36 N/A 9.12 9.34 8.56 N/A 9.17	90. N/A 97. 98. 89. 87. N/A 96. 89. 89. 87. N/A 97.	90.6 N/A 97.5 98.6 4 89.4 5 96.5 N/A 96.5 97.5 4 89.4 2 93.2 N/A 5 97.4	2.5 N/A 2.5 2.1 0.8 2.5 2.7 N/A 2.2 2.7 N/A 2.2 2.4 N/A	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3 1.6 0.8 2.5 N/A 2.1 1.6	7.86 N/A 7.88 7.64 7.57 7.75 N/A 7.81 7.68 7.80 7.53 7.42 N/A 7.65	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.67 7.81 7.53 7.40 N/A 7.66	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2 3.3 N/A 2.5
27 Jul 2020	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34 11:53 14:57 15:17 N/A 14:42 14:42	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3	835403 835642 835215 835236 835501 835110 835403 835642 835215 835536 835501 835110 835403 835403 835642 835215 8353642 8353642 8353642	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824716 824470 824386 824470 824386 8244775	0.02 N/A 0.05 0.04 0.02 N/A 0.08 0.05 0.02 N/A 0.05 0.02 0.04 0.02 N/A 0.08 0.05	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.025 0.01 N/A	30.0 N/A 29.0 28.9 29.6 30.0 N/A 29.7 29.9 30.0 30.4 31.2 N/A 31.5	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8 30.3 31.2 N/A 31.5	8.46 N/A 9.311 9.20 9.51 8.45 8.36 N/A 9.18 9.10 9.34 8.23 8.56 N/A 9.18 9.19	8.47 N/A 9.31 9.30 9.51 8.45 8.36 N/A 9.12 9.34 8.24 8.56 N/A 9.17	90. N/A 97. 98. 89. 87. N/A 96. 89. 89. 87. N/A 97.	90.6 N/A 97.5 98.6 4 89.4 5 96.5 N/A 96.5 97.5 4 89.4 2 93.2 N/A 5 97.4	2.5 N/A 2.3 0.8 2.5 2.7 N/A 2.6 2.4 N/A 2.1 3.7 0.8	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3 1.6 0.8 2.5 N/A 2.1 1.6	7.86 N/A 7.88 7.64 7.57 7.75 N/A 7.81 7.68 7.80 7.53 7.42 N/A 7.65	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.67 7.81 7.53 7.40 N/A 7.66 7.68	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2 3.3 N/A 2.5 3.5
27 Jul 2020	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34 11:53 14:57 N/A 14:42 14:42 14:45	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3	835403 835642 835215 835236 835501 835110 835403 835642 835215 835536 835501 835110 835403 835403 835642 835215 8353642 8353642 8353642	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824716 824470 824386 824470 824386 8244775	0.02 N/A 0.05 0.04 0.02 N/A 0.08 0.05 0.02 N/A 0.05 0.02 0.04 0.02 N/A 0.08 0.05	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.025 0.01 N/A	30.0 N/A 29.0 28.9 29.6 30.0 N/A 29.7 29.9 30.0 30.4 31.2 N/A 31.5 30.8	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8 30.3 31.2 N/A 31.5 31.0 30.8	8.46 N/A 9.311 9.20 9.51 8.45 8.36 N/A 9.18 9.10 9.34 8.23 8.56 N/A 9.18 9.19	8.47 N/A 9.31 9.30 9.51 8.45 8.36 N/A 9.12 9.34 8.24 8.56 N/A 9.17	90. N/A 97. 95. 89. 87. N/A 96. 98. 89. 97. 98. 99. 93. 94.	5 90.6 N/A 5 97.5 2 92.6 7 98.6 4 89.4 5 87.5 N/A 96.5 5 97.5 4 89.4 2 93.2 N/A 5 97.4 6 97.5	2.5 N/A 2.5 2.1 0.8 2.5 2.7 N/A 2.2 2.6 2.4 N/A 2.1 3.7 0.6	2.5 N/A 2.2 2.2 0.8 N/A 2.3 1.6 0.8 2.5 2.5 N/A 2.5 2.5 0.8	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A 7.81 7.80 7.53 7.42 N/A 7.65 7.68 7.75	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.67 7.81 7.53 7.40 N/A 7.66 7.68	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2 3.3 N/A 2.5 3.5
27 Jul 2020	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34 11:53 14:57 15:17 N/A 14:42 14:15 14:26	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny N/A Sunny Sunny Sunny N/A Sunny Sunny Sunny	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 M2 M3 M1 M2 M3 M3 C1 C2 C3 M1 M2 M3 M3	835403 835642 835215 83536 835501 83510 835403 835642 835215 835536 835501 835403 835403 835642 835215 835501	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648	0.02 N/A 0.8 0.05 0.02 0.04 0.05 0.02 N/A 0.8 0.05 0.02 0.04 0.02 N/A 0.05 0.02 0.04 0.02 0.02 0.04 0.02 0.02	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.025 0.01 0.02 0.01 0.02 0.01 0.01 0.02	30.0 N/A 29.0 28.9 29.6 30.0 N/A 29.7 29.9 30.0 30.4 31.2 N/A 31.5 30.8	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8 30.3 31.2 N/A 31.5 31.0 30.8	8.46 N/A 9.31 9.20 9.51 8.45 8.36 N/A 9.18 8.23 8.56 N/A 9.18 9.12 9.58	8.47 N/A 9.31 9.30 9.51 8.45 8.366 N/A 9.18 9.12 9.34 8.56 N/A 9.17 9.17 9.12 9.58	90. N/A 97. 98. 89. 87. N/A 96. 98. 89. 97. 89. 93. N/A 97. 98. 99.	5 90.6 N/A 5 97.5 2 92.6 7 98.6 4 89.4 6 87.5 N/A 5 96.5 6 97.5 4 89.4 2 93.2 N/A 5 97.4 6 97.4 6 98.6 9 98.6 9 99.4	2.5 N/A 2.5 2.1 0.8 2.5 2.7 N/A 2.6 2.6 2.6 N/A 2.1 0.8	2.5 N/A 2.2 2.8 2.6 2.8 N/A 2.3 1.6 0.8 2.5 N/A 2.5 2.5 N/A 2.2 2.4	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A 7.81 7.68 7.80 7.53 7.42 N/A 7.65 7.68 7.78	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.67 7.81 7.53 7.40 N/A 7.66 7.68 7.79	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2 3.3 N/A 2.5 3.3 N/A 2.5 3.5 <1
27 Jul 2020 29 Jul 2020	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34 11:53 14:57 15:17 N/A 14:42 14:15 14:26	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny Cloudy	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 C1 C2 C3 M1 C1 C2 C3 C3 C1 C2 C3 C1 C2 C3 C3 C1 C1 C2 C3 C3 C1 C1 C2 C3 C3 C1 C1 C1 C2 C3 C3 C1	835403 835642 835215 83536 835501 835110 835403 835642 835215 835501 835403 835403 835403 835642 835215 835366 835501 835366 835501	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824470 824386 824470 824386 824478 82475 824648	0.02 N/A 0.8 0.05 0.02 0.04 0.05 0.05 0.05 0.06 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.025 0.01 N/A 0.025 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01	30.0 N/A 29.0 29.0 28.9 29.6 30.0 N/A 29.7 29.9 30.0 30.4 31.2 N/A 31.5 31.0 30.8	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8 30.3 31.2 N/A 31.5 31.0 30.8	8.46 N/A 9.31 9.20 9.51 8.45 8.36 N/A 9.18 8.23 8.56 N/A 9.18 8.23 8.56 8.45 8.36 8.3	8.47 N/A 9.31 9.30 9.51 8.45 8.366 N/A 9.18 9.12 9.34 8.56 N/A 9.17 9.17 9.12 9.58	90. N/A 97. 98. 89. 87. N/A 96. 98. 89. 97. 89. 97. 98. 99. 90.	5 90.6 N/A 97.5 2 92.6 7 98.6 4 89.4 5 87.5 N/A 96.5 6 98.6 5 97.5 4 89.4 2 93.2 N/A 97.4 6 98.6 9 98.6 9 98.6	2.5 N/A 2.6 2.1 0.8 2.7 N/A 2.6 2.7 N/A 2.6 2.4 N/A 2.1 7 0.8 2.6 2.4 N/A 2.1 2.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3 1.6 0.8 2.5 N/A 2.5 0.5	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A 7.81 7.68 7.80 7.53 7.42 N/A 7.65 7.68 7.78	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.67 7.81 7.53 7.40 N/A 7.66 7.68 7.79	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2 3.3 N/A 2.5 3.5 <1
27 Jul 2020	11:24 N/A 10:50 10:24 10:40 11:23 11:31 N/A 12:09 11:34 11:53 14:57 15:17 N/A 14:42 14:15 14:26	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny County Sunny Sunny Sunny Sunny Coudy Cloudy	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 C1 C2 C3 C3 C3 C1 C2 C2 C3 C3 C3 C4 C4 C5 C5 C5 C5 C7	835403 835642 835215 83536 835501 835110 835403 835642 835215 835501 835110 835403 835642 835215 835501 835501 835501 835501 835501	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648	0.02 N/A 0.05 0.02 0.04 0.05 0.05 0.08 0.08 0.09 0.00 0.00 0.00 0.00 0.00	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01 N/A 0.025 0.01 N/A 0.025 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01	30.0 N/A 29.0 29.0 28.9 29.6 30.0 N/A 29.7 29.9 30.0 31.2 N/A 31.5 31.0 28.1 29.2 N/A	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8 31.2 N/A 31.5 31.0 30.8	8.46 N/A 9.31 9.20 9.51 8.45 8.36 N/A 9.18 8.23 8.56 N/A 9.18 8.23 8.56 8.3	8.47 N/A 9.31 9.30 9.51 8.45 8.36 N/A 9.12 9.34 8.56 N/A 9.17 9.17 9.18 8.24 8.56 8.36	90. N/A 97. 98. 89. 87. N/A 96. 93. N/A 97. 99. 97. 89. 97. N/A	5 90.6 N/A 97.5 2 92.6 7 98.6 4 89.4 5 87.5 N/A 96.5 6 98.6 6 97.5 4 89.4 2 93.2 N/A 96.1 6 98.6 9 98.6	2.5 N/A 2.6 2.1 0.8 2.7 N/A 2.6 2.7 N/A 2.6 2.4 0.8 N/A 2.6 2.4 0.8 N/A 2.1 0.8	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3 1.6 0.8 2.5 N/A 2.2 1.6 0.5	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A 7.81 7.68 7.80 7.53 7.42 N/A 7.65 7.68 7.78	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.67 7.81 7.53 7.40 N/A 7.66 7.68 7.79	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2 3.3 N/A 2.5 3.5 <1 3.9 3.7
27 Jul 2020 29 Jul 2020	11:24 N/A 10:50 10:24 10:40 11:31 N/A 12:09 11:34 11:53 14:57 15:17 N/A 14:42 14:15 14:16 14:01 14:19 N/A 13:45	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny Sunny Sunny Sunny Sunny Cloudy Cloudy N/A Cloudy	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3	835403 835642 835215 835536 835501 835110 835403 835642 835215 835536 835501 835403 835642 835215 835364 835215 835310 835403 835403 835501	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824775 824648 824716 824470 824386 824827	N/A 0.02 N/A 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.02 N/A 0.02 N/A 0.05 0.05 0.04 0.05 0.05 0.04 0.05 N/A 0.05 0.05 0.05 0.07 N/A 0.08	0.01 N/A 0.4 0.025 0.01 N/A 0.4 0.025 0.01 N/A 0.025 0.01 N/A 0.025 0.01 N/A 0.025 0.01 N/A 0.04 0.025 0.01 N/A 0.04 0.05 0.01 N/A 0.025 0.01 N/A 0.025 0.01 N/A 0.025 0.01 N/A 0.02 0.01 N/A 0.02 0.01 N/A	30.0 N/A 29.0 29.0 28.9 29.6 30.0 N/A 29.7 30.0 30.4 31.2 N/A 31.5 31.0 28.1 29.2 N/A 28.1	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8 31.2 N/A 31.5 31.0 30.8 28.1 29.2 N/A	8.46 N/A 9.31 9.20 9.51 8.455 8.36 N/A 9.18 9.10 9.34 8.56 N/A 9.18 9.12 9.58 8.56 N/A 9.18 9.19 9.19 9.19 9.19 9.19 9.19 9.19	8.47 8.47 9.31 9.30 9.51 8.45 8.36 N/A 9.12 9.34 8.56 N/A 9.17 9.12 9.58 8.74 8.74 8.75 8.	90. N/A 97. 98. 89. 87. N/A 96. 98. 89. 97. 89. 93. N/A 96. 91. N/A	5 90.6 N/A 97.5 2 92.6 7 98.6 4 89.4 5 96.5 98.6 97.5 4 89.4 2 93.2 N/A 96.1 5 97.4 0 96.1 98.6 1 99.4 0 96.1	2.5 N/A 2.5 2.1 0.8 2.5 2.7 N/A 2.2 2.7 N/A 2.2 1.7 0.8 2.6 2.4 N/A 2.1 1.7 0.6 2.8 2.4 N/A 2.1 2.5 2.4 N/A 2.1	2.5 N/A 2.2 2.2 2.8 N/A 2.3 N/A 2.3 1.6 0.8 2.5 N/A 2.5 N/A 2.5 N/A 2.5 N/A 2.2	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A 7.81 7.68 7.80 7.53 7.42 N/A 7.65 7.68 7.78 7.78	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.67 7.81 7.53 7.40 N/A 7.66 7.68 7.79 7.56 7.40 N/A N/A 7.66	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2 3.3 N/A 2.5 3.5 <1 3.9 3.7 N/A 2.8
27 Jul 2020 29 Jul 2020	11:24 N/A 10:50 10:24 10:40 11:31 N/A 12:09 11:34 11:53 14:57 15:17 N/A 14:42 14:15 14:16 14:01 14:19 N/A 13:45	Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny N/A Sunny Sunny Sunny Sunny Sunny Sunny County Sunny Sunny Sunny Sunny County Cloudy N/A	C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 M2 M3 C1 C2 C3 M1 C1 C2 C3 C3 C3 C3 C3 C4 C5	835403 835642 835215 835536 835501 835110 835403 835642 835215 835536 835501 835403 835642 835536 835501 835110 835403 835501 835403 835501	824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648 824716 824470 824386 824827 824775 824648	0.02 N/A 0.05 0.02 0.04 0.05 0.05 0.08 0.08 0.05 0.02 0.04 0.02 N/A 0.05 0.02 0.04 0.05 0.05 0.05 0.07 0.04 0.07 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09	0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.4 0.025 0.01 0.02 0.01 N/A 0.025 0.01 N/A 0.04 0.025 0.01 N/A 0.04 0.025 0.01 N/A	30.0 N/A 29.0 29.0 28.9 29.6 30.0 N/A 29.7 29.9 30.0 31.2 N/A 31.5 31.0 28.1 29.2 N/A	30.1 N/A 29.1 29.0 28.9 29.6 30.0 N/A 29.7 30.0 29.8 31.2 N/A 31.5 31.0 30.8	8.46 N/A 9.31 9.20 9.51 8.45 8.36 N/A 9.18 9.10 9.34 8.23 8.56 N/A 9.18 8.25 8.56 N/A 8.25 8.56 N/A	8.47 N/A 9.31 9.30 9.51 8.45 8.36 N/A 9.12 9.34 8.56 N/A 9.17 9.12 9.58	90. N/A 97. 98. 89. 87. N/A 96. 98. 97. 89. 97. N/A 97. 96. 98. 90. 91. N/A	5 90.6 N/A 97.5 2 92.6 7 98.6 4 89.4 5 87.5 N/A 96.5 6 98.6 6 97.5 4 89.4 2 93.2 N/A 97.5 6 98.6 6 97.5 4 89.4 1 99.4 1 91.0 1 91.0	2.5 N/A 2.5 2.1 0.8 2.5 2.7 N/A 2.6 2.4 N/A 2.7 N/A 2.8 2.4 N/A	2.5 N/A 2.2 2.2 0.8 2.6 2.8 N/A 2.3 1.6 0.8 2.5 N/A 2.2 2.5 N/A 2.2 N/A 2.1 1.6 0.5	7.86 N/A 7.88 7.64 7.76 7.57 7.75 N/A 7.81 7.68 7.80 7.53 7.42 N/A 7.65 7.68 7.78 7.78	7.88 N/A 7.86 7.63 7.77 7.58 7.76 N/A 7.81 7.67 7.81 7.53 7.40 N/A 7.66 7.68 7.79 7.56 7.40 N/A	2.6 N/A 1.5 2.9 <1 3.4 3.2 N/A 2.3 4.0 <1 3.2 3.3 N/A 2.5 3.5 <1 3.9 3.7 N/A

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200671

Job Number

: R200671

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-705

Sample Description

: SS test

Laboratory ID

: R200671/1-5

Date of Sampling

: 02/07/2020

Date Received

: 02/07/2020

Test Period

: 02/07/2020 - 03/07/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager

Chemical Division

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number

: Q200003aR200671

Job Number

: R200671

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200671/1	02/07/2020	C1	2.5
R200671/2	02/07/2020	C2	3.0
R200671/3	02/07/2020	M1	1.6
R200671/4	02/07/2020	M2	3.3
R200671/5	02/07/2020	М3	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O₂/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200672

Job Number

: R200672

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-706

Sample Description

: SS test

Laboratory ID

: R200672/1-5

Date of Sampling

: 04/07/2020

Date Received

: 04/07/2020

Test Period

: 04/07/2020 - 05/07/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager

Chemical Division

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Fax: (852) 2333 1316 Tel: (852) 2333 6823

Test Report

Page 2 of 2

Report Number

: Q200003aR200672

Job Number

: R200672

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200672/1	04/07/2020	C1	3.2
R200672/2	04/07/2020	C2	3.3
R200672/3	04/07/2020	М1	2.0
R200672/4	04/07/2020	M2	3.2
R200672/5	04/07/2020	M3	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O₂/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200673

Job Number

: R200673

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-707

Sample Description

: SS test

Laboratory ID

: R200673/1-5

Date of Sampling

: 06/07/2020

Date Received

: 06/07/2020

Test Period

: 06/07/2020 - 07/07/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager

Chemical Division

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number

: Q200003aR200673

Job Number

: R200673

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200673/1	06/07/2020	C1	2.7
R200673/2	06/07/2020	C2	3.2
R200673/3	06/07/2020	М1	1.7
R200673/4	06/07/2020	M2	3.6
R200673/5	06/07/2020	МЗ	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O₂/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200674

Job Number

: R200674

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-708

Sample Description

: SS test

Laboratory ID

: R200674/1-5

Date of Sampling

: 08/07/2020

Date Received

: 08/07/2020

Test Period

: 08/07/2020 - 09/07/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager

Chemical Division

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number

: Q200003aR200674

Job Number

: R200674

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200674/1	08/07/2020	C1	2.6
R200674/2	08/07/2020	C2	2.8
R200674/3	08/07/2020	M1	1.5
R200674/4	08/07/2020	M2	3.2
R200674/5	08/07/2020	M3	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O₂/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200675

Job Number

: R200675

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-709

Sample Description

: SS test

Laboratory ID

: R200675/1-5

Date of Sampling

: 10/07/2020

Date Received

: 10/07/2020

Test Period

: 10/07/2020 - 11/07/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager
Chemical Division

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number

: Q200003aR200675

Job Number

: R200675

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200675/1	10/07/2020	C1	2.7
R200675/2	10/07/2020	C2	2.6
R200675/3	10/07/2020	М1	2.0
R200675/4	10/07/2020	M2	3.1
R200675/5	10/07/2020	М3	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O₂/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200676

Job Number

: R200676

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-710

Sample Description

: SS test

Laboratory ID

: R200676/1-5

Date of Sampling

: 13/07/2020

Date Received

: 13/07/2020

Test Period

: 13/07/2020 - 14/07/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager

Chemical Division

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Fax: (852) 2333 1316 Tel: (852) 2333 6823

Test Report

Page 2 of 2

Report Number

: Q200003aR200676

Job Number

: R200676

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200676/1	13/07/2020	C1	3.5
R200676/2	13/07/2020	C2	3.0
R200676/3	13/07/2020	M1	2.4
R200676/4	13/07/2020	M2	3.4
R200676/5	13/07/2020	М3	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O2/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200677

Job Number

: R200677

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-711

Sample Description

: SS test

Laboratory ID

: R200677/1-5

Date of Sampling

: 15/07/2020

Date Received

: 15/07/2020

Test Period

: 15/07/2020 - 16/07/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager
Chemical Division

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number

: Q200003aR200677

Job Number

: R200677

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200677/1	15/07/2020	C1	3.2
R200677/2	15/07/2020	C2	3.7
R200677/3	15/07/2020	M1	1.9
R200677/4	15/07/2020	M2	3.9
R200677/5	15/07/2020	М3	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O₂/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200678

Job Number

: R200678

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-712

Sample Description

: SS test

Laboratory ID

: R200678/1-5

Date of Sampling

: 17/07/2020

Date Received

: 17/07/2020

Test Period

: 17/07/2020 - 18/07/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager

Chemical Division

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Fax: (852) 2333 1316 Tel: (852) 2333 6823

Test Report

Page 2 of 2

Report Number

: Q200003aR200678

Job Number

: R200678

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
			<u> </u>
R200678/1	17/07/2020	C1	3.3
R200678/2	17/07/2020	C2	2.9
R200678/3	17/07/2020	M1	2.6
R200678/4	17/07/2020	M2	3.7
R200678/5	17/07/2020	МЗ	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O2/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200679

Job Number

: R200679

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-713

Sample Description

: SS test

Laboratory ID

: R200679/1-5

Date of Sampling

: 20/07/2020

Date Received

: 20/07/2020

Test Period

: 20/07/2020 - 21/07/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fund, Huntington

Laboratory Manager

Chemical Division

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number

: Q200003aR200679

Job Number

: R200679

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200679/1	20/07/2020	C1	3.6
R200679/2	20/07/2020	C2	3.0
R200679/3	20/07/2020	M1	1.6
R200679/4	20/07/2020	M2	4.5
R200679/5	20/07/2020	М3	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O₂/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200680

Job Number

: R200680

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-714

Sample Description

: SS test

Laboratory ID

: R200680/1-5

Date of Sampling

: 22/07/2020

Date Received

: 22/07/2020

Test Period

: 22/07/2020 - 23/07/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager

Chemical Division

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number

: Q200003aR200680

Job Number

: R200680

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200680/1	22/07/2020	C1	2.7
R200680/2	22/07/2020	C2	3.2
R200680/3	22/07/2020	M1	2.2
R200680/4	22/07/2020	M2	3.2
R200680/5	22/07/2020	М3	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O₂/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number : Q200003aR200681

Job Number : R200681

Issue Date : 07/08/2020

Name of Applicant : Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant : No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name : CJO-3113-715

Sample Description : SS test

Laboratory ID : R200681/1-5

Date of Sampling : 24/07/2020 Date Received : 24/07/2020

Test Period : 24/07/2020 – 25/07/2020

Test Required : 1. Suspended Solids (SS)

Method Used : 1. QPL-15e, APHA 22ed 2540 D

Test Result : Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager

Chemical Division

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number

: Q200003aR200681

Job Number

: R200681

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200681/1	24/07/2020	C1	3.0
R200681/2	24/07/2020	C2	2.6
R200681/3	24/07/2020	M1	1.5
R200681/4	24/07/2020	M2	2.9
R200681/5	24/07/2020	М3	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O₂/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200682

Job Number

: R200682

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-716

Sample Description

: SS test

Laboratory ID

: R200682/1-5

Date of Sampling

: 27/07/2020

Date Received

: 27/07/2020

Test Period

: 27/07/2020 - 28/07/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager

Chemical Division

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number

: Q200003aR200682

Job Number

: R200682

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200682/1	27/07/2020	C1	3.4
R200682/2	27/07/2020	C2	3.2
R200682/3	27/07/2020	M1	2.3
R200682/4	27/07/2020	M2	4.0
R200682/5	27/07/2020	М3	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O₂/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200683

Job Number

: R200683

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-717

Sample Description

: SS test

Laboratory ID

: R200683/1-5

Date of Sampling

: 29/07/2020

Date Received

: 29/07/2020

Test Period

: 29/07/2020 - 30/07/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager

Chemical Division

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Fax: (852) 2333 1316 Tel: (852) 2333 6823

Test Report

Page 2 of 2

Report Number

: Q200003aR200683

Job Number

: R200683

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200683/1	29/07/2020	C1	3.2
R200683/2	29/07/2020	C2	3.3
R200683/3	29/07/2020	M1	2.5
R200683/4	29/07/2020	M2	3.5
R200683/5	29/07/2020	M3	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O₂/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200684

Job Number

: R200684

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-718

Sample Description

: SS test

Laboratory ID

: R200684/1-5

Date of Sampling

: 31/07/2020

Date Received

: 31/07/2020

Test Period

: 31/07/2020 - 01/08/2020

Test Required

: 1. Suspended Solids (SS)

Method Used

: 1. QPL-15e, APHA 22ed 2540 D

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager

Chemical Division

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Fax: (852) 2333 1316 Tel: (852) 2333 6823

Test Report

Page 2 of 2

Report Number

: Q200003aR200684

Job Number

: R200684

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	Suspended Solids (SS), mg/L
R200684/1	31/07/2020	C1	3.9
R200684/2	31/07/2020	C2	3.7
R200684/3	31/07/2020	M1	2.8
R200684/4	31/07/2020	M2	5.1
R200684/5	31/07/2020	М3	<1

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O2/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 1 of 2

Report Number

: Q200003aR200685

Job Number

: R200685

Issue Date

: 07/08/2020

Name of Applicant

: Acumen Environmental Engineering and Technologies Co., Ltd.

Address of Applicant

: No. 12, Tam Kon Shan Road, Tsing Yi (North), N.T.

Project Name

: CJO-3113-719

Sample Description

: pH Value, TSS and COD tests

Laboratory ID

: R200685/1

Date of Sampling

: 22/07/2020

Date Received

: 22/07/2020

Test Period

: 22/07/2020 - 23/07/2020

Test Required

: 1. pH Value;

2. Total Suspended Solids (TSS);

3. Chemical Oxygen Demand (COD)

Method Used

: 1. QPL-15d, APHA 22ed 4500-H+ B

2. QPL-15e, APHA 22ed 2540 D

3. QPL-15f, APHA 22ed 5220 B

Test Result

: Refer to the results on page 2.

For and on behalf of

Acumen Laboratory and Testing Limited

Authorized Signature:

Hui Wai Fung, Huntington

Laboratory Manager

Chemical Division

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

htthui@acumenhk.com / jleung@acumenhk.com

Lot 12, Tam Kon Shan Road, Tsing Yi (N), Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Test Report

Page 2 of 2

Report Number

: Q200003aR200685

Job Number

: R200685

Issue Date

: 07/08/2020

Test Result:

Lab ID	Date of Sampling	Client Sample ID	pH Value at (measured temperature °C)	Total Suspended Solids (TSS), mg/L	Chemical Oxygen Demand (COD), mg O ₂ /L
R200685/1	22/07/2020	Hing Keng, Wall C	8.1 (23)	<2.5	<50

Note:

- 1. mg/L indicates milligram per liter
- 2. mg O₂/ L indicates milligram oxygen per liter
- 3. < indicates less than.
- 4. > indicates more than.
- 5. NA indicates Not Applicable.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited. The result(s) of this report are applied to the sample(s) submitted only.

E-mail:

Appendix S Impact Monitoring report for Ecology

Project no.: CJO-3113

Post-Transplantation Monitoring Report

for Agreement No. CE 13/2009 (WS)
IN-SITU REPROVISIONING OF SHA TIN WATER TREATMENT WORKS – SOUTH WORKS

Report No.71

July 2020

TABLE OF CONTENTS

1.	INTRODUCTION	2
	DESCRIPTION OF TREE MONITORING SITE	
3.	MONITORING METHODOLOGY	3
4.	RESULT	4
5.	MITIGATION MEASURE	4
6.	SUMMARY	6
API	PENDICES	
APF	ENDIX I- Photos	7
APF	ENDIX II- Table for condition of transplanted plant	1

1. INTRODUCTION

- 1.1 Pursuant to the Environmental Impact Assessment (EIA) Ordinance, the Director of Environmental Protection (DEP) granted the Environmental Permit (No. EP- 494/2015) to the Water Supplies Department (WSD) to construct and operate the designated project for "In-situ Reprovisioning of Sha Tin Water Treatment Works South Works" ("The Project").
- 1.2 Upon the requirement of the Environmental Permit, a detailed vegetation report presenting the baseline vegetation condition for flora species with conservation interest, transplanting and monitoring programme for the Project has been prepared and approved by DEP in February 2016.
- 1.3 There were 4 flora species of conservation importance were recorded in the woodland habitat within project site including Ailanthus (*Ailanthus fordii*), Incense Tree (*Aquilaria sinensis*), Lamb of Tartary (*Cibotium barometz*) and Hong Kong Eagle's Claw (*Artabotrys hongkongensis*). In total, 2 nos. of Incense Tree (*Aquilaria sinensis*), 1 no. of Ailanthus (*Ailanthus fordii*) trees, 5 colonies of Lamb of Tartary (*Cibotium barometz*) and 1 no. Hong Kong Eagle's Claw (*Artabotrys hongkongensis*) was recommended to be transplanted in the approved detailed vegetation survey report.
- 1.4 Detailed vegetation report was planned that Incense Tree (*Aquilaria sinensis*) and Ailanthus (*Ailanthus fordii*) trees will be transplanted within existing Sha Tin Water Treatment Works (STWTW). All other shrubs including Lamb of Tartary (*Cibotium barometz*) and Hong Kong Eagle's Claw (*Artabotrys hongkongensis*) will be transplanted to the hillside slope at Sha Tin South Fresh Water Service Reservoir (STSFWSR).
- 1.2 Upon the requirement of the Environmental Permit, a qualified Ecologist was commissioned to prepare a post-transplantation monitoring report to present the status (health condition and survival rate) of transplanted vegetation and submitted to the DEP.
- 1.3 Monitoring of transplanted flora was conducted after the transplantation. The monitoring will be conducted at twice per month during the first year and once per month during the course of planting works. The parameters to be monitoring will include the health condition and survival rate of the transplanted flora. Any observations and recommendations will be reported in monthly EM&A reports.
- 1.3 This is Tree Report presents data collected on 24 July 2020 (the nursery was closed in late June). It contains the following information:
 - Introduction (Section 1)
 - Description Of Tree Monitoring Area (Section 2)
 - Monitoring Methodology (Section 3)
 - Result (Section 4)
 - Summary

- Photos (Appendix I)
- Summary table (Appendix II)
- Typhoon information (Appendix III)

2. DESCRIPTION OF TREE MONITORING SITE

- 2.1 Incense Tree (*Aquilaria sinensis*) and Ailanthus (*Ailanthus fordii*) trees was transplanted within existing Sha Tin Water Treatment Works (STWTW) where is the extended compensatory plantation area. The area was flat and without covering with concrete.
- 2.2 Lamb of Tartary (*Cibotium barometz*) will be transplanted to the Sha Tin South Fresh Water Service Reservoir (STSFWSR) where is currently covered with concrete. Plough is required before planting on to this area.
- 2.3 The planting site at Sha Tin South Fresh Water Service Reservoir (STSFWSR) was still under preparation. Lamb of Tartary (*Cibotium barometz*) to be transplanted was temporally stored at a nursery garden at Shui Mei Tsuen, Kam Tin. Once the planting site at Sha Tin South Fresh Water Service Reservoir (STSFWSR) was prepared and temporally stored transplanted vegetation were in fair condition, all transplanted Lamb of Tartary (*Cibotium barometz*) will be planted at the planting site.

3. MONITORING METHODOLOGY

- 3.1 Site inspection will be carried out by walking through the transplanting area. Health condition and survival rate will be observed during inspection.
- 3.4 Health condition of all transplanted vegetation including trees/Shrubs surveyed was evaluated according to the following criteria:
 - Transplanted vegetation with good health are classified as **good**;
 - Transplanted vegetation with few or no visible defects or health problems are classified as being **fair**;
 - Transplanted vegetation was badly damaged or clearly suffering from decay die back or the effects of very heavy vine growth are classified as **poor**.
- 3.5 Survival rate for each of transplanted vegetation species will be calculated based on site observation.

4. RESULT

- 4.1 Monitoring inspections were conducted on 24 July 2020. Three trees TA572, TA326 and TA327 were transplanted to tree compensation area within the Sha Tin Water Treatment Works (STWTW) in 20 June 2016.
- 4.2 The condition of TA572 was observed in poor condition due to the damage of two main trunks. TA327 was also in poor condition. The already dead tree TA326 collapsed due to big hit by the Signal No.10 typhoon Mangkhut on 16 September 2018. Tree guying cables have been installed to provide external support to the remaining two transplanted trees.
- 4.3 All transplanted Lamb of Tartary (*Cibotium barometz*) have been severely damaged by Typhon Wipha on 30-31 July 2019. Young leaves have been re-grown in about 6 individuals with fair to poor condition; however, the next few monitoring will be critical to assess their survival and recovery progress of all individuals.
- 4.4 Since Sha Tin South Fresh Water Service Reservoir (STSFWSR) was still under preparation, Lamb of Tartary was still temporally stored in a nursery garden at Shui Mei Tsuen, Kam Tin.
- 4.5 In general, 6 transplanted Lamb of Tartary (*Cibotium barometz*) were in fair to poor condition with foliage, while the other 21 remained in poor condition without regrowth of new foliage. Hong Kong Eagle's Claw (*Artabotrys hongkongensis*) was observed dead during inspection on 20 August 2016. The survival rate for Lamb of Tartary (*Cibotium barometz*) and Hong Kong Eagle's Claw (*Artabotrys hongkongensis*) was 96%. The Summary table for health condition and survival rate was shown in Appendix II.

5. MITIGATION MEASURE

Hong Kong Eagle's Claw (*Artabotrys hongkongensis*) was observed dead during inspection on 20 August 2016. In order to compensate for the loss of transplanted Hong Kong Eagle's Claw which is in climber growing form, it is recommended to plant an individual of native climber species at compensatory planting site (Sha Tin South Fresh Water Service Reservoir (STSFWSR)) together with compensatory tree planting. Recommended list of species are given in the Table 1 below. It is suggested that about 1 species of climber to be selected from the following list according to availability of the nursery source. The recommended plant species have been recorded from adjacent secondary woodland in an approved EIA Report (AEIAR-187/2015). These species would have certain ecological value in terms of plant ecology and the associated wildlife including birds.

Table 1. Table for Recommended climber species list to be planted

|--|

Common Name	Latin Name	Chinese Name	Growing Form
Climbing Bauhinia	Bauhinia glauca	粉葉羊蹄甲	Climber
Spiny-fruited Vine	Byttneria aspera	刺果藤	Climber
Bentham,s Rose-wood	Dalbergia benthamii	兩廣黃檀	Climber
Desmos	Desmos chinensis	假鷹爪	Climber
Glaucescent Diploclisia	Diploclisia glaucescens	蒼白秤鈎風	Climber
Luofushan Joint-fir	Gnetum luofuense	羅浮買麻藤	Climber
Australian Cow-plant	Gymnema sylvestre	匙羹藤	Climber
Shining Hypserpa	Hypserpa nitida	夜花藤	Climber
Large-floweredHoneysuckle	Lonicera macrantha	大花忍冬	Climber
Splash-of-white	Mussaenda pubescen	玉葉金花	Climber
Rusty-haired Raspberry	Rubus reflexus	鏽毛莓	Climber
Sandpaper Vine	Tetracera asiatica	錫葉藤	Climber
Hong Kong Eagle's Claw	Artabotrys hongkongensis	鷹爪花	Climber

- Most transplanted Lamb of Tartary (*Cibotium barometz*) had shown yellow foliage, probably due to high exposure of sunlight at the new nursery site before the hit of Typhoon Wipha. It is recommended to retain them at the nursery garden under proper maintenance during current recovery stage. Shelter (such as 遮光網) shall be provided to reduce the amount of sunlight received and avoid direct hit of rainstorm/ typhoon. Once their condition has recovered to acceptable level, they can be moved to the transplantation site at Sha Tin South Fresh Water Service Reservoir (STSFWSR) when the site is ready.
- 5.3 After transplantation, root ball of TA572 and TA327 tree should be kept moisture especially during non-raining day.
- Incense Tree (*Aquilaria sinensis*) tagged as TA326 was observed dead during inspection on 10 August 2017. Its DBH was measured as 346cm. In according to the Tree Preservation, Development Bureau Technical Circular (Works) No. 7/2015, the compensatory planting will try to achieve the compensatory planting ratio of 1:1 in terms of aggregated DBH.
- 5.5 In total, 3 individual of native tree species with heavy standard size will be planted with 2.5-3 meters (center to center) spacing at compensatory planting site. Recommended list of species are given in the Table 2 below. It is suggested that at least 1 tree species to be selected from the following list according to availability of the nursery source. The recommended plant species have been recorded from adjacent secondary woodland in an approved EIA Report (AEIAR-187/2015). These species would have certain ecological value in terms of plant ecology and the associated wildlife including birds.

Table 2. Table for Recommended tree species list to be planted

Native Tree Species			
Common Name	Latin Name	Chinese Name	Growing Form
Ivy Tree	Schefflera heptaphylla	鴨腳木	Tree
Levine's Syzygium	Syzygium levinei	山蒲桃	Tree
Chekiang Machilus	Machilus chekiangensis	浙江潤楠	Tree
Aporusa	Aporusa dioica	銀柴	Tree
Mountain Tallow Tree	Sapium discolor	山烏桕	Tree
Fragrant Litsea	Litsea cubeba	山蒼樹	Tree
Chinese Apea Ear-ring	Archidendron lucidum	亮葉猴耳環	Tree
Chinese Hackberry	Celtis sinensis	朴樹	Tree
Turn-in-the-wind	Mallotus paniculatus	白楸	Tree
Acronychia	Acronychia pedunculata	降真香	Tree

6. SUMMARY

- 6.1 The condition of TA572 was observed in poor condition due to broken of main trunk. TA327 was also in poor condition; while already dead TA326 collapsed under Signal No. 10 typhoon Mangkhut in September 2018. Tree guying cables have been installed to provide external support to the two remaining transplanted trees.
- All transplanted Lamb of Tartary (*Cibotium barometz*) have been severely damaged by Typhon Wipha on 30-31 July 2019. Next few monitoring will be critical to assess survival and recovery progress of all individuals. Shelter (遮光網) was recommended to reduce the intensity of sunlight and avoid direct hit of rainstorm/ typhoon. Currently, Lamb of Tartary was temporally stored in a nursery garden at Shui Mei Tsuen, Kam Tin. It is recommended to retain them at the nursery garden under proper maintenance during current recovery stage. Hong Kong Eagle's Claw (*Artabotrys hongkongensis*) was observed dead during inspection on 20 August 2016.
- 6.3 In general, 6 transplanted Lamb of Tartary (*Cibotium barometz*) were in fair to poor condition with foliage, while the other 21 remained in poor condition without regrowth of new foliage. Hong Kong Eagle's Claw (*Artabotrys hongkongensis*) and one Incense Tree (*Aquilaria sinensis*) TA326 were observed dead during inspection on 20 August 2016 and on 10 August 2017 respectively.
- In order to compensate for the loss of transplanted Hong Kong Eagle's Claw and Incense Tree, it is recommended to plant an individual of native climber species and 3 heavy standard native tree species at compensatory planting site. The suggested species in planting list would have certain ecological value in terms of plant ecology and the associated wildlife including birds.
- 6.5 After transplantation, root ball of TA572 and TA327 tree should be kept moisture especially during dry and non-raining day.

APPENDIX I Photo

Photo 1. General view of *Cibotium barometz* to be transplanted.

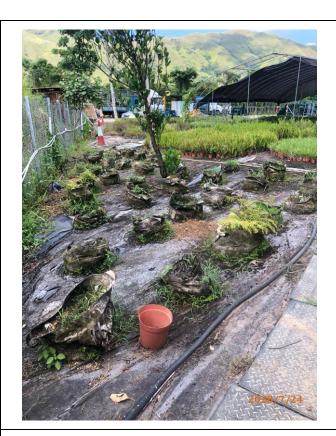


Photo 2. General view of *Cibotium barometz* to be transplanted.

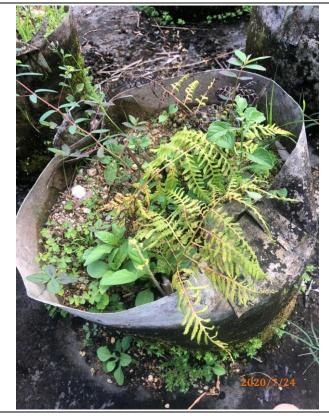


Photo 3. *Cibotium barometz* in poor condition (occupied by weeds)

Photo 4. Cibotium barometz in poor condition

Photo 5. *Cibotium barometz* in poor condition (occupied by weeds)

Photo 6. *Cibotium barometz* in poor condition (occupied by weeds)

Photo 7 & 8. Cibotium barometz under recovery after damage caused by Typhoon Wipha in July 2019. Shelter (such as 遮光網) is recommended for reducing intensity of sunlight and avoid direct hit of rainstorm/typhoon on the plants. Yellow foliage was observed in these individuals.

Photo 9. Transplanted Incense Tree (*Aquilaria sinensis*) – TA327 (left); and Ailanthus (*Ailanthus fordii*) – TA572 (right); stockpiled soil surrounding the TPZ shall be removed as soon as possible to relieve stress of soil compaction and reduced soil aeration.

Photo 10. Weak crown with dead twigs observed in of TA327.

Photo 11. Sprouts with new leaves at trunk base of TA327.

Photo 12. Cracks and wounds observed in one of the trunks of TA572.

Photo 13. Weak crown and two broken trunks of TA572.

IN-SITU REPROVISIONING OF SHA TIN WATER TREATMENT WORKS —	SOUTH WORKS-Post-Transplantation Monitoring Report

APPENDIX II

Table for condition of transplanted plant

Shrubs of Lamb of Tartary and Hong Kong Eagle's Claw

No.	Species	Condition	Alive/Dead	Remark
1	Cibotium barometz	Fair	Alive	
2	Cibotium barometz	Fair	Alive	
3	Cibotium barometz	Fair	Alive	
4	Cibotium barometz	Fair	Alive	
5	Cibotium barometz	Fair	Alive	
6	Cibotium barometz	Fair	Alive	
7	Cibotium barometz	Poor	Alive	
8	Cibotium barometz	Poor	Alive	Severely damaged by
9	Cibotium barometz	Poor	Alive	Typhon Wipha on 30-31
10	Cibotium barometz	Poor	Alive	July 2019; the next few
11	Cibotium barometz	Poor	Alive	monitoring will be critical
12	Cibotium barometz	Poor	Alive	to assess their survival
13	Cibotium barometz	Poor	Alive	and recovery progress.
14	Cibotium barometz	Poor	Alive	6 individuals were in fair
15	Cibotium barometz	Poor	Alive	to poor condition with
16	Cibotium barometz	Poor	Alive	foliage, the other 21
17	Cibotium barometz	Poor	Alive	remained as poor before
18	Cibotium barometz	Poor	Alive	healthy foliage can sustain
19	Cibotium barometz	Poor	Alive	in coming monitoring
20	Cibotium barometz	Poor	Alive	
21	Cibotium barometz	Poor	Alive	
22	Cibotium barometz	Poor	Alive	
23	Cibotium barometz	Poor	Alive	
24	Cibotium barometz	Poor	Alive	
25	Cibotium barometz	Poor	Alive	
26	Cibotium barometz	Poor	Alive	
27	Cibotium barometz	Poor	Alive	
	Shelter (such as 遮光網) is	s recommended for	reducing intensity	of sunlight and direct hit of
		rainstorm/ typho	on on the plants.	
28	Artabotrys hongkongensis		Dead	
		Survival rate (%)	96%	

Trees of Ailanthus and Incense Tree

No.	Species	Condition	Alive/Dead	Remark
TA572	Ailanthus fordii	Poor	Alive	Two main trunks were
				broken during typhoon
				on 23 August 2017.
				Cracks and wounds
				observed in one of the
				trunks. Weak canopy
				formed only by sprouts.
TA327	Aquilaria sinensis	Poor	Alive	Tree crown of TA327
				was thinner after
				transplantation. Water
				sprouts, cracks on tree
				bark and would at trunk
				base observed.
TA326	Aquilaria sinensis	Dead	Dead	Collapsed due to the
				Signal No.10 typhoon
				Mangkhut in September
				2018.
		Survival rate (%)	67%	

Appendix T Monthly Summary of Waste Flow Table

Water Supplies Department Monthly Summary Waste Flow Table

for Contract with Environmental Management Plan under ETWB TCW No. 19/2005 and its Interim Guidance Note

Reporting Year: 2020

Contract No. 3/WSD/15

(To be submitted to C&D MM Coordinator of Respective Division/Region via Engineer's Representative before 15th of the following month)

	Ac	tual Quantities of Inc	ert C&D Materials	Generated / Import	ed (in '000 m ³)		A	ctual Quantities of 0	Other C&D Materia	ıls / Wastes Genera	ted
Month	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Metal	Paper/ Cardboard Packaging	Plastic (bottles/containers, plastic sheets/ foams from package material)	Chemical Waste	Others (e.g. General Refuse etc.)
	[a+b+c+d)	(a)	(b)	(c)	(d)		(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
January	0.457	0.178	0.000	0.000	0.279	0.277	3.340	0.000	0.000	0.000	0.115
February	0.219	0.131	0.000	0.000	0.088	0.213	0.000	0.000	0.000	0.000	0.048
March	0.448	0.160	0.000	0.000	0.288	0.876	0.000	0.000	0.000	0.000	0.112
April	0.149	0.086	0.000	0.000	0.063	0.465	0.000	0.000	0.000	0.000	0.085
May	0.216	0.095	0.000	0.000	0.121	0.161	0.039	0.000	5.675	0.000	0.096
June	0.143	0.010	0.000	0.000	0.133	0.000	0.000	0.000	0.000	0.000	0.052
Half-year total	1.632	0.661	0.000	0.000	0.972	1.991	3.379	0.000	5.675	0.000	0.508
July	0.223	0.201	0.000	0.000	0.022	0.000	0.000	0.000	0.000	0.000	0.036
August											
September											
October											
November											
December											
Yearly Total	1.855	0.862	0.000	0.000	0.994	1.991	3.379	0.000	5.675	0.000	0.544

Appendix U Implementation Schedule of Environmental Mitigation Measures (EMIS)

Environmental Mitigation and Enhancement Measure Implementation Schedule at Construction Stage

EIA Ref.	Recommended Mitigation Measures	Location of the	Implementation Agent	Relevant Legislation	Impl	ement Phase		Status
		Measures		and Guidelines	D	С	0	
Air Quality					1			
4.7.1	Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather.	All works areas	Contractor	Air Pollution Control		V		Υ
4.7.1	Side enclosure and covering of any aggregate or stockpiling of dusty material to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines.	All works areas	Contractor	Ordinance and Air Pollution Control (Construction		V		Υ
4.7.1	Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations.	All works areas	Contractor	Dust) Regulation EM&A Manual		√		Υ
4.7.1	Establishment and use of vehicle wheel and body washing facilities at the exit points of the site.	All works areas	Contractor	- EIVIQA Manuai		1		Υ
4.7.1	Imposition of speed controls for vehicles on site haul roads.	All works areas	Contractor			V		Υ
4.7.1	Implement EM&A program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise.	All works areas / Monitoring points	Contractor			V		Υ
Noise		P =	l.	I.	1	1		I
5.6.4	Implement good site practices to reduce noise level	All works areas	Contractor	Noise Control Ordinance		1		Υ
5.6.5	Adoption of Quiet PME	All works areas	Contractor			1		N/A
5.6.6	Use of Movable Noise Barrier	All works areas	Contractor			1		N/A
5.8	Noise monitoring	Monitoring points	Contractor			√		Υ
Water Quality								
6.8.1	Surface run-off from construction sites should be discharged into storm drains via adequately designed sand/silt removal facilities such as sand	All works areas	Contractor	ProPECC PN 1/94 Construction		1		Υ

		I	ı	ı	 	-	
	traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries should be provided where necessary to intercept storm run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.			TM-DSS Water Pollution Control Ordinance			
6.8.2	Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly, at the onset of and after each rainstorm to prevent local flooding.	All works areas	Contractor		V		Υ
6.8.3	Temporary exposed slope surfaces should be covered and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels should be provided to prevent storm run-off from washing across exposed soil surfaces.	All works area	Contractor		√		Υ
6.8.4	Earthworks final surfaces should be well compacted and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary.	All works areas	Contractor		V		N/A
6.8.5	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	All works areas	Contractor		V		Υ
6.8.6	Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites should be covered with tarpaulin or similar fabric during rainstorms.	All works areas	Contractor		V		Υ
6.8.7	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system.	All works areas	Contractor		1		Υ
6.8.8	Good site practices should be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area.	All works areas	Contractor		V		Υ
6.8.9	All vehicles and plant should be cleaned before they leave a construction site to minimize the deposition of earth, mud, debris on roads. A wheel washing bay should be provided at every site exit if practicable and wash-water should have sand and silt settled out or removed before discharging into storm drains.	All works areas	Contractor		√		Υ
6.8.10	Before commencing any demolition works, all drainage connections should be sealed to prevent building debris, soil, sand etc. from entering	All works areas	Contractor		V		N/A

	drains.					
6.8.11	Wastewater generated from building construction activities including concreting, plastering, internal decoration, cleaning of works and similar activities should not be discharged into the stormwater drainage system. If the wastewater is to be tankered off site for disposal into foul sewers, it should undergo the removal of settleable solids in a silt removal facility, and pH adjustment as necessary.	All works areas	Contractor		V	Y
5.8.12	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should be neutralized to within the pH range of 6 to 10. The neutralized wastewater should be tankered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters.	All works areas	Contractor		√	N/
6.8.13	All surface run-off must proper collected and discharge at designated location. The discharge quality must meet the requirements specified in the discharge license.	All works areas	Contractor		√	Y
6.8.15	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.	All works areas	Contractor		V	Y
6.8.16	Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges	All works areas	Contractor		√	Υ
6.8.17	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance.	All works areas	Contractor	-	V	Υ
6.8.18	Sewage generated from the workforce should be properly treated by interim treatment facilities, such as chemical toilets which are properly maintained with the employment of licensed collectors for the collection and disposal on a regular basis.	All works areas	Contractor		√	Y
6.8.19	Adopt relevant measures stated in ETWB TC (Works) No. 5/2005 "Protection of Natural Streams/rivers from Adverse Impacts arising from Construction Works" to minimize the potential water quality impacts from the construction works near any water courses.	All works areas	Contractor		√	Y
6.10	Water quality monitoring	Monitoring points	Contractor		√	Υ

7.6.1	Appropriate waste handling, transportation and disposal methods for all waste arisings generated during the construction works for the Project should be implemented to ensure that construction wastes do not enter the nearby streams or drainage channel.	All works areas	Contractor	Waste Disposal Ordinance DEVB TCW No.	√	Y
7.6.2	Implementation of good site practices for waste management	All works areas	Contractor	6/2010,	√	Υ
7.6.3	Implementation of trip ticket system to control waste disposal	All works areas	Contractor	ETWB TCW No.	√	Υ
7.6.4	Implementation of good site practices to reduce waste generations	All works areas	Contractor	19/2005 Land	√	Υ
7.6.5	Re-use of excavated C&D materials on site as far as practical. A suitable area should be designated within the site for temporary stockpiling of C&D material and to facilitate the sorting process.	All works areas	Contractor	(Miscellaneous Provisions) Ordinance	√	Υ
7.6.8	General refuse should be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material.	All works areas	Contractor	Code of Practice on the Packaging, Labelling and	√	Υ
7.6.9	All storage of asbestos waste should be carried out properly in a secure place isolated from other substances so as to prevent any possible release of asbestos fibres into the atmosphere and contamination of other substances. The storage area should bear warning panels to alert people of the presence of asbestos waste.	All works areas	Contractor	Storage of Chemical Wastes	V	N/A
7.6.10	A licensed asbestos waste collector will be appointed to collect the asbestos waste and deliver to the designated landfill for disposal. Application should be submitted to EPD.	All works areas	Contractor		√	N/A
7.6.11	If chemical wastes were to be produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Waste Producer, and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport the chemical wastes. The licensed collector shall deliver the waste to the Chemical Waste Treatment Centre at Tsing Yi, or other licenced facility, in accordance with	All works areas	Contractor		√	Y

	the Waste Disposal (Chemical Waste) (General) Regulation.					
Ecology	1		I			
8.8.1	Ecological impacts on important habitats and the associated wildfile caused by the proposed development should be mitigated and compensation approaches to the maximum practical extent	All works areas in particular important	The Engineer/ Contractor	EIAO-TM EM&A Manual	V	Υ
8.8.2	Reduce the amount of vegetation removal required and thereby minimize the footprint of the slope at the woodland habitat	habitats All works areas	The Engineer/ Contractor		√	Υ
8.8.3	Conduct detailed vegetation survey and implement suggested measures for species of conservation importance.		The Engineer/ Contractor		√	Υ
8.8.4	The affected Incense Tree and Ailanthus as mentioned in the detailed vegetation survey report within the works area will be transplanted		The Engineer/ Contractor		V	Υ
8.8.5	To avoid impacts on Short-nosed Fruit Bat, the tree with records of an active roost and trees showing evidence of roosting activity should be retained where possible. Where Chinese Fan-palm (Livistona chinensis) removal is required, these should be checked by suitably qualified ecologist with over 7 years relevant experience for roosting bats prior to their removal. If roosting bats are observed, a strategy for passive removal will be agreed with the AFCD and implemented. This could include undertaking the works just after the bats have left the roost (i.e. dusk).		The Engineer/ Contractor		√	N/A
8.8.6	The inclusion of Chinese Fan-palm of similar size as the affected plant within the areas of compensatory planting or other suitable areas is recommended to replace affected specimens, and compensate for the impact to roosting opportunities for this bat species		The Engineer/ Contractor		√	N/A
8.8.7	Implement good site measures to minimize the disturbance impacts to terrestrial habitat and associated wildlife arising from the land-based construction activities.		The Engineer/ Contractor		V	Υ
8.8.8	To minimize the contamination of wastewater discharge, accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as diverting the site runoff to silt trap facilities before discharging into storm drain, proper waste and dumping management and standard good site practice for land-based construction.		The Engineer/ Contractor		V	Υ
8.8.9-8.8.11	Implement woodland compensation		The Engineer/ Contractor		V	N/A

Landscape and 9.8.1	Existing tress to be retained on site shall be carefully protected during	All works areas	Contractor	DEVB TCW No.		
7.0.1	construction. Trees unavoidably affected by the works shall be transplanted as far as possible.	All Works areas	Contractor	10/2013	$\sqrt{}$	Y
	Compensatory Planting shall be provided in accordance with DEVB TCW No. 10/2013 – Tree Preservation.	All works areas	Contractor	EIAO TM	V	Υ
	Control of night-time lighting glare.	All works areas	Contractor		V	Υ
	Erection of decorative screen hoarding compatible with the surrounding setting.	All works areas	Contractor		V	Y
	Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs.	All works areas	Contractor		√	Υ
Cultural Herita	nge					
10.6.2	Vibration monitoring at Ex KCR Beacon Hill Tunnel during piling works of Administration Building	Work site	The Engineer /Contractor		V	N/A
Land Contamii	nation	1	1	1	· · · · · · · · · · · · · · · · · · ·	.
11.7	Identify contamination and implement appropriate remedial measures on site. Provide relevant submission and obtain approval from EPD if necessary.	All works areas	Contractor	Guidance Note for Contaminated Land Assessment and Remediation Guidance Manual for Use of Risk based	V	N/A
				Remediation Goals for Contaminated Land Management (Guidance Manual)		
Hazard to Life		T	T			T-
Table 12.22	Ensure speed limit enforcement is specified in the contractor's Method Statement to limit the speed of construction vehicles on site	All works areas	The Engineer	EIAO-TM	$\sqrt{}$	Y
	Develop an audit procedure to ensure enforcement of speed limits and to ensure adequate site access control	All works areas	The Engineer		V	Υ
	Ensure construction method statement is endorsed by the Engineer (AECOM)	All works areas	The Engineer		√	Υ

	New access	Contractor/		V	Υ
,	road area	The Engineer			
0 , 1 , 1 , 0	All works areas	Contractor/		1	Υ
drills) cover the reprovisioning activities		The Engineer		•	'
Safety training to be provided to construction workers and WSD/Engineer	All works area	Contractor/		1	V
staff regarding evacuation procedures		The Engineer		1	Υ
Ensure communication protocol is in place between construction and	All works areas	Contractor/			
operation staff with regard to the change of chlorine delivery route and		The Engineer			N/A
the switchover from the existing to new chlorinated water piping;					
	All works areas	Contractor/		,	
movements during chlorine delivery		The Engineer		√	Υ
Provide a crash barrier between the construction site and the north side	Chlorination	Contractor			
	House area	3 01111 4 0101		√	Υ
	Chlorination	Contractor			
		Contractor		1	Υ
any damage of the Chlorination House	House area			\ \ \	ĭ
· -	Chlorination	Contractor	_		
	House area	Contractor		1	Υ
Chlorination House	riouse area			'	Į.
	Chlorination	Contractor			
=	House area	Contractor		√	Υ
·		MCD	<u> </u>		
	Chlorinated	WSD			
, , ,	water piping				N/A
for chlorine gas vapours being released if the concentration is too high					
and there is spillage during switchover Develop an operating procedure for performing the chlorinated water	All works areas	Contractor/			
switchover from the existing piping to new piping.	All WUIKS aleds	The Engineer /		1	N/A
switchover from the existing piping to new piping.		WSD		'	IN/A
Ensure the location/height of the lifting equipment is such there is no	Chlorination	Contractor/	_		
	House area	The Engineer		1	Υ
swinging or dropped load.	riouse area	THE LIIGHTEET		'	
	Existing E&M	Contractor/	 		
	Workshop	The Engineer			
	and	c ziigiiicci		1	N/A
	Chlorination			'	, , ,
	House				
		<u> </u>			 1

	areas			
Stop any construction activities which may lead to vibrations and potential slope/boulder disturbance during the chlorine deliveries	All works areas	Contractor	√	+
Installation of Chlorine gas monitors with audible alarms in the relevant reprovisioning works area	Reprovisioning works areas	Contractor/ The Engineer	V	
Provision of an accompanying vehicle for the chlorine truck on the WTW site and ensuring that during the chlorine drums delivery construction works are stopped and the construction workers moved away from Chlorination House	All works areas	Contractor	1	
Establish a liaison between the contractor and HKCG and develop a chlorine/town gas emergency plan to ensure gas safety during the Construction Phase	Beacon Hill North Gas Offtake Station and Gas Pipelines in Old Beacon Hill Tunnel	The Engineer / Contractor / HKCG	√	
Temporary suspend chlorine delivery during the short period of construction of the concerned section of elevated walkway to avoid mobile crane impact on the chlorine truck		The Engineer / Contractor	√	
Provide clear road signs for site vehicles	Chlorine delivery route and reprovisioning works access roads	The Engineer / Contractor	1	
Large equipment/plant movement should be controlled by 'Permit-to-move' system	All works areas	The Engineer / Contractor / WSD	V	
Define restricted zone for the equipment (i.e. keep the equipment from the Chlorination House at a safe distance). The extent of the restricted zone would be determined by the size of the equipment	Chlorination House area	The Engineer / Contractor	√	
Locate the construction site office at or near property boundary away from the Chlorination House as far as possible	Construction Office area	The Engineer / Contractor	V	
Entry of non-authorized personnel to the construction site to be prohibited	All works areas	Contractor	V	

12.15.4, 12.18.1, 12.22.9	GPS fleet management system with driver training to help enforce truck speeds	Chlorine delivery trucks, fleet management centre	WSD / Chlorine Supply Contractor	EIAO-TM	V	k.i.v.
	Improved clamps with independent checks to prevent load shedding	Chlorine	1		√	F
	Installation of fire screen and larger fire extinguishers to prevent engine and wheel fires from spreading to the cargo area	delivery trucks			V	F
	Adoption of the chlorine delivery route from Sham Shui Kok Dock to Sha Tin WTW				V	F
	Provision of emergency repair kit				V	F
12.34.3 Table 12.37	Ban the use of retreaded tyres and perform regular visual checks on the tyres.				√	F
Tin. radio of th work incide	A vehicle accompanying chlorine truck along critical road sections in Sha Tin. The truck should be equipped with emergency kit, fire extinguisher, radio set for communication. The accompanying vehicle will be ahead of the chlorine truck after the vehicles entering the water treatment works site – An accompanying vehicle may provide rapid response to an incident but any action would be limited to containing a small leak. Limit fuel tanks capacity at the beginning of the Project (Item 2.3 of Table				1	F
	12.37 – advance measure).				$\sqrt{}$	F
	Review the practicality of reducing combustible materials or use of fire retardant materials in the cab. (Item 2.3 of Table 12.37 – further measure)				√	k.i.v.
	Annual periodic radiography or ultrasonic test inspections of the chlorine drums should be considered for implementation as soon as feasible (Item 3.8 of Table 12.37).	Chlorine drums			√	k.i.v.
	Implement side, front and rear crash guards with high energy absorption in coordination and accordance with the relevant authorities.	Chlorine delivery trucks			√	k.i.v.
	Implement a sturdy steel frame to minimize the potential for chlorine release due to truck rollover				V	k.i.v.
12.34.4	WSD will continue to keep under review the latest development of use of alternative disinfectants in water supply industry to aim at minimising on-site chlorine storage.4	Chlorine delivery Route	WSD		V	k.i.v.

Training should be provided for the use of the GPS fleet management and improved safe driving.	√	k.i.
Ensured that independent checks are performed to ensure proper chlorine drum latching and clamping.	√	F
Chlorine truck drivers or driver attendants should be further trained to check and detect potential chlorine leaks during transport. This should include the timely application of the emergency kit.	√	k.i
Training should be provided to driver and driver attendant for the emergency use of the new 2 × 9L AFFF extinguishers.	√	F
Induction training for new drivers and driver attendant should include familiarisation with the route, familiarisation with chlorine risks, defensive driving, application of emergency kits, use of fire extinguishers and emergency response	√	k.i
Provision of a fire screen between the cab and cargo as well as fire retardant materials for the wheel arches on the chlorine truck should be planned and provided	√	F
To keep under review alternate chlorine receiving dock in Sha Tin/Tai Po area for chlorine delivery to STWTW.	√	k.i

Legend

- D Design Phase
- C Construction Phase
- O Operation Phase
- Y Compliance of Mitigation Measures
- N/A Not Applicable in Reporting Period
- k.i.v Keep In View
- F Completed

Appendix V Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Statistical Summary of Exceedances

				Ai	r Quality				
Location	A	ction Lev	el		L	imit Leve	el		Total
AM1		0				0			0
AM2		0				0			0
					Noise				
Location	A	ction Lev	el		L	imit Leve	el		Total
NM1		0				0			0
NM2		0				0			0
NM3		0		0					0
				Wat	ter Quality	y			
Location	Action Level					Total			
Location	DO	Turbidity	SS	pН	DO	Turbidity	SS	pН	Iotai
C1	0	0	0	0	0	0	0	0	0
C2	0	0	0	0	0	0	0	0	0
C3	N/A N/A N/A			N/A	N/A	N/A	N/A	N/A	0
M1	0	0	0	0	0	0	0	0	0
M2	0	0	0	0	0	0	0	0	0
M3	0	0	0	0	0	0	0	0	0

Statistical Summary of Environmental Complaints

Reporting	Environmental Complaint Statistics					
Period	Frequency	Complaint Nature	Cumulative			
1 July - 31 July 2020	0	N/A	4			

Statistical Summary of Environmental Summons

Reporting	ting Environmental Summons Statistics						
Period	Frequency	Details	Cumulative				
1 July - 31 July 2020	0	N/A	0				

Statistical Summary of Environmental Prosecution

Reporting	Environmental Prosecution Statistics					
Period	Frequency	Details	Cumulative			
1 July - 31 July 2020	0	N/A	0			

Appendix W

Project no.: CJO-3113

Tentative schedule for environmental monitoring

Impact Monitoring Schedule for STWTW

Impact Monitoring Schedule for STWTW								
	1	I=	Jun 20		I- •	le .		
Sun	Mon	Tue	Wed	Thur		Sat		
	1	2	3	4	5	6		
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2			
7	8	9	10	11	12	13		
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3			
14	15	16	17	18	19	20		
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2			
21	22	23	24	25	26	27		
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3			
28	29	30						
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2							

^{*}Remark: No construction will be performed on public holiday 25/6.

Tentative Impact Monitoring Schedule for STWTW

	Tentative Impact Monitoring Schedule for STWTW								
Sum.	Man	Tue	Jul 20	Thus	ru:	Cat			
Sun	Mon	Tue	Wed	Thur	Fri	Sat			
				Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3	3	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2			
5	6	7	8	9	10	11			
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2				
12	13	14	15	16	17	18			
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3				
19	20	21	22	23	24	25			
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2				
26	27	28	29	30	31				
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3				

^{*}Remark: No construction will be performed on public holiday 1/7.

Tentative Impact Monitoring Schedule for STWTW

Aug-20							
Sun	Mon	Tue		Thur	Fri	Sat	
						1	
2	3	4	5	6	7	8	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		
9	10	11	12	13	14	15	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		
16	17	18	19	20	21	22	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		
23	24	25	26	27	28	29	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		
30	31						
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3						

Tentative Impact Monitoring Schedule for STWTW								
		-	Sep 20 Wed					
Sun	Mon	Tue	wed 2	Thur	Fri 4	Sat		
			Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3	3	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2			
6	7	8	9	10	11	12		
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3			
13	14	15	16	17	18	19		
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2			
20	21	22	23	24	25	26		
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3			
27	28	29	30					
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3					

Tentative Impact Monitoring Schedule for STWTW

Tentative Impact Monitoring Schedule for STWTW							
			Oct-20				
Sun	Mon	Tue	Wed	Thur	Fri	Sat	
				1	2	3	
						Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3	
4	5	6	7	8	9	10	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		
11	12	13	14	15	16	17	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		
18	19	20	21	22	23	24	
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		
25	26	27	28	29	30	31	
		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3 Air monitoring for AM1 & AM2 Noise monitoring for NM1, NM2 & NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 & M3	