Member of the Aurecon Group

Our Ref.: CJO-3113

The EIA Ordinance Register Office, Environmental Protection Department, 27th floor, Southorn Centre, 130 Hennessy Road, Wanchai, Hong Kong

CONTRACT NO. 1/WSD/19 \& 6/WSD/21
IN-SITU REPROVISIONING OF SHA TIN WATER
TREATMENT WORKS (SOUTH WORKS) - WATER TREATMENT WORKS AND ANCILLARY FACILITIES
Environmental Permit EP-494/2015

We are enclosing the following information for your kind considerations of our application:
(a) Three hard copies,
(b) Two copies of the $95^{\text {th }}$ monthly Environmental Monitoring and Audit (EM\&A) Report (Rev.0). (Register No.: AEIAR-187/2015)

Please feel free to contact us should you need further information.
Yours sincerely,
Acumen Environmental Engineering and Technologies Co. Ltd.

Mr. Vega Wong
26988032
c.c. Water Supplies Department
c.c. AECOM

Member of the Aurecon Group

Your ref:
Our ref: CJO-3113

By hand

Chief Engineer /Project Management
Water Supplies Department
46/F., Immigration Tower
7 Gloucester Road, Wanchai
(Attn: Mr. H C Wong, Heinz)

15 February 2024

Dear Sir,

In-Situ Reprovisioning of Sha Tin Water Treatment Works (South Works) - Water
Treatment Works and Ancillary Facilities

Environmental Permit EP-494/2015

Submission of $95^{\text {th }}$ monthly EM\&A Report

In accordance with the Condition 3.4 of the Environmental Permit (No. EP-494/2015), we submit herewith 3 hard copies and 2 electronic copies of the $95^{\text {th }}$ monthly Environmental Monitoring and Audit (EM\&A) Report (Rev.0) for your processing. I certified and confirmed the submission of this monthly EM\&A Report had complied with the requirements as set out in the approved Environmental Monitoring and Audit (EM\&A) Manual of the EIA Report (Register No.: AEIAR-187/2015).

Yours faithfully,

Mr. Wong, Vega, T. L.
Environmental Team Leader
c.c. Independent Environmental Checker

Your Ref：
Our Ref：60479142／C／fyw2402151

By Email

Chief Engineer／Project Management
Water Supplies Department
46／F．，Immigration Tower
7 Gloucester Road，Wanchai
Attn：Mr．Edmund Huen

15 February 2024

Dear Sir，

Contract No．1／WSD／19

In－situ reprovisioning of Sha Tin Water Treatment Works（South Works）－Water Treatment Works and Ancillary Facilities
Contract No．6／WSD／21
In－situ reprovisioning of Sha Tin Water Treatment Works（South Works）－Administration Building

Submission of $95^{\text {th }}$ Monthly EM\＆A Report for January 2024

Reference is made to Environmental Team（ET）＇s 95 ${ }^{\text {th }}$ Monthly EM\＆A Report for January 2024 （Rev．0）submitted on 8 and 15 February 2024.

In accordance with the Condition 3.4 of the Environmental Permit（No．EP－494／2015），I verified and confirmed the submission of this Monthly EM\＆A Monitoring Report as compiled with the requirements as set in the approved Environmental Monitoring and Audit（EM\＆A）Manual of the EIA Report（Register No．：AEIAR－187／2015）．

Should you have any queries，please feel free to contact the undersigned at 39229366.

Yours faithfully，
AECOM Asia Co．Ltd．

[^0]c．c． Environmental Team Leader（via email）

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT （EM\＆A）REPORT（NO．95）

FOR

Contract No．1／WSD／19 \＆6／WSD／21 IN－SITU REPROVISIONING OF SHA TIN WATER TREATMENT WORKS（SOUTH WORKS）－ Water Treatment Works and Ancillary Facilities
（Rev．0）

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM\&A) REPORT (NO. 95)

FOR
Contract No. 1/WSD/19 \& 6/WSD/21
In-situ Reprovisioning of Sha Tin Water
Treatment Works (South Works) - Water Treatment works and ancillary facilities

	Name	Signature
Prepared by	Mr. Chiu, Oliver, O. C.	Cllimr
Reviewed by	Ms. Choy, Yiting, Y. T.	Yiting
 Certified by	Mr. Wong, Vega, T. L. Environmental Team Leader (ETL)	Mr. Fung, Y. W. Independent Environmental Checker (IEC)
 Confirmed by		

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1. Introduction

1.1 Project Background
1.2 Organization Structure
1.3 Scope of Report
1.4 Summary of Construction Works
2. EM\&A RESULTS
2.1 EM\&A BACKGROUND
2.2 Air Quality Monitoring
2.3 Noise Monitoring
2.4 Water Quality Monitoring
2.5 Ecology
2.6 Waste Management status
2.7 DELIVERY, STORAGE AND HANDLING OF CHLORINE
2.8 EM\&A Site Inspections
2.9 Environmental Licenses and Permits
2.10 Implementation of Environmental Mitigation Measures
2.11 Summary if Exceedances of Environmental Quality Performance Limit
2.12 Summary of Complaints, Notification of Summons and Successful Prosecutions
2.13 Data Management and Data QA/QC Control
3. Future Key Issues
3.1 Construction Programme for Coming Months
3.2 Key Issues for the Coming Month
4. Conclusions and Recommendations
4.1 SUMMARY

LIST OF APPENDICES

Appendix A	General Layout Plan
Appendix B	Project Organization
Appendix C	Latest Construction Programme
Appendix D	Location of Construction Activities
Appendix E	Environmental Sensitive Receivers in the Vicinity of the Project
Appendix F	Summary of Action and Limit Levels
Appendix G	Event Action Plan
Appendix H	Impact Monitoring Schedules
Appendix I	Location Plan of Air Quality Monitoring Stations
Appendix J	Calibration Certificates (Air monitoring)
Appendix K	Impact Air Quality Monitoring Results and Graphical Presentation
Appendix L	Location Plan of Noise Monitoring Station
Appendix M	Calibration Certificates (Noise)
Appendix N	Impact Noise Monitoring Results and Graphical Presentation
Appendix O	Location Plan of Water Quality Monitoring Station
Appendix W	Tentative schedule for environmental monitoring
Appendix P	Calibration Certificate (Water Quality)
Appendix Q	The Certification of Laboratory with HOKLAS accredited Analytical Tests
Appendix R	Impact Water Quality Monitoring Results
Appendix S	Impact Monitoring report for Ecology
	Monthly Summary of Waste Flow Table
	Implementation Schedule of Environmental Mitigation Measures (EMIS)
Appendix U Stutistics on Exceedances, Complaints, Notifications of Summons	
And	

Water Supplies Department
In-situ Reprovisioning of Sha Tin Water Treatment Works - South Works
Monthly EM\&A Report (No. 95)

EXECUTIVE SUMMARY

A. 1 Pursuant to the Environmental Impact Assessment (EIA) Ordinance, the Director of Environmental Protection (DEP) granted the Environmental Permit (No. EP- 494/2015) to the Water Supplies Department (WSD) to construct and operate the designated project for "In-situ Reprovisioning of Sha Tin Water Treatment Works - South Works" ("The Project").
A. 2 Under Contract No. 1/WSD/19 and 6/WSD/21, ATAL - CW - MH JV (ACMJV) is commissioned by WSD to undertake the construction of the main works while AECOM Asia Company Limited was appointed by WSD as the Engineer. For implementation of the environmental monitoring and audit (EM\&A) programme under the Contract, Acumen Environmental Engineering \& Technologies Company Limited was appointed by ACMJV as the Environmental Team (ET). AECOM Asia Company Limited was also employed by the WSD as the Independent Environmental Checker (IEC).
A. 3 The construction phase of Contract No. 3/WSD/15 commenced on 30 October 2015 for completion by 31 December 2020. The construction phase of Contract No. 1/WSD/19 commenced on 01 January 2021. The construction phase of Contract No. 6/WSD/21 commenced on 16 March 2022. The impact monitoring of the EM\&A programme, including air quality, noise, water quality monitoring as well as environmental site inspections, commenced on 17 February 2016.
A. 4 This is the $95^{\text {th }}$ monthly Environmental Monitoring and Audit Report for the Project which covers the period from 1 to 31 January 2024 (the reporting period) for Contract No. 1/WSD/19 and 6/WSD/21.
A. 5 For Contract No. 1/WSD/19, as informed by the Contractor, major activities in the reporting period included:

- Major ELS Work (S1F, S2F, Ozone Building, SWPS, RMF)
\diamond Excavation
\diamond Soil nail installation
\diamond Lagging wall construction
\diamond Strut and waling installation
\diamond Pre-loading works
\diamond Plate load tests
- Grout curtain
- WET - structure construction, top slab construction, water test
- S1F and S2F:
\diamond Formation preparation (dewatering)
\diamond Blinding construction
\diamond Drilling works for earthing rods
\diamond Structure construction
- Demolition of TWRT
- Drilling works for King Posts
- Filter bed demolition and backfilling
- King Post installation work
- Valve chamber for M1-5 water pipe diversion
- Wall A \& B construction works
- Landscape works
- Installation of under structures pipes
- Installation of temporary steel decking at S2F
- ABWF Works for 6 major buildings
- Scaffolding Works for WET ABWF \& Metal Works
- Structural Steelworks for WET
- Excavation for Stainless Steel Pipework under Structures of Six Major Buildings in Portion A
- Earthing Rod Installation (RMF, Ozone \& SWPS)
- Installation of Tower Crane
A. 6 For Contract No. 6/WSD/21, as informed by the Contractor, major activities in the reporting period included:
- Waterproofing Works
- Carry Out Excavation Down to + 23.3mPD
- Concreting for Raft Slab (LG/F Level)
- Steel Plate Welding to Sheetpile for Waterproofing Works
- Carry Out Excavation to Final Excavation Level + 21.0mPD
- MIC Installation
- Excavation to Bottom Rockfill Level \& Rockfill Replacement Work
- Town Crane installation
A. 7 Environmental monitoring activities under the EM\&A program in this reporting period are summarized below

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air	1-Hour TSP	15
Noise	$\mathrm{L}_{\text {eq(30mins) }}$ Daytime	5
Water Quality	Water Sampling	14
Inspection Audit	ET Regular Environmental Site Inspection	5
	IEC Monthly Environmental Site Audit	1

A. 8 No exceedance of air quality and noise monitoring was recorded in this reporting period. There was no exceedance in action level and no exceedance in limit level for water quality monitoring was recorded in this reporting period.
A. 9 No environmental complaint was received via EPD in this reporting period.
A. 10 No notification of any summons and successful prosecutions was received in this reporting period.
A. 11 No reporting change was made in this reporting period.
A. 12 No EPD site inspection was conducted in the reporting period.
A. 13 As informed by the Contractor, the major works for Contract No. 1/WSD/19 between February 2024 to April 2024 will be:

- Major ELS Work (S1F, S2F, Ozone Building, SWPS, RMF)
> Excavation
\diamond Soil nail installation
< Lagging wall construction
\diamond Strut and waling installation
\diamond Pre-loading works
\diamond Plate load tests
- Grout curtain
- WET - structure construction, top slab construction, water test
- S1F, S2F and TWRT:
\diamond Formation preparation (dewatering)
\diamond Blinding construction
\diamond Drilling works for earthing rods
- Demolition of TWRT
- Drilling works for King Posts
- King Post installation work
- Valve chamber for M1-5 water pipe diversion
- Wall A \& B construction works
- Fencing construction works
- Landscape works
- Installation of under structures pipes
- Installation of temporary steel decking at S2F
- ABWF Works for 6 major buildings
- Scaffolding Works for WET ABWF \& Metal Works
- Structural Steelworks for WET
- Excavation for Stainless Steel Pipework under Structures of Six Major Buildings in Portion A
- Earthing Rod Installation (RMF, Ozone \& SWPS)
- Dismantle of ELS
- Installation of Tower Crane (SWPS)
A. 14 As informed by the Contractor, the major works for Contract No. 6/WSD/21 between February 2024 to April 2024 will be:
- Waterproofing Works
- Carry Out Excavation Down to +23.3 mPD
- Concreting for Raft Slab (LG/F Level)
- Steel Plate Welding to Sheetpile for Waterproofing Works
- Carry Out Excavation to Final Excavation Level +21.0mPD
- MIC Installation
- Excavation to Bottom Rockfill Level \& Rockfill Replacement Work
- Town Crane installation
A. 15 EM\&A monitoring for the $95^{\text {th }}$ reporting period for Contract No. $1 / \mathrm{WSD} / 19$ and $6 / \mathrm{WSD} / 21$ has been completed. The $96^{\text {th }}$ monthly EM\&A report will cover the period from 1 to 29 February 2024.

1. INTRODUCTION

1.1. PROJECT BACKGROUND

1.1.1 Pursuant to the Environmental Impact Assessment (EIA) Ordinance, the Director of Environmental Protection (DEP) granted the Environmental Permit (No. EP- 494/2015) on 28 January 2015, subsequent to approval of the EIA Report (Register No. AEIAR-187/2015), to the Water Supplies Department (WSD) to construct and operate the designated project for "In-situ Reprovisioning of Sha Tin Water Treatment Works - South Works" ("The Project").
1.1.2 Under Contract No. 1/WSD/19 and 6/WSD/21, ATAL - CW - MH JV (ACMJV) and CW-FWS-JV are commissioned by WSD to undertake the construction of the main works while AECOM Asia Company Limited was appointed by WSD as the Engineer. For implementation of the environmental monitoring and audit (EM\&A) programme under the Contract, Acumen Environmental Engineering \& Technologies Company Limited was appointed by ACMJV as the Environmental Team (ET). AECOM Asia Company Limited was also employed by the WSD as the Independent Environmental Checker (IEC).
1.1.3 The construction phase of Contract No. 3/WSD/15 commenced on 30 October 2015 for completion by 31 December 2020. The construction phase of Contract No. 1/WSD/19 commenced on 01 January 2021. The construction phase of Contract No. 6/WSD/21 commenced on 16 March 2022. The general layout plan of the Contract components is presented in Appendix \mathbf{A}.
1.1.4 ET conducted below baseline monitoring at designated locations according to the EM\&A Manual. - Air quality and noise: from 21 December 2015 to 3 January 2016. - Water quality: from 15 December 2015 to 8 January 2016.
1.1.5 Baseline Monitoring Report was issued by the ET and verified by the IEC on 27 January 2016 and submitted to the EPD on 2 February 2016.
1.1.6 The impact monitoring of the EM\&A programme, including air quality, noise, water quality monitoring as well as environmental site inspections, commenced on 17 February 2016.

1.2. ORGANIZATION STRUCTURE

1.2.1 The organization structure of the Contract is shown in Appendix B. Contact details of key personnel are summarized in below table:

Table 1-1: Key Personnel Contact for Environmental Works

Party	Position	Name	Telephone
Water Supplies Department	Senior Engineer	Mr. Ng, Horace, C. K.	28295693
AECOM	Chief Resident Engineer	Mr. Ng, Derek, K. H.	97171420
	Independent Environmental Checker	Mr. Fung, Y. W.	39229366
	Deputy Independent Environmental Checker	Ms. Lam, Lemon, M. C.	39229381
	Project Manager	Mr. Leung, W. C.	37588373
	Site Agent	Ms. Cheung, S. Y.	63234716
CW-FWS JV	Construction Manager	Mr. Tung, K. M.	96804586
	Site Agent	Mr. Lee, C. M.	91484389
 Tech. Co. Ltd.	Project Director	Ir Dr. Lam, Gabriel, C. K.	23336823
	Environmental Team Leader	Mr. Wong, Vega, T. L.	61132368
	Ecologist	Mr. Wan, Jay, P. H.	23336823

1.3. SCOPE OF REPORT

1.3.1 This is the $95^{\text {th }}$ monthly EM\&A Report under the Contract No. 1/WSD/19 and 6/WSD/21 In-situ Reprovisioning of Sha Tin Water Treatment Works (South Works) - Water Treatment Works and Ancillary Facilities covering the period from 1 to 31 January 2024 (the reporting period).
1.3.2 The EM\&A requirements for impact monitoring are set out in the approved EM\&A Manual. Environmental aspects such as the construction air quality, noise, water quality and ecology were identified as the key issues during the construction phase of the Project.

1.4. SUMMARY OF CONSTRUCTION WORKS

1.4.1 The construction phase of the Contract commenced on 30 October 2015. Latest construction programmes are shown in Appendix C.
1.4.2 As informed by the Contractor, no major works for Contract No.3/WSD/15 will be conducted. The major works for Contract No. 1/WSD/19 in January 2024 are:

- Major ELS Work (S1F, S2F, Ozone Building, SWPS, RMF)
\diamond Excavation
\diamond Soil nail installation
\diamond Lagging wall construction
\diamond Strut and waling installation
\diamond Pre-loading works
\diamond Plate load tests
- Grout curtain
- WET - structure construction, top slab construction, water test
- S1F and S2F:
\diamond Formation preparation (dewatering)
\diamond Blinding construction
\diamond Drilling works for earthing rods
\diamond Structure construction
- Demolition of TWRT
- Drilling works for King Posts
- Filter bed demolition and backfilling
- King Post installation work
- Valve chamber for M1-5 water pipe diversion
- Wall A \& B construction works
- Landscape works
- Installation of under structures pipes
- Installation of temporary steel decking at S2F
- ABWF Works for 6 major buildings
- Scaffolding Works for WET ABWF \& Metal Works
- Structural Steelworks for WET
- Excavation for Stainless Steel Pipework under Structures of Six Major Buildings in Portion A
- Earthing Rod Installation (RMF, Ozone \& SWPS)
- Installation of Tower Crane
1.4.3 As informed by the Contractor, no major works for Contract No.3/WSD/15 will be conducted. The major works for Contract No. 6/WSD/21 in January 2024 are:
- Waterproofing Works
- Carry Out Excavation Down to +23.3 mPD
- Concreting for Raft Slab (LG/F Level)
- Steel Plate Welding to Sheetpile for Waterproofing Works
- MIC Installation
- Excavation to Bottom Rockfill Level \& Rockfill Replacement Work
- Town Crane installation
1.4.4 The locations of the construction activities are shown in Appendix D. The Environmental Sensitive Receivers in the vicinity of the Project are shown in Appendix E.

2. EM\&A RESULTS

2.1. EM\&A BACKGROUND

2.1.1 The EM\&A programme required environmental monitoring for air quality, noise, water quality and ecology as well as environmental site inspections for air quality, noise, water quality, waste management and ecology impacts. The EM\&A requirements and related findings for each component are summarized in the following sections. A summary of impact monitoring programme is presented in Table 2-1.

Table 2-1: Summary of Impact Monitoring Programme

Impact Monitoring	Sampling Parameter	Frequency
Air Quality	1-hour TSP	3 times in every 6 days when documented and valid complaint was received
Noise	$\mathrm{L}_{\text {eq }} 30$ min, $\mathrm{L}_{\mathrm{eq}} 5$ min, L_{10} and L_{90} as reference.	1 time per week: $\mathrm{L}_{\mathrm{eq}} 30$ min for normal weekdays from $0700-1900 ;$
Water Quality	Duplicate in-situ measurements: Dissolved Oxygen (DO), Turbidity and pH; HOKLAS-accredited laboratory analysis: Suspended Solids (SS).	3 days per week. The interval between 2 monitoring days will be more than 36 hours.
Ecology	-	A detailed at least 6 years post-planting monitoring and maintenance programme

Remark: Sampling Depth for Water Quality:

(i) 3 depths: Im below water surface, Im above bottom and at mid-depth when the water depth exceeds 6 m .
(ii) If the water depth is between $3 m$ and $6 m, 2$ depths: $1 m$ below water surface and $1 m$ above bottom.
(iii) If the water depth is less than 3m, 1 sample at mid-depth is taken
2.1.2 A summary of the monitoring parameters is presented in Table 2-2.

Table 2-2: Summary of the monitoring parameters of EM\&A Requirements

Environmental Issue	Parameter
Air Quality	- 1-hour TSP Monitoring by Real-Time Portable Dust Meter
Noise	- $\mathrm{L}_{\text {eq }}(30 \mathrm{~min})$ during normal working hours
Water Quality	In-situ measurement - Dissolved Oxygen (mg/L); - Dissolved Oxygen Saturation (\%); - Turbidity (NTU); - pH value; - Water depth (m); and - Temperature $\left({ }^{\circ} \mathrm{C}\right)$
	Laboratory analysis Suspended Solids (mg/L)

2.1.3 Summary of determination of Action/Limit (A/L) Levels for air quality, noise and water quality are presented in Appendix F.
2.1.4 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in Appendix G.
2.1.5 The impact monitoring schedules are presented in Appendix H and the monitoring results are detailed in the following sub-sections.

2.2. AIR QUALITY MONITORING

2.2.1 Impact monitoring for air quality had been carried out in accordance with Sections 2.29 of the approved EM\&A Manual to determine the ambient 1 -hour total suspended particulates (TSP) levels at the monitoring locations. 1-hour TSP sampling should be undertaken at least 3 times in every six-days at each monitoring station when the highest dust impacts are expected. General meteorological conditions (wind speed, direction and precipitation) and notes regarding any significant adjacent dust producing sources had also been recorded throughout the impact monitoring period.
2.2.2 Two (2) designated monitoring stations, AM1 located at the L Louey and AM2 located at Hin Keng Estate - Hin Wan House, were recommended in Section 2.18 of the approved EM\&A Manual. In order to identify and seek for the access of the air monitoring locations designated in the EM\&A Manual, site visit was conducted among ET, IEC and EPD.
2.2.3 During the site visit, all designated air monitoring locations were identified. Details of air monitoring stations are described in Table 2-3. The location plan of air quality monitoring stations is shown in Appendix I.

Table 2-3: Location of the Air Quality Monitoring Stations

Air Quality Monitoring Station	Air Sensitive Receiver (ASR) ID in the approved EIA Report	Dust Monitoring Station
AM1	ASR2	The L Louey (at a platform level of about 5m above road level nearby)
AM2	ASR4	Hin Keng Estate - Hin Wan House (at the roof top)

2.2.4 The monitoring equipment using for the air quality impact monitoring was proposed by ET and verified by IEC. 1-hour TSP levels had been measured with direct reading dust meter. It has been demonstrated its capability in achieving comparable results with high volume sampling method as set out in the Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50). The details of equipment using for impact monitoring are listed in Table 2-4 as below.

Table 2-4: Air Quality Impact Monitoring Equipment

Equipment	Model
Portable dust meter - 1-hour TSP	Qingdao Jingcheng Model PC-3A (E)
Portable Wind Speed Indicator	The Kestrel Pocket Weather Meter

2.2.5 The 1 -hour TSP meter provides a real time 1 -hour TSP measurement based on 90° light scattering. The 1 -hour TSP monitor consists of the following:

- A pump to draw sample aerosol through the optic chamber where TSP is measured;
- A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability;
- A built-in data logger compatible with based program to facilitate data collection, analysis and reporting.
2.2.6 The 1 -hour TSP meter was calibrated by the manufacturer prior to purchasing. Zero response of the instrument was checked before and after each monitoring event. Operation of the 1-hour TSP meter followed manufacturer's Operation and Service Manual. A valid calibration certificate is attached in Appendix J.
2.2.7 In this Reporting Period, a total of five (5) sampling days perform air quality monitoring at the two designated locations. The results for 1-hour TSP are summarized in Table 2-5 and Table 2-6.

Table 2-5: Summary of 1-hour TSP Monitoring Results - AM1

Date	Weather	1-hour TSP ($\mu \mathrm{g} / \mathrm{m}^{3}$)				
		Start Time	End Time	$1^{\text {st }}$ Measurement	$2^{\text {nd }}$ Measurement	$3^{\text {rd }}$ Measurement
3/1/2024	sunny	12:41	13:41	68	65	64
9/1/2024	fine	13:40	14:40	44	45	48
15/1/2024	sunny	09:30	10:30	41	39	31
20/1/2024	fine	13:30	14:30	25	20	23
26/1/2024	fine	09:28	10:28	31	33	25
Average				40.1		
Range				20-68		

Table 2-6: Summary of 1-hour TSP Monitoring Results - AM2

Date	Weather	1-hour TSP $\left(\boldsymbol{\mu g} / \mathbf{m}^{\mathbf{3}}\right)$				
		End Time	$\mathbf{1}^{\text {st }}$ Measurement	$\mathbf{2}^{\text {(d }}$ Measurement	$3^{\text {rd }}$ Measurement	
$3 / 1 / 2024$	sunny	$12: 45$	$13: 45$	53	61	55
$9 / 1 / 2024$	fine	$13: 44$	$14: 44$	47	48	52
$15 / 1 / 2024$	sunny	$09: 26$	$10: 26$	43	46	42
$20 / 1 / 2024$	fine	$13: 34$	$14: 34$	21	19	18
$26 / 1 / 2024$	fine	$09: 24$	$10: 24$	36	29	27
Average						
Range						

2.2.8 In this Reporting Month, all monitoring result were below the action level. Hence, no Action or Limit Level exceedance was triggered during this month. The impact air quality monitoring results and graphical presentation are shown in Appendix K.

2.3. NOISE MONITORING

2.3.1 Impact monitoring for noise levels had been measured in accordance with Sections 3.13 of approved EM\&A Manual on normal weekdays at a frequency of once a week at logging interval of 30 minutes for daytime (between 0700 and 1900 hours of normal weekdays). The $L_{e q}$ had been recorded at the specified intervals.
2.3.2 According to Section 3.7 of the approved EM\&A Manual, 3 noise sensitive receivers designated for the construction noise monitoring. The designated monitoring stations are identified and successfully granted by the premises. The details of noise monitoring stations are described in Table 2-7 and the location plan of noise monitoring stations is shown in Appendix L.

Table 2-7: Details of Noise Monitoring Stations
\(\left.\left.$$
\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { Noise } \\
\text { Monitoring } \\
\text { Station }\end{array} & \begin{array}{c}\text { Noise Sensitive Receiver } \\
\text { (NSR) ID in the approved } \\
\text { EIA Report }\end{array} & \begin{array}{c}\text { Identified Noise } \\
\text { Monitoring Station }\end{array} \\
\hline \text { NM1 } & \text { HK2 } & \begin{array}{c}\text { The L Louey (South) } \\
\text { (at a platform level of } \\
\text { about 5m above road level nearby } \\
\text { - free field measurement) }\end{array} \\
\hline \text { NM2 } & \text { HK5 } & \begin{array}{c}\text { Hin Keng Estate - } \\
\text { Hin Wan House }\end{array} \\
\text { (at the roof level - facade measurement) }\end{array}
$$ \right\rvert\, \begin{array}{c}C.U.H.K.F.A.A.

Thomas Cheung School\end{array}\right]\)| NM3 |
| :---: |
| (at the roof level - free field measurement) |

2.3.3 The monitoring equipment using for the noise impact monitoring was proposed by ET and verified by IEC. Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications has been used for carrying out the noise monitoring. The sound level meter has been checked using an acoustic calibrator. The wind speed has been checked with a portable wind speed meter capable of measuring the wind speed in m / s. The details of equipment using for impact monitoring are listed in Table 2-8 as below.

Table 2-8: Noise Impact Monitoring Equipment

Noise	Svantek 971
Sound Level Meter	Rion NL-52
Acoustic Calibrator	The Kestrel Pocket Weather Meter
Portable Wind Speed Indicator	

2.3.4 All noise measurements were the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}).
2.3.5 Prior to the impact noise measurement, the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Regular checking
was conducted in impact monitoring period. The calibration level before and after the noise measurement is agreed to within 1.0 dB .
2.3.6 An acoustic calibrator and sound level meter using impact monitoring is within the valid period and were calibrated per year. A set of valid calibration certificates is attached in Appendix \mathbf{M}.
2.3.7 Noise measurements should not be made in presence of fog, rain, wind with a steady speed exceeding $5 \mathrm{~ms}^{-1}$ or wind with gusts exceeding $10 \mathrm{~ms}^{-1}$. The wind speed was checked with a portable wind speed meter capable of measuring with speeds in ms^{-1}.
2.3.8 In this Reporting Period, a total five (5) occasions noise monitoring was undertaken in Reporting period. The noise monitoring results at the designated locations are summarized in Tables 2-9 to 2-11.

Table 2-9: Summary of Noise Monitoring Results - NM1

Date	Time		Weather	$\begin{gathered} \mathbf{1}^{\text {st }} \\ \text { Leq }_{5 \text { min }} \end{gathered}$	$\begin{gathered} \mathbf{2}^{\text {nd }} \\ \mathbf{L e q}_{5 \text { min }} \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \mathbf{L e q}_{5 \text { min }} \end{gathered}$	$\begin{gathered} 4^{\text {th }} \\ \text { Leq }_{5 \text { min }} \end{gathered}$	$\begin{gathered} 5^{\text {th }} \\ \text { Leq }_{5 \text { min }} \end{gathered}$	$\begin{gathered} \mathbf{6}^{\text {th }} \\ \text { Leq }_{5 \text { min }} \end{gathered}$	$\mathrm{Leq}_{30 \mathrm{~min}}$
3/1/2024	12:11	- 12:41	sunny	58.4	51.2	52.3	53.3	55.1	55.6	55.0
9/1/2024	13:40	- 14:10	fine	53.5	56.3	57.2	54.1	57.7	56.6	56.2
15/1/2024	10:10	- 10:40	sunny	56.4	57.6	53.3	52.6	52.9	54.1	54.9
20/1/2024	13:30	- 14:00	fine	59.4	57.8	58.3	57.7	56.2	55.0	57.6
26/1/2024	10:08	- 10:38	fine	55.8	54.3	56.5	54.9	51.5	53.2	54.7
Limit Level ${ }^{\text {P75dB(A) }}$				Average						55.8
									Range	$\begin{gathered} 54.7- \\ 57.6 \end{gathered}$

Table 2-10: Summary of Noise Monitoring Results - NM2

Date		ime		Weather	$\begin{gathered} 1^{\text {st }} \\ \mathbf{L e q}_{5 \text { min }} \end{gathered}$	$\begin{gathered} 2^{\text {nd }} \\ \mathbf{L e q}_{5 \text { min }} \\ \hline \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \mathbf{L e q}_{5 \text { min }} \end{gathered}$	$\begin{gathered} 4^{\text {th }} \\ \mathbf{L e q}_{5 \text { min }} \end{gathered}$	$\begin{gathered} 5^{\text {th }} \\ \mathbf{L e q}_{5 \text { min }} \end{gathered}$	$\begin{gathered} 6^{\text {th }} \\ \mathbf{L e q}_{5 \text { min }} \end{gathered}$	$\mathrm{Leq}_{30 \mathrm{~min}}$
3/1/2024	12:45	-	13:15	sunny	52.8	51.3	53.6	49.1	49.7	48.2	51.2
9/1/2024	14:14	-	14:44	fine	50.8	49.7	48.5	48.7	47.8	49.3	49.2
15/1/2024	10:44	-	11:14	sunny	50.3	50.8	52.9	49.5	48.1	49.2	50.4
20/1/2024	14:04	-	14:34	fine	45.3	45.8	47.5	50.7	48.1	48.9	48.1
26/1/2024	10:42	-	11:12	fine	50.3	51.2	46.2	47.5	48.7	49.4	49.2
Limit Level $>75 \mathrm{~dB}(\mathrm{~A})$					Average						49.8
					Range						$\begin{gathered} 48.1- \\ 51.2 \end{gathered}$

Table 2-11: Summary of Noise Monitoring Results - NM3

2.3.9 As shown in the results were well below the limit level, also no complaint was received by the RE, WSD, EPD and contractor. Hence, no Action or Limit Level exceedance was triggered during this month. The impact noise quality monitoring results and graphical presentation are shown in Appendix N.

2.4. WATER QUALITY MONITORING

2.4.1 Water Impact monitoring had been taken three days per week with sampling or measurement in accordance with Sections 4.12 of the approved EM\&A Manual at all designated monitoring stations in the 2 water courses. The interval between 2 sets of monitoring had been more than 36 hours. Replicate in-situ measures had been carried out in each sampling event.
2.4.2 Three (3) control and two (2) impact stations were recommended in the Section 4.7 of the approved EM\&A Manual to carry out water quality monitoring. In order to identify and seek for the access of the water monitoring locations designated in the approved EM\&A Manual, site visit was conducted among ET, IEC and Environmental Protection Department (EPD).
2.4.3 During the site visit, all designated monitoring locations were identified however one more impact stations (M3) along the same water course was introduced due to the concern on multiple site effect, in particular to address the potential impact to M2 from a source at upstream of the water course. Details and coordinates of the monitoring stations are described in Table 2-12 and the location plan of water quality monitoring stations is shown in Appendix 0.

Table 2-12: Details of Water Quality Monitoring Station

Water Quality Monitoring Station	Description	Co-ordinates	
		Easting	Northing
C1	Control Stations	835110	824716
C2		835403	824470
C3		835642	824386
M1	Impact Monitoring Stations	835215	824827
M2		835536	824775
M3		835501	824648

2.4.4 The water monitoring equipment and analysis using for the water quality monitoring were proposed by ET and verified by IEC. The details of equipment using for impact monitoring are listed in the Table 213 below:

Table 2-13: Monitoring Equipment Used in Impact Monitoring Program

Water quality	
Horiba Multi Water Quality Checker U-53	
Thermometer \& DO meter	The instrument is a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment is capable of measuring as included a DO level in the range of 0-20mg/L and 0-200\% saturation; and a temperature of 0-45 0
pH meter	The instrument consists of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It is readable to 0.1 pH in range of 0 to 14.
Turbidmeter	The instrument is a portable and weatherproof turbidity measuring instrument using a DC power source. It has a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
Laboratory Analysis	HOKLAS-accredited laboratory (Acumen Laboratory and Testing Simited)

Remark:

(i) Water samples for suspended solids (SS) have been stored in high density polythene bottles with no preservative added, packed in ice (cooled to $4^{\circ} \mathrm{C}$ without being frozen).
2.4.5 Before the commencement of the sampling, general information such as the date and time of sampling as well as the personnel responsible for monitoring were recorded on the monitoring field data sheet.
2.4.6 Water temperature, turbidity, DO, pH and water depth were measured in-situ. Since water depths at C1, C 2 , M1, M2 and M3 were less than 3 m , all in-situ measurements and sampling conducted at one water depth such as mid-depth are performed. Moreover, C3 was recorded dry throughout the sampling period. Therefore, in-situ measurements and sampling could not be conducted at C 3 in accordance with the water monitoring requirements in the approved EM\&A Manual.
2.4.7 At each sampling point, (two) 2 consecutive measurements of temperature, DO, turbidity and pH were measured. The Multi-Parameter Water Quality Monitoring Probe were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken. The certification of the Multiparameter Water Quality Monitoring System is showed in Appendix P.
2.4.8 All water samples were delivered to the Acumen Laboratory and Testing Limited (HOKLAS registration no.: 241). SS testing was used HOKLAS accredited Analytical method APHA 2540 D. The certification of laboratory with HOKLAS accredited analytical tests are provided in Appendix Q.
2.4.9 In this reporting period, a total of fourteen (14) sampling days perform water monitoring at the six designated locations. Monitoring results of 4 key parameters: dissolved oxygen (DO), turbidity, suspended solids and pH in this Reporting Months, are summarized in Table 2-14.

Table 2-14: Summary of Water Quality Monitoring Results

Dissolved Oxygen - Mid Depth (mg/L)	$\mathbf{C 1}$	C2	C3	M1	M2	M3
Average	10.21	10.58	N/A	11.42	10.80	11.17
Min.	9.12	9.51	N/A	10.02	10.04	10.00
Max.	10.92	12.95	N/A	14.09	13.26	13.44
Turbidity - Mid Depth (NTU)	$\mathbf{C 1}$	C2	C3	M1	M2	M3
Average	0.00	0.00	N/A	0.00	0.00	0.00
Min.	0.00	0.00	N/A	0.00	0.00	0.00
Max.	0.00	0.00	N/A	0.00	0.00	0.00
Suspended Solid - Mid depth (mg/L)	$\mathbf{C 1}$	$\mathbf{C 2}$	C3	M1	M2	M3
Average	1.27	1.49	N/A	1.25	1.15	1.08
Min.	<1	<1	N/A	<1	<1	<1
Max.	2.90	$\mathbf{4 . 4 0}$	N/A	2.60	3.10	1.80
pH value (unit)	$\mathbf{C 1}$	$\mathbf{C 2}$	C3	M1	M2	M3
Average	7.14	7.12	N/A	7.33	7.30	7.26
Min.	6.63	6.66	N/A	6.73	7.02	7.01
Max	7.69	7.66	N/A	7.75	8.03	7.72

Remark 1: Suspended solid values that are <1 is assumed to be 1 during calculation.
Remark 2: Underlined values indicated exceedance of limit level.
Remark 3: Bold values indicated exceedance of action level.
Remark 4: Details of exceedance of action level, please refer to appendix R.
2.4.10 In this reporting month, most of the monitoring results were below or within the action level. There was 1 exceedance of action level and 1 exceedance of limit level in the reporting period, all was found nonproject related. Detailed monitoring results including in-situ measurements, laboratory analysis data are shown in Appendix R.
2.4.11 Investigation report for the exceedance of water quality in January 2024 are supplemented in Appendix V.

2.5. ECOLOGY

2.5.1 The condition of TA572 was observed in fair health despite in poor form. TA327 was in fair condition; while already dead TA326 collapsed under Signal No. 10 typhoon Mangkhut in September 2018. Tree guying cables have been installed to provide external support to the two remaining transplanted trees. Climbing vines on TA327 should be removed, including the roots, to reduce rapid colonization covering the canopy.
2.5.2 Compensatory planting of TA326 has been completed on 25 March 2020 by planting two Syzygium levinei and one Schefflera heptaphylla. However, the two native Syzygium levinei were mis-planted by two exotic Syzygium jambos, which has been replaced by another native tree species Celtis sinensis on 31 May 2021. Climbing vines on one of the Celtis sinensis should be removed, including the roots, to reduce rapid colonization covering the canopy.
2.5.3 Desmos chinensis has been finalized as the candidate to compensate the loss of Artabotrys hongkongensis. Two individuals were planted at Wall C in STWTW on 1 April 2021.
2.5.4 New small sprouts keep emerging from the two Desmos chinensis that have been reported dead previously. Construction materials was also found too close to the planter. An eye-catching protective fence shall be set up as a protection zone. No construction materials shall be placed near/ within the protection zone.
2.5.5 In order to enhance a sustainable survival during the post-transplantation stage, a shelter (such as shading net) has been installed to reduce intensity of direct sunlight received and avoid direct hit of rainstorm/ typhoon to the 27 nos. Cibotium barometz at Portion E of STSFWSR.
2.5.6 Weeding by hand held tools within protection zone of Cibotium barometz is urgently needed.
2.5.7 Root ball of TA572 and TA327 tree should be kept moisture especially during dry and non-raining day.
2.5.8 Signs of ploughed soil by wild boar(s) at the two groups of transplanted Cibotium barometz were reported in previous monitoring. A robust fencing was recently installed to protect the group of Cibotium barometz from further damage caused by wild boars.
2.5.9 Given that leftover/ garbage was observed nearby, illegal feeding of wild pigs or other wild animals was also suspected to occur. Warning signs of illegal feeding and plant protection zone may be put along the receptor site to remind the hikers. Reporting the case to the relevant government department, i.e. AFCD, is suggested to prevent further aggregation of wild boars in the area.

2.6. Waste Management Status

2.6.1 The Contractor has submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting. The Waste Producer Number to the Contractor is assigned in respect of the project site.
2.6.2 Wastes generated during this reporting period include mainly construction wastes (inert and non-inert). Waste flow table was prepared by the Contractor to record amount of waste generated and disposed (Appendix T).
2.6.3 The Contractor was advised to properly maintain on site C\&D materials and waste collection, sorting and recording system, dispose of $\mathrm{C} \& \mathrm{D}$ materials and wastes at designated ground and maximize reuse/ recycle of $\mathrm{C} \& \mathrm{D}$ materials and wastes.
2.6.4 The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly. For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

Water Supplies Department
In-situ Reprovisioning of Sha Tin Water Treatment Works - South Works
Monthly EM\&A Report (No.95)

2.7. DELIVERY, STORAGE AND HANDLING OF CHLORINE

2.7.1 Chlorine is delivered to Sha Tin WTW in batches of up to 6×1-tonne drums. The transport route from Sham Shui Kok dock on North Lantau is shown in Figure 1. The route passes along the North Lantau Expressway, around the northern edge of Tsing Yi, through Tsuen Wan and along Tai Po Road (Piper's Hill) to Sha Tin (Table 2-15).

Figure 1: Chlorine Transport Route to Sha Tin Water Treatment Works

Table 2-15: Chlorine Truck Transport Route

Destination	Route
From SSK	Sham Shui Kok Dock > Cheung Tung Road > Sunny Bay Road > N Lantau Highway
Dock to Sha	$>$ Lantau Link > NW Tsing Yi Interchange > Tsing Yi North Costal road > Tsing
Tin WTW	Tsuen Road > Tsuen Wan Road > Kwai Chung Road > Ching Cheung Road > Tai Po Road > Tai Po Road (Piper’s Hill) > Tai Po Road (Sha Tin Heights) > Tai Po Road > Tsing Sha Highway (Sha Tin) > Tai Po Rd (Sha Tin) > Sha Tin Rural Committee Rd > Tai Chung Kiu Rd > Che Kung Miu Road > Sha Tin WTW

2.7.2 Unloading takes place inside the Chlorination House, with the doors closed, in a designated truck unloading bay. The movement of drums within the storage area and 'drive-through' unloading bay is carried out using a hoist/monorail system with a purpose-built lifting beam. Prior to usage, the drums are stored on cradles within the chlorine storage area.
2.7.3 The on-site chlorine delivery route is shown in Figure 2.

Figure 2: Chlorine Delivery Route at Sha Tin WTW

2.7.4 An emergency chlorine scrubbing system is installed to remove any leaked chlorine in the chlorine handling and storage areas. The system is a packed tower utilising sodium hydroxide as the neutralising agent. The plant and equipment are installed in a separate scrubber room.
2.7.5 On detection of chlorine at a concentration of 3 ppm or above in the chlorine handling or storage areas, the scrubbing system will activate automatically. The air/chlorine mixture in the affected areas is drawn into the scrubber by the scrubber fan via ducting connected to the normal ventilation system. An electrically-operated isolating damper is provided in the scrubber intake which opens automatically when the scrubber fan starts up.
2.7.6 The scrubber system is normally set at auto standby mode and is activated if the chlorine concentration rises above 3 ppm . A continuous chlorine monitor is installed at a point downstream of the packed tower
and upstream of the vent/recycle changeover dampers to monitor the scrubber performance; a "Chlorine concentration high" alarm will be initiated if the concentration of chlorine in the tower exhaust exceeds the preset value.
2.7.7 According to the Fire Services Department's fire safety requirements, an emergency repair/stoppage kit for chlorine spillage/leakage is provided and maintained in good working condition at all times for use by the trained persons and stowed adjacent to but outside the store/plant room. Regular drills are conducted to train personnel on the proper use of the breathing apparatus and protective clothing.
2.7.8 A Hazard Assessment of the risks associated with the storage, handling and transport of chlorine at Sha Tin WTW and the off-site transport of chlorine for the Construction and Operational Phases of the reprovisioning project has been conducted in the approved EIA Report (Register No. AEIAR-187/2015).
2.7.9 This In-situ Reprovisioning of Sha Tin WTW is an improvement project, following its completion the chlorine-related risks levels to the general public will be lowered due to the anticipated reduction of the chlorine storage and usage levels.
2.7.10 Implementation of the recommended mitigation measures would be regularly audited. No specific Environmental Monitoring would be required.

2.8. EM\&A SITE INSPECTION

2.8.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting period, contract No. 1/WSD/19 were five (5) site inspections carried out on 3, 9, 17, 25 and 29 January 2024. Contract No. 6/WSD/21 were five (5) site inspections carried out on 3, 9, 17, 24 and 29 January 2024.
2.8.2 One joint site inspection with IEC also undertaken on 29 January 2024. Minor deficiencies were observed during weekly site inspection or joint site inspection. Key observations during the site inspections are summarized in Table 2-16 (a) and Table 2-16 (b).

Table 2-16 (a): Site Observations (1/WSD/19)

Date	Environmental Observations	Follow-up Status
3 January 2024	No environmental issue was observed during the site inspection.	N/A
9 January 2024	No environmental issue was observed during the site inspection.	N/A
17 January 2024	No environmental issue was observed during the site inspection.	N/A
25 January 2024	No environmental issue was observed during the site inspection.	N/A
29 January 2024	No environmental issue was observed during the site inspection.	N/A

Table 2-16 (b): Site Observations (6/WSD/21)

Date	Environmental Observations	Follow-up Status
3 January 2024	1. It is observed that water accumulation in the site area. Contractor reminded to clear it. 2. It is observed that general waste in the site area. Contractor reminded to clear it	1. Water accumulation has been cleaned it. 2. General waste has been cleaned it
9 January 2024	No environmental issue was observed during the site inspection.	N/A
17 January 2024	It is observed that uncovered chemical waste in the office area. Contractor reminded to cover chemical waste.	Chemical waste has been covered tit.
24 January 2024	No environmental issue was observed during the site inspection.	N/A
29 January 2024	No environmental issue was observed during the site inspection.	N/A

2.8.3 The Contractor has rectified all the observations identified during environmental site inspections in the reporting period.
\$ Water Supplies Department
In-situ Reprovisioning of Sha Tin Water Treatment Works - South Works
Monthly EM\&A Report (No.95)

2.9. ENVIRONMENTAL LICENSES AND PERMITS

2.9.1 The status of environmental license and permit is summarized in Table 2-17 (a) and Table 2-17 (b) below:

Table 2-17(a): Summary of Environmental License and Permit (1/WSD/19)

License / Permit	License / Permit No.	Date of Issue	Date of Expiry	License / Permit Holder	Remark
Environmental Permit	EP- 494/2015	$28 / 01 / 2015$	N/A	WSD	
Notification of Construction Works under the Air Pollution Control (Construction Dust) Regulation (Form NA)	Reference No: 458807	$10 / 8 / 2020$	N/A	ACMJV	
Registration of Chemical Waste Producer	WPN5296-759- A3012-01	$28 / 09 / 2020$	N/A	ACMJV	
Trip Ticket (Chit) Account	7038091	$26 / 8 / 2020$	N/A	ACMJV	
Waste Water Discharge Licence	WT00037213- 2020	$19 / 1 / 2021$	$31 / 1 / 2026$	ACMJV	
Notification of Commencement of Asbestos Abatement Work	AX210503	$30 / 8 / 2021$	N/A	ACMJV	
Construction Noise Permit	GW-RN1335-23	$16 / 12 / 2023$	15/03/2024	ACMJV	

Table 2-17(b): Summary of Environmental License and Permit (6/WSD/21)

License / Permit	License / Permit No.	Date of Issue	Date of Expiry	License / Permit Holder	Remark
Notification of Construction Works under the Air Pollution Control (Construction Dust) Regulation (Form NA)	Reference No: 474147	$24 / 11 / 2021$	N/A	ACMJV	
Registration of Chemical Waste Producer	WPN5218-759- C4678-01	$5 / 1 / 2022$	N/A	ACMJV	
Trip Ticket (Chit) Account	7042460	$8 / 12 / 2021$	N/A	ACMJV	
Waste Water Discharge Licence	WT00040939- 2022	$11 / 5 / 2022$	$31 / 5 / 2027$	ACMJV	
Construction Noise Permit	GW-RN1303-23	$5 / 12 / 2023$	$4 / 3 / 2024$	ACMJV	

2.10. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

2.10.1 In response to the site audit findings, the Contractors carried out corrective actions. A summary of the environmental mitigation measures implemented by the Contractor in this Reporting Period are summarized in Table 2-18.
2.10.2 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (EMIS) in the approved EM\&A Manual covered the issues of dust, noise, water and waste and they are showed Appendix U.

Table 2-18: Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Air Quality	Tarpaulin covering of any dusty materials on a vehicle leaving the site; Imposition of speed controls for vehicles on site haul roads; Use of regular watering to reduce dust emissions from exposed site surfaces and roads; Side enclosure and covering of any aggregate or stockpiling of dusty materials to reduce emissions; Where possible, routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs.
Noise	- Good site practices to limit noise emissions at the sources; Use of quite plant and working methods; Use of site hoarding or other mass materials as noise barrier to screen noise at ground level of NSRs; Scheduling of construction works outside school examination period in critical area.
Water	- Drainage systems were regularly and adequately maintained; - Effluent discharged from the construction site should comply with standards stipulated in the TM-DSS; - Open stockpiles of construction materials on sites should be covered.
General	The site was generally kept tidy and clean.

2.10.3 The necessary mitigation measures were implemented properly for this Contract.

2.11. SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

2.11.1 Results for 1-hour TSP and noise monitoring complied with the Action/ Limit levels in the reporting period. Results for water quality monitoring mostly complied with the Action/ Limit levels in the reporting period.
2.11.2 Cumulative statistics on exceedances is provided in Appendix V.

2.12. SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTIONS

2.12.1 The Environmental Complaint Handling Procedure is shown in below table:

Table 2-19: Environmental Complaint Handling Procedure

2.12.2 No environmental complaint was received in the reporting period.
2.12.3 No notification of summons and prosecution was received in the reporting period.
2.12.4 No EPD site inspection was conducted in the reporting period.
2.12.5 Statistics on complaints, notifications of summons and successful prosecutions are summarized in Appendix V.

2.13. DATA MANAGEMENT AND DATA QA/QC CONTROL

2.13.1 The impact monitoring data were handled by ET's in-house data recording and management system.
2.13.2 The monitoring data recorded in the equipment were downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data were input into computerized database properly. The laboratory results were input directly into the computerized database and checked by personnel other than those who had input the data.
2.13.3 For monitoring parameters that require laboratory analysis, the local laboratory had followed the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory testing.
3. FUTURE KEY ISSUES

3.1. CONSTRUCTION PROGRAMME FOR THE COMING MONTHS

3.1.1 As informed by the Contractor, the major works for Contract No. 1/WSD/19 between February 2024 to April 2024 will be:

- Major ELS Work (S1F, S2F, Ozone Building, SWPS, RMF)
\diamond Excavation
\diamond Soil nail installation
\diamond Lagging wall construction
\diamond Strut and waling installation
\diamond Pre-loading works
\diamond Plate load tests
- Grout curtain
- WET - structure construction, top slab construction, water test
- S1F, S2F and SWPS:
\diamond Formation preparation (dewatering)
\diamond Blinding construction
\diamond Drilling works for earthing rods
\diamond Structure construction
- Demolition of TWRT
- Drilling works for King Posts
- Filter bed demolition and backfilling
- King Post installation work
- Valve chamber for M1-5 water pipe diversion
- Wall A \& B construction works
- Fencing construction works
- Landscape works
- Installation of under structures pipes
- Installation of temporary steel decking at S2F
- ABWF Works for 6 major buildings
- Scaffolding Works for WET ABWF \& Metal Works
- Structural Steelworks for WET
- Excavation for Stainless Steel Pipework under Structures of Six Major Buildings in Portion A
- Earthing Rod Installation (RMF, Ozone \& SWPS)
- Dismantle of ELS
- Installation of Tower Crane (SWPS)
3.1.2 As informed by the Contractor, the major works for Contract No. 6/WSD/21 between February 2024 to April 2024 will be:
- Waterproofing Works
- Carry Out Excavation Down to +23.3mPD
- Concreting for Raft Slab (LG/F Level)
- Steel Plate Welding to Sheetpile for Waterproofing Works
- Carry Out Excavation to Final Excavation Level +21.0mPD
- MIC Installation
- Excavation to Bottom Rockfill Level \& Rockfill Replacement Work
- Town Crane installation

3.2. KEY ISSUES FOR COMING MONTH

3.2.1 Potential environmental impacts arising from the above upcoming construction activities in January 2024 are mainly associated with dust, noise, water quality issues and waste management issues.
3.2.2 The tentative monitoring schedule for February 2024 to April 2024 can be found in Appendix W.
4. CONCLUSIONS AND RECOMMENDATIONS

4.1. SUMMARY

4.1.1 Air quality (1-hour TSP), noise, water quality and ecology impact monitoring were carried out in the reporting period. Most of the monitoring results are satisfactory, there was 1 exceedance of action level and 1 exceedance of limit level for water monitoring results in the reporting month was found and NOE and Investigation Report was therefore issued.
4.1.2 Five (5 nos.) environmental site inspections were conducted during the reporting period. Joint site inspection with IEC were carried out on 29 January 2024. Minor deficiencies were observed during site inspection and were rectified within the specified deadlines. The environmental performance of the Project was therefore considered satisfactory.
4.1.3 To control the site performance on waste management, the contractor shall ensure that all solid and liquid waste management works are fully in compliance with the relevant license/permit requirements, such as the effluent discharge licence and the chemical waste producer registration. Contractor is also reminded to implement the recommended environmental mitigation measures according to the Environmental Monitoring and Audit Manual.
4.1.4 No Environmental complaint was received in reporting period.
4.1.5 No notification of summons or prosecution was received since commencement of the Contract.
4.1.6 The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Appendix A

General Layout Plan

Appendix B

Project Organization

In-situ Reprovisioning of Sha Tin Water Treatment Works (South Works)

- Water Treatment Works and Ancillary Facilities

Environmental Organizational Chart
Date: 31 Mar 2023

Contract No. 6/WSD/21

In-situ Reprovisioning of Sha Tin Water Treatment Works (South Works)

- Administration Building

Environmental Organizational Chart (2023.03)

Appendix C
 Latest Construction Programme

	Activy Nane
WSD．P－20	Sub－Contract for FS Instalataion Works of Administration Building
WSD．P－21	Sub－Contract for ABWF \＆Fit－ut Works of Administration Building
WSD．P－22	Sub－Contract for Cladding Installation Works of Administration Buile
WSD．P－23	Sub－Contract for Green Roof \＆Landscaping Works
WSD．P－24	Sub－Contract for Irigation System
WSD－P－25	Sub－Contract for Lit listallation
WSD．P－26	Sub－Contract for Structure Works of Elevated Walkway
WSD．P－27	Sub－Contract for ABWF，Fititing Out，ERM Works of Elevated Wa

 ug－22 $7 \mathrm{~d} / \mathrm{w} \times 10$ 60 16－Apr22 14
 60 16－Apr－22 \quad 14－Jun－22 74803 03－May－24 $\begin{array}{llllll}01-\mathrm{Jul}-24 & 7 d / w \times 10\end{array}$ $60 \quad$ 15－Feb－22 $\quad 15$－Ap－－22 $\begin{array}{llllll}557 & 26-A u g-23 & 24-O C t-23 & 7 d / w \times 10\end{array}$ 60 08－Apr－22 $\quad 06-\mathrm{Jun}-22 \quad 63 \quad 10-\mathrm{Jun}-22 \quad 08-\mathrm{Aug}-22 \quad 7 \mathrm{~d} / \mathrm{w} \times 10$ 60 05－OCl－22 $\quad 03-$ Dec－22 $\quad 63 \quad 07$ 07－Dec－22 $\quad 04-$－eb－23 $\quad 7 \mathrm{dd} / \mathrm{w} \times 10$
 $\begin{array}{lllllll}258 & 16-A p p-22 & 29-D e c-22 & 271 & 12-\mathrm{Jan}-23 & 26-\mathrm{Sep}-23 & 7 \mathrm{dd} / \mathrm{w} \times 10\end{array}$ $90 \quad$ 16－Apr－22 \quad 14－Jul－22 27112 12－Jan－23 $\begin{array}{llll}\text { 11－Apr－23 } & 7 d / w \times 10\end{array}$ $90 \quad$ 15－Jul－22 12 12－Oct－22 2711 12－Apr－23 \quad 10－Jul－23 7 7d／w x10 $50 \quad$ 13－Oct－22 $\quad 01$－Dec－22 27111 11－Jul－23 $\quad 29-\mathrm{Aug}-23 \quad 7 \mathrm{7d} / \mathrm{w} \times 10$ 28 02－Dec－22 $29-$ Dec－22 2713 30－Aug－23 26 26－Sep－23 $7 \mathrm{7d} / \mathrm{w} \times 10$ 295 16－Apr－22 $\quad 04$－Feb－23 $557 \begin{array}{lllll}55 & 25-\mathrm{Oct}-23 & 14-\mathrm{Aug}-24 & 7 d / w \times 10\end{array}$ 295 16－Apr－22 04 04－eb－23 557 25－OOt－23 14 14Aug－24 $7 \mathrm{Td} / \mathrm{wx}$ 50 16－Ap－22 $14 \mathrm{JJ}-22$ 55
 160 29－Aug－22 $\quad 04$－Feb－23 5570870 88 14－Feb－22 12 －May－22 25 11－Mar－22 06 －Jun－22 $7 \mathrm{7d} / \mathrm{wx} \times 10$ 28 14－Feb－22 13 －Mar－22 25 11－Mar－22 07 07－Ap－22 7 7d／w x10 60 14－Mar－22 $\begin{array}{lllllll}\text { 12－May－22 } & 25 & 08-\text { Apr－22 } & 06-\text { Uun－22 } & 7 d / w \times 10\end{array}$ $88 \quad$ 14－Feb－22 \quad 12－May－22 $\quad 71 \quad$ 26－Apr－22 $\quad 22$－Ju－22 $\quad 7 \mathrm{dd} / \mathrm{w} \times 10$ $\begin{array}{lllllll}28 & \text { 14－Feb－22 } & \text { 13－Mar－22 } & 71 & 26-\mathrm{Apr}-22 & \text { 23－May－22 } & 7 \mathrm{dd} / \mathrm{w} \times 10\end{array}$ 60 14－Mar－22 $\begin{array}{lllllll}\text { 12－May－22 } & 71 & \text { 24－May－22 } & 22-\mathrm{Jul}-22 & 7 \mathrm{dd} / \mathrm{w} \times 10\end{array}$ 88 14－Feb－22 12－May－22 209 11－Sep－22 07－Dec－22 7 7dw x10 28 14－Feb－22 13 －Mar－22 209 11－Sep－22 08 －Oct－22 $7 d / w \times 10$ 60 14－Mar－22 \quad 12－May－22 209 09－0ct－22 $\quad 07$ 07－Dec－22 $7 \mathrm{7d} / \mathrm{w} \times 10$ 88 14－Feb－22 \quad 12－May－22 209 11－Sep－22 07 07－Dec－22 $7 \mathrm{7d} / \mathrm{w} \times 10$ 28 14－Feb－22 $13 \mathrm{Mar-22} 209$ 11－Sep－22 60 14－Mar－22 $\begin{array}{lllllll}\text { 12－May－22 } & 209 & 09-0 \mathrm{Oc}-22 & 07-\text { Dec－22 } & 7 \mathrm{dd} / \mathrm{w} \times 10\end{array}$

 210 15－Feb－22 12 －Sep－22 88 14－May－22 09 09－Dec－22 $7 d / w \times 10$ 60 15－Feb－22＊ 15 15－Apr－22 88 14－May－22 12 －Jul－22 $\quad 7 \mathrm{ddw} \times 10$ $90 \quad$ 16－Apr－22 \quad 14－Jul－22 88 13－Jul－22 $\quad 10-\mathrm{Oct}-22 \quad 7 \mathrm{dd} / \mathrm{wx} \times 10$ $90 \quad$ 16－Apr－22 $\quad 14-\mathrm{Jul}-22 \quad 88$ 13－Jul－22 $\quad 10-0 \mathrm{Oc}-22 \quad 7 \mathrm{dd} / \mathrm{w} \times 10$ 60 15－Jul－22 $\quad 12$－Sep－22 88 11－Oct－22 $\quad 09-\mathrm{Dec}-22 \quad 7 \mathrm{~d} / \mathrm{w} \times 10$
 60 07－Feb－22 $\quad 07$－Apr－22 $\quad 0 \quad 07$ 07－eb－22 $\quad 07$－Apr－22 $7 \mathrm{7d} / \mathrm{w} \times 10$ 60 08－Apr－22 06 －Jun－22 0008 08－Apr－22 $\quad 06-\mathrm{Jun}-22 \quad 7 \mathrm{ddw} \times 10$ 60 07－Feb－22 07 07－Ap－22 25 04－Mar－22 02 02－May－22 7dww 10 60 08－Apr－22 $\quad 06-\mathrm{Jn}-222^{25} \quad 03-\mathrm{May}-22 \quad 01-\mathrm{Jul}-22 \quad 7 \mathrm{~d} / \mathrm{w} \times 10$ 60 08－Apr－22 $\quad 06-$－un－22 $\quad 63 \quad 10-\mathrm{Jun}-22 \quad 08$ 08－Aug－22 $\quad 7 \mathrm{dd} w \times 10$
 60 07－Jun－22 05 －Aug－22 249 11－Feb－23 \quad 11－Ap－－23 $\quad 7 \mathrm{~d} / \mathrm{w} \times 10$ 90 06－Aug－22 03－Nov－22 249 12－Apr－23 $\quad 10-\mathrm{Jul}-23 \quad 7 \mathrm{7dw} \times 10$ 60 05－Sep－22 03 －Nov－22 583 10－Apr－24 $\quad 08$－Jun－24 $\quad 7 \mathrm{7dw}$ x10

60 07－Jnn－22 $\quad 05-$ Aug－22 $\quad 470 \quad$ 20－Sep－23 $\quad 18$－Nov－23 $\quad 7 \mathrm{7d} / \mathrm{w} \times 10$

Subb－Contract for ir ingation System
\square Subi．Contract for tifit ins indalation

$\underset{\square}{\square}$
Gass Fabicication \＆Deliven fo Probotype Deno

口 Perfómance Test of p Prototityo

Maderial Submissionz Apprová
\square Mateñal Procuriement \＆Defiven

Mateina frocuitemeñ \& Detiven

प Mäterial Submission \＆Approval
\square Material Procurement \＆Detivéy

 \square Mâtenal Procurement $\begin{gathered}\text { Defliven }\end{gathered}$

$$
\square \text { Sübmis sion \& Approval oro vic Déaitis (DDAA) }
$$

\square Submisisson Q Approval for BS／／SS／Secuinty＇Desigin of Adminilisfration Buibiding（Alp）

\square submisson \＆Appovalifor Dangetious Goodes stores：（DDA
\square submission \＆Appowal for Mailiand East Regiona L Laboratoty A Aip）

	Date	Revision	Checked	Approved
	03－Nov－21	Revision 0 First Issue	AH	WJ
俊 和	19－Jan－22	Revision 1 First Issue	PF	AH
Chun Wo	08－Feb－22	Revision 2 First Issue		

Dur	Start	Frish	Total Foat	Late Start	Late FFish	$\begin{aligned} & \text { Working } \\ & \text { Calendar } \end{aligned}$
90	06-Aug-22	03-Nov-22	470	19-Nov-23	16-Feb-24	7dwx

100	03-an-23	12-Apr-23	267	27-Sep-23	04-Jan-24
60	7dw w 10				
6 -Apr-23	11-Jun-23	267	05-Jan-24	04-Mar-24	$7 \mathrm{dd} w \times 10$

 360 08-Apr-22 02 O2-Apr-23 63 10-Jun-22 $04-\mathrm{Jun}-23$ 7dww $\times 10$ $60 \quad 08-$ Apr-22 $\quad 06-\mathrm{Jun}-22 \quad 6310-\mathrm{Jun}-22 \quad 08-\mathrm{Aug}-22 \quad 7 \mathrm{dd} w \times 10$ $120 \quad 07-\mathrm{Jun}-22 \quad 04-0 \mathrm{Oct}-22 \quad 63$ 09-Aug-22 $\quad 06$-Dec-22 $7 \mathrm{7d} / \mathrm{w} \times 10$ 60 05-Oct-22 $\begin{array}{llllll}03-\text {-ec-22 } & 63 & 07-\text { Dec-22 } & 04-\text {-eb- } 23 & 7 d \mathrm{~d} w 10\end{array}$ 120 04-Dec-22 02 02-Ap-23 63 05-Feb-23 04 04-Jun-23 7 7dw x10 592 15-Feb-22 $29-$ Sep-23 24405 05-Jun-23 30 -May-24 7 ddw x10 $60 \quad 03$-Apr-23 $\quad 01-\mathrm{Jn}-23 \quad 63 \quad 05-\mathrm{Jun}-23 \quad 03-\mathrm{Aug}-23 \quad 7 \mathrm{~d} / \mathrm{w} \times 10$ 20 02-Jun-23 20-See 23 63 04Au 23 01- 23 21 15-Feb-22 $\quad 07-$ Mar-22 $\quad 725 \quad 10$-Feb-24 $\quad 01$-Mar-24 $78 / \mathrm{d} / \mathrm{x} \times 10$ $90 \quad 08-M a r-22 \quad 05-J n-22 \quad 725 \quad 02-M a r-24 \quad 30-M a y-24 ~ 7 d / w \times 10$

 08-Apr-22 $024 \mathrm{Ap}-23$ $\begin{array}{llllllll}180 & 07-J u l-22 & 02-J a n-23 & 249 & 13-M a r-23 & 08-S e p-23 & 7 d / w \times 10\end{array}$ $90 \quad 03-J a n-23 \quad 02-A p r-23 \quad 63 \quad 07-M a r-23 \quad 04-J u n-23 \quad 7 d w \times 10$ $\begin{array}{lllllll}180 & 08-\text {-ap-22 } & 04-\text {-ct-22 } & 857 & 12 \text {-Aug-24 } & 07-\text { Feb-25 } & 7 d \mathrm{~d} / \mathrm{w} \times 10\end{array}$ 120 17-Nov-21 16 16-Mar-22 $54 \begin{array}{llllll}545 & \text { 16-May-23 } & \text { 12-Sep-23 } & 7 d / w \times 10\end{array}$
$\begin{array}{lllllll}120 & 17-\text {-Nov-21 } & 16-\text { Mar-22 } & 545 & 16-M a y-23 & 12-S e p-23 & 7 d / w \times 10\end{array}$

$\begin{array}{llllll}575 & \text { 17--Feb-22 } & \text { 12-ASp-23 } & 961 & 120 \text {-May-22 } & 30 \text {-Apr-26 }\end{array}$

$\begin{array}{llllllll}120 & 26-\text { Feb-22 } & 25-\mathrm{Jun}-22 & 1040 & 01-\mathrm{Jan}-25 & 30-\mathrm{Apr}-25 & 7 \mathrm{~d} / \mathrm{w} \times 1\end{array}$

12 15-Feb-22 28 28-eb-22 68 12-May-22 25 -May-22 $6 d / w \times 10$ 24 01-Mar-22 28 28-Mar-22 68 26-May-22 23 2-Jun-22 60 d/w x10 12 07-Jun-22 20 -Jun-22 1159 17-Apr-26 $\quad 30$-Apr-26 6 6dw x10 $365 \quad$ 13-Sep-22 12 12-Sep-23 542 10-Dec-22 $\quad 07$ 0-Mar-25 30 13-Sep-22 $\begin{array}{llllll}12-O c t-22 & 88 & 10-D e c-22 & 08-\operatorname{Jan}-23 & 7 d / w \times 10\end{array}$ 60 13-Oct-22 \quad 11-Dec-22 88 09-Jan-23 0090 35 12-Dec-22 15 15-Jan-23 88 10-Mar-23 | $13-A p-23$ | $7 d / w \times 10$ |
| :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll} & 09-J a n-23 & 16-J a n-23 & 133 & 23-J u n-23 & 30-J u n-23 & 6 d / w \times 10\end{array}$ $35 \quad$ 16-Jan-23 $\begin{array}{lllllll}19-\text {-eb-23 } & 88 & 14-A p r-23 & 18-\text { May- } 23 & 7 d / w \times 10\end{array}$ $8 \quad$ 11-Feb-23 $\quad 20-$ Feb-23 $\quad 116$ $35 \quad$ 20-Feb-23 $\quad 26$-Mar-23 $\quad 88$ 19-May-23 22 22-Jun-23 $\quad 7 \mathrm{ddw} \times 10$ $8 \quad 18$-Mar-23 $\quad 27-\mathrm{Mar}-23 \quad 94 \quad 14-\mathrm{Jll}-23 \quad 22 \mathrm{JJll}-23 \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ $35 \quad$ 27-Mar-23 $\quad 30-\mathrm{Apr}-23 \quad 88 \quad 23-\mathrm{Jun}-23 \quad 27 \mathrm{JJu}-23 \quad 7 \mathrm{dd} / \mathrm{w} \times 10$ $\begin{array}{lllllllll}7 & \text { 22-Apr-23 } & 02-\mathrm{May}-23 & 73 & 21-\mathrm{Jul}-23 & 28-\mathrm{Jul}-23 & 6 d / w \times 10\end{array}$ $\begin{array}{lllllll}26-A p r-23 & 26-A p r-23 & 77 & 29-\mathrm{Jul}-23 & 29-\mathrm{Jl}-23 & 6 \mathrm{~d} / \mathrm{w} \times 10\end{array}$ 75 01-May-23 14 14-Jll-23 5422424 Oct-24 06 06-Jan-25 78 dd w $\times 10$ 60 15-Jul-23 \quad 12-Sep-23 5420 07-Jan-25 $\quad 07$-Mar-25 $7 \mathrm{7d} / \mathrm{w} \times 10$

Submissoion \& Appooval for: Main Contro (Room, secuitity Contiol Room, Seriver Rooms (DDAA)

$$
\begin{aligned}
& \square \text { submis sion \& Approval for ABWF, Fifout, E\&M Design of Elevaced Walkway No. 2. A APP) }
\end{aligned}
$$

- submis sion $\& A$ Approval for overal Dranage System: (AiP)

Refurisishment of PMs Site Office $\dot{Q} A$ ssociated Works atipotion B

0 site setur

- temporaray Diriniage ins tálation

Seluu of prefeabrication Yyard

\square Fäbicaation for Mock: Lup, hospection A Approvatboy PM

Fabrication:of Mic Unit forf First Fioor Level (46ños; PR=24nọmkik

व Delivery:of Mic Unit to Site - Batch 4 fifor 2 IF only
Deliven polmic Unit to site- Batchi5 for Car Pakik onty)

110
Chun Wo

Date	Revision	Checked	Approved
O3-Nov-21	Revision 0 First Issue	AH	WJ
19-Jan-22	Revision 1 First Issue	PF	AH
O8-Feb-22	Revision 2 First Issue		

Preparation Works

WSD-W-F01 Fdn. - Surveying, Trial Pit, UU Detection, Instalation of Monitoing Strumentation, Site Haul Road
WSD-W-FO2 Fdn. - G.I \& Instumentation
WSD-W-F03 Fan. - Conduct Laboratory Test \& Issue Preimininar Repor
WSD-W-F04 Fdn. - Design Review
Phase 1 (Grid J-Q/1-7)
WSD-W-F-101 Temporary Retaining Structure (Grid J-Q/1-7), 120m long, to be constructed by Contract 1/WSD/19
WSD-W-F-102 Install Strut and Excavation at Portion 1 from 23.3 mPD to $21.5 \mathrm{mPD}\left(2400 \mathrm{~m}^{3}, \mathrm{PR}=10 \mathrm{~m}^{3} \mathrm{~d}\right)$
WSD-W-F-103 Cary Out Plate Load Test at Porion 1
WSD-W.--104 Footing - 1 m thk Footing @ +21.5 mPD ind. blinding layer (7 batches @ $6 \mathrm{~d} / \mathrm{batch}$)
WSD-W.--105 Time Risk Allowance for Phase 1 Foundation

Phase 2 (Grid A'J/1-9)

WSD-W-F-201 Temporary Retaining Structure (Grid A'C/11), 48m long, to be constructed by Contract 1 1WSD/19 WSD-W.F--201.5 Temporary Retaining Structure (Grid F-J/7-9), 30m long, to be constructed by Contract 1NSD/19 WSD-W-F-202 B.Footing - Sheet Piling (GL C-J/1), 50m on plan/ 12 m deep, $\mathrm{PR}=12$ sheetd WSD-W-F-202.5 B.Footing -Sheet Piling (GL A1-F99), 60m on plan/ 16 m deep, $\mathrm{PR}=1$ Osheetd
WSD-W.--203 Forming of Slope and Cary Out Excavation to $+20 \mathrm{mPD}\left(11500 \mathrm{~m}^{3}, \mathrm{PR}=100 \mathrm{~m}^{3} \mathrm{~d}\right)$
WSD-W-F-204 Constuct Partial Raft (10 batches @ 6dbath)
WSD-W-F-205 Install Raking Stutus for Futher Excavation
WSD-W-F-206 Excavate Slope in front of Sheetpile to $+20 \mathrm{mPD}\left(500 \mathrm{~m}^{3}\right.$, PR=100 $\left.\mathrm{m}^{3} \mathrm{~d}\right)$
WSD-W-F-207 Constuct Remaining Raft (10 batches @ 6dbatch)
WSD-W-F-208 Time Risk Allowance for Phase 2 Foundation
Structure
Phase 1 (Grid J-Q/1-7)
Underground
WSD-W-UG1(U/G R.C. - Beam / Column Construction
Basement Level
WSD-W-SB101 B/F R.C. - Suspended Slab
WSD-W-SB102 B/F R.C. - Formwork and Rebar to RC Column
WSD-W.SB103 BIF R.C. - Formwork and Rebar RC Wall
WSD-W-SB104 BIF R.C. - Formwork and Rebar RC Concrete Beam/Slab (Ground Slab) incl. Erect Scaffold WSD-W-SB105 BF R.C. - Concreting
WSD-W.SB106 BF R.C. - Haul Road Preparation for Mobilization Mobile Crane
WSD-W-SB107 B/F MiC - Installation of MiC Module (16 units) by Mobile Crane @ Basement level <<PR=6nold>>
WSD-W-SB108 Time Risk Allowance for Stuccural Works @ Basement Level Phase
Ground Floor Level
WSD-W.SG101 G/F R.C. - Formwork and Rebar to RC Column
WSD-W-SG102 GIF R.C. - Formwork and Rebar to RC Wall
WSD-W-SG103 GGF R.C. - Formwork and Rebar to RC Concrete Slab (First Floor Slab) incl. Erect Scaffold
WSD-W-SG104 GFF R.C. - Concreting
WSD-W-SG105 G/F MiC - Installation of MiC Module (18 units) by Mobile Crane @ Ground Floor level <<PR=6no/d>> WSD-W-SG106 Time Risk Allowance for Stuctural Works @ Ground Level Phase 1

First Floor Level

WSD-W.S1011 1/F R.C. - Fomwork and Rebar to RC Cdumn
WSD-W-S1 102 1/ F.C. - Fomwork and Rebar to RC Wall
WSD-W-S1 103 11F R.C. - Fommork and Rebar to RC Concrete Slab (Secound Floor Slab) ind. Erect Scaffold WSD-W.S1104 1/F R.C. - Concreting
WSD-W-S1105 1/F MiC - Installation of MiC Module (24 units) by Mobile Crane @ First Floor level <<PR=6no/d>>

106 21-Jan-22 06-May-22 48 15-Mar-22 23 -Jun-22
80 21-Jan-22 03 03-May-22 42 15-Mar-22 $23-\mathrm{Jnn}-22 \quad 6 \mathrm{~d} / \mathrm{w} \times 1$
12 03-Mar-22 16 16-Mar-22 24 31-Mar-22 14 14-Apr-22 $6 d / \mathrm{d} \times 10$
30 17-Mar-22 \quad 15-Apr-22 31 17-Ad-22 \quad 16-May-22 7dw x10
21 16-Apr-22 $\quad 06$-May-22 $31 \begin{array}{llllll} & 17-\text { May-22 } & 06-\mathrm{Jun}-22 & 7 d / w \times 10\end{array}$
318 17-Nov-21 30 30-Sep-22 $84 \begin{array}{lllll} & 07-\mathrm{Jn}-22 & 23-\text {-Dec-22 }\end{array}$

14 23-Jul-22 05 0-Aug-22 86 42 06-Aug-22 $24-$ Sep-22 $70 \quad 31$ 31-Oct-22 $\quad 17-$-Dec-22 $\quad 6 \mathrm{~d} / \mathrm{w} \times 10$ $\begin{array}{llllllll}6 & 25-\text { Sep-22 } & 30-\text { Sep-22 } & 84 & 18-\mathrm{Dec}-22 & 23-\mathrm{Dec}-22 & 7 \mathrm{~d} / \mathrm{w} \times 10\end{array}$ 556 17-Nov-21 26 26-May-23 1070 07-Jun-22 \quad 30-Apr-26
0 17-Nov-21 1626 30-Apr-26
$7 \mathrm{~d} / \mathrm{w} \times 10$
4-Nov-21 $\quad 1626$ 30-App-26 $\quad 7 d / w \times 10$
12 07-Jun-22 $20-\mathrm{Jun}-22 \quad 0 \quad 07 .-\mathrm{Jn}-22 \quad 20-\mathrm{Jun}-22 \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ 15 07-Jun-22 $23-\mathrm{Jun}-22 \quad 0 \quad 07-\mathrm{Jun}-22 \quad 23-\mathrm{Jun}-22 \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ 115 23-Jul-22 07 07-Dec-22 00 23-Jul-22 07 07-Dec-22 $68 / 1 / \times 10$ 60 08-Dec-22 22 2-Feb-23 0008 08-Dec-22 22 22-ebb-23 $6 d / w \times 10$ 5 23-Feb-23 28 -Feb-23 0 23-Feb-23 28 -Feb-23 $6 d / w \times 10$ 5 01-Mar-23 06-Mar-23 0 01-Mar-23 $006-M a r-23 \quad 6 d / w \times 10$ 60 07-Mar-23 $19-$ May-23 00 07-Mar-23 $19-\mathrm{May}-23 \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ $\begin{array}{llllllll}7 & 20-\text { May-23 } & 26-\text { May-23 } & 0 & 20-M a y-23 & 26-\text { May-23 } & 7 d / w \times 10\end{array}$ 478 03-OCt-22 $23-$-an-24 828 24-Dec-22 3 30-Apr-26 241 O3-OCl-22 23 31-May-23 $104 \begin{array}{lllll}\text { 24-Dec-22 } & \text { 12-Sep-23 }\end{array}$ 12 03-Oct-22 $\quad 17-$ Oct-22 $\quad 70 \quad$ 24-Dec-22 $\quad 10-\mathrm{Jan}-23 \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ 12 03-Occ-22 $17-0 \mathrm{Oc}-22 \quad 70 \quad$ 24-Dec-22 $\quad 10 . \mathrm{Jan}-23 \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ 61 03-OCt-22 02 -Dec-22 89 11-Jan-23 01-Mar-23

12 18-Oct-22 \quad 31-Oct-22 $\quad 70 \quad 11$ 1-Jan-23 $\quad 27$-Jan-23 $6 d$ dw x10 12 01-Nov-22 $14-\mathrm{Nov}-22 \quad 70 \quad$ 28-Jan-23 $\quad 10$ - $\mathrm{Feb}-23 \quad 6 \mathrm{6d} / \mathrm{w} \times 10$ 12 01-Nov-22 14 14-Nov-22 $70 \quad 28$ 2-van-23 $\quad 10$-Feb-23 $\quad 6 \mathrm{~d} / \mathrm{w} \times 10$ 12 12-Nov-22 25 2-Nov-22 70 09-Feb-23 22 22-Feb-23 $60 / 1 / \mathrm{x} \times 10$ | $26-\mathrm{Nov}-22$ | $26-\mathrm{Nov}-22$ | 70 | $23-\mathrm{Feb}-23$ | $23-\mathrm{Feb}-23$ | $6 \mathrm{~d} / \mathrm{w} \times 10$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 10 03-Oct-22 14 14-Oct-22 107 13-Feb-23 23 23-Feb-23 $6 d \mathrm{~d}$ w $\times 10$ 3 28-Nov-22 30 -Nov-22 $70 \quad 24$ Feb-23 27 27-Fb-23 $68 / 1 / \times 10$ $\begin{array}{llllllll} & 01-D e c-22 & 02-D e c-22 & 89 & 28-\mathrm{Feb}-23 & 01-\mathrm{Mar}-23 & 7 \mathrm{~d} / \mathrm{w} \times 10\end{array}$ 36 03-Dec-22 007 -Jan-23 850202 -Mar-23 $\begin{array}{lllll}02-A p r-23\end{array}$ $\begin{array}{lllllll}2 & 03-\text { Dec-22 } & \text { 16-Dec-22 } & 70 & 02-M a r-23 & 15-M a r-23 & 6 d / w \times 10\end{array}$ $\begin{array}{lllllll}12 & 03-D e c-22 & 16-D e c-22 & 70 & 02-\mathrm{Mar}-23 & 15-\mathrm{Mar}-23 & 6 \mathrm{~d} / \mathrm{w} \times 10\end{array}$

 31-Dec-22 31-Dec-22 70 28-Mar-23 28-Mar-23 68 d w $\times 10$ 3 03-Jan-23 05 -Jan-23 $70 \quad$ 29-Mar-23 $31-\mathrm{Mar-23} \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ $\begin{array}{lllllll}06-J a n-23 & 07-J a n-23 & 85 & 01-A p-23 & 02-A p-23 & 7 d / w \times 10\end{array}$ 36 09-van-23 13 13-Feb-23 86 03-Apr-23 $\quad 10$-May-23
12 09-Jan-23 21 21-Jan-23 69 03-Apr-23 $\begin{array}{llllll}19-A p r-23 & 6 d / w \times 10\end{array}$ 12 09-Jan-23 21 21-Jan-23 69 03-Apr-23 $\begin{array}{lllll}19-A p r-23 & 6 d / w \times 10\end{array}$ 12 20-Jan-23 00 0-Feb-23 69 18-Apr-23 02 0-May-23 $6 \mathrm{~d} / \mathrm{w} \times 10$ 07-Feb-23 07 07-Fe-23 69 03-May-23 03 -May- $23 \quad 6 d / w \times 10$
 of Fobl- Gil dinstrimentation
 a Fon.: Design Review

- Time Risk Alíwànce for Prase y foundation

- histail Rabingos Struts for Fouther Excavation

I Excayate Slope: in front of Sheetpile to 220 mPD ($500 \mathrm{~m}^{3}$, PR $=100 \mathrm{~m}^{3} / \mathrm{d}$)

- Time kisk Ailọwanoe for piphase 2 Fpundadition

俊 和

ChUNWo

Date	Revision	Checked	Approved
O3-Nov-21	Revision 0 First Issue	AH	WJ
19-Jan-22	Revision 1 First Issue	PF	AH
08-Feb-22	Revision 2 First Issue		

Second Floor Level

WSD-W-S2101 2 2F R.C. - Formwork and Rebar to RC Column
WSD-W-S2102 $2 /$ F R.C. - Fommork and Rebar to RC Wall
WSD-W.S2103 21F R.C.- Fommork and Rebar to RC Concrete Slab (Third Floor Slab) incl. Erect Scaffold WSD-W.S2104 2/F R.C. - Concreting
WSD-W-S2105 2F Mic - Instalataion of MiC Module (16 units) by Mobile Crane @ Second Floor level <<PR=6nold>>
WSD-W.S2106 Time Risk Allowance for Stuctural Works @ Second Floor Level Phase 1

Third Floor Level

WSD-W.S3101 31F R.C. - Fommork and Rebar to RC Column
WSD-W-S3102 3/F R.C. - Fomwork and Rebar to RC Wall
WSD-W-S3103 31F R.C. - Fommook and Rebar to RC Concrete Slab (Third Floor Slab) incl. Erect Scaffold
WSD-W-S3104 3/F R.C. - Concreting
WSD-W-S3105 3/F R.C. - Roof Construction
WSD-W.S3106 Time Risk Allowance for Stuctural Works @ Third Floor Level Phase
WSD-W-S3107 Erect Material Hoist

Phase 2 (Grid C-J/1-4)

Underground
WSD-W-UG2C
WSD-W IGC U/G R.C. - Beam / Column Construction
Basement Level
WSD-W.SB201 B/F RC. - Suspended SLab
WSD-W-SB203 B/F MiC - Installation of MiC Module (34 units) by Mobile Crane @ Basement level <<PR=6no/d>>
WSD-W-SB204 Time Risk Allowance for MiC Installation @Basement Level
Ground Floor Level
WSD-W-SG05 G/F MiC - Installation of MiC Module (40 units) by Mobile Crane @ Ground level <<PR=6nold>>
WSD-W-SG06 Time Risk Allowance for MiC Installation @ Ground Leve
First Floor Level
WSD-W-S1201 1/F Mic - Instalation of MiC Module (46 units) by Mobile Crane @ First Floor level <<PR=6nold>>
WSD-W-S1202 Time Risk Allowance for MiC Instalataion @ First Floor Level Second Floor Level
WSD-W.S2201 2 IF MiC - Instalation of MiC Module (18 units) by Mobile Crane @ Second Floor level <<PR=6no/d>> WSD-W.S2202 Time Risk Allowance for MiC Installation @ Second Floor Level
WSD-W-S2203 2/F MiC - Demobilization of Mobile Crane Third Floor Level
WSD-W.S3201 31F R.C. - Fommork and Rebar to RC Column
WSD-W-S3202 3/F R.C. - Fomwork and Rebar to RC Wall
WSD-W.S3203 3/F R.C. - Fommook and Rebar to RC Concrete Slab (Third Floor Slab) incl. Erect Scaffold WSD-W-S3204 3/F R.C. - Concreting
WSD-W-S3205 3/F MiC - Instalalaion of MiC Module (14 units) by Mobile Crane @ Second Floor level <<PR=6no/d>> WSD-W-S3206 Time Risk Alowance for Stuctural Works @ Third Floor Level Phase 2
WSD-W-S3207 3/F R.C. - Roof Construction

Phase 3 (Grid A'C/1-4)

Basement Floor Level
WSD-W-SB301 B/F R.C. - Suspended Slab
WSD-W-SB302 BF R.C. - Formwork and Rebar to RC Column
WSD-W.SB303 BIF R.C. - Formwork and Rebar RC Wall
WSD-W.SB304 BIF R.C. . Formwork and Rebar RC Concrete Beam/Slab (Ground Slab) incl. Erect Scaffold WSD-W-SB305 BF R.C. - Concreting
WSD-W-SB306 B/F MiC - Instalation of MiC Module (8 units) by Mobile Crane @ Basement Floor level <<PR=6no/d>> WSD-W-SB307 Time Risk Allowance for Stucctural Works @ Basement Level Phase 3

		$12-$-eb-23	$13-$-eb-23	86
31	14-Feb-23	09-May-23	10-May-Mar-23	88
11-May-23	12 -Jun-23			

12 14--eb-23 27 27-Feb-23 70 11-May-23 24 24-May-23 6 gdwx10 12 14--eb-23 $\begin{array}{lllllll}\text { 27--eb-23 } & 70 & \text { 11-May-23 } & \text { 24-May- } 23 & 6 d w \times 10\end{array}$ $12 \quad$ 25-feb-23 $\quad 10-\mathrm{Mar}-23 \quad 70 \quad 23$-May- 23 06-Jun-23 6 6d/w $\times 10$ \begin{tabular}{l|lllllll}
1 \& 11-Mar-23 \& 11-Mar-23 \& 70 \& $07-J u n-23$ \& $07-J u n-23$ \& $6 d / w \times 10$

 $\begin{array}{llllllll}3 & 13-M a r-23 & 15-M a r-23 & 70 & 08-J u n-23 & 10-J u n-23 & 6 d / w \times 10\end{array}$ $\begin{array}{llllll}\text { 16-Mar-23 } & 16-\mathrm{Mar}-23 & 88 & 12-J \mathrm{Jn}-23 & 12-\mathrm{Jun}-23 & 7 d / w \times 10\end{array}$ 76 17-Mar-23 31 31-May-23 104 13-Jnn-23 $\begin{array}{lllll}12-S e p-23 ~\end{array}$ $\begin{array}{llllllll}76 & \text { 17-Mar-2 } & \text { 31-May-23 } & 104 & \text { 13-Jun-23 } & \text { 12-Sep-23 } & & 6 d w x \\ 12 & \text { 17-Mar-23 } & \text { 30-Mar-23 } & 70 & 13-\text { Jun-23 } & 27-\text { Jun-23 } & 6 d w x\end{array}$

12 \& 17-Mar-23 \& 30-Mar-23 \& 70 \& 13-Jun-23 \& $27-\mathrm{Jun}-23$ \& $6 \mathrm{~d} / \mathrm{w} \times 10$

\hline

 12 29-Mar-23 14 14-Apr-23 $70 \begin{array}{lllll}26-\mathrm{Jn}-23 & 10-\mathrm{Jul}-23 & 6 \mathrm{~d} / \mathrm{w} \times 10\end{array}$

1 \& $15-A p r-23$ \& $15-A p r-23$ \& 70 \& $11-\mathrm{Jul}-23$ \& $11-\mathrm{Jul}-23$ \& $6 \mathrm{~d} / \mathrm{w} \times 10$

\hline
\end{tabular} $24 \quad$ 17-Apr-23 \quad 15-May-23 70 12-Jul-23 $\quad 08-$ Aug-23 $60 / w \times 10$ 4 16-May-23 19 19-May 23 85 85 09-Aug-23 12-Aug-23 7d/w x 1 12 20-May-23 31 31-May-23 10401 01-Sep-23 \quad 12-Sep-23 $78 d$ d/w x10

$125 \quad 27$-May-23 28 28-Sep-23 945 27-May-23 30 30-Apr-26
 $\begin{array}{llllllll}24 & 27-\text { May-23 } & 24-\mathrm{Jun}-23 & 0 & 27-M a y-23 & 24-J n-23 & 6 d / w \times 10\end{array}$

6 26-Jun-23 03 03Jul-23 $\quad 0 \quad 26$-Jun-23 $\quad 03-\mathrm{Jul}-23 \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ 2 04-Jul-23 $005-\mathrm{Jul}-23 \quad 0 \quad 04-\mathrm{Ju}-23 \quad 05 \mathrm{Jul}-23 \quad 7 \mathrm{~d} / \mathrm{w} \times 10$ 9 06-Jul-23 $14-\mathrm{Jul}-23 \quad 0 \quad 06 \cdot \mathrm{Jul}-23 \quad 14-\mathrm{Jul}-23$	$00-\mathrm{Ju}-23$	$14-\mathrm{Jul}-23$	0	$06-\mathrm{Ju}-23$	$14-\mathrm{Jul}-23$	
$06 \mathrm{Jul}-23$	$13-\mathrm{Jul}-23$	0	$06-\mathrm{Ju}-23$	$13-\mathrm{Ju}-23$	$6 \mathrm{~d} / \mathrm{w} \times 10$	

 \begin{tabular}{|c|c|c|ccc|}
$14-\mathrm{Jul}-23$ \& $14-\mathrm{Jul}-23$ \& 0 \& $14-\mathrm{Jul}-23$ \& $14-\mathrm{Jul}-23$ \& $7 d / w \times 10$

15

 $\begin{array}{ccccccc}11 & 15-\text {-ulu-23 } & 25-\text {-ull } 23 & 0 & 15-\text {-ulu-23 } & 25-\mathrm{Jul}-23 \\ 8 & 15-\text {-ul-23 } & 24-\mathrm{Jul}-23 & 0 & 15-\mathrm{Jul}-23 & 24-\mathrm{Jul} 23 & 60\end{array}$ $\begin{array}{lllllll}15-\mathrm{Jul}-23 & 24-\mathrm{Jul}-23 & 0 & 15-\mathrm{Jul}-23 & 24-\mathrm{Jul}-23 & 6 \mathrm{~d} / \mathrm{w} \times 10\end{array}$ $\begin{array}{lllllll}25-J u l-23 & 25-\mathrm{Jul}-23 & 0 & 25-\mathrm{Jul}-23 & 25-\mathrm{Jul}-23 & 7 d / w \times 10\end{array}$ 26-Jul-23 $29-\mathrm{Jul}-23 \quad 0 \quad 26-\mathrm{Jul}-23 \quad 29-\mathrm{Ju}-23$

$26-J u l-23$ \& $28-\mathrm{Jul}-23$ \& 0 \& $26-\mathrm{Ju}-23$ \& $28-\mathrm{Jul}-23$ \& $6 \mathrm{~d} / \mathrm{w} \times 10$

\hline
\end{tabular} $\begin{array}{lllllll}\text { 29-Jul-23 } & \text { 29-Jul-23 } & 0 & 29-J u l-23 & 29-\mathrm{Jul}-23 & 7 d / w \times 10\end{array}$ 29-Jul-23 0 \quad 29-Ju-23 60 31-Jul-23 28 -Sep-23 264 31-Jul-23 18 --vn-24 $\begin{array}{ccccccc}60 & \text { 31-Jul-23 } & \text { 28-Sep-23 } & 264 & \text { 31-Jul-23 } & \text { 18-Jun-24 } \\ 12 & \text { 31-Jul-23 } & \text { 12-Ag-23 } & 0 & \text { 31-Jul-23 } & \text { 12-Aug-23 } & 6 d / w \times 10\end{array}$ 12 31-Jul-23 \quad 12-Aug-23 00 31-Jul-23 \quad 12-Aug-23 6 ddw $\times 10$ 12 11-Aug-23 24 24-Ag-23 00 25-Aug-23 25-Aug-23 0 25-Aug-23 25 -Aug-23 $6 d / w \times 10$ 3 26-Aug-23 $29-$ Aug-23 00 26-Aug-23 29 29-Agg-23 $68 / w \times 10$ 2 30-Aug-23 31 31-Aug-23 0 $24 \quad$ 01-Sep-23 $\quad 28-$ Sep-23 $\quad 210 \quad 21$-May-24 $\quad 18$-Jun-24 $60 \mathrm{Gd} / \mathrm{w} \times 10$ 167 06-Jul-23 19 19-Dec-23 273 07-Jul-23 \quad 17-Sep-24 45 06-Jul-23 19-Aug-23 1 07-Jul-23 $\quad 20-\mathrm{Aug}-23$ $\begin{array}{llllllll}12 & 06-\mathrm{Jul}-23 & 19-\mathrm{Jul}-23 & 1 & 07-\mathrm{Jul}-23 & 20-\mathrm{Jul}-23 & 6 \mathrm{~d} / \mathrm{w} \times 10\end{array}$ 12 20-Jul-23 02 02-Aug-23 $11 \begin{array}{llllll} & 21-J u l-23 & 03-A u g-23 & 6 d w \times 10\end{array}$ 12 20-Jul-23 $02-\mathrm{Aug}-23 \quad 1 \quad 21 \mathrm{Jul}-23 \quad 03-\mathrm{Aug}-23 \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ 12 01-Aug-23 14 A-Aug-23 1 $1 \begin{array}{lllllll}15-A u g-23 & 15-A u g-23 & 1 & 16-A u g-23 & 16-A u g-23 & 6 d / w \times 10\end{array}$ $\begin{array}{lllllllll}2 & 16-A u g-23 & 17-A u g-23 & 1 & 17-A u g-23 & 18-A u g-23 & 6 d / w \times 10\end{array}$ $\begin{array}{lllllllll}2 & 18-A g g-23 & 19-A u g-23 & 1 & 19-A u g-23 & 20-A u g-23 & 7 d / w \times 10\end{array}$

CTAFRRC. Fomwork and Rebar to RC Coumn

- C àFR.C.C. Fomwork and Rebab to RC Wall
 IZ FF R.C. Conore eting

ITime Risk Aiowance for structural Works @ Second Foor Leve Phase
- उFRC. Fommok and Rebarto RC Column
©

3/F R.C. Conce efing
- 3 R R C R Roó Consstruction

OT Time Risk Allowance for Stricicurara Works © Thiríd floor Level P Phase 1
0 Erect Material Hoist

TUIGRC. Beam/ Colum Constuctio

W BiF R.C. Suspended Slab

Time:Risk:Ailowance:fo Micic nstailation @Basement Levé

 Time Risk Alowance tor Mic nitalataion @ Fipst Fioo Level

TBF R.C. Fommolk and Reba to RC Colum

U IFRC. Concreting

 - 3FFR.C. Roof Constradion

- BIFR.C. Suspended:SAB

BFF RC- Fom moorkand Rebar ro RC Colum

- BFFR.C. - Formwork and Rebar RC Wall
:BIF R.C. Formwork and Rebar RC Conoreet Beamis Sabi, (Ground Slab) inc. Erect Scaffold
$\mathrm{BFFR.C}$ - Concoreting

Time Risk Allowance for Structural Works @ Basement tievel Phise 3

Date	Revision	Checked	Approved
03-Nov-21	Revision 0 First Issue	AH	WJ
19-Jan-22	Revision 1 First Issue	PF	AH
08 -Feb-22	Revision 2 First Issue		

Dur.	Start	Frish	Total Foat	Late Start	Late Firish	${ }^{\text {Working }}$
28	21-Aug-23	17-Sep-23	0	21-Aug-23	17-Sep-23	

 12 01-Sep-23 14 -Sep-23 0001 01-Sep-23 $\quad 14$-Sep-23 $6 \mathrm{~d} / \mathrm{w} \times 10$ $\begin{array}{llllll}15-S e p-23 & 15-S e p-23 & 0 & 15-\text { Sep-23 } & 15-\text { Sep-23 } 6 d / w \times 10\end{array}$ $\begin{array}{lllll}16-S e p-23 & 16-\text { Sep-23 } & 0 & 16-\text { Sep-23 } & 16 \text {-Sep-23 } \\ 6 d / w \times 10\end{array}$ $\begin{array}{lllllll}17-S e p-23 & 17-S e p-23 & 0 & 17-S e p-23 & 17-S e p-23 & 7 d / w \times 10\end{array}$ 93 18-Sep-23 19-Dec-23 273 18-Sep-23 17-Sep-24 $\begin{array}{lllllll}2 & 18-S e p-23 & 03-O c t-23 & 0 & 18-S e p-23 & 03-O c t-23 & 6 d / w \times 10\end{array}$

 12 29-Sep-23 14 -Oct-23 $00 \quad 29-$ Sep-23 14 -Oct-23 6 6dw w10 $\begin{array}{llllll}16 \text {-Oct-23 } & 16 \text {-Oct-23 } & 0 & 16-\text { Oct-23 } & 16 \text {-Oct-23 } & 6 d / w \times 10\end{array}$ 17-0ct-23 \quad 17-Oct-23 00 17-Oct-23 \quad 17-Oct-23 6 6dw x 10 $\begin{array}{llllll}18-0 \mathrm{Oc}-23 & 18-\mathrm{Oc}-23 & 0 & 18-0 \mathrm{Oc}-23 & 18-0 \mathrm{Oct}-23 & 7 \mathrm{ddw} \times 10\end{array}$ $\begin{array}{lllll}19-0 \mathrm{Oc}-23 & 20-0 \mathrm{Oct} 23 & 37 & 02-\text { Dec-23 } & 04-\mathrm{De}-23\end{array}$ $50 \begin{array}{lllllll} & 21-O C t-23 & 19-D e c-23 & 220 & 22-J u l-24 & 17-\text {-Sep-24 } & 6 d / w \times 10\end{array}$ \begin{tabular}{lll|l|l|l}
138 \& $31-\mathrm{Jul}-23$ \& $15-\mathrm{Dec}-23$ \& 171 \& $31-\mathrm{Jul}-23$ \& $03-\mathrm{Jun}-24$

\hline $31-\mathrm{Jul}-23$ \& $31-\mathrm{Jul}-23$ \& 0 \& $31 \mathrm{Jul}-23$ \& $31 \mathrm{Jul}-23$

$60 / 1 w \times 10$

\hline
\end{tabular} 21 01-Aug-23 24-Aug-23 00 01-Aug-23 24 A-Aug-23 $68 / \mathrm{d} \times 10$ $20 \quad 25-A u g-23 \quad 16$-Sep-23 $\quad 0 \quad 25$-Aug-23 $\quad 16$-Sep-23 $6 d / w \times 10$ 38 18-Sep-23 21 21-Oct-23 $\quad 0 \quad 18$-Sep-23 $\quad 21-$ Oct-23 6 diw x 18 24-0ct23 13 $\mathrm{No}-23$ 240 22 14-Nov-23 $\quad 08$-Dec-23 $\quad 0 \quad$ 14-Nov-23 08 08-Dec-23 $6 d / w \times 10$ 45 18-Sep-23 \quad 11-Nov-23 163 10-Apr-24 $03-$-Jun-24 $6 d \mathrm{~d} w \times 10$ $\begin{array}{llll}11-\text { Nov-23 } & 163 & 03-\mathrm{Jun}-24 & 6 \mathrm{~d} / \mathrm{w} \times 10\end{array}$

GIF R.C. Concreiting
I Gif:MiC - Instailation of Mic Moduée (3units by Mobbie Crane @ Ground Fioor Ievel K¢RR=6nodd> 1 Time Risk Alowance for structural Works @ Ground Level Phase 3

- IIE R.C. FFommook and Rebáfo RC Wall
 ITIF R.C. Conncetiñ

11. R.C. F RC Roof Construction (Lower Roof, GLA'E/1-4)

- Camark Ramp:- RCC Concerefe Slab (Ground SLab) ind: Erect Scicafold

CaparkifRamp - Completion of St Stucture tor Car Park

Tx\& EVSBR Rooms:- Mic Connection Works/ Falsework:Removail Preparation for ABWF \& MEP Wook

- Tx α LVSGB Rooms- ABWF Deg - Deg 3

> LA Jxia LVSB:Roons: Insalatanoof Tx Xi Testing by cLP

Y Construction of Riseri/Shatit Tiunnel for: Cabile Containment

- Tx: LLESE:RBoomsi- CLP Poweron Date

WSD-B-TRO7 TX\& LVSB Rooms - Completion of CLP Cable Laying Leading to Administration Building (to be constructe
WSD-B-TR08 Tx\&LVSB Rooms - CLP Power-on Date

Basement - Emergency Generator Room

WSD-B-EG01 EGM- MC Connection Works/ Falsework Removal/ Preparation for ABWF \& MEP Work WSD-B-EG02 EGM - Concrete Plintt, Waterproofing \& Test
WSD-B-EG03 EGM - Floor Screeding, Wall Plasteing \& Doors \& Wall Lining

09-Dec-23 15 15-Dec-23 0 09-Dec-23 15 15e-23 7 duxio
 24 01-Sep-23 28 28-Sep-23 22 27-Sep-23 27 27-OCt-23 $\begin{array}{ll}6 d / w \times 10\end{array}$
 6 16-Dec-23 22 22-Dec-23 0016 16-Dec-23 22 22-Dec-23 $6 d w \times 10$

 $\begin{array}{llllllll}6 & \text { 24-Nov-23 } & 30-\mathrm{Nov}-23 & 37 & 10-\mathrm{Jan}-24 & 16-\mathrm{Jan}-24 & 6 d / \mathrm{w} \times 10\end{array}$ $6 \begin{array}{llllllll}6 & 01-\text { Dec-23 } & 07-\text {-Dec-23 } & 37 & 17-J a n-24 & 23-\operatorname{Jan}-24 & 6 d / w \times 10\end{array}$ \begin{tabular}{lll|l|l|}
23-Jan-24 \& 0 \& $23-J a n-24$ \& $6 d / w \times 10$

\hline

 421 31-Jul-23 23 -Sep-24 110 14-Aug-23 11-Jan-25 246 01-Aug-23 $30-\mathrm{May}-24 \quad 28$ 14-Aug-23 $\quad 04-\mathrm{Jll}-24 \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ $24 \begin{array}{lllllll} & 01 \text {-Aug-23 } & 28-A u g-23 & 11 & 14-A u g-23 & 09-S e p-23 & 6 d / w \times 10\end{array}$ 48 29-Aug-23 26 26-Oct-23 11111 11-Sep-23 08 08-Nov-23 $6 \mathrm{~d} / \mathrm{w} \times 10$ $72 \begin{array}{lllllll}72 & 27-O C l-23 & 22-J a n-24 & 11 & 09-\text { Nov-23 } & 03-\text { Feb- } 24 & 6 d / w \times 10\end{array}$ 12 23-Jan-24 05 05-Feb-24 $\quad 28$ 28-Feb-24 12 12-Mar-24 $6 d / w \times 10$ $90 \quad 06$-Feb-24 $\quad 30-\mathrm{May}-24 \quad 28$ 13-Mar-24 $\quad 04-\mathrm{Jul}-24 \quad 6 \mathrm{6dw} \times 10$ 46 23-Jan-24 $\begin{array}{lllllll}19-M a r-24 & 79 & 03-M a y-24 & 27-J u n-24 & 6 d w \times 10\end{array}$ $\begin{array}{llllllll}0 & 25-M a y-24 & 25-M a y-24 & 28 & 27-J n n-24 & 27-J n n-24 & 6 d / w \times 10\end{array}$

$30-$ May-24 \& 28

\hline
\end{tabular} 04-Jul-24 $6 \mathrm{~d} / \mathrm{w} \times 10$ 132 23-Jan-24 $\quad 06$-Jul-24 42 05-Feb-24 24-Aug-24 $6 d$ dww $\times 10$ 10 23-Jan-24 02 02-Feb-24 11 05-Feb-24 $\begin{array}{lllll}19-F e b-24 & 6 d / w \times 10\end{array}$ 11 03-Feb-24 19 19-Feb-24 11 11 $20-\mathrm{Feb}-24 \quad 02-\mathrm{Mar-24} \quad 6 \mathrm{ddw} \times 10$ 28 20-Feb-24 22 2-Mar-24 $11 \begin{array}{llllll} & \text { 04-Mar-24 } & \text { 09-Apr-24 } & 6 d / w \times 10\end{array}$

EGM- Mic Connetion Work $\overline{\text { / Falsework: Removall Preparatiof for AB AF } \& \text { MEP Work }}$ - EGM - Congrefe Pligith Waleerroóofing: \&Test EGM-Floor Screieding, Wall Plastering $\&$ Doois $\&$ Wall Linind

FIRST PROGRAMME REV. 1
ALL ACTIVITIES

俊和

Chun Wo

Date	Revision	Checked	Approved
03 -Nov-21	Revision 0 First Issue	AH	WJ
$19-$-an-22	Revision 1 First Issue	PF	AH
O8-Feb-22	Revision 2 First Issue		

| 6 | $30-A p r-24$ | $07-M a y-24$ | 42 | $21-J u n-24$ | $27-J u n-24$ | $6 d / w \times 10$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 \begin{tabular}{l|l|lllll}
28 \& $30-M a y-24$ \& $03-$－ul－ 24 \& 42 \& $20-\mathrm{Ju}-24$ \& $21-\mathrm{Aug}-24$ \& $6 \mathrm{~d} / \mathrm{w} \times 10$

 3 04－Jul－24 $\quad 06$－Jul－24 42 22－Aug－24 24 2－Aug－24 $68 / w \times 10$ 114 23－Mar－24 12 12－Aug－24 $11 \begin{array}{lllll}10-A p-24 & 24-A u g-24 & 6 d / w \times 10\end{array}$ 12 23－Mar－24 10 10－Apr－24 11 10－Ap－24 23 23－Ap－24 $68 / / w \times 10$ $\begin{array}{lllllllll}12 & \text { 11－Apr－24 } & \text { 24－Apr－24 } & 11 & \text { 24－Apr－24 } & \text { 08－May－24 } & 6 \mathrm{~d} / \mathrm{w} \times 10\end{array}$

24 \& 25－Apr－24 \& 24－May－24 \& 11 \& $09-M a y-24$ \& $06-\mathrm{Jun}-24$

$6 d / w \times 10$

\hline

 60 25－May－24 05 05－Aug－24 11

$07-J u n-24$ \& $17-A u g-24$ \& $6 d / w \times 10$

\hline
\end{tabular} 6 06－Aug－24 12 12－Aug－24 $11 \quad 19$－Aug－24 $\quad 24-\mathrm{Aug}-24 \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ $92 \quad$ 27－Oct－23 \quad 17－Feb－24 62 11－Jan－24 06 06－May－24 $\quad 6 \mathrm{~d} / \mathrm{w} \times 10$ $6 \begin{array}{lllllll}6 & \text { 27－Oct－23 } & 02-\text { Nov－23 } & 62 & 11 \text {－Jan－24 } & 17-\text {－an－24 } & 6 d / w \times 10\end{array}$

 48 20－Nov－23 \quad 17－Jan－24 62 03－Fbb－24 $\quad 06$－Apr－24 $68 / 1 / \times 10$ $24 \quad$ 18－Jan－24 \quad 17－－eb－24 62 08－Apr－24 $\quad 06$－May－24 $6 d / w \times 10$ $121 \quad$ 27－Oct－23 \quad 24－Feb－24 316 07－Sep－24 05 －Jan－25
$\begin{array}{llllllll}6 & 27-O c t-23 & 02-N o v-23 & 257 & 07-\text { Sep－24 } & 13 \text {－Sep－} 24 & 6 d / w \times 10\end{array}$
 48 20－Nov－23 $\begin{array}{lllllll}17-\mathrm{Jan}-24 & 257 & 03-\mathrm{Cct}-24 & 28-\mathrm{Nov}-24 & 6 d / \mathrm{w} \times 10\end{array}$

 6 24－Oct－23 $\quad 30-$ Oct－23 $181 \quad 05-\mathrm{Jun}-24 \quad 12$－Jun－24 $6 \mathrm{6d} / \mathrm{w} \times 10$ $48 \quad 31-$ Oct－23 $\quad 27$－－Dec－23 181 13－Jun－24 $\quad 08$－Aug－24 $6 d / w \times 10$ 48 16－Nov－23 13 13－Jan－24 $181 \quad$ 29－Jun－24 24 24－Aug－24 6 6d／w $\times 10$ \begin{tabular}{l|l|l|l|l|l|}
48 \& 16－Nov－23 \& 13－Jan－24 \& 181 \& 29－Jun－24 \& 24－Aug－24

\hline 24 \& 6diw \& 15－Jan－24 \& 14－－eb－24 \& 181 \& 26 －Aug－24

$23-$ 2sep－24 \& 6d／w x10

 $121 \quad$ 24－Nov－23 23 23－Mar－24 $79 \begin{array}{llll}\text { 24－Nov－23 } & \text { 10－Jun－24 }\end{array}$

6 \& 24－Nov－23 \& $30-\mathrm{Nov}-23$ \& 0 \& $24-\mathrm{Nov}-23$ \& $30-\mathrm{Nov}-23$ \& $6 \mathrm{~d} / \mathrm{w} \times 10$
\end{tabular}

 $24 \quad$ 19－Feb－24 $\quad 16$－Mar－24 $61 \begin{array}{llllll} & 66-M a y-24 & 03-\text { Jun－24 } & 6 d / w \times 10\end{array}$ $\begin{array}{llllllll}7 & \text { 17－Mar－24 } & \text { 23－Mar－24 } & 79 & 04-J u n-24 & 10-J u n-24 & 7 d / w \times 10\end{array}$ 92 01－Dec－23 \quad 23－Mar－24 14801 01－Dec－23 $23-$ Sep－24 \quad 6dw 10 6 01－Dec－23 07 07－Dec－23 0001 01－Dec－23 07 07－Dec－23 $6 d / w \times 10$ $48 \quad 08-$ Dec－23 $\quad 05$－Feb－24 10008 08－Dec－23 $0505-$ Feb－24 $\quad 6 \mathrm{~d} / \mathrm{w} \times 10$ $48 \quad$ 27－Dec－23 \quad 24－Feb－24 $\quad 56$ 06－Mar－24 $\quad 06$－May－24 6 6dw $\times 10$ $24 \quad$ 26－Feb－24 $\quad 23$－Mar－24 $148 \quad 26$－Aug－24 $\quad 23$－Sep－24 $60 \mathrm{Gd} / \mathrm{w} \times 10$ 186 08－Dec－23 10 10－Jnn－24 0

 48 06－Feb－24 $\quad 09-$ Ap－24 $\quad 0 \quad 006$－Feb－24 $\quad 09-$ Apr－24 $\quad 6 d / w \times 10$ 48 26－Feb－24 $\quad 25$－Apr－24 $\quad 0 \quad$ 26－Feb－24 $\quad 25$－Apr－24 $\quad 6 d / w \times 10$ 33 26－Apr－24 $05-$－unn－24 $\quad 0 \quad$ 26－Apr－24 $\quad 05-$ Jun－24 $\quad 6 \mathrm{~d} / \mathrm{w} \times 10$ \begin{tabular}{llll|l|l|l|}
5 \& $06-J n-24$ \& $10-J n n-24$ \& 0 \& $06-J u n-24$ \& $10-J u n-24$ \& $7 d w \times 10$

 173 24－Jan－24 14 14－Jll－24 181 25－Jul－24 \quad 11－Jan－25 48 24－Jan－24 $\begin{array}{llllllll}\text { 22－Mar－24 } & 146 & \text { 25－Jul－24 } & \text { 19－Sep－24 } & 6 d / w \times 10\end{array}$

60 \& 23－Mar－24 \& 21－May－24 \& 181 \& 20－Sep－24 \& 18－Nov－24 \& $7 d / w \times 10$

\hline
\end{tabular} 12 22－May－24 02 02－Jun－24 181 19－Nov－24 \quad 30－Nov－24 7 7d／w x10 $14 \begin{array}{lllllll} & \text { 03－Jun－24 } & \text { 16－Jn－24 } & 181 & \text { 01－Deo－24 } & \text { 14－Neg－24 } & 7 d w \times 10\end{array}$

D EGM－Move：n Generator Equipments
EGM：Finai Coat to Wall \＆Seaeler to Ficor
 TEGM：Instail Dooris $\dot{\text { on roonmogery }}$

Spinkker Tankk FS Tank Room－Wateproofing \＆TTesting： －Sprinker Tank FS Tank Room－Plastering；Works Inside Tank －Sprinkerer Tank Fs Tank：Room Wall \＆floor Tilling Works
Sprinker Tank FS Tank Room－instal Equipment Spankker Tankl：Fs Tank Room nstall Cat Ladder α Hatch icover

BB／FInterior Decolation－Inspection／Testing Dedefect Rectifioation

Basement Iateno Decoration In Inspection／Testing／Defect Rectification

$\square \mathrm{GFF⿳亠二口斤口⿱一土儿}$

1FInterion Decoration－Sitie Ciaaranee：Preparation for ABWF \＆MEP Works

作 Interior Decoration－Inspection Testing／Depect Rectification

3／finterior Decoration Inspection Testing Defét Rectification				

FIRST PROGRAMME REV． 1
ALL ACTIVITIES

	Date	Revision	Checked	Approved
1	03－Nov－21	Revision 0 First Issue	AH	WJ
俊 和	19－Jan－22	Revision 1 First Issue	PF	AH
Chun Wo	08－Feb－22	Revision 2 First Issue		

 218 24-Jan-24 28 -Aug-24 136 19-Jun-24 $\begin{array}{llll}11-J a n-25\end{array}$ 48 24-Jan-24 22 2-Mar-24 116 19-Jun-24 14 14-Aug-24 $6 d / w \times 10$ | 60 | $23-\mathrm{Mar}-24$ | $21-\mathrm{May}-24$ | 145 | $15-\mathrm{Aug}-24$ | $13-\mathrm{Oct}-24$ | $7 d \mathrm{wlo}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 12 31-May-24 11van 136

 $\begin{array}{llllllll}12 & \text { 24-Jul-24 } & 04-A u g-24 & 136 & 07-\text { Dec-24 } & 18-D e d-24 & 7 d / w \times 10\end{array}$ 24 05A 24 28 24 88 11-Jun-24 23 -Sep-24 00 11-Jun-24 23 23-Sep-24 6 6d/w $\times 10$ 88 11-Jun-24 23 -Sep-24 00 11-Jn-24 23 2-Sep-24 $6 d / w \times 10$ 64 11-Jun-24 24 -Aug-24 0 11-Jun-24 24-Aug-24 $68 / w \times 10$ 88 11-Jun-24 23 -Sep-24 0 11-Jun-24 23 Sep-24 $6 d / w \times 10$

 45 27-Nov-23 20 20-Jn-24 163 19-Jun-24 | $10-A u g-24 ~$ | $6 d / w \times 10$ |
| :--- | :--- | :--- | :--- | :--- | :--- | 30 22-Jan-24 $\quad 28$-Feb-24 163 12-Aug-24 $\begin{array}{llllll}14-S e p-24 & 6 d / w \times 10\end{array}$ 6 31-May-24 $\begin{array}{llllllll} & 06-J u n-24 & 90 & 16-S e p-24 & 23-\text { Sep-24 } & 6 d / w \times 10\end{array}$ 70 31-Jul-23 $21-$ Oct-23 0 13-Sep-23 21-Oct-23 $6 d / w \times 10$ $32 \quad 31$-Jul-23 $05-$ Sep-23 38 13-Sep-23 $21-\mathrm{Cct}-23 \quad 6 \mathrm{dd} / \mathrm{w} \times 10$ $\begin{array}{llll}05-\text {-sep-23 } & 38 & 21-O c t-23 & 6 d / w \times 10\end{array}$ 3 13-Sep-23 21 -Oct-23 $\quad 0 \quad$ 13-Sep-23 $\quad 21$-Oct-23 6 6dw $\times 10$ $\begin{array}{llll}\text { 21-Oct-23 } & 0 & 21-\text { Oct-23 } & 6 d / w \times 10\end{array}$ 145 19-Feb-24 $\quad 12$-Jul-24 0 26-Apr-24 \quad 12-Jul-24 48 19-Feb-24 18 18-Apr-24 62 07-May-24 04 04-Jul-24 6 ddw $\times 10$ 48 26-Feb-24 25 25-Apr-24 56

0	$30-M a y-24$	28	$04-J u-24$	$60 / w \times 10$
8				

6dm x $\begin{array}{llllllll}24 & 24-S e p-24 & 23-O c t-24 & 0 & 24-S e p-24 & 23-O c t-24 & 6 d / w \times 10\end{array}$ 317 05-Oct-22 $\quad 27-$ Oct-23 $\quad 439 \quad 08$--eb-25 $\quad 23$-Apr-25 $60 \mathrm{dd} / \mathrm{w} \times 10$	0	$05-O c t-22$	696	$08-\mathrm{Feb}-25$		$6 d / \mathrm{w} \times 10$
1	05					

 $12 \begin{array}{lllllll} & 31-J u l-23 & 12-A u g-23 & 465 & 22-\mathrm{Feb}-25 & 07-\mathrm{Mar}-25 & 6 d / \mathrm{w} \times 10\end{array}$ 6 13-Sep-23 $\begin{array}{lllllll}19-S e p-23 & 439 & 08-M a r-25 & 14-M a r-25 & 6 d / w \times 10\end{array}$ 30 20-Sep-23 $\begin{array}{lllllll}27-0 \mathrm{Cc}-23 & 439 & 15-\mathrm{Mar-25} & 23-\mathrm{Apr}-25 & 6 \mathrm{~d} / \mathrm{w} \times 10\end{array}$ \begin{tabular}{lllllll}
0 \& $21-O c t-23$ \& $21-O c t-23$ \& 444 \& $24-A p-25$ \& $24-A p-25$ \& $6 d / w \times 10$

\hline

0 \& 21-Oct-23 \& 444 \& $24-A p r-25$ \& $6 d / w \times 10$

\hline
\end{tabular} 592 17-Sep-23 $30-A p r-25 \quad 0 \quad$ 23-Apr-24 $\quad 30-A p r-25 \quad 7 d / w \times 10$

B Remanining Worits at Hositit Area
\longrightarrow Fitoüt \& Plumber Wotks- Waterc Coset Room

\square Car Park- AB ©
\square Caf Park- Electric Velice Charging Fagilities

- ABWF a FS Works for Senver Rooms Seaurity Contuol:Room

- ABWF:ZFS Works for Main Control Room

\square Electicial Power system noc testing tor Basement
\ldots Electical Powers Sysiemminil. testing tor Second Froor

- Teminination of Cabie fo to xafaer Cabale Laying by insisbig

TTime R Rsk Alowance for Activities WSD-KD2-01 to WSD-KD2-04

Ext Works : Backifiling to to Ground Leve !
\Longrightarrow Ext Works- Constriction of Remaning Concrefée Pavenent
\square Ext Worns Constriction of Staicase, ABWF

- Time Risk Allowance for Exxemà Works
- Testing $\&$ Commisiofing α fixing defects FSS-Related

 EEW No:2 - Preparation Nörks on Stricturáal Suppor at Administration Building for Mic Bridge Erection

- EW No.z- Remaning:ABWF, Firout, Bs Works along Mic Bridge

WSD-W-W1-01 Completion of Structural Support at Administration Builing (integrated in Stuctural Element, RC Slab on Inspection \& Approval by Government Authorities

FIRST PROGRAMME REV. 1
ALL ACTIVITIES

俊 和	Date	Revision	Checked	Approved
	03-Nov-21	Revision 0 First Issue	AH	WJ
	19-Jan-22	Revision 1 First Issue	PF	AH
	08-Feb-22	Revision 2 First Issue		

 $\begin{array}{lllllllll}60 & \text { 17-Sep-23 } & \text { 15-Nov-23 } & 219 & 23-A p r-24 & 21-\text {-un-24 } & 7 \mathrm{Td} / \mathrm{w} \times 10\end{array}$ 60 16-Nov-23 14 14-Jan-24 $219 \begin{array}{lllll}22-\mathrm{Jun}-24 & 20-\mathrm{Aug}-24 & 7 d / w \times 10\end{array}$ 60 15-an-24 14-Mar-24 219 21-Aug-24 19-0ct24 60 15-Van-2 30 15-Mar-24 \quad 13-Ap--24 219 20-OCt-24 \quad 18-Nov-24 78 7dw x10 42 14-Apr-24 $\quad 25-\mathrm{May}-24 \quad 219$ 19-Nov-24 \quad 30-Dec-24 $\quad 7 \mathrm{7d} \mathrm{w} \times 10$ 6 26-May-24 $\begin{array}{lllllll}\text { 31-May-24 } & 219 & \text { 31-Dec-24 } & \text { 05-Jan-25 } & 7 d / w \times 10\end{array}$ 6 01-Jun-24 06-Jun-24 219 06-Jan-25 11-Jan-25 7dw $\times 10$ 96 08-My-24 11 Aug-24 153 08-0t24 11-25 7 25 60 08-May-24 06 -Jul-24 153 30 07-Jul-24 $\quad 05$-Aug-24 $\quad 153 \begin{array}{llllll}07-\text { Dec-24 } & 05-J a n-25 & 7 d / w \times 10\end{array}$ 6 06-Aug-24 \quad 11-Aug-24 153 06-Jan-25 $\begin{array}{llllll}\text { 11-Jan-25 } & 7 d / w \times 10\end{array}$ 110 24-Sep-24 11-Jan-25 0 24-OCt-24 11-Jan-25 $7 \mathrm{dd} / \mathrm{wx} \times 10$ 21 24-OCt-24 13 -Nov-24 0 24-Oct-24 13 -Nov-24 $7 \mathrm{7d} / \mathrm{w} \times 10$ $45 \quad$ 14-Nov-24 $\quad 28$-Dec-24 $\quad 0 \quad$ 14-Nov-24 $\quad 28$-Dec-24 7 7dw $\times 10$ 14 29-Dec-24 11 1-Jan-25 00 29-Dec-24 \quad 11-Jan-25 $7 \mathrm{7d} / \mathrm{w} \times 10$ | 21 | 24-Sep-24 | 14-Oct-24 | 30 | $24-O c t-24$ | $13-N o v-24$ | $7 d / w \times 10$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 45 15-Oct-24 $\quad 28$-Nov-24 30 14-Nov-24 28 28-Dec-24 $\quad 7 \mathrm{dd} / \mathrm{w} \times 10$ 14 29-Nov-24 12 12-Dec-24 30 29-Dec-24 \quad 11-Jan-25 7 7dw $\times 10$ 109 11-Jan-25 30-Apr-25 0 11-Van-25 30-Apr-25 $7 \mathrm{7d} / \mathrm{w} \times 10$

 $\begin{array}{llllllll}14 & \text { 12-Jan-25 } & 25-J a n-25 & 0 & 12-\mathrm{Jan}-25 & 25-\mathrm{Jan}-25 & 7 \mathrm{~d} / \mathrm{w} \times 10\end{array}$ 28 26-Jan-25 22 22-eb-25 00 26-Van-25 22 22-Feb-25 $7 \mathrm{7d} / \mathrm{w} \times 10$ 14 23-Feb-25 08 08-Mar-25 $\quad 0 \quad$ 23-Feb-25 $\quad 08$-Mar-25 $\quad 7 \mathrm{7d} / \mathrm{w} \times 10$ $\begin{array}{lllllll}0 & 08-M a r-25 & 0 & 08-M a r-25 & 7 d / w \times 10\end{array}$ \begin{tabular}{l|l|l|l|l|}
0 \& $27-$-eb-25 \& 0 \& 27 -eeb- 25 \& $7 d / w \times 10$

14 \& 27-Feb-25 \& 12-Mar-25 \& 0 \& 27-Feb-25 \& 12-Mar-25 \& $7 d / w \times 10$

\hline

28 \& 13-Mar-25 \& $09-\mathrm{Apr}-25$ \& 0 \& $13-\mathrm{Mar}-25$ \& $09-\mathrm{Apr}-25$ \& $7 d / w \times 10$

\hline
\end{tabular} 14 10-Apr-25 23 23-Ap-25 $\quad 0 \quad$ 10-Apr-25 23 23-Ap-25 7 7dw 10 $\begin{array}{llllllll}7 & \text { 24-Apr-25 } & \text { 30-Apr-25 } & 0 & \text { 24-Ap-25 } & 30-A p-25 & 7 d / w \times 10\end{array}$

 $\begin{array}{lllllll}156 & \text { 24-Jan-24 } & 27-J n n-24 & 300 & 19-S e p-24 & 23-A p r-25\end{array}$
12 24-Jan-24 06 -Feb-24 1931 19-Sep-24 $03-$ Oct-24 6 6dw $\times 10$ 30 07-Feb-24 $\begin{array}{lllllll}15-M a r-24 & 213 & 29-\mathrm{Oct}-24 & 02-\text { Dec-24 } & 6 d \mathrm{~d} w \times 10\end{array}$ $20 \quad$ 16-Mar-24 \quad 12-Apr-24 219 10-Dec-24 \quad O4-Jan-25 $6 \mathrm{6d} / \mathrm{w} \times 10$ $20 \quad 13$-Apr-24 $\quad 07$ 07-May-24 219 06-Jan-25 $\begin{array}{llllll}28-J a n-25 ~ & 6 d / w \times 10\end{array}$ 18 08-May-24 $29-\mathrm{May}-24 \quad 219$ 01-Feb-25 $\quad 21$-Feb-25 $6 \mathrm{ddw} \times 10$

 30 10-May-24 $\quad 08-$-un-24 319 25-Mar-25 \quad 23-Ap-25 $\quad 7 \mathrm{7d} / \mathrm{w} \times 10$ 162 07-Feb-24 26 26-Aug-24 193 04-Oct-24 $\quad 23$-Ap-25 $6 d \mathrm{~d}$ w x10 12 07-Feb-24 23 23-eb-24 $1930404-\mathrm{Oc}-24 \quad 18-\mathrm{Oc}-24 \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ 30 16-Mar-24 24 24-Apr-24 213 03-Dec-24 09 09-Jan-25 $6 d / w \times 10$ $20 \quad$ 25-Apr-24 $\quad 20-\mathrm{May}-24 \quad 213$ 10-Jan-25 0505 -Feb-25 $\quad 6 \mathrm{~d} / \mathrm{w} \times 10$ $\begin{array}{lllllllll}20 & \text { 21-May-24 } & 13 \text {-Jnn-24 } & 213 & 06 \text {-Feb- } 25 & 28-\text {-eb- } 25 & 6 d / w \times 10\end{array}$ 18 14-Jun-24 $\quad 05-\mathrm{Jul}-24 \quad 213$ 01-Mar-25 21 21-Mar-25 $\quad 6 \mathrm{~d} / \mathrm{w} \times 10$ 24 06-Jul-24 02-Aug-24 213 22-Mar-25 \quad 23-Apr-25 6 6dw x10 | 60 | $10-M a y-24$ | $22-\mathrm{Jul}-24$ | 193 | $31-D e c-24$ | $14-\mathrm{Mar}-25$ | $6 \mathrm{~d} / \mathrm{w} \times 10$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\square CSD DG Drawings Sescond Amend ment
$\Longrightarrow F S D$ DG Dawings Third Amendme

\square FSb́-vD Review \& Inspection Rect Rification Wobrks

- Fsis vo is is uie eteteroficoompiaince
-FSCD Issue of DG:License
EDD EPDD Drawno Submistion \& Abproval
\square EPDD Ste inspection \& Rectification Wo Works
I EPD Aporovalissue
 \square WSD Site Inspection \&: Rectfication Wörks by WSD: (PD) - :WंSD - Issue Win' - WSD-SUbonit WWO 46 Paid IV (FSS \& ATrange Inspection by WSD \square WśD Site Inspection \& Rectification: Works by WSD: (FS)

- FSD: Submit Form FSS5j1314/501

- FSD-FSE processses Fom 21 15/31415014 a arang ind for Inspection
- ESD-FS Inspection, Recififacition and Reinspection
- FSD ESD processes FSC Centificate Fom 172

- BD: Suụ̈mit Form BAía
- BD BC Processes Fom BAiza\&Arangingor Inspection
- BD Inspection \& Recificatition Works
- BD- Issue DṔC Cerififiate

GRof 2FF Level Constructoron of Planter Separation

 C.Roof if Liteve - Filling of Soill Layer

- G. Roof zaf Level-Vegetation Planting
 G. Roof 2if Leve in intalation Eighting
G. Foof RFFFLevel - Consstuctioton of P Panaiter Separation

G Roof Rif Level Filling of soil Layer

GRoof Rif Lével Instalation of Paving Stones on Walifway

Date	Revision	Checked	Approved
O3-Nov-21	Revision 0 First Issue	AH	WJ
19--an-22	Revision 1 First Issue	PF	AH
O8-Feb-22	Revision 2 First Issue		

Contract No. 6/WSD/21 In-situ Reprovisioning of Sha Tin Water Treatment Works (South Works) Administration Building

\square

Courtyard at Ground Level
$\begin{array}{ll}\text { Courtyard at Ground Level } \\ \text { WSD-W2-CY01 } & \text { G.Roof G/F Level - Formaiton of Slope profile (Grid } H-M / 5 \text {-9) }\end{array}$
WSD-W2-CY02 G.Roof G/F Level- Hydroseeding on Slope
WSD-W2-CY03 G.Roof G/F Level - Concrete Structure incl. Planter/ Beaing Wall Bench
WSD-W2-CY04 G.Roof G/F Level - Installation of Drainage System at Courtyard
WSD-W2-CY05 G.Roof G/F Level - Installation of Irigation Pipeworks \& Inigation Point
WSD-W2-CY06 G.Roof G/F Level - Laying of Waterrroof Membrane with Protection Screeding
WSD-W2-CY07 G.Roof G/F Level- Soil Placement in Planter (2m depth)
WSD-W2-CY08 G.Roof GIF Level- Tree Transplant (39nos)
WSD-W2-CY09 G.Roof G/F Level - G.Roof G/F Level - Shub Planting
WSD-W2-CY10 G.Roof G/F Level- Hydroseding on Lawn
WSD-W2-CY10.5 Time Risk Allowance for Activities from WSD-W2-CY01 to WSD-WC-CY-10
WSD-W2-CY11 G.Roof G/F Level - Architechural Works/ Balustrade Installation
WSD-W2-CY12 G.Roof G/F Level - Installation of Lighting
WSD-W2-CY13 G.Roof G/F Level- Installation of Paving Stones on Walkway
WSD-W2-CY14 G.Roof G GF Level - Wateproof, Extemal Paster applied to Retaining Wall
WSD-W2-CY15 G.Roof GIF Level - Installation of Green Climber System on Retaining Wal
WSD-W2-CY16 G.Roof G/F Level - Soil Placement around Retaining Wall
WSD-W2-CY17 G.Roof G/F Level - Vertical Planting on Climber System
WSD-W2-CY18 G.Roof G/F Level - Final Inspection \& Handover to Client
WSD-W2-CY19 Planned Project Completion
Site Works for Section 2A
WSD-W2A-01 Establishment Works
WSD-W2A-02 Final Inspection \& Handover to Client

463 24-Jan-24 30 -Apr-25 00 24-Jan-24 30 -Ap-25 48 24-Jan-24 22 -Mar-24 0 24-Jan-24 22 -Mar-24 $6 d / \mathrm{w} \times 10$ 30 23-Mar 24 02May 24 O 23 Mar 24 02May 24 Gdw $\begin{array}{llllllll}30 & \text { 23-Mar-24 } & 02-\mathrm{May}-24 & 0 & \text { 23-Mar-24 } & 02-\mathrm{May}-24 & 6 d / \mathrm{w} \times 1\end{array}$ $48 \quad 03-$ May-24 $29-\mathrm{Jnn}-24 \quad 0 \quad 03-\mathrm{May}-24 \quad 29-\mathrm{Jun}-24 \quad 6 \mathrm{~d} / \mathrm{w} \times 10$ 48 02-Jul-24 26 -Aug-24 $\quad 0 \quad 02-$ Jul-24 $\quad 26$-Aug-24 $\quad 6 \mathrm{~d} / \mathrm{w} \times 10$ $48 \quad 02-\mathrm{Jul}-24 \quad 26$-Aug-24 $\quad 0 \quad 02-\mathrm{Jul}-24 \quad 26$ 2-Aug-24 $\quad 6 \mathrm{~d} / \mathrm{w} \times 10$	36	$27-A u g-24$	$09-O c t-24$	0	$27-A u g-24$	$09-0 c t-24$	$6 d / w \times 10$

 40 22-Nov-24 $\begin{array}{llllllll}10-\mathrm{Jan}-25 & 0 & 22-\mathrm{Nov}-24 & 10-\mathrm{Jan}-25 & 6 \mathrm{~d} / \mathrm{w} \times 10\end{array}$ 48 11-Jan-25 $\begin{aligned} & \text { 11-Mar-25 }\end{aligned} 0^{0}$ 11-Jan-25 \quad 11-Mar-25 6 6dw $\times 10$ 28 12-Mar-25 \quad 17-Apr-25 00 12-Mar-25 $\begin{array}{llllll}\text { 17-Apr-25 } & 6 d / w \times 10\end{array}$ 6 18-Apr-25 $\begin{array}{lllllll}63-A p r-25 & 0 & 18-A p r-25 & 23-A p r-25 & 7 d / w \times 10\end{array}$ 65 02-Jul-24 $\quad 14-$ Sep-24 $\quad 56 \quad 05-\mathrm{Sep}-24 \quad 22$-Nov-24 $\quad 6 \mathrm{~d} / \mathrm{w} \times 10$

 90 24-Oct-24 \quad 12-Feb-25 56 $\begin{array}{llllllll}12 & \text { 02-Jul-24 } & \text { 15-Jul-24 } & 205 & 08-\mathrm{Mar}-25 & 21-\mathrm{Mar}-25 & 6 \mathrm{~d} / \mathrm{w} \times 10\end{array}$ 12 16-Jul-24 $\begin{array}{lllllll}\text { 29-Jul-24 } & 205 & \text { 22-Mar-25 } & \text { 05-Apr-25 } & 6 d / w \times 10\end{array}$ \begin{tabular}{llllllll}
6 \& $30-J u-24$ \& $05-A u g-24$ \& 205 \& $07-A p-25$ \& $16-A p r-25$ \& $6 d / w \times 10$

\hline

 6 06-Aug-24 12 12-Aug-24 205 17-Ap--25 23 23-Ap-25 $6 d$ 6dw $\times 10$

7 \& 24-Apr-25 \& $30-A p r-25$ \& 0 \& $24-A p r-25$ \& $30-A p r-25$ \& $7 d / w \times 10$

\hline
\end{tabular}


```
        G:Roof GFFL Level -Hydroseeding on Slone
```


G. Roof Gif Leveil Soin placementin in planter (2m depth)
- GRop GGFFevel - Tree transplant (39nos)
GRoof G/F Eevel GRoof GiF Level -Shub Planting
- GRoof GF Level - Hydrobseeding on Lawin

G. Roof Gfi : Level:- Instalataton of Lighting

- G.Roof Gif Level Solil Placement around Retanining: Wall

Appendix D

Location of Construction Activities

In-situ Reprovisioning of Sha Tin Water Treatment Works - South Works
Monthly EM\&A Report (No. 95)

Appendix E

Environmental Sensitive Receivers in the Vicinity of the Projects

Appendix F

Summary of Action and Limit Levels

Determination of Action and Limit Levels for Air Quality

Monitoring Locations	Action Level 1-hour TSP, $\left(\boldsymbol{\mu g} / \mathbf{m}^{\mathbf{3}}\right)$	Limit Level 1-hour TSP, $\left(\boldsymbol{\mu g} / \mathbf{m}^{\mathbf{3}}\right)$
AM1	357	500
AM2	334	500

Determination of Action and Limit Levels for Noise

Monitoring Location	Action Level	Limit Level in dB(A)
	$0700-1900$ hours on normal weekdays	
NM1	When one documented complaint is received	For domestic premises: 75 dB(A) for NM1 \& NM2
	For schools: 70dB(A) during normal teaching periods and 65 dB(A) during NM2	examination periods for NM3
NM3		

Determination of Action and Limit Levels for Water Quality

Water monitoring stations	Dissolved Oxygen (mg/L)		Suspended Solids$(\mathrm{mg} / \mathrm{L})$		Turbidity (NTU)		pH	
	Action Level	Limit Level	Action Level	Limit Level	$\begin{aligned} & \text { Action } \\ & \text { Level } \end{aligned}$	Limit Level	Action Level	Limit Level
C1	7.51	7.44	4.19	6.73	3.99	4.00	Beyond the range 6.6 to 7.9	Beyond the range 6.5 to 8.0
C2	8.10	7.98	4.33	8.16	3.13	3.28	Beyond the range 6.6 to 8.8	Beyond the range 6.5 to 8.9
C3*	N/A							
M1	8.90	8.89	3.30	3.56	4.36	4.48	Beyond the range 6.6 to 8.2	Beyond the range 6.6 to 8.3
M2	8.92	8.91	18.84	26.80	12.64	13.72	Beyond the range 6.6 to 11.0	Beyond the range 6.6 to 11.0
M3	9.16	9.15	1.00	1.00	1.10	1.18	Beyond the range 6.6 to 8.6	Beyond the range 6.6 to 8.7

Remark: For DO, action should be taken when monitoring result of either one of the surface, middle or bottom DO is lower than the proposed Action/Limit Levels.

Appendix G

Event/Action Plan

Air Quality

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sample	1. Inform the Contractor, IEC and ER; 2. Discuss with the Contractor on the remedial measures required; 3. Repeat measurement to confirm findings; and 4. Increase monitoring frequency.	1. Check monitoring data submitted by the ET; 2. Check Contractor's working method; and 3. Review and advise the ET and ER on the effectiveness of the proposed remedial measures.	1. Confirm receipt of notification of exceedance in writing.	1. Identify source(s), investigate the causes of exceedance and propose remedial measures; 2. Implement remedial measures; and 3. Amend working methods agreed with the ER as appropriate.
2. Exceedance for two or more consecutive samples	1. Inform the Contractor, IEC and ER; 2. Discuss with the ER and Contractor on the remedial measures required; 3. Repeat measurements to confirm findings; 4. Increase monitoring frequency to daily; 5. If exceedance continues,	1. Check monitoring data submitted by the ET; 2. Check Contractor's working method; and 3. Review and advise the ET and ER on the effectiveness of the proposed remedial measures.	1. Confirm receipt of notification of exceedance in writing; 2. Review and agree on the remedial measures proposed by the Contractor; and 3. Supervise implementation of remedial measures.	1. Identify source and investigate the causes of exceedance; 2. Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; 3. Implement the agreed proposals; and

	arrange meeting with the IEC, ER and Contractor; and 6. If exceedance stops, cease additional monitoring.			4. Amend proposal as appropriate.
LIMIT LEVEL				
Event	ET	IEC	ER	CONTRACTOR
1. Exceedance for one sample	1. Inform the Contractor, IEC, EPD and ER; 2. Repeat measurement to confirm findings; 3. Increase monitoring frequency to daily; and 4. Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness.	1. Check monitoring data submitted by the ET; 2. Check the Contractor's working method; 3. Discuss with the ET, ER and Contractor on possible remedial measures; and 4. Review and advise the ER and ET on the effectiveness of Contractor's remedial measures.	1. Confirm receipt of notification of exceedance in writing; 2. Review and agree on the remedial measures proposed by the Contractor; and 3. Supervise implementation of remedial measures.	1. Identify source(s) and investigate the causes of exceedance; 2. Take immediate action to avoid further exceedance; 3. Submit proposals for remedial measures to ER with a copy to ET and IEC within three working days of notification; 4. Implement the agreed proposals; and 5. Amend proposal if appropriate.

	ET	IEC	ER	CONTRACTOR
2. Exceedance for two or more consecutive samples	1. Notify Contractor, IEC, EPD and ER; 2. Repeat measurement to confirm findings; 3. Increase monitoring frequency to daily; 4. Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented; 5. Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; 6. Review the effectiveness of the Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and 7. If exceedance stops, cease additional monitoring.	1. Check monitoring data submitted by the ET; 2. Check the Contractor's working method; 3. Discuss with ET, ER, and Contractor on the potential remedial measures; and 4. Review and advise the ER and ET on the effectiveness of Contractor's remedial measures.	1. Confirm receipt of notification of exceedance in writing; 2. In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; 3. Supervise the implementation of remedial measures; and 4. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Identify source(s) and investigate the causes of exceedance; 2. Take immediate action to avoid further exceedance; 3. Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification; 4. Implement the agreed proposals; 5. Revise and resubmit proposals if problem still not under control; and 6. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Noise

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
ACTION LEVEL	1. Notify the Contractor, IEC and ER; 2. Discuss with the ER and Contractor on the remedial measures required; and 3. Increase monitoring frequency to check mitigation effectiveness.	1. Review the investigation results submitted by the Contractor; and 2. Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor.	1. Confirm receipt of notification of complaint in writing; 2. Review and agree on the remedial measures proposed by the Contractor; and 3. Supervise implementation of remedial measures.	1. Investigate the complaint and propose remedial measures; 2. Report the results of investigation to the IEC, ET and ER; 3. Submit noise mitigation proposals to the ER with copy to the IEC and ET within three working days of notification; and 4. Implement noise mitigation proposals.
LIMIT LEVEL	1. Notify the Contractor, IEC, EPD and ER; 2. Repeat measurement to confirm findings; 3. Increase monitoring frequency; 4. Carry out analysis of	1. Check monitoring data submitted by the ET; 2. Check the Contractor's working method; 3. Discuss with the ER, ET and Contractor on the potential remedial measures;	1. Confirm receipt of notification of failure in writing; 2. In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be	1. Identify source and investigate the causes of exceedance; 2. Take immediate action to avoid further exceedance; 3. Submit proposals for remedial measures to the ER

	Contractor's working procedures to determine possible mitigation to be implemented; 5. Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; 6. Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and 7. If exceedance stops, cease	and 4. Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor.	implemented; 3. Supervise the implementation of remedial measures; and 4. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	with copy to the IEC and ET within three working days of notification; 4. Implement the agreed proposals; 5. Revise and resubmit proposals if problem still not under control; and 6. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

EVENT	ACTION			
	ET Leader	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	- Repeat in situ measurement to confirm findings; - Identify reasons for non-compliance and source(s) of impact; - Inform IEC and Contractor; - Check monitoring data, all plant, equipment and Contractor's working methods; - Discuss mitigation measures with IEC and Contractor; - Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures; - Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; - Assess the effectiveness of the Implemented mitigation measures.	- Discuss with IEC on the proposed mitigation measures; - Make agreement on the mitigation measures to be implemented. - Assess the effectiveness of the implemented mitigation measures.	- Inform the ER and confirm notification of the non-compliance in writing; - Rectify unacceptable practice; - Check all plant and equipment; - Consider changes of working methods; - Discuss with ET and IEC and propose mitigation measures to IEC and ER; - Implement the agreed mitigation measures.

	ET Leader	IEC	ER	CONTRACTOR
Action level being exceeded by more than one consecutive sampling day	Repeat in situ measurement to confirm findings; Identify reasons for non-compliance and source(s) of impact; - Inform IEC and Contractor; - Check monitoring data, all plant, equipment and Contractor's working methods; - Discuss mitigation measures with IEC and Contractor; - Ensure mitigation measures are implemented; - Prepare to increase the monitoring frequency to daily;	- Discuss with ET and Contractor on the mitigation measures; - Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; - Assess the effectiveness of the implemented mitigation measures.	- Discuss with IEC on the proposed mitigation measures; - Make agreement on the mitigation measures to be implemented; - Assess the effectiveness of the implemented mitigation measures.	- Inform the ER and confirm notification of the non-compliance in writing; - Rectify unacceptable practice; - Check all plant and equipment; - Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within three working days; - Implement the agreed mitigation measures.

	Repeat measurement on next day of exceedance.			
	ET Leader	IEC	ER	CONTRACTOR
Limit level being exceeded by one sampling day	- Repeat in situ measurement to confirm findings; - Identify reasons for non-compliance and source(s) of impact; - Inform IEC Contractor and EPD; - Check monitoring data, all plant, equipment and Contractor's working methods; - Discuss mitigation measures with IEC, ER and Contractor; - Ensure mitigation measures are implemented;	- Discuss with ET and Contractor on the mitigation measures; - Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; - Assess the effectiveness of the implemented mitigation measures.	- Discuss with IEC, ET and Contractor on the proposed mitigation measures; - Request Contractor to critically review the working methods; - Make agreement on the mitigation measures to be implemented; - Assess the effectiveness of the implemented mitigation measures.	- Inform the ER and confirm notification of the non-compliance in writing; - Rectify unacceptable practice; - Check all plant and equipment; - Consider changes of working methods; - Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within three working days; - Implement the agreed mitigation measures.

	Increase the monitoring frequency to daily until no exceedance of Limit level.			
	ET Leader	IEC	ER	CONTRACTOR
Limit level being exceeded by more than one consecutive sampling day	Repeat in situ measurement to confirm findings; Identify reasons for non-compliance and source(s) of impact; - Inform IEC Contractor and EPD; - Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; - Ensure mitigation measures are	- Discuss with ET and Contractor on the mitigation measures; - Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; - Assess the effectiveness of the implemented mitigation measures.	Discuss with IEC, ET and Contractor on the proposed mitigation measures; - Request Contractor to critically review the working methods; - Make agreement on the mitigation measures to be implemented; - Assess the effectiveness of the implemented mitigation measures; - Consider and instruct, if necessary, the Contractor to slow	- Inform the ER and confirm notification of the non-compliance in writing; - Rectify unacceptable practice; - Check all plant and equipment; - Consider changes of working methods; - Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within three working days; - Implement the agreed mitigation measures;

	implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days.		down or to stop all or part of the construction activities until no exceedance of Limit level.		As directed by the ER, to slow down or to stop all or part of the construction activities.

Appendix H

Impact Monitoring Schedules

Impact Monitoring Schedule for STWTW						
Jan-24						
Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2	3	4	5	6
		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	Impact Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3	Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3
7	8	9	10	11	12	13
	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	Impact Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3	Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	
14	15	16	17	18	19	20
	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3 Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	Impact Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3
21	22	23	24	25	26	27
	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3 Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3	
28	29	30	31			
	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3			

Appendix I

Location Plan of Air Quality Monitoring Station

Appendix J
 Calibration Certificates (Air Monitoring)

Certificate of Conformity

This instrument was produced under rigorous factory production control and documented standard procedures. It was individually visually inspected, leak tested and function tested for display, backlight, button and software performance. The accuracy of each of its primary measurements was individually calibrated and/or tested against standards traceable to the National Institute of Standards and Technology ("NIST") or calibrated intermediary standards. This instrument is certified to have performed at the time of manufacture in compliance with the following specifications as they apply to this meter's specific model, measurements and features.

Methods Used in Calibration and Testing

Wind Speed:

The Kestrel Pocket Weather Meter impeller installed in this unit was individually tested in a subsonic wind tunnel operating at approximately $300 \mathrm{fpm}(1.5 \mathrm{~m} / \mathrm{s})$ and $1200 \mathrm{fpm}(6.1 \mathrm{~m} / \mathrm{s})$ monitored by a Gill Instruments Model 1350 ultrasonic time-of-flight anemometer. The Standard's maximum combined uncertainty is $+/-1.04 \%$ within the airspeed range 706.6 to 3923.9 fpm (3.59 to $19.93 \mathrm{~m} / \mathrm{s}$), and $+/-1.66 \%$ within the airspeed range 166.6 to $706.6 \mathrm{fpm}(0.85$ to $3.59 \mathrm{~m} / \mathrm{s}$).

Temperature:

Temperature response is verified in comparison with a Eutechnics 4600 Precision Thermometer or a standard Kestrel 4000 Weather and Environmental Meter calibrated weekly against the Eutechnics 4600 . The Eutechnics 4600 is calibrated annually and is traceable to NIST with a system accuracy of $+/-0.05^{\circ} \mathrm{C}$.

Direction / Heading

The sensitivity of the magnetic directional sensor is verfied at the component level by applying a magnetic field to the sensor and measuring the signal output at 4 points, as well as after assembly by orienting the unit to the cardinal directions and measuring the magnetic field output. In both cases the compass output must be accurate to within $+/-5$ degrees.

Relative Humidity:

Relative humidity receives a two-point calibration in humidity and temperature controlled chambers at 75.3% RH and $32.8 \% \mathrm{RH}$ at $25^{\circ} \mathrm{C}$. The calibration tanks are monitored with an Edgetech Model 2002 DewPrime II Standard Chilled Mirror Hygrometer. Following calibration, performance is further verified at an RH of approximately 43.2% against the Edgetech Hygrometer. The Edgetech Hygrometer is calibrated annually and is traceable to NIST with a maximum relative expanded uncertainty of $+/-0.2 \%$ RH.

Barometric Pressure:

Pressure response is verified against a Mensor Series 6000 Digital Barometer or a standard Kestrel 4000 Weather and Environmental Meter calibrated weekly against the Mensor Barometer. The Mensor Barometer is calibrated annually and is traceable to NIST with a maximum relative expanded uncertainty of $+/-0.02 \%$ F.S.

Approved By:

Michael Naughton, Engineering Manager

áarecon

PC-3A(E) K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Standard Equipment Information		
Verification Equipment Type:	Tisch TSP HVS	Tisch HVS Calibrator
Standard Equipment Model No.:	TE-5170X	TE-5028A
Equipment serial no.:	1049	3702
Last Calibration Date:	8 -Apr-23	$31-M a r-23$
Next Calibration Date:	7 -Jun-23	$30-M a r-24$

Verification Test No.	Date	Duration				Results from Calibrated Equipement		Results from Standard Equipment

Linear Regression of y on x

Slope, K factor	3.0528	Intercept:	-0.0510	*Correlation Coefficient,R:	0.9978
Verification Test Result: Strong Correlation, Results were accepted.			* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.		

Operated By

Date: \qquad

áurecon

PC-3A(E) K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Standard Equipment Information

Standard Equipment Information		
Verification Equipment Type:	Tisch TSP HVS	Tisch HVS Calibrator
Standard Equipment Model No.:	TE-5170X	TE-5025A
Equipment serial no.:	1049	3465
Last Calibration Date:	1 -Mar-23	28 -Jun-22
Next Calibration Date:	$30-$ Apr-23	27-Jun-23

Equipement Vertification Result

Verification Test No.	Date	Duration			Results from Calibrated Equipement		Results from Standard Equipment
		Start-time	End-time	Elapsed Time (in min)	Total Counts	$\begin{gathered} \text { Counts/ Minute } \\ \text { x-axis } \\ \hline \end{gathered}$	Dust Concentration ($\mu \mathrm{g} / \mathrm{m}^{3}$) y-axis
1	1/3/2023	5013.27	5016.34	184.20	8596	47	139
2	1/3/2023	5016.34	5019.34	180.00	6540	36	109
3	1/3/2023	5019.34	5022.34	180.00	8340	46	137
4	2/3/2023	5022.34	5025.34	180.00	5040	28	82
5	2/3/2023	5025.34	5028.34	180.00	4320	24	71
6	2/3/2023	5028.34	5031.34	180.00	6360	35	106

Linear Regression of y on x

Slope, K factor:	3.0065	Intercept:	-1.1293	*Correlation Coefficient,R:	0.9997
Verification Test Result: Strong Correlation, Results were accepted.			- If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.		

Operated By:

Checked By:

Project Technician, Environmental

Date \qquad

Date \qquad 2-03-2023

In-situ Reprovisioning of Sha Tin Water Treatment Works - South Works
Monthly EM\&A Report (No. 95)

Appendix K

Impact Air Quality Monitoring Results and Graphical Presentation

The Summary of TSP-1hr Concentration ($\mu \mathrm{g} / \mathrm{m} 3$) at AM2
Hin Keng Estate - Hin Wan House

Appendix L

Location Plan of Noise Monitoring Station

Appendix M Calibration Certificates (Noise)

Certificate of Conformity

This instrument was produced under rigorous factory production control and documented standard procedures. It was individually visually inspected, leak tested and function tested for display, backlight, button and software performance. The accuracy of each of its primary measurements was individually calibrated and/or tested against standards traceable to the National Institute of Standards and Technology ("NIST") or calibrated intermediary standards. This instrument is certified to have performed at the time of manufacture in compliance with the following specifications as they apply to this meter's specific model, measurements and features.

Methods Used in Calibration and Testing

Wind Speed:

The Kestrel Pocket Weather Meter impeller installed in this unit was individually tested in a subsonic wind tunnel operating at approximately $300 \mathrm{fpm}(1.5 \mathrm{~m} / \mathrm{s})$ and $1200 \mathrm{fpm}(6.1 \mathrm{~m} / \mathrm{s})$ monitored by a Gill Instruments Model 1350 ultrasonic time-of-flight anemometer. The Standard's maximum combined uncertainty is $+/-1.04 \%$ within the airspeed range 706.6 to 3923.9 fpm (3.59 to $19.93 \mathrm{~m} / \mathrm{s}$), and $+/-1.66 \%$ within the airspeed range 166.6 to $706.6 \mathrm{fpm}(0.85$ to $3.59 \mathrm{~m} / \mathrm{s}$).

Temperature:

Temperature response is verified in comparison with a Eutechnics 4600 Precision Thermometer or a standard Kestrel 4000 Weather and Environmental Meter calibrated weekly against the Eutechnics 4600 . The Eutechnics 4600 is calibrated annually and is traceable to NIST with a system accuracy of $+/-0.05^{\circ} \mathrm{C}$.

Direction / Heading

The sensitivity of the magnetic directional sensor is verfied at the component level by applying a magnetic field to the sensor and measuring the signal output at 4 points, as well as after assembly by orienting the unit to the cardinal directions and measuring the magnetic field output. In both cases the compass output must be accurate to within $+/-5$ degrees.

Relative Humidity:

Relative humidity receives a two-point calibration in humidity and temperature controlled chambers at 75.3% RH and $32.8 \% \mathrm{RH}$ at $25^{\circ} \mathrm{C}$. The calibration tanks are monitored with an Edgetech Model 2002 DewPrime II Standard Chilled Mirror Hygrometer. Following calibration, performance is further verified at an RH of approximately 43.2% against the Edgetech Hygrometer. The Edgetech Hygrometer is calibrated annually and is traceable to NIST with a maximum relative expanded uncertainty of $+/-0.2 \%$ RH.

Barometric Pressure:

Pressure response is verified against a Mensor Series 6000 Digital Barometer or a standard Kestrel 4000 Weather and Environmental Meter calibrated weekly against the Mensor Barometer. The Mensor Barometer is calibrated annually and is traceable to NIST with a maximum relative expanded uncertainty of $+/-0.02 \%$ F.S.

Approved By:

Michael Naughton, Engineering Manager

Certificate of Calibration

for

Description:	Sound Level Calibrator
Manufacturer:	RION
Type No.:	NC-75
Serial No.:	34724243

Submitted by:

Customer:	Acuity Sustainability Consulting Limited
Address:	Unit E, 12/F, Ford Glory Plaza,
	Nos. $37-39$ Wing Hong Street,
	Cheung Sha Wan, Kowloon,
	Hong Kong

Upon receipt for calibration, the instrument was found to be:

\checkmark Within

Outsidethe allowable tolerance.
The test equipments used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard \& Calibration Laboratory

Date of receipt: 27 July 2023
Date of calibration: 3 August 2023
Date of NEXT calibration: 2 August 2024

Calibrated by:

Date of issue: 3 August 2023
Calibration Technician

Certificate No.: APJ23-049-CC005

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin, N. T.,Hong Kong

1. Calibration Precautions:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Specifications:

Calibration check

3. Calibration Conditions:

Air Temperature:	$22.6^{\circ} \mathrm{C}$
Air Pressure:	
Relative Humidity:	$\frac{1006}{} \mathrm{hPa}$

4. Calibration Equipment:

Test Equipment	Type	Serial No.	Calibration Report Number	Traceable to
Multifunction Calibrator	B\&K 4226	2288467	AV220061	HOKLAS
Sound Level Meter	RION NA-28	30721812	AV220120	HOKLAS

5. Calibration Results

5.1 Sound Pressure Level

Nominal value dB	Accept lower level dB	Accept upper level dB	Measured value dB
94.0	93.6	94.4	94.0

Note:
The values given in this certification only related to the values measured at the time of the calibration.

Certificate of Calibration

for

Description:	Sound Level Meter
Manufacturer:	Svantek
Type No.:	971 (Serial No.: 103449)
Microphone:	ACO 7052E (Serial No.: 78092)
Preamplifier:	SV 18 (Serial No.:78763)

Submitted by:

Customer: Acuity Sustainability Consulting Limited
Address: Unit E, 12/F, Ford Glory Plaza,
Nos. 37-39 Wing Hong Street,
Cheung Sha Wan, Kowloon,
Hong Kong
Upon receipt for calibration, the instrument was found to be:
\square Within $(31.5 \mathrm{~Hz}-8 \mathrm{kHz})$Outside
the allowable tolerance.
The test equipment used for calibration are traceable to National Standards via:
The Government of The Hong Kong Special Administrative Region Standard \& Calibration Laboratory

Date of receipt: 2 February 2023

Date of calibration: 6 February 2023
Date of NEXT calibration: 5 February 2024

Calibrated by: \qquad
Calibration Technician
Date of issue: 6 February 2023
Certificate No.: APJ22-136-CC001

Laboratory Manager
-
Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin, N. T., Hong Kong

$(A+A) * L$
 Acousics and Air Testing Laboratiory Co．Ltd．\square｜｜｜｜
 聲學及空氣測試實驗室有限公司

1．Calibration Precaution：

－The unit－under－test（UUT）was allowed to stabilize in the laboratory for over 24 hours， and switched on to warm up for over 10 minutes before the commencement of the test．
－The results presented are the mean of 3 measurements at each calibration point．
2．Calibration Conditions：

Air Temperature：	$23.9{ }^{\circ} \mathrm{C}$
Air Pressure：	
Relative Humidity：	1006
hPa	

3．Calibration Equipment：

	Type	Serial No．	Calibration Report Number	Traceable to
Multifunction Calibrator	B\＆K 4226	2288467	AV220061	HOKLAS

4．Calibration Results

Sound Pressure Level
Reference Sound Pressure Level

Setting of Unit－under－test（UUT）				Applied value		UUT Reading， dB	IEC 61672 Class 1 Specification，dB
Range，dB	Freq．	hting	Time Weighting	Level，dB	Frequency， Hz		
25－124．3	dBA	SPL	Fast	94	1000	94.0	± 0.4

Linearity

Setting of Unit－under－test（UUT）				Applied value		UUT Reading， dB	IEC 61672 Class 1 Specification，dB
Range，dB	Freq．W	ghting	Time Weighting	Level，dB	Frequency， Hz		
25－124．3		SPL	Fast	94	1000	94.0	Ref
				104		104.0	± 0.3
				114		114.0	± 0.3

Time Weighting

Setting of Unit－under－test（UUT）				Applied value		UUT Reading， dB	IEC 61672 Class 1 Specification，dB
Range，dB	Freq．	hting	Time Weighting	Level，dB	Frequency， Hz		
25－124．3	dBA	SPL	Fast	94	1000	94.0	Ref
			Slow			94.0	± 0.3

Certificate No．：APJ22－136－CC001

Page 2 of 4

Frequency Response
Linear Response

Setting of Unit－under－test（UUT）			Applied value		UUT Reading， dB	IEC 61672 Class 1 Specification，dB
Range，dB	Freq．Weighting	Time Weighting	Level，dB	Frequency， Hz		
25－124．3	dB SPL	Fast	94	31.5	94.2	± 2.0
				63	94.1	± 1.5
				125	94.1	± 1.5
				250	94.1	± 1.4
				500	94.0	± 1.4
				1000	94.0	Ref
				2000	93.9	± 1.6
				4000	93.6	± 1.6
hti				8000	90.9	＋2．1；－3．1

Setting of Unit－under－test（UUT）			Applied value		UUT Reading， dB	IEC 61672 Class 1 Specification，dB
Range，dB	Freq．Weighting	Time Weighting	Level，dB	Frequency， Hz		
25－124．3	dBA SPL	Fast	94	31.5	54.8	-39.4 ± 2.0
				63	68.0	-26.2 ± 1.5
				125	78.0	-16.1 ± 1.5
				250	85.4	-8.6 ± 1.4
				500	90.8	-3.2 ± 1.4
				1000	94.0	Ref
				2000	95.1	$+1.2 \pm 1.6$
				4000	94.6	$+1.0 \pm 1.6$
				8000	90.0	－1．1＋2．1；－3．1

C－weighting

Setting of Unit－under－test（UUT）			Applied value		UUT Reading dB	$\begin{array}{\|l\|} \text { IEC } 61672 \text { Class 1 } \\ \text { Specification, dB } \\ \hline \end{array}$
Range，dB	Freq．Weighting	Time Weighting	Level，dB	Frequency， Hz		
25－124．3	dBC SPL	Fast	94	31.5	91.2	-3.0 ± 2.0
				63	93.3	-0.8 ± 1.5
				125	93.9	-0.2 ± 1.5
				250	94.0	-0.0 ± 1.4
				500	94.1	-0.0 ± 1.4
				1000	94.0	Ref
				2000	93.7	-0.2 ± 1.6
				4000	92.9	-0.8 ± 1.6
				8000	88.1	－3．0＋2．1：－3．1

Room 422，Leader Industrial Centre，57－59 Au Pui Wan Street ，Fo Tan，Shatin，N．T．，Hong Kong

$(A+A)^{*} L$

 聲學及空氣測試實驗室有限公司

5．Calibration Results Applied

The results apply to the particular unit－under－test only．All calibration points are within manufacture＇s specification as IEC 61672 Class 1.

Uncertainties of Applied Value：

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.05
	125 Hz	± 0.05
	250 Hz	± 0.10
	500 Hz	± 0.05
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level．

Note：
The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long－term drift，variations with environmental changes，vibration and shock during transportation，overloading，mis－handling， or the capability of any other laboratory to repeat the calibration．（ $\mathrm{A}+\mathrm{A}$ ）＊ L shall not be liable for any loss or damage resulting from the use of the equipment．

Appendix N

Impact Noise Monitoring Results and Graphical Presentation

Appendix O

Location Plan of Water Quality Monitoring Station

Appendix P

Calibration Certificate (Water Quality)

REPORT OF EQUIPMENT PERFORMANCE CHECK／CALIBRATION

Test Report No．	$:$ R－BC100051
Date of Issue	$: 24$ October 2023
Page No．	$: 1$ of 2

PART A－CUSTOMER INFORMATION
Acuity Sustainability Consulting Limited
Unit E，12／F，Ford Glory Plaza 37－39 Wing Hong Street，Cheung Sha Wan，Kowloon，Hong Kong

PART B－SAMPLE INFORMATION

Name of Equipment ：
Manufacturer ：
Serial Number ：
Date of Received ：
Date of Calibration ：
Date of Next Calibration ：
Request No．：

YSI ProDSS（Multi－Parameters）
YSI（a xylem brand）
22C106561
19 October 2023
24 October 2023
23 January 2024
D－BC100051

PART C－REFERENCE METHODS／DOCUMENTS FOR THE CALIBRATION

Test Parameter
pH value
Temperature

Salinity
Dissolved oxygen
Turbidity

Reference Method

APHA 21e $4500-\mathrm{H}^{+}$B
Section 6 of international Accreditation New Zealand Technical Guide no． 3 Second edition March 2008：Working Thermometer Calibration Procedure
APHA 21e 2520 B
APHA 23e 4500－O G（Membrane Electrode Method）
APHA 2le 2130 B（Nephelometric Method）

PART D－CALIBRATION RESULT
（1） pH value

Target（ $\mathbf{p H}$ unit ）	Display Reading（ $\mathbf{p H}$ unit ）	Tolerance	Result
4.00	4.09	0.09	Satisfactory
7.42	7.46	0.04	Satisfactory
10.01	10.08	0.07	Satisfactory

Tolerance of pH value should be less than ± 0.2（ pH unit）
（2）Temperature

Reading of Ref．thermometer（ ${ }^{\circ} \mathbf{C}$ ）	Display Reading（ ${ }^{\circ} \mathbf{C}$ ）	Tolerance	Result
16	15.6	-0.4	Satisfactory
23	22.1	-0.9	Satisfactory
38	36.9	-1.1	Satisfactory

Tolerance of Temperature should be less than $\pm 2.0\left({ }^{\circ} \mathrm{C}\right)$
（3）Salinity

Expected Reading（g／L）	Display Reading（g／L）	Tolerance（\％）	Result
10	10.01	0.10	Satisfactory
20	20.63	3.15	Satisfactory
30	31.63	5.43	Satisfactory

Tolerance of Salinity should be less than ± 10.0（\％）

REPORT OF EQUIPMENT PERFORMANCE CHECK／CALIBRATION
 Test Report No．
 Date of Issue
 Page No．
 ：R－BC100051
 ： 24 October 2023
 ： 2 of 2

（4）Dissolved oxygen

Expected Reading（ $\mathbf{m g} / \mathbf{L}$ ）	Display Reading（ mg／L ）	Tolerance	Result
8.17	8.55	0.38	Satisfactory
5.47	5.83	0.36	Satisfactory
1.43	1.21	-0.22	Satisfactory
0.05	0.27	0.22	Satisfactory

Tolerance of Dissolved oxygen should be less than ± 0.5（ mg / L ）
（5）Turbidity

Expected Reading（NTU ）	Display Reading（NTU ）	Tolerance（\％）	Result
0	0.79	--	Satisfactory
10	9.66	-3.4	Satisfactory
20	18.21	-9.0	Satisfactory
100	97.55	-2.5	Satisfactory
800	753.80	-5.8	Satisfactory

Tolerance of Turbidity should be less than ± 10.0（\％）

Remark（s）

－The＂Date of Next Calibration＂is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards．
－The results relate only to the calibrated equipment as received
－The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source．
＂Displayed Reading＂denotes the figure shown on item under calibration／checking regardless of equipment precision or significant figures．
The＂Tolerance Limit＂mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test－Consult Ltd．or quoted form relevant international standards．

REPORT OF EQUIPMENT PERFORMANCE CHECK／CALIBRATION

Test Report No
：R－BD010030
Date of Issue
： 25 January 2024
Page No．
： 1 of 2

PART A－CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited
Unit E，12／F，Ford Glory Plaza 37－39 Wing Hong Street，Cheung Sha Wan，Kowloon，Hong Kong

PART B－SAMPLE INFORMATION

Name of Equipment ：
Manufacturer ：
Serial Number ：
Date of Received ：
Date of Calibration ：
Date of Next Calibration ：
Request No．：

YSI ProDSS（Multi－Parameters）
YSI（a xylem brand）
22C106561
22 January 2024
24 January 2024
24 April 2024
D－BD010030

PART C－REFERENCE METHODS／DOCUMENTS FOR THE CALIBRATION

Test Parameter

pH value
Temperature

Salinity
Dissolved oxygen
Turbidity

Reference Method

APHA 21e $4500-\mathrm{H}^{+}$B
Section 6 of international Accreditation New Zealand Technical Guide no． 3 Second edition March 2008：Working Thermometer Calibration Procedure
APHA 21e 2520 B
APHA 23e 4500－O G（Membrane Electrode Method）
APHA 21e 2130 B（Nephelometric Method）

PART D－CALIBRATION RESULT

（1） pH value

Target（ $\mathbf{p H}$ unit ）	Display Reading（ $\mathbf{p H}$ unit ）	Tolerance	Result
4.00	4.02	0.02	Satisfactory
7.42	7.45	0.03	Satisfactory
10.01	10.05	0.04	Satisfactory

Tolerance of pH value should be less than ± 0.2（ pH unit ）
（2）Temperature

Reading of Ref．thermometer $\left({ }^{\circ} \mathbf{C}\right)$	Display Reading $\left({ }^{\circ} \mathbf{C}\right)$	Tolerance	Result
33	34.1	1.1	Satisfactory
19	18.7	-0.3	Satisfactory
11	11.5	0.5	Satisfactory

Tolerance of Temperature should be less than $\pm 2.0\left({ }^{\circ} \mathrm{C}\right)$
（3）Salinity

Expected Reading（g／L ）	Display Reading（g／L ）	Tolerance（\％）	Result
10	10.19	1.90	Satisfactory
20	21.27	6.35	Satisfactory
30	30.21	0.70	Satisfactory

Tolerance of Salinity should be less than ± 10.0（\％）

－－－CONTINUED ON NEXT PAGE－－－

AUTHORIZED
SIGNATORY：

REPORT OF EQUIPMENT PERFORMANCE CHECK／CALIBRATION

Test Report No．	$:$ R－BD010030
Date of Issue	$: 25$ January 2024
Page No．	$: 2$ of 2

（4）Dissolved oxygen

Expected Reading（ mg／L）	Display Reading（ mg／L ）	Tolerance	Result
8.60	8.89	0.29	Satisfactory
5.33	5.70	0.37	Satisfactory
3.40	3.50	0.10	Satisfactory
0.34	0.26	-0.08	Satisfactory

Tolerance of Dissolved oxygen should be less than ± 0.5（ mg / L ）

（5）Turbidity

Expected Reading（NTU ）	Display Reading（NTU ）	Tolerance（\％）	Result
0	0.50	--	Satisfactory
10	9.88	-1.2	Satisfactory
20	18.35	-8.2	Satisfactory
100	95.10	-4.9	Satisfactory
800	736.55	-7.9	Satisfactory

Tolerance of Turbidity should be less than ± 10.0（\％）

Remark（s）

－The＂Date of Next Calibration＂is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards． －The results relate only to the calibrated equipment as received
 source．
＂Displayed Reading＂denotes the figure shown on item under calibration／checking regardless of equipment precision or significant figures．
－The＂Tolerance Limit＂mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test－Consult Ltd．or quoted form relevant international standards．

Appendix Q

The Certification of Laboratory with HOKLAS accredited Analytical Tests

Hong Kong Accreditation Service番港認可慮

Certificate of Accreditation

認可證書

This is to certify that責砋跺勝

ACUMEN LABORATORY AND TESTING LIMITED

浩科檢測中心有限公司

Flat／Rm D，12／F，Ford Glory Plaza，Nos．37－39 Wing Hong Street，Cheung Sha Wan，Kowloon， Hong Kong番港九能長沙澡永康街37－39號洫源廣場12樓D室
is accredited by the Hong Kong Accreditation Service（HKAS）to ISOMEC 17025：2017 for performing specific laboratory activities as listed in the scope of accreditation within the test category of

Environmental Testing

環境測試

This accreditation to ISOMEC 17025：2017 demonstrates fochnical competence for a defined scope and the implementation of a management system revevant fo laboratory operation （see joint IAF－ILAC－ISO Communiqué）．

The common seal of HKAS is affixed hereto by the authonity of the HKAS Executive

畭行幹事 沈偉良
Issue Date： 15 November 2021
铰强日期：二雾二一年十一月十五日
Registration Number：HOKLAS 241
註冊嘘磁：

Date of First Registration ： 16 July 2014首次註册日期：二雪一四年七月十六日

Appendix R

Impact Water Quality Monitoring Results

Date	Time	Weather	Location	Co-ordinates			Sample Depth	Temp.		DO con.			Turbidity			pH				$\frac{\mathrm{ss}}{\mathrm{mg} / \mathrm{L}}$
				East	North	m		${ }^{\circ} \mathrm{C}$		mg / L			NTU				unit			
2/1/2024	9:38	Fine	C1	835110	824716	0.04	0.02	15.91	15.96		10.16	10.92		0		0	6.77		6.77	<1
	10:03	Fine	C2	835403	824470	0.02	0.01	15.58	15.61		10.66	10.56		0		0	7.0		7.07	<1
	N/A	Fine	C3	835642	824386	N/A	N/A	N/A	N/A	N/A		N/A	N/A		N/A		N/A	N/A		N/A
	9:43	Fine	M1	835215	824827	0.8	0.4	16.63	16.67		10.74	10.18		0		0	6.81		6.75	<1
	9:58	Fine	M2	835536	824775	0.05	0.025	15.64	15.67		10.24	10.86		0			7.13		7.11	<1
	10:00	Fine	M3	835501	824648	0.02	0.01	15.51	15.57		10	10.16		0		0	7.09		7.08	<1
4/1/2023	10:00	Fine	C1	835110	824716	0.04	0.02	14.48	14.51		10.82	10.7		0		0	6.63		6.68	<1
	9:35	Fine	C2	835403	824470	0.02	0.01	14.52	14.54		10.46	10.21		0		0	6.68		6.66	2.1
	N/A	Fine	C3	835642	824386	N/A	N/A	N/A	N/A	N/A		N/A	N/A		N/A		N/A	N/A		N/A
	10:05	Fine	M1	835215	824827	0.8	0.4	14.99	15.01		12.03	12.01		0		0	6.75		6.73	<1
	9:30	Fine	M2	835536	824775	0.05	0.025	14.56	14.56		10.34	10.81		0		0	7.06		7.07	<1
	9:32	Fine	M3	835501	824648	0.02	0.01	14.53	14.56		10.28	10.41		0		0	7.1		7.15	<1
6/1/2024	9:31	Fine	C1	835110	824716	0.04	0.02	14.82	14.84		10.41	10.71		0		0	7.6		7.69	<1
	9:56	Fine	C2	835403	824470	0.02	0.01	14.65	14.69		10.69	10.28		0		0	7.64		7.66	<1
	N/A	Fine	C3	835642	824386	N/A	N/A	N/A	N/A	N/A		N/A	N/A		N/A		N/A	N/A		N/A
	9:36	Fine	M1	835215	824827	0.8	0.4	14.99	15.02		11.48	11.23		0		0	7.67		7.67	<1
	9:51	Fine	M2	835536	824775	0.05	0.025	14.7	14.74		10.22	10.9		0		0	8.03		7.92	<1
	9:53	Fine	M3	835501	824648	0.02	0.01	15.26	15.27		11.56	11.43		0		,	7.72		7.71	<1
8/1/2024	9:36	Fine	C1	835110	824716	0.04	0.02	15.45	15.46		10.32	10.57		0		0	7.57		7.55	<1
	10:01	Fine	C2	835403	824470	0.02	0.01	14.62	14.63		10.11	10.07		0		0	7.37		7.39	<1
	N/A	Fine	C3	835642	824386	N/A	N/A	N/A	N/A	N/A		N/A	N/A		N/A		N/A	N/A		N/A
	9:41	Fine	M1	835215	824827	0.8	0.4	15.9	15.91		11.08	11.53		0		0	7.75		7.74	<1
	9:56	Fine	M2	835536	824775	0.05	0.025	14.49	14.53		10.3	10.69		0		0	7.4		7.42	<1
	9:58	Fine	M3	835501	824648	0.02	0.01	14.86	14.88		11.82	11.44		0		0	7.47		7.47	<1
10/1/2024	11:30	Fine	C1	835110	824716	0.04	0.02	15.95	15.96		10.09	10.01		0		0	7.34		7.28	<1
	13:05	Fine	C2	835403	824470	0.02	0.01	15.19	15.21		10.27	10.15		0		0	7.14		7.18	<1
	N/A	Fine	C3	835642	824386	N/A	N/A	N/A	N/A	N/A		N/A	N/A		N/A		N/A	N/A		N/A
	12:15	Fine	M1	835215	824827	0.8	0.4	16.13	16.14		10.58	10.02		0		0	7.71		7.65	<1
	11:29	Fine	M2	835536	824775	0.05	0.025	15	15.02		10.15	10.34		0		0	7.26		7.28	<1
	11:43	Fine	M3	835501	824648	0.02	0.01	15.2	15.22		11.28	11.63		0		0	7.23		7.25	<1
12/1/2024	9:30	Fine	C1	835110	824716	0.04	0.02	15.94	15.95		10.67	10.18		0		0	7.18		7.16	<1
	9:55	Fine	C2	835403	824470	0.02	0.01	15.4	15.43		11.42	10.48		0		0	7.16		7.19	<1
	N/A	Fine	C3	835642	824386	N/A	N/A	N/A	N/A	N/A		N/A	N/A		N/A		N/A	N/A		N/A
	9:35	Fine	M1	835215	824827	0.8	0.4	16.24	16.24		11.58	11.4		0		0	7.43		7.41	<1
	9:50	Fine	M2	835536	824775	0.05	0.025	15.27	15.28		10.81	10.85		0		0	7.23		7.24	<1
	9:52	Fine	M3	835501	824648	0.02	0.01	15.48	15.48		11.1	11.5		0		,	7.2		7.19	<1
15/1/2024	9:40	Fine	C1	835110	824716	0.04	0.02	16.9	16.9		10.15	10.64		0		0	7.1		7.03	2.3
	10:05	Fine	C2	835403	824470	0.02	0.01	16.85	16.86		10.66	11.23		0		0	6.82		6.84	2.8
	N/A	Fine	C3	835642	824386	N/A	N/A	N/A	N/A	N/A		N/A	N/A		N/A		N/A	N/A		N/A
	9:45	Fine	M1	835215	824827	0.8	0.4	17.18	17.19		10.27	10.96		0		0	7.22		7.19	1.9
	10:00	Fine	M2	835536	824775	0.05	0.025	16.66	16.68		10.33	10.2		0		0	7.02		7.05	1.2
	10:02	Fine	M3	835501	824648	0.02	0.01	16.36	16.39		10.51	10.12		0		0	7.01		7.08	<1

Remark 1: Values that are <1 is assumed to be 1 during calculation.
Remark 2: Underlined values indicated
Remark 2: Underined values indicated exceedance of limit
There were 1 exceedances of Action Level and 1 exceedances of Limit Level

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823

Test Report

Report Number
Job Number
Issue Date
Applicant Name

Applicant Address

Project Name
Test Required
Sampling Date
Q240002aR240160
Page 1 of 2

Date Samples Received : 02/01/2024
Sample Nature
Number of Samples Received
Condition Received
Type of Container
Laboratory ID
: Acumen Environmental Engineering and Technologies Co, Ltd.
Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong

Test Period
Method Used
: R240160

CJO-3113-1245
: Total Suspended Solids (TSS)
: 02/01/2024
: Water
: 5
: Sample(s) arrived laboratory in chilled condition
: HDPE Plastic Bottles
: R240160/1-5
: 02/01/2024-03/01/2024
: In-house Method, QPL-15e for Total Suspended Solids

Test Result

: Refer to the results on page 2

For and on behalf of
Acumen Laboratory and Testing Limited
Authorized Signature :

[^1]
Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number : Q240002aR240160
Job Number : R240160
Issue Date : 10/01/2024

Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240160/1	02/01/2024	C1	<1
R240160/2	02/01/2024	C2	<1
R240160/3	02/01/2024	M1	<1
R240160/4	02/01/2024	M2	<1
R240160/5	02/01/2024	M3	<1

Note:
mg / L indicates milligram per liter
$<$ indicates less than.
Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant. The result(s) relate only to the item(s) tested.
The result(s) are applied only to the sample(s) received.
End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited.

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number
Q240002aR240161
Page 1 of 2
Job Number : R240161

Issue Date : 10/01/2024
Applicant Name
Applicant Address

Project Name
Test Required
Sampling Date
Date Samples Received
Acumen Environmental Engineering and Technologies Co, Ltd.
: Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong
CJO-3113-1246
Total Suspended Solids (TSS)

Sample Nature
Number of Samples Received
Condition Received
Type of Container
Laboratory ID
Test Period
Method Used
: 04/01/2024
: 04/01/2024

- Water

5
Sample(s) arrived laboratory in chilled condition
HDPE Plastic Bottles
R240161/1-5
04/01/2024-05/01/2024
In-house Method, QPL-15e for Total Suspended Solids

Test Result

Refer to the results on page 2

For and on behalf of
Acumen Laboratory and Testing Limited
Authorized Signature

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number

Q240002aR240161
Job Number : R240161
Issue Date : 10/01/2024

Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240161/1	04/01/2024	C1	<1
R240161/2	04/01/2024	C2	2.1
R240161/3	04/01/2024	M1	<1
R240161/4	04/01/2024	M2	<1
R240161/5	04/01/2024	M3	<1

Note:

1. mg / L indicates milligram per liter
2. < indicates less than.
3. Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
4. Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
5. Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
6. The result(s) relate only to the item(s) tested.
7. The result(s) are applied only to the sample(s) received.

End of Report

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number	$:$	Q240002aR240169
Job Number	$:$	R240169
Issue Date	$:$	$12 / 01 / 2024$
	$:$	Acumen Environmental Engineering and Technologies Co, Ltd.
Applicant Name	$:$	Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street,
Applicant Address		Cheung Sha Wan, Kowloon, Hong Kong
	$:$	CJO-3113-1247
Project Name	$:$	Total Suspended Solids (TSS)
Test Required	$:$	$06 / 01 / 2024$
Sampling Date	$:$	Water
Date Samples Received	$:$	5
Sample Nature	$:$	Sample(s) arrived laboratory in chilled condition
Number of Samples Received	$:$	HDPE Plastic Bottles
Condition Received	$:$	R240169/1-5
Type of Container	$:$	$06 / 01 / 2024-07 / 01 / 2024$
Laboratory ID	$:$	In-house Method, QPL-15e for Total Suspended Solids

Test Result
Refer to the results on page 2

For and on behalf of
Acumen Laboratory and Testing Limited
Authorized Signature

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) $23336823 \quad$ Fax: (852) 23331316

Test Report

Report Number

Job Number	$:$	R240169
Issue Date	$:$	$12 / 01 / 2024$

Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L			
R240169/1	$06 / 01 / 2024$	C1	<1	$	$	R240169/2
:---:						

Note:

1. mg / L indicates milligram per liter
2. < indicates less than.
3. Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
4. Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
5. Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
6. The result(s) relate only to the item(s) tested.
7. The result(s) are applied only to the sample(s) received.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited.

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number
Job Number
Issue Date
Applicant Name

Applicant Address

Project Name
Test Required
Sampling Date
Date Samples Received
Sample Nature
Number of Samples Received
Condition Received
Type of Container
Laboratory ID
Test Period
Method Used

Q240002aR240170

> R240170

12/01/2024
: Acumen Environmental Engineering and Technologies Co, Ltd.
: Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong
CJO-3113-1248
: Total Suspended Solids (TSS)
08/01/2024
: 08/01/2024
Water
: 5
Sample(s) arrived laboratory in chilled condition
HDPE Plastic Bottles
R240170/1-5
: 08/01/2024-09/01/2024
In-house Method, QPL-15e for Total Suspended Solids

Test Result

For and on behalf of
Acumen Laboratory and Testing Limited
Authorized Signature

[^2]
Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number
Q240002aR240170
Job Number : R240170
Issue Date
12/01/2024

Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240170/1	$08 / 01 / 2024$	C1	<1

Note:

1. mg / L indicates milligram per liter
2. <indicates less than
3. Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
4. Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
5. Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
6. The result(s) relate only to the item(s) tested.
7. The result(s) are applied only to the sample(s) received.
End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited.

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number
Job Number
Issue Date
Applicant Name
Applicant Address
Project Name
Test Required
Sampling Date
Date Samples Received
Sample Nature
Number of Samples Received
Condition Received
Type of Container
Laboratory ID
Test Period
Method Used

[^3]Authorized Signature

For and on behalf of
Acumen Laboratory and Testing Limited
Q240002aR240171
R240171
: 12/01/2024
: Acumen Environmental Engineering and Technologies Co, Ltd.
: Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong
: CJO-3113-1249
: Total Suspended Solids (TSS)
: 10/01/2024
10/01/2024
Water
5
: Sample(s) arrived laboratory in chilled condition
HDPE Plastic Bottles
R240171/1-5
: 10/01/2024-11/01/2024
In-house Method, QPL-15e for Total Suspended Solids

[^4]
Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number : Q240002aR240171
Job Number : R240171
Issue Date : 12/01/2024
Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240171/1	$10 / 01 / 2024$	C1	<1

Note:

1. mg / L indicates milligram per liter
2. <indicates less than.
3. Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
4. Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
5. Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
6. The result(s) relate only to the item(s) tested.
7. The result(s) are applied only to the sample(s) received.

End of Report

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong
Tel: (852) $23336823 \quad$ Fax: 852) Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number
Job Number : R240263
Issue Date : 25/01/2024
Applicant Name
Applicant Address

Project Name
Test Required
Sampling Date
Date Samples Received
Sample Nature
Number of Samples Received
Condition Received
Type of Container
Laboratory ID
Test Period
Method Used

Acumen Environmental Engineering and Technologies Co, Ltd.
: Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong
: CJO-3113-1250
: Total Suspended Solids (TSS)
: 12/01/2024
: 12/01/2024
Water
: 5
: Sample(s) arrived laboratory in chilled condition
: HDPE Plastic Bottles
: R240263/1-5
: 12/01/2024-13/01/2024
: In-house Method, QPL-15e for Total Suspended Solids

Test Result : Refer to the results on page 2

Authorized Signature $:$| For and on behalf of |
| :--- |
| Acumen Laboratory and Testing Limited |

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report
Report Number
: Q240002aR240263
Job Number : R240263
Issue Date : 25/01/2024

Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240263/1	$12 / 01 / 2024$	C1	<1
R240263/2	$12 / 01 / 2024$	C2	<1
R240263/3	$12 / 01 / 2024$	M1	<1
R240263/4	$12 / 01 / 2024$	M2	<1
R240263/5	$12 / 01 / 2024$	M3	<1

Note:

1. mg / L indicates milligram per liter
2. <indicates less than.
3. Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
4. Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
5. Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
6. The result(s) relate only to the item(s) tested.
7. The result(s) are applied only to the sample(s) received.

End of Report

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number	$:$	Q240002aR240264
Job Number	$:$	R240264
Issue Date	$:$	$25 / 01 / 2024$
	$:$	Acumen Environmental Engineering and Technologies Co, Ltd.
Applicant Name	$:$	Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street,
Applicant Address		Cheung Sha Wan, Kowloon, Hong Kong
	$:$	CJO-3113-1251
Project Name	$:$	$15 / 01 / 2024$
Test Required	$:$	$15 / 01 / 2024$
Sampling Date	$:$	Water
Date Samples Received	$:$	Sample(s) arrived laboratory in chilled condition
Sample Nature	$:$	HDPE Plastic Bottles
Number of Samples Received	$:$	R240264/1-5
Condition Received	$:$	$15 / 01 / 2024-16 / 01 / 2024$
Type of Container	$:$	In-house Method, QPL-15e for Total Suspended Solids
Laboratory ID		

[^5]For and on behalf of
Acumen Laboratory and Testing Limited
Authorized Signature

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823

Fax: (852) 23331316
Test Report
Page 2 of 2
Report Number
: Q240002aR240264
Job Number : R240264
Issue Date : 25/01/2024
Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240264/1	$15 / 01 / 2024$	C1	2.3
R240264/2	$15 / 01 / 2024$	C2	2.8
R240264/3	$15 / 01 / 2024$	M1	1.9
R240264/4	$15 / 01 / 2024$	M2	1.2
R240264/5	$15 / 01 / 2024$	M3	<1

Note:

1. mg / L indicates milligram per liter
2. < indicates less than.

Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
The result(s) relate only to the item(s) tested.
7. The result(s) are applied only to the sample(s) received.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited.

Acumen Laboratory and Testing Limited

 Tel: (852) 23336823 Fax: (852) 23331316
Test Report

Report Number
Job Number
Issue Date
Applicant Name
Applicant Address
Project Name
Test Required
Sampling Date
Date Samples Received
Sample Nature
Number of Samples Received
Condition Received
Type of Container
Laboratory ID
Test Period
Method Used

Test Result : Refer to the results on page 2

For and on behalf of
Acumen Laboratory and Testing Limited
Authorized Signature

Q240002aR240265
Page 1 of 2
: Acumen Environmental Engineering and Technologies Co, Ltd.
: Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong
: CJO-3113-1252
: Total Suspended Solids (TSS)
: 17/01/2024
: 17/01/2024
: Water
: 5
: Sample(s) arrived laboratory in chilled condition
: HDPE Plastic Bottles
: R240265/1-5
: 17/01/2024-18/01/2024
: In-house Method, QPL-15e for Total Suspended Solids

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Page 2 of 2

Report Number	$:$	Q240002aR240265
Job Number	$:$	R240265
Issue Date	$:$	$25 / 01 / 2024$

Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240265/1	$17 / 01 / 2024$	C1	<1

Note:

[^6]
End of Report

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number
Job Number
Issue Date

Applicant Name
Applicant Address

Project Name
Test Required
Sampling Date
Date Samples Received
Sample Nature
Number of Samples Received
Condition Received
Type of Container
Laboratory ID
Test Period
Method Used

Test Result
: R240301
29/01/2024
: Acumen Environmental Engineering and Technologies Co, Ltd.
: Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong
: CJO-3113-1253
: Total Suspended Solids (TSS)
19/01/2024

- 19/01/2024
: Water
5
: Sample(s) arrived laboratory in chilled condition
HDPE Plastic Bottles
R240301/1-5
19/01/2024-20/01/2024
In-house Method, QPL-15e for Total Suspended Solids

For and on behalf of
Acumen Laboratory and Testing Limited
Authorized Signature

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Page 2 of 2
Report Number
: Q240002aR240301
Job Number
: R240301
Issue Date
: 29/01/2024

Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240301/1	$19 / 01 / 2024$	C1	<1

Note:

1. mg / L indicates milligram per liter
2. <indicates less than.
3. Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
4. Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
5. Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
6. The result(s) relate only to the item(s) tested.
7. The result(s) are applied only to the sample(s) received.
End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited.

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) $23336823 \quad$ Fax: (852) 23331316

Test Report

Report Number
Job Number
Issue Date
Applicant Name
Applicant Address
Project Name
Test Required
Sampling Date
Date Samples Received
Sample Nature
Number of Samples Received
Condition Received
Type of Container
Laboratory ID
Test Period
Method Used

Test Result

: Q240002aR240346
: R240346
$\therefore \quad 01 / 02 / 2024$
: Acumen Environmental Engineering and Technologies Co, Ltd.
: Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong
: CJO-3113-1254
: Total Suspended Solids (TSS)
: 22/01/2024
: 22/01/2024
: Water
: 5
: Sample(s) arrived laboratory in chilled condition
: HDPE Plastic Bottles
: R240346/1-5
: 22/01/2024-23/01/2024
: In-house Method, QPL-15e for Total Suspended Solids

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) $23336823 \quad$ Fax: (852) 23331316

Test Report

Report Number
Q240002aR240346
Job Number
R240346
Issue Date
01/02/2024

Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240346/1	$22 / 01 / 2024$	C1	1.6
R240346/2	$22 / 01 / 2024$	C2	1.0
R240346/3	$22 / 01 / 2024$	M1	<1
R240346/4	$22 / 01 / 2024$	M2	<1
R240346/5	$22 / 01 / 2024$	M3	<1

Note:

1. mg / L indicates milligram per liter
2. <indicates less than.
3. Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
4. Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
5. Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
6. The result(s) relate only to the item(s) tested.
7. The result(s) are applied only to the sample(s) received.

End of Report

[^7]Acumen Laboratory and Testing Limited
Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number
Q240002aR240347
Job Number
R240347
Issue Date : 01/02/2024

Applicant Name

Applicant Address

Project Name
Test Required
Sampling Date
Date Samples Received
: Acumen Environmental Engineering and Technologies Co, Ltd.
: Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong
: CJO-3113-1255
: Total Suspended Solids (TSS)
: 24/01/2024

Sample Nature
Number of Samples Received
: 24/01/2024
: Water

Condition Received
Type of Container
Laboratory ID
: 5
: Sample(s) arrived laboratory in chilled condition
: HDPE Plastic Bottles

Test Period
Method Used
: R240347/1-5
: 24/01/2024-25/01/2024
: In-house Method, QPL-15e for Total Suspended Solids

Test Result : Refer to the results on page 2

For and on behalf of
Acumen Laboratory and Testing Limited
Authorized Signature :

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report
Report Number
: Q240002aR240347
Job Number : R240347
Issue Date
: 01/02/2024

Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240347/1	$24 / 01 / 2024$	C1	2.1
R240347/2	$24 / 01 / 2024$	C2	<1
R240347/3	$24 / 01 / 2024$	M1	2.6
R240347/4	$24 / 01 / 2024$	M2	1.4
R240347/5	$24 / 01 / 2024$	M3	1.8

Note:

1. mg / L indicates milligram per liter
2. <indicates less than.
3. Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
4. Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
5. Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
6. The result(s) relate only to the item(s) tested.
7. The result(s) are applied only to the sample(s) received.

End of Report

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited.

acumen

Acumen Laboratory and Testing Limited
 Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong

 Tel: (852) 23336823 Fax: (852) 23331316
Test Report

Report Number
Job Number
Issue Date
Applicant Name
Applicant Address

Project Name
Test Required
Sampling Date
Date Samples Received
Sample Nature
Number of Samples Received
Condition Received
Type of Container
Laboratory ID
Test Period
Method Used

Test Result
: Q240002aR240348
: R240348
: 01/02/2024
: Acumen Environmental Engineering and Technologies Co, Ltd.
: Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong
: CJO-3113-1256
: Total Suspended Solids (TSS)
: 26/01/2024
: 26/01/2024
: Water
: 5
: Sample(s) arrived laboratory in chilled condition
: HDPE Plastic Bottles
: R240348/1-5
: 26/01/2024-27/01/2024
: In-house Method, QPL-15e for Total Suspended Solids
: Refer to the results on page 2

For and on behalf of
Acumen Laboratory and Testing Limited
Authorized Signature

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823

Fax: (852) 23331316
Test Report
Report Number
: Q240002aR240348
Job Number
: R240348
Issue Date
: 01/02/2024

Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240348/1	$26 / 01 / 2024$	C1	<1

Note:

1. mg / L indicates milligram per liter
2. <indicates less than.
3. Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
4. Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
5. Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
6. The result(s) relate only to the item(s) tested.
7. The result(s) are applied only to the sample(s) received.

> ***End of Report***

Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited.

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number
Job Number
Issue Date
Applicant Name
Applicant Address
Project Name
Test Required
Sampling Date
Date Samples Received
Sample Nature
Number of Samples Received
Condition Received
Type of Container
Laboratory ID
Test Period
Method Used

[^8]For and on behalf of
Acumen Laboratory and Testing Limited
Authorized Signature :

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) $23336823 \quad$ Fax: (852) 23331316

Test Report

Report Number
: Q240002aR240390
Job Number : R240390
Issue Date
: 08/02/2024

Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240390/1	$29 / 01 / 2024$	C1	1.4
R240390/2	$29 / 01 / 2024$	C2	4.4
R240390/3	$29 / 01 / 2024$	M1	2.0
R240390/4	$29 / 01 / 2024$	M2	1.1
R240390/5	$29 / 01 / 2024$	M3	1.3

Note:
mg / L indicates milligram per liter
2. < indicates less than.
3. Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
4. Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
5. Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
6. The result(s) relate only to the item(s) tested.
7. The result(s) are applied only to the sample(s) received.

End of Report

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) $23336823 \quad$ Fax: (852) 23331316

Test Report

Report Number
Job Number
Issue Date
Applicant Name
Applicant Address

Project Name	$:$	CJO-3113-1
Test Required	$:$	Total Suspen
Sampling Date	$:$	$31 / 01 / 2024$

: Q240002aR240391
: R240391
: 08/02/2024
: CJO-3113-1258

Sample Nature
Number of Samples Received
Condition Received
Type of Container
Laboratory ID
Test Period
Method Used
: Acumen Environmental Engineering and Technologies Co, Ltd.
: Unit D, 12/F, Ford Glory Plaza, No.37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong
: Total Suspended Solids (TSS)
: 31/01/2024
: Water
: 5
: Sample(s) arrived laboratory in chilled condition
: HDPE Plastic Bottles
: R240391/1-5
: 31/01/2024-01/02/2024
: In-house Method, QPL-15e for Total Suspended Solids

Test Result

: Refer to the results on page 2

For and on behalf of
Acumen Laboratory and Testing Limited
Authorized Signature

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 23336823 Fax: (852) 23331316

Test Report

Report Number
Q240002aR240391
Job Number : R240391
Issue Date
: 08/02/2024

Test Result:

Lab ID	Sampling Date	Client Sample ID	Total Suspended Solids (TSS), mg/L
R240391/1	$31 / 01 / 2024$	C1	2.9
R240391/2	$31 / 01 / 2024$	C2	<1
R240391/3	$31 / 01 / 2024$	M1	<1
R240391/4	$31 / 01 / 2024$	M2	3.1
R240391/5	$31 / 01 / 2024$	M3	<1

Note:

1. mg / L indicates milligram per liter
2. < indicates less than.
3. Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
4. Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
5. Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
6. The result(s) relate only to the item(s) tested.
7. The result(s) are applied only to the sample(s) received.

End of Report

Appendix S

Impact Monitoring report for Ecology

Post-Transplantation Monitoring Report

for Agreement No. CE 13/2009 (WS)

IN-SITU REPROVISIONING OF SHA TIN WATER TREATMENT WORKS - SOUTH WORKS

Report No. 113

Jan 2024
TABLE OF CONTENTS

1. InTRODUCTION 2
2. DESCRIPTION OF TREE MONITORING SITE 3
3. Monitoring Methodlogy 3
4. ReSUlT 4
5. Mitigation Measure 4
6. SUMMARY 8
ANNEXES
ANNEX I-
Photos. 10
ANNEX II- Table for condition of transplanted plant 17

1. INTRODUCTION

1.1 Pursuant to the Environmental Impact Assessment (EIA) Ordinance, the Director of Environmental Protection (DEP) granted the Environmental Permit (No. EP- 494/2015) to the Water Supplies Department (WSD) to construct and operate the designated project for "In-situ Reprovisioning of Sha Tin Water Treatment Works - South Works" ("The Project").
1.2 Upon the requirement of the Environmental Permit, a detailed vegetation report presenting the baseline vegetation condition for flora species with conservation interest, transplanting and monitoring programme for the Project has been prepared and approved by DEP in February 2016.
1.3 There were 4 flora species of conservation importance were recorded in the woodland habitat within project site including Ailanthus (Ailanthus fordii), Incense Tree (Aquilaria sinensis), Lamb of Tartary (Cibotium barometz) and Hong Kong Eagle's Claw (Artabotrys hongkongensis). In total, 2 nos. of Incense Tree (Aquilaria sinensis), 1 no. of Ailanthus (Ailanthus fordii) tree, 5 colonies of Lamb of Tartary (Cibotium barometz) and 1 no. Hong Kong Eagle's Claw (Artabotrys hongkongensis) were recommended to be transplanted in the approved detailed vegetation survey report.
1.4 As planned in the detailed vegetation report, Incense Tree (Aquilaria sinensis) and Ailanthus (Ailanthus fordii) trees would be transplanted within existing Sha Tin Water Treatment Works (STWTW). All other shrubs including Lamb of Tartary (Cibotium barometz) and Hong Kong Eagle's Claw (Artabotrys hongkongensis) would be transplanted to the hillside slope at Sha Tin South Fresh Water Service Reservoir (STSFWSR).
1.2 Upon the requirement of the Environmental Permit, a qualified Ecologist was commissioned to prepare a post-transplantation monitoring report to present the status (health condition and survival rate) of transplanted vegetation and submitted to the DEP.
1.3 Monitoring of transplanted flora was conducted after the transplantation. The monitoring will be conducted at twice per month during the first year and once per month during the course of planting works. The parameters to be monitoring will include the health condition and survival rate of the transplanted flora. Any observations and recommendations will be reported in monthly EM\&A reports.
1.3 This Tree Report presents survey findings on 30 January 2024. It contains the following information:

- Introduction (Section 1);
- Description of Tree Monitoring Area (Section 2);
- Monitoring Methodology (Section 3);
- \quad Result (Section 4);
- Mitigation Measures (Section 5);
- \quad Summary (Section 6);
- \quad Photos (Annex I);
- \quad Summary table (Annex II); and
- Typhoon information (Annex III).

2. DESCRIPTION OF TREE MONITORING SITE

2.1 Incense Tree (Aquilaria sinensis) and Ailanthus (Ailanthus fordii) tree were transplanted to the extended compensatory plantation area within existing Sha Tin Water Treatment Works (STWTW). The area was flat and without covering with concrete.
2.2 Lamb of Tartary (Cibotium barometz) will be transplanted to the Sha Tin South Fresh Water Service Reservoir (STSFWSR). Ploughing is required before planting on to this open corner of short grassland.
2.3 Other compensatory trees have been planted at STWTW and STSFWSR.

3. MONITORING METHODOLOGY

3.1 Site inspection was carried out by walking through the transplanting area. Health condition and survival rate were observed during inspection.
3.4 Health condition of all transplanted vegetation including trees/shrubs surveyed was evaluated according to the following criteria:

- Transplanted vegetation with good health is classified as good;
- Transplanted vegetation with few or no visible defects or health problems is classified as being fair; and
- Transplanted vegetation that was badly damaged or clearly suffering from decay die back or the effects of very heavy vine growth is classified as poor.
3.5 Survival rate for each of transplanted vegetation species will be calculated based on site observation.

4. RESULT

4.1 The monthly monitoring inspection was conducted on 30 January 2024.
4.2 Three trees TA572, TA326 and TA327 were transplanted to tree compensation area within the Sha Tin Water Treatment Works (STWTW) on 20 June 2016.
4.3 The condition of TA572 was observed in fair health despite in poor form due to the damage of the two main trunks. TA327 was in fair condition. The already dead tree TA326 collapsed due to big hit by the Signal No. 10 typhoon Mangkhut on 16 September 2018. Tree guying cables have been installed to provide external support to the remaining two transplanted trees.
4.4 The joint site meeting with our ecologist, Project Manager, Contractor and Landscape Contractor on 20 October 2020 revealed that the designated recipient site at STSFWSR was under excessive exposure of direct sunlight, strong winds, far from riparian zone/ moist valley and low in soil moisture. This was not a favourable microhabitat for Cibotium barometz to be transplanted back. Two best portions within this recipient site would be a corner with shading canopy from trees on a man-made feature nearby; as well as understory zone of an existing tree. Mitigation measures are proposed in Section 5 to enhance a sustainable survival of Cibotium barometz during the posttransplantation stage.
4.5 All 27 nos. of Cibotium barometz transplanted from the nursery at Shui Mei Tsuen, Kam Tin were generally in fair condition at their current location at STSFWSR.
4.6 The Hong Kong Eagle's Claw (Artabotrys hongkongensis) was observed dead during inspection on 20 August 2016.
4.7 The transplantation of the 27 nos. of Cibotium barometz and the compensatory planting of TA326 and the climber Artabotrys hongkongensis have been conducted as detailed in Section 5.
4.8 Rapid recolonization/ invasion of weeds/ exotic species/ climbers on the transplanted plants has been observed since past few monitoring. Climbers on TA327 and one of the Celtis sinensis should be removed, including the roots, to reduce rapid colonization covering the canopy. Weeding within the two protection zones of Cibotium barometz at Portion E of STSFWSR shall only be conducted by hand-held tools rather than grass cutting machine. No fire/ chemical weeding shall be allowed.

5. MITIGATION MEASURE

5.1 In order to compensate for the loss of the transplanted Artabotrys hongkongensis which is in climber growing form, it is recommended to plant an individual of native climber species at the compensatory planting site together with compensatory tree planting. Recommended list of species is given in the Table 1 below. It is suggested that about 1 species of climber to be selected from the following list according to availability of the nursery source. The recommended plant species have been recorded from adjacent secondary woodland in an approved EIA Report (AEIAR-187/2015). These species would have certain ecological value in terms of plant ecology and the associated wildlife including birds.

Table 1．Table for Recommended native climber species list to be planted

Common Name	Latin Name	Chinese Name	Growing Form
Climbing Bauhinia	Bauhinia glauca	粉葉羊蹄甲	Climber
Spiny－fruited Vine	Byttneria aspera	刺果藤	Climber
Bentham＇s Rose－wood	Dalbergia benthamii	兩廣黃檀	Climber
Desmos	Desmos chinensis	假鷹爪	Climber
Glaucescent Diploclisia	Diploclisia glaucescens	椖白秤鈎風	Climber
Luofushan Joint－fir	Gnetum luofuense	羅浮買麻藤	Climber
Australian Cow－plant	Gymnema sylvestre	匙䈅藤	Climber
Shining Hypserpa	Hypserpa nitida	夜花藤	Climber
Large－flowered Honeysuckle	Lonicera macrantha	大花忍冬	Climber
Splash－of－white	Mussaenda pubescen	玉葉金花	Climber
Rusty－haired Raspberry	Rubus reflexus	鏽毛莺	Climber
Sandpaper Vine	Tetracera asiatica	錫葉藤	Climber
Hong Kong Eagle＇s Claw	Artabotrys hongkongensis	鷹爪花	Climber

5．2 Desmos chinensis has been finalized as the candidate．Two individuals were planted at Wall C in STWTW on 1 April 2021 （Annex I）．

5．3 New small sprouts keep emerging from the two Desmos chinensis that have been reported dead previously．Construction materials was also found too close to the planter．An eye－catching protective fence shall be set up as a protection zone．No construction materials shall be placed near／ within the protection zone．

5．4 All 27 nos．Lamb of Tartary（Cibotium barometz）were transplanted successfully back to Portion E of STSFWSR on 23 April 2021 （Annex I）．In order to enhance a sustainable survival during the post－transplantation stage，a shelter（such as 遮光網）has been installed to reduce intensity of direct sunlight received and avoid direct hit of rainstorm／typhoon．

5．5 Transplanted Cibotium barometz shall be watered at least once in the morning and once in the afternoon；before irrigation spray head has been installed to facilitate watering frequency whenever necessary．

5．6 An eye－catching protective net has been set up to enclose the 27 nos．transplanted Cibotium barometz（in groups when planted together）to avoid disturbance／damage from works activities． Any collapsed shelter and fencing shall be rectified promptly．

5．7 Sign of disturbance by wild boar（s）were found at the two groups of transplanted Cibotium barometz previously．A robust fencing has been installed so as to prevent them from any further disturbance．

5．8 Weeding within the two protection zones of Cibotium barometz shall only be conducted by hand－ held tools rather than grass cutting machine．No fire／chemical weeding shall be allowed．

5．9 The 27 nos．transplanted Cibotium barometz shall be maintained with proposed mitigated measures mentioned for 12 months for establishment．A 12－month post－transplantation monitoring period helps to assess their survival during the establishment period．

5．10 Any dead individuals／those in poor condition before transplant back to STSFWSR or during the post－transplantation period shall be replaced by planting healthy individuals of Cibotium barometz．

Other possible fern candidate such as Brainea insignis，which is more adaptive to more exposed habitat under direct sunlight，can be sourced for compensatory planting．

5．11 Root ball of TA572 and TA327 tree should be kept moisture especially during non－raining day．
5．12 The Incense Tree（Aquilaria sinensis）tagged as TA326 was observed dead during inspection on 10 August 2017．Its DBH was measured as 346 mm ．In accordance with the Tree Preservation， Development Bureau Technical Circular（Works）No．7／2015，the compensatory planting aimed to achieve the compensatory planting ratio of 1：1 in terms of aggregated DBH．

5．13 In total， 3 individual of native tree species with heavy standard size were planted with 2．5－3 meters （center to center）spacing at compensatory planting site．Recommended list of species was given in the Table 2 below．It was suggested that at least 1 tree species to be selected from the following list according to availability of the nursery source．The recommended plant species was recorded from adjacent secondary woodland in an approved EIA Report（AEIAR－187／2015）．These species would have certain ecological value in terms of plant ecology and the associated wildlife including birds．

Table 2．Table for recommended native tree species list to be planted

Common Name	Latin Name	Chinese Name	Growing Form
Ivy Tree	Schefflera heptaphylla	鴨腳木	Tree
Levine＇s Syzygium	Syzygium levinei	山蒲桃	Tree
Chekiang Machilus	Machilus chekiangensis	浙江潤楠	Tree
Aporusa	Aporusa dioica	銀柴	Tree
Mountain Tallow Tree	Sapium discolor	山烏柏	Tree
Fragrant Litsea	Litsea cubeba	山蒼樹	Tree
Chinese Apea Ear－ring	Archidendron lucidum	亮葉猴耳環	Tree
Chinese Hackberry	Celtis sinensis	朴樹	Tree
Turn－in－the－wind	Mallotus paniculatus	白楸	Tree
Acronychia	降真香	Tree	

5．14 Based on the Tree Survey Report，the following trees transplanted under Contract No．3／WSD／15 were found dead．In accordance with GS 3.97 （3），replacement planting of TB0054，B0056， TB0101 and TC0138 was completed on 25 March 2021 （Annex I）．

5．15 Two Syzygium levinei and one Schefflera heptaphylla were chosen from Table 2 as compensation for the loss of TA0326．

5．16 However，the two native Syzygium levinei（山蒲桃）were mis－planted by two exotic Syzygium jambos（蒲桃），of which both of their Chinese names and Scientific names are different by one word．

5．17 The two mis－planted Syzygium jambos were then replaced by another native tree species Celtis sinensis chosen from Table 2 due to market availability at that time．Replacement work was conducted on 31 May 2021.

－Table 3．Summary table compensatory planting．

Tree No．	Species	Compensatory／Replacement Planting
TA0326	Aquilaria sinensis 土沉香	Compensated by 1 no．of Schefflera heptaphylla and 2 nos．of Celtis sinensis

5.18 With completion of compensatory planting for the loss of Artabotrys hongkongensis and TA0326 (Aquilaria sinensis), the survival of the replaced species has been monitored since then (i.e. 2 nos. of Desmos chinensis; 1 no. of Schefflera heptaphylla and 2 nos. of Celtis sinensis).
5.19 Survival of the 27 nos. of Lamb of Tartary (Cibotium barometz) transplanted back to STSFWSR has also been monitored too. No more individual was stored at the nursery.
5.20 Health condition and survival rate are shown in Annex II.

6．SUMMARY

6．1 The condition of TA572 was observed in fair health despite in poor form．TA327 was in fair condition；while already dead TA326 collapsed under Signal No． 10 typhoon Mangkhut in September 2018．Tree guying cables have been installed to provide external support to the two remaining transplanted trees．Climbing vines on TA327 should be removed，including the roots，to reduce rapid colonization covering the canopy．

6．2 Compensatory planting of TA326 has been completed on 25 March 2020 by planting two Syzygium levinei and one Schefflera heptaphylla．However，the two native Syzygium levinei were mis－planted by two exotic Syzygium jambos，which have been replaced by another native tree species Celtis sinensis on 31 May 2021．Climbing vines on one of the Celtis sinensis should be removed，including the roots，to reduce rapid colonization covering the canopy．

6．3 Desmos chinensis has been finalized as the candidate to compensate for the loss of Artabotrys hongkongensis．Two individuals were planted at Wall C in STWTW on 1 April 2021.

6．4 New small sprouts keep emerging from the two Desmos chinensis that have been reported dead previously．Construction materials was also found too close to the planter．An eye－catching protective fence shall be set up as a protection zone．No construction materials shall be placed near／ within the protection zone．

6．5 In order to enhance a sustainable survival during the post－transplantation stage，a shelter（such as遮光網）has been installed to reduce intensity of direct sunlight received and avoid direct hit of rainstorm／typhoon to the 27 nos．of transplanted Cibotium barometz at Portion E of STSFWSR．

6．6 Weeding by hand held tools within protection zone of Cibotium barometz is urgently needed．
6．7 Root ball of TA572 and TA327 tree should be kept moisture especially during dry and non－raining day．

6．8 Signs of ploughed soil by wild boar（s）at the two groups of transplanted Cibotium barometz were reported in previous monitoring．A robust fencing was recently installed to protect the group of Cibotium barometz from further damage caused by wild boars．

6．9 Given that leftover／garbage was observed nearby，illegal feeding of wild pigs or other wild animals was also suspected to occur．Warning signs of illegal feeding and plant protection zone may be put along the receptor site to remind the hikers．Reporting the case to the relevant government department，i．e．AFCD，is suggested to prevent further aggregation of wild boars in the area．

ANNEX I
 Photo

Photo 5 \& 6. Despite the Cibotium barometz (red) are growing in satisfactory condition, it has already been hidden by weeds and climbers, which may deplete their health/growth condition.

Photo 12 and 13. The two exotic Syzygium jambos (mis-treated as the native Syzygium levinei) are replaced by another native tree Celtis sinensis (due to market availability) as compensatory planting of TA326. Note: Celtis sinensis is a deciduous species.
Fast-growing climber was observed in one of the Celtis sinensis (right; compared to the left). The climber should be removed immediately otherwise it will affect the health of the tree. Root removal is necessary when recolonization of weeds is fast after recent routine maintenance work.

ANNEX II
 Table for condition of transplanted plant

Fern Cibotium barometz and climber Desmos chinensis

No．	Species	Condition	Alive／Dead	Remark
1	Cibotium barometz	Fair	Alive	27 individuals were transplanted back to STSFWSR on 23 April 2021.
2	Cibotium barometz	Fair	Alive	
3	Cibotium barometz	Fair	Alive	
4	Cibotium barometz	Fair	Alive	
5	Cibotium barometz	Fair	Alive	
6	Cibotium barometz	Fair	Alive	
7	Cibotium barometz	Fair	Alive	
8	Cibotium barometz	Fair	Alive	The shelter has been repeatedly damaged by wild boars，resulting the plants vulnerable to uprooting．Some individuals were exposed under direct sunlight due to the damage of shelter． A robust protection zone was recently set up in February 2023 which should prevent the plants from further disturbance by the wild boars．Any illegal feeding by hikers shall be reported to AFCD／hotline 1823.
9	Cibotium barometz	Fair	Alive	
10	Cibotium barometz	Fair	Alive	
11	Cibotium barometz	Fair	Alive	
12	Cibotium barometz	Fair	Alive	
13	Cibotium barometz	Fair	Alive	
14	Cibotium barometz	Fair	Alive	
15	Cibotium barometz	Fair	Alive	
16	Cibotium barometz	Fair	Alive	
17	Cibotium barometz	Fair	Alive	
18	Cibotium barometz	Fair	Alive	
19	Cibotium barometz	Fair	Alive	
20	Cibotium barometz	Fair	Alive	
21	Cibotium barometz	Fair	Alive	
22	Cibotium barometz	Fair	Alive	
23	Cibotium barometz	Fair	Alive	
24	Cibotium barometz	Fair	Alive	
25	Cibotium barometz	Fair	Alive	
26	Cibotium barometz	Fair	Alive	
27	Cibotium barometz	Fair	Alive	
	The shelter（such as 遮光網）has been set up to provide shading and against direct hit of rainstorm／typhoon on the plants．			

28	Desmos chinensis	Poor-Fair	Alive	$\begin{array}{c}\text { Two individuals were } \\ \text { planted at Wall C in } \\ \text { STWTW on 1 April 2021; } \\ \text { Resprouted since } \\ \text { monitoring made on 30 } \\ \text { November 2022. }\end{array}$
			Dehydration	

Transplanted/ compensatory Trees

No.	Species	Condition	Alive/Dead	Remark
TA572	Ailanthus fordii	Fair	Alive	Two main trunks were broken during typhoon on 23 August 2017. Cracks and wounds observed in one of the trunks. Canopy formed by sprouts.
TA327	Aquilaria sinensis	Fair	Alive	Tree crown of TA327 was thinner after transplantation. Water sprouts, cracks on tree bark and would at trunk base observed. Climber should be cleared to relieve the canopy.
N/A	Celtis sinensis	Fair	Alive	Compensate for TA326; Syzygium jambos replaced by Celtis sinensis on 31 May 2021.
N/A	Celtis sinensis	Fair	Alive	Compensate for TA326; Syzygium jambos replaced by Celtis sinensis on 31 May 2021. Climber should be cleared to relieve the canopy.
N/A	Schefflera heptaphylla	Fair	Alive	Compensate for TA326; old leaved replaced by new leaf buds
- Survival rate (\%)			100\%	

Appendix T

Monthly Summary of Waste Flow Table

Monthly Summary Waste Flow Table for 2024

-Water Treatment Works and Ancillary Facilities

Month	Actual Quantities of Inert C\&D Materials Generated / Imported (in '000m3)						Actual Quantities of C\&D Wastes Generated				
	Total Quantity Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported C\&D Material	Metals	Paper/ cardboard packaging	Plastics (bottles/containers,plas tic sheets/foam package material)	Chemical Waste	Others, e.g. general refuse
	(a+b+c+d)	(a)	(b)	(c)	(d)		(in ' 000 kg)	(in ' 000 kg)	(in ' 000 kg)	(in ${ }^{\prime} 000 \mathrm{~m}^{3}$)	(in ${ }^{\prime} 000 \mathrm{~m}^{3}$)
Jan	0.34805	0.03295	0.00000	0.31510	0.00000	0.62860	0.0000	0.00000	0.00000	0.00000	0.08056
Feb	0.00000										
Mar	0.00000										
Apr	0.00000										
May	0.00000										
Jun	0.00000										
Sub-total	0.34805	0.03295	0.00000	0.31510	0.00000	0.62860	0.00000	0.00000	0.00000	0.00000	0.08056
Jul	0.00000										
Aug	0.00000										
Sep	0.00000										
Oct	0.00000										
Nov	0.00000										
Dec	0.00000										
Total	0.34805	0.03295	0.00000	0.31510	0.00000	0.62860	0.00000	0.00000	0.00000	0.00000	0.08056

SUMMARY TABLE FOR WORK PROCESSES OR ACTIVITIES REQUIRING TIMBER FOR TEMPORARY WORKS

Contract No.: 1/WSD/19

Monthly/Year: 01/2024
Contract Title: In-situ Reprovisioning of Sha Tin Water Treatment Works (South Works) - Water Treatment Works and Ancillary Facilities

Item No.	Description of Works Process or Activity [see note (a) below]	Justifications for Using Timber in Temporary Construction Works	Est. Quantities of Timber Used $\left(\mathbf{0 0 0 \mathbf { m } ^ { 3 })}\right.$	Actual Quantities Used ($\mathbf{(0 0 0} \mathbf{m}^{\mathbf{3})}$	Remarks
1	S1F, S2F, RMF, SWPS, WET \& OZONE	Concreting formwork	3.8		

(a) The Contractor shall list out all the work items requiring timber for use in temporary construction works. Several minor work items may be grouped into one for ease of updating.

俊和－方永勝聯營
CW－FWS JV

Monthly Summary Waste Flow Table for 2024 （year）

	Actual Quantities of Inert C\＆D Materials Generated Monthly						Actual Quantities of C\＆D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper／ cardboard packaging	Plastics （see Note 3）	Chemical Waste	Others，e．g． general refuse
	（in tonnes）										
2023	46681.36	0.00	0.00	25440.46	15756.27	5246.34	80.51	0.55	0.04	0.00	193.69
Jan－24	13.92	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	13.90
Feb－24											
Mar－24											
Apr－24											
May－24											
Jun－24											
Jul－24											
Aug－24											
Sep－24											
Oct－24											
Nov－24											
Dec－24											
Jan－25											
Total	46731.78	0.00	0.00	25440.46	15756.27	5246.34	80.51	0.56	0.05	0.00	207.59

Notes：（1）The waste flow table shall also include C\＆D materials that are specified in the Contract to be imported for use at the Site．
（2）Plastics refer to plastic bottles／containers，plastic sheets／foam from packaging material
（3）All recyclable materials，including metals，paper／carboard packaging，plastics，etc．will be collected by registered collector for recycling．
（4）Conversion factors for reporting purpose：
in－situ：rock＝ 2.5 tonnes $/ \mathrm{m} 3$ ；soil $=2.0$ tonnes $/ \mathrm{m} 3$
excavated：rock $=2.0$ tonnes $/ \mathrm{m} 3$ ；soil $=1.8$ tonnes $/ \mathrm{m} 3$ ；broken concrete and bitumen $=2.4$ tonnes $/ \mathrm{m} 3$
$\mathrm{C} \& \mathrm{D}$ Waste $=0.9$ tonnes $/ \mathrm{m3}$ ；bentonite slurry $=2.8$ tonnes $/ \mathrm{m} 3$

Appendix U

Implementation Schedule of Environmental Mitigation Measures (EMIS)

Environmental Mitigation and Enhancement Measure Implementation Schedule at Construction Stage

EIA Ref.	Recommended Mitigation Measures	Location of the Measures	Implementation Agent	Relevant Legislation and Guidelines	Implementation Phase			Status
					D	C	O	
Air Quality								
4.7.1	Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather.	All works areas	Contractor	Air Pollution Control Ordinance and Air Pollution Control (Construction Dust) Regulation		\checkmark		Y
4.7.1	Side enclosure and covering of any aggregate or stockpiling of dusty material to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines.	All works areas	Contractor			$\sqrt{ }$		Y
4.7.1	Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations.	All works areas	Contractor			\checkmark		Y
4.7.1	Establishment and use of vehicle wheel and body washing facilities at the exit points of the site.	All works areas	Contractor			\checkmark		Y
4.7.1	Imposition of speed controls for vehicles on site haul roads.	All works areas	Contractor			\checkmark		Y
4.7.1	Implement EM\&A program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise.	All works areas / Monitoring points	Contractor			$\sqrt{ }$		Y
Noise								
5.6.4	Implement good site practices to reduce noise level	All works areas	Contractor	Noise Control Ordinance		$\sqrt{ }$		Y
5.6.5	Adoption of Quiet PME	All works areas	Contractor			\checkmark		N/A
5.6.6	Use of Movable Noise Barrier	All works areas	Contractor			\checkmark		N/A
5.8	Noise monitoring	Monitoring points	Contractor			$\sqrt{ }$		Y
Water Quality								
6.8.1	Surface run-off from construction sites should be discharged into storm drains via adequately designed sand/silt removal facilities such as sand	All works areas	Contractor	ProPECC PN 1/94 Construction		$\sqrt{ }$		Y

	traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries should be provided where necessary to intercept storm run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.			Site Drainage TM-DSS Water Pollution Control Ordinance		
6.8.2	Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly, at the onset of and after each rainstorm to prevent local flooding.	All works areas	Contractor		\checkmark	Y
6.8.3	Temporary exposed slope surfaces should be covered and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels should be provided to prevent storm run-off from washing across exposed soil surfaces.	All works area	Contractor		\checkmark	Y
6.8.4	Earthworks final surfaces should be well compacted and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary.	All works areas	Contractor		\checkmark	N/A
6.8.5	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	All works areas	Contractor		$\sqrt{ }$	Y
6.8.6	Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites should be covered with tarpaulin or similar fabric during rainstorms.	All works areas	Contractor		$\sqrt{ }$	Y
6.8.7	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system.	All works areas	Contractor		\checkmark	Y
6.8.8	Good site practices should be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area.	All works areas	Contractor		$\sqrt{ }$	Y
6.8.9	All vehicles and plant should be cleaned before they leave a construction site to minimize the deposition of earth, mud, debris on roads. A wheel washing bay should be provided at every site exit if practicable and wash-water should have sand and silt settled out or removed before discharging into storm drains.	All works areas	Contractor		\checkmark	Y
6.8.10	Before commencing any demolition works, all drainage connections should be sealed to prevent building debris, soil, sand etc. from entering	All works areas	Contractor		$\sqrt{ }$	N/A

7.6.1	Appropriate waste handling, transportation and disposal methods for all waste arisings generated during the construction works for the Project should be implemented to ensure that construction wastes do not enter the nearby streams or drainage channel.	All works areas	Contractor	Waste Disposal Ordinance DEVB TCW No.	\checkmark	Y
7.6.2	Implementation of good site practices for waste management	All works areas	Contractor	6/2010,	\checkmark	Y
7.6.3	Implementation of trip ticket system to control waste disposal	All works areas	Contractor	ETWB TCW No. 19/2005 Land (Miscellaneous Provisions) Ordinance Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes	\checkmark	Y
7.6.4	Implementation of good site practices to reduce waste generations	All works areas	Contractor		$\sqrt{ }$	Y
7.6.5	Re-use of excavated C\&D materials on site as far as practical. A suitable area should be designated within the site for temporary stockpiling of C\&D material and to facilitate the sorting process.	All works areas	Contractor		\checkmark	Y
7.6.8	General refuse should be stored in enclosed bins or compaction units separate from C\&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C\&D material.	All works areas	Contractor		$\sqrt{ }$	Y
7.6.9	All storage of asbestos waste should be carried out properly in a secure place isolated from other substances so as to prevent any possible release of asbestos fibres into the atmosphere and contamination of other substances. The storage area should bear warning panels to alert people of the presence of asbestos waste.	All works areas	Contractor		\checkmark	N/A
7.6.10	A licensed asbestos waste collector will be appointed to collect the asbestos waste and deliver to the designated landfill for disposal. Application should be submitted to EPD.	All works areas	Contractor		\checkmark	N/A
7.6.11	If chemical wastes were to be produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Waste Producer, and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport the chemical wastes. The licensed collector shall deliver the waste to the Chemical Waste Treatment Centre at Tsing Yi, or other licenced facility, in accordance with	All works areas	Contractor		\checkmark	Y

	the Waste Disposal (Chemical Waste) (General) Regulation.					
Ecology						
8.8.1	Ecological impacts on important habitats and the associated wildfile caused by the proposed development should be mitigated and compensation approaches to the maximum practical extent	All works areas in particular important habitats All works areas	The Engineer/ Contractor	EIAO-TM EM\&A Manual	\checkmark	Y
8.8.2	Reduce the amount of vegetation removal required and thereby minimize the footprint of the slope at the woodland habitat		The Engineer/ Contractor		\checkmark	Y
8.8.3	Conduct detailed vegetation survey and implement suggested measures for species of conservation importance.		The Engineer/ Contractor		\checkmark	Y
8.8.4	The affected Incense Tree and Ailanthus as mentioned in the detailed vegetation survey report within the works area will be transplanted		The Engineer/ Contractor		\checkmark	Y
8.8.5	To avoid impacts on Short-nosed Fruit Bat, the tree with records of an active roost and trees showing evidence of roosting activity should be retained where possible. Where Chinese Fan-palm (Livistona chinensis) removal is required, these should be checked by suitably qualified ecologist with over 7 years relevant experience for roosting bats prior to their removal. If roosting bats are observed, a strategy for passive removal will be agreed with the AFCD and implemented. This could include undertaking the works just after the bats have left the roost (i.e. dusk).		The Engineer/ Contractor		\checkmark	N/A
8.8.6	The inclusion of Chinese Fan-palm of similar size as the affected plant within the areas of compensatory planting or other suitable areas is recommended to replace affected specimens, and compensate for the impact to roosting opportunities for this bat species		The Engineer/ Contractor		\checkmark	N/A
8.8.7	Implement good site measures to minimize the disturbance impacts to terrestrial habitat and associated wildlife arising from the land-based construction activities.		The Engineer/ Contractor		\checkmark	Y
8.8.8	To minimize the contamination of wastewater discharge, accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as diverting the site runoff to silt trap facilities before discharging into storm drain, proper waste and dumping management and standard good site practice for land-based construction.		The Engineer/ Contractor		\checkmark	Y
8.8.9-8.8.11	Implement woodland compensation		The Engineer/ Contractor		\checkmark	N/A

Landscape and Visual						
9.8.1	Existing tress to be retained on site shall be carefully protected during construction. Trees unavoidably affected by the works shall be transplanted as far as possible.	All works areas	Contractor	DEVB TCW No. 10/2013 EIAO TM	\checkmark	Y
	Compensatory Planting shall be provided in accordance with DEVB TCW No. 10/2013 - Tree Preservation.	All works areas	Contractor		$\sqrt{ }$	Y
	Control of night-time lighting glare.	All works areas	Contractor		\checkmark	Y
	Erection of decorative screen hoarding compatible with the surrounding setting.	All works areas	Contractor		\checkmark	Y
	Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs.	All works areas	Contractor		\checkmark	Y
Cultural Heritage						
10.6.2	Vibration monitoring at Ex KCR Beacon Hill Tunnel during piling works of Administration Building	Work site	The Engineer /Contractor		\checkmark	N/A
Land Contamination						
11.7	Identify contamination and implement appropriate remedial measures on site. Provide relevant submission and obtain approval from EPD if necessary.	All works areas	Contractor	Guidance Note for Contaminated Land Assessment and Remediation Guidance Manual for Use of Risk based Remediation Goals for Contaminated Land Management (Guidance Manual)	\checkmark	N/A
Hazard to Life						
Table 12.22	Ensure speed limit enforcement is specified in the contractor's Method Statement to limit the speed of construction vehicles on site	All works areas	The Engineer	EIAO-TM	\checkmark	Y
	Develop an audit procedure to ensure enforcement of speed limits and to ensure adequate site access control	All works areas	The Engineer		$\sqrt{ }$	Y
	Ensure construction method statement is endorsed by the Engineer (AECOM)	All works areas	The Engineer		\checkmark	Y

$\begin{aligned} & \text { 12.15.4, } \\ & \text { 12.18.1, } \\ & \text { 12.22.9 } \end{aligned}$	GPS fleet management system with driver training to help enforce truck speeds	Chlorine delivery trucks, fleet management centre	$\begin{array}{\|l\|} \hline \text { WSD / } \\ \text { Chlorine Supply } \\ \text { Contractor } \end{array}$	EIAO-TM	\checkmark	k.i.v.
	Improved clamps with independent checks to prevent load shedding	Chlorine delivery trucks			\checkmark	F
	Installation of fire screen and larger fire extinguishers to prevent engine and wheel fires from spreading to the cargo area				\checkmark	F
	Adoption of the chlorine delivery route from Sham Shui Kok Dock to Sha Tin WTW				$\sqrt{ }$	F
	Provision of emergency repair kit				\checkmark	F
$12.34 .3$ Table 12.37 \& 12.38	Ban the use of retreaded tyres and perform regular visual checks on the tyres.				\checkmark	F
	A vehicle accompanying chlorine truck along critical road sections in Sha Tin. The truck should be equipped with emergency kit, fire extinguisher, radio set for communication. The accompanying vehicle will be ahead of the chlorine truck after the vehicles entering the water treatment works site - An accompanying vehicle may provide rapid response to an incident but any action would be limited to containing a small leak.				\checkmark	F
	Limit fuel tanks capacity at the beginning of the Project (Item 2.3 of Table 12.37 - advance measure).				\checkmark	F
	Review the practicality of reducing combustible materials or use of fire retardant materials in the cab. (Item 2.3 of Table 12.37 - further measure)				\checkmark	k.i.v.
	Annual periodic radiography or ultrasonic test inspections of the chlorine drums should be considered for implementation as soon as feasible (Item 3.8 of Table 12.37).	Chlorine drums			\checkmark	k.i.v.
	Implement side, front and rear crash guards with high energy absorption in coordination and accordance with the relevant authorities.	Chlorine delivery trucks			\checkmark	k.i.v.
	Implement a sturdy steel frame to minimize the potential for chlorine release due to truck rollover				\checkmark	k.i.v.
12.34.4	WSD will continue to keep under review the latest development of use of alternative disinfectants in water supply industry to aim at minimising on-site chlorine storage. 4	Chlorine delivery Route	WSD		\checkmark	k.i.v.

Training should be provided for the use of the GPS fleet management and improved safe driving.					\checkmark			k.i.v.
Ensured that independent checks are performed to ensure proper chlorine drum latching and clamping.					\checkmark			F
Chlorine truck drivers or driver attendants should be further trained to check and detect potential chlorine leaks during transport. This should include the timely application of the emergency kit.					\checkmark			k.i.v.
Training should be provided to driver and driver attendant for the emergency use of the new 2×9 L AFFF extinguishers.					\checkmark			F
Induction training for new drivers and driver attendant should include familiarisation with the route, familiarisation with chlorine risks, defensive driving, application of emergency kits, use of fire extinguishers and emergency response					\checkmark			k.i.v.
Provision of a fire screen between the cab and cargo as well as fire retardant materials for the wheel arches on the chlorine truck should be planned and provided					\checkmark			F
To keep under review alternate chlorine receiving dock in Sha Tin/Tai Po area for chlorine delivery to STWTW.					\checkmark			k.i.v.
Legend								
D - Design Phase								
C - Construction Phase								
O-Operation Phase								
Y - Compliance of Mitigation Measures								
N/A - Not Applicable in Reporting Period								
k.i.v - Keep In View								
F - Completed								

In-situ Reprovisioning of Sha Tin Water Treatment Works - South Works
Monthly EM\&A Report (No. 95)

Appendix V

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

In-situ Reprovisioning of Sha Tin Water Treatment Works - South Works
Monthly EM\&A Report (No. 95)
Statistical Summary of Exceedances (January 2024)

Air Quality									
Location	Action Level			Limit Level					Total
AM1	0			0					0
AM2	0			0					0
Noise									
Location	Action Level			Limit Level					Total
NM1	0			0					0
NM2	0			0					0
NM3	0			0					0
Water Quality									
Location	Action Level				Limit Level				Total
	Do	Turbidity	ss	pH	Do	Turbidity	ss	pH	
C1	0	0	0	0	0	0	0	0	0
C2	0	0	1	0	0	0	0	0	1
C3	N/A	0							
M1	0	0	0	0	0	0	0	0	0
M2	0	0	0	0	0	0	0	0	0
M3	0	0	0	0	0	0	1	0	1

There was 1 exceedances of Action Level and 1 exceedance of Limit Level in January 2024

Statistical Summary of Exceedances (Cumulative)

Air Quality									
Location	Action Level			Limit Level					Total
AM1	0			0					0
AM2	0			0					0
Noise									
Location	Action Level			Limit Level					Total
NM1	0			0					0
NM2	0			0					0
NM3	0			0					0
Water Quality									
Location	Action Level				Limit Level				Total
	Do	Turbidity	ss	pH	Do	Turbidity	ss	pH	
C1	0	0	18	4	1	10	8	3	44
C2	0	1	13	1	5	9	6	1	36
C3	N/A	0							
M1	0	1	7	1	7	6	26	7	55
M2	0	0	0	0	9	3	2	0	14
M3	0	0	0	2	10	22	47	0	81

Statistical Summary of Environmental Complaints

Reporting Period	Frequency	Complaint Nature	Cumulative
	0	N/A	4
31 January 2024	0		

Statistical Summary of Environmental Summons

Reporting Period	Frequency	Details	Cumulative
	0	N/A	0

Statistical Summary of Environmental Prosecution

Reporting	Environmental Prosecution Statistics		
Period	Frequency	Details	Cumulative
1 January-			
31 January 2024	0	N/A	0

Member of the Aurecon Group

To

From

RE

IEC (AECOM), ER (AECOM), Contractor (ATAL - CW - MH JV (ACMJV), CW-FWS JV)

Oliver Chiu

Fax No

Date

By-email

14 February 2024

Our Ref
CJO-3113

Contract No. 1/WSD/19 \& 6/WSD/21
In-situ Provisioning of Sha Tin Water Treatment Works (South Works) - Water Treatment Works and Ancillary Facilities - Environmental Team

Notification of Exceedance (NOE) for Water Quality Monitoring on 29 January 2024

Dear Sir/ Madam,

Exceedances of water quality were found in the monitoring on 29 January 2024.
Please find the exceedances in the table below. Investigation report will be submitted separately.

Station	Parameter	Weather	Action Level	Limit Level	Measured Level	Range of Baseline	Exceedance
C1	Suspended Solids $(\mathrm{mg} / \mathrm{L})$	Fine	4.19	6.73	1.4	$<1-9.7$	-
C2	Suspended Solids $(\mathrm{mg} / \mathrm{L})$	Fine	4.33	8.16	4.4	$<1-12.0$	Action Level
M1	Suspended Solids $(\mathrm{mg} / \mathrm{L})$	Fine	3.30	3.56	2.0	$<1-4.7$	-
M2	Suspended Solids $(\mathrm{mg} / \mathrm{L})$	Fine	18.84	26.80	1.1	$<1-38$	-
M3	Suspended Solids (mg/L)	Fine	1.00	1.00	1.3	$<1-1.3$	Limit Level

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2333-6823 or Fax: 2333-1316.

Yours Faithfully,
For and on Behalf of
Acumen Environmental Engineering \& Technologies Co., Ltd.

Oliver Chiu
Assistant Environmental Consultant
environmental

Investigation Report on Limit Level Non-compliance on 29 January 2024

CONTRACT NO. 1/WSD/19 \& 6/WSD/21
IN-SITU REPROVISIONING OF SHA TIN WATER TREATMENT WORKS (SOUTH WORKS) - WATER
TREATMENT WORKS AND ANCILLARY FACILITIES
Date: 14 February 2024

(I) Summary of exceedance on 29 January 2024

Station	Parameter	Weather	Action Level	Limit Level	Measured Level	Range of Baseline	Exceedance
C1	Suspended Solids (mg/L)	Fine	4.19	6.73	1.4	$<1-9.7$	-
C2	Suspended Solids (mg/L)	Fine	4.33	8.16	4.4	$<1-12.0$	Action Level
M1	Suspended Solids (mg/L)	Fine	3.30	3.56	2.0	$<1-4.7$	-
M2	Suspended Solids (mg/L)	Fine	18.84	26.80	1.1	$<1-38$	-
M3	Suspended Solids (mg/L)	Fine	1.00	1.00	1.3	$<1-1.3$	Limit Level

(II) Investigation Results, Recommendations \& Mitigation Measures

1) According to the field observation from the Environmental Team (ET) on 29 January 2024, no polluted discharge was made from construction site to the Control Station C2, since C2 is a control station upstream of Impact Monitoring Stations C2 and out of the site boundary. In general, the condition of water at Impact Station C2 was in order and no discharge from construction was observed (Photo 1). The water quality monitoring locations and contract site area are illustrated in Figure 1.
2) According to the field observation from the Environmental Team (ET) on 29 January 2024, no polluted discharge was made from construction site to the Impact Monitoring Station M3 (Photo 2). In general, the condition of water at Impact Station M3 was in order and no discharge from construction was observed (Photo 2). The water quality monitoring locations and contract site area are illustrated in Figure 1.
3) Weekly site inspection by the Contractor and ET was conducted on 29 January 2024 to audit the site environmental performance. The overall condition was in compliance.
4) In our investigation on 29 November, the Contractor had implemented water quality mitigation measures (eg. sandbags were put within the site to avoid wastewater from leaking out of the site) and wastewater have been properly treated (Photo $3 \& 5$). No adverse water quality impact was observed during the site inspection (Photo 4). Based on the site observation, it is concluded that the exceedance of limit level was non-project related.
5) Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM\&A Manual.
environmental

Member of the Aurecon Group
Photo Record

Photo 1 (C2)

Photo 2 (M3)

Member of the Aurecon Group

Photo 3 (Water quality of water treatment tank at 6/WSD)

Photo 4 (Discharge point at 6/WSD)

Photo 5 (Water quality of water treatment tank at 1/WSD)

aurecon

Member of the Aurecon Group

Figure 1 Location Map Water Quality Monitoring Location

Appendix W

Tentative Schedule of Impact Monitoring

Tentative Impact Monitoring Schedule for STWTW

Tentative Impact Monitoring Schedule for STWTW						
Feb-24						
Sun	Mon	Tue	Wed	Thu	Fri	Sat
				1	,	3
				Impact Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3	Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3	
4	5	6	7	8	9	10
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3 Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3 Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3	
11	12	13	14	15	16	17
			Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	Impact Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	
18	19	20	21	22	23	24
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3 Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3	
25	26	27	28	29		
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3	Impact Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3			

Tentative Impact Monitoring Schedule for STWTW

Tentative Impact Monitoring Schedule for STWTW						
Mar-24						
Sun	Mon	Tue	Wed	Thu	Fri	Sat
					1	2
					Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	
3	4	5	6	7	8	9
	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3 Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	Impact Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3
10	11	12	13	14	15	16
	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3 Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3	
17	18	19	20	21	22	23
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	Impact Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	
24	25	26	27	28	29	30
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3 Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3			
31						

Tentative Impact Monitoring Schedule for STWTW

Tentative Impact Monitoring Schedule for STWTW						
Mar-24						
Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2	3	4	5	6
		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3 Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3			Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	
7	8	9	10	11	12	13
	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3 Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	Impact Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3
14	15	16	17	18	19	20
	Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3 Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3	
21	22	23	24	25	26	27
	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3		Impact Water Quality monitoring for C1, C2, C3, M1, M2 \& M3	Impact Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3	
28	29	30				
	Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3		Impact Water Quality monitoring for $\mathrm{C} 1, \mathrm{C} 2$, C3, M1, M2 \& M3 Air monitoring for AM1 \& AM2 Noise monitoring for NM1, NM2 \& NM3			

[^0]: Y W Fung
 Independent Environmental Checker

[^1]: Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited.

[^2]: Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited.

[^3]: Test Result
 : Refer to the results on page 2

[^4]: Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited.

[^5]: Test Result
 : Refer to the results on page 2

[^6]: 1. mg / L indicates milligram per liter
 2. < indicates less than.
 3. Reporting limit is $2.5 \mathrm{mg} / \mathrm{L}$ for 1 L sample
 4. Reporting limit is $1 \mathrm{mg} / \mathrm{L}$ for 2.5 L sample
 5. Applicant name, applicant address, project name, sampling date, sample ID and sample nature are provided by applicant.
 6. The result(s) relate only to the item(s) tested.
 7. The result(s) are applied only to the sample(s) received.
[^7]: Hong Kong Accreditation Service (HKAS) has accredited Acumen Laboratory and Testing Limited (Reg. No. HOKLAS 241 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report is issued subject to Acumen Laboratory and Testing Limited standard TERMS AND CONDITIONS, and shall not be reproduced except in full or with written approval by Acumen Laboratory and Testing Limited.

[^8]: Test Result : Refer to the results on page 2

