ATAL-BELGOPROCESS JOINT VENTURE

Contract No. EP/SP/40/02
 Low Level Radioactive Waste Storage Facility at Siu A Chau
 Tenth Environmental Monitoring and Audit Report (Operation Phase)

Version 1.0

September 2006

REMARKS:
The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

The Environmental Team Leader accepts no responsibility for changes made to this report by third parties.

Dr. John K.C. Leung
Department of Physics, The University of Hong Kong
Pokfulam Road, Hong Kong. Tel: +852 28592858 Fax: +852 24718888

E-mail: jkcleung@hku.hk

TABLE OF CONTENTS

EXECUTIVE SUMMARY 1

1. INTRODUCTION 2
Background 2
Purpose of the Report 2
2. MONITORING RESULTS 3
Ambient γ Dose Rates 5
SOLL 8
SAND 9
Grass 10
Sea Water 11
Marine Organisms 12
Airborne Particulates 14
3. REPORT ON ELEVATED ENVIRONMENTAL RADIATION BACKGROUND 15
4. REPORT ON NON-COMPLIANCE 16
Dose for Radiation Workers 16
Dose Rates at Un-controlled Areas 16
Liquid Effluent Discharge 16
Airborne Effluent Discharge 16
5. RESULT OF ENVIRONMENTAL COMPLIANCE AUDITS 17
APPENDIX 1 18
Limit Level and Action Level 18
Investigation Level 18

LIST OF TABLES

Table 2.1(a) Ambient γ Dose Rates at 1 m above Ground
Table 2.1(b) Comparison of Ambient γ Dose Rates with Previous Results
Table 2.2(a) Activity Concentration of Some Major Radionuclides in Soil Samples
Table 2.2(b) Comparison of Activities in Soil with Previous Results
Table 2.3(a) Activity Concentration of Some Major Radionuclides in Sand Samples
Table 2.3(b) Comparison of Activities in Sand with Previous Results
Table 2.4(a) Activity Concentration of Gross α and β Emitters in Grass Samples
Table 2.4(b) Comparison of α / β Activities in Grass Samples with Previous Results
Table 2.5(a) Activity Concentration of Gross α / β Emitters in Sea Water Samples
Table 2.5(b) Comparison of α / β Activities in Sea Water Samples with Previous Results
Table 2.6(a) Activity Concentration of Gross α / β Emitters in Fish Samples
Table 2.6(b) Comparison of α / β Activities in Fish Samples with Previous Results
Table 2.7(a) Activity Concentration of Gross α / β Emitters in Sea Snail Samples
Table 2.7(b) Comparison of α / β Activities in Sea Snails with Previous Results
Table 2.8(a) Net Gross α / β Counts in Airborne Particulate Samples
Table 2.8(b) Comparison of α / β in Airborne Particulate Samples with Previous Samples
Table A1.1 Limit Levels for Non-compliance and Action Levels
Table A1.2 Investigation Levels for Enviroumental Samples

LIST OF FIGURES

Figure 2.1 Locations of the Sampling Sites
Figure 2.2 Variations in Ambient γ Dose Rates with Time

EXECUTIVE SUMMARY

This is the third report after the initial 6 monthly EM\&A Reports and it presents the results of the radiological monitoring work performed between July 19, 2006 and September 11, 2006. The sampling was done on September 11, 2006.

The radioactivities in sand samples collected in Location C have indeed returned to the baseline level for 3 consecutive EM\&As, thus confirming the seasonal variation of radioactivities observed in sand sample C .

INTRODUCTION

Background

1.1 Various industrial, educational and medical facilities in Hong Kong have, for a number of years, used radioactive materials and generated radioactive waste. Most of the existing waste arisings are stored in disused air raid tunnels close to Queen Road East in Wan Chai. Other arisings are stored temporarily (although in some cases for several years) at the point of use in educational institutions or hospitals.
1.2 A consultancy study in 1995 concluded that Siu A Chau was a suitable location for a purpose-built storage facility to which all waste will be transported, placed in stainless steel drums and stored.
1.3 In July 2003 ATAL-Belgoprocess Joint Venture Limited (ABJV) was awarded a contract to design, construct, and operate the LRWF at Siu A Chau. Thereafter, the ABJV will transfer the waste management skills for this Facility to Hong Kong.
1.4 The LRWF was designed to have a storage vault that can initially store 260 drums of waste, each drum of 275 litres net capacity. The building will also contain facilities for waste reception and repackaging waste, and administering the process. A jetty will be built to provide marine access to the Facility.
1.5 The Facility is equipped with various radiation monitors inside the building specially installed for detecting all possible leakage of effluents from the building.
1.6 However, it is possible that minute activities may escape from detection and enter the biosphere, or an unexpected incidence would have resulted in a significant release of radionuclide from the Facility. It is one of the objectives of this environmental monitoring scheme to monitor whether in the long-term, the operation of the Facility will cause deterioration to the environment.

Purpose of the Report

1.7 This is the tenth EM\&A (Operation Phase) report, which is also the ninth report on measurement results of environmental samples taken after the commencement of operation of the LRWF on July 28, 2005. This report covers the monitoring period from July 19 to September 11, 2006.
1.8 The requirements of the operation phase monitoring and audit; monitoring scheme and monitoring equipment and procedures have been fully described in the First EM\&A (Operation Phase) Report. Please refer to that report for reference.
1.9 This report also covers the monitoring of personnel doses, the non-active areas of the Facility and the liquid and gaseous effluents.

2. MONITORING RESULTS

2.1 The sampling scheme remained unchanged. 15 in -situ ambient γ dose rates were measured. 3 soil samples; 3 sea sediment samples; 3 grass samples; 8 seawater samples from 4 locations at two depths; 1 kg of sea snails; a few fish and 3 airborne particulate samples were collected and analysed as in previous monitoring. Figure 2.1 shows the locations for taking various samples.
2.2 Ambient y dose rates were taken at exactly the same locations and would give a true picture of the variation of the radiation environment if there were any.
2.3 Soil and grass samples were collected at more or less the same place as for the baseline. Since we need fresh surface soils that would have stored information of fallout since the commencement of the operation, the sampling sites shifted a little bit every time.
2.4 The uncertainties of the measurement results are given as standard deviation (SD) or standard uncertainty (SU). SD is given for individual sample and is calculated according to the number of counts recorded and assuming a normal distribution for the counts. SU is reported for each group of samples and it takes into account of the variance between samples. Please refer to the First EM\&A Report (Operation Phase) for details.

Fig. 2.1 Locations of the Sampling Sites
(γ : Ambient gamma dose rate; S: Soil or Sand; W: Water; P: Air particulates) (Grass sampling sites are the same as soil sampling sites)

Ambient γ Dose Rates

2.5 The measurement results are given in Table 2.1(a). Table 2.1(b) also shows the results of the previous measurements for comparison. The header ? 0? means the result of this monitoring. It is noted that the overall average value has not changed during the monitoring period.

Table 2.1(a) Ambient γ Dose Rates at 1 m above Ground

Location	γ Dose Rate $\left(\mu \mathbf{S v} \mathbf{h}^{-1}\right)$										
	$\mathbf{1}$ Baseline	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0} \pm \mathbf{1 ~ S D}$	
Boat	0.07	--	--	0.06	0.06	0.06	0.08	0.06	0.06	0.06 ± 0.007	
A	0.21	0.21	0.24	0.21	0.22	0.23	0.22	0.21	0.20	0.22 ± 0.012	
B	0.22	0.24	0.25	0.26	0.21	0.24	0.26	0.23	0.23	0.23 ± 0.012	
C	0.28	0.26	--	--	--	--	--	--	--	--	
D	0.23	0.29	0.25	0.26	0.26	0.25	0.27	0.26	0.24	0.26 ± 0.013	
E	0.25	0.22	0.26	0.24	0.26	0.23	0.25	0.21	0.20	0.24 ± 0.012	
F	0.24	0.26	0.25	0.25	0.28	0.26	0.28	0.27	0.28	0.26 ± 0.013	
G	0.23	0.28	0.24	0.26	0.27	0.26	0.27	0.25	0.25	0.26 ± 0.013	
H	0.27	0.29	0.28	0.30	0.30	0.29	0.29	0.30	0.30	0.28 ± 0.013	
I	0.28	--	--	--	--	--	--	--	--	--	
New I	--	--	0.26	0.29	0.31	0.28	0.30	0.28	0.29	0.30 ± 0.014	
J	0.21	0.23	0.20	0.23	0.24	0.23	0.23	0.26	0.25	0.22 ± 0.012	
K	0.28	0.27	0.26	0.24	0.26	0.26	0.29	0.29	0.23	0.27 ± 0.013	
L	0.22	0.28	0.27	0.22	0.28	0.26	0.26	0.25	0.26	0.25 ± 0.013	
M	0.27	0.29	0.28	0.30	0.26	0.28	0.26	0.29	0.24	0.31 ± 0.014	
N	0.25	0.27	0.25	0.25	0.27	0.23	0.26	0.24	0.21	0.23 ± 0.012	
O	--	--	0.21	0.21	0.24	0.20	0.24	0.20	0.21	0.21 ± 0.011	
P	--	--	0.25	0.24	0.25	0.24	0.27	0.26	0.23	0.24 ± 0.012	

-- Not measured
2.6 No exceedance of the Investigation Level was observed.

Table 2.1(b) Comparison of Ambient γ Dose Rates with Previous Results

EM\&A Report No.	Mean $\boldsymbol{\gamma}$ Dose Rate $(\mu \mathbf{S v ~ h}$ $\mathbf{- 1}$	$\mathbf{S U}$
1 (Baseline)	0.24	0.03
2	0.26	0.03
3	0.25	0.02
4	0.25	0.03
5	0.26	0.03
6	0.25	0.02
7	0.26	0.02
8	0.25	0.03
9	0.24	0.03
10	0.25	0.03

2.7 Figure 2.2 shows the change in ambient γ dose rate with time at the various monitoring locations.
2.8 The overall ambient γ dose-rate remained unchanged.

Soil

2.9 Soil samples were collected at 3 locations only, all from the undisturbed areas. These locations correspond to the passive air sampler locations which aim to detect dispersion of effluent leakages, if any, in the prevailing wind directions. The measurement results are given in Table 2.2(a) \& (b).

Table 2.2(a) Activity Concentration of Some Major Radionuclides in Soil Samples

Location	Collection Date	Activity Concentration ($\mathbf{B q ~} \mathrm{kg}^{-1}$)							
		${ }^{226} \mathrm{Ra}$	SD	${ }^{228} \mathrm{Th}$	SD	${ }^{40} \mathrm{~K}$	SD	${ }^{137} \mathrm{Cs}$	SD
A	11 Sept 06	66.7	0.5	92.4	0.8	729	5.1	0.33	0.09
B	11 Sept 06	50.9	0.5	108.7	0.9	582	4.5	*	*
C	11 Sept 06	34.6	0.4	92.1	0.7	183	3.1	0.21	0.05

* Not detected

Table 2.2(b) Comparison of Activities in Soil Samples with Previous Results

EM\&A Report No.	Mean Activity Concentration ($\mathrm{Bq} \mathrm{kg}^{\mathbf{- 1}}$)							
	${ }^{226} \mathrm{Ra}$	SU	${ }^{228} \mathbf{T h}$	SU	${ }^{40} \mathrm{~K}$	SU	${ }^{137} \mathrm{Cs}$	SU
1 (Baseline)	50.0	13.9	80.2	16.1	606	297	0.25	0.37
2	41.7	17.0	63.7	20.5	387	219	*	*
3	41.8	15.4	75.6	20.1	423	237	*	*
4	45.3	7.1	104.5	11.4	574	319	0.25	0.43
5	57.8	17.7	95.8	4.2	535	294	0.41	0.42
6	59.9	19.0	103.9	14.3	479	277	0.25	0.23
7	60.8	22.4	102.9	16.2	464	258	0.36	0.33
8	51.9	17.6	95.0	14.8	449	263	0.19	0.17
9	52.5	18.6	98.4	16.3	523	307	0.07	0.12
10	50.7	16.1	97.7	9.5	498	282	0.18	0.17

* Not detected
2.10 No exceedance of Investigation Level is observed.

Sand

2.11 The measurement results are shown in Table 2.3(a) \& (b).

Table 2.3(a) Activity Concentration of Some Major Radionuclides in Sand Samples

Location	Collection Date	Activity Concentration ($\mathrm{Bq} \mathrm{kg}^{\mathbf{- 1}}$)					
		${ }^{226} \mathbf{R a}$	SD	${ }^{228}$ Th	SD	${ }^{40} \mathrm{~K}$	SD
A	11 Sept 06	20.0	0.4	17.2	0.5	318	3.4
B	11 Sept 06	18.5	0.3	17.0	0.5	293	3.4
C	11 Sept 06	16.6	0.4	21.3	0.6	519	4.3

Table 2.3(b) Comparison of Activities in Sand Samples with Previous Results

EM\&A Report No.	Mean Activity Concentration $\left(\mathbf{B q} \mathbf{~ k g}^{-1}\right)$					
	${ }^{226} \mathbf{R a}$	$\mathbf{S U}$	${ }^{228} \mathbf{T h}$	$\mathbf{S U}$	${ }^{40} \mathbf{K}$	$\mathbf{S U}$
1 (Baseline)	18.8	4.4	21.6	5.5	576	106
2	11.1	3.8	12.8	5.0	357	100
3	11.4	3.2	13.2	4.4	382	141
4	28.3	22.8	24.5	17.4	360	165
5	23.3	12.7	25.6	17.9	323	117
6	20.8	8.0	25.8	18.0	329	95.7
7	30.2	24.8	24.3	17.0	320	173
8	15.4	4.6	15.4	4.1	246	30.5
9	14.5	1.2	17.3	5.8	380	99.1
10	18.4	1.7	18.5	2.4	377	124

2.12 No exceedance of Investigation Level is observed.

Grass

2.13 Grass samples were collected in locations near to the soil samples. The measurement results are given in Table 2.4(a) \& (b). The γ-spectra are identical to the background of the γ spectrometer and do not reveal the presence of any significant γ-emitting radionuclides, hence they are not reported here.

Table 2.4(a) Activity Concentration of Gross α and β Emitters in Grass Samples

Location	Collection Date	α Activity* ($\mathrm{Bq} \mathrm{g} \mathrm{g}^{-1}$)	$\begin{gathered} \mathrm{SD} \\ \left(\mathrm{~Bq} \mathrm{~g}^{-1}\right) \end{gathered}$	$\begin{gathered} \beta \text { Activity* } \\ \left(\mathbf{B q ~ g ~ g}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { SD } \\ \left(\mathrm{Bq} \mathrm{~g}^{-1}\right) \\ \hline \end{gathered}$
A	11 Sept 06	0.060	0.004	0.324	0.006
B	11 Sept 06	0.045	0.003	0.442	0.008
C	11 Sept 06	0.048	0.003	0.432	0.006

* $\mathrm{Bq} \mathrm{g}{ }^{-1}$ refers to dry mass of grass

Table 2.4(b) Comparison of α / β Activities in Grass with Previous Results

EM\&A Report No.	Mean α Activity $\left(\mathbf{B q \mathbf { g } ^ { - 1 })}\right.$	SU $\left(\mathbf{B q} \mathbf{~ g}^{\mathbf{- 1}}\right)$	Mean β Activity $\left(\mathbf{B q \mathbf { g } ^ { - 1 })}\right.$	SU $\left(\mathbf{B q \mathbf { g }} \mathbf{g}^{\mathbf{- 1}}\right.$
1 (Baseline)	0.083	0.044	0.33	0.03
2	0.037	0.012	0.25	0.01
3	0.081	0.017	0.30	0.10
4	0.093	0.009	0.26	0.03
5	0.084	0.020	0.23	0.04
6	0.081	0.056	0.22	0.09
7	0.077	0.046	0.25	0.08
8	0.068	0.047	0.28	0.05
9	0.050	0.023	0.29	0.02
10	0.051	0.008	0.40	0.07

2.14 All activities are within the normal fluctuation of the baseline values except β activities in sample B \& C are marginally above the Investigation Level.

Sea Water

2.15 The same 4 locations were chosen to collect the water samples at 2 depths. The measurement results are given in Table 2.5(a) \& (b).
2.16 Similar to grass samples, the γ spectra are not reported. There is no sign of presence of γ emitters.
2.17 There is exceedance of Investigation Level of β activity in 3 samples:- A-bottom; B-surface and B-bottom.

Table 2-5(a) Activity Concentration of Gross α / β Emitters in Sea Water Samples

Location	Total Depth(m)	Collection Date	Water Level	Activity $\left(\mathrm{Bq} \mathrm{L}{ }^{-1}\right)$	$\begin{gathered} S D \\ \left(\mathrm{~Bq}_{\mathrm{q}} \mathrm{~L}^{-1}\right) \end{gathered}$		$\begin{gathered} \mathrm{SD} \\ \left(\mathrm{~Bq} \mathrm{~L}^{-1}\right) \end{gathered}$
A	6.6	11 Sept 06	Surface		0.00	8.87	0.27
			Bottom	${ }^{\#} 0.66$	0.18	9.79	0.29
B	7.7	11 Sept 06	Surface	${ }^{+1} 0.82$	0.09	10.29	0.29
			Bottom	${ }^{\#} 0.49$	0.13	11.38	0.39
C	8.9	11 Sept 06	Surface	1.05	0.29	7.22	0.26
			Bottom	1.05	0.44	8.41	0.25
D	11.5	11 Sept 06	Surface	${ }^{\#} 0.89$	0.13	5.45	0.20
			Bottom	${ }^{\#} 0.62$	0.07	5.41	0.12

\# These activities are below the minimum detectable activity of $1.02 \mathrm{~Bq} \mathrm{~L}^{-1}$.

Table 2.5(b) Comparison of α / β Activities in Sea Water with Previous Results

EM\&A Report No.	Mean α Activity ($\mathrm{Bq} \mathrm{L} \mathrm{L}^{-1}$)	$\begin{gathered} \mathrm{SU} \\ \left(\mathrm{~Bq} \mathrm{~L}^{-1}\right) \end{gathered}$	Mean β Activity ($\mathrm{Bq} \mathrm{L}^{-1}$)	$\begin{gathered} \mathbf{S U} \\ \left(\mathbf{B q} \mathbf{L}^{-1}\right) \end{gathered}$
1 (Baseline)	0.77	0.25	7.20	0.70
2	0.49	0.47	6.10	0.46
3	0.57	0.21	7.43	0.80
4	0.71	0.50	7.00	0.81
5	0.92	0.44	6.15	0.64
6	0.63	0.28	6.99	0.37
7	0.25	0.28	6.30	0.45
8	0.19	0.23	5.84	1.34
9	0.32	0.29	5.21	0.38
10	0.70	0.35	8.35	2.19

Marine Organisms

2.18 Fishes were caught along the jetty and sea snails were collected randomly along the shores.
2.19 The measurement results are given in Table 2.6(a) \& (b) and Table 2.7(a) \& (b) for the gross α / β activities in fish and sea snails respectively.

Table 2.6(a) Activity Concentration of Gross α / β Emitters in Fish Samples

Sample	Collection Date	$\begin{gathered} \alpha \text { Activity* } \\ \left(\mathrm{Bq} \mathrm{~g}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{SD} \\ \left(\mathbf{B q g ^ { - 1 }}\right) \end{gathered}$	$\begin{gathered} \beta \text { Activity* } \\ \left(\mathbf{B q ~ g} \mathrm{g}^{-1}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{SD} \\ \left(\mathrm{~Bq} \mathrm{~g} \mathrm{~g}^{-1}\right) \end{gathered}$
1	11 Sept 06	0.010	0.002	0.074	0.002
2	11 Sept 06	0.008	0.002	0.086	0.003
3	11 Sept 06	0	0	0.075	0.002

* $\mathrm{Bq} \mathrm{g}{ }^{-1}$ refers to wet mass of fish flesh.

Table 2.6(b) Comparison of α / β Activities in Fish Samples with Previous Results

EM\&A Report No.	Mean α Activity ($\mathbf{B q ~ g} \mathrm{g}^{-1}$)	$\begin{gathered} \mathrm{SU} \\ \left(\mathrm{~Bq} \mathrm{~g} \mathrm{~g}^{-1}\right) \end{gathered}$	Mean β Activity $\left(\mathrm{Bq} \mathrm{g}^{-1}\right)$	$\begin{gathered} \mathrm{SU} \\ \left(\mathbf{B q ~ g}^{-1}\right) \end{gathered}$
1 (Baseline)	0.0093	0.004	0.068	0.003
2	0.0068	0.004	0.16	0.15
3	0.0116	0.005	0.026	0.006
4	0.0066	0.004	0.065	0.005
5	0.0040	0.004	0.056	0.010
6	0.0069	0.002	0.063	0.002
7	0.0120	0.021	0.047	0.035
8	0.0037	0.002	0.074	0.006
9	0.0100	0.004	0.062	0.050

2.20 The β activity in I fish sample was found to be slightly above the Investigation Level.

Table 2.7(a) Activity Concentration of Gross α / β Emitters in Sea Snail Samples

Sample	Collection Date	α Activity* $\left(\mathrm{Bq} \mathrm{~g}^{-1}\right)$	$\begin{gathered} \mathrm{SD} \\ \left(\mathrm{~Bq} \mathrm{~g}^{-1}\right) \end{gathered}$	β Activity* ($\mathrm{Bq} \mathrm{g} \mathrm{g}^{-1}$)	$\begin{gathered} \mathrm{SD} \\ \left(\mathrm{~Bq} \mathrm{~g} \mathrm{~g}^{-1}\right) \end{gathered}$
1	11 Sept 06	0.019	0.002	0.047	0.002
2	11 Sept 06	0.010	0.003	0.049	0.002
3	11 Sept 06	0.001	0.001	0.040	0.002

* $\mathrm{Bq} \mathrm{g} \mathrm{g}^{-1}$ refers to wet mass of sea snail flesh.

Table 2.7(b) Comparison of α / β Activities in Sea Snails with Previous Results

EM\&A Report No.	Mean α Activity $\left(\mathbf{B q \mathbf { g } ^ { - 1 })}\right.$	SU $\left(\mathbf{B q \mathbf { ~ g } ^ { - 1 })}\right.$	Mean $\boldsymbol{\beta}$ Activity $\left(\mathbf{B q ~ \mathbf { g } ^ { - 1 })}\right.$	SU $\left(\mathbf{B q ~ \mathbf { ~ g } ^ { - 1 })}\right.$
1 (Baseline)	0.029	0.006	0.064	0.004
2	0.010	0.008	0.034	0.007
3	0.009	0.002	0.032	0.002
4	0.032	0.011	0.050	0.002
5	0.004	0.005	0.045	0.007
6	0.007	0.005	0.042	0.006
7	0.014	0.006	0.063	0.008
8	0.005	0.001	0.040	0.004
9	0	0	0.023	0.002
10	0.010	0.009	0.045	0.005

2.21 All activities are comparable to the baseline levels.

Airborne Particulates

2.22 The sampling period was from May 10, 2006 to July 19, 2006, slightly more than 2 months.
2.23 Measurement results are given in Table 2.8(a) \& (b).

Table 2.8(a) Net Gross α / β Counts in Airborne Particulate Samples

Location	α Count-rate (cpm)	SD	β Count-rate (cpm)	SD
Blank	0.60	0.10	2.92	0.22
A1	0.30	0.16	2.08	0.38
A2	0.33	0.16	1.85	0.38
B1	0.08	0.08	1.12	0.35
B2	0.13	0.13	0.97	0.35
Cl	0	0	0.07	0.07
C 2	0	0	0	0

Table 2.8(b) Comparison of α / β in Airborne Particulate Samples with Previous Results

EM\&A Report No.	A		B		C	
	α (cpm)	β (cpm)	α (cpm)	β (cpm)	α (cpm)	β (cpm)
1 (Baseline)	0.00	0.00	0.00	0.00	0.00	1.17
2	0.09	1.38	0.00	0.39	0.00	0.00
3	0.04	0.45	0.00	1.18	0.13	0.86
4	0.12	1.75	0.65	2.18	0.00	0.28
5	0.35	0.94	0.24	0.66	0.07	0.83
6	0.18	0.33	0.00	0.02	0.00	0.00
7	0.16	0.75	0.16	0.09	0.20	0.00
8	0.84	4.87	0.24	1.64	0.09	1.84
9	0.91	3.03	0.29	1.36	0.09	0.42
10	0.32	1.97	0.11	1.05	0	0.03

2.24 A small amount α and β were detected in all samples, and their activities are comparable to the background.

3. REPORT ON ELEVATED ENVIRONMENTAL RADIATION BACKGROUND

3.1 The Investigation Levels for environmental samples have been established and they are given in Appendix 1. The relevant action plan is given in the First EM\&A Report (Operation Phase).
3.2 There were marginal exceedance of β activities in grass samples $\mathrm{B} \& \mathrm{C}$. The reason is not known but it was noted that the grass have grown much during the summer season.
3.3 One fish sample registered β activity slightly higher than the Investigation Level, but the variation is so small that it could be considered normal.
3.4 Three water samples have registered β activities exceeding the Investigation Level. This was the first time water sample recorded exceedance. Monthly Operation Report showed no release of liquid effluent during the period, hence the elevated activities were not attributed to the operation of the LRWF.

4. REPORT ON NON-COMPLIANCE

4.1 The Action Level and Limit Level (A/L Levels) for non-compliance have been established and they are given in Appendix 1 for easy reference. The relevant Event and Action Plan have been developed. Please refer to the First EM\&A Report (Operation Phase) for details.

Dose for Radiation Workers

4.2 There was no record of exceeding the A/L Levels as recorded by TLDs.

Dose Rates at Un-controlled Areas

4.3 No exceedance of the A/L Levels was observed.

Liquid Effluent Discharge

4.4 There was no liquid effluent discharged during the monitoring period.

Airborne Effluent Discharge
4.5 The total radon released during the monitoring period was estimated to be on average $1.25 \times 10^{9} \mathrm{~Bq} /$ month which, though higher than previous months, is still below the A / L Levels.
4.6 The discharged α and β activities were also below the A / L Levels.
4.7 The total airborne effluent discharge was below the A / L Levels.

5. RESULT OF ENVIRONMENTAL COMPLIANCE AUDITS

5.1 No compliant was received during the period.

APPENDIX 1

Limit Level and Action Level

The Limit Levels for non-compliance with the Environmental Performance Requirements during the Operation are shown in Table A1-1.

Table A1-1 Limit Levels for Non-compliance and Action Levels

Environmental Performance Requirements	Limit Levels	Action Levels (3/10 ${ }^{\text {th }}$ of Limit Levels)
Dose for radiation workers Dose rate at un-controlled areas Liquid effluent discharge Airborne effluent discharge	1.67 mSv per month $1 \mu \mathrm{~Sv}$ per hour 10 ALI per month 10 ALI per month	0.5 mSv per month $0.3 \mu \mathrm{~Sv}$ per hour 3 ALI per month 3 ALI per month

Investigation Level

With the help of all the internal monitoring, it is unlikely that the effluents will cause any observable increase in the radiation levels in the vicinity of the Facility under normal operation. It is also not anticipated that any significant quantity of the radioactive wastes would be released to the environment under even the most severe natural disasters. Nevertheless when the environmental samples are found to have radioactivities higher than the normal fluctuation of the established baseline levels, some investigation has to be initiated. The levels that trigger the investigation are called investigation levels and they are given in Table A1.2.

Table A1.2 Investigation Levels for Environmental Samples

Environmental Samples		Investigation Levels	
	A	0.23	
	B	0.25	
	D	0.27	
Ambient γ dose	E	0.29	$3 \times$ SD of
rate	F	0.28	individual baseline
$\left(\mu \mathrm{Sv} \mathrm{h}^{-1}\right)$	G	0.27	dose rate
	H	0.31	
	I	0.32	
	J	0.24	
	K	0.32	

	$\begin{gathered} \hline \mathrm{L} \\ \mathrm{M} \\ \mathrm{~N} \\ \mathrm{O} \\ \mathrm{P} \end{gathered}$	$\begin{aligned} & 0.25 \\ & 0.31 \\ & 0.29 \\ & 0.24 \\ & 0.29 \end{aligned}$	
$\begin{gathered} \text { Soil } \\ (\mathrm{Bq} \mathrm{~kg} \end{gathered}$	$\begin{gathered} \hline{ }^{226} \mathrm{Ra} \\ { }^{228} \mathrm{Th} \\ { }^{40} \mathrm{~K} \\ { }^{437} \mathrm{Cs} \end{gathered}$	$\begin{gathered} \hline \hline 91.7 \\ 128.5 \\ 1497 \\ 1.36 \\ \hline \end{gathered}$	$3 \times$ SU of baseline samples
	Other γ emitters		Occurrence in any quantities
$\begin{gathered} \text { Sand } \\ \left(\mathrm{Bq} \mathrm{~kg}^{-1}\right) \end{gathered}$	$\begin{gathered} \hline{ }^{226} \mathrm{Ra} \\ { }^{228} \mathrm{Th} \\ { }^{40} \mathrm{~K} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \hline 32.0 \\ & 38.1 \\ & 894 \\ & \hline \end{aligned}$	$3 \times S U$ of baseline samples
	Other γ emitters		Occurrence in any quantities
$\begin{aligned} & \text { Grass } \\ & \left(\mathrm{Bq} \mathrm{~g}^{-1}\right) \end{aligned}$	Gross α Gross β	$\begin{aligned} & 0.22 \\ & 0.43 \end{aligned}$	$3 \times$ SU of baseline samples
	γ emitters not found in baseline		Occurrence in any quantities
Sea water ($\mathrm{Bq} \mathrm{L} \mathrm{L}^{-1}$)	Gross α Gross β	$\begin{gathered} \hline 1.52 \\ 9.3 \end{gathered}$	$3 \times$ SU of baseline samples
	γ emitters not found in baseline		Occurrence in any quantities
$\begin{gathered} \text { Fish } \\ \left(\mathrm{Bq} \mathrm{~g} \mathrm{~g}^{-1}\right) \end{gathered}$	Gross α Gross β	$\begin{aligned} & \hline 0.021 \\ & 0.076 \end{aligned}$	$3 \times$ SU of baseline samples
Sea snails $\left(\mathrm{Bq} \mathrm{~g}^{-1}\right)$	Gross α Gross β	$\begin{aligned} & 0.048 \\ & 0.076 \end{aligned}$	$3 \times$ SU of baseline samples
Airborne particulates (cpm)	Gross α Gross β		Occurrence in any quantities

- SD is the standard deviation of a single sample.
- SU is standard uncertainty of the sample group.

