ENSR ASIA (HK) LTD TSP High Volume Sampler Field Calibration Report

Station	Access Road to	Po Shan Mansic	ns (CA1)	Operator:	Shum K	Shum Kam Yuen		
Cal. Date:	ite: 10-Mar-09			Next Due Date:			•	
Equipment No.:	A.001.46T			Serial No.	10217		•	
		······································		Condition	T			
Temperatu	re, Ta (K)	292	Pressure,	Pa (mmHg)	.,	761.0		
	· · · · · · · · · · · · · · · · · · ·		Orifice Transfer S	tandard Information	on			
Equipme	ent No.:	843	Slope, mc	2.02158	r	ept, bc	-0.02524	
Last Calibra	ition Date:	4-Nov-08		mc x Qstd + bc	bc = [DH x (Pa/760) x (298/Ta)] ^{1/2}			
Next Calibra	ation Date:	4-Nov-09			Pa/760) x (298/Ta)]			
				of TSP Sampler		S Flow Recorder		
Resistance Plate		(Orfice		HV			
No.	DH (orifice), in. of water	[DH x (Pa/7	(60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFN		
18	9.8	3.16		1.58	48.0	48.52		
13	6.9		2.66		40.0	40.44		
10	5.1		2.28		32.0	32.35		
7	3.8	1.97		0.99	28.0	28.30		
5	2.8		1.69	0.85	22.0	22.24		
By Linear Regres Slope , mw = Correlation Coef *If Correlation Coe	35.9459 ficient* =		9957 brate.	Intercept, bw = _	-7.9	175		
	***************************************		0-10-2-1	0.1. E.C.				
From the TSP Fie	ld Calibration Cu	rva taka Oetd -		Calculation				
From the Regress								
	q,		ug to					
		mw	x Qstd + bw = IC >	(Pa/760) x (298/T	[a)] ^{1/2}			
Therefore, Set Po	int; IC = (mw x C	Qstd + bw) x [(70	60 / Pa) x (Ta / 29	8)] ^{1/2} =		38.39		
Remarks:	***************************************		ar .				***************************************	
_				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
•••	1			ß	——————————————————————————————————————	to the second se		
QC Reviewer:	me f	-(1	Signature:	a las	ſ	Date: 11 Mai	c 09	

ENSR ASIA (HK) LTD TSP High Volume Sampler Field Calibration Report

_	Calain On Hain	lton Court (CA2	!)	Operator:	Shum K	am Yuen		
Cal. Date:	10-Mar-09	***************************************	***************************************	Next Due Date:	10-May-09		-	
Equipment No.: A.001.15T		Serial No.			10			
			Ambient	Condition				
Temperatur	re, Ta (K)	292		Pa (mmHg)		761.0	- 	
	L	·				·		
			Orifice Transfer S	tandard Informatio	on			
Equipment No.:		843 Slope, mc		2.02158			-0.0252	
Last Calibrat	tion Date:	4-Nov-08		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}		
Next Calibrat	tion Date:	4-Nov-09		Qstd = {[DH x (Pa/760) x (298/Ta)]	^{1/2} -bc} / mc		
		•	Calibration o	of TSP Sampler				
		(Orfice		HVS Flow Recorder			
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7	760) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFI		
18	9.9	3.18		1.59	48.0	48.52		
13	7.6	2.79		1.39	42.0	42.46		
	r 7	2.41		1.21	34.0	34.37		
10	5.7	1						
10 7	4.1		2,05	1.03	28.0	28.30		
				1.03 0.85	28.0 20.0	28.30 20.22		
7	4.1 2.8 ssion of Y on X 38.4379 ficient* =	0.	2.05 1.69 9961			20.22		
7 5 Sy Linear Regres Slope , mw = Correlation Coeff	4.1 2.8 ssion of Y on X 38.4379 ficient* =	0.	2.05 1.69 9961 brate.	0.85	20.0	20.22		
7 5 By Linear Regres Slope , mw = Correlation Coeff	4.1 2.8 ssion of Y on X 38.4379 ficient* =	0. Check and recali	2.05 1.69 9961 brate. Set Point	0.85	20.0	20.22		
7 5 Sy Linear Regres Slope , mw = Correlation Coeff	4.1 2.8 ssion of Y on X 38.4379 ficient* = efficient < 0.990, of	• 0. check and recali	2.05 1.69 9961 brate. Set Point of	0.85	20.0	20.22		
7 5 By Linear Regres Blope , mw = Correlation Coeff If Correlation Coeff	4.1 2.8 ssion of Y on X 38.4379 ficient* = efficient < 0.990, of	• 0. check and recali	2.05 1.69 9961 brate. Set Point of	0.85	20.0	20.22		
7 5 By Linear Regres Blope , mw = Correlation Coeff If Correlation Coeff	4.1 2.8 ssion of Y on X 38.4379 ficient* = efficient < 0.990, of	check and recali ve, take Qstd = "Y" value accord	2.05 1.69 9961 brate. Set Point of	0.85 Intercept, bw =	20.0 - -11.7	20.22		

EQUIPMENT CALIBRATION RECORD

Type: Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting: Operator:				Laser Dust Monitor SIBATA LD-3 A.005.07a 557 CPM					
				Mike Shek (MSKM)					
Standa	rd Equipment								
Equipment: Ru Venue: Cy Model No.: Se Serial No: Co Set Last Calibration Date*: 12			Rupprecht & Patashnick TEOM® Cyberport (Pui Ying Secondary School) Series 1400AB Control: 140AB219899803 Sensor: 1200C143659803						
Calibra	tion Result	· · · · · · · · · · · · · · · · · · ·							
	ivity Adjustment ivity Adjustment					*** · · · · · · · · · · · · · · · · · ·	PM PM		
Hour	Date (dd-mm-yy)	-	Time	Ambient Condition Temp R.H. (°C) (%)		Concentration ¹ (mg/m³) Y-axis	Total Count ²	Count/ Minute ³ X-axis	
1	14-06-08	09:00	- 10:00	32.2	75	0.03113	1007	16.78	
2	14-06-08	10:00	- 11:00	32.4	74	0.03566	1166	19.43	
3 4	14-06-08 14-06-08	11:00 13:00	- 12:00 - 14:00	32.5 32.5	74 75	0.03146 0.04583	1025 1485	17.08 24.75	
Slope (1. Monitoring of 2. Total Count 3. Count/minut or Regression of (K-factor): ation coefficient:	was logge e was cal	ed by Laser [Dust Mon	itor	shnick TEOM [®]			
Validity	of Calibration F	Record:	13 June 2	009	· · · · · · · · · · · · · · · · · · ·				
Remarks	s:							70 40	
QC Re	viewer: <i>Mike</i>	Shek	Signat	ure:	like	Date	э: <u>16 Jun</u>	e 2008	

EQUIPMENT CALIBRATION RECORD

Type: Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting:				Laser Dust Monitor SIBATA LD-3 A.005.09a 797 CPM						
Operator:				Mike She	ek (MSKI	Л)				
Standa	rd Equipment									
Equipment: Rupprecht &			port (Pui) 1400AB bl: <u>140</u> r: <u>120</u> ne 2008	140AB219899803 1200C143659803 K _o : 12500 08						
	tion Result		·-··							
Sensit	ivity Adjustment ivity Adjustment	Scale Setting	g (After Ca	alibration)):	_ <i>797</i> CF _ <i>797</i> CF	PM			
Hour	Date (dd-mm-yy)	Tim	Time		dition R.H. (%)	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis		
1	15-06-08	08:00 -	09:00	(°C) - 29.7	78	0.01928	716	11.94		
2	15-06-08	09:00 -	10:00	29.8	79	0.02128	767	12.78		
3	15-06-08	10:00 -	11:00	29.8	78	0.02574	885	14.75		
4 Note:	1 <i>5-06-08</i> 1. Monitoring c	<u>11:00 -</u> lata was mea	12:00 isured by	<i>29.7</i> Rupprect	<i>79</i> nt & Pata	<i>0.01953</i> shnick TEOM [®]	712	11.86		
Slope	2. Total Count 3. Count/minut ar Regression of (K-factor); ation coefficient;	e was calcul								
Validit	y of Calibration F	Record:	14 June 2	009						
Remark	s:		·							
					1					
QC Re	oviewer: <u>Mike</u>	Shek	Signat	ure:	Hiki) Date	: <u>16 J</u> un	e 2008		

EQUIPMENT CALIBRATION RECORD

Type: Manufacturer/Brand:				Laser Dust Monitor SIBATA				
Model No.:				LD-3				
Equipment No.:			_	A.005.1	la			
Sensitivity Adjustment Scale Setting: Operator:			ıg: _	799 CP				
			_	Mike Shek (MSKM)				
Standa	rd Equipment							
P= 1								J
Equip			recht & Pa					
Venue			rport (Pui	Ying Seco	ondary S	chool)		
Model Serial			s 1400AB	0400400	00000			
Senai	NO.	Contro Senso		0AB2198				
Last C	Calibration Date*:		ne 2008	00C1436	09803	K _o : <u>1250</u>	U	
*D	l D							
- Hemar	ks: Recommend	ied interval f	or nardwa	re calibra	tion is 1 y	year		
Calibra	tion Result							
Sensit Sensit	ivity Adjustment ivity Adjustment	Scale Settin Scale Settin	g (Before g (After C	Calibration alibration	on):):		PM PM	
Hour	Date	Tim	Time		oient	Concentration ¹ (mg/m ³)	Total	Count/
	(dd-mm-yy)			Condition			Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
	20 25 25			(°C)	(%)			
1	06-07-08	10:00 -	11100	29.9	81	0.01680	704	11.74
2	06-07-08	11:00 -	12:00	29.8	80	0.01748	738	12.30
3 4	06-07-08	12:00 -	13:00	29.6	80	0.01537	659	10.98
Note:	06-07-08	13:00 -	14:00	29.6	80	0.01688 shnick TEOM®	730	12.17
vol o .	2. Total Count					ISHNICK TEOW		
	3. Count/minut							
Duling	or Dooroopion of	V ou V			,			
	ar Regression of (K-factor):	YOFX	0.0014					
	ation coefficient:	-	0.0014					
	y of Calibration F	Record: _	5 July 200	09				
Remark	s:							
						•		ł
<u>. </u>					1			
OC D a	eviewer: <i>Mike</i>	Shok	Cianat	uroi	H.Lo	Б.,	711	2000
WO HE	viewer: <i>Mike</i>	OHEK	Signat	ui e	<i></i>	Dat	e: _ 7 July 2	<u> 2008 </u>

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

08CA0603 01

Page

of

2

Item tested

Description:

Sound Level Meter (Type I)

Manufacturer:

RION CO., LTD.

Microphone

RION CO., LTD.

Type/Model No.:

NL-31

UC-53A

Serial/Equipment No.:

00320528 / N.007.03A

88783

Adaptors used:

Item submitted by

Customer Name:

ENSR ASIA (HK) LTD.

Address of Customer:

Room 1213-1219, Grand Central Plaza, Tower 2, 138 Shalin Rural Committee Rd, Sha Tin, New Territories, HK

Request No.:

Date of request:

03-Jun-2008

Date of test:

12-Jun-2008

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator

B&K 4226

2288444

11-Jan-2009

CIGISMEC

Signal generator Signal generator DS 360 DS 360

33873 61227

06-Dec-2008 13-Jun-2008

CEPREI CEPRE

Ambient conditions

Temperature:

Air pressure:

(23 ± 2) °C

Relative humidity:

(60 ± 15) % (1000 ± 10) hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of ±20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang_lian-Min/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

12-Jun-2008

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

輝創工程有限公司

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate No.: C083543

Certificate of Calibration

This is to certify that the equipment

Description: Sound Level Calibrator

Manufacturer: Rion

Model No.: NC-73

Serial No.: 10307223 (N. 004 08)

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C083543.

The equipment is supplied by

Co. Name: ENSR Asia (HK) Limited

Address: 11/F., Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Rd., Shatin, N.T.

Date of Issue: 14 July 2008

Certified by:

K C/Lee

The test equipment used for testing are traceable to the National Standards as specified in this report. This report shall not be reproduced except in full and with prior written approval from this laboratory.