
REPORT

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section

First Monthly EM&A Report

13 December 2013

Environmental Resources Management 16/F, DCH Commercial Centre 25 Westlands Road Quarry Bay, Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section

First Monthly EM&A Report

Document Code: 0215660_1st Monthly EM&A_ Rev a_2013_12_13.pdf

Environmental Resources Management

16/F, DCH Commercial Centre 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Client:		Project No	0:		
Gammoi	n	021566			
This document presents the First Monthly EM&A Report for Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section.		Date: 13 December 2013 Approved by: Mr Craig Reid			
		Partner Certified to Mr Jovy ET Leade	oy: Tam		
Rev a	First Monthly EM&A Report	CL	JT	CAR	13/12/13
Revision	Description	Ву	Checked	Approved	Date
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.		— ⊠ Puk	ernal	Certificate	BS1

Ref.: HYDHZMBEEM00_0_1522L.13 16 December 2013

AECOM Supervising Officer Representative's Office 6 Hoi Kok Street, Tsuen Wan, N.T. By Fax (2492 2057) and By Post

Attention: Mr. Daniel Ip

Dear Sir.

Re: Agreement No. CE 48/2011 (EP)
Environmental Project Office for the
HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities,
and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2012/07 TM-CLKL Southern Connection Viaduct Section Monthly EM&A Report for November 2013 (EP-354/2009/A)

Reference is made to the First Monthly Environmental Monitoring and Audit (EM&A) Report (for November 2013) Revision a certified by the ET Leader (ET's ref.: "0215660_1st Monthly EM&A_ Rev a_2013_12_13.pdf" dated 13 December 2013) and provided to us via email on 16 December 2013.

We are pleased to inform you that we have no adverse comments on the captioned monthly EM&A Report. We write to verify the captioned submission in accordance with Condition 4.4 of EP-354/2009/A.

Thank you for your kind attention. Please do not hesitate to contact the undersigned or the ENPO Leader Mr. Y H Hui should you have any queries.

Yours sincerely,

Tony Cheng

Independent Environmental Checker

Tuen Mun – Chek Lap Kok Link

c.c. HyD – Mr. Stephen Chan (By Fax: 3188 6614)

HyD – Mr. Matthew Fung (By Fax: 3188 6614)

AECOM - Mr. Conrad Ng (By Fax: 3922 9797)

ERM – Mr. Jovy Tam (By Fax: 2723 5660)

Gammon – Mr. Roy Leung (By Fax: 2750 0922)

Internal: DY, YH, ENPO Site

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_1522L.13.doc

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	I
1	INTRODUCTION	2
1.1	BACKGROUND	2
1.2	SCOPE OF REPORT	3
1.3	Organization Structure	3
1.4	SUMMARY OF CONSTRUCTION WORKS	3
1.5	SUMMARY OF EM&A PROGRAMME REQUIREMENTS	4
2	AIR QUALITY	5
2.1	MONITORING REQUIREMENTS	5
2.2	MONITORING EQUIPMENT	5
2.3	MONITORING LOCATIONS	6
2.4	MONITORING PARAMETERS, FREQUENCY AND DURATION	6
2.5	MONITORING METHODOLOGY	6
2.6	MONITORING SCHEDULE FOR THE REPORTING MONTH	9
2.7	RESULTS AND OBSERVATIONS	9
3	NOISE MONITORING	10
3.1	MONITORING REQUIREMENTS	10
3.2	MONITORING EQUIPMENT	10
3.3	MONITORING LOCATIONS	10
3.4	MONITORING PARAMETERS, FREQUENCY AND DURATION	10
3.5	MONITORING METHODOLOGY	11
3.6	MONITORING SCHEDULE FOR THE REPORTING MONTH	12
3.7	MONITORING RESULTS	12
4	WATER QUALITY MONITORING	13
4.1	MONITORING REQUIREMENTS	13
4.2	MONITORING EQUIPMENT	13
4.3	MONITORING PARAMETERS, FREQUENCY AND DURATION	13
4.4	MONITORING LOCATIONS	14
4.5	MONITORING METHODOLOGY	14
4.6	MONITORING SCHEDULE FOR THE REPORTING MONTH	16
4.7	RESULTS AND OBSERVATIONS	16
5	DOLPHIN MONITORING	17
5.1	MONITORING REQUIREMENTS	17
5.2	MONITORING EQUIPMENT	17
5.3	MONITORING PARAMETER, FREQUENCIES AND DURATION	18
5.4	MONITORING LOCATION	18

5. 5	MONITORING SCHEDULE FOR THE REPORTING MONTH	19
5.6	RESULTS AND OBSERVATIONS	19
6	BORE PILING MONITORING	21
6.1	MONITORING REQUIREMENTS	21
6.2	MONITORING FREQUENCIES	21
6.3	MONITORING LOCATION	21
6.4	MONITORING METHODOLOGY	22
7	ENVIRONMENTAL SITE INSPECTION AND AUDIT	27
7.1	SITE INSPECTION	27
7.2	WASTE MANAGEMENT STATUS	28
7.3	ENVIRONMENTAL LICENSES AND PERMITS	28
7.4	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	31
7.5	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANC LIMIT	E 31
7.6	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL	0.1
	PROSECUTIONS	31
8	FUTURE KEY ISSUES	32
8.1	CONSTRUCTION PROGRAMME FOR THE COMING MONTHS	32
8.2	KEY ISSUES FOR THE COMING MONTH	32
8.3	MONITORING SCHEDULE FOR THE COMING MONTH	32
9	CONCLUSIONS AND RECOMMENDATIONS	33
9.1	CONCLUSIONS	33
9.2	RECOMMENDATIONS	33
List of Tables	3	
Table 1.1	Contact Information of Key Personnel	
Table 2.1	Air Quality Monitoring Equipment	
Table 2.2	Locations of Impact Air Quality Monitoring Stations	
Table 2.3	Air Quality Monitoring Parameters, Frequency and Duration	
Table 2.4	Summary of 1-hour TSP Monitoring Results in the Reporting Period	
Table 3.1	Noise Monitoring Equipment	
Table 3.2	Location of Impact Noise Monitoring Station	

Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Summary of Construction Noise Monitoring Results in the Reporting Period
Table 4.1	Water Quality Monitoring Equipment
Table 4.2	Monitoring Parameters, Frequency and Duration
Table 4.3	Locations of Impact Water Quality Monitoring Stations
Table 4.4	Laboratory Analysis for Suspended Solids
Table 5.1	Dolphin Monitoring Equipment
Table 5.2	Impact Dolphin Monitoring Line Transect Co-ordinates
Table 5.3	Individual Survey Event Encounter Rates
Table 5.4	Monthly Average Encounter Rates
Table 6.1	Bore Piling Monitoring Frequency
Table 6.2	Bore Piling Monitoring Locations
Table 7.1	Summary of Environmental Licensing and Permit Status
Figures	
Figure 1.1	General Project Layout Plan
Figure 2.1	Locations of Impact Air Quality Monitoring Stations
Figure 3.1	Locations of Impact Noise Monitoring Station
Figure 4.1	Locations of Impact Water Quality Stations
Figure 5.1	Line Transects for Impact Dolphin Monitoring Survey
Figure 5.2	Locations of Dolphin Sightings during Impact Dolphin Monitoring Survey
Figure 7.1	Environmental Complaint Handling Procedure
List of Apper	
Appendix A	Project Organization for Environmental Works
Appendix B	Three Month Rolling Construction Programmes
Appendix C	Implementation Schedule of Environmental Mitigation Measures (EMIS)
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Monitoring Equipments
Appendix F	EM&A Monitoring Schedules
Appendix G	Impact Air Quality Monitoring Results and Graphical Presentation
Appendix H	Meteorological Data for the Reporting Month
Appendix I	Impact Noise Monitoring Results and Graphical Presentation
Appendix J	Impact Water Quality Monitoring Results and Graphical Presentation
Appendix K	
Appendix L	Event Action Plan

A construction 3.5	Monthly Commons of Masta Electric Telele
	Monthly Summary of Waste Flow Table Cumulative Statistics on Exceedances Complaints Notifications of Summons
Appenaix N	Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

EXECUTIVE SUMMARY

Under *Contract No. HY/2012/07*, Gammon Construction Limited (GCL) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Southern Connection Viaduct Section of the Tuen Mun – Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). ENVIRON Hong Kong Ltd. was employed by the HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) in accordance with *Environmental Permit No. EP-354/2009/A*.

The construction phase of the Contract commenced on 31 October 2013 and will be tentatively be completed by 2018. The impact monitoring of the EM&A programme, including air quality, noise, water quality and marine ecological monitoring as well as environmental site inspections, commenced on 31 October 2013.

This is the first monthly EM&A report presenting the EM&A works carried out during the period from 31 October to 30 November 2013 for the Southern Connection Viaduct Section in accordance with the Updated EM&A Manual of the TM-CLK Link Project. As informed by the Contractor, major activities in the reporting period included:

Marine-based Works

- Ground investigation (GI) work at marine piers;
- Survey towers erection; and
- Filling platform at seawall.

Land-based Works

- Additional GI fieldwork, laboratory testing and permitting;
- Application for tree felling and transplanting;
- Site office relocation;
- Fence relocation at Viaduct A, C and D;
- Site offices erection; and
- Temporary access bridge (TAB).

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP monitoring 5 sessions

1-hour TSP monitoring 5 sessions

Noise monitoring 5 sessions

Impact Water Quality Monitoring 14 sessions

Impact dolphin monitoring 2 sessions

Joint Environmental site inspection 4 sessions

Daily marine mammal exclusion zone monitoring was undertaken. No sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* was recorded in November 2013 during the exclusion zone monitoring.

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action and Limit Levels was recorded for 1-hour and 24-hour TSP monitoring in the reporting month.

Breaches of Action and Limit Levels for Noise

No exceedance of Action and Limit Levels was recorded for construction noise monitoring in the reporting month.

Breaches of Action and Limit Levels for Water Quality

One (1) exceedance of Action Level in depth-averaged SS was recorded for impact water quality monitoring in the reporting month. The exceedance was considered not related to the construction works of this Contract upon further investigation.

Impact Dolphin Monitoring

During this month of dolphin monitoring, no adverse impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Chinese White Dolphins was noticeable from general observations. Due to monthly variation in dolphin occurrence within the study area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of the TM-CLKL Southern Connection Viaduct Section in the quarterly EM&A reports, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

Environmental Complaints, Non-compliance & Summons

One (1) complaint was referred by EPD on 12 November 2013 and was follow-up timely. The complaint was considered to be not related to this Contract.

No notification of summons and successful prosecution was received in the reporting month.

Reporting Change

There was no reporting change required in the reporting period.

Upcoming Works for the Next Reporting Period

Works to be undertaken in the next monitoring period of December 2013 include the following:

Marine Works

- GI works at marine piers;
- Filling Platform at seawall; and
- Marine foundation at Viaduct E2, E5-8 and E13.

Land-based Works

- Additional GI fieldwork, laboratory testing and permitting;
- Fence relocation at Viaduct A, C and D; and
- Site offices erection at WA2, WA3, WA5 and seawall.

Future Key Issues

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of December 2013 are mainly associated with dust, noise, marine water quality, marine ecology and waste management issues.

INTRODUCTION

1.1 BACKGROUND

1

According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong – Zhuhai – Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau – Tuen Mun – Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. ESB-175/2007) and the *Technical Memorandum of the Environmental Impact Assessment Process (EIAO-TM)*. The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number AEIAR-145/2009), an Environmental Permit (EP-354/2009) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (EP-354/2009A) was issued on 8 December 2010.

Under *Contract No. HY/2012/07*, Gammon Construction Limited (GCL) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Southern Connection Viaduct Section of TM-CLKL ("the Contract") while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) in accordance with *Environmental Permit No. EP-354/2009/A*.

The construction phase of the Contract commenced on 31 October 2013 and will be tentatively be completed by 2018. The impact monitoring phase of the EM&A programme, including air quality, noise, water quality and marine ecological monitoring as well environmental site inspections, commenced on 31 October 2013.

1.2 Scope of Report

This is the first monthly EM&A Report under the *Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section.* This report presents a summary of the environmental monitoring and audit works in October and November 2013.

1.3 ORGANIZATION STRUCTURE

The organization structure of the Contract is shown in *Appendix A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
SOR	Chief Resident	Daniel Ip	3553 3800	2492 2057
(AECOM Asia	Engineer			
Company Limited)				
ENPO / IEC (ENVIRON Hong	ENPO Leader	Y.H. Hui	3465 2888	3465 2899
Kong Ltd.)	IEC	Tony Cheng	3465 2888	3465 2899
Contractor (Gammon Construction Limited)	Environmental Manager	Brian Kam	2750 0118	2750 0922
	Environmental Officer	Roy Leung	2750 0118	2750 0922
	24-hour Complaint Hotline		9738 4332	
ET (ERM-HK)	ET Leader	Jovy Tam	2271 3113	2723 5660

1.4 SUMMARY OF CONSTRUCTION WORKS

The construction phase of the Contract commenced on 31 October 2013. The three-month rolling construction programme is shown in *Appendix B*.

As informed by the Contractor, details of the major works carried out in this reporting period are listed below:

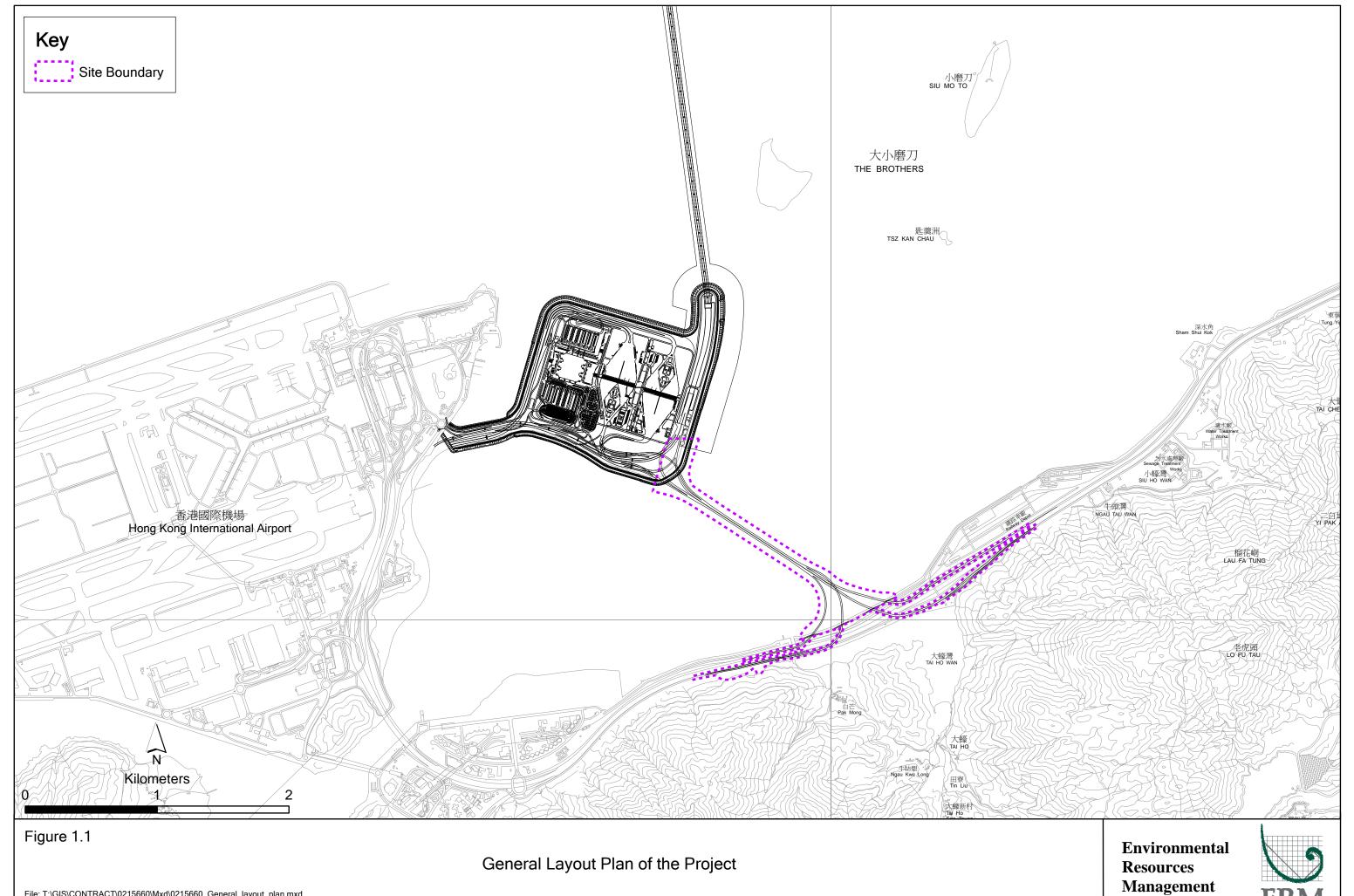
Marine-based Works

- Ground investigation (GI) work at marine piers;
- Survey towers erection; and
- Filling platform at seawall.

Land-based Works

- Additional GI fieldwork, laboratory testing and permitting;
- Application for tree felling and transplanting;

- Site office relocation;
- Fence relocation at Viaduct A, C and D;
- Site offices erection; and
- Temporary access bridge (TAB).


The general layout plan of the site showing the detailed works areas is shown in *Figure 1.1*.

The environmental mitigation measures implementation schedule are presented in *Appendix C*.

1.5 SUMMARY OF EM&A PROGRAMME REQUIREMENTS

The EM&A programme required environmental monitoring for air quality, noise, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are described in the following sections, which include:

- Monitoring parameters;
- Monitoring schedules for the reporting month and forthcoming month;
- Action and Limit levels for all environmental parameters;
- Event/ Action Plan;
- Results and observations;
- Environmental mitigation measures, as recommended in the Project EIA reports; and
- Environmental requirement in contract documents.

File: T:\GIS\CONTRACT\0215660\Mxd\0215660_General_layout_plan.mxd Date: 6/12/2013

2 AIR QUALITY

2.1 MONITORING REQUIREMENTS

In accordance with the Updated EM&A Manual, baseline 1-hour and 24-hour TSP levels at two (2) air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted three (3) times every six (6) days while the highest dust impact was expected. Impact 24-hour TSP monitoring was carried out once every six (6) days. The Action and Limit Level of the air quality monitoring is provided in *Appendix D*.

2.2 MONITORING EQUIPMENT

Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring on 5, 11 and 15 November 2013. High Volume Samplers (HVSs) were used for carrying out 1-hour TSP monitoring on 21 and 27 November 2013 due to the change of monitoring locations from Siu Ho Wan MTR Depot to Pak Mong Village Watch Tower and Works Area 4 where more reliable power supply is available to power the HVS. 24-hour TSP air quality monitoring was performed using HVS located at each designated monitoring station. The HVS meets all requirements of the Updated EM&A Manual. Brand and model of the equipment is given in *Table 2.1*. Copies of the calibration certificates for the equipment are presented in *Appendix E*.

Wind data monitoring equipment was installed at fencing close to ASR9A (Siu Ho Wan MTRC Depot) since 5 November 2013. It was then installed at the rooftop of Pak Mong Village Watch Tower since 15 November 2013 for logging wind speed and wind direction. The wind sensor was setup such as it was clear of obstructions or turbulence caused by building. The wind data monitoring equipment is recalibrated at least once every six months.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3B)
High Volume Sampler (1-hour TSP and 24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Sampler (Model No. TE-5170)
Wind Sensor	Global Water WE550

5

2.3 MONITORING LOCATIONS

Monitoring locations ASR 9A and ASR 9C were set up at the proposed locations in Siu Ho Wan MTRC Depot in accordance with the Updated EM&A Manual. However, approval for carrying out impact monitoring within MTRC Depot could not be obtained. Air quality monitoring on 5 and 11 November 2013 was carried out just outside MTRC Depot at close proximity to the proposed locations, which was then temporarily relocated to the rooftop of Pak Mong Village Watch Tower (ASR 8) and Works Area 4 (ASR 8A). Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Siu Ho Wan MTRC Depot, were adopted for these temporary air quality locations.

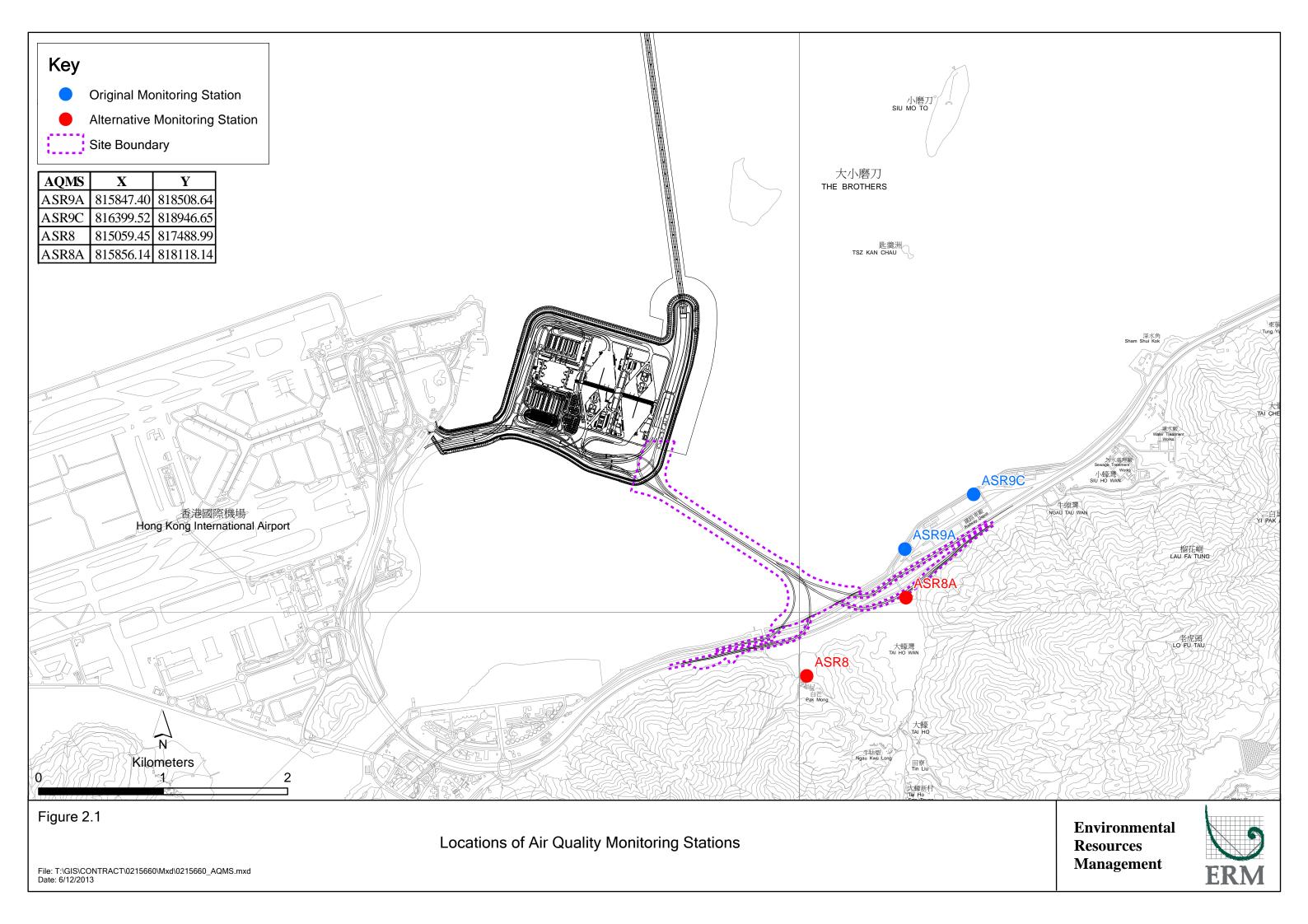
Figure 2.1 shows the locations of monitoring stations. *Table 2.2* describes the details of the monitoring stations.

Table 2.2 Locations of Impact Air Quality Monitoring Stations

Monitoring Dates	Monitoring Station	Location	Description
F. 11 November 2012	ASR 9A	Siu Ho Wan MTRC Depot	On ground near security office
5, 11 November 2013	ASR 9C	Siu Ho Wan MTRC Depot	On ground near staff canteen
15, 21, 27 November	ASR 8	Pak Mong Village Watch Tower	Rooftop of the premise
2013	ASR 8A	Works Area 4	On ground at the Works Area

2.4 MONITORING PARAMETERS, FREQUENCY AND DURATION

Table 2.3 summarized the monitoring parameters, frequency and duration of impact TSP monitoring.


Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
1-hour TSP	Three times every 6 days while the highest dust impact was expected
24-hour TSP	Once every 6 days

2.5 MONITORING METHODOLOGY

High Volume Sampler

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS:
- A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.

- The distance between the HVS and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
- A minimum of 2m of separation from walls, parapets and penthouses was required for rooftop samples.
- A minimum of 2m separation from any supporting structure, measured horizontally was required.
- No furnaces or incineration flues were nearby.
- Airflow around the sampler was unrestricted.
- The samplers were more than 20m from the drip line.
- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- Permission must be obtained to set up the samples and to obtain access to the monitoring stations.
- A secured supply of electricity is needed to operate the samplers.
- No two samplers should be placed less than 2 m apart.

(b) Preparation of Filter Papers

- Filter papers of size 8"x 10" that were clean and without pinholes were selected.
- All filter papers were conditioned in a humidity controlled chamber for over 24-hour and be pre-weighed before use for sampling.
- All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- The power supply was checked to ensure the HVS works properly.
- The filter holder and the area surrounding the filter were cleaned.
- The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- Then the shelter lid was closed and was secured with the aluminum strip.
- The HVS was warmed up for about 5 minutes to establish runtemperature conditions.
- A new flow rate record sheet was set into the flow recorder.
- On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.1 m³/min, and complied with the range specified in the Updated EM&A Manual (i.e. 0.6 1.7 m³/min).
- The programmable digital timer was set for a sampling period of 1 hour or 24 hours, and the starting time, weather condition and the filter number were recorded.
- The initial elapsed time was recorded.
- At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- The final elapsed time was recorded.
- The sampled filter was removed carefully and folded in half-length so

7

- that only surfaces with collected particulate matter were in contact.
- It was then placed in a clean plastic envelop and sealed.
- All monitoring information was recorded on a standard data sheet.
- Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.
- (d) Maintenance and Calibration
- The HVS and its accessories were maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
- All HVS were calibrated (five point calibration) using Calibration Kit prior to the commencement of the baseline monitoring and thereafter at bi-monthly intervals.

Dust Meter

- (a) The measuring procedures of the 1-hour dust meter followed the Manufacturer's Instruction Manual as presented below:
- Turn the power on
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push the "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Push the "TIME SETTING" switch the time set in the display to 3 hours.
- Lower down the air collection opening cover.
- Push "START/STOP" switch to start measurement.
- (b) Maintenance and Calibration
- The 1-hour TSP meter was calibrated at 1-year interval against a continuous particulate TEOM Monitor. Calibration certificates of the Laser Dust Monitors are provided in *Appendix E*.
- 1-hour validation checking of the TSP meter against HVS is carried out on half-year basis at the air quality monitoring locations.

2.6 MONITORING SCHEDULE FOR THE REPORTING MONTH

The schedule for air quality monitoring in the reporting period is provided in *Appendix F*.

2.7 RESULTS AND OBSERVATIONS

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in *Tables 2.4* and 2.5 respectively. Detailed impact air quality monitoring results are presented in *Appendix G*.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
ASR 9A (ASR 8A)	69.2	52 - 91	394	500
ASR 9C (ASR 8)	82.6	65 - 121	393	500

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (µg/m³)	Range (µg/m³)	Action Level	Limit Level
			(µg/m³)	(µg/m³)
ASR 9A (ASR 8A)	69.2	67 - 70	178	260
ASR 9C (ASR 8)	82.6	52 - 91	178	260

The major dust source in the reporting period included construction activities under the Contract as well as nearby traffic emissions.

All 1-hour and 24-hour TSP results were below the Action and Limit level at all monitoring locations in the reporting period. No action is thus required to be undertaken in accordance with the Event Action Plan presented in *Appendix L*.

Meteorological information collected from the wind station, including wind speed and wind direction, is provided in *Appendix H*.

3 NOISE MONITORING

3.1 MONITORING REQUIREMENTS

In accordance with the Updated EM&A Manual, impact noise monitoring was conducted once per week during the construction phase of the Contract. The Action and Limit level of the noise monitoring is provided in *Appendix D*.

3.2 MONITORING EQUIPMENT

Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is provided in *Table 3.1*.

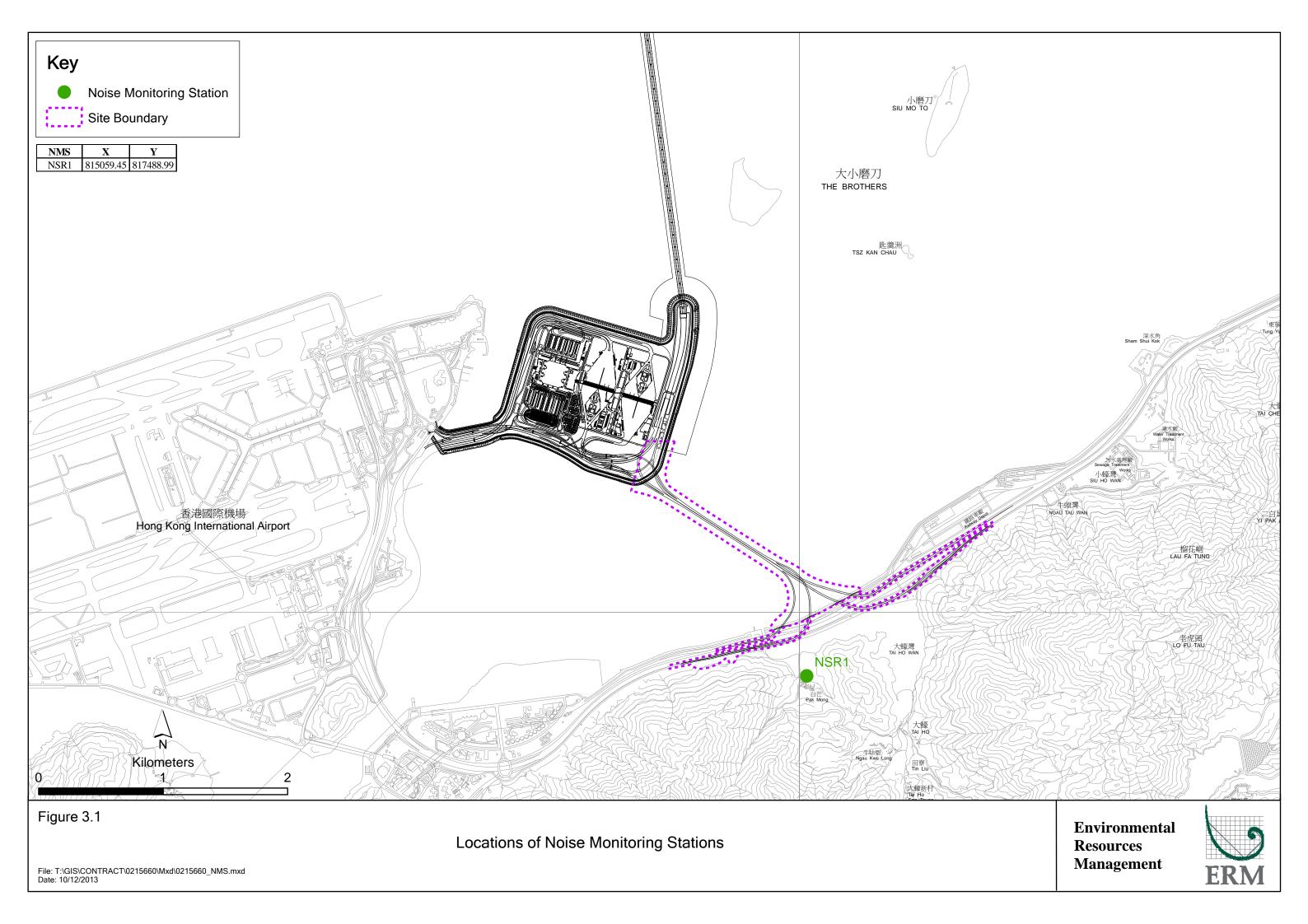
Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	Rion NL-31
Acoustic Calibrator	Rion NC-73

3.3 MONITORING LOCATIONS

Monitoring location was set up at NSR 1 in accordance with the Updated EM&A Manual. *Figure 3.1* shows the location of the monitoring station. *Table 3.2* describes the details of the monitoring station.

Table 3.2 Location of Impact Noise Monitoring Station


Monitoring Station	Location	Description
NSR 1	Pak Mong Village Watch Tower	Rooftop of the premise

3.4 MONITORING PARAMETERS, FREQUENCY AND DURATION

Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
30-mins measurement at each monitoring station between 0700	At least once per week
and 1900 on normal weekdays (Monday to Saturday). L_{eq} , L_{10}	
and L ₉₀ would be recorded.	

Monitoring Procedures

- The microphone head of the sound level meter was positioned 1m exterior of the noise sensitive facade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters were set as follows:
 - frequency weighting: A
 - > time weighting: Fast
 - \succ time measurement: L_{eq}(30 min.) dB(A) (as six consecutive L_{eq, 5min} readings) during non-restricted hours (i.e. 0700-1900 hrs on normal weekdays)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- During the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise (eg dog barking, helicopter noise) if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain and wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10 m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

Maintenance and Calibration

- The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix E.

3.6 MONITORING SCHEDULE FOR THE REPORTING MONTH

The schedule for construction noise monitoring in the reporting period is provide in *Appendix F*.

3.7 MONITORING RESULTS

Results for noise monitoring are summarized in *Table 3.4* and the monitoring data is provided in *Appendix I*.

Table 3.4 Summary of Construction Noise Monitoring Results in the Reporting Period

	Average, dB(A), L _{eq (30mins)}	Range, dB(A), L _{eq (30mins)}	Limit Level, dB(A), L _{eq (30mins)}
NSR 1	57	56 - 59	75

No noise Action Level and Limit level exceedance was recorded at all monitoring stations in the reporting month. No action is thus required to be undertaken in accordance with the Event Action Plan presented in *Appendix L*.

Major noise sources during the noise monitoring included construction activities, nearby traffic noise and aircraft noise.

4 WATER QUALITY MONITORING

4.1 MONITORING REQUIREMENTS

Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. Impact water quality monitoring was undertaken three days per week during the construction period in accordance with the Updated EM&A Manual. The Action and Limit Level of the water quality monitoring is provided in *Appendix D*.

4.2 MONITORING EQUIPMENT

Table 4.1 summarises the equipment used in the impact water quality monitoring programme.

Table 4.1 Water Quality Monitoring Equipment

Equipment	Brand and Model
DO, Temperature meter and	YSI Pro2030
Salinity	
Turbidimeter	HACH Model 2100Q
mII mastan	HANNA HI8314
pH meter	HANNA HI0314
Positioning Equipment	Koden913MK2 with KBG-3 DGPS antenna
9-1-1	
Water Depth Detector	Speedtech Instrument SM-5
_	-
Water Sampler	Kemmerer 1520 (1520-C25) 2.2L with messenger

4.3 MONITORING PARAMETERS, FREQUENCY AND DURATION

Table 4.2 summarizes the monitoring parameters, frequency and monitoring depths of impact water quality monitoring as required in the Updated EM&A Manual.

Table 4.2 Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameters, unit	Frequency	Depth
Impact	Temperature(°C)	Impact monitoring: 3	3 water depths: 1m
Stations:	 pH(pH unit) 	days per week, at mid-	below sea surface,
IS(Mf)9	 Turbidity (NTU) 	flood and mid-ebb	mid-depth and 1m
IS(Mf)16	• Water depth (m)	tides (within ±1.75	above sea bed.
IS8	Salinity (ppt)DO (mg/L and %	hour of the predicted time) during the	
Sensitive	of	construction period of	
Receivers: SR4	saturation) • SS (mg/L)	the Contract	

Monitoring Stations	Parameters, unit	Frequency	Depth
SR4a			If the water depth is less than 3m, mid-
Control			depth
Stations:			sampling only.
CS(Mf)3			
CS(Mf)5			If water depth less
			than 6m, mid-depth may be omitted.

4.4 MONITORING LOCATIONS

The locations of the monitoring stations under the *Contract* are shown in *Figure 4.1* and detailed in *Table 4.3*.

Table 4.3 Locations of Impact Water Quality Monitoring Stations

Station ID	Type	Coordinates		
		Easting	Northing	
IS(Mf)9	Impact Station (Close to HKBCF construction site)	813273	818850	
IS(Mf)16	Impact Station (Close to HKBCF construction site)	814328	819497	
IS8	Impact Station(Close to HKBCF construction site)	814251	818412	
SR4	Sensitive receiver (Tai Ho Inlet)	814760	817867	
SR4a	Sensitive receiver	815247	818067	
CS(Mf)3	Control Station	809989	821117	
CS(Mf)5	Control Station	817990	821129	

Notes:

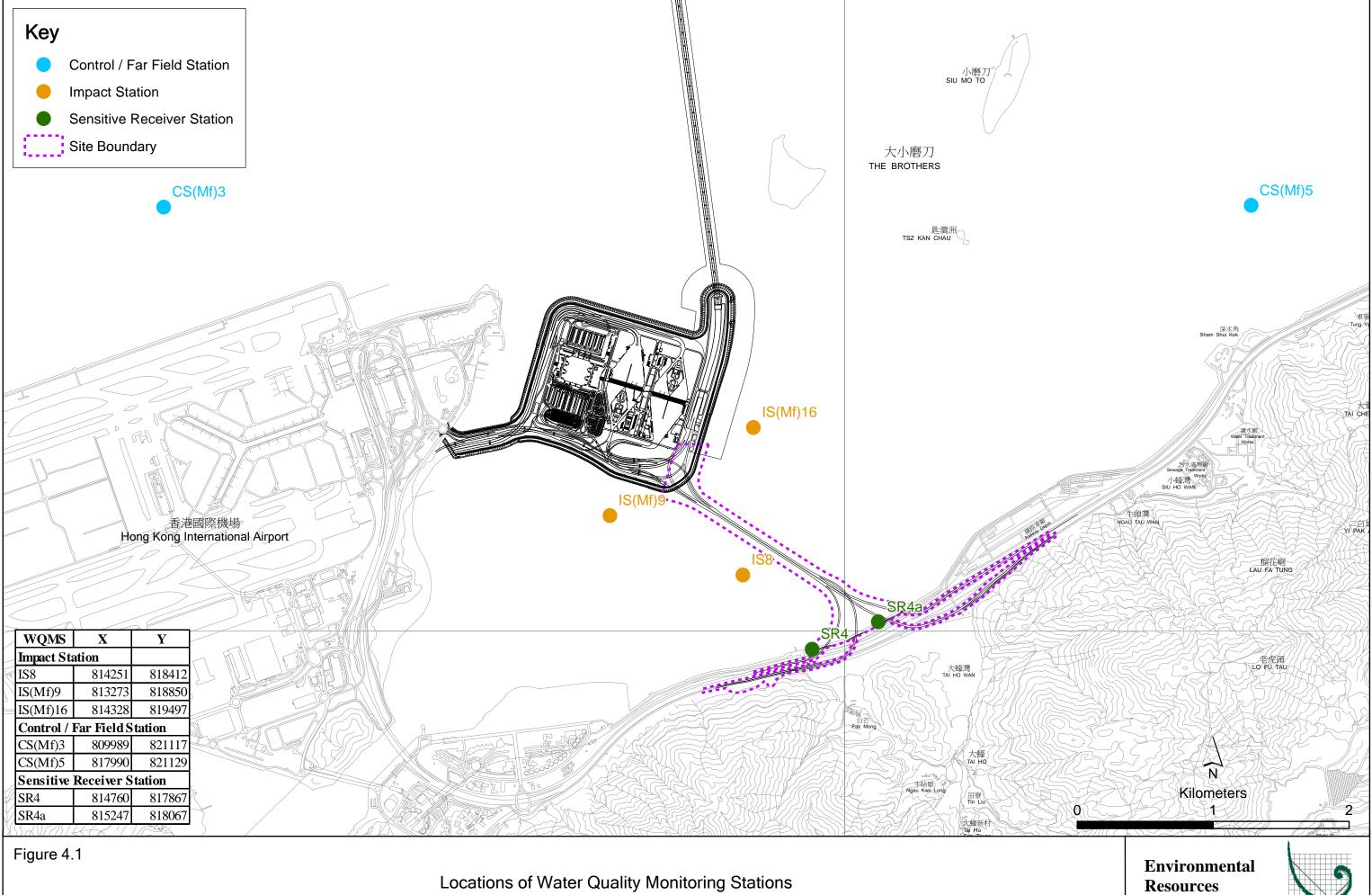
DO = Dissolved Oxygen

SS = Suspended Solid

4.5 MONITORING METHODOLOGY

4.5.1 Instrumentation

The *in-situ* water quality parameters, i.e. dissolved oxygen, temperature and salinity were measured by multi-parameter Water Quality System (Model YSI Pro2030).


Turbidity and pH were measured by HACH Model 2100Q and HANNAH HI8314, respectively.

4.5.2 Operating/ Analytical Procedures

Digital Differential Global Positioning Systems (DGPS) were used to ensure that the correct location was selected prior to sample collection.

Portable, battery-operated echo sounders were used for the determination of water depth at each designated monitoring station.

All *in-situ* measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth was

File: T:\GIS\CONTRACT\0215660\Mxd\0215660_WQMS.mxd Date: 6/12/2013

Management

less than 6 m, for which the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.

At each sampling depth, two consecutive *in-situ* measurements (DO concentration and saturation, temperature, turbidity, pH and salinity) and water samples for SS were taken. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of DO or turbidity parameters was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.

Duplicate samples were collected at each sampling depth for SS measurement in the laboratory. Water samples were collected using the water samplers and the samples were stored in high-density polythene bottles. Water samples collected were well-mixed in the water sampler prior to pre-rinsing and transferring to sample bottles. Samples bottles were pre-rinsed with the same water samples. The sample bottles were then packed in cool-boxes (cooled at 4° C) without being frozen) and delivered to ALS Technichem (HK) Pty Ltd. for the analysis of SS concentrations. The laboratory determination work would be started within 24 hours after collection of the water samples. ALS Technichem (HK) Pty Ltd. is a HOKLAS accredited laboratory and has comprehensive QA/QC programme. For QA/QC procedures, one sample of every batch of 20 samples was analyzed.

The analysis method and reporting and detection limit for SS is shown in *Table 4.4*.

Table 4.4 Laboratory Analysis for Suspended Solids

Parameters	Instrumentation	Analytical Method	Reporting Limit	Detection Limit
Suspended Solid (SS)	Weighing	APHA 2540-D	0.5 mg/L	0.5 mg/L

Other relevant data were recorded, including monitoring location/ position, time, water depth, tidal stages, weather conditions and any special phenomena or work underway at the construction site in the field log sheet for information.

4.5.3 *Maintenance and Calibration*

All *in situ* monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring event.

For the on-site calibration of field equipment (Multi-parameter Water Quality System), the BS 1427:2009, "Guide to on-site test methods for the analysis of waters" was observed. Copies of the calibration certificates are attached in *Appendix E*.

4.6 MONITORING SCHEDULE FOR THE REPORTING MONTH

The schedule for water quality monitoring in November 2013 is provided in *Appendix F*.

4.7 RESULTS AND OBSERVATIONS

Impact water quality monitoring was conducted at all designated monitoring stations in the reporting month. Impact water quality monitoring results and graphical presentations are provided in *Appendix J*.

Exceedances of the Action Levels of the depth-averaged SS was observed at SR4a during mid-ebb tide on 26 November 2013. It is considered that the exceedance of depth-averaged SS level at SR4a during mid-ebb tide on 26 November 2013 was likely due to sediment disturbance caused by water sampler touching seabed, contributing to an exceedance in SS for water sampled at bottom water depth. Thus, the observed SS exceedance was not considered to be project-related and not of environmental concern.

Should non-compliance of the criteria occur, action in accordance with the Event and Action Plan, as provided in *Appendix L* should be carried out.

5 DOLPHIN MONITORING

5.1 MONITORING REQUIREMENTS

Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the dolphins. Dolphin monitoring works by line transect methodology is required to carry out in accordance with the Updated EM&A Manual of the TM-CLK Link Project. In order to fulfil the EM&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data collected by HyD's Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge. Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities on the monthly basis is adopted to avoid duplicates of survey effort.

5.2 MONITORING EQUIPMENT

Table 5.1 summarises the equipment used for the impact dolphin monitoring.

Table 5.1 Dolphin Monitoring Equipment

Equipment	Model
Global Positioning System (GPS)	Garmin 18X-PC
	Geo One Phottix
Camera	Nikon D90 300m 2.8D fixed focus
	Nikon D90 20-300m zoom lens
Laser Binoculars	Infinitor LRF 1000
Marine Binocular	Bushell 7 x 50 marine binocular with compass and reticules
Vessel for Monitoring	65 foot single engine motor vessel with viewing platform
	4.5m above water level

5.3 MONITORING PARAMETER, FREQUENCIES AND DURATION

Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

5.4 MONITORING LOCATION

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in *Figure 5.1*. The co-ordinates of all transect lines are shown in *Table 5.2* below.

 Table 5.2
 Impact Dolphin Monitoring Line Transect Co-ordinates

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	804671	814577	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805475	815457	14	Start Point	817537	820220
2	End Point	805477	826654	14	End Point	817537	824613
3	Start Point	806464	819435	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	819771	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	820220	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	820466	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	820690	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	820847	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	820892	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	820872	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818449	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807				

	Line No.	Easting	Northing	Line No.	Easting	Northing
12	End Point	815542	824882			

5.5 MONITORING SCHEDULE FOR THE REPORTING MONTH

Dolphin monitoring was carried out on 1, 5, 8 and 13 November 2013. The dolphin monitoring schedule for the reporting period is shown in *Appendix F*.

5.6 RESULTS AND OBSERVATIONS

A total of 268.17 km of survey effort was collected, with 100% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) during the November's surveys. Amongst the two areas, 98.97 km and 169.20 km of survey effort were collected from NEL and NWL survey areas, respectively. The total survey effort conducted on primary and secondary lines were 211.85 km and 56.32 km respectively. The survey efforts are summarized in *Appendix K*.

A total of twenty-one dolphins sighting were recorded during the two surveys. All sightings were made in NWL during the two sets of surveys in November, with no sightings made at all in NEL.

None of the 21 sightings was made in the proximity of this Project. The distribution of dolphin sightings during the reporting month is shown in *Figure* 5.2.

Encounter rates of Chinese White Dolphins are deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) in November 2013 with the results presented in *Tables 5.3* and *5.4*.

Table 5.3 Individual Survey Event Encounter Rates

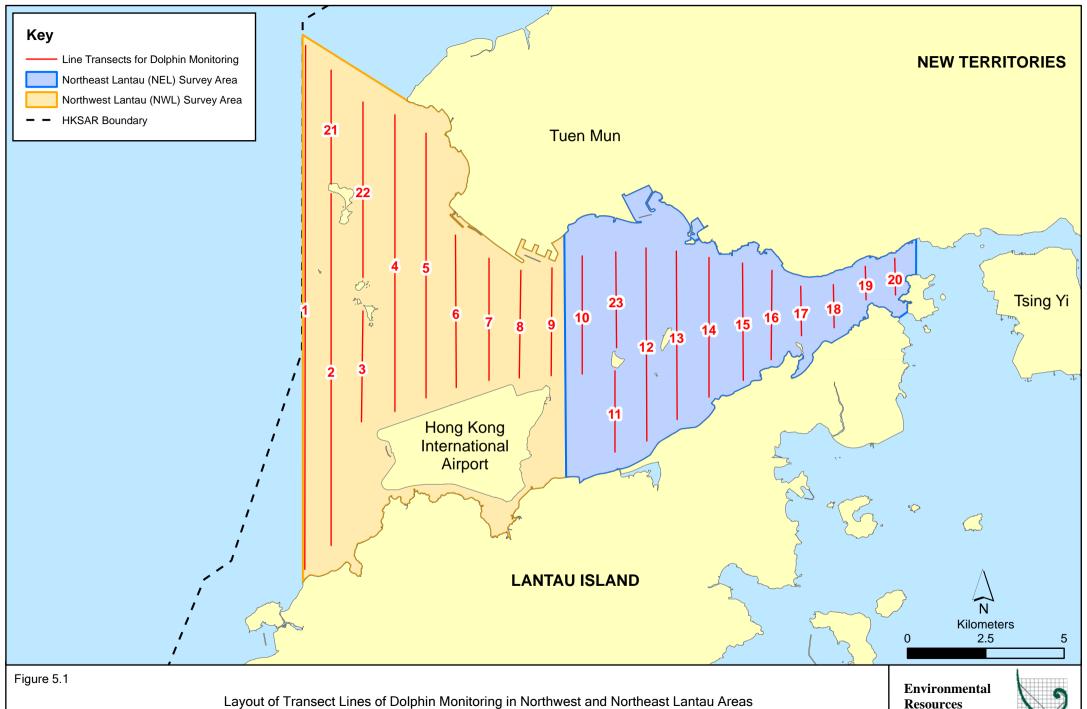
		Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of survey effort)	Encounter rate (ANI) (no. of dolphins from all on-effort sightings per 100 km of survey effort)	
		Primary Lines Only	Primary Lines Only	
NEL	Set 1: Nov 1st/5th	0.0	0.0	
	Set 2: Nov 8th/13th	0.0	0.0	
NWL	Set 1: Nov 1st/5th	10.3	50.0	
	Set 2: Nov 8th/13th	16.1	76.1	

Table 5.4 Monthly Average Encounter Rates

Encounter rate (STG)	Encounter rate (ANI)
(no. of on-effort dolphin	(no. of dolphins from all on-effort
sightings per 100 km of survey	sightings per 100 km of survey
effort)	effort)

	Primary Lines Only	Both Primary and Secondary Lines	Primary Lines Only	Both Primary and Secondary Lines
Northeast Lantau	0.0	0.0	0.0	0.0
Northwest Lantau	13.2	11.2	63.1	53.2

Note: Overall dolphin encounter rates (sightings per 100km of survey effort) from all four surveys are conducted in November 2013 on primary lines only as well as both primary lines and secondary lines in Northeast and Northwest Lantau


The average group size of Chinese White Dolphins in November 2013 was 4.86 individuals per group. Twelve dolphin groups were composed of only 1-4 animals, while the other nine were larger groups with 5-11 animals per group.

During this month of dolphin monitoring, no adverse impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Chinese White Dolphins was noticeable from general observations

Due to monthly variation in dolphin occurrence within the Study area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of the TM-CLKL Southern Connection Viaduct Section in the quarterly EM&A reports, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

Taking into account of natural seasonal change in distribution patterns, which is also observed in baseline monitoring, it is suggested that a longer period of impact monitoring data should be obtained for comparison.

The Event Action Plan is provided in *Appendix L*.

File: T:\GIS\CONTRACT\0212330\Mxd\0212330_Transect_of_Dolphin_Monitoring.mxd Date: 10/12/2013

Resources Management

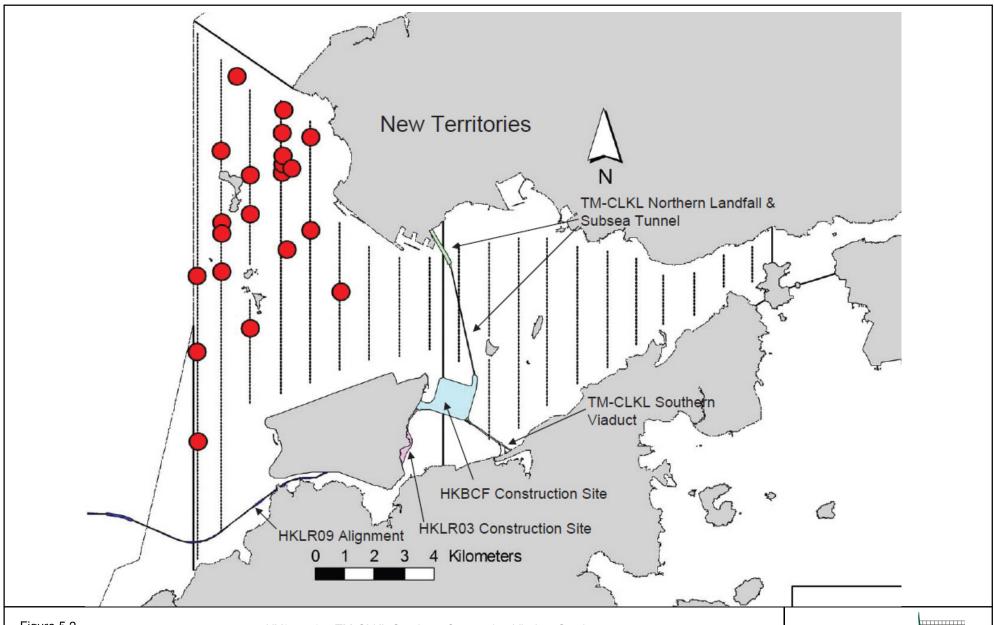


Figure 5.2

HY/2012/07 TM-CLKL Southern Connection Viaduct Section The distribution of dolphin sightings during the reporting period (Source: Adopted from HKLR03 Monitoring Survey in November 2013)

Environmental Resources Management

DATE: 06/03/2013

6 BORE PILING MONITORING

6.1 MONITORING REQUIREMENTS

Bore piling monitoring comprised land-based theodolite tracking, underwater noise monitoring and acoustic behavioural monitoring. Such monitoring is undertaken by qualified dolphin specialist, who has sufficient relevant postgraduate experience and publication in the respective aspects.

6.2 MONITORING FREQUENCIES

Table 6.1 summarizes the monitoring frequency of the bore piling monitoring as required in the Updated EM&A Manual.

Table 6.1 Bore Piling Monitoring Frequency

	Monitoring Frequency
Land-based Theodolite Tracking	As a minimum, 30 days before, 30 days during and 30
	days after the bore piling works.
Underwater Noise Monitoring and	30 days before and 30 days during the construction
Acoustic Behavioural Monitoring	phase of the bore piling activities

6.3 MONITORING LOCATION

Table 6.2 summarizes the monitoring locations for bore piling monitoring.

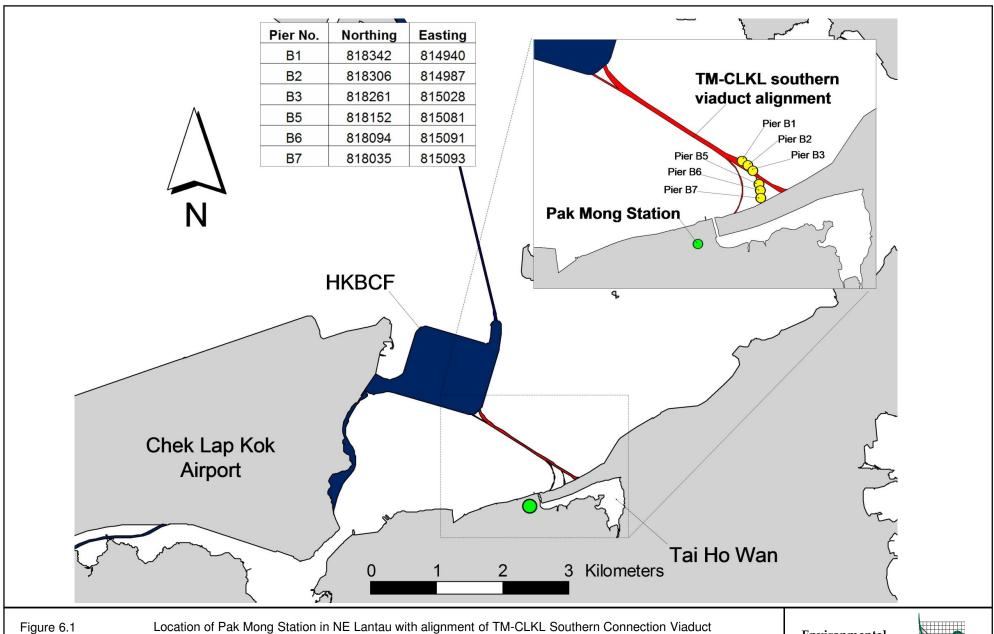
Table 6.2 Bore Piling Monitoring Locations

Monitoring Component	Monitoring Locations	
Land-based Theodolite Tracking	Pak Mong Station (Figure 6.1)	
Underwater Noise Monitoring	Pier No. B1, B2, B3, B4, B5, and B6 (<i>Figure 6.2</i>)	

Monitoring Component	Monitoring Locations
Acoustic Behavioural Monitoring	
Dipping Hydrophone	Predefined route in Northeast Lantau (overlapped with TM- CLKL alignment) and part of Northwest Lantau (Control Site) (Figure 6.3)
Ecological Acoustics Recorders (EARs)	Site C1 (within 500m of TM-CLKL alignment) and Site C2 (Control Site between Sha Chau and Lung Kwu Chau) (Figure 6.3)

6.4 MONITORING METHODOLOGY

Land-based Theodolite Tracking


The methodology of the present monitoring programme generally follows the one established under the Piwetz et al. 2012 ⁽¹⁾ study, which is also part of the AFCD long-term marine mammal monitoring programme (ung 2012, 2013)⁽²⁾⁽³⁾ . On each survey day, observers will

search systematically for Chinese white dolphins using the unaided eye and handheld binoculars (7 \times 50) from the Pak Mong Station, overlooking the viaduct alignment to the northeast coast of Lantau Island, in particular the area around the six bored pile sites. Notably, all six bored piling sites were monitored during baseline phase, while three of these six sites will be chosen for construction phase and post-construction phase monitoring when the initial phase of the construction schedule is confirmed.

A theodolite tracking session will be initiated when an individual dolphin or group of dolphins is located, and focal follow methods will be used to track the dolphins. Within a group, a focal individual will be selected for the purposes of tracking the behaviour and movement of the group, based on its distinctive feature such as colouration or severe injury mark. The focal individual will then be tracked continuously via the theodolite, with positions recorded whenever the dolphin surfaces. If an individual cannot be positively distinguished from other members, the group will be tracked by

⁽¹⁾ Piwetz, S., Hung, S. K., Wang J. Y., Lundquist, D. and Würsig, B. 2012. Influence of vessel traffic on movements of Indo-Pacific humpback dolphins (Sousa chinensis) off Lantau Island, Hong Kong. Aquatic Mammals 38: 325-331.

Hung, S. K. 2012. Monitoring of Marine Mammals in Hong Kong waters: final report
 Hung, S. K. 2013. An unpublished report submitted to the Agriculture, Fisheries and Conservation Department, 171 pp.
 Hung, S. K. 2013. Monitoring of Marine Mammals in Hong Kong waters: final report
 An unpublished report submitted to the Agriculture, Fisheries and Conservation Department, 168 pp.

Location of Pak Mong Station in NE Lantau with alignment of TM-CLKL Southern Connection Viaduct

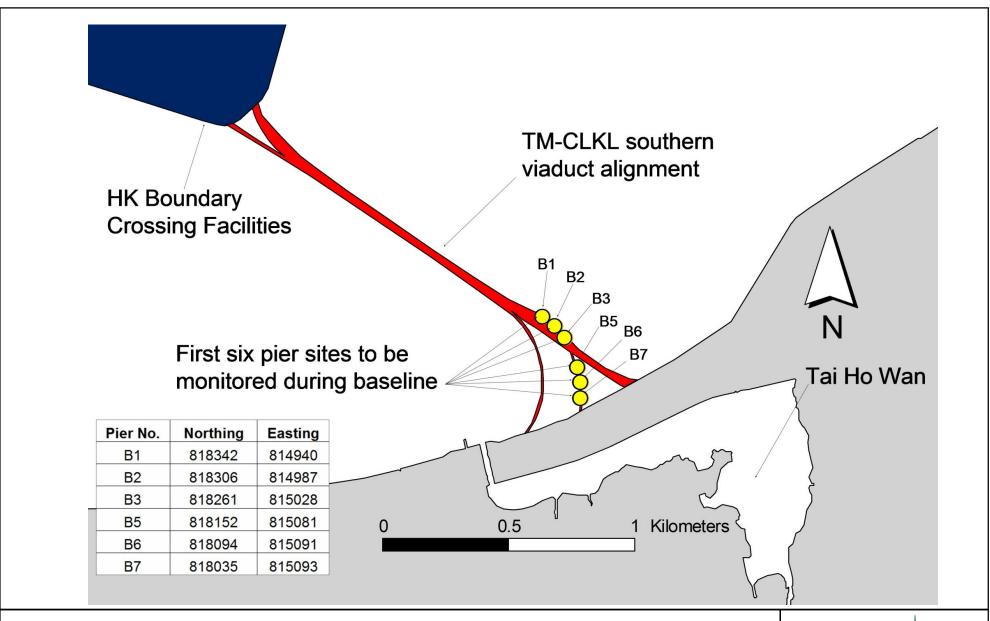


Figure 6.2 Location of the bored pile pier sites to be monitored for the underwater noise measurement study of TM-CLKL construction

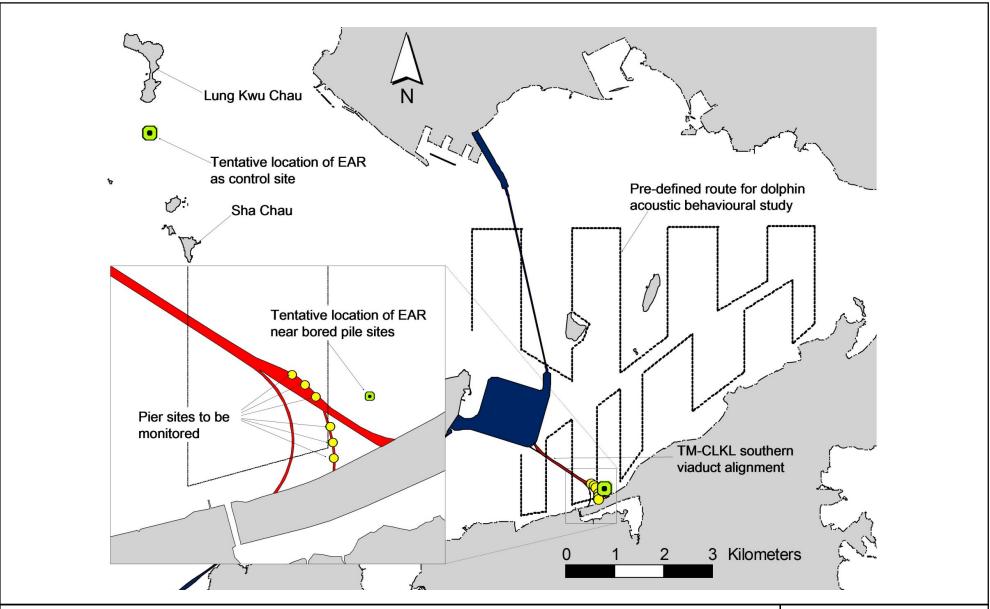


Figure 6.3 Map showing the tentative location of EAR deployments, pier sites to be monitored as well as pre-defined route for dolphin acoustic behavioural study

recording positions based on a central point within the group when the dolphins surface.

Tracking will continue until animals are lost from view, move beyond the range of reliable visibility (>5 km), or when environmental conditions obstructed visibility (e.g. intense haze). Behavioural state data will also be recorded every 5 minutes for the focal individual or group. This interval is long enough to allow for determination of the behavioural state, and short enough to capture behavioural responses to the bored piling activities. Moreover, when multiple groups or individuals are present in the study area, attempts will be made to record the behaviours of all groups/individuals every 10 minutes, with spotters assisting in determining behaviour of the dolphins.

Positions of dolphins, boats and construction activities will be measured using a Sokkisha DT5 digital theodolite with \pm 5-sec precision and 30-power magnification connected to a laptop computer running the program *Pythagoras* Version 1.2 (Gailey and Ortega-Ortiz 2002)⁽¹⁾. This program calculates a real-time conversion of horizontal and vertical angles collected by the theodolite into geographic positions of latitude and longitude each time a fix is initiated. *Pythagoras* also displays positions, movements, and distances in real-time. When possible, the position of the focal dolphin will be recorded at every surfacing with use of *Pythagoras*. The position, type, and activity of all vessels within 5 km of the focal dolphin will also be recorded. An effort will be made to obtain at least several positions for each vessel, and additional positions will be acquired when vessels changed course or speed.

While the primary source of human disturbance to dolphins of interest in this study is bored piling works for the TM-CLKL Project, the presence of vessels may also have an effect on the behaviour and movement patterns of dolphins. Prior to the construction phase (i.e. baseline phase), the simultaneous tracking of dolphins and boats over time provides information on the speed and orientation of dolphins, as well as their movements in relation to vessel activities. Other construction activities and vessel movements in relation to the bored piling works will be recorded during the construction phase monitoring, and the same theodolite tracking and behavioural procedures will be followed as during baseline phase.

Underwater Noise Monitoring Study using Dipping Hydrophone

The underwater sound recording system consists of a high-sensitivity, high-bandwidth hydrophone (International Transducer Corporation ITC-6050c) and two-channel audio recorder (Sound Devices 702T). The hydrophone will be deployed from the stern of the research vessel, a deployment scheme sometimes referred to as a "dipping hydrophone", approximately mid-water

(¹) Gailey, G. A. and Ortega-Ortiz J. 2002. A note on a computer-based system for theodolite tracking of cetaceans. Journal of Cetacean Research and Management 4: 213-218

column at a depth of 5 m beneath a 2 m spar buoy. The hydrophone cable is faired to streamline water flow around the cable, reducing pseudonoise and eliminating cable vibration. The vessel will "go quiet" (its engine, generator, bilge pump, and depth sounder turned off) and drift for the duration of each recording. The recording system and deployment method generally follow that of another well-established study of underwater sounds in Hong Kong waters (Würsig and Greene 2002)⁽¹⁾.

The ITC-6050c is a wide-band hydrophone with a built-in, low-noise preamplifier for optimum noise performance. Its nominal operating band is 30 Hz to 70 kHz, and its self-noise level is well below Knudsen Sea State 0 up to 20 kHz. The hydrophone signal will be amplified as needed via a postamplifier with user-selectable gains from 0 to 60 dB in 10 dB increments. The audio recorder will be configured to sample 16-bit data received on each of its two channels at a rate of 192 kHz, thus allowing analysis of the acoustic data up to 96 kHz. According to Section 6.4.5 of the EM&A Manual, "the acoustic results of the monitoring should be analyzed in terms of both the broadband range (100 Hz to 25.6 kHz) and, also, the dolphin sensitive range (400 Hz to 12.6 kHz)." The acoustic data collected from the present underwater noise study was analyzed between 100 Hz and 50 kHz, in compliance with the EM&A Manual requirement.

Observers will log document the recording date, start and end times, hydrophone and water depths, Beaufort sea state, survey area, and postamplifier gain in each recording. Wind speed, often directly correlated with underwater levels, will be measured and documented in the survey team's logs. The wind speed measurements will be performed with a handheld Kestrel 1000 anemometer, containing an impeller with precision axle and low-friction bearings, providing 0.1 m/s resolution between 0.6–40.0 m/s and an accuracy (calculated using two standard deviations) of the larger of 3% of the reading, least significant digit, or 0.1 m/s.

Dolphin Acoustic Behavioural Study using Dipping Hydrophone

During dedicated acoustic surveys, the survey team of 2-3 HKCRP researchers will conduct systematic search for dolphins within the study area. The survey protocol to search for dolphins is similar to the line-transect survey methodology adopted in the vessel survey under the AFCD long-term marine mammal monitoring programme (Hung 2012, 2013)⁽²⁾⁽³⁾ as well as various HZMB EM&A dolphin monitoring programmes. For each survey, a 15-m inboard vessel with an open upper deck will be used to make observations

```
(1) Würsig, B. and Greene, C. R., Jr. 2002. Underwater sounds near a fuel receiving facility in western Hong Kongrelevance to dolphins. Marine Environmental Research 54: 129–145
```

 $^{(2) \} Hung, S. \ K. \quad 2012. \quad Monitoring \ of \ Marine \ Mammals \ in \ Hong \ Kong \ waters: final \ report$

^{(2011-12).} An unpublished report submitted to the Agriculture, Fisheries and Conservation Department, 171 pp.

 $^(^3)$ Hung, S. K. $\,$ 2013. Monitoring of Marine Mammals in Hong Kong waters: final report

 $^{(2012-13). \}quad \text{An unpublished report submitted to the Agriculture, Fisheries and Conservation Department, } 168~pp$

from the flying bridge area, at a visual height of 4-5 m above water surface. The two observers searched with unaided eyes and 7×50 marine binoculars ahead of the vessel (between 270° and 90° in relation to the bow, which is defined as 0°). The survey team will record effort data including time, position (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance travelled in each series (a continuous period of search effort) with the assistance of a handheld GPS.

When dolphins are sighted, the survey team will end the search effort, and the research vessel will be diverted from its course to slowly approach the animals for group size estimation, assessment of group composition, and behavioural observations in the initial 5-10 minutes. The dipping hydrophone will then be deployed 3 to 7 metres below the sea surface by 2-metre long spar buoy from the stern of the research vessel, with vessel engine noise off and the vessel drifting. Broadband dolphin recordings will be made with the same set of underwater sound recording system as mentioned in Section 2.3.1 (see previous paragraph for detailed description). According to Section 6.4.5 of the EM&A Manual, "the acoustic results of the monitoring should be analyzed in terms of both the broadband range (100 Hz to 25.6 kHz) and, also, the dolphin sensitive range (400 Hz to 12.6 kHz)." Dolphin acoustic data collected from the recording system will be analyzed from 100 Hz and up to 40 kHz, which avoided a hydrophone resonance frequency at 50 kHz. This range would be sufficient to detect the presence of dolphin acoustic signals and their temporal parameters (e.g. click intervals), while it is also in compliance with the EM&A Manual requirement.

During the dipping hydrophone deployment, the date, start and end times, hydrophone and water depths, Beaufort sea state, survey area, locations, gain, event, and notes will be taken for each recording in five-minute intervals. Within each corresponding five-minute interval, observers will also note variables including the group size, group composition and general behaviour during the 5-minute period (i.e. feeding, socializing, travelling, resting, milling and any aerial activity). The number of vessels that passed within 500 m of the dolphin group will also be recorded during the same 5-minute interval, with special notes on close approaches by vessels within 100 m of dolphins, including the time of closest approach and any behavioural reaction being noted. Distances of vessels will be gathered by hand-held laser rangefinder (Bushnell Yardage Pro 800; maximum range of detection for most objects: 720 metres; ranging accuracy ± 2 metres under most circumstances). Also, notes will be made on the approximate distance (i.e. 0-250m, 250-500m, >500 m) of the dolphin groups to the hydrophone during the 5-minute interval. Notably, positions of dolphin group will be recorded continuously during the entire focal follow session to examine their movements in detail, especially when they occur in the vicinity of the TM-CLKL alignment.

Passive Acoustic Monitoring using Ecological Acoustic Recorders

Two sets of EARs will be deployed at two sites in North Lantau, one near the bored piling site and another at a control site between Sha Chau and Lung Kwu Chau. The EARs will be deployed and recovered by a professional dive

team from Oceanway Corporation Limited. During each deployment, the EAR serial number, as well as the time and date of deployment will be recorded. Moreover, the GPS position, water depth and type of substrate at the deployment location will also be recorded.

The EARs will be programmed to record on a 20% duty cycle (1 minute "on" for every 5 minutes). Recordings will be from approximately 20 Hz at the low end to 32 kHz at the high end, which effectively covered a major part of the acoustic channel of the Chinese White Dolphins (Sims et al. 2011)⁽¹⁾. Data from the EARs was downloaded onto a computer hard disk at the end of the baseline monitoring period, and will then be re-deployed at the same location before the start of bored piling works until the study is completed at the end of the 30 days of construction phase monitoring.

⁽¹⁾ Sims, P. Q., Vaughn, R., Hung, S. K. and Würsig, B. 2011. Sounds of Indo-Pacific humpback dolphins (Sousa chinensis) in West Hong Kong: A preliminary description. Journal of the Acoustical Society of America, EL48-EL53 (doi: 10.1121/1.3663281).

7.1 SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting month, four (4) site inspections were carried out on 6, 13, 20 and 27 November 2013.

Particular observations during the site inspections are described below:

Air Quality

The Contractor was reminded to implement dust suppression measures more frequently, especially on water spraying at Works Area WA5.

Noise

No adverse observation was identified in the reporting month.

Water Quality

The Contractor was recommended to set up an appropriate wastewater treatment system in the work site.

Marine Ecology

Pre-translocation survey at Yam Tsai Wan was conducted on 19 October 2013 and the subsequent coral translocation and audit survey was carried out at Tai Ho Wan and Yam Tsai Wan on 24 October 2013. The post-translocation monitoring is scheduled in January 2014.

Daily 250 m marine mammal exclusion zone monitoring was undertaken within the reporting month. No sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* were recorded in November 2013 during the exclusion zone monitoring. In addition, acoustic decoupling monitoring and marine vessel control were implemented in this reporting month.

Chemical and Waste Management

The drip tray stopper was found missing for one of the generators in WA 5 which was then being rectified in timely-manner.

Landscape and Visual Impact

No adverse observation was identified in the reporting month.

Miscellaneous

The Environmental Permit was displayed at the site entrance.

The Contractor has rectified most of the observations as identified during environmental site inspection in the reporting month. Rectifications of remaining identified items are undertaken by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly.

7.2 WASTE MANAGEMENT STATUS

The Contractor had submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

As advised by the Contractor, 560 m³ of inert C&D Materials are generated and disposed of in the reporting period and 37 m³ of inert C&D Materials are disposed of as public fill. 22.05 tonnes of general refuse were generated and disposed of in the reporting period. Monthly summary of waste flow table is detailed in *Appendix M*.

The Contractor is advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

7.3 ENVIRONMENTAL LICENSES AND PERMITS

The status of environmental licensing and permit is summarized in *Table 7.1* below.

Table 7.1 Summary of Environmental Licensing and Permit Status

Statutory Reference	License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/ Permit Holder	Remarks
EIAO	Environmental Permit	EP-354/2009/A	8 Dec 2010	NA	HyD	Tuen Mun- Chek Lap Kok Link
NCO	Construction Dust Notification	361571	5 Jul 2013	NA	GCL	-
NCO	Construction Dust Notification	362093	17 Jul 2013	NA	GCL	Works Area 2 and 3
WDO	Chemical Waste Registration	5213-961-G2380-13	10 Oct 2013	NA	GCL	Chemical waste produced in Contract HY/2012/07
WDO	Chemical Waste Registration	5213-961-G2380-14	10 Oct 2013	NA	GCL	Chemical waste produced in Contract HY/2012/07
WDO	Chemical Waste Registration	5213-974-G2588-03	4 Nov 2013	NA	GCL	Chemical waste produced in Contract HY/2012/07
WDO	Construction Waste Disposal Account	7017735	10 Jul 2013	NA	GCL	Waste disposal in Contract HY/2012/07
WPCO	Waste Water Discharge License	Nil	Application in process	NA	GCL	Discharge of Construction Runof
NCO	Construction Noise Permit	Nil	Application in process	NA	GCL	For Piling Works
NCO	Construction Noise Permit	GW-RW0660-13	27 Sep 2013	02 Feb 2014	GCL	For night works and works in general holidays

Statutory Reference	License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/ Permit Holder	Remarks
NCO	Construction Noise Permit	GW-RS1129-13	31 Oct 2013	30 Apr 2014	GCL	For night works and works in general holidays
NCO	Construction Noise Permit	GW-RS1186-13	23 Oct 2013	24 Dec 2013	GCL	For night works and works in general holidays
NCO	Construction Noise Permit	GW-RS1187-13	24 Oct 2013	28 Feb 2014	GCL	For night

7.4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

In response to the site audit findings, the Contractors carried out corrective actions.

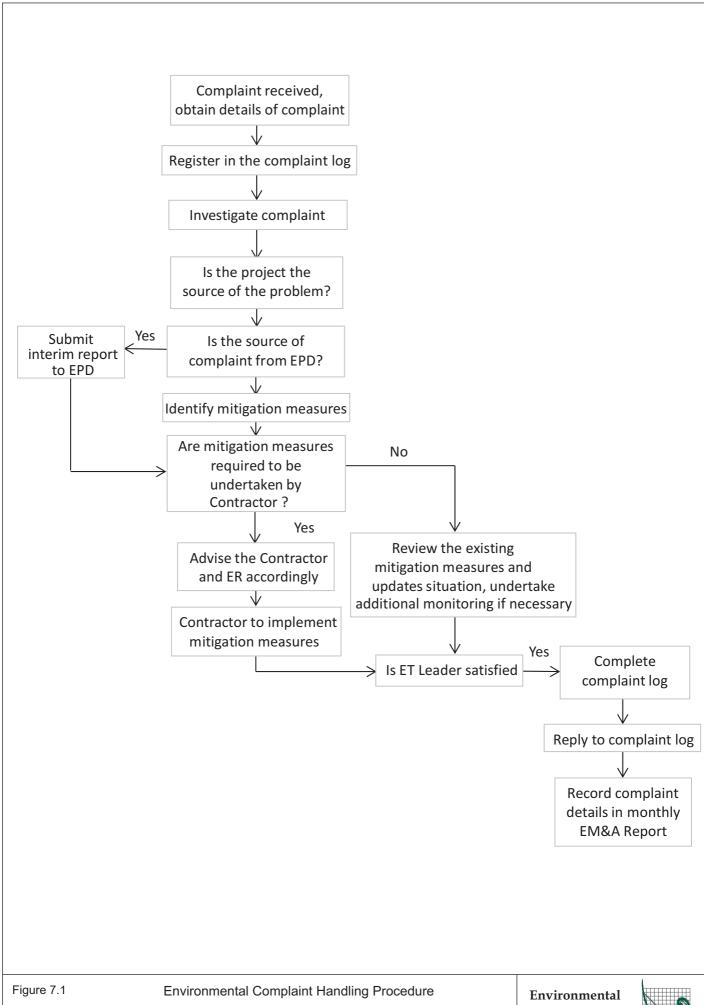
A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in *Appendix C*. The necessary mitigation measures were implemented properly for this Contract.

7.5 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

Results for 1-hour and 24-hour TSP monitoring and construction noise monitoring complied with the Action/ Limit levels in the reporting period. One (1) exceedance of Action Level for depth-averaged SS at SR4a was recorded in the reporting month. The exceedances were considered not related to the construction works of this Contract after further investigation.

Cumulative statistics on exceedances is provided in *Appendix N*.

7.6 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS


The Environmental Complaint Handling Procedure is provided in *Figure 7.1*.

One (1) complaint was referred by EPD to various parties of the HZMB projects on 12 November 2013 regarding the noise nuisance arising from the operation or towing of barges by tug boats during restricted hours, particularly during the period from 23:00 to 07:00 of next day by HZMB Projects in the waters outside Tung Chung New Development Pier and near the barging point of CEDD's construction site of Site Formation at Tung Chung Areas 53 and 54.

With reference to the Contractor's site dairy of 12 November 2013, no site activity after 18:00 was undertaken on the concerned day. Thus, the noise complaint was considered as non-project related.

No notification of summons and prosecution was received in the reporting period.

Statistics on complaints, notifications of summons and successful prosecutions are summarized in *Appendix N*.

8 FUTURE KEY ISSUES

8.1 CONSTRUCTION PROGRAMME FOR THE COMING MONTHS

As informed by the Contractor, the major works for the Contract in December 2013 and January 2014 will be:

Marine Works

- GI works at marine piers;
- Filling Platform at seawall; and
- Marine foundation at Viaduct E2, E5-8 and E13.

Land-based Works

- Additional GI fieldwork, Lab testing and permitting;
- Fence relocation at Viaduct A, C and D; and
- Site offices erection at WA2, WA3, WA5 and seawall.

8.2 KEY ISSUES FOR THE COMING MONTH

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of December 2013 are mainly associated with dust, noise, marine water quality, marine ecology and waste management issues.

8.3 MONITORING SCHEDULE FOR THE COMING MONTH

The tentative schedule for environmental monitoring in December 2013 is provided in *Appendix F*.

9

9.1 CONCLUSIONS

The construction phase of the TM-CLKL Southern Connection Viaduct Section and the associated impact phase EM&A programme of the Project commenced on 31 October 2013.

1-hour TSP, 24-hour TSP, noise, water quality and dolphin monitoring were carried out in the reporting period.

Exceedance of Action Levels for depth-averaged SS level was recorded in one monitoring event in this reporting month. The review of monitoring data and works activities undertaken suggested that no marine works were being undertaken when exceedance was recorded and that construction activities have been proceeded in an environmentally acceptable manner.

Results for noise and air quality monitoring complied with the Action/Limit levels in the reporting period.

A total of twenty-one dolphin s sighting were recorded during the two surveys. All sightings were made in NWL during the two sets of surveys with no sightings made at all in NEL in November 2013. None of the 21 sightings was made in the proximity of the TM-CLKL Southern Connection Viaduct Section. During this reporting period of dolphin monitoring, no adverse impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Chinese White Dolphins was noticeable from general observations.

Environmental site inspection was carried out four (4) times in November 2013. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audits.

One (1) environmental complaint regarding noise nuisance was followed up and was considered to be not related to the Contract works.

9.2 RECOMMENDATIONS

According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

Air Quality Impact

- All working plants and vessels on site should be regularly inspected and properly maintained by the Contractor to avoid dark smoke emission.
- Open stockpiles should be properly covered by the Contractor.

• The Contractor should provide water spraying to suppress fugitive dust for any dusty construction activity.

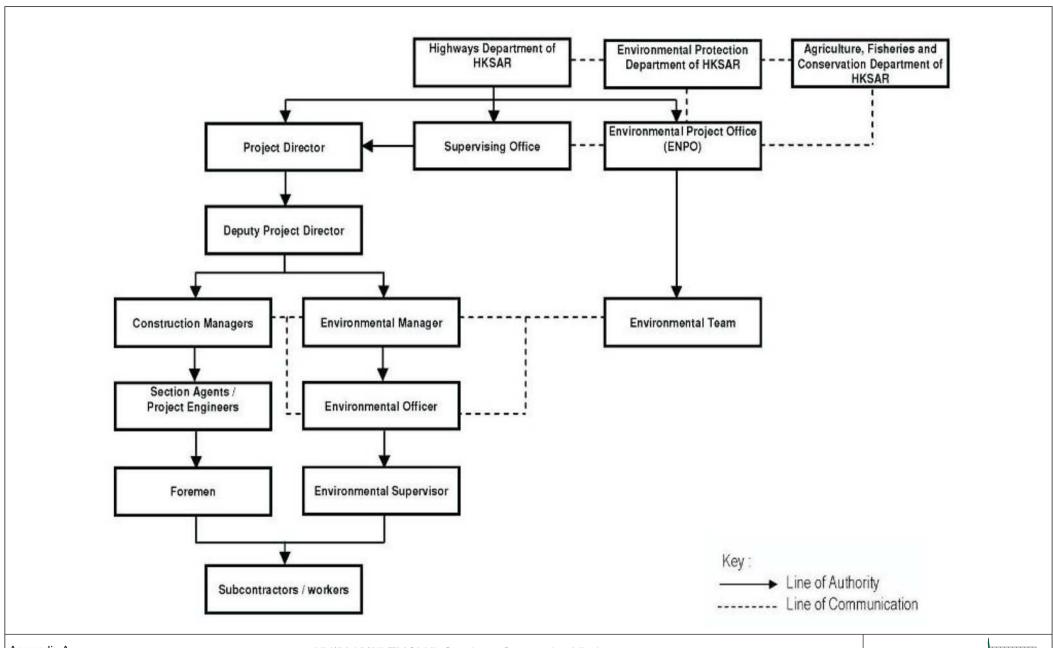
Construction Noise Impact

• Vessels and equipment operating should be checked regularly and properly maintained by the Contractor.

Water Quality Impact

- The Contractor should regularly review and maintain drainage systems to make sure they are functioning effectively.
- Proper drainage channels, bunds and set-up should be provided by the Contractor at the site to collect/ intercept the surface run-off or waste water generated from works area to ensure no direct discharge from site to surrounding water bodies.

Chemical and Waste Management

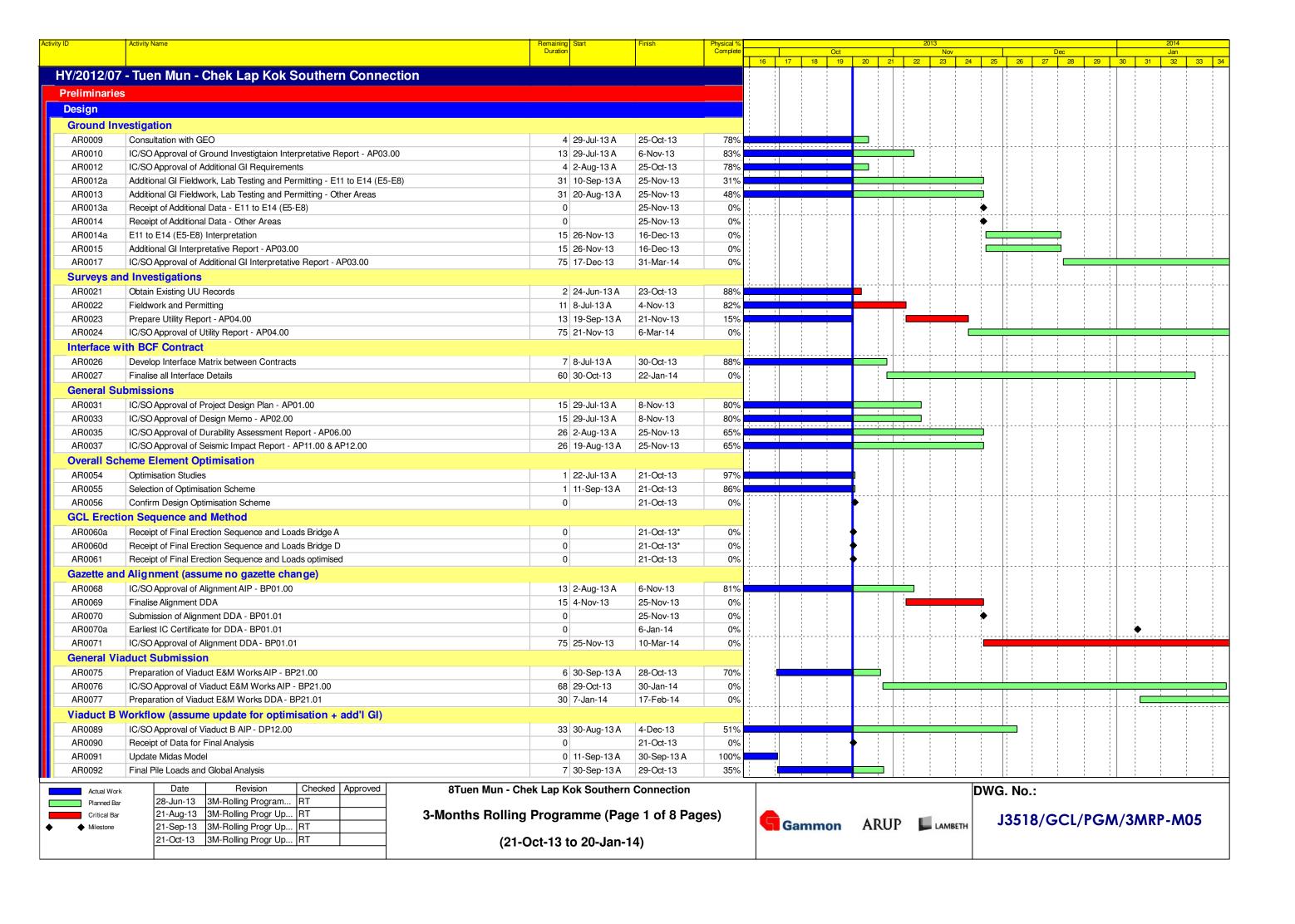

- All types of wastes should be collected and sorted accordingly and removed timely by the Contractor. They should be properly stored in designated areas within the works areas temporarily.
- All plants and vehicles on site should be properly maintained by the Contractor to prevent oil leakage.
- All drain holes of the drip trays within the works areas should be properly plugged by the Contractor to avoid any oil and chemical waste leakage.
- Oil stains on soil surface should be cleared and disposed of as chemical waste by the Contractor.

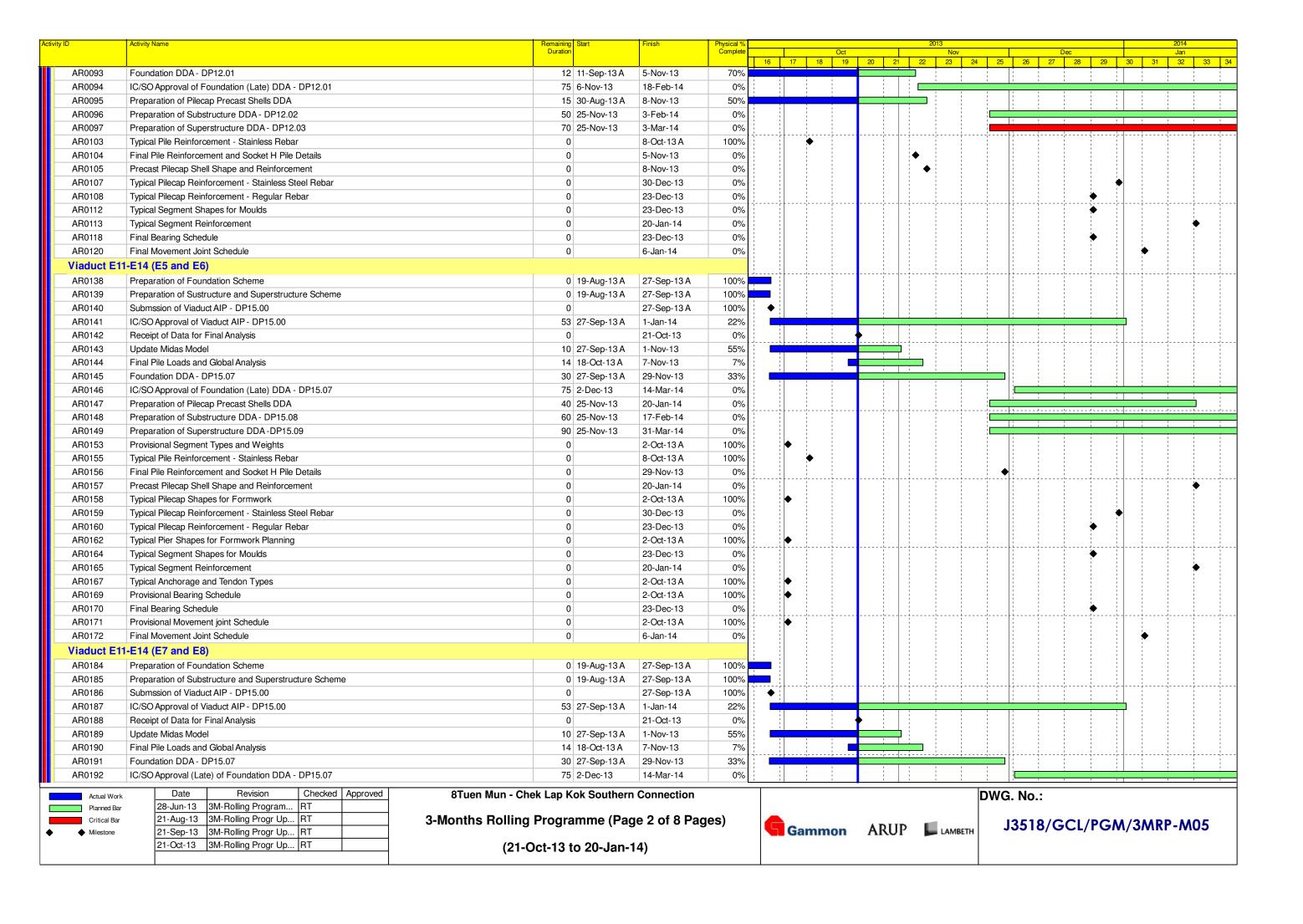
Marine Mammal Exclusion Zone Monitoring

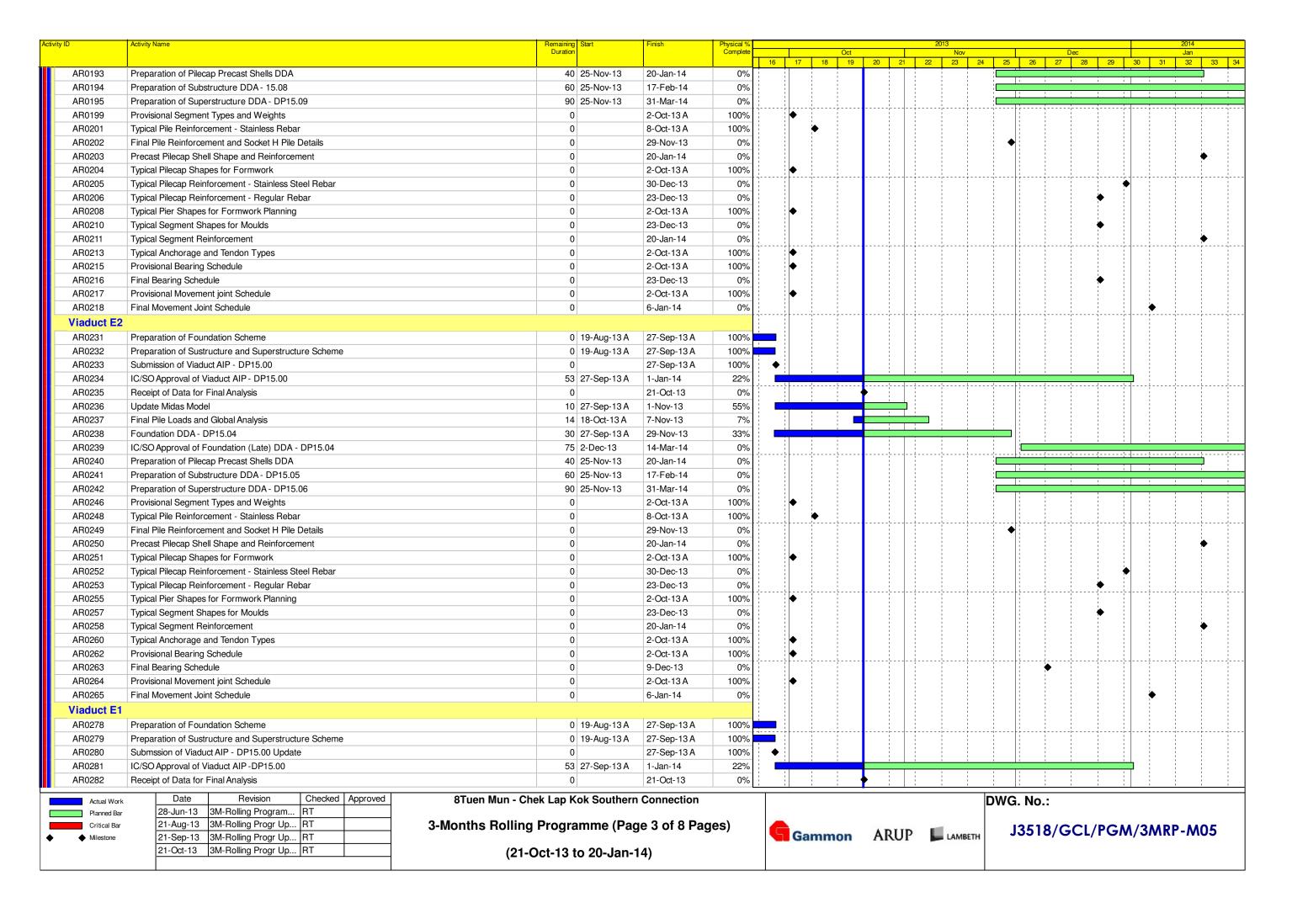
 Daily 250 m marine mammal exclusion zone monitoring was undertaken during the period in which marine works were being undertaken. No sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* were recorded in November 2013 during the exclusion zone monitoring.

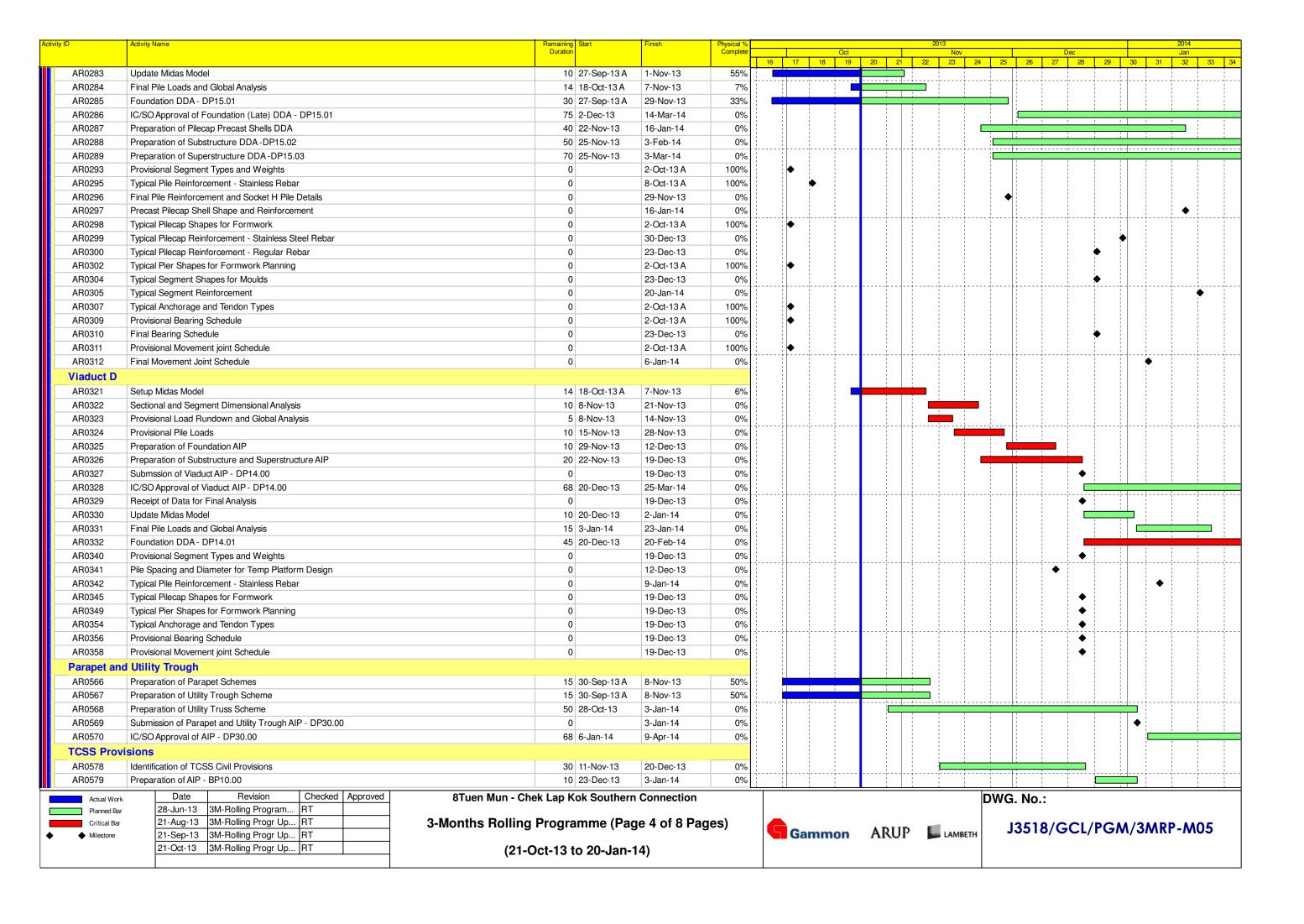
Appendix A

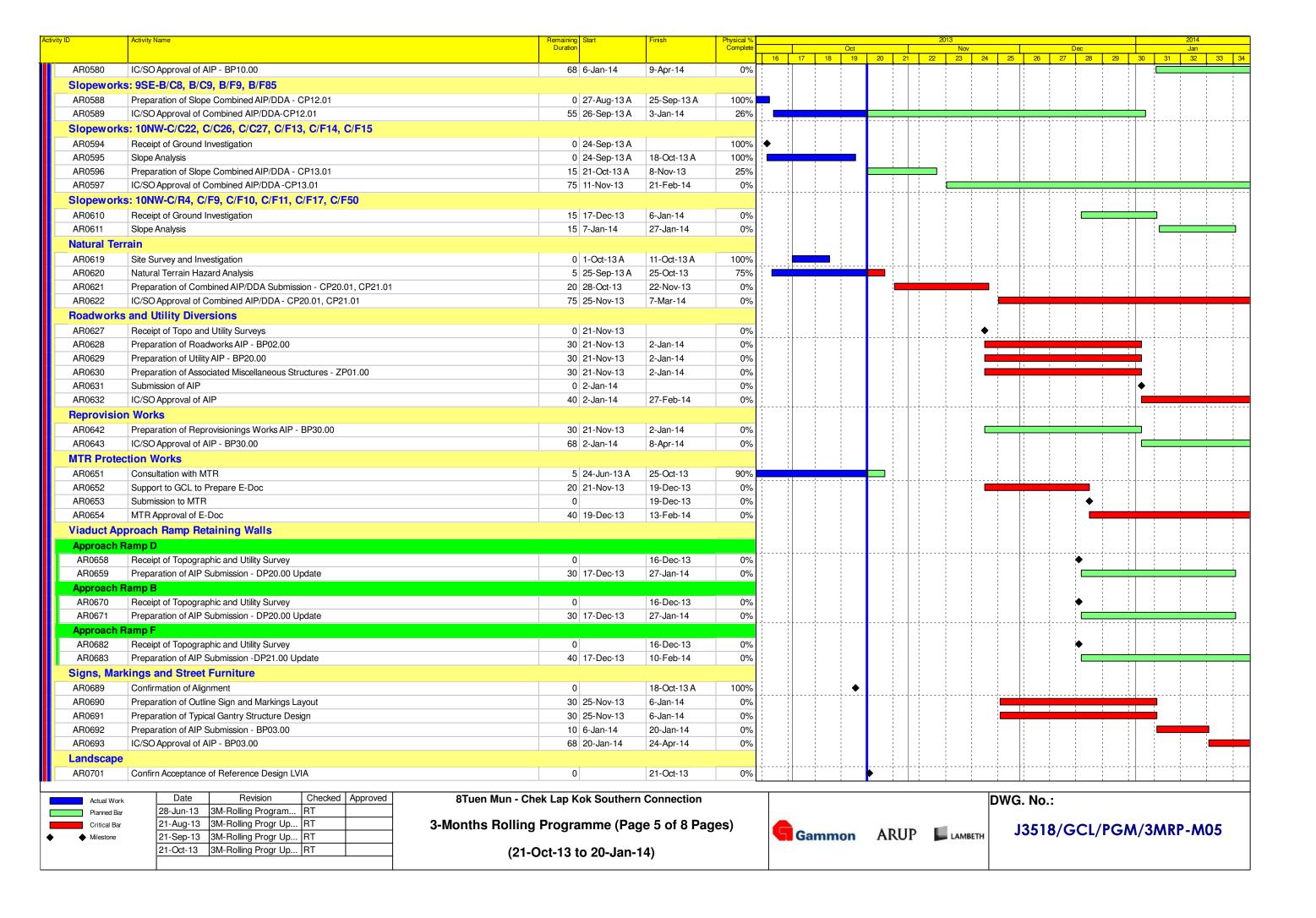
Project Organization for Environmental Works

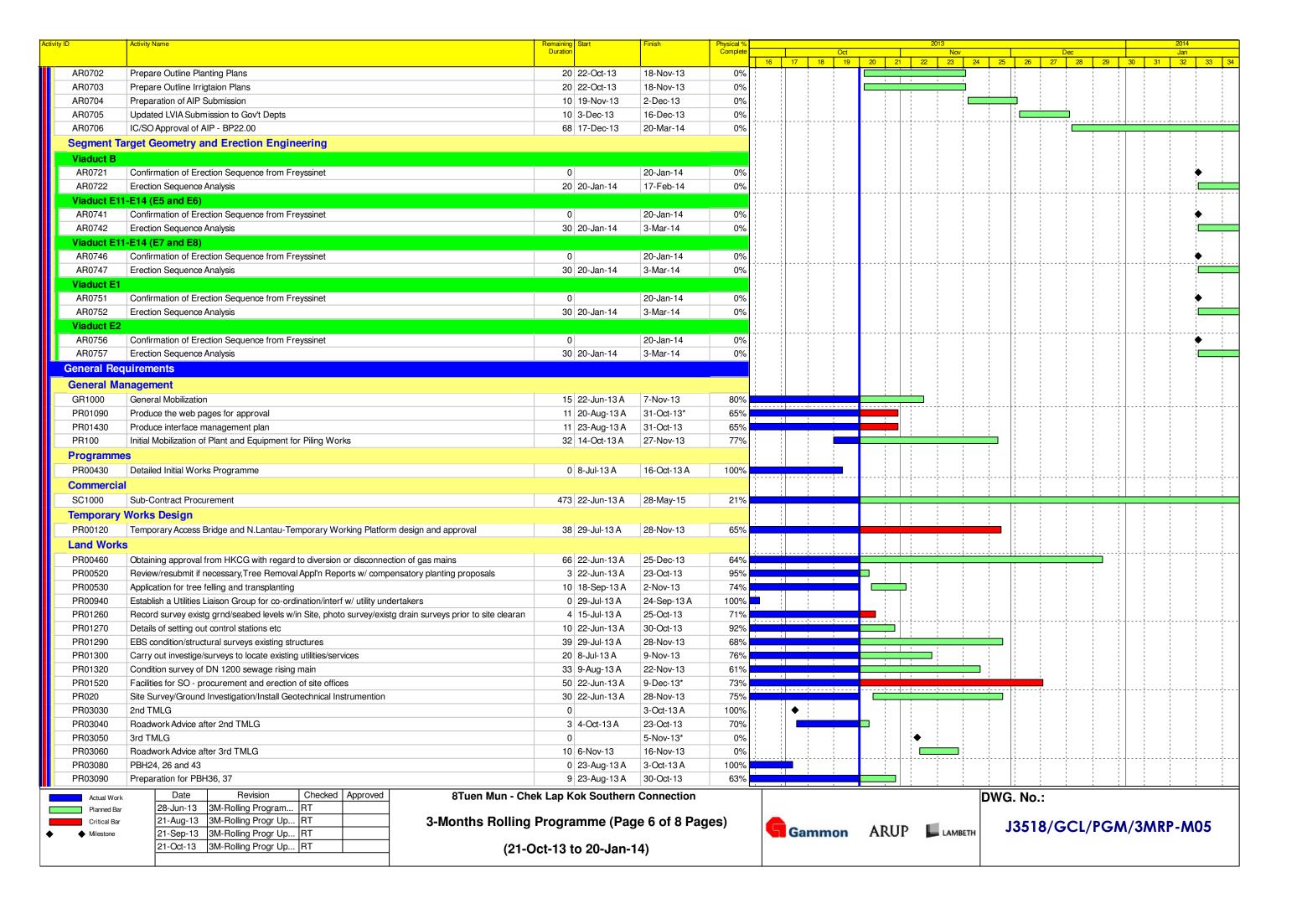



Appendix A

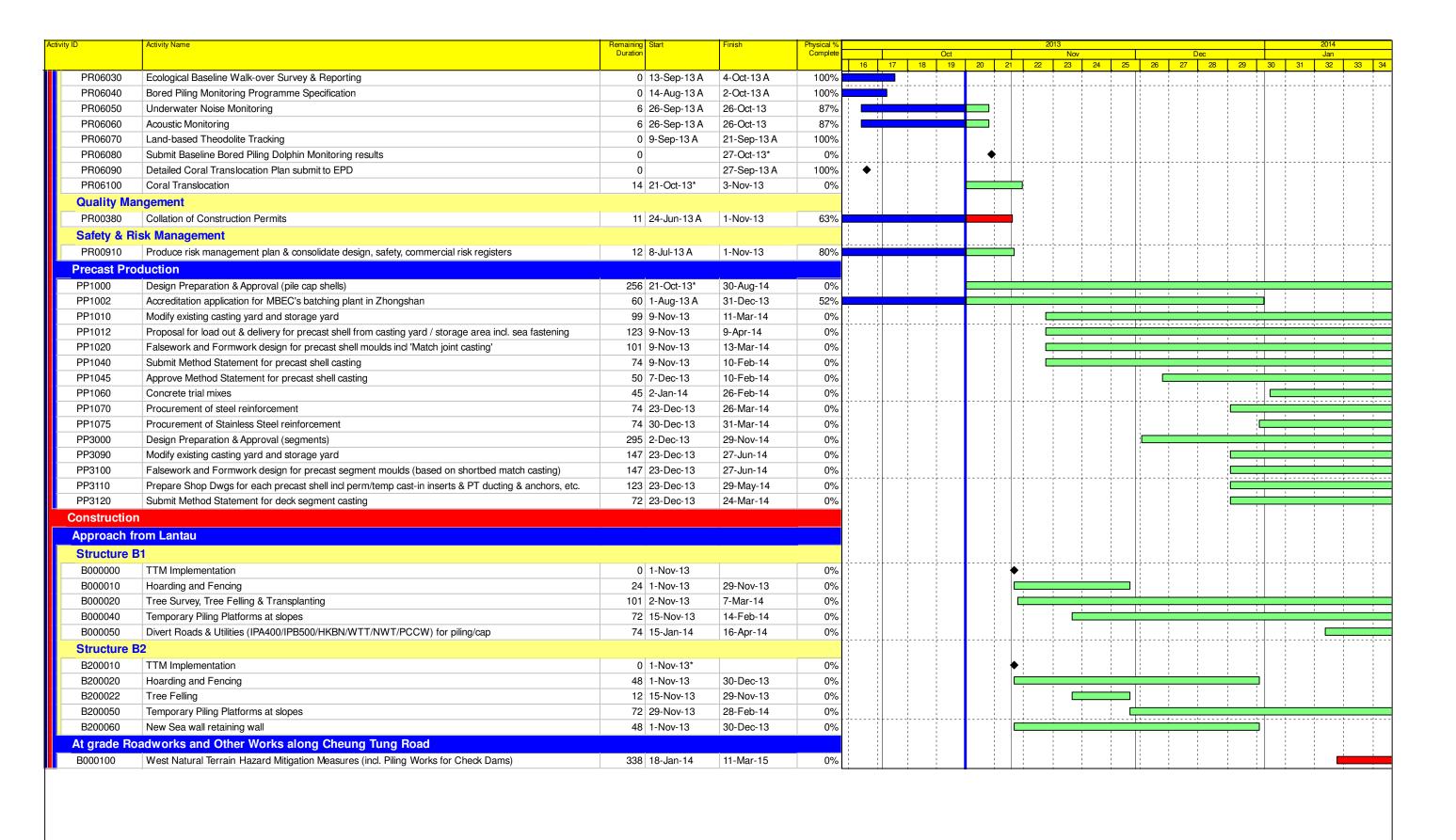

HY/2012/07 TMCLKL Southern Connection Viaduct Project Organisation


Appendix B


Three-Month Rolling Construction Programme







	Actual Work
	Planned Bar
	Critical Bar
* *	Milestone

Date	Revision	Checked	Approved
28-Jun-13	3M-Rolling Program	RT	
21-Aug-13	3M-Rolling Progr Up	RT	
21-Sep-13	3M-Rolling Progr Up	RT	
21-Oct-13	3M-Rolling Progr Up	RT	

8Tuen Mun - Chek Lap Kok Southern Connection

3-Months Rolling Programme (Page 8 of 8 Pages)
(21-Oct-13 to 20-Jan-14)

ARUP LAMBETH

DWG. No.:

J3518/GCL/PGM/3MRP-M05

Appendix C

Environmental Mitigation and Enhancement Measure Implementation Schedules

(Adopted from: CINOTECH (2011) Agreement No. CE35/2011 EP Baseline Environmental Monitoring for Hong Kong-Zhuhai-Macao BridgeTuen Mun-Chep Lap Kok Link – Investigation. UpdatedEM&A Manual for Tuen Mun-Chek Lap Kok Link)

Contract No. HY/2012/07

Tuen Mun – Chek Lap Kok Link

Southern Connection Viaduct Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	ual	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp Stag	olemen ges	tation	Maintenance Agency
	Reference					D	С	О	
Air Qualit	Y								
4.8.1	3.8	An effective watering programme of eight daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;	All areas / throughout construction period	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		n/a
4.8.1	3.8	The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Υ		n/a
4.8.1	3.8	The Contractor shall not burn debris or other materials on the works areas.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		n/a
4.8. 1	3.8	In hot, dry or windy weather, the watering programme shall maintain all exposed road surfaces and dust sources wet.	All unpaved haul roads / throughout construction period in hot, dry or windy weather	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		n/a
4.8.1	3.8	Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		n/a
4.8. 1	3.8	Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		n/a
4.8.1	3.8	During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp Stag	lementa ges	tion	Maintenance Agency
	Reference			_		D	С	O	
		shall be dampened or covered before transport.	<u> </u>						
4.8.1	3.8	Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		n/a
4.8.1	3.8	No earth, mud, debris, dust and the like shall be deposited on public roads. Wheel washing facility shall be usable prior to any earthworks excavation activity on the site.	All site exits / throughout construction period	Contractor	TMEIA Avoid dust		Y		n/a
4.8.1	3.8	Areas of exposed soil shall be minimised to areas in which works have been completed shall be restored as soon as is practicable.	All exposed surfaces / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		n/a
4.8.1	3.8	All stockpiles of aggregate or spoil shall be enclosed or covered and water applied in dry or windy condition.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		n/a
4.11	Section 3	EM&A in the form of 1 hour and 24 hour dust monitoring and site audit	All representative existing ASRs / throughout construction period	Contractor	EM&A Manual		Y		n/a
Noise		·\	A	F	.t.				.5
5.11	Section 4	Noise monitoring	All existing representative sensitive receivers / during North Lantau Viaduct construction	Contractor	EM&A Manual		Y		n/a
WATER QUA	ALITY			I	.t.		••••••••••••••••••••••••••••••••••••••		
General Mai	rine Works								
6.10	-	Bored piling to be undertaken within a metal casing.	Marine viaducts of TM- CLKL and HKLR/ bored piling	Contractor	TM-EIAO		Y		n/a
6.10	-	Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO		Y		n/a

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp Stag	lement es	ation	Maintenance Agency
						D	С	О	
					permit conditions.				
6.10	-	Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		n/a
6.10	-	Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		n/a
6.10	-	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		n/a
6.10	-	Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		n/a
6.10	-	All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		n/a
6.10	-	The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		n/a
Temporary S	Staging work		<u> </u>		·				
	5.2	Regular inspection for the accumulation of floating refuse and collection of floating refuse if required	During temporary staging works	Contractor			Y		n/a
	5.2	Provision of temporary drainage system on the temporary staging for collection of construction site runoff to allow appropriate treatment before discharge into the sea	During temporary staging works	Contractor			Y		n/a
	5.2	Wastewater generated from construction works such as bored / drilling water will be collected, treated, neutralized and de-silted through silt trap or sedimentation tank before disposal	During temporary staging works	Contractor			Y		n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp Stag	lemen	ation	Maintenance
11010101100	Reference					D	C	О	Agency
	5.2	One additional water quality monitoring station is proposed at station SR4a In case elevated SS or turbidity is identified during the water quality monitoring, the source of pollution will be tracked down and be removed as soon as possible. In case depletion of dissolved oxygen is identified, artificial aeration will be arranged at the monitoring station SR4a,	During temporary staging works	Contractor			Y		n/a
Land Works									
6.10	_	Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	-	Sewage effluent and discharges from on- site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	-	Storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	_	Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		n/a
6.10	-	Temporary access roads should be surfaced with crushed stone or gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	-	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	-	Measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp Stag	lement ges	ation	Maintenance Agency
						D	С	О	.
		system.						K	
6.10	_	Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	5.8	Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.	All areas/throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	-	Discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	_	All vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		n/a
6.10	-	Wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	-	Section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	-	Wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for off site disposal.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	-	The Contractor shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	-	Waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal	All areas/ throughout	Contractor	TM-EIAO Waste		Y		n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp Stag		tation	Maintenance Agency
	Reference					D	С	Ο	
		Ordinance.	construction period		Disposal Ordinance				
6.10	-	All fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	-	Surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the stormwater system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		n/a
6.10	-	Roadside gullies to trap silt and grit shall be provided prior to discharging the stormwater into the marine environment. The sumps will be maintained and cleaned at regular intervals.	Roadside/design and operation	Design Consultant/ Contractor	TM-EIAO	Y		Υ	n/a
6.10	Section 5	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All areas/ throughout construction period	Contractor	EM&A Manual		Y		n/a
Water Quali	ity Monitoring			i	å		ā		
6.10	Section 5	Water quality monitoring shall be undertaken for suspended solids, turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline, backfilling and post construction period. One year operation phase water quality monitoring at designated stations	Designated monitoring stations as defined in EM&A Manual, Section 5/ Before, through-out marine construction period, post construction and monthly operational phase water quality monitoring for a year.	Contractor	EM&A Manual		Υ	Y	n/a
Ecology					ya 11 (11 (11 (11 (11 (11 (11 (11 (11 (11				
8.14	6.3	Specification for and implement pre, during and post construction dolphin abundance monitoring.	All Areas/Detailed Design/ during construction works/post construction	Design Consultant/ Contractor	TMEIA	Y	Y	Υ	n/a
8.14	6.3	Specification for bored piling monitoring	Detailed Design	Design Consultant	TMEIA	Y			n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp Stag	lementa ges	ation	Maintenance Agency
	Reference					D	С	O	
8.14	6.3	Implement any recommendations of the bored piling monitoring	Southern marine viaduct/Throughout construction during bored piling	Contractor	TMEIA		Υ		n/a
8.14	6.3,6.5	Avoidance of peak CWD calving season in May and June for driving of metal caissons during bored piling works	Southern marine viaduct/ May and June during bored piling	Contractor	TMEIA		Υ		n/a
8.14	6.3,6.5	Specification and implementation of 250m dolphin exclusion zone.	All marine bored piling and temporary staging works areas/Detailed Design/during all marine bored piling and temporary staging works	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
8.15	6.3, 6.5	Specification and deployment of an artificial reef of an area of 3,600m2 in an area where fishing activities are prohibited.	Area of prohibited fishing activities/Detailed Design/towards end of construction period	TM-CLKL/ HKBCF Design Consultant/ TM-CLKL/ HKBCF Contractor	TMEIA	Y		Y	AFCD
8.14	6.3, 6.5	Specification and implementation of marine vessel control specifications	All areas/Detailed Design/during construction works	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
8.14	6.3, 6.5	Design and implementation of acoustic decoupling methods for marine bored piling and the whole lifespan of temporary staging works.	All areas/ Detailed Design/during marine bored piling and temporary staging works	Design Consultant/ Contractor	TMEIA	Y	Υ		n/a
8.15	6.3, 6.4	Pre-construction phase survey and coral translocation	Tai Ho Wan (donar site) and Yam Tsui Wan (receptor site) / Detailed Design/Prior to construction	Design Consultant/ Contractor	TMEIA	Y	Υ		n/a
8.15	6.5	Audit coral translocation success	Yam Tsui Wan (receptor site)/Post translocation	Contractor	TMEIA		Y		n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp Stag	olementa ges	ition	Maintenance Agency
	Reference			_		D	С	O	
7.13	6.5	Undertaken gabion wall works in Stream NL1 in the dry season	North Lantau slope works/dry season/construction phase	Contractor	TMEIA		Υ		n/a
7.13	6.5	The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.	All areas / As soon as accessible	Contractor	TMEIA		Y		AFCD/LCSD
7.13	6.5	Spoil heaps shall be covered at all times.	All areas / Throughout construction period	Contractor	TMEIA		Y		n/a
7.13	6.5	Avoid damage and disturbance to the remaining and surrounding natural habitat	All areas / Throughout construction period	Contractor	TMEIA		Y		n/a
7.13	6.5	Placement of equipment in designated areas within the existing disturbed land	All areas / Throughout construction period	Contractor	TMEIA		Υ		n/a
7.13	6.5	Disturbed areas to be reinstated immediately after completion of the works.	All areas / Throughout construction period	Contractor	TMEIA		Y		n/a
7.13	6.5	Construction activities should be restricted to the proposed works boundary	All areas / Throughout construction period	Contractor	TMEIA		Y		n/a
LANDSCAPE	AND VISUAL				i.				d
10.9	7.6	Round angle, patterned finishes, and oval shaped pier were considered in the viaduct design, and further details will be developed under ACABAS submission (DM3)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Details of the street furniture will be developed in the detailed design stage (DM4)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Existing trees on boundary of the Project Area shall be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Υ		n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp Stag	lemen ges	tation	Maintenance Agency
	Reference					D	С	Ο	·
		prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection measures will be detailed at Tree Removal Application stage) (CM1)							
10.9	7.6	Trees unavoidably affected by the works shall be transplanted where practical. Trees will be transplanted straight to their final receptor site and not held in a temporary nursery. A detailed Tree Transplanting Specification shall be provided in the Contract Specification. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme (CM2)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
10.9	7.6	Hillside and roadside screen planting to proposed roads, associated structures and slope works (CM3).	All areas/detailed design/ during construction/post construction	Design Consultant/	TMEIA	Y	Y		n/a
10.9	7.6	Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material (in earth tone) (CM4)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
10.9	7.6	Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
10.9	7.6	Control night-time lighting and glare by hooding all lights (CM6)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
10.9	7.6	Ensure no run-off into water body adjacent to the Project Area (CM7)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (CM8)	All areas/detailed design/during construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp Stag	lemen ges	tation	Maintenance Agency
	Reference			_		D	С	O	in the state of th
10.9	7.6	Recycle/Reuse all felled trees and vegetation, e.g. mulching (CM9)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
10.9	7.6	Compensatory tree planting shall be provided to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006 (CM10).	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
10.9	7.6	Re-vegetation of affected woodland/shrubland with native species (OM1)	All areas/detailed design/ during construction/ during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	AFCD/HyD/ L CSD
10.9	7.6	Tall buffer screen tree / shrub / climber planting should be incorporated to soften hard engineering structures and facilities (OM2)	All areas/detailed design/ during construction/ during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	HyD/LCSD
10.9	7.6	Streetscape elements (e.g. paving, signage, street furniture, lighting etc.) shall be sensitively designed in a manner that responds to the local context, and minimises potential negative landscape and visual impacts. Lighting units should be directional and minimise unnecessary light spill (OM3)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	HyD/LCSD
10.9	7.6	Structure, ornamental tree / shrub / climber planting should be provided along roadside amenity strips, central dividers and newly formed slopes to enhance the townscape quality and further greenery enhancement (OM4)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Υ	HyD/LCSD
10.9	7.6	Aesthetically pleasing design (visually unobtrusive and non-reflective) as regard to the form, material and finishes	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	НуD
WASTE							. l		

EIA Reference	EM&A Manual	Environmental Protection Measures		Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Maintenance Agency
	Reference					D	С	Ο	
12.6		The Contractor shall identify a coordinator for the management of waste.	Contract mobilisation	Contractor	TMEIA		Y		n/a
12.6		The Contractor shall prepare and implement a Waste Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated, recycled and disposed. A recording system for the amount of waste generated, recycled and disposed (locations) should be established.	Contract mobilisation	Contractor	TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material		Y		n/a
12.6		The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.	Contract mobilisation	Contractor	TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance.		Y		n/a
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures including waste reduction, reuse and recycling.	Contract Mobilisation	Contractor	TMEIA		Y		n/a
12.6	8.1	The extent of cutting operation should be optimised where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	The site and surroundings shall be kept tidy and litter free.	All areas / throughout	Contractor	TMEIA		Y		n/a

EIA Reference	EM&A Manual	1		Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Maintenance Agency
	Reference					D	С ()	
			construction period						
12.6	8.1	No waste shall be burnt on site.	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.	Detailed Design	Design Consultant	TMEIA	Y			n/a
12.6	8.1	The Contractor shall be prohibited from disposing of C&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation.	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	Stockpiled material shall be covered by tarpaulin and /or watered as appropriate to prevent windblown dust/ surface run off.	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	Excavated material in trucks shall be covered by tarpaulins to reduce the potential for spillage and dust generation.	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling. Purchasing of construction materials should avoid over-ordering and wastage.	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	The Contractor should recycle as many C&D materials (this is a waste section) as possible on-site. The public fill and C&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper	All areas / throughout construction period	Contractor	TMEIA		Y		n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp Stag	lemen	tation	Maintenance Agency
	Reference					D	C	О	
		disposal. Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities.							
12.6	8.1	All falsework will be steel instead of wood.	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows: - suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed; - Having a capacity of <450L unless the specifications have been approved by the EPD; and - Displaying a label in English and Chinese according to the instructions prescribed in Schedule 2 of the Regulations. Clearly labelled and used solely for the storage of chemical wastes; - Enclosed with at least 3 sides; - Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest; - Adequate ventilation; - Sufficiently covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and - Incompatible materials are adequately	All areas / throughout construction period	Contractor	TMEIA		Y		n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp Stag		tation	Maintenance Agency
	Reference					D	C	О	·
		separated.							
12.6	8.1	Waste oils, chemicals or solvents shall not be disposed of to drain,	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	Adequate numbers of portable toilets should be provided for on-site workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	Night soil should be regularly collected by licensed collectors.	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C&D and chemical wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances Bylaws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited.		Contractor	TMEIA		Υ		n/a
12.6	8.1	All waste containers shall be in a secure area on hardstanding;	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.	All areas / throughout construction period	Contractor	TMEIA		Y		n/a
12.6	8.1	Office wastes can be reduced by recycling of paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	Site Offices/ throughout construction period	Contractor	TMEIA		Υ		n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Impl Stage	ement	ation	Maintenance Agency
	Reference					D	C	O	
12.6	Section 8	EM&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.	All areas / throughout construction period	Contractor	EM&A Manual		Y		n/a
CULTURAL H	ERITAGE				<u> </u>	.,,	•		
11.8	Section 9	EM&A in the form of audit of the mitigation measures	All areas / throughout construction period	Highways Department	EIAO-TM		Υ		n/a

Notes:

Legend: D=Design, C=Construction, O=Operation

Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Appendix D

Summary of Action and Limit Levels

Table D1 Action and Limit Levels for 1-hour and 24-hour TSP

Parameters	Action	Limit
24 Hour TSP Level in μg/m³	ASR9A/ASR8A = 178 ASR9C/ASR8 = 178	260
1 Hour TSP Level in μg /m³	ASR9A/ASR8A = 394 ASR9C/ASR8 = 393	500

Table D2 Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Time Period	Action	Limit
0700-1900 hrs on normal weekdays	When one documented complaint is received	75* dB(A)

Table D3 Action and Limit Levels for Water Quality

Parameter	Action Level#	Limit Level#
DO in mg/L (a)	Surface and Middle	Surface and Middle
	5.0 mg/L	4.2 mg/L
	Bottom	Bottom
	4.7 mg/L	3.6 mg/L
Turbidity in NTU (Depthaveraged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data, i.e.,
	27.5 NTU	47.0 NTU
SS in mg/L (Depth-averaged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e., 23.5 mg/L	130% of upstream control station at the same tide of the same day and 10mg/L for WSD Seawater Intakes at Tuen Mun and 99%-ile of baseline
	20:0 Hig. 2	data, i.e.,
		34.4 mg/L

Notes:

- # Baseline data: data from HKZMB Baseline Water Quality Monitoring between 6 and 31 October 2011.
- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths ${}^{\prime}$
- (c) For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (d) All figures given in the table are used for reference only, and EPD may amend the figures whenever it is considered as necessary

Para	meter	Action Level#	Limit Level#
(e) The 1%-ile of baseline data		a for surface and midd	le DO is 4.2 mg/L, whilst for bottom DO
	is 3.6 mg/L.		-

Table D4 Action and Limit Levels for Impact Dolphin Monitoring

	North Lantau Social Cluster		
	NEL	NWL	
Action Level	STG < 70% of baseline &	STG < 70% of baseline &	
	ANI < 70% of baseline	ANI < 70% of baseline	
Limit Level	[STG < 40% of baseling	ne & ANI < 40% of baseline]	
	and		
	STG < 40% of baseline & ANI < 40% of baseline		

Notes:

- STG means quarterly encounter rate of number of dolphin sightings, which is 6.00 in NEL and 9.85 in NWL during the baseline monitoring period
- 2. ANI means quarterly encounter rate of total number of dolphins, which is **22.19 in NEL** and **44.66 in NWL** during the baseline monitoring period
- 3. For North Lantau Social Cluster, AL will be trigger if NEL or NWL fall below the criteria; LL will be triggered if both NEL and NWL fall below the criteria.

Table D5 Derived Value of Action Level (AL) and Limit Level (LL)

	North Lantau Social Cluster			
	NEL	NWL		
Action Level	STG < 4.2 & ANI< 15.5	STG < 6.9 & ANI < 31.3		
Limit Level	[STG < 2.4 & ANI <8.9]			
	and			
	[STG < 3.9 & ANI <17.9]			

Appendix E

Calibration Certificates of Monitoring Equipments

ALS Technichem (HK) Pty Ltd

SUB-CONTRACTING REPORT

CONTACT : MR K.W. FAN WORK ORDER : HK1327471

CLIENT : ENVIROTECH SERVICES CO.

ADDRESS : SHOP 6, G/F. SUB-BATCH : 1
CASIO MANSION, DATE RECEIVED : 7-OCT-2013

209 SHAUKEIWAN ROAD HONG KONG

DATE OF ISSUE

PROJECT : ---- NO. OF SAMPLES : 1 CLIENT ORDER : ----

General Comments

Sample(s) were received in an ambient condition.

Sample(s) analysed and reported on an as received basis.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories

Position

Richard Fung

General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

WORK ORDER

: HK1327471

SUB-BATCH CLIENT : 1

: ENVIROTECH SERVICES CO.

PROJECT

. ____

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1327471-001	S/N: IY5546	Equipment	07-OCT-2013	S/N: IY5546

Equipment Calibration Record

Equipment Calibrated:

Type:

Laser Dust monitor

Manufacturer:

Sibata LD-3B

Serial No.

1Y5546

Equipment Ref:

Nil

Job Order

HK1327471

Standard Equipment:

Standard Equipment:

Higher Volume Sampler

Location & Location ID:

AUES office (calibration room)

Equipment Ref:

HVS 018

Last Calibration Date:

8 October 2013

Equipment Calibration Results:

Calibration Date:

10 & 11 October 2013

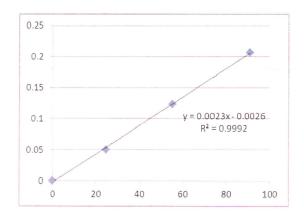
Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
1hr50min	12:00 ~ 13:50	27.0	1012.8	0.123	5911	55.0
4hr25min	13:55 ~ 18:20	27.0	1012.8	0.207	24157	90.9
16hr20min	18:25 ~ 10:45	27.0	1012.8	0.050	24112	24.7

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

629 (CPM) 633 (CPM)

Linear Regression of Y or X

Slope (K-factor):


0.0023

Correlation Coefficient

0.9992

Validity of Calibration Record

16 Oct 2013

Operator: Tung Chi Sun

Signature:

Date:

16 October 2013

QC Reviewer:

Ben Tam

Signature:

Date: 16 October 2013

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Date of Calibration: 8-Oct-13 Location: Gold King Industrial Building, Kwai Chung Next Calibration Date: 8-Jan-14 Location ID: Calibration Room CONDITIONS Corrected Pressure (mm Hg) Sea Level Pressure (hPa) 1008.1 756.075 Temperature (°C) 26.8 Temperature (K) 300 CALIBRATION ORIFICE Make-> TISCH 2.11662 Ostd Slope -> Model-> 5025A Qstd Intercept -> -0.01714 Calibration Date-> 9-Apr-13 Expiry Date-> 9-Apr-14 CALIBRATION H20 (L)H20 (R) H20 LINEAR Plate **Qstd** IC No. (in) (in) (in) (m3/min) (chart) corrected REGRESSION 18 3.8 3.8 7.6 1.303 66 65.63 Slope = 21.6637 13 3 3 6.0 1.159 64 63.64 37.9417 Intercept = 10 2.2 2.2 4.4 0.994 60 59.66 Corr. coeff. = 0.9975 8 1.2 1.2 2.4 0.736 54 53.70 5 0.9 0.9 1.8 0.638 52 51.71 Calculations: FLOW RATE CHART 70.00 Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]60.00 Ostd = standard flow rate IC = corrected chart respones 50.00 I = actual chart response m = calibrator Qstd slope 40.00 b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K 30.00 Pstd = actual pressure during calibration (mm Hg Actual For subsequent calculation of sampler flow: 20.00 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) 10.00 m = sampler slope b = sampler intercept 0.00 I = chart response 0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 Tav = daily average temperature Standard Flow Rate (m3/min) Pav = daily average pressure

ALS Technichem (HK) Pty Ltd

1 7-OCT-2013 22-OCT-2013

SUB-BATCH DATE RECEIVED

DATE OF ISSUE

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT **WORK ORDER** MR K.W. FAN HK1327473

CLIENT **ENVIROTECH SERVICES CO.**

ADDRESS SHOP 6, G/F

CASIO MANSION,

209 SHAUKEIWAN ROAD HONG KONG

PROJECT NO. OF SAMPLES

CLIENT ORDER

General Comments

Sample(s) were received in an ambient condition.

Sample(s) analysed and reported on an as received basis.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories

Position

Richard Fung

General Manager

WORK ORDER

: HK1327473

SUB-BATCH

PROJECT

: 1

CLIENT :

: ENVIROTECH SERVICES CO.

: ---

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1327473-001	S/N: 245834	Equipment	07-OCT-2013	S/N: 245834

Equipment Calibration Record

Equipment Calibrated:

Type:

Laser Dust monitor

Manufacturer:

Sibata LD-3B

Serial No.

245834

Equipment Ref:

Nil

Job Order

HK1327473

Standard Equipment:

Standard Equipment:

Higher Volume Sampler

Location & Location ID:

AUES office (calibration room)

Equipment Ref:

HVS 018

Last Calibration Date:

8 October 2013

Equipment Calibration Results:

Calibration Date:

10 & 11 October 2013

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
1hr50min	12:00 ~ 13:50	27.0	1012.8	0.123	6013	56.0
4hr25min	13:55 ~ 18:20	27.0	1012.8	0.207	26441	99.5
16hr20min	18:25 ~ 10:45	27.0	1012.8	0.050	25113	25.7

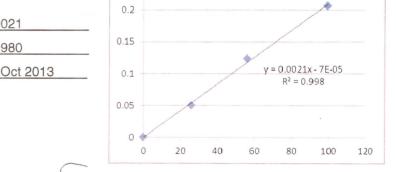
Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

(CPM) 765 760 (CPM)

0.25

Linear Regression of Y or X

Slope (K-factor):


0.0021

Correlation Coefficient

0.9980

Validity of Calibration Record

16 Oct 2013

Operator:

Tung Chi Sun

Signature:

16 October 2013

QC Reviewer:

Ben Tam

Signature:

Date:

16 October 2013

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Date of Calibration: 8-Oct-13 Gold King Industrial Building, Kwai Chung Location: Next Calibration Date: 8-Jan-14 Location ID: Calibration Room CONDITIONS Sea Level Pressure (hPa) 1008.1 Corrected Pressure (mm Hg) 756.075 Temperature (K) Temperature (°C) 300 26.8 CALIBRATION ORIFICE Make-> TISCH Qstd Slope -> 2.11662 Model-> 5025A Ostd Intercept -> -0.01714Calibration Date-> 9-Apr-13 Expiry Date-> 9-Apr-14 CALIBRATION H20 (L)H20 (R) Plate H20 IC LINEAR Ostd Ι (m3/min) REGRESSION No. (in) (in) (in) (chart) corrected 18 3.8 3.8 7.6 1.303 66 65.63 Slope = 21.6637 13 3 3 6.0 1.159 64 63.64 37.9417 Intercept = 2.2 2.2 Corr. coeff. = 10 4.4 0.994 60 59.66 0.9975 8 1.2 1.2 2.4 0.736 54 53.70 5 0.9 0.9 1.8 0.638 52 51.71 Calculations: FLOW RATE CHART 70.00 Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]60.00 Ostd = standard flow rate IC = corrected chart respones 50.00 chart response (IC) I = actual chart response m = calibrator Qstd slope 40.00 b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K 30.00 Pstd = actual pressure during calibration (mm Hg For subsequent calculation of sampler flow: 20.00 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) 10.00

0.00

0.000

0.200

0.400

0.600

Standard Flow Rate (m3/min)

0.800

1.000

1.200

1.400

Pav = daily average pressure

Tav = daily average temperature

m = sampler slope b = sampler intercept

I = chart response

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Dec 26, 2012 Operator Tisch	Rootsmeter Orifice I.I	0/14	2323	Ta (K) - Pa (mm) -	295 753.11
PLATE VOLUME OR START Run # (m3) 1 NA 2 NA 3 NA 4 NA 5 NA	VOLUME STOP (m3) NA NA NA NA	DIFF VOLUME (m3) 1.00 1.00 1.00	DIFF TIME (min) 1.4440 1.0240 0.9120 0.8720 0.7200	METER DIFF Hg (mm) 3.2 6.4 8.0 8.8 12.8	ORFICE DIFF H2O (in.) 2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	 · Va .	(x axis) Qa	(y axis)
0.9967 0.9925 0.9903 0.9893 0.9840	0.6902 0.9693 1.0858 1.1345 1.3666	1.4149 2.0010 2.2372 2.3464 2.8299	0.9957 0.9915 0.9893 0.9883 0.9830	0.6896 0.9683 1.0847 1.1334 1.3652	0.8851 1.2517 1.3995 1.4678 1.7702
Qstd slop intercept coefficie	t (b) = ent (r) =	2.09107 -0.02838 0.99996	 Qa slop intercep coeffici	t (b) =	1.30939 -0.01775 0.99996

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b\}$

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR 9C
Calibrated by : P.F.Yeung
Date : 05/11/2013

Sampler

Model : TE-5170 Serial Number : S/N 3572

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2323

 Service Date
 : 26 Dec 2012

 Slope (m)
 : 2.09107

 Intercept (b)
 : -0.02838

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 296

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.4	3.398	1.638	56	56.36
2	13 holes	9.0	3.019	1.457	50	50.32
3	10 holes	6.6	2.585	1.250	43	43.27
4	7 holes	4.2	2.062	0.100	36	36.23
5	5 holes	2.4	1.559	0.759	29	29.18

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m):30.801 Intercept(b): 5.465 Correlation Coefficient(r): 0.9991

Checked by: Magnum Fan Date: 08/11/2013

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR9A Calibrated by : P.F.Yeung Date : 05/11/2013

Sampler

Model : TE-5170 Serial Number : S/N 3573

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2323

 Service Date
 : 26 Dec 2012

 Slope (m)
 : 2.09107

 Intercept (b)
 : -0.02838

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 296

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	10.5	3.261	1.573	60	60.38
2	13 holes	8.2	2.882	1.392	54	54.34
3	10 holes	6.0	2.465	1.192	49	49.31
4	7 holes	4.0	2.013	0.976	42	42.27
5	5 holes	2.6	1.623	0.790	37	37.23

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 29.442 Intercept(b): 13.831 Correlation Coefficient(r): 0.9992

Checked by: Magnum Fan Date: 08/11/2013

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C134307

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-1709)

Description / 儀器名稱

Sound Level Calibrator

Manufacturer / 製造商

Rion

Model No. / 型號 Serial No. / 編號

NC-73 10997142

Supplied By / 委託者

Envirotech Services Co.

Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road,

Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 温度 : Line Voltage / 電壓 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

12 July 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By

測試

Certified By 核證

K M Wu

Date of Issue

15 July 2013

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C134307

證書編號

交正證書

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

The results presented are the mean of 3 measurements at each calibration point. 2.

Test equipment: 3.

> Equipment ID CL130 CL281 TST150A

Description Universal Counter

Multifunction Acoustic Calibrator Measuring Amplifier

Certificate No. C133632 DC130171

C120886

Test procedure: MA100N. 4.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	93.7	± 0.5	± 0.2

Frequency Accuracy 5.2

1 requestey recuracy			
UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0.988	1 kHz ± 2 %	± 1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C133573

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-1422)

Description / 儀器名稱 :

Sound Level Meter

Manufacturer / 製造商 Model No. / 型號

Rion NL-31

Serial No. / 編號

00410224

Supplied By / 委託者

Envirotech Services Co.

Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road,

Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 : $(23 \pm 2)^{\circ}$ C Relative Humidity / 相對濕度 :

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 14 June 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Rohde & Schwarz Laboratory, Germany

- Fluke Everett Service Center, USA

- Agilent Technologies, USA

Tested By

測試

Certified By 核證

K K Wong

Date of Issue

17 June 2013

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所

co香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Page 1 of 3

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C133573

證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- Self-calibration was performed before the test. 2.
- The results presented are the mean of 3 measurements at each calibration point. 3.
- 4. Test equipment:

Equipment ID CL280 CL281

Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

Certificate No. C130019 DC110233

Test procedure: MA101N. 5.

Results: 6.

Sound Pressure Level

6.1.1 Reference Sound Pressure Level

	UUT Setting			Applied Value		UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L_{A}	A	Fast	94.00	1	93.6	± 1.1

6.1.2 Linearity

UUT Setting			Applied	Value	UUT	
Range	Mode	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 120	L_{A}	A	Fast	94.00	1	93.6 (Ref.)
				104.00		103.6
				114.00		113.6

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

Time Weighting 6.2

UUT Setting		Applied Value		UUT	IEC 61672 Class 1		
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L_A	A	Fast	94.00	1	93.6	Ref.
			Slow			93.5	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C133573

證書編號

Frequency Weighting

6.3.1 A-Weighting

A- Weighting	5						
	UU	T Setting		Applied Value		UUT	IEC 61672 Class 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
30 - 120	L _A	A	Fast	94.00	63 Hz	67.3	-26.2 ± 1.5
					125 Hz	77.3	-16.1 ± 1.5
					250 Hz	84.9	-8.6 ± 1.4
					500 Hz	90.3	-3.2 ± 1.4
					1 kHz	93.6	Ref.
					2 kHz	94.9	$+1.2 \pm 1.6$
					4 kHz	94.8	$+1.0 \pm 1.6$
					8 kHz	92.6	-1.1 (+2.1; -3.1)
					12.5 kHz	89.7	-4.3 (+3.0; -6.0)

6.3.2 C-Weighting

	UU'	T Setting		Applied Value		UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L_{C}	С	Fast	94.00	63 Hz	92.7	-0.8 ± 1.5
					125 Hz	93.4	-0.2 ± 1.5
					250 Hz	93.6	0.0 ± 1.4
					500 Hz	93.7	0.0 ± 1.4
					1 kHz	93.7	Ref.
					2 kHz	93.5	-0.2 ± 1.6
					4 kHz	93.0	-0.8 ± 1.6
					8 kHz	90.7	-3.0 (+2.1; -3.1)
					12.5 kHz	87.9	-6.2 (+3.0; -6.0)

Remarks: - UUT Microphone Model No.: UC-53A & S/N: 307154

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value: 94 dB : 63 Hz - 125 Hz : \pm 0.35 dB

250 Hz - 500 Hz : \pm 0.30 dB 1 kHz $\pm 0.20 \text{ dB}$ 2 kHz - 4 kHz $\pm 0.35 \text{ dB}$ 8 kHz $\pm 0.45 \text{ dB}$ 12.5 kHz $\pm 0.70 \text{ dB}$

104 dB : 1 kHz $\pm 0.10 \text{ dB (Ref. 94 dB)}$

114 dB : 1 kHz $\pm 0.10 \text{ dB (Ref. 94 dB)}$

- The uncertainties are for a confidence probability of not less than 95 %.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c'o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所

co香港新界屯門興安里一號青山灣機樓四樓

Tel 電話: 2927 2606 Fax 傳真: 2744 8986

E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Performance Check of Turbidity Meter

Equipment Ref. No. : <u>ET/0505/009</u> Manufacturer : <u>HACH</u>

Model No. : 2100Q Serial No. : <u>11060 C 010010</u>

Date of Calibration : <u>08/10/2013</u> Due Date : <u>07/01/2014</u>

Gelex Vial Std	Theoretical Value (NTU)	Measured Value (NTU)	Difference %
0-10 NTU	5	5.2	3.92
10-100 NTU	50	5.19	3.73
100-1000 NTU	550	561	1.98

Acceptance Criteria

Difference : -5 % to 5%

The turbidity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Checked by: _____ Approved by:

Form E/CE/R/15/Issue 6 (1/1) [08/03]

Internal Calibra	ntion & Performance	Check Repor	t of pH Met	er
Equipment Ref. No. : ET/EW/0 Model No. : HI 8314 Date of Calibration : 09/09/20	Serial No.	: 674	NNA 1469 10/2013	
Liquid Junction Error				
Primary Standard Solution Used Temperature of Solution: pH value of diluted buffer: pH = pH(S) - pH of diluted buffe Liquid Junction Error (Δ pH _j) =	19.9 6.8 r = 0.081 (Observ	Ref No. of Prin /ed Deviation)	nary Solution: C $pH_{\frac{1}{2}} = \frac{1}{2}$ $pH(S) = \frac{6}{2}$	0.08
Shift on Stirring	100000000000000000000000000000000000000		VALUE 100	
pH of buffer solution (with stirrin Shift on stirring, $\Delta pH_s = pH_s - pH_s$				
Noise				
Noise, $pH_n = difference between$	en max and min reading:	0.01		
Verification of ATC				
Ref. No. of reference thermome Temperature record from the re Temperature record from the AT Temperature Difference (T _R - T _A	ference thermometer (T_R) : TC (T_{ATC}) :	ET/0521/008 20.0 19.8 0.2	C	C C
Assantanas Critoria				
Acceptance Criteria				
Performance C		Acceptable ≤0.0		
Liquid Junction Error Shift on Stirring	pHj pHs	≤0.0 ≤0.0		
Noise	pHn	≤0.0		
Verification of ATC	Temperature Difference			
The pH meter complies * / does unacceptable * for use. Measurem * Delete as appropriate			and is deemed	acceptable * /
Calibrated by :	Approved	Signatory :		***************************************

CPE/015/W

Internal Calibration & Pe	erformance Check	of pH Mete	r
Equipment Ref. No.: ET/EW/007/003	Manufacturer	: HANNA	
Model No. : HI 8314	Serial No.	: 674469	
Date of Calibration : 09/10/2013	Calibration Due Date	: 08/11/2013	
Liquid Junction Error			
Primary Standard Solution Used : Phosphate	Ref No. o	f Primary Solution	n: <u>003/5.2/001/15</u>
Temperature of Solution : 20.0		∆pH ½ :	= +0.08
pH value of diluted buffer : 6.81		pH (S) =	6.881
Δ pH = pH(S) - pH of diluted buffer = 0.071	(Observed Deviati	on)	
Liquid Junction Error (ΔpH_i) = ΔpH - $\Delta pH_{\frac{1}{2}}$ = -0.009			
Shift on Stirring			
pH of buffer solution (with stirring), pH _s =	6.88		
Shift on stirring, $\Delta pH_s = pH_s - pH(S) - \Delta pH_i =$	0.008	_	
Noíse			
Noise, ΔpH_n = difference between max and min reac	ding: 0.01		
Verification of ATC			
		_	
Ref. No. of reference thermometer used:	ET/0521/00	8	−°c
Temperature record from the reference thermometer	(T_R) : 20.0		
Temperature record from the ATC (T _{ATC}):	19.7		_°C
Temperature Difference, T _R - T _{ATC}	0.3		_°с
Acceptance Criteria		A MARK THE METER AND ANALYSIS OF THE	
Performance Characteristic	Accep	table Range	
Liquid Junction Error ∆pHj		≤0.05	
Shift on Stirring ∆pHs		≤0.02	_
Noise ∆pHn		≤0.02	_
Verifcation of ATC Temperature D	Difference	≤0.5°C	
The pH meter complies * / does not comply * wit unacceptable * for use. Measurements are traceable * Delete as a proportions.		ents and is deem	ed acceptable * /
* Delete as appropriate		1	
Calibrated by :	Checked by	ı: <u>9</u>	

CPE/015/W

Internal Calibration & F	Performance Checl	k of pH Meter	
Equipment Ref. No. : ET/EW/007/003	Manufacturer	: HANNA	
Model No. : <u>HI 8314</u>	Serial No.	: 674469	
Date of Calibration : 09/11/2013	Calibration Due Date	: 08/12/2013	
Liquid Junction Error			**************************************
Primary Standard Solution Used : Phosphate	Ref No. c	of Primary Solution: <u>(</u>	003/5.2/001/16
Temperature of Solution : 20.2		ΔpH ½ =	+0.08
pH value of diluted buffer : 6.80		рН (S) = <u>(</u>	3.881
$\Delta pH = pH(S) - pH$ of diluted buffer = 0.081	(Observed Deviat	ion)	
Liquid Junction Error (ΔpH_j) = ΔpH - $\Delta pH_{1/2}$ = 0.00)1	- American de la companya del companya del companya de la companya	
Shift on Stirring			
-			
pH of buffer solution (with stirring), pH _s =	6.89		
Shift on stirring, $\triangle pH_s = pH_s - pH(S) - \triangle pH_j =$	0.008		
Noise			
Noise, ΔpH_n = difference between max and min re-	ading : 0.00		
Verification of ATC			
Ref. No. of reference thermometer used:	ET/0521/00		
Temperature record from the reference thermomet	ter (T _R): 20.2	C	,c
Temperature record from the ATC (T _{ATC}):	19.8		°C
Temperature Difference, T _R - T _{ATC}	0.4	C	,с
Acceptance Criteria			
Performance Characteristic	Accep	otable Range	
Liquid Junction Error ΔpHj		≤0.05	
Shift on Stirring ApHs		≤0.02	
Noise ΔpHn		≤0.02	
Verification of ATC Temperature	Difference	≤0.5°C	
The pH meter complies * / dees not comply * w unacceptable * for use. Measurements are traceal * Delete as appropriate		ents and is deemed	acceptable * /
Calibrated by :	_ Checked by	y:	

CPE/015/W

Form E/CE/R/12 Issue 8 (1/2) [05/13]

Internal Calibration Report of Dissolved Oxygen Meter

Equipment Ref. No.

ET/EW/008/005

Manufacturer

YSI

Model No.

Pro 2030

Serial No.

12A 100353

Date of Calibration

31/07/2013

Calibration Due Date

30/10/2013

Temperature Verification

Ref. No. of Reference Thermometer:

ET/0521/008

Ref. No. of Water Bath:

	Temperature (°C)				
Reference Thermometer reading	Measured	20.2	Corrected	19.8	
DO Meter reading	Measured	19.8	Difference	0.0	

Standardization of sodium thiosulphate (Na 2S 2O 3) solution

Reagent No. of Na ₂ S ₂ O ₃ titrant	CPE/012/4.5/001/7	Reagent No. of 0.025N K ₂ Cr ₂ O ₇	CPE/012/4.4/001/20	
		Trial 1	Trial 2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)		0.10	0.00	
Final Vol. of Na ₂ S ₂ O ₃ (ml)		10.55	10.40	
Vol. of Na ₂ S ₂ O ₃ used (ml)		10.45	10.40	
Normality of Na ₂ S ₂ O ₃ solution (N)		0.02392	0.02404	
Average Normality (N) of $Na_2S_2O_3$ s	olution (N)	0.02398		
Acceptance criteria, Deviation		Less than ± 0.001N		

Calculation:

Normality of $Na_2S_2O_3$, N = 0.25 / ml $Na_2S_2O_3$ used

Lineality Checking

Determination of dissolved oxygen content by Winkler Titration *

Purging Time (min)		2		5	10	
Trial	1	2	1	2	1	2
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.70	23.20	0.00	7.90	12.90
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.70	23.20	31.20	7.90	12.90	18.00
Vol. (V) of $Na_2S_2O_3$ used (ml)	11.70	11.50	8.00	7.90	5.00	5.10
Dissolved Oxygen (DO), mg/L	7.53	7.40	5.15	5.09	3.22	3.28
Acceptance criteria, Deviation	Less than	n + 0.3mg/L	Less than	+ 0.3mg/L	Less than	+ 0.3mg/L

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Purging time, min	DO meter reading, mg/L		Winkler	Titration res	Difference (%) of DO		
1 to ging time. min	1	2	Average	1	2	Average	Content
2	744	7.65	7.65	7.53	7.40	7.47	2.38
5	5.30	5.22	5.26	5.15	5.09	5.12	2.70
10	3.20	3.11	3.16	3.22	3.28	3.25	2.81
Linea	r regression	coefficient				0.9982	

Form E/CE/R/12 Issue 8 (2/2) [05/13]

Internal Calibration Report of Dissolved Oxygen Meter

Zero Point Checking

DO meter reading, mg/L	0.00

Salinity Checking

			·
Reagent No. of NaCl (10ppt)	CDE/013/4/7/003/07	D NI £NI - C1 (20 4)	CDE/013/4 0/003/07
(Reagent No. of NaCl (10ppt)	TCPE/012/4.//002/07	(30ppt)	ICPE/012/4.8/002/07
		1, , , , , , , , , , , , , , , , , , ,	L

Determination of dissolved oxygen content by Winkler Titration **

Salinity (ppt)	16)		30
Trial	1	2	1	2
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	12.00	24.30	35.30
Final Vol. of Na ₂ S ₂ O ₃ (ml)	12.00	24.30	35.30	46.40
Vol. (V) of $Na_2S_2O_3$ used (ml)	12.00	12.30	11.00	11.10
Dissolved Oxygen (DO), mg/L	7.73	7.92	7.08	7.15
Acceptance criteria, Deviation	Less than	+ 0.3mg/L	Less than	n + 0.3mg/L

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Salinity (ppt)	DO meter reading, mg/L			Winkler	Titration resu	Difference (%) of DO	
ошти (ррг)	1	2	Average	1	2	Average	Content
10	7.82	7.73	7.78	7.73	7.92	7.83	0.64
30	7.15	7.09	7.12	7.08	7.15	7.12	0.00

Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer: < 0.5 °C
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within \pm 5%

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

" Delete as appropriate

Calibrated by

De

Approved by:

9

CEP/012/W

Performance Check of Salinity Meter

Equipment Ref. No. : ET/EW/008/005 Manufacturer : YSI

Model No. : Pro 2030 Serial No. : 12A 100353

Date of Calibration : 31/07/2013 Due Date : 30/10/2013

Ref. No. of Salinity Standard used (30ppt) S/001/4

Salinity Standard (ppt)	Measured Salinity (ppt)	Difference %
30.0	31.2	3.92

Acceptance Criteria

Difference: <10 %

The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable-* for use. Measurements are traceable to national standards.

Checked by: _____ Approved by:____

Form E/CE/R/12 Issue 8 (1/2) [05/13]

Internal Calibration Report of Dissolved Oxygen Meter

Equipment Ref. No.

ET/EW/008/005

Manufacturer

YSI

Model No.

Pro 2030

Serial No.

12A 100353

Date of Calibration

29/10/2013

Calibration Due Date

28/01/2014

Temperature Verification

Ref. No. of Reference Thermometer:

ET/0521/008

Ref. No. of Water Bath:

	Temperature (°C)					
Reference Thermometer reading	Measured	20.3	Corrected	19.9		
DO Meter reading	Measured	19.8	Difference	0.1		

Standardization of sodium thiosulphate (Na $_2$ S $_2$ O $_3$) solution

Reagent No. of Na ₂ S ₂ O ₃ titrant	CPE/012/4.5/001/7	Reagent No. of 0.025N K ₂ Cr ₂ O ₇	CPE/012/4.4/001/22	
		Trial 1	Trial 2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)		1.00	12.00	
Final Vol. of Na ₂ S ₂ O ₃ (ml)		11.55	22.50	
Vol. of Na ₂ S ₂ O ₃ used (ml)		10.55	10.50	
Normality of Na ₂ S ₂ O ₃ solution (N)		0.02370	0.02381	
Average Normality (N) of Na ₂ S ₂ O ₃ solution (N)		0.02376		
Acceptance criteria, Deviation		Less than ± 0.001N		

Calculation:

Normality of $Na_2S_2O_3$, N = 0.25 / ml $Na_2S_2O_3$ used

Lineality Checking

Determination of dissolved oxygen content by Winkler Titration *

Purging Time (min)		2		5		10	
Trial	1	2	1	2	1	2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.80	23.40	0.00	8.00	13.00	
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.80	23.40	31.50	8.00	13.00	18.10	
Vol. (V) of $Na_2S_2O_3$ used (ml)	11.80	11.60	8.10	8.00	5.00	5.10	
Dissolved Oxygen (DO), mg/L	7.53	7.40	5.17	5.10	3.19	3.25	
Acceptance criteria, Deviation	Less than	n + 0.3mg/L	Less than	+ 0.3mg/L	Less than	+ 0.3mg/L	

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Duraina tima min	DO meter reading, mg/L			Winkler	Titration res	Difference (%) of DO	
Purging time, min	1	2	Average	1	2	Average	Content
2	7.66	7.41	7.54	7.53	7.40	7.47	0.93
5	5.31	5.23	5.27	5.17	5.10	5.14	2.50
10	3.20	3.10	3.15	3.19	3.25	3.22	2.20
Linea	r regression	coefficient				0.9987	

Form E/CE/R/12 Issue 8 (2/2) [05/13]

Internal Calibration Report of Dissolved Oxygen Meter

Zero Point Checking

1	1 Lawrence Control of the Control of	
	DO meter reading, mg/L	0.00
	DO meter reading, mg/L	0.00

Salinity Checking

		I	
Reagent No. of NaCl (10ppt)	CPE/012/4.7/002/11	Reagent No. of NaCl (30ppt)	CPE/012/4.8/002/11
	Whater		

Determination of dissolved oxygen content by Winkler Titration **

Salinity (ppt)	10	10		30	
Trial	1	2	1	2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	12.40	24.50	35.80	
Final Vol. of Na ₂ S ₂ O ₃ (ml)	12.40	24.50	35.80	47.00	
Vol. (V) of $Na_2S_2O_3$ used (ml)	12.40	12.10	11.30	11.20	
Dissolved Oxygen (DO), mg/L	7.91	7.72	7.21	7.14	
Acceptance criteria, Deviation	Less than + 0.3mg/L		Less than + 0.3mg/L		

Calculation:

DO $(mg/L) = V \times N \times 8000/298$

Salinity (ppt)	DO meter reading, mg/L		Winkler	Titration resu	Difference (%) of DO		
Samity (ppt)	1	2	Average	1	2	Average	Content
10	7.82	7.63	7.73	7.91	7.72	7.82	1.16
30	7.22	7.16	7.19	7.21	7.14	7.18	0.14

Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer : < 0.5 °C
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within \pm 5%

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

" Delete as appropriate

Calibrated by : Approved by :

CEP/012/W

Performance Check of Salinity Meter

Equipment Ref. No.	: ET/EW/008/005	Manufacturer :	YSI	
Light pillette i tol. 1 to.	. DI/L/1/000/005	manaractare.	1 0 1	

Model No. : Pro 2030 Serial No. : <u>12A 100353</u>

29/10/1013

Date of Calibration : $\frac{29/08/2013}{2013}$ are $\frac{28/01/2014}{2013}$ Due Date : $\frac{28/01/2014}{2013}$

Ref. No. of Salinity Standard used (30ppt)	S/001/4
--	---------

Salinity Standard (ppt)	Measured Salinity (ppt)	Difference %
30.0	30.8	2.63

Acceptance Criteria

Difference : <10 %

The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Checked by: _____ Approved by:

Appendix F

EM&A Monitoring Schedules

HY/2012/07 - Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Marine Water Quality Monitoring (WQM) Schedule (31 Oct to 30 Nov 13)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
27-Oct	t 28-Oct	29-Oct	30-Oct		01-Nov		02-Nov
				WQM		WQM	
				Mid-Ebb		Mid-Ebb	
				10:32		11:58	
				(08:47 - 12:17)		(10:13 - 13:43)	
				Mid-Flood		Mid-Flood	
				16:51		17:49	
03-Nov	04-Nov	05-Nov	06-Nov	(15:06 - 18:36) 07-Nov	08-Nov	(16:04 - 19:34)	09-Nov
03-1107	04-1100	WQM	06-1107	WQM	06-1107	WQM	09-NOV
		Mid-Ebb		Mid-Flood		Mid-Flood	
		14:14		10:20		12:28	
		(12:29 - 15:59)		(08:35 - 12:05)		(10:43 - 14:13)	
		Mid-Flood		Mid-Ebb		Mid-Ebb	
		19:30		15:51		17:57	
		(17:45 - 21:15)		(14:06 - 17:36)		(16:12 - 19:42)	
10-Nov	11-Nov		13-Nov		15-Nov		16-Nov
		WQM	10 1101	WQM		WQM	
		Mid-Ebb		Mid-Ebb		Mid-Ebb	
		8:22		10:28		12:02	
		(06:36 - 10:06)		(08:43 - 12:13)		(10:17 - 13:47)	
		Mid-Flood		Mid-Flood		Mid-Flood (
		15:35		16:49		17:46	
		(13:50 - 17:20)		(15:04 - 18:34)		(16:01 - 19:31)	
17-Nov	18-Nov		20-Nov		22-Nov		23-Nov
		WQM		WQM		WQM	
		Mid-Ebb		Mid-Flood		Mid-Flood	
		13:56		9:53		11:17	
		(12:11 - 15:41)		(08:08 - 11:38)		(09:32 - 13:02)	
		Mid-Flood		Mid-Ebb		Mid-Ebb	
		19:10		15:02		16:12	
04.01	OF N	(17:25 - 20:55)	07 N	(13:20 - 16:50)	00 N.	(14:35 - 17:50)	00 NI:
24-Nov	25-Nov	26-Nov WQM	27-Nov	28-Nov WQM	29-Nov	WQM	30-Nov
		Mid-Flood		Mid-Ebb		Mid-Ebb	
		14:06		8:33		10:42	
		(12:21 - 15:51)		(06:48 - 10:18)		(08:57 - 12:27)	
		(12.21 - 13.31) Mid-Ebb		Mid-Flood		Mid-Flood	
		20:11		15:19		16:30	
		(18:26 - 21:56)		(13:34 - 17:04)		(14:45 - 18:15)	
		(10.20 - 21.30)		(10.04 - 17.04)		(14.45 - 10.15)	

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Tentative Impact Noise Monitoring Schedule (31 Oct to 30 Nov 2013)

Noise Monitoring at the rooftop of Pak Mong Village Watch Tower

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
27-Oct	28-Oct	29-Oct	30-Oct	31-Oct	01-Nov	02-Nov
03-Nov	04-Nov	05-Nov	06-Nov	07-Nov	08-Nov	09-Nov
001101	011101	Noise Monitoring	001101	0.1101	551167	00 1101
		3				
10-Nov		12-Nov	13-Nov			16-Nov
	Noise Monitoring				Noise Monitoring	
17-Nov	18-Nov	19-Nov	20-Nov	21-Nov	22-Nov	23-Nov
				Noise Monitoring		
24-Nov	25-Nov	26-Nov	27-Nov	28-Nov	29-Nov	30-Nov
24 1407	25 1404		Noise Monitoring	201407	25 1407	00 1404
			-			

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Tentative Impact Air Quality Monitoring Schedule (31 Oct to 30 Nov 2013)

Air Quality Monitoring at Siu Ho Wan MTRC Depot

	t Siu Ho Wan MTRC De					
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
27-Oct	28-Oct	29-Oct	30-Oct	31-Oct	01-Nov	02-Nov
03-Nov	04-Nov	05-Nov	06-Nov	07-Nov	08-Nov	09-Nov
		1-hour TSP - 3 times				
		24-hour TSP - 1 time				
		Impact AQM				
10-Nov	11-Nov	12-Nov	13-Nov	14-Nov	15-Nov	16-Nov
10-1107	1-hour TSP - 3 times	12-1100	13-1107	14-1107	1-hour TSP - 3 times	10-1100
	24-hour TSP - 1 time				24-hour TSP - 1 time	
	24-11001 13F - 1 tillle				24-110ul 13F - 1 tillle	
	Impact AQM				Impact AQM	
17-Nov	18-Nov	19-Nov	20-Nov	21-Nov	22-Nov	23-Nov
				1-hour TSP - 3 times		
				24-hour TSP - 1 time		
				Impact AQM		
24-Nov	25-Nov	26-Nov	27-Nov	28-Nov	29-Nov	30-Nov
			1-hour TSP - 3 times			
			24-hour TSP - 1 time			
			Impact AQM			
			πηρασι παινί			

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/07 - Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Marine Water Quality Monitoring (WQM) Schedule (Dec 13)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
01-Dec			04-Dec		06-Dec		07-Dec
		WQM		WQM		WQM	
		Mid-Ebb 13:15		Mid-Flood 9:23		Mid-Flood 11:04	
		(11:30 - 15:00)		9.23 (07:38 - 11:08)		(09:19 - 12:49)	
		Mid-Flood		(07.38 - 11.08) Mid-Ebb		(09.19 - 12.49) Mid-Ebb	
		18:27		14:52		16:35	
		(16:42 - 20:12)		(13:07 - 16:37)		(14:51 - 18:21)	
08-Dec	09-Dec	10-Dec	11-Dec	12-Dec	13-Dec	1	14-Dec
		WQM		WQM		WQM	
		Mid-Flood		Mid-Ebb		Mid-Ebb	
		13:55		8:57		11:05	
		(12:10 - 15:40)		(07:12 - 10:42)		(09:20 - 12:50)	
		Mid-Ebb		Mid-Flood		Mid-Flood	
		20:18		15:28		16:40	
		(18:33 - 22:03)		(13:43 - 17:13)		(14:55 - 18:25)	
15-Dec			18-Dec		20-Dec	2	21-Dec
		WQM		WQM		WQM	
		Mid-Ebb 13:03		Mid-Ebb 14:09		Mid-Flood 10:00	
		(11:18 - 14:48)		(12:24 - 15:54)		(08:15 - 11:45)	
		(11.16 - 14.46) Mid-Flood		(12.24 - 15.54) Mid-Flood		(06.15 - 11.45) Mid-Ebb	
		18:14		19:18		15:13	
		(16:29 - 19:59)		(17:33 - 21:03)		(13:28 - 16:58)	
22-Dec	23-Dec		25-Dec		27-Dec		28-Dec
22 800		WQM		WQM	27 000	WQM	_0 D00
		Mid-Flood		Mid-Flood		Mid-Ebb	
		11:53		13:25		9:01	
		(10:08 - 13:38)		(11:40 - 15:10)		(07:16 - 10:46)	
		Mid-Ebb		Mid-Ebb		Mid-Flood ´	
		17:33		19:58		14:59	
		(15:48 - 19:18)		(18:13 - 21:43)		(13:14 - 16:44)	
29-Dec	30-Dec	31-Dec					
		WQM					
		Mid-Ebb					
		12:15					
		(10:30 - 14:00)					
		Mid-Flood					
		17:23					
		(15:38 - 19:08)					

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Tentative Impact Noise Monitoring Schedule (1 Dec to 31 Dec 2013)

Noise Monitoring at the rooftop of Pak Mong Village Watch Tower

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Dec			04-Dec	05-Dec	06-Dec	07-Dec
		Noise Monitoring				
08-Dec	09-Dec	10-Dec	11-Dec	12-Dec	13-Dec	14-Dec
	Noise Monitoring				Noise Monitoring	
15-Dec	16-Dec	17-Dec	18-Dec	19-Dec	20-Dec	21-Dec
10 200	10 200	17 200	10 200	Noise Monitoring	20 200	2, 200
				-		
22-Dec	23-Dec	24-Dec	25-Dec	26-Dec	27-Dec	28-Dec
LL DCC		Noise Monitoring	20 000	20 000	27 000	20 000
		3				
00 Dec	00 Dec	01 Dec				
29-Dec	30-Dec Noise Monitoring	31-Dec				
	I VOISE WICHILDING					

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Tentative Impact Air Quality Monitoring Schedule (1 Dec to 31 Dec 2013)

Air Quality Monitoring at WA4 and rooftop of Pak Mong Village Watch Tower

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Dec	02-Dec		04-Dec	05-Dec	06-Dec	07-Dec
		1-hour TSP - 3 times				
		24-hour TSP - 1 time				
		Impact AQM				
08-Dec	09-Dec	10-Dec	11-Dec	12-Dec	13-Dec	14-Dec
	1-hour TSP - 3 times			1220	1-hour TSP - 3 times	
	24-hour TSP - 1 time				24-hour TSP - 1 time	
15-Dec	Impact AQM	17 Dec	18-Dec	19-Dec	Impact AQM	21-Dec
15-Dec	16-Dec	17-Dec	18-Dec	1-hour TSP - 3 times	20-Dec	21-Dec
				24-hour TSP - 1 time		
				Impact AQM		
22-Dec	23-Dec	24-Dec	25-Dec	26-Dec	27-Dec	28-Dec
		1-hour TSP - 3 times				
		24-hour TSP - 1 time				
		Impact AQM				
29-Dec	30-Dec	31-Dec				
	1-hour TSP - 3 times					
	24-hour TSP - 1 time					
	Impact AQM					

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

Appendix G

Impact Air Quality Monitoring Results and Graphical Presentation 1-hour TSP Monitoring Results at Air Quality Monitoring Station ASR9A

Project	Works	Date (yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2010/07	2013-11-05	ASR9A	9:30	1-hr TSP	120		
TMCLKL	HY/2010/07	2013-11-05	ASR9A	10:30	1-hr TSP	126		
TMCLKL	HY/2010/07	2013-11-05	ASR9A	11:30	1-hr TSP	128		
TMCLKL	HY/2010/07	2013-11-11	ASR9A	9:35	1-hr TSP	84		
TMCLKL	HY/2010/07	2013-11-11	ASR9A	10:35	1-hr TSP	72		
TMCLKL	HY/2010/07	2013-11-11	ASR9A	11:35	1-hr TSP	70		
TMCLKL	HY/2010/07	2013-11-15	ASR9A	11:08	1-hr TSP	60		
TMCLKL	HY/2010/07	2013-11-15	ASR9A	12:08	1-hr TSP	62	394	500
TMCLKL	HY/2010/07	2013-11-15	ASR9A	13:08	1-hr TSP	65		
TMCLKL	HY/2010/07	2013-11-21	ASR9A	8:26	1-hr TSP	115		
TMCLKL	HY/2010/07	2013-11-21	ASR9A	9:26	1-hr TSP	83		
TMCLKL	HY/2010/07	2013-11-21	ASR9A	10:26	1-hr TSP	114		
TMCLKL	HY/2010/07	2013-11-27	ASR9A	9:00	1-hr TSP	182		
TMCLKL	HY/2010/07	2013-11-27	ASR9A	10:02	1-hr TSP	138		
TMCLKL	HY/2010/07	2013-11-27	ASR9A	11:04	1-hr TSP	103		

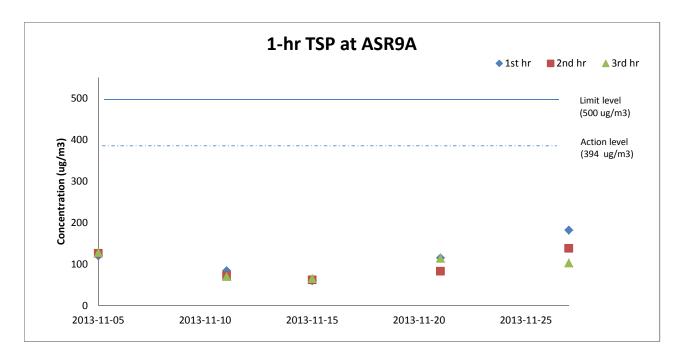
Average 101.4666667 Min. 60 Max. 182

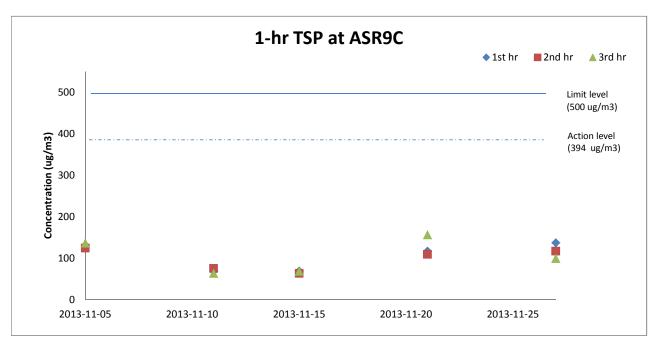
1-hour TSP Monitoring Results at Air Quality Monitoring Station ASR9C

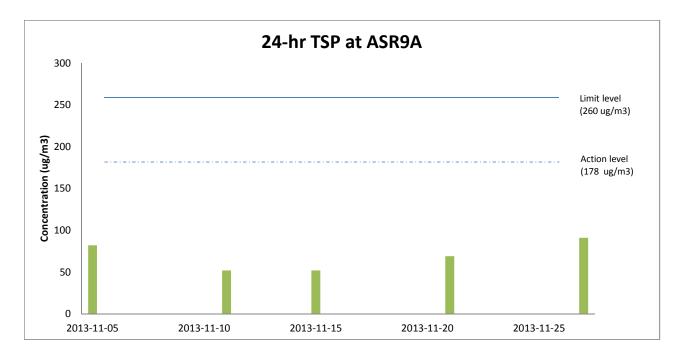
Project	Works	Date (yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2010/07	2013-11-05	ASR9C	9:38	1-hr TSP	131		
TMCLKL	HY/2010/07	2013-11-05	ASR9C	10:38	1-hr TSP	124		
TMCLKL	HY/2010/07	2013-11-05	ASR9C	11:38	1-hr TSP	136		
TMCLKL	HY/2010/07	2013-11-11	ASR9C	9:40	1-hr TSP	68		
TMCLKL	HY/2010/07	2013-11-11	ASR9C	10:40	1-hr TSP	75		
TMCLKL	HY/2010/07	2013-11-11	ASR9C	11:40	1-hr TSP	63		
TMCLKL	HY/2010/07	2013-11-15	ASR9C	10:05	1-hr TSP	69		
TMCLKL	HY/2010/07	2013-11-15	ASR9C	11:05	1-hr TSP	63	393	500
TMCLKL	HY/2010/07	2013-11-15	ASR9C	12:05	1-hr TSP	68		
TMCLKL	HY/2010/07	2013-11-21	ASR9C	8:35	1-hr TSP	117		
TMCLKL	HY/2010/07	2013-11-21	ASR9C	9:35	1-hr TSP	109		
TMCLKL	HY/2010/07	2013-11-21	ASR9C	10:35	1-hr TSP	156		
TMCLKL	HY/2010/07	2013-11-27	ASR9C	9:10	1-hr TSP	137		
TMCLKL	HY/2010/07	2013-11-27	ASR9C	10:12	1-hr TSP	117		
TMCLKL	HY/2010/07	2013-11-27	ASR9C	11:14	1-hr TSP	99		

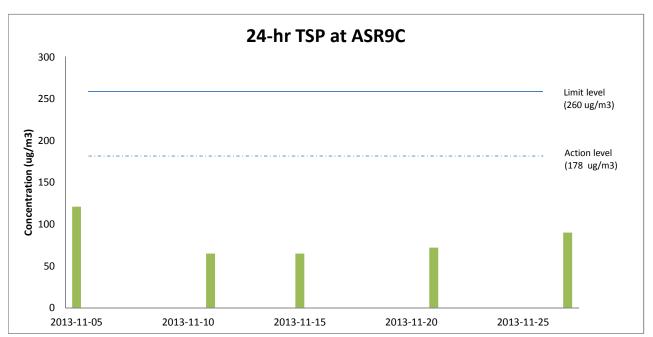
Average 102 Min. 63 Max. 156

24-hour TSP Monitoring Results at Air Quality Monitoring Station ASR9A


Project	Works	Date (yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2010/07	2013-11-05	ASR9A	15:45	24-hr TSP	82		
TMCLKL	HY/2010/07	2013-11-11	ASR9A	10:05	24-hr TSP	52		
TMCLKL	HY/2010/07	2013-11-15	ASR9A	10:05	24-hr TSP	52	178	260
TMCLKL	HY/2010/07	2013-11-21	ASR9A	11:32	24-hr TSP	69		
TMCLKL	HY/2010/07	2013-11-27	ASR9A	12:06	24-hr TSP	91		


Average 69.2 Min. 66.64 Max. 69.568


24-hour TSP Monitoring Results at Air Quality Monitoring Station ASR9C


Project	Works	Date (yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2010/07	2013-11-05	ASR9C	15:30	24-hr TSP	121		
TMCLKL	HY/2010/07	2013-11-11	ASR9C	10:20	24-hr TSP	65		
TMCLKL	HY/2010/07	2013-11-15	ASR9C	10:20	24-hr TSP	65	178	260
TMCLKL	HY/2010/07	2013-11-21	ASR9C	11:41	24-hr TSP	72		
TMCLKL	HY/2010/07	2013-11-27	ASR9C	12:16	24-hr TSP	90		

Average 82.6 Min. 74.92 Max. 76.904

Appendix H

Meteorological Data for the Reporting Month

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
05-11-2013	09:38:39	0.23	102.51
05-11-2013	09:43:39	0.02	79.11
05-11-2013	09:48:39	1.07	61.28
05-11-2013	09:53:39	0.02	50.92
05-11-2013	09:58:39	0.58	97.16
05-11-2013	10:03:39	0.86	76.77
05-11-2013	10:08:39	0.81	83.45
05-11-2013	10:13:39	0.21	91.48
05-11-2013	10:18:39	0.75	63.29
05-11-2013	10:23:39	0.09	88.13
05-11-2013	10:28:39	0.02	92.92
05-11-2013	10:33:39	0.02	72.87
05-11-2013	10:38:39	0.41	24.85
05-11-2013	10:43:39	1.19	29.75
05-11-2013	10:48:39	1.54	24.18
05-11-2013	10:53:39	1.7	29.08
05-11-2013	10:58:39	1.15	20.84
05-11-2013	11:03:39	1.41	36.21
05-11-2013	11:08:39	0.92	24.62
05-11-2013	11:13:39	1.44	1.11
05-11-2013	11:18:39	1.22	28.08
05-11-2013	11:23:39	0.92	23.06
05-11-2013	11:28:39	1.12	21.06
05-11-2013	11:33:39	0.2	22.84
05-11-2013	11:38:39	0.98	15.15
05-11-2013	11:43:39	1.27	-0.22
05-11-2013	11:48:39	0.35	24.18
05-11-2013	11:53:39	0.69	25.96
05-11-2013	11:58:39	0.66	0.22
05-11-2013	12:03:39	0.31	23.4
05-11-2013	12:08:39	0.18	357.44
05-11-2013	12:13:39	0.31	19.28
05-11-2013	12:18:39	0.55	24.51
05-11-2013	12:23:39	0.64	27.19
05-11-2013	12:28:39	0.49	23.73
05-11-2013	12:33:39	0.06	42.01
05-11-2013	12:38:39	0.37	32.76
05-11-2013	12:43:39	0.18	25.63
05-11-2013	12:48:39	0.26	24.74
05-11-2013	12:53:39	0.29	18.72
05-11-2013	12:58:39	0.76	32.87
05-11-2013	13:03:39	0.12	2.34
05-11-2013	13:08:39	0.02	23.51

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
05-11-2013	13:13:39	0.02	348.08
05-11-2013	13:18:39	0.58	343.62
05-11-2013	13:23:39	0.41	2.9
05-11-2013	13:28:39	0.86	25.07
05-11-2013	13:33:39	1.65	28.08
05-11-2013	13:38:39	1.07	21.28
05-11-2013	13:43:39	0.98	8.47
05-11-2013	13:48:39	1.41	26.85
05-11-2013	13:53:39	1.7	30.75
05-11-2013	13:58:39	1.27	19.16
05-11-2013	14:03:39	1.44	38.66
05-11-2013	14:08:39	1.64	18.94
05-11-2013	14:13:39	1.58	25.4
05-11-2013	14:18:39	1.32	31.42
05-11-2013	14:23:39	1.76	36.77
05-11-2013	14:28:39	0.87	30.64
05-11-2013	14:33:39	0.87	39.33
05-11-2013	14:38:39	0.69	25.29
05-11-2013	14:43:39	0.61	27.74
05-11-2013	14:48:39	1.33	20.06
05-11-2013	14:53:39	0.75	29.42
05-11-2013	14:58:39	0.5	18.27
05-11-2013	15:03:39	0.32	34.54
05-11-2013	15:08:39	0.73	15.15
05-11-2013	15:13:39	1.42	30.19
05-11-2013	15:18:39	2.16	17.6
05-11-2013	15:23:39	1.94	11.81
05-11-2013	15:28:39	1.41	12.48
05-11-2013	15:33:39	2.23	353.76
05-11-2013	15:38:39	0.49	0.22
05-11-2013	15:43:39	0.54	358.22
05-11-2013	15:48:39	1.09	348.41
05-11-2013	15:53:39	1.04	358.33
05-11-2013	15:58:39	0.4	357.21
05-11-2013	16:03:39	0.95	333.48
05-11-2013	16:08:39	0.95	336.94
05-11-2013	16:13:39	1.42	336.6
05-11-2013	16:18:39	2.05	330.7
05-11-2013	16:23:39	1.27	348.08
05-11-2013	16:28:39	1.84	351.75
05-11-2013	16:33:39	1.33	342.73
05-11-2013	16:38:39	2.69	357.1
05-11-2013	16:43:39	1.16	341.84

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
05-11-2013	16:48:39	1.32	347.52
05-11-2013	16:53:39	1.19	356.88
05-11-2013	16:58:39	1.1	0
05-11-2013	17:03:39	1.19	334.71
05-11-2013	17:08:39	0.83	346.41
05-11-2013	17:13:39	1.25	360.56
05-11-2013	17:18:39	0.81	356.88
05-11-2013	17:23:39	0.24	6.91
05-11-2013	17:28:39	0.78	21.28
05-11-2013	17:33:39	0.02	32.87
05-11-2013	17:38:39	0.38	19.83
05-11-2013	17:43:39	0.86	22.84
05-11-2013	17:48:39	0.02	75.54
05-11-2013	17:53:39	1.35	19.28
05-11-2013	17:58:39	0.41	43.45
05-11-2013	18:03:39	0.23	21.17
05-11-2013	18:08:39	0.32	22.28
05-11-2013	18:13:39	0.6	26.07
05-11-2013	18:18:39	0.03	40.78
05-11-2013	18:23:39	0.03	159.89
05-11-2013	18:28:39	0.03	193.76
05-11-2013	18:33:39	0.03	160.89
05-11-2013	18:38:39	0.03	160.89
05-11-2013	18:43:39	0.03	103.51
05-11-2013	18:48:39	0.02	51.7
05-11-2013	18:53:39	0.03	51.7
05-11-2013	18:58:39	0.03	51.7
05-11-2013	19:03:39	0.03	51.7
05-11-2013	19:08:39	0.03	63.73
05-11-2013	19:13:39	0.03	63.29
05-11-2013	19:18:39	0.03	87.91
05-11-2013	19:23:39	0.03	87.91
05-11-2013	19:28:39	0.03	87.91
05-11-2013	19:33:39	0.03	87.91
05-11-2013	19:38:39	0.03	87.91
05-11-2013	19:43:39	0.03	146.96
05-11-2013	19:48:39	0.03	199.44
05-11-2013	19:53:39	0.03	186.41
05-11-2013	19:58:39	0.03	204.46
05-11-2013	20:03:39	0.03	204.35
05-11-2013	20:08:39	0.03	202.56
05-11-2013	20:13:39	0.03	206.91
05-11-2013	20:18:39	0.03	163.9

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
05-11-2013	20:23:39	0.03	169.69
05-11-2013	20:28:39	0.03	159.44
05-11-2013	20:33:39	0.03	159.44
05-11-2013	20:38:39	0.03	159.44
05-11-2013	20:43:39	0.05	159.44
05-11-2013	20:48:39	0.05	159.44
05-11-2013	20:53:39	0.05	146.07
05-11-2013	20:58:39	0.05	146.18
05-11-2013	21:03:39	0.03	146.07
05-11-2013	21:08:39	0.03	163.12
05-11-2013	21:13:39	0.03	147.86
05-11-2013	21:18:39	0.03	150.19
05-11-2013	21:23:39	0.03	149.08
05-11-2013	21:28:39	0.05	167.58
05-11-2013	21:33:39	0.03	167.47
05-11-2013	21:38:39	0.05	167.47
05-11-2013	21:43:39	0.03	167.47
05-11-2013	21:48:39	0.03	151.53
05-11-2013	21:53:39	0.03	133.82
05-11-2013	21:58:39	0.03	161.45
05-11-2013	22:03:39	0.03	161.45
05-11-2013	22:08:39	0.03	161.45
05-11-2013	22:13:39	0.03	161.45
05-11-2013	22:18:39	0.03	139.16
05-11-2013	22:23:39	0.03	118.66
05-11-2013	22:28:39	0.03	42.79
05-11-2013	22:33:39	0.03	222.73
05-11-2013	22:38:39	0.03	172.14
05-11-2013	22:43:39	0.03	172.14
05-11-2013	22:48:39	0.03	172.14
05-11-2013	22:53:39	0.03	149.3
05-11-2013	22:58:39	0.05	149.3
05-11-2013	23:03:39	0.03	150.31
05-11-2013	23:08:39	0.03	150.42
05-11-2013	23:13:39	0.03	150.42
05-11-2013	23:18:39	0.03	171.59
05-11-2013	23:23:39	0.03	171.59
05-11-2013	23:28:39	0.03	171.48
05-11-2013	23:33:39	0.03	176.04
05-11-2013	23:38:39	0.03	176.04
05-11-2013	23:43:39	0.03	176.04
05-11-2013	23:48:39	0.03	175.82
05-11-2013	23:53:39	0.03	171.59

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
05-11-2013	23:58:39	0.03	171.59
11-11-2013	09:57:32	2.28	23.29
11-11-2013	10:02:32	4.3	136.27
11-11-2013	10:07:32	2.66	80.11
11-11-2013	10:12:32	3.38	151.31
11-11-2013	10:17:32	1.54	118.77
11-11-2013	10:22:32	2.11	131.25
11-11-2013	10:27:32	3.17	82.23
11-11-2013	10:32:32	2.11	146.74
11-11-2013	10:37:32	2.22	157.1
11-11-2013	10:42:32	3.79	115.32
11-11-2013	10:47:32	1.13	160.22
11-11-2013	10:52:32	2.98	123.9
11-11-2013	10:57:32	4.6	97.94
11-11-2013	11:02:32	5.84	135.82
11-11-2013	11:07:32	2.08	84.46
11-11-2013	11:12:32	2.92	164.01
11-11-2013	11:17:32	0.76	122.67
11-11-2013	11:22:32	1.09	131.81
11-11-2013	11:27:32	4.71	110.64
11-11-2013	11:32:32	2.43	126.35
11-11-2013	11:37:32	1.54	117.1
11-11-2013	11:42:32	2.17	99.28
11-11-2013	11:47:32	3.75	116.55
11-11-2013	11:52:32	2.91	144.4
11-11-2013	11:57:32	1.15	81.78
11-11-2013	12:02:32	3.17	143.96
11-11-2013	12:07:32	2.2	116.77
11-11-2013	12:12:32	2.98	51.48
11-11-2013	12:17:32	5.83	110.97
11-11-2013	12:22:32	1.54	180.61
11-11-2013	12:27:32	4.39	110.97
11-11-2013	12:32:32	5.12	126.13
11-11-2013	12:37:32	2.16	95.6
11-11-2013	12:42:32	4.47	131.7
11-11-2013	12:47:32	3.55	86.13
11-11-2013	12:52:32	2.49	112.2
11-11-2013	12:57:32	4.85	142.62
11-11-2013	13:02:32	2.54	130.7
11-11-2013	13:07:32	1.99	129.58
11-11-2013	13:12:32	2.75	114.65
11-11-2013	13:17:32	1.61	153.2
11-11-2013	13:22:32	0.81	145.29

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
11-11-2013	13:27:32	2.51	115.1
11-11-2013	13:32:32	3.43	136.82
11-11-2013	13:37:32	2.13	167.02
11-11-2013	13:42:32	1.67	186.41
11-11-2013	13:47:32	3.33	101.5
11-11-2013	13:52:32	2.42	115.21
11-11-2013	13:57:32	1.53	132.14
11-11-2013	14:02:32	3.12	89.14
11-11-2013	14:07:32	4.99	160.45
11-11-2013	14:12:32	2.78	128.13
11-11-2013	14:17:32	3.07	126.35
11-11-2013	14:22:32	3.87	121.23
11-11-2013	14:27:32	1.19	147.19
11-11-2013	14:32:32	3.35	77.33
11-11-2013	14:37:32	3.18	105.74
11-11-2013	14:42:32	2.55	120.45
11-11-2013	14:47:32	4.47	97.83
11-11-2013	14:52:32	4.7	138.05
11-11-2013	14:57:32	0.9	86.24
11-11-2013	15:02:32	3.01	113.98
11-11-2013	15:07:32	4.79	129.36
11-11-2013	15:12:32	3.7	100.61
11-11-2013	15:17:32	4.14	128.25
11-11-2013	15:22:32	4.8	122.9
11-11-2013	15:27:32	2	89.81
11-11-2013	15:32:32	2.97	135.71
11-11-2013	15:37:32	2.31	119.67
11-11-2013	15:42:32	6.61	98.83
11-11-2013	15:47:32	1.47	149.64
11-11-2013	15:52:32	1.99	150.19
11-11-2013	15:57:32	5.28	92.26
11-11-2013	16:02:32	5.37	110.64
11-11-2013	16:07:32	2.89	100.84
11-11-2013	16:12:32	3.96	168.02
11-11-2013	16:17:32	2.51	150.53
11-11-2013	16:22:32	3.04	141.06
11-11-2013	16:27:32	1.41	79
11-11-2013	16:32:32	4.96	133.7
11-11-2013	16:37:32	3.44	159.44
11-11-2013	16:42:32	3.56	113.43
11-11-2013	16:47:32	2.36	134.71
11-11-2013	16:52:32	4.51	133.82
11-11-2013	16:57:32	3.41	107.74

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
11-11-2013	17:02:32	5.4	136.38
11-11-2013	17:07:32	4.3	168.02
11-11-2013	17:12:32	2.11	124.23
11-11-2013	17:17:32	1.32	186.41
11-11-2013	17:22:32	3.81	139.94
11-11-2013	17:27:32	6.26	145.63
11-11-2013	17:32:32	4.53	161.23
11-11-2013	17:37:32	2.03	136.82
11-11-2013	17:42:32	4.11	128.69
11-11-2013	17:47:32	4.71	87.02
11-11-2013	17:52:32	2.88	101.17
11-11-2013	17:57:32	6.58	169.14
11-11-2013	18:02:32	1.9	175.15
11-11-2013	18:07:32	1.87	214.15
11-11-2013	18:12:32	2.66	146.07
11-11-2013	18:17:32	8.47	142.73
11-11-2013	18:22:32	3.72	110.75
11-11-2013	18:27:32	2.58	131.36
11-11-2013	18:32:32	4.3	159.44
11-11-2013	18:37:32	0.81	208.02
11-11-2013	18:42:32	0.83	119.89
11-11-2013	18:47:32	0.9	75.77
11-11-2013	18:52:32	1.99	107.52
11-11-2013	18:57:32	1.82	144.18
11-11-2013	19:02:32	1.96	188.41
11-11-2013	19:07:32	0.6	143.84
11-11-2013	19:12:32	1.36	166.46
11-11-2013	19:17:32	2.88	128.91
11-11-2013	19:22:32	2.51	195.32
11-11-2013	19:27:32	5.75	128.47
11-11-2013	19:32:32	3.55	134.71
11-11-2013	19:37:32	5.44	152.31
11-11-2013	19:42:32	3.61	87.02
11-11-2013	19:47:32	3.66	128.36
11-11-2013	19:52:32	3.26	103.73
11-11-2013	19:57:32	3.06	98.83
11-11-2013	20:02:32	2.68	111.42
11-11-2013	20:07:32	1.93	138.16
11-11-2013	20:12:32	2.78	116.77
11-11-2013	20:17:32	5.26	119.44
11-11-2013	20:22:32	2.14	128.69
11-11-2013	20:27:32	3.23	109.64
11-11-2013	20:32:32	2.88	81.45

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
11-11-2013	20:37:32	3.61	130.03
11-11-2013	20:42:32	6.65	113.98
11-11-2013	20:47:32	3.15	124.23
11-11-2013	20:52:32	4.76	117.99
11-11-2013	20:57:32	8.52	130.7
11-11-2013	21:02:32	2.49	135.38
11-11-2013	21:07:32	1.51	158.33
11-11-2013	21:12:32	2.43	105.96
11-11-2013	21:17:32	6.19	124.46
11-11-2013	21:22:32	2.65	134.82
11-11-2013	21:27:32	7.37	157.88
11-11-2013	21:32:32	3.93	135.04
11-11-2013	21:37:32	2.57	107.3
11-11-2013	21:42:32	3.18	138.05
11-11-2013	21:47:32	2.05	182.84
11-11-2013	21:52:32	3.85	171.14
11-11-2013	21:57:32	4.22	135.6
11-11-2013	22:02:32	2.45	159.44
11-11-2013	22:07:32	2	103.51
11-11-2013	22:12:32	2.14	103.73
11-11-2013	22:17:32	2.34	108.41
11-11-2013	22:22:32	3.23	134.37
11-11-2013	22:27:32	3.52	96.49
11-11-2013	22:32:32	4.92	134.6
11-11-2013	22:37:32	4.82	116.1
11-11-2013	22:42:32	2.89	144.18
11-11-2013	22:47:32	1.51	122.12
11-11-2013	22:52:32	1.77	134.37
11-11-2013	22:57:32	5.26	126.13
11-11-2013	23:02:32	1.5	71.31
11-11-2013	23:07:32	4.27	139.39
11-11-2013	23:12:32	1.42	143.84
11-11-2013	23:17:32	0.76	144.29
11-11-2013	23:22:32	3.18	120.33
11-11-2013	23:27:32	3.36	135.93
11-11-2013	23:32:32	1.47	136.94
11-11-2013	23:37:32	2.17	170.81
11-11-2013	23:42:32	1.24	129.47
11-11-2013	23:47:32	1.64	112.65
11-11-2013	23:52:32	1.67	112.2
11-11-2013	23:57:32	1.87	160.56
15-11-2013	00:02:32	1.76	331.59
15-11-2013	00:07:32	1.58	330.36

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
15-11-2013	00:12:32	0.61	358.77
15-11-2013	00:17:32	1.16	359.67
15-11-2013	00:22:32	2.19	2.12
15-11-2013	00:27:32	1.51	334.93
15-11-2013	00:32:32	1.99	335.49
15-11-2013	00:37:32	0.93	333.82
15-11-2013	00:42:32	1.84	328.69
15-11-2013	00:47:32	1.38	349.08
15-11-2013	00:52:32	1.68	310.08
15-11-2013	00:57:32	1.8	338.61
15-11-2013	01:02:32	2.83	339.05
15-11-2013	01:07:32	1.8	329.58
15-11-2013	01:12:32	1.5	334.15
15-11-2013	01:17:32	2.37	353.65
15-11-2013	01:22:32	3.23	347.41
15-11-2013	01:27:32	1.77	333.15
15-11-2013	01:32:32	1.48	352.42
15-11-2013	01:37:32	2.45	344.85
15-11-2013	01:42:32	2.11	2.34
15-11-2013	01:47:32	1.77	10.58
15-11-2013	01:52:32	2.17	335.38
15-11-2013	01:57:32	2.54	355.21
15-11-2013	02:02:32	2.6	324.46
15-11-2013	02:07:32	2.36	348.41
15-11-2013	02:12:32	1.82	11.36
15-11-2013	02:17:32	2.39	334.48
15-11-2013	02:22:32	1.67	357.55
15-11-2013	02:27:32	2.28	358.55
15-11-2013	02:32:32	1.24	1
15-11-2013	02:37:32	1.77	5.24
15-11-2013	02:42:32	1.42	3.57
15-11-2013	02:47:32	3.14	1.34
15-11-2013	02:52:32	1.94	354.09
15-11-2013	02:57:32	3.18	350.19
15-11-2013	03:02:32	1.91	333.26
15-11-2013	03:07:32	1.12	330.58
15-11-2013	03:12:32	1.47	344.4
15-11-2013	03:17:32	1.1	317.66
15-11-2013	03:22:32	1.02	350.08
15-11-2013	03:27:32	1.1	303.84
15-11-2013	03:32:32	1.16	1.45
15-11-2013	03:37:32	1.27	21.06
15-11-2013	03:42:32	2.25	352.98

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
15-11-2013	03:47:32	1.07	356.55
15-11-2013	03:52:32	1.25	8.58
15-11-2013	03:57:32	2.43	353.54
15-11-2013	04:02:32	1.42	1.56
15-11-2013	04:07:32	2	2.45
15-11-2013	04:12:32	1.9	3.23
15-11-2013	04:17:32	1.06	335.6
15-11-2013	04:22:32	2.11	354.43
15-11-2013	04:27:32	1.45	-47.24
15-11-2013	04:32:32	1.84	358.11
15-11-2013	04:37:32	1.47	344.51
15-11-2013	04:42:32	1.28	334.6
15-11-2013	04:47:32	1.42	357.99
15-11-2013	04:52:32	1.91	1.23
15-11-2013	04:57:32	1.62	351.87
15-11-2013	05:02:32	1.35	344.29
15-11-2013	05:07:32	3.67	322.56
15-11-2013	05:12:32	0.46	284.01
15-11-2013	05:17:32	1.5	12.48
15-11-2013	05:22:32	1.24	353.65
15-11-2013	05:27:32	2.55	6.24
15-11-2013	05:32:32	0.05	7.02
15-11-2013	05:37:32	0.06	127.69
15-11-2013	05:42:32	0.34	164.23
15-11-2013	05:47:32	0.06	128.13
15-11-2013	05:52:32	0.05	120.11
15-11-2013	05:57:32	0.06	120.11
15-11-2013	06:02:32	0.06	143.06
15-11-2013	06:07:32	0.06	134.71
15-11-2013	06:12:32	0.05	137.94
15-11-2013	06:17:32	0.06	137.05
15-11-2013	06:22:32	1.12	98.05
15-11-2013	06:27:32	0.26	145.29
15-11-2013	06:32:32	0.06	117.33
15-11-2013	06:37:32	0.29	258.94
15-11-2013	06:42:32	0.06	261.95
15-11-2013	06:47:32	1.22	269.53
15-11-2013	06:52:32	1.18	350.53
15-11-2013	06:57:32	1.38	354.65
15-11-2013	07:02:32	0.06	272.98
15-11-2013	07:07:32	0.09	300.28
15-11-2013	07:12:32	0.06	246.91
15-11-2013	07:17:32	0.37	9.58

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
15-11-2013	07:22:32	1.27	313.87
15-11-2013	07:27:32	0.4	353.54
15-11-2013	07:32:32	0.06	344.29
15-11-2013	07:37:32	0.06	344.18
15-11-2013	07:42:32	0.06	344.18
15-11-2013	07:47:32	0.06	58.27
15-11-2013	07:52:32	0.06	314.87
15-11-2013	07:57:32	0.34	286.46
15-11-2013	08:02:32	0.12	294.26
15-11-2013	08:07:32	0.05	277.99
15-11-2013	08:12:32	0.05	277.99
15-11-2013	08:17:32	0.72	345.18
15-11-2013	08:22:32	0.05	346.41
15-11-2013	08:27:32	0.55	337.6
15-11-2013	08:32:32	0.05	-47.69
15-11-2013	08:37:32	0.15	347.63
15-11-2013	08:42:32	0.05	347.63
15-11-2013	08:47:32	0.05	291.14
15-11-2013	08:52:32	0.41	319.33
15-11-2013	08:57:32	0.66	352.2
15-11-2013	09:02:32	1.09	274.32
15-11-2013	09:07:32	1.53	291.25
15-11-2013	09:12:32	1.65	280
15-11-2013	09:17:32	1.67	260.72
15-11-2013	09:22:32	0.67	291.25
15-11-2013	09:27:32	0.05	274.99
15-11-2013	09:32:32	0.05	294.26
15-11-2013	09:37:32	0.26	302.84
15-11-2013	09:42:32	0.14	277.88
15-11-2013	09:47:32	0.81	286.57
15-11-2013	09:52:32	1.84	274.87
15-11-2013	09:57:32	0.32	251.14
15-11-2013	10:02:32	1.99	264.07
15-11-2013	10:07:32	2.52	275.77
15-11-2013	10:12:32	0.17	283.79
15-11-2013	10:17:32	1.58	276.21
15-11-2013	10:22:32	0.18	291.36
15-11-2013	10:27:32	0.03	300.17
15-11-2013	10:32:32	0.2	268.64
15-11-2013	10:37:32	0.52	270.31
15-11-2013	10:42:32	0.69	264.29
15-11-2013	10:47:32	1.64	339.28
15-11-2013	10:52:32	0.73	332.37

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
15-11-2013	10:57:32	0.03	311.31
15-11-2013	11:02:32	0.14	292.48
15-11-2013	11:07:32	0.03	291.25
15-11-2013	11:12:32	0.03	312.98
15-11-2013	11:17:32	0.03	324.68
15-11-2013	11:22:32	0.03	353.98
15-11-2013	11:27:32	0.03	331.25
15-11-2013	11:32:32	0.03	296.49
15-11-2013	11:37:32	0.03	293.93
15-11-2013	11:42:32	0.03	276.43
15-11-2013	11:47:32	0.18	281.78
15-11-2013	11:52:32	0.03	270.08
15-11-2013	11:57:32	0.14	315.88
15-11-2013	12:02:32	0.37	289.69
15-11-2013	12:07:32	0.23	292.14
15-11-2013	12:12:32	0.03	307.52
15-11-2013	12:17:32	0.06	294.26
15-11-2013	12:22:32	0.29	286.69
15-11-2013	12:27:32	0.61	302.51
15-11-2013	12:32:32	0.38	310.86
15-11-2013	12:37:32	0.81	319
15-11-2013	12:42:32	0.81	322.12
15-11-2013	12:47:32	0.83	302.62
15-11-2013	12:52:32	0.54	294.82
15-11-2013	12:57:32	0.41	286.13
15-11-2013	13:02:32	0.31	286.24
15-11-2013	13:07:32	0.55	281.67
15-11-2013	13:12:32	1.04	293.26
15-11-2013	13:17:32	1.16	300.5
15-11-2013	13:22:32	1.1	287.69
15-11-2013	13:27:32	1.65	307.74
15-11-2013	13:32:32	1.12	286.35
15-11-2013	13:37:32	2.55	316.88
15-11-2013	13:42:32	2.95	301.62
15-11-2013	13:47:32	1.96	295.82
15-11-2013	13:52:32	1.94	294.82
15-11-2013	13:57:32	2.65	299.61
15-11-2013	14:02:32	1.41	302.84
15-11-2013	14:07:32	1.8	303.18
15-11-2013	14:12:32	2.02	305.74
15-11-2013	14:17:32	1.44	302.06
15-11-2013	14:22:32	2.42	301.73
15-11-2013	14:27:32	2.57	290.81

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
15-11-2013	14:32:32	2.45	310.86
15-11-2013	14:37:32	2.26	293.82
15-11-2013	14:42:32	1.48	308.64
15-11-2013	14:47:32	2.28	287.35
15-11-2013	14:52:32	1.67	286.46
15-11-2013	14:57:32	2.55	288.13
15-11-2013	15:02:32	1.04	286.13
15-11-2013	15:07:32	2.08	312.98
15-11-2013	15:12:32	2.68	260.72
15-11-2013	15:17:32	2.43	296.27
15-11-2013	15:22:32	2.13	301.62
15-11-2013	15:27:32	2.45	310.19
15-11-2013	15:32:32	1.54	286.02
15-11-2013	15:37:32	2.16	305.07
15-11-2013	15:42:32	1.12	290.25
15-11-2013	15:47:32	2.77	316.77
15-11-2013	15:52:32	1.99	316.21
15-11-2013	15:57:32	2.17	312.09
15-11-2013	16:02:32	2.29	315.1
15-11-2013	16:07:32	1.79	292.7
15-11-2013	16:12:32	2.6	301.5
15-11-2013	16:17:32	1.93	290.47
15-11-2013	16:22:32	1.5	289.03
15-11-2013	16:27:32	1.36	283.23
15-11-2013	16:32:32	1.21	281.11
15-11-2013	16:37:32	1.99	292.37
15-11-2013	16:42:32	1.93	266.96
15-11-2013	16:47:32	1.33	266.96
15-11-2013	16:52:32	0.32	259.5
15-11-2013	16:57:32	0.05	243.23
15-11-2013	17:02:32	0.31	204.46
15-11-2013	17:07:32	0.05	257.94
15-11-2013	17:12:32	0.05	233.2
15-11-2013	17:17:32	0.05	191.42
15-11-2013	17:22:32	0.05	196.77
15-11-2013	17:27:32	0.06	196.77
15-11-2013	17:32:32	0.06	195.32
15-11-2013	17:37:32	0.05	153.65
15-11-2013	17:42:32	0.05	168.02
15-11-2013	17:47:32	0.05	175.6
15-11-2013	17:52:32	0.06	196.88
15-11-2013	17:57:32	0.06	168.36
15-11-2013	18:02:32	0.09	153.31

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
15-11-2013	18:07:32	0.08	211.92
15-11-2013	18:12:32	0.06	238.11
15-11-2013	18:17:32	0.06	168.47
15-11-2013	18:22:32	0.06	142.62
15-11-2013	18:27:32	0.12	159.22
15-11-2013	18:32:32	0.06	150.86
15-11-2013	18:37:32	0.06	148.52
15-11-2013	18:42:32	0.06	162.34
15-11-2013	18:47:32	0.08	162.12
15-11-2013	18:52:32	0.06	162.23
15-11-2013	18:57:32	0.08	167.8
15-11-2013	19:02:32	0.09	167.91
15-11-2013	19:07:32	0.09	203.34
15-11-2013	19:12:32	0.09	141.39
15-11-2013	19:17:32	0.08	141.39
15-11-2013	19:22:32	0.06	206.69
15-11-2013	19:27:32	0.06	166.69
15-11-2013	19:32:32	0.06	166.8
15-11-2013	19:37:32	0.06	139.5
15-11-2013	19:42:32	0.08	139.94
15-11-2013	19:47:32	0.06	139.94
15-11-2013	19:52:32	0.08	139.94
15-11-2013	19:57:32	0.06	189.97
15-11-2013	20:02:32	0.06	200.11
15-11-2013	20:07:32	0.06	200.11
15-11-2013	20:12:32	0.06	171.25
15-11-2013	20:17:32	0.06	187.86
15-11-2013	20:22:32	0.06	149.86
15-11-2013	20:27:32	0.06	162.34
15-11-2013	20:32:32	0.06	175.04
15-11-2013	20:37:32	0.06	175.04
15-11-2013	20:42:32	0.08	174.26
15-11-2013	20:47:32	0.06	166.13
15-11-2013	20:52:32	0.08	162.56
15-11-2013	20:57:32	0.06	191.31
15-11-2013	21:02:32	0.08	191.53
15-11-2013	21:07:32	0.06	202.34
15-11-2013	21:12:32	0.06	142.51
15-11-2013	21:17:32	0.06	167.35
15-11-2013	21:22:32	0.06	175.04
15-11-2013	21:27:32	0.06	173.93
15-11-2013	21:32:32	0.06	173.93
15-11-2013	21:37:32	0.06	173.93

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
15-11-2013	21:42:32	0.08	173.93
15-11-2013	21:47:32	0.06	173.93
15-11-2013	21:52:32	0.06	173.93
15-11-2013	21:57:32	0.06	170.36
15-11-2013	22:02:32	0.06	170.36
15-11-2013	22:07:32	0.08	170.36
15-11-2013	22:12:32	0.06	168.13
15-11-2013	22:17:32	0.06	200.22
15-11-2013	22:22:32	0.09	200.33
15-11-2013	22:27:32	0.06	185.07
15-11-2013	22:32:32	0.06	163.34
15-11-2013	22:37:32	0.06	223.29
15-11-2013	22:42:32	0.05	157.66
15-11-2013	22:47:32	0.06	202.79
15-11-2013	22:52:32	0.06	168.8
15-11-2013	22:57:32	0.06	162.01
15-11-2013	23:02:32	0.06	153.54
15-11-2013	23:07:32	0.06	193.87
15-11-2013	23:12:32	0.06	186.63
15-11-2013	23:17:32	0.06	145.18
15-11-2013	23:22:32	0.06	253.37
15-11-2013	23:27:32	0.06	219.16
15-11-2013	23:32:32	0.06	180.5
15-11-2013	23:37:32	0.06	196.43
15-11-2013	23:42:32	0.06	197.44
15-11-2013	23:47:32	0.06	197.33
15-11-2013	23:52:32	0.08	197.44
15-11-2013	23:57:32	0.83	6.35
21-11-2013	00:02:32	0.06	157.44
21-11-2013	00:07:32	0.05	157.44
21-11-2013	00:12:32	0.05	157.44
21-11-2013	00:17:32	0.05	184.4
21-11-2013	00:22:32	0.05	184.51
21-11-2013	00:27:32	0.05	219.39
21-11-2013	00:32:32	0.05	219.39
21-11-2013	00:37:32	0.05	219.39
21-11-2013	00:42:32	0.05	219.39
21-11-2013	00:47:32	0.05	219.39
21-11-2013	00:52:32	0.05	214.37
21-11-2013	00:57:32	0.05	166.57
21-11-2013	01:02:32	0.06	166.57
21-11-2013	01:07:32	0.06	166.57
21-11-2013	01:12:32	0.06	167.58

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
21-11-2013	01:17:32	0.05	151.53
21-11-2013	01:22:32	0.05	151.53
21-11-2013	01:27:32	0.05	222.06
21-11-2013	01:32:32	0.05	222.17
21-11-2013	01:37:32	0.05	246.46
21-11-2013	01:42:32	0.05	302.84
21-11-2013	01:47:32	0.05	150.31
21-11-2013	01:52:32	0.05	150.31
21-11-2013	01:57:32	0.05	182.06
21-11-2013	02:02:32	0.05	183.06
21-11-2013	02:07:32	0.05	171.03
21-11-2013	02:12:32	0.05	171.14
21-11-2013	02:17:32	0.05	171.03
21-11-2013	02:22:32	1.51	141.17
21-11-2013	02:27:32	0.05	130.58
21-11-2013	02:32:32	0.05	206.91
21-11-2013	02:37:32	0.05	270.75
21-11-2013	02:42:32	0.05	162.79
21-11-2013	02:47:32	0.05	234.65
21-11-2013	02:52:32	0.05	310.08
21-11-2013	02:57:32	0.05	195.21
21-11-2013	03:02:32	0.05	210.92
21-11-2013	03:07:32	0.06	225.96
21-11-2013	03:12:32	0.05	157.44
21-11-2013	03:17:32	0.05	170.7
21-11-2013	03:22:32	0.06	157.55
21-11-2013	03:27:32	0.05	162.23
21-11-2013	03:32:32	0.06	133.82
21-11-2013	03:37:32	0.06	133.82
21-11-2013	03:42:32	0.05	133.93
21-11-2013	03:47:32	0.05	140.39
21-11-2013	03:52:32	0.06	159.44
21-11-2013	03:57:32	0.06	148.75
21-11-2013	04:02:32	0.06	165.79
21-11-2013	04:07:32	0.06	169.25
21-11-2013	04:12:32	0.09	155.54
21-11-2013	04:17:32	0.06	186.96
21-11-2013	04:22:32	0.06	218.83
21-11-2013	04:27:32	0.06	191.75
21-11-2013	04:32:32	0.06	136.82
21-11-2013	04:37:32	0.06	190.75
21-11-2013	04:42:32	0.06	151.42
21-11-2013	04:47:32	0.06	165.13

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
21-11-2013	04:52:32	0.57	149.42
21-11-2013	04:57:32	0.06	151.64
21-11-2013	05:02:32	0.06	140.28
21-11-2013	05:07:32	0.32	171.48
21-11-2013	05:12:32	0.06	174.04
21-11-2013	05:17:32	0.06	286.35
21-11-2013	05:22:32	0.09	156.55
21-11-2013	05:27:32	0.06	158.66
21-11-2013	05:32:32	0.06	145.74
21-11-2013	05:37:32	0.06	141.17
21-11-2013	05:42:32	0.06	141.39
21-11-2013	05:47:32	0.06	153.54
21-11-2013	05:52:32	0.06	153.54
21-11-2013	05:57:32	0.06	152.87
21-11-2013	06:02:32	0.06	155.88
21-11-2013	06:07:32	0.06	151.64
21-11-2013	06:12:32	0.06	174.93
21-11-2013	06:17:32	0.06	145.96
21-11-2013	06:22:32	0.08	137.94
21-11-2013	06:27:32	0.08	137.94
21-11-2013	06:32:32	0.08	159.44
21-11-2013	06:37:32	0.09	161.11
21-11-2013	06:42:32	0.08	150.97
21-11-2013	06:47:32	0.08	143.73
21-11-2013	06:52:32	0.08	143.84
21-11-2013	06:57:32	0.08	100.06
21-11-2013	07:02:32	0.08	192.65
21-11-2013	07:07:32	0.08	171.03
21-11-2013	07:12:32	0.08	171.03
21-11-2013	07:17:32	0.09	158.33
21-11-2013	07:22:32	0.08	160.11
21-11-2013	07:27:32	0.08	160.11
21-11-2013	07:32:32	0.08	160.11
21-11-2013	07:37:32	0.08	149.19
21-11-2013	07:42:32	0.08	102.51
21-11-2013	07:47:32	0.08	149.19
21-11-2013	07:52:32	0.06	163.57
21-11-2013	07:57:32	0.02	113.54
21-11-2013	08:02:32	0.02	131.7
21-11-2013	08:07:32	0.02	152.87
21-11-2013	08:12:32	0.02	152.98
21-11-2013	08:17:32	0.02	150.86
21-11-2013	08:49:43	0.02	126.57

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
21-11-2013	08:54:43	0.03	112.09
21-11-2013	08:59:43	0.11	162.45
21-11-2013	09:04:43	0.24	113.76
21-11-2013	09:09:43	0.72	156.66
21-11-2013	09:14:43	0.14	51.25
21-11-2013	09:19:43	0.11	134.48
21-11-2013	09:24:43	0.89	67.41
21-11-2013	09:29:43	0.29	2.9
21-11-2013	09:34:43	0.63	164.46
21-11-2013	09:39:43	0.4	189.97
21-11-2013	09:44:43	0.02	146.07
21-11-2013	09:49:43	0.6	163.57
21-11-2013	09:54:43	0.69	64.18
21-11-2013	09:59:43	0.02	62.95
21-11-2013	10:04:43	0.18	116.88
21-11-2013	10:09:43	0.02	105.52
21-11-2013	10:14:43	0.02	136.71
21-11-2013	10:19:43	0.05	95.71
21-11-2013	10:24:43	0.02	197.33
21-11-2013	10:29:43	0.54	162.01
21-11-2013	10:34:43	0.02	169.36
21-11-2013	10:39:43	0.02	132.48
21-11-2013	10:44:43	0.09	136.6
21-11-2013	10:49:43	0.02	196.66
21-11-2013	10:54:43	0.05	236.43
21-11-2013	10:59:43	1.42	145.85
21-11-2013	11:04:43	0.02	49.47
21-11-2013	11:09:43	0.11	123.68
21-11-2013	11:14:43	0.21	23.06
21-11-2013	11:19:43	0	110.08
21-11-2013	11:24:43	0.21	116.99
21-11-2013	11:29:43	0.02	7.24
21-11-2013	11:34:43	0.6	51.81
21-11-2013	11:39:43	0.29	48.25
21-11-2013	11:44:43	0.12	136.04
21-11-2013	11:49:43	0.02	226.63
21-11-2013	11:54:43	0.67	73.31
21-11-2013	11:59:43	0.18	142.17
21-11-2013	12:04:43	0.02	332.59
21-11-2013	12:09:43	0.02	226.41
21-11-2013	12:14:43	0.81	98.5
21-11-2013	12:19:43	0.12	148.3
21-11-2013	12:24:43	1.01	70.19

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
21-11-2013	12:29:43	0.02	86.46
21-11-2013	12:34:43	0.02	177.72
21-11-2013	12:39:43	0.02	60.39
21-11-2013	12:44:43	0.12	57.94
21-11-2013	12:49:43	2.29	78.22
21-11-2013	12:54:43	0.49	152.87
21-11-2013	12:59:43	0.05	54.71
21-11-2013	13:04:43	0.32	59.94
21-11-2013	13:09:43	0.32	125.79
21-11-2013	13:14:43	0.02	169.25
21-11-2013	13:19:43	0.02	164.35
21-11-2013	13:24:43	0.2	106.18
21-11-2013	13:29:43	0.81	71.53
21-11-2013	13:34:43	0.26	135.15
21-11-2013	13:39:43	0.02	86.91
21-11-2013	13:44:43	0.02	57.27
21-11-2013	13:49:43	0.26	89.47
21-11-2013	13:54:43	0.23	176.49
21-11-2013	13:59:43	0.76	142.95
21-11-2013	14:04:43	0.67	189.75
21-11-2013	14:09:43	0.02	66.07
21-11-2013	14:14:43	0.02	41.11
21-11-2013	14:19:43	0.47	157.55
21-11-2013	14:24:43	0.02	114.32
21-11-2013	14:29:43	0.02	72.65
21-11-2013	14:34:43	0.02	128.13
21-11-2013	14:39:43	0.02	72.2
21-11-2013	14:44:43	0.03	162.45
21-11-2013	14:49:43	0.02	150.08
21-11-2013	14:54:43	0.18	197.1
21-11-2013	14:59:43	0.02	52.03
21-11-2013	15:04:43	0.02	147.63
21-11-2013	15:09:43	0.02	139.5
21-11-2013	15:14:43	0.02	172.81
21-11-2013	15:19:43	0.02	199.55
21-11-2013	15:24:43	0.02	145.85
21-11-2013	15:29:43	0.02	116.21
21-11-2013	15:34:43	0.02	82.79
21-11-2013	15:39:43	0	197.77
21-11-2013	15:44:43	0.02	154.65
21-11-2013	15:49:43	0.35	141.62
21-11-2013	15:54:43	0.02	129.36
21-11-2013	15:59:43	0.02	140.06

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
21-11-2013	16:04:43	0.02	28.41
21-11-2013	16:09:43	0.02	132.26
21-11-2013	16:14:43	0.2	191.42
21-11-2013	16:19:43	0.02	55.49
21-11-2013	16:24:43	0.02	162.79
21-11-2013	16:29:43	0.15	63.62
21-11-2013	16:34:43	0.02	221.39
21-11-2013	16:39:43	0.02	142.28
21-11-2013	16:44:43	0.02	131.81
21-11-2013	16:49:43	0.02	182.4
21-11-2013	16:54:43	0.02	191.53
21-11-2013	16:59:43	0.92	230.08
21-11-2013	17:04:43	0.02	202.67
21-11-2013	17:09:43	0.02	99.5
21-11-2013	17:14:43	0.02	200.22
21-11-2013	17:19:43	0.02	144.18
21-11-2013	17:24:43	0.02	167.24
21-11-2013	17:29:43	0.67	74.43
21-11-2013	17:34:43	0.02	177.83
21-11-2013	17:39:43	0.02	147.74
21-11-2013	17:44:43	0.02	70.08
21-11-2013	17:49:43	0.44	154.87
21-11-2013	17:54:43	0.02	62.84
21-11-2013	17:59:43	0.02	70.97
21-11-2013	18:04:43	0.02	118.44
21-11-2013	18:09:43	0.02	80.33
21-11-2013	18:14:43	0.02	70.19
21-11-2013	18:19:43	0.02	182.84
21-11-2013	18:24:43	0.02	186.85
21-11-2013	18:29:43	0.02	90.58
21-11-2013	18:34:43	0.02	130.14
21-11-2013	18:39:43	0.09	153.87
21-11-2013	18:44:43	0.47	203.12
21-11-2013	18:49:43	0.02	129.25
21-11-2013	18:54:43	0.02	153.54
21-11-2013	18:59:43	0.02	196.55
21-11-2013	19:04:43	0.03	174.15
21-11-2013	19:09:43	0.02	121.56
21-11-2013	19:14:43	0.02	117.66
21-11-2013	19:19:43	0.02	118.55
21-11-2013	19:24:43	0.09	137.38
21-11-2013	19:29:43	0.02	77.21
21-11-2013	19:34:43	0.02	118.33

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
21-11-2013	19:39:43	0.02	95.71
21-11-2013	19:44:43	0.02	146.96
21-11-2013	19:49:43	0.02	144.74
21-11-2013	19:54:43	0.02	82.56
21-11-2013	19:59:43	0.02	103.4
21-11-2013	20:04:43	0.02	122.01
21-11-2013	20:09:43	0.02	97.83
21-11-2013	20:14:43	0.02	100.61
21-11-2013	20:19:43	0.02	100.5
21-11-2013	20:24:43	0.02	103.84
21-11-2013	20:29:43	0.02	103.62
21-11-2013	20:34:43	0.02	205.46
21-11-2013	20:39:43	0.02	218.94
21-11-2013	20:44:43	0.02	174.48
21-11-2013	20:49:43	0.02	128.25
21-11-2013	20:54:43	0.02	170.14
21-11-2013	20:59:43	0.02	197.21
21-11-2013	21:04:43	0.02	94.04
21-11-2013	21:09:43	0.02	168.25
21-11-2013	21:14:43	0.41	134.93
21-11-2013	21:19:43	0.02	233.76
21-11-2013	21:24:43	0.02	134.04
21-11-2013	21:29:43	0.02	80.56
21-11-2013	21:34:43	0.02	103.96
21-11-2013	21:39:43	0.02	112.98
21-11-2013	21:44:43	0.02	163.01
21-11-2013	21:49:43	0.02	163.01
21-11-2013	21:54:43	0.02	114.76
21-11-2013	21:59:43	0.02	98.83
21-11-2013	22:04:43	0.02	130.92
21-11-2013	22:09:43	0.02	73.87
21-11-2013	22:14:43	0.02	127.69
21-11-2013	22:19:43	0.02	121.67
21-11-2013	22:24:43	0.02	140.72
21-11-2013	22:29:43	0.02	111.87
21-11-2013	22:34:43	0.17	203.34
21-11-2013	22:39:43	0.02	199.78
21-11-2013	22:44:43	0.02	351.42
21-11-2013	22:49:43	0.02	138.27
21-11-2013	22:54:43	0.02	68.3
21-11-2013	22:59:43	1.87	72.98
21-11-2013	23:04:43	2.66	134.6
21-11-2013	23:09:43	0.72	178.05

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
21-11-2013	23:14:43	0.02	209.92
21-11-2013	23:19:43	0.02	128.8
21-11-2013	23:24:43	0.03	180.95
21-11-2013	23:29:43	0.02	118.11
21-11-2013	23:34:43	0.02	308.75
21-11-2013	23:39:43	0.02	131.36
21-11-2013	23:44:43	0.02	134.26
21-11-2013	23:49:43	0.02	122.45
21-11-2013	23:54:43	0.02	202.56
21-11-2013	23:59:43	0.58	118.22
27-11-2013	00:04:43	0.54	207.69
27-11-2013	00:09:43	0.02	101.62
27-11-2013	00:14:43	0.02	167.02
27-11-2013	00:19:43	0.02	66.63
27-11-2013	00:24:43	0.02	211.03
27-11-2013	00:29:43	1.79	167.47
27-11-2013	00:34:43	0.02	10.7
27-11-2013	00:39:43	2.57	173.48
27-11-2013	00:44:43	1.38	148.08
27-11-2013	00:49:43	1.27	189.53
27-11-2013	00:54:43	1.07	174.48
27-11-2013	00:59:43	0.44	212.14
27-11-2013	01:04:43	0.23	59.72
27-11-2013	01:09:43	0.05	357.66
27-11-2013	01:14:43	0.92	159
27-11-2013	01:19:43	0.76	124.46
27-11-2013	01:24:43	0.26	150.53
27-11-2013	01:29:43	0.89	157.88
27-11-2013	01:34:43	0.26	174.04
27-11-2013	01:39:43	0.76	157.88
27-11-2013	01:44:43	0.41	229.97
27-11-2013	01:49:43	0.02	48.58
27-11-2013	01:54:43	0.02	144.96
27-11-2013	01:59:43	0.02	110.08
27-11-2013	02:04:43	0.29	225.29
27-11-2013	02:09:43	0.46	96.16
27-11-2013	02:14:43	0.02	36.88
27-11-2013	02:19:43	0.02	140.95
27-11-2013	02:24:43	0.02	134.37
27-11-2013	02:29:43	0.02	117.55
27-11-2013	02:34:43	0.02	109.97
27-11-2013	02:39:43	0.02	191.98
27-11-2013	02:44:43	0.02	41.78

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
27-11-2013	02:49:43	0.02	89.25
27-11-2013	02:54:43	0.02	151.98
27-11-2013	02:59:43	0.02	169.47
27-11-2013	03:04:43	0.02	152.98
27-11-2013	03:09:43	0.2	93.93
27-11-2013	03:14:43	0.02	124.9
27-11-2013	03:19:43	0.02	113.65
27-11-2013	03:24:43	0.02	56.04
27-11-2013	03:29:43	0.02	180.84
27-11-2013	03:34:43	0.02	94.48
27-11-2013	03:39:43	0.03	215.6
27-11-2013	03:44:43	0.02	145.74
27-11-2013	03:49:43	0.05	127.69
27-11-2013	03:54:43	0.46	77.33
27-11-2013	03:59:43	0.17	160.56
27-11-2013	04:04:43	0.02	43.45
27-11-2013	04:09:43	0.02	254.04
27-11-2013	04:14:43	0.03	100.06
27-11-2013	04:19:43	0.02	14.93
27-11-2013	04:24:43	0.02	154.54
27-11-2013	04:29:43	0.02	46.35
27-11-2013	04:34:43	0.02	256.27
27-11-2013	04:39:43	0.02	195.54
27-11-2013	04:44:43	0.02	67.41
27-11-2013	04:49:43	0.12	197.66
27-11-2013	04:54:43	0.02	94.71
27-11-2013	04:59:43	0.02	120.89
27-11-2013	05:04:43	0.02	204.68
27-11-2013	05:09:43	0.02	183.73
27-11-2013	05:14:43	0.02	215.82
27-11-2013	05:19:43	0.24	39.55
27-11-2013	05:24:43	0.02	114.65
27-11-2013	05:29:43	0.12	63.29
27-11-2013	05:34:43	0.72	158.66
27-11-2013	05:39:43	0.02	14.37
27-11-2013	05:44:43	0.02	175.26
27-11-2013	05:49:43	0.02	136.16
27-11-2013	05:54:43	0.02	106.63
27-11-2013	05:59:43	0.02	265.74
27-11-2013	06:04:43	0.02	87.24
27-11-2013	06:09:43	0.03	164.23
27-11-2013	06:14:43	0.02	93.7
27-11-2013	06:19:43	0.38	92.81

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
27-11-2013	06:24:43	0.02	30.42
27-11-2013	06:29:43	0.02	136.16
27-11-2013	06:34:43	0.02	53.15
27-11-2013	06:39:43	0.02	145.4
27-11-2013	06:44:43	0.02	183.51
27-11-2013	06:49:43	0.78	40
27-11-2013	06:54:43	0.02	145.85
27-11-2013	06:59:43	0.2	137.94
27-11-2013	07:04:43	0.12	131.14
27-11-2013	07:09:43	0.02	96.94
27-11-2013	07:14:43	0.02	154.99
27-11-2013	07:19:43	0.03	299.5
27-11-2013	07:24:43	0.21	64.96
27-11-2013	07:29:43	0.02	151.87
27-11-2013	07:34:43	0.02	172.14
27-11-2013	07:39:43	0.02	340.06
27-11-2013	07:44:43	0.02	83.68
27-11-2013	07:49:43	0.37	201.45
27-11-2013	07:54:43	0.02	122.34
27-11-2013	07:59:43	0.03	285.46
27-11-2013	08:04:43	0.02	200.22
27-11-2013	08:09:43	1.65	162.23
27-11-2013	08:14:43	0.02	137.49
27-11-2013	08:19:43	0.89	131.81
27-11-2013	08:24:43	0.02	138.61
27-11-2013	08:29:43	0.02	72.87
27-11-2013	08:34:43	0.02	46.13
27-11-2013	08:39:43	0.02	54.15
27-11-2013	08:44:43	0.17	40.22
27-11-2013	08:49:43	0.02	159.33
27-11-2013	08:54:43	0.02	159.55
27-11-2013	08:59:43	0.02	184.74
27-11-2013	09:04:43	0.35	63.96
27-11-2013	09:09:43	0.02	155.88
27-11-2013	09:14:43	0.02	60.5
27-11-2013	09:19:43	0.02	55.6
27-11-2013	09:24:43	0.03	212.37
27-11-2013	09:29:43	0.02	103.62
27-11-2013	09:34:43	0.02	241.89
27-11-2013	09:39:43	0.02	263.29
27-11-2013	09:44:43	0	284.12
27-11-2013	09:49:43	0.54	102.51
27-11-2013	09:54:43	1.62	57.49

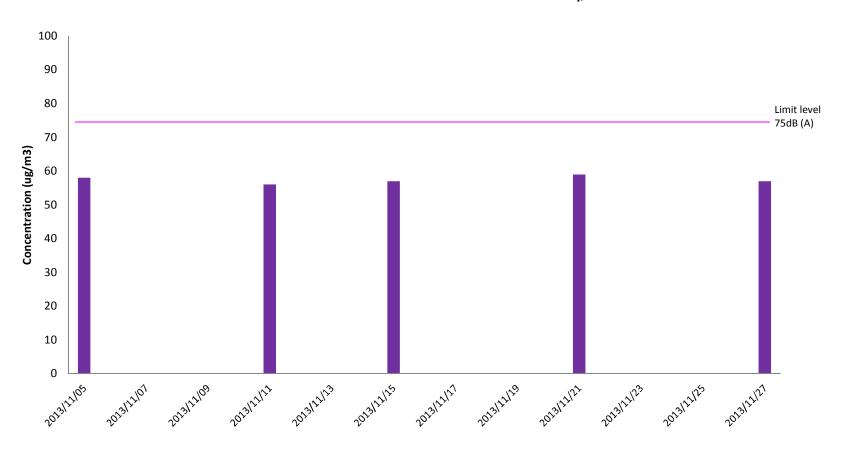
Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
27-11-2013	09:59:43	0.02	8.02
27-11-2013	10:04:43	0.02	44.9
27-11-2013	10:09:43	0.18	93.37
27-11-2013	10:14:43	0.02	174.15
27-11-2013	10:19:43	1.93	81.67
27-11-2013	10:24:43	0.02	100.72
27-11-2013	10:29:43	0.02	182.84
27-11-2013	10:34:43	0.32	129.69
27-11-2013	10:39:43	0.02	150.64
27-11-2013	10:44:43	0.02	260.06
27-11-2013	10:49:43	0.06	117.66
27-11-2013	10:54:43	0.05	161.89
27-11-2013	10:59:43	2.05	139.05
27-11-2013	11:04:43	0.31	181.73
27-11-2013	11:09:43	0.02	57.27
27-11-2013	11:14:43	0.49	63.84
27-11-2013	11:19:43	0.49	4.01
27-11-2013	11:24:43	0.02	200
27-11-2013	11:29:43	0.02	271.64
27-11-2013	11:34:43	0.02	262.95
27-11-2013	11:39:43	0.02	338.94
27-11-2013	11:44:43	0.02	245.79
27-11-2013	11:49:43	0.02	337.05
27-11-2013	11:54:43	0.02	213.04
27-11-2013	11:59:43	0.02	299.83
27-11-2013	12:04:43	0.38	239.11
27-11-2013	12:09:43	0.31	250.47
27-11-2013	12:14:43	0.02	269.42
27-11-2013	12:19:43	0.02	183.06
27-11-2013	12:24:43	0.02	215.38
27-11-2013	12:29:43	0.02	261.39
27-11-2013	12:34:43	0.14	248.69
27-11-2013	12:39:43	0.02	4.57
27-11-2013	12:44:43	0.02	147.97
27-11-2013	12:49:43	0.02	269.97
27-11-2013	12:54:43	0.02	44.9
27-11-2013	12:59:43	0.02	271.75
27-11-2013	13:04:43	0.57	270.86
27-11-2013	13:09:43	0.02	7.47
27-11-2013	13:14:43	0.23	344.51
27-11-2013	13:19:43	0.02	77.88
27-11-2013	13:24:43	0.02	41.89
27-11-2013	13:29:43	0.02	349.97

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
27-11-2013	13:34:43	0.02	262.62
27-11-2013	13:39:43	0.28	274.21
27-11-2013	13:44:43	0.89	252.37
27-11-2013	13:49:43	0.02	314.76
27-11-2013	13:54:43	0.32	325.68
27-11-2013	13:59:43	2.26	9.03
27-11-2013	14:04:43	2.16	16.71
27-11-2013	14:09:43	0.78	334.6
27-11-2013	14:14:43	0.09	1.67
27-11-2013	14:19:43	0.02	337.38
27-11-2013	14:24:43	0.02	267.08
27-11-2013	14:29:43	0.17	190.53
27-11-2013	14:34:43	0.02	266.52
27-11-2013	14:39:43	0.02	244.35
27-11-2013	14:44:43	0.02	244.9
27-11-2013	14:49:43	0.02	315.99
27-11-2013	14:54:43	0.02	272.09
27-11-2013	14:59:43	0.02	185.18
27-11-2013	15:04:43	0.02	276.77
27-11-2013	15:09:43	0.98	224.18
27-11-2013	15:14:43	0.28	250.03
27-11-2013	15:19:43	0.02	315.77
27-11-2013	15:24:43	0.17	231.64
27-11-2013	15:29:43	0.02	287.91
27-11-2013	15:34:43	0.24	221.39
27-11-2013	15:39:43	0.02	267.97
27-11-2013	15:44:43	0.32	293.37
27-11-2013	15:49:43	0.02	275.54
27-11-2013	15:54:43	1.1	8.69
27-11-2013	15:59:43	0.02	250.47
27-11-2013	16:04:43	0.02	236.99
27-11-2013	16:09:43	0.02	284.35
27-11-2013	16:14:43	0.02	257.27
27-11-2013	16:19:43	0.02	240
27-11-2013	16:24:43	0.02	355.77
27-11-2013	16:29:43	0.02	22.17
27-11-2013	16:34:43	0.47	276.66
27-11-2013	16:39:43	0.38	352.87
27-11-2013	16:44:43	0.02	245.13
27-11-2013	16:49:43	0.02	281.11
27-11-2013	16:54:43	0.02	293.15
27-11-2013	16:59:43	0.02	248.91
27-11-2013	17:04:43	0.09	287.13

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
27-11-2013	17:09:43	0.02	271.64
27-11-2013	17:14:43	0.03	246.13
27-11-2013	17:19:43	0.02	249.69
27-11-2013	17:24:43	0.02	279.11
27-11-2013	17:29:43	0.02	244.35
27-11-2013	17:34:43	0.02	209.36
27-11-2013	17:39:43	0.02	289.14
27-11-2013	17:44:43	0.02	317.44
27-11-2013	17:49:43	0.02	5.01
27-11-2013	17:54:43	0.02	294.04
27-11-2013	17:59:43	0.02	227.08
27-11-2013	18:04:43	0.02	214.82
27-11-2013	18:09:43	0.26	323.45
27-11-2013	18:14:43	0.02	261.95
27-11-2013	18:19:43	0.02	209.47
27-11-2013	18:24:43	0.02	345.74
27-11-2013	18:29:43	0.05	325.46
27-11-2013	18:34:43	0.02	15.6
27-11-2013	18:39:43	0.05	3.34
27-11-2013	18:44:43	0.87	1.34
27-11-2013	18:49:43	0.41	356.43
27-11-2013	18:54:43	0.67	351.53
27-11-2013	18:59:43	0.38	257.27
27-11-2013	19:04:43	1.09	6.69
27-11-2013	19:09:43	0.69	9.81
27-11-2013	19:14:43	0.21	39.33
27-11-2013	19:19:43	0.34	352.53
27-11-2013	19:24:43	0.02	350.19
27-11-2013	19:29:43	0.7	2.23
27-11-2013	19:34:43	0.02	304.51
27-11-2013	19:39:43	0.43	213.48
27-11-2013	19:44:43	0.02	10.36
27-11-2013	19:49:43	1.93	332.14
27-11-2013	19:54:43	0.02	246.57
27-11-2013	19:59:43	0.02	229.86
27-11-2013	20:04:43	0.12	213.7
27-11-2013	20:09:43	0.02	313.2
27-11-2013	20:14:43	0.28	290.81
27-11-2013	20:19:43	0.02	314.99
27-11-2013	20:24:43	0.02	320.56
27-11-2013	20:29:43	1.88	357.77
27-11-2013	20:34:43	0.02	22.62
27-11-2013	20:39:43	1.25	347.19

Date	Time (24hrs)	Wind Speed (m/s)	Wind Direction (degree)
27-11-2013	20:44:43	0.02	291.36
27-11-2013	20:49:43	0.06	46.91
27-11-2013	20:54:43	0.03	113.09
27-11-2013	20:59:43	1.01	67.63
27-11-2013	21:04:43	0.02	54.48
27-11-2013	21:09:43	0.02	21.17
27-11-2013	21:14:43	0.02	338.5
27-11-2013	21:19:43	0.46	60.84
27-11-2013	21:24:43	0.55	36.66
27-11-2013	21:29:43	1.5	4.35
27-11-2013	21:34:43	3.95	34.32
27-11-2013	21:39:43	0.02	291.14
27-11-2013	21:44:43	0.02	49.69
27-11-2013	21:49:43	0.54	352.42
27-11-2013	21:54:43	0.9	349.97
27-11-2013	21:59:43	0.63	66.52
27-11-2013	22:04:43	0.02	343.96
27-11-2013	22:09:43	0.72	64.4
27-11-2013	22:14:43	0.02	48.8
27-11-2013	22:19:43	0.02	258.83
27-11-2013	22:24:43	1.01	8.02
27-11-2013	22:29:43	0.02	276.99
27-11-2013	22:34:43	0.02	244.57
27-11-2013	22:39:43	0.02	258.38
27-11-2013	22:44:43	0.02	354.09
27-11-2013	22:49:43	0.02	271.75
27-11-2013	22:54:43	0.02	229.64
27-11-2013	22:59:43	0.26	351.98
27-11-2013	23:04:43	1.19	356.88
27-11-2013	23:09:43	0.2	352.76
27-11-2013	23:14:43	0.02	352.31
27-11-2013	23:19:43	0.02	10.81
27-11-2013	23:24:43	0.02	24.74
27-11-2013	23:29:43	0.02	221.73
27-11-2013	23:34:43	0.09	221.39
27-11-2013	23:39:43	0.18	29.86
27-11-2013	23:44:43	0.02	358.55
27-11-2013	23:49:43	0.02	250.03
27-11-2013	23:54:43	0.02	254.48
27-11-2013	23:59:43	0.02	1.45

Appendix I


Impact Noise Monitoring Results and Graphical Presentation

Project	Works	Date (yyyy-mm-dd)	Station	Weather Condition	Time (hh:mm, 24hour)	Noise Le	evel for 30-r	nin, dB(A)	Limit Level	Temp (°	Wind Speed	Noise Meter	Calibrator
Project	VVOIKS	Date (yyyy-mm-dd)	Station	Weather Condition	rime (mi.min, 24nour)	Leq	L10	L90	dB(A)	C)	(m/s)	Model/ID	Model/ID
TMCLKL	HY/2012/07	2013-11-05	NSR1	Sunny	13:00	58	61	52	75	23	0.3	RION NL31 (S/N	RION NC73 (S/N
TIVICERE	H1/2012/07	2013-11-03	INSKI	Suring	13.00	56	01	52	75	23	0.3	00410224)	10997142)
TMCLKL	HY/2012/07	2013-11-11	NSR1	Sunny	11:07	56	59	49	75	24	0.3	RION NL31 (S/N	RION NC73 (S/N
TWOLKE	111/2012/07	2013-11-11	NONT	Sullily	11.07	30	39	49	73	24	0.5	00410224)	10997142)
TMCLKL	HY/2012/07	2013-11-15	NSR1	Sunny	11:20	57	60	50	75	24	0.8	RION NL31 (S/N	RION NC73 (S/N
TWOLKE	111/2012/07	2013-11-13	NONT	Sullily	11.20	31	00	30	73	24	0.6	00410224)	10997142)
TMCLKL	HY/2012/07	2013-11-21	NSR1	Sunny	9:42	59	62	52	75	22	0.6	RION NL31 (S/N	RION NC73 (S/N
TWOLKE	111/2012/07	2013-11-21	NONT	Sullily	5.42	39	02	32	73	22	0.0	00410224)	10997142)
TMCLKL	HY/2012/07	2013-11-27	NSR1	Sunny	10:17	57	61	52	75	23	0.6	RION NL31 (S/N	RION NC73 (S/N
TWOLKE	CERE 11172012/07 2013-11-27 NSR1 Sullily		10.17	37	ΟI	32	75	23	0.0	00410224)	10997142)		
					Min.	56							

59

Max.

Noise Monitoring Results at NSR 1 ($L_{eq, 30min}$)

Appendix J

Impact Water Quality Monitoring Results and Graphical Presentation

Project	Works	Date (yyyy-mm-dd)	Tide	Stat	Level	Lev Cod	Replicate	Start Time	End Time	Temp(°C)	pН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood			1	1	15:06	15:25	25.1	6.8	24.5	7.79	2.2	2.1
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood			1	2	15:06	15:25	25.0	6.8	24.6	7.81	2.1	3.0
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood		1	2	1	15:06	15:25	25.4	6.7	25.5	6.47	2.8	4.0
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	. ,	Middle	2	2	15:06	15:25	25.4	6.7	25.4	6.49	1.8	4.1
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood		Bottom	3	1	15:06	15:25	25.4	6.7	25.6	6.29	2.6	4.3
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-10-31 2013-10-31	Mid-Flood Mid-Flood		Bottom Surface	3	1	15:06 15:35	15:25 15:54	25.3 25.0	6.7 6.6	25.7 24.6	6.31 8.02	2.8 2.7	4.9 3.5
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood		Surface	1	2	15:35	15:54	25.0	6.6	24.5	8.04	2.7	3.5
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	SR4a	Middle	2	1	15:35	15:54	25.0	0.0	24.5	0.04	2.0	0.0
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	SR4a	Middle	2	2	15:35	15:54						
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	SR4a	Bottom	3	1	15:35	15:54	24.9	6.6	25.0	7.89	5.4	5.5
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	SR4a	Bottom	3	2	15:35	15:54	25.0	6.7	24.9	7.90	3.6	5.6
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood		Surface	1	1	16:00	16:18	25.1	6.6	24.6	8.11	2.7	5.5
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	SR4	Surface	1	2	16:00	16:18	25.2	6.6	24.7	8.13	3.1	4.1
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	SR4	Middle	2	1	16:00	16:18						
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	SR4	Middle	2	2	16:00	16:18						
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	SR4	Bottom	3	1	16:00	16:18	25.1	6.5	24.7	7.64	5.4	11.3
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-10-31	Mid-Flood	SR4	Bottom	3	2	16:00	16:18	25.1	6.5	24.8	7.66	6.7	12.7
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-10-31 2013-10-31	Mid-Flood Mid-Flood	IS8 IS8	Surface Surface	1	2	16:24 16:24	16:42 16:42	25.2 25.2	6.5 6.6	24.6 24.5	8.29 8.31	2.4 3.1	2.9 3.1
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	IS8	Middle	2	1	16:24	16:42	25.2	0.0	24.5	8.31	3.1	3.1
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	IS8	Middle	2	2	16:24	16:42						
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	IS8	Bottom	3	1	16:24	16:42	25.0	6.6	24.8	8.09	5.0	8.6
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	IS8	Bottom	3	2	16:24	16:42	25.1	6.6	24.8	8.11	3.1	9.3
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood			1	1	16:50	17:09	25.1	6.6	24.7	8.25	3.5	6.3
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	` '		1	2	16:50	17:09	25.2	6.6	24.7	8.27	3.4	5.5
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	IS(Mf)16	Middle	2	1	16:50	17:09	25.1	6.7	24.9	8.11	3.9	5.6
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	IS(Mf)16	Middle	2	2	16:50	17:09	25.6	6.7	25.0	8.12	4.1	6.3
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	. ,		3	1	16:50	17:09	25.0	6.6	25.0	7.74	6.0	13.5
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	. ,		3	2	16:50	17:09	25.0	6.6	24.9	7.77	6.3	14.6
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	. ,	1	1	1	17:17	17:40	25.4	6.7	24.8	8.55	11.6	13.8
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	. ,	Surface	1	2	17:17	17:40	25.4	6.8	24.9	8.57	9.5	13.9
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	IS(Mf)9	Middle	2	1	17:17	17:40						
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	` '	Middle	2	2	17:17	17:40						
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	- () -	Bottom	3	1	17:17	17:40	25.3	6.7	25.0	8.42	10.9	17.9
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	. ,	Bottom	3	2	17:17	17:40	25.4	6.7	25.1	8.44	13.1	17.2
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	. ,	Surface	1	1	17:55	18:36	25.6	6.6	22.5	8.79	3.0	3.4
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood Mid-Flood			2	<u>2</u> 1	17:55	18:36	25.6 25.5	6.6 6.6	22.4	8.81	2.1 2.8	2.7
TM-CLK Southern TM-CLK Southern	HY/2012/07	2013-10-31 2013-10-31	Mid-Flood			2	2	17:55 17:55	18:36 18:36	25.5	6.6	23.3	8.84 8.86	3.1	2.7
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood			3	1	17:55	18:36	25.4	6.6	23.7	8.74	2.5	2.3
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Flood	` '		3	2	17:55	18:36	25.2	6.6	23.8	8.76	2.7	2.7
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	CS(Mf)3		1	1	11:50	12:12	25.0	6.7	24.5	7.68	4.5	3.1
TM-CLK Southern	HY/2012/07	2013-10-31		CS(Mf)3		1	2	11:50	12:12	24.9	6.7	24.5	7.72	4.8	3.3
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	CS(Mf)3		2	 1	11:50	12:12	25.3	6.6	25.5	6.39	5.2	2.7
TM-CLK Southern	HY/2012/07	2013-10-31		CS(Mf)3		2	2	11:50	12:12	25.4	6.6	25.4	6.41	6.3	3.1
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	CS(Mf)3		3	1	11:50	12:12	25.4	6.7	25.6	6.23	7.3	3.4
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	CS(Mf)3	Bottom	3	2	11:50	12:12	25.5	6.7	25.6	6.20	6.9	2.6
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	SR4a	Surface	1	1	11:13	11:31	25.1	6.7	24.6	7.96	5.5	4.0
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	SR4a	Surface	1	2	11:13	11:31	25.1	6.7	24.6	7.99	5.7	3.9
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	SR4a	Middle	2	1	11:13	11:31						
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	SR4a	Middle	2	2	11:13	11:31						
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	SR4a	Bottom	3	1	11:13	11:31	25.0	6.6	25.0	78.60	5.9	4.6
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	SR4a	Bottom	3	2	11:13	11:31	25.0	6.6	25.0	78.00	6.0	5.2
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-10-31 2013-10-31	Mid-Ebb Mid-Ebb	SR4 SR4	Surface Surface	1	2	10:48 10:48	11:06 11:06	25.2 25.1	6.5 6.6	24.7 24.7	8.04 8.07	4.7 4.6	3.8
		2013-10-31	Mid-Ebb	SR4 SR4	Middle	2	1	10:48	11:06	Z0.1	0.0	24.1	0.07	4.0	5.4
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	SR4	Middle	2	2	10:48	11:06						
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	SR4	Bottom	3	1	10:48	11:06	25.1	6.6	24.8	7.56	11.8	11.4
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	SR4	Bottom	3	2	10:48	11:06	25.1	6.6	24.8	7.60	12.4	12.0
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	IS8	Surface	1	1	10:23	10:40	25.1	6.5	24.5	8.23	4.6	4.1
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	IS8	Surface	1	2	10:23	10:40	25.1	6.5	24.6	8.25	4.7	4.2
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	IS8	Middle	2	1	10:23	10:40						
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	IS8	Middle	2	2	10:23	10:40						
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	IS8	Bottom	3	1	10:23	10:40	25.0	6.5	24.9	8.07	5.5	5.5
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	IS8	Bottom	3	2	10:23	10:40	25.0	6.5	24.8	8.03	5.8	6.7
TM-CLK Southern	HY/2012/07	2013-10-31		IS(Mf)16		1	1	09:56	10:14	25.1	6.5	24.8	8.17	5.2	5.8
TM-CLK Southern	HY/2012/07	2013-10-31		IS(Mf)16		1	2	09:56	10:14	25.2	6.6	24.7	8.20	5.7	4.5
TM-CLK Southern	HY/2012/07	2013-10-31		IS(Mf)16		2	1	09:56	10:14	25.1	6.6	24.9	8.01	8.8	5.5
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb Mid-Ebb	IS(Mf)16		3	<u>2</u> 1	09:56	10:14	25.0 25.0	6.6	24.9	8.04 7.68	7.5	5.0
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-10-31 2013-10-31	Mid-Ebb	IS(Mf)16 IS(Mf)16		3	2	09:56 09:56	10:14 10:14	25.0 25.0	6.6	25.0 25.0	7.68 7.63	10.4 9.4	7.3 7.3
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	IS(Mf)9		1	1	09:56	09:45	25.0	6.7	24.9	8.45	9.4 16.7	16.1
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb		Surface	1	2	09.24	09:45	25.4	6.7	24.9	8.41	16.7	17.4
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	IS(Mf)9	Middle	2	1	09:24	09:45	20.7	U.1	2 1.0	5. 71	10.0	17.17
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	IS(Mf)9	Middle	2	2	09:24	09:45						
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	IS(Mf)9	Bottom	3	1	09:24	09:45	25.4	6.7	24.9	8.33	15.0	15.9
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	IS(Mf)9	Bottom	3	2	09:24	09:45	25.4	6.8	25.0	8.38	15.5	15.5
		2013-10-31	Mid-Ebb	CS(Mf)5		1	1	08:50	09:10	25.6	6.6	22.4	8.71	3.4	3.9
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	CS(Mf)5	Surface	1	2	08:50	09:10	25.5	6.6	22.5	8.68	3.4	3.7
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb			2	1	08:50	09:10	25.4	6.6	23.3	8.80	3.4	4.8
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	CS(Mf)5	Middle	2	2	08:50	09:10	25.4	6.6	23.2	8.77	3.7	3.9
TM-CLK Southern		2013-10-31	Mid-Ebb			3	1	08:50	09:10	25.3	6.5	23.8	8.70	3.4	6.4
TM-CLK Southern	HY/2012/07	2013-10-31	Mid-Ebb	CS(Mf)5	Bottom	3	2	08:50	09:10	25.3	6.5	23.8	8.66	3.3	5.4

Project	Works	Date (yyyy-mm-dd)	Tide	Stat	Level	Lev Cod	Replicate	Start Time	End Time	Temp(°C)	рН	Salinity(ppt)	DO(ma/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood			1	1	16:04	16:24	25.2	6.8	24.4	7.69	5.8	4.7
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	CS(Mf)5	Surface	1	2	16:04	16:24	25.3	6.8	24.5	7.71	5.7	4.1
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	CS(Mf)5	Middle	2	1	16:04	16:24	25.5	6.7	25.6	6.48	5.9	4.6
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	. ,	Middle	2	2	16:04	16:24	25.4	6.7	25.6	6.46	6.4	4.7
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood		Bottom	3	1	16:04	16:24	25.5	6.6	25.7	6.30	7.3	7.2
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	. ,	Bottom	3	2	16:04	16:24	25.4	6.7	25.8	6.32	6.9	6.4
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood		Surface	1	1	16:38	16:53	25.0	6.6	24.7	7.99	6.0	5.0
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood		Surface	1	2	16:38	16:53	25.1	6.7	24.8	8.01	5.6	4.0
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-02 2013-11-02	Mid-Flood Mid-Flood		Middle Middle	2	1	16:38	16:53 16:53						
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-02	Mid-Flood			3	2	16:38	16:53	05.0	6.7	04.0	7.70	7.0	0.0
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-02	Mid-Flood		Bottom Bottom	3	2	16:38 16:38	16:53	25.0 24.9	6.7 6.7	24.8 24.9	7.79 7.81	7.8 7.9	8.0 7.9
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood		Surface	1	1	17:08	17:28	25.2	6.7	24.6	8.08	5.8	4.1
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood		Surface	1	2	17:08	17:28	25.2	6.7	24.7	8.10	5.0	4.8
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	SR4	Middle	2	1	17:08	17:28	20.0	0.7	24.7	0.10	0.0	4.0
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	SR4	Middle	2	2	17:08	17:28						
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood		Bottom	3	1	17:08	17:28	25.1	6.5	24.7	7.65	5.8	5.2
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood		Bottom	3	2	17:08	17:28	25.1	6.5	24.8	7.64	6.7	4.3
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	IS8	Surface	1	1	17:43	17:58	25.3	6.5	24.6	8.27	5.3	3.8
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood		Surface	1	2	17:43	17:58	25.2	6.5	24.5	8.25	5.1	3.5
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	IS8	Middle	2	1	17:43	17:58						
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	IS8	Middle	2	2	17:43	17:58						
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	IS8	Bottom	3	1	17:43	17:58	25.0	6.6	24.8	8.08	5.5	4.4
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood		Bottom	3	2	17:43	17:58	25.1	6.7	24.9	8.05	5.8	3.8
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	` '		1	1	18:12	18:27	25.2	6.6	24.6	8.22	7.4	7.7
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	` '		1	2	18:12	18:27	25.3	6.6	24.7	8.20	7.6	6.7
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	. ,	-	2	1	18:12	18:27	25.2	6.6	24.9	8.10	7.4	7.2
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	. ,	Middle	2	2	18:12	18:27	25.1	6.6	24.8	8.08	7.8	7.3
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	. ,		3	1	18:12	18:27	25.0	6.7	25.0	7.75	5.7	6.4
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	. ,		3	2	18:12	18:27	25.1	6.7	25.1	7.77	6.7	7.1
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	. ,		1	1	18:41	18:56	25.6	6.7	25.0	8.43	8.5	7.2
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-02 2013-11-02	Mid-Flood Mid-Flood	. ,	Surface Middle	2	2 1	18:41 18:41	18:56 18:56	25.5	6.7	25.1	8.46	8.5	7.6
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-02	Mid-Flood	` '	Middle	2	2	18:41	18:56						
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood		Bottom	3	1	18:41	18:56	25.4	6.8	25.2	8.35	8.7	7.5
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	- () -	Bottom	3	2	18:41	18:56	25.4	6.8	25.2	8.37	8.6	7.3
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	, ,	Surface	1	1	19:11	19:34	25.6	6.6	22.5	8.75	5.7	4.9
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	. ,		1	2	19:11	19:34	25.7	6.6	22.6	8.77	5.4	3.6
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood			2	1	19:11	19:34	25.5	6.7	23.3	8.69	5.2	4.7
TM-CLK Southern			Mid-Flood			2	2	19:11	19:34	25.4	6.7	23.4	8.67	5.7	3.9
TM-CLK Southern	HY/2012/07		Mid-Flood			3	1	19:11	19:34	25.4	6.6	23.9	8.73	5.0	3.9
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Flood	` '		3	2	19:11	19:34	25.3	6.6	23.8	8.75	5.5	3.3
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	CS(Mf)3		1	1	10:13	10:35	25.5	6.5	22.5	8.69	5.7	5.3
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	CS(Mf)3	Surface	1	2	10:13	10:35	25.6	6.6	22.5	8.71	5.4	4.4
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	CS(Mf)3	Middle	2	1	10:13	10:35	25.4	6.7	23.2	8.63	5.2	3.7
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	CS(Mf)3	Middle	2	2	10:13	10:35	25.4	6.6	23.3	8.61	5.8	4.7
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	CS(Mf)3	Bottom	3	1	10:13	10:35	25.3	6.6	23.7	8.67	5.0	5.2
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	CS(Mf)3	Bottom	3	2	10:13	10:35	25.2	6.6	23.8	8.69	5.6	4.5
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	SR4a	Surface	1	1	12:38	13:00	25.1	6.6	24.6	7.94	6.0	6.3
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	SR4a	Surface	1	2	12:38	13:00	25.0	6.7	24.7	7.96	5.6	5.4
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	SR4a	Middle	2	1	12:38	13:00						
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	SR4a	Middle	2	2	12:38	13:00						
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	SR4a	Bottom	3	1	12:38	13:00	25.0	6.7	24.9	7.73	7.8	6.5
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	SR4a	Bottom	3	2	12:38	13:00	24.9	6.7	24.9	7.75	8.9	5.4
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	SR4 SR4	Surface	1	1 2	12:10 12:10	12:32 12:32	25.2 25.2	6.7 6.7	24.5	8.02	5.8 5.1	6.0
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-02 2013-11-02	Mid-Ebb Mid-Ebb	SR4 SR4	Surface Middle	2	1	12:10	12:32	20.2	0.7	24.6	8.04	ე.1	5.9
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-02	Mid-Ebb	SR4 SR4	Middle	2	2	12:10	12:32						
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	SR4	Bottom	3	1	12:10	12:32	25.1	6.5	24.7	7.59	5.8	5.0
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	SR4	Bottom	3	2	12:10	12:32	25.0	6.5	24.7	7.57	6.7	5.1
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	IS8	Surface	1	1	11:42	12:04	25.1	6.5	24.5	8.21	5.3	4.4
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	IS8	Surface	1	2	11:42	12:04	25.2	6.5	24.5	8.19	5.1	3.8
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	IS8	Middle	2	1	11:42	12:04						
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	IS8	Middle	2	2	11:42	12:04						
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	IS8	Bottom	3	1	11:42	12:04	25.1	6.6	24.8	8.02	5.5	3.7
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	IS8	Bottom	3	2	11:42	12:04	25.1	6.6	24.7	8.00	5.9	3.5
TM-CLK Southern	HY/2012/07	2013-11-02		IS(Mf)16		1	1	11:13	11:35	25.1	6.6	24.7	8.16	7.5	6.1
TM-CLK Southern	HY/2012/07	2013-11-02		IS(Mf)16		1	2	11:13	11:35	25.1	6.6	24.6	8.14	7.6	6.4
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	. ,		2	1	11:13	11:35	25.1	6.6	24.9	8.04	7.5	7.2
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	IS(Mf)16		2	2	11:13	11:35	25.0	6.6	24.9	8.02	7.9	7.4
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	IS(Mf)16		3	1	11:13	11:35	24.9	6.6	24.9	7.69	8.2	8.3
TM-CLK Southern	HY/2012/07	2013-11-02	Mid-Ebb	IS(Mf)16		3	2	11:13	11:35	25.0	6.7	25.0	7.71	7.5	7.7
TM-CLK Southern	HY/2012/07	2013-11-02 2013-11-02	Mid-Ebb Mid-Ebb	IS(Mf)9	Surface	1	1	10:44	11:06 11:06	25.5 25.4	6.7	24.9 25.0	8.37	8.5 8.6	7.0 8.3
TM-CLK Southern	HY/2012/07			- () -			2	10:44		∠5.4	6.7	∠5.0	8.40	ö.b	ნ.პ
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-02	Mid-Ebb	IS(Mf)9	Middle Middle	2	1	10:44	11:06						
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-02 2013-11-02	Mid-Ebb Mid-Ebb	IS(Mf)9 IS(Mf)9	Middle Bottom	3	2 1	10:44 10:44	11:06 11:06	25.3	6.8	25.1	8.29	8.7	7.2
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-02	Mid-Ebb	IS(Mf)9	Bottom	3	2	10:44	11:06	25.3	6.8	25.1	8.31	8.7	6.0
		2013-11-02	Mid-Ebb	CS(Mf)5		1	1	13:15	13:43	25.3	6.8	25.0	7.63	5.9	5.4
TM-CLK Southern		2013-11-02	Mid-Ebb	` /		1	2	13:15	13:43	25.2	6.8	24.5	7.65	5.8	4.1
TM-CLK Southern		2013-11-02	Mid-Ebb			2	1	13:15	13:43	25.4	6.7	25.6	6.42	6.0	7.5
TM-CLK Southern		2013-11-02	Mid-Ebb			2	2	13:15	13:43	25.3	6.7	25.5	6.40	6.5	8.8
TM-CLK Southern		2013-11-02	Mid-Ebb	, ,		3	1	13:15	13:43	25.4	6.6	25.7	6.24	7.4	8.8
TM-CLK Southern		2013-11-02	Mid-Ebb			3	2	13:15	13:43	25.4	6.6	25.7	6.26	7.0	8.9
				, , , ,								•	•	•	

Project	Works	Date (yyyy-mm-dd)	Tide	Stat	Level	Lev Cod	Replicate	Start Time	End Time	Temp(°C)	рН	Salinity(ppt)	DO(ma/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood		Surface	1	1	17:45	18:13	23.7	6.6	24.3	6.73	7.1	12.6
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Surface	1	2	17:45	18:13	23.7	6.6	24.4	6.70	6.0	11.7
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Middle	2	1	17:45	18:13	23.6	6.6	24.8	6.64	16.2	24.4
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	· ` ′	Middle	2	2	17:45	18:13	23.6	6.6	24.7	6.65	14.8	23.9
	HY/2012/07		1	` '		3	1			23.5			-		
TM-CLK Southern		2013-11-05	Mid-Flood	` '	Bottom			17:45	18:13		6.6	25.0	6.58	8.8	23.4
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	` '	Bottom	3	2	17:45	18:13	23.5	6.6	25.1	6.56	10.9	23.3
TM-CLK Southern	HY/2012/07		Mid-Flood		Surface	1	1	18:30	18:48	23.7	6.6	24.3	6.56	8.7	8.4
TM-CLK Southern	HY/2012/07		Mid-Flood		Surface	1	2	18:30	18:48	23.6	6.6	24.3	6.58	9.1	8.9
TM-CLK Southern	HY/2012/07		Mid-Flood	SR4a	Middle	2	1	18:30	18:48						
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	SR4a	Middle	2	2	18:30	18:48						
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	SR4a	Bottom	3	1	18:30	18:48	23.5	6.6	24.7	6.63	8.8	8.2
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	SR4a	Bottom	3	2	18:30	18:48	23.4	6.6	24.8	6.60	8.8	8.9
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	SR4	Surface	1	1	18:56	19:13	23.6	6.6	24.3	6.58	9.1	12.7
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	SR4	Surface	1	2	18:56	19:13	23.6	6.6	24.3	6.56	11.4	11.1
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	SR4	Middle	2	1	18:56	19:13						
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	SR4	Middle	2	2	18:56	19:13						
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	SR4	Bottom	3	1	18:56	19:13	23.4	6.6	24.6	6.52	10.0	14.9
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	SR4	Bottom	3	2	18:56	19:13	23.4	6.5	24.6	6.50	11.8	13.9
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood		Surface	1		19:19	19:35	23.5	6.6	24.3	6.52	18.6	11.0
TM-CLK Southern	HY/2012/07		Mid-Flood		Surface	1	2	19:19	19:35	23.5	6.6	24.3	6.50	19.8	10.6
										23.5	0.0	24.3	6.50	19.8	10.6
TM-CLK Southern	HY/2012/07		Mid-Flood	IS8	Middle	2	1	19:19	19:35						
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	IS8	Middle	2	2	19:19	19:35						
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	IS8	Bottom	3	1	19:19	19:35	23.4	6.5	24.5	6.47	8.8	12.6
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood		Bottom	3	2	19:19	19:35	23.3	6.6	24.6	6.44	8.8	11.9
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	- () -	Surface	1	1	19:43	20:08	23.5	6.6	24.2	6.43	9.4	13.0
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	IS(Mf)16	Surface	1	2	19:43	20:08	23.4	6.6	24.3	6.45	10.7	14.4
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	IS(Mf)16	Middle	2	1	19:43	20:08	23.4	6.6	24.6	6.37	9.6	11.1
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	, ,	Middle	2	2	19:43	20:08	23.3	6.5	24.6	6.38	10.3	10.8
TM-CLK Southern	HY/2012/07		Mid-Flood	, ,		3	1	19:43	20:08	23.3	6.5	24.7	6.34	16.3	14.7
	HY/2012/07		Mid-Flood	` '		3	2	19:43	20:08	23.3	6.5	24.7	6.30	14.9	14.1
TM-CLK Southern	HY/2012/07		Mid-Flood	· · ·	Surface	1	<u>-</u> 1	20:21	20:37	23.5	6.6	24.9	6.40	15.2	19.2
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	` '	Surface	1	2	20:21	20:37	23.5	6.6	24.8	6.36	16.0	20.3
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	IS(Mf)9	Middle	2	1	20:21	20:37	20.0	0.0	24.0	0.50	10.0	20.5
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	IS(Mf)9	Middle	2	2	20:21	20:37	22.4		25.0	0.04	45.0	10.5
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	` '	Bottom	3	1	20:21	20:37	23.4	6.6	25.0	6.34	15.0	19.5
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	` '	Bottom	3	2	20:21	20:37	23.4	6.6	25.0	6.36	11.8	19.7
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	` '	Surface	1	1	20:51	21:15	23.5	6.6	24.7	6.53	10.6	14.2
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	CS(Mf)3	Surface	1	2	20:51	21:15	23.4	6.6	24.6	6.55	9.7	12.3
	HY/2012/07		Mid-Flood		Middle	2	1	20:51	21:15	23.4	6.6	24.7	6.52	10.9	14.0
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	CS(Mf)3	Middle	2	2	20:51	21:15	23.4	6.6	24.8	6.50	12.1	14.4
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	CS(Mf)3	Bottom	3	1	20:51	21:15	23.4	6.6	24.8	6.50	9.2	15.2
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Flood	CS(Mf)3	Bottom	3	2	20:51	21:15	23.3	6.6	24.9	6.47	11.0	14.8
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	` '	Surface	1	1	12:30	12:48	24.8	6.4	25.5	6.65	8.3	14.3
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	` '	Surface	1	2	12:30	12:48	24.9	6.4	25.4	6.68	8.5	13.5
	HY/2012/07	2013-11-05	Mid-Ebb	CS(Mf)3	Middle	2	1	12:30	12:48	24.8	6.5	25.6	6.51	8.5	13.4
				, ,	Middle	2	2	12:30			6.5	25.7		8.4	
	HY/2012/07	2013-11-05	Mid-Ebb	` '					12:48	24.8			6.48		14.4
TM-CLK Southern		2013-11-05	Mid-Ebb	` '	Bottom	3	1	12:30	12:48	24.8	6.5	25.9	6.32	8.8	13.4
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	` '	Bottom	3	2	12:30	12:48	24.7	6.6	25.8	6.35	7.8	13.1
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb		Surface	1	1	14:45	15:03	24.8	6.7	24.4	6.58	9.7	8.6
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb		Surface	1	2	14:45	15:03	24.9	6.7	24.3	6.61	9.4	9.8
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	SR4a	Middle	2	1	14:45	15:03						
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	SR4a	Middle	2	2	14:45	15:03						
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	SR4a	Bottom	3	1	14:45	15:03	24.8	6.6	24.6	6.53	8.9	9.2
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	SR4a	Bottom	3	2	14:45	15:03	24.8	6.6	24.7	6.50	8.9	9.6
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb		Surface	1	1	14:20	14:37	24.9	6.5	24.4	6.62	9.3	10.0
	HY/2012/07	2013-11-05	Mid-Ebb		Surface	1	2	14:20	14:37	24.9	6.4	24.4	6.58	8.5	9.7
TM-CLK Southern		2013-11-05	Mid-Ebb	SR4	Middle	2	 1	14:20	14:37	-		1	<u> </u>		
	HY/2012/07	2013-11-05	Mid-Ebb	SR4	Middle	2	2	14:20	14:37			+	1		
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb		Bottom	3	1	14:20	14:37	24.9	6.5	24.5	6.50	9.8	16.8
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	SR4	Bottom	3	2	14:20	14:37	25.0	6.5	24.6	6.47	10.0	15.5
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	IS8	Surface	1	1	13:58	14:14	24.8	6.4	24.6	6.53	13.4	10.5
TM-CLK Southern			Mid-Ebb		Surface	1	2	13:58	14:14	24.0	6.4	24.3	6.56	13.7	9.6
	HY/2012/07	2013-11-05					1			24.9	0.4	24.4	0.00	13./	5.0
TM-CLK Southern		2013-11-05	Mid-Ebb	IS8	Middle	2		13:58	14:14			+		1	1
	HY/2012/07	2013-11-05	Mid-Ebb	IS8	Middle	2	2	13:58	14:14	04.0	2.1	010	0.40	7.0	0.1
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb		Bottom	3	1	13:58	14:14	24.9	6.4	24.6	6.49	7.2	9.1
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb		Bottom	3	2	13:58	14:14	24.9	6.4	24.6	6.47	7.6	9.7
	HY/2012/07	2013-11-05	Mid-Ebb	IS(Mf)16		1	1	13:31	13:50	24.8	6.4	24.4	6.38	8.4	14.8
	HY/2012/07	2013-11-05	Mid-Ebb	IS(Mf)16		1	2	13:31	13:50	24.8	6.4	24.5	6.41	8.3	14.7
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	IS(Mf)16		2	1	13:31	13:50	24.8	6.5	24.6	6.33	7.1	15.4
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	IS(Mf)16	Middle	2	2	13:31	13:50	24.9	6.5	24.6	6.31	7.2	14.8
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	IS(Mf)16		3	1	13:31	13:50	24.9	6.4	24.6	6.17	9.2	19.4
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	IS(Mf)16		3	2	13:31	13:50	25.0	6.4	24.7	6.19	7.1	18.1
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	· · ·	Surface	1	 1	13:02	13:18	24.9	6.7	25.3	6.24	15.9	15.9
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	` '	Surface	1	2	13:02	13:18	24.9	6.7	25.3	6.27	12.7	15.6
	HY/2012/07	2013-11-05	Mid-Ebb	IS(Mf)9	Middle	2	1	13:02	13:18	21.0	J.,		J.L.		10.0
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	IS(Mf)9	Middle	2	2	13:02	13:18			+		1	
				` ,						04.0	6.7	OF O	6.00	10.4	20.0
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	` ,	Bottom	3	1	13:02	13:18	24.9	6.7	25.3	6.30	16.4	20.8
	HY/2012/07	2013-11-05	Mid-Ebb	` ′	Bottom	3	2	13:02	13:18	24.8	6.7	25.4	6.29	16.8	19.0
TM-CLK Southern		2013-11-05	Mid-Ebb	\ /	Surface	1	1	15:20	15:48	24.9	6.6	24.2	6.83	5.9	14.1
TM-CLK Southern		2013-11-05	Mid-Ebb	CS(Mf)5		1	2	15:20	15:48	24.8	6.6	24.3	6.78	5.8	15.0
TM-CLK Southern		2013-11-05	Mid-Ebb			2	1	15:20	15:48	24.8	6.5	24.7	6.73	7.3	21.1
TM-CLK Southern		2013-11-05	1	CS(Mf)5		2	2	15:20	15:48	24.8	6.6	24.6	6.71	8.0	19.5
TM-CLK Southern	HY/2012/07	2013-11-05		CS(Mf)5		3	1	15:20	15:48	24.7	6.6	25.1	6.56	7.9	21.0
TM-CLK Southern	HY/2012/07	2013-11-05	Mid-Ebb	CS(Mf)5	Bottom	3	2	15:20	15:48	24.7	6.6	25.2	6.60	6.5	20.1

Project	Works	Date (yyyy-mm-dd)	Tide	Stat	Level	Lev Cod	Replicate	Start Time	End Time	Temp(°C)	рН	Salinity(ppt)	DO(ma/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood		Surface	1	1	08:35	08:59	24.9	6.6	24.4	6.94	7.7	5.1
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Surface	1	2	08:35	08:59	24.9	6.6	24.3	6.96	8.0	5.9
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Middle	2	1	08:35	08:59	24.8	6.5	24.6	6.77	7.7	5.8
TM-CLK Southern	HY/2012/07	2013-11-07		· ` ′	Middle	2	2	08:35	08:59	24.9	6.5	24.6	6.79	8.0	4.8
TM-CLK Southern	HY/2012/07	2013-11-07		_ ` _	Bottom	3	1	08:35	08:59	24.7	6.5	24.9	6.64	9.1	8.3
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	, ,	Bottom	3	2	08:35	08:59	24.8	6.6	25.0	6.66	9.1	8.1
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	SR4a	Surface	1	1	09:06	09:30	24.8	6.7	24.4	6.67	15.2	12.6
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	SR4a	Surface	1	2	09:06	09:30	24.7	6.7	24.4	6.69	12.4	12.4
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	SR4a	Middle	2	1	09:06	09:30						
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	SR4a	Middle	2	2	09:06	09:30						
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	SR4a	Bottom	3	1	09:06	09:30	24.7	6.6	24.7	6.57	16.8	15.5
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	SR4a	Bottom	3	2	09:06	09:30	24.7	6.6	24.8	6.59	18.2	15.5
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	SR4	Surface	1	1	09:36	10:00	24.9	6.6	24.3	6.68	20.2	20.7
	HY/2012/07	2013-11-07	Mid-Flood	SR4	Surface	1	2	09:36	10:00	25.0	6.6	24.4	6.70	20.0	20.3
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	SR4	Middle	2	1	09:36	10:00						
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	SR4	Middle	2	2	09:36	10:00						
	HY/2012/07	2013-11-07	Mid-Flood	SR4	Bottom	3	1	09:36	10:00	24.8	6.5	24.6	6.56	21.0	20.3
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	SR4	Bottom	3	2	09:36	10:00	24.9	6.6	24.7	6.58	19.8	20.3
	HY/2012/07	2013-11-07	Mid-Flood		Surface	1	1	10:06	10:30	24.9	6.4	24.4	6.64	18.9	19.4
TM-CLK Southern	HY/2012/07		Mid-Flood		Surface	1	2	10:06	10:30	24.8	6.5	24.4	6.66	19.4	19.7
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	IS8	Middle	2	1	10:06	10:30						
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	IS8	Middle	2	2	10:06	10:30						
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	IS8	Bottom	3	1	10:06	10:30	24.7	6.4	24.7	6.51	18.8	20.1
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood		Bottom	3	2	10:06	10:30	24.8	6.4	24.7	6.50	18.3	22.4
	HY/2012/07	2013-11-07	Mid-Flood	- () -	Surface	1	1	10:36	11:00	24.9	6.5	24.4	6.47	14.3	12.8
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	` '		1	2	10:36	11:00	24.9	6.5	24.3	6.49	12.6	12.5
TM-CLK Southern	HY/2012/07	2013-11-07		` '	Middle	2	1	10:36	11:00	24.8	6.4	24.6	6.39	14.8	12.1
	HY/2012/07	2013-11-07	Mid-Flood	, ,	Middle	2	2	10:36	11:00	24.8	6.4	24.7	6.41	13.4	12.1
TM-CLK Southern	HY/2012/07		Mid-Flood	` '		3	1	10:36	11:00	24.7	6.5	24.7	6.25	12.2	12.5
	HY/2012/07		Mid-Flood	, ,		3	2	10:36	11:00	24.8	6.5	24.8	6.27	11.9	11.2
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Surface	1	1	11:06	11:30	24.8	6.7	25.4	6.34	14.9	15.0
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	` '	Surface	1	2	11:06	11:30	24.8	6.8	25.5	6.35	16.3	17.3
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	` '	Middle	2	1	11:06	11:30						
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	IS(Mf)9	Middle	2	2	11:06	11:30						
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	` '	Bottom	3	1	11:06	11:30	24.7	6.5	25.5	6.39	22.5	21.8
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	` '	Bottom	3	2	11:06	11:30	24.8	6.6	25.5	6.41	20.3	20.5
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	` '	Surface	1	1	11:36	12:05	24.9	6.5	25.3	6.73	14.8	17.9
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Flood	` '	Surface	1	2	11:36	12:05	24.8	6.5	25.4	6.70	15.1	17.1
	HY/2012/07		Mid-Flood		Middle	2	1	11:36	12:05	24.8	6.5	25.7	6.56	24.0	26.7
TM-CLK Southern			Mid-Flood			2	2	11:36	12:05	24.8	6.6	25.8	6.58	25.5	27.1
	HY/2012/07	2013-11-07	Mid-Flood	` '	Bottom	3	1	11:36	12:05	24.8	6.6	25.9	6.42	22.5	29.9
TM-CLK Southern	HY/2012/07		Mid-Flood	. , ,	Bottom	3	2	11:36	12:05	24.9	6.6	25.9	6.40	24.3	28.8
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Ebb	\ /	Surface	1	1	14:06	14:30	25.2	6.4	25.4	6.63	6.8	15.6
	HY/2012/07	2013-11-07	Mid-Ebb	(/-	Surface	1	2	14:06	14:30	25.0	6.5	25.2	6.65	8.3	15.5
	HY/2012/07	2013-11-07	Mid-Ebb	CS(Mf)3	Middle	2	1	14:06	14:30	25.2	6.5	25.7	6.52	22.3	23.9
	HY/2012/07	2013-11-07	Mid-Ebb Mid-Ebb	` '	Middle	3	<u>2</u> 1	14:06	14:30	25.2	6.5 6.5	25.9 25.7	6.55	20.9	23.4 31.1
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-07		` '	Bottom	3	2	14:06	14:30	25.3			6.30	25.2	+
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-07 2013-11-07	Mid-Ebb Mid-Ebb	\ /	Bottom	1	1	14:06 16:36	14:30 17:00	25.2 24.8	6.5 6.7	26.0 24.4	6.33 6.56	21.8 7.9	30.5 15.7
			Mid-Ebb		Surface Surface	1	2	16:36	17:00	24.8	6.7	24.4	6.57	6.1	14.4
	HY/2012/07 HY/2012/07	2013-11-07	Mid-Ebb		Middle	2	1	16:36	17:00	24.9	0.7	24.5	6.37	0.1	14.4
	HY/2012/07 HY/2012/07	2013-11-07 2013-11-07	Mid-Ebb	SR4a SR4a	Middle	2	2	16:36	17:00						
TM-CLK Southern		2013-11-07	Mid-Ebb		Bottom	3	1	16:36	17:00	24.9	6.6	24.6	6.48	9.5	19.6
TM-CLK Southern	HY/2012/07		Mid-Ebb			3	2		17:00	25.2	6.6	24.8		8.8	18.3
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-07 2013-11-07	Mid-Ebb		Bottom Surface	1	1	16:36 16:06	16:30	25.6	6.5	24.8	6.49 6.51	10.6	21.5
	HY/2012/07 HY/2012/07	2013-11-07	Mid-Ebb		Surface	1	2	16:06	16:30	25.8	6.5	24.3	6.52	10.8	22.2
TM-CLK Southern		2013-11-07	Mid-Ebb	SR4	Middle	2	1	16:06	16:30	20.0	0.0	24.2	0.02	10.0	
	HY/2012/07	2013-11-07	Mid-Ebb	SR4	Middle	2	2	16:06	16:30			1			\vdash
	HY/2012/07	2013-11-07	Mid-Ebb		Bottom	3	1	16:06	16:30	25.7	6.5	24.4	6.40	11.8	22.2
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Ebb	SR4	Bottom	3	2	16:06	16:30	25.8	6.5	24.5	6.41	11.1	23.7
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Ebb	IS8	Surface	1	1	15:36	16:00	25.1	6.4	24.4	6.52	11.0	18.1
	HY/2012/07	2013-11-07	Mid-Ebb		Surface	1	2	15:36	16:00	25.2	6.5	24.5	6.53	9.7	17.0
	HY/2012/07	2013-11-07	Mid-Ebb	IS8	Middle	2	<u>-</u> 1	15:36	16:00				2.00		—
	HY/2012/07	2013-11-07	Mid-Ebb	IS8	Middle	2	2	15:36	16:00						
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Ebb		Bottom	3	1	15:36	16:00	25.2	6.5	24.5	6.52	11.6	18.2
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Ebb		Bottom	3	2	15:36	16:00	25.3	6.5	24.6	6.50	11.6	17.7
-	HY/2012/07	2013-11-07	Mid-Ebb	IS(Mf)16		1		15:06	15:30	25.2	6.5	24.5	6.39	11.5	12.6
	HY/2012/07	2013-11-07	Mid-Ebb	IS(Mf)16		1	2	15:06	15:30	25.5	6.5	24.3	6.40	11.6	11.5
TM-CLK Southern		2013-11-07	Mid-Ebb	IS(Mf)16		2	1	15:06	15:30	25.3	6.4	24.6	6.32	11.5	13.0
	HY/2012/07	2013-11-07	Mid-Ebb	IS(Mf)16		2	2	15:06	15:30	25.4	6.4	24.8	6.33	10.5	12.8
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Ebb	IS(Mf)16		3	1	15:06	15:30	25.3	6.5	24.5	6.18	11.3	12.4
	HY/2012/07	2013-11-07	Mid-Ebb	IS(Mf)16		3	2	15:06	15:30	25.4	6.5	24.6	6.20	11.8	13.7
	HY/2012/07	2013-11-07	Mid-Ebb	· · ·	Surface	1	1	14:36	15:00	25.1	6.7	25.3	6.23	9.8	16.7
	HY/2012/07	2013-11-07	Mid-Ebb	` '	Surface	1	2	14:36	15:00	25.2	6.7	25.4	6.24	10.6	18.7
	HY/2012/07	2013-11-07	Mid-Ebb	IS(Mf)9	Middle	2	1	14:36	15:00						
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Ebb	IS(Mf)9	Middle	2	2	14:36	15:00						
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Ebb	` ,	Bottom	3	1	14:36	15:00	25.2	6.6	25.6	6.33	10.9	20.5
	HY/2012/07	2013-11-07	Mid-Ebb	` ,	Bottom	3	2	14:36	15:00	25.3	6.6	25.5	6.34	10.8	20.4
TM-CLK Southern		2013-11-07	Mid-Ebb	` ′	Surface	1	1	17:06	17:36	25.0	6.6	24.3	6.79	7.8	6.6
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Ebb	CS(Mf)5	Surface	1	2	17:06	17:36	24.9	6.6	24.3	6.80	7.9	6.5
TM-CLK Southern		2013-11-07	Mid-Ebb			2	1	17:06	17:36	24.8	6.5	24.5	6.69	7.8	5.9
TM-CLK Southern		2013-11-07		CS(Mf)5		2	2	17:06	17:36	24.8	6.6	24.6	6.67	8.0	5.8
TM-CLK Southern	HY/2012/07	2013-11-07	Mid-Ebb	CS(Mf)5	Bottom	3	1	17:06	17:36	24.7	6.4	24.8	6.58	9.1	7.7
TM-CLK Southern	HY/2012/07	2013-11-07		CS(Mf)5		3	2	17:06	17:36	24.6	6.4	24.9	6.59	9.2	8.2
							-		-						

Project	Works	Date (yyyy-mm-dd)	Tide	Stat	Level	Lev Cod	Replicate	Start Time	End Time	Temp(°C)	рН	Salinity(ppt)	DO(ma/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood		Surface	1	1	10:43	11:07	25.3	7.1	25.3	6.30	8.4	6.1
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Surface	1	2	10:43	11:07	25.3	7.1	25.2	6.27	8.4	5.7
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Middle	2	1	10:43	11:07	25.2	7.1	25.3	6.19	8.3	8.0
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	· ` ′	Middle	2	2	10:43	11:07	25.2	7.1	25.3	6.17	8.3	6.8
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	_ ` _	Bottom	3	1	10:43	11:07	25.2	7.1	25.4	6.10	10.7	9.7
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	, ,	Bottom	3	2	10:43	11:07	25.2	7.1	25.3	6.14	10.7	10.8
TM-CLK Southern	HY/2012/07		Mid-Flood	· ` ′	Surface	1	1	11:14	11:33	25.3	7.0	25.1	6.46	12.0	7.1
TM-CLK Southern	HY/2012/07		Mid-Flood			1	2	11:14	11:33	25.4	7.0	25.0		12.4	6.0
					Surface	-		ł		25.4	7.0	25.0	6.40	12.4	6.0
TM-CLK Southern	HY/2012/07		Mid-Flood	SR4a	Middle	2	1	11:14	11:33						
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	SR4a	Middle	2	2	11:14	11:33						
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	SR4a	Bottom	3	1	11:14	11:33	25.3	7.1	25.2	6.37	12.4	11.2
TM-CLK Southern	HY/2012/07		Mid-Flood		Bottom	3	2	11:14	11:33	25.2	7.1	25.3	6.35	12.8	12.8
TM-CLK Southern	HY/2012/07		Mid-Flood		Surface	1	1	11:40	12:04	25.2	7.0	25.4	6.35	11.1	7.1
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	SR4	Surface	1	2	11:40	12:04	25.3	7.0	25.5	6.37	11.9	7.8
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	SR4	Middle	2	1	11:40	12:04						
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	SR4	Middle	2	2	11:40	12:04						
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	SR4	Bottom	3	1	11:40	12:04	25.2	7.0	25.3	6.46	9.5	7.8
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	SR4	Bottom	3	2	11:40	12:04	25.1	7.0	25.4	6.40	9.5	7.6
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	IS8	Surface	1	1	12:08	12:30	25.2	7.1	25.4	6.18	10.9	8.8
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	IS8	Surface	1	2	12:08	12:30	25.3	7.1	25.4	6.20	10.1	9.6
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	IS8	Middle	2	1	12:08	12:30						
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	IS8	Middle	2	2	12:08	12:30						
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	IS8	Bottom	3	1	12:08	12:30	25.2	7.1	25.5	6.12	17.1	9.4
TM-CLK Southern	HY/2012/07		Mid-Flood		Bottom	3	2	12:08	12:30	25.2	7.1	25.5	6.10	17.3	10.3
TM-CLK Southern	HY/2012/07		Mid-Flood		Surface	1	<u>-</u> 1	12:38	13:02	25.1	7.1	25.1	6.39	11.9	8.9
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	` '		1	2	12:38	13:02	25.2	7.1	25.2	6.40	11.5	8.4
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	· ' /	Middle	2	1	12:38	13:02	25.1	7.1	25.2	6.40	14.8	9.2
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	, ,	Middle	2	2	12:38	13:02	25.1	7.1	25.2	6.44	14.0	9.2
TM-CLK Southern	HY/2012/07 HY/2012/07		Mid-Flood	, ,		3	1	12:38	13:02	25.1	7.1	25.3	6.44	13.6	10.1
	HY/2012/07 HY/2012/07			` '		3	2		13:02	25.1	7.2	25.2		13.8	
			Mid-Flood	, ,				12:38					6.46		9.9
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Surface	1	1	13:15	13:38	25.2	7.0	25.2	6.39	15.9	8.1
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	` '	Surface	1	2	13:15	13:38	25.3	7.0	25.3	6.42	15.7	8.9
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	` '	Middle	2	1	13:15	13:38						
TM-CLK Southern	HY/2012/07		Mid-Flood	IS(Mf)9	Middle	2	2	13:15	13:38						
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	` '	Bottom	3	1	13:15	13:38	25.2	7.1	25.2	6.43	9.8	9.4
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	` '	Bottom	3	2	13:15	13:38	25.2	7.1	25.3	6.47	9.9	9.9
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	CS(Mf)3	Surface	1	1	13:48	14:13	25.2	7.1	25.1	6.24	8.4	9.0
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	CS(Mf)3	Surface	1	2	13:48	14:13	25.3	7.1	25.1	6.20	8.4	7.6
	HY/2012/07		Mid-Flood		Middle	2	1	13:48	14:13	25.1	7.2	25.1	6.34	14.0	11.0
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	CS(Mf)3	Middle	2	2	13:48	14:13	25.1	7.2	25.2	6.37	13.4	10.7
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	CS(Mf)3	Bottom	3	1	13:48	14:13	25.0	7.2	25.1	6.16	16.1	12.5
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Flood	CS(Mf)3	Bottom	3	2	13:48	14:13	25.0	7.2	25.1	6.20	16.5	13.0
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	CS(Mf)3	Surface	1	1	16:12	16:36	25.3	7.1	25.2	6.20	8.5	8.2
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	CS(Mf)3	Surface	1	2	16:12	16:36	25.4	7.1	25.2	6.18	8.5	9.3
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	CS(Mf)3	Middle	2	1	16:12	16:36	25.2	7.2	25.0	6.30	13.2	10.6
	HY/2012/07	2013-11-09	Mid-Ebb	, ,	Middle	2	2	16:12	16:36	25.2	7.2	25.2	6.34	13.4	10.3
TM-CLK Southern		2013-11-09	Mid-Ebb	· ` ′	Bottom	3	 1	16:12	16:36	25.1	7.2	25.1	6.20	16.6	12.5
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	· ` ′	Bottom	3	2	16:12	16:36	25.0	7.2	25.1	6.16	16.0	13.4
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	. ,	Surface	1	1	18:42	19:06	25.4	7.0	25.2	6.36	12.8	8.1
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb		Surface	1	2	18:42	19:06	25.4	7.0	25.0	6.33	12.6	9.2
TM-CLK Southern	HY/2012/07		Mid-Ebb	SR4a	Middle	2	1	18:42	19:06	25.4	7.0	25.0	0.55	12.0	9.2
-	HY/2012/07	2013-11-09 2013-11-09	Mid-Ebb	SR4a	Middle	2	2	18:42	19:06						
							1			25.3	7.2	05.0	6.00	10.0	10.0
TM-CLK Southern		2013-11-09	Mid-Ebb		Bottom	3		18:42	19:06			25.3	6.30	12.6	10.0
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb		Bottom	3	2	18:42	19:06	25.3	7.1	25.3	6.34	12.5	9.6
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb		Surface	1	1	18:12	18:36	25.2	7.0	25.4	6.30	11.3	6.9
	HY/2012/07	2013-11-09	Mid-Ebb		Surface	1	2	18:12	18:36	25.3	7.0	25.4	6.36	11.7	8.0
TM-CLK Southern		2013-11-09	Mid-Ebb	SR4	Middle	2	1	18:12	18:36			-			
	HY/2012/07	2013-11-09	Mid-Ebb	SR4	Middle	2	2	18:12	18:36						<u> </u>
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb		Bottom	3	1	18:12	18:36	25.2	7.0	25.3	6.40	9.6	12.7
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	SR4	Bottom	3	2	18:12	18:36	25.2	7.0	25.4	6.34	9.6	11.0
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	IS8	Surface	1	1	17:42	18:06	25.3	7.1	25.4	6.16	10.6	8.8
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb		Surface	1	2	17:42	18:06	25.3	7.1	25.4	6.14	10.9	9.4
TM-CLK Southern		2013-11-09	Mid-Ebb	IS8	Middle	2	1	17:42	18:06						
	HY/2012/07	2013-11-09	Mid-Ebb	IS8	Middle	2	2	17:42	18:06			_			
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb		Bottom	3	1	17:42	18:06	25.3	7.2	25.6	6.06	18.1	11.9
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb		Bottom	3	2	17:42	18:06	25.2	7.2	25.5	6.10	17.5	11.8
	HY/2012/07	2013-11-09	Mid-Ebb	IS(Mf)16		1	1	17:12	17:36	25.2	7.1	25.3	6.33	11.6	9.9
	HY/2012/07	2013-11-09	Mid-Ebb	IS(Mf)16		1	2	17:12	17:36	25.2	7.1	25.3	6.28	11.3	8.4
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	IS(Mf)16		2	1	17:12	17:36	25.3	7.1	25.2	6.36	14.6	9.3
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	IS(Mf)16	Middle	2	2	17:12	17:36	25.2	7.1	25.3	6.38	15.0	9.0
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	IS(Mf)16	Bottom	3	1	17:12	17:36	25.3	7.2	25.3	6.39	13.9	12.8
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	IS(Mf)16	Bottom	3	2	17:12	17:36	25.2	7.2	25.2	6.42	14.2	12.6
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	· · ·	Surface	1	1	16:42	17:06	25.3	7.0	24.8	6.41	15.6	9.2
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	` '	Surface	1	2	16:42	17:06	25.3	7.0	25.0	6.43	15.3	8.4
	HY/2012/07	2013-11-09	Mid-Ebb	IS(Mf)9	Middle	2	1	16:42	17:06						
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	IS(Mf)9	Middle	2	2	16:42	17:06			1			
TM-CLK Southern	HY/2012/07	2013-11-09	Mid-Ebb	` ,	Bottom	3	 1	16:42	17:06	25.2	7.1	25.1	6.15	10.1	11.8
	HY/2012/07	2013-11-09	Mid-Ebb	` ,	Bottom	3	2	16:42	17:06	25.2	7.1	25.1	6.11	9.9	10.5
TM-CLK Southern		2013-11-09	Mid-Ebb	` ′	Surface	1	<u>-</u> 1	19:12	19:42	25.3	7.1	25.3	6.28	8.5	6.2
TM-CLK Southern		2013-11-09	1	CS(Mf)5		1	2	19:12	19:42	25.4	7.1	25.3	6.24	8.4	6.0
TM-CLK Southern		2013-11-09	Mid-Ebb			2	1	19:12	19:42	25.3	7.1	25.2	6.14	8.4	6.5
TM-CLK Southern		2013-11-09		CS(Mf)5		2	2	19:12	19:42	25.2	7.1	25.2	6.14	8.3	7.8
TM-CLK Southern		2013-11-09	1	CS(Mf)5		3	1	19:12	19:42	25.2	7.1	25.4	6.08	10.5	10.1
		2013-11-09		CS(Mf)5								_			
TM-CLK Southern	HT/2012/0/	2013-11-09	I MIN-⊏DD	CO(IVII)5	DOLLOM	3	2	19:12	19:42	25.1	7.1	25.4	6.05	10.6	9.7

Project	Works	Date (yyyy-mm-dd)	Tide	Stat	Level	Lev Cod	Replicate	Start Time	End Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood		Surface	1	1	13:50	14:11	25.1	7.1	25.0	6.37	2.8	5.7
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Surface	1	2	13:50	14:11	25.0	7.2	24.9	6.35	2.9	4.7
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Middle	2	1	13:50	14:11	25.0	7.1	25.2	6.22	2.9	4.9
TM-CLK Southern	HY/2012/07	2013-11-12		· · ·	Middle	2	2	13:50	14:11	24.9	7.1	25.1	6.24	3.0	4.5
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	CS(Mf)5	Bottom	3	1	13:50	14:11	24.9	7.2	25.3	6.08	2.6	6.1
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	CS(Mf)5	Bottom	3	2	13:50	14:11	24.8	7.2	25.3	6.10	2.7	4.1
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	SR4a	Surface	1	1	14:20	14:42	25.1	7.0	24.9	6.49	3.7	7.0
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	SR4a	Surface	1	2	14:20	14:42	25.1	7.0	25.0	6.51	3.8	9.0
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	SR4a	Middle	2	1	14:20	14:42						
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	SR4a	Middle	2	2	14:20	14:42						
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	SR4a	Bottom	3	1	14:20	14:42	25.0	7.1	25.1	6.39	3.1	7.9
TM-CLK Southern	HY/2012/07		Mid-Flood		Bottom	3	2	14:20	14:42	25.1	7.1	25.1	6.41	3.2	7.9
TM-CLK Southern	HY/2012/07		Mid-Flood		Surface	1	1	14:52	15:13	25.1	7.0	25.0	6.42	2.8	4.7
TM-CLK Southern	HY/2012/07		Mid-Flood	SR4	Surface	1	2	14:52	15:13	25.1	7.1	24.9	6.44	2.9	4.7
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	SR4	Middle	2	1	14:52	15:13						
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	SR4	Middle	2	2	14:52	15:13						
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	SR4	Bottom	3	1	14:52	15:13	25.0	7.1	25.1	6.51	4.1	5.0
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood		Bottom	3	2	14:52	15:13	24.9	7.1	25.0	6.54	4.1	7.2
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood		Surface	1	1	15:23	15:44	25.0	7.1	25.0	6.24	5.5	5.7
TM-CLK Southern	HY/2012/07		Mid-Flood		Surface	1	2	15:23	15:44	25.1	7.1	25.0	6.22	5.6	5.3
TM-CLK Southern	HY/2012/07		Mid-Flood	IS8	Middle	2	1	15:23	15:44						
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	IS8	Middle	2	2	15:23	15:44	05.0	7.4	05.4	0.47	F 4	7.0
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	IS8	Bottom	3	1	15:23	15:44	25.0	7.1	25.1	6.17	5.1	7.3
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07		Mid-Flood Mid-Flood		Bottom	3	<u>2</u> 1	15:23 15:54	15:44 16:15	25.0 25.0	7.1 7.1	25.2 24.9	6.20 6.37	5.1 6.1	6.9 8.7
TM-CLK Southern TM-CLK Southern				` '	Surface	·	2	15:54 15:54		25.0 24.9	7.1 7.1	24.9	6.37		9.2
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	` '		1			16:15 16:15	24.9	7.1	25.0	6.39	6.1 6.2	
	HY/2012/07	2013-11-12		` '	Middle	2	2	15:54			7.2	25.1 25.0			6.8 8.0
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-12	Mid-Flood Mid-Flood	` '	Middle	3	1	15:54 15:54	16:15 16:15	24.8 24.8	7.2	25.0	6.48 6.40	6.3 5.7	7.9
	HY/2012/07 HY/2012/07		Mid-Flood	` '		3	2	15:54 15:54	16:15 16:15	24.8	7.2	25.2	6.40	5.7	7.9
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Surface	1	1	16:25	16:48	25.0	7.0	25.2	6.36	4.7	10.3
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	_ ` ′	Surface	1	2	16:25	16:48	25.0	7.0	25.0	6.38	4.7	9.9
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	· · ·	Middle	2	1	16:25	16:48	25.0	7.0	25.0	0.30	4.7	9.9
TM-CLK Southern	HY/2012/07		Mid-Flood	, ,	Middle	2	2	16:25	16:48						
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	` '	Bottom	3	1	16:25	16:48	24.9	7.1	25.2	6.44	4.5	8.2
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	· · ·	Bottom	3	2	16:25	16:48	25.0	7.1	25.1	6.47	4.5	9.3
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	· · ·	Surface	1	1	16:58	17:20	25.1	7.2	25.0	6.28	2.9	4.8
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Flood	` '	Surface	1	2	16:58	17:20	25.0	7.2	24.9	6.30	2.9	5.3
	HY/2012/07		Mid-Flood	` '	Middle	2	1	16:58	17:20	24.9	7.2	25.0	6.39	2.9	3.5
TM-CLK Southern			Mid-Flood			2	2	16:58	17:20	25.0	7.2	25.1	6.41	2.9	5.4
	HY/2012/07	2013-11-12	Mid-Flood		Bottom	3	1	16:58	17:20	24.8	7.2	25.2	6.23	2.7	5.2
TM-CLK Southern	HY/2012/07		Mid-Flood	. , ,	Bottom	3	2	16:58	17:20	24.9	7.2	25.2	6.24	2.7	5.0
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	` '	Surface	1	 1	06:36	07:00	25.0	7.2	25.0	6.13	3.2	5.7
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	_ ` '	Surface	1	2	06:36	07:00	25.0	7.2	25.1	6.17	3.3	3.9
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	CS(Mf)3	Middle	2	1	06:36	07:00	24.9	7.2	25.1	6.20	2.9	7.0
TM-CLK Southern		2013-11-12	Mid-Ebb	` '	Middle	2	2	06:36	07:00	24.9	7.2	25.1	6.15	2.9	5.6
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	· · ·	Bottom	3	1	06:36	07:00	24.9	7.1	25.2	6.17	2.5	7.0
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	CS(Mf)3	Bottom	3	2	06:36	07:00	24.8	7.1	25.2	6.19	2.5	6.4
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	SR4a	Surface	1	1	09:07	09:32	25.1	7.1	25.0	6.38	5.8	4.8
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	SR4a	Surface	1	2	09:07	09:32	25.1	7.1	25.0	6.40	5.8	6.4
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	SR4a	Middle	2	1	09:07	09:32						
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	SR4a	Middle	2	2	09:07	09:32						
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	SR4a	Bottom	3	1	09:07	09:32	25.0	7.0	25.0	6.24	3.6	6.7
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	SR4a	Bottom	3	2	09:07	09:32	25.0	7.0	25.1	6.20	3.7	6.6
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb		Surface	1	1	08:36	08:59	25.0	7.0	25.0	6.40	3.7	4.5
	HY/2012/07	2013-11-12	Mid-Ebb		Surface	1	2	08:36	08:59	25.0	7.1	25.0	6.44	3.7	5.2
TM-CLK Southern		2013-11-12	Mid-Ebb	SR4	Middle	2	1	08:36	08:59						
	HY/2012/07	2013-11-12	Mid-Ebb	SR4	Middle	2	2	08:36	08:59			ļ			
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb		Bottom	3	1	08:36	08:59	24.9	7.1	25.1	6.49	3.3	6.1
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	SR4	Bottom	3	2	08:36	08:59	24.8	7.2	25.0	6.41	3.4	4.8
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	IS8	Surface	1	1	08:07	08:31	25.0	7.1	25.0	6.18	3.9	3.4
TM-CLK Southern TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb Mid-Ebb	IS8 IS8	Surface Middle	1 2	<u>2</u> 1	08:07 08:07	08:31 08:31	25.0	7.1	25.1	6.14	3.9	3.7
	HY/2012/07 HY/2012/07		Mid-Ebb	IS8	Middle	2	2	1	1			+		+	\vdash
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-12 2013-11-12	Mid-Ebb		Bottom	3	1	08:07 08:07	08:31 08:31	25.0	7.1	25.1	6.20	3.4	5.0
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-12	Mid-Ebb		Bottom	3	2	08:07	08:31	25.0	7.1	25.1	6.20	3.4	6.4
-	HY/2012/07	2013-11-12	Mid-Ebb	IS(Mf)16		1	1	07:36	08:00	24.9	7.1	24.9	6.25	4.6	9.1
	HY/2012/07	2013-11-12	Mid-Ebb	IS(Mf)16		1	2	07:36	08:00	24.9	7.1	25.0	6.21	4.6	8.1
TM-CLK Southern		2013-11-12	Mid-Ebb	IS(Mf)16		2	1	07:36	08:00	24.9	7.1	25.0	6.30	4.7	7.0
	HY/2012/07	2013-11-12	Mid-Ebb	IS(Mf)16		2	2	07:36	08:00	24.9	7.1	25.0	6.24	4.8	7.8
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	IS(Mf)16		3	1	07:36	08:00	24.9	7.2	25.1	6.35	4.1	7.9
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	IS(Mf)16		3	2	07:36	08:00	24.9	7.2	25.2	6.34	4.1	8.0
	HY/2012/07	2013-11-12	Mid-Ebb	` '	Surface	1	1	07:06	07:30	25.1	7.0	25.0	6.23	4.6	10.4
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	` '	Surface	1	2	07:06	07:30	25.1	7.0	24.9	6.21	4.5	10.2
	HY/2012/07	2013-11-12	Mid-Ebb	IS(Mf)9	Middle	2	1	07:06	07:30		-				
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	IS(Mf)9	Middle	2	2	07:06	07:30						
TM-CLK Southern	HY/2012/07	2013-11-12	Mid-Ebb	` '	Bottom	3	1	07:06	07:30	25.0	7.1	25.0	6.29	4.8	8.9
	HY/2012/07	2013-11-12	Mid-Ebb	` '	Bottom	3	2	07:06	07:30	24.9	7.1	25.0	6.31	4.7	7.9
TM-CLK Southern		2013-11-12	Mid-Ebb	` ′	Surface	1	1	09:40	10:06	25.1	7.2	25.0	6.22	2.8	4.2
TM-CLK Southern		2013-11-12		CS(Mf)5		1	2	09:40	10:06	25.1	7.2	25.1	6.28	2.9	4.0
TM-CLK Southern		2013-11-12	Mid-Ebb			2	1	09:40	10:06	25.0	7.1	25.1	6.14	2.6	6.0
TM-CLK Southern		2013-11-12		CS(Mf)5		2	2	09:40	10:06	25.0	7.1	25.1	6.16	2.6	5.5
TM-CLK Southern		2013-11-12		CS(Mf)5		3	1	09:40	10:06	24.9	7.2	25.2	6.10	5.7	7.2
TM-CLK Southern	HY/2012/07	2013-11-12		CS(Mf)5		3	2	09:40	10:06	24.9	7.2	25.3	6.18	5.6	7.8
-	I		•	/				•				•	•	•	

Project	Works	Date (yyyy-mm-dd)	Tide	Stat	Level	Lev Cod	Replicate	Start Time	End Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood		Surface	1	1	15:04	15:21	25.1	7.3	25.1	6.22	7.2	4.2
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Surface	1	2	15:04	15:21	25.0	7.3	25.2	6.18	7.3	4.4
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Middle	2	1	15:04	15:21	25.0	7.3	25.0	6.10	7.4	4.5
TM-CLK Southern	HY/2012/07	2013-11-14		· ` ′	Middle	2	2	15:04	15:21	25.0	7.3	25.2	6.06	7.5	4.6
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	CS(Mf)5	Bottom	3	1	15:04	15:21	25.0	7.3	25.3	6.04	7.1	4.3
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	CS(Mf)5	Bottom	3	2	15:04	15:21	25.0	7.3	25.2	6.10	7.1	5.1
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	SR4a	Surface	1	1	15:30	15:52	25.1	7.2	25.2	6.34	14.8	10.4
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	SR4a	Surface	1	2	15:30	15:52	25.1	7.2	25.2	6.30	14.3	9.4
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	SR4a	Middle	2	1	15:30	15:52						
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	SR4a	Middle	2	2	15:30	15:52						
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	SR4a	Bottom	3	1	15:30	15:52	25.2	7.2	25.3	6.18	14.0	12.4
TM-CLK Southern	HY/2012/07		Mid-Flood		Bottom	3	2	15:30	15:52	25.0	7.2	25.2	6.22	14.4	12.2
TM-CLK Southern	HY/2012/07		Mid-Flood		Surface	1	1	16:02	16:22	25.1	7.2	25.3	6.38	15.0	14.5
TM-CLK Southern	HY/2012/07		Mid-Flood	SR4	Surface	1	2	16:02	16:22	25.0	7.2	25.2	6.34	15.4	14.0
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	SR4	Middle	2	1	16:02	16:22						
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	SR4	Middle	2	2	16:02	16:22						
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	SR4	Bottom	3	1	16:02	16:22	25.0	7.2	25.2	6.44	18.4	16.0
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood		Bottom	3	2	16:02	16:22	25.2	7.3	25.2	6.46	18.0	14.6
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood		Surface	1	1	16:33	16:53	25.0	7.2	25.2	6.10	16.4	12.4
TM-CLK Southern	HY/2012/07		Mid-Flood		Surface	1	2	16:33	16:53	25.1	7.2	25.2	6.15	15.8	13.4
TM-CLK Southern	HY/2012/07		Mid-Flood	IS8	Middle	2	1	16:33	16:53						
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	IS8	Middle	2	2	16:33	16:53	05.0	7.0	05.4	0.14	10.0	45.0
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	IS8	Bottom	3	1	16:33	16:53	25.0	7.2	25.1	6.14	16.6	15.0
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-14	Mid-Flood Mid-Flood		Bottom	3	<u>2</u> 1	16:33 17:03	16:53 17:23	25.2 25.0	7.3 7.2	25.2 25.0	6.09	16.2 6.5	13.2 4.0
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-14 2013-11-14	Mid-Flood Mid-Flood	` '	Surface	1	2	17:03	17:23 17:23	25.0 25.0	7.2	25.0 25.2	6.18 6.14	6.5	4.0 5.1
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-14		· ' /	Middle	2	1	17:03	17:23	25.0	7.3	25.2	6.14	6.5	3.7
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-14	Mid-Flood	, ,	Middle	2	2	17:03	17:23	25.0	7.2	25.2	6.22	6.5	4.8
TM-CLK Southern	HY/2012/07 HY/2012/07		Mid-Flood	, ,		3	1	17:03	17:23	25.0	7.2	25.2	6.26	6.6	4.8
	HY/2012/07		Mid-Flood	` '		3	2	17:03	17:23	25.0	7.3	25.2	6.22	6.6	5.8
TM-CLK Southern	HY/2012/07		Mid-Flood	· · · ·	Surface	1	1	17:34	17:55	25.0	7.3	25.2	6.10	10.8	7.6
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	` '	Surface	1	2	17:34	17:55	25.1	7.1	25.2	6.14	10.4	7.0
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	` '	Middle	2	1	17:34	17:55	20.1	,	20.2	0.11	10.1	7.0
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	IS(Mf)9	Middle	2	2	17:34	17:55						
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	` '	Bottom	3	1	17:34	17:55	25.0	7.2	25.3	6.18	10.0	8.0
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	` '	Bottom	3	2	17:34	17:55	25.1	7.3	25.3	6.16	10.2	8.4
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	` '	Surface	1	1	18:08	18:28	25.0	7.3	25.2	6.04	6.9	4.1
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	, ,	Surface	1	2	18:08	18:28	25.1	7.3	25.2	6.00	6.9	5.4
	HY/2012/07		Mid-Flood	, ,	Middle	2	1	18:08	18:28	25.1	7.4	25.0	6.14	6.6	3.9
TM-CLK Southern			Mid-Flood			2	2	18:08	18:28	25.0	7.4	25.0	6.08	6.7	3.6
	HY/2012/07		Mid-Flood		Bottom	3	1	18:08	18:28	24.9	7.3	25.2	6.10	6.4	5.8
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Flood	CS(Mf)3	Bottom	3	2	18:08	18:28	25.1	7.2	25.3	6.06	6.4	6.7
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	CS(Mf)3	Surface	1	1	08:43	09:07	24.8	7.3	25.1	6.04	6.9	6.1
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	CS(Mf)3	Surface	1	2	08:43	09:07	24.9	7.3	25.0	6.08	6.9	7.2
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	CS(Mf)3	Middle	2	1	08:43	09:07	24.8	7.4	25.1	6.11	6.6	5.9
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	CS(Mf)3	Middle	2	2	08:43	09:07	24.7	7.4	25.1	6.06	6.7	4.6
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	CS(Mf)3	Bottom	3	1	08:43	09:07	24.8	7.2	25.2	6.13	6.4	7.0
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	CS(Mf)3	Bottom	3	2	08:43	09:07	24.8	7.3	25.3	6.11	6.3	5.0
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb		Surface	1	1	11:14	11:39	24.9	7.2	25.0	6.29	14.6	12.1
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	SR4a	Surface	1	2	11:14	11:39	25.0	7.2	25.1	6.32	14.4	11.2
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	SR4a	Middle	2	1	11:14	11:39						
	HY/2012/07	2013-11-14	Mid-Ebb	SR4a	Middle	2	2	11:14	11:39						
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	SR4a	Bottom	3	1	11:14	11:39	24.9	7.2	25.1	6.15	14.2	15.5
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb		Bottom	3	2	11:14	11:39	24.8	7.2	25.2	6.12	14.1	14.4
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb		Surface	1	1	10:43	11:06	25.0	7.2	25.1	6.31	15.4	10.1
	HY/2012/07	2013-11-14	Mid-Ebb		Surface	1	2	10:43	11:06	24.9	7.2	25.0	6.35	15.5	12.0
TM-CLK Southern		2013-11-14	Mid-Ebb	SR4	Middle	2	1	10:43	11:06						
	HY/2012/07	2013-11-14	Mid-Ebb	SR4	Middle	2	2	10:43	11:06	04.0	7.0	05.4	0.40	40.4	100
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	SR4 SR4	Bottom	3	1	10:43	11:06	24.9	7.3	25.1 25.2	6.40	18.1 17.8	16.2
TM-CLK Southern TM-CLK Southern	HY/2012/07	2013-11-14 2013-11-14	Mid-Ebb Mid-Ebb	IS8	Bottom Surface	3	<u>2</u> 1	10:43 10:14	11:06 10:38	24.9 24.9	7.3 7.2	25.2	6.32 6.09	17.8	15.5 12.1
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-14	Mid-Ebb		Surface	1	2	10:14	10:38	24.9	7.2	25.0	6.05	15.7	12.1
TM-CLK Southern		2013-11-14	Mid-Ebb	IS8	Middle	2	1	10:14	10:38	۵.۳.۵	1.4	20.1	0.00	13.7	16.4
	HY/2012/07	2013-11-14	Mid-Ebb	IS8	Middle	2	2	10:14	10:38			 			
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb		Bottom	3	1	10:14	10:38	24.7	7.3	25.2	6.06	16.5	14.1
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb		Bottom	3	2	10:14	10:38	24.8	7.3	25.2	6.11	16.6	14.9
-	HY/2012/07	2013-11-14	Mid-Ebb	IS(Mf)16		1	1	09:43	10:07	24.9	7.3	24.9	6.16	6.5	5.2
	HY/2012/07	2013-11-14	Mid-Ebb	IS(Mf)16		1	2	09:43	10:07	24.8	7.3	25.0	6.12	6.6	6.2
TM-CLK Southern		2013-11-14	Mid-Ebb	IS(Mf)16		2	1	09:43	10:07	24.8	7.2	25.1	6.21	6.5	3.8
	HY/2012/07	2013-11-14	Mid-Ebb	IS(Mf)16		2	2	09:43	10:07	24.9	7.2	25.0	6.15	6.5	5.6
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	IS(Mf)16		3	1	09:43	10:07	24.8	7.3	25.1	6.26	6.6	6.2
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	IS(Mf)16		3	2	09:43	10:07	24.7	7.3	25.2	6.24	6.6	6.5
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	· · · ·	Surface	1	1	09:13	09:37	25.0	7.1	25.1	6.14	10.6	8.6
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	IS(Mf)9	Surface	1	2	09:13	09:37	24.9	7.2	25.2	6.12	10.8	7.4
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	IS(Mf)9	Middle	2	1	09:13	09:37						
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	IS(Mf)9	Middle	2	2	09:13	09:37						
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	IS(Mf)9	Bottom	3	1	09:13	09:37	24.8	7.3	25.3	6.22	10.2	9.4
	HY/2012/07	2013-11-14	Mid-Ebb	` ′	Bottom	3	2	09:13	09:37	24.9	7.3	25.3	6.20	9.8	10.7
TM-CLK Southern		2013-11-14	Mid-Ebb	\ /	Surface	1	1	11:47	12:13	25.0	7.3	25.0	6.13	7.2	5.1
TM-CLK Southern		2013-11-14		CS(Mf)5		1	2	11:47	12:13	24.9	7.3	24.9	6.19	7.3	2.8
TM-CLK Southern		2013-11-14	Mid-Ebb			2	1	11:47	12:13	24.9	7.3	25.0	6.05	7.5	5.2
TM-CLK Southern		2013-11-14		CS(Mf)5		2	2	11:47	12:13	24.8	7.3	25.1	6.07	7.5	4.0
TM-CLK Southern		2013-11-14		CS(Mf)5		3	1	11:47	12:13	24.8	7.3	25.2	6.01	7.0	6.2
TM-CLK Southern	HY/2012/07	2013-11-14	Mid-Ebb	CS(Mf)5	Bottom	3	2	11:47	12:13	24.7	7.4	25.2	6.08	7.0	3.8

Project	Works	Date (yyyy-mm-dd)	Tide	Stat	Level	Lev Cod	Replicate	Start Time	End Time	Temp(°C)	pН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood			1	1	16:01	16:21	24.8	7.2	25.3	6.27	6.5	6.7
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	` '	Surface	1	2	16:01	16:21	24.7	7.2	25.3	6.33	6.6	5.9
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood		Middle	2	1	16:01	16:21	24.7	7.2	25.3	6.19	7.0	10.3
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	\ /	Middle	2	2	16:01	16:21	24.7	7.2	25.4	6.21	7.1	10.9
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood		Bottom	3	1	16:01	16:21	24.6	7.3	25.4	6.15	8.0	10.9
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-16 2013-11-16	Mid-Flood Mid-Flood	, ,	Bottom Surface	3	1	16:01 16:28	16:21 16:48	24.5 24.0	7.3 7.1	25.3 25.2	6.17 6.43	8.1 8.4	10.0 7.5
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood		Surface	1	2	16:28	16:48	24.0	7.1	25.2	6.45	8.5	6.5
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood		Middle	2	1	16:28	16:48	24.0	7.2	25.5	0.40	0.0	0.0
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood		Middle	2	2	16:28	16:48						
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood		Bottom	3	1	16:28	16:48	24.6	7.1	25.4	6.26	9.0	10.0
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	SR4a	Bottom	3	2	16:28	16:48	24.7	7.1	25.4	6.29	9.0	9.2
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood		Surface	1	1	16:58	17:18	24.7	7.1	25.3	6.28	7.8	6.0
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood		Surface	1	2	16:58	17:18	24.8	7.1	25.2	6.32	7.8	7.9
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	SR4	Middle	2	1	16:58	17:18						
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	SR4	Middle	2	2	16:58	17:18						
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-16	Mid-Flood		Bottom	3	1	16:58 16:58	17:18 17:18	24.7 24.6	7.2 7.2	25.4 25.4	6.37 6.29	8.0 8.0	9.0 7.9
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-16	Mid-Flood Mid-Flood	IS8	Bottom Surface	1	2	17:28	17:18	24.6	7.2	25.4	6.24	6.9	7.9
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood		Surface	1	2	17:28	17:53	24.7	7.2	25.3	6.20	7.0	8.2
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	IS8	Middle	2	1	17:28	17:53	24.0	7.2	25.5	0.20	7.0	0.2
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	IS8	Middle	2	2	17:28	17:53						
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	IS8	Bottom	3	1	17:28	17:53	24.6	7.2	25.4	6.25	7.2	8.6
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood		Bottom	3	2	17:28	17:53	24.5	7.2	25.3	6.21	7.2	9.2
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood			1	1	18:02	18:27	24.8	7.2	25.2	6.26	6.0	6.4
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	IS(Mf)16	Surface	1	2	18:02	18:27	24.7	7.2	25.1	6.30	6.1	5.0
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	. ,	Middle	2	1	18:02	18:27	24.7	7.2	25.2	6.35	6.9	6.9
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	. ,	Middle	2	2	18:02	18:27	24.7	7.1	25.1	6.30	6.9	5.8
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	. ,		3	1	18:02	18:27	24.6	7.2	25.3	6.38	7.3	8.5
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	. ,		3	2	18:02	18:27	24.5	7.3	25.2	6.39	7.3	7.8
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	. ,		1	1	18:36	19:01	24.7	7.1	25.2	6.29	8.5	6.9
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	. ,	Surface	1	2	18:36	19:01	24.8	7.1	25.2	6.27	8.6	6.7
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	` '	Middle	2	1	18:36	19:01						
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood Mid-Flood	` '	Middle	2	2	18:36	19:01	04.0	7.0	05.0	0.07	0.0	0.0
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-16 2013-11-16	Mid-Flood	- () -	Bottom Bottom	3	2	18:36 18:36	19:01 19:01	24.8 24.7	7.2 7.2	25.3 25.2	6.37 6.39	9.9 9.6	8.0 7.2
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	, ,	Surface	ა 1	1	19:12	19:31	24.7	7.2	25.2	6.21	7.0	6.2
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	. ,		1	2	19:12	19:31	24.7	7.3	25.3	6.25	7.0	4.8
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood			2	1	19:12	19:31	24.6	7.3	25.3	6.28	7.6	8.2
TM-CLK Southern			Mid-Flood			2	2	19:12	19:31	24.7	7.3	25.4	6.23	7.4	6.5
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood			3	1	19:12	19:31	24.6	7.2	25.4	6.30	8.1	6.9
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Flood	` '		3	2	19:12	19:31	24.5	7.2	25.4	6.32	8.1	7.4
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	CS(Mf)3		1	1	10:17	10:31	24.3	7.2	25.1	6.12	7.1	5.1
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	CS(Mf)3	Surface	1	2	10:17	10:31	24.8	7.2	25.2	6.16	7.1	6.7
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	CS(Mf)3	Middle	2	1	10:17	10:31	24.7	7.3	25.2	6.19	7.7	7.4
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	CS(Mf)3	Middle	2	2	10:17	10:31	24.6	7.3	25.1	6.14	7.4	7.2
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	CS(Mf)3	Bottom	3	1	10:17	10:31	24.7	7.1	25.3	6.21	8.2	7.6
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	CS(Mf)3	Bottom	3	2	10:17	10:31	24.7	7.1	25.3	6.23	8.1	8.7
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	SR4a	Surface	1	1	12:28	12:58	24.8	7.1	25.1	6.37	8.5	4.7
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	SR4a	Surface	1	2	12:28	12:58	24.9	7.1	25.2	6.40	8.6	6.6
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	SR4a	Middle	2	1	12:28	12:58						
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	SR4a	Middle	2	2	12:28	12:58	04.0	7.4	05.0	0.00	0.1	0.0
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	SR4a	Bottom	3	1	12:28	12:58	24.8	7.1	25.3	6.23	9.1	9.6
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-16 2013-11-16	Mid-Ebb Mid-Ebb	SR4a SR4	Bottom Surface	3	2 1	12:28 11:57	12:58 12:20	24.7 24.8	7.1 7.1	25.3 25.2	6.20 6.22	9.1 7.8	9.2 6.7
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	SR4	Surface	1	2	11:57	12:20	24.9	7.1	25.1	6.26	7.8	5.3
TM-CLK Southern		2013-11-16	Mid-Ebb	SR4	Middle	2	1	11:57	12:20	27.0	7.1	20.1	0.20	7.0	0.0
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	SR4	Middle	2	2	11:57	12:20						
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	SR4	Bottom	3	1	11:57	12:20	24.8	7.2	25.2	6.31	8.1	7.2
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	SR4	Bottom	3	2	11:57	12:20	24.7	7.2	25.3	6.23	8.1	6.6
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	IS8	Surface	1	1	11:28	11:52	24.8	7.2	25.1	6.18	7.0	5.7
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	IS8	Surface	1	2	11:28	11:52	24.7	7.2	25.2	6.14	7.0	6.5
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	IS8	Middle	2	1	11:28	11:52		_				
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	IS8	Middle	2	2	11:28	11:52						
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	IS8	Bottom	3	1	11:28	11:52	24.6	7.2	25.2	6.19	7.3	7.8
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	IS8	Bottom	3	2	11:28	11:52	24.7	7.2	25.2	6.15	7.2	8.5
TM-CLK Southern	HY/2012/07	2013-11-16		IS(Mf)16		1	1	11:07	11:21	24.8	7.1	25.1	6.20	6.1	5.5
TM-CLK Southern		2013-11-16		IS(Mf)16		1	2	11:07	11:21	24.7	7.2	25.1	6.24	6.1	6.0
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-16	Mid-Ebb Mid-Ebb	. ,		2	1	11:07 11:07	11:21 11:21	24.7 24.8	7.1 7.1	25.2 25.1	6.29 6.23	7.0 7.0	6.2 5.4
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-16 2013-11-16	Mid-Ebb Mid-Ebb	IS(Mf)16 IS(Mf)16		3	1	11:07	11:21 11:21	24.8	7.1	25.1 25.2	6.23	7.0	9.1
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-16	Mid-Ebb	IS(Mf)16		3	2	11:07	11:21	24.7	7.2	25.2	6.34	7.4	7.8
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	IS(Mf)9		ა 1	1	10:37	11:01	24.7	7.2	25.2	6.23	8.6	6.0
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	. ,	Surface	1	2	10:37	11:01	24.9	7.0	25.1	6.21	8.7	6.8
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	IS(Mf)9	Middle	2	1	10:37	11:01				51	<u> </u>	5.5
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	IS(Mf)9	Middle	2	2	10:37	11:01						
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	IS(Mf)9	Bottom	3	1	10:37	11:01	24.7	7.2	25.4	6.31	9.9	7.9
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	IS(Mf)9	Bottom	3	2	10:37	11:01	24.8	7.2	25.3	6.33	9.7	9.4
		2013-11-16	Mid-Ebb	CS(Mf)5		1	1	13:20	13:47	24.9	7.2	25.1	6.21	6.6	6.8
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb			1	2	13:20	13:47	24.9	7.2	25.2	6.27	6.7	7.6
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb			2	1	13:20	13:47	24.8	7.2	25.1	6.13	7.1	7.1
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	CS(Mf)5	Middle	2	2	13:20	13:47	24.7	7.2	25.2	6.15	7.2	5.5
TM-CLK Southern		2013-11-16	Mid-Ebb			3	1	13:20	13:47	24.7	7.2	25.2	6.09	8.1	9.6
TM-CLK Southern	HY/2012/07	2013-11-16	Mid-Ebb	CS(Mf)5	Bottom	3	2	13:20	13:47	24.6	7.2	25.3	6.11	8.1	9.6

Project	Works	Date (yyyy-mm-dd)	Tide	Stat	Level	Lev Cod	Replicate	Start Time	End Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood			1	1	17:25	17:43	23.1	7.2	25.3	6.42	14.5	14.2
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	. ,		1	2	17:25	17:43	23.1	7.2	25.3	6.40	14.3	15.2
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood		1	2	1	17:25	17:43	23.1	7.4	25.4	6.32	13.8	14.9
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	. ,	Middle	2	2	17:25	17:43	23.0	7.4	25.4	6.38	13.2	13.1
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood		Bottom	3	1	17:25	17:43	23.0	7.4	25.3	6.22	15.8	19.2
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-19	Mid-Flood Mid-Flood		Bottom Surface	3	2	17:25 17:58	17:43 18:18	23.0 23.1	7.4 7.2	25.4 25.2	6.20 6.47	15.2 12.8	19.3 8.7
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-19	Mid-Flood		Surface	1	2	17:58	18:18	23.1	7.2	25.2	6.48	12.9	10.0
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	SR4a	Middle	2	1	17:58	18:18	20.1	7.2	25.5	0.40	12.5	10.0
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	SR4a	Middle	2	2	17:58	18:18						
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	SR4a	Bottom	3	1	17:58	18:18	23.1	7.4	25.3	6.40	11.7	11.2
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	SR4a	Bottom	3	2	17:58	18:18	23.0	7.4	25.4	6.36	11.1	10.2
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood		Surface	1	1	18:38	18:59	23.1	7.3	25.3	6.47	13.0	13.0
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	SR4	Surface	1	2	18:38	18:59	23.2	7.3	25.3	6.43	13.8	13.0
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	SR4	Middle	2	1	18:38	18:59						
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	SR4	Middle	2	2	18:38	18:59						
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	SR4	Bottom	3	1	18:38	18:59	23.0	7.4	25.4	6.53	11.2	12.8
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-19	Mid-Flood	SR4	Bottom	3	2	18:38	18:59	23.1	7.4	25.3	6.57	11.8	12.1
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-19 2013-11-19	Mid-Flood Mid-Flood	IS8 IS8	Surface Surface	1	2	19:20 19:20	19:38 19:38	23.1 23.1	7.4 7.4	25.3 25.3	6.27 6.30	11.4 11.6	12.0 10.7
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	IS8	Middle	2	1	19:20	19:38	23.1	7.4	25.5	6.30	11.0	10.7
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	IS8	Middle	2	2	19:20	19:38						
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	IS8	Bottom	3	1	19:20	19:38	23.1	7.4	25.4	6.29	14.0	13.9
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	IS8	Bottom	3	2	19:20	19:38	23.1	7.4	25.5	6.31	14.8	12.2
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood			1	1	19:45	20:03	23.2	7.4	25.2	6.38	13.4	11.1
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	` ,		1	2	19:45	20:03	23.2	7.4	25.3	6.40	13.5	12.4
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	IS(Mf)16	Middle	2	1	19:45	20:03	23.1	7.3	25.3	6.35	12.2	14.4
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	IS(Mf)16	Middle	2	2	19:45	20:03	23.1	7.4	25.4	6.36	12.8	15.9
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	. ,		3	1	19:45	20:03	23.1	7.4	25.4	6.55	14.3	16.8
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	. ,		3	2	19:45	20:03	23.0	7.4	25.5	6.50	14.7	17.7
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	. ,	1	1	1	20:10	20:28	23.2	7.3	25.3	6.47	12.1	10.5
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	. ,	Surface	1	2	20:10	20:28	23.2	7.3	25.3	6.49	12.9	12.0
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	IS(Mf)9	Middle	2	1	20:10	20:28						
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	` '	Middle	2	2	20:10	20:28	00.4	7.4	05.0	0.00	44.0	10.1
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	. ,	Bottom	3	1	20:10	20:28	23.1	7.4	25.3	6.39	11.0	13.1
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-19	Mid-Flood	_ ` /	Bottom	3	2	20:10	20:28	23.1	7.4 7.3	25.4 25.3	6.41	11.5	13.7
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-19	Mid-Flood Mid-Flood	. ,	Surface	1	2	20:35 20:35	20:55 20:55	23.1 23.1	7.3	25.2	6.40 6.38	10.3 10.1	8.6 7.4
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood			2	1	20:35	20:55	23.0	7.3	25.4	6.50	9.5	10.6
TM-CLK Southern			Mid-Flood			2	2	20:35	20:55	23.0	7.3	25.4	6.46	9.6	9.6
TM-CLK Southern	HY/2012/07		Mid-Flood			3	1	20:35	20:55	22.9	7.2	25.5	6.33	11.9	10.6
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Flood	` '		3	2	20:35	20:55	22.9	7.2	25.4	6.30	11.7	10.0
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	CS(Mf)3		1	1	12:11	12:31	23.0	7.3	25.1	6.30	9.9	7.8
TM-CLK Southern	HY/2012/07	2013-11-19		CS(Mf)3		1	2	12:11	12:31	23.1	7.3	25.2	6.34	9.4	7.3
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	CS(Mf)3		2	1	12:11	12:31	23.0	7.3	25.3	6.37	9.7	8.7
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	CS(Mf)3	Middle	2	2	12:11	12:31	23.0	7.3	25.3	6.32	9.9	9.4
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	CS(Mf)3	Bottom	3	1	12:11	12:31	22.9	7.2	25.4	6.39	11.4	12.8
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	CS(Mf)3	Bottom	3	2	12:11	12:31	23.0	7.2	25.3	6.41	10.2	12.5
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	SR4a	Surface	1	1	14:51	15:01	23.0	7.2	25.1	6.46	12.4	10.7
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	SR4a	Surface	1	2	14:51	15:01	22.9	7.3	25.1	6.49	12.1	10.8
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	SR4a	Middle	2	1	14:51	15:01						
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	SR4a	Middle	2	2	14:51	15:01	00.1	7.0	05.0	0.00	44.0	10.5
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-19	Mid-Ebb Mid-Ebb	SR4a SR4a	Bottom Bottom	3	1 2	14:51 14:51	15:01 15:01	23.1 23.1	7.2 7.2	25.3 25.2	6.32 6.29	11.8 12.1	13.5 12.0
TM-CLK Southern	HY/2012/07	2013-11-19 2013-11-19	Mid-Ebb	SR4	Surface	ა 1	1	14:16	14:31	23.0	7.2	25.2	6.29	12.1	12.0
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	SR4	Surface	1	2	14:16	14:31	22.9	7.3	25.3	6.41	12.0	14.2
	HY/2012/07	2013-11-19	Mid-Ebb	SR4	Middle	2	1	14:16	14:31	22.0	7.0	20.0	0.11	12.0	
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	SR4	Middle	2	2	14:16	14:31						
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	SR4	Bottom	3	1	14:16	14:31	23.0	7.3	25.3	6.46	11.8	10.4
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	SR4	Bottom	3	2	14:16	14:31	23.1	7.4	25.4	6.38	11.1	11.0
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS8	Surface	1	1	13:46	14:01	23.0	7.3	25.2	6.33	10.7	10.8
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS8	Surface	1	2	13:46	14:01	23.1	7.4	25.2	6.29	11.9	10.9
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS8	Middle	2	1	13:46	14:01			1			
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS8	Middle	2	2	13:46	14:01						
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS8	Bottom	3	1	13:46	14:01	23.0	7.4	25.3	6.34	13.1	11.2
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS8	Bottom	3	2	13:46	14:01	22.9	7.4	25.2	6.30	13.8	13.1
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-19		IS(Mf)16 IS(Mf)16		1	1 2	13:16 13:16	13:31 13:31	23.1 23.0	7.3 7.3	25.1 25.2	6.35 6.39	12.2 13.7	12.5 13.4
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-19 2013-11-19	Mid-Ebb	. ,		2	1	13:16	13:31	23.0	7.3	25.2	6.44	13.7	15.8
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-19	Mid-Ebb	IS(Mf)16		2	2	13:16	13:31	23.1	7.3	25.2	6.41	13.6	14.0
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS(Mf)16		3	1	13:16	13:31	23.1	7.4	25.3	6.47	14.6	18.8
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS(Mf)16		3	2	13:16	13:31	23.0	7.4	25.3	6.48	14.7	20.1
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS(Mf)9		1	1	12:41	13:01	23.1	7.2	25.2	6.38	12.7	12.9
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	` '	Surface	1	2	12:41	13:01	23.1	7.2	25.1	6.36	13.8	12.9
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS(Mf)9	Middle	2	1	12:41	13:01						
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS(Mf)9	Middle	2	2	12:41	13:01						
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS(Mf)9	Bottom	3	1	12:41	13:01	23.0	7.4	25.2	6.46	11.9	13.5
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	IS(Mf)9	Bottom	3	2	12:41	13:01	23.1	7.3	25.3	6.48	11.4	14.2
		2013-11-19	Mid-Ebb	CS(Mf)5		1	1	15:21	15:41	23.0	7.2	25.2	6.30	13.4	11.3
TM-CLK Southern		2013-11-19	Mid-Ebb			1	2	15:21	15:41	23.1	7.2	25.1	6.36	13.7	13.4
TM-CLK Southern		2013-11-19	Mid-Ebb			2	1	15:21	15:41	23.0	7.3	25.2	6.22	14.8	13.3
TM-CLK Southern		2013-11-19	Mid-Ebb			2	2	15:21	15:41	23.0	7.3	25.2	6.24	13.5	12.8
TM-CLK Southern		2013-11-19	Mid-Ebb			3	1	15:21	15:41	23.0	7.4	25.3	6.18	15.1	17.0
TM-CLK Southern	HY/2012/07	2013-11-19	Mid-Ebb	US(Mf)5	Bottom	3	2	15:21	15:41	23.1	7.4	25.4	6.20	15.9	17.9

Project	Works	Date (yyyy-mm-dd)	Tide	Stat	Level	Lev_Cod	Replicate	Start Time	End Time	Temp(°C)	pН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood			1	1	08:08	08:32	22.9	7.4	24.2	7.37	7.4	8.8
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	CS(Mf)5	Surface	1	2	08:08	08:32	22.8	7.4	24.1	7.39	7.5	9.1
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood		1	2	1	08:08	08:32	22.9	7.3	24.2	7.11	8.0	10.5
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	. ,	Middle	2	2	08:08	08:32	23.0	7.3	24.3	7.13	8.1	11.0
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood		Bottom	3	1	08:08	08:32	23.0	7.4	24.4	6.92	7.3	10.0
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-21 2013-11-21	Mid-Flood Mid-Flood	,	Bottom Surface	3	<u>2</u> 1	08:08 08:38	08:32 09:02	22.9 22.8	7.4 7.4	24.3 24.1	6.94 7.34	7.3 10.8	10.3 14.1
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-21	Mid-Flood		Surface	1	2	08:38	09:02	22.8	7.4	24.1	7.34	11.0	12.8
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	SR4a	Middle	2	1	08:38	09:02	22.0	7.4	27.1	7.50	11.0	12.0
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	SR4a	Middle	2	2	08:38	09:02						
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	SR4a	Bottom	3	1	08:38	09:02	22.9	7.4	24.2	7.24	10.3	12.9
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	SR4a	Bottom	3	2	08:38	09:02	22.8	7.4	24.3	7.26	10.6	12.7
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	SR4	Surface	1	1	09:08	09:31	22.9	7.2	24.1	7.16	9.3	12.3
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	SR4	Surface	1	2	09:08	09:31	23.0	7.3	24.2	7.18	9.4	13.5
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	SR4	Middle	2	1	09:08	09:31						
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	SR4	Middle	2	2	09:08	09:31						
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	SR4	Bottom	3	1	09:08	09:31	23.0	7.2	24.3	6.99	10.2	12.3
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-21	Mid-Flood	SR4	Bottom	3	2	09:08	09:31	23.0	7.2	24.4	7.01	10.6	12.8
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-21 2013-11-21	Mid-Flood Mid-Flood	IS8 IS8	Surface Surface	1	2	09:37 09:37	10:01 10:01	22.9 22.9	7.3 7.4	24.1	7.36 7.38	7.9 7.9	13.6 13.8
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	IS8	Middle	2	1	09:37	10:01	22.5	7.4	24.1	7.30	7.9	13.6
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	IS8	Middle	2	2	09:37	10:01						
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	IS8	Bottom	3	1	09:37	10:01	23.0	7.4	24.2	7.11	8.8	15.8
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	IS8	Bottom	3	2	09:37	10:01	23.1	7.4	24.3	7.11	8.9	15.0
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood			1	1	10:07	10:32	23.0	7.1	24.1	7.12	9.6	11.4
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	` '		1	2	10:07	10:32	23.0	7.1	24.2	7.13	9.7	11.1
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	IS(Mf)16	Middle	2	1	10:07	10:32	22.9	7.2	24.3	6.82	11.7	14.1
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	IS(Mf)16	Middle	2	2	10:07	10:32	23.0	7.2	24.2	6.84	11.9	14.0
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	. ,		3	1	10:07	10:32	23.0	7.1	24.5	6.89	22.1	19.5
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	. ,		3	2	10:07	10:32	23.1	7.1	24.4	6.91	21.7	30.0
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	. ,	1	1	1	10:38	11:02	22.9	7.4	24.1	7.22	13.5	17.4
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	. ,	Surface	1	2	10:38	11:02	22.9	7.4	24.2	7.24	14.2	15.6
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	IS(Mf)9	Middle	2	1	10:38	11:02						
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	` '	Middle	2	2	10:38	11:02						
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	- ()-	Bottom	3	1	10:38	11:02	23.0	7.3	24.2	7.04	13.1	17.9
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	- () -	Bottom	3	2	10:38	11:02	22.9	7.4	24.3	7.06	12.8	17.4
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-21	Mid-Flood Mid-Flood	. ,	Surface Surface	1	2	11:08 11:08	11:38 11:38	22.9 23.0	7.6 7.6	24.2 24.2	7.29 7.31	8.5 8.5	8.9 7.4
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-21	Mid-Flood			2	1	11:08	11:38	23.0	7.6	24.2	6.99	8.4	8.7
TM-CLK Southern			Mid-Flood			2	2	11:08	11:38	23.1	7.4	24.4	7.01	8.4	10.4
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood			3	1	11:08	11:38	23.1	7.4	24.5	6.84	8.1	11.2
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Flood	` '		3	2	11:08	11:38	23.0	7.5	24.4	6.82	8.1	10.6
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	CS(Mf)3		1	1	13:20	13:44	22.8	7.4	24.3	7.20	8.6	11.1
TM-CLK Southern	HY/2012/07	2013-11-21		CS(Mf)3		1	2	13:20	13:44	22.9	7.4	24.2	7.24	8.5	10.9
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	CS(Mf)3		2	1	13:20	13:44	23.0	7.4	24.3	6.94	7.7	10.6
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	CS(Mf)3		2	2	13:20	13:44	23.0	7.4	24.3	6.91	7.7	10.3
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	CS(Mf)3	Bottom	3	1	13:20	13:44	23.0	7.4	24.5	6.73	8.2	10.2
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	CS(Mf)3	Bottom	3	2	13:20	13:44	23.0	7.4	24.5	6.76	8.1	11.1
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	SR4a	Surface	1	1	15:49	16:13	22.9	7.3	24.1	7.29	11.0	11.4
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	SR4a	Surface	1	2	15:49	16:13	22.8	7.3	24.0	7.21	11.8	11.6
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	SR4a	Middle	2	1	15:49	16:13						
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	SR4a	Middle	2	2	15:49	16:13						
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	SR4a	Bottom	3	1	15:49	16:13	23.0	7.4	24.2	7.17	9.9	14.0
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	SR4a	Bottom	3	2	15:49	16:13	22.9	7.4	24.3	7.13	10.0	15.9
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	SR4	Surface	1	1	15:20	15:43	22.8	7.2	24.2	7.09	9.8	10.2
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-21	Mid-Ebb Mid-Ebb	SR4 SR4	Surface Middle	2	2 1	15:20 15:20	15:43 15:43	22.9	7.2	24.1	7.10	9.8	11.0
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	SR4	Middle	2	2	15:20	15:43						
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	SR4	Bottom	3	1	15:20	15:43	22.9	7.2	24.4	6.93	9.7	12.1
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	SR4	Bottom	3	2	15:20	15:43	23.0	7.2	24.4	6.91	9.7	10.5
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	IS8	Surface	1	1	14:49	15:13	23.0	7.3	24.2	7.26	8.8	8.5
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	IS8	Surface	1	2	14:49	15:13	23.0	7.3	24.1	7.30	8.9	9.8
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	IS8	Middle	2	1	14:49	15:13						
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	IS8	Middle	2	2	14:49	15:13						
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	IS8	Bottom	3	1	14:49	15:13	23.1	7.3	24.3	7.06	10.2	10.3
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	IS8	Bottom	3	2	14:49	15:13	23.0	7.3	24.4	7.04	10.8	11.2
TM-CLK Southern	HY/2012/07	2013-11-21		IS(Mf)16		1	1	14:20	14:44	22.9	7.2	24.2	7.01	11.5	16.4
TM-CLK Southern	HY/2012/07	2013-11-21		IS(Mf)16		1	2	14:20	14:44	22.9	7.2	24.1	7.09	11.7	16.6
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	, ,		2	1	14:20	14:44	23.0	7.2	24.2	6.72	13.9	13.9
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-21	Mid-Ebb Mid-Ebb	IS(Mf)16		3	2 1	14:20	14:44	23.0 22.9	7.2 7.1	24.3 24.3	6.78	14.2	13.8
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-21 2013-11-21	Mid-Ebb	IS(Mf)16 IS(Mf)16		3	2	14:20 14:20	14:44 14:44	22.9	7.1	24.3	6.88 6.82	17.2 17.8	20.9
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-21	Mid-Ebb	IS(Mf)9		1	1	13:50	14:44	23.0	7.4	24.3	7.11	10.7	7.4
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	` '	Surface	1	2	13:50	14:14	22.9	7.4	24.2	7.17	11.0	7.4
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	IS(Mf)9	Middle	2	1	13:50	14:14	0	,	_ r.L	7.17	17.0	,
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	IS(Mf)9	Middle	2	2	13:50	14:14						
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	IS(Mf)9	Bottom	3	1	13:50	14:14	23.0	7.4	24.3	7.00	13.2	11.7
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	IS(Mf)9	Bottom	3	2	13:50	14:14	23.1	7.4	24.2	6.98	13.7	12.1
	HY/2012/07	2013-11-21	Mid-Ebb	CS(Mf)5		1	1	16:26	16:50	22.8	7.5	24.1	7.32	8.6	7.3
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	CS(Mf)5	Surface	1	2	16:26	16:50	22.8	7.5	24.1	7.30	8.6	7.6
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb			2	1	16:26	16:50	22.9	7.4	24.2	7.02	9.0	6.2
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	CS(Mf)5	Middle	2	2	16:26	16:50	22.9	7.4	24.2	7.03	8.9	7.8
TM-CLK Southern		2013-11-21	Mid-Ebb			3	1	16:26	16:50	23.0	7.4	24.3	6.87	8.6	7.5
TM-CLK Southern	HY/2012/07	2013-11-21	Mid-Ebb	CS(Mf)5	Bottom	3	2	16:26	16:50	23.0	7.4	24.3	6.88	8.7	8.2

Project	Works	Date (yyyy-mm-dd)	Tide	Stat	Level	Lev Cod	Replicate	Start Time	End Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood		Surface	1	1	09:32	09:50	22.6	7.6	22.8	6.51	6.6	9.6
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Surface	1	2	09:32	09:50	22.6	7.6	22.8	6.54	6.6	9.9
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Middle	2	1	09:32	09:50	22.5	7.6	23.3	6.48	6.8	11.5
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	· · ·	Middle	2	2	09:32	09:50	22.5	7.6	23.2	6.44	6.9	11.8
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	CS(Mf)5	Bottom	3	1	09:32	09:50	22.5	7.6	23.6	6.49	5.9	10.8
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	` '	Bottom	3	2	09:32	09:50	22.5	7.6	23.6	6.52	6.0	11.1
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	SR4a	Surface	1	1	10:00	10:15	22.1	7.7	24.5	6.33	17.6	14.9
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	SR4a	Surface	1	2	10:00	10:15	22.1	7.7	24.5	6.36	17.6	13.6
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	SR4a	Middle	2	1	10:00	10:15						
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	SR4a	Middle	2	2	10:00	10:15						
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	SR4a	Bottom	3	1	10:00	10:15	22.1	7.7	24.5	6.42	19.7	13.9
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	SR4a	Bottom	3	2	10:00	10:15	22.1	7.7	24.8	6.38	19.7	13.5
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	SR4	Surface	1	1	10:18	10:34	22.3	8.0	24.4	6.15	13.0	13.1
	HY/2012/07	2013-11-23	Mid-Flood	SR4	Surface	1	2	10:18	10:34	22.3	8.1	24.4	6.12	12.9	14.3
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	SR4	Middle	2	1	10:18	10:34						
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	SR4	Middle	2	2	10:18	10:34						
	HY/2012/07	2013-11-23	Mid-Flood	SR4	Bottom	3	1	10:18	10:34	22.3	8.1	24.4	6.17	17.1	13.1
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	SR4	Bottom	3	2	10:18	10:34	22.3	8.1	24.4	6.12	17.1	13.6
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	IS8	Surface	1	1	10:40	10:57	22.3	8.0	24.4	6.20	10.4	14.6
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	IS8	Surface	1	2	10:40	10:57	22.4	8.0	24.4	6.17	10.4	14.6
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	IS8	Middle	2	1	10:40	10:57						
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	IS8	Middle	2	2	10:40	10:57						
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	IS8	Bottom	3	1	10:40	10:57	22.3	8.1	24.5	6.15	15.3	16.6
TM-CLK Southern	HY/2012/07		Mid-Flood		Bottom	3	2	10:40	10:57	22.4	8.1	24.5	6.11	15.2	15.8
	HY/2012/07		Mid-Flood	\ /	Surface	1	1	11:17	11:37	22.4	8.1	24.4	6.13	7.8	12.2
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	` '		1	2	11:17	11:37	22.4	8.1	24.3	6.15	7.7	11.9
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	` '	Middle	2	1	11:17	11:37	22.3	8.1	24.4	6.10	6.1	14.9
	HY/2012/07	2013-11-23	Mid-Flood	` '	Middle	2	2	11:17	11:37	22.4	8.1	24.3	6.07	6.2	14.8
TM-CLK Southern	HY/2012/07		Mid-Flood	` '		3	1	11:17	11:37	22.5	8.1	24.5	6.11	6.6	26.3
	HY/2012/07		Mid-Flood	` '		3	2	11:17	11:37	22.4	8.1	24.5	6.04	6.7	26.9
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Surface	1	1	12:00	12:20	22.6	8.0	24.4	6.12	11.6	18.4
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	` '	Surface	1	2	12:00	12:20	22.6	8.0	24.4	6.15	11.6	16.4
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	` '	Middle	2	1	12:00	12:20						
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	` '	Middle	2	2	12:00	12:20						
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	` '	Bottom	3	1	12:00	12:20	22.6	8.0	24.5	6.04	12.9	18.7
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	` '	Bottom	3	2	12:00	12:20	22.6	8.1	24.5	6.07	12.8	18.2
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	` '	Surface	1	1	12:40	13:02	22.7	8.1	24.3	6.17	12.5	9.7
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Flood	` '	Surface	1	2	12:40	13:02	22.7	8.1	24.3	6.19	12.5	8.2
	HY/2012/07		Mid-Flood		Middle	2	1	12:40	13:02	22.6	8.1	24.4	6.18	13.2	9.5
TM-CLK Southern			Mid-Flood			2	2	12:40	13:02	22.6	8.1	24.4	6.15	13.2	11.2
	HY/2012/07		Mid-Flood	` '	Bottom	3	1	12:40	13:02	22.6	8.1	24.5	6.09	12.6	12.0
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Bottom	3	2	12:40	13:02	22.6	8.1	24.5	6.06	12.6	11.4
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Ebb	` '	Surface	1	1	14:35	14:55	22.8	8.1	24.4	6.08	12.8	11.4
	HY/2012/07	2013-11-23	Mid-Ebb	` '	Surface	1	2	14:35	14:55	22.7	8.1	24.3	6.11	12.9	11.1
	HY/2012/07	2013-11-23	Mid-Ebb	CS(Mf)3	Middle	2	1	14:35	14:55	22.7	8.1	24.4	6.09	13.5	11.2
	HY/2012/07	2013-11-23	Mid-Ebb	` '	Middle	2	2	14:35	14:55	22.6	8.1	24.5	6.06	13.6	10.4
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-23	Mid-Ebb	` '	Bottom	3	2	14:35	14:55	22.5	8.1	24.5	6.00	12.9	11.4
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-23	Mid-Ebb Mid-Ebb	\ /	Bottom	1	1	14:35 17:05	14:55 17:25	22.4 22.2	8.1 7.8	24.6 24.6	5.97 6.27	12.8 17.8	11.0 12.2
		2013-11-23	Mid-Ebb		Surface Surface	1	2	17:05	17:25	22.2	7.8	24.6	6.30	18.0	12.4
TM-CLK Southern	HY/2012/07 HY/2012/07		Mid-Ebb	SR4a	Middle	2	1	17:05	17:25	22.1	7.0	24.5	6.30	10.0	12.4
-	HY/2012/07 HY/2012/07	2013-11-23 2013-11-23	Mid-Ebb	SR4a SR4a	Middle	2	2	17:05	17:25						-
TM-CLK Southern		2013-11-23	Mid-Ebb		Bottom	3	1	17:05	17:25	22.2	7.8	24.8	6.36	19.9	11.9
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Ebb		Bottom	3	2	17:05	17:25	22.3	7.8	24.8	6.32	20.2	11.7
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Ebb		Surface	1	1	16:35	16:55	22.3	8.1	24.5	6.09	13.5	11.0
	HY/2012/07	2013-11-23	Mid-Ebb		Surface	1	2	16:35	16:55	22.4	8.1	24.6	6.06	13.6	11.8
TM-CLK Southern		2013-11-23	Mid-Ebb	SR4	Middle	2	1	16:35	16:55	22.4	0.1	24.0	0.00	13.0	11.0
	HY/2012/07	2013-11-23	Mid-Ebb	SR4	Middle	2	2	16:35	16:55						
	HY/2012/07	2013-11-23	Mid-Ebb		Bottom	3	1	16:35	16:55	22.5	8.1	24.6	6.11	17.7	13.1
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Ebb	SR4	Bottom	3	2	16:35	16:55	22.5	8.1	24.6	6.07	17.9	11.3
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Ebb	IS8	Surface	1	1	16:05	16:25	22.4	8.1	24.5	6.14	10.9	9.3
	HY/2012/07	2013-11-23	Mid-Ebb		Surface	1	2	16:05	16:25	22.4	8.1	24.4	6.11	10.8	10.6
TM-CLK Southern		2013-11-23	Mid-Ebb	IS8	Middle	2	<u>-</u> 1	16:05	16:25	,				1 3.0	
	HY/2012/07	2013-11-23	Mid-Ebb	IS8	Middle	2	2	16:05	16:25						
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Ebb		Bottom	3	1	16:05	16:25	22.4	8.1	24.5	6.09	15.8	11.1
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Ebb		Bottom	3	2	16:05	16:25	22.5	8.1	24.6	6.05	15.7	12.0
-	HY/2012/07	2013-11-23	Mid-Ebb	IS(Mf)16		1		15:35	15:55	22.4	8.1	24.4	6.05	7.8	15.2
	HY/2012/07	2013-11-23	Mid-Ebb	IS(Mf)16		1	2	15:35	15:55	22.5	8.1	24.5	6.07	7.8	15.4
TM-CLK Southern		2013-11-23	Mid-Ebb	IS(Mf)16		2	1	15:35	15:55	22.5	8.1	24.5	6.02	6.1	14.7
	HY/2012/07	2013-11-23	Mid-Ebb	IS(Mf)16		2	2	15:35	15:55	22.4	8.1	24.6	5.99	6.2	14.6
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Ebb	IS(Mf)16		3	1	15:35	15:55	22.6	8.1	24.6	6.03	6.7	21.7
	HY/2012/07	2013-11-23	Mid-Ebb	IS(Mf)16		3	2	15:35	15:55	22.6	8.1	24.7	6.06	6.7	21.1
	HY/2012/07	2013-11-23	Mid-Ebb	` '	Surface	1	1	15:05	15:25	22.7	8.1	24.5	6.03	11.9	8.2
	HY/2012/07	2013-11-23	Mid-Ebb	` '	Surface	1	2	15:05	15:25	22.7	8.1	24.4	6.06	11.8	8.3
	HY/2012/07	2013-11-23	Mid-Ebb	IS(Mf)9	Middle	2	1	15:05	15:25						
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Ebb	IS(Mf)9	Middle	2	2	15:05	15:25						
TM-CLK Southern	HY/2012/07	2013-11-23	Mid-Ebb	` '	Bottom	3	1	15:05	15:25	22.6	8.1	24.6	5.95	13.1	12.5
	HY/2012/07	2013-11-23	Mid-Ebb	` '	Bottom	3	2	15:05	15:25	22.6	8.1	24.7	5.98	13.3	12.9
TM-CLK Southern		2013-11-23	Mid-Ebb	` ′	Surface	1	1	17:35	17:50	22.7	7.6	22.8	6.45	6.7	7.5
TM-CLK Southern		2013-11-23	Mid-Ebb	CS(Mf)5		1	2	17:35	17:50	22.6	7.6	22.9	6.48	6.7	8.4
TM-CLK Southern		2013-11-23	Mid-Ebb			2	1	17:35	17:50	22.6	7.6	23.4	6.42	6.9	9.0
TM-CLK Southern		2013-11-23		CS(Mf)5		2	2	17:35	17:50	22.5	7.6	23.3	6.38	7.0	8.6
TM-CLK Southern		2013-11-23		CS(Mf)5		3	1	17:35	17:50	22.4	7.7	23.6	6.43	6.0	8.3
TM-CLK Southern		2013-11-23		CS(Mf)5		3	2	17:35	17:50	22.3	7.7	23.7	6.46	6.1	9.0
				. , ,,-						-		•			

Project	Works	Date (yyyy-mm-dd)	Tide	Stat	Level	Lev Cod	Replicate	Start Time	End Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood			1	1	12:21	12:45	22.2	7.6	23.3	6.89	4.7	5.3
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	` '		1	2	12:21	12:45	22.2	7.6	23.3	6.86	4.7	5.3
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood		1	2	1	12:21	12:45	22.3	7.6	23.9	6.57	4.4	5.8
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	` /	Middle	2	2	12:21	12:45	22.3	7.6	23.9	6.55	4.3	6.3
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood		Bottom	3	1	12:21	12:45	22.5	7.6	24.0	6.35	5.4	8.8 7.1
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-26 2013-11-26	Mid-Flood Mid-Flood	, ,	Bottom Surface	3	1	12:21 12:55	12:45 13:09	22.5 22.2	7.6 7.6	24.0	6.31 6.84	5.3 5.5	6.4
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-26	Mid-Flood		Surface	1	2	12:55	13:09	22.2	7.6	23.3	6.80	5.4	5.0
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood		Middle	2	1	12:55	13:09	22.2	7.0	20.0	0.00	5.4	3.0
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood		Middle	2	2	12:55	13:09						
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood		Bottom	3	1	12:55	13:09	22.3	7.7	23.5	6.60	14.6	11.2
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	SR4a	Bottom	3	2	12:55	13:09	22.3	7.6	23.5	6.57	14.6	11.7
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood		Surface	1	1	13:20	13:36	22.1	7.7	23.3	6.86	6.0	8.4
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood		Surface	1	2	13:20	13:36	22.1	7.7	23.3	6.83	6.1	8.6
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	SR4	Middle	2	1	13:20	13:36						
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	SR4	Middle	2	2	13:20	13:36	20.0		00.0	0.40	110	
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-26	Mid-Flood		Bottom	3	1 2	13:20 13:20	13:36 13:36	22.6 22.6	7.7 7.7	23.8	6.13 6.16	14.9 14.9	16.1 16.6
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-26 2013-11-26	Mid-Flood Mid-Flood	IS8	Bottom Surface	1	1	13:46	14:03	22.0	7.7	23.8	6.83	6.0	6.0
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood		Surface	1	2	13:46	14:03	22.1	7.7	23.3	6.79	5.9	4.5
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	IS8	Middle	2	1	13:46	14:03	22.1	7.7	20.0	0.70	0.0	4.0
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	IS8	Middle	2	2	13:46	14:03						
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	IS8	Bottom	3	1	13:46	14:03	22.4	7.7	23.6	6.42	12.7	12.0
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	IS8	Bottom	3	2	13:46	14:03	22.4	7.7	23.6	6.39	12.7	13.7
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	` '		1	1	14:16	14:36	22.2	7.7	23.3	6.77	10.6	12.0
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	` '		1	2	14:16	14:36	22.2	7.7	23.3	6.75	10.6	11.9
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	. ,		2	1	14:16	14:36	22.4	7.7	23.8	6.30	13.2	14.7
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	. ,		2	2	14:16	14:36	22.4	7.7	23.7	6.25	13.2	13.8
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	. ,		3	1	14:16	14:36	22.5	7.7	23.9	6.14	17.5	18.0
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	. ,		3	2	14:16	14:36	22.5	7.7	23.9	6.17	17.6	16.3
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-26	Mid-Flood Mid-Flood	. ,	1	1	1	14:46	15:04 15:04	22.2 22.2	7.7	23.3	6.59 6.57	6.6 6.5	6.6
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-26 2013-11-26	Mid-Flood Mid-Flood	· /	Surface Middle	2	2 1	14:46 14:46	15:04 15:04	22.2	1.1	∠3.3	0.0/	0.5	6.0
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-26	Mid-Flood	, ,	Middle	2	2	14:46	15:04						\vdash
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	` '	Bottom	3	1	14:46	15:04	22.5	7.7	23.7	6.32	13.9	13.2
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	- () -	Bottom	3	2	14:46	15:04	22.5	7.7	23.7	6.29	13.8	13.8
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	, ,	Surface	1	1	15:19	15:51	22.2	7.7	23.7	6.64	4.5	4.6
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	. ,		1	2	15:19	15:51	22.2	7.7	23.7	6.61	4.6	3.6
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	. ,		2	1	15:19	15:51	22.1	7.7	24.0	6.40	4.6	4.7
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood			2	2	15:19	15:51	22.1	7.7	24.0	6.36	4.6	4.0
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood			3	1	15:19	15:51	22.5	7.7	24.8	6.02	5.3	6.1
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Flood	CS(Mf)3	Bottom	3	2	15:19	15:51	22.4	7.7	24.8	6.05	5.4	5.7
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	CS(Mf)3	Surface	1	1	18:26	18:50	22.3	7.7	23.7	6.67	5.1	4.6
TM-CLK Southern	HY/2012/07	2013-11-26		CS(Mf)3		1	2	18:26	18:50	22.2	7.7	23.7	6.61	5.0	5.1
TM-CLK Southern	HY/2012/07	2013-11-26		CS(Mf)3		2	1	18:26	18:50	22.1	7.8	24.1	6.31	5.4	4.2
TM-CLK Southern	HY/2012/07	2013-11-26		CS(Mf)3		2	2	18:26	18:50	22.1	7.8	24.0	6.34	5.5	5.7
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	CS(Mf)3	1	3	1	18:26	18:50	22.4	7.8	24.7	6.04	5.2	7.4
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	CS(Mf)3	Bottom	3	2	18:26	18:50	22.4	7.7	24.7	6.02	5.3	8.4
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-26	Mid-Ebb Mid-Ebb	SR4a SR4a	Surface Surface	1	2	20:57 20:57	21:21 21:21	22.2 22.1	7.7	23.4	6.63 6.67	6.3 6.7	7.0 9.0
TM-CLK Southern	HY/2012/07	2013-11-26 2013-11-26	Mid-Ebb	SR4a	Middle	2	1	20:57	21:21	22.1	7.7	23.3	0.07	0.7	9.0
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	SR4a	Middle	2	2	20:57	21:21						
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	SR4a	Bottom	3	1	20:57	21:21	22.4	7.7	23.6	6.47	13.4	46.8
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	SR4a	Bottom	3	2	20:57	21:21	22.4	7.7	23.7	6.49	13.0	43.4
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	SR4	Surface	1	1	20:22	20:46	22.2	7.6	23.3	6.72	6.0	11.3
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	SR4	Surface	1	2	20:22	20:46	22.1	7.6	23.2	6.78	6.0	13.0
	HY/2012/07	2013-11-26	Mid-Ebb	SR4	Middle	2	1	20:22	20:46						
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	SR4	Middle	2	2	20:22	20:46						
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	SR4	Bottom	3	1	20:22	20:46	22.5	7.7	23.7	6.23	17.0	19.3
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	SR4	Bottom	3	2	20:22	20:46	22.4	7.7	27.8	6.20	16.6	17.5
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	IS8	Surface	1	1	19:53	20:17	22.2	7.7	23.3	6.82	6.0	8.1
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	IS8	Surface	1	2	19:53	20:17	22.2	7.7	23.4	6.81	6.1	7.9
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-26	Mid-Ebb Mid-Ebb	IS8 IS8	Middle Middle	2	1 2	19:53	20:17 20:17						
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-26 2013-11-26	Mid-Ebb	IS8	Middle Bottom	3	1	19:53 19:53	20:17	22.4	7.7	23.6	6.34	13.9	14.4
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-26	Mid-Ebb	IS8	Bottom	3	2	19:53	20:17	22.4	7.7	23.6	6.34	13.9	15.1
TM-CLK Southern	HY/2012/07	2013-11-26		IS(Mf)16		1	1	19:24	19:48	22.4	7.7	23.4	6.71	9.2	11.5
TM-CLK Southern	HY/2012/07	2013-11-26		IS(Mf)16		1	2	19:24	19:48	22.2	7.7	23.4	6.73	9.3	12.2
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	. ,		2	1	19:24	19:48	22.2	7.7	23.5	6.59	12.6	13.3
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	IS(Mf)16		2	2	19:24	19:48	22.3	7.8	23.6	6.62	12.9	13.1
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	IS(Mf)16		3	1	19:24	19:48	22.5	7.8	23.7	6.07	18.6	31.1
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	IS(Mf)16		3	2	19:24	19:48	22.4	7.8	23.8	6.10	19.0	30.7
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	IS(Mf)9		1	1	18:55	19:19	22.2	7.7	23.8	6.50	5.4	4.8
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	- () -	Surface	1	2	18:55	19:19	22.3	7.7	23.7	6.58	5.4	5.1
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	IS(Mf)9	Middle	2	1	18:55	19:19						
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	IS(Mf)9	Middle	2	2	18:55	19:19				_		
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	IS(Mf)9	Bottom	3	1	18:55	19:19	22.4	7.9	24.8	6.27	15.8	6.4
TM-CLK Southern	HY/2012/07	2013-11-26	Mid-Ebb	IS(Mf)9	Bottom	3	2	18:55	19:19	22.4	7.9	24.7	6.30	16.1	7.5
		2013-11-26	Mid-Ebb	CS(Mf)5		1	1	21:32	21:56	22.3	7.6	23.4	6.59	4.9	4.0
TM-CLK Southern		2013-11-26	Mid-Ebb			1	2	21:32	21:56	22.3	7.6	23.5	6.61	4.9	4.4
TM-CLK Southern TM-CLK Southern		2013-11-26 2013-11-26	Mid-Ebb Mid-Ebb			2	1 2	21:32 21:32	21:56 21:56	22.2 22.3	7.7	23.5 23.6	6.54 6.50	5.6 5.7	4.9 5.0
TM-CLK Southern		2013-11-26	Mid-Ebb	, ,		3	1	21:32	21:56	22.3	7.7	23.6	6.50	6.0	7.0
TM-CLK Southern		2013-11-26	Mid-Ebb			3	2	21:32	21:56	22.4	7.7	23.8	6.13	6.1	6.4
. IVI OLIN GOULIIGIII	111/2012/01	2010 11-20	IVIIG LUU	JO(IVII)J	DOMOIII	5		£1.0£	21.00	LL.U	1.1	20.0	0.10	0.1	J.7

Project		ate (yyyy-mm-dd)		Stat	Level	Lev_Cod	Replicate	Start Time		Temp(°C)	рН	Salinity(ppt)		Turbidity(NTU)	` •
TM-CLK Southern	HY/2012/07		Mid-Flood	. ,	Surface	1	1	13:34	13:54	21.7	7.4	24.7	6.42	4.9	5.2
TM-CLK Southern TM-CLK Southern	HY/2012/07			` '	Surface	1	1	13:34	13:54	21.6 21.5	7.4 7.6	24.6	6.43	4.9	4.2
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-28	Mid-Flood Mid-Flood	` ′	Middle Middle	2	2	13:34 13:34	13:54 13:54	21.5	7.6	24.8 24.9	6.42 6.48	5.6 5.8	5.8 5.6
	HY/2012/07		Mid-Flood	, ,	Bottom	3	1	13:34	13:54	21.7	7.5	24.8	6.41	5.6	5.6
	HY/2012/07		Mid-Flood	, ,	Bottom	3	2	13:34	13:54	21.7	7.6	24.8	6.39	5.6	7.2
TM-CLK Southern	HY/2012/07		Mid-Flood	· ` ′	Surface	1	1	14:05	14:25	21.6	7.8	24.3	6.20	5.2	6.1
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	SR4a	Surface	1	2	14:05	14:25	21.6	7.8	24.4	6.24	5.2	7.1
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	SR4a	Middle	2	1	14:05	14:25						
TM-CLK Southern	HY/2012/07		Mid-Flood	SR4a	Middle	2	2	14:05	14:25						
TM-CLK Southern	HY/2012/07		Mid-Flood		Bottom	3	1	14:05	14:25	21.7	7.6	24.8	6.17	7.9	8.2
	HY/2012/07		Mid-Flood		Bottom	3	2	14:05	14:25	21.8	7.6	24.7	6.19	8.0	7.9
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	SR4	Surface	1	1	14:35	14:55	21.5 21.6	7.4 7.3	24.7	6.93	5.9 5.9	4.4
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-28 2013-11-28	Mid-Flood Mid-Flood	SR4 SR4	Surface Middle	2	2 1	14:35 14:35	14:55 14:55	21.0	7.3	24.9	6.91	5.9	4.3
TM-CLK Southern	HY/2012/07		Mid-Flood	SR4	Middle	2	2	14:35	14:55						
	HY/2012/07	2013-11-28	Mid-Flood	SR4	Bottom	3	<u>-</u> 1	14:35	14:55	21.5	7.6	24.8	6.63	5.4	5.7
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	SR4	Bottom	3	2	14:35	14:55	21.5	7.6	24.7	6.71	4.9	6.5
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	IS8	Surface	1	1	15:05	15:25	21.6	7.6	24.7	6.76	7.3	6.4
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	IS8	Surface	1	2	15:05	15:25	21.6	7.6	24.6	6.82	7.4	7.8
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	IS8	Middle	2	1	15:05	15:25						
	HY/2012/07	2013-11-28	Mid-Flood	IS8	Middle	2	2	15:05	15:25						
	HY/2012/07		Mid-Flood	IS8	Bottom	3	1	15:05	15:25	21.6	7.7	24.8	6.50	5.1	7.5
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood		Bottom	3	2	15:05	15:25	21.6	7.7	24.8	6.48	5.2	8.2
TM-CLK Southern TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	` '	Surface	1	1	15:35	15:55	21.5 21.6	7.7	24.6 24.6	6.17 6.20	5.7	5.7
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-28 2013-11-28	Mid-Flood Mid-Flood	, ,		2	1	15:35 15:35	15:55 15:55	21.6	7.7	24.6	6.20	5.9 5.5	4.2 6.5
	HY/2012/07 HY/2012/07		Mid-Flood	` '		2	2	15:35	15:55	21.7	7.7	24.7	6.79	5.5	6.0
TM-CLK Southern	HY/2012/07		Mid-Flood	, ,		3	1	15:35	15:55	21.7	7.8	24.7	6.38	5.5	8.0
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	· · · ·		3	2	15:35	15:55	21.7	7.8	24.7	6.32	5.4	5.9
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	· · · ·	Surface	1	1	16:05	16:25	21.5	7.8	24.6	6.75	5.0	6.2
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	` '	Surface	1	2	16:05	16:25	21.6	7.8	24.5	6.76	5.1	5.7
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	` '	Middle	2	1	16:05	16:25						
TM-CLK Southern	HY/2012/07		Mid-Flood	· ' /	Middle	2	2	16:05	16:25						
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Flood	` '	Bottom	3	1	16:05	16:25	21.7	7.9	24.7	6.52	7.9	8.0
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-28	Mid-Flood Mid-Flood	_ ` ′	Bottom Surface	3	<u>2</u> 1	16:05 16:35	16:25 17:04	21.7 21.5	7.9 7.7	24.6 24.7	6.58 6.83	7.9 5.2	8.4 4.1
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-28	Mid-Flood		Surface	1	2	16:35	17:04	21.5	7.7	24.7	6.87	5.3	6.1
TM-CLK Southern			Mid-Flood	, ,	Middle	2	1	16:35	17:04	21.7	7.7	24.7	6.28	5.2	4.8
TM-CLK Southern			Mid-Flood		Middle	2	2	16:35	17:04	21.8	7.8	24.8	6.30	5.2	5.4
	HY/2012/07		Mid-Flood			3	1	16:35	17:04	27.8	7.8	24.7	6.10	5.7	4.8
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Bottom	3	2	16:35	17:04	27.8	7.8	24.7	6.19	5.8	4.5
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Ebb	CS(Mf)3	Surface	1	1	07:28	07:40	21.6	7.6	24.6	6.62	4.4	4.6
TM-CLK Southern		2013-11-28	Mid-Ebb	CS(Mf)3	Surface	1	2	07:28	07:40	21.7	7.7	24.5	6.56	4.4	6.4
TM-CLK Southern		2013-11-28	Mid-Ebb	` '	Middle	2	1	07:28	07:40	21.7	7.8	24.6	6.25	4.3	5.9
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Ebb	CS(Mf)3	Middle	2	2	07:28	07:40	21.8	7.8	24.7	6.29	4.4	5.4
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Ebb	` '	Bottom	3	2	07:28	07:40	21.8	7.7 7.7	24.7	6.09	4.8	5.2
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-28	Mid-Ebb Mid-Ebb	. ,	Bottom Surface	1	1	07:28 09:18	07:40 09:30	21.8 21.4	7.7	24.8 24.5	6.07 6.58	4.8 5.3	5.1 6.7
	HY/2012/07	2013-11-28	Mid-Ebb		Surface	1	2	09:18	09:30	21.5	7.6	24.4	6.62	5.4	8.1
TM-CLK Southern		2013-11-28	Mid-Ebb	SR4a	Middle	2	1	09:18	09:30	21.0	7.0		0.02	0.1	0.1
	HY/2012/07	2013-11-28	Mid-Ebb	SR4a	Middle	2	2	09:18	09:30						
	HY/2012/07	2013-11-28	Mid-Ebb	SR4a	Bottom	3	1	09:18	09:30	21.5	7.7	24.6	6.42	8.1	7.5
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Ebb	SR4a	Bottom	3	2	09:18	09:30	21.6	7.7	24.6	6.44	8.2	9.3
TM-CLK Southern		2013-11-28	Mid-Ebb	1	Surface	1	1	08:48	09:08	21.6	7.6	24.4	6.81	0.1	8.1
TM-CLK Southern		2013-11-28	Mid-Ebb		Surface	1	2	08:48	09:08	21.5	7.6	24.4	6.78	6.1	6.8
	HY/2012/07	2013-11-28	Mid-Ebb	SR4	Middle	2	1	08:48	09:08						
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Ebb	SR4	Middle	2	2	08:48	09:08	01.0	7.0	04.5	0.40	E 7	0.1
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-28	Mid-Ebb Mid-Ebb	SR4 SR4	Bottom	3	1 2	08:48 08:48	09:08 09:08	21.6 21.7	7.6 7.6	24.5 24.6	6.18 6.21	5.7 5.8	9.1 9.9
TM-CLK Southern		2013-11-28	Mid-Ebb		Surface	1	1	08:48	09:08	21.7	7.6	24.6	6.78	7.4	5.6
TM-CLK Southern		2013-11-28	Mid-Ebb		Surface	1	2	08:30	08:40	21.6	7.6	24.5	6.74	7.5	5.2
	HY/2012/07	2013-11-28	Mid-Ebb	IS8	Middle	2	1	08:30	08:40	-	-			-	
	HY/2012/07	2013-11-28	Mid-Ebb	IS8	Middle	2	2	08:30	08:40						
TM-CLK Southern		2013-11-28	Mid-Ebb		Bottom	3	1	08:30	08:40	21.7	7.7	24.7	6.37	5.2	8.3
TM-CLK Southern		2013-11-28	Mid-Ebb		Bottom	3	2	08:30	08:40	21.7	7.6	24.6	6.34	5.3	6.6
TM-CLK Southern		2013-11-28	Mid-Ebb	IS(Mf)16		1	1	08:08	08:24	21.6	7.6	24.5	6.72	5.7	6.6
TM-CLK Southern		2013-11-28	Mid-Ebb	IS(Mf)16		1	2	08:08	08:24	21.7	7.6	24.5	6.70	5.1	6.1
	HY/2012/07	2013-11-28	Mid-Ebb	` ′		2	1 2	08:08	08:24	21.8	7.7	24.6	6.35	4.6 5.0	3.7
	HY/2012/07 HY/2012/07	2013-11-28	Mid-Ebb Mid-Ebb	IS(Mf)16 IS(Mf)16		3	<u>2</u> 1	08:08 08:08	08:24 08:24	21.7 21.8	7.7	24.7 24.8	6.30 6.19	5.0 4.6	7.2
	HY/2012/07 HY/2012/07	2013-11-28	Mid-Ebb	IS(Mf)16		3	2	08:08	08:24	21.8	7.7	24.8	6.19	4.6	6.4
	HY/2012/07 HY/2012/07	2013-11-28	Mid-Ebb	h ` '	Surface	1	1	07:48	08:00	21.5	7.7	24.7	6.45	5.6	8.5
TM-CLK Southern	HY/2012/07	2013-11-28	Mid-Ebb	_ ` ′	Surface	1	2	07:48	08:00	21.6	7.7	24.4	6.53	5.7	7.7
	HY/2012/07	2013-11-28	Mid-Ebb	` '	Middle	2	1	07:48	08:00						
TM-CLK Southern		2013-11-28	Mid-Ebb	` ,	Middle	2	2	07:48	08:00						
TM-CLK Southern		2013-11-28	Mid-Ebb	` '	Bottom	3	1	07:48	08:00	21.7	7.9	24.6	6.22	8.0	7.4
TM-CLK Southern		2013-11-28	Mid-Ebb	IS(Mf)9		3	2	07:48	08:00	21.7	7.9	24.6	6.25	8.1	8.6
	HY/2012/07	2013-11-28	Mid-Ebb	CS(Mf)5		1	1	09:53	10:18	21.5	7.6	24.4	6.54	3.9	5.1
TM-CLK Southern		2013-11-28	Mid-Ebb	CS(Mf)5		1	2	09:53	10:18	21.4	7.6	24.5	6.56	3.9	4.9
TM-CLK Southern TM-CLK Southern		2013-11-28 2013-11-28	Mid-Ebb Mid-Ebb			2	1 2	09:53 09:53	10:18 10:18	21.6 21.6	7.6 7.6	24.6 24.5	6.49 6.45	4.7 4.7	3.0 2.7
TM-CLK Southern		2013-11-28	Mid-Ebb			3	1	09:53	10:18	21.6	7.6	24.5	6.16	4.7	4.2
TM-CLK Southern		2013-11-28	Mid-Ebb			3	2	09.53	10:18	21.7	7.7	24.7	6.18	4.6	5.9
3 0000110111				(1411)0	_ 5	7					• • •		0.10		5.5

Project		ate (yyyy-mm-dd)		Stat	Level	Lev_Cod	Replicate	Start Time	End Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TM-CLK Southern	HY/2012/07		Mid-Flood	` '	Surface	1	1	14:45	15:05	20.8	8.0	25.8	6.51	9.1	7.2
TM-CLK Southern TM-CLK Southern	HY/2012/07			` '	Surface	1	1	14:45	15:05	20.7	8.0	25.7 25.9	6.52 6.54	9.1	7.0
	HY/2012/07 HY/2012/07	2013-11-30	Mid-Flood Mid-Flood	` ′	Middle Middle	2	2	14:45 14:45	15:05 15:05	20.8	8.0 8.1	25.8	6.57	9.3 9.2	8.3 8.0
	HY/2012/07		Mid-Flood	, ,	Bottom	3	1	14:45	15:05	21.0	8.2	26.0	6.50	9.9	8.4
	HY/2012/07		Mid-Flood	, ,	Bottom	3	2	14:45	15:05	21.1	8.2	26.1	6.48	9.9	9.0
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	· ` ′	Surface	1	1	15:15	15:35	20.7	8.0	25.6	6.29	10.5	9.3
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	SR4a	Surface	1	2	15:15	15:35	20.8	8.0	25.7	6.33	10.9	8.4
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	SR4a	Middle	2	1	15:15	15:35						
TM-CLK Southern	HY/2012/07		Mid-Flood	SR4a	Middle	2	2	15:15	15:35						
	HY/2012/07		Mid-Flood		Bottom	3	1	15:15	15:35	20.9	8.2	25.9	6.26	12.2	9.9
	HY/2012/07		Mid-Flood		Bottom	3	2	15:15	15:35	20.8	8.2	26.0	6.28	12.4	9.4
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	SR4	Surface	1	1	15:45	16:05	20.9	8.0	25.7 25.7	6.90	6.7 6.8	6.9
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-30	Mid-Flood Mid-Flood	SR4 SR4	Surface Middle	2	2 1	15:45 15:45	16:05 16:05	21.0	8.1	25.7	6.89	0.8	6.0
TM-CLK Southern	HY/2012/07		Mid-Flood	SR4	Middle	2	2	15:45	16:05						
	HY/2012/07	2013-11-30	Mid-Flood	SR4	Bottom	3	<u>-</u>	15:45	16:05	21.0	8.3	25.8	6.95	7.5	8.1
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	SR4	Bottom	3	2	15:45	16:05	21.1	8.3	25.7	6.98	7.2	8.7
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	IS8	Surface	1	1	16:15	16:35	20.9	7.9	25.6	6.85	12.4	8.2
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	IS8	Surface	1	2	16:15	16:35	20.8	8.0	25.7	6.91	12.5	8.1
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	IS8	Middle	2	1	16:15	16:35						
	HY/2012/07	2013-11-30	Mid-Flood	IS8	Middle	2	2	16:15	16:35						
	HY/2012/07		Mid-Flood	IS8	Bottom	3	1	16:15	16:35	21.0	8.2	25.9	6.59	10.5	9.7
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood		Bottom	3	2	16:15	16:35	21.1	8.2	25.8	6.57	10.8	10.1
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-30 2013-11-30	Mid-Flood Mid-Flood	` '	Surface	1	1 2	16:45 16:45	17:05 17:05	20.8	8.0 8.1	25.7 25.6	6.26 6.28	9.9 9.8	6.1
TM-CLK Southern	HY/2012/07 HY/2012/07		Mid-Flood	, ,		2	1	16:45	17:05	20.9	8.1	25.6	6.28	9.8	7.6
	HY/2012/07		Mid-Flood	` '		2	2	16:45	17:05	20.9	8.1	25.8	6.88	10.0	8.6
TM-CLK Southern	HY/2012/07		Mid-Flood	, ,		3	1	16:45	17:05	21.0	8.2	25.9	6.47	9.3	8.7
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	· · ·		3	2	16:45	17:05	21.1	8.2	26.0	6.41	9.3	8.0
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	· · ·	Surface	1	1	17:15	17:35	20.8	8.0	25.8	6.84	10.1	7.2
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	` '	Surface	1	2	17:15	17:35	20.7	8.0	25.9	6.86	10.0	8.5
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	` '	Middle	2	1	17:15	17:35						
	HY/2012/07		Mid-Flood	\ /	Middle	2	2	17:15	17:35						
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	` '	Bottom	3	1	17:15	17:35	20.9	8.1	26.1	6.61	9.8	8.0
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-30	Mid-Flood Mid-Flood	_ ` ′	Bottom Surface	3	<u>2</u> 1	17:15 17:55	17:35 18:15	21.0 20.9	8.1 8.0	26.0 25.8	6.67 6.92	9.8 10.9	8.8 7.1
TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-30	Mid-Flood		Surface	1	2	17:55	18:15	20.9	8.0	25.8	6.96	11.1	8.1
TM-CLK Southern			Mid-Flood	, ,	Middle	2	1	17:55	18:15	20.9	8.1	25.8	6.37	8.7	6.2
TM-CLK Southern			Mid-Flood			2	2	17:55	18:15	21.0	8.1	25.9	6.39	8.7	7.5
	HY/2012/07		Mid-Flood		Bottom	3	1	17:55	18:15	21.1	8.2	26.1	6.21	8.5	7.4
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Flood	CS(Mf)3	Bottom	3	2	17:55	18:15	21.0	8.1	26.2	6.24	8.5	9.0
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Ebb	CS(Mf)3	Surface	1	1	08:57	09:17	20.9	8.0	25.8	6.76	11.4	7.9
	HY/2012/07	2013-11-30	Mid-Ebb	CS(Mf)3	Surface	1	2	08:57	09:17	20.9	8.0	25.9	6.78	11.3	8.3
TM-CLK Southern		2013-11-30	Mid-Ebb	CS(Mf)3	Middle	2	1	08:57	09:17	21.0	8.0	26.0	6.21	8.8	7.8
	HY/2012/07	2013-11-30	Mid-Ebb	CS(Mf)3	Middle	2	2	08:57	09:17	20.9	8.0	26.1	6.22	8.8	8.0
	HY/2012/07	2013-11-30	Mid-Ebb	` '	Bottom	3	2	08:57	09:17	21.0	8.1 8.2	26.2 26.1	6.09	8.6	9.0 7.5
	HY/2012/07 HY/2012/07	2013-11-30 2013-11-30	Mid-Ebb Mid-Ebb	. ,	Bottom Surface	1	1	08:57 11:30	09:17 11:55	21.1 20.6	8.0	25.7	6.10 6.11	8.6 11.1	10.0
	HY/2012/07	2013-11-30	Mid-Ebb		Surface	1	2	11:30	11:55	20.7	8.0	25.8	6.10	11.2	10.2
TM-CLK Southern		2013-11-30	Mid-Ebb	SR4a	Middle	2	1	11:30	11:55	20.7	0.0	20.0	0.10	11.2	10.2
	HY/2012/07	2013-11-30	Mid-Ebb	SR4a	Middle	2	2	11:30	11:55						
	HY/2012/07	2013-11-30	Mid-Ebb	SR4a	Bottom	3	1	11:30	11:55	20.8	8.1	25.9	6.15	12.9	11.5
TM-CLK Southern	HY/2012/07	2013-11-30	Mid-Ebb		Bottom	3	2	11:30	11:55	20.9	8.1	26.1	6.17	13.0	12.1
TM-CLK Southern		2013-11-30	Mid-Ebb		Surface	1	1	10:57	11:17	20.8	7.9	25.8	6.81	6.8	5.7
TM-CLK Southern		2013-11-30	Mid-Ebb		Surface	1	2	10:57	11:17	20.9	8.1	26.1	6.80	6.9	5.8
	HY/2012/07	2013-11-30	Mid-Ebb	SR4	Middle	2	1	10:57	11:17						
	HY/2012/07	2013-11-30	Mid-Ebb	SR4	Middle	2	2	10:57	11:17	01.0	0.0	00.0	0.00	7.0	6.4
TM-CLK Southern TM-CLK Southern	HY/2012/07 HY/2012/07	2013-11-30	Mid-Ebb Mid-Ebb	SR4 SR4	Bottom	3	1 2	10:57 10:57	11:17 11:17	21.0 21.0	8.3 8.3	26.3 26.4	6.86 6.89	7.6 7.1	6.4
TM-CLK Southern		2013-11-30	Mid-Ebb		Surface	1	1	10:37	10:47	20.9	7.9	25.5	6.74	13.1	10.9
TM-CLK Southern		2013-11-30	Mid-Ebb		Surface	1	2	10:27	10:47	21.0	7.9	25.6	6.76	13.2	9.9
	HY/2012/07	2013-11-30	Mid-Ebb		Middle	2	1	10:27	10:47	-			-		-
	HY/2012/07	2013-11-30	Mid-Ebb	IS8	Middle	2	2	10:27	10:47						
	HY/2012/07	2013-11-30	Mid-Ebb		Bottom	3	1	10:27	10:47	21.1	8.2	25.8	6.47	11.5	11.8
TM-CLK Southern		2013-11-30	Mid-Ebb		Bottom	3	2	10:27	10:47	21.1	8.2	25.8	6.49	11.5	11.8
TM-CLK Southern		2013-11-30	Mid-Ebb	IS(Mf)16		1	1	09:57	10:17	20.7	8.0	25.5	6.11	10.0	9.5
	HY/2012/07	2013-11-30	Mid-Ebb	IS(Mf)16		1	2	09:57	10:17	20.8	8.0	25.6	6.10	10.0	9.1
	HY/2012/07	2013-11-30	Mid-Ebb	` ′		2	1 2	09:57	10:17	20.8	8.0	25.8 25.9	6.74	10.0	10.0
	HY/2012/07 HY/2012/07	2013-11-30	Mid-Ebb Mid-Ebb	IS(Mf)16 IS(Mf)16	Middle Bottom	3	<u>2</u> 1	09:57 09:57	10:17 10:17	20.9 21.0	8.0 8.2	25.9	6.73 6.24	10.1 9.4	10.6 11.8
	HY/2012/07 HY/2012/07	2013-11-30	Mid-Ebb	IS(Mf)16		3	2	09:57	10:17	21.0	8.2	26.0	6.21	9.4	11.2
	HY/2012/07	2013-11-30	Mid-Ebb	h ` '	Surface	1	1	09:37	09:47	20.8	8.0	25.6	6.61	10.9	9.1
	HY/2012/07	2013-11-30	Mid-Ebb	_ ` ′	Surface	1	2	09:27	09:47	20.8	8.0	25.7	6.63	10.8	9.1
	HY/2012/07	2013-11-30	Mid-Ebb	` '	Middle	2	1	09:27	09:47						
TM-CLK Southern		2013-11-30	Mid-Ebb	` ,	Middle	2	2	09:27	09:47						
TM-CLK Southern		2013-11-30	Mid-Ebb	` '	Bottom	3	1	09:27	09:47	20.9	8.1	25.9	6.45	9.9	9.2
TM-CLK Southern		2013-11-30	Mid-Ebb	IS(Mf)9		3	2	09:27	09:47	21.0	8.2	26.0	6.47	9.9	9.0
	HY/2012/07	2013-11-30	Mid-Ebb	CS(Mf)5		1	1	12:05	12:25	20.7	8.0	25.9	6.41	9.2	6.7
TM-CLK Southern		2013-11-30	Mid-Ebb	CS(Mf)5		1	2	12:05	12:25	20.6	8.0	25.8	6.42	9.2	7.4
TM-CLK Southern TM-CLK Southern		2013-11-30	Mid-Ebb	CS(Mf)5		2	1 2	12:05	12:25	20.8	8.0	25.9 26.0	6.47	9.4	7.8 8.7
TM-CLK Southern		2013-11-30 2013-11-30		CS(Mf)5		3	1	12:05 12:05	12:25 12:25	20.8	8.0 8.2	25.9	6.49 6.41	9.4 10.1	10.9
TM-CLK Southern		2013-11-30		CS(Mf)5		3	2	12:05	12:25	21.1	8.2	25.9	6.40	10.1	9.7
AN OLK SOUTHERN	, 20 12/01	2010 11-00	IVIIG-LUD	CO(IIII)	בסונטווו	J	<u>-</u>	12.00	12.23	۷1.0	0.1	20.1	0.40	10.0	5.1

Š

Impact Water Quality Monitoring - Data Record Sheet (Flood Condition) Tuen Mun – Chek Lap Kok Link – **Southern**

Sampling Date :	Sampling Date: $3 - 0-2 $ Weather Condition: $ - - - - $	eather Condition :	900	Ambient Tempe	Ambient Temperature (°C): 25	1	a Conditions: Ca	Sea Conditions: (Calm)/ Small Wave / Great Wave	/ Great Wave	Tide Mode: Flood Tide Dir	Direction of water current: From CS(MD5 to CS(MD3	om CS(Mf)5 to CS(Mf)5
Station: CS(Mf)	Station: CS(Mf)5 (Upstream Control Station)	ol Station)	Duration:	Duration: 15:06 10 (5: 25	15: 2	ı	th of Water (me	Depth of Water (meter): 0_{18}	~	Wet bulb calibration for DO meter: [1] mg/L (99, D)%	neter: [4] mg	11 (940 %)
		SURFACE			MIDDLE			BOTTOM		DEPTH AVERAGE	R	REMARK
Depth (meter)		0			って			\$\int_{\delta}^{\delta}				
Temp. (°C)	. 25.1	25.0	25.0 Ave.: 25.1	75.4	25,4	Ave.: 25,4	4152	25.3 AVE: 25,4	Ave.: 25,4			
Hd			6,75 Ave.: 6,76 6,67	6,67	69.9	Ave.: 6.68	Ave.: 6-68 6.69	899	668 Ave.: 6,69			
Salinity (ppt)	24.5	 	24, 6 AVE.: 24, 6 255	25.5	25.4	Ave.: 25.5	25.5 25, 6		Ave.: 25.7			
D.O. (mg/L)		<u> </u>	7.81 Ave: 7.80 6.47	C4.9	るよう	Ave. G. 48	6.48 6.29	6.3	Ave.: 6.30			
D.O.S. (%)	108.2	ļ	108.5 Ave: 108.4 89.8	8.68	Ś	Ave.: 90.0	87.3	87.6	87.6 Ave. 87.5		120%	130%
Turbidity (NTU)	27.70	220 211 Ave. 216 2.76 183	Ave.: 2,1 b	276	83	Ave.: 2.30	2.50 2.61	2.77	Ave.: 2.69	2.58	2.86	3,09
S.S. (mg/L)			Ave.:			Ave.:			Ave.:			
		0 0		ולוטל ונינל	ונינה		, , , , , , , , , , , , , , , , , , , ,		7	West. He calibration by D. motor. 79.4 mol11 98.1	7 6 C	% / 1/6 / 1/

Station:	150000 SRY	,	Durati	ion:	Duration: 15:35 to 15:54	3:54	Depth	Depth of Water (meter): 5,2	2,5	 	'et bulb ca	Wet bulb calibration for DO meter: 79.45 mg/L (98-6%)	ter: 79.1	7) 7/8m 5	18.6 %
	SURFACE (S)	Action	Action Limit V/A/L	VAAL	MIDDLE (M)	Acti	Action Limit V/A/L	BOTTOM (B)	Action	Action Limit V/A/L	DEPTH 1/1	ACTION		LIMIT	REMARK
Depth (meter)	2							4.7			AVE.	ALL.			
Temp. (°C)	1 25.0 Ave. 25.0	ं					2	24,9 25,0 Ave.: 5,0	0.35						
Hd	: 6.62 6.60 Ave.: 6.61	7					3	6.64 6.66 AME: 6.65	59.						
Salinity (ppt)	: 24,6 24,5 Ave. 24.	9			Ave.:			25.0 24.9 Ave. 25.0		,					
D.O. (mg/L)	1 8.02 8.04 Ave. 8.05 5.	3.0	5.0 4.2	>	Ave.:		5.0 4.2	7,89 7,90 Ave. 7,90		4.7 2.0 V					
D.O.S. (%)	: [[[] Ave.:	٩			Ave.:			[08,6 109,7 Ave.: 109,7]	101			30 700 E 3 Fr) and 120% of	
Turbidity (NTU)	Turbidity (NTU) 1276 254 Ave.:	7			Ave.:			5.41 3.57 Ave. 4.49	るささ		3.56 V		275	csams 47.0	0.
S.S. (mg/L)	. Ave.:				Ave.:	.:.		Ave.:				23.5 and 120% of CS(Mf)5		34.4 and 130% of CS(Mf)5	
,															

Tuen Mun – Chek Lap Kok Link – **Southern**

Impact Water Quality Monitoring - Data Record Sheet (Flood Condition)

					(W) (Cambou					2017
	SURFACE (S)	Action Limit V/A/L	MIDDLE (M)	Action Limit V/A/L	BOTTOM (B)	Action Limit V/A/L DEPTH	V/A/L	ACTION	LIMIT	REMARK
	٥)				3,6	AVE.				
25.(25,2 Ave.: 25,2			7	5,1 25,1 Ave. 25,1					
4,62	6.64 Ave. 663			og .	6.53 6.51 Ave.: 6.52					
246	24,7 18024,6		Ave.:	7	24.7 24.8 Ave.: 248					
\$.((813 Ave: 8.12	5.0 4.2	Ave.:	5.0 4.2	, 64 7.66 Ave. 7.65	4.7 2.0				
112.6	112.8 Ave. [12,7		/ Ave.:		(06.1 (06.4 Ave.: (06.3					
1.65	3,12 Ave. 289		Ave.:	6	5,42 6.70 Ave. 6.06	(+/+)	>	27.5 and 120% of 27.5 CS(Mf)5	47.0 and 130% of 47.0 CS(Mf)5	
	.1		Ave.:		Ave.:		23.5 an CS	23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	
IS8		Duration:	77:9) 00 77:9)		Depth of Water (meter):	8 Wet bu	Wet bulb calibration for DO meter:	r DO meter:	2 mg/L (98,	(% +),
	SURFACE (S)	A/L	IDDLE (A	Action Limit V/A/L	BOTTOM (B)	Action Limit V/A/L DEPTH		ACTION	LIMIT	REMARK
	0,7				2,5	AVE.	E. Y'A'L			
25.5	25,) Ave.) C)			7	5.0 25.1 Ave. 25.1					
77	15 9:00 SS9				55 6,57 Ave. (,56					
7(,6	25.5		Ave.:	7	F. 8 24.8					
8.29	8,31	5.0 4.2	Ave.:	5.0 4.2	8.04 B.11 Ave.: 8,10	$\left \begin{array}{c c} 4.7 & 2.0 \end{array} \right \mathcal{J}$				
115.1			Ave.:		112.4 112.6 Ave; 112.5		3 44	2000 PE	12 0 2008 1 200% of	
237	1		Ave.:	<i>T</i>	469 3,10 Ave;4.05		3.40 / C.30	27.5 and 120% by 27.5 CS/MJ)5 23 5 and 120% of	47.5 and 130% of +7.0	٥
	Ave.:		/ Ave.:		Ave.:		D C.S.Z	CS(Mf)5	CS(Mf)5	
3€	SRF IS (MF) 16	Duration:	poil 0 05:9		Depth of Water (meter):	U Wet l	Wet bulb calibration for DO meter:	for DO meter:	$)_{7}$	(% () %)
	SURFACE (S)	Action Limit 4/A/L	MIDDLE (M)	Action Limit V/A/L	BOTTOM (B)	Action Limit V/A/L DEPTH	TH \\\ \\ \/ \/ \/ .	ACTION	LIMIT	KEMAKK
	0>)		3.5		0.9	AVE.				
25.(15.2 Ave. 75,2		25,1 25,0 25,1		25,0 25,0 Ave.: 25,0)				
6,63	16,64 Ave.: 6.64		80.0 160.0 150.0		6,54 6.61 AVE.: 6.60					
にお	24,7 Ave. 24,7		15.0		25,0 24.9 Ave.: 25.0	Į.				
8.25	اردیکا	5.0 4.2 V	8,11 P.12 AVE 8,12	12 5.0 4.2 1	74 7,77 Ave. 7,76) 4.7 2.0 U				
して	114.9 Ave 114.8		11.8 1129 1129		(03.0 AW)			27.5 and 120% of	47.0 and 130% of	
3.53	3143 Ave. 3,48	^	389 406 AVE 3,98		0.03 6.30 7 6.1	F	シェンナ	23.5 CS(MJ)5 27.5 23.5 and 120% of	34.4 and 130% of	2
	4110	は、 の の の の の の の の の	. 0110	一名のでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ		Control of the Contro	-	· · · · · · ·		

Tuen Mun – Chek Lap Kok Link – **Southern**

Impact Water Quality Monitoring - Data Record Sheet (Flood Condition)

Station:	SR40 ISCINT)4	14) a	Duration:	Duration: []:(] 10]:40	0 17:40		Depth of Water (meter):_	4,7		Wet bulb calibration for DO meter:		1.05 mg/L (999	999
	SURFACE (S)		Action Limit V/A/L	MIDDLE (M)	E (M)	Action Limit V/A/L	BOTTOM (B)		Action Limit V/A/L	НЕРТН	ACTION	LIMIT	REMARK
Depth (meter)	0,					7	3.2	٦		AVE. V/A/L			
Temp. (°C)	757 J. 757 J. 757	ve.: 25,4					452 552	4 Ave.: 25 4					
Hd	· 6.74 6.76	ve.: 6.75					99 699	6.67 Ave.: 6.68					
Salinity (ppt)	1248 24,9 Ave. 24,9	ve24.9			Ave.:		150 251	Ave.: 25,					
D.O. (mg/L)	1855 851 AVE. 1956		5.0 4.2		Ave.:	5.0 4.2	3.47 8.44	4 Ave.: 8.43	4.7 2.0 V				
D.O.S. (%)	18.7 [19.0 Ave. 18.9	ve.:			Ave.:		6.7	1					
Turbidity (NTU)	: 11.6 9.48 Ave.: 0.5	(0.5			Ave.:		109 3	Ave.: [2,0		11.21	27.5 and 120% of CS(Mf)5		47.0
S.S. (mg/L)		ve.:			Ave.:			Ave.:		23	23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	
Station:	$CS(M\hat{\theta}3$		Duration:	17:55 10	18:36		Depth of Water (meter):	J. B. 7	И	Wet bulb calibration for DO meter:		8.00 Jugu 40.8	(% 8')
		SURFACE			MIDDLE			BOTTOM		DEPTHA	DEPTH AVERAGE	REMARK	
Depth (meter)		0 3			ナモ			r.				And Andrews and An	
Temp. (°C)	9.57	25.6	Ave.: 25, 6	25.6 Ave. 25.6 25.5	75.4		25,3	25,2	Ave.: 25,3				
Hd	799	79.9	Ave.: 6.63	19 19	6,63	Ave.: 6-62	95.9	859	4ve.: 6.57				
Salinity (ppt)		22.4	Ave.: 22.5	23,3	23.3	Ave.: 23,3	23,7	238	Ave.: 23 8				
D.O. (mg/L)	8 7 %	8.8	Ave.: P. J.D	8.81 Ave.: 8.86 8,84	8.86		8,74	R. 76	Ave.: 8.75				
D.O.S. (%)	1777	12.5	Ave.: 122,4	122.5 Ave. 122.4 123.0	(23, 2		121,6	121,9	Ave.: 21.8				
Turbidity (NTU)	·	2,12	Ave.: 55	2,12 AVE: 55 2.83	2,07	Ave.: 295	03,0	7.7	Ave.: 2.6	2.70	(
S.S. (mg/L)			Ave.:			Ave.:			Ave.:				
		,											

Any notable discoloration of water? N/N If yes, elaboration is as follows: ___

Any notable pollutant by others near monitoring site ? $\chi'N$ If yes, elaboration is as follows :_

Checked by	Date
Laboratory Staff	Дате
12k/	(1)0/18
Checked by	Date
card Things How	21 - 10 - 9013
Field Operator	Date

8 + 22 mg/L (28. 5 %) Direction of water current: From CS(Mf)3 to CS(Mf)5 REMARK 1,00) 7/8m 47.0 and 130% of CS(Mf)3 34.4 and 130% of CS(Mf)3 LIMIT \$ \$0.50 \$ 50.00 Wet bulb calibration for DO meter: Wet bulb calibration for DO meter: 23.5 and 120% of CS(Mf)3 27.5 and 120% of CS(Mf)3 ACTION DEPTH AVERAGE ナペン Sea Conditions: Calm Small Wave / Great Wave Tide Mode: Ebb Tide DEPTH V/A/L 176 Ave.: 86.3 Action Limit V/A/L 25.6 Ave.: 55 berr 170 Ave. 7.93 (૦ક્સ્ 9 Ave.: 25,0 14ve.: 6120 ž O 75.6 ھ ص 673 BOTTOM かけ 298 120 BOTTOM (B) 40 5.29 6.62 187 185 Depth of Water (meter):_ (09,2/109,3 25,0 186 780 Depth of Water (meter). 25.0 25.4 86,57 1,23 とだら 6.23 150 J Ave. 6.40 Ave. 25.4 スプー 88.9 Action Limit V/A/L 17 1(23) (1) (C Ambient Temperature (°C) : 15.4 MIDDLE 89(0 637 آ ف 48 Ave. A ve.: Ave.. Ave.: MIDDLE (M) 1 (2(3 10 01 047)! 629 オニ 6,63 ンがへ 23.3 Ave... (67.0 25 245 25.0 Action Limit V.A.L. 6.70 Duration: 12/2 Duration:__ Sampling Date 34 (12.13 Weather Condition: 198 -2 がなが Ave.: 7457 74.0 <u>-</u> 21.1 (043 (16,6 | 1(1.0 110R) SURFACE 250 STATE SPITA SURFACE (S) 1.9.7 196 199 J. られた 0 なら みかる 8919 7.68 -0 -0 -0 -0 CS/MDS られる (1.33 景 Turhiduy (NTU) Turhiduy (NTI) Depth (meter) Depth (meter) Salinity (ppt) D.O. (mg.7.) Salinity (ppt) S.S. (mg:1.) D.O. (mg/L) D.O.S. (%) Temp. (C) S.S. (mg-L) D.O.S. (%) Temp. (C) Station: Station:

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Cc.,dition)**

Action Limit Val 2	,	Duration: (0	20511 01 27-01	-	Depth of Water (meter):		Wet bulb calibration for DO meter:	11.1. 1/8m R<18	1%
1.0 1.0	SURFACE (S)	Action Limit VIAIL	MIDDLE (M)	Limit	BOTTOM (B)	V/A/L DEPTH	ACTION	LIMIT	REMARK
25.1 (**5.7.2	٥٠				3.4	AVE. V/A/L			
	25)			75.	(>5.6 A				
14.7	6,57			59	6.6 1 Ave.				
\$\frac{\text{Right}}{\text{Right}} \frac{\text{Right}}{\text{Right}} \fr	フナス Tave フナイ	WH	Ave.:	8th	34.8				
(12.14) Anv. (11.14) 41.56) Anv. (12.14) Anv. (12.14) 41.56) Anv. (12.14) Anv. (12.14) 11.56) Anv. (12.14) Anv. (12.14) 11.57) Anv. (12.14) Anv. (12.14) 11.58) Anv. (12.14) Anv. (12.14) 11.59) Anv. (12.14) Anv. (12.14) 11.51) Anv. (12.14) Anv. (12.14) 11.51) Anv. (12.14) Anv. (12.14) 11.51) Anv. (12.14	Biol		Ave.:	4.2	7,60	2.0			
4.56 Are: 4.65 Are: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(2,1		Ave.:	70	(01 ² -6				
Ave.	C K		Ave.:	9)	12.4	838 1	27.5 and 120% of 27.5 CS(MI)3	47.0 and 130% of 47.0 CS(Mf)3	
STREACE (S) Action Line Value			Ave.:				23.5 and 120% of CS(Mf)3	34,4 and 130% of CS(Mf)3	
1.0	3.5		10		7		Wet bulb calibration for DO meter:	843 mg/L PG	(%)
[10] 12-11 And Decided States	SURFACE (S)	Action Limit VAIL	MIDDLE (M)		BOTTOM (B)	DEPTH	ACTION	LIMIT	REMARK
13-6 4 ^{14/2} 15-6 15-6 15-6 15-7 15-6 15-7 15	0				3.6	AVE. VIAIL			
6. 11 Ann 1. 20 9. 21 Ann 1. 20 9. 24 Ann 1. 20 114.5 Ann 1. 4. 2 114.5 Ann 1. 4. 2 115.2 Ann 1. 4. 2 115.4 Ann 1. 4. 2 115.5 Ann 1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	74.(7	17.0 Ave.				
γμε ^{Ave:} ×4.9 <	J. è			59 300	6.52 Ave.				
\$72K Ane. \$30 42 \$40.5 \$40	2) 3		Ave.:	えること	348				
1145 111.6 111	25.0	5.0	Ave.:	4.2	8,03	2.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.4.2		Ave.:	11.	116.6 Ave.				
Ave.: Ave.	45		Ave.:	4.5	5579	J-13 /	27.5 and 120% of ST.5 CS(Mf)3	47.0 and 130% of 47.0	
118.54 (16) Duration: \$\frac{12.76}{3.4} to 16.214 \text{ Depth of Water (meter):} \text{ 6.8} \\ \(\lambda \) \text{ Action Limit VAIL MIDDLE (M) Action Limit VAIL BOTTOM (B) Action Limit VAIL \\ \(\lambda \) \text{ Ave;} \\ \(\lambda \) \\ \(\lambda			Ave.:				23.5 and 120% of CS(Mf)3	34.4 and 130% of CS(Mf)3	
1.17.5 Ave. 3.0 Action Limit VAAL MIDDLE AN Action Limit VAAL BOTTOM (B) Action Limit VAAL S. 2.0 Ave. 3.0 Ave.	SA SOMFILE)	Duration;					Wet bulb calibration for DO meter:	838 mg/L (98.	(%)
1.0 1.0 25.4 25.4 25.4 25.4 25.6 25.4 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	SURFACE (S)	Limit	MIDDLE (M)		BOTTOM (B)	Limit V/A/L DEPTH	ACTION	NIMIT R	REMARK
15.2 4 16.2 6.6 6.6 6.6 6.6 6.6 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0		is is	3,4		5,8	AVE. VAIL			
1.25 41 6.56 6.61 6.60 6.61 6.64 6.63 41.65 6.64 6.63 41.65 6.65 6.65 6.65 6.65 6.65 6.65 6.65	ドバ	C	250		15.0 Ave				
34,7 41,8 41,8 50 4.2 V 3,49 44,9 41,8 50 4.2 V 7,68 7-63 47 20 V 20 V 20 V 7,68 7-64 47 20 V 20 V 7,68 7-65 40 V 20 V	25)		6.60		6.63				
8,20 And 8,19 5.0 4.2 V 8,04 And 8,65 5.0 4.2 V 7,68 7-63 And 7,66 V 20 V 113,9 And 17,20 V 12,20 V	だが		6/1/4		75,0				
113,9 110,2 111,3 111,5 111,7 111,5 106,6 106,1 110,6 106,1 110,6 106,1 110,6 106,1 110,6 106,1 110,6 106,1 110,6 10,6	2	5.0 4.2 🗸	Brote	5.0 4.2 V	1-63				
570 Ave 47 Ave 9.54 Tub Ave 3.16 Tub 941 Ave 9.59	1139				E-passers-				
420	570		1.84 84, L 48.		35	1.582	27.5 and 120% of CS(MJ)3 27.5		
	Ave.:		Ave.:		Ave.:		23.5 and 120% of CS(Mf)3	34.4 and 130% of CS(Mf)3	

Tuen Mun – Chek Lap Kok Link – **Southern**

Impact Water Quality Monitoring - Data Record Sheet (Ebb Cc., dition)

Station:	The T	SEE IS(MF)9.	Duration:	9224 10	9242	ı	Depth of Water (meter):_	7: 40		7et bulb calibra	Wet bulb calibration for DO meter:	9 3.7 mg/L (99.8 %)
	SURFACE (S)		Action Limit VAIL	MIDDLE (M)	E (M)	Action Limit VIAIL	BOTTOM (B)		Action Limit VAIL	DEPTH 1111	ACTION	LIMIT	REMARK
Depth (meter)	0 3						3.0	0		AVE. VIAIL			
Temp. (C)	25.3 25.4 Ave.	Ave	e de la companya de l				本年 5年						
PH	893 113	T dve 6.70					5.74 6.77						
Salinity (ppt)	24.9 24.8 14.9				Ave.:	A 20 00 00 00	24.9 25.0	- 1					132
D.O. (mg/l.)	128 748		5.0 4.2		Ave.:	5.0 4.2	8.33 8.3B		4.7 2.0				
D.O.S. (%)	17 4 (168 dve.	Ave	1,200		Ave.:		(157 116.4 1160	4ve.:					
Turbidity (NTU)	Committee	4ve.7,5			Ave		(F. N. 15.5)	Ave		16.2 J	27.5 and 120% of ST.15	47.0 and 130% of CS(Mf)3	0.(4)
S.S. (mg·L.)		,4ve.:			Ave.:						23.5 and 120% of CS(Mf)3	34.4 and 130% of CS(Mf)3	
Station: CS/ML	Station: CS(Mf)3 (Upstream Control Station)	J Station)	Duration:	8-50 "	10 9210		Depth of Water (meter):	7: 8.4		Vet bulb calibro	Wet bulb calibration for DO meter:	7: St_mg/L (64.9%
		SURFACE			MIDDLE			BOTTOM	***************************************	DEP'	<i>DEPTH AVERAGE</i>	REMARK	κ
Depth (meter)		Ô			47			ナント					
Temp. (°C.)	256	ンカン	Ave.: 25-6	25-4	25.4	Ave.:	25.3	25.3	Ave.: 25.3				
hΗ	8219	94.9	Ave.: 6.V7	129	6.53	Ave.: 6.53	5.52	6.53	Ave.: 6.53				
Salmity (ppt)	カルス	22.5	Ave.:	73,73	13.2	Ave.:	73.8	22,8	Ave.: 12,8				
D.O. (mg·L)	2007	868	Ave.:	ତ ଓ ପ୍ର ଜଣ୍ଡ	8.17	Ave.: 8.79	8,7°	3.66	Ave.: Sc68				
D.O.S. (%)	1710		Ave.:	かれ	おうん	Ave.: (LL. O	(20.9	- 1	Ave.: (20.6			120%	130%
Turbidity (NTU)	3,55	3.41	Ave.: 3.38		3.65	Ave		3.32	Ave.: 3,25	8	3.42	E	4.5
S.S. (mg/L)			Ave.:			Ave.:			Ave.:				
The second secon	1											and described to the second se	

Any notable discoloration of water? YANN If yes, elaboration is as follows:

Checked by	Date
Laboratory Staff	Баге
ish	21/10/115
Checked by	Баге
12.17. (Endon	36, 10, 2013
Field Operator	Дак

Impact Water Quality Monitoring - Data Record Sheet (Ebb Concision) Tuen Mun - Chek Lap Kok Link - Southern

Direction of water current: From CS(Mf)3 to CS(Mf)5 J (94, () REMARK ナ Wet bulb calibration for DO meter: DEPTH AVERAGE Tide Mode: Ebb Tide てか Ave.: 625 Ave.: 7.20 Sea Conditions/ Calm/ Small Wave / Great Wave Ave.: 35,7 Ave. 25,4 Ave.: N 70 20,0 たられ BOTTOM $\frac{8}{5}$ Depth of Water (meter):_ 6.64 6,24 スイ 86.7 E Ave.: 6.25 Ave. 25,4 Ave.: 89,0 Ave. 256 ナ Аче.: Ambient Temperature (°C): 25 13.43 e, to 6,70 5,48 MIDDLE 553 ∞ t よびに 0,0 (1) 13315 Ave. 7, 64 Ave.: 05.9 Ave.: 15,2 Ave.: 24.5 Ave.: 6,82 Ave.: 583 Duration: Sampling Date: 1-(1-201) Weather Condition: Fing Ave.: 106.0 24.5 SURFACE S 3 1058 24. 2,8 CS(MD5 Turbidity (NTU) Depth (meter) D.O. (mg/L) Salinity (ppt) D.O.S. (%) S.S. (mg/L) remp. (°C) Station:

Station:	18rMD16 SX44	Duration: 12	Duration: 12:38 to 13:00		Depth of Water (meter): $5, 0$		Wet bulb calibration for DO meter:	1.40 mg/L (a	% 8.70
	SURFACE (S)	Action Limit V/A/L	MIDDLE (M)	Action Limit V/A/L	BOTTOM (B)	Action Limit VAIL DEPTH	ACTION	LIMIT	REMARK
Depth (meter)	<u></u>				40	AVE.	ALL CONTRACTOR OF THE PROPERTY		
Temp. (°C)	25,1 25,0 Ave. 35,1			2	25.0 24,9 Ave. 5,0				
	50,5 64 666 Ave.i. 65				6.69 671 Ave. 6.70				
Salinity (ppt)	1 24,6 24,7 Ave. 24,7		Ave.:	7	14.9 14.9 Ave. 14.9				
D.O. (mg/L)	7.94 7.96 Ave: 7.95	5.0 4.2	Ave.:	5.0 4.2	775 Ave. 7.74	f 4.7 2.0 V s			
D.O.S. (%)	(10,f (10.4 Ave.: (0.3		Ave.:		(07.3 (07.6 Ave.: (07.5				
Turbidity (NTU)	602 6 11 Ave. 32		Ave.:		84 8 91 AVE. 8:38	7,10	27.5 and 120% of 27.5 CS(Mf)3 27.5	j	
S.S. (mg/L)	Ave.:		Ave.:		Ave.:	T.	23.3 and 120% of CS(Mf)3	54.4 and 150% of CS(Mf)3	

\$ \$

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Conartion)**

4ve. 25. 1
7, 7 25,(25,0 Au
7
O Ave. 25,2
25.7 25.2

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Conardon)**

(%	REMARK									%							%	0	
mg/L (0/9, 6	RI							é.J.		5.66	ARK						130%	2	
	LIMIT								34.4 and 130% of CS(Mf)3	8,3 % mg/L(REMARK						120%	553	
Wet bulb calibration for DO meter:	DEPTH JAM	AVE. VIALLE INTERPRETATION						23.3	23.5 and 120% of CS(Mf)3	Wet bulb calibration for DO meter:	DEPTH AVERAGE							5.46	
age 100 miles and	Action Limit V/A/L					4.7 2.0							25,2 Ave:25,3	6.61 Ave. 6.60	Ave.: 23,8	Ave.: 8,68	Ave	Ave.: 5.30	Ave.:
+	4 (B)		Ave.: 25.3	Ave.: 6.18	Ave.: 55.1	Ave.: 8.30	Ave.: 15.4	Ave. 5.69	Ave.:	2,5	BOTTOM	5,2	25.2	19.9	23.8	6.69	5	5,53	
Depth of Water (meter):	BOTTOM (B)	**	25,3 25,3 Ave.: 25,3	6,77 6.79 Ave.: 6.18	25,1 25,0 Ave. 5,1	8.29 831 Ave. 8.30	115,2 116,5 Ave. 15,4	8-68 8-69 Ave 3.69		Depth of Water (meter):_			25.3	6.59	73,7	8.67	119.6	501	
1	Action Limit V/A/L					5.0 4.2				1			Ave.: 25,4	Ave.: 6.65	Ave.: 23,3	Ave.: 8.62	Ave.: (} . E	Ave.: 5,55	Ave.:
11:06					Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	(0)35	MIDDLE	4.3	25.4	49.9	23,3	1 93	118.5	1 (A)	
10:44 10 11:06	MIDDLE (M)						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			101.13 to			25.4	6,66	23.2	8,63	200	カリ	
Duration:	Action Limit V/A/L	eras Salas				5.0 4.2				Duration:			25.6 Ave. 25.6	Ave.: 6,56	22.5 Ave. 22,5 23.2	8.71 Ave. 8.70 8, 63 8,61	Ave.: (9.8 18.7	Ave.: 5.56	Ave.:
m+)4			4ve.: 15.5	Ave.:	Ave.: 55.0		Ave.: ((6.8	Ave.: 8.54	Ave.:	station)	SURFACE	07)	25.6	6,57	22.5	1.00	5	3	
sR40 15 (INF)9	SURFACE (S)	0.	25.5 JS.7 AVE.: 25.5	6.69 6.71 Ave. 6.70	249 25.0 Ave. 50.0	837 840 Ave 3.39	116,6 ((7,0 Ave.: (6.8	P. 52 8.55 Ave. 3.54		Ipstream Control S			255	たい		59	5	, , , , , , , , , , , , , , , , , , ,	
Station:		Depth (meter)	Temp. (°C) :) : Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station: CS(Mf)3 (Uzstream Control Station)		Depth (meter)	Temp. (°C)	: Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Any notable discoloration of water ? 4/N If yes, elaboration is as follows:

Any notable pollutant by others near monitoring site 24/N If yes, elaboration is as follows :_

Checked by	Баге
Laboratory Staff	Date
(delen	2/11/13
Checked by	Date
Calbast Hand	2-11-2
'Id Operator	91.

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condition)**

D5 to CS(MD3	66 %							130%	45.0		99.3 %	REMARK							<u> </u>	
Direction of water current: From CS(MD5 to CS(MD3	mg/L (996	REMARK					2	120%				LIMIT							47.0 and 130% of CS(MDS 47.D	34.4 and 130% of CS(Mf)5
tion of water curi	ter: Bill 1							12	7.61		ter: O. Up								27.5	
	Wet bulb calibration for DO meter: _	DEPTH AVERAGE							6.34		Wet bulb calibration for DO meter:	ACTION							27.5 and 120% of CS(Mf)5	23.5 and 120% of CS(Mf)5
Tide Mode: <u>Flood Tide</u>	Wet bulb calibr	DEPT									Wet bulb calibr		AVE.		ng Start				<u>></u>	
Great Wave				Ave.:	Ave.:	Ave.: 05.8	Ave.: 6.31	Ave.: 87,8	Ave.:	Ave.:		Action Limit V/A/L				NATURAL PROPERTY AND PROPERTY A	4.7 2.0	4		
Sea Conditions: Calm / Smalf Wave / Great Wave	ter): 9.8	BOTTOM	8.8	75.4	6.65	75.00	632	87.9	06.90		ter): 54	BOTTOM (B)	-#	Ave.:			4ve.:	Ave.: 1084	4ve.:	Ave
a Conditions: <u>C</u>	Depth of Water (meter):_			7. T.	6.63	. 55.7	6.30	978	7.33		Depth of Water (meter):_		+	25,0	15.6 07.9	24.8 249	18.7 81.1	3801 5801	28.1 97.1	
	Dep			Ave.: 25.5	Ave.:	Ave.: 25,6	Ave.: 647	4ve.: 89.9	Ave.:	Ave.:	dəQ ———	Action Limit V/A/L	120			370.00	5.0 4.2			
Ambient Temperature (°C) : $\supset \!$	7(:91 01	MIDDLE	49	4.AC	17:5	25.6	6,46	847	C.H.O.		10 16:53	MIDDLE (M)				Ave.:	Ave	Ave.:	Ave.:	Ave.:
Ambient Tem,	16:04			ر ال	C	25.6	6.43	9000	593		(6:38									
Fine	Duration:		The state of the s	Ave.:	Ave.:	Ave.: 245	Ave.:	Ave.: 1069	Ave.:	Ave.:	Duration:	Action Limit V/A/L					5.0 4.2			
Weather Condition : FING	ol Station)	SURFACE	<u> </u>	75.3	693	7.40	Ē	(07.0)	5,68		SR4a				Ave.	Ave.:		Ave.	Ave.:	Ave.
	Station:			C. 3C.	2 0	7 7 6	69.1			<u> </u>	ISOMOTO	SURFACE (S)	01	35,0 25.1	6.63 6.67		7.99 8.01	-		
Sampling Date: $2.11,2013$	CS(MD5 (t		eter) :			: (140	(7)	: (6	(NTU)	6			eter) ;	• •			٠.	٠.		(7)
Sampling	Station:_		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hď	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Conaítion)**

(%)	REMARK									(%)	REMARK									(%	REMARK								
99.6								47.0	,	998								47.00		(-99.S								410	
) 7/8m	LIMIT							47.0 and 130% of CS(MJ)5	34.4 and 130% of CS(MJ)5	7/8m	LIMIT							47.0 and 130% of CS(Mf)5	34.4 and 130% of CS(Mf)5	mg/L (LIMIT		T.					47.0 and 130% of CS(Mf)5	34.4 and 130% of CS(Mf)5
5,43								27.5 ST.00	34.4a	8-39								47.04 B	34.40	3.39									34.40
meter:	ACTION								1% of) meter:	ACTION							<u>n</u>	0% of	O meter:	ACTION							0% of 5/15	0% of 5
on for DO	ACI							27.5 and 120% of CS(Mf)5	23.5 and 120% of CS(Mf)5	ion for DC	ACI							27.5 and 120% of CS(Mf)5	23.5 and 120% of CS(Mf)5	tion for D	ACI							27.5 and 120% of CS(Mf)5	23.5 and 120% of CS(Mf)5
Wet bulb calibration for DO meter:		V/A/L						>		Wet bulb calibration for DO meter:		1/4/1						>		Wet bulb calibration for DO meter:		V/A/L						>	
Wet bul	VAAL DEPT	AVE				<u></u>		5.60		Wet bu	V/A/L DEPT	AVE						545		Wet b	V/A/L DEPT	AVE.							
	Action Limit					4.7 2.0					Action Limit					4.7 2.0					Action Limit					4.7 2.0			
48	4	85 (23)	25.1	1 4	, A		106.1	: (5.25		5,2			25.1	\$49	548	507	111.3	5,65		72			25.1	6.66	Ž.		1018	رني) مريئ	• ;
eter):	BOTTOM (B)	3,8	35.1 Ave.	Ave.	Ave.:	Ave.	Ave.:	Ave.	Ave.	ieter):	BOTTOM (B)	4,2	25.1 Ave.	Ave.:	745 Ave.:	S.05 Ave.	111.7 Ave.:	5.31 Ave.:	Ave.:	neter):	BOTTOM (B)		Ave.:	Ave	Ave.	7.77 Ave.	108.0	Ave.:	Ave
Depth of Water (meter):	BO	•	25.1	6.43	K. 7.	1,65,7	JI £901	5.75		Depth of Water (meter):	BC	-	25.0				110.011	5.49		Depth of Water (meter):	BC		35.0	6.65 6			107.6	5.73 6	
Depth oj	nit V/A/L)	· ·					Depth o	Limit V/A/L					4.2				Depth	Limit VA/L					4.2			
	Action Limit					5.0 4.2					Action Lin					5.0 4					Action Li					5.0	3		
17:28	M				Ave.:	Ave.:	Ave.:	Ave	Ave.:	11.58	M)				Ave.:	Аче.:	Ave.:	Ave.:	Ave.:	18:27	M)		25.2	6.62	Ave.:	Ave.	Аνе.	Ave.:	Ave.:
to	MIDDLE (M)						_			to	MIDDLE (M)									to	MIDDLE (M)		75.1	6.63	7. 7.	8.08	C(C))	60,	
17:08										17:43	2									18:12	7		C:Se	5.61	542	8.10	4.01	71.6	25.5
Duration:	Limit V/A/L					4.2				Duration:	Action Limit V/A/L					4.2				Duration:	Action Limit V/A/L					4.2			
- Du	Action		٧.	(2)		39 5.0	2,3	96		ä	Action		۲۰	059	, t	5.0	9,411	520		1	Action		25.3	653	1,40	5.0 S.21	1.4.1	52	
SR4	E (S)			Ave		Ave.			Ave.		E (S)		Ave.:	Ave.		Ave.	Ave.:	Ave.:	Ave.:	(SCM\$)16	JE (S)		Аче.	Ave.	Ave.	Ave.:	Ave	Ave.:	Ave.:
9 60VVS	SURFACE (S)	2	25.3	6.73	74.7		(12.3	rv Ö		851	SURFACE (S)	Ç				-	771	5.11		SPA 1S	SURFACE (S)	(D)		169					
3			2.5 	119	24.b	: 8.08	112.3	5,77		7			75.3	6.75	946	15.8	で苦	5.2B					: CJB	6.60	7 17	25,0	(利日)	Th/12	
n:		Depth (meter)	(,c)		Salinity (ppt)	mg/L)	(%)	Turbidity (NTU)	18/L)	n:	,	Depth (meter)	('C')		Salinity (ppt)	mg/L)	(%)	Turbidity (NTU)	18/L)	m:		Depth (meter)	(C)	.,	Salinity (ppt)	D.O. (mg/L)	(%)	Turbidity (NTU)	ng.T.)
Station:		Depth	Temp. (°C)	Ηď	Salinit	D.O. (mg/L)	D.O.S. (%)	Turbia	S.S. (mg/L)	Station:		Depth	Temp. (°C)	Hd	Salinii	D.O. (mg/L)	D.O.S. (%)	Turbic	S.S. (mg/L)	Station:		Дерін	Temp. (°C)	Hd	Salimi	0.0.	D.O.S. (%)	Turbh	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Conaítion)**

7%		REMARK									(%)									
6 86		7							014		(995	REMARK								
		LIMIT							47.0 and 130% of CS(Mf)5	34.4 and 130% of CS(Mf)5	8.35 mg/L (RE		VARIATION TO THE PARTY OF THE P	and the second s	COACETATOR IN THE		A A A A A A A A A A A A A A A A A A A		
	Wet butb calibration for DO meter:	ACTION	(4.1)						$\int \frac{27.5 \text{ and } 120\% \text{ of}}{\text{CS(Mf)}^5} \int_{\overline{\lambda}_1^6 \overline{\Sigma}_2}$	23.5 and 120% of CS(Mf)5	Wet bulb calibration for DO meter:	DEPTH AVERAGE							5.41	
111	Wet bulb o	НІЛЭО	AVE						18,51		Wet bulb α			ナ	6.60	23.8	5.74	700	5.25	
		Action Limit VAAL					4.7 2.0							Ave.: 254	Ave.: 6.6	Ave.:	Ave.:		Ave.:	Ave.:
// //		M (B)			Ave.:	Ave.: 25.2	Ave.	7	Ave.:	Ave.:	7: 8B	BOTTOM	87	253	659	23.8	27.5	(20.B	551	
, , , , , , , , , , , , , , , , , , , ,	Depth of Water (meter):_	BOTTOM (B)	34	1. SS.3	18 6.79	ב:30 בי	835 837	116.1 116.4	048 44.6		Depth of Water (meter):_			26.4	6.60	53.9	878	(20.5	4.99	
		Action Limit V/A/L		430	6.78	282	5.0 4.2 B.		cC		Depth of 1			Ave.: SF.F				Ave.:	Ave.: 5,47	Ave.:
	4C:01					/ Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	19:34	MIDDLE	44			,				
	01 15:01	MIDDLE (M)									19:11 10			25.5	199	5,50	8.69	Ooo	5,6	
:	Duration:	Action Limit V/A/L					5.0 4.2		20 (20 pt)		Duration:			Ave.:	Ave.: 658	Ave.:	Ave.: CJT.C	Ave.:	Ave.:	Ave.:
) (fw) 51				Ave.: 25,6	Ave.: 6.71	Ave.: 25.1		Ave.:	Ave.:	Ave.:		SURFACE	0	1.90	6.59	33.6	L'A	8.00	n Tr	The state of the s
) 57	K4a	SURFACE (S)	9	25.5	672	Ä	J. G.	673	0C 17.		CS(MD3			256	656	7.00	1. C.	ر بر در	OLG.	
, in the second	3			36.h	6.70	 0,4,4	 54		্র জ		CS								1	
-	Station:		Depth (meter)	Temp. (°C)	На	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	На	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Any notable discoloration of water? W If yes, elaboration is as follows:

Any notable pollutant by others near monitoring site ?X/N If yes, elaboration is as follows :_

	Checked by	(ds (or	Laboratory Staff	Checked by	
Dane Dane	Date	2/11/13	Баге	Date	

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Condítion)**

Sampling Date :_	了	-2013 We.	ther Condition	Sampling Date: 5-1 (-2018) Weather Condition: (6006)		Ambient Temperature (°C):	375	Sea Conditions: Calm (Small Wave) Great Wave	Small Wave		Tide Mode: <u>Ebb Tide</u>		Direction of water current: From CS(Mf)3 to CS(Mf)5	MŊ3 to CS(MŊS
Station:	CS(MDS		Duration:	01 07 D	80.50	Depth	Depth of Water (meter):_	4,0	Wet b	Wet bulb calibration for DO meter:	for DO meter:) 7/8m 92 28	767	% (23 6 °C)
			SURFACE			MIDDLE		I	ВОТТОМ		DEPTF	DEPTH AVERAGE	REMARK	\ \
Depth (meter)	٠.		5			تو			Sit					
Temp. (°C)		24.9	3,	Ave.:	みから	きかる	Ave.: 70.8	1 2 7 7 7		Ave.: 24.7				
Hd	٠.	6-5-9	9,9 T	4ve.: 6.60	7.5.9	655	Ave.: 6574	6,63	19-9	Ave.: 6.63				
Salinity (ppt)		みそ	グチン	Ave.:	たえ	24.0	Ave.:	文	X.3	Ave.: 35.V				
D.O. (mg/L)	٠.	6.83	ئے ا		6.72	1.0	Ave.: 6.72	95-9	6.60	Ave.: 6-578				
D.O.S. (%)		Ľ.	かき	l .	7.29	43.4	Ave.: 03 6	5.5	6.30	Ave.: Pleb				
Turbidity (NTU)		5.93	26	Ave. 5-8 6	137	7.96	Ave.: 7-62	88/2		Ave.: 7 20	9	6.89		
S.S. (mg/L)	٠.			Ave.:			Ave.:			Ave.:				
Station:	SR4a		Duration:_	Duration: (42.45 to (5.03	50=[7] 0		Depth of Water (meter):	84	Wet	Wet bulb calibration for DO meter: _	ı for DO meter:	B. Elmg/L	I 395 % 23.5	(2°)-x/
		SURFACE (S)		Action Limit V/A/L	MIDD.	МІРОГЕ (М)	Action Limit V/A/L	BOTTOM (B)		Action Limit V/AL DEPTH V/A/I.	DEPTH V/A/I	ACTION	TIMIL	REMARK
Depth (meter)	.,	0.)					<	3,8			AVE.			
Temp. (°C)	3	5 th 8 th	14.9 AVE.:					348 348	Ave.:					
Hd	Š	6-65 6-66 Ave. 6-66	Ave.: 6-66					6-67 6.63	Ave.: 6-63					
Salinity (ppt)	ま	ンサイ 24.5	Ave.: 24. U			Ave.:		, 1/he 9/he	3500 BESSEL	XX 123 27 55				
D.O. (mg/L)		9,9	6.49 6.61 Ave., 60	5.0 4.2		/ Ave.:	5.0 4.2	6.53 6.50	tve.j.52	4.7 2.0				
D.O.S. (%)	<u>a</u>	10 m	Ave.;			Ave.:		96.9 90.5	14ve.: 90.7	-				
Turbidity (NTU)		9.05 9.44 Ave.	Ave.:			Ave.:		8,93 8,78	Ave.:			27.5 and 120% of CS(Mf)3	47.0 and 130% of CS(Mf)3	
S.S. (mg/L)			Ave.:			Ave.:		,	Ave.:			23.5 and 120% of CS(Mf)3	34.4 and 130% of CS(Mf)3	
	1			Participal Contract of Contrac		-								

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Condition)**

(D) ζ REMARK REMARK REMARK 23.6 73.7 Z かが \$) (% 99:1 %)(% 47.0 and 130% of CS(Mf)3 47.0 and 130% of CS(Mf)3 34.4 and 130% of CS(Mf)3 34.4 and 130% of CS(Mf)3 LIMITLIMIT LIMIT 50 8, 2 P. Kymg/L) 7/Sm) 7/8m 2 23.5 and 120% of CS(Mf)3 27.5 and 120% of CS(Mf)3 27.5 and 120% of CS(Mf)3 23.5 and 120% of CS(Mf)3 ACTION ACTION かんろ ACTION 3 Wet bulb calibration for DO meter: Wet bulb calibration for DO meter: Wet bulb calibration for DO meter: V/AL V/A/L V/A/L (0,5] DEPTH AVE. DEPTH AVE. 9.3 DEPTH AVE. Action Limit V/A/L Action Limit V/A/L Action Limit V/A/L 2.0 2.0 4.7 Ave.: P.40 Ave. po. 2 1 Ave. 6.48 Ave.: 1.63 Ave. 20-3 Ave. 7460 998 AVE 988 Ave. 74.0 Ave. 7. 37 Ave. 1.49 Avery Ç N 4ve.: 4ve.: BOTTOM (B) BOTTOM (B) 20 BOTTOM (B) P. A. 000 749 24.9 <u>ئ</u> 13.9 アグラ 750 259 立と どでく <u>ب</u> ک 400 3 48 3 تو. <u>ن</u> 7.16 ーのぞれ んとご 5.29 643 Post がら 5.3 でける かっ スタ 2 Depth of Water (meter): Depth of Water (meter): Depth of Water (meter): Action Limit V/A/L Action Limit V/A/L Action Limit V/A/L 4.2 4.2 5.0 5.0 ر در لاور در ال アキグ Ave.: Ave.: Ave.: Ave.: Ave. Ave.: Ave.: Ave.: Ave.: Ave.: MIDDLE (M) MIDDLE (M) MIDDLE (M) マキス ار فرد さそ 13250 (32) しょう to 1/A/L to Action Limit VAL *to* Action Limit V/A/L > 2 13231 5757 1275 Action Limit 272 4.2 4.2 5.0 5.0 1 Ave.: 6,40 Ave. C.ST Ave. 7 8.6 Ave. 3. 156 とう Ave.: X.L 4ve.8190 -S Ave.pl 35,3 Aveily 4ve.: 45 Duration: Duration: Duration: Ave.: SURFACE (S) SURFACE (S) SURFACE (S) 1629 2,2 23 けれた 6,70 ひん がぞ اب 5,45 ググ <u>.</u> 4:4 が変 <u>ر</u> و 40,9 6251 ナ 2 3 グゲン 240 ISOMD16 158 SR4 Turbidity (NTU) Turbidity (NTU) Depth (meter) Depth (meter) Depth (meter) Salinity (ppt) Salinity (ppt) D.O. (mg/L) D.O. (mg/L) S.S. (mg/L) Temp. (°C) D.O.S. (%) S.S. (mg/L) Temp. (°C) D.O.S. (%) Temp. (°C) Station: Station: Station: Ηd

T.

47.0 and 130% of CS(Mf)3

27.5 and 120% of CS(Mf)3

7.90

Aveg 19

7:14

Ave.:

7,05/103

Ave.:

Ave. 6.4 V

30,000

981 NAVE: 89.0

88.59

D.O.S. (%)

すらら

Turbidity (NTU)

(mg/L)

Ave.:

Ave. 95.9

40.4

4.7

5

7,

IVE. YER 6

~ ₹

られた

633 631

4.2

5.0

ナナ

1889

Ave

ダジ

7

Salinity (ppt)
D.O. (mg/L)

Ave.: 6.08

7

4.2

5.0

34.4 and 130% of CS(Mf)3

23.5 and 120% of CS(Mf)3

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Condition)**

Station:	ISCMB9	Duration:	13202 10 13218	13218		Depth of Water (meter):	よう		t bulb calibration	for DO meter:	1/8m 12/8	Wet bulb calibration for DO meter: 8 4 mg/L (8/2 %) (23 6 °C)	(23.6°C)
	SURFACE (S)		Action Limit V/A/L	MIDDLE (M)		Action Limit V/A/L	BOTTOM (B)		Action Limit VAIL Di	DEPTH JAA	ACTION	LIMIT	REMARK
Depth (meter)	(°)						2,2	7		4VE. VALL			
Temp. (°C)	37.0	strig Ave.					18th 8th	Ave.:					
Hd	19:9	hels Aveir bibb					698 69	1,69 Ave. 6.69					
Salinity (ppt)	25.35	3 Ave.:		/	/ Ave.:		3-G1	4ve.:					
D.O. (mg/L)	624 627 Ave; 6	ļ	5.0 4.2		Ave.:	5.0 4.2	6,30 6,29	Ave.: 6,20	4.7 2.0 \(\)				
D.O.S. (%)	36,9 87 AVE. 37.0	1 Ave. 37.0			Ave.:		St. 874 Ave. 875	Ave. 875					
Turbidity (NTU)	159 127 Ave. 4.3	Ave. 14.3			Ave.:		49 FB	Ave.: 666		NS / 273	27.5 and 120% of \(\sum_{\superscript{1}}\) CS(M(f)3		\$7.5°
S.S. (mg/L)		Ave.:	ere:		Ave.:			Ave.:		23.5	23.5 and 120% of CS(Mf)3	34,4 and 130% of CS(Mf)3	
Station: CS(Mt,	Station:_CS(Mf)3 (Upstream Control Station)	ol Station)	Duration:	1423010	3477	Depth of W	Depth of Water (meter):	3,6	Wet bulb cal	ibration for DO 1	Wet bulb calibration for DO meter: $\mathcal{R}\mathcal{S}$	mg/L (9 P. 2%)	(20°1,00)
		SURFACE			MIDDLE			BOTTOM		DEPTH AVERAGE	VERAGE	REMARK	RK
Depth (meter)		Ć			4.3			7					
Temp. (°C)	0; A	ž	Ave.:	24.6	3.4.8	Ave.:	8-3-3	138	Ave.: 343				
Hd	5		Ave.: (.42		24.9	Ave.: 6.47	6.82	27.9	Ave.: G.ST				
Salinity (ppt)	5.52		Ave.:	25-6	しな	Ave.:	8:35	424	Ave.: SS.S				
D.O. (mg/L)	39.9	i i	Ave.: 6-67	6,57	84.9	Ave.: 6.50	6.32	6.31	Ave.: 634			7900	/0061
D.O.S. (%)			Ave.: 92.9		80.2	Ave.: 40,5	0,000	7.88	Ave.: 83.3			120%	130%
Turbidity (NTU)	25.5	大さる	8-47 Ave. 3,39	8.46	838	Ave Se de Z	29.82	325	Ave. 8.29	85.7		0,0	6001
S.S. (mg/L)	••		Ave.:			Ave:	·	· ·	Ave.:				
	-								 - -				

Checked by	Date
Laboratory Staff	Бате
(Selen	511/13
Checked by	Date
7. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	7-11-2013
Field Operator	Date

Duration: PLST to 1813 Depth of Water (meter). 418 Wet bulb calibration for DO meter. 136	2	Weather Conditior	Sampling Date: 5-(-2017) Weather Condition: [Sandy] Ambient Temperature (C): 25	Ambient Tempe	rature (°C):		Conditions: <u>Cal</u>	Sea Conditions: Calm Small Wave VGreat Wave		Tide Mode: <u>Flood Tide</u>		Direction of water current: From CS(Mf)3 to CS(Mf)3	S(Mf)5 to CS(Mf)3
1	Station: CS(Mf)5 (Upstream Control Station)	1	Duration: (7:	VI 10 18	313	Depth of Water (8,	Wet bulb calibration	11	8.45 mg/L	l I	
F. S	SURFACE	143			MIDDLE			ВОТТОМ		DEPTH AVE	RAGE	REMAI	×
Am. 3.76	0.1				k'd			8.9				All de la companya d	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12,7		Ave.: 7		23.6	Ave.: B.C	22.4	23.5	Ave.: yzy				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.8.8 6.60		Ave.: 6+P		6.5-0	Ave.: 658	6,60	6.60	Ave.: 660				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.5		Ave.: 2X.X		747	Ave.: 257	y.o	25.1	Ave.: VT-{				
Anc. According Anc. An	(.)		Ave.: 6.72	39-9	197		6.58	6.56	Ave.: 657				
13.5 16.5 L 14.6 14.8 14.8 12.4 12.4 14.8	93.1		Ave.: 93.2		92-X	1	81.5	2.18	Ave.: 91.K			120%	130%
	3	-	Ave.: C.F.S	30	877		8.84	12.8				12.7	- 1
)	1				Ave.:			Аче.:				
Solution Limit Val. MIDDLE (As) Action Limit Val. Action Limit Val. Ave. Ave	Duration:	tion:	(830		Dept	h of Water (meter,			et bulb calibration f			9.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SURFACE (S)		Action Limit V.A.L.	MIDDLE	(W) 5	Action Limit V/A/L	BOTT)M (B)		SPTH V/A/L	ACTION	LIMIT	REMARK
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-0						2	0	A				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B.7 B.6 ME.B.7	رست						Ave.:					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	873 6.18 Ave. 6.48	00					6						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 Ave.: 24	1			Ave.:			8 Ave.: 24.8					
4ve.:	6.56 6.58 Ave: 657	1	5.0		Ave.:			0 Ave. 6.62	4.7				
4ve.:	912 91.5 AVE: 91.4	1			Ave.:) Ave.: 92.0					
Ave.: Ave.: 23.5 and 120% of CSPA(f) 5	372 9.12 Ave. 282	زم			Ave.:		188	Ave.: 8.30	山水 高。	7			01/2
	Ave.:				Ave.:			Ave.:		23.5 c	nd 120% of :S(Mf)5	34.4 and 130% of CS(Mf)5	

Tuen Mun – Chek Lap Kok Link – **Southern**

_
0
liti
na
8
<u>a</u>
ŏ
(F100
et (
Sheet (
5
y - Data Record
)ata
7
itoring
nitc
Ŋ
ality
Ö
t Water Quality
Impact
•

Colored Colo	Station:	SR4	Duration:	1856 10	1913	Depth of W	Depth of Water (meter):	% Ø	Wet bulb calibr	Wet bulb calibration for DO meter:) 7/8m 8/3.8 ::	L (35.6 %)(_	3.6 °C)
1			SURFACE (S)	Action Limit V/A/L	MIDDLE (M)		on Limit V/A/L	BOTTOM (B)	Action Limit v	DEPTH	ACTION	LIMIT	REMARK
1 1 1 1 1 1 1 1 1 1	Depth (meter)		1					3.8					
	Temp. (°C)	325	1				E.	なな	が、アンド				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hd	17.7	1				9	6.54	2.: 6.13 S				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Salinity (ppt)	124.3			A	2000000		2/56	9.4.				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D.O. (mg/L)	158			A		4.2	650	4.7	Ž			
Act	D.O.S. (%)				4	lve.:	90	5.0%					
1 1 1 1 1 1 1 1 1 1	Turbidity (NTU)	٠			A	tve.:		J. J.			,	47.0 and 130% of CS(Mf)5	7.0
Signature	S.S. (mg/L)		Ave.:		A	tve.:			2.:		23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Station:	IS8	Duration:		1035	Depth of	Water (meter):	\$.0	Wet bulb calib	ration for DO mete	8.44	1.92	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			SURFACE (S)	Limit	MIDDLE (M.		on Limit V/A/L	BOTTOM (B)	Action Limit	DEPTH	ACTION	LIMIT	REMARK
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Depth (meter)		0,					4.0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Temp. (°C)	: 22.5					50	23	e:: 25 = 25				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hd	947	1				2	(1)	e.: k.f.f.				
1.	Salinity (ppt)	3%			,	4ve.:	2	24.6	e.: 24.6				
1	D.O. (mg/L)	1879	650	5.0	`	,	4.2	1 3.79	4.7	<i>)</i> / i			
	D.O.S. (%)	3.0%	Sex.		,	4ve.:	8	8.5	e.: 89.7				
Signator Ave. Ave	Turbidity (NTU)	٠.			,	Ave.:		8.83	e.: 8,70			47.0 and 130% of CS(Mf)5	7.0
SAMMAN S	S.S. (mg/L)	٠.			,	Ave.:		₩.	e.:		23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Station:	1S(Mf)16	Duration:		2008	Depth of	Water (meter):	8.9	Wet bulb calib	ration for DO met	8.40	98.7	23.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			SURFACE (S)	Action Limit V/A/L	MIDDLE (M		ion Limit V/A/L	BOTTOM (B)	Action Limit	DEPTH	ACTION	TIWIL	REMARK
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Depth (meter)	•			25			パス					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Temp. (°C)	27.5	1			22.3	2	3 233	~~:				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hd	94.9	l			43	3	CFK	L.f.				
1 6.43 6.44 4ve.; Lyx 3.0 4.2 6.37 6.38 4.2 6.34 6.30 4ve.; 6.34 7.20 7 8.3 4ve.; 8.3	Salinity (ppt)	7.7.2	んない		27.6	4ve.: X.6	2	14.7	(thin				
17.0	D.O. (mg/L)	6.43	爻	5.0 4.2	350		4.2	6.30	4.7				
17U) : G.ZX (6.7) Ave.; (0.0 4 4ve.; 10.0 Ave.; 9.58 4ve.; 12.5 Ave.; 11.9 V 27.5 and 120% of 27.5 Ave.; 12.8 Ave.; 11.9 V 27.5 and 120% of 34.4 and 130% of 27.5 CSAGIS CSAGIS SACTION OF CSAGI	D.O.S. (%)	4.78	88.7		18.7	4ve.: 88.6		87.8	e.: 88.0		(T. A. S.)		
: Ave.: 23.5 and 120% of CS(Mf)5	Turbidity (NTU,		1.		501	4ve.: 9.95		3/19/	e.: (Jr. 6	0	. 1	47.0 and 130% of CS(Mf)5	20
	S.S. (mg/L)		4ve.:			4ve.:		AN	e.: ##		23:5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condition)**

4ction Limit VAL MIDDLE (A) Action Limit VAL 5.0 4.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1	to 23 Septh of Water (meter): F. F.		mg/L ()1:3 70) (22:3 C)
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,	Action Limit VAIL	BOTTOM (B) Action Limit VAIL DEPTH JAM ACTION	LIMIT REMARK
12, CO	X.5	AVE.	
16, 4 8	7 2 2 2 2 2 2 2 2	. y Ave. 3. k	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6tp Ave. 6.7P	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20 Ave:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.0 4.2	$56 \left \frac{Ave.}{635} \left \frac{47}{47} \right \frac{20}{6} \left \sqrt{\frac{1}{20}} \right = \frac{1}{20}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		X 446; 28.3 SEE SEE SEE SEE	
CSMM3 Duration: $2a5/1$ to $2dM$ Depth of Water (meter): SURFACE SURFACE (-0) $3a^{2}/2$ $3a^$	(A) (A) (A)	4ve.: (3.8 V	27.5 47.0 and 130% of 47.0
CSMM3 Duration: $2a5$ to $2dM$ Depth of Water (meter): $ABDLE$ SURFACE $AVE.$ $2A$ $4VE.$ $2A$ $2A$ $2A$ $2A$ $2A$ $2A$ $2A$ $2A$		Ave.: 23.5 and 120% of CS(A4f)5	34.4 and 130% of CS(Mf)5
who (meter) is L or	Depth of Water (meter):	β, β Wet bulb calibration for DO meter: $\beta, \psi \not\in$	mg/L (3%, 6 %) (23. 4 °C)
10. (C) 1. 27.	MIDDLE	BOTTOM DEPTH AVERAGE	REMARK
The PC is 3.55 3.54		80	
iiiy (ppt) i 647 6.78 4^{Mei} : 6.57	23.4 23.4 M	233 AVE: 23.4	
1 2K.7 1X-6 AVE. 1K-7 2K.7 1X-8 AVE. 5.15 6.55 6.55 AVE. 6.15 6.50 AVE. 6.15 6.50 AVE. 9-5 7	CF9 95'9	6.58 Ave.: 6.58	
6.53 6.55 Ave. 6.54 6.52 6.50 Ave. 9.5 90.6 90.4 Ave. 9.5 Ave.	2×,7 (,3/2	かん	
: 80.8 91.0 Ave. 90.8 90.6 50.4 Ave. 90.5	6,52 6,50	(d)	
. Ave Ave.	80.6 Jo.K Ave.	6.0	
(a) (b) (b)	(0.) (2.(Ave: 11.8 9.23	(1, 0 Ave: (0.1	
	Ave.:	Ave.:	

Laboratory Staff Checked by	\$1.1/13 Date Date	
ecked by	(11)	
Defor Chec	d.(1.13	
Field Operator	Date	Annual control of the

Impact Water Quality Monitoring - Data Record Sheet (Flood Condition)

Tuen Mun – Chek Lap Kok Link – **Southern**

rpling Date :	Sampling Date: 7 11-20 Weather Condition: (Condy Ambient Temperature (C): 25	ather Condition	" Claudy	Ambient Tem	perature (°C) :	1	Sea Conditions: Calm (Small Worke / Great Wave	n (Small Wade)		Tide Mode: Flood Tide		Direction of water current: From CS(Mf)5 to CS(Mf)3	om CS(Mf)5 to CS(<u> </u>
m:_CS(MD5_	Station:_CS/Mf)5 [Upstream Control Station].	'Station)	Duration: Ú	Duration: 08:35 to 08:59	28:59	Depth of Water (meter):	(meter):		Wet bulb calibration for DO meter:	tion for DO met		8.43 mg/L (99.2 s	% 23.6 °C)	Ç
		SURFACE			MIDDLE			BOTTOM		DEPTI	DEPTH AVERAGE	RI	REMARK	
Depth (meter)		2			3			13						
Temp. (°C)	か、ナイ	24.9	Ave.: 24.9	2,4,8	24.9	4ve.: 24, 9	1.37	24.8	4ve.: 24.8					
	79.9	49.5	(,62 Ave: 6.63		53	4ve.: 6.50	6.5¢	95'9	Ave.: 6.55					
Salinity (ppt)	ナチー	27.3	ナナて Ave		27.60	4ve.: 24,6	24.5	25.0	4ve.: 25.0					
D.O. (mg/L)	ナガシ	969	Ave. P. of 5	رة	5	Ave.: 6.78	+9.9	99.9	Ave.: 6.65					
D.O.S. (%)	96.5	96.1	96.7 Ave. 96.6	95.5	95,7	4ve.:95, 6	93.0	93,2	Ave. 9 3, 1			120%	130%	
Turbidity (NTU)	7.73	7.5%	Ave.: 7.86	7	5.0	Ave.: 7.86	20.5	9,5	Ave.: 9,09	をと		2,5	(0.15	
S.S. (mg/L)			Ave.:			Ave.:			Ave.:					
Station:	SR4a	Duration:	09:06 10	10 09:30		Depth of Water (meter):	0.7	We	Wet bulb calibration for DO meter:	n for DO meter:	8.49 mg/L		996 % 7350	(),
	SURFACE (S)	(S) 3.	Action Limit V/A/L		MIDDLE (M)	Action Limit V/A/L	BOTTOM (B)	M (B)	Action Limit VAL	7	ACTION	LIMIT	REMARK	IRK
Depth (meter)	5			1227E E SEA			T T	೦		AVE.				
Temp. (°C)	24.8 24.7 AVEZE.8	1 Ave. 24.8					24.7 24.7	7 Ave.: 24.7						
-	6.73 6.71 Ave. 6.72	Ave. 6.72					6,59 6.61	6.60						
Salinity (ppt)	ナゴスルナガーナガー	+ Aveit			Ape.:		247 24.8 Ave. 24.8	8 Ave.: 24.8						
D.O. (mg/L)	6,67 6.69 Ave: 6,68	1 Ave.: 6:68	5.0 4.2		Ave.:	5.0 4.2	857 6.54 Ave. 553	4 Ave. 6.58	4.7 2.0					
D.O.S. (%)	927 930	93,0 Ave. 92.9			Ave.:		92.6 92.9	1 Ave. 7.8						
Turbidity (NTU)		f Ave. 19,8			Ave.:		7.81 8.91	1 Ave.: 17.5		16.31		27.5 47.0 and 130% of CS(Mf)5	of 47.0	
S.S. (mg/L)		Ave.:			Ave.:		2. 4	Ave.:			23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	of	

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condition)**

23.6 0	REMARK									23.5°C)	REMARK									23:1 °C)	REMARK								
a4.3 %(LIMIT						17 N 1200/ AF	CS(My)5 47.0	54.4 ana 150% oj CS(Mf)5	04.7 % (TIMIL						PRODUCTION OF THE PRODUCTION O		6	04.8 %	LIMIT						J. 70004 C. 0 27		54.4 and 130% of CS(Mf)5
er: 8,45 mg/L (ACTION						7 700 C. F. J. L.	CSM(1)3 27.5	25.5 and 120% of CS(Mf)5	ter: 8-52 mg/L	ACTION						2. 7007 t t 3 tro	CS(Mf) 5 21.5 CS(Mf) 5 21.5	. Z.		ACTION							27.5 and 120% of 27.5 CS(MI)5	23.5 and 120% of CS(Mf)5
Wet bulb calibration for DO meter:		AVE. V/A/L			AKE S	4.7 2.0 \checkmark		203 /		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH	AVE. VAIL				4.7 2.0 \(18.9		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH V/A/I	AVE. VIAN				4.7 2.0 🗸		(3.2)	
4,9 Wet	BOTTOM (B)	3.9	24.5	159	74,7 Ave.74,7	6.58 Ave.: 6.57	921	(9.8		5.0 Wet	BOTTOM (B)	رځ	7 248 Ave. 248	889	147	05.9	923	Q	Ave		M (B)	×, ×	248	(4)9	7 24.8 446. 248	12.9	89.7	2.	Ave.:
Depth of Water (meter):	Action Limit V/A/L		24.3	159		5.0 4.2 6,56	8 11 3	21,0		Depth of Water (meter):	Action Limit V/A/L		1.97	98'9	1. S.	5.0 4.2 6.5	8/11/8			Depth of Water (meter):	Action Limit V/A/L		8 6 8 8 24.7	6.43 ALM 8.45	1,7 2 24,7	640 50 42 / 6.25	1.5 m 1 29.4	f,(
(0: 00 Det	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	σ (2:0)	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	, ir.oo	MIDDLE (M)	ナ、	4.8 24.8	6.42 6.44 6.	14, 6 24,7 Ave. 24,7		39, 1 324 Ave. 39,3	1,4 B,4 Ave. 14,1	Ave.:
09:36 10	Action Limit V/A/L			9		9 5.0 4.2	0			10:06	Action Limit V/A/L			S	9	55 5.0 4.2 /	S = 1 = 1 = 2	7		10:36 10	Action Limit V/A/L		5			5.0 4.2		3 5 6	
Duration:	SURFACE (S)	0	15.0	6.57	25.5	6.10	13.1	20.0	Ave.:	Duration:	SURFACE (S)	0.1	~	0,40	74.4	99.9	37.6	16.4		Duration:	SURFACE (S)	0.)	25.5	223	ナナハーカーハナハ	31.0	9,7	3 12.6	Ave.:
Station: SR4		Depth (meter)	Temp. (C) TYG	259 · Ha	Salinity (ppl) : 24,3	D.O. (mg/1) 6,68	D.O.S. (%) : 92.9	Turbidity (NTU) 1 2012	S.S. (mg/L)	Station: IS8		Depth (meter)	Temp. (C)	7) . Hd	Salinity (ppt) 24,4	D.O. (mg/L) · 6.6	0.0.5.(%) 92.3	Turbidity (NTU)	S.S. (mg/L)	Station: IS(Mf)16		Depth (meter)	Temp. (C) : 24.64	PH : 6.51	Salinity (ppt)	D.O. (mg/L) : (J,gm).O.O	P. 95 : (20) 2.0.0	Turbidity (NTU) : (LL,	S.S. (mg/L)

Impact Water Quality Monitoring - Data Record Sheet (Flood Condition)

Tuen Mun – Chek Lap Kok Link – **Southern**

Station:	IS(MD9I	Duration:	Duration: ((.30	(1.30	Depth	Depth of Water (meter):_	4,0	-	t bulb calibratio	n for DO meter	Wet bulb calibration for DO meter: $8.47~$ mg/L ($94,8~$ %) ($23.6~$ °C)	2,99.8	% (23.6°C)
	SURFACE (S)		Action Limit V/A/L	MIDDLE (M)		Action Limit VIAIL	BOTTOM (B)		Action Limit V/A/L	DEPTH .//A.I	ACTION	LIMIT	REMARK
Depth (meter)							3, 6			AVE.			
Temp. (°C)	24.8 24.8 Ave. 24.8	Ave. 24.8				7	24.7 24.8 Ave. 24.8	Ave. J. G. S					
Н	1673 675 Ave. 674	Ave. Gat				9	6.57 Ave: 6.56	1 4ve. 6.56					
Salinity (ppt)	157 25	Ave. 5.5			Ave/:		5.5 25.5	Ave.: 25.5					
D.O. (mg/L)	1 634 635 Ave: 6.35		5.0 4.2		Ave.:	5.0 4.2	139 641	CHO CHO	4.7 2.0				
D.O.S. (%)	K. 6 SY, AVE. P. R.	Ave. RR.7			Ave.:		89.3 89.6	, Ave. 89, 5					
Turbidity (NTU)	٠.	Ave. 5, 6			Ave.:	7	22.5 20.3 Ave. 21.4	Ave.: 21.7		18.5 /	27.5 and 120% of 2	2 \ 5 \ 47.0 and 130% of CS(MI)5	67.0
S.S. (mg/L)	1	Ave.:			Ave.:			Ave.:			23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	
Station:	CS(MD3	Duration:	1136 10	70:05	Depti	Depth of Water (meter):	8.8	Wei	Wet bulb calibration for DO meter:	n for DO meter	. 8,52 mg/L	L'66	%) (23.7°C)
		SURFACE			MIDDLE			BOTTOM		DEPT	DEPTH AVERAGE	REI	REMARK
Depth (meter)		٥٥			ナナナ			20,		T.			
Temp. (°C)	5.4.7	25.2	Ave.: L. 9	24.8	24.8	Ave.: 24.3	27.8	25.2	Ave.: 24.9				
ΡΗ	54.9	1	Ave.: 6.47		55.9	Ave.: 6.54	6,53	09.9	Ave.: 6.60				
Salinity (ppt)	5,52	75.4	25,4 Ave. 25.4	25.7	25.8		25.9	25.9	Ave.: 25.9				
D.O. (mg/L)	51.9	07.3	6,70 Ave. 6,72	959	6.58	Ave.: 657	6,42	049	Ave.: 6.41				
D.O.S. (%)	0,770	93.5	4ve.: 95.8	8716	97:1	4ve.912.0	90°	5° €%	4ve.: 90,0				
Turbidity (NTU)	(E.S.	13	Ave.: 15.0	14,0	25,5	1400 J. L. S		243	Ave.: 2 }, 4	2	21.0		
S.S. (mg/L)	٠.,		Ave.:	•		Ave.:	VIII V. J		Ave.:				

Any notable discoloration of water ? \sqrt{N} If yes, elaboration is as follows: _

Any notable pollutant by others near monitoring site ? $lac{V}{I}N$ If yes, elaboration is as follows z.

Checked by	Date
Laboratory Staff	Date
delos	7/11/13
Checked by	Date
Million Control	7 - (1 - 201)
Field Operator	Баге

to CS(MD5	<i>(C)</i>										(C) 9	REMARK									
Direction of water current: From CS(Mf)3 to CS(Mf)5	99.7 % 76.6	REMARK									99.2 30.266	II.							5.Cy 67.C	% of	
er current: F	99,7											LIMIT							47.0 and 130% of CS(Mf)3	34.4 and 130% of CS(Mf)3	•
ection of wat) 7/8m										N. 9 S mg/L (NC					100		27.5	% of	
	8.01	DEPTH AVERAGE							~ (S)		7.9	ACTION							27.5 and 120% of CS(Mf)3	23.5 and 120% of CS(Mf)3	
Tide Mode: <u>Ebb Tide</u>	Wet bulb calibration for DO meter: _	DEPT									Wet bulb calibration for DO meter: _	DEPTH JAM	AVE. VAL						8.0 1		
	alibration fo			が、プ	Ave.: 6.3)	Ave.: 24,9	4ve.: 6 159	Ave.: 91, 6	4ve.: 9,15		calibration J	Action Limit V/A/L					2.0				
Sea Conditions: Calm / Small Wave / Great Wave	Wet bulb c	M		- 0				Ave.:		Ave.:	Wet bulb	Action		.5.0 .5.0	(9:	14.7	5.49 4.7	(0°.7)	Ý. (
Calm / Small		BOTTOM	2	74.6	6.39	74.9	626	5	9, 18		منينسم	BOTTOM (B)		5.7 Ave. 2	6.62 6.63 Ave. 6.63	24.6 24.8 Ave. 24.7	6.48 6.49 Ave. 6.49	D.L Ave.:	WS & 2 Ave. 9	Ave.:	
1 Conditions:	3			なり	6.37	外是	8500	91.5	3		4	ВО	いい	24.92	6.62	24.6 2	9 84.9	0	10 m		
Sec	er (meter):			1. pt. 1.	Ave.: 6.52	14ve.: 24. 6	Ave.: 6.68	Ave.: 92,9	Ave.: 7.93	::	Depth of Water (meter):_	Action Limit V/A/L					4.2				
(C):	Depth of Water (meter):_	MIDDLE			6.55	24.6 Ave	6.67 Ave	Q2-1 4ve	8.03	Ave.:	Depth of V	Actio					.: 5.0				
Ambient Temperature (°C) :_	-	MID	بد د	1,76.1							03	MIDDLE (M)	4			Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	
Ambient 1	1936			かかった			53.9	9.50	282		17:00		En	2							_
(and)	17:06 10			Ave.: 25.0	Ave.: 6.59	Ave.: 14.3	4ve.: 6.80	94.5 Ave. 94.5	Ave.: 7,814	Аче.:		Action Limit V/A/L) 4.2				
Condition:	Duration:	SURFACE	0.1	24.9	6.59	26.3	03.9	14.5	ري		Duration: 6-36	Activ		24.0	6.69	7.4.7	6.57	()	7.0		
Weather (Durc	ns		25.0	6.5%	_					Q -	SURFACE (S)	0	24. X 24.9 Ave. 24.9	6.69 Ave.: 6.69	24,4 24.5 Ave. 24.5	6,56 657 Ave: 6.57	91,1 G1.7 Ave.	6.1 Ave 7.0	Ave.:	
(May 1)	CS(MDS			Z	Č	とさ	<u>ح</u> د د	9	7.82		SR4a	S		74.7	89.9	ナギス	95,9	5	2.0		
Sampling Date: 7 (4 (2015) Weather Condition: (1846)	and the state of t		meter)	(C) _e		(jdd)	18/L)	(%)	Turbidity (NTU)	(T)8			Depth (meter)	(C)		Salinity (ppt)	: (T/Su	. (%)	Turbidity (NTU)	· (7/8,	
Sampli	Station:_		Depth (meter)	Temp. (^{CC)}	На	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbid	S.S. (mg/L)	Station		Depth	Temp. (°C)	Н	Salimit	D.O. (mg/L)	D.O.S. (%)	Turbia	S.S. (mg/L)	

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Condition)**

()° 9'9	REMARK									()° (C)	REMARK									76 g °C)	REMARK								
96.2 % Je	LIMIT							47.0 and 130% of 17.0 CS(Mf)3 17.0	34.4 and 130% of CS(Mf)3	97.3 % (26	LIMIT			44 Maria				47.0 and 130% of 47.0 CS(MJ)3 47.0	34.4 and 130% of CS(Mf)3	9 J. J. W.	LIMIT								34.4 and 130% of CS(Mf)3
) 7/8m 9 3 1	ACTION							27.5 and 120% of 27.5 CS(MJ)3	23.5 and 120% of CS(Mf)3	: 7.7 mg/L (ACTION							27.5 and 120% of L7.K	23.5 and 120% of CS(Mf)3	r: 296 mg/L (ACTION						27 E mad 1700/ of	27.3 and 120% by 21,5 CS(MJ)3	23.5 and 120% of CS(Mf)3
Wet bulb calibration for DO meter:	Action Limit VAL DEPTH	AVE. V/A/L				2.0		7		Wet bulb calibration for DO meter:	Action Limit VIAIL DEPTH	AVE. VAL				2.0		/ 0.1		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH	AVE. VAL				2.0		7 4 2 8 8	
Wet bulb o	BOTTOM (B) Letion)	25.7 Ave.: 25.7	6.50 Ave. 6.50 00	-	Ave.: 6.41 4.7		. Ave.: [[[Ave.:		BOTTOM (B) Action	7	~		A 200	6.50 Ave.: 6.51 4.7	90.3 Ave.: 90,5	1,6 Ave.: 11,6 🚅	Ave.:	(*************************************	BOTTOM (B) Action		25.4 Ave.: 25.4 E	6.51 Ave.: 6.50	24.6 Ave.: 24.6	6.20 Ave.: 6,19 4.7		18 Ave.: 11.6	Ave.:
r (meter): 4.7	Limit √/4/L BOTT	Č ,	32 L'31 28	6,49 6.	SH1 14.6	4.2 6.40 6.41	89.0 89.1	Z	. ·	ater (meter): 5.2	Limit 4/A/L BOT	マゥ	25.7 15.	879 ST19 3	2,92	4.2 652 6.	90.39			er (meter):	Limit V/A/L BOT;	Ý	25.3 25	9 6.49 6.	14.15 2	6, 18 6	85.9 Bb.	(1.3)	
Depth of Water (meter):	Action				Ave.:	5.0	Ave.:	Ave.:	Ave.:	Depth of Wat	MIDDLE (M) Action Li					5.0	Ave.:	Ave.:	Ave.:	Depth of Water (meter):	MIDDLE (M) Action Li	* Anglingara Tanah	25.4 15.4 W	- 1		$ Ave.: 6, \mathcal{Y} 5.0 $	87,9 Ave.: 87,9		Ave.:
10 [6:30	I VAIL MIDDLE (M)									00:91 01	V/A/L								7	0 (\$:30	V/A/L	する	15.3 15	ともののから これ	24.6 24.8	2 1 6.32 6.33	87.8 87	11.8 10.5	
Duration: 16:06	E (S) Action Limit		25.8 AVE.: 25.7 6	6.50 Ave.: 6.49 3	Ave.: W.3	Ave. 6,52 5.0 4.2	7 4ve: 90.6	Ave.: 10.7	Ave.:	Duration: 15.36	E (S) Action Limit		Ave.: 252	1 Ave.: 6.45	5 Ave.: 24,5	3 Ave.: 6,53 5.0 4.2	Ave.: 907 2	Ave.: (0, 1)	Ave.:	Duration: 15:06	E (S) Action Limit		- Ave.: 25.4	6.54 Ave: 6.54		Ave.: 6.40 5.0 4.2	88.9 Ave. 88.9	11, 6 Ave.: 11.6	Ave.:
SR4	SURFACE (S)	D,	8,25 13.25	05.9 85.9	1 243 14.2	25.9 15.9	1 90.5 90.7			158	SURFACE (S)	0,7	J.ST 11.25	14.9 [4.9]	5 7 J. V. S.	[3.9 [23.9]	\$00 9°06 :	٠.	+	IS(Mf) 16	SURFACE (S)	0.1	5'52 2'5C :	13.9 [53.9]	5, 24, 74, 3	03.9 68.9		115	
Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Condition)**

C)	REMARK									(0, 3							130%	827	
9()6								47,0		X) (X	REMARK						Τ.	77	
7-77 mg/L (97.0 %) J6 15 0-15	LIMIT							47.0 and 130% of CS(Mf)3	34.4 and 130% of CS(Mf)3	m8/L (9 f. (%) () L. k	REM						120%	21.0	
_) 7/8m								27.5											
7.7	ACTION							27.5 and 120% of CS(Mf)3	23.5 and 120% of CS(Mf)3	Wet bulb calibration for DO meter: \mathcal{N}	ERAGE								
	1/4/1	7/12						27.5	23.5	ı for DO m	DEPTH AVERAGE							9-1	
on for DO	DEPTH	AVE.						5'01		calibration									
Wet bulb calibration for DO meter: _	Action Limit VAL					2.0				Wet bulb			181)	Ave.: 6,54	Ave.: 25,9	Ave.: 6.31	4ve.: 38.2	Ave.: 23,5	
Wet bul	Action		C	57	2,5)¢ 4.7	9.	0			M			Ave.			F Ave.	Ave	Ave.:
	M (B)		Ave.:	Ave.:	Ave.:	Ave.: 6	C Ave. &	4ve.: (0	Ave.:	<i>و</i> . ن	BOTTOM	5	25.2	45.9	0.97	6.23	\$2.F	21.7	
je Ė	BOTTOM (B)	3,6	753	6.56 6.58 Ave: 6.57	5'TT 9	6.33 6.34 Ave.: 6.34 4.	12	(S)		(meter):			25.3	653	15,7	030	38.0	W.2	
iter):	4/1		75,	6.5	25	(.9)		9)		Depth of Water (meter):				21 6	<i></i>	9 5		7 9	
Depth of Water (meter):_	Action Limit V/A/L					5.0 4.2				Depth			Ave.: 25,2	Ave.: 6.51	Ave.: 25.}	Ave.: 6.53	Ave.: 911,3	4ve.: 21.6	Ave.:
Depth of	140						.:			14:30	MIDDLE	4.3	75.2	6.53	15.9	35.3	1	~	
	MIDDLE (M)				Ave	/ Ave.:	Ave	Ave.:	Ave.:	10 [4	IM	ナ						~	
18:00	MIL									90:41			75,2	6.43	125.7	6,72	5	72.	
143C 10	it V/A/L					>				Duration:			1.75	Ave.: 6.46	Ave.: 25.3	£.64	8.7.8	2	
E 50	Action Limit V/A/L					5.0 4.2				Dura			1	Ave.:	Ave.:	Ave.:	Ave.:	8.53 Ave. 7.6	Ave.:
Duration:	9		tve.: 1Š1	tve.: 6.73	4ve.:	6.23 6.24 Ave. 6.24	4ve. 81.2	4 1 1 6 Ave.: 7 2	4ve.:	tation)	SURFACE	0,	25.0	87.9	25.2	29.9	929 Ave.: 92,8	×	
D_{ν}	SURFACE (S)	0	7,21	6,74,	75.14	71.9	2	2		Station: CS(Mf)3 (Upstream Control Station)			25.2	۲				 	
S(MD)9	S		次	7(3)	35.3	6.13	87,1	116) S	Upstream			77	<u>ن</u> ت	757.4	6.63	6	e	
VSI		· ·		٠.	· ·			٠.	ļ·.	CS(MD3.L		er)			(tu	-		אדע)	
Station:		Depth (meter)	Temp. (°C)	Нq	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Any notable discoloration of water? 1/1/N If yes, elaboration is as follows: _

Any notable pollutant by others near monitoring site? Y/N If yes, elaboration is as follows:...

. Checked by	Date
aboratory Staff	Баге
Se Co	7/11/13
Checked by	Date
Wind China Lung	7 (yell 2013)
Field Operator	Даге

(Mf)5 to CS(Mf)3	251 0	2						130%	8'//		% (25.0°C)	REMARK							70	
Direction of water current: From CS(Mf)5 to CS(Mf)3	of the 201	REMARK						120%	60	-	99.7 %)(LIMIT							47.0 and 130% of CS(Mf)5	34.4 and 130% of CS(Mf)5
	Wet bulb calibration for DO meter: 8,40 mg/L (APH %) (25s	DEPTH AVERAGE							L0'.		eter: 8 .49 _mg/L (_	ACTION							27.2	23.5 and 120% of CS(A4f)5
Wave Tide Mode: Flood Tide	ulb calibration for DO	Q		25.7		25.4	2179	AVE. 85.6	Ave. 1015 9		Wet bulb calibration for DO meter: 8 149	Action Limit VAL DEPTH VAI	AVE.				$\left \frac{2.0}{} \right $		17/1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	
Sea Conditions: Calm / Smhill Mave / Great Wave	9,6 Wet bu	BOTTOM	8.6	25.2 Ave.	0 7.1 Ave.	15.3 Ave.	Filt Ave.	858	(0,3 Ave.	Ave.:	7 Wet bulb	BOTTOM (B) Action	7.7	52 AVE 25.3	7/10 Ave.: 711	53	1 635 Ave 636 4.7	88,8 Ave 87,1	128 AVE. [7.6]	Ave.:
Z Sea Conditions: <u>c</u>	Depth of Water (meter):			25,3 25,5	11 1/2 7/91/2	53 25¢	089 817	853 478			ter (meter):	Action Limit VA/L BO	7	153 2		157 2	6.3 6	8448		
perature (°C):		MIDDLE	7.8	25.3 Ave.	7 7 Ave.:	252	5 < 7 Ave.:	86.2 Ave.	8,33 8,31 Ave. 8	Ave	33 Depth of Water (meter):	MIDDLE (M) Action L				/ Ave.:	Ave.: 5.0	Ave.:	Ave.:	Ave.:
Ambient Temp	Duration: 10:180 11:07			53 15.7	1	53 753	0				11:14 10 11:31			16.			>			
Sampling Date: 9-11-2013Weather Condition: Olouber Ambient Temperature (°C)	J	SURFACE	٥	25.3 Ave. 25.3	7,08 AVE. 7,09	25,2 Ave. 753	6.27 Ave. 6.29	876 Ave. 879	8.37 Ave 8.40	Ave.:	Duration:	S) Action Limit VAL		AVE. 254	Ave. 702	4ve.25	Ave. 6 45 4.2	4ve.900	Ave.	Ave.:
7-11-20BWearl	Station: _CS(Mf)\$ (Upstream Control Station)	The state of the s		25.3	7.09	253	630	88.(~		SR4a	SURFACE (S)	C.)	25 25,4 m 25.4	7.01 7.02	25,1250 AVE 251	A9 640 42	90,5 875 AVE 90,0	17.0 12.4 Ave 172	
Sampling Date:	Station: CS(Mf)5		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	. Hd	Salinity (ppt)	D.O. (mg/L)	. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet (**Flood Cc. Jition**)

25.40 75.7°C) $^{\circ}$ REMARK REMARK REMARK % (253 元 ()) %) (% 47.0 and 130% of CS(Mf)5 27.5 and 120% of 2115 47.0 and 130% of CS(MI)5 47.0 and 130% of CS(Mf)5 34.4 and 130% of CS(Mf)5 34.4 and 130% of CS(Mf)5 34.4 and 130% of CS(Mf)5 LIMIT LIMIT 8'66 400) 7/8m 8.3 9 mg/L (_) T/Bm 27.5 and 120% of 2755 CS(MJ)5 23.5 and 120% of CS(Mf)5 8.45 CS(Mf)5
23.5 and 120% of
CS(Mf)5 27.5 and 120% of 23.5 and 120% of CS(Mf)5 ACTION **ACTION** ACTION Wet bulb calibration for DO meter: 8 . H Wet bulb calibration for DO meter: _ Wet bulb calibration for DO meter: DEPTH V/A/L V/A/L V/A/L Action Limit VAL DEPTH VAVE 105 80 83 DEPTH AVE. Action Limit V/A/L SESS SESS B. 6 AVE. 13.7 75.7 Ave. 25.2 9.50 9.54 AVE 9.52 35,2 25,1 14.6.25, 906 895 AVE 90. 9 BOTTOM (B) BOTTOM (B) BOTTOM (B) 7.19 25.3 25.4 8 Α, 707 5,7 7 <u>|</u>|25/2/2 101 へまり 9 Depth of Water (meter): Depth of Water (meter). Depth of Water (meter): Action Limit V/A/L Action Limit V/A/L Limit V/A/L 4.2 5.0 5.0 Ave. 744 90 AVE 89.8 Ave.: Ave.: Ave.: Ave.: Ave.: Апе.: Ave. Ave. Ave.: Ave.: MIDDLE (M) MIDDLE (M) MIDDLE (M) 17:04 3,07 30 2 125.9 ñ L V/A/L 1.40 to V/A/L Action Limit VIAIL 次38 Limit Duration: 12= 03 Action Action 5.0 Ave. 105 1 Ave.: 872 Ave.: | | S Ave.:866 15.3 Ave. 75 Duration: Duration: Ave. SURFACE (S) SURFACE (S) SURFACE (S) 0 S 863 名の子 **党**,4 0,60 <u>ئ</u> に対 01 R **以** IS(Mf) 16 1.58 SR4 Turbidity (NTU) Turbidity (NTU) Turbidity (NTU) Depth (meter) Depth (meter) Salinity (ppt) Depth (meter) Salinity (ppt) D.O. (mg/L) Salinity (ppt) D.O. (mg/L) D.O. (mg/L) D.O.S. (%) S.S. (mg/L) D.O.S. (%) S.S. (mg/L) Temp. (°C) D.O.S. (%) S.S. (mg/L) Temp. (°C) Temp. (°C) Station: Station. Station:

Impact Water Quality Monitoring - Data Record Sheet (Flood Co._Jition)

承業務整態實際商品版公司 ETS-TESTCONSULT LIMITED

\$38 mg/L (99.6%) 253 °C) 25.7) (% *PEMARK* 47.0 and 130% of CS(Mf)5 34.4 and 130% of CS(Mf)5 LIMIT 66 mg/L 23.5 and 120% of CS(Mf)5 4CTION DEPTH AVERAGE Wet bulb calibration for DO meter: Wet bulb calibration for DO meter: V//4/L DEPTH AVE. Ave.: 25.0 203 909 ANG LOP BOTTOM BOTTOM (B) 52 252 6,43 647 980 788 40 Ó 163 So Depth of Water (meter): Depth of Water (meter): AVE.: 289 Action Limit V/A/L 5.0 6.37 MIDDLE 75.7 Ave.: Ave.: 4ve.: Ave.: Ave. MIDDLE (M) 13:38 1,20 77.9 253 18:15 00 Ave. 25, 1 14ve. 38 4 Action Limit V/A/L 18:34 J 847 25,3 Ave. 89,7 6.39 642 46.41 SURFACE ۵ Duration: Duration: SURFACE (S) 0.0 0 640 87,7 57.9 292 CSOMD3 Turbidity (NTU) Turbidity (NTU) Depth (meter) **Depth (meter)** Salinity (ppt) Salinity (ppt) D.O. (mg/L) S.S. (mg/L) D.O. (mg/L) D.O.S. (%) S.S. (mg/L) Temp. (°C) D.O.S. (%) Temp. (°C) Station: Station:

Any notable discoloration of water? XTO If yes, elaboration is as follows: __

Any notable pollutant by others near monitoring site ? \mathcal{M} If yes, elaboration is as follows .

,			
	Checked by	Date	
	Laboratory Staff	Date	
	3260	2/11/2	
	Checked by	Date	The second secon
	SIHI	9-11-7013	The state of the s
	Field Operator	Бате	

to CS(Mf)S	5.1°C)										(D _o	REMARK								
Tide Mode: <u>Ebb Tide</u> Direction of water current: From CS(Mf)3 to CS(Mf)5	%) (ZS.1	REMARK									% (35.1	LIMIT							2% of 20/20	1% of
ter current: F	98.4										4.86	TIV								34.4 and 130% of CS(Mf)3
irection of wa	mg/L (_											ACTION							2.72 s	9% of
bb Tide	8.40	DEPTH AVERAGE							9,14	-	er: 8.45								27.5 and 120% of CS(Mf)3	23.5 and 120% of CS(Mf)3
Tide Mode: <u>E</u>	for DO meter	DE							5		n for DO met	DEPTH JAM	AVE.						100	>
ireat Wave	Wet bulb calibration for DO meter:			4ve.: 25,2	Ave.: 7,13	Ave. Y	Ave.: 6.07	Ave. H. 9	Ave.: 6	Ave.:	Wet bulb calibration for DO meter: 8-43	Action Limit V/A/L DEPTH					4.7 2.0			
Sea Conditions: Calm (Small Wave) Great Wave	Wet bu	ВОТТОМ		25.1 A	7.14	₩ 4.X	6.05 A	847	6 4		Wet b	Acı		ξ. ζ.	27.0	x:7		4ve.:	(4ve.;) (Ave.:
ions: Calm (S	26 9.K	BC	8.5	25.3	7117	25.4 2		2.6	7		4.6	BOTTOM (B)	3.6	15.3 25.3 Ave.	ンは	N.3 25.3 Ave.: 35.3	6.30 6.34 Ave.	B	(0.3	A
Sea Condit									9		eter):	AM		15.3	7.16	75.3	6.30	4.4	(2.6	
R	Depth of Water (meter):_			1 Ave.: 25.3		Ave.:	Ave.;	4ve.g.6.0	Ave.: 8.36	Ave.:	Depth of Water (meter):	Action Limit V/A/L				SKILL PARKE	5.0 4.2			
ature (°C) :	Depth o	MIDDLE	4.8	25.2	7. (2	Kit.	6.14	%.o	8.33		') (W)				Ave	Ave.:	Ave.:	Ave.:	Ave.:
Ambient Temperature (°C):	(gwb)			25.3	7,14	25.2	6.14	وره	25.32	,	1925	MIDDLE (M)								
1						8.3		7.7	St. C	Ave.:	(b)	Action Limit V/A/L					4.2			
tion:	Duration: 192 (1	Ŧ.				3 Ave.: 35.3	6.24 Ave. 6.36	C Ave.:	Ave.:	Ave.:	Duration: Ruy 10	Action Li					5.0			
eather Condi	Duration	SURFACE	0,7	J.5.4	7.0	2513	24.9	6	7.8		Durati	(S) 3.	0	F Ave K.Y	a Ave	Ave	3 Ave. 6.3	1 Ave. 88.	Ave.:	Ave.:
(Jol) W				25.3	7.06	25.3	6.28	87.9	2.48			SURFACE (S)	0')	754 JSG 478	7.00 7.00 Ave. 01	My No we	6.36 6.33 Ave. 6.35	0 80.	[2.8 3.6 Ave. 2.7	
3 61	CS(MDS							٠.			SR4a			7	ζ	X	ف	Æ		
Sampling Date: 4 ((1/16)) Weather Condition: FING	Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Condit.)**

K. Y.C.	REMARK									(), 6 .1	REMARK									25.3 °C)	REMARK								
89.4 % 3	LIMIT							47.0 and 130% of φ , c $CS(Mf)^3$	34,4 and 130% of CS(Mf)3	P. 4 % 26.	LIMIT							47.0 and 130% of 47.0 CS(MJ)3	34.4 and 130% of CS(Mf)3	98.9 %) (LIMIT							47.0 and 130% of 4TO CS(Mf)3	34.4 and 130% of CS(Mf)3
er. J. Ul mg/L (ACTION							27.5 and 120% of D7.5 CS(Mf)3	23.5 and 120% of CS(MJ)3	ter: 8.41 mg/L (ACTION							27.5 and 120% of J.S. CS(Mf)3	23.5 and 120% of CS(Mf)3	ter: & 3\$ mg/L (ACTION							27.5 and 120% of 27.5 CS(MJ)3	23.5 and 120% of CS(Mf)3
Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH	AVE				4.7 2.0 V		$/9^{\circ}$		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH	AVE. V/A/L				4.7 2.0 V 2.4 2.4		163/		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH	AVE. V/A/L				4.7 2.0		13.5 1	
4,6 Wer b	BOTTOM (B)	3,6	8 25,2 Ave 75.8	7.03	3 25.4 Ave. 25.4	6.34 Ave. 6.37	忽 恕	49.6	Ave.:	J. Wet	BOTTOM (B)	4.1	25.3		27.50	6.10 Ave. 6.08	8 854 m. Br. 1	7.5	Ave.:	O.6 Wes	BOTTOM (B) A	2.6	25.3	7.19	SSA	14.9 Ave. 16.41]	14.7	Ave.:
Depth of Water (meter):	Action Limit 4/A/L		4.77	7.0	25.3	5.0 4.2 6.40	4205	30		Depth of Water (meter):	Action Limit VIAIL		35.3		1. St. 6	5.0 4.2 6.06	848	8.		Depth of Water (meter):	Action Limit V/A/L		35.3	3 10 10 7.18		7 5.0 4.2 / 6.39		.8 = 13.9	
1836 Dep	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	/ Ave.:	प्रदेश व	MIDDLE (M)				Ave.:	/ Ave.:	Ave.:	/ Ave.:	/ Ave.:	(7=3/6 De	MIDDLE (M)	××	IS.3 25.3 25.3	7.14 7.12 7.13	N.2 25.7 (400. 35.3		B.0 R.3 AVEB.2	الآه	Ave.:
(B212 10	Action Limit V/A/L		7 20 21 22 22		9	\$ 5.0 4.2 V	0			01 CA2 10	Action Limit V/A/L				9	S 5.0 4.2 V				01 4127	Action Limit V/A/L					5.0 4.2	120		
Duration:	SURFACE (S)	0`)	15.2 D.3 Ave. 75.3		8.4 8.4 Ave. 25.4	6.30 6.36 Ave. 83	88.3 89.1 Ave 38.7	3 ((() Ame 1.5	Ave.:	Duration:	SURFACE (S)	0,	Ŕ		7.56 A.F. A.C.		2000		•	Duration:	SURFACE (S)	اده	X.7	(1.7.14 AVE.7.1)	233	6.33 6.38 Ave. 6.31		6 (1.3 Avefl.)	Ave.:
SR4		٠,	176	, j	<i>S</i> :	ف :	88	512 113	٠.	8SI			(A)	\(\frac{1}{1} \)	7		·.		٠.	1S(MD16		٠.	6.26 ·	<u>r</u>	5.50	ف	88 :]] ;	
Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Condition)**

X.3 °C)	REMARK							6		7.3°C							130%	5.9	
89.6 %)(LIMIT				110			47.0 and 130% of 67.0 CS(MI)3	34.4 and 130% of CS(MJ)3	1. 98.6 % (25.3	REMARK						120%	(۲.۶)	
8.38 mg/L (99.6 %) (X.3 °C)	ACTION							27.5 and 120% of 27.5 47	23.5 and 120% of 34 CS(Mf)3	Wet bulb calibration for DO meter: $J^*36 \mod mg/L$ (DEPTH AVERAGE								
Wet bulb calibration for DO meter:	J. DEPTH	AVE. VIAL						/ 8.6		b calibration for D	DEPT							/a.	
Wet bulb calibrat	Action Limit VIAIL					4.7 2.0			e de la companya de l	1			Ave.: X. (Ave.: 7.30	Ave.		Ave. 7		Ave.:
4,3	BOTTOM (B)	3,3	52 Ave. 353	7.13 7.11 Ave. 7.12	5.1 Ave. 35.	6.15 6.11 400.13	5.5 Ave 15.8	192 Ave. 10.0	Ave.:	Depth of Water (meter): 12 8.4	BOTTOM	ナン	25.0	7. 26	25.1	91.9	9.98	(6.0	
			7.7. J	7.13 7	25.12	6.15 6	86.1	10.1		of Water (meter			J. 7.1	7.3	1.X.	6.20	7.98	9.9)	
Depth of Water (meter):	Action Limit V/A/L					5.0 4.2							Ave.:	Ave 7.21		Ave.: 6.32			Ave.:
	MIDDLE (M)				Ave.:	1 4 5 Ave.	Ave.:	Ave.:	Ave.:	10 (6236	MIDDLE	4.2	25.2	7.8	25.3	48.9	28	_	
90× (1 01					,					(b=13			4 15.2	5 7.23	25.0	6:30	K.88.		
01 (4:9)	Action Limit V/A/L					5.0 4.2		<i>√</i>		Duration:	3.		4 Ave.: 25,4	4ve.: 7.15	Ave.: 25.2	Ave.; 19	Ave.: 91,-7	4ve.: 0.51	Ave.:
Duration:	SURFACE (S)	0.	5.3 Ave 35.3	7.02 7.00 Avery 26	24.6 15.0 Ave. 349	C4 6.43 Ave 6.42	0,3 Ave. 90,	5.3 Ave.	Ave.:	introl Station)	SURFACE	0	3 25.4		45.4	6.18			
S(MD)8	SUR		253 2	7097	24.G J.	5	899 9	15.6		13 (Upstream Co			. 25,3	# / L	: 35.2	. 6.30	8.9%	8.54	
Station: L.		Берін (тегет)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station: _CS(Mf)3 (Upstream Control Station)		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Any notable discoloration of water? Y (N) If yes, elaboration is as follows:

Any notable pollutant by others near monitoring site ? Y /(N / If yes, elaboration is as follows :

Checked by	Даге
Laboratory Staff	Баге
(Sela	9/11/13
Checked by	Бате
[as this them?	9 (ed bis)
Field Operator	Даге

3 to CS(MD5	5 0 °C)										(). 157	REMARK								
: From CS(Mf)	99.4 % 25.0 °0	REMARK									99.2% 25	LIMIT.							47.0 and 130% of 470 CS(MJ)3	130% of Uf) 3
of water curren	16 Jd.																	Die von	75 47.0 and	34.4 and 130% of CS(MJ)3
e Direction o	3.43 mg	ERAGE							·		8.40 mg/L (ACTION							27.5 and 120% of CS(Mf)3	23.5 and 120% of CS(Mf)3
Tide Mode: <u>Ebb Tide</u> Direction of water current: From CS(Mf)3 to CS(Mf)5	OO meter:	DEPTH AVERAGE							3.7		. DO meter:	TH 3/411							14 V 27.	23.
	Wet bulb calibration for DO meter: 8.43 mg/L (24.9	1:19	25.3	Ave.: 6.14 %	36.1	565	•	Wet bulb calibration for DO meter: _	Action Limit V/A/L DEPTH	AVE				2.0		1. 4.	
Sea Conditions: Calm / Small Wave / Great Wave	Wet bulb o	воттом	8.4	24.9 Ave.	7,18 Ave. 7,19	253 Ave. 253	6.18 Ave.	80.5 AVE: 85.7	5.64 Ave. 5	Ave.:	Wet bull	Action		25.0	1,0,1	25.1	622	-87.1	192	Ave.:
tions: Calm/Sr	4.6	BO	8	24.9 2	Ö	25.2	9 01.9	85.4 8			5,0	BOTTOM (B)	7.0	25.0 Ave. 25.0	Tol 701 AVE 7.0]	250 25.1 Ave. 25.	6.24 6.20 Ave. 6.22	# 888 H	3 th 3.70 Ave 36	Aw
Sea Condi				25.0 26	7.13 7	2511 2	9 51.9	86.1 89			(meter):	Limit V/A/L		25.6	7.0	250		118		
‡	Depth of Water (meter):.	la)		Ave.	Ave.:	Ave.:	f Ave.: 6	Ave.	Ave.:	Ave.:	Depth of Water (meter):.	Action Lim					5.0 4.2	and the		
emperature (°C)		MIDDLE	47	25.0	1 7.13	25.1	1.9	7.98	0 2.64		9:32	MIDDLE (M)				Ave.:	Ave.:	Ave	Ave.:	Ave.:
- Ambient Te	0:0			25,0	7117	25.1	41.0	85.9			1									
Cloudy	9:30,000			Ave.: 25,1	Ave. 7	Ave.: 25,1	Ave. 6.25	Ave.: 86.9	Ave. 7.86	Ave.:	Duration: 9:07 to	Action Limit V/A/L					5.0 4.2			
ther Condition :	Duration:	SURFACE	O	25.1		75.	6.28	873	7.88		Duration:			Ave. 25,1	Ave. 7.05	Ave.:	\	Ave. 86.9	Ave CS	Ave.:
Sampling Date: 1 - 10 Beather Condition (1600 4 Ambient Temperature (C):				2	L.	50.00	100	26.5	7.84			SURFACE (S)	0	25,1 25,1 Ave 25,	7.05 7.05 AVE. 7.05	250 750 Ave. 25.0	638 6.40 Ave. 639	SK.71 88.9 AVE. 86.9	530 582 AVE 58	
Jaie: "	CS(MDS		: (1a						NTU) :		SR4a		ier)	٠.	<u>ر</u>	٠.		٠,	٠.	
Sampling L	Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Condition)**

(D ₀)	REMARK									5.0 %	REMARK									25.1°C	REMARK								
36 /8	LIMIT							3% of 470	3% of	2%(2	LIMIT							30% of 470	10% of) (%	LIMIT							13 E E E E E E E E E E E E E E E E E E E	1
L. 993	TIV							S	34.4 and 130% of CS(Mf)3	1,99,7	TI							275 47.0 and 130% of CS(Mf)3	34.4 and 130% of CS(Mf)3	mg/L (99,5	LI.							275 47.0 and 130% of 34.4 and 130% of	CS(MI)3
8.39 mg/L (_	ACTION		ii V					27.5 and 120% of CS(Mf)3	23.5 and 120% of CS(Mf)3	8.38 mg/L	ACTION								23.5 and 120% of CS(Mf)3	8.40 mg	ACTION						100 A	1	CS/Mf)3
		V/A/L						>	23.5 ¢			2 V/A/L						, \ \ 27.5.	23.5	- 1		5. V/A/L						X / X	
Wet bulb calibration for DO meter:	Action Limit V/A/L DEPT	AVE				$ z_{00} $		353		Wet bulb calibration for DO meter:	Limit V/A/L DEPTH	AVE				2.0		36		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH	AVE.				2.0		#	
Wet bulb	Action		24.8	411	Ave.: 25 j	(45 47	AVE.: 89.7	334		- Wet bulk	Action Limit		- JSD	Ave.7,10	131	6.18 4.7	Ave.:358	Ave335	e.: (Wet bull	Action		14.4		Aveisi	6.35 4.7	Ave.: 58.9	4ve4,06	
4.8	BOTTOM (B)	3.8	1 24.8 Ave.	7,18 Ave.	25.0 Ave.	9 6 All AVE.	1881	0 338 AVE.	Ave.:	5.0	BOTTOM (B)	40	1250 Ave.2	111	1 25.0 Ave.	6.15	855	331	Ave	4,0	BOTTOM (B)	5.4	7 24.9 AVE'Z		1 25,2	634	9 88.8 400	2	-
ter (meter):	Limit V/A/L		1249	7.10	25.	6.49	7.06	3,3(er (meter):	nit V/A/L		15.0	7.09	15.	42 620	7.98	339		r (meter):	Limit V/A/L		24.9		12	4.2 / 6.35	3%	4.65	
Depth of Water	Action Lim					5.0 4.2				Depth of Water (meter):	Action Limit V/A/L					5.0				Depth of Water (meter):	Action Lin		24.9	7,08	Ave. 25.0	5.0	87.8	75	
8:59	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	31	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	8:00	MIDDLE (M)	3,2	249	708	120	6,24	874	#19 Ave. 14	Ave
36 % 8:	V/A/L					>				10 8	VAIL					>				01 0	V/A/L		74.5	7.05	15.0	>	288	ご	
8:36	Action Limit		Θ,	5	0	12 5.0 4.2	7.2	ر ا		8.07	Action Limit		50	20%		6 5.0 4.2	73	8		7:36	Action Limit		þb		50	5.23 5.0 4.2	9 '9	88	
Duration:	SURFACE (S)	0	_		25.0 Ave. 25.0	6.44 Ave 6.42	89,5 AVE. 892	570 4037	Ave.:	Duration:	SURFACE (S)	0.	25.0 Ave. 75	Ave.:	25 1 Ave. 25	6.14 Ave. 6.1	953 AVE 85	3.86 Ave 3	Ave.:	Duration:	SURFACE (S)	0.	24,9 400. 24,9	Ave. 7	15.0 Ave. 25	621 Ave. 6	36.3 Ave. 86. 6	460 458	Ave.:
SR4	SUR	and the state of t	25.0 2	7,04	250 2			7 7 7	2	158	INS		25.0 2		750 2	7 819	35.9	3.88		IS(MD16	SU		249 2	7.01	74.9	6.25	86.9	420	
Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station: IS		Depth (meter)	Temp. (°C.)	Нд	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Station:	IS(MD9	Duration:	7:06 10	7: 30		Depth of Water (meter):_	46	Wet	Wet bulb calibration for DO meter: _	- 1	30 mg/L (8.30 mg/L 99.4 % 25.0	25.°°C)
	SUF	SURFACE (S)	Action Limit V/A/L	MIDDLE (M)		Action Limit V/A/L	BOTTOM (B)		Action Limit V/A/L DEPTH		ACTION	LIMIT	REMARK
Depth (meter)		0					3.6		472	2 V/A/L			
Temp. (°C)	25.1	25, i 25,1 AVE 25,1				7	5.0 249 AVE.	4ve.: Z. D					
Н	7 669	699 700 day					11.7 01.7	Ave. 7					
Salinity (ppt)	25.0 2	49 Ave. 25,0			Ave.:		25.0 250	Ave.: B. D					
D.O. (mg/L)	623 6	6,23 /21 Ave. 6,22 3	5.0 4.2		Ave.:	5.0 4.2	(23) PC3		$_{4.7}$ $\left \begin{array}{c} 2.0 \\ \end{array} \right \sqrt{\left \begin{array}{c} \end{array} \right }$				
D.O.S. (%)	\$ 9.78	63 446. 865			Ave.:		88,1 58,3	58,3 Ave. 88.2			9 M		
Turbidity (NTU)	1	151 ME 45C			Ave.:		-	47 Ave 14.75	4	(5 V 27.5 am	27.5 and 120% of CS(Mf)3 27.5	47.0 and 130% of 4. CS(Mf)3	7,0
S.S. (mg/L)		Ave.:			Ave.:			Ave.:		23.5 and CS(23.5 and 120% of CS(Mf)3	34.4 and 130% of CS(Mf)3	
ation: CS/M	Station:_CS(Mf)3 (Upstream Control Station)	ontrol Station)	Duration: 6	6.36 10	00:7	Depth of W	Depth of Water (meter):	8.2	Wet bulb calibr	Wet bulb calibration for DO meter: $8^\circ 3\! \xi$		mg/L (99,2 %) ((25, °C)
		SURFACE			MIDDLE			BOTTOM		DEPTH AVERAGE	MGE	REMARK	>
Depth (meter)		0.			ナ			7.7					
Temp. (°C)	25.0		750 Ave. 250 749	74.9	249	AVE.: 749	24.9	24.8	Ave.: 249 -				
Н	7,19	1	446.719	7.17	7.23	Ave.: 723	7.09	7.10	Ave.: 7,10				
Salinity (ppt)	250	75, (Ave. 35.11	25,1	25.1	Ave. 25,1	25.2	157	4ve. 15.2				
D.O. (mg/L.)	633	6.17	Ave.: 6,15	6,20	6.15	Ave.: 6.19	1119	6.19	Ave.: 6.18				
D.O.S. (%)	258	2 85.8	Ave.: 85.5		86,1		4.98	36°.7	Ave.: 86.6			120%	130%
Turbidity (NTU)	(S	3,27 3.27 14.3.25 2.91	1 Ave. 3.25	2.9	293	152 761 JAN	125	2.53	Ave.: 7.52	290	-	348	2,77
S.S. (mg/L)			Ave.:	,)	Ave.:				
				-		T		· ,					

Checked by	Даге	
Laboratory Staff	Date	W
(Se (R)	2/11/121	
Checked by	Баге	
S.17. Car	17-11-2013	
Field Operator	Date	

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condition)**

Sea Conditions: Calm / Small Wave / Oscat Wave / Tide Mode: Flood Tide Direction of water current: From CS(Mf) to CS(Mf) 3 mg/L (99.5 %) (25, Wet bulb calibration for DO meter: <u>ر</u> Depth of Water (meter): Sampling Date: 12 - 1 - 7213 Weather Condition: (Duly Ambient Temperature (C): 24 Duration: 13:50 to 14:11 Station: CS(Mf)5 (Upstream Control Station)

		SURFACE	-		MIDDLE			BOTTOM	-	DEPTH AVERAGE	REN	REMARK
Depth (meter)		0			5 t			<u>~</u>	339			
Temp. (°C.)	15.1		25,0 AVE: 25,1 25,0	25.0	P. # 7	4ve. 25.0	24.9	2.4.2	Ave.: 24.9			
Hď	<u>t</u>		7,(6 Ave. 7,(5		7,09	Ave.: 7,10	Ave.: 7,10 7,20 7,23 Ave.: 7.12	7.23	Ave.: 7.22			
Salinity (ppt)	. 25.0		24.9 Ave. 25.0 25.2 25.1	25.2	25,1	4ve.: 25.2	25.3	25.3	Ave.: 25,3			
D.O. (mg/L)	6.37		13 363 Ave. 636 6.22	77.9	たいの	Ave.: 6.23	Ĝ. 08	0 0	Ave.: 6.09			
D.O.S. (%)	2000	-	88,6 Ave. 88,7 86,8	86.8	2,7	Ave.: 87.0	AVE: 87,0 84,9 85.2 AVE: 85,1	85.2	Ave.:85,1		120%	130%
Turbidity (NTU)			Ave. 2,88		7,96	2,96 Ave 2,95 261	261	2.69	2.69 Ave. 2.65	2.83	3.39 3.67	7.67
S.S. (mg/L)			Ave.:			Ave	·		Ave.:			
Station:	SR4a	Duration:	Duration: (4:10 10 14:42	달		Depth of Water (meter):	15	We	t bulb calibratio	Wet bulb calibration for DO meter: \S ' \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow	8/1 (94,6 %	6) (25.1°C)

	SUR	SUIVEACE (S)	Action Limit V/A/L	MIDDLE (M)	Action Limit V/A/L	BOTTOM (B)	Action Limit V/A/L DEPTH	ACTION	LIMIT	REMARK
Depth (meter)		0,7				ーナ	AVE. V/A/L			
Temp. (°C)	7517	1,2,1 Ave. 35,1			15.	25.0 25.1 Ave. 25.1				
На	7.047	7.04 7.02 400-7.03				09 7:(1 AVE. 7.(0				
Salinity (ppt)	2492	24,9 25,0 Ave. 15,0		/ Ave.:	25,	25,1 25,1 440.:25.1				
D.O. (mg/L)	3	6.49 6.51 Ave. 6.50	5.0 4.2	Ave.:	5.0 4.2 6.3	6.39 6.41 Ave. 6.40	$\frac{4.7}{20}$			
0.0.5. (%)	90.5	90.5 90.8 Ave. 90.7		Ave.:	£	1 89,4 Ave. 89.3			27/00/17	
urbidity (NTU)	3,53	Turbidity (NTU) 3,55 3.79 AVE. 7,72		Ave.:	18 31	11 3,71 Ave. 3 14	6 - 1 - 1 - 1 - 1 - 1	27.5 and 120% of 27.5 CS(My)5	27.5 and 120% of 27.5 CSAMDS (47.0 CSAMDS)	
S.S. (mg/L)		Ave.:		/ Ave.:		Ave.:		23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(MJ)5	

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condition)**

Secretary Secr	SR4	Duration: (4.52	14:52 10	15:13	Depth of Water (meter):_	N	Wet bulb calibration for DO meter:	er: 6 + 1 mg/L (7 (% ()00)	(D, 7147
15 17 17 17 17 17 17 17		SURFACE (S)	Limit	MIDDLE (M)	Aghon Limit VIAIL	BOTTOM (B)	V/A/L DEPTH		LIMIT	REMARK
10	1	0.5				43				
1.05	1					25.				·
1,44 41% 5,50 12 14 14 14 14 14 14 14		7,05 4007.04			##	Аче.:				
		75.5		Ave.:		(250 Ave.:				
2044 1923 1934 1935 1934 1935 1934	1	44,9	5.0	Ave.:		1 6.54 Ave.	4.7			
1,00 4 mar 1,00 4 mar 1,0 4 mar		Š.		Ave.:		91.3				
Are:		からて		Ave.:		414	> 3.50 √			
1, 6 1, 6	1	Ave.:		Ave.:	\$4.50 \$4.50	Ave.:		23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	
1, 6		Duration:		55:51	Depth of Water (meter)	5,3	7et bulb calibration for DO me	8,46	9 % 2	5.5 °C)
1, 6		SURFACE (S)	Action Limit V/A/L	MIDDLE (M)	Action Limit V/A/L	BOTTOM (B)	DEPTH		LIMIT	REMARK
15		2				1	AVE			
5	0	35.1				5,0 25.0				
0 25,0 d ^{vez} 25,0 d ^{vez} 5,5 d	3	7.0.5								
\$\beta_{1,2} \text{ Ave:} \beta_{1,2}	0	25.0		Ave.:		25,1 25,2 400.25.				
\$\frac{\kappa_{1}}{\triangle_{1}} \frac{\kappa_{1}}{\triangle_{1}} \frac{\kappa_{1}}{\triangle_{1	ナ	6.22	5.0	/ Ave.:		R.17 6.20 Ave.: 6.11	4.7			
\$\frac{\cap{1}{\cap{1}}}{\cap{1}} \text{Tree} \rightarrow{\cap{1}}{\cap{1}} \text{Tree} \rightarrow{\cap{1}}{\ca	2	5	1	Ave.:		86.5				
Ave.; Ave.	00	いる		/ Ave.:		5113	S32 V			
Duration: [4:15] Depth of Water (meter): 7.7 Wet bulb calibration for DO meter: β. † mgL (39, 4), 4 γ/μ (24, 4)				/ Ave.:				23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf) 5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Duration:	1.54		Depth of Water (meter):		Vet bulb calibration for DO me	8.40	7)% 5.	
1.08 4 ^{Nec.} 1.25.0 1.09 4		SURFACE (S)	Action Limit VAL	MIDDLE (M)		BOTTOM (B)	DEPTH	·	LIMIT	REMARK
144 146 147 147 147 147 147 147 148		0.1		3.9		(AVE.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, S	74.9		24.8	4.2	877.8				
15,0 4 ^{ve.} 15,0 6.46 5,41 15,0 4 ^{ve.} 25,1 5,2 4 ^{ve.} 15,2 7, 25,2 4 ^{ve.} 15,2 7, 2 6.4 6,44 6,44 5.0 4,2 7,4 6,46 6,48 4 ^{ve.} 5,0 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8	80'6			. (6 : 18 : 18 : 19)	7.15				
6.39 4 ^{ve.} :6.38 ^{5.0} 4.2 5 6,46 6,41 6,41 4 ^{ve.} :40.2 8 8 4.2 5 6,40 6.38 4 ^{ve.} :6.39 4.7 2.0 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5			120		752				
891.1 Ave. 94.0		6.39	5.0 4.2	6,43	5.0 4.2 J	16.38	4.7 2.0			-
6, ((44e, 5,09	5	89.1		90.3		3 89.1				
Ave.: Ave.: Ave.: 23.5 and 120% of CSAMf)5	-))'9		53.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M				
		Ave				Ave.:		23.5 and 120% of CS/Mf)5	34.4 and 130% of CSM(1)5	

Station:	IS(Mf)9	Duration:	Duration: 16:25 10 16:48	16:48	Depth	Depth of Water (meter):	Ĭ.	Wet	bulb calibration	for DO meter:	8.36 mg/L	Wet bulb calibration for DO meter: 8.36 mg/L (99.4 %) (15.2 °C)	15.2 °C)
	SURFACE (S)		Action Limit VIAIL	MIDDLE (M)	(W) 5	Action Limit V/A/L	BOTTOM (B)		Action Limit V/A/L D	DEPTH JAM	ACTION	LIMIT	REMARK
Depth (meter)	0						<u>-</u> チ			AVE. VAAL			
Temp. (°C)	15,0 15,0 AVE. 15,0	Ave. 55,0					24.9 250 Ave.	Ave.: 25,0					
Hd	869 469 169 :	Ave.: 6.98					80.7 7.09 PO.7 TO.5	Ave.: 7.08					
Salinity (ppt)	0,51 1.52	Ave.: 25,1			Ave.:		15,2 25,1	Ave.: 5.2					
D.O. (mg/L)	6.36 6.38 Aver 6.37		5.0 4.2	No. of Concession, Name of	Ave.:	5.0 4.2	6.44 6.47 400.6.46	Ave.: 6,46	$ 4.7 $ 2.0 $ \sqrt{ }$				
D.O.S. (%)	88.7 89.0 Ave. 38.9	Ave. Sg. of		and the state of t	Ave.:		89,7 90,2	Ave.: 90.0					
Turbidity (NTU)	4.68 471 Ave. 4.70	4 C.F.		Secretary and Assessed	Ave.:		なか。ませる対	St. Trans		459 1	27.5 and 120% of CS(Mf)5		0
S.S. (mg/L)		Ave.:		-	Ave.:			Ave.:		23.3	23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	
Station:	CS(MD3	Duration: [6:58	6:58 10	17:20	Дері	Depth of Water (meter):). 8 · 9	Wet	bulb calibration	Wet bulb calibration for DO meter: $\hat{S}_i $ \hat{S}_0	8,30 mg/L	(99,5 %) 25,3	25,3 °C)
		SURFACE			MIDDLE			BOTTOM		DEPTH AVERAGE	VERAGE	REMARK	:
Depth (meter)		0)			とせ			الم الم					
Temp. (°C)	1.57	25.0	25,0 Ave. 25,1	54.9	25.0	1 AVE.: 25,0	24.8	24.9	Ave.: 24.9				
Нд	52		Ave.: 7, 6	7,22	7,20		7.16	7,18 Ave. 7,1;	tve.: 7,17				
Salinity (ppl)	15.0	74.9	Ave. 25,0	25,0	25,1	Ave.: 25,1	25.2	25.2	Ave.: 25,2				
D.O. (mg:L)	6,28	089		6.39	しょう	Ave.: 6,40	6,23	、ナス・う	4ve.: 6.24				
D.O.S. (%)	87.6	87.9	4ve.: 87, 8		%.t	Ave.:89,2	86.7	F6.8	898. Reg				
Turbidity (NTU)	188), 9 (2,91 AVE: 540 288		757	Ave.: 2,90	2,65		dve.: 2.69	2,83	~~		
S.S. (mg/L)			Ave.:			Ave.:		`	Ave.:				

Any notable discoloration of water? ** N If yes, elaboration is as follows:

Any notable pollutant by others near monitoring site ? 1/1 If yes, elaboration is as follows:__

Checked by	Баге	
Laboratory Staff	Даге	
(Se Ce	7//11/2	
Checked by	Даге	
Tony Chimy Hony	\[\langle \la	
Field Operator	Баге	

o CS(MD5	(C)), 		REMARK								
Direction of water current: From $CS(MD3$ to $CS(MD5)$	SC) (%	REMARK		:							1.75. 11%	5 5	Ţ							60/ 47.0	Jo
current: Fro	48.4	R									99.2		LIMIT							47.0 and 130% of CS(Mf)3	34.4 and 130% of CS(Mf)3
ction of water) T/8m										7 / 00 5	7 2 8	^							of 01.5	fo
	8,43	DEPTH AVERAGE							35		O O		ACTION							27.5 and 120% of CS(Mf)3	23.5 and 120% of CS(Mf)3
Tide Mode: <u>Ebb Tide</u>	DO meter:	DEPTH							~		Wat hull adlibuation for DO motor.) DO meter.	DEPTH V/A/L	AVE.						143 /	
	Wet bulb calibration for DO meter: _			24.8	7.35	(30	\(\frac{1}{2}\)	£. 7.	20,7		of notion for	מניטיו שניטיו	Action Limit V/A/L DE	A.				2.0		71	
Vave / Great	Wet bulb ca			Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	Wat hallh	וו פו חמום	Action		5			4.7	ر ا	2	
um / Small		BOTTOM	28	Å.	45,7	ű	5.08	9.5.	40,7				ВОТТОМ (В)							Ave.: [4,2]	Ave:
Sea Conditions: Caphi/SmalfMave/Great Wave	9,2			α	7,34	, d	6.01	94.	107		,	40	BOTT	3.8	34.9 24.B	7.16 7.13	25.1 35.2	C1.9 C1.9	86.1 86.7	142 14.1	
Sea C	(meter):			24	1.08	-	60 A	2.5	ST.			Depin of water (meter).	Limit VIAIL		,	<i>1</i> -2		4.2	8	7	
470	Depth of Water (meter):_			Ave.:	Ave.:	Ave.:	Ave.	Ave.:	Ave.:	Ave.:	11.00	epin oj wai	Action			-	Alternative of	5.0			
erature (°C)		MIDDLE	46	Ά	500	i ii	100	849	150				E (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:
Ambient Temperature (°C)	(3:13			0 17	7.07) (J	6 05	7 77 C	7,4B		0.00	12:17 01	MIDDLE (M)			-	·				
l	10			G.	7.31	(Ž 7.	, <u>4</u>					rit V/A/L					2			
ion: abud	11:41	la)		Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	-	Duration: 1(=14	Action Limit V/A/L					5.0 4.2			
Weather Condition : Obud	Duration:	SURFACE	Q	0.4	7.37	9,0	8,4	A A	7.70			Duratio	E (S)		Ave.: JS.D	Ave.:	Ave.: 25.1	Ave		Ave	Ave.:
	.			(i	1877		4.0.0 5.1.7	(48	101	1			SURFACE (S)	0)	3 25.0	 					
14.11.2	CS(MDS									 		SR4a			8 tic	CC.	C.S.C.	6.5%	87.5		
Sampling Date: 14,11,2013	Station:		Depth (meter)	Temp. (°C)	На	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)		Station:		Depth (meter)	Temp. (*C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Conditic**)

(),	REMARK									5.0 "C)	REMARK									25.1 °C	REMARK								
% (LIMIT							10% of 3 47.D	0% of 3	X (X	LIMIT							30% of 4740	30% of 13	Z) (%	LIMIT						3.7m2	1)3 47.0	93
. (99.3	777								34.4 and 130% of CS(MJ)3	7 (99.2	7								34.4 and 130% of CS(Mf)3	465	Τ'						12.77		54.4 and 15070 c) CS(M())3
B.39 mg/L	ACTION							27.5 and 120% of CS(MJ)3	23.5 and 120% of CS(Mf)3	8.38 mg/L	ACTION							27.5 and 120% of CS(MJ)3 27.5	23.5 and 120% of CS(Mf)3	8.40 mg/L	ACTION						7770011	CS(Mf)3 275	CS(Mf)3
		V/A/L						27.5 am CS(23.5 am CS(V/A/L						27.5 an CS	23.5 an CS			V/A/L					,	>	SS
Wet bulb calibration for DO meter:	DEPTH							7.91		Wet bulb calibration for DO meter:	nit VA/L DEPTH	AVE.						C.31		Wet bulb calibration for DO meter:		AVE						6.56	
Wet bulb ca	Action Limit V/A/L		24.9	ge.	252	6.36 4.7 2.0	884	(A)		Wet bulb ca	Action Limit V/A/L		24.9)e`		6.09 4.7 2.0	846	16.6		Wet bulb ca	Action Limit V/A/L		24.8	33		6.25 4.7 2.0	97.5	. c9'9	
	BOTTOM (B)	3,4	24.8 Ave.:	Ave.:	25.2. Ave.:	6,32 Ave.:	87.8 Ave.:		Ave.:	9	BOTTOM (B)	38	Ave.:	7.2] Ave.:	4ve.:		B4.5 Ave	16.6 Ave	Ave.:		BOTTOM (B)	. 15 6.	14.7 Ave.:	7.34 Ave	Ave.:	Ave.:	Ave.	Ave	Ave
7			24.9		25.1	6.40	86.9	. (8.1		eter): 4.8			Z Z	301	5.30	da. d	24.2	. [GB		6			24.B	7.31	25.1	909		6.60	
Depth of Water (meter):	Action Limit V/A/L					5.0 4.2				Depth of Water (meter):	Action Limit VIAIL					5.0 4.2				Depth of Water (meter):	Action Limit V/A/L					5.0 4.2			
Depti	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Аче.:	Ave.:	taQ	MIDDLE (M)			_	Ave.:	Ave.:	Ave.:	Ave.:	Ave.:		MIDDLE (M)	3.4	24.9 24.9	7.24 T.34	Αv	Ave.	Аче	652 (6.50	Ave
11:06	MIDE									SS:0)	IDIW			·						10:01			24.8 21	7,23				6.48 6	
10 :(13 to	Action Limit V/A/L					5.0 .4.2				01 41:01	Action Limit 4/A/L					5.0 4.2				09:43 10	Action Limit V/A/L					5.0 4.2			
Duration: 10			Ave.: 25.0.	Ave.: 720	Ave.: 25.1		Ave.: 97,9	Ave.: [5.5]	Ave.:	Duration: [C			Ave.:	Ave.:	Ave.: 25.1	2,07	Ave.: 84.3	Ave.: (5.9.	Ave.:	Duration:			Ave.: 24.9	Ave.: 7.26	Ave.: 25.0		Ave.: 854	Ave.: 656	Ave.:
, O	SURFACE (S)	(0)	34.9	٥٢.)	25,0	6.35	SB 2	(5.5		7	SURFACE (S)	<i>C</i>	249	77.1	1 1 1 1 1 1	6,05		(5.7		7	SURFACE (S)	Q.	-		 	6.12	85.1	6.51	
SR4		••	: 35,0	51.7	35.1	: 6.31	3.18	٠.	•••	887			3/18	7,03	350	1 6.09	 745	٠.		IS(MD16		·.	1, 24.9	÷ ;	P 2/C	9	438	W : 6.54	
Station:		Depth (meter)	Temp. (°C)	Нд	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	На	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Нд	Salinity (ppt)	D.O. (mg/L)	D:O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Conditic..**)

APE. VALLE
249 249 11 4ve.: 7,27 7.56
Ave.
30000000000000000000000000000000000000
Ave.: 5.0 4.2
6.14 6.12 85.3 85.1
D.O. (mg/L) D.O.S. (%) Turbidity (NTU)

Any notable discoloration of water $?\mathcal{M}N$ If yes, elaboration is as follows: _

Any notable pollutant by others near monitoring site ? X1 N If yes, elaboration is as follows :_

Shecked by	Баге
0	
Laboratory Staff	Date
(dela-	511114
Checked by	Date
Jorks Oberton	14, 11, 2013
Field Operator	Date

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condlusn)**

MDS to CS(MD3	(C), (C)						1300%		4,4		25 (°C)	REMARK							6),0	
Direction of water current: From CS(MD3 to CS(MD3	99.3 % (W.	REMARK					79061	120.00	8.7		99.3 % (25:	UMIT						17 0 and 1309, nf	- 1	S4.4 and ISOZO UJ
	3.39 mg/L (_	ERAGE							7.26		8.59 mg/L (ACTION						J. 70001 C	27.5 and 120% by J. S. CS(MJ)5	23.5 and 120% of CS(Mf)5
Tide Mode: Flood Tide	Wet bulb calibration for DO meter:	DEPTH AVERAGE							,		on for DO meter:	7	AVE.						/ 55/	23.
$\overline{}$	Wet bulb calibra			Ave.:	Ave 7, 32	Ave. 25.3	Ave 6.0]	Ave.: 94. 6	Ave. 7.09	Ave.:	Wet bulb calibration for DO meter:	Action Limit V/A/L					So 4., ∠.0 ≺	4	۴	
Sea Conditions: Calm / Small Wave /Great Wave	4.8	BOTTOM	8.8	0 25.0	7.34	3 Xx,2	t 6.10	2 85.0	(0,7)		5,3	BOTTOM (B)	4.2	X.0	7.23	N.3 N.7 Ave.	-5	86.7 408.4	14.4 Ave.: (6.2)	Ave.:
Sea Condition	Depth of Water (meter):			x.0 25.0	A 7.30	W. M.S	yo. 9 80.	2.48 /24	14ve.: 7.48		ter (meter):	Simit VAAL		35,7	Dic	75.3	4.2 6.1B	86.1	(4°	
ture (°C): 33	(S: M Depth	MIDDLE	4.9	M.O Ave.	7.30 Ave.:	25.2 Ave.:	6.06 Ave.: 6.08	34 4 Ave 84.	İ		Depth of Water	M) Action Limit				Ave.:	Ave.: 5.0	Ave.:	Ave.:	Ave.:
Sampling Date: [[[] D] Weather Condition: Survey Ambient Temperature (°C):_	Si 0 fors)			25.0	7.28		0),9	843	'		رددی رازی	MIDDLE (M)						TOTAL BASE		
in: Summy	Duration:			Ave.: 25.1	{	1	1	1	1	1	1: (5:30 10	Action Limit V/A/L					5.0 4.2			
Weather Conditio	ntrol Station)	SURFACE	0./	25.0	7.34						Duration:	SURFACE (S)	٥٠٠	25.1 25.1 Ave.	7. 24 7.30 Ave 7.22	4ve.:	6.34 6.30 Ave, 32	98.2 87.7 Ave. 28.0	42 Ave.: 14	Ave.:
(10/ 11/9)	Station: CS(Mf)5 (Upstream Control Station)			35.1	ار کا			\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	20.7		SR4a	'AS		25.(1	- ゲン	4.W V.M	6.34 6	19.5		
Sampling Date :_	Station: CS(ML		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condluon)**

%) (Dil) (O)	REMARK							67.0		2	INEMARK							@/ <u>0</u>)		(), J. J. (%	KEMAKK						1	0) 7	
99.5	LIWIT						12 70 to 1200 120	CS(Mf)5	54.4 and 15070 by CS(Mf)5	48	LIMIT						17.0 and 130% of	_	CS(MI)5	48.5	LIMIT						7 47.0 and 130% of	_ -	CS(MI)5
8.40 mg/L (ACTION	S. C.					Jo 700C (F == 3	27.5 and 120% of 27.5 CS(Nd)5	23.5 and 120% bf CS(Mf)5	J. 60 mg/L	ACTION						27 5 and 120% of	CS(MI)5 5.5 3.5 and 120% of	CS(MJ)5	\$.3 mg/L	ACTION							CS(Mf)5 31.5 23.5 and 120% of	CS(MI)5
Wet bulb calibration for DO meter:	DEPTH	AVE. V/A/L						16.7 \	73	Wet bulb calibration for DO meter:	A/L DEPTH JAM						,	(6,3 V)	1	Wet bulb calibration for DO meter:	V/A/L DEPTH V/A/L	AVE.						6,35	
Wet bulb calibrat	Action Limit VIAIL			1. S.		, 5, 2.0 ×	3.9	<u>ر</u> ا		Wet bulb calibro	Action Limit VIA/L		5.1	10 Je / 10 Je		(A 4.7 2.0 V	7.5	4ve. (6.4		Wet bulb calibr	Action Limit V		2.0	7.3	ŗ	Ave.: 6.34 4./ 2.0	AVE.: ST.O	19.0	
5.4	BOTTOM (B)	4,4	VS.V	3.56	- 14.2 Ave.	ودو	90.0	18.0	Ave	7.4	BOTTOM (B)	ب ٽو	25.0 25.2 Ave. 25.1	7.28 Ave.	Kil X.3 Ave.	6.14 6.09 AVE, B	. 1	i chir Ave.	Ave	7.8	BOTTOM (B)	6.8	ØX.ô	7.30 7.28 2.7.38	X.7 X.7 4VE.	6.36 6.32 Ave.	_ 1	6.64 6.58 400	
Depth of Water (meter):	Action Limit VAL		N.O.	77.6	7.7	5.0 4.2 6.40p	89.7	18.4		Depth of Water (meter):	Action Limit V/A/L		N. Comments		X	5.0 4.2 6.	8	9)		Depth of Water (meter):	Action Limit V/A/L					5.0 4.2 \ 6.			
	MIDDLE (M)				Ave.:	/ Ave.:	Ave.:	Ave.:	Ave.:	I3 Depu	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	1-23 Depth	MIDDLE (M)	2,5	25.0 X.0	7.9	25.3 Ave. 75.3	6.20 Ave. 6.21	86.4 Ave 86.6	6.54 Ave. 6.53	Ave
£6:3) 01	VIAIL					4.2				-9) /01	Action Limit V/A/L					4.2				to	Action Limit V/A/L		75.0	7.10	50	4.2 V 6.VV	86.7	6.50	
Duration: (6-03	S) Action Limit		Ave.:	Ave.: 7.3}	Ave.:	5.0	Ave.: 28.7	Ave.: (5.2)	Ave.:	Duration: 16=33			Ave. S.	7 22 Ave. 7. 31	Ave. JS. 2	5.0	Ave. K. 4	Ave.: [6.1	Ave.:	Duration: 17-03			Ave.:					·	Ave.:
	SURFACE (S)	6,7	1	7.77	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6.34	SE C	7. =)	IS8	SURFACE (S)	6.	ا	1	12. X	7.	SK.)	3,7		IS(MD16	SURFACE (S)	0')	3X,0 XX10	7.3 7.15)5.0			6.48 6.54	
Station: SR4		Depth (meter)	Temp. (°C)	. Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	: Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station: ISL		Depth (meter)	Temp. (°C)	. Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condl., Jn)**

(),	REMARK									(),]										
8. 16 mg/L (99.2 %) (26.1	LIMIT RJ							47.0 and 130% of 97.0 CS(MJ)5	0% of 15	(99.7 %) (25.1	REMAIK									
	ACTION	(/4/L						>	23.5 and 120% of CS(Mf) 5	meter: (36 mg/L (DEPTH AVERAGE							6.65		
Wet bulb calibration for DO meter: _	Action Limit VAIL DEPTH	AVE				7 4.7 2.0 \		10.4		Wet bulb calibration for DO meter:	M. M		Ave.: X,0						Ave.:	
7.7	BOTTOM (B)	4.2	350 250 XVI	7,22 7,25 Ave.	25.3 25.3 Ave.	6.18 6.16 Ave. 6.1	86.1 St. 8 St. 0	(0.0 (0.2 (0.1		n): 9.0	BOTTOM	Q.0	24.9 X:	7.23	K.3 E.X	6, 10 6,06	83:0	10,0 10,0		
Depth of Water (meter):_	1) Action Limit V/A/L					Ave.: 5.0 4.2	Ave.:	Ave.:	Ave.:	Depth of Water (meter):	MIDDLE	4.5		7.40 Ave.: 7.58	JX.0 Ave.:	6.08 Ave.:		6.68 Ave.: 6,66	Ave.:	
10 (7:55	// MIDDLE (M)									to (8:28			25.(967	25.0	71.9		49.7		
木心	Action Limit V/A/L		X. ((1)	Ave.: 38.3—	6.18 5.0 4.2	7.5	9:00		80-B)	SURFACE		JS. (Ave.:			l		6.86 Ave.: 6.88		
Iff9 Duration:	SURFACE (S)	0	J5. (25. (Ave.:	7.10 7.14 Ave. 12	25.7 X.3 Ave.	6.14	Rio 15.5 Averys. 3	fo, § 10 tt	Ave.:	CS(Mf)3 Duration:	78	0')	75.0	7.30 7	S S S S S S S S S S S S S S S S S S S			9 06.9		
Station: IS(Mf)9		Depth (meter)	Temp. (°C)	. Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station: CS(Depth (meter)	Temp. (°C)	На	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	

	100 V. Meume Checked by Checked by Checked by	14/11/2015 Date 14/11/13 Date Date
ator	ator CO V.	711/21

Direction of water current: From CS(Mf)3 to CS(Mf)5

Sea Conditions: Cakh / Small Wave) Grent Wave Tide Mode: Ebb Tide

Ambient Temperature (C): 24

Sampling Date: 16,11,2013 Weather Condition: Fing.

									(),	REMARK								
REMARK						and the state of t			99.2 % (25)	LIMIT							47.0 and 130% of CS(Mf)3 47.0	34.4 and 130% of
DEPTH AVERAGE							7,30		meter: B.40 mg/L (ACTION							27.5	-
		Ave.:	Ave.:	Ave.: 5.5.5	Ave.:	Ave.: 84.8	Ave.: OlD	Ave.:	Wet bulb calibration for DO meter: _	>-	AVE				4.7 2.0		188	
BOTTOM	7.6				, (Cal í	843	8.14		We	BOTTOM (B)			Ą		4ve.:	Ave.:	Ave.	44.0
ODLE		1.76	2.5.	7.5.7	6,09				er): 4,6		3.6	X XC	Tal Par	25,3 25.3	6.23 6.2	81.2 GA.7		t
		Ave.:	Ave.:	Ave.:	Ave.: 6.14	Ave.: 85.4	Ave.: 7.15	Ave.:	Depth of Water (meter):_	Action Limit VAIL					5.0 4.2			200 T 100 T 100 T
MIDDLE	LA	1.75		75.7	Sid	855	2,19			MIDDLE (M)		\		Ave.:	Ave.:	Ave.:	Ave.:	4110 .
		977		C 4C					13:56 W 13:58									
		Ave.: 24.9	Ave.:	Ave.:	Ave.: (5.7)4	Ave.: BA.h	Ave.:	Ave.:		Action Limit V/A/L					5.0 4.2			
SURFACE		211.9		77.	5.27	g.	F		Duration:_	SURFACE (S)	C	Ave.:	Ave	l .	Ave.:	1	Ave.:	
		0 7 C) - ¥c	5.21				SR4a	SURF.		240	PC1.	Ą	15.9	η Ω	aa.	11/2
	Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	: Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Conc...ion)**

REMARK	Na Paragram								25.0 °C)	REMARK					·				15.1 (2)	REMARK				E				
LCC) (% C.1)	Hill						47.0 and 130% of CS(Mf)3 47.0	34.4 and 130% of CS(Mf)3	99.2 % (LIMIT							47.0 and 130% of CS(MI)3 47.0	34.4 and 130% of CS(Mf)3	99.5 % (3	LIMIT							47.0 and 130% of CS(MI)3 47.0	34.4 and 130% of
1 7/8;;	TOTAL STREET						27.5	23.5 and 120% of CS(Mf)3	B.38 mg/L (ACTION							27.5 and 120% of CS(Mf)3	23.5 and 120% of CS(Mf)3	: 8,40 mg/L (ACTION							27.5 and 120% of CS(Mf)3 DTS	23.5 and 120% of
Action [1imit] VAII	AVE. V/A/L				$^{2.0}$ $\sqrt{}$		7.99 V		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH ,	AVE VAL				2.0		1117		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH	AVE V/A/L				$\frac{2.0}{}$		V 48.6	
BOTTOM (B) Action [Ave.:	Ave.:	Ave	4.7 4.7 6.27	Ave		Ave.:	1	BOTTOM (B) Action	4.0	Ave.:	7.19 Ave.:	Ave.:	6.(5 Ave.: 6.(7 4.7	85.4 Ave.: 85.14 RB.7	7.24 Ave.:	Ave.:	Wet bulb	BOTTOM (B) Action	5,6		7.23 Ave.:	Ave.:	Ave.:	BB.1 BB.0		Ave.:
16161). H	7000	C 24 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				S98 418	8,10 8,13		(meter):	V/A/L	7	246				-	7, 25,7		iter (meter): 6.8	V/A/L	<u> </u>	× 1.4C	7.20				7.39	
MIDDLE MI Action Limit				/ Ave.:	/ . Ave.: 5.0	Ave.:		Ave.:	Depth of Water	MIDDLE (M) / Action Limit				Ave.:	/ Ave.: 5.0	Ave.:	Ave.:	Ave.:	Depth of Water	MIDDLE (M) Action Limit	3,4	24.B 24.B	7.13 7.13		Ave	Ave.: POS 87.0	1.01 Ave.:	Ave.:
//4//	700				/ / /				8 10 11:52	VIAIL					4.2				16:11 01	Action Limit V/A/L MI		7.40	, 707	25.2			- 689	
SURFACE (S) Action Limit		1	Ave.		4ve.: 5.0	Ave.		Ave.:	Duration: [1:38	SURFACE (S) Action Limit		Ave.:	Ave.	Ave	Ave.	Ave.	1,03 / 103	Ave	Duration: [1:0]	SURFACE (S) Action			Ave.	3.1 Ave.:	Ave.:	Ave.:		Ave.:
STIRE				6.50			1.84		158	SURF	C.	C4/ 81/2		 			10,1 10,1 10,1		IS(MD16	SURF	0 : 0	54.8 P.4.7	7),T 41,T	 	6.50	: R6.1 R6.7	5.13	• • •
Oranon.	Depth (meter)	Temp. (*C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	ЬН	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L.)	D.O.S. (%)	Turbidity (NTU)	(1/0m) 33

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Conc..ion)**

Station: ISt	IS(MD)9	Duration:	10:37 10	(0:))	_ Depth	Depth of Water (meter):	42	We	Wet bulb calibration for DO meter: 830		% \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	% () 5 °C)
	SURFACE (S)		Action Limit VAIL	MIDDLE (M)	(M)	Action Limit V/A/L	BOTTOM (B)		Action Limit V/A/L DEPTH	ACTION	TIMIT	REMARK
Depth (meter)	(J ³)						3,5		AVE	V/A/L		
Temp. (°C)	24.8						24.7 J.4.8	Ave.: XB				
; Hd	20,7	Ave				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ave.:				
Salinity (ppt)	25	Ave.:			Аче.:		36.4 J.S.3	Ave.: 554				
D.O. (mg/L)	15.9 55.9	Ave.:	5.0 4.2		Ave.:	5.0 4.2		Ave.:	4.7 2.0			
D.O.S. (%)	26.5	Ave.: 8614			Аче.:		97.6 88.0	Ave.:				
Turbidity (NTU)		Ave.: 5,66			Ave.:			Ave.:	7Cb		77.5 CS(MI)3	41.0
S.S. (mg/L)		Ave.:	18.0		Ave.:			Ave.:		23.5 and 120% of CS(Mf)3	34.4 and 130% of CS(Mf)3	
Station: CS(Mf)3	Station: _CS(Mf)3 (Upstream Control Station)	of Station)	Duration.	10:17 10	10:31	_ Depth of W	Depth of Water (meter):	9.0	Wet bulb calibrati	Wet bulb calibration for DO meter:	mg/L (99)	(2) (25.1 °C)
		SURFACE			MIDDLE			BOTTOM		DEPTH AVERAGE	REMARK	4RK
Depth (meter)		C			45			9.0				
Temp. (°C)			Ave.:		,	Ave.:	·	7,	Ave.:			
Ha	74.(24.0	Ave.:	74.7	24.6	Ave.:	X Y	24.1	4ve.:			
•	(2)	7.33	ردر)	7,25	12h	7.25	מיר	7,14	7.13			
Salinity (ppt)	. 35 !	25.2	Ave.:	ر بر بر ر	25.(Ave.:	25.3	75,7	Ave.: 75.3			
D.O. (mg/L)	. C G	5	Ave.:	81.8	7 7	Ave.:	109	6.13	Ave.: 6.33			
D.O.S. (%)	878	86.4	Ave.:	2,48	85.3	Ave.: R5.1	799	366	Ave.: 86.4		120%	130%
Turbidity (NTU)	 	21,1	Ave.:	7,73	4	Ave.: 7,59	9,30	5,63	Ave.: 13,17	69.1	416	9.90
S.S. (mg/L)			Ave.:			Ave.:	-		Ave.:			
					.,		_					

Any notable discoloration of water? X/N If yes, elaboration is as follows:

Any notable pollutant by others near monitoring site ? $\chi'N$ If yes, elaboration is as follows :_

Checked by	Баге
Laboratory Staff	Date
10000	16111/13
Checked by	Date
Tarka Ground (Cauma-	0 0
Field Operator	Баге

Direction of water current: From CS(Mf)5 to CS(Mf)3

Tide Mode: Flood Tide

Sea Conditions: Calm / Small Wave / Gregt Wave

Ambient Temperature (°C): 24

Sampling Date: 16,11,2013 Weather Condition: Fins

Station: CS(MD)	Station: _CS[Mf]5 (Upstream Control Station)	Station)	Duration: 15:01	16:31 01 10:) (21	Depth of Water (meter):_		9.8	Wet bulb calibrai	Wet bulb calibration for DO meter: 🖁 ५५३	1987 (9914	36 10 19	
		SURFACE			MIDDLE			BOTTOM		DEPTH AVERAGE	<u>.</u>	REMARK	
Depth (meter)		<u>_</u>											
Temp. (°C.)	 8.7/6	7.70	Ave.: 24.8	L. 4.	747	Ave.:	346	X C	Ave.:				
На	. ()	-	Ave.:	002		Ave.:	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ave.:				
Salinity (ppt)	 A G	F 6	Ave.:	, u	7 30	Ave.:	17	6 4	Ave.:				
D.O. (mg/L)		23.7	Ave.:	A A	# C 7	Ave.:	7 Ti	5.5.3	Ave.:		in Page		
D.O.S. (%)	27.00	27.9	Ave.:	- 0,40	8F.3	Ave.:	F. F. F.	£ £	Ave.:		I	120%	130%
Turbidity (NTU)	, , , , , , , , , , , , , , , , , , ,	699	Ave.:	7.02	11,1	Ave.:	1.9.7	, d	Ave.:	(5)		8.66	9.38
S.S. (mg/L)		₹ (cv);	Ave.:			Ave.:			Ave.:				
Station:	SR4a	Duration: (6.28.	0) 86:39	87:91	Depti	Depth of Water (meter): _	0.6		Wet bulb calibration for DO meter:	n for DO meter: 5,45	mg/L (99,2 %	26.1 °C)
	SURFACE (S)		Action Limit VAIL	MIDDLE (M)	E (M)	Action Limit VIAIL	BOTT	BOTTOM (B)	Action Limit V/A/L	DEPTH		LIMIT	REMARK
Depth (meter)	<u>C</u>						, i			AVE. V/A/L			
Temp. (°C)	¥ ¥	Ave.:					746	Ave.:					355-238-22
На		Ave.	100					Ave.					
Salinity (ppt)		Ave			Ave.:		l	4 Ave.					
D.O. (mg/L)		Ave.: C.blk	5.0 4.2		Ave.:	5.0 4.2		Ave.:	4.7 2.0				
0.0.5. (%)		Ave			Ave.:			Ave.:					
Turbidity (NTU)		Ave			Ave.:			Ave.		B.13 \ 27.5 and 120% of CS(MJ)5	715	47.0 and 130% of CS(MI)5 47.0	
S.S. (mg/L)		Ave.			Ave.:			Av		23.5 and 120% of CS(MJ)5		34.4 and 130% of CS(MJ)5	

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condition)**

DE.1 °C)	REMARK									150 °C)	REMARK									25.1 °C)	REMARK								
99.3 % (2)	LIMIT							47.0 and 130% of CSM(1)5 47.0	34.4 and 130% of CS(Mf)5	98,2 % (2)	LIMIT						7,000	47.0 and 130% of CSMD3 47.0	34,4 and 130% of CS(Mf)5	GB %(LIMIT						7 700-11-02-7	47.0 and 130% of 67.0	34.4 and 130% of CS(Mf)5
17: B.38 mg/L (_	ACTION							27.5	23.5 and 120% of CS(Mf)5	er: 8,38 mg/L (_	ACTION							27.5 and 120% of CS(Mf)5 (5)	23.5 and 120% of CS(Mf)5	ter; Blo mg/L (ACTION						2,70000	27.5 and 120% of CS(Mf)5 STS	23.5 and 120% of CS(MJ)5
Wet bulb calibration for DO meter:		AVE. V/A/L				4.7 2.0		7.80 1		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH	AVE V/A/L				4.7 2.0		7 707		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH					4.7 2.0		V 57.5 V	
4.4 Wet	BOTTOM (B)	3,4	1.46. Ave	7,52	25.4	Ave.: 6.33	87.2	1 8.04 B.03	Ave.:	1	BOTTOM (B)	44	4ve.: 24.5 24.6	4ve.:	Ave.: 25.3	le.d	£.	1.18	Ave.:	-	BOTTOM (B)		24.5	Ave.:	4ve.:	6.38	88.1	407	Ave.:
Depth of Water (meter):	Action Limit V/A/L		24.1	8)))[ACCRECATE OF	5.0 4.2 6.37	N98	8,01		Depth of Water (meter):	Action Limit V/A/L		34.6	4C.T.	54	5.0 4.2 6.25	F.48	CCT 122		Depth of Water (meter):	Action Limit V/A/L		7 746	5 2 2	25.2	5.0 4.2	37.8 = 25.5 87.8	632 130	
(72(B) Dep	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	/ Ave.:	1 52:57	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	/ Ave.:	a [5:8]	MIDDLE (M)		T.AC 1.4C 1.AC	7.15 41.1 31.15	Ave.:	6.30 Ave.:	88.1 BT.4 AVE.	6.91 6.92 Ave.:	Ave.:
16:58 10	Action Limit V/A/L		00	7		30 4.2	3			01 BCIL) "	Action Limit V/A/L			C _{\(\)}	3	22 5.0 4.2		789		1: (8:02 10	Action Limit V/A/L					5.0 4.2			
Duration:	SURFACE (S)	Q.	61	1 7,13 Ave.:	75.7	6.32 Ave.	Ave.:	7.79 Ave.		Duration	SURFACE (S)	Q1	7 July Ave.	7.00 Ave.	Ave. 25,7	6.20 Ave	86.0	6,95 Ave.	Ave.:	Duration:	SURFACE (S)	Q]	747	81,1	756	Ave.:	P.7.8	6.05	
Station: SR4		Depth (meter)	Temp. (C) : 54.7	Hd 7,1	Salinity (ppl) : 55.3	D.O. (mg/L) (5.28)	0.0.S. (%) : 87.0	Turbidity (NTU)	S.S. (mg/L)	Station: 1S8		Depth (meter)	Temp. (°C)	8112 Hd	Salinity (ppl) 15.2	D.O. (mg/L) (1,2/4	D.O.S. (%) : BC-5	Turbidity (NTU) (692	S.S. (mg/L)	Station: IS(Mf)16		Depth (meter)	Temp. (C)	F1,1	Salinity (ppl)	0.0. (mg/L) (5.26)	D.O.S. (%) 86.9	Turbidity (NTU) 6004	S.S. (mg·L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood ConJition)**

S. °C)							C		J5.1 "C)		- PARTIES APPLICATION									
99,4 % 35 LIMIT							47.0 and 130% of CS(MJ)5 47.0	34.4 and 130% of CS(Mf)5	99.2 % (25.1	REMARK										
Wet bulb calibration for DO meter: 830 mg/L (27.5	23.5 and 120% of 34 CS(Mf)5	936 mg/L	DEPTH AVERAGE									7.53	
Wet bulb calibration fo					4.7 2.0				Wet bulb calibration for DO meter:			Ave.:	Ave.:	7.15	75.4	Ave.:	Ave.:	Ave.:	Bob	Ave.:
.Б ВОТТОМ (В)	9	Ave.:	7.19 Ave.:	Ave.:	Ave.	Ave.:	Ave.	Ave.		BOTTOM	48	, , ,		7.16	75.4	(27		c Ġ	805	
4	3.6	34.8 34	7. 007						ter): 9,4			7 %		7.15	75.4			330	8,11	
Depth of Water (meter).					5.0 4.2				Depth of Water (meter):			Ave.:	Ave.:	7.28	75.4	Ave.:	Ave.:	Ave.:	7,50	Ave.:
MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	Dep	MIDDLE	L.17	,	ř	708	Д			C C	7,35	
6									19:31				0,47	7.28	Ÿ	000	07:0	7),4	7,64	
(B:36 to					5.0 4.2				01 51:61			Ave.:	Ave.:	7.75	AVE	Ave.:	Ave.:	Ave.:	(0)	Ave.:
ration:		Ave.: 24,8		Ave.:	Ave.	Ave.		Ave.:	Duration:	SURFACE	O,	7	0.47	407	ر ر ل ا		4, 0	190	707	
09 Du SURFACE (S)	CT	8,46 7,48	7.0b 1.08		-				£03				1 1 7	7.04	<u>.</u>			740	6.99	
Station: IS(Mf)9	Depth (meter)	Temp. (C)	. Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turhidity (NTU)	S.S. (mg/L)	Station: CS(Mf)3		Depth (meter)	Temp. (°C)	: Hd		Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	`	S.S. (mg/L)

Any notable discoloration of water ? X/N If yes, elaboration is as follows:

Any notable pollutant by others near monitoring site ? \mathcal{N}/N If yes, elaboration is as follows : _

erator	Jadry Chaine/Cauge	Checked by	(22/V	Laboratory Staff	Checked by	
	0 200	Баге	16/11/12	Date	Баге	

	(C)										25.1 "C)	REMARK				W				
	SC) (%	REMARK									30)(%	LIMIT							30% of V3	30% of 03
	486										(,99.)	7							47.0 and 130% of CS(Mf)3	34.4 and 130% of CS(Mf)3
	B.43 mg/L (RAGE									-) 7/8m - 04/9	ACTION							27.5 and 120% of CS(MJ)3	23.5 and 120% of CS(Mf)3
		DEPTH AVERAGE						Strong	14.4			"" H.	9						27.5	<u> </u>
	Wet bulb calibration for DO meter:) > (7,28	4.50	(5,19	83.5	ř. ř.		Wet bulb calibration for DO meter:	Action Limit VAIL DEPTH	AVE.				2.0			
	Wet bulb cc	. M		Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	Wet bulb	Action		23.1	7.03	: 25.3	6.31	- Y	0.0	
		BOTTOM	9.4	גר	76,7	4	6.20	% %	(5.9			BOTTOM (B)	3.6	Ave.:	7.02 Ave.:	Ave.	Ave.:	Ave.:	Ave.	Ave.
•	9.4			()	7,38	Ŕ	6.18	4,58	1.5.		J. 4.6	BO	1,1,1	23.1	7.24			25.3		
	Depth of Water (meter):_			Ave.:	Ave.: 7,27	Ave.:	Ave.: (5.23	Ave.:	Ave.:	Аче.:	Depth of Water (meter):	Action Limit VAIL					5.0 4.2			
	Depth of	MIDDLE	1.7	ر در	7,3	26.2	45.6	64.5	13.5		Depth	(M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:
	15:41			.4	7.31	. a	((,)	070	8 11		15:01	MIDDLE (M)								
5	07 10			Ave.:	Ave.:	Ave.:	Ave.: (22	Ave.:	Ave.:	Ave.:	14:51 10	Action Limit V/A/L					5.0 4.2			
0	Duration: 15.21	SURFACE	<u>S</u>	_			 				Duration:			Ave.:	Ave		Ave.: 5	Ave.	4ve.:	Ave.:
	1			(7.50		530	7 - 48 - 48	13 L			SURFACE (S)	2	- "		ļ			-	+
	CS(MD5										SR4a				4C.F	- CA	777			70
	Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (*C)	PH	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Conc. 3n)**

	SURFACE (S)	Action Limit VAIL	MIDDLE (M)	/ Action Limit V/A/L	BOTTOM (B)	Action Limit V/A/L DEPTH	ACTION	LIMIT REM	REMARK
	Ç.)				3,4				
33.0	22.3				33.0 23.1 Ave.:				
901	7.2B			1	7.34 7.37 Ave.:				
. SE.2	25.3		Ave.:		25.3 25.4 Ave.:				
1 6.37	6,41	5.0 4.2	Ave.:	5.0 4.2	6.4h 6.38 Ave.:	4.7 2.0			
96.0	Ave.: Rh.5 863		Ave.:		87.1 86.1 Ave.:		700011	2000 E F - 0 L	
Turbidity (NTU) (12.9	(2,0)		/ Ave.:		11.8 11.1 Ave.:	V 0.Cl	27.5 and 120% of CS(Mf)3 275	2.1.0 and 130% of 47.0 CS(Mf)3 47.0	
	Ave.:		Ave.:		Ave.:		23.3 and 120% of CS(Mf)3	34.4 and 130% a) CS(Mf)3	
158	Duration:	13:46 10 1	14:01	Depth of Water (meter):		Wet bulb calibration for DO meter:	er: 838 mg/L (99.2 % (25.0	(C)
	SURFACE (S)	Action Limit V/A/L	MIDDLE (M)	Action Limit VIAIL	BOTTOM (B)	Action Limit V/A/L DEPTH JAME	ACTION	LIMIT	REMARK
	Ç				(,	AVE. VIAIL			
33.0	7	J.			23.0 22.8 Ave.:				
7.31	7,35 Ave.				7.39 7.36 Ave.:				
C.T.	75,7		/ Ave.:		5.3 25.2 Ave.:				
6.33	6.28 Ave.	5.0 4.2	Ave.:	5.0 4.2	6.34 6.30 4ve.:	2 4.7 2.0			
BS.5			Ave.:		55	3	77 5 mm 17/00/ of	20 70021 pm 0 LF	
Turbidity (NTV) 107	ļ		Ave.:		13.1 13.8 Ave.:	₩ 10.4 V	27.5 and 120% of CSM()3 DUS	21.15 and 130% of 47.65	
	Ave.:		Ave		Ave.:	<i>222</i>	23.5 and 120% 0) CS(Mf)3	54.4 and 150% 0) CS(Mf)3	
1SCMD 16	Duration:	13:16 10	13:31	Depth of Water (meter):	,	Vet bulb calibration for DO meter:		JC) (%	() _o
	SURFACE (S)	Action Limit V/A/L	MIDDLE (M)	Action Limit V/A/L	BOTTOM (B)	Action Limit V/A/L DEPTH V/A/I	ACTION	LIMIT	REMARK
Depth (meter)	C		3.7		6.4	AVE.			
23.1	23.0		23.1 23.1 23	23.1	23.1 23.0 Ave.:				
7.32	7,33 Ave.:		7.30 7.29 7.	730	7.38 7.40 7.39				
	Ave.		Ŕ	ST 1884	253 D53 AVE.:				
. 6.35	6,39 Ave.	5.0 4.2	6,41	5.0 4.2	6,47 6.48 448. 6,48	3 4.7 2.0 $\sqrt{}$			
F. 85,7	26.7		Bhs Bhs	867	87.3 87.4 Ave.:	<u></u>) 100ct L 3 Tr	47 0 and 12002 of	
Turbidity (NTU) (12,3	13,7 Ave.		13.2 12.6 Ave.	29	(4.6 14.7 Ave. 14.	13.5 V	27.3 and 120% of 37.5.	CS(Mf)3 47.0 CS(Mf)3 47.0	
٠.	Ave		.4 ve.:		A 100		(0 0/07) nun (°C7	The state of the s	

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Conc. on)**

Station:	IS(MD9	Duration	Duration: 12:41 10	10 (3:0)	Depth of Water (meter):_	7,77	Wet bulb calibration for DO meter:		75) (% 4, pb) 1/8m	25 "C)
		SURFACE (S)	Action Limit V/A/L	MIDDLE (M)	Action Limit VIAIL	BOTTOM (B)	Action Limit VAAL DEPTH		TIMI1.	REMARK
Depth (meter)		Ç	(See			3,4	AVE.	V/A/L		
Temp. (°C)	186	13.1 J33.				23.0 23.1 J3.1				100 March 100 Ma
На		407	Ľ,			7,35 7.24 7.35				
Salinity (ppt)		25.1		Ave.:		, ,				33.78 A. S.
D.O. (mg/L)	638	6.35	5.0 4.2	Ave.:	5.0 4.2	A Ve	4.7 2.0			
D.O.S. (%)	36.1	85.3	C	Ave.:		87.1 87.5 87.3	3			
Turbidity (NTU)	· .	(3,8)	3	/ Ave.:		11.9 11.4 Ave.:	125	>		
S.S. (mg/L)		Ave.:		Ave.:		Ave.:	State.	23.5 and 120% of CS(Mf) 3	34,4 and 130% of CS(Mf)3	
Station: CS/	MD3 (Upstre	Station:CS(Mf)3 (Upstream Control Station)	Duration:	(2:11 10 (2:3		Depth of Water (meter):	Wet bulb calibrai	Wet bulb calibration for DO meter: 335	mg/L (99.2 %) (35.	25.1.00
		SURFACE	ACE	MII	MIDDLE	BOTTOM	Alama	DEPTH AVERAGE	REMARK	
Depth (meter)		-			,					

Depth (meter) : 1,0 Temp. (°C) : 23.0 23.1 PH : 7.27 7.28 Salmiy (ppt) : 7.27 7.28 D.O. (mg/l) : 55.0 6.34 D.O. (mg/l) : 6.30 6.34 D.O. (%) : 6.30 4ve.	4.6						
70. (C) 23.0 23.1 4ve. mity (ppt) 7.27 7.29 4ve. 1.00 25.1 25.3 4ve. 1.008(1) 6.30 6.34 4ve.	23.0	,		6,7			
1.27 7.29 Ave. 1.27 7.39 Ave. 1.38(1) 5.30 6.34 Ave.		Ave.: 03.0	9.5.6	23.0 Ave.:			
55.1 25.2 Ave. 6.30 6.34 Ave.	25.1 1.31	Ave.:	2].[2	7.19 7.18			
6.30 6.34 Ave.	25.3	Ave.: 55.3	25,4	Ave.: 25,3 35,4			
: Ave.:	759 755	Ave.: 6.35	6.38	Ave.:			
85,1 85,4	25.5	4	5.45	Ave		120%	130%
Turbidity (NTU) : 9.34 9.35 Ave.:		Ave.: 9.81	711	10,2 Ave.:	3	Ċ	(3,1
S.S. (mg/L) : Ave.:		Ave.:		Ave.:			

Any notable discoloration of water? X/N If yes, elaboration is as follows: __

Any notable pollutant by others near monitoring site $?\mathcal{X}/N$ If yes, elaboration is as follows :___

Jackin Chama	Checked by	(200)	Laboratory Staff	Checked by
0 6	Раїв	7/11/8	Date	Date

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Conditron)**

Sea Conditions: <u>Calm / Snfall Mave / Great Wave</u> Tide Mode: <u>Flood Tide</u> <u>Direction of water current: From CS(Mf)\$ to CS(Mf)\$</u> Sampling Date: 19-11-20 Weather Condition: Cloudy, Ambient Temperature (C): 23

25.0 °C) 08'81 24.9 0 REMARK 130% Wet bulb calibration for DO meter: 8.41 mg/L (99.0 %) **JEMARK** 99.3 47.0 and 130% of CS(Mf)5 34.4 and 130% of CS(MJ)5 7.35 120% 8.42 mg/L (_ ACTION DEPTH AVERAGE 9441 Wet bulb calibration for DO meter: 7.7 DEPTH AVE. Ave. 254 Ave.: 155 23.0 844 859 AVE. 562 7.42 739 738 739 23 1 230 Ave. 28.1 254 るなって 23.0 BOTTOM م ع BOTTOM (B) 153 25.4 (7:43 Depth of Water (meter): 10.0 6.40 636 6.22 840 5.8 ₩ 1. 153 23.0 チー Depth of Water (meter): Ave.: 738 254 635 23.0 Ave.: 13.5 Ave.: 85.7 Ave.: 25.4 632 6.38 86.1 MIDDLE 13.2 737 23,0 5.0 Ave.: Ave.: Ave.: 4ve.: MIDDLE (M) 18:18 853 139 25.4 <u>5</u> 17:5% Duration: 17:58 to Ave.: 6.41 Ave.: 86.6 Ave.: 25.3 Ave.: 14.4 Action Limit V/A/L Ave. 23.1 BJ 12 Duration: 4.98 6.40 Ave. 7.22 87,3 87,5 44.87.4 25.3 SURFACE Õ (4.3 23, 1 Station: CS/Mf)5 (Upstream Control Station) SURFACE (S) 849 149 25, 253 ò 23,1 23,1 6.42 14 10 7,20 25.3 2.8 SR4a Turbidity (NTU) Turbidity (NTU) Depth (meter) Salinity (ppt) Depth (meter) D.O. (mg/L) S.S. (mg/L) Salinity (ppt) D.O.S. (%) D.O. (mg/L) Temp. (°C) Temp. (°C) D.O.S. (%) S.S. (mg/L) Station:

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condit. Jn)**

€ 0°57	REMARK									24.9 °C)	NEMARK				75.5840					25.0 °C)	REMARK							<u>s</u>	
99.2 %(LIMIT						1300/26	CS(MI)5 4.0	34.4 and 130% of CS(Mf) 5	99.0 % (2	LIMIT							21 d card 130% of CS/MJ)5	30/20 U)) (%	LIMIT						47.0 and 130% of Ka	CS(MJ)3 4/0	CS(MJ)5
J/8m								275										275		mg/L (99,3								1/2	
8:38	ACTION						7-700611 320	27.3 and 120% of CS(Mf)5	23.5 and 120% of CS(Mf)5	8.36	ACTION						1800 Free 3 Lt.	CS(MI)5	25.3 ana 120% oj CS(Mf)5	8.39	ACTION						27 5 and 120% of	CS(Mf)5 23.5 and 120% o	CS(MI)5
on for DO meter	DEPTH	AVE. VAVL						1245 /		Wet bulb calibration for DO meter:	HLLAGO	AVE. VALL						1295 v		Wet bulb calibration for DO meter:	4/L DEPTH JAM	AVE.				/		135 /	
Wet bulb calibration for DO meter: 8.38	Action Limit VIAIL			3		S + 7 5.0 <				Wet bulb calibra	Action Limit V/A/L			7		30 4.7 2.0 v				Wet bulb calibro	Action Limit V/A/L					53 4.7 2.0		5	
	BOTTOM (B)		13,1 Ave. 23.1	738 Ave 739	15.3 Ave. 25.4	6.57 AVE: 6.55	88.7 Ave. 88.5	11.8 AVE: 115	Ave	9	BOTTOM (B)	4.6	23.1 Ave.: 23.1	7.42 Ave 7.42	255 AVE: 255	6.3 Ave. 6.30	85.2 Ave. 85.1	14.8 144		8	BOTTOM (B)	8.9	23,0 Ave. 23,	7.41 446 7.4	25.5 AVE 25.5	6.50 Ave 6.53		14.7 4ve 14.5	
er): 4:8		3.8	13.0 D	7.39 7	25.4 2	6.53 6.	8 2,88	11.2		eter): 5.6		7	23.1 2	7.4-1	25,4	6.29	84.9	140		7			23,1 2	1,45	15.4	6.55	J-82	14.3	
Depth of Water (meter):	Action Limit VAL				CONTRACTOR OF THE PARTY OF THE	5.0 4.2				Depth of Water (meter):	Action Limit V/A/L					5.0 4.2				Depth of Water (meter):	Action Limit V/A/L			3.5	5.4	36 5.0 4.2	5.8	(5)	
	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	9:38	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	1	MIDDLE (M)	3,9	23.[23.[7.35 7.35	15.4 Ave 25.4	-	85.9 Ave. 85.8	128 Ave. 75	77.6.
19:59										61 01						<i>\rightarrow</i>			/	10:03			23.1	T34	15.3	1 6.35	1:38	12.7	
18:38 10	Action Limit V/A/L				3	5 5.0 4.2				19:20	Action Limit V/A/L			0	8	9 5.0 4.2	6			9:45 10	Action Limit V/A/L		2	-1	3	9 5.0 4.2	<u> </u> 5	2	
Duration:	SURFACE (S)	0		7.31 Ave 7.31	25.3 Ave. 25.3	(.43 Ave 6.45	86.8 Ave. 87.1	13.8 Ave. 13.4		Duration:	SURFACE (S)	0	13.1 Ave 23.1	741 446740	253 Ave. 253	6.30 Ave: 6.29	85, 1 Ave. 84.9	(6 Ave.) 15	Ave.:	Duration:	SURFACE (S)	6	23.2 Ave. 23.2	7.41 Ave. 7.42	15,2 25.3 Ave. 25.3	6.40 Ave. 6.39	864 AVE. 863	13.5 Ave. 13.5	Ave.:
SR4	SUR		23.1 2	0	١.,) 1.479		13.0 13		857			131 2	7.39	1			± = = = = = = = = = = = = = = = = = = =		IS(MD 16	SUF		23,2	7.47	25.2	6.38		13.4 [5	
Station:		Depth (meter)	Temp. (°C)	Hď	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station: 18		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condit. _n)**

() (25 °C)	NEMARK	-12						>		%) (25.0 °C)	REMAIK								
Wet bulb calibration for DO meter: 8:33 mg/L (99.6 %) (25	LIMIT						17 May 1209 of	47.0 and 130% by CS(Mf)5	34.4 and 130% of CS(Mf)5	mg/L (99.7 %	REM								
ter: 8:33 mg	ACTION						J. Marcell J. S.	27.5 and 120% of CS(MJ)5	23.5 and 120% of CS(MJ)5	8.34	DEPTH AVERAGE							<i>10.5</i>	
calibration for DO me	Action Limit VAIL DEPTH JAM	AVE CONT				2.0		<u> </u>		Wet bulb calibration for DO meter:	10		4 ^{V2} 22.9	Ave.: 7.20	Ave.: 25.5	Ave.: 6.32	Ave.: 85.3	11.8	
			1 Ave.: 1 23.1	1 7.41		/./	S AVE.: 864	1.3	Ave.:	Wet bulb	BOTTOM	9.0	22.9	7.20 Ave.	25.4 Ave.	6.30 Ave	85,1	Ave.:	Ave.:
ter): 4,8	A/L BOTTOM (B)	3.8	23.1 23.1 42.3.1	7,40 7,41 141	25,3 25.4 40.25.4	6.39 6.41 40	863 86.5 Ave.: 85.4	11.0 11.5 Ave. 11.3		neter): (0.0			0 22.9	2 7.20	4 255	8 6.33	5 855	9.57 11.9	-
Depth of Water (meter):_	Action Limit V/A/L					5.0 4.2	::			Depth of Water (meter):	MIDDLE	5.0	23.0 Ave. 23.0	7.31 Ave.: 7.32	25.4 Ave. 25.4	6.46 Ave.: 6.48	87,2 Ave.: 875	9.61 Ave. 9.6	Ave.:
2028	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	20:55		5	23.0	7.32	25.4	05.9	87.8	9.53	
20:10 10	Action Limit V/A/L					\$ 5.0 4.2				Duration: 20:35 to	in the		Ave.: 23.	Ave. 7.29		l	(Ave. 86.3	Ave.: 10.2	Ave.:
Duration:	SURFACE (S)	0.	23.2 Ave. 23.2	7.30 7.29 AVE 7.30	25.3 Ave.: 25.3	849 F49 143	876 Ave. 87.5	179 446.75	Ave.:	Duration:	SURFACE	0,	7				4)	10,3	
IS(MD9	SU		23.2	7.30	25.3 25.3	14.9	873	2		CS/MD3			23.1	7.28	75	7.9	00		
Station:		Depth (meter)	Temp. (°C)	На	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:	The state of the s	Depth (meter)	Temp. (°C)	На	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Any notable discoloration of water? YM If yes, elaboration is as follows: __

Any notable pollutant by others near monitoring site? My If yes, elaboration is as follows:

Checked by		Баге	
Laboratory Staff		Date	
(28)		19/11/2	
Checked by		Даге	
サント	1.80 · 100	19-11-19-12	133
 Field Operator		Date	

DS to CS(MD3	24.7 00							130%	986		% Lt.8 °C)	REMARK						7.48	0		
Direction of water current: From CS(Mf)\$ to CS(Mf)\$	69.8 % (7	REMARK						120%	0)			LIMIT							47.0 and 130% of PTO CS(MI)5	34.4 and 130% of CS(Mf)5	
Direction of water c		(r)							5		2 mg/L (99.8	ACTION							215		
Tide Mode: Flood Tide	DO meter: \$3	DEPTH AVERAGE							7,59		O meter: 8.3 2	1/4/							27.5 and 120% of CS(MI)5	23.5 and 120% of CS(Mf)5	
	Wet bulb calibration for DO meter: 3,3			27,0	Ave.: 7,40	Ave.: 24.4	Ave.: 6,93	Ave.: 92.8	Ave.: 7.29		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH	AVE				2.0		[0,7		
Sea Conditions: Calm (Small-Wave / Great Wave		BOTTOM	9,1	-	7.41 Ave.	24.3 Ave.	6,94 Ave.		7,30 Ave.	Ave	Wet bul			Ave.: 224	7,42 400.7,41	4ve.74.3	Ave.: 7.25 4.7	Ave.: 97.0	Ave.: (0.5	Ave.:	
a Conditions: <u>Calm</u>	(meter): O.			23.0	7.39	ナ゚お	6,92	92,7	1.27		r): 50	BOTTOM (B)	4,0	22.9 228	7.40 7.45	24,2 243 400,243	7.74 7.26	176 636	10.3 10.6		
	Depth of Water (meter):				Ave.: 7,3\$		Ave.: 7, 12	Ave.:95.2	8,06 Ave. 8.03	Ave.:	Depth of Water (meter):	Action Limit VAIL					5.0 4.2				
Temperature (°C) :_	3:32	MIDDLE	27	1 23.0	7.34	2 24.3	7,13			1 !	9:02 Det	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	
4 Ambient	Duration: 8:08 to 8:32			24 22.9	43 7.32	4,2 24,2	111/2 88	6.7 95,0	45 8.00								>				` \
Sampling Date 21-1-2017 Weather Condition: 60014 Ambient Temperature (C): 23	ı) Duratio	SURFACE	0 7				34 Ave. 7.38	98-8 Ave. 98.7	i	i	Duration: 8:38	Action Limit V/A/L		17.8	7,36	24.1	7,35 5.0 4.2	Ave. 98.3	[0,0]		
OZ Weather C	Station: _CS(Mf)5 (Upstream Control Station)	SUI		2 6.00	オガースカン	2,7	7,37 7,34	986	<u> </u>		Dr	SURFACE (S)	0,1	\$ 22.8 Ave	7.35 7.37 Ave. 7.36	1,45 1,45 1,45	7.34 7.36 184.735	₹ 7.	2:	Ave.:	
Jace 21-14	S(Mf)5 (Upstre		: (aa	7	·.						SR4a		er)		. 7.3		· .		Ol : Corn		
Sampling L	Station: C		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L.)	D.O.S. (%)	Turbidity (S.S. (mg/L)	

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Con ion)**

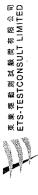
24.80	REMARK			24,7 °C)	REMARK				24.8°C) REMARK		
94.5 %(LIMIT		47.0 and 130% of 47.0	34.4 and 130% of CS(M)3 40/ (2	LIMIT			47.0 and 130% of 47.0 CS(Mf)5 34.4 and 130% of CS(Aff)5	99.8 % (47.0 and 130% of 47.0 CS(MJ)3 34.4 and 130% of CS(MJ)3
r. 8.42 mg/L (ACTION		27.5 and 120% of 17.5	23.5 and 120% of CS(Mf)5 er: 8, 44 mg/L (ACTION			27.5 and 120% of 21.5 CS/Mf)5 23.5 and 120% of CS/Mf)5	er: 8.43 mg/L (.		27.5 and 120% of 27.5 CS(Agf)5 23.5 and 120% of CS(Agf)5
Wet bulb calibration for DO meter:	Action Limit VAL DEPTH VAL		4.7 2.0 J	Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH V/A/L		4.7 2.0	8.31 ~	Wet bulb calibration for DO meter: Action Limit VAL DEPTH	AVE VAL	7.7 2.0 V
4. 6 Wet b	3 , 6	23.0 25.0 7,18 AVE. 7,14 24,4 AVE. 24,4	7,01 Ave. 7.00 93.8 Ave. 93.7 10,6 Ave. 10,4	4ve.: 4	(B)	23, (Ave. 7.37) 5 7,37 Ave. 7.37	7.15 AVE.7.12 954 AVE.95.3	848,90 Ave.: 8,87	7 C Wet BOTTOM (B) Ac	6,0 0 23,1 Ave. 23,1	244 AVE. 245 641 AVE. 6,40 97.5 AVE. 91.4 21.7 AVE. 21.9
Depth of Water (meter):	1 1 1	はしば	5.0 4.2 6.94 93.5 70.7	Depth of Water (meter):	Action Limit V/A/L	23.0	5.0 4.2 2.1.2 7.1.1 95.1	8.8	Depth of Water (meter): Action Limit VAL	.ξΣ 	43 50 42 V 6,89 14 8 923 8 22.1
9:51	MIDDLE (Ad)	Ave.:	Ave.:	Ave.:	MIDDLE (M)	486e::	Ave.:	Ave.:	(0.32 Da	2,5 0,52 0,50 p.ss 0,57 15,7 p1,7	24.3 242 AVE. 24.3 6.82 684 AVE. 683 91.2 91,5 AVE. 11.8 11711,9 AVE.
01 80% 10	Action Limit VAIL		17 50 42 V	oj) LE19	Action Limit V/A	134 134	7,57 5.0 4.2 J	1.88	on: (0:07 to 10 Action Limit VAIL	رنی دری کابار	5.0 4.2
4 Duration:	1 (2)	23.0 Ave. 73.0 23.7 Ave. 7.25 24.1 24.2 Ave. 7.45	95,7 959 AVE 95,8 95,8 95,8		SURFACE	1219 Ave.	1,75 A 448-7,57 T.7-7,78 T.8-8 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	7.85 7.90 Ave. 7.88	Duration: SURFACE (S)	3,0 250 Ave: 3,0	7,13
Station: SR4	Depth (meter)	Temp. (°C) pH Salinity (ppt)	D.O. (mg/L)	S.S. (mg/L) : Station: IS8		Depth (meter) Temp. (°C) PH		Turbidity (NTU) : S.S. (mg/L)	Station: IS(Mf) 16	Depth (meter) : Temp. (°C) :	Salinity (ppt) : D.O. (mg/L) : D.O.S. (%) : Turbidity (NTU) : S.S. (mg/L) :

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Conc...ion)**

14.8 °C)	REMARK									Co 85									
mg/L (94,5 %) (24,8	LIMIT							47.0 and 130% of Q.O. CS(Mf) 5	34.4 and 130% of CS(Mf)5	946 % 24B	REMARK								
	ACTION							(27.5 and 120% of 27.5 CS(MJ)5	23.5 and 120% of CS(Mf)5	eter: \$138 mg/L (DEPTH AVERAGE					-		8.32	
Wet bulb calibration for DO meter: 8.3	Action Limit VALL DEPTH JAM	AVE.				4.7 2.0 \checkmark		15.4		Wet bulb calibration for DO meter: 8.58	T C		4ve.: 23,1	4ve.: 7.4.7	4ve.: 24,5	Ave.: 6.83	Ave.:9/1,3	4ve.: 8,03	Ave.:
-	BOTTOM (B)	3.6	22,0 229 Ave. 32,0	7,34 7,36 Ave. 7.35	24,2 24,3 44.3		94,1 94,4 Ave 94,3	128 AVE. 19.0	Ave.:	O . Wet	ВОТТОМ	<u>~</u>	23.0	7.45	74,4	7.82	2116	8.10	×
Depth of Water (mêter):	Action Limit VAIL		23.0	7,34		5.0 4.2 7. OF	94'I	13.1		Depth of Water (meter):			Ave. 28, \ 23.1	1,40 7,43	Ave. 24.5	48,9 OO.7	4116 1.5pm	Ave. 8.39 8.06	Ave.:
}	TE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	1:38 Depth	MIDDLE	4.6	23,1	7.41	24,3	7,01	93.8	ー ナ ふ	
138 10 11:02	Action Limit V/A/L					4.2				11 01/ 80:11		No. of the state o	Ave.: 33.0 23.0	Ave. 7,57 7.34	4ve. 24,2 24,4	Ave. 7.30 6.99	Ave.: 97,7 93.5	Ave. 8.49 8.37	Ave.:
Duration: 10138	SURFACE (S) Actio	0 -	72.4 22.9 Ave. 22.9	とナーイナイイル	1,2 4ve. 24,2	7,22 7.24 AVE: 7.25 5.0	9, 6 969 Ave. 468	13,5 H.2 Ave. 15,9	Ave.:	Duration: [1	SURFACE	0')	23.0	7.58	74.7	7.31	87.6	\$.55 \$	
IS(MD)	SURI		7 72	7.47	124,1 24	7.22 7.	6 9 %	1) 	CS(Mf)3			22.9	95'L	7,42	7,29	5.19	94.8	
Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Нд	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Any notable discoloration of water? Y/N If yes, elaborațion is as follows: __

Any notable pollutant by others near monitoring site? *IN If yes, elaboration is as follows:__


Field Operator	Tang Grana Hours	Checked by	lde la-	Laboratory Staff	Checked by	
Date	2(-()-2013	Date	21/11/13	Date	Date	

Ambient Temperature (C): VZ Sea Conditions: Calm/Steal Wave / Great Wave Tide Mode: Ebb Tide Direction of water current: From CS/Mf)3 to CS/Mf)5 8,34 mg/L (99,8 %) (248 °C) mg/L (99,7 %) (24,7°C) REMARK 47.0 and 130% of CS(Mf)3 34.4 and 130% of CS(Mf)3 LIMIT 27.5 and 120% of CS(Mf)3 23.5 and 120% of CS(Mf)3 ACTION **DEPTH AVERAGE** Wet bulb calibration for DO meter: 8.3 8.72 Wet bulb calibration for DO meter: Action Limit VAL DEPTH VAL Ave. 243 8.66 1400. 8.63 Ave.: 6.88 420 166 JAN LB'6 6.88 74.3 7.37 7.39 1.38 24.2 24.3 AVE. 24.3 736 959 955 AVE 7.17 7.13 (115) BOTTOM 8,8 BOTTOM (B) 3,8 23.0 229 7.35 24.3 4.00 8.91 Ave. 8.95 8.60 Ave.: 7.03 6.87 ō. <u>م</u> 9.9 Depth of Water (meter):_ 94,1 Ave. 940 Duration: 626 to 6.50 Depth of Water (meter):_ 24.2 Ave. 24.2 Action Limit V/A/L 4.2 7.03 72.9 MIDDLE 4.9 4ve.: 4ve.: 4ve.: Ave.. Ave.: MIDDLE (M) 15:49, 16:13 93.9 74.7 707 22.9 8.29 8.79 Ave. 747 7.38 Ave.: 73 Ave.: 24:1 Ave.: 97,0 Ave.: 22.8 Action Limit V/A/L Sampling Date: 21-11-20 Sweather Condition: Closed Duration: 7.48 8.60 896 Ave 7.15 SURFACE 7.30 965 AVE 971 24:1 24:0 AVE. 24:1 7年1 SURFACE (S) 27.8 60 18 8.88 730 7.31 7,37 コナー 24. 7.29 CS(MD5 SR4a Turbidity (NTU) urbidity (NTU) Depth (meter) Depth (meter) Salinity (ppt) alinity (ppt) D.O. (mg/L) D.O. (mg/L) Temp. (°C) S.S. (mg/L) D.O.S. (%) Station: 0.0.S. (%) .S. (mg/L) emp. (C) Station:

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Condit.** \neg **n)**

() _o 8 .	REMARK									(2, 8	REMARK									247 °C)	REMARK								
99.4 % 24.8	ar							674	% of	99,92 % 24.8	LIMIT							3% of His)% of) (%	LIMIT							3% of 16.0	3
	TIMIL							- 1	34.4 and 130% of CS(Mf)3		TIV								34.4 and 130% of CS(Mf)3	948	TI							47.0 and 130% of CS(Mf)3 34.4 and 130% of	CS(MI)3
- mg/L (ACTION							33 258	20% of 13	8.42 mg/L	ACTION							20% of 21,5	20% of f)3	8.44 mg/L (ACTION							20% of 27S	n3
ster: 8.4		7						27.5 and 120% of CS(Mf)3	23.5 and 120% of CS(Mf)3	-		7/7						27.5 and 120% of CS(MJ)3	23.5 and 120% of CS(Mf)3			7/1						23.5 and 120% of CS(Mf)3	CS(Mf)3
ion for DO me	HILDEPIH	AVE. V/A/L						97%		tion for DO n	DEPTH	AVE. VAL						7.171		ttion for DO n	DEPTH	AVE V/A/L				<u> </u>		44	
Wet bulb calibration for DO meter:	Action Limit V/A/L					4.7 2.0				Wet bulb calibration for DO meter:	Action Limit V/A/L					4.7 2.0				Wet bulb calibration for DO meter:	Action Limit V/A/L					4.7 2.0			
We	1 (B)	7	Ave.: 23.0	Ave.: 7.21	24.4 Ave. 24.4	1 Ave.: 6.92	92.5 Ave. 92.7	9.71 400 9.70	Ave.:	W	1 (B)		J. 4ve.: 23.1	7.29 AVE.: 730	244 AVE. 744	+ Ave. 705	3 AVE.: 944	3 Ave. 10,5	Ave.:	ı	И (В)	~ ^	Ave.: 23.0	3 Ave. 7.16	243 Ave 243	2 Ave.: 6.85	3 446. 91.7	17.8 Ave.: 175	٧ <i>١</i> ٠٠.
44	BOTTOM (B)	3.4	229 230	1.21 7.21	74. 24.	143 641		11.6 69.6		5.2	BOTTOM (B)	47	23.1 230	730 7.2	24.5 24.	7.06 7.04	946 943	10,2 10.8		8.9	BOTTOM (B)	5.8	229 23.0	811 718	743 74	188 687	921 91	7.2 17.8	
ter (meter):	Limit V/A/L		.7	7.	2	4.2	σ <u> </u>	0		Depth of Water (meter):_	Limit V/A/L		2	<i>-</i>	2	4.2	6	2)		Depth of Water (meter):	Limit V/A/L		2	_	2	4.2	6		
Depth of Water (meter):	Action					: 5.0				Depth of W	Action				20.00	5.0				Depth of Wa	Action		23.0	7.13	Ave. 74.3	675 5.0	40p	140	
15:43	MIDDLE (M)				/ Ave.:	/ Ave.:	Ave.:	Ave.	Ave.:	5:13	MIDDLE (M)				Ave.:	/ Ave.:	Ave.:	Ave.:	Ave.:	14.44	MIDDLE (M)	3,4	23.0	7.13	243	6.78 Ave.		14.2 Ave.: 14.0	27.0
		**************************************								2 02										to [4			230	7,22	74.7	1117	89.0	13:9	
(5:20,0	Action Limit V/A/L					5.0 4.2				14.49	Action Limit V/A/L					5.0 4.2				14:20	Action Limit V/A/L					5.0 4.2			
Duration:			22.9 14.00. 22.9			Ave. 7.10	956.94V	Ave. 982	Ave.:	Duration:			Ave.: 23.9	7.28 Ave 7.28	24. Ave. 24.2	Ave. 728	Ave. 975	Ave. 8.84	Ave.:	Duration:	E (S)			Ave. 7.16	1 Ave 24.1	9 Ave. 705	1 Ave.:9,44	Ave.:116	Ave
	SURFACE (S)	0.		812 6)		01/2 1/0	136 67	81 9.83			SURFACE (S)	0,		<u> </u>	<u></u>	1.30	-	82 8.86			SURFACE (S)	<u>°.</u>	22.9 22.9	11.7	74.74	107 10	93,9 949	15 11.7	
SR4		٠.	27.8	6)7	747	7.09	949	82 . 0		8SI			23.0	7.27	7.47	17	613	٠.		IS(MD16			17	<u>r</u>	·.	101		1	
Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	hН	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

2#8 °C	REMARK									% (24.9°C)							130%	10.5	
9.6	LIMIT							47.0 and 130% of 4 7 CS(Mf)3	34.4 and 130% of CS(Mf)3	mg/L (99.1 %) (REMARK						120%	9.73	
DO meter: 8.38 mg/L (99.6 %) (24.8	H ACTION	VAL						\int 27.5 and 120% of Z_{LS}	23.5 and 120% of CS(Mf)3	Wet bulb calibration for DO meter: 8.39^{-n}	DEPTH AVERAGE							8.11	
Wet bulb calibration for DO meter:	Action Limit VA/L DEPTH	AVE	23.	9	(3	$ qq ^{4.7} z.0 \sqrt{ z }$	9:	5 17.2		Wet bulb calibr				2 Ave.: 74/	. Ave.: 24.5	6 Ave.: 6.75	90.5 Ave. 903	Ave.: 8.13	Аче.:
4.4	BOTTOM (B)	3.4	23.0 Z3.1 Ave. 2	7.40 7.40 400-7.40	243 24.7 43	7.00 6.98 Ave: 6.99	73,7 935 Ave 93.6	13.2 B.7 AVE. 13.5	Ave.:	Depth of Water (meter): 8.8	BOTTOM	7.8	23.0 23.0	7.40 7.42	24.5 24.5	6.73 6.76	90.1 70.	8,16 8,10	
Depth of Water (meter):_	Action Limit V/A/L					5.0 4.2	0				_		o Ave.: 230	1 Ave.: 7,38		Ave.: 6.93	5 Ave.: 92.7	Ave.: 766	Ave.:
ı	MIDDLE (M)				Aye	Ave.:	Ave.:	Ave.:	Ave.:	13:20 10/3:44	HIDDLE	4.4	23.0 23.0	7.38 7.37	24.3	169 469	929 925	65 7.66	
13:50 14:14	Action Limit V/A/L					5.0 4.2				Duration: 13:				745	Ave.: 243	724 AVE: 7.22 6	96.9 Ave. 96.7 92.9	12 4.54 7.65	Ave.:
Duration:	SURFACE (S)	0,	22.9 Ave. 33.0	726 737 AVE 737	74.2 14.2 M2	•	9(n 4ve. 956	11.0 Ave.: 10.9	Ave.:	Control Station)	SURFACE	0,				,	+	80	
IS(MD9	OS SO		23.0 22.9	7,36 7	1	=	95.7	77) (D.7 // C		Station: _CS(Mf)3 (Upstream Control Station)			22-8	7.4	243		2		
Station:		Дерth (теter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station: C		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Any notable discoloration of water? YN If yes, elaboration is as follows:

Any notable pollutant by others near monitoring site? Welf yes, elaboration is as follows

Checked by	Баге
Laboratory Staff	Date
(de 10-1	21/11/13
Checked by	Баге
S.H. Com	21-11-12
Field Operator	Баге

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condition)**

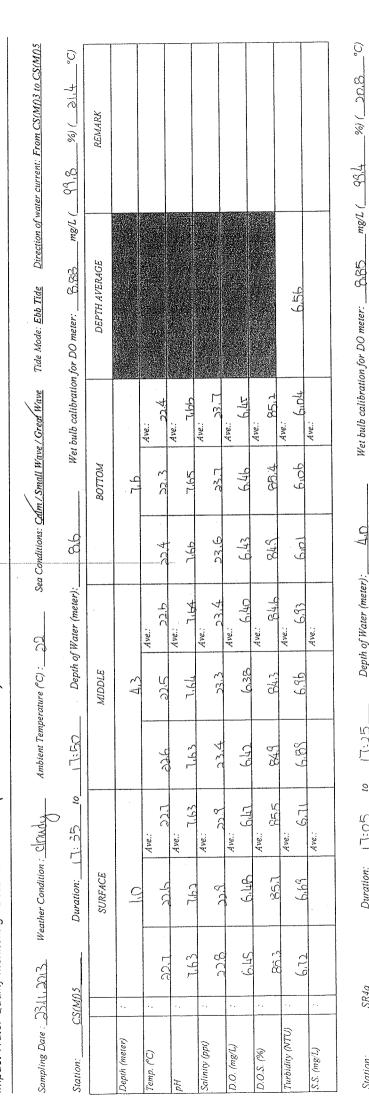
CS(MD3	(C),							0/	caurina		(C)	REMARK								
n CS(Mf)5 te	4) (71.4h	REMARK			- Life or			130%	**		807) (%								(f.0	
Direction of water current: From CS(MDS to CS(MD3		RE	- Australia					120%	2		4,49	LIMIT							47.0 and 130% of CS(Mf)5	34.4 and 130% of CS(MJ)5
ion of water	8, P. D. J./8m																		27.5	
	8.48	VERAGE							1		3,35	ACTION							27.5 and 120% of CS(Mf)5	23.5 and 120% of CS(Mf)5
Tide Mode: Flood Tide	Wet bulb calibration for DO meter.	DEPTH AVERAGE							ő			1/8//F							>	23
	ibration for			5		9					ration for L		AVE.						1/81	
Great Wave	Vet bulb cal			Ave.: 22.5	Ave.: 7.61	Ave 22.6	Ave.: 6,51	Ave.: 25,9	Ave.: 595	Ave.:	Wet bulb calibration for DO meter: _	Action Limit V/A/L					4.7 2.0			
Sea Conditions: Calm/Small Wave / Great Wave		ВОТТОМ	0,0	22,5	197	13.6	7,7,7	26.1	2,97		We	3)		Ave.: 22.)	Ave.: 7,74	Ave.: 243	Ave.: 6.40	Ave.: 34,6	Ave.:	Ave.:
ons: <u>Calm/(</u>	4.0	Б					~		~J		++	BOTTOM (B)	3.4	22.)	オバ	24.3	6.38	34,2		
sea Conditic	of Water (meter):_	-		22.5	79.7	23,6	5 5	85,7	7.			T/		12,1	7.7	24.5	6.42	84.8	7,7	
22°C S	Depth of Wate			Ave.: 22.5	Ave.: 760	Ave.: 23,3	Ave.: 6.76	Ave.: RE.M	Ave.: 6.34	Ave.:	Depth of Water (meter):	Action Limit V/A/L					5.0 4.2			
erature (°C) :	50	MIDDLE	4.57	22.5	7.59	23.2	# # %	851	F.8.1	,	Dept.	E (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:
Ambient Temperature (°C) :	4.32 10 9.50			22.5	760	23, 3	843	35,6	6.89		51:01:01	MIDDLE (M)								
	Duration: 15			Ave.: 22.6	Ave.: 7.59	Ave.: 22.8	Ave.: 6.53	Ave.: 86.2	Ave.: K.K.2	Ave.:	0) 0 00 01	Action Limit V/A/L					4.2			
Weather Condition: Theodon	1	SURFACE						_			Duration:	Actio		1,11	12.6	Ave.: 24,5	Ave.: 6.35 5.0	92.L	71	
Weather Co	trol Station	SUR	2	12.4	7,59	22.8	45.9	\$ \times \chi_{\tilde{\chi}}	2		nq	SURFACE (S)	0.	Ave.:	1	1]	ا	Ave.:	Ave.:
	stream Con			22.6	7,59	22.8	6.51	86.0	6.63		4a	SUR		7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			-	32 17 3		
e: 23/1	MOS (Up				٠.	٠.	٠.		: (n	· ·	SR4a		·						٠.	
Sampling Date: 13/11/13	Station: CS(Mf)5 (Upstream Control Station)		Depth (meter)	Temp. (°C)	Нd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condition)**

(), 0.1	REMARK							0		21.0 °C)	REMARK							0		2° 0° 12	KEMAKK							S,
99.7 % 21.0	LIMIT						17.0 Just 130% of	CS(Mf)5 47.0	54.4 und 150% of) (%	LIMIT						47.0 and 130% of	34.4 and 130% of	CS(MI)5	0% L'hb	LIMII						fo of	34.4 and 130% of
ier: 3.48 mg/L (ACTION						20 /000 F. F 3 Th	27.5	23.3 and 120% of CS(Mf)5	eter: 3.45 mg/L (ACTION						77 5 and 120% of	23 5 and 120% of 77.5	CS(MI)5	9	ACTION						7 27.5 and 120% of	V CS(Mf)5 21.5 23.5 and 120% of
Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH	AVE. V/A/L			-	7.7 7.0		151		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH V/A/I	AVE				4.7 2.0		2,4	***	Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH V/A/I.					4.7 2.0		48.9
T, T	OTTOM (B)	3,4	22,3 22,3 Ave.: 22,3	3.03	447	7 6.12	80.9		Ave.:		BOTTOM (B)	7	22,3 22,4 Ave.: 22,4	8,07 8,07 Ave.: 3,07	24.5 24.5 Ave. 24.5	615 611 Ave. 613	81.2 80.7 AVE: 31.0	15,3 15,2 Ave 15,3	Ave	1	BOTTOM (B)	6.2	22,5 22,4 AVE: 22.5	8,09 8,09 Ave. 8,09	245 245 Ave.:	6-11 6-14 Ave: 6.13	Ave	63 6.68 6.66
Depth of Water (meter):	Action Limit V/A/L		7 22	3.09		5.0 4.2 V 6.1	31.6			Depth of Water (meter):	Action Limit V/A/L			8		5.0 4.2				Depth of Water (meter):	Action Limit VAIL		72.4	303	24.4	5.0 4.2	9.00	7-1-9
10:24	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	10=57	A MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	10 11=37	VL MIDDLE (M)	3,6	22,3 22,4	7.08 8.08		0.0	80.8 80.4 Ave	6.09 6.15
Duration: 102 18 to	Action Limit V.		Ave.: 22.3	Ave.: 3-05	Ave.: 24,4	Ave.: 6,14 5.0 4.2	Ave.:	Ave.: 13.0	Ave.:	Duration: 10240 t	S) Action Limit V/A/L		Ave.:	Ave.: 2,04	Ave.: 24.4	Ave.: 6,19 5.0 4.2 V	Ave.: 81.3	Ave.: Och	Ave.:	Duration:	S) Action Limit VIAIL		Ave.: 224	Ave.:	Ave.:	Ave.: 5.0 4.2		Ave.: 774
SR4 Dur	SURFAC	2		1	24.4	6, 12	81.0	\$ 6.		IS8 Du	SURFACE (S)	. G		70.8	7, 27	1	. ×	ti/01 ti/01		IS(MD16 Di	SURFACE (S)	0	4,22,4 22,4	70,8 30,8	74,3	6.15	418 81.1	1.76 771
Station	Station.	Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condition)**

	IS(MD)	9 Duration:	1. 12:00 10	12:20	Depth o	Depth of Water (meter):_	4,0	<i>N</i>	Wet bulb calibration for DO meter:	n for DO meter:	7/8m +++18	mg/L (d d, 5 %) (21.0 °C)
1.0 1.0 2.16 2.		SURFACE (S)	Action Limit V/A/L			ction Limit V/A/L	BOTTC	IM (B)	Action Limit V/A/L	DEPTH	ACTION	LIMIT	REMARK
32.4 32.4 4 4 4 4 4 4 4 4 4		0,1					3,4			AVE.			
3.0 t		22.6 Ave.:	9				226 226	Ave.:					
		8,04 Ave.:	40					Ave.					
5,12		7+14 Ave.:	174	A.	ve.:			А че.	40.000.000				
		Ave.:	5.0	. W		4.2	10.0 F.0.	Ave					
11.6 11.6		41/5 Ave.	~	A	ve.:		30.08	Ave					
Ave:		11.6 Ave.:	9	Ā	ve.:	1000	12,9 (12,7)	Ave.:		<u> </u>			
Surface Duration: 12±h3 to i3:02				A	ve.:			Ave.:		23	5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	
1.0 1.0 10.2 10	CSOME		17:40		Depth (of Water (meter):			et bulb calibratio	n for DO meter:	- 11	8,99	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SURF	4CE	M	NDDLE			BOTTOM		<i>DEPTH A</i>	VERAGE	REMARK	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0/		, -39	5.6			7001					
8,06 8,05 4ve.: 3.06 8,06 3,07 4ve.: 3.07 4ve.: 3.08 4ve.: <td></td> <td></td> <td>Ave.:</td> <td></td> <td></td> <td></td> <td>22.6</td> <td>226</td> <td>- 1</td> <td></td> <td></td> <td></td> <td></td>			Ave.:				22.6	226	- 1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Ave				30,8	3.07	- 1				
6.17 6.19 4ve.: 6.18 6.18 6.15 4ve.: 6.17 6.09 6.06 4ve.: 6.08 4ve.: 6.15 12.6 4ve.: 81.2 80.8 4ve.: 81.0 1.5 12.5 4ve.: 12.5 13.2 13.2 13.2 12.6 12.6 4ve.: 12.5 4ve	٠.		Ave.:				24.5	245					
1 22,3 82,6 4ve.: 325 32,5 32,1 4ve.: 32,3 81,2 80,8 4ve.: 81.0 31.1 12,5 12,5 4ve.: 12,6 4ve.: 12,			Ave.:				6,09	9019	-9				Academi
12,5 12,5 Ave.: 12,5 Ave.: 12,6 12,6 12,6 Ave.: 12,6 Ave.: 12,6			Ave.:			Ave.: 92,3	81.2	80.8	- 1				
Ave.:			Ave.:				12.6	12.6	Ave.: [2.6	23	2		
	٠.		Ave.:			Ave.:			Ave.:				


Any notable discoloration of water? Y/@ If yes, elaboration is as follows: __

Any notable pollutant by others near monitoring site? Y / 🐧 If yes, elaboration is as follows:__

Field Operator	Mak the Trai	Checked by	Rele	Laboratory Staff	O	necked by
Date	23/11/13	Даге	23/11/13	Date		Date

女業総数選其級問有限公司 ETS-TESTCONSULT LIMITED

		SURFACE (S)		Action Li.	Action Limit V/A/L	 MIDDLE (M)	M)	/ Action Limit	imit V/A/L		BOTTOM (B)	(B)	Action .	Action Limit V/A/L	DEPTH		ACTION		LIMIT		REMARK
Depth (meter)											3,0				·	V/A/L					
Temp. (°C)	(Ave.:				No. of Street, or other parts			6	2.24	Ave.:									
На	PL, L	1.50	1.1.2 Ave.: 7.80				3					¥ .									
Salinity (ppt)	, Y	7,40	Аve.: Э4.(5			AN AND PARKET AND ASS.	Аче.:			34.8	24.8										
D.O. (mg/L)	6.37	6.30	4ve.: 6,38	5.0 4	4.2	V 18 24 10 10 10 10 10 10 10 10 10 10 10 10 10	Ave.:	5.0	4.2	636	6.32	Ave.: 6.34	4.7 2.0	2.0							
D.O.S. (%)	 	Ave.:	Ave.: R2.9				Ave.:			84.1	83.6	Ave 83.5					70001		(7.0 Sec. M. 1200/ of		
Turbidity (NTU)	 C	ā	Ave.:			·~~	Ave.:			. 8	30.2	Ave.: 20.1			19,0	,,,	27.3 and 120% of CS(Mf)3	315	47.0 and 130% by CS(Mf)3	47.0	
S.S. (mg/L)			Ave.:				Ave.:					Ave.:				23.	23.5 and 120% of CS(Mf)3		34.4 and 130% of CS(Mf)3		

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Condition)**

5.35 10 5.55	46 mg/L (99.7 %) (21.10 °C) ACTION LIMIT REMARK							2(5	120% of 34.4 and 130% of CS(AQ)3	(2° 016) (% 3,5) 1/8m 54	ACTION LIMIT REMARK							275	1120% of 34,4 and 130% of CS/Mf)3 CS/Mf)3	mg/L (qq.	ACTION LIMIT REMARK		45						47.0 and 130% of	47.0 and 130% of State of Stat	27.5	47.0 and 130% of CS(A/J) 34.4 and 130% of S4.4 and 130% o
6:35	Wet bulb calibration for DO meter: S.	DEPTH V/A/L		1ve.: B.1.1	34.b	6.08	Bn.7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4ve.: 23.5 and 120% of CS(MJ)3		Action Limit VAIL DEPTH				9.750	5.67	30.2 Later 1	15.8 3 1		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH //	AVE		Ave.: Balt = market	Ave.: 24.7	4.7 S		S0.2	BO.2	802	So.2	80.2 K 6.53 V
6.35	Depth of Water (meter): A	The same of the sa	22.5	S. C	24.6	5.0 4.2 6.11 6.07	808 804	27 77 28		7	Action Limit V/A/L	0,1	4 22.5	Bos	34.5 34.6	5.0 4.2 6.03 6.05	805 19.8	LS (5.8 (5.1			Action Limit VAIL		طبحد طرد	3,11 8,13	34.6 34.7	5.0 4.2 V LOS (5.0b)	1 1 047	19.3 30.4	19.3 50.4	199 Sat	19.5 Sn.4	19.5 8n4 6.59 6.14
Ave.: Av	5 to (5:5		2).4	Brot Broth	04.6	5.0 4.2 V	80.5	13.h		to	V/A/L		Ave.:	Ave.:		5.0 4.2			Ave.:	to		ナジ	c 2.cc 7.15 7.10	3.05 *** B.10 B.11	472 575	5.0 4.2	700	79.7 19.5	79.5	79.5 79.5	79.5 79.5	79.5 79.5

Survice Surv	() () (C) (%	LIMIT REMARK							1% of 47.0	1% of	B % (DLO °C)	REMARK						130%	0 <u>,</u> L1	
SAME Description Fig. Property Part								375			-						120%	(5.1		
SURFACE 63 Accord Land Viva MIDDLE 64 Accord Land Viva BOTTOM (9) Accord Land Viva BOTTOM (9) Accord Land Viva Accord Land Viva BOTTOM (9) Accord Land Viva BOTTOM (9)		1/4/1	AVE. VIALL						<u> </u>	23.5 and 120% CS(Mf)3	alibration for DO meter:	DEPTH AVERAGE							(3.1	
SOMO9 Duration; Figh 10 15 15 15 15 15 15 15	Wet bulb calibratior						4.7				Wet bulb co				l .	, ,	Ave.:	1.		
State	7)+	BOTTOM (B)	3,4	Ave	8.09 Bing	Ave	Ave.:	Аче	Ave.:	Ave.:		BOTTOM	9,9							
SURFACE (S) Action Limit VAL MIDDLE (AU)		tion Limit V/A/L		97.KG	, CO	745	4.2		(3,1		Depth of Water (m	-		L. (C	50	24.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		13.6	
SURFACE (S) Action Limit Val.						Ave.:		Ave.:	Ave.:	Ave.:		MIDDLE	ħ'G	7 (, C			C.I.G.	3,5	
SURFACE (S)	0)																			
SURFACE (S)		Action Limi		e.: F.(K	٠: اوز اوز	'e.: 74.5	5.0	<i>ie.</i> :	ve.:	·e.:		SURFACE	C	Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	Ave.:
15(Mf) 11 21 22 24 24 24 24 24		SURFACE (S)	9		900	4,40	909		3		stream Control Sta	S		0	0 0	1,70	4 7	Carlo	8.0	
Station:			Depth (meter)	Temp. (°C)		Salinity (ppt)	 	ļ			CS(MD3 (Up.		Depth (meter)	Temp. (°C)		Salinity (ppt)	D.O. (mg/L) :	D.O.S. (%) :	Turbidity (NTU)	S.S. (mg/L)

Any notable discoloration of water? X/N If yes, elaboration is as follows:

Any notable pollutant by others near monitoring site ? $\chi'N$ If yes, elaboration is as follows :_

Checked by	Date
Laboratory Staff	Date
(de le	23/11/12
Checked by	Date
Turke, Olympia	93, 11, 2013
Field Operator	Баге

Ambient Temperature (°C): 20° C

Weather Condition : Lin

Sampling Date: 26/11/13

Sea Conditions: Calm/Small Wave / Great Wave Tide Mode: Flood Tide Direction of water current: From CS(Mf)5 to CS(Mf)3

JEMARK						130%	6.21		() _c	REMARK							
REMARK						120% 1.	5/14		19.6 % (21.1	LIMIT							47.0 and 130% of CS(MI)5 Lt.7.0
DEPTH AVERAGE							4,7%	,) meter: 8,38 mg/L (99,6	ACTION	V/A/L						27.5 and 120% of 4 CS(My)5 27,5
		Ave.: 22.5	Ave.: 7.62 18 1	Ave.: 24.0	Ave.: 6.33 E	Ave.: 33.5	Ave.: 5.34	Ave.:	Wet bulb calibration for DO meter:	I	AVE.				4.7 2.0		10,0
BOTTOM	8.6	12.5 22.5	7.62 7.62	24.0 24.0	6.35 6.31	33.8 83.2	5.36 5.31		47.5	BOTTOM (B)	7	22.3 22.3 Ave.: 22.3	765 744 AVE: 765	23.5 23.5 Ave.: 23.5	6.60 6.57 Ave.	87.1 86.T Ave.: 36.0	14.4 14.5 Ave.
100		Ave.: 22.3	Ave.: 7.62	Ave.: 23.9.	Ave.: 6.5b	Ave.: 36.4	Ave	Ave.:	Depth of Water (meter):	Action Limit V/A/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12		23	5.0 4.2	8 8 8 8	<u>L</u>
MIDDLE	7	22,3 22,3		23,9 23,9	6,57 6,55	26,5 86.2				MIDDLE (M)				Ave.:	Ave	Ave.:	Ave.:
		Ave.: 22.2	Ave.: 7-6	Ave.: 23, 3		Ave.: 90,4	Ave.: 4.67	Ave.:	m. 12:55 10 13:09	Action Limit VAIL	115	7	<u> </u>		5.0 4.2	7	
SURFACE	0.	7,22 22,7	7,60	23,3 23,3	7.89 6.86	90.h 90,2			Duration	SURFACE (S)		2 12.2 Ave.:	7	23.3	18,7	7.09	3
	Depth (meter)	Temp. (°C) :	: Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L) :	Station: SR4a		Depth (meter)	Temp. (°C) : 12,2	Hd Hd	Salinity (ppt) 23.3	D.O. (mg/L) . L.34	D.O.S. (%) 399, a	Turbidity (NTU) 5,47

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condition)**

() _u	REMARK									(D. +	REMARK									(0, 9	REMARK								
1 % (21.14	LIMIT							47.0 and 130% of CSAMDS (+7.0)	34.4 and 130% of CS(Mf) 5	4177/18 9/18	LIMIT							47.0 and 130% of Ly-7.5	34.4 and 130% of CS(Mf)5	17 /6/ 21	LIMIT							47.0 and 130% of 47.0	34.4 and 130% of CS(Mf)5
1 mg/L (qq /]	ACTION							27.5	23.5 and 120% of 34.4 c	8 14th m8/L (9	ACTION							27.5	23.5 and 120% of 34.4 CS(Mf)5	8,45 mg/L (99	ACTION							27.5	23.5 and 120% of 34.4 CS(Mf) 5
for DO meter: 3,46		AVE. V/A/L						10,5 \ 27.5 and 120 CS(MI)5	23.5 ana CS(t		ДЕРТН ,	AVE. V/A/L						9,32 \ 27.5 am	23.5 am CS(AVE. V/A/L						13,8 527.5 am	23.5 am
Wet bulb calibration for DO meter: _	Action Limit V/A/L		24	.67 S.	23.K	645 47 20 1	31.2			Wet bulb calibration for DO meter:	Action Limit V/A/L		224	69 30	13,6	CH 4.7 2.0 V	74.6	12.1		Wet bulb calibration for DO meter:	Action Limit V/A/L		22.5	7.70	23.9	(16 4.7 2.0 V	315 15 15	176	
2,7	BOTTOM (B)	Ť,	2.6 224 Ave.: 2	767 767 Ave.: 7	23.3 Ave.:	611b Ave.	31.14 Ave.:	d we.		F.'5	BOTTOM (B)	ナキ	22,4 224 Ave.	769 769 Ave. 7	23.6 Ave.:	42 6,39 Ave.	84.7 34.4 Ave. 8	27 12,7 Ave.	Ave.:	7.8	BOTTOM (B)	6,3	225 225 AVE. 2	7,70 7,70 Ave.:	23,9 23,9 Ave. 2		81.3 81.7 AVE. 3	7,5 176 Ave.: 1	Ave
Depth of Water (meter):	Action Limit VAL		7 22		23.8	5.0 4.2 V6.13	81.0	<u> </u>		Depth of Water (meter):	Action Limit V/A/L		2			5.0 4.2	8 30	2		Depth of Water (meter):	Action Limit VAL					5.0 4.2		+	
36	MIDDLE (M)				Axe.:	Ave.:	Ave.:	Ave.:	Ave.:	14=03 De	MIDDLE (M)				/ Ave.:	Ave.:	Ave.:	Ave	Ave.:	14:36 Dep	MIDDLE (M)	3.9	224 224	7,70 7,70	23,7 Ave., 23,8	6,25 Ave.	82,6	13,2 Ave.	Ave.:
13:20 10 13=	Action Limit VAIL					5.0 4.2				मा ०० ९५ = ६।	Action Limit V/A/L			EV.		5.0 4.2				10 91=4	Action Limit VAL		J. 1	7.75	13.8	5.0 4.2 V 6.30	A 33.2	13.2	
Duration:	SURFACE (S) Aci	9	122,) Ave.: 22,7	7.66 Ave.: 766	23,3 Ave.: 23,3		89,7 Ave.: 79,9	6.07 Ave.: (04	Ave.:	Duration:	SURFACE (S) 401	Ç		767 Ave.: 763	23,3 Ave.: 22,3		1	. 1	Ave.:	Duration:	SURFACE (S) AC	0.	122 Ave.: 22,7	7.69 Ave.: 769	Ave.:	1 1	38,7 Ave.: 38,	1016 Ave.: 1016	Ave.:
SR4	IOS	* Special annual	22.1 2	7 99'1			40,1 89	00.4		857	IOS		22,1 12	650		9 88.9		76,2		IS(MD16	SU,	Wild Corrowa	12,2 2	1 691			89.0 3	9.01	
Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg·L.)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condition)**

	SURFACE (S)		Action Limit VAIL	MIDDLE (M)	E (M)	Action Limit V/A/L	BOTTOM (B)		Action Limit V/A/L	DEPTH LILIT	ACTION	LIMIT	REMARK
٠.	0.7			v.	.*		40			AVE. VIAL			
٠.	12 2 22				/		225 25	Ave.:					
٠.	7.66 7.66	Ave.: 6					7.67 1.67	Ave.: 767					
Salinity (ppt)	23.3 23.3				/ Ave.:		23.7 23.7	А че.					
D.O. (mg/L)	T 5'9 M5'9		5.0 4.2		Ave.:	5.0 4.2	6.32 6.29	Ave.: 6.31	4.7 2.0				
D.O.S. (%)	36.8 36,5	Ave.:		13.3	Ave.:		83.3 82.4						
Turbidity (NTU)	1,57	4ve.: 6.55			Ave.:		12,9	Ave.:		10,2 CS(27.5 and 120% of CS(Mf)5 Z7,5	47.0 and 130% of CS(MI)5 by [A]	
S.S. (mg/L)	ř	Ave.:			Ave.:			Ave.:		23.5 an CS(23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	
3	CS(MD3	Duration:	15=19 10	15:51	Dep	Depth of Water (meter):	1: 9.0	We	Wet bulb calibration for DO meter;		3,40 mg/L	04.8 %	21,2 °C
		SURFACE			MIDDLE			BOTTOM		DEPTH AVERAGE	иGE	REMARK	
Depth (meter)		0			7.			8.0					
	. 22.7	22,7	Ave.: 22.2	2.	22.1	Ave.: 22.1	22.5	22.JT	Ave.: 225				
	7,68	7,68	4ve.: 7.63	2,63	1912	Ave.: 767	1,69	7.69	Ave.: 769				
Salinity (ppt)	23.7	23.7	Ave.: 23,7	24.0	24.0	Ave.: 24.0		24.8	Ave.: 24.8				
D.O. (mg/L)	.t	199	Ave.: 643	04/9	989	Ave.: 6,38	6.00	6.05	Ave.: 6,04				Land of the state
D.O.S. (%)	87.5	1.78	Ave.: 87.3	84,4	83.9	Ave.: 84.2	30.K	80.9	Ave.: 30.7		Ţ		
Turbidity (NTU)	· · · · · · · · · · · · · · · · · · ·	4,50	Ave.: 4,55	4.53	£94	Ave.: 4.61	5,28	5,35	Ave.: 5,32	4,83			
S.S. (mg/L)		,	Ave.:	>		Ave.:			Ave.:				

Any notable discoloration of water ? Y/ \emptyset If yes, elaboration is as follows: _

Any notable pollutant by others near monitoring site ? Y. (

If yes, elaboration is as follows:

Checked by	Date
Laboratory Staff	Date
(de Ce	26(u((3
Checked by	Баге
The to The	26/11/13
Field Operator	Date

Direction of water current: From CS(Mf)3 to CS(Mf)5

Tide Mode: Ebb Tide

Sea Conditions: Calm / Small Wave / Great Wave

22

) (% 34.4 and 130% of CS(Mf)3 LIMIT 8,8 7'66)7/8m _) 7/8m__ 2/3 27.5 and 120% of CS(Mf)3 Wet bulb calibration for DO meter: 3 45 23.5 and 120% of CS(Mf)3 Wet bulb calibration for DO meter: $S \mid \mathcal{V} \mid$ ACTION DEPTH AVERAGE V/A/L DEPTH AVE. Ave.: 80.4 sction Limit VIAIL 50.9 Ave.: 32.5 80.5 BOTTOM 0.9 せる 2.4 224 Ave. BOTTOM (B) **241**万01 849 85.2 6.02 40 33.6 Depth of Water (meter): 14VE. 564 Depth of Water (meter):__ Ave.: 652 Ave.: 85 Action Limit V/A/L 5.0 Sampling Date: 26 - (1-2013 Weather Condition: Clowdry Ambient Temperature (°C): 89 MIDDLE Ave.: Ave.: Ave.: Ave.: Ave.. MIDDLE (M) 10 7 12 5.60 Duration: 21:32 to 21:56 6,60 4 Action Limit V/A/L Ave.: 86.7 Ave. 481 Duration: 202 ST Ave.: Ave.: 5.0 SURFACE Ó SURFACE (S) 0 436 くり 13,4 72. 1/8 SR4a CS(MD5 Turbidity (NTU) Turbidity (NTU) Depth (meter) Depth (meter) Salinity (ppt) Salinity (ppt) D.O. (mg/L) D.O. (mg/L) S.S. (mg/L) D.O.S. (%) Temp. (°C) Temp. (°C) D.O.S. (%) S.S. (mg/L) Station: Station:

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Condition)**

Tuen Mun – Chek Lap Kok Link – **Southern**

Impact Water Quality Monitoring - Data Record Sheet (Ebb Condition)

(),	ARK								70.00	0,										
21.4	REMARK						ī	7		1(21.4	K						130%	6.8		
8.44 mg/L (99.7 %) (21.4°C)	TIMIT								34.4 and 130% of CS(Mf)3	mg/L (99.6 %	REMARK					and the second s	120%	6,29		
	TH ACTION	Z V/A/L						0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	23.5 and 120% of CS(Mf)3	Wet bulb calibration for DO meter: $8^{\prime}4^{3}$ mg/L (99.6 %) (DEPTH AVERAGE							5,24		
Wet bulb calibration for DO meter: _	Action Limit V/A/L DEPTH					7 4.7 2.0 V			3.44	Wet bulb calib			AVE.: 22.4	AVE. 7.15 F	AVE. 247	Ave.: 603	80,5 1400.80.7	5.25 Ave. 5.23	Ave.:	
2	BOTTOM (B)	3,6	22.4 22.4 AVE: 22.4	7.86 7.80 Ave. 788	147 Ave. 748	Pro 180 120	838 842 AVECHO	J. Ave.: 16. E	Ave.:	7: 8:4	BOTTOM	47	- 22.4	7.74	1 24.7					
7	BC	~5	17.47	7.86 17	248 2	127	838 8	16.8)	Depth of Water (meter):			22.4	7.76	24.7	6.04	83.4 80.8	Jul 5.20		
Depth of Water (meter):_	Action Limit V/A/L					5.0 4.2				Depth of W			Ave.72-1) Ave.: 24	Ave.: 6.33	Ave.:	Ave.:	Ave.:	
Dept	E (M)		***		Ave	Ave.:	Ave.:	Ave.:	Ave.:	18:50	MIDDLE	4,2	1727	622	240	46.9	83.5	5.48		
5	MIDDLE (M)									1326 10			22.	177	24.1	631	43.2	04.5		
Duration: [4,55 to	Action Limit V/A/L					5.0 4.2				Duration:			22.2 Ave. 22.3	7.74 AVE: 7.73	Ave.: 23.7	Ave.: 64	Ave.: 875	Ave.: 5.05	Ave.:	
Duration:			Ave, 22.3	Aveign	37 4423.8	LSS AVE. CS4	1 Ave. 36.2	CH) AVECTO	Ave.:	Station)	SURFACE	<u></u>	7.77	72	23.7	19.9	118	5.03		(
	SURFACE (S)	0	22.2 223	13 77	238 237	250 650	136	12 CHJ		tream Control			22.3	L	23,7	197	87.9	5.07		
IS(MD9			. 22	-		3	1827	5	1	193 (Ups		٠.			٠.					
Station:		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L,)	Station: _CS(Mf)3 (Upstream Control Station)		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)	

Any notable discoloration of water? M V If yes, elaboration is as follows:

Any notable pollutant by others near monitoring site ? ** NY N If yes, elaboration is as follows :__

Checked by	Даге
Laboratory Staff	Date
13/2 (26(11)
Checked by	Дате
S. [-] , Jam	26-11-2013
Field Operator	Date

s to CS(Mf)5	(C) +7										(3 °C)	REMARK								
Direction of water current: From CS(MD3 to CS(MD5	49,4 % (21,4	REMARK			A La Della Control Con			Mar.	đ _.		15) (% 8'8	LIMIT		The second second					47.0 and 130% of CS(MI)3 47.0	34.4 and 130% of CS(Mf)3
	8.42 mg/L (/ERAGE							¥≎ ————————————————————————————————————) 7/8m	ACTION							ر ار	23.5 and 120% of CS(Mf)3
Tide Mode: <u>Ebb Tide</u>	Wet bulb calibration for DO meter:	DEPTH AVERAGE							Ca. N		Wet bulb calibration for DO meter.		AVE.						27.	
e / Great Wave	t bulb calibration			Ave	Ave.: 7.1615	Ave.: 24.7	Ave.: 6,17	Ave.: Bo.B.	Ave.:	Ave.:	et bulb calibrati	Action Limit V/A/L					4.7 2.0			
Sea Conditions: <u>Cabrl / Small Wave / Great Wave</u>	Wei	BOTTOM	4.2	7	7.65	K,1	6.18	Sos	~ 	COL	M	BOTTOM (B)					Ave.:	Ave.:	Ave.:	Ave.:
ea Conditions: <u>C</u>	(0)			7.70	7,65	r. y	6,16	9.08	J.	1994	7. 4.4	BOTT	3.4	d)/C 5/1C	d&	24,6 24.b	भा ५ । ८५ ७ ।		ļ	\vdash
	Depth of Water (meter):_			Ave.:	Ave.:	Ave.:	Ave.: (5,47	Ave.: 84.5	Ave.:	4.13 Ave.:	Depth of Water (meter):_	Action Limit VAIL					5.0 4.2			
Ambiem Temperature (°C) :	Depth of	MIDDLE	Ñ	Ĭ	163	24,5	6.45	643	i ,	4		MIDDLE (M)				Ave	Ave.:	Ave.:	Ave.:	Ave.:
Ambient Temp	81:01			7	7.54	7.70	87.9	1.4.8		7 4	10 09:30	MIDD								
cloudy	09:53 10			Ave.:	Ave.: 7.63	Ave.:	Ave.:	Ave.:	Ave.:	5.53 Ave.:	09: 18	Action Limit V/A/L					5.0 4.2			
Weather Condition: Cloudy	Duration:	SURFACE	C	ī	7.6	¥ 4,	197	d d		534	Duration:			Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	Ave	Ave.:
	25			CI CI	7 6		t 7	, n		2,41	SR4a	SURFACE (S)	0	4)(l		<u> </u>	 		+-+
Sampling Date: 28,11,20,13	Station: CS(Mf)5		Depth (meter)	Temp. (°C)	: Hd	Salinity (ppt)	D.O. (mg/L) :	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L) :	Station: SR		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Co**n. ition)

Part	Station: SR4		Duration.	08:48 10	ofice De	Depth of Water (meter):	4.8	Wet bulb calibration for DO meter:	ter: S.46 mg/L (_	48.7 % (21.4	(C)
1 21 21 21 21 21 21 21		SURFAC	E (S)	Action Limit V/A/L	MIDDLE (M)		BOTTOM (B)	ДЕРТН	-		MARK
1 15 15 15 15 15 15 15		0]					3.8				
1 12 12 12 12 12 12 12			Ave.: 21.5				Ave.:				
1			Ave.: 7.63				7.64 Ave.				
	٠.		Ave.: >4.4		Ave.:		Ave.:				
			Ave.:		Ave.:	4.2	Ave.:	4.7			
	٠-		Ave.:		Ave.:	8	Ave.:				
			Ave.:		/ Ave.:	τ.	5.75 Ave.:				
			Ave.:		(Ave.:		Ave.:		23.5 and 120% of CS(Mf)3	34.4 and 130% of CS(Mf)3	
			Duration:			Depth of Water (meter):_	5.2	Wet bulb calibration for DO m	8.44	16) (% 9.PP)	(C)
1, 15 11, 15 11, 15 12, 15 12, 15 13, 15 14, 15 15 15 15 15 15 15 15		SURFAC	E (S)		MIDDLE (M)	Action Limit V/A/L	BOTTOM (B)	ДЕРТН			SMARK
		=					4.7				
1 kg	• •		Ave.:			2	Ave.:				
1 2 2 2 2 2 2 2 2 2			Ave.: 7.64			F	7.64 Ave.:				
1			Ave.:		Ave.:		Ave.:				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ave.:		/ Ave.:	4.2	Ave.:	4.7			
7.15 1.16 1.10 1.10 1.10 1.0 1.0 1.0 1.0	٠.		Ave.:		Ave.:	8	3 82.9 Ave.				
			Ave.:		/ Ave.:	11	19 525 Ave.:				
SCAPPIS Duration: Children	S.S. (mg/L)		Ave.:		/ Ave.:		Ave.:		23.5 and 120% of CS(Mf)3	34.4 and 130% of CS(Mf)3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		911	Duration:			Septh of Water (meter):	47	Wet bulb calibration for DO m	প্রা) (% 8.56	(), ()
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SURFAC	E (S)	Action Limit VAL	MIDDLE (M)	Action Limit V/A/L	BOTTOM (B)	Limit V/A/L DEPTH			SMARK
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1)			3.8		Γ	-	7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Ave.: 21.7	£ (51.3	0	Ave.:				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Ave		7,65		7.66 Ave.:				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	٠.		Ave	20	4ve.		9 747 Ave.				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	٠.		Ave.:	4.2	6.30 Ave.:	5.0 4.2	6.22. Ave.:	4.7			
A_{VCU} i $S_{VL}Z_{CS}$ $S_{CL}Z_{CS}$ $S_{CL}Z$	• .		Ave	38	Ave.:		Silt		7 70000	2. 2007 L. A. 7.	
Ave.: Ave.: Ave.: $Ave.$	٠.		LO.	7	Ave.:		4.63 Ave.:				
	S.S. (mg/L)		Ave.:		Ave.:		Ave.:		23.5 and 120% of CS(Mf)3	34.4 and 130% of CS(Mf)3	

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Co. ..ition)**

	- 4	SURFACE (S)		Action Limit VAIL	MIDDLE (M)	3 (M)	Action Limit V/A/L	BOTT	BOTTOM (B)	Action Limit V/A/L	DEPTH JAM	ON	LIMIT	REMARK
Depth (meter)		CI						3,4			AVE. VALE			
Temp. (°C)	: 31.5	21,6	Ave.: 51,65					TIG TIC						
Н	7,13		Ave.:					7.86						
Salinity (ppt)	: 24.5	A Duly	Ave.:			Ave.:		24.6 54.6		resource.				
D.O. (mg/L)	: (5.15)	6.53	ve.: 6.39	5.0 4.2		Ave.:	5.0 4.2	622 625		4.7 2.0				
D.O.S. (%)	: 543	F 438	Ave.: Blt.3			Ave.:		8.18						
Turbidity (NTU)	5.5.2		Ave.: 5.63		/	Ave.:		7.87 8.05			6.83 V CS(Mf)3	375	47.0 and 130% of 47.0 CS(NAS)3 47.0	C
S.S. (mg/L)			Ave.:			Ave			Ave.:		23.5 and 120% of CS(Mf)3		34.4 and 130% of CS(Mf)3	
Station: _CS[Mf]3 (Upstream Control Station))3 (Upstrean	1 Control St	ation)	Duration:	07:78 10	0400	Depth of V.	Depth of Water (meter):_	0.0	Wet bulb c	Wet bulb calibration for DO meter: 6,38	6.38 mg/L (T(9816 %)((), (), (C)
			SURFACE			MIDDLE			BOTTOM		DEPTH AVERAGE	[**	REMARK	
Depth (meter)			<u> </u>		m)	3.0 %			χ. Ö					
Temp. (°C)				Ave.:			Ave.:			Ave.:				
Ha	31.6	9	117	31. (Ave.:	21.7	5	21 S	2	0,16	Ave.:				
	7.64	<u>.</u>	7.65	7.65	77.7	7,18	1,18	7.70	15.7	17.7				
Salinity (ppt)	3.4.C	وف	34.5	Ave.: 54.15	24.6	74.7	Ave.: 34,7	140	348	Ave.: 24.B				
D.O. (mg/L)			, <u>7</u> , 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	Ave.: 6 FG	7.7	6.79	Ave.:	6,03	70,9	Ave.:				
D.O.S. (%)		2 July 2	2 H Q	Ave.:	\(\alpha\)	હ	Ave.:	5	7,67	Ave.:			120%	130%
Turbidity (NTU)		757	15 T T	Ave.: 4.38	4.29	4.37	Ave.: 4.33	475	4.8)	Ave.: 478	cg.77		5,45	5,85
S.S. (mg/L)				Ave.:			Ave.:		-	Ave.:				

Any notable discoloration of water? X/N If yes, elaboration is as follows:

Any notable pollutant by others near monitoring site ? $\mathcal{N}N$ If yes, elaboration is as follows :_

Field Operator	Jarky Oharno	Checked by	(Self)	Laboratory Staff	Checked by	ed by
Date	0 da	Баге	28/11/12	Date	Date	le e

Direction of water current: From CS(Mf) 5 to CS(Mf) 3	% (71,2 °C)	REMARK						130%	7,07		% (2[°C)	T. REMARK				ı,			60 GO	600
of water current: Fr	H136)7/811	•						120%	6.48		8,41 mg/L (99,6 %)(2)	LIMIT							775 47.0 and 130% of CS(MD)5	34.4 and 130% of CS(Mf)5
	Wet bulb calibration for DO meter: 8.38 mg/L (9714 %) (21,2	DEPTH AVERAGE							0-			ACTION		045 1845 1845 1845 1845 1845 1845 1845 18					27.5 and 120% of CS(Mf)5	23.5 and 120% of CS(Mf)5
Tide Mode: Floo	bration for DO met	DEPTI			55	8			1 5.46		Wet bulb calibration for DO meter:	7	AVE. TANK						651	
Vave / Great Wave	Wet bulb cali	M		7 Ave. 21	Ave.:			_ ^	1 Ave.: 559	Ave.:	Wet bulb calibro	Action Limit VAIL		8.	63		(C 4.7 2.0)	0,8	5	
Sea Conditions: Calm / Small Wave / Great Wave Tide Mode: Flood Tide	. 10.8	BOTTOM	83	1.7 21.	1,53 7,57	24.8	11 639	138 836	57 5,6		48	BOTTOM (B)	S`8	7 26.8 Ave. 2	762 7, 64 AVE: 763	24.7 Ave.	1 619 AVE.	80	196	Ave.:
	oth of Water (meter):_			215 2	1 192	14.9	9 549	844 8	AVE. 572 55		Depth of Water (meter):	on Limit V/A/L		71,	7/	2.53	6.1	108	7.9	
grature (C):	Duration: 3 + 3 4 to 18 54 Depth	MIDDLE	54	215 Ave.	7.6 Ave.:	24.9 Ave.	6.48 Ave.	848 Ave.	5 19	Ave.:	S Depth of	E (M) Action					Ave.: 5.0	Ave.:	Ave.:	Ave.:
Sampling Date: 28-120 B Weather Condition: Cloudy Ambient Temperature (C):	3:340			7 215	3760	7 248	744	X3.2	735		7	T. MIDDLE (M)								
tion: Cloudy	Duration;	3.		21.6 Ave. 21.7		CHE THE	3 Ave. 6.43	1 Ave. 84,0	J Ave.: 489	Ave.:	on: 14:05 10	Action Limit VAL		9	8 8	7	2 5.0 4.2 V	F. F.	8	
S Weather Condi	Control Station)	SURFACE	0	7 21.6	7.42 7.43	7 246	6.47 6.43	839 841		<u> </u>	Duration:	SURFACE (S)	0	21.6 Ave. 21.6		294 AVE. 29.4	100 6 24 Ave 622	816 Ave. 81.	5.20 Ave 5,18	Ave.:
02/1/20	Station:_CS/Mf)5 [Upstream Control Station]			77	7	747	\ <u> </u>	£	Luci .		SR4a			7.6	200	• •	07.9	200		
Sampling Dat	Station: CSI		Depth (meter)	Temp. (°C)	Н	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg.L)	Station:		Depth (meter)	Temp. (°C)	Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU)	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood C., Idition)**

21.0 °C)	REMARK									1,2 °C)	REMARK									(3° 8.1	REMARK								
99,7 % (2	LIMIT								34.4 and 130% of CS(Mf)5	(996 %) (2	LIMIT							47.0 and 130% of W	34.4 and 130% of CS(Mf)5	(99.5 % (2	LIMIT						7 70001		5++ and 150% of CS(Mf)5
8.45/L (ACTION							27.5 and 120% of 27.5 CS(Mf)5	23.5 and 120% of CS(Mf)5	er: S.4 mg/L (ACTION							27.5 and 120% of 27.5 CS(MJ)5	23.5 and 120% of CS(Mf)5	ter: 8,43 mg/L	ACTION							27.5 and 120% of CS(Mf)5 CS(Mf)5	23.3 and 120% of CS(Mf)3
Wet bulb calibration for DO meter:		AVE. V/A/L				$4.7 \mid 2.0 \mid \sqrt{\cdot \cdot \cdot \cdot}$		531V		Wet bulb calibration for DO meter:		AVE VAL				4.7 2.0		V 52.9 <		Wet bulb calibration for DO meter:	Action Limit V/A/L DEPTH	AVE. V'A'L				4.7 2.0		551 V	
4 H Wet b	BOTTOM (B)	3.4	5 215 Ave. 215	7 7,59 AVE. 7,58	主	1671 Ave. 6.67		-2 490 AVE. 5,16	Ave.:	1	BOTTOM (B)	4.0	6 2/6 Ave. 21.6	1 773 Ave. 7,72		848 Ave. 649	84.8	1519 Ave. 5/5	Ave.:	Net Wet	OTTOM (B)	7,0	1 2 1 Ave.: 2,	16 7.75 Ave. 7.76	74		5 827 AVE: 83.1	7.4	Ave.:
Depth of Water (meter):	Action Limit V/A/L		71.6	15	248	5.0 4.2 6.63	98 157	1 C. J.		Depth of Water (meter):	Action Limit V/A/L		7 7	7.7	24.8	5.0 4.2 KGO	45.0			Depth of Water (meter):	Action Limit VAIL			5 4 776	F41 7	75 5.0 4.2 1 6.3	83 83	49 03	-
14.55 Deg	MIDDLE (M)				/ Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	15:25	MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	15:55 0	MIDDLE (M)	£0	21,7 21,7 27	97 891 796	THI THE AVE THE	12	81.8 88.8 Ave. 88.	14	Ave.:
14.35 10	Action Limit V/A/L		9	137	7 - 1	2 5.0 4.2		9)		15:05%	Action Limit VA/L		1.6	79	47	79 5.0 4.2	3.8	35		n: 15:35 10	Action Limit VAIL		21.6 - 1 - 21.5	73	91	19 5.0 4.2	0.9		45.42
Duration	SURFACE (S)	1.0	15 21.6 Ave 2.	726 7,34 AVE 7	47 247 Ave 24	693 6A1 AVEGG	905	592 591 Ave. 59	Ave.:	Duration:	SURFACE (S)	0,1	21, 6 21.6 Ave. 2	761 7167 Ave. 7	747 746 AVE: 24	67 662 Ave 579	8	7.38	Ave.:	16 Duration:	SURFACE (S)	<u>Q)</u>	21.5 24.6 Ave.	7.71 7.74 Ave.7	M. O. M. CAVE, W.	6.70 Ave.: 6	30,7 81,1 Ave 30,	5.86 591 Ave. 5	Ave.:
Station: SR4		Depth (meter)	Temp. (C)	Hd .	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%) : 9	Turbidity (NTU)	S.S. (mg/L)	Station: IS8		Depth (meter)	Temp. (C)	: Hd	Salinity (ppt)	D.O. (mg/L)	B.O.S. (%) : 63	Turbidity (NTU)	S.S. (mg·L)	Station: IS(Mf)16		Depth (meter)	Temp. (°C)	: Hd	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbidity (NTU) S	S.S. (mg/L)

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood C.) Idition)**

Station:	IS/MD9	Duration: 16:05 to 16:25	105 10	[6,7]	∑ Depth	Depth of Water (meter);	4.8	We	t bulb calibratio	n for DO meter:	8,50 mg/L	Wet bulb calibration for DO meter: 850 mg/L (99.7 %) (240 .	(0° °C)
	SURFACE (S)	. (S) Activ	Action Limit VIAIL	MIDDLE (M)		Action Limit V/A/L	BOTTOM (B)		Action Limit V/A/L	DEPTH J	ACTION	LIMIT	REMARK
Depth (meter)	D.						38			AVE. V/A/L			
Temp. (°C)	4.15 21.6 Ave. 21.6	4rein G						Ave. 217					
Н	1.82 7.80	AVE.: 781				,	7.90 7.88	Ave. 7.89					
Salinity (ppt)	246 245 AVE: 745	4ve 746 "			Ave.:	7	247 746	4. May 3th					
D.O. (mg/L)	St. 6-76 Ave. 6-76	Ave. 6.76 5.0	0 4.2		Ave.:	5.0 4.2	(35) LES	6.58 AVE. (555	4.7 2.0				
D.O.S. (%)	4853 88.4 ME. 384	Ave.: 384			Ave.:	± 1	\$53 841	Ave.:851					
Turhidity (NTU)	٠	4ve5.04			Ave.:		7,94 7,90	Ave 797		648 V 27.5	27.5 and 120% of CS(MJ)5	. 47.0 and 130% of 47.0 CS(MI)5	
S.S. (mg/L)		Ave.:			Ave.:			Ave.:		23.5	23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	
Station:	CS(MD3	Duration: 6	6:35 10	17:04	Depth	Depth of Water (meter):	56	We,	t bulb calibratio	Wet bulb calibration for DO meter: 🖇	8.47 mg/L(, 998 %(21,2 °C)
		SURFACE			MIDDLE			BOTTOM		DEPTH AVERAGE	TERAGE	REMARK	
Depth (meter)		Ö		¥ -	2,3		e e	3.6					
Temp. (°C)	21.5	9.77	Ave.: 26	7 1	21.8	4ve. 7/8	27.8	27.8	Ave.: 27,8				
hН	721	2778 AVE 776	Ave.:776	1111	27.2	Ave.: 7.15	784	787	Ave.: 7.83				
Salinity (ppt)	1242	24.6	14ve. 24.7	14.7	24.8	Ave.: 749	12 12	14,7	Ave. 247				
D.O. (mg/L)	589	6-8-7 Ave. 6	1879	87.9	6.30	Ave.: 6.29	01.7	617	Ave.: 6.15				
D.O.S. (%)	2863	89.9	4ve.: 896	82.1	82.4	AVE.: 8213	73	80,0	Ave.: 80.4				
Turbidity (NTU)	5:23	5,27	AVE.: 525 5.18	5.18	275	4ve.:5.20	5,72	5.78	Ave. 5.75	540			
S.S. (mg/L)			Ave.:	•		Ave.:			Ave.:	,			

Any notable discoloration of water ? $\mathcal{M} \mathcal{N}$ If yes, elaboration is as follows: _

Any notable pollutant by others near monitoring site ? $\mathcal{V}(\mathbb{N})$ If yes, elaboration is as follows :_

Checked by	Date	
Laboratory Staff	Баге	
(& C	28/4/13	
Checked by	Date	
S.H. Com	28-11-263	
Field Operator	Даге	

CS(MD5	(<i>O</i> _o										() _C	REMARK									
CS(MD3 to	% (21.1	REMARK									%) (21.2								6.7.9		
Direction of water current: From CS(Mf)3 to CS(Mf)5		REA										LIMIT							47.0 and 130% of CS(Mf)3	34.4 and 130% of CS(Mf)3	
ı of water cu	mg/L (qq.5										7. J. J. J. BW. T. BW.								27.5	34.	
Direction		SAGE									8.42	ACTION							27.5 and 120% of CS(MJ)3	23.5 and 120% of CS(Mf)3	
Tide Mode: <u>Ebb Tide</u>	ster: 8.59	DEPTH AVERAGE										1/4/1							27.5 a	23.5 a	
Tide Mode	ı for DO me	7									on for DO n	DEPTH	AVE.						n.i		
reafWave	Wet bulb calibration for DO meter: _			7(.1	73 151	26.0	6.4	Ave.: 85.8	7:01		Wet bulb calibration for DO meter:	Action Limit V/A/L					7 2.0				
Sea Conditions: Colm / Small Wave / Greaf Wave	Wet bul	OM		Ave.:	Ave.:					Ave.:	Wet br	Acti		,e.: 20.9	Ave.: 8.14	26.0	Ave.: 6.16 4.7	80.7	13.0		
Golm / Sme	маций	BOTTOM	5	21.0	\$	26. (6.40	83.7	10. 3		ا ا	воттом (В)	3.6	20.9 Ave.:	8.14 Ave.	26.(Ave.:	6.17 Ave.	80.8 Ave.	13.0 Ave.:	Ave:	
Conditions:	20,			7(.1	8.15	25.9	1+,9	83.8	(0.1		7	BO	~	20.8 2	8.13 8	25.9 2	6.15 6	80.5	17.9		
Sea	· (meter):			20.52	 8.0.1	Ave.: 26.0	e: (.49	84.7	Ave.: 9.36		Depth of Water (meter):	Action Limit V/A.L.					4.2				
): 20	Depth of Water (meter):_	E		₹ Ave.:							Depth of Wa	Action					5.0				
oerature (°C,	ı	MIDDLE	13	20.8	8.00	26.0	6.49	84-8	9.37			MIDDLE (M)				Ave.:	Ave.:	Ave.:	Ave.:	Ave.:	
Ambient Temperature (°C) :	12:25			20.8	8.01	25.9	トナッ	34.6	9.35		11:55	Daim						/			
	to				7.46			Ave.: 85.8 8	91-19		01 0	1 VIA/L					2				
i. Ligh	12:05			Ave.:	Ave.:	Ave.:	1			Ave.:	Duration: 11. 30	Action Limit V/A/L					5.0 4.2				
Weather Condition : We	Duration:	SURFACE	1.0	20.6	7.95	25.8	6.42	83.8	9.19		Duration	(\$)		Ave.:	Ave.: 7.99	Ave.:	Ave.:	Ave.: 74.7	7	Ave.:	
	I -			1	10.7	5		 	000			SURFACE (S)	1.0	20.6 20.7		25.8	6.711 6.10	79.6	7		
Sampling Date: 30, ([. 101]	CS(MÐ5			10.7		75.9	6.41	85.7	81.8		SR4a			20.6	1.67	25.7	11.79	7 20			
ng Date :			(meter)	(C)		v (ppt)	mg/L)	(%)	Turbidity (NTU)	(T/St	т.		Depth (meter)			Salinity (ppt)	D.O. (mg/L)	(%)	Turbidity (NTU)	ng/L)	
Sampli	Station:		Depth (meter)	Temp. (°C)	На	Salinity (ppt)	D.O. (mg/L)	D.O.S. (%)	Turbia	S.S. (mg/L)	Station:_		Depth	Temp. (°C)	На	Salini	D.O. (D.O.S. (%)	Turbic	S.S. (mg/L)	

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Ebb Condition)**

Station.										
	- 1	SURFACE (S)	Action Limit V.A/L	MIDDLE (M)	Action Limit V/A/L	BOTTOM (B)		ACTION	LIMIT	4RK
Depth (meter)		0				2.7	AVE. V.AL	7		
Temp. (°C.)	20.8	20.9 Ave.: 20.9			0.17 PM 21.0	21.0	0			
; Hd	7.93	8.11 Ave. 3.02			8.25	8.3	57			
Salinity (ppt)	15.3	26. (Ave.: 25.9		Ave.:	26.	\$ 26.4				
D.O. (mg/L)	6.81	6.80 Ave. 6.81	5.0 4.2	Ave.:	5.0 4.2	6.36 6.89 Ave. 6.88	8 4.7 2.0			
D.O.S. (%)	88.9	88.7 Ave. 38.8		Ave.:	80	89.8 90.3 Ave. 90.1				
Turbidity (NTU)	6.78	6.91 Ave. 6.35		Ave.:	2.7	7.57 7.08 Ave. 7.5	33 - 101/10	512	47.0 and 130% of 47.0 CSMD3	
S.S. (mg/L)		Ave.:	*	Ave.:		Ave.:		23.5 and 120% of CS(Mf)3	34.4 and 130% of CS(Mf)3	
Station.	8SI	Duration:	0) (1:0)	7 2 2 2 101 01	Depth of Water (meter):	2.5	Wet bulb calibration for DO meter:	eter: 8.40 mg/L (99.5 %(21.1	(C)
		SURFACE (S)	Action Limit V/A/L	MIDDLE (M)	Action Limit V/A/L	BOTTOM (B)		ACTION	LIMIT REMARK	ARK
Depth (meter)		0;			ne.	4.5	AVE. V/A/L	/L		
Temp. (°C)	20.9) 1.0 Ave.: 21.0				21.1				
. Hd	1 b'L	_	- 1		8.		8.7			
Salinity (ppt)	7 22			Aye.:	25	25.8 25.8 Ave. 25	25.8			
D.O. (mg/L)	6.74	6.76 Ave.: 6.75	5.0 4.2	Ave.:	5.0 4.2 6.	6.47 6.49 Ave. 6.48	t.⊋ 4.7 2.0 ✓			
D.O.S. (%)	88.0	1		Ave.:	8.	84-7 850 Ave. 84.9	H. G. Carlotte B. Carlotte			
Turbidity (NTU)	13.1	13.2 Ave. 13.2		Ave.:		S 11.5 Ave. 1.	5, 221	27.5 and 120% of 27.5 CS(Mf)3	47.0 and 130% of 47.0 CSAM)3	
S.S. (mg/L)		Аче.:		Ave.:		Ave.:		23.5 and 120% of CS(Mf)3	34.4 and 130% of CS(Mf)3	
Station: IS(IS(Mf) 16	Duration:	9:57 10	0.17	Depth of Water (meter):	8.3	Wet bulb calibration for DO meter:	neter: 8.47 mg/L (99.6 % (21.4	(C)
		SURFACE (S)	Action Limit V/A/L	MIDDLE (M)	Action Limit V/A/L	BOTTOM (B)	Action Limit V/A/L DEPTH	ACTION	LIMIT REMARK	ARK
Depth (meter)	.,	(.0		4.1		7.5	AVE. VAL	7/		
Temp. (°C)	70.7	20.8 Ave.: 20.8		20.8 20.9 20.9	21.0	21.0 Ave.:	21.0			
. Hd	797	7.96 Ave: 7.97		8.01 8.02 8.02	1 81	7 8.18 Ave.	8.18			
Salinity (ppt)	25.5	25.6 Ave. 256	25.8).Z.q	59 26.0	26.1				
D.O. (mg/L)	· 6. (1	6.10 Ave.: 6.11	5.0 4.2	6-74 6.73 Ave. 6.74	5.0 4.2	24 6.21	25 4.7 2.0			
D.O.S. (%)	8.97	79.7 Ave. 79.8		88.2 88.0 Ave 28.6	3-(** ** ** ** ** ** ** ** ** ** ** ** **	7 81.4	9			
Turbidity (NTU)	8).6	9.99 Ave. 9.99		(0.0 10.1 Ave.:		39 9.41 AVE 9.40	40 8.81 V	27.5 and 120% of 27.5 CS(Mf)3	47.0 and 130% of 47.0 CS(Mf)3	
: (1/200) 33		Ave.:		Ave.:		Ave.:		23.5 and 120% of	34.4 and 130% of	

Station:	IS(MD)9	Duration: 9:27	on Laip	4:47	Depth	Depth of Water (meter):_	4.7	We.	Wet bulb calibration for DO meter: 🐧 S	n for DO meter		mg/L (99.8 %	%) (21-1 °C)
	SU.	SURFACE (S)	Action Limit V/A/L	MIDDLE (M)		Action Limit V/A/L	BOTTOM (B)		Action Limit V/A/L	DEPTH ////	ACTION	LIMIT	REMARK
Depth (meter)		0:					>`	7		AVE. VAL			
Temp. (°C)	20.8	20.8 Ave.:					20.9 21.0						
Н	8 hb ² :	8.00 Ave.:					8.15	Ave.: 8.15					
Salmity (ppt)	75.6	25.7 Ave.:			Ave.:		25.9 26.0	Ave.: 26.0					
D.O. (mg/L)	9 19.9	6.63 Ave.:	5.0 4.2		Ave.:	5.0 4.2	6.45 6.47	Ave.: 6.46	4.7 2.0				
D.O.S. (%)		16.5 Ave.:			Ave.:		~	Ave.:					
Turbidity (NTU)	S 0 1 0 1		LAS		Ave.:		9.889	Ave.: 9.88		> %0.01	27.5 and 120% of CS(Mf)3 27.5	47.0 and 130% of CS(Mf)3	47.0
S.S. (mg/L)		I			Ave.:			Ave.:			23.5 and 120% of CS(Mf)3	34.4 and 130% of CS(Mf)3	
Station: CS/M	Station: CS(Mf)3 (Upstream Control Station)	Control Station)	Duration:	8157 to	٩: ١٦	Depth of W	Depth of Water (meter):	7.0	Wet bulb c	alibration for L	Wet bulb calibration for DO meter: 8・4 も	mg/L (99.7	(C) (71-0 °C)
		SURFACE			MIDDLE			BOTTOM		DEP1	DEPTH AVERAGE	REMARK	4RK
Depth (meter)		0.1			3.5			0.9					
Temp. (°C)) 10° q	20.9	Ave.: 20. Q	21.0	20.9	Ave.:	2j.0	バー	Ave.: 21-(
Hd	8.00	, ,		\$0 <i>-</i> 8	8.02	Ave.: \$.03	3/4	8.16	Ave.: 8-15				
Salinity (ppt)	. 25.8	3 25.9	Ave.: 25.9	0.92	76.1	Ave.: 26.1	26.2	26.1	Ave.: 26.2				
D.O. (mg/L)	92.9	82.9		6.21	6.22	Ave.: 6.22	6.09	6.10	Ave.: 6.10				
D.O.S. (%)	7.88	88.5	Ave.: 88.4	7.18	81.5	Ave.: 81.5	79.1	79.9	Ave.: 79.3	eri eri		120%	130%
Turbidity (NTU)	7 1	4 = 3	Ave.: 11.4	8.78	8.76	Ave.: 8.77	8.63	8.64	Ave.: 8.64	9.59	29	V)	12.5
S.S. (mg/L)			Ave.:			Ave.:			Ave.:				
						1							

Any notable discoloration of water? Y My If yes, elaboration is as follows:

Any notable pollutant by others near monitoring site ? Y / $oldsymbol{\emptyset}$ If yes, elaboration is as follows :_

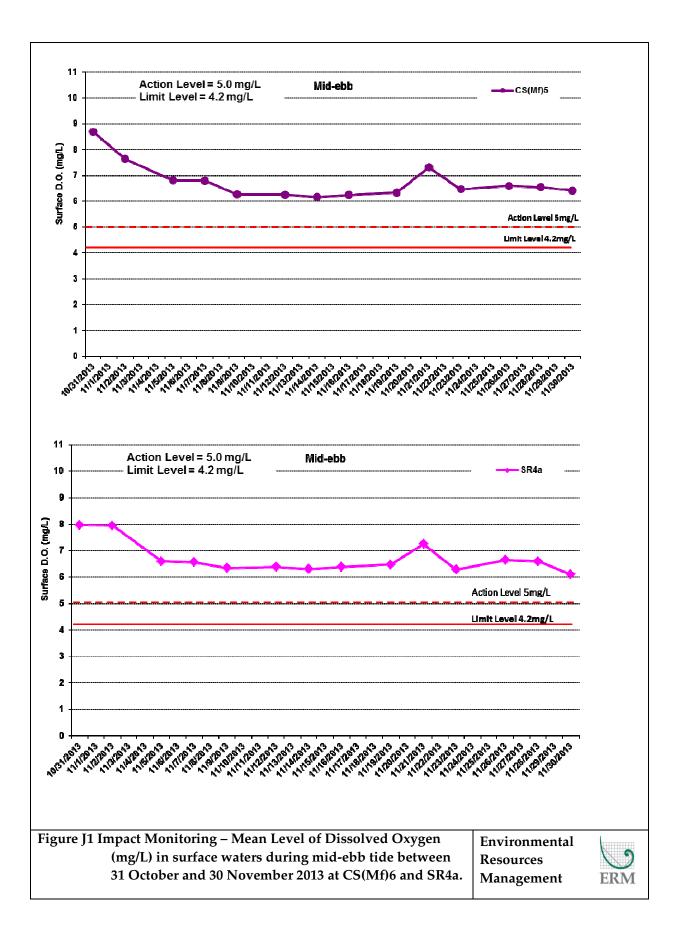
Checked by	Баге
Laboratory Staff	Date
(de (g)	30/W/13
Checked by	Баге
Sunny Tong	30. 11. 2013
Field Operator	Date

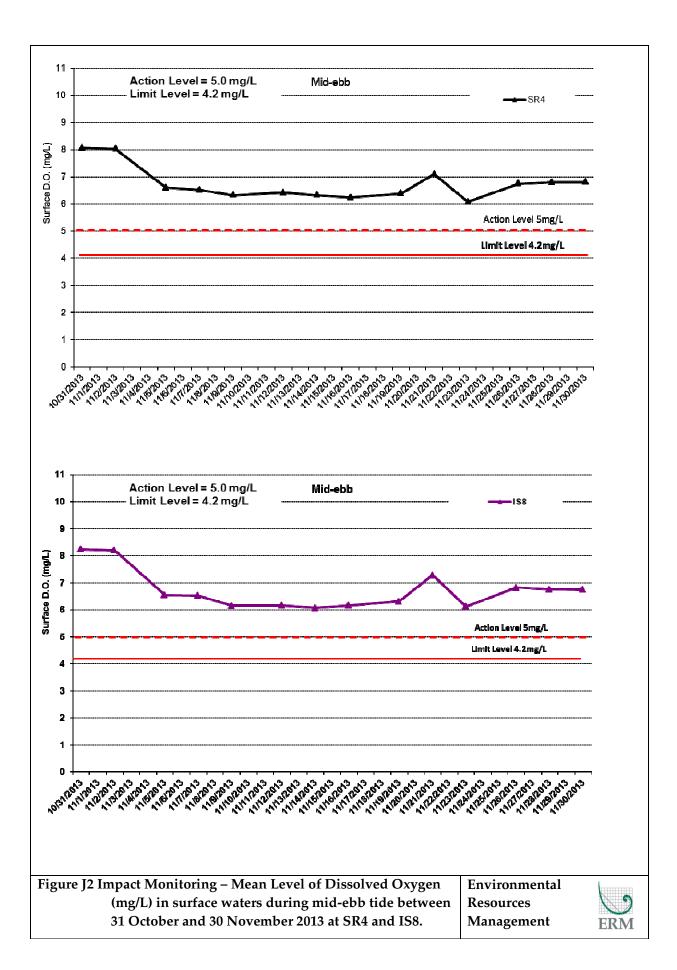
Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet (**Flood Condition**)

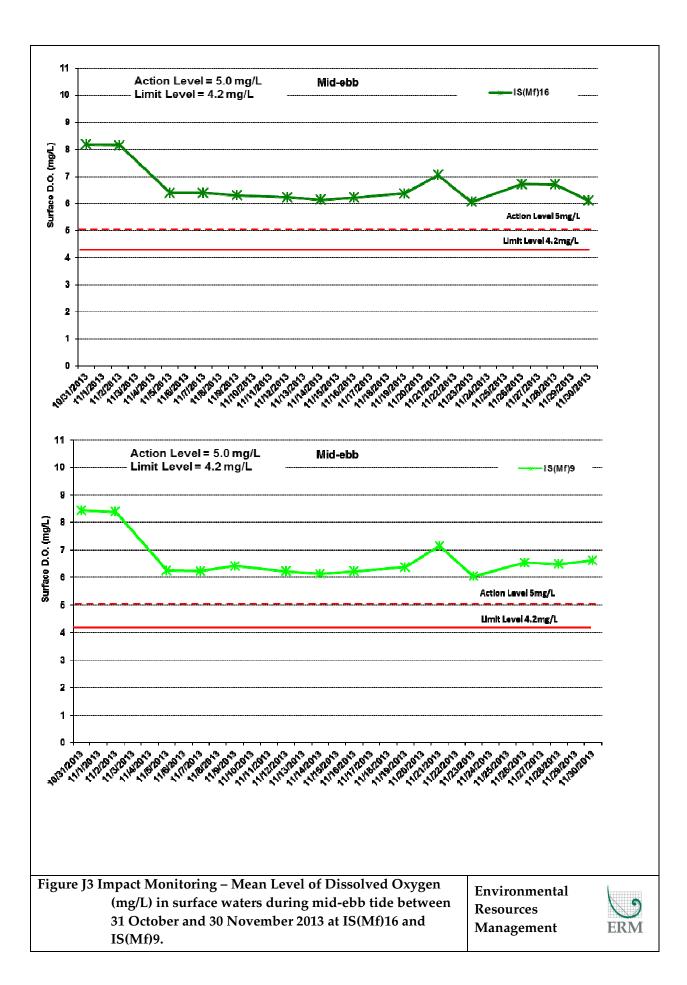
Direction of water current: From CS(Mf) to CS(Mf)3 C130% (6) 17(5)/% CIC) 1% 47.0 and 130% of CS(Mf)5 34.4 and 130% of CS(Mf)5 TIMIT 120% 3 4.66 98.6 mg/L (23.5 and 120% of CS(Mf)5 27.5 and 120% of CS(Mf)5 ACTION Wet bulb calibration for DO meter: 8,38 **DEPTH AVERAGE** 841 Tide Mode: Flood Tide 9.41 Wet bulb calibration for DO meter: 1/4/2 **ВЕРТН** AVE. Action Limit V/A/L Sea Conditions: Cath / Small Wave / Great Wave 800 243 99 6.43 7.48 770 Ave.: Ave.: Ave. Ave.: Ave.. क्रिक 6.2 5.3 90 BOTTOM SL. B 6.47 500 989 26.1 9 Ave.: Ave.: BOTTOM (B) 30,00 8.32 523 401 7 83.1 33 4.8 85.0 016 20,0 650 27.6 9.92 Depth of Water (meter):_ Sac. 8.18 (6) 258 63h 81.3 Depth of Water (meter): Action Limit V/A/L 7,58 8:04 9,74 25.9 654 4.2 Ave.: Ave.: Ave.: Ave.: Ave.: Ave.: 5.0 Ambient Temperature (°C): 8.06 MIDDLE 25.55 85.9 6 20.9 6.57 5,7 Ave.: Ave.: Ave.: Ave.: 4ve.: 15:05 MIDDLE (M) (5:35 2 20.8 85.5 900 259 6,54 9 Duration: 4:45 10 V/A/L 30.3 5.50 9,00 5 6,52 95.7 15:15 Limit 4.2 Weather Condition: Fine Ave.: Ave.: Ave.: Ave.: Ave.: Ave.: Action Duration: 8:01 SURFACE 6.31 8 7 5 967 850 1,5 6.53 7.00 9.1 Station: CS(Mf)5 (Upstream Control Station) 9 Ave.: Ave.: SURFACE (S) 30.8 8,03 10,9 25.7 633 533 9 20,8 25,0 Sampling Date: 30.[1, 2013 7.98 9,09 651 85.1 35,6 500 85.1 6.3 60 SR4a Turbidity (NTU) Turbidity (NTU) Depth (meter) Depth (meter) Salinity (ppt) D.O. (mg/L) Salinity (ppt) D.O. (mg/L) D.O.S. (%) S.S. (mg/L) D.O.S. (%) Temp. (°C) Temp. (°C) S.S. (mg/L) Station:

Tuen Mun – Chek Lap Kok Link – **Southern** Impact Water Quality Monitoring - Data Record Sheet **(Flood Condition)**

REMARK	C. °C) REMARK		PEMARK REMARK
Hq.T %) (N. LIMIT	47.0 and 130% of L7.0 and 130% of CS(MBS 34.4 and 130% of CS(MBS 44.4 and 130% of CS(MB) 44.5 and 130% of CS(MBS 44.5 and 130%	47.0 and 130% of CS(MI)5 31.4 and 130% of CS(MI)5 CS(MI)5	47.0 and 130% of 47.0 34.4 and 130% of 47.0 and 47.0
MCTION ACTION	27.5 and 120% of CS/M(J)5 23.5 and 120% of CS/M(J)5 CS/M(J)5 rr: EA4 \ mg/L \(ACTION \)	27.5 and 120% of CS/A4/)5 23.5 and 120% of CS/A4/)5 23.5 and 120% of CS/A4/)5	7.5 mg/L (ACTION ACTION 2.1.5 and 120% of 2.1.5 and 120% of C.S.(Alf) 5 2.3.5 and 120% of C.S.(Alf) 5 2.3.5 and 120% of C.S.(Alf) 5 2.3.5 and 120% of C.S.(Alf) 5
Wet bulb calibration for DO meter: Action Limit VAL DEPTH VALL ALT ALT ALT ALT ALT ALT ALT	Table Vet bulb calibration for DO meter:	2.0 V 11.5 VAI.	Wet bulb calibration for DO meter: Action Limit VALL DEPTH VALL APE 4.7 2.0 V 9.10 V
4.15 Wet bull BOTTOM (B) Action 3.6 Ave.: 21.1 Ave.: 23.4 Ave.: 25.4 Ave.: 25.7 Ave.: 4.7 Ave.:	Ave.: 7(3) Ave.: 133	e.: 31.1 e.: 8.11 e.: 553 e.: 6.53 e.: 96.2	B.J. Wet bus BOTTOM (B) Action B.J. Ave.: 21.1 B.J. Ave.: 21.2 S.J. Ave.: 54.14 G.J. Ave.: 6.41 G.J. Ave.: 6.41 Ave.: 6.41 Ave.: 6.41
Depth of Water (meter): Action Limit ViAL 20,0 3.0 4.2 25.5	1 1 1 1 11	30 4.2 6.59 8h.3	So 42 (6427).
MIDDLE (M) ANDLE (M) Ave.:	Ave.: Ave.: Ave.: Ave.: Ave.: Ave.: Ave.: Ave.: Amdis S.		AND DLE (M) AND DLE (M) AND C. D. B. AND C. D. AND
(5)245 to Action Limit VAIL 8.0 4.2	15:15 to		5: 15 to 4etion 1mmi 1/4/1 20 5:0 4:2 5:0 5:0 4:2 5:0
Duration: SURFACE (S) 1,0 Ave.: 21,0 Ave.: 25,7 Ave.: 25,7 C 28, Ave.: 6,90	6.5)		Duration: SURFACE (S) 1,D Ave.: 20,3 Ave.: 25,1 Ave.: 5,5 Ave.: 6,5 Ave.:
20.3 1.36 1.36 1.36 1.36 1.36 1.36	.: (UTV) .: (S81	1.93	150.0016 20.8 178 178 140 150 150 160 160 160 160 160 16
Station: Depth (meter) Temp. (°C) PH Salinity (ppl) D.O. (mg/L)	D.O.S. (%) Turbidity (NTU) S.S. (mg/L) Station:	Depth (meter) Temp. (°C) pH Salinity (ppt) D.O. (mg/L) D.O.S. (%) Turbidity (NTU) S.S. (mg/L)	Station:

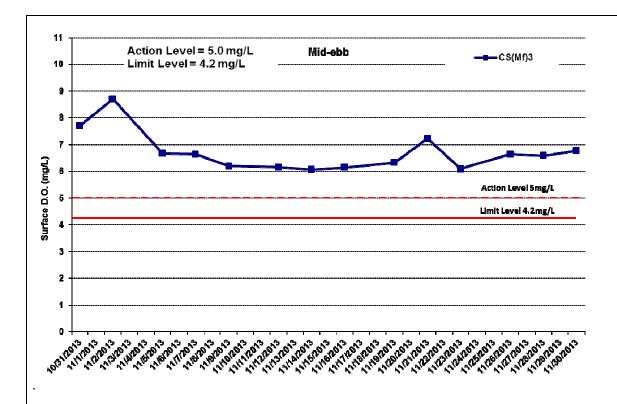
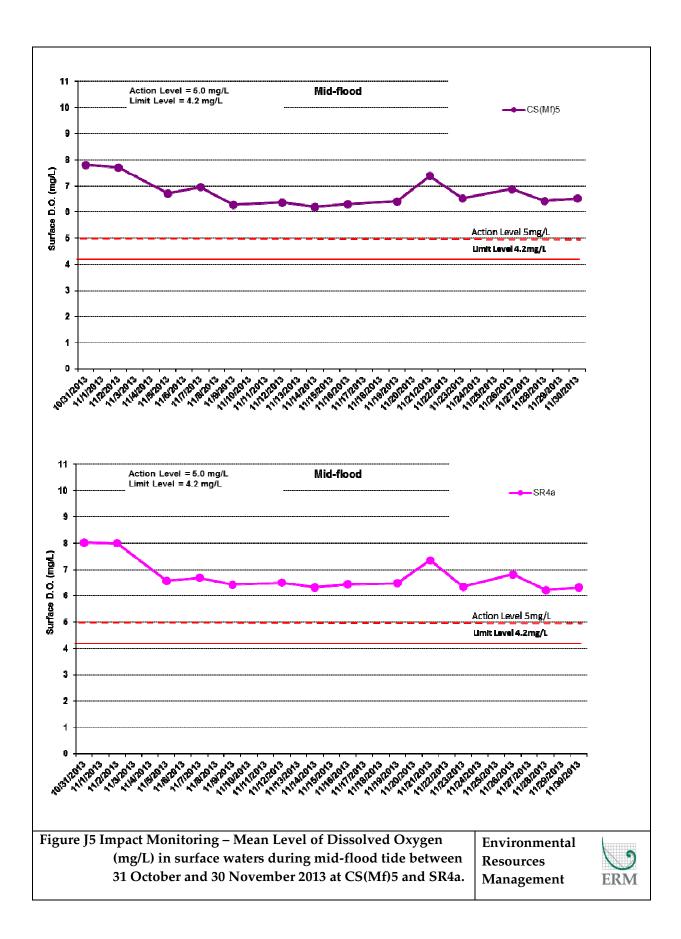
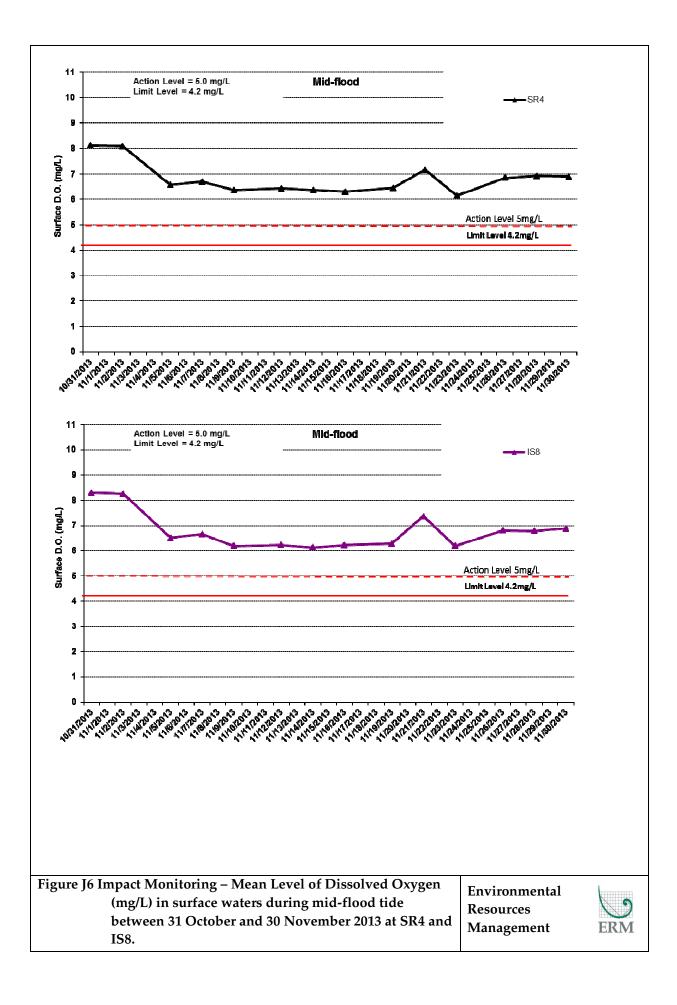
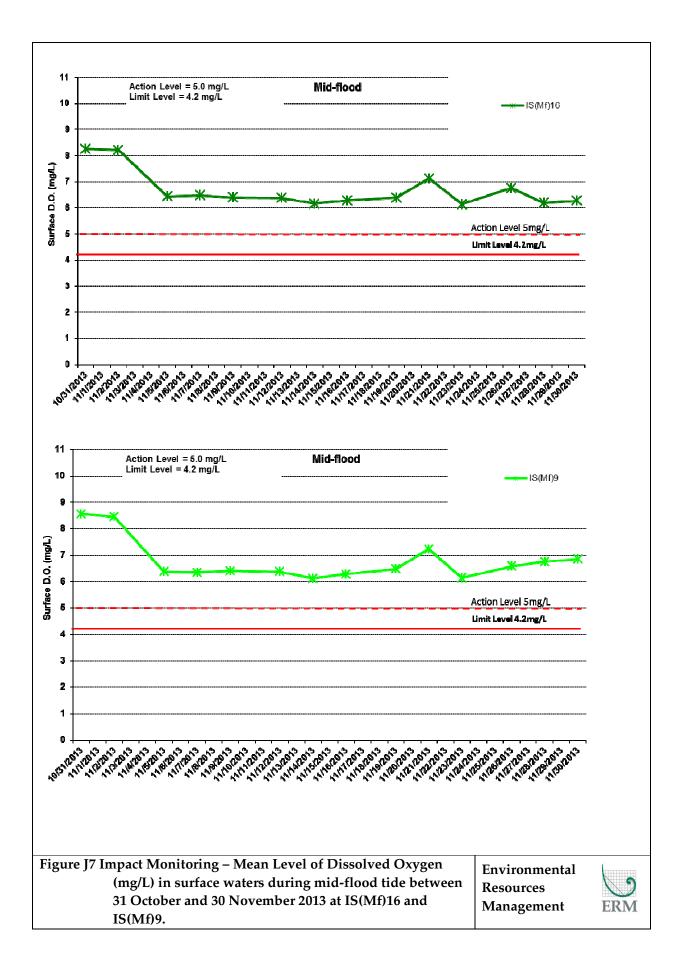


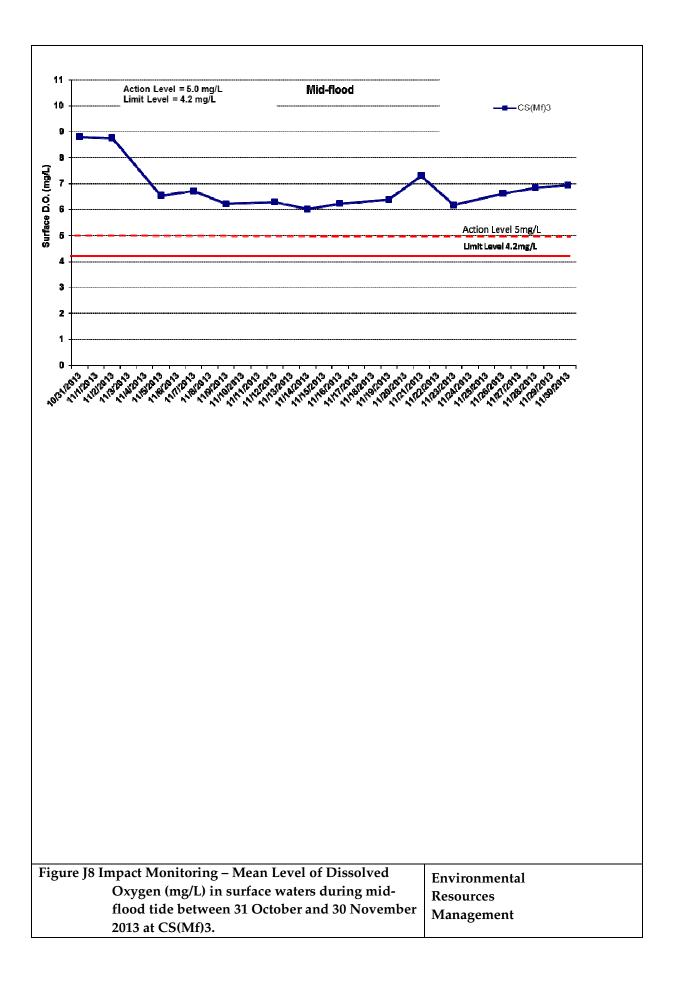

Station:	ISOM09	Duration:	17:15 10	(7:35	Depth	Depth of Water (meter):_	4,8	We	Wet bulb calibration for DO meter:	n for DO meter:) 7/8m OS 9	7/% (LPP)	10° C1C
		SURFACE (S)	Action Limit V/A/L	MIDDLE (M)		Action Limit VAIL	BOTTOM (B)		Action Limit VA/L	DEPTH JAM	ACTION	LIMIT	NEMARK
Depth (meter)		C)					3,82			AVE.			
Temp. (°C)	 &	Ave.:					20.9	Ave.:					
Н	: G	4					B.13 P.14	Ave.: 5.14					
Salinity (ppt)	 7. 0.	Ave.			Ave.:		0.46	Ave.:					
D.O. (mg/L)	169.6 	Ave	5.0 4.2		Ave.:	5.0 4.2		Ave	4.7 2.0				
D.O.S. (%)	 1,88	Ave			Ave.:		P.178 7.48	Ave.:					
Turbidity (NTU)	<u>.</u>	Ave.			Ave.:			Ave.:		991 1	27.5 and 120% of CS(MJ)5	47.0 and 130% of CS(Mf) 5 47.0	C
S.S. (mg/L)		Ave.			Ave.:		-	Ave.:	# E -	2	23.5 and 120% of CS(Mf)5	34.4 and 130% of CS(Mf)5	
Station:	CS/Mf)3	Duration:	17:55 to	18:15	Depth	Depth of Water (meter):	(1)	We We	Wet bulb calibration for DO meter:	n for DO meter:	1/8m 143	(99.8 %((), CYC
		SURFACE			MIDDLE			BOTTOM		DEPTH	DEPTH AVERAGE	REMARK	
Depth (meter)		Ç			3,6			دم					
Temp. (°C)		2008	Ave.:	2009	21.0	Ave.:		010	Ave.: 31.1		100		
Hd			Ave.:	a A	й 20 20	Ave.:	Q Ĉ	c c	Ave.:				
Salinity (ppt)			Ave.:	cí,	05.8	Ave.: 35.8	7,7%	2,90	Ave.:				
D.O. (mg/L)			Ave.:	537	6.39	Ave.:	16.9	45.9	Ave.: 6.23				
D.O.S. (%)	106		Ave.:	83,4	837	Ave.: 83.6	813	518	Ave.: 315				
Turbidity (NTU)	<u>.</u>		Ave.: (1.∩	8.66	B.69	Ave.: 8,58	8.5k	8,48	Ave.: 3.52	9	9,40		
S.S. (mg/L)	٠,		Ave.:			Ave.:			Ave.:			,	

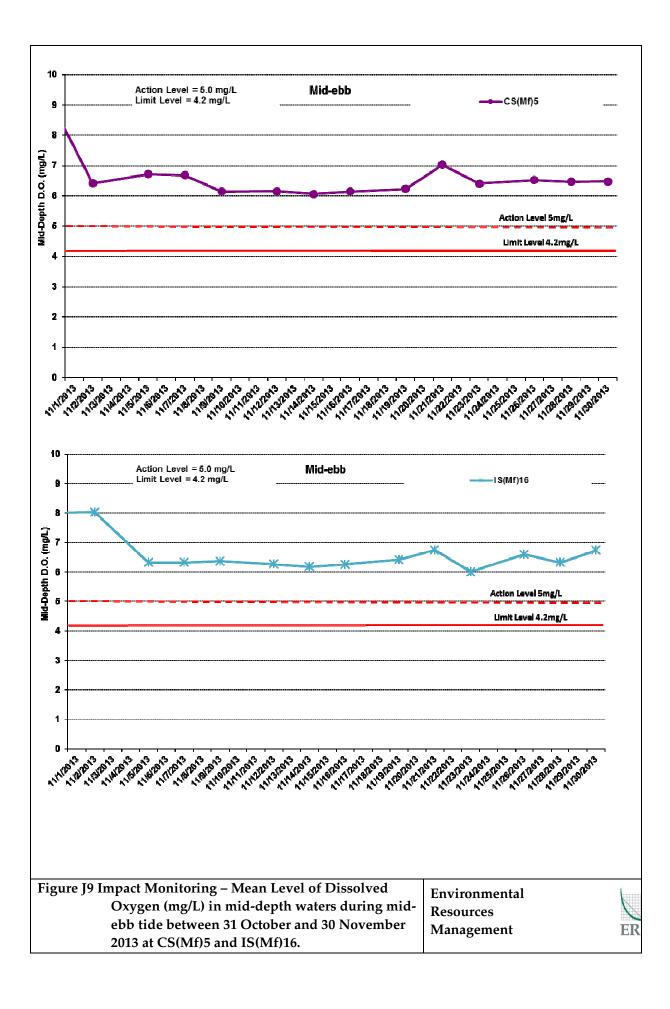

Any notable discoloration of water? Y/N If yes, elaboration is as follows:

Any notable pollutant by others near monitoring site ? χ/N If yes, elaboration is as follows :_

Field Operator	Jackie Chama	Checked by	(spell)	Laboratory Staff	Checked	(b)
Date	0 0 30, 11, 3013	Баге	30/W//3	Баге	Date	


Figure J4 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-ebb tide between 31 October and 30 November 2013 at CS(Mf)3.



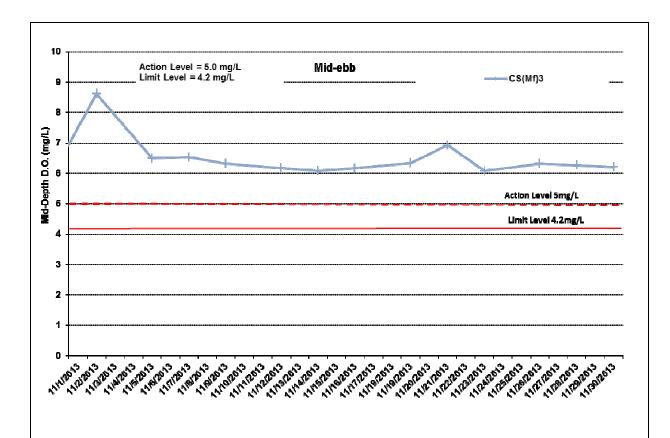
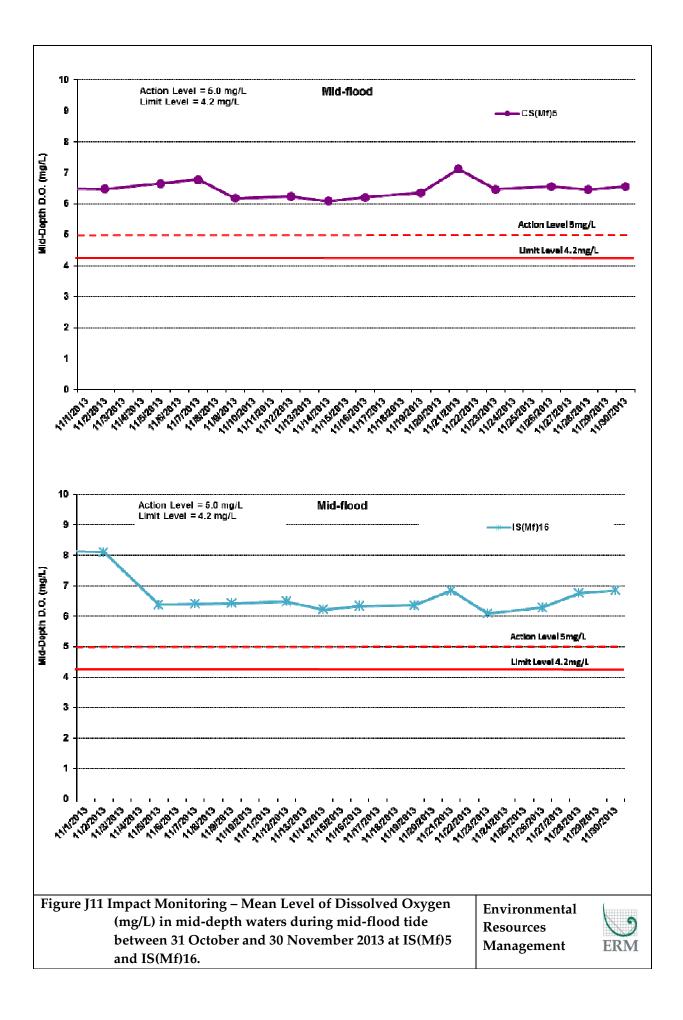



Figure J10 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters during mid-ebb tide between 31 October and 30 November 2013 at CS(Mf)3.

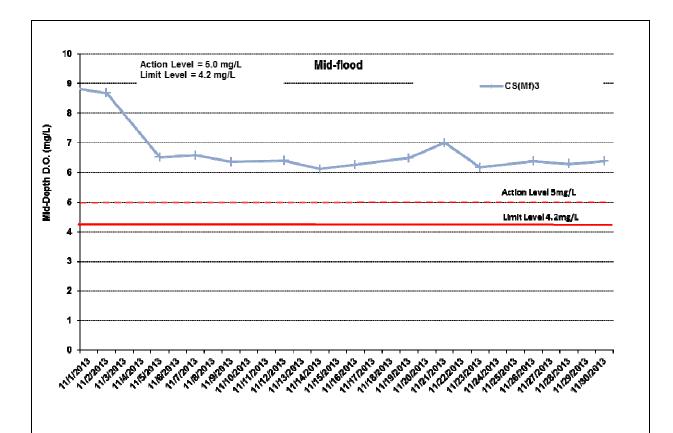
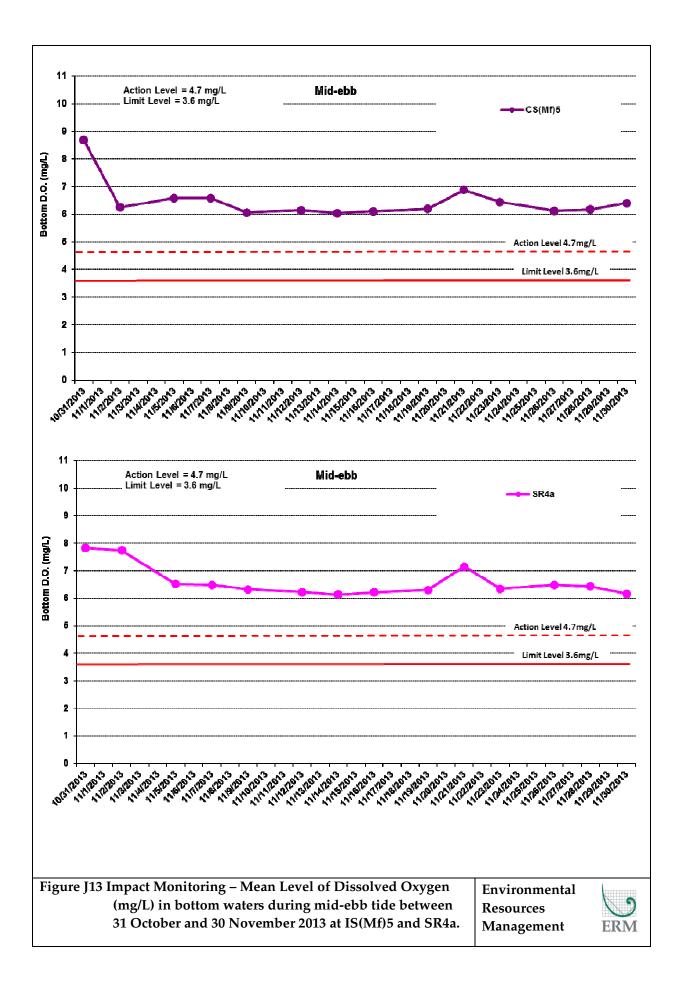
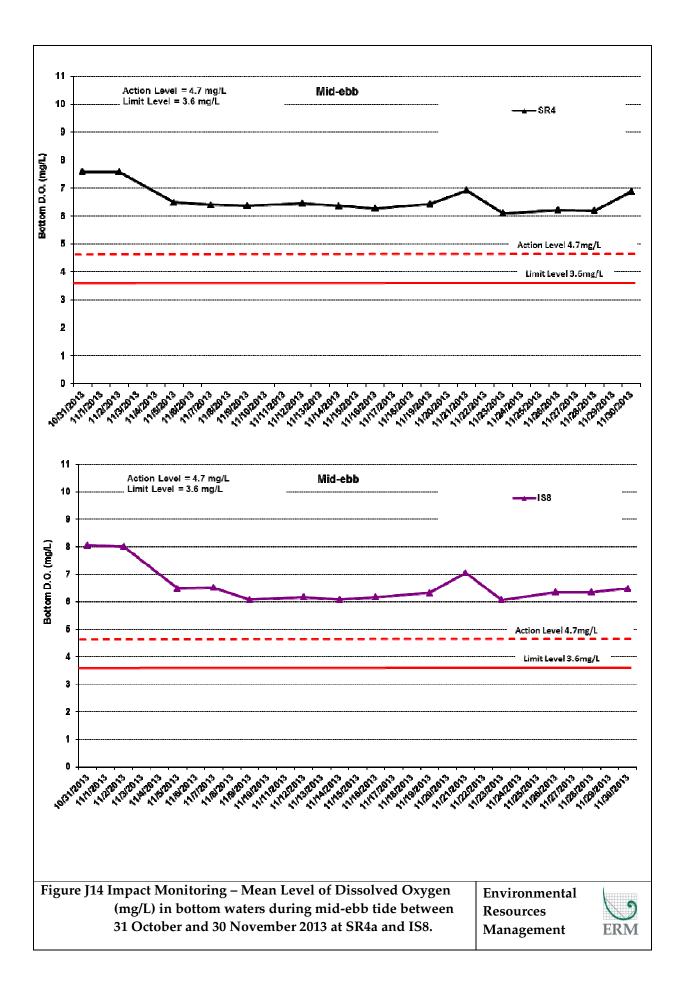
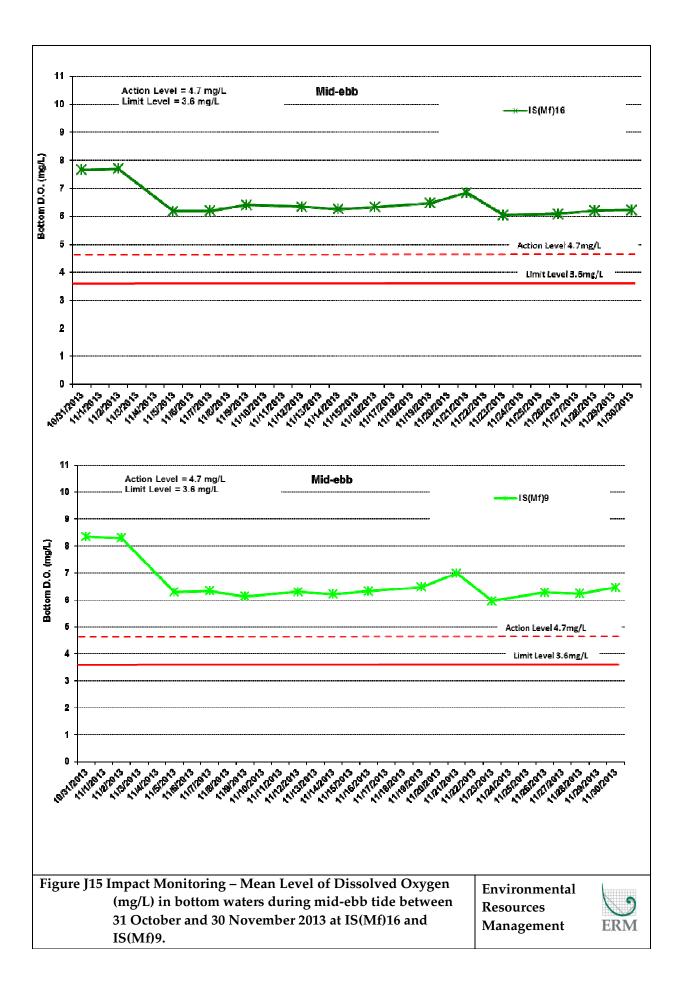
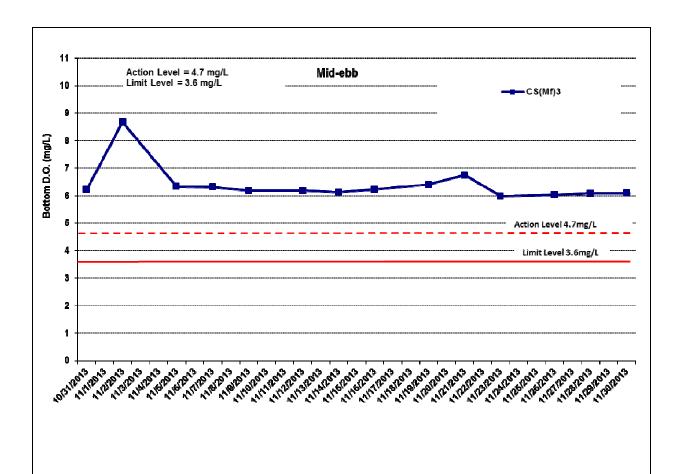
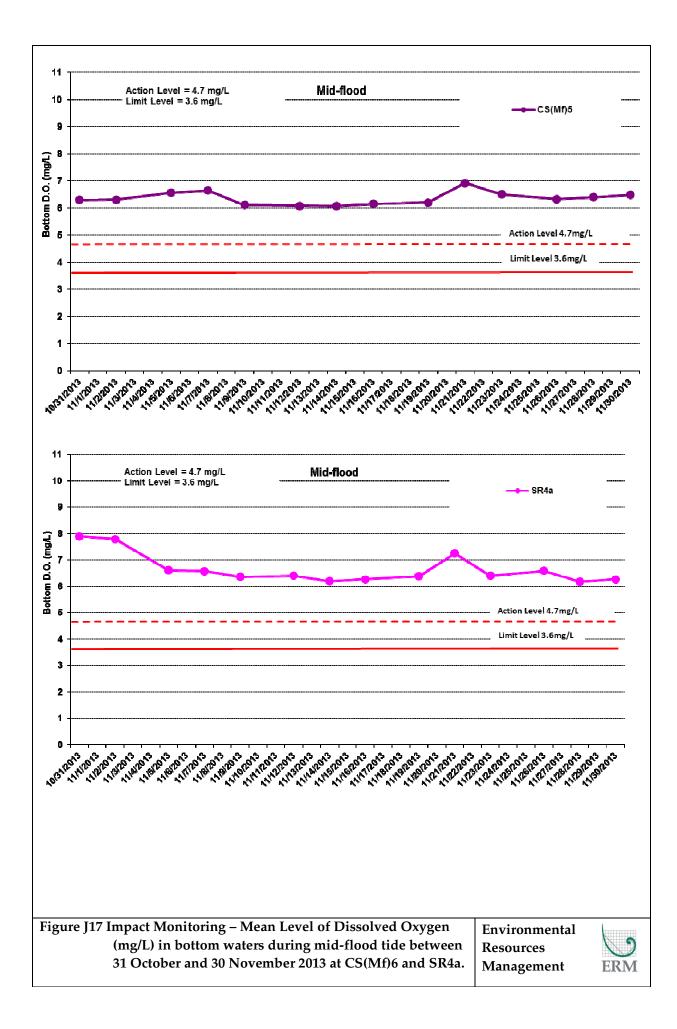
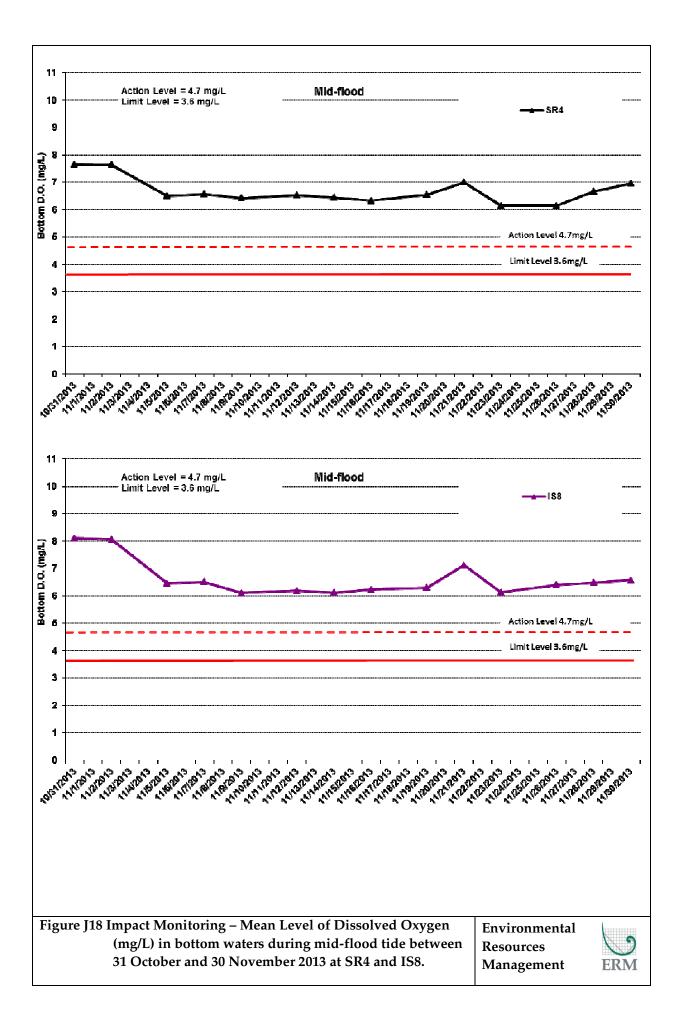
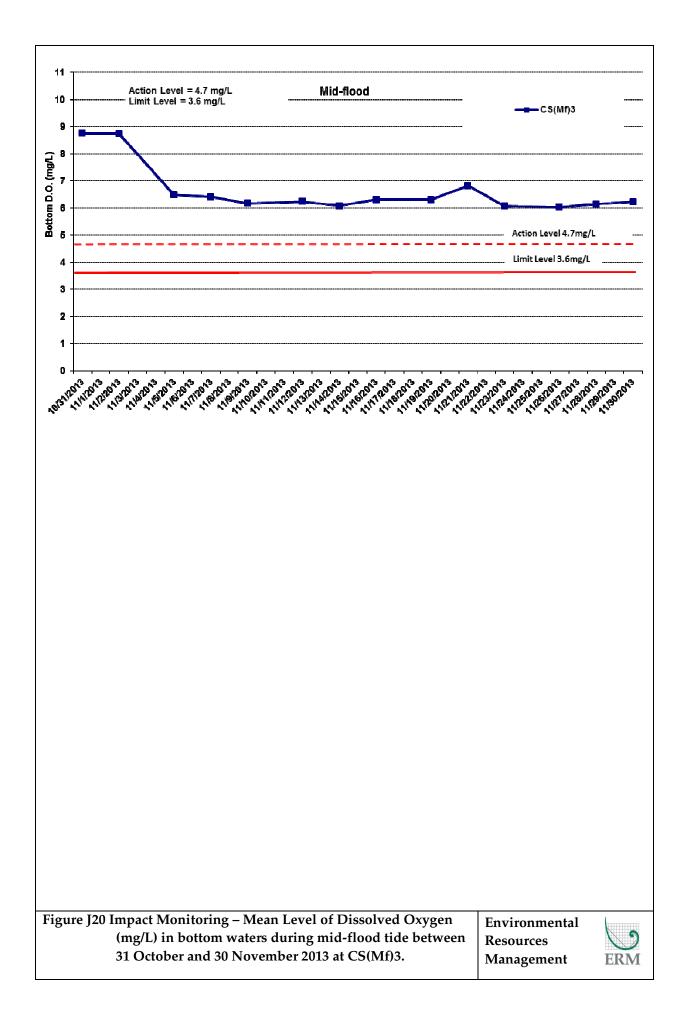
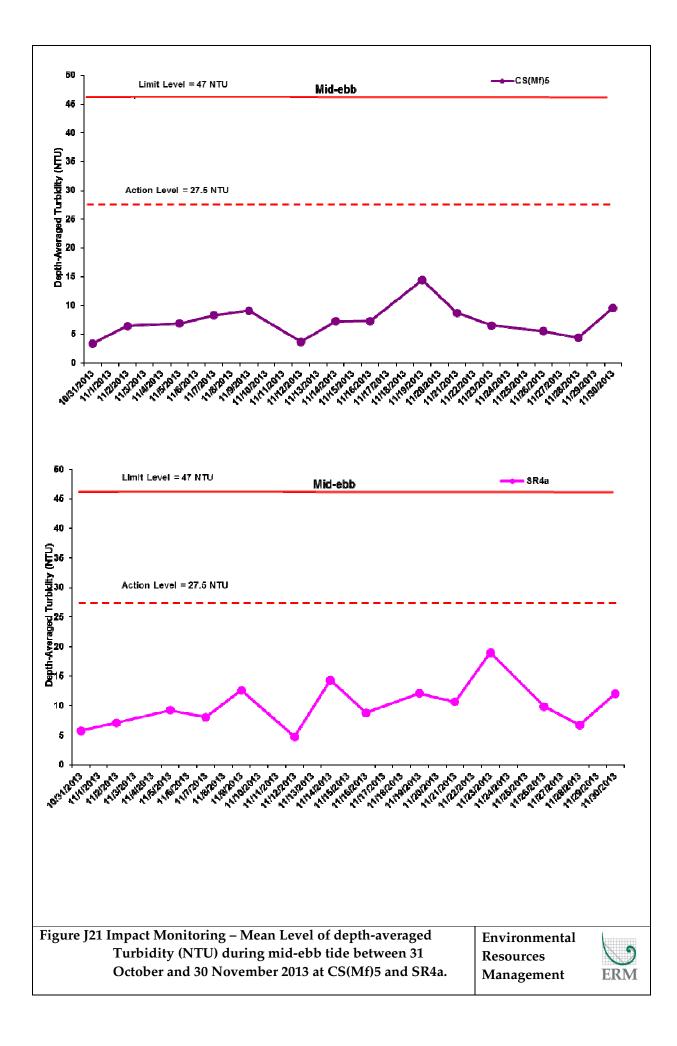
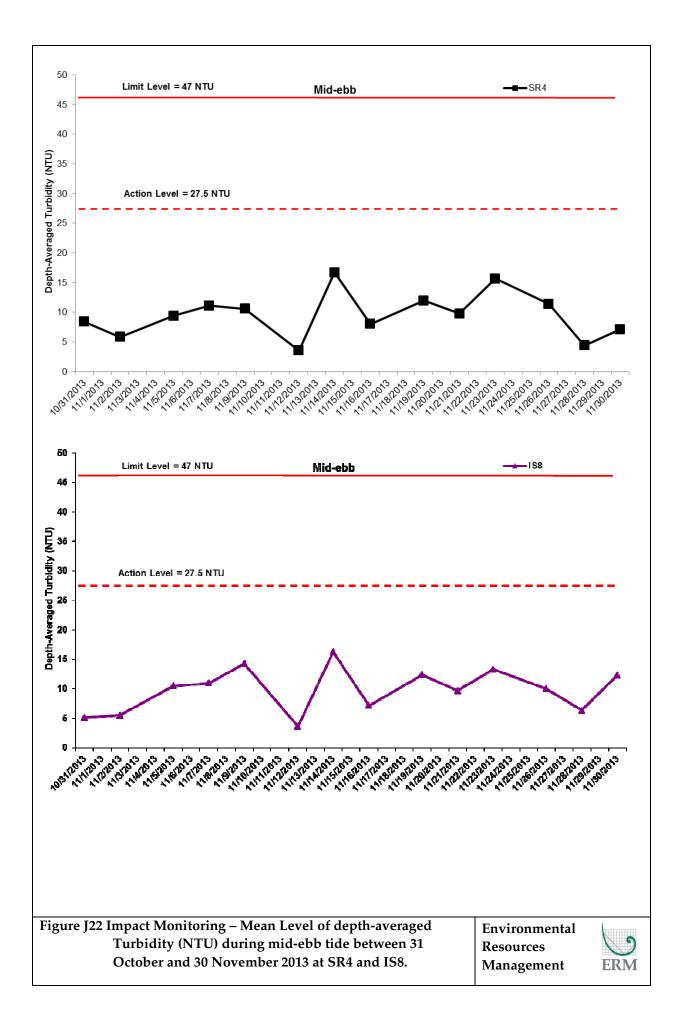





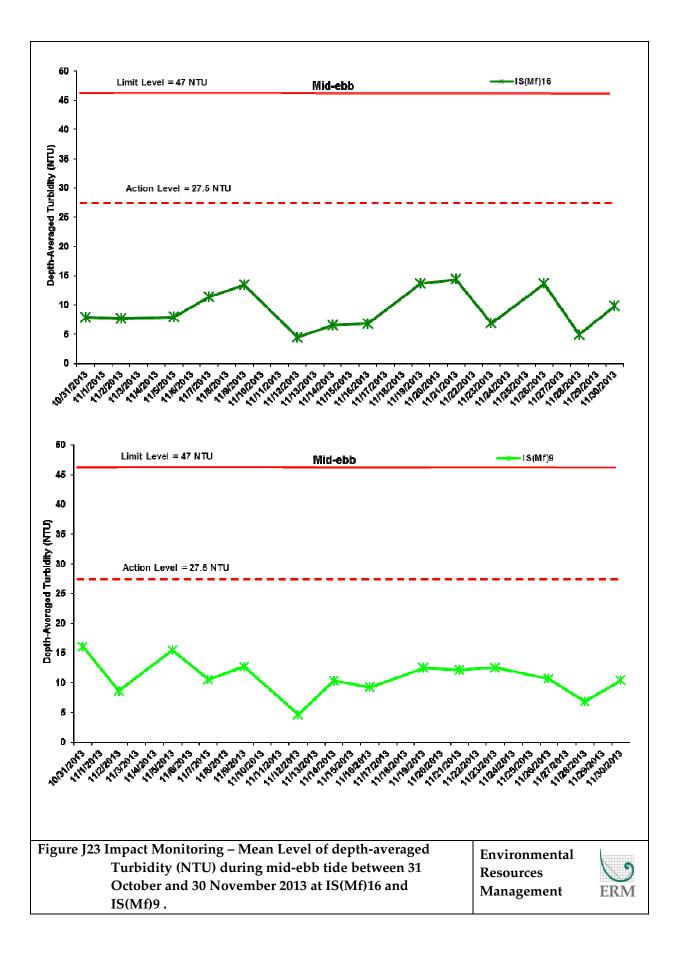
Figure J12 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters during mid-flood tide between 31 October and 30 November 2013 at IS(Mf)3.


Figure J16 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-ebb tide between 31 October and 30 November 2013 at CS(Mf)3.







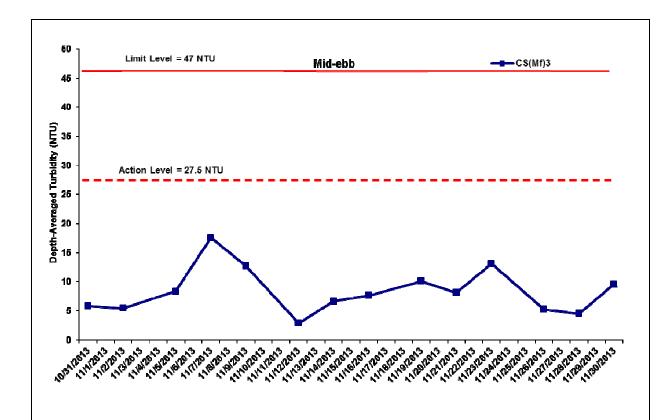
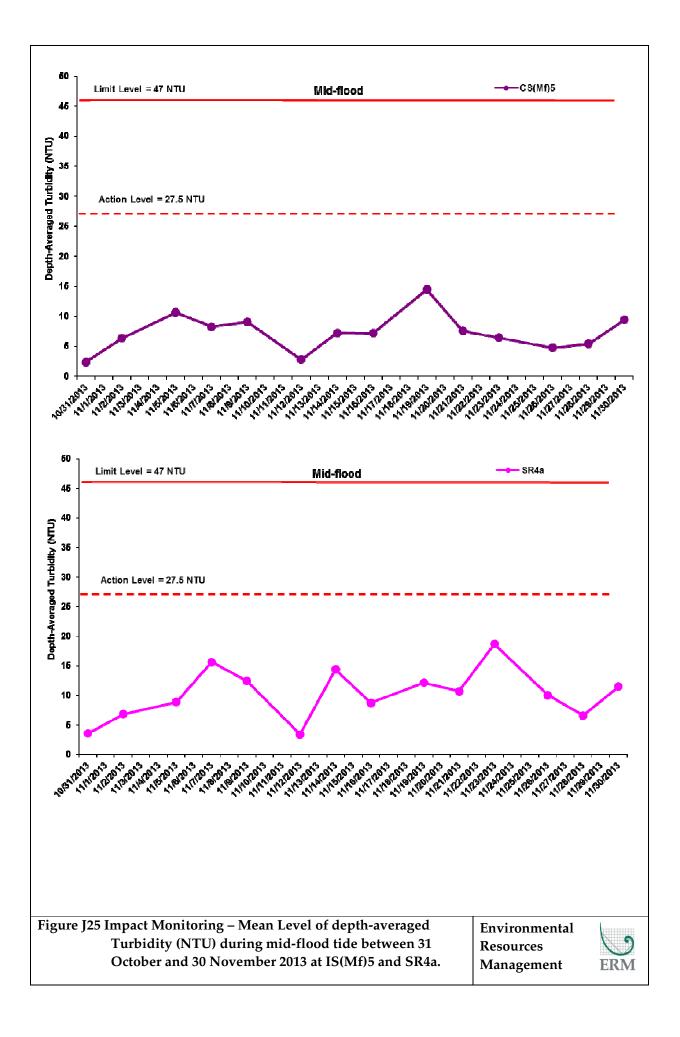
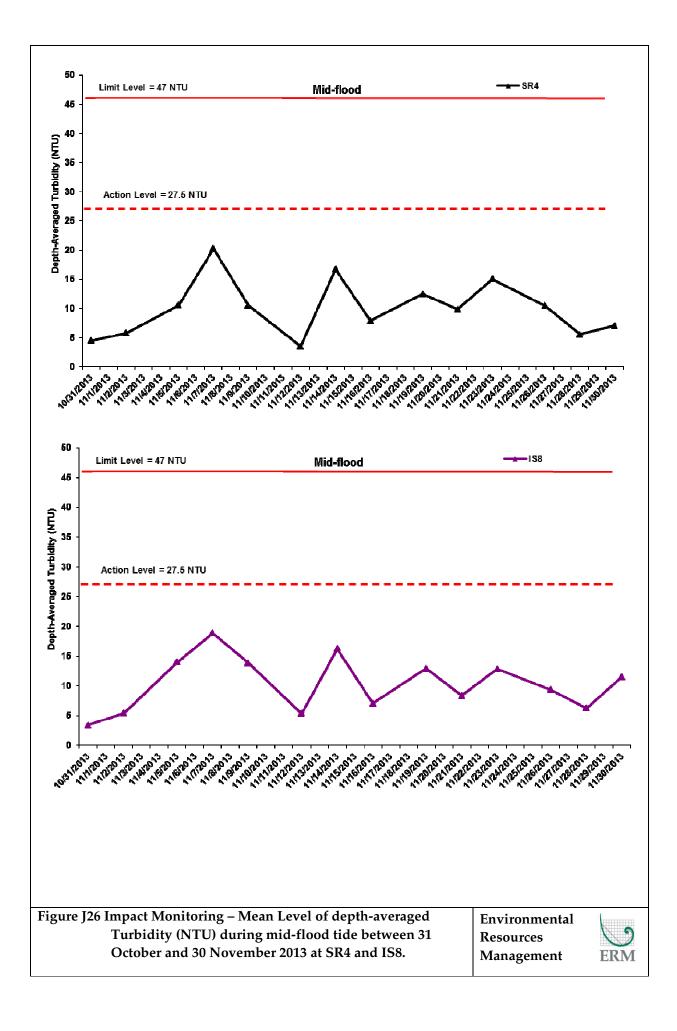




Figure J24 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-ebb tide between 31 October and 30 November 2013 at CS(Mf)3.

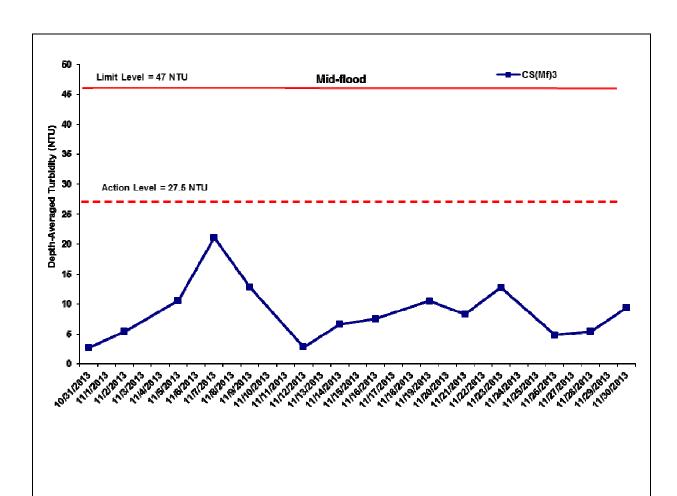
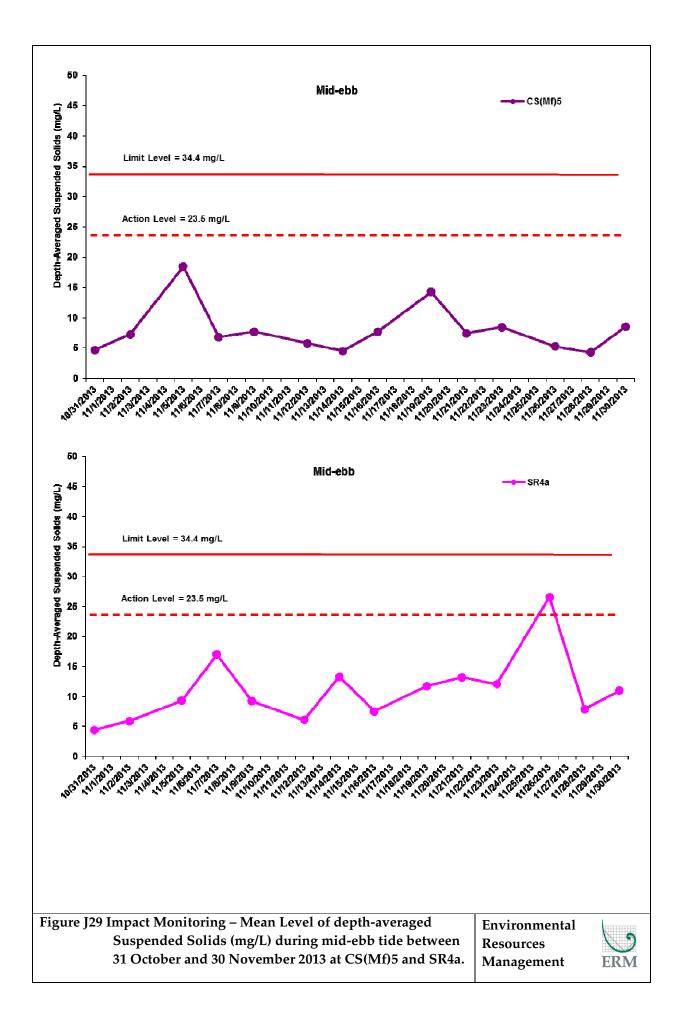
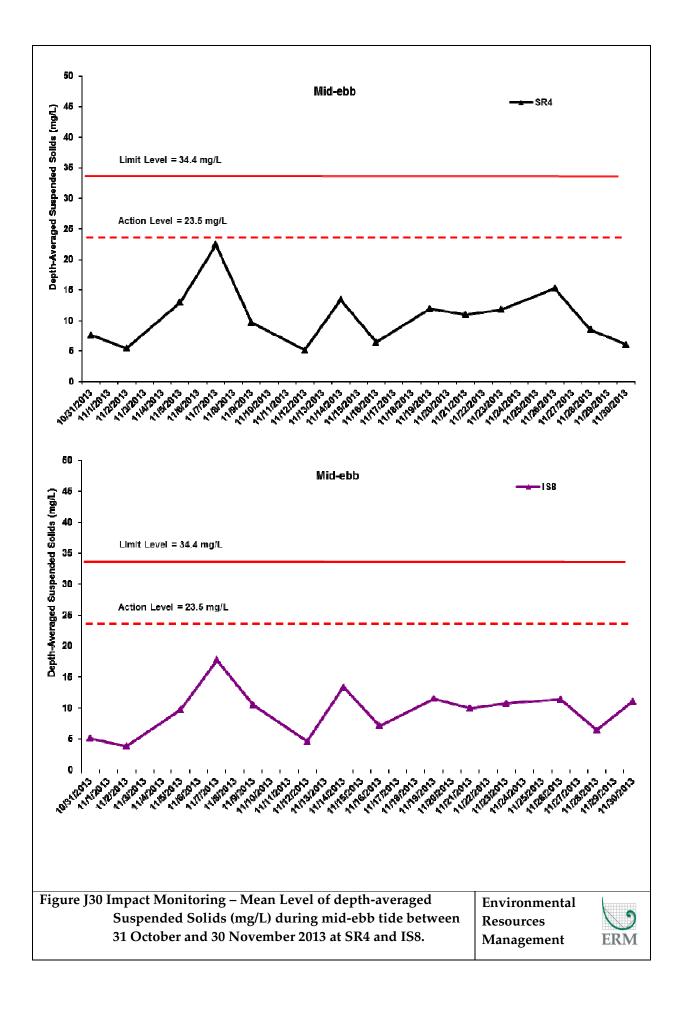
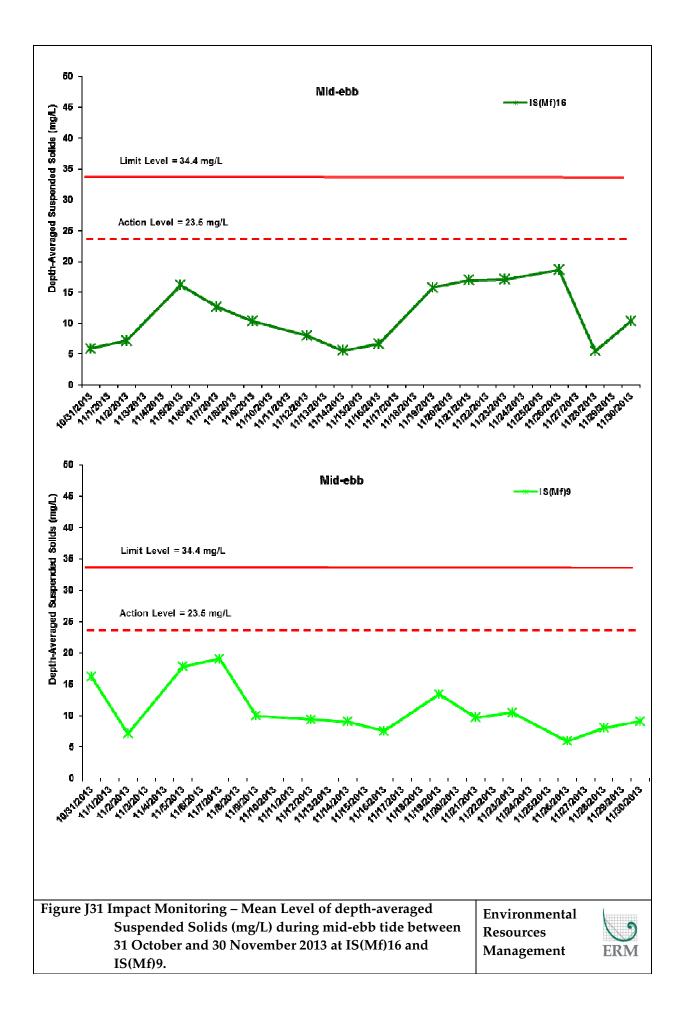





Figure J28 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-flood tide between 31 October and 30 November 2013 at CS(Mf)3.

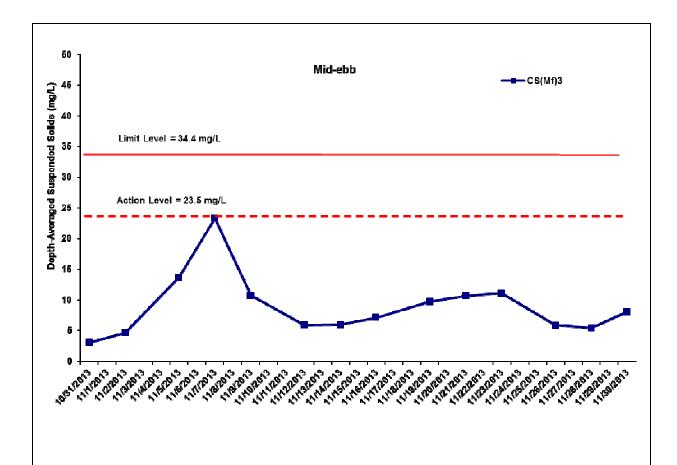
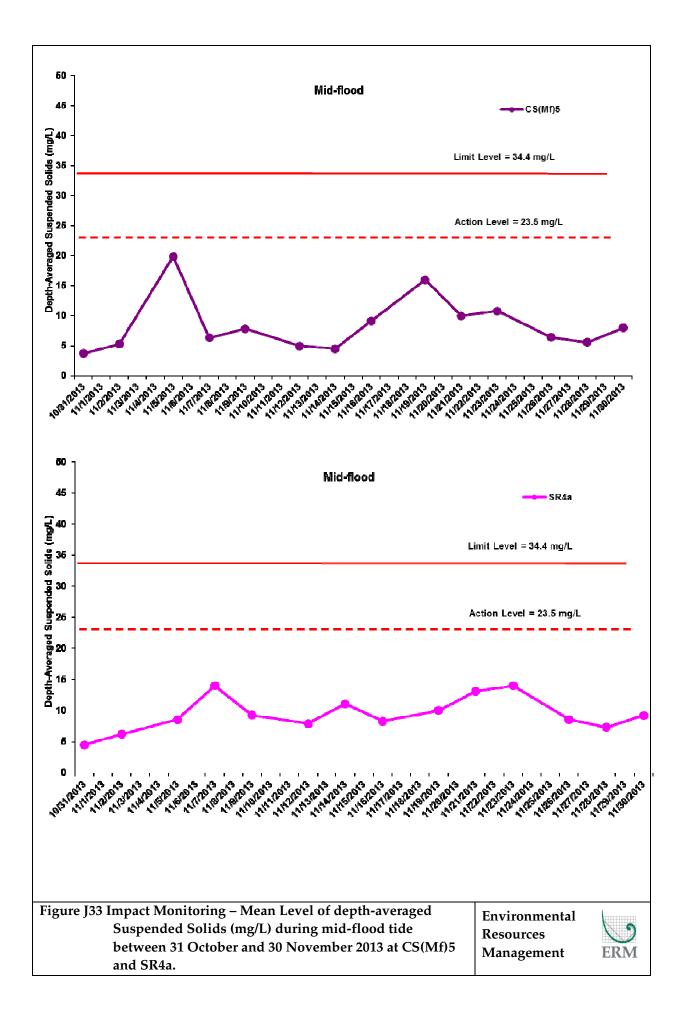
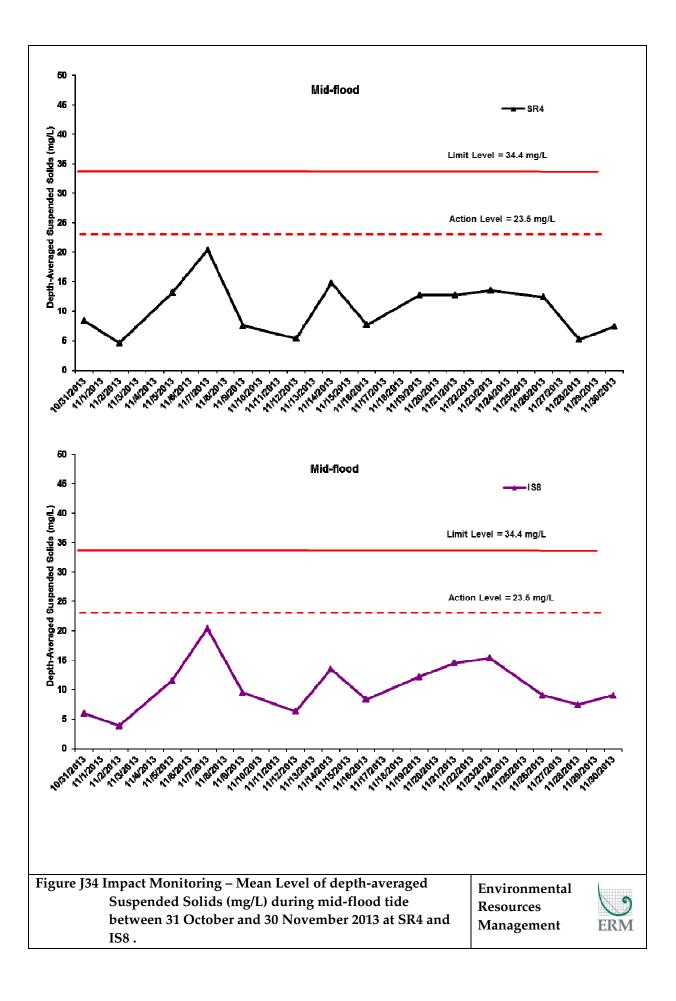
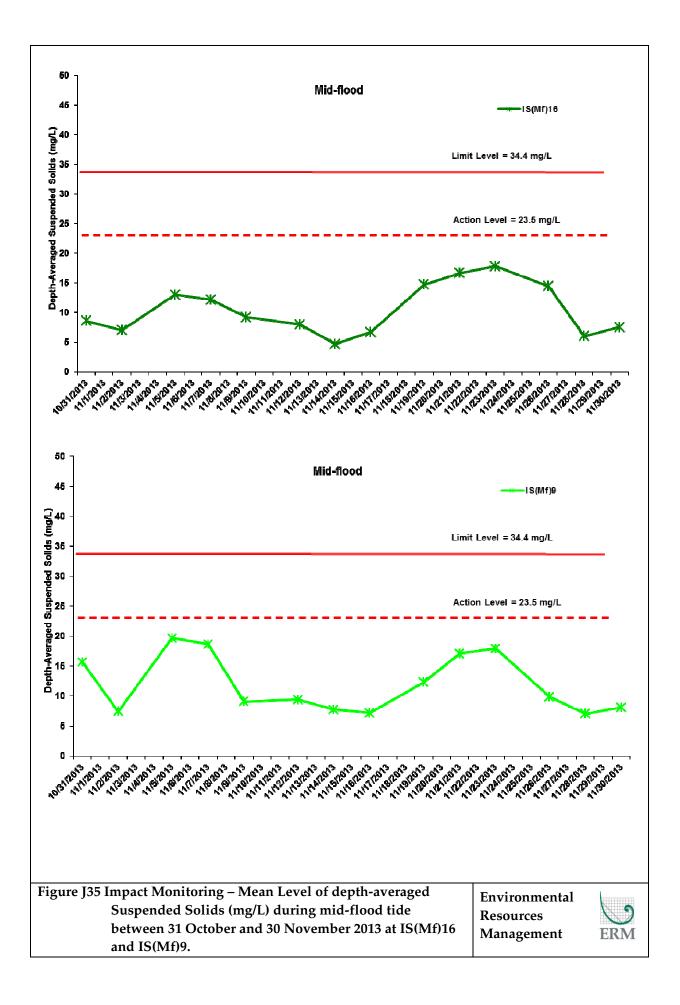





Figure J32 Impact Monitoring – Mean Level of depth-averaged Suspended Solids (mg/L) during mid-ebb tide between 31 October and 30 November 2013 at CS(Mf)3.

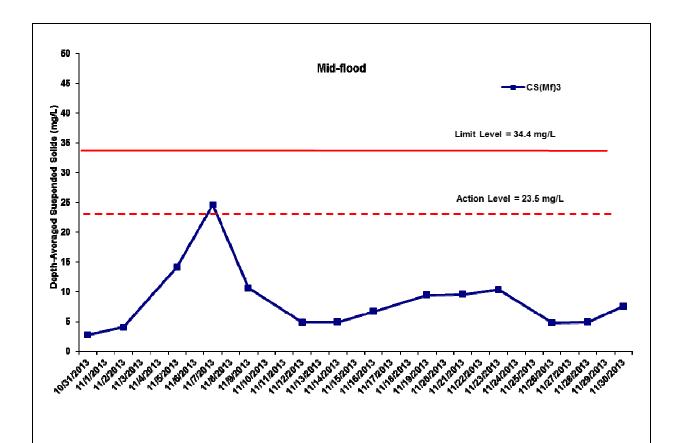


Figure J36 Impact Monitoring – Mean Level of depth-averaged Suspended Solids (mg/L) during mid-flood tide between 31 October and 30 November 2013 at CS(Mf)3.

Appendix K

Impact Dolphin Monitoring Survey Results

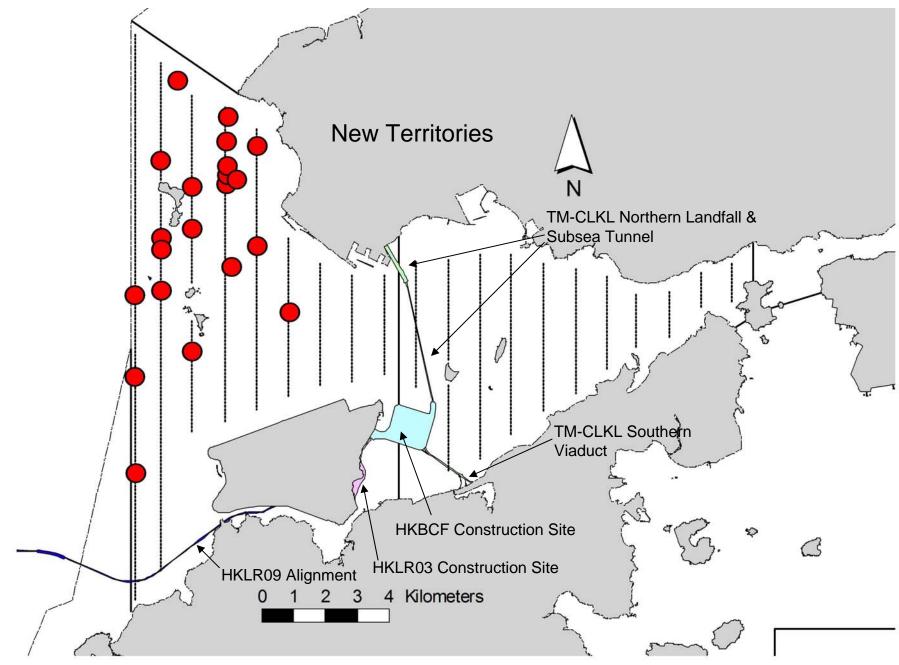


Figure 6. Distribution of Chinese White Dolphin Sightings During November 2013 HKLR03 Monitoring Surveys

Appendix I. HKLR03 Survey Effort Database (November 2013)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
1-Nov-13	NW LANTAU	1	6.43	AUTUMN	STANDARD31516	HKLR	Р
1-Nov-13	NW LANTAU	2	28.32	AUTUMN	STANDARD31516	HKLR	Р
1-Nov-13	NW LANTAU	3	19.23	AUTUMN	STANDARD31516	HKLR	Р
1-Nov-13	NW LANTAU	1	2.25	AUTUMN	STANDARD31516	HKLR	S
1-Nov-13	NW LANTAU	2	5.73	AUTUMN	STANDARD31516	HKLR	S
1-Nov-13	NW LANTAU	3	4.87	AUTUMN	STANDARD31516	HKLR	S
1-Nov-13	NE LANTAU	2	3.67	AUTUMN	STANDARD31516	HKLR	Р
5-Nov-13	NE LANTAU	2	34.75	AUTUMN	STANDARD31516	HKLR	Р
5-Nov-13	NE LANTAU	2	10.65	AUTUMN	STANDARD31516	HKLR	S
5-Nov-13	NW LANTAU	2	13.99	AUTUMN	STANDARD31516	HKLR	Р
5-Nov-13	NW LANTAU	2	6.61	AUTUMN	STANDARD31516	HKLR	S
8-Nov-13	NW LANTAU	0	1.73	AUTUMN	STANDARD31516	HKLR	Р
8-Nov-13	NW LANTAU	1	10.57	AUTUMN	STANDARD31516	HKLR	Р
8-Nov-13	NW LANTAU	2	39.88	AUTUMN	STANDARD31516	HKLR	Р
8-Nov-13	NW LANTAU	3	1.50	AUTUMN	STANDARD31516	HKLR	Р
8-Nov-13	NW LANTAU	1	1.29	AUTUMN	STANDARD31516	HKLR	S
8-Nov-13	NW LANTAU	2	5.53	AUTUMN	STANDARD31516	HKLR	S
8-Nov-13	NW LANTAU	3	2.36	AUTUMN	STANDARD31516	HKLR	S
13-Nov-13	NE LANTAU	1	5.70	AUTUMN	STANDARD31516	HKLR	Р
13-Nov-13	NE LANTAU	2	21.79	AUTUMN	STANDARD31516	HKLR	Р
13-Nov-13	NE LANTAU	3	9.60	AUTUMN	STANDARD31516	HKLR	Р
13-Nov-13	NE LANTAU	2	11.71	AUTUMN	STANDARD31516	HKLR	S
13-Nov-13	NE LANTAU	3	1.10	AUTUMN	STANDARD31516	HKLR	S
13-Nov-13	NW LANTAU	1	1.93	AUTUMN	STANDARD31516	HKLR	Р
13-Nov-13	NW LANTAU	2	5.89	AUTUMN	STANDARD31516	HKLR	Р
13-Nov-13	NW LANTAU	3	6.87	AUTUMN	STANDARD31516	HKLR	Р
13-Nov-13	NW LANTAU	2	4.22	AUTUMN	STANDARD31516	HKLR	S

Appendix II. HKLR03 Chinese White Dolphin Sighting Database (November 2013) (Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association P/S: Sighting Made on Primary/Secondary Lines

DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
1-Nov-13	1	1049	4	NW LANTAU	2	74	ON	HKLR	823145	809509	AUTUMN	NONE	Р
1-Nov-13	2	1152	3	NW LANTAU	3	214	ON	HKLR	826947	807517	AUTUMN	NONE	Р
1-Nov-13	3	1203	7	NW LANTAU	3	159	ON	HKLR	827235	807539	AUTUMN	NONE	Р
1-Nov-13	4	1225	1	NW LANTAU	2	137	ON	HKLR	827490	807539	AUTUMN	NONE	Р
1-Nov-13	5	1236	3	NW LANTAU	2	358	ON	HKLR	828232	807530	AUTUMN	NONE	Р
1-Nov-13	6	1252	7	NW LANTAU	2	ND	OFF	HKLR	828941	807583	AUTUMN	NONE	
1-Nov-13	7	1312	4	NW LANTAU	2	72	ON	HKLR	830018	805999	AUTUMN	NONE	S
1-Nov-13	8	1458	11	NW LANTAU	3	60	ON	HKLR	821228	804642	AUTUMN	NONE	Р
5-Nov-13	1	1421	5	NW LANTAU	2	378	ON	HKLR	828097	808508	AUTUMN	NONE	Р
8-Nov-13	1	1041	4	NW LANTAU	1	302	ON	HKLR	824489	807678	AUTUMN	NONE	Р
8-Nov-13	2	1103	8	NW LANTAU	2	694	ON	HKLR	827091	807858	AUTUMN	NONE	Р
8-Nov-13	3	1152	7	NW LANTAU	3	299	ON	HKLR	827660	805459	AUTUMN	NONE	Р
8-Nov-13	4	1215	9	NW LANTAU	2	756	ON	HKLR	825357	805465	AUTUMN	NONE	Р
8-Nov-13	5	1232	5	NW LANTAU	2	ND	OFF	HKLR	825025	805464	AUTUMN	NONE	
8-Nov-13	6	1249	4	NW LANTAU	2	7	ON	HKLR	823806	805462	AUTUMN	NONE	Р
8-Nov-13	7	1400	2	NW LANTAU	2	155	ON	HKLR	818382	804657	AUTUMN	NONE	Р
8-Nov-13	8	1426	8	NW LANTAU	2	149	ON	HKLR	823675	804648	AUTUMN	NONE	Р
8-Nov-13	9	1526	1	NW LANTAU	2	45	ON	HKLR	826872	806446	AUTUMN	NONE	Р
8-Nov-13	10	1536	4	NW LANTAU	1	225	ON	HKLR	825643	806454	AUTUMN	NONE	Р
8-Nov-13	11	1606	4	NW LANTAU	2	223	ON	HKLR	821988	806457	AUTUMN	NONE	Р
13-Nov-13	1	1451	1	NW LANTAU	3	343	ON	HKLR	825118	808482	AUTUMN	NONE	Р

Appendix L

Event Action Plan

Appendix L1 Event/ Action Plan for Air Quality

		AC				
EVENT	ET (1)	IEC (1)	SOR ⁽¹⁾	Contractor		
Action Level						
1. Exceedance for one	1. Identify the source.	1. Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice		
sample	2. Inform the IEC and the SOR.	by the ET.		2. Amend working methods if		
	Repeat measurement to confirm finding.	Check Contractor's working method.		appropriate		
	 Increase monitoring frequency to daily. 					
2. Exceedance for two or more consecutive	1. Identify the source.	1. Check monitoring data	1. Confirm receipt of notification of	1. Submit proposals for remedial		
	2. Inform the IEC and the SOR.	submitted by the ET.	failure in writing.	actions to IEC within 3 working		
samples	3. Repeat measurements to confirm	2. Check the Contractor's working	2. Notify the Contractor.	days of notification		
	findings.	method.	3. Ensure remedial measures properly	2. Implement the agreed proposals		
	4. Increase monitoring frequency to daily.	3. Discuss with the ET and the Contractor on possible remedial measures.	implemented.	3. Amend proposal if appropriate		
	5. Discuss with the IEC and the	4. Advise the SOR on the				
	Contractor on remedial actions required.	effectiveness of the proposed remedial measures.				
	If exceedance continues, arrange meeting with the IEC and the SOR.	 Supervisor implementation of remedial measures. 				
	If exceedance stops, cease additional monitoring.					

Appendix L2 Event/ Action Plan for Construction Noise

		ACT	ON	
EVENT	ET	IEC	SOR	Contractor
Action Level	 Notify the IEC and the Contractor. Carry out investigation. 	Review the analysed results submitted by the ET.	Confirm receipt of notification of failure in writing.	Submit noise mitigation proposals to IEC
	 Report the results of investigation to the IEC and the Contractor. Discuss with the Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation effectiveness. 	 Review the proposed remedial measures by the Contractor and advise the SOR accordingly. Supervise the implementation of remedial measures. 	 Notify the Contractor. Require the Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented. 	2. Implement noise mitigation proposals
Limit Level	 Notify the IEC, the SOR, the DEP and the Contractor. Identify the source. 	Discuss amongst the SOR, the ET and the Contractor on the potential remedial actions.	 Confirm receipt of notification of failure in writing. Notify the Contractor. 	Take immediate action to avoid further exceedance Submit proposals for remedial
	3. Repeat measurement to confirm findings.	2. Review the Contractor's remedial actions whenever necessary to	3. Require the Contractor to propose remedial measures for the analysed	Submit proposals for remedial actions to IEC within 3 working days of notification
	4. Increase monitoring frequency.5. Carry out analysis of Contractor's	assure their effectiveness and advise the SOR accordingly.	noise problem. 4. Ensure remedial measures are	3. Implement the agreed proposals4. Resubmit proposals if problem still
	working procedures to determine possible mitigation to be implemented.	Supervise the implementation of remedial measures.	properly implemented.5. If exceedance continues, consider what activity of the work is	not under control5. Stop the relevant activity of works as determined by the SOR until the
	Inform the IEC, the SOR and the DEP the causes & actions taken for the exceedances.		responsible and instruct the Contractor to stop that activity of work until the exceedance is abated.	exceedance is abated.
	 Assess effectiveness of the Contractor's remedial actions and keep the IEC, the DEP and the SOR informed of the results. 			
	8. If exceedance stops, cease additional monitoring.			

Appendix L3 Event/ Action Plan for Water Quality

Event	ET Leader	IEC	SOR	Contractor
Action level being exceeded by one sampling day	Repeat in situ measurement on next day of exceedance to confirm findings;	Check monitoring data submitted by ET and Contractor's working methods.	Confirm receipt of notification of non-compliance in writing;	Inform the SOR and confirm notification of the non-compliance in writing;
	Identify source(s) of impact; Inform IEC, contractor and SOR;		Notify Contractor.	Rectify unacceptable practice;
	Check monitoring data, all plant, equipment and Contractor's working methods.			Amend working methods if appropriate.
Action level being exceeded by two or more consecutive sampling days	Repeat measurement on next day of exceedance to confirm findings;	Check monitoring data submitted by ET and Contractor's working method;	Discuss with IEC on the proposed mitigation measures;	Inform the Supervising Officer and confirm notification of the non-compliance in writing;
	Identify source(s) of impact; Inform IEC, contractor, SOR and EPD;	Discuss with ET and Contractor on possible remedial actions;	Ensure mitigation measures are properly implemented;	Rectify unacceptable practice;
	Check monitoring data, all plant, equipment and Contractor's working methods;	Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly;	Assess the effectiveness of the implemented mitigation measures	Check all plant and equipment . and consider changes of working methods;
	Discuss mitigation measures with IEC, SOR and Contractor;	Supervise the implementation of mitigation measures.		Submit proposal of additional mitigation measures to SOR within 3 working days of
	Ensure mitigation measures are implemented;			notification and discuss with ET, IEC and SOR;
	Increase the monitoring frequency to daily until no exceedance of Action level;			Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	Repeat measurement on next day of exceedance to confirm findings;	Check monitoring data submitted by ET and Contractor's working method;	Confirm receipt of notification of failure in writing;	Inform the SOR and confirm notification of the non-compliance in writing;
	Identify source(s) of impact; Inform IEC, contractor, SOR and EPD;	Discuss with ET and Contractor on possible remedial actions;	Discuss with IEC, ET and Contractor on the proposed mitigation measures;	Rectify unacceptable practice;
	2, 20	r	<i>G</i> ,	Check all plant and equipment

Event	ET Leader	IEC	SOR	Contractor
	Check monitoring data, all plant, equipment		Request Contractor to review the	and consider changes of working
	and Contractor's working methods;	measures submitted by Contractor and advise the SOR accordingly.	working methods.	methods;
	Discuss mitigation measures with IEC, SOR and Contractor;			Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR.
	Repeat measurement on next day of	Check monitoring data submitted		Take immediate action to avoid
Limit level being exceeded by two or more consecutive	exceedance to confirm findings;	by ET and Contractor's working method;	Discuss with IEC, ET and Contractor on the proposed	further exceedance;
sampling days	Identify source(s) of impact;	Discuss with ET and Contractor on	mitigation measures;	Submit proposal of mitigation measures to SOR within 3 working
	Inform IEC, contractor, SOR and EPD;	possible remedial actions;		days of notification and discuss with ET, IEC and SOR;
	Check monitoring data, all plant, equipment	Review the Contractor's mitigation	Request Contractor to critically	
	and Contractor's working methods;	measures whenever necessary to assure their effectiveness and advise	review the working methods;	Implement the agreed mitigation measures;
	Discuss mitigation measures with IEC,	the SOR accordingly;		
	SOR and Contractor;	Supervise the implementation of mitigation measures.	Make agreement on the mitigation measures to be implemented;	Resubmit proposals of mitigation measures if problem still not under control;
	Ensure mitigation measures are implemented;		Ensure mitigation measures are properly implemented;	As directed by the Supervising Officer, to slow down or to stop all or part of the construction
	Increase the monitoring frequency to daily		Consider and instruct, if	activities until no exceedance of
	until no exceedance of Limit level for two		necessary, the Contractor to slow	Limit level.
	consecutive days;		down or to stop all or part of the construction activities until no	
			exceedance of Limit level.	

Appendix L4 Implementation of Event-Action Plan for Dolphin Monitoring

Event	ET Leader	IEC	SC	OR	Contractor
Action Level	1. Repeat statistical data analysis to confirm findings;	Check monitoring data submitted by ET and Contractor;	1.	Discuss monitoring with the IEC and any other measures	Inform the SOR and confirm notification of the non-
	2. Review all available and relevant data, including raw data and statistical analysis results of other	Discuss monitoring results and		proposed by the ET;	compliance in writing;
	parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences;	findings with the ET and the Contractor.	2.	If SOR is satisfied with the proposal of any other measures, SOR to signify the agreement in writing on the measures to be	2. Discuss with the ET and the IEC and propose measures to the IEC and the SOR;
	3. Identify source(s) of impact;			implemented.	Implement the agreed measures.
	4. Inform the IEC, SOR and Contractor;				
	5. Check monitoring data.				
	Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.				

Event	ET Leader	IEC	SOR	Contractor
Limit Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor of findings; Check monitoring data; Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary; If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, ER/SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures; Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise ER/SOR of the results and findings accordingly; Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise ER/SOR the results and findings accordingly. 	with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures; 2. If ER/SOR is satisfied with the proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, ER/SOR to signify the agreement in writing	4. Implement the agreed

Appendix L5 Event and Action Plan on Dolphin Acoustic Behaviour

EVENT		ACTION		
	ET Leader	IEC	SO	Contractor
Action Level				
With the numerical values presented in <i>Table 5.7</i> , when any of the response variable for dolphin acoustic behaviour recorded in the construction phase monitoring is 20% lower or higher than that recorded in the baseline monitoring (see <i>Table5.8</i>), or when there is a difference of 20% in dolphin acoustic signal detection at nighttime period at Site C1 only, the action level should be triggered	 Repeat statistical data analysis to confirm findings; Review all available and relevant data to ascertain if differences are as a result of natural variation or seasonal differences; Identify source(s) of impact; Inform the IEC, SO and Contractor; Check monitoring data; Carry out audit to ensure all dolphin protective measures are implemented fully and additional measures be proposed if necessary 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring with the ET and the Contractor; 	 Discuss with the IEC the repeat monitoring	 Inform the SO and confirm notification of the non- compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO; Implement the agreed measures.

EVENT		ACTION		
	ET Leader	IEC	SO	Contractor
<u>Limit Level</u>				
With the numerical values presented in Table 5.7, when any of the response variable for dolphin acoustic behaviour recorded in the construction phase monitoring is 40% lower or higher than that recorded in the baseline monitoring (see Table 5.8), or when there is a difference of 40% in dolphin acoustic signal detection at nighttime at Site C1 only, the limit level should be triggered	 Repeat statistical data analysis to confirm findings; Review all available and relevant data to ascertain if differences are as a result of natural variation or seasonal differences; Identify source(s) of impact; Inform the IEC, SO and Contractor; Check monitoring data; Carry out audit to ensure all dolphin protective measures are implemented fully and additional measures be proposed if necessary Discuss additional dolphin monitoring and any other potential mitigation measures (eg consider to temporarily stop relevant portion of construction activity) with the IEC and Contractor. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring with the ET and the Contractor; Review proposals for additional monitoring and any other measures submitted by the Contractor and advise ER accordingly. 	 Discuss with the IEC the repeat monitoring and any other measures proposed by the ET; Make agreement on measures to be implemented. 	 Inform the SO and confirm notification of the non- compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO; Implement the agreed measures.

 $Abbreviations: ET-Environmental\ Team, IEC-Independent\ Environmental\ Checker, SO-Supervising\ Office$

Appendix M

Monthly Summary of Waste Flow Table

Contract No. : HY/2012/07 Tuen Mun Chek Lap Kok Link – Southern Connection Viaduct Section Monthly Summary Waste Flow Table for 2013 (Year)

		Actual Qu	antities of Inert	C&D Materials (Generation			Actual Quantit	ties of C&D was	tes Generation		Actual Quantit	ties of Recyclabl	es Generation
Month\Material	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fills	Imported Fill	Marine Sediment, Cat. L	Marine Sediment, Cat. Mp	Marine Sediment, Cat. Mf	Chemical Waste	General Refuse	Metals	Paper/ cardboard packaging	Plastics
Unit	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000Kg)	('000Kg)	('000Kg)	('000Kg)	('000Kg)
Jan	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Feb	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mar	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Apr	-	-	-	-	-	-	-	-	-	-	-	-	-	-
May	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Jun	0	0	0	0	0	0	-	-	-	0	0	0	0	0
SUB-TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jul	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0	0	0	0	322.89	0	0	0
Sep	0.004	0.004	0	0	0.004	0	0	0	0	0	412.86	0	0	0
Oct	0.044	0.018	0	0	0.044	0	0	0	0	0	27.63	0	0	0
Nov	0.597	0	0.560	0	0.037	0	0	0	0	0	22.05	0	0	0
Dec														
TOTAL	0.645	0.022	0.560	-	0.085	-	-	-	-	-	785.43	-	-	-

Notes:

- 1 The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- 2 Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- 3 Broken concrete for recycling into aggregates.

Appendix N

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Appendix N1 Cumulative Statistics on Exceedances

		Total No. recorded in this reporting month	Total No. recorded since project commencement
1-Hr TSP	Action	0	0
	Limit	0	0
24-Hr TSP	Action	0	0
	Limit	0	0
Noise	Action	0	0
	Limit	0	0
Water Quality	Action	1	1
	Limit	0	0

Appendix N2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Cumulative Statistics							
_	Complaints	Notifications of	Successful					
		Summons	Prosecutions					
This Reporting Month (Nov 2013)	1	0	0					
Total No. received since project commencement	1	0	0					

Email message Environmental Resources Management

To ENVIRON – Hong Kong, Limited (ENPO)

16/F DCH Commercial Centre, 25 Westlands Road

Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

From ERM- Hong Kong, Limited

Contract No. HY/2012/07

Tuen Mun – Chek Lap Kok Link – Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 26 November 2013

Dear Sir/ Madam,

Ref/Project number

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

0215660_26 November 2013_SS_ME_SR4a

Recorded on 11 December 2013.

Regards,

Mr Jovy Tam

Environmental Team Leader

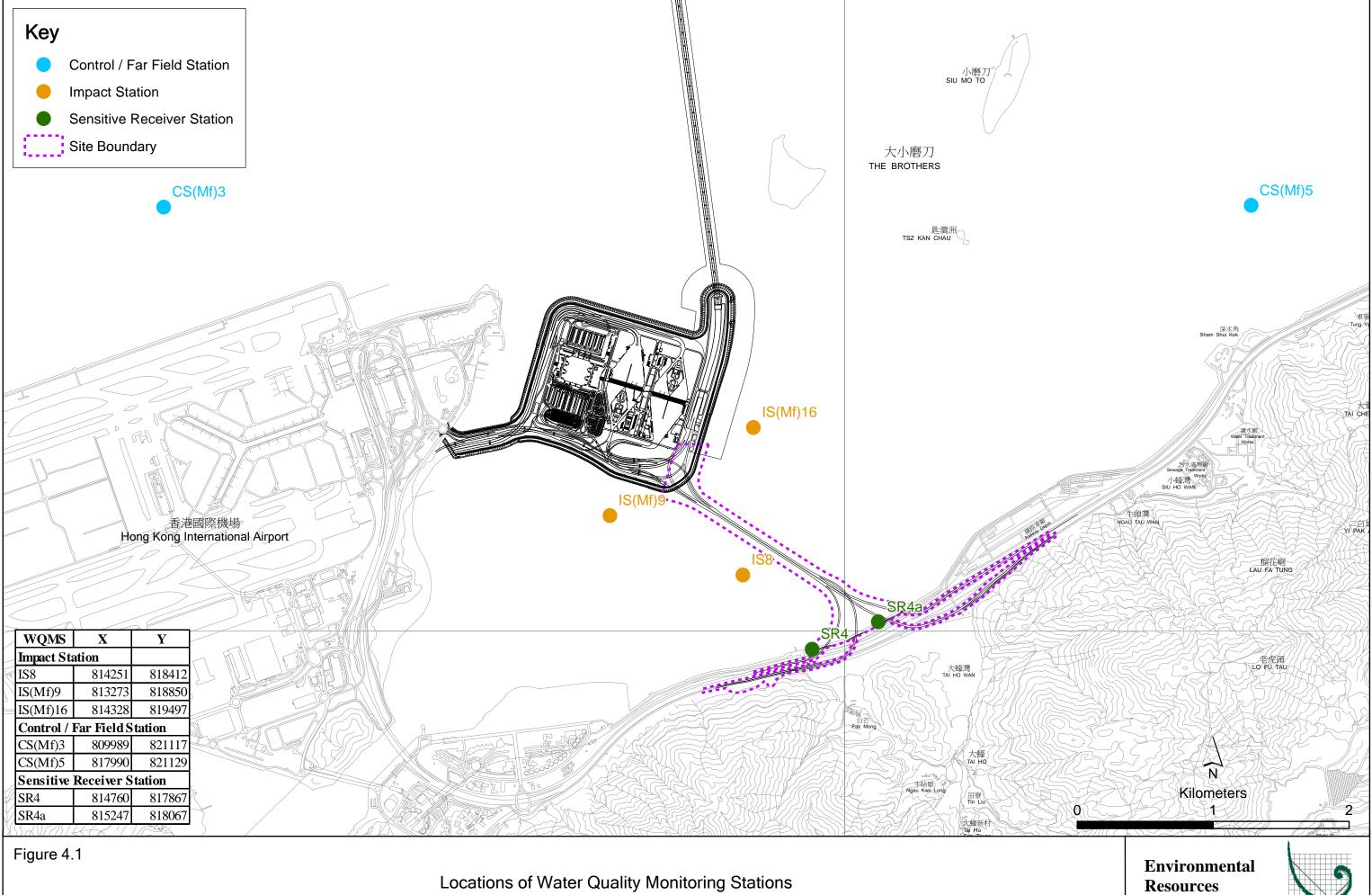
CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN – CHEK LAP KOK LINK – SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring


Notification of Exceedance

Log No.	0215660_26November2013_SS_ME_SR4a									
	[Total No. of Exceedances = 1]									
Date	26 November 2013 (Measured)									
	27 November 2013 (In situ results received by ERM)									
	10 December 2013 (Laboratory results received by ERM)									
Monitoring Station	CS(Mf)5	5, SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3								
Parameter(s) with Exceedance(s)	Depth-averaged Suspended Solids (SS)									
Action Levels	SS	23.5								
Limit Levels	SS	34.4								
Measured Levels	Action Level Exceedance is observed at SR4a (26.6 mg/L) during mid-ebb tide.									
Works Undertaken (at	On 26 November 2013, marine works (ie rock grabbing by Barge Yu Fat No. B21494V from 08:00 to									
the time of monitoring	17:30 and Survey Tower Installation at G28 from 08:00 to 17:30) were being carried out.									
event)	After examination of the marine works record, it is confirmed that no marine works were being									
	carried out when exceedance of depth-averaged SS level was recorded at SR4a during mid-ebb tide									
	(18:26-21:56).									
Possible Reason for	The exceedance of depth-averaged SS at SR4a during mid-ebb tide is unlikely to be due to the									
Action or Limit Level	Project, in view of the following:									
Exceedance(s)	Suspended solid level at surface water depth at SR4a was 8 mg/L. The Action Level									
	exceedance of depth-averaged SS was due to the exceedance of SS level at bottom water depth.									
	Since SR4a is located in shallow waters (~ 4.7 m), such exceedance was likely due to sediment									
	disturbance cauased by water sampler touching seabed.									
Actions Taken / To Be	No immediate action is consider	ed necessary. The ET will monitor for future trends in								
Taken	exceedances.									
Remarks	The monitoring results and the locations of water quality monitoring stations are attached.									

Date	Tidal Level	Sea Condition	Station	Monitoring Period	Depth + Replicate No.	Replicate	Depth (m)	Water Temp (°C)	Salinity (ppt)	D.O. (mg/L)	Turbidity (NTU)	SS (mg/L)	Ave. D.O. (mg/L) S, M, B	Turbidity (Depth- ave.) (NTU)	SS (Depth- ave.) (mg/L)	
26-11-13	Mid-	Moderate			S1	R1	1.0	22.2	23.3	6.89	4.65	5.3	6.88		6.4	
	Flood				S2 R2		1.0	22.2	23.3	6.86	4.69	5.3	0.00	3 4.78		
			CS(Mf)5	12:21- 12:45	M1	R1	4.8	22.3	23.9	6.57	4.36	5.8	6.56			
			()-		M2	R2		22.3	23.9	6.55	4.32	6.3				
					B1	R1	8.6	22.5	24	6.35	5.36	8.8	6.33			
					B2 S1	R2 R1		22.5 22.2	24	6.31	5.31 5.47	7.1				
					S1 S2	R2	1.0	22.2	23.3	6.84 6.8	5.42	6.4 5	6.82			
				12:55-	M1	R1		22.2	23.3	0.0	3.42	3				
			SR4a	13:09	M2	R2								10.02	8.6	
				10.00	B1	R1		22.3	23.5	6.6	14.6	11.2				
					B2	R2	4.2	22.3	23.5	6.57	14.6	11.7	6.59			
					S1	R1	4.0	22.1	23.3	6.86	6	8.4	0.05	10.47	12.4	
					S2	R2	1.0	22.1	23.3	6.83	6.07	8.6	6.85			
			SR4	13:20-	M1	R1										
			ON4	13:26	M2	R2										
					B1	R1	4.2	22.6	23.8	6.13	14.9	16.1	6.15			
					B2	R2	1	22.6	23.8	6.16	14.9	16.6	0.10			
			ICO	13:46- 14:03	S1	R1	1.0	22.1	23.3	6.83	5.97	6	6.81		9.1	
					S2	R2	-	22.1	23.3	6.79	5.91	4.5				
					M1	R1								9.32		
				14.03	M2 B1	R2 R1		22.4	23.6	6.42	12.7	12				
					B2	R2	4.4	22.4 22.4	23.6	6.39	12.7	13.7	6.41			
					S1	R1		22.4	23.3	6.77	10.6	12				
			14:1		S2	R2	1.0	22.2	23.3	6.75	10.6	11.9	6.76	5.76		
				14:16-	M1	R1		22.4	23.8	6.3	13.2	14.7				
			IS(Mf)16	16 14:36	M2	R2	3.9	22.4	23.7	6.25	13.2	13.8	6.28	13.78	14.5	
					B1	R1	0.0	22.5	23.9	6.14	17.5	18	0.10			
					B2	R2	6.8	22.5	23.9	6.17	17.6	16.3	6.16			
				Mf)9 14:46- 15:04	S1	R1	1.0	22.2	23.3	6.59	6.57	6.6	6.58			
					S2	R2	1.0	22.2	23.3	6.57	6.52	6	0.56			
			IS(Mf)9		M1	R1								10.20	9.9	
					M2	R2								10.20	0.0	
					B1	R1	4.0	22.5	23.7	6.32	13.9	13.2	6.31			
					B2	R2	-	22.5	23.7	6.29	13.8	13.8				
				15:10	S1 S2	R1	1.0	22.2	23.7	6.64	4.51	4.6	6.63			
					S2 M1	R2 R1		22.2 22.1	23.7	6.61 6.4	4.59 4.58	3.6 4.7				
		CS(M	C	CS(Mf)3	15:19- 15:51	M2	R2	4.5	22.1	24	6.36	4.58	4.7	6.38	4.82	4.8
				15.51	B1	R1		22.1	24.8	6.02	5.28	6.1				
					B2	R2	8.0	22.4	24.8	6.05	5.35	5.7	6.04			

Date	Tidal Level	Sea Condition	Station	Monitoring Period	Depth + Replicate No.	Replicate	Depth (m)	Water Temp (°C)	Salinity (ppt)	D.O. Saturatio n (%)	D.O. (mg/L)	Turbidity (NTU)	Ave. D.O. (mg/L) S, M, B	Turbidity (Depth- ave.) (NTU)	SS (Depthave.) (mg/L)
26-11-13	Mid-Ebb	Moderate		Mf)3 18:26-	S1	R1	1.0	22.3	23.7	6.67	5.07	4.6	6.64		5.9
					S2	R2	H2	22.2	23.7	6.61	5.03	5.1	0.04		
			CS(Mf)3		M1	R1	4.2	22.1	24.1	6.31	5.4	4.2	6.33	5.24	
			OO(WII)O	18:50	M2	R2	R2	22.1	24	6.34	5.48	5.7	0.00		
					B1	R1	7.4	22.4	24.7	6.04		5.2 7.4 6.03			
					B2	R2		22.4	24.7	6.02	5.25	8.4			
					S1	R1	1.0	22.2	23.4	6.63	6.32	7	6.65		
					S2	R2		22.1	23.3	6.67	6.67	9			
			SR4a	20:57-	M1	R1								9.85	26.6
				21:21	M2	R2		00.4	20.0		10.1	40.0			20.0
					B1	R1 R2	3.6	22.4	23.6	6.47	13.4	46.8	6.48		
					B2 S1	R1		22.4 22.2	23.7	6.49 6.72	13	43.4			
					S2	R2	1.0	22.2	23.3		5.95	11.3	6.75		15.3
				20.22	M1	R1		22.1	23.2	6.78	6.02	13			
			SR4	20:22- 20:46	M2	R2								11.39	
				20.40	B1	R1		22.5	23.7	6.23	17	19.3		-	
					B2	R2	3.6	22.4	23.8	6.2	16.6	17.5	6.22		
					S1	R1		22.4	23.3	6.82	6.03	8.1			
				19:53-	S2	R2	1.0	22.2	23.4	6.81	6.07	7.9	6.82		
					M1	R1 R2		22.2	20.4	0.01	0.07	1.5			
			IS8	20:17	M2								10.03	11.4	
				20.17	B1	R1		22.4	23.6	6.34	13.9	14.4		+	
					B2	R2	5.0	22.4	23.6	6.36	14.1	15.1	6.35		
					S1	R1		22.3	23.4	6.71	9.23	11.5			
					S2	R2	1.0	22.2	23.4	6.73	9.27	12.2	6.72		
			IS(Mf)16	19:24-	M1	R1		22.2	23.5	6.59	12.6	13.3			
				19:48	M2	R2	3.3	22.3	23.6	6.62	12.9	13.1	6.61	13.60	18.7
					B1	R1 5.0 22.5 23.7	6.07	18.6	31.1	0.00					
					B2	R2	5.6	22.4	23.8	6.1	19	30.7	6.09		
			I IS/M/HIG		S1	R1	4.0	22.2	23.8	6.5	5.38	4.8	C F 4		
					S2	R2	1.0	22.3	23.7	6.58	5.42	5.1	6.54		
				18:55-	M1	R1								10.68	6.0
				19:19	M2	R2								10.68	6.0
					B1	R1	3.6	22.4	24.8	6.27	15.8	6.4	6.29		
					B2	R2	3.0	22.4	24.7	6.3	16.1	7.5	0.29		
					S1	R1	1.0	22.3	23.4	6.59	4.86	4	6.60		
					S2	R2	1.0	22.3	23.5	6.61	4.88	4.4	0.00		
			CS(Mf)5	21:32-	M1	R1	5.2	22.2	23.5	6.54	5.6	4.9	6.52	5.52	5.3
			OG(IVII)S	21:56	M2	R2 5.2	J.2	22.3	23.6	6.5	5.68	5	6.52	3.32	5.5
					B1	R1	9.4	22.4	23.8	6.11	6.02	7	6.12		
Nata (4)				Λ - t' I	B2	R2	9.4	22.5	23.8	6.13	6.08	6.4	6.12		

Note: (1) Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

File: T:\GIS\CONTRACT\0215660\Mxd\0215660_WQMS.mxd Date: 6/12/2013

Management

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section

COMPLAINT INVESITGATION REPORT

Basic Information of Complaint

Reference Number:	EP3/N09/RS/00026142-13
Date of Complaint Received	19 November 2013
Location of Complaint	Tung Chung New Development Pier
Nature of Complaint	Noise generated from a barge which is moving through the southern channel of HyD's construction site in Lantau
Complaint Received by	Environmental Protection Department (EPD)
Complainant	A local resident living in Tung Chung town

Details of Complaint

On 11 November 2013, a complaint was received by the EPD regarding the noise nuisance generated by a barge moving through the southern channel of HyD's construction site in the vicinity of the Tung Chung New Development Pier after 23:00 on 8 November 2013. The Contractor received the complaint notification on 18 November 2013.

Investigation Report

Upon receiving the complaint notification from EPD on 18 November 2013, the Contractor had promptly checked the works summary and had notified SOR on 19 November that no site activities were taken place after 18:00 for the date concerned.

Based on the works summary, activities conducted under this Contract strictly followed the conditions stated in the approved Construction Noise Permits (CNPs). In addition, the main site activities were located near Tai Ho Wan which is more than 2km from the concerned location the complaint referred to. Therefore, any noise generated from this Contract's work should be acceptable and should be insignificant after distance attenuation.

Based on the above, the concerned noise nuisance was considered not related to this Contract's work.

Mitigation Measures and Follow-Up Actions Recommended to Contractor

The Contractor was reminded to adhere strictly to the Construction Noise Mitigation Plan and to implement all relevant noise mitigation measures recommended or specified in the EIA Report, EM&A Manual, EMP, Method Statements, General and Particular Specifications of this Contract to avoid causing noise nuisance.

The Contractor is also reminded to ensure that the construction plant deployed for the works during restricted hours is in strict compliance with the relevant CNP granted.

Date of File Closed: 19 November 2013

Approved and Filed by:

(Jovy Tam, ET Leader) Date: 19 November 2013