

東業徳勤測試顧問有限公司 ETS-TESTCONSULT LIMITED

8/F., Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fotan, Hong Kong

Tel: 2695 8318 Fax: 2695 3944

E-mail: etl@ets-testconsult.com Web site : www.ets-testconsult.com

7 December 2012

Our Ref.: OC/20679/CLL China Harbour - China State Joint Venture 19/F., China Harbour Building,

370-374 King's Road, North Point. Hong Kong

Attn: Mr. Shum Hong Sang

Dear Sir,

Contract No. CV/2009/02 Handling of Surplus Public Fill

Baseline Water Quality Monitoring Report of Tseung Kwan O Area 137 Fill Bank for Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge, Hong Kong Boundary Crossing Facilities -**Reclamation Works**

Reference is made to the amended Environmental Permit (No. EP-134/2002/J) Section 3.3. We are please to confirm that we have no comment on the Baseline Water Quality Monitoring Report of the captioned project prepared by AECOM.

Should you have any queries, please do not hesitate to contact the undersigned.

Yours faithfully,

ETS-TESTCONSULT LIMITED

Mr. C. L. Lau

Environmental Team Leader

Encl.

C.C.

CEDD

Mr. Lawrence Ng / Mr. W K Wong / Mr. C Y Liu

Environ

Mr. Tony Cheng

CHEC

Mr. Dennis Tang

EPD(RO(E)) Mr. Ivan Pun

China Harbour Engineering Company Limited

Contract No. HY/2010/02

Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Baseline Water Quality Monitoring Report for TKO 137 Fill Bank

[11/2012]

	Name	Signature
Prepared & Checked:	Lemon Lam	\ June
Reviewed & Approved:	Y T Tang	Toutholis

Version:	Rev. 0	Date:	14 November 2012

Disclaimer

This report is prepared for China Harbour Engineering Company Limited and is given for its sole benefit in relation to and pursuant to Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities-Reclamation Works and may not be disclosed to, quoted to or relied upon by any person other than China Harbour Engineering Company Limited without our prior written consent. No person (other than China Harbour Engineering Company Limited) into whose possession a copy of this report comes may rely on this report without our express written consent and China Harbour Engineering Company Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: CEDPFRSFEM00_0_1203L.12

6 December 2012

By E-mail and Fax No.: 2695 3944

ETS-Testconsult Limited 8/F, Block B Veristrong Industrial Centre 34-36 Au Pui Wan Street Fo Tan, Hong Kong

Attention: Mr. C. L. Lau

Dear Mr. Lau,

Re: Contract No. CV/2009/02

Handling of Surplus Public Fill – Tseung Kwan O Area 137 Fill Bank

EP-134/2002/J

Submission of the Baseline Water Quality Monitoring Report for

TKO Area 137 Fill Bank for Contract No. HY/2010/02

Hong Kong - Zhuhai - Macao Bridge

Hong Kong Boundary Crossing Facilities - Reclamation Works

Reference is made to the ET/HKBCF submission of the Baseline Water Quality Monitoring Report for TKO Area 137 Fill Bank (Rev. 0, dated 13 November 2012) for the captioned Contract by E-mail on 13 November 2012.

We have no comment on the captioned Baseline Water Quality Monitoring Report. We write to confirm that the captioned report had been verified by the IEC/TKO in accordance with Condition 3.3 of EP-134/2002/J.

Thank you very much for your attention and please do not hesitate to contact our Simon Lam or the undersigned should you have any queries.

Yours faithfully,

Tony Cheng

Independent Environmental Checker

c.c.

CEDD CHCSJV Attn: Mr. Jason Wong / Mr. Panda Liu

Attn: Mr. Dennis Tang

Fax No.: 2714 0113

Fax No.: 2247 4108

Q:\Projects\CEDPFRSFEM00\Corr\CEDPFRSFEM00_0_1203L.12.doc

TABLE OF CONTENTS

			Page
EXE	CUTIVE	SUMMARY	
1	INTR	RODUCTION	1
	1.1 1.2 1.3	Background Purpose of the Report Structure of the Report	1
2	WAT	ER QUALITY	2
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Monitoring Requirements	2 2 3
3	REV	ISIONS FOR INCLUSION IN THE EM&A MANUAL	6
4	COM	MENTS AND CONCLUSIONS	6

List of Tables

Table 2.1	Water Quality Monitoring Equipment	2
Table 2.2	Water Quality Monitoring Parameters, Frequency and Duration	
Table 2.3	Location of Water Quality Impact Stations	
Table 2.4	Summary of Marine Water Monitoring Results for Mid-ebb Tide	
Table 2.5	Summary of Marine Water Monitoring Results for Mid-flood Tide	
Table 2.6	Derivation of Action and Limit Levels for Water Quality	
Table 2.7	Action and Limit Levels for Water Quality	

List of Figures

Figure 1.1	Site Layout Plan for TKO 137 Fill Bank
Figure 2.1	Baseline Water Quality Monitoring Stations at TKO 137 Fill Bank

List of Appendices

Calibration Records
Baseline Monitoring Schedules
Baseline Water Quality Monitoring Results and their Graphical Presentation
QA/QC Report

EXECUTIVE SUMMARY

On-site sorting facilities for imported material (public fill) for reclamation works of the "Contract No. HY/2010/02 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Work (here below, known as "the Project") were proposed to establish in Tseung Kwan O (TKO) 137 Fill Bank area (here below known as "the Works Area). Baseline monitoring of water quality was conducted at the designated monitoring location. This report presents the baseline monitoring results regarding water quality aspects performed between April and October 2012.

Water Quality

Baseline water quality monitoring was conducted at three monitoring stations, C1a, M4a & M5. The baseline monitoring was carried out three times per week (from 16 April 2012 to 31 October 2012) before the commencement of operation of the mentioned facilities for both mid-ebb and mid-flood tides. Data collected was reviewed and analysed. Data collected at the impact stations (M4a & M5) were used to establish the Action and Limit Levels for dissolved oxygen (DO), turbidity (Tby) and suspended solids (SS). Details of the monitoring methodology, locations and results are presented in this report.

1 INTRODUCTION

1.1 Background

- 1.1.1 Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun Chek Lap Kok Link (TMCLKL).
- 1.1.2 On-site sorting facilities for imported material (public fill) for reclamation works of the Project were proposed to establish in Tseung Kwan O (TKO) 137 Fill Bank area (here below, known as "the Works Area"). The proposed sorting facilities together with barging points, tipping halls and associated facilities will be installed at the Works Area.
- 1.1.3 The latest Environmental Permit (EP) for Fill Bank at TKO Area 137 was issued on 14 November 2011 (EP-134/2002/J) by the Environmental Protection Department (EPD) to CEDD, the Permit Holders, regarding the Project. Condition 3.2 of the EP requires baseline monitoring on water quality be conducted in a manner as set out in the EM&A Manual for TKO 137 Fill Bank (here below, known as "EM&A Manual"). While Condition 3.3 of the EP requires submission of the baseline monitoring report to the EPD at least 2 weeks before commencement of operation of the mentioned facilities. Baseline monitoring of water quality was conducted at the designated monitoring location and baseline monitoring report was prepared prior to commencement of operation of the mentioned facilities.

1.2 Purpose of the Report

- 1.2.1 The purpose of this baseline monitoring report is to set out baseline level for water quality. This baseline level would be used as the basis for assessing environmental impact and compliance during transportation and operation of the mentioned facilities for the Project. This report presents the baseline monitoring requirements, methodologies and results of water quality measurements in accordance with the EM&A Manual.
- 1.2.2 This baseline report presents the monitoring works of water quality monitoring, at two monitoring stations (M4a and M5) and one control station (C1a), conducted between April and October 2012. A layout plan of the Works Area is provided in Figure 1.1.

1.3 Structure of the Report

- 1.3.1 The structure of the report is as follows:
 - Section 1: Introduction, background, purpose and the structure of the report.
 - Section 2: Water quality, which describes the baseline water quality monitoring requirements, methodology and results.
 - Section 3: Revisions for the Inclusion in the EM&A Manual.
 - Section 4: Comments and Conclusions.

2 WATER QUALITY

2.1 Monitoring Requirements

2.1.1 Baseline marine water quality monitoring at 3 water quality monitoring stations should be established. In accordance with the EM&A Manual, baseline water quality monitoring should be conducted 3 days per week for at least 4 consecutive weeks prior to commencement of operation of the facilities in the Works Area. Moreover, as stipulated in the latest EP, water quality monitoring should be conducted since 2 weeks before commencement of operation of the additional barging points. Measurements shall be taken at the 3 designated stations, 2 impact and 1 control stations at mid-flood and mid-ebb tides at three water depths, i.e., 1 m below surface, mid-depth and 1 m from seabed.

2.2 Monitoring Equipment

2.2.1 Equipment used in the baseline water quality monitoring programme is summarized in Table 2.1. A copy of the calibration certificates for the water quality monitoring equipment are attached in Appendix A.

Table 2.1 Water Quality Monitoring Equipment

Parameter	Model and Make
Coordinate of Monitoring stations	Garmin etrex 10
Dissolved Oxygen (Saturation), Temperature, Salinity	YSI Dissolved Oxygen, Salinity & Temperature Meter, YSI Pro2030
Turbidity	HACH Model 2100Q Turbid Meter
Water Depth	Speedtech Instrument SM-5A

2.3 Monitoring Parameters, Frequency and Duration

2.3.1 Table 2.2 summarises the monitoring parameters, frequency and duration of baseline water quality monitoring. Baseline water quality monitoring was carried out at three stations from 16 April to 31 October 2012. Detailed baseline water quality monitoring schedule was provided in Appendix B.

 Table 2.2
 Water Quality Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameter, unit	Frequency	No. of Depths
Control Stations: C1a Impact Stations: M4a – M5	 Depth, m Temperature, °C Salinity, ppt DO, mg/L DO Saturation, % Turbidity, NTU Suspended Solids (SS), mg/L 	Three times per week during mid-ebb and mid-flood tides (within ± 1.75 hour of the predicted time)	3 (1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the mid-depth station may be omitted. Should the water depth be less than 3 m, only the mid-depth station will be monitored).

2.4 Monitoring Locations

2.4.1 The measurements were taken at all designated impact and control stations summarized in Table 2.3. The two impact stations were chosen on the basis of their proximity to the Works Area, which would be under the greatest potential for water quality impacts. In addition, a control station was also set up for ebb-tide references respectively of the surrounding ambient.

Table 2.3 Location of Water Quality Impact Stations

Station I.D.	HK 1980 Grid		Status
	Easting	Northing	
C1a	845647	814146	Control Station (Ebb-tide)
M4a	845922	813973	Impact Station (Close to Additional Barging Point, Tipping Halls and Associated Facilities at TKO 137 Fill Bank)
M5	847005	813678	Impact Station (Close to Tai Miu Wan)

2.5 Monitoring Methodology

2.5.1 Instrumentation

(a) The in-situ water quality parameters, viz. dissolved oxygen, temperature, salinity and turbidity were measured by multi-parameter meters and turbidity was measured by Turbid Meter.

2.5.2 Operating/Analytical Procedures

- (a) A hand-held digital Global Positioning Systems (GPS) were used to ensure that the correct location was selected prior to sample collection.
- (b) Portable, battery-operated echo sounders were used for the determination of water depth at each designated monitoring station.
- (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
- (d) At each measurement/sampling depth, two consecutive in-situ monitoring (DO concentration and saturation, temperature, turbidity, salinity) and water sample for SS were collected. For turbidity measurement, the sample was collected by using sampler and then transferred to the cell. The reading of turbidity of the sample was directly recorded from the Turbidimeter (HACH 2100Q) after inserting the cell to the Turbidimeter. For DO concentration and saturation, temperature and salinity, duplicate measurements were performed by dropping the calibrated probes of the corresponding monitoring equipments to the designated depths of the water column and taking readings after stabilized. Where the difference in the value between the first and second readings of DO or turbidity parameters was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- (e) Duplicate samples from each independent sampling event were collected for SS measurement. Water samples were collected using the water samplers and the samples were stored in high-density polythene bottles. Water samples collected were well-mixed in the water sampler prior to pre-rinsing and transferring to sample bottles. Sample bottles were pre-rinsed with the same water samples. The sample bottles were then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to Environmental Laboratory, ETS-Testconsult Ltd. (HOKLAS Registration No. 022) for the analysis of suspended solids concentrations. The laboratory determination work would be started within 24 hours after collection of the water samples. Environmental Laboratory, ETS-Testconsult Ltd., is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples was analyzed and attached in Appendix D.

2.5.3 Maintenance and Calibration

- (a) Before each round of monitoring, the dissolved oxygen probe of YSI Pro2030 was calibrated by the wet bulb method.
- (b) The monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS before use and subsequently re-calibrated at 3-monthly intervals throughout all stages of the water quality monitoring.

2.6 Results and Observations

2.6.1 The baseline water quality monitoring results for C1a, M4a and M5 are summarized in Tables 2.4 and 2.5. Detail water quality monitoring results are presented in Appendix C.

Table 2.4 Summary of Marine Water Monitoring Results for Mid-ebb Tide

Monitoring	Temperature	Salinity	DO (SM)	DO	DO	Turbidity	SS
Station	(°C)	(ppt)	(mg/L)	(Bottom)	Saturation	(NTU)	(mg/L)
				(mg/L)	(%)		
	26.8	26.7	6.1	5.9	86.8	2.9	4.0
C1a	(22.0 - 29.0)	(23.4 - 30.3)	(4.4 - 7.5)	(4.0 - 7.2)	(56.6 - 105.2)	(1.2 - 5.6)	(2.2 - 6.2)
	26.8	26.8	6.1	5.9	87.0	2.8	3.9
M4a	(21.9 - 29.0)	(23.4 - 30.5)	(4.4 - 7.4)	(3.8 - 7.1)	(55.8 - 103.2)	(1.1 - 5.2)	(2.0 - 6.0)
	26.8	26.7	6.3	6.0	89.7	2.7	3.8
M5	(21.9 - 29.1)	(23.4 - 30.5)	(5.2 - 8.5)	(2.9 - 8.0)	(68.1 - 120.8)	(1.0 - 4.2)	(2.0 - 6.0)

Table 2.5 Summary of Marine Water Monitoring Results for Mid-flood Tide

Monitoring	Temperature	Salinity	DO (SM)	DO	DO	Turbidity	SS
Station	(°C)	(ppt)	(mg/L)	(Bottom)	Saturation	(NTU)	(mg/L)
				(mg/L)	(%)		
	26.8	26.7	6.1	5.9	87.6	2.8	3.9
C1a	(21.8 - 28.8)	(23.5 - 30.5)	(4.4 - 7.5)	(4.5 - 7.1)	(63.4 - 106.2)	(1.0 - 5.0)	(2.0 - 5.8)
	26.8	26.7	6.2	5.9	87.7	2.8	3.9
M4a	(21.8 - 28.8)	(23.5 - 30.6)	(4.4 - 7.5)	(4.4 - 7.1)	(63.3 - 104.4)	(1.0 - 5.0)	(2.0 - 5.4)
	26.8	26.8	6.3	6.1	90.1	2.7	3.7
M5	(21.9 - 28.7)	(23.4 - 30.6)	(4.4 - 8.8)	(4.7 - 8.0)	(63.9 - 118.5)	(1.0 - 4.3)	(2.2 - 5.8)

- 2.6.2 The weather conditions during the monitoring period were generally in cloudy or fine. Sea conditions for the majority of monitoring days are generally small wave. No major water pollution source, which might affect the results was observed during the baseline monitoring period. Monitoring session on 23 July 2012 was cancelled due to Typhoon Signal No.3 and No.8 hoisted by Hong Kong Observatory.
- 2.6.3 Since the water depths at all the monitoring stations were generally higher than 6 m, sampling was conducted at three water depths at each station.

2.7 Action and Limit Levels

2.7.1 The Action and Limit Levels (AL levels) have been set in accordance with the derivation criteria specified in the EM&A Manual. This is shown in Table 2.6.

Table 2.6 Derivation of Action and Limit Levels for Water Quality

Parameters	Action	Limit
DO in mg L ⁻¹ (Surface, Middle & Bottom)	Surface and Middle 5 percentile of baseline data for surface and middle layer Bottom 5 percentile of baseline data for bottom layer	Surface and Middle 4 mg L ⁻¹ or 1%-ile of baseline data for surface and middle layer Bottom 2 mg L ⁻¹ or 1%-ile of baseline data for bottom layer
SS in mg L ⁻¹ (depth-averaged)	95 percentile of baseline data or 120% of upstream control station's SS at the same tide of the same day	99 percentile of baseline or 130% of upstream control station's SS at the same tide of the same day and specific sensitive receiver water quality requirements (e.g. required suspended solids level at FCZ)
Turbidity in NTU (depth-averaged)	95 percentile of baseline data or 120% of upstream control station's turbidity at the same tide of the same day	99 percentile of baseline or 130% of upstream control station's turbidity at the same tide of the same day

Notes: 1. "depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.

- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.
- 2.7.2 Following the criteria shown in Table 2.6, the AL Levels for water quality are derived and presented in Tables 2.7 respectively.

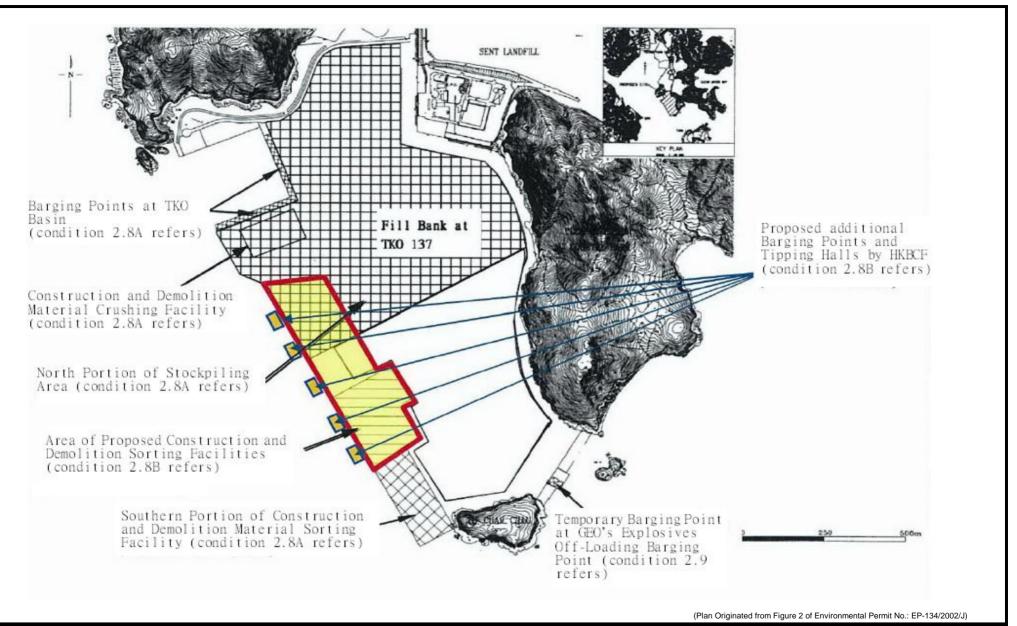
Table 2.7 Action and Limit Levels for Water Quality

Parameters	Action	Limit
DO in mg/L	Surface & Middle	Surface & Middle
(Surface & Middle, Bottom)	5.5 mg/L	4.0 mg/L
Bottomy	Bottom	Bottom
	5.2 mg/L	2.0 mg/L
SS in mg/L (depth-averaged)	4.9 mg/L or 120% of upstream control station's SS at the same tide of the same day	5.2 mg/L or 130% of upstream control station's SS at the same tide of the same day and specific sensitive receiver water quality requirements (e.g. required suspended solids level at FCZ)
Turbidity in NTU (depth-averaged)	3.9 NTU or 120% of upstream control station's turbidity at the same tide of the same day	4.2NTU or 130% of upstream control station's turbidity at the same tide of the same day

Notes: 1. "depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.

- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.

3 REVISIONS FOR INCLUSION IN THE EM&A MANUAL


3.1.1 The baseline monitoring for water quality was conducted in accordance with the requirements as set out in the EM&A Manual. The monitoring programme as stipulated in the EM&A Manual and EP generally meets the purpose to establish ambient conditions for water quality prior to commencement of the operation of the Project.

4 COMMENTS AND CONCLUSIONS

- 4.1.1 This baseline monitoring report presents baseline monitoring results for water quality at C1a, M4a and M5.
- 4.1.2 All laboratory results satisfied the QA/QC requirements and all monitoring equipment is properly calibrated and with valid calibration certificates.
- 4.1.3 Baseline water quality monitoring was conducted at the designated monitoring stations. Nevertheless, the results reflected the ambient water conditions at the monitoring stations. The Action and Limit Levels for water quality were established based on the baseline monitoring results.
- 4.1.4 Data established in this report are considered representative of the baseline conditions for the Project's sorting facilities together with barging points, tipping halls and associated facilities at the Works Area.

FIGURES

Plot File by: Project Management Initials: Checked: ISO A4 210mm X 297mm

This Drawing has been prepared for the use of AECOM's express written consent. Do not scale this document. All measurements must be obtained from the stated dimensions.

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES RECLAMATION WORKS

Project No.: 60249820 Date: MAY 2012 Figure 1.1

APPENDIX A CALIBRATION RECORDS

Form E/CE/R/12 Issue 7 (1/2) [09/09]

Internal Calibration Report of Dissolved Oxygen Meter

Equipment Ref. No.

ET/EW/008/005

Manufacturer

YSI

Model No.

Pro 2030

Serial No.

12A 100353

Date of Calibration

25/02/2012

Calibration Due Date

: 24/05/2012

Temperature Verification

Ref. No. of Reference Thermometer:

ET/0521/001

Ref. No. of Water Bath:

		Temperature (°C)				
Reference Thermometer reading	Measured	20.1	Corrected	19.8		
DO Meter reading	Measured	19.7	Difference	0.1		

Standardization of sodium thiosulphate (Na $_2$ S $_2$ O $_3$) solution

Reagent No. of Na ₂ S ₂ O ₃ titrant	CPE/012/4.5/001/4	Reagent No. of 0.025N K ₂ Cr ₂ O ₇	CPE/012/4.4/001/8	
		Trial 1	Trial 2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)		0.00	0.00	
Final Vol. of Na ₂ S ₂ O ₃ (ml)		40.00	40.00	
Vol. of Na ₂ S ₂ O ₃ used (ml)		40.00	40.00	
Normality of Na ₂ S ₂ O ₃ solution (N)		0.02500	0.02500	
Average Normality (N) of $Na_2S_2O_3$ s	Normality (N) of Na ₂ S ₂ O ₃ solution (N)			
Acceptance criteria, Deviation		0.02500 Less than ± 0.001N		

Calculation:

Normality of $Na_2S_2O_3$, $N = 1 / ml Na_2S_2O_3$ used

Lineality Checking

Determination of dissolved oxygen content by Winkler Titration *

Purging Time (min)	2		5		10	
Trial	1	2	1	2	1	2
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.30	22.50	0.00	7.80	12.50
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.30	22.50	30.20	7.80	12.50	17.10
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.30	11.20	7.70	7.80	4.70	4.60
Dissolved Oxygen (DO), mg/L	7.58	7.52	5.17	5.23	3.15	3.09
Acceptance criteria, Deviation	Less than	+ 0.3mg/L	Less than + 0.3mg/L		Less than + 0.3mg/L	

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Purging time, min	DO 1	neter reading	g, mg/L	Winkler	Titration res	ult *, mg/L	Difference (%) of DO
T diging time, tim	1	2	Average	1	2	Average	Content
2	7.62	7.59	7.61	7.58	7.52	7.55	0.79
5	5.31	5.34	5.33	5.17	5.23	5.20	2.47
10	3.09	3.04	3.07	3.15	3.09	3.12	1.62
Linear	r regression	coefficient				0.99894	

Form E/CE/R/12 Issue 7 (2/2) [09/09]

Internal Calibration Report of Dissolved Oxygen Meter

CT.	n	~	
Zero	Point	Checking	

DO meter reading, mg/L	0.00

Salinity Checking

Reagent No. of NaCl (10ppt) CPE/012/4.7/001/18 Reagent No. of NaCl (30ppt) CPE/012/4.8/00			
	Reagent No. of NaCl (10ppt)	CPE/012/4.7/001/18	CPE/012/4.8/001/18

Determination of dissolved oxygen content by Winkler Titration **

Salinity (ppt)	10			30
Trial	1	2	1	2
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.60	23.20	33.80
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.60	23.20	33.80	44.50
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.60	11.60	10.60	10.70
Dissolved Oxygen (DO), mg/L	7.79	7.79	7.11	7.18
Acceptance criteria, Deviation	Less than + 0.3mg/L		Less that	n + 0.3mg/L

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Salinity (ppt)	DO 1	neter reading	g, mg/L	Winkler	Titration resu	ılt**, mg/L	Difference (%) of DO
Caminey (ppt)	1	2	Average	1	2	Average	Content
10	7.87	7.84	7.86	7.79	7.79	7.79	0.89
30	7.07	7.11	7.09	7.11	7.18	7.15	0.84

Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer: < 0.5 °C
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within \pm 5%

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

* Delete as appropriate

Calibrated by

has law

Approved by:

9

Form E/CE/R/12 Issue 7 (1/2) [09/09]

Internal Calibration Report of Dissolved Oxygen Mete	Internal	Calibration	Report	of Dissolved	Oxygen Meter
--	----------	-------------	--------	--------------	--------------

Equipment Ref. No.

ET/EW/008/005

Manufacturer

YSI

Model No.

Pro 2030

Serial No.

12A 100353

Date of Calibration

25/05/12

Calibration Due Date

24/08/12

Temperature Verification

Ref. No. of Reference Thermometer:

ET/0521/001

Ref. No. of Water Bath:

		Temperature (°C)					
Reference Thermometer reading	Measured	20.1	Corrected	19.7			
DO Meter reading	Measured	19.6	Difference	0.1			

Standardization of sodium thiosulphate (Na 2 S 2 O 3) solution

Reagent No. of Na ₂ S ₂ O ₃ titrant	CPE/012/4.5/001/5	Reagent No. of 0.025N K ₂ Cr ₂ O ₇	CPE/012/4.4/001/10	
		Trial 1	Trial 2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)		0.00	0.00	
Final Vol. of Na ₂ S ₂ O ₃ (ml)		39.80	40.00	
Vol. of Na ₂ S ₂ O ₃ used (ml)		39.80	40.00	
Normality of Na ₂ S ₂ O ₃ solution (N)		0.02513	0.02500	
Average Normality (N) of Na ₂ S ₂ O ₃ solution (N)		0.02507		
Acceptance criteria, Deviation	,	Less than ± 0.001N		

Calculation:

Normality of $Na_2S_2O_3$, $N = 1 / ml Na_2S_2O_3$ used

Lineality Checking

Determination of dissolved oxygen content by Winkler Titration *

Purging Time (min)	2			5		0
Trial	1	2	1	2	1	2
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	10.60	21.10	0.00	8.10	13.00
Final Vol. of Na ₂ S ₂ O ₃ (ml)	10.60	21.10	29.50	8.10	13.00	17.50
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	10.60	10.50	8.40	8.10	4.90	4.50
Dissolved Oxygen (DO), mg/L	7.13	7.07	5.65	5.45	3.30	3.03
Acceptance criteria, Deviation	Less than	+ 0.3mg/L	Less than	+ 0.3mg/L	Less than	+ 0.3mg/L

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Purging time, min	DO meter reading, mg/L		Winkler	Titration res	Difference (%) of DO		
1 diging time, iiiii	1	2	Average	1	2	Average	Content
2	7.20	7.16	7.18	7.13	7.07	7.10	1.12
5	5.58	5.50	5.54	5.65	5.45	5.55	0.18
10	3.17	3.07	3.12	3.30	3.03	3.17	1.59
Linear regression coefficient					0.99990		

Form E/CE/R/12 Issue 7 (2/2) [09/09]

Internal Calibration Report of Dissolved Oxygen Meter

Zero Point Checking

DO meter reading, mg/L	0.00
	0.00

Salinity Checking

Reagent No. of NaCl (10ppt)	CPE/012/4.7/001/23	Reagent No. of NaCl (30ppt)	CPE/012/4.8/001/23
<u> </u>	1		1012/1012/10/001/25

Determination of dissolved oxygen content by Winkler Titration **

Salinity (ppt)	10		30	
Trial	1	2	1	2
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.70	23.10	33.80
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.70	23.10	33.80	44.40
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.70	11.40	10.70	10.60
Dissolved Oxygen (DO), mg/L	7.87	7.67	7.20	7.13
Acceptance criteria, Deviation	Less than + 0.3mg/L		Less than	1 + 0.3mg/L

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Salinity (ppt)	DO meter reading, mg/L		Winkler	Titration resu	Difference (%) of DO		
, (PPI)	1	2	Average	1	2	Average	Content
10	7.9	7.84	7.87	7.87	7.67	7.77	1.28
30	7.09	7.07	7.08	7.20	7.13	7.17	1.26

Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer : $< 0.5 \, ^{\circ}\text{C}$
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within \pm 5%

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

" Delete as appropriate

Calibrated by

Ldelan

Approved by:

4

CEP/012/W

Form E/CE/R/12 Issue 7 (1/2) [09/09]

Internal Calibration Report of Dissolved Oxygen Meter

Equipment Ref. No.

ET/EW/008/005

Manufacturer

YSI

Model No.

Pro 2030

Serial No.

12A 100353

Date of Calibration

25/08/2012

Calibration Due Date

24/11/2012

Temperature Verification

Ref. No. of Reference Thermometer:

ET/0521/001

Ref. No. of Water Bath:

Temperature (°C)				
Reference Thermometer reading	Measured	20.2	Corrected	19.8
DO Meter reading	Measured	19.7	Difference	0.1

Standardization of sodium thiosulphate (Na $_2$ S $_2$ O $_3$) solution

Reagent No. of Na ₂ S ₂ O ₃ titrant	CPE/012/4.5/001/5	Reagent No. of 0.025N K ₂ Cr ₂ O ₇	CPE/012/4.4/001/12	
		Trial 1	Trial 2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)		0.00	0.00	
Final Vol. of Na ₂ S ₂ O ₃ (ml)		40.10	40.05	
Vol. of Na ₂ S ₂ O ₃ used (ml)		40.10	40.05	
Normality of Na ₂ S ₂ O ₃ solution (N)		0.02494	0.02497	
Average Normality (N) of Na ₂ S ₂ O ₃ s	solution (N)	0.02496		
Acceptance criteria, Deviation		Less than ± 0.001N		

Calculation:

Normality of $Na_2S_2O_3$, $N = 1 / ml Na_2S_2O_3$ used

Lineality Checking

Determination of dissolved oxygen content by Winkler Titration *

Purging Time (min)		2		5		10	
Trial	1	2	1	2	1	2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.20	22.20	0.00	7.60	12.30	
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.20	22.20	29.90	7.60	12.30	17.20	
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.20	11.00	7.70	7.60	4.70	4.90	
Dissolved Oxygen (DO), mg/L	7.50	7.37	5.16	5.09	3.15	3.28	
Acceptance criteria, Deviation	Less that	n + 0.3mg/L	Less than	+ 0.3mg/L	Less than	+ 0.3mg/L	

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Duncing time min	DO meter reading, mg/L		Winkler Titration result *, mg/L			Difference (%) of DO	
Purging time, min	1	2	Average	1	2	Average	Content
2	7.51	7.60	7.56	7.50	7.37	7.44	1.60
5	5.21	5.20	5.21	5.16	5.09	5.13	1.55
10	3.19	3.25	3.22	3.15	3.28	3.22	0.00
Linear regression coefficient					0.99990		

Form E/CE/R/12 Issue 7 (2/2) [09/09]

Internal Calibration Report of Dissolved Oxygen Meter

Zero	Point	Checking

DO meter reading, mg/L	0.00

Salinity Checking

Reagent No. of NaCl (10ppt)	CPE/012/4.7/001/28	Reagent No. of NaCl (30ppt)	CPE/012/4.8/001/28
reagent ito: of tract (toppt)	CI ASSOCIATION TO THE O	[38 (FF-7	

Determination of dissolved oxygen content by Winkler Titration **

Salinity (ppt)	10		30	
Trial	1	2	1	2
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.50	23.20	33.90
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.50	23.20	33.90	44.40
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.50	11.70	10.70	10.50
Dissolved Oxygen (DO), mg/L	7.71	7.84	7.17	7.04
Acceptance criteria, Deviation	Less than + 0.3mg/L		Less than + 0.3mg/L	

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Salinity (ppt)	DO meter reading, mg/L		Winkler Titration result**, mg/L			Difference (%) of DO	
Samily (ppt)	1	2	Average	1	2	Average	Content
10	7.7	7.65	7.68	7.71	7.84	7.78	1.29
30	7.13	7.05	7.09	7.17	7.04	7.11	0.28

Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer : < 0.5 °C
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within \pm 5%

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

" Delete as appropriate

Calibrated by

: Nor

Approved by:

4

Performance Check of Salinity Meter

Equipment Ref. No.

: <u>ET/EW/0</u>08/005

Manufacturer

: YSI

Model No.

: Pro 2030

Serial No.

: 12A 100353

Date of Calibration

: 25/02/2012

Due Date

: 24/05/2012

Ref. No. of Salinity Standard used (30ppt)

S/001/3

Salinity Standard (ppt)	Measured Salinity (ppt)	Difference %
30.0	30.0	0.0

Acceptance Criteria

Difference: <10 %

The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Checked by: _____ Approved by: _____

Performance	Check	of Salinity	Meter
-------------	-------	-------------	-------

Equipment Ref. No. : ET/EW/008/005

Manufacturer : YSI

Model No.

: Pro 2030

Serial No.

: 12A 100353

Date of Calibration

: 25/05/2012

Due Date

: 24/08/2012

Ref. No. of Salinity Standard used (30ppt)

S/001/3

Salinity Standard (ppt)	Measured Salinity (ppt)	Difference %
30.0	30.0	0.0

Acceptance Criteria

Difference: <10 %

The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Checked by: Approved by:

Performance Check of Salinity Meter

Equipment Ref. No.

: ET/EW/008/005

Manufacturer

: YSI

Model No.

: Pro 2030

Serial No.

: 12A 100353

Date of Calibration

: 25/08/2012

Due Date

24/ 11/2012

....

Ref. No. of Salinity Standard used (30ppt)

S/001/3

Salinity Standard (ppt)	Measured Salinity (ppt)	Difference %
30.0	30.2	0.66

Acceptance Criteria

Difference: <10 %

The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Checked by : ____

Approved by :

Performance Check of Turbidimeter

Equipment Ref. No. : ET/0505/008 Manufacturer : HACH

Model No. : <u>2100Q</u> Serial No. : <u>10030 C 001191</u>

Date of Calibration : 03/02/2012 Due Date : 02/05/2012

Gelex Vial Std	Theoretical Value (NTU)	Measured Value (NTU)	Difference %
0-10 NTU	5.65	5.45	3.54
10-100 NTU	52.5	53.0	0.95
100-1000 NTU	543	536	1.29

Acceptance Criteria

Difference: <5 %

The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Checked by: ______ Approved by: ______

Performance Check of Turbidimeter

Equipment Ref. No. : <u>ET/0505/008</u> Manufacturer : <u>HACH</u>

Model No. : 2100Q Serial No. : 10030 C 001191

Gelex Vial Std	Theoretical Value (NTU)	Measured Value (NTU)	Difference %
0-10 NTU	5.68	5.45	4.22
10-100 NTU	52.3	53.0	1.32
100-1000 NTU	540	536	0.75

Acceptance Criteria

Difference : <5 %

The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Checked by: _____ Approved by:

Performance Check of Turbidimeter

Equipment Ref. No.

: ET/0505/008

Manufacturer

: HACH

Model No.

: 2100Q

Serial No.

: 10030 C 001191

Date of Calibration

: 02/08/2012

Due Date

: 01/11/2012

Gelex Vial Std	Theoretical Value (NTU)	Measured Value (NTU)	Difference %
0-10 NTU	5.70	5.62	1.41
10-100 NTU	52.1	52.7	1.15
100-1000 NTU	547	539	1.47

Acceptance Criteria

Difference : <5 %

The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Checked by .

Approved by:

APPENDIX B BASELINE MONITORING SCHEDULES

Contract No. HY/2010/02 - Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Baseline Water Quality Monitoring Schedule for April 2012 (TKO 137 Fill Bank)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Apr	2-Apr	3-Apr	4-Apr	5-Apr	6-Apr	7-Apr
8-Apr	9-Apr	10-Apr	11-Apr	12-Apr	13-Apr	14-Apr
15-Apr	16-Apr	17-Apr	18-Apr	19-Apr	20-Apr	21-Apr
	Baseline Water Quality Monitoring Mid-ebb: 9:25 Mid-flood: 14:48		Baseline Water Quality Monitoring Mid-ebb: 10:50 Mid-flood: 16:44		Baseline Water Quality Monitoring Mid-ebb: 11:56 Mid-flood: 18:12	
22-Apr	23-Apr Baseline Water Quality Monitoring Mid-ebb: 13:28 Mid-flood: 20:06	24-Apr	25-Apr Baseline Water Quality Monitoring Mid-flood: 6:48 Mid-ebb: 13:55	26-Apr	27-Apr Baseline Water Quality Monitoring Mid-flood: 7:42 Mid-ebb: 15:22	28-Apr
29-Apr	30-Apr Baseline Water Quality Monitoring Mid-flood: 11:45 Mid-ebb: 19:16					

Contract No. HY/2010/02 - Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Baseline Water Quality Monitoring Schedule for May 2012 (TKO 137 Fill Bank)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-May	2-May	3-May	4-May	5-May
			Baseline Water Quality Monitoring Mid-ebb: 9:13 Mid-flood: 15:02		Baseline Water Quality Monitoring Mid-ebb: 10:43 Mid-flood: 17:11	
6-May	7-May	8-May	9-May	10-May	11-May	12-May
	Baseline Water Quality Monitoring Mid-ebb: 12:59 Mid-flood: 19:54		Baseline Water Quality Monitoring Mid-flood: 7:42 Mid-ebb: 14:40		Baseline Water Quality Monitoring Mid-flood: 9:15 Mid-ebb: 16:32	
13-May	14-May	15-May	16-May	17-May	18-May	19-May
	Baseline Water Quality Monitoring Mid-ebb: 7:40 Mid-flood: 13:01		Baseline Water Quality Monitoring Mid-ebb: 9:43 Mid-flood: 15:36		Baseline Water Quality Monitoring Mid-ebb: 11:00 Mid-flood: 17:21	
20-May	21-May	22-May	23-May	24-May	25-May	26-May
	Baseline Water Quality Monitoring Mid-ebb: 12:34 Mid-flood: 19:22		Baseline Water Quality Monitoring Mid-flood: 6:22 Mid-ebb: 13:33		Baseline Water Quality Monitoring Mid-flood: 6:53 Mid-ebb: 14:17	
27-May	28-May	29-May	30-May	31-May		
	Baseline Water Quality Monitoring Mid-flood: 9:40 Mid-ebb: 16:50		Baseline Water Quality Monitoring Mid-ebb: 7:35 Mid-flood: 13:23			

Contract No. HY/2010/02 - Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Baseline Water Quality Monitoring Schedule for June 2012 (TKO 137 Fill Bank)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Jun	2-Jun
					Baseline Water Quality Monitoring Mid-ebb: 09:32 Mid-flood: 16:03	
3-Jun	4-Jun	5-Jun	6-Jun	7-Jun	8-Jun	9-Jun
	Baseline Water Quality Monitoring Mid-ebb: 11:56 Mid-flood: 19:01		Baseline Water Quality Monitoring Mid-ebb: 13:37 Mid-flood: 20:44		Baseline Water Quality Monitoring Mid-flood: 08:12 Mid-ebb: 15:14	
10-Jun	11-Jun	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun
	Baseline Water Quality Monitoring Mid-flood: 10:54 Mid-ebb: 17:31		Baseline Water Quality Monitoring Mid-ebb: 08:15 Mid-flood: 14:01		Baseline Water Quality Monitoring Mid-ebb: 10:00 Mid-flood: 16:26	
17-Jun	18-Jun	19-Jun	20-Jun	21-Jun	22-Jun	23-Jun
	Baseline Water Quality Monitoring Mid-ebb: 11:40 Mid-flood: 18:41		Baseline Water Quality Monitoring Mid-ebb: 12:45 Mid-flood: 19:49		Baseline Water Quality Monitoring Mid-ebb: 13:58 Mid-flood: 21:00	
24-Jun	25-Jun	26-Jun	27-Jun	28-Jun	29-Jun	30-Jun
	Baseline Water Quality Monitoring Mid-flood: 09:09 Mid-ebb: 15:58		Baseline Water Quality Monitoring Mid-flood: 11:39 Mid-ebb: 18:00		Baseline Water Quality Monitoring Mid-ebb: 08:12 Mid-flood: 14:46	

Contract No. HY/2010/02 - Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Baseline Water Quality Monitoring Schedule for July 2012 (TKO 137 Fill Bank)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jul	2-Jul	3-Jul	4-Jul	5-Jul	6-Jul	7-Jul
			Baseline Water Quality Monitoring Mid-ebb: 12:35 Mid-flood: 19:43		Baseline Water Quality Monitoring Mid-flood: 07:14 Mid-ebb: 14:06	
8-Jul	9-Jul	10-Jul	11-Jul	12-Jul	13-Jul	14-Jul
	Baseline Water Quality Monitoring Mid-flood: 09:30 Mid-ebb: 15:58		Baseline Water Quality Monitoring Mid-flood: 11:23 Mid-ebb: 17:12		Baseline Water Quality Monitoring Mid-ebb: 08:48 Mid-flood: 15:16	
15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul	21-Jul
	Baseline Water Quality Monitoring Mid-ebb: 10:42 Mid-flood: 17:58		Baseline Water Quality Monitoring Mid-ebb: 11:50 Mid-flood: 18:57		Baseline Water Quality Monitoring Mid-ebb: 13:04 Mid-flood: 19:55	
22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul	28-Jul
	Baseline Water Quality Monitoring* Mid-flood: 08:26 Mid-ebb: 15:01		Baseline Water Quality Monitoring Mid-flood: 10:19 Mid-ebb: 16:33		Baseline Water Quality Monitoring Mid-flood: 13:12 Mid-ebb: 18:45	
29-Jul	30-Jul	31-Jul				
* Maritaria	Baseline Water Quality Monitoring Mid-ebb: 10:00 Mid-flood: 17:20					

^{*} Monitoring was cancelled due to Typhoon Signal No.3 and No.8 hoisted by HKO.

Contract No. HY/2010/02 - Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Baseline Water Quality Monitoring Schedule for August 2012 (TKO 137 Fill Bank)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Aug	2-Aug	3-Aug	4-Aug
			Baseline Water Quality Monitoring Mid-ebb: 11:35 Mid-flood: 18:42		Baseline Water Quality Monitoring Mid-ebb: 13:02 Mid-flood: 19:53	
5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug	11-Aug
	Baseline Water Quality Monitoring Mid-flood: 08:30 Mid-ebb: 14:50		Baseline Water Quality Monitoring Mid-flood: 9:57 Mid-ebb: 15:52		Baseline Water Quality Monitoring Mid-flood: 12:21 Mid-ebb: 17:10	
12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug	18-Aug
	Baseline Water Quality Monitoring Mid-ebb: 09:30 Mid-flood: 21:53		Baseline Water Quality Monitoring Mid-ebb: 10:47 Mid-flood: 18:00		Baseline Water Quality Monitoring Mid-ebb: 12:05 Mid-flood: 18:48	
19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug	25-Aug
	Baseline Water Quality Monitoring Mid-flood: 07:38 Mid-ebb: 14:02		Baseline Water Quality Monitoring Mid-flood: 09:19 Mid-ebb: 15:26		Baseline Water Quality Monitoring Mid-flood: 11:38 Mid-ebb: 17:15	
26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug	
	Baseline Water Quality Monitoring Mid-ebb: 08:59 Mid-flood: 16:27		Baseline Water Quality Monitoring Mid-ebb: 10:36 Mid-flood: 17:40		Baseline Water Quality Monitoring Mid-ebb: 12:02 Mid-flood: 18:44	

Contract No. HY/2010/02 - Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Baseline Water Quality Monitoring Schedule for September 2012 (TKO 137 Fill Bank)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Sep
2-Sep	3-Sep	4-Sep	5-Sep	6-Sep	7-Sep	8-Sep
	Baseline Water Quality		Baseline Water Quality		Baseline Water Quality	
	Monitoring		Monitoring		Monitoring	
	Mid-ebb: 13:48		Mid-flood: 08:57		Mid-flood: 10:36	
	Mid-flood: 20:06		Mid-ebb: 14:49		Mid-ebb: 15:48	
9-Sep	10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep
	Baseline Water Quality		Baseline Water Quality		Baseline Water Quality	
	Monitoring		Monitoring		Monitoring	
	Mid-ebb: 07:56		Mid-ebb: 09:32		Mid-ebb: 10:58	
	Mid-flood: 20:26		Mid-flood: 16:57		Mid-flood: 17:37	
	Wild 1100d. 20.20		Wild 1100d: 10.07		Wild Hood. 17.07	
16-Sep	17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep
	Baseline Water Quality		Baseline Water Quality		Baseline Water Quality	
	Monitoring		Monitoring		Monitoring	
	Mid-ebb: 13:02		Mid-flood: 08:24		Mid-flood: 10:23	
	Mid-flood: 19:05		Mid-ebb: 14:24		Mid-ebb: 16:00	
	ma noodi rotoo					
23-Sep	24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep
	Baseline Water Quality		Baseline Water Quality		Baseline Water Quality	
	Monitoring		Monitoring		Monitoring	
	Mid-flood: 15:02		Mid-ebb: 09:27		Mid-ebb: 10:59	
	Mid-ebb: 19:57		Mid-flood: 19:31		Mid-flood: 17:33	
30-Sep						

Contract No. HY/2010/02 - Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Baseline Water Quality Monitoring Schedule for October 2012 (TKO 137 Fill Bank)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Oct	2-Oct	3-Oct	4-Oct	5-Oct	6-Oct
			Baseline Water Quality Monitoring Mid-ebb: 13:50 Mid-flood: 19:40		Baseline Water Quality Monitoring Mid-flood: 09:30 Mid-ebb: 14:45	
7-Oct	8-Oct	9-Oct	10-Oct	11-Oct	12-Oct	13-Oct
	Baseline Water Quality Monitoring Mid-ebb: 06:00 Mid-flood: 18:00		Baseline Water Quality Monitoring Mid-ebb: 07:51 Mid-flood: 15:35		Baseline Water Quality Monitoring Mid-ebb: 09:36 Mid-flood: 16:19	
14-Oct	15-Oct	16-Oct	17-Oct	18-Oct	19-Oct	20-Oct
	Baseline Water Quality Monitoring Mid-ebb: 11:57 Mid-flood: 17:50		Baseline Water Quality Monitoring Mid-ebb: 13:23 Mid-flood: 19:03		Baseline Water Quality Monitoring Mid-flood: 09:21 Mid-ebb: 14:55	
21-Oct	22-Oct	23-Oct	24-Oct	25-Oct	26-Oct	27-Oct
	Baseline Water Quality Monitoring Mid-flood: 13:03 Mid-ebb: 18:10		Baseline Water Quality Monitoring Mid-ebb: 07:57 Mid-flood: 15:05		Baseline Water Quality Monitoring Mid-ebb: 09:47 Mid-flood: 16:18	
28-Oct	29-Oct	30-Oct	31-Oct			
	Baseline Water Quality Monitoring Mid-ebb: 11:51 Mid-flood: 17:42		Baseline Water Quality Monitoring Mid-ebb: 12:53 Mid-flood: 18:28			

APPENDIX C
BASELINE WATER QUALITY MONITORING
RESULTS AND THEIR GRAPHICAL
PRESENTATION

	Camalina	Ambient Temp	0	Total	Manitania	n Danth	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	-U)	Susper	nded Solids	s (mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition			Surface	1.0	22.9	24.7	24.7	7.1	7.1	avo.ago	94.9	95.3	1.2	1.2	avo.ago	3.2	3.4	avolugo
					Curidoo	1.0	22.9 22.2	24.7		7.1		7.0	95.6 91.3	00.0	1.3 2.5		1	3.6	0.1	ł
16-Apr-12	0925-0940	26/Cloudy	Calm	15.8	Middle	7.9	22.2	26.2 26.2	26.2	6.8	6.8		90.8	91.1	2.5	2.4	2.4	4.8	4.6	4.6
					Bottom	14.8	22.0	26.5	26.5	6.6	6.7	6.7	88.6	88.9	3.6	3.7	1	5.6	5.7	
							22.0 22.6	26.5 24.6		6.7 7.0			89.2 93.9		3.7 1.3			5.8 3.8		
					Surface	1.0	22.7	24.5	24.6	7.1	7.0	6.9	94.3	94.1	1.3	1.3]	4.0	3.9	
18-Apr-12	1025-1040	22/Drizzle	Small Wave	15.6	Middle	7.8	22.4	26.0 26.1	26.1	6.8	6.8	0.5	90.8	90.5	2.5	2.5	2.2	4.4	4.4	4.4
					Dottom	14.6	22.4	26.7	26.7	6.5	6.6	6.6	86.9	87.3	2.4	2.0	1	5.0	F 0	
					Bottom	14.6	22.1	26.6	20.7	6.6	6.6	6.6	87.7	07.3	2.9	2.8		5.0	5.0	
					Surface	1.0	22.0	24.2	24.3	7.0	7.0		91.4 91.9	91.7	1.5 1.6	1.6		3.8 4.0	3.9	
20-Apr-12	1210-1255	22/Rain	Great Wave	16.0	Middle	8.0	22.0	26.0	26.1	6.7	6.7	6.9	88.0	88.3	2.8	2.8	2.7	4.0	4.1	4.5
20 / (p) 12	1210 1200	ZZ/Ttam	Grout Wave	10.0	Mildulo	0.0	22.0 22.1	26.1 26.6	20.1	6.8 6.5	0.7		88.6 85.4	00.0	2.8 3.9	2.0		4.2 5.4		1.0
					Bottom	15.0	22.1	26.6	26.6	6.6	6.5	6.5	85.8	85.6	3.8	3.8		5.4	5.4	
					Surface	1.0	22.4	25.8	25.8	6.9	6.9		92.3	92.0	2.9	3.0		4.0	4.0	
							22.4 22.1	25.8 26.0		6.9 6.6		6.8	91.7 87.6		3.0			4.0		
23-Apr-12	1255-1310	25/Cloudy	Small Wave	15.8	Middle	7.9	22.2	26.0	26.0	6.6	6.6		88.1	87.9	3.2	3.2	3.2	4.2	4.3	4.3
					Bottom	14.8	22.0	26.1 26.2	26.2	6.6	6.6	6.6	86.9 87.3	87.1	3.6	3.6		4.8	4.7	
					Surface	1.0	23.4	24.2	24.2	6.8	6.8		91.5	91.2	2.9	2.0		3.6	2.0	
					Surface	1.0	23.5	24.2	24.2	6.8	0.0	6.7	90.9	91.2	2.9	2.9	1	4.0	3.8	
25-Apr-12	1335-1352	28/Cloudy	Calm	16.2	Middle	8.1	23.5	26.1 26.2	26.2	6.6 6.6	6.6		88.9 88.5	88.7	3.1 3.1	3.1	3.1	4.0	4.1	4.1
					Bottom	15.2	23.6	26.6	26.6	6.6	6.6	6.6	88.0	87.8	3.4	3.4	1	4.4	4.4	
					Bottom	10.2	23.6 23.7	26.6 25.3	20.0	6.5 7.3	0.0	0.0	87.5 99.1	07.0	3.4 1.4	0.1		4.4 2.4		
					Surface	1.0	23.6	25.3	25.3	7.3	7.3	7.2	99.5	99.3	1.5	1.5		2.8	2.6	
27-Apr-12	1455-1511	25/Cloudy	Small Wave	15.8	Middle	7.9	23.3	26.5	26.5	7.0	7.0	7.2	95.9	96.1	1.9	1.9	1.9	3.2	3.1	3.1
·							23.3 23.0	26.5 27.4	a= .	7.1 7.2			96.3 98.1		2.0		1	3.0		
					Bottom	14.8	23.1	27.4	27.4	7.1	7.2	7.2	97.5	97.8	2.5	2.4		3.8	3.7	
					Surface	1.0	23.4	24.5 24.5	24.5	6.8	6.8		90.4 89.8	90.1	2.5 2.5	2.5		3.8 4.0	3.9	
30-Apr-12	1827-1844	27/Cloudy	Calm	16.4	Middle	8.2	23.3	26.3	26.3	6.6	6.6	6.7	88.2	87.8	3.0	3.0	2.9	4.8	4.8	4.6
30-Apr-12	1027-1044	21/Cloudy	Callii	10.4	Middle	0.2	23.4	26.3	20.3	6.6	0.0		87.4	07.0	3.0	3.0	2.9	4.8	4.0	4.0
					Bottom	15.4	23.2	27.0 27.0	27.0	6.4	6.4	6.4	85.4 85.7	85.6	3.2	3.2		5.0 5.2	5.1	
					Surface	1.0	25.4	25.9	25.9	7.4	7.4		104.8	104.6	1.4	1.4		2.6	2.7	
							25.5 25.2	25.9 26.5		7.4 7.3		7.3	104.4 102.9		1.5 2.0		1	2.8 3.2		
2-May-12	0940-0955	29/Cloudy	Small Wave	15.8	Middle	7.9	25.2	26.4	26.5	7.2	7.3		102.9	102.5	2.1	2.1	2.0	3.2	3.2	3.2
					Bottom	14.8	24.9	27.7	27.8	7.0	7.0	7.0	99.1	98.8	2.5	2.6	1	3.6	3.7	
	I		Ī	1	l	l	24.9	27.8	1	7.0	Ī]	98.4	I	2.6	Ī	I	3.8		I

	Camalina	Ambient Temp	0	Total	Manitania	n Danth	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Tu	urbidity (NT	-U)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorir (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Corraineri			Surface	1.0	26.7	25.8	25.8	6.4	6.4	avolugo	92.0	91.8	2.7	2.8	avo.ago	3.6	3.8	avolugo
					Curiaco	1.0	26.7 26.0	25.7	20.0	6.4 6.2	0.1	6.3	91.5 88.6	01.0	2.8 3.6	2.0	1	4.0	0.0	Į.
4-May-12	0925-0940	28/Cloudy	Small Wave	15.6	Middle	7.8	26.0	26.3 26.2	26.3	6.2	6.2		88.2	88.4	3.7	3.6	3.4	4.8	4.7	4.4
					Bottom	14.6	26.0	26.4	26.4	6.1	6.1	6.1	86.6	86.3	3.8	3.8	1	4.8	4.7	
					0 6	4.0	26.0 25.2	26.4 25.7	05.7	6.1 7.3	7.0		85.9 102.9	100.7	3.7 1.4	4.4		4.6 2.6	0.7	
					Surface	1.0	25.3	25.7	25.7	7.3	7.3	7.4	102.4	102.7	1.5	1.4		2.8	2.7	
7-May-12	1155-1210	28/Fine	Small Wave	15.8	Middle	7.9	25.1 25.1	26.6 26.7	26.7	7.5 7.5	7.5		104.4 105.2	104.8	1.8	1.8	1.7	3.2	3.2	3.0
					Bottom	14.8	24.9	27.8	27.9	7.1	7.1	7.1	100.0	99.5	2.0	2.0	1	3.2	3.1	
							24.8 25.5	27.9 25.6		7.1 7.0			99.0 99.2		1.9 2.6			3.0		
					Surface	1.0	25.6	25.7	25.7	7.0	7.0	7.0	98.4	98.8	2.6	2.6		3.6	3.6	1
9-May-12	1426-1433	32/Sunny	Calm	16.0	Middle	8.0	25.4 25.5	25.9 26.0	26.0	6.9 7.0	6.9		97.4 97.9	97.7	2.8	2.8	2.8	4.0	4.0	3.9
					Bottom	15.0	25.5	26.3	26.4	6.8	6.8	6.8	95.5	95.8	3.0	3.0	1	4.2	4.2	
							25.5 26.3	26.4 25.3		6.8 7.4		0.0	96.0 103.9		3.0 1.6			4.2 2.8		
					Surface	1.0	26.4	25.3	25.3	7.3	7.3	7.3	103.4	103.7	1.7	1.7]	3.2	3.0	
11-May-12	1526-1541	29/Drizzle	Small Wave	15.6	Middle	7.8	26.1 26.0	26.4 26.5	26.5	7.2 7.1	7.2	7.0	101.2 100.8	101.0	1.8	1.9	1.9	3.0	2.9	3.0
					Bottom	14.6	25.8	27.5	27.5	7.1	7.1	7.1	100.0	99.7	2.0	2.0	1	3.2	3.1	
					Bouom	11.0	25.8 25.8	27.5 26.2	27.0	7.0 7.0			99.3 99.6	00.7	2.0 3.2	2.0		3.0 4.2	0.1	
					Surface	1.0	25.8	26.1	26.2	7.1	7.0	6.9	100.1	99.9	3.1	3.1		4.4	4.3	
14-May-12	0825-0840	30/Cloudy	Small Wave	15.8	Middle	7.9	25.6 25.7	27.8 27.8	27.8	6.7 6.7	6.7	0.5	94.4 95.0	94.7	3.1	3.0	3.2	4.0	4.0	4.3
					Bottom	14.8	25.6	28.1	28.1	6.5	6.5	6.5	92.0	91.8	3.4	3.5	1	4.6	4.7	1
					Вошот	14.0	25.6	28.1	20.1	6.5	0.5	0.5	91.6	91.0	3.5	3.5		4.8	4.7	
					Surface	1.0	26.5 26.5	25.1 25.1	25.1	7.1 7.1	7.1	7.0	101.5 102.2	101.9	2.7	2.7		3.6 4.0	3.8	
16-May-12	0954-1009	27/Rainy	Great Wave	16.0	Middle	8.0	26.3	26.2	26.2	7.0	7.0	7.0	100.5	100.1	2.8	2.9	2.8	4.0	4.1	4.0
					Dottom	15.0	26.2 26.0	26.1 27.5	27.5	6.9 6.9	6.9	6.0	99.7 98.6	00.4	2.9 2.9	2.0	1	4.2	4.1	1
					Bottom	15.0	26.0	27.4	27.5	6.8	6.8	6.8	98.1	98.4	3.0	3.0		4.2	4.1	<u> </u>
					Surface	1.0	25.4 25.4	25.9 25.9	25.9	7.1 7.1	7.1	7.0	99.7 98.9	99.3	3.2	3.2		4.0	4.2	
18-May-12	1111-1128	26/Drizzle &	Small Wave	16.0	Middle	8.0	25.4	26.4	26.4	6.9	6.9	7.0	97.2	96.9	3.1	3.2	3.3	4.4	4.3	4.4
-		Rainy					25.3 25.3	26.4 26.8		6.9 6.7			96.6 94.4		3.2 3.4		ł	4.2		1
					Bottom	15.0	25.3	26.9	26.9	6.8	6.8	6.8	94.7	94.6	3.5	3.4		4.6	4.6	<u> </u>
					Surface	1.0	26.7 26.7	25.9 25.8	25.9	6.2 6.2	6.2		87.7 87.3	87.5	2.9	2.9		3.8 4.0	3.9	
21-May-12	1225-1240	28/Cloudy	Small Wave	15.8	Middle	7.9	26.1	26.5	26.5	5.9	5.9	6.0	83.7	83.5	3.8	3.7	3.5	4.8	4.8	4.6
,		,					26.0 26.0	26.4 26.8		5.9 5.8			83.2 82.4	-	3.7 3.9		-	4.8 5.2		
					Bottom	14.8	25.9	26.9	26.9	5.8	5.8	5.8	82.0	82.2	3.8	3.8		5.0	5.1	1

	0	Ambient Temp	0	Total		. D II.	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Tu	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		1 ()	Surface	1.0	25.3	25.7	25.8	7.0	7.1	ar ar aga	99.1	99.4	2.2	2.3		3.4 3.6	3.5	arrerage
23-May-12	1326-1343	26/Cloudy	Small Wave	16.2	Middle	8.1	25.3 25.3	25.8 26.0	26.0	7.1 6.8	6.9	7.0	99.6 96.4	96.7	2.5	2.4	2.4	4.0	3.8	3.7
20	1020 10 10	20,0.000		10.2			25.2 25.1	26.0 26.1		6.9 6.8		0.0	97.0 95.2		2.4 2.6			3.6 4.0		"
					Bottom	15.2	25.2 26.3	26.2 26.2	26.2	6.8 6.1	6.8	6.8	95.6 86.5	95.4	2.6 2.2	2.6		3.8 3.4	3.9	
					Surface	1.0	26.4	26.2	26.2	6.1	6.1	6.0	85.9	86.2	2.2	2.2		3.6	3.5	
25-May-12	1325-1342	29/Cloudy	Small Wave	16.0	Middle	8.0	26.4 26.4	26.5 26.6	26.6	5.9 6.0	5.9		84.1 84.5	84.3	2.5 2.5	2.5	2.3	4.0 3.8	3.9	3.6
					Bottom	15.0	26.4 26.3	26.8 26.9	26.9	5.8 5.8	5.8	5.8	82.4 82.8	82.6	2.3	2.4		3.4 3.6	3.5	
					Surface	1.0	26.4 26.4	25.1 25.1	25.1	6.3 6.2	6.3		89.2 88.5	88.9	3.2	3.2		4.4	4.6	
28-May-12	1714-1730	26/Cloudy	Small Wave	16.2	Middle	8.1	26.3	25.4	25.4	6.1	6.1	6.2	86.3	86.1	3.2	3.2	3.3	4.4	4.4	4.6
,		,			Bottom	15.2	26.2 26.2	25.4 25.6	25.6	6.1 5.8	5.9	5.9	85.9 82.9	83.2	3.2 3.3	3.4		4.4	4.7	
							26.2 26.4	25.5 26.3		5.9 6.0		5.9	83.5 86.1		3.4 2.0			4.8 3.0		
					Surface	1.0	26.4 26.4	26.2	26.3	6.1 6.0	6.1	6.0	86.6 85.2	86.4	2.1	2.0		3.2	3.1	
30-May-12	0805-0817	26/Cloudy	Small Wave	16.2	Middle	8.1	26.3	26.6 26.7	26.7	5.9	6.0		84.5	84.9	2.3	2.3	2.2	3.6	3.6	3.4
					Bottom	15.2	26.3 26.3	26.9 26.9	26.9	5.9 5.8	5.8	5.8	83.5 82.9	83.2	2.4	2.4		3.6	3.5	
					Surface	1.0	26.8 26.8	25.8 25.7	25.8	6.7 6.7	6.7		96.8 96.4	96.6	2.8	2.8		3.8 4.0	3.9	
1-Jun-12	0855-0910	29/Cloudy	Great Wave	15.6	Middle	7.8	26.7 26.7	26.3	26.3	6.4	6.4	6.6	92.5	92.7	3.0	3.0	3.0	4.0	4.1	4.2
					Bottom	14.6	26.7	26.2 26.3	26.3	6.4 6.4	6.4	6.4	92.8 92.1	92.3	3.2	3.2		4.2 4.6	4.5	
						1.0	26.6 27.0	26.3 25.9	25.9	6.4	6.8		92.4 99.2	98.5	3.2 2.3	2.4		4.4 3.4		
					Surface		27.0 26.8	25.9 26.4		6.7 6.1		6.4	97.8 89.0		2.4 2.9			3.6 4.0	3.5	
4-Jun-12	1158-1213	29/Cloudy	Small Wave	15.6	Middle	7.8	26.9	26.3	26.4	6.1	6.1		89.2	89.1	3.1	3.0	2.9	4.2	4.1	4.0
					Bottom	14.6	26.7 26.6	26.6 26.6	26.6	6.3 6.4	6.4	6.4	91.9 93.4	92.7	3.4 3.5	3.5		4.4	4.5	
					Surface	1.0	27.1 27.2	25.8 25.9	25.9	6.5 6.5	6.5	6.4	94.9 95.2	95.1	2.6 2.5	2.6		3.8	3.7	
6-Jun-12	1229-1245	29/Fine	Small Wave	15.8	Middle	7.9	27.0 26.9	26.3 26.4	26.4	6.2 6.3	6.3	0.4	90.9 91.8	91.4	3.2	3.2	3.1	4.4	4.2	4.2
					Bottom	14.8	26.8 26.8	26.5 26.6	26.6	6.1 6.2	6.2	6.2	89.3 90.3	89.8	3.7	3.7	1	4.6	4.7	
					Surface	1.0	28.0	27.3	27.3	6.2	6.2		92.2	92.0	1.2	1.2		2.2	2.3	
8-Jun-12	1400-1413	31/Fine	Calm	19.6	Middle	9.8	28.0 27.8	27.3 27.3	27.3	6.2 6.2	6.2	6.2	91.7 90.9	90.8	1.3 1.5	1.5	1.5	2.4	2.8	2.6
0-Juli-12	1400-1413	31/1 1116	Callii	13.0			27.9 27.7	27.3 27.3		6.1 6.1			90.6 89.8		1.6 1.6		1.5	2.8		2.0
					Bottom	18.6	27.7	27.4	27.4	6.1	6.1	6.1	90.4	90.1	2.0	1.8		3.0	2.7	

		Ambient Temp		Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Corrainon			Surface	1.0	27.9	27.6	27.6	6.3 6.2	6.3	avolugo	93.5	93.1	1.5 1.5	1.5	a.o.ago	2.6	2.7	avo.ago
11-Jun-12	1625-1641	30/Cloudy	Calm	19.4	Middle	9.7	28.0 28.0	27.5 27.6	27.6	6.1	6.1	6.2	92.6 91.0	91.2	1.8	1.8	1.9	2.8	2.8	2.9
	1920 1011	00,0.000					28.0 27.9	27.6 27.8		6.1 6.0		6.0	91.4 89.9		1.8 2.3		1	2.8 3.4		
					Bottom	18.4	28.0 27.3	27.8 25.3	27.8	6.0 6.11	6.0	6.0	89.4 89.3	89.7	2.3 2.77	2.3		3.2 4.0	3.3	
					Surface	1.0	27.3	25.3	25.3	6.08	6.10	6.03	88.9	89.1	2.84	2.81		4.0	4.0	
13-Jun-12	0725-0740	29/Rainy	Small Wave	16.4	Middle	8.2	26.9 27.0	26.7 26.6	26.7	5.94 5.97	5.96		86.7 87.2	87.0	3.12 3.04	3.08	3.02	4.2	4.1	4.1
					Bottom	15.4	26.9 27.0	27.0 26.9	27.0	5.72 5.68	5.70	5.70	83.5 82.9	83.2	3.14 3.18	3.16		4.2 4.4	4.3	
					Surface	1.0	27.7 27.6	27.2 27.3	27.3	6.2 6.2	6.2		91.6 91.1	91.4	1.2 1.3	1.3		2.4 2.8	2.6	
15-Jun-12	0925-0943	28/Cloudy	Great Wave	19.6	Middle	9.8	27.4	27.7	27.7	6.1	6.1	6.2	89.7 89.3	89.5	1.5	1.6	1.5	2.8	2.9	2.8
					Bottom	18.6	27.2	27.9	27.9	6.0	6.0	6.0	87.6	87.4	1.7	1.7	-	2.8	2.9	
					Surface	1.0	27.2 27.7	27.9 27.2	27.2	5.9 6.2	6.2		87.2 92.2	92.4	1.7 1.6	1.7		3.0 2.8	2.8	
							27.7 27.7	27.2 27.6		6.3 6.1		6.2	92.6 90.4		1.7 2.0			2.8		
18-Jun-12	1055-1112	28/Cloudy	Great Wave	19.8	Middle	9.9	27.6 27.6	27.7 27.8	27.7	6.1 5.9	6.1		89.8 87.7	90.1	2.0	2.0	2.0	3.0	2.9	3.1
					Bottom	18.8	27.6	27.8	27.8	5.9	5.9	5.9	87.2	87.5	2.5	2.5		3.8	3.7	
					Surface	1.0	27.6 27.6	27.2 27.2	27.2	6.3 6.3	6.3	6.2	92.8 92.2	92.5	1.2	1.2		2.2	2.3	
20-Jun-12	1227-1245	30/Fine	Great Wave	19.6	Middle	9.8	27.4 27.5	27.6 27.7	27.7	6.1 6.1	6.1	0.2	89.7 90.1	89.9	1.3 1.4	1.3	1.5	2.4	2.5	2.6
					Bottom	18.6	27.1 27.1	28.2 28.2	28.2	5.9 6.0	6.0	6.0	87.3 87.7	87.5	2.1 2.1	2.1	1	3.0	3.1	
					Surface	1.0	27.8	26.6	26.6	5.9	6.0		87.2	87.5	3.1	3.2		4.2	4.3	
22-Jun-12	1325-1340	28/Drizzle	Small Wave	15.8	Middle	7.9	27.8 27.5	26.5 26.8	26.8	6.0 5.7	5.7	5.8	87.8 84.1	83.9	3.2 3.4	3.4	3.3	4.4	4.6	4.5
0	1020 10 10	20/21.22.0	Januar Trave		Bottom	14.8	27.4 27.3	26.7 27.0	27.1	5.7 5.8	5.8	5.8	83.6 84.5	84.7	3.4 3.4	3.4		4.4 4.6	4.5	
							27.3 28.2	27.1 26.5		5.8 5.7		5.0	84.8 84.3		3.4 3.2			4.4 4.4		
					Surface	1.0	28.3	26.5	26.5	5.7	5.7	5.7	83.5	83.9	3.2	3.2		4.4	4.4	
25-Jun-12	1527-1543	29/Cloudy	Small Wave	16.0	Middle	8.0	28.1 28.1	26.7 26.8	26.8	5.7 5.6	5.6		83.0 82.7	82.9	3.6 3.5	3.6	3.4	4.8	4.7	4.6
					Bottom	15.0	28.0 28.0	27.0 26.9	27.0	5.6 5.6	5.6	5.6	82.5 81.8	82.2	3.5 3.6	3.5		4.6 4.8	4.7	
					Surface	1.0	28.4 28.4	25.6 25.5	25.6	5.9 5.8	5.9	_	85.4 84.7	85.1	1.5 1.6	1.6		2.6 2.8	2.7	
27-Jun-12	1740-1758	30/Fine	Small Wave	19.4	Middle	9.7	28.3	25.5 25.5	25.5	5.8	5.8	5.8	84.1	83.8	1.4	1.4	1.8	2.4	2.5	2.9
					Bottom	18.4	27.7	25.8	25.9	5.6	5.6	5.6	81.6	81.9	2.4	2.4	1	3.4	3.5	
					20		27.6	25.9	_0.0	5.7	1	1	82.1		2.4			3.6	"."	

	0	Ambient Temp	0	Total		. D II.	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Tı	urbidity (NT	·U)	Susper	ded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
				, , ,	Surface	1.0	28.6	27.7 27.8	27.8	6.4 6.3	6.3		99.1 94.5	96.8	1.3 1.4	1.4		2.4	2.6	
29-Jun-12	0812-0828	28/Fine	Small Wave	19.4	Middle	9.7	28.3	28.2	28.2	6.2	6.1	6.2	91.8	91.6	1.2	1.2	1.5	2.4	2.4	2.7
					Bottom	18.4	28.2	28.1	28.5	6.0	6.0	6.0	91.3 88.9	89.2	2.0	2.0		3.0	3.0	
					Surface	1.0	27.9 28.1 28.0	28.5 27.4	27.5	6.0 6.2 6.2	6.2		89.5 91.5	91.2	2.1 1.6	1.6		2.4	2.6	
4-Jul-12	1157-1214	32/Fine	Small Wave	19.2	Middle	9.6	27.8	27.5 27.9	28.0	6.1	6.1	6.1	90.8	89.8	1.6	1.4	1.7	2.8	2.8	2.8
					Bottom	18.2	27.7	28.0	28.1	6.1 5.9	5.8	5.8	89.5 86.5	86.3	1.5 2.0	1.9		3.0	2.9	
					Surface	1.0	27.6 27.2	28.0	24.2	5.8	5.4		86.0 77.0	77.3	1.9	2.2		2.8 3.6	3.4	
6-Jul-12	1410-1422	30/Cloudy	Calm	19.4	Middle	9.7	27.2 27.1	24.2 24.3	24.3	5.4 5.6	5.6	5.5	77.6 81.0	80.8	2.2	2.2	3.3	3.2	3.3	4.3
		,			Bottom	18.4	27.1 27.1	24.3 24.4	24.4	5.6 5.6	5.6	5.6	80.6 80.1	80.3	2.3 5.4	5.5		3.4 6.0	6.1	
					Surface	1.0	27.1 28.0	24.4 24.8	24.9	5.6 5.6	5.6	0.0	80.4 82.2	81.9	5.6 2.3	2.4		6.2 3.4	3.5	
9-Jul-12	1559-1617	32/Fine	Calm	18.0	Middle	9.0	27.9 27.9	24.9 24.9	24.9	5.6 5.5	5.5	5.6	81.6 80.3	80.2	2.4 2.7	2.7	3.2	3.6 3.6	3.7	4.1
9-Jul-12	1559-1617	32/Fille	Callii	10.0			27.9 27.7	24.9 25.0		5.5 5.4		F 2	80.0 78.3		2.8 4.4		3.2	3.8 5.0		4.1
					Bottom	17.0	27.8 28.0	25.0 25.3	25.0	5.3 6.1	5.3	5.3	77.7 90.9	78.0	4.4 2.0	4.4		5.2 2.8	5.1	
					Surface	1.0	28.1 27.7	25.2 25.7	25.3	6.2	6.1	6.1	91.3 88.8	91.1	2.1 2.2	2.0		3.2	3.0	
11-Jul-12	1628-1645	33/Fine	Small Wave	19.6	Middle	9.8	27.8 27.4	25.7 26.2	25.7	6.0 5.9	6.0		89.2 87.9	89.0	2.2	2.2	2.2	3.4	3.3	3.3
					Bottom	18.6	27.3	26.3 24.2	26.3	5.9 5.7	5.9	5.9	87.5 83.6	87.7	2.3	2.3		3.6	3.5	
					Surface	1.0	28.2	24.3	24.3	5.7	5.7	5.6	82.8 79.1	83.2	2.8	2.8		4.0	3.9	
13-Jul-12	0824-0841	29/Cloudy	Small Wave	19.2	Middle	9.6	27.8	24.3	24.3	5.4 5.5	5.5		79.8	79.5	3.0	3.0	3.0	4.0	4.0	4.1
					Bottom	18.2	27.6 27.5	24.6	24.7	5.4	5.4	5.4	78.3 77.8	78.1	3.2	3.2		4.4	4.3	
					Surface	1.0	27.8 27.9	23.6 23.6	23.6	5.9 6.0	6.0	5.9	85.5 86.2	85.9	3.4 3.4	3.4		4.6	4.5	
16-Jul-12	0954-1012	30/Fine	Calm	19.4	Middle	9.7	27.8 27.8	23.8 23.9	23.9	5.8 5.8	5.8		83.5 82.9	83.2	3.6	3.6	3.7	4.4	4.5	4.6
					Bottom	18.4	27.7 27.7	24.0 24.1	24.1	5.5 5.5	5.5	5.5	79.3 79.8	79.6	3.9 4.0	3.9		4.8 5.0	4.9	
					Surface	1.0	27.9 28.0	23.5 23.4	23.5	6.0 6.1	6.1	6.0	88.1 88.9	88.5	3.1 3.2	3.2		4.2	4.3	
18-Jul-12	1123-1140	28/Cloudy	Small Wave	19.0	Middle	9.5	27.6 27.7	23.7 23.6	23.7	5.9 5.9	5.9	0.0	86.4 85.8	86.1	3.2 3.3	3.3	3.3	4.4 4.2	4.3	4.4
					Bottom	18.0	27.3 27.4	24.0 23.9	24.0	5.6 5.6	5.6	5.6	82.1 81.7	81.9	3.6 3.6	3.6		4.6 4.6	4.6	

	0	Ambient Temp	0	Total	M	D	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorir (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	28.4	23.7	23.8	6.0	6.1		88.1	88.4	3.3 3.4	3.3		4.2	4.3	
20-Jul-12	1224-1241	32/Fine	Small Wave	19.2	Middle	9.6	28.4 28.2	23.8 24.0	24.0	6.1 5.9	5.9	6.0	88.6 86.4	86.1	3.4	3.4	3.5	4.4 4.4	4.5	4.5
20 001 12	12211211	02/1 1110	Cinali Wave	10.2			28.3 28.0	24.0 24.3		5.9 6.0			85.8 87.0		3.5 3.6		0.0	4.6 4.6		1.0
					Bottom	18.2	27.9 26.6	24.4	24.4	6.0	6.0	6.0	87.3	87.2	3.6	3.6		4.8	4.7	
					Surface	1.0	26.6	29.1 29.2	29.2	5.6 5.7	5.6	5.6	79.2 79.8	79.5	2.6 2.7	2.6		3.4 3.6	3.5	
25-Jul-12	1647-1710	26/Rainy	Small Wave	19.8	Middle	9.9	26.5 26.5	29.4 29.5	29.5	5.5 5.6	5.5	0.0	77.6 78.2	77.9	3.0	3.0	2.9	4.0	4.0	3.9
					Bottom	18.8	26.4 26.4	29.8 29.8	29.8	5.3 5.3	5.3	5.3	74.8 75.1	75.0	3.1 3.2	3.1	1	4.2 4.4	4.3	
					Surface	1.0	26.5	25.3	25.3	6.0	6.1		86.9	87.1	3.5	3.5		4.6	4.7	
07 1.1 40	4750 4040	00/D = i	C	10.0			26.5 26.2	25.3 25.8		6.1 5.9		6.0	87.3 85.2		3.5 3.7	3.7	2.7	4.8	4.7	4.0
27-Jul-12	1756-1813	28/Rainy	Great Wave	19.6	Middle	9.8	26.3 26.0	25.7 26.1	25.8	5.9 5.8	5.9		84.8 83.2	85.0	3.7 3.9	3.7	3.7	4.6 4.8	4.7	4.8
					Bottom	18.6	26.0	26.1	26.1	5.8	5.8	5.8	83.7	83.5	3.9	3.9		5.0	4.9	
					Surface	1.0	27.5 27.5	29.9 29.9	29.9	5.8 5.8	5.8	5.7	85.4 84.8	85.1	3.5 3.5	3.5		4.6 4.4	4.5	
30-Jul-12	0925-0940	30/Sunny	Small Wave	15.8	Middle	7.9	27.1 27.1	30.1 30.1	30.1	5.7 5.6	5.7	5.7	83.1 82.7	82.9	3.8 3.8	3.8	3.7	4.8	4.8	4.7
					Bottom	14.8	27.1	30.3	30.3	5.6	5.6	5.6	82.1 81.7	81.9	3.7	3.6		4.8	4.7	
					Surface	1.0	27.1 27.6	29.7	29.7	5.6 5.8	5.8		84.5	84.8	3.6 3.4	3.5		4.6 4.6	4.7	
4.4 . 40	4400 4444	00/5	0 !! \\	45.4			27.7 27.5	29.7 29.8		5.8 5.6		5.7	85.1 82.5		3.5 3.6		0.0	4.8		4.7
1-Aug-12	1126-1141	30/Fine	Small Wave	15.4	Middle	7.7	27.5 27.3	29.9 30.1	29.9	5.7 5.6	5.6		83.0 81.8	82.8	3.6 3.7	3.6	3.6	4.6 4.8	4.5	4.7
					Bottom	14.4	27.2	30.0	30.1	5.5	5.6	5.6	81.1	81.5	3.8	3.8		5.0	4.9	
					Surface	1.0	28.1 28.2	29.6 29.6	29.6	5.9 5.9	5.9	5.9	87.6 88.0	87.8	3.5 3.5	3.5		4.4	4.6	
3-Aug-12	1258-1315	33/Cloudy	Small Wave	15.6	Middle	7.8	27.9 27.9	29.9 29.8	29.9	5.9 5.8	5.8	5.9	86.8 85.9	86.4	3.7 3.7	3.7	3.7	4.8 4.8	4.8	4.8
					Bottom	14.6	27.6	30.2	30.2	5.7	5.7	5.7	84.6	84.8	3.8	3.8	1	5.0	5.0	
					Surface	1.0	27.7 27.5	30.2 25.8	25.8	5.7 4.8	4.8		84.9 70.6	70.4	3.8 1.2	1.2		5.0 2.4	2.4	
0.440	1010 1055	00/01		04.5			27.4 26.7	25.8 26.2		4.8 4.4		4.6	70.1 63.5		1.2 1.9			2.4 3.2		
6-Aug-12	1342-1355	33/Cloudy	Small Wave	21.5	Middle	10.8	26.8 25.7	26.1 27.1	26.2	4.4 4.0	4.4		63.0 56.6	63.3	2.0	2.0	2.5	3.2 5.2	3.2	3.6
					Bottom	20.5	25.7	27.1	27.1	4.0	4.0	4.0	57.1	56.9	4.4	4.3		5.4	5.3	
					Surface	1.0	27.7 27.8	26.4 26.3	26.4	5.6 5.7	5.7	F 0	81.8 82.4	82.1	2.5 2.5	2.5		3.6 3.6	3.6	
8-Aug-12	1458-1514	33/Fine	Small Wave	18.6	Middle	9.3	27.5 27.4	26.6 26.6	26.6	5.6 5.6	5.6	5.6	81.1 80.6	80.9	2.7 2.7	2.7	2.7	4.0 3.8	3.9	3.8
					Bottom	17.6	27.3	27.0	27.1	5.5	5.5	5.5	80.3	80.0	2.9	2.9	1	4.0	3.9	
	1						27.3	27.1		5.5	1	ĺ	79.7		2.9			3.8		

		Ambient Temp		Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	Ū)	Susper	nded Solids	s (mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		-1- ()	Surface	1.0	28.3	26.3	26.4	5.8	5.8	avolugo	85.4	85.1	2.6	2.6	a. o. ago	3.6	3.8	avolugo
10 Aug 12	1556-1613	33/Cloudy	Small Wave	18.6	Middlo	9.3	28.3 28.0	26.4 26.7	26.7	5.7 5.6	5.6	5.7	84.8 82.6	82.3	2.6 2.7	2.7	2.8	4.0 3.6	3.7	3.8
10-Aug-12	1550-1015	33/Cloudy	Small Wave	10.0	Middle	9.3	28.0 27.8	26.7 27.0	20.7	5.5 5.3	5.0		82.0 78.9	02.3	2.8 2.9	2.1	2.0	3.8 3.8	3.7	3.0
					Bottom	17.6	27.7	27.0	27.0	5.4	5.4	5.4	79.5	79.2	2.9	2.9		4.0	3.9	
					Surface	1.0	27.7 27.7	25.3 25.3	25.3	6.0 6.1	6.0	0.0	87.4 87.7	87.6	2.6 2.6	2.6		3.6	3.6	
13-Aug-12	0928-0945	27/Cloudy	Small Wave	18.6	Middle	9.3	27.5 27.5	25.7 25.8	25.8	5.9 5.9	5.9	6.0	85.8 85.4	85.6	2.9 3.0	2.9	2.9	4.0 4.0	4.0	3.9
					Bottom	17.6	27.2	26.2	26.3	5.7	5.7	5.7	82.8	82.6	3.1	3.1	1	4.0	4.1	
							27.3 28.3	26.3 27.5		5.7 6.0			82.4 86.8		3.1 2.4			4.2 3.4		
					Surface	1.0	28.2 28.2	27.6 27.6	27.6	5.9 5.9	5.9	5.9	86.2 85.4	86.5	2.3 2.6	2.4		3.2 3.6	3.3	
15-Aug-12	1212-1230	31/Sunny	Calm	19.6	Middle	9.8	28.2	27.6	27.6	5.8	5.8		84.3	84.9	2.6	2.6	2.6	3.6	3.6	3.6
					Bottom	18.6	27.9 27.9	27.7 27.7	27.7	5.6 5.7	5.6	5.6	82.0 82.6	82.3	2.9	2.9		3.8 4.0	3.9	
					Surface	1.0	27.7 27.8	26.8 26.9	26.9	6.1 6.1	6.1		87.7	88.1	2.6 2.5	2.5		3.6 3.6	3.6	
17-Aug-12	1158-1215	29/Cloudy	Great Wave	19.4	Middle	9.7	27.4	27.0	27.0	6.0	6.0	6.0	88.4 87.1	86.8	2.4	2.4	2.6	3.6	3.6	3.7
		20,0.0000	J. Sai Trais				27.5 27.3	27.0 27.2		6.0 5.8		5.0	86.4 84.6		2.5 2.8			3.6 3.8		
					Bottom	18.4	27.2 28.0	27.1 25.7	27.2	5.9 6.1	5.9	5.9	85.4 89.2	85.0	2.8 3.0	2.8		4.0 3.8	3.9	
					Surface	1.0	28.0	25.7	25.7	6.1	6.1	6.0	88.9	89.1	3.0	3.0		4.0	3.9	
20-Aug-12	1343-1401	32/Fine	Small Wave	18.4	Middle	9.2	27.7 27.7	26.1 26.1	26.1	5.9 5.9	5.9		86.6 86.0	86.3	3.1	3.1	3.1	4.4	4.2	4.1
					Bottom	17.4	27.4 27.4	26.6 26.5	26.6	5.8 5.7	5.8	5.8	84.8 84.2	84.5	3.1 3.1	3.1	1	4.0	4.1	
					Surface	1.0	28.0	29.4	29.5	5.5	5.6		79.7	80.1	2.9	2.9		3.8	4.1	
00.4.40	1500 1500	00/01		40.0			28.0 27.9	29.5 29.6		5.6 5.4		5.5	80.4 78.0		2.9 3.0			4.4		
22-Aug-12	1503-1520	32/Cloudy	Calm	19.2	Middle	9.6	27.8	29.7	29.7	5.4	5.4		78.3	78.2	3.0	3.0	3.1	4.0	4.0	4.1
					Bottom	18.2	27.7 27.7	30.0 30.0	30.0	5.2 5.2	5.2	5.2	75.3 74.5	74.9	3.3 3.3	3.3		4.4	4.3	
					Surface	1.0	27.9 27.9	27.4 27.3	27.4	5.9 5.9	5.9		87.3 86.9	87.1	2.3	2.3		3.4	3.5	
24-Aug-12	1624-1641	33/Fine	Small Wave	19.6	Middle	9.8	27.6	27.8	27.8	5.8 5.8	5.8	5.9	85.6	85.4	2.5 2.5	2.5	2.5	3.6 3.6	3.6	3.6
					Bottom	18.6	27.5 27.2	27.8 28.2	28.2	5.7	5.7	5.7	85.1 83.8	83.6	2.6	2.6	1	3.6	3.7	1
							27.3 27.7	28.2 27.2		5.7 6.1		J.,	83.3 88.9		2.6 2.2			3.8 3.2		
					Surface	1.0	27.8	27.2 27.7	27.2	6.0	6.0	6.0	88.3	88.6	2.3	2.3		3.2 3.6	3.2	
27-Aug-12	0855-0912	29/Fine	Calm	18.4	Middle	9.2	27.5 27.5	27.6	27.7	5.9 5.9	5.9		86.6 86.0	86.3	2.4	2.4	2.4	3.4	3.5	3.5
					Bottom	17.4	27.3 27.2	28.2 28.2	28.2	5.8 5.7	5.7	5.7	84.7 84.1	84.4	2.5 2.6	2.5		3.6	3.7	

	l	Ambient Temp		Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	Ū)	Susper	nded Solids	s (mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		(,	Surface	1.0	28.1	27.3	27.3	6.0	6.0	avorago	88.7	88.4	2.2	2.2	avorago	3.2	3.4	avorago
29-Aug-12	1025-1042	29/Fine	Small Wave	18.0	Middle	9.0	28.0 27.7	27.3 27.5	27.6	6.0 5.9	5.9	5.9	88.0 86.5	86.3	2.2	2.3	2.3	3.6 3.6	3.5	3.5
29-Aug-12	1023-1042	23/1 1116	Omaii wave	10.0			27.8 27.6	27.6 27.8		5.9 5.7			86.1 84.5		2.3		2.0	3.4 3.6		0.0
					Bottom	17.0	27.5	27.7	27.8	5.0	5.4	5.4	83.9	84.2	2.5	2.5		3.4	3.5	
					Surface	1.0	27.5 27.5	26.3 26.3	26.3	5.3 5.3	5.3	5.3	77.2 76.4	76.8	2.5 2.5	2.5		3.6 4.0	3.8	
31-Aug-12	1246-1305	29/Fine	Calm	18.8	Middle	9.4	27.4 27.4	26.5 26.6	26.6	5.2 5.2	5.2	0.0	75.3 76.0	75.7	2.2	2.2	2.5	3.2	3.2	3.6
					Bottom	17.8	27.2 27.3	26.7 26.8	26.8	5.0 5.0	5.0	5.0	72.7 73.1	72.9	2.8	2.9	1	3.8 4.0	3.9	1
					Surface	1.0	29.0	24.7	24.8	6.9	7.0		102.9	103.2	2.1	2.1		2.8	3.0	
2 Can 12	1320-1332	32/Fine	Cmall Mayo	19.0	Middle	9.5	28.7 27.9	24.8 25.2	25.2	7.0 5.1	5.1	6.0	103.5 74.9	75.2	2.1 4.0	4.0	3.0	3.2 4.8	4.8	3.9
3-Sep-12	1320-1332	32/Fille	Small Wave	19.0			28.0 27.8	25.1 25.2		5.1 4.8			75.4 70.6		4.0 2.9		3.0	4.8 3.8		3.9
					Bottom	18.0	27.7	25.3	25.3	4.7	4.8	4.8	69.9	70.3	2.9	2.9		4.0	3.9	
					Surface	1.0	27.9 27.9	27.3 27.3	27.3	6.1 6.1	6.1	6.0	89.4 90.3	89.9	2.6 2.6	2.6		3.2	3.4	
5-Sep-12	1425-1442	31/Fine	Small Wave	18.4	Middle	9.2	27.6 27.6	27.7 27.7	27.7	5.9 5.9	5.9	0.0	87.2 86.6	86.9	2.4	2.5	2.6	3.6	3.6	3.6
					Bottom	17.4	27.2 27.3	28.3 28.2	28.3	5.7 5.7	5.7	5.7	84.1 84.5	84.3	2.7	2.7		3.8	3.9	
					Surface	1.0	27.5	27.3	27.4	6.0	6.1		88.9	89.2	2.7	2.7		3.8	3.7	
7-Sep-12	1454-1511	30/Cloudy	Small Wave	18.2	Middle	9.1	27.6 27.3	27.4 27.5	27.6	6.1 5.9	5.9	6.0	89.5 87.2	87.6	2.7 2.5	2.6	2.7	3.6 3.6	3.6	3.7
7-3ep-12	1454-1511	30/Cloudy	Siliali Wave	10.2	Middle		27.2 27.1	27.6 28.0		6.0 5.8	5.9		88.0 85.5		2.6 2.9		2.1	3.6 4.0		3.1
					Bottom	17.2	27.1	28.1	28.1	5.8	5.8	5.8	84.8	85.2	2.9	2.9		3.8	3.9	
					Surface	1.0	27.8 27.7	27.6 27.6	27.6	6.0 6.1	6.0	6.0	88.8 89.5	89.2	2.6 2.6	2.6		3.6 4.0	3.8	
10-Sep-12	0810-0827	28/Fine	Small Wave	18.4	Middle	9.2	27.4 27.4	27.9 28.0	28.0	5.9 5.9	5.9	0.0	87.2 86.7	87.0	2.8	2.9	2.8	4.4	4.2	4.0
					Bottom	17.4	27.1 27.1	28.3 28.3	28.3	5.7 5.7	5.7	5.7	84.1 84.4	84.3	3.0 3.1	3.0	1	4.0	4.1	1
					Surface	1.0	27.6	26.8	26.8	6.5	6.5		94.4	94.1	2.7	2.7		3.6	3.8	
12 Son 12	0930-0947	29/Fine	Calm	19.2	Middle	9.6	27.7 27.6	26.8 26.9	27.0	6.4 6.1	6.1	6.3	93.8 89.2	88.9	2.7 3.0	3.0	3.0	4.0	4.1	4.1
12-Sep-12	0930-0947	29/Fille	Callii	19.2			27.6 27.4	27.0 27.1		6.1 5.8			88.6 85.1		3.0 3.1		3.0	4.2 4.2		4.1
					Bottom	18.2	27.5	27.2	27.2	5.9	5.8	5.8	85.6	85.4	3.2	3.2		4.4	4.3	
					Surface	1.0	27.9 27.8	26.8 26.9	26.9	6.5 6.5	6.5	6.3	94.2 94.8	94.5	2.7 2.8	2.8]	3.6 4.0	3.8	
14-Sep-12	1145-1202	29/Fine	Small Wave	19.4	Middle	9.7	27.7 27.7	27.1 27.1	27.1	6.2 6.2	6.2	0.5	90.8 90.2	90.5	3.0	3.0	3.0	4.0	4.1	4.1
					Bottom	18.4	27.6	27.3	27.3	5.9	5.9	5.9	86.4	86.1	3.3	3.4	1	4.4	4.5	
	1						27.6	27.3		5.9			85.8		3.4			4.6]	<u> </u>

	Camalina	Ambient Temp	0	Total	Manitania	n Danth	Water	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)	Dissolve	d Oxygen	Tu	urbidity (NT	-U)	Susper	nded Solids	s (mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorir (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition			Surface	1.0	27.7	26.9	26.9	6.2	6.2	avolugo	90.7	90.4	2.7	2.7	avo.ago	3.4	3.5	avolugo
					Curiaco		27.7 27.6	26.9 27.0		6.2 6.1	0.2	6.2	90.1 89.5		2.7 2.9		ł	3.6 4.0	0.0	
17-Sep-12	1254-1311	29/Fine	Small Wave	19.2	Middle	9.6	27.5	27.1	27.1	6.1	6.1		89.0	89.3	2.9	2.9	2.9	4.0	4.0	3.9
					Bottom	18.2	27.4 27.4	27.2 27.3	27.3	5.9 5.9	5.9	5.9	86.1 85.7	85.9	3.1	3.1]	4.2	4.2	
					Surface	1.0	26.6	26.7	26.8	6.4	6.4		93.3	93.1	2.9	2.9		3.8	3.9	
					Ourrace	1.0	26.7 26.5	26.8 26.9	20.0	6.4 6.2	0.4	6.3	92.8 90.9	33.1	3.0 3.1	2.5		4.0	3.3	
19-Sep-12	1355-1412	28/Cloudy	Calm	19.0	Middle	9.5	26.5	26.9	26.9	6.2	6.2		90.9	90.6	3.2	3.2	3.2	4.4	4.4	4.3
					Bottom	18.0	26.3 26.4	27.0 27.1	27.1	5.9 5.9	5.9	5.9	86.7 86.0	86.4	3.5 3.5	3.5		4.6 4.8	4.7	
					Surface	1.0	27.7	25.6	25.6	6.1	6.0		89.0	89.1	2.5	2.5		3.2	3.4	
					Surface	1.0	27.8 27.5	25.6 26.0	23.0	6.0 5.9	0.0	5.9	89.2 86.3	09.1	2.6 2.7	2.5		3.6 4.0	3.4	
21-Sep-12	1525-1542	30/Cloudy	Small Wave	19.6	Middle	9.8	27.4	26.0	26.0	5.8	5.9		85.7	86.0	2.8	2.7	2.8	3.6	3.8	3.8
					Bottom	18.6	27.1 27.1	26.3 26.4	26.4	5.7 5.7	5.7	5.7	83.7 83.4	83.6	3.1 3.1	3.1]	4.0	4.1	
					Surface	1.0	27.1	26.5	26.5	6.3	6.3		91.5	92.0	2.6	2.6		3.6	3.8	
					Ourrace	1.0	27.6 27.2	26.4 26.9	20.0	6.3 6.1	0.5	6.2	92.5 89.2	32.0	2.6 2.9	2.0		4.0	3.0	
24-Sep-12	1825-1842	28/Cloudy	Small Wave	18.4	Middle	9.2	27.3	26.9	26.9	6.0	6.1		88.6	88.9	2.9	2.9	2.8	4.0	4.0	4.0
					Bottom	17.4	27.0 26.9	27.2 27.2	27.2	5.8 5.8	5.8	5.8	85.1 85.8	85.5	3.0	3.1]	4.0	4.1	
					Surface	1.0	27.5	26.3	26.4	6.2	6.2		91.0	90.8	2.7	2.7		3.6	3.8	
					Ourlace	1.0	27.6 27.3	26.4 26.8	20.4	6.2	0.2	6.1	90.6 89.7	30.0	2.7 2.8	2.1	1	4.0	3.0	
26-Sep-12	0925-0943	28/Cloudy	Small Wave	18.6	Middle	9.3	27.2	26.7	26.8	6.1 6.1	6.1		89.2	89.5	2.9	2.9	2.9	4.0	4.0	4.0
					Bottom	17.6	27.0 27.0	27.2 27.1	27.2	5.9 5.9	5.9	5.9	86.9 86.2	86.6	3.3	3.2]	4.2	4.1	
					Surface	1.0	27.7	26.5	26.5	5.8	5.8		85.9	85.8	3.1	3.1		4.0	4.1	
					Surface	1.0	27.7 27.3	26.5 26.9	20.5	5.8 5.6	3.0	5.7	85.6 83.3	05.0	3.1 3.7	3.1		4.0	4.1	
28-Sep-12	1025-1040	29/Sunny	Small Wave	16.2	Middle	8.1	27.3	27.0	27.0	5.6	5.6		82.7	83.0	3.6	3.7	3.5	4.8	4.8	4.5
					Bottom	15.2	27.2	26.9	26.9	5.6 5.6	5.6	5.6	82.5 81.9	82.2	3.8	3.7	1	4.6	4.6	
					Curfoss	1.0	27.2 27.5	26.9 27.7	27.8	5.9	5.0		86.3	86.5	3.7 2.2	2.2		4.6 3.0	2.1	
					Surface	1.0	27.6	27.8	21.0	5.9	5.9	5.8	86.7	00.5	2.2	2.2		3.2	3.1	
3-Oct-12	1325-1343	29/Fine	Small Wave	18.8	Middle	9.4	27.4 27.4	27.9 28.0	28.0	5.7 5.7	5.7		84.2 83.8	84.0	2.5 2.5	2.5	2.5	3.6 3.6	3.6	3.5
					Bottom	17.8	27.3	28.2	28.2	5.5	5.6	5.6	81.6	81.9	2.7	2.7		3.8	3.8	
					Surface	1.0	27.2 27.7	28.1 27.8	27.8	5.6 5.9	5.8	 	82.1 86.2	85.9	2.8	2.2	 	3.8	3.1	
					Surface	1.0	27.8	27.7	21.0	5.8	3.0	5.8	85.6	00.9	2.3	۷.۷		3.2	3.1	
5-Oct-12	1445-1502	28/Fine	Small Wave	18.6	Middle	9.3	27.5 27.5	27.9 28.0	28.0	5.7 5.7	5.7		83.9 83.3	83.6	2.4	2.4	2.4	3.6	3.6	3.5
					Bottom	17.6	27.3	28.2	28.2	5.5	5.5	5.5	81.4	81.2	2.7	2.7	1	3.8	3.8	
	1				ĺ		27.2	28.1		5.5	I		80.9		2.7		I	3.8		

	0	Ambient Temp	0	Total	N4 7 2 .	. D	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Tı	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorir (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		2 3 5 1 1 1 1 1	Surface	1.0	27.5	26.7	26.8	5.7	5.6	average	82.9	82.6	3.0	3.0	average	3.6	3.8	average
					Surface	1.0	27.4	26.8	20.0	5.6	3.0	5.6	82.3	02.0	3.0	3.0		4.0	3.0	
8-Oct-12	0639-0656	26/Cloudy	Small Wave	18.4	Middle	9.2	27.4 27.3	26.9 26.9	26.9	5.6 5.6	5.6		82.0 81.3	81.7	3.1	3.1	3.1	4.4	4.2	4.1
					Bottom	17.4	27.2	27.1	27.1	5.5	5.5	5.5	80.2	80.4	3.3	3.3	1	4.2	4.3	
					0 (4.0	27.2 27.4	27.0 26.6	00.0	5.5 5.6			80.6 82.5	00.0	3.3 3.1	0.4		4.4	4.0	
					Surface	1.0	27.3	26.6	26.6	5.7	5.7	5.6	83.3	82.9	3.1	3.1		4.4	4.2	
10-Oct-12	0755-0812	25/Fine	Small Wave	18.2	Middle	9.1	27.3 27.2	26.8 26.7	26.8	5.6 5.6	5.6		82.2 81.5	81.9	3.2	3.2	3.2	4.4	4.4	4.4
					Bottom	17.2	27.1	27.0	27.0	5.5	5.5	5.5	79.9	80.1	3.4	3.4	1	4.4	4.5	
					0 6	4.0	27.0 27.5	26.9 26.8	00.0	5.5 5.6			80.3 82.0	04.4	3.4 3.2	0.0		4.6 4.0	4.0	
					Surface	1.0	27.4	26.8	26.8	5.5	5.5	5.4	80.8	81.4	3.3	3.2	1	4.4	4.2	
12-Oct-12	0856-0914	27/Fine	Small Wave	18.7	Middle	9.4	27.4 27.4	26.9 26.9	26.9	5.3 5.2	5.3		77.3 77.0	77.2	3.4	3.4	3.3	4.4	4.5	4.3
					Bottom	17.7	27.3	26.9	27.0	5.1	5.1	5.1	74.7	74.5	3.4	3.4	1	4.2	4.3	
					Confess	4.0	27.3 27.6	27.0 26.4	20.5	5.1 5.7	F 0		74.2 83.1	00.7	3.4 3.1	2.0		4.4 4.0	4.0	
					Surface	1.0	27.5	26.5	26.5	5.6	5.6	5.6	82.3	82.7	3.0	3.0	1	4.4	4.2	
15-Oct-12	1125-1142	30/Fine	Small Wave	18.4	Middle	9.2	27.4 27.4	26.6 26.5	26.6	5.5 5.5	5.5		81.0 80.6	80.8	3.2	3.1	3.2	4.4	4.2	4.2
					Bottom	17.4	27.3	26.8	26.8	5.7	5.7	5.7	83.7	84.0	3.3	3.3	1	4.2	4.3	
					Confess	4.0	27.2 27.2	26.7 26.6	20.0	5.8 5.4	F 4		84.2 79.2	70.5	3.3 2.6	0.7		4.4 3.8	2.0	
					Surface	1.0	27.2	26.6	26.6	5.5	5.4	5.4	79.8	79.5	2.7	2.7		4.0	3.9	
17-Oct-12	1255-1311	28/Cloudy	Great Wave	19.0	Middle	9.5	27.2 27.1	26.7 26.7	26.7	5.3 5.4	5.4		77.9 78.5	78.2	2.5 2.5	2.5	2.7	3.6	3.5	3.8
					Bottom	18.0	27.1	26.7	26.8	5.5	5.5	5.5	79.7	80.0	2.8	2.8	1	4.0	3.9	
					Confess	4.0	27.1 26.7	26.8 26.7	00.7	5.5 5.6	F 6		80.3 80.6	80.9	2.9 4.2	4.0		3.8 5.2	5.0	
					Surface	1.0	26.7	26.7	26.7	5.6	5.6	5.7	81.1	80.9	4.2	4.2		5.2	5.2	
19-Oct-12	1416-1432	26/Fine	Small Wave	18.9	Middle	9.5	26.6 26.6	26.9 26.9	26.9	5.9 5.9	5.9		85.5 85.9	85.7	4.0 3.9	3.9	3.9	4.8	4.7	4.8
					Bottom	17.9	26.6	26.9	26.9	6.0	6.1	6.1	87.5	87.8	3.5	3.6		4.4	4.5	
					Curfoss	1.0	26.6 26.8	26.9 26.4	26.5	6.1 5.8	F 0		88.0 85.4	05.6	3.6 3.7	2.0		4.6 4.6	4.7	
					Surface	1.0	26.9	26.5	26.5	5.8	5.8	5.8	85.8	85.6	3.8	3.8		4.8	4.7	
22-Oct-12	1725-1742	27/Fine	Small Wave	19.6	Middle	9.8	26.6 26.7	26.7 26.7	26.7	5.8 5.7	5.7		84.5 83.9	84.2	3.9 4.0	3.9	3.9	5.2 4.8	5.0	4.9
					Bottom	18.6	26.5	26.9	26.9	5.6	5.6	5.6	82.3	82.6	4.0	4.0	1	4.8	4.9	
					Curfoco	1.0	26.4 26.6	26.9 26.3	26.2	5.6 5.7	5.7		82.9 83.3	92.6	4.1 3.8	2.0		5.0 4.4	16	
					Surface	1.0	26.6	26.3	26.3	5.8	5.7	5.8	83.9	83.6	3.9	3.8		4.8	4.6	
24-Oct-12	0754-811	24/Fine	Small Wave	19.6	Middle	9.8	26.4 26.4	26.5 26.6	26.6	5.9 5.9	5.9		85.2 85.5	85.4	3.9 4.0	4.0	3.9	5.2 5.2	5.2	5.0
					Bottom	18.6	26.2	26.8	26.9	5.6	5.6	5.6	82.1	82.0	4.0	4.1	1	5.0	5.1	
	1				ĺ		26.3	26.9		5.6			81.8		4.1		I	5.2		1

	Sampling	Ambient Temp	Sea	Total	Monitorin	a Dooth	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	U)	Susper	nded Solids	s (mg/L)
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	(m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	26.6	26.7	26.7	5.6	5.6		81.4	81.3	4.1	4.1		5.0	5.1	
00.0.440		05/01	0 11147	40.0		0.4	26.6 26.5	26.6 26.8	00.0	5.6 5.6	5.0	5.6	81.2 81.1	20.0	4.2 4.1		1	5.2 4.8	4.0	[
26-Oct-12	0922-0939	25/Cloudy	Small Wave	18.8	Middle	9.4	26.6	26.7	26.8	5.6	5.6		80.6	80.9	4.1	4.1	4.1	4.8	4.8	5.1
					Bottom	17.8	26.6	26.8	26.8	5.5	5.5	5.5	80.0	80.4	4.2	4.2		5.4	5.3	
					20110111		26.6	26.8	20.0	5.6	0.0	0.0	80.8	00	4.2			5.2	0.0	
					Surface	1.0	26.4	26.7	26.8	5.6	5.6		81.2	81.1	4.2	4.2		5.0	5.1	
							26.3 26.3	26.8 26.8		5.6 5.6		5.6	80.9 80.8		4.2 4.1			5.2 5.2		-
29-Oct-12	1122-1139	29/Cloudy	Small Wave	18.6	Middle	9.3	26.2	26.8	26.8	5.5	5.6		80.3	80.6	4.1	4.1	4.2	5.2	5.2	5.2
					Bottom	17.6	26.2	26.9	26.9	5.5	5.5	5.5	79.9	79.8	4.3	4.2		5.4	5.3	1
					DOMOIII	17.0	26.1	26.9	20.9	5.5	5.5	5.5	79.6	19.0	4.2	4.2		5.2	5.5	
					Surface	1.0	26.3	26.4	26.5	5.6	5.6		81.3	81.2	4.1	4.2		5.2	5.4	
							26.3	26.5	20.0	5.6	0.0	5.6	81.1	02	4.2			5.6	٠	
31-Oct-12	1222-1239	31/Cloudy	Small Wave	18.7	Middle	9.4	26.2	26.5	26.6	5.6	5.6		80.9	80.7	4.1	4.1	4.2	5.2	5.2	5.3
							26.1	26.6		5.6			80.5		4.1			5.2		
					Bottom	17.7	26.0 26.0	26.7 26.8	26.8	5.5 5.6	5.5	5.5	79.9 80.6	80.3	4.2 4.2	4.2		5.4 5.2	5.3	

		Ambient Temp		Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	(mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Corrainon			Surface	1.0	22.9	24.7 24.8	24.8	7.35 7.38	7.37	avolugo	98.9 99.3	99.1	1.28 1.24	1.26	a. o. ago	3.2	3.1	average
16-Apr-12	1426-1441	28/Cloudy	Calm	16.2	Middle	8.1	22.6	26.3	26.3	7.01	7.02	7.19	94.4	94.5	2.13	2.17	2.22	4.0	4.1	4.1
		-			Bottom	15.2	22.7	26.2 26.4	26.5	7.03 6.89	6.91	6.91	94.6 92.7	93.0	2.20 3.25	3.23	-	4.2 5.2	5.2	
					Surface	1.0	22.5	26.5 24.5	24.5	6.93 7.11	7.15		93.3 95.2	97.8	3.21 1.38	1.41		5.2 3.6	3.5	
18-Apr-12	1624-1639	22/Cloudy	Small Wave	16.4	Middle	8.2	22.7	24.5 26.1	26.1	7.18 6.93	6.90	7.02	100.4 92.4	92.1	1.43 2.35	2.37	2.18	3.4 4.4	4.5	4.2
		,			Bottom	15.4	22.5 22.1	26.0 26.7	26.8	6.87 6.40	6.42	6.42	91.7 85.3	85.6	2.39 2.74	2.76	1	4.6 4.8	4.7	
					Surface	1.0	22.2 22.0	26.8 24.1	24.1	6.44 7.09	7.11	0.12	85.8 92.9	93.2	2.78 1.62	1.58		4.6 3.6	3.6	
20	1810-1828	22/Rain	C	40.4	Middle	8.2	21.9 21.9	24.1 25.9	26.0	7.13 6.83	6.85	6.98	93.4 89.5	89.7	1.53 2.60	2.63	2.59	3.6 3.8	3.8	4.2
20-Apr-12	1010-1020	22/Raiii	Small Wave	16.4			21.9 21.8	26.0 26.5		6.86 6.61		0.04	89.9 86.6		2.66 3.54		2.59	3.8 5.2		4.2
					Bottom	15.4	21.9 22.7	26.5 25.8	26.5	6.67 6.84	6.64	6.64	87.4 90.8	87.0	3.60 2.79	3.57		5.4 4.0	5.3	
					Surface	1.0	22.7	25.8 26.3	25.8	6.80 6.61	6.82	6.71	90.3 87.7	90.6	2.71 3.10	2.75		3.8	3.9	
23-Apr-12	1910-1925	25/Cloudy	Small Wave	16.4	Middle	8.2	22.3	26.4 26.2	26.4	6.57 6.48	6.59		87.2 85.9	87.5	3.06 3.51	3.08	3.12	4.0	4.1	4.2
					Bottom	15.4	22.1	26.3	26.3	6.44	6.46	6.46	85.4	85.7	3.57	3.54		4.6	4.5	
					Surface	1.0	23.6	24.1	24.2	6.92 6.96	6.94	6.86	92.7 93.3	93.0	2.66	2.68		4.0	4.0	
25-Apr-12	0654-0710	27/Cloudy	Calm	16.6	Middle	8.3	23.5 23.5	26.1 26.0	26.1	6.80 6.77	6.79		91.1 90.7	90.9	3.01 3.04	3.03	3.00	4.2	4.3	4.3
					Bottom	15.6	23.6	26.6 26.6	26.6	6.71 6.65	6.68	6.68	89.9 89.1	89.5	3.28 3.33	3.31		4.4	4.5	
					Surface	1.0	23.5 23.5	25.4 25.3	25.4	7.36 7.39	7.38	7.28	100.1 100.5	100.3	1.33 1.37	1.35		2.4	2.5	
27-Apr-12	0825-0838	23/Cloudy	Small Wave	16.4	Middle	8.2	23.3	26.6 26.5	26.6	7.20 7.15	7.18	7.20	98.2 97.5	97.9	2.10 2.15	2.13	2.06	3.0	3.1	3.2
					Bottom	15.4	23.0 23.0	27.5 27.4	27.5	7.02 6.94	6.98	6.98	95.9 94.8	95.4	2.68 2.73	2.71		3.8 4.0	3.9	
					Surface	1.0	23.5 23.5	24.4 24.3	24.4	6.89 6.84	6.87	0.04	91.6 90.9	91.3	2.36 2.40	2.38		4.0 4.2	4.1	
30-Apr-12	1127-1143	28/Cloudy	Calm	16.8	Middle	8.4	23.4 23.4	26.2 26.3	26.3	6.78 6.73	6.76	6.81	90.2 89.5	89.9	2.89 2.95	2.92	2.80	4.0 4.2	4.1	4.4
					Bottom	15.8	23.4	27.0 26.9	27.0	6.67 6.60	6.64	6.64	88.7 87.8	88.3	3.07	3.09	1	5.0	5.0	
					Surface	1.0	25.7 25.7	25.9 26.0	26.0	7.47 7.44	7.46		106.2 105.8	106.0	1.53	1.55		2.8	2.9	
2-May-12	1354-1409	31/Sunny	Small Wave	16.6	Middle	8.3	25.4	26.5	26.5	7.32	7.30	7.38	103.3	103.0	2.14	2.16	2.13	3.4	3.5	3.4
					Bottom	15.6	25.3 25.0	26.5 27.8	27.8	7.27 6.93	6.91	6.91	102.6 97.9	97.6	2.17	2.68		3.6	3.9	
							25.1	27.7		6.89	1		97.3		2.69			4.0		

	0	Ambient Temp	0	Total	M	. D II.	Water	Salini	ty (ppt)	Dissolv	red Oxyger	n (mg/L)	Dissolve	d Oxygen	T	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorir (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		00.1414011		1 ()	Surface	1.0	26.8 26.8	25.7 25.6	25.7	6.60 6.63	6.62	arerage	94.3 94.8	94.6	2.42	2.40	an arange	4.0 3.6	3.8	arerege
4-May-12	1555-1610	28/Cloudy	Small Wave	16.4	Middle	8.2	26.4	26.2	26.2	6.30	6.32	6.47	90.0	90.3	3.12	3.11	3.05	4.2	4.2	4.2
,		,			Bottom	15.4	26.4 26.2	26.2 26.5	26.5	6.33 6.18	6.17	6.17	90.5 88.3	88.1	3.10 3.60	3.64		4.2 4.6	4.7	
					Surface	1.0	26.2 25.4	26.4 25.7	25.8	6.15 7.41	7.39	0.17	87.9 104.0	103.7	3.67 1.51	1.54		4.8 2.8	2.8	
7 May 10	4000 4000	20 /Fin -	C	16.4		8.2	25.4 25.2	25.8 26.7	26.7	7.37 7.24		7.33	103.4 101.5		1.56 1.83	1.86	4.04	2.8 3.0		3.1
7-May-12	1823-1838	28/Fine	Small Wave	10.4	Middle		25.1 24.9	26.7 27.9		7.28 7.02	7.26		102.1 98.4	101.8	1.88 2.02		1.81	3.2 3.2	3.1	3.1
					Bottom	15.4	25.0 25.0	27.9 25.5	27.9	7.06 7.11	7.04	7.04	99.0 99.5	98.7	2.06	2.04		3.4 4.0	3.3	
					Surface	1.0	25.1	25.5	25.5	7.14	7.13	7.08	99.9	99.7	2.73	2.71	-	3.8	3.9	
9-May-12	0840-0857	28/Fine	Calm	16.6	Middle	8.3	25.0 25.0	25.8 25.9	25.9	7.05 7.00	7.03		98.7 98.0	98.4	2.84	2.87	2.84	4.0	4.0	4.0
					Bottom	15.6	24.9 25.0	26.1 26.2	26.2	6.92 6.96	6.94	6.94	96.9 97.4	97.2	2.93 2.95	2.94		4.2	4.1	
					Surface	1.0	26.2 26.3	25.4 25.4	25.4	7.40 7.46	7.43	7.34	104.3 105.2	104.8	1.60 1.57	1.59		2.8	2.7	
11-May-12	0925-0940	26/Cloudy	Small Wave	16.2	Middle	8.1	26.0 26.0	26.6 26.5	26.6	7.28 7.23	7.26	7.04	102.7 102.0	102.4	1.80 1.86	1.83	1.83	2.8 3.0	2.9	2.9
					Bottom	15.2	25.8 25.7	27.5 27.6	27.6	7.11 7.07	7.09	7.09	100.4 99.8	100.1	2.04	2.06		3.0	3.1	
					Surface	1.0	26.3 26.3	26.3 26.4	26.4	7.22 7.25	7.24		102.5 102.9	102.7	2.92 2.97	2.95		4.0 4.0	4.0	
14-May-12	1255-1310	30/Cloudy	Small Wave	16.4	Middle	8.2	25.7 25.7	27.9 27.9	27.9	6.89 6.86	6.88	7.06	97.8 97.4	97.6	3.06 3.09	3.08	3.18	4.0 4.2	4.1	4.3
					Bottom	15.4	25.6 25.6	28.1	28.1	6.81 6.77	6.79	6.79	96.7 96.1	96.4	3.50 3.55	3.53	1	4.6	4.8	
					Surface	1.0	26.6	25.1	25.1	7.15	7.17		103.1	103.3	2.58	2.61		3.6	3.7	
16-May-12	1425-1440	27/Cloudy	Small Wave	16.6	Middle	8.3	26.7 26.4	25.1 26.0	26.1	7.18 7.26	7.28	7.22	103.5	104.8	2.63	2.79	2.77	3.8	3.9	3.9
-		-			Bottom	15.6	26.4 26.1	26.1 27.5	27.5	7.30 7.01	6.99	6.99	105.1 100.8	100.5	2.81 2.91	2.92		4.0	4.0	
					Surface	1.0	26.1 25.2	27.4 25.8	25.9	6.96 7.08	7.11		100.1 99.1	99.6	2.93 3.30	3.33		4.0 4.4	4.4	
18-May-12	1654-1710	25/Drizzle	Small Wave	16.4	Middle	8.2	25.3 25.2	25.9 26.2	26.3	7.14 6.83	6.84	6.98	100.0 95.6	95.8	3.35 3.22	3.24	3.36	4.4	4.1	4.4
10-iviay-12	1004-1710	23/01/22/6	Siliali vvave	10.4			25.2 25.2	26.3 26.9		6.85 6.70		0.00	95.9 93.8		3.25 3.51		3.30	4.2 4.6		1 7.7
					Bottom	15.4	25.3 26.4	27.0 25.7	27.0	6.66 6.32	6.68	6.68	93.2 89.7	93.5	3.54 2.62	3.53		4.6 4.0	4.6	
					Surface	1.0	26.4 26.0	25.7 26.4	25.7	6.28 6.04	6.30	6.18	89.1 85.7	89.4	2.70 3.63	2.66		3.8	3.9	
21-May-12	1755-1810	28/Cloudy	Small Wave	16.4	Middle	8.2	26.1	26.4	26.4	6.07	6.06		86.1	85.9	3.57	3.60	3.36	4.6	4.7	4.5
					Bottom	15.4	25.9 25.9	26.9 27.0	27.0	5.91 5.94	5.93	5.93	83.6 84.0	83.8	3.80 3.85	3.83		5.0 5.0	5.0	

	Camadian	Ambient Temp	0	Total	Manitania	n Danth	Water	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)	Dissolve	d Oxygen	Tu	urbidity (NT	Ū)	Susper	nded Solids	s (mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorir (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		2 0 0 1 1 1 1 1	Surface	1.0	25.2	25.8	25.8	7.01	6.98	average	98.8	98.4	2.03	2.05	average	3.2	3.2	average
					Surface	1.0	25.3	25.8	23.0	6.95	0.90	6.89	97.9	90.4	2.07	2.03		3.2	5.2	
23-May-12	2000-2017	27/Cloudy	Small Wave	16.8	Middle	8.4	25.2 25.2	26.0 26.1	26.1	6.82 6.77	6.80		96.2 95.4	95.8	2.24	2.27	2.25	3.4	3.5	3.5
					Bottom	15.8	25.2	26.2	26.2	6.62	6.64	6.64	93.3	93.6	2.42	2.44	1	3.6	3.7	
							25.1 26.5	26.2 26.4		6.66 6.20			93.9 88.0		2.46 2.05			3.8		<u> </u>
					Surface	1.0	26.5	26.3	26.4	6.16	6.18	6.11	86.2	87.1	1.99	2.02]	3.0	3.3]
25-May-12	0654-0712	26/Cloudy	Calm	16.6	Middle	8.3	26.4 26.5	26.6 26.7	26.7	6.07 6.02	6.05	0.11	85.0 84.3	84.7	2.22	2.25	2.23	3.6	3.6	3.6
					Bottom	15.6	26.3	26.9	26.9	5.98	5.97	5.97	84.9	84.8	2.40	2.43	1	3.8	3.8	1
					Bottom	13.0	26.4	26.9	20.9	5.96	3.91	5.97	84.6	04.0	2.45	2.43		3.8	3.0	
					Surface	1.0	26.2 26.3	25.2 25.2	25.2	6.40 6.37	6.39	0.00	90.9 90.5	90.7	3.09 3.12	3.11		4.0	4.1	
28-May-12	1032-1050	26/Cloudy	Small Wave	16.8	Middle	8.4	26.2	25.4	25.5	6.19	6.22	6.30	87.9	88.3	3.01	2.99	3.12	4.0	3.9	4.2
		,					26.2 26.2	25.5 25.7		6.25 6.06			88.7 86.1		2.97 3.24		1	3.8 4.4		ł
					Bottom	15.0	26.1	25.7	25.7	6.09	6.08	6.08	86.5	86.3	3.27	3.26		4.6	4.5	
					Surface	1.0	26.5 26.5	26.4 26.3	26.4	6.23 6.19	6.21		88.7 88.2	88.5	2.00 1.97	1.99		3.2 2.8	3.0	
30-May-12	1325-1343	28/Cloudy	Small Wave	16.8	Middle	8.4	26.4	26.8	26.9	6.12	6.10	6.15	87.2	86.8	2.13	2.15	2.15	3.0	3.1	3.2
OO May 12	1020 1040	20/01000	Omaii wave	10.0	Wildale	0.4	26.5 26.4	26.9 27.0	20.0	6.07	0.10		86.4 85.9	00.0	2.17	2.10	2.10	3.2	0.1	0.2
					Bottom	15.8	26.4	27.0	27.1	6.03 5.99	6.01	6.01	85.3	85.6	2.34	2.32		3.4	3.5	
					Surface	1.0	27.2	25.9	25.9	6.80	6.80		97.9	98.1	3.00	3.00		4.0	4.1	
4 1 . 40	4555 4040	00/01	0	40.0	NAC J. II.	0.0	27.1 26.8	25.9 26.2	00.0	6.80	0.00	6.70	98.3 95.9	05.0	3.00 2.90	0.00	0.40	4.2 3.8	0.0	4.0
1-Jun-12	1555-1610	29/Cloudy	Great Wave	16.6	Middle	8.3	26.8	26.2	26.2	6.60	6.60		95.6	95.8	2.90	2.90	3.10	4.0	3.9	4.2
					Bottom	15.6	26.8 26.7	26.3 26.3	26.3	6.20	6.20	6.20	89.5 89.1	89.3	3.40	3.40		4.6	4.5	
					Surface	1.0	27.1	25.8	25.9	6.60	6.70		96.4	97.8	2.60	2.65		3.6	3.7	
							27.1 26.9	25.9 26.4		6.80		6.48	99.2 90.5	-	2.70 3.20		1	3.8 4.2		
4-Jun-12	1756-1811	29/Cloudy	Small Wave	16.6	Middle	8.3	26.9	26.4	26.4	6.30	6.25		91.9	91.2	3.30	3.25	3.15	4.4	4.3	4.2
					Bottom	15.6	26.7 26.6	26.6 26.7	26.7	6.10 6.30	6.20	6.20	88.9 91.8	90.4	3.60 3.50	3.55		4.8	4.7	
					Surface	1.0	27.1	25.8	25.8	6.70	6.70		98.0	97.9	2.40	2.35		3.6	3.5	
					Surface	1.0	27.0	25.8	25.6	6.70	0.70	6.55	97.7	97.9	2.30	2.30	1	3.4	3.5	
6-Jun-12	1927-1942	28/Cloudy	Small Wave	16.4	Middle	8.2	27.0 26.9	26.3 26.4	26.4	6.40 6.40	6.40		93.2 93.4	93.3	3.00 2.80	2.90	2.87	4.0 3.8	3.9	4.0
					Bottom	15.4	26.8	26.6	26.6	6.30	6.25	6.25	91.8	91.2	3.30	3.35	1	4.4	4.5	
							26.7 27.8	26.6 28.0		6.20 6.34		-	90.5 92.1		3.40 1.05		-	4.6 2.4		
					Surface	1.0	27.9	28.1	28.1	6.30	6.32	6.24	91.4	91.8	1.09	1.07]	2.4	2.4	1
8-Jun-12	0805-0824	27/Cloudy	Calm	20.0	Middle	10.0	27.9 27.9	28.0 28.0	28.0	6.14 6.17	6.16	3.2.	89.1 90.1	89.6	1.07 1.03	1.05	1.63	2.2	2.1	2.7
					Bottom	19.0	27.9	28.1	28.1	6.08	6.06	6.06	88.7	88.4	2.78	2.77	1	3.8	3.7	1
					BOUOIII	19.0	27.8	28.0	20.1	6.04	0.00	0.00	88.1	00.4	2.75	2.11		3.6	3.1	

		Ambient Temp		Total		. D. "	Water	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)	Dissolve	d Oxygen	T	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water	Monitorin (m	•	Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
	Baration	Condition	Condition	Depth (m)	(,,	·/	(°C)		Average		Average	average		Average		Average	average		Average	average
					Surface	1.0	27.9 27.9	27.9 28.0	28.0	6.32 6.37	6.35		93.5 94.2	93.9	1.34	1.37		2.8	2.6	
							27.9	28.0	22.1	6.18		6.27	91.5		1.48			2.6		
11-Jun-12	1054-1112	30/Cloudy	Small Wave	20.4	Middle	10.2	27.9	28.1	28.1	6.21	6.20		91.9	91.7	1.52	1.50	1.80	2.8	2.7	3.0
					Bottom	19.4	27.9	28.1	28.1	6.10	6.12	6.12	90.3	90.5	2.48	2.52		3.6	3.7	İ
					20110		27.8	28.1	20	6.13	02	02	90.7	00.0	2.55	2.02		3.8	0	
					Surface	1.0	27.6 27.6	25.4 25.3	25.4	6.2 6.2	6.2		90.9	90.7	2.8	2.8		3.8	3.7	İ
							27.2	26.7		6.0		6.1	87.1		3.1	—	1	4.0		
13-Jun-12	1355-1410	29/Rainy	Small Wave	15.8	Middle	7.9	27.1	26.7	26.7	5.9	6.0		86.8	87.0	3.0	3.1	3.0	4.0	4.0	4.0
					Bottom	14.8	27.0	27.2	27.2	5.9	5.9	5.9	86.3	86.0	3.2	3.2		4.2	4.2	ĺ
							26.9	27.1		5.9			85.7		3.2			4.2		
					Surface	1.0	27.7 27.8	27.2 27.2	27.2	6.32 6.36	6.34		92.9 93.5	93.2	1.33	1.35		2.4	2.5	İ
							27.5	27.7		6.20		6.26	91.0		1.62			2.8		
15-Jun-12	1627-1644	31/Cloudy	Great Wave	20.2	Middle	10.1	27.5	27.7	27.7	6.16	6.18		90.4	90.7	1.66	1.64	1.62	3.0	2.9	2.8
					Bottom	19.2	27.3	27.9	28.0	6.03	6.02	6.02	88.5	88.3	1.85	1.87		3.0	3.1	
					20110		27.2	28.0	20.0	6.00	0.02	0.02	88.1	00.0	1.88			3.2	0	<u> </u>
					Surface	1.0	27.4 27.5	27.3 27.2	27.3	6.29	6.31		93.1	93.4	1.76 1.81	1.79		3.0	2.9	
							27.5	27.7		6.17		6.24	91.3	212	2.13		1	3.2		
18-Jun-12	1815-1833	28/Cloudy	Great Wave	20.2	Middle	10.1	27.6	27.7	27.7	6.15	6.16		91.0	91.2	2.18	2.16	2.13	3.4	3.3	3.2
					Bottom	19.2	27.5	27.9	27.9	5.98	6.00	6.00	88.5	88.8	2.50	2.46		3.6	3.5	İ
							27.5	27.9		6.02			89.1		2.42			3.4		
					Surface	1.0	27.5 27.6	27.1 27.2	27.2	6.20 6.25	6.23		91.1 91.9	91.5	1.30	1.33		2.4	2.4	
00 1 . 10	4044 4057	00 /F:	0	00.0	NAC -L-III -	40.4	27.4	27.7	07.7	6.06	0.05	6.14	89.1	00.0	1.45	4 47	4.50	2.6	0.7	0.7
20-Jun-12	1841-1857	29/Fine	Great Wave	20.2	Middle	10.1	27.3	27.7	27.7	6.03	6.05		88.6	88.9	1.49	1.47	1.59	2.8	2.7	2.7
					Bottom	10.2	27.1	28.3	28.3	5.88	5.90	5.90	86.4	86.7	1.96	1.98		2.8	2.9	
							27.1 27.7	28.2 26.5		5.92			87.0		2.00			3.0 4.0		-
					Surface	1.0	27.6	26.6	26.6	5.87 5.84	5.86		86.1 85.7	85.9	2.74	2.72		3.6	3.8	
22 1 12	1055 0010	20 /D ::I -	Constit Marris	40.4	N 4: al all a	0.0	27.4	26.9	20.0	5.82	F 04	5.85	85.4	05.0	2.95	0.07	0.00	3.8	2.0	4.0
22-Jun-12	1955-2010	28/Drizzle	Small Wave	16.4	Middle	8.2	27.4	26.9	26.9	5.85	5.84		85.8	85.6	2.99	2.97	2.96	4.0	3.9	4.0
					Bottom	15.4	27.4	27.0	27.1	5.86	5.88	5.88	86.0	86.2	3.21	3.19		4.2	4.2	
							27.3 28.2	27.1		5.89			86.4 85.2		3.17			4.2 4.0		
					Surface	1.0	28.1	26.4 26.5	26.5	5.80 5.76	5.78		84.5	84.9	2.98	2.96		4.0	4.0	İ
05 1 . 40	0050 0044	00/01	0 \ \ \ \ \	40.0	NAC de die	0.4	28.1	26.7	00.0	5.79	F 77	5.78	84.9	04.7	3.06	0.05	0.07	4.0	4.0	
25-Jun-12	0856-0911	28/Cloudy	Small Wave	16.8	Middle	8.4	28.0	26.8	26.8	5.75	5.77		84.4	84.7	3.03	3.05	3.07	4.0	4.0	4.1
					Bottom	15.8	28.0	26.9	27.0	5.70	5.72	5.72	83.7	84.0	3.18	3.21		4.2	4.3	İ
			-				27.9 28.4	27.0	1	5.73		<u> </u>	84.2		3.24		<u> </u>	4.4 2.4		
					Surface	1.0	28.4	25.5 25.4	25.5	5.92 5.95	5.94		85.8 86.3	86.1	1.45	1.48		2.4	2.5	1
07 lun 10	1010 1000	21/Fin a	Cmall West	10.0	Middle	0.0	28.2	25.5	25.6	5.88	E 96	5.90	85.3	94.0	1.29	1 21	1.67	2.4	2.4	2.4
27-Jun-12	1212-1230	31/Fine	Small Wave	19.8	Middle	9.9	28.2	25.6	25.6	5.83	5.86		84.5	84.9	1.33	1.31	1.67	2.4	2.4	2.4
					Bottom	18.8	27.6	25.8	25.9	5.69	6.21	6.21	82.5	82.8	2.18	2.22		2.2	2.3	1
			I	1		1	27.6	25.9		6.73	1	1	83.1	1	2.25		I	2.4		1

		Ambient Temp	_	Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	(mg/L)	Dissolve	d Oxygen	Т	urbidity (NT	TU)	Susper	nded Solids	(ma/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth-
		Condition		Deptil (III)			28.6	27.5		6.30		average	94.2		1.32		average	2.4		average
					Surface	1.0	28.7	27.6	27.6	6.27	6.29	6.17	93.7	94.0	1.36	1.34		2.6	2.5	
29-Jun-12	1427-1443	32/Fine	Great Wave	20.2	Middle	10.1	28.4	28.1	28.1	6.04	6.06	0.17	90.1	90.4	1.44	1.46	1.61	2.4	2.5	2.7
							28.3 28.0	28.1 28.5		6.08 6.15			90.7 91.6		1.48 2.00			2.6 3.0		
					Bottom	19.2	28.0	28.4	28.5	6.10	6.13	6.13	90.9	91.3	2.05	2.03		3.0	3.0	
					Surface	1.0	28.0	27.4	27.4	6.19	6.22		91.5	91.8	1.42	1.45		2.8	2.8	
					Cunaco	1.0	28.0	27.4	27	6.24	0.22	6.18	92.1	01.0	1.47	1.10		2.8	2.0	
4-Jul-12	1826-1843	31/Cloudy	Small Wave	20.2	Middle	10.1	27.6 27.5	27.9 27.8	27.9	6.16 6.12	6.14		90.9	90.6	1.52	1.49	1.60	2.6	2.6	2.8
					D-#	40.0	27.4	28.0	28.0	5.90	F 00	5.00	87.1	00.0	1.83	4.00		2.8	2.0	
					Bottom	19.2	27.3	27.9	28.0	5.87	5.89	5.89	86.7	86.9	1.89	1.86		3.0	2.9	
					Surface	1.0	27.0 27.0	24.2	24.3	5.26 5.29	5.28		76.6 76.7	76.7	2.81	2.89		3.6 4.0	3.8	
							26.9	24.3		5.29		5.29	77.0		3.00		-	4.0		-
6-Jul-12	0807-0821	28/Fine	Calm	19.8	Middle	9.9	26.9	24.3	24.3	5.28	5.30		76.6	76.8	3.07	3.04	3.64	3.8	3.9	4.5
					Bottom	18.8	26.9	24.7	24.7	5.35	5.37	5.37	77.6	77.9	5.03	5.00		5.8	5.7	
							26.8 27.8	24.7 24.6		5.39 5.66			78.2 82.6		4.96 2.26			5.6 3.6		
					Surface	1.0	27.9	24.0	24.7	5.62	5.64	5.00	82.1	82.4	2.20	2.29		3.4	3.5	
9-Jul-12	0917-0935	29/Fine	Calm	18.8	Middle	9.2	27.8	24.7	24.8	5.58	5.57	5.60	81.4	81.2	2.57	2.61	3.06	3.6	3.7	4.1
3 0di 12	0017 0000	20/1 1110	Julii	10.0	Wildalo	J.2	27.8	24.8	24.0	5.55	0.01		81.0	01.2	2.64	2.01	0.00	3.8	0.7	7
					Bottom	17.4	27.7	24.9 24.9	24.9	5.40 5.47	5.44	5.44	78.8 79.8	79.3	4.21	4.28		5.0 5.2	5.1	
					Curfoss	1.0	27.9	25.3	25.4	6.21	6.10		92.2	01.0	1.87	1.00		2.8	2.0	
					Surface	1.0	27.9	25.4	25.4	6.17	6.19	6.23	91.6	91.9	1.91	1.89		3.0	2.9	
11-Jul-12	1057-1114	30/Fine	Small Wave	20.4	Middle	10.2	27.7 27.6	25.8	25.8	6.26 6.29	6.28		92.6	92.9	2.04	2.06	2.06	3.0	3.1	3.2
							27.0	25.7 26.3		6.00			93.1 88.9		2.06			3.4		
					Bottom	19.4	27.3	26.3	26.3	6.04	6.02	6.02	89.5	89.2	2.24	2.22		3.6	3.5	
					Surface	1.0	28.2	24.3	24.3	5.89	5.87		85.8	85.5	2.46	2.43		3.6	3.5	
							28.2 27.9	24.2 24.3		5.85 5.54		5.72	85.2 80.7		2.40 2.59			3.4		
13-Jul-12	1454-1510	30/Cloudy	Small Wave	20.0	Middle	10.0	28.0	24.3	24.3	5.58	5.56		81.2	81.0	2.64	2.62	2.67	3.8	3.7	3.8
					Bottom	19.0	27.8	24.5	24.6	5.63	5.62	5.62	82.0	81.8	2.99	2.97		4.2	4.1	1
					Bottom	10.0	27.7	24.6	24.0	5.60	0.02	0.02	81.5	01.0	2.94	2.01		4.0	7.1	
					Surface	1.0	27.9 28.0	23.7	23.7	6.08 6.11	6.10		87.6 87.9	87.8	3.20	3.23		4.4	4.4	
40 1.440	4005 4040	20/5:	Calm	20.0	Middle	40.0	27.9	23.9	22.0	5.88	5.04	6.00	84.7	05.4	3.44	0.47	2.50	4.4	4.5	4.0
16-Jul-12	1625-1643	32/Fine	Calm	20.0	Middle	10.0	27.9	23.9	23.9	5.93	5.91		85.4	85.1	3.50	3.47	3.52	4.6	4.5	4.6
					Bottom	19.0	27.8	24.1	24.1	5.69	5.71	5.71	81.9	82.2	3.84	3.87		4.8	4.9	
							27.7 28.0	24.1 23.5		5.73 6.12			82.5 89.3		3.89 2.96			5.0 4.0		
					Surface	1.0	28.1	23.6	23.6	6.16	6.14	6.10	89.9	89.6	2.99	2.98		4.0	4.0	
18-Jul-12	1753-1811	29/Cloudy	Small Wave	19.8	Middle	9.9	27.7	23.8	23.8	6.07	6.05	0.10	88.6	88.3	3.09	3.11	3.18	4.0	4.1	4.2
		,					27.8 27.4	23.7 24.0		6.03 5.90			88.0 86.1		3.12 3.48		-	4.2		-
					Bottom	18.8	27.4	24.0	24.0	5.85	5.88	5.88	85.4	85.8	3.44	3.46		4.4	4.5	

	Carraliaa	Ambient Temp	0	Total	Manitania	n Danth	Water	Salini	ty (ppt)	Dissolv	red Oxyger	(mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	-U)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		(···)	Surface	1.0	28.3	23.8	23.9	6.10	6.12	avolugo	88.9	89.2	3.37	3.39	avorago	4.4	4.4	avorago
					Ouriace	1.0	28.4	23.9	20.0	6.13	0.12	6.04	89.4	03.2	3.41	5.55	1	4.4	7.7	
20-Jul-12	1855-1912	30/Fine	Small Wave	20.2	Middle	10.1	28.1	24.1 24.1	24.1	5.97 5.94	5.96		87.1 86.7	86.9	3.53 3.57	3.55	3.55	4.6 4.6	4.6	4.6
					Bottom	19.2	27.8	24.3	24.4	5.80	5.79	5.79	84.6	84.4	3.68	3.70	1	4.8	4.8	
							27.9 26.5	24.4 29.0		5.77 5.74			84.2 80.9		3.72 2.49			4.8 3.2		
					Surface	1.0	26.6	29.1	29.1	5.77	5.76	5.68	81.3	81.1	2.54	2.52]	3.4	3.3	
25-Jul-12	1020-1039	28/Cloudy	Small Wave	20.2	Middle	10.1	26.4 26.5	29.5 29.5	29.5	5.62 5.57	5.60	0.00	79.2 78.5	78.9	2.81	2.83	2.79	3.6	3.7	3.7
					Bottom	19.2	26.4	29.8	29.8	5.33	5.31	5.31	75.1	74.8	3.00	3.03	1	4.0	4.1	
					Bottom	10.2	26.4 26.4	29.8 25.3	20.0	5.29 6.11	0.01	0.01	74.5 87.9	7 1.0	3.06 3.43	0.00		4.2 4.4		
					Surface	1.0	26.5	25.4	25.4	6.16	6.14	6.06	88.7	88.3	3.47	3.45		4.4	4.4	
27-Jul-12	1225-1242	26/Rainy	Great Wave	20.2	Middle	10.1	26.2 26.2	25.8 25.7	25.8	6.00 5.97	5.99	0.00	86.6 86.0	86.3	3.63 3.66	3.65	3.62	4.6 4.8	4.7	4.6
					Bottom	19.2	26.2	26.1	26.2	5.88	5.86	5.86	84.7	84.4	3.75	3.77	1	4.6	4.7	
					Бошотт	19.2	26.0 27.8	26.2	20.2	5.83	5.60	5.00	84.0	04.4	3.79	3.77		4.8	4.7	
					Surface	1.0	27.8	29.9 29.9	29.9	5.88 5.85	5.87	5.80	86.3 85.8	86.1	3.72 3.68	3.70		4.8	4.8	
30-Jul-12	1625-1640	31/Sunny	Small Wave	16.2	Middle	8.1	27.3 27.4	30.4 30.4	30.4	5.72 5.75	5.74	5.60	83.9 84.4	84.2	3.88 3.84	3.86	3.83	5.0 4.8	4.9	4.9
					Bottom	15.2	27.2	30.4	30.5	5.70	5.72	5.72	83.6	83.9	3.90	3.92	1	5.0	5.1	
					Бошотт	13.2	27.1	30.5	30.5	5.74	5.72	5.72	84.2	03.9	3.93	3.92		5.2	5.1	
					Surface	1.0	27.8 27.8	29.7 29.6	29.7	5.83 5.86	5.85	5.82	85.6 85.9	85.8	3.40 3.37	3.39		4.4	4.3	
1-Aug-12	1727-1743	33/Fine	Small Wave	16.4	Middle	8.2	27.6	29.9	29.9	5.77	5.79	5.82	84.7	84.9	3.48	3.51	3.52	4.6	4.5	4.5
					5 "	45.4	27.7 27.4	29.9 30.1	00.4	5.80 5.64	5.00	5.00	85.1 82.6	00.0	3.53 3.70	0.00	-	4.4	4 7	
					Bottom	15.4	27.3	30.0	30.1	5.68	5.66	5.66	83.3	83.0	3.65	3.68		4.6	4.7	
					Surface	1.0	28.0	29.5 29.6	29.6	5.97 6.01	5.99		88.6 89.2	88.9	3.42 3.46	3.44		4.8	4.6	
3-Aug-12	1827-1844	31/Cloudy	Small Wave	16.2	Middle	8.1	27.8	29.9	29.9	5.89	5.88	5.93	87.3	87.1	3.59	3.61	3.61	4.6	4.7	4.7
5 / 1.5g / _							27.8 27.6	29.9 30.2		5.86 5.78			86.8 85.5		3.63 3.77		}	4.8		
					Bottom	15.2	27.6	30.3	30.3	5.73	5.76	5.76	84.8	85.2	3.81	3.79		5.0	4.9	
					Surface	1.0	27.0 27.0	25.6 25.6	25.6	4.42 4.38	4.40		64.1 63.4	63.8	2.34	2.37		3.6	3.6	
6-Aug-12	0828-0845	30/Cloudy	Small Wave	19.6	Middle	9.8	26.3	26.7	26.7	4.73	4.74	4.57	68.1	68.3	3.01	3.04	3.12	4.0	4.0	4.2
5 / 1.5g / _							26.3 26.2	26.7 26.7		4.75 4.50			68.5 64.8		3.06 3.93		1	4.0		
					Bottom	18.6	26.2	26.7	26.7	4.54	4.52	4.52	65.3	65.1	3.99	3.96		5.0	4.9	
					Surface	1.0	27.7 27.6	26.3 26.2	26.3	5.71 5.68	5.70		82.7 82.3	82.5	2.25	2.28		3.2	3.3	
8-Aug-12	1000-1017	30/Fine	Small Wave	19.4	Middle	9.7	27.5	26.5	26.6	5.73	5.72	5.71	83.0	82.8	2.20	2.22	2.36	3.2	3.2	3.3
0 / lug-12	1000-1017	00/1 IIIG	Small Wave	15.4	IVIIGUIG		27.5 27.4	26.6 26.9		5.70 5.62			82.6 81.4		2.24		2.00	3.2		0.0
					Bottom	18.4	27.3	27.0	27.0	5.57	5.60	5.60	80.7	81.1	2.55	2.58		3.4	3.5	

	0	Ambient Temp	0	Total	N4 7	. D II.	Water	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)	Dissolve	d Oxygen	T	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		Dopur (III)	Confess	4.0	28.2	26.3	20.2	5.80	5.00	average	85.8	00.4	2.43	0.45	average	3.6	2.0	average
					Surface	1.0	28.2	26.3	26.3	5.84	5.82	5.74	86.4	86.1	2.46	2.45		3.6	3.6	
10-Aug-12	1227-1244	33/Cloudy	Small Wave	19.2	Middle	9.6	28.0	26.7 26.6	26.7	5.67 5.64	5.66		83.9 83.5	83.7	2.62 2.66	2.64	2.63	3.6	3.7	3.7
					Bottom	18.2	27.7	26.9	27.0	5.45	5.43	5.43	80.7	80.4	2.78	2.81	1	3.8	3.9	
					Bottom	10.2	27.6	27.0	27.0	5.41	3.43	3.43	80.1	00.4	2.83	2.01		4.0	3.9	
					Surface	1.0	27.7 27.6	25.4 25.3	25.4	6.11 6.14	6.13		88.6 89.0	88.8	2.54 2.58	2.56		3.6	3.6	
13-Aug-12	1926-1944	27/Cloudy	Small Wave	19.2	Middle	9.1	27.4	25.8	25.8	5.98	5.97	6.05	86.7	86.5	2.84	2.87	2.82	3.8	3.9	3.8
		,					27.5 27.2	25.8 26.3		5.95 5.83			86.3 84.5		2.89 3.03			4.0		
					Bottom	18.2	27.2	26.3	26.3	5.79	5.81	5.81	84.0	84.3	3.06	3.05		4.0	4.0	
					Surface	1.0	28.3	27.6 27.6	27.6	6.03	6.05		88.0 88.6	88.3	2.27	2.30		3.6	3.5	
45 A . 40	4744 4005	00/5	0.1	00.0	NAC J. II.	40.0	28.2	27.8	07.0	5.92	5.00	5.98	86.4	00.4	2.52	0.50	0.54	3.6	0.0	
15-Aug-12	1744-1805	32/Fine	Calm	20.0	Middle	10.0	28.1	27.7	27.8	5.88	5.90		85.8	86.1	2.55	2.53	2.54	3.6	3.6	3.6
					Bottom	19.0	28.0	27.9 27.8	27.9	5.69 5.73	5.71	5.71	83.0 83.6	83.3	2.79	2.81		3.6	3.7	
					Surface	1.0	27.8	26.8	26.8	6.09	6.12		88.3	88.7	2.43	2.41		3.6	3.5	
					Curiaco	1.0	27.7	26.8	20.0	6.14	0.12	6.08	89.1 87.9	00.7	2.39	2	1	3.4	0.0	
17-Aug-12	1727-1746	29/Cloudy	Great Wave	19.8	Middle	9.9	27.5 27.5	26.9 27.0	27.0	6.07 6.02	6.05		87.2	87.6	2.30	2.33	2.47	3.6	3.5	3.6
					Bottom	18.8	27.3	27.1	27.2	5.97	5.95	5.95	86.4	86.1	2.66	2.68	1	3.6	3.7	
							27.4 27.7	27.2 25.8		5.92 6.03			85.7 88.6		2.69 2.88			3.8 3.6		
					Surface	1.0	27.8	25.7	25.8	5.98	6.01	5.91	87.9	88.3	2.92	2.90		3.8	3.7	
20-Aug-12	0759-0817	28/Fine	Small Wave	19.2	Middle	9.6	27.5 27.5	26.1 26.2	26.2	5.84 5.80	5.82	0.01	85.8 85.2	85.5	3.01	3.04	3.03	4.0	4.0	4.0
					D. II.	40.0	27.3	26.2	00.0	5.71	F 70	5.70	83.9	00.0	3.12	0.44	1	4.0	4.0	
					Bottom	18.2	27.3	26.6	26.6	5.69	5.70	5.70	83.6	83.8	3.16	3.14		4.2	4.2	
					Surface	1.0	27.8 27.9	29.4 29.3	29.4	5.52 5.48	5.50		79.4 78.9	79.2	3.04 2.98	3.01		4.0 3.8	3.9	
22-Aug-12	0858-0915	29/Cloudy	Calm	19.8	Middle	9.9	27.7	29.6	29.6	5.37	5.39	5.44	77.3	77.5	3.21	3.24	3.27	4.2	4.3	4.2
22 / lug 12	0000 0010	25/01000	Odim	10.0	Middle	0.0	27.7	29.6	20.0	5.40	0.00		77.7	77.0	3.26	0.2-	0.27	4.4	4.0	7.2
					Bottom	18.8	27.6 27.6	29.9 30.0	30.0	5.12 5.15	5.14	5.14	73.7 74.2	74.0	3.58 3.53	3.56		4.6	4.5	
					Surface	1.0	27.8	27.4	27.4	5.97	5.99		87.8	88.1	2.78	2.80		3.6	3.7	
							27.9 27.5	27.4 27.7		6.01 5.85		5.91	88.3 86.0		2.81 2.54		1	3.8		
24-Aug-12	1125-1142	30/Fine	Small Wave	20.2	Middle	10.1	27.5	27.8	27.8	5.81	5.83		85.4	85.7	2.51	2.53	2.65	3.6	3.5	3.7
					Bottom	19.2	27.2 27.1	28.2 28.3	28.3	5.72 5.69	5.71	5.71	84.1 83.6	83.9	2.60 2.66	2.63		3.8	3.8	
					Surface	1.0	28.0	27.2	27.3	5.98	5.97	 	87.9	87.7	2.32	2.31	 	3.6	3.4	
					Surface	1.0	28.0	27.3	21.3	5.95	5.97	5.88	87.5	01.1	2.29	2.31		3.2	3.4	
27-Aug-12	1527-1544	34/Fine	Calm	19.2	Middle	9.6	27.7 27.6	27.7 27.7	27.7	5.80 5.77	5.79		85.3 84.8	85.1	2.43	2.46	2.45	3.6	3.7	3.6
					Bottom	18.2	27.4	28.2	28.3	5.69	5.67	5.67	83.6	83.3	2.57	2.59	1	3.6	3.8	
					Donom	10.2	27.3	28.3	20.0	5.64	0.07	5.07	83.0	55.5	2.61	2.00		4.0	0.0	

		Ambient Temp		Total	N.A	. D. "	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Tu	urbidity (NT	Ū)	Susper	ided Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water	Monitorin (m	• .	Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
	Baration	Condition	Condition	Depth (m)	(''	(°C)		Average		Average	average		Average		Average	average		Average	average
					Surface	1.0	28.1	27.3 27.2	27.3	6.08 6.11	6.10		89.5 89.9	89.7	2.08	2.10		3.2	3.3	
							27.8	27.5		6.02		6.05	88.5		2.23			3.2		
29-Aug-12	1627-1645	31/Fine	Small Wave	18.8	Middle	9.4	27.7	27.5	27.5	5.97	6.00		87.9	88.2	2.28	2.26	2.25	3.2	3.2	3.3
					Bottom	17.8	27.6	27.7	27.8	5.86	5.84	5.84	86.3	85.9	2.40	2.38		3.4	3.5	
					20110111		27.6	27.8	20	5.81	0.0.	0.0 .	85.5	00.0	2.36	2.00		3.6	0.0	
					Surface	1.0	27.6 27.6	26.3 26.4	26.4	5.36 5.33	5.35		77.7 77.2	77.5	2.60 2.57	2.59		3.4	3.7	
							27.5	26.7		5.12		5.24	74.2		2.46		1	3.6		
31-Aug-12	1817-1835	30/Fine	Calm	19.6	Middle	9.8	27.4	26.6	26.7	5.15	5.14		74.7	74.5	2.42	2.44	2.59	3.4	3.5	3.6
					Bottom	18.6	27.3	26.8	26.8	5.05	5.07	5.07	73.3	73.6	2.71	2.74		3.8	3.7	
							27.3	26.8		5.09			73.8		2.76			3.6		
					Surface	1.0	28.8	24.6 24.6	24.6	7.14 7.06	7.10		103.9 102.6	103.3	2.00 1.94	1.97		3.2 2.8	3.0	
							28.1	25.3		5.64		6.35	82.6		3.95			4.8		
3-Sep-12	1858-1920	32/Fine	Small Wave	19.6	Middle	9.8	28.0	25.2	25.3	5.57	5.61		81.6	82.1	3.89	3.92	3.29	4.6	4.7	4.2
					Bottom	18.6	27.6	25.4	25.4	5.00	5.03	5.03	72.9	73.3	3.99	3.97		5.0	4.9	
					20110111		27.7	25.4	20	5.05	0.00	0.00	73.6		3.94	0.01		4.8		
					Surface	1.0	27.7 27.8	27.4 27.3	27.4	6.14 6.17	6.16		90.6 91.0	90.8	2.47	2.49		3.6	3.7	
							27.4	27.7		6.06		6.09	89.4		2.66		1	3.6		
5-Sep-12	0910-0927	28/Cloudy	Small Wave	19.2	Middle	9.6	27.4	27.8	27.8	6.00	6.03		88.5	89.0	2.72	2.69	2.68	3.8	3.7	3.8
					Bottom	18.2	27.1	28.2	28.2	5.90	5.88	5.88	87.0	86.7	2.84	2.86		4.0	3.9	
							27.2	28.2		5.86			86.4		2.87			3.8		
					Surface	1.0	27.5 27.4	27.3 27.3	27.3	6.12 6.16	6.14		90.2	90.5	2.55	2.58		3.6	3.7	
							27.2	27.5		6.01		6.06	88.6		2.69			3.6		
7-Sep-12	1055-111	28/Cloudy	Small Wave	18.8	Middle	9.4	27.3	27.6	27.6	5.96	5.99		87.9	88.3	2.74	2.72	2.74	3.8	3.7	3.8
					Bottom	17.8	27.2	27.9	28.0	5.92	5.90	5.90	87.3	87.0	2.92	2.94		3.8	3.9	
					20110111		27.1	28.0	20.0	5.88	0.00	0.00	86.7	01.10	2.95			4.0	0.0	
					Surface	1.0	27.9 28.0	27.5 27.6	27.6	6.09 6.12	6.11		89.8 90.3	90.1	2.47	2.45		3.6	3.5	
							27.6	28.0		5.98		6.03	88.2		2.75		1	3.6		
10-Sep-12	1825-1842	29/Fine	Small Wave	19.2	Middle	9.6	27.5	27.9	28.0	5.94	5.96		87.6	87.9	2.78	2.77	2.73	3.8	3.7	3.7
					Bottom	18.2	27.2	28.3	28.4	5.85	5.83	5.83	86.3	86.0	2.96	2.98		4.0	4.0	
					Bottom	10.2	27.1	28.4	20.1	5.81	0.00	0.00	85.7	00.0	2.99	2.00		4.0	1.0	
					Surface	1.0	27.7 27.8	26.9 26.9	26.9	6.54 6.58	6.56		95.4 96.1	95.8	2.76 2.80	2.78		3.6	3.7	
							27.6	27.2		6.24		6.38	91.1		3.00			3.8		
12-Sep-12	1555-1613	32/Fine	Calm	19.8	Middle	9.9	27.6	27.1	27.2	6.17	6.21		90.0	90.6	3.06	3.03	3.02	4.0	3.9	3.9
					Bottom	18.8	27.4	27.4	27.4	5.89	5.91	5.91	86.0	86.2	3.21	3.24		4.0	4.1	
					Dollom	10.0	27.4	27.4	21.7	5.92	0.01	0.01	86.4	00.2	3.27	0.24		4.2	7.1	
					Surface	1.0	28.0 27.9	26.9 26.9	26.9	6.43 6.37	6.40		93.8	93.4	2.59	2.61		3.6	3.6	
							27.9	26.9		6.14		6.26	93.0 89.6		2.88		1	3.6		
14-Sep-12	1710-1727	30/Fine	Small Wave	20.2	Middle	10.1	27.7	27.2	27.2	6.10	6.12		89.1	89.4	2.93	2.91	2.88	4.0	3.9	3.9
					Bottom	19.2	27.6	27.3	27.4	5.82	5.84	5.84	85.0	85.2	3.10	3.13	1	4.0	4.1	
			ĺ	1	DOMOITI	10.2	27.6	27.4	21.4	5.85	J.04	5.04	85.4	00.2	3.16	0.10		4.2	7.1	

	Campling	Ambient Temp	Coo	Total	Monitorin	na Donth	Water	Salini	ty (ppt)	Dissolv	red Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorir (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition			Surface	1.0	27.7	26.8	26.8	6.28	6.26	avolago	91.7	91.4	2.55	2.57	avorago	4.0	3.7	avorago
					Ourrace	1.0	27.6	26.8	20.0	6.23	0.20	6.22	91.0	01.4	2.59	2.01		3.4	0.1	ł
17-Sep-12	1754-1812	29/Fine	Small Wave	20.2	Middle	10.1	27.5 27.4	26.9 27.0	27.0	6.16 6.20	6.18		89.9 90.5	90.2	2.73 2.70	2.72	2.73	3.6	3.5	3.7
					Bottom	19.2	27.3 27.3	27.2 27.3	27.3	6.01 6.06	6.04	6.04	87.7 88.4	88.1	2.88 2.93	2.91		3.8 4.0	3.9	
					Surface	1.0	26.5	26.7	26.7	6.43	6.46		93.9	94.3	2.93	2.87		4.0	3.9	
							26.6 26.5	26.7 26.8		6.48 6.25		6.34	94.6 91.3		2.89 3.09			3.8 4.0		
19-Sep-12	0835-0852	27/Fine	Calm	19.6	Middle	9.8	26.4	26.8	26.8	6.20	6.23		90.5	90.9	3.13	3.11	3.14	4.2	4.1	4.2
					Bottom	18.6	26.3 26.2	27.0 26.9	27.0	6.03 5.98	6.01	6.01	88.1 87.3	87.7	3.42 3.46	3.44		4.4	4.5	
					Surface	1.0	27.5 27.5	25.7 25.7	25.7	6.02 5.98	6.00		88.4 87.8	88.1	2.44 2.48	2.46		3.2 3.4	3.3	
21-Sep-12	1009-1026	28/Cloudy	Small Wave	20.2	Middle	10.1	27.2	26.0	26.1	5.71	5.70	5.85	83.8	83.6	2.46	2.63	2.69	3.4	3.6	3.6
21 OCP 12	1003 1020	20/Oloddy	Omaii wave	20.2			27.3 27.0	26.1 26.3		5.68 5.75			83.4 84.4		2.64 3.02		2.00	3.8 4.2		0.0
					Bottom	19.2	27.0	26.3	26.3	5.80	5.78	5.78	85.1	84.8	2.97	3.00		3.6	3.9	
					Surface	1.0	27.7 27.6	26.4 26.4	26.4	6.33 6.27	6.30	0.40	93.1 92.2	92.7	2.52 2.55	2.54		3.6	3.6	
24-Sep-12	1454-1511	30/Cloudy	Small Wave	19.2	Middle	9.6	27.3 27.3	26.8 26.9	26.9	6.08 6.05	6.07	6.18	89.4 88.9	89.2	2.67 2.72	2.70	2.72	3.8	3.8	3.8
					Bottom	18.2	27.0	27.3	27.3	5.89	5.87	5.87	86.6	86.3	2.92	2.94	1	4.0	4.0	
						-	27.0 27.7	27.2 26.3		5.85 6.36		0.07	86.0 93.3		2.96 2.58			4.0 3.6		
					Surface	1.0	27.6	26.3	26.3	6.32	6.34	6.28	92.7	93.0	2.61	2.60		3.8	3.7	
26-Sep-12	1525-1543	29/Cloudy	Small Wave	19.6	Middle	9.8	27.4 27.5	26.7 26.8	26.8	6.20 6.25	6.23		90.8 91.6	91.2	2.75 2.71	2.73	2.79	3.8	3.8	3.9
					Bottom	18.6	27.3 27.2	27.1	27.1	6.04	6.03	6.03	88.6 88.1	88.4	3.05 3.01	3.03	1	4.0	4.1	
					Surface	1.0	27.2	27.1 26.6	26.6	6.01 5.99	5.97		88.5	88.3	3.01	3.36		4.4	4.4	
					Ouriace	1.0	27.9 27.6	26.6 26.8	20.0	5.95 5.79	3.37	5.88	88.0 85.5	00.0	3.34 3.82	3.30		4.4	7.7	
28-Sep-12	1625-1640	29/Sunny	Small Wave	16.8	Middle	8.4	27.6	26.9	26.9	5.77	5.78		85.2	85.4	3.90	3.86	3.73	4.8	4.7	4.7
					Bottom	15.8	27.5 27.6	27.2 27.1	27.2	5.72 5.75	5.74	5.74	84.5 84.9	84.7	3.94 3.98	3.96		4.8 5.0	4.9	
					Surface	1.0	27.8 27.7	27.8 27.8	27.8	5.82 5.79	5.81		85.7 85.3	85.5	2.15 2.11	2.13		3.2	3.2	
3-Oct-12	1826-1843	29/Fine	Small Wave	19.6	Middle	9.8	27.5	28.0	28.1	5.63	5.62	5.71	82.9	82.7	2.44	2.47	2.43	3.4	3.5	3.5
0 000 12	1020 1040	25/1 1110	Omaii wave	10.0			27.4 27.2	28.1 28.2		5.60 5.47			82.5 80.6		2.49		2.40	3.6		0.0
					Bottom	18.6	27.2	28.3	28.3	5.49	5.48	5.48	80.9	80.8	2.71	2.69		3.8	3.8	
					Surface	1.0	27.6 27.5	27.7 27.7	27.7	5.93 5.90	5.92	F 96	87.1 86.7	86.9	2.14 2.17	2.16		3.2	3.2	
5-Oct-12	0856-0914	26/Fine	Small Wave	19.4	Middle	9.7	27.3 27.3	27.9 27.9	27.9	5.82 5.77	5.80	5.86	85.6 84.9	85.3	2.39 2.36	2.38	2.37	3.4 3.6	3.5	3.5
					Bottom	18.4	27.2	28.1	28.2	5.59	5.61	5.61	82.2	82.5	2.56	2.59	1	3.6	3.7	
	1			1	Douoiii	13.4	27.1	28.2	20.2	5.63	0.01	0.01	82.8	52.5	2.62	2.00		3.8	J,	

	0	Ambient Temp	0	Total		D	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Tu	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		Dopar (III)	Surface	1.0	27.4	26.6	26.7	5.68	5.70	average	83.2	83.4	2.93	2.95	average	4.0	3.9	average
					Surface	1.0	27.4	26.7	20.7	5.71	5.70	5.66	83.5	03.4	2.96	2.95		3.8	3.9	
8-Oct-12	1724-1740	27/Fine	Small Wave	19.0	Middle	9.5	27.3	26.9 26.8	26.9	5.63 5.61	5.62		82.5 82.2	82.4	3.03	3.05	3.05	4.0	4.1	4.1
					Bottom	18.0	27.1	26.9	27.0	5.56	5.58	5.58	81.5	81.7	3.13	3.16	1	4.2	4.2	
							27.2 27.4	27.0 26.5		5.59 5.75			81.9 84.1		3.18 2.97		<u> </u>	4.2		
					Surface	1.0	27.5	26.6	26.6	5.71	5.73	5.70	83.6	83.9	2.93	2.95		4.2	4.1	
10-Oct-12	1454-1511	28/Fine	Small Wave	18.8	Middle	9.4	27.4	26.7 26.8	26.8	5.68 5.64	5.66		83.1 82.6	82.9	3.08	3.11	3.11	4.0	4.1	4.2
					Bottom	17.8	27.1	26.9	27.0	5.53	5.56	5.56	80.9	81.3	3.27	3.29	1	4.2	4.3	
							27.2 27.6	27.0 26.8		5.58 5.66			81.7 83.2		3.30 2.91			4.4 4.0		
					Surface	1.0	27.6	26.9	26.9	5.62	5.64	5.55	82.6	82.9	2.87	2.89		3.6	3.8	
12-Oct-12	1555-1614	28/Fine	Small Wave	19.6	Middle	9.8	27.5 27.5	26.9 26.9	26.9	5.47 5.43	5.45		80.4 79.8	80.1	2.64 2.78	2.71	2.94	3.4	3.6	3.8
					Bottom	18.6	27.4	27.0	27.0	5.31	5.30	5.30	78.9	78.3	3.16	3.22		4.2	4.1	
							27.3 27.5	27.0 26.4		5.28 5.74			77.6 84.1		3.27 2.90			4.0		
					Surface	1.0	27.5	26.5	26.5	5.78	5.76	5.67	84.7	84.4	2.94	2.92		4.0	4.0	
15-Oct-12	1727-1745	28/Fine	Small Wave	19.4	Middle	9.7	27.4	26.6 26.6	26.6	5.60 5.57	5.59		82.0 81.6	81.8	3.07	3.09	3.08	4.0	4.1	4.1
					Bottom	18.4	27.2	26.7	26.7	5.50	5.49	5.49	80.7	80.4	3.22	3.24		4.2	4.3	
							27.1 27.1	26.7 26.6		5.47 5.38			80.1 78.7		3.26 2.45			4.4 3.2		
					Surface	1.0	27.1	26.7	26.7	5.41	5.40	5.43	79.1	78.9	2.51	2.48		3.4	3.3	
17-Oct-12	1823-1840	27/Cloudy	Small Wave	19.6	Middle	9.8	27.1 27.1	26.7 26.8	26.8	5.45 5.48	5.47		79.7 80.1	79.9	2.58	2.61	2.66	3.6	3.6	3.6
					Bottom	18.6	27.0	26.8	26.9	5.22	5.25	5.25	76.3	76.7	2.93	2.91	1	3.8	3.9	
							27.0 26.7	26.9 26.6		5.27 5.51			77.0 79.8		2.88 4.27			4.0 5.6		
					Surface	1.0	26.7	26.7	26.7	5.46	5.49	5.54	79.1	79.5	4.24	4.26]	5.2	5.4	
19-Oct-12	0852-0909	25/Fine	Small Wave	19.3	Middle	9.7	26.7	26.7 26.7	26.7	5.60 5.58	5.59		81.2 80.9	81.1	4.20 4.18	4.19	4.16	5.4 5.0	5.2	5.1
					Bottom	18.3	26.8	26.7	26.8	5.54	5.56	5.56	80.4	80.7	4.05	4.03	1	4.8	4.8	
					20110111		26.7 26.8	26.8 26.4		5.57 5.85	0.00	0.00	80.9 86.0		4.01 3.80			4.8 4.8		
					Surface	1.0	26.9	26.4	26.4	5.90	5.88	5.80	86.7	86.4	3.85	3.83]	5.0	4.9	
22-Oct-12	1226-1243	28/Fine	Small Wave	20.2	Middle	10.1	26.6 26.6	26.6 26.7	26.7	5.73 5.70	5.72	0.00	84.2 83.8	84.0	3.94	3.96	3.96	4.8 5.0	4.9	5.0
					Bottom	19.2	26.4	26.9	26.9	5.61	5.59	5.59	82.5	82.2	4.06	4.09	1	5.0	5.1	
							26.4 26.8	26.9 26.4		5.57 5.8			81.9 84.3		4.12 3.7			5.2 4.8		
					Surface	1.0	26.7	26.3	26.4	5.8	5.8	5.7	83.7	84.0	3.8	3.8		4.6	4.7	
24-Oct-12	1423-1440	28/Fine	Small Wave	20.4	Middle	10.2	26.5 26.5	26.6 26.6	26.6	5.7 5.6	5.7	0.7	82.6 82.1	82.4	3.9	3.9	3.9	4.8 5.0	4.9	4.8
					Bottom	19.4	26.3	26.9	26.9	5.5	5.5	5.5	80.4	80.7	4.0	4.0	1	5.0	4.9	
	1				ווטווטם	13.4	26.3	26.8	20.8	5.6	0.0	0.0	81.0	00.7	4.1	7.0		4.8	₹.5	

	Sampling	Ambient Temp	Sea	Total	Monitorin	a Donth	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	U)	Susper	nded Solids	s (mg/L)
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	(m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	26.6	26.6	26.7	5.6	5.6		81.1	81.1	4.0	4.1		5.2	5.0	
00.0.1.10	4550 4000	00/01	0 !! \\	40.4	NAC J. II.	0.7	26.6 26.5	26.7 26.8	00.0	5.6 5.6	F 7	5.6	81.0 82.3	00.4	4.1 4.2	4.0	4.0	4.8 5.2		
26-Oct-12	1552-1609	26/Cloudy	Small Wave	19.4	Middle	9.7	26.5	26.7	26.8	5.7	5.7		82.4	82.4	4.2	4.2	4.2	5.0	5.1	5.1
					Bottom	18.4	26.5	26.9	26.9	5.7	5.7	5.7	82.5	81.9	4.3	4.2		5.4	5.3	
					Bottom	10.1	26.5	26.8	20.0	5.6	0.1	0.1	81.3	01.0	4.2	1.2		5.2	0.0	
					Surface	1.0	26.6	26.8	26.9	5.6	5.5		81.9	81.4	4.1	4.0		4.8	4.7	
							26.5	26.9		5.5		5.5	80.9		4.0			4.6		
29-Oct-12	1652-1709	27/Cloudy	Small Wave	20.0	Middle	10.0	26.4 26.4	26.9 26.9	26.9	5.4 5.4	5.4		79.7 79.4	79.6	4.1 4.2	4.1	4.1	5.0 5.2	5.1	5.0
							26.3	27.0		5.4			79.0		4.2			5.2		
					Bottom	19.0	26.3	27.1	27.1	5.4	5.4	5.4	78.5	78.8	4.2	4.2		5.0	5.1	
					Surface	1.0	26.2	26.4	26.4	5.7	5.7		82.9	82.7	4.1	4.1		5.2	5.2	
					Surface	1.0	26.3	26.4	20.4	5.7	5.7	5.7	82.4	02.7	4.1	4.1		5.2	5.2	
31-Oct-12	1753-1810	24/Cloudy	Small Wave	19.6	Middle	9.8	26.1	26.5	26.6	5.6	5.6	0.7	81.7	81.5	4.0	4.0	4.1	5.0	4.9	5.1
		,, ,					26.1	26.6		5.6			81.2		4.0			4.8		
					Bottom	18.6	26.0	26.7	26.8	5.6	5.6	5.6	80.9	80.7	4.1	4.1		5.2	5.2	
			I				25.9	26.8		5.6			80.5		4.2			5.2		

	Sampling	Ambient Temp	Sea	Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	, 	Dissolve	d Oxygen	Tu	urbidity (NT		Susper	nded Solids	
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring [Depth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	22.9 22.9	25.4 25.4	25.4	7.2 7.2	7.2		96.9 97.4	97.2	1.5 1.4	1.4		3.6 3.6	3.6	
16-Apr-12	0945-1000	26/Cloudy	Calm	17.2	Middle	8.6	22.1	26.6 26.6	26.6	7.2 7.2	7.2	7.2	97.6 97.3	97.5	1.6 1.7	1.6	2.1	3.4 3.8	3.6	4.2
					Bottom	16.2	22.0	26.8 26.8	26.8	6.6	6.6	6.6	88.2 87.6	87.9	3.3	3.3		5.2 5.4	5.3	
					Surface	1.0	22.7	24.5	24.5	7.2 7.3	7.2		96.5 96.9	96.7	1.5	1.5		3.6	3.7	
18-Apr-12	1047-1102	22/Drizzle	Small Wave	17.2	Middle	8.6	22.4	25.7	25.7	7.1 7.2	7.1	7.2	94.8	95.1	1.6	1.7	1.8	4.0	4.0	4.0
					Bottom	16.2	22.1	25.7 26.5	26.6	6.9	6.9	6.9	95.3 92.2	92.0	1.7 2.2	2.3	1	4.2	4.3	
					Surface	1.0	22.2 22.0	26.6 24.9	25.0	6.9 7.0	7.1		91.8 92.2	92.6	2.3 1.7	1.8		4.4 3.6	3.7	
20-Apr-12	1229-1246	22/Rain	Great Wave	17.0	Middle	8.5	21.9 22.0	25.0 26.1	26.2	7.1 6.9	6.9	7.0	92.9 90.4	90.7	1.8 2.0	2.0	2.4	3.8 4.0	4.0	4.2
20 Apr 12	1223 1240	22/11/0111	Great Wave	17.0	Bottom	16.0	21.9 21.9	26.2 26.6	26.7	6.9 6.5	6.5	6.5	90.9 85.3	85.1	2.1 3.5	3.5		4.0 5.0	5.0	7.2
							21.9 22.4	26.7 25.7		6.5 6.8		0.5	84.8 90.4		3.4 2.8			5.0 3.8		
					Surface	1.0	22.3 22.1	25.7 26.1	25.7	6.8 6.7	6.8	6.7	90.1 88.5	90.3	2.7 3.1	2.7	-	3.8 4.0	3.8	
23-Apr-12	1315-1330	25/Cloudy	Small Wave	17.4	Middle	8.7	22.2 26.1	26.2 26.1	26.2	6.6 6.6	6.7		88.1 87.7	88.3	3.1 3.7	3.1	3.2	4.2	4.1	4.2
					Bottom	16.4	26.1	26.1 24.5	26.1	6.6	6.6	6.6	87.2 91.1	87.5	3.7	3.7		4.6	4.7	
					Surface	1.0	23.6	24.5	24.5	6.8	6.8	6.7	90.6	90.9	2.7	2.7		3.8	3.7	
25-Apr-12	1357-1412	28/Cloudy	Calm	17.0	Middle	8.5	23.5	26.2 26.2	26.2	6.6	6.6		88.7 88.2	88.5	3.0	3.0	3.0	4.0	4.0	4.0
					Bottom	16.0	23.5 23.5	26.7 26.7	26.7	6.5 6.5	6.5	6.5	87.1 87.4	87.3	3.2	3.2		4.2 4.4	4.3	
					Surface	1.0	23.6 23.6	25.4 25.3	25.4	7.3 7.4	7.4	7.3	99.7 100.2	100.0	1.6	1.6		3.0 2.8	2.9	
27-Apr-12	1518-1533	25/Cloudy	Small Wave	17.0	Middle	8.5	23.3 23.4	26.5 26.6	26.6	7.2 7.2	7.2	7.0	98.5 97.9	98.2	1.9 1.8	1.8	1.8	3.0 3.2	3.1	3.0
					Bottom	16.0	23.0	27.5 27.6	27.6	7.1 7.0	7.0	7.0	96.7 95.6	96.2	2.0	2.0		3.0 3.2	3.1	
					Surface	1.0	23.5 23.5	25.2 25.3	25.3	6.7 6.7	6.7	0.0	89.1 88.7	88.9	2.4 2.4	2.4		4.2 4.0	4.1	
30-Apr-12	1850-1908	27/Cloudy	Calm	17.0	Middle	8.5	23.4 23.4	26.4 26.5	26.5	6.5 6.5	6.5	6.6	86.8 86.2	86.5	2.9 2.9	2.9	2.9	4.8 5.0	4.9	4.8
					Bottom	16.0	23.4	27.0 27.0	27.0	6.4	6.4	6.4	85.1 84.7	84.9	3.2	3.2		5.2 5.4	5.3	
					Surface	1.0	25.5 25.5	26.1 26.0	26.1	7.2	7.2		102.5	102.7	1.6 1.7	1.6		2.8	2.9	
2-May-12	1004-1019	29/Cloudy	Small Wave	16.8	Middle	8.4	25.2	26.6	26.6	7.1	7.1	7.1	99.9	99.6	1.8	1.8	1.9	3.2	3.2	3.2
-		-			Bottom	15.8	25.1	26.6 27.9	27.9	7.0 6.8	6.9	6.9	99.2 96.6	97.0	1.9 2.1	2.2	1	3.2	3.4	
	1		1	l		1	24.8	27.8	1	6.9			97.3	1	2.2	1		3.4	1	

	0	Ambient Temp	0	Total			Water	Salinit	y (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Т	urbidity (NT	ΓU)	Susper	nded Solids	(mg/L)
I I)ate	Sampling Duration	(°C) / Weather	Sea Condition	Water Depth (m)	Monitoring [Depth (m)	Temp (°C)	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
		Condition		Deptil (III)	0 (4.0	26.7	25.8	05.0	6.4	0.4	average	91.5	04.0	2.6	0.0	average	3.6	0.7	average
					Surface	1.0	26.7	25.8	25.8	6.4	6.4	6.3	92.0	91.8	2.6	2.6		3.8	3.7	
4-May-12 0	0945-1000	28/Cloudy	Small Wave	16.8	Middle	8.4	26.0 26.1	26.2 26.2	26.2	6.2	6.2		88.5 87.9	88.2	3.2	3.2	3.2	4.0	4.2	4.3
					Bottom	15.8	25.9	26.5	26.5	6.1	6.1	6.1	86.3	86.0	3.8	3.9		5.0	5.1	
					Surface	1.0	25.9 25.3	26.4 25.7	25.7	6.0 7.3	7.3		85.7 102.1	102.4	3.9 1.7	1.7		5.2 2.6	2.7	
							25.3 25.0	25.6 26.7		7.3 7.1		7.2	102.7 98.9		1.7 1.8			2.8		
7-May-12 1	1217-1232	28/Fine	Small Wave	17.0	Middle	8.5	25.1	26.7	26.7	7.1	7.1		99.8	99.4	1.8	1.8	1.8	3.0	2.9	3.0
					Bottom	16.0	24.8 24.8	28.1 28.1	28.1	7.0 7.0	7.0	7.0	97.5 98.2	97.9	2.0	2.0		3.4	3.3	
					Surface	1.0	25.5 25.5	25.7 25.7	25.7	7.1 7.1	7.1		99.5 100.1	99.8	2.5	2.5		3.6 3.6	3.6	
9-May-12 1	1440-1458	32/Sunny	Calm	16.8	Middle	8.4	25.4	26.0	26.0	6.9	6.9	7.0	97.0	97.4	2.7	2.7	2.8	3.8	3.8	3.9
					Bottom	15.8	25.4 25.4	26.0 26.3	26.3	6.9 6.8	6.8	6.8	97.7 95.9	96.1	2.7 3.0	3.0		3.8 4.4	4.3	
							25.5 26.3	26.3 25.3		6.8 7.3		0.0	96.3 103.1		3.1 1.8			4.2 2.8		
					Surface	1.0	26.4	25.3	25.3	7.3	7.3	7.2	102.5	102.8	1.8	1.8		2.8 3.0	2.8	
11-May-12 1	1549-1604	29/Drizzle	Small Wave	17.0	Middle	8.5	26.0 26.1	26.6 26.6	26.6	7.0 7.1	7.1		99.4 99.8	99.6	1.9 2.0	2.0	1.9	3.2	3.1	3.0
					Bottom	16.0	25.8 25.7	27.7 27.6	27.7	6.8	6.9	6.9	96.3 97.3	96.8	2.1	2.1		3.0	3.1	
					Surface	1.0	25.9 25.8	26.2 26.1	26.2	6.9 6.9	6.9		98.5 97.9	98.2	2.9	2.9		4.0 3.8	3.9	
14-May-12 0	0845-0900	30/Cloudy	Small Wave	17.2	Middle	8.6	25.7	27.8	27.8	6.6	6.6	6.8	93.3	93.0	3.1	3.1	3.1	4.2	4.4	4.3
		•			Bottom	16.2	25.7 25.7	27.7 28.1	28.2	6.6 6.6	6.6	6.6	92.7 93.6	93.3	3.1 3.2	3.2		4.6 4.4	4.5	
							25.6 26.6	28.2 25.2		6.6 7.1		0.0	93.0 102.5		3.2 2.5			4.6 3.6		
					Surface	1.0	26.5	25.1	25.2	7.2	7.1	7.1	103.2	102.9	2.5	2.5		3.8	3.7	
16-May-12 1	1016-1031	27/Rainy	Great Wave	16.8	Middle	8.4	26.3 26.3	26.2 26.2	26.2	7.0 7.0	7.0		101.0 101.4	101.2	2.7	2.8	2.7	3.8 3.8	3.8	3.9
					Bottom	15.8	26.0 25.9	27.5 27.5	27.5	7.0 6.9	7.0	7.0	100.2 99.6	99.9	2.9	2.9		4.0	4.1	
					Surface	1.0	25.3 25.4	26.0 25.9	26.0	7.0 7.1	7.0		98.0 98.7	98.4	3.3	3.3		4.4 4.4	4.4	
18-May-12 1	1132-1149	26/Drizzle &	Small Wave	17.4	Middle	8.7	25.3	26.4	26.5	6.9	6.9	7.0	96.2	96.5	3.3	3.2	3.3	4.4	4.3	4.5
		Rainy			Dottom		25.3 25.3	26.5 26.9	26.0	6.9 6.7	6.7	6.7	96.7 94.1	93.9	3.2 3.5			4.2 4.6	4.7	
					Bottom	16.4	25.3 26.7	26.9 25.9	26.9	6.7 6.3	6.7	6.7	93.7 89.0		3.5 3.0	3.5		4.8 4.0	4.7	
					Surface	1.0	26.6	25.9	25.9	6.3	6.3	6.1	89.3	89.2	3.1	3.0		4.0	4.0	
21-May-12 1	1245-1300	28/Cloudy	Small Wave	17.2	Middle	8.6	26.2 26.1	26.5 26.5	26.5	5.9 5.9	5.9		83.4 82.8	83.1	3.6	3.6	3.5	4.6 4.4	4.5	4.4
					Bottom	16.2	25.9 25.8	26.9 27.0	27.0	5.8 5.8	5.8	5.8	82.5 82.0	82.3	3.7 3.7	3.7		4.8 4.6	4.7	

		Ambient Temp		Total	l		Water	Salini	ty (ppt)	Dissolv	red Oxyger	n (mg/L)	Dissolve	d Oxygen	Ti	urbidity (N	ΓU)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water	Monitoring [Depth (m)	Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
		Condition		Depth (m)		1	(°C)		rtvorago		7 Wordgo	average		rtvorago		Tworago	average		rworago	average
					Surface	1.0	25.3 25.4	25.8 25.8	25.8	7.0 7.0	7.0		98.0 98.6	98.3	2.2	2.2		3.2	3.3	
23-May-12	1348-1405	26/Cloudy	Small Wave	16.8	Middle	8.4	25.3	26.1	26.1	6.8	6.8	6.9	96.1	95.9	2.3	2.4	2.4	3.4	3.5	3.5
25-iviay-12	1340-1403	20/Cloudy	Siliali Wave	10.0	Middle	0.4	25.3	26.0	20.1	6.8	0.0		95.7	90.9	2.4	2.4	2.4	3.6	3.3	3.3
					Bottom	15.8	25.2 25.2	26.2 26.2	26.2	6.7 6.7	6.7	6.7	94.2	94.5	2.6	2.6		3.8	3.8	
					0 (4.0	26.4	26.2	00.0	6.0	0.0		85.3	05.5	2.2	0.0		3.4	0.5	
					Surface	1.0	26.4	26.2	26.2	6.0	6.0	6.0	85.7	85.5	2.3	2.2		3.6	3.5	
25-May-12	1346-1402	29/Cloudy	Small Wave	17.2	Middle	8.6	26.4	26.6	26.7	6.0	6.0	0.0	84.9	84.8	2.4	2.4	2.4	3.6	3.7	3.7
		_					26.4 26.4	26.7 26.9		6.0 5.8			84.6 81.9		2.4 2.5			3.8 4.0		
					Bottom	16.2	26.3	26.9	26.9	5.8	5.8	5.8	82.5	82.2	2.6	2.5		4.0	4.0	
					Surface	1.0	26.4	25.1	25.1	6.2	6.2		88.0	87.8	3.2	3.1		4.2	4.1	
							26.3	25.1	20	6.2	0.2	6.1	87.6	07.10	3.1	0	<u> </u>	4.0		
28-May-12	1650-1707	26/Cloudy	Small Wave	17.0	Middle	8.5	26.3 26.3	25.5 25.4	25.5	6.0	6.0		85.6 85.2	85.4	3.2	3.2	3.3	4.0	4.0	4.2
					Bottom	16.0	26.2	25.6	25.7	5.2	5.5	5.5	82.5	82.8	3.4	3.4		4.4	4.4	
					DOLLOITI	10.0	26.2	25.7	23.7	5.9	5.5	5.5	83.1	02.0	3.4	3.4		4.4	4.4	
					Surface	1.0	26.4 26.5	26.3 26.3	26.3	6.1 6.0	6.1		86.4 85.9	86.2	2.0	2.1		3.0	3.1	
							26.4	26.5		5.9		6.0	84.6		2.1			3.4		
30-May-12	0823-0837	26/Cloudy	Small Wave	17.2	Middle	8.6	26.4	26.6	26.6	5.9	5.9		84.0	84.3	2.3	2.3	2.2	3.4	3.4	3.3
					Bottom	16.2	26.4	27.0	27.0	5.8	5.8	5.8	82.6	82.3	2.4	2.4		3.6	3.5	
							26.3 26.9	26.9 25.8		5.8 6.8			81.9 98.3		2.4 2.5			3.4 3.6		
					Surface	1.0	26.8	25.8	25.8	6.8	6.8	0.7	98.6	98.5	2.5	2.5		3.8	3.7	
1-Jun-12	0915-0930	29/Cloudy	Great Wave	16.8	Middle	8.4	26.8	26.3	26.3	6.5	6.5	6.7	93.9	94.1	2.9	2.9	2.8	4.0	4.1	4.0
1-3011-12	0313-0330	25/Oloudy	Oreat wave	10.0	Middle	0.4	26.7	26.3	20.5	6.5	0.5		94.2	34.1	2.9	2.5	2.0	4.2	7.1	4.0
					Bottom	15.8	26.7 26.7	26.3 26.2	26.3	6.5 6.4	6.5	6.5	93.7	93.5	3.0	3.0		4.0	4.1	
					0 (4.0	27.0	26.0	00.0	6.9	7.0		100.7	404.4	2.6	0.0		3.8	0.7	
					Surface	1.0	27.1	25.9	26.0	7.0	7.0	6.7	102.1	101.4	2.5	2.6		3.6	3.7	
4-Jun-12	1220-1235	29/Cloudy	Small Wave	16.6	Middle	8.3	26.8	26.4	26.4	6.4	6.5	0.7	93.4	94.2	2.9	3.0	3.0	4.0	4.0	4.0
		_					26.7 26.6	26.3 26.7		6.5 6.2			94.9 90.4		3.0			4.0		
					Bottom	15.6	26.6	26.6	26.7	6.2	6.2	6.2	90.5	90.5	3.3	3.4		4.2	4.3	
					Surface	1.0	27.1	25.9	26.0	6.6	6.7		96.4	97.0	2.3	2.4		3.4	3.5	
					Gunado	1.0	27.2	26.0	20.0	6.7	0.7	6.5	97.5	07.0	2.5		_	3.6	0.0	
6-Jun-12	1251-1307	29/Fine	Small Wave	16.2	Middle	8.1	27.0 27.0	26.3 26.3	26.3	6.4 6.4	6.4		93.2	93.5	2.7	2.8	2.8	3.8 4.0	3.9	3.9
					Dattana	45.0	26.8	26.6	20.0	6.2	6.0	6.0	90.4	00.0	3.2	2.2		4.2	4.2	
					Bottom	15.2	26.7	26.5	26.6	6.1	6.2	6.2	89.3	89.9	3.4	3.3		4.4	4.3	
					Surface	1.0	28.0	27.9	27.9	6.3	6.3		93.5	93.8	1.1	1.1		2.0	2.1	
							28.0 27.7	27.9 28.0		6.3 6.1		6.2	94.1 91.0		1.2			2.2		
8-Jun-12	1417-1432	31/Fine	Calm	19.4	Middle	9.7	27.7	28.0	28.0	6.0	6.1		89.7	90.4	1.6	1.5	1.4	2.6	2.5	2.4
					Bottom	18.4	27.7	28.0	28.0	5.9	5.9	5.9	87.8	88.1	1.7	1.6		2.8	2.7	
					2540111		27.7	28.0	_5.5	5.9	5.0	0.0	88.4	33.1	1.5			2.6	l	

Part		Compling	Ambient Temp	Coo	Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Tu	urbidity (NT	ΓU)	Susper	nded Solids	(mg/L)
11-Jun-12 145-1702 165-1702	Date					Monitoring D	Depth (m)		Value	Average	Value	Average		Value	Average	Value	Average		Value	Average	
11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			Condition		Deptri (m)			_ ` /	27.8		6.3	_	average	94 4		12		average	2.4		average
11-Jun-12						Surface	1.0			27.8		6.4	6.3		94.7		1.3			2.3	
13-Jun-12 145-140-140 17-140-140-140 17-1400-140 17-140-140 17-140-140 17-140-140 17-140-140 17-140-140 17-140-140 17-140-140 17-140-140 17-1400-140 17-140-140 17-1400-140 17-1400-140 17-1400-140 17-1400-1400-140 17-1400-140 17-1400-1400-1400-140 17-1400-1400-140 17-1400-1400-1400-1400-140 17-1400-1400-1400-1400-1400-1400	11-Jun-12	1645-1702	30/Cloudy	Calm	19.2	Middle	9.6			27.9		6.1	0.5		91.5		1.7	1.6		2.8	2.7
13-Jun-12 14-Jun-12 14-J			_															1			
13-Jun-12 14-10-10-10-10-10-10-10-10-10-10-10-10-10-						Bottom	18.2			28.0		5.9	5.9		88.4		2.0			3.1	
13-lun-12						Surface	1.0			25.3		6.2			90.0		2.7			3.7	
19-Jun-12 149-149-149-149-149-149-149-149-149-149-													6.0					1			
15-Jun-12 16-Jun-12 17-11-13 18-Jun-12 18-Ju	13-Jun-12	0745-0800	29/Rainy	Small Wave	17.6	Middle	8.8			26.8		5.8			85.2		3.0	2.9		4.1	3.9
Surface 10 10 10 10 10 10 10 1						Bottom	16.6			27.0		5.7	5.7		82.6		3.0			4.0	
15-Jun-12 15-J																					
15-Jun-12 15-J						Surface	1.0			27.8		6.3	6.3		93.0		1.2			2.5	
18-Jun-12 1117-1135 28/Cloudy Great Wave 19.6 Surface 10. 27.6 27.7 27.3 27.7	15-Jun-12	0952-1009	28/Cloudy	Great Wave	19.2	Middle	9.6			28.1		6.2	0.0		91.2		1.5	1.4		2.3	2.5
18-Jun-12 1117-1135 28/Cloudy Great Wave 19-6 Middle 9-8 277 273						·	40.0			20.0		0.0	0.0		00.4		4.0	1		0.7	
18-Jun-12 1117-1135 28/Cloudy Great Wave 19.6 Middle 9.8 27.7 27.7 27.7 27.7 6.1 6.1 6.1 6.1 99.1 99.1 99.1 99.1 20 20 2.1 2.1 2.1 3.0 3.2 3.0 3.2						Bottom	18.2			28.3		6.0	6.0	88.1	88.4		1.6			2.7	
1117-1135 28/Cloudy Great Wave 19.6 Middle 9.8 27.7						Surface	1.0			27.3		6.2			91.6		1.7			2.8	
Part Part	40.1.40	4447 4405	00/01	0	40.0	NAT LUI	0.0			07.7		0.4	6.1		00.4		0.4	0.4		0.4	0.0
Surface 1.0 Surface 1.0 27.5 27.9 27.9 27.9 27.9 27.8 27.	18-Jun-12	1117-1135	28/Cloudy	Great wave	19.6	Middle	9.8			21.1		6.1			90.4		2.1	2.1		3.1	3.2
20-Jun-12 1252-1308 30/Fine Freat Wave 19.4 Middle 9.7 27.6 27.8 27.8 27.8 28.8 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2						Bottom	18.6			27.9		5.9	5.9		87.8		2.5			3.7	
20-Jun-12 1252-1308 30/Fine						Curfoss	1.0			27.0		6.0			01.6		1.1			2.5	
27-Jun-12 179-1735 30/Fine Great Wave Part of the first state of the f						Surface	1.0			21.0		0.2	6.2		91.0		1.4			2.5	
Sufface Bottom 18.4 27.1 28.5 28.6 6.0 6.0 6.0 6.0 88.5 88.7 1.8 1.8 1.8 1.8 3.0 2.9	20-Jun-12	1252-1308	30/Fine	Great Wave	19.4	Middle	9.7			28.3		6.2			90.5		1.6	1.6		2.7	2.7
22-Jun-12 1345-1400 28/Drizzie						Pottom	10.4			20.6		6.0	6.0		00 7		1.0	1		2.0	
22-Jun-12 1345-1400 28/Drizzle Small Wave 17.2 Middle 8.6 27.6 26.9 26.9 5.8						DOMOIII	10.4			20.0		0.0	0.0		00.1		1.0			2.9	
22-Jun-12 1345-1400 28/Drizzle Small Wave 17.2 Middle 8.6 27.6 26.9 26.9 5.8						Surface	1.0			26.7		6.0			87.5		3.0			4.1	
25-Jun-12 1549-1605 29/Cloudy Small Wave 16.8 Surface 1.0 28.2 26.6 26.9 27.0	22 Jun 12	1345 1400	28/Drizzlo	Small Wayo	17.2	Middle	8.6			26.0		5.9	5.9		95.1		2.8	3.0		3.0	4.0
25-Jun-12	22-Juli-12	1343-1400	20/0/12216	Siliali vvave	17.2	Middle	0.0			20.9		3.0		+	03.1		2.0	3.0		3.9	4.0
25-Jun-12						Bottom	16.2			27.1		5.7	5.7		83.9		3.0			4.0	
25-Jun-12 1549-1605 29/Cloudy Small Wave 16.8 Middle 8.4 28.1 26.9 26.9 5.6 5.6 5.6 5.6 5.6 82.2 82.5 3.5 3.5 3.5 3.5 4.6 4.6 4.5 4.6 4.7 4.6 4.7 4.8 4.7 4.8 4.7 4.8 4.7 4.8 4.8 4.7 4.8 4.8 4.7 4.8 4.8 4.7 4.8 4.8 4.7 4.8 4.8 4.7 4.8 4.						Surface	1.0			26.6	5.9	5.8			85.7	3.3	3.2		4.2	<i>A</i> 1	
25-Jun-12 1719-1735 30/Fine Small Wave 18.2 Middle 8.4 28.0 26.9 27.0 5.6 5.6 5.6 82.2 82.3 3.4 3.5 3.5 4.6 4.5 4.6 4.7 4.8 4.7 4.8 4.7 4.8 4.7 4.8 4.7 4.8 4.8 4.7 4.8 4.8 4.7 4.8 4.8 4.7 4.8 4.8 4.7 4.8 4.8 4.8 4.7 4.8						Juliace	1.0			20.0		5.0	5.7		03.7		J.Z			7.1	
Bottom 15.8 28.0 26.9 27.0 5.6 5.6 5.6 82.1 82.4 3.5 3.5 4.8 4.7 27-Jun-12	25-Jun-12	1549-1605	29/Cloudy	Small Wave	16.8	Middle	8.4			26.9		5.6			82.5		3.5	3.4		4.5	4.4
27-Jun-12 1719-1735 Small Wave 19.2 Surface 1.0 28.4 25.5 25.5 25.5 25.5 5.9 5.9 5.8 25.5 2						Bottom	15.8	28.0	26.9	27.0	5.6	5.6	5.6	82.1	82.4	3.5	3.5		4.6	47	
27-Jun-12 1719-1735 Small Wave 19.2 Middle 9.6 28.2 25.5 25.5 5.9 5.9 5.8						Bottom	10.0			27.0		0.0	0.0		02.4	-	0.0			7.7	
27-Jun-12 1719-1735 30/Fine Small Wave 19.2 Middle 9.6 \(\frac{28.2}{28.2} \) \(\frac{25.5}{25.4} \) 25.5 \(\frac{5.8}{5.7} \) 5.8 \(\frac{83.7}{83.1} \) 83.4 \(\frac{1.6}{1.6} \) 1.6 2.0 \(\frac{2.4}{2.6} \) 2.5 2.6 \(\frac{2.6}{2.6} \) 2.6 2.7 2.6 2.7 2.8 2.5 2.5 2.8 2.5 2.5 2.8 2.5 2.5 2.8 2.5						Surface	1.0			25.5		5.9			85.5		1.8			2.7	
28.2 25.4 5.7 83.1 1.6 2.6 2.6 80.1 80.1 80.1 80.1 80.1 80.1 80.1 80.1	27-,Jun-12	1719-1735	30/Fine	Small Wave	19.2	Middle	9.6	28.2	25.5	25.5	5.8	5.8	5.8	83.7	83.4	1.6	1.6	20	2.4	2.5	26
	27 0011 12	.,,,,,,,,,	30/1 1110	S.Hall Travo	10.2	Middle	0.0			20.0		0.0			00.1		1.0			2.0	2.0
						Bottom	18.2	27.7	25.8	25.8	5.6	5.6	5.6	81.2 81.8	81.5	2.5	2.6		2.6	2.7	

	Sampling	Ambient Temp	Sea	Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	, 	Dissolve	d Oxygen	Tı	urbidity (N7		Susper	nded Solids	
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring [Depth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- averag
					Surface	1.0	28.7 28.6	27.8 27.8	27.8	6.2 6.3	6.3		93.3 93.9	93.6	1.2	1.3		2.2	2.3	
29-Jun-12	0835-0850	28/Fine	Small Wave	19.2	Middle	9.6	28.4	28.2	28.2	6.1 6.1	6.1	6.2	91.5 90.9	91.2	1.4	1.4	1.9	2.2	2.4	2.8
					Bottom	18.2	27.9	28.4	28.5	5.9	5.9	5.9	88.3 88.8	88.6	2.9	3.0		3.8	3.7	
					Surface	1.0	28.1	27.5 27.5	27.5	6.1 6.1	6.1		90.6	90.4	1.7	1.7		2.4	2.5	
4-Jul-12	1221-1237	32/Fine	Small Wave	19.4	Middle	9.7	27.7	27.9	27.9	6.0	6.0	6.1	88.8	89.2	1.8	1.9	1.9	2.8	2.8	2.8
					Bottom	18.4	27.8	27.9 28.1	28.1	5.9	5.9	5.9	89.6 87.2	86.9	2.1	2.0	1	2.8 3.2	3.1	
					Surface	1.0	27.4 27.3	28.0 23.9	23.9	5.9 5.1	5.1		86.6 72.8	73.7	2.0	2.2		3.0	3.2	
6-Jul-12	1426-1435	28/Cloudy	Calm	19.0	Middle	9.5	27.2 27.1	23.8 24.2	24.2	5.2 5.4	5.4	5.3	74.5 77.4	77.3	2.4 2.0	2.0	3.1	3.4 3.0	2.9	4.0
0 0ui 12	1420 1400	20/010ddy	Cairi	10.0	Bottom	18.0	27.1 27.2	24.1 24.3	24.3	5.4 5.4	5.5	5.5	77.1 76.4	78.6	2.1 5.1	5.2	-	2.8 5.8	5.9	4.0
							27.2 27.9	24.3 24.9		5.6 5.6		5.5	80.7 81.9		5.2 2.4			6.0 3.4		
					Surface	1.0	28.0 27.9	24.9 24.9	24.9	5.7 5.5	5.6	5.6	82.6 80.4	82.3	2.5 2.7	2.5	1	3.6 3.8	3.5	
9-Jul-12	1538-1555	32/Fine	Calm	18.0	Middle	9.0	27.9	25.0 25.0	25.0	5.5 5.4	5.5		80.7 78.1	80.6	2.7	2.7	3.2	4.0	3.9	4.2
					Bottom	17.0	27.7	25.0	25.0	5.4	5.4	5.4	78.7	78.4	4.3	4.3		5.2	5.2	
					Surface	1.0	28.1	25.7 25.6	25.7	6.2	6.2	6.1	91.5 92.1	91.8	1.8	1.8	_	3.0	3.0	
11-Jul-12	1653-1710	33/Fine	Small Wave	19.2	Middle	9.6	27.8	26.0 26.0	26.0	6.1	6.1		89.5 90.1	89.8	2.0	2.0	2.1	3.0	2.9	3.2
					Bottom	18.2	27.4 27.4	26.3 26.3	26.3	5.9 5.9	5.9	5.9	87.1 87.6	87.4	2.5	2.6		3.6 3.6	3.6	
					Surface	1.0	28.1 28.1	24.3 24.4	24.4	5.7 5.6	5.7	5.6	82.5 81.9	82.2	2.9	2.9		3.8 3.8	3.8	
13-Jul-12	0845-0902	29/Cloudy	Small Wave	19.0	Middle	9.5	27.8 27.8	24.5 24.4	24.5	5.6 5.5	5.5	3.0	80.9 80.2	80.6	3.0	3.1	3.4	4.0 4.0	4.0	4.2
					Bottom	18.0	27.5 27.6	24.7 24.8	24.8	5.5 5.5	5.5	5.5	79.9 79.3	79.6	4.2 4.2	4.2		4.8 4.8	4.8	
					Surface	1.0	27.9 27.9	23.6 23.7	23.7	6.0 6.1	6.0		86.5 87.1	86.8	3.4 3.3	3.4		4.4 4.2	4.3	
16-Jul-12	1015-1033	30/Fine	Calm	19.6	Middle	9.8	27.8 27.8	23.9 23.9	23.9	5.9 5.8	5.8	5.9	84.4 83.7	84.1	3.7 3.6	3.6	3.6	4.6 4.6	4.6	4.6
					Bottom	18.6	27.8	24.1	24.1	5.6 5.6	5.6	5.6	80.2 80.6	80.4	3.8	3.8	1	4.8	4.8	
					Surface	1.0	28.0	23.5	23.5	6.0	6.0		87.3	87.0	3.6	3.6		4.6	4.5	
18-Jul-12	1144-1202	28/Cloudy	Small Wave	19.4	Middle	9.7	28.0	23.4	23.8	5.9 5.8	5.8	5.9	86.6 84.5	84.2	3.6	3.8	3.6	4.4	4.7	4.6
					Bottom	18.4	27.7 27.4	23.8 23.9	24.0	5.7 5.7	5.7	5.7	83.8 82.9	82.6	3.8 3.5	3.6	-	4.6 4.6	4.7	•
					Dottoill	10.4	27.5	24.0	27.0	5.6	3.7	5.1	82.3	02.0	3.6	3.0		4.8	7.7	

Decision Confision Confi		0	Ambient Temp	0	Total			Water	Salini	ty (ppt)	Dissolv	red Oxyger	n (mg/L)	Dissolve	d Oxygen	Tı	urbidity (NT	ΓU)	Susper	nded Solids	s (mg/L)
Surface Contribute Surface Contribute Surface Contribute Surface Contribute Surface Contribute Surface Contribute Contribute Surface Contribute	Date					Monitoring [Depth (m)	•	Value	Average	Value	Average	-	Value	Average	Value	Average		Value	Average	-
147-130			Condition		Depth (III)				23.9		6.2	_	average	90.6		3.4		average	4 4		average
1						Surface	1.0			23.9		6.2	6.1		90.3		3.4			4.5	
Part Part	20-Jul-12	1247-1305	32/Fine	Small Wave	19.6	Middle	9.8			24.1		6.0	0.1		88.1		3.5	3.6		4.7	4.7
Sum Sum																		1			
Sumail Wave Samail Wave						Bottom	18.6			24.4		5.9	5.9		85.6		3.8			4.9	
25-Jul-12 162-1640 26-Rainy						Surface	1.0			29.2		5.7			80.2		2.6			3.5	
													5.6								
Table Tabl	25-Jul-12	1622-1640	26/Rainy	Small Wave	19.6	Middle	9.8			29.5		5.6			78.4		2.9	2.9		3.9	3.8
Surface 10 26.4 26.4 26.4 26.2 6.2						Bottom	18.6			29.8		5.3	5.3		75.2		3.1			4.1	
27-Jul-12 1820-1838 28/Rainy 28/Rain																					
140-1416 140-1416						Surface	1.0			25.4		6.2	6.1		89.4		3.6			4.5	
Section Bottom	27-Jul-12	1820-1838	28/Rainy	Great Wave	19.8	Middle	9.9			25.8		6.0	0.1		87.1		3.7	3.7		4.9	4.8
Surface 10 Surf							40.0			00.0		5.0	5.0		05.4		0.0	1		4.0	
30-Jul-12 30-J						Bottom	18.8			26.2	5.9	5.9	5.9	85.1	85.4		3.9			4.9	
30-Jul-12 0945-1000 9045-1						Surface	1.0			29.9		5.9			86.9		3.6			4.5	
1-Aug-12 1145-1201 30/Fine Small Wave 17.0 Middle 8.5 27.5 28.8 29.9 5.8 5.8 5.9 5.8 6.0	00 1 1 40	0045 4000	00/0	0 !! \\\	47.0	NAC JUIL	0.0			00.0		5.0	5.9		05.4		0.5	0.7		4.5	4.0
Surface 1.0 Surface 1.0 Surface 1.0 Surface 2.71 30.5 5.8 5.	30-Jul-12	0945-1000	30/Sunny	Small wave	17.2	Middle	8.6			30.2		5.8			85.1		3.5	3.7		4.5	4.6
1-Aug-12 1145-1201 30/Fine Small Wave 17.0 Middle 8.5 27.5 29.8 29.7 5.8 5.9 5.8						Bottom	16.2			30.5		5.7	5.7		84.1		3.9			4.9	
1-Aug-12 1145-1201 30/Fine						Curfoso	1.0			20.7		F 0			96.1		2.5			4.6	
1-Aug-12 145-1201 30/Fine						Surface	1.0			29.7		5.9	5.8		00.1		3.5			4.0	
Sufface Bottom 16.0 27.2 30.1 30.2 5.6 5.6 5.6 5.6 82.7 82.4 3.7 3.7 3.7 4.8 4.7	1-Aug-12	1145-1201	30/Fine	Small Wave	17.0	Middle	8.5			29.9		5.8			84.5		3.5	3.6		4.6	4.6
Aug-12 1322-1340 33/Cloudy Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 17.2 Small Wave 18.4 Sma						Pottom	16.0			20.2		5.6	5.6		92.4		2.7	1		4.7	
3-Aug-12 1322-1340 33/Cloudy Small Wave 17.2 Middle 8.6 27.9 29.8 29.9 5.9						Бошотт	10.0			30.2		5.0	5.0		02.4		3.1			4.7	
3-Aug-12 1322-1340 33/Cloudy Small Wave 17.2 Middle 8.6 27.9 29.8 29.9 5.9 5.9 5.9 5.9 5.9 87.3 86.6 87.0 3.5 3.5 3.5 3.6 4.						Surface	1.0			29.6		6.0			88.9		3.6			4.5	
8-Aug-12 1520-1537 33/Fine Small Wave 18.0 English 16.2 27.6 27	3 Aug 12	1322 1340	33/Cloudy	Small Wayo	17.2	Middlo	8.6			20.0		5.0	5.9		97 O		3.5	3.6		4.6	16
8-Aug-12 1520-1537 33/Fine Small Wave 18.0 Middle 9.0 27.5 26.8 27.9 26.4 27.9 26.4 27.9 26.4 27.5 26.6 27.9 26.4 27.9 27.5 26.6 27.9 27.5 26.6 27.5	3-Aug-12	1322-1340	33/Cloudy	Siliali Wave	17.2	Middle	0.0			29.9		3.9			07.0		3.3	3.0		4.0	4.0
6-Aug-12						Bottom	16.2			30.3		5.7	5.7		84.9		3.7			4.8	
6-Aug-12 1400-1416 33/Fine Small Wave 18.4 Middle 9.2 26.7 26.2 26.2 26.2 26.2 4.4 4.4 4.4 62.7 63.0 2.7 2.7 2.9 3.8 3.9 4.0 4.6 62.7 63.2 63.0 2.7 2.8 2.7 2.9 4.0 4.0 4.0 4.0 55.8 56.2 3.6 3.6 3.6 4.8 4.7 4.0 4.0 4.0 4.0 4.0 55.8 56.2 3.6 3.6 3.6 4.8 4.7 4.0 4.						Surface	1.0			25.8	4.8	4.8			70.0	2.5	2.4		3.6	3.5	
8-Aug-12 1520-1537 33/Fine Small Wave 18.4 Middle 9.2 26.7 26.2 26.2 26.2 4.4 4.4 63.2 63.0 2.8 2.7 2.9 4.0 3.9 4.0 4.0 55.8 56.5 56.5 56.5 56.5 56.5 56.2 3.6 3.6 3.6 4.6 4.7 4.2						Odnace	1.0			20.0		4.0	4.6		70.0		2.4			0.0	
Bottom 17.4 25.4 27.3 27.3 3.9 4.0 4.0 55.8 56.2 3.6 3.7 3.6 4.8 4.7 Sufface 1.0 27.8 26.4 27.9 26.4 27.9 26.4 27.5 26.5 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	6-Aug-12	1400-1416	33/Fine	Small Wave	18.4	Middle	9.2			26.2		4.4			63.0		2.7	2.9		3.9	4.0
8-Aug-12 1520-1537 33/Fine Small Wave 18.0 Surface 1.0 27.8 26.4 27.9 26.4 27.5 26.6 27.5 26.6 27.5 26.5 27.5 26.5 27.						Bottom	17.4	25.4	27.3	27.3	3.9	4.0	4.0	55.8	56.2	3.6	3.6		4.6	47	
8-Aug-12 1520-1537 33/Fine Small Wave 18.0 Middle 9.0 27.5 26.6 27.5 26.6 5.7 5.6 5.6 5.6 5.7 5.6 81.4 81.2 3.2 3.2 3.2 4.2 4.2 4.2 4.3						Bottom	177			27.0	_	4.0	4.0		00.2	_	0.0			7.7	
8-Aug-12 1520-1537 33/Fine Small Wave 18.0 Middle 9.0 27.5 26.6 26.6 5.6 5.7 5.6 81.4 81.7 3.1 3.1 3.1 3.3 4.0 4.1 4.3 4.2 4.1 4.3 4.2 4.1 4.3 4.2 4.1 4.3 4.2 4.1 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.3 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.3 4.2 4.1 4.3 4.3 4.3 4.3 4.2 4.1 4.3						Surface	1.0			26.4		5.6			81.2		3.2			4.2	
27.5 26.5 5.7 81.9 3.1 4.2 804 80.2 3.6 3.6 4.6 4.6	8-Aug-12	1520-1537	33/Fine	Small Wave	18.0	Middle	9.0	27.5	26.6	26.6	5.6	5.6	5.6	81.4	81.7	3.1	3 1	3.3	4.0	4 1	4.3
	57.dg 12	1020 1007	33,7 1110	Jilian Wave	15.0	ivildulo	0.0			20.0		0.0			01.7		J. 1]			
						Bottom	17.0	27.4	27.0	27.0	5.6	5.5	5.5	80.4	80.2	3.6	3.6		4.6	4.6	

	Sampling	Ambient Temp	Sea	Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Т	urbidity (NT	ΓU)	Susper	nded Solids	s (mg/L)
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring [Depth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	28.3	26.3 26.3	26.3	5.7 5.7	5.7		84.1 83.6	83.9	2.8 2.9	2.8		3.8 4.0	3.9	_
10-Aug-12	1619-1637	33/Cloudy	Small Wave	18.0	Middle	9.0	28.0	26.6 26.7	26.7	5.5 5.4	5.5	5.6	81.3 80.5	80.9	3.0	3.0	3.0	4.0	4.1	4.1
					Bottom	17.0	27.8 27.7	26.9 27.0	27.0	5.3	5.3	5.3	78.7 79.0	78.9	3.2	3.2	1	4.2	4.3	
					Surface	1.0	27.7	25.3 25.4	25.4	5.9 6.0	5.9		85.8 86.2	86.0	3.0	3.1		4.0	4.0	
13-Aug-12	0953-1011	27/Cloudy	Small Wave	18.2	Middle	9.1	27.5 27.4	25.7	25.7	5.8 5.8	5.8	5.9	84.7 84.2	84.5	3.2	3.2	3.2	4.2	4.2	4.2
					Bottom	17.2	27.2	26.2	26.2	5.6 5.7	5.6	5.6	81.6 82.1	81.9	3.3	3.3		4.4	4.4	
					Surface	1.0	28.2	27.5	27.5	6.0	6.0		87.0 87.6	87.3	2.3	2.3		3.2	3.3	
15-Aug-12	1150-1207	31/Sunny	Calm	19.6	Middle	9.8	28.1	27.5 27.6	27.6	5.8 5.9	5.8	5.9	84.8 85.7	85.3	2.6	2.6	2.6	3.6	3.5	3.6
					Bottom	18.6	27.8 27.9	27.7	27.8	5.7 5.7	5.7	5.7	82.4 83.1	82.8	2.9	2.9	1	3.8	3.9	
					Surface	1.0	27.8 27.8	26.8	26.8	6.1	6.1		88.0 87.6	87.8	2.5 2.5	2.5		3.4	3.5	
17-Aug-12	1220-1237	29/Cloudy	Great Wave	19.2	Middle	9.6	27.5 27.4	27.0 26.9	27.0	6.0 5.9	5.9	6.0	86.2 85.8	86.0	2.4	2.3	2.5	3.4	3.3	3.5
					Bottom	18.2	27.3	27.1	27.2	5.8 5.8	5.8	5.8	84.2 84.7	84.5	2.7	2.8	1	3.6	3.7	
					Surface	1.0	27.9	25.8 25.7	25.8	5.9 5.9	5.9		86.9 87.3	87.1	2.9	3.0		3.8	3.8	
20-Aug-12	1409-1426	32/Fine	Small Wave	18.2	Middle	9.1	27.6 27.7	26.2	26.2	5.8 5.8	5.8	5.9	85.8 85.3	85.6	3.1	3.1	3.1	4.0	4.1	4.0
					Bottom	17.2	27.3 27.3	26.6 26.6	26.6	5.7 5.7	5.7	5.7	83.9 83.3	83.6	3.2	3.2	1	4.2	4.2	
					Surface	1.0	28.0	29.4	29.4	5.5 5.5	5.5		78.9 79.4	79.2	2.8	2.8		3.8	3.9	
22-Aug-12	1526-1543	32/Cloudy	Calm	19.2	Middle	9.6	27.9	29.6	29.6	5.4 5.4	5.4	5.4	77.3	77.6	3.0	3.0	3.0	4.2	4.0	4.1
					Bottom	18.2	27.7 27.8	29.9	30.0	5.1	5.1	5.1	73.5 74.3	73.9	3.2	3.2		4.4	4.3	
					Surface	1.0	27.9 28.0	27.4 27.4	27.4	6.0	6.0		88.5 87.7	88.1	2.3	2.3		3.4	3.3	
24-Aug-12	1648-1705	33/Fine	Small Wave	19.4	Middle	9.7	27.6 27.6	27.7	27.8	5.9 5.9	5.9	5.9	86.7 86.3	86.5	2.5	2.5	2.4	3.6	3.6	3.6
					Bottom	18.4	27.3 27.2	28.3	28.3	5.8 5.7	5.7	5.7	84.7 83.9	84.3	2.6	2.6	1	3.8	3.8	
					Surface	1.0	27.8 27.8	27.1	27.2	6.0	6.0		87.6 88.1	87.9	2.3	2.4		3.4	3.5	
27-Aug-12	0918-0935	29/Fine	Calm	18.0	Middle	9.0	27.5 27.5	27.6 27.6	27.6	5.9 5.8	5.8	5.9	86.1 85.7	85.9	2.5	2.5	2.5	3.8	3.7	3.7
					Bottom	17.0	27.2 27.2	28.0 28.1	28.1	5.6 5.7 5.7	5.7	5.7	84.1 83.5	83.8	2.7	2.7	1	3.8	3.9	
	I	İ		1	1	1	21.2	28.1	1	5./	1		გ ვ.5	1	2./	1	1	4.0	1]

	Sampling	Ambient Temp	Sea	Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	, 	Dissolve	d Oxygen	Τι	urbidity (N7		Susper	nded Solids	
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring [Depth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	28.0	27.3 27.2	27.3	6.0 5.9	5.9		87.6 86.9	87.3	2.2	2.2		3.2 3.4	3.3	
29-Aug-12	1047-1104	29/Fine	Small Wave	17.8	Middle	8.9	27.8	27.5 27.5	27.5	5.8 5.8	5.8	5.9	86.0 85.4	85.7	2.4	2.4	2.4	3.6	3.6	3.5
					Bottom	16.8	27.6 27.5	27.5 27.7 27.8	27.8	5.8 5.7	5.7	5.7	84.8 84.2	84.5	2.5 2.5	2.5		3.8	3.6	
					Surface	1.0	27.5 27.4	26.3 26.4	26.4	5.7 5.2 5.2	5.2		75.9 75.5	75.7	2.6 2.6	2.6		3.4 3.6	3.5	
31-Aug-12	1222-1240	29/Fine	Calm	18.6	Middle	9.3	27.3 27.4	26.5 26.5	26.5	5.2 5.1 5.1	5.1	5.2	73.8 74.2	74.0	2.3	2.4	2.5	3.4	3.3	3.5
					Bottom	17.6	27.2	26.7	26.7	5.0	5.0	5.0	71.9	72.2	2.7	2.7	1	3.6	3.7	
					Surface	1.0	27.2	26.7 24.8	24.8	5.0 6.8	6.8		72.4 100.1	100.0	2.7	2.1		3.8	3.1	
3-Sep-12	1335-1350	32/Fine	Small Wave	19.6	Middle	9.8	28.6 27.6	24.8 25.5	25.4	6.8 4.8	4.8	5.8	99.8 96.6	96.9	2.1	2.3	2.2	3.0 3.4	3.5	3.3
·					Bottom	18.6	27.8 27.2	25.3 25.8	25.7	4.8 3.8	3.8	3.8	97.1 55.8	56.0	2.3 2.4	2.4	1	3.6 3.4	3.3	
					Surface	1.0	27.5 27.9	25.5 27.4	27.4	3.8 6.1	6.1	0.0	56.1 90.1	89.8	2.3	2.4		3.2 3.4	3.4	
5-Sep-12	1450-1507	31/Fine	Small Wave	18.0	Middle	9.0	28.0 27.6	27.3 27.8	27.8	6.1 6.0	6.0	6.0	89.5 88.5	88.1	2.4 2.7	2.7	2.5	3.4 3.6	3.7	3.5
0-0ep-12	1430-1307	OTAT INC	Oman wave	10.0	Bottom	17.0	27.6 27.3	27.8 28.3	28.3	5.9 5.8	5.8	5.8	87.6 86.0	85.7	2.7 2.5	2.5	2.5	3.8 3.4	3.5	0.0
							27.2 27.6	28.2 27.3		5.8 6.0		3.0	85.3 88.5		2.6 2.2			3.6 3.0		
7.0	4547.4500	00/01: 1	0 1	47.0	Surface	1.0	27.5 27.4	27.3 27.7	27.3	6.1 5.9	6.0	6.0	89.3 87.5	88.9	2.3 2.5	2.2	0.5	3.4 3.6	3.2	0.5
7-Sep-12	1517-1533	30/Cloudy	Small Wave	17.6	Middle	8.8	27.3 27.2	27.6 28.1	27.7	5.9 5.8	5.9		87.0 86.0	87.3	2.5 2.6	2.5	2.5	3.8 3.6	3.7	3.5
					Bottom	16.6	27.1	28.0 27.6	28.1	5.8 6.1	5.8	5.8	85.6 90.1	85.8	2.7	2.6		3.6 3.2	3.6	
					Surface	1.0	27.7	27.7	27.7	6.1	6.1	6.0	90.6	90.4	2.4	2.3	_	3.4	3.3	
10-Sep-12	0834-0851	28/Fine	Small Wave	18.0	Middle	9.0	27.5	28.1	28.1	5.9 5.9	6.0		87.6	88.0	2.7	2.6	2.6	3.8	3.8	3.7
					Bottom	17.0	27.2 27.1	28.3	28.4	5.9	5.9	5.9	86.7 86.3	86.5	2.8	2.8		4.0	3.9	
					Surface	1.0	27.7	26.8 26.9	26.9	6.5 6.5	6.5	6.3	94.6 95.0	94.8	2.6	2.6		3.4	3.5	
12-Sep-12	0953-1010	29/Fine	Calm	19.2	Middle	9.6	27.6 27.6	27.1 27.0	27.1	6.1 6.2	6.2		89.6 90.3	90.0	2.8	2.8	2.8	3.6 3.8	3.7	3.6
					Bottom	18.2	27.5 27.5	27.2 27.2	27.2	5.9 5.9	5.9	5.9	85.9 85.4	85.7	3.1 3.1	3.1		3.6 3.8	3.7	
					Surface	1.0	27.9 27.9	26.9 26.9	26.9	6.5 6.6	6.6	6.4	95.5 96.1	95.8	2.8	2.8		3.8 3.6	3.7	
14-Sep-12	1123-1140	29/Fine	Small Wave	19.2	Middle	9.6	27.8 27.7	27.1 27.2	27.2	6.3 6.3	6.3	0.4	91.5 91.9	91.7	3.0 3.1	3.0	3.1	4.0 4.0	4.0	4.1
					Bottom	18.2	27.6 27.6	27.3 27.3	27.3	5.8 5.9	5.8	5.8	84.8 85.6	85.2	3.4 3.4	3.4		4.4 4.6	4.5	

	Compling	Ambient Temp	Sea	Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Т	urbidity (NT	ΓU)	Susper	nded Solids	s (mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring [Depth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	27.7 27.8	26.9 27.0	27.0	6.3 6.3	6.3	J	91.4 92.0	91.7	2.8	2.8		3.6 3.4	3.5	
17-Sep-12	1316-1334	29/Fine	Small Wave	19.0	Middle	9.5	27.6 27.5	27.1 27.1	27.1	6.2	6.2	6.2	90.0	89.8	3.0	2.9	2.9	3.8	3.8	3.8
					Bottom	18.0	27.4 27.5	27.3	27.3	5.9 5.9	5.9	5.9	86.6 86.0	86.3	3.1	3.1	1	4.2	4.1	1
					Surface	1.0	26.7 26.7	26.8 26.8	26.8	6.3	6.3		92.3 91.7	92.0	3.0	3.0		3.6	3.7	
19-Sep-12	1420-1438	28/Cloudy	Calm	19.2	Middle	9.6	26.6 26.5	27.0 26.9	27.0	6.2	6.1	6.2	89.9 89.2	89.6	3.2	3.2	3.3	4.0	4.1	4.1
					Bottom	18.2	26.3 26.3	27.1 27.1	27.1	5.9 5.9	5.9	5.9	86.4 85.5	86.0	3.5 3.6	3.5		4.4	4.5	1
					Surface	1.0	27.7 27.7	25.7 25.6	25.7	6.0	6.0		88.5 89.0	88.8	2.6	2.7		3.8	3.7	
21-Sep-12	1549-1606	30/Cloudy	Small Wave	19.2	Middle	9.6	27.4 27.5	26.1 26.0	26.1	5.9 5.9	5.9	6.0	86.6 86.2	86.4	2.8	2.9	2.9	4.0	3.9	4.0
					Bottom	18.2	27.1 27.0	26.4 26.3	26.4	5.8 5.7	5.8	5.8	84.9 84.3	84.6	3.2	3.2	1	4.2	4.3	1
					Surface	1.0	27.6 27.5	26.4 26.4	26.4	6.4	6.4		93.8	94.1	2.4	2.4		3.4	3.5	
24-Sep-12	1848-1905	28/Cloudy	Small Wave	17.8	Middle	8.9	27.2 27.2	26.8 26.9	26.9	6.2	6.1	6.3	90.6	90.3	2.8	2.8	2.8	3.8	3.9	3.8
					Bottom	16.8	26.9 27.0	27.3 27.2	27.3	6.0	6.0	6.0	88.3 87.8	88.1	3.1 3.1	3.1	1	4.0	4.1	1
					Surface	1.0	27.6 27.5	26.4 26.3	26.4	6.3	6.3		92.0 92.8	92.4	2.6	2.6		3.6	3.7	
26-Sep-12	0949-1005	28/Cloudy	Small Wave	17.4	Middle	8.7	27.3 27.3	26.7 26.8	26.8	6.1	6.2	6.2	90.0	90.3	2.9	2.9	2.9	3.8	3.9	3.9
					Bottom	16.4	27.1 27.1	27.1 27.2	27.2	6.0	6.0	6.0	87.8 88.2	88.0	3.1	3.1	1	4.0	4.1	1
					Surface	1.0	27.7	26.6 26.5	26.6	5.9 5.8	5.9		86.9 86.3	86.6	3.0	2.9		3.8	3.9	
28-Sep-12	1045-1100	29/Sunny	Small Wave	17.4	Middle	8.7	27.4 27.3	27.0 27.1	27.1	5.7 5.7	5.7	5.8	84.4 83.8	84.1	3.2	3.3	3.3	4.2	4.3	4.3
					Bottom	16.4	27.3 27.3	27.1	27.1	5.7 5.6	5.7	5.7	83.5 83.2	83.4	3.8	3.8	1	4.6	4.7	
					Surface	1.0	27.6 27.6	27.7	27.7	5.8 5.8	5.8		85.5 85.8	85.7	2.2	2.2		3.2	3.3	
3-Oct-12	1349-1406	29/Fine	Small Wave	18.8	Middle	9.4	27.5 27.4	27.9 27.9	27.9	5.6 5.7	5.6	5.7	82.9 83.3	83.1	2.5 2.6	2.5	2.5	3.6	3.7	3.6
					Bottom	17.8	27.3 27.3	28.1	28.1	5.5 5.6	5.5	5.5	81.3 81.7	81.5	2.7	2.7	1	3.8	3.7	1
					Surface	1.0	27.7 27.8	27.7	27.7	5.8 5.8	5.8		84.5 85.2	84.9	2.2	2.2		3.2	3.3	
5-Oct-12	1507-1524	28/Fine	Small Wave	18.2	Middle	9.1	27.5 27.4	27.9 27.8	27.9	5.6 5.7	5.6	5.7	82.7 83.1	82.9	2.4	2.4	2.4	3.4	3.5	3.6
					Bottom	17.2	27.2	28.1	28.2	5.5 5.5	5.5	5.5	80.7	80.5	2.6	2.6	1	3.8	3.9	1

	Sampling	Ambient Temp	Sea	Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Tı	urbidity (NT	ΓU)	Susper	nded Solids	(mg/L)
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring [Depth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		Bopai (iii)	Surface	1.0	27.5	26.7	26.7	5.6	5.6	average	82.2	82.5	3.0	3.0	average	3.8	3.9	average
					Surface	1.0	27.4	26.7	20.7	5.7	5.0	5.6	82.7	62.5	3.0	3.0		4.0	3.9	
8-Oct-12	0701-0718	26/Cloudy	Small Wave	18.0	Middle	9.0	27.3 27.3	26.9 26.8	26.9	5.6 5.5	5.6		81.7 81.1	81.4	3.2	3.2	3.1	4.2	4.1	4.1
					Bottom	17.0	27.2	27.1	27.1	5.5	5.5	5.5	80.5	80.2	3.3	3.3		4.2	4.3	
					0	4.0	27.1 27.4	27.1 26.7	20.7	5.5 5.7	F 7		79.8 83.4	00.4	3.3	2.4		4.4 3.8	2.0	
					Surface	1.0	27.4	26.6	26.7	5.7	5.7	5.6	82.8	83.1	3.1	3.1		3.8	3.8	
10-Oct-12	0817-0833	25/Fine	Small Wave	17.8	Middle	8.9	27.2 27.3	26.8 26.8	26.8	5.6 5.6	5.6		81.9 82.4	82.2	3.2	3.2	3.2	4.2 4.2	4.2	4.2
					Bottom	16.8	27.1	27.0	27.0	5.5	5.5	5.5	80.6	80.9	3.3	3.3	_	4.4	4.5	
							27.1 27.4	26.9 26.7		5.5 5.7			81.1 83.2		3.3 2.9			4.6 3.8		
					Surface	1.0	27.4	26.7	26.7	5.6	5.6	5.5	82.6	82.9	3.0	2.9		3.6	3.7	
12-Oct-12	0920-0938	27/Fine	Small Wave	18.8	Middle	9.4	27.4 27.4	26.8 26.8	26.8	5.4 5.4	5.4	0.0	80.0 79.2	79.6	3.2	3.3	3.2	3.2	3.2	3.5
					Bottom	17.8	27.3	26.9	27.0	5.2	5.2	5.2	76.6	76.3	3.4	3.5		3.4	3.5	
					Bottom	17.0	27.3 27.6	27.0 26.5	27.0	5.2 5.7	0.2	0.2	76.0 82.8		3.5 3.1	0.0		3.6 3.8	0.0	
					Surface	1.0	27.6	26.5	26.5	5.6	5.6	5.7	82.2	82.5	3.1	3.1		4.0	3.9	
15-Oct-12	1148-1206	30/Fine	Small Wave	18.6	Middle	9.3	27.5 27.4	26.6 26.6	26.6	5.8 5.8	5.8	3.7	85.0 84.2	84.6	3.1	3.2	3.2	4.2 4.2	4.2	4.2
					Bottom	17.6	27.3	26.7	26.8	5.5	5.5	5.5	80.7	80.9	3.3	3.3		4.4	4.4	
					Бошотт	17.0	27.3	26.8	20.6	5.5	5.5	5.5	81.0	60.9	3.3	3.3		4.4	4.4	
					Surface	1.0	27.2 27.2	26.6 26.7	26.7	5.5 5.5	5.5	E 4	80.8 80.4	80.6	2.6	2.6		3.6	3.7	
17-Oct-12	1317-1332	28/Cloudy	Great Wave	18.8	Middle	9.4	27.2	26.7	26.7	5.3	5.3	5.4	77.6	78.0	2.7	2.7	2.7	3.8	3.9	3.8
					5 "	47.0	27.1 27.1	26.7 26.8	00.0	5.4 5.4	- 1		78.4 79.2	70.0	2.7	0.0		4.0 3.8	0.0	
					Bottom	17.8	27.1	26.8	26.8	5.5	5.4	5.4	79.9	79.6	2.9	2.9		4.0	3.9	
					Surface	1.0	26.6 26.6	26.9 26.9	26.9	5.8 5.9	5.9		84.6 85.1	84.9	4.3	4.2		5.2 5.0	5.1	
19-Oct-12	1436-1452	26/Fine	Small Wave	19.4	Middle	9.7	26.6	26.9	26.9	6.1	6.1	6.0	87.7	87.9	4.2	4.2	4.1	5.2	5.2	5.0
							26.6 26.6	26.9 26.9		6.1 6.1			88.1 88.6		4.2 3.9		4	5.2 4.6		
					Bottom	18.4	26.6	26.9	26.9	6.1	6.1	6.1	88.0	88.3	3.8	3.8		4.8	4.7	
					Surface	1.0	26.9 26.9	26.5 26.5	26.5	6.0 5.9	5.9		87.6 86.9	87.3	4.0	4.0		5.0 5.2	5.1	
22-Oct-12	1749-1807	27/Fine	Small Wave	19.2	Middle	9.6	26.7	26.7	26.8	5.8	5.8	5.9	85.7	85.5	4.1	4.1	4.1	5.2	5.3	5.2
22 001 12	1743 1007	27/1 1110	Oman wave	10.2	Wildaic	5.0	26.7 26.5	26.8 27.0	20.0	5.8 5.7	0.0		85.3 84.2	00.0	4.1 4.2	7.1	-	5.4 5.2	0.0	0.2
					Bottom	18.2	26.5	27.0	27.0	5.7	5.7	5.7	83.3	83.8	4.2	4.2		5.2	5.2	
_					Surface	1.0	26.7	26.4	26.4	5.9	5.9		85.3	85.8	3.7 3.7	3.7		4.6	4.7	
24 Oct 12	0017 0004	24/Fina	Small Maria	10.0	Middle	0.6	26.6 26.4	26.3 26.6	26.6	5.9 5.8	5.0	5.8	86.3 84.5	04.0	3.7	2.0	2.0	4.8	4.7	4.0
24-Oct-12	0817-0834	24/Fine	Small Wave	19.2	Middle	9.6	26.5	26.6	26.6	5.8	5.8		83.9	84.2	3.9	3.8	3.8	5.0	4.7	4.8
					Bottom	18.2	26.3 26.2	26.9 26.8	26.9	5.7 5.7	5.7	5.7	82.9 82.3	82.6	3.9 4.0	4.0		5.0 5.2	5.1	

	Compling	Ambient Temp	Sea	Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	ΓU)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring D	Depth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	26.5 26.6	26.7 26.7	26.7	5.6 5.6	5.6		80.9 80.6	80.8	4.2	4.2		5.2 5.0	5.1	
26-Oct-12	0943-1000	25/Cloudy	Small Wave	19.0	Middle	9.5	26.5	26.8	26.8	5.6	5.7	5.6	81.8	82.0	4.1	4.1	4.2	5.2	5.2	5.2
		,					26.5	26.7		5.7			82.2		4.1			5.2		
					Bottom	18.0	26.6 26.5	26.9 26.8	26.9	5.6 5.6	5.6	5.6	81.5 80.2	80.9	4.2	4.2		5.2 5.4	5.3	
					Surface	1.0	26.4	26.6	26.7	5.6	5.6		80.6	80.5	4.2	4.2		5.2	5.2	
							26.4 26.3	26.7 26.7		5.5 5.6		5.6	80.3 81.5		4.2 4.2			5.2 5.0		
29-Oct-12	1143-1200	25/Cloudy	Small Wave	18.8	Middle	9.4	26.2	26.8	26.8	5.6	5.6		80.5	81.0	4.2	4.2	4.2	5.0	5.0	5.2
					Bottom	17.8	26.1	26.8	26.9	5.6	5.6	5.6	81.3	81.5	4.2	4.3		5.4	5.3	
							26.0	26.9		5.6			81.6		4.3			5.2		
					Surface	1.0	26.3 26.2	26.5 26.6	26.6	5.5 5.5	5.5		80.2 80.0	80.1	4.2	4.2		5.2 5.4	5.3	
31-Oct-12	1243-1300	25/Cloudy	Small Wave	18.9	Middle	9.5	26.1	26.6	26.7	5.6	5.6	5.5	81.2	80.8	4.2	4.2	4.2	5.2	5.2	5.3
							26.0 25.9	26.7 26.8		5.5			80.3		4.2		_	5.2		
					Bottom	17.9	25.8	26.9	26.9	5.6 5.7	5.7	5.7	81.8 82.1	82.0	4.3	4.3		5.4 5.2	5.3	

	Camalina	Ambient Temp	0	Total	Manitania	n Danth	Water	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)	Dissolve	d Oxygen	T	urbidity (NT	-U)	Susper	nded Solids	s (mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorir (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Containen		1 ()	Surface	1.0	23.0	25.4	25.4	7.5	7.5	ar craige	101.5	101.4	1.6	1.5	arerege	3.4	3.5	an en enge
							23.0 22.6	25.4 26.5		7.5 7.4		7.5	101.2 100.2		1.5 1.5		1	3.6		
16-Apr-12	1447-1502	28/Cloudy	Calm	17.6	Middle	8.8	22.7	26.6	26.6	7.5	7.5		100.8	100.5	1.6	1.6	2.0	3.8	3.7	4.0
					Bottom	16.6	22.4 22.5	26.8 26.7	26.8	7.0	7.0	7.0	93.8 94.1	94.0	3.0	3.0		4.8 5.0	4.9	
					Surface	1.0	22.7	24.5	24.6	7.3	7.4		98.3	98.5	1.6	1.6		3.8	3.9	
							22.8 22.5	24.6 25.8		7.4 7.0		7.2	98.7 93.9		1.7 1.9			4.0 3.8		
18-Apr-12	1645-1701	22/Cloudy	Small Wave	17.8	Middle	8.9	22.4	25.7	25.8	7.0	7.0		93.4	93.7	1.9	1.9	2.0	4.0	3.9	4.1
					Bottom	16.8	22.2 22.1	26.6 26.5	26.6	6.8 6.8	6.8	6.8	91.2 90.8	91.0	2.4	2.4		4.4	4.5	
					Surface	1.0	22.0	24.9	24.9	7.2 7.2	7.2		94.1	94.4	1.8	1.8		3.8	3.9	
20 Apr 12	1748-1806	22/Rain	Small Wave	17.4	Middle	8.7	22.0 21.9	24.8 26.0	26.0	6.9	6.9	7.1	94.7 90.4	90.8	1.8 2.2	2.2	2.5	4.0	4.1	4.4
20-Apr-12	1740-1600	ZZ/Naiii	Siliali Wave	17.4	ivildale	0.7	21.9 21.8	26.0 26.5	20.0	7.0	0.9		91.2 88.9	90.0	2.2 3.4	2.2	2.5	4.2 5.2	4.1	4.4
					Bottom	16.4	21.8	26.6	26.6	6.8 6.8	6.8	6.8	89.3	89.1	3.3	3.4		5.0	5.1	
					Surface	1.0	22.7	25.9 25.8	25.9	6.9 6.9	6.9		91.7 92.1	91.9	2.9	2.8		3.8 4.0	3.9	
23-Apr-12	1930-1945	25/Cloudy	Small Wave	17.8	Middle	8.9	22.3	26.3	26.3	6.7	6.7	6.8	89.2	89.0	3.4	3.5	3.3	4.4	4.5	4.3
							22.3 22.2	26.3 26.4		6.7 6.6			88.8 87.6		3.5 3.6		-	4.6 4.6		
					Bottom	16.8	22.2	26.4	26.4	6.6	6.6	6.6	87.2	87.4	3.5	3.6		4.6	4.6	
					Surface	1.0	23.6	24.5 24.6	24.6	6.9 6.9	6.9	0.0	92.3 93.0	92.7	2.5	2.5		3.8	3.7	
25-Apr-12	0714-0730	27/Cloudy	Calm	17.6	Middle	8.8	23.5	26.2	26.2	6.8	6.7	6.8	90.6	90.3	2.9	3.0	2.9	4.0	4.0	4.0
					Bottom	16.6	23.5 23.5	26.1 26.6	26.7	6.7 6.7	6.6	6.6	90.0 89.4	89.1	3.0 3.2	3.2	1	4.0	4.2	
					DOMOIII	10.0	23.5 23.5	26.7 25.3	20.7	6.6 7.3	0.0	0.0	88.7 98.7	09.1	3.2 1.5	3.2		4.2 2.6	4.2	
					Surface	1.0	23.6	25.3	25.3	7.3	7.3	7.2	99.4	99.1	1.6	1.6		2.8	2.7	
27-Apr-12	0844-0857	23/Cloudy	Small Wave	17.6	Middle	8.8	23.3	26.5 26.5	26.5	7.1 7.1	7.1	1.2	97.1 96.4	96.8	1.7 1.8	1.8	1.8	2.8 3.0	2.9	3.0
					Bottom	16.6	23.0	27.6	27.6	6.9	6.9	6.9	93.9	94.2	2.1	2.1		3.2	3.3	
							23.1	27.6 25.1		6.9 6.8			94.4 90.6		2.1			3.4 3.8		
					Surface	1.0	23.6	25.2	25.2	6.8	6.8	6.7	89.9	90.3	2.3	2.3		3.8	3.8	
30-Apr-12	1148-1205	28/Cloudy	Calm	17.6	Middle	8.8	23.4	26.4 26.4	26.4	6.7 6.7	6.7		89.0 88.5	88.8	2.8	2.8	2.7	4.2	4.3	4.4
					Bottom	16.6	23.4	27.0	27.0	6.6	6.6	6.6	87.5	87.2	3.1	3.1	1	5.2	5.1	
					Surface	1.0	23.4 25.7	27.0 26.1	26.1	6.5 7.3	7.3		86.8 104.2	104.0	3.2 1.6	1.6		5.0 2.6	2.7	
					Surface	1.0	25.6 25.3	26.1	20.1	7.3	1.3	7.2	103.7 100.8	104.0	1.6	1.6		2.8	۷.۱	
2-May-12	1417-1432	31/Sunny	Small Wave	17.6	Middle	8.8	25.3	26.6 26.7	26.7	7.1 7.1	7.1		100.8	100.6	1.9 1.9	1.9	1.9	3.2	3.1	3.1
					Bottom	16.6	25.0 24.9	27.9 27.9	27.9	6.9 6.9	6.9	6.9	97.4 96.9	97.2	2.1	2.1		3.4 3.6	3.5	
				1			24.5	21.5		0.9			90.9		۷.۱			3.0		

	l	Ambient Temp		Total		- · ·	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Tı	urbidity (NT	Ū)	Susper	ded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water	Monitorin (m	• .	Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
	Baration	Condition	Condition	Depth (m)	(,,	1	(°C)		Average		Average	average		Average		Average	average		Average	average
					Surface	1.0	26.9 26.9	25.8 25.7	25.8	6.6 6.5	6.6		93.9 93.5	93.7	2.7	2.7		3.8 4.0	3.9	
							26.5	26.3		6.3		6.4	89.8		3.0	—	1	4.0		
4-May-12	1615-1630	30/Cloudy	Small Wave	17.2	Middle	8.6	26.5	26.4	26.4	6.3	6.3		89.3	89.6	3.1	3.1	3.0	4.2	4.2	4.2
					Bottom	16.2	26.2	26.5	26.5	6.2	6.2	6.2	87.8	88.1	3.3	3.3		4.6	4.5	
					20110		26.2	26.4	20.0	6.2	0.2	0.2	88.3		3.2	0.0		4.4		
					Surface	1.0	25.3 25.4	25.7 25.7	25.7	7.4 7.4	7.4		103.1	103.3	1.8 1.8	1.8		3.0	2.9	
							25.4	26.7		7.4		7.3	100.8		1.9		1	3.2		
7-May-12	1846-1901	28/Fine	Small Wave	17.8	Middle	8.9	25.1	26.8	26.8	7.2	7.2		100.2	100.5	2.0	1.9	1.9	3.2	3.2	3.1
					Bottom	16.8	24.9	28.0	28.1	7.1	7.0	7.0	99.1	98.7	2.2	2.1		3.4	3.3	
							24.8	28.1		7.0			98.3		2.1			3.2		
					Surface	1.0	25.1 25.1	25.6 25.5	25.6	7.2 7.2	7.2		100.7	100.4	2.5 2.5	2.5		3.6	3.7	
							25.0	25.8		7.0		7.1	98.3		2.8		1	3.8		
9-May-12	0902-0917	28/Fine	Calm	17.4	Middle	8.7	25.0	25.8	25.8	7.0	7.0		97.9	98.1	2.8	2.8	2.8	4.0	3.9	4.0
					Bottom	16.4	24.9	26.1	26.2	7.0	6.9	6.9	97.3	96.9	3.0	3.0		4.2	4.3	
					20110		25.0	26.2		6.9	0.0	0.0	96.5	00.0	3.1	0.0		4.4		
					Surface	1.0	26.3 26.2	25.5 25.4	25.5	7.3 7.4	7.3		103.4	103.7	1.8 1.9	1.8		3.0	2.9	
							26.0	26.6		7.4		7.3	102.3		2.0		1	3.0		
11-May-12	0947-1002	26/Cloudy	Small Wave	17.8	Middle	8.9	25.9	26.7	26.7	7.2	7.2		101.9	102.1	2.0	2.0	2.0	3.2	3.1	3.1
					Bottom	16.8	25.7	27.6	27.7	7.0	7.0	7.0	99.0	98.7	2.2	2.2		3.2	3.3	
							25.7	27.7		7.0			98.4		2.1			3.4		
					Surface	1.0	26.4 26.4	26.3 26.3	26.3	7.2 7.1	7.1		101.5 100.8	101.2	3.0	3.1		4.2	4.2	
44.14. 40	4045 4000	20/01	0 \ \ \ \ \	47.0	NAC -L-III -	0.0	25.8	27.9	07.0	6.9	0.0	7.0	97.9	00.0	3.3	0.0		4.4	4.5	
14-May-12	1315-1330	30/Cloudy	Small Wave	17.8	Middle	8.9	25.8	27.9	27.9	6.9	6.9		98.5	98.2	3.2	3.2	3.2	4.6	4.5	4.4
					Bottom	16.8	25.5	28.1	28.2	6.7	6.7	6.7	95.4	95.1	3.4	3.4		4.6	4.6	
							25.5	28.2		6.7			94.8		3.4			4.6		
					Surface	1.0	26.6 26.6	25.1 25.0	25.1	7.2 7.2	7.2		104.0 104.4	104.2	2.5 2.5	2.5		3.6	3.6	
40.14. 40	4447.4500	07/01	0 \ \ \ \ \	47.0	NAC -L-III -	0.0	26.4	26.1	00.0	7.1	7.4	7.2	102.5	400.4	2.6	0.0		3.8	0.0	0.0
16-May-12	1447-1502	27/Cloudy	Small Wave	17.6	Middle	8.8	26.3	26.2	26.2	7.1	7.1		102.2	102.4	2.7	2.6	2.6	4.0	3.9	3.8
					Bottom	16.6	26.1	27.4	27.5	7.0	7.0	7.0	100.4	100.2	2.8	2.8		4.0	3.9	
							26.0	27.5 25.9		7.0			99.9		2.8			3.8 4.4		
					Surface	1.0	25.2 25.2	25.9	25.9	7.2 7.2	7.2		100.4 101.2	100.8	3.4	3.4		4.4	4.5	
40 May 40	4745 4704	25 /D-iI-	Constit Marris	40.0	N 4: al all a	0.0	25.2	26.4	20.4	6.9		7.1	96.8	07.0	3.3	2.2	2.4	4.2	4.0	4.5
18-May-12	1715-1731	25/Drizzle	Small Wave	18.0	Middle	9.0	25.2	26.4	26.4	6.9	6.9		97.2	97.0	3.3	3.3	3.4	4.4	4.3	4.5
					Bottom	17.0	25.1	26.9	26.9	6.6	6.6	6.6	92.5	92.8	3.6	3.6		4.6	4.6	
							25.2 26.4	26.9 25.8		6.6	1		93.0 89.3		3.6 2.8	1		4.6 3.8		
					Surface	1.0	26.4	25.8	25.8	6.3	6.3		89.3 89.8	89.6	2.8	2.8		4.0	3.9	
24 May 42	1015 1000	20/Claudi:	Cmall West	17.6	Middle	0.0	26.0	26.4	26.4	6.0	6.0	6.1	84.5	04.2	3.6	2.5	1 24	4.6	4.7	4.5
21-May-12	1815-1830	28/Cloudy	Small Wave	17.6	Middle	8.8	26.0	26.3	26.4	5.9	6.0		84.0	84.3	3.5	3.5	3.4	4.8	4.7	4.5
					Bottom	16.6	25.9	27.0	27.1	5.9	5.9	5.9	83.1	82.9	3.8	3.8		4.8	4.9	
			I	Ì		1	25.8	27.1		5.9			82.7	1	3.8		I	5.0	-	

	0	Ambient Temp	0	Total	Manitania	Dath-	Water	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)	Dissolve	d Oxygen	T	urbidity (NT	Ū)	Susper	nded Solids	s (mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorir (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		111 ()	Surface	1.0	25.3	25.9	25.9	6.8	6.9	avolugo	96.4	96.6	2.1	2.1	avo.ago	3.4	3.2	avolugo
					Ourrace	1.0	25.3	25.8	20.0	6.9	0.5	6.8	96.8	30.0	2.1	2.1		3.0	5.2	
23-May-12	1935-1953	27/Cloudy	Small Wave	17.6	Middle	8.8	25.3 25.2	26.1 26.1	26.1	6.7 6.7	6.7		94.4 94.0	94.2	2.3	2.4	2.2	3.6	3.7	3.4
					Bottom	16.6	25.1	26.2	26.3	6.6	6.6	6.6	93.2	93.1	2.2	2.3	1	3.4	3.4	
							25.1 26.4	26.3 26.2		6.6 6.1			92.9 86.9		2.3			3.4		
					Surface	1.0	26.5	26.3	26.3	6.2	6.1	6.1	87.3	87.1	2.1	2.1]	3.4	3.3]
25-May-12	0717-0734	26/Cloudy	Calm	17.8	Middle	8.9	26.4 26.4	26.7 26.7	26.7	6.0	6.0	0.1	85.2 85.7	85.5	2.3	2.3	2.3	3.6	3.5	3.5
					Bottom	16.8	26.4	27.0	27.0	5.9	5.9	5.9	83.8	84.0	2.5	2.5	1	3.6	3.7	
					Bottom	10.0	26.3 26.3	27.0 25.3	27.0	5.9 6.4	0.0	0.0	84.2 91.3	01.0	2.5 3.0	2.0		3.8 4.2	0.7	<u> </u>
					Surface	1.0	26.3	25.2	25.3	6.5	6.4	6.3	91.7	91.5	3.1	3.1		4.2	4.2	
28-May-12	1007-1024	26/Cloudy	Small Wave	17.4	Middle	8.7	26.1	25.6	25.6	6.2	6.2	0.5	88.3	88.7	2.9	2.9	3.1	4.0	4.1	4.2
					Dettern	40.4	26.2 26.1	25.5 25.7	25.0	6.3 6.1	6.4	C 4	89.0 86.8	00.5	2.9 3.2	2.0	1	4.2	4.2	1
					Bottom	16.4	26.1	25.8	25.8	6.1	6.1	6.1	86.2	86.5	3.2	3.2		4.2	4.3	<u> </u>
					Surface	1.0	26.5 26.5	26.3 26.4	26.4	6.2 6.1	6.1	0.4	87.7 87.3	87.5	2.0	2.0		3.2	3.1	
30-May-12	1348-1404	28/Cloudy	Small Wave	18.0	Middle	9.0	26.4	26.5	26.6	6.1	6.1	6.1	86.2	86.5	2.1	2.1	2.1	3.2	3.3	3.3
					5 "	47.0	26.4 26.3	26.6 26.9	07.0	6.1 6.0	0.0	0.0	86.7 85.6	05.0	2.2	0.0	1	3.4	0.5	1
					Bottom	17.0	26.4	27.0	27.0	6.0	6.0	6.0	84.9	85.3	2.2	2.2		3.4	3.5	
					Surface	1.0	27.1 27.1	25.9 25.9	25.9	6.7 6.7	6.7		96.9 96.5	96.7	2.8	2.8		3.8	3.8	
1-Jun-12	1615-1630	29/Cloudy	Great Wave	17.8	Middle	8.9	26.8	26.3	26.3	6.4	6.4	6.6	92.7	92.8	3.0	3.0	2.9	4.0	4.1	3.9
							26.8 26.7	26.2 26.3		6.4 6.3			92.9 91.2		3.0 2.9			4.2		1
					Bottom	16.8	26.7	26.3	26.3	6.3	6.3	6.3	91.4	91.3	2.9	2.9		3.8	3.9	
					Surface	1.0	27.1 27.2	26.0 26.0	26.0	6.8 6.9	6.9		99.3 101.0	100.2	2.6	2.7		3.8	3.8	
4 km 10	1819-1834	29/Cloudy	Small Wave	17.6	Middle	8.8	27.2	26.4	26.4	6.3	6.4	6.6	91.7	92.6	3.1	3.1	3.1	3.8	3.9	4.1
4-Jun-12	1019-1034	29/Cloudy	Siliali Wave	17.0	Middle	0.0	26.9	26.3	20.4	6.4	0.4		93.4	92.0	3.0	3.1	3.1	4.0	3.9	4.1
					Bottom	16.6	26.7 26.6	26.7 26.7	26.7	6.3 6.1	6.2	6.2	91.9 88.7	90.3	3.5	3.5		4.6	4.5	
					Surface	1.0	27.0	25.8	25.9	6.8	6.8		99.3	99.2	2.4	2.3		3.4	3.3	
0.1.40	4050 0000	00/01	0 !! \\	47.0	NA: J. II.	0.5	27.1 26.9	25.9 26.3	00.0	6.8 6.6	0.0	6.7	99.1 96.1	00.4	2.2 2.5	0.0		3.2	0.7	0.0
6-Jun-12	1950-2006	28/Cloudy	Small Wave	17.0	Middle	8.5	26.9	26.3	26.3	6.6	6.6		96.7	96.4	2.6	2.6	2.6	3.8	3.7	3.6
					Bottom	16.0	26.7 26.6	26.5 26.6	26.6	6.3 6.3	6.3	6.3	91.6 92.1	91.9	3.1 2.9	3.0		4.0 3.8	3.9	
					Surface	1.0	27.7	27.3	27.4	6.2	6.2		90.6	90.3	1.4	1.3		2.4	2.5	
						40.0	27.9 27.8	27.4 27.3		6.2 6.3		6.2	89.9 88.9	20.1	1.3 1.0			2.6		1
8-Jun-12	0830-0848	27/Cloudy	Calm	20.0	Middle	10.0	27.8	27.3	27.3	6.1	6.2		89.3	89.1	1.0	1.0	1.7	2.0	2.1	2.8
					Bottom	19.0	27.8 27.8	27.4 27.5	27.5	6.0 6.1	6.0	6.0	88.0 88.3	88.2	2.8	2.9		3.8	3.8	
	1	1			l		27.0	21.0	1	5.	1	1	00.0	1	2.0	1	J	0.0	1	1

	0	Ambient Temp	0	Total		. D II.	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Containon		,	Surface	1.0	27.8	27.5	27.5	6.3	6.3	ar ar aga	92.6	92.9	1.3	1.3		2.4	2.4	arrenage
11-Jun-12	1120-1126	30/Cloudy	Small Wave	20.2	Middle	10.1	27.9 27.8	27.4 27.4	27.5	6.3 6.2	6.2	6.2	93.2 91.3	91.2	1.5	1.5	1.7	2.6	2.5	2.8
		00/0.000		20.2			27.9 27.8	27.5 27.7		6.2 6.0		0.0	91.0 88.9		1.6 2.3			2.4 3.6		
					Bottom	19.2	27.8 27.7	27.8 25.4	27.8	6.1 6.2	6.0	6.0	89.5 90.3	89.2	2.4 2.8	2.3		3.4 3.6	3.5	
					Surface	1.0	27.6	25.4	25.4	6.2	6.2	6.0	89.9	90.1	2.7	2.7		3.8	3.7	
13-Jun-12	1415-1430	29/Rainy	Small Wave	17.2	Middle	8.6	27.1 27.0	26.8 26.7	26.8	5.9 5.9	5.9		85.4 85.9	85.7	3.0 3.1	3.0	3.0	4.0 3.8	3.9	3.9
					Bottom	16.2	27.0 27.0	27.2 27.2	27.2	5.8 5.8	5.8	5.8	84.7 84.0	84.4	3.2	3.2		4.2	4.1	
					Surface	1.0	27.8	27.7	27.7	6.4 6.4	6.4		93.9	94.2	1.2	1.2		2.4	2.5	
15-Jun-12	1652-1710	31/Cloudy	Great Wave	20.0	Middle	10.0	27.4	28.0	28.1	6.3	6.3	6.3	94.4 92.2	91.9	1.4	1.4	1.4	2.8	2.8	2.7
		,				19.0	27.5 27.1	28.1 28.4	28.4	6.2 6.1	6.1	6.1	91.6 89.7	89.3	1.4 1.6	1.6		2.8 3.0	2.9	1
					Bottom		27.2 27.5	28.3 27.3		6.1 6.3		0.1	88.8 93.4		1.6 1.8			2.8 2.8		<u> </u>
					Surface	1.0	27.6	27.4	27.4	6.4	6.3	6.3	94.3	93.9	1.9	1.9		3.0	2.9	
18-Jun-12	1755-1811	28/Cloudy	Great Wave	20.0	Middle	10.0	27.6 27.5	27.8 27.7	27.8	6.2 6.2	6.2		91.6 92.2	91.9	2.2	2.2	2.2	3.4 3.4	3.4	3.3
					Bottom	19.0	27.5 27.5	27.9 27.9	27.9	6.1 6.1	6.1	6.1	89.7 90.1	89.9	2.6 2.6	2.6		3.6	3.5	
					Surface	1.0	27.6 27.6	27.7 27.8	27.8	6.3 6.3	6.3		92.6 93.2	92.9	1.4 1.5	1.5		2.4 2.6	2.5	
20-Jun-12	1904-1921	29/Fine	Great Wave	20.0	Middle	10.0	27.3	28.3	28.3	6.2	6.2	6.3	91.4	91.1	1.6	1.6	1.7	2.4	2.6	2.7
					Bottom	10.0	27.4 27.1	28.3 28.6	28.6	6.2 6.1	6.1	6.1	90.8 89.2	89.5	1.7 1.8	1.9	1	2.8 3.0	3.1	1
							27.1 27.7	28.6 26.7		6.1 5.9		0.1	89.7 86.6		1.9 3.0			3.2 4.0		<u> </u>
					Surface	1.0	27.7 27.3	26.7 26.9	26.7	5.9 5.8	5.9	5.8	86.2 85.5	86.4	3.0 3.4	3.0		4.0 4.4	4.0	
22-Jun-12	2015-2030	28/Drizzle	Small Wave	17.8	Middle	8.9	27.4	27.0	27.0	5.8	5.8		84.9	85.2	3.4	3.4	3.2	4.6	4.5	4.3
					Bottom	16.8	27.3 27.3	27.0 27.1	27.1	5.8 5.7	5.8	5.8	84.6 84.2	84.4	3.2 3.1	3.2		4.2	4.3	
					Surface	1.0	28.1 28.2	26.5 26.5	26.5	5.9 6.0	5.9	5.0	86.9 87.5	87.2	3.0	3.0		4.0	4.1	
25-Jun-12	0916-0932	28/Cloudy	Small Wave	17.4	Middle	8.7	28.1 28.0	26.8 26.9	26.9	5.8 5.7	5.7	5.8	84.4 83.8	84.1	3.4 3.4	3.4	3.3	4.4 4.4	4.4	4.4
					Bottom	16.4	27.9	26.9	26.9	5.7	5.7	5.7	83.9	83.7	3.5	3.5		4.6	4.6	
					Surface	1.0	28.0 28.4	26.9 25.4	25.4	5.7 6.0	6.0		83.4 86.7	86.4	3.5 1.6	1.6		4.6 2.6	2.7	
07.1.40	4440 4000	07/5:	0 144	40.0			28.4 28.3	25.3 25.4		5.9 5.9		5.9	86.1 84.8		1.6 1.3			2.8		0.0
27-Jun-12	1148-1206	27/Fine	Small Wave	19.8	Middle	9.9	28.2	25.4	25.4	5.8 5.7	5.8		84.2	84.5	1.4	1.3	1.8	2.6	2.5	2.9
					Bottom	18.8	27.6	25.7 25.8	25.8	5.7	5.8	5.8	83.2 83.5	83.4	2.4	2.5		3.4	3.5	

	T	Ambient Temp		Total		.	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Tı	urbidity (NT	Ū)	Susper	ided Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water	Monitorin (m	•	Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
	Baration	Condition	Condition	Depth (m)	(,,	1	(°C)		Average		Average	average		Average		Average	average		Average	average
					Surface	1.0	28.7	27.7 27.8	27.8	6.2 6.3	6.2		92.8 93.6	93.2	1.2	1.2		2.2	2.2	
							28.4	28.1		6.1		6.2	91.3		1.3		1	2.4		
29-Jun-12	1450-1507	32/Fine	Great Wave	20.0	Middle	10.0	28.4	28.2	28.2	6.2	6.1		91.9	91.6	1.3	1.3	1.7	2.4	2.4	2.8
					Bottom	19.0	27.9	28.5	28.5	6.0	6.0	6.0	89.3	88.9	2.7	2.7		3.6	3.7	
					Bottom	10.0	28.0	28.5	20.0	5.9	0.0	0.0	88.4	00.0	2.7			3.8	0.1	
					Surface	1.0	27.9 28.0	27.4 27.5	27.5	6.2 6.2	6.2		91.2 90.9	91.1	1.6 1.6	1.6		2.6	2.6	
							27.6	27.9		6.1		6.1	90.0		1.8		1	2.4		
4-Jul-12	1851-1908	31/Cloudy	Small Wave	20.2	Middle	10.1	27.6	27.8	27.9	6.0	6.1		89.1	89.6	1.8	1.8	1.8	2.6	2.5	2.7
					Bottom	19.2	27.3	27.9	28.0	5.9	6.0	6.0	87.6	87.9	1.9	2.0		3.0	3.0	
					20110		27.4	28.0	20.0	6.0	0.0	0.0	88.1	07.10	2.0			3.0	0.0	
					Surface	1.0	27.0 27.1	24.3 24.3	24.3	5.3 5.4	5.4		77.4 77.7	77.6	2.8	2.8		3.6	3.7	
							27.1	24.3		5.3		5.3	76.9		3.0		1	4.0		
6-Jul-12	0827-0843	28/Fine	Calm	19.6	Middle	9.8	26.9	24.4	24.4	5.3	5.3		76.3	76.6	3.0	3.0	3.6	4.0	4.0	4.3
					Bottom	18.6	26.8	24.7	24.7	5.4	5.4	5.4	78.0	77.8	4.9	4.9	1	5.2	5.3	
					Bottom	10.0	26.8	24.7	2	5.4	0.1	0.1	77.5	77.0	5.0	1.0		5.4	0.0	
					Surface	1.0	27.9 27.9	24.7 24.8	24.8	5.7 5.7	5.7		83.8 83.1	83.5	2.4	2.4		3.4	3.3	
							27.8	24.8		5.6		5.7	82.2		2.6			3.8		
9-Jul-12	0940-0958	29/Fine	Calm	18.6	Middle	9.3	27.9	24.9	24.9	5.6	5.6		81.3	81.8	2.7	2.6	3.0	3.8	3.8	4.1
					Bottom	17.6	27.8	24.9	25.0	5.5	5.5	5.5	80.2	79.9	4.1	4.1	1	5.0	5.1	
					Bottom	17.0	27.7	25.0	20.0	5.5	0.0	0.0	79.6	70.0	4.1			5.2	0.1	
					Surface	1.0	28.0 27.9	25.7 25.7	25.7	6.1 6.1	6.1		90.3	90.6	1.6 1.7	1.7		2.8	2.7	
							27.6	26.0		6.2		6.2	91.8		1.7			3.0		
11-Jul-12	1122-1138	30/Fine	Small Wave	20.0	Middle	10.0	27.7	25.9	26.0	6.3	6.2		92.5	92.2	2.0	2.0	2.1	3.2	3.1	3.2
					Bottom	19.0	27.3	26.4	26.4	6.0	6.0	6.0	89.2	88.8	2.8	2.8		3.6	3.7	
					Dottom	13.0	27.3	26.3	20.4	6.0	0.0	0.0	88.4	00.0	2.8	2.0		3.8	5.7	
					Surface	1.0	28.2	24.2	24.3	5.7	5.7		83.0	83.3	2.4	2.4		3.6	3.5	
							28.3	24.3 24.4		5.7 5.7		5.7	83.6 82.7		2.5		-	3.4		
13-Jul-12	1514-1530	30/Cloudy	Small Wave	19.8	Middle	9.9	27.9	24.4	24.4	5.6	5.7		81.9	82.3	2.8	2.8	3.0	4.0	3.9	4.0
					Bottom	18.8	27.8	24.5	24.6	5.5	5.5	5.5	80.3	80.6	3.8	3.8		4.6	4.7	
					DOMOIII	10.0	27.7	24.6	24.0	5.6	5.5	5.5	80.8	00.0	3.8	3.0		4.8	4.7	
					Surface	1.0	28.0	23.7	23.8	6.1	6.1		87.8	88.1	3.3	3.3		4.4	4.3	
							28.0 27.9	23.8 23.9		6.1 5.9		6.0	88.4 85.0		3.2 3.6			4.2		
16-Jul-12	1648-1706	32/Fine	Calm	20.0	Middle	10.0	27.9	24.0	24.0	5.9	5.9		85.5	85.3	3.5	3.6	3.5	4.8	4.7	4.6
					Dottom	20.0	27.9	24.2	24.2	5.7	<i>5</i> 7	<i>5</i> 7	82.1	92.5	3.8	2.0	1	4.8	4.0	
					Bottom	20.0	27.8	24.1	24.2	5.8	5.7	5.7	82.9	82.5	3.9	3.8		5.0	4.9	
					Surface	1.0	28.1	23.5	23.5	6.1	6.1		88.7	89.0	3.5	3.4		4.6	4.6	
							28.0 27.7	23.5 23.8		6.1 5.9		6.0	89.2 85.7		3.4 3.6		-	4.6		
18-Jul-12	1815-1833	29/Cloudy	Small Wave	20.2	Middle	10.1	27.8	23.9	23.9	5.9	5.9		86.5	86.1	3.6	3.6	3.5	4.8	4.7	4.7
					Pottom	10.2	27.5	24.0	24.4	5.7	5.7	5.7	83.6	92.0	3.5	2.5	1	4.8	4.7	
					Bottom	19.2	27.6	24.1	24.1	5.8	5.7	5.7	84.1	83.9	3.5	3.5		4.6	4./	

	Campling	Ambient Temp	Coo	Total	Monitorin	na Danth	Water	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)	Dissolve	d Oxygen	Tu	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		(···)	Surface	1.0	28.4	23.8	23.8	6.2	6.3	avorago	91.0	91.3	3.5	3.5	avorago	4.4	4.5	avorago
					Surface	1.0	28.4	23.8	23.0	6.3	0.3	6.2	91.5	91.3	3.5	3.5		4.6	4.5	1
20-Jul-12	1917-1934	30/Fine	Small Wave	20.0	Middle	10.0	28.2 28.1	24.1 24.0	24.1	6.1 6.1	6.1		89.4 88.7	89.1	3.3	3.3	3.5	4.4	4.4	4.5
					Bottom	19.0	27.9	24.4	24.4	5.9	5.9	5.9	86.4	86.2	3.6	3.6	1	4.6	4.7	
					Bottom	10.0	27.8 26.6	24.3 29.1	21.1	5.9 5.7	0.0	0.0	85.9 80.3	00.2	3.6 2.5	0.0		4.8 3.6		ļ
					Surface	1.0	26.6	29.1	29.2	5.7	5.7	F 0	80.7	80.5	2.6	2.5		3.4	3.5	
25-Jul-12	0958-1016	28/Cloudy	Small Wave	20.0	Middle	10.0	26.5	29.5	29.6	5.5	5.5	5.6	77.8	78.1	2.8	2.8	2.8	3.8	3.7	3.7
							26.5 26.4	29.6 29.8		5.6 5.4			78.3 75.8		2.8 3.0		ł	3.6		1
					Bottom	19.0	26.4	29.9	29.9	5.4	5.4	5.4	76.2	76.0	3.0	3.0		4.0	3.9	
					Surface	1.0	26.4 26.4	25.4 25.4	25.4	6.3 6.3	6.3		90.4	90.2	3.5 3.5	3.5		4.4	4.5	
07 1.1 40	4050 4000	20/D = i=- ·	O+ \\/	20.0	NA: al all a	40.0	26.1	25.4	25.0	6.1	6.4	6.2	87.7	07.4	3.7	2.7	0.7	4.8	4.0	4.7
27-Jul-12	1250-1308	26/Rainy	Great Wave	20.0	Middle	10.0	26.2	25.8	25.8	6.0	6.1		87.0	87.4	3.7	3.7	3.7	4.8	4.8	4.7
					Bottom	19.0	26.0 25.9	26.2 26.2	26.2	5.9 5.9	5.9	5.9	85.4 84.8	85.1	3.8	3.9		4.8 5.0	4.9	
					Surface	1.0	27.9	29.8	29.8	5.9	5.9		86.8	86.5	3.7	3.7		4.6	4.5	
					Curidoo	1.0	27.9 27.4	29.8 30.5	20.0	5.9 5.9	0.0	5.9	86.2 86.0	00.0	3.6 3.7	0.1	1	4.4	1.0	4
30-Jul-12	1645-1700	31/Sunny	Small Wave	17.6	Middle	8.8	27.4	30.4	30.5	5.8	5.8		85.5	85.8	3.7	3.7	3.7	4.6	4.7	4.7
					Bottom	16.6	27.2	30.6	30.6	5.7	5.7	5.7	83.1	83.3	3.6	3.6		4.8	4.8	
							27.2 27.8	30.5 29.7		5.7 6.0		<u> </u>	83.4 87.6		3.7 3.5	<u> </u>	<u> </u>	4.8 4.6		
					Surface	1.0	27.7	29.7	29.7	6.0	6.0	5.9	88.3	88.0	3.5	3.5]	4.6	4.6	j
1-Aug-12	1747-1803	33/Fine	Small Wave	17.8	Middle	8.9	27.5 27.6	29.8 29.9	29.9	5.9 5.9	5.9	0.0	86.3 85.8	86.1	3.4	3.4	3.5	4.6	4.5	4.6
					Dattam	16.0	27.3	30.1	20.1	5.8	<i>E</i> 0	F 0	84.9	0F 1	3.6	2.6	1	4.4	4.0	İ
					Bottom	16.8	27.2	30.1	30.1	5.8	5.8	5.8	85.3	85.1	3.6	3.6		4.8	4.8	<u> </u>
					Surface	1.0	28.1	29.6 29.6	29.6	6.0 6.1	6.1		89.7 90.0	89.9	3.5 3.6	3.6		4.4	4.5	
3-Aug-12	1851-1908	31/Cloudy	Small Wave	17.6	Middle	8.8	27.8	29.8	29.9	6.0	5.9	6.0	88.2	88.0	3.7	3.6	3.6	4.6	4.6	4.6
0 / lug 12	1001 1000	0 1/Oloddy	Omaii wave	17.0	Wildaic	0.0	27.7	29.9	20.0	5.9	0.0		87.7	00.0	3.6	0.0		4.6	4.0	4.0
					Bottom	16.6	27.5 27.6	30.3 30.3	30.3	5.8 5.8	5.8	5.8	85.8 85.4	85.6	3.7	3.7		4.6 4.8	4.7	
					Surface	1.0	26.9	25.8	25.9	4.4	4.4		64.1	63.7	3.4	3.4		4.6	4.5	
							26.9 26.9	25.9 26.1		4.4 4.5		4.4	63.3 65.1		3.4 2.9		}	4.4 3.8		1
6-Aug-12	0850-0904	30/Cloudy	Small Wave	19.0	Middle	9.5	26.8	26.1	26.1	4.5	4.5		64.4	64.8	3.0	2.9	3.2	4.0	3.9	4.2
					Bottom	18.0	26.8	26.3	26.3	4.7	4.7	4.7	68.6	68.8	3.2	3.2]	4.2	4.2	
					0	4.0	26.8 27.7	26.3 26.3	20.0	4.8 5.6			69.0 81.8	00.4	3.2 3.0	2.0		4.2 4.0	4.0	
					Surface	1.0	27.7	26.2	26.3	5.7	5.7	5.7	82.4	82.1	3.0	3.0	1	4.0	4.0	1
8-Aug-12	1022-1038	30/Fine	Small Wave	19.4	Middle	9.3	27.6 27.5	26.5 26.5	26.5	5.7 5.7	5.7		82.8 83.2	83.0	3.0	3.0	3.1	3.8 4.0	3.9	4.0
					Bottom	17.6	27.4	27.0	27.0	5.5	5.5	5.5	80.1	80.4	3.2	3.2	1	4.2	4.2	
			ĺ		ווטווטם	17.0	27.3	27.0	21.0	5.6	3.5	5.5	80.6	00.4	3.2	J.2		4.2	7.4	1

	0 "	Ambient Temp		Total			Water	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)	Dissolve	d Oxygen	Ti	urbidity (NT	Ū)	Susper	nded Solids	s (mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorir (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		2 op a. ()	Surface	1.0	28.1	26.4	26.4	5.7	5.7	average	84.7	84.9	3.0	3.0	average	4.0	4.0	average
					Surface	1.0	28.2	26.3	20.4	5.8	3.7	5.7	85.1	04.9	3.0	3.0		4.0	4.0	
10-Aug-12	1250-1308	33/Cloudy	Small Wave	18.6	Middle	9.3	28.0 27.9	26.7 26.7	26.7	5.6 5.6	5.6		82.9 82.1	82.5	2.8	2.8	3.0	3.6	3.7	3.9
					Bottom	17.6	27.7	27.0	27.0	5.7	5.7	5.7	84.1	84.3	3.1	3.1	1	4.0	4.1	
							27.7 27.7	27.0 25.4		5.7 6.0			84.4 87.1		3.1			4.2		<u> </u>
					Surface	1.0	27.7	25.4	25.4	6.0	6.0	5.9	87.6	87.4	3.0	3.0		4.2	4.1	
13-Aug-12	1952-2009	27/Cloudy	Small Wave	18.6	Middle	9.3	27.5 27.4	25.7 25.8	25.8	5.9 5.8	5.9		85.1 84.5	84.8	3.1	3.2	3.1	4.2	4.2	4.2
					Bottom	17.6	27.2 27.2	26.2 26.3	26.3	5.8 5.7	5.7	5.7	83.5 82.9	83.2	3.3	3.3		4.2 4.4	4.3	
					Surface	1.0	28.3	27.5	27.6	6.1	6.1		88.9	89.1	2.3	2.4		3.2	3.3	
					Ouriace		28.3 28.1	27.6 27.8		6.1 5.9	0.1	6.0	89.3 86.7		2.4	2.7		3.4	3.3	}
15-Aug-12	1720-1738	32/Fine	Calm	20.2	Middle	10.1	28.1	27.8	27.8	5.9	5.9		86.1	86.4	2.6	2.6	2.6	3.6	3.5	3.5
					Bottom	19.2	28.0 28.0	27.9 27.9	27.9	5.7 5.8	5.7	5.7	83.5 84.0	83.8	2.8	2.8		3.8	3.7	
					Surface	1.0	27.7	26.7	26.8	6.1	6.1		88.5	88.9	2.4	2.4		3.4	3.3	1
	.==						27.7 27.4	26.8 27.0		6.2 6.0		6.1	89.3 87.3		2.4			3.2		
17-Aug-12	1751-1809	29/Cloudy	Great Wave	19.6	Middle	9.8	27.5	27.0	27.0	6.0	6.0		86.9	87.1	2.2	2.3	2.4	3.4	3.4	3.5
					Bottom	18.6	27.2 27.3	27.1 27.2	27.2	6.0 5.9	5.9	5.9	86.3 85.9	86.1	2.7	2.7		3.8	3.7	
					Surface	1.0	27.8 27.7	25.7 25.7	25.7	5.9 5.9	5.9		86.6 87.0	86.8	3.0	3.0		4.0 3.8	3.9	
20-Aug-12	0825-0843	28/Fine	Small Wave	18.8	Middle	9.4	27.5	26.2	26.2	5.8	5.8	5.8	85.3	85.0	3.1	3.1	3.1	4.0	4.1	4.1
20-Aug-12	0023-0043	20/1 1116	Omaii wave	10.0	Wildale	3.4	27.4 27.2	26.1 26.6	20.2	5.8 5.8	3.0		84.7 85.7	00.0	3.1 3.2	3.1	3.1	4.2	7.1	ļ ^{Ţ.} '
					Bottom	17.8	27.2	26.5	26.6	5.9	5.9	5.9	86.3	86.0	3.2	3.2		4.4	4.3	
					Surface	1.0	27.9 27.9	29.4 29.4	29.4	5.4 5.5	5.4		78.0 78.4	78.2	3.0	3.0		4.0	4.1	
22-Aug-12	0920-0937	29/Cloudy	Calm	19.6	Middle	9.8	27.7	29.5	29.6	5.3	5.3	5.4	76.6	76.4	3.2	3.2	3.2	4.2	4.3	4.3
		,					27.8 27.6	29.6 29.9		5.3 5.0			76.1 72.2		3.2 3.5		1	4.4		1
					Bottom	18.6	27.6	29.9	29.9	5.1	5.0	5.0	73.0	72.6	3.5	3.5		4.6	4.6	<u> </u>
					Surface	1.0	27.9 27.8	27.3 27.4	27.4	6.0 6.1	6.1	0.0	88.8 89.1	89.0	2.7	2.7		3.6	3.7	
24-Aug-12	1150-1207	30/Fine	Small Wave	20.0	Middle	10.0	27.5 27.5	27.7 27.7	27.7	5.9 5.9	5.9	6.0	80.7 86.6	83.7	2.4	2.4	2.5	3.4 3.6	3.5	3.6
					Bottom	19.0	27.5	28.3	28.3	5.8	5.8	5.8	85.1	84.8	2.4	2.5	1	3.4	3.5	1
							27.2 27.9	28.2 27.2		5.8 5.9		5.0	84.5 86.7		2.5 2.3			3.6 3.2		
					Surface	1.0	28.0	27.1	27.2	5.9	5.9	5.8	86.4	86.6	2.4	2.3		3.4	3.3	
27-Aug-12	1552-1609	34/Fine	Calm	18.8	Middle	9.4	27.7 27.6	27.6 27.6	27.6	5.8 5.8	5.8	0.0	85.1 84.5	84.8	2.4	2.4	2.5	3.6	3.6	3.5
					Bottom	17.8	27.3	28.0	28.1	5.6	5.6	5.6	82.3	82.2	2.6	2.7	1	3.6	3.7	1
	[20110.11		27.3	28.1		5.6	0.0	0.0	82.0	<u> </u>	2.7			3.8]	

	0 "	Ambient Temp		Total		- · ·	Water	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)	Dissolve	d Oxygen	Tı	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		Dopur (III)	Confess	4.0	28.0	27.2	07.0	6.1	6.4	average	89.1	00.4	2.2	2.2	average	3.2	2.0	average
					Surface	1.0	28.1	27.2	27.2	6.1	6.1	6.0	89.7	89.4	2.1	2.2		3.2	3.2	1
29-Aug-12	1651-1709	31/Fine	Small Wave	18.4	Middle	9.2	27.8 27.8	27.4 27.5	27.5	5.9 5.9	5.9		87.4 86.8	87.1	2.4	2.3	2.3	3.4	3.4	3.4
					Bottom	17.4	27.6	27.7	27.8	5.8	5.9	5.9	86.0	86.3	2.5	2.4	1	3.4	3.5	
					Bottom	17.4	27.5	27.8	27.0	5.9	3.9	3.9	86.6	00.5	2.4	2.4		3.6	3.3	
					Surface	1.0	27.5 27.6	26.4 26.4	26.4	5.3 5.3	5.3		76.7 77.0	76.9	2.5 2.6	2.5		3.4	3.4	
31-Aug-12	1753-1810	30/Fine	Calm	19.6	Middle	9.8	27.5	26.6	26.6	5.0	5.0	5.2	72.9	73.1	2.3	2.3	2.5	3.2	3.3	3.5
							27.5 27.4	26.6 26.7		5.1 4.9			73.2 71.2		2.3 2.6			3.4		1
					Bottom	18.6	27.3	26.8	26.8	4.9	4.9	4.9	71.5	71.4	2.7	2.6		3.8	3.7	
					Surface	1.0	28.7	24.9 25.0	25.0	6.9 6.9	6.9		103.0 101.5	102.3	2.0	2.0		3.0	3.0	
0.010	1001 1000	00/5	0 !! \\	00.0	NAC J. II.	40.0	27.5	25.6	05.0	5.1		6.0	74.5	70.0	2.1	0.4		3.2	0.4	0.4
3-Sep-12	1924-1939	32/Fine	Small Wave	20.0	Middle	10.0	27.6	25.5	25.6	5.0	5.0		73.2	73.9	2.1	2.1	2.1	3.0	3.1	3.1
					Bottom	19.0	27.4 27.4	25.7 25.7	25.7	4.5 4.4	4.4	4.4	65.4 63.9	64.7	2.2	2.2		3.2	3.2	
					Surface	1.0	27.7	27.4	27.4	6.1	6.1		89.8	90.1	2.2	2.3		3.2	3.3	
					Curiaco	1.0	27.7 27.4	27.4 27.8	27.1	6.1 6.0	0.1	6.0	90.3 88.1	00.1	2.3 2.6	2.0	-	3.4	0.0	1
5-Sep-12	0935-0952	28/Cloudy	Small Wave	18.8	Middle	9.4	27.5	27.7	27.8	5.9	5.9		87.3	87.7	2.6	2.6	2.4	3.4	3.5	3.4
					Bottom	17.8	27.1	28.1	28.2	5.7	5.7	5.7	84.7	84.4	2.4	2.4		3.2	3.4	
							27.2 27.5	28.2 27.3		5.7 6.1			84.1 90.5		2.5 2.2			3.6 3.0		
					Surface	1.0	27.5	27.2	27.3	6.2	6.2	6.1	91.1	90.8	2.2	2.2]	3.2	3.1]
7-Sep-12	1117-1133	28/Cloudy	Small Wave	18.6	Middle	9.3	27.2	27.6 27.6	27.6	6.1 6.0	6.0		89.2 88.8	89.0	2.6 2.6	2.6	2.4	3.4	3.6	3.4
					Bottom	17.6	27.1	27.9	28.0	5.9	5.9	5.9	87.4	87.2	2.5	2.5		3.6	3.5	
					DOLLOTTI	17.0	27.1	28.0	20.0	5.9	5.9	5.9	86.9	07.2	2.5	2.5		3.4	3.5	<u> </u>
					Surface	1.0	27.9 28.0	27.6 27.6	27.6	6.2 6.2	6.2		91.0 91.5	91.3	2.3	2.3		3.2	3.1	
10-Sep-12	1850-1908	29/Fine	Small Wave	18.6	Middle	9.3	27.6	28.0	28.0	6.1	6.0	6.1	89.2	88.9	2.5	2.5	2.5	3.4	3.5	3.4
10 000 12	1000 1000	26/1 1116	Januar Trave	10.0	·····au.c		27.6 27.2	28.0 28.3		6.0 5.9	0.0		88.5 87.5		2.5 2.7		1	3.6		1
					Bottom	17.6	27.2	28.4	28.4	5.9	5.9	5.9	86.9	87.2	2.8	2.8		3.8	3.7	
					Surface	1.0	27.8 27.8	26.9 27.0	27.0	6.4	6.4		93.7	94.1	2.6	2.7		3.6	3.7	
40.0 40	4000 4007	00/5	0.1	40.0	NAC J. II.	0.0	27.8	27.0	07.0	6.5 6.2	0.0	6.3	94.5 90.5	00.0	3.0	0.0		4.0	0.0	0.0
12-Sep-12	1620-1637	32/Fine	Calm	19.6	Middle	9.8	27.7	27.2	27.2	6.3	6.2		91.3	90.9	3.0	3.0	2.9	3.8	3.9	3.9
					Bottom	18.6	27.4 27.5	27.4 27.5	27.5	5.8 5.9	5.8	5.8	84.8 85.6	85.2	3.1	3.1		4.2	4.2	
					Surface	1.0	28.0	27.0	27.0	6.5	6.4		94.5	94.1	2.7	2.7		3.4	3.6	
					Curiace	1.0	28.0	26.9	27.0	6.4	0.4	6.3	93.6	J-7.1	2.7	2.1	4	3.8	0.0	4
14-Sep-12	1649-1705	30/Fine	Small Wave	20.2	Middle	10.1	27.8 27.8	27.2 27.1	27.2	6.2 6.2	6.2		90.5 89.9	90.2	3.0	3.0	3.0	4.0	4.0	3.9
					Bottom	19.2	27.7	27.4	27.4	5.8	5.8	5.8	84.3	84.6	3.2	3.3	1	4.2	4.2	
	1						27.6	27.4		5.8			84.8		3.3			4.2		1

	0 "	Ambient Temp		Total		- · ·	Water	Salini	ty (ppt)	Dissolv	red Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		00.1414011		1 ()	Surface	1.0	27.6 27.7	26.9 26.9	26.9	6.4 6.3	6.3	arranaga 	92.9 92.1	92.5	2.6 2.7	2.6		3.4 3.6	3.5	arrenage
17-Sep-12	1817-1834	29/Fine	Small Wave	19.8	Middle	9.9	27.5	27.0	27.1	6.2	6.2	6.3	90.4	90.8	2.8	2.8	2.8	3.8	3.9	3.8
Сор .2		20// 11/0	Januar Trave	10.0			27.4 27.3	27.1 27.3		6.2 6.0		0.0	91.1 87.9		2.8 3.0		1 2.0	4.0		0.0
					Bottom	18.8	27.2 26.6	27.2 26.7	27.3	6.1 6.4	6.0	6.0	88.6 93.7	88.3	3.0 2.9	3.0		3.8 4.0	3.9	
					Surface	1.0	26.6	26.8	26.8	6.4	6.4	6.3	93.3	93.5	3.0	2.9		4.2	4.1	
19-Sep-12	0858-0915	27/Fine	Calm	19.6	Middle	9.8	26.5 26.5	26.9 26.8	26.9	6.2 6.2	6.2		89.9 90.8	90.4	3.2	3.2	3.2	4.4	4.4	4.3
					Bottom	18.6	26.3 26.3	27.0 27.0	27.0	5.9 6.0	5.9	5.9	86.4 86.9	86.7	3.5 3.5	3.5		4.4	4.5	
					Surface	1.0	27.4 27.5	25.6 25.7	25.7	6.1 6.2	6.1		90.0	90.2	2.6	2.6		3.4	3.6	
21-Sep-12	1032-1049	28/Cloudy	Small Wave	20.4	Middle	10.2	27.2	26.0	26.0	6.0	6.0	6.1	88.1	87.8	2.7	2.8	2.8	3.6	3.8	3.8
·		,			Bottom	19.4	27.2 26.9	26.0 26.3	26.4	6.0 5.8	5.8	5.8	87.5 85.3	85.2	2.8 3.2	3.1		4.0	4.1	}
							27.0 27.6	26.4 26.5		5.8 6.5		3.0	85.0 94.8		3.1 2.3			4.2 3.2		
					Surface	1.0	27.6 27.3	26.4	26.5	6.5	6.5	6.3	95.4	95.1	2.4	2.4		3.4	3.3	
24-Sep-12	1519-1536	30/Cloudy	Small Wave	18.8	Middle	9.4	27.4	26.9 26.8	26.9	6.2 6.2	6.2		91.4 90.8	91.1	2.7 2.8	2.7	2.7	4.0	3.8	3.7
					Bottom	17.8	27.0 27.1	27.3 27.3	27.3	6.0	6.0	6.0	88.8 88.2	88.5	3.0	3.0		4.0	4.1	
					Surface	1.0	27.7 27.6	26.3 26.4	26.4	6.4 6.4	6.4		93.4 94.0	93.7	2.5 2.4	2.5		3.6	3.5	
26-Sep-12	1550-1607	29/Cloudy	Small Wave	18.2	Middle	9.1	27.4	26.7	26.8	6.2	6.2	6.3	91.1	91.5	2.6	2.7	2.7	3.8	3.7	3.8
					Bottom	17.2	27.4 27.2	26.8 27.1	27.1	6.3 6.1	6.1	6.1	91.9 88.9	89.1	2.7 3.0	3.0	1	3.6 4.0	4.1	
					Surface	1.0	27.3 28.0	27.1 26.7	26.7	6.1 5.9	5.9		89.2 87.2	87.5	3.0	3.5		4.2 4.4	4.5	
							28.1 27.8	26.7 26.9		5.9 5.8		5.9	87.8 86.0		3.5 3.8			4.6 4.8		ł
28-Sep-12	1645-1700	29/Sunny	Small Wave	17.8	Middle	8.9	27.8	27.0	27.0	5.8	5.8		85.1	85.6	3.8	3.8	3.7	5.0	4.9	4.8
					Bottom	16.8	27.6 27.6	27.2 27.1	27.2	5.8 5.8	5.8	5.8	84.9 85.4	85.2	3.9 3.9	3.9		5.0 5.2	5.1	
					Surface	1.0	27.7 27.7	27.8 27.8	27.8	5.8 5.8	5.8	5.7	84.9 84.7	84.8	2.1	2.1		2.8 3.2	3.0	
3-Oct-12	1850-1907	29/Fine	Small Wave	19.4	Middle	9.7	27.5 27.5	28.0 28.0	28.0	5.6 5.6	5.6	5.7	82.2 82.6	82.4	2.4	2.4	2.4	3.4	3.5	3.4
					Bottom	18.4	27.3	28.3 28.3	28.3	5.4 5.4	5.4	5.4	79.8 80.1	80.0	2.7	2.6	1	3.8	3.7	
					Surface	1.0	27.6	27.7	27.7	5.9	5.8		86.1	85.8	2.1	2.1		2.8	2.9	
5-Oct-12	0919-0936	26/Fine	Small Wave	19.0	Middle	9.5	27.6 27.4	27.6 27.8	27.9	5.8 5.7	5.8	5.8	85.5 84.4	84.7	2.1 2.4	2.4	2.3	3.0 3.4	3.5	3.3
0 001-12	3010-0300	20// 1110	Jilian Wave	13.0			27.3 27.2	27.9 28.1		5.8 5.6		5.0	85.0 82.5		2.4 2.5			3.6 3.6		0.5
					Bottom	18.0	27.2	28.1	28.1	5.6	5.6	5.6	81.9	82.2	2.6	2.6		3.6	3.6	1

	Campling	Ambient Temp	Coo	Total	Monitorin	na Donth	Water	Salini	ty (ppt)	Dissolv	red Oxyger	n (mg/L)	Dissolve	d Oxygen	Tu	urbidity (NT	Ū)	Susper	ded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorir (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		(···)	Surface	1.0	27.4	26.7	26.7	5.7	5.7	avolago	83.7	83.4	2.9	2.9	avorago	3.8	3.7	avorago
					Ourrace	1.0	27.4	26.6	20.7	5.7	5.7	5.7	83.1	00.4	2.9	2.5		3.6	5.7	
8-Oct-12	1745-1801	27/Fine	Small Wave	18.8	Middle	9.4	27.3 27.2	26.8 26.8	26.8	5.6 5.6	5.6		81.9 82.6	82.3	3.1	3.1	3.1	4.0	4.1	4.0
					Bottom	17.8	27.1 27.1	27.0	27.1	5.5	5.5	5.5	80.9	81.1	3.2	3.2	1	4.2	4.2	
					Surface	1.0	27.1	27.1 26.6	26.6	5.6 5.8	5.8		81.2 84.5	84.2	3.2 2.9	2.9		4.2 4.0	4.0	
					Surface	1.0	27.5	26.6	20.0	5.7	5.0	5.7	83.8	04.2	3.0	2.9		4.0	4.0	
10-Oct-12	1516-1533	28/Fine	Small Wave	18.4	Middle	9.2	27.3 27.4	26.7 26.8	26.8	5.7 5.7	5.7		82.7 83.2	83.0	3.0	3.1	3.1	4.0	4.1	4.1
					Bottom	17.4	27.2 27.1	26.9 26.9	26.9	5.6 5.6	5.6	5.6	82.1 81.4	81.8	3.2	3.2		4.2	4.3	
					Surface	1.0	27.6	26.6	26.6	5.4	5.4		79.5	79.5	2.7	2.7		3.4	3.6	
					Ouriace	1.0	27.6 27.5	26.6 26.7	20.0	5.4 5.3	5.4	5.4	79.4 78.2	7 3.3	2.8			3.8 4.0	3.0	
12-Oct-12	1621-1639	28/Fine	Small Wave	19.5	Middle	9.8	27.5	26.7	26.7	5.3	5.3		77.5	77.9	2.9	2.9	2.9	3.8	3.9	3.9
					Bottom	18.5	27.4 27.4	26.8 26.8	26.8	5.1 5.1	5.1	5.1	75.0 74.5	74.8	3.2	3.2		4.2	4.1	
					Surface	1.0	27.5	26.4	26.4	5.7	5.7		83.8	84.1	3.0	3.0		4.0	3.9	
							27.4 27.3	26.4 26.5		5.8 5.9		5.8	84.4 86.1		3.0 3.1			3.8 4.2		
15-Oct-12	1751-1810	28/Fine	Small Wave	19.8	Middle	9.9	27.3	26.6	26.6	5.9	5.9		86.7	86.4	3.1	3.1	3.1	4.0	4.1	4.1
					Bottom	18.8	27.1 27.2	26.7 26.8	26.8	5.7 5.7	5.7	5.7	83.2 82.8	83.0	3.2	3.2		4.2	4.4	
					Surface	1.0	27.2	26.7	26.7	5.5	5.5		79.9	80.3	2.4	2.4		3.8	3.5	
17-Oct-12	1847-1903	27/Claudy	Cmall Mayo	19.6	Middle	9.8	27.1 27.1	26.7 26.8	26.8	5.5 5.4	F 4	5.4	80.6 79.2	79.0	2.4 2.5	2.5	2.6	3.2 3.6	3.5	3.6
17-Oct-12	1847-1903	27/Cloudy	Small Wave	19.6	Middle	9.8	27.0	26.8	20.8	5.4	5.4		78.7	79.0	2.6	2.5	2.0	3.4	3.5	3.0
					Bottom	18.6	27.0 26.9	26.8 26.9	26.9	5.3 5.3	5.3	5.3	77.3 80.8	79.1	2.9 3.0	2.9		3.8	3.8	
					Surface	1.0	26.8 26.8	26.5 26.6	26.6	5.6 5.6	5.6		81.0 81.3	81.2	4.2	4.2		5.0 5.2	5.1	
19-Oct-12	0913-0930	25/Fine	Small Wave	18.8	Middle	9.4	26.7	26.6	26.7	5.6	5.6	5.6	81.2	81.6	4.3	4.1	4.1	5.2	5.1	5.0
19-001-12	0313-0330	25/1 1116	Omaii wave	10.0	Wildule		26.7 26.6	26.7 26.7		5.7 5.7	3.0		82.0 82.3		4.1 4.0	7.1	7.1	5.0 4.8		5.0
					Bottom	17.8	26.5	26.8	26.8	5.7	5.7	5.7	82.0	82.2	4.0	4.0		4.6	4.7	
					Surface	1.0	26.8 26.8	26.5 26.5	26.5	5.9 5.9	5.9		86.7 87.2	87.0	3.9 4.0	3.9		5.0 4.8	4.9	
22-Oct-12	1249-1306	28/Fine	Small Wave	20.4	Middle	10.2	26.6	26.7	26.7	5.9	5.8	5.9	86.1	85.9	4.1	4.1	4.1	5.0	5.1	5.1
							26.7 26.5	26.7 27.0		5.8 5.7			85.6 83.9		4.1 4.2		1	5.2 5.2		
					Bottom	19.4	26.4	26.9	27.0	5.7	5.7	5.7	83.5	83.7	4.3	4.2		5.4	5.3	
					Surface	1.0	26.7 26.8	26.4 26.4	26.4	5.9 5.9	5.9	5 0	85.2 85.6	85.4	3.7	3.7		4.6	4.5	
24-Oct-12	1446-1503	28/Fine	Small Wave	20.2	Middle	10.1	26.5	26.6	26.6	5.7	5.7	5.8	83.2	83.4	3.8	3.8	3.8	4.6	4.7	4.7
					Rottom	19.2	26.4 26.2	26.5 26.8	26.9	5.7 5.6	5.6	5.6	83.6 82.0	81.8	3.8 3.9	3.9	1	4.8 5.0	5.0	
	1				Bottom	19.2	26.3	26.9	20.9	5.6	0.0	0.0	81.5	01.8	3.9	3.9		5.0	5.0	

	Sampling	Ambient Temp	Sea	Total	Monitorin	a Donth	Water	Salinit	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	U)	Susper	nded Solids	(mg/L)
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	(m	• .	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	26.7 26.6	26.6 26.6	26.6	5.7 5.8	5.7		82.9 83.5	83.2	4.1 4.1	4.1		5.2 5.0	5.1	
26-Oct-12	1613-1630	26/Cloudy	Small Wave	19.6	Middle	9.8	26.6	26.8	26.8	5.9	5.9	5.8	84.8	85.1	4.1	4.2	4.2	5.2	5.2	5.2
20-001-12	1013-1030	20/Cloudy	Siliali Wave	13.0	Middle	9.0	26.5	26.8	20.0	5.9	3.9		85.3	00.1	4.2	4.2	4.2	5.2	5.2	5.2
					Bottom	18.6	26.6	26.9	26.9	6.1	6.0	6.0	87.9	87.5	4.2	4.2		5.4	5.3	
					20110111	.0.0	26.6	26.9	20.0	6.0	0.0	0.0	87.1	00	4.2			5.2	0.0	
					Surface	1.0	26.5	26.7	26.7	5.7	5.7		83.7	83.5	4.0	4.1		4.8	4.8	
							26.5	26.7		5.7		5.6	83.2		4.1			4.8		
29-Oct-12	1713-1729	27/Cloudy	Small Wave	20.3	Middle	10.2	26.4 26.4	26.8 26.8	26.8	5.6 5.5	5.5		81.5 80.9	81.2	4.1	4.2	4.2	5.0 5.2	5.1	5.1
							26.3	26.9		5.5			80.3		4.3			5.2		1
					Bottom	19.3	26.3	26.9	26.9	5.4	5.5	5.5	79.9	80.1	4.3	4.3		5.4	5.3	
							26.2	26.5		5.6			81.3		4.2			5.2		
					Surface	1.0	26.2	26.6	26.6	5.6	5.6	5.7	81.8	81.6	4.1	4.2		5.0	5.1	
31-Oct-12	1815-1832	24/Cloudy	Small Wave	20.0	Middle	10.0	26.1	26.7	26.7	5.7	5.7	5.7	82.6	82.4	4.1	4.1	4.1	5.2	5.1	5.2
01 000 12	1010 1002	Z4/Oloddy	Oman wave	20.0	ivildulo	10.0	26.0	26.6	20.7	5.7	0.7		82.1	02.4	4.1	7.1	J	5.0	0.1	0.2
					Bottom	19.0	25.8	26.9	26.8	5.7	5.7	5.7	83.1	82.9	4.2	4.2		5.4	5.3	1
					Dottom	10.0	25.8	26.8	20.0	5.7	J.,	J,	82.7	02.0	4.2	I	l	5.2	0.0	1 1

	0	Ambient Temp	0.1	Total			Water	Salini	ty (ppt)	Dissolv	ved Oxygei	n (mg/L)	Dissolve	d Oxygen	Т	urbidity (N7	ΓU)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water Depth (m)	Monitoring E	Depth (m)	Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
		Condition		Deptri (m)		1	(°C) 22.9	26.0		8.5		average	115.0		2.3	+	average	4.4		average
					Surface	1.0	22.9	26.0	26.0	8.5	8.5	0.0	115.4	115.2	2.4	2.3		4.4	4.4	
16-Apr-12	1014-1029	26/Cloudy	Calm	13.4	Middle	6.7	22.4	26.8	26.8	7.8	7.8	8.2	104.7	104.6	2.1	2.1	2.9	4.2	4.1	4.8
10-Αρι-12	1014-1023	20/01000	Callii	10.4	Wildule	0.7	22.4	26.8	20.0	7.8	7.0		104.4	104.0	2.1	2.1	2.3	4.0	7.1	4.0
					Bottom	12.4	22.1 22.1	26.8 26.8	26.8	7.3 7.3	7.3	7.3	97.6 97.9	97.8	4.2	4.2		5.8 6.0	5.9	
					Confess	4.0	22.7	25.7	25.0	8.4	0.4		112.5	440.0	2.2	0.0		4.4	4.0	
					Surface	1.0	22.6	25.8	25.8	8.5	8.4	8.3	113.3	112.9	2.3	2.2	_	4.2	4.3	
18-Apr-12	1117-1132	22/Drizzle	Small Wave	13.6	Middle	6.8	22.4 22.4	26.2 26.3	26.3	8.2 8.2	8.2		109.6 108.9	109.3	2.4	2.4	2.7	4.6 4.6	4.6	4.7
					Bottom	12.6	22.1	26.6	26.7	8.0	7.9	7.9	106.2	106.0	3.3	3.3	1	5.0	5.1	
					DOMOITI	12.0	22.2	26.7	20.7	7.9	7.9	7.9	105.8	106.0	3.3	3.3		5.2	5.1	
					Surface	1.0	22.1 22.1	25.7 25.8	25.8	7.6 7.7	7.7		99.9	100.2	2.4	2.4		4.2	4.1	
00.440	4050 4040	00/D	0	40.0	N 41 - 1 - 11 -	0.0	22.0	26.2	00.0	7.7	7.5	7.6	97.8	00.0	2.3	0.0	-	4.0	4.0	4.7
20-Apr-12	1256-1312	22/Rain	Great Wave	13.6	Middle	6.8	22.0	26.3	26.3	7.5	7.5		98.5	98.2	2.3	2.3	2.9	4.2	4.2	4.7
					Bottom	12.6	22.0 21.9	26.5 26.4	26.5	7.3 7.3	7.3	7.3	95.5 96.1	95.8	4.0	4.0		5.6 6.0	5.8	
					0.1	4.0	22.5	25.9	25.0	6.9	0.0		91.7	00.0	2.8	0.0		3.8	0.7	
					Surface	1.0	22.4	25.9	25.9	6.9	6.9	6.8	92.3	92.0	2.8	2.8		3.6	3.7	
23-Apr-12	1343-1358	25/Cloudy	Small Wave	13.6	Middle	6.8	22.2	26.3 26.2	26.3	6.7 6.7	6.7	0.0	89.5 89.0	89.3	3.5	3.6	3.4	4.4	4.5	4.4
					D. II.	40.0	22.1	26.1	00.4	6.4	0.5	0.5	85.5	05.7	3.9	0.0	1	5.0	4.0	
					Bottom	12.6	22.0	26.0	26.1	6.5	6.5	6.5	85.9	85.7	3.9	3.9		4.8	4.9	
					Surface	1.0	23.6	25.3	25.3	6.7	6.8		90.2	90.5	2.9	2.9		3.8	3.9	
							23.6 23.4	25.3 26.1		6.8 6.7		6.7	90.7 89.8		3.0 3.1	1	1	4.0		
25-Apr-12	1420-1437	28/Cloudy	Calm	13.4	Middle	6.7	23.4	26.0	26.1	6.7	6.7		89.4	89.6	3.1	3.1	3.1	4.0	4.1	4.1
					Bottom	12.4	23.4	26.4	26.4	6.6	6.6	6.6	88.4	88.2	3.3	3.3		4.2	4.3	
							23.4 23.6	26.4 25.8		6.6 7.4			87.9 100.6		3.3 2.2	1		4.4 3.6		
					Surface	1.0	23.7	25.8	25.8	7.4	7.4	7.0	101.0	100.8	2.3	2.3		3.4	3.5	
27-Apr-12	1548-1603	25/Cloudy	Small Wave	13.6	Middle	6.8	23.4	27.0	27.0	7.3	7.3	7.3	99.4	99.1	2.9	3.0	2.8	4.0	3.9	3.9
,		,					23.4 23.1	27.0 28.2		7.2 7.1			98.8 97.0		3.0		1	3.8 4.2		
					Bottom	12.6	23.2	28.2	28.2	7.1	7.1	7.1	97.4	97.2	3.2	3.2		4.4	4.3	
					Surface	1.0	23.4	25.5	25.5	6.7	6.7		89.6	89.2	2.5	2.5		4.4	4.5	
							23.4 23.4	25.5 26.4		6.7 6.6		6.6	88.8 87.2		2.6 2.8		4	4.6		1
30-Apr-12	1917-1935	28/Cloudy	Calm	13.6	Middle	6.8	23.4	26.4	26.4	6.5	6.5		86.5	86.9	2.9	2.8	2.8	5.0	4.9	4.9
					Bottom	12.6	23.3	26.9	26.9	6.4	6.4	6.4	85.5	85.3	3.1	3.1	1	5.2	5.2	
							23.3 25.5	26.9 26.5		6.4 7.5			85.0 107.1		3.2 2.3			5.2 3.8		
					Surface	1.0	25.4	26.6	26.6	7.6	7.5	7.4	107.1	107.3	2.3	2.3		4.0	3.9	
2-May-12	1031-1046	29/Cloudy	Small Wave	13.6	Middle	6.8	25.2	27.0	27.1	7.3	7.3	7.4	103.4	103.3	3.0	3.0	2.9	4.2	4.3	4.3
-,		,					25.2 25.0	27.1 28.2		7.3 7.4			103.1 104.5		3.0 3.4		-	4.4		-
					Bottom	12.6	25.0	28.2	28.2	7.5	7.4	7.4	104.5	104.9	3.4	3.4		4.8	4.7	

	Carralia a	Ambient Temp	0	Total			Water	Salinit	y (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Т	urbidity (N7	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water Depth (m)	Monitoring [Depth (m)	Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
		Condition		Deptri (m)		1	(°C) 26.6	25.7		6.6		average	93.6		2.5		average	3.8		average
					Surface	1.0	26.5	25.7	25.7	6.6	6.6	6.4	94.0	93.8	2.5	2.5		3.6	3.7	
4-May-12	1014-1029	28/Cloudy	Small Wave	13.6	Middle	6.8	26.1 26.1	26.2 26.2	26.2	6.2	6.2	0.4	88.8 88.2	88.5	3.1	3.2	3.0	4.4 4.4	4.4	4.3
					5 "	40.0	25.9	26.2	00.5	6.2	0.0	0.0	88.2	00.0	3.4			4.4	4.0	
					Bottom	12.6	25.9	26.5	26.5	6.1	6.2	6.2	87.8	88.0	3.3	3.3		4.8	4.8	
					Surface	1.0	25.3 25.4	26.1 26.2	26.2	7.4 7.4	7.4		103.8 104.4	104.1	2.2	2.2		3.4	3.4	
7-May-12	1241-1256	28/Fine	Small Wave	13.4	Middle	6.7	25.1	26.9	26.9	7.3	7.3	7.4	102.6	102.4	2.9	2.9	2.7	3.8	3.9	3.9
7 May 12	1241 1200	20/1 1110	Oman wave	10.4	Wildaic	0.7	25.2	26.8 28.0	20.0	7.3	7.0		102.1 100.1	102.4	2.9	2.0	2,	4.0	0.0	0.5
					Bottom	12.4	25.0 24.9	28.1	28.1	7.1 7.1	7.1	7.1	99.5	99.8	3.1	3.1		4.2	4.3	
					Surface	1.0	25.5	26.6	26.6	8.0	8.0		112.9	113.1	2.1	2.0		3.4	3.3	
							25.6 25.5	26.6 26.6		8.0 7.9		8.0	113.2 111.5		2.0	<u> </u>		3.2		
9-May-12	1505-1523	32/Sunny	Calm	13.6	Middle	6.8	25.5	26.7	26.7	8.0	7.9		112.1	111.8	2.2	2.2	2.2	3.6	3.5	3.4
					Bottom	12.6	25.5 25.4	26.7 26.8	26.8	7.8 7.8	7.8	7.8	110.1 109.6	109.9	2.4	2.5		3.4	3.5	
					Surface	1.0	26.4	25.7	25.8	7.4	7.4		104.2	103.8	2.1	2.2		3.2	3.2	
					Surface	1.0	26.4	25.8	23.0	7.3	7.4	7.3	103.4	103.6	2.2	2.2		3.2	3.2	
11-May-12	1611-1626	29/Drizzle	Small Wave	13.2	Middle	6.6	26.2 26.1	26.7 26.7	26.7	7.2 7.2	7.2		101.7	101.4	2.8	2.8	2.7	3.8 4.0	3.9	3.8
					Bottom	12.2	25.9	27.9	27.9	7.0	7.0	7.0	99.1	99.3	3.0	3.0	1	4.0	4.2	
							25.9 25.9	27.9 26.3		7.0 7.1			99.4 101.3		3.1 3.0			4.4 4.0		
					Surface	1.0	25.9	26.3	26.3	7.2	7.2	7.0	101.9	101.6	3.1	3.1		4.0	4.0	
14-May-12	0910-0925	30/Cloudy	Small Wave	13.6	Middle	6.8	25.6 25.6	27.9 27.9	27.9	6.8	6.8	7.0	96.7 97.1	96.9	2.9	2.8	3.1	3.8	3.9	4.2
					Datta	40.0	25.7	28.0	20.4	6.8	0.0	0.0	96.2	00.0	3.4	2.4	1	4.0 4.6	4.7	
					Bottom	12.6	25.6	28.1	28.1	6.7	6.8	6.8	95.7	96.0	3.4	3.4		4.8	4.7	
					Surface	1.0	26.6 26.5	25.2 25.3	25.3	8.1 8.1	8.1		116.3 116.9	116.6	2.1	2.1		3.2	3.2	
16-May-12	1039-1054	27/Rainy	Great Wave	13.4	Middle	6.7	26.3	26.4	26.4	8.0	8.0	8.0	114.8	114.5	2.3	2.3	2.3	3.4	3.5	3.5
10 May 12	1000 1001	2771 (a.i.i.y	Croat Wave	10.1	- Wildaro	0.1	26.4 26.1	26.4 27.7		7.9 7.8			114.2 112.6		2.4	2.0	2.0	3.6 3.6	0.0	0.0
					Bottom	12.4	26.0	27.6	27.7	7.8	7.8	7.8	112.1	112.4	2.6	2.6		4.0	3.8	
					Surface	1.0	25.3	26.0	26.0	7.2	7.2		100.9	101.2	3.1	3.2		4.0	4.1	
40.14 40	4450 4044	26/Drizzle &		44.0		7.0	25.3 25.2	26.0 26.5	00.4	7.2 6.9	7.0	7.1	101.4 97.2	07.5	3.2 3.1	0.4		4.2	4.4	4.0
18-May-12	1158-1214	Rainy	Small Wave	14.0	Middle	7.0	25.3	25.6	26.1	7.0	7.0		97.7	97.5	3.1	3.1	3.2	4.2	4.1	4.2
					Bottom	13.0	25.2 25.2	27.0 26.9	27.0	6.8	6.8	6.8	94.8 94.6	94.7	3.3	3.3		4.4	4.4	
					Surface	1.0	26.7	25.9	25.9	6.2	6.2		87.8	87.6	2.9	2.9		4.0	3.9	
					Surface	1.0	26.7	25.8	23.8	6.2	0.2	6.1	87.3	07.0	2.9	2.8	1	3.8	5.8	
21-May-12	1310-1325	28/Cloudy	Small Wave	13.4	Middle	6.7	26.1 26.1	26.5 26.4	26.5	6.0	6.0		85.3 85.7	85.5	3.2	3.1	3.2	4.2	4.1	4.3
					Bottom	12.4	25.9	26.9	26.9	5.8	5.8	5.8	81.5	81.7	3.4	3.4	1	4.8	4.8	
							26.0	26.9		5.8			81.8		3.4			4.8		<u> </u>

	Sampling	Ambient Temp	Sea	Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	, <u> </u>	Dissolve	d Oxygen	Tı	urbidity (N7		Susper	nded Solids	
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring [Jepth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	25.3 25.3	25.9 25.8	25.9	7.2 7.2	7.2		100.9	101.1	1.9 2.0	1.9		3.2	3.1	
23-May-12	1412-1430	26/Cloudy	Small Wave	13.8	Middle	6.9	25.3 25.3	26.0 26.0	26.0	7.0	6.9	7.1	97.9 97.5	97.7	2.0	2.1	2.1	3.2	3.3	3.3
					Bottom	12.8	25.3 25.2	26.0 26.1	26.1	6.8	6.8	6.8	96.3 95.8	96.1	2.3	2.3		3.6	3.6	
					Surface	1.0	26.3	26.2	26.3	6.1 6.1	6.1		86.8 87.2	87.0	2.1	2.1		3.4	3.3	
25-May-12	1410-1427	29/Cloudy	Small Wave	14.0	Middle	7.0	26.3	26.5 26.6	26.6	6.0	6.0	6.1	85.6 85.1	85.4	2.3	2.3	2.3	3.6	3.7	3.6
					Bottom	13.0	26.2 26.3	26.9 26.8	26.9	5.9 2.9	4.4	4.4	83.2 83.5	83.4	2.4	2.4		3.8	3.9	
					Surface	1.0	26.3 26.3	25.1 25.0	25.1	6.2	6.3		88.6 89.5	89.1	3.1	3.1		4.0	4.1	
28-May-12	1626-1642	26/Cloudy	Small Wave	13.8	Middle	6.9	26.3	25.3	25.4	6.1	6.1	6.2	87.0	86.7	3.0	3.0	3.1	4.0	3.9	4.1
					Bottom	12.8	26.3 26.3	25.4 25.6	25.6	6.1 5.9	5.9	5.9	86.4	84.0	3.0	3.2		3.8	4.4	
					Surface	1.0	26.2	25.6 26.3	26.3	5.9 6.1	6.1		84.2 86.9	86.6	2.0	2.0		3.0	3.1	
30-May-12	0842-0900	26/Cloudy	Small Wave	14.4	Middle	7.2	26.5	26.2 26.7	26.7	6.1	5.9	6.0	86.3 84.9	84.6	2.1	2.2	2.2	3.2	3.5	3.4
j					Bottom	13.4	26.3 26.3	26.6 27.0	27.0	5.9 5.8	5.8	5.8	84.2 83.0	82.8	2.1 2.4	2.3		3.6 3.6	3.6	
					Surface	1.0	26.3 26.9	27.0 25.9	25.9	5.8 6.9	6.9		82.5 99.7	99.6	2.3 2.1	2.1		3.6 3.2	3.1	
1-Jun-12	0940-0955	29/Cloudy	Great Wave	13.2	Middle	6.6	26.9 26.8	25.9 26.3	26.3	6.9 6.6	6.6	6.8	99.4 95.4	95.6	2.1	2.6	2.6	3.0 3.8	3.7	3.6
7 5411 12	0010 0000	20,01044	Groat Wave	10.2	Bottom	12.2	26.8 26.7	26.3 26.2	26.2	6.6 6.5	6.5	6.5	95.7 95.3	95.5	2.6 3.2	3.2		3.6 4.2	4.1	0.0
					Surface	1.0	26.7 27.1	26.2 25.9	26.0	6.5 7.1	7.0	0.5	95.6 103.6	102.2	3.2 2.2	2.2		4.0 3.2	3.1	
4 1 40	4040 4050	20/01	C	40.0			27.0 26.9	26.0 26.3		6.9 6.5		6.8	100.7 94.8		2.1 2.5		2.0	3.0 3.6		2.0
4-Jun-12	1242-1258	29/Cloudy	Small Wave	13.2	Middle	6.6	26.9 26.6	26.3 26.5	26.3	6.6 6.4	6.6	0.4	96.2 93.4	95.5	2.5 3.0	2.5	2.6	3.8 4.0	3.7	3.6
					Bottom	12.2	26.7 27.2	26.5 26.0	26.5	6.3	6.4	6.4	92.0 97.9	92.7	3.1 2.4	3.1		4.0	4.0	
					Surface	1.0	27.2	26.0 26.3	26.0	6.7	6.7	6.6	97.5 94.7	97.7	2.5	2.5	_	3.4	3.5	
6-Jun-12	1313-1328	29/Fine	Small Wave	13.4	Middle	6.7	27.1	26.4 26.5	26.4	6.4	6.5		93.6	94.2	2.8	2.7	2.8	3.8	3.7	3.8
					Bottom	12.4	26.8 28.5	26.6	26.6	6.3	6.3	6.3	91.8 96.8	91.3	3.0	3.1		4.0	4.1	
					Surface	1.0	28.4	27.4	27.4	6.5 6.5	6.5	6.5	97.3	97.1	1.4	1.2		2.2	2.4	
8-Jun-12	1436-1448	31/Fine	Calm	12.0	Middle	6.0	28.0	27.4	27.4	6.6	6.5		98.1 97.4	97.8	1.1	1.1	1.4	2.2	2.3	2.8
					Bottom	11.0	27.9 27.9	27.4 27.4	27.4	6.6	6.6	6.6	97.8 98.5	98.2	2.2 1.7	1.9		3.4 4.0	3.7	

	Camalian	Ambient Temp	0	Total			Water	Salinit	y (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Т	urbidity (N7	ΓU)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water Depth (m)	Monitoring [Depth (m)	Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
		Condition		Deptil (III)			(°C) 28.2	27.4		6.5		average	96.9	-	1.1		average	2.2		average
					Surface	1.0	28.3	27.5	27.5	6.6	6.5	6.5	97.7	97.3	1.2	1.2		2.4	2.3	
11-Jun-12	1710-1725	30/Cloudy	Calm	11.8	Middle	5.9	28.0 28.0	27.7 27.6	27.7	6.4	6.4	0.0	95.2 95.8	95.5	1.1	1.1	1.4	2.0	2.1	2.5
					Bottom	10.8	28.0	27.7	27.7	6.6	6.6	6.6	98.2	97.8	2.0	1.9		3.2	3.2	
					Bottom	10.0	27.9	27.7	21.1	6.5	0.0	0.0	97.4	97.0	1.9	1.9		3.2	3.2	
					Surface	1.0	27.4 27.4	25.3 25.4	25.4	6.2	6.2	C 4	91.2	91.0	2.4	2.5		3.6	3.7	
13-Jun-12	0810-0825	29/Rainy	Small Wave	14.2	Middle	7.1	26.8	26.8	26.8	5.9	6.0	6.1	86.7	87.0	2.9	2.9	2.8	4.0	4.0	3.8
					B. II.	40.0	27.0 27.1	26.8 27.0	07.0	6.0 5.9	5.0	5.0	87.2 86.1	05.0	2.9 2.9	0.0	-	4.0 3.8	0.7	
					Bottom	13.2	27.1	26.9	27.0	5.9	5.9	5.9	85.4	85.8	2.9	2.9		3.6	3.7	
					Surface	1.0	27.7 27.7	27.3 27.3	27.3	6.5 6.5	6.5		94.9 95.3	95.1	1.3	1.4		2.2	2.3	
15-Jun-12	1017-1035	28/Cloudy	Great Wave	12.0	Middle	6.0	27.5	27.7	27.7	6.4	6.3	6.4	93.2	93.0	1.2	1.2	1.3	2.2	2.2	2.4
		,					27.5 27.3	27.6 27.8		6.3			92.8 90.3		1.2 1.4		1	2.2		
					Bottom	11.0	27.2	27.9	27.9	6.1	6.1	6.1	89.7	90.0	1.5	1.5		2.8	2.7	
					Surface	1.0	27.6 27.6	27.3 27.3	27.3	6.2	6.3		92.4 93.1	92.8	1.6 1.6	1.6		2.6	2.7	
18-Jun-12	1144-1202	28/Cloudy	Great Wave	12.4	Middle	6.2	27.6	27.5	27.5	6.2	6.2	6.2	91.5	91.3	1.7	1.7	1.8	2.8	2.7	2.6
10 0011 12	111111202	20,0.000	Croat Wave	12.1	Mildulo	0.2	27.7 27.6	27.5 27.7	27.0	6.2	0.2		91.0 88.7	01.0	1.7 2.2		- 1.0	2.6	2	2.0
					Bottom	11.4	27.6	27.7	27.7	6.0	6.0	6.0	89.1	88.9	2.2	2.2		2.4	2.4	
					Surface	1.0	27.6 27.6	27.3 27.2	27.3	6.5 6.5	6.5		95.1 95.7	95.4	1.6 1.7	1.7		2.6	2.5	
20-Jun-12	1315-1332	30/Fine	Great Wave	12.2	Middle	6.1	27.5	27.6	27.6	6.3	6.3	6.4	92.9	93.2	1.5	1.5	1.7	2.6	2.5	2.6
20-Juli-12	1313-1332	30/I IIIe	Great Wave	12.2	Middle	0.1	27.4	27.6	27.0	6.4	0.5		93.5	95.2	1.5	1.5	1.7	2.4 3.0	2.5	2.0
					Bottom	11.2	27.3 27.2	27.9 28.0	28.0	6.2	6.2	6.2	91.1	90.9	2.0	2.0		2.8	2.9	
					Surface	1.0	27.9	26.7	26.7	6.0	6.0		88.4	88.6	2.9	2.9		3.8	3.9	
00 1 . 40	4440 4405	00/D : 1:	0 1114	40.4	N.C. J. II.	0.7	27.9 27.6	26.7 26.9	00.0	6.1 5.9	5.0	6.0	88.8 87.2	00.0	2.9 3.2	0.0		4.0	4.0	
22-Jun-12	1410-1425	28/Drizzle	Small Wave	13.4	Middle	6.7	27.6	26.9	26.9	5.9	5.9		86.6	86.9	3.2	3.2	3.0	4.2	4.3	4.1
					Bottom	12.4	27.4 27.3	27.1 27.1	27.1	5.9 5.8	5.9	5.9	86.3 85.7	86.0	3.0 2.9	2.9		4.0	4.0	
					Surface	1.0	28.2	26.5	26.6	5.7	5.7		83.9	84.3	3.0	3.1		4.0	4.0	
							28.3 28.1	26.6 26.9		5.8 5.6		5.7	84.6 82.0		3.1 3.3			4.0		
25-Jun-12	1610-1625	29/Cloudy	Small Wave	13.6	Middle	6.8	28.1	26.8	26.9	5.6	5.6		82.6	82.3	3.2	3.3	3.2	4.2	4.2	4.2
					Bottom	12.6	28.0 27.9	26.9 26.9	26.9	5.6 5.6	5.6	5.6	81.5 82.2	81.9	3.3	3.3		4.4	4.4	
					Surface	1.0	28.4	25.5	25.6	5.9	5.9		85.8	86.0	1.7	1.7		2.8	2.9	
					Cuilace	1.0	28.4 28.4	25.6 25.5	20.0	5.9 5.8	0.0	5.9	86.1 84.1	00.0	1.7 1.5	1.7	-	3.0 2.4	2.0	
27-Jun-12	1655-1712	30/Fine	Small Wave	12.0	Middle	6.0	28.4	25.5	25.5	5.8	5.8		84.5	84.3	1.5	1.5	1.8	2.4	2.4	2.6
					Bottom	11.0	28.3	25.7	25.7	5.7	5.7	5.7	83.2	83.0	2.3	2.3		2.4	2.6	
							28.3	25.6		5.7			82.8		2.3			۷.۵		

ъ.	Sampling	Ambient Temp	Sea	Total		· .	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	, 	Dissolve	d Oxygen	Tı	urbidity (NT		Susper	nded Solids	· • /
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring [Jepth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	28.7 28.6	27.6 27.6	27.6	6.4 6.4	6.4		94.9 95.5	95.2	1.5 1.5	1.5		2.6 2.4	2.5	
29-Jun-12	0857-0913	31/Fine	Small Wave	12.0	Middle	6.0	28.5	27.9 27.9	27.9	6.2	6.2	6.3	92.9 92.5	92.7	1.6	1.6	1.8	2.8	2.8	2.8
					Bottom	11.0	28.2	28.2	28.3	6.1	6.1	6.1	90.7	90.4	2.1	2.1		3.0	3.1	
					Surface	1.0	28.0	27.4 27.5	27.5	6.2	6.2		91.1	90.9	1.8	1.8		2.4	2.5	
4-Jul-12	1243-1259	32/Fine	Small Wave	12.4	Middle	6.2	27.7	27.9	28.0	6.0	6.1	6.1	89.1 89.9	89.5	1.8	1.8	1.8	3.0	2.9	2.8
					Bottom	11.4	27.6 27.5	28.2	28.2	6.0	5.9	5.9	88.1 87.4	87.8	2.0	2.0		3.0	3.1	
					Surface	1.0	27.9 27.9	24.4	24.4	7.8	7.7		113.4	111.9	1.4	1.3		2.4	2.4	
6-Jul-12	1438-1452	30/Cloudy	Calm	13.2	Middle	6.6	27.1 27.0	25.5 25.5	25.5	5.9 5.9	5.9	6.8	84.9 84.6	84.8	1.4	1.5	1.6	2.6	2.7	2.7
					Bottom	12.2	26.4 26.4	26.0 26.0	26.0	5.1 5.1	5.1	5.1	73.0 73.5	73.3	2.2	2.0		3.4	3.1	
					Surface	1.0	28.0	24.7 24.8	24.8	6.0	5.9		87.0 86.1	86.6	2.2	2.2		3.2	3.2	
9-Jul-12	1515-1533	32/Fine	Calm	12.2	Middle	6.1	27.9	24.8	24.8	5.9 5.9	5.9	5.9	86.0	86.2	2.4	2.4	2.6	3.2	3.5	3.6
					Bottom	11.2	28.0	24.8	24.9	5.9 5.8	5.8	5.8	86.3 85.0	85.3	2.5 3.1	3.1		3.6 4.0	4.2	
					Surface	1.0	27.8 28.1	24.9 25.4	25.4	5.9 6.3	6.3		85.5 94.0	94.2	3.1 1.9	2.0		3.0	2.9	
11-Jul-12	1717-1735	33/Fine	Small Wave	11.8	Middle	5.9	28.0	25.3 25.6	25.7	6.4	6.2	6.3	94.3	91.6	2.0	2.1	2.1	2.8 3.2	3.2	3.2
					Bottom	10.8	27.8 27.6	25.7 26.0	26.0	6.2	6.1	6.1	91.3 89.5	89.8	2.1	2.2		3.2	3.5	
					Surface	1.0	27.5	26.0 24.5	24.5	6.1	6.0		90.0 87.6	87.9	2.3 1.5	1.6		3.6 2.6	2.6	
13-Jul-12	0906-0919	29/Cloudy	Small Wave	13.6	Middle	6.8	28.2	24.4	24.7	6.1	5.9	6.0	88.1 86.8	86.4	1.6 2.1	2.1	1.8	2.6 3.2	3.2	2.9
		,			Bottom	12.6	27.8 27.6	24.7 24.9	24.9	5.9 5.8	5.8	5.8	86.0 84.4	84.7	2.2 1.9	1.9		3.2 2.8	3.0	
					Surface	1.0	27.5 27.9	24.8 23.7	23.7	5.8 6.1	6.1		85.0 88.1	88.4	1.8 2.7	2.8		3.2 3.8	3.9	
16-Jul-12	1040-1100	30/Fine	Calm	12.4	Middle	6.2	28.0 27.9	23.7 23.7	23.8	6.2 6.0	6.0	6.0	88.7 86.1	85.7	2.8 3.0	3.0	3.0	4.0	4.0	4.2
	10.0000	33,13	-		Bottom	11.4	27.9 27.9	23.8 23.8	23.9	5.9 5.8	5.8	5.8	85.2 83.2	83.6	3.0 3.3	3.4	_	4.0	4.6	
					Surface	1.0	27.8 28.0	23.9 23.5	23.5	5.8 6.1	6.1	0.0	83.9 88.5	88.8	3.4 3.0	3.1		4.8 4.0	4.0	
18-Jul-12	1208-1222	28/Claudy	Small Wave	12.6	Middle	6.3	28.1 27.7	23.4 23.6	23.7	6.1 5.9	5.9	6.0	89.0 86.5	86.3	3.1 2.9	2.9	3.1	4.0 3.8	3.9	4.1
10-Jul-12	1200-1222	28/Cloudy	Siliali wave	12.0			27.7 27.5	23.7 23.9		5.9 5.8		F 0	86.0 84.2		3.0 3.2		3.1	4.0 4.2		4.1
					Bottom	11.6	27.6	23.9	23.9	5.8	5.8	5.8	84.6	84.4	3.2	3.2		4.4	4.3	

	Canadia a	Ambient Temp	0	Total			Water	Salinit	y (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Т	urbidity (NT	ΓU)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitoring [Depth (m)	Temp (°C)	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth- average	Value	Average	Depth-
		Condition		Deptil (III)	0 (4.0	28.4	23.7	00.0	6.2	0.0	average	89.7	00.0	2.9	0.0	average	4.0	0.0	average
					Surface	1.0	28.4	23.8	23.8	6.2	6.2	6.1	90.2	90.0	3.0	3.0		3.8	3.9	
20-Jul-12	1312-1328	32/Fine	Small Wave	12.4	Middle	6.2	28.3	23.9 23.9	23.9	6.1 6.1	6.1		89.0 88.3	88.7	3.0	3.1	3.1	4.0 3.8	3.9	4.0
					Bottom	11.4	28.1	24.2	24.2	6.0	6.0	6.0	87.1 86.5	86.8	3.2	3.2		4.0	4.2	
					Surface	1.0	26.6	29.2	29.2	5.8	5.8		81.9	82.3	2.3	2.3		3.2	3.3	
25-Jul-12	1557-1615	26/Rainy	Small Wave	12.4	Middle	6.2	26.6 26.6	29.1 29.3	29.3	5.9 5.7	5.7	5.8	82.6 80.3	80.1	2.3	2.4	2.5	3.4	3.6	3.5
		,			Bottom	11.4	26.5 26.5	29.3 29.5	29.5	5.7 5.5	5.6	5.6	79.8 78.1	78.3	2.5 2.6	2.6		3.6 3.4	3.5	
						1.0	26.5 26.5	29.4 25.4	25.4	5.6 6.0	6.0	0.0	78.5 86.5	86.8	2.7 3.1			3.6 4.0		
07.1.140	4045 4000	00/5		10.1	Surface		26.4 26.3	25.4 25.6		6.1 6.1		6.1	87.1 88.3		3.2 3.2	3.1		4.2 4.4	4.1	4.0
27-Jul-12	1845-1902	28/Rainy	Great Wave	12.4	Middle	6.2	26.3 26.1	25.6 25.9	25.6	6.2 6.1	6.1		88.7 87.1	88.5	3.3	3.2	3.2	4.2 4.4	4.3	4.3
					Bottom	11.4	26.2 27.4	25.9	25.9	6.0	6.0	6.0	86.4	86.8	3.4	3.3		4.8	4.6	
					Surface	1.0	27.3	29.9 29.9	29.9	6.0	6.0	5.9	88.4 88.7	88.6	3.4	3.4		4.2	4.3	
30-Jul-12	1010-1025	30/Rainy	Small Wave	13.4	Middle	6.7	27.1 27.1	30.2 30.2	30.2	5.9 5.8	5.9		86.3 85.7	86.0	3.5 3.5	3.5	3.5	4.6 4.4	4.5	4.5
					Bottom	12.4	27.0 27.0	30.5 30.4	30.5	5.8 5.8	5.8	5.8	84.8 84.4	84.6	3.7	3.6		4.8	4.8	
					Surface	1.0	27.7 27.7	29.7 29.6	29.7	6.0 6.0	6.0		84.5 85.1	84.8	3.4	3.4		4.4 4.6	4.5	
1-Aug-12	1211-1226	30/Fine	Small Wave	13.6	Middle	6.8	27.5 27.6	29.9 29.8	29.9	5.8 5.9	5.9	5.9	82.5 83.0	82.8	3.4 3.4	3.4	3.4	4.4 4.6	4.5	4.6
					Bottom	12.6	27.3 27.4	30.1 30.1	30.1	5.7 5.7	5.7	5.7	81.8 81.1	81.5	3.5	3.5		4.8	4.8	
					Surface	1.0	28.2	29.6 29.7	29.7	6.1 6.1	6.1		90.1	90.0	3.4 3.5	3.4		4.4	4.4	
3-Aug-12	1350-1407	33/Cloudy	Small Wave	13.4	Middle	6.7	28.0 27.9	29.9	30.0	6.0	5.9	6.0	88.3 87.6	88.0	3.5 3.6	3.5	3.5	4.6	4.5	4.6
					Bottom	12.4	27.7	30.3	30.3	5.8	5.8	5.8	86.3	86.0	3.6	3.7		4.8	4.8	
					Surface	1.0	27.6 28.1	30.2 25.9	26.0	5.8 5.5	5.5		85.7 80.8	80.6	3.7 1.2	1.2		4.8 2.6	2.5	
6-Aug-12	1424-1436	33/Fine	Small Wave	13.9	Middle	7.0	28.1 27.0	26.0 26.3	26.3	5.4 5.5	5.5	5.5	80.3 80.2	80.5	1.2 2.0	2.1	2.2	2.4 3.0	3.1	3.3
0 / tug-12	1424-1400	00// IIIG	Small Wave	10.0			27.1 26.1	26.3 26.8		5.5 4.7		4.7	80.8 68.1		2.1 3.3			3.2 4.2		0.0
					Bottom	12.9	26.2 27.8	26.8 26.3	26.8	4.8 5.6	4.7	4.7	68.4 81.7	68.3	3.3 2.1	3.3		4.4 3.0	4.3	
					Surface	1.0	27.9 27.6	26.4 26.5	26.4	5.7 5.6	5.6	5.6	82.1 80.6	81.9	2.0	2.0	-	3.0	3.0	
8-Aug-12	1547-1601	33/Fine	Small Wave	11.6	Middle	5.8	27.7	26.5	26.5	5.5	5.5		79.9	80.3	2.3	2.3	2.3	3.2	3.3	3.4
					Bottom	10.6	27.4 27.5	26.8 26.9	26.9	5.5 5.5	5.5	5.5	79.8 79.4	79.6	2.5 2.5	2.5		4.0	3.8	

	Sampling	Ambient Temp	Sea	Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	, <u> </u>	Dissolve	d Oxygen	Τι	urbidity (N7		Susper	nded Solids	
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring [Depth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	28.2	26.4 26.3	26.4	5.7 5.7	5.7		84.8 84.4	84.6	2.2	2.2		3.2 3.2	3.2	
10-Aug-12	1643-1701	33/Cloudy	Small Wave	11.8	Middle	5.9	28.1	26.6	26.6	5.6	5.6	5.7	83.2	83.0	2.3	2.3	2.3	3.4	3.4	3.5
					Bottom	10.8	27.9 27.8	26.6 26.9 26.9	26.9	5.6 5.5 5.4	5.4	5.4	80.8 80.4	80.6	2.3 2.6 2.6	2.6		3.4 3.6 4.0	3.8	
					Surface	1.0	27.8	25.2	25.3	5.9	5.9		84.8	85.2	2.2	2.2		3.2	3.3	
13-Aug-12	1019-1036	27/Cloudy	Small Wave	11.8	Middle	5.9	27.7	25.3 25.5	25.6	5.9 5.8	5.8	5.8	85.6 84.0	83.8	2.3	2.4	2.5	3.4	3.5	3.5
Ü					Bottom	10.8	27.5 27.3	25.6 25.9	26.0	5.8 5.9	5.9	5.9	83.5 85.4	85.6	2.4 2.8	2.7		3.6 3.8	3.7	
					Surface	1.0	27.3 28.3	26.0 27.5	27.5	5.9 6.1	6.1	0.0	85.8 89.3	89.0	2.7 1.9	1.9		3.6 2.8	2.9	
15 Aug 10	1105 1110	24/5	Colm	10.0			28.2 28.2	27.5 27.5	27.6	6.1 5.9		6.0	88.7 86.5	86.8	1.9 2.1		2.1	3.0 3.2		3.2
15-Aug-12	1125-1143	31/Sunny	Calm	12.2	Middle	6.1	28.2 28.0	27.6 27.6		6.0 5.7	6.0		87.1 83.6		2.1 2.4	2.1	2.1	3.2 3.4	3.2	3.2
					Bottom	11.2	28.0 27.8	27.7 26.8	27.7	5.8 6.1	5.8	5.8	84.3 88.9	84.0	2.4 1.9	2.4		3.6 2.8	3.5	
					Surface	1.0	27.8 27.6	26.8 27.0	26.8	6.2	6.2	6.1	89.4 87.3	89.2	2.0	1.9		3.0	2.9	
17-Aug-12	1245-1301	29/Cloudy	Great Wave	12.6	Middle	6.3	27.5	26.9	27.0	6.1	6.0		87.8	87.6	2.1	2.1	2.1	3.2	3.1	3.1
					Bottom	11.6	27.3 27.3	27.1	27.2	5.9 5.9	5.9	5.9	85.2 85.9	85.6	2.2	2.2		3.4	3.3	
					Surface	1.0	28.0 28.0	25.8 25.8	25.8	5.9 6.0	6.0	5.9	87.2 87.9	87.6	3.0	3.0		4.0	4.0	
20-Aug-12	1433-1450	32/Fine	Small Wave	11.8	Middle	5.9	27.7 27.8	26.0 26.0	26.0	5.8 5.8	5.8		85.3 84.7	85.0	3.1 3.1	3.1	3.1	4.0	4.1	4.1
					Bottom	10.8	27.5 27.5	26.4 26.3	26.4	5.9 5.9	5.9	5.9	86.1 86.4	86.3	3.2	3.2		4.2 4.4	4.3	
					Surface	1.0	28.1 28.1	29.5 29.5	29.5	5.8 5.8	5.8	5.7	83.5 82.9	83.2	2.6 2.6	2.6		3.6 3.8	3.7	
22-Aug-12	1550-1606	32/Cloudy	Calm	11.8	Middle	5.9	28.0 28.0	29.5 29.4	29.5	5.7 5.7	5.7	5.7	82.2 81.9	82.1	2.8	2.8	2.8	3.8 3.6	3.7	3.8
					Bottom	10.8	27.9 27.9	29.8 29.7	29.8	5.4 5.5	5.4	5.4	78.0 78.4	78.2	2.9 3.0	2.9		4.0	4.0	
					Surface	1.0	27.9 27.9	27.3 27.4	27.4	6.1 6.0	6.1		89.2 88.6	88.9	2.1 2.1	2.1		3.0	3.1	
24-Aug-12	1713-1731	33/Fine	Small Wave	12.2	Middle	6.1	27.7	27.6 27.7	27.7	6.0	6.0	6.0	87.9 87.5	87.7	2.2	2.2	2.2	3.2	3.3	3.3
					Bottom	11.2	27.5 27.5	28.0	28.1	5.9 5.8	5.9	5.9	86.4 85.8	86.1	2.3	2.3		3.2	3.4	
					Surface	1.0	27.8	27.2	27.3	6.1	6.1		89.5	89.7	2.3	2.3		3.2	3.3	
27-Aug-12	0942-0959	29/Fine	Calm	11.8	Middle	5.9	27.8 27.6	27.3 27.5	27.5	6.1	6.0	6.0	89.8 88.2	88.0	2.4	2.4	2.4	3.4	3.6	3.5
3					Bottom	10.8	27.5 27.3	27.5 27.9	27.9	6.0 5.9	5.9	5.9	87.8 86.6	86.5	2.4 2.5	2.5		3.6	3.5	
	1				Dottom	1	27.3	27.8	25	5.9	0.0	0.0	86.3	00.0	2.6	2.0		3.6	0.0	

	Sampling	Ambient Temp	Sea	Total			Water	Salini	ty (ppt)	Dissolv	ed Oxyger	_ ` 	Dissolve	d Oxygen	Tı	urbidity (N7		Susper	nded Solids	
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring [Depth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	28.1 28.1	27.3 27.2	27.3	6.0 6.1	6.0		88.5 89.0	88.8	2.2	2.2		3.2 3.0	3.1	
29-Aug-12	1110-1124	29/Fine	Small Wave	11.6	Middle	5.8	27.9 27.9	27.6 27.5	27.6	6.0	5.9	6.0	87.7 87.3	87.5	2.3	2.3	2.3	3.4	3.3	3.3
					Bottom	10.6	27.8 27.7	27.7 27.8	27.8	5.8 5.8	5.8	5.8	85.7 85.1	85.4	2.4	2.4	-	3.2	3.4	
					Surface	1.0	27.5 27.5	26.4 26.4	26.4	5.6 5.6	5.6		81.1 81.6	81.4	2.2	2.2		3.0	3.1	
31-Aug-12	1155-1213	29/Fine	Calm	12.0	Middle	6.0	27.5 27.5	26.4 26.4	26.4	5.5 5.4	5.5	5.5	79.8 78.9	79.4	2.1	2.1	2.3	3.0	3.0	3.2
					Bottom	11.0	27.4	26.6	26.6	5.2	5.2	5.2	75.5	75.8	2.5	2.5	1	3.6	3.6	
					Surface	1.0	27.4	26.5 24.8	24.8	5.2 8.1	8.1		76.1 120.8	120.6	2.6 1.9	2.0		3.6 2.8	2.9	
3-Sep-12	1356-1410	32/Fine	Small Wave	14.0	Middle	7.0	29.1 28.3	24.8 25.0	25.0	8.1 6.9	6.9	7.5	120.4 102.1	102.3	2.0 1.8	1.9	2.0	3.0 2.6	2.7	2.9
					Bottom	13.0	28.5 27.7	24.9 25.8	25.8	6.9 4.7	4.7	4.7	102.5 69.0	69.3	1.9 2.1	2.1	1	2.8 3.0	3.1	
					Surface	1.0	27.7 27.9	25.7 27.3	27.4	4.7 6.0	6.0		69.5 88.6	89.0	2.1 2.4	2.4		3.2 3.6	3.7	
5-Sep-12	1514-1532	31/Fine	Small Wave	12.0	Middle	6.0	27.9 27.7	27.4 27.7	27.8	6.1 6.0	5.9	6.0	89.4 87.9	87.6	2.5 2.6	2.6	2.6	3.8 3.4	3.4	3.6
3-3ep-12	1314-1332	31/1 line	Siliali Wave	12.0	Bottom	11.0	27.6 27.4	27.8 28.0		5.9 5.8	5.8	5.8	87.3 86.1		2.6 2.7	2.7	2.0	3.4 3.8		3.0
							27.3 27.6	28.0 27.3	28.0	5.8 6.1		5.6	85.4 89.5	85.8	2.7 2.5			3.6 3.4	3.7	
					Surface	1.0	27.6 27.5	27.3 27.6	27.3	6.0 5.9	6.1	5.9	89.0 86.4	89.3	2.6 2.7	2.5		3.8 3.6	3.6	
7-Sep-12	1539-1554	30/Cloudy	Small Wave	12.4	Middle	6.2	27.4	27.6 28.0	27.6	5.8 5.8	5.8		85.8 85.2	86.1	2.7	2.7	2.7	3.8	3.7	3.7
					Bottom	11.4	27.1	27.9 27.6	28.0	5.7	5.8	5.8	84.6 88.5	84.9	2.8	2.8		4.0	3.9	
					Surface	1.0	27.8	27.6	27.6	6.0	6.0	5.9	88.1	88.3	2.7	2.7	_	3.8	3.7	
10-Sep-12	0858-0916	28/Fine	Small Wave	12.2	Middle	6.1	27.5 27.5	27.9 28.0	28.0	5.9 5.9	5.9		86.4 87.0	86.7	2.9	2.9	2.8	3.8 4.0	3.9	3.9
					Bottom	11.2	27.3 27.2	28.3 28.3	28.3	5.8 5.7	5.8	5.8	85.1 84.7	84.9	3.0	3.0		4.0 4.4	4.2	
					Surface	1.0	27.7 27.7	26.9 26.9	26.9	6.5 6.6	6.6	6.5	95.5 96.4	96.0	2.3	2.4		3.2 3.4	3.3	
12-Sep-12	1018-1036	29/Fine	Calm	11.8	Middle	5.9	27.7 27.7	26.9 27.0	27.0	6.4 6.4	6.4	0.0	93.4 93.0	93.2	2.5 2.5	2.5	2.5	3.6 3.6	3.6	3.6
					Bottom	10.8	27.6 27.6	27.1 27.1	27.1	6.1 6.1	6.1	6.1	89.4 88.6	89.0	2.7	2.7		3.8 4.0	3.9	
					Surface	1.0	27.9 28.0	26.9 27.0	27.0	6.7 6.8	6.8	0.7	98.3 98.8	98.6	2.5 2.5	2.5		3.4 3.6	3.5	
14-Sep-12	1058-1115	29/Fine	Small Wave	11.6	Middle	5.8	27.9 27.9	27.0 27.0	27.0	6.8 6.7	6.7	6.7	98.6 97.8	98.2	2.4 2.4	2.4	2.6	3.4 3.4	3.4	3.6
					Bottom	10.6	27.8 27.8	27.0 27.1	27.1	6.3	6.3	6.3	92.0 91.1	91.6	2.8	2.9		3.8	3.9	1

D. I.	Sampling	Ambient Temp	Sea	Total	NA 11 2 1	5 H- ()	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	, <u>, , , , , , , , , , , , , , , , , , </u>	Dissolve	d Oxygen	Τι	urbidity (NT		Susper	nded Solids	· · · /
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring [Jepth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	27.7 27.8	27.0 26.9	27.0	6.2	6.2		90.5	90.9	2.3	2.4		3.2	3.3	
17-Sep-12	1341-1356	29/Fine	Small Wave	11.8	Middle	5.9	27.6 27.6	27.1 27.0	27.1	6.1 6.2	6.1	6.2	89.2 89.8	89.5	2.5 2.5	2.5	2.5	3.4 3.6	3.5	3.5
					Bottom	10.8	27.5 27.6	27.1	27.2	6.0	6.0	6.0	86.8 87.4	87.1	2.7	2.7		3.8	3.7	
					Surface	1.0	26.6 26.7	26.8	26.9	6.6 6.5	6.6		95.9 95.3	95.6	2.8	2.8		3.8	3.7	
19-Sep-12	1448-1505	28/Cloudy	Calm	12.0	Middle	6.0	26.6	26.9 26.9	26.9	6.4	6.3	6.4	92.7 92.1	92.4	2.9	2.9	3.0	3.8	3.9	4.0
					Bottom	11.0	26.5 26.5	27.0 27.0	27.0	6.1 6.1	6.1	6.1	89.1 89.6	89.4	3.2	3.2		4.2	4.3	
					Surface	1.0	27.8	25.6 25.7	25.7	6.1	6.1		89.5 88.8	89.2	2.6	2.5		3.6	3.6	
21-Sep-12	1613-1630	30/Cloudy	Small Wave	11.8	Middle	5.9	27.4	25.9	26.0	5.9 5.9	5.9	6.0	87.2	86.9	2.7	2.7	2.8	3.8	3.8	3.9
					Bottom	10.8	27.5 27.2	26.0 26.2	26.2	5.8	5.8	5.8	86.6 85.3	85.0	3.0	3.0	1	3.8 4.0	4.2	
					Surface	1.0	27.2	26.2 26.5	26.5	5.8 6.3	6.3		84.7 92.2	92.7	3.1 2.5	2.5		4.4 3.6	3.7	
24-Sep-12	1912-1929	28/Cloudy	Small Wave	12.0	Middle	6.0	27.5	26.4 26.8	26.8	6.3	6.0	6.2	93.1 88.9	88.6	2.5	2.8	2.8	3.8	3.6	3.8
		,			Bottom	11.0	27.3	26.7 27.0	27.0	6.0 5.9	5.9	5.9	88.2 86.5	86.3	3.0	3.0		3.6 4.0	4.2	
					Surface	1.0	27.0 27.6	27.0 26.3	26.3	5.9 6.2	6.3		86.0 91.4	91.7	3.0 2.6	2.5		4.4 3.6	3.7	
26-Sep-12	1011-1025	28/Cloudy	Small Wave	12.2	Middle	6.1	27.6 27.4	26.3 26.7	26.7	6.3 6.1	6.1	6.2	92.0 89.5	89.2	2.5 2.6	2.6	2.7	3.8 3.6	3.6	3.8
20 OOP .2		20, 0.000	l and a state		Bottom	11.2	27.3 27.2	26.7 26.9	27.0	6.1 5.9	5.9	5.9	88.8 86.8	87.0	2.7 3.0	2.9		3.6 4.0	4.2	
					Surface	1.0	27.3 27.6	27.0 26.6	26.6	6.0 5.8	5.8	0.0	87.2 85.4	85.1	2.9 3.0	3.1		4.4	4.1	
28-Sep-12	1105-1120	29/Sunny	Small Wave	13.4	Middle	6.7	27.6 27.3	26.5 26.9	27.0	5.7 5.8	5.7	5.7	84.8 84.9	84.6	3.1 3.6	3.5	3.4	4.2 4.6	4.5	4.4
20-3ep-12	1105-1120	29/30/11/19	Siliali Wave	13.4	Bottom	12.4	27.4 27.2	27.0 27.2	27.0	5.7 5.7	5.7	5.7	84.3 84.3	84.6	3.5 3.6	3.6	3.4	4.4 4.6	4.7	4.4
							27.2 27.6	27.1 27.7		5.8 6.0		5.7	84.9 88.2		3.7 1.9			4.8 2.8		
					Surface	1.0	27.6 27.6	27.8 27.8	27.8	6.0 5.9	6.0	5.9	88.6 86.4	88.4	1.9 2.1	1.9		3.0 3.0	2.9	
3-Oct-12	1415-1432	29/Fine	Small Wave	12.0	Middle	6.0	27.6 27.5	27.8 27.9	27.8	5.8 5.7	5.9		85.8 83.9	86.1	2.1	2.1	2.1	3.2	3.1	3.2
					Bottom	11.0	27.5	27.9 27.7	27.9	5.7 5.9	5.7	5.7	83.5 86.4	83.7	2.4	2.4		3.6	3.5	
					Surface	1.0	27.7	27.7	27.7	5.9	5.9	5.8	87.0	86.7	2.0	2.0	_	2.8	2.8	
5-Oct-12	1532-1547	28/Fine	Small Wave	12.2	Middle	6.1	27.6 27.5	27.9 27.8	27.9	5.7 5.8	5.7		84.3 84.7	84.5	2.1	2.1	2.2	3.0	3.1	3.1
					Bottom	11.2	27.4 27.3	28.0 28.0	28.0	5.6 5.6	5.6	5.6	82.6 82.0	82.3	2.3	2.3		3.2	3.4	

D. L.	Sampling	Ambient Temp	Sea	Total	NA 11 2 1	5 H- ()	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	, 	Dissolve	d Oxygen	Τι	urbidity (NT		Susper	nded Solids	· • /
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring [Jeptn (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth averag
					Surface	1.0	27.6 27.5	26.8 26.7	26.8	5.5 5.6	5.5		80.8 81.5	81.2	2.6	2.5		3.4 3.6	3.5	
8-Oct-12	0726-0742	26/Cloudy	Small Wave	12.4	Middle	6.2	27.4 27.3	26.8 26.9	26.9	5.5 5.5	5.5	5.5	80.4 80.9	80.7	2.7 2.6	2.7	2.7	3.8 3.6	3.7	3.7
					Bottom	11.4	27.2	27.0 26.9	27.0	5.5 5.5	5.5	5.5	79.9 80.6	80.3	2.8	2.8		3.8	3.9	
					Surface	1.0	27.4 27.5	26.7 26.7	26.7	5.9 5.9	5.9		85.8 86.4	86.1	2.8	2.8		3.6	3.7	
10-Oct-12	0841-0856	25/Fine	Small Wave	12.2	Middle	6.1	27.4	26.8	26.8	5.7 5.7	5.7	5.8	83.5 84.0	83.8	2.9	2.9	2.9	3.8	3.9	3.9
					Bottom	11.2	27.2 27.2	26.9 26.9	26.9	5.6 5.6	5.6	5.6	82.3 81.6	82.0	3.0	3.0	1	4.0	4.0	
					Surface	1.0	27.4	26.8	26.8	5.5 5.5	5.5		80.7	80.4	2.7 2.9	2.8		3.8	3.9	
12-Oct-12	0947-0955	27/Fine	Small Wave	11.9	Middle	6.0	27.4	26.8 26.9	26.9	5.3	5.3	5.4	80.1 77.8	77.4	3.1	3.2	3.1	4.0	4.1	4.1
					Bottom	10.9	27.4 27.3	26.9 27.0	27.0	5.2 5.1	5.1	5.1	77.0 75.1	74.8	3.2 3.3	3.3	1	4.2 4.4	4.4	
					Surface	1.0	27.3 27.5	27.0 26.5	26.5	5.1 5.7	5.7		74.5 83.7	84.0	3.4 2.9	2.9		4.4 3.8	3.8	
15-Oct-12	1216-1230	30/Fine	Small Wave	12.2	Middle	6.1	27.6 27.5	26.4 26.5	26.6	5.8 5.6	5.6	5.7	84.2 82.3	82.0	2.9 3.0	3.0	3.1	3.8 4.0	4.1	4.1
15-OCI-12	1210-1230	30/Fille	Siliali Wave	12.2			27.5 27.4	26.6 26.6		5.6 5.5	5.5		81.7 80.3		3.1 3.2	3.2	3.1	4.2 4.2		4.1
					Bottom	11.2	27.3 27.2	26.7 26.7	26.7	5.5 5.8		5.5	80.7 84.5	80.5	3.2 2.4			4.4 3.2	4.3	
					Surface	1.0	27.3 27.2	26.7 26.7	26.7	5.7 5.7	5.8	5.7	83.7 83.1	84.1	2.4	2.4	-	3.4	3.3	
17-Oct-12	1340-1356	28/Cloudy	Great Wave	11.8	Middle	5.9	27.2	26.7	26.7	5.7 5.5	5.7		82.6 80.4	82.9	2.3	2.3	2.4	3.2	3.2	3.4
					Bottom	10.8	27.1	26.7	26.7	5.5	5.5	5.5	80.8	80.6	2.6	2.5		4.0	3.8	
					Surface	1.0	26.6	26.9 26.9	26.9	6.2	6.2	6.2	89.6 89.4	89.5	4.0	4.1	_	5.0	5.1	
19-Oct-12	1457-1510	26/Fine	Small Wave	14.2	Middle	7.1	26.6 26.6	26.9 26.9	26.9	6.3 6.2	6.2		90.6 90.2	90.4	3.9 4.0	3.9	3.8	4.8 5.0	4.9	4.9
					Bottom	13.2	26.6 26.5	26.9 26.9	26.9	6.1 6.2	6.1	6.1	88.3 89.3	88.8	3.4	3.4		4.4 4.8	4.6	
					Surface	1.0	26.9 26.9	26.4 26.5	26.5	5.9 5.9	5.9	5.9	87.3 86.7	87.0	3.7	3.7		4.6 4.8	4.7	
22-Oct-12	1814-1832	27/Fine	Small Wave	11.8	Middle	5.9	26.7 26.8	26.7 26.6	26.7	5.8 5.8	5.8	0.0	85.4 85.8	85.6	3.8	3.8	3.8	5.0 4.8	4.9	4.9
					Bottom	10.8	26.6 26.5	26.8 26.8	26.8	5.7 5.7	5.7	5.7	84.2 83.8	84.0	4.0	4.0		4.8 5.2	5.0	
					Surface	1.0	26.6 26.7	26.4 26.4	26.4	5.9 5.9	5.9		85.9 85.3	85.6	3.6 3.6	3.6		4.6 4.8	4.7	
24-Oct-12	0842-0859	27/Fine	Small Wave	12.0	Middle	6.0	26.5 26.5	26.5 26.5	26.5	5.8 5.8	5.8	5.8	84.2 83.7	84.0	3.7	3.7	3.7	4.4	4.5	4.7
					Bottom	11.0	26.3	26.7	26.7	5.7	5.6	5.6	82.4	82.1	3.8	3.8	1	4.8	5.0	•
				l	1		26.4	26.7	1	5.6	1	1	81.7	l	3.8			5.2	1	I

	Compling	Ambient Temp	Sea	Total			Water	Salinit	y (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	ırbidity (NT	U)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Condition	Water Depth (m)	Monitoring E	Depth (m)	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	26.6 26.5	26.6 26.7	26.7	6.1 6.0	6.1	0.4	88.2 87.6	87.9	4.2 4.1	4.2		5.0 4.8	4.9	
26-Oct-12	1006-1023	25/Cloudy	Small Wave	14.0	Middle	7.0	26.6 26.5	26.8 26.8	26.8	6.0 6.1	6.0	6.1	87.3 88.0	87.7	4.1 4.0	4.0	4.1	4.8 5.0	4.9	4.9
					Bottom	13.0	26.6 26.6	26.8 26.9	26.9	6.2	6.2	6.2	89.3 89.6	89.5	4.0	4.0		5.2 4.8	5.0	
					Surface	1.0	26.3 26.2	26.6 26.7	26.7	6.0	6.0		87.6 87.1	87.4	4.2	4.2		5.4 5.2	5.3	
29-Oct-12	1206-1223	25/Cloudy	Small Wave	13.8	Middle	6.9	26.2 26.1	26.8 26.8	26.8	6.0	6.0	6.0	86.9 87.4	87.2	4.1	4.1	4.1	5.0 4.8	4.9	5.0
					Bottom	12.8	26.0	26.8 26.9	26.9	6.1	6.1	6.1	88.9 89.2	89.1	4.0	4.0		5.0	4.9	
					Surface	1.0	26.3 26.3	26.4 26.5	26.5	6.1	6.0		87.9 87.3	87.6	4.2	4.2		5.0 5.2	5.1	
31-Oct-12	1306-1323	25/Cloudy	Small Wave	14.0	Middle	7.0	26.2 26.1	26.6 26.6	26.6	6.0	6.0	6.0	87.0 87.4	87.2	4.2 4.1 4.1	4.1	4.1	4.8 4.6	4.7	5.0
					Bottom	13.0	26.0 25.9	26.8 26.8	26.8	6.1 6.1	6.1	6.1	88.6 89.0	88.8	4.1 4.0 4.0	4.0		5.0 5.2	5.1	

	0 "	Ambient Temp		Total		- · ·	Water	Salini	ty (ppt)	Dissolv	red Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	23.0	26.1 26.1	26.1	8.7 8.8	8.7		117.7 118.1	117.9	2.2	2.2		4.0	4.0	
16-Apr-12	1516-1531	28/Cloudy	Calm	13.6	Middle	6.8	22.8	26.7	26.8	8.0	8.0	8.4	108.0	108.3	2.1	2.1	2.8	4.2	4.1	4.6
					Bottom	12.6	22.8	26.8 26.8	26.8	8.1 7.6	7.6	7.6	108.6	102.8	3.9	4.0		4.0 5.6	5.7	
					Surface	1.0	22.5	26.8 25.8	25.8	7.6 8.4	8.4		102.6	112.4	2.3	2.3		5.8 4.6	4.6	
18-Apr-12	1715-1730	22/Cloudy	Small Wave	14.0	Middle	7.0	22.7	25.8 26.3	26.3	8.4 8.3	8.3	8.3	112.8	110.5	2.4	2.5	2.7	4.6	4.8	4.8
		,			Bottom	13.0	22.4 22.2	26.3 26.7	26.7	8.3 8.0	8.0	8.0	110.8 106.5	106.1	2.6 3.2	3.2		4.8 5.0	5.1	
					Surface	1.0	22.2 22.0	26.7 25.8	25.9	7.9 7.7	7.8		105.6 101.3	101.7	3.3 2.3	2.3		5.2 3.8	3.9	
20-Apr-12	1725-1742	22/Rain	Small Wave	13.8	Middle	6.9	22.0 22.0	25.9 26.2	26.2	7.8 7.6	7.6	7.7	102.0 99.0	99.3	2.4 2.2	2.2	2.8	4.0	4.1	4.4
20-Apr-12	1725-1742	22/Naiii	Siliali Wave	13.0			22.0 22.0	26.1 26.3		7.6 7.4		7.4	99.5 96.7		2.2 3.9		2.0	4.2 5.2		4.4
					Bottom	12.8	21.9 22.7	26.4 26.0	26.4	7.4 7.0	7.4	7.4	97.2 92.7	97.0	3.9 2.7	3.9		5.4 3.6	5.3	
					Surface	1.0	22.7 22.3	25.9 26.3	26.0	7.0 6.9	7.0	6.9	92.9 91.0	92.8	2.6 3.1	2.6		3.8 4.2	3.7	
23-Apr-12	1959-2014	25/Cloudy	Small Wave	14.2	Middle	7.1	22.3	26.2 26.5	26.3	6.9 6.6	6.9		91.4 87.5	91.2	3.0	3.1	3.0	4.0	4.1	4.1
					Bottom	13.2	22.1	26.4	26.5	6.5	6.6	6.6	86.8	87.2	3.4	3.4		4.4	4.5	
					Surface	1.0	26.5 23.6	25.4 25.3	25.4	6.9	6.9	6.8	91.8 92.6	92.2	2.7	2.8		4.0	4.0	
25-Apr-12	0738-0755	27/Cloudy	Calm	14.0	Middle	7.0	23.4	26.0 26.0	26.0	6.7 6.7	6.7		90.2 89.8	90.0	3.1 3.1	3.1	3.0	4.4	4.3	4.3
					Bottom	13.0	23.5 23.5	26.4 26.5	26.5	6.6 6.6	6.6	6.6	88.6 88.9	88.8	3.2	3.2		4.4	4.5	
					Surface	1.0	23.6 23.6	25.8 25.7	25.8	7.4 7.5	7.5	7.4	101.2 101.7	101.5	2.3	2.3		3.6 3.6	3.6	
27-Apr-12	0910-0913	23/Cloudy	Small Wave	14.0	Middle	7.0	23.4 23.3	26.9 27.0	27.0	7.3 7.2	7.2	7.4	99.0 98.5	98.8	3.0 3.1	3.0	2.9	4.0	4.0	4.0
					Bottom	13.0	23.1 23.0	28.3 28.2	28.3	7.1 7.1	7.1	7.1	97.4 96.6	97.0	3.3 3.3	3.3		4.2 4.4	4.3	
					Surface	1.0	23.5 23.4	25.4 25.5	25.5	6.8 6.7	6.8		90.2 89.4	89.8	2.4 2.5	2.5		4.0 4.2	4.1	
30-Apr-12	1213-1230	28/Cloudy	Calm	14.2	Middle	7.1	23.4 23.4	26.3 26.3	26.3	6.7	6.6	6.7	88.6 87.8	88.2	2.7	2.7	2.7	4.4	4.5	4.6
					Bottom	13.2	23.3	26.9 26.8	26.9	6.5 6.5	6.5	6.5	86.7 86.2	86.5	3.0	3.1	1	5.2	5.1	
					Surface	1.0	25.7 25.7	26.6	26.6	7.4 7.5	7.5		105.7	106.2	2.4	2.4		3.8	3.9	
2-May-12	1445-1501	31/Sunny	Small Wave	14.4	Middle	7.2	25.4	26.5 27.1	27.1	7.4	7.4	7.4	106.6 104.1	103.8	2.9	2.9	2.8	4.0	4.3	4.3
•					Bottom	13.4	25.5 25.1	27.1 28.2	28.3	7.3 7.6	7.6	7.6	103.5 107.2	106.9	2.9 3.2	3.3	1	4.4	4.7	
							25.1	28.3		7.5	1		106.5		3.3			4.8	1	I

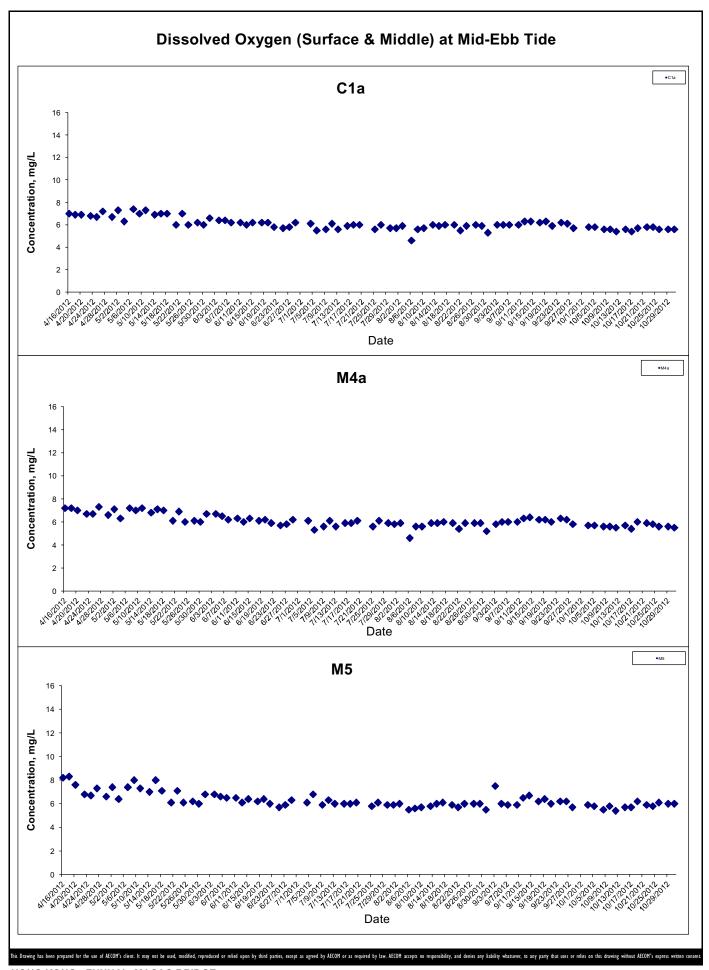
	0	Ambient Temp	0	Total	N. A		Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Т	urbidity (NT	Ū)	Susper	nded Solids	s (mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water	Monitorin (m	•	Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
		Condition		Depth (m)	,	,	(°C)		7.1. c. ago		7.vo.ago	average		, wordge		7e.age	average		7.10.agc	average
					Surface	1.0	26.8 26.8	25.8 25.7	25.8	6.7	6.6		95.0 94.5	94.8	2.9	2.9		4.0	4.0	
4-May-12	1643-1658	30/Cloudy	Small Wave	14.0	Middle	7.0	26.4	26.4	26.4	6.2	6.2	6.4	88.2	88.1	3.2	3.2	3.1	4.4	4.5	4.2
4-iviay-12	1043-1030	30/Cloudy	Siliali Wave	14.0	Middle	7.0	26.3	26.4	20.4	6.2	0.2		87.9	00.1	3.3	3.2	3.1	4.6	4.5	4.2
					Bottom	13.0	26.1 26.1	26.5 26.4	26.5	6.1 6.1	6.1	6.1	87.2 86.7	87.0	3.2	3.1		4.2	4.1	
					0 (4.0	25.4	26.1	00.4	7.4	7.5		104.2	404.0	2.2	0.0		3.6		
					Surface	1.0	25.4	26.1	26.1	7.5	7.5	7.4	105.0	104.6	2.3	2.2		3.6	3.6	
7-May-12	1909-1924	28/Fine	Small Wave	14.0	Middle	7.0	25.3	26.9	26.9	7.3	7.3	7.4	102.1	101.8	2.9	3.0	2.8	3.8	3.9	3.9
							25.2 25.0	26.9 28.1	-	7.2 7.2			101.4 100.4		3.0	1	ł	4.0		1
					Bottom	13.0	25.0	28.1	28.1	7.1	7.1	7.1	99.9	100.2	3.1	3.1		4.2	4.2	
					Surface	1.0	25.2	26.6	26.6	8.2	8.2		115.2	115.1	2.0	2.0		3.4	3.5	
					Gundoo	1.0	25.3	26.5	20.0	8.1	0.2	8.1	114.9	110.1	2.1	2.0		3.6	0.0	
9-May-12	0921-0938	28/Fine	Calm	14.0	Middle	7.0	25.3 25.2	26.6 26.7	26.7	8.0	8.0		112.8 112.2	112.5	2.4	2.4	2.4	3.6	3.7	3.6
					Bottom	13.0	25.2	26.7	26.7	7.9	7.9	7.9	110.9	110.4	2.7	2.6	1	3.8	3.7	1
					Бошотт	13.0	25.3	26.7	20.7	7.8	7.9	7.9	109.8	110.4	2.6	2.0		3.6	3.1	
					Surface	1.0	26.2 26.2	25.8 25.9	25.9	7.4 7.5	7.5		104.9 105.5	105.2	2.3	2.3		3.4	3.3	
							26.0	26.7		7.4		7.4	103.3		2.9			3.8	-	
11-May-12	1015-1028	26/Cloudy	Small Wave	13.6	Middle	6.8	26.0	26.8	26.8	7.3	7.4		103.6	104.0	2.9	2.9	2.8	4.0	3.9	3.8
					Bottom	12.6	25.8	27.9	28.0	7.1	7.2	7.2	100.8	101.1	3.0	3.1		4.0	4.1	
							25.9 26.4	28.0 26.3		7.2 7.2			101.4 101.8		3.1 2.8			4.2 3.8		
					Surface	1.0	26.4	26.3	26.3	7.1	7.2	7.0	101.3	101.6	2.9	2.9		4.0	3.9	
14-May-12	1340-1355	30/Cloudy	Small Wave	14.4	Middle	7.2	25.9	28.0	28.0	6.8	6.9	7.0	97.1	97.3	3.0	3.0	3.0	4.0	4.1	4.1
	1010100	ou, c.cuu,	Cinal Ivaro		·····au.o		25.9	28.0	20.0	6.9	0.0		97.5	0.10	3.0	0.0		4.2		
					Bottom	13.4	25.6 25.7	28.2 28.2	28.2	6.7 6.7	6.7	6.7	94.8 95.2	95.0	3.2	3.1		4.4	4.2	
					Surface	1.0	26.7	25.2	25.2	8.2	8.2		117.9	118.2	2.1	2.0		3.4	3.3	
					Ourrace	1.0	26.6	25.2	20.2	8.2	0.2	8.1	118.5	110.2	2.0	2.0		3.2	0.0]
16-May-12	1510-1524	27/Cloudy	Small Wave	14.2	Middle	7.1	26.4 26.4	26.4 26.4	26.4	8.1 8.1	8.1		116.5 115.9	116.2	2.2	2.2	2.3	3.4	3.4	3.5
					Dutter	40.0	26.2	27.7	07.7	7.9	7.0	7.0	106.1	400.0	2.5	0.5	1	3.6	0.7	1
					Bottom	13.2	26.1	27.7	27.7	7.9	7.9	7.9	113.6	109.9	2.5	2.5		3.8	3.7	
					Surface	1.0	25.2	25.9	25.9	7.3	7.3		102.1	102.3	3.2	3.3		4.2	4.1	
							25.3 25.3	25.9 26.5		7.3 7.0		7.2	102.5 98.6		3.3		ł	4.0		1
18-May-12	1740-1757	25/Drizzle	Small Wave	14.6	Middle	7.3	25.3	26.5	26.5	7.0	7.0		97.6	98.1	3.2	3.2	3.3	4.2	4.2	4.3
					Bottom	13.6	25.2	26.8	26.8	6.8	6.8	6.8	95.2	95.1	3.4	3.4	1	4.4	4.5	
							25.3	26.8		6.8			94.9 88.7		3.4 2.8	1		4.6 3.8		ļ
					Surface	1.0	26.4 26.4	25.7 25.6	25.7	6.3	6.3		89.1	88.9	2.8	2.8		3.6	3.7	
21-May-12	1840-1855	28/Cloudy	Small Wave	13.8	Middle	6.9	26.0	26.4	26.5	6.1	6.1	6.2	86.1	85.9	3.0	3.0	3.0	4.0	4.1	4.0
Z i iviay-12	10-10-1000	20,010uuy	Jilian Wave	10.0	whale	0.0	26.1	26.5	20.0	6.0	0.1		85.7	55.5	3.1	0.0]	4.2	7.1	Ţ.U
					Bottom	12.8	26.0 25.9	27.1 27.0	27.1	5.9 6.0	5.9	5.9	83.5 84.1	83.8	3.2	3.2		4.4	4.3	
L	L		<u> </u>				۷.5	21.0		0.0	<u> </u>	l .	U+. I	1	J.Z	1	1	7.∠	1	

	0 "	Ambient Temp		Total		- · ·	Water	Salini	ty (ppt)	Dissolv	red Oxyger	n (mg/L)	Dissolve	d Oxygen	Ti	urbidity (NT	U)	Susper	ded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water	Monitorin (m	•	Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
	2 4. 4. 6. 1	Condition	o o name o n	Depth (m)	(·/	(°C)		Awerage		Average	average		Tiverage		Average	average		Average	average
					Surface	1.0	25.3 25.3	26.0 25.9	26.0	7.1 7.1	7.1		100.3 99.8	100.1	1.9	1.9		3.2	3.1	l
00 May 40	4040 4007	07/01	Con all Marris	44.0	NA: al all a	7.4	25.2	26.2	20.0	7.0	7.0	7.0	98.2	00.5	2.1	0.4	0.4	3.2	2.2	2.2
23-May-12	1910-1927	27/Cloudy	Small Wave	14.2	Middle	7.1	25.2	26.1	26.2	7.0	7.0		98.8	98.5	2.1	2.1	2.1	3.2	3.2	3.3
					Bottom	13.2	25.2	26.2	26.3	6.9	6.8	6.8	96.5	96.3	2.3	2.3		3.4	3.5	l
							25.1 26.4	26.3 26.5		6.8			96.0 88.3		2.4			3.6		
					Surface	1.0	26.4	26.5	26.5	6.3	6.2	0.0	88.8	88.6	2.0	2.0		3.2	3.1	l
25-May-12	0740-0758	26/Cloudy	Calm	14.4	Middle	7.2	26.4	26.6	26.7	6.2	6.1	6.2	87.5	87.3	2.1	2.2	2.2	3.4	3.4	3.4
20 May 12	07 10 07 00	20,01044	Cuiiii		iviladio	7.2	26.3	26.7	20.7	6.1	0.1		87.0	07.0	2.2			3.4	0.1	0.1
					Bottom	13.4	26.4 26.4	26.8 26.8	26.8	6.0	6.0	6.0	85.5 85.8	85.7	2.3	2.3		3.6	3.7	l
					Confess	4.0	26.4	25.1	25.2	6.5	0.5		92.0	00.5	2.9	2.0		4.0	4.4	
					Surface	1.0	26.3	25.2	25.2	6.6	6.5	6.4	93.0	92.5	3.0	3.0		4.2	4.1	l
28-May-12	0943-1000	26/Cloudy	Small Wave	14.2	Middle	7.1	26.2	25.4	25.5	6.4	6.4		90.5	90.2	2.9	2.9	3.0	4.0	3.9	4.1
							26.2 26.2	25.5 25.7		6.3 6.1			89.8 86.9		2.9 3.1			3.8 4.2		l
					Bottom	13.2	26.2	25.7	25.7	6.2	6.1	6.1	87.5	87.2	3.1	3.1		4.4	4.3	l
					Surface	1.0	26.5	26.4	26.5	6.2	6.2		88.3	88.6	2.0	2.0		3.0	3.1	
							26.4	26.5		6.2		6.2	88.9		1.9			3.2		1
30-May-12	1411-1427	28/Cloudy	Small Wave	14.8	Middle	7.4	26.3 26.4	26.8 26.7	26.8	6.1 6.1	6.1		86.7 87.1	86.9	2.1	2.1	2.1	3.2	3.2	3.3
					Bottom	13.8	26.3	27.1	27.1	6.1	6.0	6.0	86.3	86.0	2.3	2.3	1	3.4	3.5	1
					DOMOITI	13.0	26.3	27.0	21.1	6.0	0.0	0.0	85.7	00.0	2.3	2.5		3.6	5.5	
					Surface	1.0	27.2 27.1	25.9 25.9	25.9	6.8	6.8		98.4 98.8	98.6	2.6	2.6		3.8	3.7	
							26.7	26.3		6.5		6.7	93.2		2.0			4.0		
1-Jun-12	1640-1655	29/Cloudy	Great Wave	14.2	Middle	7.1	26.7	26.3	26.3	6.5	6.5		93.7	93.5	2.9	2.9	2.8	4.0	4.0	3.9
					Bottom	13.2	26.7	26.3	26.3	6.4	6.4	6.4	92.2	92.4	3.0	3.0		4.2	4.1	
							26.6 27.1	26.3 26.0		6.4 7.2			92.5 105.1		3.0 2.4			4.0 3.4		
					Surface	1.0	27.1	25.9	26.0	7.2	7.2		103.1	104.4	2.4	2.5		3.6	3.5	
4-Jun-12	1846-1901	29/Cloudy	Small Wave	14.0	Middle	7.0	26.9	26.3	26.4	6.7	6.7	6.9	97.7	97.0	2.8	2.8	2.8	3.8	3.7	3.8
4-3uii-12	1040-1301	29/Gloudy	Omaii wave	14.0	Middle	7.0	26.8	26.4	20.4	6.6	0.7		96.3	37.0	2.7	2.0	2.0	3.6	5.7	3.0
					Bottom	13.0	26.6 26.6	26.6 26.7	26.7	6.4	6.4	6.4	93.3 93.5	93.4	3.2	3.1		4.2 4.0	4.1	l
					- ·	4.0	27.0	25.9	00.0	6.9			100.8	100.1	2.1			3.2	0.0	
					Surface	1.0	27.0	26.0	26.0	6.8	6.9	6.8	99.4	100.1	2.3	2.2		3.4	3.3	l
6-Jun-12	2017-2032	28/Cloudy	Small Wave	14.2	Middle	7.1	26.9	26.4	26.4	6.7	6.7	0.0	97.6	97.9	2.4	2.5	2.5	3.6	3.6	3.6
		,					26.8 26.6	26.3 26.6		6.7 6.4			98.2 93.3		2.5 2.9			3.6 4.0		l
					Bottom	13.2	26.7	26.6	26.6	6.3	6.4	6.4	92.0	92.7	2.8	2.9		3.8	3.9	l
					Surface	1.0	27.9	27.3	27.4	6.2	6.2		92.1	92.0	1.1	1.2		2.2	2.3	
					Juliace	1.0	27.9	27.4	21.7	6.2	0.2	6.2	91.9	32.0	1.2	1.2	ĺ	2.4	2.0	l
8-Jun-12	0855-0915	27/Cloudy	Calm	12.4	Middle	6.2	27.9 27.9	27.3 27.3	27.3	6.2 6.1	6.2		92.5 91.3	91.9	1.5	1.5	1.8	2.6	2.7	3.0
					Datter	44.4	27.9	27.3	07.4	6.1	0.0	0.0	90.2	00.0	2.9	2.2	1	3.8		İ
					Bottom	11.4	27.9	27.4	27.4	6.0	6.0	6.0	89.8	90.0	2.8	2.9		4.0	3.9	

	0 "	Ambient Temp		Total		- · ·	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Ti	urbidity (NT	U)	Susper	ded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water	Monitorin (m	•	Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
		Condition		Depth (m)	,	<u>′</u>	(°C) 27.8	27.2	, we age	6.4	,a.ge	average	94.4	7.170.ago	1.1	, worage	average	2.2	7.1.0.4.90	average
					Surface	1.0	27.8	27.2	27.3	6.4	6.4		94.4	94.6	1.1	1.1		2.4	2.3	
11-Jun-12	1132-1148	30/Cloudy	Small Wave	12.6	Middle	6.3	27.8	27.3	27.3	6.5	6.5	6.4	95.7	95.4	1.4	1.4	1.6	2.6	2.7	2.8
11 0011 12	1102 1140	00/Oloddy	Omaii wave	12.0	Wildaic	0.0	27.8	27.3	27.0	6.4	0.0		95.1	30.4	1.5	1	1.0	2.8	2.7	2.0
					Bottom	11.6	27.8	27.4 27.4	27.4	6.3	6.3	6.3	92.5 92.9	92.7	2.2	2.3		3.4	3.4	
					Surface	1.0	27.8	25.3	25.4	6.3	6.3		91.7	91.5	2.6	2.6		3.6	3.7	
					Surface	1.0	27.8	25.4	25.4	6.2	0.3	6.1	91.2	91.5	2.6	2.0		3.8	5.7	
13-Jun-12	1440-1455	29/Rainy	Small Wave	13.6	Middle	6.8	27.1 27.1	26.8 26.8	26.8	5.9 5.9	5.9		86.8 86.2	86.5	2.9	2.8	2.8	3.8	3.7	3.8
					Dattaus	40.0	26.9	27.2	07.0	5.9	5.0	5.0	85.7	05.5	2.9	2.0		3.8	2.0	
					Bottom	12.6	26.9	27.2	27.2	5.8	5.9	5.9	85.3	85.5	3.0	3.0		4.0	3.9	
					Surface	1.0	27.8	27.2 27.3	27.3	6.4	6.4		94.1	93.9	1.4	1.4		2.6	2.5	
45 1 40	4740 4705	0.4/01		40.0		0.0	27.5	27.7	07.7	6.3	0.0	6.3	92.8		1.4	4.5		2.4	0.7	0.0
15-Jun-12	1718-1735	31/Cloudy	Great Wave	12.6	Middle	6.3	27.6	27.7	27.7	6.3	6.3		92.3	92.6	1.5	1.5	1.5	2.8	2.7	2.8
					Bottom	11.6	27.3	27.9	28.0	6.2	6.2	6.2	91.0	90.7	1.6	1.6		3.0	3.1	
							27.3 27.5	28.0 27.4		6.2			90.4 94.6		1.6 1.7			3.2 2.8		
					Surface	1.0	27.5	27.5	27.5	6.4	6.4	6.3	95.0	94.8	1.7	1.7		2.6	2.7	
18-Jun-12	1733-1750	28/Cloudy	Great Wave	12.8	Middle	6.4	27.5	27.5	27.6	6.3	6.3	0.3	93.2	93.0	1.4	1.5	1.7	2.4	2.5	2.8
		j					27.5 27.5	27.6 27.7		6.3 6.1			92.8 89.8		1.5 2.1			2.6 3.2		
					Bottom	11.8	27.5	27.8	27.8	6.1	6.1	6.1	90.6	90.2	2.1	2.1		3.0	3.1	
					Surface	1.0	27.6	27.2	27.3	6.4	6.4		93.8	94.3	1.5	1.6		2.4	2.5	
							27.5	27.3	20	6.4		6.3	94.7	0	1.6			2.6		
20-Jun-12	1929-1947	29/Fine	Great Wave	12.6	Middle	6.3	27.4 27.4	27.6 27.5	27.6	6.3	6.3		92.6 92.0	92.3	1.7	1.7	1.8	2.8	2.8	2.8
					Bottom	11.6	27.2	27.9	27.9	6.1	6.1	6.1	89.5	89.8	2.1	2.1	1	3.0	3.1	
					DOMOITI	11.0	27.3	27.9	21.5	6.1	0.1	0.1	90.1	09.0	2.1	2.1		3.2	5.1	
					Surface	1.0	27.7 27.7	26.7 26.7	26.7	6.0	6.0		87.4 87.8	87.6	2.7	2.7		3.8	3.8	
20 Jun 10	2040-2055	20/D*i==lo	Cmall Mayo	14.0	Middle	7.1	27.4	27.0	27.1	5.8	5.8	5.9	84.9	84.7	3.0	2.1	2.9	4.0	4.0	3.9
22-Jun-12	2040-2055	28/Drizzle	Small Wave	14.2	Middle	7.1	27.4	27.1	21.1	5.8	5.0		84.4	04.7	3.1	3.1	2.9	4.0	4.0	3.9
					Bottom	13.2	27.3 27.2	27.1 27.0	27.1	5.8 5.9	5.9	5.9	85.7 86.1	85.9	3.0	3.0		4.0 3.8	3.9	
					0 (4.0	28.2	26.6	00.0	5.9	5.0		86.2	05.0	2.9	0.0		3.8		
					Surface	1.0	28.2	26.5	26.6	5.8	5.8	5.8	85.4	85.8	2.8	2.9		4.0	3.9	
25-Jun-12	0941-0956	28/Cloudy	Small Wave	14.4	Middle	7.2	28.1	26.9	26.9	5.7	5.7	0.0	84.2	83.8	3.1	3.1	3.1	4.2	4.1	4.1
							28.0 28.0	26.8 26.9		5.7 5.7			83.3 83.7		3.1 3.2		•	4.0		
					Bottom	13.4	28.0	26.8	26.9	5.7	5.7	5.7	83.1	83.4	3.2	3.2		4.2	4.2	
					Surface	1.0	28.3	25.4	25.4	6.0	6.0		87.3	87.1	1.6	1.6		2.6	2.7	
							28.4 28.3	25.4 25.4		6.0 5.9		5.9	86.9 85.6		1.6 1.7		-	2.8		
27-Jun-12	1124-1140	27/Cloudy	Small Wave	12.2	Middle	6.1	28.3	25.4	25.5	5.9	5.9		85.1	85.4	1.8	1.7	1.9	2.8	2.8	3.0
					Bottom	11.2	28.3	25.7	25.7	5.8	5.8	5.8	84.2	84.2	2.4	2.4	1	3.4	3.5	
					30		28.2	25.7		5.8	0.0	0.0	84.1	ŭ <u>.</u>	2.4			3.6	0.0	

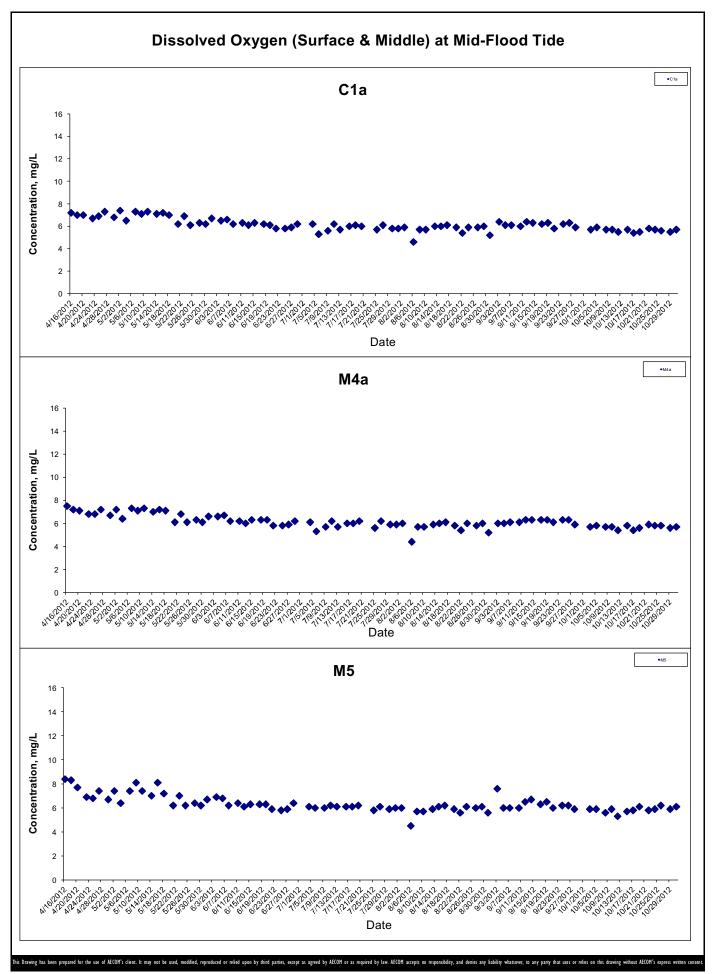
	Camalian	Ambient Temp	0	Total	Manitania	n Danth	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	-U)	Susper	nded Solids	s (mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	28.6	27.5 27.6	27.6	6.4	6.5		96.3	96.7	1.0	1.3		2.8	2.8	3
29-Jun-12	1514-1531	32/Fine	Great Wave	12.6	Middle	6.3	28.7 28.4	28.0	28.0	6.5 6.3	6.3	6.4	97.0 94.1	93.8	1.4	1.4	1.6	2.6	2.5	2.8
		52					28.5 28.2	27.9 28.3		6.3 6.1		0.4	93.5 91.3		1.4 2.1			2.4 3.0		
					Bottom	11.6	28.2 27.9	28.2 27.5	28.3	6.1 6.1	6.1	6.1	90.6 90.2	91.0	2.1 1.8	2.1		3.2 2.8	3.1	
					Surface	1.0	27.9	27.4	27.5	6.2	6.1	6.1	91.0	90.6	1.8	1.8		2.6	2.7	
4-Jul-12	1915-1931	31/Cloudy	Small Wave	13.0	Middle	6.5	27.5 27.6	27.8 27.9	27.9	6.1 6.1	6.1		90.7 90.1	90.4	1.7	1.7	1.8	2.8	2.8	2.8
					Bottom	12.0	27.4 27.3	28.1 28.1	28.1	6.0 6.1	6.0	6.0	89.0 89.4	89.2	1.9 1.9	1.9		2.8 3.0	2.9	
					Surface	1.0	27.4 27.4	24.5 24.5	24.5	6.2 6.3	6.3		90.0 91.4	90.7	1.2 1.2	1.2		2.4	2.3	
6-Jul-12	0850-0905	28/Fine	Calm	14.4	Middle	7.2	26.9 27.0	24.5	24.5	5.8 5.9	5.8	6.0	84.4 84.8	84.6	3.1	3.0	1.9	4.0	3.9	2.9
					Bottom	13.4	26.8	25.1	25.2	5.8	5.7	5.7	83.5	83.1	1.4	1.4		2.4	2.6	
					Surface	1.0	26.7 27.9	25.2 24.6	24.7	5.7 5.9	6.0		82.7 86.4	87.0	1.4 2.2	2.1		2.8 3.2	3.1	
							27.9 27.9	24.7 24.7		6.0 6.0		6.0	87.6 87.8		2.1			3.0		
9-Jul-12	1006-1025	29/Fine	Calm	12.6	Middle	6.3	27.9 27.9	24.8	24.8	6.1 5.8	6.0		88.5 84.2	88.2	2.3	2.3	2.5	3.4	3.4	3.5
					Bottom	11.6	27.8	24.8	24.8	5.8	5.8	5.8	85.1	84.7	3.0	3.0		4.2	4.1	
					Surface	1.0	28.0 27.9	25.4 25.4	25.4	6.3 6.3	6.3	6.2	93.3 93.7	93.5	2.0	2.0		3.0	3.0	
11-Jul-12	1146-1203	30/Fine	Small Wave	12.6	Middle	6.3	27.7 27.7	25.7 25.6	25.7	6.2 6.1	6.1	0.2	91.0 90.4	90.7	1.9 1.9	1.9	2.0	2.8 3.0	2.9	3.0
					Bottom	11.6	27.5 27.5	26.0 26.0	26.0	6.1 6.0	6.0	6.0	89.7 89.1	89.4	2.2	2.2	1	3.2	3.1	
					Surface	1.0	28.3	24.4	24.4	6.1	6.1		89.3	89.0	1.4	1.5		2.6	2.6	
13-Jul-12	1534-1547	30/Cloudy	Small Wave	14.2	Middle	7.1	28.2 27.9	24.4 24.5	24.6	6.1 6.0	6.0	6.1	88.7 87.9	87.7	1.5 1.8	1.9	1.8	2.6 3.0	3.1	3.0
					Bottom	13.2	28.0 27.8	24.6 24.7	24.8	6.0 5.9	5.9	5.9	87.5 85.9	85.6	1.9 2.0	1.9	1	3.2	3.2	
							27.8 27.9	24.8 23.8		5.9 6.2		3.9	85.3 89.1		1.9 2.9			3.2 4.0		
					Surface	1.0	28.0	23.8	23.8	6.2	6.2	6.1	89.6 87.9	89.4	2.9	2.9	_	3.8	3.9	ļ
16-Jul-12	1715-1733	32/Fine	Calm	12.8	Middle	6.4	28.0	23.8	23.8	6.1	6.1		87.4	87.7	3.1	3.0	3.1	4.0	4.0	4.1
					Bottom	11.8	27.9 27.9	24.0 24.0	24.0	5.9 5.9	5.9	5.9	84.3 85.0	84.7	3.3	3.3		4.4	4.4	
					Surface	1.0	28.1 28.1	23.5 23.4	23.5	6.1 6.2	6.2	0.1	89.6 90.3	90.0	2.9 2.8	2.8		3.8 3.8	3.8	
18-Jul-12	1840-1855	28/Cloudy	Small Wave	13.0	Middle	6.5	27.8	23.7	23.7	6.1	6.0	6.1	88.3 87.7	88.0	2.7	2.7	2.8	3.6	3.5	3.7
					Bottom	12.0	27.6	24.0	24.0	5.9	5.9	5.9	86.2	86.4	3.0	3.0	1	4.0	3.9	
							27.6	23.9		5.9			86.6		3.0			3.8		

	0 "	Ambient Temp		Total		- · ·	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Т	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water	Monitorin (m		Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
		Condition		Depth (m)	,	<u></u>	(°C) 28.3	23.8	7.1. c. ago	6.2	7.1.0.ago	average	90.2	, wordge	3.0	, worago	average	4.0	,go	average
					Surface	1.0	28.4	23.7	23.8	6.2	6.2	0.0	90.2	90.5	3.0	3.0		3.8	3.9	
20-Jul-12	1940-1958	30/Fine	Small Wave	20.0	Middle	6.4	28.2	24.0	24.0	6.1	6.1	6.2	89.3	89.1	3.1	3.1	3.1	4.2	4.1	4.0
20 001 12	1040 1000	30/1 IIIC	Omaii wave	20.0	Wildaic	0.4	28.3	23.9	24.0	6.1	0.1		88.9	00.1	3.1	0.1] ""	4.0	7.1	1.0
					Bottom	11.8	28.1	24.2 24.2	24.2	6.0	6.0	6.0	87.3 87.6	87.5	3.1	3.1		4.0	4.1	
					Surface	1.0	26.6	29.2	29.2	5.8	5.8		81.6	81.8	2.2	2.2		3.2	3.2	
					Surface	1.0	26.5	29.2	29.2	5.8	5.0	5.8	82.0	01.0	2.2	2.2		3.2	5.2	
25-Jul-12	0935-0953	28/Cloudy	Small Wave	12.8	Middle	6.4	26.6 26.6	29.4 29.3	29.4	5.7 5.7	5.7		80.0 80.5	80.3	2.3	2.3	2.4	3.4	3.4	3.4
					Dattaus	44.0	26.5	29.6	20.0	5.5	<i></i>	<i></i>	76.9	77.0	2.6	0.0	1	3.6	0.7	1
					Bottom	11.8	26.5	29.6	29.6	5.5	5.5	5.5	77.6	77.3	2.6	2.6		3.8	3.7	
					Surface	1.0	26.5 26.4	25.5 25.4	25.5	6.1 6.1	6.1		87.4 88.1	87.8	3.0	3.1		3.8	3.9	
							26.4	25.4		6.0		6.1	86.4		3.1		1	4.0		1
27-Jul-12	1315-1331	26/Rainy	Great Wave	12.8	Middle	6.4	26.3	25.7	25.7	6.0	6.0		86.8	86.6	3.2	3.2	3.2	4.2	4.1	4.1
					Bottom	11.8	26.2	26.0	26.0	5.9	5.9	5.9	85.0	85.3	3.2	3.2		4.2	4.3	
							26.2 27.7	26.0 29.8		5.9 6.0			85.5 87.8		3.3 3.5			4.4 4.4		\vdash
					Surface	1.0	27.7	29.8	29.8	5.9	6.0	5.9	87.2	87.5	3.5	3.5		4.6	4.5	
30-Jul-12	1710-1725	31/Sunny	Small Wave	13.6	Middle	6.8	27.2	30.5	30.5	5.9	5.9	5.9	86.3	86.0	3.4	3.4	3.5	4.4	4.4	4.5
		- · · · · · · · · · · · · · · · · · · ·					27.2 27.1	30.4 30.6		5.8 5.8			85.7 84.9		3.3	1		4.4		
					Bottom	12.6	27.1	30.6	30.6	5.8	5.8	5.8	84.3	84.6	3.8	3.7		4.6	4.7	
					Surface	1.0	27.7	29.7	29.7	6.1	6.0		88.7	88.5	3.4	3.4		4.6	4.5	
					Gunace	1.0	27.8	29.6	20.7	6.0	0.0	6.0	88.2	00.0	3.4	0.4		4.4	4.0	
1-Aug-12	1812-1827	33/Fine	Small Wave	14.2	Middle	7.1	27.6 27.6	29.8 29.9	29.9	6.0 5.9	5.9		87.4 87.0	87.2	3.3	3.3	3.4	4.2	4.3	4.5
					Bottom	13.2	27.4	30.0	30.1	5.9	5.9	5.9	86.6	86.3	3.5	3.5	1	4.6	4.6	
					Бошотт	13.2	27.4	30.1	30.1	5.9	5.9	5.9	86.0	60.3	3.5	3.5		4.6	4.0	
					Surface	1.0	28.1	29.7 29.7	29.7	6.1 6.1	6.1		90.6	90.3	3.5	3.5		4.6	4.5	
0.4.40	1010 1005	0.475		40.0			27.9	30.0	00.0	6.0	0.0	6.0	88.6	00.0	3.4	0.5		4.4	4.5	
3-Aug-12	1918-1935	31/Fine	Small Wave	13.8	Middle	6.9	27.8	30.0	30.0	5.9	6.0		88.0	88.3	3.5	3.5	3.5	4.6	4.5	4.6
					Bottom	12.8	27.6	30.3	30.3	5.9	5.9	5.9	86.9	86.8	3.6	3.6		4.6	4.7	
							27.6 26.9	30.3 25.7		5.9 4.5			86.6 64.6		3.7 2.5			4.8 3.6		
					Surface	1.0	27.0	25.8	25.8	4.4	4.4	4.5	63.9	64.3	2.5	2.5		3.4	3.5]
6-Aug-12	0914-0930	30/Cloudy	Small Wave	12.8	Middle	6.4	26.8	26.1	26.2	4.6	4.6	4.5	66.8	66.6	2.7	2.7	2.6	3.8	3.8	3.7
		,					26.8 26.8	26.2 26.3		4.6 4.7			66.4 67.8		2.7 2.7		-	3.8		1
					Bottom	11.8	26.7	26.3	26.3	4.7	4.7	4.7	68.2	68.0	2.6	2.7		3.6	3.7	
					Surface	1.0	27.7	26.3	26.3	5.7	5.7		82.9	82.6	1.8	1.8		3.8	3.7	
							27.8	26.3		5.7	<u> </u>	5.7	82.2	02.0	1.8		4	3.6	J.,	. I
8-Aug-12	1047-1102	30/Fine	Small Wave	12.4	Middle	6.2	27.6 27.6	26.5 26.5	26.5	5.6 5.6	5.6		81.0 81.6	81.3	2.0	2.1	2.1	3.0	3.1	3.4
					Bottom	11.4	27.4	26.9	27.0	5.6	5.5	5.5	80.7	80.4	2.4	2.3	1	3.6	3.5	
					Dolloni	11.4	27.5	27.0	21.0	5.5	5.5	0.0	80.0	00.4	2.3	2.0		3.4	5.5	

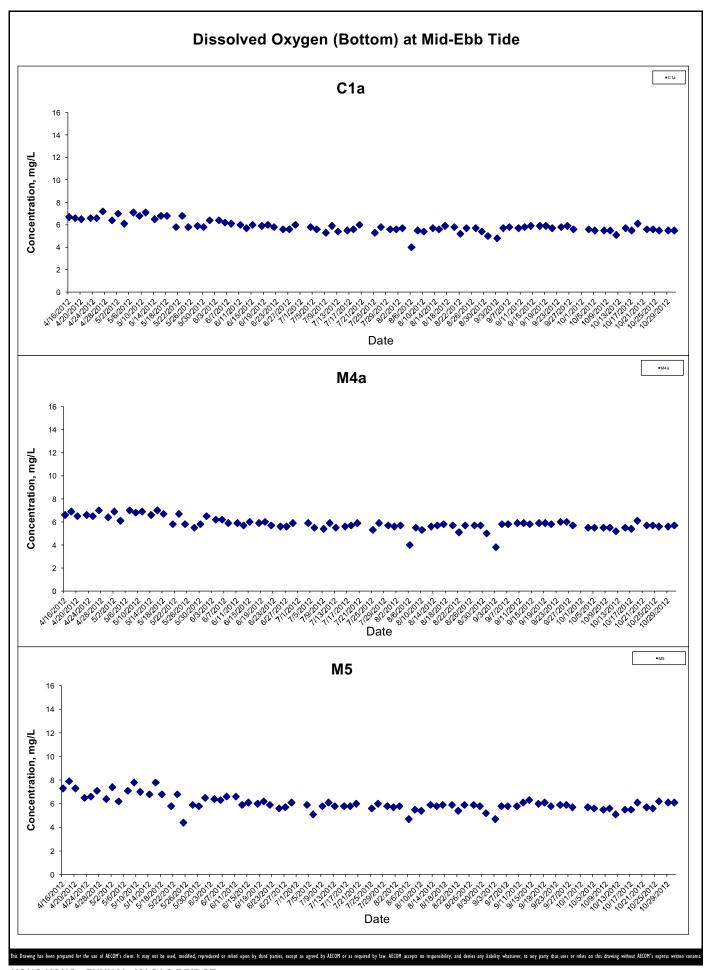

	Complian	Ambient Temp	0	Total	Manitania	a. Danth	Water	Salinit	y (ppt)	Dissolv	ed Oxyger	(mg/L)	Dissolve	d Oxygen	Tu	urbidity (NT	Ū)	Susper	ded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water	Monitorin (m	• .	Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
		Condition		Depth (m)	,	<u> </u>	(°C) 28.2	26.4		5.8		average	85.4	· · · · · · · · · · · · · · · · · · ·	2.1		average	3.0		average
					Surface	1.0	28.1	26.4	26.4	5.8	5.8		85.8	85.6	2.1	2.1		3.2	3.1	
10-Aug-12	1317-1334	33/Cloudy	Small Wave	12.4	Middle	6.2	28.0	26.6	26.6	5.6	5.6	5.7	82.7	83.0	2.4	2.3	2.3	3.4	3.4	3.4
10-Aug-12	1317-1334	33/Cloudy	Siliali Wave	12.4	Middle	0.2	28.0	26.6	20.0	5.6	3.0		83.3	05.0	2.3	2.5	2.5	3.4	3.4	3.4
					Bottom	11.4	27.8 27.8	26.8 26.9	26.9	5.6 5.5	5.5	5.5	82.1 81.4	81.8	2.5 2.5	2.5		3.6	3.7	
							27.7	25.3		5.9			86.0		2.2			3.2		
					Surface	1.0	27.7	25.2	25.3	6.0	5.9	5.9	86.4	86.2	2.2	2.2		3.4	3.3	
13-Aug-12	2019-2036	27/Cloudy	Small Wave	12.4	Middle	6.2	27.5	25.5	25.5	5.8	5.8	5.9	84.2	84.0	2.4	2.4	2.4	3.4	3.5	3.5
		, , , , ,					27.5	25.5		5.8			83.7		2.4		ł	3.6		
					Bottom	11.4	27.2	25.8 25.9	25.9	5.7 5.6	5.7	5.7	82.5 81.8	82.2	2.7	2.7		3.6	3.7	
					Surface	1.0	28.2	27.5	27.6	6.2	6.2		89.7	90.0	1.8	1.8		2.8	2.7	
					Surface	1.0	28.3	27.6	27.0	6.2	0.2	6.1	90.2	90.0	1.8	1.0		2.6	2.1	
15-Aug-12	1656-1713	32/Fine	Calm	12.6	Middle	6.3	28.2	27.6 27.6	27.6	6.0 6.1	6.0		87.8 88.3	88.1	2.0	2.0	2.0	3.2 2.8	3.0	3.1
							28.2	27.7		5.9			85.8		2.3		1	3.4		
					Bottom	11.6	28.1	27.7	27.7	5.8	5.9	5.9	85.2	85.5	2.4	2.3		3.6	3.5	
					Surface	1.0	27.7	26.7	26.8	6.2	6.2		89.6	89.8	1.9	1.9		4.0	3.9	
							27.7 27.5	26.8 27.0		6.2 6.1		6.2	90.0 88.3		1.8 2.0			3.8		
17-Aug-12	1816-1831	29/Cloudy	Great Wave	13.2	Middle	6.6	27.5	26.9	27.0	6.1	6.1		88.8	88.6	2.0	2.0	2.0	3.0	3.0	3.4
					Bottom	12.2	27.4	27.2	27.2	6.0	6.0	6.0	86.6	86.3	2.1	2.1		3.2	3.2	
					Bottom	12.2	27.3	27.1	21.2	5.9	0.0	0.0	86.0	00.0	2.1	2.1		3.2	0.2	
					Surface	1.0	27.7 27.7	25.7 25.8	25.8	6.0	6.0		87.6 88.3	88.0	3.1	3.1		4.0 3.8	3.9	
00.4 . 40	0050 0040	00/5	0 !! \ \ \ \	40.0	NAC JUIL	0.0	27.5	26.0	00.4	5.9	5.0	5.9	86.7	00.4	2.9	0.0		3.8	0.0	0.0
20-Aug-12	0853-0910	28/Fine	Small Wave	12.6	Middle	6.3	27.6	26.1	26.1	5.9	5.9		86.0	86.4	3.0	2.9	3.0	3.8	3.8	3.9
					Bottom	11.6	27.4	26.4	26.5	5.7	5.7	5.7	84.4	84.1	3.1	3.1		4.0	4.0	
							27.4 27.9	26.5 29.4		5.7 5.7			83.8 81.7		3.1 2.7			4.0 3.8		
					Surface	1.0	27.9	29.4	29.5	5.7	5.7		82.3	82.0	2.7	2.7		4.0	3.9	
22-Aug-12	0944-1000	29/Cloudy	Calm	12.2	Middle	6.1	27.9	29.6	29.6	5.6	5.6	5.6	80.2	79.9	2.9	2.9	2.9	4.0	4.0	4.1
22 / lug 12	0044 1000	25/010449	Odilli	12.2	Wilddic	0.1	27.8	29.6	20.0	5.5	0.0		79.6	70.0	2.9	2.0	2.0	4.0	4.0	7.1
					Bottom	11.2	27.7 27.8	29.8 29.7	29.8	5.3 5.3	5.3	5.3	76.8 76.3	76.6	3.0	3.1		4.4	4.3	
					Confess	4.0	27.8	27.4	07.4	6.1	0.4		89.8	00.4	2.1	0.4		3.0	2.4	
					Surface	1.0	27.8	27.3	27.4	6.1	6.1	6.1	90.3	90.1	2.1	2.1		3.2	3.1	
24-Aug-12	1215-1232	30/Fine	Small Wave	12.6	Middle	6.3	27.6	27.6	27.7	6.0	6.0	0	88.8	88.5	2.2	2.2	2.2	3.2	3.3	3.2
							27.6 27.4	27.7 28.0		6.0 5.9			88.2 87.0		2.2		4	3.4		
					Bottom	11.6	27.5	28.0	28.0	5.9	5.9	5.9	86.3	86.7	2.3	2.3		3.4	3.3	
					Surface	1.0	28.0	27.2	27.2	6.1	6.0		88.9	88.6	2.3	2.3		3.2	3.2	
						1.0	28.0	27.2	27.2	6.0	0.0	6.0	88.2	00.0	2.3	2.0	1	3.2	U.Z	
27-Aug-12	1616-1633	34/Fine	Calm	12.6	Middle	6.3	27.8	27.5 27.4	27.5	5.9 5.9	5.9		87.0 86.4	86.7	2.3	2.4	2.4	3.4	3.5	3.4
					Do#	11.0	27.5	27.5	27.5	5.8	F 0	E 0	85.4	95.2	2.5	2.5	1	3.4	2.5	
					Bottom	11.6	27.4	27.4	27.5	5.8	5.8	5.8	85.1	85.3	2.5	2.5		3.6	3.5	

	0	Ambient Temp	0	Total		. D II.	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Ti	urbidity (NT	U)	Susper	ded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather	Sea Condition	Water	Monitorin (m		Temp	Value	Average	Value	Average	Depth-	Value	Average	Value	Average	Depth-	Value	Average	Depth-
		Condition		Depth (m)	,	<u>, </u>	(°C) 28.0	27.2	7.1. c. ago	6.1	,go	average	90.2	7.170.ago	2.1	,go	average	2.8	7.1.0.4.90	average
					Surface	1.0	28.1	27.2	27.2	6.2	6.1		90.2	90.5	2.1	2.1		3.0	2.9	
29-Aug-12	1715-1731	31/Fine	Small Wave	12.0	Middle	6.0	27.9	27.5	27.5	6.0	6.1	6.1	88.9	89.1	2.2	2.2	2.2	3.4	3.3	3.2
20 / lag 12	17101701	01/11110	Omail Wave	12.0	Middle	0.0	27.8	27.5	27.0	6.1	0.1		89.3	00.1	2.3			3.2	0.0	0.2
					Bottom	11.0	27.7 27.8	27.6 27.7	27.7	5.9 6.0	5.9	5.9	87.1 87.9	87.5	2.3	2.3		3.2	3.3	
					Surface	1.0	27.6	26.4	26.5	5.6	5.6		81.3	81.7	2.2	2.2		3.0	3.2	
					Ouriace	1.0	27.5	26.5	20.0	5.7	3.0	5.6	82.1	01.7	2.3	2.2	ļ	3.4	0.2	
31-Aug-12	1727-1745	30/Fine	Calm	12.4	Middle	6.2	27.5 27.5	26.4 26.4	26.4	5.6 5.6	5.6		80.5 80.9	80.7	2.1	2.1	2.3	3.0	3.1	3.2
					Bottom	11.4	27.5	26.5	26.5	5.3	5.3	5.3	76.7	76.9	2.4	2.4	1	3.4	3.4	
					DOMOITI	11.4	27.5	26.5	20.5	5.3	3.3	5.5	77.1	70.9	2.4	2.4		3.4	3.4	
					Surface	1.0	28.7	24.9 24.8	24.9	7.8 7.7	7.7		115.1 113.4	114.3	1.7	1.8		2.6	2.7	
2 Son 12	1945-2002	32/Fine	Small Wave	14.6	Middle	7.3	28.4	25.0	25.0	7.4	7.4	7.6	110.8	110.2	1.6	1.6	1.8	2.4	2.5	2.7
3-Sep-12	1945-2002	32/Fille	Siliali Wave	14.0	Middle	7.3	28.5	25.0	25.0	7.4	7.4		109.5	110.2	1.6	1.0	1.0	2.6	2.5	2.1
					Bottom	13.6	27.8	25.9 25.9	25.9	5.6 5.7	5.7	5.7	82.2 83.3	82.8	2.0 1.9	1.9		2.8 3.0	2.9	
					Conform	4.0	27.8	27.3	07.0	6.1	C 4		89.7	00.5	2.5	0.0		3.8	2.0	
					Surface	1.0	27.8	27.3	27.3	6.1	6.1	6.0	89.2	89.5	2.6	2.6		3.4	3.6	
5-Sep-12	0958-1015	28/Cloudy	Small Wave	12.8	Middle	6.4	27.5 27.6	27.8 27.7	27.8	5.9 6.0	6.0	0.0	87.6 88.1	87.9	2.4	2.4	2.6	3.2	3.3	3.5
					5 "	44.0	27.3	27.7	20.0	5.9	5.0		86.7	00.4	2.4		1	3.4	0.7	
					Bottom	11.8	27.3	28.0	28.0	5.8	5.9	5.9	86.1	86.4	2.7	2.7		3.6	3.7	
					Surface	1.0	27.5 27.6	27.2 27.3	27.3	6.1 6.2	6.1		90.0	90.3	2.4	2.4		3.2	3.3	
							27.3	27.6		6.0		6.0	88.2		2.4			3.4		
7-Sep-12	1138-1152	28/Cloudy	Small Wave	13.0	Middle	6.5	27.4	27.5	27.6	6.0	6.0		87.7	88.0	2.6	2.6	2.6	3.6	3.5	3.5
					Bottom	12.0	27.2	27.9	27.9	5.9	5.9	5.9	86.8	87.1	2.7	2.7		3.8	3.8	
							27.2 27.9	27.9 27.6		5.9 6.0			87.3 88.9		2.7 2.6			3.8 3.8		
					Surface	1.0	27.9	27.5	27.6	6.1	6.0	6.0	89.4	89.2	2.6	2.6		3.4	3.6	
10-Sep-12	1915-1932	28/Fine	Small Wave	12.8	Middle	6.4	27.6	27.9	28.0	5.9	5.9	0.0	87.6	87.4	2.8	2.8	2.8	3.8	3.9	3.9
'							27.7 27.3	28.0 28.3		5.9 5.8			87.2 85.6		2.9 3.0			4.0		
					Bottom	11.8	27.4	28.3	28.3	5.8	5.8	5.8	86.1	85.9	3.0	3.0		4.2	4.1	
					Surface	1.0	27.7	26.9	26.9	6.6	6.6		96.6	96.9	2.4	2.4		3.4	3.5	
							27.8 27.8	26.9 27.0		6.7 6.4		6.5	97.2 93.8		2.5 2.5		ŀ	3.6		
12-Sep-12	1646-1704	32/Fine	Calm	12.4	Middle	6.2	27.7	27.0	27.0	6.5	6.5		93.6	94.2	2.6	2.6	2.6	3.4	3.6	3.7
					Bottom	11.4	27.6	27.1	27.2	6.2	6.2	6.2	90.2	90.6	2.8	2.8		3.8	3.9	
					Bottom	114	27.7	27.2	27.2	6.2	0.2	0.2	90.9	30.0	2.8	2.0		4.0	0.0	
					Surface	1.0	28.0 27.9	27.0 27.1	27.1	6.6 6.7	6.7	_	96.9 97.5	97.2	2.4	2.4		3.4	3.3	
14-Sep-12	1624-1640	30/Fine	Small Wave	12.6	Middle	6.3	27.9	27.1	27.1	6.7	6.7	6.7	98.0	97.7	2.2	2.2	2.4	3.0	3.1	3.3
14-0ep-12	1024-1040	JU/FIIIE	Onian wave	12.0	wildule	0.3	27.9	27.1	21.1	6.7	0.7		97.4	91.1	2.3	۷.۷	2.4	3.2	J. I	5.5
					Bottom	11.6	27.8 27.8	27.3 27.3	27.3	6.2	6.2	6.2	90.8	91.1	2.6	2.6		3.8	3.6	
						1	21.0	21.5		0.5	1	l .	91.5	l .	2.0	1		J. 4		

	Camalina	Ambient Temp	0	Total	Maraitania	n Danth	Water	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)	Dissolve	d Oxygen	Tu	urbidity (NT	Ū)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorir (n	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		Dopar (III)	Surface	1.0	27.6	27.0	27.0	6.3	6.3	average	91.8	92.2	2.3	2.2	average	3.2	3.1	average
					Surface	1.0	27.6	26.9	27.0	6.3	0.5	6.3	92.6	92.2	2.2	2.2		3.0	3.1	
17-Sep-12	1842-1858	29/Fine	Small Wave	12.4	Middle	6.2	27.5 27.4	27.0 27.1	27.1	6.2 6.2	6.2		90.6	90.3	2.4	2.4	2.4	3.4	3.5	3.3
					Bottom	11.4	27.4	27.1	27.1	6.0	6.1	6.1	88.2	88.2	2.6	2.6	1	3.4	3.4	
							27.3 26.6	27.1 26.8		6.1 6.6			88.1 96.8		2.6 2.6			3.4 3.8		1
					Surface	1.0	26.6	26.7	26.8	6.7	6.7	6.5	97.7	97.3	2.6	2.6]	3.6	3.7]
19-Sep-12	0927-0945	27/Fine	Calm	12.4	Middle	6.2	26.6 26.6	26.8 26.8	26.8	6.4 6.4	6.4	0.0	93.0 93.6	93.3	2.9	2.9	2.9	3.8 4.0	3.9	4.0
					Bottom	11.4	26.5	26.9	26.9	6.2	6.2	6.2	91.7	91.4	3.2	3.2	1	4.2	4.3	
					Bottom	11.4	26.5	26.9	20.9	6.2	0.2	0.2	91.1	91.4	3.2	3.2		4.4	4.5	<u> </u>
					Surface	1.0	27.5 27.6	25.7 25.7	25.7	6.1 6.0	6.1		89.3 88.7	89.0	2.4	2.4		3.4	3.5	
21-Sep-12	1056-1113	28/Cloudy	Small Wave	12.8	Middle	6.4	27.3	25.9	25.9	5.9	5.9	6.0	87.1	86.8	2.6	2.7	2.7	3.8	3.8	3.8
							27.3 27.1	25.9 26.1		5.9 5.8			86.5 84.9		2.7 3.0		ł	3.8 4.0		1
					Bottom	11.8	27.1	26.2	26.2	5.8	5.8	5.8	84.4	84.7	3.0	3.0		4.2	4.1	
					Surface	1.0	27.7	26.4 26.4	26.4	6.3 6.4	6.3		92.6 93.5	93.1	2.4	2.4		3.4	3.5	
24-Sep-12	1543-1600	30/Cloudy	Small Wave	12.8	Middle	6.4	27.3	26.7	26.7	6.1	6.1	6.2	89.2	89.7	2.6	2.6	2.7	3.6	3.7	3.8
21 00p 12	1010 1000	oo, oloudy	Ciriaii Wavo	12.0	Wildaio	0.1	27.4 27.1	26.7 27.0	20.7	6.1 5.9	0.1	<u> </u>	90.2 87.2	00.1	2.7 2.9	2.0		3.8 4.0	0.7	
					Bottom	11.8	27.1	27.1	27.1	5.9	5.9	5.9	86.6	86.9	3.0	2.9		4.2	4.1	
					Surface	1.0	27.7	26.2 26.3	26.3	6.3 6.3	6.3		93.0 92.4	92.7	2.3	2.3		3.2	3.3	
06 Can 10	1613-1627	29/Cloudy	Cmall Ways	12.0	Middle	6.5	27.5	26.7	26.7	6.1	6.1	6.2	89.6	89.9	2.4	2.5	2.5	3.6	3.6	3.6
26-Sep-12	1013-1021	29/Cloudy	Small Wave	13.0	Middle	0.0	27.4	26.6	20.7	6.1	6.1		90.1	09.9	2.5	2.5	2.5	3.6	3.0	3.0
					Bottom	12.0	27.3	26.9 27.0	27.0	6.0	6.0	6.0	87.7 88.3	88.0	2.9	2.8		3.8 4.0	3.9	
					Surface	1.0	28.0	26.7	26.7	5.9	6.0		87.8	88.1	3.2	3.2		4.2	4.1	
							28.1	26.7 27.0		6.0 5.9		5.9	88.4 86.9		3.2 3.9		1	4.0		ł
28-Sep-12	1705-1720	29/Sunny	Small Wave	14.0	Middle	7.0	27.6	27.1	27.1	5.9	5.9		86.5	86.7	3.9	3.9	3.6	4.6	4.7	4.5
					Bottom	13.0	27.5 27.6	27.3 27.3	27.3	5.8 5.8	5.8	5.8	87.5 86.3	86.9	3.8	3.8		4.8	4.8	
					Surface	1.0	27.7	27.8	27.8	5.9	5.9		87.1	87.4	2.0	2.0		2.8	2.9	
					Surface	1.0	27.8	27.8	27.0	6.0	3.9	5.9	87.6	07.4	2.0	2.0		3.0	2.9	1
3-Oct-12	1916-1934	29/Fine	Small Wave	12.4	Middle	6.2	27.7 27.7	27.9 28.0	28.0	5.8 5.8	5.8		85.6 85.0	85.3	2.1	2.1	2.2	3.2	3.1	3.2
					Bottom	11.4	27.6	28.1	28.1	5.5	5.5	5.5	81.0	81.3	2.3	2.4	1	3.4	3.5	
					O. wf	4.0	27.5 27.6	28.1 27.7	07.7	5.5 6.0	0.0		81.6 87.7	07.0	2.4 1.8	4.0		3.6 2.8	0.7	
					Surface	1.0	27.5	27.6	27.7	6.0	6.0	5.9	88.0	87.9	1.9	1.8		2.6	2.7	1
5-Oct-12	0943-0958	26/Fine	Small Wave	12.6	Middle	6.3	27.4 27.4	27.8 27.8	27.8	5.8 5.9	5.9		85.8 86.5	86.2	2.0	2.0	2.1	3.0 2.8	2.9	3.0
					Bottom	11.6	27.3	27.9	28.0	5.7	5.7	5.7	84.3	84.0	2.3	2.3	1	3.2	3.3	
				1	20110111		27.2	28.0	20.0	5.7]	J.,	83.6	1 0 1.0	2.3			3.4	0.0	1

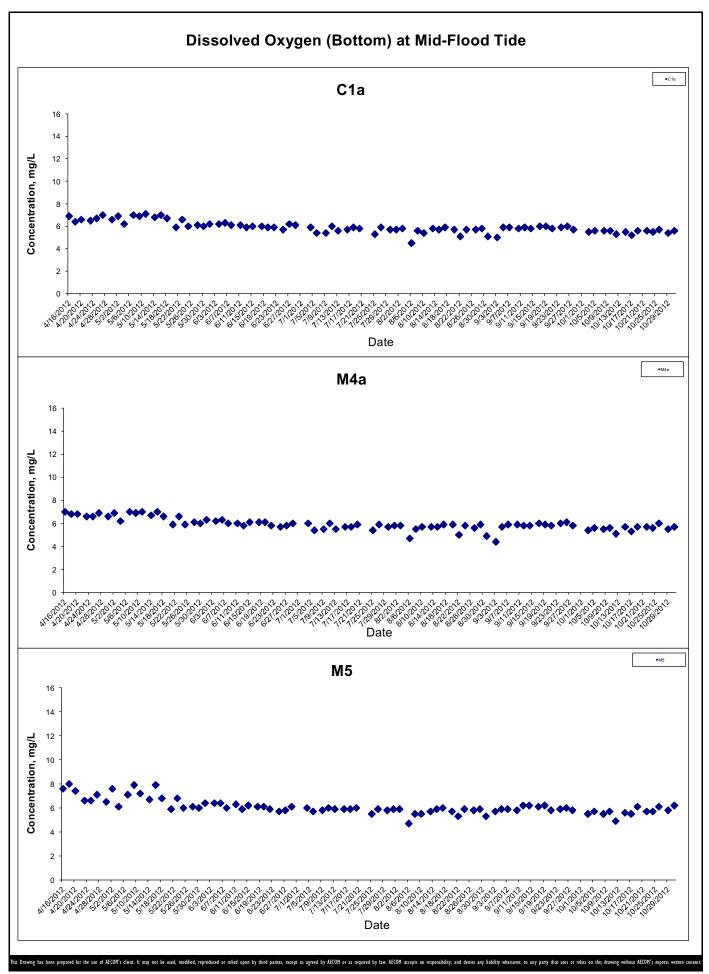

		Ambient Temp		Total		- ·	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	-U)	Susper	nded Solids	(mg/L)
Date	Sampling Duration	(°C) / Weather Condition	Sea Condition	Water Depth (m)	Monitorin (m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Condition		1 ()	Surface	1.0	27.4	26.7	26.7	5.6	5.6	arranaga .	81.7	81.9	2.5	2.5		3.6	3.5	urerage
8-Oct-12	1808-1824	27/Fine	Small Wave	12.8	Middle	6.4	27.3 27.3	26.7 26.8	26.8	5.6 5.6	5.5	5.6	82.1 81.4	81.1	2.5 2.6	2.6	2.6	3.4	3.8	3.7
0 001 12	1000 1024	2771 1110	Omaii wave	12.0			27.3 27.2	26.7 26.9		5.5 5.5			80.7 80.3		2.6		2.0	3.8		0.7
					Bottom	11.8	27.1	26.9	26.9	5.5	5.5	5.5	81.0	80.7	2.7	2.7		4.0	3.9	<u> </u>
					Surface	1.0	27.5 27.6	26.7 26.6	26.7	6.0 5.9	6.0	5.9	87.4 86.9	87.2	2.7	2.7		3.6 3.8	3.7	
10-Oct-12	1540-1556	28/Fine	Small Wave	13.0	Middle	6.5	27.5 27.4	26.8 26.7	26.8	5.9 5.8	5.8	3.9	85.6 84.8	85.2	2.8	2.8	2.8	3.6	3.6	3.8
					Bottom	12.0	27.3	26.8	26.9	5.7	5.7	5.7	83.7	83.4	2.9	2.9	1	4.0	4.0	
					Surface	1.0	27.3 27.6	26.9 26.7	26.7	5.7 5.4	5.4		83.0 79.1	79.6	2.9 2.6	2.6		4.0 3.4	3.5	
							27.5 27.5	26.7 26.8		5.4 5.2		5.3	80.0 76.0		2.6			3.6		-
12-Oct-12	1648-1706	28/Fine	Small Wave	12.5	Middle	6.3	27.5	26.8	26.8	5.1	5.2		75.4	75.7	2.9	2.9	2.8	4.0	3.9	3.8
					Bottom	11.5	27.4 27.4	26.9 27.0	27.0	5.0 4.9	4.9	4.9	72.9 71.9	72.4	3.1 3.1	3.1		4.2	4.1	
					Surface	1.0	27.5 27.4	26.4 26.5	26.5	5.8 5.8	5.8		84.8 85.3	85.1	2.9	2.9		3.6	3.7	
15-Oct-12	1819-1834	28/Fine	Small Wave	12.8	Middle	6.4	27.3	26.6	26.6	5.7	5.7	5.7	83.5	83.3	3.0	3.0	3.0	3.8	3.9	3.9
					Bottom	11.8	27.3 27.1	26.6 26.7	26.7	5.7 5.6	5.6	5.6	83.1 81.8	81.7	3.1 3.1	3.2		4.0	4.2	1
							27.2 27.1	26.7 26.7		5.6 5.8		0.0	81.5 84.8		3.2 2.3			4.2 3.2		
					Surface	1.0	27.1	26.8	26.8	5.8	5.8	5.8	85.3	85.1	2.3	2.3		3.4	3.3	
17-Oct-12	1912-1927	27/Cloudy	Small Wave	12.4	Middle	6.2	27.1 27.1	26.8 26.8	26.8	5.7 5.7	5.7		83.8 83.0	83.4	2.2	2.2	2.4	3.0	3.1	3.4
					Bottom	11.4	27.1 27.1	26.7 26.8	26.8	5.6 5.5	5.5	5.5	81.4 80.6	81.0	2.6	2.6		3.6	3.7	
					Surface	1.0	26.7	26.6	26.7	6.1	6.1		88.2	88.3	4.2	4.2		5.0	4.9	
19-Oct-12	0936-0952	25/Fine	Small Wave	13.6	Middle	6.8	26.6 26.6	26.7 26.8	26.8	6.1 6.1	6.2	6.1	88.4 88.7	89.1	4.2 4.1	4.1	4.1	4.8 5.2	5.1	4.9
10 001 12	0000 0002	20/1 1110	Cinali Wave	10.0			26.5 26.5	26.8 26.8		6.2 6.1		0.4	89.5 88.3		4.1 4.0			5.0 4.8		1.0
					Bottom	12.6	26.4	26.9	26.9	6.1	6.1	6.1	88.6	88.5	3.9	4.0		4.8	4.8	<u> </u>
					Surface	1.0	26.9 26.8	26.5 26.4	26.5	5.9 5.9	5.9	5.8	86.4 86.9	86.7	3.6 3.7	3.7		4.6 4.8	4.7	
22-Oct-12	1313-1330	28/Fine	Small Wave	12.8	Middle	6.4	26.7 26.7	26.7 26.6	26.7	5.8 5.8	5.8	0.0	85.3 84.7	85.0	3.8	3.8	3.8	4.6 4.8	4.7	4.8
					Bottom	11.8	26.6 26.5	26.8 26.9	26.9	5.7 5.6	5.7	5.7	83.6 82.9	83.3	3.9 3.9	3.9	1	4.8 5.0	4.9	
					Surface	1.0	26.8	26.4	26.4	5.9	5.9		86.5	86.2	3.7	3.7		4.4	4.5	
04.0.1.40	4540 4567	00/5	0	40.0			26.8 26.7	26.3 26.5		5.9 5.8		5.9	85.9 84.9		3.7 3.8			4.6 4.8		1.7
24-Oct-12	1510-1527	28/Fine	Small Wave	12.8	Middle	6.4	26.6	26.6	26.6	5.8	5.8		84.5	84.7	3.8	3.8	3.8	4.8	4.8	4.7
					Bottom	11.8	26.4	26.7 26.7	26.7	5.7 5.7	5.7	5.7	83.4 82.7	83.1	3.8 3.9	3.8		5.0 4.8	4.9	<u> </u>

	Sampling	Ambient Temp	Sea	Total	Monitorin	a Donth	Water	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)	Dissolve	d Oxygen	Τι	urbidity (NT	U)	Susper	nded Solids	(mg/L)
Date	Duration	(°C) / Weather Condition	Condition	Water Depth (m)	(m	•	Temp (°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
					Surface	1.0	26.6 26.6	26.6 26.7	26.7	6.1 6.2	6.2		89.0 89.5	89.3	4.1 4.0	4.1		4.8 4.8	4.8	
26-Oct-12	1637-1653	26/Cloudy	Small Wave	14.4	Middle	7.2	26.5	26.8	26.8	6.2	6.2	6.2	89.2	89.6	4.2	4.2	4.1	5.2	5.3	5.1
							26.6 26.5	26.8 26.9		6.2 6.1			89.9 88.5		4.2 4.1			5.4 5.2		
					Bottom	7.2	26.5	26.8	26.9	6.1	6.1	6.1	88.2	88.4	4.2	4.2		5.2	5.2	
					Surface	1.0	26.5	26.9	26.9	5.9	5.9		87.2	87.1	4.1	4.1		5.2	5.1	
							26.5	26.9		5.9		5.9	86.9		4.1			5.0		
29-Oct-12	1735-1753	27/Cloudy	Small Wave	14.2	Middle	7.1	26.4 26.4	27.0 27.0	27.0	5.9 5.9	5.9		86.3 85.9	86.1	4.2 4.2	4.2	4.2	5.2 5.2	5.2	5.2
					Bottom	13.2	26.3	27.1	27.1	5.8	5.8	5.8	85.3	85.2	4.3	4.3		5.2	5.3	
					Dottom	10.2	26.3	27.1	27.1	5.8	0.0	0.0	85.1	00.2	4.3	4.0		5.4	0.0	
					Surface	1.0	26.2	26.4	26.5	6.1	6.1		88.3	88.6	4.1	4.1		5.2	5.1	
							26.2	26.5		6.1		6.1	88.9		4.1			5.0		
31-Oct-12	1837-1852	24/Cloudy	Small Wave	14.6	Middle	7.3	26.1 26.2	26.5 26.6	26.6	6.0 6.1	6.1		87.6 88.2	87.9	4.0	4.0	4.0	4.8 4.6	4.7	4.9
							26.0	26.8		6.2			89.8		3.9		1	4.8		
					Bottom	13.6	25.9	26.7	26.8	6.2	6.2	6.2	90.2	90.0	3.9	3.9		5.0	4.9	

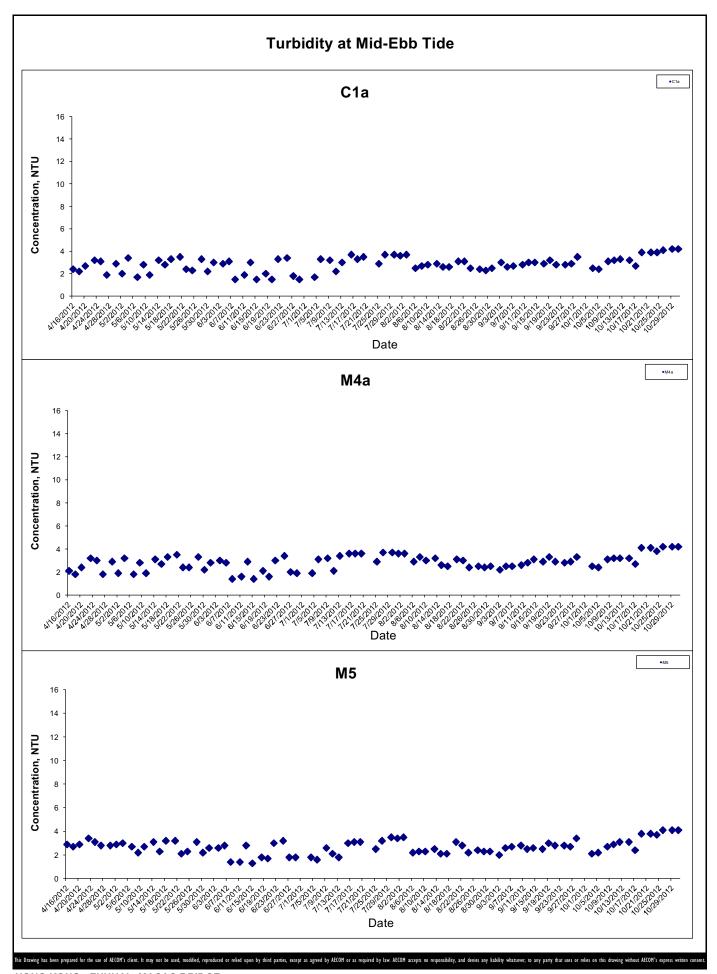


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CORSSING FACILITIES
- RECLAMATION WORKS
Gra

AECOM

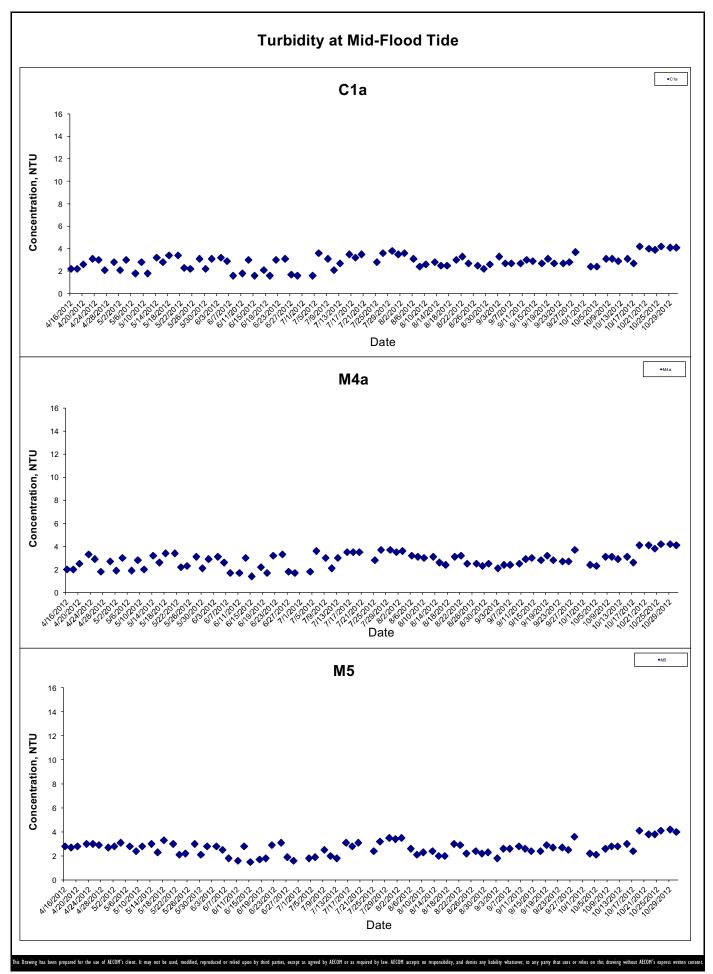


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CORSSING FACILITIES **AECOM**

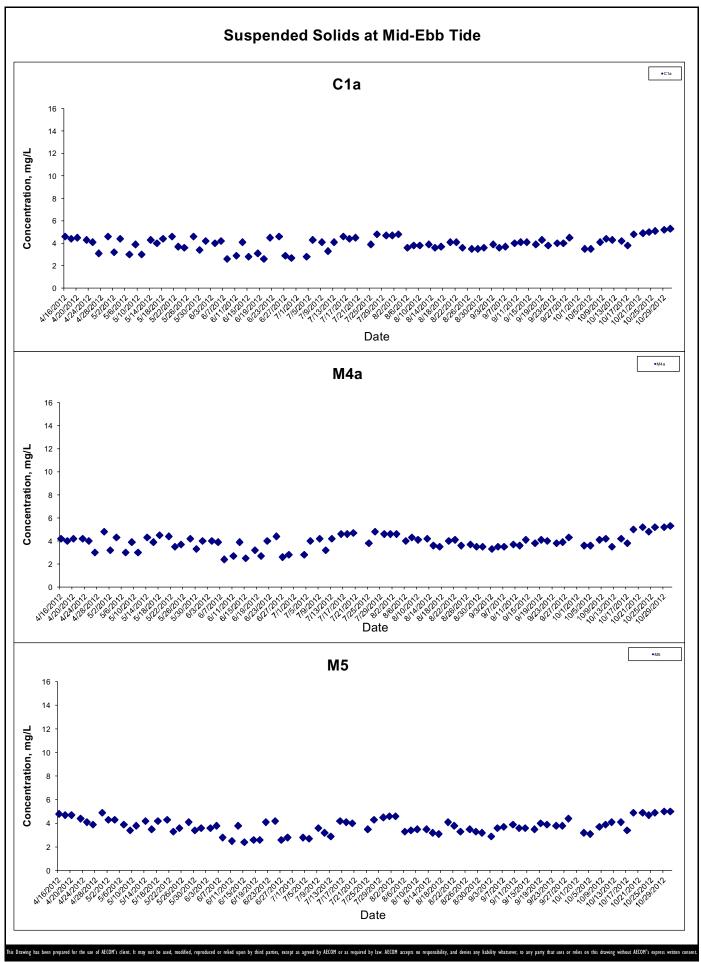


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CORSSING FACILITIES
- RECLAMATION WORKS
Gra

AECOM

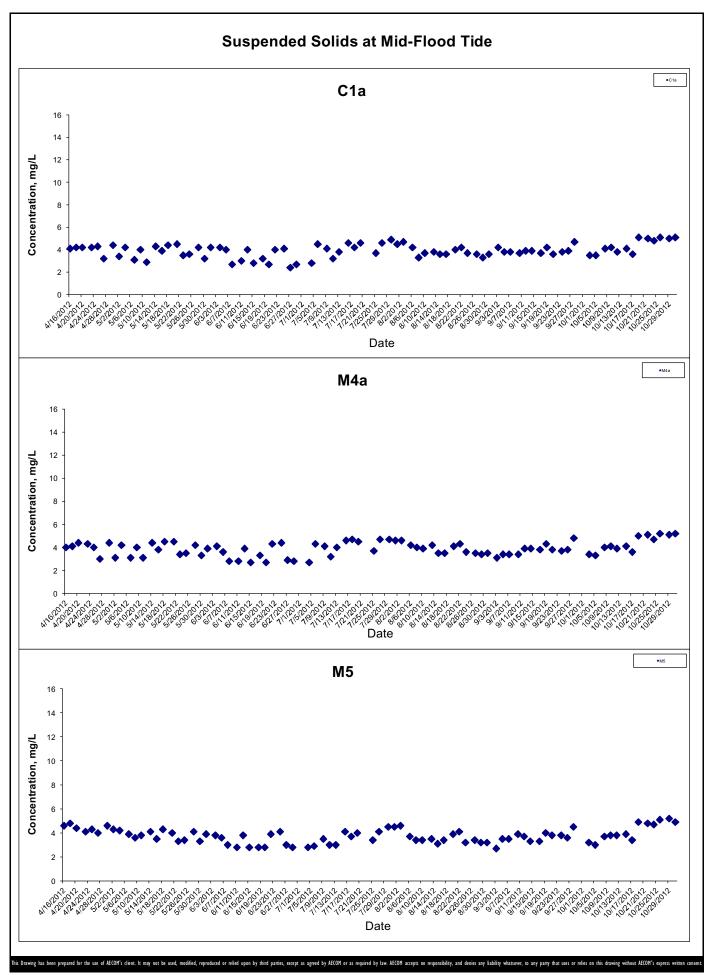


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CORSSING FACILITIES **AECOM**


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CORSSING FACILITIES
- RECLAMATION WORKS
Gra

AECOM

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CORSSING FACILITIES **AECOM**


Project No.: 60249820 Date: Nov 2012 Appendix C

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CORSSING FACILITIES

AECOM

Project No.: 60249820 Date: Nov 2012 Appendix C

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CORSSING FACILITIES

- RECLAMATION WORKS

AECOM

Project No.: 60249820 Date: Nov 2012 Appendix C

APPENDIX D QA/QC REPORT

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
16-Apr-12	98.4	FC1a-S1	0.0	EC1a-S2	106.0
10-Api-12	95.6	EC1a-M1	8.0	EWM5-B2	106.0
Note:	(*)	% Recovery of QC sample should be between 80% to 120%.			
	(#)	% Error of Sample Dup	licate should be betweer	0% to 10%.	

% Recovery of Sample Spike should be between 80% to 120%.

% Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike			
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]		
18-Apr-12	93.9	FC1a-S1	0.0	EC1a-S2	97.9		
10-Арт-12	105.6	EC1a-M1	8.7	EWM5-B2	100.0		
Note:	(*)	% Recovery of QC sample should be between 80% to 120%.					
	(#)	% Error of Sample Dup	% Error of Sample Duplicate should be between 0% to 10%.				

(®) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Da	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
20-Apr-12	102.1	FC1a-S1	0.0	EC1a-S2	93.9
20-Api-12	107.9	EC1a-M1	0.0	EWM5-B2	106.4
Note:	(*)	% Recovery of QC sample should be between 80% to 120%.			

(*) % Recovery of QC sample should be between 0% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.

(*) % Recovery of Sample Spike should be between 80% to 120%.

([@])

(**)

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Compling Data	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
22 Amr 42	105.9	FC1a-S1	9.5	EC1a-S2	92.2
23-Apr-12	102.5	EC1a-M1	0.0	EWM5-B2	95.9

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(#) % Error of Sample Duplicate should be between 0% to 10%.

(®) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample				
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
25-Apr-12	98.2	FC1a-S1	0.0	EC1a-S2	94.1
25-Apr-12	105.1	EC1a-M1	9.5	EWM5-B2	102.0

Note:

(*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.

(*) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [®]
07 4 40	105.5	FC1a-S1	0.0	EC1a-S2	104.1
27-Apr-12	101.2	EC1a-M1	11.8**	EWM5-B2	95.9

Note:

(*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.

(*) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
20	96.4	FC1a-S1	0.0	EC1a-S2	94.2
30-Apr-12	95.3	EC1a-M1	8.0	EWM5-B2	104.2

Note:

(*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.

(*) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
2-Mav-12	99.0	FC1a-S1	0.0	EC1a-S2	94.0
2-1VIQV-12					

2-May-12 99.0 FC1a-S1 0.0 EC1a-S2 94.0 97.0 EC1a-M1 0.0 EWM5-B2 103.8

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.

(®) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
	% Recovery *	Sample ID	Sample ID % Error #		% Recovery [®]
4-May-12	102.2	FC1a-S1	0.0	EC1a-S2	98.0
4-ividy-12	104.2	EC1a-M1	8.0	EWM5-B2	97.9

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.
(*) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		mple Sample Duplicate Sample S		e Spike
	% Recovery *	Sample ID	Sample ID % Error #		% Recovery [@]	
7-May-12	92.6	FC1a-S1	0.0	EC1a-S2	107.5	
7-11/ay-12	98.7	EC1a-M1	11.8**	EWM5-B2	100.0	

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.
(*) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample	e Spike
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
9-May-12	103.8	FC1a-S1	0.0	EC1a-S2	106.1
9-11/ay-12	105.2	FC1a-M1	0.0	FWM5-B2	102.0

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.
(*) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		ate Sample Spike	
	% Recovery *	Sample ID	Sample ID % Error #		% Recovery [®]
11-May-12	104.2	FC1a-S1	13.3**	EC1a-S2	106.3
11-Way-12	93.3	EC1a-M1	0.0	EWM5-B2	104.1

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.

($^{\circledast}$) % Recovery of Sample Spike should be between 80% to 120%.

 $(\sp{**})$ % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [®]
14-May-12	101.0	FC1a-S1	0.0	EC1a-S2	98.1
14-iviay-12	93.5	EC1a-M1	0.0	EWM5-B2	100.0

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.
(®) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

	QC Sample Sample Duplicate Sample Spike		Sample Duplicate		e Spike
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
16-May-12	100.6	FC1a-S1	0.0	EC1a-S2	94.0
10-iviay-12	99.2	EC1a-M1	9.5	EWM5-B2	92.5

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(#) % Error of Sample Duplicate should be between 0% to 10%.

(®) % Recovery of Sample Spike should be between 80% to 120%.

 $(\sp{**})$ % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
40 May 40	93.3	FC1a-S1	0.0	EC1a-S2	100.0
18-May-12	94.6	EC1a-M1	8.7	EWM5-B2	102.1

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.
(*) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Compling Data	QC Sample	Sample Duplicate		ate Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
21-May-12	96.5	FC1a-S1	0.0	EC1a-S2	94.0
21-1VIay-12	96.5	FC1a-M1	8.0	FWM5-B2	107.8

Note: (*) % Recovery of QC sample should be between 80% to 120%

(#) % Error of Sample Duplicate should be between 0% to 10%.

(®) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
	% Recovery *	Sample ID	Sample ID % Error #		% Recovery [@]
22 May 12	104.8	FC1a-S1	11.8**	EC1a-S2	104.1
23-May-12	93.1	EC1a-M1	0.0	EWM5-B2	106.0
Note:	(*)	% Recovery of QC sample should be between 80% to 120%.			
	4				

% Error of Sample Duplicate should be between 0% to 10%. (#) ([@]) % Recovery of Sample Spike should be between 80% to 120%. (**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
05 May 40	96.5	FC1a-S1	0.0	EC1a-S2	103.9
25-May-12	103.0	EC1a-M1	9.5	EWM5-B2	96.1

Note: (*) % Recovery of QC sample should be between 80% to 120%. (#) % Error of Sample Duplicate should be between 0% to 10%.

> % Recovery of Sample Spike should be between 80% to 120%. (**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
28-May-12	98.1	FC1a-S1	0.0	EC1a-S2	105.8
20-iviay-12	95.8	EC1a-M1	0.0	EWM5-B2	92.2

Note: (*) % Recovery of QC sample should be between 80% to 120%. (") % Error of Sample Duplicate should be between 0% to 10%. ([@]) % Recovery of Sample Spike should be between 80% to 120%.

([@])

% Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Compling Data	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
20 May 40	101.9	FC1a-S1	11.8**	EC1a-S2	98.0
30-May-12	101.2	EC1a-M1	0.0	EWM5-B2	106.0

Note: (*) % Recovery of QC sample should be between 80% to 120%. (#) % Error of Sample Duplicate should be between 0% to 10%. ([@]) % Recovery of Sample Spike should be between 80% to 120%.

> (**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	overy * Sample ID % E	% Error #	Sample ID	% Recovery [@]
4 1 40	92.6	FC1a-S1	9.5	EC1a-S2	97.9
1-Jun-12	98.8	EC1a-M1	0.0	EWM5-B2	106.4

Note: % Recovery of QC sample should be between 80% to 120%. % Error of Sample Duplicate should be between 0% to 10%. (#) % Recovery of Sample Spike should be between 80% to 120%.

% Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
4 1 40	103.3	FC1a-S1	10.5**	EC1a-S2	102.1
4-Jun-12	106.2	EC1a-M1	0.0	EWM5-B2	104.3

(*) % Recovery of QC sample should be between 80% to 120%. (") % Error of Sample Duplicate should be between 0% to 10%.

([@]) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
6-Jun-12	98.7	FC1a-S1	10.5**	EC1a-S2	94.2
0-Juli-12	96.6	EC1a-M1	0.0	EWM5-B2	93.8

% Recovery of QC sample should be between 80% to 120%. (*) % Error of Sample Duplicate should be between 0% to 10% (#) ([@]) % Recovery of Sample Spike should be between 80% to 120%.

> (**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [®]
8-Jun-12	105.7	FC1a-S1	0.0	EC1a-S2	106.1
0-Juli-12	101.2	EC1a-M1	13.3**	EWM5-B2	102.1

Note: % Recovery of QC sample should be between 80% to 120%. (*)

> % Error of Sample Duplicate should be between 0% to 10%. (#) ([@]) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Compling Data	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
11-Jun-12	106.2	FC1a-S1	0.0	EC1a-S2	91.7
11-Jun-12	104.8	EC1a-M1	0.0	EWM5-B2	97.9
Note:	(*)	% Recovery of QC sample should be between 80% to 120%.			
	#				

(*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.

(*) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
13-Jun-12	97.6	FC1a-S1	0.0	EC1a-S2	104.1
13-Juli-12	95.3	EC1a-M1	9.5	EWM5-B2	98.1

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.
(*) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Compling Data	QC Sample	Sample Duplicate		Sample	e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
15-Jun-12	108.0	FC1a-S1	0.0	EC1a-S2	105.8
15-3411-12	104.7	EC1a-M1	0.0	EWM5-B2	104.2

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.
(®) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [®]
18-Jun-12	101.8	FC1a-S1	0.0	EC1a-S2	104.2
10-Juli-12	97.4	EC1a-M1	13.3**	EWM5-B2	106.0

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.
(*) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Duplicate Sample Spike		e Spike
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]	
20-Jun-12	100.8	FC1a-S1	15.4**	EC1a-S2	102.0	
20-Juli-12	104.0	EC1a-M1	0.0	EWM5-B2	100.0	

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(#) % Error of Sample Duplicate should be between 0% to 10%.

($^{\otimes}$) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		e Duplicate Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
22-Jun-12	101.6	FC1a-S1	0.0	EC1a-S2	92.2
22-Juli-12	94 7	FC1a-M1	8.0	FWM5-B2	98.0

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.

(®) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
25-Jun-12	107.4	FC1a-S1	0.0	EC1a-S2	92.3
25-Juli-12	102.5	EC1a-M1	8.0	EWM5-B2	98.0

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.
(*) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample I	Duplicate		
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [®]
27-Jun-12	101.8	FC1a-S1	0.0	EC1a-S2	92.3
21-Juli-12	92.6	EC1a-M1	0.0	EWM5-B2	101.9

Note: (*) % Recovery of QC sample should be between 80% to 120%.

(*) % Error of Sample Duplicate should be between 0% to 10%.

(®) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

QA/C	<u>IC Results o</u>	t Laboratory A	Analysis of To	tal Suspended	l Solids
	QC Sample	Sample I	Duplicate	Sample	e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
	99.4	FC1a-S1	0.0	EC1a-S2	91.7
29-Jun-12	102.5	EC1a-M1	15.4**	EWM5-B2	100.0
Note:	(*)		ple should be between 8	ļ	
	(#)		licate should be betweer		
	([®])		Spike should be betwee		
	(**)			lue to sample results les	s than PQL.
	. ,	, ,			
	QC Sample		Г		e Spike
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
4-Jul-12	107.5	FC1a-S1	0.0	EC1a-S2	102.0
	104.8	EC1a-M1	13.3**	EWM5-B2	94.2
Note:	(*)	% Recovery of QC sam	ple should be between 8	30% to 120%.	
	(*)	% Error of Sample Dup	licate should be betweer	n 0% to 10%.	
	([@])	% Recovery of Sample	Spike should be betwee	n 80% to 120%.	
	(**)	% Error of Sample Dup	licate >10% but invalid d	lue to sample results les	s than PQL.
	QC Sample				
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
	93.1	FC1a-S1	10.5**	EC1a-S2	98.1
6-Jul-12	101.7	EC1a-M1	0.0	EWM5-B2	96.0
Noto:				ļ	90.0
Note:	(*)		ple should be between 8		
	(#)		licate should be between		
	([®])		Spike should be betwee		- the BOL
	(**)	% Error of Sample Dup	iicate >10% but invalid d	lue to sample results les	s than PQL.
	QC Sample				
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
0 1.1 40	102.3	FC1a-S1	10.5**	EC1a-S2	105.9
9-Jul-12	93.3	EC1a-M1	0.0	EWM5-B2	100.0
Note:	(*)	% Recovery of QC sam	ple should be between 8	30% to 120%.	
	(#)	% Error of Sample Dup	licate should be between	n 0% to 10%.	
	([®])	% Recovery of Sample	Spike should be betwee	n 80% to 120%.	
	(**)	% Error of Sample Dup	licate >10% but invalid d	lue to sample results les	s than PQL.
	QC Sample	Sample I	Duplicate	Sample	e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
	103.7	FC1a-S1	0.0	EC1a-S2	106.2
11-Jul-12	103.7	EC1a-M1	11.8**	EWM5-B2	98.0
Note:	(*)		ple should be between 8	I.	30.0
Note.	(*)		licate should be between		
			Spike should be between		
	([®]) (**)			lue to sample results les	s than POI
			ilicate > 1070 but irrvaild o		s thairi QL.
Sampling Date	QC Sample	Sample I	Duplicate	Sample	e Spike
Gampining Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [®]
13-Jul-12	100.4	FC1a-S1	10.5**	EC1a-S2	98.0
10 001 12	106.9	EC1a-M1	0.0	EWM5-B2	94.1
Note:	(*)	% Recovery of QC sam	ple should be between 8	30% to 120%.	
	(#)	% Error of Sample Dup	licate should be betweer	n 0% to 10%.	
	([@])	% Recovery of Sample	Spike should be betwee	n 80% to 120%.	
	(**)	% Error of Sample Dup	licate >10% but invalid d	lue to sample results les	s than PQL.
	QC Sample	Sample I	Duplicate	Sample	e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
	1		8.7		
16-Jul-12	106.5 103.5	FC1a-S1 EC1a-M1	0.0	EC1a-S2 EWM5-B2	100.0 104.1
Note:	(*)		ple should be between 8	I.	104.1
	(*)		licate should be between		
			Spike should be between		
	([®])			lue to sample results les	s than P∩I
	(**)	70 LITOI OI SAITIPIE DUP	iioate > 10 /o Dut IIIVallu 0	ide to sample results les	o man r QL.
Sampling Date	QC Sample	Sample I	Duplicate	Sample	e Spike
Jamping Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
	407.7	FO4 O4		F04 00	00.0

	()	,,,,			
Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
18-Jul-12	107.7	FC1a-S1	0.0	EC1a-S2	93.8
	105.5	EC1a-M1	8.7	EWM5-B2	100.0
Note:	(*)	% Recovery of QC sam	ple should be between 8	30% to 120%.	
	(*)	% Error of Sample Dupl	licate should be betweer	0% to 10%.	
	([®])	% Recovery of Sample Spike should be between 80% to 120%.			
	(**)	% Error of Sample Dupl	licate >10% but invalid d	ue to sample results les	s than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [®]
20-Jul-12	102.9	FC1a-S1	8.7	EC1a-S2	105.8
20-Jul-12	96.9	EC1a-M1	0.0	EWM5-B2	94.2
Note:	(*)	% Recovery of QC sample should be between 80% to 120%.			

% Error of Sample Duplicate should be between 0% to 10%. (#)

> ([@]) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Compling Data	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
25-Jul-12	105.5	FC1a-S1	11.8**	EC1a-S2	95.9
25-Jul-12	101.6	EC1a-M1	0.0	EWM5-B2	94.0

% Recovery of QC sample should be between 80% to 120%. Note: (*)

> % Error of Sample Duplicate should be between 0% to 10%. (")

([@]) % Recovery of Sample Spike should be between 80% to 120%. (**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL

Sample Duplicate Sample Spike QC Sample Sampling Date % Recovery Sample ID Sample ID % Error % Recovery

99.6 FC1a-S1 EC1a-S2 104.0 8.7 27-Jul-12 103.2 EWM5-B2 100.0 EC1a-M1 0.0

% Recovery of QC sample should be between 80% to 120% Note: (*)

> (") % Error of Sample Duplicate should be between 0% to 10%. ([@]) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

San	Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
	Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
	30-Jul-12	105.4	FC1a-S1	0.0	EC1a-S2	100.0
		101.9	EC1a-M1	8.0	EWM5-B2	93.6

Note: (*) % Recovery of QC sample should be between 80% to 120%.

> % Error of Sample Duplicate should be between 0% to 10% (")

([@]) % Recovery of Sample Spike should be between 80% to 120% (**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
1-Aug-12	94.0	FC1a-S1	0.0	EC1a-S2	98.1
1-Aug-12	94.6	EC1a-M1	8.7	EWM5-B2	103.8

Note (*) % Recovery of QC sample should be between 80% to 120%.

> (#) % Error of Sample Duplicate should be between 0% to 10%

([@]) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
2 Aug 12	92.5	FC1a-S1	0.0	EC1a-S2	91.8
3-Aug-12	107.8	EC1a-M1	8.0	EWM5-B2	106.0

Note: (*) % Recovery of QC sample should be between 80% to 120%. (#) % Error of Sample Duplicate should be between 0% to 10%.

([@]) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [®]
6-Aug-12	103.9	FC1a-S1	0.0	EC1a-S2	103.9
0-Aug-12	96.2	FC1a-M1	11.8**	FWM5-B2	103.9

% Recovery of QC sample should be between 80% to 120% Note: (*) % Error of Sample Duplicate should be between 0% to 10%. (#)

> ([@]) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
8-Aug-12	98.4	FC1a-S1	11.8**	EC1a-S2	100.0
	103.8	EC1a-M1	0.0	EWM5-B2	94.0

Note: (*) % Recovery of QC sample should be between 80% to 120%.

> (") % Error of Sample Duplicate should be between 0% to 10%.

([@]) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

	to recount o	Laboratory F	maryors or ro	a. Cacpenace	- Condo		
Complian D.	QC Sample	Sample I	Duplicate	Sample	e Spike		
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]		
40.4 12	98.1	FC1a-S1	0.0	EC1a-S2	95.8		
10-Aug-12	106.1	EC1a-M1	0.0	EWM5-B2	94.2		
Note:	(*)		ple should be between 8		· · · · · · · · · · · · · · · · · · ·		
11010.	(#)		licate should be between				
	([®])		Spike should be between				
	(**)		licate >10% but invalid d		s than PQL.		
	QC Sample	Sample I	Duplicate	Sample	e Spike		
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]		
	95.4	FC1a-S1	0.0	EC1a-S2	103.9		
13-Aug-12	95.5	EC1a-M1	9.5	EWM5-B2	105.7		
Note:		100.7					
Note: (*) % Recovery of QC sample should be between 80% to 120%. (*) % Error of Sample Duplicate should be between 0% to 10%.							
	([®])		Spike should be betwee				
	(**)		licate >10% but invalid d		s than PQL.		
	QC Sample	Sample I	Duplicate	Sample	e Spike		
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]		
	97.4	FC1a-S1	0.0	EC1a-S2	96.2		
15-Aug-12	107.9	EC1a-M1	0.0	EWM5-B2	108.0		
Note:	(*)		ple should be between 8		100.0		
Note.							
	(*) (@)		licate should be betweer Spike should be betwee				
	([®])	, .	•		s than PO		
	(**)	∞ Error or Sample Dup	licate >10% but invalid d	ue to sample résults les	s man PQL.		
Sampling Date	QC Sample	Sample I	Duplicate	Sample	e Spike		
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]		
47 Aug 40	104.5	FC1a-S1	0.0	EC1a-S2	92.2		
17-Aug-12	105.6	EC1a-M1	10.5**	EWM5-B2	103.9		
Note:	(*)	% Recovery of QC sam	ple should be between 8	30% to 120%.	I		
	(*)	•	licate should be betweer				
	([®])	% Recovery of Sample	Spike should be betwee	n 80% to 120%.			
	(**)		icate >10% but invalid d		s than PQL.		
	T						
Sampling Date	QC Sample		Duplicate #		e Spike		
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery		
20-Aug-12	96.5	FC1a-S1	0.0	EC1a-S2	92.3		
	94.7	EC1a-M1	8.7	EWM5-B2	104.1		
Note:	(*)	% Recovery of QC sam	ple should be between 8	30% to 120%.			
	(#)	% Error of Sample Dup	licate should be betweer	1 0% to 10%.			
	([®])	% Recovery of Sample	Spike should be betwee	n 80% to 120%.			
	(**)	% Error of Sample Dup	licate >10% but invalid d	ue to sample results les	s than PQL.		
	QC Sample	Sample I	Duplicate	e Sample Spike			
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [®]		
	106.8	FC1a-S1	0.0	EC1a-S2	102.1		
22-Aug-12	99.4	EC1a-M1	9.5	EWM5-B2	108.0		
Note:	(*)		ple should be between 8		100.0		
11010.			licate should be between				
	(*) (®)		Spike should be between				
					o than BOI		
	(**)	75 Error or Sample Dup	licate >10% but invalid d	ao to sample results les	o man r QL.		
Sampling Date	QC Sample	Sample I	Duplicate	Sample	e Spike		
Jamping Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]		
24-Aug-12	96.2	FC1a-S1	0.0	EC1a-S2	94.1		
24-Aug-12	94.7	EC1a-M1	0.0	EWM5-B2	100.0		
Note:	(*)	% Recovery of QC sam	ple should be between 8	80% to 120%.			
	(#)	% Error of Sample Dup	licate should be betweer	n 0% to 10%.			
	([®])		Spike should be betwee				
	(**)		icate >10% but invalid d		s than PQL.		
	1						
Sampling Date	QC Sample		Duplicate - #		e Spike		
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]		
27-Aug-12	95.2	FC1a-S1	0.0	EC1a-S2	96.2		
	102.7	EC1a-M1	0.0	EWM5-B2	102.0		
Note:	(*)	% Recovery of QC sam	ple should be between 8	80% to 120%.			
	(#)	% Error of Sample Dup	licate should be betweer	1 0% to 10%.			
	(@)	% Recovery of Sample	Spike should be between	n 80% to 120%			

% Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

% Recovery of Sample Spike should be between 80% to 120%.

(**)

Sampling Date	QC Sample	Sample I	Duplicate	Sample	Spike
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
20 10 12	98.6	FC1a-S1	0.0	EC1a-S2	98.0
29-Aug-12	102.9	EC1a-M1	10.5**	EWM5-B2	106.0
Note:	(*)	% Recovery of QC sam	ple should be between 8	30% to 120%.	
	(#)	% Error of Sample Dup	icate should be betweer	0% to 10%.	
	([®])	% Recovery of Sample	Spike should be betwee	n 80% to 120%.	
	(**)	% Error of Sample Dup	icate >10% but invalid d	ue to sample results less	s than PQL.
	00.0	Camalal	D. indianta	Camanla	Cailea
Sampling Date	QC Sample	Sample I	•	Sample	
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery ®
31-Aug-12	98.4	FC1a-S1	0.0	EC1a-S2	102.1
Nete	98.8	EC1a-M1	11.8**	EWM5-B2	96.1
Note:	(*)	•	ple should be between 8		
	([#])		icate should be between		
	([®])		Spike should be betwee		than BOI
	(**)	% Entor or Sample Dup	icate > 10% but invalid u	ue to sample results less	s triair PQL.
Sampling Date	QC Sample	Sample I	•	Sample	•
Camping Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
3-Sep-12	107.5	FC1a-S1	0.0	EC1a-S2	102.0
0 06p-12	93.2	EC1a-M1	8.0	EWM5-B2	98.0
Note:	(*)	% Recovery of QC same	ple should be between 8	30% to 120%.	
	(*)	% Error of Sample Dup	icate should be betweer	n 0% to 10%.	
	([®])	% Recovery of Sample	Spike should be betwee	n 80% to 120%.	
	(**)	% Error of Sample Dup	icate >10% but invalid d	ue to sample results less	s than PQL.
	QC Sample	Sample I	Duplicate	Sample	e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [®]
	105.5	FC1a-S1	0.0	EC1a-S2	100.0
5-Sep-12	98.3	EC1a-M1	0.0	EWM5-B2	96.0
Note:	(*)		ple should be between 8		00.0
	(#)		icate should be betweer		
	([®])		Spike should be betwee		
	(**)		•	ue to sample results less	s than PQL.
	I .	Camania	S I' 1 -		
	QC Sample				0-11-
Sampling Date			Duplicate #		e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
Sampling Date 7-Sep-12	% Recovery * 107.7	Sample ID FC1a-S1	% Error # 0.0	Sample ID EC1a-S2	% Recovery [@] 98.1
7-Sep-12	% Recovery * 107.7 104.0	Sample ID FC1a-S1 EC1a-M1	% Error # 0.0 0.0	Sample ID EC1a-S2 EWM5-B2	% Recovery [@]
	% Recovery * 107.7 104.0 (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam	% Error # 0.0 0.0 0.0 ple should be between 8	Sample ID EC1a-S2 EWM5-B2 80% to 120%.	% Recovery [@] 98.1
7-Sep-12	% Recovery * 107.7 104.0 (*) (#)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup	% Error # 0.0 0.0 ple should be between 8 icate should be between	Sample ID EC1a-S2 EWM5-B2 30% to 120%.	% Recovery [@] 98.1
7-Sep-12	% Recovery * 107.7 104.0 (*) (*) (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample	% Error # 0.0 0.0 ple should be between 8 icate should be between Spike should be between	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 1 0% to 10%. 10 80% to 120%.	% Recovery [®] 98.1 95.9
7-Sep-12	% Recovery * 107.7 104.0 (*) (#)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample	% Error # 0.0 0.0 ple should be between 8 icate should be between Spike should be between	Sample ID EC1a-S2 EWM5-B2 30% to 120%.	% Recovery [®] 98.1 95.9
7-Sep-12 Note:	% Recovery * 107.7 104.0 (*) (*) (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be betweer Spike should be betweer spike should be betweer cate >10% but invalid d	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 1 0% to 10%. 10 80% to 120%.	% Recovery ® 98.1 95.9
7-Sep-12	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup	% Error # 0.0 0.0 ple should be between 8 icate should be betweer Spike should be betweer spike should be betweer	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. In 80% to 120%. ue to sample results less	% Recovery [®] 98.1 95.9
7-Sep-12 Note: Sampling Date	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample bup % Error of Sample Dup	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be betweer Spike should be betweer spike should be betweer cate >10% but invalid d	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 1 0% to 10%. In 80% to 120%. Use to sample results less	% Recovery ® 98.1 95.9 s than PQL.
7-Sep-12 Note:	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID Sample ID FC1a-S1 EC1a-M1	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be betweer 8 spike should be betweer solution should be betweer \$00 but invalid do Duplicate % Error # 0.0 8.7	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. In 80% to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2	% Recovery [®] 98.1 95.9 s than PQL. e Spike % Recovery [®]
7-Sep-12 Note: Sampling Date	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) QC Sample % Recovery * 93.5 100.4 (*)	Sample ID FC1a-S1 EC1a-M1 Recovery of QC sam Fror of Sample Dup Recovery of Sample Dup Sample ID Sample ID FC1a-S1 EC1a-M1 Recovery of QC sam	% Error # 0.0 0.0 ple should be between 8 icate should be betweer 8 spike should be betweer 10% but invalid d Duplicate % Error # 0.0 8.7 ple should be between 8	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. Sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%.	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2
7-Sep-12 Note: Sampling Date 10-Sep-12	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) QC Sample % Recovery * 93.5 100.4 (*) (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup	% Error # 0.0 0.0 ple should be between 8 icate should be betweer 8 spike should be betweer 10% but invalid do 20 plicate % Error # 0.0 8.7 ple should be between 8 icat	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 % to 10%. 10 80% to 120%. Sample ID EC1a-S2 EWM5-B2 30% to 120%.	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2
7-Sep-12 Note: Sampling Date 10-Sep-12	% Recovery * 107.7 104.0 (*) (*) (*) (*) (**) QC Sample % Recovery * 93.5 100.4 (*) (*) (*) (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be betweer 8 spike should be betweer 10% but invalid do 10 publicate % Error # 0.0 8.7 ple should be between 8 icate should be betweer 8 icate should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be between 8 spike should be 9 spike should be 9 spike should be 9 spike should be 9 spike should be 9 spike should be 9 spike should be 9 spike should be 9 spike should be 9 spike should 9 spike should 9 spike should 9 spike spike 9 s	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10% to 10%.	% Recovery [®] 98.1 95.9 s than PQL. e Spike % Recovery [®] 94.2 94.1
7-Sep-12 Note: Sampling Date 10-Sep-12	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) QC Sample % Recovery * 93.5 100.4 (*) (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be betweer 8 spike should be betweer 10% but invalid do 10 publicate % Error # 0.0 8.7 ple should be between 8 icate should be betweer 8 icate should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be betweer 8 spike should be between 8 spike should be 9 spike should be 9 spike should be 9 spike should be 9 spike should be 9 spike should be 9 spike should be 9 spike should be 9 spike should be 9 spike should 9 spike should 9 spike should 9 spike spike 9 s	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. Sample ID EC1a-S2 EWM5-B2 30% to 120%.	% Recovery [®] 98.1 95.9 s than PQL. e Spike % Recovery [®] 94.2 94.1
7-Sep-12 Note: Sampling Date 10-Sep-12 Note:	% Recovery * 107.7 104.0 (*) (*) (*) (*) (**) QC Sample % Recovery * 93.5 100.4 (*) (*) (*) (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be betweer Spike should be betweer some should be betweer 10% but invalid do Duplicate % Error # 0.0 8.7 ple should be betweer 8 icate should be betweer 8 icate should be betweer Spike should be betweer Spike should be betweer icate >10% but invalid do	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10% to 10%.	% Recovery ® 98.1 95.9 s than PQL. e Spike % Recovery ® 94.2 94.1
7-Sep-12 Note: Sampling Date 10-Sep-12	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) QC Sample % Recovery * 93.5 100.4 (*) (*) (*) (*) (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be betweer Spike should be betweer sociate >10% but invalid do Duplicate % Error # 0.0 8.7 ple should be betweer 8 icate should be betweer Spike should be betweer Spike should be betweer sociate >10% but invalid do Duplicate	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. 10 EC1a-S2 EWM5-B2 30% to 120%. 10 to 120%. 10 to 10%.	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2 94.1 s than PQL.
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) QC Sample % Recovery * 93.5 100.4 (*) (*) (*) (*) (*) (C) (*) (*) (C) (*) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be betweer Spike should be betweer some should be betweer 10% but invalid do Duplicate % Error # 0.0 8.7 ple should be betweer 8 icate should be betweer 8 icate should be betweer Spike should be betweer Spike should be betweer icate >10% but invalid do	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. In 80% to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. In 80% to 10%. In 80% to 120%. Ue to sample results less Sample ID EC1a-S2 EWM5-B2 Sometime in the sample	% Recovery ® 98.1 95.9 s than PQL. e Spike % Recovery ® 94.2 94.1
7-Sep-12 Note: Sampling Date 10-Sep-12 Note:	% Recovery *	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup Sample ID Sample ID	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be betweer Spike should be betweer sociate >10% but invalid do Duplicate % Error # 0.0 8.7 ple should be betweer 8 icate should be betweer 8 icate should be betweer 10 icate should be betweer 10 icate >10% but invalid do Duplicate % Error #	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. In 80% to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10% to 10%. 10 we to sample results less Sample ID EC1a-S2 EWM5-B2 Sow to 120%. 10% to 10%. 10 Sample ID Sample ID	% Recovery ® 98.1 95.9 s than PQL. e Spike % Recovery ® 94.2 94.1 s than PQL. e Spike % Recovery ®
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date	% Recovery *	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup Sample ID Sample ID FC1a-S1 EC1a-M1	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be betweer 8 icate >10% but invalid d Duplicate % Error # 0.0 8.7 ple should be between 8 icate should be between 8 icate should be betweer 8 icate should be betweer 10 icate >10% but invalid d Duplicate % Error # 0.0 0.0 0.0 0.0	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 % to 10%. 10 80% to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 % to 10%. 10 % to 10%. ue to sample results less Sample ID EC1a-S2 Sample ID EC1a-S2 EWM5-B2	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2 94.1 s than PQL. Spike % Recovery ® 102.1
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date 12-Sep-12	% Recovery *	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be betweer 8 spike should be betweer 10% but invalid do 10 publicate % Error # 0.0 8.7 ple should be between 8 icate should be betweer 8 pike should be betweer 8 pike should be betweer 10 icate sho	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 80% to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%.	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2 94.1 s than PQL. Spike % Recovery ® 102.1
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date 12-Sep-12	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 Sample ID FC1a-S1 EC1a-M1	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 8.7 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 30mple ID EC1a-S2 EWM5-B2 30mple ID EC1a-S2 EWM5-B2 30mple ID EC1a-S2 EWM5-B2	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2 94.1 s than PQL. Spike % Recovery ® 102.1
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date 12-Sep-12	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dup % Reror of Sample Dup % Reror of Sample Dup % Reror of Sample Dup FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be between 8 spike should be between 8 icate >10% but invalid do Duplicate % Error # 0.0 8.7 ple should be between 8 icate should be between 8 icate >10% but invalid do Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between 8 icate should be between 8 icate >10% but invalid do Duplicate % Error # 0.0 9.5 ple should be between 8 icate sh	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 30mple ID EC1a-S2 EWM5-B2 30mple ID EC1a-S2 EWM5-B2 30mple ID EC1a-S2 EWM5-B2	% Recovery [®] 98.1 95.9 s than PQL. e Spike % Recovery [®] 94.2 94.1 s than PQL. e Spike % Recovery [®] 102.1 92.3
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date 12-Sep-12	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) QC Sample % Recovery * 93.5 100.4 (*) (*) (*) (*) (*) (*) QC Sample % Recovery * 104.2 93.5 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dup % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 8.7 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 10% but invalid d	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 % to 10%. 10 80% to 120%. 10 EC1a-S2 EWM5-B2 30% to 120%. 10 % to 10%. 10 % to 10%. 10 % to 10%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 10%. 10 % to 10%. 10 % to 10%. 10 % to 10%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 10%. 10 % to 120%.	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2 94.1 s than PQL. Spike % Recovery ® 102.1 92.3
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date 12-Sep-12	% Recovery *	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of GC sam % Error of Sample Dup % Recovery of Sample Dup	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 8.7 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate >10% but invalid d Duplicate	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 % to 10%. 10 80% to 120%. 10 EC1a-S2 EWM5-B2 30% to 120%. 10 % to 10%. 10 % to 10%. 10 % to 10%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 10%. 10 % to 10%. 10 % to 10%. 10 % to 10%. 10 % to 10%. 10 % to 10%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 120%. 10 % to 10%. 10 % to 10%. 10 % to 10%. 10 % to 10%. 11 Sample ID EC1a-S2 EWM5-B2 EXIT IN IN IN IN IN IN IN IN IN IN IN IN IN	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2 94.1 s than PQL. Spike % Recovery ® 102.1 92.3
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date 12-Sep-12 Note:	% Recovery *	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 8.7 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate >10% but invalid d Duplicate	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 % to 10%. 10 80% to 120%. 10 Le to sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 % to 120%. 10 w to 10%. 10 sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 w to 10%. 10 w to 10%. 10 w to 10%. 10 w to 10%. 10 w to 10%. 10 w to 120%. 10 w to 120%. 10 w to 120%. 10 w to 120%. 10 w to 120%. 10 w to 120%. 10 w to 120%. 10 w to 10%. 11 Sample ID Sample Sample ID Sample Sample ID	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2 94.1 s than PQL. Spike % Recovery ® 102.1 92.3
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date 12-Sep-12 Note:	% Recovery *	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID Sample ID FC1a-S1	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be between 8 spike should be between 8 icate >10% but invalid do Duplicate % Error # 0.0 8.7 ple should be between 8 icate should be between 8 icate should be between 8 icate >10% but invalid do Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 10 icate	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. 10 EC1a-S2 EWM5-B2 30% to 120%. 10% to 120%. 10% to 120%. 10% to 120%. 10% to 120%. 10% to 120%. 10% to 10%. 10% to 10%. 10% to 10%. 10% to 10%. 10% to 10%. 10% to 10%. 10% to 10%. 10% to 10%. 10% to 120%.	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2 94.1 s than PQL. Spike % Recovery ® 102.1 92.3 s than PQL.
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date 12-Sep-12 Note: Sampling Date 14-Sep-12	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) (*) QC Sample % Recovery * 93.5 100.4 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be between 8 spike should be between 8 icate >10% but invalid do Duplicate % Error # 0.0 8.7 ple should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate should be between 10 icate shou	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 % to 10%. 10 80% to 120%. 10 Le to sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 % to 120%. 10 % to 120%. 10 we to sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 we to 10%. 10 we to sample results less Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10 we to 10%. 10 we to 10%. 10 sample ID EC1a-S2 EWM5-B2 Sample ID EC1a-S2 EWM5-B2 Sample ID EC1a-S2 EWM5-B2 Sample ID EC1a-S2 EWM5-B2	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2 94.1 s than PQL. Spike % Recovery ® 102.1 92.3
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date 12-Sep-12 Note:	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) QC Sample % Recovery * 93.5 100.4 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample ID FC1a-S1 Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 8.7 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between 8 icate should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 10.5** 0.0 ple should be between 8 icate should be 8 icate shoul	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%.	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2 94.1 s than PQL. Spike % Recovery ® 102.1 92.3 s than PQL.
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date 12-Sep-12 Note: Sampling Date 14-Sep-12	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) (*) QC Sample % Recovery * 93.5 100.4 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 8.7 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate >10% but invalid d Duplicate % Error # 10.5** 0.0 ple should be between 8 icate should sho	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. 10 90% to 100%.	% Recovery ® 98.1 95.9 s than PQL. Spike % Recovery ® 94.2 94.1 s than PQL. Spike % Recovery ® 102.1 92.3 s than PQL.
7-Sep-12 Note: Sampling Date 10-Sep-12 Note: Sampling Date 12-Sep-12 Note: Sampling Date 14-Sep-12	% Recovery * 107.7 104.0 (*) (*) (*) (*) (*) QC Sample % Recovery * 93.5 100.4 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of QC sam % Error of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup % Recovery of Sample Dup	% Error # 0.0 0.0 0.0 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 8.7 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate >10% but invalid d Duplicate % Error # 10.5** 0.0 ple should be between 8 icate should be between 8 ic	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. 10 80% to 120%. 10 90% to 100%.	% Recovery ® 98.1 95.9 95.9 s than PQL. e Spike % Recovery ® 94.2 94.1 e Spike % Recovery ® 102.1 92.3 s than PQL. e Spike % Recovery ® 100.1 92.3 e Spike % Recovery ® 100.0 101.9

% Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample [•	Sampl	e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
17-Sep-12	96.6	FC1a-S1	0.0	EC1a-S2	97.9
17-3ep-12	94.8	EC1a-M1	0.0	EWM5-B2	102.1
Note:	(*)	% Recovery of QC sam	ple should be between 8	30% to 120%.	•
	(*)	% Error of Sample Dupl	icate should be betweer	0% to 10%.	
	([®])	% Recovery of Sample	Spike should be betwee	n 80% to 120%.	
	(**)	% Error of Sample Dupl	icate >10% but invalid d	ue to sample results les	ss than PQL.
		· · ·			
Sampling Date	QC Sample	Sample [e Spike
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
19-Sep-12	101.8	FC1a-S1	0.0	EC1a-S2	98.0
. о оср	92.1	EC1a-M1	8.7	EWM5-B2	102.0
Note:	(*)	% Recovery of QC sam	ple should be between 8	30% to 120%.	
	(*)	% Error of Sample Dupl	icate should be betweer	0% to 10%.	
	([®])	% Recovery of Sample	Spike should be betwee	n 80% to 120%.	
	(**)	% Error of Sample Dupl	icate >10% but invalid d	ue to sample results les	ss than PQL.
	OC Cample	Comple F	Qualicata	Comp	o Cniko
Sampling Date	QC Sample	Sample D	•	•	e Spike
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [©]
21-Sep-12	97.6	FC1a-S1	0.0	EC1a-S2	105.7
,	105.8	EC1a-M1	9.5	EWM5-B2	106.2
Note:	(*)	% Recovery of QC sam	ple should be between 8	30% to 120%.	
	(*)	% Error of Sample Dupl	icate should be betweer	0% to 10%.	
	([®])	% Recovery of Sample	Spike should be betwee	n 80% to 120%.	
	(**)	% Error of Sample Dupl	icate >10% but invalid d	ue to sample results les	ss than PQL.
	00.0	Cample F	Dunlingto	Caman	a Cailea
Sampling Date	QC Sample	Sample D	•		e Spike
	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
24-Sep-12	93.0	FC1a-S1	10.5**	EC1a-S2	94.2
	92.6	EC1a-M1	0.0	EWM5-B2	96.0
Note:	(*)	% Recovery of QC sam	ple should be between 8	30% to 120%.	
Note:	(*) (#)	% Recovery of QC sam % Error of Sample Dupl			
Note:	(*)	% Error of Sample Dupl	icate should be betweer	0% to 10%.	
Note:	([#])	% Error of Sample Dupl % Recovery of Sample	icate should be betweer Spike should be betwee	n 0% to 10%. n 80% to 120%.	es than PQL.
Note:	(*) (®) (**)	% Error of Sample Dupl % Recovery of Sample % Error of Sample Dupl	icate should be betweer Spike should be betwee icate >10% but invalid d	n 0% to 10%. n 80% to 120%. ue to sample results les	
	(*) (®) (**) QC Sample	% Error of Sample Dupl % Recovery of Sample % Error of Sample Dupl Sample D	icate should be betweer Spike should be betwee icate >10% but invalid d Duplicate	n 0% to 10%. n 80% to 120%. ue to sample results les	e Spike
	(*) (®) (**)	% Error of Sample Dupl % Recovery of Sample % Error of Sample Dupl	icate should be betweer Spike should be betwee icate >10% but invalid d	n 0% to 10%. n 80% to 120%. ue to sample results les	
Sampling Date	(*) (®) (**) QC Sample	% Error of Sample Dupl % Recovery of Sample % Error of Sample Dupl Sample D	icate should be betweer Spike should be betwee icate >10% but invalid d Duplicate	n 0% to 10%. n 80% to 120%. ue to sample results les Sampl	e Spike
	(*) (*) (**) QC Sample % Recovery *	% Error of Sample Dupl % Recovery of Sample % Error of Sample Dupl Sample I Sample ID	icate should be betweer Spike should be betweer icate >10% but invalid d Duplicate % Error #	n 0% to 10%. n 80% to 120%. ue to sample results les Sampl Sample ID	e Spike % Recovery [®]
Sampling Date 26-Sep-12	(*) (*) (**) QC Sample % Recovery * 97.4	% Error of Sample Dupl % Recovery of Sample % Error of Sample Dupl Sample ID FC1a-S1	icate should be betweer Spike should be betweer icate >10% but invalid d Duplicate % Error # 0.0 9.5	n 0% to 10%. n 80% to 120%. ue to sample results les Sampl Sample ID EC1a-S2 EWM5-B2	e Spike % Recovery [®] 100.0
Sampling Date 26-Sep-12	(*) (*) (**) QC Sample % Recovery * 97.4 94.6	% Error of Sample Dupl % Recovery of Sample % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1	icate should be betweer Spike should be betweer icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8	n 0% to 10%. n 80% to 120%. ue to sample results les Sampl Sample ID EC1a-S2 EWM5-B2 30% to 120%.	e Spike % Recovery [®] 100.0
Sampling Date 26-Sep-12	(*) (*) (**) QC Sample % Recovery * 97.4 94.6 (*)	% Error of Sample Dupl % Recovery of Sample 9 % Error of Sample Dupl Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam	icate should be betweer Spike should be betweer icate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be betweer	sample ID EC1a-S2 EWM5-B2 30% to 10%.	e Spike % Recovery [®] 100.0
Sampling Date 26-Sep-12	(*) (*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*)	% Error of Sample Dupl % Recovery of Sample 2 % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl	icate should be betweer Spike should be betweer scate >10% but invalid d Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be betweer Spike should be between	sample ID EC1a-S2 EWM5-B2 80% to 120%.	e Spike % Recovery ® 100.0 105.9
Sampling Date 26-Sep-12	(*) (*) (*) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*)	% Error of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl	icate should be between Spike should be between cate >10% but invalid do Duplicate % Error # 0.0 9.5 ple should be between 8 cate should be between Spike should be spike should be between Spike should be between Spike should be between Spike should be spike should be between Spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should b	n 0% to 10%. n 80% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 80% to 120%. n 80% to 120%. ue to sample results les	e Spike % Recovery ® 100.0 105.9 ss than PQL.
Sampling Date 26-Sep-12 Note:	(*) (*) (*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) (*) QC Sample	% Error of Sample Dupl % Recovery of Sample : % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample :	icate should be between Spike should be between cate >10% but invalid of Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between Spike should be betwe	n 0% to 10%. n 80% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 80% to 120%. n 80% to 120%. ue to sample results les	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike
Sampling Date 26-Sep-12 Note:	(*) (*) (*) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*)	% Error of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl	icate should be between Spike should be between cate >10% but invalid do Duplicate % Error # 0.0 9.5 ple should be between 8 cate should be between Spike should be spike should be between Spike should be between Spike should be between Spike should be spike should be between Spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should be spike should b	n 0% to 10%. n 80% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 00% to 120%. n 80% to 120%. ue to sample results les Sample ID	e Spike % Recovery ® 100.0 105.9 ss than PQL.
Sampling Date 26-Sep-12 Note: Sampling Date	(*) (*) (*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) (*) QC Sample	% Error of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl	icate should be between Spike should be between cate >10% but invalid of Duplicate % Error # 0.0 9.5 ple should be between 8 icate should be between Spike should be betwe	n 0% to 10%. n 80% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 80% to 120%. n 80% to 10%. n 80% to 120%. ue to sample results les Sample	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike
Sampling Date 26-Sep-12 lote:	(*) (*) (*) (*) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) (*) QC Sample % Recovery *	% Error of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl Sample ID	icate should be between Spike	n 0% to 10%. n 80% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 00% to 120%. n 80% to 120%. ue to sample results les Sample ID	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ®
Sampling Date 26-Sep-12 lote: Sampling Date 28-Sep-12	(*) (*) (*) (*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8	% Error of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1	icate should be between Spike	n 0% to 10%. n 80% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 80% to 120%. n 80% to 120%. ue to sample results les Sample Sample ID EC1a-S2 EWM5-B2	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0
Sampling Date 26-Sep-12 lote: Sampling Date 28-Sep-12	(*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*)	% Error of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1	icate should be between Spike should be spike should be spike should be spike spike should be spike spike should spike s	sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 Sample ID EC1a-S2 EWM5-B2	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12	(*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*)	% Error of Sample Dupl % Recovery of Sample : % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample : Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample : % Error of Sample Dupl	icate should be between Spike should be spike should be between Spike should be spike should be spike should be spike should be spike should be spike spike should be spike spike spike should be spik	sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%.	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12	(*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	% Error of Sample Dupl % Recovery of Sample : % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample ID Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl	icate should be between Spike	sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%.	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12	(*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*)	% Error of Sample Dupl % Recovery of Sample IV % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl	icate should be between Spike	sample ID EC1a-S2 EWM5-B2 00% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 00% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 00% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 00% to 120%. uo to 10%. n 80% to 120%. uo to 10%. n 80% to 120%. uo to 10%. n 80% to 120%. uu to sample results les uu to sample results les	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1 ss than PQL.
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12 Note:	(*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	% Error of Sample Dupl % Recovery of Sample : % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample ID Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl	icate should be between Spike	sample ID EC1a-S2 EWM5-B2 00% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 00% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 00% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 00% to 120%. uo to 10%. n 80% to 120%. uo to 10%. n 80% to 120%. uo to 10%. n 80% to 120%. uu to sample results les uu to sample results les	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12 Note:	(*) (*) (*) (*) (*) (**) QC Sample % Recovery * 94.6 (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) (*) (*)	% Error of Sample Dupl % Recovery of Sample IV % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl	icate should be between Spike	sample ID EC1a-S2 EWM5-B2 00% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 00% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 00% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 00% to 120%. uo to 10%. n 80% to 120%. uo to 10%. n 80% to 120%. uo to 10%. n 80% to 120%. uu to sample results les uu to sample results les	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1 ss than PQL.
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12 Note:	(*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	% Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sample ID % Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample ID % Recovery of Sample ID % Error of Sample Dupl % Error of Sample Dupl	icate should be between Spike	sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID Sample ID Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample results less	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12	(*) (*) (*) (*) (*) (**) QC Sample % Recovery * 94.6 (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	% Error of Sample Dupl % Recovery of Sample II % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl % Error of Sample Dupl Sample ID	icate should be between Spike Spike Should Be between Spike Spike Should Be Between Spike Spike Should Be Between Spike Spike Should Be Between Spike Spike Should Be Between Spike Spike Should Be Between Spike Spike Should Be Between Spike Spike Should Be Between Spike Spike Should Be Between Spike	sample ID EC1a-S2 EWM5-B2 Sample results les Sample ID EC1a-S2 EWM5-B2 Sow to 120%. 10% to 10%. 10 sample results les Sample ID EC1a-S2 EWM5-B2 Sow to 120%. 10% to 10%. 10% to 10%. 10% to 10%. 10% to 10%. 10% to 10%. 10% to 10%. 10% to 10%. 10% to 120%. 10% to 120%. 10% to 120%. 10% to 10%.	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1 ss than PQL. e Spike
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12 Note: Sampling Date 3-Oct-12	(*) (**) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) (*) (*) QC Sample % Recovery *	% Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sample Dupl % Recovery of Sample Dupl % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Error of Sample Dupl % Error of Sample Dupl Sample ID Sample ID FC1a-S1	icate should be between Spike	sample ID EC1a-S2 EWM5-B2 Sample ID Sample results les Sample ID EC1a-S2 EWM5-B2 Sow to 120%. The sample results les Sample ID EC1a-S2 EWM5-B2 Sow to 120%. The sample results les Sample ID EC1a-S2 EWM5-B2 Sow to 120%. The sample ID EC1a-S2 EWM5-B2 Sow to 120%. The sample results les Sample ID EC1a-S2 EWM5-B2 Sow to 120%. The sample results les Sample ID EC1a-S2 EWM5-B2 Sample ID EC1a-S2 EWM5-B2	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1 ss than PQL. e Spike % Recovery ® 94.0
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12 Note: Sampling Date 3-Oct-12	(*) (**) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) QC Sample % Recovery * 94.0 96.6 (*)	% Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample ID Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl	icate should be between Spike should be spike should be between Spike should be spike should be spike should be spike should spike should spike should spike should spike should spike spike spike should spike sp	sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%.	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1 ss than PQL. e Spike % Recovery ® 94.0
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12 Note: Sampling Date 3-Oct-12	(*) (**) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	% Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl	icate should be between Spike should be spike should be between Spike should be spike should be spike spike should be spike spike should spike s	sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample ID EC1a-S2 EWM5-B2	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1 ss than PQL. e Spike % Recovery ® 94.0
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12 Note: Sampling Date 3-Oct-12	(*) (**) (**) (**) (**) (**) (**) (**)	% Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample ID Recovery of Sample Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Sample ID % Recovery of Sample Sample ID	icate should be between Spike should sho	sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les EC1a-S2 EWM5-B2 30% to 120%. ue to sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les EWM5-B2 30% to 120%. ue to sample results les EWM5-B2 30% to 120%. ue to sample results les EWM5-B2 30% to 10%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 10%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%.	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1 ss than PQL. e Spike % Recovery ® 104.0 94.3
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12 Note: Sampling Date 3-Oct-12	(*) (**) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	% Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl	icate should be between Spike should sho	sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les EC1a-S2 EWM5-B2 30% to 120%. ue to sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results les EWM5-B2 30% to 120%. ue to sample results les EWM5-B2 30% to 120%. ue to sample results les EWM5-B2 30% to 10%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 10%. ue to sample results les Sample ID EC1a-S2 EWM5-B2 30% to 120%.	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1 ss than PQL. e Spike % Recovery ® 104.0 94.3
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12 Note: Sampling Date 3-Oct-12 Note:	(*) (**) (**) (**) (**) (**) (**) (**)	% Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample ID Recovery of Sample Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Sample ID % Recovery of Sample Sample ID	icate should be between Spike should should be between Spike should be between Spike should	sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 10%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1 ss than PQL. e Spike % Recovery ® 104.0 94.3
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12 Note: Sampling Date 3-Oct-12 Note:	(*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*	% Error of Sample Dupl % Recovery of Sample ID % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dupl % Error of Sample Dupl % Error of Sample Dupl % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl	icate should be between Spike should should be between Spike should be between Spike should	sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 10%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1 ss than PQL. e Spike % Recovery ® 94.0 94.3
Sampling Date 26-Sep-12 Note: Sampling Date 28-Sep-12 Note: Sampling Date 3-Oct-12 Note:	(*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*	% Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sample ID Sample ID Sample ID Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dupl % Error of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample ID % Recovery of Sample Dupl % Recovery of Sample ID % Error of Sample Dupl % Recovery of Sample ID Sample ID Sample ID	icate should be between Spike should should be between Spike should be between Spike should	sample ID EC1a-S2 EWM5-B2 Sow to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 Sow to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 Sow to 10%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 Sow to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 Sow to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 Sow to 10%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 Sow to 120%. ue to sample results less Sample ID EC1a-S2 EWM5-B2 Sow to 120%. ue to sample results less Sample ID Sample ID Sample ID Sample ID Sample ID	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1 ss than PQL. e Spike % Recovery ® 94.0 94.3 ss than PQL. e Spike % Recovery ® % Recovery ®
Sampling Date 28-Sep-12 Note: Sampling Date 3-Oct-12 Note:	(*) (**) QC Sample % Recovery * 97.4 94.6 (*) (*) (*) (*) (*) QC Sample % Recovery * 99.8 104.2 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*	% Error of Sample Dupl % Recovery of Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sample ID Sample ID Sample ID Sample ID Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dupl % Error of Sample Dupl % Error of Sample Dupl Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample ID FC1a-S1 EC1a-M1 % Recovery of Sample Dupl % Error of Sample Dupl % Error of Sample ID FC1a-S1 EC1a-M1 % Recovery of QC sam % Error of Sample Dupl % Recovery of QC sam % Error of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample Dupl % Recovery of Sample ID % Error of Sample Dupl % Recovery of Sample ID % Error of Sample Dupl	icate should be between Spike Spike	sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID EC1a-S2 EWM5-B2 30% to 120%. ue to sample results less sample ID Sample	e Spike % Recovery ® 100.0 105.9 ss than PQL. e Spike % Recovery ® 106.0 98.1 ss than PQL. e Spike % Recovery ® 94.0 94.3

` '	•
(*)	% Error of Sample Duplicate should be between 0% to 10%.
([®])	% Recovery of Sample Spike should be between 80% to 120%.
(**)	% Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Campalina Data	QC Sample	Sample D	uplicate	Sampl	e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery
9 Oct 12	101.0	FC1a-S1	0.0	EC1a-S2	106.0
8-Oct-12	96.2	EC1a-M1	0.0	EWM5-B2	100.0
Note:	(*)	% Recovery of QC samp	le should be between 8	30% to 120%.	
	(#)	% Error of Sample Duplic	cate should be between	n 0% to 10%.	
	([@])	% Recovery of Sample S	Spike should be betwee	n 80% to 120%.	
	(**)	% Error of Sample Duplic	cate >10% but invalid o	lue to sample results les	ss than PQL.
	QC Sample	Sample D	uplicate	Sampl	e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery
	95.8	FC1a-S1	9.5	EC1a-S2	93.8
10-Oct-12	100.6	EC1a-M1	0.0	EWM5-B2	101.9
Note:	(*)	% Recovery of QC samp	ele should be between 8	30% to 120%.	L
	(*)	% Error of Sample Duplic	cate should be between	n 0% to 10%.	
	([®])	% Recovery of Sample S	Spike should be betwee	n 80% to 120%.	
	(**)	% Error of Sample Duplic	cate >10% but invalid o	lue to sample results les	ss than PQL.
	QC Sample	Sample D	unlicate	Sampl	e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery
	98.0	FC1a-S1	0.0	EC1a-S2	104.0
12-Oct-12	95.3	EC1a-M1	8.7	EWM5-B2	93.7
Note:	(*)	% Recovery of QC samp	ele should be between 8	30% to 120%.	L
	(*)	% Error of Sample Duplic	cate should be between	n 0% to 10%.	
	([®])	% Recovery of Sample S	Spike should be betwee	n 80% to 120%.	
	(**)	% Error of Sample Duplic	cate >10% but invalid o	lue to sample results les	ss than PQL.
	QC Sample	Sample D	Puplicate	Sampl	e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery
	105.6	FC1a-S1	0.0	EC1a-S2	104.2
15-Oct-12	106.3	EC1a-M1	8.7	EWM5-B2	106.2
Note:	(*)	% Recovery of QC samp	ele should be between 8		
	(#)	% Error of Sample Duplic			
	([®])	% Recovery of Sample S	Spike should be betwee	n 80% to 120%.	
	(**)	% Error of Sample Duplic	cate >10% but invalid o	lue to sample results les	ss than PQL.
				Sampl	e Spike
	OC Sample	Sample D	unlicate		
Sampling Date	QC Sample	Sample D	•		1 -
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery
Sampling Date	% Recovery * 94.4	Sample ID FC1a-S1	% Error # 11.8**	Sample ID EC1a-S2	% Recovery 102.0
17-Oct-12	% Recovery * 94.4 102.3	Sample ID FC1a-S1 EC1a-M1	% Error # 11.8** 0.0	Sample ID EC1a-S2 EWM5-B2	% Recovery
17-Oct-12	% Recovery * 94.4 102.3 (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC samp	% Error # 11.8** 0.0 ble should be between 8	Sample ID EC1a-S2 EWM5-B2 80% to 120%.	% Recovery 102.0
Sampling Date 17-Oct-12 Note:	% Recovery * 94.4 102.3 (*) (#)	Sample ID FC1a-S1 EC1a-M1	% Error # 11.8** 0.0 ele should be between 8 cate should be between	Sample ID EC1a-S2 EWM5-B2 80% to 120%.	% Recovery 102.0
17-Oct-12	% Recovery * 94.4 102.3 (*)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC samp % Error of Sample Duplic	% Error # 11.8** 0.0 sle should be between 8 cate should be 8 cate sho	Sample ID	% Recovery 102.0 102.0
17-Oct-12	% Recovery * 94.4 102.3 (*) (*) (*) (*) (**)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC samp % Error of Sample Duplic % Recovery of Sample Duplic	% Error # 11.8** 0.0 ele should be between 8 cate should be between Spike should be between cate >10% but invalid of	Sample ID EC1a-S2 EWM5-B2 30% to 120%. n 0% to 10%. n 80% to 120%. lue to sample results les	% Recovery 102.0 102.0 102.0
17-Oct-12	% Recovery * 94.4 102.3 (*) (") (®)	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC samp % Error of Sample Duplic % Recovery of Sample S	% Error # 11.8** 0.0 ble should be between 8 cate should be between 8 cate should be between 8 cate >10% but invalid of supplicate	Sample ID EC1a-S2 EWM5-B2 30% to 120%. n 0% to 10%. lue to sample results les Sampl	% Recovery 102.0 102.0 102.0 ss than PQL. e Spike
17-Oct-12 Note: Sampling Date	% Recovery * 94.4 102.3 (*) (*) (*) (*) (*) QC Sample % Recovery *	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC samp % Error of Sample Duplic % Recovery of Sample S % Error of Sample Duplic Sample D Sample ID	% Error # 11.8** 0.0 ele should be between to cate should be between spike should be between spike should be between cate >10% but invalid of the country and the country are should be between the spike should be spike should be spi	Sample ID EC1a-S2 EWM5-B2 30% to 120%. 10% to 10%. In 80% to 120%. Itue to sample results les Sampl Sample ID	% Recovery 102.0 102.0 102.0 ss than PQL. e Spike % Recovery
17-Oct-12	% Recovery * 94.4 102.3 (*) (*) (*) (*) (*) (*) QC Sample	Sample ID FC1a-S1 EC1a-M1 % Recovery of QC samp % Error of Sample Duplic % Recovery of Sample Duplic Sample D	% Error # 11.8** 0.0 ble should be between 8 cate should be between 8 cate should be between 8 cate >10% but invalid of supplicate	Sample ID EC1a-S2 EWM5-B2 30% to 120%. n 0% to 10%. lue to sample results les Sampl	% Recovery 102.0 102.0 102.0 ss than PQL. e Spike

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample	e Spike
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
22-Oct-12	102.9	FC1a-S1	0.0	EC1a-S2	95.9
22-001-12	93.1	EC1a-M1	7.4	EWM5-B2	94.1

% Recovery of QC sample should be between 80% to 120%. Note: (*) (#) % Error of Sample Duplicate should be between 0% to 10%. (@) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [®]
24-Oct-12	97.8	FC1a-S1	8.0	EC1a-S2	91.5
24-OCI-12	98.4	EC1a-M1	0.0	EWM5-B2	106.0

(*) % Recovery of QC sample should be between 80% to 120%. Note: (#) % Error of Sample Duplicate should be between 0% to 10%. ([@]) % Recovery of Sample Spike should be between 80% to 120%. (**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
26-Oct-12	104.4	FC1a-S1	0.0	EC1a-S2	96.2
20-001-12	93.1	EC1a-M1	0.0	EWM5-B2	108.5
Note:	ote: (*) % Recovery of QC sample should be between 80% to 120%.				

% Error of Sample Duplicate should be between 0% to 10%. (")

([@]) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [®]
29-Oct-12	92.8	FC1a-S1	8.0	EC1a-S2	96.2
29-001-12	93.2	EC1a-M1	0.0	EWM5-B2	96.2

Note: (*) % Recovery of QC sample should be between 80% to 120%.

> (") % Error of Sample Duplicate should be between 0% to 10%.

([@]) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.

	Sampling Date	QC Sample	Sample Duplicate		Sample Spike	
		% Recovery *	Sample ID	% Error #	Sample ID	% Recovery [@]
Ī	31-Oct-12	93.2	FC1a-S1	0.0	EC1a-S2	98.1
		107.8	EC1a-M1	7.4	FWM5-B2	106.3

Note: (*) % Recovery of QC sample should be between 80% to 120%.

> (") % Error of Sample Duplicate should be between 0% to 10%.

([@]) % Recovery of Sample Spike should be between 80% to 120%.

(**) % Error of Sample Duplicate >10% but invalid due to sample results less than PQL.