

China Harbour Engineering Company Limited

Contract No. HY/2010/02

Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for May 2014

[06/2014]

	Name	Signature
Prepared & Checked:	Y T Tang	Togytuling
Reviewed, Approved and Certified:	Echo Leong (ETL)	Scholouf

Version:	Rev. 0	Date:	16 June 2014

Disclaimer

This report is prepared for China Harbour Engineering Company Limited and is given for its sole benefit in relation to and pursuant to Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities-Reclamation Works and may not be disclosed to, quoted to or relied upon by any person other than China Harbour Engineering Company Limited without our prior written consent. No person (other than China Harbour Engineering Company Limited) into whose possession a copy of this report comes may rely on this report without our express written consent and China Harbour Engineering Company Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: HYDHZMBEEM00_0_2008L.14 16 June 2014

Engineer's Representative Ove Arup & Partners Chief Resident Engineer's Office 5 Ying Hei Road, Tung Chung, Lantau Hong Kong By Fax (3698 5999) and By Post

Attention: Mr. Roger Marechal

Dear Mr. Marechal,

Re: Agreement No. CE 48/2011 (EP)
Environmental Project Office for the
HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities,
and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2010/02 Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Work Monthly Environmental Monitoring & Audit Report for May 2014

Reference is made to the Environmental Team's submission of the Monthly Environmental Monitoring & Audit Report for May 2014 (letter ref. 60249820/C/RMKY14061601 dated 16 June 2014) copied to us by E-mail on 13 June 2014.

We are pleased to inform you that we have no adverse comment on the captioned Monthly EM&A Report. We write to verify the captioned report in accordance with Condition 5.4 of EP-353/2009/G and Condition 4.4 of EP-354/2009/B (for TM-CLKL Southern Landfall Reclamation only).

ET is reminded to ensure all information reported are true, valid and correct before sending to this office for review.

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,

Raymond Dai

Independent Environmental Checker

c.c. HyD Mr. Matthew Fung (By Fax: 3188 6614) HyD Mr. Wai-ping Lee (By Fax: 3188 6614) AECOM Ms. Echo Leong (By Fax: 2317 7609) CHEC Mr. Lim Kim Chuan (By Fax: 2578 0413)

T:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_2008L.14.docx

TABLE OF CONTENTS

			Page
EXE	CUTI	VE SUMMARY	1
1	INTE	RODUCTION	4
	1.1 1.2 1.3 1.4 1.5	Background Scope of Report Project Organization Summary of Construction Works Summary of EM&A Programme Requirements	4 4 5 5 6
2	AIR (QUALITY MONITORING	7
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Monitoring Requirements Monitoring Equipment Monitoring Locations Monitoring Parameters, Frequency and Duration Monitoring Methodology Monitoring Schedule for the Reporting Month Results and Observations	7 7 7 8 8 10 10
3	NOIS	SE MONITORING	11
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Monitoring Requirements Monitoring Equipment Monitoring Locations Monitoring Parameters, Frequency and Duration Monitoring Methodology Monitoring Schedule for the Reporting Month Monitoring Results	11 11 11 12 12 12 13
4	WAT	ER QUALITY MONITORING	14
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Monitoring Requirements Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Locations Monitoring Methodology Monitoring Schedule for the Reporting Month Results and Observations	14 14 14 15 16 17
5	DOL	PHIN MONITORING	19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Monitoring Requirements Monitoring Equipment Monitoring Frequency and Conditions Monitoring Methodology and Location Monitoring Procedures Monitoring Schedule for the Reporting Month Results and Observations	19 19 19 19 21 21
6	ENV	IRONMENTAL SITE INSPECTION AND AUDIT	25
	6.1 6.2 6.3 6.4 6.5 6.6	Site Inspection Advice on the Solid and Liquid Waste Management Status Environmental Licenses and Permits Implementation Status of Environmental Mitigation Measures Summary of Exceedances of the Environmental Quality Performance Limit Summary of Complaints, Notification of Summons and Successful Prosecutions	25 27 28 28 29 29
7	FUT	URE KEY ISSUES	31
	7.1 7.2 7.3	Construction Programme for the Coming Months Key Issues for the Coming Month Monitoring Schedule for the Coming Month	31 32 32

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful

Monthly Summary of Waste Flow Table

Prosecutions

Appendix M Appendix N

Contract No. HY/2010/02

EXECUTIVE SUMMARY

Contract No. HY/2010/02 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun - Chek Lap Kok Link (TMCLKL). It is a designated project and is governed by the current permits for the Project, i.e. the amended Environmental Permits (EPs) issued on 06 August 2013 (EP-353/2009/G) and 28 January 2014 (EP-354/2009/B) (for TMCLKL Southern Landfall Reclamation only).

Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Project).

China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Project.

ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Project for carrying out the environmental monitoring and audit (EM&A) works.

The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2016. The EM&A programme, including air quality, noise, water quality and dolphin monitoring and environmental site inspections, was commenced on 12 March 2012.

This report documents the findings of EM&A works conducted in the period between 1 and 31 May 2014. As informed by the Contractor, major activities in the reporting period were:-

Marine-based Works

- Cellular structure installation
- Connecting arc cell installation
- Laying geo-textile
- Sand blanket laying
- Sand filling
- Maintenance of silt curtain & silt screen at sea water intake of HKIA
- Stone column installation
- Band drain installation
- Backfill cellular structure
- Geotechnical Instrumentation works
- Surcharge laying
- Vibro-compaction on surcharge
- Capping Beams structures
- Construction of Conveyors for public fill
- Portion D Construction of Access to Portion A

Land-based Works

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Geo-textile fabrication at Works Area WA2
- Installed sand bag at Works Area WA2
- Maintenance of Temporary Marine Access at Works Area WA2

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour Total Suspended Particulates (TSP) monitoring6 sessions1-hour TSP monitoring6 sessionsNoise monitoring4 sessionsImpact water quality monitoring13 sessions

Impact dolphin monitoring 2 surveys

Joint Environmental site inspection 5 sessions

Breaches of Action and Limit Levels for Air Quality

All 1-Hour TSP and 24-hour TSP results were below the Action and Limit Level in the reporting month.

Breaches of Action and Limit Levels for Noise

For construction noise, no exceedance was recorded at all monitoring stations in the reporting period.

Breaches of Action and Limit Levels for Water Quality

For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting period.

Impact Dolphin Monitoring

A total of three sightings were made, two "opportunistic" and one "on effort". All sightings were made on the 31 May 14. A total of eighteen individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.

Behaviour: Of the three sightings, two groups were feeding and the third engaged in multiple activities which included milling and feeding. The locations of sighting with different behaviour are mapped in Figure 5d.

One (1) Limit Level Exceedance of dolphin monitoring was noted. The investigation is undergoing and the investigation results will be reported in the quarterly EM&A report (Mar 14 – May 14).

Complaint, Notification of Summons and Successful Prosecution

As informed by the Contractor on 7 May 14, a complaint was received by the Contractor on 17 April 14 concerning sand and dust emission from uncovered barges parking at the sea area off the Tuen Mun Ferry Pier. Investigation result shows that the complaint is unlikely to be related to this Contract.

As informed by the Contractor on 30 May 14, an environmental complaint had been received on 28 May 2014. The complainant mentioned that waste such as earth and concrete were being felled into the sea everyday at the Hong Kong-Zhuhai-Macao Bridge at location where construction works are being conducted, causing pollution to the marine environment. After investigation, it is concluded that the complaint is unlikely to be related to this Contract.

No notification of summons or prosecution was received in the reporting period.

Reporting Change

There was no reporting change required in the reporting period.

Future Key Issues

Key issues to be considered in the coming month included:-

- Site runoff should be properly collected and treated prior to discharge;
- Minimize loss of sediment from filling works;
- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
- Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission;
- Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures for operating equipment and machinery on-site,

such as erection of movable noise barriers or enclosure for noisy plants;

- Closely check and replace the sound insulation materials regularly;
- Better scheduling of construction works to minimize noise nuisance;
- Properly store and label oil drums and chemical containers placed on site;
- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved and confined areas:
- Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.

1 INTRODUCTION

1.1 Background

- 1.1.1 Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun Chek Lap Kok Link (TMCLKL).
- 1.1.2 The environmental impact assessment (EIA) reports (Hong Kong Zhuhai Macao Bridge Hong Kong Boundary Crossing Facilities EIA Report (Register No. AEIAR-145/2009) (HKBCFEIA) and Tuen Mun Chek Lap Kok Link EIA Report (Register No. AEIAR-146/2009) (TMCLKLEIA), and their environmental monitoring and audit (EM&A) Manuals (original EM&A Manuals), for the Project were approved by Environmental Protection Department (EPD) in October 2009.
- 1.1.3 EPD subsequently issued the Environmental Permit (EP) for HKBCF in November 2009 (EP-353/2009) and the Variation of Environmental Permit (VEP) in June 2010 (EP-353/2009/A), November 2010 (EP-353/2009/B), November 2011 (EP-353/2009/C), March 2012 (EP-353/2009/D), October 2012 (EP-353/2009/E), April 2013 (EP-353/2009/F) and August 2013 (EP-353/2009/G). Similarly, EPD issued the Environmental Permit (EP) for TMCLKL in November 2009 (EP-354/2009) and the Variation of Environmental Permit (VEP) in December 2010 (EP-354/2009/A) and January 2014 (EP-354/2009/B).
- 1.1.4 The Project is a designated project and is governed by the current permits for the Project, i.e. the amended EPs issued on 6 August 2013 (EP-353/2009/G) and 28 January 2014 (EP-354/2009/B) (for TMCLKL Southern Landfall Reclamation only).
- 1.1.5 A Project Specific EM&A Manual, which included all project-relation contents from the original EM&A Manuals for the Project, was issued in May 2012.
- 1.1.6 Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Project).
- 1.1.7 China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Project.
- 1.1.8 ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Project for carrying out the EM&A works.
- 1.1.10 The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2016.
- 1.1.11 According to the Project Specific EM&A Manual, there is a need of an EM&A programme including air quality, noise, water quality and dolphin monitoring and environmental site inspections. The EM&A programme of the Project commenced on 12 March 2012.

1.2 Scope of Report

1.2.1 This is the twenty-seventh monthly EM&A Report under the Contract No.HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in May 2014.

1.3 Project Organization

1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Engineer's Representative (ER) (Ove Arup & Partners Hong Kong Limited)	Chief Resident Engineer	Roger Marechal	3698 5700	2698 5999
IEC / ENPO	Independent Environmental Checker	Raymond Dai	3465 2888	3465 2899
(ENVIRON Hong Kong Limited)	Environmental Project Office Leader	Y. H. Hui	3465 2868	3465 2899
Contractor (China Harbour	Environmental Officer	Richard Ng	36932253	2578 0413
`Engineering Company Limited)	24-hour Hotline	Alan C.C. Yeung	9448 0325	
ET (AECOM Asia Company Limited)	ET Leader	Echo Leong	3922 9280	2317 7609

1.4 Summary of Construction Works

- 1.4.1 The construction phase of the Project under the EP commenced on 12 March 2012.
- 1.4.2 As informed by the Contractor, details of the major works carried out in this reporting period are listed below:-

Marine-based Works

- Connecting arc cell installation
- Laying geo-textile
- Sand blanket laying
- Sand filling
- Maintenance of silt curtain & silt screen at sea water intake of HKIA
- Stone column installation
- Band drain installation
- Backfill cellular structure
- Geotechnical Instrumentation works
- Construction of temporary seawall
- Portion D Construction of Access to Portion A
- Surcharge laying
- Construction of temporary pier at Portion A
- Precast Yard setup
- Seawall blocks for temporary construction
- Vibro-compaction on surcharge
- Capping Beams structures

- Construction of Conveyors for public fill
- Temporary bridge at Portion D

Land-based Works

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Geo-textile fabrication at Works Area WA2
- Installed sand bag at Works Area WA2
- Maintenance of Temporary Marine Access at Works Area WA2
- 1.4.3 The 3-month rolling construction programme of the Project is shown in Appendix B.
- 1.4.4 The general layout plan of the Project site showing the detailed works areas is shown in Figure 1.
- 1.4.5 The environmental mitigation measures implementation schedule are presented in Appendix C.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise, water quality, marine ecology and environmental site inspections for air quality, noise, water quality, waste management, marine ecology, and landscape and visual impact. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming month;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA reports; and
 - Environmental requirement in contract documents.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the Project Specific EM&A Manual, baseline 1-hour and 24-hour Total Suspended Particulates (TSP) levels at 4 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix D.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the Project Specific EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Air Sampler (Model No. TE-5170)

2.3 Monitoring Locations

- 2.3.1 Monitoring locations AMS2 and AMS7 were set up at the proposed locations in accordance with Project Specific EM&A Manual. For AMS6 (Dragonair/CNAC (Group) Building), permission on setting up and carrying out impact monitoring works was sought, however, access to the premise has not been granted yet on this report issuing date. For monitoring location AMS3 (Ho Yu College), as proposed in the Project Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact air quality monitoring was conducted at site boundary of the site office area in Works Area WA2 (AMS3B) respectively. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.2 Reference is made to ET's proposal of the omission of air monitoring station (AMS 6) dated on 1 November 2012 and EPD's letter dated on 19 November 2012 regarding the conditional approval of the proposed omission of air monitoring station (AMS 6) for Contract No. HY/2010/02. The aforesaid omission of Monitoring Station AMS6 is effective since 19 November 2012.
- 2.3.3 Figure 2 shows the locations of monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2Locations of Impact Air Quality Monitoring Stations

Monitoring Station	Location	Description
AMS2	Tung Chung Development Pier	Rooftop of the premise
AMS3B	Site Boundary of Site Office Area at Works Area WA2	On ground at the area boundary
AMS6*	Dragonair/CNAC (Group) Building	On ground at boundary of the premise
AMS7	Hong Kong SkyCity Marriott Hotel	On ground at boundary of the premise

*Remarks: Reference is made to EPD conditional approval of the omission of air monitoring station (AMS 6) for the project. The omission will be effective on 19 November 2012.

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration	
1-hour TSP	Three times every 6 days while the highest dust impact was expected	
24-hour TSP	Once every 6 days	

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) No two samplers should be placed less than 2 meters apart.
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (ix) A secured supply of electricity was obtained to operate the samplers.
 - (x) The sampler was located more than 20 meters from any dripline.
 - (xi) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xii) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.

(iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminum strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.1 m³/min, and complied with the range specified in the updated EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) 5-point calibration of the HVS was conducted using TE-5025A Calibration Kit prior to the commencement of baseline monitoring. Bi-monthly 5-point calibration of the HVS will be carried out during impact monitoring.
- (iii) Calibration certificate of the HVSs are provided in Appendix E.

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

- (b) Maintenance and Calibration
 - (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix E.
 - (ii) 1-hour validation checking of the TSP meter against HVS is carried out on half-year basis at the air quality monitoring locations.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for air quality monitoring in May 2014 is provided in Appendix F.

2.7 Results and Observations

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Table 2.4 and 2.5 respectively. Detailed impact air quality monitoring results are presented in Appendix G.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AMS2	80	73 – 84	374	500
AMS3B	80	71 – 84	368	500
AMS7	80	75 – 84	370	500

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AMS2	32	18 – 48	176	260
AMS3B	38	16 – 86	167	260
AMS7	43	20 – 64	183	260

- 2.7.2 All 1-Hour TSP and 24Hr TSP results were below the Action and Limit Level in the reporting month.
- 2.7.3 The event action plan is annexed in Appendix L.
- 2.7.4 Meteorological information collected from the wind station during the monitoring periods on the monitoring dates, as shown in Figure 2, including wind speed and wind direction, is annexed in Appendix H.

3 NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the Project Specific EM&A Manual, impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix D.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	Rion NL-31 & B&K2238
Acoustic Calibrator	Rion NC-73

3.3 Monitoring Locations

- 3.3.1 Monitoring locations NMS2 was set up at the proposed locations in accordance with Project Specific EM&A Manual. However, for monitoring location NMS3 (Ho Yu College), as proposed in the Project Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact noise monitoring was conducted at site boundary of the site office area in Works Area WA2 (NMS3B) respectively. Same baseline noise level (as derived from the baseline monitoring data recorded at Ho Yu College) and Limit Level were adopted for this alternative noise monitoring location.
- 3.3.2 Figure 2 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 Locations of Impact Noise Monitoring Stations

Monitoring Station	Location	Description
NMS2	Seaview Crescent Tower 1	Free-field on the rooftop of the premise
NMS3B	Site Boundary of Site Office Area at Works Area WA2	Free-field on ground at the area boundary.

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). $L_{\rm eq}$, $L_{\rm 10}$ and $L_{\rm 90}$ would be recorded.	At least once per week

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground for free-field measurements at NMS2. A correction of +3 dB(A) shall be made to the free field measurements.
- (b) All measurement at NMS3A were free field measurements in the reporting month at NMS3A. A correction of +3 dB(A) shall be made to the free field measurements.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:-
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 07:00 1900 on normal weekdays.
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix E.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for construction noise monitoring in May 2014 is provided in Appendix F.

3.7 Monitoring Results

3.7.1 The monitoring results for construction noise are summarized in Table 3.4 and the monitoring data is provided in Appendix I.

Table 3.4 Summary of Construction Noise Monitoring Results in the Reporting Period

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),		
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq (30 mins)}		
NMS2	66	65 – 67*	75		
NMS3B	65	64 – 70*	70/65^		

^{*+3}dB(A) Façade correction included

- 3.7.2 No Action or Limit Level Exceedance of construction noise was recorded in the reporting month.
- 3.7.3 Major noise sources during the noise monitoring included construction activities of the Project, construction activities by other contracts and nearby traffic noise.
- 3.7.4 The event action plan is annexed in Appendix L.

[^] Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

4 WATER QUALITY MONITORING

4.1 Monitoring Requirements

4.1.1 Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. For impact water quality monitoring, measurements were taken in accordance with the Project Specific EM&A Manual. Appendix D shows the established Action/Limit Levels for the environmental monitoring works.

4.2 Monitoring Equipment

4.2.1 Table 4.1 summarises the equipment used in the impact water quality monitoring programme.

Table 4.1 Water Quality Monitoring Equipment

Equipment	Brand and Model
Dissolved Oxygen (DO) and Temperature Meter, Salinity Meter and Turbidimeter	YSI Model 6820
pH Meter	YSI Model 6820 or Thermo Orion 230A+
Positioning Equipment	JRC DGPS 224 Model JLR-4341 with J-NAV 500 Model NWZ4551
Water Depth Detector	Eagle Cuda-168
Water Sampler	Kahlsio Water Sampler (Vertical) 2.2 L with messenger

4.3 Monitoring Parameters, Frequency and Duration

4.3.1 Table 4.2 summarises the monitoring parameters, frequency and monitoring depths of impact water quality monitoring as required in the Project Specific EM&A Manual.

Table 4.2 Impact Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameter, unit	Frequency	No. of depth
Impact Stations: IS5, IS(Mf)6, IS7, IS8, IS(Mf)9, IS10, IS(Mf)11, IS(Mf)16, IS17 Control/Far Field Stations: CS(Mf)3, CS(Mf)5, CS4, CS6, CSA Sensitive Receiver Stations: SR3-SR7, SR10A&SR10B	 Depth, m Temperature, °C Salinity, ppt Dissolved Oxygen (DO), mg/L DO Saturation, % Turbidity, NTU pH Suspended Solids (SS), mg/L 	Three times per week during mid- ebb and mid- flood tides (within ± 1.75 hour of the predicted time)	3 (1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the middepth station may be omitted. Should the water depth be less than 3 m, only the mid-depth station will be monitored).

4.4 Monitoring Locations

- 4.4.1 In accordance with the Project Specific EM&A Manual, twenty-one stations (9 Impact Stations, 7 Sensitive Receiver Stations and 5 Control/Far Field Stations) were designated for impact water quality monitoring. The nine Impact Stations (IS) were chosen on the basis of their proximity to the reclamation and thus the greatest potential for water quality impacts, the seven Sensitive Receiver Stations (SR) were chosen as they are close to the key sensitive receives and the five Control/ Far Field Stations (CS) were chosen to facilitate comparison of the water quality of the IS stations with less influence by the Project/ ambient water quality conditions.
- 4.4.2 Due to safety concern and topographical condition of the original locations of SR4 and SR10B, alternative impact water quality monitoring stations, naming as SR4 (N) and SR10B (N), were adopted, which are situated in vicinity of the original impact water quality monitoring stations (SR4 and SR10B) and could be reachable.
- 4.4.3 Due to the perimeter silt curtain was temporary rearranged to facilitate the safe anchorage of the construction barges/vessels and the original monitoring station IS17 was relocated to alternative impact water quality monitoring station IS17(N).
- 4.4.4 Same baseline and Action Level for water quality, as derived from the baseline monitoring data recorded, were adopted for these alternative impact water quality monitoring stations.
- 4.4.5 The locations of these monitoring stations are summarized in Table 4.3 and depicted in Figure 3.

Table 4.3 Impact Water Quality Monitoring Stations

Station	Description	East	North
IS5	Impact Station (Close to HKBCF construction site)	811579	817106
IS(Mf)6	Impact Station (Close to HKBCF construction site)	812101	817873
IS7	Impact Station (Close to HKBCF construction site)	812244	818777
IS8	Impact Station (Close to HKBCF construction site)	814251	818412
IS(Mf)9	Impact Station (Close to HKBCF construction site)	813273	818850
IS10	Impact Station (Close to HKBCF construction site)	812577	820670
IS(Mf)11	Impact Station (Close to HKBCF construction site)	813562	820716
IS(Mf)16	Impact Station (Close to HKBCF construction site)	814328	819497
IS17(N)	Impact Station (Close to HKBCF construction site)	814767	820391
SR3	Sensitive receivers (San Tau SSSI)	810525	816456
SR4(N)	Sensitive receivers (Tai Ho)	814705	817859
SR5	Sensitive receivers (Artificial Reef in NE Airport)	811489	820455
SR6	Sensitive receivers (Sha Chau and Lung Kwu Chau Marine Park)	805837	821818
SR7	Sensitive receivers (Tai Mo Do)	814293	821431
SR10A	Sensitive receivers (Ma Wan FCZ)1	823741	823495
SR10B(N)	Sensitive receivers (Ma Wan FCZ)2	823683	823187
CS(Mf)3	Control Station	809989	821117
CS(Mf)5	Control Station	817990	821129
CS4	Control Station	810025	824004
CS6	Control Station	817028	823992
CSA	Control Station	818103	823064

4.5 Monitoring Methodology

4.5.1 Instrumentation

(a) The in-situ water quality parameters, viz. dissolved oxygen, temperature, salinity, turbidity and pH, were measured by multi-parameter meters (i.e. Model YSI 6820 CE-C-M-Y) and pH meter (i.e. Thermo Orion 230A+) respectively.

4.5.2 Operating/Analytical Procedures

- (a) Digital Differential Global Positioning Systems (DGPS) were used to ensure that the correct location was selected prior to sample collection.
- (b) Portable, battery-operated echo sounders were used for the determination of water depth at each designated monitoring station.
- (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
- (d) At each measurement/sampling depth, two consecutive in-situ monitoring (DO concentration and saturation, temperature, turbidity, pH, salinity) and water sample for SS. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of DO or turbidity parameters was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- (e) Duplicate samples from each independent sampling event were collected for SS measurement. Water samples were collected using the water samplers and the samples were stored in high-density polythene bottles. Water samples collected were well-mixed in the water sampler prior to pre-rinsing and transferring to sample bottles. Sample bottles were pre-rinsed with the same water samples. The sample bottles were then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. for the analysis of suspended solids concentrations. The laboratory determination work would be started within 24 hours after collection of the water samples. ALS Technichem (HK) Pty Ltd. is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples was analyzed.
- (f) The analysis method and reporting and detection limit for SS is shown in Table 4.4.

Table 4.4 Laboratory Analysis for Suspended Solids

Parameters	Instrumentation	Analytical Method	Reporting Limit	Detection Limit
Suspended Solid (SS)	Weighting	APHA 2540-D	0.5mg/L	0.5mg/L

(g) Other relevant data were recorded, including monitoring location / position, time, water depth, tidal stages, weather conditions and any special phenomena or work underway at the construction site in the field log sheet for information.

4.5.3 Maintenance and Calibration

- (a) All in situ monitoring instruments would be calibrated and calibrated by ALS Technichem (HK) Pty Ltd. before use and at 3-monthly intervals throughout all stages of the water quality monitoring programme. Calibration details are provided in Appendix E.
- (b) The dissolved oxygen probe of YSI 6820 was calibrated by wet bulb method. Before the calibration routine, the sensor for dissolved oxygen was thermally equilibrated in water-saturated air. Calibration cup is served as a calibration chamber and it was loosened from airtight condition before it is used for the calibration. Calibration at ALS Technichem (HK) Pty Ltd. was carried out once every three months in a water sample with a known concentration of dissolved oxygen. The sensor was immersed in the water and after thermal equilibration, the known mg/L value was keyed in and the calibration was carried out automatically.
- (c) The turbidity probe of YSI 6820 is calibrated two times a month. A zero check in distilled water was performed with the turbidity probe of YSI 6820 once per monitoring day. The probe will be calibrated with a solution of known NTU at ALS Technichem (HK) Pty Ltd. once every three months.

4.6 Monitoring Schedule for the Reporting Month

4.6.1 The schedule for impact water quality monitoring in May 2014 is provided in Appendix F.

4.7 Results and Observations

- 4.7.1 Impact water quality monitoring results and graphical presentations are provided in Appendix J.
- 4.7.2 For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting period.

Table 4.5 Summary of Water Quality Exceedances

Station Exceedance Level		DO (S&M) DO (Bottom)		Turbidity		SS		Total			
	Level	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood
IS5	Action	0	0	0	0	0	0	0	0	0	0
155	Limit	0	0	0	0	0	0	0	0	0	0
IC/Mf\c	Action	0	0	0	0	0	0	0	0	0	0
IS(Mf)6	Limit	0	0	0	0	0	0	0	0	0	0
IS7	Action	0	0	0	0	0	0	0	0	0	0
137	Limit	0	0	0	0	0	0	0	0	0	0
IS8	Action	0	0	0	0	0	0	0	0	0	0
150	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)9	Action	0	0	0	0	0	0	0	0	0	0
13(1011)9	Limit	0	0	0	0	0	0	0	0	0	0
IS10	Action	0	0	0	0	0	0	0	0	0	0
1510	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)11	Action	0	0	0	0	0	0	0	0	0	0
13(1011)11	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)16	Action	0	0	0	0	0	0	0	0	0	0
13(1011)16	Limit	0	0	0	0	0	0	0	0	0	0
IS17	Action	0	0	0	0	0	0	0	0	0	0
1317	Limit	0	0	0	0	0	0	0	0	0	0
SR3	Action	0	0	0	0	0	0	0	0	0	0
SNS	Limit	0	0	0	0	0	0	0	0	0	0
SR4(N)	Action	0	0	0	0	0	0	0	0	0	0
SK4(IV)	Limit	0	0	0	0	0	0	0	0	0	0
SR5	Action	0	0	0	0	0	0	0	0	0	0
SKS	Limit	0	0	0	0	0	0	0	0	0	0
SR6	Action	0	0	0	0	0	0	0	0	0	0
SKO	Limit	0	0	0	0	0	0	0	0	0	0
SR7	Action	0	0	0	0	0	0	0	0	0	0
SK1	Limit	0	0	0	0	0	0	0	0	0	0
SR10A	Action	0	0	0	0	0	0	0	0	0	0
SKIUA	Limit	0	0	0	0	0	0	0	0	0	0
SR10B	Action	0	0	0	0	0	0	0	0	0	0
(N)	Limit	0	0	0	0	0	0	0	0	0	0
Total	Action	0	0	0	0	0	0	0	0		0
	Limit	0	0	0	0	0	0	0	0		0

Note: S: Surface; and M: Mid-depth.

4.7.3 The event action plan is annexed in Appendix L.

5 DOLPHIN MONITORING

5.1 Monitoring Requirements

- 5.1.1 Vessel based surveys for the Chinese White Dolphin (CWD), Sousa chinensis, are to be conducted by a dedicated team comprising a qualified marine mammal ecologist and experienced marine mammal observers (MMOs). The purpose of the surveys are to evaluate the impact of the HKCBF reclamation and, if deemed detrimental, to take appropriate action as per the EM&A manual.
- 5.1.2 This 'Impact Monitoring' follows several months of 'Baseline Monitoring' so similar survey methodologies have been adopted to facilitate comparisons between datasets. Further, the data collected are compatible with, and are available for, incorporation into the data set managed by the Agriculture, Fisheries and Conservation Department (AFCD) as part of Hong Kong's long term Marine Mammal Monitoring Programme.

5.2 Monitoring Equipment

5.2.1 Table 5.1 summarises the equipment used for the impact dolphin monitoring.

Table 5.1 Dolphin Monitoring Equipment

Equipment	Model
Commercially licensed motor vessel	15m in length with a 4.5m viewing platform
Global Positioning System (GPS) x2	Integrated into T7000
	Garmin GPS Map 78C
Computers (T7000 Tablet, Intel Atom)	Windows 7/MSO 13
	Logger
Camera	Nikon D90 300m 2.8D fixed focus
	Nikon D90 20-400m zoom lens
Laser Rangefinder	Infinitor LRF1000/ Kings 950
Marine Binocular x3	Nexus 7 x 50 marine binocular with compass
	and reticules
	Fujinon 7 x 50 marine binocular with compass
	and reticules

5.3 Monitoring Frequency and Conditions

- 5.3.1 Dolphin monitoring is conducted twice per month in each survey area.
- 5.3.2 Dolphin monitoring is conducted only when visibility is good (e.g., over 1km) and the sea condition is at a Beaufort Sea State of 4 or better.
- 5.3.3 When thunder storm, black rain or typhoon warnings are in force, all survey effort is stopped.

5.4 Monitoring Methodology and Location

- 5.4.1 The impact dolphin monitoring is vessel-based and combines line-transect and photo-ID methodology. The survey follows pre-set and fixed transect lines in the two areas defined by AFCD as:
- 5.4.2 Northeast Lantau survey area; and
- 5.4.3 Northwest Lantau survey area.
- 5.4.4 The co-ordinates for the transect lines and layout map have been provided by AFCD and are shown in Table 5.2 and Figure 4.

Table 5.2 Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD)

	HK Grid	System	Long Lat i	in WGS84
ID	Х	Υ	Long	Lat
1	804671	814577	113.870308	22.269741
1	804671	831404	113.869975	22.421696
2	805475	815457	113.878087	22.277704
2	805477	826654	113.877896	22.378814
3	806464	819435	113.887615	22.313643
3	806464	822911	113.887550	22.345030
4	807518	819771	113.897833	22.316697
4	807518	829230	113.897663	22.402113
5	808504	820220	113.907397	22.320761
5	808504	828602	113.907252	22.396462
6	809490	820466	113.916965	22.323003
6	809490	825352	113.916884	22.367128
7	810499	820690	113.926752	22.325043
7	810499	824613	113.926688	22.360464
8	811508	820847	113.936539	22.326475
8	811508	824254	113.936486	22.357241
9	812516	820892	113.946329	22.326894
9	812516	824254	113.946279	22.357255
10*	813525	818270	113.956156	22.303225
10*	813525	824657	113.956065	22.360912
11	814556	818449	113.966160	22.304858
11	814556	820992	113.966125	22.327820
12	815542	818807	113.975726	22.308109
12	815542	824882	113.975647	22.362962
13	816506	819480	113.985072	22.314192
13	816506	824859	113.985005	22.362771
14	817537	820220	113.995070	22.320883
14	817537	824613	113.995018	22.360556
15	818568	820735	114.005071	22.325550
15	818568	824433	114.005030	22.358947
16	819532	821420	114.014420	22.331747
16	819532	824209	114.014390	22.356933
17	820451	822125	114.023333	22.338117
17	820451	823671	114.023317	22.352084
18	821504	822371	114.033556	22.340353
18	821504	823761	114.033544	22.352903
19	822513	823268	114.043340	22.348458
19	822513	824321	114.043331	22.357971
20	823477	823402	114.052695	22.349680
20	823477	824613	114.052686	22.360610
21	805476	827081	113.877878	22.382668
21	805476	830562	113.877811	22.414103
22	806464	824033	113.887520	22.355164
22	806464	829598	113.887416	22.405423
23	814559	821739	113.966142	22.334574
23	814559	824768	113.966101	22.361920

*Remark: Due to the presence of deployed silt curtain systems at the site boundaries of the Project, some of the transect lines shown in Figure 5 could not be fully surveyed during the regular survey. Transect 10 is reduced from 6.4km to approximately 3.6km in length due to the HKBCF construction site. Therefore the total transect length for both NEL and NWL combined is reduced to approximately 111km.

5.5 **Monitoring Procedures**

- 5.5.1 The study area incorporates 23 transects which are to be surveyed twice per month. Each survey day lasts approximately 9 hours.
- 5.5.2 The survey vessel departs from Tung Chung Development Pier, Tsing Yi Public Pier or the nearest safe and convenient pier.
- When the vessel reaches the start of a transect line, "on effort" survey begins. Areas between transect 5.5.3 lines and traveling to and from the study area are defined as "off effort".
- 5.5.4 The transect line is surveyed at a speed of 6-8 knots (11-14 km/hr). For the sake of safety, the speed was sometimes a bit slower to avoid collision with other vessels. During some periods, tide and current flow in the survey areas exceeds 7 knots which can affect survey speed. There are a minimum of four marine mammal observers (MMOs) present on each survey, rotating through four positions, observers (2), data recorder (1) and 'rest' (1). Rotations occur every 30 minutes or at the end of dolphin encounters. The data recorder records effort, weather and sightings data directly onto the programme Logger and is not part of the observer team. The observers search with naked eye and binoculars between 90° and 270° abeam (bow being 0°).
- When a group of dolphins is sighted, position, bearing and distance data are recorded immediately 5.5.5 onto the computer and, after a short observation, an estimate made of group size. These parameters are linked to the time-GPS-ships data which are automatically stored in the programme Logger throughout the survey period. In this manner, information on heading, position, speed, weather, effort and sightings are stored in a format suitable for use with DISTANCE software for subsequent line transect analyses.
- 5.5.6 Once the vessel leaves the transect line, it is deemed to be "off effort". The dolphins are approached with the purpose of taking high resolution pictures for proper photo-identification of individual CWD. Attempts to photograph all dolphins in the group are made. Both the left and right hand sides of the dorsal fin area of each dolphin in the group are photographed, if possible. On finishing photographing, the vessel will return to the transect line at the point of departure and "on effort" survey is resumed.
- 5.5.7 Sightings which are made while on the transect line are referred to as "on effort sightings", while not on the actual transect line are referred to as an "opportunistic sightings" (e.g. another group of dolphins is sighted while travelling back to the transect line). Only "on effort sightings" can be used in analyses which require effort or rate quantification, e.g., encounter rate per 100km searched. This is also how "on effort sightings" are treated in the baseline report. "Opportunistic sightings" provide additional information on individual habitat use and population distribution and they are noted accordingly.
- 5.5.8 As time and GPS data are automatically logged throughout the survey and are linked to sightings data input, start and end times of encounters and deviation from the transect lines are recorded and can be subsequently reviewed.

5.6 **Monitoring Schedule for the Reporting Month**

- 5.6.1 The schedule for dolphin monitoring in May 2014 is provided in Appendix F.
- Boat survey on 9 May 14 was cancelled due to predicted adverse weather and boat survey on 26 May 5.6.2 14 was rescheduled to 31 May 14
- 5.6.3 Two surveys covering both study areas were completed.

5.7 **Results and Observations**

Dolphin surveys were conducted on 8, 12, 27 and 31 May 2014. A total of 221.0 km of transect line 5.7.1 was conducted under favourable conditions. The total length travelled was also 221.0km, please note that that some lines were shortened due to works and/or shipping traffic.

The effort summary and sightings data are shown in Tables 5.3 and 5.4, respectively. The survey efforts conducted in May 2014 are plotted in Figure 5a-b. For Table 5.3, only on-effort information is included. Transects conducted in all Beaufort Sea State are included. Compared to previous monthly reports, the whole number Beaufort Sea State scale is used so as to ease comparison with other dolphin monitoring reports.

Table 5.3 Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State

Survey	Date	Area	Beaufort	Effort (km)	Total Distance Travelled (km)
	08/05/2014	NWL	1	26.5	63.0
	08/05/2014	NWL	2	36.5	03.0
1	12/05/2014	NWL	1	7.2	
'	12/05/2014	NWL	2	3.1	47.6
	12/05/2014	NEL	1	16.3	47.0
	12/05/2014	NEL	2	21	
	27/05/2014	NWL	1	19.3	
	27/05/2014	NWL	2	4.3	60.8
2	27/05/2014	NEL	1	27.4	00.0
2	27/05/2014	NEL	2	9.8	
	31/05/2014	NWL	1	12.4	49.6
	31/05/2014	NWL	2	37.2	43.0
			TOTAL i	n May 2014	221.0

^{*}Remark: Surveys conduct under Beaufort Sea State 3 or below are considered as under favourable condition.

Table 5.4 Impact Dolphin Monitoring Survey Details May 2014

Date	Location	No. Sightings "on effort"	No. Sightings "opportunistic"
08/05/2014	NW L	0	0
06/05/2014	NEL	0	0
12/05/2014	NW L	0	0
12/03/2014	NEL	0	0
27/05/2014	NW L	0	0
27/03/2014	NEL	0	0
31/05/2014	NW L	1	2
31/03/2014	NEL	0	0
	TOTAL in May 2014	1	2

Table 5.5 The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^

Encounter Rate of Number of Dolphin Sightings (STG)*								
Date	NEL Track	NWL Track	NEL Sightings	NWL Sightings	NEL Encounter Rate	NWL Encounter Rate		
8 & 12/05/2014	37.3 km	73.3 km	0	0	0	0		
27 & 31/05/2014	37.2 km	73.2 km	0	1	0	1.4		
	Encounter F	Rate of Total	al Number of	f Dolphins (A	ANI)**			
NEL NWL NEL NWL Encounter Encounter Date Track Track Dolphins Dolphins Rate Rate								
8 & 12/05/2014	37.3 km	73.3 km	0	0	0	0		
27 & 31/05/2014	37.2 km	73.2 km	0	3	0	4.1		

^{*} Encounter Rate of Number of Dolphin Sightings (STG) presents encounter rates in terms of groups per 100km.

- 5.7.2 A total of three sightings were made, two "opportunistic" and one "on effort". All sightings were made on the 31st of May. A total of eighteen individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- 5.7.3 Behaviour: Of the three sightings, two groups were feeding and the third engaged in multiple activities which included milling and feeding. The locations of sighting with different behaviour are mapped in Figure 5d.
- 5.7.4 One (1) Limit Level Exceedance of dolphin monitoring was noted. The investigation is undergoing and the investigation results will be reported in the quarterly EM&A report (Mar 14 May 14).
- 5.7.5 Photo ID analyses for April 2014 is presented in Appendix K.
- 5.7.6 There was one new individual (HZMB119) added to the catalogue in April 2014. Photo ID is included in Appendix K for reference.
- 5.7.7 Noteworthy Observation¹:
- 5.7.6.1 When impact monitoring was conducted at the northern ends of transect lines 9 & 10, the view of the area was partially blocked by the working vessels and in water structures of TMCLKL Project. As the barges will move during the on-going works, it is considered that they will temporarily affect survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour, whereas the fixed structures will continuously affect survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour. One of the aims of the impact monitoring is to attempt to assess the degree of these effects.
- 5.7.6.2 When impact monitoring was conducted at the southern ends of transect lines 1 & 2, the view of the area and the transect lines were partially blocked by the working vessels and in water structures of Hong Kong Links Road Project. As the barges will move during the on-going works, it is considered that they will temporarily affect survey protocol, survey data collection, dolphin movement, dolphin

^{**} Encounter Rate of Total Number of Dolphins (ANI) presents encounter rates in terms of individuals per 100km. And the encounter rate is not corrected for individuals, calculation may represent double counting.

[^]The table is made only for reference to the quarterly STG & ANI, which were adopted for the Event & Action Plan.

¹ A noteworthy observation is to show that either the conduct of the surveys themselves is affected, i.e., the noted vessel or works impedes the progress or view of the survey platform. In addition, the vessel or construction works may be different or additional to that observed previously and further, are of such a nature that they are a likely to create an impact on the movement or behaviour of the subject of the impact survey, in this case, the dolphins.

habitat use and dolphin behaviour, whereas the fixed structures will continuously affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour. One of the aims of the impact monitoring is to attempt to assess the degree of these effects.

- 5.7.6.3 The HKBCF Project affected lines 10 and 12 and the new projects noted previously were ongoing at the southern ends of lines 5 and 6.
- 5.7.6.4 The survey effort log notes the areas in which the visibility is limited or the survey is affected so that these can be accounted for in any subsequent analyses. Some of these obstructions will become permanent and some will be temporary as the HZMB is built and other projects progress. It is advised that the impact monitoring surveys should be completed as close to the predefined lines as possible (as per Figure 4 of this report).
- 5.7.6.5 In May 14, the impact survey vessel route shifted slightly to the east at the northern end of transect line 11 due to works at HKBCF. In future, the impact survey route will follow as closely as possible the predefined transect 11. According to the review provided by the dolphin specialist during the investigation in Jan 2014, the shift in the transect line will not affect the overall dolphin impact monitoring analyses.
- 5.7.8 The event action plan is annexed in Appendix L.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

6.1 Site Inspection

- 6.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 5 site inspections were carried out on 2, 8, 15, 22 and 29 May 2014.
- 6.1.2 Oil stain was discovered near portion A on 21 May 2014. The source was identified as oil leakage from the flattop barge Luen Hung (聯興) 368 with approximately 50m2 spread. As informed by the Contractor, the source of oil stain was from an oil drum toppled from the flattop barge. Following the spill response plan, relevant parties were informed of the incident and the Contractor used absorption booms to contain and remove the floating oil from water and material used for such was collected using disposal bags as part of the spill kits item. Such spillage incident was considered as project related. The Contractor was reminded to properly implement all the precautionary actions listed in the spill response plan to prevent similar incident in the future. No similar incident was recorded in the rest of the reporting month.
- 6.1.3 Particular observations during the site inspections are described below:

Air Quality

- 6.1.4 Exposed soil observed fully loaded on barge at near Portion D. The Contractor was reminded to provide dust control measures and keep the surface of all exposed soil wet and the Contractor was reminded to use suitable barge to store public fill to prevent potential runoff to the surrounding. (Reminder)
- 6.1.5 Exposed earth was observed at Portion A. The Contractor was reminded to provide dust control measures such as to treat the exposed earth by compaction. The Contractor provided dust control measures such as to treat the exposed earth by compaction. (Closed)
- 6.1.6 Stock pile of soil was observed on portion C2a. The Contractor was reminded to compact the soil/provide dust mitigation measures such watering to exposed stock pile of sand to prevent potential fugitive dust generation. (Reminded)
- 6.1.7 Fugitive dust was observed generated on site at Portion D. The Contractor provided dust suppression measures such a compaction and watering to exposed soil. The Contractor was reminded to review the effectiveness of the abovementioned mitigation measures and to review the need to provide enhancement on current measures. In addition, high pressure water jet was observed at site entrance at Portion D, Nonetheless, the Contractor was reminded to review the need to enhance the wheel washing facility to effectively prevent potential trail of mud outside site boundary cause by site vehicles. (Reminder)

Noise

6.1.8 Generator was observed without acoustic decoupling measures on barge 天駿 3. The Contractor was reminded to install acoustic decoupling measure prior to leaving Portion A. (Reminder)

Water Quality

- 6.1.9 Stockpile of soil was observed on barge AP3 at Portion D, the Contractor was reminded to provide measures to prevent potential runoff during rainstorm. (Reminder)
- 6.1.10 The Contractor was reminded that the chemical waste containers should be kept in good condition and free from damage or any other defects which may impair the performance of the containers. The Contractor removed the containers. (Closed)
- 6.1.11 Generator, drip tray and water pump were observed located too close to the water level in the reporting period, the Contractor was reminded place equipments at higher ground to prevent potential oil

spillage/runoff. The Contractor placed generator at higher ground to prevent potential oil spillage/runoff (Closed)

- 6.1.12 Water was observed accumulated inside drip tray at C2a near the blue conveyor belts and other areas. The Contractor was reminded to clear water inside drip tray at C2a near the blue conveyor belts. The Contractor cleared the water inside drip tray at C2a and other areas. (Closed)
- 6.1.13 Idle stone column installation plant was observed without localised silt curtain to fully enclose it. The Contractor was reminded to fully enclose the stone column installation works prior to stone column installation. (Reminder)

Chemical and Waste Management

- 6.1.14 Used band drains were observed stored on site at Portion A. The Contractor was reminded to regularly collect and dispose the used band drain materials. The Contractor cleared unwanted band drains regularly. Band drain material and general refuse were observed at the road side at Portion A. The Contractor cleared general refuse stored on site. Nonetheless, the Contractor was reminded to clear unwanted band drain and other general refuse stored on site regularly. (Reminder)
- 6.1.15 General refuse and disconnected silt curtain were observed next to cellular structure, at Portion A's waste collection point and on the way from Portion D to C2a. The Contractor was reminded to collect the refuse and the disconnected silt curtain presented in the water within and adjacent to the works site. The Contractor collected the refuse presented in the water within and adjacent to the works site. The Contractor was reminded to review the need to increase frequency to clear and dispose of the waste at waste collection point to avoid accumulation. (Reminder)
- 6.1.16 Stone and gravel were observed inside drip tray containing oil drums. The Contractor was reminded to relocate the drip tray with the oil drums to avoid the situation. The Contractor relocated the drip tray with the oil drums to avoid the situation. (Closed)

Landscape and Visual Impact

6.1.17 No relevant works was carried out in the reporting month.

Others

6.1.18 Rectifications of remaining identified items are undergoing by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly.

6.2 Advice on the Solid and Liquid Waste Management Status

- 6.2.1 The Contractor had registered as a chemical waste producer for this Project. Receptacles were available for general refuse collection and sorting.
- 6.2.2 As advised by the Contractor, 1,181,416.8m³ of fill were imported for the Project use in the reporting period. 40kg of metals, 24kg of paper/cardboard packaging, 1,000kg of chemical waste, 91m³ of general refuse were generated and disposed of in the reporting period. Monthly summary of waste flow table is detailed in Appendix M.
- 6.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes storage, collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 6.2.4 The Contractor is reminded that chemical waste should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labeling and Storage of Chemical Wastes.

6.3 Environmental Licenses and Permits

6.3.1 The environmental licenses and permits for the Project and valid in the reporting month is summarized in Table 6.1.

Table 6.1 Summary of Environmental Licensing and Permit Status

Statutory Reference			Valid I	Period	License/ Permit	Remarks
11010101100				То	Holder	
EIAO	Environmental	EP- 353/2009/G	06/08/2012	N/A	HyD	Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities
LINO	Permit	EP- 354/2009/B	28/01/2014	N/A	Tiyo	Tuen Mun – Chek Lap Kok Link (TMCLKL Southern Landfall Reclamation only)
APCO	NA notification		30/12/2011		CHEC	Works Area WA2 and WA3
APCO	NA notification		17/01/2012		CHEC	Works Area WA4
WDO	Chemical Waste Producer Registration	5213-951- C1186-21	30/3/2012	N/A	CHEC	Chemical waste produced in Contract HY/2010/02
WDO	Chemical Waste Producer Registration	5213-974- C3750-01	31/10/2012		CHEC	Registration as Chemical Waste Producer at To Kau Wan(WA4)
WDO	Chemical Waste Producer Registration	5213-839- C3750-02	13/09/2012	ŀ	CHEC	Registration as Chemical Waste Producer at TKO 137(FB)
WDO	Billing Account for Disposal of Construction Waste	7014181	05/12/2011	N/A	CHEC	Waste disposal in Contract HY/2010/02
NCO	Construction Noise Permit	GW- RW0888-13	27/12/2013	26/06/2014	CHEC	Works Area WA4 in Contract HY/2010/02
NCO	Construction Noise Permit	GW-RS0211- 14	11/03/2014	10/09/2014	CHEC	Reclamation Works in Contract HY/2010/02
NCO	Construction Noise Permit	GW-RS0490- 14	22/05/2014	21/08/2014	CHEC	Reclamation Works in Contract HY/2010/02
NCO	Construction Noise Permit	GW-RE1345- 13	31/12/2013	30/06/2014	CHEC	Section of TKO Fill Bank under Contract HY/2010/02

6.4 Implementation Status of Environmental Mitigation Measures

- 6.4.1 In response to the site audit findings, the Contractors carried out corrective actions.
- 6.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix C. Most of the necessary mitigation measures were implemented properly.
- 6.4.3 Training of marine travel route for marine vessels operator was given to relevant staff and relevant records were kept properly.

- 6.4.4 Regarding the implementation of dolphin monitoring and protection measures (i.e. implementation of Dolphin Watching Plan, Dolphin Exclusion Zone and Silt Curtain integrity Check), regular checking were conducted by the experienced MMOs within the works area to ensure no dolphin was trapped by the enclosed silt curtain systems. Any dolphin spotted within the enclosed silt curtain systems was reported and recorded. Relevant procedures were followed and measures were well implemented. Silt curtain systems were also inspected timely in accordance to the submitted plan. All inspection records were kept properly.
- 6.4.5 Acoustic decoupling measures on noisy plants on construction vessels were checked regularly and the Contractor was reminded to ensure provision of ongoing maintenance to noisy plants and to carry out improvement work once insufficient acoustic decoupling measures were found.
- 6.4.6 Frequency of watering per day on exposed soil was checked; with reference to the record provided by the Contract, watering was conducted at least 8 times per day on reclaimed land. The Contractor was reminded to ensure provision of watering of at least 8 times per day on all exposed soil within the Project site and associated works areas throughout the construction phase.

6.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 6.5.1 All 1-Hour TSP and 24-hour TSP results were below the Action and Limit Level in the reporting month.
- 6.5.2 For construction noise, no exceedance was recorded at all monitoring stations in the reporting period.
- 6.5.3 For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting period.
- 6.5.4 One (1) Limit Level Exceedance of dolphin monitoring was noted. The investigation is undergoing and the investigation results will be reported in the guarterly EM&A report (Mar 14 May 14).
- 6.5.5 Cumulative statistics on exceedance is provided in Appendix N.

6.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 6.6.1 The Environmental Complaint Handling Procedure is annexed in Figure 6.
- 6.6.2 As informed by the Contractor on 7 May 14, a complaint was received by the Contractor on 17 April 14 concerning sand and dust emission from uncovered barges parking at the sea area off the Tuen Mun Ferry Pier.
- 6.6.2.1 As informed by the Contractor 7-10 trips of sand barges per week would stay at the concerned Area.
- 6.6.2.2 However, because no extra information was received for this complaint after the release of last investigation report, with referred to the available information; it is unable to conclude whether the complaint is related to this Contract because:
 - 1. There is no sufficient information provided by the complainant to make sure that the concerned barges are related to this project.
 - 2. The sand barges at the construction site of the reclamation works were regularly checked and so far, all sand barges were observed equipped with watering equipments.
 - 3. Photo record below shows that watering equipment was used to keep the sand filling material wet.
- 6.6.2.3 Photo record shows that watering equipment was provided on pelican barge loaded with sand for watering of sand filling material to keep the sand material wet:

- 6.6.2.4 Nevertheless, the Contractor was reminded to continue to properly implement all dust mitigation measures.
- 6.6.2.5 The Contractor was advised to ensure to continue the provision of fugitive dust mitigation measures to barges loaded with filling material such as watering to sand filling material on sand barges to keep the surface of stockpile of filling material wet.
- 6.6.2.6 As informed by the Contractor, skipper of all working barges would further be reminded to beware and to pay particular attention to the issue concerning sand and dust emission from uncovered barges parking at the sea area off the Tuen Mun Ferry Pier.
- 6.6.3 As informed by the Contractor on 30 May 2014, an environmental complaint had been received on 28 May 2014. The complainant mentioned that waste such as earth and concrete were being felled into the sea everyday at the Hong Kong-Zhuhai-Macao Bridge at location where construction works are being conducted, causing pollution to the marine environment.
- 6.6.3.1 Site inspections were conducted and project documents were reviewed, please see the following for details of investigation actions and results:
- 6.6.3.2 Regular site inspection was conducted on 29 May 2014 and a follow up site inspection was conducted on 5 June 2014 at HKBCF Reclamation Works, waste such as concrete and earth were not observed being felled into the sea.
- 6.6.3.3 The waste flow record provided by the Contractor has been reviewed (please see attached), the waste flow record shows that waste described by the complainant (i.e. concrete or earth) were not generated by this Contract.
- 6.6.3.4 In addition, the construction programme provided by the Contractor (Please see construction program attached) has been reviewed and it is noted that concrete and earth were not used as marine fill for any on-going construction activities of this Contract in May 2014. Also, all filling works were conducted inside the designated work zone inside the site boundary of HKBCF Reclamation Works. Furthermore, impact water quality monitoring result of May 2014 has been reviewed and no impact water quality exceedance was recorded in May 2014, this indicates that the works carried by this Contract is unlikely to cause pollution to the marine environment.
- 6.6.3.5 As such, with referred to the available information, it is concluded that the complaint is unlikely to be related to this Contract.
- 6.6.3.6 Nevertheless, the Contractor was reminded to continue to properly implement all water quality mitigation measures and strictly follow the waste handling procedure according of this Contract.
- 6.6.4 No notification of summons and successful prosecutions was received in the reporting period.
- 6.6.5 Statistics on complaints, notifications of summons and successful prosecutions are summarized in Appendix N.

7 FUTURE KEY ISSUES

7.1 Construction Programme for the Coming Months

7.1.1 As informed by the Contractor, the major works for the Project in June 2014 and July 2014 will be *:-

Marine-based Works

- Marine-base
- Cellular structure installation
- Connecting arc cell installation
- Laying geo-textile
- Sand blanket laying
- Sand filling
- Maintenance of silt curtain & silt screen at sea water intake of HKIA
- Stone column installation
- Band drain installation
- Backfill cellular structure
- Geotechnical Instrumentation works
- Surcharge laying
- Vibro-compaction on surcharge
- Capping Beams structures
- Construction of temporary jetties for surcharge laying
- Temporary Watermain construction along access at Portion D

Land-based Works

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

^{*}Construction activities in Jun & Jul 14 will be changed subject to works progress.

7.2 Key Issues for the Coming Month

- 7.2.1 Key issues to be considered in the coming months:-
 - Site runoff should be properly collected and treated prior to discharge;
 - Minimize loss of sediment from filling works;
 - Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
 - Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface runoff during rainstorm:
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits:
 - Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission;
 - Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
 - Quieter powered mechanical equipment should be used;
 - Provision of proper and effective noise control measures for operating equipment and machinery onsite, such as erection of movable noise barriers or enclosure for noisy plants;
 - Closely check and replace the sound insulation materials regularly:
 - Better scheduling of construction works to minimize noise nuisance:
 - Properly store and label oil drums and chemical containers placed on site:
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved and confined areas;
 - Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.

7.3 Monitoring Schedule for the Coming Month

7.3.1 The tentative schedule for environmental monitoring in June 2014 is provided in Appendix F.

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

- 8.1.1 The construction phase and EM&A programme of the Project commenced on 12 March 2012.
- 8.1.2 All 1-Hour TSP and 24-hour TSP results were below the Action and Limit Level in the reporting month.
- 8.1.3 For construction noise, no exceedance was recorded at all monitoring stations in the reporting period.
- 8.1.4 For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting period.
- 8.1.5 For dolphin monitoring, a total of three sightings were made, two "opportunistic" and one "on effort". All sightings were made on the 31st of May. A total of eighteen individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- 8.1.6 Behaviour: Of the three sightings, two groups were feeding and the third engaged in multiple activities which included milling and feeding. The locations of sighting with different behaviour are mapped in Figure 5d.
- 8.1.7 One (1) Limit Level Exceedance of dolphin monitoring was noted. The investigation is undergoing and the investigation results will be reported in the guarterly EM&A report (Mar 14 May 14).
- 8.1.8 Environmental site inspection was carried out 5 times in May 2014. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.
- 8.1.9 As informed by the Contractor on 7 May 14, a complaint was received by the Contractor on 17 April 14 concerning sand and dust emission from uncovered barges parking at the sea area off the Tuen Mun Ferry Pier. Investigation result shows that the complaint is unlikely to be related to this Contract.
- 8.1.10 As informed by the Contractor on 30 May 14, an environmental complaint had been received on 28 May 2014. The complainant mentioned that waste such as earth and concrete were being felled into the sea everyday at the Hong Kong-Zhuhai-Macao Bridge at location where construction works are being conducted, causing pollution to the marine environment. After investigation, it is concluded that the complaint is unlikely to be related to this Contract.
- 8.1.11 No notification of summons and successful prosecution was received in the reporting period.

8.2 Recommendations

8.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

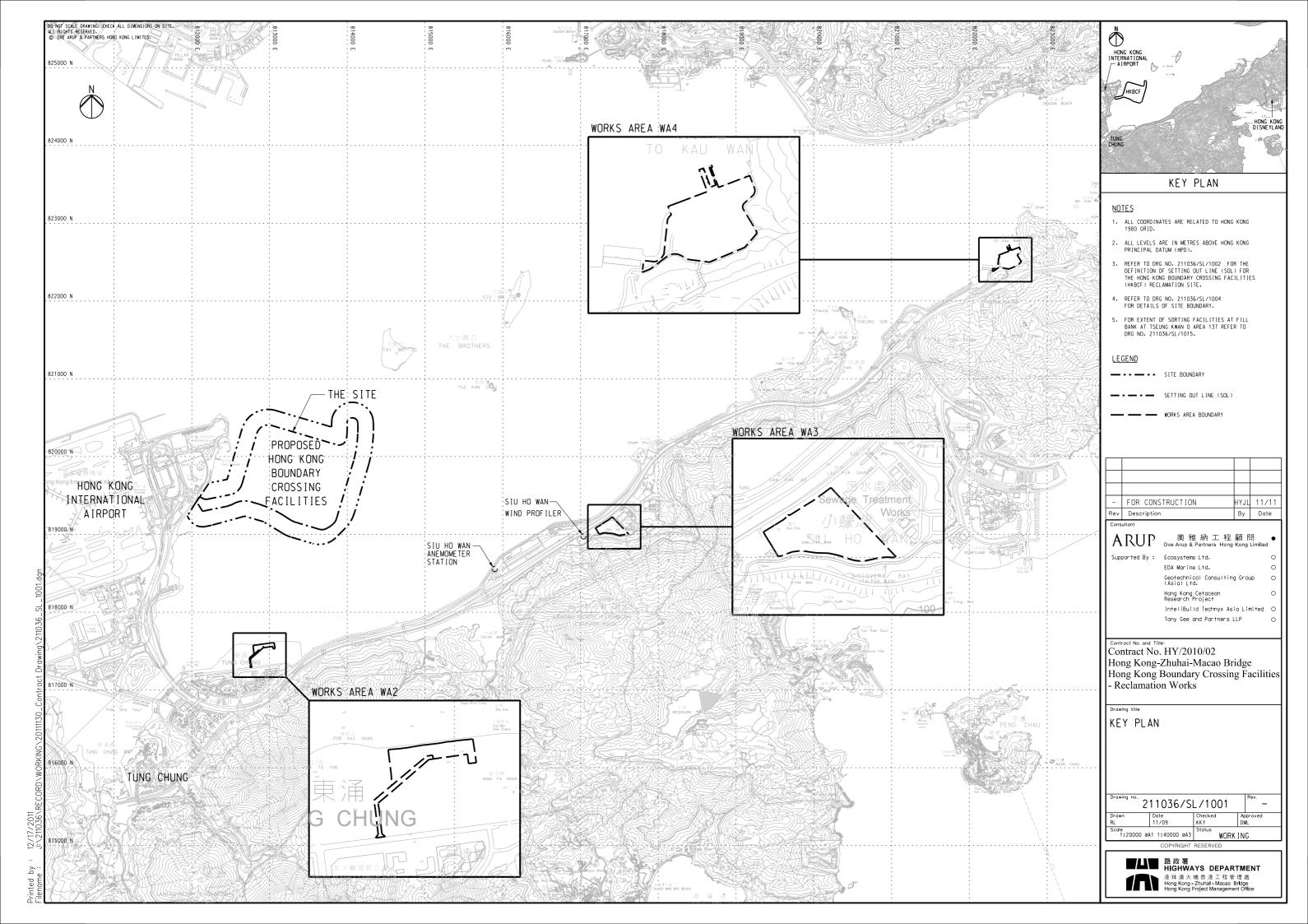
Air Quality Impact

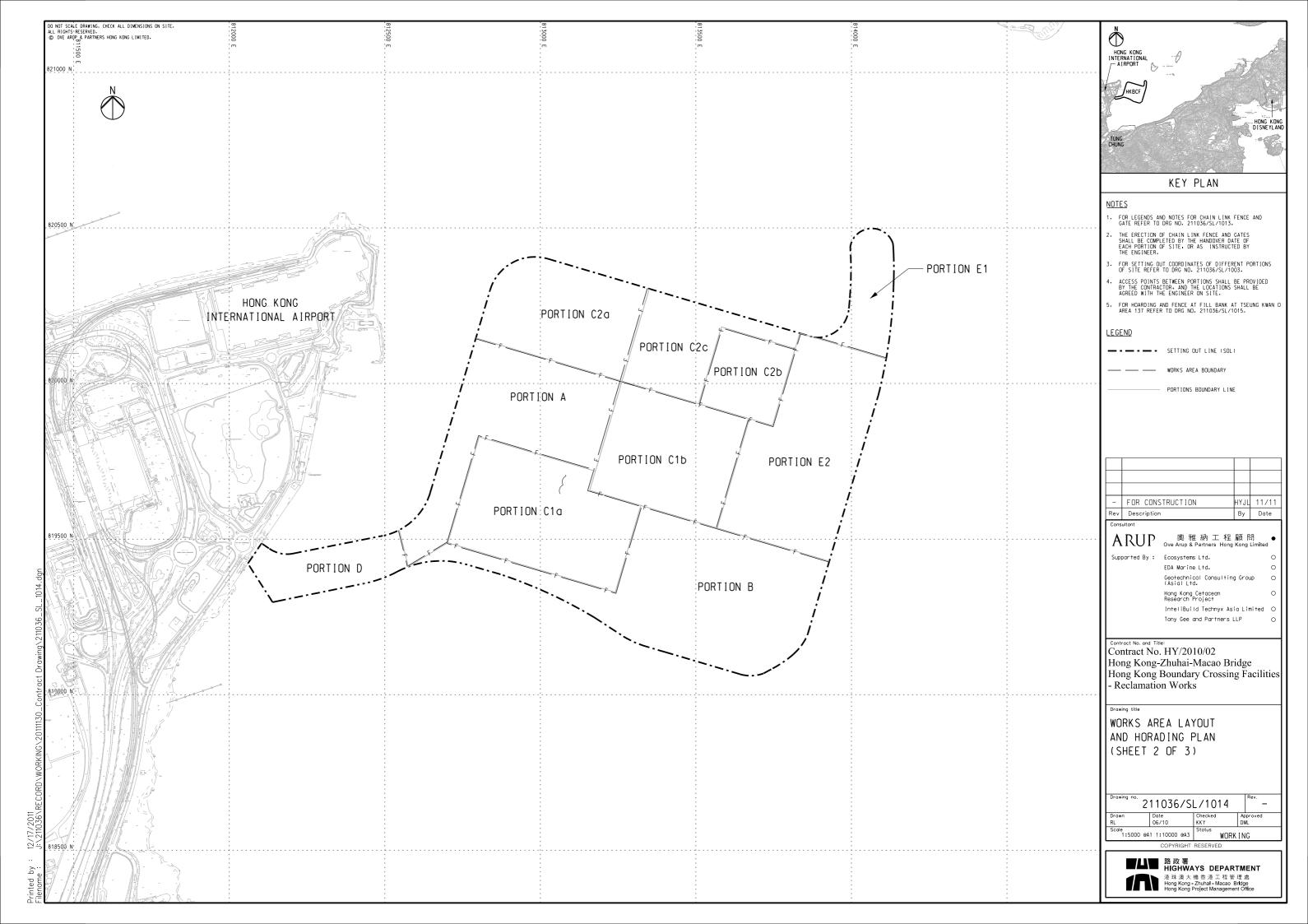
- All working plants and vessels on site should be regularly inspected and properly maintained to avoid dark smoke emission.
- All vehicles should be washed to remove any dusty materials before leaving the site.
- Haul roads should be sufficiently dampened to minimize fugitive dust generation.
- Wheel washing facilities should be properly maintained and reviewed to ensure properly functioning.
- Temporary exposed slopes and open stockpiles should be properly covered.
- Enclosure should be erected for cement debagging, batching and mixing operations.
- Water spraying should be provided to suppress fugitive dust for any dusty construction activity.

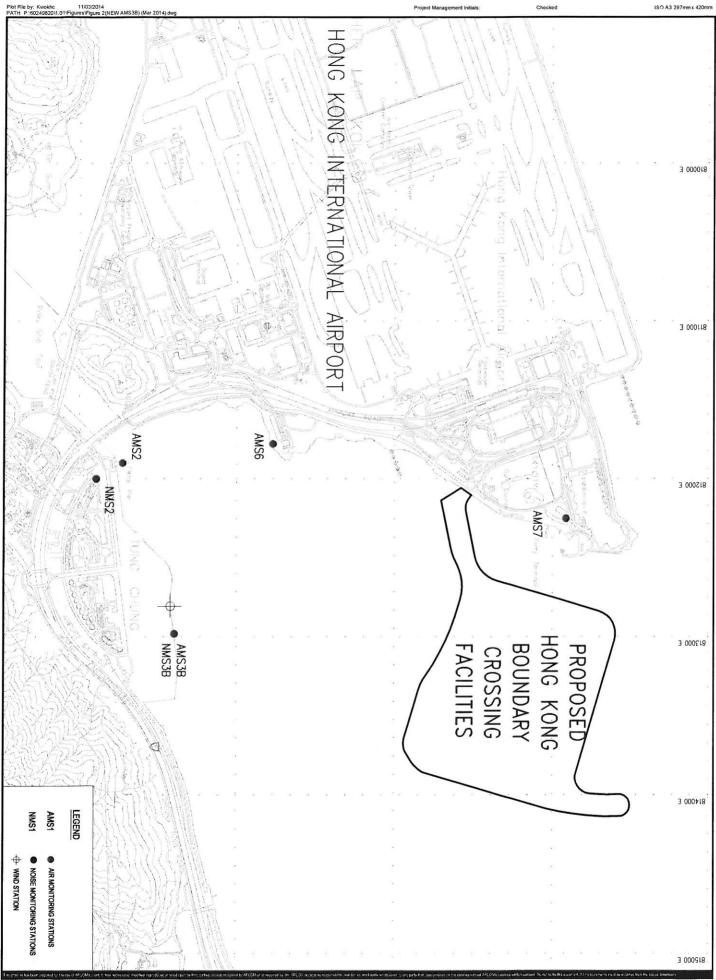
Construction Noise Impact

- Quieter powered mechanical equipment should be used as far as possible.
- Noisy operations should be oriented to a direction away from sensitive receivers as far as possible.
- Proper and effective noise control measures for operating equipment and machinery on-site should be provided, such as erection of movable noise barriers, enclosure for noisy plants or enhancement works to provide sufficient acoustic decoupling measure(s). Closely check and replace the sound insulation materials regularly
- Vessels and equipment operating should be checked regularly and properly maintained.
- Noise Emission Label (NEL) shall be affixed to the air compressor and hand-held breaker operating within works area.
- Acoustic decoupling measures should be properly implemented for all existing and incoming
 construction vessels with continuous and regularly checking to ensure effective implementation of
 acoustic decoupling measures.

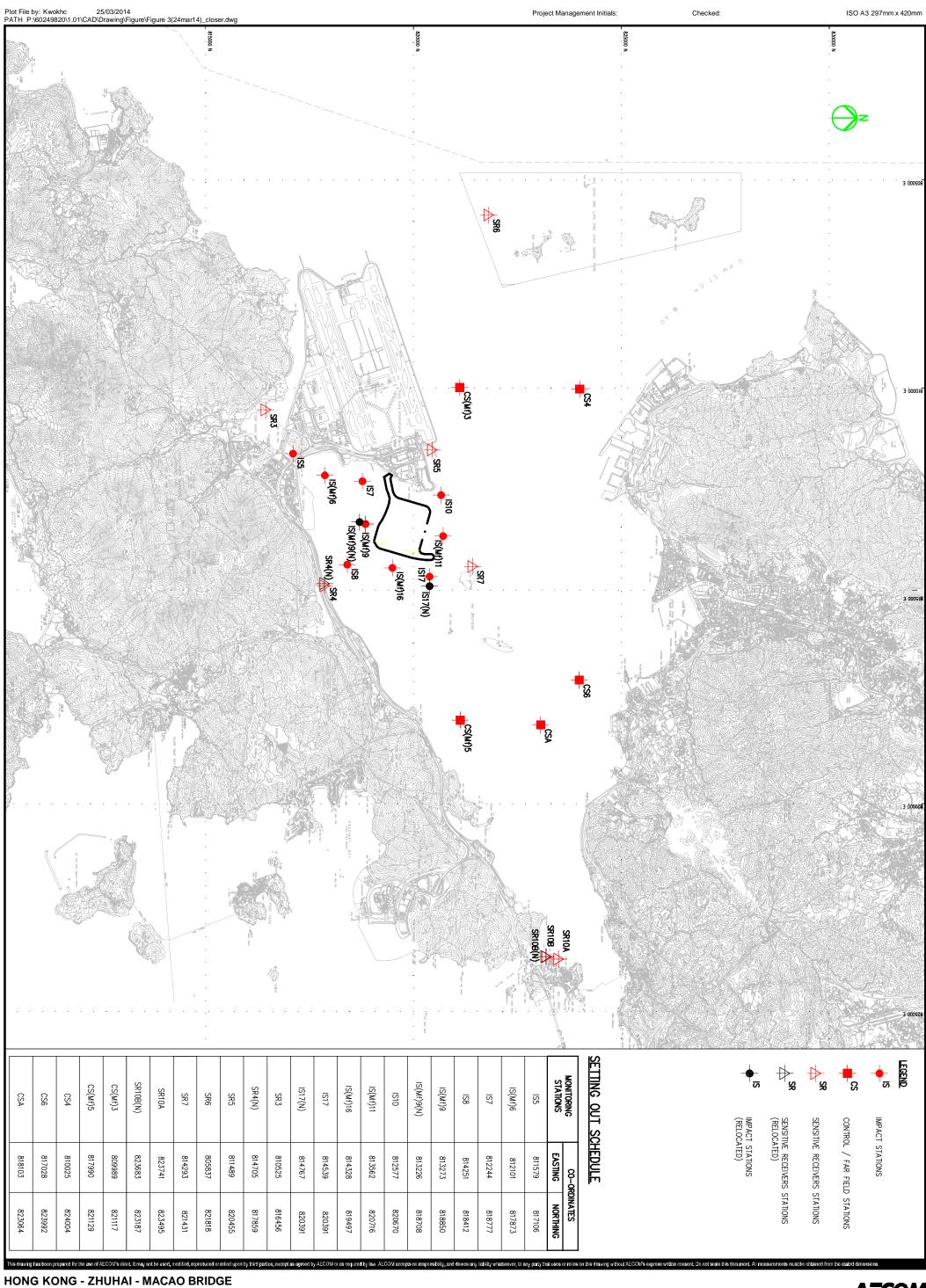
Water Quality Impact

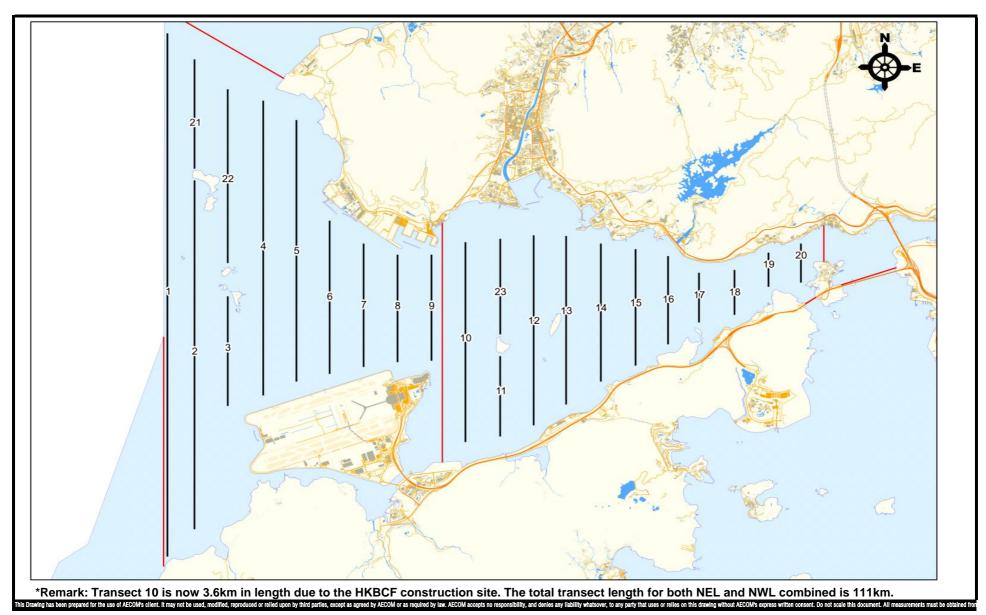

- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities in order to make sure they are functioning effectively.
- Construction of seawall should be completed as early as possible.
- Regular inspect and review the loading process from barges to avoid splashing of material.
- Silt, debris and leaves accumulated at public drains, wheel washing bays and perimeter uchannels and desilting facilities should be cleaned up regularly.
- Silty effluent should be treated/ desilted before discharged. Untreated effluent should be prevented from entering public drain channel.
- Proper drainage channels/bunds should be provided at the site boundaries to collect/intercept the surface run-off from works areas.
- Exposed slopes and stockpiles should be covered up properly during rainstorm.


Chemical and Waste Management

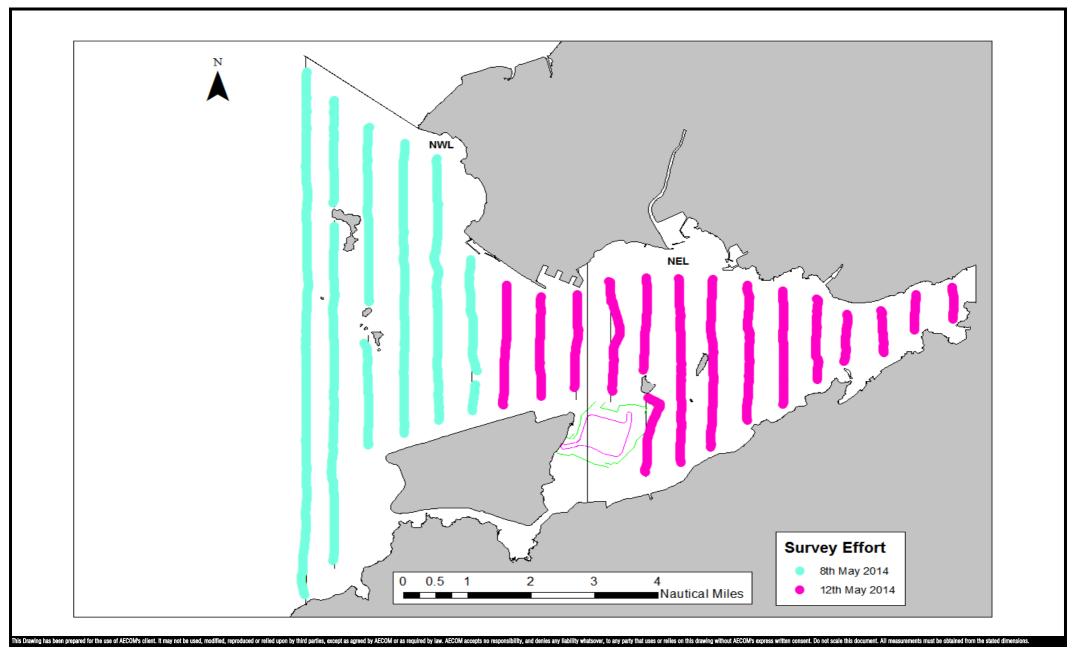

- All types of wastes, both on land and floating in the sea, should be collected and sorted properly
 and disposed of timely and properly. They should be properly stored in designated areas within
 works areas temporarily.
- All chemical containers, batteries and oil drums should be properly stored and labelled.
- All plants and vehicles on site should be properly maintained to prevent oil leakage. Proper measures, like drip trays and/or bundings, should be provided for retaining leaked oil/chemical from plants.
- All kinds of maintenance works should be carried out within roofed, paved and confined areas.
- All drain holes of the drip trays utilized within works areas should be properly plugged to avoid any oil and chemical waste leakage.
- Oil stains on soil surface, accumulated oil mixture and empty chemical containers should be cleared and disposed of as chemical waste.
- Regular review should be conducted for working barges and patrol boats to ensure sufficient
 measures and spill control kits were provided on working barges and patrol boats to avoid any
 spreading of leaked oil/chemicals.

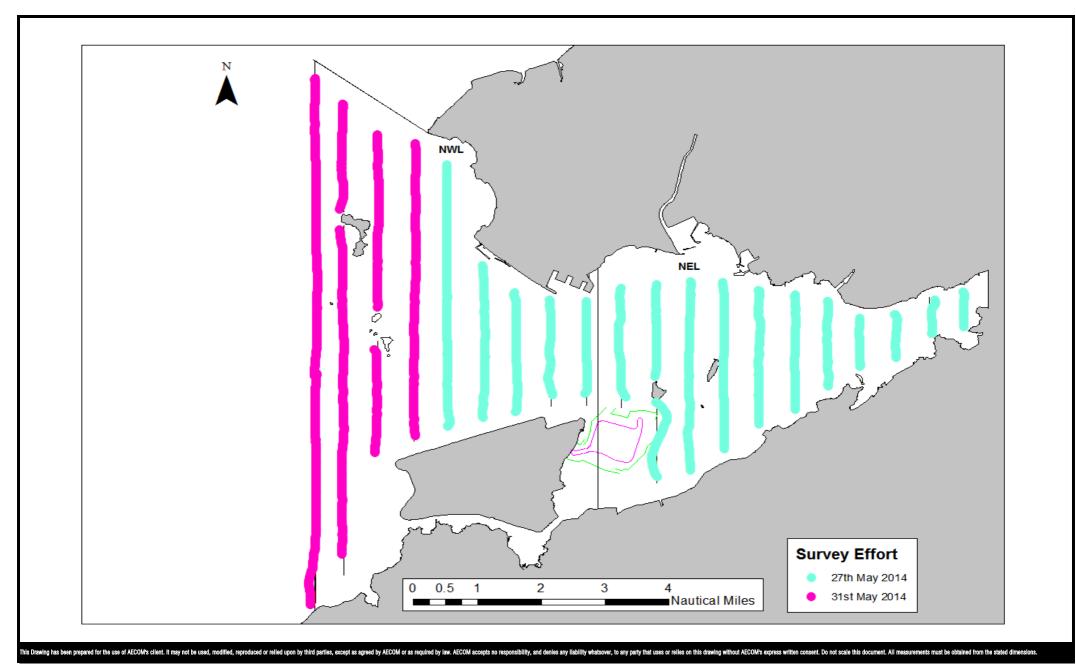
Landscape and Visual Impact


 All existing, retained/transplanted trees at the works areas should be properly fenced off and regularly inspected.

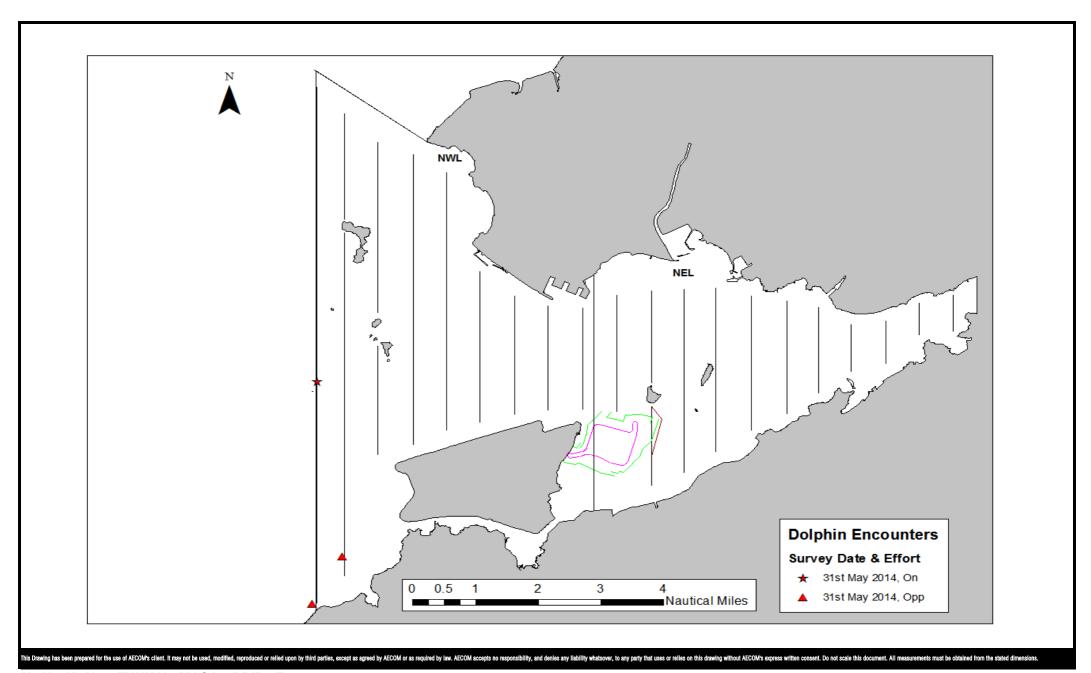


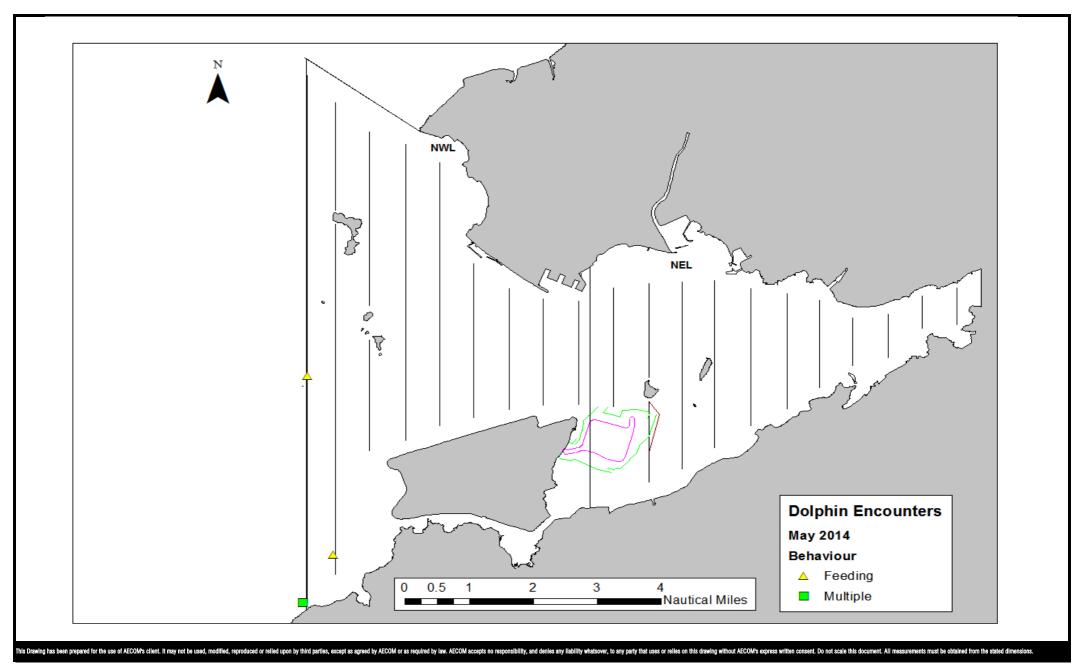
Project No.: -




HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

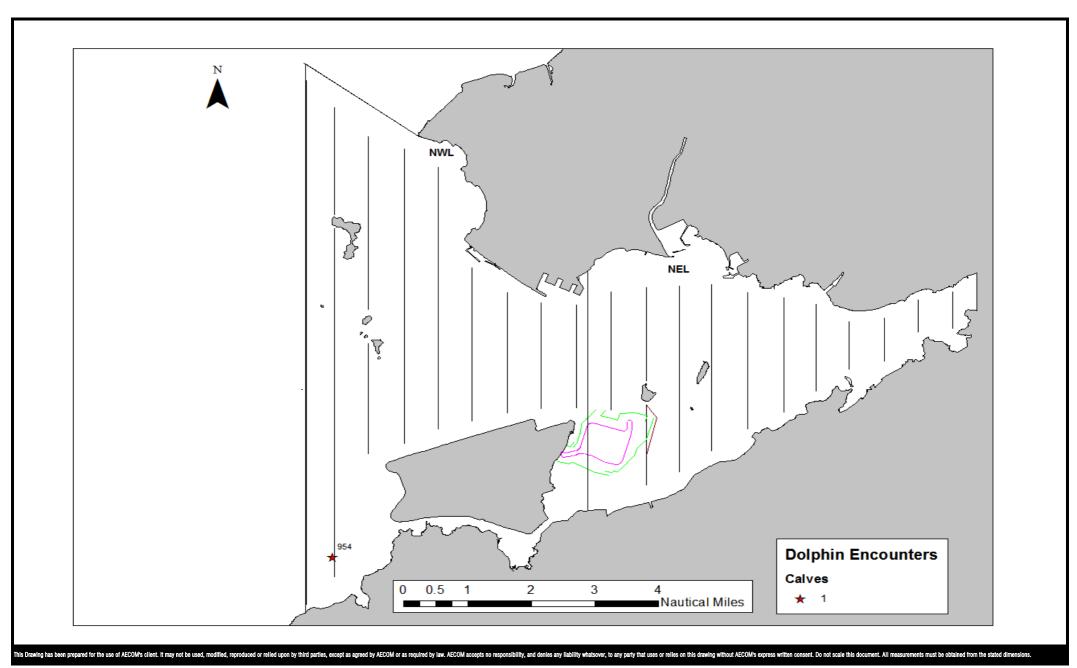
Project No.: 60249820 Date: January 13

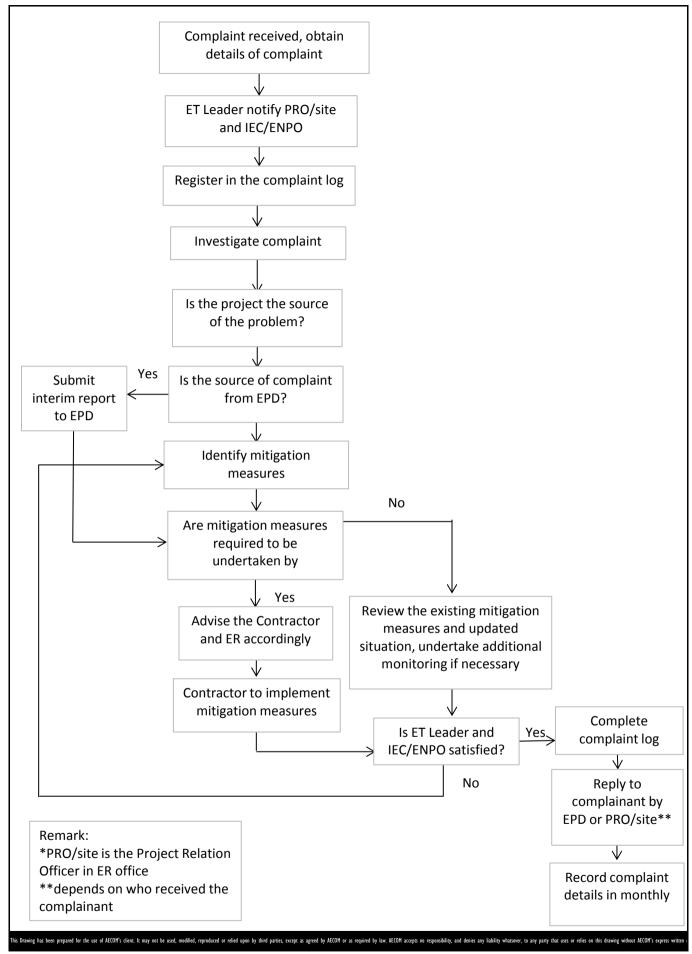

- RECLAMATION WORKS


HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

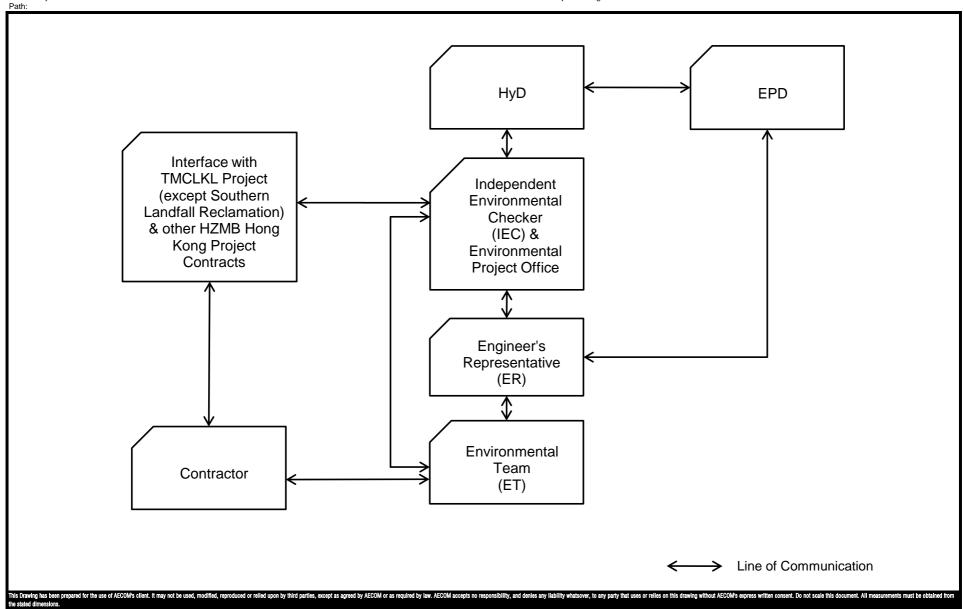

- RECLAMATION WORKS


HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

- RECLAMATION WORKS

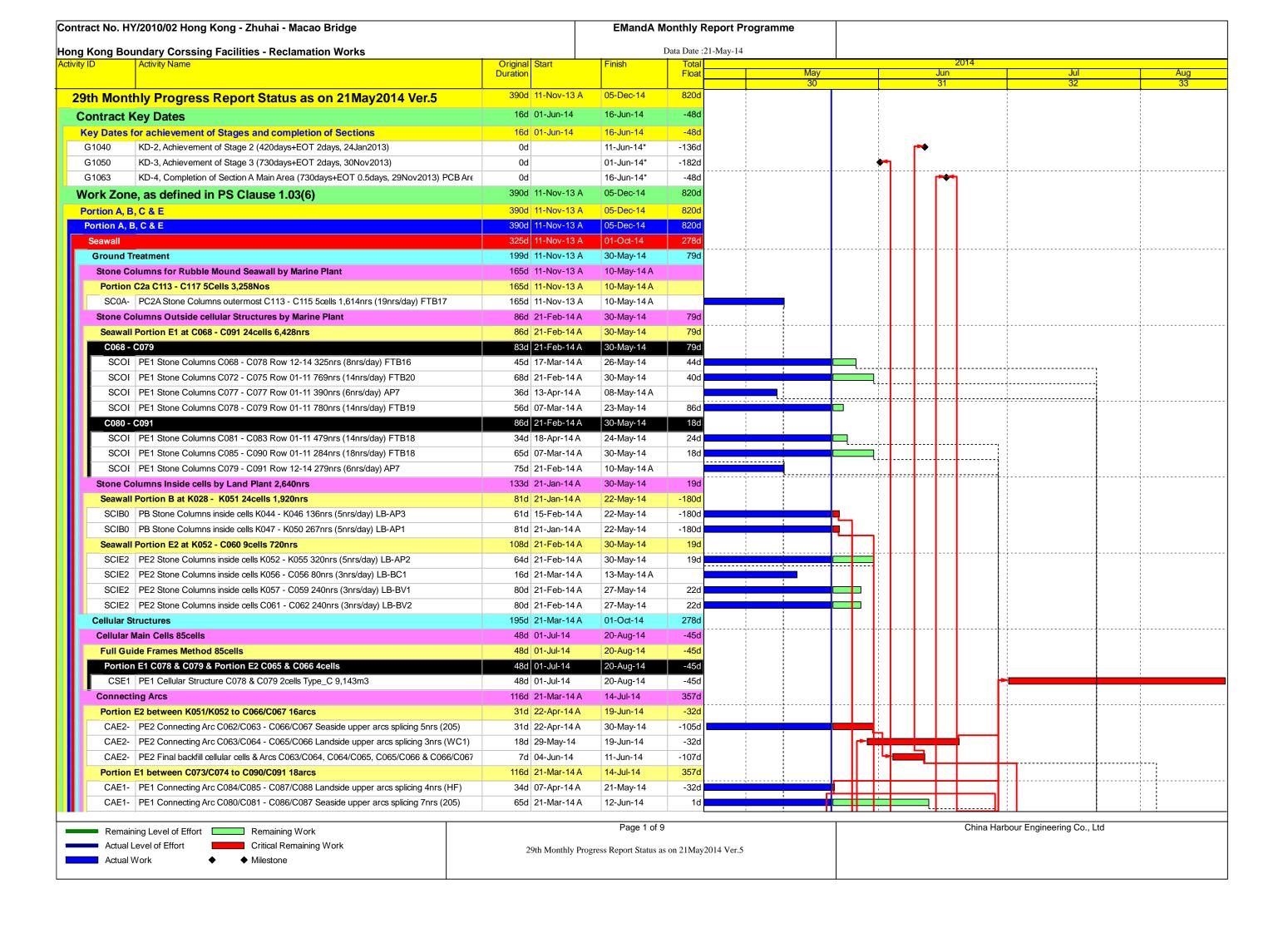


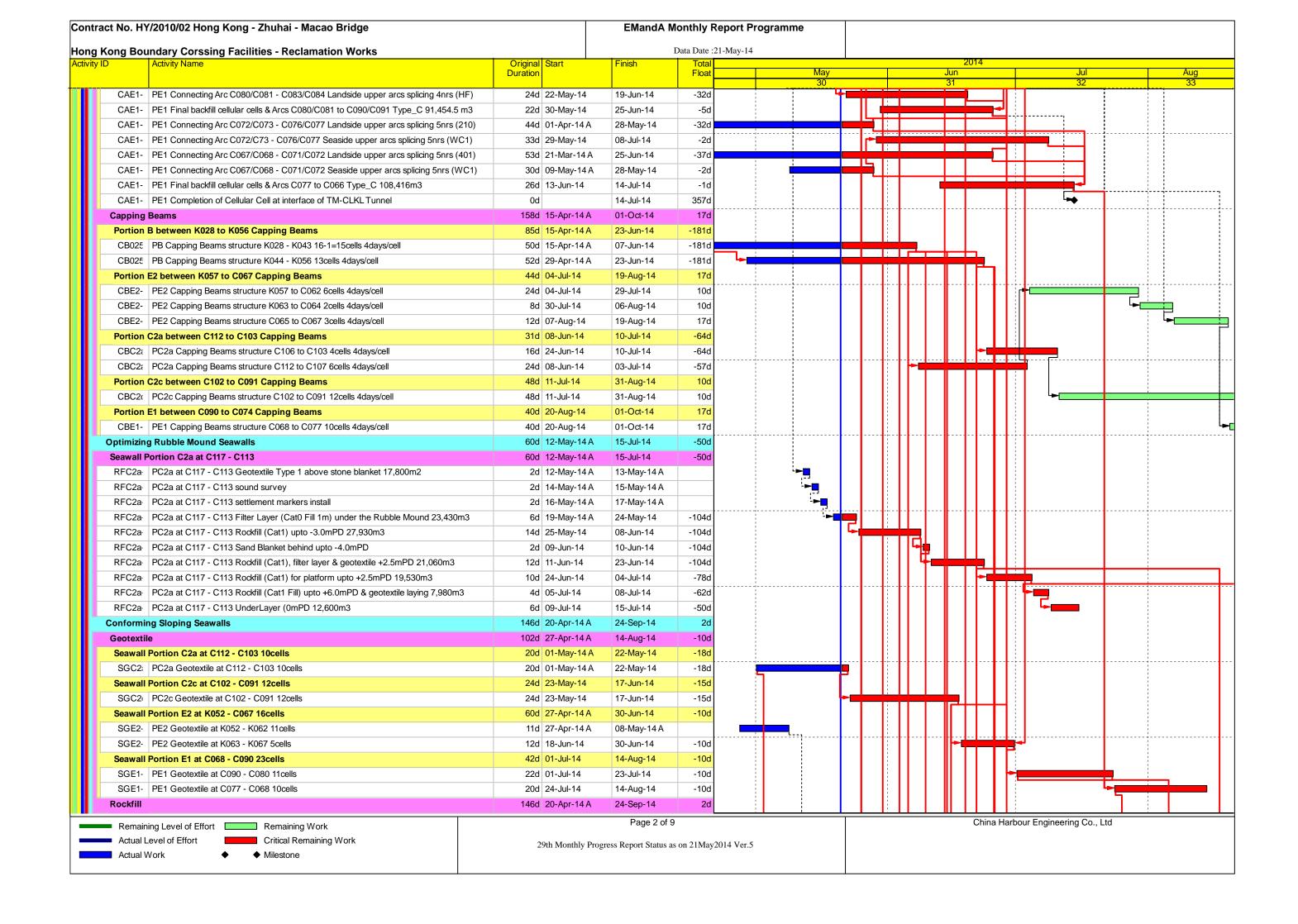
IES AECOM

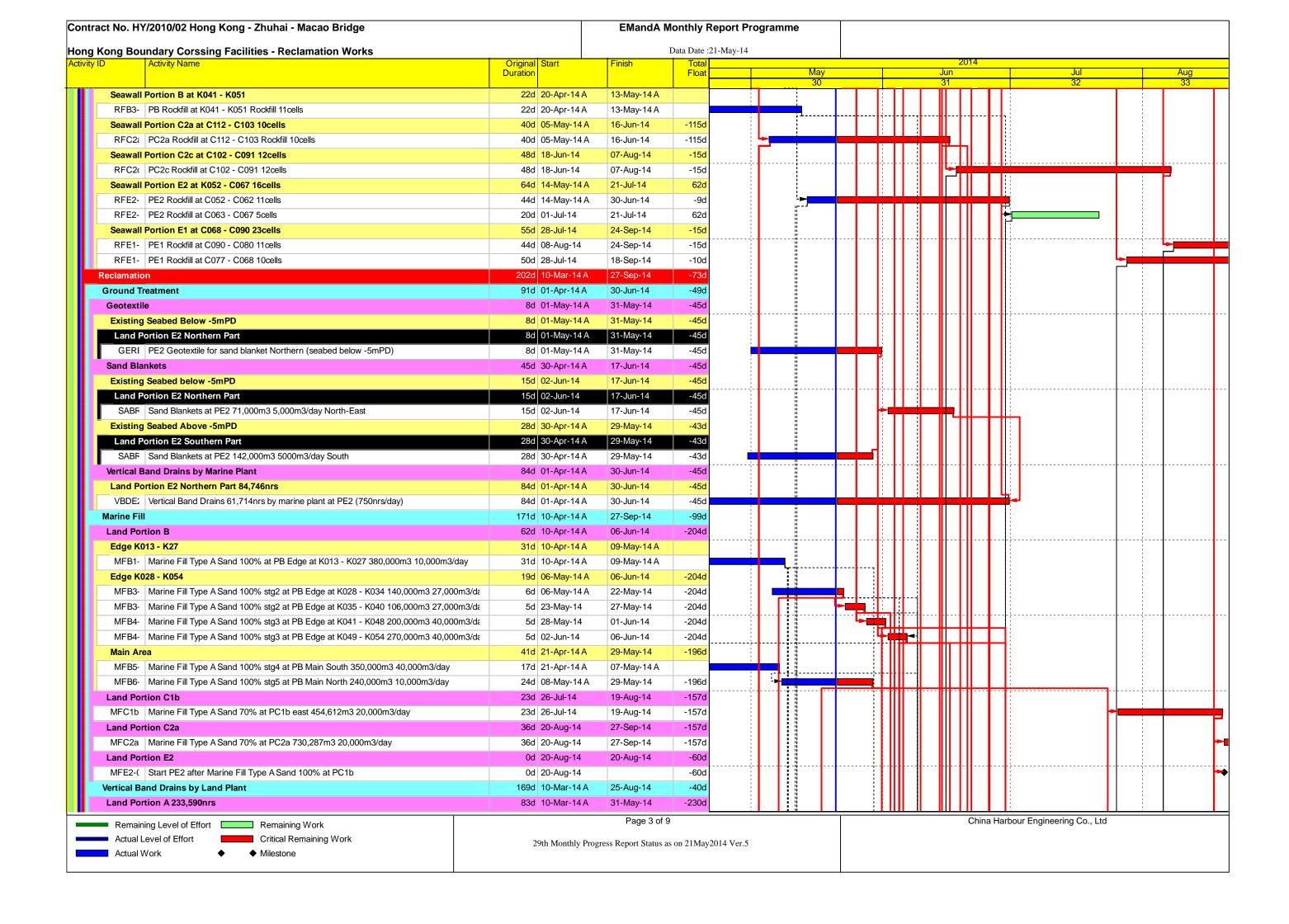
- RECLAMATION WORKS

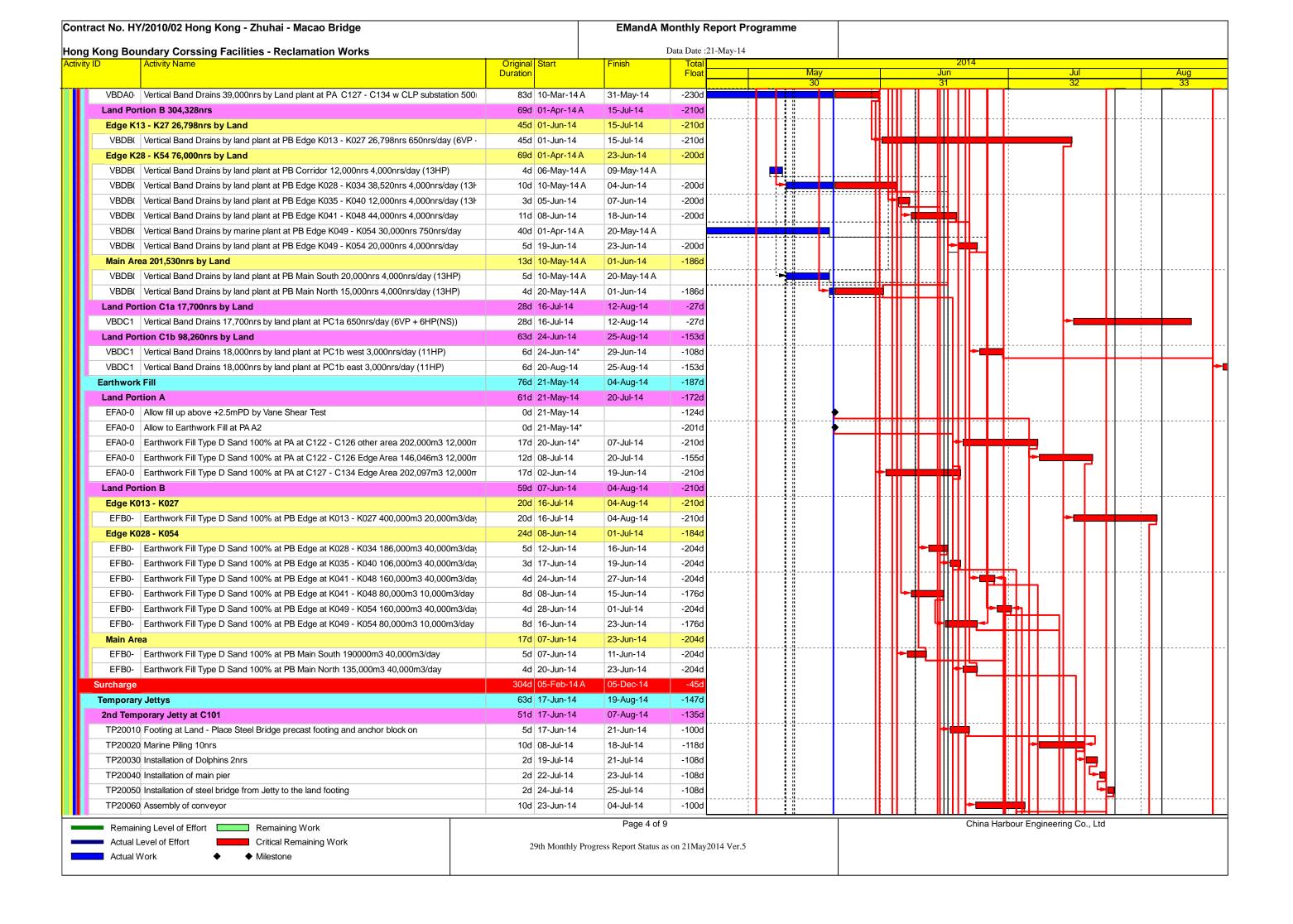
Environmental Complaint Handling Procedure

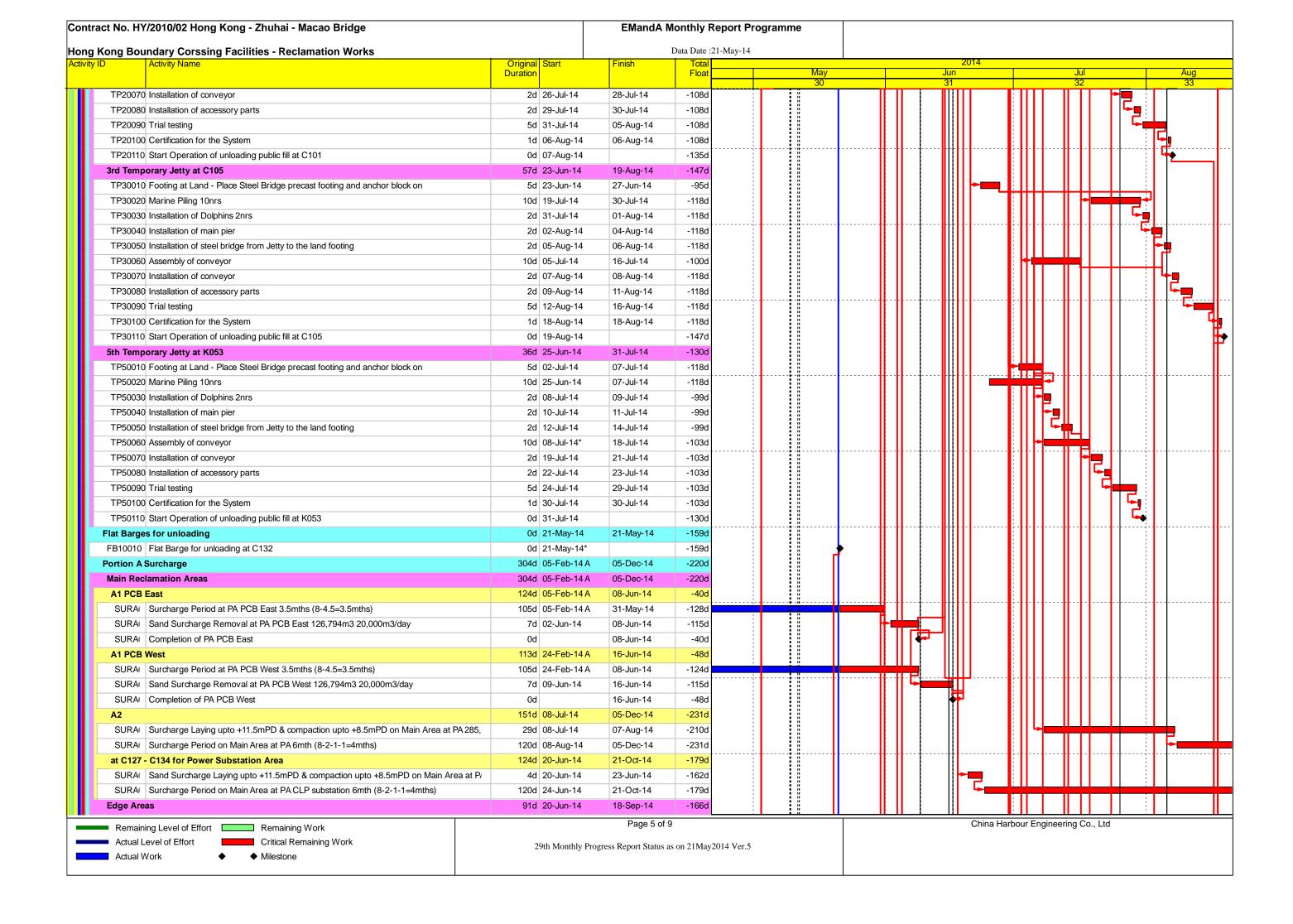
Project No.: 60249820 Date: July 2012 Figure 6

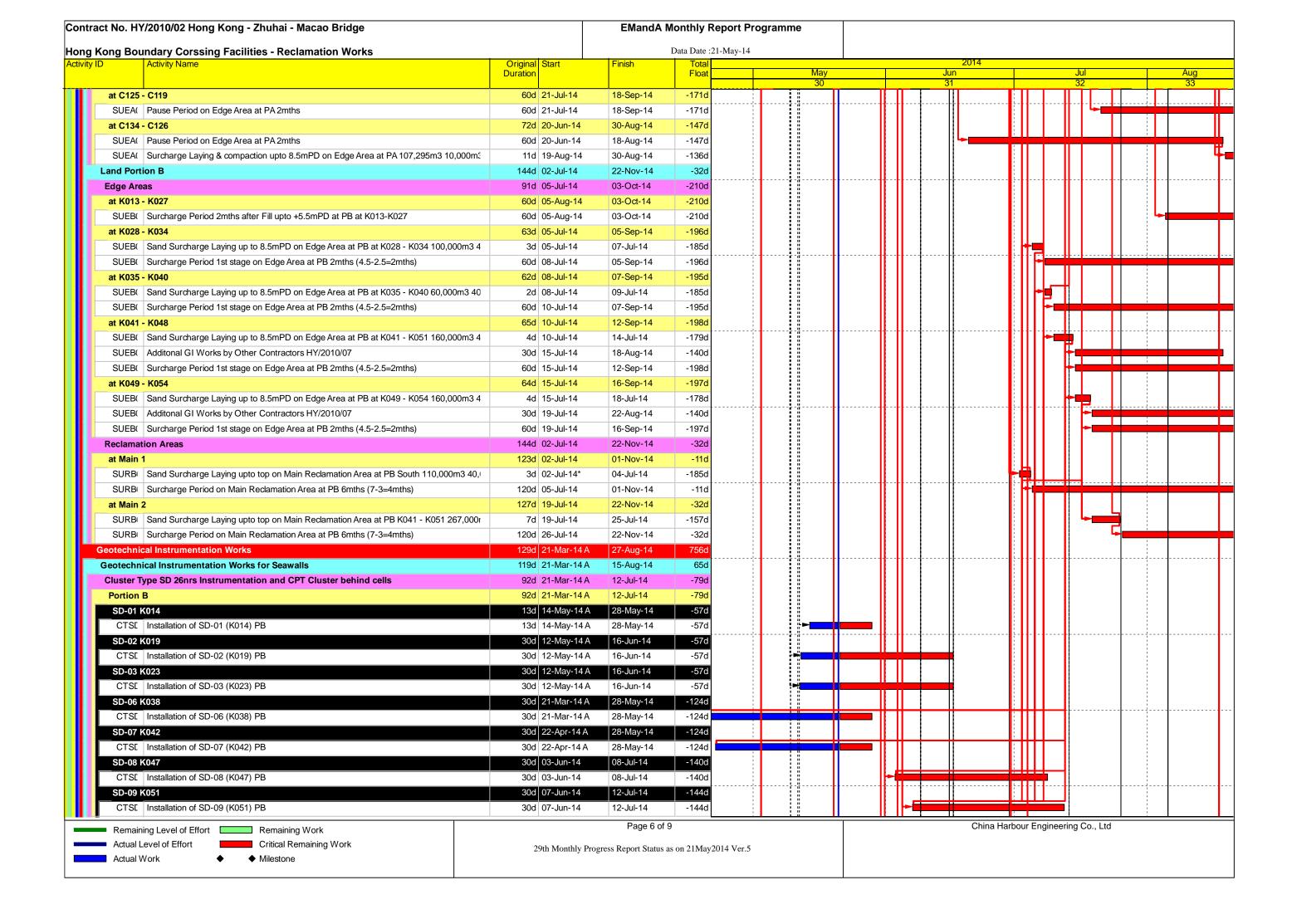


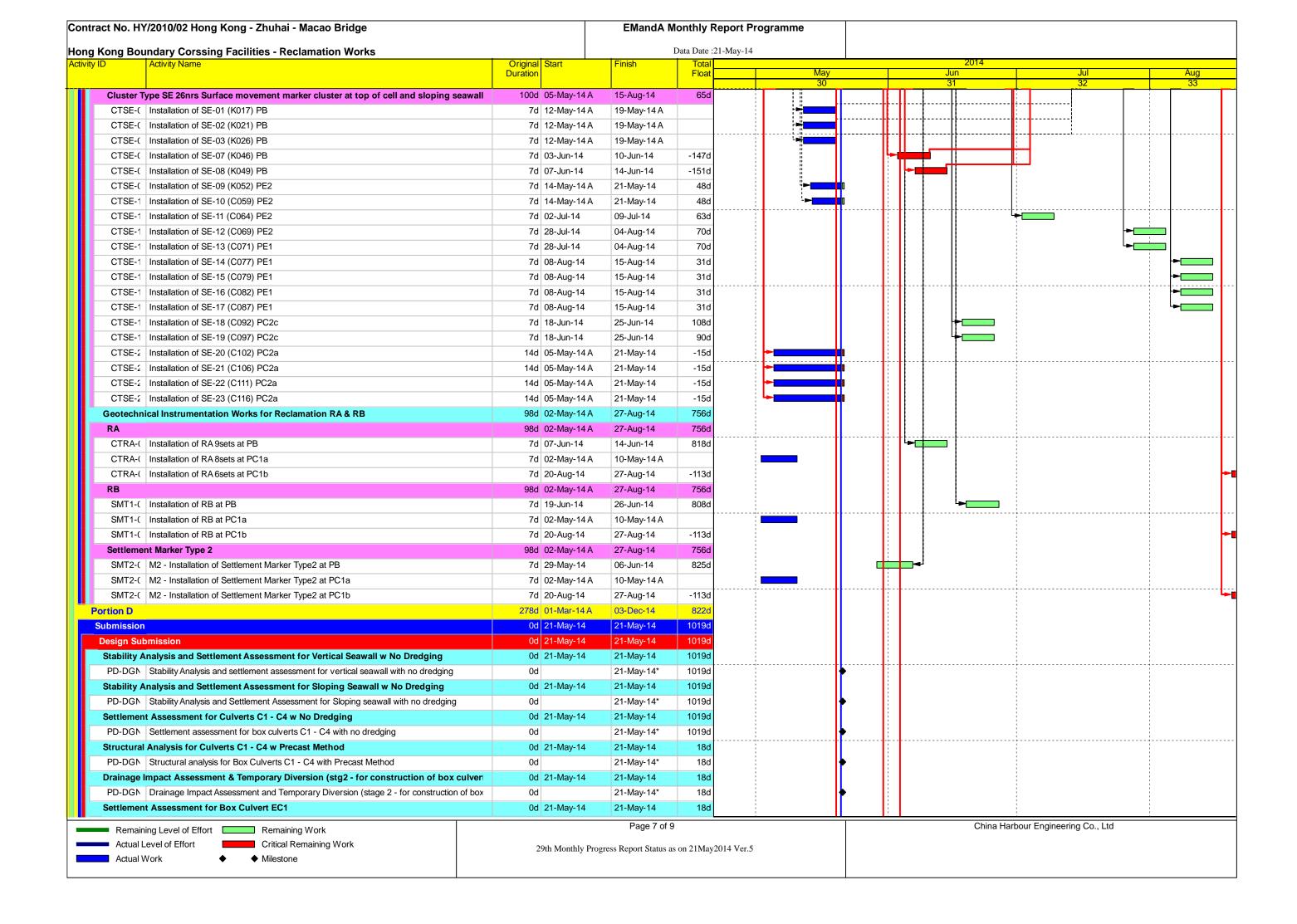

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES --RECLAMATION WORKS

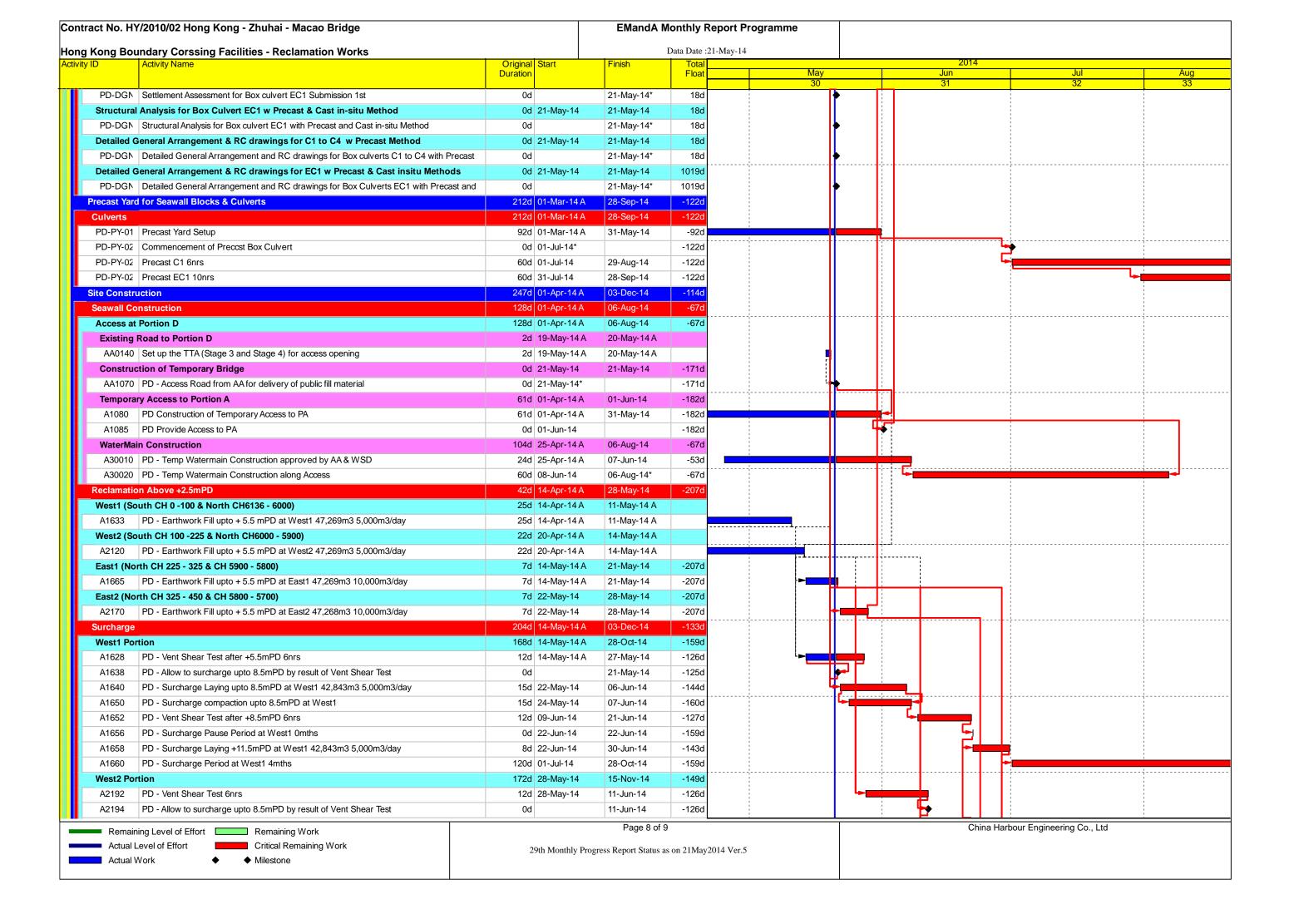

Project No.: 60249820 Date: April 2013

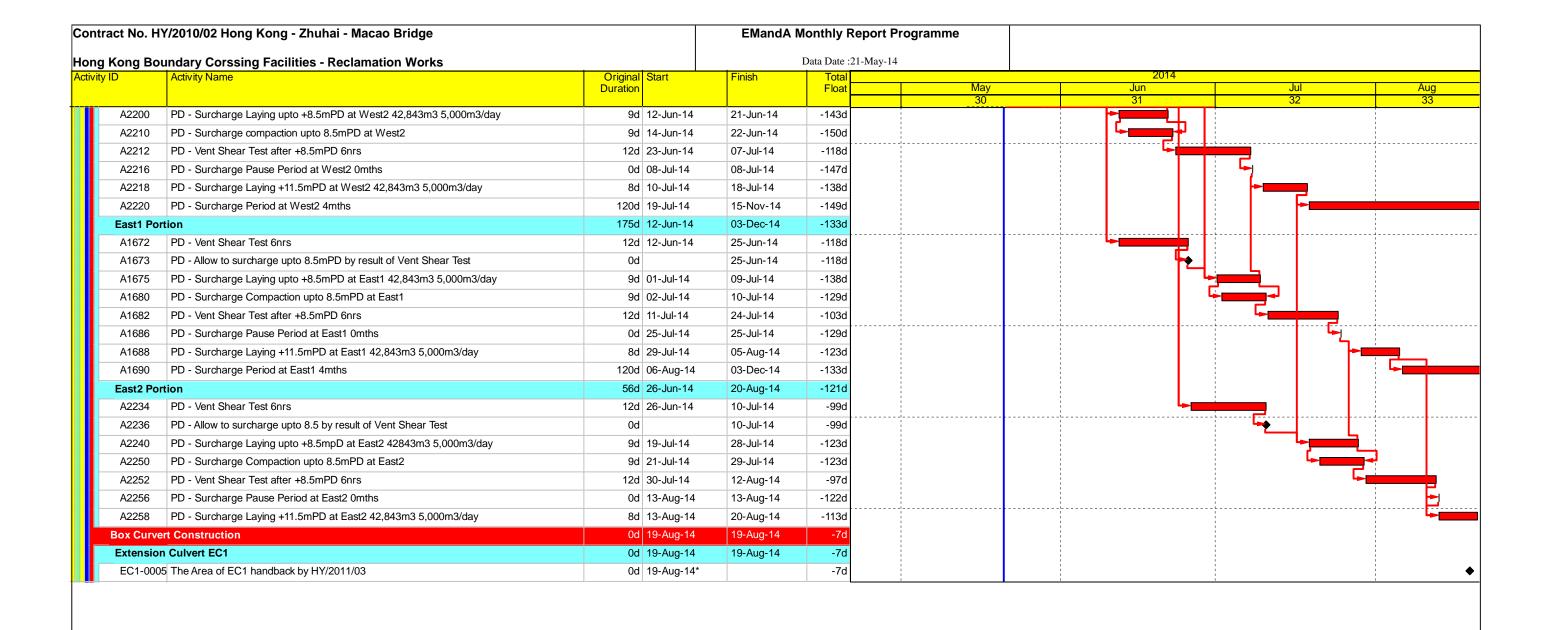












Appendix C - Implementation Schedule of Environmental Mitigation Measures

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
Air Quality				
S5.5.6.1 of	A1	The contractor shall follow the procedures and requirements given in the Air Pollution	All construction sites	V
HKBCFEIA		Control (Construction Dust) Regulation		
S5.5.6.2 of	A2	Proper watering of exposed spoil should be undertaken throughout the construction	All construction sites	V
HKBCFEIA		phase:		
and S4.8.1 of		Any excavated or stockpile of dusty material should be covered entirely by		
TKCLKLEIA		impervious sheeting or sprayed with water to maintain the entire surface wet and		
		then removed or backfilled or reinstated where practicable within 24 hours of the		
		excavation or unloading;		
		Any dusty materials remaining after a stockpile is removed should be wetted with		
		water and cleared from the surface of roads;		
		A stockpile of dusty material should not be extend beyond the pedestrian barriers,		
		fencing or traffic cones.		
		Where practicable, vehicle washing facilities with high pressure water jet should be		
		provided at every discernible or designated vehicle exit point. The area where		
		vehicle washing takes place and the road section between the washing facilities		
		and the exit point should be paved with concrete, bituminous materials or		
		hardcores;		
		When there are open excavation and reinstatement works, hoarding of not less		
		than 2.4m high should be provided as far as practicable along the site boundary		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;		
		The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials;		
		Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously;		
		Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet;		
		Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding;		
		Any skip hoist for material transport should be totally enclosed by impervious sheeting;		
		Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides;		
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		audible high level alarm which is interlocked with the material filling line and no overfilling is allowed;		
		All unpaved roads/exposed area shall be watered which results in dust suppression by forming moist cohesive films among the discrete grains of road surface material.		
		 No burning of debris or other materials on the works areas is allowed; Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created; 		
		Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading;		
		During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport. Materials beginn the material to appear to deat a beginning to be loaded to a level higher than the level of the loaded to a level higher than t		
		Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards;		
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control		
		 system; and Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable 		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		surface stabiliser within six months after the last construction activity on the		
		construction site or part of the construction site where the exposed earth lies.		
S5.5.6.3 of	A3	The Contractor should undertake proper watering on all exposed spoil and associated	All construction sites	V
HKBCFEIA		work areas (with at least 8 times per day) throughout the construction phase.		
and S4.8.1 of				
TKCLKLEIA				
S5.5.6.4 of	A4	Implement regular dust monitoring under EM&A programme during the construction	Selected	V
HKBCFEIA		stage.	representative dust	
and S4.11 of			monitoring station	
TKCLKLEIA				
S5.5.7.1 of	A5	The following mitigation measures should be adopted to prevent fugitive dust emissions	All construction sites	N/A
HKBCFEIA		for concrete batching plant:		
		Loading, unloading, handling, transfer or storage of any dusty materials should be		
		carried out in totally enclosed system;		
		All dust-laden air or waste gas generated by the process operations should be		
		properly extracted and vented to fabric filtering system to meet the emission limits		
		for TSP;		
		Vents for all silos and cement/ pulverised fuel ash (PFA) weighing scale should be		
		fitted with fabric filtering system;		
		The materials which may generate airborne dusty emissions should be wetted by		
		water spray system;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		All receiving hoppers should be enclosed on three sides up to 3m above unloading point;		
		All conveyor transfer points should be totally enclosed;		
		All access and route roads within the premises should be paved and wetted; and		
		Vehicle cleaning facilities should be provided and used by all concrete trucks		
		before leaving the premises to wash off any dust on the wheels and/or body.		
S5.5.2.7 of	A6	The following mitigation measures should be adopted to prevent	All construction sites	N/A
HKBCFEIA		fugitive dust emissions at barging point:		(Construction in
		All road surface within the barging facilities will be paved;		process)
		Dust enclosures will be provided for the loading ramp;		
		Vehicles will be required to pass through designated wheels wash facilities; and		
		Continuous water spray at the loading points.		
Construction	Noise (Air bor	ne)		
S6.4.10 of	N1	Use of good site practices to limit noise emissions by considering the following:	All construction sites	V
HKBCFEIA		only well-maintained plant should be operated on-site and plant should be		
		serviced regularly during the construction programme;		
		machines and plant (such as trucks, cranes) that may be in intermittent use should		
		be shut down between work periods or should be throttled down to a minimum;		
		plant known to emit noise strongly in one direction, where possible, be orientated		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		so that the noise is directed away from nearby NSRs;		
		silencers or mufflers on construction equipment should be properly fitted and		
		maintained during the construction works;		
		mobile plant should be sited as far away from NSRs as possible and practicable;		
		material stockpiles, mobile container site officer and other structures should be		
		effectively utilised, where practicable, to screen noise from on-site construction		
		activities.		
S6.4.11 of	N2	Install temporary hoarding located on the site boundaries between noisy construction	All construction sites	V
HKBCFEIA		activities and NSRs. The conditions of the hoardings shall be properly maintained		
		throughout the construction period.		
S6.4.12 of	N3	Install movable noise barriers (typically density @14kg/m²), acoustic mat or full	For plant items listed	N/A
HKBCFEIA		enclosure close to noisy plants including air compressor, generators, saw.	in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.13 of	N4	Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	For plant items listed	V
HKBCFEIA			in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.14 of	N5	Sequencing operation of construction plants where practicable.	All construction sites	V
HKBCFEIA			where practicable	
S5.1 of	N6	Implement a noise monitoring under EM&A programme.	Selected	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA			representative noise	
			monitoring station	
Waste Manag	ement (Constr	ruction Waste)		
S12.6 of	WM1	The Contractor shall identify a coordinator for the management of waste.	All construction sites	V
TMCLKLEIA			All construction sites	
S12.6 of	WM2	The Contractor shall apply for and obtain the appropriate licenses for the disposal of	All construction sites	V
TMCLKLEIA		public fill, chemical waste and effluent discharges.	All construction sites	
S12.6 of	WM3	EM&A of waste handling, storage, transportation, disposal procedures and		V
TMCLKLEIA		documentation through the site audit programme shall be undertaken.	All construction sites	
S8.3.8 of	WM4	Construction and Demolition Material		V
HKBCFEIA		The following mitigation measures should be implemented in handling the waste:		
and S12.6 of		Maintain temporary stockpiles and reuse excavated fill material for backfilling and		
TMCLKLEIA		reinstatement;		
		Carry out on-site sorting;	All construction sites	
		Make provisions in the Contract documents to allow and promote the use of	All construction sites	
		recycled aggregates where appropriate;		
		Adopt 'Selective Demolition' technique to demolish the existing structures and		
		facilities with a view to recovering broken concrete effectively for recycling purpose,		
		where possible;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction; 		
		 In addition, disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation; and The surplus surcharge should be transferred to a fill bank. 		
S8.3.9- S8.3.11 of HKBCFEIA and S12.6 of TMCLKLEIA	WM5	 Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding and falsework should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage. The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers 	All construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		or skips to enhance reuse or recycling of materials and their proper disposal.		
		Where practicable, concrete and masonry can be crushed and used as fill. Steel		
		reinforcement bar can be used by scrap steel mills. Different areas of the sites		
		should be considered for such segregation and storage.		
S8.2.12-	WM6	Chemical Waste	All construction sites	V
S8.3.15 of HKBCFEIA		Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal		
		(Chemical Waste) (General) Regulation, should be handled in accordance with the		
and S12.6 of		Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.		
TMCLKLEIA		Containers used for the storage of chemical wastes should be suitable for the		
		substance they are holding, resistant to corrosion, maintained in a good condition,		
		and securely closed; have a capacity of less than 450 liters unless the specification		
		has been approved by the EPD; and display a label in English and Chinese in		
		accordance with instructions prescribed in Schedule 2 of the regulation.		
		The storage area for chemical wastes should be clearly labelled and used solely for		
		the storage of chemical waste; enclosed on at least 3 sides; have an impermeable		
		floor and bunding of sufficient capacity to accommodate 110% of the volume of the		
		largest container or 20 % of the total volume of waste stored in that area, whichever		
		is the greatest; have adequate ventilation; covered to prevent rainfall entering; and		
		arranged so that incompatible materials are adequately separated.		
		Disposal of chemical waste should be via a licensed waste collector; be to a facility		
		licensed to receive chemical waste, such as the Chemical Waste Treatment Centre		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		which also offers a chemical waste collection service and can supply the necessary		
		storage containers; or be to a reuser of the waste, under approval from the EPD.		
S8.3.16 of	WM7	<u>Sewage</u>	All construction sites	V
HKBCFEIA		Adequate numbers of portable toilets should be provided for the workers. The		
and S12.6 of		portable toilets should be maintained in a state, which will not deter the workers		
TMCLKLEIA		from utilizing these portable toilets. Night soil should be collected by licensed		
		collectors regularly.		
S8.3.17 of	WM8	General Refuse	All construction sites	V
HKBCFEIA		The site and surroundings shall be kept tidy and litter free. General refuse		
and S12.6 of		generated on-site should be stored in enclosed bins or compaction units separately		
TMCLKLEIA		from construction and chemical wastes.		
		A reputable waste collector should be employed by the Contractor to remove		
		general refuse from the site, separately from construction and chemical wastes, on		
		a daily basis to minimize odour, pest and litter impacts. Burning of refuse on		
		construction sites is prohibited by law.		
		Aluminium cans are often recovered from the waste stream by individual collectors		
		if they are segregated and made easily accessible. Separate labelled bins for their		
		deposit should be provided if feasible.		
		Office wastes can be reduced through the recycling of paper if volumes are large		
		enough to warrant collection. Participation in a local collection scheme should be		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation		
	Ref			Status		
		 considered by the Contractor. In addition, waste separation facilities for paper, aluminum cans, plastic bottles etc., should be provided. Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including reduction, reuse and recycling of wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By-laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. All waste containers shall be in a secure area on hardstanding. 				
Water Quality	Water Quality (Construction Phase)					
	W1	Mitigation during the marine works to reduce impacts to within acceptable levels have been recommended and will comprise a series of measures that restrict the method and sequencing of backfilling, as well as protection measures. Details of the measures are provided below:	During filling	V		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 Reclamation filling for the Project shall not proceed until at least 200m of leading seawall at the reclamation area formed above +2.2mPD, unless otherwise agreement was obtained from EPD, except for the 300m gaps for marine access. All underwater filling works shall be carried out behind seawalls to avoid dispersion of suspended solids outside the Project limit; 		
		 Except for the filling of the cellular structures, not more than 15% public fill shall be used for reclamation filling below +2.5mPD during construction of the seawall; After the seawall is completed except for the 300m marine access as indicated in the EPs, not more than 30% public fill shall be used for reclamation filling below +2.5mPD, unless otherwise agreement from EPD was obtained; 		
		Upon completion of 200m leading seawall, no more than a total of 60 filling barge trips per day shall be made with a cumulative maximum daily filling rate of 60,000 m3 for HKBCF and TMCLKL southern landfall reclamation during the filling operation; and		
		 Upon completion of the whole section of seawall except for the 300m marine access as indicated in the EPs, no more than a total of 190 filling barge trips per day shall be made with a cumulative maximum daily filling rate of 190,000 m3 for the remaining filling operations for HKBCF and TMCLKL southern landfall reclamation. Floating type perimeter silt curtains shall be around the HKBCF site before the commencement of marine works. Staggered layers of silt curtain shall be provided 		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		to prevent sediment loss at navigation accesses. The length of each staggered layers shall be at least 200m; Single layer silt curtain to be applied around the North-east airport water intake; The silt-curtains should be maintained in good condition to ensure the sediment plume generated from filling be confined effectively within the site boundary; The filling works shall be scheduled to spread the works evenly over a working day; Cellular structure shall be used for seawall construction;		
		 A layer of geotextile shall be placed on top of the seabed before any filling activities take place inside the cellular structures to form the seawall; The conveyor belts shall be fitted with windboards and conveyor release points shall be covered with curtain to prevent any spillage of filling materials onto the surrounding waters; and An additional layer of silt curtain shall be installed near the active stone column installation points. A layer of geotextile with stone blanket on top shall be placed on 		
		the seabed prior to stone column installation works.		
S9.11.1.3 of HKBCFEIA and S6.10 of	W2	Land Works General construction activities on land should also be governed by standard good working practice. Specific measures to be written into the works contracts should include:	All land-based construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA		 wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters; sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided; storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks; 		_
		 silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm; temporary access roads should be surfaced with crushed stone or gravel; rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities; measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system; open stockpiles of construction materials (e.g. aggregates and sand) on site 		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 should be covered with tarpaulin or similar fabric during rainstorms; manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or 		
		debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers;		
		discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system;		
		 all vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit; 		
		 wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain; 		
		 the section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel; 		
		 wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects; 		
		vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the		
		requirements of the WPCO or collected for offsite disposal;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 the contractors shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately; waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance; all fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank; and surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the storm water system 		
S9.14 of HKBCFEIA and S6.10 of TMCLKLEIA	W3	Implement a water quality monitoring programme	At identified monitoring location	V
S6.10 of TMCLKLEIA	W4	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All construction site areas	V
Ecology (Cons	struction Phas	e)		
S10.7 of HKBCFEIA and S8.14 of TMCLKLEIA	E1	 Install silt curtain during the construction Limit works fronts Construct seawall prior to reclamation filling where practicable 	Seawall, reclamation area	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Good site practices		
		Strict enforcement of no marine dumping		
		Site runoff control		
		Spill response plan		
S10.7 of	E2	Watering to reduce dust generation; prevention of siltation of freshwater habitats;	Land-based works	V
HKBCFEIA		Site runoff should be desilted, to reduce the potential for suspended sediments,	areas	
		organics and other contaminants to enter streams and standing freshwater.		
S10.7 of	E3	Good site practices, including strictly following the permitted works hours, using	Land-based works	V
HKBCFEIA		quieter machines where practicable, and avoiding excessive lightings during night	areas	
and S8.14 of		time.		
TMCLKLEIA				
S10.7 of	E4	Dolphin Exclusion Zone	Marine works	V
HKBCFEIA		Dolphin watching plan		
and S8.14 of		- spinistering print		
TMCLKLEIA				
S10.7 of	E5	Decouple compressors and other equipment on working vessels	Marine works	V
HKBCFEIA		Proposal on design and implementation of acoustic decoupling measures applied		
and S8.14 of		during reclamation works		
TMCLKLEIA		Avoidance of percussive piling		
S10.7 of	E6	Control vessel speed	Marine traffic	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
HKBCFEIA		Skipper training		
and S8.14 of		Predefined and regular routes for working vessels; avoid Brothers Islands		
TMCLKLEIA				
S10.10 of	E7	Vessel based dolphin monitoring	Northeast and	V
HKBCFEIA			Northwest	
and S8.14 of			Lantau	
TMCLKLEIA				
Fisheries				
S11.7 of	F1	Reduce re-suspension of sediments	Seawall, reclamation	V
HKBCFEIA		Limit works fronts	area	
		Good site practices		
		Strict enforcement of no marine dumping		
		Spill response plan		
S11.7 of	F2	Install silt-grease trap in the drainage system collecting surface runoff	Reclamation area	V
HKBCFEIA				
Landscape &	Visual (Constr	uction Phase)		
S14.3.3. 3 of	LV1	Mitigate Landscape Impacts	All construction site	N/A
HKBCFEIA			areas	
and S10.9 of		G1/CM4 Grass-hydroseed or sheeting bare soil surface and stock pile areas.		
TMCLKLEIA		G9 Reserve of loose natural granite rocks for re-use. Provide new coastline to		
		adopt "natural-look" by means of using armour rocks in the form of natural		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		rock materials and planting strip area accommodating screen buffer to		
		enhance "natural-look" of new coastline.		
S10.9 of	LV2	Mitigate Landscape Impacts	All construction site	V
TMCLKLEIA		CM7 Ensure no run-off into water body adjacent to the Project Area.	areas	
S14.3.3. 3 of	LV4	Mitigate Visual Impacts	All construction site	V
HKBCFEIA		V1 Minimize time for construction activities during construction period.	areas	
S10.9 of	LV5	Mitigate Visual Impacts	All construction site	V
TMCLKLEIA		CM6 Control night-time lighting and glare by hooding all lights.	areas	
EM&A				
S15.2.2 of	EM1	An Independent Environmental Checker needs to be employed as per the EM&A	All construction site	V
HKBCFEIA		Manual.	areas	
S15.5 - S15.6	EM2	An Environmental Team needs to be employed as per the EM&A Manual.	All construction site	V
of HKBCFEIA		Prepare a systematic Environmental Management Plan to ensure effective	areas	
		implementation of the mitigation measures.		
		An environmental impact monitoring needs to be implementing by the		
		Environmental Team to ensure all the requirements given in the EM&A Manual are		
		fully complied with.		

Legend: V = implemented;

x = not implemented;

N/A = not applicable

Appendix D - Summary of Action and Limit Levels

Table 1 - Action and Limit Levels for 1-hour TSP

Location	Action Level	Limit Level
AMS2	374 μg/m ³	500 μg/m³
AMS3A*	368 μg/m ³	500 μg/m³
AMS6	360 μg/m ³	500 μg/m³
AMS7	370 μg/m ³	500 μg/m³

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

Table 2 - Action and Limit Levels for 24-hour TSP

Location	Action Level	Limit Level
AMS2	176 μg/m³	260 μg/m ³
AMS3A*	167 μg/m³	260 μg/m³
AMS6	173 μg/m³	260 μg/m³
AMS7	183 μg/m³	260 μg/m ³

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

Table 3 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Location	Action Level	Limit Level
NMS2	When one documented	75 dB(A)
	complaint, related to 0700 -	
	1900 hours on normal	
NMS3A	weekdays, is received	*65 / 70 dB(A)
	from any one of the sensitive	
	receivers	

^{*}Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

Table 4 - Action and Limit Levels for Water Quality

Parameters	Action	Limit
DO in mg L ⁻¹	Surface and Middle	Surface and Middle
(Surface, Middle & Bottom)	5.0	4 .2 (except 5 mg/L for FCZ)
	<u>Bottom</u>	<u>Bottom</u>
	4.7	3.6
SS in mg L ⁻¹	23.5 and 120% of upstream	34.4 and 130% of upstream
(depth-averaged)	control station's SS at the	control station's SS at the same
	same tide of the same day	tide of the same day and
		10mg/L for WSD Seawater
		intakes
Turbidity in NTU	27.5 and 120% of upstream	47.0 and 130% of upstream
(depth-averaged)	control station's turbidity at	control station's turbidity at the
	the same tide of the same	same tide of the same day
	day	

Notes:

- "depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 5(a) Action and Limit Levels for Chinese White Dolphin Monitoring - Approach to Define Action Level (AL) and Limit Level (LL):

	North Lantau Social Cluster		
	NEL NWL		
Action Level	(STG < 70% of baseline) &	(STG < 70% of baseline) &	
	(ANI < 70% of baseline)	(ANI < 70% of baseline)	
Limit Level	[(STG < 40% of baseline) & (ANI < 40% of baseline)] AND		
	[(STG < 40% of baseline) & (ANI < 40% of baseline)]		

For North Lantau Social Cluster, action level will be trigger if either NEL **or** NWL fall below the criteria; limit level will be triggered if both NEL **and** NWL fall below the criteria.

Table 5(b) Derived Value of Action Level (AL) and Limit Level (LL) for Chinese White Dolphin Monitoring

	North Lantau	North Lantau Social Cluster				
	NEL	NWL				
Action Level	(STG < 4.2) &	(STG < 6.9) &				
	(ANI < 15.5)	(ANI < 31.3)				
Limit Level	[(STG < 2.4) & (ANI <8.9)] AND					
	[(STG < 3.9)& (ANI < 17.9)]					

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	Tung Chung Dev	velopment Pier (A	MS2)	Operator:	Cheung H	lung Wai	
Cal. Date:	9-Apr-14			Next Due Date:	9-Ju	C .	
Equipment No.:	A-001-78T	_		Serial No.	33	83	ē
							*
			Ambient	Condition			
Temperatu	ıre, Ta (K)	293	Pressure, I	Pa (mmHg)		761.0	
				tandard Informatio			0.0000
Seria		988	Slope, mc	1.94727	Interce		0.0233
Last Calibra		20-May-13			= [DH x (Pa/760) x		
Next Calibra	ation Date:	20-May-14	Carrier -	Qsta = {[DH x (Pa/760) x (298/Ta)]	-bc} / mc	
			Calibration of	of TSP Sampler			
		C	rfice	I A STATE OF THE S	HV	S Flow Recorder	
Resistance Plate No. DH (orifice), in. of water [DH x (Pa/760) x (298/Ta)] ^{1/2}		60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X ·	Flow Recorder Reading (CFM)	Continuous Flov Reading IC (CFI		
	18 9.3 3.08		1.57	48.0	48.44		
13	7.3		2.73	1.39	42.0	42.38	
10	5.7		2.41	1.23	36.0	36.33	
5	7 4.4 2.12 5 2.6 1.63		1.63	1.08 0.82	32.0 26.0	32.29 26.24	
By Linear Regre Slope , mw =	ession of Y on X 30.0178		e	Intercept, bw =	0.6	308	
Correlation Coe			9904	interoopt, bw			
		check and recali	orate.				
				Calculation			
		urve, take Qstd =					
From the Regres	sion Equation, th	e "Y" value accor	ding to				
					4/2		
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)]"²		
Thoroforo Sot D	oint: IC = / mw x	Octd + bw \ v [/ 7	60 / Pa) x (Ta / 29	09 \1 ^{1/2} -		39.29	
mererore, ser r	ollit, io – (iliw x	Qsta · bw) x [(/	50/1 a / X (1a / 23	90)] =		39.29	•
Remarks:							
	. (ra -		210	
QC Reviewer:	Y~Y		Signature:	9/		Date: All'	14

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	Site Boundary of	Site Office (WA2)	(AMS3B)	Operator:	Leung \	/iu Ting	
Cal. Date:	2-Apr-14			Next Due Date:	2-Jun-14		
Equipment No.:	A-001-79T	Serial No. 3384				_	
			Ambient	Condition			
Temperatu	re, Ta (K)	297	Pressure, I	Pa (mmHg)		763.2	
		(Orifice Transfer S	tandard Informatio	on		
Serial	l No:	988	Slope, mc	1.94727	Interce		0.02332
Last Calibra	ation Date:	20-May-13		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	20-May-14		Qstd = {[DH x (Pa/760) x (298/Ta)]	^{1/2} -bc} / mc	
				v=			
				of TSP Sampler			
Resistance		0	rfice		HV	S Flow Recorder	
Plate No. DH (orifice), in. of water [DH x (Pa/760) x (298/Ta)] ^{1/2}		60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Record Reading IC (CFM) Y-ax		
18	8.3		2.89	1.47	48.0	48.2	1
13	6.8	2.62		1.33	43.0	43.1	8
10	5.2	2.29		1.16	34.0	34.1	5
7	4.1	2.03		1.03	28.0	28.1	2
5	2.5		1.59	0.80	19.0	19.0	8
By Linear Regre Slope , mw = Correlation Coe	44.5628 fficient* =		9963	Intercept, bw =	-17.3	2050	_
*If Correlation Co	efficient < 0.990,	check and recalib	orate.				
			Set Point	Calculation			
From the TSP Fie	eld Calibration Cu	irve, take Qstd =	1.30m³/min				
From the Regres	sion Equation, the	e "Y" value accord	ling to				
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Γa)] ^{1/2}		
Therefore, Set Po	oint; IC = (mw x (Qstd + bw) x [(76	60 / Pa) x (Ta / 29	98)] ^{1/2} =		40.55	
Remarks:							
	()			1/		7 A	4. /
OC Poviower	Yws		Signature:			Date: STAM	14

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	Hong Kong SkyC	City Marriott Hotel	(AMS7)	Operator:	Cheung I	Hung Wai	
Cal. Date:	9-Apr-14	_		Next Due Date:	9-Jun-14		
Equipment No.:	A-001-80T			Serial No.	33	85	
			Ambien	t Condition			
Temperatu	re, Ta (K)	293		Pa (mmHg)		761.0	
			,	(
		(Orifice Transfer S	Standard Information	on		
Serial	l No:	988	Slope, mc	1.94727	Interce	ept, bc	0.0233
Last Calibra	ation Date:	20-May-13		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	20-May-14		Qstd = {[DH x (Pa/760) x (298/Ta)]	1/2 -bc} / mc	
			Calibration	of TSP Sampler			
		0	rfice	of 13P Sampler	HV	S Flow Recorder	
Resistance	DII (is)	<u> </u>					
Plate No.	Plate No. DH (orifice), in. of water [DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFN		
18	7.8		2.82	1.44	46.0	46.42	
13	6.6		2.59	1.32	40.0	40.37	
10	5.2		2.30	1.17	32.0	32.29	
7	4.1		2.04	1.04	26.0	26.24	
5	3.0		1.75	0.89	20.0	20.18	
By Linear Regre Slope , mw = Correlation Coe	48.1386		9960	Intercept, bw =	-23.1	1991	i.
If Correlation Co	efficient < 0.990,	check and recalib	orate.				
			Set Point	Calculation			
rom the TSP Fie	eld Calibration Cu	rve, take Qstd = '	1.30m ³ /min				
rom the Regress	sion Equation, the	e "Y" value accord	ling to				
					410		
		mw :	x Qstd + bw = IC	x [(Pa/760) x (298/1	Га)]" ²		
herefore. Set Po	oint: IC = (mw x 0	Qstd + bw) x [(76	60 / Pa) x (Ta / 29	98)1 ^{1/2} =		39.02	
	, (, , , , , , , , , , , , , , , , , , ,	, o /1		33.02	
				× ×			
Remarks:							
	Ying	rung		u /		111	14

D:\HVS Calibration Certificate (Existing)'

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - M Operator		Rootsmeter Orifice I.I		438320 0988	Ta (K) - Pa (mm) -	296 - 751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3790 0.9720 0.8690 0.8260 0.6830	3.2 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd (x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9917 0.7191 0.9875 1.0159 0.9854 1.1339 0.9843 1.1916 0.9790 1.4333	1.4113 1.9959 2.2315 2.3405 2.8227	0.9957 0.9915 0.9894 0.9883 0.9829	0.7221 1.0201 1.1385 1.1965 1.4392	0.8874 1.2549 1.4030 1.4715 1.7747
Qstd slope (m) = intercept (b) = coefficient (r) =	1.97518 -0.01001 0.99998	Qa slope intercept coefficie	t (b) =	1.23683 -0.00630 0.99998
y axis = SQRT[H2O(H	Pa/760)(298/Ta)]	y axis =	SQRT[H20(Га/Ра)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Mode Equip Sensi Opera	facturer/Brand: I No.: ment No.: tivity Adjustment	Scale Set	iting:	Laser D SIBATA LD-3 A.005.07 557 CP Mike She	7a M			
Equip		Rup	precht & P	atashnick	TEOM [®]			
Venue			erport (Pui		ondary S	chool)		
Model		-	ies 1400AB					
Serial	No:		- 1100 CONT	40AB2198				
Loot C	Calibratian Data*		Standing of the St.	200C1436	59803	K _o : <u>1250</u>	00	
Lasi C	Calibration Date*:		May 2013			30		<u> </u>
*Remar	ks: Recommend	led interva	l for hardwa	are calibra	tion is 1	year		
Calibra	tion Result							
	ivity Adjustment ivity Adjustment						CPM CPM	
Hour	Date	Т	ime	Aml	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)			Cond	dition	(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
	10.05.10	10.00		(°C)	(%)			
1	18-05-13	12:30	- 13:30	28.1	78	0.04714	1887	31.45
3	18-05-13 18-05-13	13:30 14:30	- 14:30	28.1	78	0.04932	1970	32.83
4	18-05-13	15:30	- 15:30 - 16:30	28.2	77 78	0.05156	2056	34.27
Note:						0.05083 ashnick TEOM®	2026	33.77
By Linea	2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logge e was cal	ed by Laser	Dust Mon	itor	STITION TEST		
Validity	of Calibration F	Record:	_17 May 2	2014				
Remarks	S:							
				÷		/		
QC Re	viewer: YW F	ung	Signa	ature:	4/	Da	te: _20 May	y 2013

Type:			2)	Laser Du	st Moni	tor		
	acturer/Brand:			SIBATA				
Model	No.:		_	LD-3				
	ment No.:			A.005.07				
Sensit	ivity Adjustment	Scale Setting:		557 CPN	/			
Opera	tor:			Mike She	k (MSKN	1)		
Standa	rd Equipment							
	Addition and Property . V							
Equip		Rupprech		the same of the sa				
Venue		Cyberpor		ring Seco	naary So	chool)		
Model		Series 14		A D 240 00	20002			
Serial	NO:	Control:		DAB21989	-	V . 40500		
Last C	alibration Date*:	Sensor: 10 May 2		00C14365	9803	K _o : <u>12500</u>		
Last	anbration bate .	_ TO May 2	014		-		****	
*Remar	ks: Recommend	ed interval for h	ardwar	e calibrat	ion is 1 y	/ear		
Calibra	tion Result							
0	: : . A . P	01-0-11-1		0 . !!! !!		557 00		
	ivity Adjustment					557 CP		
Sensit	ivity Adjustment	Scale Setting (A	Affer Ca	alibration)	1.	_557 CP	IVI	
Hour	Date	Time		Amb	ient	Concentration	Total	Count/
100000000000000000000000000000000000000	(dd-mm-yy)	(10.00000000000000000000000000000000000		Cond		(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
				(°C)	(%)			
1	11-05-14		10:30	26.7	75	0.04434	1775	29.58
2	11-05-14		11:30	26.7	75	0.04716	1880	31.33
3	11-05-14		12:30	26.8	76	0.04927	1964	32.73
4	11-05-14		13:30	26.8	75	0.05035	2015	33.58
Note:		lata was measu				shnick TEOM®		
		was logged by						
	3. Count/minut	te was calculate	ea by (I	otal Coul	11/60)			
By Line	ar Regression of	Y or X						
	(K-factor):		015					
	ation coefficient:		982					
V / P P:				0.45				
Validit	y of Calibration F	Record: 11	May 20	015				
DI								
Remark	is:							
					1./			
QC Re	eviewer: YW F	ung	Signat	ture:	9/	Date	: 12 Ma	y 2014

Model N Equipm	cturer/Brand: No.: ent No.: rity Adjustment	Scale Settir	- - - ng: _	Laser D SIBATA LD-3 A.005.08 702 CP	8a	nitor		
Operato	or:		<u></u>	Mike Sh	ek (MSK	(M)		
Standard	l Equipment	17 111 111 11 11 11 11 11 11				- 17		
Equipm Venue: Model N Serial N	ent:	Cyber Series Contre Senso			ondary S 99803	School)	500	
	s: Recommend			re calibra	ation is 1	year		
	on Result							
	ity Adjustment ity Adjustment					702 702	CPM CPM	
Hour	Date (dd-mm-yy)	Tim	ie	Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	18-05-13	12:30 -	13:30	28.1	78	0.04714	1764	29.40
2	18-05-13	13:30 -	14:30	28.1	78	0.04932	1846	30.77
3	18-05-13	14:30 -	15:30	28.2	77	0.05156	1935	32.25
4	18-05-13	15:30 -	16:30	28.1	78	0.05083	1899	31.65
Slope (F Correlat	2. Total Count 3. Count/minut Regression of K-factor): tion coefficient: of Calibration F	was logged te was calcu Y or X	by Laser	Dust Mor Total Cou	nitor	tashnick TEOM [®]		
Remarks	•		:		,			
QC Rev	riewer: YW F	-ung	Signa	iture:	W		Date: _20	0 May 2013

Model N Equipme	ent No.: ity Adjustment	Scale Setting:	-	Laser Dust Monitor SIBATA LD-3 A.005.08a 702 CPM Mike Shek (MSKM)				
•		4-2		WING OTT	ok (MON		35 HH-1	
Standard	Equipment							
Equipme Venue: Model N	lo.:	Rupprech Cyberpor Series 14	t (Pui ` 100AB	Ying Seco	ondary S			
Serial N	0:	Control: Sensor:	-	0AB2198 00C1436		K _o : 128	500	
Last Cal	libration Date*:	10 May 2		0001430	39003	No. 120	500	
*Remarks	: Recommend	ed interval for h	ardwa	re calibra	ation is 1	year		
Calibratio	on Result						4 S. MAR.	
		Scale Setting (E Scale Setting (A				702 702	CPM CPM	
Hour	Date (dd-mm-yy)	Time		Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	11-05-14	09:45 - 1	0:45	26.7	75	0.04568	1713	28.50
2	11-05-14	10:45 - 1	1:45	26.7	75	0.04857	1819	30.32
3	11-05-14		2:45	26.8	76	0.05063	1903	31.72
4	11-05-14	//5//	3:45	26.8	75	0.05116	1922	32.03
	Total Count Count/minut	was logged by e was calculate	Laser	Dust Mor	nitor	tashnick TEOM [®]		
	Regression of							
	<-factor):		0016					
	tion coefficient: of Calibration F		984 May 2	015				
Remarks	:			1				
QC Rev	riewer: <u>YW</u> F	-ung	Signa	iture:	4/		Date: 12	2 May 2014

Type: Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting: Operator: Standard Equipment				Laser Du SIBATA LD-3 A.005.09 797 CPI Mike She	a M			
Stariua	ra Equipment	***				- ²		
Equipr Venue Model Serial	e: No.:	Cyberp	oort (Pui \ 1400AB l: 140	tashnick Ying Seco DAB21989 DOC14369	ndary So 99803	chool) K _o : 12500)	
Last C	Calibration Date*:	_18 May	2013	in the second				
	ks: Recommend	ed interval fo	r hardwar	e calibra	tion is 1 y	/ear		
	ivity Adjustment ivity Adjustment						PM PM	
Hour	Date (dd-mm-yy)	Time	Э	Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	18-05-13	12:30 -	13:30	28.1	78	0.04714	1885	31.42
2	18-05-13	13:30 -	14:30	28.1	78	0.04932	1965	32.75
3	18-05-13	14:30 -	15:30	28.2	77	0.05156	2059	34.32
4	18-05-13	15:30 -	16:30	28.1	78	0.05083	2024	33.73
Slope	1. Monitoring d 2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logged be was calculary or X	y Laser [Dust Mon	itor	shnick TEOM®		
Validity	y of Calibration F	Record:	17 May 20	014				
Remark	s: eviewer: YW F		Signat		. /			v 2013

Model Equipr Sensit Opera	ment No.: ivity Adjustment	Scale Setting:		Laser Du SIBATA LD-3 A.005.09a 797 CPM Mike She	a 1			
Equipr		Rupprechi				L N		
Venue		Cyberport		ing Seco	ndary Sc	nooi)		
Model		Series 140		A D24000	0000			
Serial	No:	Control:		AB21989		K _o : 12500		- 10-1 00
1 4 0	alibuatian Data*.	Sensor:		0C14365	9803	K _o : <u>12500</u>		
Last C	Calibration Date*:	10 May 20)14					
*Remar	ks: Recommend	ed interval for ha	ardwar	e calibrat	ion is 1 y	/ear		
Calibra	tion Result	all and a second						
	ivity Adjustment ivity Adjustment					797 CP 797 CP		
Hour	Date	Time		Amb	ient	Concentration ¹	Total	Count/
l loui	(dd-mm-yy)			Conc		(mg/m ³)	Count ²	Minute ³
	(44)))			Temp	R.H.	Y-axis		X-axis
				(°C)	(%)	3 700000000		
1	11-05-14	13:30 - 1	4:30	26.8	75	0.05034	2017	33.62
2	11-05-14	14:30 - 1	15:30	26.9	76	0.05211	2084	34.73
3	11-05-14	15:30 - 1	16:30	26.9	76	0.05163	2066	34.43
4	11-05-14		17:30	26.9	76	0.05272	2113	35.22
Slope Corre	2. Total Count 3. Count/minut ar Regression of (K-factor): lation coefficient: ty of Calibration F	0.0	Laser [Oust Mon Total Cou	itor	ashnick TEOM [™]		
		Fung	Signa	ture:	9/	Date	e: 12 Ma	ay 2014

			tting: pprecht & Paberport (Pui) ries 1400AB ntrol:140		a k (MSKN TEOM® ndary So	Л)		
Last C	Calibration Date*:		18 May 2013					
*Remar	ks: Recommend	ed interva	al for hardwai	re calibrat	ion is 1 y	year		
Calibra	tion Result							
	tivity Adjustment tivity Adjustment		• • • • • • • • • • • • • • • • • • • •					
Hour	Date (dd-mm-yy)	1	Гime	Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	18-05-13	12:30	- 13:30	28.1	78	0.04714	1886	31.43
2	18-05-13	13:30	- 14:30	28.1	78	0.04932	1968	32.80
3	18-05-13	14:30	- 15:30	28.2	77	0.05156	2061	34.35
4	18-05-13	15:30	- 16:30	28.1	78	0.05083	2026	33.77
Slope Correl	2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient: y of Calibration F	was logg e was cal Y or X	ed by Laser [Oust Moni otal Cour	tor	shnick TEOM [®]		
Remark	ks:							
QC Re	eviewer: YW F	ung	Signa	ture:	Y	Date	e: _20 Ma	y 2013

Model Equipr	acturer/Brand: No.: nent No.: ivity Adjustment	Scale Setti		Laser Du SIBATA LD-3 A.005.10 753 CPN	а	tor		
Opera	•		_	Mike She	LEV (2000 0 To	1)		
Standar	rd Equipment			****				
Equipr Venue Model	: No.:	Cybe Serie	precht & Par erport (Pui \ es 1400AB	ing Seco	ndary So	chool)		
	Cerial No: Control: 140AB219899803 Sensor: 1200C143659803 K _o : 12500 ast Calibration Date*: 10 May 2014							
*Remarl	ks: Recommend	ed interval	for hardwar	e calibrat	ion is 1 y	year		
Calibra	tion Result							
	ivity Adjustment ivity Adjustment		• ,				CPM CPM	
Hour	Date (dd-mm-yy)	Ti	me	Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	11-05-14	13:45	- 14:45	26.8	75	0.04984	1996	33.27
2	11-05-14		- 15:45	26.9	76	0.05196	2077	34.62
3	11-05-14	15:45	- 16:45	26.9	76	0.05141	2055	34.25
4	11-05-14		- 17:45	26.9	76	0.05263	2109	35.15
By Linea Slope Correl	Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0015 Correlation coefficient: 0.9969 Validity of Calibration Record: 11 May 2015							
Siliain			2					
QC Re	eviewer: YW F	ung	_ Signa	ture:	4/	Da	ate: 12 Ma	y 2014

Type: Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting: Operator:			- - ng: _	Laser Dust Monitor SIBATA LD-3 A.005.11a 799 CPM				
Opera	ator:		e -	Mike She	k (MSKN	Л)		
Standa	rd Equipment	lies in						
Venue Mode Serial Last (Equipment: Rupprecht & Patashnick TEOM® Venue: Cyberport (Pui Ying Secondary School) Model No.: Series 1400AB Serial No: Control: 140AB219899803)	
Calibus	ntion Result			-				
Sensi	tivity Adjustment						PM PM	
Hour	Date (dd-mm-yy)	Tir	me	(10) 1 e autour - 2	dition R.H. (%)	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	18-05-13	12:15	- 13:15	28.1	78	0.04685	1871	31.18
2	18-05-13	10.10	- 14:15	28.1	78	0.04941	1979	32.98
3	18-05-13		- 15:15	28.2	77	0.05127	2055	34.25
4	18-05-13	10.10	- 16:15	28.1	78	0.05060	2021	33.68
Slope Corre	2. Total Count 3. Count/minut ar Regression of (K-factor): lation coefficient:	was logged e was calco Y or X	by Laser I	Oust Mon otal Cou	itor	ashnick TEOM [®]		
Remark	eviewer: YW F		Signa		4/	Dat	e: 20 Ma	2015

Model Equipr Sensit Opera	ment No.: ivity Adjustment	Scale Setting	g: _	Laser Du SIBATA LD-3 A.005.11 799 CPI Mike She	а И			
	(New York)	_						
Equipr			echt & Pa			, ,		
Venue			port (Pui \	ring Seco	ndary So	chool)		
Model	46 NTHE		1400AB	0400400	20000			
Serial	NO:	Contro		DAB21989		V . 40500		
Loot C	alibration Data*	Senso		00C1436	9803	K _o : <u>12500</u>	,	
Last C	Last Calibration Date*: 10 May 2014							
*Remar	ks: Recommend	ed interval fo	or hardwar	re calibra	tion is 1 v	vear		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 00		,		
Calibra	tion Result						A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
Sensit	ivity Adjustment	Scale Setting	g (Before	Calibratio	n):	799 CF	PM	
Sensit	ivity Adjustment	Scale Setting	g (After Ca	alibration):	799 CF	PM	
Hour	Date	Tim	е	Amb	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)			Cond	dition	(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
				(°C)	(%)			
1	18-05-14	09:00 -	10:00	28.3	77	0.04527	1815	30.25
2	18-05-14	10:00 -	11:00	28.3	77	0.04811	1923	32.05
3	18-05-14	11:00 -	12:00	28.3	77	0.05103	2041	34.02
4	18-05-14	12:00 -	13:00	28.4	77	0.05366	2157	35.95
Note:	 Monitoring of 	lata was mea	asured by	Rupprec	ht & Pata	ashnick TEOM®		R-12
	Total Count	was logged	by Laser [Dust Mon	itor			
	Count/minut	e was calcul	ated by (T	Total Cou	nt/60)			
	ar Regression of							
	(K-factor):	-	0.0015					
Correl	ation coefficient:	_	0.9987					
Validit	y of Calibration F	Record: _	18 May 20	015				
Remark	e.							
Temark	.5.		* 100	TO .				
	400							
					11	/		
QC Re	eviewer: YW F	-ung	Signa	ture:		Date	e: 19 Ma	y 2014

Type: Manut Model	facturer/Brand:			_	Laser Du SIBATA LD-3B	ıst Moni	tor		
Equip	ment No.:				A.005.13	а			
Sensit	tivity Adjustment	Scale Se	tting:	_	643 CPI	1			
Opera	ator:				Mike She	k (MSKN	1)		
Standa	rd Equipment								
Equip Venue	e:	Cy	berpo	ort (Pui \	tashnick ⁄ing Seco		chool)		
Model			Series 1400AB						
Serial	No: Calibration Date*:	Se	Control: 140AB219899803 Sensor: 1200C143659803 K _o : 12500 18 May 2013				0	_	
	ks: Recommend	y		3530000	e calibrat	ion is 1 y	/ear		
Calibra	tion Result		1120	7					
	tivity Adjustment tivity Adjustment		_	•				PM PM	
Hour	Date (dd-mm-yy)		Time		Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	18-05-13	12:15	_	13:15	28.1	78	0.04685	1867	31.12
2	18-05-13	13:15	-	14:15	28.1	78	0.04941	1975	32.92
3	18-05-13	14:15	-	15:15	28.2	77	0.05127	2048	34.13
4	18-05-13	15:15	-	16:15	28.1	78	0.05060	2017	33.62
Note:	Monitoring of 2. Total Count 3. Count/minut ar Regression of	was logg e was ca	ed by	/Laser [Dust Mon	tor	SUNICK LEOM		
	(K-factor):	1 01 1	0.	0015					
	ation coefficient:		_	9986					
Validit	y of Calibration F	Record:	_1	7 May 20	014				
Remark	s:								
					,				
QC Re	eviewer: <u>YW F</u>	ung		Signat	ure:	4	Da	te: _20 Ma	y 2013

Model Equipm	Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting:			Laser Dust Monitor SIBATA LD-3B A.005.13a 643 CPM				
Operat	tor:		_!	Mike She	k (MSKM)		
Standar	d Equipment							
	: No.:	Cyber Series Contro Senso 10 Ma	or: 120 by 2014	ing Seco AB21989 0C14365	ndary Sc 99803 99803	K _o : _12500		
Calibrat	tion Result							
	ivity Adjustment ivity Adjustment					643 CF	PM PM	
Hour	Date (dd-mm-yy)	Tin	ne		dition R.H. (%)	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	18-05-14	09:30 -	10:30	28.3	77	0.04614	1846	30.77
2	18-05-14	10:30 -	11:30	28.3	77	0.04823	1934	32.23
3	18-05-14	11:30 -	12:30	28.3	77	0.05152	2053	34.22
4	18-05-14	12:30 -	13:30	28.4	77	0.05391	2162	36.03
Slope	Monitoring of 2. Total Count 3. Count/minuter Regression of (K-factor): ation coefficient:	was logged te was calcu Y or X	by Laser I	Just Mon	itor	shnick TEOM®		
Validit	y of Calibration I	Record:	18 May 2	015				
Remark	KS:							
OC B	eviewer VW	Funa	Signa	iture:	4/	Da	te: 19 Ma	ay 2014

Type:				-	Laser Du	ıst Moni	tor		
	facturer/Brand:				SIBATA				
Model					LD-3B		**************************************		
	ment No.:	Caala Ca		-	A.005.14				
Sensit	tivity Adjustment	Scale Se	tting:	-	786 CPI	<u>//</u>			
Opera	ator:			_	Mike She	k (MSKN	Л)		
Standa	rd Equipment				E1				
Equip	ment:	Rui	nnrec	ht & Pa	tashnick [*]	TEOM®			
Venue					ing Seco		chool)		
Model				100AB	mg occo	madry Oc	511001)		
Serial			ntrol:		AB21989	99803			
Ochai	140.		nsor:				K _o : 1250	0	
Last C	Calibration Date*:		Sensor: <u>1200C143659803</u> K _o : <u>12500</u> 18 May 2013						
*Remar	ks: Recommend	ed interva	al for h	nardwar	e calibrat	ion is 1 y	year		
Calibra	tion Result								
0 ''	College A allocation and	CI- C-4	u: /	D - f	O-1:b4:-		706	DM	
	ivity Adjustment							PM	
Sensit	ivity Adjustment	Scale Set	tting (After Ca	alibration)	1		PM	
Hour	Date	7	Γime		Amb	ient	Concentration ¹	Total	Count/
	(dd-mm-yy)				Cond	lition	(mg/m ³)	Count ²	Minute ³
					Temp	R.H.	Y-axis		X-axis
					(°C)	(%)			000000000000000000000000000000000000000
1	18-05-13	12:15	-	13:15	28.1	78	0.04685	2005	33.42
2	18-05-13	13:15	_	14:15	28.1	78	0.04941	2121	35.35
3	18-05-13	14:15	_	15:15	28.2	77	0.05127	2194	36.57
4	18-05-13	15:15	-	16:15	28.1	78	0.05060	2167	36.12
Note:	1. Monitoring d	ata was r	neası	ared by	Rupprech	nt & Pata	shnick TEOM®		
	2. Total Count								
	Count/minut	e was cal	culate	ed by (T	otal Cour	nt/60)			
By Lino	ar Regression of	V or Y							
	(K-factor):	1 01 /	0.0	0014					
	ation coefficient:			9987	70.00	700			
Conten	ation coemolent.			307					
Validit	y of Calibration F	Record:	_17	May 20	014				
Remark	s:				0) ()				
			and the state of t		gir garantan	/		10.16	
0C D	eviewer: YW F	una		Signat	uro.	1/	Da	te: 20 Ma	y 2013
QU IN	TVVI	ung		oignat	ui C	/	Da	LCZU IVIA	y 2010

Type: Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting: Operator:			-	Laser Do SIBATA LD-3B A.005.14 786 CPI	a	tor		
Opera	ator:		_	Mike She	k (MSKN	<i>n</i>)		
Standa	rd Equipment							
	e: I No.:	Series Contro Sensor	7: <u>120</u> 7 2014	/ing Seco 0AB21989 00C14368	99803 99803	K _o : <u>12500</u>		
			Harawai	o odnora		, cai		
Calibra	tion Result							
	tivity Adjustment tivity Adjustment	Scale Setting	(After Ca			786 CF		
Hour	Date (dd-mm-yy)	Time	е	Amb Cond Temp (°C)	pient dition R.H. (%)	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	18-05-14	12:45 -	13:45	28.4	77	0.05027	2158	35.97
2	18-05-14	13:45 -	14:45	28.5	76	0.05161	2211	36.85
3	18-05-14	14:45 -	15:45	28.5	76	0.05235	2247	37.45
4	18-05-14	15:45 -	16:45	28.4	77	0.05203	2233	37.22
By Lines Slope Correl	Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0014 Correlation coefficient: 0.9969 Validity of Calibration Record: 18 May 2015							
Remark	SS:							
QC Re	eviewer: YW F	ung	Signat	ure:	9/	Date	e: 19 May	y 2014

綜合試驗有限公司

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

13CA1107 01-02

Page:

of

2

Item tested

Description: Manufacturer: Acoustical Calibrator (Class 1)

Rion Co., Ltd.

Type/Model No.:

NC-73

Serial/Equipment No.:

10307223 / N.004.08

Adaptors used:

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.: Date of receipt:

07-Nov-2013

Date of test:

08-Nov-2013

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	17-Apr-2014	SCL
Preamplifier	B&K 2673	2239857	16-Apr-2014	CEPREI
Measuring amplifier	B&K 2610	2346941	24-Apr-2014	CEPREI
Signal generator	DS 360	61227	15-Apr-2014	CEPREI
Digital multi-meter	34401A	US36087050	10-Dec-2013	CEPREI
Audio analyzer	8903B	GB41300350	15-Apr-2014	CEPREI
Universal counter	53132A	MY40003662	15-Apr-2014	CEPREI

Ambient conditions

Temperature: Relative humidity:

22 ± 1 °C 60 ± 10 %

Air pressure:

1000 ± 10 hPa

Test specifications

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date: 11-Nov-2013

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

13CA1107 01-01

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer:

Rion Co., Ltd.

Rion Co., Ltd.

Type/Model No.:

NL-31

UC-53A

Serial/Equipment No.:

00320528 / N.007.03A

90565

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.:

Date of receipt:

07-Nov-2013

Date of test:

08-Nov-2013

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: B&K 4226 Serial No.

Expiry Date:

Traceable to:

Signal generator Signal generator

DS 360 DS 360 2288444 33873 61227

22-Jun-2014 15-Apr-2014 15-Apr-2014

CIGISMEC CEPREI **CEPREI**

Ambient conditions

Temperature:

22 ± 1 °C 60 ± 10 %

Relative humidity: Air pressure:

1000 ± 10 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of +20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3 between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

Huang Jian Min/Feng Jun Qi

Actual Measurement data are documented on worksheets

Approved Signatory:

Date:

11-Nov-2013

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

恰試驗有限公司

P/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 巷 黃 竹 坑 道 3 7 號 利 達 中 心 地 下 , 9 樓 , 1 2 樓 , 1 3 樓 及 2 0 樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA0305 06-01

Page

of

2

Item tested

Description: Manufacturer: Type/Model No .: Sound Level Meter (Type 1)

N.009.04

B&K

2238

Microphone **B&K**

4188 2250420

Serial/Equipment No.: Adaptors used:

2285692

Item submitted by

Customer Name:

AECOM ASIA CO. LTD.

Address of Customer:

Request No.:

Date of receipt:

05-Mar-2014

Date of test:

07-Mar-2014

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator

Signal generator

Model: B&K 4226

DS 360

DS 360

2288444

33873 61227

Serial No.

Expiry Date:

22-Jun-2014 15-Apr-2014

CIGISMEC **CEPREI** 15-Apr-2014 CEPREI

Traceable to:

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

60 ± 10 % 1000 ± 10 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date: Huang Jian Min/Feng Jun Qi

12-Mar-2014

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Work Order:

HK1404442

Date of Issue:

20/02/2014

Client:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Sonde Environmental Monitoring System

Brand Name:

YSI

Model No.:

6820 V2

Serial No.: Equipment No.: 12D100972

Date of Calibration:

W.026.36

13 February, 2014

Date of next Calibration:

13 May, 2014

Parameters:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)		
146.9	150.5	2.5		
6667	6566	-1.5		
12890	12650	-1.9		
58670	57730	-1.6		
	Tolerance Limit (±%)	10.0		

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.40	2.25	0.05
3.40	3.35	-0.05 -0.03
5.50 7.65	5.47 7.62	-0.03
7.03	7.02	-0.03
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)		
4.0	4.04	0.04		
7.0	7.06	0.06		
10.0	10.05	0.05		
	Tolerance Limit (±pH unit)	0.20		

Salinity

Method Ref: APHA (21st edition), 2520B

Method Ren / R Th (LEES Cartion), LEES			
Expected Re	eading (ppt)	Displayed Reading (ppt)	Tolerance (%)
)	0.02	
1	0	9.85	-1.5
2	0	19.78	-1.1
3	0	29.54	-1.5
1000	51	99609149001 3000	80 50000
		Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Cheel, Richard General Manager Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Environmental

Work Order:

HK1404442

Date of Issue:

20/02/2014

Client:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Sonde Environmental Monitoring System

Brand Name:

YSI

Model No.:

6820 V2

Serial No.: Equipment No.: 12D100972

Date of Calibration:

W.026.36 13 February, 2014

Date of next Calibration:

13 May, 2014

Parameters:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
14.0	14.06	0.1
26.0	25.88	-0.1
38.5	38.45	0.0
	Tolerance Limit (±°C)	2.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Wethou Ref. Al TIA (213t edition), 2130B			
Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)	
0	0.0		
4	4.0	0.0	
10	10.3	3.0	
20	20.4	2.0	
50	50.5	1.0	
100	100.7	0.7	
	Tolerance Limit (±%)	10.0	

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Environmental

Work Order: Date of Issue: HK1414461

19/05/2014

Client:

AECOM ASIA COMPANY LIMITED

Description:

Sonde

Brand Name: Model No.:

YSI 6820 V2

Serial No.:

12D100972

Equipment No.:

W.026.36

Date of Calibration: 13 May, 2014

Date of next Calibration:

13 August, 2014

Parameters:

Conductivity

Method Ref: APHA (20th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	145.8	-0.7
6667	6640	-0.4
12890	12750	-1.1
58670	58200	-0.8
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

-				
	Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	
	3.66	3.69	+0.03	
	5.85	5.81	-0.04	
	7.65	7.60	-0.05	
		Tolerance Limit (mg/L)	±0.20	

pH Value

Method Ref: APHA (21st edition), 4500H:B

thou itel. All IIA (213t cultion), 13	0011.6	
Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.03	+0.03
7.0	7.05	+0.05
10.0	10.03	+0.03
	Tolerance Limit (pH Unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Mr Fung Lim Chee, General Manager

Greater China & Hong Kong

Work Order:

HK1414461

Date of Issue:

19/05/2014

Client:

AECOM ASIA COMPANY LIMITED

Description:

Sonde

Brand Name: Model No.:

YSI 6820 V2

Serial No.:

12D100972

Equipment No.:

W.026.36

Date of Calibration: 13 May, 2014

Date of next Calibration:

13 August, 2014

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

iction Kei. Al IIA (213t Catton), 2320b			
Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	
0	0.02	22	
10	9.94	-0.6	
20	19.56	-2.2	
30	29.76	-0.8	
	Tolerance Limit (%)	±10.0	

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
12.5	12.27	0.1
13.5	13.37 25.53	-0.1 +0.0
38.0	38.06	+0.1
	Tolerance Limit (°C)	±2.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	3.9	-2.5
10	9.8	-2.0
20	20.4	+2.0
50	50.5	+1.0
100	101.2	+1.2
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Fung Lim Chee, Richard General Manager -

Greater China & Hong Kong

Work Order:

HK1404435

Date of Issue:

20/02/2014

Client:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Sonde Environmental Monitoring System

Brand Name:

YSI

Model No.:

6820 V2

Serial No.: Equipment No.: 12A101545

Date of Calibration:

W.026.35 13 February, 2014

Date of next Calibration:

13 May, 2014

Parameters:

Conductivity

Method Ref: APHA (21st edition), 2510B

method item / it in t (= 15t edition), = 5105			
Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)	
146.9 6667 12890 58670	151.0 6558 12670 58020	2.8 -1.6 -1.7 -1.1	
	Tolerance Limit (±%)	10.0	

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.40	2.42	0.02
3.40 5.50	3.42 5.54	0.02 0.04
7.65	7.60	-0.05
7.03	7.00	0.03
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.02	0.02
7.0	7.05	0.05
10.0	9.97	-0.03
9	Tolerance Limit (±pH unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Method Ren 74 Th ((215t edition)) 25205		
Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.03	
10	9.88	-1.2
20	19.62	-1.9
30	29.50	-1.7
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager -

Greater China & Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1404435

Date of Issue:

20/02/2014

Client:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Sonde Environmental Monitoring System

Brand Name:

Model No.:

6820 V2

Serial No.:

12A101545

Equipment No.:

W.026.35

Date of Calibration: 13 February, 2014 Date of next Calibration:

13 May, 2014

Parameters:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
14.0	13.92	-0.1
26.0	25.91	-0.1
38.5	38.40	-0.1
	Tolerance Limit (±°C)	2.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	ted Reading (NTU) Displayed Reading (NTU)		
0	0.0		
4	3.9	-2.5	
10	9.7	-3.0	
20	19.6	-2.0	
50	49.3	-1.4	
100	99.2	-0.8	
	Specialist SECURI	swell fields	
	Tolerance Limit (±%)	10.0	

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr. Fung Lim Chee General Manager

Greater China & Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1414464

Date of Issue:

19/05/2014

Client:

AECOM ASIA COMPANY LIMITED

Description:

Sonde

Brand Name: Model No.:

YSI

Serial No.:

6820 V2 12A101545

Equipment No.:

W.026.35

Date of Calibration: 13 May, 2014

Date of next Calibration:

13 August, 2014

Parameters:

Conductivity

Method Ref: APHA (20th edition), 2510B

Expected Reading (uS/cm)	Reading (uS/cm) Displayed Reading (uS/cm)		
		. 1000-0100	
146.9	147.2	+0.2	
6667	6710	+0.6	
12890	12710	-1.4	
58670	58520	-0.3	
	Tolerance Limit (%)	±10.0	

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	cted Reading (mg/L) Displayed Reading (mg/L)		
3.66	3.70	+0.04	
5.85	5.89	+0.04	
7.65	7.70	+0.05	
	1000000		
	Tolerance Limit (mg/L)	±0.20	

pH Value

Method Ref: APHA (21st edition), 4500H:B

meenou nen / n m (L L St Cuntion), 15	001.112		
Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)	
4.0	4.01	+0.01	
7.0	7.05	+0.05	
10.0	9.94	-0.06	
	Tolerance Limit (pH Unit)	±0.20	

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Mr Fung Lim Chee General Manager

Greater China & Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue:

HK1414464

19/05/2014

Client:

AECOM ASIA COMPANY LIMITED

Description:

Sonde

Brand Name: Model No.:

YSI

Serial No.:

6820 V2

Equipment No.:

12A101545 W.026.35

Date of Calibration: 13 May, 2014

13 August, 2014

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	ted Reading (g/L) Displayed Reading (g/L)	
0	0.00	22
10	9.68	-3.2
20	19.86	-0.7
30	29.72	-0.9
	Tolerance Limit (%)	±10.0

Date of next Calibration:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
12.5	12.42	0.1
13.5 25.5	13.42 24.40	-0.1 -1.1
38.0	37.66	-0.3
	Tolerance Limit (°C)	±2.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)	
A			
0	0.0	-	
4	4.1	+2.5	
10	10.0	0.0	
20	19.8	-1.0	
50	49.5	-1.0	
100	99.6	-0.4	
	Tolerance Limit (%)	±10.0	

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Fung Lim Chee, Mchard General Manager

Greater China & Hong Kong

Hong Kong Boundary Crossing Facilities – Reclamation Works Impact Monitoring Schedule for May 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-May	2-May	3-May
					Mid-Flood 8:07 Mid-Ebb 15:00 24-hour TSP 1-hour TSP	
4-May	5-May	6-May	7-May	8-May	9-May	10-May
	Mid-Flood 9:38 Mid-Ebb 16:58		Mid-Flood 11:28 Mid-Ebb 18:48		Mid-Ebb 9:43 Mid-Flood 15:05	
			24-hour TSP 1-hour TSP Noise	Dolphin Monitoring	Dolphin Monitoring*	
11-May	12-May	13-May	14-May	15-May	16-May	17-May
	Mid-Ebb 11:30 Mid-Flood 17:53 Dolphin Monitoring 24-hour TSP 1-hour TSP		Mid-Ebb 12:39 Mid-Flood 19:26		Mid-Flood 7:16 Mid-Ebb 13:57	24-hour TSP 1-hour TSP
18-May	Noise 19-May	20-May	21-May	22-May	23-May	24-May
	Mid-Flood 9:23 Mid-Ebb 16:19		Mid-Flood 11:34 Mid-Ebb 18:19		Mid-Ebb 9:09 Mid-Flood 14:37 24-hour TSP 1-hour TSP Noise	
25-May	26-May	27-May	28-May	29-May	30-May	31-May
	Mid-Ebb 11:32 Mid-Flood 17:56		Mid-Ebb 12:48 Mid-Flood 19:40		Mid-Flood 7:06 Mid-Ebb 14:03	
	Dolphin Monitoring**	Dolphin Monitoring				Dolphin Monitoring

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)
*Boat survey on 9 May 14 was cancelled due to predicted adverse weather
**Boat survey on 26 May 14 was rescheduled to 31 May 14

Appendix F Schedule April 2014

Hong Kong Boundary Crossing Facilities – Reclamation Works Tentative Impact Monitoring Schedule for June 2014

Sunday	Monday Tuesday		Wednesday	Thursday		
1-Jun	2-Jun	3-Jun	4-Jun	5-Jun	6-Jun	7-Jun
	Mid-Flood 8:46 Mid-Ebb 15:51		Mid-Flood 10:04 Mid-Ebb 17:07 24-hour TSP 1-hour TSP		Mid-Flood 12:31 Mid-Ebb 18:55	
			Noise			
8-Jun	9-Jun	10-Jun	11-Jun	12-Jun	13-Jun	14-Jun
	Mid-Ebb 10:18 Mid-Flood 16:44 24-hour TSP 1-hour TSP Noise		Mid-Ebb 11:38 Mid-Flood 18:31		Mid-Ebb 13:02 Mid-Flood 20:11	24-hour TSP 1-hour TSP
15-Jun	16-Jun	17-Jun	18-Jun	19-Jun	20-Jun	21-Jun
	Mid-Flood 8:28 Mid-Ebb 15:20 Dolphin Monitoring		Mid-Flood 10:19 Mid-Ebb 17:02		Mid-Flood 12:56 Mid-Ebb 19:05 24-hour TSP 1-hour TSP Noise	
22-Jun	23-Jun	24-Jun	25-Jun	26-Jun	27-Jun	28-Jun
	Mid-Ebb 10:29 Mid-Flood 16:59		Mid-Ebb 11:54 Mid-Flood 18:51	24-hour TSP	Mid-Ebb 13:10 Mid-Flood 20:10	
29-Jun	30-Jun					
	Mid-Flood 7:56 Mid-Ebb 14:55					

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix F Schedule April 2014

Appendix G Impact Air Quality Monitoring Results

1-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

		Weather	averaged Wind	Time	Conc.	Actino Level	Limit Level
Date	Session	Condition	Speed (m/s)*	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
2-May-14	1st Hour	Sunny	0.5	10:08	81	374	500
2-May-14	2nd Hour	Sunny	3.1	11:08	82	374	500
2-May-14	3rd Hour	Sunny	2.1	12:08	83	374	500
7-May-14	1st Hour	Fine	2.50	10:28	83	374	500
7-May-14	2nd Hour	Fine	0.25	11:28	83	374	500
7-May-14	3rd Hour	Fine	0.08	12:28	83	374	500
12-May-14	1st Hour	Sunny	0.97	11:37	84	374	500
12-May-14	2nd Hour	Sunny	1.17	12:37	84	374	500
12-May-14	3rd Hour	Sunny	0.29	13:37	81	374	500
17-May-14	1st Hour	Sunny	3.58	10:15	74	374	500
17-May-14	2nd Hour	Sunny	0.46	11:15	73	374	500
17-May-14	3rd Hour	Sunny	1.52	12:15	75	374	500
23-May-14	1st Hour	Rainy	1.38	10:34	77	374	500
23-May-14	2nd Hour	Rainy	1.40	11:34	76	374	500
23-May-14	3rd Hour	Rainy	2.32	12:34	77	374	500
29-May-14	1st Hour	Sunny	2.81	10:13	84	374	500
29-May-14	2nd Hour	Sunny	4.43	11:13	84	374	500
29-May-14	3rd Hour	Sunny	4.59	12:13	83	374	500
				Average	80		
				Min	73		
				Max	84		

1-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

		Weather	averaged Wind	Time	Conc.	Actino Level	Limit Level
Date	Session	Condition	Speed (m/s)*	(hh:mm)	(µg/m³)	(µg/m³) ^	(µg/m³)
2-May-14	1st Hour	Sunny	0.5	10:22	84	368	500
2-May-14	2nd Hour	Sunny	3.1	11:22	82	368	500
2-May-14	3rd Hour	Sunny	2.1	12:22	84	368	500
7-May-14	1st Hour	Fine	2.50	10:37	82	368	500
7-May-14	2nd Hour	Fine	0.25	11:37	82	368	500
7-May-14	3rd Hour	Fine	0.08	12:37	84	368	500
12-May-14	1st Hour	Sunny	0.97	11:25	83	368	500
12-May-14	2nd Hour	Sunny	1.17	12:25	82	368	500
12-May-14	3rd Hour	Sunny	0.29	13:25	84	368	500
17-May-14	1st Hour	Sunny	3.58	10:25	72	368	500
17-May-14	2nd Hour	Sunny	0.46	11:25	71	1006	500
17-May-14	3rd Hour	Sunny	1.52	12:25	73	368	500
23-May-14	1st Hour	Rainy	1.38	10:45	77	368	500
23-May-14	2nd Hour	Rainy	1.40	11:45	77	368	500
23-May-14	3rd Hour	Rainy	2.32	12:45	78	368	500
29-May-14	1st Hour	Sunny	2.81	11:45	84	368	500
29-May-14	2nd Hour	Sunny	4.43	12:45	82	368	500
29-May-14	3rd Hour	Sunny	4.59	13:45	83	368	500
				Average	80		•
				Min	71	11	

Min Max

71 84

Remarks:

1-hour TSP Monitoring Results at Station AMS7 - Hong Kong SkyCity Marriott Hotel

	1	Weather	averaged Wind	Time	Conc.	Actino Level	Limit Level
Date	Session	Condition	Speed (m/s)*	(hh:mm)	(μg/m ³)	(µg/m³)	(µg/m ³)
			. ,		" o ,		
2-May-14	1st Hour	Sunny	0.5	10:38	83	370	500
2-May-14	2nd Hour	Sunny	3.1	11:38	82	370	500
2-May-14	3rd Hour	Sunny	2.1	12:38	84	370	500
7-May-14	1st Hour	Fine	2.50	10:12	84	370	500
7-May-14	2nd Hour	Fine	0.25	11:12	81	370	500
7-May-14	3rd Hour	Fine	0.08	12:12	83	370	500
12-May-14	1st Hour	Sunny	0.97	11:49	84	370	500
12-May-14	2nd Hour	Sunny	1.17	12:49	82	370	500
12-May-14	3rd Hour	Sunny	0.29	13:49	82	370	500
17-May-14	1st Hour	Sunny	3.58	10:00	78	370	500
17-May-14	2nd Hour	Sunny	0.46	11:00	75	370	500
17-May-14	3rd Hour	Sunny	1.52	12:00	76	370	500
23-May-14	1st Hour	Rainy	1.38	10:20	76	370	500
23-May-14	2nd Hour	Rainy	1.40	11:20	75	370	500
23-May-14	3rd Hour	Rainy	2.32	12:20	76	370	500
29-May-14	1st Hour	Sunny	2.81	10:00	83	370	500
29-May-14	2nd Hour	Sunny	4.43	11:00	83	370	500
29-May-14	3rd Hour	Sunny	4.59	12:00	81	370	500

 Average
 80

 Min
 75

 Max
 84

[^] Action Level set out at AMS3 Ho Yu College is adopted.

Appendix G Impact Air Quality Monitoring Results

24-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m³)	(µg/m³)
2-May-14	9:00	3-May-14	9:00	Sunny	24.0	1015.0	1.33	1.33	1.33	1912.3	2.7149	2.7930	0.0781	3341.84	3365.84	24.00	41	176	260
7-May-14	9:00	8-May-14	9:00	Fine	20.4	1013.6	1.33	1.33	1.33	1513.9	2.6993	2.7637	0.0644	3365.84	3384.84	19.00	43	176	260
12-May-14	9:00	13-May-14	9:00	Cloudy	25.8	1008.5	1.33	1.33	1.33	1912.3	2.7684	2.8597	0.0913	3389.84	3413.84	24.00	48	176	260
16-May-14	16:00	17-May-14	16:00	Sunny	28.3	1008.8	1.33	1.33	1.33	1912.3	2.7610	2.7955	0.0345	3413.84	3437.84	24.00	18	176	260
22-May-14	16:00	23-May-14	16:00	Rainy	29.1	1005.7	1.33	1.33	1.33	1912.3	2.7750	2.8243	0.0493	3437.84	3461.84	24.00	26	176	260
28-May-14	16:00	29-May-14	16:00	Sunny	29.4	1007.4	1.33	1.33	1.33	1912.3	2.6797	2.7138	0.0341	3461.84	3485.84	24.00	18	176	260
																Average	32		<u> </u>
																Min	18	1	

48

86

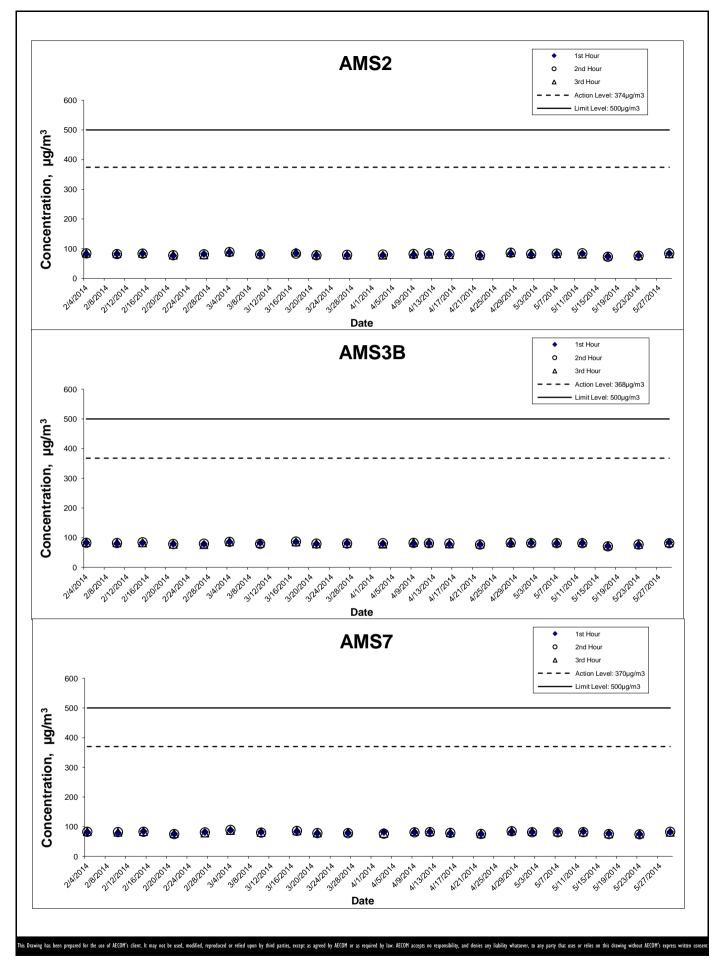
20

Max

Min

24-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)	(µg/m ³)	(µg/m ³)
2-May-14	9:00	3-May-14	9:00	Sunny	24.0	1015.0	1.33	1.33	1.33	1917.1	2.7145	2.8785	0.1640	3277.80	3301.86	24.06	86	167	260
7-May-14	9:00	8-May-14	9:00	Fine	20.4	1013.6	1.33	1.33	1.33	1912.3	2.7237	2.7894	0.0657	3301.80	3325.80	24.00	34	167	260
12-May-14	9:00	13-May-14	9:00	Cloudy	25.8	1008.5	1.33	1.33	1.33	1912.3	2.7577	2.8397	0.0820	3325.80	3349.80	24.00	43	167	260
16-May-14	16:00	17-May-14	16:00	Sunny	28.3	1008.8	1.33	1.33	1.33	1912.3	2.7401	2.7807	0.0406	3349.80	3373.80	24.00	21	167	260
22-May-14	16:00	23-May-14	16:00	Rainy	29.1	1005.7	1.33	1.33	1.33	1912.3	2.7604	2.8121	0.0517	3373.80	3397.80	24.00	27	167	260
28-May-14	16:00	29-May-14	16:00	Sunny	29.4	1007.4	1.33	1.33	1.33	1916.6	2.6543	2.6846	0.0303	3397.80	3421.80	24.00	16	167	260
																Average	38		
																Min	16	1	

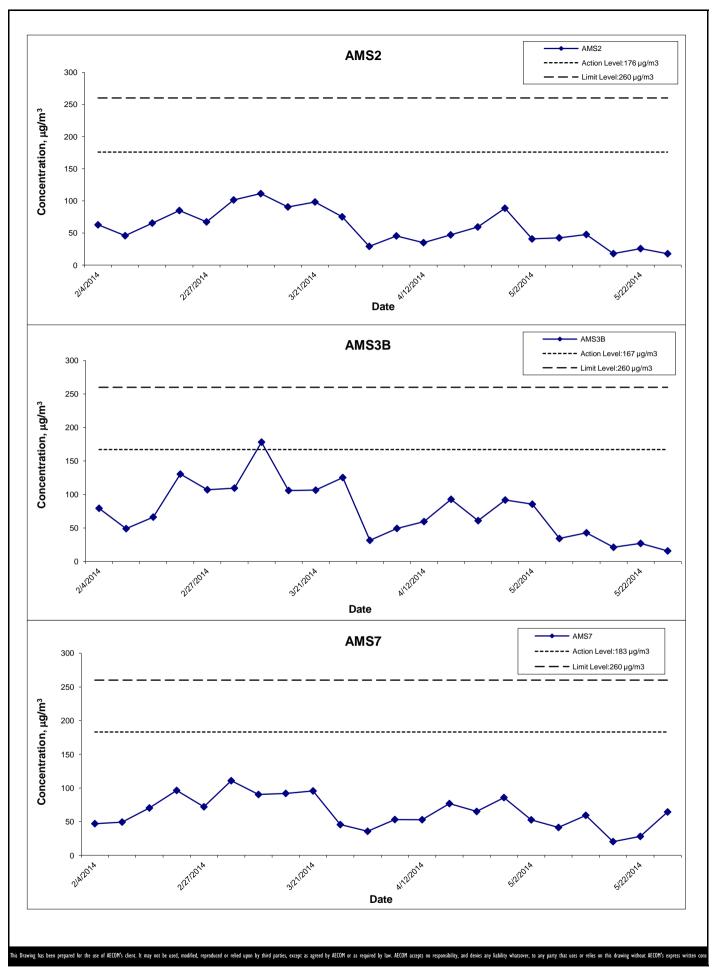

Remarks:

24-hour TSP Monitoring Results at Station AMS7 - Hong Kong SkyCity Marriott Hotel

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	$(\mu q/m^3)$	(µg/m ³)	(µg/m ³)
2-May-14	9:00	3-May-14	9:00	Sunny	24.0	1015.0	1.33	1.33	1.33	1916.6	2.7223	2.8233	0.1010	3299.98	3323.98	24.00	53	183	260
7-May-14	9:00	8-May-14	9:00	Fine	20.4	1013.6	1.34	1.34	1.34	1925.3	2.7312	2.8108	0.0796	3323.98	3347.98	24.00	41	183	260
12-May-14	9:00	13-May-14	9:00	Cloudy	25.8	1008.5	1.34	1.34	1.34	1925.3	2.7651	2.8794	0.1143	3347.98	3371.98	24.00	59	183	260
16-May-14	16:00	17-May-14	16:00	Sunny	28.3	1008.8	1.34	1.34	1.34	1925.3	2.7285	2.7677	0.0392	3371.98	3395.98	24.00	20	183	260
22-May-14	16:00	23-May-14	16:00	Rainy	29.1	1005.7	1.34	1.34	1.34	1925.3	2.7885	2.8426	0.0541	3395.98	3419.98	24.00	28	183	260
28-May-14	16:00	29-May-14	16:00	Sunny	29.4	1007.4	1.34	1.34	1.34	1925.3	2.6345	2.7585	0.1240	3419.98	3443.98	24.00	64	183	260
	·		·	·	·		·				·	·		·	-	Average	43		

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

[^] Action Level set out at AMS3 Ho Yu College is adopted.


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

Graphical Presentation of Impact 1-hour TSP

Monitoring Results

AECOM

Project No.: 60249820 Date: June 2014 Appendix G

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

Project No.: 60249820

- RECLAMATION WORKS Graphical Presentation of Impact 24-hour TSP

Monitoring Results

Date: June 2014

AECOM

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in May 2014

WIND DATA

WIND DATA			
Date	Time	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)
05/02/14	09:18:24	1.94	108
05/02/14 05/02/14	10:18:24 11:18:24	0.46 3.06	286 128
05/02/14	12:18:24	2.07	136
05/02/14	13:18:24	0.41	58
05/02/14	14:18:24	0.04	72
05/02/14	15:18:24	0.14	342
05/02/14	16:18:24	1.64	69
05/02/14	17:18:24	0.24	250
05/02/14	18:18:24	0.27	173
05/02/14	19:18:24	0.04	86
05/02/14	20:18:24	2.17	112
05/02/14	21:18:24	0.06	156
05/02/14	22:18:24	2.91	132
05/02/14	23:18:24	3.73	140
05/03/14	00:18:24	3.33	150
05/03/14	01:18:24	3.90	90
05/03/14	02:18:24	2.04	101
05/03/14	03:18:24	0.91	145
05/03/14	04:18:24	0.99	140
05/03/14	05:18:24	1.48	133
05/03/14	06:18:24	0.15	174
05/03/14	07:18:24	0.69	103
05/03/14 05/03/14	08:18:24 09:18:24	0.55 2.91	109 136
05/03/14	09:18:24	1.62	136
05/07/14	10:18:24	2.50	145
05/07/14	11:18:24	0.25	129
05/07/14	12:18:24	0.08	162
05/07/14	13:18:24	0.03	78
05/07/14	14:18:24	0.03	63
05/07/14	15:18:24	0.43	122
05/07/14	16:18:24	0.74	131
05/07/14	17:18:24	1.50	167
05/07/14	18:18:24	0.69	128
05/07/14	19:18:24	5.30	130
05/07/14	20:18:24	3.57	128
05/07/14	21:18:24	2.04	171
05/07/14	22:18:24	3.64	138
05/07/14	23:18:24	2.29	171
05/08/14	00:18:24	3.94	152
05/08/14	01:18:24	0.42	127
05/08/14	02:18:24	2.21 0.08	125
05/08/14 05/08/14	03:18:24 04:18:24	0.03	171 135
05/08/14	05:18:24	0.03	118
05/08/14	06:18:24	0.35	126
05/08/14	07:18:24	0.55	111
05/08/14	08:18:24	0.46	70
05/08/14	09:18:24	0.11	137
05/12/14	09:18:24	0.49	330
05/12/14	10:18:24	1.08	144
05/12/14	11:18:24	0.97	135
05/12/14	12:18:24	1.17	138
05/12/14	13:18:24	0.29	113
05/12/14	14:18:24	0.67	128
05/12/14	15:18:24	0.28	126
05/12/14	16:18:24	0.41	112
05/12/14	17:18:24	0.53	117
05/12/14 05/12/14	18:18:24 19:18:24	0.88 0.76	336 336
05/12/14	20:18:24	0.76	336
05/12/14	21:18:24	0.80	140
05/12/14	22:18:24	0.87	66
05/12/14	23:18:24	0.78	144
05/13/14	00:18:24	0.92	123
05/13/14	01:18:24	1.58	117
05/13/14	02:18:24	1.19	115
05/13/14	03:18:24	1.44	182
05/13/14	04:18:24	1.37	142
05/13/14	05:18:24	1.27	118
05/13/14	06:18:24	1.97	130
05/13/14	07:18:24	1.83	147
05/13/14	08:18:24	1.31	346
05/13/14 05/16/14	09:18:24 16:18:24	1.37 1.12	299 41
05/16/14	16:18:24 17:18:24	1.12 1.34	41 117
05/16/14	18:18:24	1.34	293
05/16/14	19:18:24	1.71	346
05/16/14	20:18:24	1.23	35
05/16/14	21:18:24	1.13	168
05/16/14	22:18:24	1.52	160
05/16/14	23:18:24	1.33	103
05/17/14	00:18:24	1.96	151
05/17/14	01:18:24	1.20	69
05/17/14	02:18:24	1.29	76
05/17/14	03:18:24	0.80	340
05/17/14	04:18:24	1.78	186
05/17/14	05:18:24	1.30	57
			

Appendix H Wind Data 1 May 2014

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in May 2014

WIND DATA

WIND DATA	_	1115 10 1(()	A 1140' 150' 4' 41)
Date	Time	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)
05/17/14	06:18:24	0.64	141
05/17/14	07:18:24	0.60	146
05/17/14	08:18:24	0.84	53
05/17/14	09:18:24	2.57	62
05/17/14	10:18:24	3.58	312
05/17/14	11:18:24	0.46	313
05/17/14	12:18:24	1.52	57
05/17/14	13:18:24	0.81	313
			336
05/17/14	14:18:24	0.70	
05/17/14	15:18:24	1.96	199
05/17/14	16:18:24	1.33	349
05/17/14	17:18:24	2.87	327
05/22/14	16:18:24	1.45	342
05/22/14	17:18:24	1.54	65
05/22/14	18:18:24	1.76	74
05/22/14	19:18:24	1.57	41
05/22/14	20:18:24	2.14	78
05/22/14			
	21:18:24	1.58	293
05/22/14	22:18:24	1.54	11
05/22/14	23:18:24	2.07	59
05/23/14	00:18:24	1.62	316
05/23/14	01:18:24	1.99	121
05/23/14			95
	02:18:24	1.78	
05/23/14	03:18:24	3.76	253
05/23/14	04:18:24	3.09	355
05/23/14	05:18:24	1.93	295
05/23/14	06:18:24	1.51	355
05/23/14	07:18:24	2.15	305
05/23/14	08:18:24	1.44	318
05/23/14	09:18:24	2.77	277
05/23/14	10:18:24	1.38	27
05/23/14	11:18:24	1.40	31
			-
05/23/14	12:18:24	2.32	317
05/23/14	13:18:24	0.85	339
05/23/14	14:18:24	0.88	280
05/23/14	15:18:24	0.80	277
05/23/14	16:18:24	0.83	84
			-
05/28/14	16:18:24	1.71	7
05/28/14	17:18:24	1.24	322
05/28/14	18:18:24	1.26	244
05/28/14	19:18:24	2.57	314
05/28/14	20:18:24	1.43	158
05/28/14		0.24	96
	21:18:24		
05/28/14	22:18:24	0.52	279
05/28/14	23:18:24	0.15	116
05/29/14	00:18:24	0.39	86
05/29/14	01:18:24	0.22	51
05/29/14	02:18:24	0.21	309
05/29/14	03:18:24	0.18	146
05/29/14	04:18:24	0.18	113
05/29/14	05:18:24	0.18	116
05/29/14	06:18:24	0.27	218
05/29/14	07:18:24	0.52	120
05/29/14	08:18:24	0.28	136
05/29/14	09:18:24	1.22	314
05/29/14	10:18:24	2.81	333
05/29/14	11:18:24	4.43	331
05/29/14	12:18:24	4.59	332
05/29/14	13:18:24	5.72	340
05/29/14	14:18:24	3.38	320
05/29/14	15:18:24	4.03	339
05/29/14	16:18:24	1.89	311
03/23/17	10.10.27	1.03	311

Appendix I Impact Daytime Construction Noise Monitoring Results

Daytime Noise Monitoring Results at Station NMS2 - Seaview Crescent Tower 1

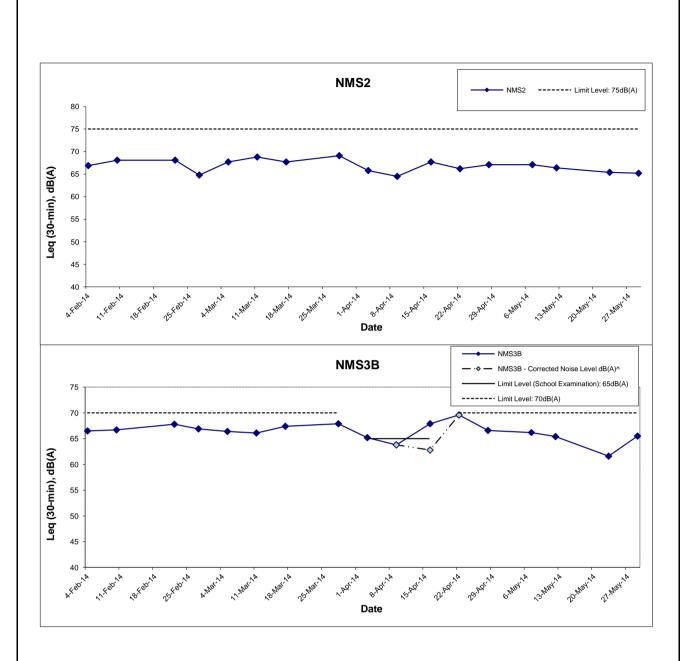
Average

		N	oise Level for	30-min, dB(A	٨)#				
Date	Weather Condition	Time	L90	L10	Leq	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
7-May-14	Fine	10:46	63	69	67	<5m/s	62.9	75	N
12-May-14	Sunny	10:30	63	69	66	<5m/s	62.9	75	N
23-May-14	Cloudy	15:42	59	67	65	<5m/s	62.9	75	N
29-May-14	Sunny	12:00	62	68	65	<5m/s	62.9	75	N
		Min	62	66	65		·	·	
		Max	64	71	67				

Daytime Noise Monitoring Results at Station NMS3B - Site Boundary of Site Office (WA2)

		N	oise Level for	30-min, dB(A	٨)#				
Date	Weather Condition	Time	L90	L10	Leq ^{>}	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A) ^	Limit Level, dB(A)**	Exceedance (Y/N)
7-May-14	Fine	11:30	62	68	66	<5m/s	66.3	70	N
12-May-14	Sunny	11:15	61	67	65	<5m/s	66.3	70	N
23-May-14	Cloudy	14:28	60	63	62	<5m/s	66.3	70	N
29-May-14	Sunny	10:50	63	65	66	<5m/s	66.3	70	N
		Min	58	67	64				
		Max	63	71	70				

Remark:


Average

 $^{^{\}mbox{\tiny \#}}$ A correction of +3dB(A) was made to the free field measurement.

^{*} Façade measurement.

[^] Averaged baseline noise level recorded at NMS3 Ho Yu College is adopted.

^{**} Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.

Remarks: Effective from July 2012, the Limit Level at NMS3A was revised to 70dB(A). Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

^The measured noise level on 16 April 2014 exceeded the noise level of 65dB(A) during examination period on 16 April 2014 but it is lower than the baseline level. Therefore, baseline correction was carried out and the corrected noise level which solely represent the noise level of Construction works is 63 dB(A) which is lower than the exceedance level of 65dB(A). As such the EAP was not triggered.

This Drawing has been prepared for the use of AECON's client. It may not be used, modified, reproduced or relied upon by third paries, except as agreed by AECON or as required by law. AECON accepts no responsibility, and denies any liability whatsover, to any party that uses or relies on this drawing without AECON's express written com-

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

Project No.: 60249820

Graphical Presentation of Impact Daytime
Construction Noise Monitoring Results
Date: June 2014

Appendix I

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ıration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	14:39		Surface	1.0	24.5 24.5	24.5	8.2 8.2	8.2	26.7 26.7	26.7	91.7 91.7	91.7	6.6 6.6	6.6		4.6 4.8	4.7		5.3 5.1	5.2	
				6.5	Middle	3.3	24.3	24.3	8.2	8.2	26.8	26.9	91.7	91.8	6.6	6.6	6.6	5.5	5.4	5.2	3.8	4.7	4.8
					Bottom	5.5	24.3 24.0	24.0	8.2 8.2	8.2	27.1 29.1	29.3	91.8 90.9	90.8	6.6 6.5	6.5	6.5	5.3 5.4	5.4		5.5 5.2	4.6	1
5 May 44	C	Madazata	40.00				24.1		8.2 8.3		29.4 24.8		90.7	1	6.5			5.4 2.2			4.0		<u> </u>
5-May-14	Sunny	Moderate	16:39		Surface	1.0	24.3	24.3	8.3	8.3	24.8	24.8	91.3	91.3	6.6	6.6	6.6	2.1	2.2		3.3	3.7	<u> </u>
				6.2	Middle	3.1	24.3 24.3	24.3	8.3 8.3	8.3	26.7 26.7	26.7	91.0 91.1	91.1	6.6 6.6	6.6	• • •	2.1 2.2	2.2	2.3	5.2 5.7	5.5	4.7
					Bottom	5.2	24.2 24.3	24.2	8.3 8.2	8.3	28.7 28.4	28.5	91.7 91.5	91.6	6.5 6.5	6.5	6.5	2.5 2.5	2.5		5.5 4.5	5.0	
7-May-14	Cloudy	Moderate	18:26		Surface	1.0	23.6 23.6	23.6	8.2 8.2	8.2	28.0 28.1	28.0	90.8 91.3	91.1	6.6 6.6	6.6		2.3 2.3	2.3		6.7 6.5	6.6	
				6.3	Middle	3.2	23.6 23.6	23.6	8.2 8.2	8.2	29.3 29.1	29.2	90.2 91.0	90.6	6.5 6.5	6.5	6.6	2.6 2.5	2.6	2.5	5.2 6.9	6.1	6.2
					Bottom	5.3	23.6	23.6	8.2	8.2	29.7	29.5	90.0	90.5	6.4	6.5	6.5	2.5	2.6		6.6	6.0	1
9-May-14	Rainy	Moderate	10:15		Surface	1.0	23.6 23.6	23.6	8.2 8.1	8.2	29.4 27.3	27.3	90.9 88.1	87.9	6.5 6.4	6.4		2.6 8.9	9.1		5.4 4.8	5.5	
							23.6		8.2 8.2		27.2 30.4		87.7 86.6		6.4 6.2		6.3	9.2			6.2 5.4		
				6.3	Middle	3.2	23.7	23.7	8.1 8.2	8.1	30.4 30.5	30.4	87.5 87.2	87.1	6.2 6.2	6.2		11.2 14.0	11.0	11.3	5.2 6.6	5.3	5.7
					Bottom	5.3	23.7	23.7	8.1	8.1	30.5	30.5	88.9	88.1	6.3	6.3	6.3	13.8	13.9		5.9	6.3	
12-May-14	Sunny	Moderate	11:55		Surface	1.0	24.2 24.2	24.2	7.9 7.8	7.8	14.4 12.8	13.6	82.6 84.2	83.4	6.4 6.6	6.5	6.5	3.7 3.6	3.7		5.0 4.3	4.7	
				6.4	Middle	3.2	23.9 23.9	23.9	7.6 7.9	7.7	16.1 16.2	16.1	84.4 82.2	83.3	6.5 6.3	6.4	0.0	3.6 3.7	3.7	3.8	6.2 6.7	6.5	5.7
					Bottom	5.4	23.9 23.9	23.9	7.8 7.4	7.6	16.8 18.0	17.4	82.6 86.0	84.3	6.3 6.5	6.4	6.4	4.0 3.7	3.9		6.5 5.5	6.0	
14-May-14	Sunny	Moderate	13:08		Surface	1.0	25.2	25.1	8.1	8.1	17.5	17.5	82.8	84.0	6.2	6.3		6.3	6.5		6.8	6.7	
				6.5	Middle	3.3	25.1 24.6	24.6	8.1 8.1	8.1	17.5 20.5	19.7	85.1 81.2	83.3	6.4	6.2	6.3	9.3	9.5	9.8	6.6	5.9	6.5
					Bottom	5.5	24.6 24.6	24.6	8.1 8.1	8.1	18.9 22.4	22.3	85.4 88.1	85.7	6.4 6.5	6.3	6.3	9.6 13.1	13.5		5.1 5.9	6.8	"
16-May-14	Cloudy	Moderate	13:25				24.6 25.4		8.1 8.1		22.2 17.7		83.3 82.1		6.1 6.1		0.5	13.9 9.6			7.6 6.2		
10-iviay-14	Cloudy	ivioderate	13.23		Surface	1.0	25.5	25.5	8.1	8.1	17.5	17.6	82.3	82.2	6.1	6.1	6.1	9.7	9.7		4.7	5.5	<u> </u>
				6.9	Middle	3.5	25.2 25.2	25.2	8.1 8.1	8.1	20.8 20.5	20.6	81.6 81.6	81.6	6.0 6.0	6.0		10.0 9.9	10.0	10.0	7.0 6.1	6.6	6.1
					Bottom	5.9	25.2 25.2	25.2	8.0 8.0	8.0	21.9 21.3	21.6	81.8 81.7	81.8	5.9 6.0	6.0	6.0	10.4 10.2	10.3		5.8 6.5	6.2	
19-May-14	Sunny	Rough	16:32		Surface	1.0	26.9 26.9	26.9	8.1 8.1	8.1	14.2 14.1	14.2	84.3 84.4	84.4	6.2 6.2	6.2		4.2 4.0	4.1		4.6 5.0	4.8	
				7.1	Middle	3.6	26.1 26.1	26.1	8.1 8.1	8.1	16.5 16.1	16.3	81.8 83.0	82.4	6.0 6.1	6.1	6.2	4.3 4.5	4.4	4.3	4.3 4.9	4.6	5.0
					Bottom	6.1	26.0	25.9	8.1 8.0	8.0	18.3	18.8	81.5 82.1	81.8	6.0	6.0	6.0	4.4	4.5		5.0	5.5	1
21-May-14	Cloudy	Moderate	17:50		Surface	1.0	26.0	26.3	8.1	8.1	13.5	13.2	70.7	73.5	5.3	5.5		3.8	3.7		5.7	6.0	\vdash
				6.5	Middle	3.3	26.6 26.0	25.9	8.1 8.1	8.1	12.8 17.7	18.2	76.3 70.9	70.6	5.7 5.2	5.2	5.4	3.6 4.5	4.7	5.7	6.2 6.9	6.5	6.5
				3.5	Bottom	5.5	25.9 25.7	25.7	8.0 8.0	8.0	18.7 20.9	20.8	70.2 70.2	70.6	5.1 5.1	5.1	5.1	4.8 8.6	8.6	J.,	6.1 6.7	7.1	. 5.5
					DULLUIN	5.5	25.7	23.1	8.0	0.0	20.7	20.0	70.9	70.0	5.2	5.1	5.1	8.5	0.0		7.5	7.1	

DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

^{***} Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplii	ng	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	09:29		Surface	1.0	26.3 26.3	26.3	8.1 8.0	8.1	11.2 11.2	11.2	74.5 72.7	73.6	5.6 5.5	5.6	5.5	5.2 5.2	5.2		5.6 5.6	5.6	
				6.6	Middle	3.3	25.8 25.8	25.8	8.0 8.0	8.0	17.9 17.5	17.7	70.4 72.9	71.7	5.2 5.4	5.3	3.3	5.5 5.6	5.6	5.5	5.4 5.5	5.5	5.6
					Bottom	5.6	25.9 25.7	25.8	7.9 8.0	7.9	21.0 21.3	21.2	74.0 78.3	76.2	5.3 5.7	5.5	5.5	5.7 5.9	5.8		5.1 6.4	5.8	
26-May-14	Sunny	Moderate	12:11		Surface	1.0	27.4 27.1	27.3	8.0 7.9	8.0	9.1 9.4	9.2	73.6 70.9	72.3	5.5 5.4	5.4	5.4	4.6 4.6	4.6		3.5 3.6	3.6	
				6.3	Middle	3.2	26.6 26.7	26.6	8.0 7.9	7.9	14.4 14.0	14.2	71.3 70.5	70.9	5.3 5.2	5.3	0.4	4.7 4.7	4.7	5.0	4.4 4.7	4.6	4.3
					Bottom	5.3	26.8 26.1	26.5	7.9 7.9	7.9	14.5 14.6	14.5	72.2 73.5	72.9	5.3 5.3	5.3	5.3	5.6 5.8	5.7		4.6 4.5	4.6	
28-May-14	Sunny	Moderate	12:50		Surface	1.0	26.8 27.1	27.0	8.1 8.1	8.1	19.6 17.1	18.3	79.3 76.4	77.9	5.7 5.5	5.6	5.5	2.7 2.7	2.7		3.0 3.4	3.2	
				7.2	Middle	3.6	26.5 26.5	26.5	8.1 8.1	8.1	20.6 20.5	20.6	75.7 74.4	75.1	5.4 5.3	5.4	3.3	3.0 3.0	3.0	2.9	4.0 4.9	4.5	3.9
					Bottom	6.2	26.4 26.6	26.5	8.1 8.1	8.1	21.8 21.5	21.6	75.1 72.9	74.0	5.4 5.2	5.3	5.3	3.1 3.0	3.1		4.2 3.7	4.0	
30-May-14	Sunny	Moderate	13:36		Surface	1.0	27.8 27.9	27.9	8.1 8.1	8.1	14.5 14.7	14.6	86.1 85.9	86.0	6.2 6.2	6.2	6.1	1.8 1.9	1.9		3.2 2.5	2.9	
				6.2	Middle	3.1	27.1 27.1	27.1	8.1 8.1	8.1	17.3 17.3	17.3	82.8 81.0	81.9	6.0 5.9	5.9	0.1	1.9 1.9	1.9	1.9	2.3 2.3	2.3	2.7
					Bottom	5.2	26.9 27.1	27.0	8.1 8.1	8.1	19.3 19.0	19.1	82.1 84.8	83.5	5.9 6.1	6.0	6.0	1.9 1.9	1.9		3.0 2.8	2.9	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Ti	urbidity(NTI	U)	Suspe	ended Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	08:20		Surface	1.0	24.0	24.0	8.2	8.2	25.2	25.3	87.7	86.9	6.4	6.3		10.4	10.4		3.9	4.6	1
				0.0	N.C. J. II.	0.0	24.0 23.9	00.0	8.2 8.2	0.0	25.4 27.4	07.4	86.1 86.0	07.4	6.3	0.0	6.3	10.3 11.4	44.5		5.3 4.3	10	
				6.6	Middle	3.3	23.9	23.9	8.2	8.2	27.3	27.4	88.7	87.4	6.4	6.3		11.6	11.5	11.1	4.3	4.3	4.7
					Bottom	5.6	23.9 23.9	23.9	8.1 8.2	8.2	27.6 27.6	27.6	86.4 91.3	88.9	6.2 6.6	6.4	6.4	11.7 11.2	11.5		5.0 5.6	5.3	1
5-May-14	Sunny	Moderate	09:59		Curtosa	1.0	24.3	24.3	8.2	8.2	23.0	22.9	88.8	89.6	6.5	0.0		4.3	4.2		2.1	2.2	
	,				Surface	1.0	24.3	24.3	8.2	8.2	22.9	22.9	90.4	89.6	6.6	6.6	6.6	4.3	4.3		2.3	2.2	1
				6.5	Middle	3.3	24.2 24.2	24.2	8.2 8.2	8.2	25.5 27.1	26.3	88.7 91.4	90.1	6.4 6.6	6.5		5.5 5.5	5.5	5.1	3.0 3.3	3.2	2.8
					Bottom	5.5	24.1	24.2	8.2	8.2	28.3	28.2	94.2	91.7	6.7	6.6	6.6	5.5	5.6		2.5	2.9	1
	<u> </u>		44.40		Dottom	0.0	24.2	24.2	8.1	0.2	28.0	20.2	89.2	31.7	6.4	0.0	0.0	5.6	5.0		3.2	2.5	
7-May-14	Cloudy	Moderate	11:49		Surface	1.0	23.5 23.5	23.5	8.2 8.2	8.2	29.8 29.8	29.8	91.4 90.5	91.0	6.6 6.5	6.5		2.9 2.8	2.9		5.3 6.7	6.0	1
				6.5	Middle	3.3	23.6	23.6	8.2	8.2	30.0	30.0	91.6	91.0	6.5	6.5	6.5	3.3	3.2	3.2	5.7	5.7	6.2
				0.5	ivildale	0.0	23.6	23.0	8.2	0.2	30.1	30.0	90.3	31.0	6.4	0.5		3.1	5.2	3.2	5.7	5.7	0.2
					Bottom	5.5	23.6 23.7	23.7	8.2 8.2	8.2	30.2 30.5	30.4	91.2 94.5	92.9	6.5 6.7	6.6	6.6	3.3 3.4	3.4		6.7 7.0	6.9	1
9-May-14	Rainy	Moderate	14:23		Surface	1.0	23.6	23.6	8.2	8.2	28.1	28.2	87.7	86.7	6.3	6.3		4.4	4.5		5.5	5.4	
							23.6		8.2 8.2		28.3 28.9		85.7 85.2		6.2 6.1		6.2	4.6 6.0			5.3 5.8		1
				6.6	Middle	3.3	23.7	23.7	8.2	8.2	30.0	29.5	84.7	85.0	6.0	6.1		6.7	6.4	6.5	5.3	5.6	5.6
					Bottom	5.6	23.7	23.7	8.2	8.2	30.6	30.6	85.5	85.1	6.1	6.0	6.0	8.6	8.6		5.4	5.9	1
12-May-14	Sunny	Moderate	17:26				23.7 24.9		8.2 8.0		30.6 12.9		84.7 82.5		6.0			8.5 8.3			6.4 3.1		
12-Way-14	Guilly	Woderate	17.20		Surface	1.0	24.9	24.9	8.0	8.0	12.9	12.9	82.9	82.7	6.4	6.4	6.3	8.1	8.2		3.3	3.2	i l
				6.6	Middle	3.3	24.0	24.0	8.0	8.0	17.7	17.7	81.1	80.6	6.2	6.1	0.5	8.5	8.6	8.5	4.0	4.2	3.8
					_		23.9		8.0 8.0		17.8 21.5		80.1 79.7		6.1			8.6 8.7			4.3 3.8		
					Bottom	5.6	24.2	24.0	7.9	8.0	22.0	21.8	81.6	80.7	6.0	6.0	6.0	8.7	8.7		4.2	4.0	
14-May-14	Sunny	Moderate	18:55		Surface	1.0	25.7 25.7	25.7	7.9 7.9	7.9	13.0	13.0	80.2 80.4	80.3	6.1	6.1		5.8 6.0	5.9		5.3 6.0	5.7	1
				0.0	N.C. J. II.	0.0	25.6	05.5	7.9	7.0	13.1 15.1	45.0	80.4	20.0	6.1	0.0	6.1	6.6	0.4	0.4	4.6	 	
				6.6	Middle	3.3	25.5	25.5	7.9	7.9	15.0	15.0	80.1	80.2	6.0	6.0		6.2	6.4	6.4	4.2	4.4	5.6
					Bottom	5.6	25.5 25.5	25.5	7.9 7.9	7.9	15.5 15.4	15.4	79.9 80.2	80.1	6.0 6.0	6.0	6.0	6.8 6.7	6.8		6.6 7.0	6.8	
16-May-14	Cloudy	Moderate	08:30		Curfoco	1.0	25.1	25.1	8.0	8.0	20.9	21.0	79.7	70.2	5.8	E 0		17.5	17.4		7.0	6.0	
	,				Surface	1.0	25.1	25.1	8.0	6.0	21.0	21.0	78.9	79.3	5.8	5.8	5.8	17.2	17.4		6.7	6.9	1
				6.9	Middle	3.5	25.0 25.0	25.0	8.0 8.0	8.0	21.3 21.3	21.3	79.8 78.8	79.3	5.8 5.8	5.8		18.4 18.6	18.5	18.7	7.4 6.8	7.1	7.2
					Bottom	5.9	25.0	25.0	8.0	8.0	21.6	21.7	79.1	79.7	5.8	5.8	5.8	20.3	20.2		7.7	7.7	1
10.11	<u> </u>				Dottom	0.0	25.0	25.0	8.0	0.0	21.8	21.7	80.3	15.1	5.9	3.0	3.0	20.0	20.2		7.6	1.1	
19-May-14	Cloudy	Moderate	09:59		Surface	1.0	25.8 25.9	25.8	8.0 8.0	8.0	16.2 16.1	16.2	78.3 86.1	82.2	5.8 6.3	6.0		4.2 4.2	4.2		10.5 10.4	10.5	1
				7.0	Middle	3.5	25.7	25.7	8.0	8.0	18.2	18.4	76.9	79.2	5.7	5.9	6.0	4.2	4.3	4.4	10.3	10.5	10.8
				7.0	Wildale	0.0	25.7	20.7	8.0 8.0	0.0	18.5 18.5	10.4	81.5 80.0	10.2	6.0	0.0		4.4 4.6	4.0	7.7	10.6 11.2	10.0	10.0
					Bottom	6.0	25.7 25.7	25.7	8.0 8.0	8.0	18.5	18.5	76.8	78.4	5.9 5.7	5.8	5.8	4.6	4.6		11.2	11.3	<u>. </u>
21-May-14	Cloudy	Moderate	12:07		Surface	1.0	26.3	26.2	8.0	8.0	11.6	12.7	75.3	74.8	5.7	5.6	_	3.9	3.8		5.1	4.8	
							26.2 26.1		8.0 8.0		13.8 14.5		74.3 75.5		5.6 5.6		5.6	3.7 4.4			4.4		
				6.5	Middle	3.3	26.0	26.1	8.0	8.0	15.1	14.8	73.8	74.7	5.5	5.6		4.9	4.7	5.2	4.5	4.7	4.9
					Bottom	5.5	25.7	25.7	7.9	8.0	21.7	21.3	73.7	75.8	5.3	5.5	5.5	7.0 6.9	7.0		4.7	5.2	i
<u> </u>		1	1	1	1		25.7		8.0	l	20.9	I	77.9	l	5.7	<u> </u>		6.9	l		5.7		

DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

^{***} Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	U)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	14:12		Surface	1.0	26.4 26.3	26.4	8.0 8.0	8.0	11.2 11.2	11.2	76.4 72.8	74.6	5.8 5.5	5.7	5.5	6.5 6.7	6.6		3.7 3.4	3.6	
				6.4	Middle	3.2	26.1 26.1	26.1	8.0 8.0	8.0	17.1 16.9	17.0	72.0 70.4	71.2	5.3 5.2	5.2	3.3	8.6 8.9	8.8	8.1	5.3 3.8	4.6	4.2
					Bottom	5.4	25.9 25.8	25.8	7.9 7.9	7.9	21.8 21.3	21.5	74.3 71.0	72.7	5.3 5.1	5.2	5.2	8.7 8.8	8.8		4.0 4.9	4.5	
26-May-14	Sunny	Moderate	17:29		Surface	1.0	27.8 27.9	27.8	7.9 7.9	7.9	9.0 8.8	8.9	76.1 78.1	77.1	5.7 5.8	5.8	5.6	6.9 6.8	6.9		5.6 5.4	5.5	
				6.4	Middle	3.2	27.2 27.5	27.3	7.9 7.9	7.9	9.3 9.5	9.4	70.9 71.6	71.3	5.3 5.4	5.4	0.0	6.8 6.8	6.8	6.9	6.3 5.7	6.0	5.8
					Bottom	5.4	26.5 26.2	26.4	7.8 7.8	7.8	17.4 18.5	18.0	72.0 72.4	72.2	5.2 5.3	5.3	5.3	6.9 6.8	6.9		6.0 5.8	5.9	
28-May-14	Sunny	Moderate	18:45		Surface	1.0	27.9 27.9	27.9	8.1 8.1	8.1	11.2 11.0	11.1	88.6 89.4	89.0	6.5 6.6	6.6	6.4	4.5 4.5	4.5		4.8 5.6	5.2	
				7.1	Middle	3.6	27.2 27.6	27.4	8.0 8.1	8.1	12.7 12.4	12.5	86.0 82.5	84.3	6.2 6.1	6.1	0.4	4.8 4.5	4.7	4.7	5.5 5.7	5.6	5.4
					Bottom	6.1	26.9 27.2	27.0	8.0 8.0	8.0	17.7 17.6	17.6	81.0 83.8	82.4	5.9 6.2	6.0	6.0	4.7 5.0	4.9		5.8 5.2	5.5	
30-May-14	Sunny	Moderate	07:29		Surface	1.0	27.2 27.3	27.3	8.2 8.2	8.2	17.6 16.9	17.3	81.1 83.5	82.3	5.8 6.0	5.9	5.8	5.6 5.5	5.6		2.3 3.7	3.0	
				6.5	Middle	3.3	26.8 26.9	26.9	8.1 8.1	8.1	20.3 20.0	20.2	79.2 78.6	78.9	5.7 5.6	5.6	0.0	5.7 5.7	5.7	5.8	3.5 2.9	3.2	2.9
					Bottom	5.5	26.7 26.7	26.7	8.1 8.1	8.1	22.2 21.8	22.0	82.6 78.7	80.7	5.8 5.6	5.7	5.7	5.9 6.1	6.0		2.8 2.4	2.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ıration (%)	Dissol	ved Oxygen	(mg/L)	Ti	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	14:12		Surface	1.0	24.4 24.4	24.4	8.2 8.2	8.2	26.8 26.8	26.8	92.6 92.7	92.7	6.6 6.7	6.6		7.3 7.2	7.3		4.0 3.9	4.0	
				16.3	Middle	8.2	23.9	23.9	8.3	8.3	29.6	29.6	92.1	92.2	6.6	6.6	6.6	7.7	7.8	7.9	4.6	4.5	4.5
					Bottom	15.3	23.9 23.9	24.0	8.3 8.3	8.2	29.7 29.8	29.8	92.3 91.3	91.2	6.6 6.5	6.5	6.5	7.8 8.6	8.5		4.3 5.2	5.0	,
5 May 44	C	Madazata	16:13		Dotto	10.0	24.1	20	8.2 8.3	0.2	29.7 25.5	20.0	91.1 91.6	02	6.5	0.0	0.0	8.4 2.7	0.0		4.7 3.5	0.0	<u> </u>
5-May-14	Sunny	Moderate	10:13		Surface	1.0	24.4	24.4	8.3	8.3	25.3	25.4	91.8	91.7	6.6	6.6	6.6	2.6	2.7		4.1	3.8	
				16.4	Middle	8.2	24.2 24.2	24.2	8.3 8.3	8.3	28.8 28.8	28.8	91.0 90.9	91.0	6.5 6.5	6.5	0.0	3.6 3.5	3.6	3.3	5.2 5.4	5.3	4.4
					Bottom	15.4	24.2 24.2	24.2	8.3 8.3	8.3	28.8 28.8	28.8	91.2 91.2	91.2	6.5 6.5	6.5	6.5	3.7 3.7	3.7		4.0 3.9	4.0	ļ
7-May-14	Cloudy	Moderate	17:57		Surface	1.0	23.6	23.6	8.3	8.3	28.3	28.2	89.2	89.1	6.4	6.4		3.0	2.9		5.4	5.4	
				16.1	Middle	8.1	23.6 23.7	23.7	8.3 8.2	8.2	28.2 30.5	30.5	89.0 88.5	88.5	6.4	6.3	6.4	2.8 5.5	5.3	4.5	5.3 6.0	5.9	5.9
						15.1	23.7		8.2 8.2	8.2	30.5 31.0	30.9	88.4 89.7	89.9	6.3 6.4	6.4	6.4	5.1 5.5	5.4		5.7 6.6	6.4	
0.14	D. C.	M. I	40.00		Bottom	15.1	23.6	23.7	8.2	8.2	30.9	30.9	90.1	89.9	6.4	0.4	6.4	5.3	5.4		6.1	6.4	<u> </u>
9-May-14	Rainy	Moderate	10:36		Surface	1.0	23.6 23.6	23.6	8.2 8.2	8.2	27.5 27.4	27.4	87.8 88.4	88.1	6.4 6.4	6.4	6.3	6.5 6.2	6.4		3.4 5.0	4.2	
				16.3	Middle	8.2	23.7 23.7	23.7	8.2 8.2	8.2	30.5 30.5	30.5	86.0 86.1	86.1	6.1 6.1	6.1	0.0	8.9 8.6	8.8	9.0	6.4 6.2	6.3	5.6
					Bottom	15.3	23.7 23.7	23.7	8.2 8.2	8.2	30.5 30.5	30.5	86.2 86.3	86.3	6.1 6.1	6.1	6.1	11.8 12.0	11.9		6.5 6.2	6.4	ļ
12-May-14	Sunny	Moderate	12:32		Surface	1.0	24.2 24.3	24.3	8.0 8.0	8.0	13.1 12.9	13.0	82.5 82.9	82.7	6.4 6.4	6.4		4.5 4.3	4.4		4.5 5.1	4.8	
				16.1	Middle	8.1	23.9	23.9	8.0	8.0	16.8	16.7	82.0	81.9	6.3	6.3	6.4	6.3	6.4	5.8	6.2	6.3	5.4
					Bottom	15.1	23.9 23.9	23.9	7.9	7.9	16.5 20.5	21.1	81.7 81.6	81.8	6.3 6.1	6.1	6.1	6.4	6.5		6.4 5.0	5.0	,
14-May-14	Sunny	Moderate	13:26				23.9 25.3		7.9 8.0		21.6 17.2		82.0 85.3		6.1 6.4		***	6.7			4.9 4.7		<u> </u>
14-iviay-14	Guilly	Woderate	13.20		Surface	1.0	25.2	25.3	8.1	8.1	17.2	17.2	84.5	84.9	6.3	6.3	6.2	6.6	6.5		4.8	4.8	 -
				16.2	Middle	8.1	24.6 24.6	24.6	8.1 8.1	8.1	22.3 22.4	22.3	82.8 83.1	83.0	6.1 6.1	6.1		12.1 12.4	12.3	10.8	5.7 5.8	5.8	6.5
					Bottom	15.2	24.6 24.6	24.6	8.1 8.1	8.1	22.6 22.8	22.7	82.8 83.4	83.1	6.1 6.1	6.1	6.1	13.2 13.8	13.5		9.4 8.2	8.8	ļ
16-May-14	Cloudy	Moderate	13:15		Surface	1.0	25.2 25.2	25.2	8.1 8.1	8.1	20.4 20.4	20.4	81.7 81.9	81.8	6.0 6.0	6.0		11.3 11.1	11.2		4.0 4.0	4.0	
				18.3	Middle	9.2	25.2	25.2	8.1	8.1	21.1	20.9	81.8	81.7	6.0	6.0	6.0	12.0	12.1	12.1	3.7	4.2	4.6
					Bottom	17.3	25.2 25.2	25.1	8.1 8.0	8.0	20.7 22.6	22.6	81.6 81.5	81.7	6.0 5.9	5.9	5.9	12.2 13.0	12.9		4.6 5.3	5.5	
19-May-14	Sunny	Rough	16:17		Surface	1.0	25.1 26.8	26.8	8.0 8.1	8.1	22.6 14.4	14.4	81.8 82.8	82.9	5.9 6.1	6.1		12.8 4.2	4.2		5.7 5.0	4.7	
							26.7 26.2		8.1 8.1		14.3 17.1		83.0 82.5		6.1 6.0		6.0	4.2 4.2			4.4 5.7		· '
				18.0	Middle	9.0	25.6 25.6	25.9	8.1 8.1	8.1	18.1 21.4	17.6	77.2 81.0	79.9	5.7	5.8		4.3 4.4	4.3	4.3	6.1	5.9	5.7
			17.00		Bottom	17.0	25.6	25.6	8.1	8.1	21.1	21.3	76.9	79.0	5.6	5.8	5.8	4.5	4.5		6.3	6.6	<u> </u>
21-May-14	Cloudy	Moderate	17:29		Surface	1.0	26.6 26.7	26.7	8.1 8.1	8.1	12.8 12.8	12.8	79.6 80.2	79.9	5.9 6.0	6.0	5.6	4.2 3.8	4.0		5.3 5.5	5.4]
				17.1	Middle	8.6	25.7 25.7	25.7	8.1 8.1	8.1	20.3 21.1	20.7	70.8 70.8	70.8	5.2 5.1	5.1	0.0	8.5 9.0	8.8	6.4	5.5 5.3	5.4	5.7
					Bottom	16.1	25.7 25.6	25.7	8.0 8.1	8.0	21.7 22.0	21.9	76.1 72.0	74.1	5.5 5.2	5.3	5.3	6.4	6.4	1	5.9 6.5	6.2]
11			1	1	1 1		23.0	1	0.1	1	ZZ.U	1	12.0	1	5.2	1		0.3	l	<u> </u>	0.0	<u> </u>	<u> </u>

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	09:57		Surface	1.0	26.4 26.4	26.4	8.1 8.0	8.1	11.0 11.0	11.0	74.0 75.5	74.8	5.6 5.7	5.7	5.5	6.7 6.7	6.7		4.8 4.3	4.6	
				16.3	Middle	8.2	25.6 25.6	25.6	8.0 8.0	8.0	20.8 21.2	21.0	73.4 71.5	72.5	5.3 5.2	5.2	5.5	6.9 6.8	6.9	6.9	5.0 4.3	4.7	4.8
					Bottom	15.3	25.6 25.7	25.6	7.9 7.9	7.9	22.0 21.9	22.0	66.3 65.5	65.9	4.8 4.7	4.8	4.8	7.2 7.2	7.2		5.6 4.6	5.1	
26-May-14	Sunny	Moderate	12:38		Surface	1.0	27.2 27.2	27.2	7.9 7.9	7.9	9.8 9.9	9.8	70.2 70.0	70.1	5.3 5.3	5.3	5.2	5.0 5.2	5.1		4.8 4.7	4.8	
				16.5	Middle	8.3	26.7 26.7	26.7	7.9 7.9	7.9	14.3 14.2	14.2	67.9 67.8	67.9	5.0 5.0	5.0	0.2	5.4 5.2	5.3	6.2	4.9 4.7	4.8	5.0
					Bottom	15.5	26.4 26.0	26.2	7.8 7.8	7.8	19.9 20.1	20.0	68.6 69.0	68.8	4.9 5.0	5.0	5.0	7.9 8.3	8.1		5.2 5.8	5.5	
28-May-14	Sunny	Moderate	13:02		Surface	1.0	27.9 27.6	27.7	8.1 8.1	8.1	14.3 14.8	14.6	81.9 78.6	80.3	5.8 5.7	5.8	5.7	3.0 3.1	3.1		3.9 2.7	3.3	
				18.0	Middle	9.0	26.7 26.5	26.6	8.1 8.1	8.1	20.0 20.5	20.2	80.1 74.5	77.3	5.8 5.3	5.5	5.7	3.1 3.3	3.2	3.2	3.4 4.4	3.9	3.6
					Bottom	17.0	26.5 27.4	27.0	8.1 8.1	8.1	22.1 21.0	21.6	72.3 78.5	75.4	5.2 5.6	5.4	5.4	3.3 3.3	3.3		3.9 3.1	3.5	
30-May-14	Sunny	Moderate	13:12		Surface	1.0	27.9 28.2	28.1	8.2 8.2	8.2	14.4 14.2	14.3	84.2 88.2	86.2	6.1 6.4	6.2	5.9	1.7 1.8	1.8		3.3 3.3	3.3	
				16.0	Middle	8.0	26.8 26.9	26.9	8.1 8.1	8.1	20.4 19.1	19.7	76.5 76.9	76.7	5.5 5.5	5.5	5.5	3.2 3.3	3.3	2.8	3.8 2.6	3.2	3.0
					Bottom	15.0	26.4 26.4	26.4	8.0 8.0	8.0	23.8 23.5	23.6	80.1 78.2	79.2	5.6 5.5	5.6	5.6	3.3 3.4	3.4		2.6 2.3	2.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ıration (%)	Dissol	ved Oxyger	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	08:48		Surface	1.0	24.0 24.0	24.0	8.2 8.2	8.2	25.4 25.3	25.4	85.3 85.2	85.3	6.2 6.2	6.2		10.7 10.7	10.7		3.8 4.6	4.2	
				17.0	Middle	8.5	23.9	23.9	8.2	8.2	27.5	27.6	84.8	84.8	6.1	6.1	6.2	10.6	10.6	10.7	3.8	4.1	4.3
					Bottom	16.0	23.9 23.9	23.9	8.2 8.1	8.2	27.6 27.5	27.6	84.8 84.8	84.9	6.1 6.1	6.1	6.1	10.5 10.7	10.7		4.8	4.5	
5.14	0	Martinata	40.00		Dottom	10.0	23.9	20.0	8.2	0.2	27.6	27.0	85.0	04.0	6.1	0.1	0.1	10.7	10.7		4.2	4.0	
5-May-14	Sunny	Moderate	10:26		Surface	1.0	24.3 24.4	24.3	8.2 8.2	8.2	22.7 22.2	22.5	87.6 87.6	87.6	6.4 6.5	6.4	6.3	5.5 5.7	5.6		2.5 2.4	2.5	ļ.
				17.4	Middle	8.7	24.1 24.1	24.1	8.2 8.2	8.2	28.6 28.6	28.6	86.8 87.0	86.9	6.2 6.2	6.2	0.0	6.3 6.6	6.5	6.2	2.5 2.6	2.6	2.5
					Bottom	16.4	24.1 24.2	24.1	8.1 8.1	8.1	28.8 28.5	28.7	87.6 87.3	87.5	6.3 6.2	6.2	6.2	6.7 6.5	6.6		2.7 2.1	2.4	ļ
7-May-14	Cloudy	Moderate	12:16		Surface	1.0	23.6 23.6	23.6	8.2 8.2	8.2	29.7 29.8	29.8	88.6 88.4	88.5	6.3 6.3	6.3		4.2 4.2	4.2		5.2 6.0	5.6	
				16.9	Middle	8.5	23.7	23.7	8.2	8.2	30.6	30.6	88.3	88.1	6.3	6.3	6.3	5.5 5.5	5.5	5.1	5.2	5.5	5.7
					Bottom	15.9	23.7	23.7	8.2 8.2	8.2	30.6 30.8	30.8	87.9 88.7	89.3	6.2	6.3	6.3	5.7	5.6		5.7 6.6	6.1	,
9-May-14	Rainy	Moderate	14:03				23.7		8.2 8.2		30.8 28.1		89.9 88.0		6.4		0.0	5.4 3.4			5.6 2.8		
,					Surface	1.0	23.6	23.6	8.2 8.2	8.2	28.3	28.2	87.1 84.6	87.6	6.3	6.3	6.2	3.5 9.9	3.5		3.4	3.1	 -
				16.1	Middle	8.1	23.7	23.7	8.2	8.2	30.6	30.6	84.6	84.6	6.0	6.0		9.8	9.9	8.2	3.4	3.4	3.7
					Bottom	15.1	23.7 23.7	23.7	8.2 8.2	8.2	30.6 30.6	30.6	84.9 84.9	84.9	6.0 6.0	6.0	6.0	11.6 11.0	11.3		4.5 4.7	4.6	
12-May-14	Sunny	Moderate	16:58		Surface	1.0	24.5 24.6	24.6	8.0 8.0	8.0	14.4 13.9	14.2	81.6 82.1	81.9	6.3 6.3	6.3	6.2	6.5 6.7	6.6		3.5 3.4	3.5	
				16.7	Middle	8.4	23.8 23.8	23.8	8.0 7.9	8.0	22.1 21.8	22.0	80.2 80.1	80.2	6.0 6.0	6.0	0.2	7.6 7.6	7.6	7.6	3.5 3.6	3.6	3.5
					Bottom	15.7	23.8 23.8	23.8	7.9 7.9	7.9	22.9 22.7	22.8	80.6 81.0	80.8	6.0 6.0	6.0	6.0	8.3 8.6	8.5		3.9 3.1	3.5	
14-May-14	Sunny	Moderate	18:36		Surface	1.0	25.7	25.7	7.9	7.9	12.8	13.0	80.2	80.4	6.1	6.1		6.0	6.1		4.9	5.3	
				16.0	Middle	8.0	25.7 25.5	25.4	7.9 7.9	8.0	13.1 15.4	15.5	80.5 80.5	80.8	6.1 6.0	6.0	6.1	7.0	7.2	7.0	5.6 6.8	7.0	6.4
				10.0			25.2 25.5		8.0 7.9	8.0	15.6 22.5	22.3	81.1 80.5		6.1 6.0		5.9	7.3 7.4	7.7	7.0	7.2 6.7		0.4
	2				Bottom	15.0	24.8	25.1	8.0	8.0	22.1	22.3	80.0	80.3	5.9	5.9	5.9	8.0	7.7		7.2	7.0	
16-May-14	Cloudy	Moderate	08:46		Surface	1.0	25.1 25.2	25.1	8.1 8.1	8.1	21.0 20.0	20.5	78.5 78.8	78.7	5.8 5.8	5.8	5.8	16.5 16.8	16.7		6.3 5.7	6.0	
				18.4	Middle	9.2	25.0 25.0	25.0	8.1 8.1	8.1	21.4 21.4	21.4	78.2 78.2	78.2	5.7 5.7	5.7	0.0	17.0 16.9	17.0	17.1	5.0 5.8	5.4	6.0
					Bottom	17.4	25.0 25.0	25.0	8.1 8.1	8.1	21.7 21.9	21.8	78.2 78.2	78.2	5.7 5.7	5.7	5.7	17.7 17.4	17.6		6.6 6.7	6.7	ļ
19-May-14	Cloudy	Moderate	10:08		Surface	1.0	26.0 25.9	26.0	8.0 8.0	8.0	16.2 16.2	16.2	77.1 76.1	76.6	5.7 5.6	5.7		4.0 4.0	4.0		8.9 8.8	8.9	
				18.1	Middle	9.1	25.8	25.7	8.0	8.0	17.4	18.0	75.6	75.0	5.6	5.5	5.6	4.1	4.2	4.2	9.6	9.3	9.3
					Bottom	17.1	25.6 25.8	25.7	8.0	8.0	18.6 18.4	18.5	74.3 75.3	74.8	5.5 5.6	5.5	5.5	4.2 4.5	4.5		9.0	9.8	
21-May-14	Cloudy	Moderate	12:29			1.0	25.6 26.2	26.1	8.0 8.0		18.6 14.0	14.0	74.2 71.3		5.5 5.3		0.0	4.4			10.5 4.7		
	•				Surface	-	26.1 25.5		8.1 8.1	8.1	14.1 22.3		71.9 71.0	71.6	5.4 5.1	5.4	5.3	4.4 11.1	4.2		5.0 3.6	4.9	ا ا
				16.8	Middle	8.4	25.5	25.5	8.1	8.1	22.7	22.5	71.5	71.3	5.2	5.1		11.6	11.4	9.3	4.1	3.9	5.0
					Bottom	15.8	25.3 25.4	25.3	8.1 8.0	8.1	24.6 24.6	24.6	70.6 70.5	70.6	5.1 5.0	5.0	5.0	12.5 12.0	12.3		5.8 6.4	6.1	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	13:42		Surface	1.0	26.2 26.3	26.3	8.1 8.1	8.1	11.7 11.4	11.5	71.2 71.5	71.4	5.4 5.4	5.4	5.2	7.4 7.1	7.3		3.5 3.5	3.5	
				15.9	Middle	8.0	25.7 25.6	25.7	8.0 8.0	8.0	20.2 21.8	21.0	68.7 71.5	70.1	5.0 5.1	5.0	5.2	7.5 7.4	7.5	7.6	2.6 3.6	3.1	3.7
					Bottom	14.9	25.3 25.6	25.4	7.9 7.9	7.9	25.2 24.6	24.9	69.8 68.5	69.2	5.0 5.0	5.0	5.0	7.9 8.1	8.0		4.7 4.5	4.6	
26-May-14	Sunny	Moderate	17:01		Surface	1.0	27.9 27.8	27.9	7.9 7.9	7.9	8.8 8.9	8.9	78.2 78.4	78.3	5.8 5.9	5.9	5.6	7.8 7.9	7.9		6.5 6.7	6.6	
				17.3	Middle	8.7	26.9 27.2	27.1	7.9 7.9	7.9	12.2 10.9	11.5	70.4 71.5	71.0	5.2 5.4	5.3	0.0	8.2 8.6	8.4	8.2	7.2 6.7	7.0	6.9
					Bottom	16.3	25.8 25.9	25.9	7.8 7.8	7.8	21.6 23.3	22.5	73.2 77.5	75.4	5.3 5.5	5.4	5.4	8.3 8.5	8.4		7.3 6.7	7.0	
28-May-14	Sunny	Moderate	18:31		Surface	1.0	27.9 28.1	28.0	8.1 8.1	8.1	10.5 9.4	9.9	87.8 91.6	89.7	6.5 6.8	6.6	6.4	4.4 4.6	4.5		3.6 3.5	3.6	
				18.0	Middle	9.0	27.6 27.5	27.5	8.1 8.1	8.1	12.4 12.5	12.5	87.4 82.9	85.2	6.3 6.1	6.2	0.4	4.7 4.4	4.6	4.6	3.7 4.0	3.9	4.1
					Bottom	17.0	27.5 27.0	27.3	8.0 8.0	8.0	17.6 17.7	17.6	85.3 82.6	84.0	6.3 6.0	6.1	6.1	4.8 4.5	4.7		4.1 5.4	4.8	
30-May-14	Sunny	Moderate	07:57		Surface	1.0	27.3 27.3	27.3	8.2 8.2	8.2	15.6 14.9	15.3	80.4 80.9	80.7	5.8 5.9	5.9	5.9	4.9 4.6	4.8		2.9 3.6	3.3	
				16.3	Middle	8.2	26.8 26.7	26.7	8.1 8.1	8.1	21.0 22.2	21.6	80.4 79.1	79.8	5.9 5.6	5.8	0.9	4.7 4.7	4.7	4.9	3.4 3.9	3.7	3.5
					Bottom	15.3	26.6 27.0	26.8	8.1 8.1	8.1	22.4 22.0	22.2	77.3 75.3	76.3	5.5 5.3	5.4	5.4	5.1 5.1	5.1		3.4 3.4	3.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Te	mperature (°C)	pН		Salinity (ppt) DC	Saturation	(%) Dissolv	red Oxyger	n (mg/L)	7	Turbidity(NT	U)	Suspe	ended Solids	s (mg/L)	
	Condition	Condition**	Time	Depth (m)	Depth (m)		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	15:02	13.6	Surface	1.0	24.0	24.1	8.3	8.3	28.1	27.9	85.1	85.4	6.1	6.1	6.1	4.3	4.3	4.6	5.7	5.6	6.2
							24.1		8.3		27.7		85.6		6.1			4.3			5.5		
					Middle	6.8	23.9 24.0	24.0	8.3 8.3	8.3	28.4 28.2	28.3	84.6 84.6	84.6	6.1 6.1	6.1		4.4 4.5	4.5		6.8 6.9	6.9	
					Bottom	12.6	23.9	23.9	8.3	8.3	28.7	28.7	84.2	84.4	6.0	6.0	6.0	5.0	4.9		6.2	6.2	
					Bottom	.2.0	23.9	20.0	8.3	0.0	28.7	20.7	84.5	0	6.1	0.0	0.0	4.8			6.1	0.2	
5-May-14	Sunny	Moderate	17:00	13.2	Surface	1.0	24.2	24.2	8.4	8.4	26.2	26.3	91.2	91.4	6.6	6.6	6.5	2.8	2.8	2.8	3.9	3.5	3.4
							24.1		8.4		26.3		91.6		6.6			2.8			3.1		
					Middle	6.6	23.9	23.9	8.4	8.4	31.4	31.4	89.4	90.5	6.3	6.4		2.7	2.7		3.4	3.7	
					Bottom	12.2	23.9 23.9	23.9	8.4 8.4	8.4	31.3 31.5	31.5	91.5 94.1	92.2	6.5 6.6	6.5	6.5	2.7	2.9	-	3.0	2.9	
					Dollom	12.2	23.9	23.5	8.4	0.4	31.5	31.3	90.2	92.2	6.4	0.5	0.5	2.9	2.5		2.7	2.5	
7-May-14	Cloudy	Moderate	18:28	13.2	Surface	1.0	23.5	23.5	8.4	8.4	29.9	29.9	87.5	88.0	6.3	6.3	6.2	2.5	2.5	2.7	7.1	7.0	7.7
	,						23.4		8.4		29.9		88.5		6.3			2.4			6.9		
					Middle	6.6	23.7	23.7	8.4	8.4	31.8	31.7	87.3	86.0	6.2	6.1		2.6	2.7		8.5	8.4	
						10.0	23.7		8.4		31.5		84.6		6.0			2.7			8.3		
					Bottom	12.2	23.7 23.7	23.7	8.4 8.4	8.4	32.3 32.4	32.4	85.7 84.1	84.9	6.1 5.9	6.0	6.0	2.8 2.7	2.8		7.6 7.5	7.6	
9-May-14	Rainy	Moderate	15:07	12.4	Surface	1.0	23.5	23.5	8.4	8.4	29.8	29.8	85.6	86.6	6.1	6.2	6.2	4.4	4.4	4.5	5.1	5.3	7.0
5 May 14	really	Wioderate	10.07	12.4	Cunacc	1.0	23.5	20.0	8.4	0.4	29.8	20.0	87.5	00.0	6.3	0.2	0.2	4.3		4.0	5.4	0.0	7.0
					Middle	6.2	23.6	23.6	8.4	8.4	30.2	30.2	86.1	85.2	6.1	6.1		4.5	4.5		7.9	7.9	1
							23.6		8.4		30.2		84.2		6.0			4.5			7.8		
					Bottom	11.4	23.6	23.6	8.4	8.4	31.3	31.2	84.8	86.2	6.0	6.1	6.1	4.5	4.5		7.6	7.8	
40 May 44	C	Madagata	44.44	12.2	Confess	4.0	23.6	22.0	8.4	0.0	31.0	47.0	87.5	04.0	6.2	C 4	0.0	4.5	F 0	5.0	7.9	4.5	4.4
12-May-14	Sunny	Moderate	11:14	12.2	Surface	1.0	24.0 23.9	23.9	8.2 8.2	8.2	17.9 18.0	17.9	85.7 83.5	84.6	6.5 6.4	6.4	6.2	4.9 5.0	5.0	5.0	4.9 4.1	4.5	4.4
					Middle	6.1	23.7	23.6	8.2	8.2	26.4	26.5	85.3	83.6	6.1	6.0		5.0	5.0		4.6	4.8	1
						• • • •	23.6		8.2		26.6		81.9		5.9			5.0			5.0		
					Bottom	11.2	23.6	23.6	8.2	8.2	29.5	29.5	80.9	81.7	5.9	5.9	5.9	5.0	5.0		4.0	3.9	
							23.7		8.2		29.5		82.5		6.0			5.0	ļ		3.7		
14-May-14	Sunny	Moderate	12:33	12.2	Surface	1.0	25.0 24.8	24.9	7.7 7.7	7.7	19.5 19.7	19.6	85.0 82.6	83.8	6.3 6.1	6.2	6.2	7.3 7.5	7.4	7.6	7.5 7.0	7.3	7.7
					Middle	6.1	24.0	24.2	7.7	7.7	22.3	22.7	81.1	82.3	6.0	6.1		7.7	7.8		7.8	7.9	
					·····au.o	0	24.2	22	7.7		23.1		83.5	02.0	6.1	0.1		7.8	7.0		8.0	1.0	
					Bottom	11.2	24.0	24.1	7.7	7.7	27.2	27.3	80.8	83.8	5.8	6.0	6.0	7.6	7.5		8.5	8.0	
							24.2		7.7		27.3		86.7		6.2			7.4			7.4		
16-May-14	Cloudy	Moderate	14:32	12.5	Surface	1.0	25.4	25.5	7.7	7.6	19.4	19.4	80.8	81.3	5.9	6.0	5.9	12.5	12.0	12.1	8.3	8.5	8.3
					Middle	6.3	25.5 25.1	25.1	7.6 7.6	7.7	19.3 21.7	21.6	81.7 79.9	79.8	6.0 5.8	5.8		11.4 12.1	12.3	-	8.7 7.7	7.7	
					ivildule	0.5	25.1	23.1	7.7	1.1	21.7	21.0	79.7	79.0	5.8	5.0		12.1	12.3		7.7	1.1	
					Bottom	11.5	24.9	24.8	7.6	7.6	24.5	24.5	80.1	80.1	5.8	5.8	5.8	12.1	12.1		8.7	8.8	
							24.8		7.6		24.4		80.1		5.8			12.1			8.8		
19-May-14	Sunny	Rough	16:23	12.6	Surface	1.0	26.5	26.5	7.6	7.5	15.9	15.8	79.5	80.2	5.8	5.9	5.8	8.4	8.3	10.4	7.7	7.9	8.3
					N 47 - 1 - 11 -	0.0	26.5	05.4	7.5	7.0	15.8	00.0	80.8	70.5	5.9			8.2 11.4	44.4		8.1	0.0	
					Middle	6.3	25.0 25.1	25.1	7.6 7.5	7.6	23.8 23.4	23.6	77.8 79.1	78.5	5.6 5.7	5.7		11.4	11.4		8.4 8.2	8.3	
					Bottom	11.6	25.0	25.0	7.5	7.5	26.9	26.9	80.3	79.2	5.7	5.6	5.6	11.6	11.6	1	8.1	8.8	1
		<u> </u>					25.0		7.6		26.9		78.0		5.5			11.6			9.4		<u> </u>
21-May-14	Cloudy	Moderate	18:22	12.1	Surface	1.0	26.7	26.8	7.6	7.6	15.0	15.0	80.5	82.4	5.9	6.1	5.9	3.3	3.3	3.3	2.8	2.7	2.5
							26.9		7.6		15.0		84.3		6.2			3.2		1	2.6		
					Middle	6.1	25.7	25.8	7.7	7.7	19.9	19.6	76.1	76.6	5.6	5.6		3.3	3.4		2.7	2.5	
					Bottom	11.1	25.8 24.9	25.0	7.6 7.7	7.7	19.4 27.9	27.8	77.1 75.8	76.5	5.6 5.4	5.4	5.4	3.4	3.3	1	2.3	2.4	
					Bottom	11.1	25.0	23.0	7.7	7.7	27.8	21.0	77.1	70.5	5.5	J.4	3.4	3.4	3.3		2.0	2.4	
				i	<u>. </u>		20.0		, ,,,						0.0			J.2	•				

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

^{***} Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Te	mperature ((°C)	pН		Salinity (ppt) DO	Saturation	(%) Dissolv	ed Oxyge	n (mg/L)	Т	urbidity(N7	U)	Suspe	nded Solids	s (mg/L)	
	Condition	Condition**	Time	Depth (m)	Depth (m)		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	08:39	13.3	Surface	1.0	26.3	26.3	7.6	7.6	12.0	12.1	80.7	80.4	6.1	6.1	5.9	3.4	3.6	3.3	3.9	3.9	4.3
							26.4		7.6		12.2		80.0		6.0			3.7			3.8		<u> </u>
					Middle	6.7	25.5	25.6	7.7	7.6	22.2	21.9	77.2	78.2	5.6	5.6		3.0	2.9		3.4	4.0	
							25.7		7.6		21.7		79.1		5.7			2.8			4.6]
					Bottom	12.3	25.5	25.6	7.6	7.6	23.9	24.4	81.6	80.0	5.8	5.7	5.7	3.6	3.5		5.4	5.0	
							25.6		7.6		25.0		78.3		5.6			3.4			4.6		
26-May-14	Sunny	Moderate	11:18	13.3	Surface	1.0	26.9	26.9	7.4	7.4	12.8	12.9	82.2	82.6	6.5	6.3	5.9	4.9	4.8	4.7	5.7	5.7	5.9
							26.9		7.4		13.1		83.0		6.0			4.7			5.7		↓ !
					Middle	6.7	25.7	25.7	7.5	7.5	23.9	24.5	74.0	73.9	5.5	5.4		4.5	4.5		5.9	5.9	
							25.6	0.50	7.5		25.0		73.8		5.4			4.5			5.9		<u>.</u>
					Bottom	12.3	25.9	25.8	7.5	7.4	25.0	25.2	70.0	70.5	5.2	5.2	5.2	4.6	4.8		5.9	6.1	ļ
	_						25.6		7.4		25.4		71.0		5.3			5.0			6.2		
28-May-14	Sunny	Moderate	12:21	12.4	Surface	1.0	27.8	27.6	8.1	8.1	14.3	14.8	89.8	87.5	6.5	6.4	5.8	2.7	2.7	3.3	2.4	2.7	2.6
					N 40 1 11 1	0.0	27.4	00.0	8.1	0.0	15.2	00.4	85.2	70.4	6.2			2.6	0.7		2.9	0.5	. J
					Middle	6.2	26.4 26.2	26.3	8.0	8.0	22.2 22.5	22.4	71.6 74.5	73.1	5.1 5.2	5.1		3.8 3.6	3.7		2.7 2.2	2.5	ļ
					Bottom	11.4	25.7	25.7	8.1 8.0	8.0	28.7	28.5	74.5	71.9	5.0	5.1	5.1	3.6	3.6		2.7	2.5	- I
					DOLLOTTI	11.4	25.7	25.7	7.9	6.0	28.3	20.5	70.6	71.9	5.0	5.1	5.1	3.7	3.0		2.7	2.5	
30-May-14	Sunny	Moderate	13:40	12.4	Surface	1.0	27.7	27.7	8.3	8.3	17.2	17.2	82.9	84.0	5.9	6.0	5.7	3.1	3.0	3.2	5.6	5.4	5.6
30-iviay-14	Suring	Moderate	13.40	12.4	Surface	1.0	27.7	21.1	8.3	0.3	17.2	17.2	85.1	04.0	6.1	0.0	3.7	2.9	3.0	3.2	5.2	3.4	5.0
					Middle	6.2	25.9	26.0	8.2	8.2	26.3	26.2	76.2	76.9	5.3	5.3		3.1	3.2		5.6	5.7	- I
					IVIIGGIE	0.2	26.1	20.0	8.2	0.2	26.1	20.2	77.5	70.5	5.4	5.5		3.3	3.2		5.8	5.1	
					Bottom	11.4	25.8	25.8	8.2	8.2	29.1	29.0	72.4	72.2	5.1	5.1	5.1	3.5	3.4		5.0	5.6	1
					Dottom		25.8	25.0	8.2	3.2	29.0	25.0	71.9		5.0	0.1	0.1	3.3	0.4		6.1	0.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Te	mperature (°C)	pН		Salinity (ppt) DO	Saturation	(%) Dissolv	ed Oxyge	n (mg/L)	7	Turbidity(NT	Ū)	Suspe	nded Solid:	s (mg/L)	
	Condition	Condition**	Time	Depth (m)	Depth (m)		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	07:21	13.6	Surface	1.0	23.9	23.9	8.4	8.4	26.5	26.4	87.4	87.3	6.3	6.3	6.3	3.0	3.0	3.2	2.4	2.8	3.1
					Middle	6.8	23.9 23.9	23.9	8.4 8.4	8.4	26.4 26.8	26.7	87.2 86.8	86.9	6.3	6.3		2.9	3.0		3.2	3.5	
							23.9		8.4		26.7		87.0		6.3			3.1			3.4		
					Bottom	12.6	23.8 23.9	23.8	8.4 8.4	8.4	28.8 28.0	28.4	86.8 86.7	86.8	6.2 6.2	6.2	6.2	3.7 3.5	3.6		3.1 2.9	3.0	
5-May-14	Sunny	Moderate	08:55	13.5	Surface	1.0	24.0	24.0	8.5	8.5	25.9	25.9	92.1	91.7	6.7	6.7	6.6	2.4	2.5	2.1	4.7	5.5	6.0
							24.1		8.5		25.9		91.2		6.6			2.5			6.2		
					Middle	6.8	23.9 23.9	23.9	8.5 8.5	8.5	30.4 30.5	30.5	91.6 88.8	90.2	6.5 6.3	6.4		1.9 1.8	1.9		6.3 6.1	6.2	
					Bottom	12.5	23.9	23.9	8.5	8.5	30.8	30.8	89.7	91.4	6.4	6.5	6.5	1.8	1.8		6.3	6.4	
							23.8		8.5		30.8		93.1		6.6			1.8			6.5		
7-May-14	Cloudy	Moderate	10:52	13.4	Surface	1.0	23.7	23.7	8.4	8.4	30.0	30.0	87.1	87.5	6.2	6.2	6.2	2.7	2.7	2.8	3.8	4.2	4.6
					Middle	6.7	23.7	23.7	8.4 8.4	8.5	30.0 31.3	31.3	87.9 86.9	87.2	6.2	6.2		2.7	2.8		4.6 5.4	5.1	
							23.7		8.5		31.4		87.4		6.2	V		2.7			4.8		
					Bottom	12.4	23.7	23.7	8.5	8.5	31.7	31.6	86.7	86.5	6.1	6.1	6.1	2.8	2.8		4.5	4.4	
9-May-14	Rainy	Moderate	09:23	12.2	Surface	1.0	23.7	23.5	8.4 8.4	8.4	31.6 30.7	30.7	86.2 84.2	84.7	6.1	6.0	6.0	2.8 4.7	4.6	5.3	4.3 5.8	5.8	6.1
5 May 14	rtuiry	Moderate	00.20	12.2	Curiace	1.0	23.5	20.0	8.4	0.4	30.7	00.1	85.1	04.7	6.1	0.0	0.0	4.5	4.0	0.0	5.7	0.0	0.1
					Middle	6.1	23.6	23.6	8.4	8.4	31.5	31.5	84.9	84.1	6.0	6.0		5.2	5.2		5.6	6.2	
					Bottom	11.2	23.6 23.6	23.6	8.4 8.4	8.4	31.6 31.7	31.7	83.3 83.8	85.4	5.9 5.9	6.0	6.0	5.2 6.1	6.2		6.7	6.4	
					Dottom	11.2	23.6	20.0	8.3	0.4	31.7	01.7	86.9	00.4	6.2	0.0	0.0	6.3	0.2		6.3	0.4	
12-May-14	Sunny	Moderate	17:43	12.3	Surface	1.0	24.3	24.4	8.2	8.2	18.5	18.3	85.5	84.3	6.4	6.4	6.1	5.5	5.5	5.7	5.7	6.5	7.1
					Middle	6.2	24.4	23.6	8.2 8.2	8.2	18.0 27.8	28.2	83.1 82.2	79.0	6.3 5.9	5.7		5.4	5.7		7.2 7.6	7.4	
					ivildale	0.2	23.6	23.0	8.2	0.2	28.5	20.2	75.7	73.0	5.5	5.7		5.6	5.7		7.1	7.4	
					Bottom	11.3	23.7	23.6	8.2	8.1	29.1	28.9	79.7	77.7	5.8	5.6	5.6	5.8	5.9		7.3	7.4	
14-May-14	Sunny	Moderate	19:50	12.9	Surface	1.0	23.6 25.4	25.3	7.9 7.7	7.7	28.8 18.6	18.8	75.6 86.7	85.8	5.4 6.4	6.3	6.2	6.0	6.1	6.3	7.5 5.7	5.9	6.4
14-iviay-14	Guilly	Woderate	13.30	12.3	Ouriace	1.0	25.2	20.0	7.7	7.7	19.1	10.0	84.8	00.0	6.3	0.5	0.2	6.1	0.1	0.5	6.0	5.5	0.4
					Middle	6.5	24.7	24.7	7.7	7.7	23.4	23.5	82.9	82.9	6.0	6.0		6.2	6.2		6.4	6.7	
					Bottom	11.9	24.7 24.5	24.4	7.7 7.6	7.6	23.7 25.4	25.5	82.8 83.9	83.9	6.0	6.1	6.1	6.1 6.5	6.6		7.0 5.9	6.6	
					Dottom	11.5	24.2	24.4	7.6	7.0	25.6	25.5	83.9	00.0	6.1	0.1	0.1	6.6	0.0		7.2	0.0	
16-May-14	Cloudy	Moderate	06:41	12.8	Surface	1.0	24.9	24.9	7.7	7.7	23.1	22.2	82.1	81.8	6.0	6.0	5.9	9.2	9.4	10.1	5.8	5.2	5.9
					Middle	6.4	24.8	24.3	7.7 7.8	7.7	21.2 27.8	27.8	81.4 80.1	81.0	6.0 5.7	5.8		9.6	10.2		4.5 6.2	6.4	
					ivildale	0.4	24.3	24.3	7.7	7.7	27.9	21.0	81.8	01.0	5.8	5.0		10.2	10.2		6.5	0.4	
					Bottom	11.8	24.3	24.3	7.7	7.7	28.1	28.1	80.3	82.7	5.7	5.9	5.9	10.5	10.7		6.2	6.2	
40 May 44	Classales	Madasta	09:02	12.5	Surface	1.0	24.3 25.9	26.0	7.6 7.6	7.6	28.1 14.7	14.6	85.1 78.2	77.7	6.1 5.9	5.8	5.9	10.9 3.9	3.9	4.8	6.2 4.8	5.2	7.3
19-May-14	Cloudy	Moderate	09:02	12.5	Surface	1.0	26.0	26.0	7.6	7.0	14.7	14.0	77.2	77.7	5.8	5.6	5.9	3.8	3.9	4.0	5.6	5.2	7.3
					Middle	6.3	25.3	25.3	7.7	7.7	23.9	23.7	79.6	82.1	5.7	5.9		5.2	5.2		7.8	7.9	
					Dottom	11.5	25.4 25.0	24.9	7.6 7.7	7.7	23.5 27.2	27.4	84.6 76.3	78.5	6.1 5.4	5.6	5.6	5.2 5.3	5.0		7.9 9.4	8.9	
					Bottom	11.5	25.0 24.9	24.9	7.7 7.6	1.1	27.2	21.4	76.3 80.7	76.5	5.4 5.7	5.6	0.0	5.3	5.2		9.4 8.4	0.9	
21-May-14	Cloudy	Moderate	10:56	12.7	Surface	1.0	26.0	26.0	7.6	7.7	14.7	14.7	77.7	77.3	5.8	5.8	5.7	3.5	3.5	3.6	3.4	3.4	4.6
					Middle	6.4	26.0	25.4	7.7 7.7	7.7	14.7 22.2	22.0	76.9 75.0	75.9	5.8 5.4	- F		3.5	2.7		3.4 4.5	F 2	
					Middle	6.4	25.3 25.5	25.4	7.7 7.7	1.1	22.2	22.0	75.0 76.7	75.9	5.4 5.6	5.5		3.6	3.7		4.5 5.8	5.2	
					Bottom	11.7	24.9	24.9	7.6	7.7	29.3	29.5	77.2	75.9	5.4	5.3	5.3	3.7	3.7		4.6	5.1	1
							24.9		7.7		29.7		74.6		5.2			3.6			5.6		

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Te	mperature (°C)	pН		Salinity (ppt) DO	Saturation	(%) Dissolv	ed Oxyge	n (mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)	Ī
	Condition	Condition**	Time	Depth (m)	Depth (m)		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	14:29	13.5	Surface	1.0	26.3	26.3	7.6	7.6	13.6	13.6	80.9	80.0	6.1	6.0	5.7	3.6	3.6	4.4	3.7	3.7	3.7
							26.3		7.6		13.7		79.1		5.9			3.6			3.6		1
					Middle	6.8	25.6	25.5	7.7	7.7	23.6	23.7	73.0	73.6	5.2	5.3		4.3	4.5		3.3	3.7	1
							25.5		7.7		23.8		74.1		5.3			4.6			4.0		ľ
					Bottom	12.5	25.4	25.5	7.6	7.6	24.5	24.5	74.1	76.3	5.3	5.4	5.4	4.7	5.0		3.9	3.8	Í
							25.7		7.6		24.5		78.4		5.6			5.3			3.6		
26-May-14	Sunny	Moderate	18:34	13.5	Surface	1.0	28.1	28.1	7.6	7.6	12.5	12.6	89.7	89.6	6.5	6.5	6.0	3.6	3.6	4.7	3.5	3.9	3.8
							28.0		7.7		12.6		89.4		6.5			3.5			4.2		l
					Middle	6.8	25.7	25.7	7.6	7.5	24.3	24.6	77.2	76.1	5.5	5.4		4.4	4.7		3.6	3.6	Í
							25.7		7.5		24.9		75.0		5.4			4.9			3.6		l
					Bottom	12.5	25.6	25.6	7.5	7.5	25.6	25.5	73.8	71.0	5.2	5.0	5.0	5.7	5.7		3.9	4.0	ľ
							25.7		7.5		25.5		68.2		4.9			5.6			4.0		
28-May-14	Sunny	Moderate	20:02	12.8	Surface	1.0	27.7	27.8	8.4	8.4	16.5	16.2	97.1	97.8	7.0	7.0	6.2	2.6	2.6	2.9	2.8	2.6	3.6
							27.8		8.4		16.0		98.4		7.1			2.5			2.4		ı
					Middle	6.4	26.7	26.5	8.3	8.2	22.3	22.6	77.3	76.5	5.5	5.4		2.9	2.9		3.7	3.7	l
							26.3		8.2		22.9		75.6		5.3			2.9			3.7		l '
					Bottom	11.8	26.1	26.1	8.2	8.2	24.4	24.3	77.3	74.0	5.5	5.2	5.2	3.1	3.1		4.8	4.5	1
							26.1		8.2		24.2		70.7		5.0			3.1			4.1		
30-May-14	Sunny	Moderate	06:21	13.4	Surface	1.0	27.3	27.3	8.3	8.3	18.2	18.2	85.3	83.8	6.1	6.0	5.6	2.2	2.2	2.4	2.8	2.8	3.5
							27.3		8.3		18.3		82.2		5.9			2.2			2.8		ı
					Middle	6.7	25.7	25.6	8.3	8.3	27.8	28.0	74.8	74.2	5.2	5.1		2.3	2.4		4.4	4.3	l
							25.6		8.3		28.2		73.6		5.1			2.4			4.1		Ĭ
					Bottom	12.4	25.5	25.5	8.2	8.2	29.8	29.9	70.2	70.5	4.9	4.9	4.9	2.6	2.6		3.4	3.4	l
							25.5		8.2		30.0		70.8		4.9			2.5			3.4		

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	T	urbidity(NTI	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	15:51		Surface	1.0	24.2 24.1	24.2	8.2 8.2	8.2	28.0 28.1	28.0	88.2 88.7	88.5	6.3 6.4	6.3		2.1 2.1	2.1		2.5 3.6	3.1	
				10.3	Middle	5.2	23.9	23.9	8.2	8.2	28.5	28.7	87.5	88.3	6.3	6.3	6.3	2.1	2.2	2.2	2.6	2.6	3.0
							23.8 23.8		8.2 8.2		29.0 30.0		89.0 87.6		6.4			2.2			2.6 3.7		
					Bottom	9.3	23.7	23.7	8.2	8.2	30.8	30.4	90.1	88.9	6.4	6.3	6.3	2.1	2.2		2.8	3.3	
5-May-14	Sunny	Moderate	17:51		Surface	1.0	24.1 24.1	24.1	8.2 8.2	8.2	26.2 26.2	26.2	93.7 92.9	93.3	6.8 6.7	6.8		1.7 1.7	1.7		3.8 3.6	3.7	
				10.1	Middle	5.1	24.1	24.1	8.2	8.2	27.2	27.4	93.3	92.9	6.7	6.7	6.8	1.7	1.7	1.7	2.3	2.7	3.4
					Bottom	9.1	24.1 24.1	24.1	8.2 8.2	8.2	27.5 29.4	29.3	92.4 92.9	93.3	6.6 6.6	6.6	6.6	1.6 1.7	1.7		3.0 4.3	3.8	
7-May-14	Cloudy	Moderate	19:42				24.0 23.5		8.2 8.2		29.1 30.7		93.6 87.6		6.7		0.0	1.7			3.2		
7-iviay-14	Cloudy	Woderate	19.42		Surface	1.0	23.5	23.5	8.2	8.2	30.7	30.7	88.1	87.9	6.3	6.3	6.3	1.8	1.8		5.0	4.5]
				9.7	Middle	4.9	23.5 23.6	23.6	8.2 8.2	8.2	31.1 31.0	31.0	87.4 85.8	86.6	6.2 6.1	6.2	0.0	1.9 1.9	1.9	1.9	4.0 4.0	4.0	4.4
					Bottom	8.7	23.6	23.6	8.2	8.2	32.0	32.1	87.2	86.9	6.2	6.1	6.1	1.9	1.9		5.4	4.8	
9-May-14	Rainy	Moderate	08:50		Surface	1.0	23.6 23.5	23.5	8.2 8.2	8.2	32.1 32.1	32.1	86.5 84.0	83.8	6.1 5.9	5.9		1.9 1.2	1.3		4.2 5.3	5.5	
-	•						23.5 23.5		8.2 8.2		32.1 32.5		83.6 82.6		5.9 5.8		5.9	1.3			5.7 5.6		
				9.5	Middle	4.8	23.5	23.5	8.2	8.2	32.4	32.4	83.0	82.8	5.9	5.8		1.6	1.6	1.7	5.3	5.5	6.8
					Bottom	8.5	23.5 23.5	23.5	8.2 8.2	8.2	32.5 32.5	32.5	83.2 82.7	83.0	5.9 5.8	5.9	5.9	2.1 2.0	2.1		9.8 8.9	9.4	
12-May-14	Sunny	Moderate	10:42		Surface	1.0	23.9	23.9	8.1	8.1	17.5	17.5	84.4	84.7	6.5	6.5		2.8	2.9		4.8	4.7	
				10.2	Middle	5.1	23.9 23.7	23.7	8.1 8.1	8.1	17.5 23.2	23.1	85.0 83.5	83.7	6.5 6.2	6.2	6.4	3.0 2.8	2.8	3.0	4.6 3.3	3.7	4.4
				10.2			23.7 23.7		8.1 8.0		23.0 25.5		83.8 84.3		6.2			2.7 3.3		3.0	4.0 5.6		4.4
					Bottom	9.2	23.7	23.7	8.0	8.0	26.0	25.8	83.3	83.8	6.1	6.1	6.1	3.3	3.3		4.2	4.9	
14-May-14	Sunny	Moderate	11:47		Surface	1.0	25.0 25.0	25.0	8.0 8.0	8.0	18.1 18.1	18.1	84.9 85.2	85.1	6.3 6.4	6.3		4.2 3.9	4.1		4.5 3.1	3.8	
				9.6	Middle	4.8	24.6	24.6	8.0	8.0	22.1	22.1	82.4	82.4	6.1	6.1	6.2	3.8 4.0	3.9	4.1	4.9	4.8	4.4
					Bottom	8.6	24.6 24.3	24.3	8.0 8.0	8.0	22.0 24.9	24.9	82.4 82.3	82.3	6.0	6.0	6.0	4.0	4.2		4.7 4.5	4.6	
16-May-14	Cloudy	Moderate	14:24				24.3 25.4		8.0 8.1		24.8 16.8		82.3 80.8		6.0		0.0	4.2 16.1			4.7 3.4		<u> </u>
10-iviay-14	Cloudy	Woderate	14.24		Surface	1.0	25.4	25.4	8.1	8.1	16.7	16.8	80.8	80.8	6.0	6.0	6.0	16.4	16.3		3.7	3.6	
				10.1	Middle	5.1	25.1 25.1	25.1	8.1 8.1	8.1	20.9 21.0	20.9	80.0 80.6	80.3	5.9 5.9	5.9		16.9 17.0	17.0	16.9	4.2 3.1	3.7	4.0
					Bottom	9.1	25.1	25.1	8.0	8.0	21.7	21.7	80.3	80.6	5.9	5.9	5.9	17.6	17.5		4.4 5.0	4.7	
19-May-14	Sunny	Rough	17:21		Surface	1.0	25.1 26.0	26.1	8.0 8.1	8.1	21.7 15.5	15.2	80.8 78.4	80.5	5.9 5.7	5.9		17.4 2.9	3.0		4.3	4.1	
							26.1 25.8		8.1 8.0		14.9 18.3		82.6 77.3		6.1 5.7		5.9	3.0			3.9 3.6		
				10.2	Middle	5.1	25.9	25.8	8.1	8.1	17.2	17.8	79.3	78.3	5.9	5.8		3.3	3.3	3.2	4.4	4.0	4.5
					Bottom	9.2	25.7 26.1	25.9	8.1 8.0	8.1	19.1 18.9	19.0	78.7 77.1	77.9	5.9 5.7	5.8	5.8	3.3 3.3	3.3		5.5 5.1	5.3	
21-May-14	Cloudy	Moderate	19:12		Surface	1.0	27.0	27.1	8.1	8.1	14.0	14.0	82.6	83.3	6.1	6.1		1.9	1.9		3.4	3.1	
				9.9	Middle	5.0	27.1 26.0	26.0	8.1 8.1	8.1	13.9 18.4	18.5	84.0 78.7	78.7	6.2 5.8	5.8	6.0	1.9	1.9	1.9	2.8 3.6	3.2	4.1
				5.5			26.0 26.0		8.1 8.0		18.5 18.7		78.6 80.0		5.8 5.8			1.9 2.0		1.5	2.7 5.4		4.1
					Bottom	8.9	26.0	26.0	8.1	8.1	18.9	18.8	79.8	79.9	5.8	5.8	5.8	2.0	2.0		6.6	6.0	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	ţ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	08:07		Surface	1.0	26.4 26.4	26.4	8.1 8.1	8.1	11.0 11.5	11.2	80.7 80.5	80.6	6.1 6.1	6.1	5.9	1.5 1.5	1.5		4.2 4.9	4.6	
				10.1	Middle	5.1	25.8 25.7	25.7	8.1 8.1	8.1	18.4 18.7	18.6	78.2 77.2	77.7	5.7 5.7	5.7	5.9	1.6 1.6	1.6	1.6	3.9 5.5	4.7	4.7
					Bottom	9.1	25.5 25.6	25.5	8.0 8.0	8.0	24.2 23.8	24.0	77.5 79.1	78.3	5.5 5.7	5.6	5.6	1.6 1.8	1.7		5.0 4.5	4.8	
26-May-14	Sunny	Moderate	10:42		Surface	1.0	26.8 26.7	26.7	8.0 8.0	8.0	14.8 14.2	14.5	70.2 69.7	70.0	5.2 5.2	5.2	5.1	1.4 1.4	1.4		3.7 4.3	4.0	
				10.3	Middle	5.2	26.3 26.3	26.3	8.0 8.0	8.0	19.7 19.9	19.8	69.2 69.2	69.2	5.0 5.1	5.0	0.1	1.5 1.4	1.5	1.5	4.1 4.7	4.4	4.6
					Bottom	9.3	26.2 26.2	26.2	8.0 8.0	8.0	20.3 20.4	20.4	69.1 68.7	68.9	5.0 5.0	5.0	5.0	1.5 1.5	1.5		5.3 5.3	5.3	
28-May-14	Sunny	Moderate	11:56		Surface	1.0	27.6 27.9	27.7	8.1 8.1	8.1	13.1 13.2	13.1	83.6 83.4	83.5	6.0 6.1	6.0	6.0	1.4 1.4	1.4		2.0 2.3	2.2	
				10.1	Middle	5.1	27.1 26.7	26.9	8.1 8.0	8.0	15.4 18.1	16.8	83.1 80.0	81.6	6.1 5.7	5.9	0.0	1.4 1.4	1.4	1.4	3.3 2.2	2.8	2.5
					Bottom	9.1	26.4 26.4	26.4	8.0 8.0	8.0	21.3 21.3	21.3	79.9 76.4	78.2	5.8 5.5	5.7	5.7	1.4 1.5	1.5		2.6 2.1	2.4	
30-May-14	Sunny	Moderate	14:52		Surface	1.0	27.3 27.1	27.2	8.2 8.2	8.2	19.0 19.4	19.2	81.1 79.3	80.2	5.8 5.7	5.7	5.5	1.9 1.9	1.9		3.5 3.6	3.6	
				10.2	Middle	5.1	26.0 26.1	26.0	8.1 8.1	8.1	25.9 26.1	26.0	72.8 76.1	74.5	5.1 5.3	5.2	5.5	2.4 2.4	2.4	2.3	4.4 3.3	3.9	3.9
					Bottom	9.2	25.9 25.9	25.9	8.1 8.1	8.1	27.1 27.2	27.2	71.9 72.8	72.4	5.0 5.1	5.1	5.1	2.5 2.5	2.5		4.8 3.6	4.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ţ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	07:11		Surface	1.0	23.9 23.9	23.9	8.2 8.2	8.2	28.1 27.9	28.0	86.0 85.9	86.0	6.2 6.2	6.2		1.8 1.8	1.8		2.9 2.6	2.8	
				10.6	Middle	5.3	23.8	23.8	8.2 8.2	8.2	28.6	28.7	85.8 85.7	85.8	6.2 6.1	6.1	6.2	1.8	1.8	1.8	3.3	3.5	3.2
					Bottom	9.6	23.8	23.8	8.2	8.2	28.9 28.9	28.9	85.6	85.6	6.1	6.1	6.1	1.8	1.8		2.7	3.2	
5-May-14	Sunny	Moderate	08:49				23.8 24.1		8.2 8.2		28.9 26.3		85.6 90.1		6.1 6.5			1.8			3.7		
3-iviay-14	Sullily	Moderate	00.49		Surface	1.0	24.1	24.1	8.2	8.2	26.6	26.5	90.0	90.1	6.5	6.5	6.4	1.7	1.7		2.9	3.0	
				10.8	Middle	5.4	23.9 23.9	23.9	8.2 8.2	8.2	30.0 30.4	30.2	88.7 88.8	88.8	6.3 6.3	6.3		1.8 1.8	1.8	1.8	3.2 3.3	3.3	3.1
					Bottom	9.8	23.9 23.9	23.9	8.2 8.2	8.2	30.4 30.3	30.4	89.4 89.2	89.3	6.3 6.3	6.3	6.3	1.8 1.9	1.9		3.7 2.5	3.1	
7-May-14	Cloudy	Moderate	10:36		Surface	1.0	23.5 23.5	23.5	8.2 8.2	8.2	30.9 30.8	30.8	87.0 87.5	87.3	6.2 6.2	6.2		1.6 1.6	1.6		4.6 4.0	4.3	
				10.6	Middle	5.3	23.5 23.6	23.6	8.2 8.2	8.2	31.6 31.8	31.7	86.3 86.6	86.5	6.1 6.1	6.1	6.2	1.8	1.8	1.7	4.7 5.1	4.9	4.6
					Bottom	9.6	23.6	23.6	8.2	8.2	31.9	31.8	86.9	87.0	6.1	6.2	6.2	1.8	1.8		4.1	4.6	
9-May-14	Rainy	Moderate	15:43		Surface	1.0	23.5 23.5	23.5	8.2 8.1	8.1	31.8 30.1	30.1	87.1 89.0	88.7	6.2 6.4	6.3		1.8 3.4	3.4		5.1 6.4	6.4	
				0.0			23.5 23.5		8.1 8.1		30.1 30.4		88.3 88.7		6.3		6.3	3.4		0.0	6.4 7.5		
				9.9	Middle	5.0	23.5 23.6	23.5	8.1 8.1	8.1	30.5 30.9	30.5	87.0 87.4	87.9	6.2 6.2	6.3		2.8 2.4	2.9	3.0	6.9 7.1	7.2	6.9
					Bottom	8.9	23.5	23.6	8.1	8.1	30.6	30.7	89.8	88.6	6.4	6.3	6.3	2.7	2.6		7.2	7.2	
12-May-14	Sunny	Moderate	18:42		Surface	1.0	24.5 24.6	24.5	8.0 8.0	8.0	17.8 17.7	17.7	85.1 87.3	86.2	6.4 6.6	6.5	6.4	2.9 2.8	2.9		4.3 3.9	4.1	
				10.1	Middle	5.1	24.3 23.8	24.1	8.1 8.0	8.1	19.1 20.7	19.9	85.2 81.4	83.3	6.4 6.1	6.3	0.4	3.2 3.1	3.2	3.1	4.2 4.3	4.3	4.2
					Bottom	9.1	23.6 23.8	23.7	8.0 8.0	8.0	27.8 26.7	27.3	80.9 84.3	82.6	5.9 6.1	6.0	6.0	3.2 3.2	3.2		4.7 3.5	4.1	
14-May-14	Sunny	Moderate	20:17		Surface	1.0	25.4	25.3	8.0	8.0	18.1	18.3	85.0	85.3	6.3	6.3		4.5	4.6		5.8	5.9	
				10.2	Middle	5.1	25.3 24.9	24.9	8.0 8.1	8.1	18.6 20.1	20.2	85.5 83.1	84.2	6.3	6.2	6.3	5.0	5.0	4.8	5.9 5.5	5.9	5.7
					Bottom	9.2	24.9 24.7	24.6	8.0	8.0	20.3 22.3	22.6	85.2 83.4	85.9	6.3 6.1	6.3	6.3	5.0 4.9	4.9		6.3 5.3	5.4	
16-May-14	Cloudy	Moderate	07:18	1			24.6 24.8		8.0 8.1		23.0 22.9		88.4 81.3		6.5 5.9		0.5	4.8			5.5 5.8		
	,				Surface	1.0	24.8 24.7	24.8	8.1 8.1	8.1	22.8 24.6	22.9	81.4 81.2	81.4	5.9 5.9	5.9	5.9	3.9 4.0	4.0		6.0 5.0	5.9	
				10.1	Middle	5.1	24.7	24.7	8.1	8.1	24.5	24.5	81.0	81.1	5.9	5.9		4.1	4.1	4.1	4.8	4.9	5.1
					Bottom	9.1	24.7 24.7	24.7	8.1 8.1	8.1	25.0 25.3	25.1	81.3 80.8	81.1	5.9 5.8	5.8	5.8	4.3 4.3	4.3		4.5 4.4	4.5	
19-May-14	Cloudy	Moderate	08:47		Surface	1.0	26.0 26.0	26.0	8.0 8.0	8.0	14.7 14.5	14.6	74.6 73.6	74.1	5.5 5.5	5.5	5.5	2.7 2.9	2.8		7.3 7.0	7.2	
				10.1	Middle	5.1	25.9 25.9	25.9	8.0 8.0	8.0	16.6 16.5	16.6	74.0 73.2	73.6	5.5 5.5	5.5	5.5	3.0 3.0	3.0	3.0	7.1 6.3	6.7	7.9
					Bottom	9.1	25.7 25.9	25.8	8.0 7.9	8.0	19.9	18.7	73.4 73.1	73.3	5.4 5.4	5.4	5.4	3.1 3.1	3.1		10.0	9.7	
21-May-14	Cloudy	Moderate	10:47	1	Surface	1.0	26.1	26.1	8.1	8.1	17.6 14.0	14.0	77.9	78.1	5.8	5.9		2.6	2.7		9.3 4.3	4.0	
				10.3	Middle	5.2	26.1 25.6	25.8	8.0 8.1	8.1	14.0 21.4	21.6	78.3 76.0	76.5	5.9 5.5	5.6	5.8	2.7 1.9	2.1	2.2	3.7 5.3	4.9	5.3
				10.3			26.0 25.6		8.1 8.0		21.8 28.4		76.9 76.8		5.7 5.5			2.2 1.7		2.2	4.5 7.4		5.5
					Bottom	9.3	24.9	25.3	8.1	8.1	28.4	28.4	74.9	75.9	5.3	5.4	5.4	1.6	1.7		6.3	6.9	<u> </u>

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	15:31		Surface	1.0	26.3 26.2	26.2	8.1 8.1	8.1	13.2 13.4	13.3	82.4 78.7	80.6	6.2 5.9	6.0	5.8	2.1 2.1	2.1		3.8 3.7	3.8	
				10.0	Middle	5.0	25.6 25.6	25.6	8.1 8.1	8.1	19.3 20.1	19.7	74.8 74.8	74.8	5.5 5.5	5.5	5.6	2.1 2.1	2.1	2.1	2.9 3.9	3.4	3.4
					Bottom	9.0	24.8 25.0	24.9	7.9 7.9	7.9	30.2 30.1	30.1	75.4 76.6	76.0	5.3 5.3	5.3	5.3	2.1 2.0	2.1		3.5 2.2	2.9	
26-May-14	Sunny	Moderate	18:52		Surface	1.0	27.4 27.6	27.5	8.1 8.1	8.1	14.8 14.8	14.8	77.1 82.3	79.7	5.6 6.0	5.8	5.7	2.2 2.2	2.2		3.1 3.2	3.2	
				10.1	Middle	5.1	26.7 26.8	26.7	8.1 8.1	8.1	18.8 17.7	18.3	76.2 75.9	76.1	5.4 5.5	5.5	0.7	2.2 2.2	2.2	2.2	3.3 2.9	3.1	3.2
					Bottom	9.1	25.4 26.1	25.8	8.1 8.0	8.1	26.2 26.1	26.2	67.6 71.1	69.4	4.8 5.1	5.0	5.0	2.2 2.3	2.3		3.3 3.5	3.4	
28-May-14	Sunny	Moderate	19:40		Surface	1.0	27.8 27.7	27.7	8.3 8.3	8.3	16.7 16.9	16.8	105.2 104.4	104.8	7.5 7.5	7.5	7.4	1.1 1.2	1.2		3.0 2.8	2.9	
				10.1	Middle	5.1	27.2 27.6	27.4	8.2 8.2	8.2	17.5 17.3	17.4	103.5 100.3	101.9	7.3 7.2	7.3	7.4	1.1 1.2	1.2	1.2	4.1 2.7	3.4	3.3
					Bottom	9.1	27.2 27.3	27.3	8.2 8.2	8.2	19.6 19.9	19.7	99.3 99.4	99.4	7.1 7.2	7.1	7.1	1.2 1.1	1.2		3.4 3.6	3.5	
30-May-14	Sunny	Moderate	06:15		Surface	1.0	26.8 27.1	27.0	8.1 8.1	8.1	16.8 16.6	16.7	75.4 77.0	76.2	5.5 5.6	5.5	5.4	1.3 1.3	1.3		4.3 4.3	4.3	
				10.1	Middle	5.1	26.3 26.4	26.4	8.1 8.1	8.1	23.4 21.9	22.7	72.8 73.9	73.4	5.2 5.3	5.2	5.4	1.4 1.3	1.4	1.4	3.5 4.0	3.8	3.8
					Bottom	9.1	25.9 26.3	26.1	8.0 8.0	8.0	27.9 27.7	27.8	73.4 75.0	74.2	5.1 5.2	5.1	5.1	1.4 1.3	1.4		2.6 4.1	3.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Te	mperature (°C)	pН		Salinity (ppt	DO	Saturation	(%) Dissolv	ed Oxyger	n (mg/L)	Т	urbidity(NT	ΓU)	Suspe	nded Solid	s (mg/L)	
	Condition	Condition**	Time	Depth (m)	Depth (m)		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	16:01	34.9	Surface	1.0	24.2	24.2	8.2	8.2	27.9	27.9	88.4	88.4	6.3	6.3	6.3	2.1	2.1	2.1	2.6	2.8	3.0
					Middle	17.5	24.2 23.6	23.6	8.2 8.2	8.2	27.9 31.6	31.4	88.4 86.6	86.8	6.3 6.1	6.2		2.1	2.1		2.9	2.8	
					Middle	17.5	23.6	23.0	8.2	0.2	31.2	31.4	87.0	00.0	6.2	0.2		2.1	2.1		3.0	2.0	'
					Bottom	33.9	23.6	23.6	8.2	8.2	31.5	31.5	86.9	86.9	6.2	6.2	6.2	2.1	2.1		3.6	3.4	'
			10.01	04.0	0	4.0	23.6	04.4	8.2	0.0	31.5	00.0	86.9	00.0	6.2	0.0	0.5	2.1	4.0	4.7	3.2	0.0	0.7
5-May-14	Sunny	Moderate	18:01	34.8	Surface	1.0	24.0 24.1	24.1	8.3 8.3	8.3	26.9 26.2	26.6	90.4 91.4	90.9	6.5 6.6	6.6	6.5	1.6 1.6	1.6	1.7	3.0 2.6	2.8	3.7
					Middle	17.4	23.8	23.8	8.3	8.3	31.7	31.7	89.5	89.8	6.3	6.3		1.7	1.8		3.5	4.4	
							23.8		8.3		31.6		90.0		6.3			1.8			5.2		'
					Bottom	33.8	23.8 23.9	23.8	8.2	8.2	32.0 31.5	31.7	90.3 91.2	90.8	6.4	6.4	6.4	1.8 1.8	1.8		3.8 4.0	3.9	
7-May-14	Cloudy	Moderate	19:52	34.1	Surface	1.0	23.4	23.5	8.2 8.3	8.3	30.5	30.5	86.0	85.7	6.4 6.1	6.1	6.0	1.8	1.8	1.8	4.0	4.3	4.4
7-IVIAY-14	Cloudy	Woderate	13.32	04.1	Oundoc	1.0	23.5	20.0	8.3	0.0	30.5	00.0	85.3	00.7	6.1	0.1	0.0	1.7	1.0	1.0	4.3	4.0	",
					Middle	17.1	23.6	23.6	8.2	8.2	32.3	32.3	83.8	83.9	5.9	5.9		1.7	1.7		4.0	4.2	
					D	00.4	23.6	00.0	8.2	0.0	32.3	00.5	83.9	05.4	5.9	0.0	0.0	1.7	4.0		4.4	4.0	
					Bottom	33.1	23.6 23.6	23.6	8.2 8.2	8.2	32.4 32.5	32.5	85.6 84.5	85.1	6.0 6.0	6.0	6.0	1.8 1.8	1.8		5.0 4.6	4.8	i '
9-May-14	Rainy	Moderate	08:35	34.4	Surface	1.0	23.5	23.5	8.2	8.2	32.1	32.1	84.7	84.3	6.0	6.0	5.9	1.2	1.3	1.7	7.4	6.8	8.6
,	, i						23.5		8.2		32.1		83.9		5.9			1.3			6.1		<u>'</u>
					Middle	17.2	23.5	23.5	8.2	8.2	32.5	32.5	83.1	82.8	5.9	5.8		1.8	1.8		8.8	8.5	i '
					Bottom	33.4	23.5 23.5	23.5	8.2 8.2	8.2	32.5 32.7	32.7	82.4 82.5	83.2	5.8 5.8	5.9	5.9	1.7 2.0	2.0		8.1 10.3	10.6	
					Dottom	00.4	23.5	20.0	8.2	0.2	32.7	02.7	83.9	00.2	5.9	0.0	0.0	1.9	2.0		10.9	10.0	i '
12-May-14	Sunny	Moderate	10:33	34.8	Surface	1.0	23.9	23.9	8.1	8.1	16.4	16.7	85.0	84.9	6.5	6.5	6.3	3.0	3.0	2.8	4.3	4.0	4.8
							23.9		8.1		17.0	0= 4	84.8	20.0	6.5			2.9			3.6		
					Middle	17.4	23.7 23.7	23.7	8.1 8.1	8.1	25.3 24.9	25.1	82.3 82.8	82.6	6.0 6.1	6.1		2.5 2.4	2.5		4.5 6.2	5.4	
					Bottom	33.8	23.7	23.6	8.1	8.0	26.9	27.8	82.8	83.1	6.0	6.0	6.0	3.1	3.0		4.8	4.9	i '
							23.6		8.0		28.8		83.4		6.0			2.9			5.0		L
14-May-14	Sunny	Moderate	11:33	34.4	Surface	1.0	25.1	25.1	8.0	8.0	17.4	17.5	85.9	85.5	6.4	6.4	6.2	4.1	4.2	4.4	6.2	5.1	4.8
					Middle	17.2	25.0 24.3	24.3	8.0	8.0	17.6 24.1	24.2	85.1 81.6	81.9	6.4	6.0		4.2	4.7		4.0	4.4	i '
					Wildale	17.2	24.3	24.0	8.0	0.0	24.2	24.2	82.2	01.0	6.0	0.0		4.8	7.7		4.0	7.7	
					Bottom	33.4	24.2	24.2	8.0	8.0	25.0	25.2	82.7	82.4	6.0	6.0	6.0	4.4	4.3		5.2	5.0	
10.11				00.5	0 (4.0	24.2	05.4	8.0	0.4	25.3	40.0	82.0	00.7	6.0	0.0	0.0	4.1	45.5	40.0	4.8	4.5	5.0
16-May-14	Cloudy	Moderate	14:37	36.5	Surface	1.0	25.5 25.3	25.4	8.1 8.1	8.1	16.7 16.9	16.8	80.7 80.6	80.7	6.0 6.0	6.0	6.0	15.6 15.4	15.5	16.0	3.8 5.2	4.5	5.0
					Middle	18.3	25.2	25.1	8.1	8.1	19.3	20.2	80.3	80.3	5.9	5.9		15.8	15.9		5.9	5.4	i '
							25.1		8.1		21.1		80.3		5.9			16.0			4.9		'
					Bottom	35.5	25.1	25.2	8.1	8.1	21.9	21.7	80.7	80.6	5.9	5.9	5.9	16.6	16.5		5.4	5.0	i '
19-May-14	Sunny	Rough	17:34	36.2	Surface	1.0	25.2 26.0	26.0	8.1 8.1	8.1	21.6 15.4	15.6	80.5 75.1	75.1	5.9 5.6	5.6	5.6	16.4 3.0	2.9	3.0	4.6 5.6	5.6	5.5
13-Way-14	Guilly	Rough	17.54	00.2	Oundoo	1.0	26.0	20.0	8.0	0.1	15.8	10.0	75.1	70.1	5.6	0.0	0.0	2.8	2.0	0.0	5.5	0.0	0.0
					Middle	18.1	25.7	25.7	8.1	8.0	18.3	18.2	75.0	75.1	5.5	5.5		3.0	3.0	1	5.4	5.3	ĺ
					Dattari	25.0	25.7	05.7	8.0	0.0	18.0	10.1	75.1	74.0	5.5		5.5	3.0	2.0		5.2	F 7	ł
					Bottom	35.2	25.8 25.6	25.7	8.0 8.0	8.0	19.0 19.2	19.1	74.6 74.5	74.6	5.5 5.5	5.5	5.5	3.1 3.2	3.2		5.5 5.8	5.7	i
21-May-14	Cloudy	Moderate	19:27	35.1	Surface	1.0	27.0	27.1	8.1	8.1	13.9	13.8	83.5	83.1	6.2	6.1	5.8	1.8	1.9	2.8	3.4	4.0	4.1
1	,						27.1		8.1		13.7		82.6		6.1			1.9			4.6		ı
					Middle	17.6	25.5	25.5	8.1	8.1	22.0	21.9	76.0	75.8	5.5	5.5		2.4	2.6		4.7	4.2	i '
					Bottom	34.1	25.6 25.4	25.4	8.1 8.1	8.1	21.9 24.0	24.5	75.5 77.1	77.2	5.5 5.5	5.5	5.5	2.7 3.8	3.9		3.7 4.7	4.2	i '
				<u> </u>	Dottoill	34.1	25.3	20.4	8.1	0.1	25.0	24.0	77.3	17.2	5.5	0.0	0.0	4.0	0.0		3.6	7.2	<u> </u>

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Te	mperature (°C)	pН		Salinity (ppt) DC	Saturation	(%) Dissolv	ed Oxyge	n (mg/L)	Т	urbidity(N7	ΓU)	Suspe	nded Solids	s (mg/L)	
	Condition	Condition**	Time	Depth (m)	Depth (m)		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	07:59	34.9	Surface	1.0	26.4	26.4	8.1	8.1	11.2	11.4	81.2	81.3	6.1	6.1	5.8	2.5	2.5	2.6	5.6	5.8	5.6
							26.4		8.1		11.5		81.4		6.1			2.5			6.0		<u> </u>
					Middle	17.5	25.6	25.7	8.1	8.1	20.7	20.7	74.3	75.4	5.4	5.5		2.6	2.6		5.9	5.7	
							25.7		8.1		20.7		76.4		5.5			2.5			5.5		, '
					Bottom	33.9	25.0	25.0	8.0	8.0	28.2	28.3	76.0	75.3	5.4	5.3	5.3	2.6	2.6		4.8	5.3	1
							25.0		8.0		28.3		74.5		5.2			2.5			5.8		
26-May-14	Sunny	Moderate	10:34	34.4	Surface	1.0	26.7	26.7	8.0	8.0	14.0	14.1	69.8	69.9	5.2	5.2	5.2	1.6	1.7	1.7	4.8	4.7	4.9
							26.6		8.0		14.2		70.0		5.2			1.7			4.6		•
					Middle	17.2	26.2	26.2	8.0	8.0	20.0	19.9	69.3	69.4	5.0	5.1		1.6	1.6		4.5	4.8	1
							26.3		8.0		19.7		69.5		5.2			1.6			5.0		4 '
					Bottom	33.4	26.2	26.2	8.0	8.0	20.7	20.8	68.9	69.1	5.0	5.0	5.0	1.9	1.9		5.1	5.3	1
			44.40	22.2	<u> </u>		26.2	07.0	8.0		20.8	10.0	69.3	0.5.4	5.0	2.2		1.9			5.5		
28-May-14	Sunny	Moderate	11:42	36.0	Surface	1.0	27.9	27.9	8.1	8.1	13.1	13.2	88.2	85.4	6.4	6.2	6.1	1.5	1.5	1.6	2.9	2.7	3.0
					N C 1 11 -	40.0	28.0	07.0	8.1	0.0	13.3	45.0	82.6	20.0	6.0	0.0		1.4	4.5		2.5	0.4	! !
					Middle	18.0	27.6 26.4	27.0	8.1 8.0	8.0	15.4 15.2	15.3	85.6 80.7	83.2	6.2 5.7	6.0		1.5	1.5		2.7 3.5	3.1	1
					Bottom	35.0	27.4	26.8	8.0	7.9	21.1	21.4	84.0	78.2	6.1	5.6	5.6	1.5 1.6	1.7		3.5	3.3	· '
					DOLLOTTI	33.0	26.1	20.0	7.8	7.9	21.1	21.4	72.4	10.2	5.2	5.6	5.0	1.7	1.7		3.5	3.3	1
30-May-14	Sunnv	Moderate	15:01	34.1	Surface	1.0	27.9	27.8	8.2	8.2	16.9	17.0	77.3	78.2	5.5	5.6	5.4	1.5	1.5	1.8	3.4	3.8	3.6
30-iviay-14	Suring	Moderate	15.01	34.1	Surface	1.0	27.7	27.0	8.2	0.2	17.0	17.0	79.1	70.2	5.7	3.0	3.4	1.5	1.5	1.0	4.1	3.0	3.0
					Middle	17.1	26.1	26.1	8.1	8.1	25.9	26.2	75.5	73.3	5.2	5.2		1.7	1.7		3.9	3.7	1
					Middle	17.1	26.0	20.1	8.1	0.1	26.4	20.2	71.0	75.5	5.1	5.2		1.6	1.7		3.4	5.1	
					Bottom	33.1	26.1	25.8	8.1	8.1	27.4	27.8	72.9	71.8	5.1	5.0	5.0	2.4	2.3		4.0	3.4	
					Dottom	55.1	25.6	25.0	8.1	3.1	28.2		70.7		4.9	3.0	0.0	2.2	2.0		2.8	0.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Te	mperature (°C)	pН		Salinity (ppt)) DC	Saturation	(%) Dissolv	red Oxyger	n (mg/L)	Т	Turbidity(NT	U)	Suspe	nded Solid	s (mg/L)	
	Condition	Condition**	Time	Depth (m)	Depth (m)		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	07:03	34.5	Surface	1.0	23.9	23.9	8.2	8.2	27.1	27.3	86.8	86.6	6.3	6.2	6.2	1.6	1.6	1.8	2.2	2.9	3.0
							23.9		8.2		27.5		86.3		6.2			1.6			3.6		_
					Middle	17.3	23.8	23.8	8.2	8.2	29.0	29.1	85.9	86.2	6.2	6.2		1.9	1.9		3.2	3.3	
					Bottom	33.5	23.8	23.8	8.2 8.1	8.2	29.1 29.5	29.4	86.5 87.7	86.7	6.2 6.3	6.2	6.2	1.8	1.9		3.4	2.7	- I
					Bollom	33.3	23.8	23.0	8.2	0.2	29.4	25.4	85.6	00.7	6.1	0.2	0.2	1.8	1.5		2.4	2.1	
5-May-14	Sunny	Moderate	08:40	35.5	Surface	1.0	24.0	24.0	8.2	8.2	27.7	27.6	89.3	89.8	6.4	6.5	6.4	1.8	1.8	1.8	2.8	2.7	2.9
	,						24.0		8.2		27.6		90.2		6.5			1.8			2.5		
					Middle	17.8	23.9	23.9	8.2	8.2	30.5	30.5	88.1	88.3	6.2	6.3		1.8	1.9		3.3	3.4	
							23.9		8.2		30.4		88.5		6.3			1.9	4.0		3.4		.
					Bottom	34.5	23.9	23.9	8.2	8.2	30.5	30.4	89.8	89.3	6.4	6.3	6.3	1.8	1.8		2.9	2.7	
7-May-14	Cloudy	Moderate	10:27	34.8	Surface	1.0	23.9	23.5	8.2 8.2	8.2	30.4	30.7	88.8 87.5	87.4	6.3	6.2	6.2	1.8	1.7	1.7	3.6	4.3	4.4
7-iviay-14	Cloudy	ivioderate	10.27	34.0	Sullace	1.0	23.5	23.3	8.2	0.2	30.7	30.7	87.3	07.4	6.2	0.2	0.2	1.6	1.7	1.7	5.0	4.5	4.4
					Middle	17.4	23.6	23.6	8.2	8.2	32.0	32.0	85.6	86.0	6.1	6.1		1.6	1.6		4.6	4.7	1
							23.6		8.2		32.0		86.4		6.1			1.6			4.8		
					Bottom	33.8	23.6	23.6	8.2	8.2	31.9	32.0	88.4	87.5	6.2	6.2	6.2	1.6	1.7		4.4	4.1	
							23.6		8.2		32.0		86.5		6.1			1.7			3.8		
9-May-14	Rainy	Moderate	16:00	34.7	Surface	1.0	23.5	23.5	8.2	8.2	30.2	30.2	87.8	87.8	6.3	6.3	6.2	3.3	3.4	2.4	5.4	5.6	6.4
					Middle	17.4	23.5 23.5	23.5	8.2 8.2	8.2	30.1 31.6	31.6	87.8 84.4	84.6	6.3 6.0	6.0		3.5 2.0	1.9		5.7 5.6	6.4	- I
					ivildale	17.4	23.5	20.0	8.2	0.2	31.5	31.0	84.7	04.0	6.0	0.0		1.8	1.5		7.1	0.4	
					Bottom	33.7	23.5	23.5	8.2	8.2	31.6	31.6	85.9	85.6	6.1	6.1	6.1	2.0	2.0		6.0	7.3	1
							23.5		8.2		31.5		85.3		6.0			1.9			8.6		
12-May-14	Sunny	Moderate	18:51	35.1	Surface	1.0	24.5	24.6	8.1	8.1	17.9	17.8	84.2	85.2	6.3	6.4	6.1	2.9	2.9	3.3	3.8	3.7	3.9
							24.6		8.1		17.7		86.2		6.5			2.8			3.5		.
					Middle	17.6	23.6	23.6	8.1	8.1	28.0	28.3	80.4	79.9	5.8	5.8		3.1	3.2		4.3	4.4	
					Bottom	34.1	23.6 23.5	23.6	8.1 8.0	8.0	28.6 30.2	30.1	79.4 81.0	81.9	5.7 5.8	5.8	5.8	3.3	3.8		4.4 3.9	3.7	- I
					Dottom	34.1	23.7	23.0	8.0	0.0	29.9	30.1	82.8	01.3	5.9	5.0	5.0	3.9	5.0		3.4	5.7	
14-May-14	Sunny	Moderate	20:31	35.0	Surface	1.0	25.4	25.3	8.0	8.0	18.1	18.7	84.7	84.0	6.3	6.2	6.1	4.5	4.7	5.0	3.8	3.8	4.9
	,						25.2		8.0		19.4		83.3		6.2			4.9			3.7		
					Middle	17.5	24.7	24.7	8.1	8.1	21.3	21.3	81.7	81.6	6.0	6.0		5.2	5.3		4.4	5.3	
					D. III	040	24.7	04.4	8.1	0.4	21.3	00.0	81.4	04.5	6.0	5.0	5.0	5.4	4.0		6.1		↓
					Bottom	34.0	24.4 24.5	24.4	8.1 8.0	8.1	24.0 23.5	23.8	80.7 82.2	81.5	5.9 6.0	5.9	5.9	4.7 5.1	4.9		5.6 5.3	5.5	
16-May-14	Cloudy	Moderate	07:01	36.6	Surface	1.0	25.0	25.0	8.1	8.1	21.9	21.9	82.0	81.8	6.0	6.0	6.0	3.5	3.5	4.0	6.6	6.0	5.9
10-iviay-14	Cloudy	Woderate	07.01	00.0	Curiace	1.0	25.0	20.0	8.1	0.1	21.9	21.0	81.6	01.0	6.0	0.0	0.0	3.5	0.0	4.0	5.4	0.0	0.5
					Middle	18.3	24.7	24.8	8.1	8.1	24.4	23.7	81.3	81.8	5.9	5.9		3.9	4.0		6.0	6.2	1
							24.9		8.1		22.9		82.3		6.0			4.0			6.4		_
					Bottom	35.6	24.7	24.7	8.1	8.1	24.7	24.9	82.4	81.8	6.0	5.9	5.9	4.7	4.6		5.0	5.4	
				20.4	2 /	4.0	24.7	0.5.0	8.1		25.0	40.5	81.2	=0.0	5.9			4.5			5.7		
19-May-14	Cloudy	Moderate	08:24	36.1	Surface	1.0	25.9 25.8	25.8	8.1 8.1	8.1	15.6 17.4	16.5	77.8 75.0	76.9	5.7 5.6	5.6	5.6	2.8	2.8	2.9	5.9 5.0	5.5	6.7
					Middle	18.1	25.8	25.6	8.1	8.1	17.4	19.1	75.9 77.6	76.6	5.6	5.6		2.8	2.9	1	5.6	5.7	∤
					ivildale	10.1	25.7	20.0	8.1	0.1	19.2	10.1	75.6	70.0	5.6	0.0		2.9	2.0		5.8	0.7	
					Bottom	35.1	25.6	25.6	8.1	8.1	21.3	20.9	76.4	76.0	5.6	5.6	5.6	3.0	3.0	1	9.2	8.8	1 !
							25.6		8.0		20.5		75.5		5.5			2.9			8.3		
21-May-14	Cloudy	Moderate	10:33	35.4	Surface	1.0	26.1	26.1	8.1	8.1	14.1	14.1	78.7	78.0	5.9	5.8	5.5	2.7	2.8	2.6	4.6	4.8	5.6
					100	47.7	26.0	04.0	8.1	0.4	14.2	00.0	77.3	74.0	5.8	5.0		2.8	0.0		4.9	5.0	4 ľ
					Middle	17.7	24.8 24.8	24.8	8.1	8.1	28.9 28.6	28.8	75.1 74.0	74.6	5.3	5.2		2.3 2.2	2.3		5.3	5.9	
					Bottom	34.4	24.8	24.8	8.1 8.1	8.1	28.6	28.9	74.0	76.0	5.2 5.3	5.3	5.3	2.2	2.7	1	6.4 4.9	6.0	·
					Sottom	54.4	24.8	24.0	8.1	0.1	29.0	20.0	77.3	7 0.0	5.4	0.0	0.0	2.6	2.,		7.1	0.0	
		•		•				•		•		•		•		•			•		· · · · · ·	•	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Te	mperature (°C)	pН		Salinity (ppt) DO	Saturation	(%) Dissolv	ed Oxyger	n (mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)	
	Condition	Condition**	Time	Depth (m)	Depth (m)		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	15:42	34.9	Surface	1.0	26.1	26.2	8.2	8.2	13.3	13.3	75.3	76.4	5.7	5.7	5.5	2.1	2.2	2.2	3.5	3.1	3.0
							26.2		8.2		13.3		77.5		5.8			2.2			2.7		1 "
					Middle	17.5	24.6	24.7	8.1	8.1	31.0	30.9	73.2	74.4	5.1	5.2		2.2	2.2		2.5	2.7	i l
							24.7		8.1		30.8		75.6		5.3			2.2			2.9		1
					Bottom	33.9	24.6	24.7	8.0	8.0	31.2	31.1	69.4	70.0	4.8	4.9	4.9	2.2	2.2		2.7	3.3	i
							24.7		8.0		30.9		70.6		4.9			2.2			3.9		
26-May-14	Sunny	Moderate	19:00	35.3	Surface	1.0	27.3	27.3	8.1	8.1	15.3	15.0	76.2	76.2	5.5	5.5	5.3	2.2	2.2	2.3	2.5	2.6	2.7
							27.4		8.1		14.8		76.1		5.6			2.1			2.6		1
					Middle	17.7	25.6	25.7	8.1	8.1	25.5	25.4	69.9	70.0	5.1	5.1		2.2	2.3		2.3	2.5	ı ľ
							25.8		8.1		25.3		70.1		5.1			2.3			2.7		4 ľ
					Bottom	34.3	25.3	25.3	8.1	8.1	28.5	28.4	69.3	68.7	4.9	4.9	4.9	2.3	2.3		3.0	3.1	ı ľ
	_						25.3		8.1		28.4		68.1		4.9			2.2			3.2		└
28-May-14	Sunny	Moderate	19:56	36.1	Surface	1.0	27.8	27.8	8.3	8.3	16.7	16.6	106.7	108.5	7.7	7.8	7.7	1.1	1.1	1.2	3.3	2.9	3.6
							27.8	07.0	8.3		16.5	4= 0	110.3	404 =	7.9			1.1			2.4		4 ľ
					Middle	18.1	27.4	27.6	8.3	8.3	17.2	17.0	103.4	104.7	7.4	7.5		1.1	1.2		4.0	4.0	ı ľ
					Dettern	35.1	27.7	27.2	8.3	8.3	16.8	19.4	105.9 104.9	103.0	7.6	7.4	7.4	1.2	1.2		3.9	4.0	ı "
					Bottom	35.1	27.3 27.1	21.2	8.3 8.2	8.3	19.5 19.3	19.4	104.9	103.0	7.5 7.3	7.4	7.4	1.2 1.2	1.2		3.7 4.2	4.0	ı ľ
00.1444	0	M. I	00.00	34.3	Surface	4.0	27.1	27.2		0.0	16.6	16.6	75.9	76.9		F.C.	5.5		1.2	1.2	2.8	2.9	3.0
30-May-14	Sunny	Moderate	06:08	34.3	Surface	1.0	27.2	21.2	8.0 8.0	8.0	16.7	16.6	75.9 77.9	76.9	5.5	5.6	5.5	1.2	1.2	1.2	-	2.9	3.0
					Middle	17.2	26.5	26.2	8.0	8.1	22.5	24.0	74.7	74.7	5.6 5.2	5.3		1.1	1.2		3.0 4.1	3.3	ı ľ
					iviidale	17.2	25.8	20.2	8.1	0.1	22.5 25.5	24.0	74.7	74.7	5.2 5.3	5.3		1.2	1.2		2.5	3.3	i !
					Bottom	33.3	25.8	26.0	8.0	8.0	27.8	27.8	71.7	70.9	5.0	4.9	4.9	1.3	1.3		2.7	2.7	1
					Dottom	55.5	26.2	20.0	8.0	0.0	27.9	27.0	70.0	70.9	4.9	7.5	7.5	1.3	1.3		2.7	2.1	1
		l .	1	1	<u> </u>		20.2	<u> </u>	0.0	ı	21.3		70.0	1	7.3	<u> </u>		1.4	l l		۷.1	l	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	13:57		Surface	1.0	24.4 24.3	24.4	8.3 8.3	8.3	26.8 27.0	26.9	89.2 89.2	89.2	6.4 6.4	6.4		4.0 4.2	4.1		3.8 4.8	4.3	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	4.3	-	-	4.5
					Bottom	2.5	24.2 24.1	24.2	8.3 8.4	8.3	28.0 28.0	28.0	88.9 89.2	89.1	6.4 6.4	6.4	6.4	4.4 4.5	4.5		4.6 4.5	4.6	
5-May-14	Sunny	Moderate	15:53		Surface	1.0	24.1	24.4	8.4	8.4	26.3	26.3	97.2	96.5	7.0	6.9		3.8	3.6		4.3	4.2	
				0.4		1.0	24.4		8.4		26.2		95.7		6.9	0.9	6.9	3.4	3.6	0.0	4.0	4.2	4.5
				3.4	Middle	-	24.3	-	8.4	-	27.5	-	99.2	-	7.1	-		4.2	-	3.9	4.9	-	4.5
7.14	Ol. I	Madaga	47.05		Bottom	2.4	24.3	24.3	8.4	8.4	27.7	27.6	96.4	97.8	6.9	7.0	7.0	3.9	4.1		4.4	4.7	
7-May-14	Cloudy	Moderate	17:25		Surface	1.0	23.0 23.0	23.0	8.4 8.4	8.4	27.5 27.4	27.5	100.1 97.8	99.0	7.3 7.2	7.2	7.2	2.2 2.2	2.2		5.2 6.2	5.7	
				3.3	Middle	-	-	-		-		-		-		-		-	-	2.3	-	-	5.9
					Bottom	2.3	23.0 23.0	23.0	8.4 8.4	8.4	27.6 27.5	27.5	98.7 97.0	97.9	7.2 7.1	7.2	7.2	2.4 2.2	2.3		6.0 5.9	6.0	
9-May-14	Rainy	Moderate	13:59		Surface	1.0	23.2 23.2	23.2	8.3 8.4	8.3	27.3 27.3	27.3	94.6 94.3	94.5	6.9 6.9	6.9		5.4 5.4	5.4		5.1 6.5	5.8	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	5.5	-	-	7.1
					Bottom	2.2	23.2	23.2	8.4 8.3	8.3	27.3 27.4	27.3	94.3 96.0	95.2	6.9 7.0	7.0	7.0	5.4 5.7	5.6		8.0 8.7	8.4	
12-May-14	Sunny	Moderate	12:22		Surface	1.0	24.2	24.4	8.2	8.2	16.1	16.5	89.8	90.0	6.9	6.8		5.0	5.1		5.3	5.2	
				3.2	Middle	_	24.5	_	8.2	_	16.8	_	90.1	_	6.8	_	6.8	5.1	_	5.2	5.0	_	5.5
				0.2	Bottom	2.2	24.2	24.0	8.2	8.2	21.2	21.4	89.6	89.5	6.7	6.7	6.7	5.1	5.2	0.2	5.9	5.7	0.0
14-May-14	Sunny	Moderate	13:47				23.8 25.0		8.2 7.7		21.7 21.9		89.3 85.8		6.7		0.7	5.3 11.4			5.4 7.2		
.,	,				Surface	1.0	25.3	25.1	7.7	7.7	21.2	21.6	85.4	85.6	6.2	6.2	6.2	11.4	11.4		6.2	6.7	
				3.1	Middle	-	25.1	-	-	-	21.5	-	85.4	-	- 6.0	-		11.4	-	11.5	7.0	-	6.4
					Bottom	2.1	24.8	25.0	7.7 7.6	7.7	22.8	22.2	90.9	88.2	6.2 6.6	6.4	6.4	11.5	11.5		5.1	6.1	
16-May-14	Cloudy	Moderate	13:05		Surface	1.0	26.0 26.0	26.0	7.6 7.6	7.6	19.7 19.8	19.8	89.9 90.2	90.1	6.5 6.5	6.5	6.5	7.3 7.5	7.4		5.4 4.0	4.7	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	7.5	-	-	5.3
					Bottom	2.1	25.8 26.0	25.9	7.6 7.6	7.6	20.7 20.2	20.4	89.5 89.9	89.7	6.5 6.5	6.5	6.5	7.5 7.5	7.5		5.4 6.2	5.8	
19-May-14	Sunny	Rough	15:16		Surface	1.0	26.9 26.9	26.9	7.5 7.5	7.5	18.2 18.3	18.3	90.6 89.8	90.2	6.5 6.5	6.5		7.1 7.3	7.2		8.0 8.9	8.5	
				3.2	Middle	-	- 20.9	-	-	-	- 18.3	-	- 89.8	-	- 0.0	-	6.5	-	-	7.2	- 8.9	-	9.0
					Bottom	2.2	26.8	26.7	7.5	7.5	18.5	18.6	90.2	90.6	6.5	6.5	6.5	7.2	7.2		9.6	9.5	
21-May-14	Cloudy	Moderate	17:15		Surface	1.0	26.6 27.2	27.1	7.5 7.7	7.7	18.6 15.9	16.0	91.0 95.7	94.9	6.6 7.0	6.9		7.2 4.2	4.1		9.4 5.4	5.4	
				0.4		1.0	27.0		7.6		16.1		94.1		6.9	0.5	6.9	4.0		4.0	5.3		
				3.1	Middle	-	26.8	-	7.6	-	16.6	-	93.6	-	6.8	-		3.9	-	4.0	6.6	-	6.1
					Bottom	2.1	26.9	26.9	7.6	7.6	16.5	16.6	94.2	93.9	6.9	6.8	6.8	3.9	3.9		6.8	6.7	<u> </u>

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	09:49		Surface	1.0	26.2 26.3	26.2	7.6 7.6	7.6	18.7 18.2	18.5	74.9 80.9	77.9	5.5 5.9	5.7	5.7	18.0 17.8	17.9		5.9 6.6	6.3	
				3.2	Middle			•		-		-	-	-		-	5.7	-	-	18.5	-	-	6.2
					Bottom	2.2	26.2 26.0	26.1	7.4 7.6	7.5	20.7 20.5	20.6	88.2 76.1	82.2	6.4 5.5	5.9	5.9	18.9 19.2	19.1		6.6 5.4	6.0	
26-May-14	Sunny	Moderate	12:26		Surface	1.0	28.1 27.8	28.0	7.7 7.7	7.7	14.2 14.2	14.2	95.3 95.8	95.6	6.9 7.0	6.9	6.9	5.1 5.0	5.1		3.4 3.6	3.5	
				3.1	Middle			•		-		-	-	-		-	0.9	-	-	6.5	-	-	5.1
					Bottom	2.1	27.5 26.9	27.2	7.6 7.6	7.6	18.3 19.9	19.1	96.4 92.9	94.7	6.9 6.6	6.8	6.8	7.8 8.0	7.9		6.2 7.1	6.7	
28-May-14	Sunny	Moderate	13:40		Surface	1.0	28.1 28.1	28.1	8.5 8.5	8.5	18.0 18.0	18.0	118.3 117.3	117.8	8.4 8.3	8.3	8.3	7.9 7.7	7.8		4.3 5.7	5.0	
				2.9	Middle	-		-		-	-	-	-	-		-	0.3	-	-	7.8	-	-	5.3
					Bottom	1.9	27.3 27.6	27.5	8.4 8.4	8.4	20.6 19.8	20.2	112.7 108.5	110.6	8.0 7.7	7.8	7.8	7.8 7.8	7.8		5.8 5.1	5.5	
30-May-14	Sunny	Moderate	12:44		Surface	1.0	28.1 28.1	28.1	8.6 8.6	8.6	18.0 18.0	18.0	121.0 124.1	122.6	8.6 8.8	8.7	8.7	2.1 2.2	2.2		2.8 2.6	2.7	
				3.4	Middle	-		-		-	-	-	-	-	-	-	0.7	-	-	2.3	-	-	4.2
					Bottom	2.4	28.0 27.9	28.0	8.6 8.6	8.6	19.5 19.1	19.3	123.0 113.7	118.4	8.6 8.0	8.3	8.3	2.3 2.2	2.3		5.4 5.7	5.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	ř.	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	08:24		Surface	1.0	23.9 23.9	23.9	8.4 8.4	8.4	26.4 26.4	26.4	88.4 88.2	88.3	6.4 6.4	6.4		5.6 5.7	5.7		4.7 5.4	5.1	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	5.8	-	-	5.2
					Bottom	2.5	23.9 23.9	23.9	8.4 8.4	8.4	26.5 26.5	26.5	88.6 88.3	88.5	6.4	6.4	6.4	5.9 5.7	5.8		4.9 5.6	5.3	
5-May-14	Sunny	Moderate	09:59		Surface	1.0	24.1	24.1	8.4	8.4	26.4	26.5	97.0	97.5	7.0	7.0		2.2	2.3		2.6	2.6	
	,			0.4		1.0	24.1		8.4		26.5		97.9		7.1	7.0	7.0	2.3	2.3	0.4	2.5	2.0	0.7
				3.1	Middle	-	- 24.1	-	- 8.4	-	26.6	-	98.8	-	7.1			2.6	-	2.4	3.3	-	2.7
7 May 44	Classalis	Madagata	44.54		Bottom	2.1	24.1	24.1	8.4	8.4	26.5	26.5	97.3	98.1	7.0	7.1	7.1	2.4	2.5		2.2	2.8	
7-May-14	Cloudy	Moderate	11:54		Surface	1.0	23.0 23.0	23.0	8.4 8.4	8.4	27.5 27.6	27.5	93.5 99.5	96.5	6.8 7.3	7.1	7.1	2.3 2.4	2.4		6.1 6.8	6.5	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.5	-	-	6.6
					Bottom	2.3	23.0 23.0	23.0	8.4 8.4	8.4	27.6 27.6	27.6	93.4 93.5	93.5	6.8 6.8	6.8	6.8	2.5 2.5	2.5		6.3 7.0	6.7	
9-May-14	Rainy	Moderate	10:31		Surface	1.0	23.3 23.3	23.3	8.4 8.4	8.4	26.9 26.9	26.9	92.1 90.3	91.2	6.7 6.6	6.7		9.5 9.5	9.5		4.3 5.5	4.9	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	9.5	-	-	5.2
					Bottom	2.2	23.3	23.3	8.3 8.3	8.3	27.4 27.4	27.4	91.2 95.0	93.1	6.6	6.8	6.8	9.5 9.5	9.5		5.6 5.2	5.4	
12-May-14	Sunny	Moderate	16:39		Surface	1.0	25.3	25.5	8.2	8.2	17.1	17.0	92.2	93.1	6.9	7.0		8.0	8.1		3.6	3.6	
				3.2	Middle	_	25.6 -	_	8.2	_	16.8	_	93.9	_	7.1	_	7.0	8.2	_	8.3	3.5	_	3.7
					Bottom	2.2	24.3	24.3	8.2	8.2	18.7	18.7	92.4	92.0	6.9	6.8	6.8	8.4	8.4		4.3	3.8	
14-May-14	Sunny	Moderate	18:32		Surface	1.0	24.4 25.8	25.7	8.2 7.7	7.7	18.8 21.5	21.7	91.6 90.3	90.1	6.8	6.5	0.0	8.4 16.2	16.5		3.2 6.8	6.9	
,	,					1.0	25.7	25.7	7.7		21.8	21.7	89.9	90.1	6.5	0.0	6.5	16.8			7.0		
				3.0	Middle	-	- 25.4	-	- 7.6	-	22.6	-	- 89.1	-	6.4	-		- 16.5	-	16.6	6.4	-	6.6
	01 1		07.45		Bottom	2.0	25.7	25.6	7.7	7.7	22.5	22.6	90.5	89.8	6.5	6.5	6.5	16.8	16.7		6.2	6.3	
16-May-14	Cloudy	Moderate	07:45		Surface	1.0	25.7 25.7	25.7	7.6 7.6	7.6	18.1 18.0	18.0	83.9 84.0	84.0	6.2 6.2	6.2	6.2	4.9 4.7	4.8		4.3 4.8	4.6	
				3.1	Middle	1	-	-	-	-		-		-	-	-		-	-	4.8	-	-	4.8
					Bottom	2.1	25.7 25.7	25.7	7.6 7.6	7.6	18.0 18.2	18.1	84.1 83.9	84.0	6.2 6.2	6.2	6.2	4.8 4.8	4.8		5.7 4.3	5.0	
19-May-14	Cloudy	Moderate	10:18		Surface	1.0	26.2 26.2	26.2	7.5 7.5	7.5	16.0 15.9	16.0	82.7 81.1	81.9	6.1 6.0	6.1		3.1 3.2	3.2		3.1 3.1	3.1	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	3.2	-	-	3.2
					Bottom	2.2	26.2	26.2	7.5	7.5	16.1	16.1	81.7	83.5	6.0	6.2	6.2	3.2	3.2		3.0	3.2	
21-May-14	Cloudy	Moderate	12:02		Surface	1.0	26.2 26.4	26.4	7.5 7.6	7.6	16.2 14.9	14.9	85.2 91.1	91.2	6.3 6.8	6.8		3.1 2.6	2.7		3.3 2.2	3.0	
				3.2	Middle		26.4		7.6	-	14.9		91.2	-	6.8		6.8	2.8		2.7	3.8	-	3.4
				3.2		2.0	26.4		7.6		15.8		91.6		6.8	6.7	6.7	2.7		2.1	4.0		5.4
					Bottom	2.2	26.4	26.4	7.6	7.6	15.8	15.8	91.4	91.5	6.7	6.7	6.7	2.6	2.7		3.5	3.8	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	13:28		Surface	1.0	26.5 26.6	26.5	7.6 7.6	7.6	16.2 16.1	16.2	83.2 83.0	83.1	6.1 6.1	6.1	6.1	5.4 5.9	5.7		2.5 2.8	2.7	
				3.1	Middle	-		-		-	-	-	-	-	-	-	0.1	-	-	6.4	-	-	2.7
					Bottom	2.1	26.2 26.4	26.3	7.5 7.6	7.6	18.6 18.2	18.4	81.6 82.6	82.1	5.9 6.0	6.0	6.0	7.0 7.1	7.1		2.4 3.0	2.7	
26-May-14	Sunny	Moderate	17:22		Surface	1.0	29.2 29.2	29.2	7.9 7.8	7.9	13.8 13.8	13.8	128.3 120.3	124.3	9.1 8.6	8.8	8.8	6.8 7.2	7.0		3.2 3.2	3.2	
				2.9	Middle	-		-	1 1	-	-	-	-	-	-	-	0.0	-	-	7.7	-	-	3.7
					Bottom	1.9	28.1 28.1	28.1	7.7 7.8	7.8	16.9 16.8	16.8	115.1 125.7	120.4	8.2 8.9	8.6	8.6	8.7 7.8	8.3		4.4 3.7	4.1	
28-May-14	Sunny	Moderate	18:49		Surface	1.0	27.9 28.1	28.0	8.6 8.6	8.6	19.6 19.1	19.3	128.8 130.7	129.8	9.1 9.2	9.1	9.1	7.7 7.8	7.8		4.7 5.2	5.0	
				2.9	Middle	-		-		-	-	-	-	-	-	-	3.1	-	-	7.8	-	-	5.6
					Bottom	1.9	27.6 27.7	27.7	8.5 8.5	8.5	19.7 19.5	19.6	126.5 120.8	123.7	8.9 8.5	8.7	8.7	7.6 7.7	7.7		6.0 6.1	6.1	
30-May-14	Sunny	Moderate	07:24		Surface	1.0	27.5 27.5	27.5	8.3 8.2	8.3	15.6 15.8	15.7	101.9 96.3	99.1	7.4 7.0	7.2	7.2	1.7 1.8	1.8		4.0 4.1	4.1	
				3.2	Middle	-		-	1 1	-	-	-	-	-	-	-	1.2	-	-	1.8	-	-	4.2
					Bottom	2.2	27.0 27.5	27.2	8.4 8.3	8.3	16.4 15.8	16.1	97.8 94.4	96.1	7.1 6.8	7.0	7.0	1.7 1.8	1.8		3.8 4.5	4.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	14:10		Surface	1.0	24.4 24.4	24.4	8.3 8.3	8.3	26.6 26.6	26.6	91.4 91.3	91.4	6.6 6.6	6.6		4.8 4.8	4.8		5.4 4.6	5.0	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	5.0	-	-	4.6
					Bottom	2.5	24.3	24.3	8.3 8.3	8.3	26.7 26.6	26.7	91.3 91.3	91.3	6.6 6.6	6.6	6.6	5.1 5.0	5.1		4.6 3.8	4.2	
5-May-14	Sunny	Moderate	16:06		0 /		24.4	24.0	8.4		26.3	200	98.0		7.1			2.5			3.8		\vdash
	Jan,				Surface	1.0	24.3	24.3	8.4	8.4	26.2	26.3	99.8	98.9	7.2	7.1	7.1	2.7	2.6		2.1	2.7	
				3.4	Middle	-	24.3	-	8.4	-	- 27.4	-	98.6	-	- 7.1	-		2.8	-	2.8	4.8	-	3.7
					Bottom	2.4	24.3	24.3	8.4	8.4	27.3	27.4	100.5	99.6	7.2	7.1	7.1	3.0	2.9		4.6	4.7	
7-May-14	Cloudy	Moderate	17:40		Surface	1.0	23.4 23.5	23.4	8.4 8.4	8.4	28.5 28.6	28.6	98.8 93.3	96.1	7.1 6.7	6.9	6.9	6.7 6.8	6.8		6.8 6.0	6.4	
				3.4	Middle	-	1 1	-		-	-	-		-		-		-	-	6.9	-	-	6.1
					Bottom	2.4	23.4 23.4	23.4	8.4 8.4	8.4	29.0 28.8	28.9	94.3 91.1	92.7	6.8 6.6	6.7	6.7	7.0 7.0	7.0		6.3 5.2	5.8	Ì
9-May-14	Rainy	Moderate	14:13		Surface	1.0	23.3 23.3	23.3	8.4 8.4	8.4	27.8 27.8	27.8	90.9 91.4	91.2	6.6 6.6	6.6		10.6 10.2	10.4		10.2 9.6	9.9	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	10.3	-	-	10.3
					Bottom	2.8	23.3	23.4	8.3	8.3	27.9	27.9	92.5	91.8	6.7	6.7	6.7	10.2	10.2		11.0	10.6	
12-May-14	Sunny	Moderate	12:09		Surface	1.0	23.4 24.0	24.0	8.4 8.2	8.2	27.8 17.4	17.4	91.1 90.9	91.3	6.6 6.9	6.9		9.0	9.1		10.2 4.2	3.7	
				3.5	Middle		24.0		8.2		17.4 -	_	91.7	_	7.0		6.9	9.1		9.2	3.1	-	4.8
				0.0		2.5	24.0	24.0	8.1	8.2	- 18.4	19.3	91.1	90.9	7.0	6.9	6.9	9.3	0.0	0.2	6.0		1.0
14-May-14	Sunny	Moderate	13:32		Bottom		24.1 25.3		8.2 7.7		20.1		90.6 88.1		6.8		6.9	9.2 19.8	9.3		5.6 8.4	5.8	
	Jan., 9				Surface	1.0	25.3	25.3	7.6	7.7	20.2	20.2	88.8	88.5	6.5	6.5	6.5	19.2	19.5		7.7	8.1	
				3.6	Middle	-	-	-	-	-	-	-	88.0	-	-	-		-	-	19.5	-	-	8.1
					Bottom	2.6	25.2 25.2	25.2	7.7 7.6	7.6	20.5 20.6	20.6	90.1	89.1	6.5 6.6	6.5	6.5	19.8 19.1	19.5		7.6 8.3	8.0	
16-May-14	Cloudy	Moderate	13:22		Surface	1.0	26.0 26.1	26.0	7.6 7.6	7.6	18.0 18.0	18.0	88.2 88.8	88.5	6.5 6.5	6.5	6.5	4.7 5.0	4.9		4.3 2.9	3.6	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	5.1	-	-	4.1
					Bottom	2.7	25.8 25.9	25.9	7.5 7.6	7.6	19.5 19.4	19.5	90.0 88.5	89.3	6.6 6.5	6.5	6.5	5.3 5.3	5.3		4.6 4.6	4.6	
19-May-14	Sunny	Rough	15:30		Surface	1.0	26.8 26.8	26.8	7.5 7.5	7.5	16.0 16.1	16.1	90.6 90.0	90.3	6.6 6.6	6.6	_	4.1 4.3	4.2		4.6 5.2	4.9	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	4.2	-	-	7.4
					Bottom	2.7	26.8	26.8	7.4	7.5	16.1	16.1	91.7	90.9	6.7	6.6	6.6	4.2	4.2		9.6	9.9	İ
21-May-14	Cloudy	Moderate	17:31	<u> </u> 	Surface	1.0	26.8 26.8	26.9	7.5 7.6	7.6	16.2 15.6	15.6	90.0 90.4	91.0	6.6	6.7		4.1	4.7		10.2 5.9	5.6	
				26			26.9	-	7.6	-	15.6 -	-	91.5	-	6.7	· · ·	6.7	4.7		4.8	5.2	-	6.0
				3.6	Middle	-	26.7		- 7.5		- 17.1		94.0		6.8	-	0.0	4.7		4.0	5.6		6.0
					Bottom	2.6	26.8	26.8	7.6	7.5	16.9	17.0	91.7	92.9	6.7	6.8	6.8	4.8	4.8		6.9	6.3	<u> </u>

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	09:35		Surface	1.0	26.5 26.5	26.5	7.7 7.7	7.7	15.4 15.6	15.5	85.8 86.5	86.2	6.3 6.4	6.3	6.3	5.4 5.7	5.6		3.2 3.2	3.2	
				3.4	Middle	-		-		-		-	-	-	-	-	0.3	-	-	7.4	-	-	5.2
					Bottom	2.4	26.5 26.5	26.5	7.6 7.6	7.6	16.5 16.3	16.4	87.3 85.9	86.6	6.4 6.3	6.3	6.3	9.0 9.2	9.1		6.8 7.4	7.1	
26-May-14	Sunny	Moderate	12:13		Surface	1.0	27.6 27.8	27.7	7.6 7.5	7.6	14.0 13.9	13.9	92.1 93.8	93.0	6.7 6.8	6.8	6.8	5.3 5.0	5.2		2.0 2.3	2.2	
				3.5	Middle	-		•		-		-	-	-	-	-	0.0	-	-	5.8	-	ı	2.8
					Bottom	2.5	27.5 27.2	27.3	7.5 7.4	7.5	17.4 17.4	17.4	92.8 92.2	92.5	6.7 6.6	6.7	6.7	6.3 6.3	6.3		3.3 3.3	3.3	
28-May-14	Sunny	Moderate	13:21		Surface	1.0	28.6 28.4	28.5	8.5 8.5	8.5	17.1 17.3	17.2	121.4 118.9	120.2	8.6 8.4	8.5	8.5	20.5 20.2	20.4		5.5 4.5	5.0	
				3.8	Middle	-		-		-		-	-	-	-	-	6.5	-	-	20.7	-	-	5.1
					Bottom	2.8	28.4 28.2	28.3	8.5 8.5	8.5	17.4 17.9	17.6	119.4 119.4	119.4	8.4 8.4	8.4	8.4	20.8 21.1	21.0		4.9 5.3	5.1	
30-May-14	Sunny	Moderate	12:57		Surface	1.0	28.0 27.9	28.0	8.5 8.5	8.5	18.1 18.1	18.1	119.9 123.1	121.5	8.5 8.7	8.6	8.6	5.5 5.4	5.5	_	6.3 4.2	5.3	
				3.6	Middle	-		-		-		-	-	-	-	-	0.0	-	-	5.5	-	-	5.6
					Bottom	2.6	27.9 28.2	28.1	8.5 8.5	8.5	19.5 19.2	19.4	121.5 107.9	114.7	8.5 7.6	8.1	8.1	5.5 5.5	5.5		5.8 5.9	5.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	08:12		Surface	1.0	23.9 23.9	23.9	8.4 8.4	8.4	26.5 26.5	26.5	87.8 88.0	87.9	6.4 6.4	6.4		3.4 3.6	3.5		3.5 3.8	3.7	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	3.7	-	-	3.7
					Bottom	2.5	23.9 23.9	23.9	8.4 8.4	8.4	26.6 26.6	26.6	87.8 87.9	87.9	6.4	6.4	6.4	3.8	3.9		3.9	3.6	
5-May-14	Sunny	Moderate	09:45		Surface	1.0	24.2	24.2	8.4	8.4	26.4	26.4	96.9	96.2	7.0	6.9		2.1	2.1		3.3	2.9	
	,					1.0	24.2		8.4		26.3		95.5		6.9	6.9	6.9	2.0	2.1		2.4	2.9	
				3.6	Middle	-	24.2	-	8.4	-	26.6	-	98.1	-	7.1	-		2.0	-	2.1	3.2	-	3.4
	01 1		11.10		Bottom	2.6	24.2	24.2	8.4	8.4	26.6	26.6	95.8	97.0	6.9	7.0	7.0	2.0	2.0		4.4	3.8	
7-May-14	Cloudy	Moderate	11:40		Surface	1.0	23.4 23.4	23.4	8.4 8.4	8.4	28.5 28.4	28.5	93.3 99.5	96.4	6.7 7.2	7.0	7.0	5.0 5.0	5.0		4.9 5.2	5.1	
				3.4	Middle	-	-	-	-	-		-		-	-	-		-	-	5.2	-	-	5.1
					Bottom	2.4	23.4 23.3	23.4	8.4 8.4	8.4	28.6 28.7	28.7	92.1 95.1	93.6	6.7 6.9	6.8	6.8	5.2 5.3	5.3		5.6 4.6	5.1	
9-May-14	Rainy	Moderate	10:19		Surface	1.0	23.3 23.3	23.3	8.4 8.4	8.4	28.0 28.0	28.0	93.6 92.7	93.2	6.8 6.7	6.8		8.4 8.5	8.5		13.8 13.7	13.8	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	6.8	-	-	8.5	-	-	14.3
					Bottom	2.7	23.3	23.3	8.3 8.4	8.3	28.0 28.0	28.0	95.0 93.0	94.0	6.9	6.8	6.8	8.6 8.3	8.5		15.0 14.6	14.8	
12-May-14	Sunny	Moderate	16:53		Surface	1.0	24.4	24.6	8.2	8.2	18.6	18.6	91.5	92.2	6.8	6.9		12.2	12.1		4.3	3.9	
				3.8	Middle	_	24.8	_	8.2	_	18.5	_	92.9	_	6.9	_	6.9	12.0	_	12.3	3.4	_	4.4
					Bottom	2.8	24.9	24.8	8.2	8.2	20.0	19.6	91.9	91.4	6.9	6.8	6.8	12.6	12.5		4.4	4.9	
14-May-14	Sunny	Moderate	18:46		Surface	1.0	24.7 25.3	25.3	8.2 7.6	7.6	19.3 21.7	21.7	90.8 88.8	88.1	6.8	6.4	0.0	12.4 15.2	15.2		5.4 5.7	6.1	
				0.7		1.0	25.3	25.5	7.6		21.7	21.7	87.4	00.1	6.4	0.4	6.4	15.1		40.0	6.4		
				3.7	Middle	-	25.1	-	- 7.5	-	22.0	-	90.5	-	6.6	-		16.7	-	16.0	5.8	-	5.9
40.14	Ol. I	Madagata	07.00		Bottom	2.7	25.0	25.1	7.6	7.6	22.1	22.1	86.7	88.6	6.3	6.5	6.5	16.9	16.8		5.6	5.7	
16-May-14	Cloudy	Moderate	07:32		Surface	1.0	25.7 25.7	25.7	7.7 7.7	7.7	18.1 18.0	18.1	87.5 86.1	86.8	6.4 6.3	6.4	6.4	5.4 5.4	5.4		6.8 5.8	6.3	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.5	-	-	6.0
					Bottom	2.6	25.9 25.8	25.8	7.7 7.7	7.7	19.1 19.2	19.2	89.1 86.9	88.0	6.5 6.4	6.4	6.4	5.6 5.6	5.6		6.4 4.8	5.6	
19-May-14	Cloudy	Moderate	10:01		Surface	1.0	26.2 26.2	26.2	7.6 7.6	7.6	15.5 15.8	15.6	84.4 85.6	85.0	6.3 6.3	6.3		4.4 4.2	4.3		3.2 4.5	3.9	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	4.4	-	-	4.5
					Bottom	3.1	26.3 26.3	26.3	7.6 7.6	7.6	17.1 17.1	17.1	85.4 87.6	86.5	6.3 6.4	6.3	6.3	4.3 4.4	4.4		5.2 4.9	5.1	
21-May-14	Cloudy	Moderate	11:48		Surface	1.0	26.4	26.4	7.6	7.6	15.3	15.3	87.1	87.6	6.4	6.5		5.9	5.9		5.6	5.6	
				3.6	Middle	_	26.4	-	7.6	-	15.4	_	88.1	_	6.5	_	6.5	5.9	_	6.1	5.6	-	5.9
					Bottom	2.6	26.4	26.4	7.6	7.6	15.5	15.5	89.8	88.6	6.6	6.5	6.5	6.2	6.2		6.0	6.1	
					DOUGHI	2.0	26.4	20.4	7.6	7.0	15.5	13.3	87.3	0.00	6.4	0.0	0.0	6.2	0.2		6.1	0.1	<u> </u>

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	13:42		Surface	1.0	26.4 26.4	26.4	7.7 7.6	7.6	15.7 15.7	15.7	90.1 91.1	90.6	6.6 6.7	6.7	6.7	3.2 3.1	3.2		2.9 3.2	3.1	
				3.2	Middle	-		•		-		-	-	-		-	0.7	-	-	3.4	-	-	3.1
					Bottom	2.2	26.4 26.4	26.4	7.6 7.6	7.6	15.8 15.9	15.8	89.2 91.3	90.3	6.6 6.7	6.6	6.6	3.7 3.4	3.6		3.4 2.6	3.0	
26-May-14	Sunny	Moderate	17:37		Surface	1.0	28.5 28.6	28.6	7.8 7.8	7.8	14.3 14.3	14.3	109.2 114.3	111.8	7.8 8.2	8.0	8.0	8.6 7.9	8.3		2.8 3.0	2.9	
				3.3	Middle	-	-	-		-	-	-	-	-		-	0.0	-	-	9.8	-	-	2.9
					Bottom	2.3	28.2 28.0	28.1	7.7 7.7	7.7	16.3 17.1	16.7	111.6 105.5	108.6	8.0 7.5	7.7	7.7	11.0 11.6	11.3		2.8 2.8	2.8	
28-May-14	Sunny	Moderate	19:01		Surface	1.0	29.1 29.0	29.1	8.6 8.7	8.6	17.1 17.1	17.1	150.3 156.6	153.5	10.5 11.0	10.7	10.7	9.3 9.7	9.5		9.4 8.1	8.8	
				3.6	Middle	-	-	-		-	-	-	-	-		-	10.7	-	-	9.5	-	-	8.4
					Bottom	2.6	28.8 26.9	27.9	8.7 8.6	8.6	18.3 21.5	19.9	148.3 148.9	148.6	10.3 10.4	10.3	10.3	9.6 9.4	9.5		7.9 8.1	8.0	
30-May-14	Sunny	Moderate	07:11		Surface	1.0	27.7 27.7	27.7	8.5 8.4	8.4	16.7 16.8	16.8	111.3 109.1	110.2	8.0 7.8	7.9	7.9	1.7 1.8	1.8		5.4 4.3	4.9	
				3.6	Middle	-	-	-		-	-	-	-	-		-	1.9	-	-	1.8	-	-	5.7
					Bottom	2.6	27.6 27.7	27.7	8.3 8.5	8.4	17.7 17.4	17.5	104.5 111.0	107.8	7.5 7.9	7.7	7.7	1.8 1.8	1.8		6.6 6.2	6.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	15:00		Surface	1.0	24.3 24.3	24.3	8.2 8.2	8.2	26.9 26.9	26.9	89.8 90.0	89.9	6.5 6.5	6.5		3.7 3.8	3.8		3.8 3.4	3.6	
				10.9	Middle	5.5	24.2 24.1	24.2	8.2 8.2	8.2	27.2 27.3	27.3	89.7 90.0	89.9	6.5 6.5	6.5	6.5	3.7 3.7	3.7	3.8	5.1 4.6	4.9	4.3
					Bottom	9.9	23.9	24.0	8.2 8.2	8.2	29.2 28.7	29.0	89.1 89.1	89.1	6.4 6.4	6.4	6.4	3.8	3.9		5.2 3.7	4.5	
5-May-14	Sunny	Moderate	17:00		Surface	1.0	24.3	24.3	8.3	8.3	26.1	26.0	88.9	89.2	6.4	6.4		2.5	2.6		2.9	2.5	
				10.5	Middle	5.3	24.2	24.1	8.3 8.3	8.3	26.0	28.7	89.5 87.8	87.8	6.5	6.3	6.4	3.4	3.5	3.2	4.2	3.2	2.9
					Bottom	9.5	24.1 24.0	24.0	8.3 8.2	8.2	28.7 30.1	30.2	87.8 88.2	88.3	6.3 6.3	6.3	6.3	3.5 3.3	3.4		3.5	3.1	
7-May-14	Cloudy	Moderate	18:47		Surface	1.0	23.9 23.6	23.6	8.2 8.2	8.2	30.3 29.9	29.9	88.4 89.4	89.1	6.3	6.4		3.4	3.1		2.7 5.2	5.0	
				40.4			23.6 23.7		8.2 8.2		29.9 30.1	30.2	88.7 88.0	88.0	6.3		6.4	3.2		3.5	4.8 6.5		
				10.4	Middle	5.2	23.7	23.7	8.2 8.2	8.2	30.2 30.9		87.9 88.2		6.3	6.3	0.0	3.7 3.8	3.7	3.5	6.0	6.3	5.7
9-May-14	Rainy	Moderate	09:50		Bottom	9.4	23.7 23.6	23.7	8.2 8.2	8.2	30.7 28.0	30.8	88.5 87.2	88.4	6.3	6.3	6.3	3.7 4.0	3.8		5.1 5.1	5.9	<u> </u>
,	,				Surface	1.0	23.6	23.6	8.1 8.1	8.2	28.0	28.0	88.2 85.6	87.7	6.4	6.3	6.2	3.8	3.9		5.6	5.4	.
				10.4	Middle	5.2	23.6	23.7	8.2 8.1	8.1	30.3 30.4	30.3	85.6 86.1	85.6	6.1	6.1		7.9 7.8	8.1	6.6	5.3 5.1	5.8	5.5
12-May-14	Sunny	Moderate	11:32		Bottom	9.4	23.6 24.1	23.6	8.1 8.0	8.1	30.3	30.4	86.4 84.5	86.3	6.2	6.1	6.1	7.6 9.1	7.7		5.2	5.2	
12-IVIAY-14	Suring	Moderate	11.32		Surface	1.0	24.1	24.1	8.0	8.0	14.1	14.0	83.5	84.0	6.5	6.5	6.4	9.2	9.2		3.1	3.5	
				10.6	Middle	5.3	23.7 23.7	23.7	7.8 8.0	7.9	21.2	20.7	82.2 81.9	82.1	6.2 6.2	6.2		13.5 13.4	13.5	12.4	5.2 3.1	4.2	3.9
					Bottom	9.6	23.7 23.7	23.7	7.6 7.9	7.8	24.5 24.8	24.6	83.6 82.9	83.3	6.2 6.1	6.1	6.1	14.5 14.6	14.6		4.5 3.7	4.1	
14-May-14	Sunny	Moderate	12:41		Surface	1.0	25.2 25.2	25.2	8.1 8.1	8.1	17.9 17.9	17.9	86.9 85.9	86.4	6.5 6.4	6.4	6.4	6.6 6.2	6.4		6.1 6.1	6.1	
				10.1	Middle	5.1	25.0 24.9	25.0	8.1 8.1	8.1	19.9 20.4	20.1	85.2 86.8	86.0	6.3 6.4	6.3	0.4	10.8 11.1	11.0	10.3	7.6 5.9	6.8	7.1
					Bottom	9.1	24.8 24.9	24.9	8.1 8.1	8.1	21.3 21.4	21.4	87.6 85.4	86.5	6.4 6.3	6.4	6.4	13.3 13.5	13.4		8.5 8.3	8.4	
16-May-14	Cloudy	Moderate	13:48		Surface	1.0	25.4 25.3	25.4	8.1 8.1	8.1	17.8 19.1	18.5	81.7 81.6	81.7	6.1 6.0	6.0	6.0	7.7 7.9	7.8		4.5 4.6	4.6	
				11.3	Middle	5.7	25.3 25.3	25.3	8.1 8.1	8.1	19.9 20.5	20.2	81.4 81.5	81.5	6.0 6.0	6.0	6.0	9.0 9.0	9.0	8.8	4.7 4.6	4.7	5.0
					Bottom	10.3	25.3 25.3	25.3	8.1 8.1	8.1	21.2	21.3	81.3 81.7	81.5	5.9 6.0	5.9	5.9	9.4 9.5	9.5		5.2	5.6	
19-May-14	Sunny	Rough	16:47		Surface	1.0	26.8 26.7	26.7	8.1 8.1	8.1	14.3 14.4	14.4	80.5 79.9	80.2	5.9 5.9	5.9		4.2 4.3	4.3		3.2 3.3	3.3	
				11.1	Middle	5.6	25.7	25.9	8.0 8.1	8.0	17.6	16.4	78.1 77.0	77.6	5.7	5.7	5.8	4.4	4.4	4.4	3.3	3.3	3.5
					Bottom	10.1	26.1 25.8	25.7	8.0	8.0	15.2 19.7	19.8	77.2	76.8	5.7	5.7	5.7	4.5	4.6		3.2	3.8	
21-May-14	Cloudy	Moderate	18:14		Surface	1.0	25.7 26.2	26.2	8.0 8.1	8.1	19.9 14.2	14.7	76.3 72.6	73.2	5.6 5.4	5.4		4.6	3.8		7.3	6.9	
				10.2	Middle	5.1	26.3 25.7	25.7	8.1 8.1	8.1	15.2 20.3	20.3	73.7 71.4	71.6	5.5 5.2	5.2	5.3	3.6 4.5	4.4	4.1	7.1	7.3	6.8
				10.2	Bottom	9.2	25.7 25.7	25.7	8.1 8.0	8.0	20.3	20.7	71.8 72.9	72.4	5.2 5.3	5.3	5.3	4.3 3.9	4.0	7.1	7.5 6.0	6.1	. 0.0
					ווטווטם	9.2	25.7	23.1	8.0	0.0	20.5	20.7	71.9	12.4	5.2	5.5	ა.ა	4.1	4.0		6.2	0.1	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplii	ng	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	09:08		Surface	1.0	26.2 26.2	26.2	8.1 8.1	8.1	13.9 14.1	14.0	70.0 71.9	71.0	5.2 5.4	5.3	5.3	4.9 5.0	5.0		4.0 2.9	3.5	
				10.4	Middle	5.2	25.8 25.8	25.8	8.1 8.1	8.1	18.7 18.2	18.5	69.3 71.4	70.4	5.1 5.3	5.2	5.5	6.7 6.9	6.8	6.2	3.3 4.3	3.8	3.5
					Bottom	9.4	25.5 25.1	25.3	7.9 8.1	8.0	26.3 26.3	26.3	70.5 73.5	72.0	5.0 5.2	5.1	5.1	6.5 6.8	6.7		3.6 2.7	3.2	
26-May-14	Sunny	Moderate	11:50		Surface	1.0	27.0 27.1	27.1	7.9 8.0	8.0	11.9 11.0	11.4	70.0 70.6	70.3	5.2 5.3	5.3	5.2	6.5 6.3	6.4		3.9 3.3	3.6	
				10.5	Middle	5.3	26.5 26.5	26.5	8.0 8.0	8.0	14.4 14.5	14.5	67.5 68.0	67.8	5.0 5.0	5.0	U.L	6.4 6.6	6.5	6.7	5.3 5.3	5.3	4.8
					Bottom	9.5	25.9 26.0	25.9	8.0 7.8	7.9	21.2 21.2	21.2	69.9 67.1	68.5	5.1 4.8	4.9	4.9	7.1 7.4	7.3		5.5 5.5	5.5	
28-May-14	Sunny	Moderate	12:32		Surface	1.0	27.6 27.2	27.4	8.1 8.1	8.1	15.4 15.7	15.5	85.6 85.6	85.6	6.2 6.1	6.2	6.1	2.1 2.0	2.1		4.2 3.2	3.7	
				11.1	Middle	5.6	26.9 27.0	27.0	8.1 8.1	8.1	17.2 17.8	17.5	81.8 83.3	82.6	5.9 6.0	5.9	0.1	2.1 2.2	2.2	2.2	4.3 2.6	3.5	3.3
					Bottom	10.1	26.8 27.2	27.0	8.1 8.1	8.1	18.8 18.5	18.7	80.4 82.6	81.5	5.8 6.0	5.9	5.9	2.4 2.4	2.4		2.1 3.0	2.6	
30-May-14	Sunny	Moderate	13:57		Surface	1.0	27.6 27.6	27.6	8.1 8.1	8.1	14.6 14.7	14.6	82.5 79.0	80.8	6.0 5.7	5.9	5.6	2.9 2.8	2.9		2.9 2.6	2.8	
				10.4	Middle	5.2	26.7 26.7	26.7	8.1 8.1	8.1	19.8 20.2	20.0	74.2 72.4	73.3	5.3 5.2	5.3	5.0	5.4 5.6	5.5	4.7	2.8 2.5	2.7	2.9
					Bottom	9.4	26.5 26.5	26.5	8.0 8.0	8.0	23.6 23.0	23.3	74.6 77.2	75.9	5.3 5.5	5.4	5.4	5.6 5.5	5.6		2.5 4.0	3.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS10 - Mid-FloodTide

S-May-14 Sunny Moderate O9:37 Surface 10.0 24.3 24.3 8.2 22.2 22.2 22.2 88.5 88.7 6.6 6.2 6.2 10.4 10.4 6.4	_
Moderate 10.6 Middle 5.3 23.9 8.2 27.1 27.3 86.4 80.8 6.2 6.2 6.2 6.2 10.4 10.4 10.4 10.5 6.5	5.6
10.6 Middle 5.3 23.8 23.9 8.2 27.9 27.9 68.0 86.7 6.1 6.2 6.2 10.1 10.3 8.5 6.5 6.4 6.4 6.4 6.5 6.2 6.2 10.3 10.4 10.3 8.5 6.5 6.4 6.4 6.4 6.5 6.2 6.2 10.3 10.4 10.3 6.4 6.4 6.4 6.4 6.5 6.2 6.2 10.3 10.4 10.3 6.4 6.4 6.4 6.4 6.5 6.2 6.2 10.3 10.4 10.3 6.4 6.4 6.4 6.4 6.5 6.2 6.2 10.3 10.4 10.4 10.3 6.4 6.4 6.4 6.5 6.2 6.2 10.3 10.4 10.4 10.3 6.4 6.4 6.4 6.5 6.2 6.2 10.3 10.4 10.4 10.5 6.5 6.4 6.4 6.5 6.2 6.2 10.3 10.4 10.4 10.5 6.5 6.4 6.4 6.5 6.2 6.2 10.3 10.4 10.4 10.5 6.5 6.4 6.4 6.5 6.5 6.4 6.4 6.5 6.5 6.4 6.4 6.5 6.5 6.4 6.4 6.5 6.5 6.4 6.4 6.5 6.5 6.4 6.4 6.5 6.5 6.4 6.4 6.5 6.5 6.4 6.4 6.5 6.5 6.4 6.4 6.5 6.5 6.4 6.4 6.5 6.5 6.5 6.4 6.4 6.5 6.5 6.5 6.4 6.4 6.5 6.5 6.5 6.4 6.4 6.5 6.5 6.5 6.5 6.4 6.4 6.5 6.5 6.5 6.5 6.5 6.4 6.4 6.5 6.	
Surface 10.23 S.23 S.23 S.2 S.	
S-May-14 Sunny Moderate Sunny Modera	
Surface 10, 243 24.0 8.2 8.2 29.1 22.1 89.8 88.5 6.4 6.3 6.5	
10.7 Middle 5.4 24.0 24.0 8.2 8.2 29.1 29.1 88.8 85.5 6.4 6.3 6.2 5.2 5.4 5.2 27 3.4	
Part	3.6
7-May-14 Cloudy Moderate 11:25	_
10.8 Middle 1.0 2.37 2.37 2.38 8.2 8.2 30.1 30.1 88.0 88.6 6.3 6.3 6.3 6.3 5.7 5.5 5.7 6.9	
10.8 Middle 5.4 23.8 8.2 8.2 30.7 30.6 89.5 88.6 6.4 6.3 6.3 5.7 5.5 5.7 5.5 5.7 7.6 6.9	
Surface 10.3 Surface 10.4 Surface 10.4 Surface 10.4 Surface 10.5 Surf	7.0
Surface 1.0 23.6 23.6 8.2 28.5 8.2 28.5 86.9 87.1 6.3	7.0
10.3 Middle 5.2 23.7 23.7 8.2 8.2 30.6 30.6 84.5 85.2 6.0 6.0 6.2 8.8 8.7 8.6 6.5 6.5 6.1 6.1 6.1 7.4	
10.3 Middle 5.2 23.7 23.7 8.2 8.2 30.6 30.6 84.8 85.2 6.0 6.0 6.0 8.8 8.7 6.9 5.1 5.6 5.8	
Bottom 9.3 23.7 8.2 30.6 86.6 86.5 6.1	5.5
12-May-14 Sunny Moderate 17:47 Sunny Moderate 17:47 10.7 Middle 5.4 23.9 23.7 23.7 23.7 8.2 8.2 30.6 30.6 86.3 86.5 6.1 6.1 6.1 7.4 7.4 6.2	- 5.5
10.7 Middle 5.4 23.9 23.9 8.1 8.1 19.5 20.1 80.5 80.6 6.0 6.1 10.8 10.8 10.7 10.5 4.4 4.5	
10.7 Middle 5.4 23.9 23.8 23.9 8.1 8.1 19.5 20.1 80.7 80.6 6.1 6.1 10.8 10.7 10.5 3.7 4.4 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	
No. Middle S.4 23.8 23.9 8.1 S.1 20.7 20.1 80.5 80.0 6.0 6.1 10.6 10.7 10.3 4.4	4.6
14-May-14 Sunny Moderate 19:23 Surface 1.0 25.8 25.8 8.0 8.0 8.0 14.5 14.0 84.2 84.4 6.3 6.4 6.3 11.5 11.5 11.5 4.9	4.6
10.2 Middle 1.0 25.8 23.8 8.0 8.0 13.5 14.0 84.5 64.4 6.4 6.4 6.3 10.9 10.9 11.1 10.9 11.1 11.1 11.3 11.3	
10.2 Middle 5.1 25.2 25.1 8.0 8.0 18.9 19.3 83.1 82.3 6.1 6.1 6.1 11.3 11.1 9.8 3.9 5.1 80.0 8.0 19.8 20.2 83.3 82.8 6.1 6.1 6.1 6.1 9.6 10.1 5.0 5.0 5.0 16-May-14 Cloudy Moderate 08:06 Surface 1.0 25.3 25.3 8.0 8.0 19.6 19.6 19.6 79.9 79.7 5.9 5.9 13.3 13.3 7.8	
Nice 10.2 Middle 5.1 24.9 25.1 8.0 0.0 19.7 19.5 81.5 62.3 6.0 0.1 11.3 11.1 9.6 5.1	-
16-May-14 Cloudy Moderate 08:06 Surface 1.0 25.3 25.3 8.0 8.0 19.6 19.6 19.6 79.9 79.7 5.9 5.9 13.3 13.3 7.8	4.7
5urrace 1.0 5urrace 1.0 25.3 20 8.0 40.0 19.6 70.5 79.7 50.9 40.0 13.3 20.4	
254 94 204 50 3.9 442 79	
11.5 Mildel 5.6 25.2 25.1 8.1 6.1 19.8 20.1 79.4 79.6 5.8 5.9 14.5 14.4 14.1 6.6	7.1
Bottom 10.6 25.0 25.1 8.1 8.0 22.2 21.9 80.4 79.9 5.9 5.8 5.8 14.4 14.5 6.4 5.9	
19-May-14 Cloudy Moderate 09:39 Surface 1.0 26.0 26.0 8.0 8.0 14.9 15.0 80.1 78.5 5.8 5.8 4.0 4.0 6.4	
25.9 26.0 8.0 0.0 15.0 0.0 76.8 70.0 5.7 5.8 4.0 7.0 6.2 6.2	-
11.1 Milde 5.6 25.6 25.7 8.0 8.0 16.2 15.7 79.0 77.8 5.9 5.8 4.2 4.2 4.2 6.1	6.5
Bottom 10.1 25.6 25.6 8.0 8.0 20.8 76.6 77.4 5.6 5.7 5.7 4.4 4.3 7.2 7.1	
21-May-14 Cloudy Moderate 11:41 Surface 10 26.1 26.1 8.1 8.1 14.5 14.3 79.3 78.8 5.9 5.9 7.1 6.9 4.2	1
26.1 8.1 14.2 /8.2 5.8 6./ 4.5 25.8 5.8 6.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	_
10.3 Mildele 5.2 25.8 25.7 8.1 8.1 19.3 20.8 76.0 76.9 5.6 5.6 13.1 12.9 12.2 5.5	5.0
Bottom 9.3 25.5 25.5 8.1 8.0 22.9 23.0 80.2 77.0 78.6 5.8 5.7 5.7 16.8 16.8 5.3 5.3	1

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	14:32		Surface	1.0	26.4 26.4	26.4	8.0 8.1	8.0	12.2 12.3	12.3	76.7 74.8	75.8	5.8 5.6	5.7	5.4	5.2 5.3	5.3		4.8 4.9	4.9	
				10.8	Middle	5.4	25.8 25.7	25.8	8.0 8.0	8.0	18.1 19.3	18.7	70.0 69.7	69.9	5.2 5.1	5.1	5.4	5.5 5.2	5.4	5.4	5.3 3.8	4.6	4.7
					Bottom	9.8	25.1 25.2	25.2	7.9 7.9	7.9	27.5 27.3	27.4	71.4 71.8	71.6	5.0 5.1	5.1	5.1	5.5 5.4	5.5		4.4 4.7	4.6	
26-May-14	Sunny	Moderate	17:50		Surface	1.0	27.7 27.8	27.7	8.1 8.0	8.1	9.7 9.8	9.8	80.7 81.3	81.0	6.0 6.1	6.0	5.8	6.4 6.3	6.4		5.2 5.0	5.1	
				10.9	Middle	5.5	27.1 27.4	27.2	8.0 8.1	8.0	16.8 16.8	16.8	77.2 74.3	75.8	5.6 5.4	5.5	0.0	8.6 8.4	8.5	7.9	5.7 5.8	5.8	5.7
					Bottom	9.9	25.7 25.8	25.7	7.9 7.9	7.9	25.1 24.4	24.8	72.2 76.1	74.2	5.1 5.4	5.3	5.3	8.7 8.8	8.8		6.2 6.2	6.2	
28-May-14	Sunny	Moderate	18:59		Surface	1.0	27.8 27.8	27.8	8.1 8.1	8.1	10.9 10.5	10.7	89.4 89.6	89.5	6.6 6.6	6.6	6.6	4.4 4.4	4.4		4.8 3.2	4.0	
				11.2	Middle	5.6	27.7 27.7	27.7	8.1 8.1	8.1	12.8 12.4	12.6	89.3 89.4	89.4	6.5 6.5	6.5	0.0	4.4 4.4	4.4	4.5	4.5 5.5	5.0	4.3
					Bottom	10.2	27.8 27.7	27.7	8.0 8.0	8.0	15.3 15.5	15.4	89.1 89.1	89.1	6.5 6.5	6.5	6.5	4.8 4.4	4.6		4.0 3.7	3.9	
30-May-14	Sunny	Moderate	06:57		Surface	1.0	27.2 27.1	27.1	8.1 8.1	8.1	18.1 18.5	18.3	79.1 76.3	77.7	5.7 5.5	5.6	5.4	5.3 5.5	5.4		4.7 4.6	4.7	
				10.9	Middle	5.5	26.5 26.5	26.5	8.1 8.1	8.1	22.0 23.1	22.6	73.7 72.2	73.0	5.2 5.1	5.2	5.4	5.5 5.6	5.6	5.6	6.0 4.2	5.1	5.2
					Bottom	9.9	26.4 26.3	26.3	8.1 8.1	8.1	24.1 24.4	24.3	74.4 75.1	74.8	5.2 5.3	5.3	5.3	5.6 5.7	5.7		5.8 5.6	5.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	15:09		Surface	1.0	24.1 24.2	24.1	8.2 8.2	8.2	27.1 27.3	27.2	90.4 89.0	89.7	6.5 6.4	6.5		7.7 7.5	7.6		4.7 4.5	4.6	
				10.4	Middle	5.2	23.8 23.9	23.9	8.2 8.2	8.2	29.0 28.5	28.8	89.4 90.5	90.0	6.4 6.5	6.4	6.5	10.3	10.3	9.4	5.3 5.0	5.2	4.7
					Bottom	9.4	24.0	23.9	8.2 8.2	8.2	28.8	29.0	93.2 88.9	91.1	6.7 6.4	6.5	6.5	10.4 10.2	10.3		5.2 3.4	4.3	
5-May-14	Sunny	Moderate	17:12		Surface	1.0	24.2	24.2	8.2	8.2	26.4	26.4	89.4	90.5	6.5	6.5		2.2	2.2		2.5	2.9	
				10.2	Middle	5.1	24.2 24.0	24.0	8.2 8.2	8.2	26.4 29.0	29.0	91.6 89.1	90.7	6.6 6.4	6.5	6.5	2.2	3.0	2.7	3.3	3.8	3.3
				10.2			24.0 24.0		8.2 8.2		29.0 29.3		92.2 90.2		6.6		0.0	3.0 2.8		2.1	4.1 2.7		3.3
7-May-14	Cloudy	Moderate	19:00		Bottom	9.2	24.0 23.6	24.0	8.2 8.2	8.2	29.0 30.2	29.2	95.2 87.2	92.7	6.8	6.6	6.6	2.9 6.2	2.9		3.6 6.1	3.2	
7-Iviay-14	Cloudy	Moderate	19.00		Surface	1.0	23.7	23.7	8.2	8.2	30.3	30.2	88.0	87.6	6.3	6.2	6.2	6.0	6.1		5.9	6.0	
				10.3	Middle	5.2	23.7 23.7	23.7	8.2 8.2	8.2	30.9 30.7	30.8	88.5 84.9	86.7	6.3 6.0	6.2		7.4 7.4	7.4	7.0	6.6 6.4	6.5	6.1
					Bottom	9.3	23.7 23.7	23.7	8.2 8.2	8.2	31.3 31.4	31.3	91.6 85.7	88.7	6.5 6.1	6.3	6.3	7.6 7.6	7.6		6.6 4.8	5.7	
9-May-14	Rainy	Moderate	09:38		Surface	1.0	23.6 23.6	23.6	8.2 8.2	8.2	28.7 28.6	28.7	86.8 86.3	86.6	6.3 6.2	6.2	6.2	4.6 4.9	4.8		5.9 5.8	5.9	
				10.2	Middle	5.1	23.6 23.6	23.6	8.1 8.2	8.2	30.4 30.4	30.4	85.1 85.7	85.4	6.1 6.1	6.1	6.2	6.1 5.8	6.0	5.7	6.8 6.3	6.6	6.5
					Bottom	9.2	23.6	23.7	8.2 8.1	8.1	30.4 30.5	30.5	86.4 85.5	86.0	6.2 6.1	6.1	6.1	6.3	6.3		6.4	7.1	
12-May-14	Sunny	Moderate	11:21		Surface	1.0	24.0 24.0	24.0	8.0 8.0	8.0	15.4 15.2	15.3	84.8 84.1	84.5	6.5 6.5	6.5		11.2	11.4		3.5 4.3	3.9	
				10.4	Middle	5.2	23.7	23.7	7.9	8.0	20.0	20.1	83.2	83.0	6.3	6.3	6.4	11.5	11.5	11.4	4.6	4.9	4.3
					Bottom	9.4	23.7 23.7	23.7	7.8	7.9	20.2 24.3	23.9	82.8 84.7	84.3	6.2	6.2	6.2	11.5 11.2	11.3		5.1 3.7	4.2	
14-May-14	Sunny	Moderate	12:32		Surface	1.0	23.7 25.1	25.1	7.9 8.1	8.1	23.6 17.8	17.8	83.8 83.8	84.1	6.2	6.3	0.2	7.8	7.9		4.6 6.1	6.0	
				40.0			25.2 24.4		8.1 8.1		17.7 23.1		84.3 80.7		6.3 5.9		6.1	8.0 10.2		40.4	5.8 8.0		7.0
				10.2	Middle	5.1	24.4 24.4	24.4	8.1 8.1	8.1	23.1 23.4	23.1	81.2 82.3	81.0	5.9 6.0	5.9		10.5 12.1	10.4	10.1	7.9 7.3	8.0	7.2
16-May-14	Cloudy	Moderate	13:54		Bottom	9.2	24.4 25.5	24.4	8.1 8.1	8.1	23.3	23.4	81.2 81.7	81.8	5.9 6.1	6.0	6.0	11.8	12.0		7.8	7.6	
16-May-14	Cloudy	Moderate	13.54		Surface	1.0	25.4	25.5	8.1	8.1	17.6	17.5	81.5	81.6	6.1	6.1	6.1	10.1	10.0		4.4	4.4	
				11.3	Middle	5.7	25.2 25.2	25.2	8.1 8.1	8.1	20.1 20.2	20.2	81.1 80.9	81.0	6.0 5.9	6.0		11.3 11.1	11.2	11.2	4.0 5.1	4.6	5.3
					Bottom	10.3	25.1 25.3	25.2	8.0 8.0	8.0	22.1 22.2	22.2	81.2 81.1	81.2	5.9 5.9	5.9	5.9	12.4 12.6	12.5		6.5 7.3	6.9	
19-May-14	Sunny	Rough	16:55		Surface	1.0	27.0 26.6	26.8	8.1 8.1	8.1	14.5 15.3	14.9	86.8 83.8	85.3	6.4 6.2	6.3	0.0	4.3 4.1	4.2		4.4 3.6	4.0	
				11.1	Middle	5.6	25.9 25.9	25.9	8.1 8.1	8.1	18.2 18.7	18.4	83.6 80.6	82.1	6.1 5.9	6.0	6.2	4.5 4.4	4.5	4.5	4.5 4.7	4.6	4.8
					Bottom	10.1	25.7 26.0	25.8	8.1 8.0	8.1	20.0	20.1	78.9 80.7	79.8	5.8 5.9	5.9	5.9	4.6 4.8	4.7		6.3 5.5	5.9	
21-May-14	Cloudy	Moderate	18:24		Surface	1.0	26.6	26.6	8.0	8.1	13.5	13.5	78.9	77.9	5.9	5.8		3.8	3.8		4.7	4.4	
				10.1	Middle	5.1	26.6 25.8	25.8	8.1 8.0	8.0	13.5 19.4	19.4	76.8 72.9	72.3	5.7 5.3	5.3	5.6	3.7 5.4	5.4	4.8	4.0 5.2	4.9	5.5
						9.1	25.8 25.8	25.8	8.0 8.0	8.0	19.5 19.8	19.9	71.6 74.0	73.7	5.2 5.4	5.4	5.4	5.3 5.4	5.2		4.6 6.8	7.1	0.0
					Bottom	9.1	25.8	25.8	8.0	8.0	19.9	19.9	73.3	13.1	5.3	5.4	5.4	4.9	5.2		7.3	7.1	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	08:58		Surface	1.0	26.3 26.3	26.3	8.1 8.1	8.1	12.8 13.1	12.9	76.5 76.5	76.5	5.7 5.7	5.7	5.6	4.3 4.2	4.3		3.2 3.5	3.4	
				10.5	Middle	5.3	26.0 26.0	26.0	8.1 8.0	8.1	18.8 19.4	19.1	74.3 74.8	74.6	5.4 5.4	5.4	5.0	4.5 4.5	4.5	4.5	4.3 4.4	4.4	4.0
					Bottom	9.5	25.5 25.9	25.7	8.0 8.0	8.0	22.9 21.6	22.2	73.2 75.6	74.4	5.3 5.4	5.4	5.4	4.6 4.6	4.6		3.6 4.6	4.1	
26-May-14	Sunny	Moderate	11:39		Surface	1.0	27.7 27.7	27.7	8.0 7.9	8.0	9.5 9.4	9.4	72.5 74.6	73.6	5.4 5.6	5.5	5.3	6.3 6.0	6.2		4.0 4.0	4.0	
				10.3	Middle	5.2	26.6 26.4	26.5	7.9 7.9	7.9	15.0 17.8	16.4	67.8 67.0	67.4	5.1 5.0	5.1	0.0	6.6 7.0	6.8	6.6	5.1 5.3	5.2	4.8
					Bottom	9.3	26.2 26.1	26.1	7.8 7.9	7.9	18.2 18.3	18.2	69.3 67.2	68.3	5.1 4.9	5.0	5.0	6.8 6.7	6.8		5.2 4.9	5.1	
28-May-14	Sunny	Moderate	12:20		Surface	1.0	27.7 27.5	27.6	8.1 8.1	8.1	14.7 14.8	14.7	84.2 84.8	84.5	6.1 6.2	6.1	6.0	1.7 1.6	1.7		3.1 2.7	2.9	
				11.1	Middle	5.6	27.2 26.8	27.0	8.1 8.1	8.1	15.7 15.9	15.8	83.2 80.7	82.0	6.0 5.8	5.9	0.0	1.8 2.0	1.9	1.9	3.1 2.8	3.0	2.9
					Bottom	10.1	26.7 26.7	26.7	8.1 8.1	8.1	19.9 19.8	19.8	79.5 81.9	80.7	5.8 6.0	5.9	5.9	2.0 2.0	2.0		3.0 2.5	2.8	
30-May-14	Sunny	Moderate	14:06		Surface	1.0	28.1 27.9	28.0	8.2 8.2	8.2	14.5 15.0	14.8	93.9 90.8	92.4	6.8 6.6	6.7	6.3	2.6 2.5	2.6		2.9 2.3	2.6	
				10.4	Middle	5.2	27.1 27.1	27.1	8.1 8.1	8.1	18.7 18.5	18.6	79.5 85.6	82.6	5.7 6.1	5.9	0.5	2.5 2.5	2.5	2.5	2.9 2.2	2.6	2.8
					Bottom	9.4	26.6 26.6	26.6	8.1 8.1	8.1	23.1 22.4	22.8	80.2 80.3	80.3	5.7 5.7	5.7	5.7	2.5 2.5	2.5		2.7 3.6	3.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Ti	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	07:51		Surface	1.0	23.9 23.9	23.9	8.2 8.2	8.2	27.2 26.9	27.0	85.5 85.4	85.5	6.2 6.2	6.2		4.2 4.4	4.3		5.1 4.9	5.0	
				10.4	Middle	5.2	23.8	23.8	8.2	8.2	28.0	28.0	84.9	85.0	6.1	6.1	6.2	4.5	4.6	4.6	5.3	5.2	4.9
				10.4	Wilddie		23.8		8.2 8.1		28.0 28.0		85.0 84.9		6.1 6.1			4.6 4.8		4.0	5.1 4.1		4.5
					Bottom	9.4	23.9	23.8	8.2	8.2	28.0	28.0	85.1	85.0	6.1	6.1	6.1	4.8	4.8		4.8	4.5	
5-May-14	Sunny	Moderate	09:28		Surface	1.0	24.2 24.2	24.2	8.2 8.2	8.2	25.8 25.7	25.8	89.7 89.3	89.5	6.5 6.5	6.5		2.7 2.6	2.7		3.8 4.1	4.0	
				10.6	Middle	5.3	24.2	24.1	8.2	8.2	27.7	27.7	89.0	89.0	6.4	6.4	6.5	3.3	3.4	3.1	3.6	3.7	3.7
				10.0	Wilddie		24.1 24.1		8.2 8.2		27.7 28.8		88.9 89.7		6.4	0.4		3.4		5.1	3.7 4.2		5.7
					Bottom	9.6	24.1	24.1	8.2	8.2	28.6	28.7	89.3	89.5	6.4	6.4	6.4	3.3	3.3		2.3	3.3	
7-May-14	Cloudy	Moderate	11:17		Surface	1.0	23.7 23.7	23.7	8.2 8.2	8.2	30.2 30.2	30.2	86.8 87.2	87.0	6.2 6.2	6.2		4.5	4.5		6.5 6.3	6.4	
				10.6	Middle	5.3	23.7	23.7	8.2	8.2	30.2	30.4	86.5	86.8	6.1	6.2	6.2	4.4	4.8	4.8	6.7	6.6	6.3
				10.0	ivildule	5.5	23.7	23.7	8.2		30.4 30.5	30.4	87.0 87.7		6.2	0.2		4.7 5.2	4.0	4.0	6.5 5.5	0.0	0.5
					Bottom	9.6	23.7 23.7	23.7	8.2 8.2	8.2	30.5	30.6	86.8	87.3	6.2 6.2	6.2	6.2	4.9	5.1		6.2	5.9	
9-May-14	Rainy	Moderate	14:57		Surface	1.0	23.5 23.5	23.5	8.1	8.1	29.5 29.2	29.3	86.9 89.4	88.2	6.2 6.4	6.3		6.3 5.8	6.1		7.6 6.6	7.1	
				10.1	Middle	5.1	23.7	23.7	8.1 8.1	8.1	30.3	30.3	90.8	88.6	6.5	6.3	6.3	7.3	7.3	6.9	7.8	7.1	7.6
				10.1	ivildale	5.1	23.7	23.1	8.1	0.1	30.3 30.2	30.3	86.3 93.2	00.0	6.1 6.6	0.3		7.3	7.3	6.9	6.4 9.3	7.1	7.0
					Bottom	9.1	23.6	23.7	8.1 8.1	8.1	30.2	30.3	93.2 86.5	89.9	6.2	6.4	6.4	7.3 7.1	7.2		9.3 8.0	8.7	
12-May-14	Sunny	Moderate	17:56		Surface	1.0	24.7	24.7	8.0	8.0	16.8	16.9	85.0	85.1	6.4	6.4		10.0	9.7		4.8	5.0	
				10.5	Middle	5.3	24.7 24.2	24.2	8.0 8.0	8.0	17.0 19.2	19.4	85.1 83.7	83.6	6.4	6.3	6.4	9.4	11.3	11.4	5.1 4.6	4.7	4.8
				10.5	ivildale	5.5	24.2	24.2	7.9	6.0	19.5	19.4	83.5	03.0	6.3	0.3		11.2	11.3	11.4	4.7	4.7	4.0
					Bottom	9.5	23.9 24.0	24.0	7.7 7.9	7.8	24.4 23.3	23.9	84.3 83.5	83.9	6.2 6.2	6.2	6.2	13.4 13.2	13.3		5.2 4.3	4.8	
14-May-14	Sunny	Moderate	19:33		Surface	1.0	25.7	25.7	8.0	8.0	15.0	14.9	85.8	85.5	6.4	6.4		6.5	6.3		4.8	4.7	
				10.2	Middle	5.1	25.7 25.2	25.2	8.0 8.0	8.0	14.8 21.1	21.0	85.2 84.9	85.4	6.4	6.2	6.3	6.1 8.3	8.5	8.0	4.6 3.8	4.8	5.2
				10.2	ivildale	5.1	25.2 24.9	25.2	8.0 8.0	6.0	20.9 22.2	21.0	85.9 84.1	00.4	6.3	0.2		8.6 8.7	6.5	6.0	5.7 5.9	4.0	5.2
					Bottom	9.2	25.2	25.1	8.0	8.0	21.5	21.9	85.3	84.7	6.1 6.2	6.2	6.2	9.5	9.1		6.0	6.0	
16-May-14	Cloudy	Moderate	07:57		Surface	1.0	25.2 25.3	25.3	8.0 8.0	8.0	19.7	19.7	80.2 80.0	80.1	5.9 5.9	5.9		5.0	4.9		7.0 8.1	7.6	
				11.4	Middle	5.7	25.2	25.2	8.0	8.0	19.6 19.8	19.8	79.9	80.0	5.9	5.9	5.9	4.8 5.2	5.3	5.3	7.3	7.5	7.4
				11.4	ivildule		25.2 25.2		8.0 8.0		19.9 20.4		80.1 80.1		5.9 5.9			5.4 5.7		3.3	7.7		7.4
					Bottom	10.4	25.2 25.2	25.2	8.0	8.0	20.4	20.2	79.9	80.0	5.9	5.9	5.9	5.5	5.6		6.6	7.0	
19-May-14	Cloudy	Moderate	09:30		Surface	1.0	25.8 25.8	25.8	8.0 8.0	8.0	16.2 16.2	16.2	72.9 73.4	73.2	5.4 5.5	5.4		3.5 3.6	3.6		4.2 5.5	4.9	
				11.2	Middle	5.6	25.8	25.7	8.0	8.0	16.2	16.6	73.4	73.1	5.4	5.4	5.4	3.8	3.8	3.8	4.5	4.7	5.3
				11.2	ivildale	5.6	25.7	25.7	8.0 8.0	6.0	16.6 17.8	16.6	72.9 72.7	73.1	5.4 5.4	5.4		3.8 3.8	3.0	3.0	4.9 6.5		5.5
					Bottom	10.2	25.7 25.6	25.7	8.0 8.0	8.0	17.8	18.1	72.7 73.1	72.9	5.4 5.4	5.4	5.4	3.8	3.9		5.8	6.2	
21-May-14	Cloudy	Moderate	11:33		Surface	1.0	26.1	26.1	8.0	8.1	13.6	13.5	74.7 74.0	74.4	5.6	5.6		6.8	7.2	-	3.7	3.5	
				10.1	Middle	5.1	26.0 25.6	25.6	8.1 8.1	8.1	13.3 20.6	20.9	74.0	72.8	5.6 5.3	5.3	5.5	7.6 12.5	12.4	10.4	3.3 5.8	5.7	4.8
				10.1	ivildale		25.6		8.0		21.2		72.7		5.3			12.3		10.4	5.5		4.0
					Bottom	9.1	25.6 25.6	25.6	8.0 8.0	8.0	21.5 21.5	21.5	73.2 72.8	73.0	5.3 5.3	5.3	5.3	11.2 11.9	11.6		5.3 5.0	5.2	

DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

^{***} Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (ı	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	14:44		Surface	1.0	26.3 26.4	26.4	7.9 8.0	8.0	15.0 14.9	14.9	82.2 81.8	82.0	6.1 6.1	6.1	6.0	3.3 3.1	3.2		2.7 4.3	3.5	
				10.6	Middle	5.3	26.1 26.1	26.1	7.9 8.0	7.9	16.9 17.0	17.0	79.8 79.0	79.4	5.9 5.8	5.8	0.0	4.4 4.3	4.4	4.0	3.9 4.0	4.0	3.9
					Bottom	9.6	26.0 25.9	26.0	7.9 7.6	7.8	22.6 22.5	22.5	82.4 85.3	83.9	5.9 6.1	6.0	6.0	4.5 4.5	4.5		3.8 4.7	4.3	
26-May-14	Sunny	Moderate	18:00		Surface	1.0	27.9 27.8	27.8	8.1 8.1	8.1	13.3 13.7	13.5	87.4 85.7	86.6	6.4 6.2	6.3	5.9	5.2 5.3	5.3		2.9 3.4	3.2	
				10.6	Middle	5.3	26.2 27.1	26.7	8.1 8.1	8.1	16.7 15.9	16.3	73.4 73.6	73.5	5.4 5.4	5.4	0.0	5.5 5.4	5.5	5.5	3.8 3.2	3.5	4.0
					Bottom	9.6	25.8 25.8	25.8	8.0 8.0	8.0	23.3 23.2	23.2	78.5 75.8	77.2	5.6 5.4	5.5	5.5	5.8 5.7	5.8		6.6 4.1	5.4	
28-May-14	Sunny	Moderate	19:08		Surface	1.0	28.0 28.0	28.0	8.1 8.1	8.1	10.1 10.0	10.0	91.9 94.4	93.2	6.8 7.0	6.9	6.8	2.7 2.7	2.7		4.6 4.1	4.4	
				11.1	Middle	5.6	27.5 27.6	27.6	8.1 8.1	8.1	12.6 13.6	13.1	88.0 92.5	90.3	6.5 6.7	6.6	0.0	2.9 3.0	3.0	2.9	5.5 5.3	5.4	5.0
					Bottom	10.1	27.6 27.5	27.5	8.1 8.1	8.1	15.3 15.5	15.4	91.3 87.7	89.5	6.7 6.4	6.5	6.5	3.1 2.9	3.0		5.9 4.7	5.3	
30-May-14	Sunny	Moderate	06:48		Surface	1.0	27.0 26.9	27.0	8.1 8.1	8.1	16.7 18.1	17.4	73.1 73.4	73.3	5.3 5.3	5.3	5.2	7.4 7.5	7.5		5.2 5.3	5.3	
				10.6	Middle	5.3	26.3 26.2	26.3	8.1 8.1	8.1	24.6 24.7	24.7	72.4 71.4	71.9	5.1 5.0	5.0	5.2	7.4 7.2	7.3	7.4	3.9 4.4	4.2	4.5
					Bottom	9.6	26.4 26.2	26.3	8.0 8.0	8.0	25.7 25.8	25.8	70.7 73.2	72.0	5.0 5.1	5.0	5.0	7.6 7.3	7.5		3.5 4.5	4.0	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	14:39		Surface	1.0	24.6 24.6	24.6	8.3 8.3	8.3	26.5 26.5	26.5	90.8 90.9	90.9	6.5 6.5	6.5		3.3 3.2	3.3		3.3 3.6	3.5	
				6.8	Middle	3.4	24.2 24.2	24.2	8.3 8.3	8.3	27.2 27.2	27.2	88.0 88.4	88.2	6.3 6.4	6.3	6.4	4.5 4.4	4.5	4.4	3.9 4.5	4.2	3.9
					Bottom	5.8	23.9	23.8	8.3 8.3	8.3	29.0 28.6	28.8	87.7 87.9	87.8	6.3	6.3	6.3	5.5	5.4		4.5	4.0	
5-May-14	Sunny	Moderate	16:38		Surface	1.0	24.3	24.2	8.4	8.4	26.1	26.0	94.1	93.1	6.8	6.7		3.0	2.9		3.6	3.3	
				6.6	Middle	3.3	24.2 24.1	24.1	8.4 8.4	8.4	25.9 27.5	28.1	92.0 94.0	92.8	6.7	6.6	6.7	2.7	2.7	2.7	3.0 2.8	2.8	3.2
				0.0	Bottom	5.6	24.1 24.0	24.0	8.4 8.4	8.4	28.7 30.3	30.2	91.6 92.8	94.6	6.5 6.6	6.7	6.7	2.7 2.5	2.4	2.1	2.7 3.6	3.6	5.2
7-May-14	Cloudy	Moderate	18:04				24.0 23.5		8.4 8.4		30.0 29.3		96.3 89.0		6.8		6.7	2.3 6.9			3.6 4.7		
7 May 14	Oloudy	Woderate	10.04		Surface	1.0	23.5	23.5	8.4 8.4	8.4	29.4	29.3	93.8 89.1	91.4	6.6	6.5	6.4	7.0	7.0		5.0	4.9	
				7.1	Middle	3.6	23.7	23.7	8.4	8.4	30.9	30.6	87.3 86.0	88.2	6.2	6.3		7.0	7.1	7.1	5.9	5.6	5.3
					Bottom	6.1	23.7 23.7	23.7	8.4 8.4	8.4	31.3 31.3	31.3	88.6	87.3	6.1 6.3	6.2	6.2	7.2	7.2		5.9 4.9	5.4	
9-May-14	Rainy	Moderate	14:34		Surface	1.0	23.3 23.3	23.3	8.3 8.4	8.3	28.0 28.0	28.0	90.5 90.1	90.3	6.6 6.5	6.6	6.6	5.2 5.0	5.1		12.9 12.4	12.7	
				6.5	Middle	3.3	23.4 23.5	23.4	8.4 8.3	8.3	28.0 28.2	28.1	89.0 89.3	89.2	6.5 6.5	6.5		5.5 5.6	5.6	5.5	14.3 13.8	14.1	13.8
					Bottom	5.5	23.5 23.4	23.5	8.3 8.3	8.3	29.7 29.5	29.6	93.4 90.7	92.1	6.7 6.5	6.6	6.6	5.8 5.8	5.8		15.7 13.4	14.6	
12-May-14	Sunny	Moderate	11:47		Surface	1.0	23.9 24.2	24.1	8.2 8.2	8.2	18.6 17.1	17.8	92.2 92.9	92.6	6.8 7.1	6.9		5.1 5.0	5.1		4.6 4.0	4.3	
				7.0	Middle	3.5	23.8 23.8	23.8	8.2 8.3	8.2	19.7 19.6	19.6	89.6 89.9	89.8	6.7 6.5	6.6	6.8	5.4 5.2	5.3	5.3	3.8 3.7	3.8	4.2
					Bottom	6.0	23.7	23.9	8.2 8.2	8.2	27.1 25.9	26.5	86.5 88.7	87.6	6.5 6.7	6.6	6.6	5.5 5.7	5.6		4.6 4.6	4.6	
14-May-14	Sunny	Moderate	13:06		Surface	1.0	24.7 24.9	24.8	7.7 7.7	7.7	21.8 21.3	21.6	83.8 85.0	84.4	6.2 6.2	6.2		5.5 5.2	5.4		5.3 4.2	4.8	
				6.5	Middle	3.3	24.3	24.4	7.7	7.7	22.5	22.4	84.0	83.6	6.2	6.2	6.2	5.6	5.6	5.5	4.6	5.0	4.9
					Bottom	5.5	24.4	24.3	7.7	7.7	22.3	24.4	83.2 85.7	84.8	6.1	6.2	6.2	5.5 5.5	5.5		5.4	5.0	
16-May-14	Cloudy	Moderate	14:04		Surface	1.0	24.5 26.0	26.0	7.7	7.7	24.3 19.5	19.5	83.9 91.7	90.1	6.7	6.6		5.4 4.8	4.9		4.6 5.0	5.1	
				6.5	Middle	3.3	26.0 25.1	25.2	7.7 7.7	7.7	19.5 21.7	21.8	88.5 82.5	83.3	6.4	6.1	6.4	4.9 5.6	5.7	5.4	5.1 3.8	4.0	4.7
				0.5	Bottom	5.5	25.2 24.7	24.9	7.7 7.6	7.6	21.8 25.4	25.2	84.0 83.9	85.6	6.1	6.1	6.1	5.7 5.6	5.7	5.4	4.1 5.4	5.1	4.7
19-May-14	Sunny	Rough	15:55				25.0 26.9		7.7 7.5		25.1 17.9		87.2 87.3		6.3		0.1	5.8 4.1			4.7 6.2		
To may 11	Cumy	rtoug.	10.00		Surface	1.0	26.6 26.0	26.8	7.5 7.5	7.5	18.0	17.9	83.8 81.3	85.6	6.1 5.9	6.2	6.1	4.1	4.1		7.8	7.0	
				6.3	Middle	3.2	25.9 26.2	26.0	7.5 7.5	7.5	19.7	19.5	82.1 85.3	81.7	6.0	5.9		4.2	4.2	4.2	9.0	8.8	8.5
	<u> </u>		47.50		Bottom	5.3	25.5	25.9	7.5	7.5	22.3	21.8	82.7	84.0	6.0	6.0	6.0	4.2	4.2		9.0	9.6	
21-May-14	Cloudy	Moderate	17:53		Surface	1.0	26.6 26.4	26.5	7.6 7.6	7.6	16.9 16.9	16.9	82.7 80.4	81.6	6.0 5.9	6.0	5.9	4.6 4.5	4.6		6.0 6.2	6.1]
				6.4	Middle	3.2	25.9 26.0	26.0	7.6 7.6	7.6	18.8 18.9	18.8	78.3 79.8	79.1	5.7 5.8	5.8		4.6 4.5	4.6	4.6	6.0 5.1	5.6	5.7
					Bottom	5.4	25.8 25.6	25.7	7.6 7.6	7.6	22.7 23.1	22.9	79.5 82.7	81.1	5.7 5.9	5.8	5.8	4.6 4.5	4.6		4.8 6.0	5.4	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	09:07		Surface	1.0	26.2 26.2	26.2	7.7 7.7	7.7	16.7 15.9	16.3	81.1 79.0	80.1	6.0 5.8	5.9	5.8	3.6 3.9	3.8		3.2 2.5	2.9	
				6.3	Middle	3.2	25.8 25.7	25.8	7.7 7.7	7.7	20.9 18.8	19.9	76.6 80.3	78.5	5.5 5.9	5.7	5.0	4.4 4.2	4.3	4.2	3.6 2.8	3.2	3.1
					Bottom	5.3	25.5 25.5	25.5	7.7 7.7	7.7	24.0 24.2	24.1	77.6 82.9	80.3	5.6 5.9	5.7	5.7	4.5 4.3	4.4		2.8 3.4	3.1	
26-May-14	Sunny	Moderate	11:48		Surface	1.0	28.1 28.1	28.1	7.7 7.7	7.7	14.4 14.3	14.3	100.6 99.8	100.2	7.3 7.2	7.2	6.7	2.7 2.5	2.6		3.3 3.3	3.3	
				6.3	Middle	3.2	28.0 27.8	27.9	7.6 7.6	7.6	14.4 15.0	14.7	82.3 85.7	84.0	6.0 6.2	6.1	0.1	3.6 3.4	3.5	3.4	4.9 4.6	4.8	4.3
					Bottom	5.3	26.5 26.5	26.5	7.5 7.5	7.5	20.1 19.1	19.6	80.6 76.8	78.7	5.8 5.6	5.7	5.7	4.0 4.0	4.0		4.8 4.8	4.8	
28-May-14	Sunny	Moderate	12:54		Surface	1.0	28.6 28.1	28.3	8.6 8.5	8.6	17.3 17.5	17.4	124.3 121.1	122.7	8.8 8.6	8.7	7.2	3.2 3.4	3.3		5.7 5.2	5.5	
				6.1	Middle	3.1	26.8 27.0	26.9	8.2 8.3	8.2	19.8 18.5	19.2	78.4 81.2	79.8	5.6 5.8	5.7	1.2	3.6 3.5	3.6	3.5	5.8 5.2	5.5	6.1
					Bottom	5.1	26.1 26.2	26.2	8.1 8.2	8.2	23.8 23.5	23.7	79.3 78.0	78.7	5.6 5.5	5.6	5.6	3.5 3.6	3.6		6.8 7.8	7.3	
30-May-14	Sunny	Moderate	13:20		Surface	1.0	28.2 27.8	28.0	8.5 8.4	8.5	19.0 19.0	19.0	96.6 103.0	99.8	6.8 7.1	7.0	6.8	3.2 3.1	3.2		7.5 6.6	7.1	
				7.1	Middle	3.6	26.5 26.7	26.6	8.3 8.3	8.3	21.5 21.8	21.6	86.2 100.3	93.3	6.0 7.1	6.5	0.0	3.4 3.3	3.4	3.3	7.2 7.0	7.1	7.3
					Bottom	6.1	26.2 26.6	26.4	8.2 8.4	8.3	26.7 26.7	26.7	81.5 94.8	88.2	5.8 6.7	6.3	6.3	3.4 3.3	3.4		8.3 7.3	7.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ıration (%)	Dissolv	ed Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	07:43		Surface	1.0	23.9	23.9	8.4	8.5	26.3	26.2	87.0	87.0	6.3	6.3		5.0	4.9		3.4	2.8	
				6.8	Middle	3.4	23.9 23.9	23.9	8.5 8.5	8.5	26.1 26.9	26.9	87.0 86.3	86.4	6.3 6.2	6.2	6.3	4.8 6.1	6.2	6.3	2.2 3.9	3.5	3.1
							23.9 23.9	23.9	8.4 8.5	8.5	27.0 27.2	27.3	86.4 86.4	86.6	6.3		6.3	6.2 7.6		-	3.1 2.9	2.9	1
					Bottom	5.8	23.9	23.9	8.4	8.5	27.3	27.3	86.8	80.0	6.3	6.3	6.3	7.9	7.8		2.8	2.9	
5-May-14	Sunny	Moderate	09:21		Surface	1.0	24.4 24.3	24.3	8.4 8.4	8.4	24.4 24.6	24.5	93.1 92.1	92.6	6.8 6.7	6.7		2.9 3.0	3.0		3.9 4.5	4.2	ŀ
				6.3	Middle	3.2	24.2 24.2	24.2	8.4 8.4	8.4	25.0 25.1	25.1	92.1 93.5	92.8	6.7 6.8	6.8	6.8	3.3 3.4	3.4	3.8	3.6 4.0	3.8	4.5
					Bottom	5.3	24.1	24.2	8.4	8.4	25.7	25.7	95.5	93.8	6.9	6.8	6.8	4.9	5.0		6.1	5.4	1
7-May-14	Cloudy	Moderate	11:17				24.2		8.4 8.4		25.6 28.9		92.1 96.8		6.7			5.0 3.3			4.6		
7 Way 14	Oloudy	Woderate	11.17		Surface	1.0	23.5	23.4	8.4	8.4	29.0	29.0	86.9	91.9	6.3	6.6	6.5	3.3	3.3		3.6	4.2	
				7.1	Middle	3.6	23.7 23.6	23.6	8.4 8.4	8.4	29.5 29.1	29.3	86.4 92.2	89.3	6.1 6.6	6.4		3.5 3.7	3.6	3.6	5.3 4.5	4.9	4.5
					Bottom	6.1	23.7	23.7	8.4	8.4	30.8	30.8	91.5	88.0	6.6	6.3	6.3	3.7	3.8		4.3	4.3	ŀ
9-May-14	Rainy	Moderate	09:53				23.7 23.5		8.4 8.4		30.8 28.7		84.4 85.9		6.0			3.8 9.5			4.2 6.4		
o may	· tally	moderate	00.00		Surface	1.0	23.5	23.5	8.4	8.4	28.7	28.7	90.6	88.3	6.5	6.4	6.4	9.5	9.5		5.9	6.2	
				6.4	Middle	3.2	23.6 23.6	23.6	8.3 8.3	8.3	29.0 30.1	29.5	91.1 84.8	88.0	6.6 6.1	6.3		9.5 9.5	9.5	9.5	8.2 8.2	8.2	8.4
					Bottom	5.4	23.6 23.6	23.6	8.3 8.4	8.3	30.1 30.3	30.2	95.0 89.7	92.4	6.8 6.4	6.6	6.6	9.5 9.5	9.5		11.0 10.6	10.8	
12-May-14	Sunny	Moderate	17:15		Surface	1.0	24.8	24.6	8.2	8.2	17.2	17.3	95.3	92.3	6.9	6.8		6.3	6.3		4.9	5.2	
				7.1	Middle	3.6	24.5 24.0	23.9	8.2 8.2	8.2	17.3 18.6	18.6	89.3 87.7	89.4	6.6 6.5	6.7	6.8	6.2 6.5	6.6	6.6	5.5 4.6	4.8	5.5
				7.1	Wildale	5.0	23.8 24.3		8.2 8.1		18.6 27.0	10.0	91.0 86.2		6.8			6.6 6.6		0.0	5.0 7.1		3.5
					Bottom	6.1	24.3	24.2	8.1	8.1	25.8	26.4	90.1	88.2	6.8	6.6	6.6	6.9	6.8		5.6	6.4	
14-May-14	Sunny	Moderate	19:09		Surface	1.0	25.3 25.3	25.3	7.7 7.7	7.7	21.2 21.2	21.2	88.7 87.7	88.2	6.5 6.4	6.4		8.5 8.6	8.6		7.1 6.9	7.0	
				6.5	Middle	3.3	25.2	25.2	7.7	7.7	21.4	21.4	87.6	86.3	6.4	6.3	6.4	8.8	8.7	8.7	4.2	4.7	5.9
					Bottom	5.5	25.1 25.3	25.0	7.6 7.7	7.6	21.4 22.3	22.5	85.0 88.1	86.2	6.2	6.3	6.3	8.6 8.9	8.9		5.2 5.6	5.9	-
					Dottom	3.3	24.7	23.0	7.6	7.0	22.8	22.3	84.3	00.2	6.2	0.5	0.5	8.9	0.9		6.2	5.5	
16-May-14	Cloudy	Moderate	07:05		Surface	1.0	25.6 25.5	25.6	7.6 7.6	7.6	17.0 16.9	16.9	82.0 81.2	81.6	6.1 6.0	6.1	6.1	6.0 6.2	6.1		6.7 6.5	6.6	ŀ
				6.5	Middle	3.3	25.4 25.4	25.4	7.7 7.7	7.7	17.5 18.9	18.2	82.1 80.6	81.4	6.1 5.9	6.0	0.1	8.3 8.1	8.2	7.6	6.9 6.6	6.8	6.5
					Bottom	5.5	25.2	25.1	7.6	7.6	21.7	21.7	80.6	82.0	5.9	6.0	6.0	8.2	8.4		6.5	6.1	1
19-May-14	Cloudy	Moderate	09:33		Surface	1.0	25.1 26.1	26.1	7.6 7.5	7.5	21.6 15.1	15.1	83.4 77.4	77.7	6.1 5.8	5.8		8.5 3.8	3.9		5.7 5.1	5.7	
,	·						26.0 26.0		7.5 7.5		15.2 16.2		77.9 77.4		5.8 5.7		5.8	3.9 4.3			6.2 6.1		ļ !
				6.4	Middle	3.2	26.0	26.0	7.5	7.5	15.8	16.0	78.7	78.1	5.8	5.8		4.3	4.3	4.2	6.2	6.2	6.2
					Bottom	5.4	26.0 26.0	26.0	7.5 7.5	7.5	17.0 18.1	17.6	80.7 77.6	79.2	5.9 5.7	5.8	5.8	4.4 4.1	4.3		7.3 6.2	6.8	
21-May-14	Cloudy	Moderate	11:23		Surface	1.0	26.2 26.2	26.2	7.6 7.6	7.6	14.9 14.9	14.9	81.0 80.8	80.9	6.0 6.0	6.0		9.6 9.6	9.6		7.4 6.9	7.2	
				6.3	Middle	3.2	26.2	26.2	7.6	7.6	15.1	15.1	80.1	80.1	5.9	5.9	6.0	10.1	10.3	10.1	7.1	7.0	6.9
					Bottom	5.3	26.2 26.2	26.2	7.6 7.5	7.6	15.2 17.1	17.1	80.0 80.9	80.8	5.9 6.0	5.9	5.9	10.4 10.5	10.5		6.8 6.2	6.5	1
					Dottoiri	5.5	26.2	20.2	7.6	7.0	17.2	17.1	80.7	00.0	5.9	5.5	5.5	10.4	10.5		6.8	0.5	

DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

^{***} Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	14:07		Surface	1.0	26.4 26.4	26.4	7.6 7.6	7.6	14.4 14.2	14.3	84.9 84.2	84.6	6.3 6.3	6.3	6.2	4.5 4.9	4.7		3.2 4.4	3.8	
				6.1	Middle	3.1	26.3 26.3	26.3	7.6 7.6	7.6	16.0 15.3	15.6	81.6 81.4	81.5	6.0 6.0	6.0	0.2	6.1 6.6	6.4	6.4	3.9 2.3	3.1	3.8
					Bottom	5.1	26.1 26.2	26.1	7.6 7.6	7.6	19.0 19.1	19.1	82.3 82.9	82.6	6.0 6.0	6.0	6.0	8.3 7.6	8.0		3.9 4.9	4.4	
26-May-14	Sunny	Moderate	18:09		Surface	1.0	28.1 28.3	28.2	7.7 7.7	7.7	12.6 12.5	12.5	97.4 102.2	99.8	7.1 7.4	7.3	7.0	7.1 7.3	7.2		3.6 3.6	3.6	
				6.4	Middle	3.2	27.4 27.4	27.4	7.6 7.5	7.6	13.7 13.6	13.7	90.0 89.4	89.7	6.6 6.6	6.6	7.0	8.0 7.8	7.9	8.3	3.9 4.3	4.1	3.9
					Bottom	5.4	26.5 27.3	26.9	7.5 7.5	7.5	21.3 18.5	19.9	84.6 92.0	88.3	6.0 6.6	6.3	6.3	10.5 9.3	9.9		3.8 4.3	4.1	
28-May-14	Sunny	Moderate	19:27		Surface	1.0	28.5 28.9	28.7	8.7 8.6	8.6	17.6 17.3	17.5	138.8 142.9	140.9	9.8 10.0	9.9	9.0	7.5 7.5	7.5		6.8 6.8	6.8	
				6.5	Middle	3.3	28.3 27.6	28.0	8.6 8.5	8.6	17.7 17.9	17.8	115.2 110.2	112.7	8.1 7.9	8.0	9.0	7.8 7.6	7.7	7.6	6.2 7.2	6.7	7.3
					Bottom	5.5	27.4 26.6	27.0	8.4 8.2	8.3	19.0 22.2	20.6	97.3 92.1	94.7	6.9 6.5	6.7	6.7	7.7 7.5	7.6		8.0 8.5	8.3	
30-May-14	Sunny	Moderate	06:47		Surface	1.0	27.4 27.3	27.4	8.3 8.3	8.3	16.8 17.7	17.3	86.1 88.0	87.1	6.2 6.2	6.2	6.1	2.9 2.8	2.9		4.2 3.4	3.8	
				7.3	Middle	3.7	26.8 26.9	26.9	8.2 8.2	8.2	20.1 19.0	19.5	84.9 81.5	83.2	6.1 5.8	5.9	0.1	3.0 3.1	3.1	3.1	2.6 3.5	3.1	3.6
					Bottom	6.3	26.9 26.8	26.9	8.2 8.2	8.2	21.9 22.0	22.0	78.1 80.4	79.3	5.6 5.7	5.7	5.7	3.2 3.3	3.3		3.8 3.9	3.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ıration (%)	Dissolv	ed Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	13:51		Surface	1.0	24.2 24.1	24.2	8.3 8.3	8.3	28.4 28.1	28.3	92.7 92.9	92.8	6.6 6.7	6.6		5.7 5.7	5.7		3.4 3.3	3.4	
				9.4	Middle	4.7	24.1	24.1	8.3	8.3	29.0	29.1	92.6	92.6	6.6	6.6	6.6	5.8	5.8	5.8	5.0	4.9	4.3
					Bottom	8.4	24.1 24.1	24.1	8.3 8.2	8.3	29.2 29.5	29.5	92.6 91.9	92.1	6.6	6.5	6.5	5.8 6.0	5.9		4.7	4.7	
			45.40		DOMOITI	0.4	24.1	24.1	8.3	0.5	29.6	25.5	92.2	92.1	6.5	0.5	0.5	5.8	3.9		4.7	4.7	
5-May-14	Sunny	Moderate	15:42		Surface	1.0	24.4 24.4	24.4	8.4 8.4	8.4	28.3 28.3	28.3	93.1 93.0	93.1	6.6 6.6	6.6	6.6	3.7 3.9	3.8		5.5 4.7	5.1	
				8.8	Middle	4.4	24.4 24.4	24.4	8.4 8.4	8.4	28.4 28.5	28.5	92.4 92.4	92.4	6.6 6.6	6.6	0.0	3.8 3.7	3.8	3.8	5.2 6.8	6.0	5.6
					Bottom	7.8	24.4 24.4	24.4	8.4 8.4	8.4	28.6 28.5	28.5	92.6 92.6	92.6	6.6 6.6	6.6	6.6	3.7 3.8	3.8		5.7 5.4	5.6	
7-May-14	Cloudy	Moderate	17:18		Surface	1.0	23.5	23.5	8.5	8.5	28.6	28.6	89.8	90.5	6.4	6.5		6.2	6.2		5.2	5.0	
				9.1		4.6	23.4	23.7	8.5 8.5	8.5	28.5 31.0	31.1	91.1 89.5	89.7	6.5 6.3	6.4	6.5	6.1 6.5	6.5	6.4	4.7 6.4	6.3	5.8
				9.1	Middle		23.7		8.5 8.4		31.2 31.8		89.9 89.8		6.4			6.4 6.6		0.4	6.1		5.6
					Bottom	8.1	23.7	23.7	8.5	8.5	31.9	31.9	89.3	89.6	6.3	6.4	6.4	6.6	6.6		6.1	6.1	
9-May-14	Rainy	Moderate	13:55		Surface	1.0	23.4 23.5	23.5	8.4 8.4	8.4	26.1 26.3	26.2	88.7 89.0	88.9	6.5 6.5	6.5		7.6 7.6	7.6		10.0 9.0	9.5	
				8.5	Middle	4.3	23.6	23.6	8.4	8.4	28.7	28.6	88.5	88.7	6.4	6.4	6.5	8.5	8.6	8.3	10.5	11.4	12.3
					Bottom	7.5	23.6 23.6	23.6	8.4 8.3	8.4	28.5 29.5	29.5	88.9 90.1	89.5	6.4	6.4	6.4	8.6 8.4	8.6		12.2 16.4	15.9	
12-May-14	Sunny	Moderate	12:29				23.6		8.4 8.3		29.6 16.1		88.9 87.1		6.4		0	8.8			15.4 6.8		igwdot
12 May 14	Guilly	Woderate	12.20		Surface	1.0	24.1	24.0	8.3	8.3	14.2	15.2	87.9	87.5	6.8	6.8	6.5	8.2	8.1		5.7	6.3	ļ !
				9.3	Middle	4.7	23.6 23.6	23.6	8.3 8.3	8.3	27.1 27.6	27.3	86.1 85.7	85.9	6.2 6.2	6.2		8.3 8.2	8.3	8.3	6.2 7.8	7.0	6.6
					Bottom	8.3	23.6 23.6	23.6	8.3 8.3	8.3	28.2 28.0	28.1	85.1 85.0	85.1	6.2 6.2	6.2	6.2	8.2 8.6	8.4		6.7 6.4	6.6	
14-May-14	Sunny	Moderate	13:54		Surface	1.0	25.3	25.5	7.8	7.8	20.9	20.6	89.8	90.7	6.6	6.6		9.5	9.7		6.5	6.8	
				8.5	Middle	4.3	25.7 24.5	24.5	7.7 7.8	7.8	20.3 26.9	26.6	91.6 87.6	87.7	6.7	6.3	6.5	9.9	11.3	10.9	7.0 7.1	7.3	7.5
				0.5			24.6 24.0		7.8 7.8		26.2 28.6		87.8 87.6		6.3			11.3 11.5		10.5	7.4 8.5		1.5
					Bottom	7.5	24.1	24.0	7.8	7.8	28.4	28.5	88.3	88.0	6.3	6.3	6.3	11.7	11.6		8.3	8.4	
16-May-14	Cloudy	Moderate	12:54		Surface	1.0	25.8 25.8	25.8	7.6 7.6	7.6	21.0 20.6	20.8	87.0 86.8	86.9	6.3 6.3	6.3	6.2	16.6 16.3	16.5		10.8 9.9	10.4	
				8.5	Middle	4.3	25.1 25.0	25.1	7.7 7.7	7.7	24.0 23.9	24.0	84.6 84.1	84.4	6.1 6.1	6.1	0.2	16.7 16.2	16.5	16.5	10.1 10.0	10.1	10.0
					Bottom	7.5	25.0	25.0	7.6	7.6	25.8	25.8	85.6	85.2	6.1	6.1	6.1	16.3	16.5		9.6	9.5	
19-May-14	Sunny	Rough	15:09		Surface	1.0	25.0 26.7	26.6	7.6 7.5	7.5	25.8 17.7	17.7	84.8 85.0	84.1	6.1	6.1		16.6	10.2		9.4	9.7	
							26.6 25.9		7.5 7.5		17.8 20.9		83.1 79.4		6.0 5.7		6.0	10.2 10.5			9.1 12.8		, !
				8.4	Middle	4.2	26.0	26.0	7.5	7.5	19.5	20.2	81.8	80.6	5.9	5.8		10.3	10.4	10.3	12.8	12.8	11.8
					Bottom	7.4	25.5 25.9	25.7	7.5 7.5	7.5	23.5 22.9	23.2	79.5 83.0	81.3	5.7 5.9	5.8	5.8	10.5 10.3	10.4		12.9 12.9	12.9	
21-May-14	Cloudy	Moderate	17:08		Surface	1.0	26.8 26.6	26.7	7.6 7.6	7.6	16.5 16.9	16.7	82.1 79.9	81.0	6.0 5.8	5.9	5.7	5.7 5.6	5.7		4.2 5.8	5.0	7
				8.7	Middle	4.4	26.0 26.1	26.0	7.6 7.6	7.6	19.6 19.2	19.4	75.9 74.1	75.0	5.5 5.4	5.5	5.7	6.3 6.4	6.4	6.3	5.2 6.1	5.7	5.9
					Bottom	7.7	25.4	25.6	7.6	7.6	26.0	25.8	75.0	77.1	5.3	5.4	5.4	6.7	6.8		6.9	7.0	
							25.8		7.6		25.6	_3.0	79.2		5.6			6.8		<u> </u>	7.0	1	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	10:02		Surface 1.0	26.2 26.3	26.3	7.7 7.7	7.7	15.8 15.6	15.7	72.2 73.5	72.9	5.3 5.4	5.4	5.4	7.7 8.0	7.9		4.7 4.3	4.5	
				8.4	Middle 4.2	25.5 25.7	25.6	7.6 7.6	7.6	24.1 21.4	22.8	72.0 71.9	72.0	5.3 5.3	5.3	5.4	11.3 12.2	11.8	9.7	5.5 5.1	5.3	4.8
					Bottom 7.4	25.8 25.3	25.5	7.6 7.6	7.6	23.6 25.7	24.6	75.7 70.0	72.9	5.4 5.0	5.2	5.2	9.4 9.6	9.5	<u> </u>	4.1 5.0	4.6	
26-May-14	Sunny	Moderate	12:39		Surface 1.0	28.0 27.6	27.8	7.6 7.6	7.6	14.1 15.5	14.8	83.7 85.5	84.6	6.1 6.1	6.1	5.7	7.0 7.3	7.2		2.8 3.0	2.9	
				8.3	Middle 4.2	25.4 25.6	25.5	7.5 7.5	7.5	25.9 24.6	25.3	71.1 75.9	73.5	5.1 5.5	5.3	5.7	11.3 10.8	11.1	10.1	4.3 4.3	4.3	4.0
					Bottom 7.3	25.6 25.4	25.5	7.5 7.5	7.5	25.9 26.3	26.1	74.0 69.5	71.8	5.2 4.9	5.1	5.1	12.2 12.0	12.1		4.6 5.0	4.8	
28-May-14	Sunny	Moderate	13:51		Surface 1.0	28.3 28.5	28.4	8.5 8.5	8.5	18.2 17.8	18.0	122.1 120.7	121.4	8.6 8.5	8.5	7.3	6.5 6.8	6.7		5.0 4.6	4.8	
				8.1	Middle 4.	26.0 25.5	25.8	8.2 8.2	8.2	26.4 26.8	26.6	87.8 84.4	86.1	6.2 5.9	6.1	7.3	8.0 8.1	8.1	8.0	4.0 5.1	4.6	4.8
					Bottom 7.	25.4 25.4	25.4	8.2 8.2	8.2	28.7 28.6	28.7	74.9 71.9	73.4	5.2 5.1	5.1	5.1	9.3 9.2	9.3	<u> </u>	5.5 4.7	5.1	
30-May-14	Sunny	Moderate	12:36		Surface 1.0	28.1 27.9	28.0	8.5 8.5	8.5	19.6 19.8	19.7	110.1 97.9	104.0	7.7 6.9	7.3	6.9	2.1 2.1	2.1		5.4 4.6	5.0	
				9.5	Middle 4.8	27.4 27.0	27.2	8.3 8.3	8.3	21.0 21.7	21.3	91.8 94.9	93.4	6.4 6.6	6.5	0.9	2.2 2.2	2.2	2.2	3.9 4.9	4.4	4.8
					Bottom 8.5	26.1 26.0	26.1	8.2 8.1	8.2	27.4 27.6	27.5	82.7 77.9	80.3	5.8 5.5	5.7	5.7	2.3 2.3	2.3		5.6 4.6	5.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	To	urbidity(NTI	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	08:30		Surface	1.0	23.9 23.9	23.9	8.3 8.3	8.3	26.4 26.4	26.4	87.9 87.7	87.8	6.4 6.4	6.4		4.5 4.2	4.4		5.2 5.8	5.5	
				9.4	Middle	4.7	23.9	23.9	8.4	8.4	26.5	26.4	87.5	87.6	6.3	6.4	6.4	4.5	4.6	4.6	4.9	5.1	5.1
					Bottom	8.4	23.9 23.9	23.9	8.3 8.4	8.4	26.4 26.6	26.6	87.7 87.5	87.5	6.4	6.3	6.3	4.7 4.8	4.8		5.2 5.3	4.7	!
5-May-14	Cuppy	Moderate	10:10		Bottom	0.4	23.9 24.1		8.3 8.4		26.5 26.5		94.8		6.3	0.3	0.5	4.7 2.8			4.0 3.7		<u> </u>
5-Iviay-14	Sunny	Woderate	10.10		Surface	1.0	24.2	24.2	8.4	8.4	26.5	26.5	94.6	94.7	6.8	6.8	6.8	2.6	2.7		4.1	3.9]
				8.9	Middle	4.5	24.2 24.2	24.2	8.4 8.4	8.4	26.6 26.6	26.6	95.0 94.5	94.8	6.9 6.8	6.8	0.0	2.6 2.5	2.6	2.7	3.0 3.6	3.3	3.9
					Bottom	7.9	24.2 24.2	24.2	8.4 8.4	8.4	26.5 26.6	26.6	94.5 96.5	95.5	6.8 7.0	6.9	6.9	2.7 2.8	2.8		5.2 3.8	4.5	
7-May-14	Cloudy	Moderate	12:01		Surface	1.0	23.3	23.3	8.4	8.4	27.6	27.7	90.3	90.3	6.5	6.5		4.2	4.4		7.0	7.1	
							23.2 23.6		8.4 8.4		27.7 30.0		90.2 89.0		6.5 6.4		6.5	4.5 4.5			7.2 6.3		
				9.2	Middle	4.6	23.7	23.6	8.4	8.4	30.0	30.0	89.6	89.3	6.4	6.4		4.7	4.6	4.6	6.6	6.5	6.6
					Bottom	8.2	23.7 23.6	23.7	8.4 8.4	8.4	31.3 31.4	31.3	89.2 88.9	89.1	6.4 6.4	6.4	6.4	4.7 4.8	4.8		6.7 5.4	6.1	
9-May-14	Rainy	Moderate	10:39		Surface	1.0	23.5 23.4	23.5	8.4 8.4	8.4	26.8 26.3	26.5	89.6 90.0	89.8	6.5 6.6	6.6		9.1 8.9	9.0		5.1 5.8	5.5	
				8.2	Middle	4.1	23.6	23.6	8.4	8.4	28.3	28.0	89.3	89.2	6.4	6.4	6.5	11.4	11.5	10.7	6.4	6.5	6.7
					Bottom	7.2	23.6 23.6	23.6	8.4 8.4	8.4	27.7 29.1	29.2	89.1 90.0	90.3	6.5 6.5	6.5	6.5	11.5 11.8	11.5		6.5 7.5	8.0	†
12-May-14	Sunny	Moderate	16:31				23.6 24.6		8.4 8.1		29.2 17.0		90.5 86.5		6.5 6.5		0.5	11.2 4.9			8.5 5.0		
12-Way-14	Guilly	Woderate	10.51		Surface	1.0	24.8	24.7	8.1	8.1	17.3	17.2	89.6	88.1	6.6	6.6	6.5	5.0	5.0		5.1	5.1	
				9.1	Middle	4.6	23.9 23.9	23.9	8.1 8.1	8.1	21.8 21.4	21.6	88.3 86.3	87.3	6.6 6.3	6.4		5.2 5.0	5.1	5.1	4.0 4.6	4.3	5.0
					Bottom	8.1	23.9 24.0	23.9	8.0 8.1	8.0	24.7 24.3	24.5	86.2 84.4	85.3	6.4 6.3	6.4	6.4	5.2 5.2	5.2		6.2 4.8	5.5	
14-May-14	Sunny	Moderate	18:26		Surface	1.0	25.4	25.4	7.6	7.6	22.4	22.4	84.1	84.3	6.1	6.1		10.9	10.7		5.2	5.6	
				8.8	Middle	4.4	25.4 24.7	24.9	7.6 7.6	7.6	22.4 23.6	23.2	84.4 82.0	82.6	6.1	6.0	6.1	10.4 11.6	11.7	11.6	6.0	5.8	5.8
				0.0			25.1 24.5		7.6 7.6		22.9 25.0		83.1 83.2		6.0			11.8 12.3		11.0	5.0 6.2		3.6
					Bottom	7.8	25.0	24.7	7.6	7.6	24.6	24.8	83.5	83.4	6.0	6.0	6.0	12.4	12.4		6.0	6.1	
16-May-14	Cloudy	Moderate	07:52		Surface	1.0	25.7 25.7	25.7	7.6 7.7	7.7	18.5 18.7	18.6	86.2 85.4	85.8	6.3 6.3	6.3		5.5 5.5	5.5		5.0 5.9	5.5	
				8.9	Middle	4.5	25.7 25.8	25.7	7.7 7.6	7.7	19.0 19.0	19.0	84.7 86.2	85.5	6.2 6.3	6.3	6.3	6.7 6.8	6.8	6.5	6.4 6.7	6.6	6.1
					Bottom	7.9	25.8	25.7	7.6	7.6	19.8	20.3	88.3	86.9	6.4	6.3	6.3	7.4	7.3		6.4	6.2	
19-May-14	Cloudy	Moderate	10:26				25.7 26.4		7.6 7.6		20.7 17.5		85.4 83.8		6.2 6.1		0.0	7.2 4.8			5.9 4.1		
	5.53.5)				Surface	1.0	26.3	26.4	7.6	7.6	17.7	17.6	83.5	83.7	6.1	6.1	6.0	4.9	4.9		3.8	4.0	
				8.7	Middle	4.4	26.2 26.2	26.2	7.6 7.6	7.6	18.2 18.2	18.2	80.9 81.5	81.2	5.9 5.9	5.9		6.1 6.2	6.2	5.7	4.3 4.4	4.4	4.2
					Bottom	7.7	26.0 26.2	26.1	7.6 7.6	7.6	20.3 20.1	20.2	82.1 82.8	82.5	5.9 6.0	6.0	6.0	6.2 6.0	6.1		4.3 4.3	4.3	
21-May-14	Cloudy	Moderate	12:09		Surface	1.0	26.5	26.5	7.6	7.7	15.7	15.7	83.2	81.4	6.1	6.0		4.9	4.9		4.6	3.8	
				8.9	Middle	4.5	26.5 26.3	26.2	7.7 7.6	7.7	15.8 17.9	18.1	79.6 76.9	76.7	5.9 5.6	5.6	5.8	4.9 8.0	8.3	7.2	3.0 4.9	4.7	4.2
				0.9			26.1 25.7		7.7 7.6		18.4 17.9		76.4 76.4		5.6 5.5			8.5 8.4		1.2	4.4 4.6		4.2
					Bottom	7.9	26.0	25.8	7.6	7.6	17.9	17.9	80.0	78.2	5.7	5.6	5.6	8.1	8.3		3.8	4.2	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	13:16		Surface	1.0	26.4 26.3	26.3	7.7 7.7	7.7	17.1 17.9	17.5	77.5 77.4	77.5	5.7 5.7	5.7	5.4	7.2 7.3	7.3		3.2 4.0	3.6	
				8.2	Middle	4.1	25.7 25.7	25.7	7.6 7.7	7.7	21.7 22.0	21.8	69.9 70.7	70.3	5.0 5.1	5.1	3.4	13.3 12.2	12.8	10.9	3.4 3.1	3.3	3.6
					Bottom	7.2	25.6 25.6	25.6	7.6 7.6	7.6	23.1 23.2	23.1	73.2 71.0	72.1	5.3 5.1	5.2	5.2	12.4 13.0	12.7		3.4 4.3	3.9	
26-May-14	Sunny	Moderate	17:08		Surface	1.0	28.4 28.6	28.5	7.8 7.8	7.8	14.7 14.6	14.7	109.1 113.5	111.3	7.8 8.1	8.0	7.5	4.8 5.0	4.9		4.3 3.6	4.0	
				8.4	Middle	4.2	27.9 27.9	27.9	7.7 7.7	7.7	16.0 16.2	16.1	94.7 101.0	97.9	6.8 7.2	7.0	7.0	7.7 7.0	7.4	7.4	4.6 5.1	4.9	4.8
					Bottom	7.4	27.6 27.2	27.4	7.7 7.6	7.6	17.1 17.6	17.4	88.7 86.6	87.7	6.4 6.2	6.3	6.3	9.6 10.1	9.9		5.1 5.6	5.4	
28-May-14	Sunny	Moderate	18:40		Surface	1.0	28.3 28.3	28.3	8.7 8.7	8.7	19.2 19.4	19.3	123.3 130.9	127.1	8.6 9.2	8.9	7.4	7.5 7.1	7.3		6.7 6.7	6.7	
				8.5	Middle	4.3	26.4 26.9	26.6	8.3 8.4	8.3	24.7 23.0	23.8	84.2 82.6	83.4	5.9 5.8	5.8	7.4	7.4 7.5	7.5	7.4	6.7 7.5	7.1	7.2
					Bottom	7.5	26.1 26.0	26.1	8.2 8.2	8.2	25.7 26.4	26.1	78.9 79.5	79.2	5.5 5.6	5.5	5.5	7.3 7.3	7.3		8.3 7.5	7.9	
30-May-14	Sunny	Moderate	07:31		Surface	1.0	27.6 27.7	27.6	8.4 8.4	8.4	17.0 17.0	17.0	98.6 98.7	98.7	7.1 7.1	7.1	7.0	1.9 1.9	1.9		6.1 6.2	6.2	
				9.3	Middle	4.7	27.5 27.3	27.4	8.4 8.3	8.3	19.1 19.2	19.1	97.7 98.4	98.1	6.8 6.9	6.9	7.0	2.0 2.0	2.0	2.0	6.6 5.7	6.2	6.3
					Bottom	8.3	27.2 27.1	27.2	8.3 8.3	8.3	22.5 22.8	22.7	91.7 89.3	90.5	6.5 6.4	6.4	6.4	2.1 2.2	2.2		6.5 6.5	6.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	14:04		Surface	1.0	24.7 24.7	24.7	8.3 8.3	8.3	26.7 26.6	26.7	93.8 93.9	93.9	6.7 6.7	6.7		2.8 2.8	2.8		3.3 4.2	3.8	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	2.9	-	-	3.7
					Bottom	2.5	24.7	24.7	8.3	8.3	26.7	26.7	93.9	93.9	6.7	6.7	6.7	3.0	3.0		2.7	3.6	
5-May-14	Sunny	Moderate	16:00				24.7 24.5		8.3 8.4		26.7 25.7		93.8 97.4		6.7 7.0			2.9			4.5 3.9	1	
3-iviay-14	Julily	Woderate	10.00		Surface	1.0	24.5	24.5	8.4	8.4	25.7	25.7	98.1	97.8	7.1	7.0	7.0	2.5	2.7		3.9	3.9]
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.0	-	-	3.9
					Bottom	2.1	24.5 24.5	24.5	8.4 8.4	8.4	26.9 26.9	26.9	97.5 98.8	98.2	7.0 7.1	7.0	7.0	3.4 3.0	3.2		4.4 3.2	3.8	
7-May-14	Cloudy	Moderate	17:31		Surface	1.0	23.3 23.2	23.3	8.4 8.4	8.4	27.7 27.7	27.7	99.3 92.7	96.0	7.2 6.8	7.0		7.6 7.7	7.7		4.7 5.6	5.2	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	7.8	-	-	5.1
					Bottom	2.4	23.2	23.2	8.4	8.4	27.6 28.2	27.9	91.6 93.8	92.7	6.7 6.8	6.8	6.8	7.7 7.8	7.8		4.1 5.9	5.0	
9-May-14	Rainy	Moderate	14:05		Surface	1.0	23.1	23.1	8.4 8.4	8.4	26.9	27.0	94.2	94.0	6.9	6.9		4.3	4.3		7.8	7.5	
				3.3	Middle		23.1	_	8.3	_	27.0	_	93.8		6.9		6.9	4.3		4.4	7.1	_	8.3
				3.5	-	0.0	23.2	22.4	8.3	0.0	27.3	27.2	93.9	02.0	6.9		0.0	4.4	4.4	7.7	8.3		0.5
12-May-14	Sunny	Moderate	12:16		Bottom	2.3	23.1 23.9	23.1	8.4 8.1	8.3	27.0 17.4	27.2	93.9 88.1	93.9	6.9 6.6	6.9	6.9	4.4 5.5	4.4		9.9 4.9	9.1	
12-Way-14	Guilly	Woderate	12.10		Surface	1.0	24.2	24.0	8.1	8.1	17.6	17.5	95.3	91.7	7.2	6.9	6.9	5.5	5.5		4.9	4.9	
				3.4	Middle	-	-	-		-	-	-	-	-		-		-	-	5.6	-	-	4.9
					Bottom	2.4	23.9 23.9	23.9	8.1 8.1	8.1	20.0 19.6	19.8	89.9 86.3	88.1	6.8 6.6	6.7	6.7	5.8 5.5	5.7		5.4 4.2	4.8	
14-May-14	Sunny	Moderate	13:39		Surface	1.0	25.4 25.3	25.3	7.7 7.7	7.7	20.1 20.4	20.2	87.9 87.6	87.8	6.4 6.4	6.4	0.4	8.5 8.4	8.5		4.1 4.0	4.1	
				3.2	Middle	-	-	-		-	-	-	-	-		-	6.4	-	-	8.7	-	-	4.1
					Bottom	2.2	25.0 25.1	25.1	7.6 7.7	7.6	21.1 20.9	21.0	88.8 87.2	88.0	6.5 6.4	6.4	6.4	8.9 8.7	8.8		4.2 4.0	4.1	
16-May-14	Cloudy	Moderate	13:15		Surface	1.0	26.0	26.0	7.6	7.6	18.1	18.2	89.3	89.5	6.5	6.5		9.8	9.9		5.9	5.5	
				3.3	Middle	-	26.0	-	7.6	_	18.3	-	89.6	-	6.6	-	6.5	9.9	-	9.8	5.1	_	6.4
					Bottom	2.3	26.0	26.0	7.6	7.6	18.3	18.5	89.3	90.1	6.5	6.6	6.6	9.8	9.7		6.7	7.2	1
19-May-14	Sunny	Rough	15:23	<u> </u>		1.0	26.0 26.8	26.8	7.6 7.5	7.5	18.6 15.7	15.7	90.8 91.7		6.6 6.7		0.0	9.6 2.9			7.7 3.9	4.0	
	,				Surface	1.0	26.8		7.5		15.7		90.5	91.1	6.6	6.7	6.7	2.7	2.8		4.0	1	
				3.2	Middle	-	26.7	-	- 7.5	-	16.0	-	90.7	-	6.6	-		- 2.9	-	2.9	4.4	-	4.2
					Bottom	2.2	26.7	26.7	7.5	7.5	16.3	16.1	92.7	91.7	6.8	6.7	6.7	2.8	2.9		4.2	4.3	
21-May-14	Cloudy	Moderate	17:24		Surface	1.0	27.0 27.1	27.1	7.6 7.6	7.6	15.4 15.4	15.4	94.2 94.6	94.4	6.9 6.9	6.9	6.9	3.4 3.6	3.5		5.3 6.2	5.8	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	3.6	-	-	5.7
					Bottom	2.2	26.9 27.0	27.0	7.5 7.6	7.6	15.5 15.4	15.5	94.1 94.5	94.3	6.9 6.9	6.9	6.9	3.5 3.6	3.6		6.1 4.8	5.5	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	09:42		Surface	1.0	26.6 26.6	26.6	7.6 7.4	7.5	15.3 15.2	15.3	90.2 93.4	91.8	6.6 6.9	6.8	6.8	12.2 11.8	12.0		4.5 4.7	4.6	
				3.3	Middle	-		-		-	-	-	-	-	-	-	0.0	-	-	14.7	-	1	4.5
					Bottom	2.3	26.6 26.6	26.6	7.3 7.5	7.4	15.3 15.3	15.3	96.4 91.4	93.9	7.1 6.7	6.9	6.9	17.7 16.9	17.3		4.7 4.0	4.4	
26-May-14	Sunny	Moderate	12:20		Surface	1.0	27.8 27.6	27.7	7.6 7.6	7.6	14.3 14.5	14.4	88.4 87.6	88.0	6.4 6.4	6.4	6.4	6.0 6.7	6.4		2.8 3.0	2.9	
				3.3	Middle	-		-	1 1	-	-	-	-	-	-	-	0.4	-	-	7.1	-	-	3.4
					Bottom	2.3	27.2 27.3	27.3	7.5 7.5	7.5	18.3 18.5	18.4	89.3 85.9	87.6	6.4 6.1	6.3	6.3	7.5 7.8	7.7		3.5 4.1	3.8	
28-May-14	Sunny	Moderate	13:32		Surface	1.0	28.2 28.2	28.2	8.6 8.6	8.6	16.8 16.9	16.9	119.7 126.0	122.9	8.5 9.0	8.7	8.7	6.5 6.5	6.5		6.3 6.0	6.2	
				3.1	Middle	-		-		-	-	-	-	-	-	-	0.7	-	-	6.6	-	-	6.5
					Bottom	2.1	27.6 27.5	27.5	8.4 8.2	8.3	18.9 19.2	19.1	111.6 111.1	111.4	7.9 7.9	7.9	7.9	6.6 6.6	6.6		6.3 7.2	6.8	
30-May-14	Sunny	Moderate	12:51		Surface	1.0	28.0 28.2	28.1	8.5 8.5	8.5	17.3 17.1	17.2	125.4 125.5	125.5	8.9 8.9	8.9	8.9	2.0 1.9	2.0		2.0 3.0	2.5	
				3.5	Middle	-		-		-	-	-	-	-	-	-	0.5	-	-	2.0	-	-	2.7
					Bottom	2.5	28.1 27.9	28.0	8.5 8.5	8.5	17.2 17.3	17.2	125.2 124.4	124.8	8.9 8.9	8.9	8.9	2.0 2.0	2.0		2.9 2.9	2.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	08:18		Surface	1.0	23.9 23.9	23.9	8.4 8.4	8.4	26.4 26.4	26.4	88.4 88.7	88.6	6.4 6.4	6.4	0.4	4.9 4.5	4.7		3.8 4.3	4.1	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	5.0	-	-	4.1
					Bottom	2.5	23.9 23.9	23.9	8.4 8.4	8.4	26.6 26.6	26.6	88.3 88.9	88.6	6.4 6.4	6.4	6.4	5.4 5.2	5.3		4.5 3.6	4.1	
5-May-14	Sunny	Moderate	09:52		Surface	1.0	24.2 24.2	24.2	8.4 8.4	8.4	26.6 26.6	26.6	96.8 98.0	97.4	7.0 7.1	7.0		1.9 2.0	2.0		2.5 3.2	2.9	
				3.3	Middle	-	-	-	-	-	-	-	- 90.0	-	-	-	7.0	-	-	2.0	-	-	3.0
					Bottom	2.3	24.2 24.2	24.2	8.4 8.4	8.4	26.7 26.7	26.7	97.2 99.4	98.3	7.0 7.2	7.1	7.1	2.0	2.0		2.9	3.0	
7-May-14	Cloudy	Moderate	11:46		Surface	1.0	23.1 23.0	23.1	8.4 8.4	8.4	27.4 27.4	27.4	95.6 99.0	97.3	7.0 7.3	7.1		4.5 4.5	4.5		5.2 5.7	5.5	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	4.7	-	-	5.5
					Bottom	2.4	22.8	22.9	8.4 8.4	8.4	27.6 27.4	27.5	96.7 94.7	95.7	7.1	7.0	7.0	4.8 4.8	4.8		5.9	5.5	
9-May-14	Rainy	Moderate	10:25		Surface	1.0	23.2 23.2	23.2	8.4 8.4	8.4	27.1 27.2	27.1	94.3 94.7	94.5	6.9 6.9	6.9		9.4 9.4	9.4		4.1 4.6	4.4	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	9.4	-	-	5.8
					Bottom	2.1	23.2 23.2	23.2	8.3 8.4	8.4	27.3 27.2	27.2	96.2 94.5	95.4	7.0 6.9	7.0	7.0	9.4 9.4	9.4		7.7 6.7	7.2	
12-May-14	Sunny	Moderate	16:46		Surface	1.0	25.0 25.4	25.2	8.2 8.2	8.2	16.9 16.8	16.9	92.6 94.1	93.4	6.9 6.9	6.9		6.0 5.7	5.9		3.5 4.2	3.9	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	6.0	-	-	4.0
					Bottom	2.4	25.0 25.4	25.2	8.2 8.2	8.2	20.5 18.9	19.7	92.9 92.2	92.6	6.9 6.8	6.9	6.9	5.9 6.0	6.0		3.9 4.0	4.0	
14-May-14	Sunny	Moderate	18:38		Surface	1.0	26.0 25.9	26.0	7.6 7.7	7.6	21.0 21.0	21.0	97.3 94.3	95.8	7.0 6.8	6.9		9.3 9.4	9.4		5.7 6.1	5.9	
				3.0	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	9.6	-	-	5.8
					Bottom	2.0	26.0 25.8	25.9	7.5 7.6	7.6	21.0 21.2	21.1	97.3 96.3	96.8	7.0 7.0	7.0	7.0	9.5 9.8	9.7		5.4 6.0	5.7	
16-May-14	Cloudy	Moderate	07:38		Surface	1.0	25.7 25.7	25.7	7.6 7.6	7.6	18.4 17.9	18.2	91.4 91.3	91.4	6.7 6.7	6.7	6.7	5.2 5.0	5.1		6.6 6.1	6.4	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	5.4	-	-	6.2
					Bottom	2.2	25.7 25.7	25.7	7.6 7.6	7.6	18.3 18.7	18.5	86.4 84.8	85.6	6.4 6.2	6.3	6.3	5.6 5.7	5.7		6.2 5.7	6.0	
19-May-14	Cloudy	Moderate	10:10		Surface	1.0	26.4 26.4	26.4	7.6 7.6	7.6	16.9 17.5	17.2	88.3 88.1	88.2	6.5 6.4	6.4	6.4	3.3 3.1	3.2		3.2 3.0	3.1	
				3.1	Middle	-	-	-	-	-	-	-	1 1	-	-	-	0.4	-	-	3.3	-	-	3.6
					Bottom	2.1	26.4 26.4	26.4	7.5 7.6	7.6	16.6 17.5	17.0	90.6 87.9	89.3	6.7 6.4	6.5	6.5	3.2 3.3	3.3		4.3 3.9	4.1	
21-May-14	Cloudy	Moderate	11:54		Surface	1.0	26.6 26.7	26.7	7.6 7.6	7.6	14.9 14.9	14.9	90.5 90.1	90.3	6.7 6.6	6.7	6.7	3.5 3.3	3.4		4.0 3.8	3.9	
				3.2	Middle	-	-	-	-	-	-	-		-	-	-	0.7	-	-	3.5	-	-	3.5
					Bottom	2.2	26.4 26.5	26.5	7.6 7.6	7.6	14.9 14.9	14.9	90.9 89.8	90.4	6.7 6.6	6.7	6.7	3.4 3.5	3.5		2.0 4.0	3.0	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	13:34		Surface	1.0	26.5 26.5	26.5	7.5 7.6	7.6	17.1 17.4	17.2	81.7 79.0	80.4	6.0 5.8	5.9	5.9	9.5 10.1	9.8		3.3 2.6	3.0	
				3.2	Middle	-		-		-		-	-	-		-	5.5	-	-	10.1	-	1	3.2
					Bottom	2.2	26.4 26.5	26.4	7.5 7.6	7.5	17.9 17.8	17.8	86.0 79.8	82.9	6.3 5.8	6.0	6.0	10.1 10.6	10.4		2.8 3.8	3.3	
26-May-14	Sunny	Moderate	17:31		Surface	1.0	29.1 29.1	29.1	7.8 7.8	7.8	14.2 14.2	14.2	119.3 107.5	113.4	8.5 7.6	8.1	8.1	4.0 3.6	3.8		2.8 2.6	2.7	
				3.1	Middle	-		-		-		-	-	-		-	0.1	-	-	3.9	-	-	3.3
					Bottom	2.1	28.7 27.9	28.3	7.8 7.6	7.7	16.0 17.9	17.0	119.5 107.4	113.5	8.5 7.6	8.0	8.0	4.0 4.0	4.0		3.0 4.5	3.8	
28-May-14	Sunny	Moderate	18:54		Surface	1.0	29.1 29.0	29.1	8.7 8.7	8.7	17.2 17.2	17.2	160.2 148.8	154.5	10.9 10.1	10.5	10.5	8.1 8.5	8.3		8.4 8.3	8.4	
				3.0	Middle	-		-		-		-	-	-		-	10.5	-	-	8.6	-	-	8.6
					Bottom	2.0	29.0 28.8	28.9	8.7 8.7	8.7	17.5 17.7	17.6	151.8 147.3	149.6	10.3 10.0	10.1	10.1	8.9 8.8	8.9		9.4 7.9	8.7	
30-May-14	Sunny	Moderate	07:17		Surface	1.0	27.7 27.6	27.6	8.3 8.4	8.3	16.1 16.2	16.1	104.3 102.2	103.3	7.5 7.4	7.4	7.4	1.5 1.5	1.5		3.7 4.1	3.9	
				3.4	Middle	-		-		-		-	-	-	-	-	7.4	-	-	1.6	-	-	3.9
					Bottom	2.4	27.6 27.6	27.6	8.4 8.4	8.4	16.5 16.3	16.4	100.7 101.3	101.0	7.3 7.3	7.3	7.3	1.7 1.6	1.7		3.8 3.8	3.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	14:33		Surface	1.0	24.6 24.6	24.6	8.3 8.3	8.3	26.3 26.3	26.3	92.0 91.7	91.9	6.6 6.6	6.6		2.6 2.8	2.7		5.0 3.9	4.5	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	3.2	-	-	4.4
					Bottom	2.5	24.2	24.2	8.2	8.3	26.7	26.7	90.0	90.1	6.5	6.5	6.5	3.6	3.7		3.8	4.3	1
5-May-14	Cunny	Moderate	16:26				24.2 24.2		8.3 8.3		26.7 26.8		90.2 94.3		6.5 6.8			3.7 2.7			4.8 3.8		
5-Iviay-14	Sunny	Moderate	10.20		Surface	1.0	24.2	24.2	8.4	8.4	26.7	26.7	95.0	94.7	6.8	6.8	6.8	2.7	2.7		3.4	3.6	<u> </u>
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.1	-	-	3.9
					Bottom	2.7	24.3 24.2	24.3	8.3 8.4	8.3	27.9 27.7	27.8	94.4 94.9	94.7	6.7 6.8	6.8	6.8	3.6 3.3	3.5		3.6 4.6	4.1	
7-May-14	Cloudy	Moderate	17:55		Surface	1.0	23.4 23.3	23.4	8.4 8.4	8.4	28.5 28.4	28.5	94.9 98.4	96.7	6.9 7.1	7.0		3.0 3.0	3.0		5.5 5.3	5.4	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	3.1	-	-	5.6
					Bottom	2.5	23.4	23.3	8.4 8.4	8.4	28.8	28.6	95.4 93.9	94.7	6.9	6.9	6.9	3.0	3.1		5.2 6.2	5.7	1
9-May-14	Rainy	Moderate	14:27		Surface	1.0	23.5	23.4	8.3	8.3	28.5 28.1	28.1	85.1	85.3	6.2	6.2		12.3	12.3		6.8	7.2	
				4.2	Middle	_	23.4	_	8.3	_	28.0	_	85.4 -	_	6.2	_	6.2	12.3	_	12.2	7.6	_	7.2
				7.2	-	3.2	23.6	23.5	8.3	8.3	29.6	29.6	86.5	86.2	6.2	6.2	6.2	12.2	12.0	12.2	7.2	7.2	
12-May-14	Sunny	Moderate	11:53		Bottom		23.5 23.9		8.3 8.2		29.7 17.2		85.9 92.1		6.2 7.0		0.2	11.7 5.2			7.2 5.1		
12 May 14	Curity	Moderate	11.00		Surface	1.0	24.1	24.0	8.2	8.2	16.7	17.0	97.7	94.9	7.3	7.2	7.2	5.1	5.2		4.4	4.8]
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.3	-	-	5.0
					Bottom	2.6	24.0 24.0	24.0	8.2 8.2	8.2	20.2 19.2	19.7	93.2 91.5	92.4	7.1 7.0	7.0	7.0	5.3 5.3	5.3		4.6 5.6	5.1	
14-May-14	Sunny	Moderate	13:13		Surface	1.0	25.1 25.0	25.1	7.7 7.7	7.7	20.9 21.0	21.0	86.1 85.5	85.8	6.3 6.3	6.3	6.3	6.8 6.7	6.8		3.8 4.3	4.1	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	0.3	-	-	7.2	-	-	3.9
					Bottom	2.9	24.9 24.9	24.9	7.7 7.7	7.7	21.4 21.4	21.4	86.2 85.7	86.0	6.3 6.3	6.3	6.3	7.6 7.4	7.5		2.9 4.3	3.6	
16-May-14	Cloudy	Moderate	13:40		Surface	1.0	26.2 26.2	26.2	7.7 7.7	7.7	19.1 19.1	19.1	94.1 93.7	93.9	6.8 6.8	6.8		7.2 7.2	7.2		3.2 3.4	3.3	
				3.8	Middle	-	-	-	-	-	-	-	- 93.7	-	-	-	6.8	-	-	7.2	-	-	3.6
					Bottom	2.8	26.2	26.1	7.7	7.6	20.3	20.3	94.0	94.5	6.8	6.8	6.8	7.1	7.2		3.2	3.8	
19-May-14	Sunny	Rough	15:48		Surface	1.0	26.1 26.9	26.9	7.6 7.5	7.5	20.2 16.3	16.3	95.0 87.9	87.9	6.9	6.4		7.2 3.6	3.6		4.4	5.2	
		-		2.0		1.0	26.9		7.5 -		16.3		87.9 -		6.4	0.4	6.4	3.5	3.0	1	5.5		
				3.8	Middle	-	26.6	-	- 7.5	-	- 17.4	-	87.3	-	6.4	-		3.4	-	3.5	5.2	-	5.3
21 May 14	Cloudy	Madarata	17:46		Bottom	2.8	26.5	26.6	7.5	7.5	17.2	17.3	90.2	88.8	6.6	6.5	6.5	3.3	3.4		5.5	5.4	
21-May-14	Cloudy	Moderate	17:46		Surface	1.0	26.6 26.6	26.6	7.6 7.6	7.6	16.0 16.1	16.0	83.2 81.8	82.5	6.1 6.0	6.1	6.1	5.8 5.7	5.8		4.6 5.1	4.9]
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.8	-	-	5.0
					Bottom	2.9	26.5 26.1	26.3	7.5 7.6	7.6	17.5 18.6	18.1	83.2 81.9	82.6	6.1 6.0	6.0	6.0	5.7 5.8	5.8		3.9 6.1	5.0	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	09:14		Surface	1.0	26.5 26.6	26.5	7.7 7.7	7.7	13.9 15.2	14.5	80.4 82.5	81.5	6.0 6.1	6.0	6.0	3.6 3.5	3.6		2.9 2.6	2.8	
				3.7	Middle	-		-		-	-	-	-	-		-	0.0	-	-	4.5	-	1	2.7
					Bottom	2.7	26.3 26.3	26.3	7.6 7.6	7.6	18.6 18.8	18.7	82.3 81.0	81.7	6.0 5.9	5.9	5.9	5.3 5.5	5.4		2.7 2.2	2.5	
26-May-14	Sunny	Moderate	11:55		Surface	1.0	28.0 27.9	28.0	7.6 7.6	7.6	13.3 13.5	13.4	99.4 96.2	97.8	7.2 7.0	7.1	7.1	2.0 2.2	2.1		3.4 3.1	3.3	
				3.7	Middle	-		-	1 1	-	-	-	-	-	1 1	-	7.1	-	-	2.2	-	-	3.3
					Bottom	2.7	27.9 27.9	27.9	7.6 7.6	7.6	15.0 15.3	15.1	98.6 93.6	96.1	7.1 6.8	6.9	6.9	2.1 2.3	2.2		3.3 3.3	3.3	
28-May-14	Sunny	Moderate	13:02		Surface	1.0	28.2 28.5	28.3	8.5 8.5	8.5	17.8 17.4	17.6	118.0 116.2	117.1	8.3 8.2	8.3	8.3	4.6 4.6	4.6		6.4 5.6	6.0	
				3.9	Middle	-		-		-	-	-	-	-	1 1	-	0.3	-	-	4.6	-	-	6.6
					Bottom	2.9	26.8 26.8	26.8	8.1 8.1	8.1	20.2 19.1	19.7	92.1 94.5	93.3	6.7 6.8	6.7	6.7	4.6 4.6	4.6		7.0 7.4	7.2	
30-May-14	Sunny	Moderate	13:13		Surface	1.0	28.7 28.3	28.5	8.6 8.6	8.6	17.1 18.4	17.7	124.2 130.4	127.3	8.7 9.2	9.0	9.0	1.9 1.9	1.9		3.7 3.3	3.5	
				3.3	Middle	-		-		-	-	-	-	-		-	3.0	-	-	2.0	-	-	4.3
					Bottom	2.3	28.7 28.6	28.6	8.6 8.6	8.6	18.3 18.5	18.4	103.1 127.3	115.2	7.2 8.9	8.1	8.1	2.1 2.1	2.1		5.2 4.8	5.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	07:50		Surface	1.0	23.9 23.9	23.9	8.4 8.4	8.4	26.6 26.6	26.6	85.1 85.2	85.2	6.2 6.2	6.2		6.2 5.9	6.1		5.1 4.6	4.9	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	6.4	-	-	4.6
					Bottom	2.6	23.9 23.9	23.9	8.4 8.4	8.4	27.1 27.1	27.1	84.6 84.7	84.7	6.1 6.1	6.1	6.1	6.5 6.9	6.7		4.7	4.3	
5-May-14	Sunny	Moderate	09:28		Surface	1.0	24.2	24.2	8.4	8.4	24.8	24.8	92.7	93.7	6.7	6.8		3.8	4.0		3.6	3.5	
				3.7	Middle	1.0	24.2	-	8.4	-	24.8	-	94.6	-	6.9	0.0	6.8	4.1	4.0	4.5	3.4	0.0	3.2
				3.7			24.1		8.4	8.4	- 25.5		- 96.5		7.0	-	6.9	5.2	-	4.5	2.9	-	3.2
7-May-14	Cloudy	Moderate	11:24		Bottom	2.7	24.2 23.5	24.1	8.4 8.4		25.5 28.9	25.5	93.0 96.9	94.8	6.8 7.0	6.9	6.9	4.8	5.0		2.9 5.5	2.9	
7-iviay-14	Cloudy	Woderate	11.24		Surface	1.0	23.5	23.5	8.4	8.4	28.9	28.9	92.7	94.8	6.7	6.8	6.8	3.8	3.9		6.0	5.8	_
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.1	-	-	5.8
					Bottom	2.5	23.4 23.5	23.5	8.4 8.4	8.4	28.9 29.0	29.0	92.0 93.7	92.9	6.6 6.8	6.7	6.7	4.2 4.2	4.2		6.1 5.3	5.7	<u> </u>
9-May-14	Rainy	Moderate	10:03		Surface	1.0	23.3 23.3	23.3	8.4 8.4	8.4	28.0 27.9	28.0	92.1 93.2	92.7	6.7 6.8	6.7	6.7	9.5 9.5	9.5		13.7 15.5	14.6	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0	-	-	9.6	-	-	15.2
					Bottom	3.1	23.4 23.3	23.4	8.3 8.4	8.3	28.5 28.4	28.5	95.3 92.8	94.1	6.9 6.7	6.8	6.8	9.6 9.5	9.6		16.3 15.3	15.8	
12-May-14	Sunny	Moderate	17:08		Surface	1.0	25.1 24.9	25.0	8.1 8.1	8.1	17.1 17.5	17.3	94.0 90.8	92.4	7.0 6.8	6.9		5.2 5.2	5.2		4.9 4.4	4.7	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	5.3	-	-	4.3
					Bottom	2.5	25.0 24.5	24.7	8.1 8.2	8.2	17.5 19.0	18.2	90.6 91.3	91.0	6.8 6.8	6.8	6.8	5.3 5.4	5.4		3.9 3.9	3.9	
14-May-14	Sunny	Moderate	19:01		Surface	1.0	25.0	25.1	7.6	7.6	21.8	21.7	81.1	81.0	5.9	5.9		16.4	16.5		4.9	4.9	
				4.2	Middle	_	25.1	-	7.6	-	21.7	-	80.8	-	5.9	-	5.9	16.5	-	16.7	4.9	-	5.1
					Bottom	3.2	24.8	24.9	7.6	7.6	22.4	22.3	83.3	82.0	6.1	6.0	6.0	16.5	16.9		5.2	5.2	1
16-May-14	Cloudy	Moderate	07:13		Surface	1.0	24.9 25.4	25.4	7.6 7.6	7.6	22.2 17.7	17.7	80.6 80.0	79.9	5.9 5.9	5.9		7.3	7.2		5.1 5.9	5.4	
				4.3	Middle	1.0	25.5	-	7.6	-	17.7	-	79.7 -	-	5.9	0.0	5.9	7.1	-	7.4	4.9	-	5.6
				4.5		3.3	25.4	25.4	7.6	7.6	18.6	18.7	- 79.5	80.2	5.9	5.9	5.9	7.6	7.5	7.4	6.2	5.7	3.0
19-May-14	Cloudy	Moderate	09:41		Bottom		25.4 26.0		7.6 7.5		18.9 15.1		80.9 74.1		6.0 5.5		5.9	7.4 4.7			5.2 6.9		<u> </u>
75 May 14	Oloudy	Moderate	00.41		Surface	1.0	26.0	26.0	7.5	7.5	15.4	15.3	75.4	74.8	5.6	5.6	5.6	4.7	4.7		6.1	6.5	-
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.8	-	-	6.9
					Bottom	2.9	25.9 26.0	26.0	7.5 7.5	7.5	16.5 16.6	16.6	74.6 77.2	75.9	5.5 5.7	5.6	5.6	4.8 4.8	4.8		7.2 7.1	7.2	
21-May-14	Cloudy	Moderate	11:30		Surface	1.0	26.2 26.2	26.2	7.6 7.5	7.6	15.0 15.5	15.3	77.3 79.0	78.2	5.7 5.9	5.8	5.8	8.4 8.8	8.6		7.0 5.7	6.4	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	8.7	-	-	6.1
					Bottom	3.1	26.2 26.3	26.3	7.6 7.5	7.5	15.8 16.0	15.9	77.8 81.3	79.6	5.8 6.0	5.9	5.9	8.7 8.7	8.7		6.4 5.1	5.8	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	13:56		Surface	1.0	26.5 26.5	26.5	7.6 7.6	7.6	15.1 14.6	14.9	89.1 89.3	89.2	6.6 6.6	6.6	6.6	3.2 3.4	3.3		3.4 3.5	3.5	
				3.5	Middle			•		-		-		-	-	-	0.0	-	-	3.4	-	1	3.1
					Bottom	2.5	26.5 26.5	26.5	7.6 7.6	7.6	15.5 15.5	15.5	89.0 88.7	88.9	6.6 6.5	6.5	6.5	3.6 3.4	3.5		2.1 3.3	2.7	
26-May-14	Sunny	Moderate	17:58		Surface	1.0	28.1 27.9	28.0	7.6 7.7	7.7	12.5 12.4	12.5	97.6 97.1	97.4	7.1 7.1	7.1	7.1	5.7 6.0	5.9		3.8 4.2	4.0	
				3.5	Middle	-		-		-		-		-	-	-	7	-	-	7.9	-	-	5.0
					Bottom	2.5	27.8 27.7	27.8	7.6 7.5	7.6	16.4 17.3	16.9	97.7 95.6	96.7	7.0 6.8	6.9	6.9	9.6 10.1	9.9		5.8 6.2	6.0	
28-May-14	Sunny	Moderate	19:19		Surface	1.0	28.6 28.6	28.6	8.6 8.6	8.6	16.9 16.9	16.9	141.3 143.2	142.3	10.0 10.1	10.0	10.0	7.6 7.7	7.7		5.4 6.0	5.7	
				3.9	Middle	•		-		-		-		-	-	-	10.0	-	-	8.2	-	-	6.1
					Bottom	2.9	27.4 27.7	27.5	8.3 8.5	8.4	19.4 18.7	19.0	124.1 128.5	126.3	8.8 9.1	9.0	9.0	8.6 8.7	8.7		6.6 6.1	6.4	
30-May-14	Sunny	Moderate	06:53		Surface	1.0	27.3 27.4	27.3	8.3 8.2	8.3	14.9 15.0	15.0	101.1 93.5	97.3	7.4 6.7	7.1	7.1	1.5 1.6	1.6		3.3 3.9	3.6	
				3.3	Middle	-	1 1	-	1 1	-		-		-	-	-	7.1	-	-	1.6	-	-	3.5
					Bottom	2.3	26.9 27.4	27.1	8.4 8.3	8.3	15.9 17.4	16.7	97.0 90.0	93.5	7.1 6.6	6.8	6.8	1.6 1.6	1.6		3.1 3.5	3.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	14:47		Surface	1.0	24.5 24.5	24.5	8.3 8.3	8.3	26.7 26.8	26.7	89.6 89.4	89.5	6.4 6.4	6.4		5.5 5.4	5.5		4.9 5.6	5.3	
				10.6	Middle	5.3	24.3 24.3	24.3	8.3 8.3	8.3	27.3 27.3	27.3	87.6 87.4	87.5	6.3 6.3	6.3	6.4	6.3 6.0	6.2	5.9	4.1 4.6	4.4	4.6
					Bottom	9.6	24.0	24.0	8.3 8.3	8.3	28.1 28.0	28.0	87.2 86.9	87.1	6.3 6.2	6.2	6.2	6.5 5.6	6.1		4.0	4.1	
5-May-14	Sunny	Moderate	16:44		Surface	1.0	24.1 24.1	24.1	8.4	8.4	26.8	26.5	89.6	89.9	6.5	6.5		3.9	3.9		4.1	3.6	
				44.5			24.1		8.4 8.4		26.2 30.6		90.1 89.6		6.5		6.4	3.9 4.5		4.0	2.9 3.0		0.0
				11.5	Middle	5.8	24.0	23.9	8.4 8.4	8.4	30.5 31.1	30.6	88.9 91.5	89.3	6.3 6.5	6.3		4.4 4.6	4.5	4.3	2.9 3.1	3.0	3.3
7.11	Ol. I	Madagas	40.40		Bottom	10.5	24.0	23.9	8.4	8.4	31.2	31.2	90.4	91.0	6.4	6.4	6.4	4.3	4.5		3.7	3.4	
7-May-14	Cloudy	Moderate	18:10		Surface	1.0	23.5 23.6	23.5	8.4 8.4	8.4	29.7 29.5	29.6	88.9 87.3	88.1	6.4 6.3	6.3	6.3	4.6 4.7	4.7		6.3 7.0	6.7	
				11.1	Middle	5.6	23.7 23.7	23.7	8.4 8.4	8.4	31.1 30.5	30.8	87.8 87.2	87.5	6.2 6.2	6.2		5.0 5.0	5.0	4.9	5.8 6.0	5.9	6.0
					Bottom	10.1	23.7 23.7	23.7	8.4 8.4	8.4	31.5 31.3	31.4	86.4 86.9	86.7	6.1 6.2	6.2	6.2	5.1 5.1	5.1		5.4 5.5	5.5	
9-May-14	Rainy	Moderate	14:45		Surface	1.0	23.5 23.5	23.5	8.4 8.4	8.4	29.4 29.4	29.4	89.7 89.6	89.7	6.4 6.4	6.4		4.4 4.4	4.4		7.8 8.7	8.3	
				10.8	Middle	5.4	23.5 23.5	23.5	8.4 8.4	8.4	29.5 29.5	29.5	88.6 88.7	88.7	6.4 6.4	6.4	6.4	4.4 4.5	4.5	4.6	14.4 14.6	14.5	12.8
					Bottom	9.8	23.5	23.6	8.4 8.3	8.3	29.8 30.3	30.1	89.6 90.2	89.9	6.4 6.4	6.4	6.4	4.8	4.8		15.9 15.2	15.6	
12-May-14	Sunny	Moderate	11:39		Surface	1.0	23.8	23.9	8.2	8.2	16.3	16.4	90.1	88.0	6.6	6.6		5.5	5.6		5.2	4.6	
				11.3	Middle	5.7	23.9 23.8	23.7	8.2 8.2	8.2	16.5 21.7	22.7	85.8 85.9	85.6	6.6 6.5	6.3	6.5	5.6 5.8	5.7	5.7	3.9 4.2	4.1	4.4
					Bottom	10.3	23.7	23.8	8.2 8.2	8.2	23.7 27.7	27.6	85.2 85.8	84.5	6.2 6.4	6.3	6.3	5.6 5.8	5.8	0	3.9 4.1	4.4	"
14-May-14	Sunny	Moderate	13:00				23.7		8.2 7.7		27.5 21.3		83.1 83.5		6.2		0.5	5.8 7.6			4.7 6.9		
	Jan,				Surface	1.0	25.0 24.6	24.8	7.7	7.7	21.2	21.2	86.0 83.6	84.8	6.3	6.2	6.2	7.8	7.7		6.8	6.9	
				9.9	Middle	5.0	24.7	24.7	7.6	7.7	21.4	21.4	84.6	84.1	6.2	6.2		7.8	7.7	7.8	7.3	7.5	7.3
					Bottom	8.9	24.5 24.6	24.6	7.6 7.6	7.6	21.8 24.2	23.0	85.1 84.5	84.8	6.3 6.1	6.2	6.2	7.8 8.2	8.0		7.3 7.6	7.5	
16-May-14	Cloudy	Moderate	14:14		Surface	1.0	25.7 25.6	25.6	7.7 7.7	7.7	20.2 20.4	20.3	85.0 83.5	84.3	6.2 6.1	6.1	6.1	11.3 11.5	11.4		8.4 8.3	8.4	
				10.1	Middle	5.1	25.3 25.0	25.2	7.7 7.7	7.7	21.0 22.7	21.8	82.5 81.6	82.1	6.0 5.9	6.0	0.1	11.6 11.1	11.4	11.3	8.2 9.6	8.9	8.7
					Bottom	9.1	24.6 24.9	24.8	7.7 7.7	7.7	26.2 26.0	26.1	82.1 82.6	82.4	5.9 5.9	5.9	5.9	11.2 11.2	11.2		8.5 9.0	8.8	
19-May-14	Sunny	Rough	16:01		Surface	1.0	26.7 26.7	26.7	7.5 7.5	7.5	16.9 17.1	17.0	84.9 84.8	84.9	6.2 6.2	6.2		6.2 6.2	6.2		5.8 6.1	6.0	
				9.9	Middle	5.0	26.0	26.0	7.6	7.6	18.7	18.7	81.4	81.3	5.9	5.9	6.1	8.0	8.1	7.5	8.7	8.9	7.9
					Bottom	8.9	26.0 25.3	25.3	7.5 7.5	7.5	18.8 23.8	24.0	81.2 82.4	82.3	5.9 5.9	5.9	5.9	8.2 8.1	8.3		9.0 8.9	8.9	
21-May-14	Cloudy	Moderate	18:00	<u> </u>	Surface	1.0	25.3 26.6	26.5	7.5 7.6	7.6	24.2 15.9	15.8	82.1 81.5	80.0	5.9 6.0	5.9		8.4 5.7	5.7		8.8 4.3	3.9	
	•			40.0			26.4 25.4		7.6 7.7		15.7 22.8		78.5 76.1		5.8 5.5		5.7	5.7 5.7			3.5 4.4		
				10.2	Middle	5.1	25.6 25.3	25.5	7.6 7.7	7.7	21.9 25.9	22.4	76.8 77.1	76.5	5.5 5.5	5.5		5.8 5.5	5.8	5.7	4.1	4.3	4.4
					Bottom	9.2	25.4 25.4	25.4	7.6	7.6	26.5	26.2	77.8	77.5	5.5	5.5	5.5	5.6	5.6		5.6	5.1	l

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	09:00		Surface	1.0	26.1 26.3	26.2	7.7 7.6	7.6	14.2 14.0	14.1	79.8 79.8	79.8	6.0 6.0	6.0	5.8	3.6 3.6	3.6		3.4 2.7	3.1	
				10.9	Middle	5.5	25.6 25.4	25.5	7.7 7.6	7.7	23.5 24.3	23.9	77.4 79.5	78.5	5.5 5.7	5.6	3.6	3.4 3.3	3.4	3.6	3.3 3.0	3.2	3.3
					Bottom	9.9	25.7 25.4	25.6	7.6 7.6	7.6	24.7 25.5	25.1	79.0 84.0	81.5	5.6 6.0	5.8	5.8	3.8 3.7	3.8		3.9 3.0	3.5	
26-May-14	Sunny	Moderate	11:41		Surface	1.0	27.7 27.8	27.8	7.5 7.5	7.5	12.1 12.6	12.3	83.3 89.1	86.2	6.1 6.5	6.3	5.9	5.0 4.5	4.8		3.1 3.0	3.1	
				10.3	Middle	5.2	26.9 26.3	26.6	7.5 7.5	7.5	16.1 19.2	17.7	76.4 74.4	75.4	5.6 5.4	5.5	0.0	5.0 5.6	5.3	5.1	3.8 4.2	4.0	4.3
					Bottom	9.3	26.2 26.3	26.2	7.5 7.4	7.5	20.4 19.2	19.8	71.6 76.4	74.0	5.2 5.5	5.4	5.4	5.3 5.2	5.3		5.5 6.1	5.8	
28-May-14	Sunny	Moderate	12:47		Surface	1.0	28.8 28.8	28.8	8.5 8.5	8.5	16.1 16.2	16.1	123.6 118.9	121.3	8.7 8.4	8.6	7.0	3.6 3.6	3.6		3.9 3.9	3.9	
				9.9	Middle	5.0	26.8 26.6	26.7	8.1 8.1	8.1	20.3 20.9	20.6	77.0 74.9	76.0	5.5 5.3	5.4	7.0	3.6 3.6	3.6	3.6	3.8 4.3	4.1	4.0
					Bottom	8.9	26.3 26.0	26.1	8.0 8.1	8.1	23.9 25.1	24.5	77.3 76.6	77.0	5.5 5.4	5.4	5.4	3.6 3.5	3.6		4.1 4.0	4.1	
30-May-14	Sunny	Moderate	13:27		Surface	1.0	27.2 27.4	27.3	8.3 8.3	8.3	17.2 17.3	17.3	80.5 79.1	79.8	5.5 5.7	5.6	5.5	2.9 2.8	2.9		5.8 6.0	5.9	
				10.9	Middle	5.5	26.4 26.2	26.3	8.2 8.2	8.2	24.7 25.2	24.9	77.6 75.6	76.6	5.6 5.2	5.4	5.5	3.0 3.1	3.1	3.1	6.2 4.9	5.6	5.7
					Bottom	9.9	26.1 26.7	26.4	8.2 8.2	8.2	27.7 27.5	27.6	73.3 76.1	74.7	5.1 5.3	5.2	5.2	3.2 3.1	3.2		5.3 5.9	5.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	07:37		Surface	1.0	24.0 24.0	24.0	8.4 8.4	8.4	25.9 26.2	26.1	86.9 87.1	87.0	6.3 6.3	6.3		3.8 4.0	3.9		2.6 2.8	2.7	
				10.9	Middle	5.5	23.9 23.9	23.9	8.4 8.4	8.4	27.2 27.4	27.3	86.8 86.7	86.8	6.3 6.2	6.3	6.3	4.4 4.2	4.3	4.3	3.0 3.2	3.1	3.4
					Bottom	9.9	23.9	23.9	8.4 8.4	8.4	28.2	28.0	87.4 86.8	87.1	6.3	6.3	6.3	4.9	4.8		4.0	4.5	
5-May-14	Sunny	Moderate	09:15		Surface	1.0	24.2	24.2	8.4	8.4	24.5	24.5	90.9	91.7	6.6	6.7		2.5	2.5		4.3	4.5	
				11.3	Middle	5.7	24.2 24.1	24.1	8.4 8.4	8.4	24.6 28.0	28.0	92.4 93.3	92.0	6.7 6.7	6.6	6.7	2.5	2.6	2.6	4.7 4.1	4.2	4.2
				11.5	-		24.1 24.1		8.4 8.4		28.0 28.0		90.6 95.9		6.5 6.9		0.7	2.4		2.0	4.2 4.8		4.2
7-May-14	Cloudy	Moderate	11:11		Bottom	10.3	24.1 23.6	24.1	8.4 8.4	8.4	28.1 29.5	28.0	91.0 94.3	93.5	6.5 6.7	6.7	6.7	2.5 4.6	2.7		3.1 4.0	4.0	
7-IVIAY-14	Cloudy	Moderate	11.11		Surface	1.0	23.5	23.5	8.4	8.4	29.5	29.5	89.0	91.7	6.4	6.5	6.4	4.5	4.6		4.2	4.1	
				11.4	Middle	5.7	23.8 23.8	23.8	8.4 8.4	8.4	31.1 30.9	31.0	86.9 88.9	87.9	6.1 6.3	6.2		5.0 5.1	5.1	5.0	4.8 4.6	4.7	4.9
					Bottom	10.4	23.8 23.7	23.8	8.4 8.4	8.4	31.4 31.3	31.3	85.7 88.3	87.0	6.1 6.3	6.2	6.2	5.1 5.3	5.2		5.4 6.3	5.9	
9-May-14	Rainy	Moderate	09:43		Surface	1.0	23.6 23.6	23.6	8.4 8.4	8.4	29.8 29.8	29.8	85.8 85.2	85.5	6.1 6.1	6.1	6.1	9.1 9.2	9.2		7.0 8.4	7.7	
				10.1	Middle	5.1	23.6 23.6	23.6	8.4 8.4	8.4	30.2 30.2	30.2	84.7 85.1	84.9	6.0 6.1	6.0	0.1	13.5 13.1	13.3	11.9	7.9 6.4	7.2	8.7
					Bottom	9.1	23.6	23.6	8.4 8.4	8.4	30.4 30.6	30.5	85.4 86.0	85.7	6.1 6.1	6.1	6.1	13.1 13.2	13.2		11.8	11.3	
12-May-14	Sunny	Moderate	17:23		Surface	1.0	24.3 24.2	24.3	8.1 8.2	8.2	17.7 17.7	17.7	86.5 84.3	85.4	6.6 6.4	6.5		6.5 6.3	6.4		5.3 5.7	5.5	
				11.5	Middle	5.8	23.7	23.8	8.2	8.2	22.9	22.8	80.5	82.1	5.9	6.0	6.3	6.6	6.6	6.6	5.3	5.3	5.3
					Bottom	10.5	23.9 23.8	23.7	8.2 8.2	8.2	22.8 27.2	27.2	83.6 82.2	81.1	6.1 6.1	5.9	5.9	6.6 6.6	6.7		5.2 5.8	5.0	
14-May-14	Sunny	Moderate	19:16		Surface	1.0	23.7 25.5	25.5	8.2 7.6	7.6	27.2 19.0	18.9	79.9 88.6	87.4	5.8 6.5	6.4		6.8 7.8	7.8		4.1 6.9	7.1	
				10.3	Middle	5.2	25.4 25.0	24.9	7.6 7.6	7.6	18.7 21.2	21.3	86.1 85.9	86.8	6.2	6.4	6.4	7.7 7.5	7.4	7.6	7.2 6.2	5.9	6.4
				10.5			24.8 24.8	24.9	7.6 7.6	7.6	21.4 22.3		87.6 87.2	85.8	6.4		6.3	7.3 7.5		7.0	5.6 6.2		0.4
16-May-14	Cloudy	Moderate	06:58		Bottom	9.3	24.9 25.4		7.7 7.7		23.9 17.6	23.1	84.4 81.0		6.2	6.3	6.3	7.5 6.8	7.5		5.9 6.0	6.1	
10 May 14	Oloddy	Wioderate	00.00		Surface	1.0	25.2 25.1	25.3	7.7	7.7	18.6 21.0	18.1	81.2 80.5	81.1	6.0 5.9	6.0	6.0	7.0	6.9		6.2	6.1	
				10.5	Middle	5.3	25.0	25.0	7.7	7.7	22.3	21.6	81.1	80.8	5.9	5.9		10.7	10.5	9.2	7.4	6.8	6.8
					Bottom	9.5	24.8 25.0	24.9	7.7 7.7	7.7	23.9 23.7	23.8	80.9 79.9	80.4	5.9 5.8	5.8	5.8	10.1 10.3	10.2		7.3 7.5	7.4	
19-May-14	Cloudy	Moderate	09:24		Surface	1.0	25.9 25.8	25.9	7.6 7.6	7.6	15.9 16.0	16.0	75.8 76.6	76.2	5.6 5.7	5.7	5.7	4.7 4.8	4.8		7.1 6.6	6.9	
				10.5	Middle	5.3	25.5 25.6	25.5	7.6 7.7	7.6	20.1 19.8	20.0	76.9 75.8	76.4	5.6 5.5	5.6	5.7	4.7 4.8	4.8	4.8	7.4 6.8	7.1	7.2
					Bottom	9.5	25.3 25.3	25.3	7.7 7.6	7.7	23.2 23.9	23.5	75.8 78.1	77.0	5.5 5.6	5.5	5.5	4.7 4.8	4.8		7.4 7.9	7.7	
21-May-14	Cloudy	Moderate	11:16		Surface	1.0	26.3 26.1	26.2	7.6 7.7	7.6	14.9 15.3	15.1	79.7 76.3	78.0	5.9 5.7	5.8		4.4 4.3	4.4		5.9 4.2	5.1	
				10.9	Middle	5.5	25.9	25.8	7.6	7.7	16.8	16.9	76.3	76.0	5.6	5.6	5.7	4.4	4.5	4.5	4.9	5.1	5.6
					Bottom	9.9	25.7 25.4	25.5	7.7 7.6	7.6	17.1 24.1	25.0	75.6 77.5	76.9	5.6 5.6	5.5	5.5	4.5 4.4	4.5		5.3 6.7	6.5	
					Dolloin	0.0	25.6	20.0	7.6	7.0	25.8	20.0	76.2	7 0.0	5.4	0.0	0.0	4.5	7.0		6.3	0.0	<u>i</u>

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	14:14		Surface	1.0	26.3 26.3	26.3	7.6 7.6	7.6	14.7 14.7	14.7	79.6 78.5	79.1	5.9 5.8	5.9	5.8	3.6 3.2	3.4		3.8 3.2	3.5	
				10.9	Middle	5.5	26.0 25.9	25.9	7.6 7.6	7.6	17.9 18.5	18.2	76.5 76.2	76.4	5.6 5.6	5.6	5.6	3.4 3.5	3.5	3.4	2.8 3.8	3.3	3.1
					Bottom	9.9	25.8 25.9	25.8	7.6 7.6	7.6	20.5 21.5	21.0	76.8 78.2	77.5	5.6 5.6	5.6	5.6	3.4 3.2	3.3		2.4 2.8	2.6	
26-May-14	Sunny	Moderate	18:15		Surface	1.0	28.4 28.4	28.4	7.7 7.7	7.7	12.8 12.9	12.9	92.9 100.0	96.5	6.7 7.2	7.0	6.2	3.5 3.5	3.5		3.6 3.8	3.7	
				10.6	Middle	5.3	26.6 26.5	26.5	7.5 7.5	7.5	17.7 17.8	17.8	73.0 73.6	73.3	5.3 5.4	5.3	0.2	4.2 4.4	4.3	4.1	4.0 3.7	3.9	3.9
					Bottom	9.6	26.2 25.9	26.1	7.5 7.5	7.5	21.2 22.1	21.6	79.5 79.2	79.4	5.7 5.7	5.7	5.7	4.4 4.8	4.6		4.2 3.9	4.1	
28-May-14	Sunny	Moderate	19:36		Surface	1.0	28.5 28.5	28.5	8.7 8.7	8.7	14.7 15.1	14.9	129.6 125.6	127.6	9.3 9.0	9.1	7.4	3.5 3.6	3.6		4.2 3.3	3.8	
				10.9	Middle	5.5	26.8 26.7	26.8	8.3 8.2	8.3	19.9 20.3	20.1	79.9 81.1	80.5	5.7 5.7	5.7	7.4	4.5 4.2	4.4	4.2	3.7 3.2	3.5	4.0
					Bottom	9.9	26.7 26.1	26.4	8.2 8.2	8.2	21.2 25.1	23.2	79.8 76.6	78.2	5.7 5.5	5.6	5.6	4.5 4.5	4.5		4.5 5.0	4.8	
30-May-14	Sunny	Moderate	06:39		Surface	1.0	27.4 27.0	27.2	8.3 8.2	8.3	16.8 16.7	16.8	90.1 82.8	86.5	6.5 5.8	6.1	5.8	2.5 2.4	2.5		5.4 4.8	5.1	
				11.0	Middle	5.5	26.8 26.7	26.7	8.2 8.2	8.2	20.8 21.4	21.1	73.8 77.0	75.4	5.2 5.6	5.4	5.0	2.6 2.6	2.6	2.7	4.1 5.0	4.6	4.6
					Bottom	10.0	26.3 26.2	26.3	8.2 8.2	8.2	26.0 26.0	26.0	76.0 73.4	74.7	5.4 5.2	5.3	5.3	2.8 2.9	2.9		4.4 3.7	4.1	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	13:40		Surface	-		-	-	-	-	-	-	-		-		-	-		-	-	1
				1.4	Middle	0.7	24.3 24.4	24.4	8.2 8.2	8.2	27.8 27.7	27.7	92.1 92.0	92.1	6.6 6.6	6.6	6.6	3.5 3.4	3.5	3.5	4.6 4.1	4.4	4.4
					Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	l '
5-May-14	Sunny	Moderate	15:26		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	24.4 24.4	24.4	8.5 8.5	8.5	28.1 28.2	28.2	96.4 95.4	95.9	6.9 6.8	6.8	6.8	3.6 3.5	3.6	3.6	4.9 6.1	5.5	5.5
					Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	
7-May-14	Cloudy	Moderate	17:09		Surface	_	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.4	Middle	0.7	23.3 23.3	23.3	8.3 8.4	8.3	28.5 28.5	28.5	97.3 95.1	96.2	7.0 6.9	7.0	7.0	2.4 2.4	2.4	2.4	6.0 5.5	5.8	5.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
9-May-14	Rainy	Moderate	13:46		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.4	Middle	0.7	23.4 23.4	23.4	8.4 8.3	8.4	26.3 26.4	26.3	91.6 92.1	91.9	6.7 6.7	6.7	6.7	6.2 6.4	6.3	6.3	11.7 10.2	11.0	11.0
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
12-May-14	Sunny	Moderate	12:41		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	24.0 24.0	24.0	8.2 8.2	8.2	15.7 15.7	15.7	91.0 91.0	91.0	7.0 7.0	7.0	7.0	8.2 8.2	8.2	8.2	5.9 7.1	6.5	6.5
					Bottom	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	
14-May-14	Sunny	Moderate	14:01		Surface	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-		-	-	
				1.2	Middle	0.6	25.7 25.8	25.8	7.7 7.7	7.7	20.5 20.5	20.5	93.0 92.8	92.9	6.8 6.7	6.7	6.7	5.8 5.8	5.8	5.8	6.8 6.3	6.6	6.6
					Bottom	-	1 1	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	
16-May-14	Cloudy	Moderate	12:45		Surface	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-		-	-	
				1.6	Middle	0.8	25.8 25.8	25.8	7.6 7.6	7.6	20.9 20.8	20.9	91.6 89.9	90.8	6.6 6.5	6.6	6.6	12.2 12.0	12.1	12.1	7.2 7.4	7.3	7.3
					Bottom	-	1 1	-	-	-	-	-	-	-		-	-	-	-		-	-	
19-May-14	Sunny	Rough	15:00		Surface	-		-	-	-	-	-	-	-		-	6.6	-	-		-	-	
				1.4	Middle	0.7	26.8 26.8	26.8	7.6 7.6	7.6	17.7 17.7	17.7	91.6 91.2	91.4	6.6 6.6	6.6	0.0	8.4 8.2	8.3	8.3	12.7 11.7	12.2	12.2
					Bottom	-	1 1	-	-	-	-	-	-	-		-	-	-	-		-	-	
21-May-14	Cloudy	Moderate	17:01		Surface	-	1 1	-	-	-	-	-	-	-	-	-	6.6	-	-		-	-	
				1.2	Middle	0.6	26.9 26.9	26.9	7.5 7.5	7.5	16.1 16.2	16.1	90.5 89.8	90.2	6.6 6.6	6.6	0.0	5.8 5.5	5.7	5.7	5.8 6.0	5.9	5.9
					Bottom	-		-	-	-	-	-	-	-		-	-	-	-		-	-	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	ī	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	10:10		Surface	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-		-	-	
				1.6	Middle	8.0	26.5 26.5	26.5	7.6 7.6	7.6	15.3 15.4	15.4	84.3 81.8	83.1	6.2 6.0	6.1	6.1	3.7 4.0	3.9	3.9	2.8 3.5	3.2	3.2
					Bottom	-		-	-	-	-	-	-	-		-	-	-	-		-	-	
26-May-14	Sunny	Moderate	12:52		Surface	-		-		-	-	-	-	-		-	7.5	-	-		-	-	
				1.6	Middle	8.0	28.1 28.0	28.0	7.7 7.7	7.7	13.7 13.9	13.8	103.2 103.1	103.2	7.5 7.5	7.5	7.5	2.9 2.8	2.9	2.9	3.9 4.2	4.1	4.1
					Bottom	-		-		-	-	-	-	-		-	-	-	-		-	-	
28-May-14	Sunny	Moderate	13:58		Surface	-		-		-	-	-	-	-		-	10.0	-	-		-	-	
				1.2	Middle	0.6	28.7 28.7	28.7	8.6 8.6	8.6	17.6 17.6	17.6	141.5 143.1	142.3	9.9 10.1	10.0	10.0	3.4 3.5	3.5	3.5	7.2 7.3	7.3	7.3
					Bottom	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	
30-May-14	Sunny	Moderate	12:30		Surface	-	-	-	-	-	-	-	-	-	-	-	8.8	-	-		-	-	
				1.2	Middle	0.6	28.2 28.2	28.2	8.5 8.5	8.5	19.5 19.5	19.5	126.3 124.1	125.2	8.8 8.7	8.8	0.0	2.3 2.1	2.2	2.2	4.7 4.7	4.7	4.7
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	08:43		Surface			-	-	-	-	-	-	-		-		-	-		-	-	
				1.6	Middle	0.8	23.9 23.9	23.9	8.3 8.3	8.3	26.4 26.3	26.4	88.2 88.2	88.2	6.4 6.4	6.4	6.4	10.7 10.7	10.7	10.7	4.9 5.9	5.4	5.4
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
5-May-14	Sunny	Moderate	10:25		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.8	Middle	0.9	24.2 24.2	24.2	8.4 8.3	8.4	26.3 26.3	26.3	95.3 95.2	95.3	6.9 6.9	6.9	6.9	3.0	3.2	3.2	4.2	3.7	3.7
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
7-May-14	Cloudy	Moderate	12:10		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.8	Middle	0.9	23.1 23.1	23.1	8.3 8.3	8.3	27.7 27.7	27.7	91.9 91.9	91.9	6.7 6.7	6.7	6.7	2.5 2.4	2.5	2.5	6.3 7.3	6.8	6.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
9-May-14	Rainy	Moderate	10:47		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	23.4 23.4	23.4	8.4 8.3	8.4	26.3 26.3	26.3	90.9 90.6	90.8	6.7 6.6	6.6	6.6	6.4 6.2	6.3	6.3	6.8 6.0	6.4	6.4
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
12-May-14	Sunny	Moderate	16:24		Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
				1.4	Middle	0.7	25.3 25.2	25.2	8.2 8.1	8.1	16.7 16.7	16.7	94.4 93.7	94.1	7.1 7.0	7.0	7.0	4.8 4.8	4.8	4.8	5.2 4.2	4.7	4.7
					Bottom			-	-	-	-	-	-	-		-	-	-	-		-	-	
14-May-14	Sunny	Moderate	18:15		Surface	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-		-	-	
				1.4	Middle	0.7	25.6 25.5	25.6	7.6 7.6	7.6	22.3 22.4	22.3	90.3 89.0	89.7	6.5 6.4	6.5	0.5	6.6 6.4	6.5	6.5	5.8 5.4	5.6	5.6
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
16-May-14	Cloudy	Moderate	08:00		Surface	-		-	-	-	-	-	-	-		-	6.3	-	-		-	-	
				1.4	Middle	0.7	25.8 25.8	25.8	7.6 7.6	7.6	18.7 18.7	18.7	85.8 85.8	85.8	6.3 6.3	6.3	0.0	4.5 4.4	4.5	4.5	5.1 6.6	5.9	5.9
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
19-May-14	Cloudy	Moderate	10:32		Surface	-		-	-	-	-	-	-	-	-	-	6.3	-	-		-	-	
				1.4	Middle	0.7	26.4 26.4	26.4	7.6 7.6	7.6	17.2 17.2	17.2	85.8 86.2	86.0	6.3 6.3	6.3	0.0	2.4 2.5	2.5	2.5	3.2 2.7	3.0	3.0
					Bottom	-	1 1	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
21-May-14	Cloudy	Moderate	12:15		Surface	-		-	-	-	-	-	-	-	-	-	6.4	-	-		-	-	
				1.4	Middle	0.7	26.6 26.6	26.6	7.6 7.6	7.6	15.7 15.7	15.7	86.3 86.7	86.5	6.4 6.4	6.4	5. 7	3.3 3.3	3.3	3.3	5.8 5.7	5.8	5.8
					Bottom	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	ī	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	13:01		Surface	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-		-	-	
				1.8	Middle	0.9	26.4 26.4	26.4	7.5 7.5	7.5	17.1 17.1	17.1	86.8 85.3	86.1	6.4 6.2	6.3	6.3	4.8 4.9	4.9	4.9	3.5 3.9	3.7	3.7
					Bottom	-		-	-	-	-	-	-	-		-	-	-	-		-	-	
26-May-14	Sunny	Moderate	16:54		Surface	-	-	-	-	-	-	-	-	-	-	-	8.6	-	-		-	-	
				1.6	Middle	8.0	28.6 28.6	28.6	7.8 7.8	7.8	14.5 14.5	14.5	119.6 120.9	120.3	8.6 8.6	8.6	0.0	3.0 2.9	3.0	3.0	5.4 4.7	5.1	5.1
					Bottom	-		-		-	-	-	-	-	- 1	-	-	-	-		-	-	
28-May-14	Sunny	Moderate	18:31		Surface	-		-		-	-	-	-	-		-	10.5	-	-		-	-	
				1.4	Middle	0.7	28.5 28.4	28.5	8.7 8.6	8.7	18.7 18.9	18.8	150.3 150.1	150.2	10.5 10.5	10.5	10.5	4.5 4.6	4.6	4.6	5.5 6.2	5.9	5.9
					Bottom	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	
30-May-14	Sunny	Moderate	07:41		Surface	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-		-	-	
				1.6	Middle	0.8	27.7 27.7	27.7	8.4 8.4	8.4	17.1 17.1	17.1	109.3 109.9	109.6	7.8 7.9	7.8	7.0	2.0 2.0	2.0	2.0	4.4 3.6	4.0	4.0
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	14:21		Surface	1.0	24.4 24.5	24.5	8.3 8.3	8.3	26.3 26.3	26.3	90.0 90.3	90.2	6.5 6.5	6.5		3.6 3.5	3.6		4.7 5.4	5.1	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-	4.3	-	-	4.4
					Bottom	2.6	24.1 24.2	24.1	8.3 8.3	8.3	26.7	26.7	88.4 88.5	88.5	6.4	6.4	6.4	4.9 4.8	4.9		3.8	3.7	
5-May-14	Sunny	Moderate	16:18				24.2		8.4		27.1		96.3		6.9			5.2			4.5		
o may 11	Cumy	Moderate	10.10		Surface	1.0	24.2	24.2	8.4	8.4	26.8	27.0	97.6	97.0	7.0	7.0	7.0	5.0	5.1		4.1	4.3	
				3.6	Middle	-	- 24.2	-	8.4	-	- 27.2	-	98.7	-	- 7.1	-		- 5.2	-	5.1	3.0	-	4.1
					Bottom	2.6	24.2	24.2	8.4	8.4	27.2	27.2	96.9	97.8	7.0	7.0	7.0	4.9	5.1		4.5	3.8	<u> </u>
7-May-14	Cloudy	Moderate	17:50		Surface	1.0	23.4 23.3	23.4	8.3 8.3	8.3	27.2 27.8	27.5	85.1 97.7	91.4	6.1 7.0	6.6	6.6	4.7 4.7	4.7		6.1 6.8	6.5	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	4.8	-	-	5.8
					Bottom	2.4	23.4 23.3	23.4	8.4 8.3	8.4	28.8 29.0	28.9	85.8 84.0	84.9	6.2 6.1	6.2	6.2	4.9 4.7	4.8		5.2 4.9	5.1	
9-May-14	Rainy	Moderate	14:22		Surface	1.0	23.4 23.4	23.4	8.4 8.4	8.4	27.9 27.9	27.9	86.8 86.5	86.7	6.3 6.3	6.3		11.5 11.4	11.5		5.9 5.1	5.5	
				3.7	Middle	_	-	-	-	-	-	-	-	-	-	-	6.3	-	-	11.4	-	-	7.2
					Bottom	2.7	23.5	23.5	8.3	8.3	29.6	29.5	87.2	87.6	6.3	6.3	6.3	11.2	11.2		9.0	8.8	
12-May-14	Sunny	Moderate	11:59		Surface	1.0	23.5 23.6	23.6	8.3 8.1	8.1	29.3 10.4	11.2	87.9 87.5	89.7	6.3 6.9	7.0		7.1	7.1		8.6 5.5	5.3	
				3.4	Middle		23.6	_	8.1	_	12.0	_	91.8		7.0		7.0	7.1	_	7.2	5.1		5.1
				0.4	Bottom	2.4	23.4	23.5	8.1	8.1	18.1	18.2	- 87.5	87.0	6.9	6.8	6.8	7.1		1	4.0	4.8	
					DOLLOTTI	2.4	23.5	23.5	8.0	0.1	18.3	10.2	86.4	67.0	6.7	0.0	0.0	7.2	7.2		5.5	4.0	
14-May-14	Sunny	Moderate	13:22		Surface	1.0	25.4 25.4	25.4	7.6 7.6	7.6	18.2 17.9	18.1	80.2 80.5	80.4	5.9 6.0	6.0	6.0	6.3 6.5	6.4		3.5 2.8	3.2	
				3.8	Middle	-	-	-	-	-	-	-	-	-		-		-	-	6.4	-	-	3.4
					Bottom	2.8	25.1 25.0	25.1	7.6 7.6	7.6	19.5 19.6	19.5	79.7 81.0	80.4	5.9 6.0	5.9	5.9	6.4 6.4	6.4		3.1 4.0	3.6	ļ
16-May-14	Cloudy	Moderate	13:34		Surface	1.0	26.6 26.7	26.7	7.6 7.6	7.6	17.2 17.1	17.2	84.7 86.8	85.8	6.2 6.3	6.2		4.6 4.8	4.7		2.9 3.3	3.1	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	4.8	-	-	3.1
					Bottom	2.7	26.2 26.1	26.1	7.5 7.5	7.5	18.1 18.2	18.1	83.7 87.9	85.8	6.1 6.4	6.3	6.3	4.7 4.8	4.8		3.1	3.0	
19-May-14	Sunny	Rough	15:41		Surface	1.0	26.9	26.9	7.4	7.4	15.9	15.9	81.0	80.2	5.9	5.9		5.5	5.4		3.9	3.8	
				3.7	Middle	_	26.8	_	7.4	_	15.9	_	79.3	_	5.8	_	5.9	5.3	_	5.7	3.6	-	5.5
					Bottom	2.7	26.7	26.8	7.4	7.4	16.1	16.1	79.2	80.5	5.8	5.9	5.9	6.0	5.9	1	6.8	7.2	
21-May-14	Cloudy	Moderate	17:41			1.0	26.8 26.8	26.8	7.3 7.6	7.6	16.1 12.3	12.1	81.7 82.5	83.7	6.0		0.0	5.7 8.4			7.5 7.5		
	•				Surface	1.0	26.8	∠0.8	7.6	7.0	11.8	12.1	84.8	83.7	6.4	6.3	6.3	8.2	8.3		7.2	7.4	
				3.7	Middle	-	- 26.4	-	- 7.6	-	- 16.1	-	- 81.2	-	6.0	-		8.4	-	8.4	6.3	-	7.1
					Bottom	2.7	26.5	26.4	7.6	7.6	15.9	16.0	83.5	82.4	6.1	6.1	6.1	8.3	8.4		7.0	6.7	

DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

^{***} Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	09:24		Surface	1.0	26.6 26.6	26.6	7.7 7.7	7.7	14.0 13.8	13.9	79.4 84.5	82.0	5.9 6.3	6.1	6.1	3.2 3.5	3.4		3.1 2.8	3.0	
				3.5	Middle	-	-	-		-	-	-	-	-		-	0.1	-	-	4.1	-	-	3.3
					Bottom	2.5	26.4 26.4	26.4	7.6 7.5	7.6	18.2 18.3	18.3	79.2 74.6	76.9	5.9 5.4	5.7	5.7	4.5 4.8	4.7		3.4 3.7	3.6	
26-May-14	Sunny	Moderate	12:04		Surface	1.0	27.7 27.7	27.7	7.6 7.6	7.6	14.6 14.8	14.7	91.8 88.5	90.2	6.7 6.4	6.5	6.5	2.2 2.0	2.1		2.0 2.7	2.4	
				3.7	Middle		-	•		-	-	-	-	-	1 1	-	0.5	-	-	2.3	-	-	3.6
					Bottom	2.7	27.8 27.2	27.5	7.6 7.5	7.5	15.6 15.5	15.5	92.7 83.4	88.1	6.7 6.1	6.4	6.4	2.4 2.5	2.5		4.8 4.8	4.8	
28-May-14	Sunny	Moderate	13:10		Surface	1.0	28.8 28.8	28.8	8.6 8.6	8.6	14.8 14.8	14.8	138.8 136.9	137.9	9.9 9.7	9.8	9.8	4.7 4.7	4.7		7.4 5.1	6.3	
				3.7	Middle	-	-	-		-	-	-	-	-	1 1	-	9.0	-	-	4.8	-	-	6.0
					Bottom	2.7	28.7 28.7	28.7	8.5 8.6	8.6	14.9 14.9	14.9	133.7 137.7	135.7	9.5 9.8	9.7	9.7	4.7 4.8	4.8		6.0 5.4	5.7	
30-May-14	Sunny	Moderate	13:07		Surface	1.0	28.5 28.2	28.4	8.5 8.4	8.5	15.4 16.1	15.8	113.0 118.1	115.6	8.1 8.4	8.2	8.2	2.4 2.5	2.5		3.2 3.0	3.1	
				3.4	Middle	-	-	-		-	-	-	-	-	-	-	0.2	-	-	2.5	-	-	2.9
					Bottom	2.4	29.2 28.6	28.9	8.6 8.5	8.6	16.3 17.7	17.0	106.6 117.3	112.0	7.5 8.3	7.9	7.9	2.5 2.5	2.5		2.6 2.8	2.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	08:01		Surface	1.0	23.9 23.9	23.9	8.4	8.4	26.3 26.3	26.3	86.6 86.1	86.4	6.3 6.3	6.3		4.4 4.3	4.4		3.4 3.6	3.5	
				3.6	Middle	-	- 23.9	-	8.4	-	- 20.3	-	- 80.1	-	- 0.3	-	6.3	- 4.3	-	4.7	- 3.0	-	4.6
					Bottom	2.6	23.9	23.9	8.4	8.4	26.9	26.9	85.6	85.7	6.2	6.2	6.2	5.0	5.0		5.5	5.6	
5-May-14	Sunny	Moderate	09:35				23.9 24.2		8.4 8.3		26.8 24.8		85.7 91.9		6.2			4.9 3.0			5.6 4.2		
3-iviay-14	Suring	Woderate	09.33		Surface	1.0	24.2	24.2	8.4	8.4	24.8	24.8	92.1	92.0	6.7	6.7	6.7	3.1	3.1		4.0	4.1	_
				3.8	Middle	-	-	-	-	-	-	-		-	-	-		-	-	4.2	-	-	3.7
					Bottom	2.8	24.2 24.2	24.2	8.3 8.4	8.3	25.5 25.2	25.4	91.5 91.9	91.7	6.6 6.7	6.7	6.7	5.3 5.0	5.2		3.2 3.2	3.2	
7-May-14	Cloudy	Moderate	11:30		Surface	1.0	23.4 23.4	23.4	8.4 8.4	8.4	28.3 28.5	28.4	99.1 88.7	93.9	7.2 6.4	6.8	6.8	4.6 4.5	4.6		4.8 5.0	4.9	
				3.7	Middle	-	-	-	-	-		-		-		-	0.0	-	-	4.7	-	-	6.0
					Bottom	2.7	23.4 23.3	23.4	8.4 8.4	8.4	29.0 28.5	28.7	89.8 87.9	88.9	6.5 6.4	6.4	6.4	4.8 4.5	4.7		6.9 7.0	7.0	
9-May-14	Rainy	Moderate	10:08		Surface	1.0	23.3 23.3	23.3	8.4 8.4	8.4	27.9 28.1	28.0	90.8 91.3	91.1	6.6 6.6	6.6		9.5 9.5	9.5		14.0 13.9	14.0	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	9.5	-	-	13.8
					Bottom	2.8	23.3	23.4	8.4 8.3	8.3	28.3 28.6	28.5	91.3 89.5	90.4	6.6 6.5	6.5	6.5	9.5 9.5	9.5		12.7 14.4	13.6	•
12-May-14	Sunny	Moderate	17:03		Surface	1.0	24.7	24.8	8.1	8.1	18.6	18.5	88.4	92.4	6.6	6.9		12.2	12.3		5.2	5.1	
				3.4	Middle	-	24.8	-	8.1	-	18.5	_	96.3	-	7.2	-	6.9	12.3	-	12.4	5.0	-	4.7
					Bottom	2.4	24.8	24.7	8.1	8.1	18.5	18.9	87.6	88.3	6.6	6.6	6.6	12.6	12.5		4.2	4.2	
14-May-14	Sunny	Moderate	18:55				24.7 25.0		8.1 7.6		19.2 21.8		88.9 82.4		6.6			12.4 20.5			4.2 5.0		<u> </u>
14-iviay-14	Suring	Woderate	10.55		Surface	1.0	25.0	25.0	7.6	7.6	21.8	21.8	84.3	83.4	6.2	6.1	6.1	20.4	20.5		5.7	5.4	_
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	20.4	-	-	5.2
					Bottom	2.7	25.0 25.0	25.0	7.6 7.5	7.6	21.8 21.8	21.8	83.3 87.1	85.2	6.1 6.4	6.2	6.2	20.1 20.5	20.3		4.7 5.0	4.9	
16-May-14	Cloudy	Moderate	07:20		Surface	1.0	25.5 25.5	25.5	7.6 7.6	7.6	17.8 17.7	17.8	80.7 79.0	79.9	6.0 5.9	5.9	5.9	7.9 7.7	7.8		6.7 6.6	6.7	
				3.8	Middle		-	-	-	-		-		-		-	5.5	-	-	7.9	-	-	7.2
					Bottom	2.8	25.5 25.5	25.5	7.6 7.6	7.6	17.8 17.7	17.8	83.6 79.8	81.7	6.2 5.9	6.1	6.1	8.0 7.9	8.0		7.2 8.0	7.6	
19-May-14	Cloudy	Moderate	09:47		Surface	1.0	26.0 26.0	26.0	7.5 7.5	7.5	16.1 15.6	15.9	72.9 75.6	74.3	5.4 5.6	5.5		9.4 9.0	9.2		5.8 6.2	6.0	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-	9.1	-	-	10.0
					Bottom	2.8	26.0	26.0	7.5 7.4	7.5	16.2 16.1	16.2	74.0 74.9	74.5	5.5 5.6	5.5	5.5	9.1 8.6	8.9		14.2 13.8	14.0	•
21-May-14	Cloudy	Moderate	11:36		Surface	1.0	26.4	26.4	7.6	7.6	15.8	15.8	83.1	82.1	6.1	6.1		6.4	6.4		7.5	7.0	
				3.9	Middle	-	26.4	-	7.6	-	15.8	-	81.1	-	6.0	-	6.1	6.4	-	6.6	6.4	-	7.6
					Bottom	2.9	26.4	26.4	7.6	7.6	15.9	15.8	82.0	83.7	6.0	6.2	6.2	6.7	6.7		7.8	8.2	-
					Dottom	۵.5	26.3	20.4	7.5	7.0	15.7	13.0	85.4	03.1	6.3	0.2	0.2	6.6	0.7		8.5	J.Z	<u> </u>

DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

^{***} Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	13:48		Surface	1.0	26.5 26.4	26.4	7.6 7.5	7.6	14.1 14.0	14.1	90.1 92.7	91.4	6.7 6.9	6.8	6.8	8.2 7.7	8.0		3.9 2.5	3.2	
				3.4	Middle			-		-	1 1	i		-	-	-	0.0	-	-	7.2	-	1	3.2
					Bottom	2.4	26.5 26.3	26.4	7.6 7.4	7.5	14.8 14.1	14.5	91.2 94.6	92.9	6.8 7.1	6.9	6.9	6.0 6.5	6.3		3.1 3.2	3.2	
26-May-14	Sunny	Moderate	17:48		Surface	1.0	28.0 28.0	28.0	7.6 7.6	7.6	12.7 13.1	12.9	97.2 98.7	98.0	7.1 7.2	7.1	7.1	13.1 12.7	12.9		-	-	
				3.5	Middle	-		-		-		-		-	-	-		-	-	15.4	-	-	3.1
					Bottom	2.5	27.8 27.9	27.9	7.5 7.6	7.6	15.6 15.0	15.3	96.1 98.4	97.3	6.9 7.1	7.0	7.0	18.2 17.6	17.9		3.5 2.7	3.1	
28-May-14	Sunny	Moderate	19:13		Surface	1.0	28.6 28.7	28.7	8.7 8.7	8.7	16.9 16.8	16.9	139.8 140.7	140.3	9.9 9.9	9.9	9.9	7.6 7.3	7.5		6.3 6.0	6.2	
				3.6	Middle			-		-		i		-	-	-	3.3	-	-	7.7	-	ı	6.9
					Bottom	2.6	27.3 27.4	27.3	8.5 8.5	8.5	19.3 19.8	19.6	124.8 123.9	124.4	8.9 8.8	8.8	8.8	7.9 7.8	7.9		7.6 7.3	7.5	
30-May-14	Sunny	Moderate	07:00		Surface	1.0	27.2 27.2	27.2	8.2 8.2	8.2	17.8 17.8	17.8	94.2 79.8	87.0	6.8 5.7	6.3	6.3	2.9 2.7	2.8		3.1 2.6	2.9	
				3.4	Middle	-		-		-		-		-	-	-	0.0	-	-	3.0	-	-	3.2
					Bottom	2.4	27.2 27.1	27.1	8.2 8.2	8.2	18.1 17.8	17.9	79.2 86.2	82.7	5.7 6.2	5.9	5.9	3.1 3.1	3.1		3.9 2.9	3.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	14:50		Surface	1.0	24.3 24.3	24.3	8.2 8.2	8.2	26.8 26.9	26.8	91.0 90.1	90.6	6.5 6.5	6.5	0.5	3.3 3.1	3.2		5.1 4.0	4.6	
				4.9	Middle	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-	3.2	-	-	4.5
					Bottom	3.9	24.3	24.3	8.2	8.2	27.0	27.0	90.3	91.7	6.5	6.6	6.6	3.1	3.2		4.1	4.3	1
5-May-14	Sunny	Moderate	16:50	1			24.3 24.3		8.2 8.3		27.0 25.8	1	93.0 91.9	l I	6.7 6.6			3.3 2.3			4.4	1	1
o May 14	Culliny	Woderate	10.00		Surface	1.0	24.3	24.3	8.2	8.3	26.0	25.9	90.9	91.4	6.6	6.6	6.6	2.2	2.3		4.6	4.5	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.4	-	-	4.6
					Bottom	4.0	24.2 24.2	24.2	8.2 8.2	8.2	27.4 27.7	27.5	92.5 91.0	91.8	6.6 6.5	6.6	6.6	2.4 2.4	2.4		5.2 3.9	4.6	
7-May-14	Cloudy	Moderate	18:37		Surface	1.0	23.6 23.6	23.6	8.2 8.2	8.2	29.9 30.0	30.0	91.2 92.9	92.1	6.5 6.6	6.6	0.0	3.7 3.8	3.8		6.5 5.4	6.0	
				4.6	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	3.8	-	-	6.0
					Bottom	3.6	23.6 23.6	23.6	8.2 8.2	8.2	30.0 30.0	30.0	91.9 95.4	93.7	6.6 6.8	6.7	6.7	3.7 3.7	3.7		5.9 5.8	5.9	
9-May-14	Rainy	Moderate	09:59		Surface	1.0	23.6	23.6	8.2	8.2	27.9	27.9	87.5	87.4	6.3	6.3		4.0	4.2		4.3	4.4	
				4.7	Middle		23.6	_	8.2	_	27.9	_	87.3		6.3		6.3	4.4	_	4.6	4.4	_	5.9
				4.7	-	0.7	23.7	00.7	8.2	0.0	30.2	00.4	87.4	07.0	6.2	0.0	0.0	4.9	5.0	4.0	6.6		- 3.3
12-May-14	Sunny	Moderate	11:44		Bottom	3.7	23.7 24.0	23.7	8.2 8.0	8.2	30.1 14.4	30.1	87.0 84.3	87.2	6.2 6.5	6.2	6.2	5.1 3.9	5.0		7.9 5.4	7.3	
12-iviay-14	Sullily	Moderate	11.44		Surface	1.0	24.0	24.0	8.0	8.0	14.2	14.3	84.4	84.4	6.6	6.5	6.5	3.8	3.9		5.6	5.5	<u> </u>
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.9	-	-	5.6
					Bottom	3.8	24.0 23.9	23.9	8.0 8.0	8.0	17.3 17.4	17.4	84.4 84.1	84.3	6.4 6.4	6.4	6.4	3.9 3.8	3.9		6.4 4.9	5.7	
14-May-14	Sunny	Moderate	12:54		Surface	1.0	25.0 25.1	25.1	8.1 8.0	8.1	17.6 17.6	17.6	84.2 84.1	84.2	6.3 6.3	6.3		5.5 5.4	5.5		6.9 5.3	6.1	
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	6.1	-	-	6.4
					Bottom	3.8	24.9 25.0	25.0	8.0 8.0	8.0	19.8 18.9	19.4	83.9 83.9	83.9	6.2 6.2	6.2	6.2	6.7 6.5	6.6		7.4 5.8	6.6	
16-May-14	Cloudy	Moderate	13:36		Surface	1.0	25.4	25.4	8.1	8.1	18.1	18.3	81.6	81.7	6.0	6.0		6.7	6.8		4.5	4.9	
				5.5	Middle		25.4	_	8.1	_	18.6	_	81.7		6.0		6.0	6.9	_	7.0	5.2		5.1
				0.0	Bottom	4.5	25.4	25.3	8.1	8.1	20.0	20.2	81.5	81.5	6.0	6.0	6.0	7.0	7.1	7.0	5.0	5.2	-
19-May-14	Sunny	Rough	16:40	1			25.3 26.6		8.1 8.1		20.4 14.5		81.4 88.0		6.0		6.0	7.2 4.5			5.3 3.7		
13-iviay-14	Odiniy	rtougn	10.40		Surface	1.0	26.8	26.7	8.1	8.1	14.4	14.5	84.5	86.3	6.2	6.3	6.3	4.4	4.5		2.9	3.3	-
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.6	-	-	3.8
					Bottom	4.0	26.1 26.6	26.3	8.1 8.0	8.1	18.1 17.3	17.7	85.3 84.5	84.9	6.3 6.2	6.2	6.2	4.7 4.6	4.7		4.2 4.1	4.2	
21-May-14	Cloudy	Moderate	18:03		Surface	1.0	26.6 26.7	26.6	8.1 8.1	8.1	13.1 13.1	13.1	77.5 78.7	78.1	5.8 5.9	5.8		3.4 3.8	3.6		6.1 6.7	6.4	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-	4.2	-	-	6.6
					Bottom	4.5	25.8	25.9	8.0	8.0	19.1	19.1	77.3	76.8	5.7	5.6	5.6	4.9	4.7		6.6	6.8	•
							25.9		8.0		19.1	_	76.3		5.6			4.5			7.0		<u> </u>

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	09:17		Surface	1.0	26.2 26.2	26.2	8.0 8.0	8.0	13.9 13.9	13.9	69.9 70.1	70.0	5.2 5.3	5.2	5.2	4.2 4.0	4.1		5.3 4.5	4.9	
				4.8	Middle	-	-	-		-		-		-		-	3.2	-	-	4.2	-	-	4.8
					Bottom	3.8	26.1 25.9	26.0	7.9 7.9	7.9	18.3 18.4	18.4	70.5 68.9	69.7	5.2 5.1	5.1	5.1	4.3 4.3	4.3		4.6 4.6	4.6	
26-May-14	Sunny	Moderate	11:59		Surface	1.0	27.4 27.3	27.3	7.9 7.9	7.9	9.6 10.0	9.8	73.8 72.6	73.2	5.5 5.4	5.5	5.5	4.4 4.5	4.5		4.1 3.9	4.0	
				5.0	Middle	-	-	-		-		-		-		-	0.0	-	-	4.5	-	-	4.0
					Bottom	4.0	27.1 26.7	26.9	7.8 7.8	7.8	13.7 14.0	13.8	73.5 71.3	72.4	5.4 5.3	5.4	5.4	4.4 4.5	4.5		3.7 4.1	3.9	
28-May-14	Sunny	Moderate	12:39		Surface	1.0	27.5 27.4	27.5	8.1 8.1	8.1	15.4 15.4	15.4	85.2 85.6	85.4	6.2 6.2	6.2	6.2	2.0 2.1	2.1		3.0 3.5	3.3	
				4.8	Middle		-	-		-		-		-		-	0.2	-	-	2.2	-	-	3.2
					Bottom	3.8	27.2 27.5	27.4	8.1 8.1	8.1	17.6 17.6	17.6	84.6 84.9	84.8	6.1 6.1	6.1	6.1	2.2 2.2	2.2		3.3 2.9	3.1	
30-May-14	Sunny	Moderate	13:47		Surface	1.0	27.5 27.6	27.6	8.1 8.1	8.1	14.6 14.6	14.6	85.3 87.1	86.2	6.2 6.3	6.3	6.3	2.2 2.3	2.3		2.6 2.6	2.6	
				4.7	Middle	-	-	-		-		-		-	-	-	0.3	-	-	2.4	-	-	2.7
					Bottom	3.7	27.2 27.1	27.2	8.1 8.1	8.1	17.7 17.9	17.8	86.5 83.7	85.1	6.2 6.0	6.1	6.1	2.5 2.5	2.5		2.6 2.9	2.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	To	urbidity(NTI	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	08:10		Surface	1.0	23.9 23.9	23.9	8.2 8.2	8.2	27.4 27.2	27.3	84.9 85.0	85.0	6.1 6.1	6.1		6.7 6.9	6.8		4.7 6.1	5.4	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	6.9	-	-	6.3
					Bottom	4.2	23.8	23.9	8.2 8.2	8.2	28.0 27.7	27.9	84.7 84.9	84.8	6.1 6.1	6.1	6.1	6.9 6.8	6.9		7.9 6.2	7.1	
5-May-14	Sunny	Moderate	09:47		Surface	1.0	24.3	24.3	8.2	8.2	22.2	22.1	87.8	87.9	6.5	6.5		2.7	2.7		4.4	3.4	
				5.2	Middle	-	24.3	-	8.2	-	22.1	-	87.9	-	6.5	-	6.5	2.7	-	2.8	2.4	-	3.2
					Bottom	4.2	24.1	24.1	8.1	8.1	28.2	28.3	87.4 87.7	87.6	6.3	6.3	6.3	2.8	2.8		3.3 2.7	3.0	
7-May-14	Cloudy	Moderate	11:36		Surface	1.0	23.6	23.7	8.1 8.2	8.2	30.0	30.0	87.8	87.8	6.3	6.3		4.6	4.7		6.1	6.8	
				5.3	Middle	-	23.7	-	8.2	-	30.0	-	87.7	-	6.3	-	6.3	4.7	-	4.7	7.5	-	7.7
					Bottom	4.3	23.7	23.7	8.2 8.2	8.2	30.3 30.5	30.4	87.8 87.8	87.8	6.3	6.2	6.2	4.7 4.7	4.7		9.3	8.5	
9-May-14	Rainy	Moderate	14:36		Surface	1.0	23.6 23.6	23.6	8.1 8.0	8.0	28.6 28.4	28.5	88.5 89.8	89.2	6.4 6.5	6.4		5.6 5.9	5.8		4.3 3.7	4.0	
				4.9	Middle	-	-	-	-	-	- 28.4	-	- 89.8	-	-	-	6.4	-	-	6.2	-	-	5.3
					Bottom	3.9	23.7	23.7	8.0 8.0	8.0	30.4 30.5	30.4	92.1 89.3	90.7	6.6 6.4	6.5	6.5	6.7	6.5		6.6	6.5	
12-May-14	Sunny	Moderate	17:36		Surface	1.0	24.6 24.5	24.5	7.8 7.9	7.9	14.3 14.8	14.6	85.2 84.4	84.8	6.5 6.5	6.5		5.4 5.5	5.5		5.4 3.4	4.4	
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-	5.5	-	-	4.2
					Bottom	3.8	24.3	24.3	7.7	7.7	17.8 17.6	17.7	85.3 84.4	84.9	6.5 6.4	6.4	6.4	5.5 5.3	5.4		4.3	4.0	
14-May-14	Sunny	Moderate	19:11		Surface	1.0	25.8 25.8	25.8	8.0 8.0	8.0	13.8 13.9	13.9	87.4 86.4	86.9	6.6 6.5	6.5		7.0 7.3	7.2		5.3 5.8	5.6	
				4.7	Middle	-		-	-	-	-	-	-	-	-	-	6.5	-	-	7.6	-	-	5.0
					Bottom	3.7	25.6 25.7	25.6	8.0 7.9	8.0	17.3 17.4	17.4	89.0 86.2	87.6	6.6 6.4	6.5	6.5	8.0 8.0	8.0		4.5 4.3	4.4	
16-May-14	Cloudy	Moderate	08:19		Surface	1.0	25.3 25.3	25.3	8.0 8.0	8.0	19.4 19.5	19.4	79.5 79.4	79.5	5.9 5.8	5.8		10.6 10.9	10.8		8.1 7.5	7.8	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-	10.9	-	-	7.9
					Bottom	4.5	25.3 25.3	25.3	8.0 8.0	8.0	19.4 19.5	19.5	79.5 79.4	79.5	5.9 5.8	5.8	5.8	10.7 11.0	10.9		8.1 7.7	7.9	
19-May-14	Cloudy	Moderate	09:47		Surface	1.0	26.0 26.0	26.0	7.9 7.9	7.9	14.7 14.6	14.7	76.3 76.4	76.4	5.7 5.7	5.7		3.8 3.9	3.9		6.0 6.5	6.3	
				5.0	Middle	-	-	-		-		-		-	-	-	5.7	-	-	3.9	-	-	7.2
					Bottom	4.0	26.0 26.0	26.0	7.9 7.9	7.9	15.4 14.8	15.1	76.3 76.2	76.3	5.7 5.7	5.7	5.7	4.0 3.8	3.9		7.2 8.7	8.0	
21-May-14	Cloudy	Moderate	11:53		Surface	1.0	26.1 26.1	26.1	8.0 8.0	8.0	14.5 14.4	14.5	78.3 79.1	78.7	5.9 5.9	5.9	5.0	5.3 5.0	5.2		3.3 4.5	3.9	
				5.4	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	5.3	-	-	4.2
					Bottom	4.4	26.0 26.0	26.0	8.0 8.0	8.0	20.0 18.7	19.3	78.3 79.5	78.9	5.7 5.8	5.7	5.7	5.5 5.2	5.4		4.3 4.6	4.5	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ī	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	14:22		Surface	1.0	26.4 26.4	26.4	7.9 7.9	7.9	11.8 11.7	11.8	79.1 80.2	79.7	6.0 6.0	6.0	6.0	3.9 3.7	3.8		5.0 4.7	4.9	
				5.3	Middle	-		-		-	-	-	-	-		-	0.0	-	-	4.0	-	-	5.0
					Bottom	4.3	26.3 26.2	26.2	7.8 7.8	7.8	15.7 15.8	15.8	80.0 76.9	78.5	5.9 5.7	5.8	5.8	4.1 4.2	4.2		4.8 5.2	5.0	
26-May-14	Sunny	Moderate	17:38		Surface	1.0	27.7 27.7	27.7	8.0 8.0	8.0	10.3 10.7	10.5	86.5 88.0	87.3	6.4 6.5	6.5	6.5	4.5 4.3	4.4		4.0 3.9	4.0	
				5.0	Middle			•		-	-	-	-	-	1 1	-	0.5	-	-	4.4	-	-	4.1
					Bottom	4.0	27.7 27.7	27.7	7.9 8.0	8.0	13.0 12.9	13.0	86.2 91.8	89.0	6.3 6.7	6.5	6.5	4.3 4.2	4.3		3.3 5.0	4.2	
28-May-14	Sunny	Moderate	18:52		Surface	1.0	27.9 27.9	27.9	8.1 8.1	8.1	9.4 9.2	9.3	92.6 95.0	93.8	6.8 7.0	6.9	6.9	4.7 4.6	4.7		4.1 4.7	4.4	
				4.6	Middle	-		-		-	-	-	-	-	1 1	-	0.5	-	-	4.8	-	-	4.7
					Bottom	3.6	27.8 27.8	27.8	8.0 8.0	8.0	11.9 12.0	12.0	93.1 91.9	92.5	6.9 6.8	6.9	6.9	4.8 4.7	4.8		5.4 4.4	4.9	
30-May-14	Sunny	Moderate	07:17		Surface	1.0	27.0 27.1	27.1	8.1 8.1	8.1	18.7 18.6	18.7	76.5 79.7	78.1	5.5 5.7	5.6	5.6	5.2 5.5	5.4		4.3 3.9	4.1	
				4.8	Middle	-		-		-	-	-	-	-		-	5.0	-	-	5.4	-	-	4.3
					Bottom	3.8	26.6 27.0	26.8	8.1 8.1	8.1	21.4 20.4	20.9	74.1 79.1	76.6	5.3 5.6	5.4	5.4	5.2 5.3	5.3		4.8 4.2	4.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	13:51		Surface	1.0	24.5 24.5	24.5	8.2 8.2	8.2	26.8 26.8	26.8	91.1 91.3	91.2	6.5 6.5	6.5	0.5	3.1 3.1	3.1		4.4 4.7	4.6	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-	3.2	-	-	4.6
					Bottom	3.2	24.4	24.4	8.2 8.2	8.2	27.4 27.1	27.2	91.2 90.9	91.1	6.5 6.5	6.5	6.5	3.3	3.2		4.2 4.9	4.6	
5-May-14	Sunny	Moderate	15:53		0(4.0	24.5 24.3	04.4	8.3	0.0	24.7	04.0	90.9	00.0	6.7	0.7		3.1 2.2	0.0		3.4	0.0	
	,				Surface	1.0	24.4	24.4	8.3	8.3	24.9	24.8	92.1	92.2	6.7	6.7	6.7	2.2	2.2		4.1	3.8	
				4.2	Middle	-	24.3	-	8.2	-	- 26.5	-	91.8	-	6.6	-		2.3	-	2.2	4.0	-	4.3
					Bottom	3.2	24.3	24.3	8.3	8.3	26.7	26.6	90.1	91.0	6.5	6.5	6.5	2.1	2.2		5.4	4.7	
7-May-14	Cloudy	Moderate	17:36		Surface	1.0	23.6 23.6	23.6	8.2 8.2	8.2	28.2 28.1	28.1	91.8 91.8	91.8	6.6 6.6	6.6	6.6	1.8 1.8	1.8		5.8 6.1	6.0	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	2.0	-	-	6.1
					Bottom	3.1	23.6 23.6	23.6	8.2 8.2	8.2	29.5 29.5	29.5	91.8 91.4	91.6	6.6 6.6	6.6	6.6	2.2	2.2		6.0 6.3	6.2	
9-May-14	Rainy	Moderate	10:58		Surface	1.0	23.6 23.6	23.6	8.2 8.2	8.2	28.1 27.9	28.0	88.0 88.0	88.0	6.4 6.4	6.4		10.8 10.8	10.8		5.9 6.3	6.1	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	12.3	-	-	7.0
					Bottom	2.7	23.7	23.7	8.2	8.2	30.0	29.9	87.8	87.7	6.3	6.3	6.3	14.0	13.8		8.8	7.8	
12-May-14	Sunny	Moderate	12:51		Surface	1.0	23.7 24.3	24.3	8.2 8.0	8.0	29.8 13.0	12.9	87.6 82.7	82.9	6.3 6.4	6.4		13.5 3.6	3.6		6.8 4.4	4.8	
				4.1	Middle		24.4		8.0		12.7	12.2	83.0	-	6.5	• • • • • • • • • • • • • • • • • • • •	6.4	3.6		3.7	5.1		5.3
				4.1		3.1	24.0	04.0	7.9	7.0	- 15.5	45.0	82.3	82.2	6.3	0.0	0.0	3.8	0.7	5.7	5.2	5.0	5.5
14-May-14	Sunny	Moderate	13:48		Bottom		23.9 25.3	24.0	7.9 8.0	7.9	15.7 17.1	15.6	82.1 84.5		6.3	6.3	6.3	3.6	3.7		6.4 6.9	5.8	
14 May 14	Curiny	Woderate	10.40		Surface	1.0	25.3	25.3	8.0	8.0	17.2	17.2	84.0	84.3	6.3	6.3	6.3	3.7	3.8		6.6	6.8	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.9	-	-	6.7
					Bottom	2.9	25.0 25.0	25.0	8.0 8.0	8.0	18.2 17.6	17.9	83.6 82.4	83.0	6.2 6.2	6.2	6.2	4.0 3.8	3.9		6.6 6.3	6.5	
16-May-14	Cloudy	Moderate	13:01		Surface	1.0	25.6 25.5	25.6	8.0 8.0	8.0	17.5 17.6	17.5	82.8 82.7	82.8	6.1 6.1	6.1	6.1	6.2 6.5	6.4		5.1 4.8	5.0	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	6.5	-	-	5.2
					Bottom	4.5	25.3 25.4	25.3	8.0 8.0	8.0	20.4 20.3	20.4	82.4 82.3	82.4	6.0 6.0	6.0	6.0	6.6 6.4	6.5		4.5 6.0	5.3	
19-May-14	Sunny	Rough	15:54		Surface	1.0	26.7	26.6	8.1	8.1	14.3	14.5	84.9	84.5	6.3	6.3		4.2	4.3		5.0	5.0	
				4.9	Middle	_	26.4	_	8.1	_	14.6	_	84.1	_	6.2	_	6.3	4.3	_	4.4	4.9	_	6.0
					Bottom	3.9	26.3	26.5	8.1	8.1	17.3	17.3	84.1	84.2	6.2	6.1	6.1	4.4	4.4		6.9	6.9	0.0
21-May-14	Cloudy	Moderate	17:05				26.7 26.5		8.1 8.1		17.3 12.9		84.3 77.8		6.1 5.8		0.1	4.3 3.2			6.9 6.1		
21 1100, 14	c.cua,				Surface	1.0	26.5	26.5	8.1	8.1	12.9	12.9	77.9	77.9	5.8	5.8	5.8	3.2	3.2		5.6	5.9	
				4.4	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.3	- 6.4	-	5.7
					Bottom	3.4	26.0 26.1	26.1	8.0 8.0	8.0	16.8 18.5	17.7	76.2 76.8	76.5	5.6 5.6	5.6	5.6	3.5 3.3	3.4		6.4 4.3	5.4	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	10:18		Surface	1.0	26.4 26.4	26.4	8.0 8.0	8.0	11.0 11.0	11.0	74.8 74.3	74.6	5.7 5.6	5.7	5.7	3.8 3.9	3.9		4.8 4.4	4.6	
				4.2	Middle	-	-	-		-	-	-	1 1	-		-	5.7	-	-	3.9	-	1	4.9
					Bottom	3.2	26.1 26.0	26.1	7.9 8.0	7.9	16.4 14.9	15.7	72.8 69.4	71.1	5.4 5.2	5.3	5.3	3.8 3.7	3.8		4.9 5.2	5.1	
26-May-14	Sunny	Moderate	12:58		Surface	1.0	27.2 27.1	27.2	7.9 7.9	7.9	9.7 9.9	9.8	70.0 69.9	70.0	5.3 5.3	5.3	5.3	4.5 4.6	4.6		3.7 3.4	3.6	
				4.0	Middle	ı	-	-		-	-	-		-	1 1	-	0.0	-	-	4.6	-	-	4.0
					Bottom	3.0	26.8 26.8	26.8	7.8 7.8	7.8	13.3 13.3	13.3	69.7 69.0	69.4	5.2 5.1	5.1	5.1	4.6 4.6	4.6		4.2 4.5	4.4	
28-May-14	Sunny	Moderate	13:16		Surface	1.0	27.4 26.9	27.2	8.1 8.1	8.1	17.9 15.6	16.8	80.3 77.3	78.8	5.7 5.6	5.7	5.7	3.3 3.0	3.2		4.1 2.5	3.3	
				5.1	Middle	-	-	-		-	-	-		-	1 1	-	5.7	-	-	3.2	-	-	4.4
					Bottom	4.1	27.2 26.6	26.9	8.1 8.1	8.1	20.3 21.3	20.8	78.4 76.3	77.4	5.6 5.5	5.5	5.5	3.1 3.2	3.2		5.5 5.2	5.4	
30-May-14	Sunny	Moderate	12:52		Surface	1.0	27.3 27.7	27.5	8.2 8.2	8.2	15.2 14.4	14.8	84.5 86.1	85.3	6.2 6.3	6.2	6.2	1.8 1.8	1.8		2.2 4.1	3.2	
				4.1	Middle	-	-	-		-	-	-		-		-	0.2	-	-	1.8	-	-	3.4
					Bottom	3.1	27.0 27.2	27.1	8.1 8.1	8.1	19.0 19.0	19.0	85.0 85.0	85.0	6.1 6.1	6.1	6.1	1.8 1.7	1.8		4.4 2.5	3.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	uration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	09:07		Surface	1.0	24.0 24.0	24.0	8.2 8.1	8.2	25.4 25.4	25.4	85.7 85.5	85.6	6.2 6.2	6.2		3.3 3.4	3.4		3.8 3.8	3.8	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	3.5	-	-	4.0
					Bottom	3.1	24.0	23.9	8.1 8.2	8.2	26.6 26.8	26.7	85.5 85.3	85.4	6.2 6.2	6.2	6.2	3.4	3.5		3.7	4.2	
5-May-14	Sunny	Moderate	10:47				24.3		8.2		20.8		87.6		6.5			5.4			2.9		\vdash
J					Surface	1.0	24.3	24.3	8.2	8.2	22.2	22.2	87.7	87.7	6.5	6.5	6.5	5.3	5.4		2.1	2.5	
				4.4	Middle	-	- 24.2	-	- 8.1	-	- 27.4	-	- 87.3	-	6.3	-		6.0	-	5.7	2.7	-	2.6
					Bottom	3.4	24.1	24.1	8.2	8.2	28.2	27.8	87.1	87.2	6.2	6.2	6.2	5.8	5.9		2.4	2.6	
7-May-14	Cloudy	Moderate	12:36		Surface	1.0	23.5 23.5	23.5	8.2 8.2	8.2	29.7 29.7	29.7	90.3 90.1	90.2	6.5 6.5	6.5	6.5	2.0 2.0	2.0		5.2 5.2	5.2	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	2.1	-	-	5.4
					Bottom	3.2	23.5 23.5	23.5	8.2 8.2	8.2	29.8 29.8	29.8	90.2 90.0	90.1	6.5 6.4	6.5	6.5	2.1 2.1	2.1		5.1 6.1	5.6	
9-May-14	Rainy	Moderate	13:41		Surface	1.0	23.6 23.6	23.6	8.2 8.2	8.2	28.2 28.1	28.1	87.6 87.3	87.5	6.3 6.3	6.3		3.5 3.6	3.6		5.9 5.3	5.6	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	4.2	-	-	6.3
					Bottom	2.9	23.7	23.7	8.2	8.2	29.5	29.7	87.2	86.5	6.2	6.2	6.2	4.8	4.8		6.8	6.9	
12-May-14	Sunny	Moderate	16:36		Surface	1.0	23.7 24.5	24.6	8.2 8.0	8.0	29.8 14.2	14.0	85.8 82.7	82.9	6.1 6.4	6.4		4.7 6.4	6.4		6.9 3.9	3.5	
				4.0		1.0	24.7	24.0	7.9	0.0	13.8	14.0	83.0	02.9	6.4	0.4	6.4	6.4	0.4		3.1		3.6
				4.2	Middle		- 24.1	-	- 7.9	-	- 17.9	-	82.2	ļ -	6.2	-		6.7	-	6.6	3.7	-	3.6
44 May 44	0	Madagata	18:14		Bottom	3.2	24.0	24.1	8.0	7.9	17.3	17.6	81.7	82.0	6.2	6.2	6.2	6.8	6.8		3.4	3.6	
14-May-14	Sunny	Moderate	18:14		Surface	1.0	25.6 25.7	25.6	8.0 8.0	8.0	13.9 13.3	13.6	80.8 80.7	80.8	6.1 6.1	6.1	6.1	6.2 6.8	6.5		5.0 6.3	5.7	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	6.9	-	-	5.8
					Bottom	3.1	25.4 25.4	25.4	8.0 8.0	8.0	16.7 15.4	16.1	81.0 81.1	81.1	6.0 6.1	6.1	6.1	7.6 6.9	7.3		5.4 6.3	5.9	
16-May-14	Cloudy	Moderate	08:58		Surface	1.0	25.2 25.2	25.2	8.1 8.1	8.1	20.3 20.2	20.3	79.1 79.1	79.1	5.8 5.8	5.8		8.6 8.2	8.4		8.0 8.0	8.0	
				5.5	Middle	-	-	-	-	-		-	-	-	-	-	5.8	-	-	9.0	-	-	7.8
					Bottom	4.5	25.1 25.2	25.1	8.0 8.0	8.0	21.0 20.7	20.8	79.2 79.0	79.1	5.8 5.8	5.8	5.8	9.6 9.4	9.5		7.9 7.3	7.6	
19-May-14	Cloudy	Moderate	10:23	<u> </u>	Surface	1.0	25.9	25.9	8.0	8.0	16.1	16.1	75.2	75.1	5.6	5.6		4.0	4.0		9.8	10.3	
				5.2	Middle		25.9 -		8.0		16.1 -		74.9 -	-	5.6 -		5.6	4.0		4.1	10.8		10.5
				5.2	Bottom	4.2	25.7	25.8	8.0	8.0	- 17.8	17.6	- 75.0	75.1	- 5.5	5.5	5.5	4.2	4.2	3.1	10.2	10.6	10.0
21-May-14	Cloudy	Moderate	12:49				25.9 26.2		8.0 8.0		17.3 14.0		75.2 72.0		5.6 5.4		5.5	4.2 3.2			10.9 4.7		
2ay 14	Siduly		12.40		Surface	1.0	26.2	26.2	8.0	8.0	14.1	14.0	72.0	72.0	5.4	5.4	5.4	3.3	3.3		3.3	4.0	ĺ
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.9	-	-	4.6
					Bottom	3.3	26.1 26.0	26.0	8.0 8.1	8.0	16.0 16.2	16.1	72.2 72.3	72.3	5.4 5.4	5.4	5.4	4.5 4.3	4.4		5.5 4.7	5.1	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	ī	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	13:21		Surface	1.0	26.4 26.4	26.4	7.9 7.9	7.9	13.1 12.7	12.9	75.8 76.1	76.0	5.7 5.7	5.7	5.7	4.5 4.4	4.5		4.0 4.1	4.1	
				4.1	Middle	-	-	-		-	-	-	-	-		-	3.7	-	-	4.6	-	-	4.5
					Bottom	3.1	26.2 25.9	26.0	7.8 7.9	7.9	17.0 17.3	17.2	75.8 72.2	74.0	5.6 5.3	5.4	5.4	4.6 4.5	4.6		4.9 4.8	4.9	
26-May-14	Sunny	Moderate	16:40		Surface	1.0	27.8 27.8	27.8	7.9 7.9	7.9	8.9 8.9	8.9	81.5 80.8	81.2	6.1 6.0	6.1	6.1	8.1 8.0	8.1		6.0 7.2	6.6	
				4.2	Middle	-		-		-	-	-	-	-		-	0.1	-	-	8.1	-	ı	7.1
					Bottom	3.2	27.7 27.8	27.7	7.9 7.9	7.9	9.1 9.0	9.1	80.3 81.6	81.0	6.0 6.1	6.1	6.1	8.0 7.9	8.0		7.8 7.3	7.6	
28-May-14	Sunny	Moderate	18:15		Surface	1.0	27.9 27.6	27.8	8.1 8.1	8.1	10.9 10.6	10.7	89.2 88.8	89.0	6.6 6.5	6.5	6.5	5.0 4.9	5.0		5.1 5.7	5.4	I
				4.8	Middle	-	-	-		-	-	-	-	-		-	0.5	-	-	5.0	-	-	5.5
					Bottom	3.8	27.4 27.6	27.5	8.1 8.1	8.1	14.2 15.1	14.7	87.1 87.6	87.4	6.4 6.4	6.4	6.4	5.0 5.0	5.0		4.9 6.2	5.6	
30-May-14	Sunny	Moderate	08:17		Surface	1.0	27.4 27.3	27.4	8.2 8.2	8.2	15.6 14.5	15.0	85.9 85.2	85.6	6.2 6.2	6.2	6.2	1.7 1.7	1.7		3.3 2.5	2.9	
				4.1	Middle	-	-	-		-	-	-	-	-	-	-	0.2	-	-	1.8	-	-	2.8
					Bottom	3.1	27.0 27.1	27.1	8.1 8.1	8.1	17.9 19.0	18.5	82.4 84.1	83.3	5.9 6.0	6.0	6.0	1.8 1.9	1.9		2.4 3.0	2.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	15:19		Surface	1.0	24.3 24.2	24.3	8.2 8.2	8.2	27.0 27.2	27.1	88.1 88.1	88.1	6.3 6.3	6.3		4.5 4.3	4.4		6.7 5.7	6.2	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	4.4	-	-	5.8
					Bottom	3.3	24.2 24.0	24.1	8.2 8.2	8.2	27.2 27.6	27.4	88.0 88.3	88.2	6.3	6.3	6.3	4.2 4.5	4.4		5.6 5.2	5.4	
5-May-14	Sunny	Moderate	17:18		Surface	1.0	24.2	24.2	8.2	8.2	25.8	25.8	91.1	91.4	6.6	6.6		2.2	2.3		2.8	2.4	
				4.4		1.0	24.2	-	8.2	-	25.7	-	91.6	- 51.4	6.6	0.0	6.6	2.3	2.3	2.4	2.0	2.4	2.2
				4.1	Middle		24.2		8.2		27.1		91.6		6.6	-		2.5		2.4	3.5	-	3.3
7 Mov 14	Cloudy	Moderate	19:07		Bottom	3.1	24.2	24.2	8.2	8.2	27.3 30.1	27.2	90.8 87.6	91.2	6.5	6.5	6.5	2.5	2.5		4.8	4.2	
7-May-14	Cloudy	Moderate	19.07		Surface	1.0	23.6	23.6	8.2	8.2	30.2	30.2	86.7	87.2	6.2	6.2	6.2	3.1	3.2		7.1	7.6	
				4.1	Middle	-	-	-		-		-	-	-	-	-		-	-	3.6	-	-	7.2
					Bottom	3.1	23.7 23.7	23.7	8.2 8.2	8.2	30.4 30.5	30.4	87.4 85.2	86.3	6.2 6.1	6.1	6.1	3.8 3.9	3.9		7.0 6.6	6.8	
9-May-14	Rainy	Moderate	09:29		Surface	1.0	23.6 23.6	23.6	8.0 8.0	8.0	28.6 28.7	28.7	89.5 88.5	89.0	6.4 6.4	6.4	6.4	4.5 4.4	4.5		6.8 6.9	6.9	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	4.5	-	-	7.0
					Bottom	2.8	23.6 23.6	23.6	8.0 8.0	8.0	29.2 29.1	29.2	91.3 88.7	90.0	6.6 6.4	6.5	6.5	4.5 4.4	4.5		6.5 7.7	7.1	
12-May-14	Sunny	Moderate	11:13		Surface	1.0	24.0	24.0	7.7	7.8	15.2	15.3	86.5	85.8	6.7	6.6		4.3	4.4		3.8	3.4	
				4.1	Middle	_	23.9	-	7.8	-	15.4	-	85.1 -	_	6.6	_	6.6	4.5	_	4.5	3.0	-	4.3
					Bottom	3.1	23.8	23.8	7.4	7.6	17.8	17.7	85.8	85.6	6.6	6.5	6.5	4.5	4.6		4.5	5.2	
14-May-14	Sunny	Moderate	12:23		Surface	1.0	23.8 25.2	25.2	7.8 8.1	8.1	17.5 17.7	17.9	85.4 87.7	87.8	6.5 6.5	6.5	0.0	4.7 6.0	6.1		5.8 6.1	5.9	
				4.0		1.0	25.1	25.2	8.1	0.1	18.0	17.5	87.8	07.0	6.5	0.0	6.5	6.2		5.0	5.6		
				4.0	Middle		- 25.1		8.1		18.3	-	87.3		6.5	-		5.6	-	5.9	5.1	-	5.5
16 May 14	Cloudy	Madarata	14:04		Bottom	3.0	24.8	24.9	8.1 8.0	8.1	21.1 17.3	19.7	88.2 82.9	87.8	6.5	6.5	6.5	5.5 5.0	5.6		5.0	5.1	
16-May-14	Cloudy	Moderate	14:04		Surface	1.0	25.6	25.6	8.0	8.0	17.3	17.3	82.8	82.9	6.1	6.1	6.1	5.1	5.1		4.6	4.8]
				5.6	Middle	-	-	-		-		-	-	-	-	-		-	-	5.3	-	-	4.9
					Bottom	4.6	25.4 25.4	25.4	8.0 8.0	8.0	18.8 19.0	18.9	82.6 82.3	82.5	6.1 6.1	6.1	6.1	5.4 5.6	5.5		5.0 5.0	5.0	
19-May-14	Sunny	Rough	17:00		Surface	1.0	26.3 26.4	26.4	8.1 8.1	8.1	15.6 15.8	15.7	82.7 83.5	83.1	6.1 6.2	6.1	6.4	4.6 4.4	4.5		6.3 8.0	7.2	
				4.4	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	4.6	-	-	7.3
					Bottom	3.4	25.8 26.4	26.1	8.1 8.1	8.1	19.6 18.8	19.2	82.5 83.1	82.8	6.0	6.0	6.0	4.6 4.5	4.6		6.7 7.8	7.3	
21-May-14	Cloudy	Moderate	18:32		Surface	1.0	26.6	26.6	8.0	8.0	13.2 13.4	13.3	78.4 77.5	78.0	5.8	5.8		2.4	2.4		3.5 2.2	2.9	
				4.4	Middle	-	26.6	-	8.0	-	13.4	-		-	5.8	-	5.8	2.3	-	2.4	-	-	2.8
					Bottom	3.4	26.1	26.1	8.0	8.0	16.4	16.4	74.3	75.9	5.5	5.6	5.6	2.2	2.3		2.6	2.7	
					DOMOITI	5.4	26.2	20.1	8.0	0.0	16.4	10.4	77.5	7 J.3	5.7	5.0	5.0	2.4	۷.۵		2.8	2.1	<u> </u>

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	ī	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	08:48		Surface	1.0	26.3 26.3	26.3	8.1 8.0	8.1	13.4 13.9	13.7	80.7 79.4	80.1	6.0 5.9	6.0	6.0	2.2 2.3	2.3		4.4 2.7	3.6	
				4.1	Middle	-	-	-		-	-	-	-	-		-	0.0	-	-	2.3	-	1	3.5
					Bottom	3.1	26.3 26.2	26.2	8.0 8.0	8.0	16.4 16.9	16.7	82.2 79.7	81.0	6.1 5.9	6.0	6.0	2.2 2.2	2.2		3.6 2.9	3.3	
26-May-14	Sunny	Moderate	11:30		Surface	1.0	27.5 27.4	27.5	8.0 8.0	8.0	9.6 9.7	9.7	78.3 76.4	77.4	5.9 5.7	5.8	5.8	4.5 4.5	4.5		4.3 4.6	4.5	
				4.0	Middle			-		-	-	-	-	-		-	3.0	-	-	4.5	-	1	4.6
					Bottom	3.0	26.7 27.0	26.8	7.9 7.9	7.9	15.5 14.4	15.0	80.4 76.8	78.6	5.9 5.7	5.8	5.8	4.4 4.5	4.5		4.5 4.9	4.7	
28-May-14	Sunny	Moderate	12:13		Surface	1.0	27.6 27.5	27.5	8.1 8.1	8.1	15.0 14.9	15.0	90.1 87.6	88.9	6.5 6.4	6.5	6.5	1.7 1.5	1.6		2.3 2.1	2.2	
				5.1	Middle	-	-	-		-	-	-	-	-		-	0.5	-	-	1.7	-	-	2.3
					Bottom	4.1	27.2 27.3	27.3	8.1 8.1	8.1	18.3 17.5	17.9	90.5 88.2	89.4	6.5 6.3	6.4	6.4	1.7 1.6	1.7		2.2 2.5	2.4	
30-May-14	Sunny	Moderate	14:16		Surface	1.0	27.9 28.0	27.9	8.2 8.2	8.2	14.8 14.7	14.7	92.2 94.0	93.1	6.7 6.8	6.7	6.7	1.8 1.8	1.8		4.5 5.6	5.1	
				4.1	Middle	-	-	-		-	-	-	-	-		-	0.7	-	-	1.8	-	-	5.2
					Bottom	3.1	27.7 27.6	27.6	8.1 8.1	8.1	15.8 16.1	16.0	92.2 91.2	91.7	6.6 6.6	6.6	6.6	1.8 1.7	1.8		4.8 5.7	5.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	07:41		Surface	1.0	23.9 23.9	23.9	8.1 8.1	8.1	27.2 27.0	27.1	86.8 88.1	87.5	6.3 6.4	6.3		4.1 4.1	4.1		4.4 3.9	4.2	
				4.2	Middle	-		-	-	-	-	-	-	-	-	-	6.3	-	-	4.7	-	-	4.1
					Bottom	3.2	23.9	23.9	8.1	8.1	27.6	27.7	89.6	88.5	6.5	6.4	6.4	5.2	5.2		3.4	4.0	
F Mov 14	Cunny	Moderate	09:19				23.9		8.1 8.2		27.7 26.0		87.3 91.1		6.3			5.2 1.9			4.5 2.8		
5-May-14	Sunny	Woderate	09.19		Surface	1.0	24.2	24.2	8.2	8.2	26.0	26.0	90.6	90.9	6.6	6.6	6.6	1.9	1.9		3.9	3.4	<u> </u>
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.0	-	-	4.3
					Bottom	3.2	24.1 24.1	24.1	8.2 8.2	8.2	27.5 27.5	27.5	91.8 90.7	91.3	6.6 6.5	6.6	6.6	2.0 2.0	2.0		5.0 5.2	5.1	
7-May-14	Cloudy	Moderate	11:07		Surface	1.0	23.7 23.7	23.7	8.2 8.2	8.2	30.2 30.2	30.2	88.7 90.0	89.4	6.3 6.4	6.4	6.4	3.5 3.5	3.5		5.8 5.3	5.6	
				4.2	Middle	-	-	-	-	-		-	-	-	-	-	6.4	-	-	3.7	-	-	5.5
					Bottom	3.2	23.7 23.7	23.7	8.2 8.2	8.2	30.3 30.4	30.3	89.2 92.0	90.6	6.3 6.5	6.4	6.4	3.7 3.8	3.8		4.8 5.9	5.4	ļ
9-May-14	Rainy	Moderate	15:05		Surface	1.0	23.4 23.4	23.4	8.2 8.1	8.1	29.3 29.3	29.3	89.4 92.3	90.9	6.4 6.6	6.5		5.6 6.0	5.8		7.1 8.2	7.7	
				4.1	Middle	-	- 23.4	-	-	-	- 29.3	-	- 92.3	-	-	-	6.5	-	-	5.9	- 0.2	-	8.2
					Bottom	3.1	23.4	23.5	8.0	8.1	29.3	29.4	93.9	91.6	6.8	6.6	6.6	6.0	6.0		8.4	8.6	'
12-May-14	Sunny	Moderate	18:07		Surface	1.0	23.5 24.8	24.8	8.2 8.0	8.0	29.6 16.3	16.5	89.2 85.6	85.8	6.4 6.5	6.5		6.0 5.5	5.5		8.7 3.8	4.4	
				4.0		1.0	24.8		8.0		16.7		85.9 -		6.5	0.5	6.5	5.4		5 0	4.9		
				4.2	Middle	-	24.5	-	8.0	-	18.5	-	- 85.2	-	6.4	-		- 5.7	-	5.6	6.0	-	5.3
44.0444	2	Madagata	10.11		Bottom	3.2	24.4	24.5	8.0	8.0	18.6	18.5	85.0	85.1	6.4	6.4	6.4	5.6	5.7		6.2	6.1	
14-May-14	Sunny	Moderate	19:41		Surface	1.0	25.7 25.6	25.7	8.0 8.0	8.0	16.0 16.1	16.0	84.8 84.7	84.8	6.3 6.3	6.3	6.3	5.7 5.8	5.8		7.1 6.1	6.6	<u> </u>
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.9	-	-	6.5
					Bottom	3.3	25.6 25.5	25.5	8.0 8.0	8.0	17.4 17.4	17.4	84.6 85.4	85.0	6.3 6.3	6.3	6.3	6.0 6.0	6.0		6.5 6.2	6.4	
16-May-14	Cloudy	Moderate	07:47		Surface	1.0	25.2 25.2	25.2	8.0 7.9	7.9	19.8 19.7	19.8	81.5 82.2	81.9	6.0 6.1	6.0	0.0	4.7 4.6	4.7		6.4 7.1	6.8	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	4.9	-	-	6.8
					Bottom	4.5	25.2 25.2	25.2	7.9 7.9	7.9	19.9 19.8	19.9	83.0 81.8	82.4	6.1 6.0	6.1	6.1	5.0 4.9	5.0		7.0 6.3	6.7	
19-May-14	Cloudy	Moderate	09:24		Surface	1.0	25.8	25.8	8.0	8.0	16.3	16.4	77.5	76.5	5.8	5.7		3.6	3.7		5.2	5.1	
				4.4	Middle	-	25.8	-	8.0	-	16.4	-	75.5	-	5.6	-	5.7	3.7	-	3.8	4.9	-	6.0
					Bottom	3.4	25.8	25.7	8.0	8.0	16.5	16.7	75.0	75.4	5.6	5.6	5.6	3.9	3.9		6.4	6.9	
21-May-14	Cloudy	Moderate	11:25		Surface	1.0	25.7 26.0	26.0	8.1 8.0	8.0	16.9 13.9	14.3	75.8 74.6	74.6	5.6 5.6	5.6	0.0	3.9 6.8	6.6		7.4 4.3	4.5	
						1.0	26.0	20.0	8.0	0.0	14.7	14.3	74.6	74.0	5.6	5.0	5.6	6.3			4.7		l
				4.4	Middle	-	25.8	-	- 8.1	-	17.0	-	74.0	-	- 5.5	-		9.4	-	8.2	4.7	-	5.0
					Bottom	3.4	25.8 25.8	25.8	8.0	8.0	18.0	17.5	73.9	74.0	5.5 5.4	5.5	5.5	10.2	9.8		6.1	5.4	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	14:51		Surface	1.0	26.4 26.4	26.4	8.0 8.0	8.0	14.9 14.9	14.9	86.8 85.7	86.3	6.4 6.4	6.4	6.4	2.4 2.4	2.4		4.1 3.2	3.7	
				4.2	Middle	-		-		-		-		-		-	0.4	-	-	2.4	-	-	3.6
					Bottom	3.2	26.4 26.4	26.4	8.0 8.0	8.0	16.3 15.4	15.8	85.9 85.9	85.9	6.3 6.4	6.3	6.3	2.4 2.4	2.4		3.4 3.5	3.5	
26-May-14	Sunny	Moderate	18:09		Surface	1.0	27.8 27.7	27.8	8.1 8.1	8.1	13.5 13.5	13.5	95.0 91.2	93.1	6.9 6.7	6.8	6.8	2.5 2.5	2.5		2.9 3.4	3.2	
				4.1	Middle	-		•		-		-		-		-	0.0	-	-	2.5	-	-	3.4
					Bottom	3.1	27.5 27.8	27.6	8.1 8.1	8.1	14.4 13.9	14.1	89.7 93.6	91.7	6.5 6.8	6.7	6.7	2.5 2.5	2.5		2.9 4.3	3.6	
28-May-14	Sunny	Moderate	19:12		Surface	1.0	27.8 27.8	27.8	8.1 8.1	8.1	10.9 11.0	11.0	90.6 91.3	91.0	6.7 6.8	6.7	6.7	2.9 3.0	3.0		4.6 6.4	5.5	
				4.8	Middle	-		-		-		-		-		-	0.7	-	-	3.1	-	-	5.9
					Bottom	3.8	27.6 27.7	27.7	8.1 8.1	8.1	14.0 14.7	14.3	89.0 90.8	89.9	6.5 6.6	6.5	6.5	3.0 3.1	3.1		7.2 5.2	6.2	
30-May-14	Sunny	Moderate	06:37		Surface	1.0	27.0 26.9	26.9	8.0 8.0	8.0	18.2 17.9	18.1	77.5 80.1	78.8	5.6 5.8	5.7	5.7	1.7 1.7	1.7		3.6 3.8	3.7	
				4.1	Middle	-		-		-		-		-		-	5.7	-	-	1.8	-	-	3.5
					Bottom	3.1	26.9 26.8	26.8	8.0 8.0	8.0	20.3 20.3	20.3	78.4 84.4	81.4	5.6 6.0	5.8	5.8	1.8 1.8	1.8		3.5 3.1	3.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	15:27		Surface	1.0	24.3 24.4	24.3	8.3 8.3	8.3	27.8 27.6	27.7	90.8 90.8	90.8	6.5 6.5	6.5		2.2 2.2	2.2		3.5 3.5	3.5	
				6.5	Middle	3.3	24.1 24.1	24.1	8.3 8.3	8.3	28.4 28.4	28.4	90.1 90.0	90.1	6.4 6.4	6.4	6.5	2.2	2.2	2.3	2.2 2.7	2.5	3.1
					Bottom	5.5	24.1	24.1	8.3 8.3	8.3	28.7	28.6	90.3 89.9	90.1	6.4	6.4	6.4	2.5	2.6		3.8	3.4	
5-May-14	Sunny	Moderate	17:26		Surface	1.0	24.0	24.0	8.5	8.5	29.4	29.6	93.6	93.2	6.7	6.6		1.4	1.5		4.4	3.7	
				6.3	Middle	3.2	24.0 23.9	23.9	8.5 8.5	8.5	29.8 31.4	31.0	92.7 91.9	92.7	6.6 6.5	6.5	6.6	1.5 1.2	1.2	1.4	3.0 2.6	3.2	3.9
					Bottom	5.3	23.9 23.9	23.9	8.5 8.4	8.5	30.7 31.9	31.9	93.5 95.8	94.2	6.6 6.7	6.6	6.6	1.1	1.4		3.7 4.7	4.7	
7-May-14	Cloudy	Moderate	18:58				23.9 23.6		8.5 8.4		32.0 31.3		92.6 99.4		6.5 7.0		0.0	1.4			4.6 5.3		
.,	,				Surface	1.0	23.6 23.6	23.6	8.4 8.4	8.4	31.4 31.5	31.4	90.1 89.7	94.8	6.4	6.7	6.6	1.8	1.9		4.9 3.6	5.1	
				6.5	Middle	3.3	23.6	23.6	8.4 8.4	8.4	31.5 31.5	31.5	93.3 89.2	91.5	6.6	6.5		2.1	2.1	2.0	4.1 5.2	3.9	4.6
0.14	D. J.	Madagas	45.05		Bottom	5.5	23.5	23.6	8.4	8.4	31.6	31.5	91.9	90.6	6.5	6.4	6.4	2.1	2.1		4.3	4.8	
9-May-14	Rainy	Moderate	15:35		Surface	1.0	23.5 23.5	23.5	8.4 8.4	8.4	31.2 31.3	31.3	88.2 87.0	87.6	6.3 6.2	6.2	6.2	2.1	2.1		3.4 3.6	3.5	
				6.7	Middle	3.4	23.5 23.5	23.5	8.4 8.4	8.4	31.4 31.3	31.4	87.0 88.8	87.9	6.2 6.3	6.2		2.1 2.1	2.1	2.1	5.0 4.9	5.0	4.5
					Bottom	5.7	23.5 23.5	23.5	8.4 8.4	8.4	31.4 31.5	31.5	90.6 87.5	89.1	6.4 6.2	6.3	6.3	2.2 2.2	2.2		5.1 5.0	5.1	
12-May-14	Sunny	Moderate	10:37		Surface	1.0	23.8 23.8	23.8	8.3 8.3	8.3	22.7 22.7	22.7	93.3 87.2	90.3	6.9 6.4	6.6	6.6	3.4 3.4	3.4		5.7 4.0	4.9	
				6.2	Middle	3.1	23.8 23.8	23.8	8.3 8.3	8.3	23.9 23.6	23.8	86.9 88.4	87.7	6.4 6.5	6.5	0.0	3.4 3.4	3.4	3.4	3.6 4.7	4.2	4.9
					Bottom	5.2	23.8 23.8	23.8	8.3 8.3	8.3	24.4 24.0	24.2	87.7 86.7	87.2	6.5 6.4	6.5	6.5	3.6 3.4	3.5		5.7 5.6	5.7	
14-May-14	Sunny	Moderate	11:39		Surface	1.0	24.9 24.7	24.8	7.7 7.7	7.7	21.4 22.4	21.9	86.5 85.8	86.2	6.3 6.3	6.3		3.7 3.6	3.7		4.0 4.0	4.0	
				6.4	Middle	3.2	24.7	24.6	7.7	7.7	22.7	22.9	85.8 85.2	85.5	6.3 6.2	6.2	6.3	3.6 3.5	3.6	3.6	3.1 5.3	4.2	4.3
					Bottom	5.4	24.7	24.7	7.7	7.7	22.7	23.0	85.7	85.5	6.3	6.2	6.2	3.6 3.5	3.6		3.8	4.6	
16-May-14	Cloudy	Moderate	14:54		Surface	1.0	24.6 25.5	25.5	7.7	7.7	23.4	20.2	85.2 85.1	84.6	6.2	6.2		5.0	5.1		5.4 4.4	4.0	
				6.7	Middle	3.4	25.4 25.3	25.4	7.7 7.7	7.7	20.2 21.2	20.8	84.1 83.8	84.5	6.2 6.1	6.2	6.2	5.2 5.3	5.3	5.3	3.5 5.8	6.1	5.4
					Bottom	5.7	25.4 25.4	25.3	7.6 7.7	7.6	20.4 21.4	21.0	85.1 84.2	85.5	6.2 6.1	6.2	6.2	5.3 5.5	5.5		6.4 6.2	6.1	
19-May-14	Sunny	Rough	16:51		Surface	1.0	25.3 26.7	26.6	7.6 7.4	7.5	20.7 15.4	15.5	86.7 83.4	82.4	6.3 6.1	6.1	0.2	5.5 3.4	3.4		6.0 4.1	4.0	
,	,						26.5 26.4		7.5 7.5	-	15.7 16.2		81.4 81.8		6.0		6.1	3.4			3.9 4.1		
				6.6	Middle	3.3	26.5 26.5	26.5	7.4 7.5	7.5	16.3 16.2	16.2	83.7 82.5	82.8	6.1	6.1		3.3	3.3	3.4	4.3	4.2	4.3
21 May 14	Cloudy	Moderate	18:51		Bottom	5.6	26.6 26.6	26.5	7.4 7.6	7.4	16.2 16.9	16.2	86.8 84.2	84.7	6.4	6.2	6.2	3.4	3.5		4.6	4.6	<u>i</u>
21-May-14	Cloudy	Moderate	18:51		Surface	1.0	26.6	26.6	7.6	7.6	16.9	16.9	84.5	84.4	6.1	6.2	6.2	2.5	2.5		5.1	4.6	
				6.4	Middle	3.2	26.6 26.6	26.6	7.6 7.6	7.6	17.0 17.0	17.0	84.5 83.9	84.2	6.2 6.1	6.1		2.5 2.5	2.5	2.5	4.6 5.3	5.0	4.8
					Bottom	5.4	26.6 26.6	26.6	7.6 7.6	7.6	17.0 17.1	17.1	84.2 85.3	84.8	6.1 6.2	6.2	6.2	2.4 2.5	2.5		5.9 3.6	4.8	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	07:58		Surface	1.0	26.2 26.2	26.2	7.6 7.6	7.6	16.7 16.9	16.8	85.1 84.8	85.0	6.3 6.2	6.3	6.3	2.4 2.3	2.4		6.2 5.1	5.7	
				6.5	Middle	3.3	26.2 26.2	26.2	7.6 7.6	7.6	17.2 17.0	17.1	85.1 84.6	84.9	6.3 6.2	6.2	0.3	2.2 2.2	2.2	2.3	5.0 5.1	5.1	5.1
					Bottom	5.5	26.2 26.2	26.2	7.6 7.6	7.6	17.3 17.3	17.3	85.3 84.6	85.0	6.3 6.2	6.2	6.2	2.5 2.3	2.4		4.3 4.8	4.6	
26-May-14	Sunny	Moderate	10:35		Surface	1.0	27.2 27.2	27.2	7.5 7.5	7.5	13.8 14.0	13.9	85.5 84.5	85.0	6.3 6.2	6.2	6.2	3.4 3.3	3.4		4.4 3.8	4.1	
				6.6	Middle	3.3	27.1 27.2	27.1	7.5 7.5	7.5	14.8 14.0	14.4	84.1 85.9	85.0	6.2 6.3	6.2	0.2	3.6 3.8	3.7	3.9	4.8 5.2	5.0	4.7
					Bottom	5.6	27.1 27.0	27.1	7.5 7.5	7.5	15.0 15.1	15.0	85.0 87.7	86.4	6.2 6.4	6.3	6.3	4.5 4.8	4.7		5.1 4.9	5.0	
28-May-14	Sunny	Moderate	11:38		Surface	1.0	27.6 27.6	27.6	8.0 8.1	8.1	16.9 17.1	17.0	102.1 101.5	101.8	7.3 7.3	7.3	7.3	1.9 1.9	1.9		4.4 2.5	3.5	
				6.6	Middle	3.3	27.5 27.4	27.5	8.0 8.1	8.0	17.2 17.7	17.5	101.1 100.9	101.0	7.3 7.2	7.2	7.5	2.2 2.1	2.2	2.1	2.8 4.4	3.6	3.4
					Bottom	5.6	27.5 27.6	27.5	8.0 8.0	8.0	17.5 18.0	17.8	101.1 102.1	101.6	7.2 7.3	7.3	7.3	2.1 2.2	2.2		2.9 3.5	3.2	
30-May-14	Sunny	Moderate	14:05		Surface	1.0	28.0 27.9	28.0	8.4 8.3	8.4	18.3 18.9	18.6	104.2 105.9	105.1	7.4 7.5	7.4	7.4	1.5 1.5	1.5		4.1 4.9	4.5	
				6.3	Middle	3.2	27.7 27.8	27.7	8.3 8.4	8.3	19.3 19.2	19.3	105.0 101.8	103.4	7.4 7.2	7.3	7.4	1.5 1.6	1.6	1.6	3.5 4.9	4.2	4.2
					Bottom	5.3	28.0 27.9	28.0	8.4 8.3	8.4	19.2 19.3	19.2	100.6 104.0	102.3	7.1 7.4	7.2	7.2	1.6 1.6	1.6		4.4 3.4	3.9	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	06:55		Surface	1.0	23.8 23.8	23.8	8.4 8.4	8.4	26.7 26.7	26.7	88.8 89.0	88.9	6.4 6.5	6.5		2.4 2.3	2.4		3.9 3.3	3.6	
				6.6	Middle	3.3	23.8 23.8	23.8	8.4 8.4	8.4	27.6 27.6	27.6	88.9 88.6	88.8	6.4 6.4	6.4	6.5	2.3 2.3	2.3	2.4	2.9 3.2	3.1	3.4
					Bottom	5.6	23.8	23.8	8.4 8.4	8.4	28.1 28.1	28.1	88.8 88.8	88.8	6.4 6.4	6.4	6.4	2.4	2.4		3.3	3.4	
5-May-14	Sunny	Moderate	08:29		Surface	1.0	23.8 23.8	23.8	8.5 8.5	8.5	29.1 29.0	29.1	90.4 91.1	90.8	6.5 6.5	6.5		1.5	1.6		2.6 3.1	2.9	
				6.7	Middle	3.4	23.9	23.9	8.5	8.5	29.9	29.8	90.6	91.2	6.4	6.5	6.5	1.6	1.4	1.5	3.6	3.3	3.1
					Bottom	5.7	23.9	23.9	8.5 8.5	8.5	29.6 30.2	30.2	91.7 93.4	92.2	6.5	6.5	6.5	1.4	1.5		3.0	3.1	
7-May-14	Cloudy	Moderate	10:20		Surface	1.0	23.9 23.5	23.5	8.5 8.4	8.5	30.2 31.3	31.3	90.9	93.8	6.5	6.6		1.4	1.5		2.4 5.3	5.0	
				6.7	Middle	3.4	23.5 23.5	23.5	8.5 8.5	8.5	31.3 31.4	31.4	97.5 89.1	91.2	6.9	6.5	6.6	1.5 1.6	1.6	1.6	4.7	4.5	4.8
				0.7	Bottom	5.7	23.5 23.5	23.5	8.5 8.5	8.5	31.4 31.5	31.5	93.2 91.5	90.1	6.6 6.5	6.4	6.4	1.6 1.7	1.7	1.0	4.6 4.7	4.8	4.0
9-May-14	Rainy	Moderate	08:48				23.5 23.5		8.5 8.4		31.4 31.7		88.7 84.0		6.3 5.9		0.4	1.7 2.7			4.8 4.2		
,	,			0.4	Surface	1.0	23.5 23.5	23.5	8.4 8.4	8.4 8.4	31.7 31.9	31.7	84.9 83.9	84.5	6.0 5.9	6.0	6.0	2.7	2.7	0.0	5.3 5.5	4.8	
				6.4	Middle	3.2	23.5 23.5	23.5	8.4 8.4		31.9 31.9	31.9	85.4 84.4	84.7	6.0	6.0		2.8	2.8	2.8	5.1 6.3	5.3	5.5
12-May-14	Sunny	Moderate	18:23		Bottom	5.4	23.5 24.4	23.5	8.3 8.2	8.3	31.9 17.7	31.9	89.5 86.4	87.0	6.3	6.2	6.2	2.8	2.8		6.3	6.3	
12-Way-14	Odility	Woderate	10.23		Surface	1.0	24.5	24.5	8.2 8.2	8.2	17.6	17.7	86.4 85.2	86.4	6.5 6.3	6.5	6.5	4.5	4.5		4.1	3.9	
				6.4	Middle	3.2	24.2	24.2	8.2	8.2	20.4	20.6	86.1 84.8	85.7	6.4	6.4		4.6	4.6	4.6	4.0	4.3	4.1
					Bottom	5.4	23.8 24.4	24.1	8.1 8.1	8.1	26.3 24.7	25.5	85.5	85.2	6.2 6.3	6.2	6.2	4.6 4.6	4.6		3.4	4.1	
14-May-14	Sunny	Moderate	20:22		Surface	1.0	24.7 24.7	24.7	7.7 7.7	7.7	21.8 22.1	22.0	82.8 83.6	83.2	6.1 6.1	6.1	6.1	5.2 5.4	5.3		5.4 4.6	5.0	
				6.5	Middle	3.3	24.5 24.5	24.5	7.6 7.7	7.6	24.3 23.6	23.9	82.5 84.4	83.5	6.0 6.2	6.1		6.7 6.7	6.7	6.2	5.4 5.2	5.3	4.9
					Bottom	5.5	24.6 24.5	24.5	7.7 7.6	7.7	25.0 24.9	24.9	82.8 85.6	84.2	6.0 6.2	6.1	6.1	6.7 6.6	6.7		4.8 4.2	4.5	
16-May-14	Cloudy	Moderate	06:15		Surface	1.0	25.2 25.0	25.1	7.7 7.7	7.7	21.2 19.8	20.5	82.4 82.3	82.4	6.0 6.1	6.0	6.0	4.3 4.5	4.4		3.4 3.7	3.6	
				6.3	Middle	3.2	24.8 24.8	24.8	7.7 7.7	7.7	23.8 23.7	23.8	81.7 81.9	81.8	5.9 5.9	5.9	6.0	4.9 4.7	4.8	4.8	3.5 4.9	4.2	4.1
					Bottom	5.3	24.8 24.8	24.8	7.7 7.7	7.7	24.1 24.0	24.1	81.5 82.0	81.8	5.9 5.9	5.9	5.9	5.1 5.4	5.3		4.9 4.3	4.6	
19-May-14	Cloudy	Moderate	08:34		Surface	1.0	26.1 26.0	26.0	7.5 7.5	7.5	15.7 15.8	15.7	77.0 76.5	76.8	5.7 5.7	5.7		3.1 3.1	3.1		3.3 3.4	3.4	
				6.5	Middle	3.3	25.9 25.9	25.9	7.6 7.5	7.5	17.7 17.4	17.6	76.8 78.5	77.7	5.7 5.8	5.7	5.7	2.9	2.9	3.0	3.5	3.4	3.5
					Bottom	5.5	25.9 25.8 25.9	25.9	7.5 7.5 7.5	7.5	18.1 17.9	18.0	80.4 76.3	78.4	5.8 5.9 5.6	5.8	5.8	2.9	2.9		3.4 3.7	3.6	
21-May-14	Cloudy	Moderate	10:29		Surface	1.0	26.1	26.1	7.6	7.6	14.9	14.9	80.6	80.9	6.0	6.0		3.0	3.0		4.3	4.3	
				6.5	Middle	3.3	26.1 25.9	25.9	7.6 7.6	7.7	14.8	16.7	79.8	80.3	5.9	5.9	6.0	3.0	3.3	3.2	5.2	5.4	5.4
					Bottom	5.5	25.9 25.9	25.9	7.7 7.6	7.6	16.0 21.1	20.7	80.8 82.8	81.6	6.0	5.9	5.9	3.3	3.4		5.5 6.6	6.6	
					Dolloin	0.0	26.0	20.0	7.6	7.0	20.3	20.7	80.3	01.0	5.8	0.0	0.0	3.4	0.7		6.5	0.0	<u> </u>

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	15:09		Surface	1.0	26.2 26.1	26.1	7.6 7.6	7.6	15.7 15.3	15.5	82.6 81.2	81.9	6.1 6.0	6.1	6.0	2.9 2.6	2.8		2.4 3.5	3.0	
				6.9	Middle	3.5	25.8 25.8	25.8	7.7 7.6	7.6	20.6 20.5	20.6	78.5 80.7	79.6	5.7 5.9	5.8	0.0	2.8 2.5	2.7	2.8	2.4 2.4	2.4	2.8
					Bottom	5.9	25.8 25.8	25.8	7.6 7.6	7.6	20.6 20.7	20.7	83.1 79.0	81.1	6.0 5.7	5.9	5.9	3.0 2.8	2.9		2.8 3.0	2.9	
26-May-14	Sunny	Moderate	19:07		Surface	1.0	26.4 26.4	26.4	7.6 7.7	7.6	22.8 22.7	22.8	76.9 76.7	76.8	5.4 5.4	5.4	5.4	3.0 3.1	3.1		2.6 2.9	2.8	
				6.3	Middle	3.2	26.2 26.2	26.2	7.7 7.6	7.6	23.6 23.3	23.4	74.3 75.2	74.8	5.3 5.3	5.3	0.4	3.4 3.2	3.3	3.4	3.4 3.5	3.5	3.3
					Bottom	5.3	25.6 25.6	25.6	7.5 7.6	7.6	26.0 26.1	26.0	76.3 70.2	73.3	5.4 5.0	5.2	5.2	3.8 3.8	3.8		3.8 3.6	3.7	
28-May-14	Sunny	Moderate	20:38		Surface	1.0	27.1 26.9	27.0	8.3 8.3	8.3	19.9 20.6	20.2	84.8 84.4	84.6	6.0 6.0	6.0	6.0	2.2 2.3	2.3		2.2 2.2	2.2	
				6.6	Middle	3.3	26.8 26.7	26.8	8.3 8.3	8.3	21.2 21.5	21.3	84.7 82.8	83.8	6.0 5.9	5.9	0.0	2.2 2.3	2.3	2.3	2.2 2.1	2.2	2.6
					Bottom	5.6	26.7 26.7	26.7	8.3 8.3	8.3	22.1 22.5	22.3	86.2 82.8	84.5	6.1 5.9	6.0	6.0	2.2 2.3	2.3		3.7 3.0	3.4	
30-May-14	Sunny	Moderate	05:54		Surface	1.0	26.8 26.9	26.9	8.4 8.4	8.4	18.7 18.9	18.8	80.5 79.8	80.2	5.8 5.7	5.8	5.7	1.1 1.1	1.1		2.9 3.0	3.0	
				6.1	Middle	3.1	26.5 26.4	26.5	8.3 8.3	8.3	23.8 24.0	23.9	80.0 77.6	78.8	5.6 5.5	5.5	5.7	1.3 1.1	1.2	1.2	2.4 3.3	2.9	3.1
					Bottom	5.1	26.8 26.4	26.6	8.3 8.3	8.3	23.8 24.2	24.0	79.5 77.4	78.5	5.6 5.4	5.5	5.5	1.3 1.2	1.3		2.8 3.9	3.4	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ing	Tempera	ature (°C)	ţ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	15:39		Surface	1.0	24.4 24.3	24.3	8.3 8.3	8.3	27.6 27.8	27.7	91.1 90.8	91.0	6.5 6.5	6.5		2.6 2.5	2.6		3.3 3.0	3.2	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-	2.7	-	-	3.4
					Bottom	4.5	24.3	24.3	8.3 8.3	8.3	27.9 27.8	27.8	90.7	90.9	6.5 6.5	6.5	6.5	2.6	2.7		4.4	3.6	
5-May-14	Sunny	Moderate	17:42		0 (23.9	24.0	8.4		30.4	00.4	91.0	04.0	6.5	0.5		1.3			2.8		\vdash
,	,				Surface	1.0	24.0	24.0	8.4	8.4	30.3	30.4	91.6	91.8	6.5	6.5	6.5	1.4	1.4		3.3	3.1	
				5.3	Middle	-	23.9	-	8.4	-	31.3	-	91.4	-	6.5	-		1.4	-	1.4	2.3	-	2.7
					Bottom	4.3	23.9	23.9	8.4	8.4	31.5	31.4	91.0	91.2	6.4	6.4	6.4	1.4	1.4		2.3	2.3	
7-May-14	Cloudy	Moderate	19:11		Surface	1.0	23.6 23.6	23.6	8.4 8.4	8.4	31.4 31.4	31.4	87.9 88.1	88.0	6.2 6.2	6.2	6.2	1.7 1.7	1.7		4.7 4.4	4.6	
				4.9	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	1.8	-	-	4.8
					Bottom	3.9	23.6 23.6	23.6	8.4 8.3	8.4	31.4 31.5	31.5	87.9 88.0	88.0	6.2 6.2	6.2	6.2	1.7 1.8	1.8		5.8 4.2	5.0	İ
9-May-14	Rainy	Moderate	15:46		Surface	1.0	23.5 23.5	23.5	8.4 8.4	8.4	31.2 31.3	31.3	86.9 86.7	86.8	6.2 6.2	6.2		2.1 2.1	2.1		6.2 6.1	6.2	
				5.4	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	2.1	-	-	6.8
					Bottom	4.4	23.5	23.5	8.4	8.4	31.3	31.4	86.7	86.7	6.2	6.1	6.1	2.1	2.1		7.0	7.4	
12-May-14	Sunny	Moderate	10:31		Surface	1.0	23.5 23.8	23.8	8.3 8.2	8.2	31.4 23.8	23.9	86.6 89.3	88.4	6.1 6.6	6.5		2.0 3.5	3.6		7.8 3.9	4.1	
				4.8	Middle		23.8	20.0	8.2	-	24.0	20.0	87.5 -	00.1	6.4	0.0	6.5	3.6	0.0	3.6	4.3	-	3.7
				4.0			23.8	00.0	8.2		24.3	04.5	86.9	07.0	6.4	0.5	0.5	3.6		3.0	3.3		3.7
14-May-14	Sunny	Moderate	11:31		Bottom	3.8	23.8 25.0	23.8	8.1 7.7	8.2	24.6 20.9	24.5	88.2 87.9	87.6	6.5 6.5	6.5	6.5	3.6	3.6		3.3 6.7	3.3	
14 May 14	Culliny	Wioderate	11.01		Surface	1.0	24.9	25.0	7.7	7.7	21.0	20.9	87.8	87.9	6.5	6.5	6.5	3.7	3.7		6.7	6.7	
				4.9	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.8	-	-	6.5
					Bottom	3.9	24.7 24.8	24.7	7.7 7.7	7.7	22.6 23.0	22.8	88.1 87.3	87.7	6.4 6.4	6.4	6.4	3.8 3.8	3.8		5.8 6.8	6.3	
16-May-14	Cloudy	Moderate	15:06		Surface	1.0	25.5 25.4	25.4	7.7 7.6	7.7	20.3 20.4	20.4	84.3 84.1	84.2	6.2 6.1	6.2	6.2	4.8 4.7	4.8		4.3 5.6	5.0	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	4.8	-	-	5.3
					Bottom	4.1	25.4 25.4	25.4	7.7 7.6	7.6	20.5 20.7	20.6	84.2 83.9	84.1	6.1 6.1	6.1	6.1	4.8 4.7	4.8		5.8 5.2	5.5	
19-May-14	Sunny	Rough	17:02	1	Surface	1.0	26.7 26.6	26.7	7.5 7.5	7.5	15.5 16.7	16.1	83.6 84.1	83.9	6.1 6.2	6.1		3.5 3.4	3.5		2.9 2.7	2.8	
				4.9	Middle	_	26.6	-	- 7.5	-	- 16.7	-	- 84.1	-	- 6.2	-	6.1	- 3.4	-	3.5	- 2.7	-	4.0
					Bottom	3.9	26.8	26.7	7.5	7.5	16.4	16.6	85.1	84.2	6.2	6.2	6.2	3.4	3.5		5.5	5.2	
21-May-14	Cloudy	Moderate	19:02	<u> </u>		1.0	26.6 26.6	26.6	7.5 7.6	7.6	16.7 17.1	17.1	83.2 83.5	83.6	6.1 6.1			3.6 2.2	2.2		4.9 3.9	4.1	
	•				Surface	1.0	26.6		7.6		17.1		83.7		6.1	6.1	6.1	2.2			4.2		
				5.1	Middle	-	26.6	-	- 7.6	-	- 17.1	-	83.5	-	- 6.1	-		2.3	-	2.3	2.7	-	3.7
					Bottom	4.1	26.6	26.6	7.5	7.6	17.1	17.1	83.5	83.5	6.1	6.1	6.1	2.3	2.3		3.8	3.3	<u> </u>

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	07:43		Surface	1.0	25.9 25.9	25.9	7.5 7.6	7.6	19.3 19.3	19.3	83.6 82.5	83.1	6.1 6.0	6.1	6.1	2.5 2.5	2.5		4.1 4.9	4.5	
				5.0	Middle	-		-		-	-	-	-	-		-	0.1	-	-	2.5	-	-	4.4
					Bottom	4.0	25.9 25.9	25.9	7.6 7.5	7.5	19.7 19.8	19.7	82.6 85.4	84.0	6.0 6.2	6.1	6.1	2.5 2.3	2.4		4.0 4.4	4.2	
26-May-14	Sunny	Moderate	10:19		Surface	1.0	26.8 26.8	26.8	7.5 7.5	7.5	16.6 17.8	17.2	80.5 79.4	80.0	5.9 5.8	5.8	5.8	3.6 3.4	3.5		3.1 2.9	3.0	
				5.3	Middle	-		-		-	-	-	-	-	1 1	-	0.0	-	-	3.6	-	-	3.9
					Bottom	4.3	26.5 26.3	26.4	7.5 7.6	7.5	19.8 19.6	19.7	80.3 78.0	79.2	5.8 5.6	5.7	5.7	3.6 3.5	3.6		4.9 4.7	4.8	
28-May-14	Sunny	Moderate	11:32		Surface	1.0	27.0 27.0	27.0	7.7 7.7	7.7	20.2 20.6	20.4	92.3 94.2	93.3	6.6 6.7	6.6	6.6	2.1 2.0	2.1		3.0 3.3	3.2	
				4.8	Middle	-		-		-	-	-	-	-		-	0.0	-	-	2.1	-	-	3.2
					Bottom	3.8	26.8 27.0	26.9	7.6 7.6	7.6	21.3 20.6	21.0	91.1 93.7	92.4	6.5 6.7	6.6	6.6	2.2 2.0	2.1		3.4 3.0	3.2	
30-May-14	Sunny	Moderate	14:12		Surface	1.0	27.8 27.7	27.7	8.3 8.3	8.3	19.1 19.3	19.2	103.7 102.5	103.1	7.3 7.2	7.3	7.3	1.5 1.5	1.5		4.4 2.4	3.4	
				4.8	Middle	-		-		-	-	-	-	-		-	7.3	-	-	1.6	-	-	3.6
					Bottom	3.8	27.8 27.6	27.7	8.3 8.2	8.3	19.1 19.6	19.4	102.9 102.2	102.6	7.3 7.2	7.2	7.2	1.5 1.7	1.6		4.1 3.5	3.8	

Remarks:

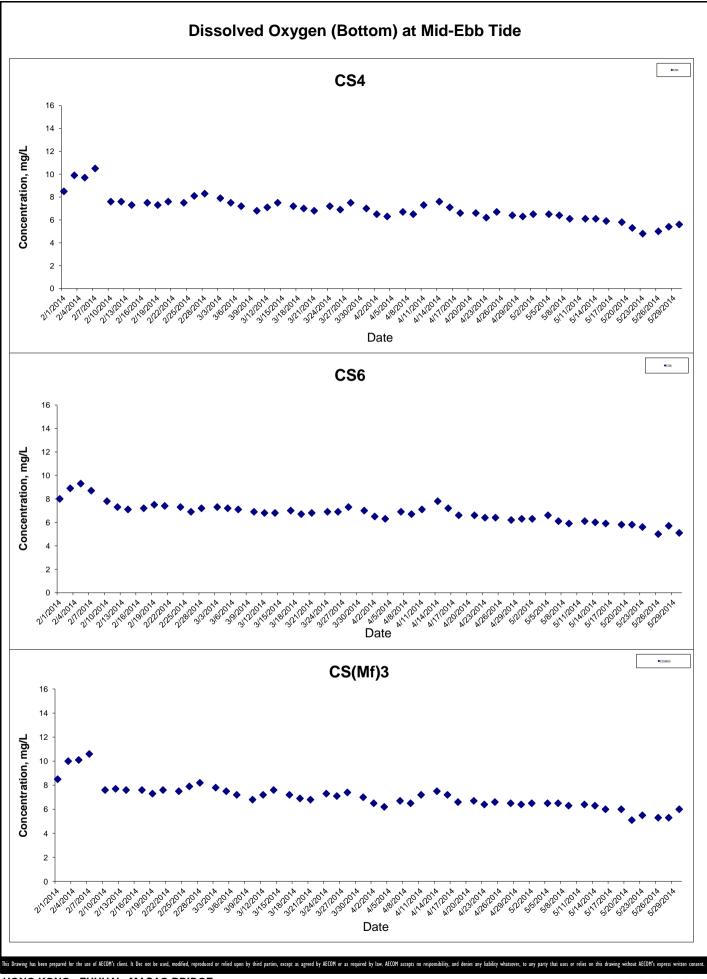
Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ing	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-May-14	Sunny	Moderate	06:46		Surface	1.0	23.6 23.6	23.6	8.4 8.4	8.4	30.5 30.5	30.5	87.3 87.4	87.4	6.2 6.2	6.2		2.3 2.2	2.3		4.4 4.5	4.5	
				5.6	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	2.4	-	-	4.0
					Bottom	4.6	23.6	23.6	8.4 8.4	8.4	30.5 30.5	30.5	87.4 87.2	87.3	6.2 6.2	6.2	6.2	2.5	2.5		3.3	3.5	
5-May-14	Sunny	Moderate	08:13				23.8		8.5		30.5		92.4		6.6			1.4			3.6		\vdash
,	,				Surface	1.0	23.8	23.8	8.5	8.5	30.8	30.6	90.4	91.4	6.4	6.5	6.5	1.4	1.4		2.7	3.0	
				5.3	Middle	-	23.8	-	- 8.5	-	31.0	-	- 95.1	-	- 6.7	-		1.8	-	1.6	3.2	-	2.9
					Bottom	4.3	23.8	23.8	8.5	8.5	31.5	31.3	91.0	93.1	6.4	6.6	6.6	1.7	1.8		2.3	2.8	
7-May-14	Cloudy	Moderate	10:16		Surface	1.0	23.6 23.6	23.6	8.5 8.5	8.5	31.6 31.7	31.6	86.2 87.1	86.7	6.1 6.2	6.1	6.1	1.7 1.9	1.8		6.1 5.9	6.0	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	1.8	-	-	5.5
					Bottom	4.0	23.6 23.6	23.6	8.5 8.5	8.5	31.7 31.7	31.7	86.1 86.2	86.2	6.1 6.1	6.1	6.1	1.9 1.7	1.8		4.7 5.0	4.9	
9-May-14	Rainy	Moderate	08:43		Surface	1.0	23.5 23.5	23.5	8.3 8.3	8.3	31.4 31.4	31.4	84.1 85.1	84.6	6.0 6.0	6.0		2.9 2.9	2.9		4.0 4.4	4.2	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	3.0	-	-	5.6
					Bottom	4.0	23.5	23.5	8.3	8.3	31.5	31.5	84.5	85.7	6.0	6.1	6.1	3.0	3.0		7.2	7.0	
12-May-14	Sunny	Moderate	18:30		Surface	1.0	23.5 24.5	24.3	8.3 8.2	8.2	31.4 18.2	18.4	86.9 87.0	86.9	6.2 6.5	6.5		3.0	3.9		6.8 4.5	4.1	
				5.0		1.0	24.0	24.5	8.2	0.2	18.6	10.4	86.7	00.9	6.5	0.0	6.5	3.9	5.5	4.0	3.7		40
				5.0	Middle		24.3	-	8.2		22.8	-	86.0	-	6.3	-		4.0	-	4.0	4.2	-	4.0
14-May-14	Cuppy	Moderate	20:28		Bottom	4.0	24.1	24.2	8.1	8.1	24.1	23.4	85.9 81.8	86.0	6.4	6.3	6.3	4.1	4.1		3.3	3.8	
14-IVIAY-14	Sunny	Moderate	20.20		Surface	1.0	24.6	24.5	7.7 7.7	7.7	21.6	21.6	82.2	82.0	6.0 6.1	6.0	6.0	6.8	6.8		3.2	3.6	
				5.4	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	6.7	-	-	3.5
					Bottom	4.4	24.5 24.2	24.4	7.7 7.6	7.7	25.0 26.4	25.7	81.8 81.4	81.6	5.9 5.9	5.9	5.9	6.5 6.5	6.5		3.8 2.7	3.3	
16-May-14	Cloudy	Moderate	06:09		Surface	1.0	24.3 24.2	24.3	7.7 7.7	7.7	27.6 28.4	28.0	82.4 81.9	82.2	5.9 5.8	5.9	5.0	10.8 10.9	10.9		5.0 5.2	5.1	
				5.3	Middle	-		-	-	-	-	-	-	-	-	-	5.9	-	-	10.8	-	-	5.1
					Bottom	4.3	24.2 24.2	24.2	7.7 7.7	7.7	28.1 28.8	28.5	83.3 81.7	82.5	5.9 5.8	5.9	5.9	10.6 10.8	10.7		4.9 5.2	5.1	
19-May-14	Cloudy	Moderate	08:30		Surface	1.0	25.7	25.8	7.6	7.6	17.2	17.0	79.1	79.5	5.9	5.9		3.3	3.3		4.0	4.2	
				5.2	Middle	_	25.8	_	7.6	_	16.7	_	79.8 -	_	5.9 -	_	5.9	3.2	_	3.3	4.4	_	4.9
				0.2	Bottom	4.2	25.5	25.4	7.6	7.6	25.2	25.0	80.6	79.4	5.8	5.7	5.7	3.2	3.3	0.0	5.6	5.5	
21-May-14	Cloudy	Moderate	10:18	1			25.4 25.9		7.6 7.7		24.8 16.1		78.2 80.3		5.6 6.0		5.1	3.3 2.7			5.3 4.0		
	,				Surface	1.0	25.9	25.9	7.7	7.7	16.1	16.1	80.6	80.5	6.0	6.0	6.0	2.8	2.8		4.3	4.2	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.8	-	-	4.2
					Bottom	4.3	25.8 25.7	25.7	7.6 7.7	7.7	19.6 20.0	19.8	80.1 81.3	80.7	5.8 5.9	5.9	5.9	2.7 2.8	2.8		3.2 4.9	4.1	

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
*** Cancelled due to Thunderstorm Warning and safety concern.

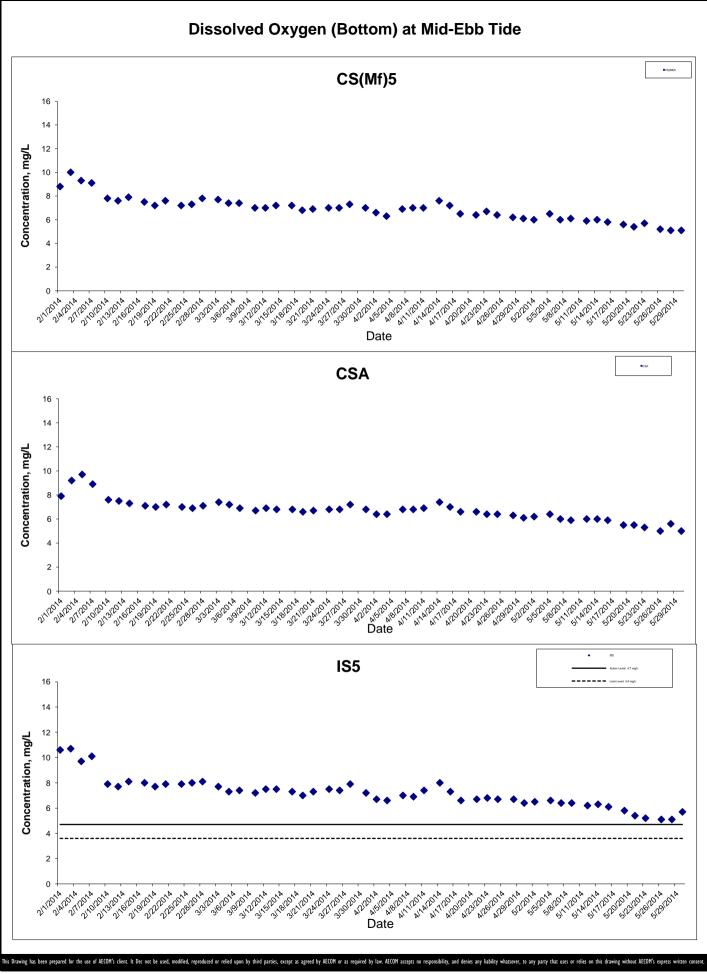

Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	g Water Sampling		ling	Temperature (°C)		pН		Salinity (ppt)		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)		
	Condition	Condition**	Time	Depth (m)	Depth (m)		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-May-14	Cloudy	Moderate	15:26		Surface	1.0	26.2 26.1	26.2	7.6 7.6	7.6	14.9 15.1	15.0	81.9 79.6	80.8	6.1 5.9	6.0	6.0	2.9 2.9	2.9		2.6 3.0	2.8	
				5.3	Middle			-	1	-	-	-		-	-	-	0.0	-	-	2.9	-	1	2.7
					Bottom	4.3	25.7 25.8	25.8	7.6 7.6	7.6	21.0 21.0	21.0	77.7 79.4	78.6	5.6 5.7	5.7	5.7	2.7 2.8	2.8		3.1 2.1	2.6	
26-May-14	Sunny	Moderate	19:21		Surface	1.0	26.4 26.3	26.4	7.7 7.7	7.7	22.5 21.5	22.0	74.8 74.2	74.5	5.3 5.3	5.3	5.3	3.3 3.2	3.3		2.9 2.5	2.7	
				5.6	Middle	-		-		-	-	-		-	-	-	0.0	-	-	3.4	-	-	3.1
					Bottom	4.6	25.8 25.9	25.9	7.6 7.7	7.6	25.5 25.6	25.6	73.6 73.6	73.6	5.2 5.2	5.2		3.3 3.5	3.4		3.1 3.6	3.4	
28-May-14	Sunny	Moderate	20:47		Surface	1.0	26.9 26.9	26.9	8.3 8.3	8.3	20.7 20.8	20.7	82.3 82.2	82.3	5.9 5.8	5.8	5.8	2.0 1.9	2.0		2.9 2.5	2.7	
				5.2	Middle			-		-	-	-		-	-	-	3.0	-	-	2.0	-	ı	3.2
					Bottom	4.2	26.7 26.7	26.7	8.3 8.2	8.2	21.9 21.8	21.9	81.8 81.6	81.7	5.8 5.8	5.8	5.8	1.9 1.9	1.9		2.8 4.4	3.6	
30-May-14	Sunny	Moderate	05:48		Surface	1.0	27.1 27.1	27.1	8.3 8.3	8.3	18.6 21.0	19.8	89.8 83.6	86.7	6.3 5.9	6.1	6.1	1.1 1.1	1.1		2.9 3.7	3.3	
				4.8	Middle	-		-		-	-	-		-	-	-	0.1	-	-	1.2	-	-	3.4
					Bottom	3.8	26.6 26.6	26.6	8.3 8.4	8.4	23.7 23.2	23.5	81.8 84.1	83.0	5.8 6.0	5.9	5.9	1.1 1.2	1.2		2.5 4.4	3.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

- DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher
- *** Cancelled due to Thunderstorm Warning and safety concern.

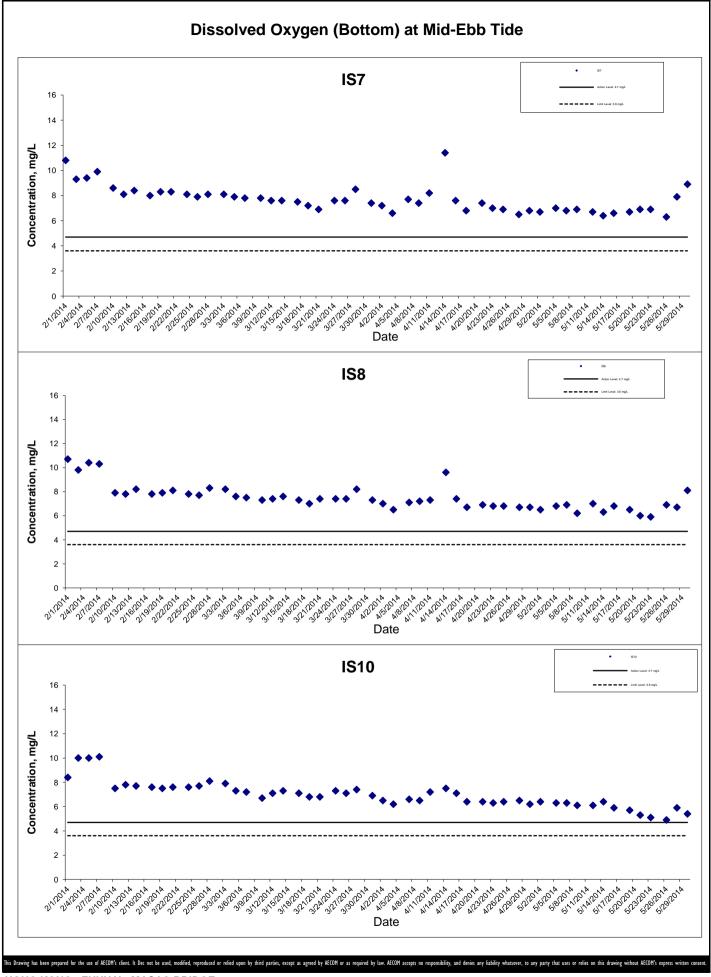


AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

Project No.: 60249820 Date: June 2014 Appendix J



AECOM

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

Project No.: 60249820 Date: June 2014 Appendix J



HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

Graphical Presentation of Impact Water Quality
Monitoring Results

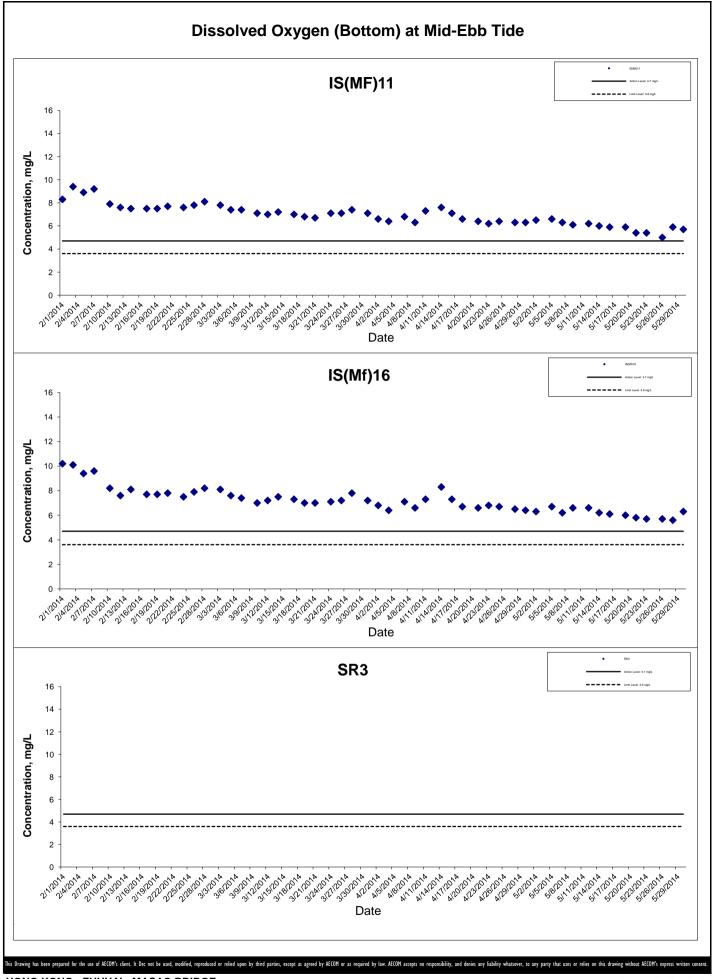
Project No.: 60249820 Date: June 2014 Appendix J

AECOM

HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES

Date: June 2014

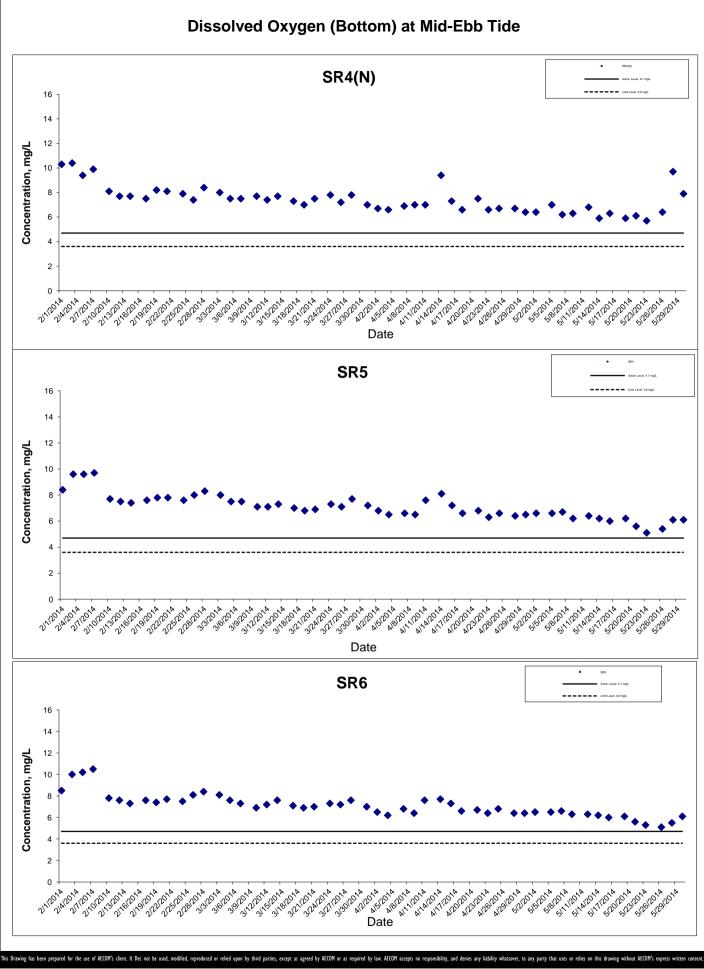

- RECLAMATION WORKS

Project No.: 60249820

Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM

Appendix J



AECOM

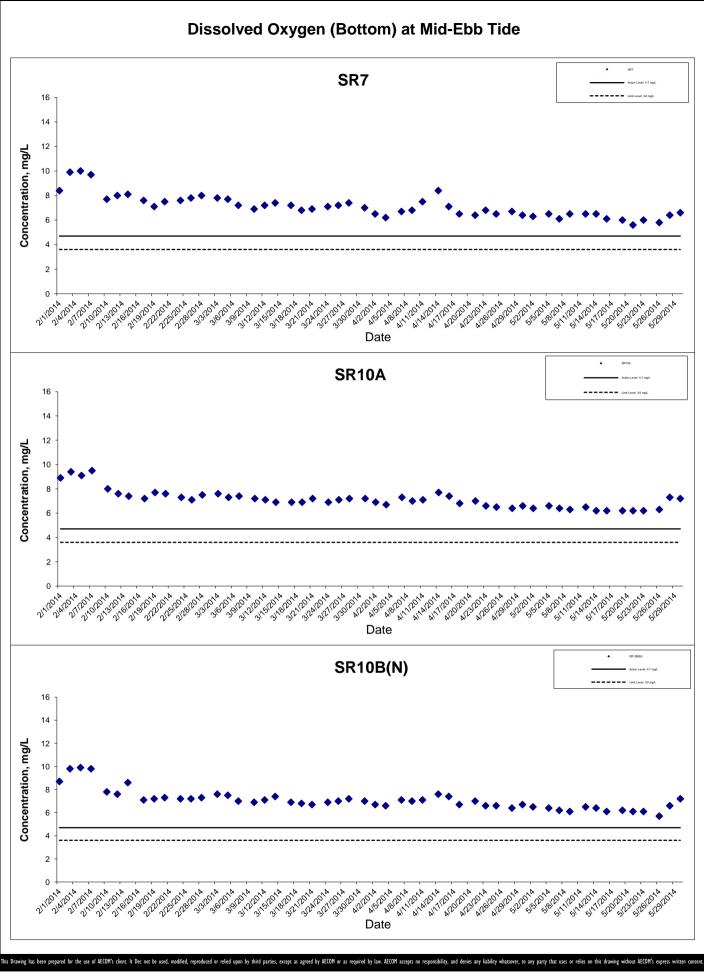
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

Project No.: 60249820 Date: June 2014 Appendix J

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

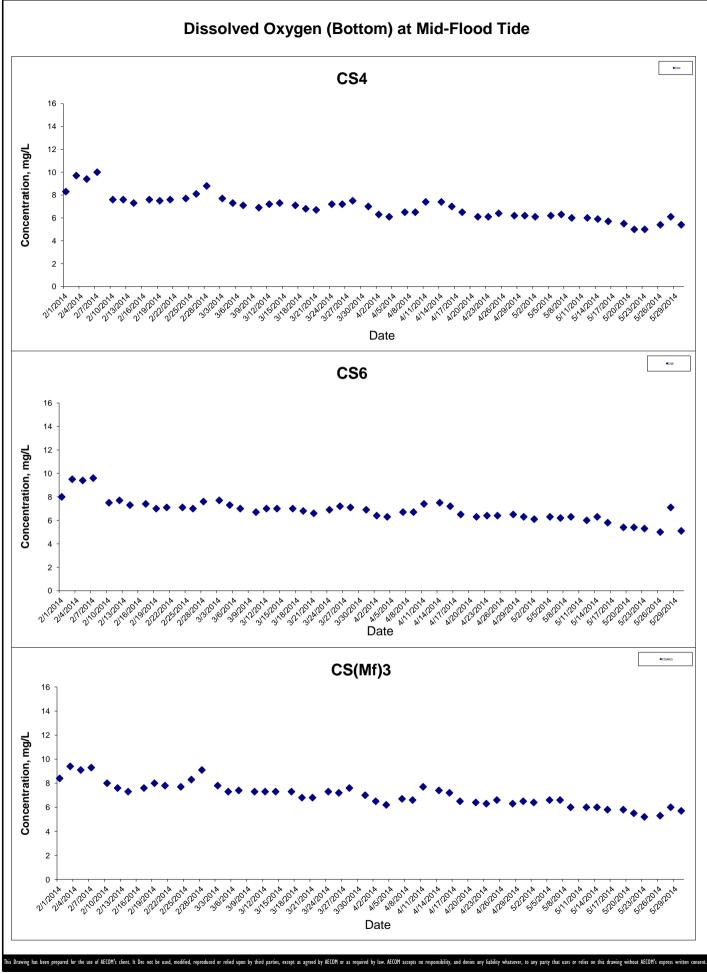

Monitoring Results

aphical Presentation of Impact Water Quality

AECOM

Appendix J

Project No.: 60249820 Date: June 2014

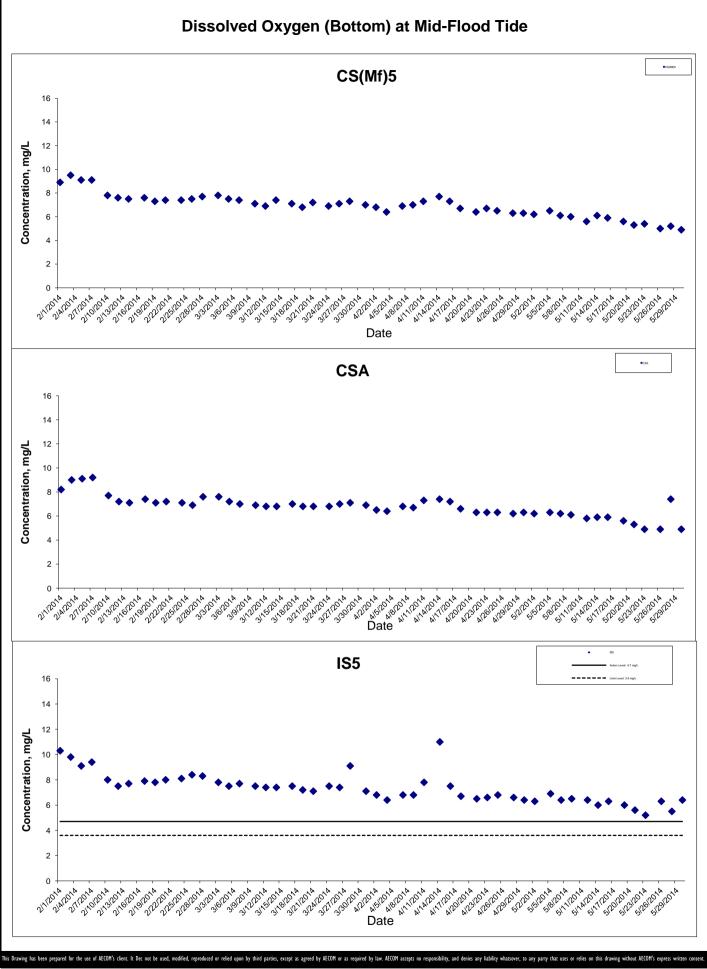


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

Project No.: 60249820 Date: June 2014 Appendix J

AECOM

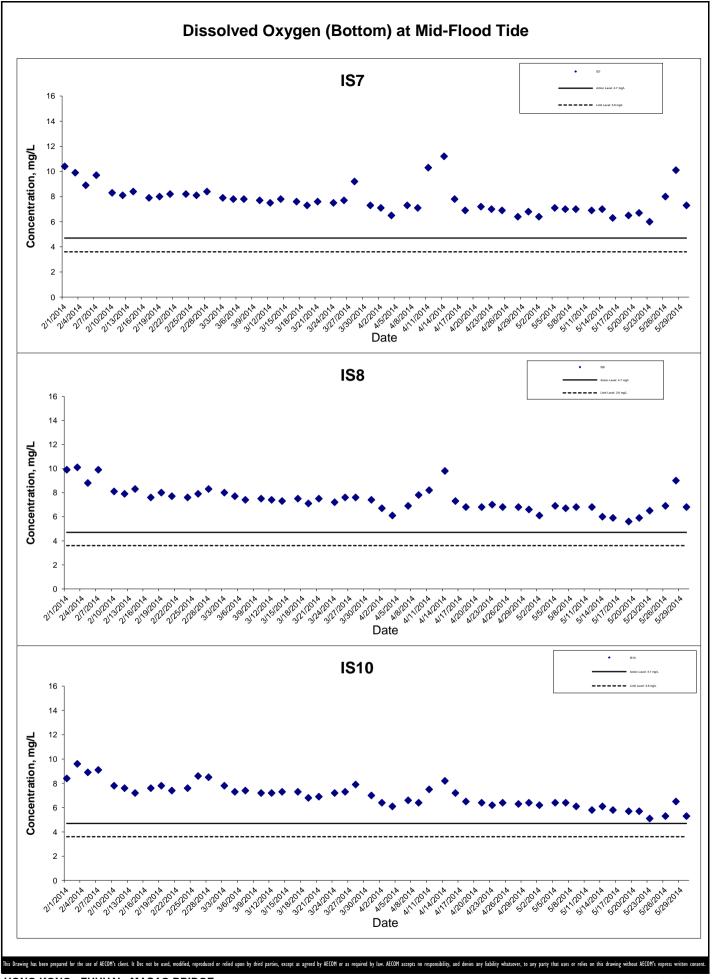


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

Project No.: 60249820 Date: June 2014 Appendix J

Monitoring Results

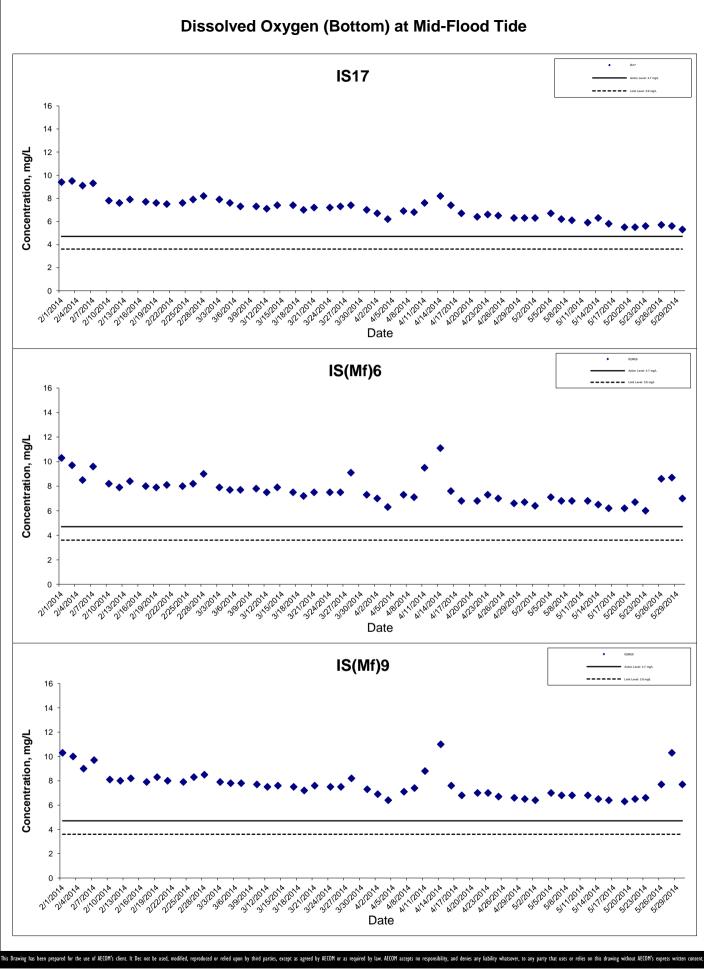


AECOM

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

Project No.: 60249820 Date: June 2014 Appendix J

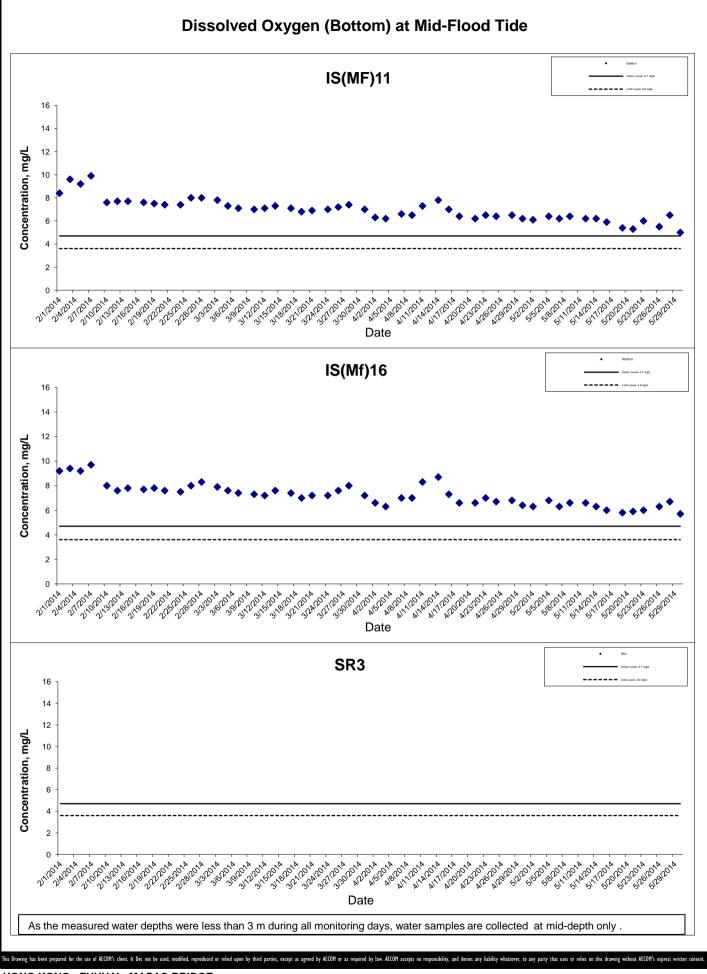


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

Graphical Presentation of Impact Water Quality
Monitoring Results

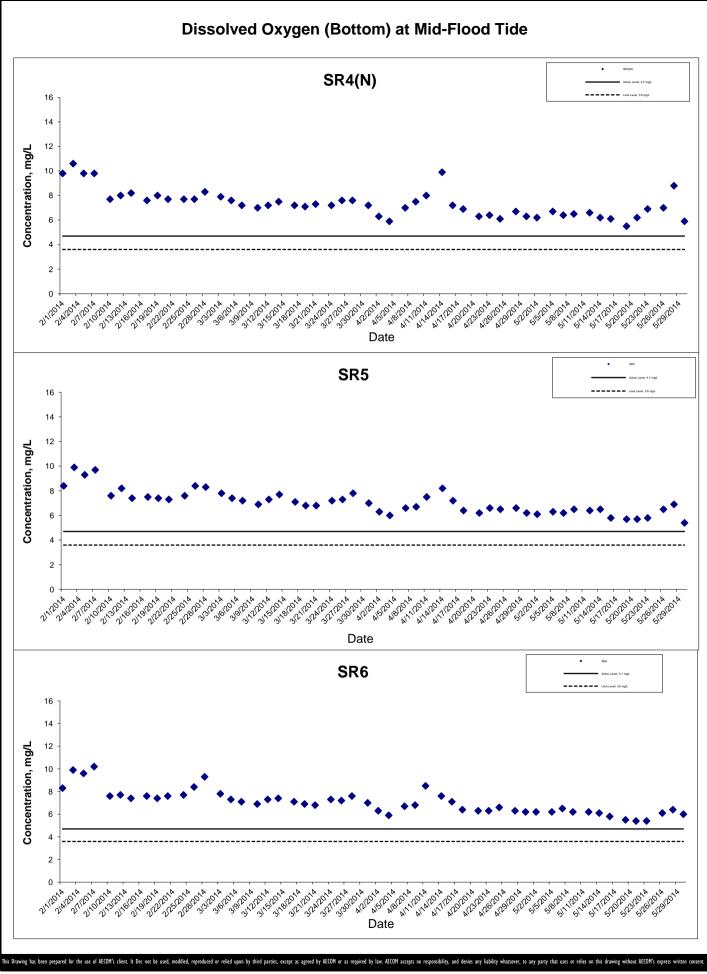
Project No.: 60249820 Date: June 2014 Appendix J

AECOM


HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES

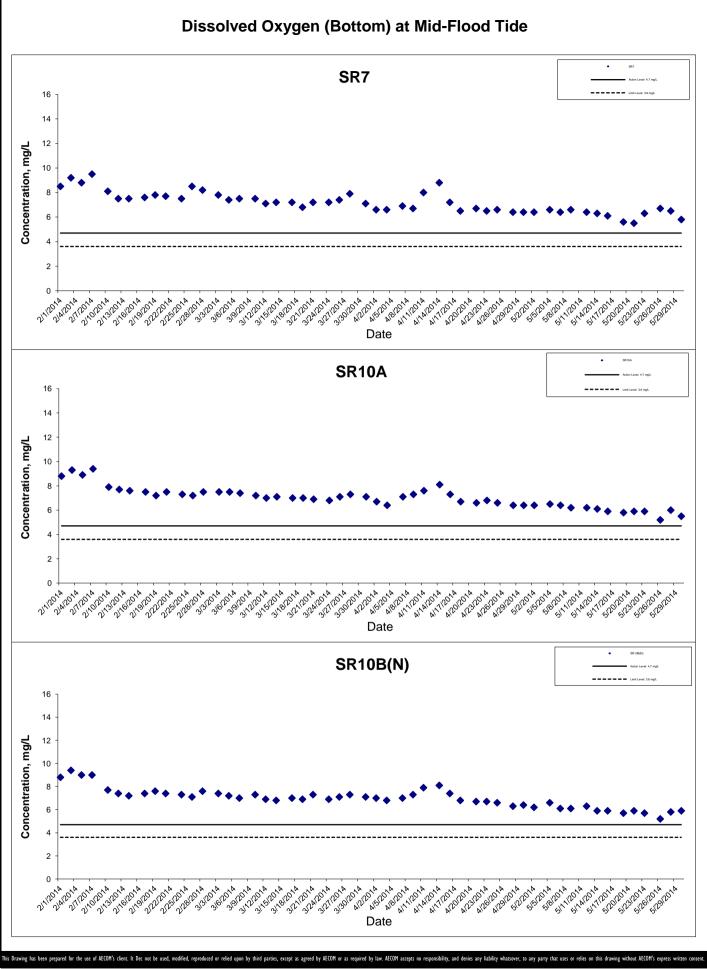
Graphical Presentation of Impact Water Quality - RECLAMATION WORKS **Monitoring Results**



Project No.: 60249820 Date: June 2014 Appendix J

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality Monitoring Results

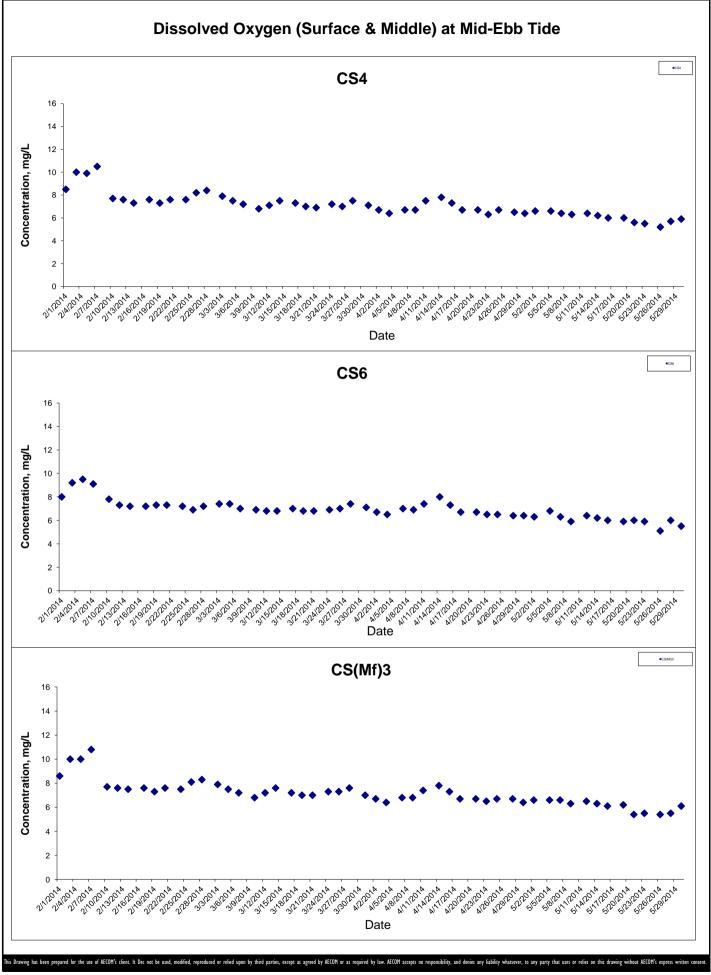

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

Project No.: 60249820 Date: June 2014

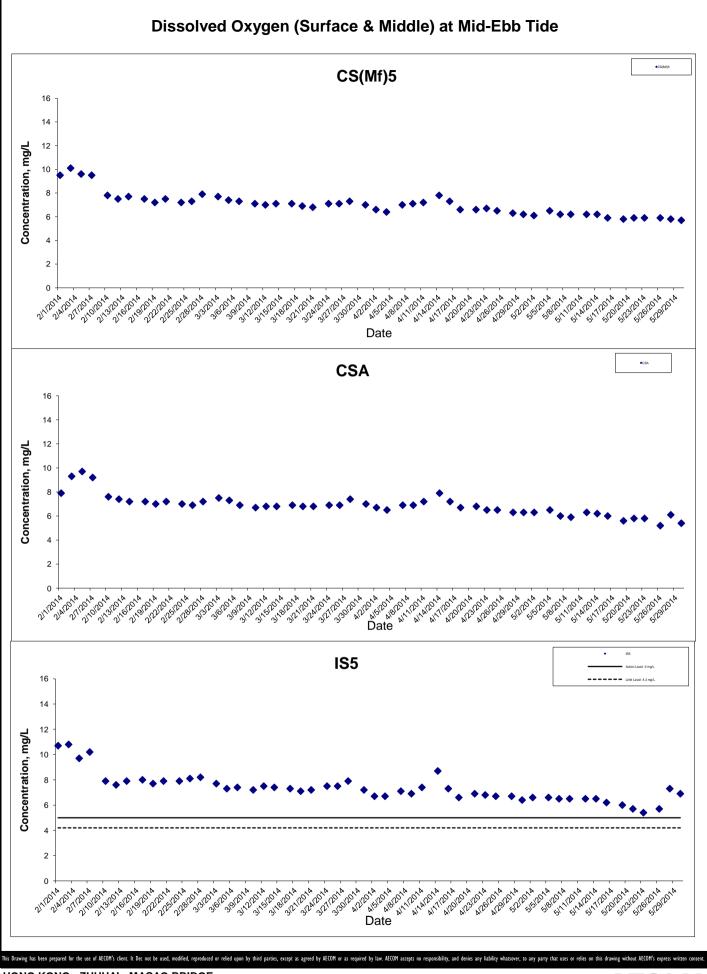
Monitoring Results Appendix J

HONG KONG - ZHUHAI - MACAO BRIDGE


HONG KONG BOUNDARY CROSSING FACILITIES

Graphical Presentation of Impact Water Quality - RECLAMATION WORKS

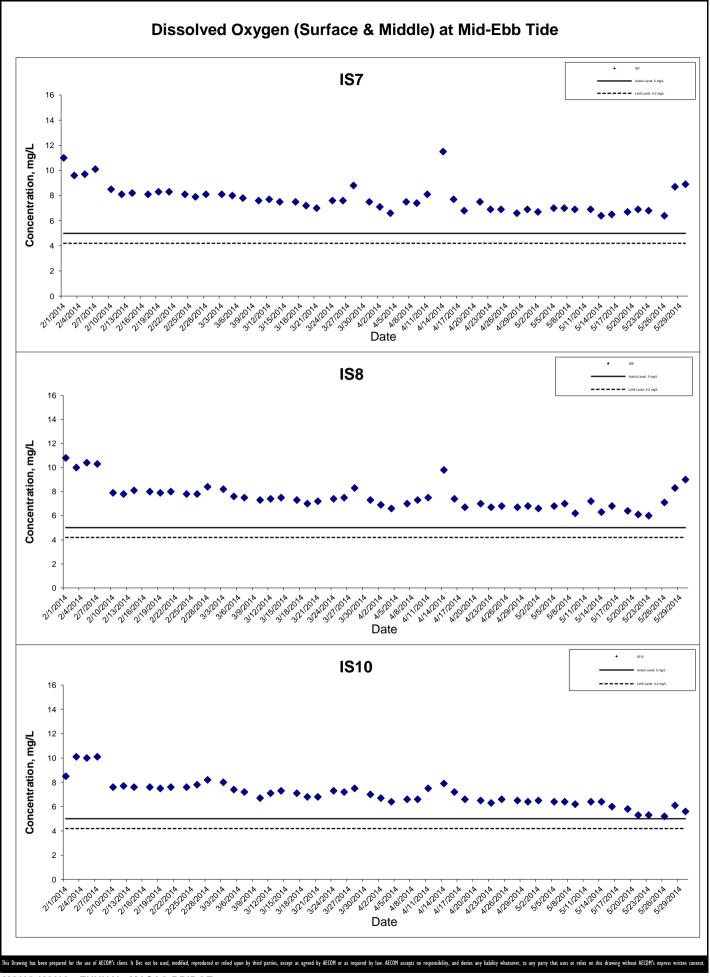
Monitoring Results Project No.: 60249820 Date: June 2014


Appendix J

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

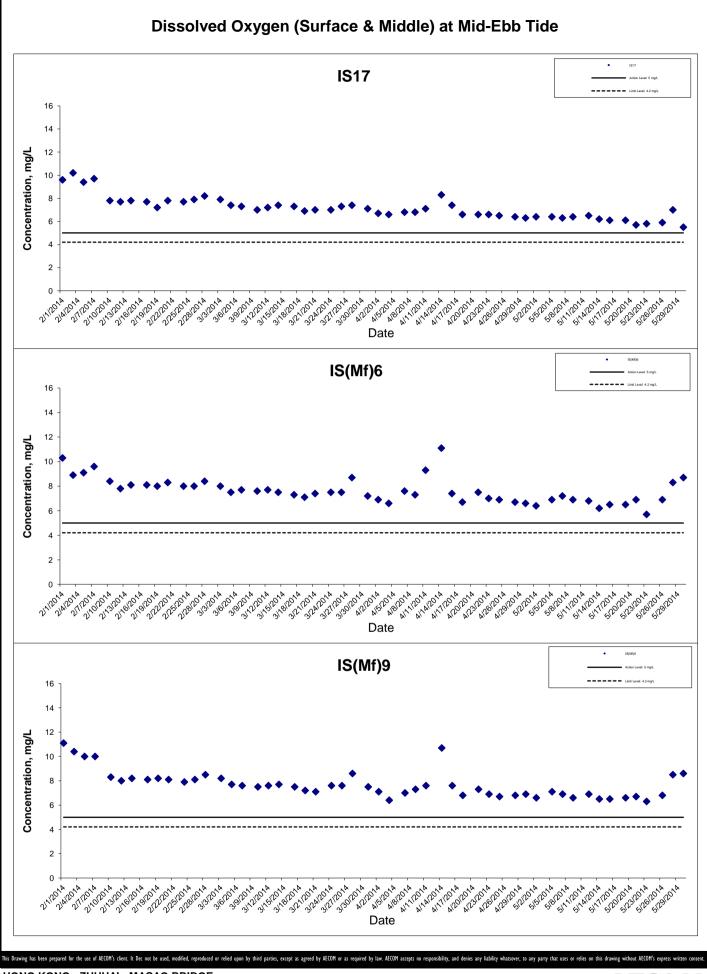
Project No.: 60249820 Date: June 2014 Appendix J


HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS

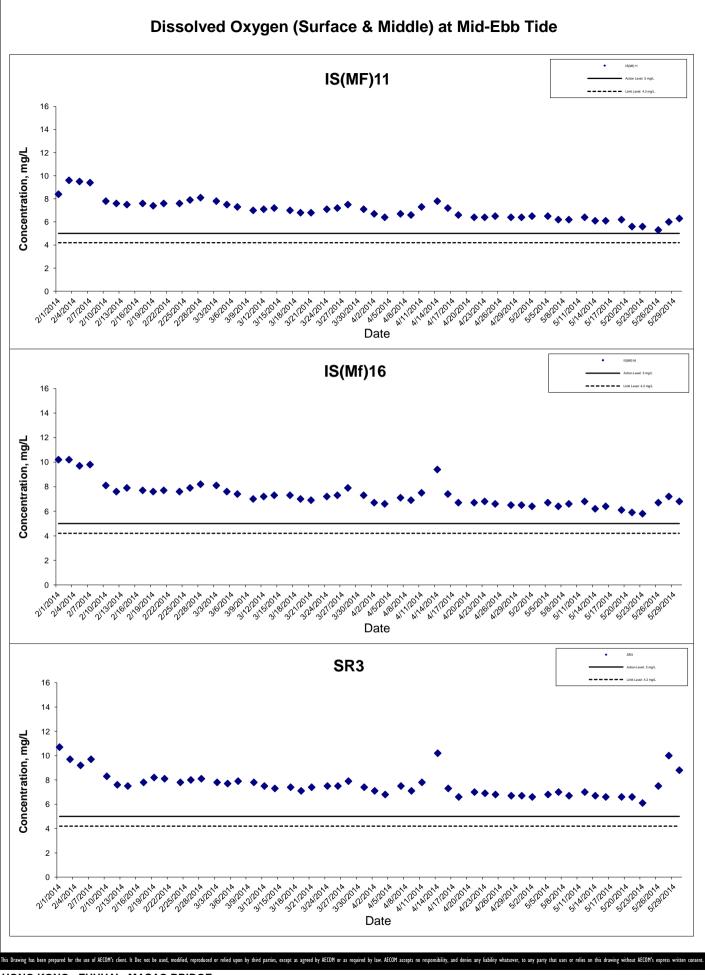
Gr

Graphical Presentation of Impact Water Quality
Monitoring Results


Project No.: 60249820 Date: June 2014 Appendix J

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

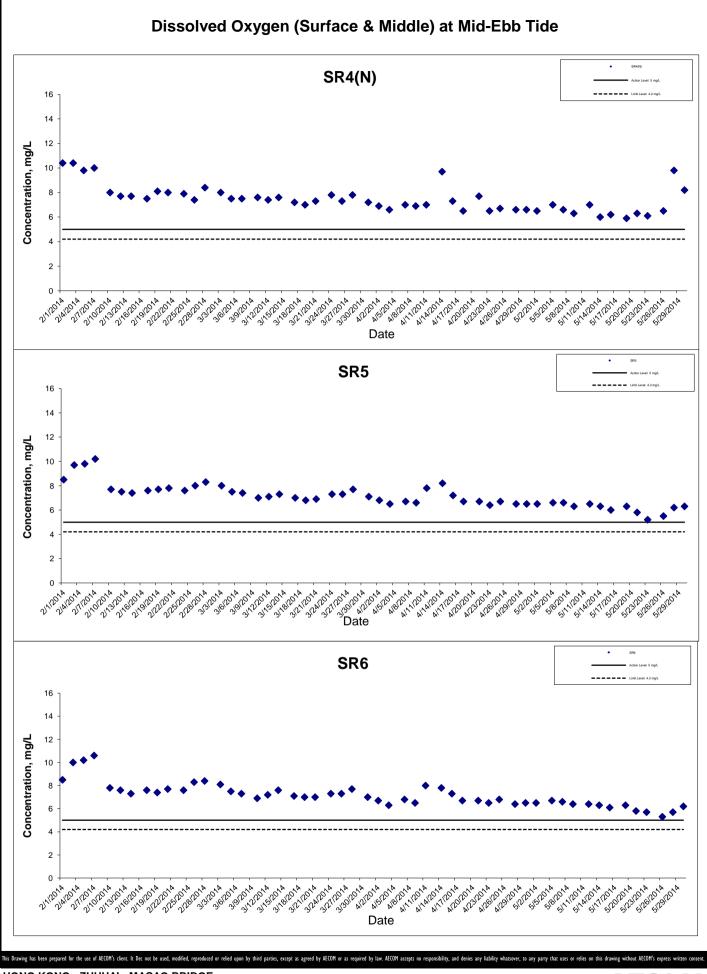
Graphical Presentation of Impact Water Quality
Monitoring Results


Project No.: 60249820 Date: June 2014 Appendix J

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

AECOM

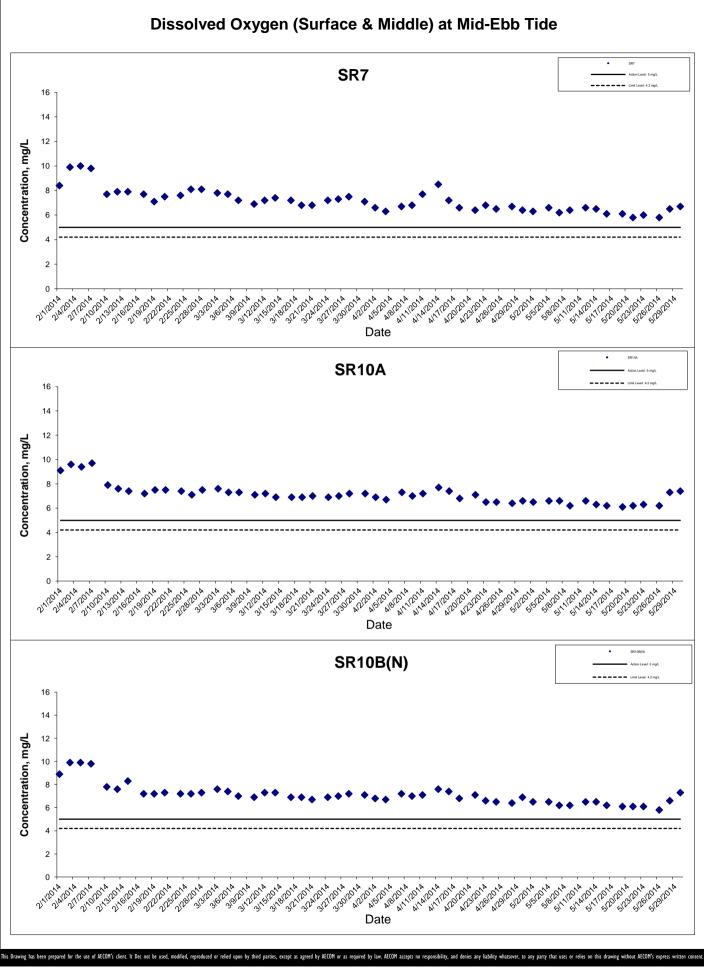

Project No.: 60249820

ES
Graphical Presentation of Impact Water Quality

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

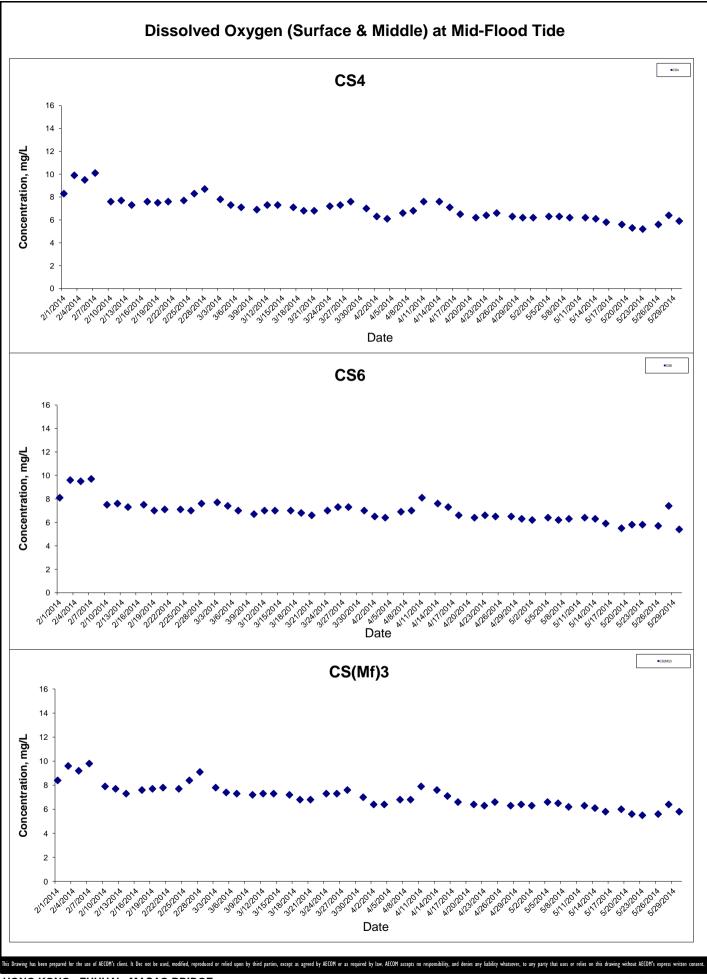
Date: June 2014


HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES

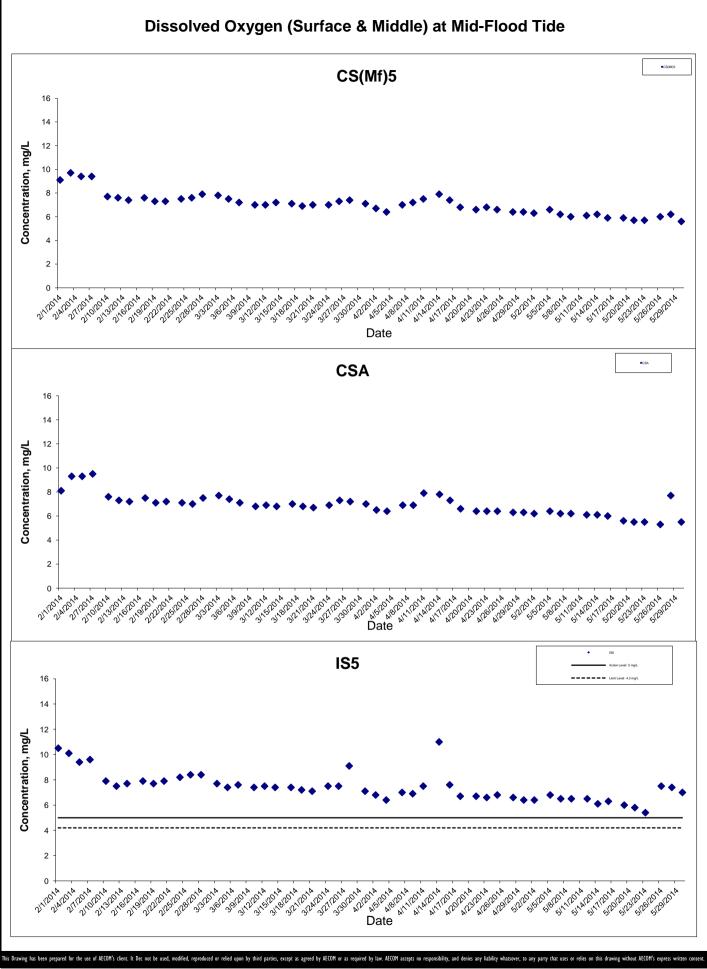
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results


AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

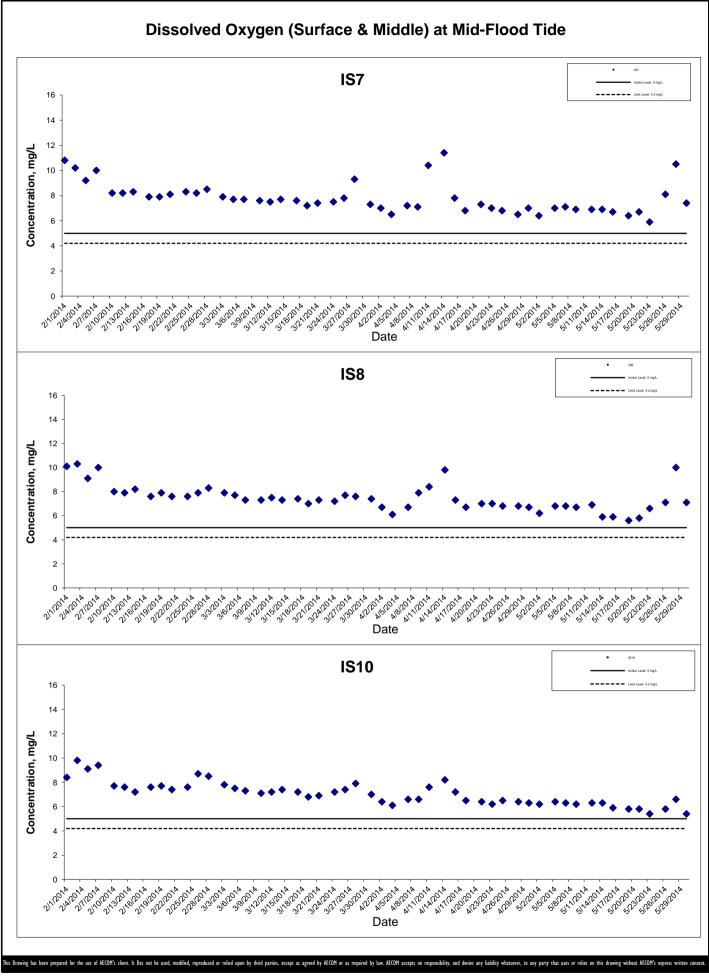
Monitoring Results


AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

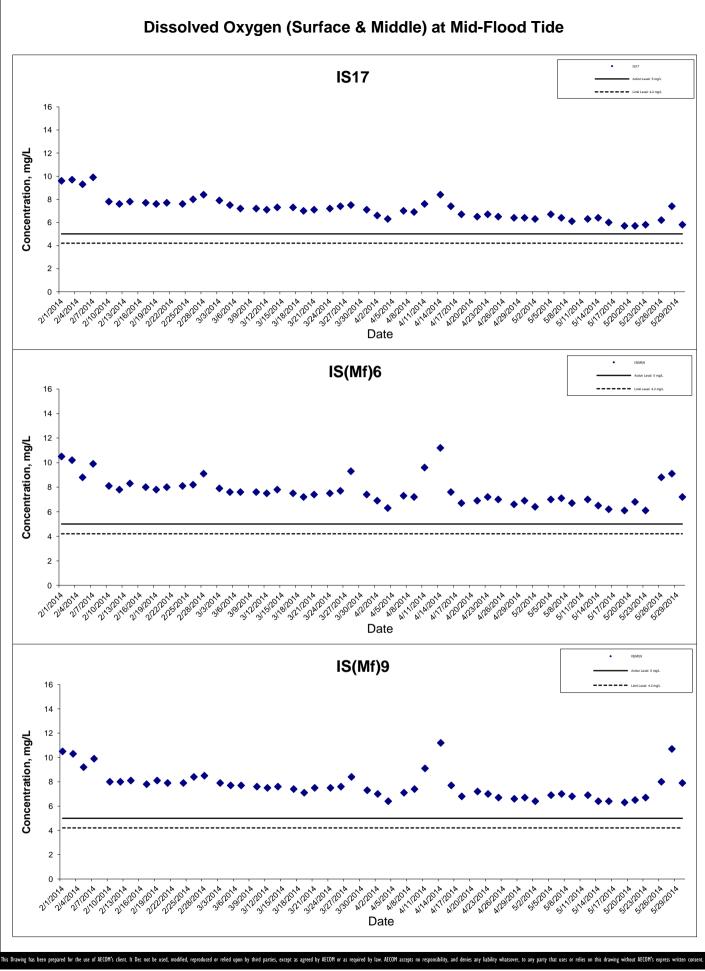
A**≡**COM


HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES

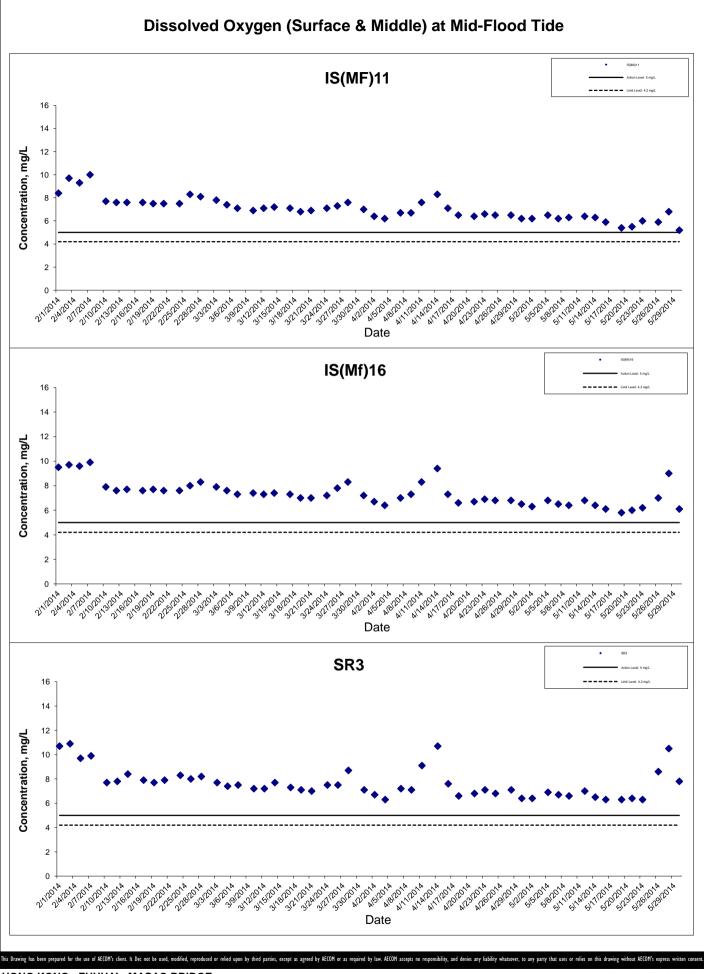
- RECLAMATION WORKS **Monitoring Results**

Graphical Presentation of Impact Water Quality



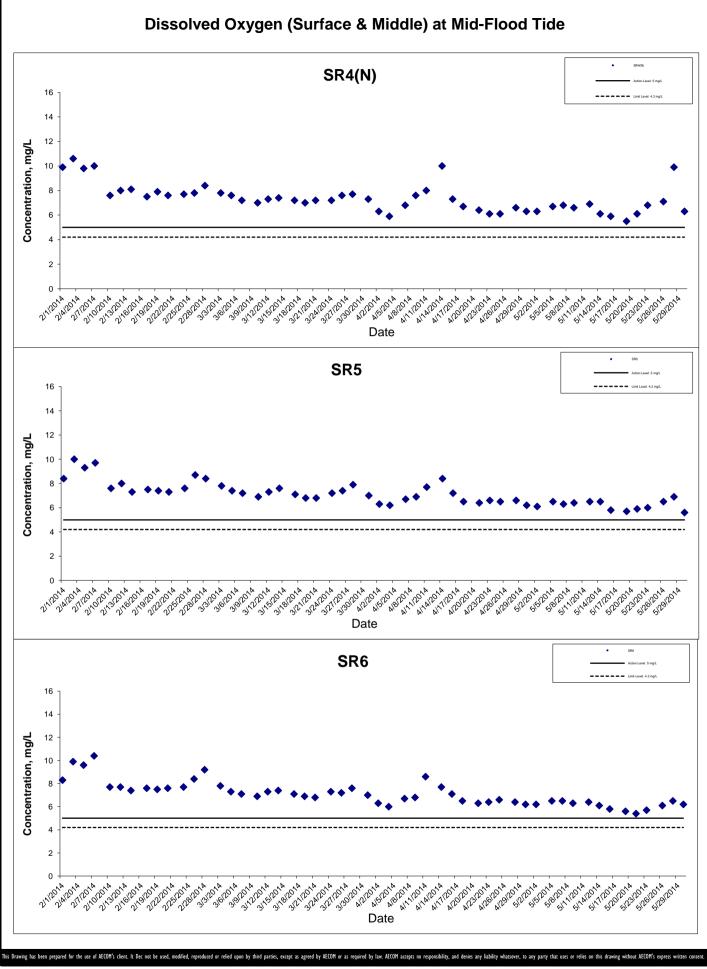
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results


Project No.: 60249820 Date: June 2014 Appendix J

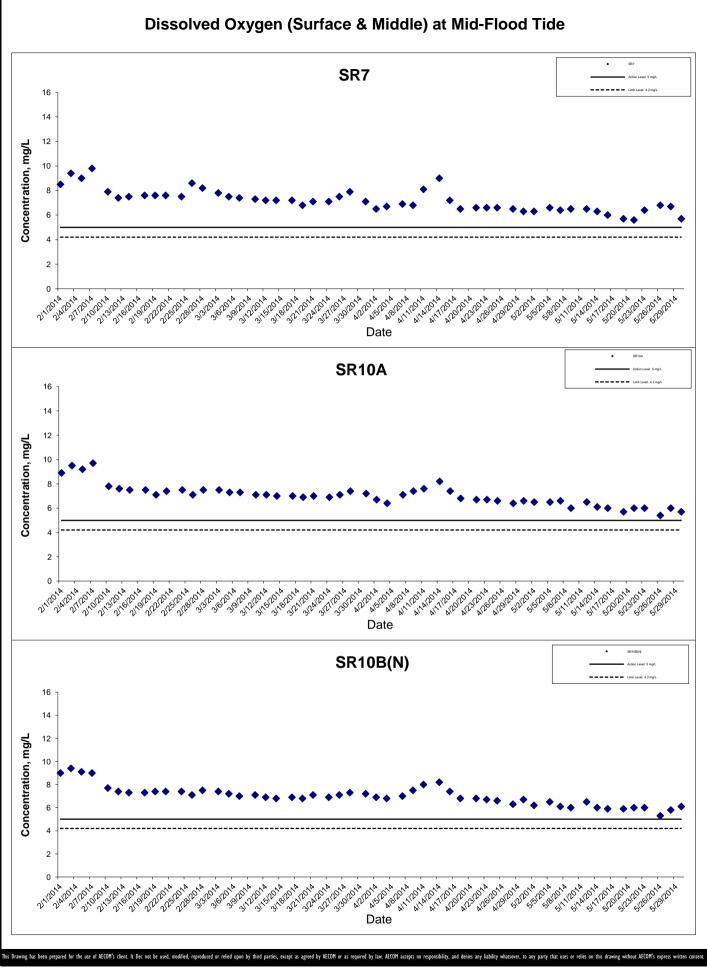
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results


Project No.: 60249820 Date: June 2014 Appendix J

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

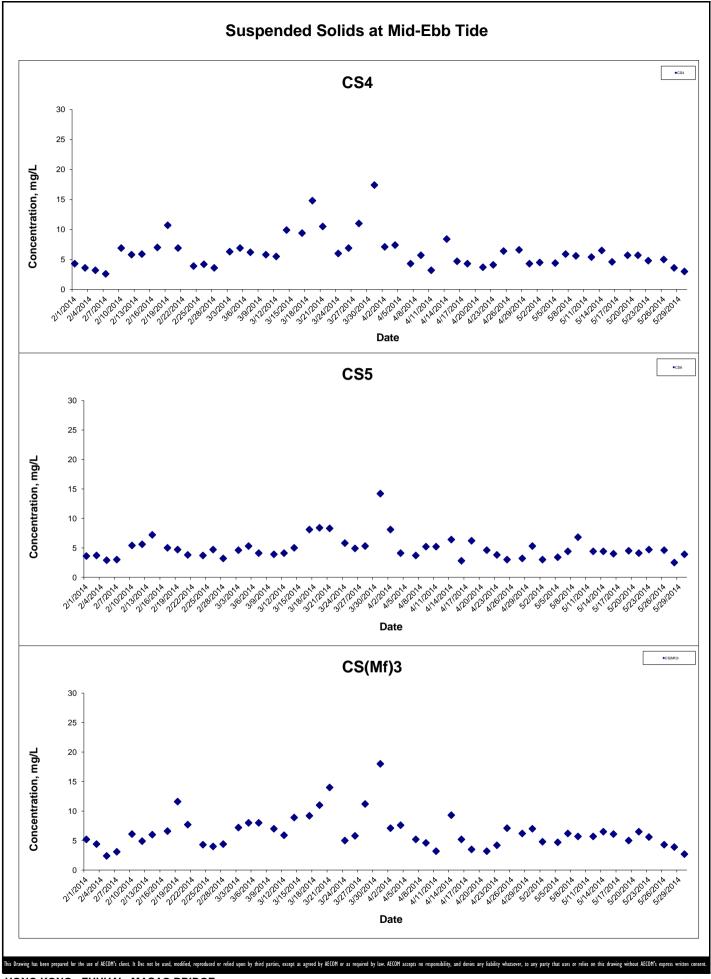
Graphical Presentation of Impact Water Quality
Monitoring Results


Project No.: 60249820 Date: June 2014 Appendix J

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

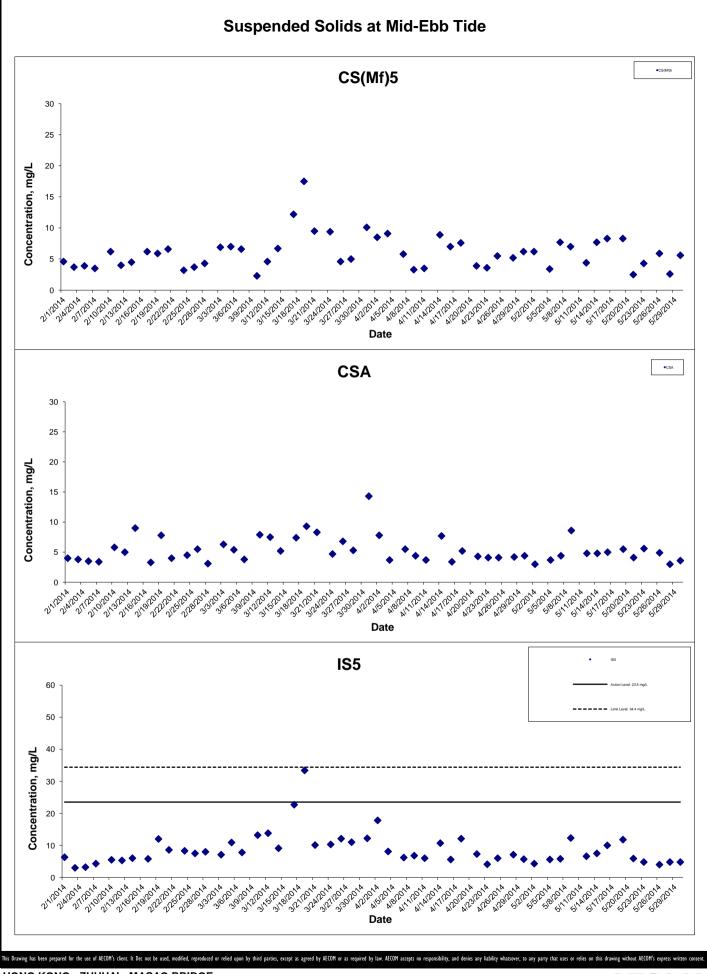
AECOM


HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS

Gr

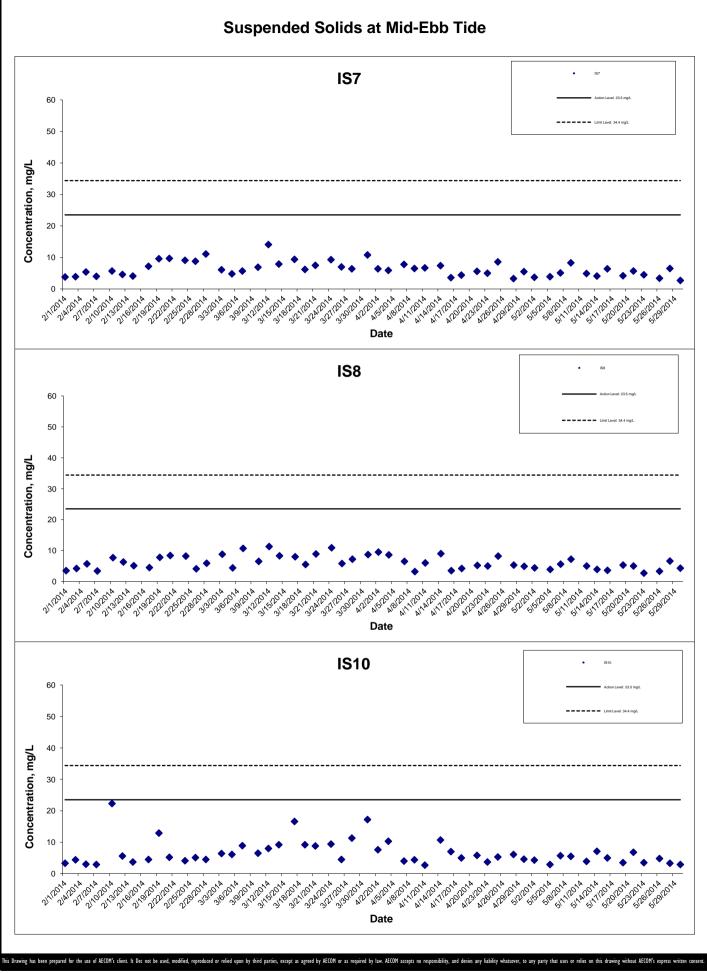
Graphical Presentation of Impact Water Quality
Monitoring Results


Project No.: 60249820 Date: June 2014 Appendix J

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

AECOM

Graphical Presentation of Impact Water Quality
Monitoring Results

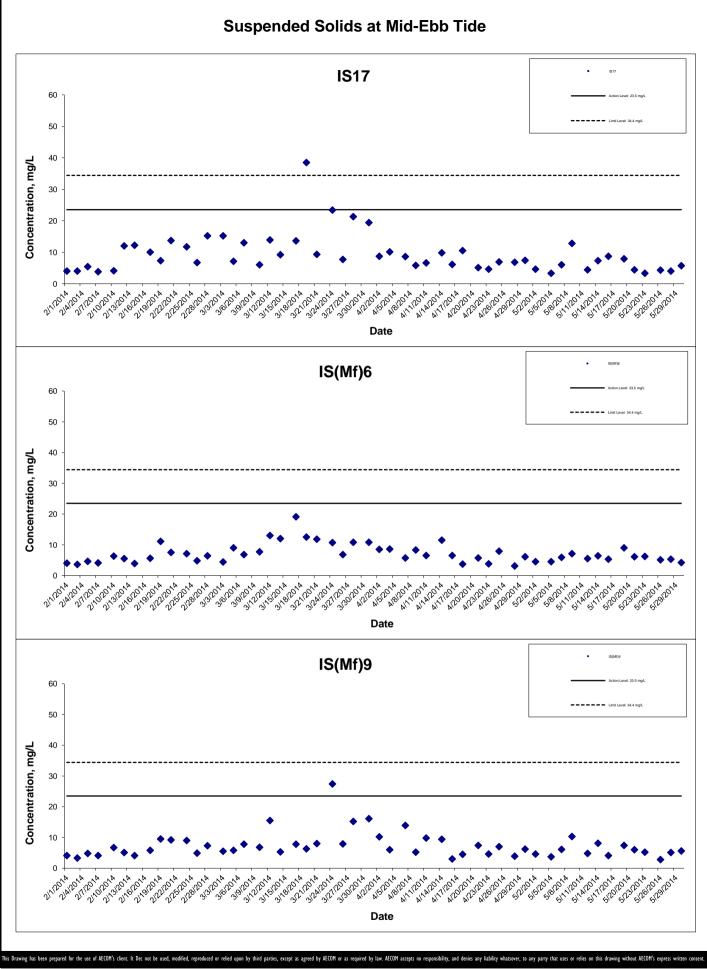


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

Monitoring Results

AECOM

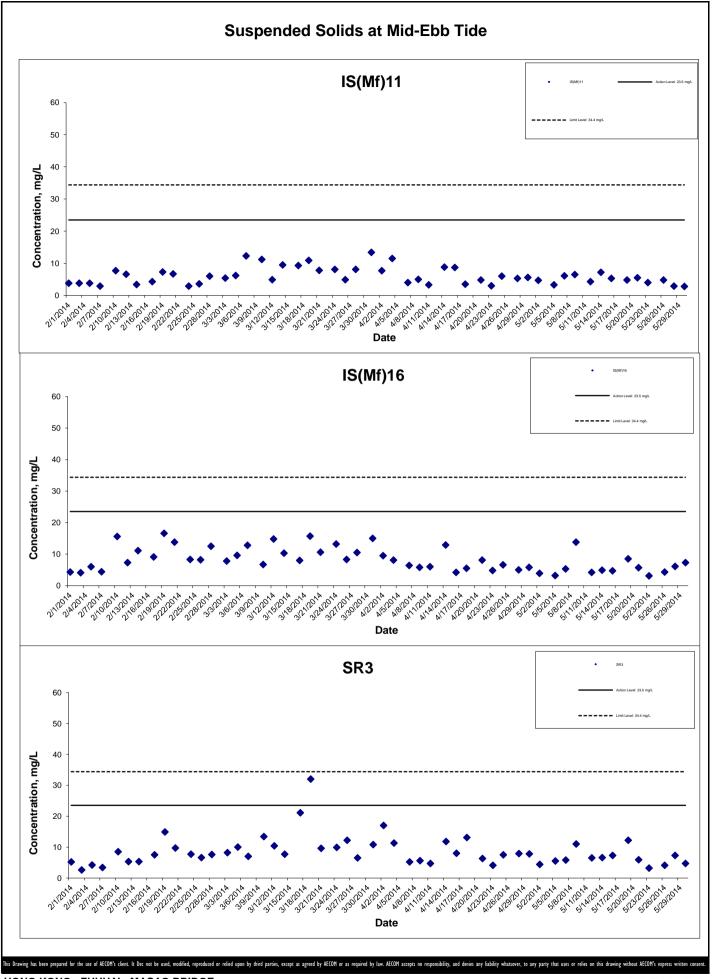

- RECLAMATION WORKS

AECOM

Project No.: 60249820 Date: June 2014 Appendix J

Graphical Presentation of Impact Water Quality

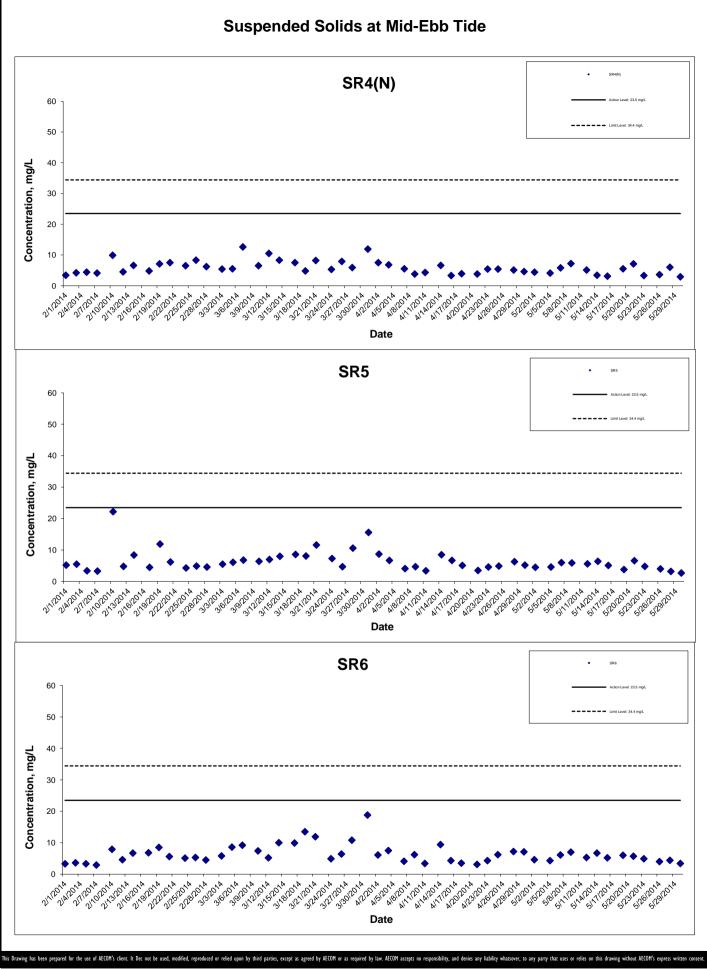
Monitoring Results



- RECLAMATION WORKS

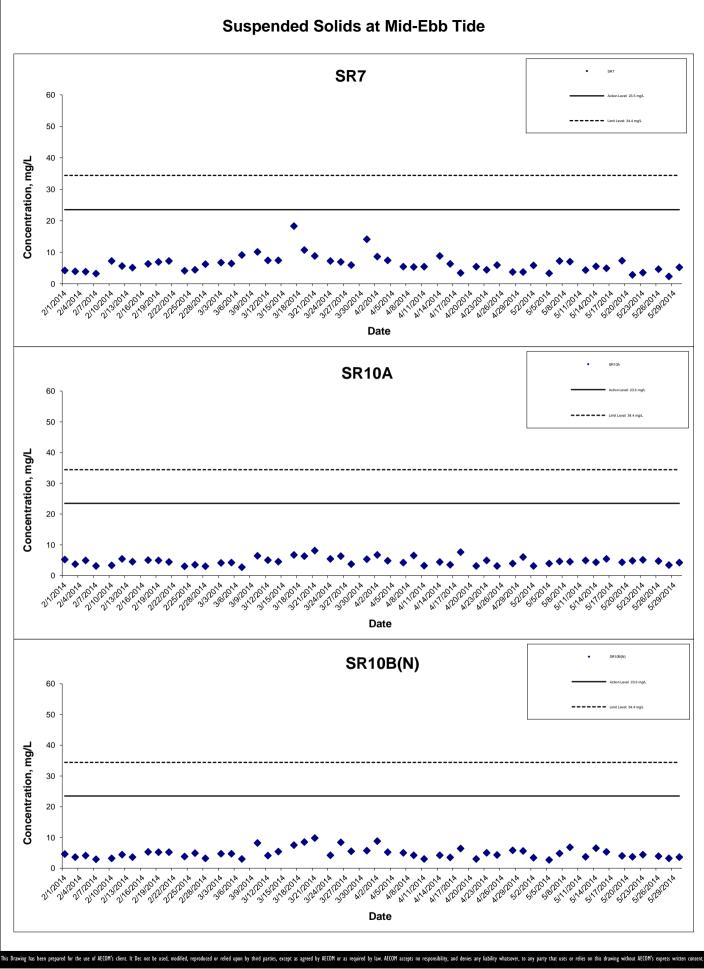
IES
Graphical Presentation of Impact Water Quality

Project No.: 60249820 Date: June 2014 Appendix J

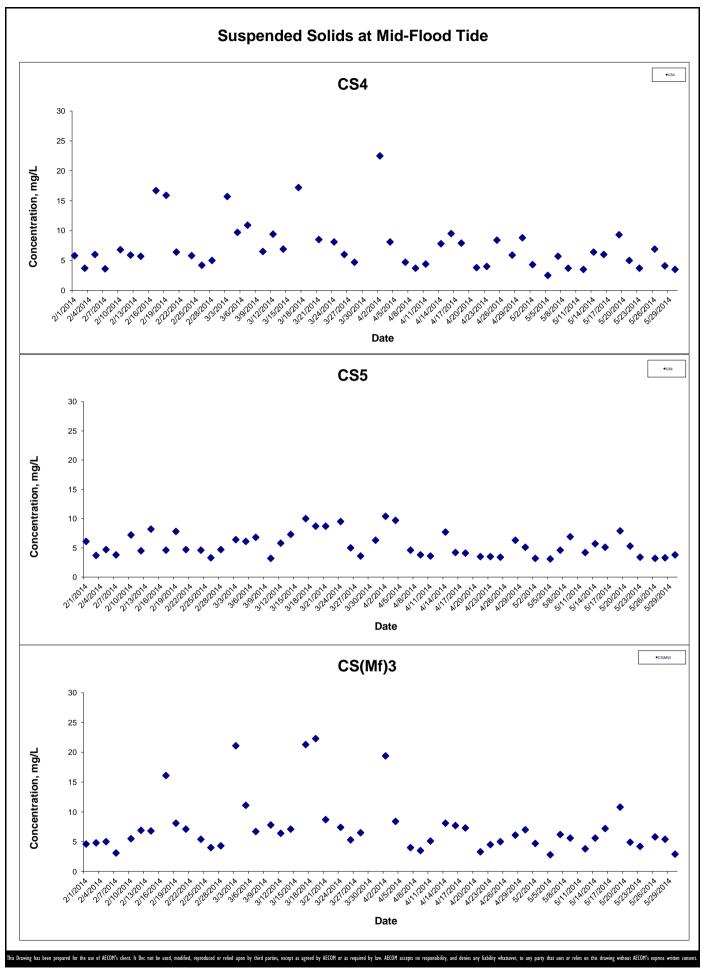

Monitoring Results

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

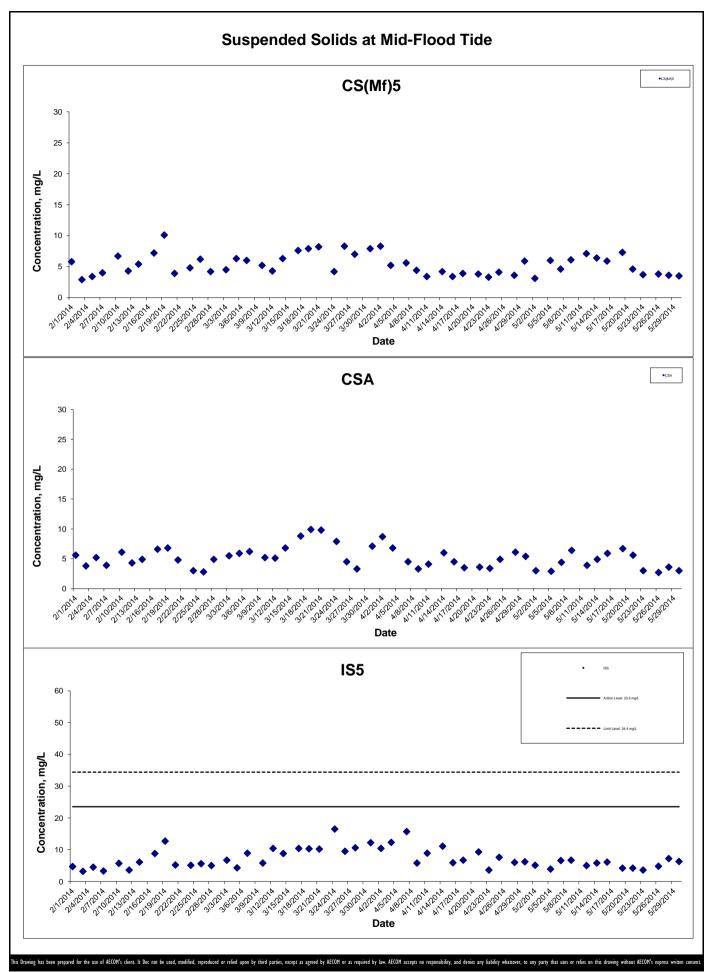
AECOM

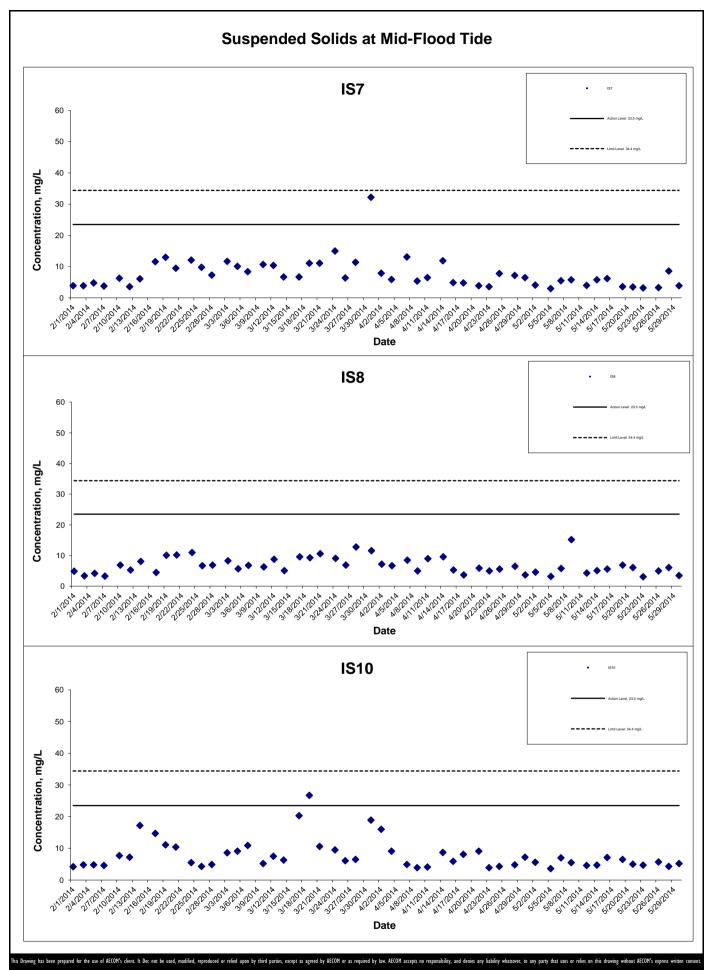

Graphical Presentation of Impact Water Quality
Monitoring Results

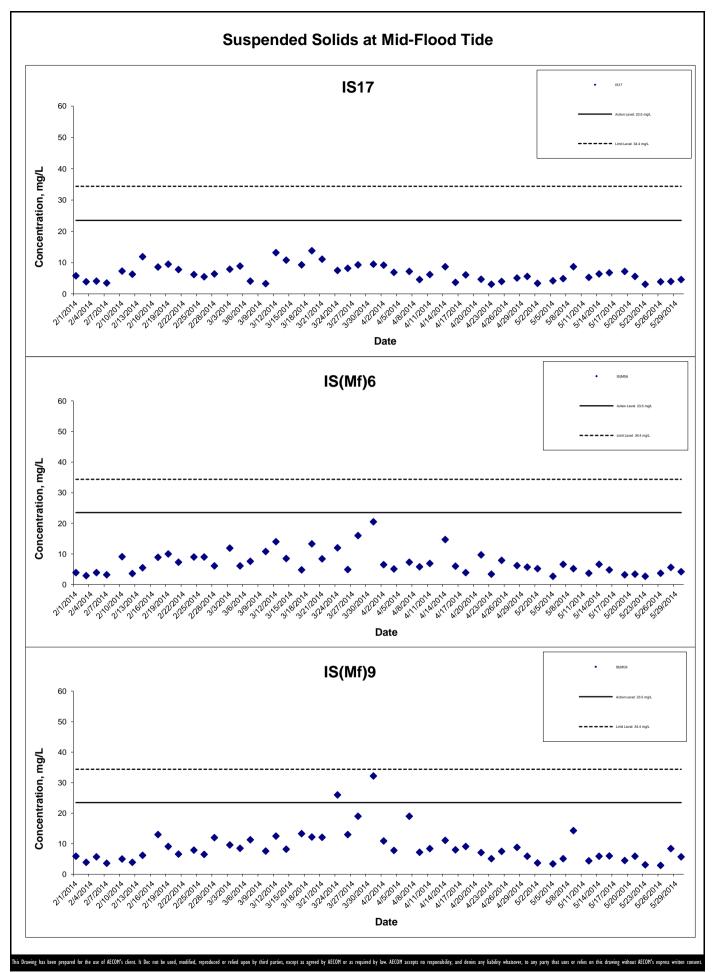
- RECLAMATION WORKS


ES
Graphical Presentation of Impact Water Quality

Monitoring Results
Project No.: 60249820 Date: June 2014

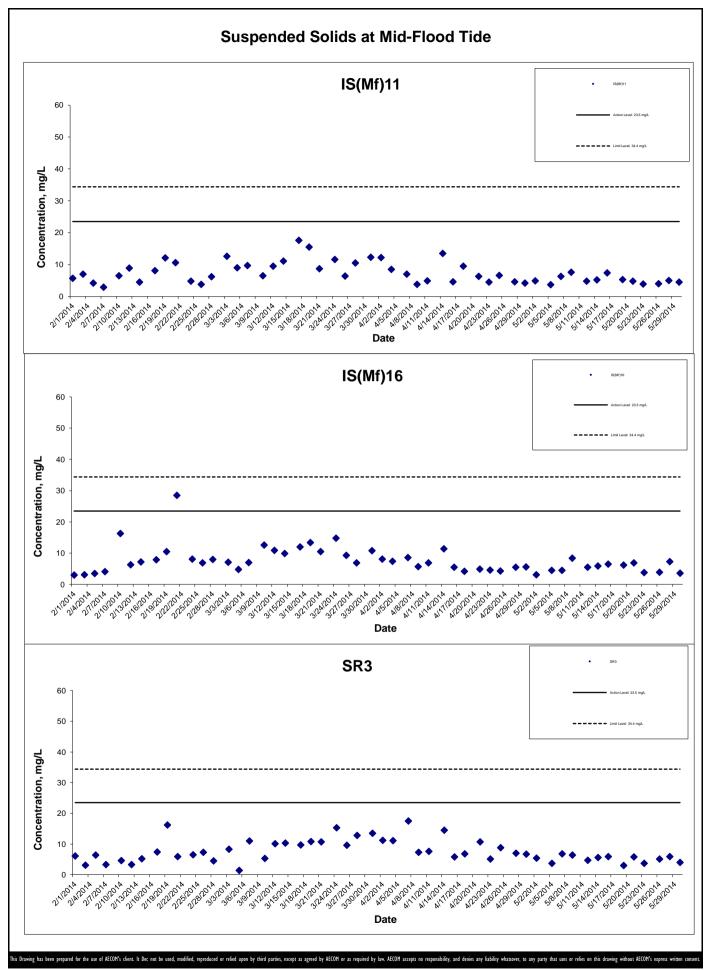

- RECLAMATION WORKS


AECOM


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

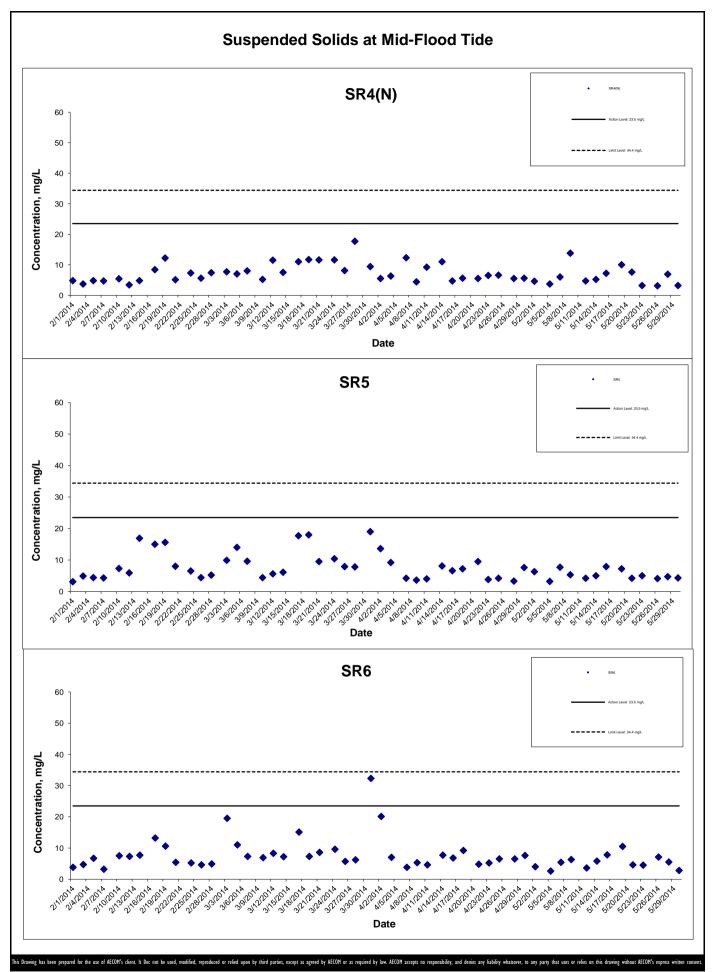
AECOM

AECOM

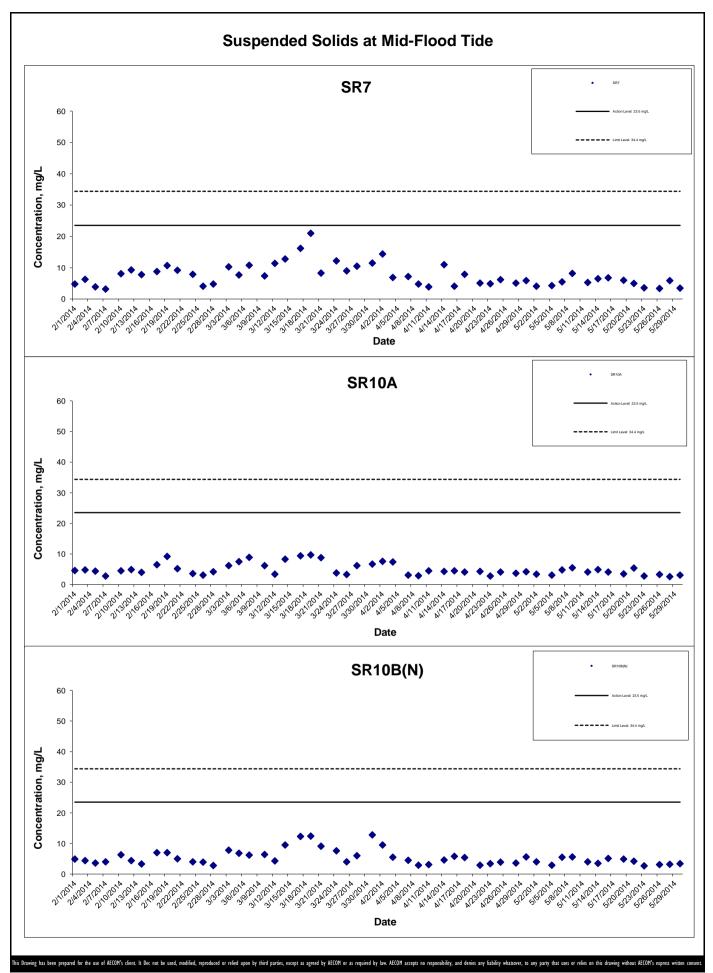

Project No.: 60249820

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results


AECOM

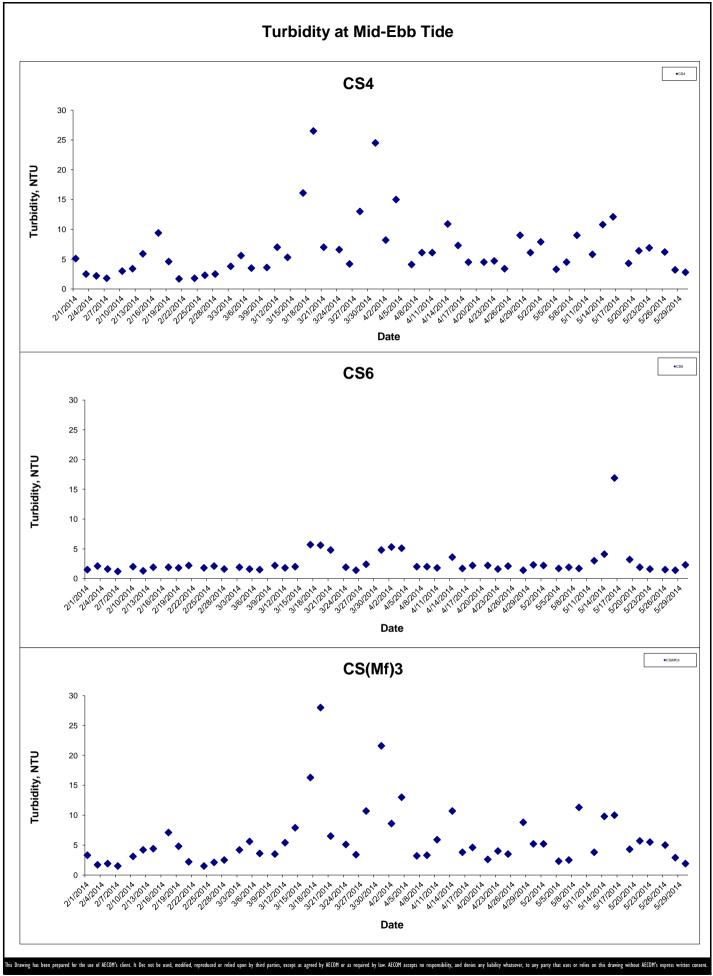
Date: June 2014 Appendix J


- RECLAMATION WORKS

AECOM

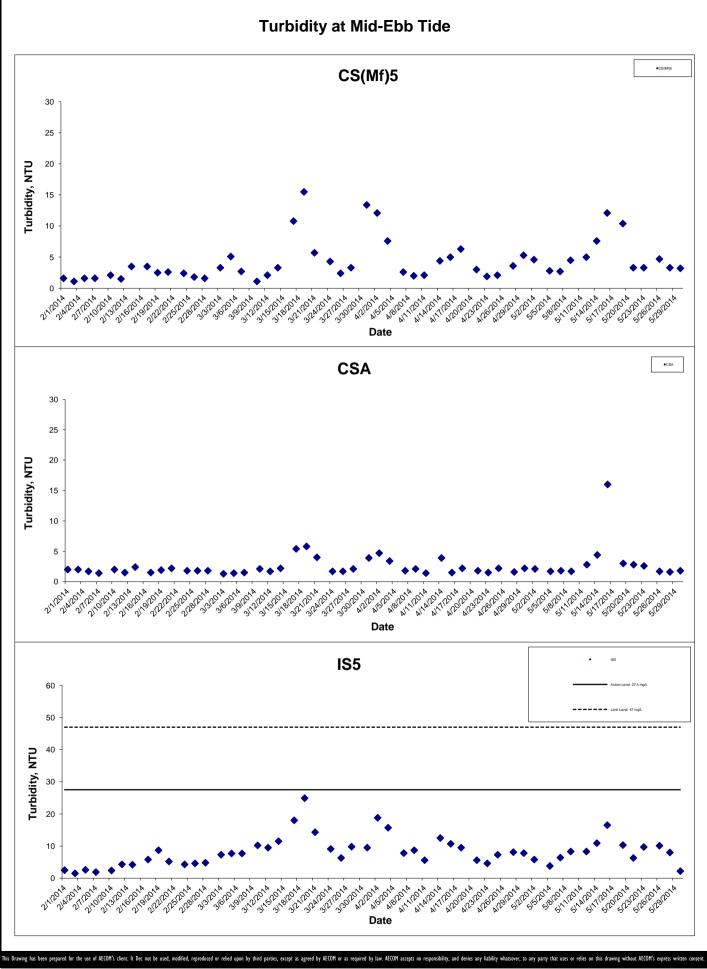
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

AECOM



- RECLAMATION WORKS

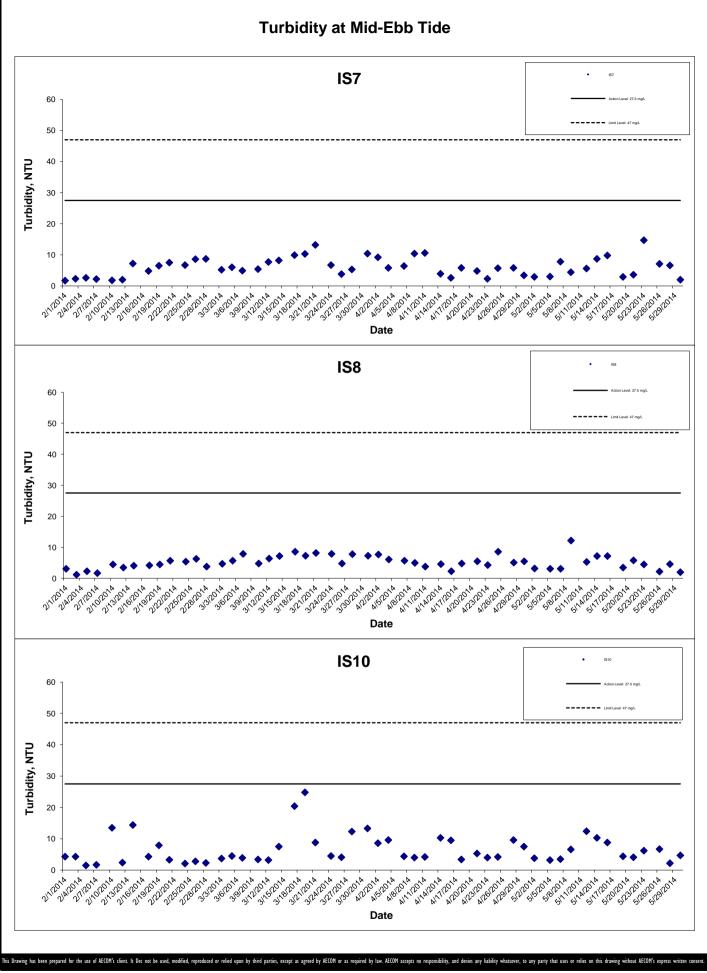
Graphical Presentation of Impact Water Quality


Monitoring Results

AECOM

- RECLAMATION WORKS

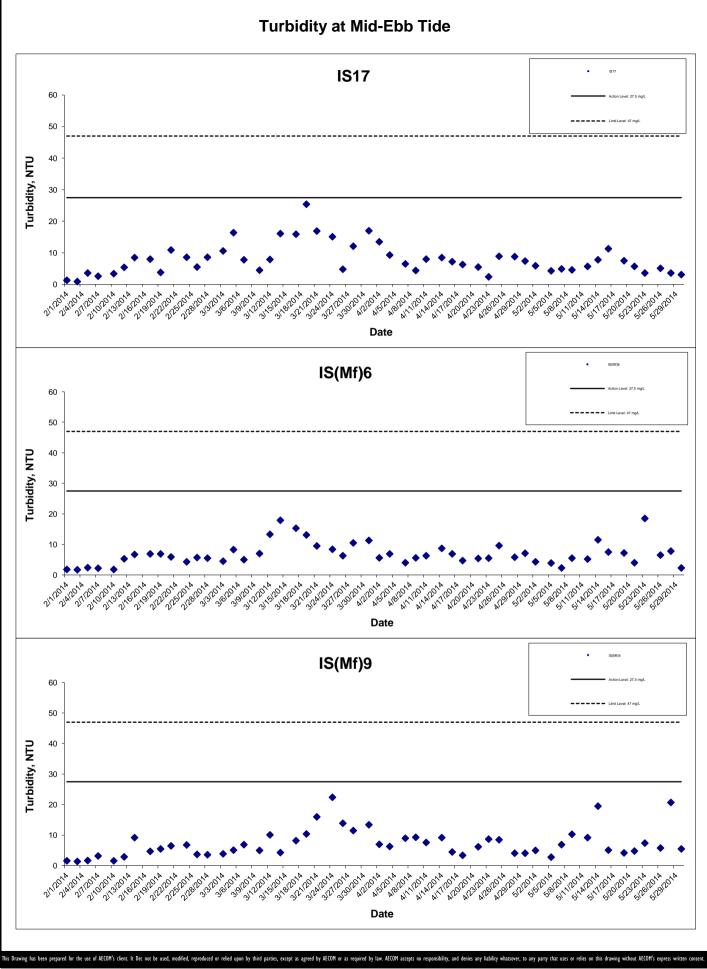
AECOM


HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

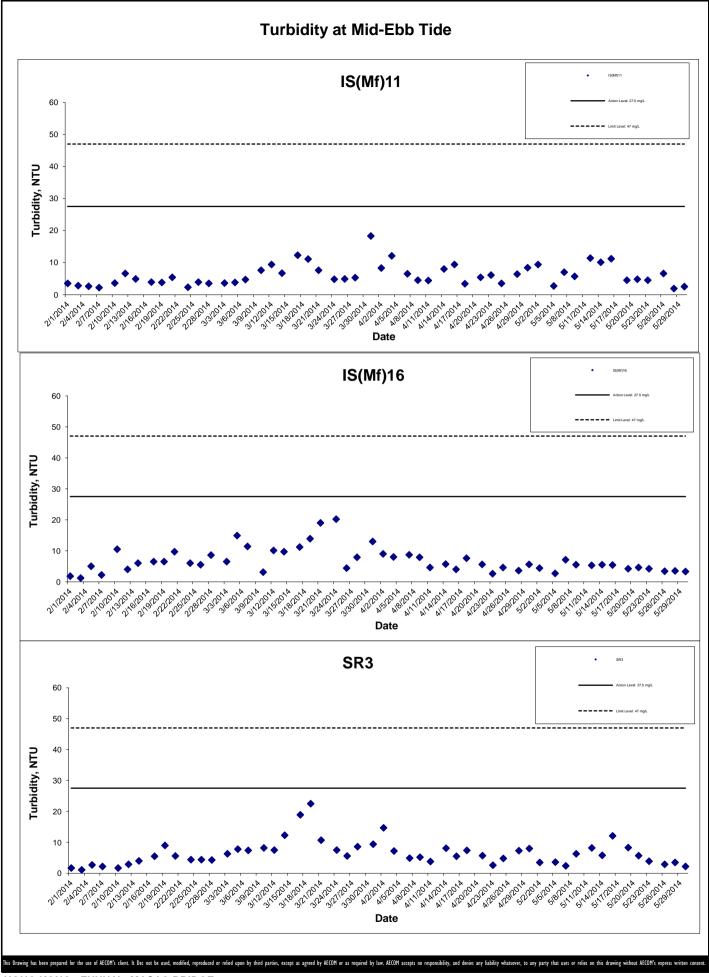
Graphical Presentation of Impact Water Quality Monitoring Results



AECOM

- RECLAMATION WORKS

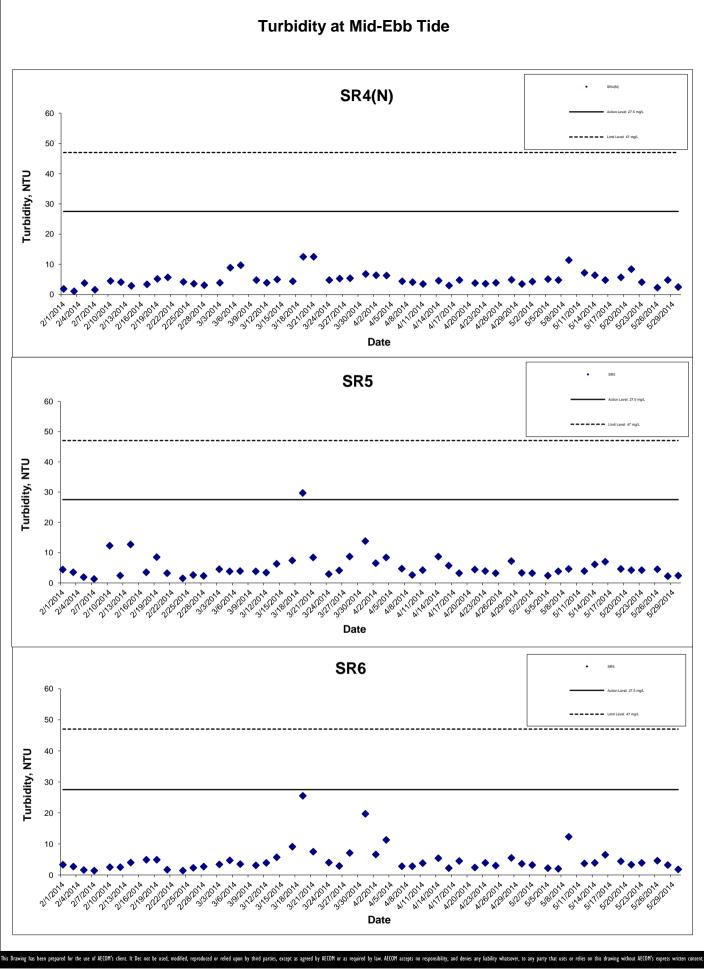
Graphical Presentation of Impact Water Quality
Monitoring Results



HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS Gr

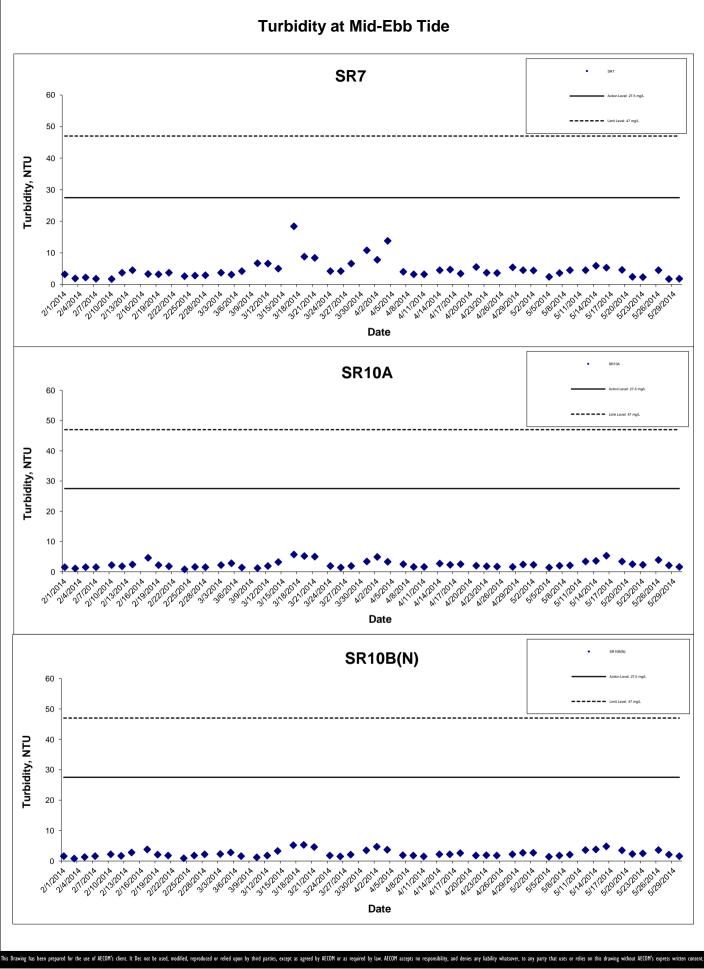
Graphical Presentation of Impact Water Quality
Monitoring Results


Project No.: 60249820 Date: June 2014 Appendix J

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

AECOM

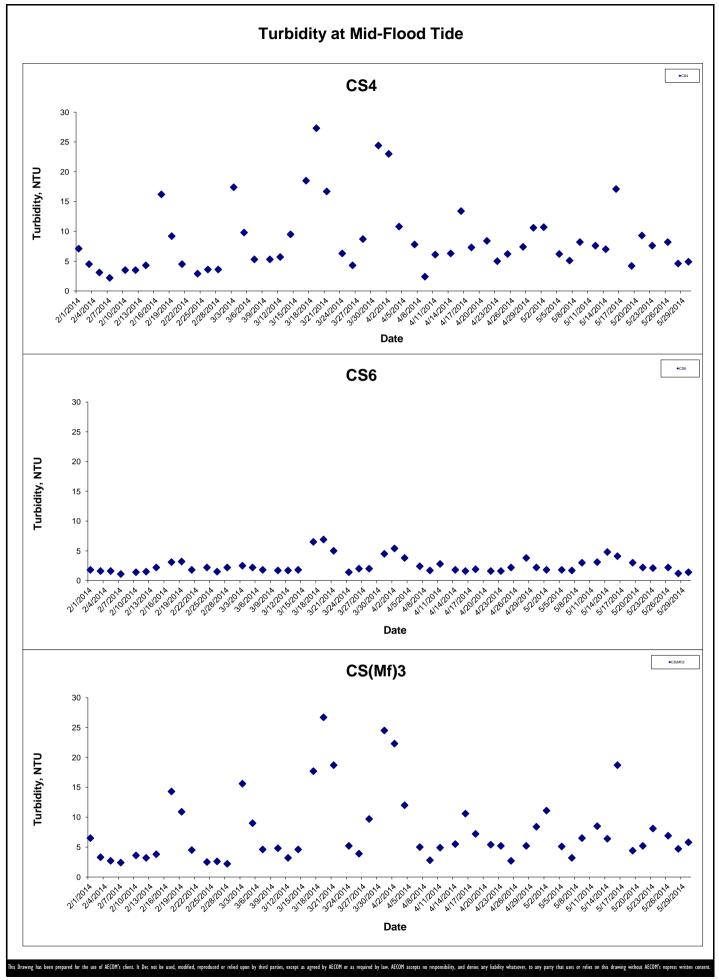
Graphical Presentation of Impact Water Quality
Monitoring Results



HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS Gr

Graphical Presentation of Impact Water Quality
Monitoring Results

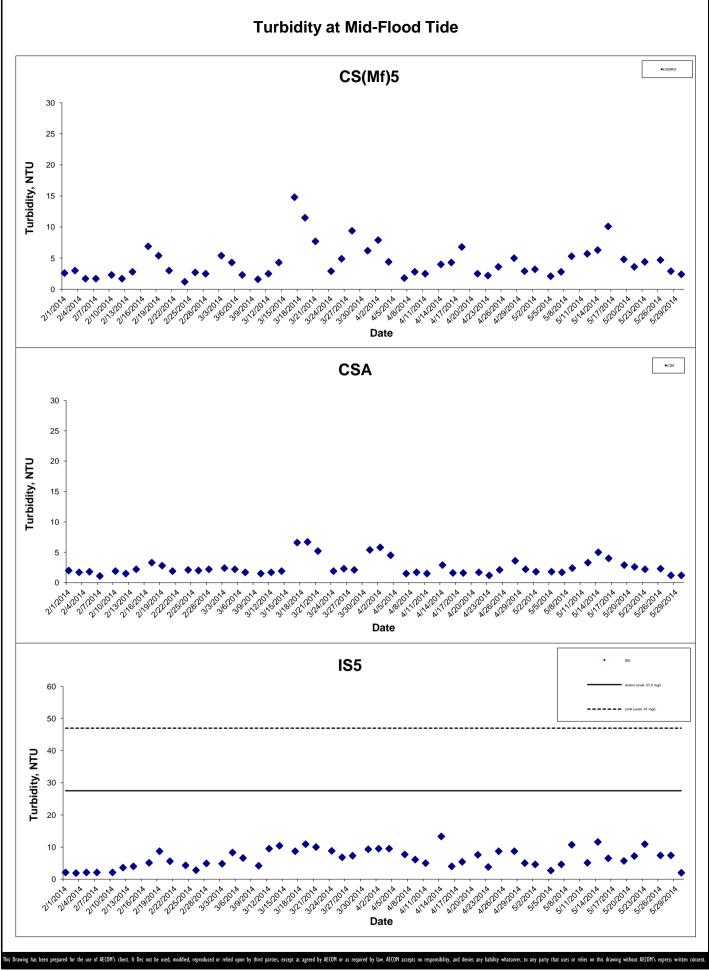


- RECLAMATION WORKS

IES
Graphical Presentation of Impact Water Quality

Monitoring Results
Project No.: 60249820 Date: June 2014 Appendix J

Project No.: 60249820

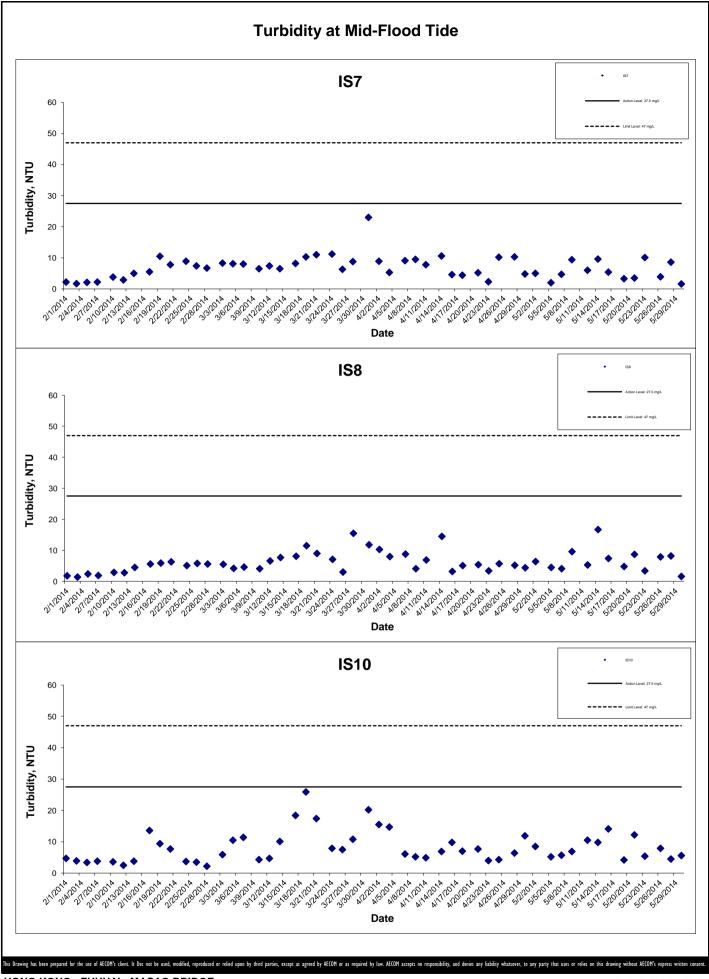

AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

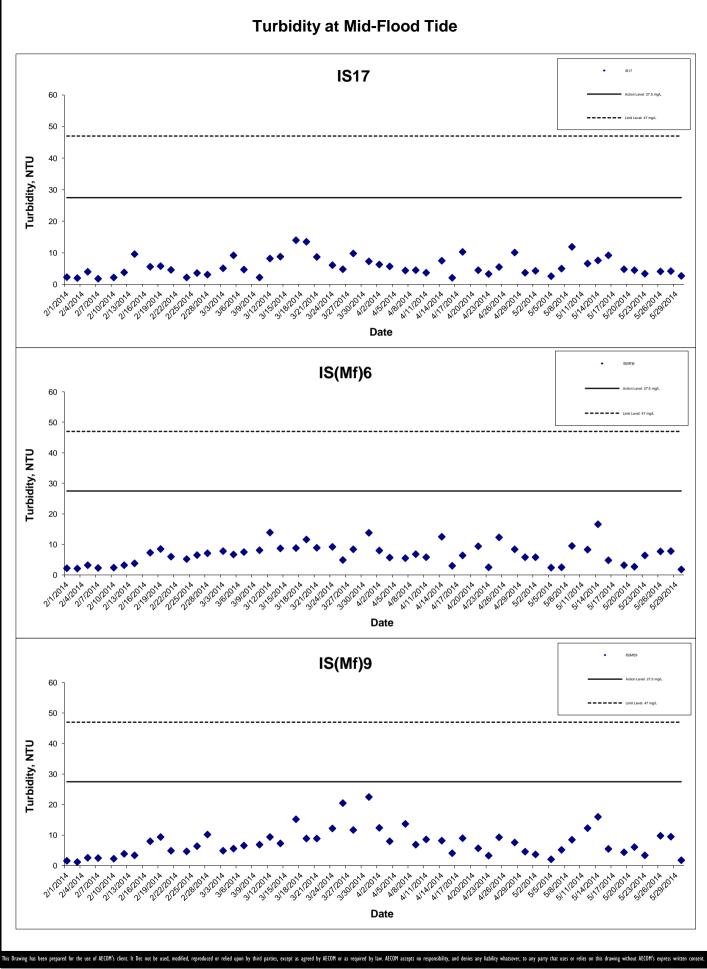
Monitoring Results

Date: June 2014

Appendix J

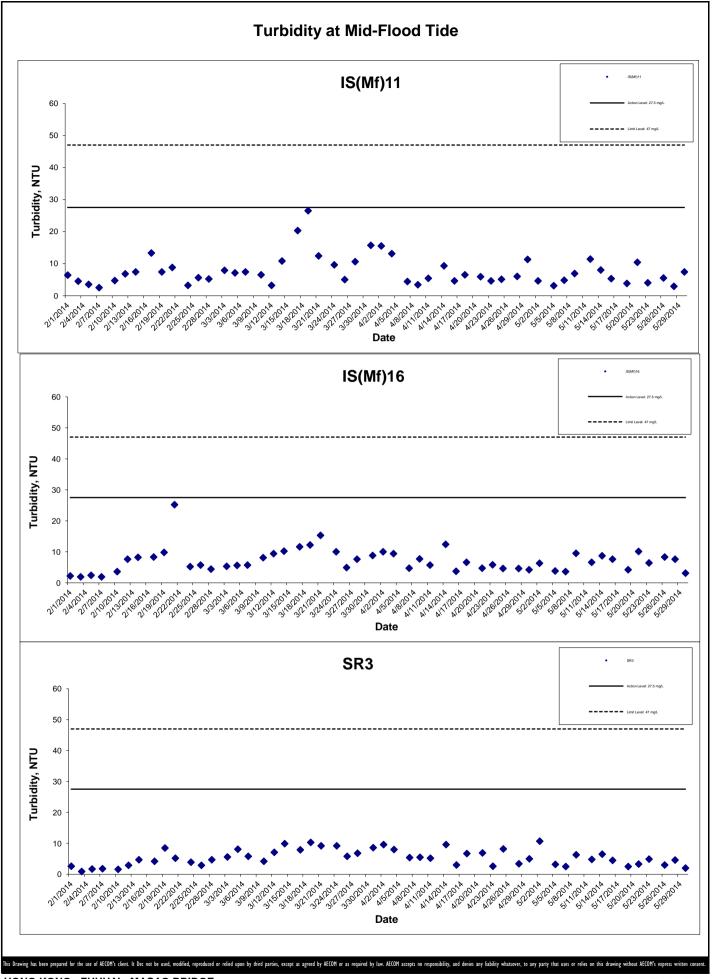

HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES

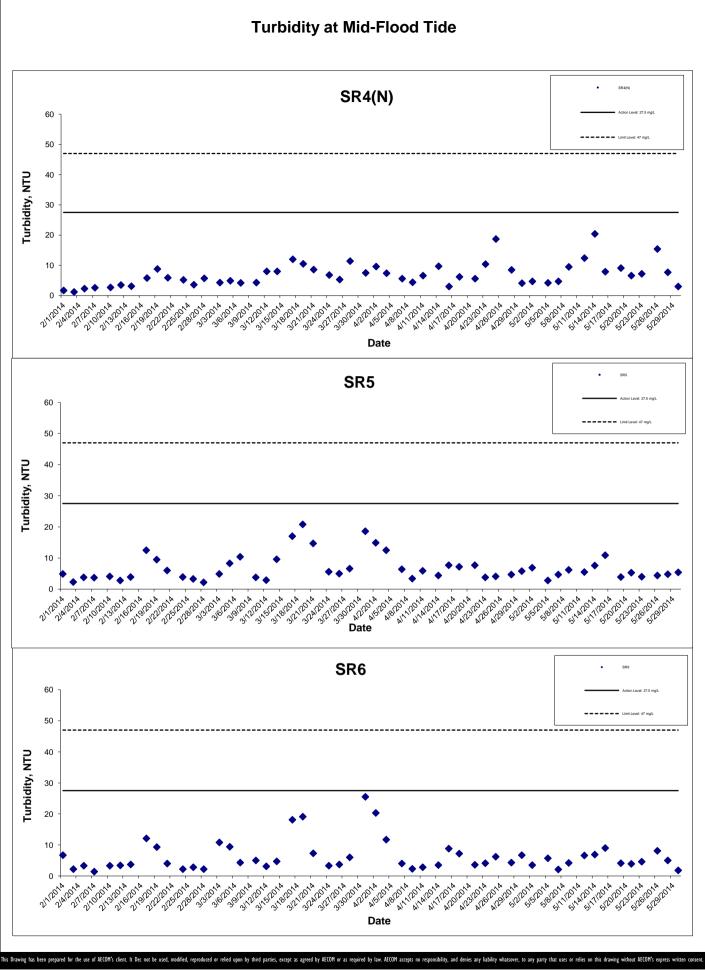

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM


AECOM

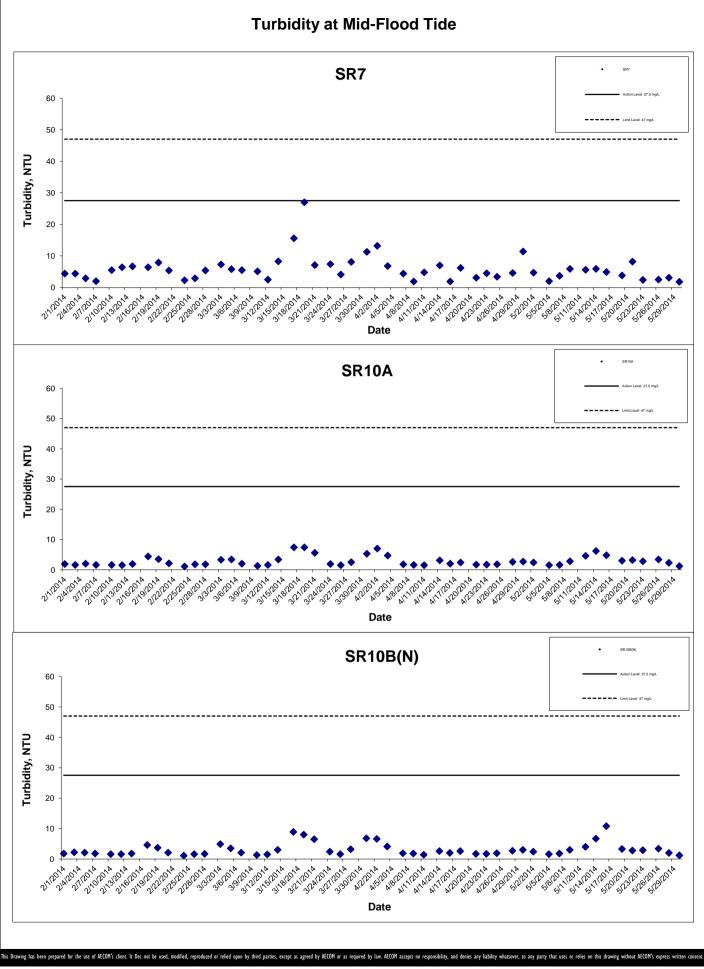
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality


Monitoring Results

AECOM

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

AECOM



- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

Project No.: 60249820 Date: June 2014 Appendix J

AECOM

HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES

Graphical Presentation of Impact Water Quality - RECLAMATION WORKS **Monitoring Results**

Appendix K Impact Dolphin Monitoring Survey Sighting Summary

Table 1 Impact Dolphin Monitoring Survey Sighting Table

Project	Contract	Date	Sighting No.	Time	Group Size		Beaufort	PSD	Effort	Туре	Northing	Easting	Season	Boat Association
HKBCF	HY/2010/02	31/05/14	951	9:28	12	NWL	1	N/A	Орр	Impact	814559	804547	Spring	No
HKBCF	HY/2010/02	31/05/14	953	11:10	3	NWL	1	124	On	Impact	821819	804685	Spring	No
HKBCF	HY/2010/02	31/05/14	954	13:26	3	NWL	2	N/A	Орр	Impact	816110	805426	Spring	No

KEY:

Sighting Opp Opportunistic

On On effort

PSD Perpendicular Sighting Distance NEL North East Lantau
Group Size Represents best estimate for group encountered NWL North West Lantau

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Monthly EM&A Report for May 2014

April 2014 Photo Identification Information

Table 2. Sightings of Individually Identified Chinese White Dolphin (*Sousa chinensis*) between March 2012 – April 2014

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
HZMB 119		2014-04-19	940	NWL
HZMB 118		2014-01-06	890	NWL
HZMB 117		2014-01-06	888	NWL
HZMB 116		2013-12-26	879	NWL
HZMB 115		2013-12-26	879	NWL
HZMB 114		2013-10-24	827	NWL
HZMB 113		2013-10-24	827	NWL
HZMB 112		2013-10-15	815	NWL
HZMB111		2013-10-15	815	NWL
HZMB 110		2013-10-15	812	NWL
HZMB 108		2013-08-30	780	NEL
HZMB 107		2013-08-21	770	NWL
HZMB 106		2013-08-21	769	NWL
HZMB 105		2013-07-08	711	NWL
HZMB 104		2013-07-08	711	NWL
HZMB 103		2013-07-08	711	NWL
HZMB 102		2013-07-08	706	NWL
HZMB 101		2013-07-08	706	NWL
HZMB 100		2013-07-08	706	NWL
LIZMD 000		2013-06-13	681	NWL
HZMB 099		2013-06-13	680	NWL
		2014-01-06	888	NWL
		2013-11-02	849	NWL
HZMB 098	NL104	2013-11-02	845	NWL
TIZIMB 090		2013-10-24	831	NWL
		2013-07-08	711	NWL
		2013-05-24	659	NWL
HZMB 097		2013-05-09	647	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
HZMB 096		2013-04-01	621	NWL
		2013-08-30	780	NEL
		2013-06-25	697	NWL
HZMB 095		2013-06-13	682	NWL
		2013-04-01	621	NWL
		2014-02-17	910	NWL
		2013-06-26	703	NWL
HZMB 094		2013-06-25	698	NWL
		2013-03-18	601	NWL
LIZMD 002		2013-05-24	657	NWL
HZMB 093		2013-02-21	587	NWL
HZMB 092		2013-02-21	589	NWL
TIZIVID 092		2013-02-15	581	NWL
HZMB 091		2013-02-15	579	NWL
		2013-06-25	697	NWL
HZMB 090		2013-06-13	682	NWL
		2013-02-15	579	NWL
HZMB 089		2013-02-15	579	NWL
HZMB 088		2013-02-15	579	NWL
HZMB 087		2013-02-15	579	NWL
		2013-05-09	642	NWL
HZMB 086	NL242	2013-02-15	579	NWL
		2011-10-10	Baseline	NWL
HZMB 085		2013-06-26	703	NWL
TILIVID 000		2013-02-15	579	NWL
HZMB 084		2013-02-14	575	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
HZMB 083	NL136	2013-12-19	863	NWL NWL
		2013-03-28	607	NWL
		2013-02-15	579	NWL
		2013-01-28	568	NWL
		2012-01-28	564	NWL
HZMB 082		2013-02-21	587	NWL
		2013-02-15	579	NWL
		2013-01-28	563	NWL
HZMB 081		2013-01-28	559	NWL
		2013-01-28	557	NWL
HZMB 080		2013-01-28	556	NWL
HZMB 079		2013-01-28	556	NWL
HZMB 078		2013-02-15	579	NWL
		2013-01-08	552	NWL
HZMB 077		2013-12-26	878	NWL
		2013-07-08	706	NWL
		2012-12-11	541	NWL
HZMB 076		2013-07-08	706	NWL
		2012-12-11	541	NWL
HZMB 075		2012-12-06	525	NEL
HZMB 074		2013-05-09	647	NWL
		2013-04-01	623	NWL
		2013-04-01	621	NWL
		2013-02-21	594	NEL
		2012-12-10	529	NEL
		2012-12-06	525	NEL
HZMB 073		2013-05-09	647	NWL
		2013-04-01	623	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		2013-04-01	621	NWL
		2013-02-21	594	NEL
		2012-12-10	529	NEL
		2012-12-06	525	NEL
HZMB 072		2012-10-24	476	NWL
HZMB 071		2012-10-24	475	NWL
		2012-10-12	466	NWL
HZMB 070		2012-10-24	476	NWL
HZMB 069		2013-08-21	774	NWL
		2013-07-08	711	NWL
		2012-10-24	476	NWL
HZMB 068		2013-11-01	839	NWL
		2012-10-24	476	NWL
HZMB 067		2012-10-24	475	NWL
HZMB 066	NL93	2013-01-28	559	NWL
		2012-12-11	537	NWL
		2012-10-24	475	NWL
		2012-10-12	466	NWL
HZMB 064		2013-05-09	647	NWL
		2013-01-28	561	NWL
		2012-10-24	475	NWL
		2012-10-12	466	NWL
HZMB 063		2013-05-09	647	NWL
		2012-10-12	466	NWL
HZMB 062		2012-12-06	525	NEL
		2012-10-11	457	NWL
HZMB 060		2012-09-18	447	NWL
HZMB 059		2013-02-21	591	NWL

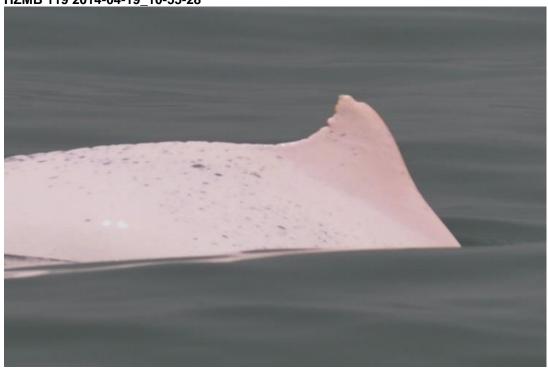
Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		2012-09-18	445	NWL
HZMB 057		2012-09-18	440	NWL
HZMB 056		2012-09-18	442	NWL
		2012-09-05	433	NEL
HZMB 055		2012-09-04	425	NWL
HZMB 054	CH34	2014-01-06	888	NWL
		2013-11-07	854	NWL
		2013-11-02	845	NWL
		2013-10-24	831	NWL
		2013-08-30	780	NEL
		2013-07-08	711	NWL
		2013-09-18	448	NWL
		2012-09-05	432	NEL
		2011-11-07	Baseline	NWL
		2011-11-05	Baseline	NWL
		2011-11-02	Baseline	NWL
		2011-11-01	Baseline	NEL
		2011-11-01	Baseline	NEL
		2011-10-28	Baseline	NWL
		2011-10-06	Baseline	NWL
HZMB 053		2012-09-04	425	NWL
HZMB 052		2012-09-04	423	NWL
HZMB 051	NL213	2013-05-09	644	NWL
		2013-04-01	622	NWL
		2013-02-15	582	NWL
		2013-02-15	581	NWL
		2013-01-28	559	NWL
		2013-01-28	556	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		2012-09-04	422	NWL
HZMB 050		2014-01-10	900	NWL
		2014-01-06	888	NWL
		2013-02-15	579	NWL
		2012-09-04	421	NWL
HZMB 049		2012-09-03	419	NWL
HZMB 048		2012-09-03	419	NWL
HZMB 047		2012-09-03	412	NWL
HZMB 046		2012-09-03	412	NWL
HZMB 045		2014-02-17	910	NWL
		2013-06-13	682	NWL
		2013-02-15	579	NWL
		2012-11-01	495	NWL
HZMB 044	NL98	2014-02-17	910	NWL
		2013-12-19	864	NWL
		2013-11-02	845	NWL
		2013-11-01	842	NWL
		2013-10-15	819	NWL
		2013-05-09	648	NWL
		2013-05-09	647	NWL
		2013-04-01	623	NWL
		2013-04-01	621	NWL
		2013-02-15	579	NWL
		2012-11-01	495	NWL
HZMB 043		2012-09-03	407	NWL
HZMB 042	NL260	2013-12-19	863	NWL
		2012-11-01	495	NWL
		2011-11-07	Baseline	NWL
HZMB 041	NL24	2014-02-17	910	NWL
		2013-11-02	845	NWL
		2013-05-09	648	NWL
		2013-05-09	647	NWL
		2013-04-01	623	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
Humber	Humber	2013-04-01	621	NWL NWL
		2013-02-15	579	NWL
		2012-11-01	495	NWL
		2011-11-06	Baseline	NEL
		2011-11-05	Baseline	NWL
		2011-11-05	Baseline	NWL
		2011-10-10	Baseline	NWL
HZMB 040		2014-02-17	910	NWL
		2014-01-06	893	NWL
		2013-10-15	821	NWL
		2013-07-08	714	NWL
		2013-07-08	711	NWL
		2013-02-21	589	NWL
		2012-11-01	493	NWL
HZMB 038		2012-11-01	490	NWL
HZMB 037		2012-11-01	490	NWL
HZMB 036		2012-09-03	407	NWL
		2012-11-01	490	NWL
HZMB 035		2013-02-15	579	NWL
		2012-11-01	490	NWL
HZMB 034		2012-11-01	493	NWL
HZMB 028		2013-04-01	625	NWL
		2012-08-06	373	NWL
HZMB 027		2013-12-19	863	NWL
		2013-02-15	579	NWL
		2013-01-28	568	NWL
		2013-01-28	564	NWL
		2012-06-14	299	NWL
HZMB 026		2013-06-25	697	NWL
		2013-05-09	642	NWL
		2013-01-28	561	NWL
		2012-06-13	295	NEL
HZMB 025		2013-02-22	596	NEL
		2013-02-21	591	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
Number	Number	2012-12-06	525	NEL NEL
		2012-10-11	457	NWL
		2012-06-13	295	NEL
HZMB 024		2013-03-18	601	NWL
		2012-06-13	295	NEL
HZMB 023		2014-01-06	888	NWL
		2013-07-08	715	NWL
		2013-07-08	711	NWL
		2013-04-01	619	NWL
		2013-02-21	589	NWL
		2013-02-15	579	NWL
		2012-07-10	330	NWL
HZMB 022		2014-01-06	888	NWL
		2013-10-24	827	NWL
		2013-07-08	715	NWL
		2013-07-08	711	NWL
		2013-04-01	619	NWL
		2013-02-21	589	NWL
		2013-02-15	579	NWL
		2012-07-10	330	NWL
HZMB 021	NL37	2012-07-10	330	NWL
		2011-09-16	Baseline	NWL
HZMB 020		2012-07-10	330	NWL
HZMB 019		2012-07-10	330	NWL
HZMB 018		2014-02-17	910	NWL
		2013-05-09	647	NWL
		2013-02-21	594	NEL
		2012-12-10	529	NEL
		2012-07-10	330	NWL
HZMB 017		2012-07-10	330	NWL

Identification Number	Baseline Identification Number	Date (YYYY MM DD)	Sighting Number	Area Sighted
HZMB 016	Number	(YYYY-MM-DD) 2013-07-08	706	Area Sighted NWL
		2012-12-11	539	NWL
		2012-09-18	446	NWL
		2012-09-04	421	NWL
		2012-07-10	330	NWL
HZMB 015		2012-07-10	330	NEL
HZMB 014	NL176	2013-12-26	880	NWL
		2012-08-06	373	NWL
		2012-06-13	295	NEL
		2011-11-06	Baseline	NEL
		2011-11-01	Baseline	NEL
		2011-11-01	Baseline	NEL
HZMB 013		2012-05-28	281	NWL
HZMB 012		2012-05-28	281	NWL
HZMB 011	EL01	2013-02-22	597	NEL
		2013-02-21	592	NEL
		2013-02-14	572	NEL
		2012-11-06	517	NEL
		2012-09-19	452	NWL
		2012-03-31	261	NEL
		2011-11-02	Baseline	NWL
		2011-11-01	Baseline	NEL
HZMB 009		2012-05-28	281	NWL
HZMB 008		2012-05-28	281	NWL
HZMB 007	NL246	2012-12-10	529	NEL
HZMB 006		2013-02-21	594	NEL
		2012-12-11	539	NWL
		2012-11-01	495	NWL


Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		2012-03-29	250	NWL
HZMB 005		2013-11-09	860	NWL
		2013-11-07	858	NWL
		2013-10-15	813	NWL
		2012-12-10	532	NWL
		2012-08-06	374	NWL
		2012-05-28	287	NWL
HZMB 004		2012-09-04	421	NWL
		2012-03-31	262	NWL
HZMB 003	NL179	2014-10-15	812	NWL
		2013-06-25	697	NWL
		2012-12-10	529	NEL
		2012-03-31	261	NWL
		2011-11-06	Baseline	NEL
		2011-09-16	Baseline	NWL
HZMB 002	WL111	2013-12-26	878	NWL
		2013-12-19	863	NWL
		2013-11-01	839	NWL
		2013-10-15	819	NWL
		2013-09-24	798	NWL
		2013-02-14	573	NWL
		2012-12-11	536	NWL
		2012-12-11	535	NWL
		2012-10-12	466	NWL
		2012-10-24	475	NWL
		2012-05-28	281	NWL
		2012-03-29	250	NWL
HZMB 001	WL46	2013-08-21	771	NWL

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Monthly EM&A Report for May 2014

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		2013-06-13	681	NWL
		2013-04-01	617	NWL
		2013-02-14	573	NWL
		2012-03-29	250	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
	CH98	2011-11-02	Baseline	NWL
	NL11	2011-11-02	Baseline	NWL
		2011-11-07	Baseline	NWL
	NL12	2011-11-02	Baseline	NWL
	NL33	2011-09-23	Baseline	NWL
		2011-11-01	Baseline	NEL
		2011-11-05	Baseline	NWL
		2011-11-07	Baseline	NWL
	NL37	2011-09-16	Baseline	NWL
	NL46	2011-10-28	Baseline	NWL

HZMB 119 2014-04-19_10-55-28

Appendix L – Event Action Plan

Event / Action Plan for Air Quality

Event		Action	1	
	ET Leader	IEC	ER	Contractor
Action Level				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	Check monitoring data submitted by ET; Check Contractor's working method.	Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

Event		Action								
	ET Leader	IEC	ER	Contractor						
Limit Level										
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	Contractor on possible	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 						

Event	Action											
	ET Leader	IEC	ER	Contractor								
Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	notification of failure in writing; 2. Notify Contractor; 3. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented;	proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is								

Event / Action Plan for Construction Noise

Event		Action					
	ET Leader	IEC	ER	Contractor			
Action Level	 Notify IEC and Contractor; Identify source, investigate the causes of exceedance and propose remedial measures; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.			
Limit Level	 Inform IEC, ER, EPD and Contractor; Identify source; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 			

Event / Action Plan for Water Quality

Event		Action	n	
	ET Leader	IEC	ER	Contractor
Action level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Repeat measurement on next day of exceedance to confirm findings. 	 Check monitoring data submitted by ET and Contractor's working methods; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. Amend working methods if appropriate.

Event		Action									
	ET Leader	IEC	ER	Contractor							
Action level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level; Repeat measurement on next day of exceedance to confirm findings. 	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures.	Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures.	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER within 3 working days of notification; Implement the agreed mitigation measures; Amend working methods if appropriate. 							

Event	Action										
	ET Leader	IEC	ER	Contractor							
Limit level being exceeded by one sampling day	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. 	1. Check monitoring data submitted by ET and Contractor's working method; 2. Discuss with ET and Contractor on possible remedial actions; 3. Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; 4. Assess the effectiveness of the implemented mitigation measures.	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Amend working methods if appropriate. 							

Event				Action	1			
		ET Leader		IEC		ER		Contractor
Limit level being exceeded by two or more consecutive sampling days	1. 2. 3. 4. 5. 6. 7.	Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented;	3.	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the ER accordingly.	 3. 4. 6. 	Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if	3.4.5.7.	Inform the ER and confirm notification of the non-compliance in writing; Take immediate action to avoid further exceedance; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures;
								construction activities until no exceedance of Limit level.

Event / Action Plan for Dolphin Monitoring

Event	ET Leader	IEC	ER / SOR	Contractor
Action Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor; Check monitoring data. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and finding with the ET and the Contractor. 	 Discuss monitoring with the IEC and any other measures proposed by the ET; If ER/SOR is satisfied with the proposal of any other measures, ER/SOR to signify the agreement in writing on the measures to be implemented. 	Inform the ER/SOR and confirm notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the ER/SOR; Implement the agreed measures.
Limit Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor of findings; Check monitoring data; 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. Review proposals for additional monitoring and any other mitigation measures submitted 	 Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. If ER/SOR is satisfied with the proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, ER/SOR to signify the agreement in writing on such proposals and any other mitigation measures. 	 Inform the ER/SOR and confirm notification of the non-compliance in writing; Attend the meeting to discuss with ET, IEC and ER/SOR the necessity of additional dolphin monitoring and any other potential mitigation measures. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary. Implement the agreed additional dolphin monitoring dolphin monitoring

6. Repeat review to ensure all the	by ET and Contractor and	Supervise the implementation	and/or any other mitigation
dolphin protective measures	advise ER/SOR of the results	of additional monitoring and/or	measures.
are fully and properly	and findings accordingly.	any other mitigation measures.	
implemented and advise on additional measures if	Supervise / Audit the implementation of additional		
necessary.	monitoring and/or any other		
7. If ET proves that the source of	mitigation measures and		
impact is caused by any of the	advise ER/SOR the results and		
construction activity by the	findings accordingly.		
works contract, ET to arrange a			
meeting to discuss with IEC,			
ER/SOR and Contractor the			
necessity of additional dolphin monitoring and/or any other			
potential mitigation measures			
(e.g., consider to modify the			
perimeter silt curtain or			
consider to control/temporarily			
stop relevant construction			
activity etc.) and submit to IEC			
a proposal of additional dolphin			
monitoring and/or mitigation			
measures where necessary.			

China Harbour Engineering Company Limited

Monthly Summary Waste Flow Table for May / 2014 (year)

Project: Hong Kong – Zhuhai – Macao Bridge, Hong Kong Boundary Crossing Facilities – Reclamation Works

Contract No.: HY/2010/02

3	Actual Quantities of Inert C&D Materials Generated Monthly								Actual Quantities of C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste (see Note 4)	Others, e.g. general refuse (see Note 3)		
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)		
Jan-14	0.0000	0.0000	0.0000	0.0000	0.0000	1158.9828	0.0000	0.1680	0.0000	2.0000	0.0325		
Feb-14	0.0000	0.0000	0.0000	0.0000	0.0000	1064.5957	0.0000	0.2520	0.0000	0.0000	0.0520		
Mar-14	0.0000	0.0000	0.0000	0.0000	0.0000	1111.9982	0.0000	0.0000	0.0000	1.4000	0.1690		
Apr-14	0.0000	0.0000	0.0000	0.0000	0.0000	1294.8080	0.0000	0.0000	0.0000	0.0000	0.0845		
May-14	0.0000	0.0000	0.0000	0.0000	0.0000	1181.4168	0.0400	0.0240	0.0000	1.0000	0.0910		
Jun-14													
Sub-total	0.0000	0.0000	0.0000	0.0000	0.0000	5811.8015	0.0400	0.4440	0.0000	4.4000	0.4290		
Jul-14													
Aug-14													
Sep-14													
Oct-14													
Nov-14													
Dec-14													
Total	0.0000	0.0000	0.0000	0.0000	0.0000	5811.8015	0.0400	0.4440	0.0000	4.4000	0.4290		

Notes:

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials.
- (3) Use the conversion factor: 1 full load of dumping truck being equivalent to 6.5m³ by volume.
- (4) Chemical waste refer to spent "battery" and "oil with water".

Appendix N

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in this month	Total no. recorded since project commencement
1-Hour TSP	Action	-	-
	Limit	-	•
24-Hour TSP	Action	-	-
	Limit	-	•
Noise	Action	-	•
	Limit	-	-
Water Quality	Action	-	1
	Limit	-	1
Dolphin Monitoring	Action	-	-
	Limit	-	-

Remarks: Exceedances which are not project-related are not presented in this table.

Cumulative statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints		As informed by the Contractor on 7 May 14, a complaint was received by the Contractor on 17 April 14 concerning sand and dust			
		concerning sand and dust emission from uncovered barges parking at the sea area off the Tuen Mun Ferry Pier. Investigation result shows that the complaint is	Closed	1	19
		unlikely to be related to this Contract.			

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation

Monthly EM&A Report for May 2014

	30 May 14	As informed by the Contractor on 30 May 14, an environmental complaint had been received on 28 May 2014. The complainant mentioned that waste such as earth and concrete were being felled into the sea everyday at the Hong Kong-Zhuhai-Macao Bridge at location where construction works are being conducted, causing pollution to the marine environment. After investigation, it is concluded that the complaint is unlikely to be related to this Contract.	Closed	2	20
Notification of summons	-	-	-	-	2
Successful Prosecutions	-	-	-	-	2