

China Harbour Engineering Company Limited

Contract No. HY/2010/02

Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for July 2014

[08/2014]

	Name	Signature
Prepared & Checked:	Y T Tang	Cogytholing
Reviewed, Approved and Certified:	Echo Leong (ETL)	Scholauf

Version:	Rev. 0	Date:	14 August 2014

Disclaimer

This report is prepared for China Harbour Engineering Company Limited and is given for its sole benefit in relation to and pursuant to Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities-Reclamation Works and may not be disclosed to, quoted to or relied upon by any person other than China Harbour Engineering Company Limited without our prior written consent. No person (other than China Harbour Engineering Company Limited) into whose possession a copy of this report comes may rely on this report without our express written consent and China Harbour Engineering Company Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: HYDHZMBEEM00_0_2136L.14 14 August 2014

Engineer's Representative Ove Arup & Partners Chief Resident Engineer's Office 5 Ying Hei Road, Tung Chung, Lantau Hong Kong By Fax (3698 5999) and By Post

Attention: Mr. Roger Marechal

Dear Mr. Marechal,

Re: Agreement No. CE 48/2011 (EP)
Environmental Project Office for the
HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities,
and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2010/02 Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Work Monthly Environmental Monitoring & Audit Report for July 2014

Reference is made to the Environmental Team's submission of the Monthly Environmental Monitoring & Audit Report for July 2014 (letter ref. 60249820/C/RMKY14081401 dated 14 Aug 2014) copied to us by E-mail on 14 Aug 2014.

We are pleased to inform you that we have no adverse comment on the captioned Monthly EM&A Report. We write to verify the captioned report in accordance with Condition 5.4 of EP-353/2009/G and Condition 4.4 of EP-354/2009/B (for TM-CLKL Southern Landfall Reclamation only).

ET is again reminded to carefully review the material to be included in the EM&A reports and to ensure all information reported are true, valid and correct before sending to this office for review.

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,

Raymond Dai

Independent Environmental Checker

c.c. HyD Mr. Matthew Fung (By Fax: 3188 6614) HyD Mr. Wai-ping Lee (By Fax: 3188 6614) AECOM Ms. Echo Leong (By Fax: 2317 7609) CHEC Mr. Lim Kim Chuan (By Fax: 2578 0413)

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_2136L.14.docx

TABLE OF CONTENTS

			Page
EXE	CUTI	VE SUMMARY	1
INTE	RODU	CTION	4
	1.1 1.2 1.3 1.4 1.5		4 4 5 5 6
2	AIR (QUALITY MONITORING	7
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Monitoring Requirements Monitoring Equipment Monitoring Locations Monitoring Parameters, Frequency and Duration Monitoring Methodology Monitoring Schedule for the Reporting Month Results and Observations	7 7 7 8 8 10 10
3	NOIS	SE MONITORING	11
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Monitoring Requirements Monitoring Equipment Monitoring Locations Monitoring Parameters, Frequency and Duration Monitoring Methodology Monitoring Schedule for the Reporting Month Monitoring Results	11 11 11 12 12 12 13
4	WAT	ER QUALITY MONITORING	14
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Monitoring Requirements Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Locations Monitoring Methodology Monitoring Schedule for the Reporting Month Results and Observations	14 14 14 15 16 17
5	DOL	PHIN MONITORING	19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Monitoring Requirements Monitoring Equipment Monitoring Frequency and Conditions Monitoring Methodology and Location Monitoring Procedures Monitoring Schedule for the Reporting Month Results and Observations	19 19 19 19 21 21 21
6	ENV	RONMENTAL SITE INSPECTION AND AUDIT	25
	6.1 6.2 6.3 6.4 6.5 6.6	Site Inspection Advice on the Solid and Liquid Waste Management Status Environmental Licenses and Permits Implementation Status of Environmental Mitigation Measures Summary of Exceedances of the Environmental Quality Performance Limit Summary of Complaints, Notification of Summons and Successful Prosecutions	25 27 28 28 29 29
7	FUT	JRE KEY ISSUES	33
	7.1 7.2 7.3	Construction Programme for the Coming Months Key Issues for the Coming Month Monitoring Schedule for the Coming Month	33 34 34

Table 1.1	Contact information of key Personnel
Table 2.1	Air Quality Monitoring Equipment
Table 2.2	Locations of Impact Air Quality Monitoring Stations
Table 2.3	Air Quality Monitoring Parameters, Frequency and Duration
Table 2.4	Summary of 1-hour TSP Monitoring Results in the Reporting Period
Table 2.5	Summary of 24-hour TSP Monitoring Results in the Reporting Period
Table 3.1	Noise Monitoring Equipment
Table 3.2	Locations of Impact Noise Monitoring Stations
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Summary of Construction Noise Monitoring Results in the Reporting Period
Table 4.1	Water Quality Monitoring Equipment
Table 4.2	Impact Water Quality Monitoring Parameters and Frequency
Table 4.3	Impact Water Quality Monitoring Stations
Table 4.4	Laboratory Analysis for Suspended Solids
Table 4.5	Summary of Water Quality Exceedances
Table 5.1	Dolphin Monitoring Equipment
Table 5.2	Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD)
Table 5.3	Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State
Table 5.4	Impact Dolphin Monitoring Survey Details July 2014
Table 5.5	The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area
Table 6.1	Summary of Environmental Licensing and Permit Status

Figures

Figure 1	General Project Layout Plan
Figure 2	Impact Air Quality and Noise Monitoring Stations and Wind Station
Figure 3	Impact Water Quality Monitoring Stations
Figure 4	Impact Dolphin Monitoring Line Transect Layout Map
Figure 5	Impact Dolphin Monitoring Survey Efforts and Sightings in July 2014
Figure 6	Environmental Complaint Handling Procedures

Project Organization for Environmental Works

List of Appendices

Appendix A

	, 0
Appendix B	Three Month Rolling Construction Programmes
Appendix C	Implementation Schedule of Environmental Mitigation Measures (EMIS)
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Monitoring Equipments
Appendix F	EM&A Monitoring Schedules
Appendix G	Impact Air Quality Monitoring Results and their Graphical Presentation
Appendix H	Meteorological Data for Monitoring Periods on Monitoring Dates in July 2014
Appendix I	Impact Construction Noise Monitoring Results and their Graphical Presentation
Appendix J	Impact Water Quality Monitoring Results and their Graphical Presentation
Appendix K	Impact Dolphin Monitoring Survey Sighting Summary
Appendix L	Event Action Plan
Appendix M	Monthly Summary of Waste Flow Table
Appendix N	Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful
	Prosecutions

EXECUTIVE SUMMARY

Contract No. HY/2010/02 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun - Chek Lap Kok Link (TMCLKL). It is a designated project and is governed by the current permits for the Project, i.e. the amended Environmental Permits (EPs) issued on 06 August 2013 (EP-353/2009/G) and 28 January 2014 (EP-354/2009/B) (for TMCLKL Southern Landfall Reclamation only).

Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Project).

China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Project.

ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Project for carrying out the environmental monitoring and audit (EM&A) works.

The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2016. The EM&A programme, including air quality, noise, water quality and dolphin monitoring and environmental site inspections, was commenced on 12 March 2012.

This report documents the findings of EM&A works conducted in the period between 1 and 31 July 2014. As informed by the Contractor, major activities in the reporting period were:-

Marine-based Works

- Cellular structure installation
- Connecting arc cell installation
- Laying geo-textile
- Sand blanket laying
- Sand filling
- Rock filling
- Maintenance of silt curtain & silt screen at sea water intake of HKIA
- Band drain installation
- Backfill cellular structure
- Geotechnical Instrumentation works
- Surcharge laying
- Capping Beams structures
- Construction of temporary jetties for surcharge laying
- Temporary Watermain construction along access at Portion D
- Flat barge of unloading public fill for surcharge laying

Land-based Works

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour Total Suspended Particulates (TSP) monitoring	6 sessions
1-hour TSP monitoring	6 sessions
Noise monitoring	5 sessions
Impact water quality monitoring	13 sessions
Impact dolphin monitoring	2 surveys
Joint Environmental site inspection	5 sessions

Breaches of Action and Limit Levels for Air Quality

All 1-Hour TSP and 24-hour TSP results were below the Action and Limit Level in the reporting month.

Breaches of Action and Limit Levels for Noise

For construction noise, no exceedance was recorded at all monitoring stations in the reporting period.

Breaches of Action and Limit Levels for Water Quality

For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting period.

Impact Dolphin Monitoring

A total of thirteen sightings were made, four "opportunistic" and nine "on effort". Five sightings were made on the 14th of July in NWL; one sighting was made on 15th July in NWL; seven were recorded on 29th July in NWL and none was recorded on 31st July. A total of forty-three individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.

Behaviour: Of the thirteen sightings, four groups were feeding, one group was surface active, five groups were travelling and three groups were engaged in multiple, one of which was travelling and feeding; one was feeding and surface active and the third was travelling, feeding and surface active behaviour. The locations of sighting with different behaviour are mapped in Figure 5d.

One calf was seen in July 2014; it is the off spring of HZMB 116 and was last seen on 26/12/2013. The location of sighting with calf is mapped in Figure 5e.

Complaint, Notification of Summons and Successful Prosecution

Two environmental complaints have been received in July 2014.

As informed by the Contractor on 3 July 2014, there was an environmental complaint received on 13 June 14. The complainant who lived at Caribbean Coast complained that there were night time noise and visual impact (strong lighting) from the overnight construction works/plants of HKBCF Island. After investigation, the part of the complaint which is related to visual impact is likely to be related to the construction works of this contract. However, with referred to the available information, it is concluded that the part of the complaint which is related to night time noise is unlikely to be related to this Contract.

As informed by the Contractor on 23 July 14, a complaint has been received from Oriental Daily Newspaper on 22 July 14. In the complaint, Oriental Daily Newspaper stated that Miss Cheung, who is a resident of Miami Beach Towers (Tuen Mun), pointed out that construction was being conducted at the sea area in front of the estate, a lot of sand delivery barges were moored at sea area between Castle Peak Beach (Tuen Mun Typhoon Shelter) and Tuen Mun Ferry Pier. She discovered on several occasions that there were leakage of soil from sand delivery barges causing discoloration of sea water and sometimes, leaking of sand from more than two sand delivery barges at a time was observed. After investigation, there is no adequate information to conclude the observed impact is related to this Contract.

No notification of summons or prosecution was received in the reporting period.

Reporting Change

There was no reporting change required in the reporting period.

Future Key Issues

Key issues to be considered in the coming month included:-

- Site runoff should be properly collected and treated prior to discharge;
- Minimize loss of sediment from filling works;
- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;

- Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission:
- Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures for operating equipment and machinery on-site, such as erection of movable noise barriers or enclosure for noisy plants;
- Closely check and replace the sound insulation materials regularly;
- Better scheduling of construction works to minimize noise nuisance;
- Properly store and label oil drums and chemical containers placed on site;
- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved and confined areas;
- Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.
- Control night-time lighting and glare by hooding all lights.

INTRODUCTION

1.1 Background

- 1.1.1 Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun Chek Lap Kok Link (TMCLKL).
- 1.1.2 The environmental impact assessment (EIA) reports (Hong Kong Zhuhai Macao Bridge Hong Kong Boundary Crossing Facilities EIA Report (Register No. AEIAR-145/2009) (HKBCFEIA) and Tuen Mun Chek Lap Kok Link EIA Report (Register No. AEIAR-146/2009) (TMCLKLEIA), and their environmental monitoring and audit (EM&A) Manuals (original EM&A Manuals), for the Project were approved by Environmental Protection Department (EPD) in October 2009.
- 1.1.3 EPD subsequently issued the Environmental Permit (EP) for HKBCF in November 2009 (EP-353/2009) and the Variation of Environmental Permit (VEP) in June 2010 (EP-353/2009/A), November 2010 (EP-353/2009/B), November 2011 (EP-353/2009/C), March 2012 (EP-353/2009/D), October 2012 (EP-353/2009/E), April 2013 (EP-353/2009/F) and August 2013 (EP-353/2009/G). Similarly, EPD issued the Environmental Permit (EP) for TMCLKL in November 2009 (EP-354/2009) and the Variation of Environmental Permit (VEP) in December 2010 (EP-354/2009/A) and January 2014 (EP-354/2009/B).
- 1.1.4 The Project is a designated project and is governed by the current permits for the Project, i.e. the amended EPs issued on 6 August 2013 (EP-353/2009/G) and 28 January 2014 (EP-354/2009/B) (for TMCLKL Southern Landfall Reclamation only).
- 1.1.5 A Project Specific EM&A Manual, which included all project-relation contents from the original EM&A Manuals for the Project, was issued in May 2012.
- 1.1.6 Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Project).
- 1.1.7 China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Project.
- 1.1.8 ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Project for carrying out the EM&A works.
- 1.1.10 The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2016.
- 1.1.11 According to the Project Specific EM&A Manual, there is a need of an EM&A programme including air quality, noise, water quality and dolphin monitoring and environmental site inspections. The EM&A programme of the Project commenced on 12 March 2012.

1.2 Scope of Report

1.2.1 This is the twenty-ninth monthly EM&A Report under the Contract No.HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in July 2014.

1.3 Project Organization

1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Engineer's Representative (ER) (Ove Arup & Partners Hong Kong Limited)	Chief Resident Engineer	Roger Marechal	3698 5700	2698 5999
IEC / ENPO	Independent Environmental Checker	Raymond Dai	3465 2888	3465 2899
(ENVIRON Hong Kong Limited)	Environmental Project Office Leader	Y. H. Hui	3465 2868	3465 2899
Contractor (China Harbour	Environmental Officer	Richard Ng	36932253	2578 0413
Engineering Company Limited)	24-hour Hotline	Alan C.C. Yeung	9448 0325	
ET (AECOM Asia Company Limited)	ET Leader	Echo Leong	3922 9280	2317 7609

1.4 Summary of Construction Works

- 1.4.1 The construction phase of the Project under the EP commenced on 12 March 2012.
- 1.4.2 As informed by the Contractor, details of the major works carried out in this reporting period are listed below:-

Marine-based Works

- Cellular structure installation
- Connecting arc cell installation
- Laying geo-textile
- Sand blanket laying
- Sand filling
- Rock filling
- Maintenance of silt curtain & silt screen at sea water intake of HKIA
- Band drain installation
- Backfill cellular structure
- Geotechnical Instrumentation works
- Surcharge laying
- Capping Beams structures
- Construction of temporary jetties for surcharge laying
- Temporary Watermain construction along access at Portion D
- Flat barge of unloading public fill for surcharge laying

Land-based Works

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2
- 1.4.3 The 3-month rolling construction programme of the Project is shown in Appendix B.
- 1.4.4 The general layout plan of the Project site showing the detailed works areas is shown in Figure 1.
- 1.4.5 The environmental mitigation measures implementation schedule are presented in Appendix C.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise, water quality, marine ecology and environmental site inspections for air quality, noise, water quality, waste management, marine ecology, and landscape and visual impact. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming month;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan:
 - Environmental mitigation measures, as recommended in the Project EIA reports; and
 - Environmental requirement in contract documents.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the Project Specific EM&A Manual, baseline 1-hour and 24-hour Total Suspended Particulates (TSP) levels at 4 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix D.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the Project Specific EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Air Sampler (Model No. TE-5170)

2.3 Monitoring Locations

- 2.3.1 Monitoring locations AMS2 and AMS7 were set up at the proposed locations in accordance with Project Specific EM&A Manual. For AMS6 (Dragonair/CNAC (Group) Building), permission on setting up and carrying out impact monitoring works was sought, however, access to the premise has not been granted yet on this report issuing date. For monitoring location AMS3 (Ho Yu College), as proposed in the Project Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact air quality monitoring was conducted at site boundary of the site office area in Works Area WA2 (AMS3B) respectively. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.2 Reference is made to ET's proposal of the omission of air monitoring station (AMS 6) dated on 1 November 2012 and EPD's letter dated on 19 November 2012 regarding the conditional approval of the proposed omission of air monitoring station (AMS 6) for Contract No. HY/2010/02. The aforesaid omission of Monitoring Station AMS6 is effective since 19 November 2012.
- 2.3.3 Figure 2 shows the locations of monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 Locations of Impact Air Quality Monitoring Stations

Monitoring Station	Location	Description	
AMS2	Tung Chung Development Pier	Rooftop of the premise	
AMS3B	Site Boundary of Site Office Area at Works Area WA2	On ground at the area boundary	
AMS6*	Dragonair/CNAC (Group) Building	On ground at boundary of the premise	
AMS7	Hong Kong SkyCity Marriott Hotel	On ground at boundary of the premise	

*Remarks: Reference is made to EPD conditional approval of the omission of air monitoring station (AMS 6) for the project. The omission will be effective on 19 November 2012.

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration	
1-hour TSP	Three times every 6 days while the highest dust impact was expected	
24-hour TSP	Once every 6 days	

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) No two samplers should be placed less than 2 meters apart.
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (ix) A secured supply of electricity was obtained to operate the samplers.
 - (x) The sampler was located more than 20 meters from any dripline.
 - (xi) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xii) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.

(iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminum strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.1 m³/min, and complied with the range specified in the updated EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) 5-point calibration of the HVS was conducted using TE-5025A Calibration Kit prior to the commencement of baseline monitoring. Bi-monthly 5-point calibration of the HVS will be carried out during impact monitoring.
- (iii) Calibration certificate of the HVSs are provided in Appendix E.

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

- (b) Maintenance and Calibration
 - (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix E.
 - (ii) 1-hour validation checking of the TSP meter against HVS is carried out on half-year basis at the air quality monitoring locations.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for air quality monitoring in July 2014 is provided in Appendix F.

2.7 Results and Observations

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Table 2.4 and 2.5 respectively. Detailed impact air quality monitoring results are presented in Appendix G.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AMS2	79	70 – 89	374	500
AMS3B	79	70 – 92	368	500
AMS7	79	69 - 88	370	500

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AMS2	42	22 – 78	176	260
AMS3B	71	23 – 123	167	260
AMS7	54	28 – 75	183	260

- 2.7.2 All 1-Hour TSP and 24Hr TSP results were below the Action and Limit Level in the reporting month.
- 2.7.3 The event action plan is annexed in Appendix L.
- 2.7.4 Meteorological information collected from the wind station during the monitoring periods on the monitoring dates, as shown in Figure 2, including wind speed and wind direction, is annexed in Appendix H.

3 NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the Project Specific EM&A Manual, impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix D.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	Rion NL-31 & B&K2238
Acoustic Calibrator	Rion NC-73

3.3 Monitoring Locations

- 3.3.1 Monitoring locations NMS2 was set up at the proposed locations in accordance with Project Specific EM&A Manual. However, for monitoring location NMS3 (Ho Yu College), as proposed in the Project Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact noise monitoring was conducted at site boundary of the site office area in Works Area WA2 (NMS3B) respectively. Same baseline noise level (as derived from the baseline monitoring data recorded at Ho Yu College) and Limit Level were adopted for this alternative noise monitoring location.
- 3.3.2 Figure 2 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 Locations of Impact Noise Monitoring Stations

Monitoring Station Location		Description		
NMS2	Seaview Crescent Tower 1	Free-field on the rooftop of the premise		
NMS3B	Site Boundary of Site Office Area at Works Area WA2	Free-field on ground at the area boundary.		

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration		
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). $L_{\rm eq}$, $L_{\rm 10}$ and $L_{\rm 90}$ would be recorded.	At least once per week		

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground for free-field measurements at NMS2. A correction of +3 dB(A) shall be made to the free field measurements.
- (b) All measurement at NMS3B were free field measurements in the reporting month at NMS3B. A correction of +3 dB(A) shall be made to the free field measurements.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:-
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 07:00 1900 on normal weekdays.
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix E.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for construction noise monitoring in July 2014 is provided in Appendix F.

3.7 Monitoring Results

3.7.1 The monitoring results for construction noise are summarized in Table 3.4 and the monitoring data is provided in Appendix I.

Table 3.4 Summary of Construction Noise Monitoring Results in the Reporting Period

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),	
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq (30 mins)}	
NMS2	66	66 – 67*	75	
NMS3B	64	63 – 65*	70/65^	

^{*+3}dB(A) Façade correction included

- 3.7.2 No Action or Limit Level Exceedance of construction noise was recorded in the reporting month.
- 3.7.3 Major noise sources during the noise monitoring included construction activities of the Project, construction activities by other contracts and nearby traffic noise.
- 3.7.4 The event action plan is annexed in Appendix L.

[^] Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

4 WATER QUALITY MONITORING

4.1 Monitoring Requirements

4.1.1 Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. For impact water quality monitoring, measurements were taken in accordance with the Project Specific EM&A Manual. Appendix D shows the established Action/Limit Levels for the environmental monitoring works.

4.2 Monitoring Equipment

4.2.1 Table 4.1 summarises the equipment used in the impact water quality monitoring programme.

Table 4.1 Water Quality Monitoring Equipment

Equipment	Brand and Model
Dissolved Oxygen (DO) and Temperature Meter, Salinity Meter and Turbidimeter	YSI Model 6820
pH Meter	YSI Model 6820 or Thermo Orion 230A+
Positioning Equipment	JRC DGPS 224 Model JLR-4341 with J-NAV 500 Model NWZ4551
Water Depth Detector	Eagle Cuda-168
Water Sampler	Kahlsio Water Sampler (Vertical) 2.2 L with messenger

4.3 Monitoring Parameters, Frequency and Duration

4.3.1 Table 4.2 summarises the monitoring parameters, frequency and monitoring depths of impact water quality monitoring as required in the Project Specific EM&A Manual.

Table 4.2 Impact Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameter, unit	Frequency	No. of depth
Impact Stations: IS5, IS(Mf)6, IS7, IS8, IS(Mf)9, IS10, IS(Mf)11, IS(Mf)16, IS17 Control/Far Field Stations: CS(Mf)3, CS(Mf)5, CS4, CS6, CSA Sensitive Receiver Stations: SR3-SR7, SR10A&SR10B	 Depth, m Temperature, °C Salinity, ppt Dissolved Oxygen (DO), mg/L DO Saturation, % Turbidity, NTU pH Suspended Solids (SS), mg/L 	Three times per week during mid- ebb and mid- flood tides (within ± 1.75 hour of the predicted time)	3 (1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the middepth station may be omitted. Should the water depth be less than 3 m, only the mid-depth station will be monitored).

A=COM

4.4 Monitoring Locations

- 4.4.1 In accordance with the Project Specific EM&A Manual, twenty-one stations (9 Impact Stations, 7 Sensitive Receiver Stations and 5 Control/Far Field Stations) were designated for impact water quality monitoring. The nine Impact Stations (IS) were chosen on the basis of their proximity to the reclamation and thus the greatest potential for water quality impacts, the seven Sensitive Receiver Stations (SR) were chosen as they are close to the key sensitive receives and the five Control/ Far Field Stations (CS) were chosen to facilitate comparison of the water quality of the IS stations with less influence by the Project/ ambient water quality conditions.
- 4.4.2 Due to safety concern and topographical condition of the original locations of SR4 and SR10B, alternative impact water quality monitoring stations, naming as SR4 (N) and SR10B (N), were adopted, which are situated in vicinity of the original impact water quality monitoring stations (SR4 and SR10B) and could be reachable.
- 4.4.3 Same baseline and Action Level for water quality, as derived from the baseline monitoring data recorded, were adopted for these alternative impact water quality monitoring stations.
- 4.4.4 The locations of these monitoring stations are summarized in Table 4.3 and depicted in Figure 3.

Table 4.3 Impact Water Quality Monitoring Stations

Station	Description	East	North
IS5	Impact Station (Close to HKBCF construction site)	811579	817106
IS(Mf)6	Impact Station (Close to HKBCF construction site)	812101	817873
IS7	Impact Station (Close to HKBCF construction site)	812244	818777
IS8	Impact Station (Close to HKBCF construction site)	814251	818412
IS(Mf)9	Impact Station (Close to HKBCF construction site)	813273	818850
IS10	Impact Station (Close to HKBCF construction site)	812577	820670
IS(Mf)11	Impact Station (Close to HKBCF construction site)	813562	820716
IS(Mf)16	Impact Station (Close to HKBCF construction site)	814328	819497
IS17	Impact Station (Close to HKBCF construction site)	814539	820391
SR3	Sensitive receivers (San Tau SSSI)	810525	816456
SR4(N)	Sensitive receivers (Tai Ho)	814705	817859
SR5	Sensitive receivers (Artificial Reef in NE Airport)	811489	820455
SR6	Sensitive receivers (Sha Chau and Lung Kwu Chau Marine Park)	805837	821818
SR7	Sensitive receivers (Tai Mo Do)	814293	821431
SR10A	Sensitive receivers (Ma Wan FCZ)1	823741	823495
SR10B(N)	Sensitive receivers (Ma Wan FCZ)2	823683	823187
CS(Mf)3	Control Station	809989	821117
CS(Mf)5	Control Station	817990	821129
CS4	Control Station	810025	824004
CS6	Control Station	817028	823992
CSA	Control Station	818103	823064

4.5 Monitoring Methodology

4.5.1 Instrumentation

(a) The in-situ water quality parameters, viz. dissolved oxygen, temperature, salinity, turbidity and pH, were measured by multi-parameter meters (i.e. Model YSI 6820 CE-C-M-Y) and pH meter (i.e. Thermo Orion 230A+) respectively.

4.5.2 Operating/Analytical Procedures

- (a) Digital Differential Global Positioning Systems (DGPS) were used to ensure that the correct location was selected prior to sample collection.
- (b) Portable, battery-operated echo sounders were used for the determination of water depth at each designated monitoring station.
- (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
- (d) At each measurement/sampling depth, two consecutive in-situ monitoring (DO concentration and saturation, temperature, turbidity, pH, salinity) and water sample for SS. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of DO or turbidity parameters was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- (e) Duplicate samples from each independent sampling event were collected for SS measurement. Water samples were collected using the water samplers and the samples were stored in high-density polythene bottles. Water samples collected were well-mixed in the water sampler prior to pre-rinsing and transferring to sample bottles. Sample bottles were pre-rinsed with the same water samples. The sample bottles were then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. for the analysis of suspended solids concentrations. The laboratory determination work would be started within 24 hours after collection of the water samples. ALS Technichem (HK) Pty Ltd. is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples was analyzed.
- (f) The analysis method and reporting and detection limit for SS is shown in Table 4.4.

Table 4.4 Laboratory Analysis for Suspended Solids

Parameters	Instrumentation	Analytical Method	Reporting Limit	Detection Limit
Suspended Solid (SS)	Weighting	APHA 2540-D	0.5mg/L	0.5mg/L

(g) Other relevant data were recorded, including monitoring location / position, time, water depth, tidal stages, weather conditions and any special phenomena or work underway at the construction site in the field log sheet for information.

4.5.3 Maintenance and Calibration

- (a) All in situ monitoring instruments would be calibrated and calibrated by ALS Technichem (HK) Pty Ltd. before use and at 3-monthly intervals throughout all stages of the water quality monitoring programme. Calibration details are provided in Appendix E.
- (b) The dissolved oxygen probe of YSI 6820 was calibrated by wet bulb method. Before the calibration routine, the sensor for dissolved oxygen was thermally equilibrated in water-saturated air. Calibration cup is served as a calibration chamber and it was loosened from airtight condition before it is used for the calibration. Calibration at ALS Technichem (HK) Pty Ltd. was carried out once every three months in a water sample with a known concentration of dissolved oxygen. The sensor was immersed in the water and after thermal equilibration, the known mg/L value was keyed in and the calibration was carried out automatically.
- (c) The turbidity probe of YSI 6820 is calibrated two times a month. A zero check in distilled water was performed with the turbidity probe of YSI 6820 once per monitoring day. The probe will be calibrated with a solution of known NTU at ALS Technichem (HK) Pty Ltd. once every three months.

4.6 Monitoring Schedule for the Reporting Month

4.6.1 The schedule for impact water quality monitoring in July 2014 is provided in Appendix F.

4.7 Results and Observations

- 4.7.1 Impact water quality monitoring results and graphical presentations are provided in Appendix J.
- 4.7.2 For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting period.

Table 4.5 Summary of Water Quality Exceedances

Station	Exceedance Level	DO (S&M) DO		DO (B	DO (Bottom) Turbidity			SS		Total	
	Level	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood
IS5	Action	0	0	0	0	0	0	0	0	0	0
155	Limit	0	0	0	0	0	0	0	0	0	0
IC/Mf\c	Action	0	0	0	0	0	0	0	0	0	0
IS(Mf)6	Limit	0	0	0	0	0	0	0	0	0	0
IS7	Action	0	0	0	0	0	0	0	0	0	0
137	Limit	0	0	0	0	0	0	0	0	0	0
IS8	Action	0	0	0	0	0	0	0	0	0	0
130	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)9	Action	0	0	0	0	0	0	0	0	0	0
13(111)9	Limit	0	0	0	0	0	0	0	0	0	0
IS10	Action	0	0	0	0	0	0	0	0	0	0
1310	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)11	Action	0	0	0	0	0	0	0	0	0	0
13(1/11)11	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)16	Action	0	0	0	0	0	0	0	0	0	0
13(1011)16	Limit	0	0	0	0	0	0	0	0	0	0
IS17	Action	0	0	0	0	0	0	0	0	0	0
1317	Limit	0	0	0	0	0	0	0	0	0	0
SR3	Action	0	0	0	0	0	0	0	0	0	0
SNS	Limit	0	0	0	0	0	0	0	0	0	0
SR4(N)	Action	0	0	0	0	0	0	0	0	0	0
3N4(IV)	Limit	0	0	0	0	0	0	0	0	0	0
SR5	Action	0	0	0	0	0	0	0	0	0	0
513	Limit	0	0	0	0	0	0	0	0	0	0
SR6	Action	0	0	0	0	0	0	0	0	0	0
3110	Limit	0	0	0	0	0	0	0	0	0	0
SR7	Action	0	0	0	0	0	0	0	0	0	0
31\ <i>1</i>	Limit	0	0	0	0	0	0	0	0	0	0
SR10A	Action	0	0	0	0	0	0	0	0	0	0
	Limit	0	0	0	0	0	0	0	0	0	0
SR10B	Action	0	0	0	0	0	0	0	0	0	0
(N)	Limit	0	0	0	0	0	0	0	0	0	0
Total	Action	0	0	0	0	0	0	0	0		0
	Limit	0	0	0	0	0	0	0	0		0

Note: S: Surface; and M: Mid-depth.

4.7.3 The event action plan is annexed in Appendix L.

5 DOLPHIN MONITORING

5.1 Monitoring Requirements

- 5.1.1 Vessel based surveys for the Chinese White Dolphin (CWD), Sousa chinensis, are to be conducted by a dedicated team comprising a qualified marine mammal ecologist and experienced marine mammal observers (MMOs). The purpose of the surveys are to evaluate the impact of the HKCBF reclamation and, if deemed detrimental, to take appropriate action as per the EM&A manual.
- 5.1.2 This 'Impact Monitoring' follows several months of 'Baseline Monitoring' so similar survey methodologies have been adopted to facilitate comparisons between datasets. Further, the data collected are compatible with, and are available for, incorporation into the data set managed by the Agriculture, Fisheries and Conservation Department (AFCD) as part of Hong Kong's long term Marine Mammal Monitoring Programme.

5.2 Monitoring Equipment

5.2.1 Table 5.1 summarises the equipment used for the impact dolphin monitoring.

Table 5.1 Dolphin Monitoring Equipment

Equipment	Model
Commercially licensed motor vessel	15m in length with a 4.5m viewing platform
Global Positioning System (GPS) x2	Integrated into T7000
	Garmin GPS Map 78C
Computers (T7000 Tablet, Intel Atom)	Windows 7/MSO 13
	Logger
Camera	Nikon D90 300m 2.8D fixed focus
	Nikon D90 20-400m zoom lens
Laser Rangefinder	Infinitor LRF1000/ Kings 950
Marine Binocular x3	Nexus 7 x 50 marine binocular with compass
	and reticules
	Fujinon 7 x 50 marine binocular with compass
	and reticules

5.3 Monitoring Frequency and Conditions

- 5.3.1 Dolphin monitoring is conducted twice per month in each survey area.
- 5.3.2 Dolphin monitoring is conducted only when visibility is good (e.g., over 1km) and the sea condition is at a Beaufort Sea State of 4 or better.
- 5.3.3 When thunder storm, black rain or typhoon warnings are in force, all survey effort is stopped.

5.4 Monitoring Methodology and Location

- 5.4.1 The impact dolphin monitoring is vessel-based and combines line-transect and photo-ID methodology. The survey follows pre-set and fixed transect lines in the two areas defined by AFCD as:
- 5.4.2 Northeast Lantau survey area; and
- 5.4.3 Northwest Lantau survey area.
- 5.4.4 The co-ordinates for the transect lines and layout map have been provided by AFCD and are shown in Table 5.2 and Figure 4.

Table 5.2 Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD)

	HK Grid System		Long Lat i	in WGS84
ID	Х	Υ	Long	Lat
1	804671	814577	113.870308	22.269741
1	804671	831404	113.869975	22.421696
2	805475	815457	113.878087	22.277704
2	805477	826654	113.877896	22.378814
3	806464	819435	113.887615	22.313643
3	806464	822911	113.887550	22.345030
4	807518	819771	113.897833	22.316697
4	807518	829230	113.897663	22.402113
5	808504	820220	113.907397	22.320761
5	808504	828602	113.907252	22.396462
6	809490	820466	113.916965	22.323003
6	809490	825352	113.916884	22.367128
7	810499	820690	113.926752	22.325043
7	810499	824613	113.926688	22.360464
8	811508	820847	113.936539	22.326475
8	811508	824254	113.936486	22.357241
9	812516	820892	113.946329	22.326894
9	812516	824254	113.946279	22.357255
10*	813525	818270	113.956156	22.303225
10*	813525	824657	113.956065	22.360912
11	814556	818449	113.966160	22.304858
11	814556	820992	113.966125	22.327820
12	815542	818807	113.975726	22.308109
12	815542	824882	113.975647	22.362962
13	816506	819480	113.985072	22.314192
13	816506	824859	113.985005	22.362771
14	817537	820220	113.995070	22.320883
14	817537	824613	113.995018	22.360556
15	818568	820735	114.005071	22.325550
15	818568	824433	114.005030	22.358947
16	819532	821420	114.014420	22.331747
16	819532	824209	114.014390	22.356933
17	820451	822125	114.023333	22.338117
17	820451	823671	114.023317	22.352084
18	821504	822371	114.033556	22.340353
18	821504	823761	114.033544	22.352903
19	822513	823268	114.043340	22.348458
19	822513	824321	114.043331	22.357971
20	823477	823402	114.052695	22.349680
20	823477	824613	114.052686	22.360610
21	805476	827081	113.877878	22.382668
21	805476	830562	113.877811	22.414103
22	806464	824033	113.887520	22.355164
22	806464	829598	113.887416	22.405423
23	814559	821739	113.966142	22.334574
23	814559	824768	113.966101	22.361920

*Remark: Due to the presence of deployed silt curtain systems at the site boundaries of the Project, some of the transect lines shown in Figure 5 could not be fully surveyed during the regular survey. Transect 10 is reduced from 6.4km to approximately 3.6km in length due to the HKBCF construction site. Therefore the total transect length for both NEL and NWL combined is reduced to approximately 111km.

5.5 **Monitoring Procedures**

- 5.5.1 The study area incorporates 23 transects which are to be surveyed twice per month. Each survey day lasts approximately 9 hours.
- 5.5.2 The survey vessel departs from Tung Chung Development Pier, Tsing Yi Public Pier or the nearest safe and convenient pier.
- When the vessel reaches the start of a transect line, "on effort" survey begins. Areas between transect 5.5.3 lines and traveling to and from the study area are defined as "off effort".
- 5.5.4 The transect line is surveyed at a speed of 6-8 knots (11-14 km/hr). For the sake of safety, the speed was sometimes a bit slower to avoid collision with other vessels. During some periods, tide and current flow in the survey areas exceeds 7 knots which can affect survey speed. There are a minimum of four marine mammal observers (MMOs) present on each survey, rotating through four positions, observers (2), data recorder (1) and 'rest' (1). Rotations occur every 30 minutes or at the end of dolphin encounters. The data recorder records effort, weather and sightings data directly onto the programme Logger and is not part of the observer team. The observers search with naked eye and binoculars between 90° and 270° abeam (bow being 0°).
- When a group of dolphins is sighted, position, bearing and distance data are recorded immediately 5.5.5 onto the computer and, after a short observation, an estimate made of group size. These parameters are linked to the time-GPS-ships data which are automatically stored in the programme Logger throughout the survey period. In this manner, information on heading, position, speed, weather, effort and sightings are stored in a format suitable for use with DISTANCE software for subsequent line transect analyses.
- 5.5.6 Once the vessel leaves the transect line, it is deemed to be "off effort". The dolphins are approached with the purpose of taking high resolution pictures for proper photo-identification of individual CWD. Attempts to photograph all dolphins in the group are made. Both the left and right hand sides of the dorsal fin area of each dolphin in the group are photographed, if possible. On finishing photographing, the vessel will return to the transect line at the point of departure and "on effort" survey is resumed.
- 5.5.7 Sightings which are made while on the transect line are referred to as "on effort sightings", while not on the actual transect line are referred to as an "opportunistic sightings" (e.g. another group of dolphins is sighted while travelling back to the transect line). Only "on effort sightings" can be used in analyses which require effort or rate quantification, e.g., encounter rate per 100km searched. This is also how "on effort sightings" are treated in the baseline report. "Opportunistic sightings" provide additional information on individual habitat use and population distribution and they are noted accordingly.
- 5.5.8 As time and GPS data are automatically logged throughout the survey and are linked to sightings data input, start and end times of encounters and deviation from the transect lines are recorded and can be subsequently reviewed.

5.6 **Monitoring Schedule for the Reporting Month**

- 5.6.1 The schedule for dolphin monitoring in July 2014 is provided in Appendix F.
- 5.6.2 Two surveys covering both study areas were completed.

5.7 **Results and Observations**

5.7.1 Dolphin surveys were conducted on 14, 15, 29 and 31 July 2014. A total of 221.2 km of transect line was conducted under favourable conditions. The total length travelled was also 221.2km, please note that that some lines were shortened due to works and/or shipping traffic.

The effort summary and sightings data are shown in Tables 5.3 and 5.4, respectively. The survey efforts conducted in July 2014 are plotted in Figure 5a-b. For Table 5.3, only on-effort information is included. Transects conducted in all Beaufort Sea State are included. Compared to previous monthly reports, the whole number Beaufort Sea State scale is used so as to ease comparison with other dolphin monitoring reports.

Table 5.3 Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State

Survey	Date	Area	Beaufort	Effort (km)	Total Distance Travelled (km)	
-	14/07/2014	NWL	1	6.2		
	14/07/2014	NWL	2	31.9	49.4	
	14/07/2014	NWL	3	11.3		
	15/07/2014	NWL	0	0.1		
1	15/07/2014	NWL	1	5.8		
	15/07/2014	NWL	2	18.1	61.1	
	15/07/2014	NEL	1	8.4	01.1	
	15/07/2014	NEL	2	21.3		
	15/07/2014	NEL	3	7.4		
2	29/07/2014	NWL	1	21.1	63.0	
	29/07/2014	NWL	2	41.9		
	31/07/2014	NWL	1	9		
	31/07/2014	NWL	2	1.2	47.7	
	31/07/2014	NEL	1	14.9	47.7	
	31/07/2014	NEL	2	22.6	_	
	221.2					

^{*}Remark: Surveys conduct under Beaufort Sea State 3 or below are considered as under favourable condition.

Table 5.4 Impact Dolphin Monitoring Survey Details July 2014

Date	Location	No. Sightings "on effort"	No. Sightings "opportunistic"
14/07/2014	NWL	4	1
14/07/2014	NEL	0	0
45/07/0044	NWL	1	0
15/07/2014	NEL	0	0
20/07/2014	NWL	4	3
29/07/2014	NEL	0	0
31/07/2014	NWL	0	0
31/01/2014	NEL	0	0
	TOTAL in July 2014	9	4

Table 5.5 The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^

Encounter Rate of Number of Dolphin Sightings (STG)*							
Date	NEL Track	NWL Track	NEL Sightings	NWL Sightings	NEL Encounter Rate	NWL Encounter Rate	
14 & 15/7/2014	37.1 km	73.4 km	0	5	0	6.8	
29 & 31/7/2014	37.5 km	73.2 km	0	4	0	5.5	
Encounter Rate of Total Number of Dolphins (ANI)**							
Date	NEL Track	NWL Track	NEL Dolphins	NWL Dolphins	NEL Encounter Rate	NWL Encounter Rate	
14 & 15/7/2014	37.1 km	73.4 km	0	9	0	12.3	
29 & 31/7/2014	37.5 km	73.2 km	0	14	0	19.1	

^{*} Encounter Rate of Number of Dolphin Sightings (STG) presents encounter rates in terms of groups per 100km.

- 5.7.2 A total of thirteen sightings were made, four "opportunistic" and nine "on effort". Five sightings were made on the 14th of July in NWL; one sighting was made on 15th July in NWL; seven were recorded on 29th July in NWL and none was recorded on 31st July. A total of forty-three individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- 5.7.3 Behaviour: Of the thirteen sightings, four groups were feeding, one group was surface active, five groups were travelling and three groups were engaged in multiple, one of which was travelling and feeding; one was feeding and surface active and the third was travelling, feeding and surface active behaviour. The locations of sighting with different behaviour are mapped in Figure 5d.
- 5.7.4 One calf was seen in July 2014; it is the off spring of HZMB 116 and was last seen on 26/12/2013. The location of sighting with calf is mapped in Figure 5e.
- 5.7.5 Photo ID analyses for June 2014 is presented in Appendix K.
- 5.7.6 Three resightings were recorded in June 2014. The two calves/juveniles noted were separate from their mothers and could not be associated with a known adult. Within the impact monitoring period, HZMB 041 has been sighted seven times since March 2012 and three times during baseline monitoring. This individual uses both NWL and NEL habitat and the sighting made in June was in NEL. This individual is known in the AFCD catalogue as NL24 and appears to occur in Hong Kong NEL and NWL waters during the winter and spring months (Nov June); HZMB 064 has been sighted five times since October 2012 exclusively in NWL; HZMB 117 is a relatively newly identified dolphin and this is its second sighting since January 2014.
- 5.7.7 Noteworthy Observation¹:
- 5.7.7.1 When impact monitoring was conducted at the southern parts of transect lines 1 & 2, the view of the area was partially blocked by the working vessels and fixed structures which do not belong to HKBCF Reclamation Works. The number of fixed structures has increased and the working vessels have moved when compared to last month's observations. As the working vessels will move during the on-

^{**} Encounter Rate of Total Number of Dolphins (ANI) presents encounter rates in terms of individuals per 100km. And the encounter rate is not corrected for individuals, calculation may represent double counting.

[^]The table is made only for reference to the quarterly STG & ANI, which were adopted for the Event & Action Plan.

¹ A noteworthy observation is to show that either the conduct of the surveys themselves is affected, i.e., the noted vessel or works impedes the progress or view of the survey platform. In addition, the vessel or construction works may be different or additional to that observed previously and further, are of such a nature that they are a likely to create an impact on the movement or behaviour of the subject of the impact survey, in this case, the dolphins.

going works, it is considered that they will temporarily affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour, whereas the fixed structures will continuously affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour.

- 5.7.7.2 The HKBCF Project effected lines 12 and 13. The view of the area was partially blocked by the working vessels and in water structures. The number of fixed structures increased and working vessels had moved position when compared to observations made during last month's survey. As the working vessels will move as construction progresses, they will cause temporary effects to survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour, whereas thefixed structures will affect all survey protocols and dolphin ecology in the long term.
- 5.7.7.3 The northern end of line 10 was affected by works which do not belongs to the HKBCF Reclamation Works; in particular, the view of the area was partially blocked by the working vessels. The in water structures has increased in size and the working vessels have moved position when compared to observations made during last month's survey. As the working vessels will move during the on-going works, they will temporarily affect survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour. The works here are creating a reclamation/sea wall site which is permanent and will thus continuously affect all survey protocols and dolphin ecology.
- 5.7.7.4 Anchored vessels affected lines 10, 12, 17 and 23. As the working vessels will move during the ongoing works, they will temporarily affect survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour.
- 5.7.7.5 It was observed that lines 11 and 12 had been affected by the others construction activities in the vicinity, which are not related to the HKBCF Reclamation Works.
- 5.7.7.6 The new project is ongoing located at the southern ends of lines 4 and 5. These works partially blocked some of the survey view. As reported last month, there are no fixed structures, however, the moving platform and related vessels move between survey periods. As it is not known what activities these barges and platforms are conducting, the effect that these works may specifically have on dolphins is not known at this time.
- 5.7.7.7 In July 14, As informed by the Contractor, the temporary arrangement of the perimeter silt curtain was adjusted in June 14 and in accordance with our observation on 15 July 2014, the transect line 11 is no longer enclosed by the perimeter silt curtain. Therefore, please be notified that CWD survey at the original transect line# 11 has been resumed since 15 July 2014.
- 5.7.8 The survey effort log notes the areas in which the visibility is limited or the survey is affected so that these can be accounted for in any subsequent analyses. Some of these obstructions will become permanent and some will be temporary as the HZMB is built and other projects progress. It is advised that the impact monitoring surveys should be completed as close to the predefined lines as possible (as per Figure 4 of this report).
- 5.7.9 The above noteworthy observations are largely a result of multiple and on-going infrastructure projects within the Lantau area. No amendment to EM&A protocols can negate the effects of these projects, e.g., it is a highly dynamic environment and viewing conditions may alter every survey (sometimes within surveys) and most of the survey area is affected, to some degree, by marine construction works. Instead, survey data analyses should incorporate any noteworthy observations which may affect either data collection or dolphin distribution and behavioural changes. The above mentioned activities recorded during boat survey will not affect implementation of the EM&A Programme provided appropriate data analyses are conducted. Given that viewing conditions will change frequently during the construction phase of HZMB, it is inappropriate at this time to implement any changes in EM&A procedures, however, a review of survey conditions will be made from time to time to assess if changes to procedures are required.
- 5.7.10 The event action plan is annexed in Appendix L.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

6.1 Site Inspection

- 6.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 4 site inspections were carried out on 3, 10, 17, 24 and 31 July 2014.
- 6.1.2 Particular observations during the site inspections are described below:

Air Quality

- 6.1.3 It was observed that the water supply of the sprinkler system at Portion D was disconnected. The Contractor was reminded to provide effective dust control measures to the road at Portion D. The Contractor provided effective dust control measures to the road at Portion D. (Closed)
- 6.1.4 Fugitive dust was observed when vehicle was drove through the road at Portion D. The Contractor was reminded to provide effective dust control measures. The Contractor provided effective dust control measures to the road at Portion D. (Closed)

Noise

6.1.5 No adverse observation was identified in the reporting month.

Water Quality

- 6.1.6 Water was observed accumulated inside the wheel washing facility; the Contractor was reminded to review and prevent potential overflow of silty water. (Reminder)
- 6.1.7 It was observed that the drainage located next to the road of WA2 was blocked by material fallen off from the lid of the drainage, the Contractor was reminded to unblock the drainage. The Contractor unblocked the drainage. (Closed)
- 6.1.8 Oil drum was observed without drip tray on barge Evershine 18. The Contractor was advised to provide mitigation measures such as drip tray to oil drum. As informed by the Contractor, the barge Evershine 18 left the site area the Contractor was reminded to provide mitigation measures such as drip tray to oil drum when it starts to operate on site. (Reminder)
- 6.1.9 Oil drum was observed without drip tray. The Contractor was advised to provide mitigation measures such as drip tray to oil drum. Contractor relocated the oil drum. (Closed)

Chemical and Waste Management

- 6.1.10 Unwanted/used Band drain materials were observed at various locations. The Contractor was reminded to collect and clear the unwanted/used band drain materials regularly and keep the site clean and tidy. The Contractor cleared the general refuse and used band drain materials. (Closed)
- 6.1.11 General refuses were observed at Portion C, works area WA2; general refuses and band drain material were observed at various locations of portion D; unwanted/used band drain material was observed at Portion C. The Contractor was reminded to review, collect and dispose the refuse regularly to keep the site clean and tidy. The Contractor collected and disposed the refuse regularly to keep the site clean and tidy. (Closed)
- 6.1.12 Rubbish bin without cover or lid was observed at Works Area WA2. The Contractor was reminded to properly cover all rubbish bins. The Contractor removed the rubbish bin without cover or lid. (Closed)

Landscape and Visual Impact

6.1.13 No relevant adverse impact was observed in the reporting month.

Monthly EM&A Report for July 2014

Others

6.1.14 Rectifications of remaining identified items are undergoing by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly.

6.2 Advice on the Solid and Liquid Waste Management Status

- 6.2.1 The Contractor had registered as a chemical waste producer for this Project. Receptacles were available for general refuse collection and sorting.
- 6.2.2 As advised by the Contractor, 1,252,437.3m³ of fill were imported for the Project use in the reporting period. 3kg of metals, 34kg of paper/cardboard packaging, 1kg of plastics, 1,600kg of chemical waste, 214.5m³ of general refuse were generated and disposed of in the reporting period. Monthly summary of waste flow table is detailed in Appendix M.
- 6.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes storage, collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 6.2.4 The Contractor is reminded that chemical waste should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labeling and Storage of Chemical Wastes.

6.3 Environmental Licenses and Permits

6.3.1 The environmental licenses and permits for the Project and valid in the reporting month is summarized in Table 6.1.

Table 6.1 Summary of Environmental Licensing and Permit Status

Statutory Reference	License/ Permit	License or Permit No.	Valid Period		License/ Permit Holder	Remarks
			From	То	поіцеі	
EIAO	Environmental Permit	EP- 353/2009/G	06/08/2012	N/A	HyD	Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities
		EP- 354/2009/B	28/01/2014	N/A		Tuen Mun – Chek Lap Kok Link (TMCLKL Southern Landfall Reclamation only)
APCO	NA notification		30/12/2011		CHEC	Works Area WA2 and WA3
APCO	NA notification		17/01/2012		CHEC	Works Area WA4
WDO	Chemical Waste Producer Registration	5213-951- C1186-21	30/3/2012	N/A	CHEC	Chemical waste produced in Contract HY/2010/02
WDO	Chemical Waste Producer Registration	5213-974- C3750-01	31/10/2012		CHEC	Registration as Chemical Waste Producer at To Kau Wan(WA4)
WDO	Chemical Waste Producer Registration	5213-839- C3750-02	13/09/2012		CHEC	Registration as Chemical Waste Producer at TKO 137(FB)
WDO	Billing Account for Disposal of Construction Waste	7014181	05/12/2011	N/A	CHEC	Waste disposal in Contract HY/2010/02
NCO	Construction Noise Permit	GW-RS0211- 14	11/03/2014	10/09/2014	CHEC	Reclamation Works in Contract HY/2010/02
NCO	Construction Noise Permit	GW-RS0490- 14	22/05/2014	21/08/2014	CHEC	Reclamation Works in Contract HY/2010/02
NCO	Construction Noise Permit	GW-RE0656- 14	30/06/2014	22/12/2014	CHEC	Section of TKO Fill Bank under Contract HY/2010/02

6.4 Implementation Status of Environmental Mitigation Measures

- 6.4.1 In response to the site audit findings, the Contractors carried out corrective actions.
- 6.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix C. Most of the necessary mitigation measures were implemented properly.
- 6.4.3 Training of marine travel route for marine vessels operator was given to relevant staff and relevant records were kept properly.

- 6.4.4 Regarding the implementation of dolphin monitoring and protection measures (i.e. implementation of Dolphin Watching Plan, Dolphin Exclusion Zone and Silt Curtain integrity Check), regular checking were conducted by the experienced MMOs within the works area to ensure no dolphin was trapped by the enclosed silt curtain systems. Any dolphin spotted within the enclosed silt curtain systems was reported and recorded. Relevant procedures were followed and measures were well implemented. Silt curtain systems were also inspected timely in accordance to the submitted plan. All inspection records were kept properly.
- 6.4.5 Acoustic decoupling measures on noisy plants on construction vessels were checked regularly and the Contractor was reminded to ensure provision of ongoing maintenance to noisy plants and to carry out improvement work once insufficient acoustic decoupling measures were found.
- 6.4.6 Frequency of watering per day on exposed soil was checked; with reference to the record provided by the Contract, watering was conducted at least 8 times per day on reclaimed land. The Contractor was reminded to ensure provision of watering of at least 8 times per day on all exposed soil within the Project site and associated works areas throughout the construction phase.

6.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 6.5.1 All 1-Hour TSP and 24-hour TSP results were below the Action and Limit Level in the reporting month.
- 6.5.2 For construction noise, no exceedance was recorded at all monitoring stations in the reporting period.
- 6.5.3 For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting period.
- 6.5.4 Cumulative statistics on exceedance is provided in Appendix N.

6.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 6.6.1 The Environmental Complaint Handling Procedure is annexed in Figure 6.
- 6.6.2 Two environmental complaints have been received in July 2014.
- 6.6.3 As informed by the Contractor on 3 July 2014, there was an environmental complaint received on 13 June 14. The complainant who lived at Caribbean Coast complained that there were night time noise and visual impact (strong lighting) from the overnight construction works/plants of HKBCF Island.
- 6.6.3.1 Photo record of site condition and CNP compliance checking records of 1- 13 Jun 2014 have been reviewed; please see the following for details of investigation actions and results.
- 6.6.3.2 For the part of the complaint which is related to visual impact:
 - After reviewing the available information provided by the complainant, the source of light is likely from lighting system for the construction works conducted at night.
 - With referred to the photo record below, there is measure to control night-time lighting and glare such as hooding lights, please see below photo record of hooding of lights.

- In addition, as informed by the Contractor, construction works would be carried out at night in order to be in line with the progress of this project, however, the Contractor has arranged major activities to be performed during the day time to minimize works in the night time.
- As such, the visual impact complaint is likely to be related to the construction works of this Contract.
- As informed by the Contractor, all the night-lighting is movable and would be moved according to the reclamation progress. However, all the night-lighting has been provided with hooding.
- The Contractor was reminded to continue to properly implement existing mitigation measure for visual impact such as provide night-lighting with hooding.
- In addition, the Contractor was recommended to adjust the orientation of light to minimize glare to residence as far as possible.

6.6.3.3 For the part of the complaint which is related to noise:

- As informed by the Contractor, Construction Noise Permit (CNP) was granted by EPD to cover works carry out during restricted hours in order to be in compliance with relevant environmental regulations and requirements.
- Compliance checking records of 1- 13 Jun 2014 provided by the Contractor were reviewed and record shows construction works carried out were in compliance with the CNP in effect.
- As such, with referred to the available information, it is concluded that the night time noise complaint is unlikely to be related to this Contract.
- Nevertheless, the Contractor was reminded to continue to properly implement all noise mitigation measures.

6.6.3.4 Recommendations:

 The Contractor was reminded to refer environmental complaint to ET for investigation as soon as possible after receiving environmental complaint.

For the part of the complaint which is related to visual impact:

- The Contractor was reminded to continue to properly implement existing mitigation measure for visual impact such as provide night-lighting with hooding.
- In addition, the Contractor was recommended to adjust the orientation of light to minimize glare to residence as far as possible.
- Photo record on 16 July 2014 shows that the recommended mitigation measures has been implemented by the Contractor:

For the part of the complaint which is related to noise:

- The Contractor was reminded to continue to properly implement all noise mitigation measures.

- As informed by the Contractor on 23 July 14, a complaint has been received from Oriental Daily Newspaper on 22 July 14. In the complaint, Oriental Daily Newspaper stated that Miss Cheung, who is a resident of Miami Beach Towers (Tuen Mun), pointed out that construction was being conducted at the sea area in front of the estate, a lot of sand delivery barges were moored at sea area between Castle Peak Beach (Tuen Mun Typhoon Shelter) and Tuen Mun Ferry Pier. She discovered on several occasions that there were leakage of soil from sand delivery barges causing discoloration of sea water and sometimes, leaking of sand from more than two sand delivery barges at a time was observed.
- 6.6.4.1 Impact water quality monitoring data of July 14 has been reviewed and site inspections were conducted jointly on 24 and 31 July 14 with RSS and the Contractor.
 - There is no sufficient information provided by the complainant to make sure that the concerned barges are related to this project.
 - Date of the observed impact was not specified by the complainant so the IWQM results available for July 14 for monitoring stations close to the concerned area - IS12, IS13, IS14, IS15 have been reviewed and there were no impact water quality monitoring result that shows the turbidity or suspended solid of sea water were adversely affected.
 - In addition, site inspection has been jointly conducted with the Contractor and RSS on 24 and 31 July 2014, but no leakage of soil/sand material from barges causing discoloration of sea water was observed inside or outside the perimeter silt curtain of HKBCF reclamation works. Please see below the photos taken during site inspection for reference.
 - Photo take on 24 July 14.

Photo take on 31 July 14.

- As informed by the Contractor, overloading of sand on sand delivery barge is prohibited from runoff/overflow of sand material.

- 6.6.4.2 Conclusion: It is unable to confirm the date of the concerned impact from the information provided by the complainant, therefore the impact water quality monitoring result of July 14 has been reviewed but no result shows adverse impact to the water quality at the concerned area.
- 6.6.4.3 In addition, site inspection has be jointly conducted with RSS and the Contractor, but no leakage of soil/sand material from barges causing discoloration of sea water was observed inside or outside the perimeter silt curtain of HKBCF reclamation works.
- 6.6.4.4 After investigation, there is no adequate information to conclude the observed impact is related to this Contract.
- 6.6.4.5 Recommendations: The Contractor was advised to ensure the provision of routine maintenance and prohibit overloading of sand material on delivery barges to prevent potential leakage of soil from sand delivery barges causing discoloration of sea water
- 6.6.5 No notification of summons and successful prosecutions was received in the reporting period.
- 6.6.6 Statistics on complaints, notifications of summons and successful prosecutions are summarized in Appendix N.

7 FUTURE KEY ISSUES

7.1 Construction Programme for the Coming Months

7.1.1 As informed by the Contractor, the major works for the Project in August 2014 and September 2014 will be *:-

Marine-based Works

- Marine-base
- Cellular structure installation
- Connecting arc cell installation
- Laying geo-textile
- Sand blanket laying
- Sand filling
- Rock filling
- Maintenance of silt curtain & silt screen at sea water intake of HKIA
- Band drain installation
- Backfill cellular structure
- Geotechnical Instrumentation works
- Surcharge laying
- Capping Beams structures
- Construction of temporary jetties for surcharge laying
- Temporary Watermain construction along access at Portion D
- Flat barge of unloading public fill for surcharge laying
- Precast Yard Setup

Land-based Works

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

^{*}Construction activities in August & September 2014 will be changed subject to works progress.

7.2 Key Issues for the Coming Month

- 7.2.1 Key issues to be considered in the coming months:-
 - Site runoff should be properly collected and treated prior to discharge;
 - Minimize loss of sediment from filling works;
 - Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
 - Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface runoff during rainstorm;
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits:
 - Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission;
 - Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
 - Quieter powered mechanical equipment should be used;
 - Provision of proper and effective noise control measures for operating equipment and machinery onsite, such as erection of movable noise barriers or enclosure for noisy plants;
 - Closely check and replace the sound insulation materials regularly;
 - Better scheduling of construction works to minimize noise nuisance;
 - Properly store and label oil drums and chemical containers placed on site:
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved and confined areas;
 - Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.
 - Control night-time lighting and glare by hooding all lights.

7.3 Monitoring Schedule for the Coming Month

7.3.1 The tentative schedule for environmental monitoring in August 2014 is provided in Appendix F.

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 **Conclusions**

- 8.1.1 The construction phase and EM&A programme of the Project commenced on 12 March 2012.
- 8.1.2 For impact air quality monitoring, all 1-Hour TSP and 24-hour TSP results were below the Action and Limit Level in the reporting month.
- 8.1.3 For construction noise, no exceedance was recorded at all monitoring stations in the reporting period.
- 8.1.4 For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting period.
- For dolphin monitoring, a total of thirteen sightings were made, four "opportunistic" and nine "on effort". 8.1.5 Five sightings were made on the 14th of July in NWL; one sighting was made on 15th July in NWL; seven were recorded on 29th July in NWL and none was recorded on 31st July. A total of twenty-eight individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- Dolphin behaviour: Of the thirteen sightings, four groups were feeding, one group was surface active, 8.1.6 five groups were travelling and three groups were engaged in multiple, one of which was travelling and feeding; one was feeding and surface active and the third was travelling, feeding and surface active behaviour. The locations of sighting with different behaviour are mapped in Figure 5d.
- One calf was seen in July 2014; it is the off spring of HZMB 116 and was last seen on 26/12/2013. The 8.1.7 location of sighting with calf is mapped in Figure 5e.
- 8.1.8 Environmental site inspection was carried out 5 times in July 2014. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.
- 8.1.9 Two environmental complaints have been received in July 2014.
- 8.1.9.1 As informed by the Contractor on 3 July 2014, there was an environmental complaint received on 13 June 14. The complainant who lived at Caribbean Coast complained that there were night time noise and visual impact (strong lighting) from the overnight construction works/plants of HKBCF Island.
- 8.1.9.2 After investigation, this part of the complaint which is related to visual impact is likely to be related to the construction works of this contract. However, with referred to the available information, it is concluded that the part of the complaint which is related to night time noise is unlikely to be related to this Contract.
- As informed by the Contractor on 23 July 14, a complaint has been received from Oriental Daily 8.1.9.3 Newspaper on 22 July 14. In the complaint, Oriental Daily Newspaper stated that Miss Cheung, who is a resident of Miami Beach Towers (Tuen Mun), pointed out that construction was being conducted at the sea area in front of the estate, a lot of sand delivery barges were moored at sea area between Castle Peak Beach (Tuen Mun Typhoon Shelter) and Tuen Mun Ferry Pier. She discovered on several occasions that there were leakage of soil from sand delivery barges causing discoloration of sea water and sometimes, leaking of sand from more than two sand delivery barges at a time was observed.
- 8.1.9.4 After investigation, there is no adequate information to conclude the observed impact is related to this Contract.
- 8.1.10 No notification summons and successful prosecution was received in the reporting period.

Report Version 0

8.2 Recommendations

8.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

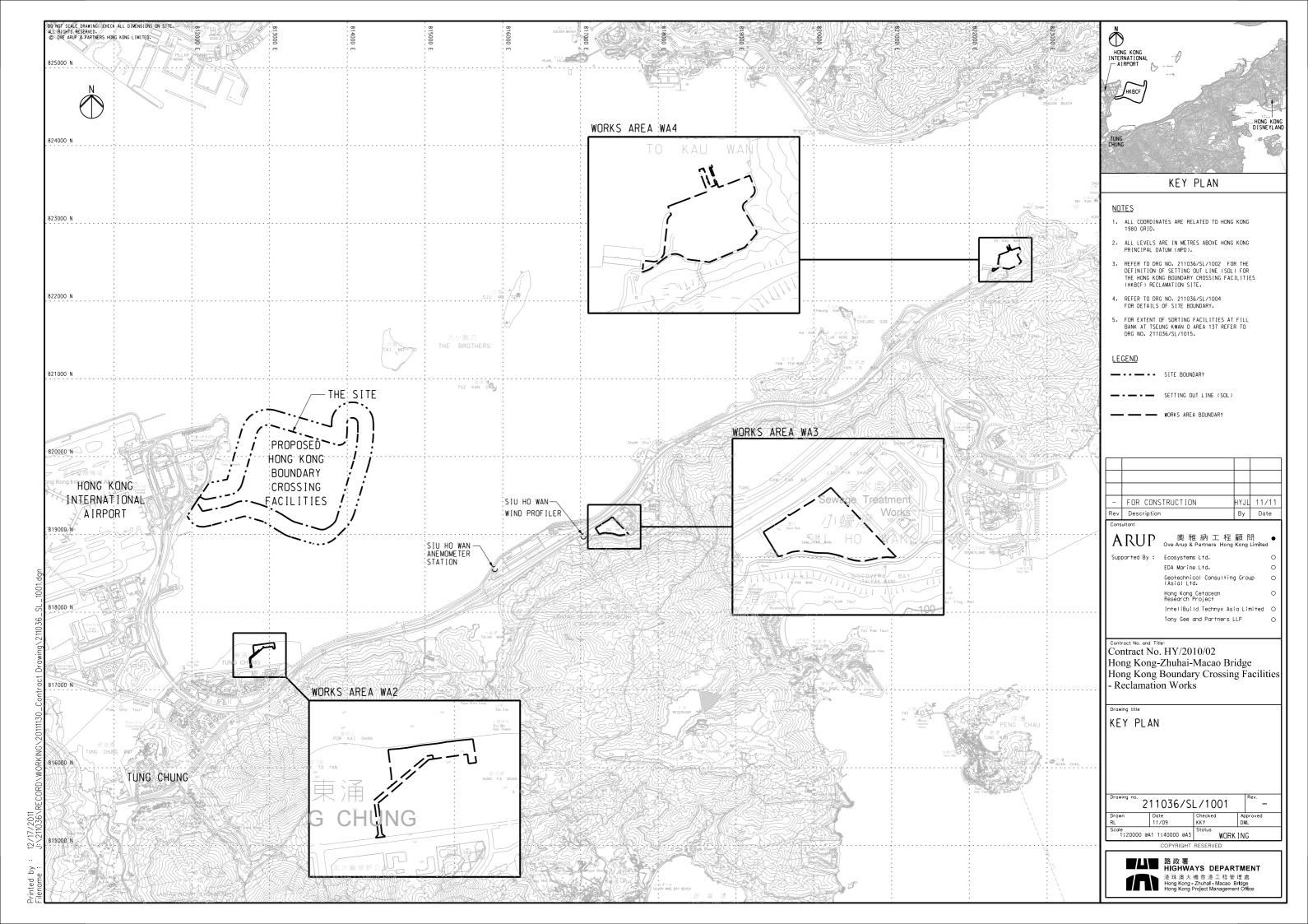
Air Quality Impact

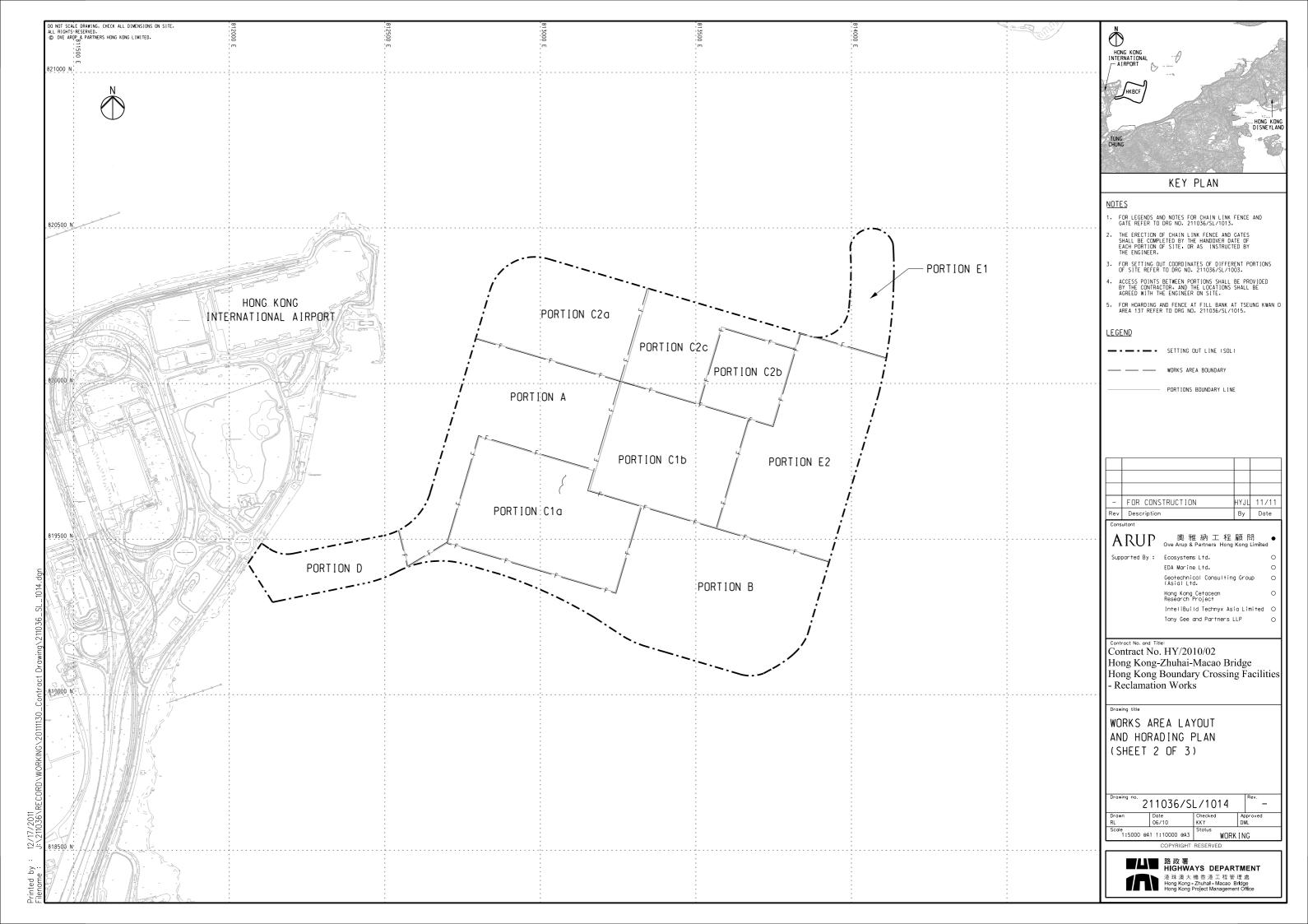
- All working plants and vessels on site should be regularly inspected and properly maintained to avoid dark smoke emission.
- All vehicles should be washed to remove any dusty materials before leaving the site.
- Haul roads should be sufficiently dampened to minimize fugitive dust generation.
- Wheel washing facilities should be properly maintained and reviewed to ensure properly functioning.
- Temporary exposed slopes and open stockpiles should be properly covered.
- Enclosure should be erected for cement debagging, batching and mixing operations.
- Water spraying should be provided to suppress fugitive dust for any dusty construction activity.

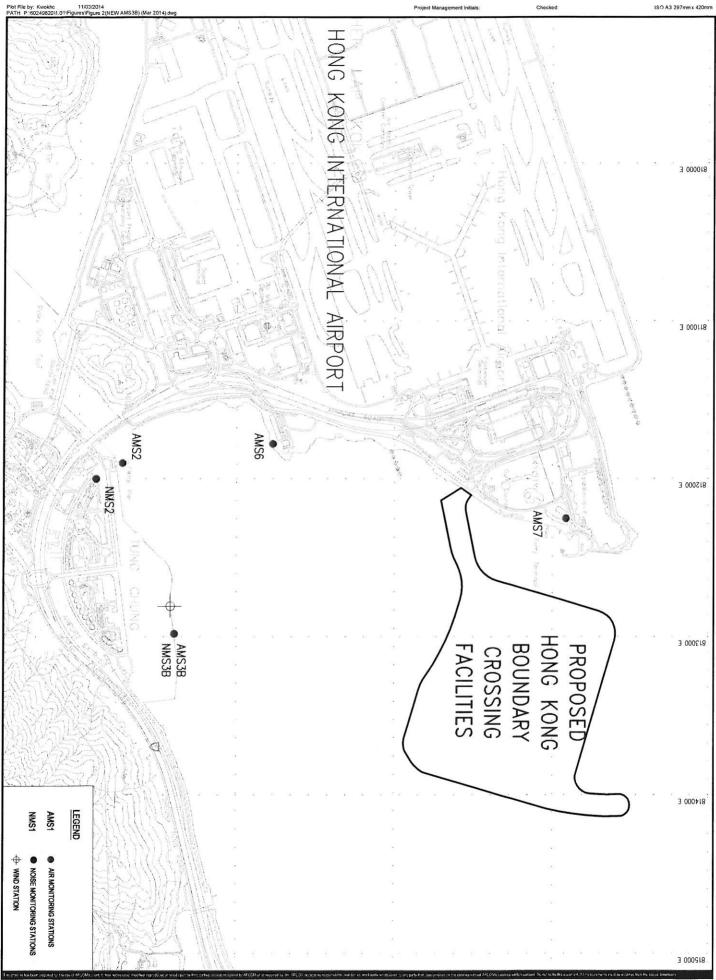
Construction Noise Impact

- Quieter powered mechanical equipment should be used as far as possible.
- Noisy operations should be oriented to a direction away from sensitive receivers as far as possible.
- Proper and effective noise control measures for operating equipment and machinery on-site should be provided, such as erection of movable noise barriers, enclosure for noisy plants or enhancement works to provide sufficient acoustic decoupling measure(s). Closely check and replace the sound insulation materials regularly
- Vessels and equipment operating should be checked regularly and properly maintained.
- Noise Emission Label (NEL) shall be affixed to the air compressor and hand-held breaker operating within works area.
- Acoustic decoupling measures should be properly implemented for all existing and incoming construction vessels with continuous and regularly checking to ensure effective implementation of acoustic decoupling measures.

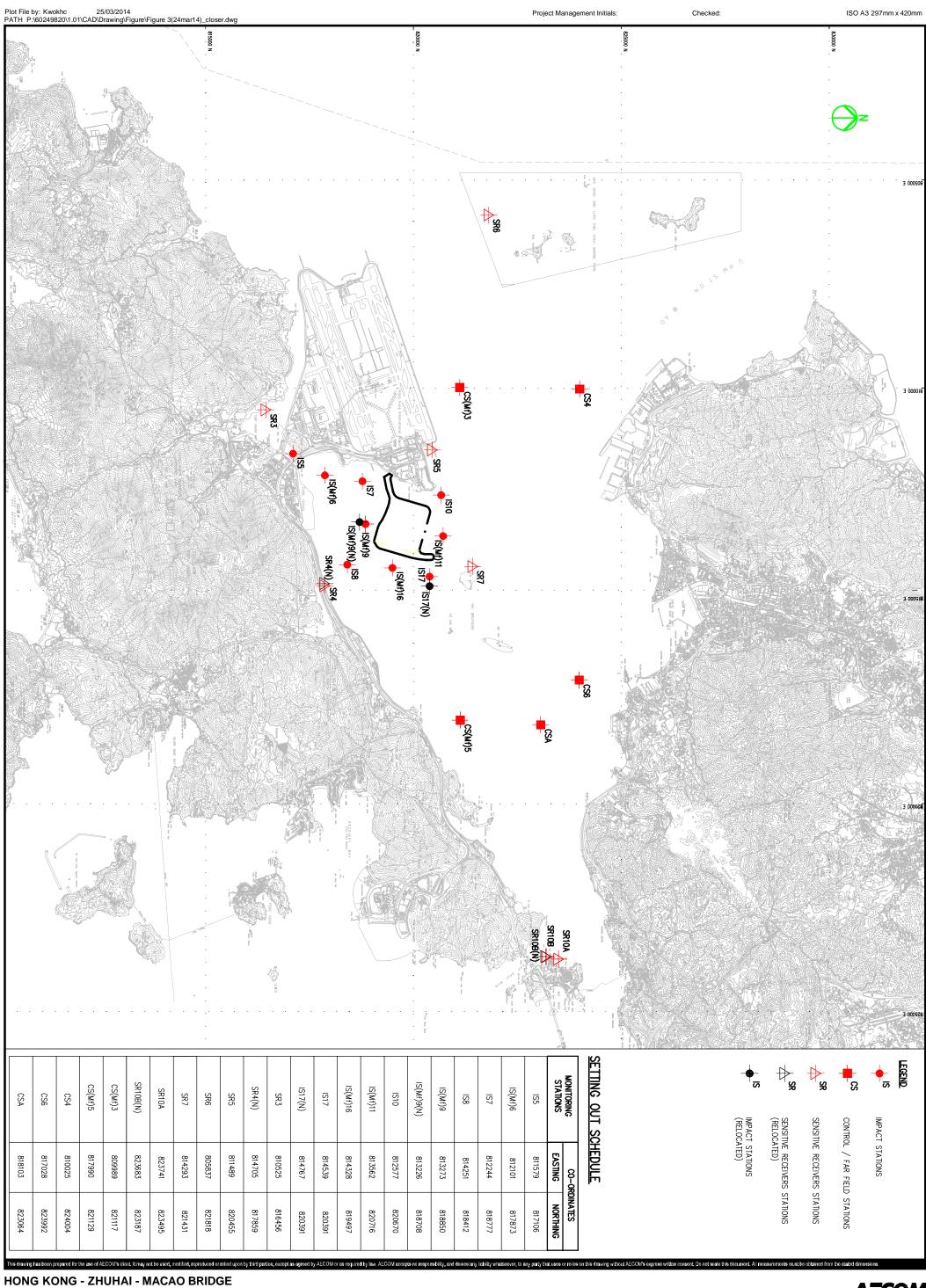
Water Quality Impact

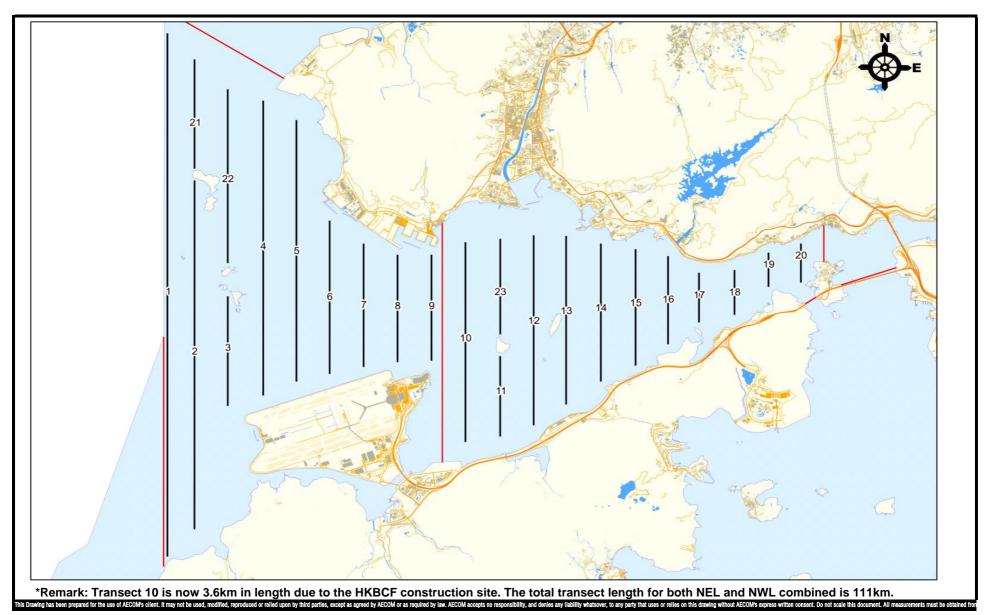

- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities in order to make sure they are functioning effectively.
- Construction of seawall should be completed as early as possible.
- Regular inspect and review the loading process from barges to avoid splashing of material.
- Silt, debris and leaves accumulated at public drains, wheel washing bays and perimeter uchannels and desilting facilities should be cleaned up regularly.
- Silty effluent should be treated/ desilted before discharged. Untreated effluent should be prevented from entering public drain channel.
- Proper drainage channels/bunds should be provided at the site boundaries to collect/intercept the surface run-off from works areas.
- Exposed slopes and stockpiles should be covered up properly during rainstorm.


Chemical and Waste Management

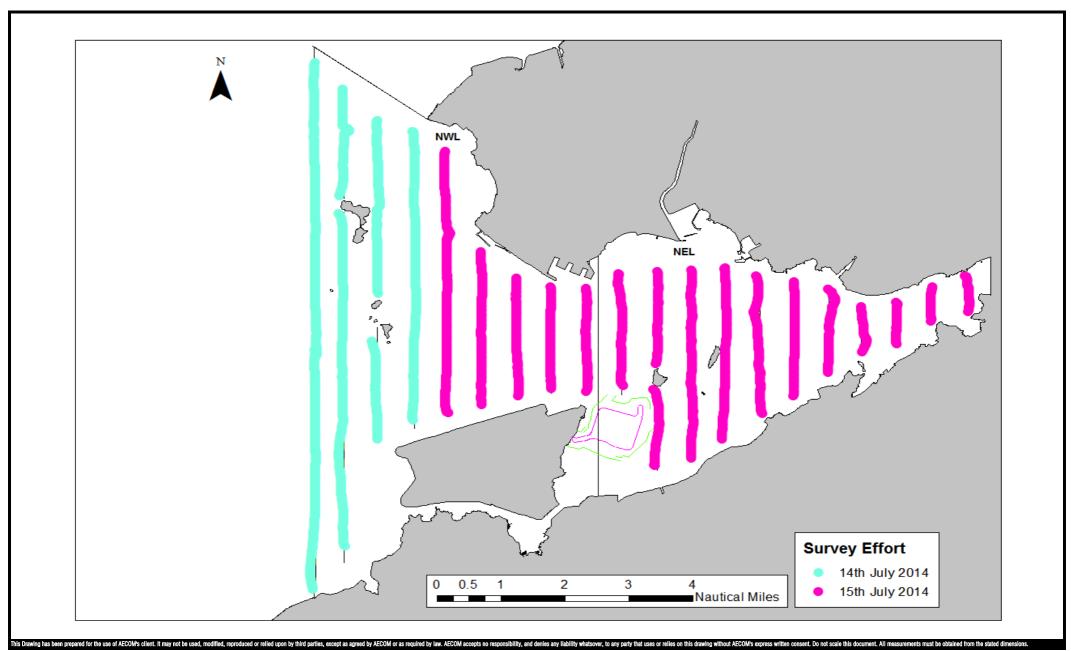

- All types of wastes, both on land and floating in the sea, should be collected and sorted properly
 and disposed of timely and properly. They should be properly stored in designated areas within
 works areas temporarily.
- All chemical containers, batteries and oil drums should be properly stored and labelled.
- All plants and vehicles on site should be properly maintained to prevent oil leakage. Proper measures, like drip trays and/or bundings, should be provided for retaining leaked oil/chemical from plants.
- All kinds of maintenance works should be carried out within roofed, paved and confined areas.
- All drain holes of the drip trays utilized within works areas should be properly plugged to avoid any oil and chemical waste leakage.
- Oil stains on soil surface, accumulated oil mixture and empty chemical containers should be cleared and disposed of as chemical waste.
- Regular review should be conducted for working barges and patrol boats to ensure sufficient
 measures and spill control kits were provided on working barges and patrol boats to avoid any
 spreading of leaked oil/chemicals.

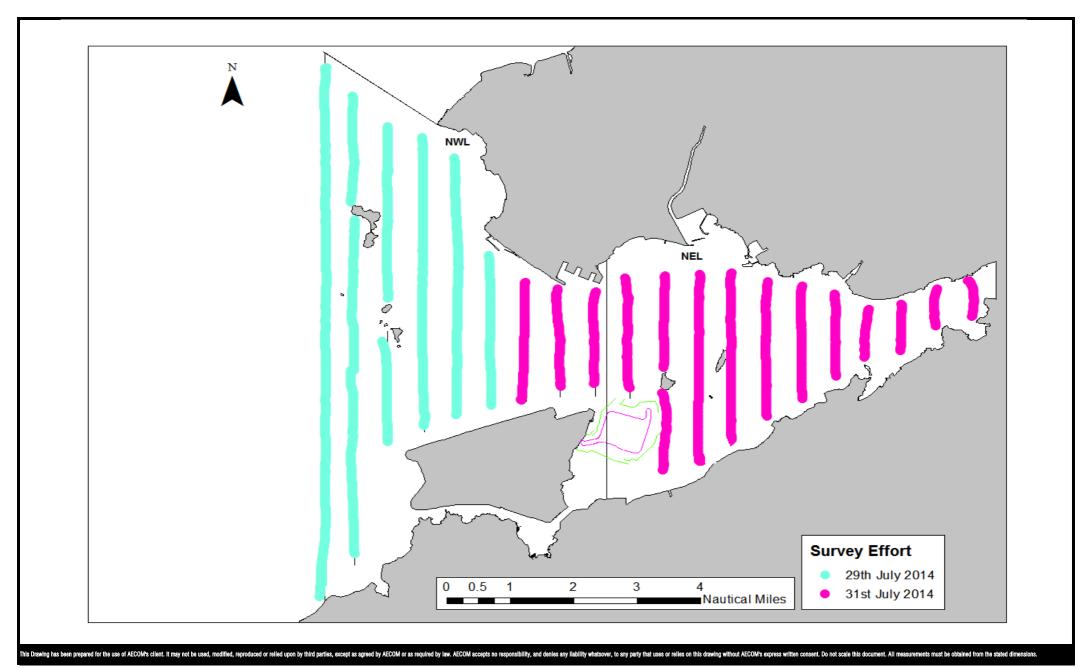
Landscape and Visual Impact


- All existing, retained/transplanted trees at the works areas should be properly fenced off and regularly inspected.
- Control night-time lighting and glare by hooding all lights.

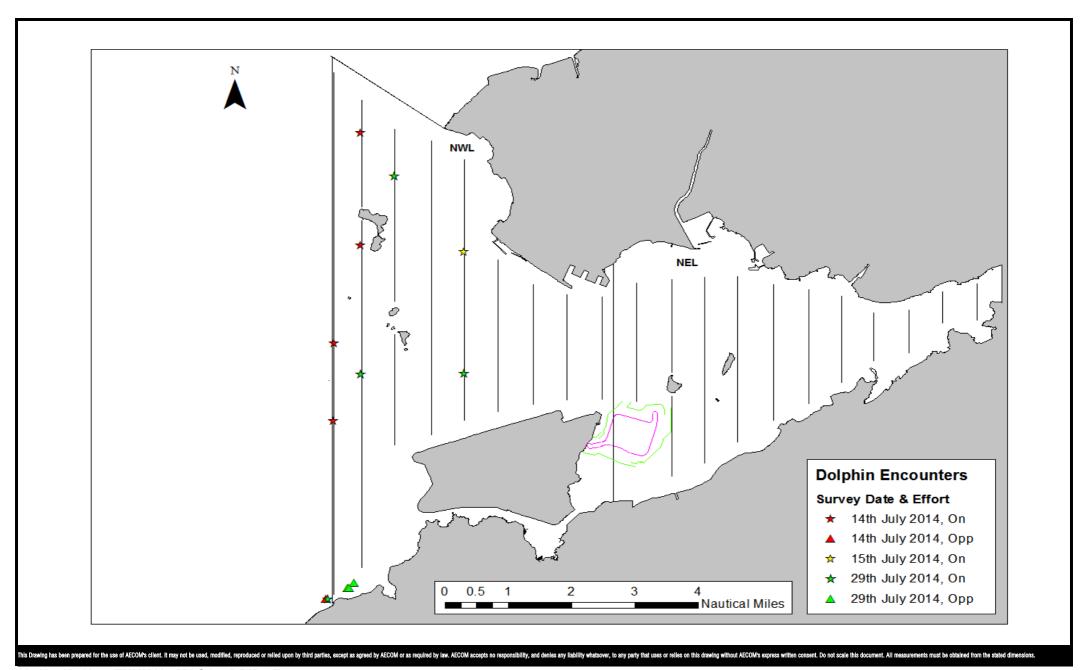


Project No.: -

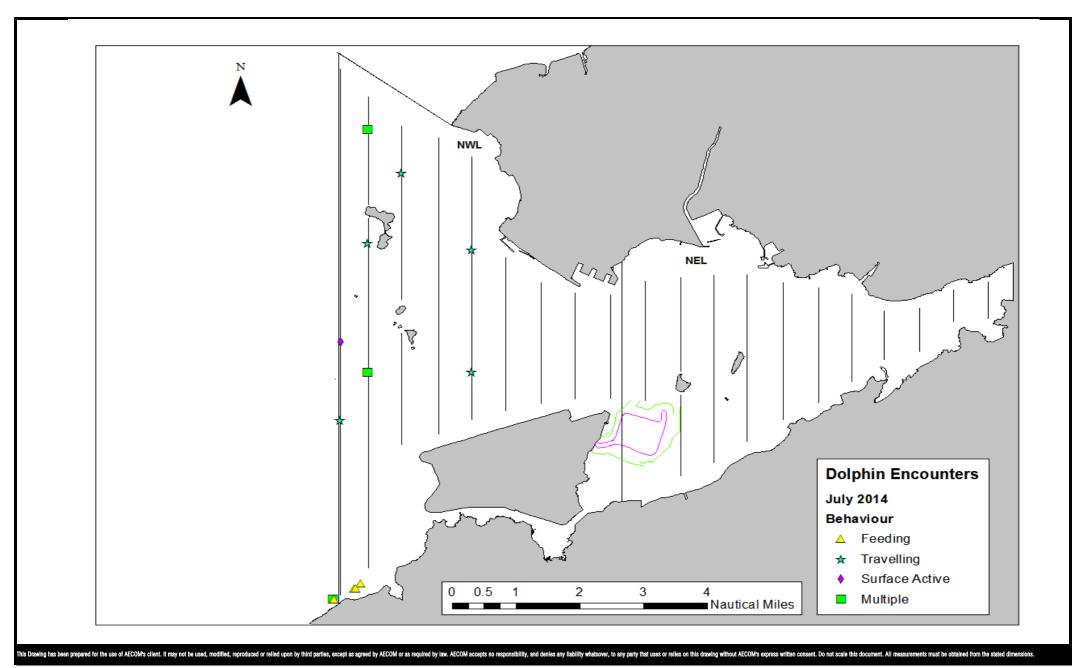


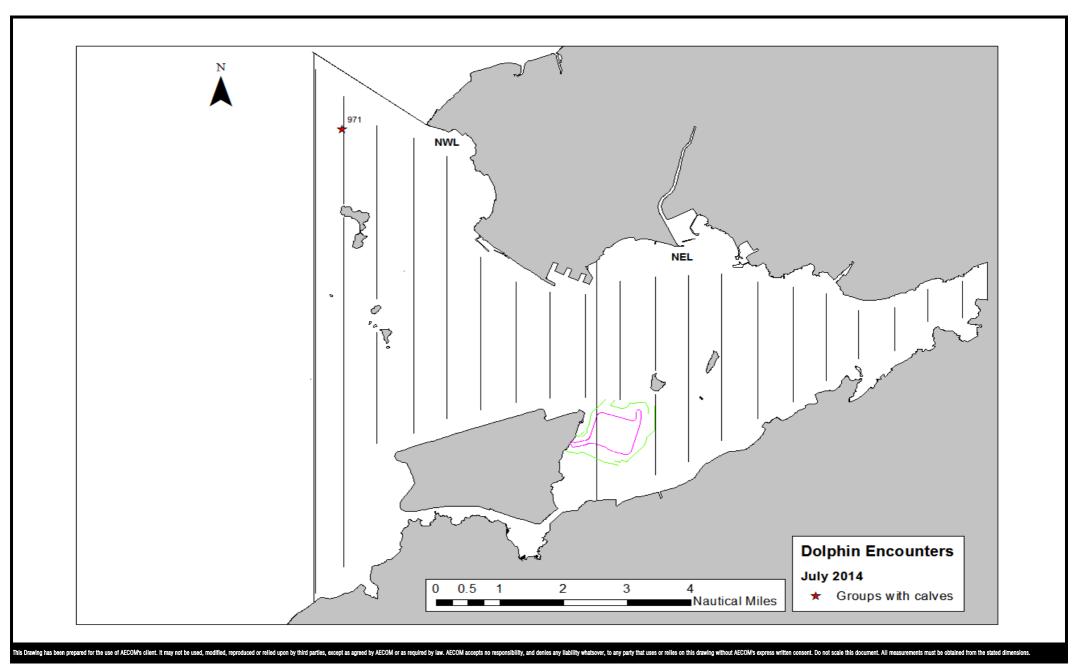

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

Project No.: 60249820 Date: January 13

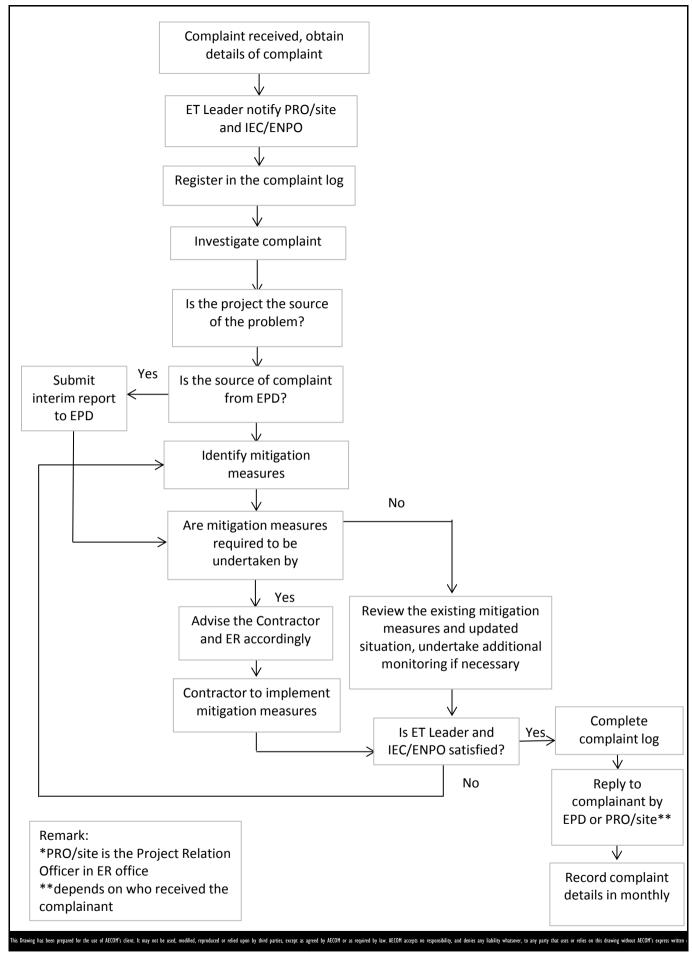


- RECLAMATION WORKS


- RECLAMATION WORKS

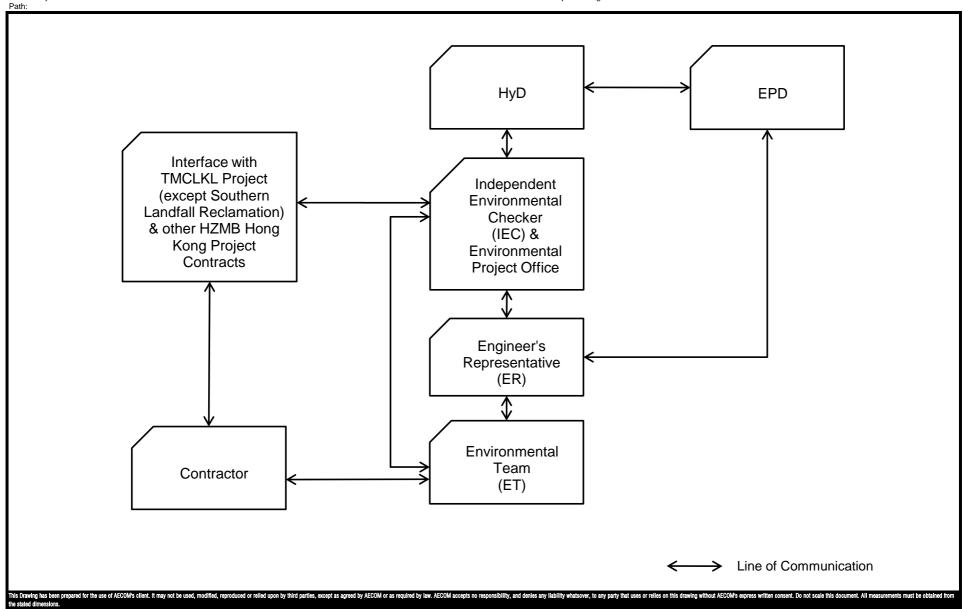

HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES


- RECLAMATION WORKS

- RECLAMATION WORKS

- RECLAMATION WORKS

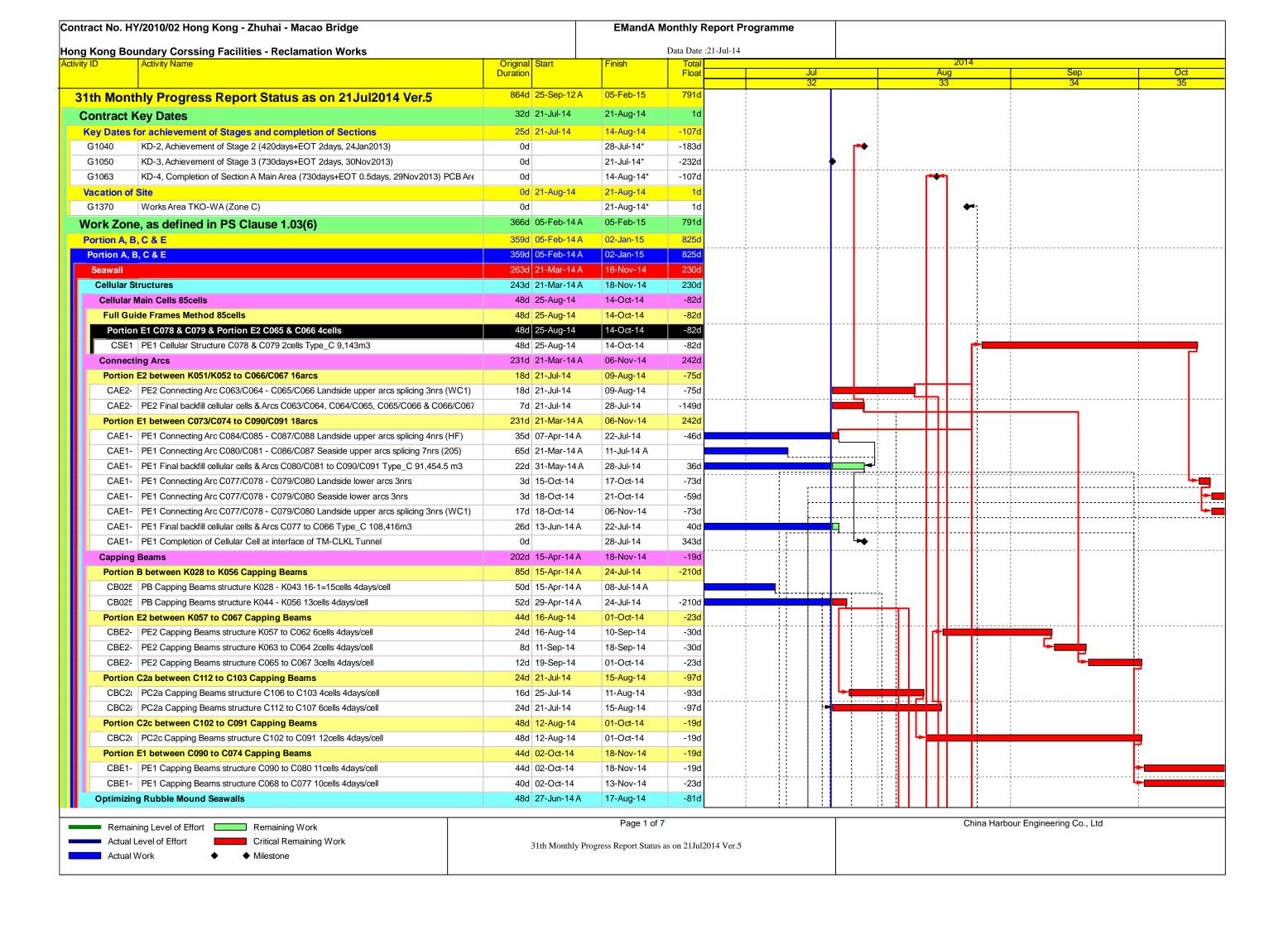


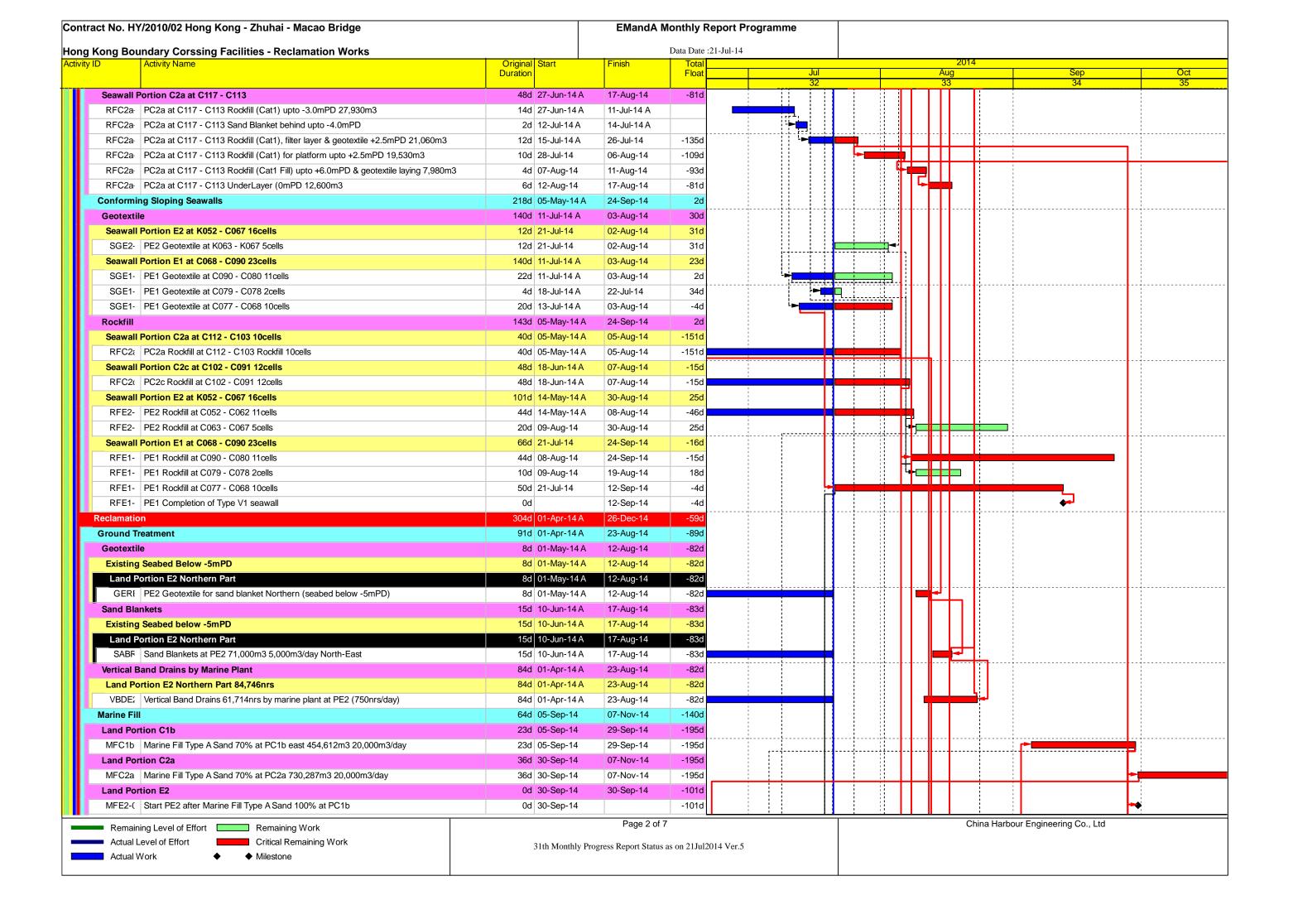
IES AECOM

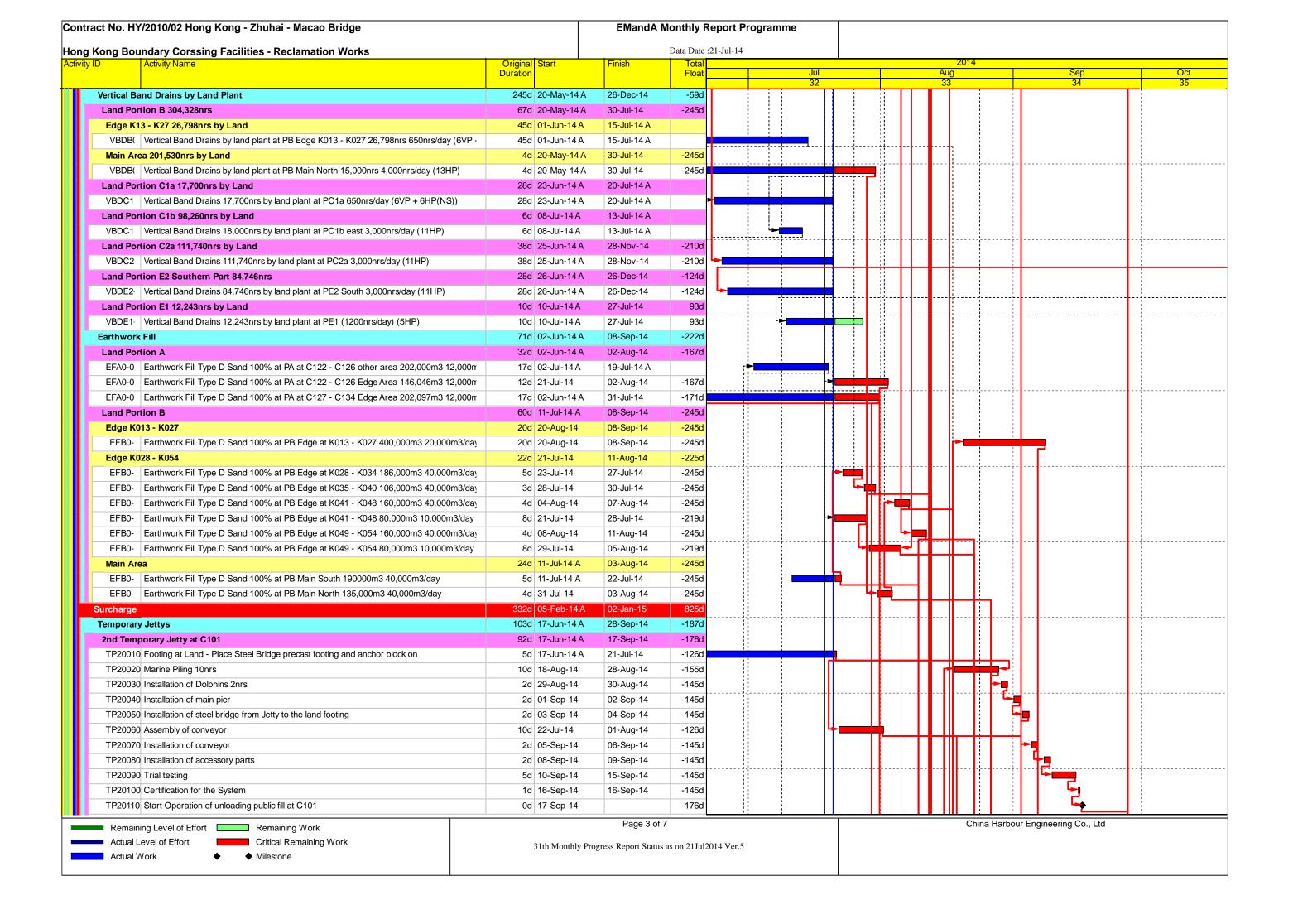
- RECLAMATION WORKS

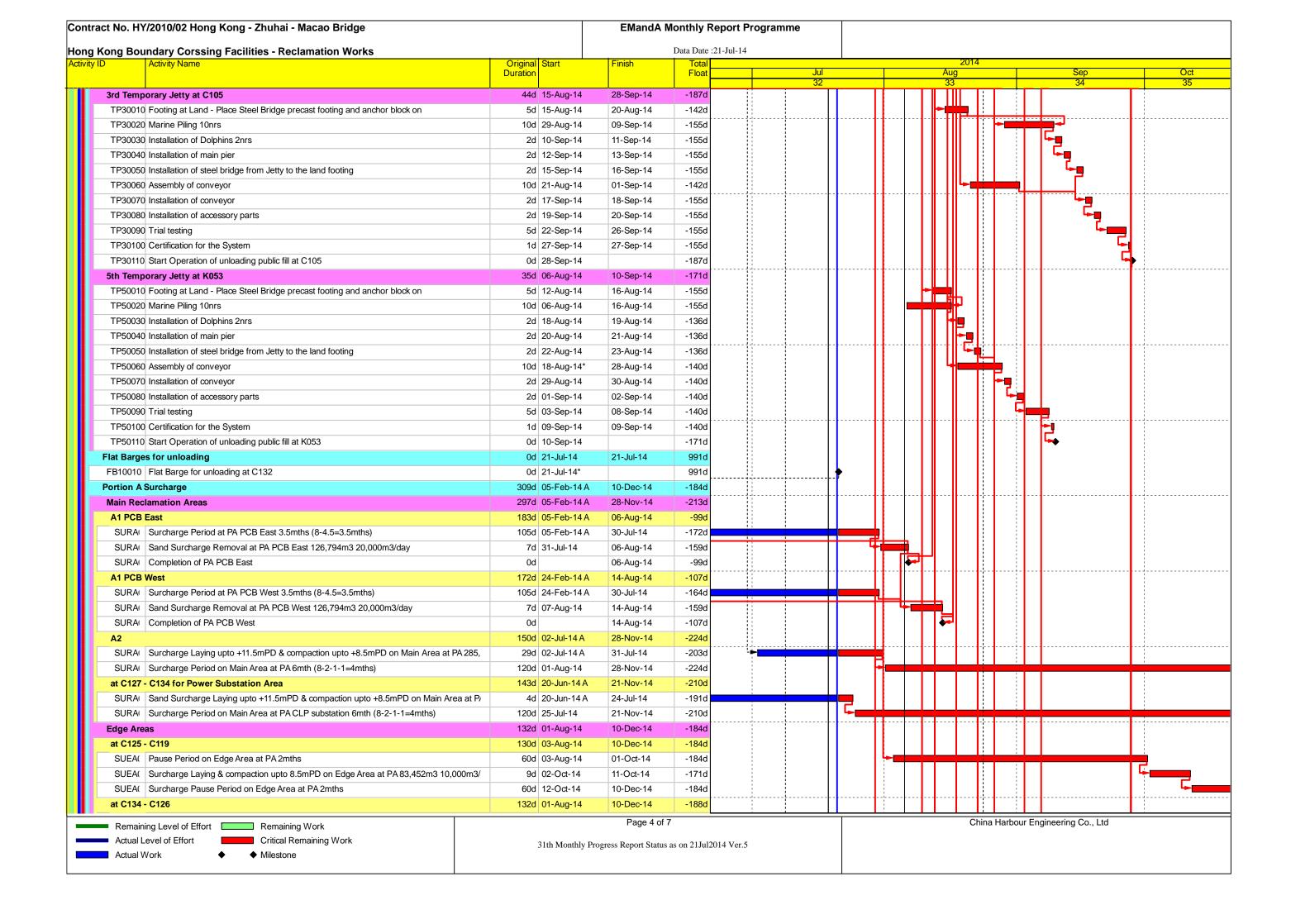
Environmental Complaint Handling Procedure

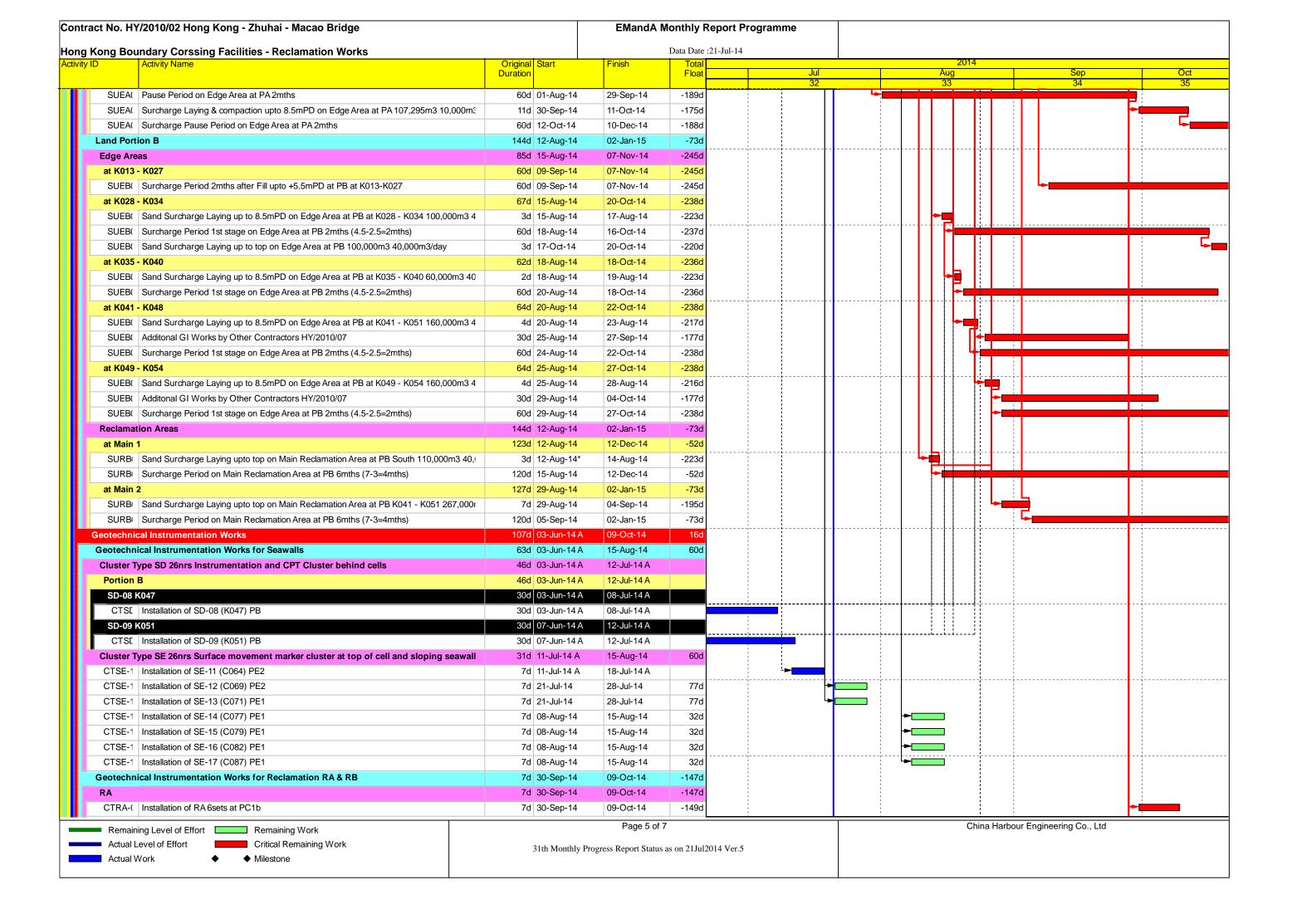
Project No.: 60249820 Date: July 2012 Figure 6

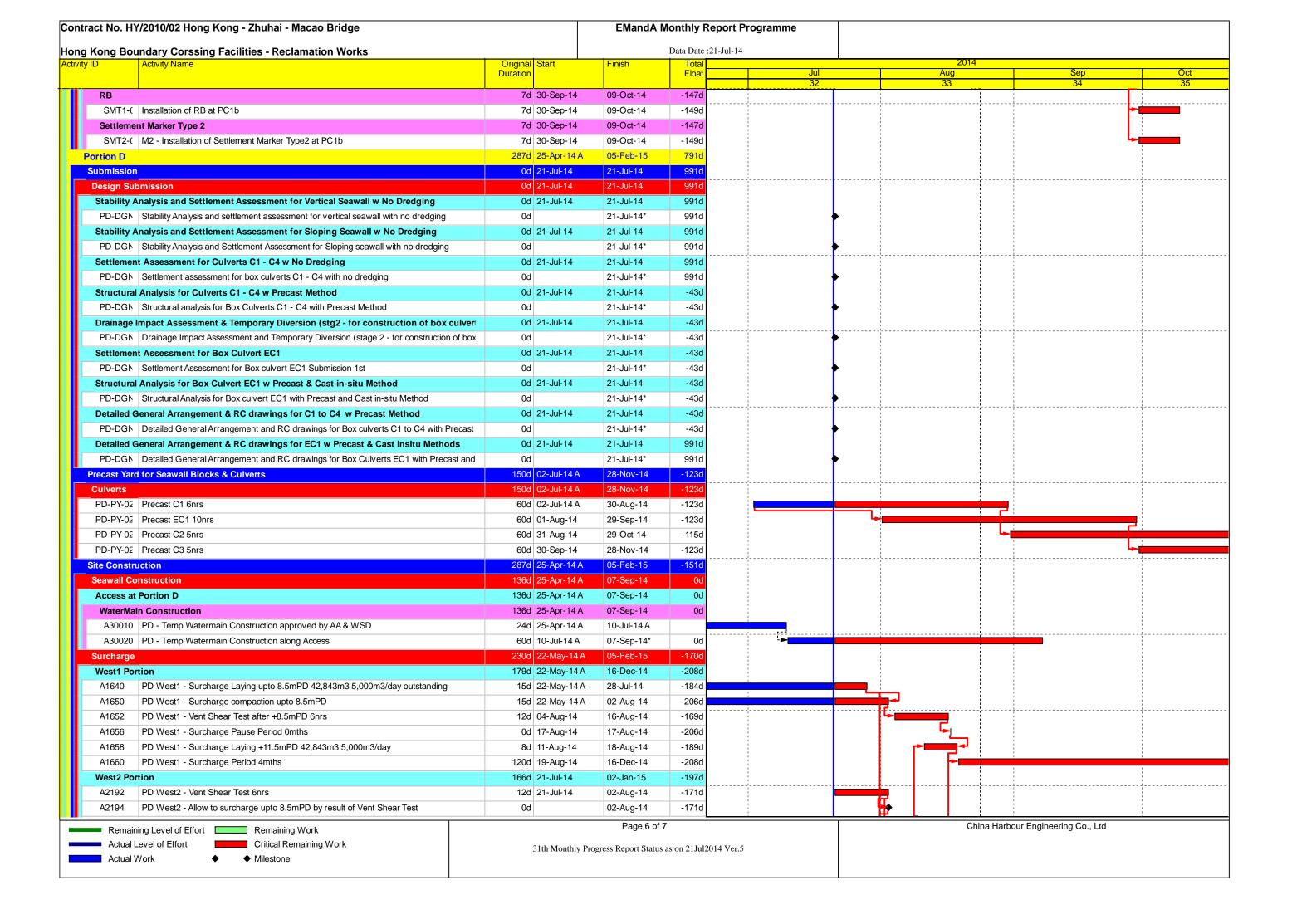


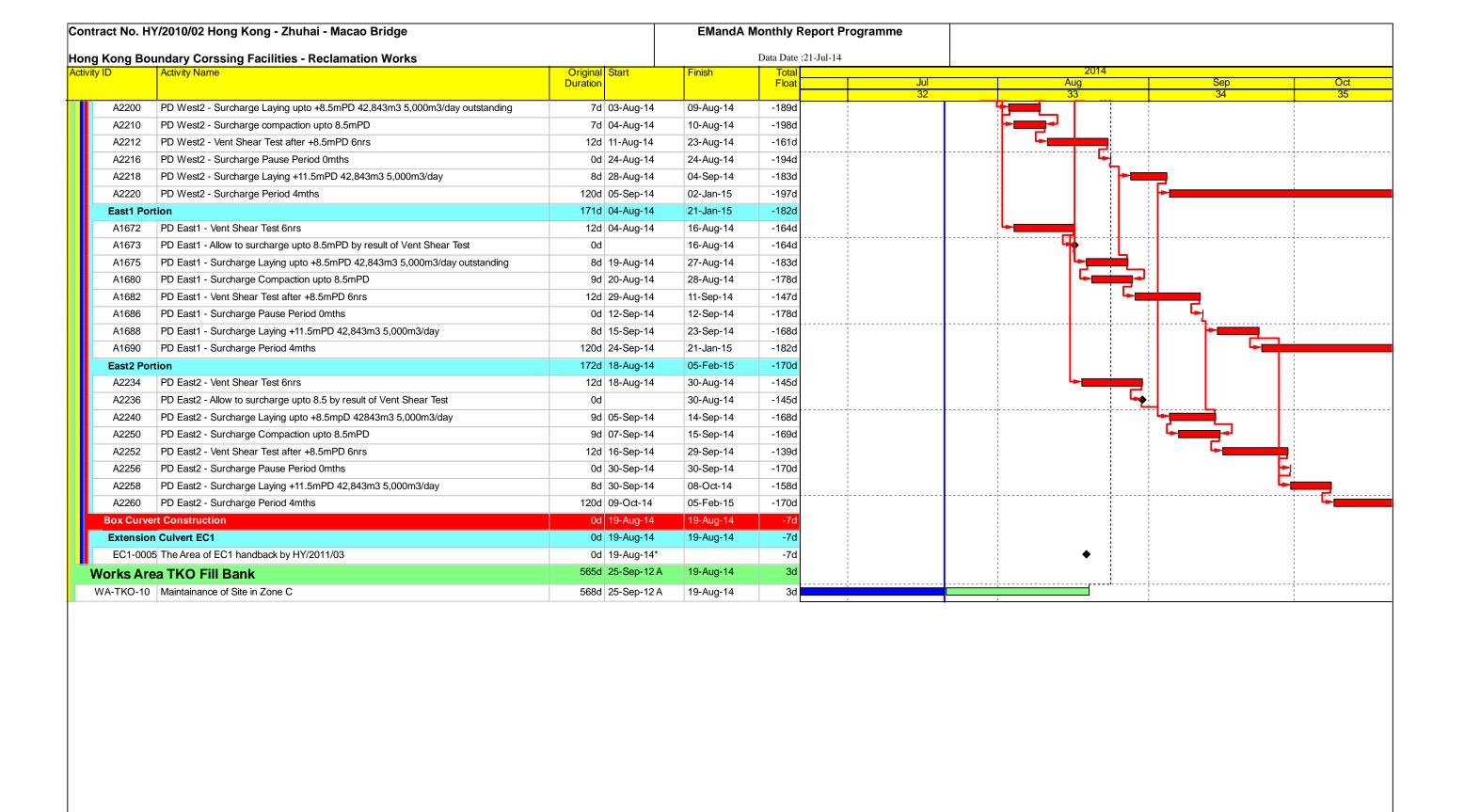

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES --RECLAMATION WORKS


Project No.: 60249820 Date: April 2013









Appendix C - Implementation Schedule of Environmental Mitigation Measures

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
Air Quality				
S5.5.6.1 of	A1	The contractor shall follow the procedures and requirements given in the Air Pollution	All construction sites	V
HKBCFEIA		Control (Construction Dust) Regulation		
S5.5.6.2 of	A2	Proper watering of exposed spoil should be undertaken throughout the construction	All construction sites	V
HKBCFEIA		phase:		
and S4.8.1 of		Any excavated or stockpile of dusty material should be covered entirely by		
TKCLKLEIA		impervious sheeting or sprayed with water to maintain the entire surface wet and		
		then removed or backfilled or reinstated where practicable within 24 hours of the		
		excavation or unloading;		
		Any dusty materials remaining after a stockpile is removed should be wetted with		
		water and cleared from the surface of roads;		
		A stockpile of dusty material should not be extend beyond the pedestrian barriers,		
		fencing or traffic cones.		
		Where practicable, vehicle washing facilities with high pressure water jet should be		
		provided at every discernible or designated vehicle exit point. The area where		
		vehicle washing takes place and the road section between the washing facilities		
		and the exit point should be paved with concrete, bituminous materials or		
		hardcores;		
		When there are open excavation and reinstatement works, hoarding of not less than		
		2.4m high should be provided as far as practicable along the site boundary with		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;		
		The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials;		
		 Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; 		
		Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet;		
		 Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; 		
		 Any skip hoist for material transport should be totally enclosed by impervious sheeting; 		
		Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides;		
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		audible high level alarm which is interlocked with the material filling line and no overfilling is allowed;		
		All unpaved roads/exposed area shall be watered which results in dust suppression by forming moist cohesive films among the discrete grains of road surface material.		
		No burning of debris or other materials on the works areas is allowed;		
		Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created;		
		Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading;		
		During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.		
		Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The		
		tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards;		
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should		
		be fitted with an effective fabric filter or equivalent air pollution control system; and		
		Exposed earth should be properly treated by compaction, turfing, hydroseeding,		
		vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable		
		surface stabiliser within six months after the last construction activity on the		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		construction site or part of the construction site where the exposed earth lies.		
S5.5.6.3 of	А3	The Contractor should undertake proper watering on all exposed spoil and associated	All construction sites	V
HKBCFEIA		work areas (with at least 8 times per day) throughout the construction phase.		
and S4.8.1 of				
TKCLKLEIA				
S5.5.6.4 of	A4	Implement regular dust monitoring under EM&A programme during the construction	Selected	V
HKBCFEIA		stage.	representative dust	
and S4.11 of			monitoring station	
TKCLKLEIA				
S5.5.7.1 of	A5	The following mitigation measures should be adopted to prevent fugitive dust emissions	All construction sites	N/A
HKBCFEIA		for concrete batching plant:		
		Loading, unloading, handling, transfer or storage of any dusty materials should be		
		carried out in totally enclosed system;		
		All dust-laden air or waste gas generated by the process operations should be		
		properly extracted and vented to fabric filtering system to meet the emission limits		
		for TSP;		
		Vents for all silos and cement/ pulverised fuel ash (PFA) weighing scale should be		
		fitted with fabric filtering system;		
		The materials which may generate airborne dusty emissions should be wetted by		
		water spray system;		
		All receiving hoppers should be enclosed on three sides up to 3m above unloading		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		point;		
		All conveyor transfer points should be totally enclosed;		
		All access and route roads within the premises should be paved and wetted; and		
		Vehicle cleaning facilities should be provided and used by all concrete trucks		
		before leaving the premises to wash off any dust on the wheels and/or body.		
S5.5.2.7 of	A6	The following mitigation measures should be adopted to prevent	All construction sites	N/A
HKBCFEIA		fugitive dust emissions at barging point:		(Construction in
		All road surface within the barging facilities will be paved;		process)
		Dust enclosures will be provided for the loading ramp;		
		Vehicles will be required to pass through designated wheels wash facilities; and		
		Continuous water spray at the loading points.		
Construction	Noise (Air bor	ne)		
S6.4.10 of	N1	Use of good site practices to limit noise emissions by considering the following:	All construction sites	V
HKBCFEIA		only well-maintained plant should be operated on-site and plant should be serviced		
		regularly during the construction programme;		
		machines and plant (such as trucks, cranes) that may be in intermittent use should		
		be shut down between work periods or should be throttled down to a minimum;		
		plant known to emit noise strongly in one direction, where possible, be orientated		
		so that the noise is directed away from nearby NSRs;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		silencers or mufflers on construction equipment should be properly fitted and		
		maintained during the construction works;		
		mobile plant should be sited as far away from NSRs as possible and practicable;		
		material stockpiles, mobile container site officer and other structures should be		
		effectively utilised, where practicable, to screen noise from on-site construction		
		activities.		
S6.4.11 of	N2	Install temporary hoarding located on the site boundaries between noisy construction	All construction sites	V
HKBCFEIA		activities and NSRs. The conditions of the hoardings shall be properly maintained		
		throughout the construction period.		
S6.4.12 of	N3	Install movable noise barriers (typically density @14kg/m²), acoustic mat or full enclosure	For plant items listed	N/A
HKBCFEIA		close to noisy plants including air compressor, generators, saw.	in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.13 of	N4	Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	For plant items listed	V
HKBCFEIA			in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.14 of	N5	Sequencing operation of construction plants where practicable.	All construction sites	V
HKBCFEIA			where practicable	
S5.1 of	N6	Implement a noise monitoring under EM&A programme.	Selected	V
TMCLKLEIA			representative noise	

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
			monitoring station	
Waste Manag	ement (Constr			
S12.6 of	WM1	The Contractor shall identify a coordinator for the management of waste.	All construction sites	V
TMCLKLEIA			All construction sites	
S12.6 of	WM2	The Contractor shall apply for and obtain the appropriate licenses for the disposal of	All construction sites	V
TMCLKLEIA		public fill, chemical waste and effluent discharges.	All construction sites	
S12.6 of	WM3	EM&A of waste handling, storage, transportation, disposal procedures and		V
TMCLKLEIA		documentation through the site audit programme shall be undertaken.	All construction sites	
S8.3.8 of	WM4	Construction and Demolition Material		V
HKBCFEIA		The following mitigation measures should be implemented in handling the waste:		
and S12.6 of		Maintain temporary stockpiles and reuse excavated fill material for backfilling and		
TMCLKLEIA		reinstatement;		
		Carry out on-site sorting;		
		, ,	All construction sites	
		Make provisions in the Contract documents to allow and promote the use of	7 til Gorioti dollori Sites	
		recycled aggregates where appropriate;		
		Adopt 'Selective Demolition' technique to demolish the existing structures and		
		facilities with a view to recovering broken concrete effectively for recycling purpose,		
		where possible;		
		Implement a trip-ticket system for each works contract to ensure that the disposal of		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		C&D materials are properly documented and verified;		
		Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No.		
		19/2005 – "Environmental Management on Construction Sites" to encourage on-site		
		sorting of C&D materials and to minimize their generation during the course of		
		construction;		
		In addition, disposal of the C&D materials onto any sensitive locations such as		
		agricultural lands, etc. should be avoided. The Contractor shall propose the final		
		disposal sites to the Project Proponent and get its approval before implementation;		
		and		
		The surplus surcharge should be transferred to a fill bank.		
S8.3.9-	WM5	C&D Waste	All construction sites	V
S8.3.11 of		Standard formwork or pre-fabrication should be used as far as practicable in order to		
HKBCFEIA		minimise the arising of C&D materials. The use of more durable formwork or plastic		
and S12.6 of		facing for the construction works should be considered. Use of wooden hoardings		
TMCLKLEIA		should not be used, as in other projects. Metal hoarding and falsework should		
		be used to enhance the possibility of recycling. The purchasing of construction		
		materials will be carefully planned in order to avoid over ordering and wastage.		
		The Contractor should recycle as much of the C&D materials as possible on-site.		
		Public fill and C&D waste should be segregated and stored in different containers or		
		skips to enhance reuse or recycling of materials and their proper disposal. Where		
		practicable, concrete and masonry can be crushed and used as fill. Steel		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		reinforcement bar can be used by scrap steel mills. Different areas of the sites		
		should be considered for such segregation and storage.		
S8.2.12- S8.3.15 of HKBCFEIA and S12.6 of TMCLKLEIA	WM6	 Chemical Waste Chemical Waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation. The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated. 	All construction sites	V
		Disposal of chemical waste should be via a licensed waste collector; be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre		
		which also offers a chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD.		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
\$8.3.16 of	WM7	<u>Sewage</u>	All construction sites	V
HKBCFEIA and S12.6 of TMCLKLEIA		 Adequate numbers of portable toilets should be provided for the workers. The portable toilets should be maintained in a state, which will not deter the workers from utilizing these portable toilets. Night soil should be collected by licensed collectors regularly. 		
S8.3.17 of HKBCFEIA and S12.6 of TMCLKLEIA	WM8	 The site and surroundings shall be kept tidy and litter free. General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible. Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be considered by the Contractor. In addition, waste separation facilities for paper, aluminum cans, plastic bottles etc., should be provided. 	All construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including reduction, reuse and recycling of wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By-laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. All waste containers shall be in a secure area on hardstanding. 		
Water Quality	W1	, 	During filling	V
	VV I	Mitigation during the marine works to reduce impacts to within acceptable levels have been recommended and will comprise a series of measures that restrict the method and	Daming mining	·
		sequencing of backfilling, as well as protection measures. Details of the measures are		
		provided below:		
		Reclamation filling for the Project shall not proceed until at least 200m of leading		
		seawall at the reclamation area formed above +2.2mPD, unless otherwise		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		agreement was obtained from EPD, except for the 300m gaps for marine access. All underwater filling works shall be carried out behind seawalls to avoid dispersion of suspended solids outside the Project limit;		
		 Except for the filling of the cellular structures, not more than 15% public fill shall be used for reclamation filling below +2.5mPD during construction of the seawall; After the seawall is completed except for the 300m marine access as indicated in the EPs, not more than 30% public fill shall be used for reclamation filling below +2.5mPD, unless otherwise agreement from EPD was obtained; Upon completion of 200m leading seawall, no more than a total of 60 filling barge trips per day shall be made with a cumulative maximum daily filling rate of 60,000 m3 for HKBCF and TMCLKL southern landfall reclamation during the filling operation; and Upon completion of the whole section of seawall except for the 300m marine access 		
		 as indicated in the EPs, no more than a total of 190 filling barge trips per day shall be made with a cumulative maximum daily filling rate of 190,000 m3 for the remaining filling operations for HKBCF and TMCLKL southern landfall reclamation. Floating type perimeter silt curtains shall be around the HKBCF site before the commencement of marine works. Staggered layers of silt curtain shall be provided to prevent sediment loss at navigation accesses. The length of each staggered layers shall be at least 200m; 		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 Single layer silt curtain to be applied around the North-east airport water intake; The silt-curtains should be maintained in good condition to ensure the sediment plume generated from filling be confined effectively within the site boundary; The filling works shall be scheduled to spread the works evenly over a working day; Cellular structure shall be used for seawall construction; A layer of geotextile shall be placed on top of the seabed before any filling activities take place inside the cellular structures to form the seawall; The conveyor belts shall be fitted with windboards and conveyor release points shall be covered with curtain to prevent any spillage of filling materials onto the surrounding waters; and An additional layer of silt curtain shall be installed near the active stone column installation points. A layer of geotextile with stone blanket on top shall be placed on 		
S9.11.1.3 of HKBCFEIA and S6.10 of TMCLKLEIA	W2	the seabed prior to stone column installation works. Land Works General construction activities on land should also be governed by standard good working practice. Specific measures to be written into the works contracts should include: • wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters;	All land-based construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		sewage effluent and discharges from on-site kitchen facilities shall be		
		directed to Government sewer in accordance with the requirements of the WPCO		
		or collected for disposal offsite. The use of soakaways shall be avoided;		
		storm drainage shall be directed to storm drains via adequately designed sand/silt		
		removal facilities such as sand traps, silt traps and sediment basins. Channels,		
		earth bunds or sand bag barriers should be provided on site to properly direct		
		stormwater to such silt removal facilities. Catchpits and perimeter channels should		
		be constructed in advance of site formation works and earthworks;		
		silt removal facilities, channels and manholes shall be maintained and any		
		deposited silt and grit shall be removed regularly, including specifically at		
		the onset of and after each rainstorm;		
		temporary access roads should be surfaced with crushed stone or gravel;		
		rainwater pumped out from trenches or foundation excavations should be		
		discharged into storm drains via silt removal facilities;		
		measures should be taken to prevent the washout of construction materials, soil, silt		
		or debris into any drainage system;		
		open stockpiles of construction materials (e.g. aggregates and sand) on site should		
		be covered with tarpaulin or similar fabric during rainstorms;		
		manholes (including any newly constructed ones) should always be adequately		

Appendix C EMIS 14 Aug 2014

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		covered and temporarily sealed so as to prevent silt, construction materials or debris		
		from getting into the drainage system, and to prevent storm run-off from		
		getting into foul sewers;		
		discharges of surface run-off into foul sewers must always be prevented in order		
		not to unduly overload the foul sewerage system;		
		all vehicles and plant should be cleaned before they leave the construction site to		
		ensure that no earth, mud or debris is deposited by them on roads. A wheel washing		
		bay should be provided at every site exit;		
		wheel wash overflow shall be directed to silt removal facilities before being		
		discharged to the storm drain;		
		the section of construction road between the wheel washing bay and the public road		
		should be surfaced with crushed stone or coarse gravel;		
		wastewater generated from concreting, plastering, internal decoration, cleaning		
		work and other similar activities, shall be screened to remove large objects;		
		vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be		
		located under roofed areas. The drainage in these covered areas shall be connected		
		to foul sewers via a petrol interceptor in accordance with the requirements of the		
		WPCO or collected for offsite disposal;		
		the contractors shall prepare an oil / chemical cleanup plan and ensure that leakages		
		or spillages are contained and cleaned up immediately;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance; all fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank; and surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the storm water system 		
S9.14 of HKBCFEIA and S6.10 of TMCLKLEIA	W3	Implement a water quality monitoring programme	At identified monitoring location	V
S6.10 of TMCLKLEIA	W4	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All construction site areas	V
Ecology (Cons	struction Phas	e)		
S10.7 of HKBCFEIA and S8.14 of TMCLKLEIA	E1	 Install silt curtain during the construction Limit works fronts Construct seawall prior to reclamation filling where practicable Good site practices Strict enforcement of no marine dumping 	Seawall, reclamation area	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Site runoff control		
		Spill response plan		
S10.7 of	E2	Watering to reduce dust generation; prevention of siltation of freshwater habitats; Site	Land-based works	V
HKBCFEIA		runoff should be desilted, to reduce the potential for suspended sediments, organics	areas	
		and other contaminants to enter streams and standing freshwater.		
S10.7 of	E3	Good site practices, including strictly following the permitted works hours, using	Land-based works	V
HKBCFEIA		quieter machines where practicable, and avoiding excessive lightings during night	areas	
and S8.14 of		time.		
TMCLKLEIA				
S10.7 of	E4	Dolphin Exclusion Zone	Marine works	V
HKBCFEIA		Dolphin watching plan		
and S8.14 of				
TMCLKLEIA				
S10.7 of	E5	Decouple compressors and other equipment on working vessels	Marine works	V
HKBCFEIA		Proposal on design and implementation of acoustic decoupling measures applied		
and S8.14 of		during reclamation works		
TMCLKLEIA		Avoidance of percussive piling		
S10.7 of	E6	Control vessel speed	Marine traffic	V
HKBCFEIA		Skipper training		
and S8.14 of		Predefined and regular routes for working vessels; avoid Brothers Islands		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA				
S10.10 of	E7	Vessel based dolphin monitoring	Northeast and	V
HKBCFEIA			Northwest	
and S8.14 of			Lantau	
TMCLKLEIA				
Fisheries				
S11.7 of	F1	Reduce re-suspension of sediments	Seawall, reclamation	V
HKBCFEIA		Limit works fronts	area	
		Good site practices		
		Strict enforcement of no marine dumping		
		Spill response plan		
S11.7 of	F2	Install silt-grease trap in the drainage system collecting surface runoff	Reclamation area	V
HKBCFEIA				
Landscape &	Visual (Constr	uction Phase)		
S14.3.3. 3 of	LV1	Mitigate Landscape Impacts	All construction site	N/A
HKBCFEIA			areas	
and S10.9 of		G1/CM4 Grass-hydroseed or sheeting bare soil surface and stock pile areas.		
TMCLKLEIA		G9 Reserve of loose natural granite rocks for re-use. Provide new coastline to		
		adopt "natural-look" by means of using armour rocks in the form of natural		
		rock materials and planting strip area accommodating screen buffer to		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		enhance "natural-look" of new coastline.		
S10.9 of	LV2	Mitigate Landscape Impacts	All construction site	V
TMCLKLEIA		CM7 Ensure no run-off into water body adjacent to the Project Area.	areas	
S14.3.3. 3 of	LV4	Mitigate Visual Impacts	All construction site	V
HKBCFEIA		V1 Minimize time for construction activities during construction period.	areas	
S10.9 of	LV5	Mitigate Visual Impacts	All construction site	V
TMCLKLEIA		CM6 Control night-time lighting and glare by hooding all lights.	areas	
EM&A	I			
S15.2.2 of	EM1	An Independent Environmental Checker needs to be employed as per the EM&A	All construction site	V
HKBCFEIA		Manual.	areas	
S15.5 - S15.6	EM2	An Environmental Team needs to be employed as per the EM&A Manual.	All construction site	V
of HKBCFEIA		Prepare a systematic Environmental Management Plan to ensure effective	areas	
		implementation of the mitigation measures.		
		An environmental impact monitoring needs to be implementing by the		
		Environmental Team to ensure all the requirements given in the EM&A Manual are		
		fully complied with.		

Legend: V = implemented;

x = not implemented;

N/A = not applicable

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Cal. Date:			MS2)	Operator:		Cheung Hung Wai 6-Aug-14 3383	
	6-Jun-14	_		Next Due Date:			
equipment No.:	A-001-78T	,		Serial No	338	33	
			Ambient	Condition			
Temperatu	re, Ta (K)	301	Pressure, F	Pa (mmHg)		753.8	
			Orifice Transfer S	tandard Informatio	n		
Serial	No:	988	Slope, mc	1.97518	Interce	ept, bc	-0.0100
Last Calibra		28-May-14		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra		28-May-15			Pa/760) x (298/Ta)] ¹		
Next Calibra	ation Date.		-		, , , , , , , , , , , , , , , , , , , ,		
			Calibration of	of TSP Sampler			
		C	rfice		HVS	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7)	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF	
18	9.0		2.97	1.51	47.0	46.57	7
13	7.5		2.71	1.38	44.0	43.60)
10	5.8		2.39	1.21	38.0	37.66	
7	4.1		2.01	1.02	31.0	30.72	
5	2.8		1.66	0.84	26.0	25.76	
Slope , mw = Correlation Coe	assion of Y on X 32.3561 Ifficient* = Defficient < 0.990,		9960 brate.	Intercept, bw =	-1.7	572	-
Slope , mw = Correlation Coe	32.3561 fficient* =		brate.	Intercept, bw =	-1.7	572	-
Slope , mw = Correlation Coe *If Correlation Co	32.3561 •fficient* = pefficient < 0.990,	check and recali	brate. Set Point	_	-1.7	572	-
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	32.3561 fficient* =	check and recali	Set Point 1.30m³/min	_	-1.7	572	-
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	32.3561 efficient* = cefficient < 0.990,	check and recali urve, take Qstd = e "Y" value accor	Set Point 1.30m³/min ding to	t Calculation		572	-
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	32.3561 efficient* = cefficient < 0.990,	check and recali urve, take Qstd = e "Y" value accor	Set Point 1.30m³/min ding to	_		572	-
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi From the Regres	32.3561 officient* = perficient < 0.990, eld Calibration Cussion Equation, the	check and recali urve, take Qstd = e "Y" value accor	Set Point 1.30m³/min ding to	t Calculation x [(Pa/760) x (298/		40.67	-
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	32.3561 efficient* = cefficient < 0.990,	check and recali urve, take Qstd = e "Y" value accor	Set Point 1.30m³/min ding to	t Calculation		572	-

AECOM Asia Company Limited

AI	-60	IVI AS	sia U	omp	ally	LIIIII	lea
	TSF	Hig	h Vo	lume	Sa	mple	r
	Fie	eld C	alibi	ratior	n Re	port	_

			ielu Calibi	ation repor	<u>.</u>		
	O'' D	Site Office (WA2)	AMS3B	0	1	('Ti	
Station		Site Office (WA2)	(AMS3A) N	Operator:	Leung Y		
Cal. Date:	30-May-14	_	U	Next Due Date:	30-Ju		
Equipment No.:	A-001-79T			Serial No.	33	84	
			Ambient	Condition			
Temperatu	ire, Ta (K)	302	Pressure,	Pa (mmHg)		754.3	
	. , , _ 1			`			
		C	rifice Transfer S	tandard Informatio	n		
Seria	Serial No: 988			1.97518	Interce	ept, bc	-0.01001
Last Calibra	ation Date:	28-May-14		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibr	ation Date:	28-May-15		Qstd = {[DH x (I	Pa/760) x (298/Ta)]	^{1/2} -bc} / mc	
			=				
			Calibration	of TSP Sampler			
		0	rfice		HV	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m³/min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFM	
18	8.5		2.89	1.47	49.0	48.49	
13	7.0		2.62	1.33	41.0	40.57	
10	5.2		2.26	1.15	34.0	33.65	
7	4.0		1.98	1.01	28.0	27.71	
5	2.5	1	1.56	0.80	19.0	18.80	
Slope , mw = Correlation Coe	-		958	Intercept, bw =	-16.0	0231	
'If Correlation Co	oefficient < 0.990,	check and recalib	orate.				
			Set Point	Calculation			
From the TSP Fi	ield Calibration Cu	ırve, take Qstd = '	1.30m³/min				
From the Regres	ssion Equation, the	e "Y" value accord	ling to				
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}		
				410		C.	
Therefore, Set P	Point; IC = (mw x	Qstd + bw) x [(76	60 / Pa) x (Ta / 2	98)]1/2=		40.79	
Remarks:							

D:\HVS Calibration Certificate (Existing)\	16
--	----

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station Hong Kong SkyCity Marriott Ho			I (AMS7)	Operator:	Cheung F	-	
Cal. Date:	6-Jun-14	_		Next Due Date:			
equipment No.:	A-001-80T	Serial No			3385		
		,	Ambient	Condition			
Temperatu	re, Ta (K)	301	Pressure, I	Pa (mmHg)		753.8	
			Orifice Transfer S	tandard Informatio	on		
Serial	No:	988	Slope, mc	1.97518	Intercept, bc		
Last Calibra	ation Date:	28-May-14		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	28-May-15		Qstd = {[DH x (Pa/760) x (298/Ta)]	1/2 -bc} / mc	
			Calibration	of TSP Sampler			
		(Orfice	or Tor Sampler	HVS	S Flow Recorder	
Resistance		Τ `		1 0			
Plate No.	DH (orifice), in. of water	[DH x (Pa/7	'60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFI	
18	7.7		2.75	1.40	47.0	46.57	
13	6.5		2.53	1.28	42.0	41.62	!
10	5.1		2.24	1.14	33.0	32.70	
7	4.0		1.98	1.01	27.0	26.76	
5	3.1		1.74	0.89	22.0	21.80	
By Linear Regre Blope , mw = Correlation Coe	ssion of Y on X 49.9069	_	.9954	Intercept, bw =	-23.1	1661	_
	-						
ir Correlation Co	efficient < 0.990,	check and recal	ibrate.				
			Set Point	Calculation			
rom the TSP Fie	eld Calibration Cu	rve, take Qstd =	1.30m ³ /min				
rom the Regress	sion Equation, the	e "Y" value accor	rding to				
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Га)] ^{1/2}		
herefore Set Po	oint: IC = (mw x (Ostd + bw) x [(7	'60 / Pa) x (Ta / 29	98)1 ^{1/2} =		42.09	
110101010, 00111	om, ro (min x	2010 211 / 1/ ()	307, a / x (7a / 20	· /1	-	42.00	-
Remarks:							
				· ,		1 .1	1
QC Reviewer:	WS C	MAN	Signature:	#1		Date: 6/6	114

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - M Operator		Rootsmeter Orifice I.I		438320 0988	Ta (K) - Pa (mm) -	296 - 751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3790 0.9720 0.8690 0.8260 0.6830	3.2 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd (x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9917 0.7191 0.9875 1.0159 0.9854 1.1339 0.9843 1.1916 0.9790 1.4333	1.4113 1.9959 2.2315 2.3405 2.8227	0.9957 0.9915 0.9894 0.9883 0.9829	0.7221 1.0201 1.1385 1.1965 1.4392	0.8874 1.2549 1.4030 1.4715 1.7747
Qstd slope (m) = intercept (b) = coefficient (r) =	1.97518 -0.01001 0.99998	Qa slope intercept coefficie	t (b) =	1.23683 -0.00630 0.99998
y axis = SQRT[H2O(H	SQRT[H20(Га/Ра)]		

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Type:			2)	Laser Du	st Moni	tor		
	acturer/Brand:			SIBATA				
Model	No.:		_	LD-3				
	ment No.:			A.005.07				
Sensit	ivity Adjustment	Scale Setting:		557 CPI	/			
Opera	tor:			Mike She	k (MSKN	1)		
Standa	rd Equipment							
	Addition of the Control of the Contr							
Equip		Rupprech		the same of the sa				
Venue		Cyberpor		ring Seco	naary So	chool)		
Model		Series 14		A D 240 0 0	20002			
Serial	NO:	Control:		DAB21989	-	V . 40500		
Last C	alibration Date*:	Sensor: 10 May 2		00C14365	9803	K _o : <u>12500</u>		
Last	anbration bate .	_ TO May 2	014		-		****	
*Remar	ks: Recommend	ed interval for h	ardwar	e calibrat	ion is 1 y	/ear		
Calibra	tion Result							
0	: : . A . P	01-0-4		0 . !!! !!		557 00		
	ivity Adjustment					557 CP		
Sensit	ivity Adjustment	Scale Setting (7	Affer Ca	alibration)	1.	_557 CP	IVI	
Hour	Date	Time		Amb	ient	Concentration	Total	Count/
100000000000000000000000000000000000000	(dd-mm-yy)	(10.00000000000000000000000000000000000		Cond		(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis	ACTION COMPANIES OF THE	X-axis
				(°C)	(%)			
1	11-05-14		10:30	26.7	75	0.04434	1775	29.58
2	11-05-14		11:30	26.7	75	0.04716	1880	31.33
3	11-05-14		12:30	26.8	76	0.04927	1964	32.73
4	11-05-14		13:30	26.8	75	0.05035	2015	33.58
Note:		lata was measu				shnick TEOM®		
		was logged by						
	3. Count/minut	te was calculate	ea by (I	otal Coul	11/60)			
By Line	ar Regression of	Y or X						
	(K-factor):		015					
	ation coefficient:		982					
V / P P:				0.45				
Validit	y of Calibration F	Record: 11	May 20	015				
DI								
Remark	is:							
					1./			
QC Re	eviewer: YW F	ung	Signat	ture:	9/	Date	: 12 Ma	y 2014

Model N Equipme	ent No.: ity Adjustment	Scale Setting:	-	Laser Do SIBATA LD-3 A.005.08 702 CP	Ba M			
•		4-2		WING OTT	ok (MON		35 HH-1	
Standard	Equipment							
Equipme Venue: Model N	lo.:	Rupprech Cyberpor Series 14	t (Pui ` 100AB	Ying Seco	ondary S			
Serial N	0:	Control: Sensor:	-	0AB2198 00C1436		K _o : 128	500	
Last Cal	libration Date*:	10 May 2		0001430	39003	No. 120	500	
*Remarks	: Recommend	ed interval for h	ardwa	re calibra	ation is 1	year		
Calibratio	on Result						4 S. MAR.	
		Scale Setting (E Scale Setting (A				702 702	CPM CPM	
Hour	Date (dd-mm-yy)	Time		Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	11-05-14	09:45 - 1	0:45	26.7	75	0.04568	1713	28.50
2	11-05-14	10:45 - 1	1:45	26.7	75	0.04857	1819	30.32
3	11-05-14		2:45	26.8	76	0.05063	1903	31.72
4	11-05-14	//5//	3:45	26.8	75	0.05116	1922	32.03
	Total Count Count/minut	was logged by e was calculate	Laser	Dust Mor	nitor	tashnick TEOM [®]		
	Regression of							
	<pre><-factor):</pre>		0016					
	tion coefficient: of Calibration F		984 May 2	015				
Remarks	:			1				
QC Rev	riewer: <u>YW</u> F	-ung	Signa	iture:	4/		Date: 12	2 May 2014

Model Equipr Sensit Opera	ment No.: ivity Adjustment	Scale Setting:		Laser Du SIBATA LD-3 A.005.09a 797 CPM Mike She	a 1			
Equipr			Rupprecht & Patashnick TEOM® Cyberport (Pui Ying Secondary School)					
Venue				ing Seco	ndary Sc	nooi)		
Model		Series 140		A D24000	0000			
Serial	No:	Control:		AB21989		K _o : 12500		- 10-1 00
1 4 0	alibuatian Data*.	Sensor:		0C14365	9803	K _o : <u>12500</u>		
Last C	Calibration Date*:	10 May 20)14					
*Remar	ks: Recommend	ed interval for ha	ardwar	e calibrat	ion is 1 y	/ear		
Calibra	tion Result	all and a second						
	ivity Adjustment ivity Adjustment					797 CP 797 CP		
Hour	Date	Time		Amb	ient	Concentration ¹	Total	Count/
l loui	(dd-mm-yy)			Conc		(mg/m ³)	Count ²	Minute ³
	(44)))			Temp	R.H.	Y-axis		X-axis
				(°C)	(%)	3 700000000		
1	11-05-14	13:30 - 1	4:30	26.8	75	0.05034	2017	33.62
2	11-05-14	14:30 - 1	15:30	26.9	76	0.05211	2084	34.73
3	11-05-14	15:30 - 1	16:30	26.9	76	0.05163	2066	34.43
4	11-05-14			26.9	76	0.05272	2113	35.22
By Line Slope Corre	Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0015 Correlation coefficient: 0.9965 Validity of Calibration Record: 11 May 2015							
		Fung	Signa	ture:	9/	Date	e: 12 Ma	ay 2014

Model Equipr	acturer/Brand: No.: nent No.: ivity Adjustment	Scale Setti		Laser Du SIBATA LD-3 A.005.10 753 CPN	а	tor		
Opera	•		_	Mike She	600 0000 000	1)		
Standar	rd Equipment			****				
Equipment: Rupprecht & Pa Venue: Cyberport (Pui Model No.: Series 1400AB				ing Seco	ndary So	chool)		
	Serial No: Control: 140AB219899803 Sensor: 1200C143659803 K _o : 12500 Last Calibration Date*: 10 May 2014							
*Remarl	*Remarks: Recommended interval for hardware calibration is 1 year							
Calibra	tion Result							
	ivity Adjustment ivity Adjustment		• ,				CPM CPM	
Hour	Date (dd-mm-yy)	Ti	me	Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	11-05-14	13:45	- 14:45	26.8	75	0.04984	1996	33.27
2	11-05-14		- 15:45	26.9	76	0.05196	2077	34.62
3	11-05-14	15:45	- 16:45	26.9	76	0.05141	2055	34.25
4	11-05-14		- 17:45	26.9	76	0.05263	2109	35.15
By Linea Slope Correl	Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0015 Correlation coefficient: 0.9969 Validity of Calibration Record: 11 May 2015							
Siliain			2					
QC Re	eviewer: YW F	ung	_ Signa	ture:	4/	Da	ate: 12 Ma	y 2014

Model Equipr Sensit Opera	ment No.: ivity Adjustment	Scale Setting	g: _	Laser Du SIBATA LD-3 A.005.11 799 CPI Mike She	а И			
	(New York)	_						
Equipment: Rupprecht & Patashnick TEOM® Venue: Cyberport (Pui Ying Secondary School)						HE 17		
Venue				ring Seco	ndary So	chool)		
Model	46 NTHE		1400AB	0400400	20000			
Serial	NO:	Contro		DAB21989		V . 40500		
Loot C	alibration Data*	Senso		00C1436	9803	K _o : <u>12500</u>	,	
Last C	Last Calibration Date*: 10 May 2014							
*Remar	ks: Recommend	ed interval fo	or hardwar	re calibra	tion is 1 v	vear		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 00		,		
Calibra	tion Result							
Sensit	ivity Adjustment	Scale Setting	g (Before	Calibratio	n):	799 CF	PM	
Sensit	ivity Adjustment	Scale Setting	g (After Ca	alibration):	799 CF	PM	
Hour	Date	Tim	е	Amb	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)			Cond	dition	(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
				(°C)	(%)			
1	18-05-14	09:00 -	10:00	28.3	77	0.04527	1815	30.25
2	18-05-14	10:00 -	11:00	28.3	77	0.04811	1923	32.05
3	18-05-14	11:00 -	12:00	28.3	77	0.05103	2041	34.02
4	18-05-14	12:00 -	13:00	28.4	77	0.05366	2157	35.95
Note:	 Monitoring of 	lata was mea	asured by	Rupprec	ht & Pata	ashnick TEOM®		R-12
	Total Count	was logged	by Laser [Dust Mon	itor			
	Count/minut	e was calcul	ated by (T	Total Cou	nt/60)			
	ar Regression of							
	(K-factor):	-	0.0015					
Correl	ation coefficient:	_	0.9987					
Validit	y of Calibration F	Record: _	18 May 20	015				
Remark	e.							
Temark	.5.		* 100	TO .				
	400							
	(A)							
QC Re	QC Reviewer: YW Fung Signature: Date: 19 May 2014							

Model Equipm	acturer/Brand: No.: nent No.: vity Adjustment S	Scale Settin		_aser Du SIBATA _D-3B A.005.13a 643 CPN	3	or		
Operator:			_!	Mike She	k (MSKM)		
Standar	d Equipment							
	: No.:	Cyber Series Contro Senso 10 Ma	or: 120 by 2014	ing Seco AB21989 0C14365	ndary Sc 99803 99803	K _o : _12500		
Calibrat	tion Result							
	ivity Adjustment ivity Adjustment					643 CF	PM PM	
Hour	Date (dd-mm-yy)	Tin	ne		dition R.H. (%)	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	18-05-14	09:30 -	10:30	28.3	77	0.04614	1846	30.77
2	18-05-14	10:30 -	11:30	28.3	77	0.04823	1934	32.23
3	18-05-14	11:30 -	12:30	28.3	77	0.05152	2053	34.22
4	18-05-14	12:30 -	13:30	28.4	77	0.05391	2162	36.03
Slope	Monitoring of 2. Total Count 3. Count/minuter Regression of (K-factor): ation coefficient:	was logged te was calcu Y or X	by Laser I	Just Mon	itor	shnick TEOM®		
Validit	y of Calibration I	Record:	18 May 2	015				
Remark	KS:							
OC B	eviewer VW	Funa	Signa	iture:	4/	Da	te: 19 Ma	ay 2014

		а И					
	Mike She	k (MSKN	1)				
1170			***				
Cyberport (Pui Y Series 1400AB Control: 140 Sensor: 120 10 May 2014	/ing Seco 0AB21989 00C14365	99803 99803	K _o : <u>12500</u>				
				200			
Setting (After Ca	alibration)): [*]					
Time	Cond Temp	lition R.H.	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis		
45 - 13:45	28.4	77	0.05027	2158	35.97		
	28.5	76	0.05161	2211	36.85		
	28.5	76	0.05235	2247	37.45		
45 - 16:45	28.4	77	0.05203	2233	37.22		
4 18-05-14 15:45 - 16:45 28.4 77 0.05203 2233 37.22 Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0014 Correlation coefficient: 0.9969 Validity of Calibration Record: 18 May 2015							
	Rupprecht & Pail Cyberport (Pui Y Series 1400AB Control: 140 Sensor: 120 10 May 2014 terval for hardwar e Setting (Before 0 Setting (After Ca Time 45 - 13:45 45 - 14:45 45 - 15:45 45 - 16:45 Vas measured by ogged by Laser Description of the control of the co	Rupprecht & Patashnick Cyberport (Pui Ying Second Series 1400AB	Rupprecht & Patashnick TEOM® Cyberport (Pui Ying Secondary Scotes 1400AB	Cyberport (Pui Ying Secondary School) Series 1400AB Control: 140AB219899803 Sensor: 1200C143659803 K _o : 12500 10 May 2014 Serval for hardware calibration is 1 year Setting (Before Calibration): 786	Rupprecht & Patashnick TEOM® Cyberport (Pui Ying Secondary School)		

綜合試驗有限公司

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

13CA1107 01-02

Page:

of

2

Item tested

Description: Manufacturer: Acoustical Calibrator (Class 1)

Rion Co., Ltd.

Type/Model No.:

NC-73

Serial/Equipment No.:

10307223 / N.004.08

Adaptors used:

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.: Date of receipt:

07-Nov-2013

Date of test:

08-Nov-2013

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	17-Apr-2014	SCL
Preamplifier	B&K 2673	2239857	16-Apr-2014	CEPREI
Measuring amplifier	B&K 2610	2346941	24-Apr-2014	CEPREI
Signal generator	DS 360	61227	15-Apr-2014	CEPREI
Digital multi-meter	34401A	US36087050	10-Dec-2013	CEPREI
Audio analyzer	8903B	GB41300350	15-Apr-2014	CEPREI
Universal counter	53132A	MY40003662	15-Apr-2014	CEPREI

Ambient conditions

Temperature: Relative humidity:

22 ± 1 °C 60 ± 10 %

Air pressure:

1000 ± 10 hPa

Test specifications

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date: 11-Nov-2013

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

13CA1107 01-01

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer:

Rion Co., Ltd.

Rion Co., Ltd.

Type/Model No.:

NL-31

UC-53A

Serial/Equipment No.:

00320528 / N.007.03A

90565

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.:

Date of receipt:

07-Nov-2013

Date of test:

08-Nov-2013

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: B&K 4226 Serial No.

Expiry Date:

Traceable to:

Signal generator Signal generator

DS 360 DS 360 2288444 33873 61227

22-Jun-2014 15-Apr-2014 15-Apr-2014

CIGISMEC CEPREI **CEPREI**

Ambient conditions

Temperature:

22 ± 1 °C 60 ± 10 %

Relative humidity: Air pressure:

1000 ± 10 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of +20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3 between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

Huang Jian Min/Feng Jun Qi

Actual Measurement data are documented on worksheets

Approved Signatory:

Date:

11-Nov-2013

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

恰試驗有限公司

P/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 巷 黃 竹 坑 道 3 7 號 利 達 中 心 地 下 , 9 樓 , 1 2 樓 , 1 3 樓 及 2 0 樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA0305 06-01

Page

of

2

Item tested

Description: Manufacturer: Type/Model No .: Sound Level Meter (Type 1)

N.009.04

B&K

2238

Microphone **B&K**

4188 2250420

Serial/Equipment No.: Adaptors used:

2285692

Item submitted by

Customer Name:

AECOM ASIA CO. LTD.

Address of Customer:

Request No.:

Date of receipt:

05-Mar-2014

Date of test:

07-Mar-2014

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator

Signal generator

Model: B&K 4226

DS 360

DS 360

2288444

33873 61227

Serial No.

Expiry Date:

22-Jun-2014 15-Apr-2014

CIGISMEC **CEPREI** 15-Apr-2014 CEPREI

Traceable to:

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

60 ± 10 % 1000 ± 10 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian Min/Feng Jun Qi

Date:

12-Mar-2014

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Work Order: Date of Issue: HK1414461

19/05/2014

Client:

AECOM ASIA COMPANY LIMITED

Description:

Sonde

Brand Name: Model No.:

YSI 6820 V2

Serial No.:

12D100972

Equipment No.:

W.026.36

Date of Calibration: 13 May, 2014

Date of next Calibration:

13 August, 2014

Parameters:

Conductivity

Method Ref: APHA (20th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	145.8	-0.7
6667	6640	-0.4
12890	12750	-1.1
58670	58200	-0.8
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

-										
	Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)							
	3.66	3.69	+0.03							
	5.85	5.81	-0.04							
	7.65	7.60	-0.05							
		Tolerance Limit (mg/L)	±0.20							

pH Value

Method Ref: APHA (21st edition), 4500H:B

thou itel. All IIA (213t cultion), 13	0011.6	
Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.03	+0.03
7.0	7.05	+0.05
10.0	10.03	+0.03
	Tolerance Limit (pH Unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Mr Fung Lim Chee, General Manager

Work Order:

HK1414461

Date of Issue:

19/05/2014

Client:

AECOM ASIA COMPANY LIMITED

Description:

Sonde

Brand Name: Model No.:

YSI 6820 V2

Serial No.:

12D100972

Equipment No.:

W.026.36

Date of Calibration: 13 May, 2014

Date of next Calibration:

13 August, 2014

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

thou ker. Al IIA (213t cultion), 2320b		
Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.02	22
10	9.94	-0.6
20	19.56	-2.2
30	29.76	-0.8
	Tolerance Limit (%)	±10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
12.5	12.27	0.1
13.5	13.37 25.53	-0.1 +0.0
38.0	38.06	+0.1
	Tolerance Limit (°C)	±2.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	3.9	-2.5
10	9.8	-2.0
20	20.4	+2.0
50	50.5	+1.0
100	101.2	+1.2
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Fung Lim Chee, Richard General Manager -

Work Order:

HK1414464

Date of Issue:

19/05/2014

Client:

AECOM ASIA COMPANY LIMITED

Description:

Sonde

Brand Name: Model No.:

YSI

Serial No.:

6820 V2 12A101545

Equipment No.:

W.026.35

Date of Calibration: 13 May, 2014

Date of next Calibration:

13 August, 2014

Parameters:

Conductivity

Method Ref: APHA (20th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
		. 1000-0100
146.9	147.2	+0.2
6667	6710	+0.6
12890	12710	-1.4
58670	58520	-0.3
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.66	3.70	+0.04
5.85	5.89	+0.04
7.65	7.70	+0.05
	1000000	
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Hethod Ren / R Tist (225t cartion), 1500ths		
Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.01	+0.01
7.0	7.05	+0.05
10.0	9.94	-0.06
	Tolerance Limit (pH Unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Mr Fung Lim Chee General Manager

Work Order: Date of Issue:

HK1414464

19/05/2014

Client:

AECOM ASIA COMPANY LIMITED

Description:

Sonde

Brand Name: Model No.:

YSI

Serial No.:

6820 V2

Equipment No.:

12A101545 W.026.35

Date of Calibration: 13 May, 2014

13 August, 2014

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	22
10	9.68	-3.2
20	19.86	-0.7
30	29.72	-0.9
	Tolerance Limit (%)	±10.0

Date of next Calibration:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
12.5	12.42	0.1
13.5 25.5	13.42 24.40	-0.1 -1.1
38.0	37.66	-0.3
	Tolerance Limit (°C)	±2.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
A		
0	0.0	-
4	4.1	+2.5
10	10.0	0.0
20	19.8	-1.0
50	49.5	-1.0
100	99.6	-0.4
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Fung Lim Chee, Mchard General Manager

Work Order: Date of Issue: HK1421424 23/07/2014

Client:

AECOM ASIA COMPANY LIMITED

Description:

Sonde Environmental Monitoring System

Brand Name:

Model No.: Serial No.:

6820 V1 W.026.09

Equipment No.:

W.026.09

Date of Calibration: 08 July, 2014

Date of next Calibration:

08 October, 2014

Parameters:

Conductivity

Method Ref: APHA (20th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
	907 2008 1 200	
146.9	142.5	-3.0
6667	6651	-0.2
12890	12740	-1.2
58670	58210	-0.8
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.55	3.52	-0.03
5.90	5.88	-0.02
7.75	7.72	-0.03
		9073 0399-000
	Tolerance Limit (mg/L)	±0.20

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)	
0	0.0		
4	4.1	+2.5 +1.0	
10	10.1		
20	20.2	+1.0	
50	50.4	+0.8	
100	100.3	+0.3	
	Tolerance Limit (%)	±10.0	

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard

General Manager/-

Work Order:

HK1421424

Date of Issue:

23/07/2014

Client:

AECOM ASIA COMPANY LIMITED

Description:

Sonde Environmental Monitoring System

Brand Name:

Model No.:

6820 V1

Serial No.:

W.026.09

Equipment No.:

W.026.09

Date of Calibration: 08 July, 2014

Date of next Calibration:

08 October, 2014

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	
0	0.01	L	
10	10.04	+0.4	
20	19.63	-1.9	
30	29.89	-0.4	
	and the second second		
	Tolerance Limit (%)	±10.0	

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
14.0	14.07	+0.1
25.0	25.09	+0.1
39.0	39.04	+0.0
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Mr Fung Lim Chee, Richard General Manager >

Work Order: Date of Issue:

HK1421422

23/07/2014

Client:

AECOM ASIA COMPANY LIMITED

Description:

Sonde Environmental Monitoring System

Brand Name:

Model No.:

6820 V1

Serial No.:

04F11451

Equipment No.:

W.026.31

Date of Calibration: 08 July, 2014

Date of next Calibration:

08 October, 2014

Parameters:

Conductivity

Method Ref: APHA (20th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)	
146.9	150.1	+2.2	
6667	6711	+0.7	
12890	12786	-0.8	
58670	57900	-1.3	
	Tolerance Limit (%)	±10.0	

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	
3.55	3.51	-0.04	
5.90	5.85	-0.05	
7.75	7.69	-0.06	
	Tolerance Limit (mg/L)	±0.20	

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	100
4	4.1	+2.5
10	10.2	+2.0
20	20.2	+1.0
50	50.6	+1.2
100	100.5	+0.5
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Fung Lim Chee, Richard General Manager

Work Order:

HK1421422

Date of Issue:

23/07/2014

Client:

AECOM ASIA COMPANY LIMITED

Description:

Sonde Environmental Monitoring System

Brand Name:

Model No.:

6820 V1

Serial No.: Equipment No.: 04F11451 W.026.31

Date of Calibration: 08 July, 2014

Date of next Calibration:

08 October, 2014

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	
0	0.00		
10	10.02	+0.2	
20	20.04	+0.2	
30	30.01	+0.0	
	5000 pagelore 85		
	Tolerance Limit (%)	±10.0	

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	
14.0	14.11	+0.1	
25.0	25.06	+0.1	
39.0	38.95	-0.0	
	Tolerance Limit (°C)	±2.0	

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)		
	-			
4.0	4.05	+0.05		
7.0	7.03	+0.03		
10.0	9.95	-0.05		
	Tolerance Limit (pH Unit)	±0.20		

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Fung Lim Chee, Richard General Manager -

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

Hong Kong Boundary Crossing Facilities – Reclamation Works Impact Monitoring Schedule for July 2014

Sunday	Monday	Tuesday	Wednesday		Thursday	Friday	Saturday
		1-Jul		2-Jul	3-Jul	4-J	ıl 5-Jul
			Mid-Flood Mid-Ebb	9:10 15:59		Mid-Flood 10:4 Mid-Ebb 17:1	
			24-hour TSP 1-hour TSP Noise				
	7-Ju	l 8-Jul		9-Jul	10-Jul	11-J	ul 12-Jul
	Mid-Ebb 8:38 Mid-Flood 14:57 24-hour TSP 1-hour TSP Noise		Mid-Ebb Mid-Flood	10:28 17:32		Mid-Ebb 12:0 Mid-Flood 19:1	
	14-Ju	l 15-Jul		16-Jul	17-Jul	18-J	ul 19-Jul
	Mid-Flood 7:33 Mid-Ebb 14:2° Dolphin Monitoring	2	Mid-Flood Mid-Ebb	9:17 15:54	24-hour TSP	Mid-Flood 11:3 Mid-Ebb 17:3	1
	21-Ju	l 22-Jul		23-Jul	24-Jul	25-J	ul 26-Jul
	Mid-Ebb 9:07 Mid-Flood 15:42		Mid-Ebb Mid-Flood 24-hour TSP	10:57 18:04		Mid-Ebb 12: Mid-Flood 19:1	
			1-hour TSP				
	28-Ju	l 29-Jul	Noise	30-Jul	31-Jul		
	Mid-Flood 7:07 Mid-Ebb 14:00	24-hour TSP 1-hour TSP Noise	Mid-Flood Mid-Ebb	8:21 15:01			
		Dolphin Monitoring			Dolphin Monitoring		

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix F Schedule April 2014

Hong Kong Boundary Crossing Facilities – Reclamation Works Tentative Impact Water Quality Monitoring Schedule for August 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Aug	2-Aug
					Mid-Flood 9:39 Mid-Ebb 16:03	
3-Aug	4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug
, and the second	Mid-Flood 12:54 Mid-Ebb 18:36 24-hour TSP 1-hour TSP Noise Dolphin Monitoring		Mid-Ebb 8:58 Mid-Flood 16:20	Dolphin Monitoring	Mid-Ebb 10:55 Mid-Flood 18:12	24-hour TSP 1-hour TSP
10-Aug	11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug
	Mid-Flood 6:35 Mid-Ebb 13:19		Mid-Flood 8:18 Mid-Ebb 14:48		Mid-Flood 10:06 Mid-Ebb 16:13 24-hour TSP 1-hour TSP Noise	
17-Aug	18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug
	Mid-Ebb 7:11 Mid-Flood 13:50		Mid-Ebb 9:41 Mid-Ebb 17:11	1-hour TSP Noise	Mid-Ebb 11:18 Mid-Flood 18:21	
24-Aug	25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug
	Mid-Ebb 13:04 Mid-Flood 19:36 Dolphin Monitoring	Dolphin Monitoring	Mid-Flood 7:34 Mid-Ebb 14:05 24-hour TSP 1-hour TSP Noise		Mid-Flood 8:49 Mid-Ebb 15:04	

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix F Schedule April 2014

Appendix G Impact Air Quality Monitoring Results

1-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Date	Session	Weather Condition	averaged Wind Speed (m/s)*	Time (hh:mm)	Conc. (µg/m³)	Actino Level (µg/m³)	Limit Level (µg/m³)
2-Jul-14	1st Hour	Sunny	1.2	10:20	78	374	500
2-Jul-14	2nd Hour	Sunny	0.7	11:20	78	374	500
2-Jul-14	3rd Hour	Sunny	0.1	12:20	76	374	500
7-Jul-14	1st Hour	Fine	0.2	9:55	70	374	500
7-Jul-14	2nd Hour	Fine	0.6	10:55	70	374	500
7-Jul-14	3rd Hour	Fine	0.3	11:55	72	374	500
12-Jul-14	1st Hour	Sunny	1.7	11:40	82	374	500
12-Jul-14	2nd Hour	Sunny	0.1	12:40	82	374	500
12-Jul-14	3rd Hour	Sunny	1.0	13:40	84	374	500
17-Jul-14	1st Hour	Cloudy	2.9	12:10	81	374	500
17-Jul-14	2nd Hour	Cloudy	1.6	13:10	80	374	500
17-Jul-14	3rd Hour	Cloudy	4.3	14:10	82	374	500
23-Jul-14	1st Hour	Sunny	2.7	10:05	89	374	500
23-Jul-14	2nd Hour	Sunny	1.5	11:05	89	374	500
23-Jul-14	3rd Hour	Sunny	1.9	12:05	87	374	500
29-Jul-14	1st Hour	Sunny	0.2	10:22	73	374	500
29-Jul-14	2nd Hour	Sunny	0.2	11:22	74	374	500
29-Jul-14	3rd Hour	Sunny	0.2	12:22	75	374	500
	•	•		Average	79		
				Min	70		
				Max	89		

1-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

Date	Session	Weather Condition	averaged Wind Speed (m/s)*	Time (hh:mm)	Conc. (µg/m³)	Actino Level (µg/m³) ^	Limit Level (µg/m³)
2-Jul-14	1st Hour	Sunny	1.2	10:27	77	368	500
2-Jul-14	2nd Hour	Sunny	0.7	11:27	78	368	500
2-Jul-14	3rd Hour	Sunny	0.1	12:27	76	368	500
7-Jul-14	1st Hour	Fine	0.2	10:05	70	368	500
7-Jul-14	2nd Hour	Fine	0.6	11:05	71	368	500
7-Jul-14	3rd Hour	Fine	0.3	12:05	73	368	500
12-Jul-14	1st Hour	Sunny	1.7	11:55	82	368	500
12-Jul-14	2nd Hour	Sunny	0.1	12:55	84	368	500
12-Jul-14	3rd Hour	Sunny	1.0	13:55	83	368	500
17-Jul-14	1st Hour	Cloudy	2.9	11:30	80	368	500
17-Jul-14	2nd Hour	Cloudy	1.6	12:30	81	368	500
17-Jul-14	3rd Hour	Cloudy	4.3	13:30	81	368	500
23-Jul-14	1st Hour	Sunny	2.7	10:15	87	368	500
23-Jul-14	2nd Hour	Sunny	1.5	11:15	89	368	500
23-Jul-14	3rd Hour	Sunny	1.9	12:15	92	368	500
29-Jul-14	1st Hour	Sunny	0.2	10:13	76	368	500
29-Jul-14	2nd Hour	Sunny	0.2	11:13	74	368	500
29-Jul-14	3rd Hour	Sunny	0.2	12:13	73	368	500
				Average	79		

Min Max 70 92

Remarks:

1-hour TSP Monitoring Results at Station AMS7 - Hong Kong SkyCity Marriott Hotel

		Weather	averaged Wind	Time	Conc.	Actino Level	Limit Level
Date	Session	Condition	Speed (m/s)*	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m ³)
2-Jul-14	1st Hour	Sunny	1.2	10:07	75	370	500
2-Jul-14	2nd Hour	Sunny	0.7	11:07	76	370	500
2-Jul-14	3rd Hour	Sunny	0.1	12:07	79	370	500
7-Jul-14	1st Hour	Fine	0.2	9:40	69	370	500
7-Jul-14	2nd Hour	Fine	0.6	10:40	69	370	500
7-Jul-14	3rd Hour	Fine	0.3	11:40	71	370	500
12-Jul-14	1st Hour	Sunny	1.7	11:30	86	370	500
12-Jul-14	2nd Hour	Sunny	0.1	12:30	84	370	500
12-Jul-14	3rd Hour	Sunny	1.0	13:30	86	370	500
17-Jul-14	1st Hour	Cloudy	2.9	11:48	83	370	500
17-Jul-14	2nd Hour	Cloudy	1.6	12:48	83	370	500
17-Jul-14	3rd Hour	Cloudy	4.3	13:48	82	370	500
23-Jul-14	1st Hour	Sunny	2.7	9:50	84	370	500
23-Jul-14	2nd Hour	Sunny	1.5	10:50	86	370	500
23-Jul-14	3rd Hour	Sunny	1.9	11:50	88	370	500
29-Jul-14	1st Hour	Sunny	0.2	10:06	74	370	500
29-Jul-14	2nd Hour	Sunny	0.2	11:06	75	370	500
29-Jul-14	3rd Hour	Sunny	0.2	12:06	73	370	500

 Average
 79

 Min
 69

 Max
 88

[^] Action Level set out at AMS3 Ho Yu College is adopted.

Appendix G Impact Air Quality Monitoring Results

24-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m³)	(µg/m ³)
2-Jul-14	9:00	3-Jul-14	9:00	Sunny	30.1	1004.4	1.33	1.33	1.33	1912.3	2.7456	2.7896	0.0440	3605.84	3629.84	24.00	23	176	260
7-Jul-14	9:00	8-Jul-14	9:00	Sunny	29.0	1001.9	1.33	1.33	1.33	1912.3	2.7295	2.8047	0.0752	3629.84	3653.84	24.00	39	176	260
11-Jul-14	16:00	12-Jul-14	16:00	Sunny	29.4	1005.2	1.33	1.33	1.33	1912.3	2.6555	2.6844	0.0289	3653.84	3677.84	24.00	78	176	260
17-Jul-14	16:00	18-Jul-14	16:00	Cloudy	29.2	1004.7	1.33	1.33	1.33	1912.3	2.6866	2.7282	0.0416	3677.84	3701.84	24.00	22	176	260
22-Jul-14	16:00	23-Jul-14	16:00	Sunny	29.4	1002.6	1.33	1.33	1.33	1912.3	2.6771	2.7911	0.1140	3701.84	3725.84	24.00	60	176	260
28-Jul-14	16:00	29-Jul-14	16:00	Sunny	29.6	1006.3	1.33	1.33	1.33	1912.3	2.7290	2.7819	0.0529	3725.84	3749.84	24.00	28	176	260
		·		·	·	·		•	•	·		•	·			Average	42		

Min 22 Max 78

24-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

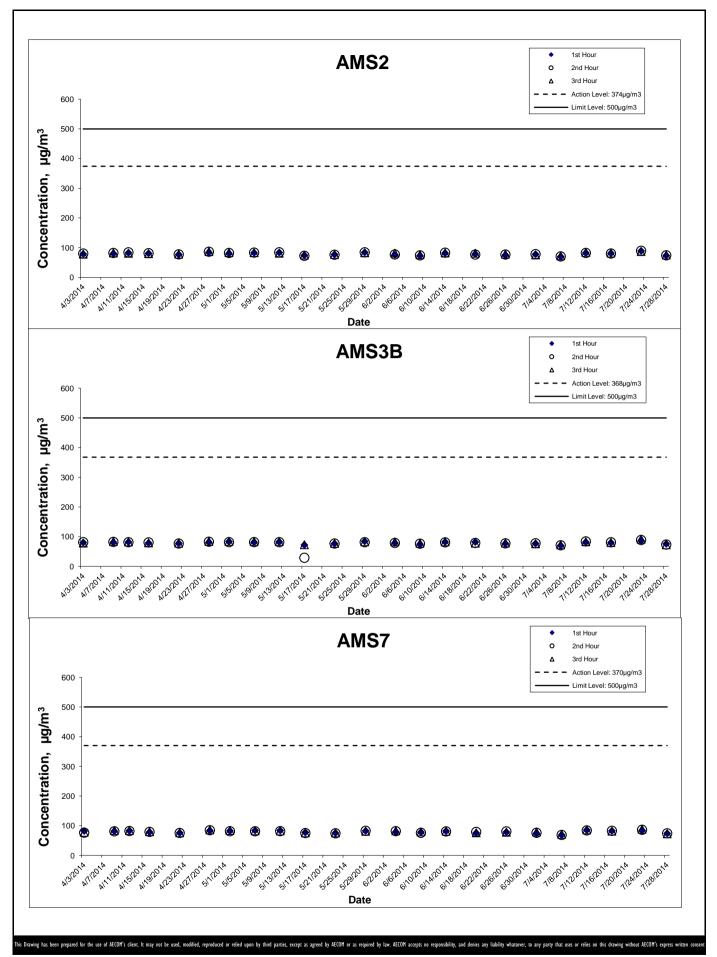
Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m ³)	$(\mu g/m^3)$
2-Jul-14	9:00	3-Jul-14	9:00	Sunny	30.1	1004.4	1.34	1.34	1.34	1923.8	2.7560	2.8000	0.0440	3541.80	3565.80	24.00	23	167	260
7-Jul-14	9:00	8-Jul-14	9:00	Sunny	29.0	1001.9	1.34	1.34	1.34	1923.8	2.7241	2.7989	0.0748	3565.80	3589.80	24.00	39	167	260
11-Jul-14	16:00	12-Jul-14	16:00	Sunny	29.4	1005.2	1.34	1.34	1.34	1923.8	2.6773	2.7051	0.0278	3589.80	3613.80	24.00	123	167	260
17-Jul-14	16:00	18-Jul-14	16:00	Cloudy	29.2	1004.7	1.34	1.34	1.34	1923.8	2.6704	2.8872	0.2168	3613.80	3637.80	24.00	113	167	260
22-Jul-14	16:00	23-Jul-14	16:00	Sunny	29.4	1002.6	1.34	1.34	1.34	1923.8	2.6472	2.8388	0.1916	3637.80	3661.80	24.00	100	167	260
28-Jul-14	16:00	29-Jul-14	16:00	Sunny	29.6	1006.3	1.34	1.34	1.34	1923.8	2.7203	2.7742	0.0539	3661.80	3685.80	24.00	28	167	260
																Average	71		

 Average
 71

 Min
 23

 Max
 123

24-hour TSP Monitoring Results at Station AMS7 - Hong Kong SkyCity Marriott Hotel

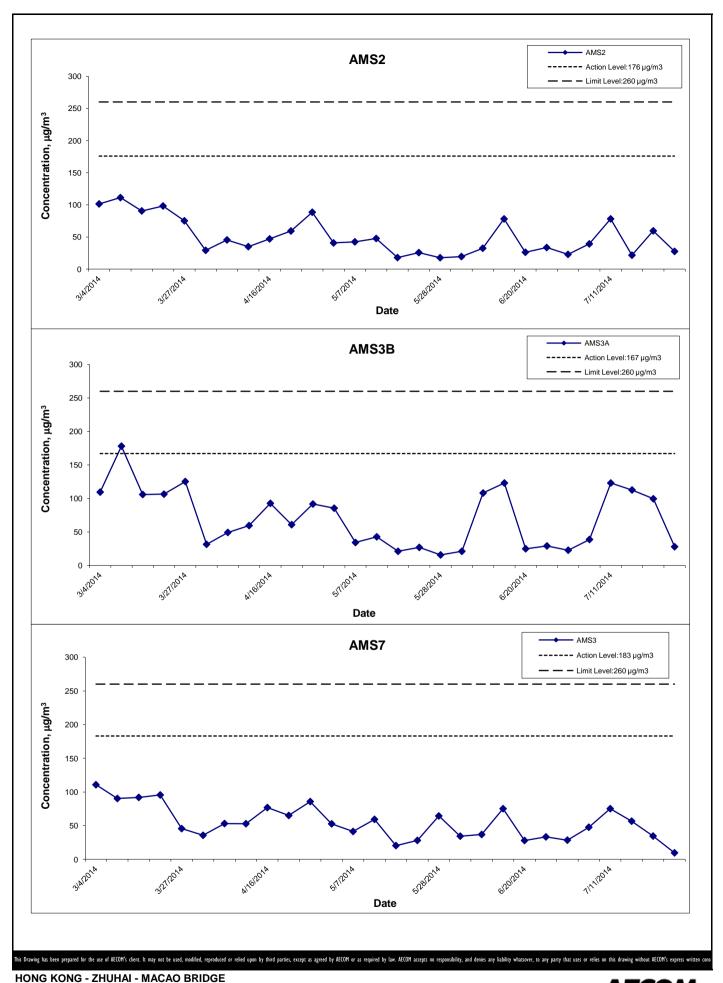

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m³)	(µg/m ³)
2-Jul-14	9:00	3-Jul-14	9:00	Sunny	30.1	1004.4	1.34	1.34	1.34	1925.3	2.7447	2.7995	0.0548	3563.98	3587.98	24.00	28	183	260
7-Jul-14	9:00	8-Jul-14	9:00	Sunny	29.0	1001.9	1.39	1.39	1.39	1997.3	2.7298	2.8250	0.0952	3587.98	3611.98	24.00	48	183	260
11-Jul-14	16:00	12-Jul-14	16:00	Sunny	29.4	1005.2	1.34	1.34	1.34	1925.3	2.6539	2.7044	0.0505	3611.98	3635.98	24.00	75	183	260
17-Jul-14	16:00	18-Jul-14	16:00	Cloudy	29.2	1004.7	1.34	1.35	1.34	1933.2	2.6709	2.7804	0.1095	3635.98	3659.98	24.00	57	183	260
22-Jul-14	16:00	23-Jul-14	16:00	Sunny	29.4	1002.6	1.34	1.34	1.34	1925.3	2.6701	2.7366	0.0665	3659.98	3683.98	24.00	35	183	260
28-Jul-14	16:00	29-Jul-14	16:00	Sunny	29.6	1006.3	1.32	1.32	1.32	1896.5	2.7380	2.7563	0.0183	3683.98	3707.98	24.00	10	183	260
																Augross	E A		=

 Average
 54

 Min
 28

 Max
 75

[^] Action Level set out at AMS3 Ho Yu College is adopted.


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES

AECOM

- RECLAMATION WORKS Graphical Presentation of Impact 1-hour TSP

Monitoring Results

Project No.: 60249820 Date: July 2014 Appendix G

HONG KONG SOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

Graphical Presentation of Impact 24-hour TSP
Monitoring Results

AECOM

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in July 2014

WIND DATA

WIND DATA			
Date	Time	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)
07/02/14 07/02/14	09:00:12 10:00:12	0.24 1.13	60
07/02/14	11:00:12	1.13	238 28
07/02/14	12:00:12	0.67	55
07/02/14	13:00:12	0.14	319
07/02/14	14:00:12	0.11	51
07/02/14	15:00:12	3.48	326
07/02/14	16:00:12	3.12	322
07/02/14	17:00:12	0.97	186
07/02/14	18:00:12	0.18	336
07/02/14	19:00:12	0.46	15
07/02/14	20:00:12	0.32	326
07/02/14	21:00:12	0.38	277
07/02/14	22:00:12	0.25	55
07/02/14	23:00:12	0.34	218
07/03/14	00:00:12	0.15	29
07/03/14	01:00:12	1.34	329
07/03/14	02:00:12	0.52	318
07/03/14	03:00:12	0.13	321
07/03/14	04:00:12	0.46	340
07/03/14	05:00:12	0.22	325
07/03/14	06:00:12	2.11	303
07/03/14	07:00:12	0.77	311
07/03/14	08:00:12	1.57	325
07/03/14	09:00:12	1.43	344
07/07/14	09:00:12	0.17	299
07/07/14	10:00:12	0.21	275
07/07/14	11:00:12	0.63	298
07/07/14	12:00:12	0.25	119
07/07/14	13:00:12	2.07	136
07/07/14 07/07/14	14:00:12	0.15 0.17	137 116
	15:00:12		
07/07/14 07/07/14	16:00:12 17:00:12	0.15 0.20	160 128
07/07/14	18:00:12	0.22	136
07/07/14	19:00:12	0.22	123
07/07/14	20:00:12	0.25	281
07/07/14	21:00:12	0.34	154
07/07/14	22:00:12	0.70	274
07/07/14	23:00:12	0.13	252
07/08/14	00:00:12	0.06	289
07/08/14	01:00:12	0.04	289
07/08/14	02:00:12	0.06	285
07/08/14	03:00:12	0.03	286
07/08/14	04:00:12	0.03	156
07/08/14	05:00:12	0.41	264
07/08/14	06:00:12	0.10	264
07/08/14	07:00:12	0.27	255
07/08/14	08:00:12	0.11	8
07/08/14	09:00:12	1.44	99
07/11/14	16:00:12	0.24	93
07/11/14	17:00:12	0.94	59
07/11/14	18:00:12	0.20	341
07/11/14	19:00:12	0.15	269
07/11/14	20:00:12	0.17	261
07/11/14	21:00:12	0.45	312
07/11/14	22:00:12	0.13	300
07/11/14	23:00:12	0.46	134
07/12/14	00:00:12	0.62	135
07/12/14	01:00:12	0.20	126
07/12/14 07/12/14	02:00:12	0.63	122 163
07/12/14	03:00:12 04:00:12	0.62 0.50	163 355
07/12/14	05:00:12	1.13	273
07/12/14	06:00:12	0.18	275
07/12/14	07:00:12	0.10	38
07/12/14	08:00:12	0.50	20
07/12/14	09:00:12	0.67	14
07/12/14	10:00:12	0.55	81
07/12/14	11:00:12	2.52	231
07/12/14	12:00:12	1.66	297
07/12/14	13:00:12	0.10	340
07/12/14	14:00:12	0.97	321
07/12/14	15:00:12	0.90	349
07/12/14	16:00:12	0.77	76
07/17/14	16:00:12	3.79	201
07/17/14	17:00:12	6.20	130
07/17/14	18:00:12	4.85	152
07/17/14	19:00:12	6.28	148
07/17/14	20:00:12	9.25	139
07/17/14	21:00:12	3.55	162
07/17/14	22:00:12	4.08	119
07/17/14	23:00:12	3.78	143
07/18/14	00:00:12	2.00	143
07/18/14	01:00:12	4.74	152
07/18/14	02:00:12	9.09	148
07/18/14	03:00:12 04:00:12	4.69 3.82	144 128
	114:111:17	3.82	178
07/18/14 07/18/14	05:00:12	7.87	125

Appendix H Wind Data 1 August 2014

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in July 2014

WIND DATA

Date	Time	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)
07/18/14	06:00:12	1.45	174
07/18/14	07:00:12	3.76	171
07/18/14	08:00:12	6.42	156
07/18/14	09:00:12	5.59	142
07/18/14	10:00:12	0.10	149
07/18/14	11:00:12	1.65	147
07/18/14	12:00:12	5.11	143
07/18/14	12:10:50	3.20	159
07/18/14	13:10:50	-0.06	253
07/18/14	14:10:50	6.22	150
07/18/14	15:10:50	0.59	137
07/18/14	16:10:50	1.04	162
07/22/14	16:10:50	0.80	104
07/22/14	17:10:50	0.20	38
07/22/14	18:10:50	0.31	136
07/22/14	19:10:50	0.38	146
07/22/14	20:10:50	0.69	101
07/22/14	21:10:50	0.42	144
07/22/14	22:10:50	1.24	139
07/22/14	23:10:50	0.53	151
07/23/14	00:10:50	0.34	7
07/23/14	01:10:50	1.06	291
07/23/14	02:10:50	1.38	314
07/23/14	03:10:50	2.22	311
07/23/14	04:10:50	1.15	303
07/23/14	05:10:50	0.66	337
07/23/14	06:10:50	2.14	278
07/23/14	07:10:50	2.11	320
07/23/14	08:10:50	2.21	310
07/23/14	09:10:50	1.40	288
07/23/14	10:10:50	2.70	355
07/23/14	11:10:50	1.47	16
07/23/14	12:10:50	1.90	344
07/23/14	13:10:50	1.75	300
07/23/14	14:10:50	3.37	300
07/23/14	15:10:50	1.64	321
07/23/14	16:10:50	1.37	309
07/28/14	16:10:50	1.68	156
07/28/14	17:10:50	0.14	329
07/28/14	18:10:50	0.14	345
07/28/14	19:10:50	0.36	314
07/28/14	20:10:50	0.24	65
07/28/14	21:10:50	0.34	248
07/28/14	22:10:50	0.39	169
07/28/14	23:10:50	0.34	172
07/29/14	00:10:50	0.25	106
07/29/14	01:10:50	0.23	291
07/29/14	02:10:50	0.69	256
07/29/14	03:10:50	0.10	300
07/29/14	04:10:50	0.10	284
07/29/14	05:10:50	0.14	284
07/29/14	06:10:50	0.14	284
07/29/14	07:10:50	0.15	65
07/29/14	08:10:50	0.15	66
07/29/14	09:10:50	0.46	127
07/29/14	10:10:50	0.46	112
07/29/14	11:10:50	0.17	26
07/29/14	12:10:50	0.17	28
07/29/14	12:10:50	0.18 0.15	28 114
07/29/14	14:10:50	2.17	46
07/29/14	15:10:50	0.41	113
07/29/14	16:10:50	0.60	122
07/23/14	10.10.30	0.00	144

Appendix I Impact Daytime Construction Noise Monitoring Results

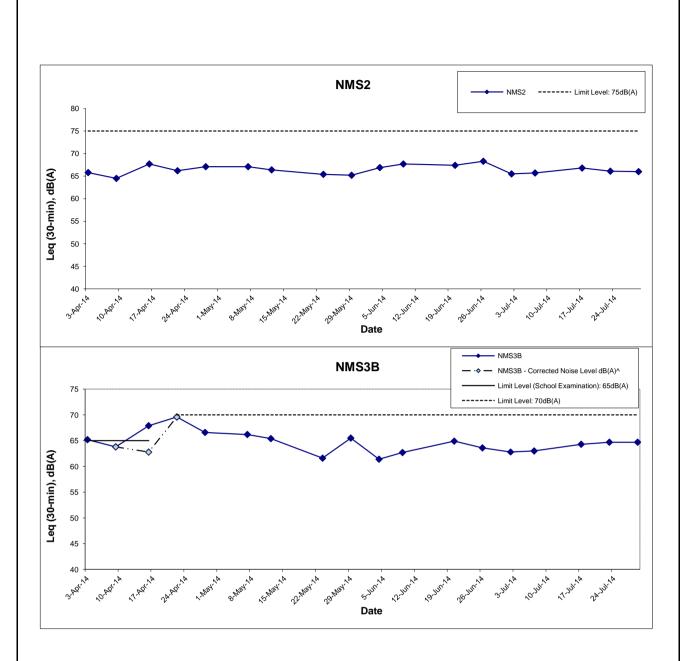
Daytime Noise Monitoring Results at Station NMS2 - Seaview Crescent Tower 1

Average

		Nois	se Level for 30	O-min, dB(A)					
Date	Weather Condition	Time	L90	L10	Leq	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
2-Jul-14	Sunny	10:38	63	67	66	<5m/s	62.9	75	N
7-Jul-14	Fine	10:34	63	68	66	<5m/s	62.9	75	N
17-Jul-14	Cloudy	10:40	62	70	67	<5m/s	62.9	75	N
23-Jul-14	Sunny	10:35	63	68	66	<5m/s	62.9	75	N
29-Jul-14	Sunny	11:00	64	68	66	<5m/s	62.9	75	N
		Min	62	67	66		·	·	
		Max	64	70	67				

Daytime Noise Monitoring Results at Station NMS3B - Site Boundary of Site Office (WA2)

		Nois	se Level for 30	0-min, dB(A)#					
Date	Weather Condition	Time	L90	L10	Leq	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A) ^	Limit Level, dB(A)**	Exceedance (Y/N)
2-Jul-14	Sunny	11:28	59	64	63	<5m/s	66.3	70	N
7-Jul-14	Fine	11:15	60	65	63	<5m/s	66.3	70	N
17-Jul-14	Cloudy	11:38	61	67	64	<5m/s	66.3	70	N
23-Jul-14	Sunny	11:20	60	63	65	<5m/s	66.3	70	N
29-Jul-14	Sunny	12:00	62	66	65	<5m/s	66.3	70	N
		Min	50	63	63		•	•	·


Min	59	63	63
Max	62	67	65
Average	1	-	64

[#] A correction of +3dB(A) was made to the free field measurement.

^{*} Façade measurement.

[^] Averaged baseline noise level recorded at NMS3 Ho Yu College is adopted.

^{**} Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.

Remarks: Effective from July 2012, the Limit Level at NMS3A was revised to 70dB(A). Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

^The measured noise level on 16 April 2014 exceeded the noise level of 65dB(A) during examination period on 16 April 2014 but it is lower than the baseline level. Therefore, baseline correction was carried out and the corrected noise level which solely represent the noise level of Constrcution works is 63 dB(A) which is lower than the exceedance level of 65dB(A). As such the EAP was not triggered.

This Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and denies any liability whatsover, to any party that uses or relies on this drawing without AECOM's express written const

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

Project No.: 60249820

Graphical Presentation of Impact Daytime
Construction Noise Monitoring Results
Date: August 2014

Appendix I

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	15:06		Surface	1.0	29.8 30.0	29.9	8.1 8.1	8.1	15.2 14.0	14.6	74.8 75.3	75.1	5.2 5.3	5.3	5.2	5.3 5.5	5.4		4.1 4.4	4.3	
				6.4	Middle	3.2	28.7 28.9	28.8	8.0 8.0	8.0	18.9 18.2	18.5	74.1 74.9	74.5	5.1 5.1	5.1	5.2	7.7 7.5	7.6	6.9	4.4 4.6	4.5	4.3
					Bottom	5.4	28.6 29.3	29.0	8.0 8.0	8.0	21.3 21.1	21.2	73.5 74.5	74.0	5.1 5.1	5.1	5.1	7.8 7.7	7.8		4.6 3.6	4.1	
4-Jul-14	Sunny	Moderate	16:50		Surface	1.0	30.4	30.2	8.2	8.2	9.9	10.5	91.2	88.7	6.5	6.3		3.3	3.3		2.3	2.4	
				6.5	Middle	3.3	30.1 29.6	29.6	8.2 8.1	8.1	11.1	13.5	79.5	79.3	6.1 5.6	5.6	6.0	3.3	3.3	3.4	2.4	2.2	2.3
					Bottom	5.5	29.5 28.9	28.9	8.1 8.0	8.0	13.8 19.6	19.5	79.1 78.7	78.2	5.6 5.4	5.4	5.4	3.4 3.6	3.6		2.2	2.4	i
7-Jul-14	Sunny	Moderate	09:16		Surface	1.0	28.9 30.2	30.2	8.0 8.3	8.3	19.4 10.6	10.6	77.6 75.6	76.9	5.4 5.4	5.7		3.6 5.8	5.6		3.3	3.1	
							30.2 30.1		8.3 8.3		10.6 10.8		78.1 77.8		6.0 5.2		5.5	5.3 5.9			2.8 3.6		2.0
				6.2	Middle	3.1	30.1 27.4	30.1	8.2 8.1	8.3	10.7 27.2	10.7	73.9 76.5	75.9	5.3 5.9	5.3		5.3 5.4	5.6	5.5	3.8 4.4	3.7	3.9
9-Jul-14	Sunny	Moderate	11:11		Bottom	5.2	28.1 29.5	27.8	8.2 8.3	8.1	25.3 16.3	26.3	79.1 95.2	77.8	5.7 6.6	5.8	5.8	5.1	5.3		5.4	4.9	
9-301-14	Suring	Woderate	11.11		Surface	1.0	29.5	29.5	8.3	8.3	16.5	16.4	92.5	93.9	6.4	6.5	6.1	2.9	2.9		3.4	3.8	i
				6.5	Middle	3.3	29.1 29.1	29.1	8.3 8.3	8.3	17.8 17.7	17.8	80.2 79.6	79.9	5.6 5.5	5.6		4.0 3.9	4.0	4.5	3.6 4.6	4.1	4.2
					Bottom	5.5	27.0 27.1	27.1	8.1 8.1	8.1	28.9 28.9	28.9	70.9 70.6	70.8	4.8 4.8	4.8	4.8	6.7 6.7	6.7		4.4 5.2	4.8	<u> </u>
11-Jul-14	Sunny	Moderate	12:28		Surface	1.0	28.9 28.9	28.9	8.1 8.1	8.1	18.9 19.3	19.1	74.8 75.1	75.0	5.2 5.2	5.2	5.2	4.3 4.5	4.4		2.4 3.7	3.1	
				6.5	Middle	3.3	28.4 28.2	28.3	8.0 8.0	8.0	22.1 22.0	22.0	73.7 74.4	74.1	5.1 5.1	5.1	5.2	6.6 6.4	6.5	5.8	2.1 2.3	2.2	2.9
					Bottom	5.5	28.3 28.0	28.1	8.0 8.0	8.0	22.5 23.2	22.9	69.8 70.1	70.0	4.8 4.8	4.8	4.8	6.4 6.4	6.4		3.4 3.2	3.3	
14-Jul-14	Sunny	Moderate	13:46		Surface	1.0	29.8 29.8	29.8	7.9 8.0	8.0	16.5 16.5	16.5	78.4 79.4	78.9	5.4 5.5	5.5		7.1 6.9	7.0		5.2 5.6	5.4	
				6.6	Middle	3.3	29.1 28.9	29.0	7.9 7.9	7.9	17.8 18.0	17.9	76.8 74.5	75.7	5.3 5.2	5.2	5.4	8.0 7.7	7.9	8.2	6.8 5.5	6.2	5.7
					Bottom	5.6	28.6	28.6	7.9 7.9 7.9	7.9	20.4	20.4	71.8	72.4	5.0	5.0	5.0	9.8 9.4	9.6		5.2	5.5	
16-Jul-14	Sunny	Moderate	15:21		Surface	1.0	28.6 29.9	29.8	8.0	8.0	20.5 17.8	18.0	73.0 80.0	80.3	5.1 5.7	5.7		10.9	11.2		5.8 4.8	4.6	
				6.6	Middle	3.3	29.7 28.9	28.9	8.0	8.0	18.3 20.8	20.5	80.6 79.4	77.6	5.7 5.7	5.6	5.7	11.4 11.4	11.5	11.5	4.3 5.3	5.2	4.9
				0.0	Bottom	5.6	29.0 28.6	28.8	8.0 8.0	8.0	20.2 22.4	22.3	75.8 72.7	73.9	5.4 5.2	5.3	5.3	11.5 11.9	11.9	11.0	5.0 5.5	5.0	4.5
18-Jul-14#	-	-	-			0.0	29.0		8.0		22.2	 	75.1 -		5.4	ა.ა	ა.ა	11.9			4.5	5.0	
					Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-			-	=		-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ЭΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	09:27		Surface	1.0	29.0 29.2	29.1	8.1 8.1	8.1	14.6 14.7	14.7	79.9 83.6	81.8	5.7 5.9	5.8	5.7	2.2 2.2	2.2		2.0 2.8	2.4	
				6.4	Middle	3.2	28.6 29.0	28.8	8.0 8.1	8.0	17.3 16.0	16.6	78.8 81.6	80.2	5.5 5.8	5.6	5.7	2.2 2.2	2.2	2.2	3.0 2.4	2.7	2.5
					Bottom	5.4	28.6 28.6	28.6	8.0 8.0	8.0	21.0 18.7	19.8	81.8 82.5	82.2	5.6 5.8	5.7	5.7	2.1 2.1	2.1		2.8 2.0	2.4	
23-Jul-14	Sunny	Moderate	11:22		Surface	1.0	29.5 29.6	29.6	7.5 7.5	7.5	14.5 14.5	14.5	84.3 90.5	87.4	5.9 6.4	6.2	5.9	3.0 2.9	3.0		3.4 4.1	3.8	
				6.5	Middle	3.3	29.4 29.0	29.2	7.3 7.3	7.3	19.1 19.8	19.4	80.8 76.4	78.6	5.7 5.3	5.5	0.0	4.8 4.5	4.7	4.6	3.9 3.8	3.9	3.7
					Bottom	5.5	28.6 28.6	28.6	7.1 7.1	7.1	23.4 24.6	24.0	72.9 74.4	73.7	5.0 5.0	5.0	5.0	6.0 6.1	6.1		3.4 3.5	3.5	
25-Jul-14	Sunny	Moderate	12:38		Surface	1.0	30.4 30.4	30.4	8.2 8.2	8.2	16.3 16.3	16.3	92.3 97.2	94.8	6.3 6.7	6.5	6.3	2.2 2.1	2.2		3.0 3.6	3.3	
				6.6	Middle	3.3	29.7 29.4	29.6	8.1 8.2	8.2	17.4 17.4	17.4	93.6 82.6	88.1	6.5 5.7	6.1	0.5	2.4 2.3	2.4	2.7	4.0 4.2	4.1	4.6
					Bottom	5.6	29.4 29.3	29.3	8.1 8.1	8.1	19.1 22.0	20.6	84.7 85.4	85.1	5.8 5.8	5.8	5.8	3.6 3.4	3.5		6.4 6.5	6.5	ļ
28-Jul-14	Sunny	Moderate	13:37		Surface	1.0	29.2 29.2	29.2	8.1 8.1	8.1	18.1 18.7	18.4	73.4 70.5	72.0	5.1 5.9	5.5	5.5	6.6 6.5	6.6		3.3 3.6	3.5	
				6.2	Middle	3.1	28.9 28.9	28.9	8.1 8.1	8.1	20.8 20.7	20.7	79.8 74.4	77.1	5.8 5.1	5.5	3.3	6.5 6.4	6.5	6.5	3.7 3.6	3.7	3.7
					Bottom	5.2	28.8 28.8	28.8	8.1 8.1	8.1	22.4 22.4	22.4	83.8 78.3	81.1	5.7 5.9	5.8	5.8	6.5 6.3	6.4		4.3 3.5	3.9	
30-Jul-14	Sunny	Moderate	14:25		Surface	1.0	29.8 29.7	29.8	8.1 8.1	8.1	17.6 17.7	17.7	90.3 88.2	89.3	6.2 6.1	6.1	5.9	3.3 3.5	3.4	_	1.4 1.4	1.4	
				6.3	Middle	3.2	29.3 29.4	29.4	8.1 8.1	8.1	19.3 19.0	19.2	81.4 84.6	83.0	5.6 5.8	5.7	5.5	4.4 4.0	4.2	4.2	2.0 2.0	2.0	1.8
					Bottom	5.3	28.6 29.1	28.9	8.1 8.0	8.0	24.0 21.3	22.6	76.7 77.3	77.0	5.2 5.2	5.2	5.2	5.1 4.6	4.9		2.3 1.9	2.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	09:22		Surface	1.0	29.5 29.3	29.4	8.1 8.1	8.1	12.8 13.4	13.1	74.5 71.4	73.0	5.3 5.1	5.2	5.4	4.7 4.6	4.7		3.0 2.1	2.6	
				6.5	Middle	3.3	29.1 29.1	29.1	8.1 8.1	8.1	14.1 15.9	15.0	73.7 74.8	74.3	5.7 5.6	5.6	5.4	4.1 4.6	4.4	4.5	2.1 3.5	2.8	3.1
					Bottom	5.5	28.6 28.5	28.6	8.0 8.0	8.0	21.2 22.0	21.6	73.0 73.8	73.4	5.3 5.4	5.4	5.4	4.4 4.3	4.4		4.4 3.2	3.8	
4-Jul-14	Sunny	Moderate	11:13		Surface	1.0	29.9 29.9	29.9	8.2 8.2	8.2	11.3 11.6	11.4	84.7 84.7	84.7	6.0	6.0		3.7	3.8		2.5	2.5	
				6.6	Middle	3.3	29.8	29.8	8.1	8.1	13.9	14.0	80.1	80.0	5.6	5.6	5.8	4.3	4.4	4.2	3.1	3.1	3.0
					Bottom	5.6	29.8 28.9	28.8	8.1 8.0	8.0	14.0 20.9	20.9	79.8 77.7	77.1	5.6 5.3	5.3	5.3	4.5 4.4	4.4		3.1	3.4	
7-Jul-14	Sunny	Moderate	14:39	<u> </u>	Surface	1.0	28.7 30.2	30.1	8.1 8.4	8.3	20.9 10.8	10.6	76.5 78.1	78.2	5.3 6.0	5.8		4.3 5.5	5.7		3.1	2.8	
				6.6	Middle	3.3	29.9 29.2	29.3	8.3 8.1	8.2	10.3 16.5	16.4	78.3 75.4	75.2	5.6 5.2	5.2	5.5	5.8 5.7	5.6	5.6	2.0 3.1	2.9	3.2
				0.0	Bottom	5.6	29.5 28.4	28.4	8.2 8.1	8.1	16.3 24.5	24.6	74.9 71.0	74.0	5.2 5.8	5.9	5.9	5.4 5.6	5.6	3.0	2.7 3.1	3.8	5.2
9-Jul-14	Sunny	Moderate	17:00				28.5 30.8	30.8	8.2 8.5	8.5	24.6 13.0	13.0	76.9 121.1	122.2	5.9 8.4		5.9	5.5 3.8			4.4 6.5		
	,				Surface	1.0	30.8 30.1		8.5 8.3		13.0 14.9		123.2 88.2		8.6 6.1	8.5	7.4	4.0	3.9		5.2 4.5	5.9	
				6.5	Middle	3.3	29.8 28.5	30.0	8.3 8.2	8.3	15.4 19.8	15.1	89.6 84.8	88.9	6.2 5.9	6.2		4.5 4.6	4.4	4.3	6.2 5.7	5.4	5.7
11-Jul-14	Sunny	Moderate	18:41		Bottom	5.5	28.2	28.4	8.2 7.9	8.2	23.0	21.4	82.3 74.9	83.6	5.7	5.8	5.8	4.7	4.7		5.8	5.8	
11-Jul-14	Sullily	Woderate	10.41		Surface	1.0	29.8 29.7	29.8	7.9	7.9	14.3 14.3	14.3	74.3	74.6	5.2 5.2	5.2	5.2	8.3	8.3		4.2 5.5	4.9	
				6.6	Middle	3.3	29.5 29.6	29.6	7.9 7.9	7.9	14.8 14.7	14.7	72.5 73.4	73.0	5.1 5.1	5.1		8.9 8.8	8.9	8.7	4.7 6.0	5.4	4.9
					Bottom	5.6	29.5 29.6	29.6	7.9 7.9	7.9	15.0 14.7	14.8	71.6 72.6	72.1	5.0 5.1	5.0	5.0	8.8 8.9	8.9		4.3 4.2	4.3	
14-Jul-14	Sunny	Moderate	07:52		Surface	1.0	29.0 29.0	29.0	8.0 7.9	8.0	16.9 17.1	17.0	82.1 80.9	81.5	5.8 5.7	5.7	5.6	11.7 12.2	12.0		4.9 5.5	5.2	
				6.7	Middle	3.4	28.6 28.5	28.6	7.9 7.9	7.9	20.1 20.5	20.3	79.1 79.7	79.4	5.5 5.5	5.5	5.0	14.1 14.5	14.3	14.1	5.2 6.1	5.7	5.6
					Bottom	5.7	28.5 28.4	28.5	7.9 7.9	7.9	21.1 21.3	21.2	80.3 80.9	80.6	5.6 5.6	5.6	5.6	15.8 16.2	16.0		5.5 6.4	6.0	
16-Jul-14	Sunny	Moderate	09:31		Surface	1.0	29.3 29.4	29.4	8.0 8.0	8.0	16.3 16.1	16.2	78.6 77.3	78.0	5.7 5.6	5.6		10.5 10.1	10.3		4.2 4.9	4.6	
				6.6	Middle	3.3	28.9 28.9	28.9	8.0 7.9	7.9	18.7 19.6	19.1	77.2 76.8	77.0	5.6 5.6	5.6	5.6	10.2	10.3	10.3	4.3	3.9	4.4
					Bottom	5.6	28.8 29.0	28.9	8.0 7.9	7.9	20.1	20.1	76.3 74.7	75.5	5.5 5.4	5.5	5.5	10.3	10.3		4.6 4.5	4.6	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	_	-	-		-	_	<u> </u>	-	-	-

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	15:20		Surface	1.0	29.7 29.7	29.7	8.1 8.1	8.1	13.1 13.1	13.1	76.7 75.5	76.1	5.3 5.3	5.3	5.2	3.3 3.5	3.4		2.7 4.1	3.4	
				6.5	Middle	3.3	28.3 28.4	28.3	8.0 8.0	8.0	20.4 19.3	19.8	72.9 74.0	73.5	5.2 5.1	5.1	0.2	5.0 4.9	5.0	4.5	3.4 3.7	3.6	3.5
					Bottom	5.5	28.0 28.1	28.0	8.0 8.0	8.0	22.7 22.8	22.8	70.4 71.4	70.9	4.9 5.0	4.9	4.9	5.1 5.0	5.1		3.3 3.5	3.4	
23-Jul-14	Sunny	Moderate	17:34		Surface	1.0	30.5 30.6	30.5	8.1 8.1	8.1	12.1 12.0	12.1	96.4 97.5	97.0	6.8 6.8	6.8	6.2	4.5 5.0	4.8		3.7 5.3	4.5	
				6.2	Middle	3.1	29.4 29.4	29.4	8.0 8.1	8.1	16.9 16.2	16.5	79.0 81.9	80.5	5.5 5.7	5.6	0.2	6.0 5.6	5.8	5.9	5.1 4.2	4.7	4.6
					Bottom	5.2	28.6 28.6	28.6	8.0 8.0	8.0	22.6 22.4	22.5	73.0 74.1	73.6	5.0 5.1	5.0	5.0	6.8 7.2	7.0		4.5 4.7	4.6	
25-Jul-14	Sunny	Moderate	18:40		Surface	1.0	30.0 30.0	30.0	8.1 8.1	8.1	14.7 14.8	14.8	90.4 90.2	90.3	6.3 6.3	6.3	6.3	4.3 4.6	4.5		4.9 4.2	4.6	
				6.6	Middle	3.3	30.0 30.1	30.1	8.1 8.1	8.1	15.2 15.2	15.2	89.7 90.1	89.9	6.2 6.3	6.2	6.3	4.6 4.6	4.6	4.6	5.8 5.3	5.6	5.4
					Bottom	5.6	30.1 30.0	30.1	8.1 8.1	8.1	16.5 16.5	16.5	90.7 89.9	90.3	6.3 6.2	6.2	6.2	4.7 4.7	4.7		6.0 5.8	5.9	
28-Jul-14	Sunny	Moderate	07:23		Surface	1.0	28.5 28.5	28.5	8.1 8.1	8.1	19.6 20.9	20.2	77.6 75.0	76.3	5.7 5.5	5.6	5.6	6.6 6.4	6.5		3.2 3.2	3.2	
				6.5	Middle	3.3	28.1 28.0	28.1	8.0 8.0	8.0	22.9 23.5	23.2	76.8 72.9	74.9	5.6 5.3	5.5	5.6	6.4 6.6	6.5	6.5	3.0 3.3	3.2	3.3
					Bottom	5.5	28.0 27.9	28.0	8.0 8.0	8.0	23.7 23.8	23.8	75.3 78.7	77.0	5.5 5.9	5.7	5.7	6.5 6.5	6.5		3.2 3.7	3.5	
30-Jul-14	Sunny	Moderate	09:04		Surface	1.0	29.2 29.1	29.2	8.0 8.0	8.0	18.2 19.1	18.7	86.6 82.3	84.5	6.0 5.7	5.8	5.7	4.8 5.0	4.9	_	1.7 1.7	1.7	
				6.6	Middle	3.3	29.0 28.5	28.7	8.0 8.0	8.0	20.3 22.7	21.5	85.4 79.0	82.2	5.9 5.4	5.6	5.1	6.8 6.9	6.9	6.7	2.1 2.1	2.1	2.2
					Bottom	5.6	28.6 28.4	28.5	8.0 8.0	8.0	22.6 23.4	23.0	86.4 80.4	83.4	5.9 5.5	5.7	5.7	8.3 8.5	8.4		3.1 2.6	2.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	14:49		Surface	1.0	29.9 30.0	29.9	8.1 8.1	8.1	13.9 14.2	14.0	74.9 74.4	74.7	5.2 5.1	5.2	5.1	7.0 6.9	7.0		3.8 3.0	3.4	
				16.8	Middle	8.4	28.7 28.7	28.7	8.0 8.0	8.0	20.7 20.4	20.6	73.1 73.7	73.4	5.0 5.1	5.0	5.1	7.6 7.7	7.7	7.5	2.7 3.8	3.3	3.4
					Bottom	15.8	28.7 29.0	28.9	8.0 8.0	8.0	21.5 21.3	21.4	72.7 72.4	72.6	5.0 5.0	5.0	5.0	7.8 7.8	7.8		4.4 2.5	3.5	Ì
4-Jul-14	Sunny	Moderate	16:21		Surface	1.0	30.5 30.3	30.4	8.2 8.2	8.2	9.9 10.8	10.4	89.2 86.5	87.9	6.3 6.1	6.2		6.5 6.7	6.6		4.1 3.5	3.8	
				16.5	Middle	8.3	28.8 29.0	28.9	8.0 8.0	8.0	19.9 19.7	19.8	78.9 77.5	78.2	5.4 5.3	5.4	5.8	6.6 6.5	6.6	6.6	3.7 3.6	3.7	4.0
					Bottom	15.5	28.4	28.4	8.0	8.0	22.1	22.0	73.0	72.3	5.0	5.0	5.0	6.6 6.6	6.6		4.7	4.5	
7-Jul-14	Sunny	Moderate	09:33		Surface	1.0	30.2	30.2	8.0	8.3	10.9	11.1	71.6 77.2	78.5	5.0	5.5		6.0	6.0		4.1	3.7	
				16.4	Middle	8.2	30.2	29.5	8.3 8.3	8.2	11.2	11.1	79.8 79.7	78.6	5.7 5.4	5.7	5.6	5.9 6.1	6.1	6.1	3.3	3.9	4.3
					Bottom	15.4	28.9 30.2	29.6	8.1 8.3	8.2	11.1 20.0	20.1	77.5 79.2	76.9	6.0 5.3	5.6	5.6	6.1 6.1	6.1		3.8 5.8	5.2	
9-Jul-14	Sunny	Moderate	11:32		Surface	1.0	29.0 29.7	29.8	8.1 8.3	8.3	20.1 15.8	15.7	74.6 95.4	92.3	5.8 6.7	6.4		2.5	2.6		<u>4.6</u> 5.1	5.5	
				17.2	Middle	8.6	29.8 27.3	27.4	8.3 8.0	8.1	15.6 27.5	27.0	89.2 74.6	74.9	6.2 5.1	5.1	5.8	2.6 4.3	4.3	3.9	5.9 6.4	5.6	5.1
					Bottom	16.2	27.5 27.0	27.2	8.1 8.1	8.1	26.5 29.0	28.7	75.1 74.5	73.3	5.1 5.1	5.0	5.0	4.3 4.7	4.7		4.8	4.1	
11-Jul-14	Sunny	Moderate	12:54				27.4 28.9		8.1 8.1		28.5 19.2		72.1 73.6		4.9 5.1		0.0	4.7			3.8 4.0		<u> </u>
11 001 14	Culliny	Woderate	12.04		Surface	1.0	28.9	28.9	8.1 8.0	8.1	19.1	19.2	73.5 74.1	73.6	5.1 5.1	5.1	5.1	4.3	4.3		4.2	4.1	•
				17.0	Middle	8.5	28.3 27.9	28.3	8.0 8.0	8.0	21.6 23.6	21.7	74.1 74.5 72.1	74.3	5.0	5.1		7.4 7.7	7.4	6.5	4.0	4.3	4.2
			40.00		Bottom	16.0	28.2	28.1	8.0	8.0	22.9	23.2	72.9	72.5	5.0	5.0	5.0	7.9	7.8		3.8	4.3	<u> </u>
14-Jul-14	Sunny	Moderate	13:26		Surface	1.0	29.9 30.0	29.9	8.0 8.0	8.0	16.5 16.4	16.5	78.1 80.3	79.2	5.4 5.5	5.5	5.4	5.3 5.6	5.5		4.9 5.8	5.4	
				16.5	Middle	8.3	28.6 28.6	28.6	7.9 7.9	7.9	20.4 20.3	20.3	73.5 73.3	73.4	5.2 5.2	5.2		10.0 10.4	10.2	9.2	5.7 5.3	5.5	5.4
					Bottom	15.5	28.6 28.5	28.5	7.9 7.9	7.9	20.8 20.9	20.8	70.2 69.8	70.0	4.9 4.8	4.8	4.8	12.1 11.6	11.9		5.2 5.6	5.4	
16-Jul-14	Sunny	Moderate	14:56		Surface	1.0	29.6 29.6	29.6	8.0 8.0	8.0	18.4 18.4	18.4	76.3 77.9	77.1	5.5 5.6	5.5	5.4	10.2 10.2	10.2		4.3 5.0	4.7	
				16.1	Middle	8.1	28.7 28.4	28.6	8.0 8.0	8.0	21.6 22.4	22.0	72.9 75.5	74.2	5.2 5.4	5.3	5.4	10.4 10.4	10.4	10.3	5.8 5.3	5.6	5.0
					Bottom	15.1	28.5 28.4	28.5	8.0 8.0	8.0	22.5 22.5	22.5	69.6 69.2	69.4	5.0 5.0	5.0	5.0	10.3 10.3	10.3		4.7 4.9	4.8	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-		-	-	-	-	-	-	-	-	-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	09:53		Surface	1.0	29.2 29.2	29.2	8.1 8.1	8.1	14.8 14.6	14.7	78.1 78.1	78.1	5.5 5.5	5.5	5.4	4.2 4.4	4.3		3.5 3.1	3.3	
				16.7	Middle	8.4	28.4 28.1	28.2	8.0 8.0	8.0	20.8 22.4	21.6	77.2 74.2	75.7	5.3 5.1	5.2	3.4	4.4 4.1	4.3	4.3	4.4 3.8	4.1	3.7
					Bottom	15.7	28.0 28.4	28.2	8.0 8.0	8.0	23.3 23.0	23.1	71.9 71.8	71.9	4.9 5.0	5.0	5.0	4.3 4.3	4.3		4.5 3.0	3.8	
23-Jul-14	Sunny	Moderate	11:40		Surface	1.0	29.6 29.5	29.6	7.8 7.9	7.9	14.4 14.7	14.5	85.0 89.6	87.3	6.0 6.3	6.1	5.9	2.1 2.3	2.2		2.8 3.5	3.2	
				16.2	Middle	8.1	29.3 28.8	29.0	7.9 7.7	7.8	19.4 19.4	19.4	82.8 79.7	81.3	5.8 5.4	5.6	5.9	2.0 2.3	2.2	3.2	2.9 2.2	2.6	2.9
					Bottom	15.2	28.9 28.7	28.8	7.8 7.6	7.7	25.5 25.2	25.3	79.8 73.7	76.8	5.5 5.1	5.3	5.3	5.5 5.1	5.3		3.8 2.2	3.0	
25-Jul-14	Sunny	Moderate	13:06		Surface	1.0	30.3 30.2	30.2	8.2 8.2	8.2	16.3 16.3	16.3	90.5 90.9	90.7	6.2 6.3	6.3	6.1	4.6 4.6	4.6		3.0 3.4	3.2	
				16.5	Middle	8.3	29.5 29.3	29.4	8.2 8.1	8.1	18.1 20.2	19.1	83.9 87.4	85.7	5.8 6.0	5.9	0.1	4.6 4.6	4.6	4.7	3.6 3.7	3.7	3.6
					Bottom	15.5	29.3 29.3	29.3	8.1 8.1	8.1	20.1 20.9	20.5	84.1 81.5	82.8	5.8 5.6	5.7	5.7	4.8 4.9	4.9		3.7 4.2	4.0	
28-Jul-14	Sunny	Moderate	13:21		Surface	1.0	30.0 29.4	29.7	8.1 8.1	8.1	18.5 19.3	18.9	75.9 77.0	76.5	5.2 5.6	5.4	5.4	5.3 5.3	5.3		3.0 3.2	3.1	
				15.8	Middle	7.9	28.2 28.3	28.3	8.1 8.1	8.1	24.1 23.9	24.0	73.7 71.1	72.4	5.4 5.2	5.3	5.4	5.2 5.4	5.3	5.3	3.9 3.6	3.8	3.6
					Bottom	14.8	28.3 28.2	28.3	8.0 8.0	8.0	23.9 24.1	24.0	73.2 75.6	74.4	5.3 5.5	5.4	5.4	5.1 5.2	5.2		3.9 3.6	3.8	ļ
30-Jul-14	Sunny	Moderate	14:07		Surface	1.0	29.8 29.6	29.7	8.1 8.1	8.1	17.6 17.8	17.7	86.7 84.5	85.6	6.0 5.8	5.9	5.6	4.5 4.9	4.7	_	1.3 1.0	1.2	
				16.5	Middle	8.3	28.6 28.6	28.6	8.1 8.1	8.1	24.0 24.0	24.0	79.1 76.8	78.0	5.4 5.2	5.3	3.6	7.8 8.0	7.9	7.1	1.6 1.4	1.5	1.6
					Bottom	15.5	28.6 28.6	28.6	8.1 8.1	8.1	24.1 24.2	24.1	74.3 76.1	75.2	5.0 5.2	5.1	5.1	8.9 8.7	8.8		1.7 2.2	2.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	09:37		Surface	1.0	29.1 29.0	29.0	8.1 8.1	8.1	18.1 18.4	18.2	72.0 72.7	72.4	5.0 5.4	5.2	5.3	3.4 3.7	3.6		4.6 4.2	4.4	
				16.4	Middle	8.2	28.2 28.5	28.3	8.1 8.1	8.1	21.2 21.6	21.4	72.8 72.3	72.6	5.4 5.4	5.4	5.5	3.4 3.3	3.4	3.5	4.9 5.1	5.0	4.8
					Bottom	15.4	28.5 27.7	28.1	8.1 8.1	8.1	22.1 25.7	23.9	71.9 73.6	72.8	5.5 5.3	5.4	5.4	3.6 3.5	3.6		5.0 5.0	5.0	
4-Jul-14	Sunny	Moderate	11:37		Surface	1.0	29.9 29.9	29.9	8.2 8.2	8.2	11.6 11.5	11.6	80.6 82.1	81.4	5.7 5.8	5.8		4.2 4.5	4.4		2.1 2.5	2.3	
				17.1	Middle	8.6	28.8 28.9	28.9	8.1 8.1	8.1	20.2	20.2	73.4 74.2	73.8	5.0 5.1	5.1	5.5	5.7 5.6	5.7	5.5	3.5 3.4	3.5	3.3
					Bottom	16.1	28.1 28.6	28.4	8.0 8.0	8.0	23.3	22.2	68.5 71.0	69.8	4.7 4.9	4.8	4.8	6.3	6.5		4.0	4.1	
7-Jul-14	Sunny	Moderate	14:22		Surface	1.0	27.5 29.9	28.7	8.1 8.3	8.2	12.1	13.0	74.7 77.9	76.3	5.8 5.2	5.5		5.6	5.7		4.4	4.2	
				16.5	Middle	8.3	30.2 29.0	29.6	8.3 8.2	8.3	13.8 24.3	25.2	73.7 75.3	74.5	5.2 5.9 5.2	5.6	5.6	5.8 5.7 5.9	5.8	5.8	2.5 4.0	3.3	3.8
					Bottom	15.5	29.9	30.0	8.3	8.3	26.1 12.0	11.2	78.8	77.0	5.3	5.4	5.4	5.7	5.8		4.3	3.9	
9-Jul-14	Sunny	Moderate	16:37		Surface	1.0	30.2	30.8	8.3 8.4	8.4	13.1	13.1	75.2 117.0	117.2	5.5 8.1	8.1		3.9	3.9		4.4	4.5	
				16.6	Middle	8.3	30.8 29.1	29.3	8.4	8.3	13.1	18.7	82.3	82.3	5.7	5.7	6.9	5.2	5.3	4.8	5.0	5.1	4.6
					Bottom	15.6	29.6 28.7	28.4	8.3 8.2	8.2	18.1	20.7	82.3 78.9	78.5	5.7	5.4	5.4	5.4 5.1	5.2		5.1 4.1	4.3	
11-Jul-14	Sunny	Moderate	18:16		Surface	1.0	28.0 29.8	29.8	8.2 7.9	7.9	21.4 14.3	14.3	78.0 72.9	72.5	5.4 5.1	5.1		5.2 8.3	8.4		4.4 6.2	5.9	
				16.7	Middle	8.4	29.8 29.5	29.5	7.9 7.9	7.9	14.2 14.9	14.8	72.1 71.9	71.9	5.1 5.1	5.1	5.1	8.4 8.9	8.9	8.7	5.5 4.4	4.7	5.3
				10.7	Bottom	15.7	29.5 29.5	29.6	7.9 7.9	7.9	14.8 14.9	14.8	71.8 70.5	70.7	5.1 4.9	4.9	4.9	8.8 8.9	8.9	0.7	4.9 5.6	5.3	0.0
14-Jul-14	Sunny	Moderate	08:12		Surface	1.0	29.6 29.0	29.0	7.9 7.9	7.9	14.8 17.0	16.9	70.9 79.5	79.6	5.0 5.6	5.6	4.5	8.9 10.6	10.2		5.0 5.0	4.8	
	,			40.0			29.0 28.4		7.9 7.9		16.9 21.2		79.7 74.7		5.6 5.2		5.4	9.8 12.2		40.0	4.6 5.4		
				16.3	Middle	8.2	28.4	28.4	7.9 7.9	7.9	21.1	21.1	75.5 75.5	75.1	5.2	5.2		11.5	11.9	12.0	5.7	5.6	5.3
16-Jul-14	Sunny	Moderate	09:53		Bottom	15.3	28.4	28.4	7.9	7.9	21.2	21.3	76.7 76.2	76.1	5.3 5.6	5.3	5.3	13.8	14.0		5.9	5.6	
16-Jul-14	Sullily	Moderate	09.53		Surface	1.0	29.4	29.5	7.9	8.0	16.6	16.2	77.6	76.9	5.6	5.6	5.6	10.2	10.3		6.2	6.2	
				17.1	Middle	8.6	28.8 28.8	28.8	7.9 7.9	7.9	19.9 20.0	20.0	75.1 75.6	75.4	5.4 5.5	5.5		10.4 10.1	10.3	10.3	6.6 6.6	6.6	6.6
					Bottom	16.1	28.9 28.8	28.9	7.9 7.9	7.9	19.9 20.0	20.0	71.5 72.2	71.9	5.2 5.2	5.2	5.2	10.2 10.3	10.3		6.9 6.9	6.9	<u> </u>
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	_	-	-		-	-	
				-	Middle	-	1 1	-		-		-	-	-	-	-			-	=	-	-	=
					Bottom	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ţ	ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	14:52		Surface	1.0	29.8 29.8	29.8	8.1 8.1	8.1	13.0 12.9	13.0	77.9 75.3	76.6	5.5 5.3	5.4	5.3	4.3 4.4	4.4		2.9 3.2	3.1	
				17.0	Middle	8.5	27.9 27.9	27.9	8.0 8.0	8.0	22.8 22.7	22.8	73.1 73.5	73.3	5.1 5.1	5.1	0.0	5.5 5.6	5.6	5.2	2.7 3.0	2.9	3.1
					Bottom	16.0	27.9 27.9	27.9	8.0 8.0	8.0	23.1 23.0	23.0	71.9 69.6	70.8	5.0 4.8	4.9	4.9	5.6 5.6	5.6		3.4 3.3	3.4	
23-Jul-14	Sunny	Moderate	17:15		Surface	1.0	30.5 30.6	30.6	8.1 8.1	8.1	12.1 12.1	12.1	99.4 95.8	97.6	7.0 6.7	6.8	6.0	5.0 5.0	5.0		3.9 3.4	3.7	
				16.2	Middle	8.1	28.6 28.7	28.6	7.9 7.9	7.9	22.6 22.2	22.4	75.0 78.4	76.7	5.1 5.4	5.2	0.0	5.4 5.2	5.3	5.8	3.8 4.5	4.2	3.9
					Bottom	15.2	28.6 28.6	28.6	7.9 7.9	7.9	22.5 22.7	22.6	71.1 70.8	71.0	4.9 4.8	4.9	4.9	6.8 7.1	7.0		3.4 4.0	3.7	
25-Jul-14	Sunny	Moderate	18:16		Surface	1.0	30.0 30.0	30.0	8.1 8.1	8.1	14.7 14.7	14.7	89.6 90.3	90.0	6.2 6.3	6.3	6.3	4.3 4.5	4.4		4.3 3.9	4.1	
				17.1	Middle	8.6	30.0 30.1	30.1	8.1 8.1	8.1	16.0 15.5	15.7	88.9 90.1	89.5	6.2 6.3	6.2	0.5	4.7 4.7	4.7	4.6	3.8 4.2	4.0	4.0
					Bottom	16.1	29.9 30.0	30.0	8.1 8.1	8.1	16.5 16.5	16.5	89.3 89.6	89.5	6.2 6.2	6.2	6.2	4.8 4.7	4.8		4.1 3.8	4.0	
28-Jul-14	Sunny	Moderate	07:41		Surface	1.0	28.7 28.5	28.6	8.0 8.0	8.0	19.5 19.4	19.4	75.9 74.1	75.0	5.6 5.3	5.5	5.8	5.2 5.4	5.3		2.5 2.6	2.6	
				16.7	Middle	8.4	28.2 28.2	28.2	8.0 8.0	8.0	23.0 23.1	23.1	78.3 77.8	78.1	5.9 6.0	6.0	3.6	5.5 5.3	5.4	5.4	3.0 3.3	3.2	3.2
					Bottom	15.7	28.1 28.1	28.1	8.0 8.0	8.0	21.1 20.9	21.0	77.8 78.5	78.2	6.0 5.9	5.9	5.9	5.5 5.4	5.5		4.0 3.7	3.9	
30-Jul-14	Sunny	Moderate	09:24		Surface	1.0	29.3 29.2	29.3	8.0 8.0	8.0	17.3 19.0	18.2	82.6 82.1	82.4	5.7 5.7	5.7	5.4	7.7 7.6	7.7	_	2.9 2.9	2.9	
				16.6	Middle	8.3	28.3 28.3	28.3	8.0 8.0	8.0	23.5 23.6	23.6	74.0 74.0	74.0	5.1 5.1	5.1	5.4	9.5 9.4	9.5	8.9	3.3 3.4	3.4	3.5
					Bottom	15.6	28.3 28.3	28.3	8.0 8.0	8.0	23.6 23.6	23.6	74.8 75.8	75.3	5.1 5.2	5.1	5.1	9.2 9.7	9.5		4.0 4.3	4.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	15:48		Surface	1.0	29.5 29.4	29.4	8.1 8.1	8.1	17.5 17.8	17.7	75.9 72.9	74.4	5.3 5.1	5.2		5.5 5.5	5.5		3.2 3.9	3.6	
				12.0	Middle	6.0	28.6 28.2	28.4	8.1 8.1	8.1	21.6 22.2	21.9	74.1 73.7	73.9	5.1 5.1	5.1	5.2	5.5 5.4	5.5	5.5	3.7 3.4	3.6	3.6
					Bottom	11.0	27.5 27.5	27.5	8.1 8.1	8.1	26.6 26.6	26.6	72.5 72.8	72.7	5.0 5.0	5.0	5.0	5.5 5.6	5.6		3.4 4.0	3.7	
4-Jul-14	Sunny	Moderate	17:06		Surface	1.0	30.6	30.5	7.7	7.7	13.9	14.0	98.2	99.0	6.8	6.9		4.5	4.7		3.1	3.4	
				13.2	Middle	6.6	30.5 29.5	29.4	7.7 7.6	7.6	14.1 18.4	18.2	99.8 86.0	84.7	6.9 5.9	5.9	6.4	4.8 5.7	5.5	5.1	3.6	3.3	3.4
					Bottom	12.2	29.4 29.0	28.9	7.6 7.6	7.6	18.1 21.2	21.4	83.4 86.4	86.0	5.8 5.9	5.9	5.9	5.3 5.0	5.2		3.2	3.4	
7-Jul-14	Sunny	Moderate	08:34		Surface	1.0	28.7 29.9	29.9	7.6 8.4	8.4	21.6 13.9	13.9	85.5 98.6	97.1	5.9 6.9	6.8	0.0	5.3 3.6	3.6		3.5 2.1	2.5	
				40.0			29.9 28.9		8.4 8.3		13.9 15.5		95.5 76.6		6.7 5.4		6.2	3.5 3.5		2.5	2.8		20
				12.0	Middle	6.0	29.7 26.2	29.3	8.4 8.0	8.3	15.4 29.4	15.5	81.4 70.2	79.0	5.7 4.8	5.6		3.6 3.3	3.6	3.5	3.8 5.8	3.3	3.9
9-Jul-14	Sunny	Moderate	10:10		Bottom	11.0	26.4 29.0	26.3	8.1 8.3	8.1	28.6 18.2	29.0	70.6 88.6	70.4	4.8 6.2	4.8	4.8	3.4	3.4		5.9	5.9	
3-3ul-14	Odiniy	Moderate	10.10		Surface	1.0	29.0 28.3	29.0	8.3 8.3	8.3	18.1	18.2	88.6 75.0	88.6	6.2 5.2	6.2	5.8	3.3	3.4		6.3	6.3	
				13.4	Middle	6.7	26.6	27.4	8.2	8.2	23.0	22.3	81.5	78.3	5.6	5.4		3.3	3.2	3.9	5.6	5.7	6.3
					Bottom	12.4	26.9 26.6	26.8	8.2 8.2	8.2	26.4 28.1	27.3	69.4 70.8	70.1	4.8 4.9	4.8	4.8	5.0 5.2	5.1		7.6 6.0	6.8	
11-Jul-14	Sunny	Moderate	10:46		Surface	1.0	28.8 28.7	28.7	8.2 8.2	8.2	19.6 20.0	19.8	76.4 76.2	76.3	5.3 5.3	5.3	5.3	7.7 8.2	8.0		6.7 6.9	6.8]
				13.8	Middle	6.9	28.5 28.5	28.5	8.2 8.2	8.2	21.1 21.1	21.1	75.2 75.0	75.1	5.2 5.2	5.2	0.0	7.1 6.8	7.0	7.7	6.8 6.5	6.7	6.4
					Bottom	12.8	27.7 27.7	27.7	8.0 8.1	8.1	23.9 24.1	24.0	72.7 72.2	72.5	5.0 5.0	5.0	5.0	8.0 8.0	8.0		5.2 6.1	5.7	
14-Jul-14	Sunny	Moderate	14:21		Surface	1.0	29.2 29.3	29.2	8.0 8.0	8.0	20.0 19.9	19.9	69.8 79.8	74.8	5.2 5.9	5.5		10.2 10.5	10.4		4.3 5.4	4.9	
				11.5	Middle	5.8	28.0 28.0	28.0	7.9 8.0	8.0	23.5 22.4	22.9	71.8 69.1	70.5	5.3 5.1	5.2	5.4	10.4 10.5	10.5	10.4	5.8 5.9	5.9	5.5
					Bottom	10.5	28.2 27.9	28.0	8.0 7.9	7.9	24.0 25.1	24.6	66.2 68.1	67.2	5.0 5.1	5.0	5.0	10.6 10.2	10.4		6.5 4.9	5.7	
16-Jul-14	Sunny	Moderate	16:28		Surface	1.0	29.6 29.3	29.5	8.1 8.0	8.0	19.2 20.0	19.6	72.0 76.1	74.1	5.3 5.5	5.4		6.5 6.4	6.5		6.6 5.5	6.1	
				12.5	Middle	6.3	28.3 28.2	28.2	8.0 8.0	8.0	22.8 22.9	22.9	71.9 71.0	71.5	5.6 5.5	5.5	5.5	6.5 6.4	6.5	6.5	5.0 6.1	5.6	5.6
					Bottom	11.5	27.4 27.1	27.3	8.0 8.0	8.0	25.5 27.8	26.7	76.5 70.7	73.6	5.2 5.1	5.2	5.2	6.6 6.5	6.6		5.3 4.9	5.1	
18-Jul-14#	-	-	-		Surface	_	-	_	-	-	-	_	-	_	-	_		-	_		-	-	
				_	Middle	_	-	_	-	-	-	-	-	_	-	_	-	-	_	<u> </u>	-	-	<u>.</u>
					Bottom	_	-	_	-	_	-	_	-	_	-	_		-	_	_	-	_	-
		l	l		DOMOIT	-	-	_	-	-	-	_	-	_	-	_		-	_		-		<u> </u>

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ī	ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	08:36		Surface	1.0	28.8 28.9	28.8	7.8 7.5	7.7	17.7 17.3	17.5	79.4 80.9	80.2	5.6 5.7	5.6	5.4	2.4 2.3	2.4		3.3 3.5	3.4	
				13.3	Middle	6.7	28.2 27.5	27.9	7.7 7.2	7.4	22.7 23.9	23.3	76.6 75.9	76.3	5.2 5.2	5.2	0.4	3.0 2.8	2.9	2.6	3.2 2.4	2.8	3.0
					Bottom	12.3	28.3 27.1	27.7	7.6 7.1	7.4	25.1 26.5	25.8	72.1 73.0	72.6	5.0 5.0	5.0	5.0	2.6 2.4	2.5		2.4 3.2	2.8	
23-Jul-14	Sunny	Moderate	10:55		Surface	1.0	29.6 29.5	29.5	7.5 7.4	7.4	16.3 16.4	16.3	85.3 84.8	85.1	5.9 5.9	5.9	5.5	6.2 6.1	6.2		4.8 5.3	5.1	
				13.6	Middle	6.8	28.5 28.7	28.6	7.3 7.2	7.3	23.7 20.5	22.1	74.6 74.0	74.3	5.1 5.1	5.1	0.0	6.2 5.7	6.0	6.5	5.6 4.6	5.1	5.2
					Bottom	12.6	27.4 27.4	27.4	7.3 7.1	7.2	27.4 27.6	27.5	72.9 71.4	72.2	5.0 5.0	5.0	5.0	7.2 7.1	7.2		5.7 4.8	5.3	
25-Jul-14	Sunny	Moderate	11:37		Surface	1.0	29.4 29.4	29.4	7.9 7.4	7.7	18.3 18.3	18.3	88.4 88.2	88.3	6.1 6.1	6.1	5.9	5.6 5.8	5.7		4.4 3.9	4.2	
				13.3	Middle	6.7	29.1 29.3	29.2	7.6 7.3	7.5	19.7 18.8	19.3	81.6 84.0	82.8	5.6 5.8	5.7	5.5	5.8 5.9	5.9	6.1	4.4 4.9	4.7	4.6
					Bottom	12.3	28.6 28.6	28.6	7.2 7.5	7.3	20.7 22.2	21.5	75.0 75.7	75.4	5.2 5.2	5.2	5.2	6.9 6.7	6.8		5.0 5.0	5.0	
28-Jul-14	Sunny	Moderate	14:04		Surface	1.0	28.9 29.4	29.1	8.0 8.0	8.0	22.0 20.8	21.4	83.3 84.1	83.7	5.8 5.8	5.8	5.7	5.7 5.5	5.6		2.5 2.8	2.7	
				12.3	Middle	6.2	28.0 27.9	27.9	7.9 7.9	7.9	24.8 25.0	24.9	78.2 78.8	78.5	5.4 5.5	5.5	3.7	7.1 7.5	7.3	6.8	4.1 4.0	4.1	3.9
					Bottom	11.3	27.8 27.3	27.5	7.9 7.9	7.9	27.3 26.9	27.1	80.9 81.3	81.1	5.6 5.7	5.6	5.6	7.1 7.6	7.4		5.0 4.5	4.8	
30-Jul-14	Sunny	Moderate	15:12		Surface	1.0	30.2 30.3	30.3	7.7 7.7	7.7	19.9 19.2	19.6	75.6 75.5	75.6	5.2 5.2	5.2	5.2	3.4 3.2	3.3	_	2.2 2.1	2.2	
				12.0	Middle	6.0	28.3 28.2	28.2	7.7 7.7	7.7	25.4 25.4	25.4	74.9 74.8	74.9	5.1 5.1	5.1	5.2	3.7 3.7	3.7	3.6	2.6 2.6	2.6	2.6
					Bottom	11.0	26.7 26.7	26.7	7.7 7.7	7.7	29.2 29.4	29.3	73.7 73.9	73.8	5.1 5.1	5.1	5.1	3.7 3.8	3.8		2.9 3.2	3.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	08:39		Surface	1.0	29.1 29.0	29.1	8.0 8.1	8.1	17.7 18.4	18.0	72.2 73.3	72.8	5.0 5.1	5.1		3.9 3.8	3.9		2.5 2.9	2.7	
				12.7	Middle	6.4	28.2 28.3	28.3	8.1 8.1	8.1	23.5 22.4	22.9	72.7 71.8	72.3	5.1 5.0	5.0	5.1	4.2 4.4	4.3	4.3	3.8	3.8	3.0
					Bottom	11.7	27.7 27.9	27.8	8.1 8.1	8.1	26.4 26.3	26.3	70.5 70.1	70.3	4.9 4.9	4.9	4.9	4.5 4.8	4.7		2.6 2.5	2.6	
4-Jul-14	Sunny	Moderate	09:52		Surface	1.0	29.7	29.7	7.9	7.9	14.4	14.4	82.0	82.6	5.8	5.8		3.6	3.8		3.2	3.1	\vdash
				13.5	Middle	6.8	29.7 29.2	29.1	7.9 7.8	7.8	14.4 19.1	19.5	83.1 78.5	77.7	5.8 5.4	5.4	5.6	3.9	3.3	3.5	3.3	3.4	3.5
					Bottom	12.5	29.0 29.0	29.0	7.8 7.8	7.8	20.0	20.1	76.9 80.0	78.8	5.3 5.5	5.4	5.4	3.1	3.5		3.4	3.9	1
7-Jul-14	Sunny	Moderate	15:16		Surface	1.0	29.0 29.9	30.0	7.8 8.5	8.5	20.1 15.2	14.2	77.6 91.7	93.7	5.3 6.4	6.6	0	3.3	3.5		3.8	3.8	
	·			40.7			30.1 26.6		8.6 8.1		13.2 28.1		95.6 74.2		6.7 5.1		5.9	3.5 3.4		0.5	3.7 3.1		
				12.7	Middle	6.4	26.6 25.3	26.6	8.0 8.1	8.1	28.1 32.3	28.1	74.5 73.7	74.4	5.1 5.1	5.1		3.5 3.5	3.5	3.5	4.0 5.1	3.6	3.9
9-Jul-14	Sunny	Moderate	17:28		Bottom	11.7	25.5 30.7	25.4	7.9	8.0	31.6 17.8	31.9	72.2 110.5	73.0	5.0 7.6	5.0	5.0	3.4	3.5		3.7	4.4	
9-Jul-14	Suriny	Moderate	17.20		Surface	1.0	30.0	30.3	8.7	8.7	18.2	18.0	113.1	111.8	7.7	7.7	6.6	3.2	3.4		4.7	4.6]
				13.5	Middle	6.8	28.7 28.5	28.6	8.3 8.3	8.3	21.3 21.6	21.5	78.8 77.0	77.9	5.4 5.3	5.4		2.5 2.7	2.6	3.2	5.2 5.6	5.4	5.3
					Bottom	12.5	26.4 26.4	26.4	8.1 8.1	8.1	29.0 29.0	29.0	72.7 69.6	71.2	5.0 4.8	4.9	4.9	3.7 3.7	3.7		5.8 6.0	5.9	
11-Jul-14	Sunny	Moderate	19:16		Surface	1.0	28.5 28.5	28.5	8.3 8.2	8.2	21.6 21.8	21.7	81.5 79.2	80.4	5.6 5.4	5.5	5.3	5.3 5.5	5.4		5.2 5.8	5.5	
				13.9	Middle	7.0	28.2 28.3	28.2	8.1 8.2	8.2	22.6 22.4	22.5	73.1 73.5	73.3	5.0 5.1	5.0	5.5	5.3 5.6	5.5	5.4	3.8 4.8	4.3	4.6
					Bottom	12.9	28.2 27.9	28.0	8.2 8.1	8.1	22.7 23.8	23.2	69.8 71.2	70.5	4.8 4.9	4.8	4.8	5.6 5.2	5.4		4.8 3.4	4.1	
14-Jul-14	Sunny	Moderate	06:36		Surface	1.0	29.1 29.1	29.1	7.9 7.9	7.9	18.2 18.2	18.2	69.8 71.6	70.7	5.3 5.4	5.3		5.1 4.9	5.0		5.4 4.4	4.9	
				12.5	Middle	6.3	27.6 27.3	27.5	7.9 7.9	7.9	25.5 25.3	25.4	68.4 67.5	68.0	5.1 5.0	5.1	5.2	5.4 5.6	5.5	5.4	4.1 5.1	4.6	4.4
					Bottom	11.5	26.8 26.9	26.9	7.9 7.9	7.9	27.3 27.1	27.2	65.7 63.2	64.5	4.9 4.8	4.8	4.8	5.5 5.7	5.6		3.3 4.2	3.8	
16-Jul-14	Sunny	Moderate	08:44		Surface	1.0	29.2	29.2	7.9	7.9	17.9	17.7	72.5	72.8	5.7	5.5		6.3	6.6		4.7	4.2	
				12.7	Middle	6.4	29.2	27.2	7.9	7.9	17.5 25.0	25.1	73.1 76.1	75.2	5.3 5.2	5.1	5.3	6.9	6.8	6.7	3.7 5.5	5.8	5.0
					Bottom	11.7	27.1 26.7	26.6	7.9 7.8	7.9	25.2 27.7	27.9	74.2 70.8	74.8	5.1 5.5	5.4	5.4	6.8	6.6		6.1 4.5	4.9	1
18-Jul-14#	-	-	-	<u> </u>	Surface		26.5	-	7.9	-	28.2	-	78.8 -	-	5.4		<u> </u>	6.5	-		5.2	-	
						-	-		-		-		-		-	-	-	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=	-	-	
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	15:43		Surface	1.0	29.5 29.4	29.4	8.2 8.2	8.2	19.0 19.1	19.0	85.1 86.1	85.6	5.9 5.9	5.9	5.5	1.6 1.4	1.5		3.2 2.4	2.8	
				13.7	Middle	6.9	27.9 28.4	28.2	8.1 8.1	8.1	23.6 23.2	23.4	75.9 74.1	75.0	5.2 5.1	5.1	3.3	2.3 2.2	2.3	2.3	3.4 2.7	3.1	3.1
					Bottom	12.7	27.8 27.8	27.8	8.1 8.1	8.1	24.2 24.2	24.2	72.1 71.4	71.8	5.0 4.9	4.9	4.9	3.0 3.3	3.2		3.1 3.7	3.4	
23-Jul-14	Sunny	Moderate	18:13		Surface	1.0	30.3 30.3	30.3	8.4 8.4	8.4	17.1 17.1	17.1	111.2 114.4	112.8	7.6 7.8	7.7	6.7	5.5 5.8	5.7		2.5 2.0	2.3	
				12.7	Middle	6.4	28.0 27.6	27.8	8.1 8.0	8.0	26.2 26.8	26.5	85.7 84.9	85.3	5.8 5.7	5.7	0.7	5.8 5.8	5.8	5.9	3.5 2.9	3.2	2.7
					Bottom	11.7	27.2 27.6	27.4	8.0 8.1	8.0	29.0 29.1	29.0	83.1 84.6	83.9	5.6 5.7	5.6	5.6	6.2 6.0	6.1		2.9 2.5	2.7	
25-Jul-14	Sunny	Moderate	19:22		Surface	1.0	29.5 29.5	29.5	8.3 8.3	8.3	19.3 19.2	19.3	85.9 86.2	86.1	5.9 5.9	5.9	5.6	3.2 3.3	3.3		3.6 3.2	3.4	
				13.4	Middle	6.7	29.4 29.4	29.4	8.3 8.2	8.3	19.7 19.7	19.7	78.0 77.6	77.8	5.3 5.3	5.3	3.0	4.0 3.7	3.9	4.1	4.2 4.0	4.1	3.9
					Bottom	12.4	28.4 28.2	28.3	8.2 8.1	8.1	23.7 24.4	24.1	73.9 73.9	73.9	5.0 5.0	5.0	5.0	4.9 5.0	5.0		4.4 4.2	4.3	
28-Jul-14	Sunny	Moderate	06:22		Surface	1.0	28.1 28.4	28.3	7.8 7.8	7.8	23.3 22.1	22.7	76.5 77.1	76.8	5.4 5.4	5.4	5.3	3.2 3.4	3.3		3.5 3.5	3.5	
				12.9	Middle	6.5	27.0 27.0	27.0	7.8 7.8	7.8	27.4 27.4	27.4	72.3 73.8	73.1	5.0 5.2	5.1	3.3	5.1 5.1	5.1	4.7	3.6 3.6	3.6	3.7
					Bottom	11.9	26.4 26.4	26.4	7.8 7.8	7.8	29.2 29.1	29.2	72.4 71.3	71.9	5.1 5.0	5.0	5.0	5.6 5.6	5.6		4.2 4.0	4.1	
30-Jul-14	Sunny	Moderate	08:04		Surface	1.0	28.9 28.9	28.9	7.5 7.5	7.5	20.5 20.6	20.6	77.7 78.3	78.0	5.4 5.4	5.4	5.3	4.3 4.2	4.3	_	1.6 1.7	1.7	
				12.7	Middle	6.4	27.0 26.8	26.9	7.4 7.5	7.5	27.3 28.0	27.6	72.6 77.4	75.0	5.0 5.3	5.2	5.5	4.8 4.8	4.8	4.7	1.8 1.8	1.8	1.8
					Bottom	11.7	26.6 26.5	26.5	7.4 7.4	7.4	28.8 28.7	28.7	72.6 71.5	72.1	5.0 4.9	5.0	5.0	5.0 5.2	5.1		1.8 1.7	1.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	16:44		Surface	1.0	30.1 29.8	30.0	8.1 8.1	8.1	14.5 14.7	14.6	79.7 75.9	77.8	5.6 5.3	5.4	5.3	3.2 3.1	3.2		2.6 2.6	2.6	
				10.4	Middle	5.2	28.6 28.7	28.6	8.1 8.1	8.1	20.9 20.9	20.9	73.1 73.9	73.5	5.1 5.2	5.1	5.5	5.0 4.7	4.9	4.3	3.1 2.3	2.7	3.1
					Bottom	9.4	28.1 28.4	28.2	8.0 8.1	8.1	23.7 23.2	23.5	73.3 70.0	71.7	5.0 4.8	4.9	4.9	4.7 5.0	4.9		4.4 3.6	4.0	
4-Jul-14	Sunny	Moderate	18:12		Surface	1.0	30.7 30.4	30.6	8.3 8.3	8.3	12.6 12.9	12.7	103.1 95.1	99.1	7.2 6.7	6.9		3.4 3.3	3.4		3.9 3.9	3.9	
				10.0	Middle	5.0	29.4 29.4	29.4	8.2 8.2	8.2	16.9 17.6	17.3	83.6 87.6	85.6	5.8 6.1	5.9	6.4	3.3	3.3	3.3	3.6 4.0	3.8	4.1
					Bottom	9.0	28.9 29.1	29.0	8.2 8.2	8.2	18.8 18.9	18.8	81.2 84.0	82.6	5.6 5.8	5.7	5.7	3.3 3.3	3.3		4.2 4.7	4.5	
7-Jul-14	Sunny	Moderate	07:49		Surface	1.0	29.7 30.2	29.9	8.3 8.3	8.3	11.8 11.8	11.8	81.4 77.5	79.5	5.3 5.3	5.3		2.9 2.9	2.9		4.5 4.5	4.5	
				10.0	Middle	5.0	28.0 27.9	28.0	8.1 8.2	8.2	22.5 22.8	22.7	70.2 71.0	70.6	5.1 5.2	5.1	5.2	3.1	3.1	3.0	5.5 5.7	5.6	5.2
					Bottom	9.0	27.2 27.3	27.3	8.2 8.1	8.1	25.9 26.0	26.0	77.6 78.0	77.8	5.1 5.4	5.2	5.2	2.8	2.9		5.0 5.9	5.5	
9-Jul-14	Sunny	Moderate	09:46		Surface	1.0	29.2 29.2	29.2	8.3 8.3	8.3	17.3 17.5	17.4	88.2 90.8	89.5	6.1 6.3	6.2		1.6 1.7	1.7		4.1 4.9	4.5	
				10.1	Middle	5.1	27.5 27.4	27.5	8.2	8.2	23.2	23.4	77.9 77.7	77.8	5.4 5.4	5.4	5.8	1.9	2.0	1.9	3.5 3.0	3.3	4.5
					Bottom	9.1	26.8 26.7	26.7	8.2 8.2 8.2	8.2	26.5 26.7	26.6	72.1 71.0	71.6	5.4 5.0 4.9	5.0	5.0	2.0	2.1		5.2 6.3	5.8	
11-Jul-14	Sunny	Moderate	11:11		Surface	1.0	28.7 29.0	28.8	8.2	8.2	19.6 19.5	19.6	82.4 82.6	82.5	5.7	5.7		2.5	2.5		5.3	4.9	
				9.8	Middle	4.9	28.0	28.0	8.2 8.2	8.2	22.9	22.4	79.0	80.3	5.7	5.5	5.6	2.4 2.5 2.6	2.6	2.6	4.5 3.8 3.7	3.8	3.9
					Bottom	8.8	28.1 28.0 27.5	27.8	8.2 8.1 8.1	8.1	21.8 24.1 24.7	24.4	81.6 79.1 76.4	77.8	5.6 5.5 5.3	5.4	5.4	2.6 2.6 2.6	2.6		3.7 3.2 2.9	3.1	
14-Jul-14	Sunny	Moderate	14:59		Surface	1.0	29.0 29.3	29.1	8.0 8.0	8.0	18.7 18.4	18.5	78.3 78.1	78.2	5.4 5.4	5.4		8.6	8.0		5.0 4.8	4.9	
				9.8	Middle	4.9	27.6	27.7	8.0	8.0	23.6 23.2	23.4	76.7	75.4	5.3	5.2	5.3	7.3 10.5	11.0	9.9	5.8	6.3	5.5
					Bottom	8.8	27.7 27.5	27.5	8.0	8.0	24.2	24.3	74.1	70.6	5.1 4.9	4.9	4.9	11.4	10.7		6.8 5.2	5.4	
16-Jul-14	Sunny	Moderate	16:40		Surface	1.0	27.4	29.7	8.0 8.1	8.0	17.7	18.0	70.1 73.2	74.9	5.3	5.4		5.3	5.2		5.6 6.6	6.4	
				10.0	Middle	5.0	29.6 27.7	27.7	8.0	8.0	18.3 23.3	23.4	76.6 68.9	70.9	5.5 5.0	5.1	5.3	5.0	5.8	5.6	6.2 5.1	5.5	5.8
					Bottom	9.0	27.8 26.8	26.9	8.0	8.0	23.5 26.6	26.5	72.8 67.4	66.9	5.3 4.9	4.8	4.8	5.7 5.8	5.8		5.9 5.6	5.6	
18-Jul-14#	-	-	-		Surface	-	27.0	_	8.0	_	26.4	-	66.3	-	<u>4.8</u>			5.8	_		5.5	-	
				_	Middle	_	-	_	-	_	-	_	-	_	-	 	-	-		=	-	_	<u> </u>
					Bottom	_	-		-	_	-	_	-	_	-			-		-	-	_	-
					DOMOIT		-		-		-		-		-			-			-		

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	08:11		Surface	1.0	28.5 28.6	28.5	8.1 8.1	8.1	18.7 18.8	18.7	76.4 79.8	78.1	5.4 5.6	5.5	5.3	2.3 2.3	2.3		3.2 3.6	3.4	
				10.1	Middle	5.1	27.9 28.0	27.9	8.0 8.0	8.0	22.0 21.6	21.8	73.7 75.9	74.8	5.1 5.2	5.1	5.5	2.3 2.3	2.3	2.3	3.1 2.7	2.9	3.2
					Bottom	9.1	27.8 27.3	27.5	8.0 8.0	8.0	23.9 25.6	24.8	74.5 71.9	73.2	5.2 5.0	5.1	5.1	2.4 2.3	2.4		2.9 3.4	3.2	
23-Jul-14	Sunny	Moderate	10:03		Surface	1.0	29.3 29.2	29.3	8.0 8.1	8.1	16.3 16.1	16.2	84.8 85.1	85.0	5.9 6.0	5.9	5.7	1.4 1.4	1.4		2.2 2.5	2.4	
				10.0	Middle	5.0	28.4 28.3	28.4	8.0 7.9	8.0	21.6 22.0	21.8	78.1 77.5	77.8	5.4 5.3	5.4	0.7	1.2 1.2	1.2	1.4	3.5 2.5	3.0	2.7
					Bottom	9.0	28.4 28.3	28.4	8.0 7.9	8.0	21.8 22.2	22.0	75.3 75.8	75.6	5.2 5.2	5.2	5.2	1.5 1.4	1.5		3.0 2.3	2.7	
25-Jul-14	Sunny	Moderate	11:25		Surface	1.0	29.1 29.1	29.1	8.1 8.1	8.1	18.2 18.2	18.2	81.5 80.2	80.9	5.7 5.6	5.6	5.5	1.5 1.6	1.6		1.5 0.8	1.2	
				9.9	Middle	5.0	28.2 28.2	28.2	8.1 8.1	8.1	22.8 22.8	22.8	79.1 74.4	76.8	5.4 5.1	5.3	5.5	1.5 1.5	1.5	1.5	1.4 1.0	1.2	1.8
					Bottom	8.9	28.2 28.0	28.1	8.1 8.1	8.1	23.6 23.9	23.8	76.4 75.4	75.9	5.3 5.2	5.2	5.2	1.5 1.5	1.5		3.2 2.6	2.9	
28-Jul-14	Sunny	Moderate	15:10		Surface	1.0	28.7 28.5	28.6	8.1 8.1	8.1	22.4 22.8	22.6	75.5 73.2	74.4	5.5 5.3	5.4	5.4	3.3 3.2	3.3		6.9 7.0	7.0	
				9.9	Middle	5.0	28.1 28.1	28.1	8.1 8.1	8.1	23.5 23.3	23.4	74.2 71.0	72.6	5.4 5.2	5.3	5.4	3.4 3.1	3.3	3.3	8.9 9.1	9.0	8.4
					Bottom	8.9	28.0 28.0	28.0	8.1 8.1	8.1	24.8 24.9	24.8	73.0 77.1	75.1	5.3 5.9	5.6	5.6	3.3 3.2	3.3		9.4 9.2	9.3	
30-Jul-14	Sunny	Moderate	15:42		Surface	1.0	29.9 29.7	29.8	8.1 8.1	8.1	20.3 20.4	20.3	90.2 88.4	89.3	6.1 6.0	6.1	5.7	1.3 1.4	1.4	_	1.3 1.3	1.3	
				10.0	Middle	5.0	27.9 27.7	27.8	8.1 8.1	8.1	24.3 25.1	24.7	76.9 76.7	76.8	5.3 5.2	5.3	5.7	2.1 2.0	2.1	1.8	1.7 1.9	1.8	1.7
					Bottom	9.0	27.5 27.5	27.5	8.1 8.1	8.1	25.9 26.1	26.0	79.7 78.5	79.1	5.5 5.4	5.4	5.4	2.0 1.9	2.0		1.9 1.8	1.9	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	08:18		Surface	1.0	29.1 29.0	29.0	8.1 8.1	8.1	17.3 18.1	17.7	71.2 71.2	71.2	5.1 5.2	5.2	5.3	3.5 3.7	3.6		5.4 5.0	5.2	
				9.9	Middle	5.0	28.5 28.5	28.5	8.1 8.1	8.1	21.0 21.1	21.0	71.7 76.2	74.0	5.0 5.6	5.3	5.5	2.8 3.1	3.0	3.3	4.7 4.6	4.7	5.1
					Bottom	8.9	27.7 27.5	27.6	8.1 8.1	8.1	25.4 26.1	25.8	72.3 76.8	74.6	5.1 5.6	5.3	5.3	3.3 3.4	3.4		5.5 5.4	5.5	
4-Jul-14	Sunny	Moderate	09:46		Surface	1.0	30.0 29.9	29.9	8.2 8.2	8.2	12.6 13.2	12.9	79.8 79.1	79.5	5.6 5.6	5.6		2.7 2.8	2.8		2.7 2.6	2.7	
				10.1	Middle	5.1	29.4	29.4	8.2	8.2	16.5	16.5	72.5	72.7	5.1	5.1	5.4	2.6 2.5	2.6	2.7	2.6	2.6	2.8
					Bottom	9.1	29.4	27.5	8.2	8.0	16.5 25.6	25.5	72.8 69.0	70.0	5.1 4.7	4.8	4.8	2.7	2.6		3.5	3.2	
7-Jul-14	Sunny	Moderate	16:11		Surface	1.0	27.5 29.3	29.4	8.0 8.3	8.3	25.5 16.9	16.2	71.0 82.5	77.9	5.8	5.4		2.5 3.6	3.5		2.9 3.0	2.7	
				10.6	Middle	5.3	29.5 28.2	28.2	8.3 8.2	8.2	15.6 21.6	21.3	73.2 73.4	76.5	5.1 5.2	5.6	5.5	3.3	3.3	3.5	3.8	4.0	3.1
					Bottom	9.6	28.1 25.3	25.7	8.1 8.1	8.1	21.0 31.1	31.0	79.5 72.9	76.0	5.9 5.3	5.5	5.5	3.2	3.7		2.6	2.7	
9-Jul-14	Sunny	Moderate	18:21		Surface	1.0	26.1 30.7	30.8	8.1 8.6	8.6	30.9 17.7	17.6	79.1 117.2	116.8	5.7 7.9	7.9	0.0	3.5 2.5	2.6		2.7 5.8	5.3	
				10.4	Middle	5.2	30.8 27.4	27.7	8.7 8.2	8.2	17.6 23.9	24.1	116.3 74.4	74.7	7.9 5.1	5.1	6.5	2.6	2.8	2.7	4.8 3.8	3.8	4.5
				10.4			27.9 25.3		8.2 8.2	_	24.3 30.9		74.9 68.7		5.2 4.7		4.0	2.8 2.8		2.1	3.8 4.8		4.5
11-Jul-14	Sunny	Moderate	19:54		Bottom	9.4	25.4 28.6	25.3	8.2 8.0	8.2	30.8 21.3	30.8	73.0 74.1	70.9	5.0 5.1	4.9	4.9	2.8 4.4	2.8		4.2 5.0	4.5	<u> </u>
11 001 14	Culliny	Woderate	10.04		Surface	1.0	28.2 27.1	28.4	8.0 7.9	8.0	22.5 25.8	21.9	73.9	74.0	5.1 5.1	5.1	5.1	4.4	4.4		5.0	5.0	<u> </u>
				10.1	Middle	5.1	27.1 27.1 26.9	27.1	8.0 7.8	7.9	25.8 25.5 26.5	25.8	73.1 69.9	73.2	5.0	5.1		4.8 5.0	4.9	4.8	6.2	5.5	5.4
					Bottom	9.1	27.1	27.0	8.0	7.9	26.2	26.3	70.9	70.4	4.9	4.9	4.9	4.9	5.0		5.6	5.7	
14-Jul-14	Sunny	Moderate	06:38		Surface	1.0	29.1 29.1	29.1	7.9 7.9	7.9	18.3 18.2	18.2	81.4 82.4	81.9	5.7 5.7	5.7	5.4	4.0 4.8	4.4		3.7 3.3	3.5	1
				10.3	Middle	5.2	27.6 27.9	27.8	7.9 7.8	7.9	23.2 22.9	23.1	73.6 74.0	73.8	5.0 5.1	5.1		3.8 3.6	3.7	3.9	4.3 4.9	4.6	4.3
					Bottom	9.3	27.9 27.7	27.8	7.8 7.8	7.8	23.5 24.9	24.2	75.6 72.4	74.0	5.2 5.0	5.1	5.1	3.4 3.5	3.5		5.3 4.5	4.9	
16-Jul-14	Sunny	Moderate	08:30		Surface	1.0	28.9 29.0	28.9	8.0 8.0	8.0	19.1 18.6	18.9	70.4 71.0	70.7	5.1 5.2	5.1	5.1	3.7 3.6	3.7		6.4 5.8	6.1	
				10.1	Middle	5.1	28.4 28.5	28.5	7.9 7.9	7.9	22.1 20.8	21.4	69.6 69.4	69.5	5.1 5.0	5.0	5.1	3.6 3.7	3.7	3.7	5.7 6.1	5.9	5.8
					Bottom	9.1	27.9 28.0	27.9	7.9 7.9	7.9	24.0 23.2	23.6	68.6 68.7	68.7	5.0 5.0	5.0	5.0	3.8 3.7	3.8		4.7 6.1	5.4	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>=</u>	-	-	<u> </u>
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	1

DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	16:41		Surface	1.0	28.5 28.5	28.5	8.1 8.1	8.1	20.8 21.0	20.9	77.7 77.1	77.4	5.4 5.3	5.4	5.3	1.7 1.7	1.7		2.7 2.8	2.8	
				10.0	Middle	5.0	28.1 28.3	28.2	8.1 8.1	8.1	21.3 21.3	21.3	75.5 74.1	74.8	5.2 5.1	5.2	0.0	1.8 1.7	1.8	1.8	2.3 3.0	2.7	2.9
					Bottom	9.0	27.8 27.9	27.8	8.1 8.1	8.1	23.4 23.5	23.4	78.5 76.1	77.3	5.4 5.2	5.3	5.3	1.8 1.8	1.8		3.6 2.6	3.1	
23-Jul-14	Sunny	Moderate	18:52		Surface	1.0	29.1 29.2	29.2	7.6 7.9	7.8	19.5 19.4	19.5	84.6 86.3	85.5	5.8 5.9	5.9	5.5	1.6 1.6	1.6		3.3 2.7	3.0	
				10.3	Middle	5.2	27.6 27.6	27.6	7.7 7.7	7.7	25.8 25.8	25.8	75.3 73.5	74.4	5.1 5.0	5.1	0.0	2.8 3.0	2.9	2.3	4.0 3.6	3.8	3.4
					Bottom	9.3	27.7 27.7	27.7	7.7 7.7	7.7	25.7 25.2	25.5	72.0 71.0	71.5	4.9 4.8	4.9	4.9	2.3 2.5	2.4		2.8 3.9	3.4	
25-Jul-14	Sunny	Moderate	20:00		Surface	1.0	29.6 29.6	29.6	8.2 8.2	8.2	18.7 18.7	18.7	95.9 93.4	94.7	6.6 6.4	6.5	6.4	1.9 2.0	2.0		2.4 2.2	2.3	
				10.2	Middle	5.1	29.6 29.5	29.5	8.2 8.2	8.2	18.9 19.1	19.0	93.4 87.7	90.6	6.4 6.0	6.2	0.4	2.5 2.5	2.5	2.4	4.4 4.3	4.4	3.5
					Bottom	9.2	29.4 29.2	29.3	8.2 8.1	8.2	19.6 20.6	20.1	92.2 85.8	89.0	6.3 5.9	6.1	6.1	2.6 2.8	2.7		4.1 3.5	3.8	ļ
28-Jul-14	Sunny	Moderate	06:14		Surface	1.0	28.2 28.3	28.2	8.1 8.0	8.1	22.8 22.9	22.8	73.8 72.0	72.9	5.4 5.3	5.3	5.5	3.5 3.7	3.6		3.3 2.9	3.1	
				9.9	Middle	5.0	27.6 27.7	27.7	8.1 8.1	8.1	24.9 24.6	24.8	76.7 71.6	74.2	5.9 5.2	5.6	5.5	3.6 3.5	3.6	3.6	3.7 3.7	3.7	3.7
					Bottom	8.9	26.1 26.1	26.1	8.0 8.0	8.0	29.4 29.4	29.4	75.9 77.9	76.9	5.8 5.9	5.9	5.9	3.4 3.7	3.6		4.4 4.4	4.4	ļ
30-Jul-14	Sunny	Moderate	07:47		Surface	1.0	28.5 28.3	28.4	8.0 8.0	8.0	22.7 23.2	23.0	78.5 77.2	77.9	5.4 5.3	5.3	5.2	1.7 1.7	1.7	_	2.6 2.5	2.6	
				10.2	Middle	5.1	27.9 27.8	27.9	8.0 8.0	8.0	24.2 24.8	24.5	73.8 75.8	74.8	5.1 5.2	5.1	J.Z	1.7 1.9	1.8	1.8	3.4 3.0	3.2	3.3
					Bottom	9.2	27.8 27.2	27.5	8.0 8.0	8.0	25.1 26.5	25.8	74.9 72.6	73.8	5.1 5.0	5.0	5.0	1.9 1.8	1.9		4.1 4.0	4.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	16:49		Surface	1.0	30.2 30.2	30.2	8.2 8.2	8.2	14.3 14.3	14.3	75.3 74.4	74.9	5.3 5.2	5.2	5.2	3.4 3.5	3.5		3.0 2.3	2.7	
				34.2	Middle	17.1	28.3 28.0	28.1	8.1 8.1	8.1	22.6 23.9	23.2	73.9 74.8	74.4	5.1 5.2	5.2	5.2	5.2 5.3	5.3	4.8	2.5 2.9	2.7	2.7
					Bottom	33.2	28.3 28.0	28.1	8.1 8.1	8.1	23.7 23.9	23.8	71.8 73.7	72.8	4.9 5.1	5.0	5.0	5.5 5.5	5.5		2.7 2.6	2.7	
4-Jul-14	Sunny	Moderate	18:22		Surface	1.0	30.7 30.2	30.5	8.3 8.2	8.3	11.7 14.6	13.1	96.4 91.1	93.8	6.8 6.3	6.5		3.3 3.3	3.3		6.3 5.9	6.1	
				34.0	Middle	17.0	28.5 28.7	28.6	8.2 8.2	8.2	21.8	21.2	80.3 84.7	82.5	5.5 5.8	5.6	6.1	3.3	3.3	3.3	5.8 5.9	5.9	6.8
					Bottom	33.0	26.5	26.8	8.1	8.1	28.6	28.0	75.2	76.0	5.2	5.2	5.2	3.3	3.3		8.2	8.3	
7-Jul-14	Sunny	Moderate	07:37		Surface	1.0	27.0 29.9	29.9	8.1 8.3	8.3	27.5 13.4	13.5	76.7 71.5	72.2	5.3 5.2	5.2		3.2 4.5	4.4		4.7	4.3	
				33.1	Middle	16.6	29.9 25.9	27.7	8.3 8.1	8.2	13.6 15.8	15.6	72.9 73.5	72.4	5.3 5.2	5.2	5.2	4.3	4.2	4.3	3.9	3.7	4.1
					Bottom	32.1	29.5 25.5	27.5	8.3 8.1	8.2	15.5 29.2	30.1	71.3 72.8	71.5	5.1 5.2	5.1	5.1	4.1 4.1	4.2		3.7 5.0	4.4	
9-Jul-14	Sunny	Moderate	09:37		Surface	1.0	29.5 29.1	29.2	8.3 8.4	8.4	31.0 17.3	17.3	70.2 96.3	94.0	5.1 6.7	6.6	0.1	4.2 1.4	1.5		3.8 5.0	4.6	
				34.0	Middle	17.0	29.3 25.2	25.9	8.4 8.1	8.2	17.2 31.1	29.2	91.7 74.2	74.5	6.4 5.1	5.1	5.9	1.5 1.6	1.6	1.7	4.2	4.1	4.1
				34.0			26.5 25.1		8.2 8.2	_	27.3 31.6		74.7 69.4		5.2 4.8		4.0	1.6 1.8		1.7	3.9 3.6		4.1
11-Jul-14	Sunny	Moderate	11:02		Bottom	33.0	25.0 29.1	25.1	8.2 8.2	8.2	31.6 19.4	31.6	70.5 78.3	70.0	4.8 5.4	4.8	4.8	1.9 2.6	1.9		3.6 4.4	3.6	
11 001 14	Curry	Woderate	11.02		Surface	1.0	29.1 27.1	29.1	8.2 8.1	8.2	19.4	19.4	77.0 73.1	77.7	5.3	5.4	5.3	2.6	2.6		3.4	3.9	<u> </u>
				33.9	Middle	17.0	27.1 27.2 27.0	27.1	8.1 8.1	8.1	25.4 27.1	25.5	75.1 69.6	74.1	5.1 4.8	5.1		3.4	3.4	3.1	3.7	4.0	4.4
			45.45		Bottom	32.9	27.2	27.1	8.1	8.1	26.5	26.8	69.7	69.7	4.8	4.8	4.8	3.3	3.3		5.9	5.3	
14-Jul-14	Sunny	Moderate	15:15		Surface	1.0	29.4 29.6	29.5	8.0 8.0	8.0	18.4 18.2	18.3	80.8 82.5	81.7	5.6 5.7	5.6	5.4	6.4 6.2	6.3		6.0 5.9	6.0	
				34.6	Middle	17.3	27.4 27.6	27.5	8.0 7.9	8.0	24.4 23.8	24.1	73.3 72.5	72.9	5.1 5.0	5.1		10.1 10.6	10.4	8.7	5.4 4.9	5.2	5.7
					Bottom	33.6	27.3 27.5	27.4	7.9 7.9	7.9	24.8 24.3	24.5	70.9 70.3	70.6	4.9 4.9	4.9	4.9	9.9 9.0	9.5		5.7 5.8	5.8	
16-Jul-14	Sunny	Moderate	16:51		Surface	1.0	30.1 29.4	29.7	8.0 8.0	8.0	17.3 18.4	17.9	80.5 73.6	77.1	5.8 5.3	5.5	5.4	4.5 4.5	4.5		6.0 5.7	5.9	
				34.8	Middle	17.4	27.2 26.7	27.0	8.0 8.0	8.0	25.9 26.8	26.4	73.3 69.6	71.5	5.3 5.1	5.2	3.4	4.4 4.5	4.5	4.5	6.0 5.6	5.8	6.0
					Bottom	33.8	26.8 26.2	26.5	8.0 7.9	8.0	27.1 28.6	27.9	65.9 66.0	66.0	4.8 4.8	4.8	4.8	4.6 4.6	4.6		6.0 6.8	6.4	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
				-	Middle	-		-	-	-		-	-	-	-	-	-	-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	1

DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	08:02		Surface	1.0	28.6 28.6	28.6	8.1 8.1	8.1	18.6 18.5	18.6	76.2 77.6	76.9	5.3 5.4	5.4	5.3	2.2 2.4	2.3		2.8 2.9	2.9	
				34.8	Middle	17.4	27.4 27.1	27.2	8.0 8.0	8.0	25.2 26.0	25.6	74.7 73.9	74.3	5.1 5.1	5.1	0.0	2.3 2.3	2.3	2.3	3.1 2.6	2.9	3.1
					Bottom	33.8	26.2 26.2	26.2	8.0 8.0	8.0	28.8 29.0	28.9	73.1 73.0	73.1	5.0 5.0	5.0	5.0	2.3 2.3	2.3		3.6 3.4	3.5	
23-Jul-14	Sunny	Moderate	09:51		Surface	1.0	29.3 29.4	29.3	7.7 7.9	7.8	15.9 16.3	16.1	83.8 85.4	84.6	5.9 6.0	5.9	5.6	1.4 1.4	1.4		2.4 3.0	2.7	
				35.1	Middle	17.6	28.1 28.0	28.1	7.8 7.8	7.8	23.0 23.9	23.5	75.8 74.9	75.4	5.2 5.1	5.2	0.0	1.4 1.3	1.4	1.6	2.3 2.1	2.2	2.5
					Bottom	34.1	28.1 27.9	28.0	7.7 7.7	7.7	23.2 24.7	24.0	73.5 70.7	72.1	5.1 4.8	4.9	4.9	2.0 1.9	2.0		2.8 2.5	2.7	
25-Jul-14	Sunny	Moderate	11:18		Surface	1.0	29.3 29.4	29.4	8.1 8.1	8.1	18.0 17.6	17.8	84.2 85.2	84.7	5.8 5.9	5.9	5.5	1.3 1.4	1.4		4.4 5.1	4.8	
				34.7	Middle	17.4	27.9 27.9	27.9	8.1 8.0	8.0	24.0 24.0	24.0	74.7 74.3	74.5	5.1 5.1	5.1	3.3	1.6 1.5	1.6	1.5	4.6 4.5	4.6	5.2
					Bottom	33.7	27.7 27.6	27.7	8.0 8.0	8.0	24.7 24.7	24.7	72.2 72.3	72.3	5.0 5.0	5.0	5.0	1.6 1.5	1.6		6.2 5.9	6.1	ļ
28-Jul-14	Sunny	Moderate	15:21		Surface	1.0	28.6 29.0	28.8	8.1 8.1	8.1	21.6 22.0	21.8	72.3 77.0	74.7	5.3 5.6	5.4	5.3	5.7 5.7	5.7		2.5 2.2	2.4	
				34.4	Middle	17.2	28.5 27.5	28.0	8.1 8.1	8.1	23.9 25.5	24.7	74.9 78.7	76.8	5.4 5.0	5.2	3.3	5.9 5.8	5.9	5.7	3.4 3.0	3.2	3.1
					Bottom	33.4	28.8 27.3	28.0	8.1 8.1	8.1	22.7 26.0	24.4	75.3 70.5	72.9	5.5 5.1	5.3	5.3	5.8 5.4	5.6		3.3 4.0	3.7	
30-Jul-14	Sunny	Moderate	15:57		Surface	1.0	29.9 29.7	29.8	8.1 8.1	8.1	20.4 20.7	20.6	94.9 91.5	93.2	6.4 6.2	6.3	5.8	2.0 1.8	1.9		1.3 1.5	1.4	
				34.7	Middle	17.4	27.6 27.5	27.5	8.1 8.1	8.1	25.6 26.0	25.8	75.3 75.7	75.5	5.2 5.2	5.2	5.0	2.1 2.2	2.2	2.4	1.5 1.8	1.7	1.6
					Bottom	33.7	27.3 27.4	27.4	8.1 8.1	8.1	26.6 26.1	26.3	77.5 76.8	77.2	5.3 5.3	5.3	5.3	3.0 3.3	3.2		1.9 1.6	1.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	08:07		Surface	1.0	29.1 29.1	29.1	8.2 8.2	8.2	17.2 16.8	17.0	74.5 74.7	74.6	5.5 5.5	5.5	5.5	2.9 3.1	3.0		4.9 5.1	5.0	
				35.5	Middle	17.8	26.2 26.1	26.2	8.1 8.1	8.1	30.5 30.7	30.6	71.8 70.1	71.0	5.3 5.7	5.5	5.5	4.0 4.1	4.1	3.7	4.2 4.8	4.5	4.4
					Bottom	34.5	26.0 26.4	26.2	8.1 8.0	8.1	31.0 30.3	30.7	72.5 71.8	72.2	5.7 5.9	5.8	5.8	3.9 4.1	4.0		3.8 3.7	3.8	
4-Jul-14	Sunny	Moderate	09:38		Surface	1.0	30.1 30.1	30.1	8.2 8.2	8.2	13.2 13.1	13.1	77.2 78.3	77.8	5.4 5.5	5.5		2.6 2.7	2.7		1.5 1.5	1.5	
				34.5	Middle	17.3	27.4 27.4	27.4	8.1 8.1	8.1	25.7 25.9	25.8	73.9 75.4	74.7	5.1 5.2	5.2	5.4	3.5 3.4	3.5	3.2	2.1	2.0	2.0
					Bottom	33.5	26.7 27.3	27.0	8.1 8.1	8.1	28.5 27.8	28.1	71.5 71.0	71.3	4.9 4.8	4.8	4.8	3.3	3.4		2.0	2.5	
7-Jul-14	Sunny	Moderate	16:22		Surface	1.0	28.6 26.0	27.3	8.2 8.1	8.2	19.3 20.4	19.9	76.3 79.0	77.7	5.1 5.7	5.4		4.4 4.4	4.4		4.1 2.8	3.5	
				35.2	Middle	17.6	28.5 25.4	26.9	8.2 8.1	8.1	22.4 27.8	25.1	74.7 76.6	75.7	5.6 5.5	5.6	5.5	4.5 4.6	4.6	4.6	4.3 2.8	3.6	3.2
					Bottom	34.2	25.1 27.2	26.1	8.1 8.1	8.1	30.8 31.9	31.4	77.8 76.7	77.3	5.8 5.3	5.6	5.6	4.5 4.8	4.7		2.5	2.6	
9-Jul-14	Sunny	Moderate	18:32		Surface	1.0	30.7 30.8	30.7	8.6 8.6	8.6	17.7 17.6	17.7	137.0 132.1	134.6	9.3 9.0	9.1		2.5 2.5	2.5		5.9 5.1	5.5	
				35.1	Middle	17.6	25.2 25.3	25.3	8.2 8.2	8.2	31.1 31.0	31.0	76.3 75.8	76.1	5.2 5.2	5.2	7.2	2.7	2.8	2.7	5.4 5.3	5.4	5.5
					Bottom	34.1	25.1 25.1	25.1	8.2 8.3	8.3	31.4 31.4	31.4	74.7 75.1	74.9	5.2 5.2	5.2	5.2	2.8	2.8		4.9	5.5	
11-Jul-14	Sunny	Moderate	20:08		Surface	1.0	28.6 28.3	28.4	8.1 8.1	8.1	21.0 21.3	21.1	74.6 74.9	74.8	5.2 5.2	5.2		5.2 5.0	5.1		3.8 5.2	4.5	
				34.3	Middle	17.2	26.8 26.8	26.8	8.0 8.0	8.0	26.8 26.7	26.8	73.6 73.7	73.7	5.1 5.1	5.1	5.2	5.2 5.2	5.2	5.2	6.4 5.6	6.0	5.6
					Bottom	33.3	26.3 26.2	26.2	8.0 8.0	8.0	28.3 28.6	28.5	71.7 72.8	72.3	5.0 5.0	5.0	5.0	5.4 5.3	5.4		5.9 6.7	6.3	
14-Jul-14	Sunny	Moderate	06:22		Surface	1.0	29.0 29.0	29.0	7.7 7.8	7.8	18.3 18.6	18.5	82.2 80.2	81.2	5.7 5.6	5.6		3.9 4.1	4.0		4.6 3.4	4.0	
				35.1	Middle	17.6	27.9 27.9	27.9	7.6 7.8	7.7	22.7 22.9	22.8	77.5 77.1	77.3	5.4 5.3	5.3	5.5	3.3	3.4	3.6	3.8	3.9	3.6
					Bottom	34.1	27.9 27.9	27.9	7.8 7.5	7.6	22.9 22.6	22.8	74.9 74.5	74.7	5.2 5.1	5.2	5.2	3.3 3.4	3.4		3.2 2.8	3.0	
16-Jul-14	Sunny	Moderate	08:24		Surface	1.0	29.0 29.0	29.0	8.0 8.0	8.0	19.0 18.9	19.0	74.9 73.3	74.1	5.4 5.3	5.3		3.8	3.7		5.7 5.4	5.6	
				35.1	Middle	17.6	27.7 27.2	27.4	8.0 7.9	7.9	24.0 25.7	24.8	69.6 69.9	69.8	5.0 5.0	5.0	5.2	3.9	3.9	3.9	6.7	6.4	6.3
					Bottom	34.1	27.4 27.1	27.2	7.9 7.9 7.9	7.9	25.6 26.2	25.9	65.8 66.8	66.3	4.7 4.8	4.8	4.8	4.0	4.0		7.4	6.8	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ī	ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	16:53		Surface	1.0	28.5 28.6	28.6	8.1 8.1	8.1	20.8 20.6	20.7	72.2 75.5	73.9	5.1 5.2	5.1	5.1	1.8 1.7	1.8		2.3 2.3	2.3	
				35.1	Middle	17.6	27.8 27.3	27.6	8.0 8.1	8.1	24.3 25.4	24.9	72.1 72.5	72.3	5.1 5.1	5.1	5.1	1.8 1.7	1.8	1.8	3.0 2.2	2.6	2.8
					Bottom	34.1	26.6 26.7	26.7	8.0 8.0	8.0	28.0 27.6	27.8	71.8 69.9	70.9	5.0 4.8	4.9	4.9	1.9 1.9	1.9		3.4 3.3	3.4	
23-Jul-14	Sunny	Moderate	19:06		Surface	1.0	29.2 29.5	29.4	8.0 8.1	8.1	19.2 18.2	18.7	84.4 86.4	85.4	5.8 6.0	5.9	5.5	2.0 2.2	2.1		3.7 3.4	3.6	
				35.5	Middle	17.8	27.1 27.2	27.2	8.0 7.9	7.9	27.9 27.4	27.7	75.0 74.2	74.6	5.1 5.1	5.1	0.0	4.4 4.8	4.6	3.9	3.6 2.9	3.3	3.3
					Bottom	34.5	27.0 27.2	27.1	7.9 7.8	7.9	28.2 27.7	28.0	70.8 71.5	71.2	4.8 4.9	4.8	4.8	5.0 4.8	4.9		3.7 2.2	3.0	
25-Jul-14	Sunny	Moderate	20:10		Surface	1.0	29.5 29.5	29.5	8.2 8.2	8.2	19.0 18.9	19.0	82.7 84.1	83.4	5.7 5.8	5.7	5.5	2.6 2.5	2.6		5.5 4.6	5.1	
				34.8	Middle	17.4	28.6 29.0	28.8	8.1 8.1	8.1	22.4 21.0	21.7	78.0 76.6	77.3	5.3 5.2	5.3	5.5	3.4 3.4	3.4	3.2	6.6 6.5	6.6	6.2
					Bottom	33.8	28.8 28.2	28.5	8.1 8.1	8.1	22.0 24.9	23.5	74.3 71.5	72.9	5.1 4.9	5.0	5.0	3.4 3.6	3.5		6.7 7.1	6.9	
28-Jul-14	Sunny	Moderate	06:05		Surface	1.0	27.8 28.4	28.1	8.1 8.1	8.1	22.3 20.8	21.6	75.9 73.3	74.6	5.9 5.3	5.6	5.6	5.7 5.7	5.7		2.0 2.0	2.0	
				35.3	Middle	17.7	26.4 26.2	26.3	8.0 8.0	8.0	28.7 29.2	29.0	74.4 72.3	73.4	5.5 5.6	5.5	3.0	5.8 5.6	5.7	5.7	3.4 3.5	3.5	3.0
					Bottom	34.3	26.4 26.3	26.3	8.0 8.0	8.0	29.1 29.0	29.1	75.4 74.3	74.9	5.8 5.5	5.7	5.7	5.8 5.8	5.8		3.6 3.3	3.5	
30-Jul-14	Sunny	Moderate	07:34		Surface	1.0	28.8 28.9	28.9	8.0 8.0	8.0	21.2 20.7	21.0	81.6 83.9	82.8	5.6 5.8	5.7	5.5	2.3 2.0	2.2	_	2.9 2.9	2.9	
				35.2	Middle	17.6	28.2 28.5	28.3	8.0 8.0	8.0	23.6 22.8	23.2	76.9 78.5	77.7	5.3 5.4	5.3	5.5	1.5 1.7	1.6	1.9	2.7 2.7	2.7	2.9
					Bottom	34.2	28.5 27.9	28.2	8.0 8.0	8.0	22.8 24.4	23.6	79.3 76.8	78.1	5.4 5.3	5.3	5.3	1.8 1.7	1.8		3.2 2.8	3.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTI	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	14:41		Surface	1.0	29.8 30.2	30.0	8.3 8.4	8.3	19.0 18.5	18.8	94.1 92.1	93.1	6.4 6.3	6.4	6.4	7.6 7.7	7.7		4.7 5.3	5.0	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-	7.7	-	-	5.5
					Bottom	2.2	29.6 29.5	29.5	8.1 8.1	8.1	19.4 19.5	19.5	91.4 92.9	92.2	6.2 6.4	6.3	6.3	7.8 7.6	7.7		6.3 5.4	5.9	
4-Jul-14	Sunny	Moderate	16:02		Surface	1.0	31.1 31.1	31.1	8.2 8.2	8.2	15.3 15.3	15.3	112.1 111.7	111.9	7.7 7.7	7.7		10.8 11.5	11.2		5.1 6.7	5.9	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	11.7	-	-	6.3
					Bottom	2.1	30.6 30.9	30.8	8.1 8.2	8.2	16.5 16.7	16.6	106.6 110.2	108.4	7.2 7.5	7.3	7.3	12.3 12.1	12.2		6.5 6.9	6.7	
7-Jul-14	Sunny	Moderate	09:44		Surface	1.0	30.9 31.0	30.9	8.7 8.7	8.7	12.7 12.8	12.7	129.0 130.7	129.9	9.0 9.1	9.0		5.7 5.8	5.8		3.5 3.8	3.7	
				3.1	Middle	-	-	-		-	-	-	-	-	-	-	9.0	-	-	6.1	-	-	3.9
					Bottom	2.1	30.6 30.6	30.6	8.5 8.5	8.5	16.3 16.7	16.5	125.7 124.7	125.2	8.6 8.5	8.6	8.6	6.3	6.4		4.2	4.0	
9-Jul-14	Sunny	Moderate	11:21		Surface	1.0	30.8	30.5	8.4	8.4	16.9	17.3	85.2	83.0	5.8	5.7		6.2	6.4		5.6 4.7	5.2	
				3.2	Middle	-	30.3	-	8.4	-	17.7	-	80.7	-	5.5	-	5.7	6.6	-	8.2	-	-	5.4
					Bottom	2.2	28.5	28.6	7.9	8.0	21.4	22.5	73.2	73.8	5.0	5.0	5.0	10.3	10.0		5.3	5.6	
11-Jul-14	Sunny	Moderate	11:59		Surface	1.0	28.6	29.6	8.1 8.3	8.3	23.6	20.1	74.4 90.5	90.4	5.1 6.2	6.2		9.7 8.5	8.3		5.8 4.0	4.1	
				3.1	Middle	_	29.5	_	8.3	-	20.2	_	90.3	_	6.2	_	6.2	8.0	-	9.4	4.1	-	4.4
					Bottom	2.1	29.0	29.1	8.0	8.1	21.1	21.3	86.4	86.5	5.9	5.9	5.9	10.2	10.5		4.6	4.6	
14-Jul-14	Sunny	Moderate	13:18		Surface	1.0	29.2 29.9	29.9	8.2 8.0	8.0	21.4 19.6	19.7	86.6 84.6	84.5	5.9 6.2	6.2		10.8	10.4		4.6 6.3	6.4	
				3.2	Middle	_	29.8	-	8.0	-	19.9	_	84.3	-	6.1	_	6.2	10.4	_	10.4	6.4	-	6.1
					Bottom	2.2	29.4	29.5	7.9	7.9	20.3	20.2	81.3	82.6	6.0	6.0	6.0	10.2	10.3		5.9	5.8	
16-Jul-14	Sunny	Moderate	15:07		Surface	1.0	29.6 30.5	30.4	8.0 8.1	8.1	20.1 17.6	17.9	83.8 81.8	83.2	6.1 6.2	6.0	0.0	10.4 5.8	5.8		5.7 4.0	3.5	
				3.3	Middle	1.0	30.3	-	8.1	-	18.2	-	84.5	-	5.8	0.0	6.0	5.8	5.0	5.8	3.0	-	3.3
				0.5	Bottom	2.3	29.9	30.0	7.9	8.0	- 19.5	19.5	86.6	87.6	5.9	6.0	6.0	5.8	5.8	5.0	2.8	3.1	5.5
18-Jul-14#	-	-	-	<u> </u>		2.3	30.1		8.1		19.5 -		88.6		6.0	0.0	0.0	5.7			3.3	3.1	
					Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-	<u>-</u>	-	-	-	-	-	-	-	-	-		-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	į l

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	I	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	09:46		Surface	1.0	29.2 29.2	29.2	8.0 7.9	8.0	20.6 20.6	20.6	84.0 85.0	84.5	5.8 5.8	5.8	5.8	7.2 7.6	7.4		4.1 5.0	4.6	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	8.2	-	-	4.7
					Bottom	2.2	29.1 29.1	29.1	8.0 7.8	7.9	21.0 20.9	20.9	83.6 85.0	84.3	5.7 5.8	5.8	5.8	9.0 8.9	9.0		5.3 4.3	4.8	
23-Jul-14	Sunny	Moderate	12:09		Surface	1.0	30.7 30.5	30.6	8.2 8.1	8.2	19.7 20.0	19.8	89.8 89.3	89.6	6.0 6.0	6.0	6.0	6.4 6.6	6.5		4.1 4.7	4.4	
				3.2	Middle	-		-	1 1	-	1 1	-	-	-		-	0.0	-	-	6.6	-	-	4.9
					Bottom	2.2	29.8 29.5	29.6	8.1 7.9	8.0	22.5 22.6	22.5	88.2 87.2	87.7	5.9 5.9	5.9	5.9	6.6 6.5	6.6		5.4 5.4	5.4	
25-Jul-14	Sunny	Moderate	12:46		Surface	1.0	30.2 30.2	30.2	8.3 8.4	8.4	18.5 18.6	18.5	112.0 112.7	112.4	7.6 7.7	7.7	7.7	12.2 12.5	12.4		8.6 8.0	8.3	
				3.5	Middle	i		-		-		-	-	-		-	7.7	-	-	13.2	-	-	9.2
					Bottom	2.5	30.1 30.1	30.1	8.3 8.3	8.3	18.4 19.0	18.7	108.2 109.8	109.0	7.4 7.5	7.4	7.4	13.8 14.0	13.9		9.7 10.5	10.1	
28-Jul-14	Sunny	Moderate	13:08		Surface	1.0	30.3 30.1	30.2	8.0 8.0	8.0	20.5 20.4	20.4	83.4 81.0	82.2	5.6 5.5	5.5	5.5	10.1 10.2	10.2		2.4 2.5	2.5	
				3.1	Middle	-		-		-		-	-	-		-	3.3	-	-	10.3	-	-	5.6
					Bottom	2.1	29.6 29.5	29.5	8.0 8.0	8.0	22.4 22.0	22.2	80.9 83.6	82.3	5.4 5.7	5.5	5.5	10.5 10.3	10.4		8.8 8.3	8.6	
30-Jul-14	Sunny	Moderate	14:03		Surface	1.0	30.4 30.4	30.4	7.9 7.9	7.9	20.9 20.9	20.9	104.5 101.9	103.2	7.0 6.8	6.9	6.9	3.3 3.2	3.3	_	0.6 1.3	1.0	
				3.2	Middle	1	1 1	-		-		-	-	-	1 1	-	0.5	-	-	3.3	-	-	1.3
					Bottom	2.2	30.2 29.8	30.0	7.8 7.8	7.8	21.3 21.9	21.6	104.7 100.9	102.8	7.0 6.8	6.9	6.9	3.3 3.3	3.3		1.2 1.9	1.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Sunny Sunny	Condition** Moderate Moderate	Time 09:42	Depth (m)	Depth Surface		Value	Average	Value	A			17-1	۸	Malua			Mala	A	DA*	Malua	Average	
ŕ		09:42	2.2	Surface			J	value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA	Value	Average	DA*
Sunny	Moderate		2.2		1.0	29.5 29.6	29.6	8.2 8.2	8.2	18.0 17.8	17.9	95.8 97.5	96.7	6.6 6.7	6.7	6.7	7.9 7.8	7.9		6.1 6.6	6.4	
Sunny	Moderate		3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.7	-	-	8.1	-	-	6.2
Sunny	Moderate			Bottom	2.3	29.4 29.6	29.5	8.2 8.1	8.2	18.4 17.8	18.1	96.9 99.5	98.2	6.7 6.9	6.8	6.8	8.2 8.1	8.2		6.1 5.6	5.9	
		10:54		Surface	1.0	30.5 30.4	30.4	8.0 8.0	8.0	14.8 14.8	14.8	121.4 123.5	122.5	8.4 8.6	8.5		4.4 4.5	4.5		4.9 4.7	4.8	
			3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	8.5	-	-	4.9	-	-	5.5
				Bottom	2.2	30.2 30.3	30.3	8.1 8.1	8.1	15.6 15.8	15.7	116.5 121.3	118.9	8.1 8.4	8.2	8.2	5.3 5.0	5.2		6.1 6.1	6.1	
Sunny	Moderate	14:01	1	Surface	1.0	30.9	31.0	8.7	8.7	13.2	13.0	130.0	133.6	9.0	9.2		10.4	10.5		3.9	4.2	
			3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	9.2	-	-	10.4	-	-	4.1
				Bottom	2.1	31.1	31.2	8.6	8.6	15.9	15.8	139.5	141.1	9.5	9.6	9.6	10.3	10.3		4.0	3.9	
Sunny	Moderate	16:17		Surface	1.0	30.7	30.6	8.5	8.5	19.2	19.3	112.7	107.5	7.6	7.2		9.5	9.4		6.0	6.2	
			3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	11.1	-	-	6.1
				Bottom	2.2	29.0	29.6	8.1	8.3	22.0	21.0	98.3	99.4	6.7	6.7	6.7	12.5	12.7		6.4	6.0	
Sunny	Moderate	18:01		Surface	1.0	29.6	29.6	8.3	8.3	20.8	20.9	95.5	93.9	6.5	6.4		7.2	7.0		5.7	5.5	
			3.0	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	7.9	-	-	5.4
				Bottom	2.0	29.2	29.2	8.2	8.2	21.5	21.4	91.6	91.8	6.2	6.2	6.2	8.8	8.7		6.1	5.2	
Sunny	Moderate	07:36		Surface	1.0	29.3	29.3	7.9	7.9	17.8	17.8	81.1	80.2	6.0	6.0		5.5	5.6		3.5	3.9	
			3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	5.6	-	-	4.0
				Bottom	2.3	29.3	29.3	7.9	7.9	18.2	18.4	79.9	81.6	5.9	6.0	6.0	5.6	5.6		4.4	4.0	
Sunny	Moderate	09:58		Surface	1.0	29.7	29.7	7.9	7.9	17.8	17.8	81.1	80.0	5.6	5.5		5.2	5.2		3.0	3.4	
			3.3	Middle	-	- 29.7	-	-	-	- 17.8	-	- 78.9	-	-	-	5.5	-	-	5.3	-	-	3.4
				Bottom	2.3	29.7	29.7	7.9	7.9	18.0	18.0	84.6	82.0	5.8	5.6	5.6	5.5	5.4		3.3	3.4	
-	-	-		Surface	-	- 29.7	-	- 7.9	-	18.1	-	<u> 79.3</u> -	-	-	-		-	-		- 3.4	-	
			-	Middle	-	-	-	-	-	-	-	-	-	-	_	-	-	_	_	-	-	<u>.</u>
					_	-	-	-	_	-	-	-	_	-	_		-	-	-	-	_	-
Sı	Jinny	unny Moderate unny Moderate unny Moderate unny Moderate	unny Moderate 16:17 Junny Moderate 18:01 Junny Moderate 07:36 Junny Moderate 09:58	3.1 Junny Moderate 16:17 Junny Moderate 18:01 Junny Moderate 07:36 Junny Moderate 09:58 3.3	Moderate	Moderate	Moderate	Moderate 14:01 Surface 1.0 30.3 31.1 31.0	Moderate	Moderate 14:01 Surface 1.0 30.3 31.0 8.7 8.7	Moderate 14:01	Moderate 14:01 Surface 1.0 30.3 31.0 8.7 8.7 13.2 13.0	Moderate	Moderate 14:01 Surface 1.0 30.3 31.0 8.7 8.7 13.2 13.0 133.6 137.1 1	Moderate 14:01 Surface 1.0 30.3 8.1 15.8 121.3 8.4	Moderate 14:01	Moderate 14:01 Surface 1.0 30.3 8.1 15.8 121.3 13.6 9.0 9.2 9.2	Moderate 14:01 Surface 1.0 30.9 31.0 8.7 13.2 13.0 130.0 133.6 9.5 9.2 9.2 10.5	Moderate 14:01 Surface 1.0 30.3 31.0 8.7 8.7 13.2 13.0 130.0 1	Moderate 14:01 Surface 1.0 30.3 31.0 8.7 17.2 13.0 13.0 133.6 9.0 9.2 9.2 10.4 10.5 10.4	Moderate 14-01 Surface 1.0 30.3 8.1 15.8 121.3 8.4 5.0 5.0 6.1	Moderate 14.01 Surface 1.0 30.3 8.1 15.8 121.3 8.4 5.0 10.5

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NT	J)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	14:31		Surface	1.0	29.4 29.4	29.4	8.2 8.2	8.2	20.3 20.3	20.3	105.2 102.5	103.9	7.2 7.0	7.1	7.1	3.3 3.7	3.5		2.6 2.6	2.6	
				3.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.6	-	-	2.8
					Bottom	2.0	29.3 29.4	29.4	8.0 8.2	8.1	21.3 21.3	21.3	97.7 105.6	101.7	6.7 7.2	6.9	6.9	3.7 3.6	3.7		3.3 2.5	2.9	
23-Jul-14	Sunny	Moderate	17:06		Surface	1.0	30.9 30.9	30.9	8.3 8.3	8.3	20.4 20.3	20.4	143.7 144.4	144.1	9.6 9.6	9.6	9.6	5.5 5.6	5.6		4.7 5.6	5.2	
				3.0	Middle	-		-		-		-	-	-		-	0.0	-	-	5.5		-	5.7
					Bottom	2.0	30.3 30.8	30.5	8.0 8.2	8.1	21.5 20.6	21.1	135.4 144.6	140.0	9.1 9.6	9.3	9.3	5.5 5.2	5.4		6.2 6.1	6.2	
25-Jul-14	Sunny	Moderate	18:12		Surface	1.0	30.4 30.5	30.5	8.5 8.4	8.5	19.1 19.0	19.0	125.1 124.5	124.8	8.5 8.4	8.4	8.4	9.6 9.9	9.8		7.9 7.7	7.8	
				3.4	Middle	i		-		-		-	-	-		-	0.4	-	-	10.1		-	11.1
					Bottom	2.4	30.3 30.3	30.3	8.4 8.5	8.5	19.3 19.5	19.4	118.8 122.2	120.5	8.0 8.3	8.2	8.2	10.5 10.3	10.4		14.3 14.4	14.4	
28-Jul-14	Sunny	Moderate	07:21		Surface	1.0	28.9 28.9	28.9	8.0 8.0	8.0	20.3 20.3	20.3	82.1 83.5	82.8	5.7 5.8	5.7	5.7	3.6 3.6	3.6		3.0 2.8	2.9	
				3.3	Middle	•		-		-		-	-	-		-	5.7	-	-	3.6	1 1	-	3.7
					Bottom	2.3	28.9 28.9	28.9	8.0 8.0	8.0	20.5 20.4	20.4	87.0 82.4	84.7	6.0 5.7	5.8	5.8	3.5 3.6	3.6		4.5 4.3	4.4	
30-Jul-14	Sunny	Moderate	09:04		Surface	1.0	29.6 29.6	29.6	7.7 7.7	7.7	20.1 20.1	20.1	89.7 89.8	89.8	6.1 6.1	6.1	6.1	3.3 3.5	3.4		2.3 2.1	2.2	
				3.1	Middle	-	-	-		-		-	-	-		-	0.1	-	-	3.5		-	2.4
					Bottom	2.1	29.5 29.5	29.5	7.7 7.7	7.7	20.5 20.4	20.5	92.5 89.9	91.2	6.3 6.1	6.2	6.2	3.5 3.5	3.5		2.4 2.7	2.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	14:57		Surface	1.0	30.1 30.5	30.3	8.3 8.3	8.3	17.5 17.4	17.5	123.3 121.7	122.5	8.4 8.3	8.3	8.3	6.5 6.4	6.5		4.8 5.0	4.9	
				3.5	Middle		-	-	-	-	-	-	-	-	-	-	0.5	-		6.6	-	-	4.9
					Bottom	2.5	29.9 30.1	30.0	8.1 8.3	8.2	17.9 18.8	18.3	113.0 114.8	113.9	7.8 7.9	7.8	7.8	6.4 6.7	6.6		4.9 4.6	4.8	
4-Jul-14	Sunny	Moderate	16:17		Surface	1.0	30.7 30.8	30.8	8.4 8.4	8.4	15.8 15.8	15.8	125.9 127.4	126.7	8.6 8.7	8.7		13.0 12.7	12.9		5.2 5.4	5.3	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	8.7	-	-	14.9	-	-	6.5
					Bottom	2.3	30.7 31.0	30.9	8.3 8.3	8.3	16.4 16.2	16.3	124.1 124.0	124.1	8.5 8.4	8.5	8.5	17.0 16.5	16.8		7.4 7.7	7.6	
7-Jul-14	Sunny	Moderate	09:28		Surface	1.0	30.9 30.6	30.8	8.6 8.5	8.6	13.9 15.2	14.6	114.3 104.0	109.2	7.9 7.2	7.5		7.2 7.5	7.4		5.3 5.4	5.4	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	7.5	-	-	5.5
					Bottom	2.7	28.5	28.6	8.1 8.2	8.2	21.7	21.6	86.5 89.3	87.9	6.0	6.0	6.0	7.4 7.5	7.5		5.4 5.8	5.6	
9-Jul-14	Sunny	Moderate	11:06		Surface	1.0	29.8 29.7	29.8	8.3 8.3	8.3	18.5 18.7	18.6	79.9 76.5	78.2	5.5 5.3	5.4		10.2 9.8	10.0		6.5 5.9	6.2	
				3.3	Middle	-	-	-		-		-	-	-	-	-	5.4	-	-	8.4	-	-	5.9
					Bottom	2.3	29.3 29.2	29.3	8.2 8.2	8.2	20.1	20.1	75.5 73.8	74.7	5.2 5.1	5.1	5.1	7.1 6.3	6.7		5.7 5.4	5.6	
11-Jul-14	Sunny	Moderate	11:46		Surface	1.0	29.6 29.5	29.6	8.3 8.3	8.3	19.3 19.4	19.3	94.5 91.7	93.1	6.5 6.3	6.4		8.7 9.4	9.1		4.7 4.7	4.7	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	- 9.4	-	9.8	-	-	4.5
					Bottom	2.4	29.3 29.3	29.3	8.2 8.1	8.2	20.9	20.7	91.8 90.2	91.0	6.3 6.2	6.2	6.2	10.9 9.8	10.4		4.8	4.2	
14-Jul-14	Sunny	Moderate	13:32		Surface	1.0	30.2 30.1	30.1	8.1 8.1	8.1	18.5 18.6	18.6	77.4 75.9	76.7	5.3 5.2	5.2		7.1 7.0	7.1		5.0 6.5	5.8	
				3.7	Middle	-	-	-	-	-	-	-		-	-	-	5.2	-	-	7.2	-	-	5.8
					Bottom	2.7	29.5 29.6	29.5	8.0 8.0	8.0	19.4 19.5	19.5	74.7 75.8	75.3	5.1 5.2	5.2	5.2	7.1 7.3	7.2		4.8 6.5	5.7	
16-Jul-14	Sunny	Moderate	15:27		Surface	1.0	30.1 30.4	30.3	8.1 8.1	8.1	17.8 17.7	17.8	82.2 81.6	81.9	5.6 5.6	5.6		5.9 5.5	5.7		4.7 6.0	5.4	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-	5.7	-	-	5.0
					Bottom	2.4	30.2 29.9	30.0	8.1 8.1	8.1	18.8 19.0	18.9	84.5 86.1	85.3	5.8 5.9	5.8	5.8	5.7 5.6	5.7		4.2 4.9	4.6	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Ξ	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	I	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	09:30		Surface	1.0	29.0 29.0	29.0	8.0 8.0	8.0	19.5 19.6	19.6	95.3 93.1	94.2	6.6 6.4	6.5	6.5	3.4 3.7	3.6		2.6 2.7	2.7	
				3.3	Middle	-		-		-		-		-		-	0.0	-	-	4.0	-	-	2.7
					Bottom	2.3	29.0 29.0	29.0	8.0 7.9	7.9	19.9 19.8	19.9	94.6 95.7	95.2	6.5 6.6	6.6	6.6	4.5 4.2	4.4		2.9 2.5	2.7	
23-Jul-14	Sunny	Moderate	11:53		Surface	1.0	30.1 30.1	30.1	8.1 8.1	8.1	19.6 19.6	19.6	94.2 92.9	93.6	6.4 6.3	6.3	6.3	7.4 7.1	7.3		5.1 5.8	5.5	
				3.7	Middle	-		-	-	-		-		-		-	0.0	-	-	7.3	-	-	5.9
					Bottom	2.7	29.9 30.1	30.0	8.0 8.1	8.0	20.1 19.9	20.0	90.8 94.0	92.4	6.2 6.4	6.3	6.3	7.3 7.3	7.3		6.1 6.5	6.3	
25-Jul-14	Sunny	Moderate	12:33		Surface	1.0	30.1 30.1	30.1	8.3 8.3	8.3	18.0 17.7	17.9	109.1 110.1	109.6	7.5 7.5	7.5	7.5	10.7 10.4	10.6		2.2 3.0	2.6	
				3.4	Middle	-		-		-		-		-		-	7.5	-	-	12.1	-	-	3.8
					Bottom	2.4	29.9 29.9	29.9	8.2 8.2	8.2	19.2 18.8	19.0	104.4 101.7	103.1	7.1 7.0	7.0	7.0	13.7 13.4	13.6		5.0 4.8	4.9	
28-Jul-14	Sunny	Moderate	13:20		Surface	1.0	29.8 29.7	29.8	8.1 8.1	8.1	20.9 20.9	20.9	88.1 88.2	88.2	6.0 6.0	6.0	6.0	5.7 5.5	5.6		3.0 3.3	3.2	
				3.6	Middle	-		-		-		-		-		-	0.0	-	-	5.6	-	-	3.5
					Bottom	2.6	29.5 29.7	29.6	8.0 8.1	8.1	21.1 21.0	21.0	85.8 88.1	87.0	5.8 6.0	5.9	5.9	5.5 5.7	5.6		3.8 3.8	3.8	
30-Jul-14	Sunny	Moderate	14:16		Surface	1.0	29.6 29.7	29.7	7.8 7.9	7.9	21.1 21.2	21.1	84.6 90.9	87.8	5.7 6.2	5.9	5.9	3.5 3.6	3.6	_	3.4 3.1	3.3	
				3.6	Middle	-	1 1	-		-		-	1 1	-	1 1	-	5.9	-	-	3.6	-	-	3.6
					Bottom	2.6	29.6 29.5	29.6	7.9 7.8	7.8	21.4 22.2	21.8	88.8 84.2	86.5	6.0 5.7	5.9	5.9	3.6 3.5	3.6		3.7 4.0	3.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	09:29		Surface	1.0	29.3 29.3	29.3	8.2 8.2	8.2	18.2 18.3	18.3	93.5 93.5	93.5	6.5 6.5	6.5	6.5	4.1 4.1	4.1		4.7 4.2	4.5	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.5	-	-	4.7
					Bottom	2.9	29.3 29.2	29.3	8.2 8.2	8.2	18.7 18.7	18.7	93.4 96.2	94.8	6.5 6.6	6.5	6.5	4.8 4.8	4.8		4.8 4.8	4.8	
4-Jul-14	Sunny	Moderate	10:40		Surface	1.0	30.1 30.1	30.1	8.1 8.1	8.1	15.5 15.5	15.5	121.6 119.4	120.5	8.4 8.3	8.4	8.4	5.1 4.8	5.0		5.7 6.2	6.0	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-	5.1	-	-	7.4
					Bottom	2.4	30.1 30.0	30.0	8.1 8.1	8.1	15.7 15.8	15.7	120.9 112.2	116.6	8.4 7.8	8.1	8.1	5.0 5.3	5.2		9.2 8.4	8.8	
7-Jul-14	Sunny	Moderate	14:15		Surface	1.0	30.8 30.8	30.8	8.7 8.6	8.6	13.6 13.7	13.7	126.6 122.0	124.3	8.8 8.4	8.6	0.0	9.8 10.2	10.0		6.1 4.9	5.5	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	8.6	-	-	10.1	-	-	5.1
					Bottom	2.7	30.7 30.7	30.7	8.5 8.5	8.5	15.2 17.2	16.2	128.7 128.0	128.4	8.9 8.7	8.8	8.8	10.1 10.1	10.1		4.8 4.5	4.7	
9-Jul-14	Sunny	Moderate	16:30		Surface	1.0	31.3 31.1	31.2	8.6 8.6	8.6	18.3 18.6	18.4	104.9 106.7	105.8	7.0 7.2	7.1		5.8 6.0	5.9		7.0 7.2	7.1	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	5.9	-	-	7.0
					Bottom	2.3	31.2 31.2	31.2	8.6 8.6	8.6	18.5 18.5	18.5	107.0 99.8	103.4	7.2 6.7	6.9	6.9	6.0 5.8	5.9		7.3 6.2	6.8	
11-Jul-14	Sunny	Moderate	18:15		Surface	1.0	30.5 30.5	30.5	8.6 8.5	8.6	19.8 19.8	19.8	130.8 134.7	132.8	8.8 9.1	8.9		8.1 8.3	8.2		5.1 5.4	5.3	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	8.9	-	-	9.0	-	-	4.7
					Bottom	2.3	30.0 30.4	30.2	8.5 8.5	8.5	20.3 20.0	20.1	127.6 135.7	131.7	8.6 9.1	8.9	8.9	10.1 9.5	9.8		4.4 3.8	4.1	
14-Jul-14	Sunny	Moderate	07:23		Surface	1.0	29.2	29.2	7.9 7.9	7.9	18.8 18.9	18.9	82.7 81.9	82.3	6.1 6.1	6.1		5.6 5.6	5.6		5.7 6.4	6.1	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	5.6	-	-	6.2
					Bottom	2.8	29.2 29.2	29.2	7.9 7.9	7.9	19.1 19.1	19.1	83.7 82.2	83.0	6.2 6.1	6.1	6.1	5.5 5.6	5.6		6.6 5.8	6.2	
16-Jul-14	Sunny	Moderate	09:39		Surface	1.0	29.6 29.6	29.6	7.9 7.9	7.9	18.0 18.2	18.1	72.4 71.9	72.2	5.0 5.0	5.0		5.0 5.5	5.3		3.7 3.8	3.8	
				3.8	Middle	-	-	-	-	-	-	-		-	-	-	5.0	-	-	5.3	-	-	4.6
					Bottom	2.8	29.5 29.5	29.5	7.8 7.9	7.9	18.8 18.9	18.8	73.1 72.1	72.6	5.0 5.1	5.0	5.0	5.2 5.1	5.2		5.4 5.4	5.4	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-			-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	_
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	14:50		Surface	1.0	30.0 30.0	30.0	8.3 8.2	8.2	20.1 20.1	20.1	110.5 111.4	111.0	7.5 7.5	7.5	7.5	4.1 4.0	4.1		2.5 2.5	2.5	ļ
				3.3	Middle	1		-		-		-		-		-	7.0	-	-	5.1	-	-	2.5
					Bottom	2.3	30.1 29.9	30.0	8.2 8.1	8.2	20.3 20.5	20.4	111.5 108.0	109.8	7.5 7.3	7.4	7.4	6.0 5.9	6.0		2.8 2.1	2.5	
23-Jul-14	Sunny	Moderate	17:21		Surface	1.0	30.7 30.9	30.8	8.4 8.3	8.4	19.4 19.8	19.6	127.3 127.0	127.2	8.6 8.5	8.5	8.5	6.6 6.6	6.6		6.0 5.1	5.6	
				3.6	Middle	-		-		-		-		-		-	0.0	-	-	6.7	-	-	5.6
					Bottom	2.6	30.4 30.6	30.5	8.1 8.3	8.2	20.6 20.4	20.5	121.4 129.4	125.4	8.2 8.7	8.4	8.4	6.6 6.7	6.7		5.4 5.8	5.6	
25-Jul-14	Sunny	Moderate	18:29		Surface	1.0	30.5 30.6	30.6	8.6 8.5	8.5	19.0 19.0	19.0	133.0 132.0	132.5	9.0 8.9	8.9	8.9	12.0 11.8	11.9		10.6 10.2	10.4	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.9	-	-	13.5	-	-	10.8
					Bottom	2.3	30.4 30.5	30.5	8.4 8.5	8.5	19.2 19.1	19.2	129.5 131.3	130.4	8.8 8.9	8.8	8.8	14.9 15.1	15.0		11.2 11.2	11.2	ļ
28-Jul-14	Sunny	Moderate	07:07		Surface	1.0	29.0 29.0	29.0	8.0 8.0	8.0	20.8 20.9	20.8	79.4 77.7	78.6	5.4 5.3	5.4	5.4	4.3 4.0	4.2		4.2 4.1	4.2	
				3.7	Middle	•		-		-		-		-		-	3.4	-	-	4.2	-	-	7.3
					Bottom	2.7	29.0 29.0	29.0	8.0 8.0	8.0	20.9 21.0	20.9	78.4 81.9	80.2	5.4 5.6	5.5	5.5	4.1 4.3	4.2		10.4 10.4	10.4	
30-Jul-14	Sunny	Moderate	08:52		Surface	1.0	29.4 29.4	29.4	7.6 7.6	7.6	20.2 20.3	20.3	78.3 79.4	78.9	5.4 5.4	5.4	5.4	3.4 3.3	3.4	_	1.6 0.7	1.2	
				3.6	Middle	-		-		-		-		-		-	5.4	-	-	3.5	-	-	2.4
					Bottom	2.6	29.4 29.4	29.4	7.6 7.6	7.6	20.5 20.6	20.5	78.7 80.6	79.7	5.4 5.5	5.4	5.4	3.5 3.5	3.5		3.8 3.2	3.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	15:46		Surface	1.0	29.6 29.6	29.6	8.1 8.1	8.1	15.3 15.1	15.2	76.2 72.5	74.4	5.3 5.1	5.2	5.1	4.5 4.6	4.6		3.6 4.9	4.3	
				11.2	Middle	5.6	28.8 28.7	28.7	8.1 8.0	8.1	19.7 19.8	19.7	72.8 72.2	72.5	5.0 5.1	5.0	5.1	5.4 5.2	5.3	5.1	3.9 3.2	3.6	3.6
					Bottom	10.2	28.6 28.2	28.4	8.0 8.0	8.0	21.5 23.9	22.7	71.9 70.9	71.4	5.0 4.8	4.9	4.9	5.3 5.6	5.5		3.2 2.7	3.0	
4-Jul-14	Sunny	Moderate	17:09		Surface	1.0	30.4 30.5	30.4	8.2 8.2	8.2	9.2 9.5	9.3	87.0 83.3	85.2	6.2 5.9	6.1		4.4 4.2	4.3		2.2	2.2	
				10.4	Middle	5.2	29.7 28.8	29.3	8.1 8.1	8.1	19.8 20.6	20.2	78.7 76.8	77.8	5.4 5.3	5.3	5.7	5.6 5.4	5.5	5.4	2.2	2.2	2.4
					Bottom	9.4	27.8 27.9	27.8	8.0 8.0	8.0	24.4 24.4	24.4	69.0 73.6	71.3	4.8 5.1	4.9	4.9	6.3	6.4		2.6	2.8	
7-Jul-14	Sunny	Moderate	08:40		Surface	1.0	30.4 30.4	30.4	8.3 8.3	8.3	9.2	9.7	79.1 77.8	78.5	5.3 5.5	5.4		3.5	3.4		3.8	3.8	
				10.0	Middle	5.0	28.5 28.1	28.3	8.0 8.0	8.0	10.3 21.7	22.4	74.2 74.7	74.5	5.3	5.4	5.4	3.3 3.1 3.2	3.2	3.4	4.5	3.9	3.8
					Bottom	9.0	26.5	26.6	8.0	8.0	23.1	28.1	74.7	77.3	5.5 5.4	5.4	5.4	3.3	3.5		3.3	3.7	
9-Jul-14	Sunny	Moderate	10:48		Surface	1.0	29.7	29.7	8.4	8.4	27.8 14.1	14.1	79.9 105.6	109.7	5.5 7.4	7.7		2.6	2.6		3.6	3.9	
				10.5	Middle	5.3	29.7 27.3	27.1	8.4 8.1	8.1	14.0 25.1	25.6	74.5	75.1	5.1	5.2	6.5	6.7	6.6	5.3	5.3	4.7	4.7
					Bottom	9.5	26.9 26.6	26.8	8.1 8.2	8.2	26.0 28.1	28.1	75.7 75.0	72.1	5.2 5.1	4.9	4.9	6.5 6.6	6.6		4.1 5.8	5.6	
11-Jul-14	Sunny	Moderate	12:07		Surface	1.0	26.9 29.2	29.2	8.1 8.1	8.1	28.1 17.7	17.7	69.1 83.1	82.0	4.7 5.8	5.7		6.6 4.4	4.4		5.4 5.0	5.3	
				10.8	Middle	5.4	29.1 28.8	28.7	8.1 8.1	8.0	17.6 19.4	19.4	80.8 72.3	72.3	5.6 5.0	5.0	5.4	4.3 8.5	8.7	7.3	5.6 5.4	5.4	5.3
				10.0	Bottom	9.8	28.7 28.1	28.1	8.0 7.9	8.0	19.5 23.1	23.1	72.2 70.9	72.2	5.0 4.9	5.0	5.0	8.9 8.6	8.7	7.5	5.4 4.7	5.3	5.5
14-Jul-14	Sunny	Moderate	14:08		Surface	1.0	28.2 29.5	29.6	8.0 7.9	7.9	23.0 17.5	17.5	73.4 75.0	76.9	5.0 5.2	5.3	0.0	8.7 8.3	8.1		5.8 5.5	5.0	
				10.1	Middle	5.1	29.7 28.8	28.8	7.9 7.9	7.9	17.4 19.5	19.5	78.8 74.4	75.1	5.5 5.2	5.2	5.3	7.9 11.5	11.3	10.0	4.4 6.1	5.7	F 0
				10.1			28.8 28.9		7.9 7.9		19.5 19.6		75.8 73.6		5.2 5.1			11.1 10.3		10.0	5.2 5.0		5.2
16-Jul-14	Sunny	Moderate	15:43		Bottom	9.1	28.8 30.1	28.9	7.9 8.0	7.9	19.5 17.7	19.5	71.8 81.8	72.7	5.0 5.8	5.0	5.0	11.0	10.7		4.7 5.1	4.9	
10-341-14	Odiniy	Woderate	10.43		Surface	1.0	29.9	30.0	8.0 8.0	8.0	17.8 19.5	17.7	80.3 80.3	81.1	5.8 5.7	5.8	5.8	10.4	10.4		4.6	4.9	
				10.7	Middle	5.4	29.1	29.1	8.0 7.9	8.0	19.7	19.6	78.2 74.5	79.3	5.6	5.7		10.3	10.5	10.4	6.4	5.7	5.4
40.1.144					Bottom	9.7	29.0	28.9	8.0	8.0	21.4	21.4	75.3	74.9	5.4 5.4	5.4	5.4	10.6 10.2	10.4		6.1	5.7	
18-Jul-14#	-	-	-		Surface	-	-	-		-		-	-	-	-	-	_	-	-		-	-	
				-	Middle	-		-		-		-	-	-	-	-		-	-	=	-	-	=
					Bottom	-		-		-		-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	09:05		Surface	1.0	28.9 28.8	28.9	8.1 8.1	8.1	14.2 16.2	15.2	76.4 75.8	76.1	5.4 5.4	5.4	5.4	4.9 4.7	4.8		3.0 3.0	3.0	
				10.9	Middle	5.5	28.0 27.9	28.0	8.0 8.0	8.0	20.8 20.7	20.8	75.1 78.5	76.8	5.2 5.4	5.3	3.4	5.6 5.5	5.6	5.3	3.9 2.1	3.0	3.0
					Bottom	9.9	27.7 28.2	28.0	8.0 8.0	8.0	23.8 23.5	23.6	70.4 73.4	71.9	4.9 5.1	5.0	5.0	5.5 5.6	5.6		2.1 3.6	2.9	
23-Jul-14	Sunny	Moderate	10:57		Surface	1.0	29.6 29.6	29.6	7.7 7.7	7.7	15.2 15.4	15.3	87.7 87.8	87.8	6.1 6.1	6.1	5.7	3.0 2.8	2.9		2.9 2.4	2.7	
				9.9	Middle	5.0	28.8 28.9	28.8	7.6 7.7	7.6	21.1 21.3	21.2	78.3 73.7	76.0	5.3 5.0	5.2	0.7	4.7 4.5	4.6	4.2	3.8 3.0	3.4	3.1
					Bottom	8.9	28.6 28.6	28.6	7.6 7.6	7.6	24.4 23.5	23.9	72.2 70.5	71.4	5.0 4.8	4.9	4.9	5.1 4.8	5.0		3.3 3.3	3.3	
25-Jul-14	Sunny	Moderate	12:16		Surface	1.0	30.1 30.0	30.0	8.2 8.2	8.2	15.5 15.5	15.5	89.8 91.6	90.7	6.2 6.4	6.3	6.1	5.9 5.7	5.8		3.7 3.6	3.7	
				10.6	Middle	5.3	29.2 29.1	29.2	8.1 8.1	8.1	18.4 18.6	18.5	88.8 81.0	84.9	6.0 5.6	5.8	0.1	6.6 6.1	6.4	6.3	4.0 3.7	3.9	4.4
					Bottom	9.6	29.2 28.5	28.8	8.1 8.0	8.1	23.1 24.0	23.5	79.8 75.3	77.6	5.4 5.2	5.3	5.3	6.7 6.8	6.8		5.3 5.7	5.5	
28-Jul-14	Sunny	Moderate	14:13		Surface	1.0	29.5 29.4	29.4	8.1 8.1	8.1	18.9 19.1	19.0	73.7 74.6	74.2	5.1 5.1	5.1	5.5	8.7 8.9	8.8		1.9 2.3	2.1	
				10.1	Middle	5.1	29.2 29.2	29.2	8.1 8.1	8.1	20.2 20.6	20.4	71.9 70.3	71.1	5.9 5.8	5.9	3.3	8.5 8.8	8.7	8.7	2.5 2.6	2.6	2.9
					Bottom	9.1	28.9 28.7	28.8	8.0 8.1	8.1	23.3 23.4	23.4	78.8 76.3	77.6	5.9 5.2	5.5	5.5	8.4 8.8	8.6		3.5 4.3	3.9	
30-Jul-14	Sunny	Moderate	14:48		Surface	1.0	30.4 30.5	30.4	8.1 8.1	8.1	16.8 16.7	16.7	86.9 92.0	89.5	6.0 6.3	6.1	5.7	3.8 3.4	3.6	_	1.0 0.8	0.9	
				10.2	Middle	5.1	28.5 28.4	28.4	8.0 8.0	8.0	23.0 23.1	23.0	78.5 76.4	77.5	5.4 5.2	5.3	5.7	7.0 7.1	7.1	5.9	0.8 0.8	0.8	1.3
					Bottom	9.2	28.3 28.4	28.4	8.0 8.0	8.0	23.4 23.3	23.3	73.0 74.3	73.7	5.0 5.1	5.0	5.0	7.2 6.5	6.9		2.2 2.3	2.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	09:01		Surface	1.0	29.0 29.1	29.0	8.1 8.1	8.1	17.8 17.5	17.7	76.9 78.4	77.7	5.5 5.8	5.6	5.6	5.2 5.3	5.3		5.1 4.9	5.0	
				10.5	Middle	5.3	28.8 28.6	28.7	8.1 8.1	8.1	19.9 20.1	20.0	76.8 75.1	76.0	5.6 5.5	5.6	5.0	6.3 6.2	6.3	6.0	3.8 4.9	4.4	4.4
					Bottom	9.5	28.5 28.5	28.5	8.0 8.0	8.0	23.5 23.5	23.5	79.2 76.6	77.9	5.7 5.5	5.6	5.6	6.4 6.5	6.5		3.8 3.6	3.7	
4-Jul-14	Sunny	Moderate	10:48		Surface	1.0	30.1 30.1	30.1	8.2 8.2	8.2	13.2 13.3	13.2	84.1 83.0	83.6	5.9 5.8	5.9		4.0 3.8	3.9		2.3 3.0	2.7	
				10.9	Middle	5.5	29.2 29.3	29.2	8.1 8.2	8.1	18.6 18.4	18.5	72.5 74.0	73.3	5.0 5.1	5.1	5.5	6.5 6.4	6.5	5.7	4.3 3.6	4.0	3.7
					Bottom	9.9	27.6 27.5	27.6	8.1 8.0	8.1	25.5 25.6	25.6	70.6 69.6	70.1	4.8 4.8	4.8	4.8	6.4 6.7	6.6		4.5 4.5	4.5	
7-Jul-14	Sunny	Moderate	15:19		Surface	1.0	29.9 29.9	29.9	8.3 8.3	8.3	14.7 15.2	14.9	73.3 74.4	73.9	5.8 5.6	5.7		3.1 3.3	3.2		2.4	3.1	
				10.5	Middle	5.3	28.0 28.5	28.3	8.2 8.2	8.2	22.6 21.6	22.1	72.8 76.8	74.8	5.6 5.5	5.5	5.6	3.5 3.5	3.5	3.3	2.6	3.1	3.5
					Bottom	9.5	28.3	28.4	8.3 8.3	8.3	23.0 22.5	22.8	73.5 73.8	73.7	5.4 5.8	5.6	5.6	3.0	3.1		4.0	4.4	
9-Jul-14	Sunny	Moderate	17:22		Surface	1.0	30.2	30.2	8.4	8.4	16.0	15.8	107.4	108.8	7.4	7.5		4.7	4.7		4.0	4.2	
				10.8	Middle	5.4	27.5	27.8	8.4	8.2	15.7 24.7	24.4	76.7	75.7	7.6 5.3	5.2	6.4	6.5	6.8	6.1	5.2	5.7	4.7
					Bottom	9.8	28.0	26.3	8.2	8.2	24.1	28.5	74.6 73.7	72.7	5.2 5.1	5.0	5.0	7.1 7.1	6.9		6.2 4.1	4.2	
11-Jul-14	Sunny	Moderate	19:02		Surface	1.0	26.3 29.7	29.6	8.2	8.1	28.5 15.2	15.2	71.6 79.8	79.5	4.9 5.6	5.6		8.2	8.3		6.0	5.8	
				10.4	Middle	5.2	29.6 29.2	29.1	8.1 8.1	8.1	15.2 18.2	18.2	79.1 78.2	77.2	5.5 5.4	5.4	5.5	8.3 8.6	8.8	8.6	5.5 5.5	5.7	5.5
					Bottom	9.4	29.0	28.6	8.0	8.0	18.2 22.3	22.6	76.1 76.6	76.9	5.3	5.3	5.3	8.9 8.5	8.6		5.8	5.0	
14-Jul-14	Sunny	Moderate	07:28		Surface	1.0	28.7 28.6	28.7	7.9 7.9	7.9	22.8 19.6	19.6	77.1 87.8	85.2	5.3 6.1	5.9		9.6	9.9		6.2	6.1	
				10.3	Middle	5.2	28.7	28.1	7.9 7.9	7.9	19.6 22.2	22.1	82.6 77.0	79.3	5.7	5.5	5.7	13.6	13.5	12.0	5.9	5.6	5.9
					Bottom	9.3	28.2 28.1	28.1	7.9 7.9	7.9	22.0 22.2	22.1	81.5 75.5	74.5	5.7 5.2	5.1	5.1	13.3 12.9	12.7		5.4 5.6	6.0	
16-Jul-14	Sunny	Moderate	09:09	<u> </u>	Surface	1.0	28.1 29.5	29.5	7.9 8.0	8.0	22.1 15.7	16.0	73.4 85.6	82.7	5.1 6.2	6.0		12.5 10.3	10.2		6.4 4.1	3.5	
				10.8	Middle	5.4	29.4 29.3	29.0	8.0 8.0	8.0	16.3 17.8	19.0	79.8 84.8	82.6	5.8 6.1	5.9	6.0	10.1	10.3	10.4	2.9 3.8	3.9	3.9
				10.0	Bottom	9.8	28.7 28.8	28.8	7.9 8.0	7.9	20.2 20.4	20.4	80.3 79.9	78.3	5.8 5.8	5.6	5.6	10.4 10.8	10.6	10.4	4.0 3.7	4.3	0.5
18-Jul-14#	-	-	<u> </u>	<u> </u>		3.0	28.7		7.9	_	20.5		76.6 -		5.5 -	3.0	0.0	10.4			4.9	7.0	
					Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	ı

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	15:42		Surface	1.0	29.7 29.7	29.7	8.1 8.1	8.1	12.9 13.8	13.4	83.8 81.8	82.8	5.9 5.6	5.8	5.6	5.3 5.1	5.2		4.1 2.1	3.1	
				10.7	Middle	5.4	28.1 28.1	28.1	8.0 8.0	8.0	22.0 22.2	22.1	74.1 81.3	77.7	5.1 5.6	5.3	0.0	5.5 5.7	5.6	5.5	3.0 3.5	3.3	3.2
					Bottom	9.7	27.9 27.6	27.8	8.0 8.0	8.0	24.1 24.1	24.1	73.3 69.5	71.4	5.1 4.8	4.9	4.9	5.6 5.7	5.7		3.5 2.9	3.2	
23-Jul-14	Sunny	Moderate	18:00		Surface	1.0	30.1 30.1	30.1	8.2 8.1	8.2	14.8 14.4	14.6	101.1 91.0	96.1	7.0 6.3	6.7	6.2	4.3 4.7	4.5		4.1 4.7	4.4	
				9.8	Middle	4.9	28.1 28.1	28.1	8.0 8.0	8.0	23.9 23.9	23.9	80.7 81.0	80.9	5.7 5.7	5.7	0.2	6.9 7.2	7.1	6.2	4.0 4.4	4.2	4.5
					Bottom	8.8	27.8 28.0	27.9	8.0 8.0	8.0	24.9 24.3	24.6	74.5 74.0	74.3	5.1 5.1	5.1	5.1	6.8 7.0	6.9		4.5 5.2	4.9	
25-Jul-14	Sunny	Moderate	19:02		Surface	1.0	30.2 30.1	30.2	8.2 8.2	8.2	15.9 16.0	16.0	91.8 87.0	89.4	6.3 6.0	6.2	5.8	5.6 5.6	5.6		5.0 5.5	5.3	
				10.7	Middle	5.4	29.4 29.3	29.4	8.1 8.1	8.1	18.7 18.9	18.8	73.7 82.7	78.2	5.1 5.7	5.4	5.0	6.6 6.6	6.6	6.3	5.5 4.7	5.1	5.3
					Bottom	9.7	27.6 27.6	27.6	8.1 8.1	8.1	25.6 25.7	25.7	70.6 74.9	72.8	4.9 5.2	5.0	5.0	6.7 6.6	6.7		5.6 5.4	5.5	
28-Jul-14	Sunny	Moderate	07:01		Surface	1.0	28.2 28.3	28.3	8.0 8.1	8.1	22.0 21.9	21.9	71.6 74.5	73.1	5.3 5.5	5.4	5.3	8.6 8.7	8.7		4.1 4.5	4.3	
				10.5	Middle	5.3	27.5 27.5	27.5	8.0 8.0	8.0	24.5 25.6	25.0	72.9 70.1	71.5	5.3 5.1	5.2	5.5	8.8 8.4	8.6	8.6	5.9 5.3	5.6	5.8
					Bottom	9.5	27.5 27.8	27.7	8.0 8.0	8.0	25.5 25.4	25.4	71.4 73.8	72.6	5.1 5.4	5.2	5.2	8.5 8.5	8.5		7.5 7.4	7.5	
30-Jul-14	Sunny	Moderate	08:40		Surface	1.0	29.0 28.8	28.9	8.1 8.0	8.1	18.9 20.5	19.7	80.5 80.6	80.6	5.6 5.6	5.6	5.4	7.8 7.5	7.7	_	2.7 2.9	2.8	
				10.5	Middle	5.3	27.9 28.0	27.9	8.0 8.0	8.0	24.5 24.3	24.4	76.9 76.0	76.5	5.3 5.2	5.2	J. 4	8.3 8.4	8.4	9.3	2.5 2.6	2.6	2.9
					Bottom	9.5	28.0 27.9	27.9	8.0 8.0	8.0	24.4 24.5	24.5	77.8 79.9	78.9	5.3 5.5	5.4	5.4	11.7 12.0	11.9		3.2 3.4	3.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

	Weather	Sea	Sampling	Water	Sampling		Temperature (°C)		pН		Salinity (ppt)		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)		
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	16:07		Surface	1.0	29.4 29.4	29.4	8.1 8.1	8.1	16.2 16.2	16.2	73.4 73.5	73.5	5.1 5.1	5.1	5.1	4.9 4.7	4.8		4.2 3.4	3.8	
				10.8	Middle	5.4	28.8 28.8	28.8	8.1 8.1	8.1	19.3 19.4	19.3	74.4 73.0	73.7	5.1 5.1	5.1	5.1	6.1 6.2	6.2	5.7	3.1 3.4	3.3	3.6
					Bottom	9.8	28.6 28.6	28.6	8.1 8.0	8.1	21.9 22.0	22.0	69.4 69.6	69.5	4.8 4.8	4.8	4.8	6.1 6.2	6.2		4.1 3.2	3.7	
4-Jul-14	Sunny	Moderate	17:20		Surface	1.0	30.5 30.4	30.5	8.3 8.2	8.2	9.3 10.1	9.7	92.8 87.6	90.2	6.6 6.2	6.4		4.6 4.6	4.6		0.8	0.9	
				10.5	Middle	5.3	28.8 29.5	29.1	8.1 8.1	8.1	17.9 16.2	17.0	79.0 76.5	77.8	5.4 5.3	5.4	5.9 6.5 6.6 5.1	6.5	6.6	6.3	1.2	1.3	1.3
					Bottom	9.5	28.0	28.0	8.0	8.0	23.7	23.7	72.7	74.3	5.1	5.1		7.7	7.6		1.6	1.8	1
7-Jul-14	Sunny	Moderate	08:25	10.2	Surface	1.0	28.0 30.1	30.1	8.0 8.3	8.3	23.6 10.9	11.0	75.8 72.2	74.5	5.2 5.8	5.6	5.5	7.4 2.5	2.7	2.4	2.0	3.4	
					Middle	5.1	30.0 27.7	27.8	8.3 8.1	8.1	11.1 23.5	23.4	76.7 75.2	74.7	5.5 5.6	5.4		2.8	2.1		3.8 4.6	4.3	4.4
					Bottom	9.2	27.8 26.7	26.9	8.1 8.0	8.1	23.3 27.6	27.4	74.2 77.5	74.0	5.3 5.2	5.3	5.3	2.0	2.5		3.9 5.2	5.4	1
9-Jul-14	Sunny	Moderate	10:32	10.4	Surface	1.0	27.2 29.9	29.8	8.1 8.4	8.4	27.2 13.3	13.7	70.5 94.9	93.4	5.5 6.7	6.6	5.9	2.5	2.7	3.8	5.6 2.9	3.0	
					Middle	5.2	29.6 27.6	27.5	8.3 8.1	8.1	14.0 24.8	24.9	91.8 74.9	74.5	6.5 5.1	5.1		2.6 4.4	4.4		3.1 4.2	4.5	3.8
							27.4 27.2		8.1 8.1		25.1 26.8		74.0 71.3		5.1 4.9			4.4 4.3			4.8 3.4		3.0
44.1.14					Bottom	9.4	27.1	27.2	8.1	8.1	27.3	27.1	72.5	71.9	5.0	4.9	4.9	4.5	4.4		4.5	4.0	
11-Jul-14	Sunny	Moderate	11:57		Surface	1.0	29.3 29.2	29.3	8.2 8.2	8.2	17.4 17.7	17.6	82.1 82.2	82.2	5.7 5.7	5.7	5.5	4.5 4.7	4.6		5.0 5.4	5.2	
				10.4	Middle	5.2	28.0 27.8	27.9	8.1 8.1	8.1	22.5 22.9	22.7	74.6 76.3	75.5	5.1 5.2	5.2		7.4 7.2	7.3	6.6	5.3 5.2	5.3	5.3
					Bottom	9.4	27.6 27.5	27.6	8.1 8.1	8.1	25.0 25.1	25.1	71.2 75.5	73.4	4.9 5.2	5.0	50	7.8 7.9	7.9		5.4 5.1	5.3	<u> </u>
14-Jul-14	Sunny	Moderate	14:20	10.1	Surface	1.0	29.5 29.4	29.5	7.9 7.9	7.9	17.4 17.5	17.5	78.0 77.5	77.8	5.4 5.4	5.4	5.3	9.9 9.7	9.8		6.5 6.6	6.6	
					Middle	5.1	28.8 28.8	28.8	7.9 7.9	7.9	20.2 20.2	20.2	73.5 73.8	73.7	5.1 5.1	5.1		11.9 11.2	11.6	11.4	6.2 6.3	6.3	6.5
					Bottom	9.1	28.7 28.6	28.7	7.9 7.9	7.9	20.8 20.6	20.7	77.0 75.3	76.2	5.3 5.2	5.3	5.3	12.9 12.6	12.8		7.0 6.1	6.6	
16-Jul-14	Sunny	Moderate	15:52	10.6	Surface	1.0	29.6 29.7	29.6	8.0 8.0	8.0	18.4 18.3	18.4	79.8 80.1	80.0	5.7 5.7	5.7		8.8 8.8	8.8		6.5 6.7	6.6	6.2
					Middle	5.3	28.5 28.5	28.5	8.0 8.0	8.0	21.6 21.5	21.6	75.4 76.6	76.0	5.4 5.5	5.5	5.6	8.7 8.5	8.6	8.8	6.6 5.2	5.9	
					Bottom	9.6	27.8 28.3	28.1	8.0 7.9	8.0	23.7	23.6	71.3 69.7	70.5	5.1 5.0	5.1	5.1	8.9 8.9	8.9		5.6 6.4	6.0	1
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	_	-	-	-	-	-	<u> </u>	-	-	<u>.</u>
					Bottom	_	-	-	-	_	-	-	-	_	-	_		-	_	_	-	_	-

DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ţ	ЭΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	08:55		Surface	1.0	28.8 28.8	28.8	8.1 8.1	8.1	16.3 16.6	16.5	76.7 79.8	78.3	5.4 5.5	5.5	5.5	5.7 5.9	5.8		3.8 3.6	3.7	
				10.3	Middle	5.2	28.1 27.9	28.0	8.0 8.0	8.0	22.2 22.5	22.3	75.6 76.3	76.0	5.3 5.4	5.4	0.0	6.7 6.4	6.6	6.4	3.5 3.6	3.6	3.3
					Bottom	9.3	28.3 27.9	28.1	8.0 8.0	8.0	22.4 22.8	22.6	74.6 74.5	74.6	5.2 5.2	5.2	5.2	6.9 6.7	6.8		2.0 3.3	2.7	
23-Jul-14	Sunny	Moderate	10:47		Surface	1.0	29.8 29.5	29.7	7.8 7.9	7.9	14.1 15.2	14.6	93.0 88.0	90.5	6.5 6.2	6.3	5.9	2.0 2.3	2.2		3.5 3.7	3.6	
				10.1	Middle	5.1	28.6 28.8	28.7	7.6 7.6	7.6	21.8 20.4	21.1	80.0 80.2	80.1	5.5 5.5	5.5	0.0	3.0 3.1	3.1	3.1	2.7 3.7	3.2	3.5
					Bottom	9.1	28.1 28.6	28.3	7.6 7.6	7.6	23.5 22.4	22.9	75.5 76.1	75.8	5.2 5.3	5.2	5.2	4.1 4.0	4.1		3.4 3.7	3.6	
25-Jul-14	Sunny	Moderate	12:06		Surface	1.0	29.9 29.9	29.9	8.2 8.2	8.2	15.6 15.6	15.6	92.7 91.1	91.9	6.5 6.3	6.4	6.2	3.8 3.9	3.9		4.1 3.7	3.9	
				10.2	Middle	5.1	29.1 29.2	29.1	8.1 8.2	8.2	19.4 18.7	19.0	84.0 88.2	86.1	5.8 6.0	5.9	0.2	5.3 5.7	5.5	4.9	5.4 5.0	5.2	5.0
					Bottom	9.2	28.6 29.0	28.8	8.1 8.1	8.1	22.4 21.2	21.8	81.1 77.2	79.2	5.6 5.3	5.4	5.4	5.5 5.3	5.4		5.9 5.9	5.9	
28-Jul-14	Sunny	Moderate	14:24		Surface	1.0	29.3 29.2	29.3	8.1 8.1	8.1	19.7 19.8	19.7	72.6 79.4	76.0	6.0 5.8	5.9	5.6	5.3 5.1	5.2		2.1 2.8	2.5	
				10.0	Middle	5.0	28.5 28.5	28.5	8.1 8.1	8.1	23.6 23.7	23.7	73.9 71.7	72.8	5.3 5.2	5.3	5.6	5.1 5.2	5.2	5.2	5.2 5.1	5.2	4.6
					Bottom	9.0	28.1 28.1	28.1	8.0 8.1	8.1	24.2 24.3	24.3	73.6 78.7	76.2	5.3 5.7	5.5	5.5	5.2 5.2	5.2		6.5 5.7	6.1	
30-Jul-14	Sunny	Moderate	14:59		Surface	1.0	30.0 29.6	29.8	8.1 8.1	8.1	17.4 18.6	18.0	87.5 85.4	86.5	6.0 5.9	5.9	5.6	3.5 3.8	3.7	_	0.9 1.1	1.0	
				10.0	Middle	5.0	28.5 28.4	28.5	8.0 8.0	8.0	22.6 23.0	22.8	76.9 78.9	77.9	5.3 5.4	5.3	3.0	6.1 6.3	6.2	5.7	1.7 1.4	1.6	1.5
					Bottom	9.0	28.3 28.3	28.3	8.0 8.0	8.0	23.3 23.4	23.3	76.1 76.7	76.4	5.2 5.3	5.2	5.2	7.0 7.1	7.1		1.8 1.9	1.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	ŗ	ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	08:52		Surface	1.0	29.5 29.5	29.5	8.1 8.1	8.1	14.7 14.3	14.5	77.1 76.3	76.7	5.4 5.4	5.4	5.4	4.9 5.3	5.1		3.2 3.1	3.2	
				10.5	Middle	5.3	28.9 28.8	28.9	8.1 8.1	8.1	18.6 18.7	18.6	71.6 76.6	74.1	5.1 5.6	5.4	3.4	5.4 5.5	5.5	5.3	2.8 3.1	3.0	3.2
					Bottom	9.5	28.2 28.2	28.2	8.0 8.1	8.0	23.1 23.1	23.1	73.2 74.9	74.1	5.6 5.5	5.5	5.5	5.1 5.2	5.2		3.2 3.7	3.5	
4-Jul-14	Sunny	Moderate	10:36		Surface	1.0	30.1 30.0	30.0	8.2 8.2	8.2	14.5 14.8	14.7	88.1 90.5	89.3	6.2 6.3	6.2		4.9 4.8	4.9		4.1 4.2	4.2	
				12.0	Middle	6.0	29.3 29.4	29.3	8.1 8.2	8.1	18.5 18.0	18.2	76.8 74.6	75.7	5.3 5.2	5.2	5.7	7.8 7.9	7.9	7.0	4.7 5.2	5.0	5.0
					Bottom	11.0	27.4 27.3	27.4	8.0 8.1	8.1	26.1 26.4	26.2	69.4 69.9	69.7	4.8 4.8	4.8	4.8	7.9 7.9 8.2	8.1		5.6 5.7	5.7	1
7-Jul-14	Sunny	Moderate	15:35		Surface	1.0	29.9	29.9	8.3	8.3	12.9	12.7	76.4	74.8	5.4	5.6		2.3	2.3		3.7	3.7	
				10.6	Middle	5.3	30.0 27.9	27.9	8.4 8.2	8.2	12.5 23.2	23.2	73.2 75.5	75.3	5.9 5.5	5.6	5.6	2.3	2.6	2.4	2.8	2.9	3.1
					Bottom	9.6	27.9 27.9	27.9	8.2 8.2	8.2	23.1 23.2	23.1	75.1 79.7	79.8	5.7 5.8	5.8	5.8	2.6	2.4		3.0 2.5	2.6	
9-Jul-14	Sunny	Moderate	17:32		Surface	1.0	28.0 30.3	30.4	8.3 8.4	8.4	23.0 16.9	16.6	79.9 105.9	108.5	5.9 7.3	7.4		2.5 4.5	4.6		2.7 4.8	4.7	
				10.6	Middle	5.3	30.5 28.8	28.8	8.4 8.3	8.3	16.3 20.7	20.8	111.0 76.5	77.9	7.6 5.3	5.4	6.4	4.6 6.2	6.3	5.9	4.5 5.1	5.3	5.6
				10.0	Bottom	9.6	28.8 26.8	26.8	8.3 8.2	8.2	20.8 26.9	26.9	79.3 74.9	75.2	5.5 5.2	5.2	5.2	6.3 6.7	6.7	0.0	5.4 6.3	6.7	0.0
11-Jul-14	Sunny	Moderate	19:15		Surface	1.0	26.8 29.6	29.6	8.2 8.3	8.2	26.9 17.1	17.0	75.5 103.1	104.1	5.2 7.1		J.Z	6.7 7.3			7.0 5.0		
				40.0			29.6 29.6		8.2 8.2		16.8 19.8		105.0 99.4		7.2 6.9	7.2	7.1	7.7 7.6	7.5	7.0	5.3 4.8	5.2	
				10.3	Middle	5.2	29.5 29.5	29.5	8.2 8.2	8.2	19.4 20.1	19.6	102.7 99.0	101.1	7.0 6.8	7.0		7.8 8.3	7.7	7.9	4.9 4.8	4.9	5.2
14-Jul-14	Sunny	Moderate	07:19		Bottom	9.3	29.4 29.0	29.5	8.2 7.9	8.2	20.3	20.2	99.1 78.7	99.1	6.8	6.8	6.8	8.5 13.1	8.4		6.2	5.5	
14 001 14	Curry	Woderate	07.10		Surface	1.0	29.0 28.7	29.0	7.9 7.8	7.9	17.8 19.5	18.0	79.4 76.1	79.1	5.5 5.3	5.5	5.4	13.0	13.1		5.8 5.3	5.6	
				10.2	Middle	5.1	28.8 28.5	28.8	7.9 7.8	7.9	19.2	19.3	76.1 76.1 77.0	76.1	5.3	5.3		13.5	14.0	14.4	5.6 5.8	5.5	5.7
					Bottom	9.2	28.7	28.6	7.8	7.8	19.7	20.1	76.0	76.5	5.3 5.3	5.3	5.3	15.8 16.2	16.0		5.9	5.9	
16-Jul-14	Sunny	Moderate	08:58		Surface	1.0	29.2 28.9	29.0	8.0 8.0	8.0	18.3 18.3	18.3	76.4 75.2	75.8	5.5 5.4	5.5	5.5	7.8 8.1	8.0		5.6 6.2	5.9	
				10.7	Middle	5.4	28.5 28.5	28.5	7.9 7.9	7.9	20.3 20.5	20.4	75.3 73.2	74.3	5.5 5.3	5.4		8.7 8.5	8.6	8.5	6.0 5.3	5.7	5.4
					Bottom	9.7	28.3 28.6	28.4	7.9 7.9	7.9	21.8 21.6	21.7	72.0 72.2	72.1	5.2 5.2	5.2	5.2	8.8 8.8	8.8		4.3 4.8	4.6	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-		-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	15:53		Surface	1.0	29.6 29.7	29.7	8.2 8.2	8.2	14.6 14.3	14.4	88.6 89.0	88.8	6.2 6.3	6.2	6.0	4.6 4.9	4.8		3.8 4.0	3.9	
				10.5	Middle	5.3	28.7 28.8	28.7	8.1 8.1	8.1	20.1 19.9	20.0	82.6 81.0	81.8	5.7 5.6	5.7	0.0	5.5 5.4	5.5	5.3	3.6 3.8	3.7	3.6
					Bottom	9.5	27.7 27.8	27.8	8.0 8.1	8.0	23.3 21.2	22.3	82.6 78.3	80.5	5.7 5.5	5.6	5.6	5.6 5.8	5.7		3.7 2.9	3.3	
23-Jul-14	Sunny	Moderate	18:10		Surface	1.0	29.9 29.9	29.9	7.9 7.9	7.9	17.1 17.2	17.1	110.0 105.3	107.7	7.6 7.3	7.4	6.6	5.0 5.6	5.3		5.0 5.1	5.1	
				10.1	Middle	5.1	28.4 29.4	28.9	7.7 7.7	7.7	22.8 21.4	22.1	82.7 83.7	83.2	5.6 5.7	5.7	0.0	8.0 8.6	8.3	7.8	5.7 4.7	5.2	5.2
					Bottom	9.1	27.7 28.4	28.1	7.6 7.7	7.6	24.8 23.6	24.2	75.8 77.9	76.9	5.2 5.3	5.3	5.3	9.5 9.9	9.7		5.6 5.2	5.4	
25-Jul-14	Sunny	Moderate	19:12		Surface	1.0	29.6 29.4	29.5	8.2 8.2	8.2	19.0 19.2	19.1	90.8 86.3	88.6	6.2 5.9	6.1	5.9	5.7 5.7	5.7		7.2 7.4	7.3	
				10.6	Middle	5.3	28.2 28.7	28.5	8.1 8.1	8.1	23.3 21.8	22.6	79.6 84.1	81.9	5.5 5.8	5.6	3.5	6.2 6.1	6.2	6.1	7.5 7.3	7.4	7.7
					Bottom	9.6	28.2 28.2	28.2	8.1 8.1	8.1	23.4 23.4	23.4	71.4 76.4	73.9	4.9 5.2	5.1	5.1	6.5 6.3	6.4		8.4 8.6	8.5	
28-Jul-14	Sunny	Moderate	06:50		Surface	1.0	28.2 28.2	28.2	8.1 8.0	8.1	22.4 22.5	22.4	71.8 70.1	71.0	5.1 5.1	5.1	5.5	5.4 5.6	5.5		3.3 3.4	3.4	
				10.5	Middle	5.3	27.4 27.3	27.3	8.0 8.0	8.0	25.9 26.2	26.0	76.4 74.9	75.7	5.9 5.8	5.8	3.3	5.6 5.6	5.6	5.5	5.2 5.2	5.2	4.8
					Bottom	9.5	27.4 27.2	27.3	8.0 8.0	8.0	26.3 26.4	26.3	78.1 76.3	77.2	6.0 5.8	5.9	5.9	5.4 5.5	5.5		6.0 5.6	5.8	
30-Jul-14	Sunny	Moderate	08:32		Surface	1.0	28.9 28.9	28.9	8.0 8.0	8.0	21.4 21.4	21.4	83.3 84.1	83.7	5.7 5.8	5.7	5.6	7.4 7.1	7.3	_	2.5 2.6	2.6	
				10.3	Middle	5.2	28.7 28.5	28.6	8.0 8.0	8.0	21.9 22.4	22.1	81.2 79.3	80.3	5.6 5.4	5.5	3.0	8.8 8.4	8.6	9.2	3.3 3.0	3.2	3.0
					Bottom	9.3	28.5 28.4	28.4	8.0 8.0	8.0	22.5 22.7	22.6	81.2 80.2	80.7	5.6 5.5	5.5	5.5	11.5 12.1	11.8		3.1 3.0	3.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	15:21		Surface	1.0	30.5 30.5	30.5	8.3 8.3	8.3	18.2 18.0	18.1	103.7 96.3	100.0	7.0 6.6	6.8	6.4	6.6 6.6	6.6		3.1 3.5	3.3	
				6.1	Middle	3.1	29.4 29.7	29.6	8.1 8.1	8.1	19.5 19.2	19.3	88.5 87.6	88.1	6.1 6.0	6.0	0.4	6.5 6.4	6.5	6.5	5.0 4.9	5.0	4.5
					Bottom	5.1	29.6 28.4	29.0	8.2 7.9	8.0	19.3 21.5	20.4	96.1 82.6	89.4	6.6 5.7	6.1	6.1	6.4 6.3	6.4		5.1 5.1	5.1	
4-Jul-14	Sunny	Moderate	16:43		Surface	1.0	32.2 31.1	31.6	8.2 8.1	8.1	14.8 15.6	15.2	138.7 136.5	137.6	9.3 9.3	9.3		8.1 8.8	8.5		4.2 3.9	4.1	
				6.3	Middle	3.2	31.1 30.5	30.8	8.0 8.0	8.0	15.6 15.9	15.8	114.2 109.6	111.9	7.8 7.5	7.7	8.5	9.9 10.2	10.1	9.7	4.8 5.4	5.1	4.7
					Bottom	5.3	29.6 29.5	29.6	7.8 7.7	7.8	19.4 19.9	19.7	100.2 105.1	102.7	6.9 7.2	7.0	7.0	10.8	10.4		4.7 5.0	4.9	
7-Jul-14	Sunny	Moderate	09:04		Surface	1.0	30.5	30.6	8.6	8.6	14.3	14.2	102.9	107.7	7.1	7.5		5.3	5.5		4.0	4.5	
				6.4	Middle	3.2	30.6 30.4	30.4	8.6 8.4	8.4	14.1	15.3	112.5 86.7	86.6	7.8 6.0	6.0	6.8	5.6 5.5	5.5	5.5	4.9	4.2	4.3
					Bottom	5.4	30.4 28.3	28.3	8.4 8.2	8.2	15.3 23.0	23.2	86.5 82.0	82.3	6.0 5.6	5.6	5.6	5.4 5.5	5.5		4.3 3.6	4.1	
9-Jul-14	Sunny	Moderate	10:41		Surface	1.0	28.3 29.7	29.7	8.2 8.4	8.4	23.4 18.6	18.7	82.5 96.4	95.6	5.6 6.6	6.6		5.5 8.7	9.0		4.6 6.5	6.6	
				6.1	Middle	3.1	29.6 28.9	28.7	8.4 8.2	8.2	18.8 20.9	21.0	94.8 78.7	76.2	6.5 5.4	5.2	5.9	9.3	12.7	9.7	6.6	6.7	6.9
				0.1		5.1	28.6 27.4	27.5	8.2 8.2	8.2	21.1 25.4	24.6	73.7 75.6	77.7	5.1 5.2	5.3	5.3	13.2 7.7	7.5	3.1	7.0	7.3	0.5
44 1 144	0	Madagata	44.04		Bottom	5.1	27.7	27.5	8.2	8.2	23.9	24.0	79.7	11.1	5.5	5.3	5.3	7.2	7.5		7.3	7.3	
11-Jul-14	Sunny	Moderate	11:21		Surface	1.0	29.2 29.1	29.2	8.3 8.3	8.3	21.0 21.1	21.1	80.2 79.7	80.0	5.5 5.4	5.5	5.4	7.9 8.0	8.0		4.7 4.1	4.4	
				6.3	Middle	3.2	28.7 28.4	28.5	8.2 8.2	8.2	22.2 22.8	22.5	75.6 76.0	75.8	5.2 5.3	5.2		8.7 7.9	8.3	9.2	3.9 4.7	4.3	4.8
					Bottom	5.3	27.1 27.0	27.1	8.2 8.1	8.1	26.2 25.9	26.0	70.8 72.9	71.9	4.9 5.0	4.9	4.9	11.4 11.2	11.3		6.4 5.2	5.8	
14-Jul-14	Sunny	Moderate	13:55		Surface	1.0	29.9 30.0	30.0	8.0 8.0	8.0	19.6 19.5	19.5	83.9 84.3	84.1	6.1 6.2	6.1	6.0	6.1 6.1	6.1		5.1 6.9	6.0	
				6.6	Middle	3.3	29.1 29.1	29.1	7.9 8.0	8.0	20.5 20.6	20.5	78.9 78.3	78.6	5.8 5.8	5.8	0.0	6.4 6.8	6.6	6.5	6.7 6.7	6.7	6.5
					Bottom	5.6	29.3 29.0	29.2	8.0 7.9	7.9	20.7 20.9	20.8	82.3 83.8	83.1	6.0 6.2	6.1	6.1	6.8 6.5	6.7		7.0 6.6	6.8	
16-Jul-14	Sunny	Moderate	15:56		Surface	1.0	29.4 30.1	29.8	8.0 8.1	8.1	19.2 18.9	19.1	75.4 75.7	75.6	5.5 5.2	5.3		5.2 5.4	5.3		5.5 6.1	5.8	
				6.2	Middle	3.1	29.0 28.7	28.9	8.0 8.0	8.0	20.5	20.6	73.7 77.1	75.4	5.4 5.9	5.7	5.5	5.5 5.3	5.4	5.4	5.9 6.0	6.0	5.8
					Bottom	5.2	27.9 28.0	28.0	7.9 8.0	8.0	24.6 24.4	24.5	74.4 71.5	73.0	5.4 5.9	5.6	5.6	5.3 5.4	5.4		5.3 5.7	5.5	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	_
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ЭΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	09:04		Surface	1.0	28.7 28.8	28.8	8.1 8.1	8.1	20.1 20.0	20.1	84.9 86.3	85.6	5.9 6.0	5.9	5.8	2.6 2.7	2.7		3.3 3.3	3.3	
				6.2	Middle	3.1	28.8 28.8	28.8	8.1 8.1	8.1	20.8 20.6	20.7	80.3 83.5	81.9	5.5 5.8	5.6	0.0	2.7 2.8	2.8	2.5	3.5 3.6	3.6	3.5
					Bottom	5.2	28.1 28.0	28.1	8.0 8.0	8.0	22.9 23.7	23.3	76.1 76.7	76.4	5.2 5.3	5.3	5.3	2.0 2.1	2.1		3.0 4.1	3.6	
23-Jul-14	Sunny	Moderate	11:29		Surface	1.0	29.4 29.4	29.4	8.1 8.1	8.1	20.2 20.3	20.2	87.9 88.1	88.0	6.0 6.0	6.0	5.9	4.7 4.6	4.7		3.7 2.5	3.1	
				6.5	Middle	3.3	29.2 29.1	29.1	8.0 8.0	8.0	20.7 20.8	20.8	83.6 84.9	84.3	5.7 5.8	5.8	0.0	5.6 5.4	5.5	5.3	2.2 2.8	2.5	3.0
					Bottom	5.5	28.5 29.3	28.9	7.9 8.0	8.0	22.3 21.9	22.1	76.8 77.2	77.0	5.3 5.3	5.3	5.3	5.7 5.7	5.7		2.9 3.9	3.4	
25-Jul-14	Sunny	Moderate	12:08		Surface	1.0	29.8 29.8	29.8	8.2 8.3	8.2	18.9 19.0	18.9	98.6 100.0	99.3	6.7 6.8	6.8	6.5	6.1 6.0	6.1		3.9 4.2	4.1	
				7.1	Middle	3.6	29.6 29.6	29.6	8.1 8.2	8.2	19.1 19.2	19.1	89.2 90.5	89.9	6.1 6.2	6.2	6.5	6.6 6.9	6.8	6.7	4.0 4.1	4.1	4.8
					Bottom	6.1	28.7 29.0	28.9	8.1 7.9	8.0	22.0 20.4	21.2	82.3 81.1	81.7	5.6 5.6	5.6	5.6	7.4 7.2	7.3		5.8 6.3	6.1	ļ
28-Jul-14	Sunny	Moderate	13:43		Surface	1.0	29.5 29.5	29.5	8.0 8.0	8.0	22.0 21.9	21.9	90.9 94.9	92.9	6.3 6.5	6.4	6.4	6.4 6.6	6.5		5.3 5.2	5.3	
				6.5	Middle	3.3	28.2 29.2	28.7	7.9 8.0	8.0	23.8 22.5	23.2	87.8 95.7	91.8	6.1 6.6	6.3	0.4	8.5 8.8	8.7	7.8	5.3 5.4	5.4	5.4
					Bottom	5.5	28.2 27.5	27.9	7.9 7.9	7.9	25.5 26.4	26.0	88.6 83.6	86.1	6.1 5.8	6.0	6.0	8.5 8.1	8.3		5.3 5.5	5.4	ļ
30-Jul-14	Sunny	Moderate	14:38		Surface	1.0	29.9 29.7	29.8	7.7 7.7	7.7	21.9 22.2	22.0	79.7 79.1	79.4	5.3 5.3	5.3	5.3	4.2 4.4	4.3	_	6.0 6.0	6.0	
				6.5	Middle	3.3	28.1 28.7	28.4	7.7 7.7	7.7	23.9 23.5	23.7	74.5 77.8	76.2	5.1 5.3	5.2	J.J	4.4 4.3	4.4	4.4	6.8 6.8	6.8	7.1
					Bottom	5.5	27.7 27.7	27.7	7.7 7.7	7.7	26.6 26.7	26.6	71.1 71.4	71.3	4.8 4.8	4.8	4.8	4.4 4.4	4.4		8.5 8.2	8.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	09:06		Surface	1.0	29.3 29.3	29.3	8.1 8.1	8.1	17.3 17.4	17.4	79.9 80.1	80.0	5.6 5.6	5.6		5.4 5.1	5.3		3.2 4.1	3.7	
				6.5	Middle	3.3	29.2 29.2	29.2	8.1 8.1	8.1	17.9 17.9	17.9	75.6 75.7	75.7	5.3 5.3	5.3	5.5	7.5 7.2	7.4	6.8	4.1 3.3	3.7	3.7
					Bottom	5.5	29.1 28.9	29.0	8.1 8.0	8.1	20.2	20.5	77.7 74.5	76.1	5.3 5.1	5.2	5.2	7.8 7.8	7.8		3.5 3.9	3.7	1
4-Jul-14	Sunny	Moderate	10:17		Surface	1.0	30.1	30.1	8.0	8.0	14.5	14.5	97.9	97.8	6.8	6.8		5.7	5.6		7.8	7.9	
				6.8	Middle	3.4	30.1 29.9	29.9	8.0	8.0	14.5 14.7	14.7	97.6 86.8	87.8	6.8 6.1	6.1	6.5	5.5 8.0	8.2	7.9	7.9 8.4	8.4	8.2
					Bottom	5.8	29.8 29.3	29.2	7.9	7.9	14.8 21.4	21.6	88.8 92.0	88.4	6.2 6.3	6.0	6.0	8.3 10.2	10.0		8.3 8.0	8.2	
7-Jul-14	Sunny	Moderate	14:40				29.1 30.3		7.9 8.6		21.9 13.1		84.7 107.5		5.8 7.5		0.0	9.8 6.6			8.3 4.9		
	ĺ				Surface	1.0	30.3 29.3	30.3	8.6 8.2	8.6	12.8 18.5	13.0	108.3 80.9	107.9	7.6 5.6	7.6	6.6	6.5 6.1	6.6		4.1 3.6	4.5	
				6.4	Middle	3.2	29.6	29.4	8.3 8.1	8.2	16.6 24.1	17.6	82.4 75.1	81.7	5.7	5.6		6.3	6.2	6.5	4.7	4.2	4.7
0 1:144	Common	Madaata	47.00		Bottom	5.4	28.2	28.2	8.0	8.1	22.6	23.4	74.3	74.7	5.1	5.1	5.1	6.6	6.6		5.9	5.4	
9-Jul-14	Sunny	Moderate	17:02		Surface	1.0	30.4 29.4	29.9	8.6 8.4	8.5	17.5 18.9	18.2	97.7 94.7	96.2	6.7 6.5	6.6	6.1	6.2 6.6	6.4		7.0 7.9	7.5]
				6.3	Middle	3.2	29.1 29.0	29.0	8.3 8.2	8.3	19.8 20.7	20.2	81.8 79.2	80.5	5.6 5.4	5.5		7.5 7.5	7.5	8.4	8.5 8.0	8.3	7.7
					Bottom	5.3	28.3 28.4	28.4	8.0 8.1	8.1	23.0 22.2	22.6	74.2 74.9	74.6	5.1 5.2	5.1	5.1	11.8 11.0	11.4		7.7 6.8	7.3	
11-Jul-14	Sunny	Moderate	18:49		Surface	1.0	29.6 29.6	29.6	8.4 8.4	8.4	19.2 19.2	19.2	105.5 104.6	105.1	7.2 7.2	7.2	7.1	7.4 7.3	7.4		5.9 6.0	6.0	
				6.5	Middle	3.3	29.4 29.4	29.4	8.4 8.3	8.3	19.6 19.7	19.6	103.3 101.9	102.6	7.1 7.0	7.0	7.1	9.0 9.2	9.1	9.5	5.2 6.1	5.7	5.4
					Bottom	5.5	29.4 29.4	29.4	8.2 8.4	8.3	19.8 19.7	19.7	101.8 105.9	103.9	7.0 7.3	7.1	7.1	11.8 11.9	11.9		4.4 4.3	4.4	
14-Jul-14	Sunny	Moderate	07:00		Surface	1.0	29.3 29.3	29.3	7.9 7.9	7.9	16.9 17.0	17.0	76.2 75.5	75.9	5.7 5.6	5.7		5.6 5.4	5.5		6.7 7.0	6.9	
				6.5	Middle	3.3	29.1 29.1	29.1	7.9 7.9	7.9	18.4 18.1	18.3	74.0 77.2	75.6	5.6 5.7	5.6	5.7	6.6 6.4	6.5	6.3	7.7 7.8	7.8	7.3
					Bottom	5.5	29.0 29.2	29.1	7.8 7.9	7.8	19.6 19.6	19.6	74.4 73.2	73.8	5.6 5.5	5.5	5.5	7.1 6.9	7.0		7.9 6.6	7.3	1
16-Jul-14	Sunny	Moderate	09:11		Surface	1.0	29.5	29.6	7.8	7.8	17.5	17.0	77.9	74.9	5.7	5.4		7.5	7.6		4.4	4.0	
				6.5	Middle	3.3	29.7 29.4	29.4	7.8	7.8	16.5 17.8	18.2	71.9 77.3	77.8	5.0	5.5	5.5	7.7	7.3	7.4	3.5 5.2	4.8	4.0
					Bottom	5.5	29.3 29.2	29.2	7.8 7.8	7.8	18.6 19.4	19.7	78.3 74.3	75.6	5.7 5.4	5.4	5.4	7.4 7.5	7.3		4.3 3.3	3.2	
18-Jul-14#	-	-	-		Surface		29.3	-	7.7	-	20.0	-	76.9	-	5.3			7.1	-		3.0	-	
						-	-		-		-		-		-		-	-	<u> </u>		-	-	1
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=	-	-	
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	15:17		Surface	1.0	29.5 29.5	29.5	8.2 8.3	8.3	18.2 18.3	18.3	96.7 105.4	101.1	6.7 7.3	7.0	6.4	5.7 5.5	5.6		2.3 2.9	2.6	
				6.3	Middle	3.2	28.9 29.4	29.2	8.2 8.2	8.2	19.2 19.3	19.3	82.2 84.4	83.3	5.7 5.8	5.7	0.4	6.3 5.9	6.1	6.6	4.1 2.7	3.4	2.9
					Bottom	5.3	28.4 28.6	28.5	8.0 8.1	8.1	22.9 22.7	22.8	81.2 88.2	84.7	5.6 6.0	5.8	5.8	7.9 8.2	8.1		2.5 2.6	2.6	
23-Jul-14	Sunny	Moderate	17:46		Surface	1.0	30.2 30.2	30.2	8.4 8.4	8.4	17.6 17.7	17.6	120.6 122.5	121.6	8.3 8.4	8.3	7.8	5.8 5.9	5.9		5.3 5.3	5.3	
				6.3	Middle	3.2	29.5 29.6	29.5	8.1 8.2	8.2	19.1 19.1	19.1	103.8 109.5	106.7	7.0 7.4	7.2	7.0	7.7 7.6	7.7	7.1	4.1 5.7	4.9	5.2
					Bottom	5.3	29.3 29.5	29.4	8.2 8.0	8.1	22.1 22.6	22.4	100.1 93.7	96.9	6.9 6.4	6.6	6.6	7.8 7.6	7.7		5.9 4.6	5.3	
25-Jul-14	Sunny	Moderate	18:56		Surface	1.0	30.1 30.0	30.1	8.4 8.4	8.4	18.1 18.1	18.1	115.0 114.5	114.8	7.9 7.8	7.8	7.8	12.1 12.5	12.3		6.5 6.3	6.4	
				7.0	Middle	3.5	30.0 30.0	30.0	8.4 8.4	8.4	18.1 18.1	18.1	113.5 112.7	113.1	7.8 7.7	7.7	7.0	16.4 16.6	16.5	15.3	9.8 9.9	9.9	9.1
					Bottom	6.0	30.0 30.0	30.0	8.4 8.4	8.4	18.3 18.2	18.3	108.0 110.9	109.5	7.4 7.6	7.5	7.5	17.0 16.9	17.0		10.4 11.7	11.1	
28-Jul-14	Sunny	Moderate	06:46		Surface	1.0	28.9 28.8	28.8	7.9 7.9	7.9	20.4 20.5	20.4	94.3 87.9	91.1	6.6 6.1	6.3	6.3	6.6 6.5	6.6		3.7 3.6	3.7	
				6.6	Middle	3.3	28.8 28.5	28.6	7.9 7.9	7.9	20.6 21.9	21.3	92.2 87.4	89.8	6.4 6.1	6.3	6.3	6.8 6.6	6.7	6.6	5.9 5.8	5.9	5.3
					Bottom	5.6	28.3 28.3	28.3	7.9 7.9	7.9	23.7 22.6	23.1	84.2 91.1	87.7	5.9 6.4	6.1	6.1	6.6 6.6	6.6		6.2 6.2	6.2	ļ
30-Jul-14	Sunny	Moderate	08:30		Surface	1.0	29.2 29.3	29.2	7.6 7.6	7.6	20.3 20.0	20.2	86.9 89.1	88.0	6.0 6.1	6.1	6.0	4.2 4.0	4.1		1.1 1.2	1.2	
				6.6	Middle	3.3	28.9 28.9	28.9	7.6 7.6	7.6	21.8 22.0	21.9	84.3 84.6	84.5	5.8 5.8	5.8	0.0	5.1 5.2	5.2	4.9	1.8 1.6	1.7	1.6
					Bottom	5.6	28.8 28.9	28.8	7.6 7.6	7.6	22.4 22.3	22.4	85.4 87.3	86.4	5.9 6.0	5.9	5.9	5.5 5.2	5.4		1.9 1.7	1.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	14:33		Surface	1.0	30.0 30.0	30.0	8.1 8.1	8.1	18.6 18.7	18.7	90.3 87.2	88.8	6.2 6.0	6.1	5.9	10.4 10.5	10.5		4.0 3.1	3.6	
				8.5	Middle	4.3	29.7 29.7	29.7	8.1 8.1	8.1	19.6 19.7	19.6	88.4 79.5	84.0	6.0 5.4	5.7	5.9	10.6 10.5	10.6	11.0	4.0 4.1	4.1	4.1
					Bottom	7.5	29.1 29.1	29.1	8.0 8.0	8.0	21.6 21.7	21.6	76.3 73.7	75.0	5.2 5.0	5.1	5.1	11.7 11.8	11.8		4.4 5.0	4.7	
4-Jul-14	Sunny	Moderate	15:50		Surface	1.0	30.7 30.8	30.8	8.1 8.2	8.2	14.5 14.4	14.5	104.3 106.2	105.3	7.2 7.3	7.3		9.1 9.3	9.2		8.3 9.5	8.9	
				8.5	Middle	4.3	30.2 30.2	30.2	8.0 8.0	8.0	17.5 17.7	17.6	96.6 96.9	96.8	6.6 6.6	6.6	7.0	9.3 9.4	9.4	9.3	9.9	9.9	9.5
					Bottom	7.5	30.2	30.1	8.0	8.0	18.3	18.4	102.5	101.4	7.0	6.9	6.9	9.3	9.3		9.8	9.7	
7-Jul-14	Sunny	Moderate	09:51		Surface	1.0	30.0 30.9	30.9	7.9 8.7	8.7	18.5 13.6	13.4	100.3 111.0	111.1	6.9 7.7	7.7		9.3	6.8		9.6 4.0	4.3	
				8.4	Middle	4.2	30.9 27.7	27.9	8.7 8.1	8.0	13.3 24.1	24.8	75.9	75.7	7.7 5.1	5.1	6.4	6.8	6.7	6.8	4.6	4.1	4.4
				0	Bottom	7.4	28.0 27.6	27.6	8.0	8.1	25.5 27.3	27.3	75.5 71.0	73.1	5.1 4.8	4.9	4.9	6.7 6.7	6.8	0.0	3.7 5.2	4.8	
9-Jul-14	Sunny	Moderate	11:33		Surface	1.0	27.6 30.2	30.2	8.1 8.4	8.4	27.4 17.3	17.1	75.1 85.6	86.2	5.1 5.7	5.8	4.0	6.8	6.4		4.3 6.5	6.3	
				8.2			30.2 28.1	27.8	8.4 8.0	8.0	17.0 25.1	25.8	86.7 83.9	83.8	6.0 5.6		5.7	6.3 7.7		6.8	6.0 5.3		6.0
				8.2	Middle	4.1	27.6 27.5		8.0 8.1		26.5 27.7		83.6 81.1		5.6 5.6	5.6		7.1 7.0	7.4	6.8	5.8 5.6	5.6	6.0
11-Jul-14	Sunny	Moderate	12:11		Bottom	7.2	27.7	27.6	7.8 8.3	8.0	27.1	27.4	79.8 81.5	80.5	5.3 5.5	5.5	5.5	6.4 9.2	6.7		6.3	6.0	
11-301-14	Outliny	Woderate	12.11		Surface	1.0	29.4	29.4	8.3 8.1	8.3	20.9	21.0	82.0 76.8	81.8	5.6 5.2	5.5	5.4	9.1	9.2		5.3 5.1	5.7	
				8.5	Middle	4.3	28.0 27.8	28.0	8.1 8.0	8.1	24.7 24.5 25.0	24.6	77.7 72.0	77.3	5.2 5.3 4.9	5.2		12.2	11.8	10.4	6.0	5.6	6.1
			40.40		Bottom	7.5	28.0	27.9	8.2	8.1	24.9	24.9	71.5	71.8	4.9	4.9	4.9	10.3	10.3		6.9	7.1	
14-Jul-14	Sunny	Moderate	13:10		Surface	1.0	29.1 29.1	29.1	7.9 7.9	7.9	20.7 20.6	20.6	72.0 72.1	72.1	5.3 5.4	5.3	5.3	14.1 13.8	14.0		5.4 5.5	5.5	
				8.5	Middle	4.3	28.9 28.9	28.9	7.9 7.9	7.9	21.0 21.0	21.0	67.8 71.7	69.8	5.1 5.3	5.2		14.1 14.2	14.2	14.5	5.1 6.1	5.6	5.7
					Bottom	7.5	28.9 28.4	28.7	7.9 7.9	7.9	22.7 23.4	23.1	69.5 68.2	68.9	5.2 5.1	5.1	5.1	14.8 15.5	15.2		5.6 6.4	6.0	
16-Jul-14	Sunny	Moderate	14:59		Surface	1.0	29.7 29.7	29.7	8.0 8.0	8.0	19.6 19.6	19.6	77.3 79.3	78.3	5.6 5.7	5.7	5.6	8.7 8.9	8.8		4.3 4.4	4.4	
				8.4	Middle	4.2	29.2 29.5	29.4	8.0 8.0	8.0	20.5 20.0	20.2	72.4 75.5	74.0	5.3 5.5	5.4	5.0	8.8 8.8	8.8	8.8	6.0 4.5	5.3	5.2
					Bottom	7.4	29.1 29.0	29.1	8.0 7.9	7.9	21.1 21.0	21.1	74.8 78.8	76.8	5.4 5.7	5.6	5.6	8.8 8.7	8.8		6.3 5.5	5.9	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	09:56		Surface	1.0	29.1 29.0	29.1	8.1 8.1	8.1	19.1 19.2	19.1	79.9 80.2	80.1	5.5 5.6	5.5	5.4	5.4 5.5	5.5		3.0 3.9	3.5	
				8.3	Middle	4.2	28.3 28.3	28.3	7.9 8.1	8.0	24.2 23.2	23.7	77.3 75.7	76.5	5.3 5.2	5.2	0.4	7.6 8.0	7.8	7.0	4.3 3.1	3.7	3.6
					Bottom	7.3	28.2 28.4	28.3	7.8 8.1	7.9	25.1 24.7	24.9	70.6 74.9	72.8	4.8 5.1	4.9	4.9	8.2 7.4	7.8		3.7 3.4	3.6	
23-Jul-14	Sunny	Moderate	12:17		Surface	1.0	30.2 30.2	30.2	8.2 8.2	8.2	17.8 17.6	17.7	90.5 90.2	90.4	6.2 6.2	6.2	5.7	5.8 5.8	5.8		4.2 4.1	4.2	
				8.6	Middle	4.3	29.0 28.9	29.0	8.1 8.1	8.1	24.6 24.6	24.6	77.6 78.2	77.9	5.2 5.2	5.2	0.7	5.7 5.8	5.8	5.8	6.0 6.2	6.1	4.8
					Bottom	7.6	29.0 29.0	29.0	8.1 8.0	8.0	26.7 26.7	26.7	75.8 76.2	76.0	5.0 5.1	5.0	5.0	5.9 5.8	5.9		3.6 4.3	4.0	
25-Jul-14	Sunny	Moderate	12:56		Surface	1.0	30.3 30.3	30.3	8.2 8.3	8.3	19.5 19.7	19.6	101.6 103.2	102.4	6.9 7.0	6.9	6.6	7.9 7.8	7.9		7.8 7.5	7.7	
				9.3	Middle	4.7	30.0 30.2	30.1	8.3 8.1	8.2	20.3 19.6	19.9	91.5 92.0	91.8	6.2 6.2	6.2	0.0	9.0 8.9	9.0	9.3	7.6 7.9	7.8	8.0
					Bottom	8.3	29.5 29.5	29.5	7.9 8.2	8.0	23.4 24.5	24.0	86.2 87.4	86.8	5.8 5.8	5.8	5.8	10.8 11.0	10.9		8.5 8.7	8.6	ļ
28-Jul-14	Sunny	Moderate	12:55		Surface	1.0	29.3 29.3	29.3	8.0 8.0	8.0	22.5 22.4	22.4	75.1 76.4	75.8	5.1 5.2	5.1	5.1	10.5 10.7	10.6		6.1 6.2	6.2	
				8.5	Middle	4.3	29.2 29.2	29.2	8.1 8.0	8.0	22.6 22.7	22.6	75.2 74.7	75.0	5.1 5.1	5.1	5.1	10.6 10.5	10.6	10.6	7.8 8.1	8.0	8.1
					Bottom	7.5	29.2 29.3	29.2	8.0 8.1	8.1	22.7 22.7	22.7	73.4 74.4	73.9	5.0 5.0	5.0	5.0	10.3 10.6	10.5		10.1 10.2	10.2	
30-Jul-14	Sunny	Moderate	13:55		Surface	1.0	29.8 29.7	29.7	7.7 7.7	7.7	21.5 21.7	21.6	80.6 80.5	80.6	5.4 5.4	5.4	5.4	7.4 7.6	7.5	_	3.8 5.0	4.4	
				8.3	Middle	4.2	29.5 29.5	29.5	7.7 7.7	7.7	22.4 22.4	22.4	79.3 78.3	78.8	5.4 5.3	5.3	J.4	7.6 7.7	7.7	7.7	4.8 5.2	5.0	4.8
					Bottom	7.3	29.3 29.5	29.4	7.7 7.7	7.7	23.1 23.5	23.3	76.4 77.0	76.7	5.2 5.2	5.2	5.2	7.8 7.7	7.8		5.2 5.0	5.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	09:52		Surface	1.0	29.3 29.3	29.3	8.2 8.2	8.2	18.7 18.8	18.7	84.1 85.6	84.9	5.8 5.9	5.9	5.7	10.3 10.8	10.6		4.4 4.4	4.4	
				8.8	Middle	4.4	29.2 29.1	29.2	8.2 8.1	8.1	19.0 19.1	19.0	78.2 78.3	78.3	5.4 5.4	5.4	5.7	10.5 10.2	10.4	10.5	4.0 4.2	4.1	4.2
					Bottom	7.8	29.0 29.0	29.0	8.1 8.1	8.1	21.0 20.6	20.8	74.7 81.4	78.1	5.1 5.6	5.4	5.4	10.2 10.5	10.4		4.5 3.6	4.1	
4-Jul-14	Sunny	Moderate	11:04		Surface	1.0	30.1 30.1	30.1	8.1 8.0	8.1	15.8 15.8	15.8	98.9 96.9	97.9	6.8 6.7	6.8		9.2	9.6		6.0 6.4	6.2	
				8.4	Middle	4.2	29.2 29.2	29.2	7.8 7.8	7.8	18.9 19.3	19.1	74.0 73.5	73.8	5.1 5.1	5.1	6.0	11.9	11.7	11.4	6.1	6.7	7.3
					Bottom	7.4	29.1	29.1	7.8	7.7	21.3	21.3	80.9	80.5	5.5	5.5	5.5	13.2	13.0		9.3	8.9	
7-Jul-14	Sunny	Moderate	13:54		Surface	1.0	29.1 30.8	30.9	7.7 8.4	8.5	21.3 14.6	14.7	80.1 105.4	104.6	5.5 7.2	7.2		12.7 10.6	10.6		8.4 5.4	5.2	
				8.6	Middle	4.3	30.9 28.8	28.7	8.6 8.1	8.0	14.8 21.6	22.1	103.8 75.6	75.3	7.1 5.2	5.2	6.2	10.5 10.6	10.6	10.5	5.0 5.2	4.9	5.1
				0.0	Bottom	7.6	28.5 27.9	27.8	8.0	8.0	22.6 26.9	26.9	74.9 74.2	73.8	5.1 5.1	5.1	5.1	10.5 10.2	10.3	10.0	4.6 5.3	5.3	"
9-Jul-14	Sunny	Moderate	16:06		Surface	1.0	27.6 31.5	31.5	8.0 8.5	8.6	26.9 18.1	18.2	73.4 100.8	105.1	5.1 6.7	7.0	J. I	7.8	7.6		5.2 6.1	5.6	
				8.2			31.6 29.4	29.3	8.6 8.2	8.2	18.2 21.0	21.3	109.4 79.4	78.9	7.3 5.4		6.2	7.4 10.0		9.3	5.1 5.8		5.7
				8.2	Middle	4.1	29.3 28.7		8.2 8.2	_	21.6 23.7		78.4 72.8		5.3 5.0	5.3		10.5 9.7	10.3	9.3	6.2 5.1	6.0	5.7
11-Jul-14	Sunny	Moderate	17:49		Bottom	7.2	28.5 30.3	28.6	8.1 8.5	8.1	24.4	24.0	71.9 107.2	72.4	4.9 7.2	4.9	4.9	10.3	10.0		6.0	5.6	
11-341-14	Outliny	Woderate	17.45		Surface	1.0	30.2 29.8	30.3	8.6 8.5	8.6	20.1	20.1	114.5 101.6	110.9	7.7	7.5	7.2	10.7	10.4		5.3	4.8	ļ
				8.7	Middle	4.4	29.5	29.7	8.4	8.4	21.1	20.8	99.6	100.6	6.8	6.8		12.5 13.2	12.8	12.4	6.1 5.9	5.7	5.5
					Bottom	7.7	29.1 29.3	29.2	8.3 8.4	8.3	21.8 21.2	21.5	88.5 92.9	90.7	6.0 6.3	6.2	6.2	14.5	13.9		5.8	5.9	
14-Jul-14	Sunny	Moderate	07:45		Surface	1.0	29.2 29.2	29.2	8.0 8.0	8.0	19.3 19.2	19.2	80.9 82.4	81.7	6.0 6.1	6.0	6.0	7.2 7.3	7.3		5.5 5.9	5.7	<u> </u>
				8.4	Middle	4.2	29.2 29.2	29.2	7.9 8.0	8.0	19.4 19.6	19.5	81.6 79.8	80.7	6.0 5.9	6.0		7.5 7.5	7.5	7.4	5.5 5.9	5.7	5.8
					Bottom	7.4	29.2 29.2	29.2	7.9 7.9	7.9	20.0 20.2	20.1	84.1 81.5	82.8	6.2 6.0	6.1	6.1	7.4 7.3	7.4		5.5 6.3	5.9	
16-Jul-14	Sunny	Moderate	10:09		Surface	1.0	29.7 29.7	29.7	7.9 7.9	7.9	18.6 18.6	18.6	73.8 73.9	73.9	5.1 5.1	5.1	5.2	8.3 8.5	8.4		5.7 5.7	5.7	
				8.8	Middle	4.4	29.5 29.6	29.6	7.9 7.9	7.9	19.2 19.1	19.2	70.8 70.7	70.8	5.5 5.1	5.3	5.2	8.6 8.8	8.7	8.6	6.1 6.5	6.3	6.2
					Bottom	7.8	29.2 29.5	29.3	7.7 7.9	7.8	20.2 19.9	20.1	73.5 73.2	73.4	5.0 5.0	5.0	5.0	8.5 8.7	8.6		6.3 6.7	6.5	
18-Jul-14#	=	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-		-		-	-	-	-	-	-	-	-	-	-	=	-	-	
					Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	14:21		Surface	1.0	29.4 29.4	29.4	8.2 8.2	8.2	21.0 21.0	21.0	92.3 90.1	91.2	6.3 6.1	6.2	6.0	4.4 4.0	4.2		4.6 3.8	4.2	
				8.4	Middle	4.2	29.3 29.2	29.2	8.1 8.1	8.1	21.4 21.7	21.6	87.5 84.2	85.9	6.0 5.7	5.8	0.0	4.8 4.3	4.6	4.7	4.7 4.7	4.7	4.2
					Bottom	7.4	29.0 28.9	28.9	8.0 8.1	8.1	22.0 22.5	22.3	85.2 81.3	83.3	5.8 5.5	5.7	5.7	5.1 5.5	5.3		4.1 3.4	3.8	
23-Jul-14	Sunny	Moderate	16:59		Surface	1.0	30.5 30.9	30.7	7.5 7.7	7.6	20.8 20.2	20.5	128.5 132.5	130.5	8.6 8.8	8.7	7.1	8.2 8.4	8.3		6.7 6.6	6.7	
				8.7	Middle	4.4	29.2 29.4	29.3	7.3 7.3	7.3	22.9 22.4	22.6	78.5 81.1	79.8	5.3 5.5	5.4	7.1	8.4 8.4	8.4	8.4	6.9 6.4	6.7	7.0
					Bottom	7.7	28.7 28.7	28.7	7.2 7.1	7.2	24.3 24.3	24.3	82.2 81.4	81.8	5.6 5.5	5.5	5.5	8.3 8.5	8.4		7.8 7.6	7.7	
25-Jul-14	Sunny	Moderate	18:00		Surface	1.0	31.0 30.9	31.0	8.5 8.4	8.5	18.7 18.7	18.7	133.0 132.3	132.7	8.9 8.9	8.9	8.5	10.0 9.7	9.9		8.4 8.2	8.3	
				9.1	Middle	4.6	30.7 30.7	30.7	8.4 8.4	8.4	19.0 19.3	19.2	120.3 121.6	121.0	8.1 8.2	8.1	6.5	11.5 11.8	11.7	11.7	9.2 9.6	9.4	9.3
					Bottom	8.1	29.7 30.0	29.9	8.2 8.3	8.2	21.2 20.8	21.0	106.4 109.0	107.7	7.2 7.4	7.3	7.3	13.6 13.5	13.6		10.0 10.1	10.1	ļ
28-Jul-14	Sunny	Moderate	07:29		Surface	1.0	28.9 28.9	28.9	8.0 8.0	8.0	21.1 21.0	21.1	74.7 77.4	76.1	5.1 5.3	5.2	5.2	5.6 5.3	5.5		3.9 3.6	3.8	
				8.6	Middle	4.3	28.8 28.8	28.8	8.0 8.0	8.0	21.4 21.2	21.3	74.6 75.0	74.8	5.1 5.1	5.1	5.2	6.7 6.5	6.6	6.3	4.2 4.0	4.1	4.5
					Bottom	7.6	28.8 28.7	28.7	8.0 7.9	8.0	22.6 22.9	22.7	71.7 72.1	71.9	4.9 4.9	4.9	4.9	6.7 6.7	6.7		5.2 6.0	5.6	
30-Jul-14	Sunny	Moderate	09:11		Surface	1.0	29.5 29.5	29.5	7.7 7.7	7.7	20.6 20.6	20.6	80.3 80.1	80.2	5.5 5.5	5.5	5.4	5.9 5.8	5.9	_	2.8 2.7	2.8	
				8.4	Middle	4.2	29.4 29.4	29.4	7.7 7.7	7.7	21.3 21.0	21.1	76.1 75.8	76.0	5.2 5.1	5.2	5.4	6.0 5.8	5.9	5.9	3.3 3.1	3.2	3.3
					Bottom	7.4	28.8 28.8	28.8	7.6 7.6	7.6	23.4 23.4	23.4	74.4 70.0	72.2	5.1 4.7	4.9	4.9	6.1 5.8	6.0		3.4 4.2	3.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTI	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	14:48		Surface	1.0	30.2 30.6	30.4	8.3 8.4	8.3	17.5 17.3	17.4	111.8 117.5	114.7	7.7 8.0	7.8	7.8	7.6 7.7	7.7		4.7 5.1	4.9	
				3.2	Middle	,	-	-	-	-	-	-	-	-	-	-	7.0	-		7.7	-	-	5.0
					Bottom	2.2	29.8 30.0	29.9	8.2 8.3	8.2	18.4 17.9	18.2	111.0 108.0	109.5	7.6 7.4	7.5	7.5	7.6 7.7	7.7		5.5 4.4	5.0	
4-Jul-14	Sunny	Moderate	16:09		Surface	1.0	31.1 31.0	31.1	8.2 8.2	8.2	15.4 15.3	15.4	122.4 122.7	122.6	8.4 8.4	8.4		9.6 9.8	9.7		5.4 5.4	5.4	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	8.4	-	-	9.8	-	-	6.0
					Bottom	2.1	30.7 31.0	30.8	8.1 8.2	8.2	16.2 15.8	16.0	111.5 118.1	114.8	7.6 8.1	7.8	7.8	10.1 9.7	9.9		6.2 7.0	6.6	
7-Jul-14	Sunny	Moderate	09:37		Surface	1.0	31.5 31.3	31.4	8.7 8.6	8.7	13.0 14.4	13.7	109.7 111.8	110.8	7.6 7.6	7.6		10.6 10.8	10.7		3.1 2.9	3.0	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	10.8	-	-	3.3
					Bottom	2.2	29.9	29.8	8.3 8.2	8.2	17.8 18.5	18.1	91.2 89.7	90.5	6.3	6.2	6.2	10.6 10.9	10.8		3.1	3.5	
9-Jul-14	Sunny	Moderate	11:14		Surface	1.0	30.1 30.1	30.1	8.3 8.3	8.3	18.0 18.0	18.0	78.0 77.5	77.8	5.4 5.3	5.4		11.0 11.7	11.4		6.0 6.0	6.0	
				3.2	Middle			-		-		-	-	-	-	-	5.4	-	-	12.2	-	-	5.9
					Bottom	2.2	29.4	29.2	8.2 8.1	8.1	21.1 21.1	21.1	71.8 72.9	72.4	4.9 5.0	4.9	4.9	13.5	12.9		5.3	5.7	
11-Jul-14	Sunny	Moderate	11:53		Surface	1.0	29.3 29.4	29.3	8.3 8.3	8.3	20.1 20.2	20.1	87.7 87.2	87.5	6.0 6.0	6.0		9.6 8.9	9.3		3.9 3.4	3.7	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	- 0.9	-	10.6	-	-	3.5
					Bottom	2.1	29.2 29.2	29.2	8.2 8.2	8.2	20.8	21.0	89.4 83.6	86.5	6.1 5.7	5.9	5.9	12.3 11.5	11.9		2.7	3.3	
14-Jul-14	Sunny	Moderate	13:24		Surface	1.0	30.0 30.1	30.0	8.0 8.0	8.0	18.0 18.0	18.0	75.2 75.5	75.4	5.2 5.2	5.2		5.2 5.4	5.3		5.7 6.1	5.9	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	5.2	-	-	5.4	-	-	5.8
					Bottom	2.2	29.6 29.9	29.7	8.0 8.0	8.0	18.9 19.4	19.1	73.5 75.4	74.5	5.0 5.1	5.1	5.1	5.5 5.3	5.4		5.6 5.8	5.7	
16-Jul-14	Sunny	Moderate	15:16		Surface	1.0	30.2 30.6	30.4	8.1 8.1	8.1	17.9 17.5	17.7	89.5 90.8	90.2	6.1 6.2	6.1		5.6 5.7	5.7		5.9 4.9	5.4	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	5.7	-	-	4.6
					Bottom	2.2	30.2 30.4	30.3	8.1 8.1	8.1	18.0 17.7	17.9	92.6 90.3	91.5	6.3 6.2	6.2	6.2	5.6 5.5	5.6		3.9	3.8	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NT	J)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	09:38		Surface	1.0	28.9 28.9	28.9	8.1 8.1	8.1	19.6 19.5	19.6	91.0 93.3	92.2	6.3 6.5	6.4	6.4	2.5 2.6	2.6		4.0 3.3	3.7	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0	-	-	3.3	-	-	3.4
					Bottom	2.2	28.9 29.0	28.9	8.0 8.1	8.1	19.7 19.9	19.8	91.6 91.8	91.7	6.3 6.3	6.3	6.3	3.7 4.0	3.9		3.3 2.7	3.0	
23-Jul-14	Sunny	Moderate	12:00		Surface	1.0	30.1 29.9	30.0	8.1 8.1	8.1	19.9 20.2	20.1	95.3 90.1	92.7	6.5 6.1	6.3	6.3	8.6 8.6	8.6		6.0 5.1	5.6	
				3.2	Middle	-		-		-		-		-		-	0.0	-	-	8.9	-	-	5.6
					Bottom	2.2	29.8 29.6	29.7	8.1 8.0	8.0	20.9 21.0	21.0	94.6 92.3	93.5	6.4 6.3	6.3	6.3	9.2 8.9	9.1		5.3 5.8	5.6	
25-Jul-14	Sunny	Moderate	12:38		Surface	1.0	30.2 30.1	30.2	8.4 8.3	8.3	18.5 18.5	18.5	113.9 110.1	112.0	7.8 7.5	7.6	7.6	11.9 11.8	11.9		5.6 5.7	5.7	
				3.5	Middle	i		-		-		-		-		-	7.0	-	-	12.2	-	-	6.9
					Bottom	2.5	30.1 30.1	30.1	8.3 8.2	8.2	18.9 18.3	18.6	108.5 105.8	107.2	7.4 7.2	7.3	7.3	12.5 12.2	12.4		7.8 8.4	8.1	
28-Jul-14	Sunny	Moderate	13:14		Surface	1.0	29.8 29.7	29.7	8.0 8.0	8.0	20.3 20.4	20.4	83.0 83.7	83.4	5.6 5.7	5.7	5.7	4.9 5.2	5.1		2.2 2.1	2.2	
				3.3	Middle	•		-		-		-		-		-	5.7	-	-	5.3	-	-	2.5
					Bottom	2.3	29.3 29.4	29.4	8.0 8.0	8.0	21.4 21.3	21.3	83.1 84.3	83.7	5.7 5.7	5.7	5.7	5.3 5.5	5.4		2.9 2.7	2.8	
30-Jul-14	Sunny	Moderate	14:09		Surface	1.0	29.9 30.2	30.1	7.9 7.9	7.9	20.9 20.8	20.8	107.3 108.4	107.9	7.3 7.3	7.3	7.3	3.3 3.3	3.3		1.3 1.4	1.4	
				3.2	Middle	-	1	-		-		-	1 1	-		-	7.5	-	-	3.3	-	-	2.1
					Bottom	2.2	29.9 29.9	29.9	7.9 7.9	7.9	21.1 21.1	21.1	109.2 109.4	109.3	7.4 7.4	7.4	7.4	3.2 3.3	3.3		2.6 3.0	2.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	09:35		Surface	1.0	29.5 29.4	29.5	8.2 8.3	8.2	18.1 18.2	18.2	102.4 102.6	102.5	7.1 7.1	7.1	7.1	4.3 4.3	4.3		5.4 5.6	5.5	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-		5.5	-	-	6.1
					Bottom	2.2	29.4 29.4	29.4	8.3 8.2	8.2	18.9 18.9	18.9	102.9 103.8	103.4	7.1 7.2	7.1	7.1	6.5 6.7	6.6		6.4 6.8	6.6	
4-Jul-14	Sunny	Moderate	10:48		Surface	1.0	30.3 30.3	30.3	8.2 8.2	8.2	16.2 16.2	16.2	126.0 126.4	126.2	8.7 8.7	8.7		8.2 8.1	8.2		3.1 3.5	3.3	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	8.7	-	-	9.2	-	-	4.5
					Bottom	2.2	30.2 30.1	30.2	8.2 8.1	8.1	16.6 16.9	16.7	125.9 106.5	116.2	8.7 7.3	8.0	8.0	10.7 9.7	10.2		5.5 5.7	5.6	
7-Jul-14	Sunny	Moderate	14:08		Surface	1.0	31.2 31.2	31.2	8.8 8.8	8.8	12.9 12.9	12.9	147.8 139.4	143.6	10.2 9.6	9.9		6.5 6.7	6.6		4.2 4.4	4.3	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	9.9	-	-	6.6	-	-	4.8
					Bottom	2.3	31.1 30.3	30.7	8.7 8.1	8.4	14.3 16.9	15.6	141.2 137.9	139.6	9.7 9.6	9.6	9.6	6.4 6.6	6.5		4.4 6.2	5.3	
9-Jul-14	Sunny	Moderate	16:24		Surface	1.0	30.6 31.3	31.0	8.5 8.6	8.5	18.8 18.5	18.6	114.2 118.7	116.5	7.7 7.9	7.8		8.3 8.0	8.2		5.4 6.1	5.8	
				3.0	Middle	-	-	-	-	-		-	-	-	-	-	7.8	-	-	10.6	-	-	6.0
					Bottom	2.0	30.1	29.9	8.4 8.4	8.4	19.5 21.8	20.7	116.5 115.7	116.1	7.9 7.8	7.8	7.8	12.2 13.5	12.9		6.2	6.2	
11-Jul-14	Sunny	Moderate	18:07		Surface	1.0	30.2 30.1	30.1	8.5 8.5	8.5	19.9 20.1	20.0	122.6 119.0	120.8	8.3 8.0	8.2		7.1 7.6	7.4		5.6 5.7	5.7	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	8.2	-	-	8.4	-	-	6.1
					Bottom	2.2	29.8 30.2	30.0	8.5 8.4	8.4	20.6 19.8	20.2	117.7 115.4	116.6	8.0 7.8	7.9	7.9	9.4 9.1	9.3		6.7 6.0	6.4	
14-Jul-14	Sunny	Moderate	07:30		Surface	1.0	29.3 29.2	29.3	7.9 7.9	7.9	18.4 18.4	18.4	81.5 81.6	81.6	6.0 6.1	6.0		5.6 5.5	5.6		5.7 6.0	5.9	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	5.7	-	-	5.5
					Bottom	2.3	29.2 29.2	29.2	7.9 7.9	7.9	18.6 18.5	18.5	83.0 81.4	82.2	6.1 6.0	6.1	6.1	5.8 5.5	5.7		4.4 5.8	5.1	
16-Jul-14	Sunny	Moderate	09:48		Surface	1.0	29.7 29.7	29.7	7.9 7.9	7.9	18.0 18.0	18.0	75.8 75.6	75.7	5.2 5.2	5.2		5.2 5.3	5.3		4.8 4.7	4.8	
				3.3	Middle	-	-	-	-	-	-	-		-	-	-	5.2	-	-	5.4	-	-	5.1
					Bottom	2.3	29.7 29.7	29.7	7.9 7.9	7.9	18.1 18.1	18.1	75.7 76.9	76.3	5.2 5.3	5.3	5.3	5.3 5.4	5.4		4.8 5.8	5.3	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-		-	-	-	-	-	-	=	-	-	<u> </u>
					Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	14:39		Surface	1.0	29.4 29.5	29.5	8.2 8.2	8.2	20.4 20.4	20.4	98.4 106.3	102.4	6.7 7.2	7.0	7.0	5.8 5.7	5.8		3.3 3.2	3.3	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	6.2	-	-	3.5
					Bottom	2.2	29.3 29.5	29.4	8.2 8.2	8.2	21.8 21.6	21.7	97.7 106.3	102.0	6.6 7.2	6.9	6.9	6.3 6.6	6.5		3.8 3.5	3.7	
23-Jul-14	Sunny	Moderate	17:14		Surface	1.0	31.1 31.0	31.0	8.4 8.4	8.4	20.2 20.3	20.2	129.9 134.2	132.1	8.6 8.9	8.8	8.8	5.8 5.9	5.9		6.4 6.4	6.4	
				2.9	Middle	-	-	-		-	1 1	-	-	-		-	0.0	-	-	5.9	-	-	6.0
					Bottom	1.9	30.2 29.9	30.0	8.2 8.3	8.3	21.8 22.0	21.9	137.9 139.2	138.6	9.2 9.4	9.3	9.3	5.9 5.9	5.9		5.7 5.5	5.6	
25-Jul-14	Sunny	Moderate	18:21		Surface	1.0	30.5 30.5	30.5	8.5 8.5	8.5	19.0 19.1	19.1	128.6 126.6	127.6	8.7 8.6	8.6	8.6	16.1 16.2	16.2		7.8 7.7	7.8	
				3.3	Middle		-	-	-	-	-	-	-	-	-	-	0.0	-	-	17.3	-	-	9.1
					Bottom	2.3	30.3 30.4	30.4	8.5 8.5	8.5	19.4 19.3	19.4	124.5 126.8	125.7	8.4 8.6	8.5	8.5	18.5 18.3	18.4		10.1 10.6	10.4	
28-Jul-14	Sunny	Moderate	07:15		Surface	1.0	29.0 29.0	29.0	8.0 8.0	8.0	20.2 20.2	20.2	78.4 79.7	79.1	5.4 5.5	5.4	5.4	3.4 3.5	3.5		4.1 3.9	4.0	
				3.2	Middle	•	-	-	1 1	-		-	-	-		-	3.4	-	-	3.5	-	-	4.1
					Bottom	2.2	28.9 29.0	29.0	8.0 8.0	8.0	20.2 20.2	20.2	82.0 79.0	80.5	5.7 5.4	5.5	5.5	3.5 3.3	3.4		4.1 4.1	4.1	
30-Jul-14	Sunny	Moderate	08:58		Surface	1.0	29.6 29.6	29.6	7.7 7.7	7.7	20.1 20.0	20.1	89.3 90.2	89.8	6.1 6.1	6.1	6.1	2.9 2.8	2.9	_	2.5 2.9	2.7	_
				3.2	Middle	-	-	-		-		-	-	-		-	0.1	-	-	2.9	-	-	3.3
					Bottom	2.2	29.6 29.6	29.6	7.7 7.7	7.7	20.2 20.0	20.1	91.9 89.7	90.8	6.3 6.1	6.2	6.2	2.9 2.9	2.9		3.7 3.8	3.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	15:12		Surface	1.0	30.5 30.0	30.2	8.4 8.3	8.4	17.7 17.9	17.8	113.5 112.5	113.0	7.8 7.7	7.7	7.7	7.5 7.5	7.5		4.7 4.0	4.4	
				4.1	Middle	-	-	-		-	-	-		-	-	-	7.7	-	-	7.6	-	-	4.5
					Bottom	3.1	29.7 29.1	29.4	8.3 8.1	8.2	19.1 19.8	19.4	121.5 111.6	116.6	8.3 7.7	8.0	8.0	7.7 7.6	7.7		4.4 4.6	4.5	
4-Jul-14	Sunny	Moderate	16:36		Surface	1.0	30.3 30.2	30.2	8.0 8.0	8.0	15.8 16.0	15.9	118.8 119.8	119.3	8.2 8.3	8.2	0.0	11.2 10.5	10.9		7.6 7.5	7.6	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	8.2	-	-	10.9	-	-	8.0
					Bottom	2.5	30.0 30.2	30.1	7.9 8.0	7.9	16.9 16.7	16.8	114.1 120.2	117.2	7.9 8.3	8.1	8.1	11.2 10.5	10.9		8.8 7.9	8.4	
7-Jul-14	Sunny	Moderate	09:10		Surface	1.0	30.9 31.0	30.9	8.6 8.7	8.7	12.8 12.8	12.8	115.4 125.1	120.3	8.0 8.7	8.3		7.5 7.6	7.6		5.6 5.1	5.4	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	8.3	-	-	7.6	-	-	4.8
					Bottom	3.0	30.2 30.0	30.1	8.3 8.3	8.3	16.0 17.6	16.8	106.6 107.3	107.0	7.4 7.4	7.4	7.4	7.5 7.4	7.5		4.3 4.0	4.2	
9-Jul-14	Sunny	Moderate	10:48		Surface	1.0	30.2 30.2	30.2	8.4 8.4	8.4	17.6 17.7	17.7	87.3 84.2	85.8	6.0 5.8	5.9		8.9 9.0	9.0		5.1 4.7	4.9	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	11.6	-	-	4.6
					Bottom	2.8	28.6 28.8	28.7	8.2 8.1	8.1	20.8 20.7	20.8	74.7 73.4	74.1	5.2 5.1	5.1	5.1	14.8 13.5	14.2		4.2 4.1	4.2	
11-Jul-14	Sunny	Moderate	11:27		Surface	1.0	29.6 29.7	29.6	8.4 8.4	8.4	19.6 19.7	19.7	89.7 94.8	92.3	6.1 6.5	6.3		9.1 8.6	8.9		3.7 3.6	3.7	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	9.5	-	-	3.8
					Bottom	2.7	29.0 29.0	29.0	8.2 8.2	8.2	21.5 21.4	21.5	86.8 81.0	83.9	5.9 5.5	5.7	5.7	10.2 9.7	10.0		4.0 3.7	3.9	
14-Jul-14	Sunny	Moderate	13:47		Surface	1.0	29.9 30.1	30.0	8.0 8.0	8.0	18.6 18.7	18.7	74.7 74.8	74.8	5.1 5.1	5.1	5.4	8.1 8.4	8.3		5.6 4.6	5.1	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	5.1	-	-	8.3	-	-	5.1
					Bottom	2.9	29.5 29.5	29.5	7.9 8.0	8.0	20.2 20.3	20.3	79.5 72.0	75.8	5.4 4.9	5.2	5.2	8.2 8.2	8.2		4.8 5.3	5.1	
16-Jul-14	Sunny	Moderate	15:47		Surface	1.0	30.4 30.5	30.5	8.1 8.1	8.1	18.2 18.2	18.2	84.9 87.5	86.2	5.8 5.9	5.9	5.0	8.7 8.7	8.7		4.5 5.6	5.1	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	8.8	-	-	5.3
					Bottom	2.9	29.8 30.2	30.0	8.0 8.1	8.0	19.7 19.4	19.6	79.1 87.6	83.4	5.4 5.9	5.7	5.7	8.8 8.8	8.8		5.5 5.4	5.5	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>=</u>	-	-	<u>-</u>
					Bottom	-	-	-		-	-	-		-	-	-	-	-	-		-	-	

DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	09:12		Surface	1.0	29.3 29.3	29.3	8.2 8.2	8.2	19.6 19.8	19.7	96.4 95.7	96.1	6.6 6.6	6.6	6.6	2.4 2.6	2.5		3.4 4.5	4.0	
				3.7	Middle	1		-		-		-		-		-	0.0	-	-	2.6	-	-	3.6
					Bottom	2.7	29.3 29.2	29.2	8.2 8.1	8.1	19.9 20.0	20.0	95.7 96.2	96.0	6.6 6.6	6.6	6.6	2.7 2.7	2.7		3.6 2.6	3.1	
23-Jul-14	Sunny	Moderate	11:36		Surface	1.0	29.7 29.6	29.6	8.1 8.0	8.0	19.8 20.0	19.9	87.1 82.4	84.8	5.9 5.6	5.8	5.8	8.2 8.4	8.3		4.2 5.2	4.7	
				4.1	Middle	-	-	-		-		-		-		-	0.0	-	-	8.3	-	-	4.8
					Bottom	3.1	29.7 29.1	29.4	8.0 7.9	8.0	21.5 22.4	21.9	87.9 84.1	86.0	5.9 5.7	5.8	5.8	8.2 8.3	8.3		5.0 4.6	4.8	
25-Jul-14	Sunny	Moderate	12:17		Surface	1.0	30.1 30.1	30.1	8.3 8.3	8.3	18.3 18.2	18.2	100.5 103.6	102.1	6.9 7.1	7.0	7.0	10.6 10.4	10.5		4.6 4.5	4.6	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	11.8	-	-	5.0
					Bottom	2.7	29.7 29.8	29.8	8.1 8.2	8.1	20.6 19.6	20.1	94.0 96.0	95.0	6.4 6.5	6.5	6.5	13.0 13.2	13.1		5.0 5.5	5.3	ļ
28-Jul-14	Sunny	Moderate	13:35		Surface	1.0	29.8 29.5	29.6	8.0 8.0	8.0	20.8 21.5	21.1	82.3 80.5	81.4	5.6 5.5	5.5	5.5	8.4 8.3	8.4		3.1 2.7	2.9	
				3.8	Middle	•		-		-		-		-		-	3.3	-	-	8.4	-	-	2.8
					Bottom	2.8	29.1 29.4	29.3	8.0 8.0	8.0	22.2 22.1	22.2	82.5 82.3	82.4	5.6 5.6	5.6	5.6	8.5 8.2	8.4		2.7 2.7	2.7	
30-Jul-14	Sunny	Moderate	14:32		Surface	1.0	30.1 30.1	30.1	7.8 7.8	7.8	20.7 20.8	20.8	90.6 84.1	87.4	6.1 5.7	5.9	5.9	6.6 6.8	6.7	_	1.8 2.0	1.9	
				4.1	Middle	-	-	-		-	-	-	1 1	-		-	5.5	-	-	6.7	-	-	2.7
					Bottom	3.1	29.7 29.2	29.5	7.8 7.7	7.7	22.2 22.6	22.4	88.7 85.9	87.3	6.0 5.8	5.9	5.9	6.7 6.6	6.7		3.1 3.8	3.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	09:13		Surface	1.0	29.3 29.3	29.3	8.1 8.1	8.1	16.6 16.9	16.8	80.4 83.0	81.7	5.6 5.8	5.7		7.6 7.7	7.7		4.3 4.5	4.4	
				4.3	Middle	-	-	-	-	-	-	-	•	-	-	-	5.7	-	-	7.7	-	-	4.9
					Bottom	3.3	29.2 29.2	29.2	8.1 8.1	8.1	18.7 18.9	18.8	80.7 85.7	83.2	5.6 5.9	5.8	5.8	7.5 7.8	7.7		5.1 5.7	5.4	1
4-Jul-14	Sunny	Moderate	10:23		Surface	1.0	29.9 29.9	29.9	8.0 8.0	8.0	15.3 15.3	15.3	92.5 93.7	93.1	6.4 6.5	6.5		10.9 10.7	10.8		7.0 6.7	6.9	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-	11.9	-	-	7.9
					Bottom	2.7	29.9 29.9	29.9	8.0 8.0	8.0	15.5 15.5	15.5	96.0 92.8	94.4	6.7 6.5	6.6	6.6	13.0 12.7	12.9		8.5 9.2	8.9	
7-Jul-14	Sunny	Moderate	14:32		Surface	1.0	30.3 30.3	30.3	8.5 8.5	8.5	13.3 14.0	13.7	104.7 107.6	106.2	7.3 7.5	7.4		10.8 11.0	10.9		6.6 6.8	6.7	
				4.0	Middle		-	-		-	-	-	-	-	-	-	7.4	-	-	10.8	-	-	6.9
					Bottom	3.0	30.1	30.0	8.3 8.2	8.3	17.2 17.6	17.4	109.3 103.1	106.2	7.5 7.1	7.3	7.3	10.8 10.4	10.6		7.1 6.9	7.0	
9-Jul-14	Sunny	Moderate	16:54		Surface	1.0	30.3	30.2	8.7	8.6	17.2	17.3	119.1	117.9	8.2	8.1		10.1	10.4		7.0 6.9	7.0	
				3.5	Middle	-	30.1	-	8.6	-	17.3	-	116.7	-	8.0	-	8.1	10.7	-	11.7	- 6.9	-	7.3
					Bottom	2.5	30.0 29.6	29.8	8.6 8.4	8.5	18.5 20.4	19.4	113.0 101.9	107.5	7.7	7.4	7.4	13.2 12.7	13.0		7.8 7.4	7.6	
11-Jul-14	Sunny	Moderate	18:38		Surface	1.0	29.5	29.5	8.3	8.4	19.2	19.2	95.7	95.6	6.6	6.6		11.6	11.2		4.2	4.6	
				3.7	Middle	-	29.5	-	8.4	-	19.2	-	95.5	-	6.6	-	6.6	10.7	-	11.8	5.0	-	4.9
					Bottom	2.7	29.4 29.3	29.4	8.3 8.2	8.3	20.6 21.1	20.8	96.7 101.9	99.3	6.6 6.9	6.8	6.8	12.1 12.4	12.3		4.9 5.5	5.2	
14-Jul-14	Sunny	Moderate	07:08		Surface	1.0	29.2	29.2	7.9	7.9	17.6	17.5	73.8	74.4	5.5	5.6		7.9	7.8		5.9	6.5	
				4.2	Middle	-	29.3	-	7.8	-	17.5	-	74.9	-	5.6 -	-	5.6	7.6	-	8.0	7.0	-	6.3
					Bottom	3.2	29.2	29.2	7.8	7.8	17.9	17.9	76.5	75.4	5.7	5.6	5.6	7.9	8.1		5.8	6.1	
16-Jul-14	Sunny	Moderate	09:18		Surface	1.0	29.2 29.6	29.6	7.9 7.9	7.9	17.9 16.6	16.8	74.2 76.9	76.5	5.6 5.7	5.6		8.2 8.6	8.5		6.3 4.4	5.0	
				4.4	Middle	-	29.6	-	7.9	-	17.0	-	76.0	-	5.6 -	_	5.6	8.4	-	8.5	5.6	-	5.3
					Bottom	3.4	29.4	29.4	7.9	7.9	18.1	18.0	73.8	76.1	5.4	5.6	5.6	8.5	8.5		5.4	5.6	
18-Jul-14#	-	-	-		Surface	-	29.4	_	7.8	_	18.0	-	78.3	_	5.7	_		8.4	-		5.8	_	
				_	Middle	_	-	_	-	_	-	_	-	_	-	_	-	-	_	<u>-</u>	-	_	<u>.</u>
						_	-		-	_	-	_	-	_	-	_		-	_	=	-	_	-
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	15:09		Surface	1.0	29.4 29.4	29.4	8.1 8.1	8.1	18.9 18.8	18.8	95.9 95.1	95.5	6.6 6.5	6.6	6.6	5.8 6.1	6.0		3.2 2.4	2.8	
				3.5	Middle	1		-		-		-		-		-	0.0	-	-	6.4		-	2.7
					Bottom	2.5	29.2 29.3	29.3	7.9 8.1	8.0	19.4 19.2	19.3	97.1 95.3	96.2	6.7 6.6	6.6	6.6	6.6 7.0	6.8		2.7 2.5	2.6	
23-Jul-14	Sunny	Moderate	17:37		Surface	1.0	30.4 30.4	30.4	8.4 8.3	8.4	17.6 18.0	17.8	124.1 121.9	123.0	8.5 8.3	8.4	8.4	9.6 9.5	9.6		3.8 3.4	3.6	
				4.0	Middle	-	-	-		-		-		-		-	0.4	-	-	9.6		-	3.8
					Bottom	3.0	29.3 30.2	29.8	8.0 8.3	8.1	21.6 18.8	20.2	120.8 123.5	122.2	8.2 8.4	8.3	8.3	9.7 9.3	9.5		4.0 4.0	4.0	
25-Jul-14	Sunny	Moderate	18:49		Surface	1.0	30.1 30.1	30.1	8.5 8.5	8.5	18.2 18.2	18.2	126.7 125.7	126.2	8.6 8.6	8.6	8.6	18.2 17.8	18.0		10.6 10.6	10.6	
				3.5	Middle	-		-		-		-		-		-	0.0	-	-	20.7		-	12.0
					Bottom	2.5	30.1 30.1	30.1	8.5 8.5	8.5	18.4 18.2	18.3	124.6 124.0	124.3	8.5 8.5	8.5	8.5	23.4 23.2	23.3		13.9 12.7	13.3	ļ
28-Jul-14	Sunny	Moderate	06:53		Surface	1.0	28.9 28.9	28.9	7.9 7.9	7.9	19.6 19.5	19.6	92.2 91.3	91.8	6.5 6.4	6.4	6.4	4.6 4.9	4.8		2.6 2.5	2.6	
				4.2	Middle	•		-		-		-		-		-	0.4	-	-	5.2	1 1	-	3.0
					Bottom	3.2	28.8 28.9	28.9	7.9 7.9	7.9	20.4 20.3	20.4	93.2 91.8	92.5	6.5 6.4	6.5	6.5	5.5 5.4	5.5		3.2 3.3	3.3	
30-Jul-14	Sunny	Moderate	08:35		Surface	1.0	29.3 29.3	29.3	7.6 7.6	7.6	20.0 20.3	20.1	74.0 74.5	74.3	5.1 5.1	5.1	5.1	4.2 4.2	4.2	_	0.9 0.8	0.9	
				4.1	Middle	-	-	-		-	-	-	1 1	-		-	5.1	-	-	4.5	-	-	1.7
					Bottom	3.1	29.3 29.4	29.4	7.6 7.6	7.6	21.0 21.1	21.0	73.4 76.4	74.9	5.0 5.2	5.1	5.1	4.6 4.7	4.7		2.5 2.5	2.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-14	0	0	0		Surface	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
				1.0	Middle	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
					Bottom	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0		0.0 0.0	0.0	
2-Jul-14	Sunny	Moderate	15:27		Surface	1.0	29.9 29.9	29.9	8.1 8.1	8.1	16.5 16.6	16.5	83.8 80.5	82.2	5.8 5.6	5.7		4.6 4.4	4.5		4.4 4.1	4.3	
				10.0	Middle	5.0	29.7 28.7	29.2	8.1 8.1	8.1	17.5 21.4	19.5	81.8 79.5	80.7	5.6 5.4	5.5	5.6	5.9 5.7	5.8	5.6	5.1 4.8	5.0	4.7
					Bottom	9.0	28.0 28.0	28.0	8.1 8.0	8.0	24.8 25.0	24.9	73.0 73.7	73.4	5.0 5.1	5.0	5.0	6.5 6.6	6.6		4.8 4.6	4.7	
4-Jul-14	Sunny	Moderate	16:50		Surface	1.0	30.5	30.4	7.8	7.8	13.8	14.0	103.4	101.7	7.2	7.1		5.7	6.0		2.5	2.6	
				11.0	Middle	5.5	30.4 29.5	29.4	7.8 7.7	7.7	14.2 19.4	19.5	84.9	83.5	7.0 5.8	5.7	6.4	6.2	6.4	5.9	3.4	3.4	3.1
					Bottom	10.0	29.4	29.1	7.6 7.6	7.6	19.5 20.0	19.9	82.0 82.2	84.6	5.6 5.7	5.8	5.8	6.6 5.4	5.3		3.3	3.2	
7-Jul-14	Sunny	Moderate	08:56		Surface	1.0	29.2 30.6	30.6	7.7 8.6	8.6	19.8	12.8	96.4	96.4	6.0	6.7		5.2 4.4	4.4		3.4	2.9	
				10.1	Middle	5.1	30.5 28.1	28.1	8.6 8.2	8.2	12.5 22.7	22.8	96.3 76.9	75.8	6.7 5.3	5.2	6.0	4.4	4.5	4.5	2.4	2.9	2.9
					Bottom	9.1	28.1 26.7	27.2	8.2 8.0	8.1	23.0 28.1	26.3	74.7 68.8	72.2	5.1 4.7	4.9	4.9	4.5 4.5	4.5		3.1	2.8	
9-Jul-14	Sunny	Moderate	10:34		Surface	1.0	27.7 29.3	29.4	8.2 8.3	8.4	24.5 17.3	17.0	75.5 83.1	86.3	5.2 5.8	6.0		4.4	3.9		2.3 4.6	4.4	
				10.7	Middle	5.4	29.5 29.2	29.0	8.4 8.3	8.3	16.6 19.3	20.0	89.4 78.6	76.3	6.2 5.4	5.3	5.7	3.8 4.0	4.0	4.2	4.2 3.3	3.9	4.1
				10.7	Bottom	9.7	28.7 27.0	26.9	8.3 8.1	8.1	20.8 27.0	27.1	74.0 69.5	69.8	5.1 4.8	4.8	4.8	3.9 4.3	4.6	7.2	4.5 3.9	4.0	7
11-Jul-14	Sunny	Moderate	11:12	1	Surface	1.0	26.8 28.9	28.9	8.1 8.2	8.2	27.2 19.8	19.7	70.1 79.4	80.4	4.8 5.5	5.6	4.0	4.8 5.4	5.5		4.0 3.8	4.2	
				10.7		5.4	29.0 28.5	28.5	8.2 8.2	8.2	19.6 21.4	21.5	81.4 75.3	74.4	5.6 5.2	5.1	5.4	5.6 5.3	5.3	5.6	4.5 3.6	3.2	4.2
				10.7	Middle		28.5 27.8		8.2 8.2		21.6 23.9		73.4 69.3		5.1 4.8		4.0	5.2 5.8		5.6	2.8 5.1		4.2
14-Jul-14	Sunny	Moderate	14:01	<u> </u>	Bottom	9.7	27.8 30.0	27.8	8.1 8.0	8.1	23.8 19.7	23.9	70.3 77.9	69.8	4.9 5.7	4.8	4.8	6.4 5.7	6.1		5.5 5.6	5.3	
14-341-14	Outliny	Woderate	14.01		Surface	1.0	30.1 29.0	30.0	8.0 8.0	8.0	19.6	19.7	76.0 70.4	77.0	5.6 5.2	5.6	5.4	5.6	5.7		6.2	5.9	
				9.9	Middle	5.0	28.4 28.0	28.7	8.0 8.0	8.0	22.4	21.8	67.7 65.7	69.1	5.0 4.9	5.1		6.4	6.5	6.3	4.9 5.9	5.1	5.7
					Bottom	8.9	27.4	27.7	8.0	8.0	25.6	24.8	64.9	65.3	4.9	4.9	4.9	6.7	6.7		6.2	6.1	
18-Jul-14#	Sunny	Moderate	16:07		Surface	1.0	30.1 30.0	30.0	30.1 30.0	30.0	19.3 19.5	19.4	79.9 77.1	78.5	5.4 5.6	5.5	5.6	7.6 7.7	7.7		5.6 5.0	5.3	
				-	Middle	5.0	29.4 27.7	28.6	29.4 27.7	28.6	20.4 23.0	21.7	72.1 74.4	73.3	5.6 5.8	5.7		7.8 7.9	7.9	7.8	6.4 4.1	5.3	5.4
					Bottom	9.0	27.4 27.4	27.4	27.4 27.4	27.4	25.5 25.4	25.5	72.8 78.7	75.8	5.3 5.3	5.3	5.3	7.8 7.7	7.8		5.0 5.9	5.5	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
18-Jul-14	-	-	-		Surface	-		-	8.1 8.1	8.1	-	-	-	-	-	-	_	-	-		-	-	
				#VALUE!	Middle	-	1 1	-	8.0 7.9	8.0		-		-	-	-	-	-	-	=	-	-	<u>-</u>
					Bottom	-		-	7.9 8.0	7.9	-	-		-	-	-	-	-	-		-	-	
21-Jul-14	Fine	Moderate	08:58		Surface	1.0	28.9 29.1	29.0	8.0 7.9	8.0	16.9 16.0	16.5	79.3 80.8	80.1	5.6 5.7	5.6	5.5	2.2 2.4	2.3		2.7 3.0	2.9	
				10.7	Middle	5.4	28.0 28.2	28.1	7.9 7.7	7.8	21.9 21.1	21.5	76.4 77.5	77.0	5.2 5.3	5.3	0.0	2.7 3.0	2.9	2.6	3.5 3.4	3.5	3.2
					Bottom	9.7	28.1 28.0	28.0	7.9 7.6	7.8	23.5 23.3	23.4	73.3 74.1	73.7	5.1 5.1	5.1	5.1	2.5 2.8	2.7		3.1 3.5	3.3	
23-Jul-14	Sunny	Moderate	11:22		Surface	1.0	29.5 29.4	29.4	8.1 8.0	8.0	17.0 18.5	17.8	84.7 82.6	83.7	5.9 5.7	5.8	5.5	3.3 3.3	3.3		3.2 2.9	3.1	
				13.5	Middle	6.8	28.5 28.5	28.5	7.9 8.0	7.9	22.9 23.2	23.1	75.1 77.1	76.1	5.1 5.2	5.2	5.5	5.6 6.0	5.8	5.1	2.8 2.9	2.9	3.1
					Bottom	12.5	28.2 27.5	27.9	7.9 7.6	7.8	25.6 26.5	26.1	73.8 70.2	72.0	5.0 4.8	4.9	4.9	6.1 6.2	6.2		4.3 2.5	3.4	
25-Jul-14	Sunny	Moderate	12:01		Surface	1.0	29.6 29.6	29.6	8.1 8.0	8.1	18.3 18.3	18.3	96.0 95.7	95.9	6.6 6.6	6.6	6.6	5.3 5.2	5.3		2.7 2.4	2.6	
				11.1	Middle	5.6	29.6 29.6	29.6	8.0 8.1	8.0	18.4 18.5	18.5	95.3 95.8	95.6	6.6 6.6	6.6	0.0	5.4 5.5	5.5	5.5	4.2 4.4	4.3	4.1
					Bottom	10.1	29.6 29.6	29.6	8.1 7.9	8.0	18.7 18.7	18.7	95.7 95.1	95.4	6.6 6.5	6.6	6.6	5.6 5.5	5.6		5.7 5.1	5.4	
28-Jul-14	Sunny	Moderate	13:50		Surface	1.0	29.6 29.4	29.5	7.9 7.9	7.9	20.7 20.6	20.6	82.0 87.4	84.7	5.7 6.1	5.9	5.8	7.3 7.1	7.2	_	3.2 3.2	3.2	
				10.1	Middle	5.1	27.8 28.1	28.0	7.9 7.9	7.9	24.7 24.3	24.5	79.6 82.5	81.1	5.5 5.7	5.6	5.0	8.4 8.8	8.6	8.2	3.5 3.4	3.5	3.8
					Bottom	9.1	27.6 27.5	27.5	7.9 7.9	7.9	26.6 27.1	26.9	80.8 77.0	78.9	5.6 5.4	5.5	5.5	8.7 8.6	8.7		4.7 4.8	4.8	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	08:58		Surface	1.0	29.3 29.3	29.3	8.1 8.1	8.1	17.6 17.3	17.4	77.2 76.5	76.9	5.4 5.3	5.3	5.2	4.5 4.6	4.6		4.3 5.1	4.7	
				10.5	Middle	5.3	29.0 29.1	29.0	8.1 8.1	8.1	19.2 19.2	19.2	72.9 72.6	72.8	5.0 5.0	5.0	5.2	4.8 5.0	4.9	5.1	4.5 4.0	4.3	4.3
					Bottom	9.5	28.4 28.6	28.5	8.0 8.1	8.1	22.4 23.5	22.9	69.4 71.9	70.7	4.7 4.9	4.8	4.8	5.8 5.7	5.8		3.5 4.1	3.8	
4-Jul-14	Sunny	Moderate	10:10		Surface	1.0	30.0 29.9	30.0	8.0 8.0	8.0	14.9 15.1	15.0	99.4 97.7	98.6	6.9 6.8	6.9		6.5 6.1	6.3		3.6 3.6	3.6	
				11.3	Middle	5.7	29.7 29.8	29.7	8.0 8.0	8.0	17.9 17.7	17.8	90.0 97.0	93.5	6.2 6.7	6.4	6.7	7.9 8.6	8.3	7.5	5.4 5.5	5.5	5.5
					Bottom	10.3	29.8 29.4	29.6	8.0 7.9	7.9	17.9	18.7	98.5 91.0	94.8	6.8	6.5	6.5	8.1 7.4	7.8		7.3	7.5	1
7-Jul-14	Sunny	Moderate	14:48		Surface	1.0	30.5	30.5	8.6	8.6	19.6 12.6	12.6	122.1	122.7	8.6	8.6		4.0	4.1		3.6	3.6	
				10.4	Middle	5.2	30.5 29.4	29.3	8.7 8.3	8.3	12.6 18.4	19.2	123.2 90.2	87.3	8.6 6.2	6.0	7.3	3.1	3.3	3.6	3.6 5.0	5.0	4.3
					Bottom	9.4	29.1 28.5	28.2	8.2 8.1	8.2	20.0 22.0	22.9	84.3 87.9	83.4	5.8 6.0	5.7	5.7	3.4	3.3		4.9	4.2	
9-Jul-14	Sunny	Moderate	17:08		Surface	1.0	28.0 29.5	29.7	8.2 8.4	8.4	23.9 19.7	19.3	78.9 93.8	93.0	5.4 6.4	6.4		3.4 4.8	4.6		4.1 5.1	5.8	
				10.9	Middle	5.5	29.8 28.4	28.4	8.4 8.3	8.3	19.0 22.4	22.6	92.2 80.6	79.8	6.3 5.5	5.5	6.0	4.3	4.1	4.2	6.5 7.0	6.7	6.5
				10.9			28.3 27.8		8.3 8.2		22.8 24.3		79.0 72.1		5.4 5.0			4.0 3.8		4.2	6.4 6.8		0.5
11-Jul-14	Sunny	Moderate	18:56		Bottom	9.9	27.8 29.5	27.8	8.2 8.3	8.2	24.1 18.9	24.2	73.5 87.7	72.8	5.1 6.0	5.0	5.0	4.2 6.0	4.0		7.3 4.6	7.1	
	Cumy	Moderate	10.00		Surface	1.0	29.2	29.4	8.3 8.3	8.3	19.1	19.0	82.4 77.9	85.1	5.7 5.4	5.9	5.7	6.0	6.0		4.1	4.4	.
				11.0	Middle	5.5	28.8	28.8	8.3 8.3	8.3	20.9	20.9	78.8 81.0	78.4	5.4 5.6	5.4		6.1 6.5	6.3	6.3	4.5 4.9	4.2	4.5
44 1 144	0	Madagas	20.50		Bottom	10.0	28.7	28.8	8.2	8.2	21.2	21.1	78.4	79.7	5.4	5.5	5.5	6.9	6.7		5.0	5.0	
14-Jul-14	Sunny	Moderate	06:52		Surface	1.0	29.1 29.2	29.2	7.9 7.9	7.9	17.8 17.5	17.6	82.8 73.4	78.1	6.1 5.5	5.8	5.6	8.3 8.4	8.4		5.1 5.3	5.2]
				10.3	Middle	5.2	28.6 28.7	28.7	7.9 7.9	7.9	19.5 20.6	20.0	73.9 71.2	72.6	5.5 5.3	5.4		8.7 8.8	8.8	8.6	4.7 5.9	5.3	5.3
					Bottom	9.3	28.5 28.4	28.5	7.9 7.8	7.8	23.0 23.1	23.0	69.0 74.1	71.6	5.2 5.6	5.4	5.4	8.7 8.6	8.7		5.1 5.8	5.5	
16-Jul-14	Sunny	Moderate	09:03		Surface	1.0	29.2 29.3	29.2	7.9 7.9	7.9	17.8 17.4	17.6	77.1 79.4	78.3	6.0 5.1	5.6	5.6	7.8 7.7	7.8		3.7 4.4	4.1	
				10.9	Middle	5.5	28.3 28.3	28.3	7.9 7.9	7.9	20.2 20.3	20.3	70.9 71.8	71.4	5.6 5.6	5.6	3.0	7.9 7.9	7.9	7.8	4.4 4.8	4.6	4.1
					Bottom	9.9	27.8 28.0	27.9	7.8 7.8	7.8	24.2 24.0	24.1	77.2 73.9	75.6	5.9 5.7	5.8	5.8	7.7 7.4	7.6		3.7 3.6	3.7	
18-Jul-14#	-	-	-		Surface	-	-	-	30.1 30.0	30.0	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	29.4 27.7	28.6	-	-	-	-	-	-	-	-	-	=	-	-	1 <u>.</u>
					Bottom	-	-	-	27.4 27.4	27.4	-	-	-	-	-	-	-	-	-		-	-	1

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	15:25		Surface	1.0	29.1 29.3	29.2	8.2 8.2	8.2	18.8 18.5	18.6	90.4 88.3	89.4	6.3 6.1	6.2	5.8	2.7 2.4	2.6		3.5 4.4	4.0	
				11.1	Middle	5.6	28.1 28.2	28.2	8.1 8.1	8.1	23.3 22.6	23.0	80.5 74.6	77.6	5.6 5.1	5.4	3.0	4.3 4.3	4.3	3.9	3.9 3.4	3.7	3.6
					Bottom	10.1	28.0 27.9	27.9	8.1 8.1	8.1	23.3 23.7	23.5	72.8 69.7	71.3	5.0 4.8	4.9	4.9	4.6 4.8	4.7		3.0 3.3	3.2	
23-Jul-14	Sunny	Moderate	17:53		Surface	1.0	30.4 30.4	30.4	8.4 8.4	8.4	17.3 17.4	17.4	115.4 116.1	115.8	7.9 7.9	7.9	7.3	4.6 4.4	4.5		2.7 4.4	3.6	
				11.0	Middle	5.5	29.2 28.7	28.9	8.1 8.1	8.1	20.8 21.4	21.1	91.3 102.1	96.7	6.2 6.9	6.6	7.0	4.4 4.4	4.4	4.5	4.4 2.8	3.6	3.6
					Bottom	10.0	28.2 27.8	28.0	8.1 8.1	8.1	25.1 26.7	25.9	79.2 79.3	79.3	5.4 5.4	5.4	5.4	4.5 4.4	4.5		2.9 4.5	3.7	
25-Jul-14	Sunny	Moderate	19:02		Surface	1.0	30.0 30.1	30.0	8.4 8.4	8.4	18.0 17.8	17.9	105.6 106.1	105.9	7.2 7.3	7.3	7.0	4.4 4.3	4.4		3.8 3.1	3.5	
				11.0	Middle	5.5	29.9 29.8	29.8	8.4 8.3	8.3	18.3 18.3	18.3	98.5 97.5	98.0	6.8 6.7	6.7	7.0	4.8 5.0	4.9	5.2	4.6 4.5	4.6	4.6
					Bottom	10.0	29.4 28.5	29.0	8.2 8.2	8.2	19.5 22.8	21.1	90.8 89.4	90.1	6.2 6.1	6.2	6.2	6.3 6.1	6.2		5.9 5.5	5.7	ļ
28-Jul-14	Sunny	Moderate	06:39		Surface	1.0	28.6 28.7	28.6	7.9 7.9	7.9	21.2 20.8	21.0	81.2 80.8	81.0	5.7 5.7	5.7	5.6	4.7 4.8	4.8		3.3 3.4	3.4	
				10.7	Middle	5.4	27.9 28.2	28.0	7.9 7.9	7.9	24.0 23.7	23.8	79.3 78.2	78.8	5.5 5.5	5.5	5.6	6.4 6.6	6.5	6.0	3.7 3.4	3.6	3.9
					Bottom	9.7	27.7 27.3	27.5	7.9 7.9	7.9	26.2 26.6	26.4	77.0 78.2	77.6	5.4 5.4	5.4	5.4	6.6 6.6	6.6		4.3 5.0	4.7	
30-Jul-14	Sunny	Moderate	08:21		Surface	1.0	29.1 29.2	29.2	7.6 7.6	7.6	20.9 20.5	20.7	84.2 86.0	85.1	5.8 5.9	5.9	5.7	5.8 5.6	5.7	_	2.5 2.6	2.6	
				10.5	Middle	5.3	28.1 28.9	28.5	7.6 7.6	7.6	22.8 22.2	22.5	77.2 79.4	78.3	5.4 5.5	5.4	5.7	8.2 8.2	8.2	7.6	4.1 4.0	4.1	3.7
					Bottom	9.5	27.8 27.5	27.7	7.5 7.5	7.5	26.2 26.4	26.3	79.2 80.6	79.9	5.4 5.5	5.5	5.5	8.9 8.6	8.8		4.1 4.9	4.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	14:27		Surface	•		-		-	-	-		-		-	6.4	-	-		-	-	
				1.2	Middle	0.6	30.0 30.0	30.0	8.1 8.1	8.1	18.8 18.6	18.7	93.0 94.7	93.9	6.3 6.5	6.4	0.4	8.5 8.6	8.6	8.6	5.0 5.7	5.4	5.4
					Bottom			-		-	-	-		•	1 1	-	-	-	-		-	-	
4-Jul-14	Sunny	Moderate	15:36		Surface	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-		-	-	
				1.6	Middle	8.0	30.9 30.9	30.9	8.2 8.2	8.2	14.0 13.9	13.9	102.7 110.7	106.7	7.1 7.6	7.4	7.4	8.4 8.3	8.4	8.4	6.3 6.7	6.5	6.5
					Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	ļ
7-Jul-14	Sunny	Moderate	10:00		Surface	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-		-	-	
				1.6	Middle	0.8	30.9 30.9	30.9	8.7 8.6	8.6	13.5 13.4	13.5	128.3 127.5	127.9	8.9 8.8	8.8	8.8	5.9 5.9	5.9	5.9	4.8 4.8	4.8	4.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	ļ
9-Jul-14	Sunny	Moderate	11:44		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	30.3 30.3	30.3	8.3 8.4	8.3	17.0 16.9	16.9	95.3 97.1	96.2	6.5 6.7	6.6	6.6	5.4 5.0	5.2	5.2	6.1 6.8	6.5	6.5
					Bottom		-	-	-	-	-	-	-	-		-	-	-	-		-	-	ļ
11-Jul-14	Sunny	Moderate	12:23		Surface	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-		-	-	
				1.6	Middle	8.0	29.4 29.5	29.4	8.2 8.3	8.3	20.9 20.8	20.9	86.7 88.7	87.7	5.9 6.0	6.0	6.0	7.8 7.8	7.8	7.8	5.7 5.1	5.4	5.4
					Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	ļ
14-Jul-14	Sunny	Moderate	13:01		Surface	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-		-	-	
				1.4	Middle	0.7	29.2 29.2	29.2	8.0 7.9	8.0	20.2 20.1	20.2	80.2 83.4	81.8	5.9 6.1	6.0	6.0	14.6 14.4	14.5	14.5	4.6 5.2	4.9	4.9
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
16-Jul-14	Sunny	Moderate	14:50		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.2	Middle	0.6	29.8 29.8	29.8	8.0 8.0	8.0	19.6 19.6	19.6	72.6 73.3	73.0	5.9 6.0	6.0	6.0	6.8 6.8	6.8	6.8	6.2 5.0	5.6	5.6
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	<u>-</u>
					Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	

DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	10:07		Surface	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-		-	-	
				1.6	Middle	0.8	29.0 29.1	29.1	8.1 8.1	8.1	19.3 19.1	19.2	82.9 83.1	83.0	5.7 5.7	5.7	5.7	4.0 3.8	3.9	3.9	2.4 3.6	3.0	3.0
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
23-Jul-14	Sunny	Moderate	12:25		Surface	-		-		-		-	1 1	-		-	6.8	-	-		-	-	
				1.6	Middle	0.8	30.3 30.3	30.3	8.2 8.1	8.2	17.2 17.2	17.2	99.5 99.0	99.3	6.8 6.8	6.8	0.0	3.4 3.3	3.4	3.4	4.0 4.1	4.1	4.1
					Bottom	-		-	-	-		-		-		-	-	-	-		-	-	
25-Jul-14	Sunny	Moderate	13:08		Surface	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-		-	-	
				1.8	Middle	0.9	30.4 30.3	30.3	8.4 8.3	8.4	19.6 19.8	19.7	110.1 108.8	109.5	7.4 7.3	7.4	7.4	7.2 7.7	7.5	7.5	8.1 9.1	8.6	8.6
					Bottom	-	-	-		-	-	-	1 1	-		-	-	-	-		-	-	
28-Jul-14	Sunny	Moderate	12:46		Surface	-	-	-		-	-	-		-		-	5.5	-	-		-	-	
				1.6	Middle	0.8	29.4 29.4	29.4	8.2 8.1	8.1	22.1 22.2	22.2	82.5 80.1	81.3	5.6 5.4	5.5	3.3	7.2 7.1	7.2	7.2	8.6 8.4	8.5	8.5
					Bottom	-	- 1	-		-		-	1 1	-		-	-	-	-		-	1	
30-Jul-14	Sunny	Moderate	13:45		Surface	-	-	-	1 1	-	-	-	1 1	-		-	5.8	-	-		-	-	
				1.4	Middle	0.7	29.8 29.8	29.8	7.7 7.7	7.7	21.4 21.4	21.4	86.8 86.6	86.7	5.9 5.8	5.8	5.0	4.5 4.6	4.6	4.6	3.8 3.9	3.9	3.9
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ing	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	10:00		Surface	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-		-	-	
				1.2	Middle	0.7	29.4 29.4	29.4	8.2 8.2	8.2	18.6 18.6	18.6	95.4 95.4	95.4	6.6 6.6	6.6	6.6	6.6 6.6	6.6	6.6	3.4 3.5	3.5	3.5
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
4-Jul-14	Sunny	Moderate	11:17		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	30.1 30.1	30.1	8.1 8.0	8.1	16.4 16.4	16.4	120.4 119.3	119.9	8.3 8.2	8.3	8.3	6.5 6.6	6.6	6.6	4.0 4.2	4.1	4.1
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
7-Jul-14	Sunny	Moderate	13:46		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.4	Middle	0.7	30.8 30.8	30.8	8.5 8.5	8.5	15.1 15.0	15.1	121.0 120.8	120.9	8.3 8.3	8.3	8.3	13.4 13.9	13.7	13.7	3.6 4.4	4.0	4.0
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
9-Jul-14	Sunny	Moderate	15:54		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	31.3 31.3	31.3	8.6 8.5	8.6	18.3 18.3	18.3	142.4 142.1	142.3	9.5 9.5	9.5	9.5	5.8 5.4	5.6	5.6	5.0 5.0	5.0	5.0
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
11-Jul-14	Sunny	Moderate	17:35		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.4	Middle	0.7	30.2 30.1	30.1	8.5 8.5	8.5	20.3 20.4	20.3	125.9 124.7	125.3	8.5 8.4	8.5	8.5	7.9 8.6	8.3	8.3	7.2 7.5	7.4	7.4
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
14-Jul-14	Sunny	Moderate	07:50		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	29.3 29.3	29.3	7.9 7.9	7.9	19.2 19.2	19.2	82.6 82.4	82.5	6.1 6.1	6.1	6.1	6.3 6.3	6.3	6.3	6.6 6.0	6.3	6.3
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
16-Jul-14	Sunny	Moderate	10:17		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.2	Middle	0.6	29.7 29.7	29.7	7.9 7.9	7.9	18.6 18.6	18.6	76.2 76.7	76.5	5.2 5.3	5.2	5.2	7.1 7.0	7.1	7.1	6.5 4.7	5.6	5.6
					Bottom	-		-		-	-	-	-	-	-	-	-	-	-		-	-	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-		-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-		-	-	-	-	-	-	=	-	-	<u>.</u>
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	14:07		Surface	-		-		-	1 1	-	1 1	-	-	-	7.0	-	-		-	-	
				1.6	Middle	0.8	29.6 29.5	29.6	7.7 7.9	7.8	20.5 20.6	20.5	101.9 102.7	102.3	6.9 7.0	7.0	7.0	3.4 3.6	3.5	3.5	3.3 4.1	3.7	3.7
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
23-Jul-14	Sunny	Moderate	16:49		Surface	-		-		-		-		-	-	-	9.5	-	-		1 1	-	
				1.2	Middle	0.6	30.8 30.7	30.8	7.6 7.6	7.6	20.2 20.4	20.3	139.4 144.1	141.8	9.3 9.6	9.5	0.0	4.4 4.6	4.5	4.5	6.6 5.2	5.9	5.9
					Bottom	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	
25-Jul-14	Sunny	Moderate	17:47		Surface	-	-	-	-	-	-	-	-	-	-	-	9.8		-		-	-	
				1.4	Middle	0.7	31.1 31.1	31.1	8.4 8.4	8.4	18.5 18.5	18.5	146.2 147.4	146.8	9.8 9.9	9.8	9.0	8.2 8.0	8.1	8.1	12.4 12.1	12.3	12.3
					Bottom	-		-		-	1	-		-	-	-	-	-	-		- 1	-	
28-Jul-14	Sunny	Moderate	07:38		Surface	-	-	-		-		-	-	-	-	-	5.4	-	-		-	-	
				1.4	Middle	0.7	28.9 28.9	28.9	8.0 8.0	8.0	21.1 21.0	21.1	78.9 79.4	79.2	5.4 5.4	5.4	5.4	4.2 4.4	4.3	4.3	4.9 4.0	4.5	4.5
					Bottom	-	-	-		-		-	-	-	-	-	-	-	-			-	
30-Jul-14	Sunny	Moderate	09:18		Surface	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-	_	-	-	
				1.6	Middle	0.8	29.5 29.5	29.5	7.7 7.7	7.7	20.6 20.6	20.6	83.1 82.1	82.6	5.7 5.6	5.6	5.0	3.0 3.0	3.0	3.0	3.6 3.7	3.7	3.7
					Bottom	-	-	-	1 1	-		-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	15:06		Surface	1.0	29.6 29.6	29.6	8.2 8.2	8.2	18.3 18.2	18.3	102.5 102.2	102.4	7.1 7.0	7.0	7.0	5.6 5.7	5.7		4.8 4.6	4.7	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	5.6	-	-	4.9
					Bottom	2.5	29.3 29.4	29.3	8.2 8.2	8.2	18.7 18.6	18.6	98.6 101.5	100.1	6.8 7.0	6.9	6.9	5.3 5.5	5.4		4.5 5.6	5.1	
4-Jul-14	Sunny	Moderate	16:27		Surface	1.0	30.2 30.3	30.2	8.0 8.0	8.0	15.8 15.9	15.8	116.5 120.5	118.5	8.1 8.3	8.2		9.1 9.6	9.4		5.3 5.2	5.3	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	8.2	-	-	9.2	-	-	5.5
					Bottom	2.5	30.2 30.2	30.2	8.0 8.0	8.0	16.6 16.7	16.6	113.4 119.4	116.4	7.8 8.2	8.0	8.0	9.0 8.9	9.0		5.8 5.6	5.7	
7-Jul-14	Sunny	Moderate	09:17		Surface	1.0	31.2 31.2	31.2	8.6 8.5	8.6	12.8 12.9	12.8	129.3 124.8	127.1	8.9 8.6	8.8		9.7 9.9	9.8		6.5 5.6	6.1	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	8.8	-	-	9.8	-	-	6.2
					Bottom	2.7	31.2 31.1	31.1	8.6 8.5	8.5	13.2 13.4	13.3	127.4 120.7	124.1	8.8 8.3	8.6	8.6	9.9	9.7		5.8	6.2	
9-Jul-14	Sunny	Moderate	10:55		Surface	1.0	29.8 29.8	29.8	8.3 8.3	8.3	18.5 18.4	18.5	79.5 79.3	79.4	5.4 5.4	5.4		7.9 8.3	8.1		6.3 5.3	5.8	
				3.8	Middle	-	-	-		-		-	-	-	-	-	5.4	-	_	8.8	-	-	6.0
					Bottom	2.8	28.8	28.6	8.0 8.2	8.1	22.0	22.0	77.2 76.9	77.1	5.4 5.3	5.3	5.3	9.0	9.5		6.4	6.1	
11-Jul-14	Sunny	Moderate	11:34		Surface	1.0	29.5 29.5	29.5	8.3 8.3	8.3	19.6 19.9	19.8	88.1 88.8	88.5	6.0 6.1	6.1		8.6 9.0	8.8		4.8 3.6	4.2	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	9.2	-	-	4.1
					Bottom	2.6	29.1 29.2	29.1	8.2 8.3	8.2	21.5 21.5	21.5	88.2 88.0	88.1	6.0	6.0	6.0	9.7 9.5	9.6		4.1	4.0	
14-Jul-14	Sunny	Moderate	13:42		Surface	1.0	29.9 29.9	29.9	8.0 8.0	8.0	19.2 19.2	19.2	77.0 77.0	77.0	5.2 5.3	5.2		5.3 5.7	5.5		5.0 4.5	4.8	
				3.8	Middle	-	-	-	-	-	-	-		-	-	-	5.2	-	-	5.5	-	-	5.4
					Bottom	2.8	29.7 29.5	29.6	8.0 8.0	8.0	19.2 19.5	19.4	76.7 77.6	77.2	5.2 5.3	5.3	5.3	5.5 5.5	5.5		5.8 6.1	6.0	
16-Jul-14	Sunny	Moderate	15:33		Surface	1.0	30.8 31.1	30.9	8.1 8.1	8.1	17.5 17.4	17.4	91.7 95.6	93.7	6.2 6.5	6.3		7.2 7.5	7.4		6.8	6.8	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	7.3	-	-	6.5
					Bottom	2.5	30.7 30.6	30.6	8.1 8.0	8.0	17.6 17.6	17.6	93.8 94.0	93.9	6.4 6.4	6.4	6.4	7.1 7.2	7.2		5.7 6.6	6.2	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	<u>.</u>
					Bottom	_	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	I	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	09:20		Surface	1.0	29.0 29.1	29.1	8.1 8.0	8.0	19.8 19.8	19.8	89.2 92.2	90.7	6.1 6.4	6.2	6.2	4.7 4.1	4.4		3.2 3.2	3.2	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	5.0	-	-	3.5
					Bottom	2.7	29.0 29.0	29.0	7.9 8.1	8.0	20.0 19.9	20.0	95.0 90.7	92.9	6.5 6.2	6.4	6.4	5.6 5.5	5.6		3.6 3.7	3.7	
23-Jul-14	Sunny	Moderate	11:43		Surface	1.0	30.4 30.4	30.4	8.1 8.1	8.1	18.4 18.3	18.3	99.2 101.3	100.3	6.7 6.9	6.8	6.8	8.9 8.9	8.9		5.9 5.7	5.8	
				3.8	Middle	-	-	-	-	-		-		-		-	0.0	-	-	9.0	-	-	5.4
					Bottom	2.8	30.3 30.3	30.3	8.0 8.1	8.0	18.5 18.5	18.5	101.5 100.2	100.9	6.9 6.8	6.9	6.9	9.1 9.1	9.1		5.4 4.4	4.9	
25-Jul-14	Sunny	Moderate	12:27		Surface	1.0	30.1 30.1	30.1	8.3 8.3	8.3	18.4 18.2	18.3	109.7 108.6	109.2	7.5 7.4	7.5	7.5	10.6 10.9	10.8		4.9 5.1	5.0	
				3.5	Middle	ı	-	-		-		-		-		-	7.5	-	-	12.8	-	-	5.4
					Bottom	2.5	30.0 30.0	30.0	8.3 8.3	8.3	19.1 19.1	19.1	104.9 103.1	104.0	7.2 7.0	7.1	7.1	14.9 14.6	14.8		5.8 5.8	5.8	
28-Jul-14	Sunny	Moderate	13:30		Surface	1.0	29.3 29.6	29.5	8.0 8.0	8.0	21.2 20.8	21.0	80.1 82.4	81.3	5.5 5.6	5.5	5.5	3.3 3.2	3.3		2.2 2.1	2.2	
				3.6	Middle	ı	-	-		-		-		-		-	3.3	-	-	3.3	-	-	3.1
					Bottom	2.6	29.1 29.3	29.2	8.0 8.0	8.0	21.9 21.2	21.5	81.0 81.6	81.3	5.5 5.6	5.5	5.5	3.3 3.1	3.2		4.1 3.6	3.9	
30-Jul-14	Sunny	Moderate	14:25		Surface	1.0	30.2 30.1	30.2	7.8 7.8	7.8	20.5 20.6	20.5	88.8 85.1	87.0	6.0 5.7	5.9	5.9	5.3 5.2	5.3		1.9 2.4	2.2	
				3.8	Middle	1	-	-		-		-	-	-	1 1	-	3.5	-	-	5.3	-	-	4.0
					Bottom	2.8	30.1 29.7	29.9	7.8 7.7	7.7	20.7 21.0	20.9	87.5 82.8	85.2	5.9 5.6	5.8	5.8	5.1 5.3	5.2		5.4 5.9	5.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Suspended Solids	Solids (mg/l	ed Solids (ended Soli	Suspen	J)	urbidity(NTl	Т	(mg/L)	ved Oxyger	Dissolv	Di	ration (%)	DO Satur	y (ppt)	Salinit	ЭΗ		ature (°C)	Temper	pling	Samp	Water	Sampling	Sea	Weather	Date
Value Average	erage D	Average	Average	Value	DA*	Average	Value	DA*	Average	alue	Val	Average	Value	Average	Value	Average	Value	Average	Value	h (m)	Depth	Depth (m)	Time	Condition**	Condition	
6.4 6.3	6.4	6.4	6.4			9.7	9.8 9.5	5.4	5.4	5.3 5.4		76.8	76.4 77.2	16.2	16.1 16.2	8.0	8.0 8.0	29.4	29.4 29.4	1.0	Surface		09:19	Moderate	Sunny	2-Jul-14
	- 6	-	-		9.8	-	-	5.4	-			-		-		-	-	-	-	-	Middle	3.9				
5.4 5.6 5.5	5.5	5.5	5.5			9.8	9.8 9.8	5.4	5.4	5.5 5.4		78.1	79.4 76.7	16.6	16.8 16.5	8.0	8.0 8.0	29.3	29.3 29.4	2.9	Bottom					
8.9 8.9	8.9	8.9	8.9			12.3	12.2 12.4		6.6	6.6 6.5		94.2	95.0 93.3	14.8	14.9 14.8	7.9	7.9 7.9	30.0	30.1 30.0	1.0	Surface		10:30	Moderate	Sunny	4-Jul-14
	- 9	-	-		12.9	-	-	6.6	-	-		-	-	-	-	-	-	-	-	-	Middle	3.7				
9.1 9.3	9.2	9.2	9.2			13.5	13.9 13.1	6.6	6.6	6.5 6.8		95.4	93.7 97.0	15.0	15.0 15.0	7.9	7.9 7.8	30.0	30.0 30.0	2.7	Bottom					
7.4 6.3 6.9	6.9	6.9	6.9	7.4		10.6	10.1		8.0	7.9 3.2	7.	114.5	112.1 116.8	13.1	13.1 13.1	8.5	8.5 8.5	30.3	30.3 30.4	1.0	Surface		14:26	Moderate	Sunny	7-Jul-14
	- 7.	-	-		10.9	-	-	8.0	-	-		-	-	-	-	-	-	-	-	-	Middle	3.7				
7.0 7.1 7.1	7.1	7.1	7.1			11.2	11.2 11.1	7.9	7.9	3.1 7.8	8.	114.6	117.1 112.1	16.0	16.6 15.4	8.4	8.4 8.4	30.2	30.1 30.2	2.7	Bottom					
6.8 6.8 6.8	6.8	6.8	6.8	6.8		10.9	10.5 11.2		7.4	7.5 7.2	7.	107.2	109.5 104.9	17.4	17.4 17.4	8.6	8.6 8.6	30.1	30.1 30.1	1.0	Surface		16:42	Moderate	Sunny	9-Jul-14
	- 7	-	-	-	12.3	-	-	7.4	-	-	-	-	-	-	-	-	-	-	-	-	Middle	3.3				
7.7 8.1 7.9	7.9	7.9	7.9	7.7		13.6	13.4 13.8	6.8	6.8	- 3.3 7.3		98.9	91.5 106.2	18.7	18.5 18.8	8.5	8.4 8.5	29.8	29.8	2.3	Bottom					
5.7 6.1 5.9	5.9	5.9	5.9	5.7		9.0	9.2 8.7		6.5	6.6 6.4	6.	94.9	95.8 93.9	19.3	19.4 19.3	8.3	8.3 8.3	29.5	29.4 29.5	1.0	Surface		18:30	Moderate	Sunny	11-Jul-14
	- 5	-	-		10.3	-	-	6.5	-	-		-	-	-	-	-	-	-	-	-	Middle	3.5				
6.2 5.6 5.9	5.9	5.9	5.9			11.6	11.2 11.9	6.4	6.4	5.1 6.6		93.0	89.2 96.8	19.6	19.7 19.5	8.3	8.2 8.3	29.4	29.3 29.5	2.5	Bottom					
5.3 6.4 5.9	5.9	5.9	5.9	5.3		6.5	6.5 6.5		5.7	5.7	5.	76.7	76.3 77.1	17.1	17.1 17.1	7.8	7.8 7.8	29.3	29.3 29.3	1.0	Surface		07:13	Moderate	Sunny	14-Jul-14
	- 5	-	-	-	6.6	-	-	5.7	-	-	-	-	-	-	-	-	-	-	-	-	Middle	3.8				
6.7 5.1 5.9	5.9	5.9	5.9			6.7	6.6 6.7	5.8	5.8	5.7 5.9		77.8	76.8 78.8	17.2	17.2 17.3	7.8	7.8 7.8	29.3	29.3 29.3	2.8	Bottom					
5.3 5.4 5.4	5.4	5.4	5.4	5.3		7.6	7.5 7.6		5.7	5.8	5.	78.1	78.8 77.3	17.2	17.2 17.1	7.8	7.8 7.9	29.6	29.6 29.6	1.0	Surface		09:31	Moderate	Sunny	16-Jul-14
	- 5		-		7.6	-	-	5.7	-	-		-	-	-	-	-	- 7.9	-	- 29.6	-	Middle	3.8				
6.1 6.3	6.3	6.3	6.3			7.5	7.4	5.8	5.8	5.7		78.6	77.6	17.2	17.2	7.8	7.8	29.6	29.6	2.8	Bottom					
	-	-	 -			-	- 1.5		-	-	5.	-	-	-	- 17.1	-	- 7.8	-	- 29.6	-	Surface		-	-	-	18-Jul-14#
	- :		+	-	<u>=</u>	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	Middle	-				
		_	+		-	-	-	-	-	-	+ :	-	-	_	-	_	-	_	-	-						
	7.6	7.6	7.6	-		-	7.4 7.5 - -	5.8	5.8	-	5.	-	77.6 79.6 - - -	-	- 17.2 17.1 - - -	7.8	7.8 7.8 7.8	29.6	29.6 29.6 - - -	+	Bottom		-	-	-	18-Jul-14#

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	15:00		Surface	1.0	29.7 29.6	29.6	8.2 8.2	8.2	18.8 18.9	18.8	94.8 93.7	94.3	6.5 6.4	6.5	6.5	16.3 15.8	16.1		4.4 3.4	3.9	ļ
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	17.0	-	-	3.7
					Bottom	2.7	29.5 29.6	29.6	8.2 8.2	8.2	18.9 18.8	18.8	95.7 94.3	95.0	6.6 6.5	6.5	6.5	18.4 17.3	17.9		4.2 2.7	3.5	
23-Jul-14	Sunny	Moderate	17:30		Surface	1.0	30.6 30.6	30.6	8.4 8.3	8.3	17.6 17.7	17.7	132.3 129.8	131.1	9.0 8.8	8.9	8.9	8.7 8.4	8.6		5.7 4.1	4.9	
				3.6	Middle	1		-	1 1	•		-	-	-		-	0.9	-	-	8.6	-	-	5.4
					Bottom	2.6	30.6 30.6	30.6	8.2 8.3	8.3	18.0 17.7	17.9	124.1 131.2	127.7	8.4 8.9	8.7	8.7	8.5 8.6	8.6		5.3 6.5	5.9	
25-Jul-14	Sunny	Moderate	18:37		Surface	1.0	30.2 30.2	30.2	8.5 8.5	8.5	18.6 18.6	18.6	128.4 127.9	128.2	8.7 8.7	8.7	8.7	19.3 19.6	19.5		11.3 11.9	11.6	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.7	-	-	20.9	-	-	12.7
					Bottom	2.3	30.2 30.1	30.2	8.5 8.5	8.5	18.5 18.5	18.5	128.3 127.3	127.8	8.7 8.7	8.7	8.7	22.1 22.3	22.2		13.3 14.1	13.7	
28-Jul-14	Sunny	Moderate	06:59		Surface	1.0	29.0 29.0	29.0	7.9 7.9	7.9	19.6 19.5	19.6	89.8 93.6	91.7	6.3 6.6	6.4	6.4	4.3 4.4	4.4		2.6 2.6	2.6	
				3.7	Middle	-		-	1 1	-		-	-	-		-	0.4	-	-	4.5	-	-	3.9
					Bottom	2.7	28.9 28.9	28.9	7.9 7.9	7.9	20.0 20.6	20.3	98.4 91.2	94.8	6.9 6.4	6.6	6.6	4.5 4.5	4.5		5.2 5.2	5.2	
30-Jul-14	Sunny	Moderate	08:42		Surface	1.0	29.4 29.4	29.4	7.6 7.6	7.6	19.9 19.9	19.9	76.5 74.8	75.7	5.2 5.1	5.2	5.2	4.6 4.6	4.6		2.8 3.3	3.1	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	J.Z	-	-	4.6	-	-	3.6
					Bottom	2.8	29.4 29.4	29.4	7.6 7.6	7.6	19.7 19.9	19.8	78.0 75.5	76.8	5.3 5.2	5.3	5.3	4.6 4.6	4.6		4.0 3.9	4.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	15:24		Surface	1.0	29.6 29.6	29.6	8.1 8.1	8.1	16.5 16.5	16.5	74.0 74.8	74.4	5.2 5.2	5.2	5.2	4.7 4.7	4.7		2.9 3.0	3.0	
				4.9	Middle	,	-	-	-	-	-	-	-	-	-	-	5.2	-	-	5.7	-	-	3.6
					Bottom	3.9	29.5 29.5	29.5	8.0 8.1	8.1	17.9 18.7	18.3	74.8 74.8	74.8	5.2 5.2	5.2	5.2	6.5 6.6	6.6		3.8 4.3	4.1	
4-Jul-14	Sunny	Moderate	16:59		Surface	1.0	30.3 30.3	30.3	8.2 8.2	8.2	9.6 9.9	9.8	95.8 95.8	95.8	6.8 6.8	6.8		3.3 3.3	3.3		1.1 1.2	1.2	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	6.8	-	-	3.3	-	-	1.5
					Bottom	4.0	29.9 29.8	29.9	8.1 8.1	8.1	14.3 14.6	14.4	95.9 94.4	95.2	6.7 6.6	6.7	6.7	3.2 3.2	3.2		1.8 1.7	1.8	
7-Jul-14	Sunny	Moderate	08:52		Surface	1.0	30.0 30.2	30.1	8.3 8.4	8.3	9.3 8.8	9.1	73.1 77.9	75.5	5.7 5.5	5.6		4.5 4.2	4.4		4.8 5.0	4.9	
				5.0	Middle	-	-	-	-	-		-		-	-	-	5.6	-	-	4.6	-	-	4.5
					Bottom	4.0	29.3	29.1	8.2 8.2	8.2	19.4 20.1	19.8	76.8 77.8	77.3	5.7 5.6	5.6	5.6	4.6 4.7	4.7		3.8	4.1	
9-Jul-14	Sunny	Moderate	11:03		Surface	1.0	29.4 29.4	29.4	8.3 8.2	8.2	17.1 18.5	17.8	90.9 88.2	89.6	6.3 6.1	6.2		2.7 3.0	2.9		4.4 4.0	4.2	
				5.6	Middle	-	-	-		-		-		-	-	-	6.2	-	_	4.6	-	-	4.1
					Bottom	4.6	27.9 27.6	27.7	8.1 8.0	8.1	24.2 26.4	25.3	76.2 75.8	76.0	5.2 5.2	5.2	5.2	6.2	6.3		3.8	4.0	
11-Jul-14	Sunny	Moderate	12:16		Surface	1.0	29.0 28.9	29.0	8.1 8.1	8.1	17.8 17.8	17.8	75.8 84.0 79.2	81.6	5.2 5.9 5.5	5.7		2.8 2.7	2.8		3.1 3.0	3.1	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-	2.8	-	-	3.9
					Bottom	4.0	28.5 29.0	28.7	8.1 8.1	8.1	19.6 19.1	19.3	78.8 83.8	81.3	5.5 5.8	5.6	5.6	2.6 2.8	2.7		4.1 5.3	4.7	
14-Jul-14	Sunny	Moderate	13:58		Surface	1.0	29.8 29.7	29.8	7.9 8.0	8.0	17.4 17.5	17.4	81.1 81.7	81.4	5.6 5.6	5.6		4.3 4.6	4.5		4.7 5.2	5.0	
				4.8	Middle	-	-	-	-	-	-	-		-	-	-	5.6	-	-	4.9	-	-	5.4
					Bottom	3.8	29.4 29.3	29.4	8.0 8.0	8.0	17.7 17.9	17.8	79.7 81.8	80.8	5.5 5.7	5.6	5.6	4.9 5.4	5.2		6.3 5.3	5.8	
16-Jul-14	Sunny	Moderate	15:32		Surface	1.0	29.5	29.6	8.0	8.0	18.3	18.3	86.0	84.7	6.2	6.1		5.9	5.9		5.7	5.6	
				5.0	Middle	-	- 29.0	-	- 8.0	-	- 18.3	-	- 83.4	-	-	-	6.1	- 5.8	-	5.9	- 5.5	-	5.4
					Bottom	4.0	29.4	29.4	8.0	8.0	19.2	19.3	83.4	85.7	6.0	6.1	6.1	5.8	5.9		4.9	5.1	
18-Jul-14#	-	-	-		Surface	-	- 29.3	-	- 8.0	-	19.3	-	- 88.0	-	-	-		- 5.9	-		- 5.3	-	
				-	Middle	-	-	-	-	_	-	-	-	-	-	_	-	-	_		-	-	=
						_	-	_	-	_	-	-	-	_	-	_		-	_	-	-	-	-
18-Jul-14#	·	-	-		Middle Bottom Surface	-	29.4 29.3 - - -	29.4	- 8.0 8.0 - - -	8.0	- 19.2 19.3 - - -	19.3	83.4 88.0 - - -	85.7	-	6.1		5.8 5.9 - - -	5.9		5.9 <u>-</u>	4.9 5.3	5.5

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	09:15		Surface	1.0	28.9 28.9	28.9	8.0 8.1	8.1	15.2 15.1	15.1	81.8 79.5	80.7	5.8 5.6	5.7	5.7	1.5 1.4	1.5		3.3 2.7	3.0	
				5.0	Middle	1		-		-		-	-	-		-	0	-	-	1.5	-	-	3.1
					Bottom	4.0	29.0 28.5	28.7	8.0 8.0	8.0	17.9 18.8	18.4	81.5 76.8	79.2	5.7 5.4	5.5	5.5	1.5 1.5	1.5		3.1 3.0	3.1	
23-Jul-14	Sunny	Moderate	11:08		Surface	1.0	29.7 29.6	29.7	8.1 8.0	8.0	14.7 14.8	14.7	92.8 88.5	90.7	6.5 6.2	6.4	6.4	2.2 2.1	2.2		3.7 4.2	4.0	
				4.8	Middle	-	-	-		-		-	-	-		-	0.4	-	-	2.3	-	-	4.1
					Bottom	3.8	29.2 29.4	29.3	7.9 8.0	8.0	19.6 17.7	18.7	85.4 88.8	87.1	5.9 6.2	6.0	6.0	2.4 2.3	2.4		4.4 3.9	4.2	
25-Jul-14	Sunny	Moderate	12:25		Surface	1.0	29.7 29.8	29.7	8.2 8.2	8.2	15.9 16.0	15.9	91.8 91.0	91.4	6.4 6.3	6.4	6.4	3.6 3.6	3.6		5.2 4.7	5.0	
				5.4	Middle	-		-		-		-	-	-		-	0.4	-	-	3.6	-	-	5.0
					Bottom	4.4	29.6 29.5	29.5	8.2 8.2	8.2	17.7 18.0	17.8	91.8 88.8	90.3	6.3 6.1	6.2	6.2	3.5 3.6	3.6		5.1 4.7	4.9	
28-Jul-14	Sunny	Moderate	13:55		Surface	1.0	29.8 29.7	29.7	8.1 8.1	8.1	18.7 18.8	18.8	80.2 76.7	78.5	5.9 5.3	5.6	5.6	7.8 7.8	7.8		5.4 4.6	5.0	
				5.0	Middle	-		-		-		-	-	-		-	3.0	-	-	7.7	-	-	5.5
					Bottom	4.0	29.4 29.7	29.6	8.1 8.1	8.1	20.0 19.1	19.6	76.3 83.3	79.8	5.2 5.7	5.5	5.5	7.4 7.5	7.5		6.2 5.8	6.0	
30-Jul-14	Sunny	Moderate	14:39		Surface	1.0	30.4 30.3	30.4	8.1 8.1	8.1	16.7 16.8	16.7	94.2 93.7	94.0	6.5 6.4	6.4	6.4	2.5 2.6	2.6	_	0.7	0.4	
				4.7	Middle	-	-	-		-	-	-	-	-		-	0.4	-	-	3.3	-	-	0.7
					Bottom	3.7	29.2 28.9	29.1	8.0 8.0	8.0	20.6 20.9	20.7	86.4 83.3	84.9	5.9 5.7	5.8	5.8	4.0 4.0	4.0		0.9 0.9	0.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	09:10		Surface	1.0	29.2 29.2	29.2	8.1 8.1	8.1	14.5 14.3	14.4	76.9 74.2	75.6	5.4 5.3	5.4	5.4	3.9 3.7	3.8		3.6 3.7	3.7	
				5.0	Middle	,	-	-	-	-	-	-	-	-	-	-	3.4	-	-	4.0	-	-	4.2
					Bottom	4.0	29.0 29.0	29.0	8.0 8.1	8.0	19.0 19.3	19.1	75.0 80.1	77.6	5.2 5.5	5.4	5.4	4.2 4.2	4.2		4.0 5.3	4.7	
4-Jul-14	Sunny	Moderate	11:00		Surface	1.0	30.1 30.1	30.1	8.1 8.1	8.1	13.2 12.9	13.0	85.1 86.9	86.0	6.0 6.1	6.0		3.7 3.7	3.7		1.9 1.9	1.9	
				5.0	Middle	-	-	-	-	-	-	-		-	-	-	6.0	-	-	3.8	-	-	2.1
					Bottom	4.0	29.7 30.0	29.8	8.1 8.1	8.1	17.2 15.8	16.5	84.3 86.1	85.2	5.8 6.0	5.9	5.9	3.8 3.8	3.8		2.4 2.0	2.2	
7-Jul-14	Sunny	Moderate	15:05		Surface	1.0	30.0 29.8	29.9	8.3 8.3	8.3	11.3 12.7	12.0	77.0 82.3	79.7	5.2 5.8	5.5		4.3 4.2	4.3		3.6 4.1	3.9	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-	4.3	-	-	3.9
					Bottom	4.2	29.8	29.1	8.3 8.2	8.2	19.3 21.0	20.2	75.3 71.2	73.3	5.2 5.3	5.2	5.2	4.2 4.3	4.3		3.1	3.8	
9-Jul-14	Sunny	Moderate	17:12		Surface	1.0	30.4 29.9	30.2	8.5 8.4	8.4	15.7 16.6	16.1	109.7 108.7	109.2	7.6 7.5	7.5		3.4 3.5	3.5		5.6 5.0	5.3	
				4.9	Middle		-	-	-	-	-	-	-	-	-	-	7.5	-	_	4.5	-	-	5.8
					Bottom	3.9	28.5 27.7	28.1	8.3 8.3	8.3	21.9	22.1	98.4 97.2	97.8	6.8 6.8	6.8	6.8	5.4 5.4	5.4		6.4	6.3	
11-Jul-14	Sunny	Moderate	18:52		Surface	1.0	29.7 29.7	29.7	8.0 8.0	8.0	15.1 15.2	15.1	81.9 80.8	81.4	5.7 5.7	5.7		7.2 7.1	7.2		6.5 5.6	6.1	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-	7.3	-	-	6.1
					Bottom	4.0	29.6 29.7	29.7	8.0 8.0	8.0	16.3 16.5	16.4	82.6 80.4	81.5	5.8 5.6	5.7	5.7	7.4 7.3	7.4		5.5 6.7	6.1	
14-Jul-14	Sunny	Moderate	07:40		Surface	1.0	28.6 28.5	28.6	7.9 7.9	7.9	19.6 19.7	19.7	74.5 72.8	73.7	5.2 5.1	5.1		11.0 10.9	11.0		5.1 5.2	5.2	
				5.0	Middle	-	-	-	-	-	-	-		-	-	-	5.1	-	-	11.5	-	-	5.6
					Bottom	4.0	28.2	28.2	7.9 7.9	7.9	22.3 22.3	22.3	73.4 71.8	72.6	5.1 5.0	5.0	5.0	11.8 12.2	12.0		5.9 5.8	5.9	
16-Jul-14	Sunny	Moderate	09:18		Surface	1.0	29.5 29.5	29.5	7.9 7.9	7.9	15.7 15.7	15.7	82.6 83.1	82.9	6.0 6.0	6.0		6.6 6.7	6.7		4.8 5.9	5.4	
				4.9	Middle	-	- 29.5	-	-	-	-	-	- 83.1	-	-	-	6.0	- 6.7	-	6.7	- 5.9	-	5.1
					Bottom	3.9	29.2 29.4	29.3	7.9 7.9	7.9	17.8 17.8	17.8	82.1 82.7	82.4	5.9	5.9	5.9	6.6 6.5	6.6		4.8 4.6	4.7	
18-Jul-14#	-	-	-	<u> </u>	Surface	-	- 29.4	-	- 7.9	-	- 17.8	-	- 82.7	-	6.0	-		- 0.0	-		- 4.6	-	
				_	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	_		-	-	=
						-	-	_	-	_	-	-	-	_	-	-		-	_	-	-	-	-
18-Jul-14#	-	-	-	-		-	<u>-</u> - -	-	- - -	-	- - -	-	<u>-</u> - -	-	- - - - -	-	-			Ξ		-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NT	J)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	15:32		Surface	1.0	29.2 29.3	29.3	8.2 8.1	8.2	13.7 14.8	14.3	87.3 87.9	87.6	6.2 6.2	6.2	6.2	4.8 4.7	4.8		2.7 3.0	2.9	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	4.8	-	-	3.0
					Bottom	4.3	28.6 29.2	28.9	8.1 8.1	8.1	20.7 20.4	20.6	88.2 87.5	87.9	6.1 6.0	6.0	6.0	4.7 4.7	4.7		3.1 2.9	3.0	
23-Jul-14	Sunny	Moderate	17:48		Surface	1.0	30.3 30.4	30.4	7.6 7.7	7.6	13.8 12.0	12.9	97.4 103.0	100.2	6.8 7.2	7.0	7.0	6.3 6.6	6.5		3.5 3.2	3.4	
				5.0	Middle	1		-		-		-	-	-		-	7.0	-	-	6.8	-	-	3.9
					Bottom	4.0	28.8 28.6	28.7	7.6 7.6	7.6	22.8 21.8	22.3	85.0 86.4	85.7	5.8 5.9	5.9	5.9	7.1 6.8	7.0		3.7 5.1	4.4	
25-Jul-14	Sunny	Moderate	18:52		Surface	1.0	30.1 30.1	30.1	8.2 8.2	8.2	15.9 16.0	15.9	91.7 96.2	94.0	6.3 6.7	6.5	6.5	4.6 4.9	4.8		4.7 4.7	4.7	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	5.2	-	-	5.2
					Bottom	4.3	29.6 29.9	29.7	8.1 8.1	8.1	18.1 18.2	18.2	88.9 94.8	91.9	6.1 6.5	6.3	6.3	5.5 5.5	5.5		6.1 5.3	5.7	ļ
28-Jul-14	Sunny	Moderate	07:11		Surface	1.0	28.6 28.6	28.6	8.0 8.1	8.1	20.9 20.3	20.6	76.7 79.4	78.1	5.6 5.8	5.7	5.7	7.6 7.4	7.5		4.9 4.4	4.7	
				5.0	Middle	-		-		-		-	-	-		-	3.7	-	-	7.5	-	-	5.0
					Bottom	4.0	28.0 28.0	28.0	8.0 8.0	8.0	23.7 23.5	23.6	73.7 76.8	75.3	5.1 5.6	5.3	5.3	7.5 7.4	7.5		5.6 5.0	5.3	
30-Jul-14	Sunny	Moderate	08:51		Surface	1.0	29.2 29.2	29.2	8.0 8.0	8.0	17.5 17.7	17.6	84.8 83.5	84.2	5.9 5.8	5.9	5.9	3.3 3.3	3.3		2.6 2.8	2.7	
				4.9	Middle	-	-	-	-	-	-	-	-	-	-	-	3.5	-	-	3.7	-	-	2.7
					Bottom	3.9	28.0 28.5	28.3	8.0 8.0	8.0	23.9 22.4	23.2	77.6 81.7	79.7	5.3 5.6	5.5	5.5	4.0 3.9	4.0		2.8 2.5	2.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	14:36		Surface	1.0	29.4 29.5	29.4	8.1 8.1	8.1	14.6 15.8	15.2	72.1 72.2	72.2	5.1 5.1	5.1	5.1	4.9 4.5	4.7		3.6 4.4	4.0	
				4.1	Middle	-	-	-		-	-	-	-	-	-	-	0.1	-	-	4.8	-	-	3.8
					Bottom	3.1	28.6 28.8	28.7	8.1 8.1	8.1	18.8 18.8	18.8	71.4 71.2	71.3	5.0 5.0	5.0	5.0	4.9 4.7	4.8		3.1 3.8	3.5	
4-Jul-14	Sunny	Moderate	16:01		Surface	1.0	30.4 30.5	30.4	8.2 8.2	8.2	9.6 9.3	9.4	95.0 95.8	95.4	6.8 6.8	6.8	6.8	3.6 3.7	3.7		3.1 2.7	2.9	
				4.1	Middle	-	-	-		-	-	-	-	-	-	-	0.0	-	-	3.6	-	-	2.8
					Bottom	3.1	30.0 29.9	29.9	8.2 8.2	8.2	11.8 12.1	12.0	94.7 95.0	94.9	6.7 6.7	6.7	6.7	3.3 3.5	3.4		2.6 2.7	2.7	ļ
7-Jul-14	Sunny	Moderate	09:48		Surface	1.0	30.1 30.0	30.1	8.3 8.3	8.3	11.1 11.6	11.3	78.5 73.9	76.2	5.3 5.7	5.5	5.5	3.9 3.6	3.8		4.7 3.0	3.9	
				4.0	Middle	-	-	-		-	-	-	-	-	-	-	5.5	-	-	3.8	-	-	3.9
					Bottom	3.0	30.1 29.4	29.7	8.3 8.2	8.2	17.4 17.0	17.2	77.5 72.9	75.2	5.3 5.5	5.4	5.4	3.6 3.8	3.7		3.9 3.6	3.8	ļ
9-Jul-14	Sunny	Moderate	11:47		Surface	1.0	29.5 29.8	29.6	8.3 8.4	8.4	16.1 15.7	15.9	101.2 103.0	102.1	7.1 7.2	7.1	7.1	1.9 2.0	2.0		5.5 4.8	5.2	
				4.2	Middle	-	-	-		-	-	-	-	-	-	-	7.1	-	-	2.0	-	-	5.3
					Bottom	3.2	29.2 28.8	29.0	8.3 8.3	8.3	17.4 17.4	17.4	101.0 100.6	100.8	7.0 7.0	7.0	7.0	2.0 1.9	2.0		5.0 5.6	5.3	ļ
11-Jul-14	Sunny	Moderate	13:13		Surface	1.0	28.9 28.9	28.9	8.1 8.1	8.1	19.6 19.2	19.4	75.3 72.7	74.0	5.2 5.0	5.1	5.1	4.5 4.5	4.5		4.4 3.1	3.8	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	5.1	-	-	4.6	-	-	3.7
					Bottom	3.0	28.4 28.7	28.6	8.1 8.1	8.1	21.1 20.9	21.0	71.3 72.7	72.0	4.9 5.0	5.0	5.0	4.6 4.7	4.7		3.0 4.2	3.6	ļ
14-Jul-14	Sunny	Moderate	13:03		Surface	1.0	29.9 29.9	29.9	8.0 8.0	8.0	16.5 16.5	16.5	87.8 87.2	87.5	6.1 6.0	6.1	6.1	2.0 2.3	2.2		5.9 6.8	6.4	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	2.4	-	-	6.0
					Bottom	3.1	29.4 29.4	29.4	8.0 8.0	8.0	17.3 17.3	17.3	86.9 86.3	86.6	6.0 6.0	6.0	6.0	2.5 2.5	2.5		6.2 5.0	5.6	ļ
16-Jul-14	Sunny	Moderate	14:36		Surface	1.0	29.3 29.4	29.4	8.1 8.0	8.1	18.5 18.5	18.5	76.0 78.1	77.1	5.5 5.6	5.6	5.6	5.7 5.8	5.8		6.4 5.9	6.2	
				4.1	Middle	-	-	-		-	-	-	-	-	-	-	5.6	-	-	5.8	-	-	6.3
					Bottom	3.1	29.2 28.6	28.9	8.0 8.0	8.0	20.2 20.7	20.4	77.4 74.3	75.9	5.5 5.4	5.5	5.5	5.7 5.9	5.8		6.5 6.0	6.3	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	<u>-</u>
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	10:12		Surface	1.0	29.2 29.2	29.2	8.0 8.0	8.0	14.3 14.4	14.4	84.1 83.1	83.6	6.0 5.9	5.9	5.9	2.5 2.3	2.4		2.8 2.9	2.9	
				4.1	Middle	1		-		-		-	-	-		-	0.0	-	-	2.4		-	3.2
					Bottom	3.1	29.0 29.2	29.1	8.0 8.0	8.0	15.9 15.8	15.8	82.0 83.6	82.8	5.8 5.9	5.8	5.8	2.5 2.3	2.4		3.7 3.0	3.4	
23-Jul-14	Sunny	Moderate	12:02		Surface	1.0	29.7 29.7	29.7	8.0 8.0	8.0	14.2 14.3	14.2	94.1 94.2	94.2	6.6 6.6	6.6	6.6	2.3 2.0	2.2		3.0 2.9	3.0	
				3.9	Middle	-	-	-		-		-	-	-		-	0.0	-	-	2.3		-	3.3
					Bottom	2.9	29.7 29.8	29.8	8.0 7.9	7.9	14.8 14.9	14.8	94.1 94.1	94.1	6.6 6.6	6.6	6.6	2.3 2.3	2.3		3.6 3.6	3.6	
25-Jul-14	Sunny	Moderate	13:26		Surface	1.0	30.2 30.1	30.2	8.2 8.2	8.2	16.2 16.3	16.3	94.2 93.7	94.0	6.5 6.5	6.5	6.5	2.4 2.5	2.5		3.7 3.3	3.5	
				4.2	Middle	-		-		-		-	-	-		-	0.5	-	-	2.6		-	4.2
					Bottom	3.2	29.7 29.8	29.7	8.2 8.2	8.2	17.3 17.8	17.5	93.1 93.8	93.5	6.4 6.5	6.5	6.5	2.6 2.6	2.6		4.9 4.9	4.9	
28-Jul-14	Sunny	Moderate	13:01		Surface	1.0	29.6 29.6	29.6	8.1 8.1	8.1	17.8 18.1	17.9	75.4 76.3	75.9	5.2 5.3	5.2	5.2	4.5 4.3	4.4		3.1 3.1	3.1	
				4.3	Middle	•		-		-		-	-	-		-	5.2	-	-	4.4	1 1	-	3.6
					Bottom	3.3	28.9 29.4	29.1	8.1 8.1	8.1	19.7 18.8	19.3	77.3 75.5	76.4	5.4 5.2	5.3	5.3	4.2 4.4	4.3		4.0 4.2	4.1	
30-Jul-14	Sunny	Moderate	13:45		Surface	1.0	29.4 29.4	29.4	8.1 8.1	8.1	18.4 18.2	18.3	84.2 83.1	83.7	5.8 5.7	5.8	5.8	3.1 2.8	3.0	_	2.1 2.0	2.1	
				4.3	Middle	-	-	-		-	-	-	-	-		-	5.0	-	-	3.5	-	-	2.3
					Bottom	3.3	29.0 28.7	28.9	8.1 8.1	8.1	23.2 22.3	22.7	83.7 80.2	82.0	5.7 5.5	5.6	5.6	3.7 4.0	3.9		2.4 2.5	2.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTI	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	09:56		Surface	1.0	29.0 29.0	29.0	8.1 8.1	8.1	17.9 18.1	18.0	79.2 76.2	77.7	5.5 5.3	5.4	5.4	3.6 3.5	3.6		4.1 4.4	4.3	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	3.4	-	-	3.6	-	-	4.3
					Bottom	3.3	28.9 29.2	29.0	8.1 8.1	8.1	18.9 18.0	18.4	85.6 78.3	82.0	5.9 5.4	5.7	5.7	3.7 3.4	3.6		4.0 4.6	4.3	
4-Jul-14	Sunny	Moderate	11:56		Surface	1.0	29.9 29.9	29.9	8.1 8.1	8.1	12.2 12.1	12.2	86.9 87.1	87.0	6.2 6.2	6.2		3.3 3.2	3.3		4.2 4.0	4.1	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	3.3	-	-	4.3
					Bottom	3.3	29.9 29.8	29.9	8.1 8.1	8.1	14.1 14.3	14.2	87.2 84.5	85.9	6.1 5.9	6.0	6.0	3.3 3.2	3.3		4.1 4.9	4.5	
7-Jul-14	Sunny	Moderate	14:01		Surface	1.0	30.3 29.7	30.0	8.4 8.3	8.4	11.0 11.6	11.3	77.6 73.3	75.5	5.8 5.3	5.6		3.8 3.5	3.7		3.0 3.5	3.3	
				4.4	Middle	-	- 29.7	-	-	-	- 11.0	-	-	-	-	-	5.6	- 3.5	-	3.7		-	3.2
					Bottom	3.4	28.9	29.3	8.3	8.3	18.1	17.9	73.2	74.9	5.5	5.6	5.6	3.6	3.7		3.7	3.1	
9-Jul-14	Sunny	Moderate	16:15		Surface	1.0	29.7 30.8	30.8	8.3 8.5	8.5	17.7	13.1	76.6 134.6	136.4	5.7 9.3	9.5		3.7	3.5		2.5 4.9	5.1	
				4.3	Middle	_	30.8	-	8.5 -	-	13.1	_	138.1	_	9.6	_	9.5	3.5	-	3.5	5.3	-	5.4
					Bottom	3.3	30.8	30.6	8.5	8.5	13.1	13.4	130.7	124.8	9.1	8.7	8.7	3.5	3.5		5.3	5.6	
11-Jul-14	Sunny	Moderate	17:55		Surface	1.0	30.4 29.8	29.8	7.9	7.9	13.6 14.3	14.3	73.6	73.8	8.3 5.2	5.2		3.5 8.6	8.6		5.9 5.3	5.5	
				4.2	Middle		29.8		7.9 -		14.3	-	73.9	-	5.2		5.2	8.6		8.6	5.7	-	5.3
					Bottom	3.2	29.8	29.7	7.9	7.9	14.3	14.5	72.4	72.6	5.1	5.1	5.1	8.7	8.6		4.8	5.1	1
14-Jul-14	Sunny	Moderate	08:33		Surface	1.0	29.6 29.0	29.0	7.9 7.9	7.9	14.6 17.0	17.1	72.8 80.3	80.5	5.1 5.6	5.6		8.5 11.1	11.2		5.4 5.8	5.5	
				4.3	Middle	-	29.0	-	7.9	-	17.1 -	-	80.6	-	5.6	-	5.6	11.3		11.7	5.1	-	5.3
				4.0	Bottom	3.3	28.6	28.6	7.9	7.9	20.5	20.5	78.3	78.6	5.4	5.4	5.4	12.1	12.2		5.5	5.0	0.0
16-Jul-14	Sunny	Moderate	10:23				28.6 29.5		7.9 7.9		20.6 16.6		78.8 78.1		5.5 5.7		J.4	12.3 5.4			4.4 5.6		
	,				Surface	1.0	29.3	29.4	7.9	7.9	16.7	16.6	77.3	77.7	5.6	5.6	5.6	5.6	5.5		5.6	5.6	
				4.4	Middle	-	29.2	-	7.9	-	- 18.6	-	78.2	-	5.6	-		- 5.2	-	5.5	4.1	-	4.9
18-Jul-14#	-	-	-		Bottom	3.4	29.0	29.1	7.9	7.9	19.1	18.8	77.7	78.0	5.6	5.6	5.6	5.6	5.4		4.3	4.2	
10-Jul-14#	-	-	_		Surface	-	-	-	-	-	-	-	-	-		-	-	-	-			-	
				-	Middle	-	-	-	-	-	-	-	-	-		-		-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ЭΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	14:31		Surface	1.0	29.7 29.6	29.6	8.2 8.1	8.2	12.9 13.0	13.0	76.8 80.0	78.4	5.4 5.7	5.6	5.6	3.3 3.5	3.4		3.0 3.0	3.0	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	3.6	-	-	3.2
					Bottom	3.3	29.3 28.1	28.7	8.1 8.1	8.1	17.2 17.8	17.5	79.3 70.8	75.1	5.5 5.0	5.3	5.3	3.7 3.6	3.7		3.4 3.4	3.4	
23-Jul-14	Sunny	Moderate	16:50		Surface	1.0	30.3 30.6	30.4	7.8 7.9	7.9	12.2 12.0	12.1	96.7 103.0	99.9	6.8 7.2	7.0	7.0	4.3 3.9	4.1		5.1 4.5	4.8	
				3.8	Middle	-		-		-		-	-	-		-	7.0	-	-	3.8		-	5.4
					Bottom	2.8	29.8 29.5	29.7	7.8 7.8	7.8	15.8 16.2	16.0	96.7 93.6	95.2	6.7 6.5	6.6	6.6	3.5 3.3	3.4		6.4 5.6	6.0	
25-Jul-14	Sunny	Moderate	17:56		Surface	1.0	30.0 30.0	30.0	8.1 8.1	8.1	14.6 14.9	14.8	90.2 90.2	90.2	6.3 6.3	6.3	6.3	4.3 4.4	4.4		4.6 4.4	4.5	
				4.2	Middle	i		-		-		-	-	-		-	0.5	-	-	4.4		-	4.9
					Bottom	3.2	30.1 30.1	30.1	8.1 8.1	8.1	15.4 15.1	15.3	90.1 89.9	90.0	6.3 6.3	6.3	6.3	4.4 4.4	4.4		5.5 5.0	5.3	
28-Jul-14	Sunny	Moderate	07:56		Surface	1.0	28.7 28.7	28.7	8.0 8.1	8.1	18.7 18.6	18.6	71.2 77.3	74.3	6.0 5.4	5.7	5.7	4.2 4.4	4.3		2.7 2.7	2.7	
				4.0	Middle	•		-		-		-	-	-		-	5.7	-	-	4.4	1 1	-	3.2
					Bottom	3.0	28.5 28.6	28.5	8.0 8.0	8.0	21.9 21.7	21.8	86.7 73.2	80.0	6.0 5.0	5.5	5.5	4.5 4.5	4.5		3.5 3.8	3.7	
30-Jul-14	Sunny	Moderate	09:44		Surface	1.0	29.4 29.4	29.4	8.0 8.0	8.0	16.5 16.6	16.5	86.4 86.4	86.4	6.0 6.0	6.0	6.0	3.2 2.9	3.1		2.2 2.3	2.3	
				4.3	Middle	-		-		-	-	-	-	-		-	0.0	-	-	3.1	-	-	2.3
					Bottom	3.3	29.1 29.2	29.2	8.0 8.0	8.0	19.7 19.0	19.3	85.3 85.9	85.6	5.9 5.9	5.9	5.9	3.0 2.9	3.0		2.4 2.0	2.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-EbbTide

/ea	ther	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
onc	dition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
Sur	nny	Moderate	16:12		Surface	1.0	29.6 29.5	29.6	8.1 8.1	8.1	15.2 15.6	15.4	75.7 74.4	75.1	5.3 5.2	5.3	5.3	4.3 4.4	4.4		4.3 3.9	4.1	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-	4.8	-	-	3.4
					Bottom	3.3	29.1 28.9	29.0	8.0 8.1	8.0	18.7 18.8	18.7	74.4 77.7	76.1	5.2 5.4	5.3	5.3	5.0 5.1	5.1		2.5 2.6	2.6	
Sur	nny	Moderate	17:26		Surface	1.0	30.4 30.3	30.4	8.2 8.2	8.2	9.6 9.3	9.5	96.5 97.4	97.0	6.9 7.0	6.9		3.7 3.8	3.8		2.4 2.3	2.4	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	3.7	-	-	2.6
					Bottom	3.3	30.2 30.0	30.1	8.2 8.2	8.2	12.7 12.8	12.8	97.7 93.8	95.8	6.9 6.6	6.7	6.7	3.5 3.5	3.5		2.8 2.5	2.7	
Sur	nny	Moderate	08:11		Surface	1.0	30.3 30.2	30.2	8.4 8.4	8.4	12.5 12.6	12.6	75.4 77.9	76.7	5.5 5.4	5.4		4.2 4.3	4.3		2.2	2.6	
				4.0	Middle	-	-	-	-	-	-	-		-	-	-	5.4	-	-	4.3	-	-	2.5
					Bottom	3.0	30.1	30.0	8.3 8.3	8.3	14.3 14.3	14.3	76.2 78.2	77.2	5.6 5.3	5.4	5.4	4.2	4.2		2.2	2.3	
Sur	nny	Moderate	10:24		Surface	1.0	29.9 29.9	29.9	8.4 8.3	8.3	14.3 14.4	14.4	104.1 104.6	104.4	7.3 7.3	7.3		1.9	2.0		5.0 3.7	4.4	
				4.1	Middle	-	-	-	-	-		-	-	-	-	-	7.3	-	_	2.0	-	-	4.7
					Bottom	3.1	29.0	29.0	8.3 8.2	8.3	19.3 19.7	19.5	103.7 103.3	103.5	7.2 7.1	7.2	7.2	1.9	2.0		4.5 5.5	5.0	
Sur	nny	Moderate	11:46		Surface	1.0	29.2 29.1	29.2	8.1 8.2	8.1	17.4 17.6	17.5	86.4 89.1	87.8	6.0 6.2	6.1		3.5 3.4	3.5		3.6 3.4	3.5	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	3.5	-	-	3.3
					Bottom	3.3	29.1 28.7	28.9	8.1 8.1	8.1	19.8 20.1	19.9	89.8 83.1	86.5	6.2 5.8	6.0	6.0	3.4	3.4		2.9	3.1	
Sur	nny	Moderate	14:27		Surface	1.0	29.6 29.6	29.6	7.9 7.9	7.9	17.4 17.5	17.4	80.3 79.8	80.1	5.6 5.5	5.5		6.2 5.9	6.1		5.8 6.1	6.0	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-	7.2	-	-	5.6
					Bottom	2.8	28.9 28.9	28.9	7.9 7.9	7.9	19.7 19.7	19.7	78.3 77.2	77.8	5.4 5.3	5.4	5.4	8.2 8.4	8.3		4.9 5.5	5.2	
Sur	nny	Moderate	16:00		Surface	1.0	29.4 29.5	29.4	8.0 8.0	8.0	18.8 18.7	18.8	79.7 81.8	80.8	5.7 5.9	5.8		4.5 4.6	4.6		5.1 3.7	4.4	
				4.2	Middle	-	- 29.5	-	- 8.0	-	- 18.7	-	- 81.8	-	- 5.9	-	5.8	- 4.6	-	4.6	-	-	4.7
					Bottom	3.2	29.0	29.3	8.0	8.0	19.6	19.3	80.5	81.1	5.8	5.8	5.8	4.6	4.5		5.6	4.9	
-	,	-	-	<u> </u>	Surface	-	<u> 29.5</u> -	-	- 8.0	-	18.9	-	- 81.7	-	- 5.9	-		- 4.4	-		4.2	-	
				_	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	_		-	-	=
						-	-	_	-	-	-	-	-	_	-	_		-	_	-	-	-	-
-		-	-		Bottom Surface	3.2	29.5 - - - -	29.3	8.0 - - - -	8.0	18.9 - - - -	19.3	81.7 - - -	81.1	5.8 5.9 - - - - -	-		4.4 - - -	-	4.¢		5.6 4.2	5.6 4.9

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ЭΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	08:46		Surface	1.0	28.8 28.8	28.8	8.1 8.1	8.1	16.9 16.9	16.9	79.3 79.5	79.4	5.6 5.6	5.6	5.6	2.2 2.1	2.2		3.0 2.9	3.0	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	2.2	-	-	3.0
					Bottom	3.3	28.3 28.1	28.2	8.0 8.0	8.0	21.2 21.6	21.4	78.4 77.4	77.9	5.4 5.4	5.4	5.4	2.2 2.1	2.2		3.3 2.6	3.0	
23-Jul-14	Sunny	Moderate	10:37		Surface	1.0	29.4 29.6	29.5	7.8 7.7	7.7	15.8 15.7	15.7	88.1 89.2	88.7	6.2 6.2	6.2	6.2	2.2 2.0	2.1		2.3 2.7	2.5	
				3.9	Middle	1		-		-		-	-	-		-	0.2	-	-	2.2		-	2.7
					Bottom	2.9	29.4 29.2	29.3	7.7 7.7	7.7	17.8 18.4	18.1	89.3 88.6	89.0	6.2 6.1	6.2	6.2	2.2 2.3	2.3		2.9 2.6	2.8	
25-Jul-14	Sunny	Moderate	11:57		Surface	1.0	30.1 30.0	30.1	8.1 8.1	8.1	15.3 15.4	15.4	98.1 99.2	98.7	6.8 6.9	6.8	6.8	2.6 2.7	2.7		3.5 4.0	3.8	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	2.7	-	-	3.9
					Bottom	3.2	29.9 29.8	29.8	8.1 8.0	8.1	15.9 16.1	16.0	98.7 96.6	97.7	6.9 6.7	6.8	6.8	2.7 2.5	2.6		4.1 3.9	4.0	
28-Jul-14	Sunny	Moderate	14:33		Surface	1.0	29.1 29.0	29.0	8.1 8.1	8.1	20.8 20.2	20.5	76.4 79.7	78.1	5.8 5.9	5.9	5.9	5.5 5.5	5.5		3.8 3.8	3.8	
				4.0	Middle	-		-		-		-	-	-		-	5.5	-	-	5.5		-	5.0
					Bottom	3.0	28.9 28.9	28.9	8.1 8.1	8.1	22.0 22.4	22.2	75.7 79.2	77.5	5.8 5.9	5.8	5.8	5.3 5.4	5.4		5.7 6.4	6.1	
30-Jul-14	Sunny	Moderate	15:06		Surface	1.0	30.2 29.6	29.9	8.1 8.1	8.1	17.1 17.4	17.3	95.5 91.5	93.5	6.6 6.3	6.4	6.4	2.8 2.6	2.7	_	1.4 1.2	1.3	
				3.9	Middle	-	-	-		-	-	-	-	-		-	0.4	-	-	2.5	-	-	1.5
					Bottom	2.9	29.4 29.1	29.2	8.1 8.1	8.1	19.4 20.1	19.8	89.9 87.5	88.7	6.2 6.0	6.1	6.1	2.2 2.4	2.3		1.6 1.6	1.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTI	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	08:43		Surface	1.0	29.2 29.2	29.2	8.0 8.1	8.1	16.0 15.9	16.0	71.1 72.2	71.7	5.0 5.1	5.0	5.0	5.3 4.9	5.1		5.7 4.9	5.3	
				4.0	Middle		-	-	-	-	-	-	-	-	-	-	3.0	-	-	5.3	-	-	5.3
					Bottom	3.0	29.2 29.1	29.1	8.1 8.0	8.0	16.2 17.8	17.0	72.9 71.6	72.3	5.1 5.1	5.1	5.1	5.6 5.2	5.4		5.1 5.4	5.3	
4-Jul-14	Sunny	Moderate	10:26		Surface	1.0	30.3 30.3	30.3	8.1 8.1	8.1	13.3 13.4	13.3	91.1 90.0	90.6	6.4 6.3	6.3		3.1 3.2	3.2		3.8 4.1	4.0	
				4.7	Middle	-		-	-	-	-	-	-	-	-	-	6.3	-	-	3.2	-	-	5.0
					Bottom	3.7	29.9 29.8	29.9	8.1 8.0	8.1	14.6 14.7	14.6	89.5 90.6	90.1	6.3 6.3	6.3	6.3	3.1 3.2	3.2		5.8 5.9	5.9	
7-Jul-14	Sunny	Moderate	15:51		Surface	1.0	29.6 29.0	29.3	8.3 8.3	8.3	15.1 18.2	16.6	78.4 77.8	78.1	5.9 5.6	5.7		4.5 4.7	4.6		3.1 4.7	3.9	
				4.6	Middle	-	-	-	-	-	-	-		-	-	-	5.7	-	-	4.7	-	-	4.0
					Bottom	3.6	29.0	29.1	8.3 8.3	8.3	19.2 20.3	19.7	75.6 77.4	76.5	5.6 5.8	5.7	5.7	4.9 4.4	4.7		3.9	4.1	
9-Jul-14	Sunny	Moderate	17:40		Surface	1.0	30.6 30.5	30.5	8.5 8.5	8.5	16.0 16.2	16.1	125.7 119.9	122.8	8.6 8.2	8.4		4.3 4.4	4.4		6.2 6.1	6.2	
				4.2	Middle			-		-		-	-	-	-	-	8.4	-	-	4.5	-	-	6.1
					Bottom	3.2	29.0	29.1	8.4 8.4	8.4	19.9 19.8	19.8	116.1 122.0	119.1	8.0 8.4	8.2	8.2	4.5 4.5	4.5		6.1 5.6	5.9	
11-Jul-14	Sunny	Moderate	19:21		Surface	1.0	29.6 29.6	29.6	8.2 8.2	8.2	17.0 17.4	17.2	93.4 96.6	95.0	6.5 6.7	6.6		4.5 4.5 4.5	4.5		2.9 5.3	4.1	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	4.5	-	-	4.7
					Bottom	3.3	29.6 29.6	29.6	8.2 8.2	8.2	17.8 17.6	17.7	96.5 95.2	95.9	6.7 6.6	6.6	6.6	4.4 4.5	4.5		5.3 5.1	5.2	
14-Jul-14	Sunny	Moderate	07:11		Surface	1.0	28.9 28.9	28.9	7.9 7.9	7.9	18.4 18.5	18.4	83.2 87.6	85.4	5.8 6.1	5.9		13.2 12.8	13.0		5.0 5.5	5.3	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	14.5	-	-	5.0
					Bottom	3.1	28.6	28.7	7.8 7.8	7.8	20.0 19.6	19.8	80.6 81.3	81.0	5.6 5.6	5.6	5.6	16.3 15.5	15.9		4.7 4.5	4.6	
16-Jul-14	Sunny	Moderate	08:52		Surface	1.0	29.2 29.2	29.2	8.0 8.0	8.0	18.2 18.4	18.3	79.8 79.7	79.8	5.8 5.8	5.8		4.8 4.7	4.8		6.1 4.6	5.4	
				4.3	Middle	-	- 29.2	-	- 8.0	-	- 18.4	-	- 19.7	-	-	-	5.8	- 4.7	-	4.9	- 4.6	-	5.1
					Bottom	3.3	28.9 29.0	29.0	8.0 8.0	8.0	19.6 19.6	19.6	79.3 80.0	79.7	5.7 5.8	5.7	5.7	5.0 4.9	5.0		5.4 3.9	4.7	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		- 4.9	-		- 3.9	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	<u> </u>
					Bottom	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	I	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	16:01		Surface	1.0	29.7 29.5	29.6	8.1 8.1	8.1	14.4 14.6	14.5	93.1 92.8	93.0	6.5 6.5	6.5	6.5	1.5 1.6	1.6		2.9 2.8	2.9	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	1.6	-	-	3.2
					Bottom	3.3	29.5 29.1	29.3	8.1 8.1	8.1	16.8 17.3	17.0	92.2 90.8	91.5	6.4 6.3	6.4	6.4	1.6 1.6	1.6		3.5 3.4	3.5	
23-Jul-14	Sunny	Moderate	18:17		Surface	1.0	29.9 29.9	29.9	8.1 8.2	8.1	17.1 17.0	17.1	113.0 115.1	114.1	7.8 7.9	7.9	7.9	3.3 3.2	3.3		4.4 3.5	4.0	
				4.0	Middle		-	•	1 1	-		-		-		-	7.5	-	-	3.3	-	-	4.3
					Bottom	3.0	29.9 29.9	29.9	8.1 8.1	8.1	17.2 17.2	17.2	113.2 112.1	112.7	7.8 7.7	7.8	7.8	3.1 3.3	3.2		4.3 4.7	4.5	
25-Jul-14	Sunny	Moderate	19:21		Surface	1.0	29.6 29.6	29.6	8.2 8.2	8.2	18.9 19.0	19.0	99.1 98.8	99.0	6.8 6.8	6.8	6.8	6.5 6.1	6.3		9.7 9.7	9.7	
				4.3	Middle		-	-	-	-	-	-	-	-	-	-	0.0	-	-	6.3	-	-	10.0
					Bottom	3.3	29.6 29.5	29.5	8.2 8.2	8.2	19.1 19.2	19.2	99.5 96.4	98.0	6.8 6.6	6.7	6.7	6.1 6.4	6.3		10.1 10.4	10.3	
28-Jul-14	Sunny	Moderate	06:43		Surface	1.0	28.4 28.4	28.4	8.1 8.0	8.1	21.5 21.6	21.6	71.2 78.4	74.8	5.9 5.7	5.8	5.8	5.4 5.6	5.5		3.1 3.1	3.1	
				4.0	Middle	-	-	-		-		-		-		-	3.6	-	-	5.5	-	-	4.1
					Bottom	3.0	28.2 28.3	28.2	8.1 8.0	8.0	22.1 22.4	22.2	77.2 79.4	78.3	5.3 5.8	5.6	5.6	5.4 5.5	5.5		5.0 5.0	5.0	
30-Jul-14	Sunny	Moderate	08:23		Surface	1.0	29.0 29.0	29.0	8.0 8.0	8.0	21.3 21.3	21.3	88.6 89.4	89.0	6.1 6.1	6.1	6.1	6.0 6.3	6.2		2.9 2.6	2.8	
				4.0	Middle	-	-	-		-		-	1 1	-	1 1	-	0.1	-	-	6.8	-	-	3.4
					Bottom	3.0	28.9 28.9	28.9	8.0 8.0	8.0	21.5 21.4	21.4	89.6 88.7	89.2	6.1 6.1	6.1	6.1	7.5 7.1	7.3		3.9 3.9	3.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	16:14		Surface	1.0	29.9 30.1	30.0	8.2 8.2	8.2	18.2 17.7	17.9	92.1 94.1	93.1	6.3 6.5	6.4	6.4	2.9 3.0	3.0		3.0 3.6	3.3	
				6.5	Middle	3.3	29.7 29.8	29.7	8.1 8.2	8.1	18.6 18.6	18.6	92.5 91.0	91.8	6.3 6.2	6.3	0.4	3.0 3.1	3.1	3.1	3.3 3.7	3.5	3.5
					Bottom	5.5	29.7 30.1	29.9	8.2 8.1	8.1	18.9 18.0	18.4	92.1 99.2	95.7	6.3 6.8	6.6	6.6	3.1 3.3	3.2		3.5 3.6	3.6	
4-Jul-14	Sunny	Moderate	17:38		Surface	1.0	30.9 31.0	30.9	7.8 7.8	7.8	14.0 14.1	14.0	108.8 110.0	109.4	7.5 7.6	7.5		3.4 3.5	3.5		4.2 3.9	4.1	
				6.5	Middle	3.3	30.2 30.4	30.3	7.8 7.8	7.8	16.0 15.7	15.8	102.4 104.1	103.3	7.1 7.2	7.1	7.3	3.7 3.5	3.6	3.6	4.5 4.2	4.4	4.8
					Bottom	5.5	30.2 30.0	30.1	7.8 7.7	7.8	16.1 16.7	16.4	104.6 102.8	103.7	7.2 7.1	7.2	7.2	3.7 3.7	3.7		5.8 5.7	5.8	
7-Jul-14	Sunny	Moderate	07:56		Surface	1.0	30.1 30.1	30.1	8.5 8.5	8.5	14.1 14.1	14.1	119.5 119.2	119.4	8.4 8.3	8.3		3.0	3.0		4.0 4.5	4.3	
				6.3	Middle	3.2	30.0 30.0	30.0	8.5 8.5	8.5	15.0 15.1	15.1	118.2 116.6	117.4	8.2 8.1	8.2	8.3	3.0	2.9	2.9	5.6 5.6	5.6	4.7
					Bottom	5.3	29.8 30.0	29.9	8.4	8.5	16.0 15.7	15.9	114.5	116.9	8.0 8.3	8.1	8.1	2.8	2.8		3.8	4.3	
9-Jul-14	Sunny	Moderate	09:31		Surface	1.0	29.2	29.0	8.5 8.5	8.4	17.9	18.2	113.2	110.9	7.9	7.7		2.6	2.7		5.2	5.0	
				6.5	Middle	3.3	28.9	28.7	8.4	8.4	18.4 19.5	19.7	108.5 106.1	106.0	7.6	7.3	7.5	2.7	2.7	2.8	5.1	5.0	5.0
					Bottom	5.5	28.7	28.6	8.4	8.3	20.0	20.2	105.9	106.4	7.3	7.4	7.4	2.8	2.9		5.2	5.1	
11-Jul-14	Sunny	Moderate	10:05		Surface	1.0	28.6 28.7	28.5	8.4 8.3	8.3	20.1 21.1	21.4	107.7 91.1	88.0	7.5 6.3	6.1		3.0 4.3	4.2		5.0 3.4	3.8	
				6.7	Middle	3.4	28.2 27.8	27.9	8.3 8.2	8.2	21.8 23.5	23.1	84.9 83.3	82.9	5.9 5.7	5.7	5.9	4.0	4.3	4.5	4.1 3.0	2.9	3.2
					Bottom	5.7	27.9 27.5	27.8	8.2 8.2	8.2	22.7 23.8	23.5	82.4 83.6	86.2	5.7 5.8	5.9	5.9	4.1 5.2	5.0		2.7	2.9	
14-Jul-14	Sunny	Moderate	14:45		Surface	1.0	28.0 29.1	29.1	8.3 8.0	8.0	23.2 19.9	19.9	88.7 75.1	75.2	6.1 5.6	5.6	0.0	4.8	4.7		3.0 5.1	5.5	
				6.3	Middle	3.2	29.1 29.0	29.0	8.0 8.0	8.0	20.0 20.3	20.3	75.3 75.2	74.9	5.6 5.6	5.6	5.6	4.8	4.6	4.7	5.9 5.7	6.1	5.8
				0.3	Bottom	5.3	29.0 29.0	29.0	8.0 8.0	8.0	20.2	20.3	74.5 74.9	76.7	5.5 5.6	5.7	5.7	4.5 4.7	4.7	4.7	6.4	5.9	5.6
16-Jul-14	Sunny	Moderate	16:57				28.9 29.3		8.0 8.1		20.6 20.9		78.5 77.2		5.8 5.6		5.7	4.6 3.3			5.3 5.0		
10 04	Carriy	Moderate	10.07		Surface	1.0	30.1 29.1	29.7	8.1 8.0	8.1	19.6 21.3	20.2	76.7 78.4	77.0	5.2	5.4	5.5	3.3	3.3		5.8	5.4	
				6.2	Middle	3.1	29.0	29.1	8.1 8.1	8.0	21.4	21.3	76.5 71.5	77.5	5.5 5.9	5.6		3.5	3.5	3.4	6.9	6.8	6.7
18-Jul-14#	_				Bottom	5.2	28.9	29.0	8.0	8.0	21.8	21.8	74.0	72.8	5.1	5.5	5.5	3.2	3.3		8.1	7.9	
18-Jul-14#	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=		-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ţ	ρΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	07:55		Surface	1.0	28.6 28.6	28.6	7.3 7.3	7.3	20.1 19.8	20.0	83.0 83.0	83.0	5.8 5.8	5.8	5.6	0.8 0.8	0.8		2.6 2.2	2.4	
				6.7	Middle	3.4	28.3 28.3	28.3	7.2 7.3	7.2	22.0 22.2	22.1	78.0 77.3	77.7	5.4 5.3	5.3	0.0	0.8 0.8	0.8	0.9	2.0 2.9	2.5	2.7
					Bottom	5.7	28.0 28.1	28.1	7.1 7.2	7.2	23.7 22.7	23.2	79.0 76.3	77.7	5.4 5.3	5.3	5.3	1.0 0.9	1.0		3.4 3.0	3.2	
23-Jul-14	Sunny	Moderate	10:12		Surface	1.0	29.6 29.5	29.5	7.3 7.3	7.3	17.2 17.3	17.2	94.3 93.1	93.7	6.5 6.5	6.5	6.5	1.5 1.4	1.5		3.9 3.6	3.8	
				6.4	Middle	3.2	29.5 29.4	29.4	7.3 7.3	7.3	17.4 17.4	17.4	93.4 92.5	93.0	6.5 6.4	6.5	0.0	1.4 1.5	1.5	1.5	3.4 4.3	3.9	4.2
					Bottom	5.4	29.4 29.3	29.4	7.3 7.3	7.3	18.7 18.1	18.4	93.3 94.0	93.7	6.4 6.5	6.5	6.5	1.4 1.5	1.5		5.9 4.0	5.0	
25-Jul-14	Sunny	Moderate	10:59		Surface	1.0	29.2 29.3	29.3	7.2 7.3	7.3	20.1 19.8	19.9	92.4 92.8	92.6	6.3 6.4	6.4	6.4	1.6 1.7	1.7		3.3 2.9	3.1	
				6.5	Middle	3.3	29.2 29.2	29.2	7.2 7.2	7.2	20.2 20.3	20.2	92.0 91.8	91.9	6.3 6.3	6.3	0.4	1.7 1.6	1.7	1.7	2.7 3.3	3.0	3.5
					Bottom	5.5	29.1 29.1	29.1	7.2 7.2	7.2	20.3 20.5	20.4	91.8 91.7	91.8	6.3 6.3	6.3	6.3	1.8 1.7	1.8		4.4 4.1	4.3	
28-Jul-14	Sunny	Moderate	14:41		Surface	1.0	29.1 29.3	29.2	8.0 8.0	8.0	22.5 22.2	22.4	88.9 91.0	90.0	6.1 6.3	6.2	6.2	2.1 2.2	2.2		1.4 1.8	1.6	
				6.5	Middle	3.3	28.6 28.8	28.7	8.0 8.0	8.0	23.5 23.1	23.3	88.9 87.4	88.2	6.2 6.0	6.1	6.2	2.2 2.3	2.3	2.3	2.0 2.6	2.3	2.3
					Bottom	5.5	28.5 28.4	28.4	8.0 8.0	8.0	23.7 23.8	23.7	93.7 87.3	90.5	6.5 6.1	6.3	6.3	2.3 2.3	2.3		2.9 3.3	3.1	
30-Jul-14	Sunny	Moderate	15:40		Surface	1.0	30.0 29.8	29.9	7.8 7.8	7.8	21.9 22.2	22.1	87.8 88.3	88.1	5.9 5.9	5.9	5.8	1.7 1.8	1.8	_	1.7 2.0	1.9	
				6.6	Middle	3.3	29.5 29.2	29.4	7.8 7.8	7.8	22.7 22.6	22.7	87.0 82.0	84.5	5.8 5.5	5.7	3.0	1.7 1.9	1.8	1.8	1.7 2.0	1.9	1.9
					Bottom	5.6	29.0 28.7	28.8	7.8 7.8	7.8	24.1 25.2	24.6	82.2 83.9	83.1	5.5 5.6	5.6	5.6	1.8 1.8	1.8		2.0 1.6	1.8	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	08:09		Surface	1.0	29.2 29.1	29.2	8.1 8.1	8.1	16.8 16.9	16.8	77.3 76.1	76.7	5.4 5.3	5.4	5.4	2.5 2.5	2.5		2.5 3.9	3.2	
				6.4	Middle	3.2	29.0 28.9	29.0	8.1 8.1	8.1	17.3 17.6	17.4	76.0 74.3	75.2	5.3 5.2	5.3	5.4	2.5 2.6	2.6	2.6	2.2 3.5	2.9	3.0
					Bottom	5.4	29.0 28.7	28.9	8.0 8.0	8.0	20.3 20.6	20.4	76.4 74.7	75.6	5.3 5.2	5.2	5.2	2.6 2.5	2.6		2.9 2.8	2.9	
4-Jul-14	Sunny	Moderate	09:18		Surface	1.0	30.0 30.1	30.0	7.9 7.9	7.9	14.2 14.1	14.1	87.2 86.6	86.9	6.1 6.1	6.1	0.0	3.6 3.5	3.6		2.5 2.9	2.7	
				6.5	Middle	3.3	29.5 29.6	29.6	7.9 7.8	7.9	15.4 15.6	15.5	81.0 83.9	82.5	5.7 5.9	5.8	6.0	3.8	3.8	3.8	3.2 4.1	3.7	3.9
					Bottom	5.5	29.1 29.1	29.1	7.8 7.9	7.8	18.8 19.2	19.0	84.9 80.7	82.8	5.9 5.6	5.7	5.7	3.9 3.9	3.9		5.7 4.9	5.3	
7-Jul-14	Sunny	Moderate	15:37		Surface	1.0	29.6 29.4	29.5	8.5 8.5	8.5	15.5 15.7	15.6	100.9 94.7	97.8	7.1 6.6	6.9		2.5 2.6	2.6		5.4 6.1	5.8	
				6.6	Middle	3.3	28.5	28.5	8.3 8.3	8.3	21.4 20.8	21.1	88.1 88.9	88.5	6.1 6.1	6.1	6.5	2.5	2.5	2.6	5.8 4.8	5.3	5.2
					Bottom	5.6	28.1	28.1	8.3 8.3	8.3	22.5 22.5	22.5	85.3 85.7	85.5	5.9	5.9	5.9	2.6	2.6		4.6 4.4	4.5	
9-Jul-14	Sunny	Moderate	18:02		Surface	1.0	27.8 28.0	27.9	8.3 8.3	8.3	24.3	24.2	84.2 86.5	85.4	5.8 5.9	5.9		3.6	3.6		5.3 4.9	5.1	
				6.7	Middle	3.4	27.3	27.3	8.2	8.3	24.1	27.2	85.2	84.6	5.8	5.8	5.9	3.5 4.4	4.3	3.9	4.2	3.8	4.6
					Bottom	5.7	27.3	27.3	8.3 8.2	8.3	27.2	27.3	83.9 87.4	86.3	6.0	5.9	5.9	4.1	3.9		3.3 4.4	4.9	
11-Jul-14	Sunny	Moderate	19:52		Surface	1.0	27.4	27.6	8.3 8.1	8.2	27.3	24.7	85.1 84.4	86.9	5.8 6.1	6.2		7.6	7.8		5.3 6.2	6.0	
				6.9	Middle	3.5	27.6 27.4	27.3	8.2 8.1	8.1	24.9 25.5	25.7	89.4 78.0	78.9	6.4 5.6	5.6	5.9	8.0 10.5	10.5	9.5	5.8 5.5	5.7	5.8
					Bottom	5.9	27.2	27.2	8.2 8.2	8.1	25.9 27.2	26.3	79.7	72.4	5.7	5.1	5.1	9.7	10.1		5.8	5.6	
14-Jul-14	Sunny	Moderate	06:09		Surface	1.0	27.4 28.6	28.6	8.0 7.9	7.9	25.4 19.2	19.3	70.8 68.5	69.2	5.0 5.2	5.2		10.5 4.1	4.1		5.9 5.3	5.5	
				6.6	Middle	3.3	28.7 28.1	28.1	7.9 7.9	7.9	19.4 23.2	23.0	69.9 69.2	68.8	5.2 5.2	5.2	5.2	4.1	4.2	4.2	5.6 4.7	5.5	5.0
					Bottom	5.6	28.0 28.1	28.1	7.9 7.9	7.9	22.9 22.5	23.1	68.4 67.9	67.5	5.1 5.1	5.0	5.0	4.2 4.1	4.3		6.2 3.9	4.0	
16-Jul-14	Sunny	Moderate	08:13		Surface	1.0	28.2 29.2	29.2	7.9 7.9	7.9	23.8 18.6	18.6	67.0 73.3	73.9	5.0 5.4	5.4	0.0	3.3	3.4		4.0	5.2	
				6.6	Middle	3.3	29.2 29.1	29.0	7.9 7.9	7.9	18.6 18.8	18.9	74.4 73.8	72.9	5.5 5.4	5.4	5.4	3.4	3.5	3.5	5.4 5.4	4.8	4.9
				0.0	Bottom	5.6	29.0 28.7	28.8	7.9 7.9	7.9	19.0 20.7	20.6	71.9 72.3	72.9	5.3 5.3	5.4	5.3	3.5 3.5	3.5	3.3	4.1	4.8	4.3
18-Jul-14#	-	-	-			0.0	28.8	20.0	7.9	7.9	20.4	20.0	72.3	12.3	5.3	5.5	ა.ა	3.5			4.9		
10 00. 1 7//					Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-		-	-	-	-	-		-	-	-		-	-	=	-	-	=
					Bottom	-	-	-		-	-	-	-	-	-	-	-		-			-	Y.

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ЭΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	16:15		Surface	1.0	28.5 28.3	28.4	8.1 8.1	8.1	22.1 22.3	22.2	79.5 76.3	77.9	5.5 5.3	5.4	5.3	1.2 1.3	1.3		3.6 3.5	3.6	
				6.8	Middle	3.4	27.8 27.9	27.9	8.1 8.1	8.1	24.4 24.2	24.3	74.8 75.8	75.3	5.1 5.2	5.2	0.0	1.6 1.5	1.6	1.7	3.3 3.9	3.6	3.5
					Bottom	5.8	27.8 27.7	27.7	8.1 8.0	8.1	25.0 24.8	24.9	71.3 72.2	71.8	4.9 5.0	4.9	4.9	2.4 2.2	2.3		3.5 3.3	3.4	
23-Jul-14	Sunny	Moderate	18:49		Surface	1.0	28.7 28.6	28.7	8.1 8.0	8.1	21.9 22.5	22.2	78.1 78.5	78.3	5.4 5.4	5.4	5.3	2.4 2.3	2.4		3.1 2.8	3.0	
				6.6	Middle	3.3	28.3 28.3	28.3	8.1 8.0	8.0	24.6 24.9	24.7	75.6 77.2	76.4	5.1 5.2	5.2	0.0	2.4 2.4	2.4	2.4	3.2 3.6	3.4	3.5
					Bottom	5.6	28.4 28.2	28.3	8.0 7.9	8.0	25.5 25.3	25.4	77.5 78.8	78.2	5.2 5.3	5.3	5.3	2.4 2.3	2.4		4.5 3.6	4.1	
25-Jul-14	Sunny	Moderate	19:58		Surface	1.0	29.0 29.1	29.0	8.2 8.2	8.2	21.5 20.9	21.2	77.1 77.2	77.2	5.3 5.3	5.3	5.2	3.1 3.2	3.2		4.0 4.1	4.1	
				6.5	Middle	3.3	28.8 28.7	28.7	8.1 8.2	8.2	22.2 22.1	22.1	74.3 74.0	74.2	5.1 5.1	5.1	5.2	3.5 3.4	3.5	3.7	5.6 5.9	5.8	5.4
					Bottom	5.5	27.8 28.3	28.1	7.5 8.2	7.9	24.8 24.7	24.7	73.6 74.4	74.0	5.0 5.1	5.0	5.0	4.6 4.4	4.5		6.1 6.3	6.2	
28-Jul-14	Sunny	Moderate	05:54		Surface	1.0	28.3 28.0	28.1	7.8 7.7	7.8	24.0 22.4	23.2	80.4 80.4	80.4	5.6 5.6	5.6	5.6	2.9 3.0	3.0		1.9 1.9	1.9	
				6.5	Middle	3.3	27.2 27.3	27.3	7.7 7.7	7.7	26.3 25.8	26.1	77.7 79.4	78.6	5.4 5.5	5.5	5.6	3.5 3.5	3.5	3.4	2.4 2.2	2.3	3.1
					Bottom	5.5	27.3 27.2	27.2	7.7 7.7	7.7	26.5 26.3	26.4	79.3 78.5	78.9	5.5 5.5	5.5	5.5	3.5 3.7	3.6		5.0 5.1	5.1	
30-Jul-14	Sunny	Moderate	07:37		Surface	1.0	29.0 29.0	29.0	7.7 7.7	7.7	20.9 20.8	20.8	74.9 75.1	75.0	5.2 5.3	5.2	5.2	1.8 1.8	1.8	_	0.8 0.8	8.0	
				6.5	Middle	3.3	28.6 28.7	28.7	7.7 7.7	7.7	21.8 21.7	21.8	73.3 72.8	73.1	5.1 5.1	5.1	5.2	1.8 1.9	1.9	1.9	2.4 2.2	2.3	1.8
					Bottom	5.5	28.6 28.2	28.4	7.7 7.7	7.7	23.4 23.8	23.6	74.3 71.7	73.0	5.2 5.0	5.1	5.1	1.8 1.9	1.9		2.3 2.0	2.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	T	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-14	Sunny	Moderate	16:36		Surface	1.0	29.6 29.6	29.6	8.2 8.1	8.1	19.7 19.7	19.7	89.1 90.2	89.7	6.1 6.2	6.1	6.1	4.1 3.9	4.0		3.3 2.2	2.8	
				5.0	Middle	,	-	-	-	-	-	-	-	-	-	-	0.1	-	-	4.4	-		3.5
					Bottom	4.0	29.6 29.6	29.6	8.2 8.0	8.1	19.8 19.8	19.8	89.2 91.7	90.5	6.1 6.3	6.2	6.2	4.7 4.6	4.7		4.2 4.2	4.2	
4-Jul-14	Sunny	Moderate	17:54		Surface	1.0	31.3 31.1	31.2	7.9 7.9	7.9	13.9 13.9	13.9	113.1 114.3	113.7	7.8 7.9	7.8		3.6 3.5	3.6		3.3 3.4	3.4	
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	3.6	-	-	4.2
					Bottom	3.8	30.0 30.2	30.1	7.7 7.8	7.7	16.6 16.3	16.5	103.1 109.7	106.4	7.1 7.6	7.3	7.3	3.7 3.5	3.6		5.0 4.9	5.0	
7-Jul-14	Sunny	Moderate	07:51		Surface	1.0	29.0 29.0	29.0	8.4 8.3	8.4	17.8 17.7	17.8	96.9 93.2	95.1	6.8 6.5	6.6		3.2 3.2	3.2		4.3 5.2	4.8	
				4.9	Middle	-	-	-	-	-		-	-	-	-	-	6.6	-	-	3.2	-	-	4.5
					Bottom	3.9	29.1	28.8	8.3 8.3	8.3	19.9 20.6	20.2	96.5 92.4	94.5	6.6	6.5	6.5	3.2	3.1		3.5 4.9	4.2	
9-Jul-14	Sunny	Moderate	09:17		Surface	1.0	28.3 28.1	28.2	8.3 8.3	8.3	21.1 21.2	21.2	98.0 96.7	97.4	6.8 6.7	6.8		3.6 3.4	3.5		5.6 6.0	5.8	
				4.8	Middle		-	-		-	-	-	-	-	-	-	6.8	-	_	3.6	-	-	6.2
					Bottom	3.8	27.9 27.8	27.9	8.3 8.3	8.3	22.8	22.8	96.0 98.0	97.0	6.6 6.8	6.7	6.7	3.5	3.6		6.3	6.5	
11-Jul-14	Sunny	Moderate	09:50	<u> </u>	Surface	1.0	27.8 27.7 27.7	27.7	8.2 8.2	8.2	24.0 23.8	23.9	79.9 81.1	80.5	5.5 5.6	5.6		5.2 5.1	5.2		4.1 3.1	3.6	
				5.3	Middle		-	-	-	-	-	-	-	-	-	-	5.6	-	_	5.2	-	-	4.2
					Bottom	4.3	27.7 27.7	27.7	8.1 8.2	8.1	23.8 24.0	23.9	83.4 80.2	81.8	5.8 5.5	5.6	5.6	5.0 5.2	5.1		4.8 4.5	4.7	
14-Jul-14	Sunny	Moderate	14:56	<u> </u>	Surface	1.0	29.1	29.1	8.0	8.0	20.5	20.4	74.8	74.9	5.5	5.5		5.6	5.6		5.6	5.4	
				4.9	Middle	-	29.1	-	8.0	-	20.3	-	75.0	-	5.6	-	5.5	5.5	-	5.6	5.1	-	6.1
					Bottom	3.9	29.1	29.1	8.0	8.0	20.4	20.4	74.9	74.8	5.5	5.5	5.5	5.4	5.5		6.8	6.7	
16-Jul-14	Sunny	Moderate	17:05		Surface	1.0	29.0 26.7	26.8	7.9 8.1	8.1	20.3	26.6	74.6 76.1	76.4	5.5 5.2	5.2		5.5 6.5	6.6		4.8	5.3	
				5.0	Middle	-	26.9	-	8.1	-	26.7	_	76.7	_	5.2	-	5.2	6.6	_	6.6	5.8	_	5.5
					Bottom	4.0	26.3	26.6	8.0	8.0	28.5	28.4	78.7	77.9	5.4	5.3	5.3	6.5	6.6		5.4	5.6	
18-Jul-14#	-	-	-	<u> </u>	Surface	-	26.9	_	8.1	_	28.2	_	77.1 -	_	5.2			6.6	_		5.8	_	
				_	Middle	_	-	_	-	_	-	_	-	_	-		-	-		=	-	_	=
					Bottom		-		-		-	_	-		-			-		=	-		=
					ווטווטם	-	-	_	-	_	-	_	-	_	-	_		-	_		_	_	

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling		Temperature (°C)			ρΗ	Salini	ty (ppt)	DO Saturation (%)		Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspended Solids (mg/L)		
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	07:40		Surface	1.0	28.1 28.1	28.1	7.2 7.2	7.2	22.7 22.7	22.7	75.7 76.5	76.1	5.2 5.3	5.2	5.2	1.8 1.9	1.9		3.0 3.1	3.1	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	2.1	-	-	2.8
					Bottom	4.1	28.1 28.1	28.1	7.2 7.2	7.2	22.8 22.6	22.7	75.8 78.3	77.1	5.2 5.4	5.3	5.3	2.3 2.2	2.3		2.7 2.1	2.4	
23-Jul-14	Sunny	Moderate	10:05		Surface	1.0	28.9 28.8	28.9	7.2 7.2	7.2	20.1 20.6	20.4	88.8 89.5	89.2	6.1 6.2	6.1	6.1	2.5 2.4	2.5	2.5	6.1 6.0	6.1	
				4.9	Middle	1		-	1 1	-		-	-	-		-	0.1		-			-	5.7
					Bottom	3.9	28.8 28.8	28.8	7.2 7.2	7.2	20.4 20.7	20.5	90.7 93.4	92.1	6.3 6.4	6.3	6.3	2.4 2.4	2.4		5.9 4.7	5.3	
25-Jul-14	Sunny	Moderate	10:46		Surface	1.0	29.4 29.4	29.4	7.2 7.3	7.2	19.2 19.4	19.3	93.3 93.4	93.4	6.4 6.4	6.4	6.4	1.8 1.7	1.8		4.5 4.4	4.5	
				5.6	Middle	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-	1.8	-	-	5.4
					Bottom	4.6	29.1 29.1	29.1	7.2 7.2	7.2	20.2 20.3	20.3	90.8 89.7	90.3	6.2 6.2	6.2	6.2	1.8 1.8	1.8		6.0 6.3	6.2	
28-Jul-14	Sunny	Moderate	14:51		Surface	1.0	28.9 29.1	29.0	8.0 8.0	8.0	22.8 22.5	22.7	88.8 88.8	88.8	6.1 6.1	6.1	6.1	2.0 2.1	2.1		2.1 2.3	2.2	
				5.1	Middle	ı		-		-		-	-	-		-	0.1	-	-	2.1		-	2.9
					Bottom	4.1	28.6 28.8	28.7	8.0 8.0	8.0	23.4 23.1	23.3	89.5 88.4	89.0	6.2 6.1	6.2	6.2	2.2 2.0	2.1		4.0 3.1	3.6	
30-Jul-14	Sunny	Moderate	15:51		Surface	1.0	29.8 29.8	29.8	7.8 7.8	7.8	22.2 22.2	22.2	89.1 89.4	89.3	6.0 6.0	6.0	6.0	1.3 1.4	1.4	_	1.8 2.4	2.1	
				4.9	Middle	-	-	-	-	-	-	-	-	-		-	0.0	-	-	1.4	-	-	2.1
					Bottom	3.9	29.5 29.6	29.6	7.8 7.8	7.8	22.8 22.6	22.7	88.2 89.1	88.7	5.9 6.0	6.0	6.0	1.3 1.2	1.3		2.0 2.2	2.1	

Remarks:

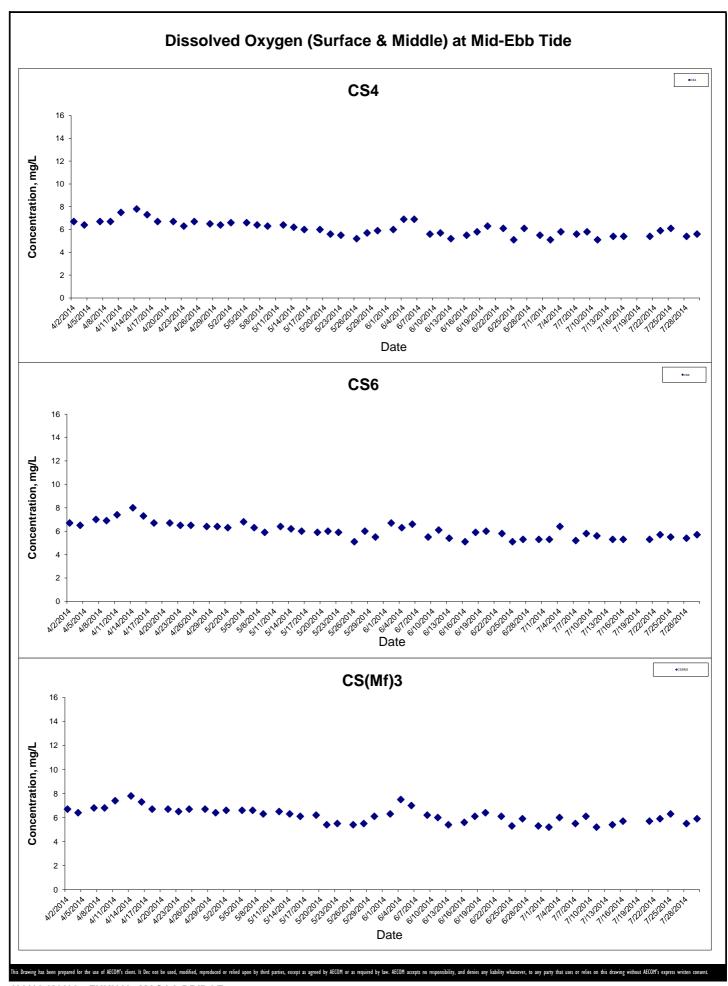
Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

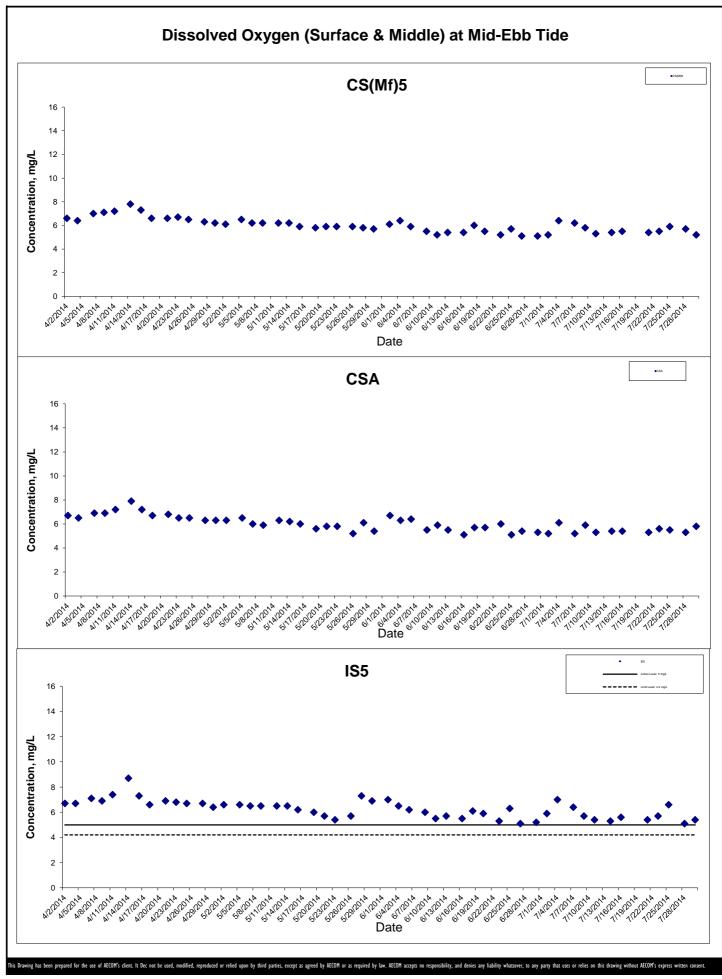
Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

ge Value Average 8.1 8.1	Value Average 18.3 18.5 18.5	73.9 72.2 6 71.9 73.8 4 84.9 82.3 5 79.2 83.9 8 105.5 96.4 - 9 97.4 98.9	Average Value 73.1 5.2 5.0 - 72.9 5.0 5.1 5.9 5.8 - - - 81.6 5.5 5.9 101.0 7.4 6.8 - - 98.2 6.7 6.8 6.1 6.2 6.1 6.3 6.1 6.4 6.1 6.7 6.8	Average D/ 5.1 5. - 5. 5.0 5. 5.8 5. - 5.7 7.1 7. 6.7 6. 6.0 6.	2.8 2.9 . 0 2.9 3.0 3.6 8 3.4 . 7 3.8 3.7 2.8 2.7 . 7 2.8 3.0 3.0	Average 2.9 -	3.0 3.7 2.8	Value 3.0 2.9 - 3.4 3.7 2.0 2.3 - 2.8 3.7 4.1 3.5 - 3.5 - 5.0 5.0	3.0 3.6 2.2 3.3 3.8 3.8 3.6	3.3 2.8
8.1 6.1 6.1 7.1 7.8 7.8 7.8 7.8 7.7 7.8 8.5 8.5 8.4 8.3 8.3 8.4 8.3 8.3 8.4 8.3 8.4 8.3 8.4 8.3 8.3 8.4 8.3 8.4 8.3 8.3 8.3 8.4 8.3 8.3 8.3 8.4 8.3 8.3 8.3 8.4 8.3 8.3 8.3 8.4 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	18.7	72.2 71.9 73.8 4 84.9 82.3 7 5 79.2 83.9 8 105.5 96.4 7 9 97.4 98.9 7 88.9 87.4	73.1 5.0	5.0 5.8 5.7 5.7 5.7 7.1 7.6.7 6.7 6.0	1 2.9	3.0 3.5 - 3.8 2.8 - 2.8	3.7	2.9 3.4 3.7 2.0 2.3 - 2.8 3.7 4.1 3.5 - 3.5 3.7	3.6 2.2 - 3.3 3.8	2.8
8.1 8.1 8.1 8.1 8.1 8.1 7.8 7.8 7.8 7.7 7.7 7.8 8.5 8.5 8.4 8.3 8.3 8.4 8.3 8.3 8.4 8.3 8.3 8.4 8.3 8.3 8.4 8.3 8.3 8.4 8.3 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	20.4 20.8 20.6 15.3 15.4 15.4 16.5 16.5 16.4 16.5 15.7 15.8 15.9 15.8 21.9 22.0 21.9 23.6 23.9 23.7	71.9 73.8 4 84.9 82.3 - 5 79.2 83.9 8 105.5 96.4 - 9 97.4 98.9 7 88.9 87.4	72.9 5.0 83.6 5.9 5.8 81.6 5.5 5.9 101.0 7.4 6.8 98.2 6.7 6.8 88.2 6.1	5.0 5.8 5.7 5.7 5.7 7.1 7.6.7 6.7 6.0	0 2.9 3.0 3.6 8 3.4 7 3.8 7 2.8 2.7 7 2.8 2.8 3.0 2.7	3.0 3.5 - 3.8 2.8 - 2.8	3.7	3.4 3.7 2.0 2.3 - - 2.8 3.7 4.1 3.5 - - 3.5 3.7	3.6 2.2 - 3.3 3.8	2.8
8.0 6.1 7.8 7.8 7.8 	20.8 20.6 15.3 15.4	73.8 4 84.9 82.3 	72.9 5.1 83.6 5.9 5.8 81.6 5.5 5.9 101.0 7.4 6.8 98.2 6.7 6.8 88.2 6.1 6.0	5.8 5.7 5.7 5.7 7.1 7. 6.7 6.0 6.0	7 3.8 2.8 2.7 2.8 2.7 7 2.8 3.0 2.7 2.8 3.0	3.5 - 3.8 2.8 - 2.8		3.7 2.0 2.3 - 2.8 3.7 4.1 3.5 - 3.5 3.7	2.2 - 3.3 3.8	
7.8 7.8 7.7 7.7 7.8 8.5 8.5 8.4 8.3 8.3 8.4 8.3 8.3 8.4 8.3 8.3 8.4 8.3 8.3 8.4 8.3 8.3 8.4 8.3 8.3 8.4 8.3 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	15.4 15.4 15.4 16.5 16.5 16.5 15.9 15.8 15.9 21.9 22.0 21.9 23.6 23.7 15.4 15.4 15.4 15.4 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	4 82.3 - 79.2 8 90.4 - 9 97.4 9 98.9 7 88.9 87.4	81.6 5.5 5.9 101.0 7.4 6.8 	5.7 5.7 5.7 7.1 7.6.7 6.7 6.0	8 3.4 7 3.8 3.7 2.8 2.7 7 2.8 7 2.8 3.0	- 3.8 2.8 - 2.8		2.3 - 2.8 3.7 4.1 3.5 - - 3.5 3.7	3.3	
7.7 7.8 8.5 8.4 8.4 8.3 8.4 8.3 8.4 8.3	16.5 16.4 15.7 15.9 15.8 21.9 22.0 23.6 23.9 23.7	5 79.2 83.9 8 105.5 96.4 - - 9 97.4 98.9 7 88.9 87.4	81.6 5.5 5.9 101.0 6.8 	5.7 5. 7.1 7. 6.7 6.	7 3.8 3.7 2.8 2.7 	3.8 2.8 - 2.8		2.8 3.7 4.1 3.5 - - 3.5 3.7	3.3	
7.8 7.7 8.5 8.5 8.5 	16.4 16.5 15.7 15.8 15.9 22.0 21.9 22.0 23.6 23.7	8 3.9 8 105.5 96.4 9 97.4 9 88.9 7 88.9 87.4	98.2 6.7 88.2 6.1 6.8 6.8 6.7 6.8 88.2 6.1	7.1 7. - 6.7 6.	7 3.7 2.8 2.7 - 7 2.8 2.8 3.0	2.8	2.8	3.7 4.1 3.5 - - 3.5 3.7	3.8	3.7
8.5 8.4 8.3 8.3 8.4 8.3 8.4 8.3 8.3	15.7 15.9 15.8 - - 21.9 22.0 23.6 23.9 23.7	8 105.5 96.4 - 9 97.4 98.9 7 88.9 87.4	101.0 7.4 6.8 98.2 6.7 6.8 88.2 6.1 6.0	6.7 6.	2.8 2.7 - - 7 2.8 2.8 3.0	2.8	2.8	4.1 3.5 - - 3.5 3.7	-	3.7
8.4 8.3 8.4 8.3 8.4 8.3	21.9 22.0 23.6 23.9 23.7	9 97.4 98.9 7 88.9 87.4	98.2 6.7 6.8 88.2 6.1 6.0	6.7 6. 6.0	7 2.8 2.8 3.0	2.8	2.8	3.5 3.7		3.7
8.4 8.3 8.4 8.3 8.3 8.3	22.0 21.9 23.6 23.7 23.9	9 98.9 7 88.9 87.4	98.2 6.8 88.2 6.1 6.0	6.0	3.0			3.5 3.7	3.6	
8.4 8.3 - -	23.6 23.9 	7 88.9 87.4	88.2 6.1 6.0		3.0	3.0				
		-	-	6.	0 3.0			3.8	4.4	
-	-		_	-	-	-	3.3	-	-	4.8
	27.2 27.3	3 85.4	84.6 5.8	5.8 5.	8 3.5	3.6		5.4	5.2	
8.2	24.8 24.6	6 80.7	80.8 6.1	6.1	7.5	7.4		6.1	6.2	
		-		- 6.	1 - 7.2	-	8.2	-	-	6.6
8.2 8.2	25.7 25.7	7 81.0	81.1 6.0	6.1 6.	1 8.8	9.0		6.8	6.9	
7.8 7.9	19.0	5 71.3	71.5	5.4	4.1	4.1		5.6	5.5	
		-		- 5.	5.4	-	4.1	-	-	5.6
7.6	22.0 21.3	72.6	72.1 5.4	5.4 5.	4 3.9	4.0		5.2	5.7	
7.9	24.1 24.2	76.2	75.5	5.2	6.3	6.2		5.9	5.4	
7.9		- 14.8	- 5.1	- 5.	2 6.1	-	6.2	- 4.8	-	5.9
7.9 7.8	27.4 27.3	3 75.5	75.2 5.1	5.1 5.	1 6.0	6.2		6.9	6.4	
		- 74.8	- 5.1	-	- 0.3	-		- 5.8	-	
		-		+	-	-	_	-	-	<u> </u>
		-			-	_	-	-	-	-
3	8.2 8.2 8.2 8.2 8.1 8.2 8.1 8.2 8.1 8.2 8.1 8.2 8.1 7.8 7.9 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	8.2	8.2 24.8 24.6 80.8 80.8 24.5 24.5 24.6 80.8 80.8 2 24.5 24.5 24.6 80.8 80.8 2 25.7 25.7 81.0 81.1 8.2 25.7 25.7 81.1 9.9 19.5 71.3 71.6 7.9 19.9 19.5 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6	8.2 27.4 83.7 5.7 8.2 8.2 24.8 24.6 80.7 80.8 6.1 8.2 8.2 24.5 24.6 80.8 6.1 6.1 8.2 8.2 25.7 25.7 81.0 81.1 81.1 6.0 8.1 8.2 25.7 25.7 81.1 81.1 5.4 6.1 8.1 7.8 7.9 19.0 19.5 71.3 71.5 5.4 7.9 7.9 19.9 19.5 71.6 71.5 5.4 7.6 7.7 22.0 21.3 72.6 72.1 5.4 8.3 7.9 7.9 24.1 24.2 76.2 75.5 5.2 7.9 7.9 24.3 24.2 76.2 75.5 5.1 7.7 7.9 7.8 27.4 27.3 75.5 75.2 5.1 7.7 7.8 7.8 27.4 27.3 75.5 </td <td>8.2 27.4 83.7 5.7 8.2 24.8 24.6 80.7 80.8 6.1 6.1 1 - - - - - - - - - - 4 8.2 8.2 25.7 25.7 25.7 81.0 81.1 81.1 6.0 6.1 6.1 8 7.8 7.9 19.0 19.5 71.3 71.5 5.4 5.4 7.9 7.9 19.9 19.5 71.6 72.1 5.4 5.4 6 7.8 7.7 22.0 21.3 72.6 72.1 5.4 5.4 7.9 7.9 24.1 24.2 76.2 75.5 5.2 5.2 7.9 7.9 24.1 24.2 76.2 75.5 5.2 5.1 7.7.9 7.8 27.4 27.3 75.5 75.2 5.1 5.1 5.1 7.7 7.8 7.8 27.2 27.3 75.5 75.2 5.1 5.1 5.1 7.7 7.8 7.8 27.2 27.3 75.5 75.2 5.1 5.1 5.1 7.7 7.8 7.8</td> <td>8.2 27.4 83.7 5.7 3.6 8.2 8.2 24.8 24.6 80.7 80.8 6.1 6.1 6.1 7.5 8.2 8.2 24.5 24.6 80.8 80.8 6.1 6.1 6.1 7.2 1 -</td> <td>8.2 27.4 83.7 5.7 3.6 8.2 8.2 24.8 24.6 80.7 80.8 6.1 6.1 6.1 7.5 7.4 8.2 8.2 24.5 24.6 80.8 6.1 6.1 6.1 7.2 7.4 8.2 2.5.7 25.7 25.7 81.0 81.1 80.1 6.0 6.1 6.1 6.1 8.8 9.0 8.1 8.2 25.7 25.7 81.1 81.1 6.0 6.1 6.1 6.1 8.8 9.0 9.2 9.0 19.0 19.5 71.3 71.5 5.4 5.4 5.4 5.4 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.0 6.3 7.8 7.9 7.9 24.1 24.2 76.2 75.5 5.2 5.2 5.2 5.2 6.3 6.2 6.1 6.2 6.3 6.2 6.3 6.2 6.3 6.2 6.3 6.2</td> <td>8.2 27.4 83.7 5.7 3.6 3.6 8.2 24.8 24.6 80.7 80.8 6.1 6.1 6.1 7.5 7.4 8.2 8.2 24.5 24.6 80.8 80.8 6.1 6.1 6.1 7.5 7.4 7.5 7.4 8.2 8.2 25.7 25.7 25.7 81.0 81.1 81.1 6.0 6.1 6.1 6.1 8.8 9.0<</td> <td>8.2 27.4 83.7 5.7 3.6 4.9 8.2 8.2 24.8 24.6 80.7 80.8 6.1 6.1 7.5 7.4 6.2 1 - - - - - - - - - - 6.1 8.2 8.2 25.7 25.7 81.0 81.1 81.1 6.0 6.1 6.1 6.1 8.8 9.0 6.8 8.1 8.2 25.7 25.7 81.1 81.1 6.0 6.1 6.1 6.1 8.8 9.0 6.8 8.1 8.2 25.7 25.7 81.1 81.1 81.1 6.0 6.1 6.1 6.1 8.8 9.0 6.8 6.9 8.7.8 7.9 19.9 19.5 71.3 71.5 5.4 5.4 5.4 5.4 4.1 4.1 4.1 5.6 5.4 7.8 7.7 22.0 21.3 71.6 72.1 5.4 5.4 5.4 5.4 5.4 4.1 4.1</td> <td>8.2 27.4 83.7 5.7 3.6 4.9 4.9 6 8.2 8.2 24.5 24.6 80.7 80.8 6.1 6.1 7.5 7.4 6.2 6.2 1 - - - - - - - - - - - - - 6.2 6.3 6.9</td>	8.2 27.4 83.7 5.7 8.2 24.8 24.6 80.7 80.8 6.1 6.1 1 - - - - - - - - - - 4 8.2 8.2 25.7 25.7 25.7 81.0 81.1 81.1 6.0 6.1 6.1 8 7.8 7.9 19.0 19.5 71.3 71.5 5.4 5.4 7.9 7.9 19.9 19.5 71.6 72.1 5.4 5.4 6 7.8 7.7 22.0 21.3 72.6 72.1 5.4 5.4 7.9 7.9 24.1 24.2 76.2 75.5 5.2 5.2 7.9 7.9 24.1 24.2 76.2 75.5 5.2 5.1 7.7.9 7.8 27.4 27.3 75.5 75.2 5.1 5.1 5.1 7.7 7.8 7.8 27.2 27.3 75.5 75.2 5.1 5.1 5.1 7.7 7.8 7.8 27.2 27.3 75.5 75.2 5.1 5.1 5.1 7.7 7.8 7.8	8.2 27.4 83.7 5.7 3.6 8.2 8.2 24.8 24.6 80.7 80.8 6.1 6.1 6.1 7.5 8.2 8.2 24.5 24.6 80.8 80.8 6.1 6.1 6.1 7.2 1 -	8.2 27.4 83.7 5.7 3.6 8.2 8.2 24.8 24.6 80.7 80.8 6.1 6.1 6.1 7.5 7.4 8.2 8.2 24.5 24.6 80.8 6.1 6.1 6.1 7.2 7.4 8.2 2.5.7 25.7 25.7 81.0 81.1 80.1 6.0 6.1 6.1 6.1 8.8 9.0 8.1 8.2 25.7 25.7 81.1 81.1 6.0 6.1 6.1 6.1 8.8 9.0 9.2 9.0 19.0 19.5 71.3 71.5 5.4 5.4 5.4 5.4 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.0 6.3 7.8 7.9 7.9 24.1 24.2 76.2 75.5 5.2 5.2 5.2 5.2 6.3 6.2 6.1 6.2 6.3 6.2 6.3 6.2 6.3 6.2 6.3 6.2	8.2 27.4 83.7 5.7 3.6 3.6 8.2 24.8 24.6 80.7 80.8 6.1 6.1 6.1 7.5 7.4 8.2 8.2 24.5 24.6 80.8 80.8 6.1 6.1 6.1 7.5 7.4 7.5 7.4 8.2 8.2 25.7 25.7 25.7 81.0 81.1 81.1 6.0 6.1 6.1 6.1 8.8 9.0<	8.2 27.4 83.7 5.7 3.6 4.9 8.2 8.2 24.8 24.6 80.7 80.8 6.1 6.1 7.5 7.4 6.2 1 - - - - - - - - - - 6.1 8.2 8.2 25.7 25.7 81.0 81.1 81.1 6.0 6.1 6.1 6.1 8.8 9.0 6.8 8.1 8.2 25.7 25.7 81.1 81.1 6.0 6.1 6.1 6.1 8.8 9.0 6.8 8.1 8.2 25.7 25.7 81.1 81.1 81.1 6.0 6.1 6.1 6.1 8.8 9.0 6.8 6.9 8.7.8 7.9 19.9 19.5 71.3 71.5 5.4 5.4 5.4 5.4 4.1 4.1 4.1 5.6 5.4 7.8 7.7 22.0 21.3 71.6 72.1 5.4 5.4 5.4 5.4 5.4 4.1 4.1	8.2 27.4 83.7 5.7 3.6 4.9 4.9 6 8.2 8.2 24.5 24.6 80.7 80.8 6.1 6.1 7.5 7.4 6.2 6.2 1 - - - - - - - - - - - - - 6.2 6.3 6.9

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

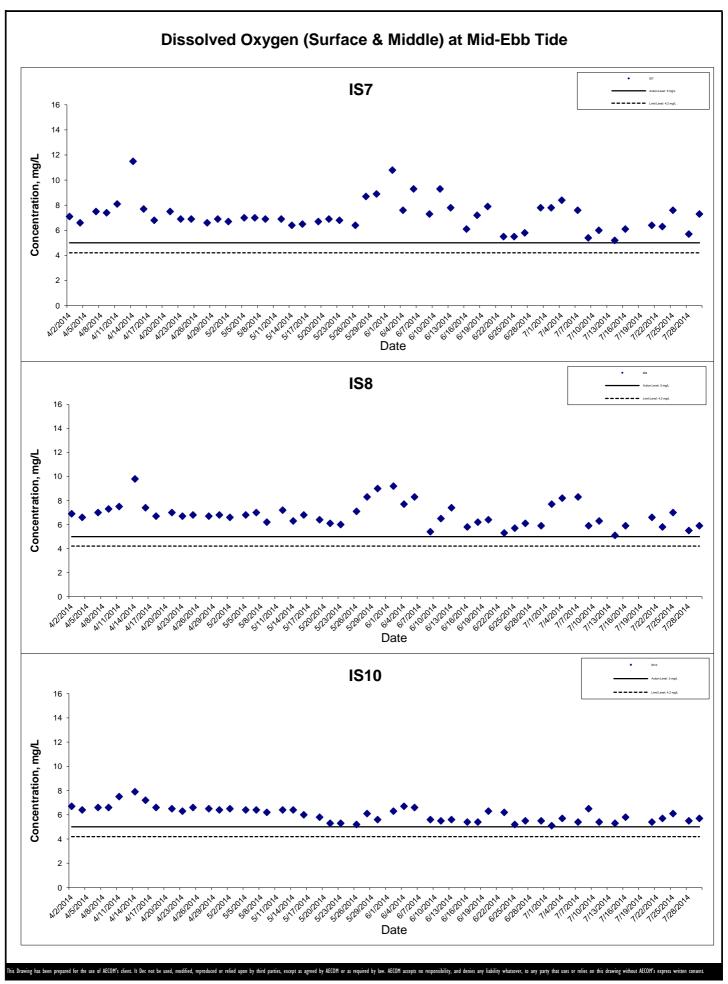

Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling		Temperature (°C)		pН		Salinity (ppt)		DO Saturation (%)		Dissol	ved Oxygen	(mg/L)	1	urbidity(NT	J)	Suspe	s (mg/L)	
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
21-Jul-14	Fine	Moderate	16:30		Surface	1.0	28.4 28.6	28.5	8.1 8.1	8.1	20.8 21.7	21.2	76.6 77.2	76.9	5.3 5.3	5.3	5.3	1.1 1.0	1.1		2.7 2.8	2.8	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	1.6	-	-	2.6
					Bottom	4.3	28.1 27.8	27.9	8.1 8.0	8.1	24.2 24.4	24.3	75.0 70.8	72.9	5.1 4.9	5.0	5.0	2.0 1.9	2.0		2.2 2.6	2.4	
23-Jul-14	Sunny	Moderate	18:59		Surface	1.0	28.8 29.1	28.9	8.2 8.2	8.2	21.3 19.7	20.5	82.1 82.1	82.1	5.6 5.7	5.7	5.7	2.0 2.0	2.0	2.1	3.1 2.5	2.8	
				5.0	Middle	ı		-		-		-		-		-	5.7	5.6 2.1 2.0	-		-	-	3.0
					Bottom	4.0	28.6 28.8	28.7	8.1 8.1	8.1	24.5 24.4	24.5	80.7 83.5	82.1	5.5 5.6	5.6	5.6		2.1		2.9 3.3	3.1	
25-Jul-14	Sunny	Moderate	20:09		Surface	1.0	29.0 29.1	29.1	8.3 8.3	8.3	21.3 20.7	21.0	78.8 78.9	78.9	5.4 5.4	5.4	5.4	2.9 2.9	2.9		4.0 3.2	3.6	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-	5.4	-	-	3.2	-	-	4.7
					Bottom	4.5	28.6 28.6	28.6	8.2 8.2	8.2	23.1 23.7	23.4	76.9 77.4	77.2	5.2 5.3	5.3	5.3	3.3 3.5	3.4		5.5 6.0	5.8	
28-Jul-14	Sunny	Moderate	05:49		Surface	1.0	26.6 26.6	26.6	7.7 7.6	7.7	27.6 27.6	27.6	72.5 74.0	73.3	5.1 5.2	5.1	5.1	5.0 4.9	5.0		5.4 5.6	5.5	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	5.1	-	-	4.9	-	-	6.0
					Bottom	4.1	26.6 26.5	26.5	7.7 7.6	7.6	27.9 27.5	27.7	72.9 77.9	75.4	5.1 5.5	5.3	5.3	4.7 4.9	4.8		6.4 6.6	6.5	
30-Jul-14	Sunny	Moderate	07:31		Surface	1.0	27.0 27.2	27.1	7.7 7.7	7.7	26.6 26.0	26.3	73.2 75.2	74.2	5.1 5.2	5.1	5.1	3.5 3.6	3.6		3.2 3.5	3.4	
				5.0	Middle	-	-	-	-	-		-	-	-	1 1	-	5.1	-	-	3.7	-	-	3.5
				Bottom	4.0	26.5 26.6	26.6	7.7 7.7	7.7	28.2 28.2	28.2	76.4 73.3	74.9	5.3 5.1	5.2	5.2	3.6 3.7	3.7		3.6 3.6	3.6		


Remarks:

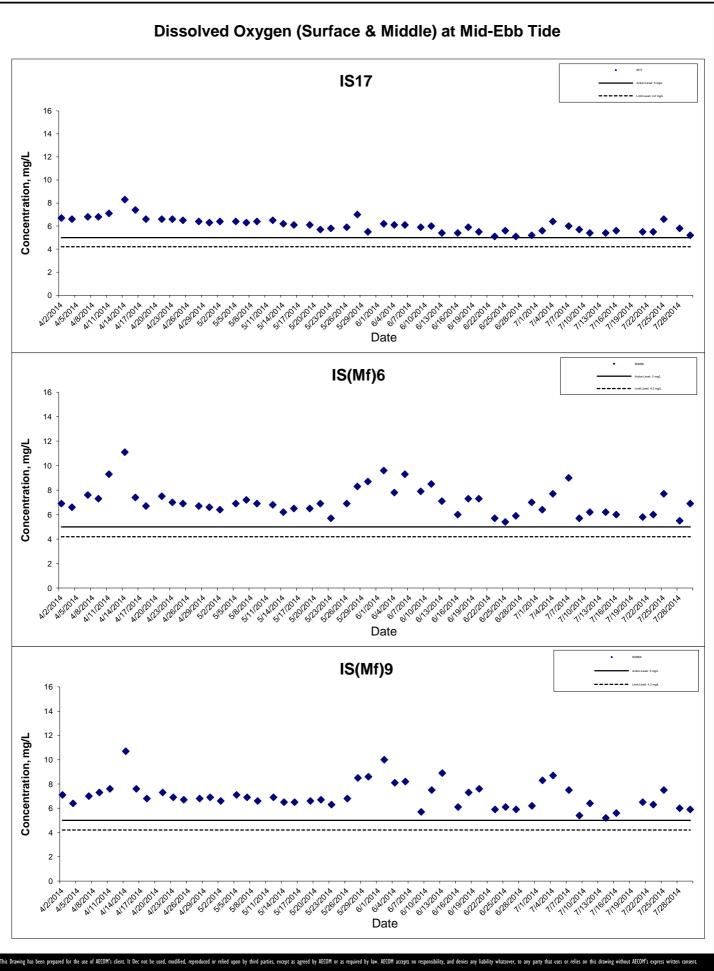
Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level. # Monitoring was cancelled due to typhoon signal no.3 was hoisted from 17 July (16:15) to 18 July (19:40) by HKO.

- * DA: Depth-Averaged
- ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher


AECOM

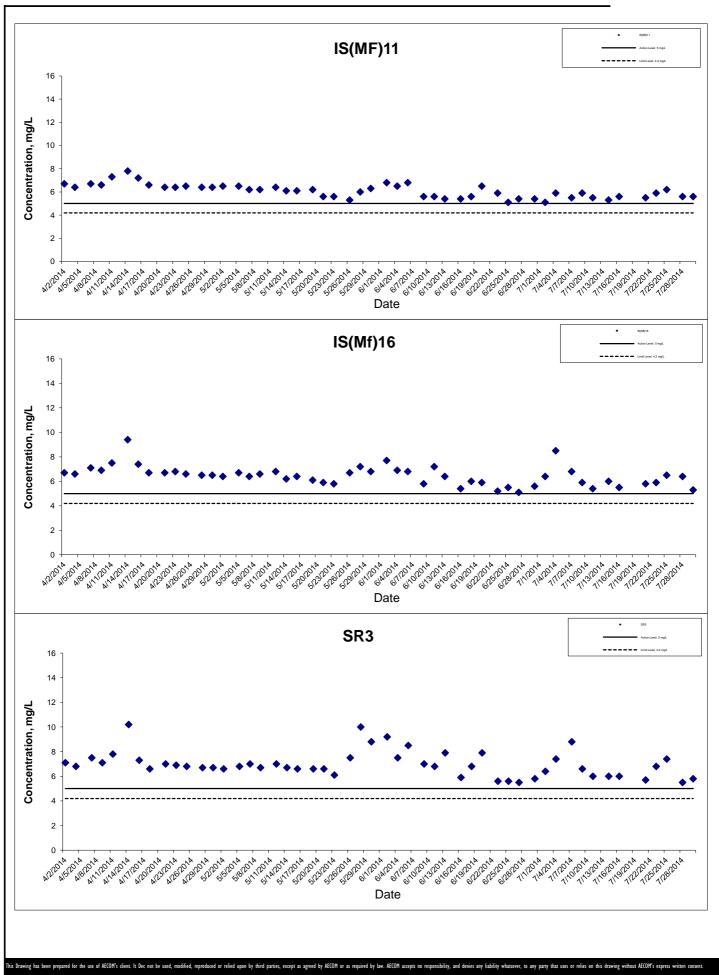
AECOM

- RECLAMATION WORKS

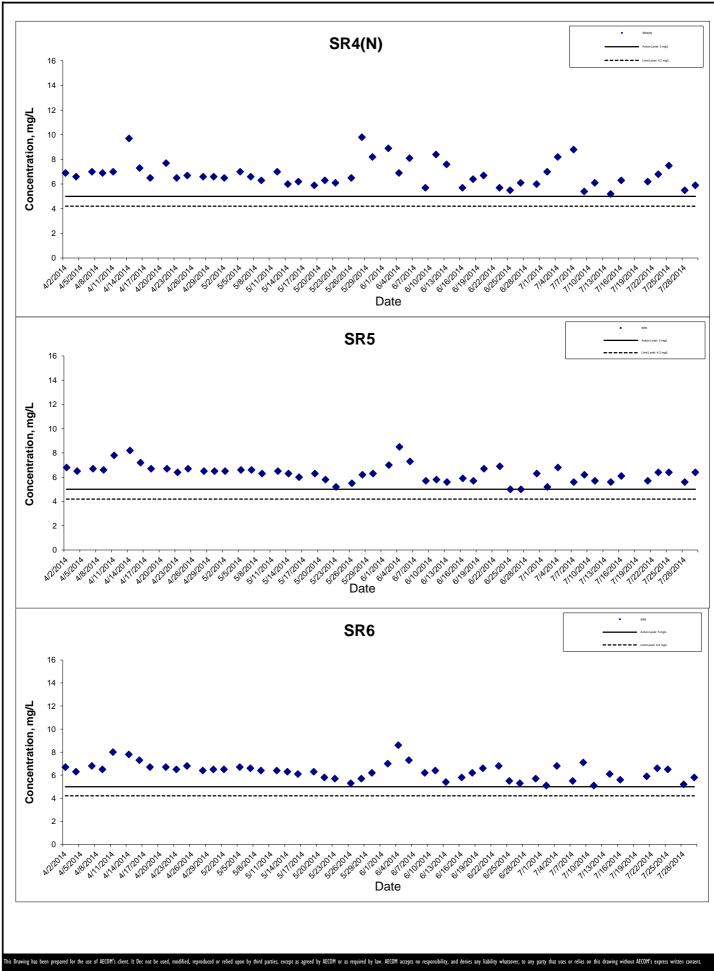

Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM

- RECLAMATION WORKS

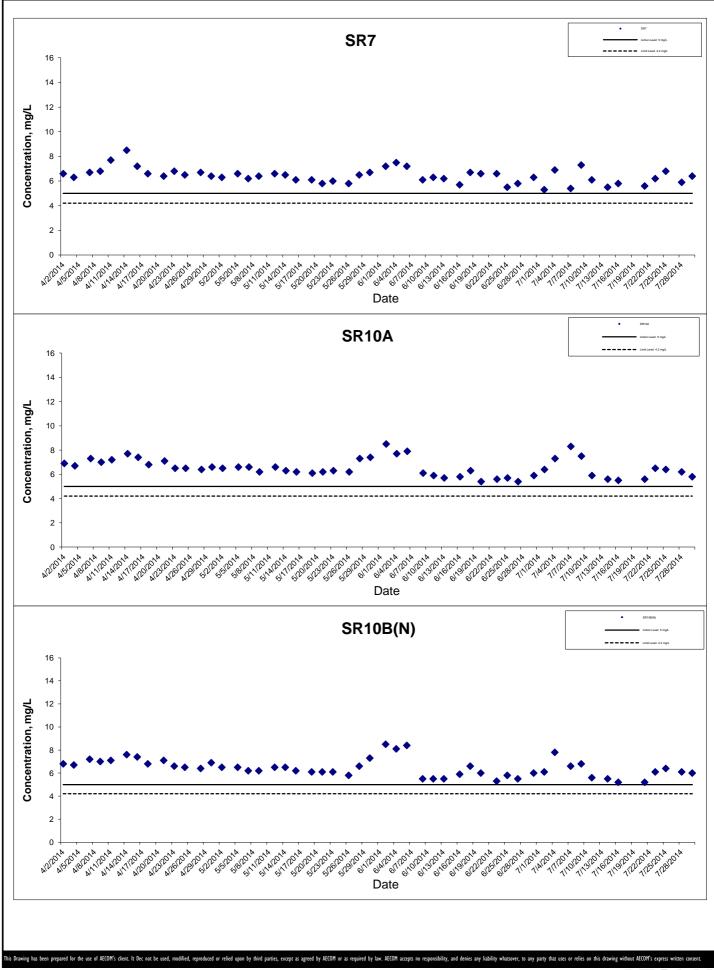

Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM


- RECLAMATION WORKS

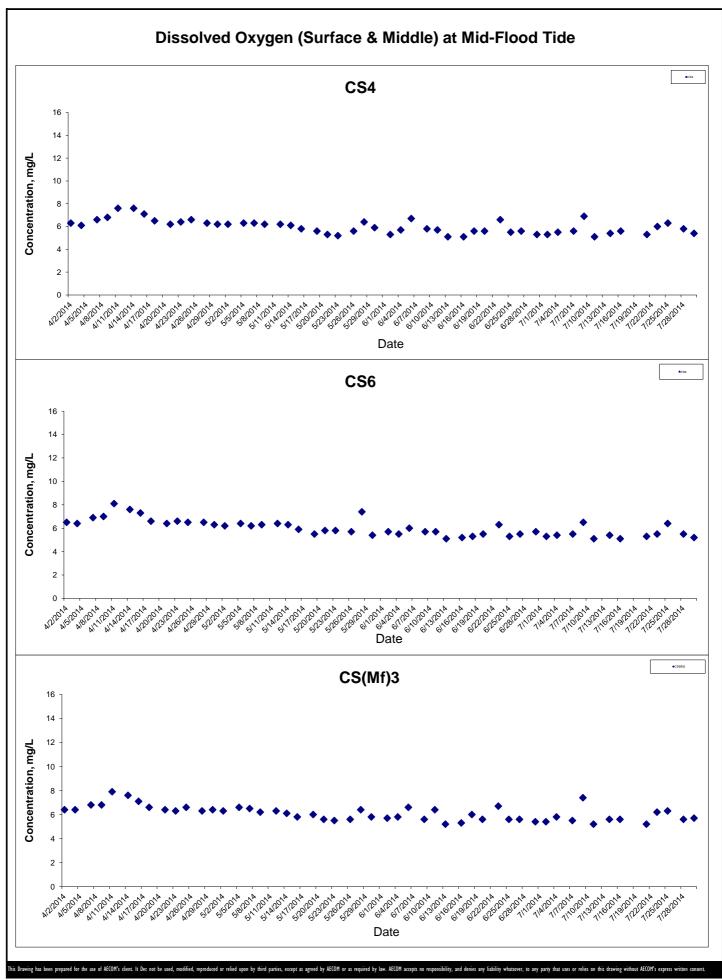
Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM


- RECLAMATION WORKS

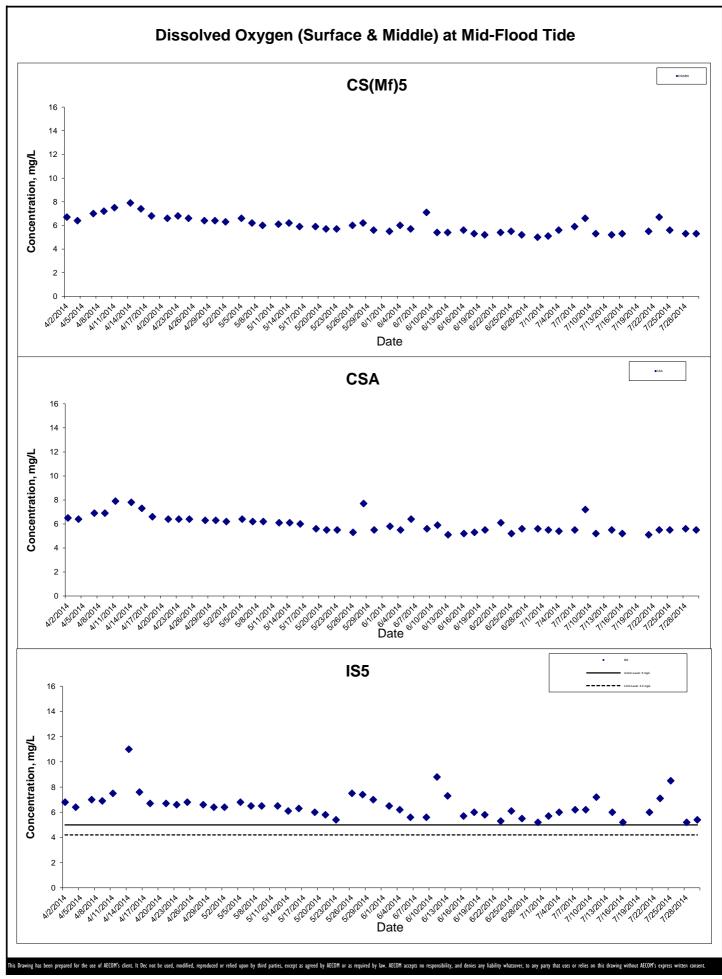
AECOM

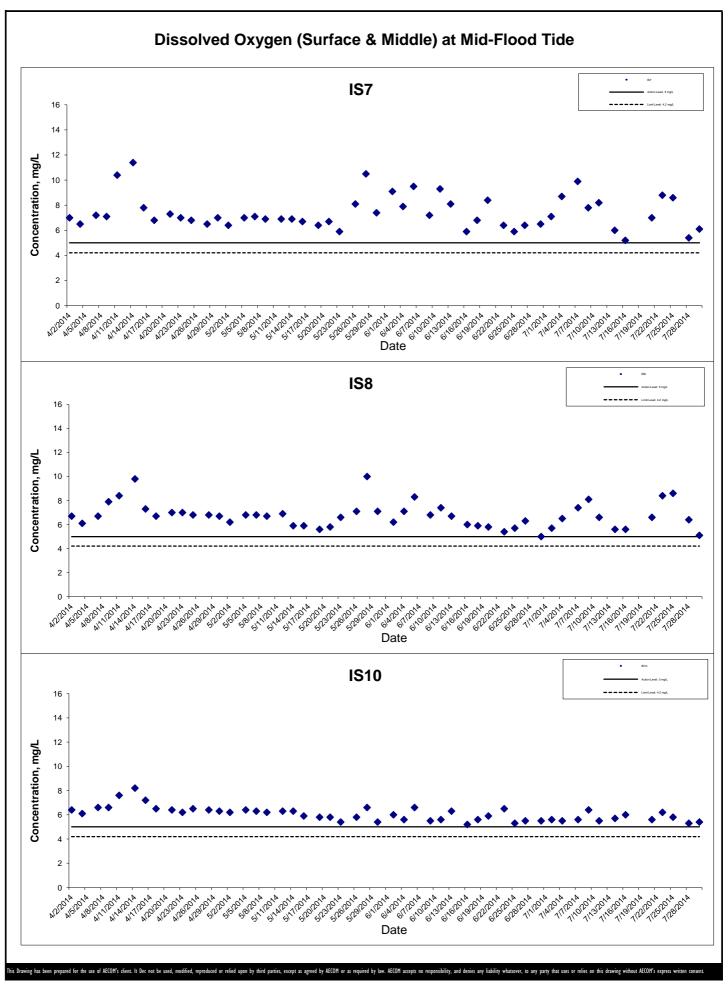
- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM

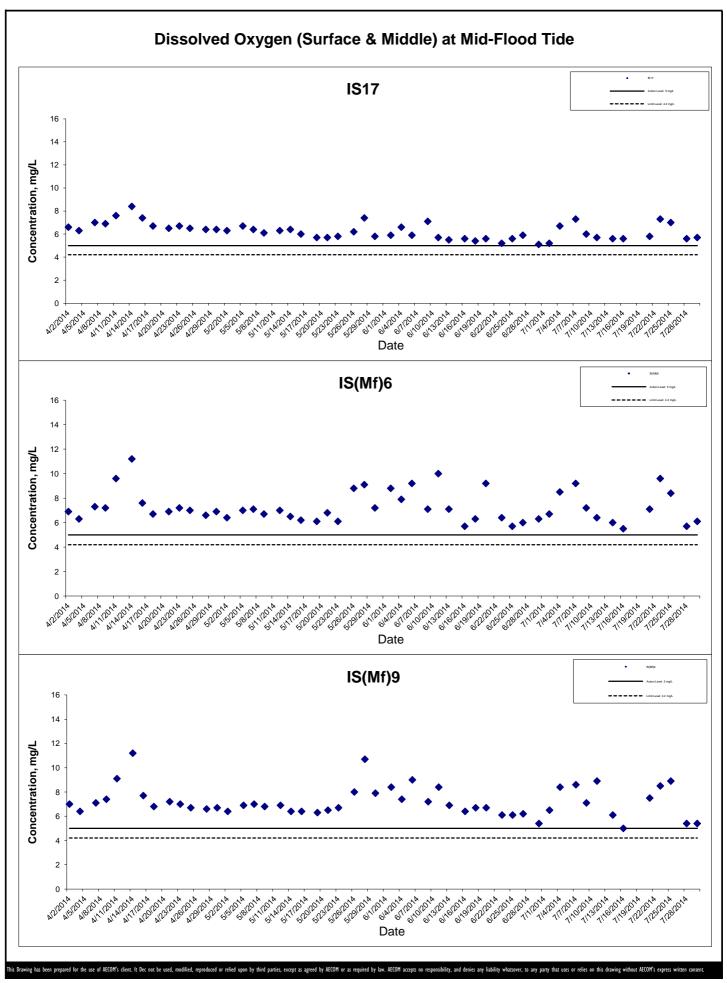
- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results


AECOM

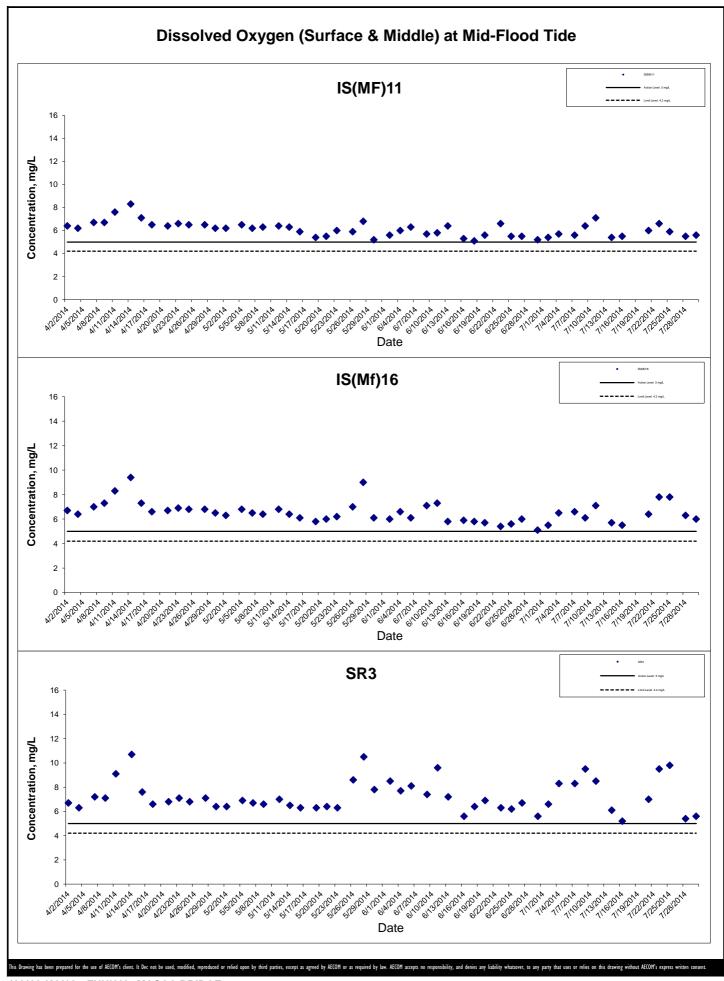
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results


AECOM

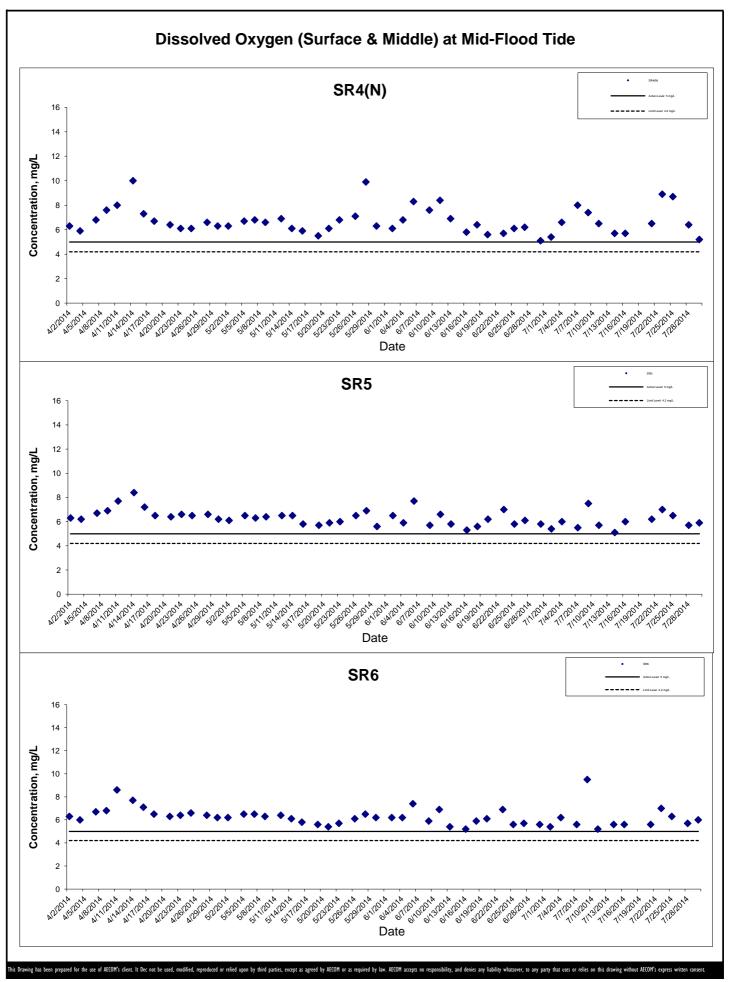
AECOM

- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results

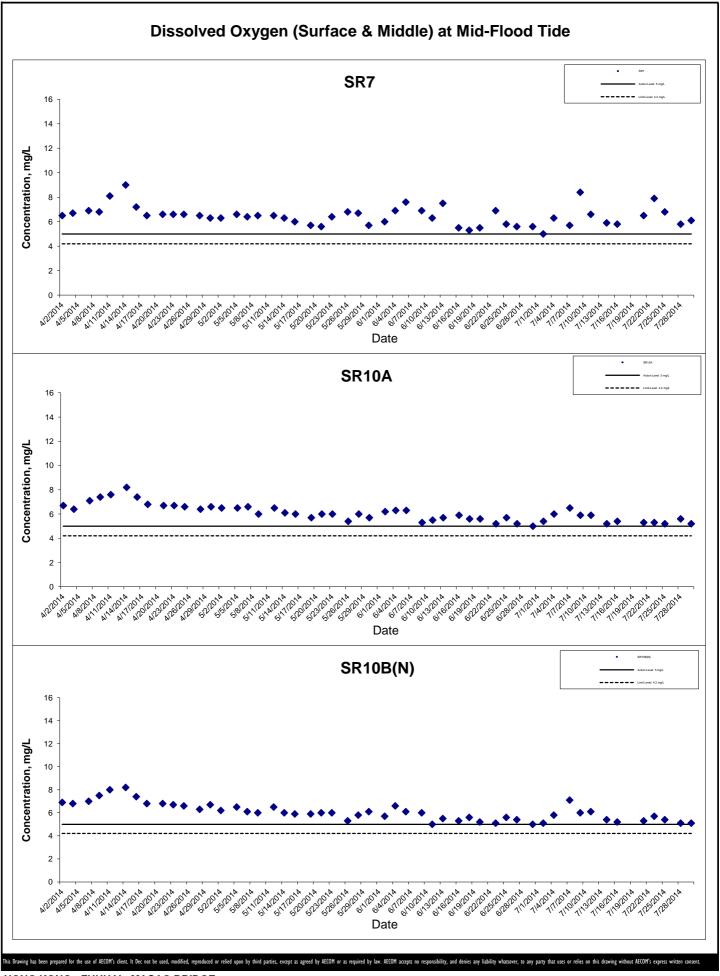
AECOM

- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results

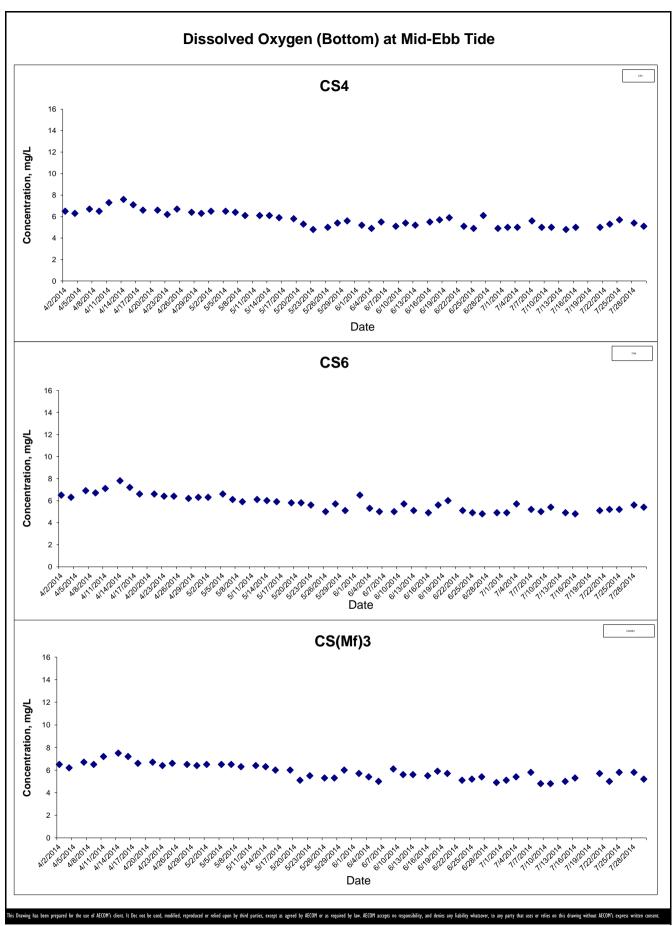
AECOM

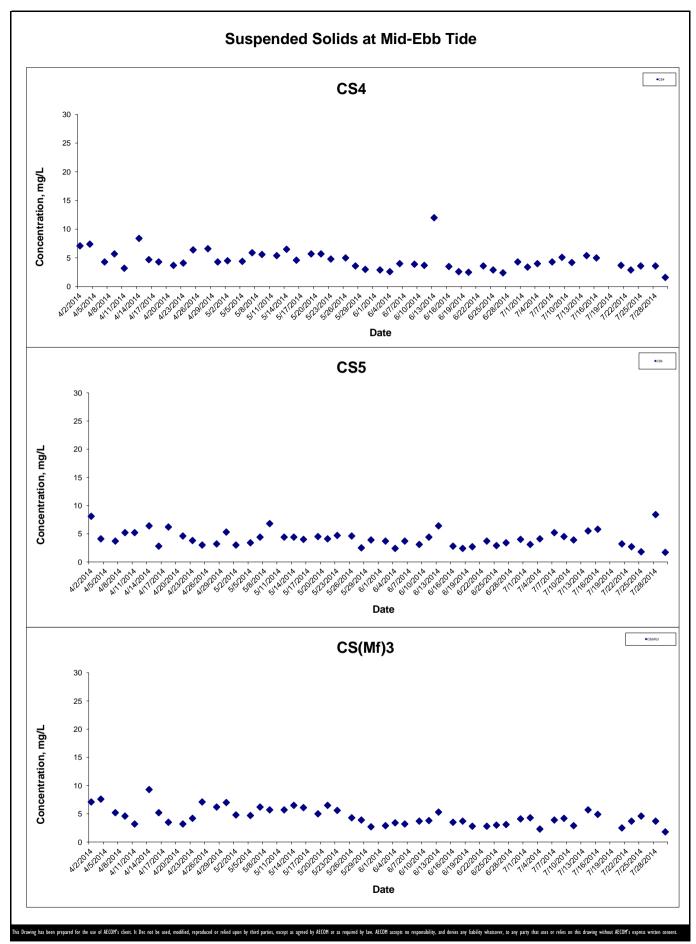
- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results

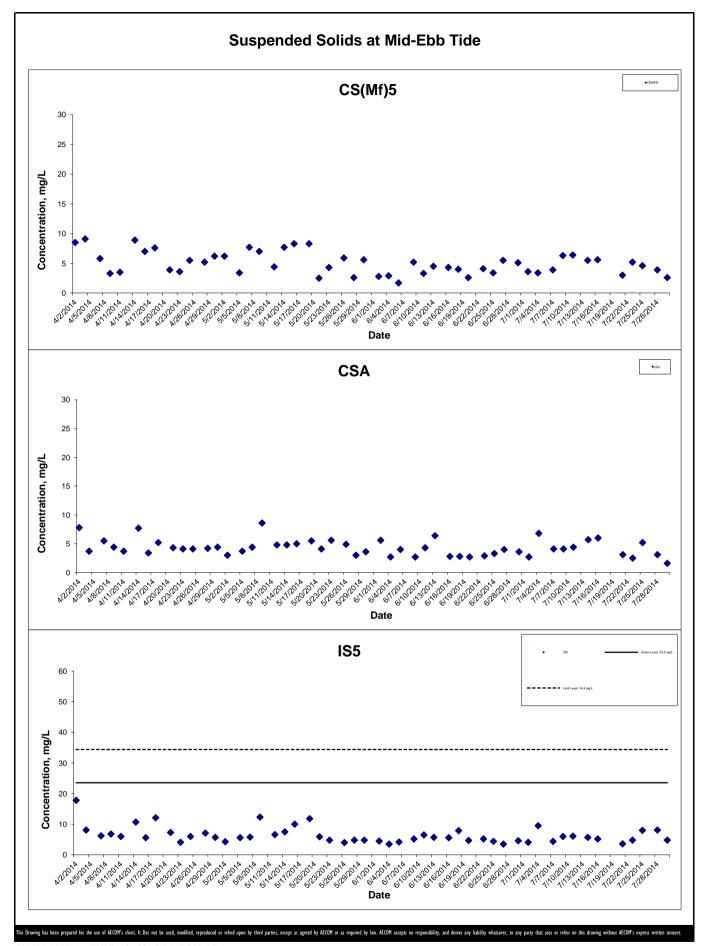
AECOM

- RECLAMATION WORKS

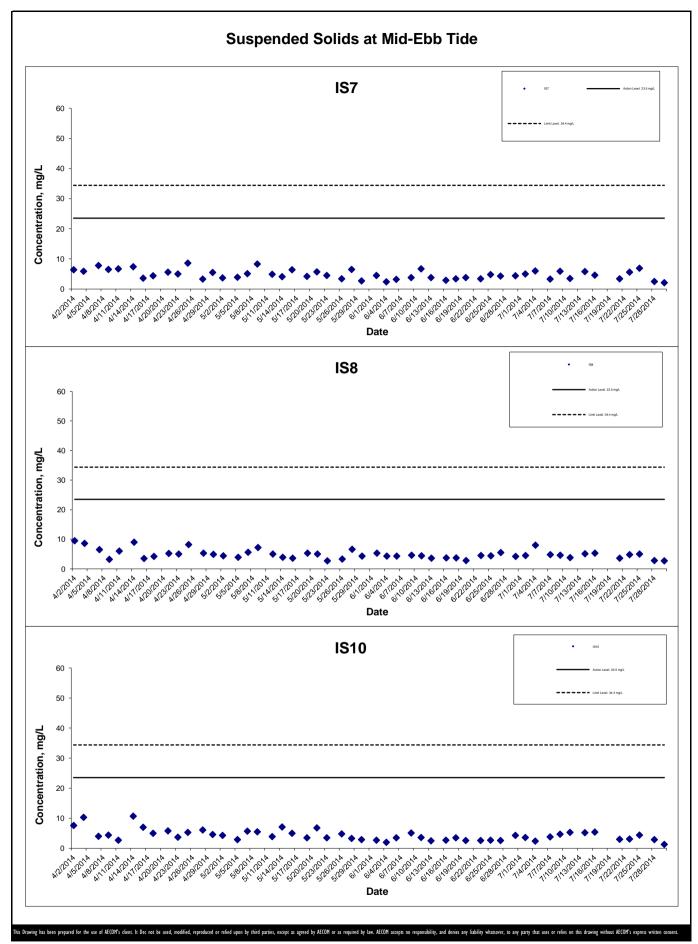

Graphical Presentation of Impact Water Quality
Monitoring Results


AECOM

- RECLAMATION WORKS

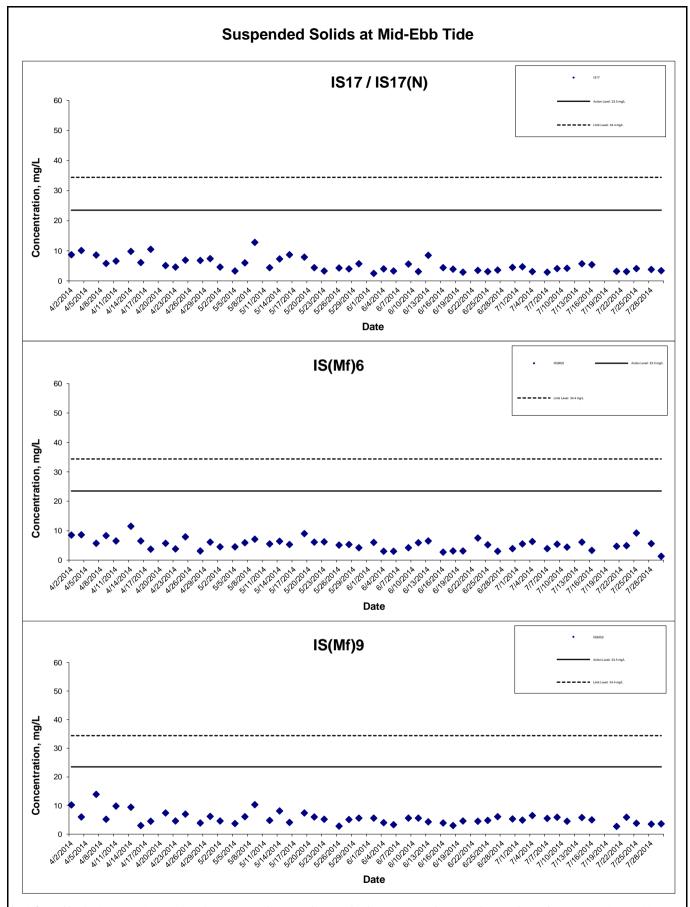

Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM


AECOM

ES
Graphical Presentation of Impact Water Quality

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

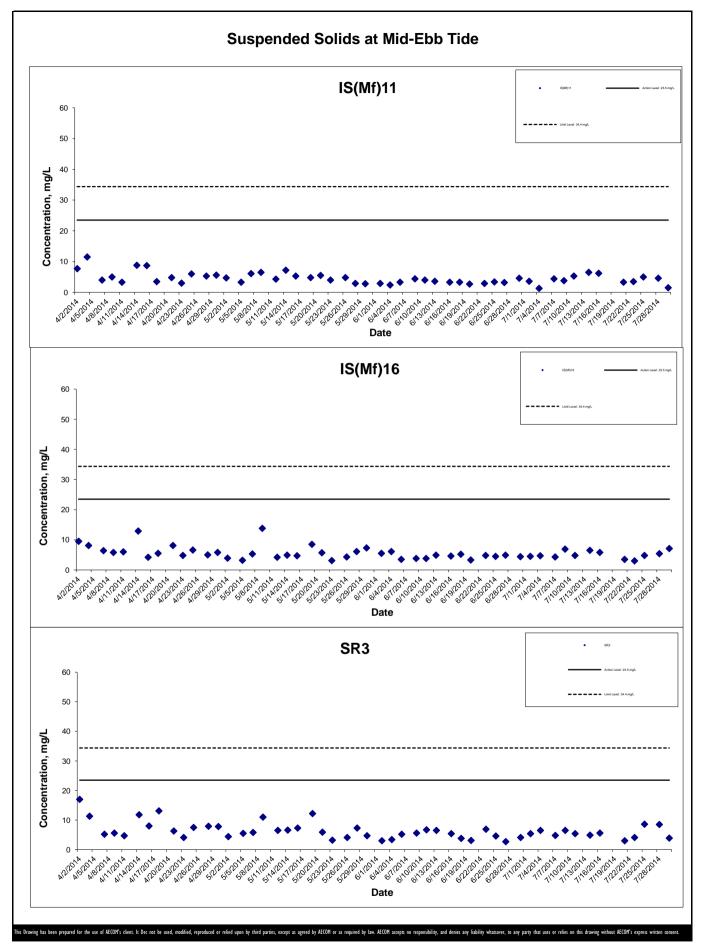

Monitoring Results

AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

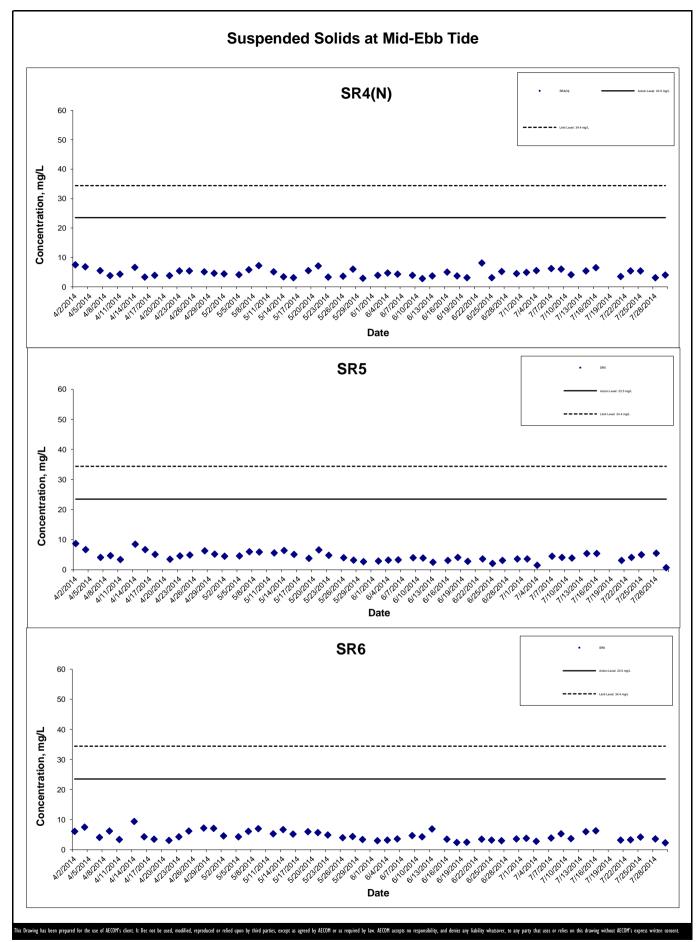
*As informed by the Contractor in June 2014, the perimeter silt curtain alignment has been rearranged. In accordance with our observation on 25 June 2014, the original monitoring location of IS17 was no longer enclosed by the perimeter silt curtain. Therefore, IWQM work at the original monitoring location of IS17 has been resumed since 25 June 2014.


This Drawing has been prepared for the use of AECOM's client. It Dec not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and denies any liability whatsover, to any party that uses or relies on this drawing without AECOM's express written consent.

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

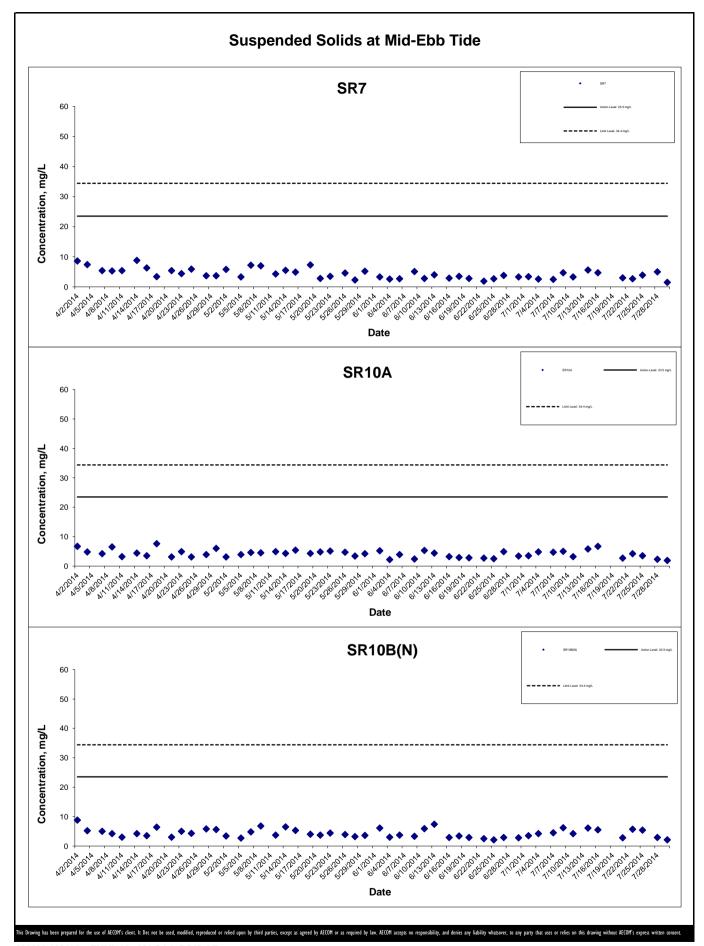
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results


AECOM

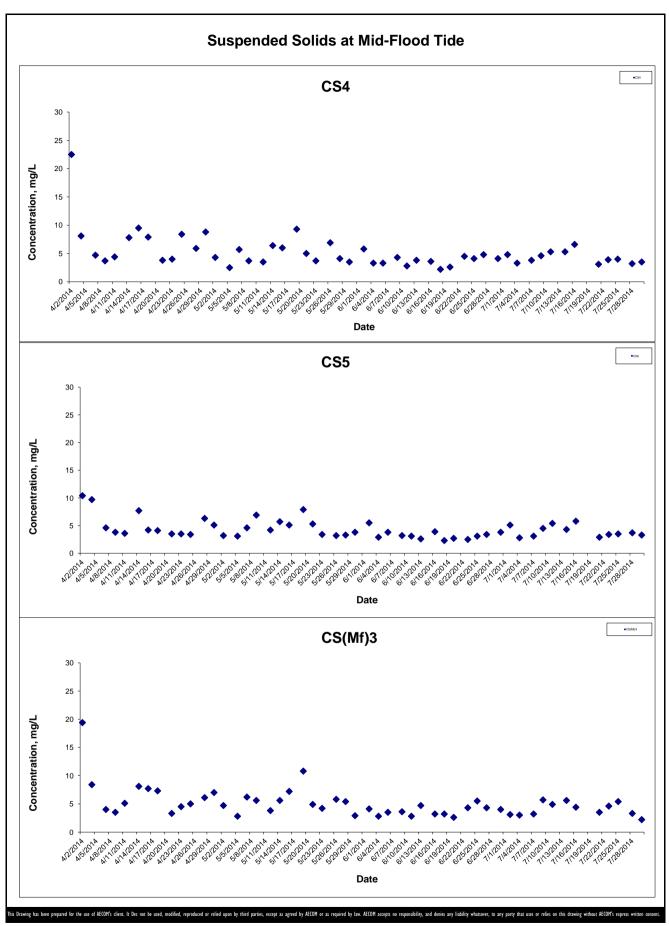
AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality


Monitoring Results

AECOM

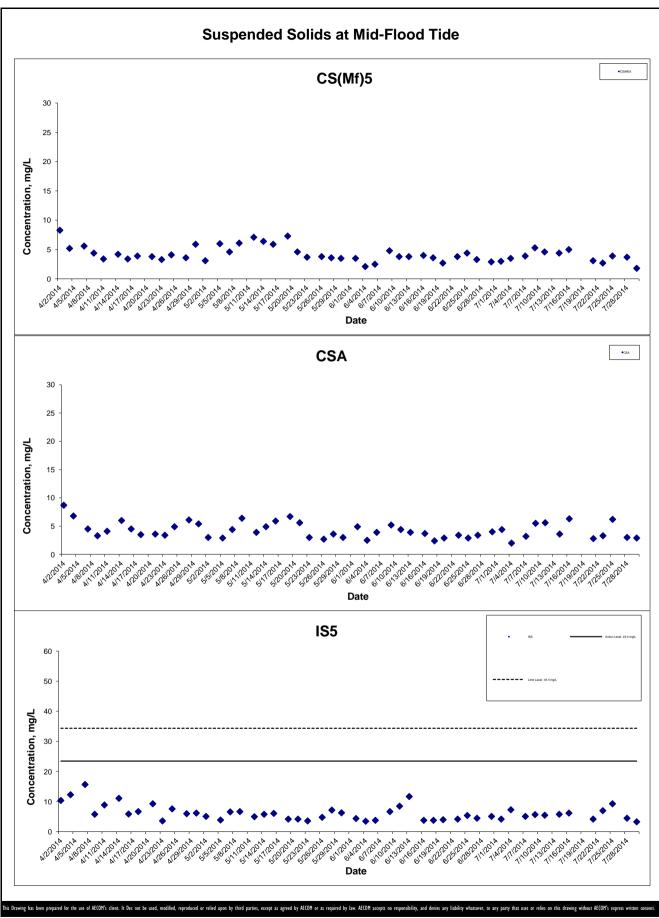
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality


Monitoring Results

AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

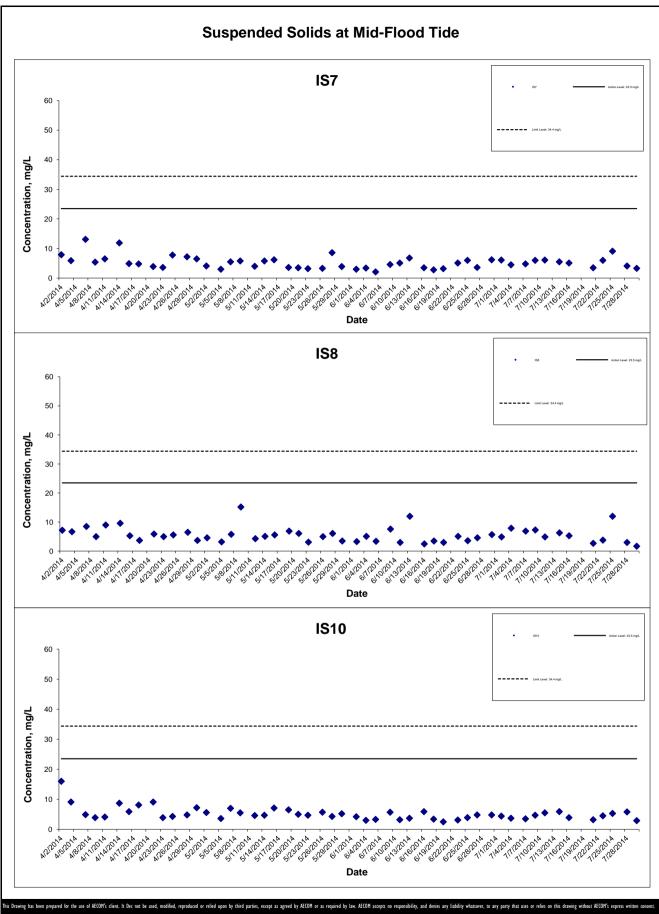
Monitoring Results


- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

Monitoring Results
Project No.: 60249820 Date: August 2014

Appendix J

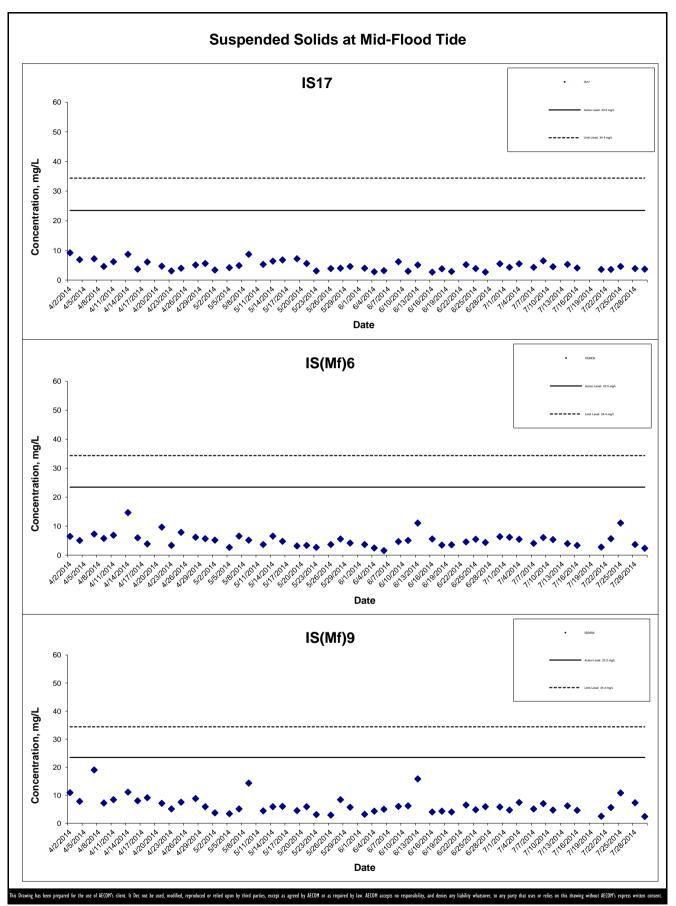


- RECLAMATION WORKS

IES
Graphical Presentation of Impact Water Quality

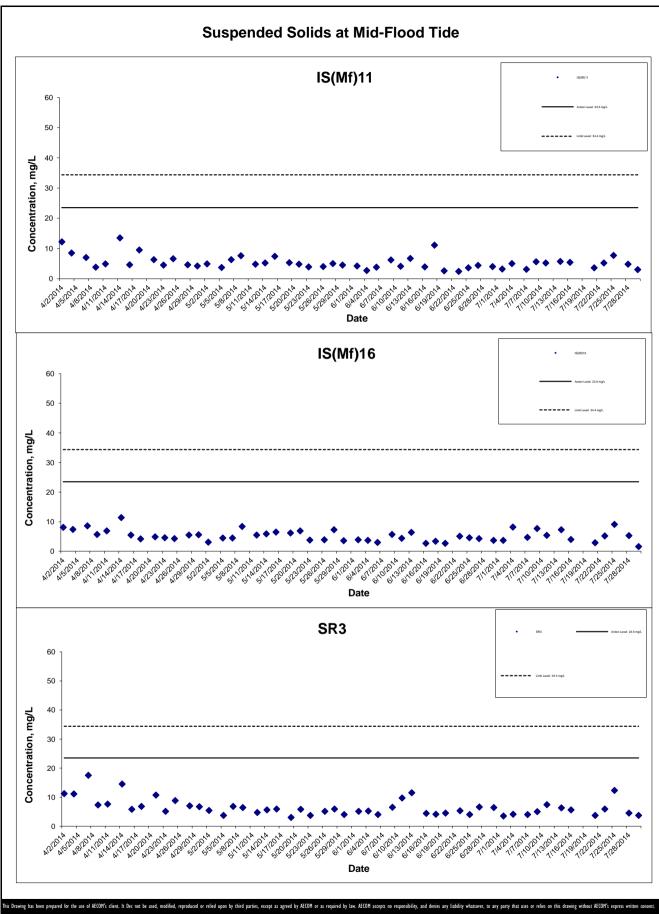
Appendix J

Monitoring Results
Project No.: 60249820 Date: August 2014


Graphical Presentation of Impact Water Quality

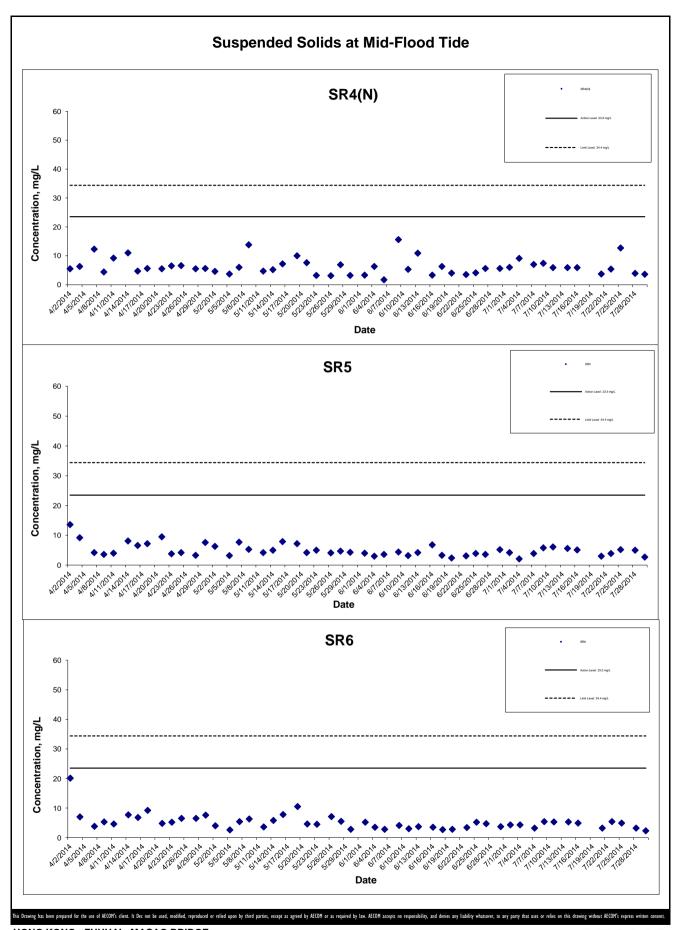
- RECLAMATION WORKS Project No.: 60249820

Monitoring Results Date: August 2014



Appendix J

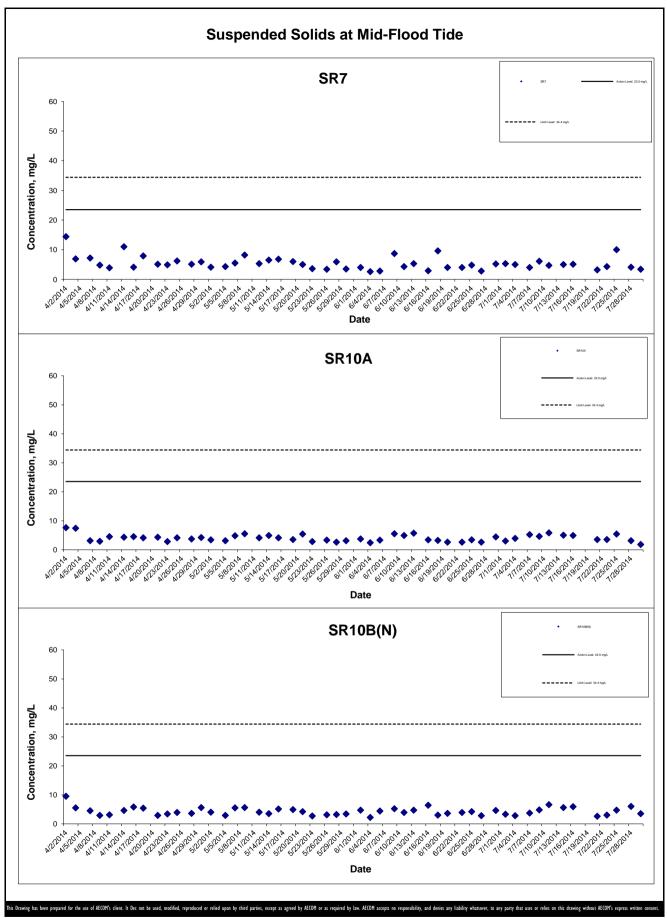
- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

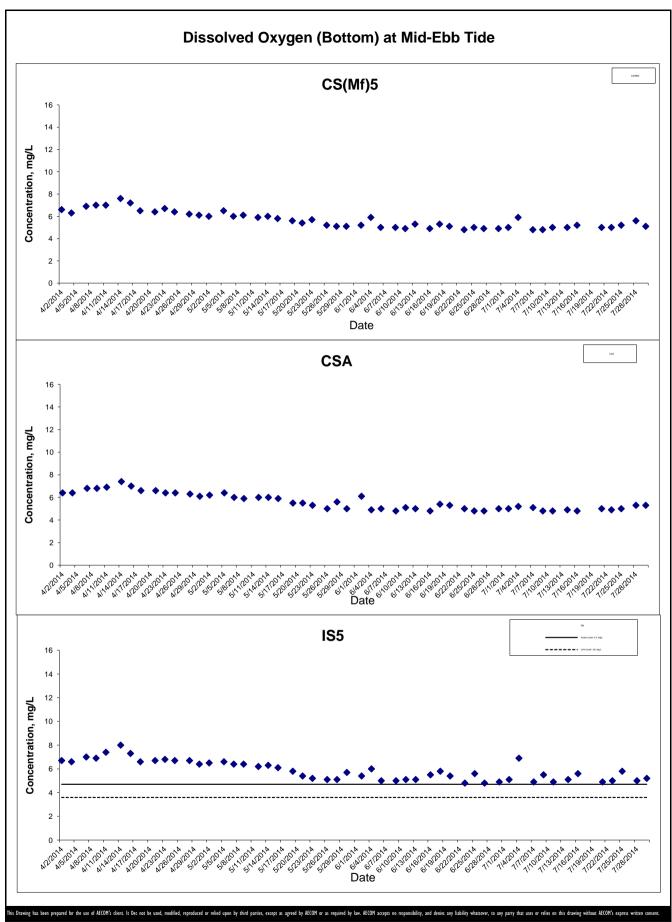

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS Gr

Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM

Appendix J

Project No.: 60249820 Date: August 2014

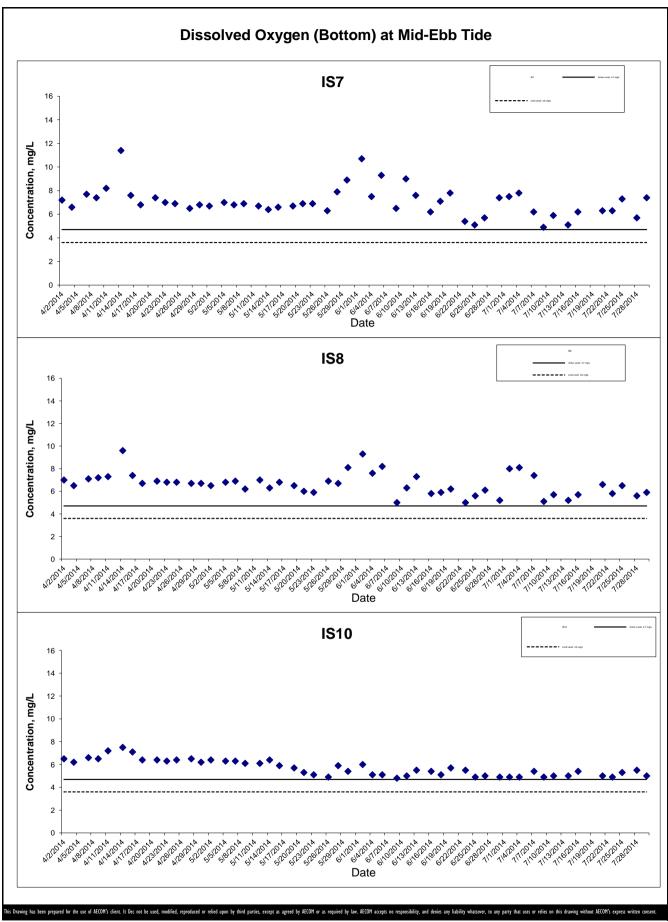


Graphical Presentation of Impact Water Quality

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

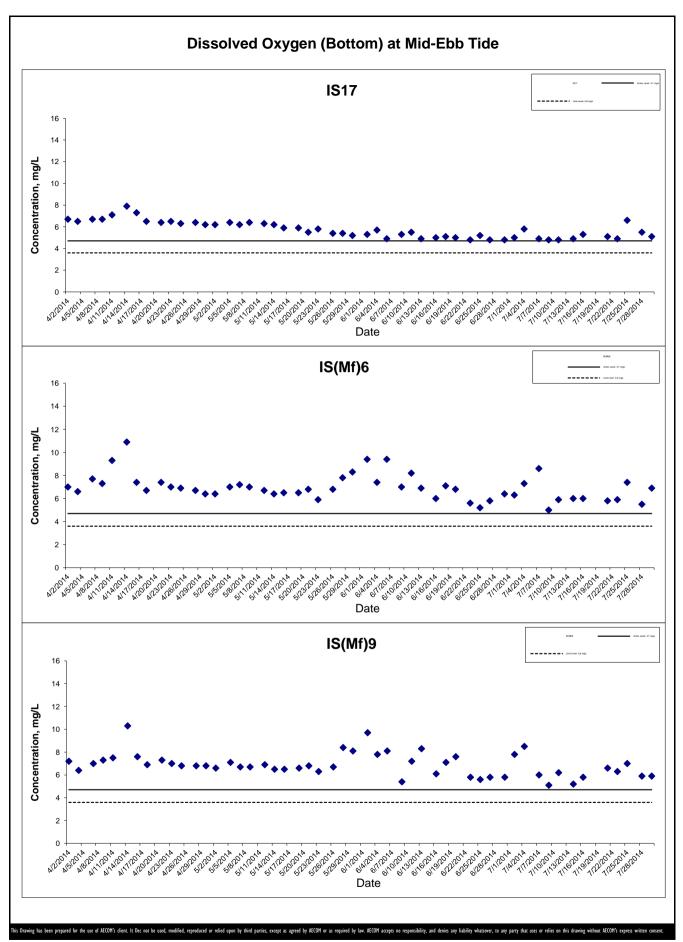
Monitoring Results

Project No.: 60249820 Date: August 2014


Project No.: 60249820

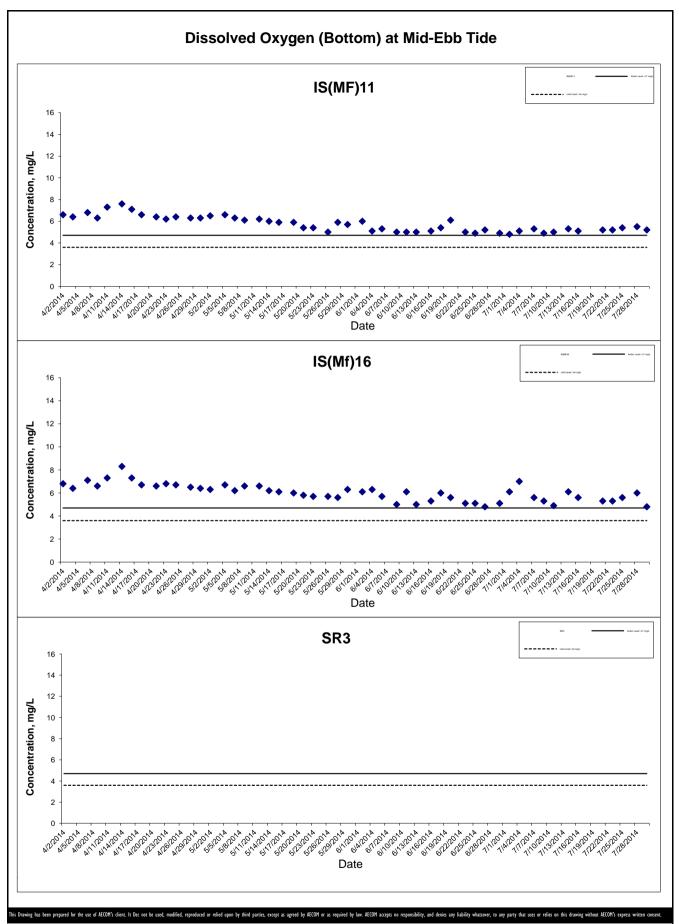
AECOM

Appendix J


- RECLAMATION WORKS Graphical Present

Date: August 2014

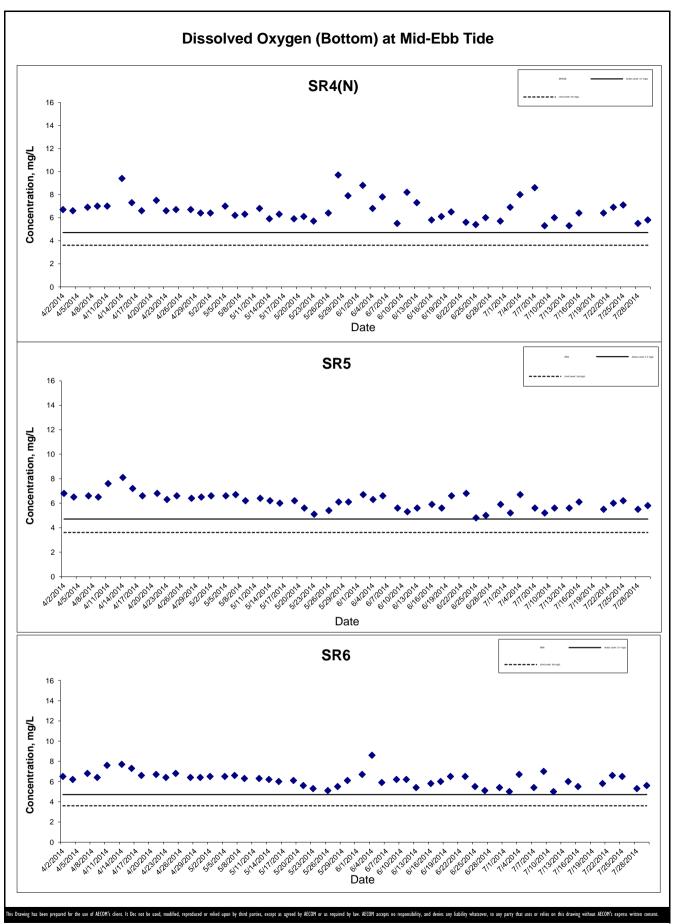
AECOM


- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

ES
Graphical Presentation of Impact Water Quality

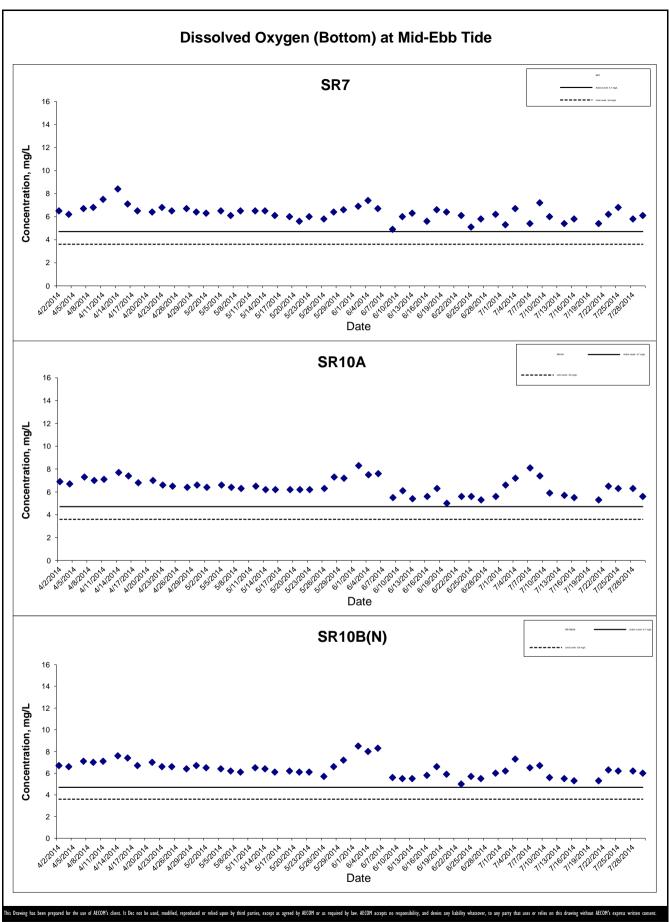
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results



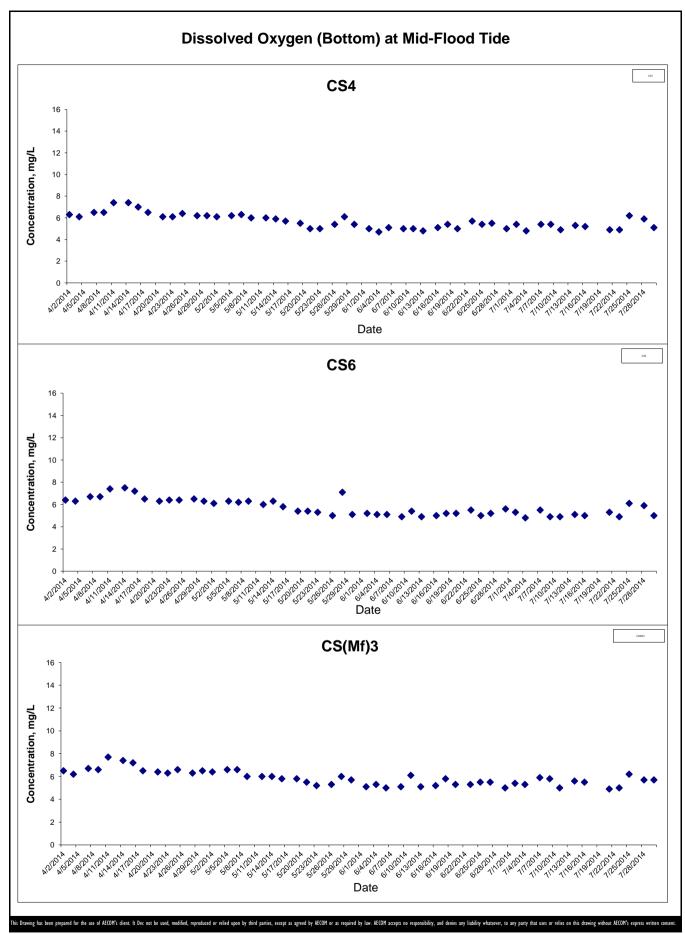
AECOM

- RECLAMATION WORKS

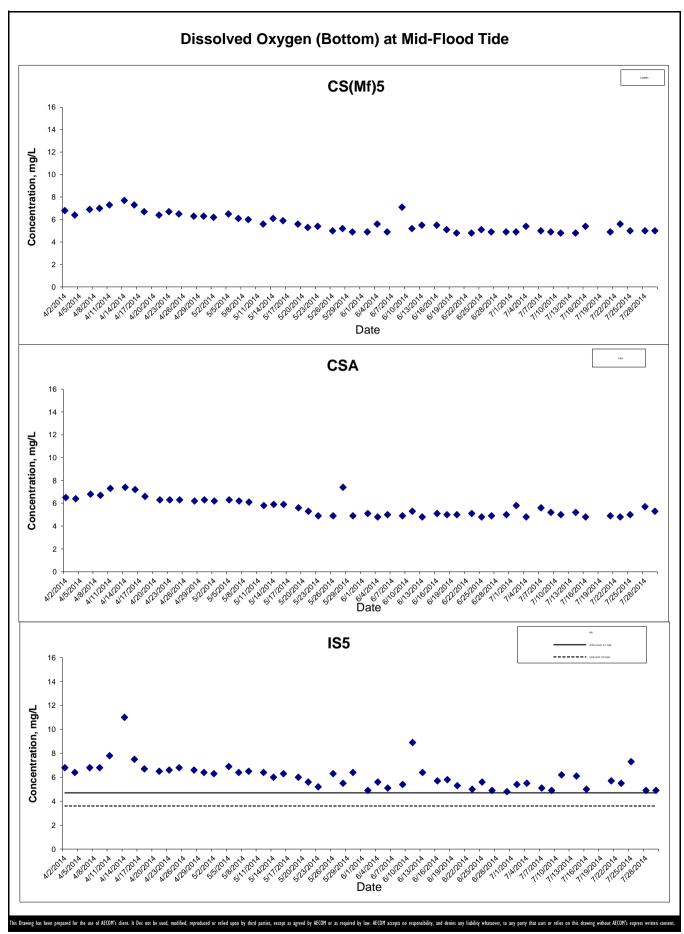

Graphical Presentation of Impact Water Quality

Monitoring Results

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

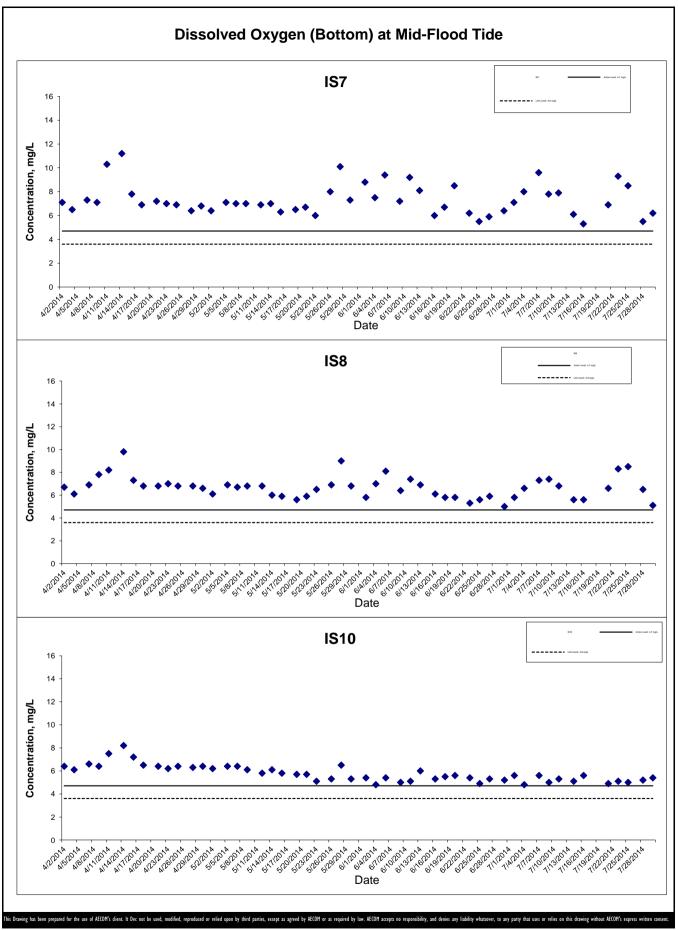

AECOM

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

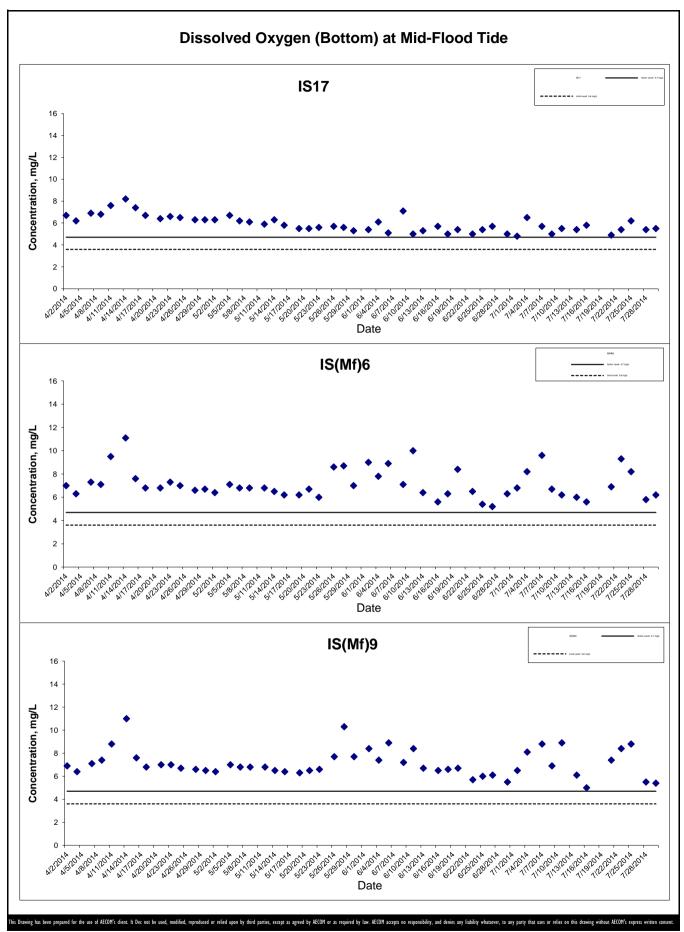

AECOM

Graphical Presentation of Impact Water Quality
Monitoring Results

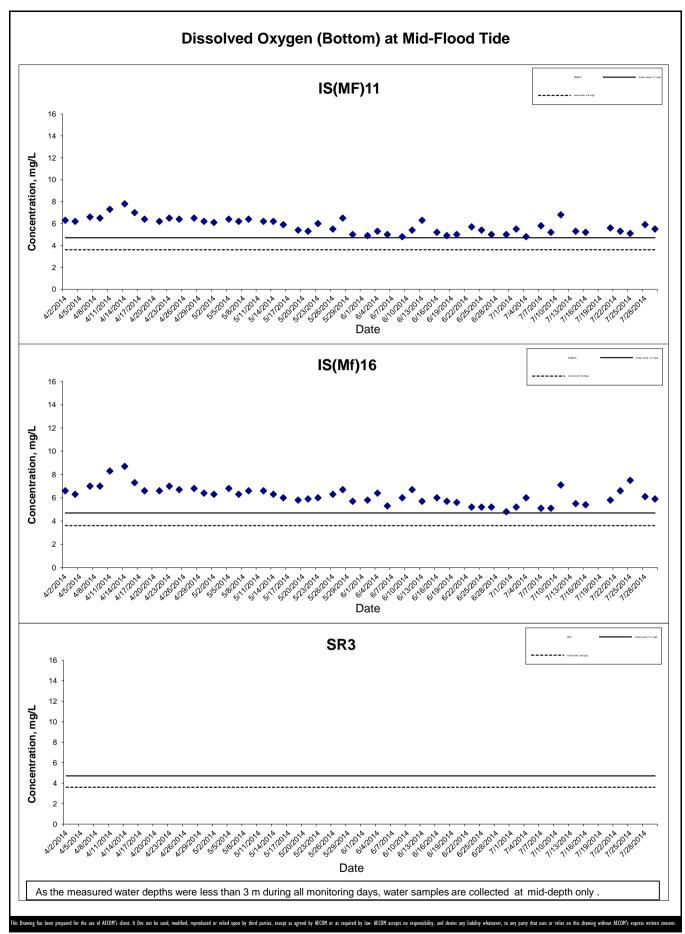
- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results

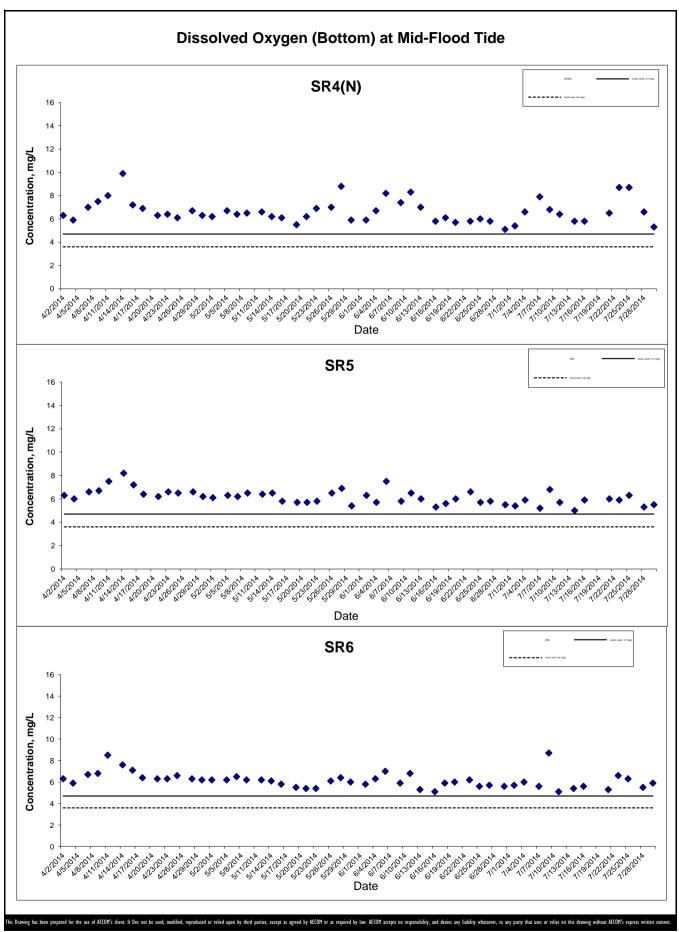
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI


Graphical Presentation of Impact Water Quality

Monitoring Results

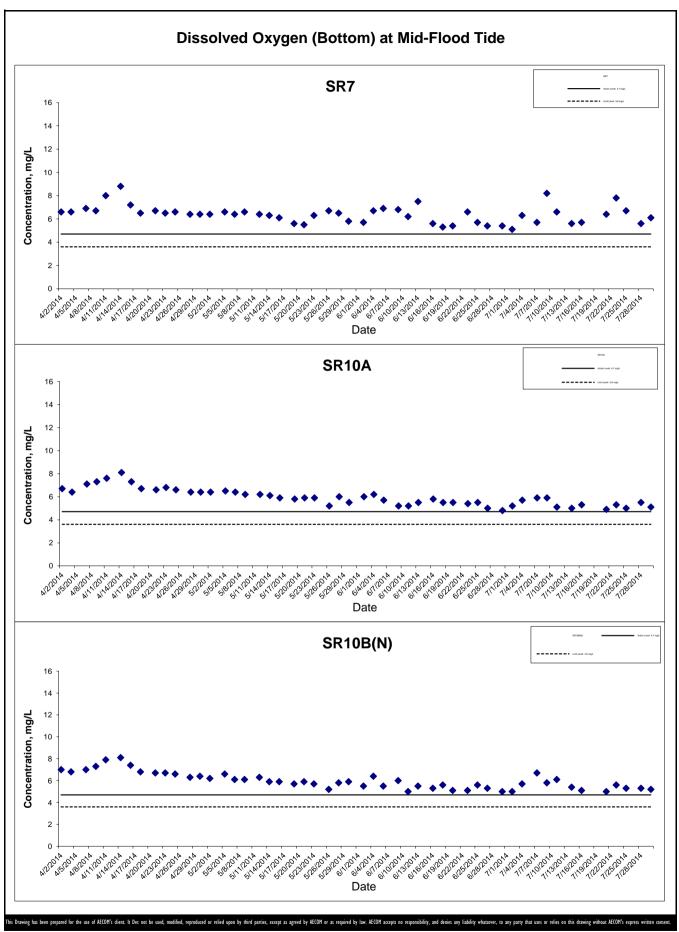

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI

Graphical Presentation of Impact Water Quality
Monitoring Results

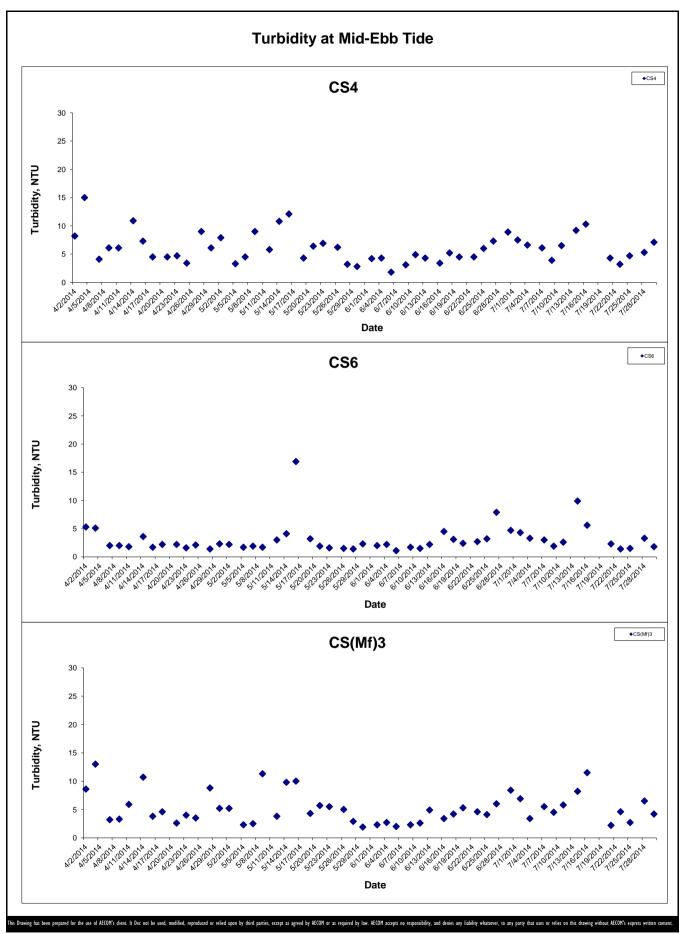


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS

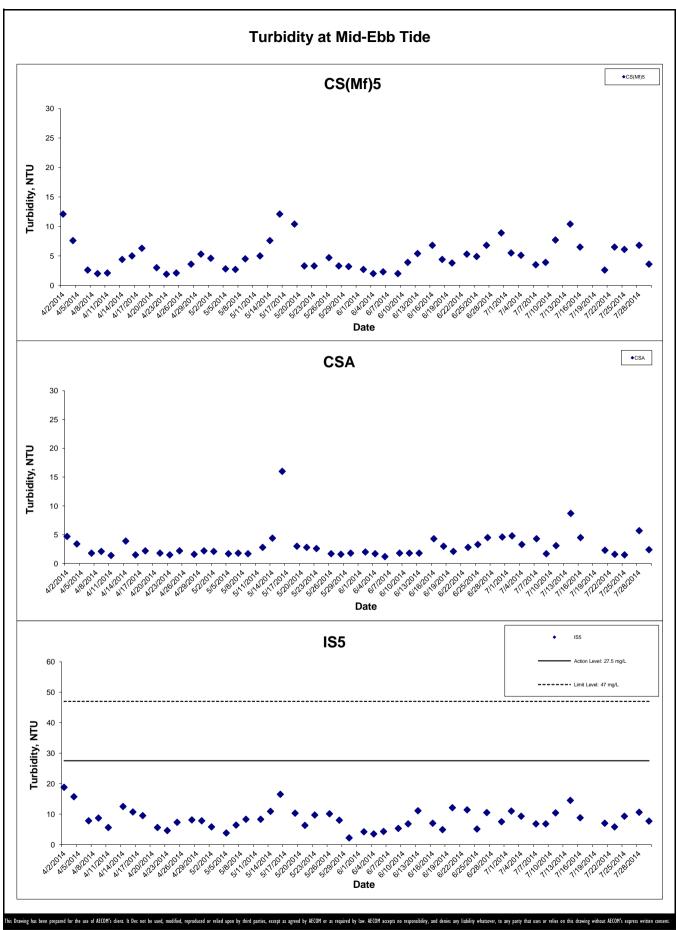
Graphical Presentation of Impact Water Quality
Monitoring Results



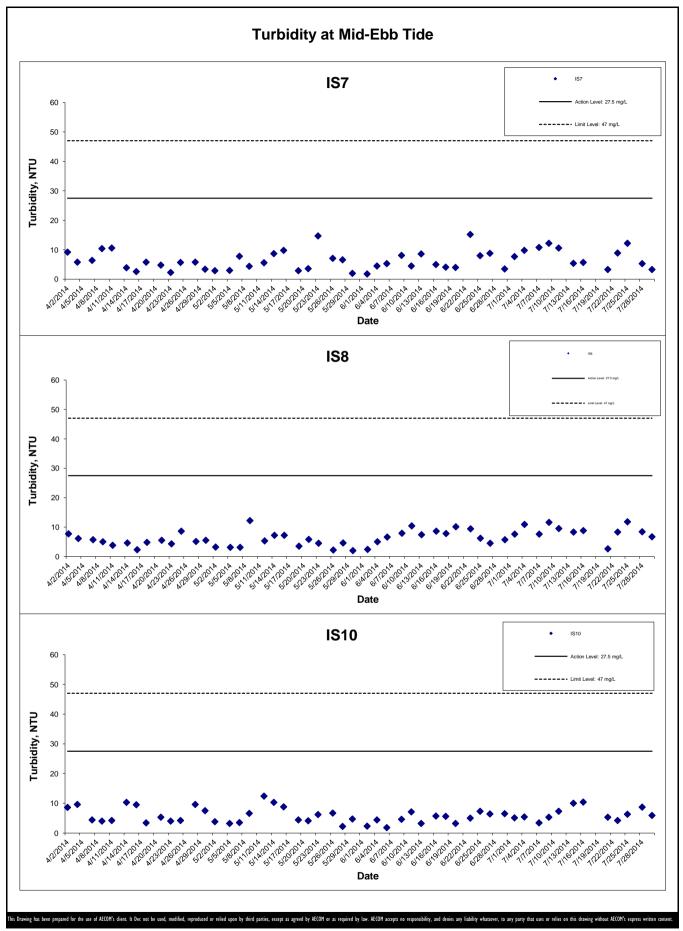
AECOM


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI

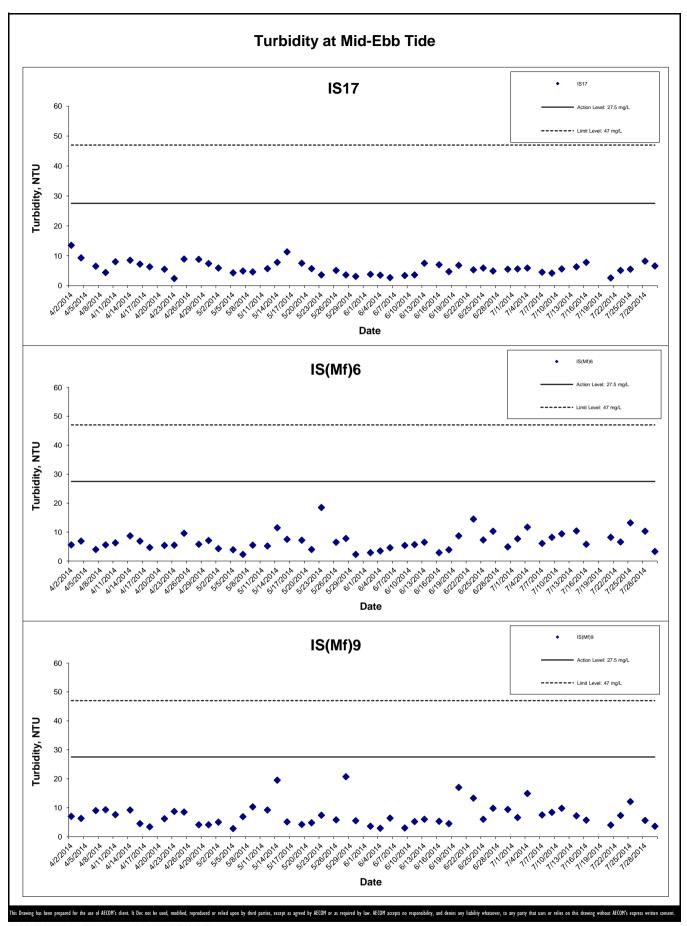
Graphical Presentation of Impact Water Quality
Monitoring Results


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

ES
Graphical Presentation of Impact Water Quality

- RECLAMATION WORKS Graphical Presentation of Impact W Monitoring Results Project No.: 60249820 Date: August 2014

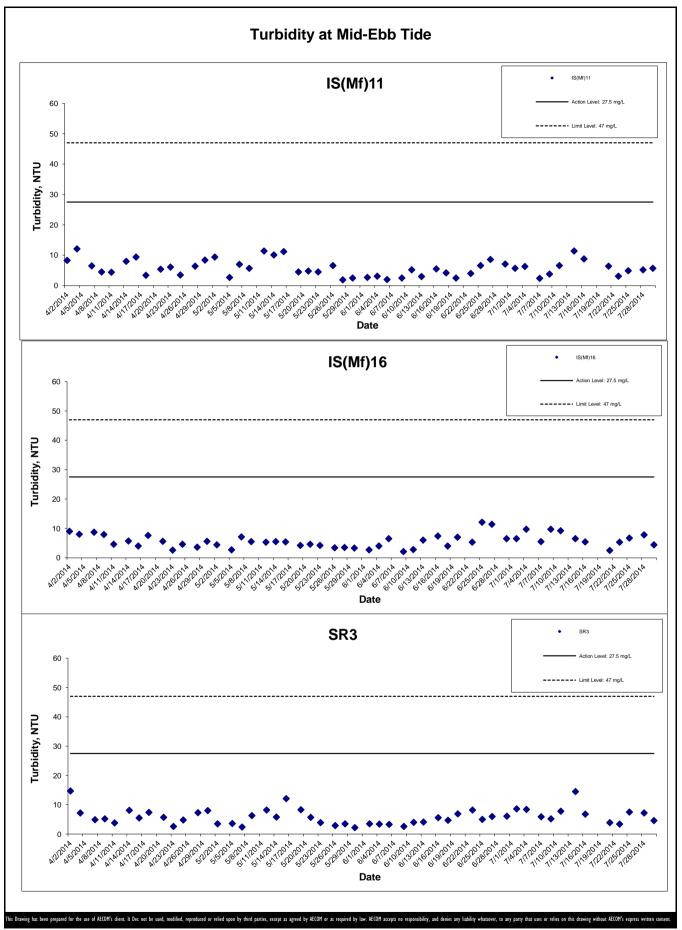

Project No.: 60249820

A**E**COM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

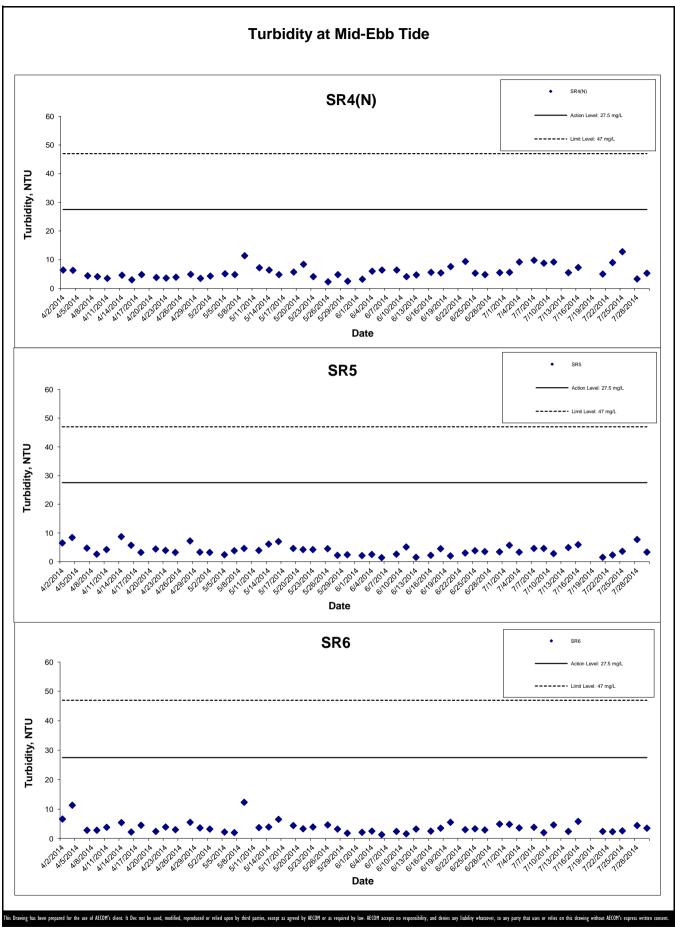
Monitoring Results

Date: August 2014


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI

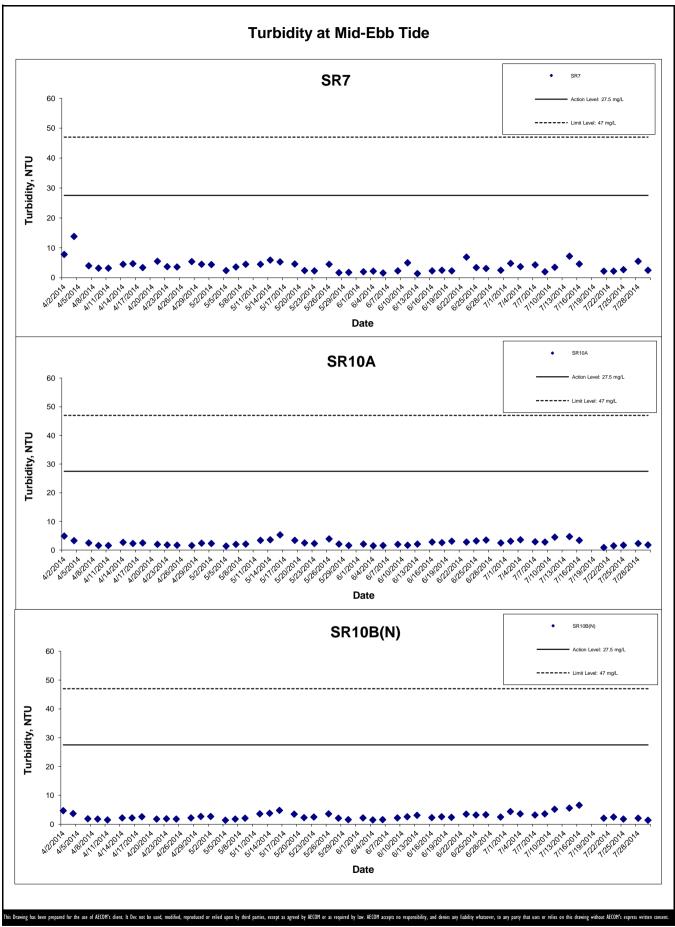
AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality


Monitoring Results

Project No.: 60249820 Date: August 2014

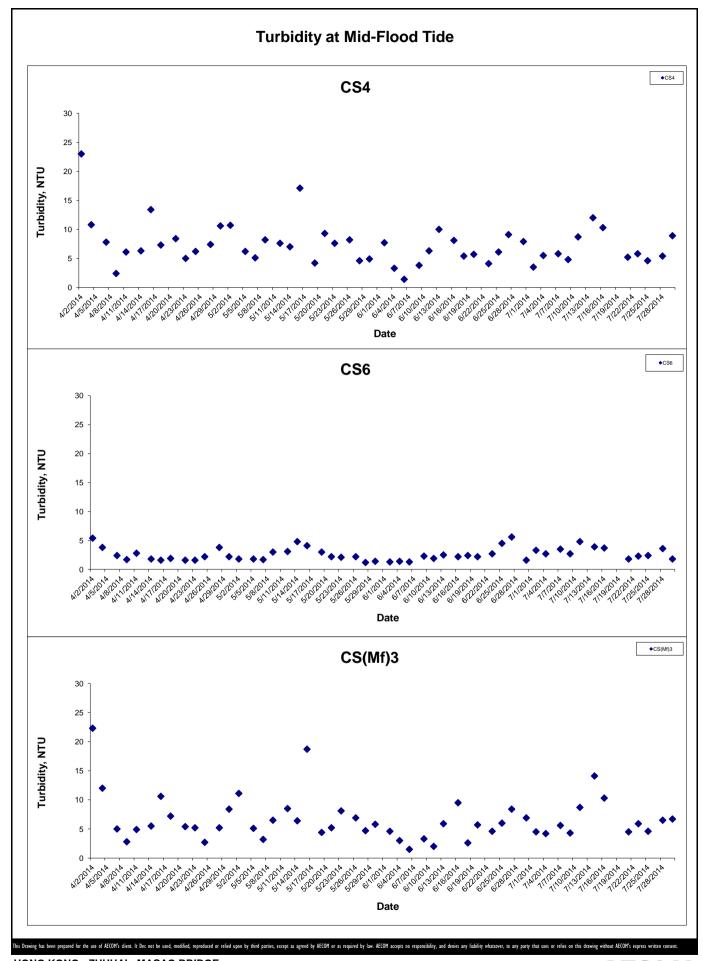
HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS


AECOM

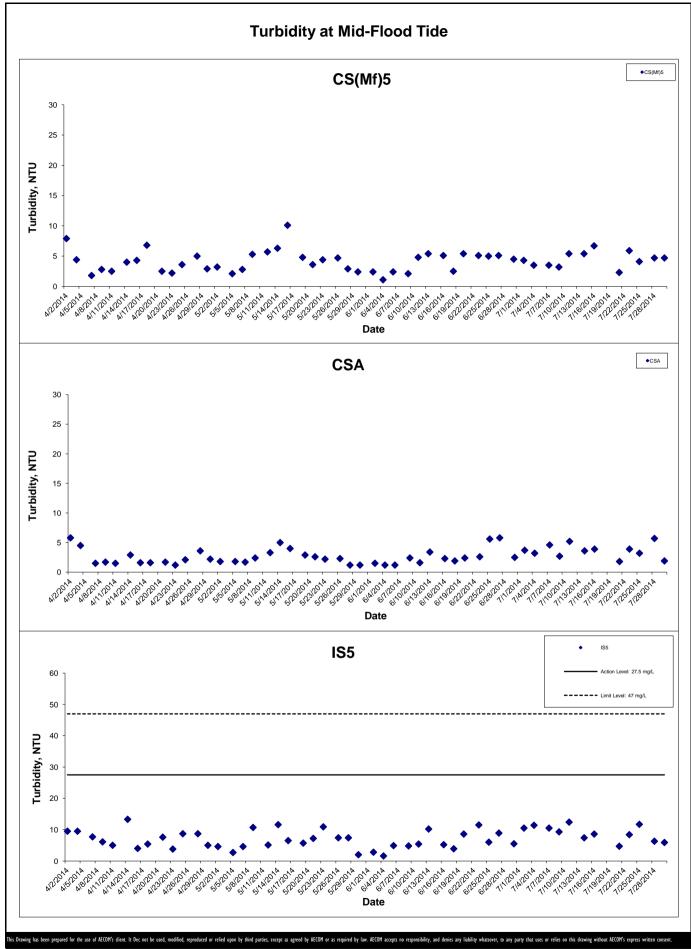
- RECLAMATION WORKS Graphical Presentation

Graphical Presentation of Impact Water Quality
Monitoring Results

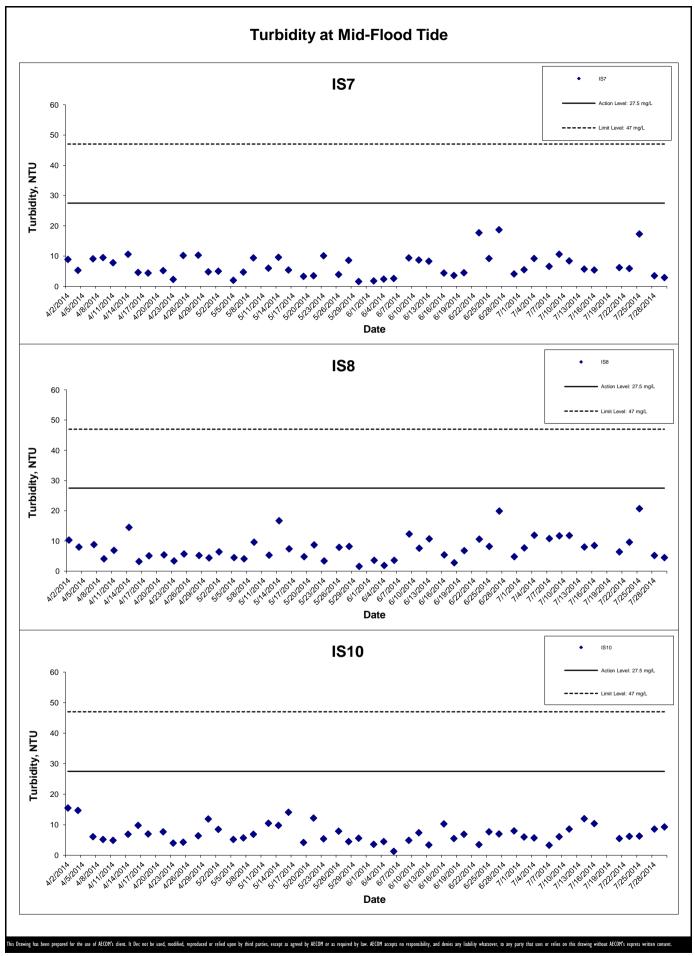
AECOM


- RECLAMATION WORKS

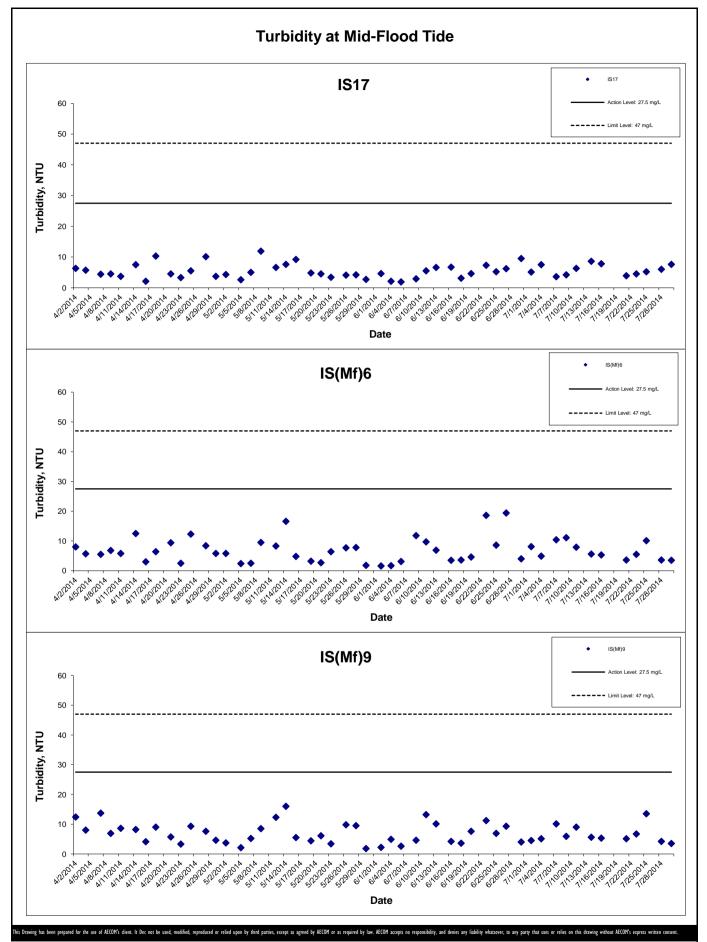
Graphical Presentation of Impact Water Quality
Monitoring Results


Project No.: 60249820 Date: August 2014

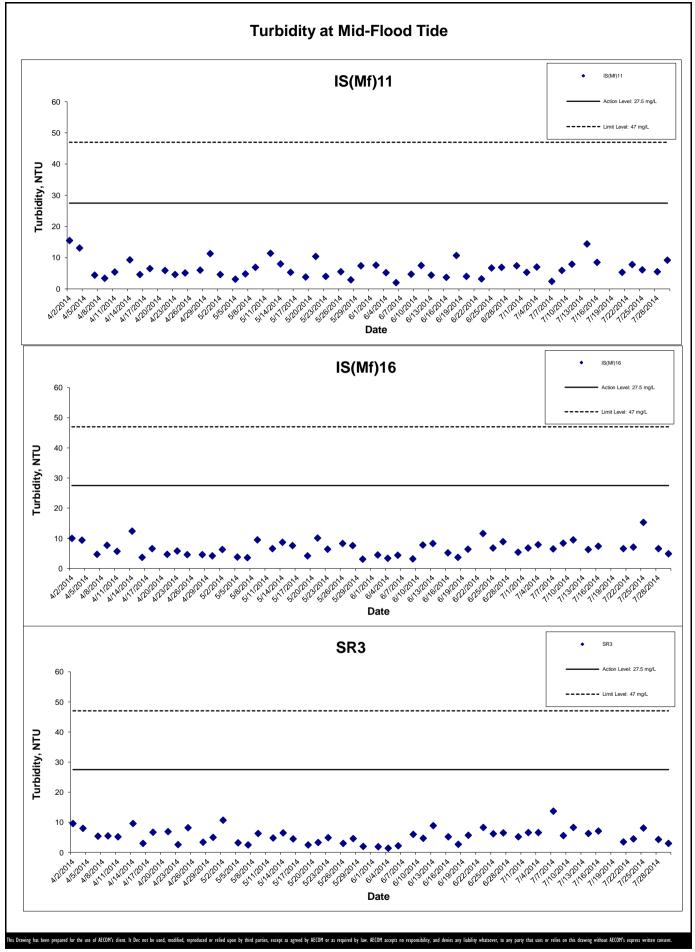
Appendix J



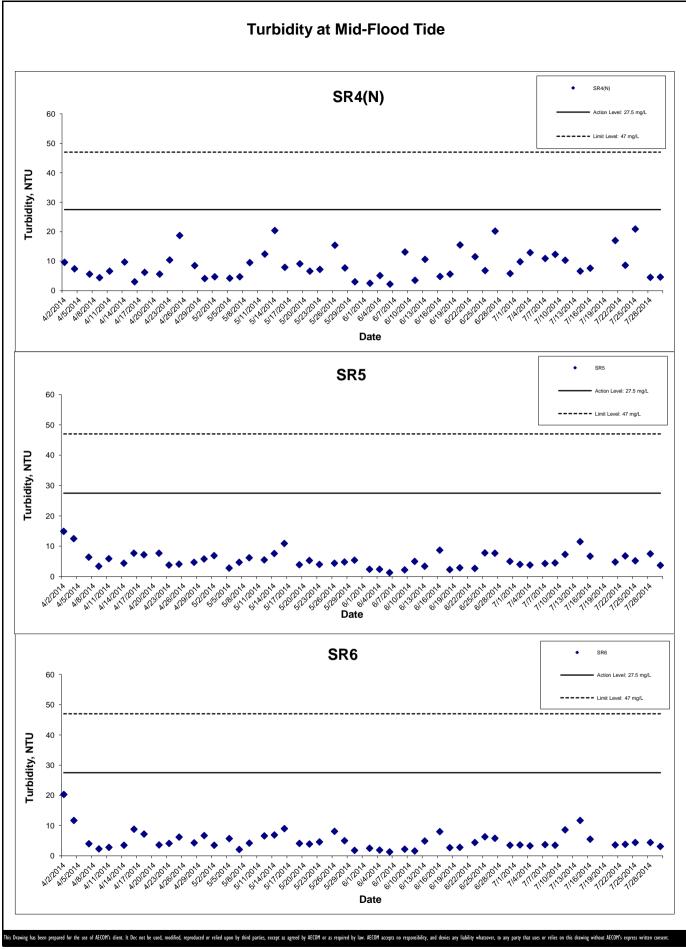
AECOM



- RECLAMATION WORKS

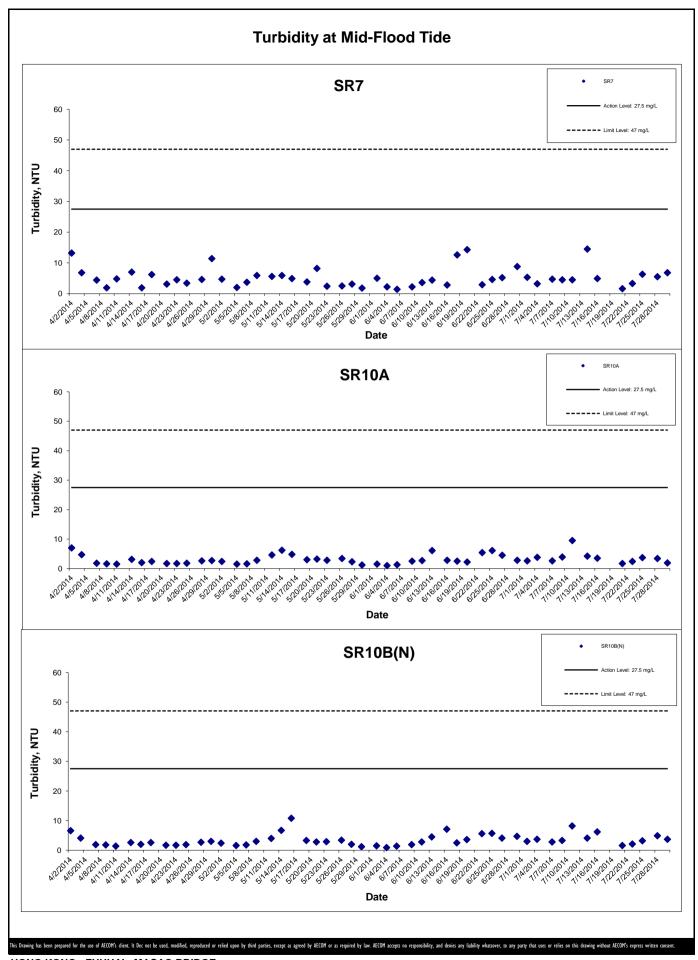

Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM


AECOM

AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality


Monitoring Results

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

Monitoring Results Project No.: 60249820 Date: August 2014 Appendix J

- RECLAMATION WORKS

TIES
Graphical Presentation of Impact Water Quality

Monitoring Results
Project No.: 60249820 Date: August 2014 Appendix J

Appendix K Impact Dolphin Monitoring Survey Sighting Summary

Table 1 Impact Dolphin Monitoring Survey Sighting Table

Project	Contract	Date	Sighting No.	Time	Group Size		Beaufort	PSD	Effort	Туре	Northing	Easting	Season	Boat Association
HKBCF	HY/2010/02	14-Jul-14	967	9:27	15	NWL	1	N/A	Орр	Impact	814464	804454	Summer	No
HKBCF	HY/2010/02	14-Jul-14	968	10:56	1	NWL	1	1000	On	Impact	820207	804672	Summer	No
HKBCF	HY/2010/02	14-Jul-14	970	11:24	1	NWL	1	80	On	Impact	822699	804687	Summer	No
HKBCF	HY/2010/02	14-Jul-14	971	12:25	3	NWL	2	104	On	Impact	829488	805463	Summer	No
HKBCF	HY/2010/02	14-Jul-14	972	13:01	3	NWL	2	58	On	Impact	825857	805466	Summer	No
HKBCF	HY/2010/02	15-Jul-14	975	10:34	1	NWL	2	355	On	Impact	825658	808483	Summer	No
HKBCF	HY/2010/02	29-Jul-14	979	9:51	1	NWL	1	N/A	Орр	Impact	814799	805083	Summer	No
HKBCF	HY/2010/02	29-Jul-14	980	10:04	2	NWL	1	N/A	Орр	Impact	814961	805279	Summer	No
HKBCF	HY/2010/02	29-Jul-14	981	2:14	2	NWL	1	N/A	Орр	Impact	814814	805145	Summer	No
HKBCF	HY/2010/02	29-Jul-14	982	10:27	2	NWL	1	143	On	Impact	814462	804505	Summer	No
HKBCF	HY/2010/02	29-Jul-14	983	12:18	9	NWL	2	686	On	Impact	821713	805478	Summer	No
HKBCF	HY/2010/02	29-Jul-14	984	14:12	2	NWL	1	95	On	Impact	828116	806459	Summer	No
HKBCF	HY/2010/02	29-Jul-14	985	15:20	1	NWL	2	6	On	Impact	821730	808487	Summer	No

KEY:

Sighting Opp Opportunistic On On effort

PSD Perpendicular Sighting Distance NEL North East Lantau
Group Size Represents best estimate for group encountered NWL North West Lantau

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Monthly EM&A Report for July 2014

June 2014 Photo Identification Information

Table 2. Sightings of Individually Identified Chinese White Dolphin (*Sousa chinensis*) between March 2012 – June 2014

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
HZMB 120		2014/05/31	951	NWL
HZMB 119		2014/04/19	940	NWL
HZMB 118		2014/01/06	890	NWL
117110 447		2014/06/17	964	NWL
HZMB 117		2014/01/06	888	NWL
HZMB 116		2013/12/26	879	NWL
HZMB 115		2013/12/26	879	NWL
HZMB 114		2013/10/24	827	NWL
HZMB 113		2013/10/24	827	NWL
HZMB 112		2013/10/15	815	NWL
HZMB111		2013/10/15	815	NWL
HZMB 110		2013/10/15	812	NWL
HZMB 108		2013/08/30	780	NEL
HZMB 107		2013/08/21	770	NWL
HZMB 106		2013/08/21	769	NWL
117MD 405		2014/05/31	951	NWL
HZMB 105		2013/07/08	711	NWL
HZMB 104		2013/07/08	711	NWL
HZMB 103		2013/07/08	711	NWL
HZMB 102		2013/07/08	706	NWL
HZMB 101		2013/07/08	706	NWL
HZMB 100		2013/07/08	706	NWL
117MD 000		2013/06/13	681	NWL
HZMB 099		2013/06/13	680	NWL
		2014/01/06	888	NWL
		2013/11/02	849	NWL
HZMP 000	NII 404	2013/11/02	845	NWL
HZMB 098	NL104	2013/10/24	831	NWL
		2013/07/08	711	NWL
		2013/05/24	659	NWL
HZMB 097		2013/05/09	647	NWL
HZMB 096		2013/04/01	621	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		2013/08/30	780	NEL
HZMB 095		2013/06/25	697	NWL
HZIVID U95		2013/06/13	682	NWL
		2013/04/01	621	NWL
		2014/05/31	954	NWL
HZMB 094		2014/02/17	910	NWL
		2013/06/26	703	NWL
		2013/06/25	698	NWL
		2013/03/18	601	NWL
LIZMD 000		2013/05/24	657	NWL
HZMB 093		2013/02/21	587	NWL
117MD 000		2013/02/21	589	NWL
HZMB 092		2013/02/15	581	NWL
HZMB 091		2013/02/15	579	NWL
		2013/06/25	697	NWL
HZMB 090		2013/06/13	682	NWL
		2013/02/15	579	NWL
HZMB 089		2013/02/15	579	NWL
HZMB 088		2013/02/15	579	NWL
HZMB 087		2013/02/15	579	NWL
		2013/05/09	642	NWL
HZMB 086	NL242	2013/02/15	579	NWL
		2011/10/10	Baseline	NWL
		2014/05/31	954	NWL
117MD 005		2013/06/26	703	NWL
HZMB 085		2013/02/15	579	NWL
HZMB 084		2013/02/14	575	NWL
		2013/12/19	863	NWL
		2013/03/28	607	NWL
HZMB 083	NL136	2013/02/15	579	NWL
		2013/01/28	568	NWL
		2012/01/28	564	NWL
		2013/02/21	587	NWL
HZMB 082		2013/02/15	579	NWL
		2013/01/28	563	NWL
117145 001		2013/01/28	559	NWL
HZMB 081		2013/01/28	557	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
HZMB 080		2013/01/28	556	NWL
HZMB 079		2013/01/28	556	NWL
117MD 070		2013/02/15	579	NWL
HZMB 078		2013/01/08	552	NWL
		2013/12/26	878	NWL
HZMB 077		2013/07/08	706	NWL
		2012/12/11	541	NWL
LIZMD 070		2013/07/08	706	NWL
HZMB 076		2012/12/11	541	NWL
HZMB 075		2012/12/06	525	NEL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
117140 074		2013/04/01	621	NWL
HZMB 074		2013/02/21	594	NEL
		2012/12/10	529	NEL
		2012/12/06	525	NEL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
LIZMD 070		2013/04/01	621	NWL
HZMB 073		2013/02/21	594	NEL
		2012/12/10	529	NEL
		2012/12/06	525	NEL
HZMB 072		2012/10/24	476	NWL
117MD 074		2012/10/24	475	NWL
HZMB 071		2012/10/12	466	NWL
HZMB 070		2012/10/24	476	NWL
		2013/08/21	774	NWL
HZMB 069		2013/07/08	711	NWL
		2012/10/24	476	NWL
117145 000		2013/11/01	839	NWL
HZMB 068		2012/10/24	476	NWL
HZMB 067		2012/10/24	475	NWL
		2013/01/28	559	NWL
117MD 000	NII OO	2012/12/11	537	NWL
HZMB 066	NL93	2012/10/24	475	NWL
		2012/10/12	466	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		2014/06/17	964	NWL
		2013/05/09	647	NWL
HZMB 064		2013/01/28	561	NWL
		2012/10/24	475	NWL
		2012/10/12	466	NWL
LIZMD 000		2013/05/09	647	NWL
HZMB 063		2012/10/12	466	NWL
1.17MD 000		2012/12/06	525	NEL
HZMB 062		2012/10/11	457	NWL
HZMB 060		2012/09/18	447	NWL
1171 AD 050		2013/02/21	591	NWL
HZMB 059		2012/09/18	445	NWL
HZMB 057		2012/09/18	440	NWL
		2012/09/18	442	NWL
HZMB 056		2012/09/05	433	NEL
HZMB 055		2012/09/04	425	NWL
		2014/05/31	953	NWL
		2014/01/06	888	NWL
		2013/11/07	854	NWL
		2013/11/02	845	NWL
		2013/10/24	831	NWL
		2013/08/30	780	NEL
		2013/07/08	711	NWL
		2013/09/18	448	NWL
HZMB 054	CH34	2012/09/05	432	NEL
		2011/11/07	Baseline	NWL
		2011/11/05	Baseline	NWL
		2011/11/02	Baseline	NWL
		2011/11/01	Baseline	NEL
		2011/11/01	Baseline	NEL
		2011/10/28	Baseline	NWL
		2011/10/06	Baseline	NWL
HZMB 053		2012/09/04	425	NWL
HZMB 052		2012/09/04	423	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		2013/05/09	644	NWL
		2013/04/01	622	NWL
		2013/02/15	582	NWL
HZMB 051	NL213	2013/02/15	581	NWL
		2013/01/28	559	NWL
		2013/01/28	556	NWL
		2012/09/04	422	NWL
		2014/01/10	900	NWL
LIZMD 050		2014/01/06	888	NWL
HZMB 050		2013/02/15	579	NWL
		2012/09/04	421	NWL
HZMB 049		2012/09/03	419	NWL
HZMB 048		2012/09/03	419	NWL
HZMB 047		2012/09/03	412	NWL
HZMB 046		2012/09/03	412	NWL
		2014/02/17	910	NWL
1171AD 045		2013/06/13	682	NWL
HZMB 045		2013/02/15	579	NWL
		2012/11/01	495	NWL
		2014/02/17	910	NWL
		2013/12/19	864	NWL
		2013/11/02	845	NWL
		2013/11/01	842	NWL
		2013/10/15	819	NWL
HZMB 044	NL98	2013/05/09	648	NWL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
		2013/04/01	621	NWL
		2013/02/15	579	NWL
		2012/11/01	495	NWL
HZMB 043		2012/09/03	407	NWL
		2013/12/19	863	NWL
HZMB 042	NL260	2012/11/01	495	NWL
		2011/11/07	Baseline	NWL

Identification	Baseline	Date	Sighting	Area
Number	Identification Number	(YYYY-MM-DD)	Number	Sighted
		2014/06/05	960	NEL
		2014/02/17	910	NWL
		2013/11/02	845	NWL
		2013/05/09	648	NWL
		2013/05/09	647	NWL
HZMB 041	NL24	2013/04/01	623	NWL
		2013/04/01	621	NWL
		2013/02/15	579	NWL
		2012/11/01	495	NWL
		2011/11/06	Baseline	NEL
		2011/11/05	Baseline	NWL
		2011/11/05	Baseline	NWL
		2011/10/10	Baseline	NWL
		2014/02/17	910	NWL
		2014/01/06	893	NWL
		2013/10/15	821	NWL
HZMB 040		2013/07/08	714	NWL
		2013/07/08	711	NWL
		2013/02/21	589	NWL
		2012/11/01	493	NWL
HZMB 038		2012/11/01	490	NWL
HZMB 037		2012/11/01	490	NWL
LIZMD 026		2012/09/03	407	NWL
HZMB 036		2012/11/01	490	NWL
117MD 005		2013/02/15	579	NWL
HZMB 035		2012/11/01	490	NWL
HZMB 034		2012/11/01	493	NWL
117145 000		2013/04/01	625	NWL
HZMB 028		2012/08/06	373	NWL
		2013/12/19	863	NWL
		2013/02/15	579	NWL
HZMB 027		2013/01/28	568	NWL
		2013/01/28	564	NWL
		2012/06/14	299	NWL
		2013/06/25	697	NWL
		2013/05/09	642	NWL
HZMB 026		2013/01/28	561	NWL
		2012/06/13	295	NEL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		2013/02/22	596	NEL
		2013/02/21	591	NWL
HZMB 025		2012/12/06	525	NEL
		2012/10/11	457	NWL
		2012/06/13	295	NEL
LIZMD 004		2013/03/18	601	NWL
HZMB 024		2012/06/13	295	NEL
		2014/01/06	888	NWL
		2013/07/08	715	NWL
		2013/07/08	711	NWL
HZMB 023		2013/04/01	619	NWL
		2013/02/21	589	NWL
		2013/02/15	579	NWL
		2012/07/10	330	NWL
		2014/01/06	888	NWL
		2013/10/24	827	NWL
		2013/07/08	715	NWL
LIZMD 000		2013/07/08	711	NWL
HZMB 022		2013/04/01	619	NWL
		2013/02/21	589	NWL
		2013/02/15	579	NWL
		2012/07/10	330	NWL
LIZMD 004	NII 27	2012/07/10	330	NWL
HZMB 021	NL37	2011/09/16	Baseline	NWL
HZMB 020		2012/07/10	330	NWL
HZMB 019		2012/07/10	330	NWL
		2014/02/17	910	NWL
		2013/05/09	647	NWL
HZMB 018		2013/02/21	594	NEL
		2012/12/10	529	NEL
		2012/07/10	330	NWL
HZMB 017		2012/07/10	330	NWL
		2013/07/08	706	NWL
		2012/12/11	539	NWL
HZMB 016		2012/09/18	446	NWL
		2012/09/04	421	NWL
		2012/07/10	330	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
HZMB 015		2012/07/10	330	NEL
		2013/12/26	880	NWL
		2012/08/06	373	NWL
HZMB 014	NI 470	2012/06/13	295	NEL
HZIVIB 014	NL176	2011/11/06	Baseline	NEL
		2011/11/01	Baseline	NEL
		2011/11/01	Baseline	NEL
HZMB 013		2012/05/28	281	NWL
HZMB 012		2012/05/28	281	NWL
		2013/02/22	597	NEL
		2013/02/21	592	NEL
		2013/02/14	572	NEL
LIZMD 044	EL 04	2012/11/06	517	NEL
HZMB 011	EL01	2012/09/19	452	NWL
		2012/03/31	261	NEL
		2011/11/02	Baseline	NWL
		2011/11/01	Baseline	NEL
HZMB 009		2012/05/28	281	NWL
HZMB 008		2012/05/28	281	NWL
HZMB 007	NL246	2012/12/10	529	NEL
		2013/02/21	594	NEL
11 7MD 000		2012/12/11	539	NWL
HZMB 006		2012/11/01	495	NWL
		2012/03/29	250	NWL
		2013/11/09	860	NWL
		2013/11/07	858	NWL
HZMB 005		2013/10/15	813	NWL
		2012/12/10	532	NWL
		2012/08/06	374	NWL
		2012/05/28	287	NWL
LIZMP 004		2012/09/04	421	NWL
HZMB 004		2012/03/31	262	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		2013/10/15	812	NWL
		2013/06/25	697	NWL
HZMB 003	NL179	2012/12/10	529	NEL
TIZIVID 003	INC179	2012/03/31	261	NWL
		2011/11/06	Baseline	NEL
		2011/09/16	Baseline	NWL
		2014/05/31	951	NWL
		2013/12/26	878	NWL
		2013/12/19	863	NWL
		2013/11/01	839	NWL
		2013/10/15	819	NWL
		2013/09/24	798	NWL
11 7M D 000	WL111	2013/02/14	573	NWL
HZMB 002	VVLIII	2012/12/11	536	NWL
		2012/12/11	535	NWL
		2012/10/12	466	NWL
		2012/10/24	475	NWL
		2012/05/28	281	NWL
		2012/03/29	250	NWL
		2013/08/21	771	NWL
		2013/06/13	681	NWL
HZMB 001	WL46	2013/04/01	617	NWL
		2013/02/14	573	NWL
		2012/03/29	250	NWL
	CH98	2011/11/02	Baseline	NWL
	NII 44	2011/11/02	Baseline	NWL
	NL11	2011/11/07	Baseline	NWL
	NL12	2011/11/02	Baseline	NWL
		2011/09/23	Baseline	NWL
	NII OO	2011/11/01	Baseline	NEL
	NL33	2011/11/05	Baseline	NWL
		2011/11/07	Baseline	NWL
	NL37	2011/09/16	Baseline	NWL
	NL46	2011/10/28	Baseline	NWL

Appendix L – Event Action Plan

Event / Action Plan for Air Quality

Event	Action					
	ET Leader	IEC	ER	Contractor		
Action Level						
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily.	Check monitoring data submitted by ET; Check Contractor's working method.	1. Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.		
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	1. Submit proposals for remedial to ER within 3 working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate.		

Event	Action				
	ET Leader	IEC	ER	Contractor	
Limit Level					
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	Contractor on possible	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 	

Event	Action				
	ET Leader	IEC	ER	Contractor	
samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is	

Event / Action Plan for Construction Noise

Event	Action							
	ET Leader	IEC	ER	Contractor				
Action Level	 Notify IEC and Contractor; Identify source, investigate the causes of exceedance and propose remedial measures; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals. 				
Limit Level	 Inform IEC, ER, EPD and Contractor; Identify source; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 				

Event / Action Plan for Water Quality

Event	Action								
	ET Leader	IEC	ER	Contractor					
Action level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Repeat measurement on next day of exceedance to confirm findings. 	Check monitoring data submitted by ET and Contractor's working methods; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures.	Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented.	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. Amend working methods if appropriate. 					

Event	Action							
	ET Leader	IEC	ER	Contractor				
or more consecutiv e sampling days	 Repeat <i>in situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level; Repeat measurement on next day of exceedance to confirm findings. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER within 3 working days of notification; Implement the agreed mitigation measures; Amend working methods if appropriate. 				

Event	Action								
	ET Leader	IEC	ER	Contractor					
sampling day	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Amend working methods if appropriate. 					

Event	Action						
	ET Leader	IEC	ER	Contractor			
or more consecutive sampling days	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	1. Check monitoring data submitted by ET and Contractor's working method; 2. Discuss with ET and Contractor on possible remedial actions; 3. Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the ER accordingly.	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 	 Inform the ER and confirm notification of the non-compliance in writing; Take immediate action to avoid further exceedance; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Engineer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 			

Event / Action Plan for Dolphin Monitoring

Event	ET Leader	IEC	ER / SOR	Contractor
Action Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor; Check monitoring data. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and finding with the ET and the Contractor. 	 Discuss monitoring with the IEC and any other measures proposed by the ET; If ER/SOR is satisfied with the proposal of any other measures, ER/SOR to signify the agreement in writing on the measures to be implemented. 	 Inform the ER/SOR and confirm notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the ER/SOR; Implement the agreed measures.
Limit Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor of findings; Check monitoring data; 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. Review proposals for additional monitoring and any other mitigation measures submitted 	 Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. If ER/SOR is satisfied with the proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, ER/SOR to signify the agreement in writing on such proposals and any other mitigation measures. 	 Inform the ER/SOR and confirm notification of the non-compliance in writing; Attend the meeting to discuss with ET, IEC and ER/SOR the necessity of additional dolphin monitoring and any other potential mitigation measures. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary. Implement the agreed additional dolphin monitoring lophin monitoring

6. Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.	by ET and Contractor and advise ER/SOR of the results and findings accordingly. 5. Supervise / Audit the implementation of additional monitoring and/or any other	 Supervise the implementation of additional monitoring and/or any other mitigation measures. 	and/or any other mitigation measures.
7. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, ER/SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary.	mitigation measures and advise ER/SOR the results and findings accordingly.		

China Harbour Engineering Company Limited

Monthly Summary Waste Flow Table for <u>July / 2014</u> (year)

Project: Hong Kong – Zhuhai – Macao Bridge, Hong Kong Boundary Crossing Facilities – Reclamation Works

Contract No.: HY/2010/02

1 Toject : 12	Actual Quantities of Inert C&D Materials Generated Monthly Actual Quantities of C&D Wastes Generated Monthly Actual Quantities of C&D Wastes Generated Monthly										
		Actual Qualitates of filer Coep Materials Conclude Monthly						Ctual Qualititi	es of C&D wa	istes Generated IVIC	nitilly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste (see Note 4)	Others, e.g. general refuse (see Note 3)
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan-14	0.0000	0.0000	0.0000	0.0000	0.0000	1158.9828	0.0000	0.1680	0.0000	2.0000	0.0325
Feb-14	0.0000	0.0000	0.0000	0.0000	0.0000	1064.5957	0.0000	0.2520	0.0000	0.0000	0.0520
Mar-14	0.0000	0.0000	0.0000	0.0000	0.0000	1111.9982	0.0000	0.0000	0.0000	1.4000	0.1690
Apr-14	0.0000	0.0000	0.0000	0.0000	0.0000	1294.8080	0.0000	0.0000	0.0000	0.0000	0.0845
May-14	0.0000	0.0000	0.0000	0.0000	0.0000	1181.4168	0.0400	0.0240	0.0000	1.0000	0.2250
Jun-14	0.0000	0.0000	0.0000	0.0000	0.0000	752.7711	0.0000	0.1400	0.0000	8.8000	0.1690
Sub-total	0.0000	0.0000	0.0000	0.0000	0.0000	6564.5726	0.0400	0.5840	0.0000	13.2000	0.7320
Jul-14	0.0000	0.0000	0.0000	0.0000	0.0000	1252.4373	0.0030	0.0340	0.0010	1.6000	0.2145
Aug-14											
Sep-14											
Oct-14											
Nov-14											
Dec-14											
Total	0.0000	0.0000	0.0000	0.0000	0.0000	7817.0099	0.0430	0.6180	0.0010	14.8000	0.9465

Notes:

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials.
- (3) Use the conversion factor: 1 full load of dumping truck being equivalent to 6.5m³ by volume.
- (4) Chemical waste refer to spent "battery" and "oil with water".

Appendix N

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in this month	Total no. recorded since project commencement
1-Hour TSP	Action	-	-
	Limit	-	-
24-Hour TSP	Action	-	-
	Limit	-	•
Noise	Action	-	•
	Limit	-	-
Water Quality	Action	-	1
	Limit	-	1
Dolphin Monitoring	Action	-	-
	Limit	-	-

Remarks: Exceedances which are not project-related are not presented in this table.

Cumulative statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no.	Total no.
				in this	project
				month	commencement
Environmental		As informed by the Contractor			
complaints		on 3 July 2014, there was an			
		environmental complaint			
		received on 13 June 14. The			
		complainant who lived at			
	3 July 2014	Caribbean Coast complained	Closed	1	21
		that there were night time noise			
		and visual impact (strong			
		lighting) from the overnight			
		construction works/plants of			
		HKBCF Island.			

Tiong Kong Boo	indary Cross	ing raciilles – Reciamation	MOTHING LINEA I	CPOIL IOI July	2014
		After investigation, this visual impact complaint is likely to be related to the construction works of this contract. However, with referred to the available information, it is concluded that the night time noise complaint is unlikely to be related to this Contract.			
23	July 14	As informed by the Contractor on 23 July 14, a complaint has been received from Oriental Daily Newspaper on 22 July 14. In the complaint, Oriental Daily Newspaper stated that Miss Cheung, who is a resident of Miami Beach Towers (Tuen Mun), pointed out that construction of the airport artificial island engineering works was being conducted at the sea area in front of the estate, a lot of sand delivery barges were moored at sea area between Castle Peak Beach (Tuen Mun Typhoon Shelter) and Tuen Mun Ferry Pier. She discovered on several occasions that there were leakage of soil from sand delivery barges causing discoloration of sea water and sometimes, leaking of sand from more than two sand delivery barges at a time was observed.	Closed	2	22

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation

Monthly EM&A Report for July 2014

		adequate information to			
		conclude the observed impact is			
		related to this Contract.			
Notification of					2
summons	-	-	-	-	2
Successful					2
Prosecutions	-	•	-	-	2