
Report

Contract No. HY/2012/08
Tuen Mun – Chek Lap Kok Link –
Northern Connection Sub-sea Tunnel
Section

Fourth Monthly Environmental Monitoring & Audit (EM&A) Report

12 March 2014

Environmental Resources Management

16/F, DCH Commercial Centre 25 Westlands Road Quarry Bay, Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com

Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section

Fourth Monthly Environmental Monitoring & Audit (EM&A) Report

Document Code: 0212330_4th Monthly EM&A_rev_20140311.doc

Environmental Resources Management

16/F, DCH Commercial Centre 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com

http://www.erm.com

Client:		Project N	lo:				
DBJV			0212330				
			ch 2014				
This document presents the Fourth Monthly EM&A Report for Tuen Mun – Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section.							
		Mr Crai	ig Reid				
		Partner Certified	hv:				
		Certified	S.				
		Mr Jovy ET Lead					
	4 th Monthly EM&A Report	VAR	JT	CAR	12/03/14		
Revision	Description	Ву	Checked	Approved	Date		
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.			Internal OHSAS 18001-2007 Certificate No. OHS 51				
•		☐ Co	nfidential	ISO 9 Certificate	001 : 2008 2 No. FS 32515		

Ref.: HYDHZMBEEM00_0_1768L.14 13 March 2014

AECOM

By Fax (2450 3099) and By Post

Supervising Officer Representative's Office Room 201, 2nd Floor, River Trade Terminal Office Building, 201 Lung Mun Road, Tuen Mun, Hong Kong

Attention: Messrs. Edwin Ching / Andy Westmorelan

Dear Sir,

Re: Agreement No. CE 48/2011 (EP)
Environmental Project Office for the
HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities,
and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2012/08 TM-CLKL Northern Connection Sub-sea Tunnel Section Monthly EM&A Report for February 2014 (EP-354/2009/B)

Reference is made to the Monthly Environmental Monitoring and Audit (EM&A) Report (for February 2014) certified by the ET Leader (ET's ref.: "0212330_4th Monthly EM&A_20140311.doc" dated 12 March 2014) and provided to us via email on 12 March 2014.

We are pleased to inform you that we have no adverse comments on the captioned monthly EM&A Report. We write to verify the captioned submission in accordance with Condition 4.4 of EP-354/2009/B.

Thank you for your kind attention. Please do not hesitate to contact the undersigned or the ENPO Leader Mr. Y H Hui should you have any queries.

Yours sincerely,

Tony Cheng

Independent Environmental Checker

Tuen Mun – Chek Lap Kok Link

c.c. HyD – Mr. Stephen Chan (By Fax: 3188 6614)

HyD – Mr. Matthew Fung (By Fax: 3188 6614)

AECOM – Mr. Conrad Ng (By Fax: 3922 9797)

ERM – Mr. Jovy Tam (By Fax: 2723 5660)

Dragages - Mr. C.F. Kwong (By Fax: 2670 2798)

Internal: DY, YH, PL, ENPO Site

T:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_1768L.14.doc

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	I
1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	SCOPE OF REPORT	2
1.3	ORGANIZATION STRUCTURE	2
1.4	SUMMARY OF CONSTRUCTION WORKS	2
2	EM&A RESULTS	5
2.1	AIR QUALITY	5
2.2	WATER QUALITY MONITORING	7
2.3	DOLPHIN MONITORING	8
2.4	EM&A SITE INSPECTION	13
2.5	WASTE MANAGEMENT STATUS	14
2.6	ENVIRONMENTAL LICENSES AND PERMITS	14
2.7	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	16
2.8	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMA	NCE
	LIMIT	16
2.9	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL	
	PROSECUTIONS	16
3	FUTURE KEY ISSUES	17
3.1	CONSTRUCTION PROGRAMME FOR THE COMING MONTHS	17
3.2	KEY ISSUES FOR THE COMING MONTH	17
3.3	MONITORING SCHEDULE FOR THE COMING MONTH	17
4	CONCLUSIONS AND RECOMMENDATIONS	18
4.1	CONCLUSIONS	18
4.2	RECOMMENDATIONS	18

APPENDIX A PROJECT ORGANIZATION

APPENDIX B THREE MONTHS PROGRAMME

APPENDIX C ENVIRONMENTAL MITIGATION AND

ENHANCEMENT MEASURE IMPLEMENTATION

SCHEDULES (EMIS)

APPENDIX D ACTION AND LIMIT LEVELS

APPENDIX E CALIBRATION CERTIFICATE

APPENDIX F MONITORING SCHEDULE

APPENDIX G AIR QUALITY MONITORING RESULTS

APPENDIX H METEOROLOGICAL DATA

APPENDIX I WATER QUALITY MONITORING RESULTS

APPENDIX J IMPACT DOLPHIN MONITORING

APPENDIX K EVENT AND ACTION PLAN

APPENDIX L CUMULATIVE STATISTICS ON EXCEEDANCE AND

COMPLAINT

APPENDIX M WASTE FLOW TABLE

EXECUTIVE SUMMARY

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of the Tuen Mun – Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET) in accordance with *Environmental Permit No. EP-354/2009/A*. ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO). Another application for variation of environmental permit (VEP) (*EP-354/2009/B*) was granted on 28 January 2014.

The construction phase of the Project under the *EP-354/2009/A* and the subsequent VEP (*EP-354/2009/B*) commenced on 1 November 2013 and will tentatively be completed by the end of 2018. The impact monitoring of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

This is the fourth monthly EM&A report presenting the EM&A works carried out during the period from 1 to 28 February 2014 for the *Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section* (the "Project") in accordance with the Updated EM&A Manual of the TM-CLK Link Project. As informed by the Contractor, major activities in the reporting period included:

Marine-based Works

- Dredging;
- Vertical Seawall construction;
- Sloping Seawall construction;
- Temporary pontoon installation at River Trade Terminal (RTT); and
- Marine Sheet Piling for Box Culvert extension.

Land-based Works

- WA 18 Site office construction:
- CLP Substation structure works; and
- CLP Substation E&M works.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP Monitoring 6 sessions

1-hour TSP Monitoring 6 sessions

Impact Water Quality Monitoring 12 sessions

Impact Dolphin Monitoring 2 sessions

Joint Environmental Site Inspection 4 sessions

Daily marine mammal exclusion zone monitoring was undertaken during the period of dredging works. One sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* was recorded on 20th February 2014 during the exclusion zone monitoring. The dolphin group of three was sighted within the 250 m marine mammal exclusion zone from a dredging barge sighting platform by the marine mammal observer. The marine dredging work was subsequently suspended until the observer has confirmed that the area is continuously clear of dolphins for a period of 30 minutes.

Summary of Breaches of Action/Limit Levels

Breaches of Action and Limit Levels for Air Quality

Two Action Level exceedances for 1-hr TSP while no exceedance for 24-hr TSP in air quality monitoring were recorded during the reporting month. The Project works were unlikely to be the major cause of the recorded exceedances upon further investigation.

Breaches of Action and Limit Levels for Water Quality

No exceedances were recorded during the reporting month.

Dolphin Monitoring

Whilst one Action Level exceedance was observed for the quarterly dolphin monitoring data between December 2013 and February 2014, no unacceptable impact from the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations during the dolphin monitoring in this reporting month. Due to monthly variation in dolphin occurrence within the study area, it would be more appropriate to draw conclusion on whether any unacceptable impacts on dolphins have been detected related to the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section in the quarterly EM&A reports, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

Environmental Complaints, Non-compliance & Summons

No non-compliance with EIA recommendations, EP conditions and other requirements associated with the construction of this Contract was recorded in this reporting period.

No environmental complaint was received in this reporting period.

No environmental summons was received in this reporting period.

Reporting Change

There was no reporting change required in the reporting period.

Upcoming Works for the Next Reporting Period

Works to be undertaken in the next monitoring period of March 2014 include the following:

Marine-based Works

- Dredging;
- Reclamation;
- Vertical Seawall construction;
- Sloping Seawall construction;
- Marine Sheet Piling for Box Culvert extension; and
- Predrilling for Box culvert Foundation.

Land-based Works

- AECOM site office construction:
- CLP Substation Footing & underground utilities works; and
- CLP Substation Superstructure.

Future Key Issues

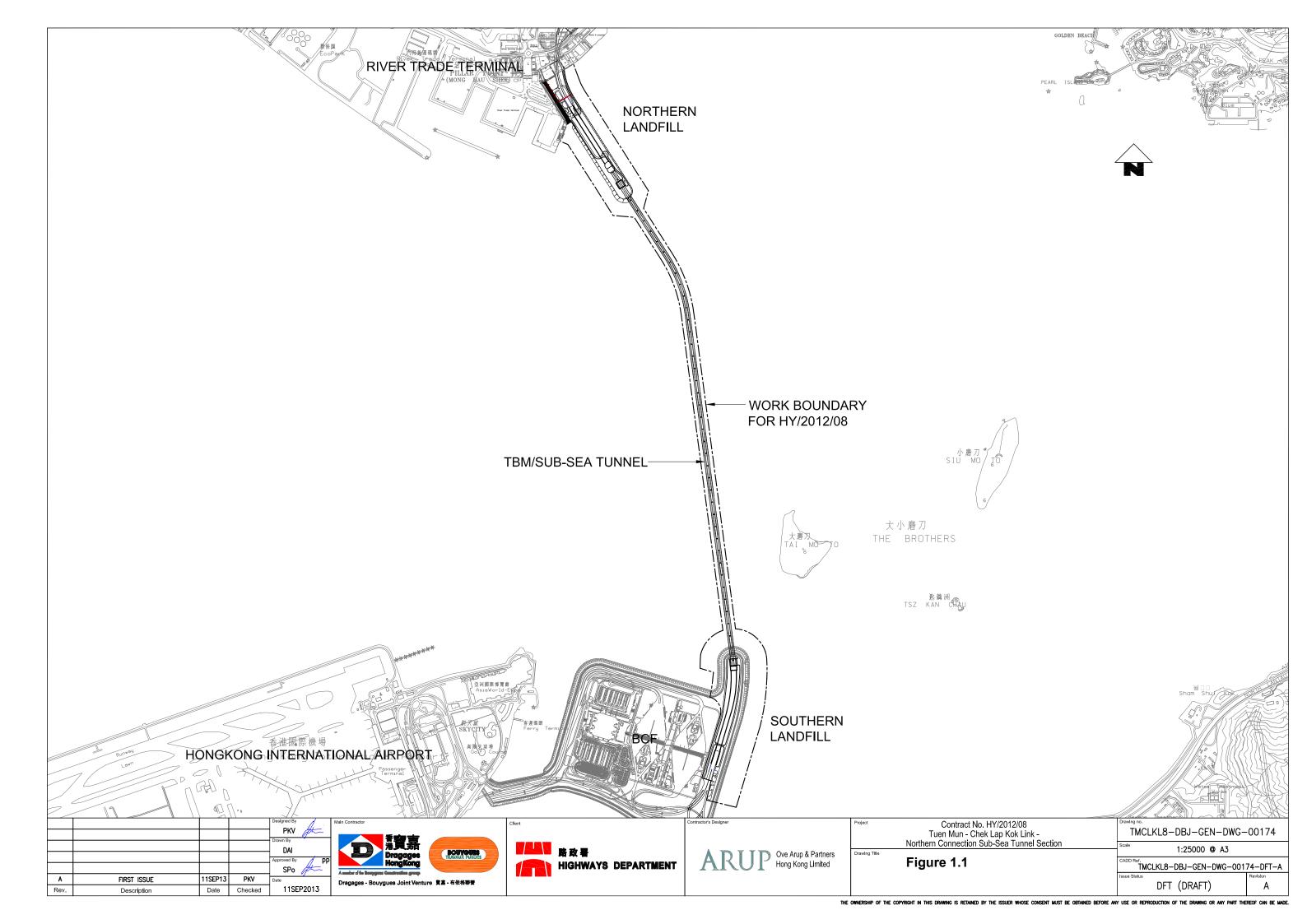
Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of March 2014 are expected to be mainly associated with dust, marine water quality, marine ecology and waste management.

III

INTRODUCTION

1.1 BACKGROUND

1


According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong – Zhuhai – Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau – Tuen Mun – Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. ESB-175/2007) and the *Technical Memorandum of the Environmental Impact Assessment Process (EIAO-TM*). The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number AEIAR-145/2009), an Environmental Permit (EP-354/2009) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (VEP) (EP-354/2009A) was issued on 8 December 2010. Another application for VEP (EP-354/2009/B) was granted on 28 January 2014.

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of TM-CLKL ("the Contract") while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET) in accordance with Environmental Permit No. EP-354/2009/A and VEP (EP-354/2009/B). ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO).

Layout of the Contract components is presented in *Figure 1.1*.

The construction phase of the Contract commenced on 1 November 2013 and will tentatively be completed by 2018. The impact monitoring phase of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

1.2 Scope of Report

This is the fourth Monthly EM&A Report under the *Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section*. This report presents a summary of the environmental monitoring and audit works in February 2014.

1.3 ORGANIZATION STRUCTURE

The organization structure of the Contract is shown in *Appendix A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
SOR	Chief Resident	Edwin Ching	2450 3111	2450 3099
(AECOM Asia Company	Engineer			
Limited)		Andrew Westmoreland	2450 3511	2450 3099
ENPO / IEC	ENPO Leader	Y.H. Hui	3465 2888	3465 2899
(ENVIRON Hong Kong Ltd.)	IEC	Tony Cheng	3465 2888	3465 2899
,		, 0		
Contractor (Dragages - Bouygues Joint Venture)	Environmental Manager	C.F. Kwong	2293 7322	2670 2798
John Venture)	Environmental Officer	Bryan Lee	2293 7323	2670 2798
	24hour complaint hotline	Rachel Lam	2293 7342	
ET (ERM-HK)	ET Leader	Jovy Tam	2271 3113	2723 5660

1.4 SUMMARY OF CONSTRUCTION WORKS

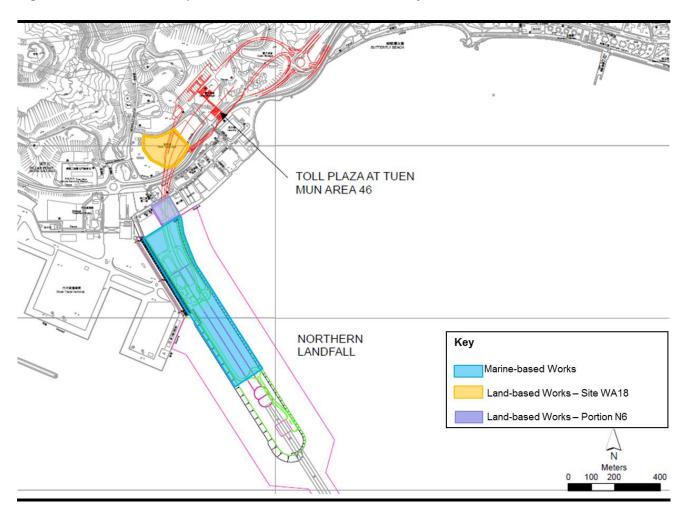
The construction phase of this Contract was commenced on 1 November 2013. The three-month rolling construction programme is shown in *Appendix B*.

As per DBJV's information, details of major construction works carried out in this reporting period are as follows:

Marine-based Works

- Dredging;
- Vertical Seawall construction;
- Sloping Seawall construction;
- Temporary pontoon installation at RTT; and

• Marine Sheet Piling for Box Culvert extension.


Land-based Works

- WA 18 Site office construction;
- CLP Substation structure works; and
- CLP Substation E&M works.

The general layout plan of the site showing the detailed works areas is shown in *Figure 1.2*.

The implementation schedule of environmental mitigation measures is presented in *Appendix C*.

Figure 1.2 Locations of Construction Activities - February 2014

2 EM&A RESULTS

The EM&A programme required environmental monitoring for air quality, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections

2.1 AIR QUALITY

2.1.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual, impact 1-hour TSP monitoring was conducted three (3) times every six (6) days and impact 24-hour TSP monitoring was carried out once every six (6) days when the highest dust impact was expected.

High volume samplers (HVSs) were used to carry out the 1-hour and 24-hour TSP monitoring on 5, 8, 12, 18, 24 and 28 February 2014 at the five (5) air quality monitoring stations in accordance with the requirements stipulated in the Updated EM&A Manual (*Figure 2.1*; *Table 2.1*). Wind anemometer was installed at the rooftop of ASR5 for logging wind speed and wind direction. Details of the equipment deployed are provided in *Table 2.2*. Copies of the calibration certificates for the equipment are presented in *Appendix E*.

Table 2.1 Locations of Impact Air Quality Monitoring Stations

Monitoring Station	Monitoring	Location	Description	Parameters &
	Dates			Frequency
ASR1	5, 8, 12, 18, 24	Tuen Mun Fireboat	Office	• 1-hour Total
	and 28 February	Station		Suspended
	2014			Particulates (1-hour
ASR5		Pillar Point Fire	Office	TSP, $\mu g/m^3$), 3
		Station		times per day every
AQMS1		Previous River Trade	Bare ground	6 days
		Golf		 24-hour Total
ASR6		Butterfly Beach	Office	Suspended
		Laundry		Particulates (24-
ASR10		Butterfly Beach Park	Recreational	hour TSP, μ g/m ³),
			uses	daily for 24-hour
				every 6 days

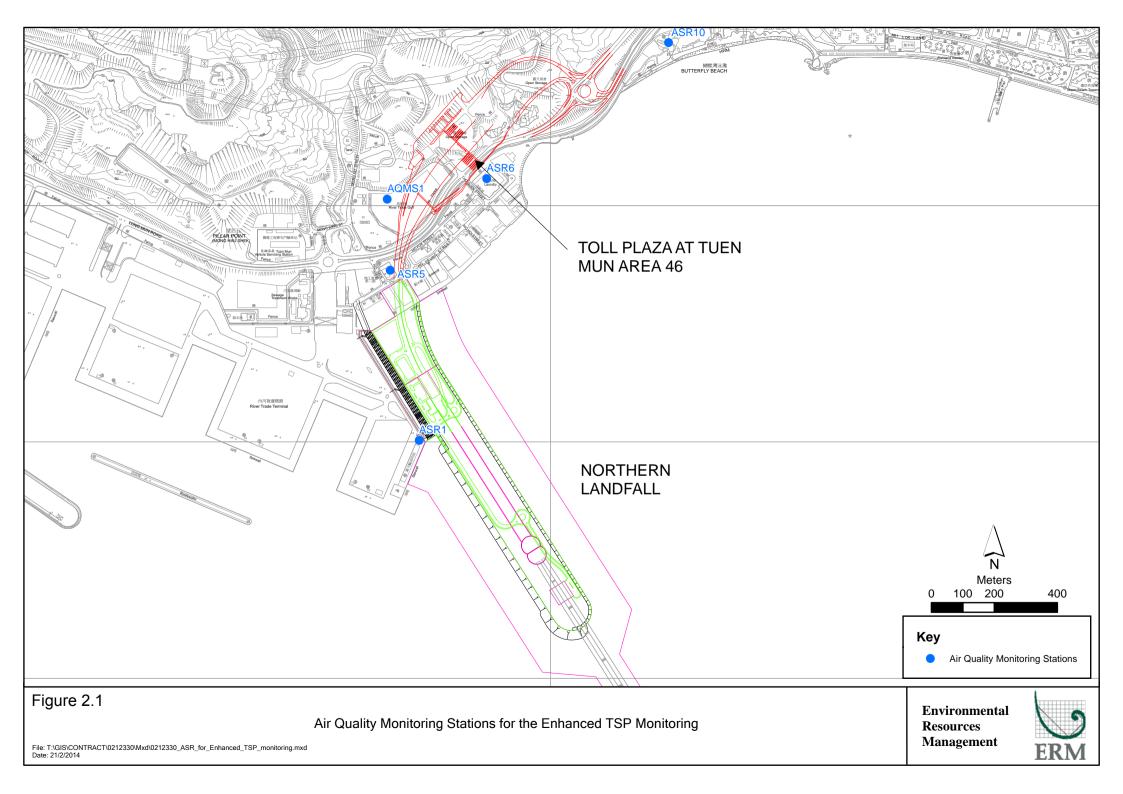


Table 2.2 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (1-hour TSP and 24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Sampler (Model No. TE-5170)
Wind Anemometer	MetPak, WindSonic

2.1.2 Action & Limit Levels

The Action and Limit Levels of the air quality monitoring is provided in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.1.3 Monitoring Schedule for the Reporting Month

The schedule for air quality monitoring in February 2014 is provided in *Appendix F*.

2.1.4 Results and Observations

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in *Tables 2.3* and *2.4*, respectively. Detailed impact air quality monitoring results and graphical presentations are presented in *Appendix G*.

Table 2.3 Summary of 1-hour TSP Monitoring Results in this Reporting Period

Station	Average (μg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
ASR 1	151	56 - 305	331	500
ASR 5	168	60 - 308	340	500
AQMS1	149	63 - 339	335	500
ASR6	153	56 - 361	338	500
ASR10	110	46 - 228	337	500

Table 2.4 Summary of 24-hour TSP Monitoring Results in this Reporting Period

Station	Average (μg/m³)	Range (μg/m³)	Action Level	Limit Level
			(μg/m³)	(μg/m³)
ASR 1	62	32 - 97	213	260
ASR 5	79	39 - 135	238	260
AQMS1	62	40 - 97	213	260
ASR6	56	38 - 85	238	260
ASR10	49	34 - 70	214	260

The major dust sources in the reporting period include construction activities under the Contract as well as nearby traffic emissions.

A total of six monitoring events were undertaken in which two Action Level exceedances of 1-hr TSP and no exceedance of 24-hr TSP were recorded in this reporting month.

Meteorological information collected at the ASR5, including wind speed and wind direction, is provided in *Appendix H*. Meteorological information recorded by the wind anemometer between 4 and 14 February 2014 is not available due to power failure.

2.2 WATER QUALITY MONITORING

2.2.1 Monitoring Requirements & Equipment

In accordance with the Updated EM&A Manual, impact water quality monitoring was carried out three days per week during the construction period at nine (9) water quality monitoring stations (*Figure 2.2*; *Table 2.5*).

Table 2.5 Locations of Water Quality Monitoring Stations and the Corresponding Monitoring Requirements

Station ID	Type	Coordinates		*Parameters, unit	Depth	Frequency
	•	Easting	Northing	_		
IS12	Impact Station	813218	823681	• Temperature(°C)	3 water depths: 1m	Impact
IS13	Impact Station	813667	824325	 pH(pH unit) 	below sea surface,	monitoring: 3
IS14	Impact Station	812592	824172	• Turbidity (NTU)	mid-depth and 1m	days per week,
IS15	Impact Station	813356	825008	 Water depth (m) 	above sea bed. If	at mid-flood
CS4	Control / Far	810025	824004	 Salinity (ppt) 	the water depth is	and mid-ebb
	Field Station			 DO (mg/L and 	less than 3m, mid-	tides during the
CS6	Control / Far	817028	823992	% of	depth sampling	construction
	Field Station			saturation)	only. If water	period of the
SR8	Sensitive	816306	825715	 SS (mg/L) 	depth less than 6m,	Contract.
	receiver				mid-depth may be	
	(Gazettal				omitted.	
	beaches in					
	Tuen Mun)					
SR9	Sensitive	813601	825858			
	receiver					
	(Butterfly					
	Beach)					
SR10A	Sensitive	823741	823495			
	receiver					
	(Ma Wan					
	FCZ)					

^{*}Notes:

In addition to the parameters presented monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or works underway nearby were also recorded.

Table 2.6 summarises the equipment used in the impact water quality monitoring programme. Copies of the calibration certificates are attached in *Appendix E*.

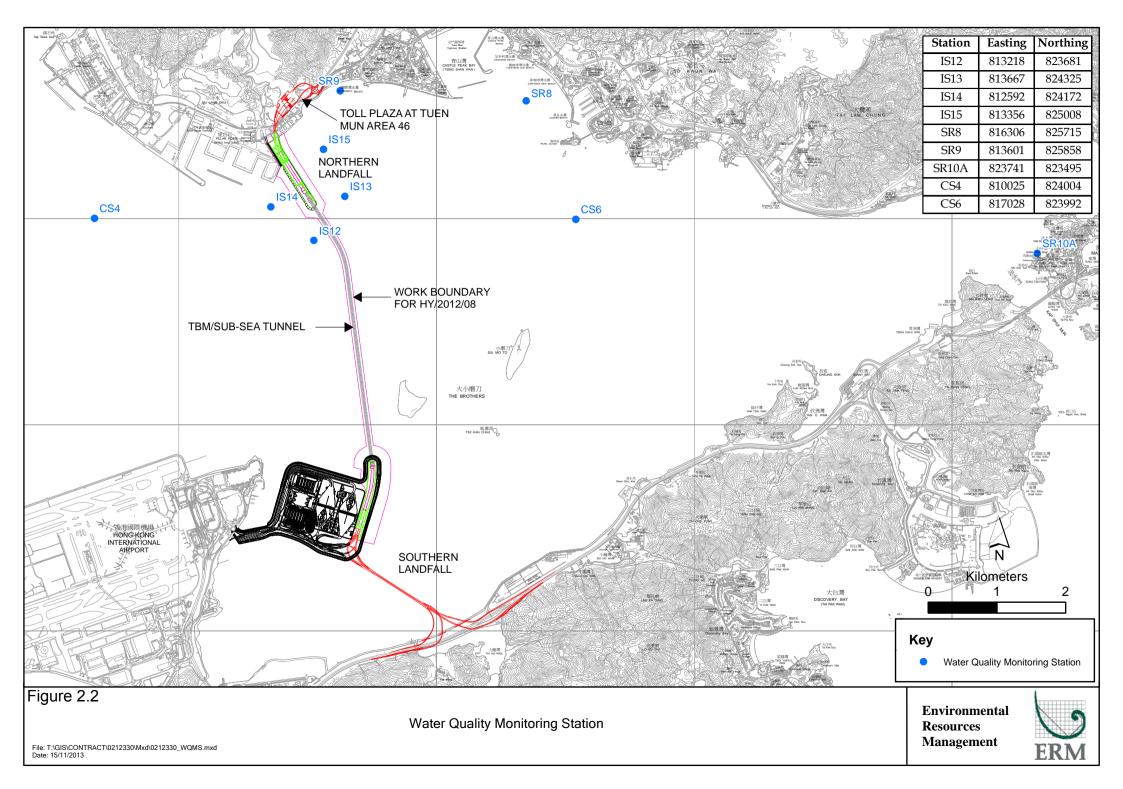


Table 2.6 Water Quality Monitoring Equipment

Equipment	Model	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	4
Multi-parameter Water	YSI 6820-C-M/YSI 6920	6
Quality System		
Dissolved Oxygen Meter	YSI Pro 2030	1
pH Meter	HANNA HI 8314	1
Turbidity Meter	HACH 2100Q	1
Monitoring Position	"Magellan" Handheld GPS Model eXplorist GC	4
Equipment	DGPS Koden KGP913MK2 (1)	1

2.2.2 Action & Limit Levels

The Action and Limit levels of water quality impact monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.2.3 Monitoring Schedule for the Reporting Month

The schedule for water quality monitoring in February 2014 is provided in *Appendix F*.

2.2.4 Results and Observations

During this reporting period, marine dredging activities were undertaken at Portions N-A and N-B. A closed grab dredger was used and silt curtains (cage-type and single floating type) were deployed during dredging works. The level of dredging activities was within the working rate described in the EP and the approved EIA Report. It is useful to note that heavy marine traffic (not associated with the Project) was commonly observed nearby the Project site and its vicinity.

Impact water quality monitoring was conducted at all designated monitoring stations in the reporting month. Detailed impact water quality monitoring results are presented in *Appendix I*.

A total of twelve monitoring events were undertaken in which no exceedances was recorded.

2.3 DOLPHIN MONITORING

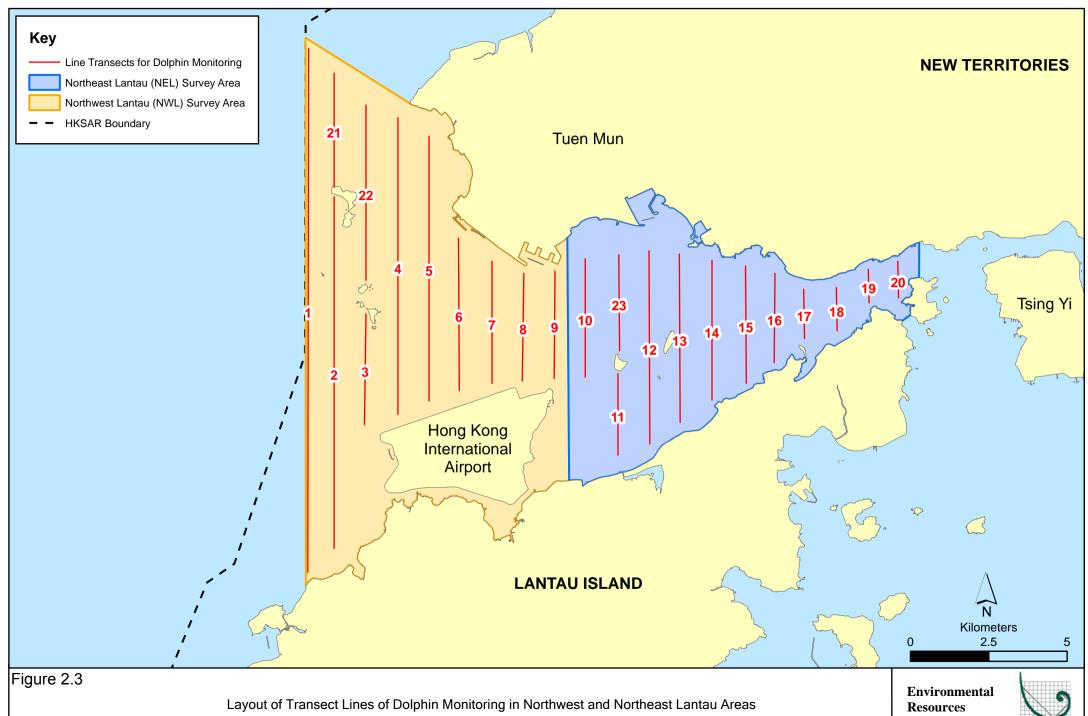
2.3.1 *Monitoring Requirements*

Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the dolphins. In order to fulfil the EM&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data collected by HyD's *Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge. Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities* on the monthly basis is adopted to avoid duplicates of survey effort.

2.3.2 *Monitoring Equipment*

Table 2.7 summarises the equipment used for the impact dolphin monitoring.

Table 2.7 Dolphin Monitoring Equipment


Equipment	Model
Global Positioning System (GPS)	Garmin 18X-PC
	Geo One Phottix
Camera	Nikon D90 300m 2.8D fixed focus
	Nikon D90 20-300m zoom lens
Laser Binoculars	Infinitor LRF 1000
Marine Binocular	Bushell 7 x 50 marine binocular with compass
Vessel for Monitoring	and reticules
	65 foot single engine motor vessel with
	viewing platform 4.5m above water level

2.3.3 Monitoring Parameter, Frequencies & Duration

Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

2.3.4 Monitoring Location

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in *Figure 2.3*. The co-ordinates of all transect lines are shown in *Table 2.8* below.

File: T:\GIS\CONTRACT\0212330\Mxd\0212330_Transect_of_Dolphin_Monitoring.mxd Date: 29/11/2013

Management

 Table 2.8
 Impact Dolphin Monitoring Line Transect Co-ordinates

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	804671	814577	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805475	815457	14	Start Point	817537	820220
2	End Point	805477	826654	14	End Point	817537	824613
3	Start Point	806464	819435	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	819771	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	820220	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	820466	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	820690	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	820847	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	820892	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	820872	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818449	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807				
12	End Point	815542	824882				

2.3.5 Action & Limit Levels

The Action and Limit levels of dolphin impact monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.3.6 *Monitoring Schedule for the Reporting Month*

Dolphin monitoring was carried out on 6, 12, 14 and 20 February 2014. The dolphin monitoring schedule for the reporting month is shown in *Appendix F*.

2.3.7 Results & Observations

A total of 297.84 km of survey effort was collected, with 97.9% of the total survey effort being conducted under favourable weather conditions (ie Beaufort Sea State 3 or below with good visibility) in February 2014. Amongst the two areas, 116.12 km and 181.72 km of survey effort were collected from NEL and NWL survey areas, respectively. The total survey effort conducted on primary and secondary lines were 211.78 km and 86.06 km, respectively. The survey efforts are summarized in *Appendix J*.

A total of 11 groups of 36 Chinese White Dolphin sightings were recorded during the two sets of surveys in February 2014. All except one sighting were made in NWL during the two sets of surveys in February, with another group of four animals being sighted in NEL. All sightings were made on primary lines during on-effort search, and only one of the dolphin groups was associated with an operating fishing vessel.

Despite the lone sighting made just adjacent to the River Trade Terminal on 6 February 2014, none of the 11 sightings was made in the proximity of this Project. The distribution of dolphin sightings during the reporting month is shown in *Figure 2.4*.

Encounter rates of Chinese White Dolphins are deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below with good visibility) in February 2014 with the results present in *Tables 2.9* and 2.10.

Table 2.9 Individual Survey Event Encounter Rates

		Encounter rate (STG)	Encounter rate (ANI)
		(no. of on-effort dolphin	(no. of dolphins from all on-
		sightings per 100 km of	effort sightings per 100 km of
		survey effort)	survey effort)
		Primary Lines Only	Primary Lines Only
NEL	Set 1: Feb 6 th /12 th	0.0	0.0
NEL	Set 2: Feb 14th/20th	0.0	0.0
NWL	Set 1: Feb 6 th /12 th	7.4	17.9
INVIL	Set 2: Feb 14th/20rd	6.2	29.5

Note: Dolphin Encounter Rates are deduced from the Two Sets of Surveys (Two Surveys in Each Set) in February 2014 in Northeast (NEL) and Northwest Lantau (NWL)

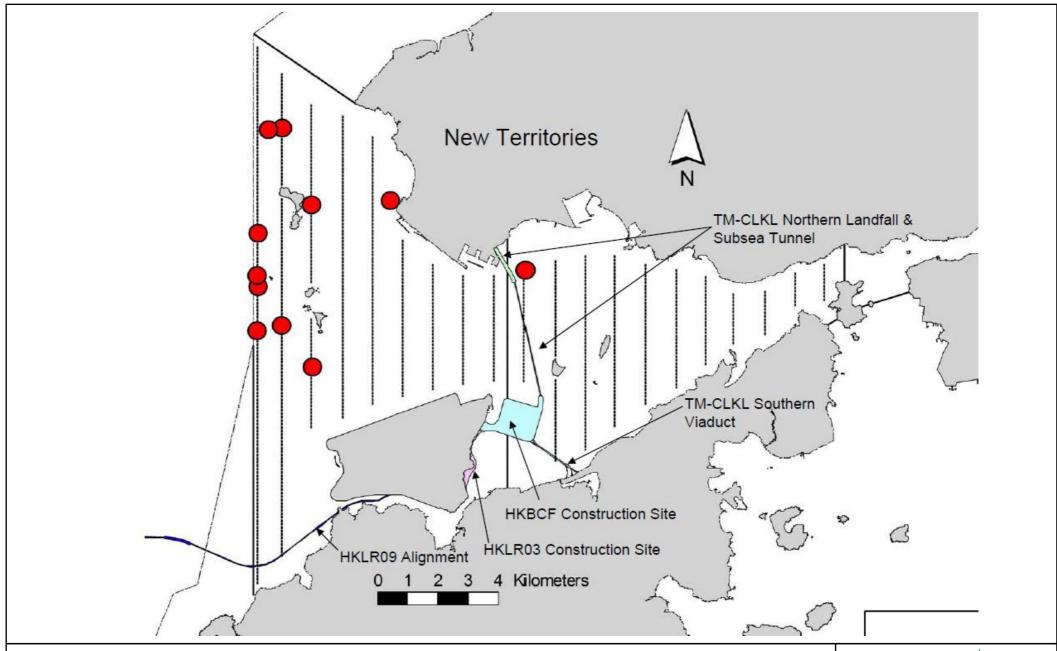


Figure 2.4

HY/2012/08 TM-CLKL Northern Connection Sub-sea Tunnel Section The distribution of dolphin sightings during the reporting period (Source: Adopted from HKLR03 Monitoring Survey in February 2014) Environmental Resources Management

Table 2.10 Monthly Average Encounter Rates

	Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of survey effort)		Encounter rate (ANI) (no. of dolphins from all on-effort sightings per 100 km of survey effort)		
	Primary Lines Only	Both Primary and Secondary Lines	Primary Lines Only	Both Primary and Secondary Lines	
Northeast Lantau	0.0	0.0	0.0	0.0	
Northwest Lantau	6.8	5.1	23.5	17.7	

Note: Overall dolphin encounter rates (sightings per 100km of survey effort) from all four surveys are conducted in February 2014 on primary lines only as well as both primary lines and secondary lines in Northeast and Northwest Lantau.

The average group size of Chinese White Dolphins in February 2014 was 3.27 individuals per group. Most dolphin groups were composed of only 1 - 4 animals with only two larger groups of seven animals being sighted.

Whilst one Action Level exceedance was observed for the quarterly dolphin monitoring data between December 2013 and February 2014, no unacceptable impact from the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations during the dolphin monitoring in this reporting month. The observed exceedance will be further investigated in the *First Quarterly EM&A Report* for November 2013 to February 2014.

Due to monthly variation in dolphin occurrence within the survey area, it would be more appropriate to draw conclusion on whether any unacceptable impacts on dolphins have been detected related to the construction activities of this Project in the quarterly EM&A reports, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

2.3.8 Marine Mammal Exclusion Zone Monitoring

Daily 250 m marine mammal exclusion zone monitoring was undertaken during the period of dredging activities under this Contract. One sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* was recorded on 20 February 2014 during the exclusion zone monitoring. The dolphin group of three was sighted within the 250 m marine mammal exclusion zone from a dredging barge sighting platform by the marine mammal observer. The marine dredging work was subsequently suspended until the observer has confirmed that the area is continuously clear of dolphin for a period of 30 minutes. The *Dolphin Intrusion Report* is presented in *Appendix J*.

2.4 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting month, four (4) site inspections were carried out on 5, 11, 19 and 26 February 2014.

Key observations during the site inspections are described below:

Air Quality

• Stockpile not in use should be fully covered. (Portion N6)

Noise

No adverse observation was identified in the reporting month.

Water Quality

• Excess sandy materials should be cleaned from the decks and exposed fittings of the barge. (Crown Asia 11)

Marine Ecology

Daily 250 m marine mammal exclusion zone monitoring was implemented during the period of dredging activities under this Contract. One sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* was recorded on 20 February 2014 during the exclusion zone monitoring. The dolphin group of three was sighted within the 250m marine mammal exclusion zone from a dredging barge sighting platform by the marine mammal observer. The marine dredging work was subsequently suspended until the observer has confirmed that the area is continuously clear of dolphin for a period of 30 minutes.

Chemical and Waste Management

- Drip tray should be provided to the oil drum to avoid chemical spillage.
 (Barge Tai Hip 2)
- Chemical labels should be provided to the oil drum and the drip tray for the winch should be maintained regularly to avoid oil spillage. (Barge - Tai Hip 2)
- Drip tray for the oil gun should be regularly maintained and the oil gun should be properly stored while not in use. (Dredging Barge - Crown Asia 1)
- Chemical containers should be properly stored in the drip tray. (Dredging Barge Crown Asia 1)
- Sheet piling driving machine should be maintained regularly and the oil stain should be cleared as chemical waste. (Barge Sun Leung Kee 13)

• No adverse observation was identified in the reporting month.

Miscellaneous

• No adverse observation was identified in the reporting month.

The Contractor has rectified all of the observations as identified during environmental site inspection in the reporting month.

2.5 WASTE MANAGEMENT STATUS

The Contractor had submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

As advised by the Contractor, no inert C&D Materials are disposed of as public fill; 20 kg of chemical waste was recycled in the reporting period. 18,500 m³ of Category L marine sediment and 24,500 m³ of Category M marine sediment are generated and disposed of at designated sites. Monthly summary of waste flow table is detailed in *Appendix M*.

The Contractor was advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/ recycle of C&D materials and wastes. The Contractor was reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

The Contractor was reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

2.6 ENVIRONMENTAL LICENSES AND PERMITS

The status of environmental licensing and permit is summarized in *Table 2.11* below.

Table 2.11 Summary of Environmental Licensing and Permit Status

Statutory Reference	License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/ Permit Holder	Remarks
EIAO	Environmental Permit	EP-354/2009/B	28 January 2014	Throughout the Contract	HyD	Application for VEP on 20 January 2014 to replace EP- 354/2009/A
NCO	Construction Dust Notification	363510	19 Aug 2013	Throughout the Contract	DBJV	-
WDO	Chemical Waste Registration	5213-422-D2516-01	10 Sep 2013	Throughout the Contract	DBJV	-
WDO	Construction Waste Disposal Account	7018108	19 Aug 2013	Throughout the Contract	DBJV	Waste disposal in Contract HY/2012/08
WPCO	Waste Water Discharge License	WT00017707-2013	18 Nov 2013	30 Nov 2018	DBJV	Discharge of Construction Runoff
NCO	Construction Noise Permit	GW-RW0035-13	27 Jan 2014	26 Jul 2014	DBJV	For Dredging and Reclamation Works, superseded by GW- RW0095-14 on 10 Feb 2014
NCO	Construction Noise Permit	GW-RW0095-14	10 Feb 2014	9 Aug 2014	DBJV	For Dredging and Reclamation Works
NCO	Construction Noise Permit	GW-RW0822-13	14 Nov 2013	10 May 2014	DBJV	For works in site WA18
NCO	Construction Noise Permit	GW-RS0814-13	15 Nov 2013	10 May 2014	DBJV	For works in site WA23
NCO	Construction Noise Permit	GW-RW0029-14	27 Jan 2014	26 Jul 2014	DBJV	For Portion N6, superseded by GW-RW0077-14 on 17 Feb 2014
NCO	Construction Noise Permit	GW-RW0077-14	17 Feb 2014	16 Aug 2014	DBJV	For Portion N6
DASO	Marine Dumping Permit	EP/MD/14-072	1 Nov 2013	30 Apr 2014	DBJV	For Type 1
DASO	Marine Dumping Permit	EP/MD/14-124	1 Feb 2014	28 Feb 2014	DBJV	For Type 1 (Dedicated site) and Type 2

2.7 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

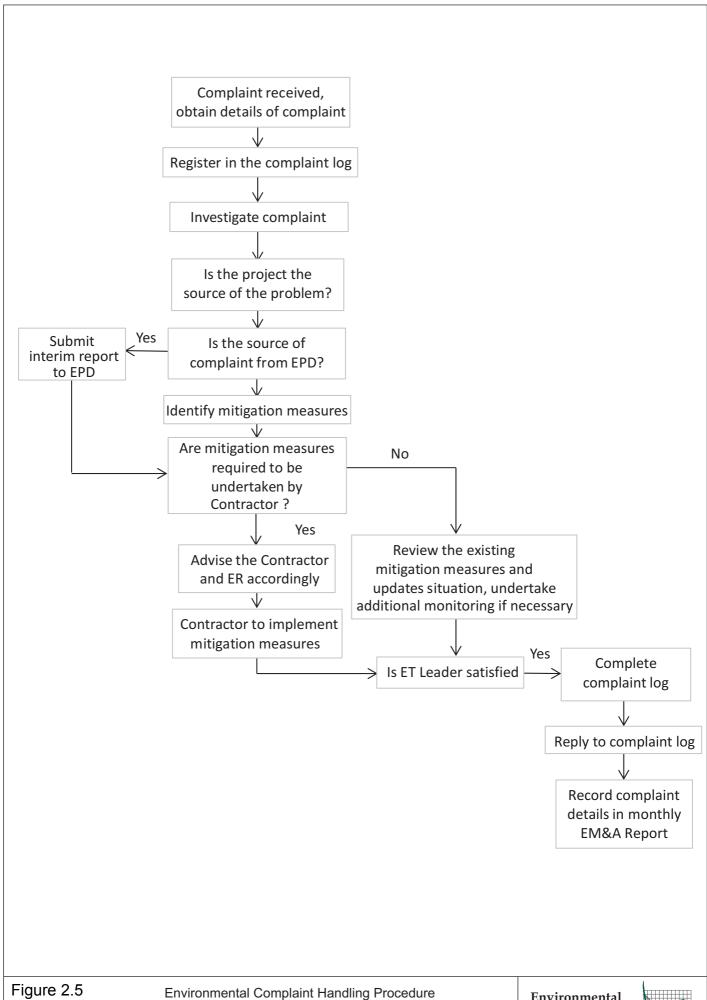
In response to the site audit findings, the Contractors carried out corrective actions.

A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in *Appendix C*. The necessary mitigation measures relevant to this Contract were implemented properly.

2.8 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

No exceedances were recorded for water quality monitoring during the reporting month. Two Action level exceedances of 1-hr TSP and no exceedances of 24-hr TSP for air quality were recorded during the reporting month. Further to the investigation, the recorded exceedances for air quality monitoring were considered to be sporadic event from the cumulative anthropogenic activities (eg traffic emissions from Lung Mun Road and River Trade Terminal) in this area of Hong Kong, thus the Project works were unlikely to be the major cause of the recorded exceedances. The investigation findings are detailed in *Appendix L*.

One Action Level exceedance was recorded for the quarterly dolphin monitoring data between December 2013 and February 2014. The observed exceedance will be further investigated in the *First Quarterly EM&A Report* for November 2013 to February 2014.


Cumulative statistics are provided in *Appendix L*.

2.9 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

The Environmental Complaint Handling Procedure is provided in *Figure 2.5*.

No complaints, notification of summons and prosecution were received in the reporting period.

Statistics on complaints, notifications of summons and successful prosecutions are summarized in *Appendix L*.

Environmental Resources Management

3 FUTURE KEY ISSUES

3.1 CONSTRUCTION PROGRAMME FOR THE COMING MONTHS

As informed by the Contractor, the major works for the Project in March 2014 will be:

Marine-based Works

- · Dredging;
- · Reclamation;
- Vertical Seawall construction;
- Sloping Seawall construction;
- Marine Sheet Piling for Box Culvert extension; and,
- Predrilling for Box culvert Foundation.

Land-based Works

- AECOM site office construction;
- CLP Substation Footing & underground utilities works; and
- CLP Substation Superstructure.

3.2 KEY ISSUES FOR THE COMING MONTH

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of March 2014 are mainly associated with dust, marine water quality, marine ecology and waste management issues.

3.3 MONITORING SCHEDULE FOR THE COMING MONTH

The tentative schedule for environmental monitoring in March 2014 is provided in *Appendix F*.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

This Fourth Monthly EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 to 28 February 2014, in accordance with the Updated EM&A Manual and the requirements of EP-354/2009/B.

Air quality (including 1-hour TSP and 24-hour TSP), water quality and dolphin monitoring were carried out in this reporting month. Two (2) Action Level exceedances of 1-hr TSP and no exceedances of 24-hr TSP for air quality monitoring were recorded in the reporting month. No exceedances for water quality monitoring was recorded in the reporting month. Investigation findings suggested that the Project works were not the major cause of the recorded exceedances for air quality monitoring. Nevertheless, the Contractor was reminded to ensure all dust mitigation measures are implemented at the construction site and the proper deployment of silt curtains during the period of marine works under this Contract.

A total of 11 groups of 36 Chinese White Dolphin sightings were recorded during the two sets of surveys in February 2014. All except one sighting were made in NWL during the two sets of surveys in February, with another group of four animals being sighted in NEL. All sightings were made on primary lines during on-effort search, and only one of the dolphin groups was associated with an operating fishing vessel. Whilst one Action Level exceedance was observed for the quarterly dolphin monitoring data between December 2013 and February 2014, no unacceptable impact from the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations during the dolphin monitoring in this reporting month.

Environmental site inspection was carried out four (4) times in February 2014. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audits.

4.2 RECOMMENDATIONS

According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

Air Quality

Temporary stockpiles at the works area should be properly covered by tarpaulin when piling is completed.

Regular water spraying should be applied to ground breaking works and dust generating area.

Water Quality

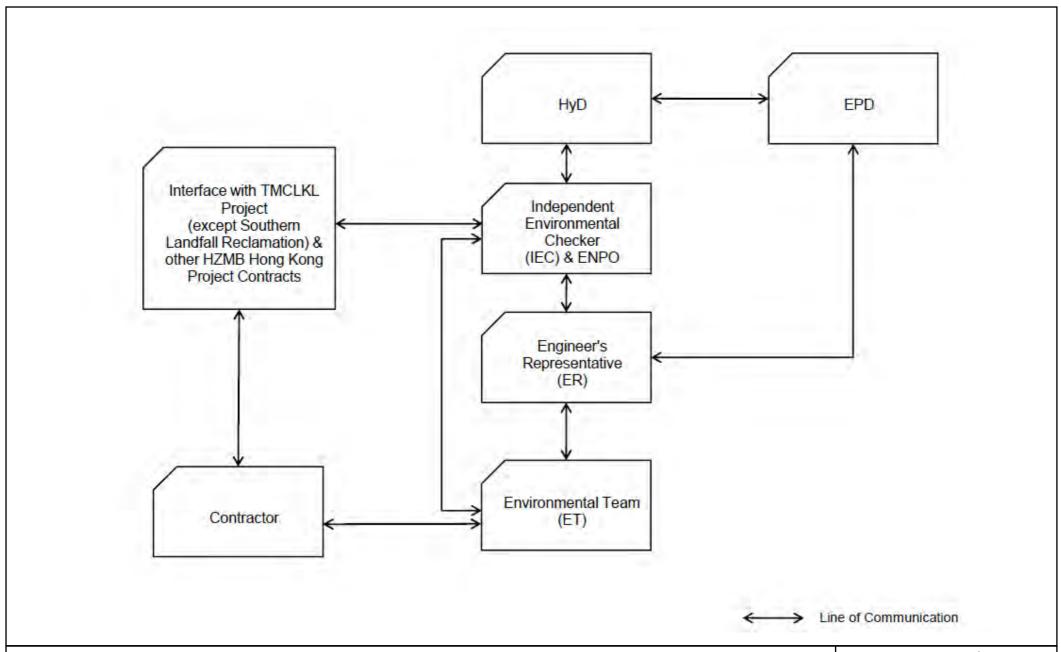
Measures should be undertaken by the Contractor to avoid residual sandy materials leaving from at the edge of loading area which may lead to surface runoff in the vicinity.

The Contractor should avoid sandy materials from entering the drainage area.

The Contractor should ensure that the dredging is undertaken properly to avoid spillage outside the cage-type silt curtain in the dredging site of barge Crown Asia 1 and GD2.

Chemical and Waste Management

The Contractor should install drip tray stopper and clear water stagnant in the drip tray.


The Contractor should proper label the oil drums.

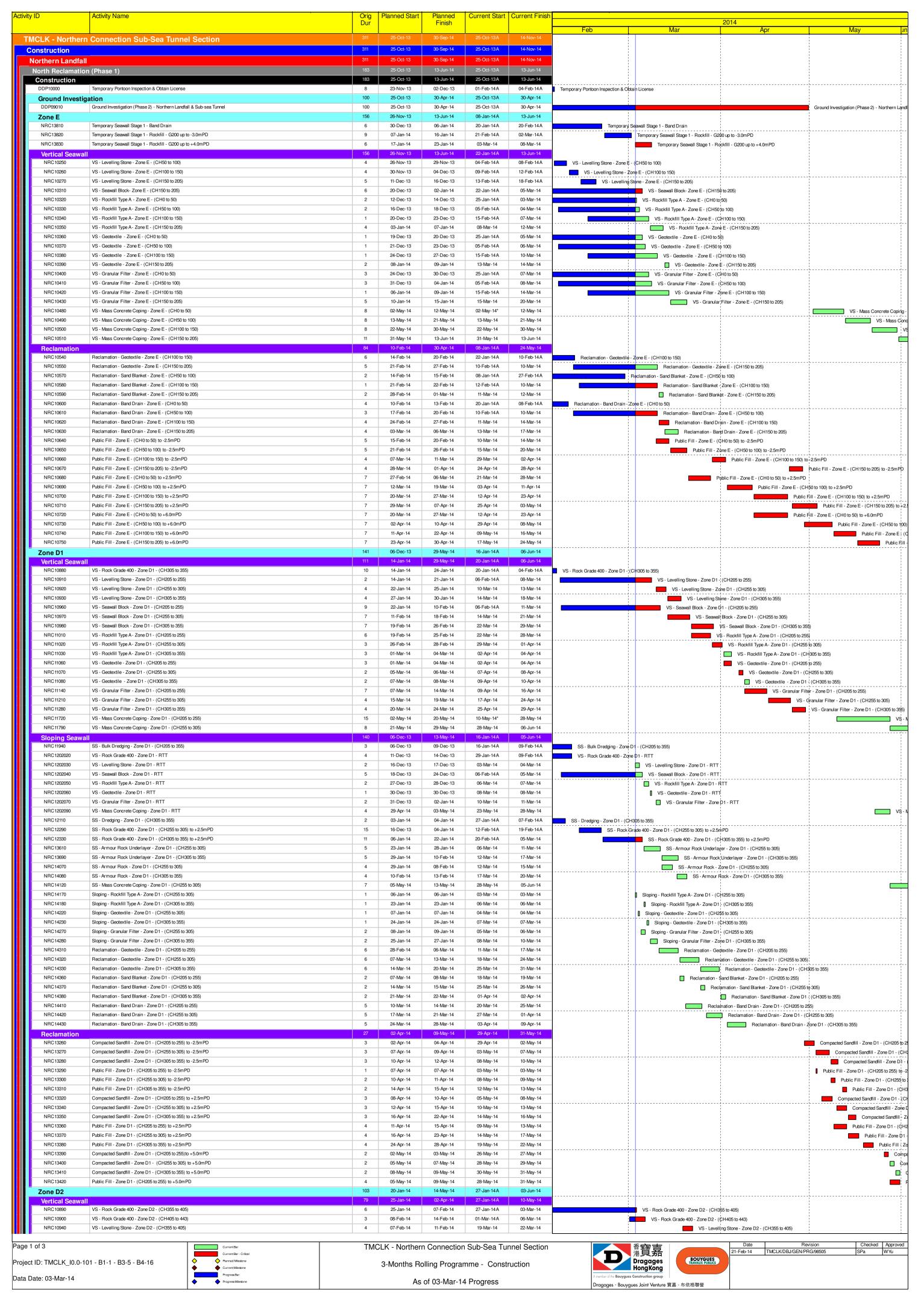
The Contractor should clear oil stain on the barge.

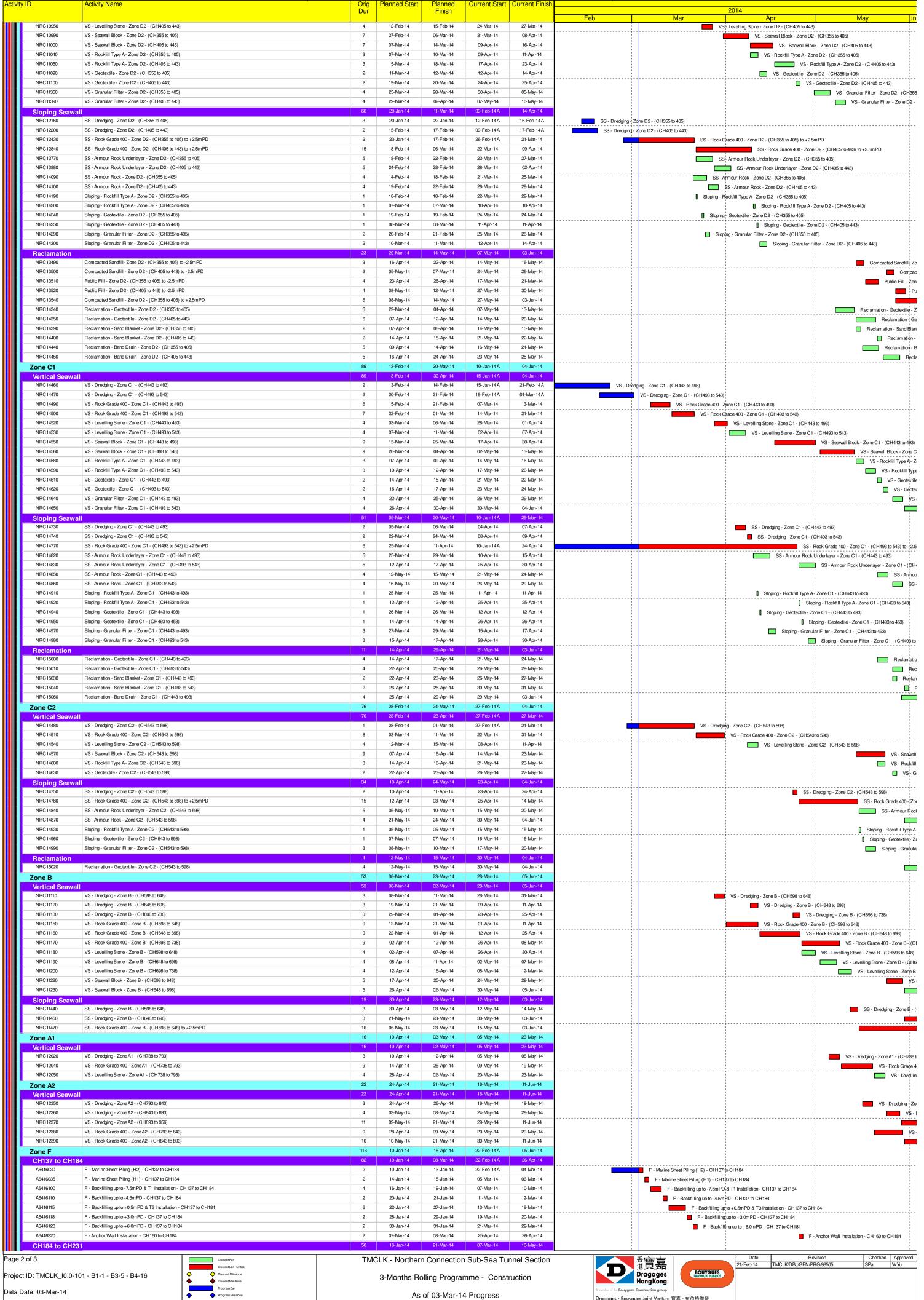
Drip tray should be provided by the Contractor for the chemical containers

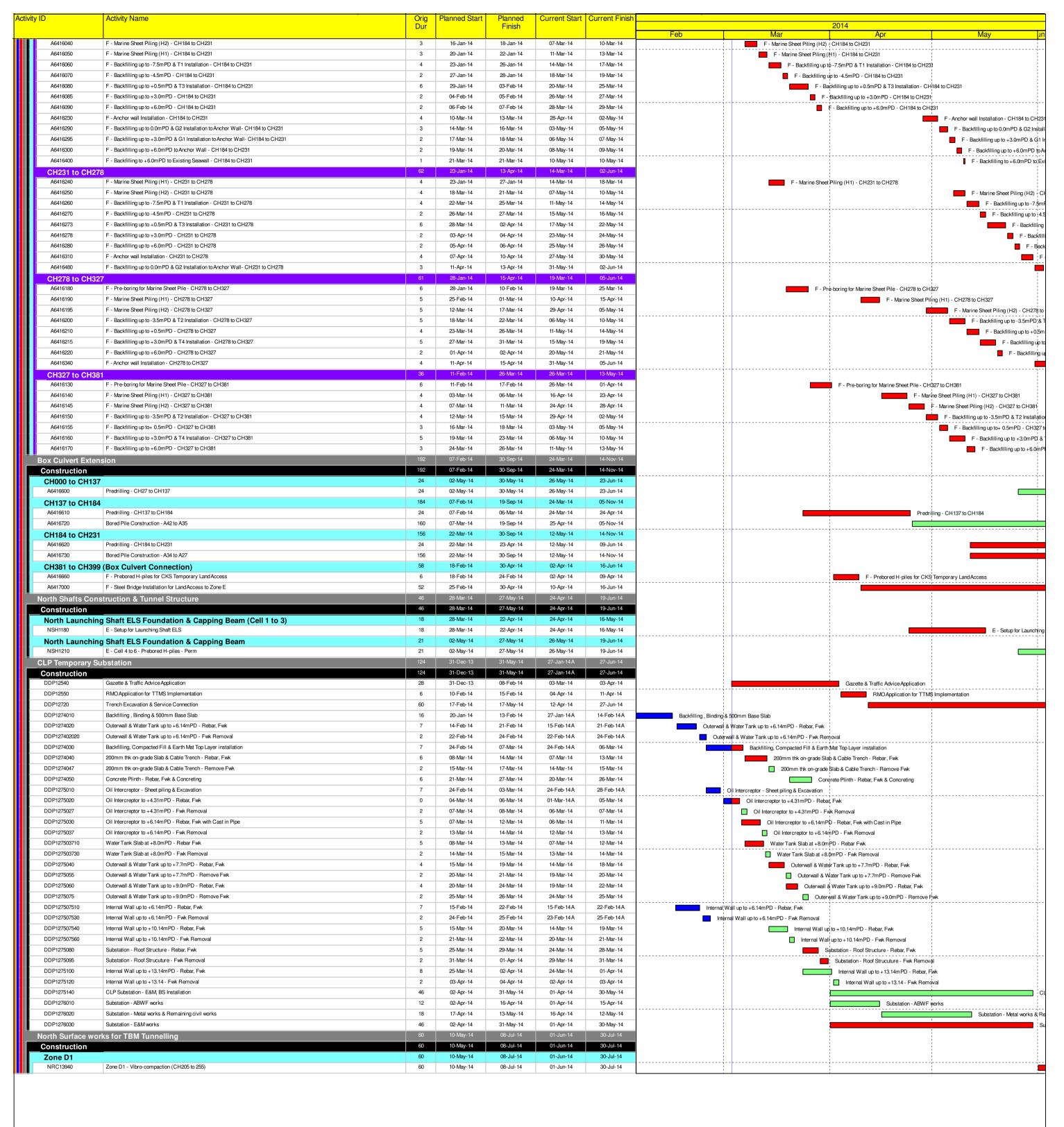
Appendix A

Project Organization for Environmental Works

Appendix A1


Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section Project Organization


Environmental Resources Management


Appendix B

Three-Month Rolling Construction Programme

Dragages - Bouygues Joint Venture 寶嘉 - 布依格聯營

Appendix C

Environmental Mitigation and Enhancement Measure Implementation Schedules

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Air Quality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or	_	lement: Stages		Status
	Reference				Requirement	D	С	О	
4.8.1	3.8	An effective watering programme of twice daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;	construction period	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		√
4.8.1	3.8	Watering of the construction sites in Lantau for 8 times/day and in Tuen Mun for 12 times/day to reduce dust emissions by 87.5% and 91.7% respectively and shall be undertaken.	construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels.	construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	The Contractor shall not burn debris or other materials on the works areas.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8. 1	3.8	In hot, dry or windy weather, the watering programme shall maintain all exposed road surfaces and dust sources wet.	All unpaved haul roads / throughout construction period in hot, dry or windy weather	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		*

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Air Quality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or	Imp	lement Stages		Status
	Reference				Requirement	D	С	О	
4.8.1	3.8	Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.	construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8. 1	3.8	Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8.1	3.8	During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards.		Contractor	TMEIA Avoid dust generation		Y		~
4.8.1	3.8	No earth, mud, debris, dust and the like shall be deposited on public roads. Wheel washing facility shall be usable prior to	_	Contractor	TMEIA Avoid dust		Y		✓

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Air Quality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or	Imp	Implementation Stages		Status
	Reference				Requirement	D	С	О	
		any earthworks excavation activity on the site.							
4.8.1	3.8	Areas of exposed soil shall be minimised to areas in which works have been completed shall be restored as soon as is practicable.	throughout construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	All stockpiles of aggregate or spoil shall be enclosed or covered and water applied in dry or windy condition.		Contractor	TMEIA Avoid dust generation		Y		<>
4.11	Section 3	EM&A in the form of 1 hour and 24 hour dust monitoring and site audit	All representative existing ASRs / throughout construction period	Contractor	EM&A Manual		Y		✓

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement	_	lementa Stages		Status
	Reference					D	C	О	
Marine Wo	rks (Sequence	A)							
6.10 Figure 6.2a Appendix D6a	Annex A	Construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. The protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2a and detailed in Appendix D6a. The part of the works where such measures can be undertaken for the majority of the time includes the following locations: - TM-CLKL northern reclamation;	backfilling works	Contractor	TM-EIAO		Y		N/A

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement		Implementation Stages		*		Status
	Reference					D	С	О			
6.10	-	a maximum of 50% public fill to be used for all seawall filling below +2.5mPD for TM-CLKL southern and northern landfalls.		Contractor	TM-EIAO		Y		N/A		
6.10	-	a maximum of 30% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL southern landfall		Contractor	TM-EIAO		Y		N/A		
6.10	-	a maximum of 100% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL northern landfall		Contractor	TM-EIAO		Y		N.A		
6.10	-	Use of cage type silt curtains round all	All areas dredging works	Contractor	TM-EIAO		Y		✓		

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement	Imp	Implementation Stages				*		Status
	Reference					D	С	О					
		grab dredgers during the HKBCF, HKLR and TM-CLKL southern reclamation works.											
	Figure 1.1 of Annex C	A layer of floating type silt curtain will be applied when dredging and reclamation works are being undertaken at Portion N-a as shown in Figure 1.1 of Annex C of the EM&A Manual.	works	Contractor	TM-EIAO		Y		√				
6.10	-	Trailer suction hopper dredgers shall not allow mud to overflow.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓				
6.10	-	The use of Lean Material Overboard (LMOB) systems shall be prohibited.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓				

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement	_	lement Stages		Status
	Reference					D	С	О	
6.10 Figure 6.2b Appendix D6b	Annex A	For other parts of the reclamation works construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. It should be noted that the protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2b and detailed in Appendices D6b. The part of the works where such measures can be undertaken for the majority of the time includes the following locations: - TM-CLKL northern reclamation; - Reclamation filling for Portion D of HKBCF; Reclamation filling for FSD berth of HKBCF; and - Reclamation dredging and filling for Portion 1 of HKLR;	Portion D of HKBCF and HKLR	Contractor	TM-EIAO		Y		N/A

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement	Implementation Stages			Status
	Reference					D	С	О	
6.10	-	The filling material for the other parts of the works are the same as Sequence A;	All other areas/backfilling works	Contractor	TM-EIAO		Y		N/A
6.10	5.7	Cage type silt curtain (with steel enclosure) shall be used for grab dredgers working in the site of HKBCF and TM- CLKL southern reclamation. Cage type silt curtains will be applied round all grab dredgers at other works area	grab dredging	Contractor	TM-EIAO		Y		•
6.10	Annex A	A layer of floating type silt curtain will be applied around all works as defined in Appendix D6b	_	Contractor	TM-EIAO		Y		✓
6.10	-	TM-CLKL northern landfall: - Reclamation filling shall not proceed until at least 200m section of leading seawall at both the east and west sides	All areas/ through out marine works	Contractor	TM-EIAO		Y		N/A

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement	Implementation Stages			Status
	Reference					D	С	О	
		of the reclamation are formed above +2.5 mPD, except for 100m gaps for marine access;							
General Ma	rine Works						•	•	
6.10	-	Use of TMB for the construction of the submarine tunnel.	Tunnel works / Construction phase	Contractor	TM-EIAO		Y		N/A
6.10	-	Export dredged spoils from NWWCZ.	All areas as much as possible / dredging activities	Contractor	DASO Permit conditions		Y		N/A
6.10	-	Where public fill is proposed for filling below +2.5mPD, the fine content in the public fill will be controlled to 25%		Contractor	TM-EIAO		Y		N/A
6.10	-	Where sand fill is proposed for filling	All areas/ backfilling works	Contractor	TM-EIAO		Y		N.A

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement	Imp	lement Stages		Status
	Reference					D	С	О	
		below +2.5mPD, the fine content in the sand fill will be controlled to 5%.							
6.10	-	Mechanical grabs shall be designed and maintained to avoid spillage and should seal tightly while being lifted.	_	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		√
6.10	-	Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.	_	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		√
6.10	-	Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.		Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		√
6.10	-	Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		~

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement	Imp	Implementation Stages		•		*		Status
	Reference					D	С	О					
6.10	-	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		<>				
6.10	-	Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;	_	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		N/A				
6.10	-	All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		N/A				
6.10	-	The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓				
6.10	5.2	Silt curtain shall have proved effectiveness from the producer and shall be fully maintained throughout the works by the		Contractor	TM-EIAO		Y		✓				

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement	Imp	lements Stages		Status
	Reference					D	С	О	
		contractor.							
6.10	-	The daily maximum production rates shall not exceed those assumed in the water quality assessment.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.10	-	The dredging and filling works shall be scheduled to spread the works evenly over a working day.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
Land Work	S			1		ı		l	
6.10	-	Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.10	-	Sewage effluent and discharges from on- site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.10	-	Storm drainage shall be directed to storm	All areas/ throughout	Contractor	TM-EIAO		Y		✓

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement		lementa Stages		Status
	Reference					D	С	О	
		drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.	-						
6.10	-	Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm.	construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Temporary access roads should be surfaced with crushed stone or gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.10	-	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Measures should be taken to prevent the washout of construction materials, soil, silt	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement	Imp	lement Stages		Status
	Reference					D	С	О	
		or debris into any drainage system.							
6.10	-	Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.	_	Contractor	TM-EIAO		Y		√
6.10	5.8	Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.	construction period	Contractor	TM-EIAO		Y		√
6.10	-	Discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.	_	Contractor	TM-EIAO		Y		√
6.10	-	All vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit.	construction period	Contractor	TM-EIAO		Y		√

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement	Imp	lement Stages		Status
	Reference					D	С	О	
6.10	-	Wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.10	-	Section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel.	ē	Contractor	TM-EIAO		Y		✓
6.10	-	Wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for off site disposal.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		N/A
6.10	-	The Contractor shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement	Imp	lement Stages		Status
	Reference					D	С	О	
		cleaned up immediately.							
6.10	-	Waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance.	All areas/ throughout construction period	Contractor	TM-EIAO Waste Disposal Ordinance		Y		√
6.10	-	All fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.		Contractor	TM-EIAO		Y		✓
6.10	-	Surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the stormwater system.	E	Contractor	TM-EIAO		Y		N/A
6.10	-	Roadside gullies to trap silt and grit shall be provided prior to discharging the stormwater into the marine environment. The sumps will be maintained and cleaned at regular intervals.	Roadside/design and operation	Design Consultant/ Contractor	TM-EIAO	Y		Y	~
6.10	Section 5	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good	_	Contractor	EM&A Manual		Y		√

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Water Ouality

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementat ion Agent	Relevant Standard or Requirement		plementation Stages		Status
	Reference					D	С	О	
		working practice.							
Water Qual	ity Monitorin	g		•					
6.10	Section 5	Water quality monitoring shall be undertaken for suspended solids, turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline, backfilling and post construction period. One year operation phase water quality monitoring at designated stations	as defined in EM&A Manual, Section 5/ Before, through-out marine construction period, post construction and monthly operational phase water quality monitoring for a year.	Contractor	EM&A Manual		Y	Y	•

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Ecology

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or	1	Implementation Stages		Status
	Reference				Requirement	D	С	О	
8.14	6.3	Specification for and implement pre, during and post construction dolphin abundance monitoring.		Design Consultant/ Contractor	TMEIA	Y	Y	Y	✓
8.14	6.3,6.5	Specification and implementation of 250m dolphin exclusion zone.	All dredging and reclamation areas/Detailed Design/during all reclamation and dredging works	Design Consultant/ Contractor	TMEIA	Y	Y		✓
8.15	6.3, 6.5	Specification and deployment of an artificial reef of an area of 3,600m ² in an area where fishing activities are prohibited.	Area of prohibited fishing activities/Detailed Design/towards end of construction period	TM-CLKL/ HKBCF Design Consultant/ TM-CLKL/ HKBCF Contractor	TMEIA	Y		Y	N/Å

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Ecology

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or		lementa Stages		Status
	Reference				Requirement	D	С	О	
8.14	6.3, 6.5	Specification and implementation of marine vessel control specifications	All areas/Detailed Design/during construction works	Design Consultant/ Contractor	TMEIA	Y	Y		✓
8.14	6.3, 6.5	Design and implementation of acoustic decoupling methods for dredging and reclamation works		Design Consultant/ Contractor	TMEIA	Y	Y		√
8.15	6.3, 6.4	Pre-construction phase survey and coral translocation	Detailed Design/Prior to construction	Design Consultant/ Contractor	TMEIA	Y	Y		√
8.15	6.5	Audit coral translocation success	Post translocation	Contractor	TMEIA		Y		√

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Ecology

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or	Imp	Implementation Stages		Status
	Reference				Requirement	D	С	О	
7.13	6.5	The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.	As soon as accessible	Contractor	TMEIA		Y		✓
7.13	6.5	Spoil heaps shall be covered at all times.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Avoid damage and disturbance to the remaining and surrounding natural habitat	_	Contractor	TMEIA		Y		✓
7.13	6.5	Placement of equipment in designated areas within the existing disturbed land	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Disturbed areas to be reinstated immediately after completion of the works.	<u> </u>	Contractor	TMEIA		Y		✓
7.13	6.5	Construction activities should be restricted to the proposed works boundary	E	Contractor	TMEIA		Y		✓

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Landscape and Visual

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or		Implementation Stages		Status
	Reference				Requirement	D	С	О	
10.9	7.6	The colour and shape of the toll control buildings, ventilation building and administration building shall adopt a design which could blend it into the vicinity elements, and the details will be developed in detailed design stage (DM2)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Landscape and Visual

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or	Implementation Stages			Status
	Reference				Requirement	D	С	О	
10.9	7.6	Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		~
10.9	7.6	Control night-time lighting and glare by hooding all lights (CM6)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		N/A
10.9	7.6	Ensure no run-off into water body adjacent to the Project Area (CM7)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (CM8)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Landscape and Visual

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or	_	Stages		Status
	Reference				Requirement	D	С	О	
10.9	7.6	Aesthetically pleasing design (visually unobtrusive and non-reflective) as regard to the form, material and finishes shall be incorporated to all buildings, engineering structures and associated infrastructure facilities (OM5)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (OM6)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	✓

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Waste

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lement Stages		Status
	Reference					D	С	О	
12.6		The Contractor shall identify a coordinator for the management of waste.	Contract mobilisation	Contractor	TMEIA		Y		✓
12.6		The Contractor shall prepare and implement a Waste Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated, recycled and disposed. A recording system for the amount of waste generated, recycled and disposed (locations) should be established.		Contractor	TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material		Y		√
12.6		The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.		Contractor	TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance.		Y		✓
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures		Contractor	TMEIA		Y		✓

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Waste

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages		Status	
	Reference					D	С	О	
		including waste reduction, reuse and recycling							
12.6	8.1	The extent of cutting operation should be optimised where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.	construction period	Contractor	TMEIA		Y		✓
12.6	8.1	The surplus surcharge should be transferred to a fill bank	Reclamation areas / after surcharge works	Contractor	TMEIA		Y		N/A
12.6	8.1	Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible	_	Contractor	TMEIA		Y		N/A

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Waste

EIA EM&A Reference Manual		Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
	Reference					D	С	О	
12.6	8.1	The site and surroundings shall be kept tidy and litter free.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	No waste shall be burnt on site.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.	Detailed Design	Design Consultant	TMEIA	Y			✓
12.6	8.1	The Contractor shall be prohibited from disposing of C&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation.	All areas / throughout construction period	Contractor	TMEIA	Y			✓
12.6	8.1	Stockpiled material shall be covered by tarpaulin and /or watered as appropriate to prevent windblown dust/ surface run off.	All areas / throughout construction period	Contractor	TMEIA	Y		<>	
12.6	8.1	Excavated material in trucks shall be covered by tarpaulins to reduce the potential for spillage and dust generation.	All areas / throughout construction period	Contractor	TMEIA	Y		√	
12.6	8.1	Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.	All areas / throughout construction period	Contractor	TMEIA		Y		√

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Waste

EIA Reference	EM&A Manual	Environmental Protection Measures Location/ Timing Implementation Agent Relevant Standard or Requirement				lement Stages		Status	
	Reference					D	С	О	
12.6	8.1	Dredged marine mud shall be disposed of in a gazetted marine disposal ground under the requirements of the Dumping at Seas Ordinance.	throughout dredging	Contractor	TMEIA		Y		✓
12.6	8.1	Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling. Purchasing of construction materials should avoid over-ordering and wastage.	construction period	Contractor	TMEIA		Y		√
12.6	8.1	The Contractor should recycle as many C&D materials (this is a waste section) as possible on-site. The public fill and C&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal. Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should	construction period	Contractor	TMEIA		Y		✓

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Waste

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	* ,		Implementation Stages		Status
	Reference					D	С	О	
		be considered for segregation and storage activities.							
12.6	8.1	All falsework will be steel instead of wood.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows: f suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed; f Having a capacity of <450L unless the specifications have been approved by the EPD; and f Displaying a label in English and Chinese according to the instructions prescribed in Schedule 2 of the Regulations. f Clearly labelled and used solely for the storage of chemical wastes; f Enclosed with at least 3 sides; f Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20%	construction period	Contractor	TMEIA		Y		\(\)

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Waste

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages		Status	
	Reference					D	С	О	
		by volume of the chemical waste stored in the area, whichever is greatest; f Adequate ventilation; f Sufficiently covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and f Incompatible materials are adequately separated.							
12.6	8.1	Waste oils, chemicals or solvents shall not be disposed of to drain,	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Adequate numbers of portable toilets should be provided for on-site workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Night soil should be regularly collected by licensed collectors.	All areas / throughout construction period	Contractor	TMEIA		Y		N/A
12.6	8.1	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C&D and chemical wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention	construction period	Contractor	TMEIA		Y		✓

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Waste

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages		Status	
	Reference					D	С	О	
		of Nuisances By-laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited.							
12.6	8.1	All waste containers shall be in a secure area on hardstanding;	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Office wastes can be reduced by recycling of paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	Site Offices/ throughout construction period	Contractor	TMEIA		Y		✓
12.6	Section 8	EM&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.	All areas / throughout construction period	Contractor	EM&A Manual		Y		√

Legend: D=Design, C=Construction, O=Operation

ENVIRONMENTAL MITIGATION AND ENHANCEMENT MEASURE IMPLEMENTATION SCHEDULE

Cultural Heritage

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or	Implementation Stages				Status
	Reference				Requirement	D	С	О		
11.8	Section 9	EM&A in the form of audit of the mitigation measures	All areas / throughout construction period	Highways Department	EIAO-TM		Y		√	

Legend: D=Design, C=Construction, O=Operation

Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Remark:

- ✓ Compliance of Mitigation Measures
- Compliance of Mitigation but need improvement
- x Non-compliance of Mitigation Measures
- ▲ Non-compliance of Mitigation Measures but rectified by Contractor
- Δ Deficiency of Mitigation Measures but rectified by Contractor
- N/A Not Applicable in Reporting Period

Appendix D

Summary of Action and Limit Levels

Table D1 Action and Limit Levels for 1-hour and 24-hour TSP

Parameters	Action	Limit
24 Hour TSP Level in μg/m ³	ASR1 = 213	260
	ASR5 = 238	
	AQMS1 = 213	
	AQMS2 = 238	
	ASR10 = 214	
1 Hour TSP Level in μg /m³	ASR1 = 331	500
_	ASR5 = 340	
	AQMS1 = 335	
	AQMS2 = 338	
	ASR10 = 337	

Table D2 Action and Limit Levels for Water Quality

Parameter	Action Level#	Limit Level#
DO in mg/L (a)	Surface and Middle	Surface and Middle
	5.0 mg/L	4.2 mg/L
	<u>Bottom</u>	<u>Bottom</u>
	4.7 mg/L	3.6 mg/L
Turbidity in NTU (Depthaveraged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data, i.e.,
	27.5 NTU	47.0 NTU
SS in mg/L (Depth-averaged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e., 23.5 mg/L	130% of upstream control station at the same tide of the same day and 10mg/L for WSD Seawater Intakes at Tuen Mun and 99%-ile of baseline
		data, i.e., 34.4 mg/L
		3

Notes:

Baseline data: data from HKZMB Baseline Water Quality Monitoring between 6 and 31 October 2011.

- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths $\frac{1}{2}$
- (c) For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (d) All figures given in the table are used for reference only, and EPD may amend the figures whenever it is considered as necessary
- (e) The 1%-ile of baseline data for surface and middle DO is 4.2 mg/L, whilst for bottom DO is 3.6 mg/L.

Table D3 Action and Limit Levels for Impact Dolphin Monitoring

	North Lantau Social Cluster			
	NEL	NWL		
Action Level	STG < 70% of baseline &	STG < 70% of baseline &		
	ANI < 70% of baseline	ANI < 70% of baseline		
Limit Level	[STG < 40% of baseling	ne & ANI < 40% of baseline]		
		and		
	STG < 40% of baseline & ANI < 40%			

Notes:

- 1. STG means quarterly encounter rate of number of dolphin sightings, which is **6.00 in NEL** and **9.85 in NWL** during the baseline monitoring period
- 2. ANI means quarterly encounter rate of total number of dolphins, which is **22.19 in NEL** and **44.66 in NWL** during the baseline monitoring period
- 3. For North Lantau Social Cluster, AL will be trigger if NEL or NWL fall below the criteria; LL will be triggered if both NEL and NWL fall below the criteria.

Table D4 Derived Value of Action Level (AL) and Limit Level (LL)

	North Lanta	North Lantau Social Cluster				
	NEL	NWL				
Action Level	STG < 4.2 & ANI< 15.5	STG < 6.9 & ANI < 31.3				
Limit Level	[STG < 2.4	! & ANI <8.9]				
	á	and				
	[STG < 3.9 & ANI <17.9]					

Appendix E

Copies of Calibration Certificates for Air Quality and Water Quality Monitoring

Location : AQM1
Calibrated by : P.F.Yeung
Date : 09/12/2013

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 1253

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2323

 Service Date
 :
 26 Dec 2012

 Slope (m)
 :
 2.09107

 Intercept (b)
 :
 -0.02838

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1014 Ta(K) : 293

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.8	3.610	1.740	52	52.47
2	13 holes	10.0	3.191	1.539	46	46.41
3	10 holes	7.4	2.745	1.326	39	39.35
4	7 holes	4.6	2.164	1.048	32	32.29
5	5 holes	2.9	1.718	0.835	25	25.22

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):29.770 Intercept(b): 0.512 Correlation Coefficient(r): 0.9991

Checked by: Magnum Fan Date: 15/12/2013

Location : AQM1
Calibrated by : P.F.Yeung
Date : 10/02/2014

Sampler

Model : TE-5170 Serial Number : S/N 1253

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2454

 Service Date
 : 12 Mar 2013

 Slope (m)
 : 2.05818

 Intercept (b)
 : 0.01929

 Correlation Coefficient(r)
 : 0.99991

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 282

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.5	3.645	1.762	54	55.67
2	13 holes	10.1	3.277	1.583	48	49.49
3	10 holes	7.5	2.824	1.362	42	43.30
4	7 holes	4.7	2.235	1.077	33	34.02
5	5 holes	3.0	1.786	0.858	26	26.81

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected\ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 31.647 Intercept(b): 0.1797 Correlation Coefficient(r): 0.9997

Checked by: Magnum Fan Date: 15/02/2014

Location : ASR 1
Calibrated by : P.F.Yeung
Date : 09/12/2013

Sampler

Model : TE-5170 Serial Number : S/N 0146

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2323

 Service Date
 :
 26 Dec 2012

 Slope (m)
 :
 2.09107

 Intercept (b)
 :
 -0.02838

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1014 Ta(K) : 293

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	13.0	3.638	1.753	53	53.48
2	13 holes	10.2	3.222	1.555	46	46.41
3	10 holes	7.4	2.745	1.326	40	40.36
4	7 holes	4.9	2.234	1.082	31	31.28
5	5 holes	3.0	1.748	0.849	24	24.22

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m): 32.296 Intercept(b): -3.257 Correlation Coefficient(r): 0.9990

Checked by: Magnum Fan Date: 15/12/2013

Location : ASR 1
Calibrated by : P.F.Yeung
Date : 10/02/2014

Sampler

Model : TE-5170 Serial Number : S/N 0146

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 12 Mar 2013

 Slope (m)
 :
 2.05818

 Intercept (b)
 :
 0.01929

 Correlation Coefficient(r)
 :
 0.99991

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 292

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	13.0	3.717	1.797	53	54.64
2	13 holes	10.2	3.293	1.590	46	47.43
3	10 holes	7.4	2.805	1.353	40	41.24
4	7 holes	4.9	2.282	1.099	31	31.96
5	5 holes	3.0	1.786	0.858	24	24.74

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):31.788 Intercept(b): -2.582 Correlation Coefficient(r): 0.9990

Checked by: Magnum Fan Date: 15/02/2014

Location : ASR 5
Calibrated by : P.F.Yeung
Date : 09/12/2013

Sampler

Model : TE-5170 Serial Number : S/N 0816

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2323

 Service Date
 : 26 Dec 2012

 Slope (m)
 : 2.09107

 Intercept (b)
 : -0.02838

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1014 Ta(K) : 293

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.4	3.553	1.713	53	53.48
2	13 holes	10.0	3.190	1.539	48	48.43
3	10 holes	7.4	2.745	1.326	42	42.38
4	7 holes	4.6	2.164	1.048	34	34.31
5	5 holes	2.8	1.688	0.821	26	26.23

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

 $Slope(m): \underline{30.020} \quad Intercept(b): \underline{2.020} \quad Correlation \ Coefficient(r): \underline{0.9990}$

Checked by: Magnum Fan Date: 15/12/2013

Location : ASR 5
Calibrated by : P.F.Yeung
Date : 10/02/2014

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 0816

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 12 Mar 2013

 Slope (m)
 :
 2.05818

 Intercept (b)
 :
 0.01929

 Correlation Coefficient(r)
 :
 0.99991

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 282

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.2	3.601	1.740	54	55.67
2	13 holes	9.8	3.228	1.559	49	50.52
3	10 holes	7.5	2.824	1.362	43	44.33
4	7 holes	4.8	2.259	1.088	35	36.09
5	5 holes	2.9	1.756	0.844	27	27.84

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):31.009 Intercept(b): 1.999 Correlation Coefficient(r): 0.9996

Checked by: Magnum Fan Date: 15/02/2014

Location : ASR 6
Calibrated by : P.F.Yeung
Date : 17/01/2014

Sampler

Model : TE-5170 Serial Number : S/N 3957

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 12 Mar 2013

 Slope (m)
 :
 2.05818

 Intercept (b)
 :
 0.01929

 Correlation Coefficient(r)
 :
 0.99991

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1022 Ta(K) : 288

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.4	3.599	1.739	56	57.22
2	13 holes	9.7	3.182	1.537	49	50.06
3	10 holes	7.1	2.722	1.313	43	43.93
4	7 holes	4.5	2.167	1.044	34	34.74
5	5 holes	2.9	1.740	0.836	27	27.59

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 32.751 Intercept(b): 0.726 Correlation Coefficient(r): 0.9993

Checked by: Magnum Fan Date: 22/01/2014

High-Volume TSP Sampler 5-Point Calibration Record

Location : ASR 6
Calibrated by : P.F.Yeung
Date : 10/02/2014

Sampler

Model : TE-5170 Serial Number : S/N 3957

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 12 Mar 2013

 Slope (m)
 :
 2.05818

 Intercept (b)
 :
 0.01929

 Correlation Coefficient(r)
 :
 0.99991

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 282

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.660	1.769	57	58.77
2	13 holes	9.9	3.244	1.567	50	51.55
3	10 holes	7.2	2.767	1.335	42	43.30
4	7 holes	4.7	2.235	1.077	34	35.05
5	5 holes	2.8	1.725	0.829	25	25.78

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m): 34.790 Intercept(b): -2.864 Correlation Coefficient(r): 0.9997

Checked by: Magnum Fan Date: 15/02/2014

Location : ASR10A Calibrated by : P.F.Yeung Date : 09/12/2013

Sampler

Model : TE-5170 Serial Number : S/N 8162

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2323

 Service Date
 : 26 Dec 2012

 Slope (m)
 : 2.09107

 Intercept (b)
 : -0.02838

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1014 Ta(K) : 293

Resistance Plate dH [green liquid]		Z	X=Qstd	IC	Y	
(inch water		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.8	3.610	1.740	62	62.56
2	13 holes	10.6	3.285	1.585	55	55.49
3	10 holes	7.8	2.818	1.361	45	45.40
4	7 holes	5.0	2.256	1.093	34	34.31
5	5 holes	3.1	1.777	0.863	22	22.20

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 45.377 Intercept(b): -16.281 Correlation Coefficient(r): 0.9991

Checked by: Magnum Fan Date: 15/12/2013

Location : ASR10A Calibrated by : P.F.Yeung Date : 10/02/2014

Sampler

Model : TE-5170 Serial Number : S/N 8162

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 12 Mar 2013

 Slope (m)
 :
 2.05818

 Intercept (b)
 :
 0.01929

 Correlation Coefficient(r)
 :
 0.99991

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 282

Resistance Plate dH [green liquid]		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.660	1.769	57	58.77
2	13 holes	10.5	3.341	1.614	52	53.61
3	10 holes	7.6	2.842	1.372	45	46.40
4	7 holes	4.8	2.259	1.088	36	37.12
5	5 holes	3.0	1.786	0.858	28	28.87

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

 $Slope(m): \underline{32.526} \quad Intercept(b): \underline{1.364} \quad Correlation \ Coefficient(r): \underline{0.9995}$

Checked by: Magnum Fan Date: 15/02/14

Certification of Quality

This product has been tested in accordance with procedures established through Global Water Instrumentation's Quality Management System. This product meets or exceeds its manufacturing acceptance criteria.

ITEM DESCRIPTION:

Wind Direction

MODEL NAME/ NUMBER:

WE570

PART NUMBER:

ED0000

SENSOR RANGE:

0-360°

SENSOR OUTPUT:

4.01-20.03 mA

ACCURACY:

1% of full scale

POWER REQUIRED

10-36 VDC

SERIAL NUMBER:

1337005143

CABLE LENGTH:

25 ft

CERTIFICATES:

CE Compliant

Technician:

Wright, Jess

Date: 9/12/2013

Global Water Instrumentation warrants that its products are free from defects in material & workmanship under normal use & service for a period of one year from date of original shipment from factory. Repaired components are warranted for a period of 90 days from shipment. Contact us for complete warranty details.

a xylem brand

In the U.S. call toll free at 1-800-876-1172 International 1-979-690-5560 Our Service Address Fax 1-979-690-0440 Email globalw@globalw.com College Station, TX 77845

Visit our online catalog at www.globalw.com 151 Graham Rd

Certification of Quality

This product has been tested in accordance with procedures established through Global Water Instrumentation's Quality Management System. This product meets or exceeds its manufacturing acceptance criteria.

ITEM DESCRIPTION:

Wind Speed Sensor

MODEL NAME/ NUMBER:

WE550

PART NUMBER:

EC0000

SENSOR RANGE:

0-110 MPH

SENSOR OUTPUT:

4.00-19.91 mA

ACCURACY:

.2 MPH over the range 11 to 55 MPH

POWER REQUIRED

10-36 VDC

SERIAL NUMBER:

1337005099

CABLE LENGTH:

25 ft

CERTIFICATES:

CE Compliant

Contact Global Water Water Leve Water Flow Water Samplers Water Qualit

Remote Monitoring

Technician:

Wright, Jess

Date: 9/10/2013

Global Water Instrumentation warrants that its products are free from defects in material & workmanship under normal use & service for a period of one year from date of original shipment from factory. Repaired components are warranted for a period of 90 days from shipment. Contact us for complete warranty details.

a xylem brand

In the U.S. call toll free at 1-800-876-1172 International 1-979-690-5560 Our Service Address Fax 1-979-690-0440

Visit our online catalog at www.globalw.com 151 Graham Rd Email globalw@globalw.com College Station, TX 77845

Internal Calibration & P	erformance Check	of pH Meter	
Equipment Ref. No.: ET/EW/007/003	Manufacturer	: HANNA	
Model No. : HI 8314	Serial No.	: 674469	
Date of Calibration : 10/02/2014	Calibration Due Date	: 09/03/2014	
Date of Calibration 10/82/2014	Calibration Due Date	a 10/01/1	14
Liquid Junction Error			
Primary Standard Solution Used : Phosphate	Ref No. o	f Primary Solution:	003/5.2/001/17
Temperature of Solution : 20.0		ΔpH _½ =	+0.08
pH value of diluted buffer : 6.80		pH (S) =	6.881
Δ pH = pH(S) - pH of diluted buffer = 0.081	(Observed Deviati	on)	•
Liquid Junction Error (ΔpH_i) = $\Delta pH - \Delta pH_{\frac{1}{2}} = 0.001$			
,			
Shift on Stirring			
pH of buffer solution (with stirring), pH _s =	6.87		
Shift on stirring, $\triangle pH_s = pH_s - pH(S) - \triangle pH_j = $	-0.012		
Noise		-	
Noise, ΔpH_n = difference between max and min rea	ding: 0.00		
Verification of ATC			
Ref. No. of reference thermometer used:	ET/0521/00	8	_
Temperature record from the reference thermometer	er (T _R): 20.0		°c
Temperature record from the ATC (T _{ATC}):	19.9		°C
Temperature Difference, T _R - T _{ATC}	0.1		-° C
Acceptance Criteria	E ALLJANIES		
Performance Characteristic	Accep	table Range	
Liquid Junction Error ΔpHj		≤0.05	
Shift on Stirring ∆pHs		≤0.02	
Noise ∆pHn		≤0.02	
Verifcation of ATC Temperature	Difference	≤0.5°C]
The pH meter complies * / does not comply * wi unacceptable * for use. Measurements are traceab * Delete as appropriate		ents and is deeme	ed acceptable * /
Calibrated by :	Checked by	y: ()	

CPE/015/W

Internal Calibration & Perform	ance Check of pH Meter
Model No. : HI 8314 Serial No.	
Date of Calibration : 10/02/2014 Calibration	on Due Date : <u>09/03/2014</u>
Liquid Junction Error	
Primary Standard Solution Used : Phosphate	Ref No. of Primary Solution: 003/5.2/001/17
Temperature of Solution : 20.0	$\Delta pH_{1/2} = +0.08$
pH value of diluted buffer : 6.80	pH (S) = 6.881
	Observed Deviation)
Liquid Junction Error (ΔpH_i) = ΔpH - $\Delta pH_{1/2}$ = 0.001	Observed Beviation)
Shift on Stirring	
pH of buffer solution (with stirring), pH _s = 6	.87
Shift on stirring, $\Delta pH_s = pH_s - pH(S) - \Delta pH_j = \frac{-0.0000}{0.0000000000000000000000000000$	012
Noise	
Noise, ΔpH_n = difference between max and min reading :	0.00
Verification of ATC	
Ref. No. of reference thermometer used:	ET/0521/008
Temperature record from the reference thermometer (T_R) :	20.0 °C
Temperature record from the ATC (T _{ATC}):	19.9 °C
Temperature Difference, T _R - T _{ATC}	0.1 °C
Acceptance Criteria	
Performance Characteristic	Acceptable Range
Liquid Junction Error ΔpHj	≤0.05
Shift on Stirring ∆pHs	≤0.02
Noise Δ pHn	≤0.02
Verification of ATC Temperature Difference	≤0.5°C
The pH meter complies * / does not comply * with the sp unacceptable * for use. Measurements are traceable to natio * Delete as appropriate	
Calibrated by :	Checked by :

CPE/015/W

Form E/CE/R/12 Issue 8 (1/2) [05/13]

Internal Calibration Report of Dissolved Oxygen Meter

Equipment Ref. No.

: ET/EW/008/005

Manufacturer

YSI

Model No.

Pro 2030

Serial No.

12A 100353

Date of Calibration

: 29/01/2014

Calibration Due Date

28/04/2014

Temperature Verification

Ref. No. of Reference Thermometer:

ET/0521/008

Ref. No. of Water Bath:

	Temperature (°C)				
Reference Thermometer reading	Measured	20.2	Corrected	19.8	
DO Meter reading	Measured	19.7	Difference	0.1	

Standardization of sodium thiosulphate (Na $_2$ S $_2$ O $_3$) solution

Reagent No. of Na ₂ S ₂ O ₃ titrant	CPE/012/4.5/001/8	Reagent No. of 0.025N K ₂ Cr ₂ O ₇	CPE/012/4.4/001/24	
		Trial I	Trial 2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)		0.00	10.50	
Final Vol. of Na ₂ S ₂ O ₃ (ml)		10.50	20.95	
Vol. of Na ₂ S ₂ O ₃ used (ml)		10.50	10.45	
Normality of Na ₂ S ₂ O ₃ solution (N)		0.02381	0.02392	
Average Normality (N) of Na ₂ S ₂ O ₃ s	olution (N)	0.02387		
Acceptance criteria, Deviation		Less than <u>+</u> 0.001N		

Calculation:

Normality of $Na_2S_2O_3$, N = 0.25 / ml $Na_2S_2O_3$ used

Lineality Checking

Determination of dissolved oxygen content by Winkler Titration *

Purging Time (min)		2		5		10	
Trial	1	2	1	2	1	2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.90	23.50	0.00	8.20	13.20	
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.90	23.50	31.90	8.20	13.20	17.90	
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.90	11.60	8.40	8.20	5.00	4.70	
Dissolved Oxygen (DO), mg/L	7.63	7.43	5.38	5.25	3.20	3.01	
Acceptance criteria, Deviation	Less than	n + 0.3mg/L	Less than	+ 0.3mg/L	Less than	+ 0.3mg/L	

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

D	DO meter reading, mg/L			Winkler	Titration res	Difference (%) of DO	
Purging time, min	1	2	Average	1	2	Average	Content
2	7.65	7.41	7.53	7.63	7.43	7.53	0.00
5	5.38	5.21	5.30	5.38	5.25	5.32	0.38
10	3.22	3.09	3.16	3.20	3.01	3.11	1.59
Linear regression coefficient						0.9998	

Form E/CE/R/12 Issue 8 (2/2) [05/13]

Internal Calibration Report of Dissolved Oxygen Meter

Zero Point Checking

DO meter reading, mg/L	0.00

Salinity Checking

	ľ	I	I
Reagent No. of NaCl (10ppt)	CPE/012/4.7/002/15	Reagent No. of NaCl (30ppt)	CPE/012/4.8/002/15

Determination of dissolved oxygen content by Winkler Titration **

Salinity (ppt)	10	0		30
Trial	1	2	1	2
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	12.30	24.40	35.80
Final Vol. of Na ₂ S ₂ O ₃ (ml)	12.30	24.40	35.80	47.00
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	12.30	12.10	11.40	11.20
Dissolved Oxygen (DO), mg/L	7.88	7.75	7.31	7.18
Acceptance criteria, Deviation	Less than -	+ 0.3mg/L	Less that	n + 0.3mg/L

Calculation:

DO $(mg/L) = V \times N \times 8000/298$

Salinity (ppt)	DO	meter reading,	mg/L	Winkler	Titration resu	Difference (%) of DO	
Gammiy (ppt)	ı	2	Average	1	2	Average	Content
10	7.88	7.65	7.77	7.88	7.75	7.82	0.64
30	7.23	7.14	7.19	7.31	7.18	7.25	0.83

Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer : < 0.5 °C
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within \pm 5%

: _______

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

" Delete as appropriate

Calibrated by

Approved by:

J

CEP/012/W

Performance Check of Salinity Meter

Equipment Ref. No. : ET/EW/008/005

Manufacturer

: YSI

Model No.

: Pro 2030

Serial No.

: 12A 100353

Date of Calibration

: 29/01/2014

Due Date

: 28/04/2014

Ref. No. of Salinity Standard used (30ppt)

S/001/5

Salinity Standard (ppt)	Measured Salinity (ppt)	Difference %		
30.0	30.9	3.00		

Acceptance Criteria

Difference: <10 %

The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Checked by: _____ Approved by:

Performance Check of Turbidity Meter

Equipment Ref. No. : <u>ET/0505/010</u> Manufacturer : HACH

Serial No. : 11110 C 014260 Model No. : 21000

Due Date : 06/04/2014 Date of Calibration : 07/01/2014

Theoretical Value of Turbidity Standard (NTU)	Measured Value (NTU)	Difference % *
20	19.2	-4.08
100	104	3.92
800	793	-0.88

(*) Difference = (Measured Value – Theoretical Value) / Theoretical Value

Acceptance Criteria

Difference: -5 % to 5 %

The turbidity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Checked by: Prepared by:

Appendix F

EM&A Monitoring Schedules

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Air Quality Impact Monitoring Schedule - February 2014

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

7 til quality me	Thiorning Statio	IIS. ASR1, ASR3, ASR6, A	OKTO, AQIMOT				
Sun	nday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
							public holiday 01-Feb
						public Holiday C 1 Gail	pasie nemady 011 00
public holiday	02-Feb	public holiday 03-Feb	04-Feb	05-Feb	06-Feb	07-Feb	08-Feb
				1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time
				Impact AQM			Impact AQM
	09-Feb	10-Feb			13-Feb	14-Feb	15-Feb
				1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			
	16-Feb	17-Feb			20-Feb	21-Feb	22-Feb
			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM				
	23-Feb		25-Feb	26-Feb			
		1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM				1-hour TSP - 3 times 24-hour TSP - 1 time	
		IIIIpaci AQIVI				Impact AQM	

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Tentative Air Quality Impact Monitoring Schedule - March 2014

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

Air quality monitoring static						
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						01-Mar
02-Mar	03-Mar	04-Mar	05-Mar	06-Mar	07-Mar	08-Mar
				1-hour TSP - 3 times		
				24-hour TSP - 1 time		
				Impact AQM		
09-Mar	10-Mar			13-Mar	14-Mar	15-Mar
			1-hour TSP - 3 times 24-hour TSP - 1 time			
			Impact AQM			
16-Mar	17-Mar			20-Mar	21-Mar	22-Mar
		1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM				
23-Mar	24-Mar	25-Mar	26-Mar	27-Mar	28-Mar	29-Mar
	1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM				1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM	
30-Mar						

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/08 - Tuen Mun - Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section Impact Marine Water Quality Monitoring (WQM) Schedule (Feb 14)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						01-Feb
02-Feb	03-Feb	04-Feb	05-Feb	06-Feb	07-Feb	08-Feb
02 1 00	WQM	01100	WQM	88188	WQM	66 1 65
	Mid-Flood		Mid-Flood		Mid-Flood	
	9:47		10:52		12:09	
	(08:02 - 11:32)		(09:07 - 12:37)		(10:24 - 13:54)	
	Mid-Ebb		Mid-Ebb		Mid-Ebb	
	15:38		17:19		19:40	
	(13:53 - 17:23)		(15:34 - 19:04)		(17:55 - 21:25)	
09-Feb		11-Feb		13-Feb		15-Feb
	WQM		WQM		WQM	
	Mid-Flood		Mid-Ebb		Mid-Ebb	
	10:36		11:48		12:50	
	(08:51 - 12:21) Mid-Ebb		(10:03 - 13:33) Mid-Flood		(11:05 - 14:35) Mid-Flood	
	22:57		17:06		18:25	
	(21:12 - 24:12)		(15:21 - 18:51)		(17:21 - 20:51)	
16-Feb		18-Feb				22-Feb
	WQM		WQM		WQM	
	Mid-Flood		Mid-Flood		Mid-Flood	
	8:33		9:25		10:27	
	(07:18 - 10:18)		(07:40 - 11:10)		(08:42 - 12:12)	
	Mid-Ebb		Mid-Ebb		Mid-Ebb	
	14:17		15:28		16:58	
00.5.1	(12:32 - 16:02)	25.5.1	(13:43 - 17:13)		(15:13 - 18:43)	24.14
23-Feb	24-Feb	25-Feb	26-Feb WQM	27-Feb	28-Feb	01-Mar
	Mid-Ebb		Mid-Ebb		Mid-Ebb	
	8:13		10:56		12:28	
	(06:58 - 09:28)		(09:11 - 12:41)		(10:43 - 14:13)	
	Mid-Flood		Mid-Flood		Mid-Flood	
	13:09		16:01		18:00	
	(11:24 - 14:54)		(14:16 - 17:46)		(16:15 - 19:45)	

HY/2012/08 - Tuen Mun - Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section Tentative Impact Marine Water Quality Monitoring (WQM) Schedule (Mar 14)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						01-Mar
02-Mar	03-Mar	04-Mar	05-Mar	06-Mar	07-Mar	08-Mar
	WQM		WQM		WQM	08-IVIAI
	Mid-Flood		Mid-Flood		Mid-Flood	
	8:27		9:21		10:20	
	(06:42 - 10:12)		(07:36 - 11:06)		(08:35 - 12:05)	
	Mid-Ebb		Mid-Ebb		Mid-Ebb	
	14:26		15:45		17:23	
	(12:41 - 16:11)		(14:00 - 17:30)		(15:38 - 19:08)	
09-Mar	10-Mar	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar
	WQM		WQM		WQM	
	Mid-Flood		Mid-Ebb		Mid-Ebb	
	8:34		10:57		11:58	
	(06:49 - 10:19)		(09:12 - 12:42)		(10:13 - 13:43)	
	Mid-Ebb 21:00		Mid-Flood 16:04		Mid-Flood 17:40	
	(19:15 - 22:45)		(14:19 - 17:49)		(15:55 - 19:25)	
16-Mar	(13.13 - 22.43) 17-Mar	18-Mar	(14.13 - 17.43) 19-Mar	20-Mar	(13.55 - 13.25) 21-Mar	22-Mar
	WQM		WQM		WQM	
	Mid-Ebb		Mid-Flood		Mid-Flood	
	13:23		8:18		9:18	
	(11:38 - 15:08)		(06:33 - 10:03)		(07:34 - 11:04)	
	Mid-Flood		Mid-Ebb		Mid-Ebb	
	19:33		14:29		15:47	
	(17:48 - 21:18)		(12:44 - 16:14)		(14:02 - 17:32)	
23-Mar	24-Mar	25-Mar	26-Mar	27-Mar	28-Mar	29-Mar
	WQM Mid-Flood		WQM Mid-Ebb		WQM Mid-Ebb	
	11:24		9:47		11:29	
	(09:39 - 13:09)		(08:02 - 11:32)		(09:44 - 13:14)	
	Mid-Ebb		Mid-Flood		Mid-Flood	
	18:53		14:44		17:03	
	(17:08 - 20:38)		(12:59 - 16:29)		(15:18 - 18:48)	
30-Mar	31-Mar					
	WQM					
	Mid-Ebb					
	13:24					
	(11:39 - 15:09)					
	Mid-Flood					
	19:38					
	(17:53 - 21:23)					

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Impact Dolphin Monitoring Survey Monitoring Schedule - February 2014

Su	nday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
public holiday	2-Feb	public holiday 3-Feb	4-Feb			7-Feb	8-Feb
					Impact Dolphin Monitoring		
	9-Feb	10-Feb	11-Feb	12-Feb	13-Feb	14-Feb	15-Feb
				Impact Dolphin Monitoring		Impact Dolphin Monitoring	
	16-Feb	17-Feb	18-Feb	19-Feb	20-Feb	21-Feb	22-Feb
					Impact Dolphin Monitoring		
	23-Feb	24-Feb	25-Feb	26-Feb	27-Feb	28-Feb	1-Mar
	2-Mar	3-Mar	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Tentative Impact Dolphin Monitoring Survey Monitoring Schedule - March 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Mar
2-Mar	3-Mar			6-Mar	7-Mar	8-Mar
			Impact Dolphin Monitoring			
9-Mar		11-Mar			14-Mar	15-Mar
	Impact Dolphin Monitoring			Impact Dolphin Monitoring		
16-Mar		18-Mar	19-Mar	20-Mar	21-Mar	22-Mar
	Impact Dolphin Monitoring					
23-Mar	24-Mar	25-Mar	26-Mar	27-Mar	28-Mar	29-Mar
30-Mar	31-Mar					

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

Appendix G

Impact Air Quality Monitoring Results

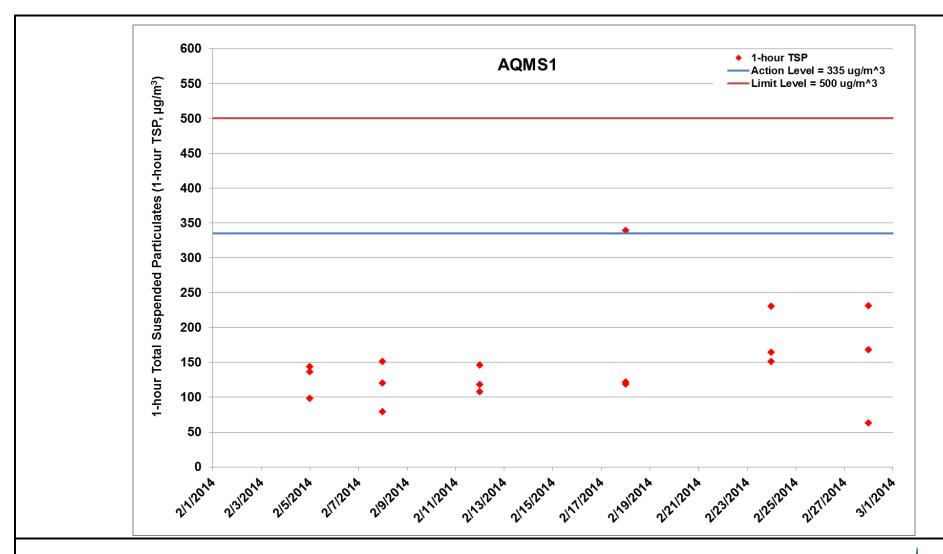


Figure G.1 Impact Monitoring – Mean Level of 1-hour Total Suspended Particulates (mg/L) at AQMS1 between 1 and 28 February 2014 during impact monitoring period.

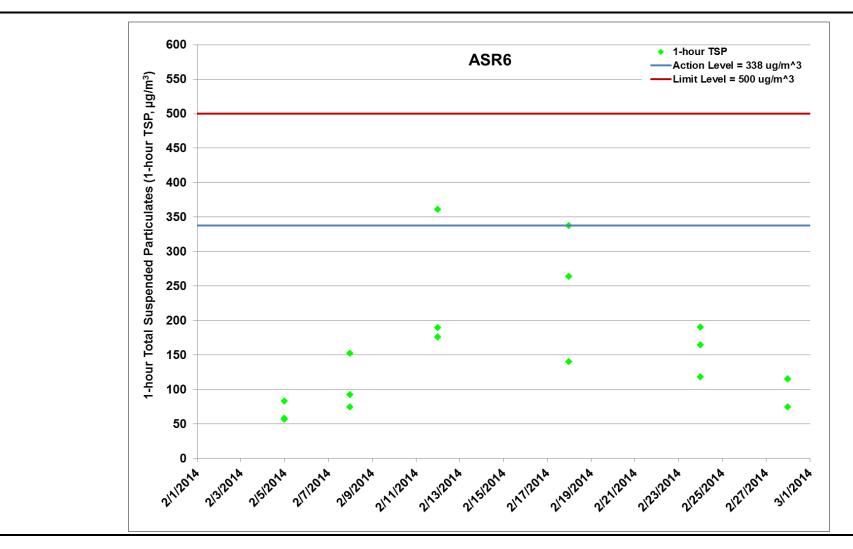


Figure G.2 Impact Monitoring - Mean Level of 1-hour Total Suspended Particulates (mg/L) at ASR6 between 1 and 28 February 2014 during impact monitoring period.

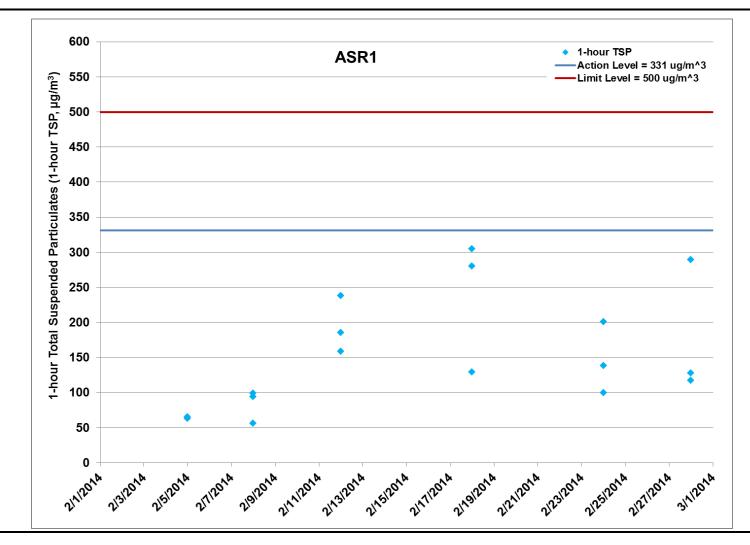


Figure G.3 Impact Monitoring – Mean Level of 1-hour Total Suspended Particulates (mg/L) at ASR1 between 1 and 28 February 2014 during impact monitoring period.

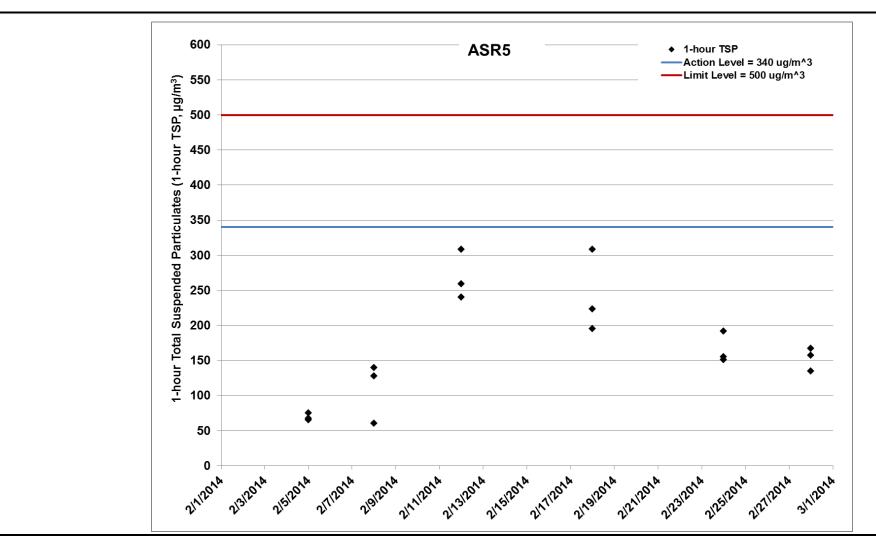


Figure G.4 Impact Monitoring – Mean Level of 1-hour Total Suspended Particulates (mg/L) at ASR5 between 1 and 28 February 2014 during impact monitoring period.

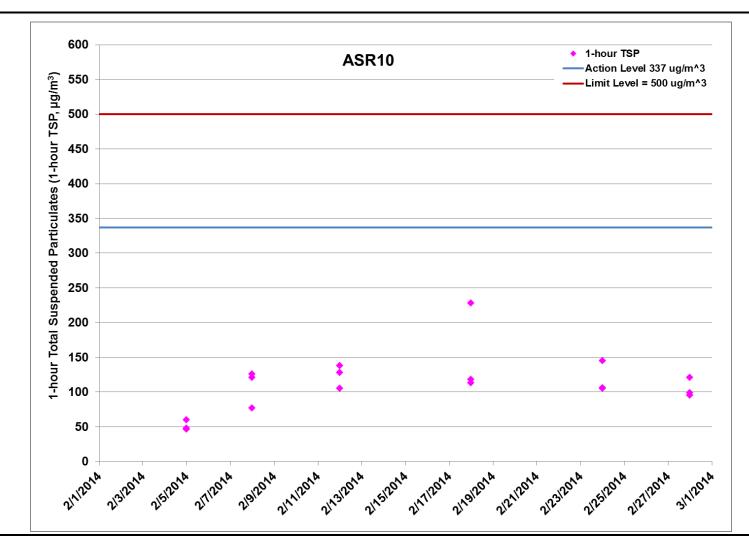


Figure G.5 Impact Monitoring - Mean Level of 1-hour Total Suspended Particulates (mg/L) at ASR10 between 1 and 28 February 2014 during impact monitoring period.

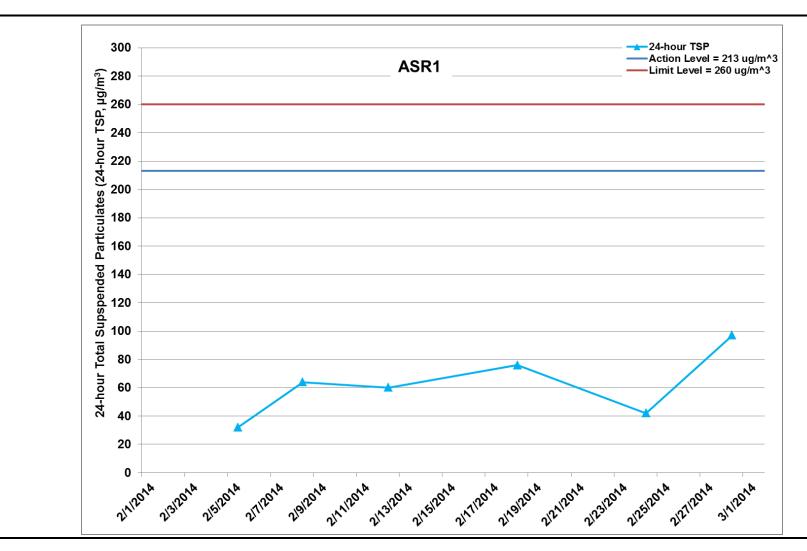


Figure G.6 Impact Monitoring – 24-hour Total Suspended Particulates (mg/L) at ASR1 between 1 and 28 February 2014 during impact monitoring period.

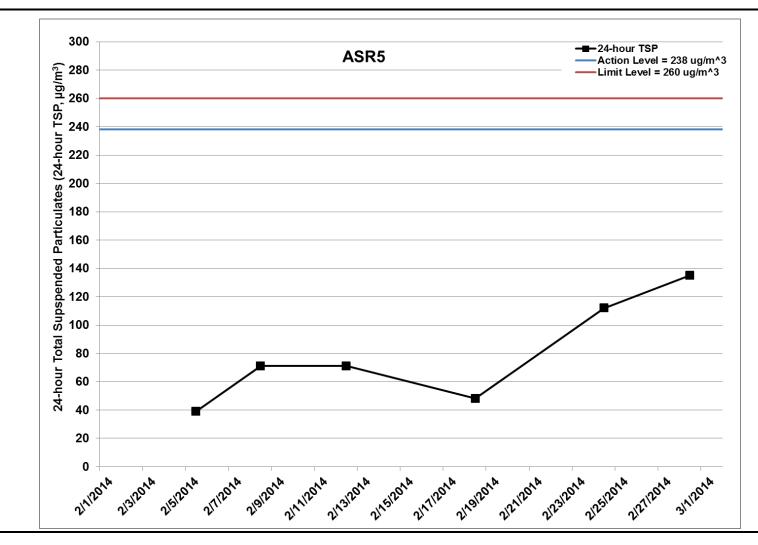


Figure G.7 Impact Monitoring – 24-hour Total Suspended Particulates (mg/L) at ASR5 between 1 and 28 February 2014 during impact monitoring period.

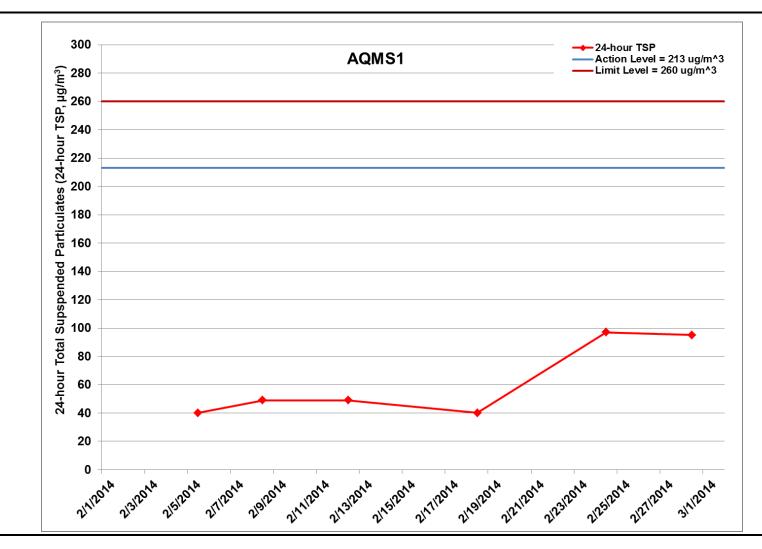


Figure G.8 Impact Monitoring – 24-hour Total Suspended Particulates (mg/L) at AQMS1 between 1 and 28 February 2014 during impact monitoring period.

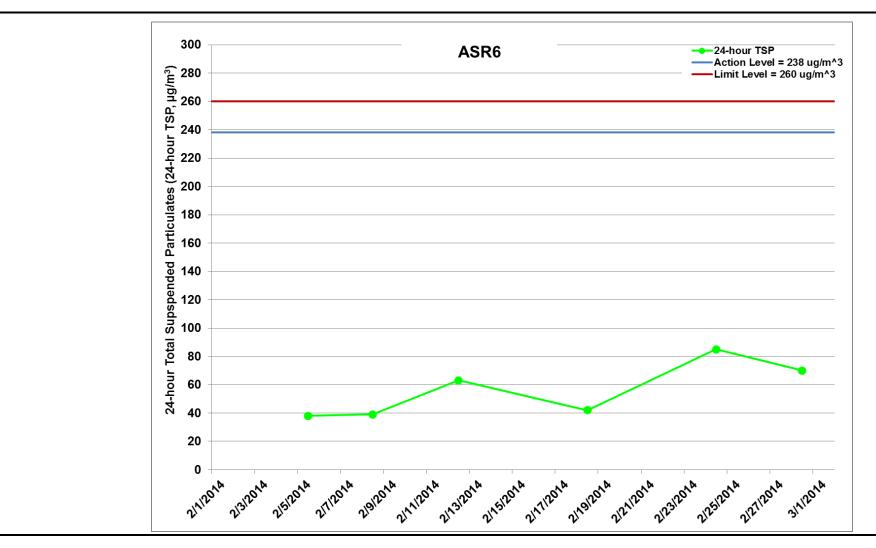


Figure G.9 Impact Monitoring – 24-hour Total Suspended Particulates (mg/L) at ASR6 between 1 and 28 February 2014 during impact monitoring period.

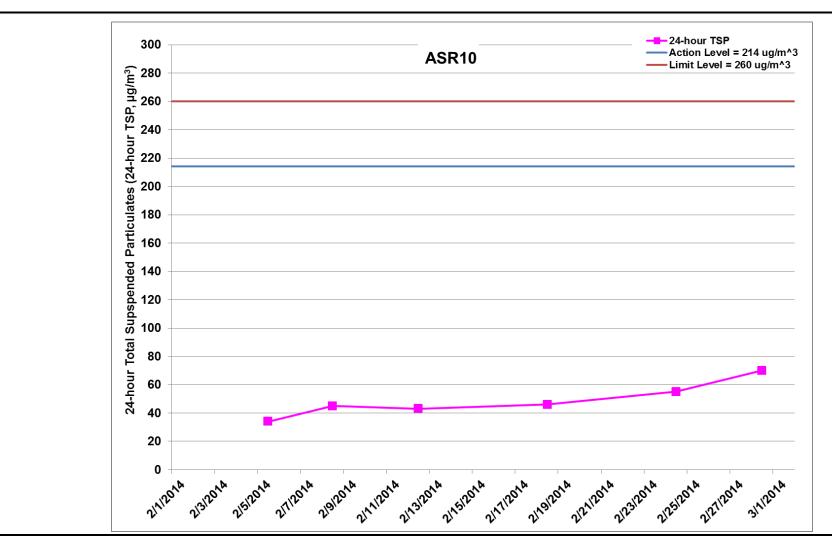


Figure G.10 Impact Monitoring – 24-hour Total Suspended Particulates (mg/L) at ASR10 between 1 and 28 February 2014 during impact monitoring period.

Project	Works	Date	Station	Start time	Parameters	Results	Unit
TMCLKL	HY/2012/08	2014/02/05	ASR6	13:52	1-hour TSP	58	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR6	14:54	1-hour TSP	56	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR6	15:56	1-hour TSP	83	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR10	13:40	1-hour TSP	60	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR10	14:42	1-hour TSP	46	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR10	15:44	1-hour TSP	48	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR1	14:13	1-hour TSP	65	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR1	15:15	1-hour TSP	63	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR1	16:17	1-hour TSP	63	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR5	14:02	1-hour TSP	65	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR5	15:04	1-hour TSP	67	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR5	16:06	1-hour TSP	75	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	AQMS1	14:23	1-hour TSP	136	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	AQMS1	15:25	1-hour TSP	144	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	AQMS1	16:27	1-hour TSP	98	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR1	12:46	1-hour TSP	94	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR1	13:48	1-hour TSP	56	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR1	14:50	1-hour TSP	99	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	AQMS1	12:58	1-hour TSP	151	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	AQMS1	14:00	1-hour TSP	120	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	AQMS1	15:02	1-hour TSP	79	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR6	12:26	1-hour TSP	74	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR6	13:28	1-hour TSP	92	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR6	14:30	1-hour TSP	152	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR5	12:35	1-hour TSP	128	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR5	13:37	1-hour TSP	60	ug/m ³

TMCLKL	HY/2012/08	2014/02/08	ASR5	14:39	1-hour TSP	140	ug/m ³
							ug/m³
TMCLKL	HY/2012/08	2014/02/08	ASR10	12:15	1-hour TSP	77	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR10	13:17	1-hour TSP	126	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR10	14:19	1-hour TSP	121	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR10	14:05	1-hour TSP	138	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR10	15:07	1-hour TSP	128	ug/m³
TMCLKL	HY/2012/08	2014/02/12	ASR10	16:09	1-hour TSP	105	ug/m³
TMCLKL	HY/2012/08	2014/02/12	ASR6	14:15	1-hour TSP	361	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR6	15:17	1-hour TSP	176	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR6	16:19	1-hour TSP	189	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR5	14:24	1-hour TSP	308	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR5	15:26	1-hour TSP	240	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR5	16:28	1-hour TSP	259	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR1	14:35	1-hour TSP	238	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR1	15:37	1-hour TSP	159	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR1	16:39	1-hour TSP	185	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	AQMS1	14:45	1-hour TSP	146	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	AQMS1	15:47	1-hour TSP	108	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	AQMS1	16:49	1-hour TSP	118	ug/m ³
TMCLKL	HY/2012/08	2014/02/18	ASR10	12:50	1-hour TSP	118	ug/m ³
TMCLKL	HY/2012/08	2014/02/18	ASR10	13:52	1-hour TSP	228	ug/m ³
TMCLKL	HY/2012/08	2014/02/18	ASR10	14:54	1-hour TSP	113	ug/m ³
TMCLKL	HY/2012/08	2014/02/18	AQMS1	13:34	1-hour TSP	119	ug/m ³
TMCLKL	HY/2012/08	2014/02/18	AQMS1	14:36	1-hour TSP	339	ug/m³
TMCLKL	HY/2012/08	2014/02/18	AQMS1	15:38	1-hour TSP	122	ug/m ³
TMCLKL	HY/2012/08	2014/02/18	ASR1	13:23	1-hour TSP	305	ug/m ³
TMCLKL	HY/2012/08	2014/02/18	ASR1	14:25	1-hour TSP	280	ug/m ³

HY/2012/08	2014/02/18	ASR1	15:27	1-hour TSP	129	ug/m ³
HY/2012/08	2014/02/18	ASR5	13:12	1-hour TSP	195	ug/m ³
HY/2012/08	2014/02/18	ASR5	14:14	1-hour TSP	308	ug/m ³
HY/2012/08	2014/02/18	ASR5	15:16	1-hour TSP	223	ug/m ³
HY/2012/08	2014/02/18	ASR6	13:00	1-hour TSP	264	ug/m ³
HY/2012/08	2014/02/18	ASR6	14:02	1-hour TSP	337	ug/m ³
HY/2012/08	2014/02/18	ASR6	15:04	1-hour TSP	140	ug/m ³
HY/2012/08	2014/02/24	AQMS1	13:49	1-hour TSP	230	ug/m ³
HY/2012/08	2014/02/24	AQMS1	14:51	1-hour TSP	164	ug/m ³
HY/2012/08	2014/02/24	AQMS1	15:53	1-hour TSP	151	ug/m ³
HY/2012/08	2014/02/24	ASR1	13:38	1-hour TSP	201	ug/m ³
HY/2012/08	2014/02/24	ASR1	14:40	1-hour TSP	138	ug/m ³
HY/2012/08	2014/02/24	ASR1	15:42	1-hour TSP	100	ug/m ³
HY/2012/08	2014/02/24	ASR5	13:27	1-hour TSP	155	ug/m ³
HY/2012/08	2014/02/24	ASR5	14:29	1-hour TSP	192	ug/m ³
HY/2012/08	2014/02/24	ASR5	15:31	1-hour TSP	151	ug/m ³
HY/2012/08	2014/02/24	ASR6	13:17	1-hour TSP	190	ug/m ³
HY/2012/08	2014/02/24	ASR6	14:19	1-hour TSP	164	ug/m ³
HY/2012/08	2014/02/24	ASR6	15:21	1-hour TSP	118	ug/m ³
HY/2012/08	2014/02/24	ASR10	13:05	1-hour TSP	145	ug/m ³
HY/2012/08	2014/02/24	ASR10	14:07	1-hour TSP	106	ug/m ³
HY/2012/08	2014/02/24	ASR10	15:09	1-hour TSP	105	ug/m ³
HY/2012/08	2014/02/28	AQMS1	13:54	1-hour TSP	63	ug/m ³
HY/2012/08	2014/02/28	AQMS1	14:56	1-hour TSP	231	ug/m ³
HY/2012/08	2014/02/28	AQMS1	15:58	1-hour TSP	168	ug/m ³
HY/2012/08	2014/02/28	ASR1	13:43	1-hour TSP	117	ug/m ³
HY/2012/08	2014/02/28	ASR1	14:45	1-hour TSP	289	ug/m ³
	HY/2012/08	HY/2012/08 2014/02/18 HY/2012/08 2014/02/18 HY/2012/08 2014/02/18 HY/2012/08 2014/02/18 HY/2012/08 2014/02/18 HY/2012/08 2014/02/18 HY/2012/08 2014/02/24 HY/2012/08 2014/02/28 HY/2012/08 2014/02/28 HY/2012/08 2014/02/28 HY/2012/08 2014/02/28 HY/2012/08 2014/02/28	HY/2012/08 2014/02/18 ASR5 HY/2012/08 2014/02/18 ASR5 HY/2012/08 2014/02/18 ASR5 HY/2012/08 2014/02/18 ASR6 HY/2012/08 2014/02/18 ASR6 HY/2012/08 2014/02/18 ASR6 HY/2012/08 2014/02/18 ASR6 HY/2012/08 2014/02/24 AQMS1 HY/2012/08 2014/02/24 AQMS1 HY/2012/08 2014/02/24 AQMS1 HY/2012/08 2014/02/24 ASR1 HY/2012/08 2014/02/24 ASR5 HY/2012/08 2014/02/24 ASR5 HY/2012/08 2014/02/24 ASR5 HY/2012/08 2014/02/24 ASR5 HY/2012/08 2014/02/24 ASR6 HY/2012/08 2014/02/24 ASR10 HY/2012/08 2014/02/24 ASR10 HY/2012/08 2014/02/24 ASR10 HY/2012/08 2014/02/28 AQMS1 HY/2012/08 2014/02/28 ASR1	HY/2012/08 2014/02/18 ASR5 13:12 HY/2012/08 2014/02/18 ASR5 14:14 HY/2012/08 2014/02/18 ASR5 15:16 HY/2012/08 2014/02/18 ASR6 13:00 HY/2012/08 2014/02/18 ASR6 13:00 HY/2012/08 2014/02/18 ASR6 15:04 HY/2012/08 2014/02/18 ASR6 15:04 HY/2012/08 2014/02/24 AQMS1 13:49 HY/2012/08 2014/02/24 AQMS1 14:51 HY/2012/08 2014/02/24 AQMS1 15:53 HY/2012/08 2014/02/24 ASR1 13:38 HY/2012/08 2014/02/24 ASR1 13:38 HY/2012/08 2014/02/24 ASR1 15:42 HY/2012/08 2014/02/24 ASR1 15:42 HY/2012/08 2014/02/24 ASR1 15:42 HY/2012/08 2014/02/24 ASR5 13:27 HY/2012/08 2014/02/24 ASR5 13:27 HY/2012/08 2014/02/24 ASR5 13:27 HY/2012/08 2014/02/24 ASR5 15:31 HY/2012/08 2014/02/24 ASR6 13:17 HY/2012/08 2014/02/24 ASR6 13:17 HY/2012/08 2014/02/24 ASR6 15:21 HY/2012/08 2014/02/24 ASR6 15:21 HY/2012/08 2014/02/24 ASR6 15:21 HY/2012/08 2014/02/24 ASR1 13:05 HY/2012/08 2014/02/24 ASR1 13:54 HY/2012/08 2014/02/24 ASR10 15:09 HY/2012/08 2014/02/28 AQMS1 13:54 HY/2012/08 2014/02/28 AQMS1 15:58 HY/2012/08 2014/02/28 AQMS1 15:58 HY/2012/08 2014/02/28 AQMS1 15:58 HY/2012/08 2014/02/28 AQMS1 15:58	HY/2012/08 2014/02/18 ASR5 13:12 1-hour TSP HY/2012/08 2014/02/18 ASR5 14:14 1-hour TSP HY/2012/08 2014/02/18 ASR5 15:16 1-hour TSP HY/2012/08 2014/02/18 ASR6 13:00 1-hour TSP HY/2012/08 2014/02/18 ASR6 14:02 1-hour TSP HY/2012/08 2014/02/18 ASR6 15:04 1-hour TSP HY/2012/08 2014/02/24 AQMS1 13:49 1-hour TSP HY/2012/08 2014/02/24 AQMS1 14:51 1-hour TSP HY/2012/08 2014/02/24 AQMS1 15:53 1-hour TSP HY/2012/08 2014/02/24 ASR1 13:38 1-hour TSP HY/2012/08 2014/02/24 ASR1 14:40 1-hour TSP HY/2012/08 2014/02/24 ASR1 14:40 1-hour TSP HY/2012/08 2014/02/24 ASR5 13:27 1-hour TSP HY/2012/08 2014/02/24 ASR5 13:27	HY/2012/08 2014/02/18 ASR5 13:12 1-hour TSP 195

TMCLKL	HY/2012/08	2014/02/28	ASR1	15:47	1-hour TSP	128	ug/m³
TMCLKL	HY/2012/08	2014/02/28	ASR5	13:31	1-hour TSP	135	ug/m ³
TMCLKL	HY/2012/08	2014/02/28	ASR5	14:33	1-hour TSP	157	ug/m ³
TMCLKL	HY/2012/08	2014/02/28	ASR5	15:35	1-hour TSP	167	ug/m ³
TMCLKL	HY/2012/08	2014/02/28	ASR6	13:22	1-hour TSP	74	ug/m ³
TMCLKL	HY/2012/08	2014/02/28	ASR6	14:24	1-hour TSP	115	ug/m ³
TMCLKL	HY/2012/08	2014/02/28	ASR6	15:26	1-hour TSP	115	ug/m ³
TMCLKL	HY/2012/08	2014/02/28	ASR10	13:10	1-hour TSP	95	ug/m ³
TMCLKL	HY/2012/08	2014/02/28	ASR10	14:12	1-hour TSP	121	ug/m ³
TMCLKL	HY/2012/08	2014/02/28	ASR10	15:14	1-hour TSP	99	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR6	16:58	24-hour TSP	38	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR10	16:46	24-hour TSP	34	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR1	17:19	24-hour TSP	32	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	ASR5	17:08	24-hour TSP	39	ug/m ³
TMCLKL	HY/2012/08	2014/02/05	AQMS1	17:29	24-hour TSP	40	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR1	15:52	24-hour TSP	64	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	AQMS1	16:04	24-hour TSP	49	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR6	15:32	24-hour TSP	39	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR5	15:41	24-hour TSP	71	ug/m ³
TMCLKL	HY/2012/08	2014/02/08	ASR10	15:21	24-hour TSP	45	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR10	17:11	24-hour TSP	43	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR6	17:21	24-hour TSP	63	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR5	17:30	24-hour TSP	71	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	ASR1	17:41	24-hour TSP	60	ug/m ³
TMCLKL	HY/2012/08	2014/02/12	AQMS1	17:51	24-hour TSP	49	ug/m ³
TMCLKL	HY/2012/08	2014/02/18	ASR10	15:56	24-hour TSP	46	ug/m ³
TMCLKL	HY/2012/08	2014/02/18	AQMS1	16:40	24-hour TSP	40	ug/m ³

TMCLKL	HY/2012/08	2014/02/18	ASR1	16:29	24-hour TSP	76	ug/m³
TMCLKL	HY/2012/08	2014/02/18	ASR5	16:18	24-hour TSP	48	ug/m ³
TMCLKL	HY/2012/08	2014/02/18	ASR6	16:06	24-hour TSP	42	ug/m ³
TMCLKL	HY/2012/08	2014/02/24	AQMS1	16:55	24-hour TSP	97	ug/m³
TMCLKL	HY/2012/08	2014/02/24	ASR1	16:44	24-hour TSP	42	ug/m ³
TMCLKL	HY/2012/08	2014/02/24	ASR5	16:33	24-hour TSP	112	ug/m ³
TMCLKL	HY/2012/08	2014/02/24	ASR6	16:23	24-hour TSP	85	ug/m³
TMCLKL	HY/2012/08	2014/02/24	ASR10	16:11	24-hour TSP	55	ug/m ³
TMCLKL	HY/2012/08	2014/02/28	AQMS1	17:00	24-hour TSP	95	ug/m ³
TMCLKL	HY/2012/08	2014/02/28	ASR1	16:49	24-hour TSP	97	ug/m ³
TMCLKL	HY/2012/08	2014/02/28	ASR5	16:37	24-hour TSP	135	ug/m ³
TMCLKL	HY/2012/08	2014/02/28	ASR6	16:28	24-hour TSP	70	ug/m³
TMCLKL	HY/2012/08	2014/02/28	ASR10	16:16	24-hour TSP	70	ug/m ³

Appendix H

Meteorological Data

	Meteorolo	ogical Data for Impact Monitoring in the	reporting period
Date	Time (24hrs)	Average of Wind Direction (degree)	Average of Wind Speed (m/s)
18-02-2014	0:00	88	0.79
18-02-2014	1:00	81	1.06
18-02-2014	2:00	81	1.03
18-02-2014	3:00	94	0.72
18-02-2014	4:00	139	0.60
18-02-2014	5:00	247	0.38
18-02-2014	6:00	159	0.45
18-02-2014	7:00	220	0.48
18-02-2014	8:00	94	1.01
18-02-2014	9:00	127	0.74
18-02-2014	10:00	102	1.02
18-02-2014	11:00	100	0.88
18-02-2014	12:00	134	0.84
18-02-2014	13:00	242	2.50
18-02-2014	14:00	305	4.33
18-02-2014	15:00	301	3.35
18-02-2014	16:00	289	2.56
18-02-2014	17:00	290	2.55
18-02-2014	18:00	255	1.55
18-02-2014	19:00	253	1.48
18-02-2014	20:00	244	1.30
18-02-2014	21:00	251	1.65
18-02-2014	22:00	254	1.59
18-02-2014	23:00	236	1.21
24-02-2014	0:00	89	1.74
24-02-2014	1:00	139	1.22
24-02-2014	2:00	95	1.53
24-02-2014	3:00	89	1.32
24-02-2014	4:00	104	2.13
24-02-2014	5:00	124	1.21
24-02-2014	6:00	116	1.86
24-02-2014	7:00	108	2.95
24-02-2014	8:00	116	2.15
24-02-2014	9:00	125	2.19
24-02-2014	10:00	120	2.79
24-02-2014	11:00	117	3.63
24-02-2014	12:00	113	3.47
24-02-2014	13:00	113	3.51
24-02-2014	14:00	109	2.62
24-02-2014	15:00	110	2.63
24-02-2014	16:00	108	2.81
24-02-2014	17:00	105	2.65
24-02-2014	18:00	109	2.35
24-02-2014	19:00	93	2.24
24-02-2014	20:00	95	2.29
24-02-2014	21:00	102	2.88
24-02-2014	22:00	108	1.63
24-02-2014	23:00	102	2.16
28-02-2014	0:00	102	2.33

28-02-2014	1:00	105	3.32
			3.14
28-02-2014	2:00	100	
28-02-2014	3:00	109	2.81
28-02-2014	4:00	110	3.30
28-02-2014	5:00	114	3.14
28-02-2014	6:00	108	3.33
28-02-2014	7:00	106	3.90
28-02-2014	8:00	104	3.72
28-02-2014	9:00	100	2.82
28-02-2014	10:00	96	2.84
28-02-2014	11:00	100	2.81
28-02-2014	12:00	103	3.48
28-02-2014	13:00	104	3.38
28-02-2014	14:00	108	3.41
28-02-2014	15:00	112	2.46
28-02-2014	16:00	108	2.85
28-02-2014	17:00	106	2.92
28-02-2014	18:00	105	2.99
28-02-2014	19:00	106	3.33
28-02-2014	20:00	105	2.29
28-02-2014	21:00	104	2.89
28-02-2014	22:00	101	2.44
28-02-2014	23:00	96	2.32

* Note:

Meteorological data of air quality monitoring conducted between 4 and 14 February 2014 is not avialable due to power failure.

Appendix I

Impact Water Quality Monitoring Results

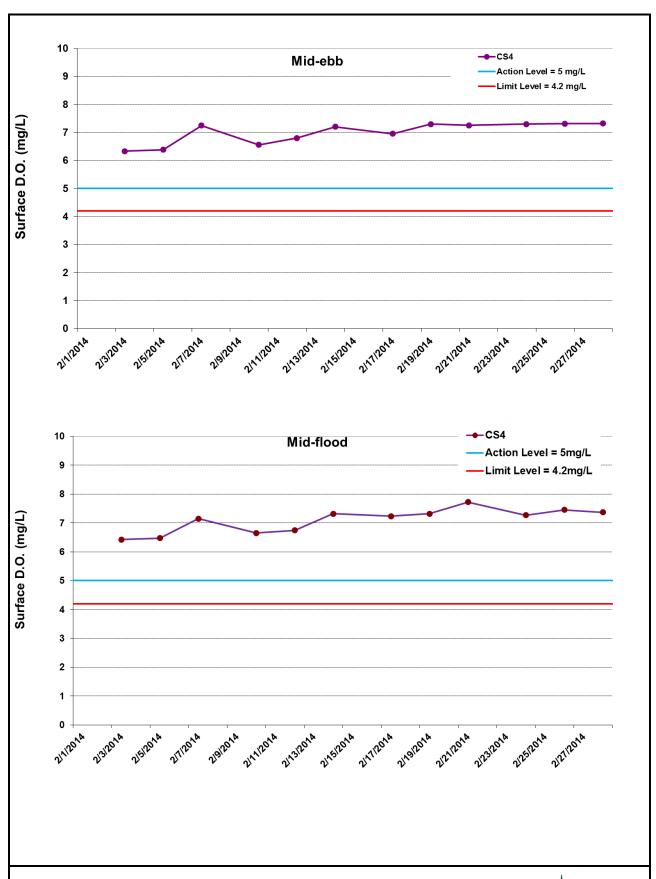
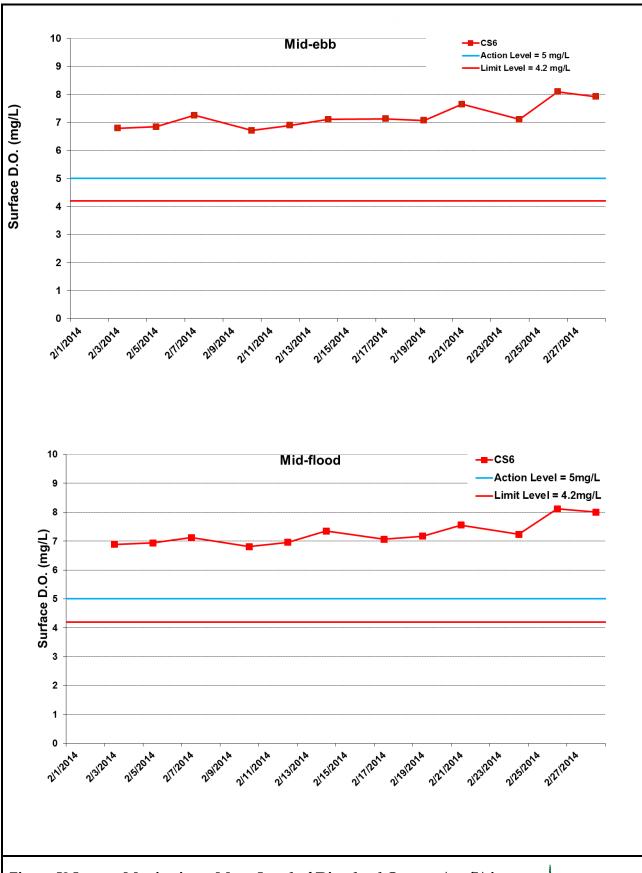
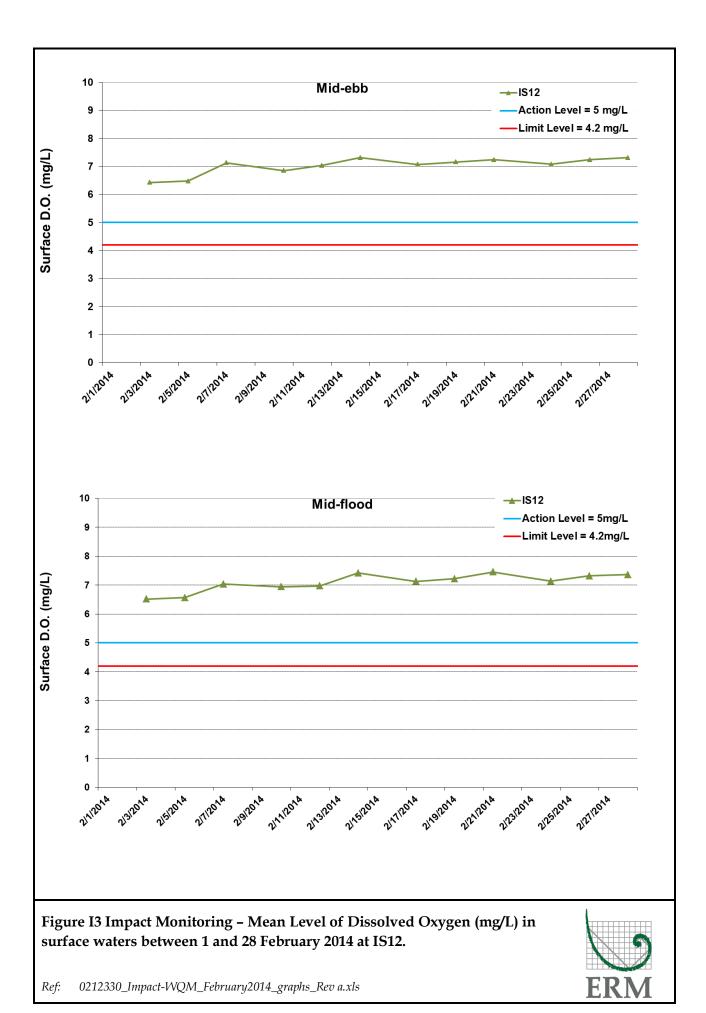
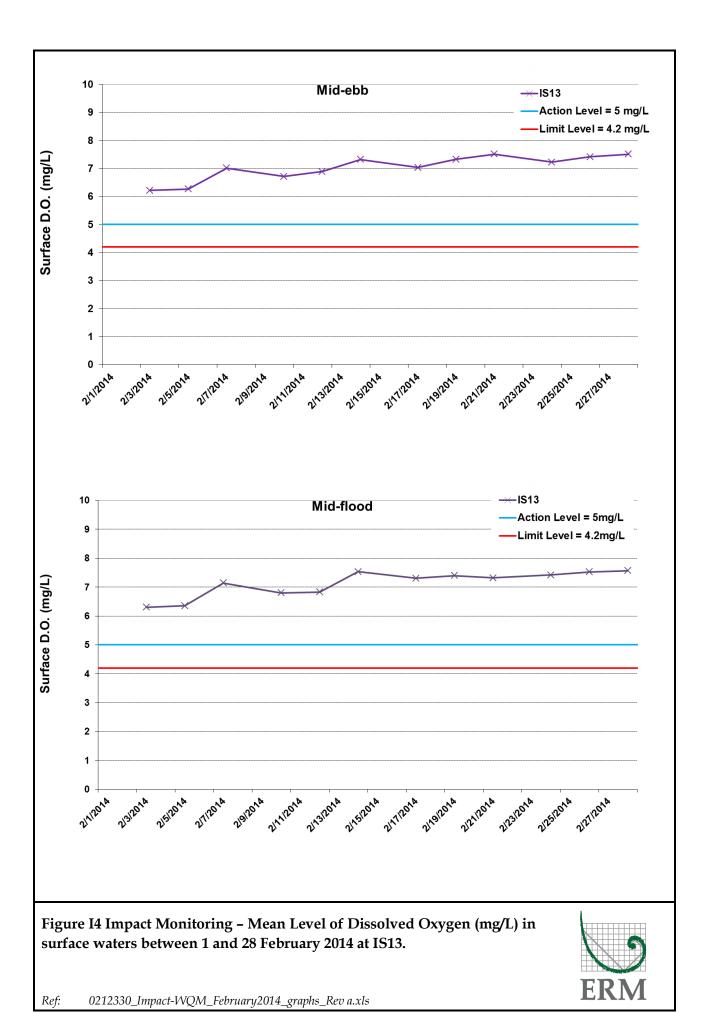
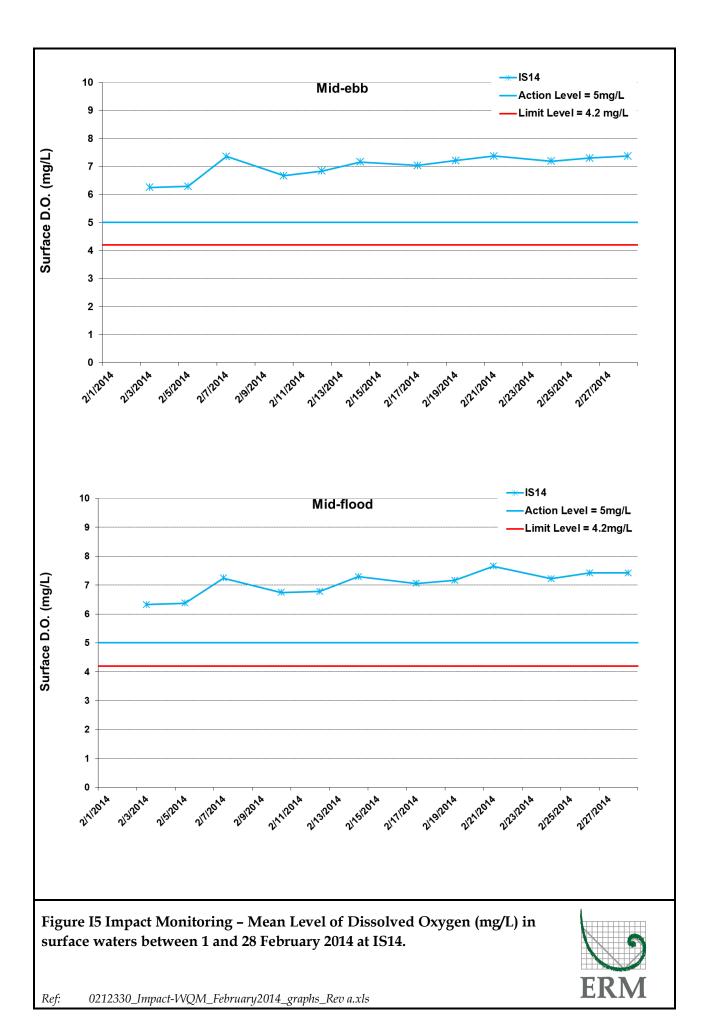
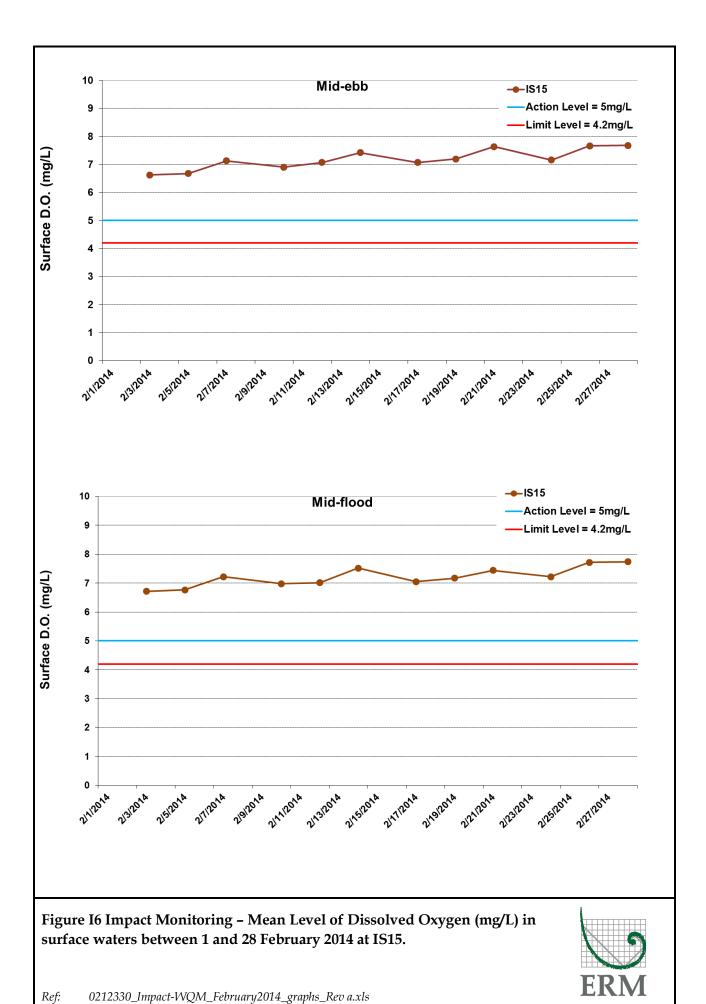
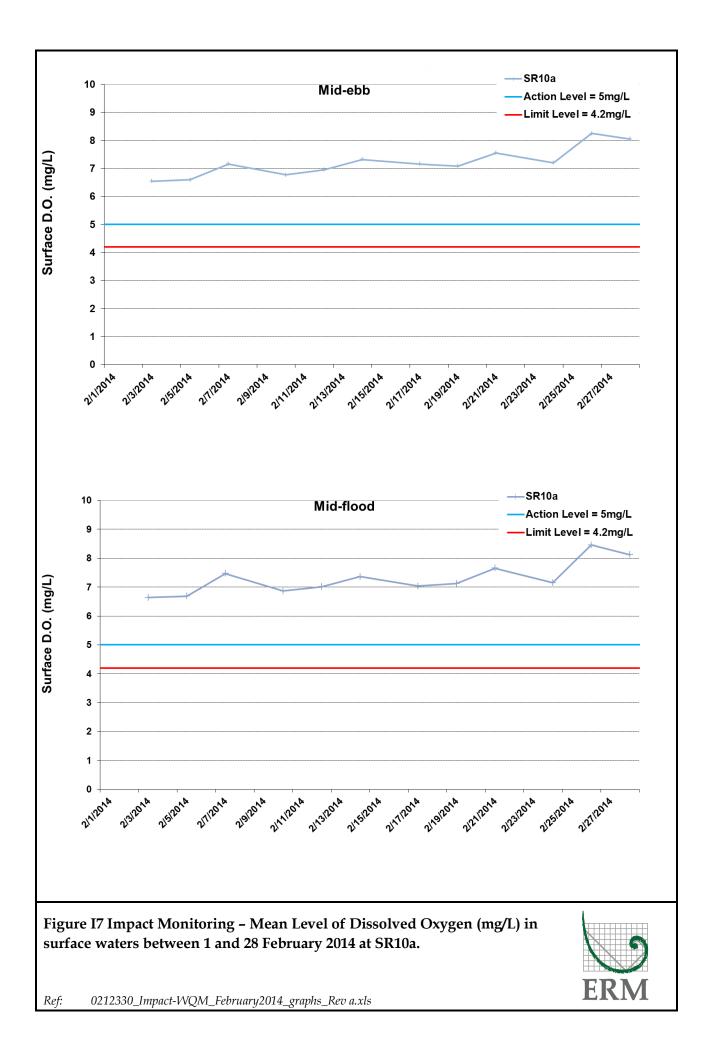


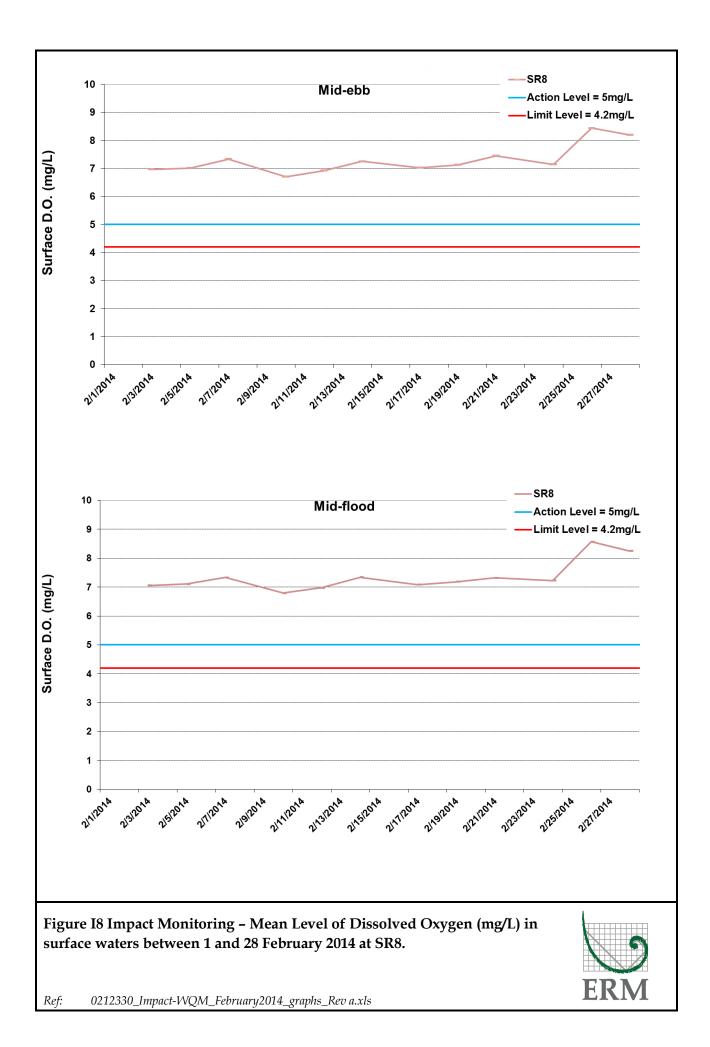
Figure I1 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 and 28 February 2014 at CS4.

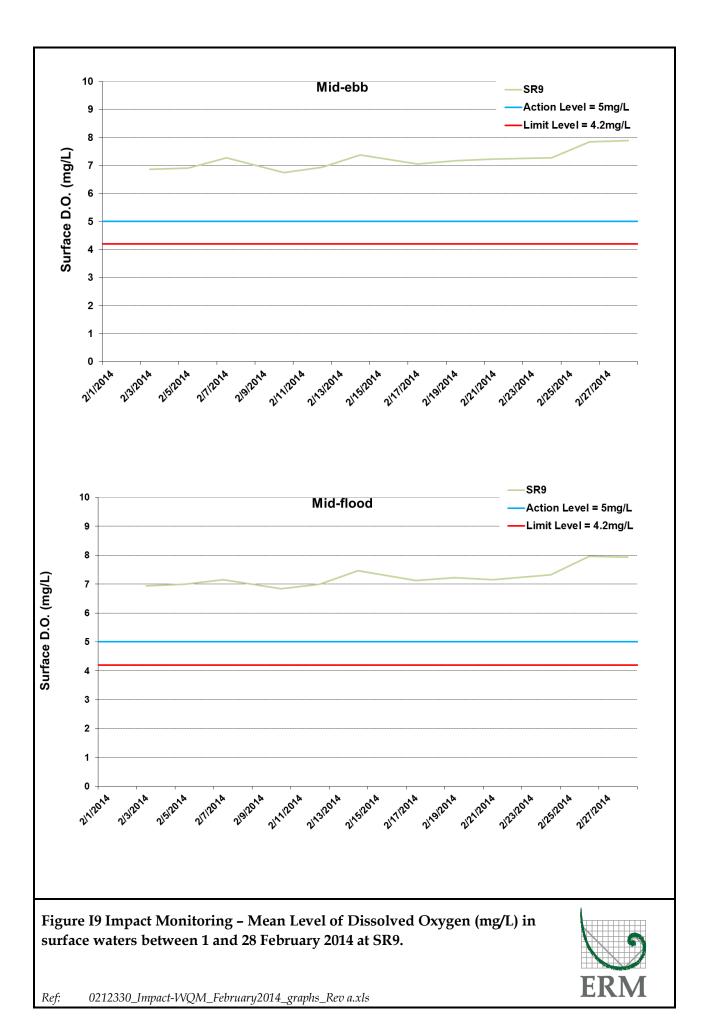





Figure I2 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 and 28 February 2014 at CS6.

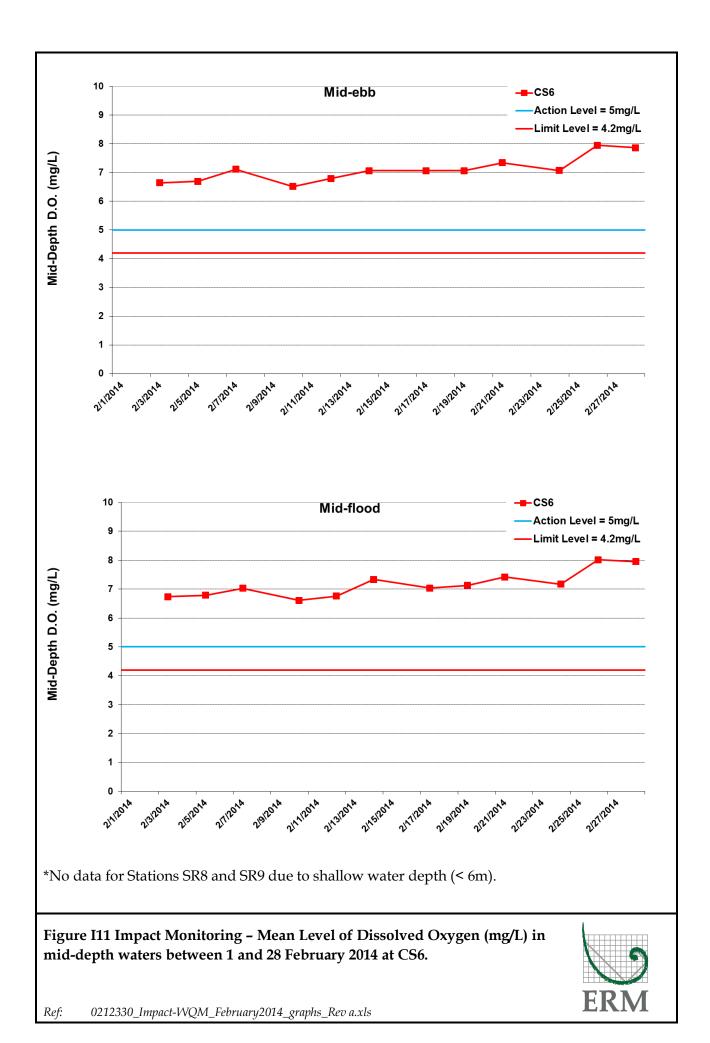


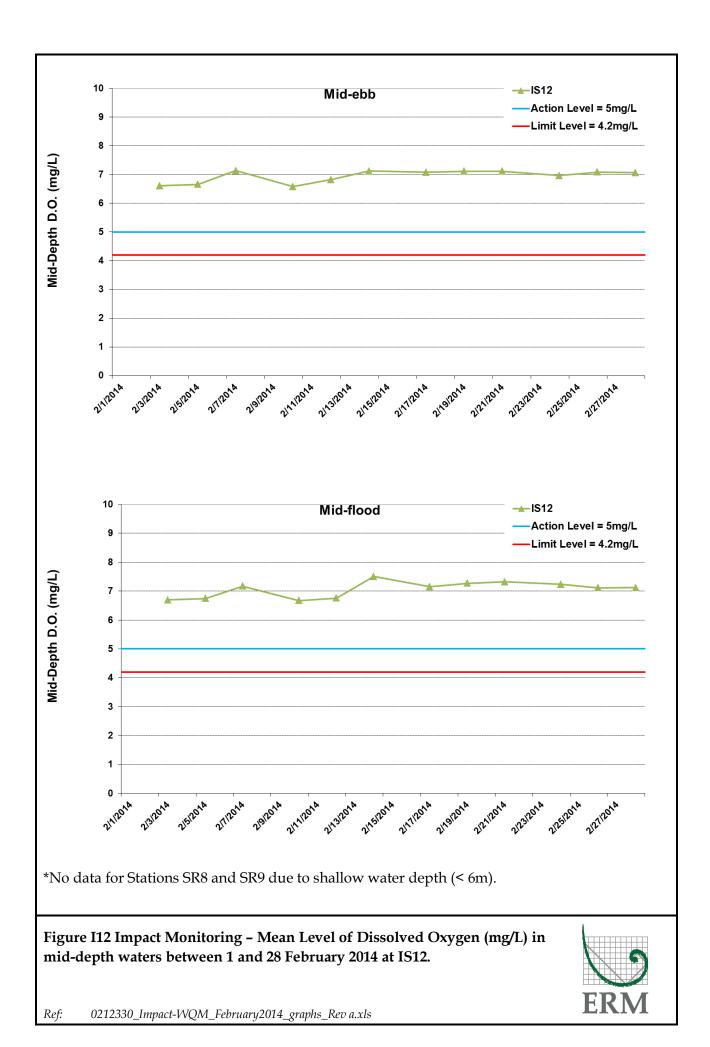

Ref: 0212330_Impact-WQM_February2014_graphs_Rev a.xls

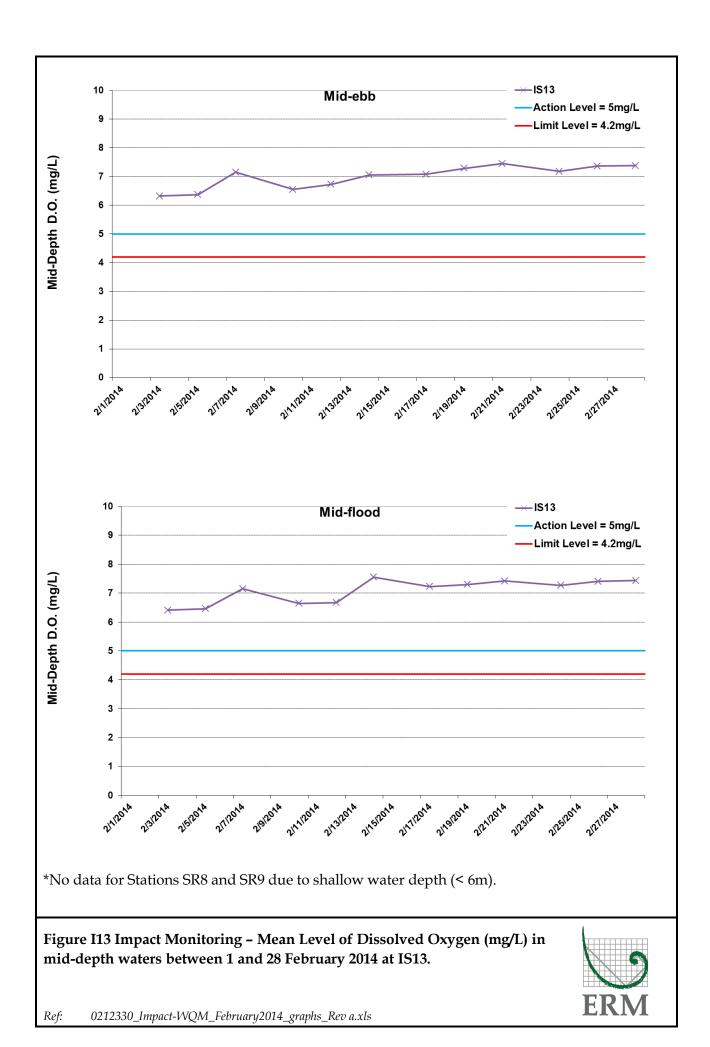


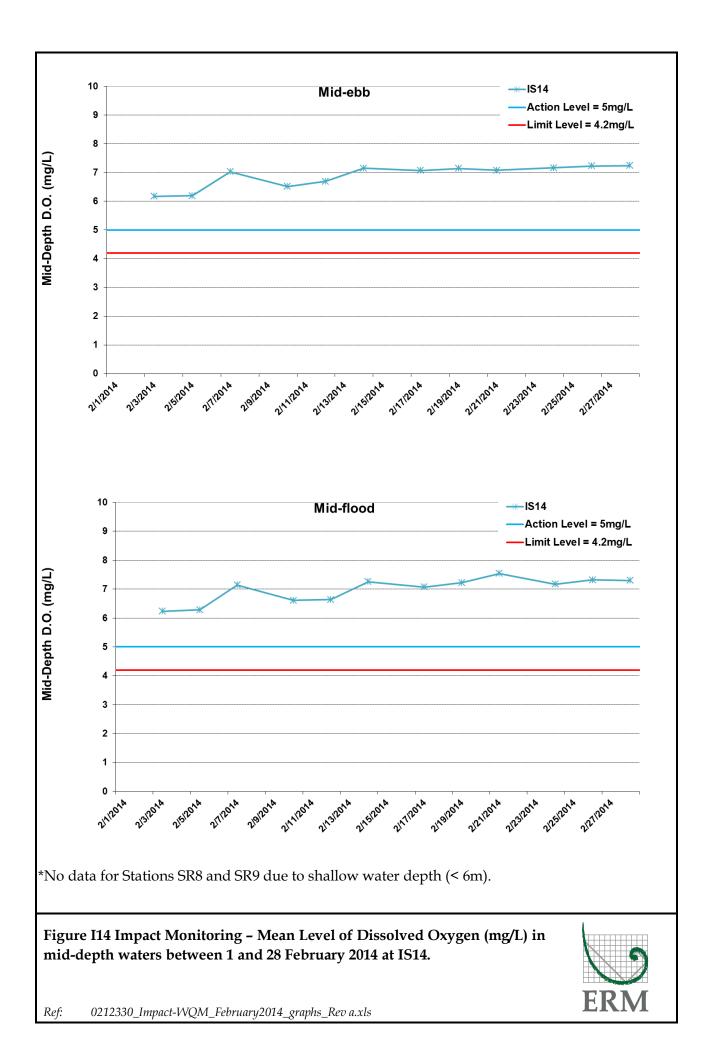




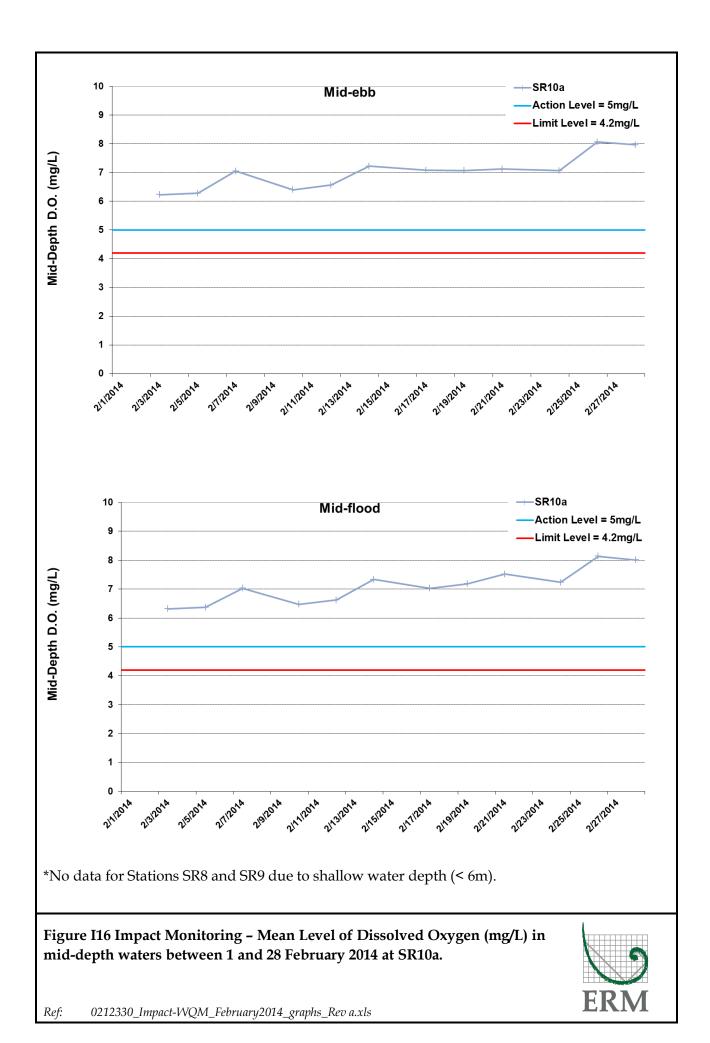


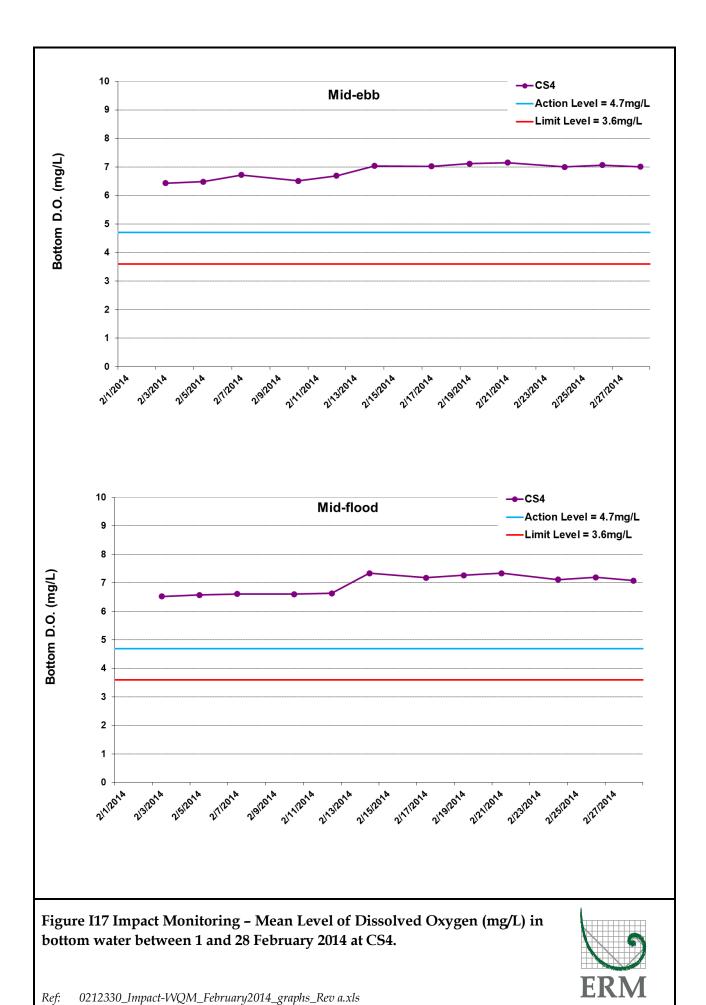












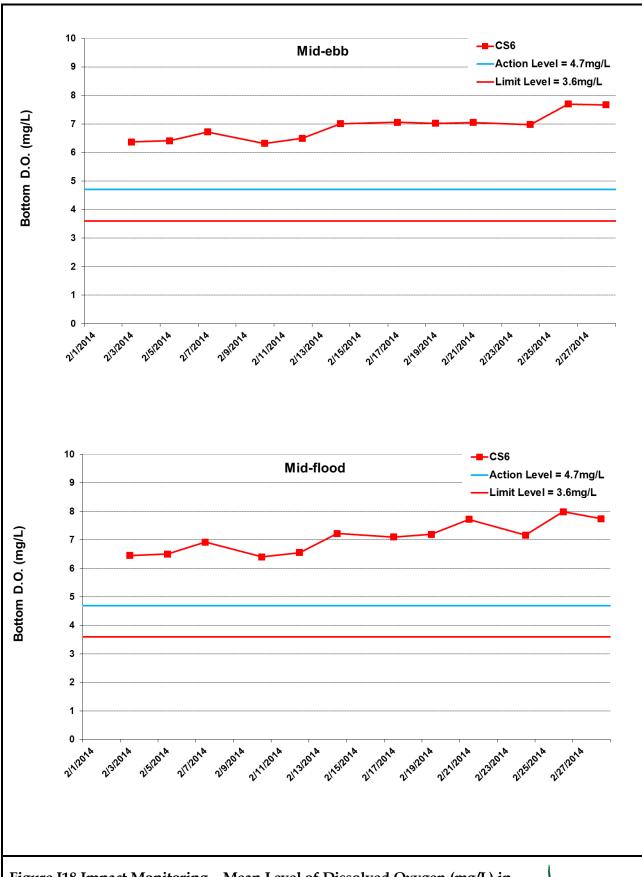


Figure I18 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 and 28 February 2014 at CS6.

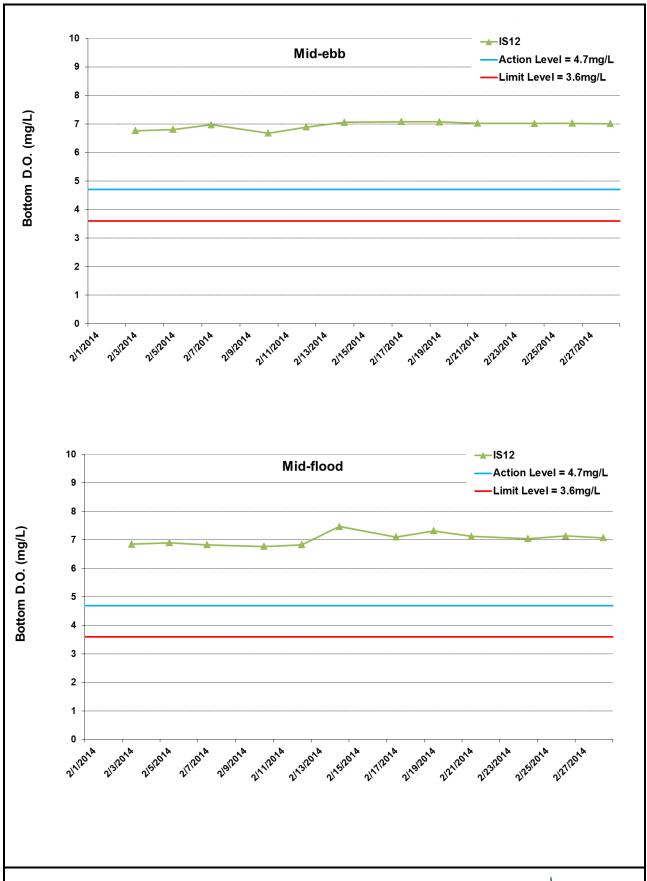
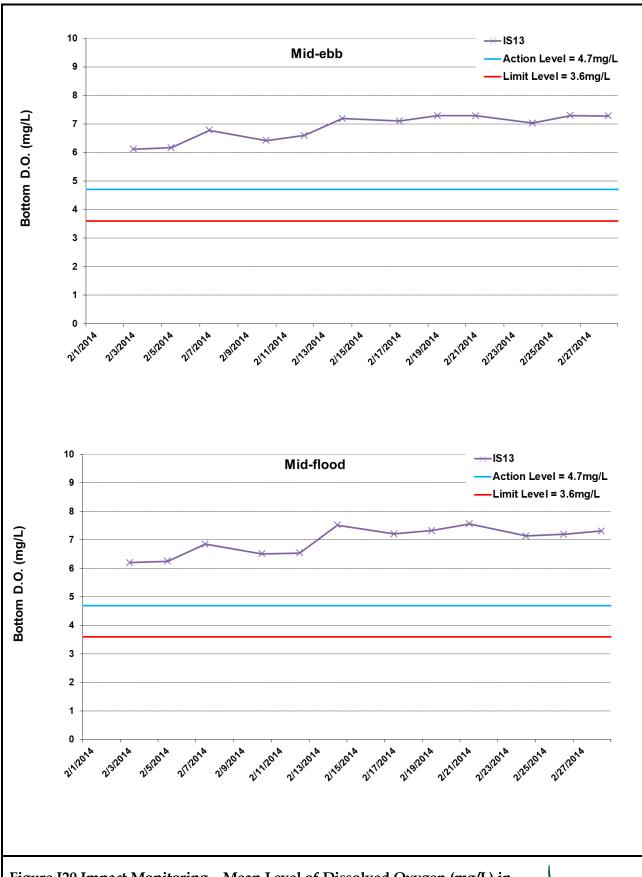
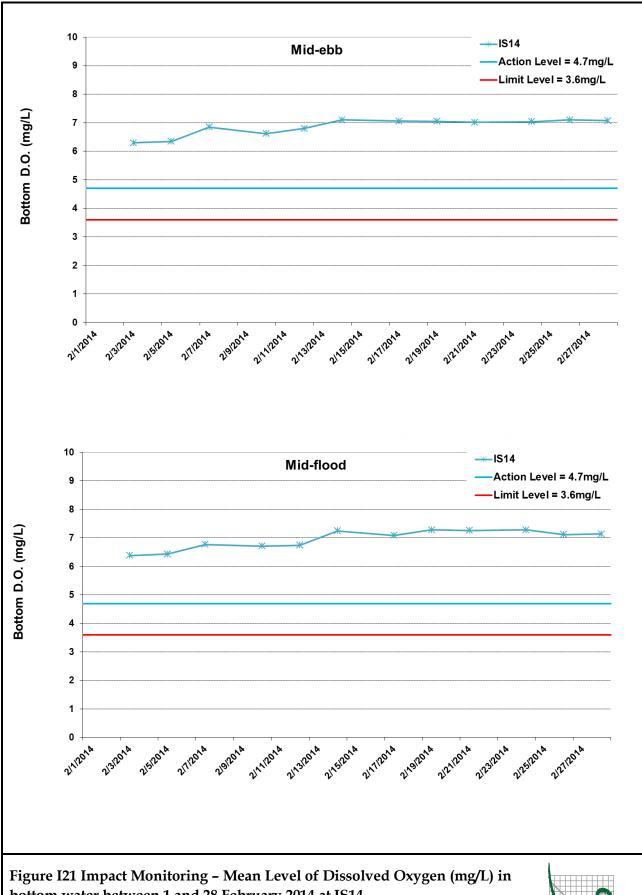
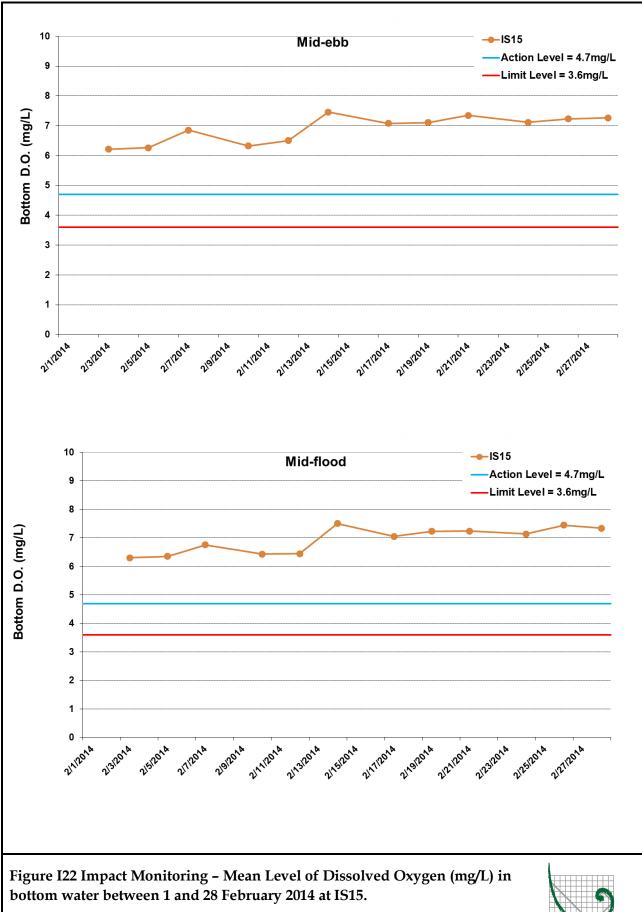
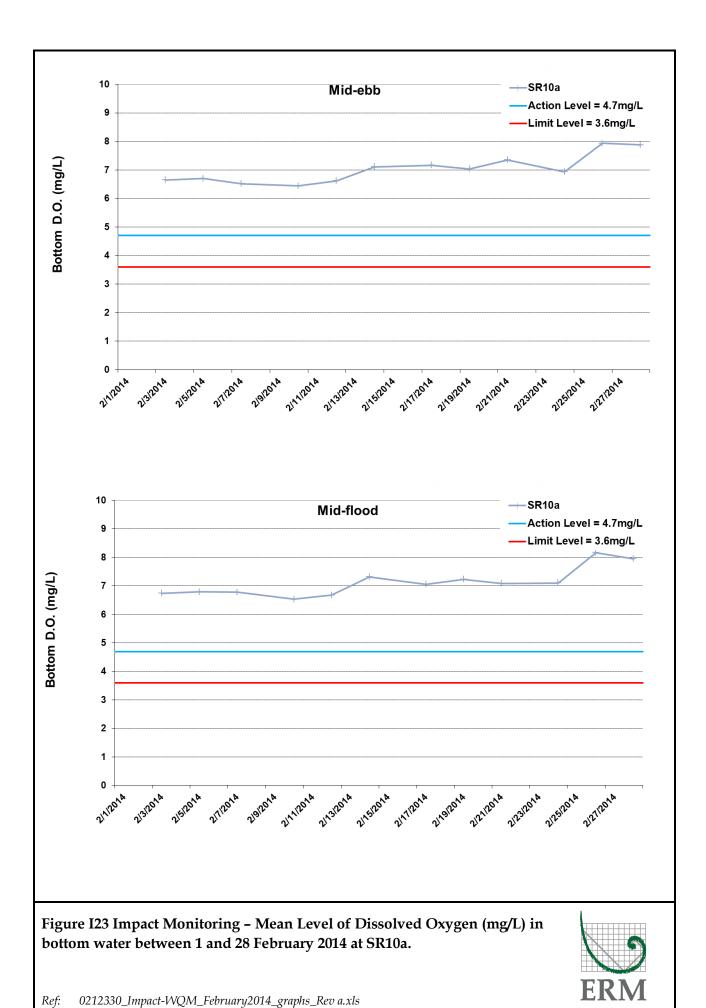
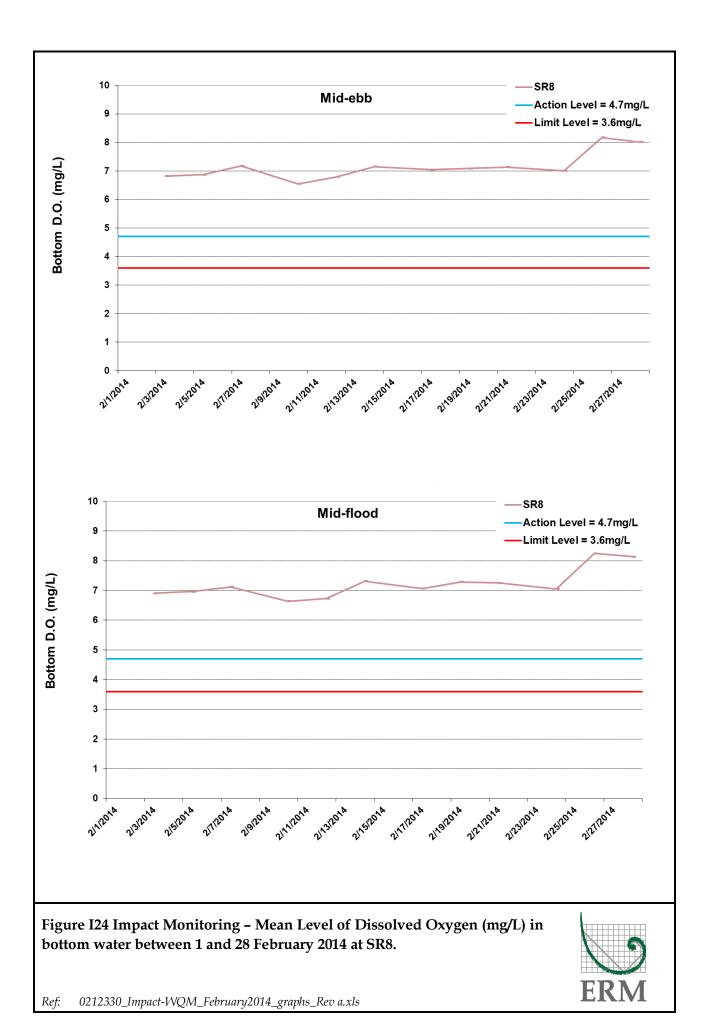


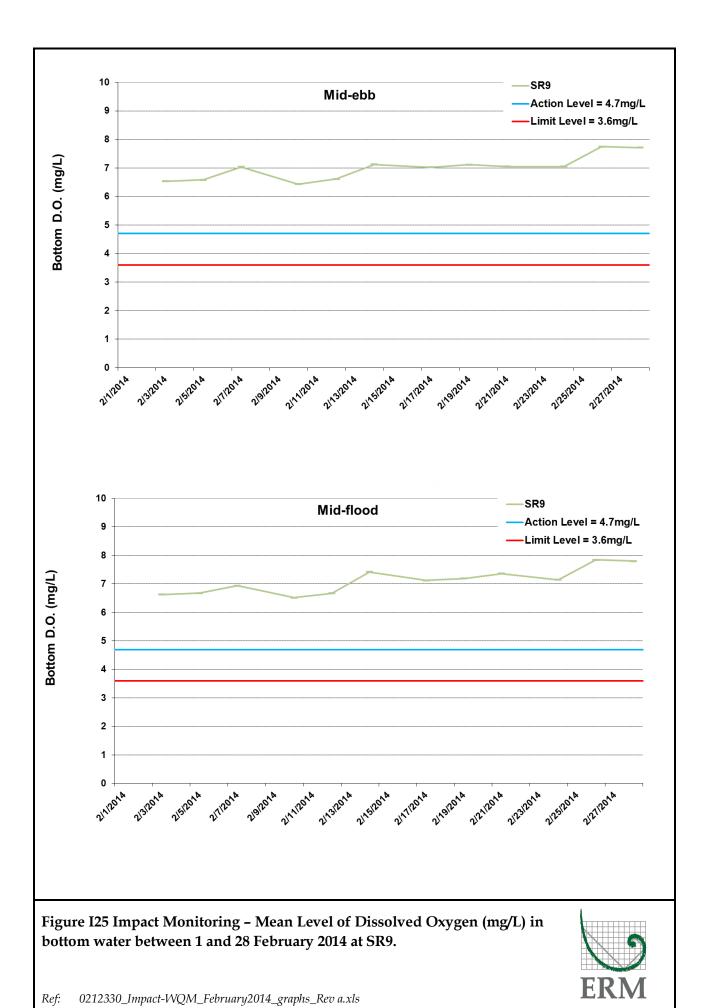
Figure I19 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 and 28 February 2014 at IS12.


Figure I20 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 and 28 February 2014 at IS13.




bottom water between 1 and 28 February 2014 at IS14.



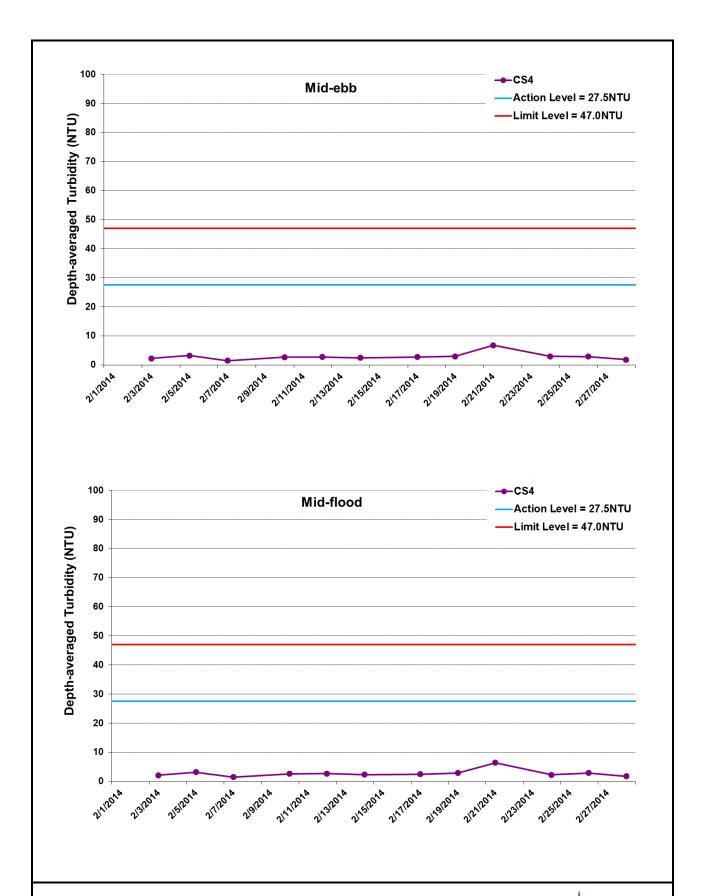


Figure I26 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 1 and 28 February 2014 at CS4.

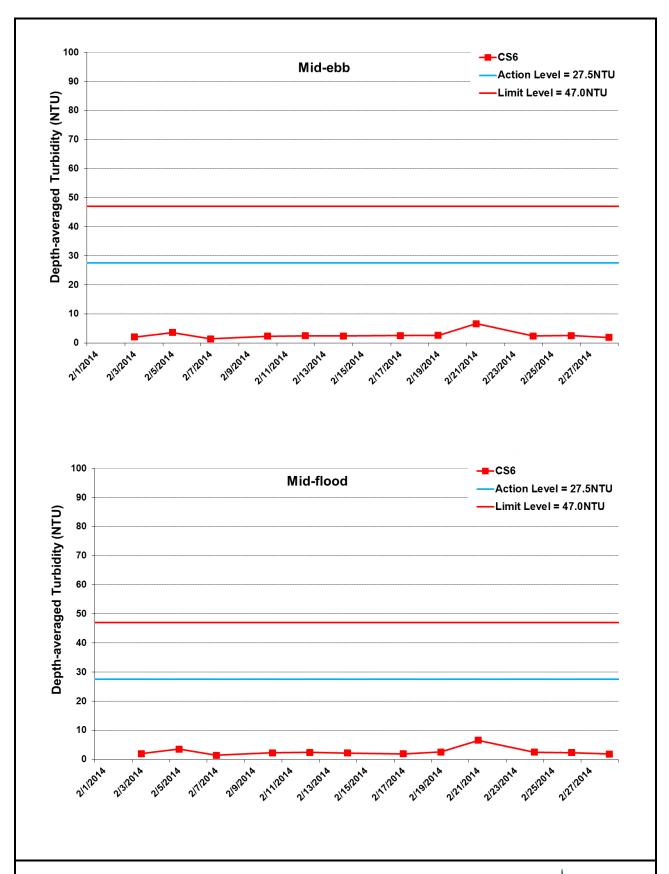


Figure I27 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 1 and 28 February 2014 at CS6.

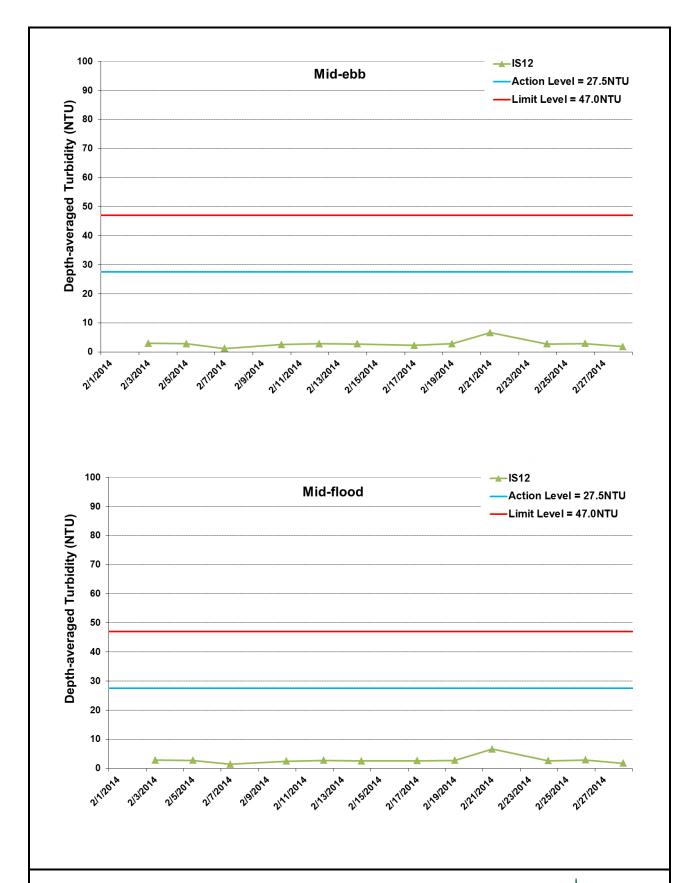


Figure I28 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 and 28 February 2014 at IS12.

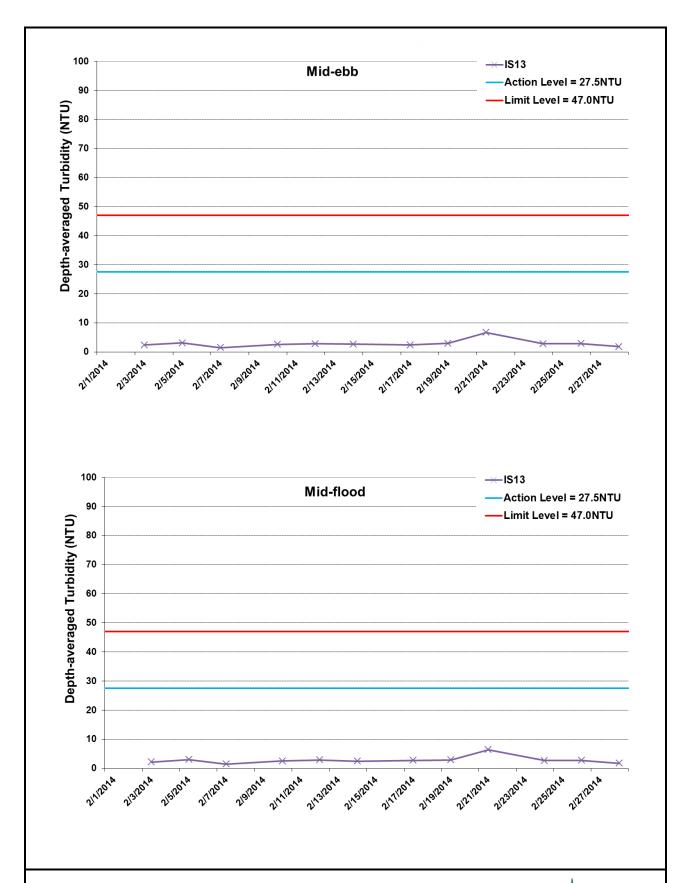


Figure I29 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 and 28 February 2014 at IS13.

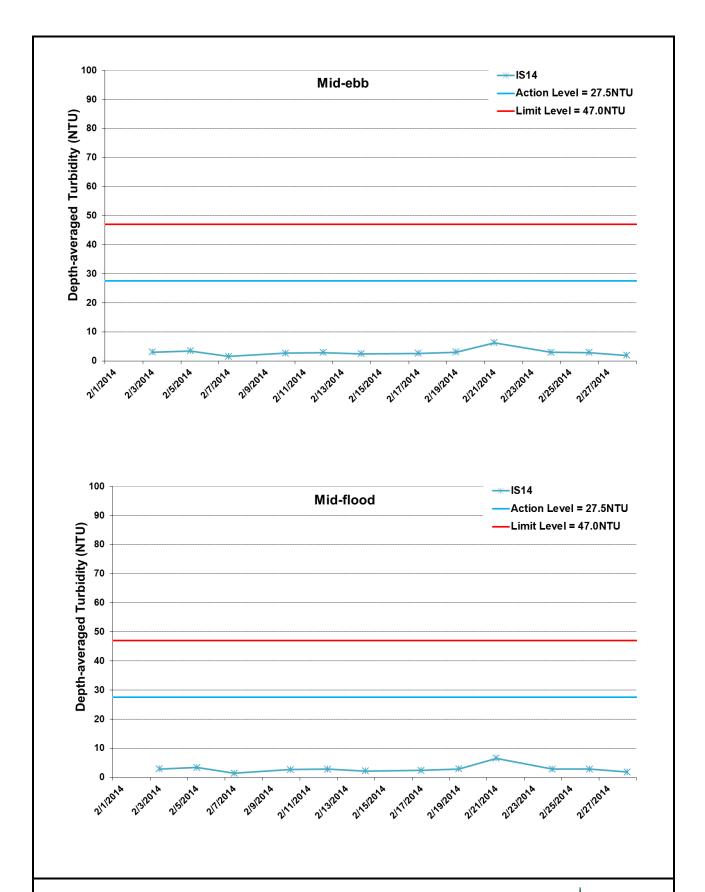


Figure I30 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 1 and 28 February 2014 at IS14.

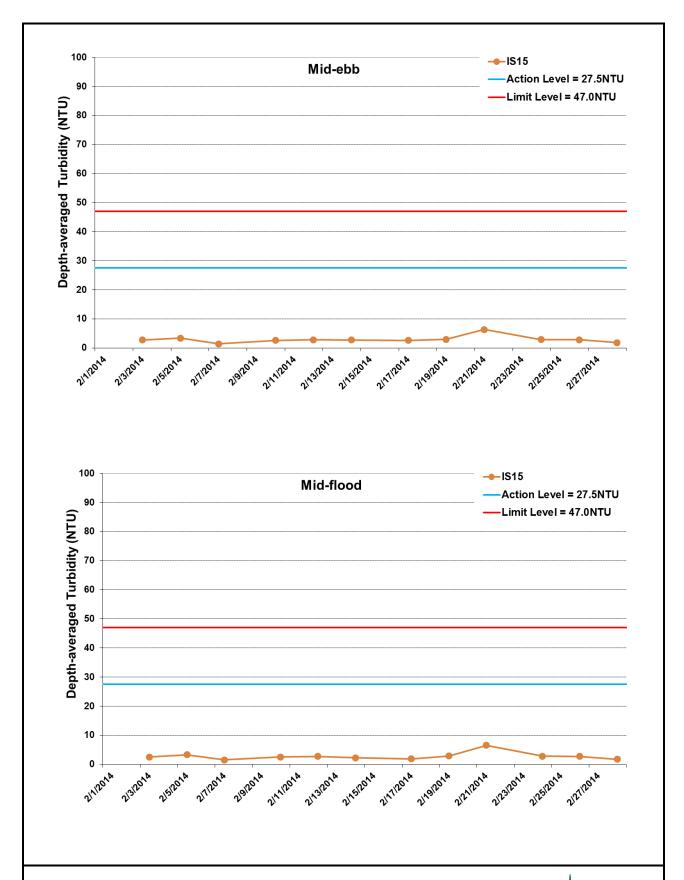


Figure I31 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 1 and 28 February 2014 at IS15.

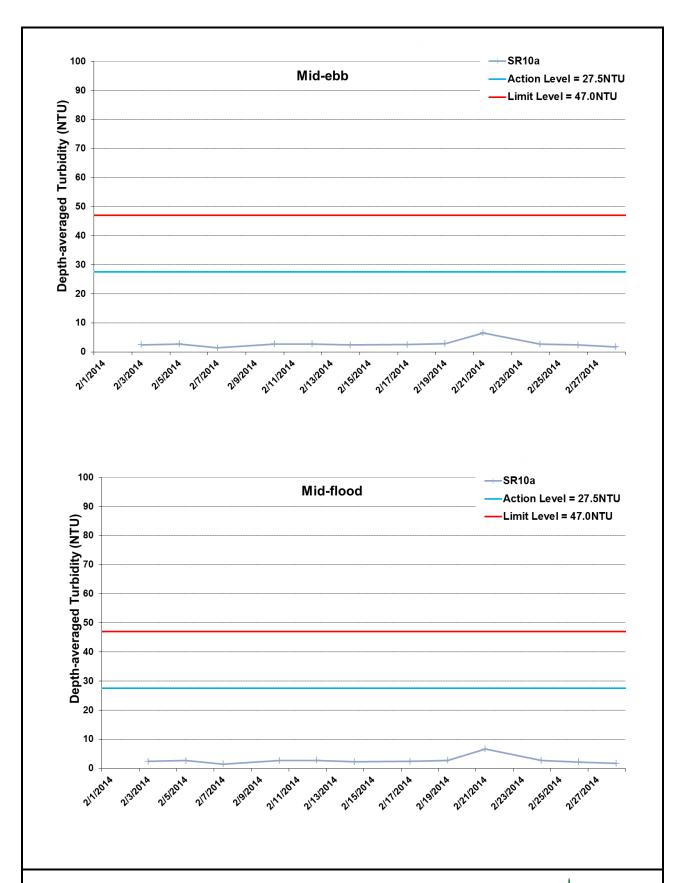


Figure I32 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 and 28 February 2014 at SR10a.

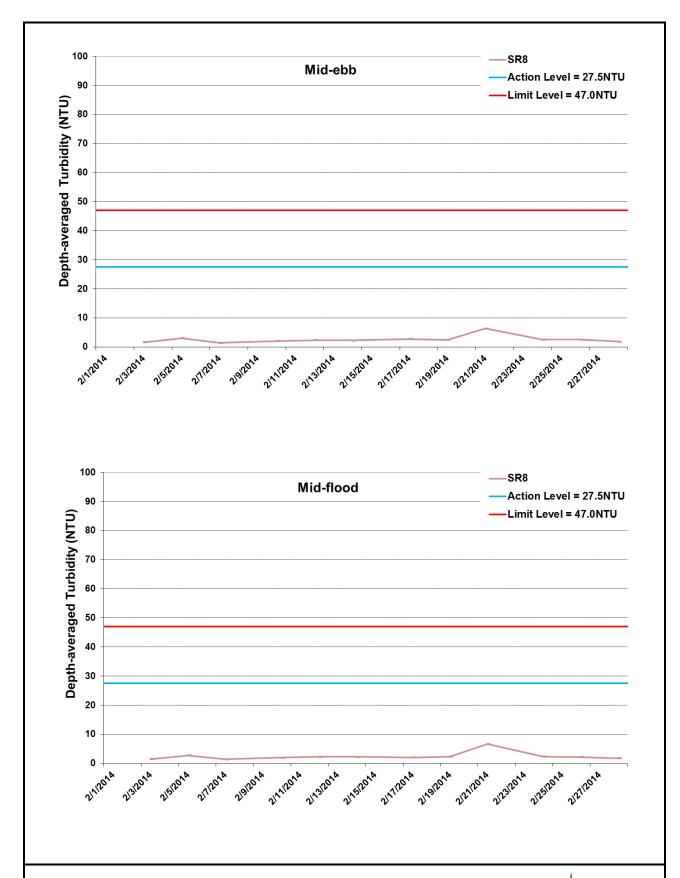
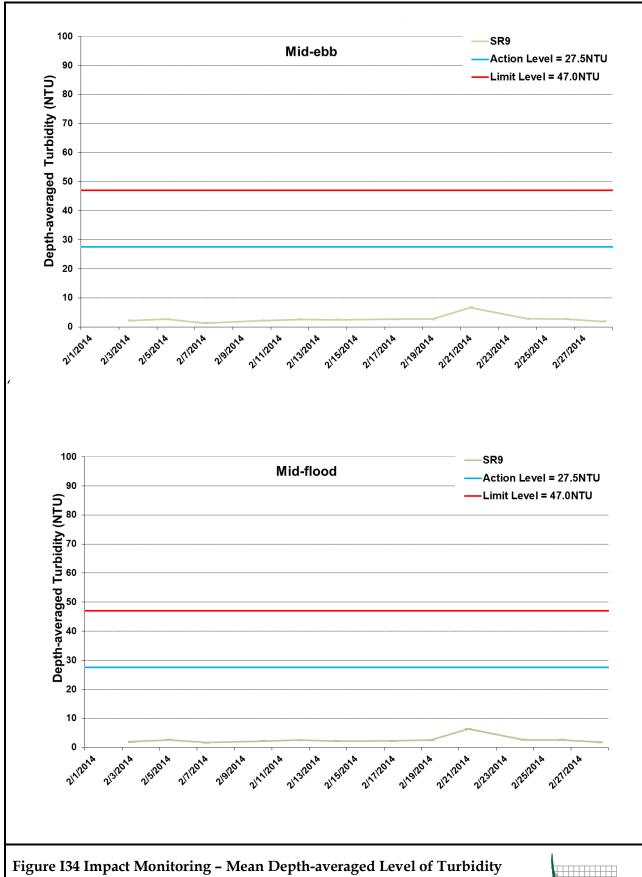



Figure I33 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 and 28 February 2014 at SR8.

(NTU) between 1 and 28 February 2014 at SR9.

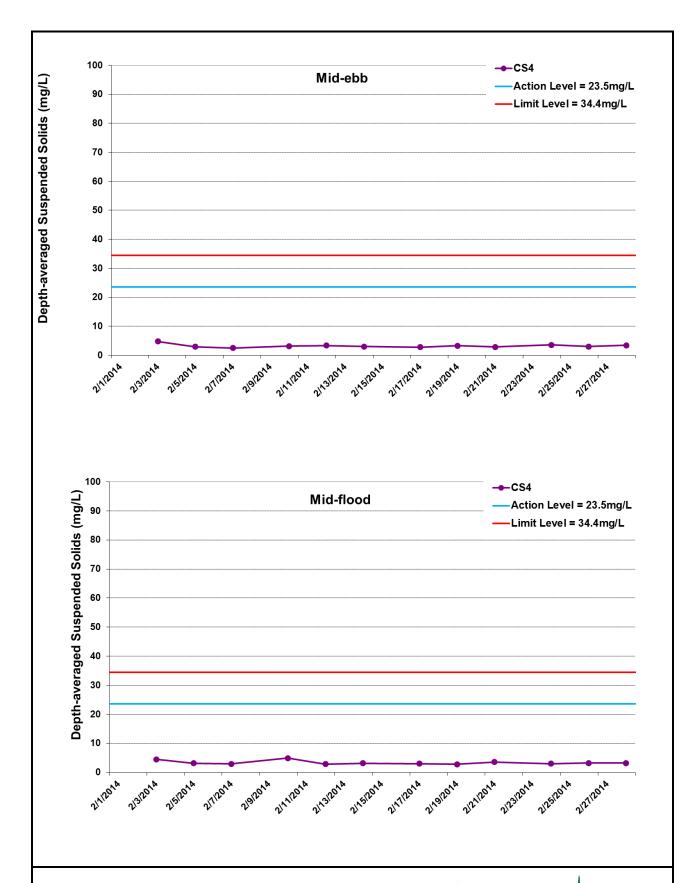


Figure I35 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 and 28 February 2014 at CS4.

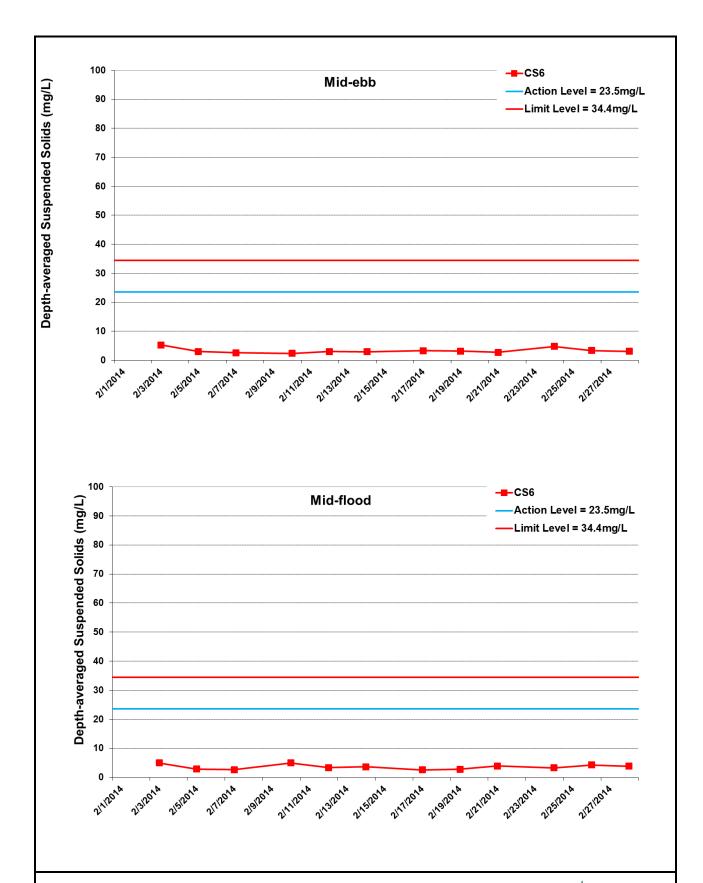


Figure I36 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 and 28 February 2014 at CS6.

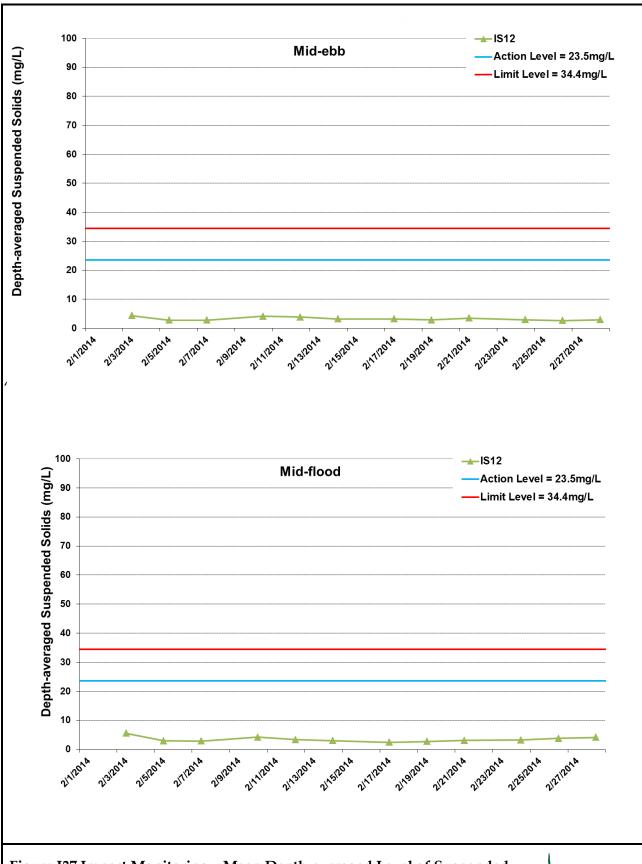
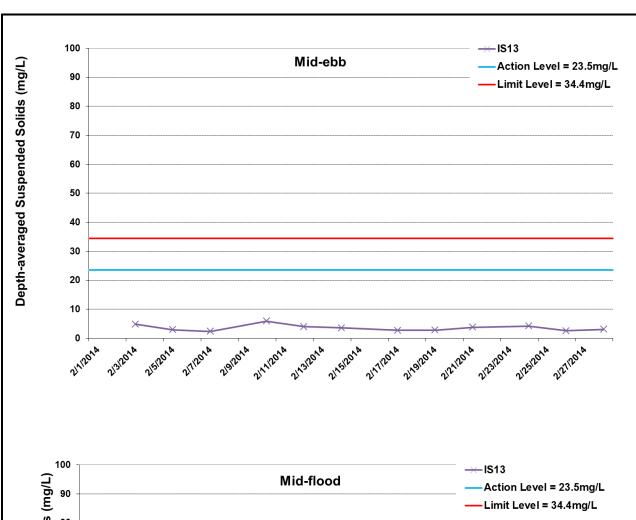



Figure I37 Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 and 28 February 2014 at IS12.

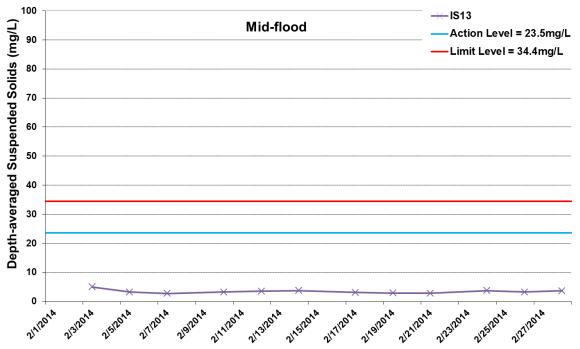


Figure I38 Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 and 28 February 2014 at IS13.

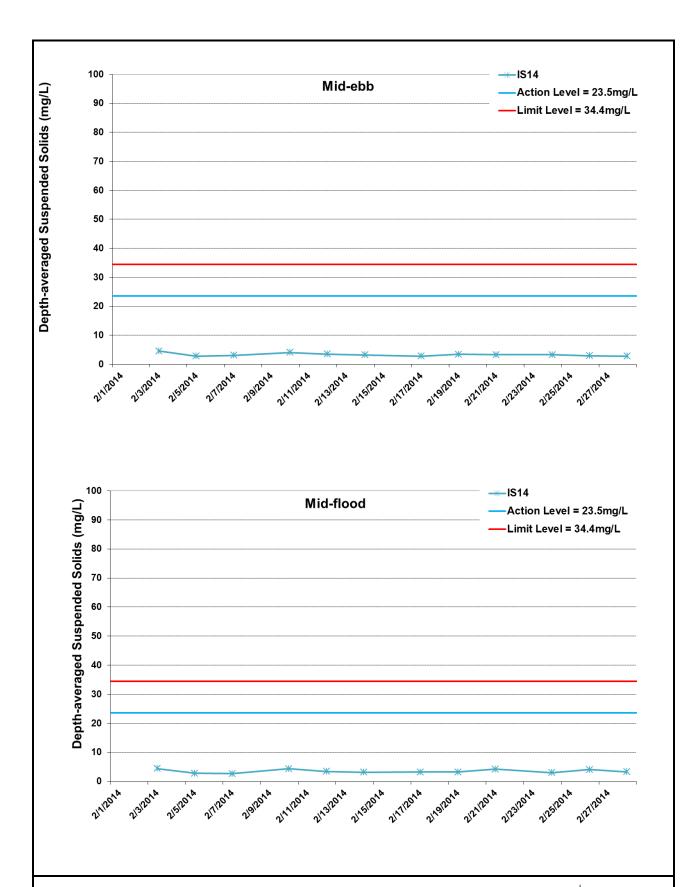


Figure I39 Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 and 28 February 2014 at IS14.

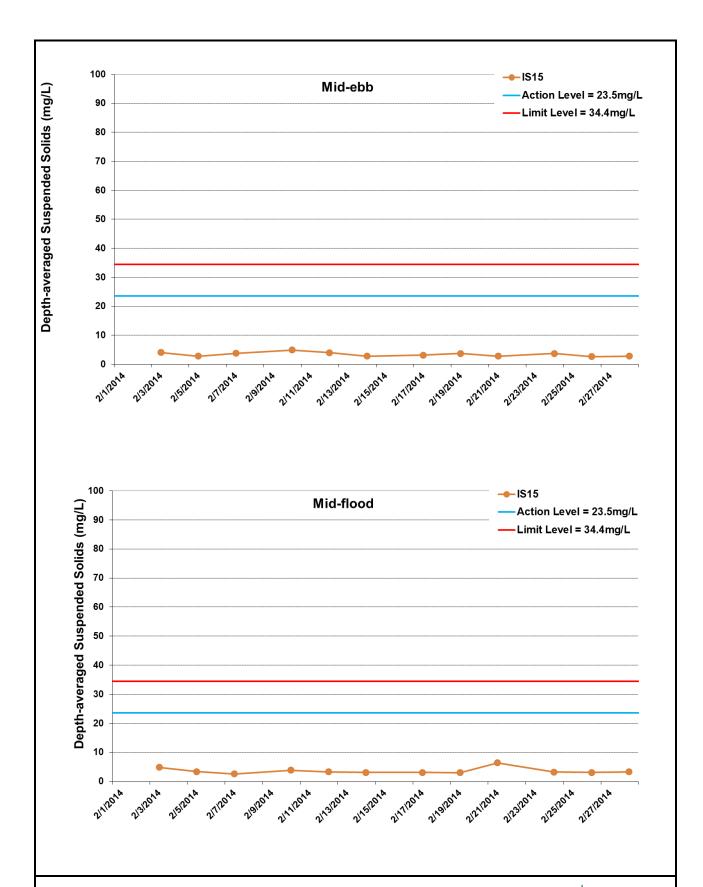


Figure I40 Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 and 28 February 2014 at IS15.

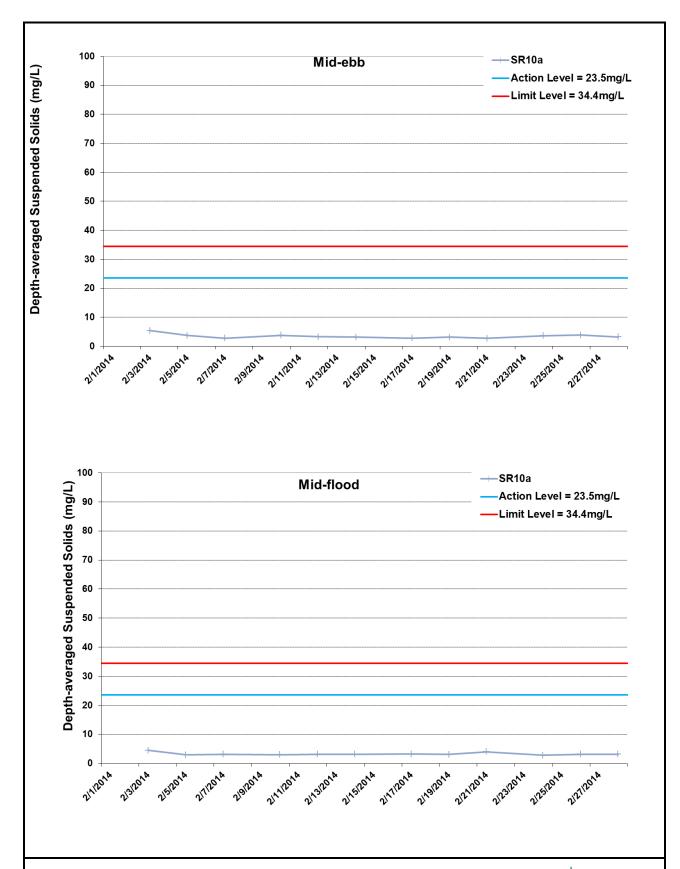


Figure I41 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 and 28 February 2014 at SR10a.

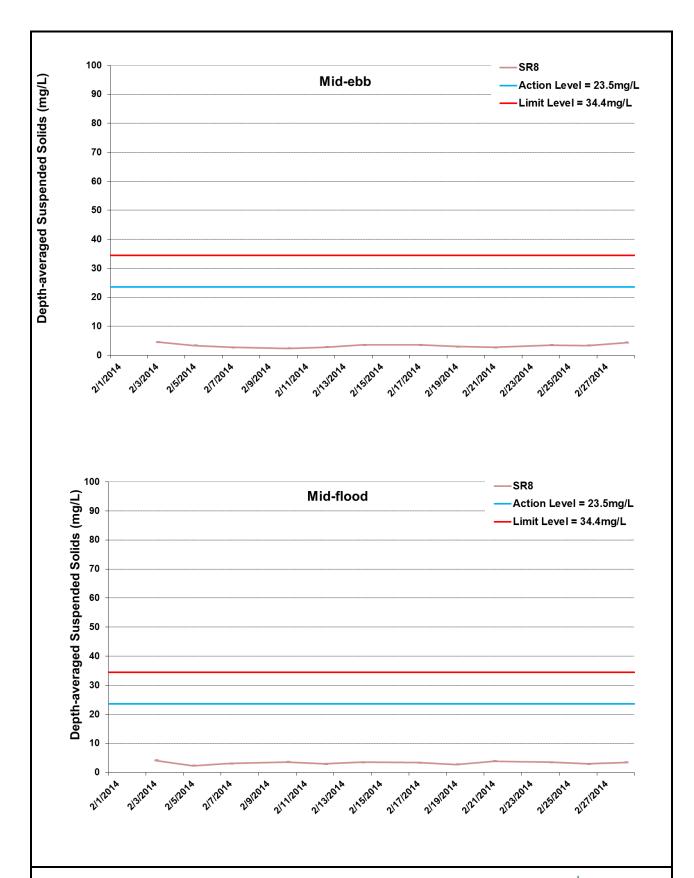


Figure I42 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 and 28 February 2014 at SR8.

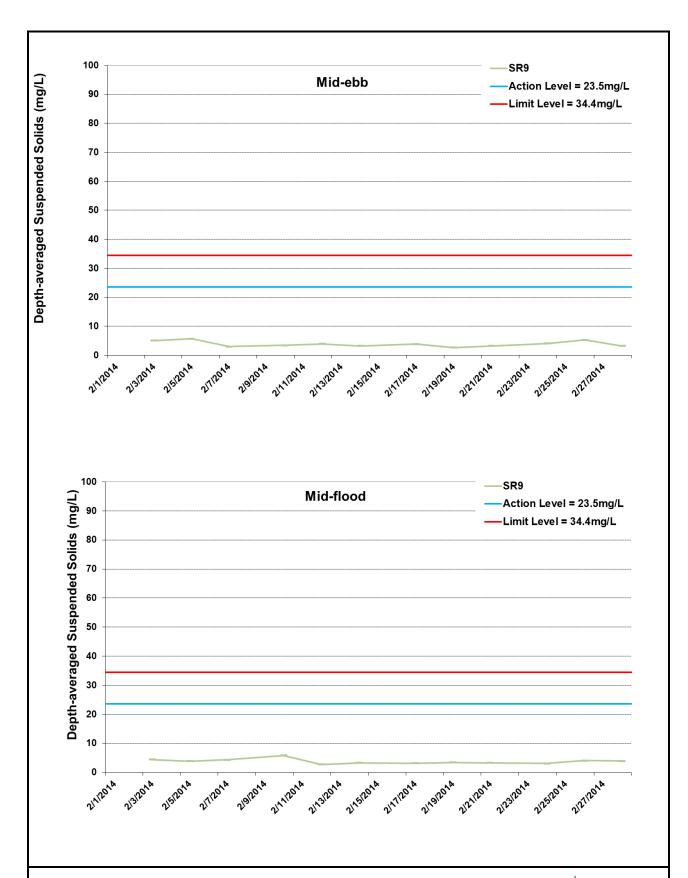


Figure I43 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 and 28 February 2014 at SR9.

Project	Works	Date	Tide	Weather	Sea Condition	Stat	II EVEL I	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2014-02-03	Mid-Flood	Fine	Small Wave	CS4	Surface	1	1	1	11:15	17.3	7.81	28.1	6.41	1.75	4.2
TMCLKL	HY/2012/08	2014-02-03	Mid-Flood	Fine	Small Wave	CS4	Surface	1	1	2		17.4	7.83		6.43		4.2
-	HY/2012/08	2014-02-03			Small Wave	CS4		11.5	2	1		17.4	7.69				4.9
	HY/2012/08	2014-02-03			Small Wave	CS4		11.5	2	2		17.5	7.67				4.6
-	HY/2012/08	2014-02-03			Small Wave	CS4		21.9	3	1		17.4	7.89				4.2
	HY/2012/08	2014-02-03			Small Wave	CS4		21.9	3	2		17.5	7.9				4.9
	HY/2012/08	2014-02-03			Small Wave	CS6	Surface	<u>1</u>	1	1		17.2	7.65		6.89		4.4
-		2014-02-03			Small Wave	CS6	Surface	1	1	2		17.3	7.66		6.88		4.9
	HY/2012/08	2014-02-03			Small Wave	CS6		6.7	2	1		17.3	7.74		6.74		5.1
		2014-02-03			Small Wave	CS6		6.7	2	2		17.4	7.73		6.73	1.7	5
-	HY/2012/08	2014-02-03			Small Wave	CS6		12.4	3	1		17.5	7.85				4.6
		2014-02-03			Small Wave	CS6		12.4	3	2		17.5	7.87				5.7
-		2014-02-03			Small Wave	IS12	Surface	1	1	2		17.3	7.4				5.5
	HY/2012/08 HY/2012/08	2014-02-03 2014-02-03			Small Wave Small Wave	IS12 IS12	Surface Middle	7.7	2	1		17.4 17.5	7.42 7.5				5.8 5.3
	HY/2012/08	2014-02-03			Small Wave	IS12		7.7 7.7	2	2		17.6	7.52				4.2
-	HY/2012/08	2014-02-03			Small Wave	IS12		14.3	3	1	10:28	17.5	7.6		6.84		5.8
	HY/2012/08	2014-02-03			Small Wave	IS12		14.3	3	2		17.5	7.62		6.86		6.6
	HY/2012/08	2014-02-03			Small Wave	IS13	Surface	1	1	1		17.2	7.5		6.3		4.9
-	HY/2012/08	2014-02-03			Small Wave	IS13	Surface	1	1	2	10:04	17.3	7.52		6.31		5.7
		2014-02-03			Small Wave	IS13	Middle	6	2	1		17.3	7.63				4.5
-	HY/2012/08	2014-02-03			Small Wave	IS13	Middle	6	2	2		17.4	7.6				4.8
		2014-02-03			Small Wave	IS13	Bottom	11	3	1		17.5	7.7				5.3
	HY/2012/08	2014-02-03			Small Wave	IS13		11	3	2		17.5	7.72				4.6
-		2014-02-03			Small Wave	IS14	Surface	1	1	1		17.2	7.83		6.33		4.4
TMCLKL	HY/2012/08	2014-02-03	Mid-Flood	Fine	Small Wave	IS14	Surface	1	1	2	10:51	17.3	7.86		6.32		4.8
TMCLKL	HY/2012/08	2014-02-03	Mid-Flood	Fine	Small Wave	IS14	Middle	8.3	2	1	10:51	17.4	7.62	28.3	6.21	4.53	4.2
TMCLKL	HY/2012/08	2014-02-03	Mid-Flood	Fine	Small Wave	IS14	Middle	8.3	2	2	10:51	17.5	7.63	28.3	6.25	4.6	4.2
	HY/2012/08				Small Wave	IS14	Bottom	15.6	3	1	10:51	17.5	7.76	28.4	6.37	2.3	4.4
TMCLKL	HY/2012/08	2014-02-03	Mid-Flood	Fine	Small Wave	IS14	Bottom	15.6	3	2	10:51		7.74	28.5	6.4	2.35	4.4
TMCLKL	HY/2012/08	2014-02-03	Mid-Flood	Fine	Small Wave	IS15	Surface	1	1	1	09:41		7.8		6.73		4.6
	HY/2012/08				Small Wave	IS15	Surface		1	2	09:41	-	7.82		6.7	1.91	5
	HY/2012/08				Small Wave	IS15	Middle		2	1	09:41		7.93				4.2
	HY/2012/08				Small Wave	IS15	Middle		2		09:41	-	7.94				4.8
	HY/2012/08				Small Wave	IS15	Bottom		3		09:41		8.01				5.2
	HY/2012/08				Small Wave	IS15	Bottom		3	2	09:41		8.02				5
-	HY/2012/08				Small Wave	SR8	Surface		1	1	09:00		7.93		7.05		4.2
	HY/2012/08				Small Wave	SR8	Surface	1	1	2	09:00	17.3	7.94	28.2	7.06	1.23	3.6
	HY/2012/08				Small Wave	SR8	Middle		2	1	09:00	ļ					
	HY/2012/08				Small Wave	SR8	Middle	4.0	2	2	09:00		0.00	00.0	0.00	4.7	1.7
	HY/2012/08				Small Wave	SR8	Bottom		3	1	09:00		8.02		6.92		4.7
	HY/2012/08				Small Wave	SR8	Bottom		3	2	09:00	-	8.03		6.9		3.9
	HY/2012/08				Small Wave	SR9	Surface		11	1	09:20		7.66				4.2
	HY/2012/08				Small Wave	SR9	Surface	1	11	2	09:20	17.3	7.64	28.2	6.93	2.19	4.4
LIMCLKL	HY/2012/08	2014-02-03	Inlia-Flood	Fine	Small Wave	SR9	Middle		2	[1	09:20						

TMCLKL	HY/2012/08 2014-02-03	Mid-Flood	Fine	Small Wave	SR9	Middle	2	2	09:20		l	<u> </u>	1		
	HY/2012/08 2014-02-03			Small Wave	SR9	Bottom 4.9	3	1		17.4	7.31	28.2	6.63	1.6	4.5
	HY/2012/08 2014-02-03			Small Wave	SR9	Bottom 4.9	3	2		17.5	7.32	28.3	6.62	1.72	4.6
	HY/2012/08 2014-02-03			Small Wave	SR10	Surface 1	1	1	_	17.3	7.64	28.1	6.64	2.1	3.7
	HY/2012/08 2014-02-03			Small Wave	SR10	Surface 1	1	2	_	17.4	7.67	28	6.63	2.14	4.1
	HY/2012/08 2014-02-03			Small Wave	SR10	Middle 7.1	2	1	_	17.2	7.53	28.2	6.31	2.08	4.6
	HY/2012/08 2014-02-03			Small Wave	SR10	Middle 7.1	2	2		17.3	7.54	28.3	6.32	2.02	4.8
	HY/2012/08 2014-02-03			Small Wave	SR10	Bottom 13.2	3	1	_	17.4	7.8	28.4	6.73	2.95	4.7
	HY/2012/08 2014-02-03		Fine	Small Wave	SR10	Bottom 13.2	3	2		17.4	7.81	28.3	6.75	3.01	5.1
	HY/2012/08 2014-02-03		Fine	Small Wave	CS4	Surface 1	1	1		17.4	7.87	28.2	6.32	1.94	5
	HY/2012/08 2014-02-03		Fine	Small Wave	CS4	Surface 1	1	2		17.3	7.89	28.3	6.34	2.05	3.9
	HY/2012/08 2014-02-03		Fine	Small Wave	CS4	Middle 11.3	2	1	_	17.4	7.75	28.4	6.58	2.48	5
	HY/2012/08 2014-02-03		Fine	Small Wave	CS4	Middle 11.3	2	2	_	17.5	7.73	28.3	6.6	2.33	4.4
	HY/2012/08 2014-02-03		Fine	Small Wave	CS4	Bottom 21.6	3	1	_	17.6	7.95	28.5	6.43	2.29	5.4
	HY/2012/08 2014-02-03		Fine	Small Wave	CS4	Bottom 21.6	3	2		17.5	7.96	28.4	6.44	2.35	5.1
	HY/2012/08 2014-02-03		Fine	Small Wave	CS6	Surface 1	1	1	_	17.4	7.71	28.1	6.8	1.59	4.4
	HY/2012/08 2014-02-03		Fine	Small Wave	CS6	Surface 1	1	2		17.3	7.72	28.2	6.79	1.61	3.8
	HY/2012/08 2014-02-03		Fine	Small Wave	CS6	Middle 6.4	2	1	_	17.4	7.8	28.3	6.65	1.83	6.5
	HY/2012/08 2014-02-03		Fine	Small Wave	CS6	Middle 6.4	2	2	_	17.5	7.79	28.4	6.64	1.9	6.2
	HY/2012/08 2014-02-03		Fine	Small Wave	CS6	Bottom 11.8	3	1		17.5	7.91	28.6	6.36	2.7	5.2
	HY/2012/08 2014-02-03		Fine	Small Wave	CS6	Bottom 11.8	3	2	_	17.6	7.93	28.5	6.37	2.64	5.6
	HY/2012/08 2014-02-03		Fine	Small Wave	IS12	Surface 1	1	1		17.4	7.46	28.2	6.41	2.23	3.7
TMCLKL	HY/2012/08 2014-02-03		Fine	Small Wave	IS12	Surface 1	1	2	14:29	17.5	7.48	28.3	6.44	2.31	4
TMCLKL	HY/2012/08 2014-02-03	Mid-Ebb	Fine	Small Wave	IS12	Middle 7.4	2	1	14:29	17.5	7.56	28.4	6.6	3.32	5.2
TMCLKL	HY/2012/08 2014-02-03	Mid-Ebb	Fine	Small Wave	IS12	Middle 7.4	2	2	14:29	17.4	7.58	28.3	6.61	3.28	4.8
TMCLKL	HY/2012/08 2014-02-03	Mid-Ebb	Fine	Small Wave	IS12	Bottom 13.8	3	1	14:29	17.5	7.66	28.4	6.75	3.25	4.2
TMCLKL	HY/2012/08 2014-02-03	Mid-Ebb	Fine	Small Wave	IS12	Bottom 13.8	3	2	14:29	17.6	7.68	28.5	6.77	3.39	4.1
TMCLKL	HY/2012/08 2014-02-03	Mid-Ebb	Fine	Small Wave	IS13	Surface 1	1	1	14:52	17.4	7.56	28.3	6.21	1.92	4.7
TMCLKL	HY/2012/08 2014-02-03	Mid-Ebb	Fine	Small Wave	IS13	Surface 1	1	2	14:52	17.4	7.58	28.3	6.22	1.99	5.6
TMCLKL	HY/2012/08 2014-02-03	Mid-Ebb	Fine	Small Wave	IS13	Middle 5.7	2	1	_	17.5	7.69	28.4	6.31	2.37	5
	HY/2012/08 2014-02-03		Fine	Small Wave	IS13	Middle 5.7	2	2	14:52		7.66	28.3	6.33	2.39	4.5
	HY/2012/08 2014-02-03		Fine	Small Wave	IS13	Bottom 10.4	3	1	14:52		7.76	28.5	6.11	2.72	4.9
	HY/2012/08 2014-02-03		Fine	Small Wave	IS13	Bottom 10.4	3	2	14:52		7.78	28.4	6.12	2.81	4.2
	HY/2012/08 2014-02-03		Fine	Small Wave	IS14	Surface 1	1	1	14:06		7.89	28.2	6.24	1.74	4.8
	HY/2012/08 2014-02-03		Fine	Small Wave	IS14	Surface 1	1	2	14:06		7.92	28.2	6.26	1.88	4.4
	HY/2012/08 2014-02-03		Fine	Small Wave	IS14	Middle 8.2	2	1	14:06		7.68	28.3	6.15	4.82	4.4
	HY/2012/08 2014-02-03		Fine	Small Wave	IS14	Middle 8.2	2	2	14:06		7.69	28.2	6.19	4.7	4.5
	HY/2012/08 2014-02-03		Fine	Small Wave	IS14	Bottom 15.4	3	1	14:06		7.82	28.4	6.31	2.48	5
	HY/2012/08 2014-02-03		Fine	Small Wave	IS14	Bottom 15.4	3	2	14:06		7.8	28.4	6.28	2.52	4.4
	HY/2012/08 2014-02-03		Fine	Small Wave	IS15	Surface 1	1	1	15:15		7.86	28.3	6.64	2.06	3.9
	HY/2012/08 2014-02-03		Fine	Small Wave	IS15	Surface 1	1	2	15:15		7.88	28.2	6.61	2.11	3.8
	HY/2012/08 2014-02-03		Fine	Small Wave	IS15	Middle 5.9	2	1	15:15		7.99	28.3	6.42	2.95	4.4
	HY/2012/08 2014-02-03		Fine	Small Wave	IS15	Middle 5.9	2	2	15:15		8	28.2	6.43	3.01	3.8
	HY/2012/08 2014-02-03		Fine	Small Wave	IS15	Bottom 10.8	3	1	15:15		8.07	28.4	6.21	3.03	4.8
	HY/2012/08 2014-02-03		Fine	Small Wave	IS15	Bottom 10.8	3	1	15:15		8.08	28.5	6.22	3.08	3.7
	HY/2012/08 2014-02-03		Fine	Small Wave	SR8	Surface 1	1	2		17.4	7.99	28.1	6.96	1.39	5.5
TIVICLKL	HY/2012/08 2014-02-03	טמ⊐-טוועון	Fine	Small Wave	SR8	Surface 1	Į I	2	16:01	17.3	8	28	6.97	1.42	3.8

TMCLKL	HY/2012/08 2014-02-03	Mid-Ebb	Fine	Small Wave	SR8	Middle	2	T ₁	16:01	I	1	1	T	1	$\overline{}$
	HY/2012/08 2014-02-03		Fine	Small Wave	SR8	Middle	2	2	16:01				+		+
	HY/2012/08 2014-02-03		Fine	Small Wave	SR8	Bottom 4.4	3	1	_	17.4	8.08	28.3	6.83	1.81	4.4
	HY/2012/08 2014-02-03		Fine	Small Wave	SR8	Bottom 4.4	3	2		17.5	8.09	28.4	6.81	1.86	4.6
	HY/2012/08 2014-02-03		Fine	Small Wave	SR9	Surface 1	1	1	_	17.3	7.72	28.2	6.87	2.36	4.8
	HY/2012/08 2014-02-03		Fine	Small Wave	SR9	Surface 1	1	2		17.4	7.7	28.3	6.84	2.44	4.5
	HY/2012/08 2014-02-03		Fine	Small Wave	SR9	Middle	2	1	15:38	17.4	17.7	20.5	0.04	2.44	4.5
	HY/2012/08 2014-02-03		Fine	Small Wave	SR9	Middle	2	2	15:38		+		+		+
	HY/2012/08 2014-02-03		Fine	Small Wave	SR9	Bottom 4.4	3	1	_	17.5	7.37	28.4	6.54	1.84	4.6
	HY/2012/08 2014-02-03		Fine	Small Wave	SR9	Bottom 4.4	3	2		17.4	7.38	28.3	6.53	1.98	6.2
	HY/2012/08 2014-02-03		Fine	Small Wave	SR10	Surface 1	1	1		17.5	7.7	28.2	6.55	2.22	4.4
	HY/2012/08 2014-02-03		Fine	Small Wave	SR10	Surface 1	1	2		17.4	7.73	28.1	6.54	2.19	4.8
	HY/2012/08 2014-02-03		Fine	Small Wave	SR10	Middle 6.9	2	1		17.5	7.59	28.3	6.22	2.16	5.6
	HY/2012/08 2014-02-03		Fine	Small Wave	SR10	Middle 6.9	2	2	_	17.5	7.6	28.2	6.23	2.09	6.4
	HY/2012/08 2014-02-03		Fine	Small Wave	SR10	Bottom 12.8	3	1		17.5	7.86	28.4	6.64	3.06	4.7
	HY/2012/08 2014-02-03		Fine	Small Wave	SR10	Bottom 12.8	3	2		17.6	7.87	28.5	6.66	3.09	6.4
	HY/2012/08 2014-02-05			Small Wave	CS4	Surface 1	1	1	_	17.3	7.72	28.1	6.46	2.86	4.2
	HY/2012/08 2014-02-05		,	Small Wave	CS4	Surface 1	1	2	_	17.3	7.74	28.2	6.48	2.99	3.7
	HY/2012/08 2014-02-05		 	Small Wave	CS4	Middle 11.6	2	1		17.4	7.6	28.4	6.72	3.66	2.7
	HY/2012/08 2014-02-05			Small Wave	CS4	Middle 11.6	2	2		17.3	7.58	28.3	6.74	3.6	2.4
	HY/2012/08 2014-02-05		_	Small Wave	CS4	Bottom 22.2	3	1		17.5	7.8	28.4	6.57	2.93	2.8
	HY/2012/08 2014-02-05			Small Wave	CS4	Bottom 22.2	3	2	_	17.4	7.81	28.5	6.58	2.95	2.9
TMCLKL	HY/2012/08 2014-02-05		+	Small Wave	CS6	Surface 1	1	1	09:07	17.1	7.56	28	6.94	3.51	2.5
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	CS6	Surface 1	1	2	09:07	17.2	7.57	28.1	6.93	3.64	2.3
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	CS6	Middle 6.8	2	1	09:07	17.3	7.65	28.3	6.79	4.05	2.7
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	CS6	Middle 6.8	2	2	09:07	17.2	7.64	28.2	6.78	3.95	2.8
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	CS6	Bottom 12.6	3	1	09:07	17.4	7.76	28.4	6.5	2.81	4.5
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	CS6	Bottom 12.6	3	2	09:07	17.3	7.78	28.3	6.51	2.99	2.3
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	IS12	Surface 1	1	1	11:28	17.3	7.31	28.1	6.55	3.18	2.6
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	IS12	Surface 1	1	2	11:28	17.2	7.33	28.2	6.58	3.21	4.1
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	IS12	Middle 7.8	2	1	11:28	17.4	7.41	28.3	6.74	2.19	2.5
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	IS12	Middle 7.8	2	2	11:28	17.3	7.43	28.2	6.75	2.23	2.6
	HY/2012/08 2014-02-05		-	Small Wave	IS12	Bottom 14.6	3	1	11:28		7.51	28.5	6.89	2.77	3
	HY/2012/08 2014-02-05			Small Wave	IS12	Bottom 14.6	3	2		17.4	7.53	28.4	6.91	2.83	2.6
	HY/2012/08 2014-02-05		+	Small Wave	IS13	Surface 1	1	1	_	17.1	7.41	28.1	6.35	3.34	3.4
	HY/2012/08 2014-02-05			Small Wave	IS13	Surface 1	1	2	11:05		7.43	28.2	6.36	3.39	2.7
	HY/2012/08 2014-02-05			Small Wave	IS13	Middle 6.1	2	1	11:05		7.54	28.2	6.45	2.78	2.4
	HY/2012/08 2014-02-05			Small Wave	IS13	Middle 6.1	2	2	11:05		7.51	28.3	6.47	2.83	3.8
	HY/2012/08 2014-02-05			Small Wave	IS13	Bottom 11.2	3	1	11:05		7.61	28.4	6.25	2.88	3.3
	HY/2012/08 2014-02-05			Small Wave	IS13	Bottom 11.2	3	2	11:05		7.63	28.3	6.26	2.8	3.6
	HY/2012/08 2014-02-05			Small Wave	IS14	Surface 1	1	1	11:51		7.74	28.1	6.38	2.84	3
	HY/2012/08 2014-02-05			Small Wave	IS14	Surface 1	1	2		17.1	7.77	28.1	6.37	2.93	3
	HY/2012/08 2014-02-05		+	Small Wave	IS14	Middle 8.4	2	1		17.3	7.53	28.3	6.26	3.98	3.6
	HY/2012/08 2014-02-05			Small Wave	IS14	Middle 8.4	2	2		17.2	7.54	28.2	6.3	3.86	2.3
	HY/2012/08 2014-02-05		_	Small Wave	IS14	Bottom 15.8	3	1	_	17.3	7.67	28.4	6.42	3.23	2.3
	HY/2012/08 2014-02-05		-	Small Wave	IS14	Bottom 15.8	3	2		17.4	7.65	28.3	6.45	3.18	2.5
TMCLKL	HY/2012/08 2014-02-05	[Mid-Flood	Cloudy	Small Wave	IS15	Surface 1	1	[1	10:42	J17.1	7.71	28.1	6.78	2.89	2.7

TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	IS15	Surface 1	1	2	10:42	17 2	7.73	28	6.75	2.92	2.8
	HY/2012/08 2014-02-05			Small Wave	IS15	Middle 6.3	2	1		17.3	7.84	28.1	6.56	4.28	4.4
	HY/2012/08 2014-02-05	1		Small Wave	IS15	Middle 6.3	2	2		17.2	7.85	28.1	6.57	4.15	3
	HY/2012/08 2014-02-05			Small Wave	IS15	Bottom 11.6	3	1		17.4	7.92	28.2	6.35	2.66	4
	HY/2012/08 2014-02-05			Small Wave	IS15	Bottom 11.6	3	2		17.4	7.93	28.3	6.36	2.74	3.3
	HY/2012/08 2014-02-05			Small Wave	SR8	Surface 1	1	1		17.2	7.84	28.1	7.1	2.49	2.5
	HY/2012/08 2014-02-05			Small Wave	SR8	Surface 1	1	2		17.1	7.85	28	7.11	2.56	2.4
	HY/2012/08 2014-02-05			Small Wave	SR8	Middle	2	1	09:54		1.00		7.11	2.00	
	HY/2012/08 2014-02-05			Small Wave	SR8	Middle	2	2	09:54						
	HY/2012/08 2014-02-05			Small Wave	SR8	Bottom 4.8	3	1		17.3	7.93	28.3	6.97	2.98	2
	HY/2012/08 2014-02-05		_	Small Wave	SR8	Bottom 4.8	3	2		17.4	7.94	28.2	6.95	2.85	2.3
	HY/2012/08 2014-02-05			Small Wave	SR9	Surface 1	1	1		17.2	7.57	28	7.01	2.71	2.8
	HY/2012/08 2014-02-05			Small Wave	SR9	Surface 1	1	2		17.1	7.55	28.1	6.98	2.77	3.6
	HY/2012/08 2014-02-05			Small Wave	SR9	Middle	2	1	10:18		1				10.0
	HY/2012/08 2014-02-05		,	Small Wave	SR9	Middle	2	2	10:18		1		1	1	
	HY/2012/08 2014-02-05		_	Small Wave	SR9	Bottom 4.6	3	1		17.3	7.22	28.2	6.68	2.48	5
	HY/2012/08 2014-02-05			Small Wave	SR9	Bottom 4.6	3	2		17.4	7.23	28.1	6.67	2.45	4
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	SR10	Surface 1	1	1		17.2	7.55	28.1	6.69	2.58	2.3
TMCLKL	HY/2012/08 2014-02-05			Small Wave	SR10	Surface 1	1	2		17.3	7.58	28	6.68	2.61	2.7
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	SR10	Middle 7.2	2	1	09:31	17.3	7.44	28.2	6.36	2.25	3.4
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	SR10	Middle 7.2	2	2	09:31	17.3	7.45	28.1	6.37	2.33	2.7
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	SR10	Bottom 13.4	3	1	09:31	17.4	7.71	28.2	6.78	3.09	2.3
TMCLKL	HY/2012/08 2014-02-05	Mid-Flood	Cloudy	Small Wave	SR10	Bottom 13.4	3	2	09:31	17.3	7.72	28.3	6.8	3.01	4.1
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	CS4	Surface 1	1	1	15:34	17.1	7.78	28.2	6.37	2.92	2
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	CS4	Surface 1	1	2	15:34	17.2	7.8	28.3	6.39	3.05	3.8
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	CS4	Middle 11.3	2	1	15:34	17.3	7.69	28.3	6.63	3.72	2.9
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	CS4	Middle 11.3	2	2	15:34	17.4	7.64	28.4	6.65	3.66	3.3
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom 21.6	3	1	15:34	17.5	7.89	28.5	6.48	2.98	2.4
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom 21.6	3	2	15:34	17.4	7.87	28.4	6.49	3.04	3
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	CS6	Surface 1	1	1	18:43		7.62	28.1	6.85	3.57	2.8
	HY/2012/08 2014-02-05		Cloudy	Small Wave	CS6	Surface 1	1	2	18:43		7.63	28.2	6.84	3.7	2.9
TMCLKL	HY/2012/08 2014-02-05		Cloudy	Small Wave	CS6	Middle 6.7	2	1	18:43	17.3	7.71	28.3	6.7	4.11	4
	HY/2012/08 2014-02-05		Cloudy	Small Wave	CS6	Middle 6.7	2	2	18:43		7.7	28.2	6.69	4.01	2.3
	HY/2012/08 2014-02-05		Cloudy	Small Wave	CS6	Bottom 12.4	3	1	18:43		7.82	28.3	6.41	2.87	3.1
	HY/2012/08 2014-02-05		Cloudy	Small Wave	CS6	Bottom 12.4	3	2	18:43		7.84	28.4	6.42	3.05	2.9
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS12	Surface 1	1	1	16:22		7.37	28.3	6.46	3.24	3.3
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS12	Surface 1	1	2	16:22		7.39	28.2	6.49	3.27	3
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS12	Middle 7.6	2	1	16:22		7.47	28.3	6.65	2.25	2.9
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS12	Middle 7.6	2	2	16:22		7.49	28.4	6.66	2.29	2.6
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS12	Bottom 14.2	3	1	16:22		7.57	28.5	6.8	2.84	3.1
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS12	Bottom 14.2	3	2	16:22		7.59	28.5	6.82	2.88	2
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS13	Surface 1	1	1	16:45		7.47	28.1	6.26	3.4	2.9
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS13	Surface 1	1	2	16:45		7.49	28.2	6.27	3.45	2.9
	HY/2012/08 2014-02-05	1	Cloudy	Small Wave	IS13	Middle 5.8	2	1	16:45		7.6	28.3	6.36	2.84	2.6
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS13	Middle 5.8	2	2	16:45		7.57	28.4	6.38	2.89	2.7
	HY/2012/08 2014-02-05	-	Cloudy	Small Wave	IS13	Bottom 10.6	3	1	16:45		7.67	28.4	6.16	2.94	3.5
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom 10.6	3	2	16:45	17.4	7.69	28.5	6.17	2.86	2.9

TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	IS14	Surface 1	T ₁	1	15:58	17.2	7.8	28.2	6.29	2.9	4
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS14	Surface 1	1	2		17.2	7.83	28.1	6.28	2.96	2.1
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS14	Middle 8.3	2	1	_	17.3	7.59	28.2	6.17	4.04	3.5
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS14	Middle 8.3	2	2		17.2	7.6	28.3	6.21	3.92	2
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS14	Bottom 15.6	3	1	_	17.4	7.73	28.4	6.33	3.29	2.2
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS14	Bottom 15.6	3	2	_	17.3	7.71	28.3	6.36	3.24	2.7
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS15	Surface 1	1	1		17.2	7.77	28.1	6.69	2.95	2.7
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS15	Surface 1	1	2	_	17.1	7.79	28.1	6.66	2.98	2.6
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS15	Middle 6.1	2	1	_	17.3	7.9	28.3	6.47	4.34	2.8
-	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS15	Middle 6.1	2	2		17.4	7.91	28.2	6.48	4.21	2.8
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS15	Bottom 11.2	3	1		17.4	7.98	28.4	6.26	2.72	2.5
	HY/2012/08 2014-02-05		Cloudy	Small Wave	IS15	Bottom 11.2	3	2	17:09	17.5	7.99	28.3	6.27	2.8	3.2
	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR8	Surface 1	1	1		17.2	7.9	28.1	7.01	2.55	3.2
	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR8	Surface 1	1	2	_	17.3	7.91	28.2	7.02	2.62	2.9
	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR8	Middle	2	1	17:55		1	1-0:-	1	1	1
	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR8	Middle	2	2	17:55						
	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR8	Bottom 4.4	3	1	_	17.3	7.99	28.3	6.88	3.04	4
	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR8	Bottom 4.4	3	2	_	17.4	8	28.2	6.86	3.91	3.3
	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR9	Surface 1	1	1	_	17.2	7.63	28.2	6.92	2.76	4.9
	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR9	Surface 1	1	2	_	17.3	7.61	28.1	6.89	2.83	4.3
	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR9	Middle	2	1	17:32					1-191	110
	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR9	Middle	2	2	17:32						
	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR9	Bottom 4.2	3	1		17.4	7.28	28.2	6.59	2.54	6.1
 	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR9	Bottom 4.2	3	2		17.3	7.29	28.3	6.58	2.51	7.4
	HY/2012/08 2014-02-05		Cloudy	Small Wave	SR10	Surface 1	1	1		17.1	7.61	28.1	6.6	2.64	4
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	SR10	Surface 1	1	2	18:19	17	7.64	28	6.59	2.67	4.4
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	SR10	Middle 7	2	1	18:19	17.2	7.5	28.2	6.27	2.31	3.7
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	SR10	Middle 7	2	2	18:19	17.3	7.51	28.1	6.28	2.37	3.9
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	SR10	Bottom 13	3	1	18:19	17.4	7.77	28.3	6.69	3.15	3.2
TMCLKL	HY/2012/08 2014-02-05	Mid-Ebb	Cloudy	Small Wave	SR10	Bottom 13	3	2	18:19	17.3	7.78	28.4	6.71	3.07	2.9
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood	Cloudy	Small Wave	CS4	Surface 1	1	1	13:36	17.1	7.8	28.1	7.14	1.4	2.3
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood	Cloudy	Small Wave	CS4	Surface 1	1	2	13:36	17.1	7.84	28	7.16	1.44	2.5
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood	Cloudy	Small Wave	CS4	Middle 11.5	2	1	13:36	17.3	7.95	28.2	6.83	1.24	2.9
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood	Cloudy	Small Wave	CS4	Middle 11.5	2	2	13:36	17.2	7.97	28.2	6.89	1.21	2.8
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood	Cloudy	Small Wave	CS4	Bottom 22.3	3	1	13:36	17.3	7.98	28.2	6.6	1.79	4.1
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood	Cloudy	Small Wave	CS4	Bottom 22.3	3	2	13:36	17.4	7.9	28.2	6.62	1.74	2.8
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood	Cloudy	Small Wave	CS6	Surface 1	1	1	10:24		7.81	28	7.11	1.39	3.5
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood	Cloudy	Small Wave	CS6	Surface 1	1	2	10:24	17	7.86	28	7.13	1.34	2.6
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood	Cloudy	Small Wave	CS6	Middle 9	2	1	10:24		7.91	28.1	7.06	1.57	2.3
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood	Cloudy	Small Wave	CS6	Middle 9	2	2	10:24		7.92	28.2	7	1.52	2.8
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood	Cloudy	Small Wave	CS6	Bottom 13	3	1	10:24	17.3	7.9	28.3	6.9	1.26	2.4
	HY/2012/08 2014-02-07			Small Wave	CS6	Bottom 13	3	2	10:24		7.94	28.3	6.94	1.21	2.4
	HY/2012/08 2014-02-07			Small Wave	IS12	Surface 1	1	1	12:41		7.96	28.2	7.06	1.26	2.8
	HY/2012/08 2014-02-07		_	Small Wave	IS12	Surface 1	1	2		17.1	7.9	28.2	7.01	1.2	3
TMCLKL	HY/2012/08 2014-02-07			Small Wave	IS12	Middle 8	2	1		17.2	7.86	28.3	7.19	1.36	3.5
	HY/2012/08 2014-02-07			Small Wave	IS12	Middle 8	2	2		17.2	7.89	28.3	7.15	1.39	2.4
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood	Cloudy	Small Wave	IS12	Bottom 15	3	1	12:41	17.3	7.79	28.3	6.82	1.5	2.8

TMCLKL	HY/2012/08 2014-02-07	Mid-Flood C	Cloudy	Small Wave	IS12	Bottom	15	3	2	12:41	17.3	7.72	28.3	6.84	1.54	2.7
	HY/2012/08 2014-02-07			Small Wave	IS13	Surface	1	1	1	_	17.2	7.79	28.1	7.15	1.12	2
	HY/2012/08 2014-02-07			Small Wave	IS13	Surface	<u>.</u> 1	1	2	_	17.1	7.7	28	7.13	1.17	2.3
	HY/2012/08 2014-02-07			Small Wave	IS13		6.2	2	1	_	17.2	7.84	28.2	7.17	1.71	3.1
		Mid-Flood C		Small Wave	IS13		6.2	2	2	_	17.2	7.81	28.2	7.13	1.78	2.4
	HY/2012/08 2014-02-07			Small Wave	IS13		11.4	3	 -	-	17.3	7.99	28.3	6.89	1.44	3.5
		Mid-Flood C		Small Wave	IS13		11.4	3	2		17.3	7.94	28.3	6.81	1.41	2.9
-	HY/2012/08 2014-02-07			Small Wave	IS14	Surface	<u></u> 1	1	1		17.1	7.84	28.1	7.2	1.34	2.2
		Mid-Flood C		Small Wave	IS14	Surface	<u>.</u> 1	1	2		17.2	7.81	28.1	7.28	1.31	2.5
	HY/2012/08 2014-02-07			Small Wave	IS14		8.5	2	1		17.2	7.71	28.2	7.11	1.66	2.2
	HY/2012/08 2014-02-07			Small Wave	IS14		8.5	2	2	_	17.2	7.73	28.2	7.17	1.6	3.2
	HY/2012/08 2014-02-07			Small Wave	IS14		16	3	1	_	17.3	7.84	28.2	6.76	1.06	2.7
-	HY/2012/08 2014-02-07			Small Wave	IS14	Bottom		3	2		17.2	7.86	28.3	6.78	1.09	2.9
	HY/2012/08 2014-02-07		Cloudy	Small Wave	IS15	Surface	1	1	1		17.2	7.85	28	7.24	1.29	2.6
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood C	Cloudy	Small Wave	IS15	Surface	1	1	2	11:55	17.2	7.87	28	7.2	1.24	2.1
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood C	Cloudy	Small Wave	IS15	Middle	6.5	2	1	11:55	17.3	7.96	28.2	7.07	1.67	2.7
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood C	Cloudy	Small Wave	IS15	Middle	6.5	2	2	11:55	17.2	7.9	28.2	7.01	1.64	2.2
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood C	Cloudy	Small Wave	IS15	Bottom	12	3	1	11:55	17.3	7.86	28.2	6.77	1.56	2.8
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood C	Cloudy	Small Wave	IS15	Bottom	12	3	2	11:55	17.4	7.89	28.2	6.74	1.5	2.9
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood C	Cloudy	Small Wave	SR8	Surface	1	1	1	11:10	17.1	7.93	28.1	7.35	1.3	2.1
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood C	Cloudy	Small Wave	SR8	Surface	1	1	2	11:10	17.1	7.94	28.1	7.31	1.33	3.7
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood C	Cloudy	Small Wave	SR8	Middle		2	1	11:10						
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood C	Cloudy	Small Wave	SR8	Middle		2	2	11:10						
TMCLKL	HY/2012/08 2014-02-07	Mid-Flood C	Cloudy	Small Wave	SR8	Bottom	4.6	3	1	11:10	17.3	7.8	28.2	7.14	1.4	2.6
-	HY/2012/08 2014-02-07			Small Wave	SR8	Bottom	4.6	3	2	_	17.3	7.82	28.2	7.1	1.45	4
-	HY/2012/08 2014-02-07		Cloudy	Small Wave	SR9	Surface	1	1	1		17.2	7.91	28	7.19	1.37	3.5
	HY/2012/08 2014-02-07		Cloudy	Small Wave	SR9	Surface	1	1	2		17.1	7.93	28	7.11	1.39	4
	HY/2012/08 2014-02-07			Small Wave	SR9	Middle		2	1	11:32						
		Mid-Flood C		Small Wave	SR9	Middle		2	2	11:32			<u> </u>			
	HY/2012/08 2014-02-07			Small Wave	SR9	Bottom		3	1	11:32		7.9	28.1	6.95	1.93	4.9
	HY/2012/08 2014-02-07			Small Wave	SR9	Bottom		3	2	11:32		7.94	28.1	6.92	1.99	4.9
	HY/2012/08 2014-02-07			Small Wave	SR10	Surface		1	1	10:47		7.89	28	7.49	1.45	2.3
	HY/2012/08 2014-02-07			Small Wave	SR10	Surface	1	1	2	10:47		7.84	28	7.44	1.41	2.4
	HY/2012/08 2014-02-07			Small Wave	SR10	Middle	<u>/</u>	2	11	10:47		7.83	28.2	7.04	1.27	4.1
	HY/2012/08 2014-02-07			Small Wave	SR10	Middle	<u>/</u>	2	2		17.2	7.87	28.2	7.01	1.24	2.2
-	HY/2012/08 2014-02-07			Small Wave	SR10	Bottom		3	1	10:47		7.97	28.3	6.76	1.68	4
	HY/2012/08 2014-02-07			Small Wave	SR10	Bottom		3	2	10:47		7.91	28.3	6.79	1.63	4
	HY/2012/08 2014-02-07		Cloudy	Small Wave	CS4	Surface		11	12	21:07 21:07		7.84	28 28	7.23	1.23 1.26	3.7
	HY/2012/08 2014-02-07 HY/2012/08 2014-02-07		Cloudy Cloudy	Small Wave Small Wave	CS4 CS4	Surface Middle		2	1	21:07		7.86 7.95	28.2	7.26 6.83	1.45	2.1
	HY/2012/08 2014-02-07		Cloudy	Small Wave	CS4	Middle		2	2	21:07		7.98	28.2	6.87	1.45	2.1
	HY/2012/08 2014-02-07		Cloudy	Small Wave	CS4	Bottom		3	1	21:07		7.99	28.2	6.74	1.78	2.1
	HY/2012/08 2014-02-07		Cloudy	Small Wave	CS4	Bottom		3	2	21:07		7.99	28.2	6.7	1.7	2.2
	HY/2012/08 2014-02-07		Cloudy	Small Wave	CS6	Surface		1	1	17:55		7.92	28	7.27	1.02	2.6
	HY/2012/08 2014-02-07		Cloudy	Small Wave	CS6	Surface		1	2	17:55		7.9	28	7.23	1.08	2.3
	HY/2012/08 2014-02-07		Cloudy	Small Wave	CS6	Middle		2	1	17:55		7.93	28.2	7.12	1.43	2.7
	HY/2012/08 2014-02-07		Cloudy	Small Wave	CS6	Middle		2	2	17:55		7.94	28.1	7.1	1.49	2.1
TIVIOLITE	11172012700 2017 02 01	1.1110 -00	J.Oddy	Johnan Wave	1000	Intiladio	0.0	1-	<u> </u>	117.00	1.7.0	լ₁.∪∓	1-0.1	1,	10	

TMCLKL HY/	/2012/08	2014-02-07	Mid-Ebb	Cloudy	Small Wave	CS6	Bottom 12.2	3	T ₁	17:55	17.4	7.96	28.3	6.74	1.66	2.5
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	CS6	Bottom 12.2	3	2	_	17.4	7.99		6.7	1.68	3.1
			Mid-Ebb	Cloudy	Small Wave	IS12	Surface 1	1	1	_	17.1	7.96	28.1	7.12	1.08	3.7
				Cloudy	Small Wave	IS12	Surface 1	1	2		17.1	7.91	28.1	7.12	1.03	2.6
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	IS12	Middle 7.7	2	1	_	17.2	7.99	28.2	7.17	1.17	3
			Mid-Ebb	Cloudy	Small Wave	IS12	Middle 7.7	2	2		17.2	7.91	28.2	7.1	1.1	2
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	IS12	Bottom 14.4	3	1		17.3	7.84		6.99	1.39	3.1
			Mid-Ebb	Cloudy	Small Wave	IS12	Bottom 14.4	3	2		17.3	7.86		6.96	1.32	2.2
			Mid-Ebb	Cloudy	Small Wave	IS13	Surface 1	1	1		17.2	7.78	28	7	1.16	2.1
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	IS13	Surface 1	1	2		17.2	7.71	28.1	7.03	1.13	2.4
		2014-02-07		Cloudy	Small Wave	IS13	Middle 6	2	1	_		7.75	28.2	7.17	1.44	2.3
_		2014-02-07		Cloudy	Small Wave	IS13	Middle 6	2	2			7.79	28.2	7.13	1.46	2.5
 		2014-02-07	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom 11	3	1	_		7.86	28.2	6.79	1.74	2.8
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom 11	3	2			7.81	28.3	6.76	1.7	2.1
			Mid-Ebb	Cloudy	Small Wave	IS14	Surface 1	1	1		17.2	7.9	28	7.32	1.32	3.1
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	IS14	Surface 1	1	2	_	17.2	7.98	28.1	7.39	1.39	2.1
				Cloudy	Small Wave	IS14	Middle 8.2	2	1		17.3	7.93	28.2	7.01	1.51	3
-		2014-02-07	Mid-Ebb	Cloudy	Small Wave	IS14	Middle 8.2	2	2	_	17.3	7.97	28.2	7.05	1.53	4.1
			Mid-Ebb	Cloudy	Small Wave	IS14	Bottom 15.4	3	1		17.3	7.83		6.82	1.64	3.1
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	IS14	Bottom 15.4	3	2		17.4	7.86		6.88	1.66	2.9
_			Mid-Ebb	Cloudy	Small Wave	IS15	Surface 1	1	1		17.3	7.96	28.1	7.15	1.27	3.2
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	IS15	Surface 1	1	2		17.2	7.9	28.1	7.11	1.24	2.9
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	IS15	Middle 6.2	2	1		17.3	7.93	28.2	7.47	1.82	3.9
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	IS15	Middle 6.2	2	2	_	17.3	7.97	28.2	7.41	1.8	4.2
		2014-02-07		Cloudy	Small Wave	IS15	Bottom 11.4	3	 - 1			7.94		6.87	1.09	4.1
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom 11.4	3	2	_		7.9		6.84	1.06	4.4
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	SR8	Surface 1	1	1	_		7.83	28	7.34	1.23	2.4
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	SR8	Surface 1	1	2		17.2	7.87	28	7.32	1.29	2
		2014-02-07	Mid-Ebb	Cloudy	Small Wave	SR8	Middle	2	1	18:41					1	_
TMCLKL HY/				Cloudy	Small Wave	SR8	Middle	2	2	18:41						
TMCLKL HY/				Cloudy	Small Wave	SR8	Bottom 4	3	1		17.3	7.76	28.2	7.16	1.5	3.7
TMCLKL HY/				Cloudy	Small Wave	SR8	Bottom 4	3	2			7.7	28.1	7.19	1.54	2.7
TMCLKL HY/				Cloudy	Small Wave	SR9	Surface 1	1	1			7.81	28.1	7.29	1.39	3.3
TMCLKL HY/				Cloudy	Small Wave	SR9	Surface 1	1	2			7.83	28.1	7.24	1.31	3.2
TMCLKL HY/				Cloudy	Small Wave	SR9	Middle	2	1	19:04						
TMCLKL HY/				Cloudy	Small Wave	SR9	Middle	2	2	19:04						
TMCLKL HY/	/2012/08	2014-02-07		Cloudy	Small Wave	SR9	Bottom 4	3	1		17.4	7.92	28.3	7.05	1.27	2.4
TMCLKL HY/				Cloudy	Small Wave	SR9	Bottom 4	3	2			7.98	28.3	7.02	1.23	3.1
TMCLKL HY/				Cloudy	Small Wave	SR10	Surface 1	1	1			7.71	28	7.19	1.12	2.7
TMCLKL HY/				Cloudy	Small Wave	SR10	Surface 1	1	2	18:18		7.75		7.13	1.16	2.9
TMCLKL HY/				Cloudy	Small Wave	SR10	Middle 6.8	2	1	18:18		7.89	_	7.08	1.52	2.5
TMCLKL HY/	/2012/08	2014-02-07	Mid-Ebb	Cloudy	Small Wave	SR10	Middle 6.8	2	2			7.82	28.1	7.02	1.53	2.5
TMCLKL HY/				Cloudy	Small Wave	SR10	Bottom 12.6	3	1	18:18		7.84		6.53	1.37	3.4
TMCLKL HY/	/2012/08	2014-02-07	Mid-Ebb	Cloudy	Small Wave	SR10	Bottom 12.6	3	2		17.3	7.88		6.51	1.39	2.5
TMCLKL HY/	/2012/08	2014-02-10	Mid-Flood	Cloudy	Great Wave	CS4	Surface 1	1	1	12:02		7.61	28	6.66	1.3	4.3
TMCLKL HY/	/2012/08	2014-02-10	Mid-Flood		Great Wave	CS4	Surface 1	1	2		16.2	7.63		6.64	1.28	5.3
TMCLKL HY/	/2012/08	2014-02-10	Mid-Flood	Cloudy	Great Wave	CS4	Middle 11.6	2	1	12:02	16.3	7.67	28.2	6.75	3.63	3.9

TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	CS4	Middle 11.6	2	2	12:02	16.2	7.65	28.3	6.78	3.65	6
<u> </u>		Mid-Flood Cloudy	Great Wave	CS4	Bottom 22.2	3	1		16.4	7.78	28.3	6.62	2.73	5.3
		Mid-Flood Cloudy	Great Wave	CS4	Bottom 22.2	3	2		16.5	7.76	28.4	6.59	2.73	4.5
		Mid-Flood Cloudy	Great Wave	CS6	Surface 1	1	1		16.1	7.63	28	6.82	1.35	4.6
		Mid-Flood Cloudy	Great Wave	CS6	Surface 1	1	2		16.2	7.65	27.9	6.79	1.37	5.3
		Mid-Flood Cloudy	Great Wave	CS6	Middle 6.7	2	1	-	16.3	7.57	28.1	6.62	3.01	3.7
		Mid-Flood Cloudy	Great Wave	CS6	Middle 6.7	2	2		16.2	7.59	28	6.59	2.99	5
—		Mid-Flood Cloudy	Great Wave	CS6	Bottom 12.4	3	1		16.4	7.76	28.2	6.42	2.99	5.1
		Mid-Flood Cloudy	Great Wave	CS6	Bottom 12.4	3	2		16.5	7.78	28.3	6.39	2.28	6
		Mid-Flood Cloudy	Great Wave	IS12	Surface 1	1	1	-	16.1	7.67	28	6.93	1.16	3.6
		Mid-Flood Cloudy	Great Wave	IS12	Surface 1	1	2		16.2	7.7	28.1	6.95	1.13	J.0
		Mid-Flood Cloudy	Great Wave	IS12	Middle 8.1	2	1		16.3	7.76	28.3	6.66	3.47	3.4
		Mid-Flood Cloudy	Great Wave	IS12	Middle 8.1	2	2		16.4	7.74	28.2	6.68	3.49	3.7
		Mid-Flood Cloudy	Great Wave	IS12	Bottom 15.2	3	1		16.5	7.6	28.3	6.76	2.74	6.1
		Mid-Flood Cloudy	Great Wave	IS12	Bottom 15.2	3	2		16.4	7.62	28.4	6.78	2.73	4.2
		Mid-Flood Cloudy	Great Wave	IS13	Surface 1	1	1	10:49	16.1	7.7	27.9	6.81	1.61	2.6
		Mid-Flood Cloudy	Great Wave	IS13	Surface 1	1	2		16.1	7.72	28	6.79	1.63	2.3
		Mid-Flood Cloudy	Great Wave	IS13	Middle 5.9	2	1	_	16.2	7.58	28.1	6.63	3.27	4.4
		Mid-Flood Cloudy	Great Wave	IS13	Middle 5.9	2	2		16.1	7.6	28.2	6.65	3.29	3
		Mid-Flood Cloudy	Great Wave	IS13	Bottom 10.8	3	1		16.3	7.67	28.3	6.52	2.56	3.2
		Mid-Flood Cloudy	Great Wave	IS13	Bottom 10.8	3	2	_	16.4	7.69	28.2	6.5	2.58	3.6
		Mid-Flood Cloudy	Great Wave	IS14	Surface 1	1	1		16.1	7.73	28	6.75	1.27	5.4
		Mid-Flood Cloudy	Great Wave	IS14	Surface 1	1	2		16	7.75	27.9	6.74	1.29	4.1
		Mid-Flood Cloudy	Great Wave	IS14	Middle 8.5	2	1		16.2	7.61	28.2	6.62	3.68	3.5
		Mid-Flood Cloudy	Great Wave	IS14	Middle 8.5	2	2		16.3	7.62	28.1	6.59	3.7	5.2
—		Mid-Flood Cloudy	Great Wave	IS14	Bottom 16	3	 -		16.3	7.67	28.2	6.7	2.87	3.5
		Mid-Flood Cloudy	Great Wave	IS14	Bottom 16	3	2		16.4	7.69	28.3	6.72	2.89	4.5
		Mid-Flood Cloudy	Great Wave	IS15	Surface 1	1	 -		16.1	7.66	27.9	6.99	1.67	3.1
—		Mid-Flood Cloudy	Great Wave	IS15	Surface 1	1	2	10:25	16.2	7.68	27.8	6.97	1.7	3
	HY/2012/08 2014-02-10		Great Wave	IS15	Middle 6.1	2	1		16.3	7.63	28.1	6.62	3.36	3
	HY/2012/08 2014-02-10		Great Wave	IS15	Middle 6.1	2	2	10:25	16.4	7.65	28	6.6	3.34	3.9
	HY/2012/08 2014-02-10		Great Wave	IS15	Bottom 11.2	3	1	10:25		7.78	28.2	6.43	2.48	5
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	IS15	Bottom 11.2	3	2	10:25		7.8	28.3	6.44	2.46	4.9
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR8	Surface 1	1	1	09:38		7.57	27.9	6.79	1.61	2.7
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR8	Surface 1	1	2	09:38	16	7.59	28	6.8	1.63	3.3
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR8	Middle	2	1	09:38						
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR8	Middle	2	2	09:38						
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR8	Bottom 4.4	3	1	09:38	16.2	7.68	28.3	6.63	2.23	4
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR8	Bottom 4.4	3	2	09:38	16.1	7.7	28.2	6.65	2.25	4.3
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR9	Surface 1	1	1	10:02		7.77	28	6.83	1.81	4.2
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR9	Surface 1	1	2	10:02	16	7.79	27.9	6.85	1.83	2.8
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR9	Middle	2	1	10:02						
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR9	Middle	2	2	10:02						
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR9	Bottom 4.8	3	1	10:02	16.2	7.86	28.1	6.53	2.41	8.2
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR9	Bottom 4.8	3	2	10:02		7.84	28.2	6.51	2.43	8.1
	HY/2012/08 2014-02-10		Great Wave	SR10	Surface 1	1	1	09:15	16	7.67	27.9	6.85	1.56	3.8
TMCLKL	HY/2012/08 2014-02-10	Mid-Flood Cloudy	Great Wave	SR10	Surface 1	1	2	09:15	16.1	7.69	27.8	6.87	1.54	3.3

TMCLKL	HY/2012/08 2014-02-10	Mid-Flood	Cloudy	Great Wave	SR10	Middle 7.1	2	T ₁	09:15	16.1	7.75	28	6.47	3.63	3
	HY/2012/08 2014-02-10			Great Wave	SR10	Middle 7.1	2	2		16.2	7.74	28.1	6.48	3.65	2.3
	HY/2012/08 2014-02-10		Cloudy	Great Wave	SR10	Bottom 13.2	3	1		16.3	7.6	28.2	6.52	2.76	3.2
_	HY/2012/08 2014-02-10		Cloudy	Great Wave	SR10	Bottom 13.2	3	2		16.2	7.62	28.1	6.54	2.78	2.5
	HY/2012/08 2014-02-10		Cloudy	Great Wave	CS4	Surface 1	1	1		16	7.67	28	6.57	1.36	3.7
	HY/2012/08 2014-02-10		Cloudy	Great Wave	CS4	Surface 1	1	2	_	16.1	7.69	28	6.55	1.36	3.4
	HY/2012/08 2014-02-10		Cloudy	Great Wave	CS4	Middle 11.4	2	1		16.2	7.73	28.1	6.66	3.69	3.8
-	HY/2012/08 2014-02-10		Cloudy	Great Wave	CS4	Middle 11.4	2	2	_	16.2	7.71	28.2	6.69	3.71	3
	HY/2012/08 2014-02-10		Cloudy	Great Wave	CS4	Bottom 21.7	3	1		16.3	7.84	28.3	6.53	2.79	2.1
-	HY/2012/08 2014-02-10		Cloudy	Great Wave	CS4	Bottom 21.7	3	2		16.4	7.82	28.4	6.5	2.8	3
	HY/2012/08 2014-02-10		Cloudy	Great Wave	CS6	Surface 1	1	1	_	16	7.69	28	6.73	1.41	2.8
	HY/2012/08 2014-02-10		Cloudy	Great Wave	CS6	Surface 1	11	2		16.1	7.71	28.1	6.7	1.43	2.4
-	HY/2012/08 2014-02-10		Cloudy	Great Wave	CS6	Middle 6.5	2	1		16.2	7.63	28.2	6.53	3.07	2.1
	HY/2012/08 2014-02-10		Cloudy	Great Wave	CS6	Middle 6.5	2	2	_	16.2	7.65	28.2	6.5	3.05	2
	HY/2012/08 2014-02-10		Cloudy	Great Wave	CS6	Bottom 12	3	1	_	16.3	7.82	28.3	6.33	2.33	2.4
TMCLKL	HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	CS6	Bottom 12	3	2		16.4	7.84	28.4	6.3	2.34	2.5
TMCLKL	HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	IS12	Surface 1	1	1		16	7.73	28	6.84	1.22	4.8
TMCLKL	HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	IS12	Surface 1	1	2	22:07	16.1	7.76	28	6.86	1.19	4.3
TMCLKL	HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	IS12	Middle 7.9	2	1	22:07	16.2	7.82	28.1	6.57	3.53	3
TMCLKL	HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	IS12	Middle 7.9	2	2	22:07	16.3	7.8	28.2	6.59	3.55	3.8
TMCLKL	HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	IS12	Bottom 14.8	3	1	22:07	16.4	7.66	28.3	6.67	2.81	3.2
TMCLKL	HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	IS12	Bottom 14.8	3	2	22:07	16.4	7.68	28.4	6.69	2.79	5.8
TMCLKL	HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	IS13	Surface 1	1	1	22:28	16	7.76	28	6.72	1.67	6.1
TMCLKL	HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	IS13	Surface 1	1	2	22:28	16	7.78	28.1	6.7	1.69	6.2
TMCLKL	HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	IS13	Middle 5.8	2	1	22:28	16.1	7.64	28.2	6.54	3.33	4.2
TMCLKL	HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	IS13	Middle 5.8	2	2	22:28	16.1	7.66	28.3	6.56	3.35	3.7
TMCLKL	HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	IS13	Bottom 10.5	3	1	22:28	16.2	7.73	28.4	6.43	2.62	7.9
TMCLKL	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS13	Bottom 10.5	3	2	_	16.3	7.75	28.4	6.41	2.64	7.3
	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS14	Surface 1	1	1		16	7.79	28	6.66	1.33	2.7
	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS14	Surface 1	1	2	21:45		7.81	28.1	6.68	1.35	2.3
	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS14	Middle 8.4	2	1	21:45		7.67	28.2	6.53	3.74	3.9
	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS14	Middle 8.4	2	2	21:45		7.69	28.3	6.5	3.76	3.1
	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS14	Bottom 15.7	3	1	21:45		7.73	28.4	6.61	2.93	6
	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS14	Bottom 15.7	3	2	21:45		7.75	28.4	6.63	2.95	6.5
	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS15	Surface 1	1	1	22:50		7.72	28	6.91	1.73	2.7
	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS15	Surface 1	17	2	22:50		7.74	28	6.89	1.76	2.3
	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS15	Middle 5.9	2	1	22:50		7.69	28.1	6.53	3.42	5.5
	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS15	Middle 5.9	2	2		16.3	7.71	28.2	6.51	3.4	6.5
	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS15	Bottom 10.8	3	1	22:50		7.84	28.3	6.34	2.54	6.6
	HY/2012/08 2014-02-10		Cloudy	Great Wave	IS15	Bottom 10.8	3	2	22:50		7.86	28.3	6.31	2.52	5.7
	HY/2012/08 2014-02-10		Cloudy	Great Wave	SR8	Surface 1	1	2	23:28		7.63	28	6.7	1.67	2.4
	HY/2012/08 2014-02-10		Cloudy	Great Wave	SR8	Surface 1	2	2	23:28	10.1	7.65	28	6.71	1.69	2.3
	HY/2012/08 2014-02-10		Cloudy	Great Wave	SR8	Middle	2	2	23:28		 	1	<u> </u>	1	+
	HY/2012/08 2014-02-10 HY/2012/08 2014-02-10		Cloudy Cloudy	Great Wave	SR8 SR8	Middle Bottom 4.2	3	1	23:28 23:28	16.1	7.74	28.1	6.54	2.29	2.6
	HY/2012/08 2014-02-10		Cloudy	Great Wave Great Wave	SR8	Bottom 4.2	3	2	23:28		7.74	28.2	6.56	2.29	2.0
	HY/2012/08 2014-02-10		Cloudy	Great Wave	SR9	Surface 1	1	1	23:13		7.83	28	6.74	1.87	2.8
LIVIOLNL	111/2012/00 2014-02-10	เผเด-⊏ทท	Joioudy	Joical Mave	SILO	Journace 1	l I	Į I	120.10	110	11.00	120	JU.14	11.01	L.U

TMCLKL HY/2012/08 2014-02-10	Mid-Ebb	Cloudy	Great Wave	SR9	Surface 1	11	2	23:13	16	7.85	28.1	6.76	1.89	2
TMCLKL HY/2012/08 2014-02-10		Cloudy	Great Wave	SR9	Middle	2	1	23:13	10	7.00	20.1	0.70	1.03	
TMCLKL HY/2012/08 2014-02-10		Cloudy	Great Wave	SR9	Middle	2	2	23:13						
TMCLKL HY/2012/08 2014-02-10	_	Cloudy	Great Wave	SR9	Bottom 4.6	3	1		16.1	7.92	28.2	6.44	2.47	4.1
TMCLKL HY/2012/08 2014-02-10	_	Cloudy	Great Wave	SR9	Bottom 4.6	3	2		16.2	7.9	28.3	6.42	2.48	4.7
TMCLKL HY/2012/08 2014-02-10		Cloudy	Great Wave	SR10	Surface 1	1	1		16	7.73	28	6.76	1.62	4.7
TMCLKL HY/2012/08 2014-02-10		Cloudy	Great Wave	SR10	Surface 1	1	2		16	7.75	28	6.78	1.6	3.5
TMCLKL HY/2012/08 2014-02-10		Cloudy	Great Wave	SR10	Middle 6.9	2	1		16.1	7.81	28.1	6.41	3.69	4
TMCLKL HY/2012/08 2014-02-10		Cloudy	Great Wave	SR10	Middle 6.9	2	2		16.2	7.8	28.2	6.39	3.71	4.5
TMCLKL HY/2012/08 2014-02-10		Cloudy	Great Wave	SR10	Bottom 12.7	3	1		16.3	7.66	28.3	6.43	2.82	3.3
TMCLKL HY/2012/08 2014-02-10		Cloudy	Great Wave	SR10	Bottom 12.7	3	2		16.4	7.68	28.3	6.45	2.84	3.5
TMCLKL HY/2012/08 2014-02-1	_		Great Wave	CS4	Surface 1	1	1		16.2	7.79		6.75	2.24	3.4
	Mid-Flood		Great Wave	CS4	Surface 1	1	2		16.3	7.81	28.1	6.73	2.22	2.4
TMCLKL HY/2012/08 2014-02-12			Great Wave	CS4	Middle 11.4	2	1		16.4	7.85	28.3	6.84	2.55	3.3
	Mid-Flood		Great Wave	CS4	Middle 11.4	2	2		16.5	7.83	28.2	6.81	2.59	2.1
	Mid-Flood	_	Great Wave	CS4	Bottom 21.8	3	1		16.5	7.96	28.3	6.65	3.07	3.5
	Mid-Flood		Great Wave	CS4	Bottom 21.8	3	2	18:36	16.4	7.94	28.4	6.62	3.08	2.6
TMCLKL HY/2012/08 2014-02-12		_	Great Wave	CS6	Surface 1	1	1	15:21	16.2	6.81	28.1	6.97	1.92	4
TMCLKL HY/2012/08 2014-02-12	_		Great Wave	CS6	Surface 1	1	2	15:21	16.1	6.8	28.2	6.94	2.01	3.7
TMCLKL HY/2012/08 2014-02-12			Great Wave	CS6	Middle 6.3	2	1		16.4	7.82	28.4	6.77	2.33	2.7
TMCLKL HY/2012/08 2014-02-12	_		Great Wave	CS6	Middle 6.3	2	2		16.3	7.74	28.4	6.74	2.38	2.8
TMCLKL HY/2012/08 2014-02-12			Great Wave	CS6	Bottom 11.6	3	1		16.4	7.91	28.4	6.57	2.84	3.1
TMCLKL HY/2012/08 2014-02-12			Great Wave	CS6	Bottom 11.6	3	2		16.5	7.93	28.5	6.54	2.75	3.7
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS12	Surface 1	1	1	17:57	16.1	7.85	28.2	6.96	2.41	3.6
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS12	Surface 1	1	2		16.2	7.88	28.3	6.98	2.33	3.2
	Mid-Flood		Great Wave	IS12	Middle 8.2	2	1	17:57	16.2	7.94	28.3	6.75	2.95	3.6
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS12	Middle 8.2	2	2		16.3	7.92	28.4	6.77	2.93	3.4
	Mid-Flood		Great Wave	IS12	Bottom 15.4	3	1	17:57	16.5	7.78	28.4	6.84	2.88	3.4
	Mid-Flood		Great Wave	IS12	Bottom 15.4	3	2	17:57	16.4	7.70	28.4	6.81	2.75	3.1
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS13	Surface 1	1	1		16.1	7.85		6.84	2.73	3.4
TMCLKL HY/2012/08 2014-02-12		,	Great Wave	IS13	Surface 1	1	2	17:33	_	7.87	_	6.82	2.46	2.9
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS13	Middle 5.4	2	1		16.3	7.61	28.1	6.66	3.14	1
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS13	Middle 5.4	2	2		16.4	7.64	28.2	6.68	3.01	3
TMCLKL HY/2012/08 2014-02-12	_		Great Wave	IS13	Bottom 9.8	3	1		16.4	7.7		6.55	3.05	3.9
TMCLKL HY/2012/08 2014-02-12	_		Great Wave	IS13	Bottom 9.8	3	2		16.5	7.72		6.53	2.93	3.7
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS14	Surface 1	1	11		16.1	7.91		6.78	2.48	2.2
TMCLKL HY/2012/08 2014-02-12		_	Great Wave	IS14	Surface 1	1	2		16.2	7.93	_	6.77	2.45	4
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS14	Middle 8.6	2	1		16.2	7.79		6.65		4.6
TMCLKL HY/2012/08 2014-02-12		-	Great Wave	IS14	Middle 8.6	2	2		16.1	7.8	+	6.62	3.08	3.5
TMCLKL HY/2012/08 2014-02-12	_		Great Wave	IS14	Bottom 16.2	3	1	+	16.3	7.85		6.73		3.2
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS14	Bottom 16.2	3	2		16.4	7.87		6.75	2.77	3.1
TMCLKL HY/2012/08 2014-02-12		_	Great Wave	IS15	Surface 1	1	1		16.2	7.81	28.1	7.02	2.42	3.1
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS15	Surface 1	1	2		16.1	7.83	28	7		4.8
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS15	Middle 5.6	2	1		16.4	7.78	+	6.65	3.08	3.6
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS15	Middle 5.6	2	2	+	16.3	7.8		6.63	3.12	2.4
TMCLKL HY/2012/08 2014-02-12			Great Wave	IS15	Bottom 10.2	3	1		16.5	7.93		6.46	2.75	3.8
TMCLKL HY/2012/08 2014-02-12		_	Great Wave	IS15	Bottom 10.2	3	2	17:09		7.95		6.43		2.2
1 MOLINE 111/2012/00 2014-02-1/	. v u= 1000	Joiouuy	Jordal Wave	JIO IO	IDOMONI 10.2	J	1-	117.00	1 1 0.7	1.00	120.0	JU.7U	12.00	<u></u>

TMCLKL	HY/2012/08 2014-02-12	Mid-Flood	Cloudy	Great Wave	SR8	Surface 1	1	T ₁	16:09	16	7.72	28.1	6.97	2.14	3.3
	HY/2012/08 2014-02-12		_	Great Wave	SR8	Surface 1	1	2	_	15.9	7.74	28	6.99	2.15	2.7
	HY/2012/08 2014-02-12			Great Wave	SR8	Middle	2	1	16:09	10.0	1	20	0.00	2.10	2.7
	HY/2012/08 2014-02-12			Great Wave	SR8	Middle	2	2	16:09						
	HY/2012/08 2014-02-12			Great Wave	SR8	Bottom 3.4	3	1	_	16.1	7.83	28.4	6.72	2.15	2.2
	HY/2012/08 2014-02-12			Great Wave	SR8	Bottom 3.4	3	2	_	16.2	7.85	28.5	6.74	2.37	3.4
	HY/2012/08 2014-02-12		,	Great Wave	SR9	Surface 1	1	1		16.1	7.92	28.2	6.98	2.21	2.6
	HY/2012/08 2014-02-12		_	Great Wave	SR9	Surface 1	1	2	_	16.1	7.94	28.1	7	2.09	2.5
	HY/2012/08 2014-02-12			Great Wave	SR9	Middle	2	1	16:33		1		†		
	HY/2012/08 2014-02-12		_	Great Wave	SR9	Middle	2	2	16:33				<u> </u>		
	HY/2012/08 2014-02-12		_	Great Wave	SR9	Bottom 3.8	3	1		16.3	8.01	28.3	6.68	2.99	2.9
	HY/2012/08 2014-02-12		,	Great Wave	SR9	Bottom 3.8	3	2	_	16.2	7.99	28.4	6.66	2.85	3
	HY/2012/08 2014-02-12			Great Wave	SR10	Surface 1	1	1	_	16.1	7.82	28.1	7	2.17	3.8
	HY/2012/08 2014-02-12		Cloudy	Great Wave	SR10	Surface 1	1	2		16	7.84	28	7.02	2.24	2
	HY/2012/08 2014-02-12		_	Great Wave	SR10	Middle 6.6	2	1		16.3	7.9	28.2	6.62	3.06	3.2
	HY/2012/08 2014-02-12		Cloudy	Great Wave	SR10	Middle 6.6	2	2	_	16.2	7.89	28.1	6.63	2.99	3.1
	HY/2012/08 2014-02-12			Great Wave	SR10	Bottom 12.2	3	1		16.4	7.75	28.3	6.67	2.83	4
	HY/2012/08 2014-02-12		Cloudy	Great Wave	SR10	Bottom 12.2	3	2	_	16.3	7.77	28.4	6.69	2.84	2.8
	HY/2012/08 2014-02-12		Cloudy	Great Wave	CS4	Surface 1	1	1		16.1	7.7	28.1	6.81	2.3	2.9
	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	CS4	Surface 1	1	2		16.1	7.72	28.2	6.79	2.28	4
	HY/2012/08 2014-02-12		Cloudy	Great Wave	CS4	Middle 11.3	2	1		16.3	7.76	28.3	6.9	2.61	2.2
	HY/2012/08 2014-02-12		Cloudy	Great Wave	CS4	Middle 11.3	2	2	_	16.2	7.74	28.4	6.87	2.65	4
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	CS4	Bottom 21.6	3	1		16.4	7.87	28.5	6.71	3.13	3.4
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	CS4	Bottom 21.6	3	2	10:03	16.5	7.85	28.4	6.68	3.14	3.6
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	CS6	Surface 1	1	1	_	16.1	6.72	28.1	6.91	1.98	3.7
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	CS6	Surface 1	1	2	13:15	16	6.74	28	6.88	2.07	3.4
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	CS6	Middle 6.5	2	1	13:15	16.2	7.66	28.2	6.71	2.39	2.2
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	CS6	Middle 6.5	2	2	13:15	16.2	7.68	28.3	6.88	2.44	2.6
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	CS6	Bottom 12	3	1	13:15	16.4	7.85	28.3	6.51	2.9	3.1
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	CS6	Bottom 12	3	2	13:15	16.3	7.87	28.4	6.48	2.81	2.9
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	IS12	Surface 1	1	1	10:51	16	7.76	28.1	7.02	2.47	4.2
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	IS12	Surface 1	1	2	10:51	16.1	7.79	28.2	7.04	2.39	3.6
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	IS12	Middle 8	2	1	10:51	16.2	7.85	28.3	6.81	3.01	3.5
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	IS12	Middle 8	2	2	10:51	16.3	7.83	28.2	6.83	2.99	4.1
	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	IS12	Bottom 15	3	1		16.4	7.69	28.4	6.91	2.94	3.1
	HY/2012/08 2014-02-12		Cloudy	Great Wave	IS12	Bottom 15	3	2		16.3	7.71	28.5	6.87	2.81	4.4
	HY/2012/08 2014-02-12		Cloudy	Great Wave	IS13	Surface 1	1	1	11:15		7.79	27.9	6.9	2.31	4.5
	HY/2012/08 2014-02-12		Cloudy	Great Wave	IS13	Surface 1	1	2	11:15		7.81	27.8	6.88	2.4	4.1
	HY/2012/08 2014-02-12		Cloudy	Great Wave	IS13	Middle 5.7	2	1	11:15		7.67	28.1	6.72	3.08	3.4
-	HY/2012/08 2014-02-12		Cloudy	Great Wave	IS13	Middle 5.7	2	2	11:15		7.7	28	6.74	2.95	4.2
-	HY/2012/08 2014-02-12		Cloudy	Great Wave	IS13	Bottom 10.4	3	1	11:15		7.76	28.3	6.61	2.99	4.2
	HY/2012/08 2014-02-12		Cloudy	Great Wave	IS13	Bottom 10.4	3	2	11:15		7.78	28.2	6.59	2.87	3.7
	HY/2012/08 2014-02-12		Cloudy	Great Wave	IS14	Surface 1	1	1	10:27		7.82	28.1	6.84	2.54	3.7
-	HY/2012/08 2014-02-12		Cloudy	Great Wave	IS14	Surface 1	1	2		15.9	7.84	28	6.83	2.51	2.8
	HY/2012/08 2014-02-12		Cloudy	Great Wave	IS14	Middle 8.3	2	1	_	16.2	7.7	28.2	6.71	3.17	3.6
	HY/2012/08 2014-02-12		Cloudy	Great Wave	IS14	Middle 8.3	2	2		16.2	7.71	28.3	6.68	3.14	3.7
TMCLKL	HY/2012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	IS14	Bottom 15.6	3	[1	10:27	16.2	7.76	28.4	6.79	2.81	3.5

TMCLKL HY/20	012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	IS14	Bottom	15.6	13	2	10:27	16.3	7.78	28.3	6.81	2.83	3.7
TMCLKL HY/20			Cloudy	Great Wave	IS15	Surface	1	1	1			7.75		7.08	2.48	2.8
TMCLKL HY/20			Cloudy	Great Wave	IS15	Surface	<u>. </u>	1	2			7.77		7.06	2.38	3.6
TMCLKL HY/20			Cloudy	Great Wave	IS15		5.8	2	<u> -</u>			7.72		6.71	3.14	4.6
TMCLKL HY/20		Mid-Ebb	Cloudy	Great Wave	IS15		5.8	2	2			7.74		6.69	3.18	4.6
TMCLKL HY/20			Cloudy	Great Wave	IS15		10.6	3	1			7.87		6.52	2.81	3.7
TMCLKL HY/20	012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	IS15	Bottom	10.6	3	2	11:39	16.4	7.89	28.4	6.49	2.74	4.5
TMCLKL HY/20	012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	SR8	Surface	1	1	1	12:27	15.9	7.66	28.1	6.91	2.2	2.8
TMCLKL HY/20	012/08 2014-02-12	Mid-Ebb	Cloudy	Great Wave	SR8	Surface	1	1	2	12:27	15.8	7.68	28.1	6.93	2.18	2.9
TMCLKL HY/20			Cloudy	Great Wave	SR8	Middle		2	1	12:27						
TMCLKL HY/20			Cloudy	Great Wave	SR8	Middle		2	2	12:27						
TMCLKL HY/20			Cloudy	Great Wave	SR8	Bottom 4		3	1			7.77		6.78	2.31	2.3
TMCLKL HY/20			Cloudy	Great Wave	SR8	Bottom	4.4	3	2			7.79		6.8	2.43	3.2
TMCLKL HY/20			Cloudy	Great Wave	SR9	Surface	1	1	1			7.86		6.92	2.27	3.4
TMCLKL HY/20			Cloudy	Great Wave	SR9	Surface	1	1	2		15.9	7.88	28	6.94	2.15	4.2
TMCLKL HY/20			Cloudy	Great Wave	SR9	Middle		2	11	12:03						
TMCLKL HY/20			Cloudy	Great Wave	SR9	Middle	1 1	2	2	12:03	40.0	7.05	20.2	0.00	2.05	4.4
TMCLKL HY/20°			Cloudy	Great Wave	SR9 SR9	Bottom 4		3	2			7.95 7.93		6.62 6.6	3.05 2.91	4.1
TMCLKL HY/20°			Cloudy Cloudy	Great Wave Great Wave	SR10	Bottom 4	+.4 1	1	1			7.76		6.94	2.91	2.8
TMCLKL HY/20			Cloudy	Great Wave	SR10	Surface	1	1	2			7.78		6.96	2.23	4.1
TMCLKL HY/20			Cloudy	Great Wave	SR10		5.8	2	1			7.76		6.56	3.12	3
TMCLKL HY/20			Cloudy	Great Wave	SR10		3.8	2	2			7.83		6.57	3.05	3.9
TMCLKL HY/20			Cloudy	Great Wave	SR10		12.6	3	1			7.69		6.61	2.89	2.7
TMCLKL HY/20			Cloudy	Great Wave	SR10		12.6	3	2			7.71		6.63	2.9	3
TMCLKL HY/20			Cloudy	Calm	CS4	Surface	 1	1	1			7.7		7.31	2.12	3.1
TMCLKL HY/20	012/08 2014-02-14		Cloudy	Calm	CS4	Surface	1	1	2	20:28	16.1	7.69		7.32	2.12	2.7
TMCLKL HY/20	012/08 2014-02-14	Mid-Flood	Cloudy	Calm	CS4	Middle	11.1	2	1	20:28	16.2	7.68	27.2	7.34	2.31	4.2
TMCLKL HY/20	012/08 2014-02-14	Mid-Flood	Cloudy	Calm	CS4	Middle	11.1	2	2	20:28	16.2	7.69	27.2	7.32	2.33	2.3
TMCLKL HY/20	012/08 2014-02-14	Mid-Flood	Cloudy	Calm	CS4	Bottom 2	21.2	3	1					7.33	2.34	4.6
	012/08 2014-02-14			Calm	CS4	Bottom 2		3	2			7.7		7.35	2.36	2.1
	012/08 2014-02-14			Calm	CS6	Surface		1	1			7.74		7.34	2.15	4
)12/08 2014-02-14		•	Calm	CS6	Surface		1	2			7.75		7.35	2.13	4.5
	012/08 2014-02-14			Calm	CS6		5.7	2	1			7.74		7.33	2.17	3.2
TMCLKL HY/20			,	Calm	CS6		6.7	2	2			7.74		7.34	2.18	3.6
TMCLKL HY/20				Calm	CS6	Bottom		3	1			7.75		7.21	2.2	3.1
TMCLKL HY/20			,	Calm	CS6	Bottom		3	2			7.74		7.24	2.21	3.5
TMCLKL HY/201				Calm Calm	IS12	Surface		1	2					7.41	2.51	3.5 2.7
	012/08 2014-02-14 012/08 2014-02-14		_	Calm	IS12 IS12	Surface Middle		2	1			7.8 7.78		7.42 7.5	2.49 2.54	<u>ζ.</u> 1
	012/08 2014-02-14			Calm	IS12	Middle		2	2	19:41				7.5 7.51	2.55	2.3
TMCLKL HY/20			•	Calm	IS12	Bottom		3	1			7.77		7.48	2.56	2.7
	012/08 2014-02-14		,	Calm	IS12	Bottom		3	2					7.46	2.56	2.6
	012/08 2014-02-14		,	Calm	IS13	Surface		1	1			7.65		7.54	2.41	3.7
	012/08 2014-02-14		•	Calm	IS13	Surface		1	2	19:18				7.52	2.42	3.2
TMCLKL HY/20				Calm	IS13	Middle		2	1	19:18		7.7		7.56	2.44	4.1
	012/08 2014-02-14			Calm	IS13	Middle		2	2	19:18				7.55	2.44	2.8

TMCLKL	HY/2012/08 2014-02-14	Mid Flood	Cloudy	Calm	IS13	Bottom	10.6	3	1	19:18	16.3	7.68	27.3	7.51	2.44	4.4
	HY/2012/08 2014-02-14			Calm	IS13	Bottom		3	2		16.3	7.68	27.3	7.53	2.44	4.1
	HY/2012/08 2014-02-14			Calm	IS14	Surface		1	1		16.1	7.78	27.1	7.28	2.40	3.8
	HY/2012/08 2014-02-14			Calm	IS14	Surface		1	2		16.1	7.78	27.1	7.3	2.13	2.1
	HY/2012/08 2014-02-14			Calm	IS14		8.1	2	1			7.77	27.1	7.25	2.14	3.2
_	HY/2012/08 2014-02-14		_	Calm	IS14			2	2		16.1	7.76	27.2	7.26	2.12	3.9
	HY/2012/08 2014-02-14			Calm	IS14	Bottom		3	1		16.1	7.75	27.2	7.24	2.12	2.8
	HY/2012/08 2014-02-14			Calm	IS14	Bottom		3	2	20:05		7.76		7.25	2.21	3.1
	HY/2012/08 2014-02-14			Calm	IS15	Surface		1	1		16.1	7.82	27	7.51	2.21	2.2
	HY/2012/08 2014-02-14		_	Calm	IS15	Surface		1	2			7.81	27.1	7.52	2.32	2.7
	HY/2012/08 2014-02-14		_	Calm	IS15	Middle		2	1		16.2	7.79	27.1	7.53	2.22	3.2
	HY/2012/08 2014-02-14			Calm	IS15			2	2		16.2	7.8	27.2	7.53	2.23	2.7
	HY/2012/08 2014-02-14			Calm	IS15	Bottom		3	1		16.3	7.82	27	7.51	2.21	3.4
	HY/2012/08 2014-02-14		_	Calm	IS15	Bottom		3	2		16.2	7.83	27.1	7.5	2.21	4.4
	HY/2012/08 2014-02-14		,	Calm	SR8	Surface		1	1		16.1	7.78	27.2	7.34	2.07	4.1
	HY/2012/08 2014-02-14			Calm	SR8	Surface		1	2		16.2	7.76	27.1	7.34	2.08	3.4
	HY/2012/08 2014-02-14			Calm	SR8	Middle	-	2	1	18:07		0			1	1
	HY/2012/08 2014-02-14			Calm	SR8	Middle		2	2	18:07						
-	HY/2012/08 2014-02-14			Calm	SR8	Bottom	4.2	3	1		16.2	7.76	27.2	7.32	2.34	3.8
	HY/2012/08 2014-02-14		,	Calm	SR8	Bottom		3	2			7.77		7.31	2.39	2.7
_	HY/2012/08 2014-02-14		_	Calm	SR9	Surface		1	1	_		7.79		7.46	2.14	2.2
-	HY/2012/08 2014-02-14			Calm	SR9	Surface		1	2			7.8	27.2	7.48	2.15	2.7
	HY/2012/08 2014-02-14		_	Calm	SR9	Middle		2	1	18:31					-	
TMCLKL	HY/2012/08 2014-02-14			Calm	SR9	Middle		2	2	18:31						
	HY/2012/08 2014-02-14			Calm	SR9	Bottom	4.4	3	1		16.3	7.77	27.1	7.42	2.18	3.5
TMCLKL	HY/2012/08 2014-02-14	Mid-Flood	Cloudy	Calm	SR9	Bottom	4.4	3	2	18:31	16.2	7.79	27.2	7.41	2.17	4.6
TMCLKL	HY/2012/08 2014-02-14	Mid-Flood	Cloudy	Calm	SR10	Surface	1	1	1	17:44	16.2	7.73	27.1	7.35	2.16	2.5
TMCLKL	HY/2012/08 2014-02-14	Mid-Flood	Cloudy	Calm	SR10	Surface	1	1	2	17:44	16.1	7.72	27.2	7.37	2.17	2.5
TMCLKL	HY/2012/08 2014-02-14	Mid-Flood	Cloudy	Calm	SR10	Middle	7.2	2	1	17:44	16.3	7.73	27.3	7.33	2.21	3.9
TMCLKL	HY/2012/08 2014-02-14	Mid-Flood	Cloudy	Calm	SR10	Middle	7.2	2	2	17:44	16.3	7.73	27.3	7.33	2.21	2.5
TMCLKL	HY/2012/08 2014-02-14	Mid-Flood	Cloudy	Calm	SR10	Bottom	13.4	3	1	17:44	16.4	7.74	27.4	7.32	2.22	4
TMCLKL	HY/2012/08 2014-02-14	Mid-Flood	Cloudy	Calm	SR10	Bottom	13.4	3	2	17:44	16.4	7.73	27.3	7.31	2.23	3.4
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	CS4	Surface	1	1	1	11:05	16.2	7.68	27.2	7.2	2.18	2.2
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	CS4	Surface	1	1	2	11:05	16.1	7.69	27.2	7.21	2.2	3.2
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	CS4	Middle		2		11:05		7.74		7.15	2.3	2.9
TMCLKL	HY/2012/08 2014-02-14		Cloudy	Great Wave	CS4	Middle		2	2	11:05	16.3	7.75	27.4	7.17	2.34	2.7
	HY/2012/08 2014-02-14		Cloudy	Great Wave	CS4	Bottom		3	1	11:05		7.79	27.4	7	2.71	4.2
	HY/2012/08 2014-02-14		Cloudy	Great Wave	CS4	Bottom		3	2	11:05			27.4	7.08	2.73	2.9
	HY/2012/08 2014-02-14		Cloudy	Great Wave	CS6	Surface		1	1	14:09		7.78		7.12	2.24	2.1
	HY/2012/08 2014-02-14		Cloudy	Great Wave	CS6	Surface		1	2	14:09		7.79		7.1	2.28	2.6
	HY/2012/08 2014-02-14		Cloudy	Great Wave	CS6	Middle		2	1	14:09		7.8	27.3	7.04	2.34	2.5
	HY/2012/08 2014-02-14		Cloudy	Great Wave	CS6	Middle		2	2		16.2	7.84	27.3	7.08	2.3	4.1
	HY/2012/08 2014-02-14		Cloudy	Great Wave	CS6	Bottom		3	1		16.4	7.81	27.4	7.01	2.48	3.2
	HY/2012/08 2014-02-14		Cloudy	Great Wave	CS6	Bottom		3	2	14:09		7.84	27.4	7	2.49	3
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS12	Surface		1		11:51		7.81		7.3	2.88	2.7
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS12	Surface		1		11:51		7.82		7.32	2.8	3.2
IMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	IS12	Middle	1.2	2	1	11:51	16.2	7.91	27.2	7.14	2.94	2.8

TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	IS12	Middle 7	7.2	2	2	11:51	16.2	7.93	27.3	7.1	2.98	3.1
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS12			3			16.3	7.81	27.3	7.05	2.42	3.6
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS12	Bottom 1		3	2		16.4	7.82	27.4	7.06	2.48	4
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS13	Surface 1	1	1	1		16.3	7.5	27.2	7.33	2.6	3.2
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS13	Surface 1	<u>.</u> 1	1	2		16.3	7.58	27.2	7.31	2.66	3.1
—	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS13		5.7	2	1		16.2	7.68	27.3	7.05	2.38	2.9
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS13			2	2		16.3	7.68	27.3	7.06	2.41	3.3
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS13	Bottom 1		3	1			7.7	27.4	7.18	2.87	3.6
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS13	Bottom 1		3	2			7.71	27.4	7.2	2.81	5.2
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS14	Surface 1		1	1			7.75	27.1	7.14	2.14	3.7
—	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS14	Surface 1		1			16.2	7.77	27.2	7.18	2.18	2.6
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS14	Middle 8		2			16.3	7.88	27.3	7.11	2.52	3.2
—	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS14	Middle 8		2			16.3	7.89	27.3	7.19	2.58	3.9
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS14	Bottom 1		3	1		16.4	7.91	27.4	7.09	2.67	2.9
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS14	Bottom 1		3	2		16.4	7.93	27.4	7.11	2.69	3.1
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS15	Surface 1		1	1		16.3	7.84	27.1	7.4	2.5	2.7
	HY/2012/08 2014-02-14		Cloudy	Great Wave	IS15	Surface 1		1	2		16.2	7.86	27.1	7.44	2.54	3
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	IS15	Middle 5		2	1	12:37	16.2	7.72	27.2	7.21	2.79	3
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	IS15	Middle 5	5.8	2	2	12:37	16.2	7.7	27.3	7.23	2.71	2.4
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	IS15	Bottom 1	10.6	3	1	12:37	16.3	7.83	27.4	7.48	2.85	2.6
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	IS15	Bottom 1	10.6	3	2	12:37	16.4	7.81	27.4	7.44	2.81	2.8
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR8	Surface 1	1	1	1	13:23	16.2	7.7	27.3	7.24	2.08	4
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR8	Surface 1	1	1	2	13:23	16.3	7.71	27.2	7.26	2.06	4.6
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR8	Middle		2	1	13:23						
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR8	Middle		2	2	13:23						
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR8	Bottom 4	4	3	1	13:23	16.3	7.75	27.3	7.14	2.39	2.2
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR8	Bottom 4	4	3	2	13:23	16.3	7.76	27.3	7.16	2.31	3.5
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR9	Surface 1	1	1	1	13:00	16.2	7.8	27.2	7.37	2.3	3.9
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR9	Surface 1	1	1	2	13:00	16.2	7.81	27.1	7.39	2.38	3.2
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR9	Middle		2	1	13:00						
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR9	Middle		2	2	13:00						
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR9	Bottom 4	4.2	3	1	13:00	16.4	7.94	27.4	7.1	2.43	2.7
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR9	Bottom 4	4.2	3	2	13:00		7.97	27.4	7.14	2.49	3
TMCLKL	HY/2012/08 2014-02-14	Mid-Ebb	Cloudy	Great Wave	SR10	Surface 1	1	1	1	13:46		7.69	27.2	7.3	2.1	3.3
TMCLKL	HY/2012/08 2014-02-14		Cloudy	Great Wave	SR10	Surface 1		1		13:46		7.68	27.3	7.34	2.14	2.8
TMCLKL	HY/2012/08 2014-02-14		Cloudy	Great Wave	SR10	Middle 6		2	1	13:46			27.3	7.2	2.47	3.9
	HY/2012/08 2014-02-14		Cloudy	Great Wave	SR10	Middle 6		2	2	13:46		7.76	27.4	7.24	2.46	2.6
—	HY/2012/08 2014-02-14		Cloudy	Great Wave	SR10	Bottom 1		3	1	13:46			27.4	7.12	2.62	3.8
	HY/2012/08 2014-02-14		Cloudy	Great Wave	SR10	Bottom 1		3	2	13:46		7.86	27.4	7.1	2.6	2.3
	HY/2012/08 2014-02-17			Great Wave	CS4	Surface 1		1		09:54			27.4	7.24	2.33	4.3
	HY/2012/08 2014-02-17			Great Wave	CS4	Surface 1		1	2	09:54		7.79	27.3	7.22	2.34	3.2
	HY/2012/08 2014-02-17			Great Wave	CS4	Middle 1		2	1		16.2	7.81	27.3	7.21	2.39	2.9
	HY/2012/08 2014-02-17			Great Wave	CS4	Middle 1		2			16.3	7.82	27.4	7.2	2.41	2.2
	HY/2012/08 2014-02-17		_	Great Wave	CS4	Bottom 2		3		09:54		7.79	27.4	7.19	2.52	2.6
	HY/2012/08 2014-02-17			Great Wave	CS4	Bottom 2		3		09:54		7.8	27.4	7.17	2.53	2.9
	HY/2012/08 2014-02-17			Great Wave	CS6	Surface 1		1		07:30		7.75	27.4	7.07	1.85	3
IMCLKL	HY/2012/08 2014-02-17	Mid-Flood	Cloudy	Great Wave	CS6	Surface 1	1	1	2	07:30	16.3	7.77	27.4	7.06	1.84	3.3

TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	CS6	Middle 6.5	2		07:30	16.3	7.77	27.4	7.04	1.87	2.6
		Mid-Flood Cloudy		CS6	Middle 6.5	2	2		16.3	7.77	27.5	7.03	1.87	2.2
		Mid-Flood Cloudy		CS6	Bottom 12.6	3	1		16.3	7.78	27.4	7.11	1.88	2
		Mid-Flood Cloudy		CS6	Bottom 12.6	3	2		16.4	7.77	27.5	7.1	1.89	2.3
		Mid-Flood Cloudy		IS12	Surface 1	1	1		16.2	7.63	27.4	7.12	2.57	3.4
TMCLKL		Mid-Flood Cloudy		IS12	Surface 1	1	2		16.3	7.65	27.4	7.13	2.56	2.3
TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	IS12	Middle 7.3	2	1	09:06	16.3	7.65	27.3	7.14	2.61	2.1
TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	IS12	Middle 7.3	2	2	09:06	16.3	7.66	27.4	7.16	2.62	2.2
TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	IS12	Bottom 13.6	3	1	09:06	16.3	7.67	27.4	7.09	2.64	2.2
TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	IS12	Bottom 13.6	3	2	09:06	16.4	7.67	27.4	7.11	2.65	2.4
TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	IS13	Surface 1	1	1	08:51	16.3	7.77	27.4	7.31	3.33	3.9
TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	IS13	Surface 1	1	2	08:51	16.3	7.75	27.4	7.3	3.34	2.8
TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	IS13	Middle 5.9	2	1	08:51	16.3	7.71	27.3	7.22	2.35	3.1
TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	IS13	Middle 5.9	2	2		16.4	7.72	27.3	7.23	2.37	2.8
TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	IS13	Bottom 10.7	3	1		16.3	7.71	27.3	7.21	2.38	3
	HY/2012/08 2014-02-17			IS13	Bottom 10.7	3	2		16.3	7.71	27.4	7.21	2.39	3
		Mid-Flood Cloudy	Great Wave	IS14	Surface 1	1	1		16.3	7.79	27.4	7.06	2.32	4.1
		Mid-Flood Cloudy		IS14	Surface 1	1	2		16.3	7.77	27.5	7.05	2.31	3.8
		Mid-Flood Cloudy		IS14	Middle 8.1	2	1		16.3	7.77	27.4	7.07	2.25	2.6
_		Mid-Flood Cloudy		IS14	Middle 8.1	2	2		16.2	7.77	27.4	7.07	2.26	3
		Mid-Flood Cloudy		IS14	Bottom 15.1	3	1		16.3	7.76	27.5	7.08	2.52	2.8
		Mid-Flood Cloudy		IS14	Bottom 15.1	3	2		16.3	7.77	27.5	7.09	2.54	3
 		Mid-Flood Cloudy		IS15	Surface 1	1	1		16.3	7.71	27.3	7.04	1.82	2.6
		Mid-Flood Cloudy		IS15	Surface 1	1	2		16.3	7.7	27.3	7.05	1.81	3.6
		Mid-Flood Cloudy		IS15	Middle 5.9	2	1		16.4	7.73	27.4	7.05	1.83	2.9
	HY/2012/08 2014-02-17 HY/2012/08 2014-02-17	Mid-Flood Cloudy		IS15 IS15	Middle 5.9 Bottom 10.8	3	2		16.4 16.5	7.73	27.5 27.3	7.06 7.05	1.85 1.87	3.7
-		Mid-Flood Cloudy Mid-Flood Cloudy		IS15	Bottom 10.8	3	2		16.5	7.76	27.4	7.05	1.88	3.5
	HY/2012/08 2014-02-17			SR8	Surface 1	1	1		16.3	7.71	27.3	7.03	2.01	2.1
	HY/2012/08 2014-02-17			SR8	Surface 1	1	2		16.3	7.71	27.4	7.00	2.02	3.8
	HY/2012/08 2014-02-17			SR8	Middle	2	1	07:43	10.0	1.71	21.7	1.00	2.02	0.0
	HY/2012/08 2014-02-17			SR8	Middle	2	2	07:43		-	+		+	
	HY/2012/08 2014-02-17			SR8	Bottom 4.3	3	1	07:43	16.3	7.71	27.3	7.07	2.03	3.3
	HY/2012/08 2014-02-17			SR8	Bottom 4.3	3	2	07:43		7.71	27.3	7.06	2.04	4.3
	•	Mid-Flood Cloudy		SR9	Surface 1	1	1		16.3	7.75	27.4	7.12	2.23	2.6
		Mid-Flood Cloudy		SR9	Surface 1	1	2		16.3	7.73	27.4	7.13	2.25	2.5
-	•	Mid-Flood Cloudy		SR9	Middle	2	1	08:23			1			
		Mid-Flood Cloudy		SR9	Middle	2	2	08:23						
	HY/2012/08 2014-02-17			SR9	Bottom 4.5	3	1	08:23	16.4	7.74	27.3	7.12	2.23	3.5
	HY/2012/08 2014-02-17			SR9	Bottom 4.5	3	2	08:23		7.75	27.4	7.12	2.24	3.9
	HY/2012/08 2014-02-17	· · · · · · · · · · · · · · · · · · ·		SR10	Surface 1	1	1	08:07		7.74	27.4	7.04	2.32	3.5
TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	SR10	Surface 1	1	2	08:07		7.74	27.4	7.03	2.33	3.2
TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	SR10	Middle 7.3	2	1	08:07	16.3	7.73	27.4	7.03	2.35	3.5
TMCLKL	HY/2012/08 2014-02-17	Mid-Flood Cloudy	Great Wave	SR10	Middle 7.3	2	2	08:07	16.4	7.74	27.4	7.03	2.37	3.3
TMCLKL	HY/2012/08 2014-02-17			SR10	Bottom 13.6	3	1	08:07	16.5	7.75	27.5	7.06	2.41	3.3
		Mid-Flood Cloudy		SR10	Bottom 13.6	3	2	08:07		7.74	27.5	7.05	2.42	2.6
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb Cloudy	Great Wave	CS4	Surface 1	1	1	12:32	16.4	7.79	27.5	6.97	2.67	3.1

TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	CS4	Surface 1	T ₁	2	12:32	16.4	7.8	27.5	6.94	2.63	2.1
-	HY/2012/08 2014-02-17		Cloudy	Great Wave	CS4	Middle 11.2	2	1		16.4	7.81	27.5	6.98	2.84	2.4
	HY/2012/08 2014-02-17		Cloudy	Great Wave	CS4	Middle 11.2	2	2		16.4	7.82	27.5	6.94	2.8	2.7
	HY/2012/08 2014-02-17		Cloudy	Great Wave	CS4	Bottom 21.4	3	1	12:32	16.4	7.85	27.5	7.01	2.59	3
		Mid-Ebb	Cloudy	Great Wave	CS4	Bottom 21.4	3	2	12:32	16.4	7.84	27.5	7.04	2.63	3.6
	HY/2012/08 2014-02-17		Cloudy	Great Wave	CS6	Surface 1	1	1		16.4	7.86	27.4	7.14	2.32	3.3
	HY/2012/08 2014-02-17		Cloudy	Great Wave	CS6	Surface 1	1	2		16.3	7.86	27.4	7.12	2.38	2.8
-	HY/2012/08 2014-02-17		Cloudy	Great Wave	CS6	Middle 6.6	2	1		16.4	7.89	27.4	7.08	2.59	3.6
	HY/2012/08 2014-02-17		Cloudy	Great Wave	CS6	Middle 6.6	2	2	-	16.4	7.89	27.4	7.05	2.64	2.8
	HY/2012/08 2014-02-17		Cloudy	Great Wave	CS6	Bottom 12.2	3	1		16.5	7.89	27.5	7.04	2.44	4.3
	HY/2012/08 2014-02-17		Cloudy	Great Wave	CS6	Bottom 12.2	3	2		16.5	7.89	27.4	7.08	2.48	2.7
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS12	Surface 1	1	1		16.4	7.87	27.5	7.05	2.08	3
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS12	Surface 1	1	2		16.4	7.86	27.4	7.09	2.12	3.3
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS12	Middle 7.2	2	1		16.4	7.87	27.5	7.1	2.34	3.9
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS12	Middle 7.2	2	2		16.3	7.87	27.4	7.05	2.3	3.4
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS12	Bottom 13.4	3	1		16.4	7.86	27.5	7.07	2.2	2.8
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS12	Bottom 13.4	3	2		16.4	7.87	27.4	7.09	2.26	3
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS13	Surface 1	1	1		16.4	7.86	27.5	7.05	2.4	2.4
—	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS13	Surface 1	1	2		16.4	7.86	27.5	7.02	2.47	2.8
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS13	Middle 5.7	2	1		16.4	7.87	27.5	7.1	2.19	2.2
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS13	Middle 5.7	2	2	_	16.4	7.86	27.5	7.06	2.16	3.4
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS13	Bottom 10.4	3	1		16.5	7.87	27.6	7.12	2.51	3.1
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS13	Bottom 10.4	3	2		16.5	7.85	27.5	7.08	2.57	2.4
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS14	Surface 1	1	- 1	_	16.4	7.83	27.5	7.02	2.75	2.8
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS14	Surface 1	1	2		16.4	7.81	27.5	7.04	2.71	2.2
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS14	Middle 7.9	2	1		16.4	7.85	27.5	7.09	2.59	3.6
	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS14	Middle 7.9	2	2		16.5	7.84	27.5	7.05	2.52	2.4
		Mid-Ebb	Cloudy	Great Wave	IS14	Bottom 14.8	3	1		16.4	7.85	27.5	7.04	2.47	3.6
—	HY/2012/08 2014-02-17		Cloudy	Great Wave	IS14	Bottom 14.8	3	2	12:56	16.5	7.84	27.4	7.08	2.42	2.3
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	IS15	Surface 1	1	1	13:55	16.4	7.85	27.5	7.08	2.84	3.9
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	IS15	Surface 1	1	2	13:55	16.3	7.85	27.4	7.06	2.8	3
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	IS15	Middle 5.6	2	1	13:55		7.85	27.5	7.04	2.33	4.1
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	IS15	Middle 5.6	2	2	13:55		7.85	27.5	7.07	2.4	2.7
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	IS15	Bottom 10.2	3	1	13:55	16.5	7.86	27.5	7.1	2.52	2.7
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	IS15	Bottom 10.2	3	2	13:55		7.85	27.6	7.06	2.55	2.5
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	SR8	Surface 1	1	1	14:38	16.4	7.87	27.5	7.01	2.72	3
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	SR8	Surface 1	1	2	14:38	16.5	7.87	27.4	7.04	2.67	3.3
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	SR8	Middle	2	1	14:38						
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	SR8	Middle	2	2	14:38						
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	SR8	Bottom 4.2	3	1	14:38	16.5	7.88	27.5	7.06	2.66	4.2
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	SR8	Bottom 4.2	3	2	14:38	16.5	7.88	27.4	7.03	2.69	3.7
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	SR9	Surface 1	1	1	14:18	16.4	7.84	27.5	7.04	2.77	3.7
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	SR9	Surface 1	1	2	14:18	16.4	7.84	27.5	7.07	2.74	3.6
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	SR9	Middle	2	1	14:18						
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	SR9	Middle	2	2	14:18						
	HY/2012/08 2014-02-17		Cloudy	Great Wave	SR9	Bottom 4.2	3	1	14:18	16.4	7.85	27.5	7.01	2.47	3.6
TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	SR9	Bottom 4.2	3	2	14:18	16.5	7.84	27.6	7.03	2.53	4.5

TMCLKL	HY/2012/08 2014-02-17	Mid-Ebb	Cloudy	Great Wave	SR10	Surface 1	11		1	15:41	16.4	7.87	27.4	7.17	2.67	3.2
	HY/2012/08 2014-02-17		Cloudy	Great Wave	SR10	Surface 1	1				16.4	7.87	27.4	7.14	2.65	3.5
	HY/2012/08 2014-02-17		Cloudy	Great Wave	SR10	Middle 7.1	2	,			16.5	7.88	27.5	7.1	2.39	2.8
	HY/2012/08 2014-02-17		Cloudy	Great Wave	SR10	Middle 7.1	2				16.4	7.87	27.5	7.05	2.43	2.4
	HY/2012/08 2014-02-17		Cloudy	Great Wave	SR10	Bottom 13.2					16.5	7.89	27.5	7.15	2.4	2.2
	HY/2012/08 2014-02-17		Cloudy	Great Wave	SR10	Bottom 13.2					16.5	7.88	27.5	7.18	2.44	2.5
	HY/2012/08 2014-02-19		Cloudy	Great Wave	CS4	Surface 1	1				16.4	7.84	27.4	7.33	2.66	2.8
-	HY/2012/08 2014-02-19		_	Great Wave	CS4	Surface 1	1				16.5	7.85	27.4	7.31	2.69	2.3
	HY/2012/08 2014-02-19		,	Great Wave	CS4	Middle 11.3	3 2)			16.4	7.87	27.5	7.3	2.86	2.7
	HY/2012/08 2014-02-19		,	Great Wave	CS4	Middle 11.3					16.5	7.88	27.4	7.29	2.9	2.6
	HY/2012/08 2014-02-19		,	Great Wave	CS4	Bottom 21.6					16.6	7.85	27.5	7.28	2.99	2.5
	HY/2012/08 2014-02-19		_	Great Wave	CS4	Bottom 21.6					16.5	7.86	27.6	7.26	3.03	3.7
	HY/2012/08 2014-02-19		,	Great Wave	CS6	Surface 1	1				16.3	7.81	27.3	7.16	2.37	2.8
	HY/2012/08 2014-02-19			Great Wave	CS6	Surface 1	1		2		16.4	7.83	27.4	7.18	2.39	3.5
	HY/2012/08 2014-02-19		,	Great Wave	CS6	Middle 7.6	2		<u> </u>		16.5	7.84	27.5	7.13	2.56	2.3
	HY/2012/08 2014-02-19		,	Great Wave	CS6	Middle 7.6					16.4	7.86	27.4	7.12	2.6	3.2
	HY/2012/08 2014-02-19		_	Great Wave	CS6	Bottom 12.6					16.5	7.87	27.6	7.2	2.57	2.2
	HY/2012/08 2014-02-19			Great Wave	CS6	Bottom 12.6					16.4	7.88	27.5	7.19	2.63	2.9
-	HY/2012/08 2014-02-19			Great Wave	IS12	Surface 1	1		1		16.4	7.78	27.3	7.21	2.58	4.2
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS12	Surface 1	1		2		16.4	7.79	27.2	7.22	2.62	2.1
TMCLKL	HY/2012/08 2014-02-19		,	Great Wave	IS12	Middle 7.4	2		1		16.4	7.83	27.4	7.25	2.69	3
TMCLKL	HY/2012/08 2014-02-19		_	Great Wave	IS12	Middle 7.4			2		16.5	7.84	27.3	7.28	2.65	2.1
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS12	Bottom 13.8	8 3		1	10:04	16.6	7.87	27.5	7.3	2.86	2.2
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS12	Bottom 13.8	8 3		2	10:04	16.5	7.88	27.4	7.33	2.89	2.9
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS13	Surface 1	1		1	09:40	16.3	7.84	27.4	7.4	2.76	3.6
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS13	Surface 1	1		2	09:40	16.4	7.85	27.3	7.39	2.72	2.3
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS13	Middle 5.9	2		1	09:40	16.5	7.86	27.4	7.31	2.84	3.3
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS13	Middle 5.9	2		2	09:40	16.5	7.87	27.4	7.28	2.88	2.7
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS13	Bottom 10.8	8 3				16.5	7.89	27.5	7.3	2.97	2.8
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS13	Bottom 10.8	8 3		2	09:40	16.4	7.87	27.4	7.35	3	2.6
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS14	Surface 1	1		1	10:28	16.3	7.8	27.4	7.15	2.78	4
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS14	Surface 1	1		2	10:28	16.2	7.83	27.3	7.18	2.73	2.7
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS14	Middle 8.1			1	10:28	16.5	7.84	27.4	7.21	2.87	3.1
	HY/2012/08 2014-02-19		,	Great Wave	IS14	Middle 8.1				10:28		7.86	27.5	7.23	2.92	4.2
TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	IS14	Bottom 15.2				10:28		7.89	27.6	7.29	3.01	2.4
TMCLKL	HY/2012/08 2014-02-19		,	Great Wave	IS14	Bottom 15.2	2 3			10:28			27.5	7.28	3.05	2.9
	HY/2012/08 2014-02-19		_	Great Wave	IS15	Surface 1	1			09:16		7.8	27.3	7.16	2.72	2.3
	HY/2012/08 2014-02-19			Great Wave	IS15	Surface 1	1			09:16		7.79	27.4	7.18	2.75	2.5
	HY/2012/08 2014-02-19		,	Great Wave	IS15	Middle 6.1				09:16		7.82	27.5	7.19	2.86	3
	HY/2012/08 2014-02-19		_	Great Wave	IS15	Middle 6.1				09:16		-	27.4	7.23	2.82	2.9
	HY/2012/08 2014-02-19		•	Great Wave	IS15	Bottom 11.2				09:16		7.86	27.6	7.24	3	3.2
	HY/2012/08 2014-02-19			Great Wave	IS15	Bottom 11.2	2 3			09:16		7.85	27.5	7.22	2.93	3.9
	HY/2012/08 2014-02-19			Great Wave	SR8	Surface 1					16.4	7.78	27.3	7.17	2.29	3.7
	HY/2012/08 2014-02-19			Great Wave	SR8	Surface 1	1			08:28	16.4	7.79	27.2	7.2	2.22	2.7
	HY/2012/08 2014-02-19		_	Great Wave	SR8	Middle	2			08:28					1	
	HY/2012/08 2014-02-19			Great Wave	SR8	Middle	2			08:28	10.0				1	 -
IMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	SR8	Bottom 4.6	3		1	08:28	16.6	7.81	27.4	7.28	2.42	2.5

TMCLKL	HY/2012/08 2014-02-19	Mid-Flood	Cloudy	Great Wave	SR8	Bottom 4.6	3	2	08:28	16.5	7.8	27.3	7.29	2.38	2.1
	HY/2012/08 2014-02-19		_	Great Wave	SR9	Surface 1	1	1	-	16.2	7.81	27.3	7.21	2.47	3.2
	HY/2012/08 2014-02-19			Great Wave	SR9	Surface 1	1	12		16.3	7.82	27.2	7.23	2.41	3.1
	HY/2012/08 2014-02-19			Great Wave	SR9	Middle	2	1	08:52	10.0	17.02	21.2	7.20	2.71	0.1
	HY/2012/08 2014-02-19			Great Wave	SR9	Middle	2	2	08:52					+	
	HY/2012/08 2014-02-19		_	Great Wave	SR9	Bottom 4.6	3	1	-	16.4	7.84	27.4	7.19	2.62	3.6
	HY/2012/08 2014-02-19			Great Wave	SR9	Bottom 4.6	3	2	+	16.3	7.83	27.5	7.18	2.58	3.7
	HY/2012/08 2014-02-19			Great Wave	SR10	Surface 1	1	1		16.3	7.8	27.4	7.13	2.62	3.5
	HY/2012/08 2014-02-19		,	Great Wave	SR10	Surface 1	1	2	+	16.2	7.81	27.3	7.11	2.55	2.8
	HY/2012/08 2014-02-19			Great Wave	SR10	Middle 7.6	2	1		16.4	7.82	27.4	7.18	2.74	3.4
	HY/2012/08 2014-02-19		_	Great Wave	SR10	Middle 7.6	2	2	08:04	16.3	7.81	27.4	7.19	2.69	2.9
	HY/2012/08 2014-02-19			Great Wave	SR10	Bottom 12.6	3	- 1	+	16.4	7.84	27.5	7.22	2.91	2.6
	HY/2012/08 2014-02-19		_	Great Wave	SR10	Bottom 12.6	3	2	08:04	16.5	7.83	27.4	7.24	2.95	3.1
	HY/2012/08 2014-02-19		Cloudy	Great Wave	CS4	Surface 1	1	1		16.4	7.83	27.4	7.29	2.75	2.9
_	HY/2012/08 2014-02-19		Cloudy	Great Wave	CS4	Surface 1	1	2		16.4	7.85	27.4	7.3	2.74	4
-	HY/2012/08 2014-02-19		Cloudy	Great Wave	CS4	Middle 11.2	2	1	13:43	16.5	7.79	27.5	7.2	2.95	2.8
	HY/2012/08 2014-02-19		Cloudy	Great Wave	CS4	Middle 11.2	2	2	13:43	16.4	7.81	27.5	7.22	2.96	4.3
TMCLKL	HY/2012/08 2014-02-19		Cloudy	Great Wave	CS4	Bottom 21.3	3	1	13:43	16.4	7.83	27.5	7.1	3.08	2.6
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	CS4	Bottom 21.3	3	2	13:43	16.4	7.82	27.4	7.13	3.09	3
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	CS6	Surface 1	1	1	16:51	16.3	7.83	27.4	7.08	2.46	2.8
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	CS6	Surface 1	1	2	16:51	16.4	7.84	27.4	7.06	2.47	2.9
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	CS6	Middle 6.8	2	1	16:51	16.4	7.84	27.5	7.06	2.65	3.3
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	CS6	Middle 6.8	2	2	16:51	16.4	7.84	27.5	7.06	2.63	3.1
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	CS6	Bottom 12.6	3	1	16:51	16.5	7.85	27.5	7.01	2.71	4.2
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	CS6	Bottom 12.6	3	2	16:51	16.5	7.85	27.5	7.03	2.72	2.5
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	IS12	Surface 1	1	1	14:30	16.4	7.8	27.4	7.16	2.67	3.4
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	IS12	Surface 1	1	2	14:30	16.4	7.82	27.3	7.15	2.71	4.1
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	IS12	Middle 7.3	2	1	14:30	16.4	7.83	27.3	7.12	2.78	2.1
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	IS12	Middle 7.3	2	2	14:30	16.5	7.82	27.3	7.1	2.77	2.2
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	IS12	Bottom 13.5	3	1	14:30	16.5	7.84	27.4	7.08	2.93	2.2
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	IS12	Bottom 13.5	3	2	14:30	16.5	7.83	27.5	7.06	2.95	3
	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	IS13	Surface 1	1	1	14:53	16.4	7.83	27.4	7.32	2.85	2.9
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS13	Surface 1	1	2	14:53		7.82	27.4	7.33	2.86	2
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS13	Middle 5.8	2	1	14:53		7.85	27.3	7.28	2.93	2.4
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS13	Middle 5.8	2	2	14:53		7.83	27.4	7.29	2.96	2.6
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS13	Bottom 10.6	3	1	14:53		7.83	27.4	7.3	3.06	3.5
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS13	Bottom 10.6	3	2	14:53		7.82	27.4	7.28	3.07	3.4
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS14	Surface 1	1	1	14:07		7.85	27.4	7.2	2.87	3.4
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS14	Surface 1	1	2	14:07		7.86	27.3	7.22	2.88	2.6
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS14	Middle 8	2	1	14:07		7.87	27.4	7.15	2.97	4
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS14	Middle 8	2	2	14:07		7.88	27.4	7.14	2.98	3.7
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS14	Bottom 15	3	1		16.5	7.86	27.4	7.04	3.09	4.4
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS14	Bottom 15	3	2	14:07		7.85	27.4	7.06	3.11	2.5
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS15	Surface 1	1	11	15:16		7.83	27.4	7.2	2.81	4.5
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS15	Surface 1	1	2	15:16		7.85	27.4	7.19	2.83	2.5
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS15	Middle 6	2	11	15:16		7.83	27.4	7.16	2.93	4.3
LIMCLKL	HY/2012/08 2014-02-19	INIG-Fpp	Cloudy	Great Wave	IS15	Middle 6	2	2	15:16	16.4	7.84	27.4	7.15	2.95	4

TMCLKL	HY/2012/08 2014-02-19	Mid-Fbb	Cloudy	Great Wave	IS15	Bottom 11	3	<u></u>	15:16	16.5	7.88	27.5	7.12	3.03	2.6
	HY/2012/08 2014-02-19		Cloudy	Great Wave	IS15	Bottom 11	3	2		16.4	7.87	27.4	7.1	3.02	4.3
	HY/2012/08 2014-02-19		Cloudy	Great Wave	SR8	Surface 1	1	1		16.4	7.82	27.4	7.12	2.37	3.4
	HY/2012/08 2014-02-19		Cloudy	Great Wave	SR8	Surface 1	1	2		16.4	7.84	27.4	7.13	2.35	2.1
	HY/2012/08 2014-02-19		Cloudy	Great Wave	SR8	Middle	2	1	16:03		1		1		
	HY/2012/08 2014-02-19		Cloudy	Great Wave	SR8	Middle	2	2	16:03						
	HY/2012/08 2014-02-19		Cloudy	Great Wave	SR8	Bottom 4.3	3	1		16.4	7.83	27.4	7.09	2.51	3.7
_	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	SR8	Bottom 4.3	3	2	_	16.4	7.84	27.5	7.08	2.52	2.9
	HY/2012/08 2014-02-19		Cloudy	Great Wave	SR9	Surface 1	1	1		16.3	7.83	27.3	7.18	2.56	2.6
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	SR9	Surface 1	1	2		16.3	7.84	27.4	7.17	2.61	2.9
TMCLKL	HY/2012/08 2014-02-19		Cloudy	Great Wave	SR9	Middle	2	1	15:39		1				
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	SR9	Middle	2	2	15:39						
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	SR9	Bottom 4.4	3	1	15:39	16.4	7.85	27.4	7.12	2.71	2.5
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	SR9	Bottom 4.4	3	2	15:39	16.3	7.84	27.4	7.11	2.73	2.5
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	SR10	Surface 1	1	1	16:27	16.3	7.79	27.4	7.09	2.72	2.2
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	SR10	Surface 1	1	2	16:27	16.3	7.8	27.4	7.08	2.75	2.7
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	SR10	Middle 7.5	2	1	16:27	16.3	7.82	27.4	7.08	2.83	3.3
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	SR10	Middle 7.5	2	2	16:27	16.4	7.83	27.5	7.06	2.84	4.1
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	SR10	Bottom 14	3	1	16:27	16.4	7.81	27.5	7.03	3.01	2.8
TMCLKL	HY/2012/08 2014-02-19	Mid-Ebb	Cloudy	Great Wave	SR10	Bottom 14	3	2	16:27	16.4	7.82	27.5	7.04	3.03	3.7
TMCLKL	HY/2012/08 2014-02-21	Mid-Flood	Cloudy	Small Wave	CS4	Surface 1	1	1	11:54	16.3	7.67	27.6	7.7	6.04	3.6
TMCLKL	HY/2012/08 2014-02-21	Mid-Flood	Cloudy	Small Wave	CS4	Surface 1	1	2	11:54	16.3	7.61	27.6	7.74	6.06	3.7
TMCLKL	HY/2012/08 2014-02-21	Mid-Flood	Cloudy	Small Wave	CS4	Middle 11.4	2	1	11:54	16.4	7.63	27.6	7.62	6.5	3.5
TMCLKL	HY/2012/08 2014-02-21	Mid-Flood	Cloudy	Small Wave	CS4	Middle 11.4	2	2	11:54	16.4	7.64	27.6	7.6	6.54	4.1
TMCLKL	HY/2012/08 2014-02-21	Mid-Flood	Cloudy	Small Wave	CS4	Bottom 21.8	3	1	11:54	16.5	7.69	27.7	7.38	6.68	2.8
TMCLKL	HY/2012/08 2014-02-21	Mid-Flood	Cloudy	Small Wave	CS4	Bottom 21.8	3	2	11:54	16.5	7.68	27.7	7.3	6.69	3.7
		Mid-Flood	Cloudy	Small Wave	CS6	Surface 1	1	1	-	16.3	7.68	27.4	7.58	6.34	3.6
_	HY/2012/08 2014-02-21			Small Wave	CS6	Surface 1	1	2		16.3	7.64	27.4	7.52	6.36	4.4
		Mid-Flood	 	Small Wave	CS6	Middle 6.3	2	1		16.4	7.64	27.6	7.41	6.48	3.1
	HY/2012/08 2014-02-21		_	Small Wave	CS6	Middle 6.3	2	2		16.4	7.65	27.6	7.43	6.41	4
	HY/2012/08 2014-02-21			Small Wave	CS6	Bottom 11.6	3	1	08:42		7.66	27.7	7.73	6.89	3.7
	HY/2012/08 2014-02-21			Small Wave	CS6	Bottom 11.6	3	2	08:42		7.67	27.7	7.71	6.87	4.8
 	HY/2012/08 2014-02-21		_	Small Wave	IS12	Surface 1	1	1	10:59		7.64	27.7	7.49	6.73	2.7
	HY/2012/08 2014-02-21			Small Wave	IS12	Surface 1	1	2	10:59		7.64	27.7	7.41	6.71	3.5
	HY/2012/08 2014-02-21		_	Small Wave	IS12	Middle 7.3	2	1		16.4	7.6	27.6	7.3	6.54	3
	HY/2012/08 2014-02-21		_	Small Wave	IS12	Middle 7.3	2	2	10:59		7.62	27.5	7.34	6.56	3.1
	HY/2012/08 2014-02-21			Small Wave	IS12	Bottom 13.6	3	1	10:59		7.64	27.7	7.14	6.4	2.5
	HY/2012/08 2014-02-21			Small Wave	IS12	Bottom 13.6	3	2		16.5	7.64	27.7	7.1	6.48	3.5
	HY/2012/08 2014-02-21			Small Wave	IS13	Surface 1	1	10	10:36		7.62	27.6	7.31	6.06	2.7
	HY/2012/08 2014-02-21		+	Small Wave	IS13	Surface 1	1	2	10:36		7.6	27.6	7.32	6.07	2.8
	HY/2012/08 2014-02-21		_	Small Wave	IS13	Middle 4.9	2	12	10:36		7.64	27.6	7.41	6.34	2
	HY/2012/08 2014-02-21 HY/2012/08 2014-02-21			Small Wave	IS13	Middle 4.9	2	2	10:36		7.66	27.6	7.43	6.33 6.8	2.3
	HY/2012/08 2014-02-21		+	Small Wave	IS13 IS13	Bottom 8.8	3	12	10:36 10:36		7.68 7.69	27.7 27.7	7.55 7.57	6.84	4.2
	HY/2012/08 2014-02-21		_	Small Wave Small Wave	IS13	Bottom 8.8 Surface 1	1	1	11:22		7.66	27.7	7.64	6.28	3.3
	HY/2012/08 2014-02-21			Small Wave	IS14	Surface 1	1	2	11:22		7.66	27.5	7.66	6.29	2.7
	HY/2012/08 2014-02-21		-	Small Wave	IS14	Middle 8.3	2	1	11:22		7.66	27.6	7.5	6.51	3.2
LIVICLAL	111/2012/00 2014-02-21	IIVIIU-FIUUU	Joioudy	Joinali Wave	JIO 14	Jiviiuuie Jo.3	14		11.22	10.4	11.00	121.0	۱۱.۵	JO.J I	J.L

TMCLKL	HY/2012/08 2014-02-21	Mid Flood	Cloudy	Small Wave	IS14	Middle 8.3	2	2	11:22	16.4	7.67	27.6	7.58	6.53	5.4
		Mid-Flood		Small Wave	IS14	Bottom 15.6	3	1		16.5	7.65	27.7	7.24	6.7	5.4
	HY/2012/08 2014-02-21			Small Wave	IS14	Bottom 15.6	3	2		16.5	7.66	27.8	7.24	6.74	5.4
		Mid-Flood		Small Wave	IS15	Surface 1	1	1		16.4	7.64	27.5	7.4	6.3	5.2
	HY/2012/08 2014-02-21			Small Wave	IS15	Surface 1	1 1	2		16.3	7.63	27.5	7.48	6.38	5
	HY/2012/08 2014-02-21		_	Small Wave	IS15	Middle 5.4	2	1		16.4	7.64	27.5	7.40	6.54	5.8
	HY/2012/08 2014-02-21			Small Wave	IS15	Middle 5.4	2	2		16.4	7.68	27.5	7.64	6.55	5.7
	HY/2012/08 2014-02-21		_	Small Wave	IS15	Bottom 9.8	3	1	10:13		7.68	27.7	7.04	6.79	9
	HY/2012/08 2014-02-21		_	Small Wave	IS15	Bottom 9.8	3	2	-	16.5	7.63	27.7	7.28	6.78	7.6
	HY/2012/08 2014-02-21		_	Small Wave	SR8	Surface 1	1	1	-	16.3	7.67	27.5	7.20	6.94	3.5
	HY/2012/08 2014-02-21		_	Small Wave	SR8	Surface 1	1	2		16.3	7.67	27.5	7.34	6.96	5.1
	HY/2012/08 2014-02-21			Small Wave	SR8	Middle	2	1	09:27	10.5	1.01	21.5	7.54	0.90	3.1
	HY/2012/08 2014-02-21			Small Wave	SR8	Middle	2	2	09:27						
	HY/2012/08 2014-02-21			Small Wave	SR8	Bottom 4.2	3	1		16.4	7.66	27.7	7.29	6.27	2.8
		Mid-Flood	,	Small Wave	SR8	Bottom 4.2	3	2	_	16.4	7.6	27.8	7.21	6.29	4
	HY/2012/08 2014-02-21			Small Wave	SR9	Surface 1	1	1		16.3	7.61	27.5	7.14	6.14	3.3
		Mid-Flood	_	Small Wave	SR9	Surface 1	1	2		16.3	7.61	27.5	7.14	6.16	3.2
	HY/2012/08 2014-02-21			Small Wave	SR9	Middle	2	1	09:50	10.0	17.01	27.0	17.10	0.10	0.2
	HY/2012/08 2014-02-21		_	Small Wave	SR9	Middle	2	2	09:50		+	1	+		
	HY/2012/08 2014-02-21			Small Wave	SR9	Bottom 4.8	3	1	09:50	16.4	7.68	27.7	7.34	6.46	3.9
	HY/2012/08 2014-02-21		_	Small Wave	SR9	Bottom 4.8	3	12		16.5	7.64	27.7	7.38	6.45	2.7
	HY/2012/08 2014-02-21		_	Small Wave	SR10	Surface 1	1	1	_	16.3	7.67	27.6	7.62	6.5	2.8
	HY/2012/08 2014-02-21		_	Small Wave	SR10	Surface 1	 	2		16.3	7.68	27.6	7.68	6.56	3
	HY/2012/08 2014-02-21			Small Wave	SR10	Middle 6.9	2	1	09:04	16.4	7.64	27.6	7.54	6.77	5.4
	HY/2012/08 2014-02-21			Small Wave	SR10	Middle 6.9	2	2		16.4	7.6	27.6	7.5	6.71	4.6
—		Mid-Flood		Small Wave	SR10	Bottom 12.8	3	 -	09:04	16.4	7.63	27.7	7.08	6.41	3.9
	HY/2012/08 2014-02-21			Small Wave	SR10	Bottom 12.8	3	2		16.4	7.67	27.7	7.09	6.49	4.4
		Mid-Ebb	Cloudy	Small Wave	CS4	Surface 1	1	1		16.3	7.66	27.8	7.29	6.46	2.5
	HY/2012/08 2014-02-21		Cloudy	Small Wave	CS4	Surface 1	1	2		16.3	7.67	27.8	7.21	6.44	2.9
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	CS4	Middle 11	2	1	15:13	16.4	7.6	27.7	7.14	6.89	3.3
TMCLKL	HY/2012/08 2014-02-21		Cloudy	Small Wave	CS4	Middle 11	2	2	15:13		7.64	27.7	7.16	6.81	2.5
	HY/2012/08 2014-02-21		Cloudy	Small Wave	CS4	Bottom 21	3	1	15:13		7.65	27.7	7.14	6.94	2.3
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom 21	3	2	15:13		7.67	27.7	7.16	6.95	3.5
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	CS6	Surface 1	1	1	18:23	16.4	7.69	27.5	7.63	6.49	2.4
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	CS6	Surface 1	1	2	18:23	16.4	7.61	27.5	7.67	6.41	2.2
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	CS6	Middle 6.1	2	1	18:23	16.4	7.64	27.5	7.31	6.54	2.3
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	CS6	Middle 6.1	2	2	18:23	16.4	7.63	27.5	7.37	6.5	4.1
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	CS6	Bottom 11.2	3	1	18:23	16.5	7.6	27.7	7.02	6.76	2.1
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	CS6	Bottom 11.2	3	2	18:23	16.5	7.66	27.7	7.08	6.74	3.3
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	IS12	Surface 1	1	1	15:59	16.4	7.64	27.8	7.23	6.31	2.6
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	IS12	Surface 1	1	2	15:59	16.3	7.63	27.8	7.24	6.33	3.4
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	IS12	Middle 7	2	1	15:59		7.6	27.7	7.1	6.63	4.6
	HY/2012/08 2014-02-21		Cloudy	Small Wave	IS12	Middle 7	2	2	15:59	-	7.62	27.7	7.12	6.66	3.7
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	IS12	Bottom 13	3	1	15:59	16.4	7.69	27.8	7.02	6.87	3.5
	HY/2012/08 2014-02-21		Cloudy	Small Wave	IS12	Bottom 13	3	2	15:59		7.61	27.7	7.03	6.81	3.2
	HY/2012/08 2014-02-21		Cloudy	Small Wave	IS13	Surface 1	1	1	16:22		7.6	27.7	7.5	6.28	4.6
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	IS13	Surface 1	1	2	16:22	16.4	7.64	27.7	7.52	6.29	3

TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	IS13	Middle 4.6	2	<u> </u>	16:22	16.4	7.61	27.8	7.44	6.8	4.3
		Mid-Ebb	Cloudy	Small Wave	IS13	Middle 4.6	2	2		16.4	7.63	27.8	7.46	6.82	3.7
	HY/2012/08 2014-02-21		Cloudy	Small Wave	IS13	Bottom 8.2	3	1		16.4	7.64	27.8	7.28	6.9	3.4
		Mid-Ebb	Cloudy	Small Wave	IS13	Bottom 8.2	3	2		16.4	7.66	27.8	7.29	6.98	3.5
		Mid-Ebb	Cloudy	Small Wave	IS14	Surface 1	1	1		16.4	7.65	27.8	7.36	6.07	3.4
	HY/2012/08 2014-02-21		Cloudy	Small Wave	IS14	Surface 1	1	2		16.4	7.65	27.8	7.38	6.01	2.6
	HY/2012/08 2014-02-21		Cloudy	Small Wave	IS14	Middle 8.1	2	1		16.4	7.61	27.7	7.07	6.26	3
	HY/2012/08 2014-02-21		Cloudy	Small Wave	IS14	Middle 8.1	2	2	_	16.4	7.61	27.7	7.09	6.28	2.2
	HY/2012/08 2014-02-21		Cloudy	Small Wave	IS14	Bottom 15.2	3	1		16.4	7.63	27.7	7.01	6.51	3.9
	HY/2012/08 2014-02-21		Cloudy	Small Wave	IS14	Bottom 15.2	3	2	_	16.5	7.64	27.7	7.02	6.53	4.7
-	HY/2012/08 2014-02-21		Cloudy	Small Wave	IS15	Surface 1	1	1		16.4	7.64	27.7	7.64	6.47	3.1
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	IS15	Surface 1	1	2		16.3	7.61	27.7	7.63	6.48	2.3
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	IS15	Middle 5.1	2	1		16.3	7.66	27.7	7.54	6.07	2.9
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	IS15	Middle 5.1	2	2	16:45	16.3	7.69	27.7	7.5	6.01	2.5
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom 9.2	3	1	16:45	16.4	7.69	27.7	7.31	6.53	2.2
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom 9.2	3	2		16.4	7.62	27.7	7.39	6.51	3.9
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	SR8	Surface 1	1	1	17:31	16.3	7.61	27.4	7.49	6.07	2
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	SR8	Surface 1	1	2	17:31	16.4	7.67	27.4	7.41	6.01	3.8
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	SR8	Middle	2	1	17:31						
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	SR8	Middle	2	2	17:31						
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom 3.8	3	1	17:31	16.4	7.65	27.6	7.14	6.65	2.2
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom 3.8	3	2		16.5	7.62	27.6	7.13	6.66	2.8
TMCLKL	HY/2012/08 2014-02-21	Mid-Ebb	Cloudy	Small Wave	SR9	Surface 1	1	1	17:08	16.4	7.66	27.7	7.24	6.79	4
		Mid-Ebb	Cloudy	Small Wave	SR9	Surface 1	1	2		16.4	7.6	27.6	7.2	6.71	2.3
	HY/2012/08 2014-02-21		Cloudy	Small Wave	SR9	Middle	2	1	17:08						
-		Mid-Ebb	Cloudy	Small Wave	SR9	Middle	2	2	17:08						
	HY/2012/08 2014-02-21		Cloudy	Small Wave	SR9	Bottom 4.2	3	1		16.5	7.65	27.8	7.07	6.6	4.3
		Mid-Ebb	Cloudy	Small Wave	SR9	Bottom 4.2	3	2		16.5	7.67	27.8	7.03	6.64	2.3
	HY/2012/08 2014-02-21		Cloudy	Small Wave	SR10	Surface 1	1	1		16.3	7.61	27.5	7.56	6.39	3
	HY/2012/08 2014-02-21		Cloudy	Small Wave	SR10	Surface 1	1	2		16.3	7.63	27.5	7.54	6.31	3.7
	HY/2012/08 2014-02-21		Cloudy	Small Wave	SR10	Middle 6.6	2	11	17:54		7.67	27.6	7.1	6.4	2.7
	HY/2012/08 2014-02-21		Cloudy	Small Wave	SR10	Middle 6.6	2	12	17:54		7.68	27.6	7.14	6.44	2.1
	HY/2012/08 2014-02-21		Cloudy	Small Wave	SR10	Bottom 12.2	3	1	17:54		7.63	27.6	7.32	6.88	2.8
	HY/2012/08 2014-02-21		Cloudy	Small Wave	SR10	Bottom 12.2	3	2	17:54		7.6	27.6	7.38	6.84	2 7
	HY/2012/08 2014-02-24 HY/2012/08 2014-02-24			Calm Calm	CS4 CS4	Surface 1	1	12	14:36		7.78 7.72	27.3 27.3	7.26 7.27	2.54 2.55	3.7 2.1
					_	Surface 1 Middle 11	2	1	14:36		7.82		7.21		2.6
	HY/2012/08 2014-02-24 HY/2012/08 2014-02-24			Calm Calm	CS4 CS4	Middle 11	2	2	14:36 14:36			27.4 27.4	7.21	1.96 1.97	3.9
	HY/2012/08 2014-02-24			Calm	CS4	Bottom 20.9	3	1	14:36		7.72	27.3	7.11	2.22	3.4
	HY/2012/08 2014-02-24			Calm	CS4	Bottom 20.9	3	2	14:36			27.4	7.11	2.22	2.2
	HY/2012/08 2014-02-24			Calm	CS6	Surface 1	1	1	11:24		7.74	27.3	7.12	2.23	3.5
	HY/2012/08 2014-02-24			Calm	CS6	Surface 1	1	2		16.4	7.75	27.3	7.24	2.23	3.4
	HY/2012/08 2014-02-24			Calm	CS6	Middle 6.8	2	1		16.5	7.72	27.4	7.18	2.41	2.4
	HY/2012/08 2014-02-24			Calm	CS6	Middle 6.8	2	2	11:24		7.73	27.4	7.16	2.43	4
	HY/2012/08 2014-02-24			Calm	CS6	Bottom 12.6	3	1	11:24		7.76	27.4	7.16	2.56	2.6
	HY/2012/08 2014-02-24			Calm	CS6	Bottom 12.6	3	2	11:24			27.4	7.18	2.57	3.8
	HY/2012/08 2014-02-24			Calm	IS12	Surface 1	1	<u> -</u>	13:49				7.13	2.49	3.7
LIVIOLIVE	1111/2012/00 2014-02-24	111110 1 1000	11 1110	₁ Ouiiii	11012	Curiuoc 1	1'	1'	10.70	10.7	11.10	121.0	17.10	14.70	10.1

TMCLKL	HY/2012/08 2014-02-24	Mid-Flood	Fine	Calm	IS12	Surface 1	1	2	13:49	16.4	7.74	27.3	7.14	2.48	2.5
-	HY/2012/08 2014-02-24			Calm	IS12	Middle 7.5	2	1		16.5	7.81	27.4	7.23	2.55	3.9
	HY/2012/08 2014-02-24		 	Calm	IS12	Middle 7.5	2	2		16.5	7.82	27.4	7.24	2.52	2.4
	HY/2012/08 2014-02-24			Calm	IS12	Bottom 14	3	1		16.5	7.83	27.4	7.04	2.74	3.8
TMCLKL	HY/2012/08 2014-02-24	Mid-Flood	Fine	Calm	IS12	Bottom 14	3	2	13:49	16.5	7.82	27.4	7.05	2.75	3
TMCLKL	HY/2012/08 2014-02-24	Mid-Flood	Fine	Calm	IS13	Surface 1	1	1	13:26	16.5	7.84	27.4	7.41	2.56	4
TMCLKL	HY/2012/08 2014-02-24	Mid-Flood	Fine	Calm	IS13	Surface 1	1	2	13:26	16.5	7.85	27.4	7.42	2.54	2.8
TMCLKL	HY/2012/08 2014-02-24	Mid-Flood	Fine	Calm	IS13	Middle 6	2	1	13:26	16.4	7.67	27.4	7.28	2.75	4
TMCLKL	HY/2012/08 2014-02-24	Mid-Flood	Fine	Calm	IS13	Middle 6	2	2	13:26	16.5	7.71	27.4	7.26	2.76	2.6
TMCLKL	HY/2012/08 2014-02-24	Mid-Flood	Fine	Calm	IS13	Bottom 11	3	1	13:26	16.4	7.75	27.5	7.13	2.64	3.9
TMCLKL	HY/2012/08 2014-02-24	Mid-Flood	Fine	Calm	IS13	Bottom 11	3	2	13:26	16.4	7.73	27.4	7.14	2.67	5
TMCLKL	HY/2012/08 2014-02-24	Mid-Flood	Fine	Calm	IS14	Surface 1	1	1	14:13	16.4	7.76	27.4	7.21	2.63	2.5
	HY/2012/08 2014-02-24			Calm	IS14	Surface 1	1	2	_	16.5	7.75	27.3	7.22	2.65	3.5
	HY/2012/08 2014-02-24			Calm	IS14	Middle 8	2	1		16.4	7.73	27.4	7.18	2.71	2.1
	HY/2012/08 2014-02-24			Calm	IS14	Middle 8	2	2	_	16.4	7.74	27.5	7.16	2.72	3.7
	HY/2012/08 2014-02-24			Calm	IS14	Bottom 15	3	1		16.5	7.81	27.4	7.29	2.96	2.3
	HY/2012/08 2014-02-24			Calm	IS14	Bottom 15	3	2		16.5	7.83	27.4	7.28	2.97	4.1
	HY/2012/08 2014-02-24		1	Calm	IS15	Surface 1	1	1		16.4	7.63	27.4	7.22	2.65	2.9
	HY/2012/08 2014-02-24			Calm	IS15	Surface 1	1	2		16.4	7.64	27.4	7.21	2.64	3.8
-	HY/2012/08 2014-02-24			Calm	IS15	Middle 6	2	1		16.4	7.83	27.3	7.17	2.82	3.6
	HY/2012/08 2014-02-24			Calm	IS15	Middle 6	2	2		16.4	7.82	27.4	7.16	2.83	3.1
	HY/2012/08 2014-02-24			Calm	IS15	Bottom 11	3	1		16.5	7.79	27.5	7.13	2.93	3.5
	HY/2012/08 2014-02-24			Calm	IS15	Bottom 11	3	2	_	16.5	7.78	27.4	7.15	2.96	2.4
	HY/2012/08 2014-02-24			Calm	SR8	Surface 1	1	2		16.4	7.73	27.4	7.23	2.21	3
-	HY/2012/08 2014-02-24 HY/2012/08 2014-02-24			Calm Calm	SR8 SR8	Surface 1 Middle	2	1		16.4	7.75	27.4	7.22	2.26	4.7
	HY/2012/08 2014-02-24			Calm	SR8	Middle	2	2	12:15 12:15		1	+	1	+	+
_	HY/2012/08 2014-02-24			Calm	SR8	Bottom 4.8	3	1		16.4	7.71	27.4	7.08	2.37	2.8
	HY/2012/08 2014-02-24			Calm	SR8	Bottom 4.8	3	2		16.4	7.72	27.5	7.03	2.35	3.4
	HY/2012/08 2014-02-24			Calm	SR9	Surface 1	1	1		16.4	7.82	27.4	7.31	2.56	2.9
	HY/2012/08 2014-02-24			Calm	SR9	Surface 1	1	2	12:38	_	7.83	27.4	7.32	2.57	2.5
	HY/2012/08 2014-02-24			Calm	SR9	Middle	2	1	12:38	10.0	7.00	Z1.7	1.02	2.07	2.0
	HY/2012/08 2014-02-24			Calm	SR9	Middle	2	2	12:38						+
	HY/2012/08 2014-02-24		-	Calm	SR9	Bottom 4.4	3	<u> -</u> 1	12:38	16.5	7.79	27.5	7.16	2.61	4
	HY/2012/08 2014-02-24			Calm	SR9	Bottom 4.4	3	2		16.4	7.8	27.5	7.13	2.63	2.8
	HY/2012/08 2014-02-24			Calm	SR10	Surface 1	1	1	11:52		7.81	27.4	7.14	2.48	2.5
TMCLKL	HY/2012/08 2014-02-24			Calm	SR10	Surface 1	1	2	11:52		7.82	27.4	7.15	2.5	2.7
	HY/2012/08 2014-02-24			Calm	SR10	Middle 7.5	2	1	11:52		7.83	27.3	7.23	2.63	3.9
	HY/2012/08 2014-02-24			Calm	SR10	Middle 7.5	2	2	11:52		7.81	27.4	7.24	2.66	2.4
TMCLKL	HY/2012/08 2014-02-24	Mid-Flood	Fine	Calm	SR10	Bottom 14	3	1	11:52		7.79	27.4	7.09	2.78	3.1
TMCLKL	HY/2012/08 2014-02-24	Mid-Flood	Fine	Calm	SR10	Bottom 14	3	2	11:52		7.81	27.4	7.11	2.82	2
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	CS4	Surface 1	1	1	07:08	16.4	7.78	27.5	7.31	2.88	2.8
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	CS4	Surface 1	1	2	07:08		7.72	27.5	7.29	2.89	3.7
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	CS4	Middle 10.8	2	1	07:08	16.4	7.77	27.6	7.19	2.99	3.5
	HY/2012/08 2014-02-24		Fine	Calm	CS4	Middle 10.8	2	2	07:08		7.74	27.5	7.16	2.95	3.8
	HY/2012/08 2014-02-24		Fine	Calm	CS4	Bottom 20.5	3	1	07:08		7.72	27.6	7.01	3.01	3.1
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	CS4	Bottom 20.5	3	2	07:08	16.5	7.73	27.6	6.99	3.05	4.5

TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	CS6	Surface 1	I	1	1	09:20	16.4	7.79	27.4	7.11	2.27	4.6
	HY/2012/08 2014-02-24		Fine	Calm	CS6	Surface 1	1	1	2		16.4	7.78	27.4	7.1	2.22	4.9
			Fine	Calm	CS6	Middle 6.7		2	1		16.4	7.73	27.5	7.08	2.37	4
	HY/2012/08 2014-02-24	_	Fine	Calm	CS6	Middle 6.7		 2	2		16.4	7.72	27.5	7.06	2.38	5.3
		Mid-Ebb	Fine	Calm	CS6	Bottom 12.4		3	1	-	16.4	7.81	27.5	6.99	2.54	4.9
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	CS6	Bottom 12.4	4	3	2	_	16.4	7.8	27.5	6.97	2.52	4.7
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	IS12	Surface 1	İ	1	1	07:48	16.4	7.73	27.5	7.08	2.57	2.7
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	IS12	Surface 1		1	2	07:48	16.4	7.76	27.5	7.08	2.56	2.5
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	IS12	Middle 7.4		2	1	07:48	16.4	7.81	27.5	6.93	2.66	3.6
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	IS12	Middle 7.4		2	2	07:48	16.4	7.8	27.6	6.99	2.67	2.9
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	IS12	Bottom 13.8	8	3	1	07:48	16.4	7.76	27.5	7.01	2.83	2.8
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	IS12	Bottom 13.8	8	3	2	-	16.4	7.77	27.6	7.02	2.84	3.2
		Mid-Ebb	Fine	Calm	IS13	Surface 1		1	1		16.4	7.78	27.5	7.22	2.67	3.9
		Mid-Ebb	Fine	Calm	IS13	Surface 1		1	2		16.4	7.76	27.5	7.23	2.71	3.7
_	HY/2012/08 2014-02-24		Fine	Calm	IS13	Middle 5.9		2	1		16.5	7.63	27.6	7.19	2.83	3.7
		Mid-Ebb	Fine	Calm	IS13	Middle 5.9		2	2		16.5	7.64	27.6	7.16	2.84	4.4
	HY/2012/08 2014-02-24		Fine	Calm	IS13	Bottom 10.7		3	1		16.4	7.77	27.5	7.01	2.97	4.8
		Mid-Ebb	Fine	Calm	IS13	Bottom 10.7	7	3	2		16.5	7.73	27.6	7.05	2.89	4.6
	HY/2012/08 2014-02-24		Fine	Calm	IS14	Surface 1		1	1		16.4	7.74	27.5	7.19	2.76	3.7
		Mid-Ebb	Fine	Calm	IS14	Surface 1		1	2	_	16.4	7.73	27.5	7.18	2.75	2.7
	HY/2012/08 2014-02-24		Fine	Calm Calm	IS14	Middle 7.9		<u>2</u> 2	2		16.4	7.81	27.6 27.6	7.2 7.13	2.89 2.86	2.7
	HY/2012/08 2014-02-24 HY/2012/08 2014-02-24	Mid-Ebb	Fine Fine	Calm	IS14 IS14	Middle 7.9 Bottom 14.7		3	1		16.4 16.5	7.82 7.86	27.5	7.13	3.11	3.1 4.1
			Fine	Calm	IS14	Bottom 14.7		<u>3</u> 3	2		16.5	7.88	27.5	7.03	3.09	3.4
		Mid-Ebb	Fine	Calm	IS15	Surface 1	'	<u> </u>	1		16.4	7.78	27.5	7.13	2.76	3.8
		Mid-Ebb	Fine	Calm	IS15	Surface 1		1	2		16.4	7.76	27.5	7.18	2.78	2.8
		Mid-Ebb	Fine	Calm	IS15	Middle 5.9		2	1		16.4	7.72	27.5	7.09	2.88	3.4
	HY/2012/08 2014-02-24		Fine	Calm	IS15	Middle 5.9		 2	2		16.4	7.73	27.5	7.08	2.89	3.7
		Mid-Ebb	Fine	Calm	IS15	Bottom 10.8		3	1		16.5	7.75	27.5	7.11	3.01	4.1
TMCLKL	HY/2012/08 2014-02-24		Fine	Calm	IS15	Bottom 10.8	8	3	2	08:23	16.5	7.76		7.12	2.96	4.6
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	SR8	Surface 1		1	1	08:52	16.4	7.76	27.4	7.14	2.35	2.9
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	SR8	Surface 1		1	2	08:52	16.4	7.77	27.5	7.15	2.38	3.7
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	SR8	Middle		2	1	08:52						
TMCLKL	HY/2012/08 2014-02-24	Mid-Ebb	Fine	Calm	SR8	Middle		2	2	08:52						
	HY/2012/08 2014-02-24		Fine	Calm	SR8	Bottom 4.4		3	1	08:52		7.78	27.5	7.02	2.63	3.9
	HY/2012/08 2014-02-24		Fine	Calm	SR8	Bottom 4.4		3	2	08:52		7.73	27.5	7	2.56	3.6
	HY/2012/08 2014-02-24		Fine	Calm	SR9	Surface 1		1	1		16.4	7.88	27.5	7.26	2.73	3.1
	HY/2012/08 2014-02-24		Fine	Calm	SR9	Surface 1		1	2		16.4	7.87	27.5	7.27	2.69	3.5
	HY/2012/08 2014-02-24		Fine	Calm	SR9	Middle		2	11	08:41						
	HY/2012/08 2014-02-24		Fine	Calm	SR9	Middle		2	2	08:41	40.4	7.05	07.5	7.04	10.00	
	HY/2012/08 2014-02-24		Fine	Calm	SR9	Bottom 4.2		3	11	08:41		7.85	27.5	7.04	2.83	3.8
	HY/2012/08 2014-02-24		Fine	Calm	SR9	Bottom 4.2		3	2		16.4	7.86	27.5	7.06	2.84	5.7
	HY/2012/08 2014-02-24		Fine	Calm	SR10	Surface 1		1	12	09:06		7.73	27.3	7.21	2.26	4.9
	HY/2012/08 2014-02-24 HY/2012/08 2014-02-24		Fine Fine	Calm Calm	SR10 SR10	Surface 1 Middle 7.3		2	1	09:06 09:06		7.75 7.76	27.4 27.5	7.2 7.06	2.2 2.69	2.8 3.4
	HY/2012/08 2014-02-24 HY/2012/08 2014-02-24		Fine	Calm	SR10	Middle 7.3		<u>2</u> 2	2	09:06		7.77	27.5	7.06	2.09	3.4
	HY/2012/08 2014-02-24		Fine	Calm	SR10	Bottom 13.6		3	1	09:06		7.72	27.5	6.92	2.96	4
LIVICENE	111/2012/00 2014-02-24	โเกเเด-⊏กก	ILIIG	Callii	JORIU	ווטווטוון וואטםן.נ	U	J	<u> </u>	ไกล.กด	10.5	11.12	[Z1.5]	լս.ԾՀ	12.30	<u> </u> +

TMCLKL	HY/2012/08 2014-02-24	Mid-Fbb	Fine	Calm	SR10	Bottom 13.6	3 3	[2	2 09:0	6 16	.5 7.73	27.5	6.95	2.94	3.3
	HY/2012/08 2014-02-26			Small Wave	CS4	Surface 1	1		17:2	_			7.45	2.76	3.6
	HY/2012/08 2014-02-26			Small Wave	CS4	Surface 1	1			_			7.46	2.77	2.8
	HY/2012/08 2014-02-26		_	Small Wave	CS4	Middle 11.2	2 2	7	17:2	_			7.59	2.83	2.4
	HY/2012/08 2014-02-26		,	Small Wave	CS4	Middle 11.2		12					7.61	2.85	3.7
	HY/2012/08 2014-02-26			Small Wave	CS4	Bottom 21.4		7	17:2	_			7.2	2.88	2.8
	HY/2012/08 2014-02-26			Small Wave	CS4	Bottom 21.4		2					7.19	2.89	3.9
	HY/2012/08 2014-02-26			Small Wave	CS6	Surface 1	1	-	14:1				8.11	2.09	4.6
	HY/2012/08 2014-02-26			Small Wave	CS6	Surface 1	1	2		_			8.12	2.11	3.5
	HY/2012/08 2014-02-26		_	Small Wave	CS6	Middle 7	2		14:1	_			8.01	2.36	3.8
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	CS6	Middle 7	2	2	2 14:1	6 17.	.4 7.83	26.7	8.02	2.34	5.3
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	CS6	Bottom 13	3	1	14:1	6 17.	.4 7.77	26.8	7.98	2.4	3.8
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	CS6	Bottom 13	3	2	2 14:1	6 17.	.4 7.79	26.8	7.99	2.41	4.7
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	IS12	Surface 1	1	-	16:4	1 17.	.2 7.66	26.7	7.31	2.76	3.4
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	IS12	Surface 1	1	2	2 16:4	1 17.	.3 7.65	26.7	7.32	2.75	4
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	IS12	Middle 7.4	2	1	16:4	1 17.	.3 7.71	26.8	7.11	2.88	2.2
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	IS12	Middle 7.4	2	2	2 16:4	1 17.	.3 7.72	26.8	7.12	2.86	3.5
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	IS12	Bottom 13.8	3 3	1	16:4	1 17.	.4 7.7	26.8	7.13	2.92	5.8
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	IS12	Bottom 13.8	3 3	2	2 16:4	1 17.	.4 7.71	26.8	7.14	2.93	3.8
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	IS13	Surface 1	1	ľ	l 16:1	8 17.	.3 7.77	26.8	7.52	2.67	3.3
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	IS13	Surface 1	1	2	2 16:1	8 17.	.4 7.76	26.8	7.53	2.66	2.8
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	IS13	Middle 6	2	ľ	l 16:1	8 17.	.4 7.69	26.7	7.4	2.71	2.3
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	IS13	Middle 6	2	2	2 16:1	8 17.	.4 7.68	26.8	7.41	2.72	3.1
	HY/2012/08 2014-02-26			Small Wave	IS13	Bottom 11	3		16:1	8 17.			7.19	2.86	4.5
TMCLKL	HY/2012/08 2014-02-26	Mid-Flood	Cloudy	Small Wave	IS13	Bottom 11	3	2					7.2	2.88	3.4
	HY/2012/08 2014-02-26	1		Small Wave	IS14	Surface 1	1		17:0				7.41	2.66	2.6
	HY/2012/08 2014-02-26			Small Wave	IS14	Surface 1	1			_			7.42	2.64	3
	HY/2012/08 2014-02-26		,	Small Wave	IS14	Middle 8.2	2		17:0			26.8	7.31	2.79	3.4
	HY/2012/08 2014-02-26			Small Wave	IS14	Middle 8.2	2						7.32	2.76	4.5
	HY/2012/08 2014-02-26		,	Small Wave	IS14	Bottom 15.3			17:0				7.11	2.83	6.3
	HY/2012/08 2014-02-26			Small Wave	IS14	Bottom 15.3	3 3			4 17			7.12	2.84	4.7
	HY/2012/08 2014-02-26			Small Wave	IS15	Surface 1	1			5 17			7.71	2.67	3.2
	HY/2012/08 2014-02-26		_	Small Wave	IS15	Surface 1	1			5 17			7.72	2.66	4.2
	HY/2012/08 2014-02-26			Small Wave	IS15	Middle 6.2				5 17			7.74	2.7	2.8
	HY/2012/08 2014-02-26		,	Small Wave	IS15	Middle 6.2		4		5 17			7.75	2.73	2.5
	HY/2012/08 2014-02-26			Small Wave	IS15	Bottom 11.4				5 17			7.43	2.84	3.1
	HY/2012/08 2014-02-26			Small Wave	IS15	Bottom 11.4	4 3	4		5 17			7.46	2.82	2.6
	HY/2012/08 2014-02-26			Small Wave	SR8	Surface 1	1			8 17			8.56	2.23	3.4
	HY/2012/08 2014-02-26			Small Wave	SR8 SR8	Surface 1 Middle	2	- 4	I 15:0	8 17.	.3 7.65	26.7	8.57	2.2	3.3
	HY/2012/08 2014-02-26 HY/2012/08 2014-02-26			Small Wave Small Wave	SR8	Middle	2	 ,	2 15:0	_		-	-		
-	HY/2012/08 2014-02-26		_	Small Wave	SR8	Bottom 4.6		- 4		8 17.	.4 7.73	26.7	8.23	2.03	2.3
	HY/2012/08 2014-02-26			Small Wave	SR8	Bottom 4.6	3			8 17.			8.26	2.03	2.6
	HY/2012/08 2014-02-26		,	Small Wave	SR9	Surface 1	1			2 17			7.93	2.54	4.3
	HY/2012/08 2014-02-26			Small Wave	SR9	Surface 1	1	 ,		2 17			7.99	2.55	2.8
	HY/2012/08 2014-02-26			Small Wave	SR9	Middle	2		15:3		.5 1.02	20.1	17.55	2.00	2.0
	HY/2012/08 2014-02-26			Small Wave	SR9	Middle	2					+		+	
LIVIOLIKE	111/2012/00 2014-02-20	IIVIIU-I 1000	Joioudy	Joinan Wave	JOINS	IMIGGIC				<u>-</u>					

TMCLKL HY/2012/08	2014-02-26	Mid-Flood	Cloudy	Small Wave	SR9	Bottom 4.8	3	<u></u>	15:32	17.4	7.8	26.8	7.83	2.66	4.8
		Mid-Flood		Small Wave	SR9	Bottom 4.8	3	2		17.4	7.81	26.7	7.86	2.67	4.2
	_	Mid-Flood		Small Wave	SR10	Surface 1	1	1		17.3	7.81		8.45	2.06	2.8
		Mid-Flood	,	Small Wave	SR10	Surface 1	1	2		17.3	7.82		8.46	2.07	3.3
TMCLKL HY/2012/08	2014-02-26	Mid-Flood	,	Small Wave	SR10	Middle 7.7	2	 -		17.3	7.86		8.13	2.16	3.1
		Mid-Flood		Small Wave	SR10	Middle 7.7	2	2		17.4	7.85		8.14	2.17	4
TMCLKL HY/2012/08		Mid-Flood		Small Wave	SR10	Bottom 14.4	3	 -	-	17.4	7.77		8.16	2.25	2.1
	2014-02-26		Cloudy	Small Wave	SR10	Bottom 14.4	3	2		17.4	7.78		8.17	2.26	3.4
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	CS4	Surface 1	1	1		17.2	7.77	26.8	7.3	2.83	2.6
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	CS4	Surface 1	1	2	_	17.2	7.76	26.8	7.33	2.8	3.3
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	CS4	Middle 11.1	2	_	_		7.69	26.8	7.21	2.78	2.8
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	CS4	Middle 11.1	2				7.68	26.8	7.22	2.79	3.6
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom 21.2	3	1			7.72	26.8	7.06	2.99	2.9
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom 21.2	3	2			7.73	26.9	7.07	2.94	2.7
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	CS6	Surface 1	1	1	12:22	17.2	7.76	26.8	8.09	2.67	3.4
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	CS6	Surface 1	1	2	12:22	17.2	7.74	26.8	8.1	2.71	3.7
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	CS6	Middle 6.8	2	1	12:22	17.2	7.81	26.8	7.93	2.48	3.3
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	CS6	Middle 6.8	2	2	12:22	17.2	7.79	26.8	7.96	2.51	3.6
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	CS6	Bottom 12.5	3	1	12:22	17.3	7.73	26.8	7.69	2.41	2.9
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	CS6	Bottom 12.5	3	2	12:22	17.3	7.75	26.8	7.71	2.43	3
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	IS12	Surface 1	1	1	10:03	17.2	7.65	26.8	7.23	2.81	2.8
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	IS12	Surface 1	1	2	10:03	17.2	7.66	26.8	7.24	2.79	2.6
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	IS12	Middle 7.3	2	1	10:03	17.2	7.71	26.8	7.08	2.87	2.9
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	IS12	Middle 7.3	2	2	10:03	17.3	7.72	26.8	7.09	2.88	2.7
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	IS12	Bottom 13.6	3	1	10:03	17.3	7.7	26.8	7.03	2.96	2.1
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	IS12	Bottom 13.6	3	2	10:03	17.3	7.71	26.8	7.01	2.97	2.9
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	IS13	Surface 1	1	1	10:26	17.2	7.88	26.8	7.41	2.77	2.9
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	IS13	Surface 1	1	2	10:26	17.2	7.87	26.8	7.42	2.77	2.3
TMCLKL HY/2012/08	2014-02-26	Mid-Ebb	Cloudy	Small Wave	IS13	Middle 5.9	2	1		17.2	7.83	26.9	7.36	2.81	2.1
TMCLKL HY/2012/08			Cloudy	Small Wave	IS13	Middle 5.9	2	2		17.2	7.84	26.8	7.37	2.82	2.3
TMCLKL HY/2012/08			Cloudy	Small Wave	IS13	Bottom 10.8	3	1	10:26		7.81	26.8	7.29	2.91	3.4
TMCLKL HY/2012/08			Cloudy	Small Wave	IS13	Bottom 10.8	3	2	10:26		7.82	26.8	7.3	2.93	2.4
TMCLKL HY/2012/08			Cloudy	Small Wave	IS14	Surface 1	11		09:40		7.83	26.7	7.31	2.79	2.7
TMCLKL HY/2012/08			Cloudy	Small Wave	IS14	Surface 1	11				7.84	26.8	7.29	2.76	3.5
TMCLKL HY/2012/08			Cloudy	Small Wave	IS14	Middle 8	2	-			7.88	26.8	7.23	2.83	2.3
TMCLKL HY/2012/08			Cloudy	Small Wave	IS14	Middle 8	2		09:40		7.85	26.8	7.22	2.86	3.6
TMCLKL HY/2012/08			Cloudy	Small Wave	IS14	Bottom 15	3				7.8	26.8	7.09	2.98	2.5
TMCLKL HY/2012/08			Cloudy	Small Wave	IS14	Bottom 15	3	2			7.81	26.8	7.11	2.97	2.9
TMCLKL HY/2012/08			Cloudy	Small Wave	IS15	Surface 1	1	1			7.78	26.9	7.66	2.73	2.8
TMCLKL HY/2012/08			Cloudy	Small Wave	IS15	Surface 1	12	2	10:49		7.77	26.8	7.67	2.74	2.6
TMCLKL HY/2012/08			Cloudy	Small Wave	IS15	Middle 6.1	2	2	10:49		7.83	26.9	7.51	2.83	2.4
TMCLKL HY/2012/08			Cloudy	Small Wave	IS15	Middle 6.1	2	2			7.84	26.8	7.49	2.84	2.5
TMCLKL HY/2012/08			Cloudy	Small Wave	IS15	Bottom 11.2	3	2	10:49		7.87	26.8	7.23	2.86	2.2
TMCLKL HY/2012/08			Cloudy	Small Wave	IS15 SR8	Bottom 11.2 Surface 1	3	1		17.3 17.2	7.88 7.69	26.8 26.8	7.24 8.43	2.88	3.4 3.1
TMCLKL HY/2012/08 TMCLKL HY/2012/08			Cloudy Cloudy	Small Wave Small Wave	SR8	Surface 1	1	2			7.65	+	8.45	2.33	3.5
TMCLKL HY/2012/08			,		SR8		2	1		11.4	1.00	20.0	U. 4 J	 	5.5
	14-02-20	เงแด-⊏ทุก	Cloudy	Small Wave	JOKO	Middle	<u> </u>] 1	11:35			<u> </u>			<u> </u>

TMCLKL	HY/2012/08 2014-02-26	Mid-Fhh	Cloudy	Small Wave	SR8	Middle	2	2	11:35		I		1	T	
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR8	Bottom 4.4	3	1		17.2	7.71	26.7	8.17	2.61	3.7
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR8	Bottom 4.4	3	2		17.2	7.72	26.8	8.18	2.68	3.1
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR9	Surface 1	1	1	_	17.2	7.78	26.8	7.83	2.61	5.4
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR9	Surface 1	1	2		17.2	7.77	26.8	7.84	2.62	4.3
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR9	Middle	2	1	11:12	17.2	1	20.0	7.01	2.02	1.0
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR9	Middle	2	2	11:12				1		
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR9	Bottom 4.6	3	1	11:12	17 2	7.76	26.8	7.73	2.78	6.2
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR9	Bottom 4.6	3	2	_	17.2	7.75	26.8	7.76	2.76	5.1
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR10	Surface 1	1	 -		17.2	7.81	26.8	8.23	2.11	4.6
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR10	Surface 1	1	2		17.2	7.82	26.8	8.26	2.13	2.6
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR10	Middle 7.6	2	1	_	17.2	7.79	26.8	8.06	2.37	4.1
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR10	Middle 7.6	2	2		17.2	7.77	26.8	8.07	2.38	2.8
	HY/2012/08 2014-02-26		Cloudy	Small Wave	SR10	Bottom 14.2	3	1	_	17.2	7.74	26.9	7.93	2.67	4.5
	HY/2012/08 2014-02-26	1	Cloudy	Small Wave	SR10	Bottom 14.2	3	2	_	17.2	7.75	26.9	7.94	2.68	4.3
	HY/2012/08 2014-02-28		Cloudy	Small Wave	CS4	Surface 1	1	1		17	7.57	26.5	7.36	1.66	2.8
TMCLKL	HY/2012/08 2014-02-28		Cloudy	Small Wave	CS4	Surface 1	1	2	19:18	17.1	7.59	26.6	7.38	1.68	3
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	CS4	Middle 11.3	2	1	19:18	17.2	7.73	26.6	7.24	1.75	3.1
TMCLKL	HY/2012/08 2014-02-28			Small Wave	CS4	Middle 11.3	2	2	19:18	17.3	7.75	26.7	7.26	1.77	3.6
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	CS4	Bottom 21.5	3	1	19:18	17.4	7.62	26.8	7.09	1.84	3.9
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	CS4	Bottom 21.5	3	2	19:18	17.4	7.64	26.8	7.07	1.82	3
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	CS6	Surface 1	1	1	16:15	17	7.74	26.5	8.01	1.67	3.3
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	CS6	Surface 1	1	2	16:15	17	7.76	26.5	7.99	1.69	3.9
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	CS6	Middle 6.9	2	1	16:15	17.1	7.32	26.6	7.96	1.73	3.7
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	CS6	Middle 6.9	2	2	16:15	17.2	7.34	26.6	7.94	1.75	4.4
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	CS6	Bottom 12.8	3	1	16:15	17.3	7.5	26.7	7.73	1.88	3.4
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	CS6	Bottom 12.8	3	2		17.3	7.52	26.8	7.75	1.9	4.5
TMCLKL	HY/2012/08 2014-02-28			Small Wave	IS12	Surface 1	1	1		17	7.76	26.5	7.35	1.69	3
	HY/2012/08 2014-02-28	+		Small Wave	IS12	Surface 1	1	2	_	17.1	7.74	26.6	7.37	1.71	4.6
	HY/2012/08 2014-02-28		,	Small Wave	IS12	Middle 7.5	2	1		17.2	7.71	26.7	7.11	1.74	4.1
	HY/2012/08 2014-02-28			Small Wave	IS12	Middle 7.5	2	2	18:33		7.69	26.7	7.13	1.76	2.7
	HY/2012/08 2014-02-28		_	Small Wave	IS12	Bottom 13.9	3	1	18:33		7.56	26.8	7.06	1.79	4
	HY/2012/08 2014-02-28			Small Wave	IS12	Bottom 13.9	3	2	18:33		7.58	26.9	7.08	1.82	6.2
	HY/2012/08 2014-02-28		_	Small Wave	IS13	Surface 1	1	1	18:12		7.62	26.5	7.56	1.6	4.1
	HY/2012/08 2014-02-28			Small Wave	IS13	Surface 1	1	2	18:12		7.64	26.6	7.58	1.63	3.1
	HY/2012/08 2014-02-28			Small Wave	IS13	Middle 6	2	1	18:12		7.7	26.7	7.44	1.67	3.6
	HY/2012/08 2014-02-28			Small Wave	IS13	Middle 6	2	2	18:12		7.71	26.7	7.42	1.69	2.8
	HY/2012/08 2014-02-28			Small Wave	IS13	Bottom 11	3	12	18:12		7.77	26.8	7.32	1.92	3.7
	HY/2012/08 2014-02-28			Small Wave	IS13	Bottom 11	3	1	18:12		7.75	26.9	7.3	1.94	4.6
	HY/2012/08 2014-02-28			Small Wave	IS14	Surface 1	1	12	18:53		7.63	26.5	7.41	1.77	2.6 3.1
	HY/2012/08 2014-02-28		_	Small Wave	IS14	Surface 1	2	1	18:53		7.65 7.69	26.5 26.6	7.43 7.29	1.79 1.82	3.1
	HY/2012/08 2014-02-28 HY/2012/08 2014-02-28			Small Wave Small Wave	IS14 IS14	Middle 8.1 Middle 8.1	2	2	18:53 18:53		7.71	26.7	7.29	1.84	3.8
	HY/2012/08 2014-02-28		,	Small Wave	IS14	Bottom 15.2	3	1	18:53		7.71	26.7	7.13	1.87	3.4
	HY/2012/08 2014-02-28		1	Small Wave	IS14	Bottom 15.2	3	2	18:53		7.57	26.8	7.15	1.87	13.4
	HY/2012/08 2014-02-28			Small Wave	IS14	Surface 1	1	1	17:52		7.69	26.5	7.73	1.66	4.1
	HY/2012/08 2014-02-28			Small Wave	IS15	Surface 1	1	2	17:52		7.71	26.6	7.75	1.64	3.2
TIVIOLINE	111/2012/00 2014-02-20	IVIIU-1 100U	Cloudy	Joinali Wave	רו טון	Journace 1			11.02	11	11.11	 ∠ 0.0	11.13	1.U T	J.Z

TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	IS15	Middle 6.3	2	T ₁	17:52	17.1	7.74	26.7	7.58	1.73	3.9
	HY/2012/08 2014-02-28			Small Wave	IS15	Middle 6.3	2	2		17.2	7.76	26.8	7.6	1.75	3.7
	HY/2012/08 2014-02-28			Small Wave	IS15	Bottom 11.5	3	1		17.3	7.79	26.9	7.33	1.88	2.6
	HY/2012/08 2014-02-28			Small Wave	IS15	Bottom 11.5	3	2	_	17.4	7.81	26.8	7.35	1.9	2.4
	HY/2012/08 2014-02-28			Small Wave	SR8	Surface 1	1			17	7.73	26.5	8.24	1.67	3.6
	HY/2012/08 2014-02-28			Small Wave	SR8	Surface 1	1	2		17	7.71	26.5	8.26	1.66	3.2
	HY/2012/08 2014-02-28			Small Wave	SR8	Middle	2	1	17:22		1		0.20	1	10.12
_	HY/2012/08 2014-02-28			Small Wave	SR8	Middle	2	2	17:22						
	HY/2012/08 2014-02-28			Small Wave	SR8	Bottom 4.6	3	1		17.1	7.69	26.6	8.15	1.74	2.7
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	SR8	Bottom 4.6	3	2	17:22	17.2	7.71	26.7	8.13	1.76	4.1
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	SR9	Surface 1	1	1	17:37	17	7.74	26.5	7.92	1.8	4
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	SR9	Surface 1	1	2	17:37	17.1	7.72	26.5	7.94	1.78	4.6
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	SR9	Middle	2	1	17:37						
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	SR9	Middle	2	2	17:37						
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	SR9	Bottom 4.9	3	1	17:37	17.2	7.66	26.6	7.79	1.84	3
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	SR9	Bottom 4.9	3	2	17:37	17.2	7.68	26.7	7.81	1.86	4.2
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	SR10	Surface 1	1	1	16:45	17	7.62	26.5	8.13	1.6	2.9
TMCLKL	HY/2012/08 2014-02-28	Mid-Flood	Cloudy	Small Wave	SR10	Surface 1	1	2	_	17.1	7.64	26.6	8.11	1.62	2.9
-	HY/2012/08 2014-02-28			Small Wave	SR10	Middle 7.8	2	1		17.2	7.72	26.7	8.02	1.67	2.6
_	HY/2012/08 2014-02-28			Small Wave	SR10	Middle 7.8	2	2		17.3	7.7	26.7	8	1.69	3.9
	HY/2012/08 2014-02-28			Small Wave	SR10	Bottom 14.5	3	1	_	17.4	7.66	26.8	7.94	1.77	2.5
	HY/2012/08 2014-02-28			Small Wave	SR10	Bottom 14.5	3	2	_	17.4	7.68	26.9	7.96	1.79	3.9
	HY/2012/08 2014-02-28		Cloudy	Small Wave	CS4	Surface 1	1	1		17	7.66	26.5	7.33	1.69	3.1
	HY/2012/08 2014-02-28		Cloudy	Small Wave	CS4	Surface 1	1	2	_	17.1	7.68	26.5	7.31	1.71	3.6
	HY/2012/08 2014-02-28		Cloudy	Small Wave	CS4	Middle 11.2	2	1	_	17.2	7.71	26.6	7.17	1.79	4.1
_	HY/2012/08 2014-02-28		Cloudy	Small Wave	CS4	Middle 11.2	2	2		17.3	7.73	26.7	7.19	1.81	3.3
	HY/2012/08 2014-02-28		Cloudy	Small Wave	CS4	Bottom 21.3	3	2		17.3	7.77	26.8	7.02	1.86	2.5
	HY/2012/08 2014-02-28		Cloudy	Small Wave	CS4 CS6	Bottom 21.3	3	1	_	17.4 17	7.79 7.73	26.8	1'	1.88	3.8
	HY/2012/08 2014-02-28 HY/2012/08 2014-02-28		Cloudy Cloudy	Small Wave Small Wave	CS6	Surface 1 Surface 1	1	2		17	7.75	26.5 26.6	7.93 7.91	1.75	2.9 3.7
	HY/2012/08 2014-02-28		Cloudy	Small Wave	CS6	Middle 6.8	2	1	13:50		7.82	26.7	7.87	1.88	2.6
	HY/2012/08 2014-02-28		Cloudy	Small Wave	CS6	Middle 6.8	2	2	13:50		7.84	26.8	7.85	1.86	2.4
	HY/2012/08 2014-02-28		Cloudy	Small Wave	CS6	Bottom 12.6	3	1	13:50		7.67	26.9	7.66	1.94	2.9
	HY/2012/08 2014-02-28		Cloudy	Small Wave	CS6	Bottom 12.6	3	2	13:50		7.69	26.9	7.68	1.96	3.9
	HY/2012/08 2014-02-28		Cloudy	Small Wave	IS12	Surface 1	1	1		17	7.69	26.5	7.32	1.73	2.9
	HY/2012/08 2014-02-28		Cloudy	Small Wave	IS12	Surface 1	1	2	11:24		7.71	26.5	7.3	1.75	3.3
	HY/2012/08 2014-02-28		Cloudy	Small Wave	IS12	Middle 7.4	2	1	11:24		7.82	26.6	7.07	1.79	3.1
	HY/2012/08 2014-02-28		Cloudy	Small Wave	IS12	Middle 7.4	2	2	11:24		7.8	26.6	7.05	1.81	2.7
	HY/2012/08 2014-02-28		Cloudy	Small Wave	IS12	Bottom 13.7	3	1	11:24		7.67	26.7	7	1.92	3.3
	HY/2012/08 2014-02-28		Cloudy	Small Wave	IS12	Bottom 13.7	3	2	11:24		7.69	26.8	7.02	1.9	2.3
	HY/2012/08 2014-02-28		Cloudy	Small Wave	IS13	Surface 1	1	1	11:44		7.73	26.5	7.52	1.67	4.2
TMCLKL	HY/2012/08 2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS13	Surface 1	1	2	11:44		7.71	26.6	7.5	1.69	2.3
TMCLKL	HY/2012/08 2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS13	Middle 5.9	2	1	11:44		7.83	26.7	7.37	1.73	3.2
TMCLKL	HY/2012/08 2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS13	Middle 5.9	2	2	11:44		7.81	26.7	7.39	1.75	2.3
TMCLKL	HY/2012/08 2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom 10.8	3	1	11:44		7.67	26.8	7.27	2	3.8
TMCLKL	HY/2012/08 2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom 10.8	3	2	11:44		7.69	26.9	7.29	2.01	2.5
TMCLKL	HY/2012/08 2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS14	Surface 1	1	1	11:03	17	7.73	26.5	7.36	1.82	2.7

TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS14	Surface 1		1	2	11:03	17.1	7.75	26.6	7.38	1.84	2.5
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS14	Middle 8	}	2	1	11:03	17.2	7.8	26.7	7.25	1.87	2.7
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS14	Middle 8		2	2	11:03	17.3	7.79	26.8	7.23	1.89	2.3
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS14	Bottom 1	5	3	1	11:03	17.4	7.67	26.9	7.06	1.92	2.5
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS14	Bottom 1	5	3	2	11:03	17.4	7.69	26.8	7.08	1.94	4.1
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS15	Surface 1		1	1	12:05	17	7.67	26.5	7.69	1.69	2.2
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS15	Surface 1		1	2	12:05	17	7.69	26.5	7.67	1.71	2.2
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS15	Middle 6	5.2	2	1	12:05	17.1	7.73	26.6	7.52	1.77	3.8
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS15	Middle 6	5.2	2	2	12:05	17.2	7.75	26.7	7.54	1.79	3.9
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom 1	1.3	3	1	12:05	17.3	7.8	26.8	7.26	1.93	2.4
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom 1	1.3	3	2	12:05	17.3	7.82	26.8	7.28	1.95	2.1
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR8	Surface 1		1	1	12:40	17	7.69	26.5	8.21	1.73	2.5
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR8	Surface 1		1	2	12:40	17.1	7.71	26.6	8.19	1.71	3.5
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR8	Middle		2	1	12:40						
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR8	Middle		2	2	12:40						
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom 4	.4	3	1	12:40	17.2	7.77	26.7	8	1.8	6.5
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom 4	.4	3	2	12:40	17.3	7.79	26.7	8.02	1.82	5
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR9	Surface 1		1	1	12:25	17	7.7	26.5	7.88	1.84	3.9
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR9	Surface 1		1	2	12:25	17.1	7.73	26.6	7.9	1.86	2.8
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR9	Middle		2	1	12:25						
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR9	Middle		2	2	12:25						
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR9	Bottom 4	.6	3	1	12:25	17.2	7.66	26.7	7.73	1.9	3.4
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR9	Bottom 4	.6	3	2	12:25	17.3	7.68	26.7	7.7	1.92	2.8
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR10	Surface 1		1	1	13:15	17	7.67	26.5	8.04	1.66	2.7
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR10	Surface 1		1	2	13:15	17.1	7.69	26.5	8.06	1.68	2.9
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR10	Middle 7		2	1		17.2	7.72	26.6	7.97	1.73	3.7
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR10	Middle 7	7.7	2	2	13:15	17.3	7.74	26.7	7.95	1.75	4
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR10	Bottom 1	4.3	3	1	13:15	17.4	7.8	26.8	7.87	1.82	3.6
TMCLKL	HY/2012/08	2014-02-28	Mid-Ebb	Cloudy	Small Wave	SR10	Bottom 1	4.3	3	2	13:15	17.4	7.81	26.9	7.89	1.83	2.3

Appendix J

Impact Dolphin Monitoring Survey

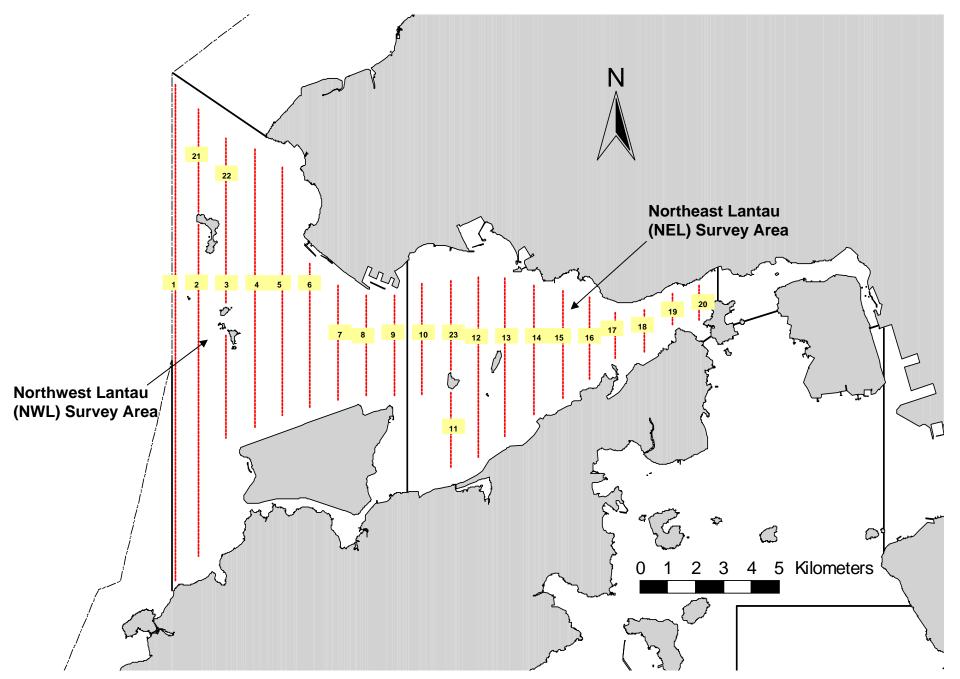


Figure 1. Transect Line Layout in Northwest and Northeast Lantau Survey Areas

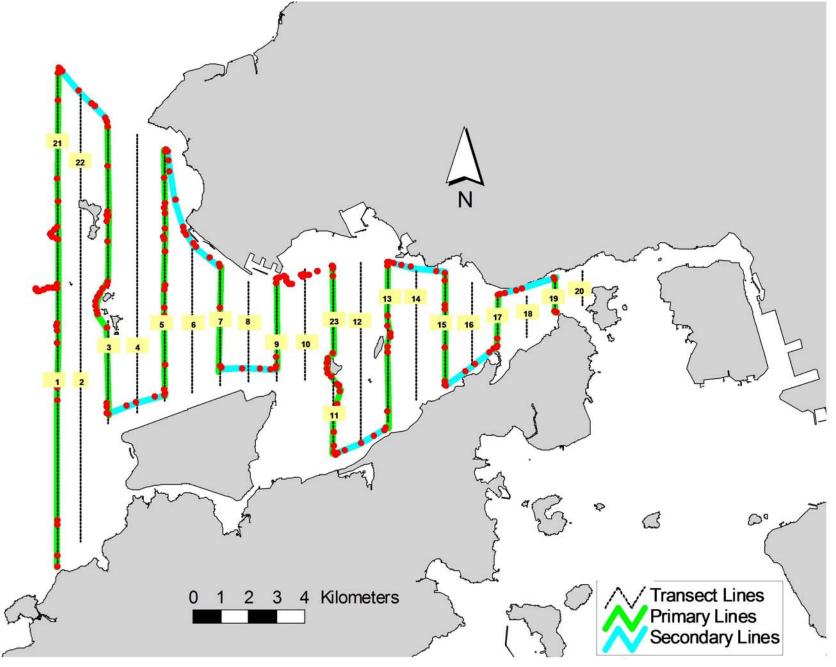


Figure 2. Survey Route on February 6th, 2014 (from HKLR03 project)

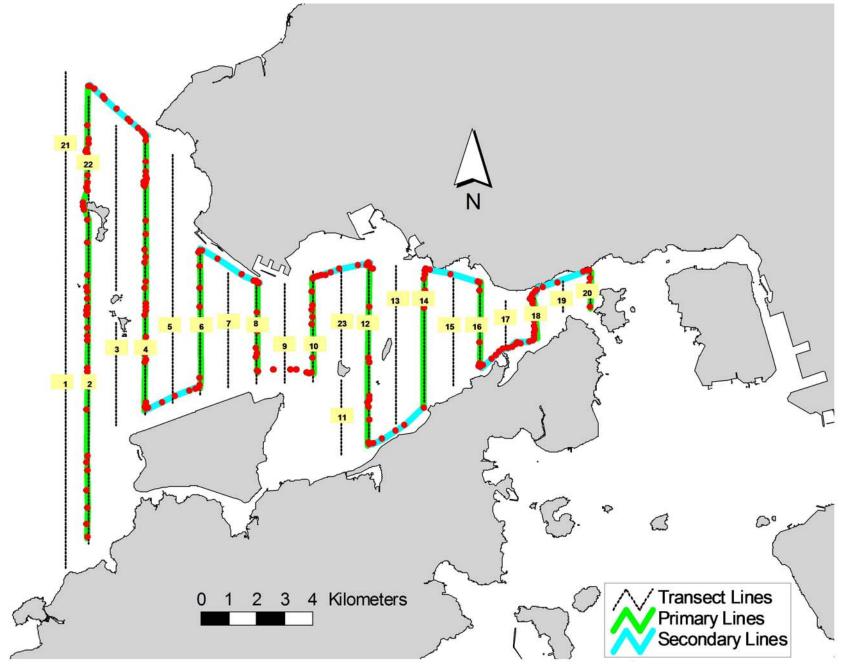


Figure 3. Survey Route on February 12th, 2014 (from HKLR03 project)

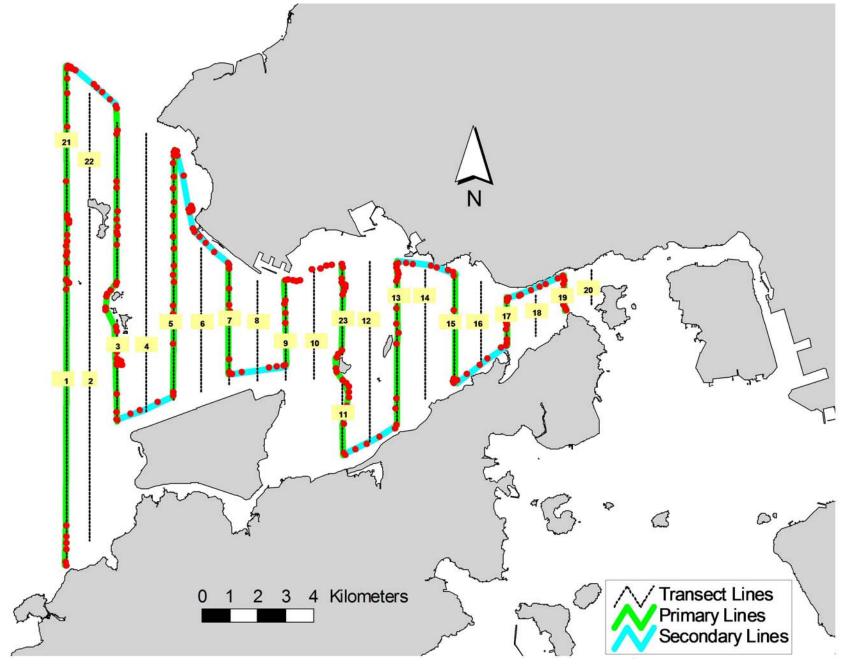


Figure 4. Survey Route on February 14th, 2014 (from HKLR03 project)

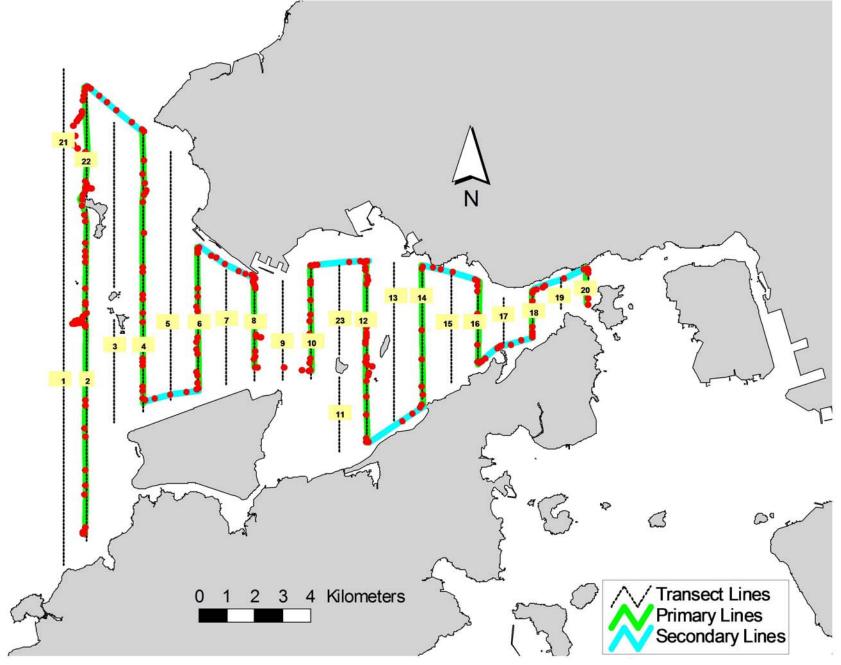


Figure 5. Survey Route on February 20th, 2014 (from HKLR03 project)

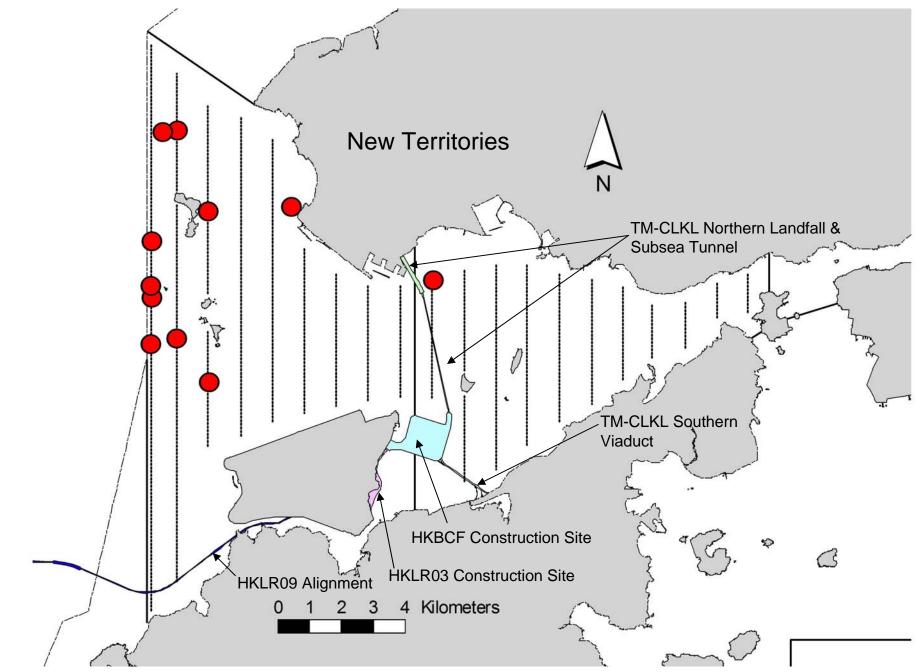


Figure 6. Distribution of Chinese White Dolphin Sightings During February 2014 HKLR03 Monitoring Surveys

Appendix I. HKLR03 Survey Effort Database (February 2014)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
6-Feb-14	NW LANTAU	1	1.68	WINTER	STANDARD 31516	HKLR	Р
6-Feb-14	NW LANTAU	2	35.03	WINTER	STANDARD 31516	HKLR	Р
6-Feb-14	NW LANTAU	3	2.90	WINTER	STANDARD 31516	HKLR	Р
6-Feb-14	NW LANTAU	2	11.99	WINTER	STANDARD 31516	HKLR	S
6-Feb-14	NW LANTAU	3	1.20	WINTER	STANDARD 31516	HKLR	S
6-Feb-14	NE LANTAU	1	5.59	WINTER	STANDARD 31516	HKLR	Р
6-Feb-14	NE LANTAU	2	8.66	WINTER	STANDARD 31516	HKLR	Р
6-Feb-14	NE LANTAU	3	2.60	WINTER	STANDARD 31516	HKLR	Р
6-Feb-14	NE LANTAU	1	4.45	WINTER	STANDARD 31516	HKLR	S
6-Feb-14	NE LANTAU	2	6.50	WINTER	STANDARD 31516	HKLR	S
12-Feb-14	NE LANTAU	2	13.78	WINTER	STANDARD 31516	HKLR	Р
12-Feb-14	NE LANTAU	3	5.91	WINTER	STANDARD 31516	HKLR	Р
12-Feb-14	NE LANTAU	1	2.02	WINTER	STANDARD 31516	HKLR	S
12-Feb-14	NE LANTAU	2	5.36	WINTER	STANDARD 31516	HKLR	S
12-Feb-14	NE LANTAU	3	3.53	WINTER	STANDARD 31516	HKLR	S
12-Feb-14	NW LANTAU	2	11.72	WINTER	STANDARD 31516	HKLR	Р
12-Feb-14	NW LANTAU	3	15.87	WINTER	STANDARD 31516	HKLR	Р
12-Feb-14	NW LANTAU	2	3.67	WINTER	STANDARD 31516	HKLR	S
12-Feb-14	NW LANTAU	3	7.72	WINTER	STANDARD 31516	HKLR	S
14-Feb-14	NE LANTAU	2	11.72	WINTER	STANDARD 31516	HKLR	Р
14-Feb-14	NE LANTAU	3	5.58	WINTER	STANDARD 31516	HKLR	Р
14-Feb-14	NE LANTAU	2	7.68	WINTER	STANDARD 31516	HKLR	S
14-Feb-14	NE LANTAU	3	2.72	WINTER	STANDARD 31516	HKLR	S
14-Feb-14	NW LANTAU	2	17.02	WINTER	STANDARD 31516	HKLR	Р
14-Feb-14	NW LANTAU	3	24.77	WINTER	STANDARD 31516	HKLR	Р
14-Feb-14	NW LANTAU	2	9.82	WINTER	STANDARD 31516	HKLR	S
14-Feb-14	NW LANTAU	3	2.18	WINTER	STANDARD 31516	HKLR	S
20-Feb-14	NW LANTAU	3	22.68	WINTER	STANDARD 31516	HKLR	P
20-Feb-14	NW LANTAU	4	6.16	WINTER	STANDARD 31516	HKLR	Р
20-Feb-14	NW LANTAU	3	7.31	WINTER	STANDARD 31516	HKLR	S
20-Feb-14	NE LANTAU	2	17.92	WINTER	STANDARD 31516	HKLR	Р
20-Feb-14	NE LANTAU	3	2.19	WINTER	STANDARD 31516	HKLR	P S
20-Feb-14	NE LANTAU	1 2	0.97	WINTER	STANDARD 31516 STANDARD 31516	HKLR	S
20-Feb-14	NE LANTAU		8.94	WINTER	314ND4KD 31516	HKLR	3

Appendix II. HKLR03 Chinese White Dolphin Sighting Database (February 2014)

(Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association, P/S: Sighting Made on Primary/Secondary Lines

DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
06-Feb-14	1	1040	2	NW LANTAU	2	895	ON	HKLR	822535	804645	WINTER	HANG	Р
06-Feb-14	2	1049	4	NW LANTAU	2	515	ON	HKLR	823908	804658	WINTER	NONE	Р
06-Feb-14	3	1109	2	NW LANTAU	2	422	ON	HKLR	825591	804672	WINTER	NONE	Р
06-Feb-14	4	1204	3	NW LANTAU	1	888	ON	HKLR	826473	806445	WINTER	NONE	Р
06-Feb-14	5	1428	4	NE LANTAU	2	ND	OFF	HKLR	824423	813528	WINTER	NONE	
12-Feb-14	1	1449	1	NW LANTAU	2	290	ON	HKLR	828878	805462	WINTER	NONE	Р
14-Feb-14	1	1237	1	NW LANTAU	2	ND	OFF	HKLR	826601	809051	WINTER	NONE	
14-Feb-14	2	1348	4	NW LANTAU	3	133	ON	HKLR	821401	806466	WINTER	NONE	Р
14-Feb-14	3	1525	1	NW LANTAU	3	112	ON	HKLR	824262	804649	WINTER	NONE	Р
20-Feb-14	1	1046	7	NW LANTAU	3	72	ON	HKLR	822688	805449	WINTER	NONE	Р
20-Feb-14	2	1135	7	NW LANTAU	3	648	ON	HKLR	828813	805029	WINTER	NONE	Р

Appendix III. Individual dolphins identified during HKLR03 monitoring surveys in February 2014

ID#	DATE	STG#	AREA
CH34	20/02/14	1	NW LANTAU
EL01	06/02/14	5	NE LANTAU
NL24	20/02/14	1	NW LANTAU
NL93	20/02/14	2	NW LANTAU
NL98	20/02/14	1	NW LANTAU
NL120	06/02/14	5	NE LANTAU
NL136	20/02/14	2	NW LANTAU
NL139	20/02/14	1	NW LANTAU
NL165	20/02/14	1	NW LANTAU
NL202	06/02/14	3	NW LANTAU
NL210	14/02/14	1	NW LANTAU
NL259	20/02/14	2	NW LANTAU
NL260	20/02/14	2	NW LANTAU
NL261	06/02/14	5	NE LANTAU
NL284	20/02/14	1	NW LANTAU
NL286	06/02/14	3	NW LANTAU
NL296	20/02/14	2	NW LANTAU

Appendix IV. Photographs of Identified Individual Dolphins in February 2014 (HKLR03)

Appendix IV. (cont'd)

Contract No. HY/2012/08 Tuen Mun-Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section Dolphin Intrusion Report

Date	20-Feb-14	Time	10:55 - 11:50				
Sighting No.	HY/2012/08_2014	40220_01	_				
Sighting Dist	ance (meters)	~200 to 250m.					
Within the DEZ of the dredging barge platform (Crown Asia 1) at Portion N-b (see Figure 1).							
Species Chinese White Dolphin							
	Finless Porpoise						
	Others						
Group Size	3						
Beaufort <u>2</u>							
Survey Area Dolphin Exclusion Zone for the dredging barge at Portion N-b.							
Survey Type EM&A - Dolphin Exclusion Zone Monitoring during daylight hours.							

Chronological Actions Taken

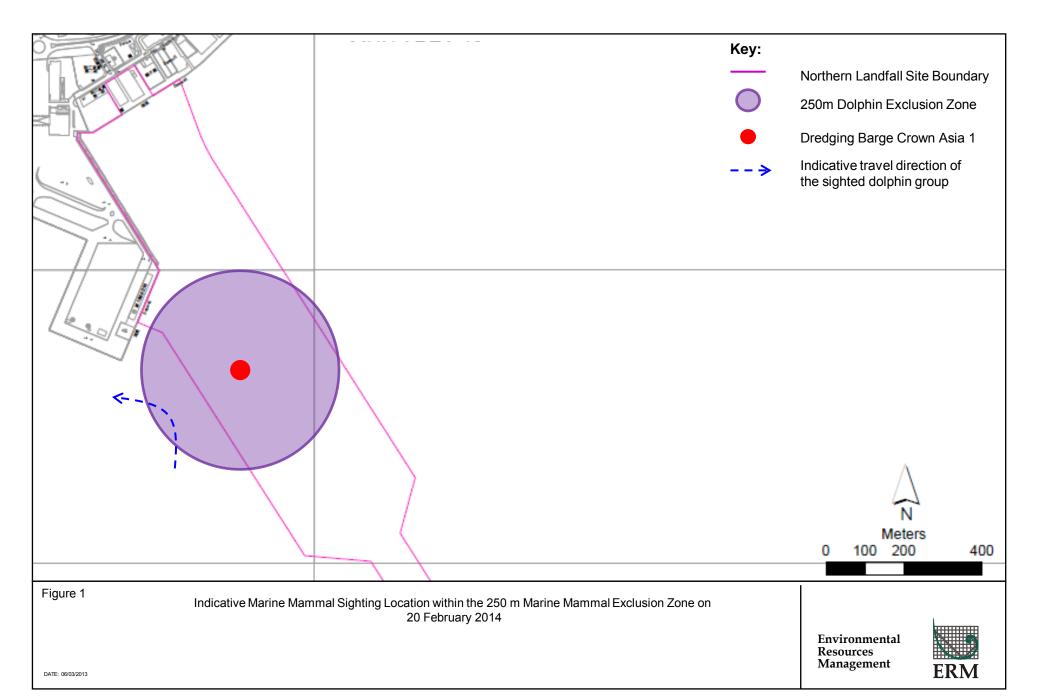
10:55 Dolphins with a group size of 3 were spotted outside the DEZ by the Marine Mammal Observer (MMO) from ~300m of the dredging barge sighting platform at Portion N-b.

10:56 Two of the dolphins from the group entered the 250m DEZ. The Contractor was informed by the MMO and the marine construction works were subsequently ceased by the Contractor at 10:56.

11:00 The remaining dolphin of the group entered the 250m DEZ.

11:00 SORs were informed by the Contractor about the intrusion event.

11:11 ET notified ENPO about the intrusion event via text message.


10:56 to 11:20 Dolphins remained present inside the DEZ (~200 to 250m) of the dredging barge work front. The dolphin group was being closely monitored by the MMO on their traveling route and direction.

11:20 The dolphin group left the DEZ.

11:23 SORs, Contractor and ENPO were informed by ET about the intrusion event via email.

11:20 to 11:50 The DEZ and surrounding area was continuously clear of dolphin as confirmed by the MMO during the 30 minutes of *post hoc* DEZ re-sighting monitoring.

11:50 Marine construction works were resumed after 30 minutes of *post hoc* DEZ re-sighting monitoring with no dolphin re-sighting.

Appendix K

Event and Action Plan

Event and Action Plan for Impact Air Monitoring

				Action				
_		ET (a)		IEC (a)		SOR (a)		Contractor(s)
Action Level								
Exceedance recorded	1. 2.	Identify the source. Repeat measurement to confirm finding. If two consecutive measurements exceed Action Level, the	1.	Check monitoring data submitted by the ET. Check the Contractor's	1.	Confirm receipt of notification of failure in writing.	1.	Rectify any unacceptable practice Amend working
	3	exceedance is then confirmed. Inform the IEC and the SOR.	3.	working method. If the exceedance is	2.	Notify the Contractor. Ensure remedial measures	3	methods if appropriate If the exceedance is
	4.	Investigate the cause of exceedance and check Contractor's working procedures to determine possible mitigation to be implemented.	<i>3</i> .	confirmed to be Project related after investigation, discuss with the ET and the	٥.	properly implemented.	٥.	confirmed to be Project related, submit proposals for remedial
	5.	If the exceedance is confirmed to be Project related after investigation, increase monitoring frequency to daily.	4	Contractor on possible remedial measures.				actions to IEC within 3 working days of
	6. 7	Discuss with the IEC and the Contractor on remedial actions required. If exceedance continues, arrange meeting with the IEC	4.	Advise the SOR on the effectiveness of the proposed remedial measures.			4.	notification Implement the agreed
	8.	and the SOR If exceedance stops, cease additional monitoring.	5.	Supervisor implementation of remedial measures.			5.	proposals Amend proposal if appropriate

Limit Level Exceedance recorded 1. Identify 2. Repeat two cor Level, t 3. Inform Contrac 4. Investig check C	fy the source. It measurement to confirm finding. If consecutive measurements exceed Limit the exceedance is then confirmed. In the IEC, the SOR, the DEP and the	1. 2. 3.	Check monitoring data submitted by the ET. Check Contractor's working method.	1.	SOR (a) Confirm receipt of notification of failure in writing.	1.	Contractor(s) Take immediate action to avoid further
Exceedance recorded 1. Identify 2. Repeat two cor Level, t 3. Inform Contrac 4. Investig check C	It measurement to confirm finding. If consecutive measurements exceed Limit the exceedance is then confirmed. In the IEC, the SOR, the DEP and the		submitted by the ET. Check Contractor's working method.	1.	notification of failure in	1.	to avoid further
2. Repeat two cor Level, t 3. Inform Contrac 4. Investig check C	It measurement to confirm finding. If consecutive measurements exceed Limit the exceedance is then confirmed. In the IEC, the SOR, the DEP and the		submitted by the ET. Check Contractor's working method.	1.	notification of failure in	1.	to avoid further
implem 5. If the exprelated monitor 6. Carry of workin mitigat 7. Arrang to discuss the second monitor of the	rigate the cause of exceedance and Contractor's working procedures to mine possible mitigation to be mented.	4.5.	If the exceedance is confirmed to be Project related after investigation, discuss with the ET and the Contractor on possible remedial measures. Advise the SOR on the effectiveness of the proposed remedial measures. Supervisor implementation of remedial measures.	4. 5.	Notify the Contractor. If the exceedance is confirmed to be Project related after investigation, in consultation with the IEC, agree with the Contractor on the remedial measures to be implemented. Ensure remedial measures are properly implemented. If exceedance continues, consider what activity of the work is responsible and instruct the Contractor to stop that activity of work until the exceedance is abated.	 3. 4. 5. 	exceedance. If the exceedance is confirmed to be Projected after investigation, submit proposals for remedia actions to IEC within working days of notification. Implement the agreed proposals. Amend proposal if appropriate. Stop the relevant activity of works as determined by the SC until the exceedance is abated.

Note: (a) ET - Environmental Team; IEC - Independent Environmental Checker; SOR - Supervising Officer's Representative

Event & Action Plan for Water Quality

Event	ET I	eader	IEC		SO	R	Coı	ntractor
Action level being exceeded by one sampling day	 2. 3. 4. 	Repeat <i>in situ</i> measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor and SOR; Check monitoring data, all plant, equipment and Contractor's working methods.	1.	Check monitoring data submitted by ET and Contractor's working methods.	2.	Confirm receipt of notification of non-compliance in writing: Notify Contractor.	 2. 3. 	Inform the SOR and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Amend working methods if appropriate.
Action level being exceeded by two or more consecutive sampling days	 2. 3. 4. 6. 7. 	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SOR and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SOR and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level;	 2. 3. 	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly; Supervise the implementation of mitigation measures.	 2. 3. 	Discuss with IEC on the proposed mitigation measures; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures.	2.	Inform the Supervising Officer and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR; Implement the agreed
Limit level being exceeded	1.	Repeat measurement on next day of	1.	Check monitoring data	1.	Confirm receipt of	1.	mitigation measures. Inform the SOR and
by one sampling day	1.	exceedance to confirm findings;		submitted by ET and		notification of failure in	1.	confirm notification of the

Event	ET I	Leader	IEC		SO	R	Cor	ntractor
	 2. 3. 4. 6. 	Identify source(s) of impact; Inform IEC, contractor, SOR and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SOR and Contractor;	2.	Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly.	2.	writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to review the working methods.	 3. 4. 	non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR.
Limit level being exceeded by two or more consecutive sampling days	 2. 3. 4. 6. 7. 	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SOR and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SOR and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days;	 2. 3. 4. 	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the SOR accordingly; Supervise the implementation of mitigation measures.	 2. 3. 5. 	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level.	 2. 3. 4. 5. 	Take immediate action to avoid further exceedance; Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

Note: ET – Environmental Team, IEC – Independent Environmental Checker, SOR – Supervising Officer's Representative

Event/Action Plan for Impact Dolphin Monitoring

EVENT		ACTION*		
	ET	IEC	SOR	Contractor
Action Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, SOR and Contractor; Check monitoring data. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and finding with the ET and the Contractor. 	 Discuss monitoring with the IEC and any other measures proposed by the ET; If SOR is satisfied with the proposal of any other measures, SOR to signify the agreement in writing on the measures to be implemented. 	 Inform the SOR and confirm notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SOR; Implement the agreed measures.
Limit Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, SOR and 	 Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. If SOR is satisfied with the 	 Inform the SOR and confirm notification of the non-compliance in writing; Attend the meeting to discuss with ET, IEC and SOR the necessity of additional dolphin monitoring and any other

EVENT		ACTION*		
	ET	IEC	SOR	Contractor
	 Identify source(s) of impact; Inform the IEC, SOR and Contractor of findings; Check monitoring data; Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary. 	Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. 4. Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise SOR of the results and findings accordingly. 5. Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise SOR the results and findings accordingly.	proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, SOR to signify the agreement in writing on such proposals and any other mitigation measures. 3. Supervise the implementation of additional monitoring and/or any other mitigation measures.	potential mitigation measures. 3. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary. 4. Implement the agreed additional dolphin monitoring and/or any other mitigation measures.

Appendix L

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Appendix L Cumulative Statistics on Exceedances

		Total No. recorded in this reporting month	Total No. recorded since project commencement
1-Hr TSP	Action	2	21
	Limit	0	2
24-Hr TSP	Action	0	5
	Limit	0	1
Water Quality	Action	0	5
	Limit	0	0
Impact Dolphin	Action	1	1
Monitoring	Limit	0	0

Table Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period		Cumulative Statistics	
_	Complaints	Notifications of	Successful
		Summons	Prosecutions
This Reporting Month (Feb 2014)	0	0	0
Total No. received since project commencement	0	0	0

Email message

Environmental Resources Management

To ENVIRON - Hong Kong, Limited (ENPO)

16/F DCH Commercial Centre,

25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113

From ERM- Hong Kong, Limited

Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/08 Tuen Mun-Chek Lap

Kok Link-Northern Connection Sub-sea Tunnel

Section

Subject Notification of Exceedance for Air Quality

Impact Monitoring

Date 20 February 2014

Dear Sir or Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

0212330_12February2014_1hrTSP_Station ASR6

A total of one Action Level Exceedance was recorded on 12 February 2014.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us.

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/08 TUEN MUN - CHEK LAP KOK LINK NORTHERN CONNECTION SUB-SEA TUNNEL SECTION

Air Quality Impact Monitoring Notification of Exceedance

Log No.	0212330_12February2014_1hrTSP_Station ASR6							
o a		[Total No. of Exceedances = 1]						
Date		12 February 2014 (Measured)						
	19 Februar	ry 2014 (Laboratory results received by ERM)						
Monitoring Station	ASR6							
Parameter(s) with		1 k TCD						
Exceedance(s)		1-hr TSP						
Action Levels	1-hr TSP (μg/m³)	ASR6 = 338						
	24-hr TSP (μg/m³)	ASR6 = 238						
Limit Levels	1-hr TSP (μg/m³)	500						
	24-hr TSP (μg/m³) 260							
Measured Levels	Action Level Exceedance on 1-hr	TSP is observed at ASR6 (361 μ g/m³) during 1415 - 1515 hrs.						
Works Undertaken (at	On 12 February 2014, marine dre	dging works were carried out by one dredger Crown Asia 1 at						
the time of monitoring	Portion N-B. At the time of monitoring during 1415 to 1515 hrs, land-based works were							
event)	undertaken at Site WA-18 for the construction of site office and substation, and at Portion N6 for the							
	construction of CLP power station.							
Possible Reason for	The exceedance(s) are unlikely to be due to the Project, in view of the following:							
Action or Limit Level	Considering the relatively higher levels of 1-hour TSP between 1400 and 1600 hrs at all							
Exceedance(s)	monitoring stations, it is probably unlikely that the level of land-based construction works							
		under this Contract can cause increase in 1-hour TSP of this magnitude and scale. It is						
		ed exceedance for 1-hour TSP at ASR6 may represent sporadic event						
		sions and anthropogenic activities during afternoon rush hour at						
	Lung Mun Road and River							
		on diary provided by the Contractor, the majority of construction						
	e e	were marine-based with the dredging works being undertaken by						
	_) at Portion N-B, whilst only minor land-based construction works,						
		ite office and substation at WA-18 and the construction of CLP						
		6. All land-based constructions at WA-18 and Portion N6 were						
	considered to have minor e							
		n Level were observed at ASR6, the average 1-hr TSP levels at the						
		= 242 μg/m³) on 12 February 2014 were in compliance with the						
	= .	The 1-hr TSP at ASR6 returned to level below the Action/Limit						
	Levels on the same day.	The I is the late of the second the rection of the second control						
	-	onstruction works were carried out at the same works area on 5th						
	February while no exceeda							
	·	(Section 4.7.9.6), the operating chimneys of Butterfly Beach						
	-	entified as one of the point emission source in Tuen Mun, thus the						
		ar to be contributed largely by the stack emission from the Butterfly						
		causing by the construction works of the Project.						
Actions Taken / To Be	_	ensure all dust mitigating measures are provided at WA 18 and						
Taken		or for future trends in exceedances.						
Tukcii	TOTALOTTINO. THE ET WILL MOTHE	יו זטו זענעוב נובוועס ווו בגנבבעמוונבס.						

Remarks	The monitoring results, the locations of air quality monitoring stations, and construction works
	schedule are attached. Note wind data is not available due to power failure between 4 and 14
	February 2014.

Email message

Environmental Resources Management

To ENVIRON - Hong Kong, Limited (ENPO)

16/F DCH Commercial Centre,

25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113

From ERM- Hong Kong, Limited

Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/08 Tuen Mun-Chek Lap

Kok Link-Northern Connection Sub-sea Tunnel

Section

Subject Notification of Exceedance for Air Quality

Impact Monitoring

Date 25 February 2014

Dear Sir or Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

0212330_18February2014_1hrTSP_Station AQMS1

A total of one Action Level Exceedance was recorded on 18 February 2014.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us.

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/08 TUEN MUN – CHEK LAP KOK LINK – NORTHERN CONNECTION SUB-SEA TUNNEL SECTION

Air Quality Impact Monitoring Notification of Exceedance

Log No.	0212330	_18February2014_1hrTSP_Station AQMS1 [Total No. of Exceedances = 1]						
		[Total No. of Exceedances – 1]						
Date		18 February 2014 (Measured)						
	25 February 2014 (Laboratory results received by ERM)							
Monitoring Station		AQMS1						
Parameter(s) with		1-hr TSP						
Exceedance(s)		1-10 131						
Action Levels	1-hr TSP (μg/m³)	AQMS1 = 335						
	24-hr TSP (μg/m³)	AQMS1 = 213						
Limit Levels	1-hr TSP (μg/m³)	500						
	24-hr TSP (μg/m³) 260							
Measured Levels	Action Level Exceedance on 1-hr TSP is observed at AQMS1 (339 μg/m³) during 1436 - 1536 hrs.							
Works Undertaken (at	On 18 February 2014, marine dredging works were carried out by one dredger Crown Asia 1 at							
the time of monitoring	Portion N-B. At the time of monitoring during 1436 to 1536 hrs, land-based works were							
event)	undertaken at Site WA-18 for the construction of site office and substation, and at Portion N6 for the							
	construction of CLP power static	on.						

Possible Reason for	The exceedance(s) are unlikely to be due to the Project, in view of the following:
Action or Limit Level	Considering the relatively higher levels of 1-hour TSP between 1300 and 1500 hrs at all
Exceedance(s)	monitoring stations, it is probably unlikely that the level of land-based construction works
	under this Contract can cause increase in 1-hour TSP of this magnitude and scale. It is
	considered that the observed exceedance for 1-hour TSP at AQMS1 may represent sporadic
	event associated with traffic emissions and anthropogenic activities during afternoon rush
	hour at Lung Mun Road and River Trade Terminal.
	According to the construction diary provided by the Contractor, the majority of construction
	works on 18 February 2014 were marine-based with the dredging works being undertaken by
	one dredger (Crown Asia 1) at Portion N-B, whilst only minor land-based construction works,
	including construction of site office and substation at WA-18 and the construction of CLP
	power station at Portion N6. All land-based constructions at WA-18 and Portion N6 were
	considered to have minor effect on dust generation.
	Whilst exceedance of Action Level was observed at AQMS1, the average 1-hr TSP level at the
	monitoring station (AQMS1 = $193 \mu g/m^3$) on 18 February 2014 were in compliance with the
	Action and Limit Levels. The 1-hr TSP at AQMS1 returned to level below the Action/Limit
	Levels on the same day.
	With reference to the recorded wind direction (ranged between 289° and 305°, blowing from a
	North-Westerly direction) and wind speed (ranged from 2.56 to 4.33 m/s) during the period of
	the observed 1-hr TSP exceedance, Station AQMS1 is located upstream to the marine-based
	construction activities at dredging barge Crown Asia 1 at Portion N-B, and is located upstream
	from the land-based construction area (i.e. Site WA-18 and Portion N6), thus the observed
	exceedance should not be affected by the dust, if any, generated by the construction activities
	under this Contract.
	According to the air quality monitoring recorded by the closest EPD air monitoring station in The Difference of the Country of the Coun
	Tuen Mun on 18 February 2014, the levels of Respirable Suspended Particulates (RSP) from
	1400 to 1600 hrs were high (Tuen Mun RSP levels ranged from 203 to 388 μg/m³). The
	observed exceedance could be resulting from the area-wide scale pollution in Hong Kong.
	As stated in the EIA report (Section 4.2.3), the background TSP level of Tuen Mun is higher than the attendance of Hanne Konne the attendance and the attendance of the section of th
	than the other region of Hong Kong, thus the exceedance may be also contributed
	cumulatively by the other construction works / traffic within the Tuen Mun Area rather than
Actions Talson / Ta Da	causing by the construction works of the Project.
Actions Taken / To Be Taken	The Contractor was reminded to ensure all dust mitigating measures are provided at WA 18 and
	Portion N6. The ET will monitor for future trends in exceedances.
Remarks	The monitoring results, the locations of air quality monitoring stations, and construction works
	schedule are attached.

Appendix M

Waste Flow Table

Name of Department:	HyD	Contract No. / Works Order No.:	HY/2012/08_
---------------------	------------	---------------------------------	-------------

Monthly Summary Waste Flow Table for February 2014 [to be submitted not later than the 15th day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

		Actual Quantities of <u>Inert</u> Construction Waste Generated Monthly								
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Hard Rock and Large Broken Concrete	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill	Imported Fill to WA 23 & Reclamation Area (Rockfill 400)	Imported Fill to WA 23 & Reclamation Area (Rockfill Type A)	Imported Fill to RTT Barging Point	Marine Disposal (Cat. L)	Marine Disposal (Cat. M _P &M _F)
	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 m ³)	(in '000 m ³)
Jan	9.012	0.000	0.000	0.000	9.012	177.300	8.544	124.412	34.000	12.500
Feb	0.000	0.000	0.000	0.000	0.000	132.652	5.371	81.296	18.500	24.500
Mar										
Apr										
May										
Jun										
Sub-total										
Jul										
Aug										
Sep										
Oct										
Nov										
Dec										
Total	12.730	0.000	0.000	0.000	12.730	521.493	33.375	251.18	114.100	55.200

	Actual Quantities of Non-inert Construction Waste Generated Monthly									
Month	Me	tals	Paper/ cardbo	oard packaging	Plastics (see Note 3)		Chemical Waste		Others, e.g. General Refuse disposed at Landfill	
	(in '00	00kg)	(in 'C	000kg)	(in '(000kg)	(in '0	00kg)	(in '000ton)	
	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	
Jan	0.000	0.000	0.130	0.130	0.000	0.000	0.000	0.000	0.045	
Feb	0.000	0.000	0.000	0.000	0.000	0.000	0.020	0.020	0.028	
Mar										
Apr										
May										
Jun										
Sub-total										
Jul										
Aug										
Sep										
Oct										
Nov										
Dec										
Total	0.000	0.000	0.510	0.510	0.000	0.000	0.020	0.020	0.245	

	Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*								
Total Quantity Generated									
(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 m ³)	(in '000 m ³)		
5.000	0.000	0.000	0.000	5.000	180.000	5.000	40.000		

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*								
Metals	Metals Paper/ cardboard packaging Plastics (see Note 3) Chemical Waste General Refuse disposed of Landfill							
(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)				
0.000	0.050	0.000	0.000	0.100				

Notes:

- (1) The performance targets are given in the **ER Appendix 8J Clause 14** and the EM & A Manual(s).
- (2) The waste flow table shall also include C&D materials to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³. (**ER Part 8 Clause 8.8.5 (d) (ii)** refers).