

Contract No. HY/2012/08
Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section

> Ninth Quarterly Environmental Monitoring \mathcal{E} Audit (EM\&A) Report

26 August 2016
Environmental Resources Management
16/F, Berkshire House
25 Westlands Road
Quarry Bay, Hong Kong
Telephone 22713000
Facsimile 27235660

RAMBCLL ENVIRON

Ref．：HYDHZMBEEM00＿0＿4522L． 16
AECOM
By Fax（2293 6300）and By Post
Supervising Officer Representative＇s Office No． 8 Mong Fat Street，Tuen Mun，
New Territories，Hong Kong

Attention：Messrs．Edwin Ching／Andy Westmoreland

Dear Sirs，

Re：Agreement No．CE 48／2011（EP）

 Environmental Project Office for the HZMB Hong Kong Link Road，HZMB Hong Kong Boundary Crossing Facilities，and Tuen Mun－Chek Lap Kok Link－InvestigationContract No．HY／2012／08 TM－CLKL Northern Connection Sub－sea Tunnel Section Ninth Quarterly EM\＆A Report（Dec． 2015 －Feb．2015）

Reference is made to the Quarterly Environmental Monitoring and Audit（EM\＆A） Report（December 2015 －February 2016）（ET＇s ref．：＂0212330＿9th Quarterly EM\＆A＿20160826．doc＂dated 26 August 2016）certified by the ET Leader and provided to us via e－mail on 26 August 2016.

Please be informed that we have no adverse comments on the captioned quarterly EM\＆A report．

Thank you for your attention．Please do not hesitate to contact the undersigned or the ENPO Leader Mr．Y．H．Hui should you have any queries．

Yours sincerely，

F．C．Tsang
Independent Environmental Checker
Tuen Mun－Chek Lap Kok Link
c．c．HyD－Mr．Stephen Chan（By Fax： 3188 6614）
HyD－Mr．Matthew Fung（By Fax： 3188 6614）
AECOM－Mr．Conrad Ng（By Fax： 3922 9797）
ERM－Mr．Jovy Tam（By Fax： 2723 5660）
Dragages－Bouygues JV－Mr．C．F．Kwong（By Fax： 2293 7499）
Internal：DY，YH，CL，ENPO Site
Q：\Projects\HYDHZMBEEMOO\02＿Proj＿Mgt\02＿Corr\HYDHZMBEEM00＿0＿4522L．16．docx

Contract No. HY/2012/08 Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section

Ninth Quarterly Environmental Monitoring \& Audit (EM\&A) Report

Environmental Resources Management

16/F, Berkshire House 25 Westlands Road
Quarry Bay, Hong Kong
Telephone: (852) 22713000
Facsimile: (852) 27235660
E-mail: post.hk@erm.com
http://www.erm.com

Document Code: 0212330_9th Quarterly EM\&A_20160826.doc

Client: DBJV		$\begin{aligned} & \text { Project No: } \\ & 0212330 \end{aligned}$			
Summary: This document presents the Ninth Quarterly EM\&A Report for Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section.		Date: 26 August 2016			
		Approved by:			
		Mr Craig Reid Partner			
		Certified by:			
		Mr Jovy Tam ET Leader			
	$9^{\text {th }}$ Quarterly EM\&A Report	VAR	JT	CAR	26/08/16
Revision	Description	By	Checked	Approved	Date
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.		Distrib	rnal ic fidentia	Certifi	

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 SCOPE OF REPORT 2
1.3 ORGANIZATION STRUCTURE 2
1.4 Summary of Construction Works 3
2 EMEA RESULTS 5
2.1 AIR QUALITY 5
2.2 Water Quality Monitoring 7
2.3 DOLPHIN MONITORING 7
2.4 EMEA SITE INSPECTION 12
2.5 Waste Management Status 13
2.6 Environmental Licenses and Permits 14
2.7 Implementation Status of Environmental Mitigation Measures 16
2.8 Summary of Exceedances of the Environmental Quality Performance LIMIT 16
2.9 Summary of Complaints, Notification of Summons and Successful Prosecutions 16
3 FUTURE KEY ISSUES 18
3.1 Construction Activities for the Coming Quarter 18
3.2 Key Issues for the Coming Quarter 18
3.3 Monitoring Schedule for the Coming Quarter 18
4 CONCLUSIONS 19

APPENDIX A

APPENDIX B
$\begin{array}{ll}\text { Appendix C } & \text { Environmental Mitigation And } \\ & \text { EnHancement Measure Implementation }\end{array}$ Schedules (EMIS)

Action And Limit Levels
Monitoring Schedule
Air Quality Monitoring Results
Impact Dolphin Monitoring
Event And Action Plan
Cumulative statistics On Exceedance And COMPLAINT

APPENDIX J
Project Organization

CONSTRUCTION PROGRAMME

APPENDIXD
Appendix E
Appendix F
Appendix G
APPENDIX H
APPENDIXI

Waste Flow Table

Under Contract No. HY/2012/08, Dragages - Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of the Tuen Mun - Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM\&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET) in accordance with Environmental Permit No. EP-354/2009/A. Ramboll Environ Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO). Subsequent applications for variation of environmental permits (VEP), EP-354/2009/B, EP-354/2009/C and EP354/2009/D, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

The construction phase of the Project commenced on 1 November 2013 and will tentatively be completed by the end of 2018. The impact monitoring of the EM\&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

This is the Ninth Quarterly EM\&A report presenting the EM\&A works carried out during the period from 1 December 2015 to 29 February 2016 for the Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section (the "Project") in accordance with the Updated EM\&A Manual of the TM-CLK Link Project. As informed by the Contractor, the major activities in the reporting quarter included:

Land-based Works

- Box Culvert Extension at Works Area - Portion N-A;
- Construction of Cross Passage Tympanum - Portion N-A;
- Steel Bell Assembly and Installation - Portion N-C
- Construction of capping beam and base slab for Ventilation Shaft at Works Area - Portion N-C;
- TBM Tunnel Works at Works Area - Portion N-C;
- Excavation of sub-sea tunnel - Portion N-C; and
- Site preparation for Ventilation Shaft at Works Area - Portion S-C

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP Monitoring	30 sessions
1-hour TSP Monitoring	30 sessions
Impact Dolphin Monitoring	6 sessions
Joint Environmental Site Inspection	13 sessions

Implementation of Marine Mammal Exclusion Zone
There was no dredging, reclamation or marine sheet piling works in open waters during this reporting period. Thus, Passive Acoustic Monitoring (PAM) and the day-time monitoring of Dolphin Exclusion Zone (DEZ) by dolphin observers were not in effect during the reporting period.

Summary of Breaches of Action/Limit Levels

Breaches of Action and Limit Levels for Air Quality
No exceedances were recorded from the air quality monitoring in this reporting period.

Dolphin Monitoring

Whilst one limit level exceedance was observed for the quarterly dolphin monitoring data between December 2015 and February 2016, no unacceptable impact from the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations during the dolphin monitoring in this reporting quarter.

Environmental Complaints, Non-compliance \& Summons

No non-compliance with EIA recommendations, EP conditions and other requirements associated with the construction of this Contract was recorded in this reporting period.

No environmental complaint was received in this reporting period.
No environmental summons was received in this reporting period.

Reporting Change

There was no reporting change required in the reporting period.

Upcoming Works for the Next Reporting Period

Works to be undertaken in the coming quarterly period include the following:

Land-based works

- Box Culvert Extension at Works Area - Portion N-A;
- Construction of Cross Passage Tympanum - Portion N-A;
- TBM Tunnel Works at Works Area - Portion N-C;
- Excavation of sub-sea tunnel - Portion N-C; and
- Site formation and D-wall construction - Portions S-A, S-B and S-C

Future Key Issues

As informed by the Contractor, Phase I Reclamation works for the Northern Landfall was substantially completed in December 2014, a proposal letter was sent to EPD on 21 May 2015 to seek approval for the temporary suspension of Water Quality Monitoring. Subsequently, a letter from EPD on 5 June 2015 stated that they have no strong objection to the temporary suspension of the water quality monitoring. Water Quality Monitoring was suspended from 6 June 2015 effectively and will resume when Phase II Reclamation commences in the fourth quarter of 2016 tentatively.

Potential environmental impacts arising from the above upcoming construction activities in the coming quarterly period are expected to be mainly associated with dust, marine ecology and waste management issues.

1.1 BACKGROUND

According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong - Zhuhai - Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau - Tuen Mun - Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. ESB-175/2007) and the Technical Memorandum of the Environmental Impact Assessment Process (EIAOTM). The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number AEIAR-146/2009), an Environmental Permit (EP-354/2009) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (VEP) (EP-354/2009A) was issued on 8 December 2010. Subsequent applications for variation of environmental permits (VEP), EP-354/2009/B, EP354/2009/C and $E P-354 / 2009 / D$, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

Under Contract No. HY/2012/08, Dragages - Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of TMCLKL while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM\&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET) in accordance with Environmental Permit No. EP-354/2009/A. Ramboll Environ Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO).

Layout of the Contract components is presented in Figure 1.1.

The construction phase of the Contract commenced on 1 November 2013 and will tentatively be completed by 2018. The impact monitoring phase of the EM\&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

1.2
 SCOPE OF REPORT

This is the Ninth Quarterly EM\&A Report under the Contract No. HY/2012/08 Tuen Mun - Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section. This report presents a summary of the environmental monitoring and audit works from 1 December 2015 to 29 February 2016.

1.3 Organization Structure

The organization structure of the Contract is shown in Appendix A. The key personnel contact names and contact details are summarized in Table 1.1 below.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Highways Department	Engr 16/HZMB	Kenneth Lee	27624996	31886614
SOR (AECOM Asia Company	Chief Resident Engineer	Edwin Ching	24503111	24503099
Limited)		Andrew Westmoreland	24503511	24503099
ENPO / IEC (Ramboll Environ Hong	ENPO Leader	Y.H. Hui	35472133	34652899
Kong Ltd.)	IEC	F. C. Tsang	35472134	34652899
Contractor (Dragages - Bouygues Joint Venture)	Environmental Manager	C.F. Kwong	22937322	22937499
	Environmental Officer	Bryan Lee	22937323	22937499
	24-hour complaint hotline	Rachel Lam	22937330	
ET (ERM-HK)	ET Leader	Jovy Tam	22713113	27235660

The construction phase of this Contract was commenced on 1 November 2013. The three-month rolling construction programme is shown in Appendix B.

With reference to DBJV's information, details of major construction works carried out in this reporting period are summarized in Table 1.2.

The general layout plan of the site showing the detailed works areas is shown in Figure 1.2. The Environmental Sensitive Receivers in the vicinity of the Project are shown in Figure 1.3.

The implementation schedule of environmental mitigation measures is presented in Appendix C.

Table 1.2 Summary of Construction Activities Undertaken during the Reporting Period

Construction Activities Undertaken

Land-based Works
Portion N-A

- Box Culvert Extension
- Construction of Cross Passage Tympanum

Portion N-C

- Steel Bell Assembly and Installation
- Construction of capping beam and base slab for Ventilation Shaft
- TBM Tunnel Works
- Excavation of sub-sea tunnel

Portion S-C

- Site preparation for Ventilation Shaft

Figure 1.2 Locations of Construction Activities - December 2015 to February 2016

The EM\&A programme required environmental monitoring for air quality, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM\&A requirements and related findings for each component are summarized in the following sections

2.1 AIR QUALITY

As per the requirements under Condition 2.4 of $E P-354 / 2009 / D$, the Enhanced TSP Monitoring Plan has been prepared under Contract No. HY/2012/08.
Details of the monitoring plan are presented in the Enhanced TSP Monitoring Plan (1).

2.1.1 Monitoring Requirements and Equipment

In accordance with the Updated EM\&A Manual and the Enhanced TSP Monitoring Plan, impact 1-hour TSP monitoring was conducted three (3) times in every six (6) days and impact 24-hour TSP monitoring was carried out once in every six (6) days when the highest dust impact was expected. 1-hr and 24-hr TSP monitoring frequency was increased to three times per day every three days and daily every three days respectively as excavation works for launching shaft commenced on 24 October 2014.

High volume samplers (HVSs) were used to carry out the 1-hour and 24-hour TSP monitoring in the reporting quarter at the five (5) air quality monitoring stations in accordance with the requirements stipulated in the Updated EM\&A Manual (Figure 2.1; Table 2.1). Wind anemometer was installed at the rooftop of ASR5 for logging wind speed and wind direction. Details of the equipment deployed are provided in Table 2.2.

Table 2.1 Locations of Impact Air Quality Monitoring Stations and Monitoring Dates in this Reporting Period

Monitoring Station	Location	Description	Parameters \& Frequency	Monitoring
ASR1		Office	TSP monitoring	1, 4, 7, 10, 13, 16,
ASR5	Fireboat Station Pillar Point Fire Station	Office	- 1-hour Total Suspended Particulates (1-hour TSP, $\mu \mathrm{g} / \mathrm{m}^{3}$), 3 times in every 6	$\begin{aligned} & 19,22,25,28 \text { and } \\ & 31 \text { December } \\ & 2015 ; \end{aligned}$
AQMS1	Previous River Trade Golf	Bare ground	days - 24-hour Total Suspended	$\begin{aligned} & 3,6,9,12,15,18 \\ & 21,24,27 \text { and } 30 \end{aligned}$
ASR6 ASR10	Butterfly Beach Laundry	Office	Particulates (24-hour TSP, $\mu \mathrm{g} / \mathrm{m}^{3}$), daily for 24 -hour	January 2016; and $2,5,11,14,17,20$,
	Park	uses	Enhanced TSP monitoring (commenced on 24 October 2014) - 1-hour Total Suspended Particulates (1-hour TSP, $\left.\mu \mathrm{g} / \mathrm{m}^{3}\right), 3$ times in every 3 days - 24-hour Total Suspended Particulates (24-hour TSP, $\mu \mathrm{g} / \mathrm{m}^{3}$), daily for 24 -hour in every 3 days	February 2016

Table 2.2 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler	Tisch Environmental Mass Flow Controlled
(1-hour TSP and 24-hour TSP)	Total Suspended Particulate (TSP) High Wolume Sampler (Model No. TE-5170)
Wind Meter	Davis (Model: Weather Wizard III (S/N:
	WE90911A30)

2.1.2 Action \& Limit Levels

The Action and Limit Levels of the air quality monitoring is provided in Appendix D. The Event and Action plan is presented in Appendix H.

2.1.3 Monitoring Schedule for the Reporting Quarter

The schedules for air quality monitoring in the reporting quarter are provided in Appendix E. No construction works was carried out from 8 February 2016 to 10 February 2016, thus Impact Air Quality Monitoring was postponed to 11 February 2016.

2.1.4 Results and Observations

Impact air quality monitoring was conducted at all designated monitoring stations in the reporting period under favourable weather conditions. The
major dust sources in the reporting period include construction activities under the Contract as well as nearby traffic emissions.

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Tables 2.3 and 2.4, respectively. Monitoring results are presented graphically in Appendix F and detailed impact air quality monitoring data were reported in the Twenty-sixth to Twenty-eighth Monthly EMEA Report.

Table 2.3 Summary of 1-hour TSP Monitoring Results in this Reporting Period

Month/Year	Station	Average $\left(\mu \mathrm{g} / \mathbf{m}^{3}\right)$	Range $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Action Level $\left(\mu \mathrm{g} / \mathbf{m}^{3}\right)$	Limit Level $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
December	ASR1	145	$54-283$	331	500
2015 to	ASR 5	164	$56-271$	340	500
February	AQMS1	113	$63-231$	335	500
2016	ASR6	133	$59-229$	338	500
	ASR10	91	$42-202$	337	500

Table 2.4 Summary of 24-hour TSP Monitoring Results in this Reporting Period

Month $/$ Year	Station	Average $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Range $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Action Level $\left(\mu \mathrm{g} / \mathbf{m}^{3}\right)$	Limit Level $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
December	ASR1	89	$52-117$	213	260
2015 to	ASR 5	97	$52-133$	238	260
February	AQMS1	71	$53-112$	213	260
2016	ASR6	78	$48-141$	238	260
	ASR10	63	$45-116$	214	260

No Action or Limit Level exceedances for 1-hr TSP were recorded. No Action or Limit Level exceedances for 24 -hr TSP were recorded. Summary of Exceedances for Air Quality Impact Monitoring in this Reporting Quarter is detailed in Table 2.13.

2.2 Water Quality Monitoring

As informed by the Contractor, Phase I Reclamation works for the Northern Landfall was substantially completed in December 2014, a proposal letter was sent to EPD on 21 May 2015 to seek approval for the temporary suspension of Water Quality Monitoring. Subsequently, a letter from EPD on 5 June 2015 stated that they have no strong objection to the temporary suspension of the water quality monitoring. Water Quality Monitoring was suspended from 6 June 2015 effectively and will resume when Phase II Reclamation commences in the fourth quarter of 2016 tentatively.

2.3 Dolphin Monitoring

2.3.1 Monitoring Requirements

Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the dolphins. In order to fulfil the EM\&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data
collected by HyD's Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge. Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities on the monthly basis is adopted to avoid duplicates of survey effort.

2.3.2 Monitoring Equipment

Table 2.5 summarizes the equipment used for the impact dolphin monitoring.

Table 2.5 Dolphin Monitoring Equipment

Equipment	Model
Global Positioning System (GPS)	Garmin 18X-PC
	Geo One Phottix
Camera	Nikon D90 300m 2.8D fixed focus
	Nikon D90 20-300m zoom lens
Laser Binoculars	Infinitor LRF 1000
Marine Binocular	Bushell 7×50 marine binocular with compass
Vessel for Monitoring	and reticules
	65 foot single engine motor vessel with viewing platform 4.5 m above water level

2.3.3 Monitoring Parameter, Frequencies \& Duration

Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

2.3.4 Monitoring Location

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in Figure 2.2. The co-ordinates of all transect lines are shown in Table 2.6 below.

Table 2.6 Impact Dolphin Monitoring Line Transect Co-ordinates

Line No.		Easting	Northing	Line No.		Easting	Northing
1	Start Point	804671	815456	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805475	815913	14	Start Point	817537	820220
2	End Point	805477	826654	14	End Point	817537	824613
3	Start Point	806464	819435	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	819771	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	820220	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	820466	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	820880	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	821303	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	820872	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807				
12	End Point	815542	824882				

2.3.5 Action \& Limit Levels

The Action and Limit levels of dolphin impact monitoring are shown in Appendix D. The Event and Action plan is presented in Appendix H.

2.3.6 Monitoring Schedule for the Reporting Period

The dolphin monitoring schedules for the reporting period are shown in Appendix E.

2.3.7 Results \mathcal{E} Observations

A total of 907.45 km of survey effort was conducted, with 95.1% of the total survey effort being conducted under favourable weather conditions (ie Beaufort Sea State 3 or below with good visibility) in this reporting quarter. Amongst the two areas, 347.07 km and 560.38 km of survey effort were conducted from NEL and NWL survey areas, respectively. The total survey effort conducted on primary and secondary lines were 655.90 km and 251.55 km , respectively. The survey efforts are summarized in Appendix G.

A total of 14 groups of 57 Chinese White Dolphins sightings were recorded during the six sets of surveys in this reporting quarter. All except one dolphin sightings were made during on-effort search, and ten of the thirteen on-effort dolphin sightings were made on primary lines. During this reporting quarter, all dolphin groups were sighted in NWL, while none was sighted at all in NEL.

Encounter rates of Chinese White Dolphins are deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below with good visibility) in the reporting quarter with the results and comparison with baseline results present in Tables 2.7 and 2.8.

Table 2.7 Individual Survey Event Encounter Rates

		Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of survey effort)	Encounter rate (ANI) (no. of dolphins from all oneffort sightings per 100 km of survey effort)
		Primary Lines Only	Primary Lines Only
NEL	Set 1: Dec $2^{\text {nd }} / 7^{\text {th }}$	0.00	0.00
	Set 2: Dec 9th $/ 15^{\text {th }}$	0.00	0.00
	Set 3: Jan $8^{\text {th }} / 11^{\text {th }}$	0.00	0.00
	Set 4: Jan 13 ${ }^{\text {th }} / 19^{\text {th }}$	0.00	0.00
	Set 5: Feb 2nd $3^{\text {rd }}$	0.00	0.00
	Set 6: Feb 16 ${ }^{\text {th }} / 2^{\text {nd }}$	0.00	0.00
NWL	Set 1: Dec $2^{\text {nd }} / 7^{\text {th }}$	4.12	17.84
	Set 2: Dec 9th $/ 15^{\text {th }}$	4.78	11.94
	Set 3: Jan $8^{\text {th }} / 11^{\text {th }}$	2.79	9.78
	Set 4: Jan 13 ${ }^{\text {th }} / 19^{\text {th }}$	1.36	10.90
	Set 5: Feb 2nd $3^{\text {rd }}$	1.35	6.75
	Set 6: Feb 16 ${ }^{\text {th }} / 22^{\text {nd }}$	1.44	8.66

Note: Dolphin Encounter Rates are deduced from the Two Sets of Surveys (Two Surveys in Each Set) in the reporting quarter in Northeast (NEL) and Northwest Lantau (NWL)

Table 2.8 Quarterly Average Encounter Rates

	Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of survey effort)		Encounter rate (ANI) (no. of dolphins from all on-effort sightings per 100 km of survey effort)	
	December 2015 -February 2016September - November 2011	December 2015 -February 2016	September - November 2011	
	0.0	6.00 ± 5.05	0.0	22.19 ± 26.81
	2.64 ± 1.52	9.85 ± 5.85	10.98 ± 3.81	44.66 ± 29.85

Note: Encounter rates deduced from the baseline monitoring period have been recalculated based only on survey effort and on-effort sighting data made along the primary transect lines under favourable conditions.

Group size of Chinese White Dolphins ranged from 1-10 individuals per group in North Lantau region during December 2015 to February 2016. The average dolphin group sizes from these three months were compared with the ones deduced from the baseline period in September to November 2011, as shown in Table 2.9.

Table 2.9 Average Dolphin Group Size

	Average Dolphin Group Size	
	December 2015 - February 2016	December 2015 - February 2016
Overall	$4.07 \pm 3.22(\mathrm{n}=14)$	$3.72 \pm 3.13(\mathrm{n}=66)$
Northeast Lantau	N/A	$3.18 \pm 2.16(\mathrm{n}=17)$
Northwest Lantau	$4.07 \pm 3.22(\mathrm{n}=14)$	$3.92 \pm 3.40(\mathrm{n}=49)$

Whilst one limit level exceedance was observed for the quarterly dolphin monitoring data between December 2015 and February 2016, no unacceptable impact from the construction activities of this Contract was recorded from the general observations.

Although the dolphins infrequently occurred along the alignment of TMCLKL Northern Connection Sub-Sea Tunnel Section in the past and during the baseline monitoring period, it is apparent that dolphin usage has been significantly reduced in NEL.

It is critical to monitor the dolphin usage in North Lantau region in the upcoming quarters to determine whether the dolphins are continuously affected by the various construction activities in relation to the HZMB-related works, and whether suitable mitigation measure can be applied to revert the situation.

2.3.8
 Implementation of Marine Mammal Exclusion Zone

There was no dredging, reclamation or marine sheet piling works in open waters during this reporting period. Thus, Passive Acoustic Monitoring (PAM) and the day-time monitoring of Dolphin Exclusion Zone (DEZ) by dolphin observers were not in effect during the reporting period.

2.4 EMEA SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. Thirteen (13) site inspections were carried out in the reporting quarter on $2,9,16,23$ and 30 December 2015; 6, 13, 20 and 27 January 2016; 3, 11, 17 and 24 February 2016.

Key observations during the site inspections in this reporting period are summarized in Table 2.10.

Table 2.10 Specific Observations and Recommendations during the Weekly Site Inspection in this Reporting Period

Inspection Date	Environmental Observations	Recommendations/ Remarks
2 December 2015	Works Area - Portion N-C - Accumulated general refuse should be cleared. - Chemical labels and drip trays should be provided to the chemical containers.	Works Area - Portion N-C - The Contractor was reminded to clear the accumulated general refuse. - The Contractor was reminded to provide chemical labels and drip trays to the chemical containers.
9 December 2015	Works Area - Portion N-B - Drip tray should be provided to the chemical containers.	Works Area - Portion N-B - The Contractor was reminded to provide drip tray to the chemical containers.
16 December 2015	Works Area - Portion N-A - Water spraying should be applied more frequently during dry condition. The chemical container should be fully bunded.	Works Area - Portion N-A - The Contractor was reminded to apply water spraying more frequently during dry condition. - The Contractor was reminded to repair the bunding of the chemical container.
$\begin{aligned} & \text { 23 December } \\ & 2015 \end{aligned}$	Works Area - Portion N-A - Water spraying should be applied more frequently during dry condition. Oil near the gantry crane should be cleaned.	Works Area - Portion N-C - The Contractor was reminded to apply water spraying more frequently during dry condition. - The Contractor was reminded to clean the oil near the gantry crane and maintain better housekeeping.
30 December 2015	Works Area - Portion N-A Drip tray should be maintained in good condition.	Works Area - Portion N-A - The Contractor was reminded to clear the water inside the drip tray.
6 January 2016	Works Area - Portion N-A - Muddy water on the ground should be cleared to prevent leakage to the sea.	Works Area - Portion N-A - The Contractor was reminded to clear the muddy water to prevent leakage to the sea.

Inspection Date	Environmental Observations	Recommendations/ Remarks
13 January 2016	Works Area - Portion N-C - Oil drums should be placed in drip tray.	Works Area - Portion N-C - The Contractor was reminded to place the oil drums in drip tray.
20 January 2016	Works Area - Portion N-A - Oil drums should be placed in drip tray. Works Area - TBM tunnel - Chemical labels should be provided to the oil drum.	Works Area - Portion N-A - The Contractor was reminded to place the oil drums in drip tray. Works Area - TBM tunnel - The Contractor was reminded to provide chemical labels to the oil drum.
27 January 2016	Works Area - TBM tunnel - Chemical waste residue should be removed.	Works Area - TBM tunnel - The Contractor was reminded to remove the chemical waste residue.
3 February 2016	Works Area - Portion N-C - NRMM label should be provided to the Scissor Platform. Works Area - Southern Landfall - Water inside the drip tray should be cleared.	Works Area - Portion N-C - The Contractor was reminded to provide NRMM label to the Scissor Platform. Works Area - Southern Landfall - The Contractor was reminded to clear the water inside the drip tray.
11 February 2016	Works Area - Portion N-C - Waste in the skips should be cleared. - Chemical container should be removed after used. Works Area - Portion S-C - Cement bags should be covered with tarpaulin properly.	Works Area - Portion N-C - The Contractor was reminded to clear the waste in the skips. - The Contractor was reminded to remove the chemical container after used. Works Area - Portion S-C - The Contractor was reminded to cover the cement bags with tarpaulin properly.
17 February 2016	Works Area - Portion N-A - Water spraying should be applied more frequently during dry condition. - Sand bags should be placed to prevent runoff to the sea. Works Area - Portion S-A - The wastewater should be stored in wastewater tanks.	Works Area - Portion N-A - The Contractor was reminded to apply water spraying more frequently during dry condition. - The Contractor was reminded to place some sand bags to prevent runoff to the sea. Works Area - Portion S-A - The Contractor was reminded to store the wastewater in wastewater tanks.
24 February 2016	Works Area - Portion N-C - Accumulated waste in the skips should be cleared. - Oil drums should be placed in drip tray.	Works Area - Portion N-C - The Contractor was reminded to clear the accumulated waste in the skips. - The Contractor was reminded to place the oil drums in drip tray.

The Contractor has rectified all of the observations as identified during environmental site inspections in the reporting quarter.

2.5 Waste Management Status

The Contractor had submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

Wastes generated during this reporting period include mainly construction wastes (inert and non-inert) and imported fill. Reference has been made to
the waste flow table prepared by the Contractor (Appendix J). The quantities of different types of wastes are summarized in Table 2.11.

Table 2.11 Quantities of Different Waste Generated in the Reporting Period

Month/Year	Inert Construction Waste (a) (tonnes)	Imported Fill (tonnes)	InertConstructionWaste Re-used(tonnes)	Non-inert Construction Waste ${ }^{(b)}$ (tonnes)	Recyclable Materials (c) (kg)	$\begin{gathered} \hline \text { Chemical } \\ \text { Wastes } \\ (\mathrm{kg}) \end{gathered}$	Marine Sediment (m ${ }^{3}$)	
							$\begin{gathered} \text { Category } \\ \text { L } \end{gathered}$	$\begin{gathered} \text { Category } \\ M \end{gathered}$
December	38,600	0	0	141	700	0	0	0
2015								
January	24,068	0	0	113	0	0	0	0
2016								
February	9,229	0	0	102	1,850	4,740	0	0
2016								
Total	71,897	0	0	356	2,550	4,740	0	0

(a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.
(b) Non-inert construction wastes include general refuse disposed at landfill.
(c) Recyclable materials include metals, paper, cardboard, plastics, timber and others.

The Contractor was advised to properly maintain on site C\&D materials and waste collection, sorting and recording system, dispose of C\&D materials and wastes at designated ground and maximize reuse/ recycle of C\&D materials and wastes. The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

2.6
 Environmental Licenses and Permits

The status of environmental licensing and permit is summarized in Table 2.12 below.

Table 2.12 Summary of Environmental Licensing and Permit Status

License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/ Permit Holder	Remarks
Environmental Permit	EP-354/2009/D	13 March 2015	Throughout the Contract	HyD	Application for VEP on 3 March 2015 to supersede EP-354/2009/C
Construction Dust Notification	363510	19 August 2013	Throughout the Contract	DBJV	-
Chemical Waste Registration	5213-422-D2516-01	10 September 2013	Throughout the Contract	DBJV	-
Construction Waste Disposal Account	7018108	28 August 2013	Throughout the Contract	DBJV	Waste disposal in Contract HY/2012/08
Waste Disposal Billing Account (Vessel Disposal)	7021715	13 October 2015	31 January 2016	DBJV	Waste disposal in Contract No. HY/2012/08
Waste Water Discharge License	WT00017707-2013	18 November 2013	30 November 2018	DBJV	For works in site WA18
Waste Water Discharge License	WT00019248-2014	5 June 2014	30 June 2019	DBJV	For site Portion N6 and Reclamation Area E
Construction Noise Permit	GW-RW0350-15	14 July 2015	13 December 2015	DBJV	For site WA23
Construction Noise Permit	GW-RW0638-15	14 December 2015	13 June 2016	DBJV	For site WA23
Construction Noise Permit	GW-RW0474-15	29 September 2015	28 March 2016	DBJV	For Portion N6
Construction Noise Permit	GW-RW0512-15	20 October 2015	19 January 2016	DBJV	For Dredging and Reclamation Works
Construction Noise Permit	GW-RW0018-16	20 January 2016	19 July 2016	DBJV	For Urmston Road in front of Pillar Point
Construction Noise Permit	GW-RS1447-15	5 January 2016	4 June 2016	DBJV	For excavation works at Southern Landfall
Notes:					
HyD = Highways Department DBJV = Dragages - Bouygues Jo VEP = Variation of Environment	nture mit				

In response to the site audit findings, the Contractors carried out all corrective actions.

A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix C. The necessary mitigation measures relevant to this Contract were implemented properly.

2.8 Summary of Exceedances of the Environmental Quality Performance LIMIT

For air quality impact monitoring, a total of thirty monitoring events were undertaken in which no Action Level or Limit Level exceedances for 1-hr TSP; no Action Level exceedances or Limit Level exceedances for 24-hr TSP were recorded in this reporting quarter. (Table 2.13).

Table 2.13 Summary of Exceedances for Air Quality Impact Monitoring in this Reporting Quarter

Station	Exceedance Level	Date of Exceedances		Number of Exceedances	
		1-hr TSP	24-hr TSP	1-hr TSP	24-hr TSP
AQMS1	Action Level	-	-	0	0
	Limit Level	-	-	0	0
ASR1	Action Level	-	-	0	0
	Limit Level	-	-	0	0
ASR5	Action Level	-	-	0	0
	Limit Level	-	-	0	0
ASR6	Action Level	-	-	0	0
	Limit Level	-	-	0	0
ASR10	Action Level	-	-	0	0
	Limit Level	-	-	0	0
	Total number of Action level Exceedances:	0	0		
	Total number of Limit level Exceedances:	0	0		

One limit level exceedance of impact dolphin monitoring was recorded in this reporting quarter. Following the review of monitoring data and marine works details in accordance with the procedures stipulated in the Event and Action Plan of the Updated EM\&A Manual, there is no evidence showing that the sources of impact directly related to the construction works under this Contract that may have affected the dolphin usage in the NEL region. Detailed investigation findings are presented in Appendix I.

Cumulative statistics are provided in Appendix I.

2.9
 Summary of Complaints, Notification of Summons and Successful Prosecutions

The Environmental Complaint Handling Procedure is provided in Figure 2.3.

Figure 2.3

No non-compliance event was recorded during the reporting period.
No environmental complaint was received in the reporting period.
No summons/ prosecution was received during the reporting period.
Statistics on complaints, notifications of summons and successful prosecutions are summarized in Appendix I.

3.1 CONSTRUCTION ACTIVITIES FOR THE COMING QUARTER

As informed by the Contractor, the major works for the Project in the coming quarter are summarized in Table 3.1.

Table 3.1 Construction Works to Be Undertaken in the Coming Quarter

Works to be undertaken
 Land-based Works

- Box Culvert Extension at Works Area - Portion N-A;
- Construction of Cross Passage Tympanum - Portion N-A;
- TBM Tunnel Works at Works Area - Portion N-C;
- Excavation of sub-sea tunnel - Portion N-C; and
- Site formation and D-wall construction - Portions S-A, S-B and S-C.

3.2 KEY ISSUES FOR THE COMING QUARTER

As informed by the Contractor, Phase I Reclamation works for the Northern Landfall was substantially completed in December 2014, a proposal letter was sent to EPD on 21 May 2015 to seek approval for the temporary suspension of Water Quality Monitoring. Subsequently, a letter from EPD on 5 June 2015 stated that they have no strong objection to the temporary suspension of the water quality monitoring. Water Quality Monitoring was suspended from 6 June 2015 effectively and will resume when Phase II Reclamation commences in the fourth quarter of 2016 tentatively.

Potential environmental impacts arising from the above upcoming construction activities in the coming quarterly period are expected to be mainly associated with dust, marine ecology and waste management issues.

3.3 MONitoring Schedule for the Coming Quarter

Impact monitoring for air quality and marine ecology (include dolphin monitoring) are scheduled to continue for the next reporting period.

The monitoring programme has been reviewed and was considered as adequate to cater for the nature of works in progress. Change to the monitoring programme was thus not considered to be necessary at this stage. The monitoring programme will be evaluated as appropriate in the next reporting period.

This Ninth Quarterly EM\&A Report presents the findings of the EM\&A activities undertaken during the period from 1 December 2015 to 29 February 2016, in accordance with the Updated EM\&A Manual and the requirements of EP-354/2009/D.

Air quality (including 1-hour TSP and 24-hour TSP) and dolphin monitoring were carried out in the reporting period. No Action or Limit Level exceedances for 1-hr TSP were recorded. No Action or Limit Level exceedances for $24-\mathrm{hr}$ TSP were record.

A total of 14 groups of 57 Chinese White Dolphin sightings were recorded during the six sets of surveys from December 2015 to February 2016. Whilst one limit level exceedance was recorded for the quarterly dolphin monitoring data between December 2015 to February 2016, no unacceptable impact from the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations. Although the dolphins infrequently occurred along the alignment of TM-CLKL Northern Connection Sub-Sea Tunnel Section in the past and during the baseline monitoring period, it is apparent that dolphin usage has been significantly reduced in NEL. It is critical to monitor the dolphin usage in North Lantau region in the upcoming quarters, to determine whether the dolphins are continuously affected by the various construction activities in relation to the construction works of the Contract, and whether suitable mitigation measure can be applied to improve the situation.

Thirteen weekly environmental site inspections were carried out in the reporting period. Recommendations on remedial actions provided for the deficiencies identified during the site audits were properly implemented by the Contractor. No non-compliance event was recorded during the reporting period.

No environmental complaint was received during the reporting period.
No summons/ prosecution was received during the reporting period.
The monitoring programme has been reviewed and was considered as adequate to cater for the nature of works in progress. Change to the monitoring programme was thus not recommended at this stage. The monitoring programme will be evaluated as appropriate in the next reporting period. The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Appendix A

Project Organization for Environmental Works

Appendix B

Construction Programme

Appendix C

> Environmental Mitigation and Enhancement Measure Implementation Schedules

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
Air Quality									
4.8.1	3.8	An effective watering programme of twice daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;	All areas / throughout construction period	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		\checkmark
4.8.1	3.8	Watering of the construction sites in Lantau for 8 times/day and in Tuen Mun for 12 times/day to reduce dust emissions by 87.5% and 91.7% respectively and shall be undertaken.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		\checkmark
4.8.1	3.8	The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		\checkmark
4.8.1	3.8	The Contractor shall not burn debris or other materials on the works areas.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		\checkmark
4.8. 1	3.8	In hot, dry or windy weather, the watering programme shall maintain all exposed road surfaces and dust sources wet.	All unpaved haul roads / throughout construction period in hot, dry or windy weather	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		\checkmark
4.8.1	3.8	Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		<>
4.8.1	3.8	Open dropping heights for excavated materials shall be controlled to a maximum height of 2 m to minimise the fugitive dust arising from unloading.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		\checkmark
4.8.1	3.8	During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		\checkmark

Legend: $\mathrm{D}=$ Design, $\mathrm{C}=$ Construction, $\mathrm{O}=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Contract No. HY/2012/08
Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
4.8.1	3.8	Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300 mm over the edges of the side and tail boards.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		\checkmark
4.8.1	3.8	No earth, mud, debris, dust and the like shall be deposited on public roads. Wheel washing facility shall be usable prior to any earthworks excavation activity on the site.	All site exits / throughout construction period	Contractor	TMEIA Avoid dust		Y		\checkmark
4.8.1	3.8	Areas of exposed soil shall be minimised to areas in which works have been completed shall be restored as soon as is	All exposed surfaces / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		\checkmark
4.8.1	3.8	All stockpiles of aggregate or spoil shall be enclosed or covered and water applied in dry or windy condition.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		<>
4.11	Section 3	EM\&A in the form of 1 hour and 24 hour dust monitoring and site audit.	All representative existing ASRs / throughout construction period	Contractor	EM\&A Manual		Y		\checkmark
WATER QUALITY									
Marine Works (Sequence A)									
6.1 Figure 6.2a Appendix D6a	Annex A	Construction of seawalls to be advanced by at least 200 m before the main reclamation dredging and filling can commence. The protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2a and detailed in Appendix D6a. The part of the works where such measures can be undertaken for the majority of the time includes the following locations: - TM-CLKL northern reclamation;	All areas/ prior to dredging and backfilling works	Contractor	TM-EIAO		Y		\checkmark
6.1	-	a maximum of 50% public fill to be used for all seawall filling below +2.5 mPD for TM-CLKL southern and northern landfalls.	TM-CLKL seawall filling	Contractor	TM-EIAO		Y		\checkmark

Legend: $\mathrm{D}=$ Design, $\mathrm{C}=$ Construction, $\mathrm{O}=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
6.1	-	a maximum of 30% public fill to be used for reclamation filling below +2.5 mPD for TM-CLKL southern landfall	TM-CLKL southern landfall reclamation filling	Contractor	TM-EIAO		Y		N/A
6.1	-	a maximum of 100% public fill to be used for reclamation filling below +2.5 mPD for TM-CLKL northern landfall	TM-CLKL northern landfall reclamation filling	Contractor	TM-EIAO		Y		\checkmark
6.1	-	Use of cage type silt curtains round allgrab dredgers during the HKBCF, HKLR and TM-CLKL southern reclamation works.	All areas dredging works	Contractor	TM-EIAO		Y		\checkmark
	Figure 1.1 of Annex C	A layer of floating type silt curtain will be applied when dredging and reclamation works are being undertaken at Portion N -a as shown in Figure 1.1 of Annex C of the EM\&A Manual.	All areas/ through out marine works	Contractor	TM-EIAO		Y		\checkmark
6.1	-	Trailer suction hopper dredgers shall not allow mud to overflow.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		\checkmark
6.1	-	The use of Lean Material Overboard (LMOB) systems shall be prohibited.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		\checkmark
6.1 Figure 6.2b Appendix D6b	Annex A	For other parts of the reclamation works construction of seawalls to be advanced by at least 200 m before the main reclamation dredging and filling can commence. It should be noted that the protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2b and detailed in Appendices D6b. The part of the works where such measures can be undertaken for the majority of the time includes the following locations: - TM-CLKL northern reclamation; - Reclamation filling for Portion D of HKBCF; Reclamation filling for FSD berth of HKBCF; and	TM-CLKL northern landfall, Portion D of HKBCF and HKLR	Contractor	TM-EIAO		Y		\checkmark

Legend: $D=$ Design, $C=$ Construction, $O=O p e r a t i o n$
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Contract No. HY/2012/08

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
		- Reclamation dredging and filling for Portion 1 of HKLR;							
6.1	-	The filling material for the other parts of the works are the same as Sequence A;	All other areas/backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	5.7	Cage type silt curtain (with steel enclosure) shall be used for grab dredgers working in the site of HKBCF and TM- CLKL southern reclamation. Cage type silt curtains will be applied round all grab dredgers at other works area.	HKBCF, HKLR and TM-CLKL grab dredging	Contractor	TM-EIAO		Y		\checkmark
6.1	Annex A	A layer of floating type silt curtain will be applied around all works as defined in Appendix D6b.	All areas/ through out marine works	Contractor	TM-EIAO		Y		\checkmark
6.1	-	TM-CLKL northern landfall: - Reclamation filling shall not proceed until at least 200 m section of leading seawall at both the east and west sides of the reclamation are formed above +2.5 mPD , except for 100 m gaps for marine access;	All areas/ through out marine works	Contractor	TM-EIAO		Y		\checkmark
General Marine Works									
6.1	-	Use of TMB for the construction of the submarine tunnel.	Tunnel works / Construction phase	Contractor	TM-EIAO		Y		N/A
6.1	-	Export dredged spoils from NWWCZ.	All areas as much as possible / dredging activities	Contractor	DASO Permit conditions		Y		\checkmark
6.1	-	Where public fill is proposed for filling below +2.5 mPD , the fine content in the public fill will be controlled to 25%	All areas/ backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	-	Where sand fill is proposed for filling below +2.5 mPD , the fine content in the sand fill will be controlled to 5%.	All areas/ backfilling works	Contractor	TM-EIAO		Y		N.A
6.1	-	Mechanical grabs shall be designed and maintained to avoid spillage and should seal tightly while being lifted.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		\checkmark
6.1	-	Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.	All areas/ throughout construction period	Contractor	Marine Fill Committee		Y		\checkmark

Legend: $D=$ Design, $C=$ Construction, $O=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Contract No. HY/2012/08

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
					Guidelines. DASO permit conditions.				
6.1	-	Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		\checkmark
6.1	-	Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		\checkmark
6.1	-	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		\checkmark
6.1	-	Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		N/A
6.1	-	All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		N/A
6.1	-	The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit		Y		\checkmark

Legend: $D=$ Design, $C=$ Construction, $O=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
					conditions.				
6.1	5.2	Silt curtain shall have proved effectiveness from the producer and shall be fully maintained throughout the works by the contractor.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	The daily maximum production rates shall not exceed those assumed in the water quality assessment.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	The dredging and filling works shall be scheduled to spread the works evenly over a working day.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
Land Works									
6.1	-	Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		<>
6.1	-	Sewage effluent and discharges from on- site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	Storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		<>
6.1	-	Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	Temporary access roads should be surfaced with crushed stone or gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark

Legend: $D=$ Design, $C=$ Construction, $O=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Contract No. HY/2012/08

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
6.1	-	Measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	5.8	Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	Discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	All vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	Wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	Section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	Wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for off site disposal.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		N/A

Legend: $\mathrm{D}=$ Design, $\mathrm{C}=$ Construction, $\mathrm{O}=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Contract No. HY/2012/08

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
6.1	-	The Contractor shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		<>
6.1	-	Waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance.	All areas/ throughout construction period	Contractor	TM-EIAO Waste Disposal Ordinance		Y		\checkmark
6.1	-	All fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		<>
6.1	-	Surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the stormwater system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\checkmark
6.1	-	Roadside gullies to trap silt and grit shall be provided prior to discharging the stormwater into the marine environment. The sumps will be maintained and cleaned at regular intervals.	Roadside/design and operation	Design Consultant/ Contractor	TM-EIAO	Y		Y	\checkmark
6.1	Section 5	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All areas/ throughout construction period	Contractor	EM\&A Manual		Y		\checkmark
Water Quality Monitoring									
6.1	Section 5	Water quality monitoring shall be undertaken for suspended solids, turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline, backfilling and post construction period. One year operation phase water quality monitoring at designated stations.	Designated monitoring stations as defined in EM\&A Manual, Section 5/ Before, through-out marine construction period, post construction and monthly operational phase water quality monitoring for a year.	Contractor	EM\&A Manual		Y	Y	\checkmark
ECOLOGY									

Legend: $\mathrm{D}=$ Design, $\mathrm{C}=$ Construction, $\mathrm{O}=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Contract No. HY/2012/08

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
8.14	6.3	Specification for and implement pre, during and post construction dolphin abundance monitoring.	All Areas/Detailed Design/ during construction works/ post construction	Design Consultant/ Contractor	TMEIA	Y	Y	Y	\checkmark
8.14	6.3,6.5	Specification and implementation of 250 m dolphin exclusion zone.	All dredging and reclamation areas/Detailed Design/during all reclamation and dredging works	Design Consultant/ Contractor	TMEIA	Y	Y		\checkmark
8.15	6.3, 6.5	Specification and deployment of an artificial reef of an area of $3,600 \mathrm{~m} 2$ in an area where fishing activities are prohibited.	Area of prohibited fishing activities/Detailed Design/towards end of construction period	TM-CLKL/ HKBCF Design Consultant/TM- CLKL/ HKBCF Contractor	TMEIA	Y		Y	N/A. To be implemente d by AFCD.
8.14	6.3, 6.5	Specification and implementation of marine vessel control specifications	All areas/Detailed Design/during construction works	Design Consultant/ Contractor	TMEIA	Y	Y		\checkmark
8.14	6.3, 6.5	Design and implementation of acoustic decoupling methods for dredging and reclamation works	All areas/ Detailed Design/during dredging and reclamation works	Design Consultant/ Contractor	TMEIA	Y	Y		\checkmark
8.15	6.3, 6.4	Pre-construction phase survey and coral translocation	Detailed Design/Prior to construction	Design Consultant/ Contractor	TMEIA	Y	Y		\checkmark
8.15	6.5	Audit coral translocation success	Post translocation	Contractor	TMEIA		Y		\checkmark
7.13	6.5	The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.	All areas / As soon as accessible	Contractor	TMEIA		Y		N/A.
7.13	6.5	Spoil heaps shall be covered at all times.	All areas / Throughout construction period	Contractor	TMEIA		Y		\checkmark
7.13	6.5	Avoid damage and disturbance to the remaining and surrounding natural habitat	All areas / Throughout construction period	Contractor	TMEIA		Y		\checkmark
7.13	6.5	Placement of equipment in designated areas within the existing disturbed land	All areas / Throughout construction period	Contractor	TMEIA		Y		\checkmark
7.13	6.5	Disturbed areas to be reinstated immediately after completion of the works.	All areas / Throughout construction period	Contractor	TMEIA		Y		\checkmark

Legend: $\mathrm{D}=$ Design, $\mathrm{C}=$ Construction, $\mathrm{O}=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Contract No. HY/2012/08
Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
7.13	6.5	Construction activities should be restricted to the proposed works boundary.	All areas / Throughout construction period	Contractor	TMEIA		Y		\checkmark
LANDSCAPE AND VISUAL									
10.9	7.6	The colour and shape of the toll control buildings, ventilation building and administration building shall adopt a design which could blend it into the vicinity elements, and the details will be developed in detailed design stage (DM2)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)	All areas/detailed design/ during construction/ post construction	Design Consultant/ Contractor	TMEIA	Y	Y		\checkmark
10.9	7.6	Control night-time lighting and glare by hooding all lights (CM6)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		N/A
10.9	7.6	Ensure no run-off into water body adjacent to the Project Area (CM7)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		\checkmark
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (CM8)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		\checkmark
10.9	7.6	Aesthetically pleasing design (visually unobtrusive and nonreflective) as regard to the form, material and finishes shall be incorporated to all buildings, engineering structures and associated infrastructure facilities (OM5)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (OM6)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
WASTE									
12.6		The Contractor shall identify a coordinator for the management of waste.	Contract mobilisation	Contractor	TMEIA		Y		\checkmark

Legend: $\mathrm{D}=$ Design, $\mathrm{C}=$ Construction, $\mathrm{O}=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Contract No. HY/2012/08

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
12.6		The Contractor shall prepare and implement a Waste Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated, recycled and disposed. A recording system for the amount of waste generated, recycled and disposed (locations) should be established.	Contract mobilisation	Contractor	TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material		Y		\checkmark
12.6		The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.	Contract mobilisation	Contractor	TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance.		Y		\checkmark
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures including waste reduction, reuse and recycling.	Contract Mobilisation	Contractor	TMEIA		Y		\checkmark
12.6	8.1	The extent of cutting operation should be optimised where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark
12.6	8.1	The surplus surcharge should be transferred to a fill bank	Reclamation areas / after surcharge works	Contractor	TMEIA		Y		N/A
12.6	8.1	Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark
12.6	8.1	The site and surroundings shall be kept tidy and litter free.	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark

Contract No. HY/2012/08

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
12.6	8.1	No waste shall be burnt on site.	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark
12.6	8.1	Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.	Detailed Design	Design Consultant	TMEIA	Y			\checkmark
12.6	8.1	The Contractor shall be prohibited from disposing of C\&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation.	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark
12.6	8.1	Stockpiled material shall be covered by tarpaulin and / or watered as appropriate to prevent windblown dust/ surface run off.	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark
12.6	8.1	Excavated material in trucks shall be covered by tarpaulins to reduce the potential for spillage and dust generation.	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark
12.6	8.1	Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark
12.6	8.1	Dredged marine mud shall be disposed of in a gazetted marine disposal ground under the requirements of the Dumping at Seas Ordinance.	Reclamation areas / throughout dredging works	Contractor	TMEIA		Y		\checkmark
12.6	8.1	Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C\&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling. Purchasing of construction materials should avoid over-ordering and wastage.	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark

Legend: $\mathrm{D}=$ Design, $\mathrm{C}=$ Construction, $\mathrm{O}=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Contract No. HY/2012/08

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
12.6	8.1	The Contractor should recycle as many C\&D materials (this is a waste section) as possible on-site. The public fill and C\&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal. Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities.	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark
12.6	8.1	All falsework will be steel instead of wood.	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark
12.6	8.1	Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows: f suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed; f Having a capacity of $<450 \mathrm{~L}$ unless the specifications have been approved by the EPD; and f Displaying a label in English and Chinese according to the instructions prescribed in Schedule 2 of the Regulations. f Clearly labelled and used solely for the storage of chemical wastes; f Enclosed with at least 3 sides; f Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest; f Adequate ventilation; f Sufficiently covered to prevent rainfall	All areas / throughout construction period	Contractor	TMEIA		Y		<>

Legend: $\mathrm{D}=$ Design, $\mathrm{C}=$ Construction, $\mathrm{O}=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
		entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and f Incompatible materials are adequately separated.							
12.6	8.1	Waste oils, chemicals or solvents shall not be disposed of to drain,	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark
12.6	8.1	Adequate numbers of portable toilets should be provided for on-site workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark
12.6	8.1	Night soil should be regularly collected by licensed collectors.	All areas / throughout construction period	Contractor	TMEIA		Y		N/A
12.6	8.1	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C\&D and chemical wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By-laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited.	All areas / throughout construction period	Contractor	TMEIA		Y		<>
12.6	8.1	All waste containers shall be in a secure area on hardstanding;	All areas / throughout construction period	Contractor	TMEIA		Y		<>
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.	All areas / throughout construction period	Contractor	TMEIA		Y		\checkmark
12.6	8.1	Office wastes can be reduced by recycling of paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	Site Offices/ throughout construction period	Contractor	TMEIA		Y		\checkmark

Legend: $\mathrm{D}=$ Design, $\mathrm{C}=$ Construction, $\mathrm{O}=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Contract No. HY/2012/08
Tuen Mun - Chek Lap Kok Link
Northern Connection Sub-sea Tunnel Section
Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM\&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
						D	C	O	
12.6	Section 8	EM\&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.	All areas / throughout construction period	Contractor	EM\&A Manual		Y		\checkmark
CULTURAL HERITAGE									
11.8	Section 9	EM\&A in the form of audit of the mitigation measures	All areas / throughout construction period	Highways Department	EIAO-TM		Y		N/A

* Remarks:

Compliance of Mitigation Measures
^ Non-compliance of Mitigation Measures but rectified by Contractor
$\Delta \quad$ Deficiency of Mitigation Measures but rectified by Contractor
N/A
Not Applicable in Reporting Period

Legend: $\mathrm{D}=$ Design, $\mathrm{C}=$ Construction, $\mathrm{O}=$ Operation
Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Appendix D
Summary of Action and
Limit Levels

Parameters	Action	Limit
24 Hour TSP Level in $\mu \mathrm{g} / \mathrm{m}^{3}$	ASR1 $=213$	260
	ASR5 $=238$	
	AQMS1 $=213$	
	ASR6 $=238$	
	ASR10 $=214$	
	ASR1 $=331$	500
	ASR5 $=340$	
	AQMS1 $=335$	
	ASR6 $=338$	
	ASR10 $=337$	

Table D2 Action and Limit Levels for Impact Dolphin Monitoring

Table D3 Derived Value of Action Level (AL) and Limit Level (LL)

	North Lantau Social Cluster	
	NEL	NWL
Action Level	STG $<4.2 \&$ ANI <15.5	STG $<6.9 \&$ ANI <31.3
Limit Level	NEL $=[\mathrm{STG}<2.4 \&$ ANI $<8.9]$	
	and	
	$\mathrm{NWL}=[\mathrm{STG}<3.9 \&$ ANI $<17.9]$	

Appendix E

EM\&A Monitoring
 Schedules

HY/2012/08 - Tuen Mun - Chek Lap Kok Link
Northern Connection Sub-sea Tunnel Section

Air Quality Impact Monitoring Schedule - December 2015

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-Dec	2-Dec	3-Dec	4-Dec	5-Dec
		1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM	
6-Dec	7-Dec	8-Dec	9-Dec	10-Dec	11-Dec	12-Dec
	1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM		
13-Dec	14-Dec	15-Dec	16-Dec	17-Dec	18-Dec	19-Dec
1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM
20-Dec	21-Dec	22-Dec	23-Dec	24-Dec	public holiday 25-Dec	public holiday 26-Dec
		1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM	
27-Dec	28-Dec	29-Dec	30-Dec	31-Dec		
	1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM		

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Tentative Air Quality Impact Monitoring Schedule - January 2016

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					public holiday 1-Jan	2-Jan
3-Jan	4-Jan	5-Jan	6-Jan	7-Jan	8-Jan	9-Jan
1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM
10-Jan	11-Jan	12-Jan	13-Jan	14-Jan	15-Jan	16-Jan
		1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM	
17-Jan	18-Jan	19-Jan	20-Jan	21-Jan	22-Jan	23-Jan
	1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM		
24-Jan	25-Jan	26-Jan	27-Jan	28-Jan	29-Jan	30-Jan
1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM
31-Jan						

HY/2012/08 - Tuen Mun - Chek Lap Kok Link
Northern Connection Sub-sea Tunnel Section Air Quality Impact Monitoring Schedule - February 2016

Sunday	Monday		Wednesday	Thursday	Friday	Saturday
		Tuesday				
1-Feb		2-Feb	3-Feb	4-Feb	5-Feb	6-Feb
		1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM	
7-Feb	public holiday 8-Feb	public holiday 9-Feb	public holiday 10-Feb	11-Feb	12-Feb	13-Feb
				1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM		
14-Feb	15-Feb	16-Feb	17-Feb	18-Feb	19-Feb	20-Feb
1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM
21-Feb	22-Feb	23-Feb	24-Feb	25-Feb	26-Feb	27-Feb
		1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM			1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM	
28-Feb	29-Feb					
	1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM					

HY/2012/08 - Tuen Mun - Chek Lap Kok Link
Northern Connection Sub-sea Tunnel Section
Impact Dolphin Monitoring Survey Monitoring Schedule - December 2015

HY/2012/08 - Tuen Mun - Chek Lap Kok Link
Northern Connection Sub-sea Tunnel Section Impact Dolphin Monitoring Survey Monitoring Schedule - January 2016

HY/2012/08 - Tuen Mun - Chek Lap Kok Link
Northern Connection Sub-sea Tunnel Section Impact Dolphin Monitoring Survey Monitoring Schedule - February 2016

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Feb	2-Feb	3-Feb	4-Feb	5-Feb	6-Feb
		Impact Dolphin Monitoring	Impact Dolphin Monitoring			
7-Feb	public holiday 8-Feb	public holiday 9-Feb	public holiday 10-Feb	11-Feb	12-Feb	13-Feb
14-Feb	15-Feb	16-Feb	17-Feb	18-Feb	19-Feb	20-Feb
		Impact Dolphin Monitoring				
21-Feb	22-Feb	23-Feb	24-Feb	25-Feb	26-Feb	27-Feb
	Impact Dolphin Monitoring					
28-Feb	29-Feb					

Appendix F

Impact Air Quality
 Monitoring Results

Figure F. 1 Impact Monitoring - 1-hour Total Suspended Particulates ($\mu \mathrm{g} / \mathrm{m}^{3}$) at AQMS1 between 1 November 2015 and 29 February 2016 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major landbased construction activities included: Construction of capping beam and base slab for Ventilation Shaft at Works Area - Portion N-C (1/11/2015-29/2/2016) and Box Culvert Extension (1/11/2015-29/2/2016). Ref: 0212330_Impact AQM graphs_February 2016_REV a.xlsx

Figure F. 2 Impact Monitoring - 1-hour Total Suspended Particulates ($\mu \mathrm{g} / \mathrm{m}^{3}$) at ASR6 between 1 November 2015 and 29 February 2016 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major landbased construction activities included: Construction of capping beam and base slab for Ventilation Shaft at Works Area - Portion N-C (1/11/2015-29/2/2016) and Box Culvert Extension (1/11/2015-29/2/2016). Ref: 0212330_Impact AQM graphs_February 2016_REV a.xlsx

Figure F. 4 Impact Monitoring - 1-hour Total Suspended Particulates ($\mu \mathrm{g} / \mathrm{m}^{3}$) at ASR5 between 1 November 2015 and 29 February 2016 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major landbased construction activities included: Construction of capping beam and base slab for Ventilation Shaft at Works Area - Portion N-C (1/11/2015-29/2/2016) and Box Culvert Extension (1/11/2015-29/2/2016). Ref: 0212330_Impact AQM graphs_ February 2016_REV a.xlsx

Figure F. 5 Impact Monitoring - 1-hour Total Suspended Particulates ($\mu \mathrm{g} / \mathrm{m}^{3}$) at ASR10 between 1 November 2015 and 29 February 2016 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major landbased construction activities included: Construction of capping beam and base slab for Ventilation Shaft at Works Area - Portion N-C (1/11/2015-29/2/2016) and Box Culvert Extension (1/11/2015-29/2/2016). Ref: 0212330_Impact AQM graphs_February 2016_REV a.xlsx

Figure F. 9 Impact Monitoring - 24-hour Total Suspended Particulates ($\mu \mathrm{g} / \mathrm{m}^{3}$) at ASR6 between 1 November 2015 and 29 February 2016 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major landbased construction activities included: Construction of capping beam and base slab for Ventilation Shaft at Works Area - Portion N-C (1/11/2015-29/2/2016) and Box Culvert Extension (1/11/2015-29/2/2016). Ref: 0212330_Impact AQM graphs_February 2016_REV a.xlsx

Appendix G

Impact Dolphin Monitoring

Survey

CONTRACT NO．HY／2012／08
 Hong Kong－Zhuhai－Macao Bridge Tuen Mun－Chek Lap Kok Link （Northern Connection Sub－sea Tunnel Section） Dolphin Quarterly Monitoring

$9^{\text {th }}$ Quarterly Progress Report（December 2015 －February 2016）
submitted to Dragages－Bouygues Joint Venture \＆ERM Hong Kong Ltd．
Submitted by
Samuel K．Y．Hung，Ph．D．，Hong Kong Cetacean Research Project
18 April 2016

1．Introduction

1．1．As part of the Hong Kong－Zhuhai－Macao Bridge，the Tuen Mun－Chek Lap Kok Link （TM－CLKL）Northern Connection Sub－sea Tunnel Section（Contract no．HY／2012／08） comprises the sub－sea TBM tunnels（two tubes with cross passages）across the Urmston Road to connect Tuen Area 40 and Hong Kong Boundary Crossing Facilities（HKBCF）of approximately 4 km in length with dual 2－lane carriageway，the tunnels at both the southern landfall and the northern landfall for construction of approach roads to the sub－sea TBM tunnels of approximately 1.5 km in length，as well as the northern landfall reclamation of approximately 16.5 hectares and about $20 . \mathrm{km}$ long seawalls．Dragages－ Bouygues Joint Venture（hereinafter called the＂Contractor＂）was awarded as the main contractor for the Northern Connection Sub－sea Tunnel Section，and ERM Hong Kong Limited would serve as the Environmental Team to implement the Environmental Monitoring and Audit（EM\＆A）programme．

1．2．According to the updated EM\＆A Manual（for TM－CLKL），monthly line－transect vessel surveys for Chinese White Dolphin should be conducted to cover the Northwest（NWL） and Northeast Lantau（NEL）survey areas as in AFCD annual marine mammal monitoring programme．However，as such surveys have been undertaken by the HKLR03 and HKBCF projects in the same areas（i．e．NWL and NEL），a combined monitoring approach is recommended by the Highways Department，that the TM－CLKL EM\＆A project can utilize the monitoring data collected by HKLR03 or HKBCF project to avoid any redundancy in monitoring effort．Such exemption for the dolphin monitoring will end upon the completion of the dolphin monitoring carried out by HKLR03 contract．

1．3．In November 2013，the Director of Hong Kong Cetacean Research Project（HKCRP），Dr． Samuel Hung，has been appointed by ERM Hong Kong Limited as the dolphin specialist for the TM－CLKL Northern Connection Sub－sea Tunnel Section EM\＆A project．He is responsible for the dolphin monitoring study，including the data collection on Chinese

HK CETACEAN RESEARCH PROJECT
 香港鯨豚研究計畫

White Dolphins during the construction phase（i．e．impact period）of the TM－CLKL project in Northwest Lantau（NWL）and Northeast Lantau（NEL）survey areas．

1．4．During the construction period of HKLR，the dolphin specialist would be in charge of reviewing and collating information collected by HKLR03 dolphin monitoring programme to examine any potential impacts of TM－CLKL construction works on the dolphins．

1．5．From the monitoring results，any changes in dolphin occurrence within the study area will be examined for possible causes，and appropriate actions and additional mitigation measures will be recommended as necessary．

1．6．This report is the ninth quarterly progress report under the TM－CLKL construction phase dolphin monitoring programme submitted to the Contractor，summarizing the results of the surveys findings during the period of December 2015 to February 2016，utilizing the survey data collected by HKLR03 project．

2．Monitoring Methodology

2．1．Vessel－based Line－transect Survey

2．1．1．According to the requirement of the updated EM\＆A manual，dolphin monitoring programme should cover all transect lines in NEL and NWL survey areas（see Figure 1） twice per month throughout the entire construction period．The co－ordinates of all transect lines are shown in Table 1．The coordinates of several starting points have been revised due to the obstruction of the permanent structures in association to the construction works of HKLR and the southern viaduct of TM－CLKL，as well as provision of adequate buffer distance from the Airport Restricted Areas．The EPD issued a memo and confirmed that they had no objection on the revised transect lines on 19 August 2015， and the revised coordinates are in red and marked with an asterisk in Table 1.

Table 1 Co－ordinates of transect lines conducted by HKLR03 project

Line No．		Easting	Northing	Line No．		Easting	Northing	
1	Start Point	804671	815456^{*}		13	Start Point	816506	819480
1	End Point	804671	831404		13	End Point	816506	824859
2	Start Point	805475	815913^{*}		14	Start Point	817537	820220
2	End Point	805477	826654		14	End Point	817537	824613
3	Start Point	806464	819435	15	Start Point	818568	820735	
3	End Point	806464	822911		15	End Point	818568	824433
4	Start Point	807518	819771	16	Start Point	819532	821420	
4	End Point	807518	829230	16	End Point	819532	824209	
5	Start Point	808504	820220	17	Start Point	820451	822125	

HK CETACEAN RESEARCH PROJECT
 香港鯨豚研究計劃

5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	820466	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	820880^{*}	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123^{*}	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	821303^{*}	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	820872	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853^{*}	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807				
12	End Point	815542	824882				

Note：Co－ordinates in red and marked with asterisk are revised co－ordinates of transect line．
2．1．2．The HKLR03 survey team used standard line－transect methods（Buckland et al．2001）to conduct the systematic vessel surveys，and followed the same technique of data collection that has been adopted over the last 16 years of marine mammal monitoring surveys in Hong Kong developed by HKCRP（see Hung 2013，2014）．For each monitoring vessel survey，a $15-\mathrm{m}$ inboard vessel with an open upper deck（about 4.5 m above water surface） was used to make observations from the flying bridge area．

2．1．3．Two experienced observers（a data recorder and a primary observer）made up the on－effort survey team，and the survey vessel transited different transect lines at a constant speed of $13-15 \mathrm{~km}$ per hour．The data recorder searched with unaided eyes and filled out the datasheets，while the primary observer searched for dolphins and porpoises continuously through 7 x 50 Fujinon marine binoculars．Both observers searched the sea ahead of the vessel，between 270° and 90°（in relation to the bow，which is defined as 0° ）． One to two additional experienced observers were available on the boat to work in shift （i．e．rotate every 30 minutes）in order to minimize fatigue of the survey team members． All observers were experienced in small cetacean survey techniques and identifying local cetacean species．

2．1．4．During on－effort survey periods，the survey team recorded effort data including time， positions（latitude and longitude），weather conditions（Beaufort sea state and visibility）， and distance traveled in each series（a continuous period of search effort）with the assistance of a handheld GPS（Garmin eTrex Legend）．

2．1．5．Data including time，position and vessel speed were also automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review．

HK CETACEAN RESEARCH PROJECT
 香港鯨豚研究計劃

2．1．6．When dolphins were sighted，the survey team would end the survey effort，and immediately record the initial sighting distance and angle of the dolphin group from the survey vessel，as well as the sighting time and position．Then the research vessel was diverted from its course to approach the animals for species identification，group size estimation，assessment of group composition，and behavioural observations．The perpendicular distance（PSD）of the dolphin group to the transect line was later calculated from the initial sighting distance and angle．

2．1．7．\quad Survey effort being conducted along the parallel transect lines that were perpendicular to the coastlines（as indicated in Figure 1）was labeled as＂primary＂survey effort，while the survey effort conducted along the connecting lines between parallel lines was labeled as ＂secondary＂survey effort．According to HKCRP long－term dolphin monitoring data， encounter rates of Chinese white dolphins deduced from effort and sighting data collected along primary and secondary lines were similar in NEL and NWL survey areas． Therefore，both primary and secondary survey effort were presented as on－effort survey effort in this report．

2．2．Photo－identification Work

2．2．1．When a group of Chinese White Dolphins were sighted during the line－transect survey， the HKLR03 survey team would end effort and approach the group slowly from the side and behind to take photographs of them．Every attempt was made to photograph every dolphin in the group，and even photograph both sides of the dolphins，since the colouration and markings on both sides may not be symmetrical．

2．2．2．A professional digital camera（Canon EOS 7D or 60D model），equipped with long telephoto lenses（100－400 mm zoom），were available on board for researchers to take sharp，close－up photographs of dolphins as they surfaced．The images were shot at the highest available resolution and stored on Compact Flash memory cards for downloading onto a computer．

2．2．3．All digital images taken in the field were first examined，and those containing potentially identifiable individuals were sorted out．These photographs would then be examined in greater detail，and were carefully compared to the existing Chinese White Dolphin photo－identification catalogue maintained by HKCRP since 1995.

2．2．4．Chinese White Dolphins can be identified by their natural markings，such as nicks，cuts， scars and deformities on their dorsal fin and body，and their unique spotting patterns were also used as secondary identifying features（Jefferson 2000）．

2．2．5．All photographs of each individual were then compiled and arranged in chronological order，with data including the date and location first identified（initial sighting）， re－sightings，associated dolphins，distinctive features，and age classes entered into a computer database．

HK CETACEAN RESEARCH PROJECT
 香港鯨豚研究計劃

2．3．Data Analysis

2．3．1．Distribution Analysis－The line－transect survey data was integrated with the Geographic Information System（GIS）in order to visualize and interpret different spatial and temporal patterns of dolphin distribution using sighting positions．Location data of dolphin groups were plotted on map layers of Hong Kong using a desktop GIS（ArcView ${ }^{\circ}$ 3．1）to examine their distribution patterns in details．The dataset was also stratified into different subsets to examine distribution patterns of dolphin groups with different categories of group sizes，young calves and activities．

2．3．2．Encounter rate analysis－Encounter rates of Chinese white dolphins（number of on－effort sightings per 100 km of survey effort，and total number of dolphins sighted on－effort per 100 km of survey effort）were calculated in NEL and NWL survey areas in relation to the amount of survey effort conducted during each month of monitoring survey．Only data collect under Beaufort 3 or below condition would be used for the encounter rate analyses． Dolphin encounter rates were calculated in two ways for comparisons with the HZMB baseline monitoring results as well as to AFCD long－term marine mammal monitoring results．

Firstly，for the comparison with the HZMB baseline monitoring results，the encounter rates were calculated using primary survey effort alone．The average encounter rate of sightings（STG）and average encounter rate of dolphins（ANI）were deduced based on the encounter rates from six events during the present quarter（i．e．six sets of line－transect surveys in North Lantau），which was also compared with the one deduced from the six events during the baseline period（i．e．six sets of line－transect surveys in North Lantau）．

Secondly，the encounter rates were calculated using both primary and secondary survey effort collected under Beaufort 3 or below condition as in AFCD long－term monitoring study．The encounter rate of sightings and dolphins were deduced by dividing the total number of on－effort sightings（STG）and total number of dolphins（ANI）by the amount of survey effort for the present quarterly period．

2．3．3．Quantitative grid analysis on habitat use－To conduct quantitative grid analysis of habitat use，positions of on－effort sightings of Chinese White Dolphins collected during the quarterly impact phase monitoring period were plotted onto $1-\mathrm{km}^{2}$ grids among NWL and NEL survey areas on GIS．Sighting densities（number of on－effort sightings per km^{2} ） and dolphin densities（total number of dolphins from on－effort sightings per km^{2} ）were then calculated for each 1 km by 1 km grid with the aid of GIS．Sighting density grids and dolphin density grids were then further normalized with the amount of survey effort conducted within each grid．The total amount of survey effort spent on each grid was calculated by examining the survey coverage on each line－transect survey to determine how many times the grid was surveyed during the study period．For example，when the survey boat traversed through a specific grid 50 times， 50 units of survey effort were counted for that grid．With the amount of survey effort calculated for each grid，the sighting density and dolphin density of each grid were then normalized（i．e．divided by the unit of survey effort）．

The newly－derived unit for sighting density was termed SPSE，representing the number of

HK CETACEAN RESEARCH PROJECT香港鯨豚研究計劃
on－effort sightings per 100 units of survey effort．In addition，the derived unit for actual dolphin density was termed DPSE，representing the number of dolphins per 100 units of survey effort．Among the $1-\mathrm{km}^{2}$ grids that were partially covered by land，the percentage of sea area was calculated using GIS tools，and their SPSE and DPSE values were adjusted accordingly．The following formulae were used to estimate SPSE and DPSE in each $1-\mathrm{km}^{2}$ grid within the study area：

$$
\begin{aligned}
& \text { SPSE }=((S / E) \times 100) / S A \% \\
& \text { DPSE }=((D / E) \times 100) / S A \%
\end{aligned}
$$

where \quad| $S=$ total number of on－effort sightings |
| :--- |
| $D=$ total number of dolphins from on－effort sightings |
| |
| $E=$ total number of units of survey effort |
| |
| $S A \%=$ percentage of sea area |

2．3．4．Behavioural analysis－When dolphins were sighted during vessel surveys，their behaviour was observed．Different activities were categorized（i．e．feeding，socializing， traveling，and milling／resting）and recorded on sighting datasheets．This data was then input into a separate database with sighting information，which can be used to determine the distribution of behavioural data with a desktop GIS．Distribution of sightings of dolphins engaged in different activities and behaviours would then be plotted on GIS and carefully examined to identify important areas for different activities of the dolphins．

2．3．5．Ranging pattern analysis－Location data of individual dolphins that occurred during the 3－month impact phase monitoring period were obtained from the dolphin sighting database and photo－identification catalogue．To deduce home ranges for individual dolphins using the fixed kernel methods，the program Animal Movement Analyst Extension，was loaded as an extension with $\mathrm{ArcView}^{\text {© }} 3.1$ along with another extension Spatial Analyst 2．0．Using the fixed kernel method，the program calculated kernel density estimates based on all sighting positions，and provided an active interface to display kernel density plots．The kernel estimator then calculated and displayed the overall ranging area at 95% UD level．

3．Monitoring Results

3．1．Summary of survey effort and dolphin sightings
3．1．1．During the period of December 2015 to February 2016，six sets of systematic line－transect vessel surveys were conducted under the HKLR03 monitoring works to cover all transect lines in NWL and NEL survey areas twice per month．

3．1．2．From these HKLR03 surveys，a total of 907.45 km of survey effort was collected，with 95.1% of the total survey effort being conducted under favourable weather conditions（i．e． Beaufort Sea State 3 or below with good visibility）．Among the two areas， 347.07 km and 560.38 km of survey effort were conducted in NEL and NWL survey areas respectively．

HK CETACEAN RESEARCH PROJECT
 香港鯨豚研究計劃

3．1．3．The total survey effort conducted on primary lines was 655.90 km ，while the effort on secondary lines was 251.55 km ．Survey effort conducted on both primary and secondary lines were considered as on－effort survey data．A summary table of the survey effort is shown in Appendix I．

3．1．4．During the six sets of HKLR03 monitoring surveys in December 2015 to February 2016， a total of 14 groups of 57 Chinese White Dolphins were sighted．All except one dolphin sighting were made during on－effort search，and ten of the thirteen on－effort dolphin sightings were made on primary lines．In this quarterly period，all dolphin groups were sighted in NWL，while none was sighted at all in NEL．A summary table of the dolphin sightings is shown in Appendix II．

3．2．Distribution

3．2．1．Distribution of dolphin sightings made during the HKLR03 monitoring surveys in December 2015 to February 2016 is shown in Figure 1．Dolphin sightings made in the present quarter were mostly located to the north of Lung Kwu Chau，while a few other sightings were also made near Pillar Point and Sha Chau（Figure 1）．

3．2．2．Notably，a dolphin sighting was made near the northern landfall of TM－CLKL，but no other sighting was made near the southern viaduct of TM－CLKL or the HKLR03／HKBCF reclamation sites（Figure 1）．

3．2．3．\quad Sighting distribution of the present impact phase monitoring period（December 2015 to February 2016）was compared to the one during the baseline monitoring period （September to November 2011）．In the present quarter，dolphins have disappeared from the NEL region，which was in stark contrast to their frequent occurrence around the Brothers Islands，near Shum Shui Kok and in the vicinity of HKBCF reclamation site during the baseline period（Figure 1）．

3．2．4．In NWL survey area，dolphin occurrence was also drastically different between the baseline and impact phase periods．During the present impact monitoring period，much fewer dolphins occurred in this survey area than during the baseline period，when many dolphin groups were frequently sighted between Lung Kwu Chau and Black Point，around Sha Chau，near Pillar Point and to the west of the Chek Lap Kok Airport（Figure 1）．

3．2．5．Another comparison in dolphin distribution was made between the four quarterly periods of winter months in 2012－13，2013－14，2014－15 and 2015－16（Figure 2）．Among the four winter periods，dolphins were regularly sighted in NEL in 2012－13，but their usage there was dramatically reduced in 2013－14，and the dolphins have completely avoided this area during the winter of 2014－15 and 2015－16（Figure 2）．

3．2．6．On the other hand，dramatic changes in dolphin distribution in NWL waters were also observed in the winter months during the four quarterly periods（Figure 2）．In 2012－13 and 2013－14，dolphins still regularly occurred throughout the NWL survey area，with higher concentrations of sightings within Sha Chau and Lung Kwu Chau Marine Park，but they appeared to avoid the waters to the north of the airport in 2013－14 where they

HK CETACEAN RESEARCH PROJECT香港鯨豚研究計劃

Abstract

normally occurred in the previous winter．In 2014－15 and 2015－16，dolphin usage in NWL was then dramatically reduced，with most sightings clustered around and to the north of Lung Kwu Chau but rarely sighted elsewhere．Such temporal trend indicated that dolphin usage in the NWL region has progressively diminished in recent years．

3．3．Encounter rate

3．3．1．During the present quarterly period，the encounter rates of Chinese White Dolphins deduced from the survey effort and on－effort sighting data from the primary transect lines under favourable conditions（Beaufort 3 or below）for each set of the HKLR03 surveys in NEL and NWL are shown in Table 2．The average encounter rates deduced from the six sets of HKLR03 surveys were also compared with the ones deduced from the baseline monitoring period（September－November 2011）（Table 3）．

3．3．2．To facilitate the comparison with the AFCD long－term monitoring results，the encounter rates were also calculated for the present quarter using both primary and secondary survey effort．The encounter rates of sightings（STG）and dolphins（ANI）in NWL were 2.32 sightings and 9.11 dolphins per 100 km of survey effort respectively，while the encounter rates of sightings（STG）and dolphins（ANI）in NEL were both nil for this quarter．

Table 2．Dolphin encounter rates（sightings per 100 km of survey effort）during December 2015 to February 2016

SURVEY AREA	DOLPHIN MONITORING DATES	Encounter rate（STG） （no．of on－effort dolphin sightings per 100 km of survey effort）	Encounter rate（ANI） （no．of dolphins from all on－effort sightings per 100 km of survey effort）
		Primary Lines Only	Primary Lines Only
Northeast Lantau	Set 1 （2 \＆ 7 Dec 2015）	0.00	0.00
	Set 2 （9 \＆ 15 Dec 2015）	0.00	0.00
	Set 3 （8 \＆ 11 Jan 2016）	0.00	0.00
	Set 4 （13 \＆ 19 Jan 2016）	0.00	0.00
	Set 5 （2 \＆ 3 Feb 2016）	0.00	0.00
	Set 6 （16 \＆ 22 Feb 2016）	0.00	0.00
Northwest Lantau	Set 1 （2 \＆ 7 Dec 2015）	4.12	17.84
	Set 2 （9 \＆ 15 Dec 2015）	4.78	11.94
	Set 3 （8 \＆ 11 Jan 2016）	2.79	9.78
	Set 4 （13 \＆ 19 Jan 2016）	1.36	10.90
	Set 5 （2 \＆ 3 Feb 2016）	1.35	6.75
	Set 6 （16 \＆ 22 Feb 2016）	1.44	8.66

HK CETACEAN RESEARCH PROJECT

香港鯨豚研究計劃Table 3．Comparison of average dolphin encounter rates from impact monitoring period（December 2015 － February 2016）and baseline monitoring period（September－November 2011）（Note：encounter rates deduced from the baseline monitoring period have been recalculated based only on survey effort and on－effort sighting data made along the primary transect lines under favourable conditions；\pm denotes the standard deviation of the average encounter rates）

	Encounter rate（STG） （no．of on－effort dolphin sightings per 100 km of survey effort）		Encounter rate（ANI） （no．of dolphins from all on－effort sightings per 100 km of survey effort）	
	December 2015－ February 2016	September－ November 2011	December 2015－ February 2016	September－ November 2011
	0.0	6.00 ± 5.05	0.0	22.19 ± 26.81
Northwest Lantau	2.64 ± 1.52	9.85 ± 5.85	10.98 ± 3.81	44.66 ± 29.85

Table 4．Comparison of average dolphin encounter rates in Northeast Lantau survey area from all quarters of HKLR03 impact monitoring period and baseline monitoring period（September－November 2011）（Note： encounter rates deduced from the baseline monitoring period have been recalculated based only on survey effort and on－effort sighting data made along the primary transect lines under favourable conditions；the encounter rates in winter months were highlighted in blue；\pm denotes the standard deviation of the average encounter rates）

	Encounter rate（STG） （no．of on－effort dolphin sightings per 100 km of survey effort）	Encounter rate（ANI） （no．of dolphins from all on－effort sightings per 100 km of survey effort）
September－November 2011（Baseline）	6.00 ± 5.05	22.19 ± 26.81
December 2012－February 2013（Impact）	3.14 ± 3.21	6.33 ± 8.64
March－May 2013（Impact）	0.42 ± 1.03	0.42 ± 1.03
June－August 2013（Impact）	0.88 ± 1.36	3.91 ± 8.36
September－November 2013（Impact）	1.01 ± 1.59	3.77 ± 6.49
December 2013－February 2014（Impact）	0.45 ± 1.10	1.34 ± 3.29
March－May 2014（Impact）	0.00	0.00
June－August 2014（Impact）	0.42 ± 1.04	1.69 ± 4.15
September－November 2014（Impact）	0.00	0.00
December 2014－February 2015（Impact）	0.00	0.00
March－May 2015（Impact）	0.00	0.00
June－August 2015（Impact）	0.44 ± 1.08	0.44 ± 1.08
September－November 2015（Impact）	0.00	0.00
December 2015－February 2016（Impact）	0.00	0.00

3．3．3．In NEL，the average dolphin encounter rates（both STG and ANI）in the present three－month impact monitoring period were both zero with no sighting made，and such extremely low occurrence of dolphins in NEL have been consistently recorded in the past

HK CETACEAN RESEARCH PROJECT香港鯨豚研究計劃

twelve quarters of HKLR03 monitoring（Table 4）．This is a serious concern as the dolphin occurrence in NEL in the last eleven quarters（0．0－1．0 for ER（STG）and 0．0－3．9 for ER（ANI））have been exceptionally low when compared to the baseline period（Table 4）．Dolphins have almost vacated from NEL waters since January 2014，with only two groups of five dolphins sighted there since then despite consistent and intensive survey effort being conducted in this survey area

3．3．4．Moreover，the average dolphin encounter rates（STG and ANI）in NWL during the present impact phase monitoring period were also much lower（reductions of 73.2% and 75.4% respectively）than the ones recorded in the 3－month baseline period，indicating a dramatic decline in dolphin usage of this survey area as well during the present impact phase period（Table 5）．

3．3．5．Even for the same winter quarters，the dolphin encounter rates in NWL during the winters of 2014－2015 and 2015－16 were much lower than the ones recorded in winters of 2012－13 and 2013－14（Table 5）．

Table 5．Comparison of average dolphin encounter rates in Northwest Lantau survey area from all quarters of impact monitoring period and baseline monitoring period（September－November 2011）（Note：encounter rates deduced from the baseline monitoring period have been recalculated based only on survey effort and on－effort sighting data made along the primary transect lines under favourable conditions；encounter rates in winter months were highlighted in blue；\pm denotes the standard deviation of the average encounter rates）

	Encounter rate（STG） （no．of on－effort dolphin sightings per 100 km of survey effort）	Encounter rate（ANI） （no．of dolphins from all on－effort sightings per 100 km of survey effort）
September－November 2011（Baseline）	9.85 ± 5.85	44.66 ± 29.85
December 2012－February 2013（Impact）	8.36 ± 5.03	35.90 ± 23.10
March－May 2013（Impact）	7.75 ± 3.96	24.23 ± 18.05
June－August 2013（Impact）	6.56 ± 3.68	27.00 ± 18.71
September－November 2013（Impact）	8.04 ± 1.10	32.48 ± 26.51
December 2013－February 2014（Impact）	8.21 ± 2.21	32.58 ± 11.21
March－May 2014（Impact）	6.51 ± 3.34	19.14 ± 7.19
June－August 2014（Impact）	4.74 ± 3.84	17.52 ± 15.12
September－November 2014（Impact）	5.10 ± 4.40	20.52 ± 15.10
December 2014－February 2015（Impact）	2.91 ± 2.69	11.27 ± 15.19
March－May 2015（Impact）	0.47 ± 0.73	2.36 ± 4.07
June－August 2015（Impact）	2.53 ± 3.20	9.21 ± 11.57
September－November 2015（Impact）	3.94 ± 1.57	21.05 ± 17.19
December 2015－February 2016（Impact）	2.64 ± 1.52	10.98 ± 3.81

HK CETACEAN RESEARCH PROJECT香港鯨豚研究計畫

3．3．6．After a slight rebound in encounter rates in NWL in the previous quarter，dolphin occurrence has dropped noticeably once again in the present quarter back to a low level （especially for ER（ANI））（Table 5）．Such temporal trend should be closely monitored in the upcoming monitoring quarters．

3．3．7．As discussed recently in Hung（2015），the dramatic decline in dolphin usage of NEL waters in the past few years（including the declines in abundance，encounter rate and habitat use in NEL，as well as shifts of individual core areas and ranges away from NEL waters）was possibly related to the HZMB construction works that were commenced since 2012．It appeared that such noticeable decline has already extended to NWL waters progressively in the past two years．

3．3．8．A two－way ANOVA with repeated measures and unequal sample size was conducted to examine whether there were any significant differences in the average encounter rates between the baseline and impact monitoring periods．The two variables that were examined included the two periods（baseline and impact phases）and two locations（NEL and NWL）．

3．3．9．For the comparison between the baseline period and the present quarter（thirteenth quarter of the HKLR03 impact phase being assessed），the p －values for the differences in average dolphin encounter rates of STG and ANI were 0.0043 and 0.0275 respectively．If the alpha value is set at 0.05 ，significant differences were detected between the baseline and present quarters in both the average dolphin encounter rates of STG and ANI．

3．3．10．For the comparison between the baseline period and the cumulative quarters in impact phase（i．e．first thirteen quarters of the HKLR03 impact phase being assessed），the p －values for the differences in average dolphin encounter rates of STG and ANI were 0.00004 and 0.00001 respectively．Even if the alpha value is set at 0.00005 ，significant differences were still detected in both the average dolphin encounter rates of STG and ANI（i．e．between the two periods and the locations）．

3．3．11．As indicated in both dolphin distribution patterns and encounter rates，dolphin usage has been significantly reduced in both NEL and NWL survey areas during the present quarterly period，and such low occurrence of dolphins has also been consistently documented in previous quarters．This raises serious concern，as the timing of the decline in dolphin usage in North Lantau waters coincided well with the construction schedule of the HZMB－related projects（Hung 2015）．

3．3．12．To ensure the continuous usage of North Lantau waters by the dolphins，every possible measure should be implemented by the contractors and relevant authorities of HZMB－related works to minimize all disturbances to the dolphins．

3．4．Group size

3．4．1．Group size of Chinese White Dolphins ranged from one to ten individuals per group in North Lantau region during December 2015 to February 2016．The average dolphin group sizes from these three months were compared with the ones deduced from the baseline period in September to November 2011，as shown in Table 6.

HK CETACEAN RESEARCH PROJECT香港鯨豚研究計劃

Table 6．Comparison of average dolphin group sizes from impact monitoring period（December 2015 －February 2016）and baseline monitoring period（September－November 2011）（Note：\pm denotes the standard deviation of the average group size）

	Average Dolphin Group Size	
	December 2015－February 2016	September－November 2011
Overall	$4.07 \pm 3.22(\mathrm{n}=14)$	$3.72 \pm 3.13(\mathrm{n}=66)$
Northeast Lantau	N／A	$3.18 \pm 2.16(\mathrm{n}=17)$
Northwest Lantau	$4.07 \pm 3.22(\mathrm{n}=14)$	$3.92 \pm 3.40(\mathrm{n}=49)$

3．4．2．The average dolphin group size in NWL waters during December 2015 to February 2016 was slightly higher than the ones recorded during the three－month baseline period（Table 6）．Eight of the 14 groups were composed of 1－3 individuals only，while three other groups were moderate in sizes with 5－6 individuals per group．Moreover，three large dolphin groups with 8－10 individuals each were sighted during the present quarterly period．

3．4．3．Distribution of dolphins with larger group sizes（five individuals or more per group and ten individuals per group）during the present quarter is shown in Figure 3，with comparison to the one in baseline period．During the winter months of 2015－16， distribution of these moderately large groups of dolphins were located to the north of Lung Kwu Chau，near Pillar Point and near the northern landfall of TM－CLKL（Figure 3）． This distribution pattern was very different from the baseline period，when the larger dolphin groups were more evenly distributed in NWL waters with a few more sighted in NEL waters（Figure 3）．

3．5．Habitat use

3．5．1．From December 2015 to February 2016，the areas being heavily utilized by Chinese White Dolphins was to the north of Lung Kwu Chau，near Pillar Point and near the northern landfall of TM－CLKL in the North Lantau region（Figures 4 a and 4b）．All grids near southern viaduct of TM－CLKL，HKLR03／HKBCF reclamation sites as well as HKLR09 alignment did not record any presence of dolphins during on－effort search in the present quarterly period，but one grid（N12）overlapped with the northern landfall of TM－CLKL recorded moderately high dolphin densities（Figure 4b）．

3．5．2．It should be emphasized though that the amount of survey effort collected in each grid during the three－month period was fairly low（6－12 units of survey effort for most grids）， and therefore the habitat use pattern derived from the three－month dataset should be treated with caution．A more complete picture of dolphin habitat use pattern should be examined when more survey effort for each grid will be collected throughout the impact phase monitoring programme．

3．5．3．When compared with the habitat use patterns during the baseline period，dolphin usage in NEL and NWL has dramatically diminished in both areas during the present impact monitoring period（Figure 5）．During the baseline period，many grids between Siu Mo

HK CETACEAN RESEARCH PROJECT
 香港鯨豚研究計劃

To and Shum Shui Kok in NEL recorded moderately high to high dolphin densities，which was in stark contrast to the complete absence of dolphins there during the present impact phase period（Figure 5）．

3．5．4．The density patterns were also very different in NWL between the baseline and impact phase monitoring periods，with higher dolphin usage throughout the area，especially around Sha Chau，near Black Point，to the west of the airport，as well as between Pillar Point and airport platform during the baseline period．In contrast，mainly the waters to the north of Lung Kwu Chau recorded high densities of dolphins during the present impact phase period（Figure 5）．

3．6．Mother－calf pairs

3．6．1．During the present quarterly period，neither unspotted calf nor unspotted juvenile was sighted with any female in the North Lantau region．

3．6．2．The absence of young calves in the present quarter was in stark contrast to their regular occurrence in North Lantau waters during the baseline period．This should be of a serious concern，and the occurrence of young calves in North Lantau waters should be closely monitored in the upcoming quarters．

3．7．Activities and associations with fishing boats
3．7．1．One of the 14 dolphin groups were engaged in feeding activity，while two other dolphin groups were engaged in socializing activities．None of the dolphin groups were engaged in traveling or milling／resting activity during the three－month study period．

3．7．2．The percentage of sightings associated with feeding activities（7．1\％）was much lower than the one recorded during the baseline period（ 11.6% ），while the one associated with socializing activities（ 14.2% ）during the present impact phase period was much higher than the one from the baseline period（5．4\％）．However，it should be noted the sample sizes on total numbers of dolphin sightings during the present quarter（ 14 dolphin groups） was much lower than the baseline period（ 66 dolphin groups）．

3．7．3．Distribution of dolphins engaged in various activities during the present three－month period is shown in Figure 6．The only dolphin group engaged in feeding activity was sighted near Sha Chau，while the two groups engaged in socializing activities were located to the north of Lung Kwu Chau and near the northern landfall of TMCLKL．

3．7．4．When compared to the baseline period，distribution of various dolphin activities during the present impact phase monitoring period was drastically different with a much more restricted area of occurrences of these activities（Figure 6）．

3．7．5．As consistently recorded in the past monitoring quarters，none of the 14 dolphin groups was found to be associated with any operating fishing vessel in North Lantau waters during the present impact phase period．

3．8．Summary of photo－identification works
3．8．1．From December 2015 to February 2016，over 1，500 digital photographs of Chinese White

HK CETACEAN RESEARCH PROJECT
 香港鯨豚研究計劃

Abstract

Dolphins were taken during the HKLR03 impact phase monitoring surveys for the photo－identification work．

3．8．2．In total， 21 individuals sighted 48 times altogether were identified（see summary table in Appendix III and photographs of identified individuals in Appendix IV）．All of these re－sightings were made in NWL．

3．8．3．The majority of identified individuals were sighted only once or twice during the three－month period，with the exception of six individuals（NL182，NL210，NL220， NL284，NL286 and NL320）being 3－4 times and another two individuals（NL48 and NL285）being sighted 5 times in the present quarter．

3．8．4．For the first time since such comparison has been made，none of the 21 individuals sighted during HKLR03 monitoring surveys was sighted in West Lantau waters during the HKLR09 monitoring surveys in the same quarter．The restricted movements of individuals between North and West Lantau waters should be continuously monitored to determine whether the presence of HKLR09 alignments has affected such movements．

3．9．Individual range use
3．9．1．Ranging patterns of the 21 individuals identified during the three－month study period were determined by fixed kernel method，and are shown in Appendix V．

3．9．2．All identified dolphins sighted in the present quarter were utilizing NWL waters only，but have completely avoided NEL waters where many of them have utilized as their core areas in the past（Appendix V）．This is in contrary to the extensive movements between NEL and NWL survey areas observed in the earlier impact monitoring quarters as well as the baseline period．

3．9．3．Moreover，none of the 21 individuals have extended their range use to WL or SWL waters during the present quarter，which was very different from the previous quarters when frequent individual movements between the North and West Lantau waters were observed． In the upcoming quarters，individual range use and movements should be continuously monitored to examine whether there has been any significant change in individual range use，which could possibly be related to the HZMB－related construction works or the physical presence of the bridge structures（see Hung 2015）．

4．Conclusion

4．1．During this quarter of dolphin monitoring，no adverse impact from the activities of the TMCLKL construction project on Chinese White Dolphins was noticeable from general observations．

4．2．Although the dolphins infrequently occurred along the alignment of TMCLKL northern connection sub－sea tunnel section in the past and during the baseline monitoring period，it is apparent that dolphin usage has been significantly reduced in NEL，and many

香港鲸䏲研究計劃
individuals have shifted away from the important habitat around the Brothers Islands．
4．3．It is critical to monitor the dolphin usage in North Lantau region in the upcoming quarters， to determine whether the dolphins are continuously affected by the various construction activities in relation to the HZMB－related works，and whether suitable mitigation measure can be applied to revert the situation．

5．References

－Buckland，S．T．，Anderson，D．R．，Burnham，K．P．，Laake，J．L．，Borchers，D．L．，and Thomas，L． 2001．Introduction to distance sampling：estimating abundance of biological populations． Oxford University Press，London．
－Hung，S．K．2013．Monitoring of Marine Mammals in Hong Kong waters：final report （2012－13）．An unpublished report submitted to the Agriculture，Fisheries and Conservation Department， 168 pp ．
－Hung，S．K．2014．Monitoring of marine mammals in Hong Kong waters－data collection： final report（2013－14）．An unpublished report submitted to the Agriculture，Fisheries and Conservation Department of Hong Kong SAR Government， 231 pp．
－Hung，S．K．2015．Monitoring of marine mammals in Hong Kong waters－data collection： final report（2014－15）．An unpublished report submitted to the Agriculture，Fisheries and Conservation Department of Hong Kong SAR Government， 198 pp．
－Jefferson，T．A．2000．Population biology of the Indo－Pacific hump－backed dolphin in Hong Kong waters．Wildlife Monographs 144：1－65．

Figure 1. Distribution of Chinese white dolphin sighting in Northwest and Northeast Lantau during HKLR03 impact phase (top) and baseline monitoring surveys (bottom)

Figure 2. Distribution of Chinese white dolphin sightings in Northwest and Northeast Lantau during the same winter quarters (December - February) of HKLR03 impact phase in 2013-16

Figure 3. Distribution of Chinese white dolphins with larger group sizes during HKLR03 impact phase (top) and baseline monitoring surveys (bottom) (green dots: group sizes of 5 or more; purple dots: group sizes of 10 or more)

Figure 4a. Sighting density of Chinese white dolphins with corrected survey effort per km^{2} in Northeast and Northwest Lantau survey areas, using data collected during HKLR03 impact monitoring period monitoring period (Dec15-Feb16) $(\mathrm{SPSE}=$ no. of on-effort sightings per 100 units of survey effort)

Figure 4 b. Density of Chinese white dolphins with corrected survey effort per km^{2} in Northeast and Northwest Lantau survey areas, using data collected during HKLR03 impact monitoring period $($ Dec 15-Feb16) $(\mathrm{DPSE}=$ no. of dolphins per 100 units of survey effort $)$

Figure 5. Comparison of density of Chinese white dolphins with corrected survey effort per km^{2} in Northwest and Northeast Lantau survey area between the impact monitoring period December 2015February 2016) and baseline monitoring period (September-November 2011)
(DPSE $=$ no. of dolphins per 100 units of survey effort)

Figure 6. Distribution of Chinese white dolphins engaged in feeding (purple dots), socializing (pink dots) and traveling (green dots) activities during HKLR03 impact phase (top) and baseline monitoring surveys (bottom)

Appendix I. HKLR03 Survey Effort Database (Dec. 2015 - Feb. 2016)
(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
2-Dec-15	NW LANTAU	2	34.36	WINTER	STANDARD31516	HKLR	P
2-Dec-15	NW LANTAU	3	6.71	WINTER	STANDARD31516	HKLR	P
2-Dec-15	NW LANTAU	2	12.06	WINTER	STANDARD31516	HKLR	S
2-Dec-15	NW LANTAU	3	0.90	WINTER	STANDARD31516	HKLR	S
2-Dec-15	NE LANTAU	1	0.77	WINTER	STANDARD31516	HKLR	P
2-Dec-15	NE LANTAU	2	15.53	WINTER	STANDARD31516	HKLR	P
2-Dec-15	NE LANTAU	2	10.30	WINTER	STANDARD31516	HKLR	S
7-Dec-15	NE LANTAU	2	18.39	WINTER	STANDARD31516	HKLR	P
7-Dec-15	NE LANTAU	3	1.75	WINTER	STANDARD31516	HKLR	P
7-Dec-15	NE LANTAU	2	9.11	WINTER	STANDARD31516	HKLR	S
7-Dec-15	NE LANTAU	3	1.35	WINTER	STANDARD31516	HKLR	S
7-Dec-15	NW LANTAU	2	3.22	WINTER	STANDARD31516	HKLR	P
7-Dec-15	NW LANTAU	3	28.58	WINTER	STANDARD31516	HKLR	P
7-Dec-15	NW LANTAU	2	0.27	WINTER	STANDARD31516	HKLR	S
7-Dec-15	NW LANTAU	3	7.53	WINTER	STANDARD31516	HKLR	S
9-Dec-15	NW LANTAU	2	1.20	WINTER	STANDARD31516	HKLR	P
9-Dec-15	NW LANTAU	3	13.30	WINTER	STANDARD31516	HKLR	P
9-Dec-15	NW LANTAU	4	14.71	WINTER	STANDARD31516	HKLR	P
9-Dec-15	NW LANTAU	5	2.69	WINTER	STANDARD31516	HKLR	P
9-Dec-15	NW LANTAU	2	1.10	WINTER	STANDARD31516	HKLR	S
9-Dec-15	NW LANTAU	3	1.84	WINTER	STANDARD31516	HKLR	S
9-Dec-15	NW LANTAU	4	4.72	WINTER	STANDARD31516	HKLR	S
9-Dec-15	NE LANTAU	2	12.20	WINTER	STANDARD31516	HKLR	P
9-Dec-15	NE LANTAU	3	7.10	WINTER	STANDARD31516	HKLR	P
9-Dec-15	NE LANTAU	2	8.50	WINTER	STANDARD31516	HKLR	S
9-Dec-15	NE LANTAU	3	2.30	WINTER	STANDARD31516	HKLR	S
15-Dec-15	NW LANTAU	2	10.12	WINTER	STANDARD31516	HKLR	P
15-Dec-15	NW LANTAU	3	17.24	WINTER	STANDARD31516	HKLR	P
15-Dec-15	NW LANTAU	4	13.57	WINTER	STANDARD31516	HKLR	P
15-Dec-15	NW LANTAU	2	2.83	WINTER	STANDARD31516	HKLR	S
15-Dec-15	NW LANTAU	3	10.47	WINTER	STANDARD31516	HKLR	S
15-Dec-15	NE LANTAU	2	15.04	WINTER	STANDARD31516	HKLR	P
15-Dec-15	NE LANTAU	3	1.60	WINTER	STANDARD31516	HKLR	P
15-Dec-15	NE LANTAU	2	10.16	WINTER	STANDARD31516	HKLR	S
8-Jan-16	NW LANTAU	2	25.03	WINTER	STANDARD31516	HKLR	P
8-Jan-16	NW LANTAU	3	15.46	WINTER	STANDARD31516	HKLR	P
8-Jan-16	NW LANTAU	2	10.60	WINTER	STANDARD31516	HKLR	S
8-Jan-16	NW LANTAU	3	2.21	WINTER	STANDARD31516	HKLR	S
8-Jan-16	NE LANTAU	2	16.39	WINTER	STANDARD31516	HKLR	P
8-Jan-16	NE LANTAU	2	8.31	WINTER	STANDARD31516	HKLR	S
8-Jan-16	NE LANTAU	3	2.10	WINTER	STANDARD31516	HKLR	S
11-Jan-16	NE LANTAU	1	1.97	WINTER	STANDARD31516	HKLR	P
11-Jan-16	NE LANTAU	2	15.21	WINTER	STANDARD31516	HKLR	P
11-Jan-16	NE LANTAU	3	2.72	WINTER	STANDARD31516	HKLR	P
11-Jan-16	NE LANTAU	2	11.00	WINTER	STANDARD31516	HKLR	S
11-Jan-16	NE LANTAU	3	1.30	WINTER	STANDARD31516	HKLR	S
11-Jan-16	NW LANTAU	2	11.76	WINTER	STANDARD31516	HKLR	P
11-Jan-16	NW LANTAU	3	19.32	WINTER	STANDARD31516	HKLR	P
11-Jan-16	NW LANTAU	2	4.82	WINTER	STANDARD31516	HKLR	S
11-Jan-16	NW LANTAU	3	1.00	WINTER	STANDARD31516	HKLR	S
11-Jan-16	NW LANTAU	4	2.10	WINTER	STANDARD31516	HKLR	S

Appendix I. (cont'd)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
13-Jan-16	NE LANTAU	1	1.00	WINTER	STANDARD31516	HKLR	P
13-Jan-16	NE LANTAU	2	15.93	WINTER	STANDARD31516	HKLR	P
13-Jan-16	NE LANTAU	2	9.63	WINTER	STANDARD31516	HKLR	S
13-Jan-16	NE LANTAU	3	0.64	WINTER	STANDARD31516	HKLR	S
13-Jan-16	NW LANTAU	2	26.61	WINTER	STANDARD31516	HKLR	P
13-Jan-16	NW LANTAU	3	15.03	WINTER	STANDARD31516	HKLR	P
13-Jan-16	NW LANTAU	2	5.05	WINTER	STANDARD31516	HKLR	S
13-Jan-16	NW LANTAU	3	6.87	WINTER	STANDARD31516	HKLR	S
19-Jan-16	NW LANTAU	2	22.73	WINTER	STANDARD31516	HKLR	P
19-Jan-16	NW LANTAU	3	9.01	WINTER	STANDARD31516	HKLR	P
19-Jan-16	NW LANTAU	2	6.16	WINTER	STANDARD31516	HKLR	S
19-Jan-16	NW LANTAU	3	1.50	WINTER	STANDARD31516	HKLR	S
19-Jan-16	NE LANTAU	1	0.90	WINTER	STANDARD31516	HKLR	P
19-Jan-16	NE LANTAU	2	16.70	WINTER	STANDARD31516	HKLR	P
19-Jan-16	NE LANTAU	3	2.29	WINTER	STANDARD31516	HKLR	P
19-Jan-16	NE LANTAU	1	2.30	WINTER	STANDARD31516	HKLR	S
19-Jan-16	NE LANTAU	2	8.41	WINTER	STANDARD31516	HKLR	S
2-Feb-16	NE LANTAU	2	20.46	WINTER	STANDARD31516	HKLR	P
2-Feb-16	NE LANTAU	2	6.05	WINTER	STANDARD31516	HKLR	S
2-Feb-16	NE LANTAU	3	4.59	WINTER	STANDARD31516	HKLR	S
2-Feb-16	NW LANTAU	2	6.80	WINTER	STANDARD31516	HKLR	P
2-Feb-16	NW LANTAU	3	26.28	WINTER	STANDARD31516	HKLR	P
2-Feb-16	NW LANTAU	2	2.32	WINTER	STANDARD31516	HKLR	S
2-Feb-16	NW LANTAU	3	4.50	WINTER	STANDARD31516	HKLR	S
3-Feb-16	NW LANTAU	2	21.30	WINTER	STANDARD31516	HKLR	P
3-Feb-16	NW LANTAU	3	19.74	WINTER	STANDARD31516	HKLR	P
3-Feb-16	NW LANTAU	2	10.82	WINTER	STANDARD31516	HKLR	S
3-Feb-16	NW LANTAU	3	2.24	WINTER	STANDARD31516	HKLR	S
3-Feb-16	NE LANTAU	1	1.82	WINTER	STANDARD31516	HKLR	P
3-Feb-16	NE LANTAU	2	14.48	WINTER	STANDARD31516	HKLR	P
3-Feb-16	NE LANTAU	1	2.49	WINTER	STANDARD31516	HKLR	S
3-Feb-16	NE LANTAU	2	8.08	WINTER	STANDARD31516	HKLR	S
16-Feb-16	NW LANTAU	2	6.05	WINTER	STANDARD31516	HKLR	P
16-Feb-16	NW LANTAU	3	31.35	WINTER	STANDARD31516	HKLR	P
16-Feb-16	NW LANTAU	4	3.00	WINTER	STANDARD31516	HKLR	P
16-Feb-16	NW LANTAU	2	5.70	WINTER	STANDARD31516	HKLR	S
16-Feb-16	NW LANTAU	3	4.80	WINTER	STANDARD31516	HKLR	S
16-Feb-16	NW LANTAU	4	3.10	WINTER	STANDARD31516	HKLR	S
16-Feb-16	NE LANTAU	1	1.10	WINTER	STANDARD31516	HKLR	P
16-Feb-16	NE LANTAU	2	15.25	WINTER	STANDARD31516	HKLR	P
16-Feb-16	NE LANTAU	1	1.40	WINTER	STANDARD31516	HKLR	S
16-Feb-16	NE LANTAU	2	8.16	WINTER	STANDARD31516	HKLR	S
16-Feb-16	NE LANTAU	3	1.09	WINTER	STANDARD31516	HKLR	S
22-Feb-16	NE LANTAU	2	20.26	WINTER	STANDARD31516	HKLR	P
22-Feb-16	NE LANTAU	2	9.08	WINTER	STANDARD31516	HKLR	S
22-Feb-16	NE LANTAU	3	1.86	WINTER	STANDARD31516	HKLR	S
22-Feb-16	NW LANTAU	2	14.88	WINTER	STANDARD31516	HKLR	P
22-Feb-16	NW LANTAU	3	16.99	WINTER	STANDARD31516	HKLR	P
22-Feb-16	NW LANTAU	2	2.43	WINTER	STANDARD31516	HKLR	S
22-Feb-16	NW LANTAU	3	5.10	WINTER	STANDARD31516	HKLR	S
22-Feb-16	NW LANTAU	4	0.30	WINTER	STANDARD31516	HKLR	S

Appendix II. HKLR03 Chinese White Dolphin Sighting Database (December 2015-February 2016)
(Abberviations: STG\# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance;
BOAT ASSOC. $=$ Fishing Boat Association P/S: Sighting Made on Primary/Secondary Line\$

DATE	STG \#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
2-Dec-15	1	1058	1	NW LANTAU	2	477	ON	HKLR	826399	804684	WINTER	NONE	P
2-Dec-15	2	1149	2	NW LANTAU	2	257	ON	HKLR	827946	806459	WINTER	NONE	P
7-Dec-15	1	1449	10	NW LANTAU	3	553	ON	HKLR	828945	805462	WINTER	NONE	P
9-Dec-15	1	1209	9	NW LANTAU	4	126	ON	HKLR	829795	806761	WINTER	NONE	S
15-Dec-15	1	1015	1	NW LANTAU	2	ND	OFF	HKLR	814683	804794	WINTER	NONE	
15-Dec-15	2	1303	2	NW LANTAU	2	169	ON	HKLR	822328	808518	WINTER	NONE	P
15-Dec-15	3	1329	3	NW LANTAU	3	236	ON	HKLR	826060	808504	WINTER	NONE	P
8-Jan-16	1	1209	1	NW LANTAU	2	591	ON	HKLR	822365	806458	WINTER	NONE	P
11-Jan-16	1	1303	6	NW LANTAU	3	140	ON	HKLR	830351	805495	WINTER	NONE	P
13-Jan-16	1	1355	1	NW LANTAU	3	54	ON	HKLR	823584	806162	WINTER	NONE	S
13-Jan-16	2	1458	2	NW LANTAU	2	83	ON	HKLR	830961	805085	WINTER	NONE	S
19-Jan-16	1	1112	8	NW LANTAU	3	332	ON	HKLR	829044	805503	WINTER	NONE	P
3-Feb-16	1	1318	5	NW LANTAU	3	28	ON	HKLR	826580	808505	WINTER	NONE	P
16-Feb-16	1	1414	6	NW LANTAU	3	145	ON	HKLR	824082	812518	WINTER	NONE	P

Appendix III. Individual dolphins identified during HKLR03 monitoring surveys in December 2015 - February 2016

ID\#	DATE	STG\#	AREA
CH34	$09 / 12 / 15$	1	NW LANTAU
NL33	$07 / 12 / 15$	1	NW LANTAU
	$09 / 12 / 15$	1	NW LANTAU
NL48	$09 / 12 / 15$	1	NW LANTAU
	$11 / 01 / 16$	1	NW LANTAU
	$19 / 01 / 16$	1	NW LANTAU
	$03 / 02 / 16$	1	NW LANTAU
	$16 / 02 / 16$	1	NW LANTAU
NL104	$09 / 12 / 15$	1	NW LANTAU
	$15 / 12 / 15$	3	NW LANTAU
NL123	$11 / 01 / 16$	1	NW LANTAU
NL136	$09 / 12 / 15$	1	NW LANTAU
	$16 / 02 / 16$	1	NW LANTAU
NL182	$11 / 01 / 16$	1	NW LANTAU
	$19 / 01 / 16$	1	NW LANTAU
	$16 / 02 / 16$	1	NW LANTAU
NL202	$07 / 12 / 15$	1	NW LANTAU
	$19 / 01 / 16$	1	NW LANTAU
NL210	$07 / 12 / 15$	1	NW LANTAU
	$13 / 01 / 16$	2	NW LANTAU
	$03 / 02 / 16$	1	NW LANTAU
NL220	$09 / 12 / 15$	1	NW LANTAU
	$15 / 12 / 15$	3	NW LANTAU
	$11 / 01 / 16$	1	NW LANTAU
	$19 / 01 / 16$	1	NW LANTAU

ID\#	DATE	STG\#	AREA
NL233	$07 / 12 / 15$	1	NW LANTAU
NL261	$15 / 12 / 15$	2	NW LANTAU
	$03 / 02 / 16$	1	NW LANTAU
NL269	$09 / 12 / 15$	1	NW LANTAU
NL272	$07 / 12 / 15$	1	NW LANTAU
	$15 / 12 / 15$	2	NW LANTAU
NL280	$07 / 12 / 15$	1	NW LANTAU
NL284	$07 / 12 / 15$	1	NW LANTAU
	$19 / 01 / 16$	1	NW LANTAU
	$16 / 02 / 16$	1	NW LANTAU
NL285	$08 / 01 / 16$	1	NW LANTAU
	$11 / 01 / 16$	1	NW LANTAU
	$19 / 01 / 16$	1	NW LANTAU
	$03 / 02 / 16$	1	NW LANTAU
	$16 / 02 / 16$	1	NW LANTAU
NL286	$02 / 12 / 15$	1	NW LANTAU
	$02 / 12 / 15$	2	NW LANTAU
	$07 / 12 / 15$	1	NW LANTAU
NL302	$13 / 01 / 16$	2	NW LANTAU
NL320	$11 / 01 / 16$	1	NW LANTAU
	$19 / 01 / 16$	1	NW LANTAU
	$03 / 02 / 16$	1	NW LANTAU
WL17	$16 / 02 / 16$	1	NW LANTAU

Appendix IV. Twenty-one individual dolphins that were identified during December 2015 - February 2016 under HKLR03 impact phase monitoring surveys

CH34
NL33

NL48

Appendix IV. (cont'd)
NL123

NL182
NL202

Appendix IV. (cont'd)

Appendix IV. (cont'd)

Appendix IV. (cont'd)

Appendix V. Ranging patterns (95\% kernel ranges) of 21 individual dolphins that were sighted during HKLR03 impact phase monitoring period (note: yellow dots indicates sightings made in December 2015 - February 2016)

Appendix V. (cont'd)

Appendix V. (cont'd)

Appendix V. (cont'd)

Appendix H

Event and Action Plan

Event and Action Plan for Impact Air Monitoring

Note: (a) ET - Environmental Team; IEC - Independent Environmental Checker; SOR - Supervising Officer's Representative

Event/Action Plan for Impact Dolphin Monitoring

EVENT	ACTION			
	ET	IEC	SOR	Contractor
Action Level	1. Repeat statistical data analysis to confirm findings; 2. Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM\&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; 3. Identify source(s) of impact; 4. Inform the IEC, SOR and Contractor; 5. Check monitoring data. 6. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.	1. Check monitoring data submitted by ET and Contractor; 2. Discuss monitoring results and finding with the ET and the Contractor.	1. Discuss monitoring with the IEC and any other measures proposed by the ET; 2. If SOR is satisfied with the proposal of any other measures, SOR to signify the agreement in writing on the measures to be implemented.	1. Inform the SOR and confirm notification of the non-compliance in writing; 2. Discuss with the ET and the IEC and propose measures to the IEC and the SOR; 3. Implement the agreed measures.
Limit Level	1. Repeat statistical data analysis to confirm findings; 2. Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM\&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences;	1. Check monitoring data submitted by ET and Contractor; 2. Discuss monitoring results and findings with the ET and the Contractor; 3. Attend the meeting to discuss with ET, SOR and	1. Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. 2. If SOR is satisfied with the	1. Inform the SOR and confirm notification of the non-compliance in writing; 2. Attend the meeting to discuss with ET, IEC and SOR the necessity of additional dolphin monitoring and any other

EVENT	ACTION			
	ET	IEC	SOR	Contractor
	3. Identify source(s) of impact; 4. Inform the IEC, SOR and Contractor of findings; 5. Check monitoring data; 6. Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 7. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary.	Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. 4. Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise SOR of the results and findings accordingly. 5. Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise SOR the results and findings accordingly.	proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, SOR to signify the agreement in writing on such proposals and any other mitigation measures. 3. Supervise the implementation of additional monitoring and/or any other mitigation measures.	potential mitigation measures. 3. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary. 4. Implement the agreed additional dolphin monitoring and/or any other mitigation measures.

Note: ET - Environmental Team, IEC - Independent Environmental Checker, SOR - Supervising Officer's Representative

Appendix I

> Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Table I1 Cumulative Statistics on Exceedances

Monitoring Parameters	Action/Limit Level	Total No. recorded in this reporting quarter	Total No. recorded since project commencement
1-Hr TSP	Action	0	30
	Limit	0	2
$24-$ Hr TSP	Action	0	5
	Limit	0	1
Water Quality	Action	0	6
	Limit	0	1
Impact Dolphin	Action	0	9
Monitoring	Limit	1	4

Table I2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Cumulative Statistics		
	Complaints	Notifications of Summons	Successful Prosecutions
This Reporting Period (December 2015 to February 2016)	0	0	0
Total No. received since project commencement	4	0	0

Email message	Ramboll Environ - Hong Kong, Limited (ENPO)	Environmenta Resources Management
To	ERM- Hong Kong, Limited 25 Westlands Quarry Bay, H Telephone: (852) Facsimile: (852) E-mail: jovy.ta	
Ref/Project number	Contract No. HY/2012/08 Tuen Mun-Chek Lap Kok Link-Northern Connection Sub-sea Tunnel Section	
Subject	Notification of Exceedance for Impact Dolphin Date	

Dear Sir or Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

0212330_Dec2015/Feb2016_dolphin_STG\&ANI_NEL\&NWL
A total of one limit level exceedance was recorded in the quarterly impact dolphin monitoring data between December 2015 and February 2016.

Regards,

Mr Jovy Tam
Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us.

ERM-Hong Kong, Limited

Contract No. HY/2012/08
 Tuen Mun - Chek Lap Kok Link -
 Northern Connection Sub-Sea Tunnel Section

Impact Dolphin Monitoring
 Notification of Exceedance

Log No.	0212330_Dec2015/Feb2016_dolphin_STG\&ANI_NEL\&NWL [Total No. of Exceedances $=1$ Limit Level Exceedance]	
Date	December 2015 to February 2016 (monitored) 18 April 2016 (results received by ERM)	
Monitoring Area	Northeast Lantau (NEL) and Northwest Lantau (NWL)	
Parameter(s) with Exceedance(s)	Quarterly encounter rate of dolphin sightings (STG) Quarterly encounter rate of total number of dolphins (ANI)	
Action Levels	North Lantau Social cluster	NEL: STG < 4.2 \& ANI < 15.5 or NWL: STG < 6.9 \& ANI < 31.3
Limit Levels		$\begin{aligned} \text { NEL: } \mathrm{STG} & <2.4 \& \text { ANI }<8.9 \\ & \text { and } \\ \text { NWL: STG } & <3.9 \& \text { ANI }<17.9 \end{aligned}$
Recorded Levels	NEL	STG $=0.0$ \& ANI $=0.0$
	NWL	STG $=2.64$ \& ANI $=10.98$
	One Limit Level Exceedance was recorded in the quarterly impact dolphin monitoring at NEL and NWL between December 2015 and February 2016. The exceedance was reported in the approved Twenty-Eighth Monthly EMEA Report dated 11 March 2016.	
Statistical Analyses	Further to the review of the available and relevant dolphin monitoring data in the EM\&A programme by this Contract, statistical analyses were conducted as follows: - A two-way ANOVA with repeated measures and unequal sample size was conducted using Period (2 levels: baseline vs impact - present quarter, December 2015 to February 2016) and Location (2 levels: NEL and NWL) as fixed factors to examine whether there were any significant differences in the average encounter rates between the baseline and present impact monitoring quarter. By setting $\alpha=0.05$ as the significance level in the statistical tests, significant differences in STG $(p=0.0043)$ and ANI $(p=0.0275)$ were detected between Periods. - A two-way ANOVA with repeated measures and unequal sample size was conducted using Cumulative Period (2 levels: baseline vs impact - cumulative quarters*, December 2012 to February 2016) and Location (2 levels: NEL and NWL) as fixed factors to examine whether there were any significant differences in the average encounter rates between the baseline and cumulative impact monitoring quarters. By setting $\alpha=0.00005$ as the significance level in the statistical tests, significant difference in STG $(p=0.00004)$ and in ANI ($p=0.00001$) between Cumulative Period and Location were detected. *Note: The commencement date under Contract No. HY/2012/08 is 1 November 2013.	
Works Undertaken (in the monitoring quarter)	In the quarter between December 2015 and February 2016, no marine works was carried out in this Contract.	

Possible Reason for Action or Limit Level Exceedance(s)	The potential factors that may have contributed to the observed exceedance are reviewed below: - Blocking of CWD travelling corridor: The Monitoring of Marine Mammals in Hong Kong Waters (2014 - 15) (1) reported that dolphin usage and traveling activities to the northern side of the airport (dolphin traveling corridor) are affected by frequent high-speed ferry traffic from Sky Pier (not related to this Contract), which is likely a major factor resulting in the decrease in dolphin abundances in North Lantau. Marine works of the Contract: As per the findings from the EIA report (Section 8.11.9), the major influences on the Chinese White Dolphin (CWD) Sousa chinensis under this Contract are marine traffics, reclamation and dredging works. The Contractor implemented the marine traffic control in the reporting period as per the requirements in the EP-354/2009/D and the updated EMEA Manual. The reclamation and dredging works of this Contract (Phase 1) was completed in December 2014. Thus, underwater noise emission from this Contract had been relatively low in the reporting period when comparing to the previous quarters. During dolphin monitoring in this quarter, no unacceptable impact on CWD due to the activities under this Contract was observed.
In view of the above, marine ecological mitigation measures were considered properly	
implemented, and thus no unacceptable impact on CWD or its habitat was associated with this	
Contract in this quarter from December 2015 to February 2016.	

[^0]Appendix J

Waste Flow Table

Monthly Summary Waste Flow Table

Name of Department: HyD

Contract No. / Works Order No.: _HY/2012/08
Monthly Summary Waste Flow Table for December 2015 [to be submitted not later than the $15^{\text {th }}$ day of each month following reporting month] (All quantities shall be rounded off to 3 decimal places.)

Month	Monthly Break-down of Inert Construction \& Demolition Materials (i.e. Public Fill Materials)				
	(a) $=(\mathrm{b})+(\mathrm{c})+(\mathrm{d})+(\mathrm{e})$ Total Quantity Generated	(b) Hard Rock and Large Broken Concrete	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill
	(in '000 ton)	(in ' 000 ton)			
Sub-total	64.216	0.000	0.000	0.000	64.216
Jan-2015	30.877	0.000	0.000	0.000	30.877
Feb-2015	4.152	0.000	0.000	0.000	4.152
Mar-2015	36.718	0.000	0.000	0.000	36.718
Apr-2015	62.847	0.000	0.000	0.000	62.847
May-2015	121.436	0.000	0.000	0.000	121.436
Jun-2015	247.282	0.000	0.000	0.000	247.282
Half Year Sub-total	503.312	0.000	0.000	0.000	503.312
Jul-2015	233.422	0.000	0.000	0.000	233.422
Aug-2015	62.367	0.000	0.000	0.000	62.367
Sep-2015	9.555	0.000	0.000	0.000	9.555
Oct-2015	7.218	0.000	0.000	0.000	7.218
Nov-2015	11.578	0.000	0.000	0.000	11.578
Dec-2015	38.600	0.000	0.000	0.000	38.600
Project Total Quantities	930.268	0.000	0.000	0.000	930.268

Monthly Summary Waste Flow Table

Name of Department: HyD

Contract No. / Works Order No.: _HY/2012/08
Monthly Summary Waste Flow Table for February 2016 [to be submitted not later than the $15^{\text {th }}$ day of each month following reporting
month] (All quantities shall be rounded off to 3 decimal places.)

Month	Monthly Break-down of Inert Construction \& Demolition Materials (i.e. Public Fill Materials)				
	(a) $=(\mathrm{b})+(\mathrm{c})+(\mathrm{d})+(\mathrm{e})$ Total Quantity Generated	(b) Hard Rock and Large Broken Concrete	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill
	(in '000 ton)	(in ' 000 ton)	(in '000 ton)	(in ' 000 ton)	(in ' 000 ton)
Sub-total	930.268	0.000	0.000	0.000	930.268
Jan-2016	24.068	0.000	0.000	0.000	24.068
Feb-2016	9.229	0.000	0.000	0.000	9.229
Mar-2016					
Apr-2016					
May-2016					
Jun-2016					
Half Year Sub-total					
Jul-2016					
Aug-2016					
Sep-2016					
Oct-2016					
Nov-2016					
Dec-2016					
Project Total Quantities	963.565	0.000	0.000	0.000	963.565

Month	Actual Quantities of Non－inert Construction Waste Generated Monthly								
	Metals		Paper／cardboard packaging		$\begin{gathered} \text { Plastics } \\ \text { (see Note 3) } \end{gathered}$		Chemical Waste		Others，e．g．General Refuse disposed at Landfill
	（in＇ 000 kg ）		（in＇ 000 ton）						
	generated	recycled	generated	recycled	generated	recycled	generated	Disposed	generated
Sub－total	0.000	0.000	1.050	1.050	0.000	0.000	0.110	0.110	0.605
Jan－2015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.080
Feb－2015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.074
Mar－2015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.115
Apr－2015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.091
May－2015	0.000	0.000	0.000	0.000	0.000	0.000	1.600	1.600	0.108
Jun－2015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.120
Half Year Sub－total	0.000	0.000	0.000	0.000	0.000	0.000	1.600	1.600	0.588
Jul－2015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.172
Aug－2015	0.000	0.000	0.300	0.300	0.000	0.000	0.000	0.000	0.246
Sep－2015	0.000	0.000	0.300	0.300	0.220	0.220	0.000	0.000	0.195
Oct－2015	0.000	0.000	0.300	0.300	0.000	0.000	0.000	0.000	0.177
Nov－2015	0.000	0.000	0.200	0.200	5.950	5.950	0.000	0.000	0.093
Dec－2015	0.000	0.000	0.000	0.000	0.700	0.700	0.000	0.000	0.141
Project Total Quantities	0.000	0.000	2.150	2.150	6.870	6.870	1.710	1.710	2.217

Month	Actual Quantities of Non-inert Construction Waste Generated Monthly								
	Metals		Paper/ cardboard packaging		Plastics (see Note 3)		Chemical Waste		Others, e.g. General Refuse disposed at Landfill
	(in ' 000 kg)		(in ${ }^{\prime} 000 \mathrm{~kg}$)		(in ' 000 kg)		(in ${ }^{\prime} 000 \mathrm{~kg}$)		(in '000ton)
	generated	recycled	generated	recycled	generated	recycled	generated	Disposed	generated
Sub-total	0.000	0.000	2.150	2.150	6.870	6.870	1.710	1.710	2.217
Jan-2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.113
Feb-2016	1.850	1.850	0.000	0.000	0.000	0.000	4.740	4.740	0.102
Mar-2016									
Apr-2016									
May-2016									
Jun-2016									
Half Year Sub-total									
Jul-2016									
Aug-2016									
Sep-2016									
Oct-2016									
Nov-2016									
Dec-2016									
Project Total Quantities	1.850	1.850	2.150	2.150	6.870	6.870	6.450	6.450	2.432

Page 2

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract＊									
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed of as Public Fill					
（in＇000 ton）	（in＇ 000 ton）	（in＇ 000 ton）	（in＇ 000 ton）	（in＇ 000 ton）					
50.000	0.000	0.000	0.000	50.000					

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract＊				
Metals	Paper／cardboard packaging	Plastics （see Note 3）	Chemical Waste	General Refuse disposed of at Landfill
（in ${ }^{\prime} 000 \mathrm{~kg}$ ）	（in＇ 000 kg ）	（in ${ }^{\prime} 000 \mathrm{~kg}$ ）	（in ${ }^{\prime} 000 \mathrm{~kg}$ ）	（in ${ }^{0} 000 \mathrm{~m}^{3}$ ）
0.000	0.000	0.000	0.000	0.200

Notes：
（1）The performance targets are given in the ER Appendix 8J Clause 14 and the EM \＆A Manual（s）．
（2）The waste flow table shall also include C\＆D materials to be imported for use at the Site．
（3）Plastics refer to plastic bottles／containers，plastic sheets／foam from packaging material．
（4）The Contractor shall also submit the latest forecast of the total amount of C\＆D materials expected to be generated from the Works，together with a breakdown of the nature where the amount of C\＆D materials expected to be generated from the Works is equal to or exceeding $50,000 \mathrm{~m}^{3}$ ．（ER Part $\mathbf{8}$ Clause $\mathbf{8 . 8 . 5}$（d） （ii）refers）

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract＊									
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed of as Public Fill					
（in＇000 ton）	（in＇ 000 ton）	（in＇ 000 ton）	（in＇ 000 ton）	（in＇ 000 ton）					
20.000	0.000	0.000	0.000	20.000					

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract＊				
Metals	Paper／cardboard packaging	$\begin{gathered} \text { Plastics } \\ \text { (see Note 3) } \end{gathered}$	Chemical Waste	General Refuse disposed of at Landfill
（in＇ 000 kg ）	（in＇ 000 kg ）	（in＇ 000 kg ）	（in ${ }^{\prime} 000 \mathrm{~kg}$ ）	（in＇ 000 ton）
0.000	0.000	0.000	0.000	0.100

Notes：
（1）The performance targets are given in the ER Appendix 8J Clause 14 and the EM \＆A Manual（s）．
（2）The waste flow table shall also include C\＆D materials to be imported for use at the Site．
（3）Plastics refer to plastic bottles／containers，plastic sheets／foam from packaging material．
（4）The Contractor shall also submit the latest forecast of the total amount of C\＆D materials expected to be generated from the Works，together with a breakdown of the nature where the amount of C\＆D materials expected to be generated from the Works is equal to or exceeding $50,000 \mathrm{~m}^{3}$ ．（ER Part $\mathbf{8}$ Clause $\mathbf{8 . 8 . 5}$（d） （ii）refers）

[^0]: (1) Hung SKY (2015). Prepared for AFCD. Available from:
 http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_chi_chi/con_mar_chi_chi.html
 (2) Hung SKY (2016). Prepared for the Environmental Project Office for the HZMB, HKLR, HZMB HKBCF and TM-CLKL - Investigation. Available at: http://www.enpo.com.hk/EMnA_Report/ENPO_R7C/quarterly/pdf/SWL_201512-201602.pdf

