Contract No. DC / 2008 / 03

Design, Build and Operate

Pillar Point Sewage Treatment Works:

Fifty-eighth Monthly EM&A Report

(For 1 to 31 August 2015)

Preface

Contract No. DC/2008/03 of Design, Build and Operate Pillar Point Sewage Treatment Works (the Project) comprises both construction and operation of the sewage treatment plant.

In accordance with EP-321/2008A Item 2.8 and 2.9 and EP-321/2008B Item 2.8 and 2.9, transplanted trees and compensatory trees shall be planted within the site before operation of the Project. Both compensatory trees and transplanted trees were planted onsite by August 2015. With the tree planting physically completed (though its as-built record was reviewed by the Environmental Team (ET) of Construction Phase), the Operation Phase EM&A should proceed without further waiting so that monitoring data for the operation phase could be obtained as soon as possible. Therefore, the Operation Phase EM&A was commenced on 15 August 2015. In consequence, there is an overlapping period for Construction Phase EM&A and Operation Phase EM&A before the formal termination of the Construction Phase EM&A. A self-explanatory letter ref. 60017423/C/oylw15092301 dated 23 September 2015 from Independent Environmental Checker (IEC) was submitted via DSD to EPD for perusal and record (a copy is included in the next page).

The 58th EM&A Report for the period of August 2015 comprises two parts prepared by two separate ETs and verified by IEC:

Parts	Environmental Team	Independent
	Leaders	Environmental
		Checker
Part 1 - Construction Phase EM&A Report	Ms. Winnie Ko of	Mr. Tang Yu Tin of
for August 2015	ERM Hong Kong Limited	AECOM
Part 2 - Operation Phase EM&A Report for	Ms. Vivian Chan of	Mr. Tang Yu Tin of
August 2015	SMEC Asia Limited	AECOM

AECOM 8/F Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, Hong Kong 香港新界沙田鄉事會路 138 號 新城市中央廣場第2座8樓

www.aecom.com

+852 3922 9000 tel +852 3922 9797 fax

Your Ref:

Our Ref:

60017423/C/oylw15092301

By Hand & By Fax (2833 9162)

Drainage Services Department Sewage Services Branch Harbour Area Treatment Scheme Division 5/F., Western Magistracy, 2A Pok Fu Lam Road, Hong Kong.

Attn: Mr. Edwin Lau (T: 2159 3409)

23 September 2015

Dear Sir,

Contract No. DC/2008/03
Design, Build and Operate
Pillar Point Sewage Treatment Works

Overlapping of Construction Phase EM&A and Operation Phase EM&A

We elaborate below for your perusal and record the circumstance and reason leading to the overlapping of the construction phase EM&A and the operation phase EM&A, i.e. the latter commenced on 15 August 2015 before the formal termination of the former.

In accordance with Environmental Permit (EP) No. EP-321/2008A Items 2.8 and 2.9 and EP No. EP-321/2008B Items 2.8 & 2.9, transplanted trees and compensatory trees shall be planted within the site before the operation of the Project. Both compensatory trees and transplanted trees were planted onsite by August 2015. Those trees, which were considered dead or not suitable for transplantation as commented by the Contractor's tree arborist, have been replaced in accordance with EP-321/2008B Items 2.8 & 2.9. With the tree planting physically completed (though its as-built record was being reviewed by the Environmental Team), we concurred with the Contractor and his Environmental Team (ET) that the operation phase EM&A should proceed without waiting further so that monitoring data for the operation phase could be obtained as soon as possible. In consequence, the operation phase EM&A commenced on 15 August 2015, before the formal termination of the construction phase EM&A. We sum up the status of the construction phase, as follows:

1. As already reported in the EM&A report for the month of July 2015, all construction works (including those have the potential to result in a significant environmental impact) were practically completed on or before 17 May 2015 and only minor defects corrections works are being undertaken. On this basis, we concurred with the ET that the regular environmental site inspection, dust monitoring and on-site landscape audit could be suspended from July 2015.

AECOM 8/F Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, Hong Kong 香港新界沙田鄉事會路138號 新城市中央廣場第2座8樓

www.aecom.com

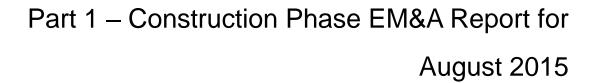
+852 3922 9000 tel +852 3922 9797 fax

(Fax No. 2811 3321)

2. With all tree planting physically completed in August 2015, the ET is currently reviewing various tree records and tree compensations. After the as-built tree drawings have been certified by the ET and verified by us, the ET will conduct a final landscape visual audit for the construction phase. If the results of the audit is acceptable to both the ET and us, a proposal to terminate the construction phase EM&A will be submitted via DSD to EPD for approval in accordance with Final EM&A Manual Clauses 7.3.1.7 and 7.1.3.8.

We trust that the above circumstance and reason justifies an overlap of the construction phase EM&A and operation phase EM&A. The overlap does not and will not have any adverse impact on either of the construction phase EM&A and operation phase EM&A. We will follow up with the Contractor and the ET to ensure that the overlap would come to an end soon. Further update will be given in upcoming EM&A reports.

Should you have any queries, please feel free to contact the undersigned at 3922 9393.


Yours faithfully,

For and on behalf of AECOM Asia Co. Ltd.

Y T Tang

Independent Environmental Checker

ATAL-Degremont-China State JV - Mr. Barry Lee

MONTHLY EM&A REPORT

ATAL-Degrémont-China State Joint Venture

Contract No. DC/2008/03
Design, Build and Operate Pillar
Point Sewage Treatment Works:
Fifty-eighth Monthly EM&A Report

September 2015

Environmental Resources Management

16/F, Berkshire House, 25 Westlands Road, Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

MONTHLY EM&A REPORT

ATAL-Degrémont-China State Joint Venture

Contract No. DC/2008/03 Design, Build and Operate Pillar Point Sewage Treatment Works: Fifty-eighth Monthly EM&A Report

September 2015 Reference 0119806

For and on behalf of ERM-Hong Kong, Limited				
Approved by:	Frank Wan			
Signed:	March 4.			
Position:	Partner			
Certified by:_	MA			
(Énvironmental Team Leader - Winnie Ko)				
Date:	ate: 9 September 2015			

AECOM 8/F Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, Hong Kong 香港新界沙田鄉事會路138號 新城市中央廣場第2座8樓

www.aecom.com

+852 3922 9000 tel +852 3922 9797 fax

Your Ref:

Our Ref:

60017423/C/oylw15092201

By Hand & By Fax (2833 9162)

Drainage Services Department Sewage Services Branch Harbour Area Treatment Scheme Division 5/F., Western Magistracy, 2A Pok Fu Lam Road, Hong Kong.

Attn: Mr. Edwin Lau (T: 2159 3409)

22 September 2015

Dear Sir,

Contract No. DC/2008/03
Design, Build and Operate
Pillar Point Sewage Treatment Works

Monthly EM&A Report for August 2015

Reference is made to Environmental Team (ET)'s draft of the Monthly EM&A Report for August 2015 provided by email dated 9, 14, 15, 21 and 22 September 2015. We have no further comment.

We hereby verify the said Monthly EM&A Report as having complied with the requirement as set out in the EM&A Manual in accordance with the condition 3.6 of Environmental Permit No. EP-321/2008/B.

Should you have any queries, please feel free to contact the undersigned at 3922 9393.

Yours faithfully,

For and on behalf of AECOM Asia Co. Ltd.

Y T Tang

Independent Environmental Checker

c.c. AECOM - Mr. C Y Hung

ERM – Ms. Winnie Ko

ATAL-Degremont-China State JV - Mr. C.Y. Fong

(Fax No. 2404 3310)

(Fax No. 2723 5660)

(Fax No. 2811 3321)

CONTENTS

EXECUTIVE SUMMARY

1	INRODUCTION	1
1.1	PURPOSE OF THE REPORT	1
1.2	STRUCTURE OF THE REPORT	1
2	PROJECT INFORMATION	3
2.1	BACKGROUND	3
2.2	GENERAL SITE DESCRIPTION	4
2.3	CONSTRUCTION ACTIVITIES	4
2.4	PROJECT ORGANISATION AND MANAGEMENT STRUCTURE	4
2.5	STATUS OF ENVIRONMENTAL APPROVAL DOCUMENTS	4
3	ENVIRONMENTAL MONITORING REQUIREMENTS	6
4	IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION	
	REQUIREMENTS	7
5	MONITORING RESULTS	8
6	WASTE MANAGEMENT	9
7	ENVIRONMENTAL INSPECTIONS	10
7.1	WEEKLY SITE AUDITS	10
7.2	LANDSCAPE AND VISUAL MONITORING	10
8	ENVIRONMENTAL NON-CONFORMANCE	11
8.1.1	Summary of Monitoring Exceedance	11
8.1.2	Summary of Environmental Non-Compliance	11
8.1.3	Summary of Environmental Complaint	11
8.1.4	Summary of Environmental Summon and Successful Prosecution	11
9	FUTURE KEY ISSUES	12
9.1	KEY ISSUES FOR THE COMING MONTH	12
9.2	MONITORING SCHEDULE FOR THE NEXT REPORTING PERIOD	12
9.3	CONSTRUCTION PROGRAMME FOR THE NEXT THREE MONTHS	12
10	REVIEW OF THE EM&A DATA AND EIA PREDICTIONS	13
10.1	AIR QUALITY	13
10.2	WASTE MANAGEMENT	13
10.3	CONCLUSION OF THE REVIEW	14
11	CONCLUSIONS	15

LIST OF TABLES

Table 2.2	Summary of Environmental Licensing, Notification and Permit Status		
Table 6.1	Quantities of Waste Generated from the Project		
Table 10.2	Quantity of Amount of C&D Materials, General Wastes and Chemical Wastes		
Actually Generated and Estimated in the EIA and C&D Material Assessment			

LIST OF ANNEXES

Annex A	Location of Project
Annex B	Works Location
Annex C	Project Organization Chart and Contact Detail
Annex D	(not used)
Annex E	(not used)
Annex F	(not used)
Annex G	(not used)
Annex H	(not used)
Annex I	Implementation Schedule of Mitigation Measures
Annex J	Waste Flow Table
Annex K	Environmental complaint, Environmental Summons and Prosecution Log
Annex L	Construction Programme for the Project

EXECUTIVE SUMMARY

The construction works of *DC/2008/03 of Design, Build and Operate Pillar Point Sewage Treatment Works (the Project)* commenced on 13 November 2010. This is the 58th monthly Environmental Monitoring and Audit (EM&A) report presenting the EM&A works carried out during the period from 1 to 31 August 2015 in accordance with the EM&A Manual. The operation of the Project commenced on 15 August 2015. In the meantime, the establishment period will be started on 15 August 2015 tentatively.

Major construction works had been completed in June 2015 and only minor defects are being undertaken. A letter notifying the completion of main works and proposing the suspension of the environmental site inspection and dust monitoring was sent to IEC on 3 July 2015. A supplemental letter proposing the suspension of monthly onsite landscape audit was sent to IEC on 18 July 2015. A letter certified by IEC was sent to DSD on 31 July 2015. Air quality monitoring, weekly environmental site audits and landscape and visual monitoring were not conducted in August 2015.

Waste Management

Waste generated from this Project includes inert construction and demolition (C&D) materials (public fill) and non-inert C&D materials (construction wastes). In total, 16.69 tonnes of inert C&D material were generated from the Project, of which 0 tonnes were reused in this Contract and the remaining 16.69 tonnes were disposed as public fill. 0.00 kg of metals, 0.00 kg of papers/ cardboard packing and 0.00 kg of plastics were sent to recyclers for recycling during the reporting period.

Environmental Exceedance/Non-conformance/Compliant/Summons and Prosecution

No exceedance was recorded during the reporting period.

No non-compliance event was recorded during the reporting period.

No environmental complaint and summon/prosecution was received in this reporting period.

Future Key Issues

No air quality monitoring, weekly environmental site audits and landscape and visual monitoring would be required in the next reporting month.

As operational phase is commenced on 15 August 2015, the first landscape and visual audit will be scheduled to be carried out on or before 14 September 2015 for the start of the establishment period. However, the first landscape and visual audit of the establishment period will be subject to the satisfaction of final landscape visual audit of construction phase.

1 INRODUCTION

ERM-Hong Kong, Limited (ERM) was appointed by ATAL – Degrémont – China State Joint Venture (ADC-JV) (the Contractor) as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme for the *Contract No. DC/2008/03 of Design, Build and Operate Pillar Point Sewage Treatment Works (the Project)*.

1.1 Purpose of the Report

This is the 58th EM&A report which summarises the monitoring results and audit findings for the EM&A programme during the reporting period from 1 to 31 August 2015.

1.2 STRUCTURE OF THE REPORT

The structure of the report is as follows:

Section 1: **Introduction**

It details the scope and structure of the report.

Section 2: **Project Information**

It summarises the background and scope of the Project, site description, project organization, construction programme, construction works undertaken and status of the Environmental Permits (EP)/licences over the construction phase of the Project.

Section 3: Environmental Monitoring Requirements

It summarises the environmental monitoring requirements including monitoring parameters, programmes, methodologies, frequency, locations, Action and Limit Levels, Event/Action Plans, environmental mitigation measures as recommended in the approved EIA report, EP and relevant environmental requirements stated in the Contract Specification.

Section 4: Implementation Status on Environmental Mitigation Measures

It summarises the implementation of environmental protection measures during the reporting period.

Section 5: **Monitoring Results**

It summarises the monitoring results obtained in the reporting period.

Section 6: Waste Management

It summarises the quantity of public fill and construction waste generated in the reporting period

Section 7: **Environmental Site Inspection**

It summarises the audit findings of the weekly site inspections undertaken within the reporting period.

Section 8: Environmental Non-conformance

It summarises any exceedance of environmental performance standard, environmental complaints and summons received within the reporting period.

Section 9: Further Key Issues

It summarises the impact forecast and monitoring schedule for the next reporting month.

Section 10: Review of the EM&A Data and Predictions

It compares the monitoring data and waste quantity against the predictions in the approved Project EIA report.

Section 11: Conclusions

2 PROJECT INFORMATION

2.1 BACKGROUND

The existing Pillar Point Sewage Treatment Works (PPSTW) is located to the north of the Tuen Mun River Trade Terminal and is abutting the Lung Mun Road in the north. It is a preliminary treatment works with screening and grit removal processes and the treated effluent is discharged to the sea (North Western Water Control Zone) via a twin submarine outfall. The *Review of the Tuen Mun and Tsing Yi Sewerage Master Plan* (RTMTYSMP), commissioned in February 1999, recommended that the sewage treatment capacity be expanded and the plant be upgraded to chemically enhanced primary treatment (CEPT) with disinfection. This is to cater for the projected ultimate population and planned developments in the Tuen Mun area, and to improve the effluent quality reducing pollution loadings to the receiving waters.

The upgrading of the PPSTW comprises the following works:

- expanding the treatment capacity of the existing PPSTW to cope with the increased peak wet-weather sewage flow in Tuen Mun area;
- upgrading the sewage treatment level of the existing PPSTW to incorporate chemical treatment with disinfection at minimum removal rates of 70%, 55% and 99.9% of suspended solids (SS), biochemical oxygen demand (BOD) and *E.coli*, respectively;
- upgrading the existing septic waste reception facilities at PPSTW; and
- providing and upgrading ancillary facilities including the administration building, workshop, laboratory, odour control facilities, sludge handling and dewatering facilities, access roads and minor landscaping works within the STW for the operation and maintenance of the upgraded STW.

The potential environmental impacts of the Project have been studied in the "Upgrading of Pillar Point Sewage Treatment Works" (EIAO Register No: AEIAR-145/2008). The EIA was approved on 10 June 2008 under the Environmental Impact Assessment Ordinance (EIAO) and an Environmental Permit (EP-321/2008) for the works was granted on 17 November 2008. A variation of an Environmental Permit was granted on 30 May 2014 (EP-321/2008/B). Under the requirements of Condition 3.1 of EP-321/2008/B, an EM&A programme as set out in the EM&A Manual is required to be implemented.

The construction works commenced on 13 November 2010. Major construction works had been completed in June 2015 and only minor defects are being undertaken. The operation of the Project commenced on 15 August 2015.

2.2 GENERAL SITE DESCRIPTION

The open area adjacent to the existing PPSTW has been designated for the upgrading works. The layout of the upgrading works is illustrated in *Annex A*.

2.3 CONSTRUCTION ACTIVITIES

Major construction works had been completed in June 2015 and only minor defects are being undertaken. A letter notifying the completion of main works and proposing the suspension of the environmental site inspection and dust monitoring was sent to IEC on 3 July 2015. A supplemental letter proposing the suspension of monthly onsite landscape audit was sent to IEC on 18 July 2015. A letter certified by IEC was sent to DSD on 31 July 2015. Minor construction activities for correcting minor defects undertaken in the reporting period is shown in *Table 2.1*. The locations of the construction activities are shown in *Annex B*. The construction programme of the Project is presented in *Annex L*.

Table 2.1 Summary of Construction Activities Undertaken in the Reporting Period

Construction Activities Undertaken

- Finishing works at the Administration Building, Sludge Dewatering Building, PTW, CEPT, UV Building, Septic Waste Reception Station, Reuse Water Pump Room, Deodourisation Unit Portion A, Deodourisation Unit Portion B, Chemical Building, Electrical buildings No.1, No.3, No.4, Payment Flow Meter Chamber, Sludge Skip Storage Building, Existing Solid Handling Building, Weighbridge, Existing Outfall Pumping Station and Existing PTW;
- Lamp pole cable duct installation at overall site; and
- Defect works at Administration Building (cable lying installation work for earth bonding), PTW (defect rectification work), Sludge Skip Storage Building (defect rectification work) and Existing Outfall Pumping Station (installation work of defoam system).

2.4 PROJECT ORGANISATION AND MANAGEMENT STRUCTURE

The project organisation chart and contact details are shown in *Annex C*.

2.5 STATUS OF ENVIRONMENTAL APPROVAL DOCUMENTS

A summary of the valid permits, licences, and/or notifications on environmental protection for this Project is presented in *Table 2.2*.

Table 2.2 Summary of Environmental Licensing, Notification and Permit Status

Permit/ Licences/ Notification	Reference	Validity Period	Remarks
Environmental	EP-321/2008/B	Throughout the	Permit granted on 30
Permit		Contract	May 2014
Notification of	Ref No. 308136	Throughout the	-
Construction Works		Contract	
under the Air			

Permit/ Licences/ Notification	Reference	Validity Period	Remarks
Pollution Control			
(Construction Dust)			
Regulation			
Water Discharge	WT00019356-2014	10 July 2014 - 31	Wastewater discharge
License		July 2016	licence was issued by
			EPD on 10 July 2014.
Water Discharge	WT00017778-2013	22 November 2013	Superceded by
License		- 31 October 2015	WT00019356-2014
Construction Noise	GW-RW0076-15	4 March 2015 - 3	-
Permit		August 2015	
Chemical Waste	5213-421-A2620-01	Throughout the	Licence approved on 28
Producer Registration		Contract	October 2010

3 ENVIRONMENTAL MONITORING REQUIREMENTS

Major construction works had been completed in June 2015 and only minor defects are being undertaken. A letter notifying the completion of main works and proposing the suspension of the environmental site inspection and dust monitoring was sent to IEC on 3 July 2015. A supplemental letter proposing the suspension of monthly onsite landscape audit was sent to IEC on 18 July 2015. A letter certified by IEC was sent to DSD on 31 July 2015. Air quality monitoring, weekly environmental site audits and monthly landscape and visual monitoring were not conducted in August 2015.

4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

The Contractor has implemented environmental mitigation measures and requirements as stated in the approved EIA Report, EM&A Manual and EP. The implementation status of the measures during the reporting period is summarised in Annex I.

5 MONITORING RESULTS

Major construction works had been completed in June 2015 and only minor defects are being undertaken. As mentioned in Section 3, no air quality monitoring was carried out in August 2015.

6 WASTE MANAGEMENT

Wastes generated from this Project include inert construction and demolition (C&D) materials (public fill) and non-inert C&D materials (construction waste). Construction waste comprises general refuse, metals and paper/cardboard packaging materials. Metals generated from the Project are also grouped into construction waste as the materials were not disposed of with others at public fill. Reference has been made to the Monthly Summary Waste Flow Table prepared by the Contractor (see *Annex J*). With reference to the relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in *Table 6.1*.

Table 6.1 Quantities of Waste Generated from the Project

Month/Year	Quantity			
	Total Inert C&D Non-inert C&D Materials (b)			1s (b)
	Materials Generated (a)	C&D Materials Recycled (c)	C&D Waste Disposed of at Landfill ^(d)	Chemical Waste
August 2015	16.69 tonnes	0.00 kg	0.62 tonnes	0 L

Notes:

- (a) Inert C&D materials (public fill) include bricks, concrete, building debris, rubble and excavated spoil. In total, 16.69 tonnes of inert C&D waste were generated from the Project, of which 0.00 tonnes were reused in this Contract and the remaining 16.69 tonnes were disposed as public fill. The detailed waste flow is presented in *Annex J*.
- (b) Non-inert C&D materials (construction wastes) include metals, paper / cardboard packaging waste, plastics and other wastes such as general refuse. Metals generated from the Project were grouped into construction wastes as the materials were not disposed of with others at the public fill.
- (c) 0.00 kg of metals, 0.00 kg of papers/ cardboard packing and 0.00 kg of plastics were sent to recyclers for recycling during the reporting period.
- (d) Construction wastes other than metals, paper/cardboard packaging, plastics and chemicals were disposed of at WENT Landfill by subcontractors.

7 ENVIRONMENTAL INSPECTIONS

7.1 WEEKLY SITE AUDITS

Major construction works had been completed in June 2015 and only minor defects are being undertaken. As mentioned in *Section 3*, no weekly site audits were carried out in August 2015.

7.2 LANDSCAPE AND VISUAL MONITORING

Major construction works had been completed in June 2015 and only minor defects are being undertaken. As mentioned in *Section 3*, no monthly landscape and visual monitoring was carried out in August 2015. All trees were planted onsite as reported by the Contractor. However, the as-built drawing is in the process of reviewing and the final landscape and visual audit will be only carried out once the as-built drawing has certified and verified by the ET and IEC, respectively.

As operational phase is commenced on 15 August 2015, the first landscape and visual audit will be scheduled to be carried out on or before 14 September 2015 for the start of the establishment period. However, the first landscape and visual audit of the establishment period will be subject to the satisfaction of final landscape visual audit of construction phase.

8 ENVIRONMENTAL NON-CONFORMANCE

8.1.1 Summary of Monitoring Exceedance

As mentioned in Section 3, no air quality monitoring was carried out in August 2015.

8.1.2 Summary of Environmental Non-Compliance

No non-compliance event was recorded during the reporting period.

8.1.3 Summary of Environmental Complaint

No complaint was received during the reporting period. The cumulative environmental complaint log is shown in *Annex K*.

8.1.4 Summary of Environmental Summon and Successful Prosecution

No summon was received during the reporting period. The cumulative summons/prosecution log is shown in *Annex K*.

9 FUTURE KEY ISSUES

9.1 KEY ISSUES FOR THE COMING MONTH

Major construction works had been completed in June 2015 and only minor defects are being undertaken. A letter notifying the completion of main works and proposing the suspension of the environmental site inspection and dust monitoring was sent to IEC on 3 July 2015. A supplemental letter proposing the suspension of monthly onsite landscape audit was sent to IEC on 18 July 2015. A letter certified by IEC was sent to DSD on 31 July 2015.

As operational phase is commenced on 15 August 2015, the first landscape and visual audit will be scheduled to be carried out on or before 14 September 2015 for the start of the establishment period. However, the first landscape and visual audit of the establishment period will be subject to the satisfaction of final landscape visual audit of construction phase.

9.2 MONITORING SCHEDULE FOR THE NEXT REPORTING PERIOD

No TSP monitoring was scheduled as the suspension of the environmental site inspection and dust monitoring has been proposed for IEC agreement following completion of main construction works for the Project on 3 July 2015.

9.3 CONSTRUCTION PROGRAMME FOR THE NEXT THREE MONTHS

The most up-to-date construction programme for the Project is presented in *Annex L*.

10.1 AIR QUALITY

10

Major construction works had been completed in June 2015 and only minor defects are being undertaken. As mentioned in *Section 3*, no air quality monitoring was carried out in August 2015.

10.2 WASTE MANAGEMENT

The estimated amount of waste generated from the Project and the cumulative quantities of waste generated up to this reporting month are presented in *Table 10.1*. The amount of inert C&D material sent to public fills is higher than the estimated amount in the EIA. With reference to the C&D Material Assessment (Contractor's General Submission (CSF) No.: DC200803/CSF/SAF/060026/A), the difference in quantities is mainly due to the differences in excavation depths and the excavation methods in the Contract Works and that assumed in the Reference Design. During the variation of an Environmental Permit (VEP-398/2013), the C&D Material Assessment was re-assessed and the estimate amount was revised. Recommended mitigation measures in *Sections 7.5.1.1* to *7.5.1.9* of the EIA will continue to be implemented during the construction stage.

Table 10.1 Quantity of Amount of C&D Materials, General Wastes and Chemical Wastes Actually Generated and Estimated in the EIA and C&D Material Assessment

Type of Material	Estimated Amount of Public Fill and Construction Waste in the EIA (inert & non- inert)	Estimated Amount of Public Fill and Construction Waste in C&D Material Assessment (CSF No.: DC200803/CSF/SAF/ 060026/A) (c)	Estimated Amount of Public Fill and Construction Waste in the C&D Material Assessment (VEP- 398/2013) ^(d)	Accumulated Actual Amount of Public Fill and Construction Waste Recorded (a) (b) (inert & non-inert)
Amount of C&D Materials Arising	61,489.00 m ³	77,600.00 m ³	116,400.00 m ³	136,327.61 m ³
Amount of C&D Materials Reused on other site	-	-	-	3,163.89 m ³
Amount of C&D Materials Reused on site	14,926.00 m ³	18,000.00 m ³	20,150.00 m ³	24,358.89 m ³

Type of Material	Estimated Amount of Public Fill and Construction Waste in the EIA (inert & non- inert)	Estimated Amount of Public Fill and Construction Waste in C&D Material Assessment (CSF No.: DC200803/CSF/SAF/ 060026/A) (c)	Estimated Amount of Public Fill and Construction Waste in the C&D Material Assessment (VEP- 398/2013) ^(d)	Accumulated Actual Amount of Public Fill and Construction Waste Recorded (a) (b) (inert & non-inert)
Amount of C&D Materials Sent to Fill Banks	46,563.00 m ³	59,600.00 m ³	96,250 m ³	108,804.86 m ³
General Refuse	Small	-	-	2,308.21 tonnes
Chemical Waste	Small	-	-	810.00 L

Notes:

- (a) The actual amount of C&D Materials has been recorded since the commencement of construction works.
- (b) The density of soil and rock (bulked) is 1.8 tonnes/m³.
- (c) The estimated amount of C&D material generated from the Contract Works was revised in the C&D Material Assessment and submitted to the SO on 9 September 2010 (CSF No.: DC200803/CSF/SAF/060026/A) because of the new plant & facility layout.
- (d) The estimated amount of C&D material generated from the Contract Works was revised in the C&D Material Assessment (VEP-398/2013) on 22 March 2013.

10.3 CONCLUSION OF THE REVIEW

The EIA predictions and monitoring results since the commencement of the construction works have been reviewed. The EIA concluded that the Project would not cause adverse impacts to the environment, and monitoring results have also confirmed that so far. Mitigation measures recommended in the EP, EIA and EM&A Manual will continue to be implemented throughout the construction phase of the Project.

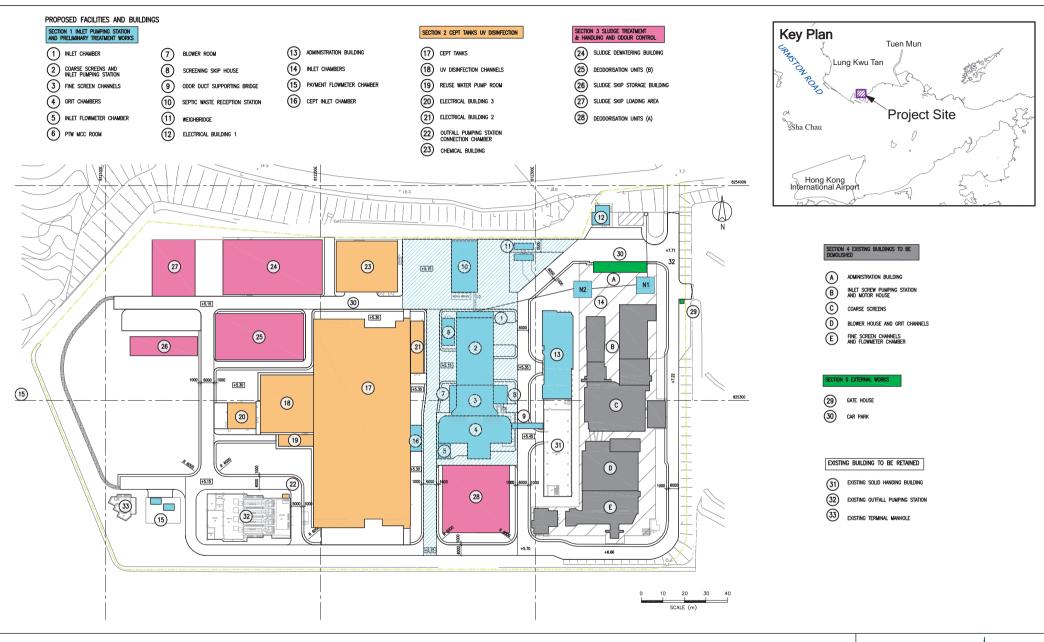
11 CONCLUSIONS

This EM&A Report presents the EM&A programme undertaken during the reporting period from 1 to 31 August 2015 in accordance with EM&A Manual and requirements of EP (EP-321/2008/B).

Major construction works had been completed in June 2015 and only minor defects are being undertaken. A letter notifying the completion of main works and proposing the suspension of the environmental site inspection and dust monitoring was sent to IEC on 3 July 2015. A supplemental letter proposing the suspension of monthly onsite landscape audit was sent to IEC on 18 July 2015. A letter certified by IEC was sent to DSD on 31 July 2015.

As operational phase is commenced on 15 August 2015, the first landscape and visual audit will be scheduled to be carried out on or before 14 September 2015 for the start of the establishment period. However, the first landscape and visual audit of the establishment period will be subject to the satisfaction of final landscape visual audit of construction phase.

No air quality monitoring was carried out in August 2015. As such, no monitoring exceedance was recorded.


No non-compliance event was recorded during the reporting period.

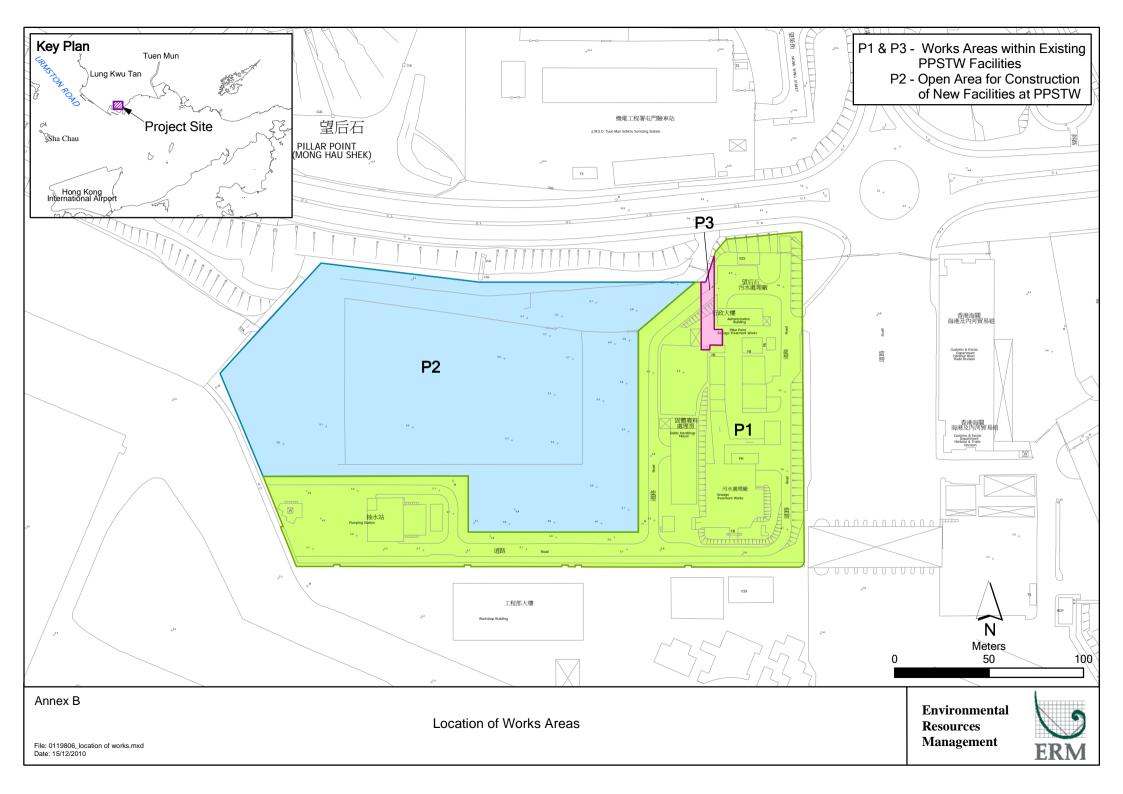
No complaint and summons/prosecution was received during the reporting period.

The ET will keep track of the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all the necessary mitigation measures in the coming periods.

Annex A

Location of Project

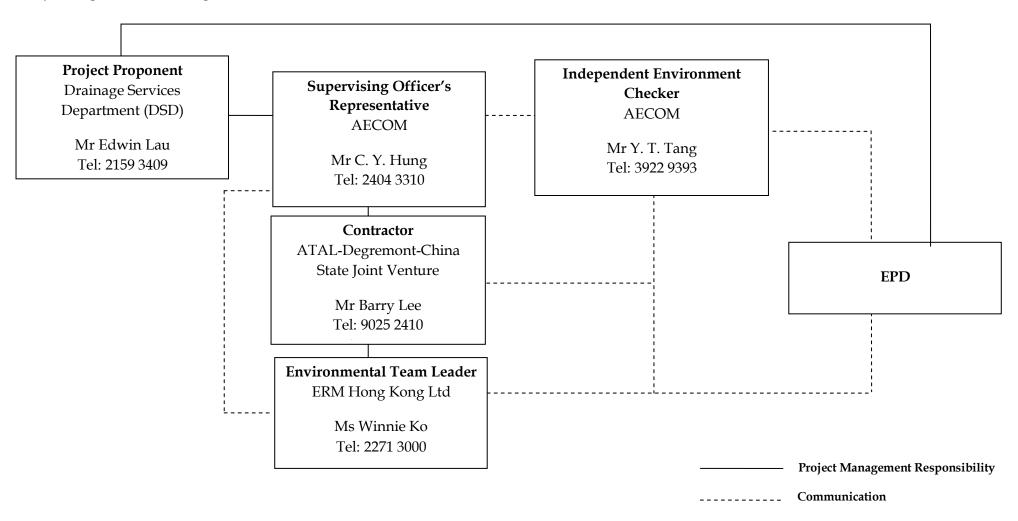
Annex A


Contract No. DC/2008/03 - Design, Build and Operate Pillar Point Sewage Treatment Works Layout of Project

Environmental Resources Management

Annex B

Works Location


Annex C

Project Organization Chart with Contact Details

Annex C

Project Organization Chart with Contact Details

Project Organization During Construction Phase (with contact details)

Annex D

(not used)

Annex E

(not used)

Annex F

(not used)

Annex G

(not used)

Annex H

(not used)

Annex I

Implementation Schedule of Mitigation Measures

Annex I Summary of Mitigation Measures Implementation Schedule

Type of Impact	Environmental Protection Measures	Location/ Timing	Status		
Summary of Envi	ronmental Mitigation Measures in the EIA and EM&A Manual				
Construction Pha	se				
Air Quality	Dust mitigation measures stipulated in <i>the Air Pollution Control</i> (<i>Construction Dust</i>) <i>Regulation</i> shall be incorporated to control Post emission. Notice shall be given to authority prior to commencing of work.	Work sites / during construction period	Notice of works commencement was submitted to EPD on 3 August 2010.		
Water Quality	The practices outlined in ProPECC PN 1/94 Construction Site Drainage should be adopted. It is recommended to install perimeter channels in the works areas to intercept runoff as site boundary prior to the commencement of any earthwork. To prevent storm runoff from washing across exposed soil surfaces, intercepting channels should be provided. Drainage channels are also required to convey site runoff to sand/silt traps and oil interceptors. Provision of regular cleaning and maintenance can ensure the normal operation of these facilities throughout the construction period. Any practical options for the diversion and re-alignment of drainage should comply with both engineering and environmental requirements in order to ensure adequate hydraulic capacity of all drains.	Work site/During the construction period	1		
Water Quality	There is a need to apply to EPD for a discharge license under the WPCO for discharging effluent from the construction site. The discharge quality is required to meet the requirements specified in the discharge license. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. Reuse and recycling of the treated effluent can minimize water consumption and reduce the effluent discharge volume. The beneficial uses of the treated effluent may include dust suppression, wheel washing and general cleaning. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the WPCO license which is under the ambit of regional office (RO) of EPD.	Work site/During the construction period	√ Discharge licence was awarded by EPD on 7 December 2010.		
Water Quality	The construction programme should be properly planned to minimise soil excavation, if any, in rainy seasons. This prevents soil erosion from	Work site/During the construction period	√		

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
Impace	exposed soil surfaces. Any exposed soil surfaces should also be properly protected to minimize dust emission. In areas where a large amount of exposed soil exists, earth bunds or sand bags should be provided. Exposed stockpiles should be covered with tarpaulin or impervious sheets at all times. The stockpiles of materials should be placed at locations away from any stream course so as to avoid releasing materials into the water bodies. Final surfaces of earthworks should be compacted and protected by permanent work. It is suggested that haul roads should be paved with concrete and the temporary access roads protected using crashed stone or gravel, wherever practicable. Wheel washing facilities should be provided at all site exists to ensure that earth, mud and debris would not be carried out of the works areas by vehicles.		
Water Quality	Good sites practices should be adopted to clean the rubbish and litter on the construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis.	Work site/During the construction period	√ ·
Water Quality	The presence of construction workers generates sewage. It is recommended to provide sufficient chemical toilets in the works areas. The toilet facilities should be more than 30m from any watercourse. A licensed water collector should be deployed to clean the chemical toilets on a regular basis. The construction workers can also make use of the existing toilet facilities within the PPSTW as necessary.	Work site/During the construction period	√ ·
Water Quality	Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the project. Regular environmental audit on the construction phase of the project. Regular environmental audit on the construction site can provide an effective control of any malpractices and can achieve continual improvement of environmental performance on site.	Work site/During the construction period	√ ·
Waste Management	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation	Work site/During the construction period	√ ·

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
-	should be observed and complied with for control of chemical wastes.		
Waste Management	Any service shop and maintenance facilities should be located on hard standings within a bunded area, and stumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.	Work site/During the construction period	√
Waste Management	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with the chemical wastes. General requirements are given as follows: • Suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport. • Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. • Storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.	Work site/During the construction period	
Waste Management	 Good Site Practices Recommendations for good site practices during the construction activities include: Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training of site personnel in proper waste management and chemical handling procedures Provision of sufficient waste disposal points and regular collection of waste Appropriate measures to minimise windblown litter and dust 	Work site/During the construction period	
	Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by		

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	transporting wastes in enclosed containers		
	 Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. 		
	Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.		
Waste Management	Waste Reduction Measures	Work site/During planning & design stage, and construction stage	√
	Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:		
	 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal. 		
	 Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force 		
	 Proper storage and site practices to minimise the potential for damage or contamination of construction materials. 		
	Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.		
Waste Management	General Refuse	Work site / During the construction period	√ ·
Ü	General refuse should be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light		
Waste	material. Construction and Demolition Material	Work site / During design stage & construction	√
Management	In order to minimise the impact resulting from collection and transportation of C&D material for off-site disposal, the excavated	period	

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
-	material generated from site formation works for the proposed new facilities and units at the STW should be reused on-site as far as practicable. The surplus excavated material should be disposed of at the designated public fill reception facility, as agreed with the Secretary of the Public Fill Committee, for other beneficial uses.		
Waste Management	 Mitigation measures and good site practices should be followed to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include: Where it is unavoidable to have transient stockpiles of C&D material pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible. Open stockpiles of construction materials or construction wastes onsite should be covered with tarpaulin or similar fabric. Skip hoist for material transport should be totally enclosed by impervious sheeting. Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores. The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle. All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet. The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading. 	Work site / During design stage & construction period	
Waste Management	When disposing C&D material at a public filling facility, it shall be noted that the material shall only consist of earth, building debris and broken rock and concrete. The material shall be free from marine mud, household refuse, plastic, metals, industrial and chemical waste, animal	Work site/During design stage & construction period	V

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	and vegetable matter, and other material considered to be unsuitable by the Filling Supervisor. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work with reference to the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" as attached in Appendix 7-1. An Independent Environmental Checker should be responsible for auditing the results of the system.		
Waste Management	Chemical Wastes are produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport and dispose of the chemical wastes, to either the Chemical Waste Treatment Centre, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Work site / During the construction period	
Landscape & Visual	Temporary Tree Nurseries Temporary tree nurseries may be set up for the transplanted tree and proposed trees at an early stage to allow small trees to grow during the construction periods. By the time when planting area becomes available, trees mature and increase in trunk & spread size. They will require minimal pruning and suffer much less damage during transplanting when comparing the travel distance from an on-site nursery to an off-site nursery. Besides, these trees may also be positioned as visual mitigation during	Work site/During design stage & construction period	√. A tree nursery has been set up off-site near the site office.

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	the construction period.		
Landscape & Visual	No-intrusion Zone To maximise protection to existing trees and ground vegetation, construction contracts may designate "No-intrusion Zone" to various areas within the site boundary with rigid and durable fencing for each individual no-intrusion zone. The contractor should close monitor and restrict the site working staff not to enter the "no-intrusion zone", even for non-direct construction activities and storage of equipment.	Work site/During design stage & construction period	V
Landscape & Visual	Hoarding Hoarding or boundary fencing for construction shall be considered. It should be sensitively designed, subtle, camouflaged and more 'permeable' so that they fit into the existing environment when looking from outside.	Work site/During design stage & construction period	√
Landscape & Visual	Dust and Erosion Control for Exposed Soil Excavation works and demolition of existing building blocks and which will be highly visible form surrounding areas should be well planned and with precautions to suppress dust. Exposed soil shall be covered or 'camouflaged' and watered often. Areas that are expected to be left with bare soil for a long period of time after excavation shall be properly covered with suitable protective fabric. Silt and erosion shall be controlled by ground barriers around the slope cutting area	Work site/During design stage & construction period	√ ·
Landscape & Visual	Existing Tree Record Inventory All retained trees should be record photographically at the commencement of the Contract, and carefully protected during the construction period. Detailed tree protection specification shall be allowed and included in the Contract Specification, which specifying the tree protection requirement, submission and approval system, and the tree monitoring system.	Work site/During design stage & construction period	V

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
Landscape & Visual	Construction Light All security floodlights for construction sites shall be equipped with adjustable shield, frosted diffusers and reflective covers, and be carefully controlled to minimize light pollution and night-time glare to nearby residences and GIC users. The Contractor shall consider other security measures which shall minimize the visual impacts.	Work site / During design stage & construction period	√
Landscape & Visual	Tree Transplanting Apart from the 18 numbers of "Leucaena leucocephala", which are proposed to be felled in accordance with ETWB TCW No. 3/2006, all the affected trees shall be transplanted. Where practicable, trees shall be directly transplanted to permanent on-site locations. The location of the transplanted tree is shown in Figure 8.9.1.	Work site / During design stage & construction period	√.
Landscape & Visual	Tree Compensation Ratio The total number of compensatory trees planted in the project area shall not be less than 1:1 ratios by new trees. Required numbers and locations of compensatory trees shall be determined and agreed with Government during the tree felling application process under ETWCTC 3/2006. Compensatory trees shall be at least heavy standard size to create "immediate" greening effect. 81 numbers of "Cassia surattensis" will be provided as the additional compensatory planting for loss of greenery in the area due to removal of the affected trees. The location of the additional compensatory planting is shown in Figure 8.9.1.	Work site / During design stage & construction period	N/A
Landscape & Visual	Re-use of Existing Soil and Advance formation of Planting Area Existing topsoil shall be re-used where possible for new planting areas within the project. Advance formation of planting area and early implementation of the plating works can minimize adverse impact on trees. The construction program shall consider using the soil removed from one phase for backfilling another. Suitable storage ground, gathering ground and mixing ground may be set up on-site as necessary.	Work site / During design stage & construction period	√ ·

Type of Impact	Environmental Protection Measures	Location/ Timing	Status	
Landscape & Visual	Establishment Period 12 month establishment period for the soft landscape works will be allowed in the main contract. Most construction contracts in Hong Kong require the Contractor to carry out routine horticultural operations, including watering, pruning, weeding, pest control, replacement of dead plants etc. to ensure healthy establishment of new planting during a 12 month establishment period. This period also serves as a kind of warranty / guarantee on the quality of the plants supplied and installed by the Contractor. Monthly monitoring during the first year of establishment period is recommended.	Work site/During operation period	N/A. To be implemented during operation phase of Project.	
Landscape & Visual	Re-instatement of excavated Area All excavated area and disturbed area for utilities diversion, temporary road diversion, and pipeline woks will be reinstated to former conditions, subject to applicable Government Standards.	Work site / During design stage & operation period	N/A. To be implemented during operation phase of Project.	
Landscape & Visual	Appearance and Greening for the proposed structures Compatible design, construction materials and surface finishes of the proposed structure should match with the nearby existing external appearance of PPSTW buildings for achieving visual uniformity. Finishing materials shall have due consideration to form, basic color, color/tone variation, micro-and macro-texture, and reflectivity/light absorbance to avoid glare. Planting, such as turf, low groundcovers and climbers, may also be planted on top of these elements to provide greening and aesthetic effect.	Work site / During design stage & operation period	N/A. To be implemented during operation phase of Project.	
Summary of Key	Environmental Mitigation Measures in Contract Requirements			
Air Quality	Only Ultra-low-sulphur diesel (ULSD) should be used for all diesel- operated plants and equipments on site	Work sites / during construction period	√	
Air Quality and Noise	Plants and equipments of good operation conditions should be used on site.	Work sites / during construction period	√	
Noise	No diesel hammers should be used for piling works	Work sites / during construction period	V	
Noise	Construction Noise Permits (CNP) should be applied for works conducted outside non-restricted hours.	Work sites / during construction period	√	
Noise	Quiet construction equipments and the quietest practicable working	Work sites / during construction period	V	

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	methodologies should be adopted for works whenever feasible. Noise labels should be provided for air compressors. Hoods and cover panels of generators and air compressors should be closed during operation. Noise labels should be provided for air compressors and hand-held percussive breakers.		
Waste Management	Temporary works construction on site should minimize the use of timber to reduce the quantity of C&D waste generated during works period.	Work sites / during construction period	√
Landscape and Visual	Retained or to-be-transplanted trees on site should be properly protected from physical damages and soil compacts with temporary fencing or hessian armouring whenever feasible.	Work sites / during construction period	√

Remark:

- √ Compliance of Mitigation Measures
- Compliance of Mitigation but need improvement
- x Non-compliance of Mitigation Measures
- ▲ Non-compliance of Mitigation Measures but rectified by ATAL-Degrémont-China State JV
- Δ Deficiency of Mitigation Measures but rectified by ATAL-Degrémont-China State JV
- N/A Not Applicable in Reporting Period

Annex J

Waste Flow Table

Contract No.: DC/2008/03 - Design, Build and Operate Pillar Point Sewage Treatment Works Monthly Summary Waste Flow Table

	Actual Quantities of Inert C&D Materials Generated (see Note 13)					Actual Quantities of Non-inert C&D Materials (Construction Waste) Generated (see Note 13)				
Month	Total Quantity Generated	Reused in the Contract	Reused in other Projects	Hard Rocks & Large Broken Concrete	Disposed as Public Fill	Metals (see Note 1)	Paper/ cardboard packaging (see Note 1)	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse (see Note 3)
	tonne	tonne	tonne	tonne	tonne	kilogram	kilogram	kilogram	Litre	tonne
Nov 2010	2,248.00	0.00	0.00	55.00	2248.00	60.00	100.00	0.00	0.00	18.05 (see Note 4)
Dec 2010	11,314.00 (see Note 4)	0.00	0.00	225.00	11314.00	100.00	120.00	20.00	0.00	28.40 (see Note 4)
Jan 2011	58,383.00 (see Note 4)	0.00	0.00	3,000.00	58,382.90	250.00	280.00	60.00	0.00	4.59 (see Note 4)
Sub-total	71,945.00	0.00	0.00	3280.00	71944.90	410.00	500.00	80.00	0.00	51.04
Feb 2011	12,855.00	0.00	0.00	1,050.00	12,854.70	100.00	150.00	50.00	0.00	2.43 (see Note 4)
Mar 2011	22,859.00	0.00	0.00	1,500.00	22,858.70	150.00	180.00	55.00	0.00	9.02
Apr 2011	8,547.00 (see Note 7)	0.00	5,684.00(see Note 5, 7)	550.00	2,863.30	50.00	30.00	15.00	0.00	5.78
Sub-total	44,261.00	0.00	5684.00	3100.00	38576.70	300.00	360.00	120.00	0.00	17.23
May 2011	6,293.00 (see Note 7)	0.00	11.00 (see Note 5, 7)	425.00	6,282.00 (see Note 7)	45.00	25.00	10.00	360.00 (see Note 7)	8.83
Jun 2011	4,587.00 (see Note 7)	0.00	0.00 (see Note 7)	313.00	4,586.00 (see Note 7)	40.00	30.00	15.00	0.00	7.10
Jul 2011	523.00	0.00	0.00	25.00	522.90	15.00	5.00	10.00	0.00	7.20
Sub-total	11,403.00	0.00	11.00	763.00	11391.50	100.00	60.00	32.00	360.00	23.13
Aug 2011	571.00 (see Note 11)	0.00	0.00	50.00	571.00 (see Note 11)	0.00	0.00	15.00	450.00 (see Note 8)	6.12
Sept 2011	235.00	0.00	0.00	25.00	235	20.00	0.00	0.00	0.00	12.15 (see Note 9)
Oct 2011	5,705.00 (see Note 10)	0.00	0.00	650.00	5,705.00 (see Note 10)	100.00	0.00	0.00	0.00	2.98
Sub-total	6,511.00	0.00	0.00	725.00	6511.00	120.00	0.00	15.00	450.00	21.25
Nov 2011	6,294.00	0.00	0.00	775.00	6,294.00	50.00	0.00	0.00	0.00	44.84
Dec 2011	3,011.00	0.00	0.00	263.00	3,011.00	20.00	0.00	0.00	0.00	17.14
Jan 2012	349.00	64.00	0.00	25.00	284.60	20.00	150.00	0.00	0.00	49.01

	Actual Quantities of Inert C&D Materials Generated (see Note 13)					Actual Quantities of Non-inert C&D Materials (Construction Waste) Generated (see Note 13)				
Month	Total Quantity Generated	Reused in the Contract	Reused in other Projects	Hard Rocks & Large Broken Concrete	Disposed as Public Fill	Metals (see Note 1)	Paper/ cardboard packaging (see Note 1)	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse (see Note 3)
	tonne	tonne	tonne	tonne	tonne	kilogram	kilogram	kilogram	Litre	tonne
Sub-total	9,654.00	64.00	0.00	1063.00	9589.60	90.00	150.00	0.00	0.00	110.99
Feb 2012	3,371.00	30.00	0.00	2,810.00	3,341.00	150.00	0.00	0.00	0.00	48.72
Mar 2012	6,460.00	3,000.00	0.00	625.00	3,459.70	30.00	0.00	0.00	0.00	41.10
Apr 2012	3,774.00	3,000.00	0.00	250.00	774.40	40.00	0.00	0.00	0.00	40.01
Sub-total	13,605.00	6,030.00	0.00	3685.00	7575.10	220.00	0.00	0.00	0.00	129.83
May 2012	7,936.00	5,600.00	0.00	750.00	2,336.20	40.00	0.00	10.00	0.00	75.19
Jun 2012	13,091.00	7,500.00	0.00	875.00	5,590.80	40.00	35.50	8.00	0.00	66.74
Jul 2012	11,972.00	8,600.00	0.00	825.00	3,372.50	40.00	36.40	5.00	0.00	100.50
Sub-total	32,999.00	21,700.00	0.00	2450.00	11299.50	120.00	70.90	23.00	0.00	242.43
Aug 2012	11,660.00	11,000.00	0.00	950.00	659.80	30.00	10.00	6.00	0.00	78.77
Sept 2012	3,055.00	1,500.00	0.00	920.00	1,555.38	30.00	40.00	5.00	0.00	118.80
Oct 2012	2,657.00	200.00	0.00	500.00	2,457.01	30.00	59.40	8.00	0.00	124.04
Sub-total	17,372.00	12,700.00	0.00	2370.00	4672.19	90.00	109.40	19.00	0.00	321.61
Nov 2012	2,691.00	250.00	0.00	750.00	2,441.01	50.00	25.00	10.00	0.00	128.08
Dec 2012	4,319.00	400.00	0.00	200.00	3,919.13	60.00	20.00	15.00	0.00	165.28
Jan 2013	4,442.00	100.00	0.00	200.00	4,341.56	200.00	40.00	20.00	0.00	111.23
Sub-total	11,452.00	750.00	0.00	1150.00	10701.70	310.00	85.00	45.00	0.00	404.59
Feb 2013	1,286.00	85.00	0.00	50.00	1,201.23	180.00	35.00	16.00	0.00	99.44
Mar 2013	900.00	900.00	0.00	120.00	0.00	120.00	45.00	10.00	0.00	97.43
Apr 2013	680.00	680.00	0.00	300.00	0.00	22.00	50.00	15.00	0.00	80.21
Sub-total	2866.00	1665.00	0.00	470.00	1201.23	322.00	130.00	41.00	0.00	277.08
May 2013	1443.37	100.00	0.00	1020.00	1343.37	40.00	43.00	9.00	0.00	46.88 (see Note 16)

	Actua	ıl Quantities of I	nert C&D Materials Ge	enerated (see No	te 13)	Actual Quantities of Non-inert C&D Materials (Construction Wa (see Note 13)				
Month	Total Quantity Generated	Reused in the Contract	Reused in other Projects	Hard Rocks & Large Broken Concrete	Disposed as Public Fill	Metals (see Note 1)	Paper/ cardboard packaging (see Note 1)	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse (see Note 3)
	tonne	tonne	tonne	tonne	tonne	kilogram	kilogram	kilogram	Litre	tonne
June 2013	1993.06	50.00	0.00	850.00	1943.06	100.00	60.00	5.00	0.00	53.89
July 2013	1246.64	100.00	0.00	1100.00	1146.64	100.00	60.00	10.00	0.00	71.15
Sub-total	4683.07	250.00	0.00	2970.00	4433.07	240.00	163.00	24.00	0.00	171.92
August 2013	873.73	120.00	0.00	700.00	753.73	50.00	60.00	8.00	0.00	63.95
September 2013	748.43	50.00	0.00	650.00	698.43	40.00	60.00	5.00	0.00	41.28
October 2013	1701.99	45.00	0.00	1500.00	1656.99	20.00	60.00	5.00	0.00	34.79
Sub-total	3324.15	215.00	0.00	2850.00	3109.15	110.00	180.00	18.00	0.00	140.02
November 2013	1602.35	60.00	0.00	1490.00	1542.35	18.00	60.00	50.00	0.00	36.44
December 2013	1357.16	80.00	0.00	1100.00	1277.16	35.00	60.00	50.00	0.00	16.84
January 2014	714.34	20.00	0.00	690.00	694.34	16.00	60.00	97.00	0.00	27.82
Sub-total	3,673.85	160.00	0.00	3,280.00	3,513.85	69.00	180.00	197.00	0.00	81.10
February 2014	944.11	20.00	0.00	900.00	924.11	50.00	60.00	1120.00	0.00	7.66
March 2014	1200.95	50.00	0.00	1100.00	1150.95	40.00	50.00	5.00	0.00	19.78
April 2014	1803.58	50.00	0.00	1700.00	1753.58	40.00	30.00	5.00	0.00	12.13
Sub-total	3948.64	120.00	0.00	3700.00	3828.64	130.00	140.00	1130.00	0.00	39.57
May 2014	576.53	50.00	0.00	500.00	526.53	40.00	30.00	5.00	0.00	14.07
June 2014	707.48	30.00	0.00	640.00	677.48	30.00	20.00	0.00	0.00	11.65
July 2014	675.82	20.00	0.00	640.00	655.82	20.00	10.00	0.00	0.00	25.28
Sub-total	1959.83	100.00	0.00	1780.00	1859.83	90.00	60.00	5.00	0.00	51.00
August 2014	758.68	10.00	0.00	740.00	748.68	10.00	5.00	0.00	0.00	14.77

	Actual Quantities of Inert C&D Materials Generated (see Note 13)					Actual Quantities of Non-inert C&D Materials (Construction Waste) Generated (see Note 13)					
Month	Total Quantity Generated	Reused in the Contract	Reused in other Projects	Hard Rocks & Large Broken Concrete	Disposed as Public Fill	Metals (see Note 1)	Paper/ cardboard packaging (see Note 1)	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse (see Note 3)	
	tonne	tonne	tonne	tonne	tonne	kilogram	kilogram	kilogram	Litre	tonne	
September 2014	1171.44	20.00	0.00	1145.00	1151.44	20.00	10.00	0.00	0.00	15.71	
October 2014	448.84	20.00	0.00	415.00	428.84	20.00	5.00	0.00	0.00	8.32	
Sub-total	2378.96	50.00	0.00	2300.00	2328.96	50.00	20.00	0.00	0.00	38.8	
November 2014	768.33	10.00	0.00	740.00	758.33	10.00	5.00	0.00	0.00	30.89	
December 2014	766.77	10.00	0.00	740.00	756.77	5.00	3.00	0.00	0.00	17.94	
January 2015	575.41	10.00	0.00	550.00	545.41	3.00	3.00	0.00	0.00	12.23	
Sub-total	2110.51	30.00	0.00	2030.00	2060.51	18.00	11.00	0.00	0.00	61.06	
February 2015	374.73	5.00	0.00	360.00	369.73	2.00	2.00	0.00	0.00	15.68	
March 2015	678.52	5.00	0.00	665.00	673.52	1.00	2.00	0.00	0.00	40.00	
April 2015	30.89	1.00	0.00	28.00	29.89	1.00	1.00	0.00	0.00	31.45	
Sub-total	1084.14	11.00	0.00	1053.00	1073.14	4.00	5.00	0.00	0.00	87.13	
May 2015	113.26	1.00	0.00	111.00	112.26	1.00	1.00	0.00	0.00	15.70	
June 2015	17.01	0.00	0.00	15.00	17.01	0.00	0.00	0.00	0.00	11.32	
July 2015	12.41 (see Note 17)	0.00	0.00	6.00	12.41	0.00	0.00	0.00	0.00	10.79	
Sub-total	142.68	1.00	0.00	132.00	141.68	1.00	1.00	0.00	0.00	37.81	
August 2015	16.69	0.00	0.00	16.00	16.69	0.00	0.00	0.00	0.00	0.62	
Sub-total	16.69	0.00	0.00	16.00	16.69	0.00	0.00	0.00	0.00	0.62	
Total	245390	43846	5695	39167	195849	2794	2225	1752	810	2308	

Notes:

- (1) Metal and paper/cardboard packaging were collected by recycler for recycling.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material collected by recycler for recycling.
- (3) General refuse was disposed of at WENT by subcontractors.
- (4) The waste flow data for November and December 2010, January and February 2011 was updated in March 2011based on SOR's comments and has been

- confirmed by the Contractor.
- (5) The inert C&D materials were reused in the Contract No. EP/SP/58/08 at Tuen Mun Tsang Tsui.
- (6) Chemical waste was collected though the licensed chemical waste collector, Dunwell Ind. (Holdings) Ltd, with the waste collection licence number 7111-757-W0015-WC.
- (7) The waste flow data for April, May and June 2011 was updated in August 2011 based on SOR's comments and has been confirmed by the Contractor.
- (8) The waste flow data of chemical waste for August 2011 was updated in October 2011 based on Contractor's revised waste flow summary.
- (9) The waste flow data of general refuse for September 2011 was updated in November 2011 based on Contractor's revised waste flow summary.
- (10) The waste flow data of C&D material for October 2011 was updated in December 2011 based on Contractor's revised waste flow summary.
- (11) The waste flow data of C&D material for August 2011 was updated in January 2011 based on SOR's comments and has been confirmed by the Contractor.
- (12) The waste flow data of metal and paper/cardboard packaging for June 2011 was revised in August 2012.
- (13) The quantity of inert and non-inert C&D material generated from May 2012 to December and imported fill material was updated by the Contractor on 6 November 2012.
- (14) The quantity of Rocks & Broken Concrete from November 2010 to November 2012 was updated by the Contractor on 12 December 2012.
- (15) The quantity of C&D material reused in this Contract in Oct, Nov and Dec 2012 were updated by the Contractor on 5 January 2013.
- (16) The quantity of general refuse in this Contract for May 2013 was updated by the Contractor in June 2013.
- (17) The waste flow data for July 2015 was updated in August 2015 based on SOR's comments and has been confirmed by the Contractor.

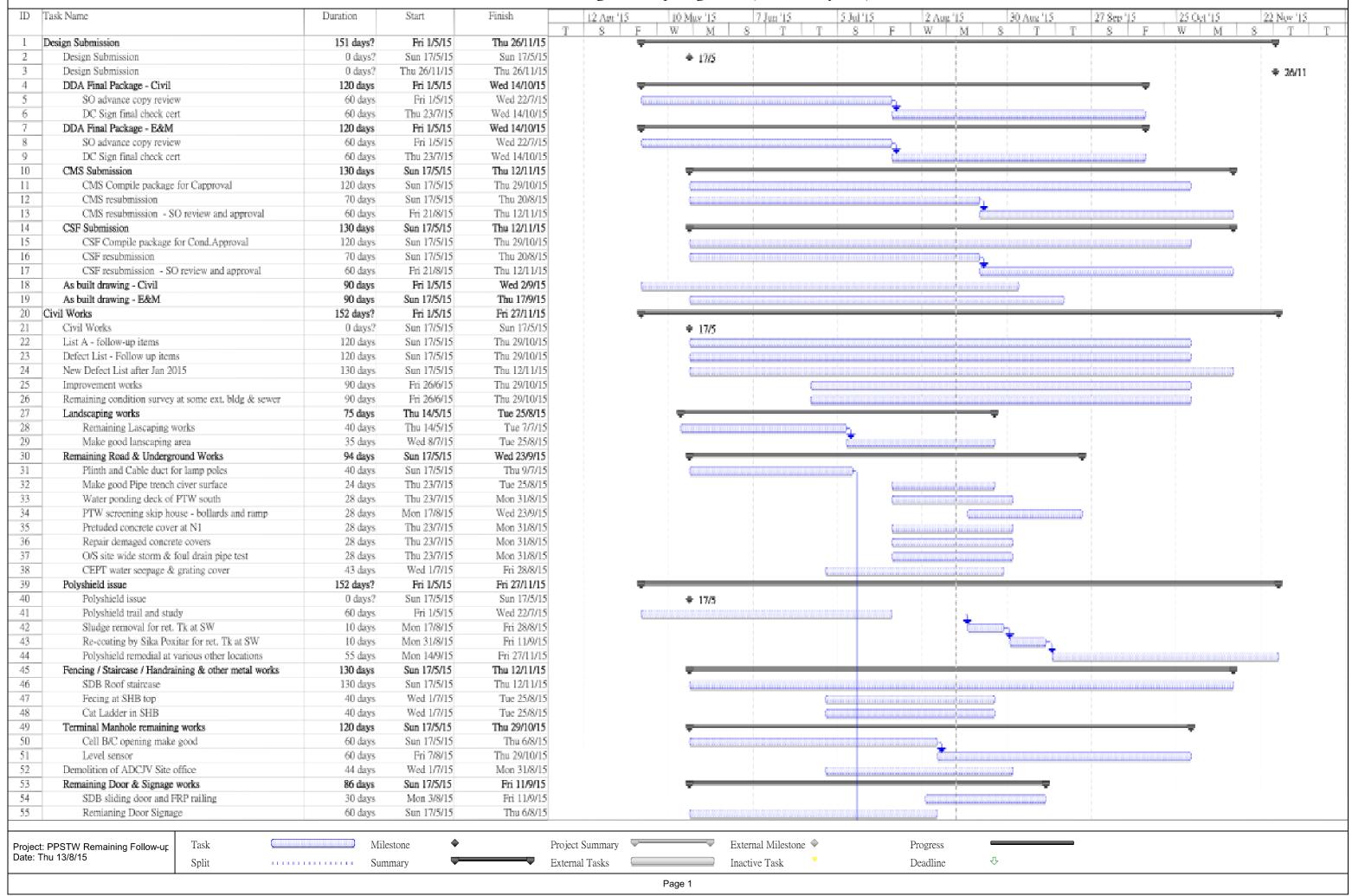
Annex K

Environmental Complaint, Environmental Summons and Persecution Log

Annex K Cumulative Complaint and Summons/Prosecutions Log

Reporting Month	Number of Complaints in Reporting Month	Number of Summons/Prosecutions in Reporting Month
November 2010	0	0
December 2010	0	0
January 2011	0	0
February 2011	0	0
March 2011	0	0
April 2011	0	0
May 2011	0	0
June 2011	0	0
July 2011	0	0
August 2011	0	0
September 2011	0	0
October 2011	0	0
November 2011	0	0
December 2011	0	0
January 2012	0	0
February 2012	0	0
March 2012	0	0

Reporting Month	Number of Complaints in Reporting Month	Number of Summons/Prosecutions in Reporting Month
April 2012	0	0
May 2012	0	0
June 2012	0	0
July 2012	0	0
August 2012	0	0
September 2012	0	0
October 2012	0	0
November 2012	0	0
December 2012	0	0
January 2013	0	0
February 2013	0	0
March 2013	0	0
April 2013	0	0
May 2013	0	0
June 2013	0	0
July 2013	0	0
August 2013	0	0
September 2013	0	0
October 2013	0	0
November 2013	0	0


Reporting Month	Number of Complaints in Reporting Month	Number of Summons/Prosecutions in Reporting Month
December 2013	0	0
January 2014	0	0
February 2014	0	0
March 2014	0	0
April 2014	0	0
May 2014	0	0
June 2014	0	0
July 2014	0	0
August 2014	0	0
September 2014	0	0
October 2014	0	0
November 2014	0	0
December 2014	0	0
January 2015	0	0
February 2015	0	0
March 2015	0	0
April 2015	0	0
May 2015	0	0
June 2015	0	0
July 2015	0	0

Reporting Month	Number of Complaints in Reporting Month	Number of Summons/Prosecutions in Reporting Month
August 2015	0	0
Overall Total	0	0

Annex L

Construction Programme of the Project

PPSTW Remianing Follow up Programme (after 17 May2015)

PPSTW Remianing Follow up Programme (after 17 May2015)

ID Ta	ask Name	Duration	Start	Finish	12 Apr 13	F W M	7 Jun '15	5 Jul '15 F 8 E	2 Aug '15 W M	30 Aug '15	27 Sep 15	25 Oct 15 W M	22 Nov '15 8 T
56	Traffic sign and road marking	77 days	Sun 17/5/15	Mon 31/8/15		(00000000			***************************************		3 1	24 [8]	
57	Door defects	40 days	Wed 1/7/15	Tue 25/8/15									
58 E	&M Works	151 days?	Fri 1/5/15	Thu 26/11/15		7							
59	E&M Works	0 days?	Sun 17/5/15	Sun 17/5/15		÷ 17/5							
60	E&M Works	0 days?	Thu 26/11/15	Thu 26/11/15									26/11
61	List B - follow-up items	75 days	Sun 17/5/15	Thu 27/8/15			1						
52	Defect List - Follow up items	120 days	Sun 17/5/15	Thu 29/10/15									
3	Defect Label - Follow up items	60 days	Fri 7/8/15	Thu 29/10/15									
54	Improvement works	75 days	Sun 17/5/15	Thu 27/8/15									
55	New Defect List after Jan 2015	120 days	Sun 17/5/15	Thu 29/10/15									
6	DSD Defect List	130 days	Sun 17/5/15	Thu 12/11/15									
77	Fine/Coarse Screen Improvement works	90 days	Fri 1/5/15	Wed 2/9/15									
8	Foam control system	100 days	Fri 1/5/15	Wed 16/9/15				and delication and delications are a	name and a second		į		
59	Encloseure for Centrifuge	90 days	Fri 1/5/15	Wed 2/9/15				HEIRING HIERING					
70	FS Phase 2 Inspection	85 days	Fri 1/5/15	Wed 26/8/15		+				Ŧ			
1	Defect rectification at site	30 days	Fri 1/5/15	Wed 10/6/15			minimb.						
2	FS Inspection notification	14 days	Thu 11/6/15	Tue 30/6/15				10h					
3	FS Inspection	1 day	Wed 1/7/15	Wed 1/7/15				ď.					
4	FS document	10 days	Thu 2/7/15	Wed 15/7/15				**********					
5	FSD approval	30 days	Thu 16/7/15	Wed 26/8/15									
6	Existing lamp pole replacement	60 days	Fri 10/7/15	Thu 1/10/15				-					
7	Lamp pole installation	30 days	Fri 10/7/15	Thu 20/8/15									
8	Cabling	30 days	Fri 21/8/15	Thu 1/10/15					and the same of th		unianum		
9	WBl system testing	30 days	Fri 1/5/15	Wed 10/6/15									
0	Access Control system	65 days	Fri 1/5/15	Wed 29/7/15									
1	CCTV	50 days	Fri 1/5/15	Wed 8/7/15									
2	Other EC from SO	120 days	Fri 1/5/15	Wed 14/10/15									
83	SCADA Modification / Improvement	136 days?	Fri 1/5/15	Thu 5/11/15		*						-	
34	SCADA Modification / Improvement	0 days?	Sun 17/5/15	Sun 17/5/15		÷ 17/5							
5	SCADA Modification / Improvement	0 days?	Thu 5/11/15	Thu 5/11/15								◆ 5/11	
6	SO comments	30 days	Fri 1/5/15	Wed 10/6/15									
7	OM comments	30 days	Fri 1/5/15	Wed 10/6/15			· Community						
8	DSD Comments	30 days	Fri 1/5/15	Wed 10/6/15		-	-						
9	JV Desicuss and Detail	45 days	Thu 11/6/15	Wed 12/8/15					-				
0	Programming works	30 days	Thu 13/8/15	Wed 23/9/15					*		15		
)1	Testing	20 days	Thu 24/9/15	Wed 21/10/15							<u>*</u>	-	

Part 2 – Operation Phase EM&A Report for August 2015

AECOM 8/F Grand Central Plaza, Tower 2 +852 3922 9797 fax 138 Shatin Rural Committee Road Shatin, Hong Kong 香港新界沙田鄉事會路138號 新城市中央廣場第2座8樓 www.aecom.com

+852 3922 9000 tel

Your Ref:

Our Ref:

60017423/C/oylw15100701

By Hand & By Fax (2833 9162)

Drainage Services Department Sewage Services Branch Harbour Area Treatment Scheme Division 5/F., Western Magistracy, 2A Pok Fu Lam Road. Hong Kong.

Attn: Mr. Edwin Lau (T: 2159 3409)

7 October 2015

Dear Sir.

Contract No. DC/2008/03 Design, Build and Operate Pillar Point Sewage Treatment Works

Monthly EM&A Report for August 2015 (1st Monthly Operation Phase Monitoring Report for August 2015)

Reference is made to Environmental Team (ET)'s draft of the Monthly EM&A Report for August 2015 provided by email dated 21 September, 6 and 7 October 2015. We have no further comment.

We hereby verify the said Monthly EM&A Report as having complied with the requirement as set out in the Final EM&A Manual.

Should you have any queries, please feel free to contact the undersigned at 3922 9393.

Yours faithfully,

For and on behalf of AECOM Asia Co. Ltd.

Independent Environmental Checker

C.C. AECOM - Mr. C Y Hung

SMEC - Ms. Vivian Chan

ATAL-Degremont-China State JV - Mr. Barry Lee

(Fax No. 2404 2744)

(Fax No. 3995 8101)

(Fax No. 2811 3321)

58th Monthly EM&A Report (1st Monthly Operation Phase Monitoring Report for August 2015)

Contract No. DC/2008/03

Design, Build and Operate Pillar Point Sewage Treatment Works

October 2015

58th Monthly EM&A Report (1st Monthly Operation Phase Monitoring Report for August 2015)

Contract No. DC/2008/03

Design, Build and Operate
Pillar Point Sewage Treatment Works

October 2015

Certified By

Vivian CHAN ET Leader

Project/Deliverable No.	7076134 D09/01
Project Name	Upgrading of Pillar Point Sewage Treatment Works – Design, Build and Operate
Report Name	58th Monthly EM&A Report (1st Monthly Operation Phase Monitoring Report for August 2015)
Report Date	October 2015
Report for	ATAL Engineering - Degrémont SA - China State Construction Engineering Joint Venture

PREPARATION, REVIEW AND AUTHORISATION

Revision #	Date	Prepared by	Reviewed by	Approved by
1.0 (Draft)	September 2015	Francis LEE	Vivian CHAN	Alexi BHANJA
1.1 (Revised Draft)	October 2015	Francis LEE	Vivian CHAN	Alexi BHANJA
2.0 (Final)	October 2015	Francis LEE	Vivian CHAN	Alexi BHANJA

ISSUE REGISTER

Distribution List	Date Issued	Number of Copies
ATAL Engineering - Degrémont SA - China State Construction Engineering Joint Venture	October 2015	1 soft copy
SMEC Project File:		1 electronic

SMEC COMPANY DETAILS

SMEC Asia Limited

27/F Ford Glory Plaza, 37-39Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong T +852 3995 8100 | F +852 3995 8101 smecasia@smec.com | www.smec.com

The information within this document is and shall remain the property of SMEC Asia Limited

CONTENTS

EXE	CUTIVE	E SUMMARY	1				
	Breac	ch of Action and Limit Levels	1				
	Environmental Complaint						
	Repo	rting Change	2				
	Majo	r Activities on Site	2				
	Futur	e Key Issues	2				
1	INTR	ODUCTION	1-1				
	1.1	Background	1-1				
	1.2	Major Activities on Site	1-1				
	1.3	Purpose of the Report	1-2				
2	ODO	UR MONITORING	2-1				
	2.1	Monitoring Methodology and Parameters	2-1				
	2.2	Monitoring Stations	2-1				
	2.3	Monitoring Personnel	2-2				
	2.4	Action and Limit Levels	2-0				
	2.5	Event and Action Plan	2-0				
	2.6	Monitoring Results and Observations	2-0				
	2.7	Odour Complaint Registration System	2-0				
3	ODO	UR EMISSION MONITORING	3-1				
	3.1	Monitoring Methodology and Parameters	3-1				
	3.2	Monitoring Stations	3-3				
	3.3	Monitoring Equipment	3-3				
	3.4	Action and Limit Levels	3-3				
	3.5	Event and Action Plan	3-4				
	3.6	Monitoring Results	3-4				
4	PPW	QM EFFLUENT QUALITY MONITORING	4-1				
	4.1	Monitoring Methodology and Parameters	4-1				
	4.2	Monitoring Stations	4-2				
	4.3	Sampling Equipment	4-2				
	4.4	Effluent Discharge Assumptions and Limit	4-3				
	4.5	Monitoring Results	4-4				

5	PPWC	QM WATER QUALITY MONITORING5-1
	5.1	Monitoring Methodology and Parameters
	5.2	Monitoring Stations5-2
	5.3	Monitoring Equipment5-2
	5.4	Action and Limit Levels5-2
	5.5	Monitoring Results and Observations5-3
6	PPWC	M BENTHIC SURVEY6-1
	6.1	Monitoring Methodology and Parameters 6-1
	6.2	Monitoring Stations 6-2
	6.3	Monitoring Equipment 6-3
	6.4	Action and Limit Levels6-3
	6.5	Monitoring Results6-3
7	PPWQ	M SEDIMENT QUALITY MONITORING
	7.1	Monitoring Methodology and Parameters7-1
	7.2	Monitoring Stations
	7.3	Monitoring Equipment7-2
	7.4	Action and Limit Levels
	7.5	Monitoring Results and Observations7-2
8	CONC	USION

APPENDICES

Appendix A	Nose Sensory Test Report
Appendix B	Odour Monitoring Results and Field Record Sheet
Appendix C	Monitoring Equipment Calibration Certificates
Appendix D	Odour Emission Monitoring Results
Appendix E	Locations for Sediment Quality Monitoring and Benthic Survey
Appendix F	PPWQM Effluent Quality Monitoring Results
Appendix G	PPWQM Water Quality Monitoring Results
Appendix H	PPWQM Benthic Survey Monitoring Results
Appendix I	PPWQM Sediment Quality Monitoring Results
Appendix J	Event and Action Plan
Appendix K	Weather Conditions
	TABLES
Table E- 1	Dates of Monitoring Events
Table 2-1	Monitoring Locations for Odour Patrol
Table 2-2	Action and Limit Levels for Odour Patrol
Table 3-1	Monitoring Locations for Air Sampling
Table 3-2	Odour Emission Monitoring Equipment
Table 3-3	Design Requirements for Outlet Stacks of Deodourizing Units
Table 3-4	Action and Limit Levels for Odour Emission Monitoring
Table 3-5	Olfactometric Analysis Results
Table 4-1	Effluent Quality Monitoring Parameters and Frequency
Table 4-2	Effluent Quality Monitoring Equipment
Table 4-3	Assumed Effluent Loadings from the Upgraded PPSTW in the EIA Report
Table 4-4	Effluent Loadings from the Upgraded PPSTW in Water Discharge license
Table 5-1	Water Quality Monitoring Parameters, Frequency and Water Depth
Table 5-2	Monitoring Locations for Water Quality Monitoring
Table 5-3	Water Quality Monitoring Equipment
Table 5-4	Action and Limit Levels for Water Quality
Table 7-1	Sediment Quality Monitoring Parameters and Measurement Methods
Table 7-2	Action and Limit Levels for Sediment Quality
Table 8-1	Monitoring Dates During Reporting Month

FIGURES

Figure 1-1	Site Location
Figure 2-1	Monitoring Locations for Odour Patrol
Figure 3-1	Air sampling locations
Figure 4-1	Monitoring Locations for Effluent Quality Monitoring
Figure 5-1	Monitoring Locations for Water Quality Monitoring

EXECUTIVE SUMMARY

- E.1. In accordance with the Environmental Monitoring and Audit Manual (EM&A Manual) and the Environmental Permit (EP-321/2008/B) for the Upgrading of Pillar Point Sewage Treatment Works (PPSTW) (the Project), odour and water quality monitoring is required during the first year after Project commissioning and Water Quality Monitoring is required for each emergency discharge event. The purpose of operation phase monitoring is to confirm the predictions of odour and water quality made in the EIA report.
- E.2. As confirmed by the Contractor, all construction activities of the upgraded PPSTW has been completed in August 2015. The Operation Phase of the Upgraded PPSTW commenced on 15 August 2015. This Monthly Operation Phase Monitoring Report (Post-commissioning) summarizes monitoring events carried out during post-commissioning period from 15 to 31 August 2015. There were a total of six monitoring events carried out during the reporting period. The exact dates of monitoring carried out in this month are tabulated below:

Table E-1 Dates of Monitoring Events

Monitoring Events	1 st Reporting Month Monitoring Period: 15 – 31 August 2015		
Odour Monitoring	25/08/2015		
H ₂ S Monitoring	15/08/2015 - 31/08/2015 (continuous monitoring)		
Effluent Quality Monitoring	23/08/2015 (24 hours monitoring)	24/08/2015 E.Coli monitoring	
Water Quality Monitoring	26/08/2015		
Sediment Quality Monitoring	15/08/2015		
Benthic Survey	15/08/2015		

E.3. The monitoring results obtained were certified by the Environmental Team (ET) Leader and verified by the Independent Environmental Checker (IEC) in accordance with the EM&A Manual.

Breach of Action and Limit Levels

- E.4. No exceedance of Action and Limit Level of odour monitoring was recorded at the monitoring location in the reporting month.
- E.5. No exceedance of Action and Limit Level of effluent monitoring was recorded at the monitoring location in the reporting month.
- E.6. 2 exceedances of Action Level and no Limit Level exceedance of water quality monitoring were recorded at the monitoring location in the reporting month. The exceedances are considered to be non-project related.

- E.7. 1 exceedances of Action Level and 74 exceedances of Limit Level for sediment quality monitoring were recorded at the monitoring location in the reporting month. The exceedances are considered to be non-project related.
- E.8. The monitoring results for benthic survey are pending and the results will be reported in the next reporting period.

Environmental Complaint

E.9. In this reporting period, no environmental complaint in relation to the EM&A Programme was recorded.

Reporting Change

E.10. This is the 1st Monthly Operation Phase Monitoring report, thus no reporting changes were made in the Reporting Period.

Major Activities on Site

- E.11. The major activities being carried out on site during the reporting period is list as follows:
 - Normal operation of the upgraded PPSTW.
 - Finishing works at the Administration Building, Sludge Dewatering Building, PTW, CEPT, UV Building, Septic Waste Reception Station, Reuse Water Pump Room, Deodourisztion nit Potion A, Deodourisation Unit Portion B, Chemical Building, Electrical buildings No.1, No.3, No.4, Payment Flow Meter Chamber, Sludge Skip Storage Building, Existing Solid Handling Building, Weighbridge, Existing Outfall Pumping Station and Existing PTW.
 - Lamp pole cable duct installation at overall site.
 - Defect works at Administration Building (cable lying installation work for earth bonding), PTW (defect rectification work), Sludge Skip Storage Building (defect rectification work) and Existing Outfall Pumping Station (installation work of defoam system).

Future Key Issues

- E.12. The Project has entered the Operation Phase since August 2015 and the upgraded PPSTW will continue its normal operation in the following monitoring period. Mitigation measures as proposed in the approved Environmental Impact Assessment report will be provided and maintained at the Project.
- E.13. Potential environmental impacts arising from the Project operation are mainly associated with odour and effluent discharging from the Project.

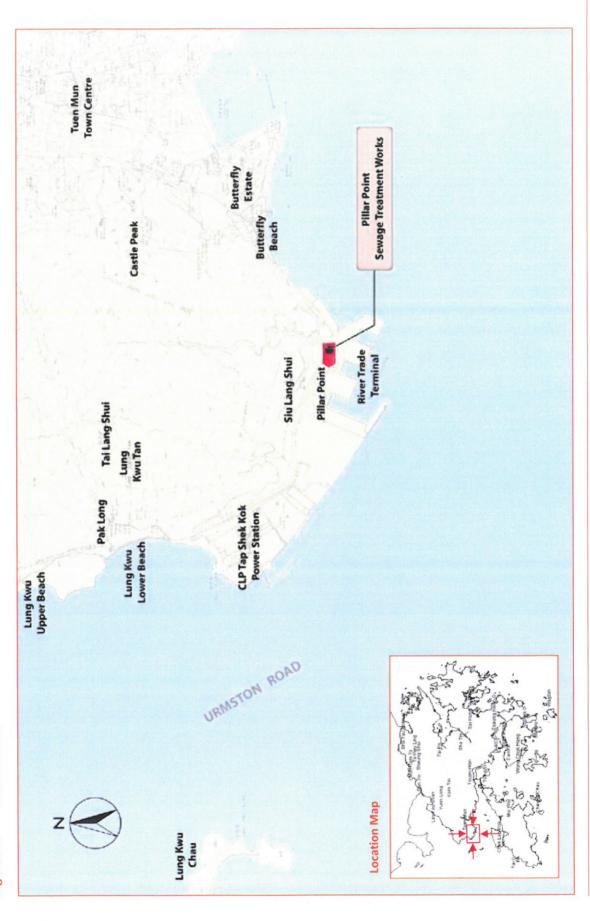
1 INTRODUCTION

1.1 Background

- 1.1.1 Before the upgrading, the Pillar Point Sewage Treatment Works (PPSTW) was a preliminary treatment works with 5.79m³/s capacity located at the north of Tuen Mun River Trade Terminal and bounded by Lung Mun Road to the north, as shown in *Figure*1-1. The PPSTW used to provide only preliminary treatment screening followed by grit removal prior to effluent discharge into the sea (within the North Western Water Control Zone) via twin submarine outfalls.
- 1.1.2 The Review of the Tuen Mun and Tsing Yi Sewerage Master Plan, commissioned in February 1999, recommended upgrading the capacity of PPSTW to 6.08m³/s and upgrading the treatment level to incorporate Chemically Enhanced Primary Treatment (CEPT) with Ultraviolet (UV) disinfection. The aim of the upgrading works (the Project) is to provide sufficient capacity to meet future demand and pollutant loading for ultimate development scenario for Tuen Mun area, and to improve effluent quality.
- 1.1.3 An Environmental Impact Assessment (EIA) (EIA-145/2008) was carried out for the Project and was approved without conditions by the Environmental Protection Department (EPD) on 10 June 2008. An Environmental Permit (EP) (EP 321/2008) issued on 17 November 2008. Two Applications for variation of the EP was submitted and approved, and varied EPs, EP 321/2008/A and EP-321/2008/B were issued on 23 April 2013 and 30 May 2014 respectively. The Environmental Monitoring & Audit Manual (EM&A Manual) and EP provide guidelines for the Operational Phase Monitoring Reports and for preparation of the Operational Phase Monitoring Reports.

1.2 Major Activities on Site

- 1.2.1 The major activities being carried out on site during the reporting period is list as follows:
 - Normal operation of the upgraded PPSTW.
 - Finishing works at the Administration Building, Sludge Dewatering Building, PTW, CEPT, UV Building, Septic Waste Reception Station, Reuse Water Pump Room, Deodourisztion nit Potion A, Deodourisation Unit Portion B, Chemical Building, Electrical buildings No.1, No.3, No.4, Payment Flow Meter Chamber, Sludge Skip Storage Building, Existing Solid Handling Building, Weighbridge, Existing Outfall Pumping Station and Existing PTW.
 - Lamp pole cable duct installation at overall site.
 - Defect works at Administration Building (cable lying installation work for earth bonding), PTW (defect rectification work), Sludge Skip Storage Building (defect rectification work) and Existing Outfall Pumping Station (installation work of defoam system).



1.3 Purpose of the Report

1.3.1 This is the first Monthly Operational Phase Monitoring Reports which summarizes the findings of EM&A works during the reporting period from 15 to 31 August 2015.

Figure 1-1 Site Location

2 ODOUR MONITORING

2.1 Monitoring Methodology and Parameters

- 2.1.1 In accordance with Section 2.7.1.1 to 2.7.1.9 of the final EM&A Manual, odour patrols are required to be conducted for a period of one year during the operation of the upgraded PPSTW, one patrol for daytime and one patrol for evening every month at the same locations as for the baseline monitoring.
- 2.1.2 The 1-year monthly odour patrol might be extended as stipulated in second and third bullet point in Table 2.4 of Final EM&A Manual.
- 2.1.3 The odour monitoring should not undertake on rainy days and hourly meteorological conditions (temperature, wind speed & direction, humidity) as shown in *Appendix K* were recorded in the monitoring period.
- 2.1.4 The odour patrol shall be conducted by two independent trained personnel/ competent persons patrolling and sniffing along the PPSTW boundary and the air sensitive receivers (ASRs) in the vicinity of the PPSTW as identified in Section 2.4.1.4 of the final EM&A Manual. The odour patrol shall be carried from less odorous locations to stronger odorous locations.
- 2.1.5 Subject to the prevailing weather forecast condition, odour patrol shall be conducted by independent trained personnel/competent persons at the downwind locations. During the patrol, the sequence should start from less odourous locations to stronger odourous locations.
- 2.1.6 The trained personnel/competent persons shall record the findings including odour intensity, odour nature and possible sources and local wind speed and direction at each monitoring location. The perceived odour intensity is divided into five levels (0 to 4):
 - 0 Not detected. No odour perceived or an odour so weak that it cannot be easily characterised or described.
 - 1 Slight identifiable odour, and slight chance to have odour nuisance.
 - 2 Moderate identifiable odour, and moderate chance to have odour nuisance.
 - 3 Strong identifiable, likely to have odour nuisance.
 - 4 Extreme Severe odour, and unacceptable odour level.

2.2 Monitoring Stations

2.2.1 The identified monitoring locations for odour patrol are tabulated in *Table 2-1* and illustrated in *Figure 2-1*.

Table 2-1 Monitoring Locations for Odour Patrol

Station ID	Description
A1	River Trade Terminal Office
A2	Chu Kong Warehouse 1

Station ID	Description
A3	Chu Kong Warehouse 2
A4	Wai Sang Sawmill Ltd. 1
A5	Pillar Point Fire Station
A6	Sunhing Hung Kai Tuen Mun Godown
A7	EMSD Vehicle Servicing Station
S1	Northern Site Boundary
S2	Eastern Site Boundary
\$3	Southern Site Boundary
S4	Western Site Boundary

2.3 Monitoring Personnel

- 2.3.1 The two independent trained personnel/competent persons (the "panellists") have satisfied the requirements listed in Section 2.3.1.9 and 2.7.1.4 of the approved EM&A Manual during odour patrol, namely:
 - Have their individual odour threshold of n-butanol in nitrogen gas in the range of 20 to 80ppb/v required by the European Standard Method (EN 13725).
 - Be at least 16 years of age and willing and able to follow instructions.
 - Be free from any respiratory illnesses.
 - Be engaged for a sufficient period to build up and monitor/detect at several monitoring location.
 - Not be allowed to smoke, eat, drink (except water) or use chewing gum or sweets 30 min before and during odour intensity analysis.
 - Take great care not to cause any interference with their own perception or that
 of others by lack of personal hygiene or the use of perfumes, deodorants, body
 lotions or cosmetics.
 - Not communicate with each other about the results of their choices.
 - Do not normally work at or live in the area in the vicinity of PPSTW.
- 2.3.2 The two qualified panellists are Mr LEE Hok Yan Francis and Mr CHEUNG Man Kit. The Nose Sensory Test Reports of the two panellists are provided in *Appendix A*.

¹ Wai Sang Sawmill Ltd. Had been demolished during the patrol and the monitoring location was kept as the same location as previous background monitoring in Year 2013.

2.4 Action and Limit Levels

2.4.1 The Action and Limit Levels as proposed in Table 2.5 of the final EM&A Manual are summarized in *Table 2-2*.

Table 2-2 Action and Limit Levels for Odour Patrol

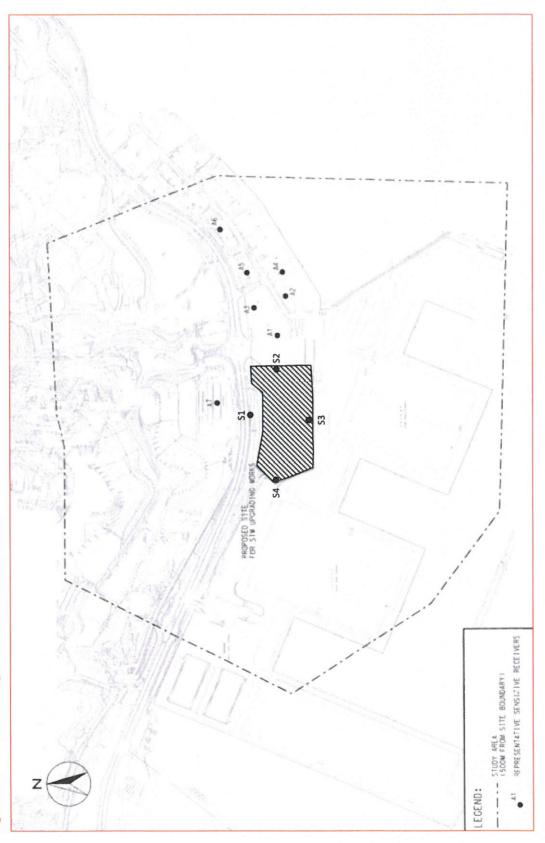
Parameter	Action Level	Limit Level
Odour Nuisance (from odour intensity analysis or odour patrol)	Odour intensity of higher than 1 is measured from odour intensity analysis	Odour intensity of 2 or above is measured from odour intensity analysis

Note: To avoid ambiguity, a more conservative approach will be adopted: Action Level will be trigger when odour intensity equals to 1 and Limit Level will be triggered when odour intensity is 2 or above due to the operation of the PPSTW.

2.5 Event and Action Plan

2.5.1 The Event and Action Plan for Odour Quality Monitoring is provided in Appendix J.

2.6 Monitoring Results and Observations


- 2.6.1 The odour patrol was carried out on 25 August 2015 during the daytime and the evening by two "panellists" (Panellist A and Panellist B) at all monitoring stations, as required by the EM&A Manual.
- 2.6.2 The Hong Kong Observatory's Tuen Mun Weather Station reported the weather on the day of the patrol to be Fine and very hot. The weather condition during the period is provided in *Appendix K*.
- 2.6.3 The results for odour monitoring at each monitoring location are provided in Appendix B.
- 2.6.4 No exceedance of the action or limit level was identified during the reporting period.
- 2.6.5 During the odour patrol, no noticeable odour due to operation of the PPSTW was observed at the sensitive receivers.
- 2.6.6 Slight identifiable odour was observed at site boundary of PPSTW (S2). Other identified odour sources was vehicle emissions.
- 2.6.7 As predicted in Section 3.8.2.1 of the Final EIA report, no ASR within the area out of the project boundary with exceedances of the odour criteria. Since no odour monitoring results exceeds the odour criteria, the results verified that the EIA predictions were correct.

2.7 Odour Complaint Registration System

An odour complaint registration system has been set up for the project. No odour complaint was received and registered in the odour complaint registration system in the reporting month.

SMEC SMEC

Figure 2-1 Monitoring Locations for Odour Patrol

3 ODOUR EMISSION MONITORING

3.1 Monitoring Methodology and Parameters

In accordance with Section 3.8 of the Register of Change under Environmental Permit (EP) dated March 2013, two rounds of air sampling and olfactometric analysis are required to be conducted under full-load operation of the upgraded Pillar Point Sewage Treatment Works (PPSTW) to monitor the performance and effectiveness of the deodorization units. The first round of air sampling and olfactometric analysis will be conducted upon commissioning of the upgraded PPSTW and the second round will be carried out 1 year thereafter. The upgraded PPSTW commissioned on 15 August 2015. Due to the unexpectedly frequent rainy days since project commencement in mid-August to early September 2015 and the olfactometric analysis laboratory also being fully booked. The first air sampling for olfactometric analysis will be carried out in September 2015, which is within one month of the PPSTW commencement.

Air Sampling & Olfactomectric Analysis

Air Sampling Requirements and Methodology

- 3.1.2 As stipulated in 1.3.2 of Annex 3F of the Final EM&A Manual, the source temperature shall be measured at the time of air sampling. Other meteorological conditions including wind speed, wind direction and relative humidity should also be measured at the time of the monitoring. Two samples at each inlet/ outlet should be collected. Air sampling shall not be conducted in rainy days as it would affect the odour strength of the sources.
- 3.1.3 The air sampling procedure followed the European Standard Method EN13725:2003 and the procedures are listed as follow:
 - The sampling bags were prepared by filling the sampling bags with odour-free air at the odour laboratory to test any leaking problem.
 - ii. Sampling bags were emptied before sampling.
 - iii. For area sources, air samples were collected by hood sampling method. The odour sampling system includes a battery-operated air pump, a sampling vessel, and nalophane odour bags. Empty sample bag was placed in a rigid plastic container and the container was then evacuated at a controlled rate and the bag was filled. Sufficient volume of gas sample was collected at each sampling location and wind tunnel was employed during the sampling work.
 - iv. For non-area sources or "hood" method cannot be applied due to site constraint, the air samples were collected using a positive displacement pump and nalophane odour bags. The Positive displacement pump would be connected to the odour source and the sample bag was filled at a fixed flowrate.
 - v. The odour bags are Odour-free, which no odours added to the samples. The sampling bags were made of a material which does absorb or react with odorous samples. The odour bags were sufficiently impervious, reasonably robust, leak-free, equipped with leak-free fittings, compatible with olfactometer and other sampling equipment and the bags have sufficient capacity to complete a full test series.

- vi. The temperature of the sampling bags was kept above dew point and exposure of samples to sunlight was avoided. Exposure of samples to direct sunlight was avoided to minimise photochemical reactions.
- vii. The odour samples were delivered to a qualified laboratory for olfactometric analysis analysed within twenty-four hours.

Olfactometric Analysis Requirements and Methodology

- 3.1.4 The collected air samples were transported to Hong Kong Productivity Council (HKPC), which is a qualified laboratory for olfactometric analysis, within 24 hours.
 - The odour concentrations of the samples were determined by a forced-choice dynamic olfactometer with a panel of human assessors.
 - ii. The odour concentration is measured by determining the dilution factor required to reach the detection threshold, which is 10u/m³.
 - iii. The odour laboratory was ventilated to maintain an odour-free environment and to provide air to the panel members.
 - iv. The panellists were screened beforehand by using a 50-ppm solution/mixture of certified n-butanol standard gas in at least 3 sections on separated days with a pause of at least one day between sections, which the most sensitive and least sensitive individuals were eliminated and each odour testing session should comprise of 6 to 8 qualified panellists in 2 rounds of analysis.
 - v. The panel members were not allowed to eat or smoke one hour prior to the session, or use perfumes, after-shave lotions or any other fragrant essences before the session. They should be in the odour room 15 minutes before measurements. If they had health problems that affect their noses, they were not allowed to attend the testing session. No panel member were involved in the odour testing for more than 4 hours, within this period at least 2 ten minutes breaks for olfactory rest should be taken. The odour panel were housed in a room that constructs of odour-free materials and equipped with ventilation system.
 - vi. Regular calibration of the olfactometer was performed yearly to check the accuracy and repeatability of its dilution settings and to establish its calibration history. The olfactometer was calibrated regularly using propane as a tracer, which is an option recommended in BS 13725:2003 calibration method. The accuracy and repeatability of the olfactometer are calculated from two propane concentrations, one measured at the sniffing port of the olfactometer and once being the certified propane concentration.

H₂S Measurement

H₂S Measurement Methodology

i. H₂S level sensors were installed at the respective inlet and outlet of the deodorization units to continuously monitor the H₂S emission level at the stacks and H₂S removal efficiency of the deodorization units.

3.2 Monitoring Stations

3.2.1 The air samples collection locations are tabulated in *Table 3-1* and illustrated in *Figure 3-1*.

Table 3-1 Monitoring Locations for Air Sampling

Deodourization Unit Portion	Station ID	Description
Α	A1	Inlet for Portion A of the Deodorization Unit
A2		Outlet from Activated Carbon Filter A1
A3	Outlet from Activated Carbon Filter A2	
B2 Outlet from Activated Carbon		Inlet for Portion B of the Deodorization Unit
		Outlet from Activated Carbon Filter B1
		Outlet from Activated Carbon Filter B2

3.3 Monitoring Equipment

3.3.1 The equipment used for H₂S Gas Detector was listed in *Table 3-2* and calibration certificates for this equipment were provided in *Appendix C*.

Table 3-2 Odour Emission Monitoring Equipment

Equipment	System Model	Detector Model	Unit	Channel Number	Serial Number	
H ₂ S Gas	"Crowcon"	"Crowcon" Xgard Type 1 H₂S Gas Detector	"Crowcon" "Crowcon" Xgard	Α	1	410710/08-1
Detector	Detector Gasmonitor Plus Control Panel			4	410710/07-13	
				5	410710/07-9	
		В	1	410710/08-2		
			4	410710/07-10		
				5	410710/07-12	

3.4 Action and Limit Levels

3.4.1 The design requirements for stacks (A2, A3 and B2, B3) of deodourizing units A and B stipulated in the Register of Change under Environmental Permit (EP) were summarized in *Table 3-3*.

Table 3-3 Design Requirements for Outlet Stacks of Deodourizing Units

Stack of Deodorizing unit	Design requirements of deodorizing unit	Odour emission rates	
A2	 H=6.81m V=19.58m/s D=0.62m 	1,786 ou/s (total emission from all vent pipes)	
А3	 H=6.81m V=19.58m/s D=0.62m 		

Stack of Deodorizing unit	Design requirements of deodorizing unit	Odour emission rates	
В2	 H=6.81m V=20.00m/s D=0.62m 	1,809 ou/s (total emission from all vent pipes)	
B3	 H=6.81m V=20.00m/s D=0.62m 		

3.4.2 The Action and Limit Levels as proposed in Table F.1 of Annex 3F of the Register of Change under Environmental Permit (EP) are summarized in *Table 3-4*.

Table 3-4 Action and Limit Levels for Odour Emission Monitoring

Parameter	Action Level	Limit Level
Odour Emission (from air sampling, olfactometric analysis and H ₂ S measurement)	Odour emission rate from the outlet of the deodorizaiton unit exceeds 80% of the permitted value in <i>Table 3-3</i> .	Odour emission rate from outlet of the deodorization unit exceeds the permitted value in <i>Table 3-3</i> .

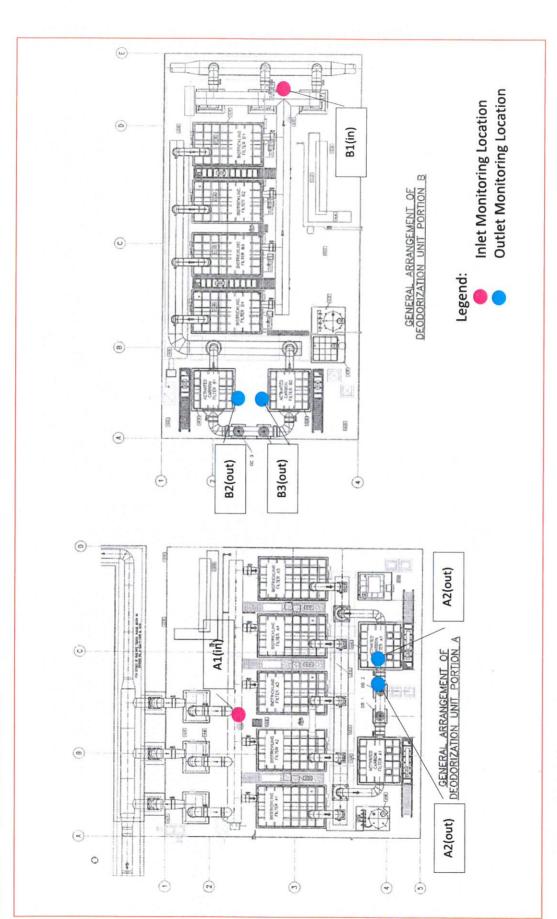
3.5 Event and Action Plan

3.5.1 The Event and Action Plan for Air Quality Monitoring (Operation Phase) is provided on *Appendix J*.

3.6 Monitoring Results

Air Samples and Olfactometric Analysis

3.6.1 Due to unexpected weather condition, air sampling for olfactometric analysis was not conducted during this monitoring period. Collection for duplicated air samples for olfactometric analysis will be arranged in late September 2015. The operating mode of the deodorization unit portion will be on duty for both biotrickling filter and activated carbon filter during air sampling. The olfactometric analysis results will be presented in the operation phase monitoring monthly report for the following monitoring period.


H₂S Monitoring

- 3.6.2 Continuous H₂S monitoring was conducted from 15 August 2015 to 31 August 2015 and the results were provided in *Appendix D*.
- 3.6.3 As shown in the continuous H₂S monitoring results, the average percentage of H₂S removal efficiency the deodorization units were 100%, which is well above the designed control efficiency of at least 90% of the deodorizing units as stipulated in Condition 2.6 of the Environmental Permit No.EP-321/2008/B (EP). To conclude, the effectiveness of the odour control system complied with the design criteria and satisfies the EP requirements.

Contract No. DC/2008/03
Design, Build and Operate Pillar Point Sewage Treatment Works
Monthly Operation Phase Monitoring Report (Post-commissioning)

SMEC SMEC

Figure 3-1 Air sampling locations

4 PPWQM Effluent quality Monitoring

4.1 Monitoring Methodology and Parameters

- 4.1.1 In accordance with Para 3.4.1.1 of the approved EM&A Manual, a one year impact monitoring of Post Project Water Quality Monitoring (PPWQM) programme shall be implemented after Project commissioning. Effluent quality monitoring is required as part of the PPWQM programme and shall be carried out during the operation phase of the upgraded PPSTW.
- 4.1.2 Para 1.2.1 of Appendix E of the approved EM&A Manual stated that two cycles of effluent sampling each of a full 24-hour period during both wet and dry seasons over the field work period of one year shall be carried out to characterize the quality of the treated effluent.
- 4.1.3 Operation Phase of the upgraded PPSTW was scheduled to commence on 15 August 2015, hence the one year operation phase monitoring period shall run from 15 August 2015 to 14 August 2016. The first wet season operation phase effluent quality monitoring was carried out on 23 August 2015 and 24 August 2015. The two dry season monitoring are scheduled in November 2015 and February 2016 and the second wet season effluent quality monitoring is scheduled in May 2016. The exact date of monitoring will be agreed with the Independent Environmental Checker (IEC) in due course.
- 4.1.4 Effluent monitoring parameters and frequency for effluent quality monitoring as agreed by the Director of Environmental Protection (DEP) are summarised in *Table 4-1*.

Table 4-1 Effluent Quality Monitoring Parameters and Frequency

Parameter (unit)	Туре	Frequency
E.coli (CFU/1000mL)		
Biochemical Oxygen Demand (mg/L)		
Suspended Solids (SS) (mg/L)		
Ammonia as N	Analysis period d	
Total Nitrogen as N (mg/L)		
Total Nitrogen as N – Filtered (mg/L)		Two cycles of a full 24-hour
Total Phosphorous as P (mg/L)		period during both wet and
Total Phosphorous as P – Filtered (mg/L)		dry seasons.²
Total Organic Carbon (mg/L)		
Aluminum (AI) (µg/L) Boron (B) (µg/L)		
Iron (Fe) (µg/L)		
Mercury (Hg) (μg/L)		

² The proposal included the appropriate time intervals over the 24 hour period and analysed for a range of variables were endorsed by IEC on 16 November 2012 and approved by EPD on 5 March 2013.

Parameter (unit)	Type	Frequency
Arsenic (As) (μg/L)		
Barium (Ba) (μg/L)		
Cadmium (Cd) (µg/L)		
Chromium (Cr) (µg/L)		20
Copper (Cu) (µg/L)		
Lead (Pb) (μg/L)		
Manganese (Mn) (μg/L)		
Nickel (Ni) (μg/L)		
Silver (Ag) (μg/L)		
Vanadium (V) (μg/L)		
Zinc (Zn) (μg/L)		

- 4.1.5 All laboratory analyses were carried out by ALS Technichem (HK) Pty Limited, which is a HOKLAS accredited laboratory.
- 4.1.6 A composite sample of treated effluent was collected by an auto sampler (Hach Sigma AWRS Sampler) on a half-hourly basis over a 24-hour period. The sample was then stored in insulated containers with ice packs to maintain a dark and below 4°C condition without freezing. All collected samples were delivered to the testing laboratory within 24 hours of sampling.

4.2 Monitoring Stations

4.2.1 Effluent quality monitoring was carried out at the effluent outlet of the PPSTW as shown in *Figure 4-1*.

4.3 Sampling Equipment

4.3.1 The auto effluent sampler, Hach Sigma AWRS Sampler, as shown in *Photo 4-1* was used to collect effluent sample for laboratory analysis. Detail of the sampler is provided in *Table 4-2*.

Photo 4-1 Hach Sigma AWRS Sampler

Table 4-2 Effluent Quality Monitoring Equipment

Equipment	Brand and Model	Serial Number
Hach Sigma AWRS Sampler	Hach Sigma AWRS Sampler Model 3542SDRH	131000484113

Effluent Sampling Procedures

- i. The power supply was checked to ensure the sampler works properly.
- ii. The polyethylene sampling bottles were installed properly in the sampler and were cleaned for up to 3 times with source liquid prior to sample collection.
- iii. The auto sampler automatically collected treated effluent in sampling bottle from the discharge outlet of the PPSTW on an half-hourly basis over 24-hours period.
- Technician gathered 24 hourly treated effluent samples and mixed all samples up in a bucket.
- A composite effluent sample was collected from the bucket and stored in appropriate containers with suitable preservative as provided by the laboratory.
- vi. The samples were sent to ALS Technichem (HK) Pty Limited, the HOKLAS accredited laboratory, immediately for analysis.

4.4 Effluent Discharge Assumptions and Limit

4.4.1 As presented in Table 4.13 of the approved EIA report and repeated in *Table 4-3* below, effluent loadings from the upgraded PPSTW were assumed and used to assess the potential impact to the receiving marine water.

Table 4-3 Assumed Effluent Loadings from the Upgraded PPSTW in the EIA Report

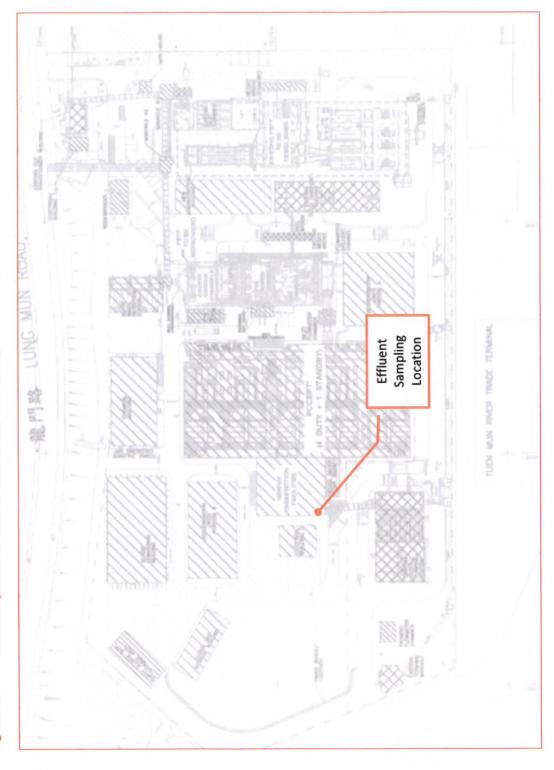
	TSS (mg/L)	BOD ₅ (mg/L)	E. coli (counts/100mL)
Effluent Loadings at 95 Percentile	120	180	300,000

4.4.2 As presented in *Table 4-4* below, effluent loadings from the upgraded PPSTW were assumed and used to assess the potential impact to the receiving marine water.

Table 4-4 Effluent Loadings from the Upgraded PPSTW in Water Discharge license

	TSS (mg/L)	BOD ₅ (mg/L)	E. coli (counts/100mL)
Effluent Loadings at 95 Percentile	120	180	300,000
Upper Limit	240	360	#20,000

#: The upper limit is monthly geometric mean.



4.5 Monitoring Results

- 4.5.1 The monitoring was conducted from 00:00 to 24:00 of 23 August 2015 and the effluent sample was collected on 24 August 2015 for all parameters analysis except that a grab sample for E.Coli analysis was collected onsite on 24 August 2015. Effluent quality monitoring results are shown in *Appendix F*.
- 4.5.2 Effluent quality monitoring demonstrated that the assumed effluent loading from the upgraded PPSTW can be achieved and therefore the water quality predictions made in the EIA are considered valid.

Monitoring Locations for Effluent Quality Monitoring Figure 4-1

5 PPWQM WATER QUALITY MONITORING

5.1 Monitoring Methodology and Parameters

- 5.1.1 In accordance with Section 3.4.1.1 of the final EM&A Manual, PPWQM programme shall be implemented during first year of the Operation Phase of the upgraded PPSTW.
- 5.1.2 Section 1.3.1 of Appendix E of the final EM&A Manual stated that water quality monitoring should be performed four times over the field work period of one year to give adequate coverage of different tidal states during both wet and dry seasons. The operation phase of Upgraded PPSTW commenced on 15 August 2015, hence the one year field work shall run from 15 August 2015 to 14 August 2016. The first wet season operation phase water quality monitoring was carried out on 26 August 2015. The dry season water quality monitoring is scheduled in November 2016 and February 2016, and the second wet season operation phase water monitoring works is scheduled in May 2016. Exact dates of monitoring will be agreed with the IEC in due course.
- 5.1.3 Water monitoring parameters, frequency and water depths for water quality monitoring as agreed with the Director of Environmental Protection (DEP) [Ref. #3] are summarised in *Table* 5-1.

Table 5-1 Water Quality Monitoring Parameters, Frequency and Water Depth

Parameter (unit)	Туре	Frequency	Water Depth
Temperature (°C)			
Turbidity (NTU)			
рН	In situ Measurement Laboratory		• If water depth >6m,
DO (mg/L and %)			1m below water
Salinity (ppt)			surface, mid-depth and 1m above
E.coli (CFU/100mL)		Mid-flood	seabed
BOD (mg/L)		tide and Mid-ebb	• If water depth <6m,
SS (mg/L)		tide	and >3m, 1m below
Nitrate (mg/L)			surface and 1m above seabed
Nitrite (mg/L)	Analysis		• If water depth <3m,
Total Nitrogen(mg/L)			mid-depth only
Total Phosphorous (mg/L)			
Ammonia (mg/L)			

- 5.1.4 All laboratory analyses were carried out by ALS Technichem (HK) Pty Limited, which is a HOKLAS accredited laboratory.
- 5.1.5 Samples were stored in appropriate containers provided in advance by the testing laboratory. The containers were immediately sealed and labelled. Sample ID and sampling date were marked on each sample. The samples were then stored in insulated containers

Via Drainage Services Department's letter memo dated 7 Dec 2012 (ref.: DSD SS 8/4329DS/CE200251/17) and Environmental Department's letter dated 5 March 2013 (ref.: (9) in Ax (11) to EP2/N4/F/34 Pt. 9)

with ice packs to maintain a dark and below 4°C condition without freezing. All collected samples were delivered to the testing laboratory within 24 hours of sampling.

5.2 Monitoring Stations

5.2.1 As agreed with DEP, water quality monitoring was carried out at 11 monitoring stations as shown in *Table 5-2*. Locations are shown in *Figure 5-1*.

Table 5-2 Monitoring Locations for Water Quality Monitoring

Station	国际经济区域的发展的 设施系统。	Co-ord	linates
ID	Description of Location	Easting	Northing
B1	Butterfly Beach	813517.1	825825.6
B2	Castle Peak Beach	815779.2	826530.7
В3	Kadoorie Beach	816098.4	826328.0
B4	Cafeteria Old Beach	816310.1	826240.2
B5	Cafeteria New Beach	816751.8	825888.4
В6	Golden Beach	816813.5	825493.2
WSD1	Flushing Water Intake near Butterfly Beach	813103.0	825511.1
WSD2	Flushing Water Intake near LRT Terminus	815241.3	825860.0
U2	Secondary Contact Recreation Subzone at Lung Kwu Tan	809704.9	827855.5
NM6	Control Station	820121.5	807822.1
NM1	Control Station	823025.4	820503.9

5.3 Monitoring Equipment

5.3.1 The equipment used for water quality monitoring was listed in *Table 5-3* and calibration certificates for this equipment were provided in *Appendix C*.

Table 5-3 Water Quality Monitoring Equipment

Equipment	Model	Serial Number
Multiparameter sonde	YSI Sonde 6920 v2	11F100014

5.4 Action and Limit Levels

5.4.1 The Action and Limit Levels for the water quality monitoring was established by using the baseline water monitoring data which carried out before commissioning of the upgraded PPSTW for each monitoring locations. The Action and Limit Levels are showed in *Table 5-4*.

5.5 Monitoring Results and Observations

- 5.5.1 Water quality monitoring was carried out on 26 August 2015 and the water quality monitoring results are presented in *Appendix G*.
- 5.5.2 As indicated in *Appendix G*, 2 exceedances of the Action Level for water quality monitoring were recorded in various monitoring stations. The baseline water quality monitoring was conducted in September 2012 to August 2013. After completion of the baseline monitoring, a number of major infrastructure construction projects has then commenced in the western water of Hong Kong that involves a lot of reclamation and marine construction works. These projects were suspected to be the major contributor for marine water quality pollution in the area.
- 5.5.3 The DO measured in the control stations was low and the 2 recorded exceedances were higher than the DO measured in the control stations.
- 5.5.4 Moreover, the effluent quality monitoring results also demonstrated that discharges from the upgraded PPSTW can both comply with the discharge licence criteria and assumptions made in the EIA report. As indicated in *Appendix F*, the recorded results for E.coli, BOD and SS were all respectively below the EIA Design Assumption.
- 5.5.5 As revealed above, the exceedances being recorded shall not be project-related.

Table 5-4 Action and Limit Levels for Water Quality

Parameters DO in mg/L	Detection	(October to March)	o March)	(April to September)	ptember)
DO in mg/L	Limit	Action Level *	Limit Level **	Action Level *	Limit Level **
	0.01	6.39 (Surface & Middle) 6.25 (Bottom)	6.22 (Surface & Middle) 6.15 (Bottom)	5.14 (Surface & Middle) 4.51 (Bottom)	4.84 (Surface & Middle) 4.49 (Bottom)
DO in %age	0.1	90.0 (Surface & Middle) 88.6 (Bottom)	87.7 (Surface & Middle) 87.2 (Bottom)	74.7 (Surface & Middle) 65.9 (Bottom)	70.6 (Surface & Middle) 65.6 (Bottom)
Turbidity in NTU	0.1	6.8	9.4	6.8	8.4
Salinity in ppt	0.01	31.98	32.15	29.66	30.06
E.coli count	1	90	102	333	1002
BOD in mg/L	2	2	3	2	>2
SS in mg/L	2	11	14	6	13
Nitrate in mg/L	0.01	0.52	0.85	0.7	0.72
Nitrite in mg/L	0.01	0.18	0.29	0.11	0.14
Total Nitrogen in mg/L	0.1	1.2	1.6	1.3	1.4
Total Phosphorous in mg/L	0.1	0.1	>0.1	0.1	>0.1
Ammonia in mg/L	0.01	0.18	0.21	0.21	0.24

Note:

- Action Levels were derived based on 95 percentile of baseline data. If baseline monitoring results were found to be below the detection limit, the detection was used as the Action Level or for calculation of the 95th percentile. During impact monitoring, 120% of upstream control station value at the same tide on the same day shall also be used as the Action Level for assessment of the monitoring results.
- calculation of the 99th percentile. During impact monitoring, 130% of upstream control station value at the same tide on the same day shall also be used as the Limit Level for assessment of ** Limit Levels were derived based on 99 percentile of baseline data. If baseline monitoring results were found to be below the detection limit, the detection was used as the Limit level or for the monitoring results.

Contract No. DC/2008/03
Design, Build and Operate Pillar Point Sewage Treatment Works
Monthly Operation Phase Monitoring Report (Post-commissioning)

SMEC

Figure 5-1 Monitoring Locations for Water Quality Monitoring

6 PPWQM BENTHIC SURVEY

6.1 Monitoring Methodology and Parameters

- 6.1.1 In accordance with Para 3.4.1.1 of the approved EM&A Manual, Post Project Water Quality Monitoring programme was implemented during the first year of Operation Phase. Benthic Survey shall be carried out as part of PPWQM programme during the first year of operation phase of the upgraded PPSTW.
- 6.1.2 Para 1.5.1 of Appendix E of the approved EM&A Manual stated that benthic survey should be performed four times over the field work period of one year, in parallel with the sediment sampling, covering both wet and dry season.
- 6.1.3 The operation of Upgraded PPSTW is scheduled to commence on 15 August 2015, hence the one year operation phase monitoring period shall run from 15 August 2015 to 14 August 2016. The first wet season operation phase benthic survey was carried out on 15 August 2015 together with sediment quality sampling. The dry season benthic surveys are scheduled in November 2016 and February 2016, and the second wet season operation phase benthic survey is scheduled in May 2016. The exact day of monitoring will be agreed with the IEC in due course.
- 6.1.4 The collected benthos samples were analysed for the below parameters through Field Sampling and Laboratory Work:
 - · Species composition to the lowest taxonomic level.
 - Benthic community structure.

Field Sampling

6.1.5 At each monitoring station, five replicates of sediment samples were collected using a 0.1m² van Veen grab. Collected samples were accepted when at least two-third of grab volume was filled. A photographic record of the sediment texture and colour was taken. The samples were washed with gentle seawater through a plastic box with sieve of 0.5mm mesh size. Large animals that were visible from the residues were hand-picked into a small plastic vial. All remains were transferred into a plastic container for temporary storage.

Laboratory Work

- 6.1.6 The samples were delivered to laboratory within two hours of completion of field works. The samples were preserved with 70% ethanol solution followed by staining with 1% Rose Bengal solution. The samples were stored for one day to ensure sufficient preservation and staining. The fauna collected were sorted out from the sediment residues. For quality assurance, the sediment residues of one-third sorted samples were randomly rechecked. No missed fauna was found in the recheck.
- 6.1.7 The collected specimens were identified to the lowest taxonomic resolution.

 Examination of the morphological features of the specimens was undertaken with the aid of both stereoscopic and compound microscopes.

6.1.8 The taxonomic classification was conducted according with the following references: Polychaetes: Day (1967)^[Ref.#4], Gallardo (1967)^[Ref.#5], Fauchald (1977)^[Ref.#6], Yang and Sun (1988)^[Ref.#7], Wu et al. (1997)^[Ref.#8], Sun and Yang (2004)^[Ref.#9]; Arthropods: Dai and Yang (1991)^[Ref.#10], Dong (1991)^[Ref.#11]; and Molluscs: Qi (2004)^[Ref.#12]. The number of individuals of each species was recorded by counting the anterior portions of the fauna only. Total biomass of each species was determined as preserved wet weight, after blotting the animals on filter paper for 3 minutes before weighing to the nearest 0.0001g.

Data Analysis

6.1.9 Data collected from five replicate samples at every monitoring station were pooled together for data analysis. Shannon-Weaver Diversity Index (H') and Pielou's Species Evenness (J) were calculated using the formulae below,

> $H' = -\Sigma (Ni/N) ln (Ni/N)$ (Shannon and Weaver, 1963) J = H' / In S(Pielou, 1966)

where S is the total number of species in the sample, N is the total number of individuals, and Ni is the number of individuals of the ith species

6.2 **Monitoring Stations**

- 6.2.1 In accordance with Para 1.5.1 of Appendix E of the approved EM&A Manual, benthic survey was undertaken in parallel with sediment sampling using the same monitoring stations. Nine of the stations represented the sensitive receivers which could potentially be affected by the untreated or partially treated effluent from the PPSTW (B1 to B6: gazetted beaches; WSD1 to WSD2: flushing water intake points and U2: secondary contact recreation subzone).
- 6.2.2 Stations NM1 and NM6 were control stations locating outside the influence zone of the emergency discharge as predicted by the water quality modelling and would unlikely be affected by the PPSTW.
- 6.2.3 During the benthic survey, slight adjustments to the location of seven of the monitoring stations were necessary due to shallow water near the shore that made the original locations inaccessible by the sampling vessel. The revised co-ordinates of the seven

7076134 | D09/01 | Revision No. 1 | October 2015

Day, J.H., 1967. A monograph on the polychaeta of South Africa. Trustees of the British Museum, London.

Gallardo, V., 1967. Polychaeta from the Bay of Nha Trang, South Viet Nam. In: Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959-1961, Naga Report 4(3). Scripps Institution of Oceanography, University of California Press. La Jolla, California, 35-279.

^{6.} Fauchald, K., 1977. The polychaete worms. Definitions and keys to the orders, families and genera. Natural History Museum of Los Angeles County, Science Series 28. Los Angeles, U.S.A.

Yang, D.J, Sun, R.P., 1988. Polychaetous annelids commonly seen from the Chinese waters (Chinese version). China Agriculture Press, China.

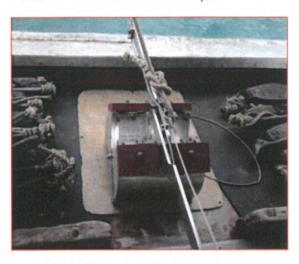
^{8.} Wu, B.L., Wu, Q.Q., Qiu, J.W., Lu, H., 1997. Fauna Sinica, Phylum Annelida, Class Polychaeta, Order Phyllodocimorpha, Science Press, Beijing,

Sun, R.P., Yang, D.J., 2004. Fauna Sinica. Phylum Annelida. Class Polychaeta II, Order Nereidida. Science Press. Beijing.

^{10.} Dai, A.Y., Yang, S.L., 1991. Crabs of the China Seas. China Ocean Press. Beijing.

Dong, Y.M., 1991. Fauna of ZheJiang Crustacea. Zhejiang Science and Technology Publishing House. ZheJiang. 11.

Qi, Z.Y., 2004. Seashells of China. China Ocean Press. Beijing, China.



monitoring stations (B1, B3 to B6, WSD1 and U2) are provided in *Appendix E* for reference.

6.3 Monitoring Equipment

6.3.1 A 0.1m² van Veen grab, as shown in *Photo 6-1*, was used to collect sediment samples for laboratory analysis.

Photo 6-1 Van Veen Grab Sampler

6.4 Action and Limit Levels

6.4.1 The results will be comparing to the benthic baseline survey results which was conducted before commissioning of the upgraded PPSTW at each monitoring locations. The mean of the benthic survey conduct during baseline were showed in *Appendix H*.

6.5 Monitoring Results

6.5.1 Benthic survey was carried out on 15 August 2015 and analysis of the benthos samples will take 4 to 6 weeks and therefore not available during the time of report preparation. Benthic survey results for this monitoring period will be reported in next monthly operation phase monitoring report.

PPWQM SEDIMENT QUALITY MONITORING

7.1 **Monitoring Methodology and Parameters**

- 7.1.1 In accordance with Section 3.4.1.1 of the final EM&A Manual, PPWQM programme shall be implemented during first year of the Operation Phase of the upgraded PPSTW.
- 7.1.2 Para 1.4.1 of Appendix E of the approved EM&A Manual stated that sediment quality monitoring should be performed four times over the field work period of one year to give adequate coverage of different tidal states during both wet and dry seasons.
- 7.1.3 The operation of Upgraded PPSTW is scheduled to commence in 15 August 2015, hence the one year operation phase monitoring period shall run from 15 August 2015 to 14 August 2016. The first wet season operation phase sediment quality monitoring was carried out on 15 August 2015. The dry season sediment quality monitoring is scheduled in November 2016 and February 2016, and the second wet season operation phase sediment quality monitoring is scheduled in May 2016. The exact day of monitoring will be agreed with the IEC in due course.
- 7.1.4 Table 7-1 summarizes the monitoring parameters agreed with the DEP and reference measurement methods.

Table 7-1 **Sediment Quality Monitoring Parameters and Measurement Methods**

Parameter	Method Reference / Technique 13
Percentage of Silt/ Clay	BS 1377
pH Value	APHA 4500H: B
Acid Volatile Sulphide (AVS)	Allen H.E. et al , 1991
Total Volatile Solids (TVS)	APHA 2540 G
Total Organic Carbon (TOC)	APHA 5310 B
Ammonia (NH ₄ -N)	APHA 4500NH3: B&C
Total Nitrogen	APHA 4500Norg: D
	APHA 4500NO3: I
Total Phosphorus	APHA 4500P: B&H
Aluminium, Arsenic, Barium, Boron, Cadmium, Copper, Chromium, Lead, Manganese, Nickel, Silver, Vanadium, Zinc	USEPA 6020A
Iron	USEPA 6010A
Mercury	APHA 3112B

7.1.5 All laboratory analysis was carried out by ALS Technichem (HK) Pty Limited, which is a HOKLAS accredited laboratory.

¹³ The proposal included the sampling locations and analysis of sediment samples to be conducted were endorsed by IEC on 16 November 2012 and approved by EPD on 5 March 2013.

7.1.6 Samples were stored in appropriate containers provided in advance by the testing laboratory. The containers were immediately sealed and labelled. Sample ID and sampling date were marked on each sample. The samples were then stored in insulated containers with ice packs to maintain a dark and below 4°C condition without freezing. All collected samples were collected by the testing laboratory within 24 hours of sampling.

7.2 Monitoring Stations

- 7.2.1 As agreed with the DEP, the sediment quality monitoring were carried out at the same 11 monitoring stations as for water quality monitoring, as shown in *Table 5-2* and in *Figure 5-1*.
- 7.2.2 During the sediment sampling, slight adjustments to the location of seven of the monitoring stations were necessary due to shallow water near the shore that made the original locations inaccessible by the sampling vessel. The revised co-ordinates of the seven monitoring stations (B1, B3 to B6, WSD1 and U2) are provided in *Appendix E* for reference. As far as reasonably practicable, the relocated sampling points were chosen at the closest possible locations from the original locations. The relocated stations were 73 to 341m from the original co-ordinates with similar water depth (difference <1.0m). Hence the sediment quality monitoring data can be aligned with the water quality data.

7.3 Monitoring Equipment

7.3.1 A 0.1m² van Veen grab, same as the equipment used for benthic survey in *Section 6.3* used for sample collection.

7.4 Action and Limit Levels

7.4.1 The Action and Limit Levels for the sediment quality monitoring was established by using the baseline sediment monitoring data which carried out before commissioning of the upgraded PPSTW for each monitoring locations. The Action and Limit Levels were shown in *Table 7-2*.

7.5 Monitoring Results and Observations

- 7.5.1 Sediment sampling was carried out on 15 August 2015 and the sediment quality monitoring results are summarised in *Appendix I*.
- 7.5.2 As indicated in Appendix I, 1 exceedances of Action Level and 74 exceedances of Limit Level for sediment quality monitoring were recorded in various monitoring stations. Similar to the water quality monitoring, baseline sediment quality monitoring was conducted in September 2012 to August 2013. After completion of the baseline monitoring, a number of major infrastructure construction projects has then commenced in the western water of Hong Kong that involves a lot of reclamation and marine construction works. These projects were suspected to be the major contributor for marine water quality pollution in the area.

- 7.5.3 The effluent quality monitoring results also demonstrated that discharges from the upgraded PPSTW can both comply with the discharge licence criteria and assumptions made in the EIA report. As indicated in *Appendix F*, the recorded results for E.coli, BOD and SS were all respectively below the EIA Design Assumption.
- 7.5.4 Thus, the exceedances being recorded shall not be project-related.

Contract No. DC/2008/03 Design, Build and Operate Pillar Point Sewage Treatment Works Monthly Operation Phase Monitoring Report (Post-commissioning)

SMEC SMEC

Table 7-2 Action and Limit Levels for Sediment Quality

Line Action Action Action <	Station ID	81		82	2	B3		B4	q	B5		98		WSD1	т	WSD2	.2	UZ		NM1	A1	Z	NM6
1	Monitoring Parameters	Action Level	Limit	Action Level	Limit	Action	Limit	Action Level	Limit	Action	Limit Level	Action	Limit Level	Action	Limit								
1	Hd	7.8	7.8	7.8	7.8	7.8	7.8	8.0	8.0	7.9	7.9	8.1	8.1	8.1	8.1	8.0	8.0	8.1	8.1	8.1	8.1	8.1	8.1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Volatile Solids (%)	6.5	6.7	7.4	7.6	35.3	36.7	5.2	5.2	0.9	6.2	4.3	4.4	4.1	4.2	5.3	5.5	3.6	3.6	2.4	2.4	1.5	1.5
10 10 10 10 10 10 10 10	Acid Volatile Sulphides (mg/kg)	46	47	722	233	94	95	40	41	38	39	36	37	37	10	10	23	23	10	10	14	14	10
1.00 1.04 1.04 1.04 1.04 1.04 1.05	Ammonia (mg/kg)	10	10	20	20	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
1.00 1.08 1.23	Nitrite + Nitrate (mg/kg)	0.5	0.5	0.4	0.4	0.2	0.2	0.2	0.2	0.2	0.2	0.5	0.5	0.2	0.2	0.2	0.2	0.4	0.4	1.0	1.0	0.2	0.2
551 640 <td>Total Nitrogen (mg/kg)</td> <td>1,090</td> <td>1,098</td> <td>1,237</td> <td>1,239</td> <td>1,236</td> <td>1,239</td> <td>666</td> <td>1,000</td> <td>896</td> <td>970</td> <td>843</td> <td>849</td> <td>290</td> <td>290</td> <td>089</td> <td>889</td> <td>657</td> <td>299</td> <td>631</td> <td>638</td> <td>435</td> <td>439</td>	Total Nitrogen (mg/kg)	1,090	1,098	1,237	1,239	1,236	1,239	666	1,000	896	970	843	849	290	290	089	889	657	299	631	638	435	439
4.0 6.0 6.1 6.1 6.2 6.1 <td>Total Phosphorus (mg/kg)</td> <td>551</td> <td>554</td> <td>603</td> <td>909</td> <td>631</td> <td>633</td> <td>526</td> <td>528</td> <td>533</td> <td>537</td> <td>439</td> <td>442</td> <td>324</td> <td>324</td> <td>373</td> <td>374</td> <td>459</td> <td>459</td> <td>362</td> <td>364</td> <td>448</td> <td>458</td>	Total Phosphorus (mg/kg)	551	554	603	909	631	633	526	528	533	537	439	442	324	324	373	374	459	459	362	364	448	458
41 31 31 32<	Aluminium(mg/kg)	39,800	40,280	45,175	45,595	47,140	47,588	39,655	40,011	38,985	39,317	30,135	30,347	24,135	24,667	32,945	33,789	23,355	23,391	19,582	19,996	17,750	17,950
4.0 4.2 5.0 <td>Boron(mg/kg)</td> <td>31</td> <td>31</td> <td>35</td> <td>35</td> <td>33</td> <td>33</td> <td>56</td> <td>26</td> <td>56</td> <td>56</td> <td>21</td> <td>21</td> <td>20</td> <td>20</td> <td>25</td> <td>56</td> <td>23</td> <td>23</td> <td>24</td> <td>24</td> <td>13</td> <td>13</td>	Boron(mg/kg)	31	31	35	35	33	33	56	26	56	56	21	21	20	20	25	56	23	23	24	24	13	13
4. 0 6.0 <td>Iron(mg/kg)</td> <td>34,005</td> <td>34,241</td> <td>39,295</td> <td>39,619</td> <td>38,395</td> <td>38,639</td> <td>35,655</td> <td>35,851</td> <td>34,280</td> <td>34,456</td> <td>26,610</td> <td>29,762</td> <td>21,530</td> <td>21,906</td> <td>30,385</td> <td>31,037</td> <td>52,980</td> <td>53,796</td> <td>19,200</td> <td>19,520</td> <td>22,220</td> <td>22,364</td>	Iron(mg/kg)	34,005	34,241	39,295	39,619	38,395	38,639	35,655	35,851	34,280	34,456	26,610	29,762	21,530	21,906	30,385	31,037	52,980	53,796	19,200	19,520	22,220	22,364
4.0 4.0 <td>Mercury(mg/kg)</td> <td>0.4</td> <td>0.4</td> <td>0.2</td> <td>0.2</td> <td>0.2</td> <td>0.2</td> <td>0.2</td> <td>0.5</td> <td>0.2</td>	Mercury(mg/kg)	0.4	0.4	0.2	0.2	0.2	0.2	0.2	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
49 46 64 46<	Arsenic(mg/kg)	12	12	13	13	14	14	13	13	13	13	10	10	7	7	10	10	13	13	œ	œ	10	10
40 60<	Barium(mg/kg)	49	49	26	57	26	26	46	46	45	45	36	36	30	30	65	99	30	31	35	36	23	24
40 40 81 81 81 65 65 49 49 45 45 31 31 25 25 25 24 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Cadmium(mg/kg)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
40 40 81 65 64 45 45 32 35 35 36 36 36 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 56 26<	Chromium(mg/kg)	42	42	52	52	25	52	44	44	42	42	31	31	26	27	32	33	31	31	25	26	22	22
40 40 54 54 54 41 41 43 33 36 26 26 26 26 26 26 26 26 26 26 26 26 36 41<	Copper(mg/kg)	40	40	81	81	65	65	49	49	45	45	32	32	25	56	54	26	56	56	24	25	13	13
664 672 543 546 586 687 687 539 549 549 649 <td>Lead(mg/kg)</td> <td>40</td> <td>40</td> <td>54</td> <td>54</td> <td>51</td> <td>51</td> <td>42</td> <td>42</td> <td>41</td> <td>41</td> <td>33</td> <td>33</td> <td>26</td> <td>26</td> <td>29</td> <td>30</td> <td>41</td> <td>41</td> <td>63</td> <td>65</td> <td>22</td> <td>22</td>	Lead(mg/kg)	40	40	54	54	51	51	42	42	41	41	33	33	26	26	29	30	41	41	63	65	22	22
25 36 36 36 36 25 25 25 18 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 15 15 15 16 16 16 0.4 0.4 0.3 <	Manganese(mg/kg)	664	672	543	546	280	583	531	533	537	539	529	535	385	386	480	481	695	701	295	565	356	362
0.5 0.5 0.7 0.7 0.5 0.5 0.6 0.4 0.4 0.3 <td>Nickel(mg/kg)</td> <td>25</td> <td>25</td> <td>30</td> <td>30</td> <td>30</td> <td>30</td> <td>25</td> <td>25</td> <td>25</td> <td>25</td> <td>18</td> <td>18</td> <td>15</td> <td>15</td> <td>18</td> <td>19</td> <td>19</td> <td>19</td> <td>14</td> <td>14</td> <td>13</td> <td>13</td>	Nickel(mg/kg)	25	25	30	30	30	30	25	25	25	25	18	18	15	15	18	19	19	19	14	14	13	13
49 69 60 58 58 51 52 50 51 40 40 28 31 31 31 31 31 31 31 31 31 31 31 31 40<	Silver(mg/kg)	0.5	0.5	0.7	0.7	0.7	0.7	0.5	0.5	9.0	9.0	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.2	0.3	0.3	0.1	0.1
1.08 1.09 1.44 1.45 1.25 1.27 0.97 0.97 1.09 1.10 0.82 0.83 0.81 0.83 1.19 1.12 1.12 1.12 1.05 1.08 1.09 1.10 0.82 0.83 0.81 0.83 1.19 1.12 1.12 1.09 1.00 1.00 1.10 0.82 0.83 0.81 0.83 1.19 1.12 1.09 1.09 1.10 1.00 1.00 1.10 0.82 0.83 0.81 1.19 1.12 1.09 1.10 1.00 1.10 0.80 1.10 1.10 1.10 1.10	Vanadium(mg/kg)	49	49	9	9	28	88	51	52	20	51	40	40	28	28	31	31	38	39	33	34	33	34
1.08 1.09 1.44 1.26 1.27 0.97 0.97 1.09 1.10 0.83 0.81 0.83 1.19 1.22 0.94 0.96 1.01 1.02 0.93 10 10 0 0 0 1 1 1 1 9 9 22 12 15 3 33 33 34 48 49 40 60 10 10 11 1 1 1 1 2 2 15 15 33 33 34 40 60 60 10 1 1 1 1 2 2 15 34 48 48 49 34 44 34 34 35 35 34 35 34 35 34 35 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36	Zinc(mg/kg)	133	134	187	188	172	173	140	141	139	140	105	105	87	88	66	101	111	112	105	108	51	52
10 10 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	Total Organic Carbon(%)	1.08	1.09	1.44	1.44	1.26	1.27	76.0	0.97	1.09	1.10	0.82	0.83	0.81	0.83	1.19	1.22	0.94	96.0	1.01	1.02	0.44	0.45
31 31 48 44 44 44 44 44 44 44 36 36 37 37 38 26 26 26 27 39 30 31 31 32 33 44 35 36 36 36 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	Gravel (%)	10	10	0	0	0	0	1	1	-	1	6	6	22	22	16	17	3	3	33	34	10	10
37 37 63 63 64 44 44 44 46 36 36 37 38 26 26 29 30 34 35 19 20 18 18	Sand (%)	31	31	2	2	4	4	18	18	15	15	33	33	48	49	39	40	69	70	51	51	65	99
33 33 44 44 44 44 44 46 36 36 37 38 26 26 29 30 34 35 19 20 18 18	Silt (%)	37	37	63	63	61	61	57	58	57	57	39	39	24	24	43	44	34	35	18	19	26	27
	Clay (%)	33	33	44	44	44	44	36	36	37	38	26	26	29	30	34	35	19	20	18	18	19	19

* Action Levels were derived based on 95 percentile of baseline data and 120% of upstream control station value on the same day shall also be used as the Action Level for assessment of the monitoring results.

7076134 | D09/01 | Revision No. 1 | October 2015

8 CONCLUSION

- 8.1.1 In accordance with the EM&A Manual for the Upgrading of PPSTW, operation phase monitoring report is required on a monthly basis after the Project commissioning. The purpose of the operation phase monitoring report is to confirm the predictions of odour and water quality made in the EIA report.
- 8.1.2 This 1st Monthly Operation Phase Monitoring Report summarizes all environmental monitoring events carried out during post-commissioning period from 15 to 31 August 2015. There were a total of six monitoring events carried out during the reporting period.
- 8.1.3 The exact dates of monitoring carried out are shown in *Table 8-1*, below:

Table 8-1 Monitoring Dates During Reporting Month

Monitoring Events	1 st Reporting	g Month
Odour Monitoring	25/08/2	015
H₂S Monitoring	15/08/2015 - 3 (continuous m	
Effluent Quality Monitoring	23/08/2015 (24 hours monitoring)	24/08/2015 E.Coli Monitoring
Water Quality Monitoring	26/08/2	015
Sediment Quality Monitoring	15/08/2	015
Benthic Survey	15/08/2	015

- 8.1.4 The monitoring results carried out in reporting period were certified by the Environmental Team (ET) Leader and verified by the Independent Environmental Checker (IEC) in accordance with the EM&A Manual.
- 8.1.5 All laboratory results satisfied the QA/QC requirements and all monitoring equipment was properly calibrated and has valid calibration certificates.
- 8.1.6 No exceedance of Action and Limit Level of odour monitoring was recorded at the monitoring location in the reporting month.
- 8.1.7 No exceedance of Action and Limit Level of effluent monitoring was recorded at the monitoring location in the reporting month.
- 8.1.8 2 exceedances of Action Level and no Limit Level exceedance of water quality monitoring were recorded at the monitoring location in the reporting month. The exceedances are considered to be non-project related.
- 8.1.9 1 exceedances of Action Level and 74 exceedances of Limit Level for sediment quality monitoring were recorded at the monitoring location in the reporting month. The exceedances are considered to be non-project related.

- 8.1.10 The monitoring results for benthic survey are pending and the results will be reported in the next reporting period.
- 8.1.11 To conclude, the odour control system is considered to be effective as its H₂S removal efficiency can comply with the EP requirements and no noticeable odour was observed at all ASRs during odour patrol.
- 8.1.12 Due to unforeseeable weather condition, air sampling for olfactometric analysis will be conducted in late September. The results for olfactometric analysis will be presented in the operation phase monitoring monthly report for the following monitoring period.
- 8.1.13 The ET will keep track on the EM&A programme to ensure the compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

APPENDIX A

Nose Sensory Test Report

SMEC ASIA LIMITED

REPORT ON NOSE SENSORY TEST

(Project No.: 4101-10000535 #004)

Environmental Management Division Hong Kong Productivity Council

Quality Index

Date Reference No. Prepared by Endorsed by

4 Sep 2014 10000535#004 KW Poon CHAU Kam Man, Grant

Nose Sensory Test

SMFC Asia Limited

1. COMPANY NAME AND NAME OF PANELISTS

Company name

SMEC Asia Limited

Name of panelists : (1) Lee Hok Yan, Francis

(2) Ma Man Wah, Winnie

2. OBJECTIVE

The objective of this study was to have a nose sensory test for SMEC Asia limited staff, Lee Hok Yan (Francis) and Ma Man Wah (Winnie), and report them if they are to be "certified panelists" according to the British Standard Method BS EN13725:2003.

3. TESTING DATES AND LOCATION

The dates of testing and testing location are summarized in Table 1:

Table 1: Name of panelist, testing dates and testing location

Name of panelist	Testing Dates	Testing location
Lee Hok Yan, Francis	(1) 21 May 2014 (2) 23 May 2014 (3) 01 September 2014	
Ma Man Wah, Winnie	(1) 21 May 2014 (2) 23 May 2014 (3) 01 September 2014	4/F, Odour research laboratory HKPC Building, 78 Tat Chec

4. METHODOLOGY OF MEASUREMENT

The methodology of the nose sensory test was listed in Table 2:

Environmental Management Division Hong Kong Productivity Council

HKPC/4101/10000535/004/140904kw

Page I

SMEC Asia Limited.

Table 2: Methodology of the nose sensory test

Description	Methodology	Photo
Nose sensory test	BS EN13725:2003:- (1) Odour concentration measurement (60 ppm n-butanol): Dynamic olfactometer (Model TO9, Ecoma) (2) Force choice method	Olfactometer (Model TO9, Ecoma)

5. RESULTS OF THE TEST

The individual test results are summarized in Table 3 and Table 4.

Table 3: Nose sensory test results for Lee Hok Yan, Francis

Name of pan	elist:	Francis Lee		
Company:		SMEC		
eference ma	terial:	50.00	ppm n-Butanol in ni	itrogen
Date	Odour concentration OU E / m³ (A)	ppb V/V (B) = (D)/(A)*1000	log ppb V/V (ITE) (C) = log(B)	n-Butanol μmol/mol (ppm) (D)
21/5/2014	724	82.9	1.9184	60.00
21/5/2014	724	82.9	1.9184	60.00
21/5/2014	362	165.7	2.2194	60,00
23/5/2014	724	82.9	1.9184	60.00
23/5/2014	724	82.9	1.9184	60.00
23/5/2014	724	82.9	1.9184	60,00
23/5/2014	1448	41.4	1.6174	60.00
1/9/2014	1448	41.4	1.6174	60.00
1/9/2014	724	82.9	1.9184	60.00
1/9/2014	724	82.9	1.9184	60.00

Environmental Management Division Hong Kang Productivity Council

HKPC/4101/10000535/004/140904lov

Nose Sensory Test SMEC Asia Limited. 10 * ITE <= repeatability requirement 2.3 10 yrre <= accuracy requirement 20 <= 10 AITE repeatability 1.482 Pass 77.32 10 yers accuracy Pass Where ITE is individual threshold estimates S ITE is Standard deviation of individual threshold estimates y ITE is Average of individual threshold estimates

Table 4: Nose sensory test results for Ma Man Wah, Winnie

Name of pan	elist:	Winnie Ma		
Company:		SMEC		
deference ma	terial:	60.00	ppm n-Butanol in ni	trogen
Date	Odour concentration OU E / m ³	ppb V/V	log ppb V/V (ITE)	n-Butanol μmol/mol (ppm)
	(A)	$(B) = (D)/(A) \cdot 1000$	(C) = log(B)	(D)
21/5/2014	724	82.9	1.9184	80.00
21/5/2014	724	82.9	1.9184	60.00
21/5/2014	1448	41.4	1.6174	60.00
23/5/2014	1448	41.4	1.6174	60.00
23/5/2014	1448	41.4	1.6174	60.00
23/5/2014	1448	41.4	1.6174	60.00
23/5/2014	1048	41.4	1.6174	60.00
1/9/2014	1448	41.4	1.6174	
1/9/2014	1448	41.4	1.6174	60.00
1/9/2014	1448	41.4	1.6174	60.00
	ndard dev. (C) ean value (C)	S STE Y ITE		0.1269 1.6776
epeatability r	equirement		10 s FFE <=	2.3
ccuracy requ	irement	20 <-	10 y ITE on	80

Environmental Management Division Hong Kong Productivity Council HKPC/4101/10000535/004/140904kw

SMEC Asia Limited.

repeatability	1.339	10 * FIE	Pass

Where ITE is individual threshold estimates

S ITE is Standard deviation of individual threshold estimates

y ITE is Average of individual threshold estimates

6. DISCUSSION

Referring to the nose sensory test results, the following findings could be summarized:

- Both Lee Hok Yan, Francis and Ma Man Wah, Winnie of SMEC Asia Limited passed the repeatability and accuracy requirement of nose sensory test according to British standard method BS EN13725:2003.
- Both Lee Hok Yan, Francis and Ma Man Wah, Winnie of SMEC Asia Limited are certified panelists with effective from 01 September 2014 to 31 August 2015.

7. LIMITATION OF MEASUREMENT

The results obtained in this test are only representative of the nose sensory system at the specific time. The result should not be extrapolated to other conditions without caution. Please refer to code of behavior of BS EN13725:2003 for the details.

Environmental Management Division Hong Kong Productivity Council

04 September 2014

Environmental Management Division Hong Kang Productivity Council HKPC/4101/10000535/004/140904kw

^{*}All the results were calculated according to BS EN13725:2003.

SMEC ASIA LIMITED

REPORT ON NOSE SENSORY TEST

(Project No.: 4101-10000535 #047)

Environmental Management Division Hong Kong Productivity Council

Quality Index

Date Reference No. Prepared by Endorsed by

03 July 2015 10000535#047v2 KW Poon CHAU Kam Man, Grant

SMEC Asia Limited

1. COMPANY NAME AND NAME OF PANELISTS

Company name

SMEC Asia Limited

Name of panelists : (1) Cheung Man Kit

(2) Lee Hok Yan, Francis

2. OBJECTIVE

The objective of this study was to have a nose sensory test for SMEC Asia limited staff, Cheung Man Kit and Lee Hok Yan (Francis), and report them if they are to be "certified panelists" according to the British Standard Method BS EN13725:2003.

3. TESTING DATES AND LOCATION

The dates of testing and testing location are summarized in Table 1:

Table 1: Name of panelist, testing dates and testing location

Name of panelist	Testing Dates	Testing location
Cheung Man Kit	(1) 29 April 2015 (2) 05 May 2015 (3) 10 May 2015	
Lee Hok Yan, Francis (Re-certified)	(1) 10 May 2015	4/F, Odour research laboratory ,

4. METHODOLOGY OF MEASUREMENT

The methodology of the nose sensory test was listed in Table 2:

Environmental Management Division Hong Kong Productivity Council

HKPC/4101/10000535/047/150604kw

SMEC Asia Limited.

Table 2: Methodology of the nose sensory test

Description	Methodology	Photo
Nose sensory test	BS EN13725:2003:- (1) Odour concentration measurement (60 ppm n-butanol): Dynamic olfactometer (Model TO9, Ecoma) (2) Force choice method	Olfactometer (Model TO9, Ecoma)

5. RESULTS OF THE TEST

Certified 60ppm/v standard n-butanol gas was applied as reference material and the n-butanol thresholds in the range of 20 to 80 ppb/v (accordance with BS EN13725:2003) was determined as follows (Table 3):-

Table 3: Nose sensory test results

Odour panelist	Repeatability (Requirement: Repeatability ≤ 2.3)	Accuracy (Requirement: 20 ≤ Accuracy ≤ 80)	Pass/ Fail
Cheung Man Kit	2.28	79.25	Pass
Lee Hok Yan, Francis	1.45	77.81	Pass

^{*}The requirements followed BS EN13725:2003.

6. DISCUSSION

Referring to the nose sensory test results, the following findings could be summarized:

- a. Both Cheung Man Kit and Lee Hok Yan, Francis of SMEC Asia Limited passed the repeatability and accuracy requirement of nose sensory test according to British standard method BS EN13725:2003.
- b. Both Cheung Man Kit and Lee Hok Yan, Francis of SMEC Asia Limited are certified panelists with effective from 10 May 2015 to 09 May 2016.

Environmental Management Division Hong Kong Productivity Council HKPC/4101/10000535/047/150604kw

SMEC Asia Limited.

7. LIMITATION OF MEASUREMENT

The results obtained in this test are only representative of the nose sensory system at the specific time. The result should not be extrapolated to other conditions without caution. Please refer to code of behavior of BS EN13725:2003 for the details.

Environmental Management Division Hong Kong Productivity Council

03 July 2015

Environmental Management Division Hong Kong Productivity Council HKPC/4101/10000535/047/150604kw Page3

APPENDIX B

Odour Monitoring Results and Field Record Sheet

Contract No. DC/2008/03
Design, Build and Operate Pillar Point Sewage Treatment Works
Monthly Operation Phase Monitoring Report (Post-commissioning)

SMEC

Summary of Baseline Odour Intensity (OI) at Each Monitoring Location

							Odour	Odour Intensity	
Date	Period	9	Location	Time	Wind Direction	Wind Speed (m/s)	Personnel 1	Personnel 2	Odour Characteristics
		A1	River Trade Terminal Office	14:27	S	1.5	0	0	
		A2	Chu Kong Warehouse 1	14:18	SW	æ	0	0	
		A3	Chu Kong Warehouse 2	14:18	SW	0.1	0	0	
		A4	Wai Sang Sawmill Ltd.	14:17	SW	2.3	0	0	
	Daytime	A5	Pillar Point Fire Station	14:15	NW	0.1	0	0	
25-August- 15	(14:11-14:42)	A6	Sunhing Hung Kai Tuen Mun Godown	14:11	ш	0.1	0	0	
		A7	EMSD Servicing Vehicle Station	15:23	8	0.3	0	0	
		S1	Northern Site Boundary	14:31	NE	0.1	0	0	ı
		22	Eastern Site Boundary	14:42	8	0.3	1	0	Odour due to PPSTW
		23	Southern Site Boundary	14:40	В	0.1	0	0	
		S4	Western Site Boundary	14:37	z	0.1	0	0	
		A1	River Trade Terminal Office	17:27	z	1.9	0	0	1
		A 2	Chu Kong Warehouse 1	17:17	ш	0.4	0	0	,
		A3	Chu Kong Warehouse 2	17:15	ш	2.3	0	0	
		A	Wai Sang Sawmill Ltd.	17:16	SW	0.1	0	0	
25-August	Evening	A5	Pillar Point Fire Station	17:14	WW	0.2	0	0	Smell from vehicle emission
CT	(17:02-17:40)	A6	Sunhing Hung Kai Tuen Mun Godown	17:11	SW	0.1	0	0	Smell from the ASR
		A7	EMSD Servicing Vehicle Station	17:23	*	0.1	0	0	
		S1	Northern Site Boundary	17:30	ш	0.1	0	0	
		22	Eastern Site Boundary	17:41	S	0.1	0	0	
		23	Southern Site Boundary	17:39	ш	0.1	0	0	
		S4	Western Site Boundary	17:37	z	0.1	0	0	

Monthly Operation Phase Monitoring Report (Post-commissioning) Design, Build and Operate Pillar Point Sewage Treatment Works Contract No. DC/2008/03

Upgrading of Pillar Point STW - Investigation, Design and Construction Operation Period EM&A - Odour Patrol Record Sheet

Date	75/8/2015
HKO Monitoring Location	16/10 / Man
Weather	7 17
Temperature	23.50
Humidity	342

SMEC

Not detected and an odour so weak that it cannot be easily characterized

Odour Intensity (01)

0

Moderate identifiable and moderate chance to have odour nuisance. Strong identifiable, likely to have odour nuisance. Extreme severe odour and unacceptable odur level. Slight identifiable odour and slight chance to have odour nulsance.

4444

9	ani de so	Daytime Po	tiod:	Daytime Period: 4:1 · 4:4]	f: 4	٦	Evening Pe	riod: [7:	Evening Period: (7:02 - (7:40	40	
2		Time	Wind Direction	Wind Speed (m/s)	5	Odour Characteristics	Time	Wind	Wind Speed (m/s)	ō	Odour Characteristics
A1	River Trade Terminal Office	14:39	5	1.5	0	4/4	17.16	2	1.9	0	1/4
A2	Chu Kong Warehouse 1	14:18	MS	3	0	NA	17.08	77	5.0	0	0/1/
A3	Chu Kong Warehouse 2	14.19	US.	0,1	0	NA	17:08	11	2.3	0	NA
A4	Wai Sang Sawmill Ltd.	4:13	SW	2.3	0	N/N	17.06	3	1.0	0	NIN
AS	Pillar Point Fire Station	14:15	MA	1'0	0	A/A	17.05	NW	2.0	0	1/1/2
A6	Sunhing Hung Kai Tuen Mun Godown	1411	m	1'0	0	NA	17.05	36	0.1	0	Stall from the ACR
A7	EMSD Servicing Vehicle Station	4.22	N	0.3	0	NA	13.12	3	1.0	0	N/A
51	Northern Site Boundary	14.31	NE	0.1	0	NA	7.19	77.7	1.0	0	AIN
25	Eastern Site Boundary	14.42	7	0.3		Stinke Olow	04/2	5	1.0	0	N/A
S3	Southern Site Boundary	14:38	ш	0,1	0	NYA	13:38	M	0.1	0	8/2
Z	Western Site Boundary	4:27	2	0	0	N/A	かた	2	0.1	0	NA

I declare that the below requirements as listed in Clauses 2.3.1.9 and 2.7 of the final EM&A Manual are complied with:

- passing the nose sensory test;
- being free from any respiratory illnesses;
- no smoking, eating, drinking (except water) or using chewing gum or sweets 30 min before and during odour intensity analysis;
- taking great care not to cause any interference with their own perception or that of others by lack of personal
- hygiene or the use of perfumes, deodorants, body lotions or cosmetiss;
 no communication with each other about the results of our choices; and
 not normally working at or live in the areas in the vicinity of PPSTW.

Checked By:

Recorded By:

Page 1 of 1

Monthly Operation Phase Monitoring Report (Post-commissioning) Design, Build and Operate Pillar Point Sewage Treatment Works Contract No. DC/2008/03

Upgrading of Pillar Point STW - Investigation, Design and Cr Uction Operation Period EM&A - Odour Patrol Record Sheet

Date	25/09/2015
HKO Monitoring Location	Tuen Man
Weather	Fine
Temperature	73.5.88
Humidity	24%

Not detected and an odour so weak that it cannot be easily characterized Slight identifiable odour and slight chance to have odour nuisance. Moderate identifiable and moderate chance to have odour nuisance.

Odour Intensity (OI)

Extreme severe odour and unacceptable odur level. Strong identifiable, likely to have odour nuisance.

9		Daytime Pe	: h : popu	Daytime Period: 4: ・ し しょいと	4:4	7	Evening Pe	riod: [7]:	Evening Period: (7:02 - 17:40	:40	
2	100000	Time	Wind Direction	Wind Speed (m/s)	ō	Odour Characteristics	Time	Wind	Wind Speed (m/s)	5	Odour Characteristics
A1	River Trade Terminal Office	14.27	2	1.5	0	W/A	11:11	/	19	0	NIA
A2	Chu Kong Warehouse 1	14:16	34	3	0	M/A	17:07	山	4.0	0	N/A
A3	Chu Kong Warehouse 2	14:18	14:18 SW 0.18	0.18	0	N/A	17:07	田	2.3	0	MA
44	Wai Sang Sawmill Ltd.	14:17	211	2.3	0	NIA	90:11	Sw	0 - 1	0	K//A
AS	Pillar Point Fire Station	[4:15	NW	0.1	٥	M/A	17:05	7:05 NW	7.0	0	Volule emission
A6	Sunhing Hung Kai Tuen Mun Godown	(4:1)	11	1.0	0	NA	17:02 SW	44	1.0	0	MA
A7	EMSD Servicing Vehicle Station	[4:23	M	0.3	0	NIA	7:17	7	and o.	0	N/A
51	Northern Site Boundary	14:31	NE	0.1	0	IVIA	17:10	凹	1.0	0	MIA
25	Eastern Site Boundary	14:45	N	0.3	0	M/A	17:40	~	1-0	0	N/A
83	Southern Site Boundary	14:40	ш	0.1	0	W1/4	17:39	U	1.0	0	NA
\$4	Western Site Boundary	14:37	1	0.1	0	WA	7:7	V	1.0	0	DIA

declare that the below requirements as listed in Clauses 2.3.1.9 and 2.7 of the final EM&A Manual are complied with:

- passing the nose sensory test;
 being free from any respiratory illnesses;
- no smoking, eating, drinking (except water) or using chewing gum or sweets 30 min before and during odour intensity analysis;

Recorded By:

- taking great care not to cause any interference with their own perception or that of others by lack of personal hygiene or the use of perfumes, deodorants, body lotions or cosmetics;
 - no communication with each other about the results of our choices; and
 - not normally working at or live in the areas in the vicinity of PPSTW.

zijobs17076134 - atai - et for ppstw operation period/06 engineeringlodour palnul record sheet r2.docx 707134 | Odour Patrol Record Sheet | Revision No. 1

Page 1 of 1

28/8/15

Vivian CHAN

Checked By:

Signature

APPENDIX C

Monitoring Equipment Calibration Certificates

Calibration Certificate

Number: CCS/64926

Customer:

ATAL Engineering Ltd

Contact Person: Ms. Stacey Wong

System Model:

"Crowcon" Gasmonitor Plus Control Panel Detector Model: "Crowcon" Xgard Type 1 H2S Gas Detector

Plant Address:

DOA at DSD Pillar Point Sewage Treatment Works

Channel Number	Sensor Type	Measuring Range	Serial Number	Alarm 1	Alarm 2	Calibration Gas	Result
1	H2S	0 to 100ppm	410710/08-1	100	100	100ppm	Passed
2	H2S	0 to 50ppm	410710/08-5	50	50	50ppm	Passed
3	H2S	0 to 50ppm	410710/08-3	50	50	50ppm	Passed
4	H2S	0 to 10ppm	410710/07-13	10	10	10ppm	Passed
5	H2S	0 to 10ppm	410710/07-9	10	10	10ppm	Passed
6	H2S	0 to 10ppm	410710/07-8	10	10	10ppm	Passed
7	H2S	0 to 10ppm	410710/07-11	10	10	10ppm	Passed
8	H2S	0 to 10ppm	410710/07-7	10	10	10ppm	Passed
9	H2S	0 to 10ppm	410710/07-2	10	10	10ppm	Passed
10	H2S	0 to 10ppm	410710/07-4	10	10	10ppm	Passed

Remarks: Instrument PASSED - fit for service.

Authorized Signature

Technical Departmen

26th Jan 2015

FireMark Hong Kong Limited Unit 901, 9/F., Lai Sun Commercial Centre, 680 Cheung Sha Wan Road, Kowloon, Hong Kong Tel: (852) 2751 8871 Fax: (852) 2751 8806

Remarks:

- 1. The sensor of channel number 1 is used for monitoring the H₂S emission level at inlet.
- 2. The sensor of channel number 4 and 5 are used for monitoring the H₂S emission level at
- 3. As advised by the Contractor's H₂S Sensor supplier, the validation period of the certification is 1 year. Therefore the expiry date of the H2S Sensor calibration certificate is 25 January 2016.

Calibration Certificate

Number: CCS/64925

Customer:

ATAL Engineering Ltd

Contact Person: Ms. Stacey Wong

System Model:

"Crowcon" Gasmonitor Plus Control Panel Detector Model: "Crowcon" Xgard Type 1 H2S Gas Detector

Plant Address: DOB at DSD Pillar Point Sewage Treatment Works

Channel Number	Sensor Type	Measuring Range	Serial Number	Alarm 1	Alarm 2	Calibration Gas	Result
1	H2S	0 to 100ppm	410710/08-2	100	100	100ppm	Passed
2	H2S	0 to 50ppm	410710/08-6	50	50	50ppm	Passed
3	H2S	0 to 50ppm	410710/08-4	50	50	50ppm	Passed
4	H2S	0 to 10ppm	410710/07-10	10	10	10ppm	Passed
5	H2S	0 to 10ppm	410710/07-12	10	10	10ppm	Passed
6	H2S	0 to 10ppm	410710/07-5	10	10	10ppm	Passed
7	H2S	0 to 10ppm	410710/07-3	10	10	10ppm	Passed
8	H2S	0 to 10ppm	410710/07-1	10	10	10ppm	Passed
9	H2S	0 to 10ppm	410710/07-6	10	10	10ppm	Passed

Remarks: Instrument PASSED - fit for service.

Authorized Signature

Technical Departmen

26th Jan 2015

FireMark Hong Kong Limited Unit 901, 9/F., Lai Sun Commercial Centre, 680 Cheung Sha Wan Road, Kowloon, Hong Kong Tel: (852) 2751 8871 Fax: (852) 2751 8806

Remarks:

- 1. The sensor of channel number 1 is used for monitoring the H₂S emission level at inlet.
- 2. The sensor of channel number 4 and 5 are used for monitoring the H2S emission level at
- 3. As advised by the Contractor's H₂S Sensor supplier, the validation period of the certification is 1 year. Therefore the expiry date of the H₂S Sensor calibration certificate is 25 January 2016.

ENVIRO LABS LIMITED

Rm 611-612, Hong Leong Plaza, 33 Lok Yip Rd, Fanling, NT, HK Tel: (852) 2676 2983 Fax: (852) 2676 2860 e-mail: ell@envirolabs.com.hk website: http://www.envirolabs.com.hk

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

JOB NO.

: 15081356

DATE OF ISSUE

: 21 August 2015

PAGE

Page 1 of 2

1. Customer

Enovative Environmental Service Ltd.

Rm 811, Hin Pui House Hin Keng Estate, Tai Wai, Shatin, N.T., Hong Kong Attn.: Mr. Thomas Wong

2. INSTRUMENT DESCRIPTION

Sonde Environmental Monitoring System

Brand Name

Model No.

6920 V2

Serial No. Equipment No. 11F100014

Received Date

21 August 2015

Date of Calibration

21 August 2015

Date of next Calibration®

: 21 November 2015

3 TEST METHOD

Parameters	Reference Methods	Tolerance ^t
Dissolved Oxygen	APHA ^c 20e 4500-O G	±0.20
pH Value	APHA 21e 4500-H* B	±0.20
Salinity	APHA 20e 2520 B	±10 %
Temperature	IANZ ^d Technical Guide No. 3	±2.0 °C
Conductivity	APHA 20e 2510 B	±10 %
Turbidity	APHA 21e 2130 B	±10 %

4. CONCLUSION

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibration secondary source.

- Continued On Next Page --

Note(s):

The next calibration date is recommended according to the best practice principals as practiced by Enviro Labs Ltd. or from relevant international standards.

The acceptance criteria is applicable for similar equipment used by Enviro Labs Ltd. or from relevant international standards.

APHA Standard Methods for the Examination of Water and Wastewater, AWWA international Accreditation New Zealand Technical

APPROVED SIGNATORY:

Kenneth, Kar-kin LAM Senior Lab. Manager

ENVIRO LABS LIMITED

Rm 611-612, Hong Leong Plaza, 33 Lok Ylp Rd, Fanling, NT, HK
Tel: (852) 2676 2983 Fax: (852) 2676 2860
e-mail: ell@envirolabs.com.hk website: http://www.envirolabs.com.hk

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

JOB NO.

: 15081356

DATE OF ISSUE

: 21 August 2015

PAGE

Page 2 of 2

5. TEST RESULTS:

Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
0.00	0.03	+0.03
5.17	5.11	-0.06
8.85	8.79	-0.06

pH Value

Expected Reading	Displayed Reading	Tolerance
4.00	3.94	-0.06
6.86	6.94	+0.08
9.18	9.15	-0.03

Sallnity

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
10	10.13	+1.30
20	20.81	+4.05
30	30.09	+0.30

Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
18.0	17.91	-0.09
27.3	27.12	-0.18
39.0	38.86	-0.14

Conductivity

Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)
146.9	141.2	-3.88
1412	1406	-0.42
12890	12851	-0.30
119000	111832	-6.02

Turbidity

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
1.0	1.0	
10	10.2	+2.00
20	20.1	+0.50
50	50.4	+0.80
100	102.6	+2.60

-- END OF REPORT-

Appendix D

Odour Emission Monitoring Result

Charactery Incomposible Time Time<				DOUA OUTLET H ₂ S	TLET H ₂ S		DOUB OUTLET H ₂ S	TLET H ₂ S	DOUA OU	DOUA OUTLET H ₂ S	O BOOR	DOUB OUTLET H2S
OHY (CASE) Special (CA	Date	Time	DOUA INLET H ₂ S	HST8141A_H ₂ S	HST8141B_H,S	DOUB INLET H ₂ S	HST8241A_H ₂ S	HST8241B_H,S	HST8141A_H ₂ S	HST8141B_H ₂ S	HST8241A_H ₂ S	HST8241B_H ₂ S
4 0.00 0.00 0.01 0.00 0.	- a	init	mdd	mdd	mdd	mdd	mdd	mdd	% removal	% removal efficiency	% removal efficiency	% removal
0.0000-00109999 3.4.4 0.0 0.0 1.0	08/15/15	00:00:00-00:29:59	55.8	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
60000000155993 38.44 60.0 90.0 90.0 90.0 100.0	08/15/15	01:00:00-01:59:59	35.4	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
4 (2010) 13.9 13.9 0.0 13.9	08/15/15	02:00:00-02:59:59	26.8	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
60000 17.2 0.0 13.9 0.0 10.0	08/15/15	03:00:00-03:59:59	22.9	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
6000000000000000000000000000000000000	08/15/15	04:00:00-04:59:59	17.2	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
6000000000000000000000000000000000000	08/15/15	05:00:00-05:59:59	28.7	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
6 (000000000000000000000000000000000000	08/15/15	06:00:00-06:59:59	35.4	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
600000004583-59 10.2 0.0 4.5 0.0 1004	08/15/15	07:00:00-07:59:59	47.0	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
0000000105545 414 00 91 0	08/15/15	08:00:00-08:59:59	30.2	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
100000105959 38.4 0.0 6.5 0.0 1000	08/15/15	09:00:00-09:59:59	41.6	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
100000115959 114 0 0 6 0 0 0 0 100	08/15/15	10:00:00-10:59:59	26.4	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
144 0.0 6.1 0.0 6.1 0.0 0.0 0.0 0.0 0.0 1000	08/15/15	11:00:00-11:59:59	19.1	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
1400004154554 1146 0.0	08/15/15	12:00:00-12:59:59	14.4	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
140000145559 135 0.0 2.9 0.0 0.0 100%	08/15/15	13:00:00-13:59:59	11.6	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
1100000-15555 118 0.0 4.5 0.0 100 100%	08/15/15	14:00:00-14:59:59	13.5	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
4 Month of the state	08/15/15	15:00:00-15:59:59	21.8	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
100000-15955 210 0 91 0	08/15/15	16:00:00-16:59:59	24.1	0.0	0.0	5.9	0.0	0.0	100%	100%	100%	100%
180000-185854 5134 0.0 111 0.0 100%	08/15/15	17:00:00-17:59:59	27.0	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
150000-155559 39.7 0.0 11.7 0.0 0.0 100%	08/15/15	18:00:00-18:59:59	53.4	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
20000-25559 210 0.0 11.1 0.0 0.0 100%	08/15/15	19:00:00-19:59:59	39.7	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
21200002135953 31.8 0.0 6.5 0.0 0.0 100%	08/15/15	20:00:00-20:59:59	27.0	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
22,00,000,223,555 43.8 0.0 6.5 0.0	08/15/15	21:00:00-21:59:59	32.8	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
3300000-13555 422 00 0	08/15/15	22:00:00-22:59:59	33.8	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
000000-015854 38.5 0.0	08/15/15	23:00:00-23:59:59	42.2	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
01:00:00-01:55:9 31.2 0.0	08/16/15	00:00:00:00:29:29	38.5	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
02:00:00-02:59:59 24.9 0.0 6.1 0.0 0.0 0.0 0.0 100%	08/16/15	01:00:00-01:59:59	37.2	0.0	0.0	9.7	0.0	0.0	100%	100%	100%	100%
03:00:00-03:59:59 28.3 0.0 0.0 0.0 0.0 100%	08/16/15	02:00:00-02:59:59	24.9	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
04:00:00-04:59:59 28.3 0.0 0.0 0.0 0.0 100%	08/16/15	03:00:00-03:59:59	28.3	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
05:00:00-06:59:59 31.3 0.0 0.0 0.0 0.0 100%	08/16/15	04:00:00-04:59:59	28.3	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
06:00:00-06:59:59 31.3 0.0 0.0 0.0 0.0 100%	08/16/15	05:00:00-05:59:59	37.9	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
07.00.00-07;55.59 29.3 0.0 0.0 0.0 0.0 100%	08/16/15	06:00:00-06:59:59	31.3	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08:00:00-08:59:59 55.2 0.0	08/16/15	07:00:00-07:59:59	29.3	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
09:00:00-09:55:59 66.7 0.0 0.0 0.0 0.0 0.0 100%	08/16/15	08:00:00-08:59:59	55.2	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
10:00:00-11:59:59 26.3 0.0 0.0 0.0 0.0 0.0 100%	08/16/15	09:00:00-09:29:59	66.7	0.0	0.0	5.9	0.0	0.0	100%	100%	100%	100%
11.00.00-11.59:59 19.1 0.0 0.0 4.5 0.0 0.0 100% 100% 100% 100%	08/16/15	10:00:00-10:59:59	26.3	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
	08/16/15	11:00:00-11:59:59	19.1	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%

Contract No. DC/2008/03 Design, Build and Operate Pillar Point Sewage Treatment Works Monthly Operation Phase Monitoring Report (Post-commissioning)

			DOUA OUTLET H ₂ S	тет н ₂ S		DOUB OUTLET H,S	тет н,5	DOUA OU	DOUA OUTLET H ₂ S	10 BUOG	DOUB OUTLET H ₂ S
Date	Time	DOUA INLET H ₂ S	HST8141A_H ₂ S	HST81418_H,S	DOUB INLET H2S	HST8241A_H ₂ S	HST8241B_H,S	HST8141A_H,S	HST8141B_H ₂ S	HST8241A_H ₂ S	HST8241B_H ₃ S
0	Unit	mdd	mdd	mdd	mdd	mdd	mdd	% removal efficiency	% removal efficiency	% removal efficiency	% removal efficiency
08/16/15	12:00:00-12:59:59	21.8	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/16/15	13:00:00-13:59:59	26.3	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/16/15	14:00:00-14:59:59	25.9	0:0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/16/15	15:00:00-15:59:59	22.4	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/16/15	16:00:00-16:59:59	24.3	0.0	0.0	5.9	0:0	0.0	100%	100%	100%	100%
08/16/15	17:00:00-17:59:59	29.5	0.0	0.0	6.5	0:0	0.0	100%	100%	100%	100%
08/16/15	18:00:00-18:59:59	30.1	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/16/15	19:00:00-19:59:59	30.9	0.0	0.0	6.5	0:0	0.0	100%	100%	100%	100%
08/16/15	20:00:00-20:59:59	28.8	0.0	0.0	6.5	0:0	0.0	100%	100%	100%	100%
08/16/15	21:00:00-21:59:59	29.3	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/16/15	22:00:00-22:59:59	39.7	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/16/15	23:00:00-23:59:59	28.8	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/17/15	00:00:00-00:29:59	30.9	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/17/15	01:00:00-01:59:59	17.4	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/17/15	02:00:00-02:59:59	12.6	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/17/15	03:00:00-03:59:59	17.9	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/17/15	04:00:00-04:59:59	10.7	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/17/15	05:00:00-05:59:59	11.0	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/17/15	06:00:00-06:59:59	11.0	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/17/15	07:00:00-07:59:59	12.6	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/17/15	08:00:00-08:59:59	18.6	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/17/15	09:00:00-09:59:59	24.1	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/17/15	10:00:00-10:59:59	19.9	0.0	0.0	7.1	0.0	0.0	100%	100%	100%	100%
08/17/15	11:00:00-11:59:59	22.9	0.0	0.0	7.7	0.0	0.0	100%	100%	100%	100%
08/17/15	12:00:00-12:59:59	36.6	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
08/17/15	13:00:00-13:59:59	37.3	0.0	0.0	10.3	0.0	0.0	100%	100%	100%	100%
08/17/15	14:00:00-14:59:59	43.7	0.0	0.0	12.3	0.0	0.0	100%	100%	100%	100%
08/17/15	15:00:00-15:59:59	43.6	0.0	0.0	19.1	0.0	0.0	100%	100%	100%	100%
08/17/15	16:00:00-16:59:59	43.0	0.0	0.0	17.1	0.0	0.0	100%	100%	100%	100%
08/17/15	17:00:00-17:59:59	53.4	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
08/17/15	18:00:00-18:59:59	58.9	0.0	0.0	15.1	0.0	0.0	100%	100%	100%	100%
08/17/15	19:00:00-19:59:59	66.7	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/17/15	20:00:00-20:59:59	53.9	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/17/15	21:00:00-21:59:59	52.1	0.0	0.0	9.7	0.0	0.0	100%	100%	100%	100%
08/17/15	22:00:00-22:59:59	42.9	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/17/15	23:00:00-23:59:59	40.5	0.0	0.0	7.1	0.0	0.0	100%	100%	100%	100%

			DOUA OUTLET H ₂ S	ITLET H ₂ S		DOUB OUTLET H ₂ S	TLET H ₂ S	DONA OF	DOUA OUTLET H ₂ S	DOUB O	DOUB OUTLET H ₂ S
Date	Time	DOUA INLET H ₂ S	HST8141A_H ₂ S	HST8141B_H,S	DOUB INLET H ₂ S	HST8241A_H,S	HST8241B_H,S	HST8141A_H ₂ S	HST8141B_H ₂ S	HST8241A_H ₂ S	HST82418_H ₂ S
,	Unit	mdd	шфф	mdd	mdd	mdd	mdd	% removal efficiency	% removal efficiency	% removal	% removal
08/18/15	00:00:00-00:29:29	43.6	0.0	0.0	6.3	0.0	0.0	100%	100%	100%	100%
08/18/15	01:00:00-01:59:59	41.1	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/18/15	02:00:00-02:59:59	27.0	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/18/15	03:00:00-03:59:59	44.7	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/18/15	04:00:00-04:59:59	46.3	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/18/15	05:00:00-05:59:59	43.6	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/18/15	06:00:00-06:59:59	50.3	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/18/15	07:00:00-07:59:59	29.5	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/18/15	08:00:00-08:59:59	29.5	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/18/15	65:65:60-00:00:60	37.2	0.0	0.0	5.9	0.0	0.0	100%	100%	100%	100%
08/18/15	10:00:00-10:59:59	32.6	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/18/15	11:00:00-11:59:59	33.4	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/18/15	12:00:00-12:59:59	55.2	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
08/18/15	13:00:00-13:59:59	63.4	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
08/18/15	14:00:00-14:59:59	45.9	0.0	0.0	5.6	0.0	0.0	100%	100%	100%	100%
08/18/15	15:00:00-15:59:59	50.3	0.0	0.0	7.1	0.0	0.0	100%	100%	100%	100%
08/18/15	16:00:00-16:59:59	46.3	0.0	0.0	7.7	0.0	0.0	100%	100%	100%	100%
08/18/15	17:00:00-17:59:59	55.2	0.0	0.0	7.7	0.0	0.0	100%	100%	100%	100%
08/18/15	18:00:00-18:59:59	7.77	0.0	0.0	7.7	0.0	0.0	100%	100%	100%	100%
08/18/15	19:00:00-19:59:59	97.0	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
08/18/15	20:00:00-20:59:59	66.1	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
08/18/15	21:00:00-21:59:59	48.2	0.0	0.0	7.6	0.0	0.0	100%	100%	100%	100%
08/18/15	22:00:00-22:59:59	39.8	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/18/15	23:00:00-23:59:59	45.1	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
08/19/15	00:00:00-00:29:59	36.6	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/19/15	01:00:00-01:59:59	37.4	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/19/15	02:00:00-02:59:59	24.3	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/19/15	03:00:00-03:59:59	28.2	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/19/15	04:00:00-04:59:59	16.0	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/19/15	05:00:00-05:59:59	23.0	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/19/15	06:00:00-06:59:59	98.8	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/19/15	07:00:00-07:59:59	50.3	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
08/19/15	08:00:00-08:59:59	46.4	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/19/15	09:00:00-09:59:59	31.9	0.0	0.0	7.6	0.0	0.0	100%	100%	100%	100%
08/19/15	10:00:00-10:59:59	46.9	0.0	0.0	6.5	00	00	100%) acces	40000	
					3000000	9:	2	7007	100%	100%	100%

Contract No. DC/2008/03 Design, Build and Operate Pillar Point Sewage Treatment Works Monthly Operation Phase Monitoring Report (Post-commissioning)

			DOUA OUTLET H ₂ S	TLET H ₂ S		DOUB OUTLET H2S	TLET H ₂ S	DOUA OU	DOUA OUTLET H ₂ S	O BOOB O	DOUB OUTLET H ₂ S
Date	Time	DOUA INLET H ₂ S	HST8141A_H ₂ S	HST81418_H,S	DOUB INLET H ₂ S	HST8241A_H ₂ S	HST8241B_H ₂ S	HST8141A_H,S	HST81418_H,S	HST8241A_H ₂ S	HST8241B_H ₂ S
	Unit	mdd	mdd	mdd	mdd	mdd	mdd	% removal	% removal	% removal efficiency	% removal efficiency
08/19/15	12:00:00-12:59:59	45.1	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/19/15	13:00:00-13:59:59	42.2	0.0	0.0	12.9	0:0	0.0	100%	100%	100%	100%
08/19/15	14:00:00-14:59:59	50.7	0.1	0.0	11.7	0.0	0.0	100%	100%	100%	100%
08/19/15	15:00:00-15:59:59	39.1	0.0	0.0	15.8	0.0	0.0	100%	100%	100%	100%
08/19/15	16:00:00-16:59:59	44.1	0.0	0.0	17.1	0.0	0.0	100%	100%	100%	100%
08/19/15	17:00:00-17:59:59	52.6	0.0	0.0	18.4	0:0	0.0	100%	100%	100%	100%
08/19/15	18:00:00-18:59:59	53.8	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/19/15	19:00:00-19:59:59	63.9	0.0	0.0	13.9	0.0	0.0	100%	100%	100%	100%
08/19/15	20:00:00-20:59:59	57.0	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
08/19/15	21:00:00-21:59:59	64.5	0.0	0.0	7.7	0.0	0.0	100%	100%	100%	100%
08/19/15	22:00:00-22:59:59	70.5	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/19/15	23:00:00-23:59:59	66.7	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/20/15	00:00:00:00:25:26	58.3	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
08/20/15	01:00:00-01:59:59	47.5	0.0	0.0	6.5	0:0	0.0	100%	100%	100%	100%
08/20/15	02:00:00-02:59:59	37.2	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/20/15	03:00:00-03:59:59	42.2	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/20/15	04:00:00-04:59:59	39.1	0.0	0.0	2.9	0:0	0.0	100%	100%	100%	100%
08/20/15	05:00:00-05:59:59	51.9	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/20/15	06:00:00-06:59:59	53.2	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/20/15	07:00:00-07:59:59	44.7	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/20/15	08:00:00-08:59:59	30.1	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/20/15	09:00:00-09:59:59	24.1	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/20/15	10:00:00-10:59:59	16.6	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/20/15	11:00:00-11:59:59	21.6	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/20/15	12:00:00-12:59:59	30.7	0.0	0.0	6.5	0:0	0.0	100%	100%	100%	100%
08/20/15	13:00:00-13:59:59	32.6	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
08/20/15	14:00:00-14:59:59	45.1	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/20/15	15:00:00-15:59:59	36.5	0.0	0.0	7.1	0:0	0:0	100%	100%	100%	100%
08/20/15	16:00:00-16:59:59	48.4	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
08/20/15	17:00:00-17:59:59	54.4	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/20/15	18:00:00-18:59:59	64.5	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
08/20/15	19:00:00-19:59:59	63.3	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
08/20/15	20:00:00-20:59:59	55.9	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
08/20/15	21:00:00-21:59:59	28.3	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/20/15	22:00:00-22:59:59	39.9	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/20/15	23:00:00-23:59:59	33.9	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%

Contract No. DC/2008/03
Design, Build and Operate Pillar Point Sewage Treatment Works
Monthly Operation Phase Monitoring Report (Post-commissioning)

SWEC

			DOUA OUTLET H ₂ S	тлет н ₂ S		DOUB OUTLET H2S	TLET H2S	DOUA OF	DOUA OUTLET H ₂ S	DOUB O	DOUB OUTLET H ₂ S
Date	Time	DOUA INLET H ₂ S	HST8141A_H ₂ S	HST81418_H,S	DOUB INLET H ₂ S	HST8241A_H ₂ S	HST8241B_H,S	HST8141A_H ₂ S	HST8141B_H ₂ S	HST8241A_H ₂ S	HST8241B_H ₂ S
2	Unit	mdd	mdd	wdd	mdd	mdd	шdd	% removal efficiency	% removal efficiency	% removal efficiency	% removal
08/21/15	65:65:00-00:00:00	33.3	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/21/15	01:00:00-01:59:59	36.6	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/21/15	02:00:00-02:59:59	18.6	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/21/15	03:00:00-03:59:59	22.2	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/21/15	04:00:00-04:59:59	19.7	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/21/15	05:00:00-05:59:59	31.3	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/21/15	06:00:00-06:59:59	20.4	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/21/15	07:00:00-07:59:59	41.6	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/21/15	08:00:00-08:59:59	48.2	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/21/15	09:00:00-09:59:59	43.7	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/21/15	10:00:00-10:59:59	46.2	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/21/15	11:00:00-11:59:59	31.9	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/21/15	12:00:00-12:59:59	37.8	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
08/21/15	13:00:00-13:59:59	31.9	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/21/15	14:00:00-14:59:59	45.1	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
08/21/15	15:00:00-15:59:59	84.8	0.0	0.0	7.6	0.0	0.0	100%	100%	100%	100%
08/21/15	16:00:00-16:59:59	44.7	0.0	0.0	9.7	0.0	0.0	100%	100%	100%	100%
08/21/15	17:00:00-17:59:59	53.8	0.0	0.0	7.1	0.0	0.0	100%	100%	100%	100%
08/21/15	18:00:00-18:59:59	66.1	0.0	0.0	9.7	0.0	0.0	100%	100%	100%	100%
08/21/15	19:00:00-19:59:59	76.4	0.0	0.0	12.3	0.0	0.0	100%	100%	100%	100%
08/21/15	20:00:00-20:59:59	69.2	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/21/15	21:00:00-21:59:59	55.8	0:0	0.0	14.5	0.0	0.0	100%	100%	100%	100%
08/21/15	22:00:00-22:59:59	36.5	0.0	0.0	5.9	0.0	0.0	100%	100%	100%	100%
08/21/15	23:00:00-23:59:59	36.0	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/22/15	00:00:00-00:26:28	32.6	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/22/15	01:00:00-01:59:59	41.6	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/22/15	02:00:00-02:59:59	36.5	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/22/15	03:00:00-03:59:59	31.3	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/22/15	04:00:00-04:59:59	19.6	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/22/15	05:00:00-05:59:59	30.1	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/22/15	06:00:00-06:59:59	28.2	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/22/15	07:00:00-07:59:59	53.8	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/22/15	08:00:00-08:59:59	50.1	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/22/15	09:00:00-09:59:59	36.7	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/22/15	10:00:00-10:59:59	34.6	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
08/22/15		20000	2000								

Contract No. DC/2008/03
Design, Build and Operate Pillar Point Sewage Treatment Works
Monthly Operation Phase Monitoring Report (Post-commissioning)

			DOUA OUTLET H ₂ S	ITLET H ₂ S		DOUB OUTLET H ₂ S	JTLET H ₂ S	DOUA OL	DOUA OUTLET H ₂ S	DOUB O	DOUB OUTLET H ₂ S
Date	Time	DOUA INLET H ₂ S	HST8141A_H,S	HST8141B_H,S	DOUB INLET H ₂ 5	HST8241A_H,S	HST8241B_H ₂ S	HST8141A_H,S	HST8141B_H,S	HST8241A_H ₂ S	HST8241B_H ₂ S
	Unit	mdd	mdd	mdd	mdd	mdd	mdd	% removal efficiency	% removal efficiency	% removal efficiency	% removal efficiency
08/22/15	12:00:00-12:59:59	32.6	0.0	0.0	12.3	0.0	0.0	100%	100%	100%	100%
08/22/15	13:00:00-13:59:59	45.9	0.0	0.0	13.9	0.0	0.0	100%	100%	100%	100%
08/22/15	14:00:00-14:59:59	49.5	0.0	0.0	16.5	0.0	0.0	100%	100%	100%	100%
08/22/15	15:00:00-15:59:59	46.9	0.0	0.0	1111	0.0	0.0	100%	100%	100%	100%
08/22/15	16:00:00-16:59:59	41.8	0.0	0.0	7.1	0.0	0.0	100%	100%	N/A	N/A
08/22/15	17:00:00-17:59:59	48.8	0.0	0.0	7.1	0.0	0.0	100%	100%	100%	100%
08/22/15	18:00:00-18:59:59	57.7	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
08/22/15	19:00:00-19:59:59	62.8	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/22/15	20:00:00-20:59:59	50.8	0.0	0.0	5.6	0.0	0.0	100%	100%	100%	100%
08/22/15	21:00:00-21:59:59	44.1	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/22/15	22:00:00-22:59:59	52.1	0.0	0.0	5.9	0.0	0.0	100%	100%	100%	100%
08/22/15	23:00:00-23:59:59	54.5	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/23/15	65:65:00-00:00:00	45.1	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/23/15	01:00:00-01:59:59	47.7	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/23/15	02:00:00-02:59:59	52.1	0.0	0.0	5.9	0.0	0.0	100%	100%	100%	100%
08/23/15	03:00:00-03:59:59	39.1	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/23/15	04:00:00-04:59:59	30.1	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/23/15	05:00:00-05:59:59	32.6	0.0	0.0	1.6	0.0	0.0	100%	100%	100%	100%
08/23/15	06:00:00:06:59:59	16.6	0.0	0.0	1.6	0.0	0.0	100%	100%	100%	100%
08/23/15	07:00:00-07:59:59	31.4	0.0	0.0	5.9	0.0	0.0	100%	100%	100%	100%
08/23/15	08:00:00-08:59:59	50.2	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/23/15	65:65:60-00:00:60	39.9	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/23/15	10:00:00-10:59:59	32.1	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/23/15	11:00:00-11:59:59	26.3	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/23/15	12:00:00-12:59:59	27.6	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/23/15	13:00:00-13:59:59	34.6	0.0	0.0	5.9	0.0	0.0	100%	100%	100%	100%
08/23/15	14:00:00-14:59:59	43.7	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
08/23/15	15:00:00-15:59:59	60.2	0.0	0.0	7.7	0.0	0.0	100%	100%	100%	100%
08/23/15	16:00:00-16:59:59	62.1	0.0	0.0	10.3	0.0	0.0	100%	100%	100%	100%
08/23/15	17:00:00-17:59:59	67.4	0.0	0.0	10.4	0.0	0.0	100%	100%	100%	100%
08/23/15	18:00:00-18:59:59	68.6	0.0	0.0	13.0	0.0	0.0	100%	100%	100%	100%
08/23/15	19:00:00-19:59:59	79.5	0.1	0.0	11.1	0.0	0.0	100%	100%	100%	100%
08/23/15	20:00:00-20:59:59	0.77	0.0	0.0	15.1	0.0	0.0	100%	100%	100%	100%
08/23/15	21:00:00-21:59:59	73.6	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/23/15	22:00:00-22:59:59	53.9	0.0	0.0	7.1	0.0	0.0	100%	100%	100%	100%
08/23/15	23:00:00-23:59:59	62.8	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%

Contract No. DC/2008/03
Design, Build and Operate Pillar Point Sewage Treatment Works
Monthly Operation Phase Monitoring Report (Post-commissioning)

			DOUA OUTLET H ₂ S	TLET H ₂ S		no anod	DOUB OUTLET H ₂ S	DOUA OUTLET H ₂ S	ITLET H ₂ S	DOUB O	DOUB OUTLET H ₂ S
Date	Time	DOUA INLET H ₂ S	HST8141A_H,S	HST8141B_H,S	DOUB INLET H ₂ S	HST8241A_H ₂ S	HST8241B_H ₂ S	HST8141A_H ₂ S	HST8141B_H,S	HST8241A_H ₂ S	HST8241B_H ₂ S
	Unit	шdd	шdd	mdd	mdd	mdd	wdd	% removal efficiency	% removal	% removal efficiency	% removal
08/24/15	00:00:00-00:29:59	66.7	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/24/15	01:00:00-01:59:59	8.09	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/24/15	02:00:00-02:59:59	51.3	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/24/15	03:00:00-03:59:59	25.1	0.0	0.0	23	0.0	0.0	100%	100%	100%	100%
08/24/15	04:00:00-04:59:59	32.6	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/24/15	05:00:00-05:59:59	38.1	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/24/15	06:00:00-06:59:59	39.7	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/24/15	07:00:00-07:59:59	32.6	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/24/15	08:00:00-08:59:59	64.5	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/24/15	09:00:00-09:59:59	57.7	0.0	0.0	7.7	0.0	0.0	100%	100%	100%	100%
08/24/15	10:00:00-10:59:59	45.7	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
08/24/15	11:00:00-11:59:59	52.6	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
08/24/15	12:00:00-12:59:59	42.2	0.0	0.0	15.1	0.0	0.0	100%	100%	100%	100%
08/24/15	13:00:00-13:59:59	62.7	0.0	0.0	14.5	0.0	0.0	100%	100%	100%	100%
08/24/15	14:00:00-14:59:59	78.9	0.0	0.0	20.3	0.0	0.0	100%	100%	100%	100%
08/24/15	15:00:00-15:59:59	76.4	0.0	0.0	15.1	0.0	0.0	100%	100%	100%	100%
08/24/15	16:00:00-16:59:59	57.7	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
08/24/15	17:00:00-17:59:59	75.8	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
08/24/15	18:00:00-18:59:59	7.77	0.0	0.0	21.7	0.0	0.0	100%	100%	100%	100%
08/24/15	19:00:00-19:59:59	64.5	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
08/24/15	20:00:00-20:59:59	87.9	0.0	0.0	13.9	0.0	0.0	100%	100%	100%	100%
08/24/15	21:00:00-21:59:59	82.0	0.0	0.0	11.7	0.0	0:0	100%	100%	100%	100%
08/24/15	22:00:00-22:59:59	75.2	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
08/24/15	23:00:00-23:59:59	65.5	0.0	0.0	7.7	0.0	0.0	100%	100%	100%	100%
08/25/15	00:00:00-00:29:59	58.9	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/25/15	01:00:00-01:59:59	44.7	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/25/15	02:00:00-02:59:59	42.9	0.0	0.0	5.9	0.0	0.0	100%	100%	100%	100%
08/25/15	03:00:00-03:59:59	43.5	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/25/15	04:00:00-04:59:59	36.6	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/25/15	05:00:00-05:59:59	44.1	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/25/15	06:00:00-06:59:59	39.1	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/25/15	07:00:00-07:59:59	49.3	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/25/15	08:00:00-08:59:59	55.8	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/25/15	09:00:00-09:59:59	31.9	0.0	0.0	7.1	0.0	0.0	100%	100%	100%	100%
08/25/15	10:00:00-10:59:59	32.6	0.0	0.0	5.9	00	00	1000/	10000	1000	7000+
200 (00) (00)				100000		9	9	100%	100%	100%	100%

Contract No. DC/2008/03 Design, Build and Operate Pillar Point Sewage Treatment Works Monthly Operation Phase Monitoring Report (Post-commissioning)

SMEC

			DOUA OUTLET H ₂ S	TLET H2S		DOUB OU	DOUB OUTLET H ₂ S	DOUA OUTLET H2S	JTLET H ₂ S	DOUBO	DOUB OUTLET H ₂ S
Date	Time	DOUA INLET H,S	HST8141A_H ₂ S	HST8141B_H ₂ S	DOUB INLET H ₂ S	HST8241A_H ₂ S	HST8241B_H,S	HST8141A_H;S	HST8141B_H,S	HST8241A_H ₂ S	HST8241B_H ₂ S
	Unit	wdd	mdd	mdd	шdd	mdd	mdd	% removal	% removal efficiency	% removal efficiency	% removal
08/25/15	12:00:00-12:59:59	46.9	0.0	0.0	9.7	0.0	0.0	100%	100%	100%	100%
08/25/15	13:00:00-13:59:59	51.3	0.0	0.0	13.9	0.0	0.0	100%	100%	100%	100%
08/25/15	14:00:00-14:59:59	100.0	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/25/15	15:00:00-15:59:59	64.5	0.0	0.0	13.9	0.0	0.0	100%	100%	100%	100%
08/25/15	16:00:00-16:59:59	70.5	0.0	0.0	12.3	0.0	0.0	100%	100%	100%	100%
08/25/15	17:00:00-17:59:59	75.2	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
08/25/15	18:00:00-18:59:59	86.1	0.0	0.0	13.9	0.0	0.0	100%	100%	100%	100%
08/25/15	19:00:00-19:59:59	76.4	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/25/15	20:00:00-20:59:59	58.9	0.0	0.0	12.3	0.0	0.0	100%	100%	100%	100%
08/25/15	21:00:00-21:59:59	45.9	0.0	0.0	9.7	0.0	0.0	100%	100%	100%	100%
08/25/15	22:00:00-22:59:59	57.1	0.0	0.0	7.1	0.0	0.0	100%	100%	100%	100%
08/25/15	23:00:00-23:59:59	58.3	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
08/26/15	00:00:00:25:26	53.8	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
08/26/15	01:00:00-01:59:59	47.7	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/26/15	02:00:00-02:59:59	51.9	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/26/15	03:00:00-03:59:59	62.8	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/26/15	04:00:00-04:59:59	38.1	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/26/15	05:00:00:00:20	27.72	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/26/15	06:00:00-06:59:59	27.6	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
08/26/15	07:00:00-07:59:59	50.3	0.0	0.0	9.1	0:0	0.0	100%	100%	100%	100%
08/26/15	08:00:00-08:59:59	39.1	0.0	0.0	7.1	0.0	0.0	100%	100%	100%	100%
08/26/15	09:00:00-09:59:59	31.4	0.0	0.0	6.5	0:0	0.0	100%	100%	100%	100%
08/26/15	10:00:00-10:59:59	30.2	0.0	0.0	9.7	0.0	0.0	100%	100%	100%	100%
08/26/15	11:00:00-11:59:59	52.1	0.0	0.0	7.7	0.0	0.0	100%	100%	100%	100%
08/26/15	12:00:00-12:59:59	68.6	0.0	0.0	23.6	0:0	0.0	100%	100%	100%	100%
08/26/15	13:00:00-13:59:59	7.77	0.0	0.0	20.3	0.0	0.0	100%	100%	100%	100%
08/26/15	14:00:00-14:59:59	60.3	0.0	0.0	19.1	0:0	0.0	100%	100%	100%	100%
08/26/15	15:00:00-15:59:59	8.09	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/26/15	16:00:00-16:59:59	58.9	0.0	0.0	14.5	0.0	0.0	100%	100%	100%	100%
08/26/15	17:00:00-17:59:59	7.77	0.0	0.0	12.3	0:0	0.0	100%	100%	100%	100%
08/26/15	18:00:00-18:59:59	7.77	0.0	0.0	15.1	0.0	0.0	100%	100%	100%	100%
08/26/15	19:00:00-19:59:59	100.0	0.0	0.0	19.7	0.0	0.0	100%	100%	100%	100%
08/26/15	20:00:00-20:59:59	75.2	0.0	0.0	15.1	0.0	0.0	100%	100%	100%	100%
08/26/15	21:00:00-21:59:59	64.9	0.0	0.0	12.3	0:0	0.0	100%	100%	100%	100%
08/26/15	22:00:00-22:59:59	68.6	0.0	0.0	10.3	0.0	0.0	100%	100%	100%	100%
						5365	20000				

Contract No. DC/2008/03
Design, Build and Operate Pillar Point Sewage Treatment Works
Monthly Operation Phase Monitoring Report (Post-commissioning)

SWEC

Control Prince				DOUA OUTLET H ₂ S	тет н, ѕ		DOUB OUTLET H ₂ S	TLET H ₂ S	DONY OF	DOUA OUTLET H ₂ S	O BUOD	DOUB OUTLET H ₂ S
CATA CONTROLL CATA CON	Date	Time	DOUA INLET H ₂ S	HST8141A_H ₂ S	HST8141B_H,S	DOUB INLET H ₂ S	HST8241A_H ₂ S	HST8241B_H ₂ S	HST8141A_H ₂ S	HST8141B_H ₂ S	HST8241A_H ₂ S	HST8241B_H ₂ S
4 0.00 6.4 0.0	1	Jnit	mdd	mdd	mdd	шdd	mdd	mdd	% removal efficiency	% removal	% removal	% removal
0.0000 0000000000000000000000000000000	08/27/15	00:00:00-00:29:59	37.4	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
6 (0000004)0939 (13) 113 0 0	08/27/15	01:00:00-01:59:59	30.1	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
6000000000000000000000000000000000000	08/27/15	02:00:00-02:59:59	37.9	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
1000,000,000,000,000,000,000,000,000,00	08/27/15	03:00:00-03:59:59	41.8	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
6000000000000000000000000000000000000	08/27/15	04:00:00-04:59:59	41.0	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
000000000000000000000000000000000000	08/27/15	05:00:00-05:59:59	55.3	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
0.00000000000000000000000000000000000	08/27/15	06:00:00-06:59:59	66.1	0.0	0.0	2.3	0.0	0.0	100%	100%	100%	100%
4000000000000000000000000000000000000	08/27/15	07:00:00-07:59:59	68.6	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
0 0	08/27/15	08:00:00-08:59:59	47.0	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
1 1000001055559 64.5 0.0 0.0 0.0 0.0 10004 <t< td=""><td>08/27/15</td><td>09:00:00-09:59:59</td><td>29.3</td><td>0.0</td><td>0.0</td><td>5.9</td><td>0.0</td><td>0.0</td><td>100%</td><td>100%</td><td>100%</td><td>100%</td></t<>	08/27/15	09:00:00-09:59:59	29.3	0.0	0.0	5.9	0.0	0.0	100%	100%	100%	100%
1100000115959 934 00 934 00 910 000 1000 <t< td=""><td>08/27/15</td><td>10:00:00-10:59:59</td><td>40.5</td><td>0.0</td><td>0.0</td><td>6.5</td><td>0.0</td><td>0.0</td><td>100%</td><td>100%</td><td>100%</td><td>100%</td></t<>	08/27/15	10:00:00-10:59:59	40.5	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
11000001159559 66.7 0.0 9.7 0.0 0.0 100%	08/27/15	11:00:00-11:59:59	39.8	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
11000001159599 44.2 0.0 9.7 0.0 0.0 1000	08/27/15	12:00:00-12:59:59	62.7	0.0	0.0	7.6	0.0	0.0	100%	100%	100%	100%
140000-14555 73 00 129 00 129 00 100% 1	08/27/15	13:00:00-13:59:59	46.2	0.0	0.0	7.6	0.0	0.0	100%	100%	100%	100%
1 150000-155959 623 0.0 11.7 0.0 10.7 100%	08/27/15	14:00:00-14:59:59	75.2	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
1800000-1859459 667 0.0 9.7 0.0 0.0 100%	08/27/15	15:00:00-15:59:59	62.8	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
100000-179559 570 00 1139 00 100 100 100% <	08/27/15	16:00:00-16:59:59	66.7	0.0	0.0	9.7	0.0	0.0	100%	100%	100%	100%
180000-185555 5859 00 129 0 0 129 0	08/27/15	17:00:00-17:59:59	57.0	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
190000-135559 60.4 0.0 14.5 0.0 10.0 10.0 100%	08/27/15	18:00:00-18:59:59	58.9	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
20000-205559 554 0.0 10.3 0.0 10.3 0.0 10.0 100%	08/27/15	19:00:00-19:59:59	8.09	0.0	0.0	14.5	0.0	0.0	100%	100%	100%	100%
21,000,0135959 546 0.0	08/27/15	20:00:00-20:59:59	55.8	0.0	0.0	10.3	0.0	0.0	100%	100%	100%	100%
22.00.000 223.55 5 50.00 6.0 0.0	08/27/15	21:00:00-21:59:59	54.6	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
23.00.00.255.55 43.7 0.0 5.1 0.0	08/27/15	22:00:00-22:59:59	50.3	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
00:00:00-00-5555 37.5 0.0	08/27/15	23:00:00-23:59:59	43.7	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
01:00:00:01:55:59 3.56 0.0	08/28/15	00:00:00-00:29:29	37.9	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
Q2:00:00-02:59:59 32.1 0.0 0.0 0.0 100%	08/28/15	01:00:00-01:59:59	32.6	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
03:00:00-03:59:59 48.8 0.0 0.0 0.0 0.0 100%	08/28/15	02:00:00-02:59:59	32.1	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
04:00:00-04:59:59 34.5 0.0 0.0 0.0 0.0 100%	08/28/15	03:00:00-03:59:59	48.8	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
05:00:00-05:59:59 33.9 0.0 0.0 0.0 0.0 100%	08/28/15	04:00:00-04:59:59	34.5	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
06:00:00-06:59:59 34.6 0.0 1.6 0.0 0.0 100%	08/28/15	05:00:00-05:59:59	33.9	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
07:00:00-07:59:59 64.5 0.0 0.0 0.0 100%	08/28/15	06:00:00-06:59:59	34.6	0.0	0.0	1.6	0.0	0.0	100%	100%	100%	100%
08:00:00-08:59:59 56.4 0.0 0.0 6.5 0.0 0.0 100%	08/28/15	07:00:00-07:59:59	64.5	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
09:00:00:00:455:59 48.4 0.0 0.0 9.7 0.0 0.0 100%	08/28/15	08:00:00-08:59:59	56.4	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
10:00:00-10:59:59 37.2 0.0 0.0 10.3 0.0 0.0 10.0% 100% 100% 100% 11:00:00-11:59:59 41.7 0.0 0.0 9.1 0.0 0.0 100% 100% 100% 100%	08/28/15	09:00:00-09:59:59	48.4	0.0	0.0	9.7	0.0	0.0	100%	100%	100%	100%
11:00:00-11:59:59 41.7 0.0 0.0 0.0 9.1 0.0 0.0 100% 100% 100% 100%	08/28/15	10:00:00-10:59:59	37.2	0.0	0.0	10.3	0:0	0.0	100%	100%	100%	100%
	08/28/15	11:00:00-11:59:59	41.7	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%

Contract No. DC/2008/03 Design, Build and Operate Pillar Point Sewage Treatment Works Monthly Operation Phase Monitoring Report (Post-commissioning)

						i de la companya de l			2 11 42 14	C all CC	2 11 44 14 17
			DOUA OUILEI H25	ILEI M2S		DOOB COILET H23	JILET M25	0 4000	DOUA GOILEI M25		DOOR COILEI H23
Date	Time	DOUA INLET H ₂ S	HST8141A_H ₂ S	HST8141B_H ₂ S	DOUB INLET H ₂ S	HST8241A_H ₂ S	HST8241B_H ₂ S	HST8141A_H ₂ S	HST8141B_H ₂ S	HST8241A_H,5	HST82418_H ₂ S
	Unit	mdd	mdd	mdd	mdd	шdd	шdd	% removal	% removal	% removal efficiency	% removal
08/28/15	12:00:00-12:59:59	37.3	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/28/15	13:00:00-13:59:59	53.9	0.0	0.0	15.8	0.0	0.0	100%	100%	100%	100%
08/28/15	14:00:00-14:59:59	55.9	0.0	0.0	17.1	0.0	0.0	100%	100%	100%	100%
08/28/15	15:00:00-15:59:59	81.4	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
08/28/15	16:00:00-16:59:59	80.2	0.0	0.0	7.11	0.0	0.0	100%	100%	100%	100%
08/28/15	17:00:00-17:59:59	82.7	0.0	0.0	19.1	0.0	0.0	100%	100%	100%	100%
08/28/15	18:00:00-18:59:59	68.6	0.0	0.0	15.1	0.0	0.0	100%	100%	100%	100%
08/28/15	19:00:00-19:59:59	68.0	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
08/28/15	20:00:00-20:59:59	75.8	0.0	0.0	14.5	0.0	0.0	100%	100%	100%	100%
08/28/15	21:00:00-21:59:59	73.6	0.0	0.0	15.8	0.0	0.0	100%	100%	100%	100%
08/28/15	22:00:00-22:59:59	71.7	0.0	0.0	15.1	0.0	0.0	100%	100%	100%	100%
08/28/15	23:00:00-23:59:59	58.3	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
08/29/15	00:00:00-00:25	40.6	0.0	0.0	7.1	0.0	0.0	100%	100%	100%	100%
08/29/15	01:00:00-01:59:59	38.0	0:0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/29/15	02:00:00-02:59:59	38.5	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/29/15	03:00:00-03:59:59	26.5	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/29/15	04:00:00-04:59:59	24.3	0.0	0.0	4.5	0.0	0:0	100%	100%	100%	100%
08/29/15	05:00:00-02:59:59	22.4	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/29/15	06:00:00-06:59:59	18.6	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/29/15	07:00:00-07:59:59	22.4	0.0	0.0	3.3	0.0	0.0	100%	100%	100%	100%
08/29/15	08:00:00-08:59:59	42.9	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/29/15	09:00:00-09:59:59	50.1	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
08/29/15	10:00:00-10:59:59	45.9	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
08/29/15	11:00:00-11:59:59	42.9	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/29/15	12:00:00-12:59:59	39.8	0.0	0.0	8.5	0:0	0.0	100%	100%	100%	100%
08/29/15	13:00:00-13:59:59	41.8	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
08/29/15	14:00:00-14:59:59	51.3	0.0	0.0	12.3	0.0	0.0	100%	100%	100%	100%
08/29/15	15:00:00-15:59:59	40.4	0.0	0.0	7.7	0.0	0.0	100%	100%	100%	100%
08/29/15	16:00:00-16:59:59	39.7	0.0	0.0	9.1	0:0	0.0	100%	100%	100%	100%
08/29/15	17:00:00-17:59:59	40.4	0.0	0.0	9.1	0.0	0.0	100%	100%	100%	100%
08/29/15	18:00:00-18:59:59	48.2	0:0	0.0	9.7	0.0	0.0	100%	100%	100%	100%
08/29/15	19:00:00-19:59:59	48.9	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
08/29/15	20:00:00-20:59:59	58.9	0.0	0.0	15.1	0.0	0.0	100%	100%	100%	100%
08/29/15	21:00:00-21:59:59	54.4	0.0	0.0	13.9	0.0	0.0	100%	100%	100%	100%
08/29/15	22:00:00-22:59:59	51.9	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
20/00/00						The state of the s	0.00	1920 W 1946			

			DOUA OUTLET H ₂ S	TLET H ₂ S		DOUB OU	DOUB OUTLET H ₂ S	DOUA OL	DOUA OUTLET H ₂ S	DOUB O	DOUB OUTLET H ₂ S
Date	Time	DOUA INLET H ₂ S	HST8141A_H ₂ S	HST8141B_H,S	DOUB INLET H ₂ S	HST8241A_H,S	HST8241B_H ₂ S	HST8141A_H ₂ S	HST8141B_H ₂ S	HST8241A_H ₂ S	HST8241B_H ₂ S
7	Unit	mdd	mdd	mdd	mdd	mdd	mdd	% removal	% removal	% removal	% removal
08/30/15	00:00:00-00:29:59	46.2	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/30/15	01:00:00-01:59:59	35.6	0.0	0.0	6.3	0.0	0.0	100%	100%	100%	100%
08/30/15	02:00:00-02:59:59	34.6	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/30/15	03:00:00-03:59:59	28.2	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/30/15	04:00:00-04:59:59	28.2	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	100%
08/30/15	05:00:00-05:59:59	21.0	0.0	0.0	3.9	0.0	0.0	100%	100%	100%	100%
08/30/15	06:00:00-06:59:59	31.4	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/30/15	07:00:00-07:59:59	24.7	0:0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/30/15	08:00:00-08:59:59	33.9	0.0	0.0	2.9	0.0	0.0	100%	100%	100%	100%
08/30/15	09:00:00-09:59:59	38.7	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	100%
08/30/15	10:00:00-10:59:59	21.8	0.0	0.0	7.1	0.0	0.0	100%	100%	100%	100%
08/30/15	11:00:00-11:59:59	22.4	0.0	0.0	5.9	0.0	0.0	100%	100%	100%	100%
08/30/15	12:00:00-12:59:59	41.2	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
08/30/15	13:00:00-13:59:59	41.6	0.0	0.0	10.3	0.0	0.0	100%	100%	100%	100%
08/30/15	14:00:00-14:59:59	8.09	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/30/15	15:00:00-15:59:59	62.8	0.0	0.0	15.1	0.0	0.0	100%	100%	100%	100%
08/30/15	16:00:00-16:59:59	100.0	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/30/15	17:00:00-17:59:59	6.69	0.0	0.0	17.1	0.0	0.0	100%	100%	100%	100%
08/30/15	18:00:00-18:59:59	9'89	0.0	0.0	19.7	0.0	0.0	100%	100%	100%	100%
08/30/15	19:00:00-19:59:59	86.0	0.0	0.0	19.1	0.0	0.0	100%	100%	100%	100%
08/30/15 Note 1	20:00:00-20:59:59	100.0	0.0	0.0	Error	Error	Error	100%	100%	N/A	N/A
08/30/15[Note 1]	21:00:00-21:59:59	100.0	0:0	0.0	Error	Error	Error	100%	100%	N/A	N/A
08/30/15 Note 11	22:00:00-22:59:59	73.0	0.0	0.0	Error	Error	Error	100%	100%	N/A	N/A
08/30/15	23:00:00-23:59:59	49.5	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/31/15	00:00:00-00:29:59	41.1	0.0	0.0	8.5	0.0	0.0	100%	100%	100%	100%
08/31/15	01:00:00-01:59:59	30.8	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/31/15	02:00:00-02:59:59	25.7	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%
08/31/15	03:00:00-03:59:59	24.1	0.0	0.0	5.9	0.0	0.0	100%	100%	100%	%66
08/31/15	04:00:00-04:59:59	19.3	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	%66
08/31/15	05:00:00-02:59:59	24.2	0.0	0.0	6.3	0.0	0.0	100%	100%	100%	%66
08/31/15	06:00:00-06:59:59	19.1	0.0	0.0	4.5	0.0	0.0	100%	100%	100%	%66
08/31/15	07:00:00-07:59:59	20.6	0.0	0.0	5.1	0.0	0.0	100%	100%	100%	%66
08/31/15	08:00:00-08:59:59	18.1	0.0	0.0	7.1	0.0	0.0	100%	100%	100%	100%
08/31/15	09:00:00-09:59:59	33.2	0.0	0.0	11.7	0.0	0.0	100%	100%	100%	100%
08/31/15	10:00:00-10:59:59	27.0	0.0	0.0	15.1	0.0	0.0	100%	100%	100%	100%
08/31/15	11:00:00-11:59:59	30.2	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%

Contract No. DC/2008/03
Design, Build and Operate Pillar Point Sewage Treatment Works
Monthly Operation Phase Monitoring Report (Post-commissioning)

			DOUA OUTLET H ₂ S	TLET H ₂ S		DOUB OU	DOUB OUTLET H ₂ S	DOUA OU	DOUA OUTLET H ₂ S	DOUBO	DOUB OUTLET H ₂ S
Date	Time	DOUA INLET H ₂ S	HST8141A_H ₂ S	HST8141B_H,S	DOUB INLET H ₂ S	H5T8241A_H ₂ S	HST8241B_H ₂ S	HST8141A_H ₂ S	HST8141B_H,S	HST8241A_H ₂ S	HST8241B_H;S
7	Unit	шфф	mdd	mdd	mdd	mdd	mdd	% removal efficiency	% removal efficiency	% removal efficiency	% removal efficiency
08/31/15	12:00:00-12:59:59	41.6	0.0	0.0	19.1	0.0	0.0	100%	100%	100%	100%
08/31/15	13:00:00-13:59:59	51.5	0.0	0.0	22.3	0.0	0.0	100%	100%	100%	100%
08/31/15	14:00:00-14:59:59	56.4	0.0	0.0	23.6	0.0	0.0	100%	100%	100%	100%
08/31/15	15:00:00-15:59:59	72.4	0.0	0.0	25.8	0.0	0.0	100%	100%	100%	100%
08/31/15	16:00:00-16:59:59	61.4	0.0	0.0	22.9	0.0	0.0	100%	100%	100%	100%
08/31/15	17:00:00-17:59:59	57.0	0.0	0.0	22.3	0:0	0.0	100%	100%	100%	100%
08/31/15	18:00:00-18:59:59	71.1	0.0	0.0	17.1	0.0	0.0	100%	100%	100%	100%
08/31/15	19:00:00-19:59:59	7.77	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/31/15	20:00:00-20:59:59	78.9	0.0	0.0	17.1	0.0	0.0	100%	100%	100%	100%
08/31/15	21:00:00-21:59:59	62.8	0.0	0.0	12.9	0.0	0.0	100%	100%	100%	100%
08/31/15	22:00:00-22:59:59	2.7.2	0.0	0.0	11.1	0.0	0.0	100%	100%	100%	100%
08/31/15	23:00:00-23:59:59	44.1	0.0	0.0	6.5	0.0	0.0	100%	100%	100%	100%

Note: 1. Error occurs at DOUB Sensor on 30 August 2015 from 20:00:00 to 22:59:59. The Sensor has been checked, fixed, and resumed at 23:00:00 on 30 August 2015.

APPENDIX E

Locations for Sediment Quality Monitoring and Benthic Survey

Contract No. DC/2008/03
Design, Build and Operate Pillar Point Sewage Treatment Works
Monthly Operation Phase Monitoring Report (Post-commissioning)

The GPS Co-ordinates (in WGS84 Datum (ITRF96 Reference Frame)), Collection Time, Measured Water Depth and Tidal State of Monitoring Station

		Original Lo	Location	Revised	Revised Location		Rem	Remarks		
Station ID	Description	Northing	Easting	Northing	Easting	Reason for Location Change	Distance from Original Location (m)	Collection	Depth (m)	Tidal State
81	Butterfly Beach	825825.6	813517.1	825702	813719	Inaccessible*	237	12.50	6.5	Ebb
B2	Castle Peak Beach	826530.7	815779.2	1		1	1	10:10	4.3	Ebb
B3	Kadoorie Beach	826328.0	816098.4	826188	815954	Inaccessible*	201	10:30	4.1	Ebb
B4	Cafeteria Old Beach	826240.2	816310.1	826031	816143	Inaccessible*	268	10:45	4.3	Ebb
85	Cafeteria New Beach	825888.4	816751.8	825697	816470	Inaccessible*	341	11:25	4.4	Ebb
B6	Golden Beach	825493.2	816813.5	825431	816748	Inaccessible*	90	12:00	4.1	Ebb
WSD1	Flushing Water Intake near Butterfly Beach	825511.1	813103.0	825447	813138	Inaccessible*	73	16:30	3.2	Ebb
WSD2	Flushing Water Intake near LRT Terminus	825860.0	815241.3	i	,		•	09:40	5.0	Ebb
U2	Secondary Contact RecreationSu bzone at Lung Kwu Tan	827855.5	809704.9	827761	809488	Inaccessible*	237	13:25	2.7	Ebb
NM6	Control Station	820121.5	807822.1			,		17:50	28	Flood
NM1	Control Station	823025.4	820503.9	ı	,		ı	15:15	5.9	Ebb

Note: * Proposed location inaccessible by sampling vessel due to shallow water.

Appendix F

PPWQM Effluent Quality Monitoring Results

Summary of Effluent Quality Monitoring Results

	FIA Davies	Water Disc	harge License		23/08/2015
Parameter (unit)	EIA Design Assumption	95%ile	Upper Limit Level	Detection Limit	(00:00-24:00) Result
E.coli (CFU/100mL)*	300,000	300,000	#20,000	1	92,000
Biochemical Oxygen Demand (mg/L)	180	180	360	2	66
Suspended Solids (SS) (mg/L)	120	120	240	2	45
Ammonia as N	-	-	-	0.01	2.13
Total Nitrogen as N (mg/L)			-	0.1	37.1
Total Nitrogen as N – Filtered (mg/L)	-	-		0.1	34.9
Total Phosphorous as P (mg/L)		-	-	0.1	1.7
Total Phosphorous as P – Filtered (mg/L)	-	-		0.1	0.5
Total Organic Carbon (mg/L)	-		-	1	30
Aluminum (AI) (μg/L)		-	-	10	47
Boron (B) (µg/L)	-	-	-	100	1,030
Iron (Fe) (μg/L)	-	-	-	0.5	4.74
Mercury (Hg) (μg/L)	-		-	0.5	<0.5
Arsenic (As) (μg/L)	-	-	-	1	1
Barium (Ba) (μg/L)	-	7.8	-	1	20
Cadmium (Cd) (µg/L)	-	-	-	0.2	<0.2
Chromium (Cr) (µg/L)	-	-	-	1	4
Copper (Cu) (μg/L)	-	-	-	1	24
Lead (Pb) (μg/L)	-	-	-	1	5
Manganese (Mn) (μg/L)	-	-	-	1	128
Nickel (Ni) (µg/L)	-	-	-	1	17
Silver (Ag) (µg/L)	-	1 2	-	1	<1
Vanadium (V) (μg/L)	-	-	-	1	<1
Zinc (Zn) (µg/L)	-	-	-	10	40

^{#:} The upper limit is in monthly geometric mean.

^{*:} E.Coli sampling was conducted on 24 August 2015.

Laboratory Results

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Cherit	: ATAL-DEGREMONT JOINT VENTURE	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 6
Contact	: MR TECK SUAN LOY	Contact	: Fung Lim Chee, Richard	Work Order	HK1531569
Address	: 2801 ISLAND PLACE TOWER,	A02966	: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	510 KING'S ROAD, NORTH POINT HONG KONG		Yip Street, Kwai Chung, N.T., Hong Kong		
Emai	teck.suan.loy@degremont.com	E-max	Richard.Fung@alsglobal.com		
Telephone	: +852 2404 153B	Telephone	: +852 2610 1044		
Pacamile	;	Fecumie	: +862 2610 2021		
Preject	: DC_2008_03 DESIGN BUILD AND OPERATE	Quote number	- 1 -	Date Samples Received	: 24-AUG-2015
	PILLAR POINT SEWAGE TREATMENT WORKS				V4.704.37.7.67.13
Order number	: 430			Issue Oate	: 02-SEP-2015
C-O-C number	:			No of samples received	: 1
Site	:			No of samples areaysed	- 1

This report may not be reproduced exapproval from the testing laboratory.

Siputonee Fung Lim Chee, Richard Ng Sin Kou, May

ALS Technichem 94K) Pty Ltd Part of the ALS Lebboratoring Group 14F, Oung Shin Kriding Derite 1-3 Wing You Street, Kine Chung, N.T. Hong Kong Tel 492 2010 104 Fax: 452 2010 2021 was absented one

Pege Number Client Wark Order

General Comments

Contract Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this manufacture of the component is the component in these instances, the time component has been 31-AUS-2015.

31-AUC-2016

Key : (or e Limit of raporting; CAS Number = CAS registry number from database meintained by Chemical Abstracts Services. The Chamical Abstracts Service is a division of Specific comments for Work Order: HK1851668

Sample(s) ware collected by ALS Technichem (HK) staff.
Water sample(s) analysed and reported on an as received basis.

Water sample(s) dispersed by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.

Sample(s) were survived in the laboratory at 12.40. Microbiological sample(s), in 250mL plastic bottle labelled startle, with addition of social miscoullates socialism Micro 24002/2015. 2003/2015.

NOT DETECTED denotes result(s) is (are) level than the Limit of Report (LOP).

Analytical Results Sub-Matrix: EFFLUENT			Coordination (C	SAMPLE 1		
DOD WELLS, ELT EXCELL		Cherties	opping date / bine	24-AUG-2015 09:50		
Compound	CAS Number	100	Lite	HK1531569-001		
EA/ED: Physical and Aggregate Properties						
EA025: Suspended Solids (SS)	_	2	ngt.	45		
ED/EK: Inorganic Nonmetallic Parameters						
EK066K: Ammonia as N	7654-41-7	0.01	mg/L	2.13		
EK062P: Total Nitrogen as N	_	0.1	mg/L	37,1		
EK062P: Total Nitrogen as N - Filtered	-	D 9	mg/.	34.9		
EK067P: Total Phosphorus as P	man 1	0.1	ngt.	1.7		
EK067P: Total Phosphorus -Filtered	-	01	ngl,	0.5		
EP: Aggregate Organics						
EP006: Total Organic Carbon	-	1	mg/L	30		
EP030: Biochemical Oxygen Demand	-	2	ngt.	66		
EG: Metals and Major Cations - Total						
EG020: Arsenic	7440-38-2	1	pgt.	1		
EG020: Bartum	7440-39-3	. 1	JOS.	20		
EG020: Cadmium	7440.43-9	02	pgt.	<0.2		
EG020: Chromium	7440-47-3	1	pgt.	4		
EG020: Copper	7440-50-8	1	upt.	24		
EG020: Lead	7439-92-1	1	MSr.	5		
EG020: Manganese	7439-96-5	1	ugit	128		
EG020: Nickel	7440-02-0	1	ppt	17		
EG020: Silver	7440-22-4	1	ppt	<1		
EG020: Vanadium	7440-62-2	10	up.L	<1		
EG020: Zinc	7440-86-6	10	ugt.	40		
EG020: Akminium	7429-99-6	100				
EG020: Boron	7440-42-8 7439-89-6	0.50	upt. mgt.	1030		
EG032: Iron	7439-97-6	05	ugt	4.74 <0.5	_	
EG036: Mercury	(439-9)-0	0.0	20.	405		
EM: Microbiological Testing			85 4 W 1			
EM002: Escherichia coli		,	CFU100mL	92000		

Page Number : 4 o1 6
Client : ATAL-DEGREMONT JOINT VENTURE
Work Order : HK1831889
Laboratory Duplicate (DUP) Report

tam: WATER					Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Cifect sample ID	Mirchael: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	APD (No		
EA/ED: Physical a	nd Aggregate Propertie	s (QC Lot: 4009484)								
HK1531477-003	Anonymous EA025: Suspended Solids (8S)			2	mg/L	<2	<2	0.0		
ED/EK: Inorganic I	Nonmetallic Parameters	(QC Lot: 4009199)								
HK1530725-003	Anonymous	EK057P: Total Phosphorus as P		0.1	mg/L	≪0.1	<0.1	0.0		
ED/EK: Inorganic I	Nonmetallic Parameters	(QC Lot: 4010649)								
HK1531384-001	Anonymous	EK085K: Ammonia as N	7664-41-7	0.1	mg/L	0.3	0.3	0.0		
EG: Metals and Ma	ior Cations (QC Lot: 4	009556)								
HK1531569-001	SAMPLE 1	EG038: Mercury	7439-97-8	0.5	µg/L	<0.5	<0.5	0.0		
EG: Metals and Ma	ior Cations (QC Lot: 4	009567)								
HK1531274-002 Anonymous		EG020; Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0		
		EG020: Barium	7440-39-3	1	µg/L	<1	<1	0.0		
	EG020: Chromium	7440-47-3	1	PD/L	<1	<1	0.0			
	EG020: Copper	7440-50-8	1	MO/L	<1	<1	0.0			
	EG020: Lead	7439-92-1	1	µg/L	<1	<1	0.0			
		EG020: Manganese	7439-96-5	1	µg/L	<1	<1	0.0		
		EG020: Nickel	7440-02-0	1	µg/L	<1	<1	0.0		
		EG020: Silver	7440-22-4	1	µg/L	<1	<1	0.0		
	EG020: Arsenic	7440-36-2	10	µg/L	<10	<10	0.0			
		EG020: Vanadium	7440-82-2	10	Mg/L	<10	<10	0.0		
		EG020: Zinc	7440-66-6	10	µg/L	<10	<10	0.0		
	ajor Cations (QC Lot: 4	909559)								
HK1531569-001	SAMPLE 1	EG020: Boron	7440-42-8	100	ha/r	1030	990	3.9		
	ojor Cations (QC Lot: 4	009560)								
HK1531274-002	Anonymous	EG020: Aluminium	7429-90-5	10	µg/L	<10	<10	0.0		
EP: Aggregate Or	ganics (QC Lot: 401194	0)								
HK1531200-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	36	37	0.0		
EG: Metals and Ma	ojor Cations - Total (QC	Lot: 4009561)								
HK1531274-002	Anonymous	EG032: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0		

Matte: WATER		Mentod Blank (Mil) Report			Laboratory Science Spike (LGS) and Laboratory Control Spike Displicate (DCS) Report								
					Spike	Spike Recovery (%)		Recovery Limits (%)		R	PD (%)		
Medical: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit		
EA/ED: Physical and Aggregate Proper	ties (QC Lot: 4009484)				The second second								
EA025: Suspended Solids (SS)		2	mg*L	<2	10 mg/L	104		87	113	***			
ED/EK: Inorganic Nonmetallic Paramete	ers (QC Lot: 4009199)												
EK067P: Total Phosphorus as P		0.01	mg*L	<0.01	0.5 mg/L	96.9	-	93	103				
ED/EK: Inorganic Nonmetallic Paramete	ers (QC Lot: 4009201)												
EK062P: Total Nitrogen as N		0.1	mg/L	<0.1	0.5 mg/L	104		92	114		***		

Page Number Client Work Order 5 of 8 ATAL-DEGREMONT JOINT VENTURE HK1531569

Mates: WATER			Method Blank (MS	Report		Laboratory Control Spile (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Re	covery (%)	Recovery Limits (%)		RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limi	
ED/EK: Inorganic Nonmetallic Parameters	(QC Lot: 4009202)											
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	95.9		85	115	****	****	
ED/EK: Inorganic Normetallic Parameters	(QC Lot: 4009203)											
EK062P: Total Nitrogen as N - Filtered		0.1	mg'L	<0.1	0.5 mg/L	104		85	115		****	
ED/EK: Inorganic Normetallic Parameters	(QC Lot: 4010649)											
EK055K: Ammonia as N	7684-41-7	0.01	mg/L	<0.01	0.5 mg/L	101		91	107			
EG: Metals and Major Cations (QC Lot: 40	009556)				1							
EG036: Mercury	7439-97-6	0.05	µg/L	<0.05	2 µg/L	86.0	***	77	113		-	
EG: Metals and Major Cations (QC Lot: 40	0095671					000		.,	110			
EG020: Arsenic	7440-38-2	10	µg.L	<10	100 µg/L	87.5		79	109			
EG020: Barium	7440-39-3	1	pg/L	51	100 µg/L	938		79	109			
EG020: Cadmium	7440-43-9	0.2	PD'L	<0.2	100 µg/L	89.6	200	80	106		-	
EG020: Chromium	7440-47-3	1	µg/L	<1	100 µg/L	95.1	-	77	115			
EG020: Copper	7440-50-8	1	µg/L	<1	100 µg/L	942	-	77	113	****		
EG020: Lead	7439-92-1	1	µg/L	<1	100 µg/L	90.0		80	110			
EG020: Manganese	7439-96-5	1	µg/L	<1	100 µg/L	91.4		76	116	_		
EG020: Nickel	7440-02-0	1	µg/L	∢1	100 µg/L	89.6		78	112	****	****	
EG020: Silver	7440-22-4	1	µg/L	<1	100 µg/L	92.3		78	104	****	****	
EG020: Vanadium	7440-62-2	10	µg/L	<10	100 µg/L	90.9	***	77	113			
EG020: Zinc	7440-66-6	10	µg/L	<10	100 µg/L	110		76	114		****	
EG: Metals and Major Cations (QC Lot: 40	009559)											
EG020: Boron	7440-42-8	10	µg·L	<10	100 µg/L	96.6	_	72	118			
EG: Metals and Major Cations (QC Lot: 40	009560)											
EG020: Aluminium	7429-90-5	10	µg/L	<10	100 µg/L	96.2		85	117			
EP: Aggregate Organics (QC Lot: 400888)	2)											
EP030: Biochemical Oxygen Demand		2	mg/L	****	198 mg/L	105		81	113	2200		
EP: Aggregate Organics (QC Lot: 4011940	0)											
EP005: Total Organic Carbon		1	mg/L	<1	5 mp/L	109		88	122		-	
			50 5 550	_	100 mg/L	105		82	120	_		
EG: Metals and Major Cations - Total (QC	Lot: 4009561)				-1						1	
EG032: Iron	7439-89-6	0.01	mg/L	<0.01	2 mg/L	101		90	112			

Page Number Client Work Order

6 of 6 ATAL-DEGREMONT JOINT VENTURE HK1531569

Men: WATER				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report								
MAIL WATER												
Laboratory	Client sample ID			Spike Concentration		and the second second second	Recovery Limits (%)			D (N)		
sample ID		Method: Commund	lethod: Cembered CAS Number		MS	MSD	Low	High	Value	Contro		
ED/EK: Inorga	nic Nonmetallic Parameters	(QC Lot: 4009199)										
HK1530725-003	Anonymous	EK067P: Total Phosphorus as P	_	0.5 mg/L	102		75	125	****	****		
ED/EK: Inorga	nic Nonmetallic Parameters	(QC Lot: 4009201)										
HK1530500-036	Anonymous	EK062P: Total Nitrogen as N	_	50 mg/L	85.8		75	125		****		
FD/FK: Inoma	nic Normetallic Parameters	(OC Let: 4009202)					-	-		-		
HK1531569-001		EK057P: Total Phosphorus - Filtered		0.5 mg/L	88.0	-	75	125				
EDEV. I	-1- M			o.o my c	80.0	-	13	120	****			
ED/ER: Inorga HK1531569-001	nic Normetallic Parameters			-								
		EK062P: Total Nitrogen as N - Filtered		50 mg/L	93.4		75	125				
	nic Normetallic Parameters											
HK1531384-001	Anonymous	EK055K: Ammonia as N	7664-41-7	0.5 mg/L	111	-	75	125				
	d Major Cations (QC Lot: 40	09556)										
HK1531229-001	Anonymous	EG036: Mercury	7439-97-6	2 µg/L	106		75	125				
EG: Metals an	d Major Cations (QC Lot: 40	09657)					-			-		
HK1531229-001		EG020: Arsenic	7440-38-2	100 ug/L	96.2	-	75	125	Name .			
		EG020: Barium	7440-39-3	100 ug/L	115		75	125				
		EG020: Cadmium	7440-43-9	100 µg/L	90.5	2010	75	125		-		
		EG020: Chromium	7440-47-3	100 µg/L	102	****	75	125		****		
		EG020: Copper	7440-50-8	100 µg/L	120		75	125	****	****		
		EG020: Lead	7439-92-1	100 µg/L	93.8		75	125				
		EG020: Manganese	7439-96-5	100 µg/L	95.6	****	75	125	****	****		
		EG020: Nickel	7440-02-0	100 µg/L	96.2		75	125	****			
		EG020: Sliver	7440-22-4	100 µg/L	92.2	***	75	125		****		
		EG020: Vanadium	7440-62-2	100 µg/L	96.1		75	125				
		EG020: Zinc	7440-86-8	100 µg/L	113		75	125				
EG: Metals and	d Major Cations (QC Lot: 40	09559)										
HK1531229-001	Anonymous	EG020: Boron	7440-42-8	100 µg/L	92.3		75	125				
EG: Metals and	d Major Cations (QC Lot: 40	09560)								-		
HK1531274-001		EG020: Atuminium	7429-90-5	100 µg/L	93.6		75	125	****	****		
ED: Aggregate	Organics (QC Lot: 4011940	AND RESIDENCE OF THE PARTY OF T					- 10	.20				
HK1531200-001		EP005: Total Organic Carbon	_	25 mg/L	85.6		75	100				
		The second secon		20 mg/L	80.0	-	/5	125	***	****		
	d Major Cations - Total (QC											
HK1531274-001	Anonymous	EG032: Iron	7439-89-6	2 mg/L	8.98		75	125		****		

APPENDIX G

PPWQM Water Quality Monitoring Results

SMEC SMEC

Water Quality Monitoring Results (In-situ Measurement)

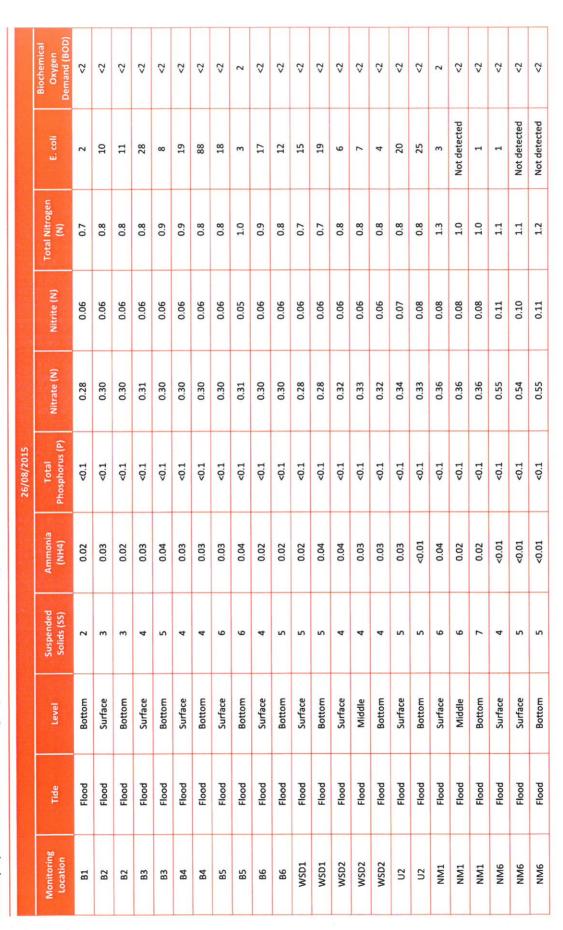
100	1																											
	Ħ	7.89	7.86	7.95	7.88	7.93	7.89	7.93	7.9	7.92	7.87	7.95	7.9	7.94	7.9	7.93	7.85	7.79	7.96	7.91	8.14	8.07	7.86	8.14	7.9	7.89	8.06	7.8
	Turbidity (NTU)	2.6	4	2.3	2.9	2.4	3.4	2.4	2.9	2.5	3.2	2.3	3.5	κ	3.8	2.7	3.3	3.5	3.3	3.7	1.8	2.6	4.1	2.6	3.3	4.2	4.1	4.4
	(%) sog	103.1	76.5	101.1	94.8	103.6	99.4	105	99.1	106.5	94.3	108.3	101.1	102.9	7.77	102.4	76.5	66.2	106.8	102.3	100.7	68.5	6.1.9	9.66	75.5	60.5	106.2	9.59
	DO (mg/L)	6.9	5.2	6.82	6.51	6.97	6.75	6.98	6.72	7.08	6.42	7.16	98.9	6.9	5.28	6.9	5.2	4.5	7.2	6.9	9.9	4.6	4.41	99'9	5.1	4.21	7.29	4.57
	Salinity (ppt)	27.33	29.75	26.96	29.53	27.4	30.26	27.53	30.14	27.73	29.8	28.56	30.29	27.59	29.65	27.42	29.46	30.47	26.03	28.27	30.29	31.67	32.24	26.95	29.3	30.63	27.62	30.82
	Temp (°C)	28.29	26.74	27.93	26.02	27.92	26.38	28.6	26.55	28.53	26.39	28.58	26.5	28.1	26.59	27.85	26.93	26.52	28.51	27.96	28.5	26.57	23.03	28.45	27.02	26.43	26.65	24.73
26/08/2015	Sampling Depth (m)	1	3.3	1	3.3	1	3	1	3.1	1	3.5	1	3.4	1	3	1	3.9	6.1	1	2.2	1	18.1	35.1	1	3.1	5.3	1	3.2
	Level	Surface	Bottom	Surface	Middle	Bottom	Surface	Bottom	Surface	Middle	Bottom	Surface	Middle	Bottom	Surface	Bottom												
	Water Depth (m)	73	Ç.	73	t:t		1	7.1	114	u (Ç.	-	t:		•		7.1		3.3	3.7		36.1			6.3		42	71.1
	Time	17:20	17:20	17:50	17:50	18:00	18:00	18:10	18:10	18:20	18:20	18:30	18:30	17:15	17:15	17:40	17:40	17:40	16:30	16:30	19:00	19:00	19:00	15:50	15:50	15:50	10:15	10:15
	Tide	Flood	Flood	Flood	Flood	Flood	Flood	Flood	Flood	Flood	Flood	Flood	Ebb	Ebb														
	Monitoring Location	81	81	82	82	83	83	B4	84	BS	BS	98	B6	WSD1	WSD1	WSD2	WSD2	WSD2	U2	U2	NM1	NM1	NM1	NM6	NM6	NM6	81	81

Contract No. DC/2008/03
Design, Build and Operate Pillar Point Sewage Treatment Works
Monthly Operation Phase Monitoring Report (Post-commissioning)

SMEC SMEC

					26/08/2015						
Monitoring Location	Tide	Time	Water Depth (m)	Level	Sampling Depth (m)	Temp (°C)	Salinity (ppt)	DO (mg/L)	DOS (%)	Turbidity (NTU)	Hd
82	Ebb	9:50	,	Surface	1	27.15	26.64	7.08	103.4	4.4	7.99
82	Ebb	9:50	4.1	Bottom	3.1	25.12	29.17	5.16	74.6	4.8	7.88
B3	Ebb	9:40	ć	Surface	1	27.01	26.85	7.2	105.1	4.4	7.98
83	Ebb	9:40	y.5	Bottom	2.9	26.36	28.08	6.51	94.4	5.1	7.92
B4	Ebb	9:30	,	Surface	1	26.78	72.72	7.22	105.2	3.7	8.02
84	Ebb	9:30	4	Bottom	3	26.24	28.12	6.94	100.6	4.8	7.99
85	Ebb	9:20	,	Surface	1	26.6	27.33	7.18	104.3	3.2	8.01
85	Ebb	9:20	t. 4	Bottom	3.3	26.35	27.81	7.08	102.7	3.9	80
98	Ebb	9:10	;	Surface	1	26.72	27.4	7.02	102.1	3.7	8.03
98	Ebb	9:10	4.1	Bottom	3.1	26.2	27.88	6.91	9.66	4.4	8.01
WSD1	Ebb	10:20	c	Surface	1	26.6	27.7	6.95	101.2	3.62	8.05
WSD1	Ebb	10:20	5.5	Bottom	2.9	25.69	29.21	5.71	82.5	3.9	7.9
WSD2	Ebb	10:00		Surface	1	26.75	27.49	7.06	102.9	3.7	7.99
WSD2	Ebb	10:00	6.7	Middle	3.4	25.51	29.46	5.29	76.4	4.1	7.85
WSD2	Ebb	10:00		Bottom	5.7	25.13	30.06	4.68	67.3	4.3	7.82
UZ	Ebb	11:00	1.3	Middle	1.3	27.33	26.75	7.53	110.3	3.41	8.07
NM1	Ebb	8:26		Surface	1	26.8	29.13	7.11	104.2	2.9	8.06
NM1	Ebb	8:26	37.8	Middle	18.9	26.31	30.6	5.03	73.2	3.9	7.97
NM1	Ebb	8:26		Bottom	36.8	23.09	32.11	4.71	66.5	6.4	7.92
NM6	Ebb	11:45	C	Surface	1	28.03	23.63	8.62	125.6	3.2	8.25
NM6	Ebb	11:45	9.0 0	Bottom	4.8	24.52	31.18	3.43	7.77	3.72	7.77
Note: Bold number indicates Action Level exceedances	icates Action	I evel exceeds	nrac								

Note: Bold number indicates Action Level exceedances.


SMEC SMEC

Water Quality Monitoring Results (Laboratory Analysis)

ŀ								
Susp Solid	Suspended Solids (SS)	Ammonia (NH4)	Total Phosphorus (P)	Nitrate (N)	Nitrite (N)	Total Nitrogen (N)	E. coli	Biochemical Oxygen Demand (BOD)
4		0.02	<0.1	0.28	90.0	8.0	9	4
S		0.02	<0.1	0.28	90.0	0.8	22	<2
7		0.04	<0.1	0.33	90.0	0.8	29	<2
S		0.04	<0.1	0.29	90.0	0.8	21	<2
2		0.03	<0.1	0:30	90.0	8.0	9	\$
4		0.04	<0.1	0:30	90.0	8.0	7	\$
3		0.03	<0.1	0.29	90.0	0.8	80	<2
4		0.03	<0.1	0.28	90.0	0.7	2	\$
42		0.03	<0.1	0.29	90.0	8.0	12	42
2		0.04	<0.1	0.28	90.0	0.7	4	<2
ю		0.03	<0.1	0.29	0.07	0.8	24	42
2		0.03	<0.1	0.29	90.0	0.7	10	<2
4		0.02	<0.1	0.28	90:0	0.7	21	42
4		0.02	<0.1	0.28	90:0	0.7	11	42
æ		0.02	<0.1	0.28	0.05	8.0	19	22
æ		90.0	<0.1	0.24	0.05	0.8	28	25
r.		The second second			0.05	0.7	41	<2
4		0.08	<0.1	0.24				?
4		0.08	<0.1	0.24	0.07	6:0	56	7
2		0.08	<0.1 <0.1 <0.1	0.35	0.07	0.9	26	7 0
2		0.08	<0.1<0.1<0.1<0.1	0.24	0.06	0.9	26 1 5	3 8 8
3		0.08 0.01 0.05 0.05	40.140.140.140.1	0.24 0.35 0.35 0.22	0.06	0.9	26 1	3 8 8 8
4		0.08 0.01 0.05 0.05 0.05	60.1 60.1 60.1 60.1 60.1	0.24 0.35 0.35 0.22 0.14	0.06	0.9 0.8 0.7 0.5	26 1 1 7 7 1	7 8 8 8 8
,		0.08 0.01 0.05 0.05 <0.01 <0.01	60.1 60.1 60.1 60.1 60.1 60.1	0.24 0.35 0.22 0.14 0.52 0.53	0.07 0.06 0.04 0.03 0.10	0.9 0.8 0.7 0.5 1.2	26 1 5 7 1 1 Not detected	2 2 2 2 2 2

Contract No. DC/2008/03
Design, Build and Operate Pillar Point Sewage Treatment Works
Monthly Operation Phase Monitoring Report (Post-commissioning)

SMEC

Laboratory Results

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

		CE	RTIFICATE OF ANALYSIS		
Olient Contact	: ATAL-DEGREMONT JOINT VENTURE : MR TECK SUAN LOY	Lecoratory Contact	: ALS Technichem (HK) Pty Ltd : Fung Lim Chee, Richard	Page Work Order	: 1 of 17 : HK1527732
Address	2801 ISLAND PLACE TOWER, 510 KING'S ROAD, NORTH POINT HONG KONG	Astres.	: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail Telephone	: teck.suan.loy@degremont.com : +852 2404 1538	E-mail Telephons	: Richard.Fung@alsglobal.com : +852 2610 1044		
Pacserde	: 	Facsimile	: +862 2610 2021		
Project	DC_2008_03 DESIGN BUILD AND OPERATE PILLAR POINT SEWAGE TREATMENT WORKS	Quality number	: —	Date Samples Received	: 26-AUG-2015
Order number	: 430			leasure Darte	: 10-SEP-2015
CO-Crumber	:			No of samples received	: 48
Ste	:			No of samples analysed	: 48
This report may n	ot be reproduced except with prior written	This document ha	s been signed by those names that appear on this report and are the auth	orned signatories	
approval from the	testing laboratory.	Signatories	Position		Anthorised results for
		Fung Lim Chee Ng Sin Kou, Mi			Inorganics Microbiology

ALS Technichem #4K) Ptq Ltd Periof be ALS Lebon estory Group 11F, Dang Shin Killing Gerich. 1-3 Wing Yip Steet Keel Churg, NT, Hong King 16 - 952 2810 104 Fee 1552 2810 2021 with alsenino con

Page Number Client Work Order

General Comments

Cestificate Committers.

This report subsendes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All peges of this report have been checked and approved for reviews. When sampling time information is not provided by the defect, sampling defers are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 05.5EP_2015.

Key: ON = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a difficient of the Amarican Chemical Society.

Page Number Client Work Order

3 of 17 ATAL-DEGREMONT JOINT VENTURE HK1527732

Analytical Results								
Sub-Matrix: MARINE WATER			Clert sample (D	B1/S/EBB	B1/B/EBB	B2/S/EBB	B2/B/EBB	B3/S/EBB
		Cienta	empling date / time	[26-AUG-2015]	[26-AUG-2015]	[26-AUG-2015]	[26-AUG-2015]	[26-AUG-2015]
Compound	CAS Number	108	Linf	HK1627732-001	HK1527732-003	HK1527732-004	HK1527732-006	HK1627732-007
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)	-	2	mg/L	4	5	2		2
ED/EK: Inorganic Nonmetallic Parameters								
EK055K: Ammonia as N	7004-41-7	0.01	mg/L	0.02	0.02	0.04	0.04	0.03
EK057A: Nitrite as N	14797-65-0	0.01	mg/L	0.06	0.06	0.06	0.06	0.06
EKOSSA: Nitrate as N	14797-00-8	0.01	mgl	0.28	0.28	0.33	0.29	0.30
EK062P: Total Nitrogen as N	-	0.1	mg/L	0.8	0.6	0.8	0.8	0.8
EK062P: Total Nitrogen as N - Filtered	-	01	mg/L	0.6	0.6	0.7	0.6	0.7
EK067P: Total Phosphorus as P		01	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
EK067P; Total Phosphorus - Filtered	-	0.1	mg/L	<0.1	<0.1	<01	<0.1	<0.1
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand	-	2	mg/L	<2	<2	<2	42	<2
EM: Microbiological Testing								
EM002: Escherichia coli		1	CFURIODHL	6	5	67	21	6

Sub-Matrix: MARINE WATER			Climit sample (C	B3/B/EBB	B4/S/EBB	B4/B/EBB	B6/S/EBB	B6/B/EBB
		Client &	empling date / time	[26-AUG-2015]	[26-AUG-2015]	[28-AUG-2015]	[26-AUG-2015]	[26-AUG-2015]
Compound	CAS Number	LOR	Last	HK1627732-009	HK1627732-010	HK1627732-012	HK1527732-013	HK1527732-015
EA/ED: Physical and Aggregate Properties		- 20.0						
EA025: Suspended Solids (SS)	-	2	mpt.	4	3	4	Q	2
ED/EK: Inorganic Nonmetallic Parameters								
EK055K: Ammonia as N	7664-41-7	0.01	mpt.	0.04	0.03	0.03	0.03	0.04
EK057A: Nitrite as N	14797-65-0	9.01	mg/.	0.06	0.06	0.06	0.06	0.06
EK058A: Nitrate as N	14797-05-8	0.01	mg/L	0.30	0.29	0.28	0.29	0.28
EK062P: Total Nitrogen as N	-	0 1	mg/L	0.6	8.0	0.7	0.8	0.7
EK082P: Total Nitrogen as N - Filtered		0.1	mg/s	0.7	0.7	0.7	0.7	0.6
EK067P: Total Phosphorus as P	_	0.1	mpt.	<0.1	<0.1	<0.1	<0.1	<0.1
EK067P: Total Phosphorus - Filtered	-	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand	-	2	mg/L	<2	<2	<2	4	<2
EM: Microbiological Testing								
EM002: Eacherichia coll	-	1	CFLIMODEL.	7	8	6	12	4

Page Number Client Work Order

6 of 17 ATAL-DEGREMONT JOINT VENTURE HK1527732

Sub-Matrix: MARINE WATER			Client sample-10	B6/S/EBB	B6/B/EBB	WSD1/S/EBB	WSD1/B/EBB	WSD2/S/EBB
		Cirent s	singling date / time	(26-AUG-2015)	[26-AUG-2015]	[26-AUG-2015]	[26-AUG-2015]	[26-AUG-2015]
Compound	CAS Number	100	Line	HK1627732-016	HK1627732-01B	HK1527732-019	HK1527732-021	HK1527732-022
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)	-	2	mg/L	3	2	4	4	3
ED/EK: Inorganic Nonmetallic Parameters								
EKOSSK: Ammonia as N	7554-41-7	0.01	mgt.	0.03	0.03	0.02	0.02	0.02
EK057A: Nitrite as N	14797-65-0	0.01	mg/L	0.07	0.06	0.06	0.06	0.05
EKOSBA: Nitrate as N	14797-65-6	0.01	mg/L.	0.29	0.29	0.28	0.28	0.28
EK052P: Total Nitrogen as N	-	0.1	mg/.	0.8	0.7	0.7	0.7	0.8
EK062P: Total Nitrogen as N - Filtered	-	0.1	mg/L	0.7	0.6	0.7	0.6	0.6
EK067P: Total Phosphorus as P	-	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
EK067P: Total Phosphorus - Filtered	-	0.1	mg/L	<0.1	<01	<0.1	<0.1	<0.1
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand	-	2	mg/L	<2	<2	<2	9	•2
EM: Microbiological Testing								-
EM002: Eschenchia coli	nest	1	CFLF100PIL	24	10	21	11	19

Page Number Client Work Order

Sub-Matrix: MARINE WATER		Cient s	Client sample ID empling date / free	WSD2/M/EBB [26-AUG-2015]	WSD2/B/EBB [26-AUG-2015]	U2/M/EBB [26-AUG-2015]	NM6/SÆBB [26-AUG-2015]	NM6/B/EBB [26-AUG-2015]
Conpound	CAS Number	LOR	Clert	HK1527732-023	HK1527732-024	HK1627732-026	HK1527732-028	HK1627732-030
EA/ED: Physical and Aggregate Properties						-		
EA025: Suspended Solids (SS)	-	2	mpt.	3		4	3	4
ED/EK: Inorganic Nonmetallic Parameters								
EK066K: Ammonia as N	7854-41-7	0.01	mg/L	0.06	0.08	0.01	<0.01	<0.01
EK057A: Nitrite as N	14797-65-0	0.01	mgt.	0.05	0.05	0.07	0.10	0.10
EK058A: Nitrate as N	14797-55-6	0.01	mg/L	0.24	0.24	0.35	0.52	0.53
EK062P; Total Nitrogen as N	-	01	mgi.	0.8	0.7	0.9	1.2	1.1
EK062P: Total Nitrogen as N - Filtered		0.1	mgt	0.6	0.8	0.6	0.9	0.9
EX067P: Total Phosphorus as P	-	01	mpt.	<0.1	<0.1	<0.1	40.1	<0.1
EK067P: Total Phosphorus - Filtered	-	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand	-	2	mpt.	<2	<2	•2	2	•2
EM: Microbiological Testing								
EM002: Escherichia coli	-	1	CFUF100HL	28	41	26	1	NOT DETECTED

7 of 17 ATAL-DEGREMONT JOINT VENTURE HK1527732

k Order HK1527732								(AL
Sub-Matrix: MARINE WATER		Girent as	Clent sumple ID impling date / time	NM1/S/EBB [26-AUG-2015]	NM1/M/EBB [26-AUG-2015]	NM1/B/EBB [26-AUG-2015]	B1/S/FLOOD [26-AUG-2015]	B1/B/FLOOD [26-AUG-2015]
Compound	CAS Number	LOR	CAIR	HK1627732-031	HK1527732-032	HK1627732-033	HK1527732-034	HK1527732-036
A/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)	-	2	mgt	4	3	4	2	2
D/EK: Inorganic Nonmetallic Parameters								
EK055K; Ammonia as N	7664-41-7	0.01	mpl	0.05	0.06	0.06	0.01	0.02
EK057A: Nitrite as N	14797-65-0	0.01	mgi.	0.06	0.04	0.03	0.06	0.06
EK058A: Nitrate as N	14797-55-8	0.01	mgt.	0.35	0.22	0.14	0.28	0.28
EK062P: Total Nitrogen as N	-	0.1	mg1.	0.8	0.7	0.5	0.8	0.7
EK062P: Total Nitrogen as N - Filtered	-	0.1	Jgn	0.8	0.6	0.4	0,6	0.6
EK067P: Total Phosphorus as P	-	0.1	mg/L	<q.1< td=""><td><0.1</td><td>≪0.1</td><td><0.1</td><td><0.1</td></q.1<>	<0.1	≪0.1	<0.1	<0.1
EK067P: Total Phosphorus - Filtered	-	0.1	mgt.	<0.1	<0.1	<0.1	<0.1	<0.1
P: Aggregate Organics								
EP030: Biochemical Oxygen Demand	-	2	ngt.	<2	₹2	<2	<2	•2
EM: Microbiological Testing								
EM002: Escherichia coli	-	,	CFU100mL	1	6	7	2	2

Sub-Matrix: MARINE WATER			Client sample ID	B2/S/FLOOD	B2/B/FLOOD	B3/S/FLOOD	B3/B/FLOOD	B4/S/FLOOD
		Glent a	sespling date / time	[26-AUG-2015]	[26-AUG-2015]	[26-AUG-2015]	[26-AUG-2015]	[26-AUG-2015]
Considered	CAS Number	LOR	List	HK1627732-037	HK1527732-039	HK1627732-040	HK1527732-042	HK1527732-043
EA/ED: Physical and Aggregate Properties					and the second sharing			
EA025: Suspended Solids (55)	-	2	mg/L	3	3	4	6	
ED/EK: Inorganic Nonmetallic Parameters								
EK055K: Ammonia as N	7864-41-7	0.01	mpt.	0.03	0.02	0.03	0.04	0.03
EK057A: Nitrite as N	14797-65-0	0.01	mg/L	0.06	0.06	0.06	0.06	0.06
EK058A: Nitrate as N	14797-65-8	0.01	mg/L	0.30	0.30	0.31	0.30	0.30
EK062P: Total Nitrogen as N	-	0.1	mg/.	0.8	8.0	0.8	0.9	0.9
EK062P: Total Nitrogen as N - Filtered	-	0 1	mpL	0.6	0.6	0.6	0.7	0.6
EK057P: Total Phosphorus as P	-	01	mpt.	<0.1	<0.1	<0.1	<0.1	<0.1
EK067P: Total Phosphorus - Filtered	-	0.1	mgt.	<0.1	<0.1	<01	<0.1	<0.1
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand	-	2	mpt.	4	<2	<2	42	-2
EM: Microbiological Testing								
EM002: Escherichia coli	-	1	CFU1100mL	10	- 11	28	8	19

Page Number Client Work Order

9 of 17 ATAL-DEGREMONT JOINT VENTURE HK1527732

Sub-Matrix: MARINE WATER			Client sample (C	B4/B/FLOOD	B5/S/FLOOD	85/B/FLOOD	B6/S/FLOOD	B6/B/FLOOD
		Client s	arruing date / time	[26-AUG-2015]	[26-AUG-2015]	[26-AUG-2015]	[26-AUG-2015]	[26-AUG-2015]
Compound	CAS Number	107	Lint	HK1527732-045	HK1527732-045	HK1527732-048	HK1527732-049	HK1527732-051
EA/ED: Physical and Aggregate Properties								luniso f
EA025: Suspended Solids (SS)	_	2	mg/L	4	6	6	4	5
ED/EK: Inorganic Nonmetallic Parameters								
EK055K: Ammonia as N	7664.41-7	0.01	mg/L	0.03	0.03	0.04	0.02	0.02
EK057A: Nitrite as N	14797-65-0	0.01	mg/L	0.06	0.06	0.05	0.06	0.06
EK058A: Nitrate as N	14797-55-8	0.01	mg/L	0.30	0.30	0.31	0.30	0.30
EK062P: Total Nitrogen as N	-	01	mg/L	0.6	8.0	1.0	0.9	0.8
EK062P: Total Nitrogen as N - Filtered	-	01	mg/L	0.7	0.7	0.8	0.7	0.6
EK067P: Total Phosphorus as P		01	mg/L	<0.1	<0.1	≪0.1	<0.1	<0.1
EK067P: Total Phosphorus - Filtered	-	01	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand	-	2	mp/L	<2	<2	2	42	<2
EM: Microbiological Testing								
EMD02: Escherichie coli	_	-1	CFUFT00mL	88	18	3	17	12

Page Number Client Work Order

Sub-Matrix: MARINE WATER		Client &	Clark pample ID singling date / time	WSD1/S/FLOOD [26-AUG-2015]	WSD1/B/FLOOD [26-AUG-2015]	WSD2/S/FLOOD [26-AUG-2015]	WSD2/M/FLOOD [26-AUG-2015]	WSD2/B/FLOOI [26-AUG-2015]
Conground	CAS Number	LOR	EAst	HK1627732-062	HK1527732-054	HK1527732-055	HK1527732-056	HK1627732-057
EA/ED: Physical and Aggregate Properties		1111				- A - E MOUNT OF THE		
EA025: Suspended Solids (SS)	-	2	mol	5	5	4	4	4
ED/EK: Inorganic Nonmetallic Parameters								
EK066K: Ammonia as N	7654-41-7	0.01	mg/L	0.02	0.04	0.04	0.03	0.03
EK057A: Nitrite as N	14797-65-0	0.01	mgt	0.06	0.06	0.06	0.06	0.06
EK058A: Nitrate as N	14797-55-6	0.01	mg/L	0.28	0.28	0.32	0.33	0.32
EK062P: Total Nitrogen as N		01	mg/L	0.7	0.7	0.8	0.8	0.8
EK082P; Total Hitrogen as N - Filtered	-	01	mg/L	0.6	0.7	0.7	0.7	0.7
EK067P: Total Phosphorus as P	-	01	mpt	<0.1	<0.1	401	40.1	<0.1
EK067P: Total Phosphorus - Filtered	-	0.1	mg/L	<0.1	<0.1	<01	<0.1	<0.1
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand	-	2	mpt.	<2	<2	<2	Q	2
EM: Microbiological Testing								1
EMO02: Eacherichia coli	-	1	CFU1100HL	15	19		7	4

11 of 17 ATAL-DEGREMONT JOINT VENTURE

Sub-Matrix: MARINE WATER		Cierta	Client sample © scriping date / firms	U2/S/FLOOD [26-AUG-2015]	U2/B/FLOOD [26-AUG-2015]	NM6/S/FLOOD [26-AUG-2015]	NM6/M/FLOOD [26-AUG-2015]	NM6/B/FLOOD [26-AUG-2015]
Compound	CAS Number	LOR	Linit	HK1627732-058	HK1527732-060	HK1527732-061	HK1527732-062	HK1527732-063
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)	-	2	mg/L	5	5	4	5	6
ED/EK: Inorganic Nonmetatlic Parameters								
EK055K: Ammonia as N	7684-41-7	0.01	mg/:	0.03	<0.01	<0.01	<0.01	<0.01
EK057A: Nitrite as N	14797-65-0	0.01	mg*.	0.07	0.08	0.11	0.10	0.11
EK058A: Nitrate as N	14797-65-8	0.01	mgt.	0.34	0.33	0.55	0.54	0.55
EK062P: Total Nitrogen as N		0.1	mgt.	0.8	0.9	1.1	1.1	1.2
EX062P: Total Nitrogen as N - Filtered	-	0:	mg/L	0.7	0.8	1.0	0.9	1.0
EX067P: Total Phosphorus as P	-	0.1	mgt.	<0.1	<0.1	40.1	<0.1	<0.1
EX067P: Total Phosphorus - Filtered	-	0.1	mgt.	<0.1	<0.1	<0.1	<0.1	<0.1
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand	-	2	mpt.	<2	<2	<2	42	2
EM: Microbiological Testing								
EM002: Escherichia coli	-	1	CFLH100mL	20	25	1	NOT DETECTED	NOT DETECTED

Sub-Matrix: MARINE WATER		Clerta	Client sample (Client sample) date / firms	NM1/S/FLOOD [26-AUG-2015]	NM1/WFLOOD [26-AUG-2015]	NM1/B/FLOOD [26-AUG-2015]	
Compound	CAS Number	LOR	Lint	HK1627732-064	HK1527732-065	HK1527732-066	
EA/ED: Physical and Aggregate Properties							
EA025: Suspended Solids (SS)	-	2	mgi.	4		7	
ED/EK: Inorganic Nonmetallic Parameters							
EK055K: Ammonia as N	7004-41-7	0.01	mg/L	0.04	0.02	0.02	
EK057A: Nitrite as N	14797-65-0	0.01	mgt.	80.0	0.08	0.08	
EKOSBA: Nitrate as N	14797-00-8	0.01	mg/L	0.36	0.36	0.36	
EK062P: Total Nitrogen as N	-	0.1	mgt	1.3	1.0	1.0	
EX062P: Total Nitrogen as N - Filtered	-	0.1	mgL	1.0	0.8	0.8	
EK067P: Total Phosphorus as P	-	01	mgt.	<0.1	<0.1	<0.1	
EX067P: Total Phosphorus - Filtered	-	0.1	mgt.	<0.1	<0.1	<0.1	
EP: Aggregate Organics							
EP030: Biochemical Oxygen Demand	-	2	mgt	2	<2	<2	
EM: Microbiological Testing							
EMOOR: Eacharichia coll	-	1	CFJ/100mL	3	NOT DETECTED	1	

Page Number Client Work Order

13 of 17 ATAL-DEGREMONT JOINT VENTURE HK1827732

ers: WATER						Laboratory Deplicate (DUP) R	eport	
Laboratory sample ID	Dilent sample (D	Method: Compound	CAS Number	LOR	Cárole	Original Result	Duplicate Result	RPD CN
EA/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4011476)						1001.0
HK1527732-001	B1/S/EBB	EA025: Suspended Solids (SS)	***	2	mg*L	4	4	0.0
HK1527732-016	B6/S/EBB	EA025: Suspended Solids (SS)		2	mg/L	3	3	0.0
EA/ED: Physical a	and Aggregate Propertie	s (QC Lot: 4011476)			20.50			
HK1527732-031	NM1/S/EBB	EA026: Suspended Solids (SS)		2	mg/L	4	3	0.0
HK1527732-045	B4/B/FLOOD	EA025: Suspended Solids (SS)	***	2	mg/L	4	4	0.0
EA/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4011477)						
HK1527732-058	U2/S/FLOOD	EA025: Suspended Solids (SS)	* ***	2	mg'L	5	5	0.0
HK1531908-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	-2	9	0.0
ED/EK: Inorganic	Nonmetallic Parameters	s (QC Lot: 4011751)						
HK1527732-001	B1/S/EBB	EK055K: Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.02	0.0
ED/EK: Inorganic	Nonmetallic Parameters						10 (55,000)	
HK1527732-031	NM1/S/EBB	EK055K: Ammonia as N	7664-41-7	0.01	ma/L	0.05	0.04	0.0
ED/EK: Inorganic	Nonmetallic Parameters	(OC Lot: 4011753)	027/07/07/	1.707.65			0.01	0.0
HK1527732-045	84/B/FLOOD	EK055K: Ammonia as N	7664-41-7	0.01	mg/L	0.03	0.03	0.0
ED/EK: Inorganic	Nonmetallic Parameters						0.00	0.0
HK1527732-001	B1/S/EBB	EK067P: Total Phosphorus as P	****	0.1	mg/L	<0.1	<0.1	0.0
FD/FK: Inomanic I	Normetallic Parameters			0.7	y.c	-0.1	40.1	0.0
HK1527732-001	B1/S/EBB	EK062P: Total Nitrogen as N	***	0.1	mg/L	0.8	0.7	0.0
ED/EK: Inomanic I	Nonmetallic Parameters			0.1	mg L	0.0	0.7	0.0
HK1527732-001	B1/S/EBB	EK067P: Total Phosphorus - Filtered		0.1	ma'L	<0.1	<0.1	0.0
	Nonmetallic Parameters			0.1	mg·L	40.1	40.1	0.0
HK1527732-001	B1/S/EBB	EK062P: Total Nitrogen as N - Filtered		0.1				
	Nonmetallic Parameters		1	0.1	mg/L	0.6	0.7	0.0
HK1527732-016	B6/S/EBB			01				
	1	EK067P: Total Phosphorus as P		0.1	mg/L	<0.1	<0.1	0.0
ED/EK: Inorganic I HK1527732-016	Nonmetallic Parameters B8/S/EBB			0.4				
		EK082P: Total Nitrogen as N		0.1	mg/L	0.8	0.8	0.0
ED/ER: Inorganic I HK1527732-031	Nonmetallic Parameters NM1/S/EBB				-			
		EK067P: Total Phosphorus - Filtered		0.1	mg/L	<0.1	<0.1	0.0
ED/EK: Inorganic I HK1527732-031	Nonmetallic Parameters NM1/S/EBB							
		EK062P: Total Nitrogen as N - Filtered		0.1	mg/L	8.0	0.7	0.0
	Nonmetallic Parameters							
HK1527732-058	U2/S/FLOOD	EK067P: Total Phosphorus as P	****	0.1	mg/L	<0.1	<0.1	0.0
	Nonmetallic Parameters							
HK1527732-058	U2/S/FLOOD	EK082P: Total Nitrogen as N	-	0.1	mg/L	0.8	8.0	0.0
	Nonmetallic Parameters	(QC Lot: 4011859)						
HK1527732-058	U2/S/FLOOD	EK067P: Total Phosphorus - Filtered	****	0.1	mg/L	<0.1	<0.1	0.0

Page Number Client Work Order

14 of 17 ATAL-DEGREMONT JOINT VENTURE HK1527732

ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 4011888)
HK1527732-001 B1/5/EBB EK057A: Nitrite as N

Latoratory sample D Committangle D Service: Campound

ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 4011850) - Continued

HK1527732-056 U2:S-FLOOD EK082P: Total Nitrogen as N - Filtered

Matrix: WATER
Latterstory sample ID

PR(1527732-001	B1/3/E.BB	EK057A: Nitri	te as M			14797-65-0 0.01	n	ng/L	0.06	0.0	6	0.0
	Nonmetallic Parameter	rs (QC Lot: 4011870)										
HK1527732-016	86/G/E8B	EK057A: Nitri	te as N			14797-65-0 0.01		ng/L	0.07	0.0	6	0.0
	Nonmetallic Parameter	rs (QC Lot: 4011872)										
HK1527732-031	NM1/S/EB8	EK057A: Nitri	te as N			14797-65-0 0.01	n	ng/L	0.06	0.0	6	0.0
Method Blank (M	fB), Laboratory Con.	trol Spike (LCS) and	Laborat	ory Control S	pike Duplicate	(DCS) Report						
ters: WATER				Method Blank (NB)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Laboratory Cum	troi Spike (LCS) and La	sharetery Control S	athe Dyplicate (DC	U Report	
						Spike	Snike Re	overy 66	Bernuen	Limits (%)		PD (N)
Method: Compound		CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limi
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4011475)		A UTE HE SECRETARIO								
EA025: Suspended	Solids (SS)		2	mg/L	<2	10 mg/L	105		87	113		
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4011476)										
EA025: Suspended	Solids (SS)	_	2	mg/L	<2	10 mg/L	100		87	113	-	****
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4011477)				The state of the s						
EA025: Suspended :	Solids (SS)	-	2	mg/L	<2	10 mg/L	108	-	87	113	_	
ED/EK: Inorganic I	Nonmetallic Parameter	rs (QC Lot: 4011751)										
EK055K: Ammonia a	rs N	7684-41-7	0.01	mg/L	<0.01	0.5 mg/L	101		91	107	-	
ED/EK: Inorganic I	Nonmetallic Parameter	rs (QC Lot: 4011752)										
EK055K: Ammonia 4	es N	7664-41-7	0.01	mg'L	<0.01	0.5 mg/L	102		91	107		
ED/EK: Inorganic I	Nonmetallic Parameter	s (QC Lot: 4011753)										
EX055K: Ammonia a	PS N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	103		91	107		
ED/EK: Inorganic I	Nonmetallic Parameter	rs (QC Lot: 4011849)										
EK067P: Total Phos	phorus as P		0.01	mg/L	<0.01	0.5 mg/L	99.0	-	93	103		_
	Nonmetallic Parameter	rs (QC Lot: 4011850)										
EK082P: Total Nitro	gen as N	-	0.1	mg/L	<0.1	0.5 mg/L	102	-	92	114	-	-
	Nonmetallic Parameter	s (QC Lot: 4011851)										
EK067P: Total Phos	phorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96 0		85	115	****	
	Nonmetallic Parameter	s (QC Lot: 4011852)										
EK082P: Total Nitro	The State of State of the State		0.1	mg/L	<0.1	0.5 mg/L	101		85	115	****	_
	Nonmetallic Parameter	s (QC Lot: 4011853)										
EX067P: Total Phos			0.01	mg/L	<0.01	0.5 mg/L	95.4		83	103	****	***
	Nonmetallic Parameter	's (QC Lot: 4011854)										
EK062P: Total Nitro			0.1	mg/L	<0.1	0.5 mg/L	102		92	114		
	Nonmetallic Parameter											
EK067P: Yotal Phos	phorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	95.1		85	115	****	

0.1

14797-65-0 0.01

mg/L

0.7

0.7

Page Number Client Work Order

15 of 17 ATAL-DEGREMONT JOINT VENTURE HK1527732

Mates: WATER			Rectord Blank (NB)	Report		Laboratury Con	our Spike (LCS) and La	borstory Custral B	plike Displicate (DC	S) Report	
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	R	PD (%)
Menhod: Compound	CAS Number	LOR	Unit	Result	Concentration	rcs	DCS	Low	High	Value	Control Limi
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 4011856)										
EK062P: Total Nitrogen as N - Filtered		0.1	mg/L	<0.1	0.5 mg/L	103		85	115	-	-
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 4011857)										
EK067P: Total Phosphorus as P		0.01	mg'L	<0.01	0.5 mg/L	95.7		93	103		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 4011858)										
EK062P: Total Nitrogen as N		0.1	mg/L	<0.1	0.5 mg/L	103		92	114		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 4011859)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96.8	-	85	115	****	
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 4011860)										
EK062P: Total Nitrogen as N - Filtered		01	mg/L	<0.1	0.5 mg/L	102		85	115		-
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 4011868)										
EK057A: Nitrite as N	14797-65-0	0.01	mg'L		0.4 mg/L	102		98	112	-	
				<0.01	0.05 mg/L	100		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 4011870)										
EK057A: Nitrite as N	14797-65-0	0.01	mg/L	****	0.4 mg/L	105		98	112		
				<0.01	0.05 mg/L	96.4		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC											
EK057A: Nitrite as N	14797-65-0	0.01	mg/L		0.4 mg/L	105		98	112	****	-
				<0.01	0.05 mg/L	96.8		85	115	****	
EP: Aggregate Organics (QC Lot: 4011844)											
EP030: Biochemical Oxygen Demand		2	mg/L		196 mg/L	94.7		81	113		
EP: Aggregate Organics (QC Lot: 4011845)											
EP630: Blochemical Oxygen Demand		2	mg/L		198 mg/L	96.8		81	113		
EP: Aggregate Organics (QC Lot: 4011846)											
EP030: Biochemical Oxygen Demand		2	mg/L		198 mg/L	88.9		81	113		

Page Number Client Work Order

tetn: WATER					Matrix Spi	ke (MS) and Mat	rtx Spike Duplic	ate (MSD) Rej	troot	
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RP	Pre
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Contro
	ganic Nonmetallic Parameters (C	C Lot: 4011761)				- 125-125				
HK1527732-00		EK066K: Ammonia as N	7664-41-7	0.5 mg/L	94.0		75	125		****
ED/EK: Inorg	ganic Nonmetallic Parameters (C	OC Lot: 4011752)								
	1 NM1/S/EBB	EK055K: Ammonia as N	7864-41-7	0.5 mg/L	92.8	-	75	125		-
ED/EK: Inom	ganic Nonmetallic Parameters (C	OC Lat: 4011753)								
	5 BABFLOOD	EK055K: Ammonia as N	7564-41-7	0.5 mg/L	96.0	***	75	125	****	****
ED/EK: Inorn	ganic Nonmetallic Parameters (C	OC Let: 4011849)							-	
HK1527732-00		EK087P: Total Phosphorus as P	_	0.5 mg/L	100		75	125		****
	ganic Nonmetallic Parameters (C			-			-			
HK1527732-00		EK062P: Total Nitrogen as N	-	0.5 mg/L	96.0		75	125		-
		The state of the s				-			-	
ED/EK: Inorg HK1527732-00	ganic Nonmetallic Parameters (C	EK067P: Total Phosphorus - Filtered		0.5 mg/L	104		75	125	****	-
				U.D. ingr	104			120		-
ED/EK: Inorg HK1527732-00	ganic Nonmetallic Parameters (C			0.5 mo/L	96.0		75	125		
	A THURSDAY	EK062P: Total Nitrogen as N - Filtered		U.S mg/L	90.0		/5	125		-
	ganic Nonmetallic Parameters (C				722					-
HK1527732-01	6 B6/S/E8B	EK067P: Total Phosphorus as P		0.5 mg/L	102		75	125	****	
	ganic Nonmetallic Parameters (G	2C Lot: 4011854)								
HK1527732-01	6 B6/S/E8B	EK062P: Total Nitrogen as N	****	0.5 mg/L	98.0		75	125		1000
ED/EK: Inorg	ganic Nonmetallic Parameters (C	2C Lot: 4011855)								
HK1527732-03	31 NM1/S/EBB	EK067P: Total Phosphorus - Filtered		0.5 mg/L	98.0		75	125		-
ED/EK: Inorg	ganic Normetallic Parameters (0	2C Lot: 4011856)								
HK1527732-03	1 NM1/S/EBB	EK062P: Total Nitrogen as N - Filtered		0.5 mg/L	0.86	****	75	125	****	****
ED/EK: Inorg	ganic Normetallic Parameters (C	2C Lot: 4011857)								
HK1527732-05	58 U2/S/FLOOD	EK067P: Total Phosphorus as P	-	0.5 mg/L	102		75	125	****	here
ED/EK: Inorc	ganic Nonmetallic Parameters (0	C Lot: 4011858)								
	58 U2/S/FLOOD	EK062P: Total Nitrogen as N	-	0.5 mg/L	110		75	125		
FD/FK: Inorr	ganic Normetallic Parameters (OC Lot: 4011869)		A						
	58 U2/S/FLOOD	EK067P: Total Phosphorus - Filtered	_	0.5 mg/L	94.0	_	75	125		-
ED/EK: Inon	ganic Nonmetallic Parameters (
	58 U2/S/FLOOD	EX062P: Total Nitrogen as N - Filtered	_	0.5 mg/L	98.0		75	125		
	ganic Nonmetallic Parameters (And Annual Control of the Control of								-
HK1527732-00		EK057A: Nitrite as N	14797-65-0	0.5 mg/L	106		75	125		
										1
ED/EK: Inorg HK1527732-01	ganic Nonmetallic Parameters (14797-65-0	0.5 mg/L	105	-	75	125		
TIK 102//32-01	10 00/3/200	EK057A: Nitrite as N	14131-00-0	O.D. mg·L	100		13	123		-

								(ALS)
				Metrix Spik	e (MS) and Matri	x Spike Duplic	ate (MSD) Rep	ort	
			Spike	Spike Rec		Recovery		RPI	(4)
	Method: Compound		Concentration	MS	MSD	Low	High	Value	Control Limit
NM1/3/EBB	EK057A: Nitrite as N 147	797-85-0	0.5 mg/L	106	Acres .	75	125		
	Citent sample IO ic Normetallic Parameters (Od NM1/3-EB8	nic Nonmetallic Parameters (QC Lot: 4011872)	Number ic Nonmetallic Parameters (QC Lot: 4011872)	Cifert sample ID steriod: Compound CAS Number is Normetallik: Parameters (QC Lot: 4011872)	Cifert sample ID Method: Company Cas Concentration MS Mumber Sic Normetallike Parameters (QC Lot: 4011872)	Cifert sample ID Metous' Compound CAS Concentration MS MSD Number is Number (QC Lot: 4011872)	Cifert sample ID Method: Compound CAS Concentration M5 MSD Low Number is Normetallike Parameters (QC Lot: 4011872)	Citient sample ID Service Compound C.AS Concentration MS MSD Low High Number is Normetallik Parameters (QC Lot: 401872)	Cifert sample ID Metous: Compound CAS Concentration MS MSD Low High Value Number In Number (QC Lot: 4011872)

APPENDIX H

PPWQM Benthic Survey Monitoring Results

Benthic Survey Wet Season Baseline Results Summary:

			Mean		
	Number	建设设置			NE EST
	of			Shannon-	Pielou's
	Species			weaver	Species
	(spp.	Abundance	Biomass	Diversity	Evenness
Station ID	0.5m ²)	(ind. m ⁻²)	(g m ⁻²)	index H'	J
B1	16	110	46.8	2.06	0.74
B2	13	43	6.2	2.13	0.84
В3	5	11	2.18	1.59	0.98
B4	6	17	0.55	1.34	0.95
B5	14	60	3.02	2.22	0.89
В6	19	216	36.14	1.88	0.7
WSD1	31	126	20.61	3.21	0.94
WSD2	11	70	4.59	1.89	0.86
U2	18	75	20.01	2.52	0.88
NM1	30	269	27.52	2.61	0.77
NM6	23	189	43.64	2.15	0.68

The monitoring results for benthic survey are pending and the results will be reported in the next reporting period.

APPENDIX I

PPWQM Sediment Quality Monitoring Results

Summary of Sediment Quality Monitoring Results

VM1	9.8	4.0	64	10	0.2	029	292	3300	20	7500	0.2	4	27.0	0.2	20	20	54	338	11	0.2	18	63	1.44	17	52	15
	0.6	3.2	10	10	0.1	420	297		13		0.2	9		0.2	22	14	22	297	14	0.1	22	54	0.42	5	48	23
	0.6	4.2	<10	<10	0.1				21		:0.2	14		:0.2	34	16	55	578	20	0.1	28	105		1	74	12
SD 2															46	58	44		24		37			1	22	48
Н																								1	16	50
25.5												7									27			9	34	36
B5	8.4							00 00	26			6	41 3		39	43	42		24	0.5	34			7	22	46
B4	8.4	6.2	30		0.5				24			13	12.6		48	62	52	3	26	9.0	39	131		1	11	55
B3	8.2	6.1	32	<10	0.3				22			10			41	64	47	411	24	0.5	36	143		0	14	58
B2	8.2	7.5	250	<10	0.5				32			12			52	66	09	438	30	0.7	49	189	1.14	0	7	59
B1	7.9	7.7	58	18	1.4		<u>769</u>		33		<0.2	11	53.6	<0.2	47	49	84	631	30	0.5	20	151	1.14	0	6	53
Detection Limit	0.1	1	10	10	0.1	20	20	Н	1	10	0.2	1	0.5	0.2	1	1	П	0.5	1	0.1	10	1	0.05	N/A	N/A	N/A
Station ID	Ho	Volatile Solids (%)	Acid Volatile Sulphides (mg/kg)	Ammonia (mg/kg)	Nitrite + Nitrate (mg/kg)	Total Nitrogen (mg/kg)	Total Phosphorus (mg/kg)	Aluminium(mg/kg)	Boron(mg/kg)	ron(mg/kg)	Mercury(mg/kg)	Arsenic(mg/kg)	Barium(mg/kg)	Cadmium(mg/kg)	Chromium(mg/kg)	Copper(mg/kg)	Lead(mg/kg)	Manganese(mg/kg)	Nickel(mg/kg)	Silver(mg/kg)	Vanadium(mg/kg)	Zinc(mg/kg)	Total Organic Carbon (%)	Gravel (%)	Sand (%)	Silt (%)
	Detection Limit 81 82 83 84 85 86 WSD 1 WSD	Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 U2 NM6 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 U2 NM6 atile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 atile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 4.2 3.2	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 U2 NM6 Addile Solids (%) 0.1 7.9 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 Advolatile Sulphides (mg/kg) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 4.2 3.2	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 U2 NM6 atile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 atile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 d Volatile Sulphides (mg/kg) 10 58 250 32 30 38 41 57 51 4.0 10 immonia (mg/kg) 10 18 <10	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 U2 NM6 Ad Volatile Solids (%) 1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 Ad Volatile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 4.2 3.2 Ad Volatile Sulphides (mg/kg) 10 58 250 32 30 38 41 57 51 4.0 10 Immonia (mg/kg) 10 18 <10	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 UZ NM6 atile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 9.0 9.0 d Volatile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 4.2 3.2 d Volatile Sulphides (mg/kg) 10 58 250 32 38 41 57 51 4.0 10 imonia (mg/kg) 10 1 4.0 <10	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 U2 NM6 Ad Volatile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 Ad Volatile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 Ad Volatile Solids (%) 10 1 7.7 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 Ad Volatile Solids (%) 10 1 58 250 32 30 38 41 57 51 4.0 10 Inter+Nitrate (mg/kg) 0.1 1.4 0.5 0.3 0.5 0.3 0.5 0.5 0.5 0.4 0.1 0.1 Inter+Nitrate (mg/kg) 20 1.260 1150 30 10.3 0.5 0.5 0.5 0.5 0.4 0.1	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 U2 NM6 atile Solids (%) 0.1 7.9 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 d Volatile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 d Volatile Solids (%) 10 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 d Volatile Soliphides (mg/kg) 10 1 58 250 32 30 38 41 57 51 4.0 10 rite + Nitrate (mg/kg) 0.1 1.4 0.5 0.3 0.2 0.3 0.5 0.5 0.5 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 <td>Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 U2 NM6 Atile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 Atile Solids (%) 1 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 Ad Volatile Solids (%) 10 1 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 Ad Volatile Solidhides (mg/kg) 10 1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.2 6.2 6.3 6.2 <t< td=""><td>Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD I WSD 2 U2 NM6 atile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 atile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 9.0 d Volatile Solids (%) 10 10 5.8 250 32 30 38 41 57 51 4.2 3.2 d Volatile Sulphides (mg/kg) 10 10 <10</td> <10</t<></td> <10	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 U2 NM6 Atile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 Atile Solids (%) 1 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 Ad Volatile Solids (%) 10 1 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 Ad Volatile Solidhides (mg/kg) 10 1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.2 6.2 6.3 6.2 <t< td=""><td>Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD I WSD 2 U2 NM6 atile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 atile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 9.0 d Volatile Solids (%) 10 10 5.8 250 32 30 38 41 57 51 4.2 3.2 d Volatile Sulphides (mg/kg) 10 10 <10</td> <10</t<>	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD I WSD 2 U2 NM6 atile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 atile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 9.0 d Volatile Solids (%) 10 10 5.8 250 32 30 38 41 57 51 4.2 3.2 d Volatile Sulphides (mg/kg) 10 10 <10	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 U NM6 atile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 atile Solids (%) 1 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 9.0 d Volatile Solids (%) 1 1 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 UZ IMB atile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 atile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 9.0 d Volatile Solids (%) 1 7.7 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 9.0 9.0 d Volatile Sulphides (mg/kg) 10 1.0 <10	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD I WSD I UZ IMM6 atile Solids (%) 0.1 7.9 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 atile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 9.0 d Volatile Sulphides (mg/kg) 10 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 9.0 9.0 9.0 rice + Nitrate (mg/kg) 10 1 4.0 < 4.0	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD I WSD 2 UZ NMB atile Solids (%) 0.1 7.9 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 atile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 d Volatile Sulphides (mg/kg) 10 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD I WSD I WSD I WSD I WMB attle Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 attle Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 4.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD I WSD I USD I WSD I WS	Station ID Detection Limit 81 82 83 84 85 86 WSD 1 WSD 2 0.0 NMG axile Solids (%) 1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 9.0 axile Solids (%) 1 7.7 7.5 6.1 6.2 6.3 5.3 7.2 6.3 8.2 9.0 9.0 mmonia (mg/ks) 10 10 1.6 6.1 6.2 6.3 5.3 7.2 6.3 8.2 9.0 9.0 mmonia (mg/ks) 10 1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.2 6.3 6.3 6.3 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD 1 WSD 2 US IVB attile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.4 8.3 8.2 8.3 9.0 90 attile Solids (%) 1 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.0 9.0 d Volatile Sulphides (mg/kg) 10 58 250 32 30 38 4.1 57 5.1 4.0 9.0 9.0 monia (mg/kg) 10 1.8 < 0.1	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD I WSD II WSD II	Station ID Detection Limit B1 B2 B3 B4 B5 B5 WSD I A1 A1	Station ID Detection limit 81 82 83 84 85 86 WSD 1 WSD 2 0.1 NMG datile Solids (%) 0.1 7.9 8.2 8.2 8.4 8.3 8.2 8.3 9.0 9.0 datile Solids (%) 1 7.5 6.1 6.2 6.3 5.3 7.2 6.3 9.3 9.0 9.0 dovolatile Solids (%) 10 1 8.2 2.5 6.1 6.1 6.1 6.1 6.1 6.2 6.3 5.3 7.2 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 <	Station ID Detection Limit B1 B2 B3 B4 B5 B6 WSD I WSD I WSD I WSD I WSD I WSD I BD BMG BMG WSD I WSD I BMG BMG WSD I BMG BMG BMG WSD I BMG BMG	Station ID Detection Limit B1 B2 B3 B4 B5 B4 B5 WSD I WSD I WSD I WSD I WSD I WSD I DAD atile Solids (%) 0.0.1 7.5 8.2 8.2 8.2 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 8.3 8.2 9.3 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	Station ID Detection Limit B1 B2 B3 B4 B5 B4 B5 B4 B5 B5 B5 B5 B5 B5 B4 B3 B2 B3 B2 B3 B2 B3 B3	Station ID Detection Limit 81 82 84 85 86 WSD 1 WSD 2 US NMG atile Solids (%) 1 1 7.2 8.2 8.4 8.4 8.4 8.3 8.2 8.3 9.0 9.0 atile Solids (%) 1 1 7.5 6.1 6.2 5.3 7.2 6.3 8.3 8.2 8.3 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 <

SMEC

Notes: Bold numbers indicate action level exceedances. Bold and underline numbers indicate limit level exceedances.

Laboratory Results

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

		CE	RTIFICATE OF ANALYSIS		
Clerk	: ATAL-DEGREMONT JOINT VENTURE	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 8
Contact	: MR TECK SUAN LOY	Contact	: Fung Lim Chee, Richard	Work Order	HK1530514
Address	2801 ISLAND PLACE TOWER, 510 KING'S ROAD, NORTH POINT HONG KONG	Address	: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
-meil	: teck.suan.loy@degremont.com	Email	: Richard.Fung@aisglobal.com		
eleptione	: +852 2404 1538	Telephone	: +852 2610 1044		
acsimile	; 	Facsimie	: +852 2610 2021		
roject	DC_2008_03 DESIGN BUILD AND OPERATE PILLAR POINT SEWAGE TREATMENT WORKS	Quote number	:	Date Samples Received	: 16-AUG-2015
nter number	: 430			Issue Date	: 01-SEP-2015
20-C number				No. of samples received	: 11
in.				No of samples entrysed	: 11

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatones. Electronic signing has been carried out in compliance with procedures assented in the Electronic Transactions Ordinance of Mong Keng, Chapter 553, Section 6.

ALS Technichem 94K) Pty Ltd Part of the ALS Laboractory Group 14F, Chug Shun knoting Carles 1-3 Wing Yey Steet, Kina Chung NT, Hong Kong Tel 490,250 1064 Fee 1400 2011 were steen inscom

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, All pages of this renot provided by the cleart, sampling dates are shown without a time component. In these instances, the time component has been OT-SEP_2016.

C1-SEP-2015

Key: Lors: Limit of reporting; CAS number = CAS registry number from database maintained by Chemical Abstracts Services. The Ciremical Abstracts Service is a division of the American Chemical Semples(s) were received in a children condition.

Semples(s) were received in a children condition.

Sediment samples(s) amelysed on an as received basis. Result(s) reported on a dry weight basis.

Sediment samples(s) as received, digested by In-house method EA-STM 03974-09 prior to determination of motals. The In-house method is developed based on ASTM 03974-09 method. pH determined and reported on a 1.5 solf water extract.

Total Narropen is the sum of Irial Didatabase in an Irial Explanation.

Particle Size Distribution was subcontracted to and analysed by Genwinon Construction Limited

Page Number Client Work Order

3 of 8 ATAL-DEGREMONT JOINT VENTURE HK1630614

Analytical Results								
Sub-Matrix: SEDIMENT			Client aample ID	B1	B2	B3	B4	B5
		Chert se	empting date / time	[15-AUG-2015]	[15-AUG-2015]	[15-AUG-2015]	[15-AUG-2015]	[15-AUG-2015]
Compound	CAS Municipal	LOR	Livit	HK1530514-001	HK1530514-002	HK1530514-003	HK1530514-004	HK1530514-005
EA/ED: Physical and Aggregate Properties								
EA002: pH Value	-	61	pHUnit	7.9	8.2	8.2	8.4	8.4
EA035B; Volatile Solids @ 650°C	-	1.0	**	7.7	7.5	6.1	6.2	8.3
EA055: Moisture Content (dried @ 103°C)	-	01	*	67.0	63.3	56.7	54.6	56.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055: Ammonia as N	7664-41-7	10	mgkg	16	<10	<10	<10	<10
EKOSSA: Nitrite + Nitrate as N (Sol.)	-	0.1	mgkg	1.4	0.5	0.3	0.2	0,3
EK061A: Total Kjeldahl Nitrogen as N		20	mg/kg	1280	1260	1150	890	1080
EK062A: Total Nitrogen as N	-	20	mg/vg	1280	1260	1150	890	1080
EK067A: Total Phosphorus as P	-	20	make	697	673	886	660	558
EK082: Acid Volatile Sulphides (as 8)	in.	10	mg/kg	58	250	32	30	38
EG: Metals and Major Cations								
EG020: Arsenic	7440-36-2	1	mg/kg	11	12	10	13	
EG020: Barium	7440-39-3	0.5	mgkg	53.6	62.3	74.9	42.6	41.0
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<02	<02	<02	<0.2
EG020: Chromium	7440-47-3	7	mg/kg	47	52	41	48	39
EG020: Copper	7440-56-8	1	mg/kg	49	99	64	62	43
EG020: Lead	7439-92-1	1	mg/kg	48	60	47	52	42
EG020: Manganese	7430-96-6	0.5	mg/kg	631	438	411	417	417
EG020: Nickel	7440-02-0	1	mg/kg	30	30	24	26	24
EG020: Silver	7440-22-4	01	make	0.5	0.7	0.5	0.6	0.6
EG020: Vanadium	7440-62-2	10	mg/kg	60	49	36	39	34
EG020: Zinc	7440-86-6	1	moke	151	189	143	131	128
EG020: Aluminium	7429-90-6	1	mg/kg	28400	30500	22500	27700	25000
EG020: Boron	7440-42-6	1	mg/kg	33	32	22	24	26
EG025: Iron	7439-89-6	10	mg/kg	35400	37600	30800	32800	30900
EG036: Mercury	7439-97-6	02	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EP: Aggregate Organica								
EP006: Total Organic Carbon	-	0.05	%	1.14	1.14	1.04	0.79	0.76

Page Number Client Work Order

Sub-Matrix: SEDIMENT			Client sample ID	B6	WSD1	WSD2	U2	NM6
		Creek M	impling date / time	[15-AUG-2015]	[15-AUG-2015]	[15-AUG-2015]	[15-AUG-2015]	[15-AUG-2015]
Compound	CAS Number	LOR	Link	HK1830514-006	HK1630514-007	HK1530514-008	HK1530514-009	HK1630614-010
EA/ED: Physical and Aggregate Properties								
EA002: pH Value		0.1	pH Unit	8.3	8.2	8.3	9.0	9.0
EA036B: Volatile Solids @ 660°C	-	1.0	14	5.3	7.2	6.3	4.2	3.2
EA055: Moisture Content (dried @ 103°C)	_	0.1	*	53.9	57.7	56.0	31.9	31.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055: Ammonia as N	7864-41-7	10	mgkg	<10	16	10	<10	<10
EKOSSA: Nitrite + Nitrate as N (Sol.)	-	0.1	mg/kg	0.5	0.5	0.4	0.1	0.1
EK081A: Total Kjeldahl Nitrogen as N	_	20	mpho	1010	1270	960	420	420
EK062A: Total Nitrogen as N	-	20	mg/kg	1010	1270	960	420	420
EK067A: Total Phosphorus as P	_	20	mphg	480	568	560	421	262
EK082: Acid Volatile Sulphides (as 8)	_	10	mg/kg	41	57	61	<10	<10
G: Metals and Major Cations								-10
EG020: Arsenic	7440-38-2	1	mglug	7	15	14	14	
EG020: Barium	7440-39-3	0.5	mg/kg	36.9	51.1	41.4	24.9	22.6
EG020: Cadmium	7443-43-9	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EG020: Chromium	7440-47-3	1	mgang	32	49	45	34	22
EG020: Copper	7440-50-8	1	mg/kg	36	64	68	16	14
EG020: Lead	7430-93-1	1	mghg	36	58	44	55	22
EG020: Manganese	7439-96-5	0.5	mgkg	381	569	554	578	262
EG020: Nickel	7440-02-0	1	mg/kg	19	29	24	20	14
EG020: Bilver	7440-22-4	0.1	mg/kg	0.4	0.6	0.6	0.1	0.1
EG020: Vanadium	7440-62-2	10	mg/rg	27	44	37	28	22
EG020: Zinc	7442-66-6	1	mg/kg	107	178	153	105	54
EG020: Aluminium	7429-90-5	1	mg/kg	18800	28200	23000	17500	12900
EG020: Boron	7440-42-8	1	mg/kg	21	27	28	21	13
EG025: Iron	7439-89-0	10	mg/kg	24100	37800	34700	51200	21800
EG038: Mercury	7439-97-6	02	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
P: Aggregate Organics								
EP005: Total Organic Carbon	-	0.05	%	0.66	1.13	0.85	0.32	0.42

Sub-Matrix: SEDIMENT			Client sample ID	NM1	
		Count son	rgating diete / tirole	[15-AUG-2015]	
Compound	CAS Number	LOP	Linkt	HK1530514-011	
EA/ED: Physical and Aggregate Properties					
EA002: pH Value	-	61	pH Unit	8.6	
EA035B: Volatile Solids @ 550°C	-	10	%	4.0	
EA056: Moisture Content (dried @ 103°C)	-	01	14	37.3	
ED/EK: Inorganic Nonmetallic Parameters					
EK055: Ammonia as N	7864-41-7	10	mg/kg	<10	
EKOSSA: Nitrite + Nitrate as N (Sol.)	180	0.1	mpkg	0.2	
EK061A: Total Kjeldahl Nitrogen as N		20	mg/kg	670	
EK062A: Total Nitrogen as N	-	20	mg/kg	670	
EK067A: Total Phosphorus as P	-	20	mg/rg	292	
EK082: Acid Volatile Sulphides (as S)	-	10	mgNg	64	
EG: Metals and Major Cations					
EG020: Arsenic	7440-38-2	1	mg/ng	4	
EG020: Barium	7440-35-3	Q-5	mg/kg	27.0	
EG020: Cadmium	7440-43-6	0.2	mg/kg	<02	
EG020; Chromium	7440-47-3	1	mg/kg	20	
EG020: Copper	7440-50-8	1	mg/kg	20	
EG020: Lead	7439-82-1	1	mg/sg	54	
EG020: Manganese	7439-96-5	0.5	mg/kg	338	
EG020: Nickel	7440-02-0	1	mpkg	11	
EG020: Silver	7440-22-4	0.1	mg/ng	0.2	
EG020: Vanadium	7440-63-2	10	mg/kg	18	
EG020: Zinc	7440-66-6	1	mpkg	63	
EG020: Aluminium	7429-90-5	3	mg/kg	13300	
EG020: Boron	7440-42-8	1	mgkg	20	
EG025: Iron	7439-86-6	10	mg/kg	17500	
EG036: Mercury	7439-97-6	0.2	mg/kg	<0.2	
EP: Aggregate Organics					
EP005: Total Organic Carbon		0.05	%	1.44	

atts: SOIL						Laboratory Duplicare (DUP) R	sport .	
Laboratory sample ID	Citient sample ID	Merhod: Compound	GAS Humber	LOR	Unit	Original Result	Duplicate Result	RPD (NI)
EA/ED: Physical at	nd Aggregate Propertie	s (QC Lot: 4009632)						
HK1530514-001	B1	EA056: Moisture Content (dried @ 103°C)		01	%	67.0	67.3	0.4
HK1530514-011	NM1	EA056: Moisture Content (dried @ 103°C)		0.1	*	37.3	36.7	1.5
EA/ED: Physical at	nd Aggregate Propertie	s (QC Lot: 4009633)						
HK1530514-001	B1	EA036B: Volatile Solids @ 550°C	***	1.0	%	7.7	7.6	1.3
EA/ED: Physical at	nd Aggregate Propertie	s (QC Lot: 4009634)						
HK1530514-001	B1	EA002: pH Value	****	0.1	pH Unit	7.9	7.9	0.0
ED/EK: Inorganic I	ionmetallic Parameters	(QC Lot: 4008545)						
HK1530514-002	B2	EK082: Acid Volatile Sulphides (as S)		10	mg/kg	250	237	5.4
ED/EK: Inorpanic I	ionmetallic Parameters	(QC Lot: 4009217)						
HK1530514-001	B1	EK061A: Total Kjeldahi Nitrogen as N		20	mg/kg	1280	1290	1.4
ED/EK: Inorganic F	ionmetallic Parameters							
HK1530514-001	B1	EK067A: Total Phosphorus as P	[20	mg/kg	697	706	1.3
	Nonmetallic Parameters							
HK1530514-001	B1	EK059A; Nitrite + Nitrate as N (Sol.)	_	0.1	mg/kg	1.4	1.2	11.8
ED/EK: Inomanic I	Nonmetallic Parameters							
HK1530514-011	NM1	EK056: Ammonia as N	7664-41-7	10	mg/kg	<10	<10	0.0
	jor Cations (QC Lot: 4							
HK1530514-002	B2	EG026: Iron	7439-89-6	10	mg/kg	37600	36700	2.5
	jor Cations (QC Lot: 4		10000000					
HK1530514-002	B2	EG020: Silver	7440-22-4	0.1	mg/kg	0.7	0.7	0.0
71110000114002		EG020: Cadmium	7440-43-9	02	mg/kg	<02	<0.2	0.0
		EG020: Barium	7440-39-3	0.5	mg/kg	62.3	61.3	1.6
		EG020: Manganese	7439-96-5	0.5	mg/kg	436	427	2.5
		EG020: Arsenic	7440-38-2	1	mg/kg	12	13	0.0
		EG020: Chromium	7440-47-3	1	mg/kg	52	53	2.7
		EG020: Copper	7440-50-8	1	mg/kg	99	104	4.4
		EG020: Lead	7439-92-1	1	mg/kg	60	61	0.0
		EG020: Nickel	7440-02-0	1	mg/kg	30	31	0.0
		EG020: Zinc	7440-66-6	1	mg/kg	189	193	2.1
		EG020: Vanadium	7440-62-2	10	mg/kg	49	49	0.0
HK1530514-011	NM1	EG020: Silver	7440-22-4	0.1	mg/kg	02	0.2	0.0
		EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2	0.0
		EG020: Barium	7440-39-3	0.5	mg/kg	27.0	22.3	19.1
		EG020: Manganese	7439-96-5	0.5	mg/kg	338	282	18.1
		EG020: Arsenic	7440-38-2	1	mg/kg	4	4	0.0
		EG020: Chromium	7440-47-3	1	mg/kg	20	18	9.9
		EG020: Copper	7440-50-8	1	mg/kg	20	18	8.3
		EG020: Lead	7439-92-1	1	mg/kg	54	53	2.6

Page Number Client Work Order 7 of 8 ATAL-DEGREMONT JOINT VENTURE HK1530514

letta; SOIL						Laboratory Duplicase (DUP) Re	ерил	
Laboratory sumple ID	Citient sample ID	Merind: Coincound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPO (%)
EG: Metals and Ma	ajor Cations (QC Lot: 40	05497) - Continued						
HK1530514-011	NM1	EG020: Nickel	7440-02-0	1	mg/kg	11	11	0.0
		EG020: Zinc	7440-66-6	1	mg/kg	63	57	9.7
		EG020: Variadium	7440-62-2	10	mg/kg	18	17	0.0
EG: Metals and Ma	ojor Cations (QC Lot: 40	05498)						
HK1530514-002	B2	EG020: Aluminium	7429-90-5	1	mg/kg	30500	30700	0.8
EG: Metals and Ma	jor Cations (QC Lot: 40	05499)						
HK1530514-002	B2	EG020: Boron	7440-42-8	1	mg/kg	32	31	4.3
EG: Metals and Ma	jor Cations (QC Lot: 40	05500)						
HK1530514-002	B2	EG036: Mercury	7439-97-6	0.2	mg/kg	<0.2	<0.2	0.0
HK1530514-011	NM1	EG036: Mercury	7439-97-6	0.2	mg/kg	<0.2	<0.2	0.0
P: Aggregate Org	panics (QC Lot: 4009621	1)						
HK1528626-008	Anonymous	EP005: Total Organic Carbon		0.05	*	1.21	1.22	0.0
HK1528859-002	Anonymous	EP005: Total Organic Carbon	_	0.05	%	1.37	1.31	4.5

Metra: BOIL			Method Bush (ME)	Report		Laboratory Con	Pro/ Spike (LCS) and La	aboratory Control Sp	pike Duplicate (DC	3) Report	
					Spike	Spike Red	covery (%)	Recovery	Limits (%)	R	PD (%)
Method: Compound CAS	Humber	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 4	1008545)										
EK082: Acid Volatile Sulphides (as S)	****	1	mg/kg	<1	8.84 mg/kg	90.0		76	112		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 4	1009217)										
EK061A: Total Kjeldahl Nitrogen as N	****	20	mg/kg	<20	1000 mg/kg	99.9	****	85	115	****	
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 4	1009218)										
EK067A: Total Phosphorus as P		20	mg/kg	<20	695 mg/kg	93.2	_	85	115	-	
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 4	1009635)										
EKOSBA: Nitrite . Nitrate as N (Sol.)		0.1	mg/kg	<0.1	2 mg/kg	99.4		85	115	****	
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 4	1010717)										
EK055: Ammonia as N 76	664-41-7	1	mg/kg	<1	5 mg/kg	104	-	89	113		_
EG: Metals and Major Cations (QC Lot: 4005496)											
EG025: Iron 74	439-89-6	10	mg/kg	<10	-			****	****		-
EG: Metals and Major Cations (QC Lot: 4005497)	-										
EG020: Arsenic 74	440-38-2	1	mg/kg	<1	5 mg/kg	90.7		75	111		-
EG020: Barium 74	440-39-3	1	mg/kg	<1	5 mg/kg	88.3	-	79	113	****	
	440-43-9	0.2	mg/kg	<0.2	5 mg/kg	86 1	_	79	109	****	-
	440-47-3	1	mg/kg	<1	5 mg/kg	88.5		81	123	****	
	440-50-8	1	mg/kg	<1	5 mg/kg	90.2	_	79	109		_
	439-92-1	1	mg/kg	<1	5 mg/kg	92.8	_	81	109	-	-
	439-96-5	1	mg/kg	<1	5 mg/kg	92.2	-	78	122		
EG020; Nickel 74	440-02-0	1	mg/kg	<1	5 mg/kg	90.8	****	77	111		- man

Page Number Client Work Order

8 of 8 ATAL-DEGREMONT JOINT VENTURE HK1630614

Matrix: SOIL			Mernod Suesk (NB)	Prepart		Laboratory Con	rof Spile (LCS) and Li	aboratory Control S	pike Duplicate (DC	5) Report	
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	R	PD MG
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limi
EG: Metals and Major Cations (QC I	Lot: 4005497) - Continued					E-MILLER D.					
EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	5 mg/kg	97.3		75	113	****	
EG020; Vanadium	7440-62-2	1	mg/kg	<1	5 mg/kg	86.7	_	72	112	****	-
EG020: Zinc	7440-66-6	1	mg/kg	<1	5 mg/kg	90.0	-	80	122		-
EG: Metals and Major Cations (QC I	Lot: 4005498)										
EG020: Aluminium	7429-90-5	1	mg/kg	<1	****	****	-	****		-	
EG: Metals and Major Cations (QC L	Lot: 4005489)										
EG020: Boron	7440-42-8	1	mg/kg	<1						-	-
EG: Metals and Major Cations (QC I	Lot: 4005500)										
EG036: Mercury	7439-97-6	0.02	mg/kg	<0.02	0.1 mg/kg	88.0	-	76	110		
EP: Aggregate Organics (QC Lot: 40	009621)										
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	97.8		90	114		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matty: SOIL					Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
510.555.00005				Spike	Splike Reco		-	Limits (%)		D (N)		
Laboratory sample ID	Client sample tD	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Contro		
EG: Metals ar	nd Major Cations (QC Lot: 40	05497)										
K1530514-001	81	EG020: Arsenic	7440-38-2	5 mg/kg	85.3		75	125		****		
		EG020: Barium	7440-39-3	5 mg/kg	92.8		75	125	****			
		EG020: Cadmium	7440-43-9	5 mg/kg	0.88		75	125	-			
		EG020: Chromium	7440-47-3	5 mg/kg	100		75	125				
		EG020: Copper	7440-50-8	5 mg/kg	102	-	75	125	****	****		
		EG020: Lead	7439-92-1	5 mg/kg	87.9		75	125	****			
		EG020: Manganese	7439-96-5	5 mg/kg	# Not Determined	-	75	125	-	****		
		EG020: Nickel	7440-02-0	5 mg/kg	93.2	-	75	125				
		EG020: Silver	7440-22-4	5 mg/kg	93.7	****	75	125	****			
		EG020: Vanadium	7440-62-2	5 mg/kg	92.4	****	75	125	***	****		
		EG020: Zinc	7440-86-6	5 mg/kg	# Not Determined	-	75	125		-		
EG: Metals ar	nd Major Cations (QC Lot: 40	06500)										
K1530514-001	B1	EG036: Mercury	7439-97-6	0.1 mg/kg	111		75	125	ann.	-		
EP: Aggregat	e Organics (QC Lot: 4009621	1)										
HK1528859-001	Anonymous	EP005: Total Organic Carbon	***	40 %	88.0		75	125				

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

	SUB-CONTRACTING REP	ORT	
CONTACT	MR TECK SUAN LOY	WORK ORDER	HK1530514
CLIENT	ATAL-DEGREMONT JOINT VENTURE 2801 ISLAND PLACE TOWER.	SUB-BATCH	1
	510 KING'S ROAD, NORTH POINT HONG KONG	DATE RECEIVED DATE OF ISSUE	15-AUG-2015 1-SEP-2015
PROJECT	DC_2008_03 DESIGN BUILD AND OPERATE PILLAR POINT SEWAGE TREATMENT WORKS	NO. OF SAMPLES CLIENT ORDER	11 430

General Comments

- Sample(s) were received in a chilled condition.
- Sediment sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
- Sediment sample(s) as received, digested by In-house method E-ASTM D3974-09 prior to determination of metals. The In-house method is developed based on ASTM D3974-09 method.
 pH determined and reported on a 1:5 soil / water extract.
- Total Nitrogen is the sum of Total Oxidizable and Total Kjeldahl Nitrogen.
- Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.

Signatories

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories

Position

Richard Fung A.W

General Manager

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11F Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER

: HK1530514

SUB-BATCH

CLIENT PROJECT

ATAL-DEGREMONT JOINT VENTURE

DC_2008_03 DESIGN BUILD AND OPERATE PILLAR POINT SEWAGE TREATMENT WORKS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	_
HK1530514-001	B1	SEDIMENT	15-AUG-2015	J2999-215.43	
HK1530514-002	B2	SEDIMENT	15-AUG-2015	J2999-215.43	
HK1530514-003	B3	SEDIMENT	15-AUG-2015	J2999-215.43	
HK1530514-004	B4	SEDIMENT	15-AUG-2015	J2999-215.43	
HK1530514-005	B5	SEDIMENT	15-AUG-2015	J2999-215.43	
HK1530514-006	B6	SEDIMENT	15-AUG-2015	J2999-215.43	
HK1530514-007	WSD1	SEDIMENT	15-AUG-2015	J2999-215.43	
HK1530514-008	WSD2	SEDIMENT	15-AUG-2015	J2999-215.43	
HK1530514-009	U2	SEDIMENT	15-AUG-2015	J2999-215.43	
HK1530514-010	NM6	SEDIMENT	15-AUG-2015	J2999-215.43	
HK1530514-011	NM1	SEDIMENT	15-AUG-2015	J2999-215.43	

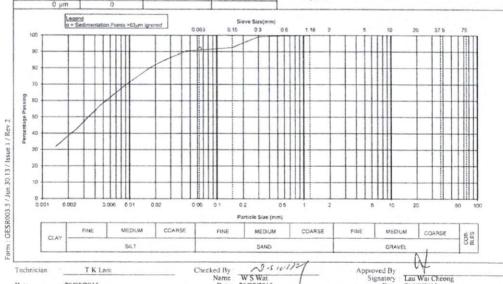
Page: 2 of 2

TEST CEI SUMMAR GEOSPEC	Y O	SO	IL C	LASSI	FICA	ATIC	ON TE	ST RE	SUL	Γ						Gammon 4	5
																Report No : J2999-215 43	
Customer:	ALS To	chnich	em (HK	Pty Ltd							ob No :	12999			_	Works Order No. : 215	
Project :										Conti	nact No.:					Date: 20/08/2015	
Sample ID		Sample		Δ Moisture	Test 6.1	Test 6.1	Test 6.1	Test 6.2	Passing	Preparation	Parti	ele Siz	e Distr	ibuti	on	Description	Sample
No.	No.	Туре	Depth	Content		Limit	Index	Liquidity Index	425µm Test Sieve (%)	Method	f Test Method	Grave		Silt			Origin
	Pa s	- n	(m)	(%)	(%)	(%)	(%)		(76)		1,5,7	0	9	_	_	Grey, slightly sandy SILT/CLAY	1.
HK 1530514-001	BI	D D			_	_			_		1.5.7	0	7			Grey, slightly sandy SILT/CLAY	.1
HK 1530514-002 HK 1530514-003	B2 B3	D				-					1.5.7	0	14	-		Grey, slightly sandy SILT/CLAY with shell fragments	.:
HK 1530514-003	B4	D									1.5.7	1	11	-	-	Grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	.1
11K 1530514-004	B5	D			_						1.5.7	7	22			Grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	-1
EK 1530514-005	B6	D									1,5,7	6	34			Grey, slightly gravelly, slightly sandy SHLT/CLAY with shell fragments	.3
HK 1530514-007	-	D									1.5.7	1	16	50	33	Grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	.!
HK 1530514-008		D									1.5.7	1	22	48	29	Grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	-1
HK 1530514-009		D									1,5,7	1	74	12	13	Grey, slightly gravelly, silty, clayey SAND with shell fragments	,1
HK 1530514-010											1.5.7	5	48	23	24	Grey, slightly gravelly, sandy SILT/CLAY with shell fragments	T .,
	U -U LB -L Bi.K -B SPIL -S	Test M indisturb arge Dis tock Sar PT Split officient	ed Sample turbed Sa nple. -Barrel Sa Sample. -W S Wal	ecoedance with the more ample.	P M D PT -	Pryson S Mazier Small D Portable To Follow	ample, Sample, Sample, Sisterbed San triple tube :	nple. Sample. Sample. Ap	N P - No A R - As H P - Hs " - Moisi ort proved By	t Plastic. Received, and Picked, ture Content for Lau Wat Cheo Deputy Labors sory (Reg. No. 6	ng story Mana	A.D/ O.D(W.S1	ier Dries Wet Siev	t. red. Kong	Laborz	Tent 3 Compension Who start Content 45:107 Ct ST (C)	
				laboratory act	vities as	listed in I	he HOKLAS	Directory of	Accredit	ed Laboratories Technology Con	This repo	n ilente n	of be reg	roduc	ed unle	ess with prior written approval from this laboratory	-
								21 Churi	Wane Stre	et. Tooung Kwa	n O Industr	ial Estat					
D Germon Constru Form GESS001 / Ja								Tseung	Kwar O. I	T Tel 269919	80, Fax : 2	0917547	_				Page 1 of

TEST CERTIFICATE SUMMARY OF SOIL CLASSIFICATION TEST RESULT GEOSPEC 3 : 2001

Project :										Cont	ract No.:					Date : 2	0/08/2015		
Sample ID		Sample	:	∆ Moisture Content		Test 6.1 Plastic	Test 6.1 Plasticity			Preparation Method	Part	icle Siz	e Distr	ributic	383		Description	Sample	
No.	No.	Туро	Depth (m)	(%)		Limit		Index	Test Sieve (%)		# Test Method	Grave						Origin	
HK 1530514-011	NMI	D									1,5,7	17	52	15	16	Grey, silty, very claye	y, gravelly SAND with shell fragments	.3	
	_		_								-	-	1	-					
						_			-		-	-		-	-			-	
	-	-		-	-						-								
																		-	
		-		_		-	-	-	-	-			\vdash	-	-				
egend	Δ=	Test N	ethad in a	ecordance with	GEOSPI	EC 3 200	Test 5.1 N	loisture Con	tent at 45	C + 5°C (A), T	est 5.2 Mo	sture Cor	ntent at	163 °C	15°C	(B). Test 5.3 Comparative I	Moisture Content 45/105 °C+ 5°C (C)		
	U - L LB L BLK - B	Indisturb arge Di lock Sar	od Sample sturbed Sai	e. mple	p M D	Piston S Mazier S Smal(D	emple.	pie,	N.P. No A.R As H.P Ha			A.D - A O.D - C W.S - 1	Oven Dr	red.		Estimated Uncerta -	Refer the Individual Test Report, Refer the Individual Test Report Information provided by customer		
Notes			Sample.				on supplem			1									
Checked by		-		112						Lau War Chee Deputy Labor	story Mana	ger		_			27/08/2015		
			Hong	Kong Actred	itation So	nvice (HK Lin the HK	AS) has acer OKLAS Dire	edited this li	boratory (i	Reg No 055 - 1	(EST) unde	r the Hos	ng Kong reproduc	Labor red unit	atory A	Accreditation Schome (HOK h prior written approval from	LAS) for specific n this laboratory.		
			HUC	Harry School	W 42 175 100	30. 11	Party and Living			Technology Cer et, Tseung Kwa	tre								

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION



GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

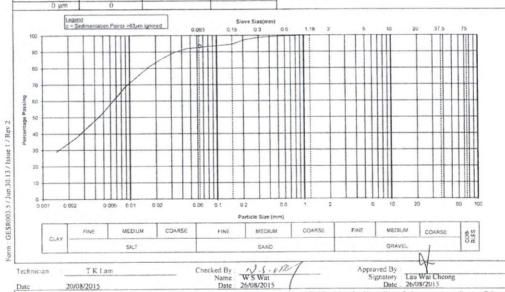
Sieve Method	Method A	*Upon request	 Delete as appropriate 	¹ Information provided l	by customer
Description	Grey, slightly sandy			Sample Origin	: -1
				Sample Type	: Small Disturbed
Tested Date	20/08/2015			Specimen Depth (m)	
Date Received				Sample Depth (m)	
				Sample No.	BI
Project				Sample ID No	HK1530514-001
	: ALS Technichem (HK) Pty Ltd		BH / TP * No.	
	. J2999	Contract No		Works Order No.	. 215
				Report Ivo	32999-213 43

Diere interior : interior	**	periode de la constante	Delete as appropri	are anon	manon provided by cu	HOME	
SIEVE ANALYSIS	Percent Passing	*Expanded Uncertainty	*Cumulative Percent Passing	SEDIMENTATION Specific Gravity (# i	fassumed): 2.65		
Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)	Dispersant Details : Sampling History	Sodium hexametapho As received	sphate, Sodiun	n carbonate
100.0 mm	100			The presence of any	visible organic matter	in the soil : No	one
75.0 mm	100			7			
63.0 mm	100			Particle	Expanded	% Finer	Expanded
50.0 mm	100			Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100				Particle Diameter	K	% finer than D
28.0 mm	100			(mm)	(mm)	(%)	(%)
20.0 mm	100			0.0639		92	-
14.0 mm	100			0.0454		90	-
10.0 mm	100			0.0325	-	87	-
6.30 mm	100			0.0232		84	
5,00 mm	100			0.0166	-	80	-
3.35 mm	100			0.0089		69	-
2.00 mm	100			0.0046	-	57	-
1.18 mm	100			0.0024		42	
600 µm	100			0.0014		32	
425 µm	100			SUMMARY :			
300 µm	99			Gravel (%)	: 0		
212 µm	96		-	Sand (%)	: 9		
150 µm	93			Silt (%)	: 53		
63 μm	91			Clay (%)	: 38		
0 μm	0						

Date 20/08/2015 Checked By Name 26/08/2015 (PKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HoKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N T Tel 26991980, Fax : 26917547


Report No.

J2999-215.43

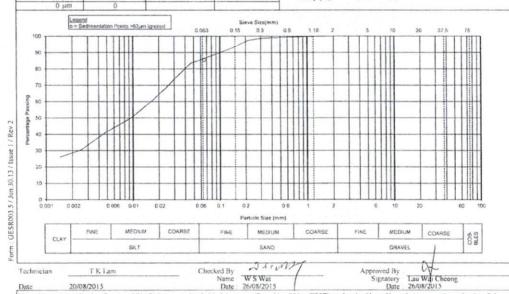
Works Order No 215 BH / TP . No. ALS Technichem (HK) Ptv Ltd Customer Sample ID No. Sample No HK1530514-002 Project Date Received 20/08/2015 Sample Depth (m) Tested Date 20/08/2015 Specimen Depth (m) Sample Type Small Disturbed Description : Grey, slightly sandy SILT/CLAY Sample Origin

Sieve Method Method A * Upon request * Delete as appropriate 1 Information provided by customer *Comulative Percent Passing SEDIMENTATION ANALYSIS SIEVE ANALYSIS *Expanded Specific Gravity (# if assumed) = 2.65 #
Dispersant Details : Sodium hexametephosphate, Sodium carbonate
Sampling History : As received Passing Uncertainty t the Perc with Expanded Sieve Size Sampling History : As received The presence of any visible organic matter in the soil : Nonc Passing (%) Uncertainty (%) 100.0 mm Expanded Uncertainty of the Particle Diameter *Expanded Uncertainty of % finer than D Particle Diameter 63.0 mm 37.5 mm 28.0 mm (mm) 0.0641 0.0455 0.0325 (mm) (%) 20.0 mm 10.0 mm 6.30 mm 3 35 mm 2.00 mm 99 SUMMARY Gravel (%) Sand (%) 59 34 Silt (%) Clay (%)

20/08/2015 Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory

© Gammon Construction Ltd

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N T. Tel. 26991980, Fax. 26917547



12999-215.43

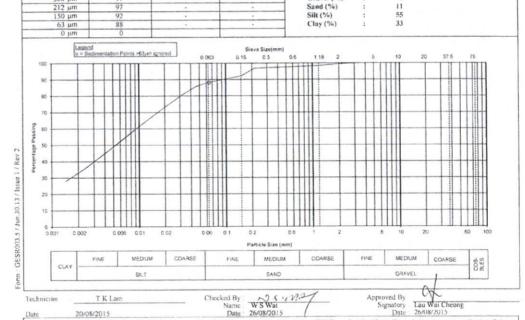
Report No. Works Order No. Job No. 215 Contract No. ALS Technichem (HK) Pty Ltd Sample ID No Sample No. Project HK1530514-003 Date Received 20/08/2015 Tested Date : 20/08/2015 Sample Depth (m) Specimen Depth (m) Small Disturbed Sample Type Description Grey, slightly sandy SILT/CLAY with shell fragments Sample Origin Sieve Method : Method A

Sieve Method : Method	A	Opon request	* Defete as appropri	ate 'Infon	mation provided by cus	tomer	
SIEVE ANALYSIS Sieve Size	Percent Passing	* Expanded Uncertainty of the Percent	Cumulative Percent Passing with Expanded	SEDIMENTATION Specific Gravity (# i Dispersant Details :			n carbonate
Sieve Size	(%)	Passing (%)	Uncertainty (%)	Sampling History	As received		
100.0 mm	100	-	-	The presence of any	visible organic matter i	in the soil: No	one
75.0 mm	100	-	-				
63.0 mm	100			Particle	*Expanded	% Finer	*Expanded
50.0 mm	100			Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100	-			Particle Diameter	K	% finer than I
28.0 mm	100			(mm)	(mm)	(%)	(%)
20.0 mm	100			0.0655		86	-
14.0 mm	100			0.0466	-	84	
10.0 mm	100	-		0.0337		77	
6.30 mm	100			0.0244		69	-
5.00 mm	100	-		0.0176		62	-
3.35 mm	100			0.0094		50	-
2.00 mm	100			0.0048		41	-
1.18 mm	100			0.0025	-	30	
600 µm	99		-	0.0014		26	-
425 µm	99	-		SUMMARY :			
300 µm	99			Gravel (%)	: 0		
212 µm	97			Sand (%)	: 14		
150 µm	94	-		Silt (%)	: 58		
63 µm	86			Clay (%)	: 28		
0 µm	0						

20/08/2015 Date Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

@ Gammon Construction Ltd

Technology Centre
21 Chun Wang Street, Tsaung Kwan O Industrial Estate,
Tsaung Kwan O, N T. Tel ;26991980, Fax : 26917547


J2999-215 43

Report No. Works Order No. 12999 Job No Contract No. ALS Technichem (HK) Pty Ltd BIL/TP * No. Customer Sample ID No. HK1530514-004 Project Sample No. Sample Depth (m) Date Received 20/08/2015 Specimen Depth (m) Tested Date . 20/08/2015 Small Disturbed Sample Type Grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments Sample Origin Description

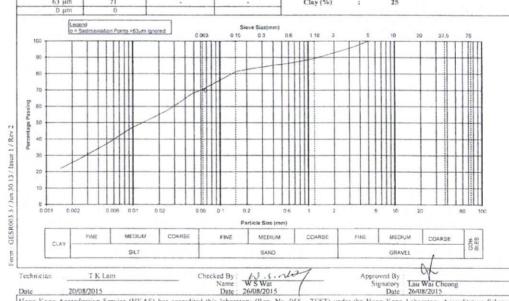
Sieve Method Method A *Upon request Delete as appropriate Information provided by customer Expanded *Cumulative SEDIMENTATION ANALYSIS SIEVE ANALYSIS Specific Gravity (# if assumed) : 2.65 #
Dispersant Details : Sodium hexametaphosphate, Sodium carbonate
Sampling History : As received 2 65 # Percent Passing Uncertainty with Expanded of the Percent Sieve Size Passing (%) Uncertainty (%) The presence of any visible organic matter in the soil : None 100.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm Particle Expanded Expanded Diameter Uncertainty of the than D Uncertainty of Particle Diame % finer than D (%) 28.0 mm (mm) 20.0 mm 14.0 mm 100 6.30 mm 5.00 mm 3.35 mm 600 μm 425 μm

Gravel (%) Sand (%)

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

@ Gammon Construction Ltd

Technology Centre
21 Churi Wang Street, Tseung Kwan O Industrial Estate.
Tseung Kwan O, N T Tel. 26991980, Fax: 26917547



J2999-215 43

Job No Works Order No. Contract No 215 : ALS Technichem (HK) Pty Ltd BH / TP * No. Project Sample ID No. Sample No. HK1530514-005 Sample Depth (m) Specimen Depth (m) Date Received: 20/08/2015 Tested Date : 20/08/2015 Sample Type Sample Origin Small Disturbed Description : Grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments *Upon request Sieve Method : Method A · Delete as appropriate 1 Information provided by customer

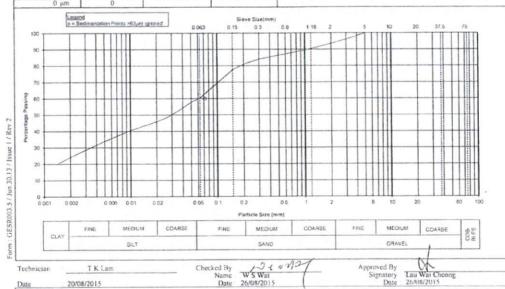
			sereso as appropri	11101	material brosided of ear	TOTTICE .	
SIEVE ANALYSIS	Percent Passing	*Expanded Uncortainty	*Cumulative Percent Passing	SEDIMENTATION Specific Gravity (# i			
Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)		Sodium hexametapho: As received	sphate, Sodiun	carbonate
100 0 mm	100	-	-	The presence of any	visible organic matter	in the soil : No	one
75.0 mm	100						
63.0 mm	100			Particle	*Expanded	% Finer	*Expanded
50.0 mm	100			Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100				Particle Diameter	K	% finer than D
28.0 mm	100			(mm)	(mm)	(%)	(%)
20.0 mm	100	-		0.0680		70	1 -
14.0 mm	100			0.0483		68	
10.0 mm	100		-	0.0348		63	
6.30 mm	100			0.0250		58	
5.00 mm	100			0.0179		54	
3.35 mm	96			0.0094		47	
2.00 mm	93		-	0.0048		37	
1.18 mm	89			0.0025		28	
600 µm	86		-	0.0015	- 1	22	
425 µm	8.5			SUMMARY :			
300 µm	84			Gravel (%)	: 7		
212 µm	83			Sand (%)	: 22		
150 µm	81			Silt (%)	: 46		
63 µm	71			Clay (%)	: 25		
D same	0						

Date 20/08/2015 Date 26/08/2015

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

Technology Centre 21 Chun Wang Street, Tsoung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel. 26991980, Fax. 26917547


J2999-215.43

Report No.

Works Order No 215 Job No. Contract No. ALS Technichem (HK) Pty 1.td BH / TP . No. Sample ID No. HK1530514-006 Project Sample No. B6 Date Received: 20/08/2015 Sample Depth (m) Tested Date 20/08/2015 Specimen Depth (m) Small Disturbed Sample Type Description : Grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments Sample Ongin

Sieve Method : Method A *Upon request Delete as appropriate 1 Information provided by customer *Cumulative Percent Passing SEDIMENTATION ANALYSIS SIEVE ANALYSIS Expanded Specific Gravity (# if assumed): 2.65 # Dispersant Details Sodium hexametaphosphate, Sodium carbonate Sampling History As received The presence of any visible organic matter in the soil: None Uncertainty of the Percen Passing with Expanded Uncertainty (%) Passing (%) 100.0 mm 75.0 mm 100 *Expanded Uncertainty of the *Expanded Uncertainty of 63.0 mm than D 50.0 mm 37.5 mm 28.0 mm Diameter Particle Diameter K % finer than D (mm) 0.0716 0.0509 0.0364 0.0261 (mm) (%) 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 2.00 mm 1.18 mm 600 μm 425 μm 300 μm 87 SUMMARY Gravel (%) 6 34 Sand (%) Silt (%) 36 24 Clay (%)

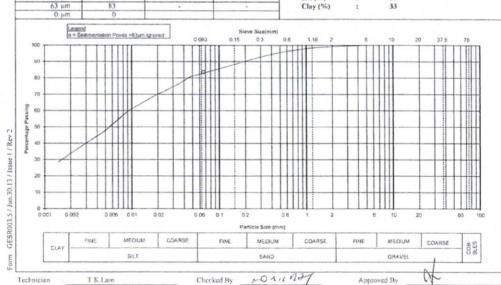
Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N T, Tel. 26991980, Fax. 26917547

thly report (aug 15)\7076134 d09 operation phase monitoring monthly report v2.1 - app f to j.docx

J2999-215.43


Job No. Contract No. Works Order No. 215 ALS Technichem (HK) Pty Ltd BH/TP * No Project Sample ID No Sample No. HK1530514-007 Date Received 20/08/2015 Sample Depth (m) Specimen Depth (m) Tested Date : 20/08/2015 Small Disturbed Sample Type Description - Grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments Sample Origin

Sieve Method : Method A *Upon request * Delete as appropriate Information provided by customer

SIEVE ANALYSIS *Expanded *Cumulative SEDIMENTATION ANALYSIS Specific Gravity (# if assumed) . 2.65 #
Dispersant Details : Sodium bexametaphosphate, Sodium carbonate Percent Passing with Expanded Uncertainty of the Percent Sieve Size Passing (%) Uncertainty (%) Sampling History : As received 100.0 mm 75.0 mm The presence of any visible organic matter in the soil : None 63.0 mm Particle

*Expanded Uncertainty of the Particle Diameter *Expanded Uncertainty of % finer than D 50.0 mm 37.5 mm than D (mm) 0.0659 0.0471 (mm) (%) 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm 3.35 mm 1.18 mm 600 μm 425 μm SUMMARY 95 93 Gravel (%) Sand (%) 16 50 33 Silt (%)

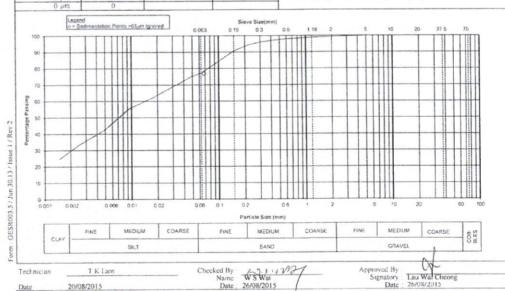
Clay (%)

Name WS Wat
Date 26/08/2015 Approved By Signatory Lau Wai Cheong Date 26/08/2015 20/08/2015 Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory

@ Gammon Construction Ltd

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N T. Tel. 26991980, Fax : 26917547

nthly report (aug 15)\7076134 d09 operation phase monitoring monthly report v2.1 - app f to j.doca



12999-215.43 Report No. Works Order No. Job No Contract No ALS Technichem (HK) Pty Ltd BIL/TP * No Sample II) No HK1530514-008 Project Sample No WSD2 Sample Depth (m) Date Received 20/08/2015 Tested Date 20/08/2015 Specimen Depth (m) Sample Type Small Disturbed Description Grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments Sample Origin

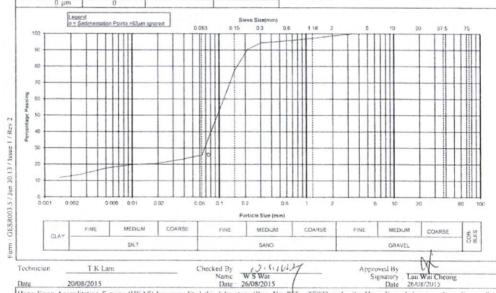
Sieve Method : Method A *Upon request * Delete as appropriate Information provided by customer

SEDIMENTATION ANALYSIS *Cumulative SIEVE ANALYSIS Expanded Specific Gravity (# if assumed) 2.65 #
Dispersant Details: Sodium hexametaphosphate, Sodium carbonate
Sampling History: As received Percent Passing with Expanded Sieve Size Uncertainty (%) Passing (%) 100.0 mm 75.0 mm The presence of any visible organic matter in the soil: None % Finer than D *Expanded Uncertainty of Expanded 63.0 mm Uncertainty of the 50.0 mm 37.5 mm Diameter Particle Diameter K % finer than D (%) (mm) 28.0 mm 20.0 mm 14.0 mm 100 100 100 0.0483 0.0346 0.0247 6.30 mm 5.00 mm 3.35 mm 2.00 mm SUMMARY Gravel (%) Sand (%) 22 Silt (%) Clay (%) 48 29

Date 20/08/2015 Name W.S.Wat Signatory Date 26/08/2015 Date 26/08/2015 TeST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

@ Gammen Construction Ltd

Technology Centre
21 Chun Wang Street, Tseung Kwan O Industrial Estate,
Tseung Kwan O, N T Tel:26991980, Fax: 26917547


J2999-215 43

Report No

Job No Works Order No. ALS Technichem (HK) Pty Ltd Customer BH / TP . No. Sample ID No HK1530514-009 Sample No. 1.12 Date Received . 20/08/2015 Sample Depth (m) Tested Date 20/08/2015 Specimen Depth (m) Small Disturbed Description : Grey, slightly gravelly, silty, clayer SAND with shell fragments
Sieve Method : Method A **Upon request * Delete as app Sample Origin

· Delete as appropriate * Information provided by customer SIEVE ANALYSIS Expanded *Cumulative SEDIMENTATION ANALYSIS Percent Passing Specific Gravity (# if assumed): 2.65 # Dispersant Details Sodium hexametaphosphate, Sodium carbonate Sampling History - As received The presence of any visible organic matter in the soil: None Passing Uncertainty of the Perci with Expanded Sieve Size (%) 100 100 Passing (%) Uncertainty (%) 100.0 mm 75.0 mm *Expanded Uncertainty of the Expanded Diameter Uncertainty of 50.0 mm 37.5 mm than D Particle Diameter % finer than D 28.0 mm 20.0 mm 14.0 mm (mm) (%) 0.0533 10.0 mm 6.30 mm 5.00 mm 100 100 100 2.00 mm 1.18 mm 600 µm 96 95 425 μm 300 μm SUMMARY Gravel (%) 74 Sand (%) Silt (%) Clay (%) 12

Date 26/08/2015 Date 20/08/2015 Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

Technology Centre
21 Chun Wang Street, Tseung Kwan O Industrial Estate,
Tseung Kwan O, N T Tel 26991980, Fax 26917547

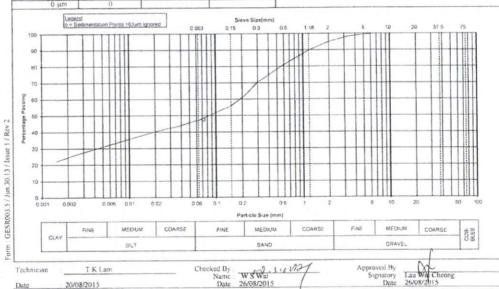
Job No. 12999 ALS Technichem (HK) Pty 1.td Customer Project

Report No Works Order No. BH / TP * No Sample ID No.

J2999-215 43 HK1530514-010

Date Received: 20/08/2015

Sample Depth (m) Specimen Depth (m) Sample Type


Small Disturbed

Tested Date : 20/08/2015

Description Grey, slightly gravelly, sandy S11.T/CLAY with shell fragments *Upon request

Sample Origin Information provided by customer

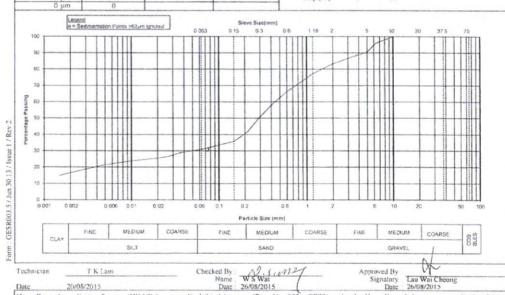
Sieve Method : Method A Delete as appropriate SEDIMENTATION ANALYSIS SIEVE ANALYSIS - Expanded *Cumulative Specific Gravity (# if assumed) . 2.65 #
Dispersant Details Sodium hexametaphosphate, Sodium carbonate
Sampling History As received Percent Passing with Expanded Uncertainty of the Percent Sieve Size Passing (%) Uncertainty (%) The presence of any visible organic matter in the soil: None 100.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm Particle Expanded Expanded Uncertainty of the than D Uncertainty of Particle Dian % finer than D (%) 28.0 mm 20.0 mm 14.0 nun (mm) 3.35 mm 2.00 mm 1.18 mm 0.0049 600 µm Gravel (%) Sand (%) Silt (%) 48 23 24 47 Clay (%)

Name: WS Wat Date 26/08/2015 20/08/2015 Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory

© Gammon Construction Ltd

Technology Centre
21 Chun Wang Street, Tscung Kwan O Industrial Estate
Tscung Kwan O, N T, Tel. 26991980, Uax. 26917547

Signatory



J2999-215.43

Report No Works Order No 215 Contract No. : Customer ALS Technichem (HK) Pty Ltd BH/TP * No. Project Sample ID No HK1530514-011 Sample No. Date Received: 20/08/2015 Sample Depth (m) Tested Date : 20/08/2015 Specimen Depth (m) Sample Type Sample Origin Small Disturbed Description : Grey, silty, very clayey, gravelly SAND with shell fragments Sieve Method : Method A *Upon request * Delete as appropriate Information provided by customer

Diete pietilea . Menios		oponioques.	Derete as appropri	in the	nation provided by eur	HOUSE	
SIEVE ANALYSIS	Percent Passing	^Expanded Uncertainty	*Cumulative Percent Passing	SEDIMENTATION Specific Gravity (# i	f assumed): 2.65 i		
Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)	Dispersant Details Sampling History	Sodium hexametapho As received	sphate, Sodier	n carbonate
100.0 mm	100		1 .	The presence of any	visible organic matter	in the soil: N	one
75.0 mm	100						
63.0 mm	100			Particle	*Expanded	% Finer	*Expanded
50.0 mm	100		-	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100				Particle Diameter	K	% finer than D
28.0 mm	100		-	(mm)	(mm)	(%)	(%)
20.0 mm	100	1 -		0.0731		31	-
14.0 mm	100	-		0.0518		30	-
10.0 mm	100			0.0368		29	
6.30 mm	96			0.0263	-	27	-
5.00 mm	91		-	0.0187		25	-
3.35 mm	88		-	0.0097		24	
2.00 mm	83			0.0049		21	
1.18 mm	77			0.0025		18	-
600 µm	66			0.0014		15	-
425 µm	59			SUMMARY :	4		
300 µm	51			Gravel (%)	: 17		
212 µm	42			Sand (%)	: 52		
150 µm	36	-		Silt (%)	: 15		
63 µm	31	1 .		Clay (%)	: 16		
O jum	0						

Signatory Lau Wai Cheong Date 26/08/2015 20/08/2015 Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

Technology Centre
21 Chun Wang Street, Tseung Kwan O Industrial Estate,
Tseung Kwan O, N T Tel. 26991980, Fax. 26917547

APPENDIX J

Event and Action Plan

SMEC ASIA

Event and Action Plan for Odour Monitoring

		ACTION		
ACTION LEVEL	14	BC	SOR	CONTRACTOR
1. Identify 3. Carry of or common or common 4. Repeat 5. If exceet 5.	Identify source/reason of exceedance or odour complaints; Notify the Contractor, IEC and SOR of exceedance Carry out investigation to identify the source/reason of exceedance or complaints. Investigation shall be completed within 1 week; Repeat odour patrol to confirm finding; and If exceedance continues, notify the Contractor, IEC and SOR.	Check odour patrol results submitted by ET: Check Contractor's mitigation measures. Supervise the implementation of remedial measures.	Confirm receipt of notification of exceedance in writing. Notify DSD, and Ensure remedial measures properly implemented.	Notify the SOR, ET. IEC and DSD when receipt of odour complaint: Rectify any unacceptable practice; and formulate remedial actions; and Correspond to the complainant within 10 days to inform the cause of the nuisance and action taken.
I. Identify Ontify to a Carry or complate complate complate complate to a Repeat of George detected If exceed to a recomplate complate to a Repeat of Carry or a Rep	Identify source / reason of exceedance or odour complaints: Notify the Contractor, IEC and SOR of exceedance Carry out investigation to identify the source/reason of exceedance or complaints. Investigation shall be completed within 1 week: Repeat odour patrols to confirm findings. Recase odour patrol frequency to bi-weekly until no exceedance is detected at the ASR in the conservative 2 months and If exceedance continues, notify the Contractor, IEC and SOR.	Check patrol results submitted by ET: Discuss amongst SOR and Contractor on the potential remedial actions: Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the SOR accordingly: Supervise the implementation of remedial measures.	Confirm receipt of notification of exceedance in writing: Notify DSD. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; and Ensure remedial measures properly implemented.	Notify the SOR, ET, IEC and DSD when receipt of odour complaints: Modify or improve design as appropriate: Submit proposals for remedial actions to IEC within three working days of notification of odour exceedance / complaint: Implement the agreed proposals Resubmit proposals if problem still not under control; and still not under control; and Correspond to the complainant within Iddays to inform the cause of the nuisance and action taken.

SMEC SMEC

Event and Action Plan for Odour Emission Monitoring

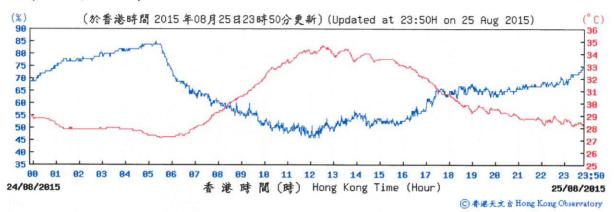
	Н	ACTION	SOR	CONTRACTOR
Identify source/reason of exceedance; Notify the Contractor, IEC and SOR of exceedance Carry out investigation to identify the source/reason of exceedance. Investigation shall be completed within 1 week; Monitor H ₂ S level sensors readings to confirm finding; and if exceedance continues, notify the Contractor, IEC and SOR	of 1.1 and and	Check H ₂ S level sensors readings submitted by ET; Discuss with ET and Contractor on the possible remedial actions as appropriate 3. Advise SOR on the effectiveness of the proposed remedial measures if any Supervise implementation of remedial measures if any	Confirm receipt of notification of exceedance in writing; and Notify DSD. Ensure remedial actions (if any) properly implemented.	 Rectify any unacceptable practice if any.
Identify source / reason of exceedance or odour complaints; Notify the Contractor, IEC and SOR of exceedance Carry out investigation to identify the source/reason of exceedance. Investigation shall be completed within 1 week; Monitor H ₂ S level sensors readings to confirm findings; if exceedance continues, notify the Contractor, IEC and SOR; and solve is identified by olfactometric analysis; carry out further air sampling and olfactometry analysis to demonstrate the effectiveness of the remedial measures taken.	. 2 ø	Check H ₂ S level sensors readings and/or olfactometry analysis results submitted by ET; Discuss amongst SOR and Contractor on the potential remedial actions: Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the SOR accordingly; Supervise the implementation of remedial measures.	1. Confirm receipt of notification of exceedance in writing: 2. Notify DSD: 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented; and properly implemented; and protion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Modify or improve system setting as appropriate; 2. Submit proposals for remedial actions to IEC within three working days of notification of odour exceedance; 3. Implement the agreed proposals. 4. Amend proposals if appropriate; and 5. If exceedance continues, consider what portion of the work is responsible and stop that portion of work until the exceedance is abated.

APPENDIX K

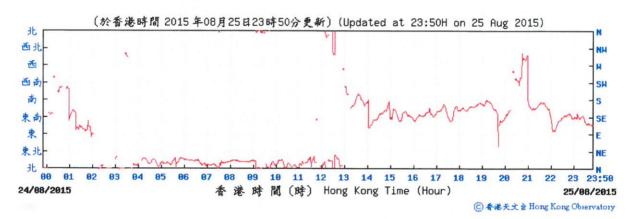
Weather Conditions

Daily Extract of Meteorological Observations, August 2015 – Tuen Mun Children and Juvenile Home

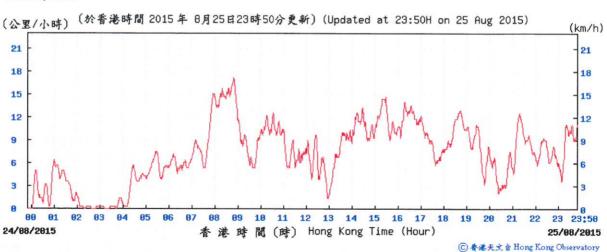
	Mean	Ai	r Temperatur		Mean	Mean Relative Humidity (%)	Total Rainfall (mm)	Prevailing Wind Direction (degrees)	Mean Wind Speed (km/h)
Day	Pressure (hPa)	Absolute Daily Max (deg. C)	Mean (deg.C)	Absolute Daily Min (deg. C)	Dew Point (deg. C)				
15	***	27.1	25.5	24.3	24.9	96	89	***	***
16	***	31.3	28.2	26.1	26.8	92	1	***	***
17	***	32.8	29.5	27	26.4	84	0	***	***
18	***	32.8	29.9	27.9	26.3	82	0	***	***
19	***	33.3	30	27.2	26.2	81	0	***	***
20	***	31.9	29.2	27.8	26.3	85	0	***	***
21	***	34.2	29.5	25.9	26	83	23	***	***
22	***	33.9	30.3	27.1	24.8	73	0	***	***
23	***	34.4	31	27.1	24.1	67	0	***	***
24	***	34.5	30.7	28.1	23.9	68	0	***	***
25	***	34.7	30.2	27.2	22.5	64	0	***	***
26	***	31.6	27.6	25.2	25	86	4.5	***	***
27	***	32.2	28.2	25.8	24.9	83	0	***	***
28	***	31.5	27.8	25.7	24.9	85	0.5	***	***
29	***	31.8	27.1	25.7	25.3	91	41.5	***	***
30	***	27.8	26.1	25.1	25	94	2	***	***
31	***	30.3	26.8	25.4	24.7	89	1.5	***	***


^{***} refers to unavailable

Rainfall measured in increment of 0.5 mm. Amount of < 0.5 mm cannot be detected



Hourly Meteorological Conditions on 25 August 2015 at Tuen Mun Station


Temperature/ Humidity:

Wind Direction:

Wind Speed:

