
Report

Contract No. HY/2012/08
Tuen Mun – Chek Lap Kok Link –
Northern Connection Sub-sea Tunnel
Section

Fifteenth Monthly Environmental Monitoring & Audit (EM&A) Report

11 February 2015

Environmental Resources Management

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com

Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section

Fifteenth Monthly Environmental Monitoring & Audit (EM&A) Report

Document Code: 0212330_15th Monthly EM&A_20150211.doc

Environmental Resources Management

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Client:	Project No	0:				
DBJV	021233	0				
This document presents the Fifteenth Monthly EM&A Report for Tuen Mun – Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section.	Date: 11 February 2015 Approved by: Mr Craig Reid Partner Certified by:					
	Mr Jovy ET Leade					
15 th Monthly EM&A Report	VAR	JT	CAR	11/02/15		
Revision Description	Ву	Checked	Approved	Date		
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.	Distribution Internal Public Confidential Distribution Internal OHSAS 18001: 2007 Certificate No. OHS 51595 South State of the Confidential State of the Certificate No. FS 32518			No. OHS 515956		

Ref.: HYDHZMBEEM00_0_2713L.15

12 February 2015

AECOM

By Fax (2293 6300) and By Post

Supervising Officer Representative's Office No. 8 Mong Fat Street, Tuen Mun, New Territories, Hong Kong

Attention: Messrs. Edwin Ching / Andy Westmoreland

Dear Sirs,

Re: Agreement No. CE 48/2011 (EP)

Environmental Project Office for the

HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities,

and Tuen Mun-Chek Lap Kok Link - Investigation

Contract No. HY/2012/08 TM-CLKL Northern Connection Sub-sea Tunnel Section Monthly EM&A Report for January 2015 (EP-354/2009/C)

Reference is made to the Monthly Environmental Monitoring & Audit (EM&A) Report (for January 2015) certified by the ET Leader (ET's ref.: "0212330_15th Monthly EM&A_20150211.doc" dated 11 February 2015) provided to us via e-mail on 11 February 2015.

We are pleased to inform you that we have no adverse comments on the captioned monthly EM&A report. We write to verify the captioned submission in accordance with Condition 4.4 of EP-354/2009/C.

Thank you for your kind attention. Please do not hesitate to contact the undersigned or the ENPO Leader Mr. Y. H. Hui should you have any query.

Yours sincerely,

F. C. Tsang

Independent Environmental Checker

Tuen Mun – Chek Lap Kok Link

Faffandlong

c.c. HyD – Mr. Stephen Chan (By Fax: 3188 6614)

HyD – Mr. Matthew Fung (By Fax: 3188 6614)

AECOM - Mr. Conrad Ng (By Fax: 3922 9797)

ERM – Mr. Jovy Tam (By Fax: 2723 5660)

Dragages – Bouygues JV – Mr. C. F. Kwong (By Fax: 2293 7499)

Internal: DY, YH, SLUI, ENPO Site

O:\Projects\HYDHZMBEEM00\02 Proj Mgt\02 Corr\HYDHZMBEEM00 0 2713L.15.doc

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	I
1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	SCOPE OF REPORT	2
1.3	ORGANIZATION STRUCTURE	2
1.4	SUMMARY OF CONSTRUCTION WORKS	2
2	EM&A RESULTS	4
2.1	AIR QUALITY	4
2.2	WATER QUALITY MONITORING	6
2.3	DOLPHIN MONITORING	7
2.4	EM&A SITE INSPECTION	12
2.5	Waste Management Status	13
2.6	ENVIRONMENTAL LICENSES AND PERMITS	13
2.7	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	15
2.8	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMA	NCE
	LIMIT	15
2.9	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL	
	Prosecutions	15
3	FUTURE KEY ISSUES	16
3.1	CONSTRUCTION ACTIVITIES FOR THE COMING MONTH	16
3.2	KEY ISSUES FOR THE COMING MONTH	16
3.3	MONITORING SCHEDULE FOR THE COMING MONTH	16
4	CONCLUSIONS AND RECOMMENDATIONS	17
4.1	CONCLUSIONS	17

APPENDIX A PROJECT ORGANIZATION

APPENDIX B CONSTRUCTION PROGRAMME

APPENDIX C ENVIRONMENTAL MITIGATION AND

ENHANCEMENT MEASURE IMPLEMENTATION

SCHEDULES (EMIS)

APPENDIX D ACTION AND LIMIT LEVELS

APPENDIX E CALIBRATION CERTIFICATE

APPENDIX F MONITORING SCHEDULE

APPENDIX G AIR QUALITY MONITORING RESULTS

APPENDIX H METEOROLOGICAL DATA

APPENDIX I WATER QUALITY MONITORING RESULTS

APPENDIX J IMPACT DOLPHIN MONITORING

APPENDIX K EVENT AND ACTION PLAN

APPENDIX L CUMULATIVE STATISTICS ON EXCEEDANCE AND

COMPLAINT

APPENDIX M WASTE FLOW TABLE

EXECUTIVE SUMMARY

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of the Tuen Mun – Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET) in accordance with *Environmental Permit No. EP-354/2009/A*. ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO). Subsequent applications for variation of environmental permits (VEP), *EP-354/2009/B* and *EP-354/2009/C*, were granted on 28 January 2014 and 10 December 2014, respectively.

The construction phase of the Project commenced on 1 November 2013 and will tentatively be completed by the end of 2018. The impact monitoring of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

This is the Fifteenth Monthly EM&A report presenting the EM&A works carried out during the period from 1 to 31 January 2015 for the *Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section* (the "Project") in accordance with the Updated EM&A Manual of the TM-CLK Link Project. As informed by the Contractor, major activities in the reporting period included:

Marine-based Works

• Rock Bund Deposition for Marine Sheetpile Remedial Works at Works Area – Portion N-A.

Land-based Works

- Diaphragm Wall Construction at Works Area Portion N-C;
- TBM Platform Construction at Works Area Portion N-A;
- Formwork and Metal Scaffolding works at North Launching Shaft at Works Area – Portion N-A and,
- Set up of Slurry Treatment Plant at Works Area Portion N-C.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP Monitoring 11 sessions

1-hour TSP Monitoring 11 sessions

Impact Water Quality Monitoring 13 sessions

Impact Dolphin Monitoring 2 sessions

Joint Environmental Site Inspection 4 sessions

Implementation of Marine Mammal Exclusion Zone

There was no dredging or marine sheet piling works in open waters during this reporting period. Rock bund deposition for marine sheet pile remedial works commenced on 5 January 2015 during day time. Thus, the day-time monitoring of Dolphin Exclusion Zone (DEZ) by dolphin observers was in effect throughout the period of remedial works, in which no sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded during the exclusion zone monitoring in the reporting month.

Summary of Breaches of Action/Limit Levels

Breaches of Action and Limit Levels for Air Quality

No Action Level or Limit Level of air quality exceedances were recorded in the water quality monitoring of this reporting month.

Breaches of Action and Limit Levels for Water Quality

No Action Level or Limit Level of water quality exceedances were recorded in the water quality monitoring of this reporting month.

Environmental Complaints, Non-compliance & Summons

No non-compliance with EIA recommendations, EP conditions and other requirements associated with the construction of this Contract was recorded in this reporting period.

No environmental complaint was received in this reporting period.

No environmental summons was received in this reporting period.

Reporting Change

There was no reporting change required in the reporting period.

Upcoming Works for the Next Reporting Month

Works to be undertaken in the next monitoring period of February 2015 include the following:

Land-based Works

- Diaphragm Wall Construction at Works Area Portion N-C;
- TBM Platform Construction at Works Area Portion N-A;
- Formwork and Metal Scaffolding works at North Launching Shaft at Works Area – Portion N-A and,
- Set up of Slurry Treatment Plant at Works Area Portion N-C.

Marine-based Works

 Rock bund deposition for marine sheet pile remedial works at Marine Works Area - Portion N-A.

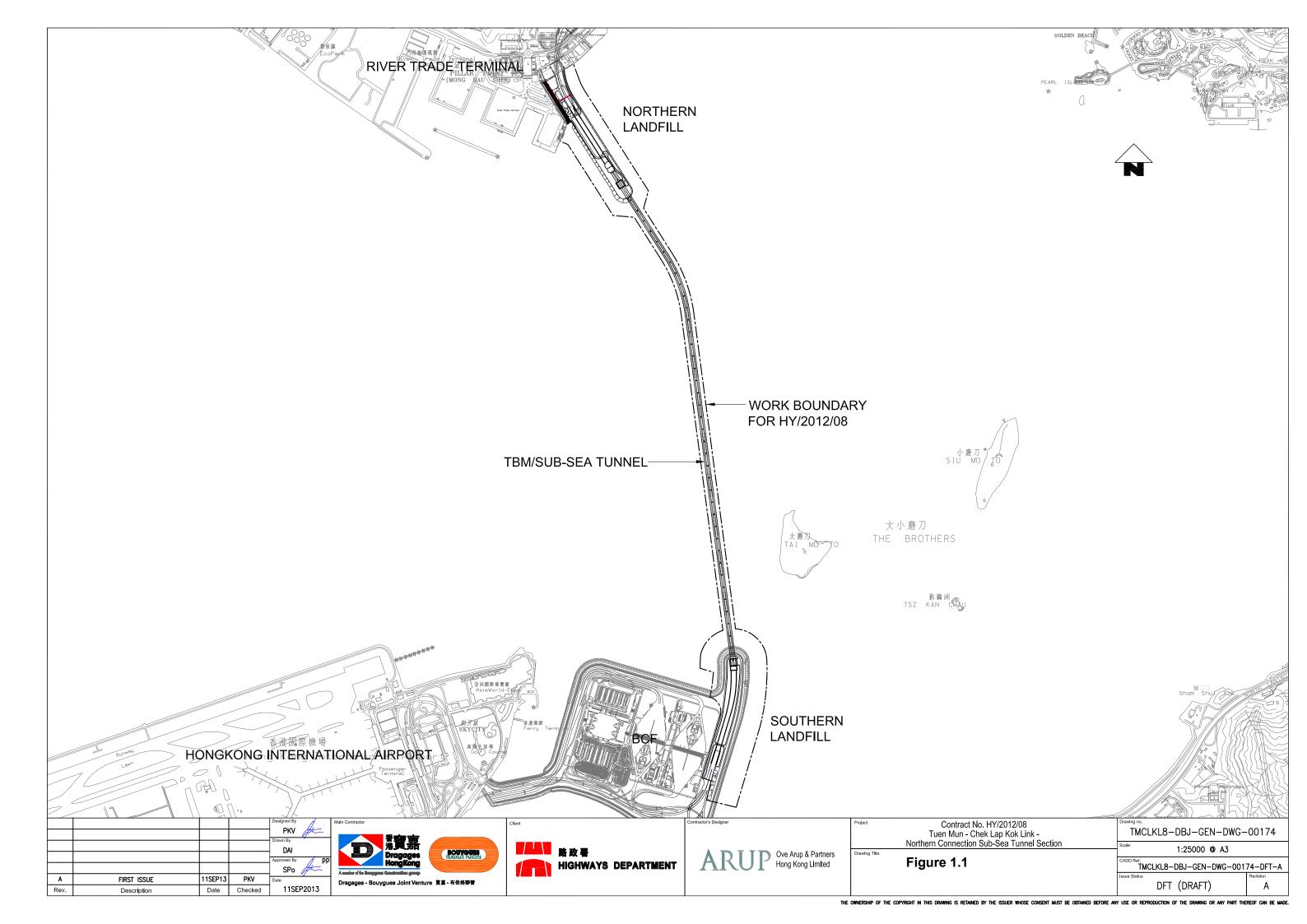
Future Key Issues

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of February 2015 are expected to be mainly associated with dust, marine water quality, marine ecology and waste management.

INTRODUCTION

1.1 BACKGROUND

1


According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong – Zhuhai – Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau – Tuen Mun – Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. ESB-175/2007) and the *Technical Memorandum of the Environmental Impact Assessment Process (EIAO-TM*). The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number AEIAR-146/2009), an Environmental Permit (EP-354/2009) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (VEP) (EP-354/2009A) was issued on 8 December 2010. Subsequent applications for variation of environmental permits (VEPs), *EP-354/2009/B and EP-354/2009/C*, were granted on 28 January 2014 and 10 December 2014, respectively.

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of TM-CLKL while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO).

Layout of the Contract components is presented in *Figure 1.1*.

The construction phase of the Contract commenced on 1 November 2013 and will tentatively be completed by 2018. The impact monitoring phase of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

1.2 Scope of Report

This is the Fifteenth Monthly EM&A Report under the *Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section.* This report presents a summary of the environmental monitoring and audit works in January 2015.

1.3 ORGANIZATION STRUCTURE

The organization structure of the Contract is shown in *Appendix A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Highways Department	Engr 16/HZMB	Kenneth Lee	2762 4996	3188 6614
SOR (AECOM Asia Company	Chief Resident Engineer	Edwin Ching	2293 6388	2293 6300
Limited)	0	Andrew Westmoreland	2293 6360	2293 6300
ENPO / IEC (ENVIRON Hong Kong	ENPO Leader	Y.H. Hui	3465 2888	3465 2899
Ltd.)	IEC Dr. F.C. Tsang		3465 2828	3465 2899
Contractor (Dragages – Bouygues Joint Venture)	Environmental Manager	C.F. Kwong	2293 7322	2670 2798
,	Environmental Officer	Bryan Lee	2293 7323	2670 2798
	24-hour complaint hotline	Rachel Lam	2293 7342	
ET (ERM-HK)	ET Leader	Jovy Tam	2271 3113	2723 5660

1.4 SUMMARY OF CONSTRUCTION WORKS

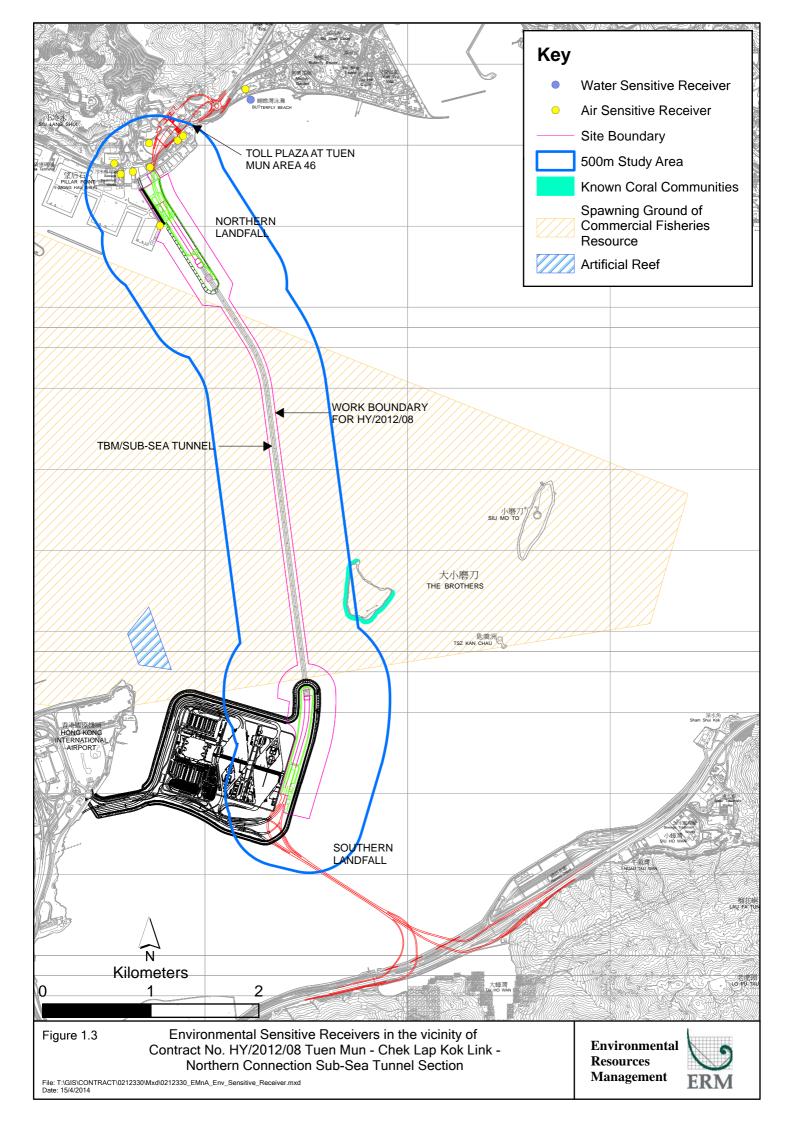
The construction phase of this Contract was commenced on 1 November 2013. The construction programme is shown in *Appendix B*.

As per DBJV's information, details of major construction works carried out in this reporting period are summarized in *Table 1.2*.

The general layout plan of the site showing the detailed works areas is shown in *Figure 1.2*. The Environmental Sensitive Receivers in the vicinity of the Project are shown in *Figure 1.3*.

The implementation schedule of environmental mitigation measures is presented in *Appendix C*.

Table 1.2 Summary of Construction Activities Undertaken during the Reporting Period


Construction Activities Undertaken

Marine-based Works

- Rock Bund Deposition for Marine Sheetpile Remedial Works at Works Area Portion N-A. *Land-based Works*
- Diaphragm Wall Construction at Works Area Portion N-C;
- TBM Platform Construction at Works Area Portion N-A;
- Formwork and Metal Scaffolding works at North Launching Shaft at Works Area Portion N-A;
- Set up of Slurry Treatment Plant at Works Area Portion N-C.

Figure 1.2 Locations of Construction Activities – January 2015

2 EM&A RESULTS

The EM&A programme required environmental monitoring for air quality, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections

2.1 AIR QUALITY

2.1.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual and the Enhanced TSP Monitoring Plan, impact 1-hour TSP monitoring was conducted three (3) times every six (6) days and impact 24-hour TSP monitoring was carried out once every six (6) days when the highest dust impact was expected. 1-hr and 24-hr TSP monitoring frequency was increased to three times per day every three days and daily every three days, respectively, as excavation works for launching shaft commenced on 24 October 2014.

High volume samplers (HVSs) were used to carry out the 1-hour and 24-hour TSP monitoring on 1, 4, 7, 10, 13, 16, 19, 22, 25, 28 and 31 January 2015 at the five (5) air quality monitoring stations in accordance with the requirements stipulated in the Updated EM&A Manual (*Figure 2.1*; *Table 2.1*). Wind meter was installed at the rooftop of ASR5 for logging wind speed and wind direction. Details of the equipment deployed are provided in *Table 2.2*. Copies of the calibration certificates for the equipment are presented in *Appendix E*.

Table 2.1 Locations of Impact Air Quality Monitoring Stations and Monitoring Dates in this Reporting Period

Monitoring Station	Monitoring Dates	Location	Description	Parameters & Frequency
ASR1	1, 4, 7, 10, 13, 16, 19,	Tuen Mun	Office	TSP monitoring
	22, 25, 28 and 31	Fireboat Station		 1-hour Total Suspended
	January 2015			Particulates (1-hour TSP,
ASR5		Pillar Point Fire	Office	$\mu g/m^3$), 3 times in every 6 days
		Station		 24-hour Total Suspended
				Particulates (24-hour TSP,
AQMS1		Previous River	Bare ground	μ g/m³), daily for 24-hour in
		Trade Golf		every 6 days
				Enhanced TSP monitoring
ASR6		Butterfly Beach	Office	(commenced on 24 October 2014)
		Laundry		 1-hour Total Suspended
				Particulates (1-hour TSP,
ASR10		Butterfly Beach	Recreational	$\mu g/m^3$), 3 times in every 3 days
		Park	uses	 24-hour Total Suspended
				Particulates (24-hour TSP,
				$\mu g/m^3$), daily for 24-hour in
				every 3 days

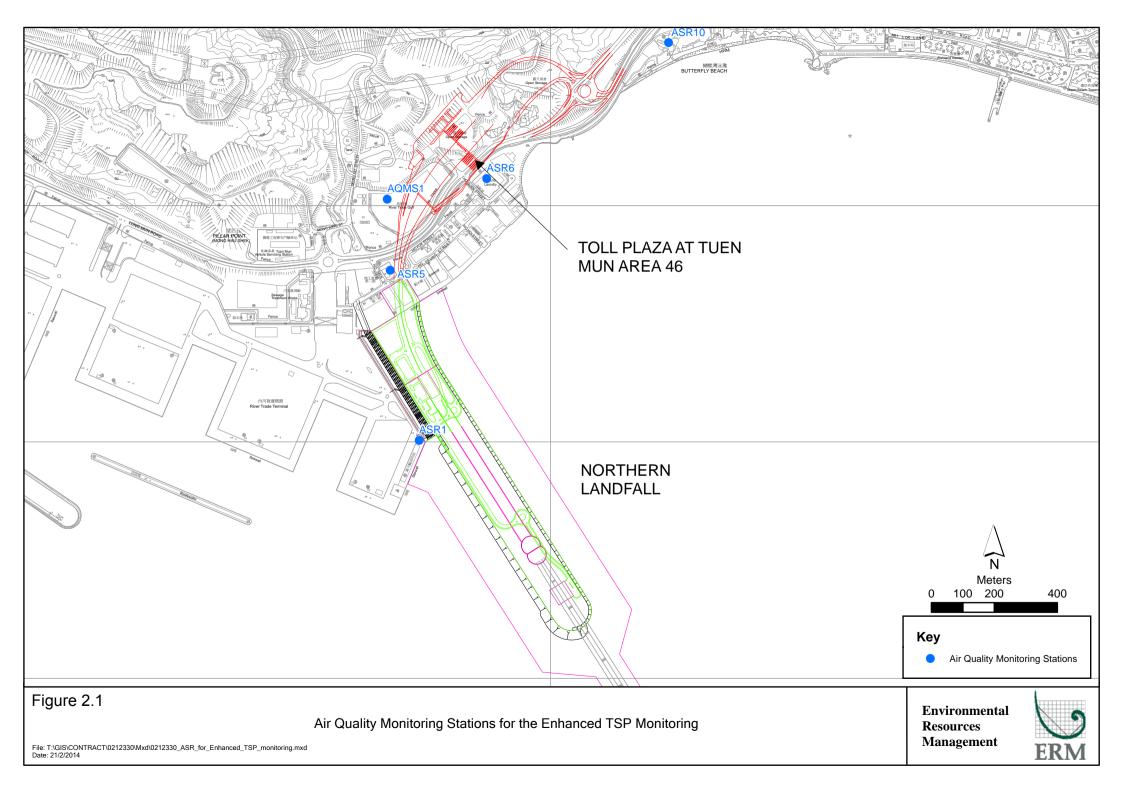


Table 2.2 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (1-hour TSP and 24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Sampler (Model No. TE-5170)
Wind Meter	Davis (Model: Weather Wizard III (S/N: WE90911A30)
Wind Anemometer for calibration	Lutron (Model No. AM-4201)

2.1.2 Action & Limit Levels

The Action and Limit Levels of the air quality monitoring is provided in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.1.3 Monitoring Schedule for the Reporting Month

The schedule for air quality monitoring in January 2015 is provided in *Appendix F*.

2.1.4 Results and Observations

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in *Tables 2.3* and *2.4*, respectively. Detailed impact air quality monitoring results and graphical presentations are presented in *Appendix G*.

Table 2.3 Summary of 1-hour TSP Monitoring Results in this Reporting Period

Station	Average (μg/m³)	Range (µg/m³)	Action Level	Limit Level
			(μg/m³)	$(\mu g/m^3)$
ASR1	193	53 - 307	331	500
ASR5	200	99 - 314	340	500
AQMS1	165	56 - 243	335	500
ASR6	159	53 - 276	338	500
ASR10	109	63 - 251	337	500

Table 2.4 Summary of 24-hour TSP Monitoring Results in this Reporting Period

Station	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ASR1	107	64 - 151	213	260
ASR5	105	76 - 148	238	260
AQMS1	94	58 - 118	213	260
ASR6	86	61 - 108	238	260
ASR10	75	52 - 101	214	260

The weather condition during the monitoring period varied from sunny to cloudy. The major dust sources in the reporting period include construction activities under the Contract as well as nearby traffic emissions.

A total of eleven monitoring events were undertaken in which no Action or Limit Level exceedances of 1-hr TSP were recorded in this reporting month. No Action or Limit Level exceedances for 24-hr TSP were record.

Meteorological information collected at the ASR5, including wind speed and wind direction, is provided in *Appendix H*.

2.2 WATER QUALITY MONITORING

2.2.1 Monitoring Requirements & Equipment

In accordance with the Updated EM&A Manual, impact water quality monitoring was carried out three days per week during the construction period at nine (9) water quality monitoring stations (*Figure 2.2; Table 2.5*).

Table 2.5 Locations of Water Quality Monitoring Stations and the Corresponding Monitoring Requirements

Station ID	Type	Coordinates		*Parameters, unit	Depth	Frequency
	•	Easting	Northing	_		
IS12	Impact Station	813218	823681	• Temperature(°C)	3 water depths: 1m	Impact
IS13	Impact Station	813667	824325	 pH(pH unit) 	below sea surface,	monitoring: 3
IS14	Impact Station	812592	824172	• Turbidity (NTU)	mid-depth and 1m	days per week,
IS15	Impact Station	813356	825008	• Water depth (m)	above sea bed. If	at mid-flood
CS4	Control / Far	810025	824004	 Salinity (ppt) 	the water depth is	and mid-ebb
	Field Station			 DO (mg/L and 	less than 3m, mid-	tides during the
CS6	Control / Far	817028	823992	% of	depth sampling	construction
	Field Station			saturation)	only. If water	period of the
SR8	Sensitive	816306	825715	• SS (mg/L)	depth less than 6m,	Contract.
	receiver				mid-depth may be	
	(Gazettal				omitted.	
	beaches in					
	Tuen Mun)					
SR9	Sensitive	813601	825858			
	receiver					
	(Butterfly					
	Beach)					
SR10A	Sensitive	823741	823495			
	receiver					
	(Ma Wan					
	FCZ)					

^{*}Notes:

In addition to the parameters presented monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or works underway nearby were also recorded.

Table 2.6 summarizes the equipment used in the impact water quality monitoring programme. Copies of the calibration certificates are attached in *Appendix E*.

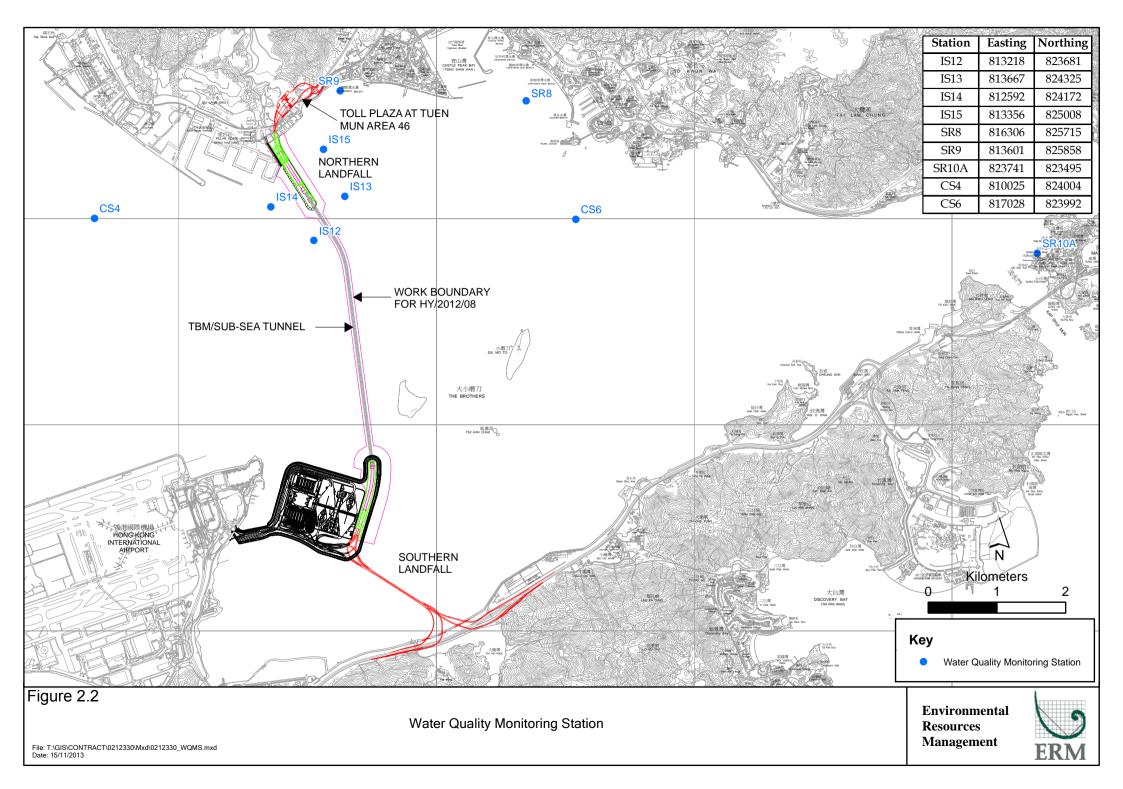


Table 2.6 Water Quality Monitoring Equipment

Equipment	Model
Water Sampler	Kahlsico Water-Bottle Model 135DW 150
Dissolved Oxygen Meter	YSI Pro 2030
pH Meter	HANNA HI 8314
Turbidity Meter	HACH 2100Q
Monitoring Position	"Magellan" Handheld GPS Model explorist GC
Equipment	DGPS Koden KGP913MK2 (1)

2.2.2 Action & Limit Levels

The Action and Limit levels of water quality impact monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.2.3 Monitoring Schedule for the Reporting Month

The schedule for water quality monitoring in January 2015 is provided in *Appendix F*.

2.2.4 Results and Observations

During this reporting period, only minor marine works included rock bund deposition for marine sheetpile remedial works was carried out at Portion N-A. It is useful to note that heavy marine traffic (not associated with the Project) was commonly observed nearby the Project site and its vicinity.

Impact water quality monitoring was conducted at all designated monitoring stations in the reporting month. Results and graphical presentations of impact water quality monitoring are presented in *Appendix I*.

In this reporting period, a total of thirteen monitoring events were undertaken in which no Action Level or Limit Levels of exceedances for impact water quality monitoring was recorded.

2.3 DOLPHIN MONITORING

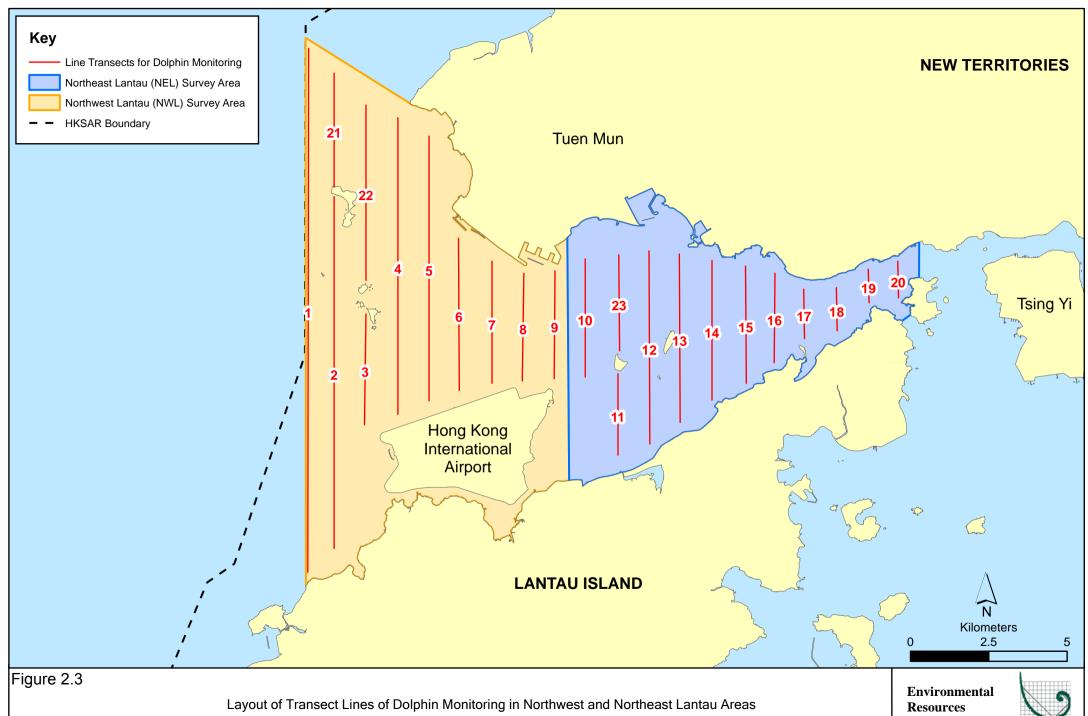
2.3.1 *Monitoring Requirements*

Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the dolphins. In order to fulfil the EM&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data collected by HyD's *Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge.* Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities on the monthly basis is adopted to avoid duplicates of survey effort.

2.3.2 *Monitoring Equipment*

Table 2.7 summarises the equipment used for the impact dolphin monitoring.

Table 2.7 Dolphin Monitoring Equipment


Equipment	Model
Global Positioning System (GPS)	Garmin 18X-PC
	Geo One Phottix
Camera	Nikon D90 300m 2.8D fixed focus
	Nikon D90 20-300m zoom lens
Laser Binocular	Infinitor LRF 1000
Marine Binocular	Bushell 7×50 marine binocular with compass and reticules
Vessel for Monitoring	65 foot single engine motor vessel with viewing platform 4.5m above water level

2.3.3 Monitoring Parameter, Frequencies & Duration

Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

2.3.4 Monitoring Location

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in *Figure 2.3*. The co-ordinates of all transect lines are shown in *Table 2.8* below.

File: T:\GIS\CONTRACT\0212330\Mxd\0212330_Transect_of_Dolphin_Monitoring.mxd Date: 29/11/2013

Management

 Table 2.8
 Impact Dolphin Monitoring Line Transect Co-ordinates

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	804671	814577	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805475	815457	14	Start Point	817537	820220
2	End Point	805477	826654	14	End Point	817537	824613
3	Start Point	806464	819435	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	819771	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	820220	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	820466	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	820690	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	820847	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	820892	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	820872	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818449	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807				
12	End Point	815542	824882				

2.3.5 Action & Limit Levels

The Action and Limit levels of impact dolphin monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.3.6 *Monitoring Schedule for the Reporting Month*

Dolphin monitoring was carried out on 8, 15, 27 and 29 January 2015. The dolphin monitoring schedule for the reporting month is shown in *Appendix F*.

2.3.7 Results & Observations

A total of 294.39 km of survey effort was collected, with 98.7% of the total survey effort being conducted under favourable weather conditions (ie Beaufort Sea State 3 or below with good visibility) in January 2015. Amongst the two areas, 116.20 km and 178.19 km of survey effort were collected from NEL and NWL survey areas, respectively. The total survey effort conducted on primary and secondary lines were 214.00 km and 80.39 km, respectively. The survey efforts are summarized in *Appendix J*.

A total of 11 groups of 46 Chinese White Dolphin sightings were recorded during the two sets of surveys in January 2015. All sighting were made in NWL during the two sets of surveys in January 2015, while no dolphin was sighted in NEL. Eight of the eleven sightings were made on primary lines during on-effort search, and none of the dolphin groups was associated with operating fishing vessel.

None of the sightings was made in the vicinity of the TM-CLKL Northern Connection Sub-sea Tunnel Section. The distribution of dolphin sightings during the reporting month is shown in *Figure 2.4*.

Encounter rates of Chinese White Dolphins are deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below with good visibility) in January 2015 with the results present in *Tables 2.9* and 2.10.

Table 2.9 Individual Survey Event Encounter Rates

		Encounter rate (STG)	Encounter rate (ANI)
		(no. of on-effort dolphin	(no. of dolphins from all
		sightings per 100 km of	on-effort sightings per 100
		survey effort)	km of survey effort)
		Primary Lines Only	Primary Lines Only
NEL	Set 1: January 8th/15th	0.0	0.0
NEL	Set 2: January 27 th /29 th	0.0	0.0
NWL	Set 1: January 8th/15th	4.3	21.6
INVVL	Set 2: January 27 th /29 th	7.5	37.6

Note: Dolphin Encounter Rates are deduced from the Two Sets of Surveys (Two Surveys in Each Set) in January 2015 in Northeast (NEL) and Northwest Lantau (NWL)

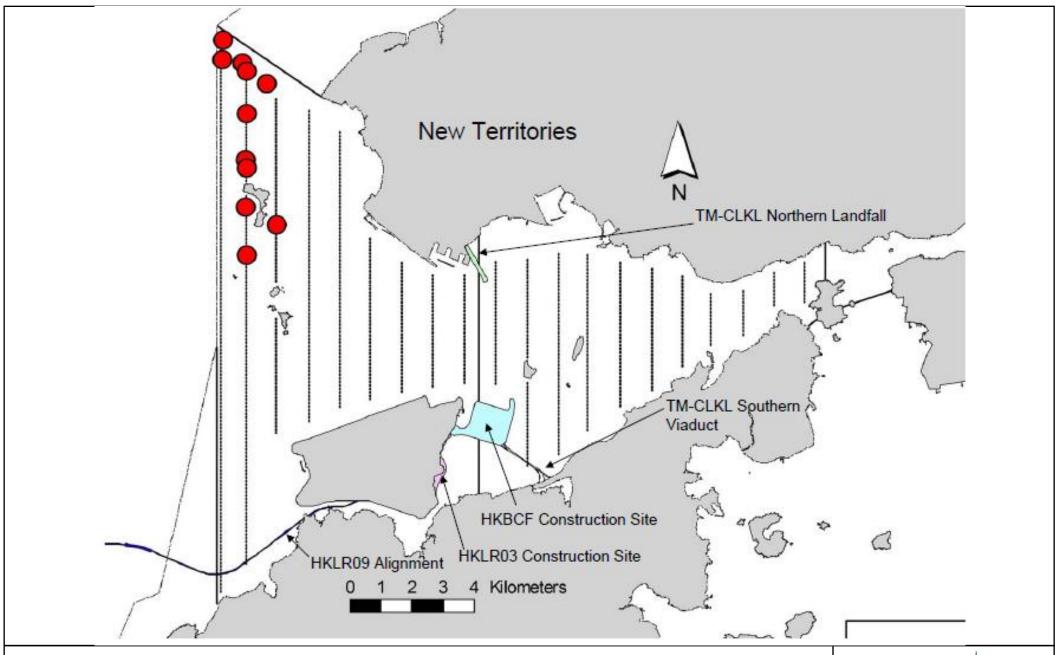


Figure 2.4

HY/2012/08 TM-CLKL Northern Connection Sub-sea Tunnel Section The distribution of dolphin sightings during the reporting period (Source: Adopted from HKLR03 Monitoring Survey in January 2015)

Environmental Resources Management

Table 2.10 Monthly Average Encounter Rates

	,	fort dolphin 00 km of survey	Encounter rate (ANI) (no. of dolphins from all on- effort sightings per 100 km of survey effort)		
	Primary Lines Only	Both Primary and Secondary Lines	Primary Lines Only	Both Primary and Secondary Lines	
Northeast Lantau	0.0	0.0	0.0	0.0	
Northwest Lantau	5.9	6.3	29.4	26.4	

Note: Overall dolphin encounter rates (sightings per 100 km of survey effort) from all four surveys are conducted in January 2015 on primary lines only as well as both primary lines and secondary lines in Northeast and Northwest Lantau.

The average group size of Chinese White Dolphins in January 2015 was 4.18 individuals per group. Five of the eleven dolphin groups were composed of 5-8 animals.

Due to monthly variation in dolphin occurrence within the survey area, it would be more appropriate to draw conclusion on whether any unacceptable impacts on dolphins have been detected related to the construction activities of this Project in the quarterly EM&A reports, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

2.3.8 Implementation of Marine Mammal Exclusion Zone

There was no dredging or marine sheet piling works in open waters during this reporting period. Rock bund deposition for marine sheetpile remedial works commenced on 5 January 2015 during day time. Thus, the day-time monitoring of Dolphin Exclusion Zone (DEZ) by dolphin observers was in effect throughout the period of marine sheetpile remedial works, in which no sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded during the exclusion zone monitoring in the reporting month.

2.4 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting month, four (4) site inspections were carried out on 7, 14, 21 and 28 January 2015.

Key observations and recommendations during the site inspections in this reporting period are summarized in *Table 2.11*.

Table 2.11 Specific Observations and Recommendations during the Weekly Site Inspection in this Reporting Month

Inspection Date	Observations	Recommendations/ Remarks
7 January 2015	 Works Area - Portion N-A Oil drum without drip tray was observed. Chemical container should be removed and place in chemical storage area. Works Area - Portion N-C Oil drum without drip tray was observed. 	 Works Area - Portion N-A The Contractor was reminded to provide drip tray for the oil drum. The Contractor was reminded to place the chemical container in chemical storage area. Works Area - Portion N-C The Contractor was reminded to provide drip tray for the oil drum.
14 January 2015	 Works Area - Portion N-A Excess muddy water was observed. General refuse was observed on the ground. Chemical containers should be removed and place in chemical storage area. 	 Works Area - Portion N-A The Contractor was reminded to clear the excess muddy water. The Contractor was reminded to clear the general refuse on the ground. The Contractor was reminded to remove the chemical containers.
21 January 2015	 Works Area - Portion N-A Cement bags should be covered. Works Area - Portion N-B Oil drum without chemical labels was observed. Chemical containers were observed on the ground. Works Area - Portion N-C Excess muddy water was observed. 	 Works Area - Portion N-A The Contractor was reminded to fully cover the cement bags. Works Area - Portion N-B The Contractor was reminded to provide chemical labels for the oil drum. The Contractor was reminded to remove the chemical containers. Works Area - Portion N-C The Contractor was reminded to clear the excess muddy water.
28 January 2015	 Works Area - Portion N-A Water spraying should be applied more frequently during windy condition. Works Area - Portion N-B Excess muddy water was observed. 	 Works Area - Portion N-A The Contractor was reminded to apply water spraying more frequently during windy condition. Works Area - Portion N-B The Contractor was reminded to clear the excess muddy water.

The Contractor has rectified all of the observations as identified during environmental site inspections in the reporting month.

2.5 WASTE MANAGEMENT STATUS

The Contractor had submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

Wastes generated during this reporting period include mainly construction wastes (inert and non-inert). Reference has been made to the waste flow table prepared by the Contractor (*Appendix M*). The quantities of different types of wastes are summarized in *Table 2.12*.

Table 2.12 Quantities of Different Waste Generated in the Reporting Month

Month/Year	Inert Construction	Imported Fill (tonnes)	Inert Construction	Non-inert Construction	Recyclable Materials (c)	Chemical Wastes	Marine So	ediment (m³)
	Waste (a) (tonnes)		Waste Re- used (tonnes)	Waste (b) (tonnes)	(kg)	(kg)	Category L	Category M (M _p & M _f)
January 2015	30,877	0	0	80	0	0	0	0

Notes:

- (a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.
- (b) Non-inert construction wastes include general refuse disposed at landfill.
- (c) Recyclable materials include metals, paper, cardboard, plastics, timber and others.

The Contractor was advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/ recycle of C&D materials and wastes. The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

2.6 ENVIRONMENTAL LICENSES AND PERMITS

The status of environmental licensing and permit is summarized in *Table 2.13* below.

Table 2.13 Summary of Environmental Licensing and Permit Status

License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/ Permit Holder	Remarks
Environmental Permit	EP-354/2009/C	28 January 2014	Throughout the Contract	HyD	Application for VEP on 10 December 2014 to replace EP-354/2009/B
Construction Dust Notification	363510	19 August 2013	Throughout the Contract	DBJV	-
Chemical Waste Registration	5213-422-D2516-01	10 September 2013	Throughout the Contract	DBJV	-
Construction Waste Disposal Account	7018108	19 August 2013	Throughout the Contract	DBJV	Waste disposal in Contract No. HY/2012/08
Waste Water Discharge License	WT00017707-2013	18 November 2013	30 November 2018	DBJV	For site WA18
Waste Water Discharge License	WT00019248-2014	5 June 2014	30 June 2019	DBJV	For site Portion N6 and Reclamation Area E
Construction Noise Permit	GW-RW0847-14	11 May 2014	10 May 2015	DBJV	For site WA23
Construction Noise Permit	GW-RW0706-14	29 September 2014	28 March 2015	DBJV	For Portion N6
Construction Noise Permit	GW-RW0550-14	25 July 2014	24 January 2015	DBJV	For Dredging and Reclamation Works
Construction Noise Permit	GW-RW0970-14	17 December 2014	14 May 2015	DBJV	For Dredging and Reclamation Works
Construction Noise Permit	GW-RW0674-14	18 September 2014	17 March 2015	DBJV	For GI Works at Southern Landfall
Marine Dumping Permit	EP/MD/15-142	7 November 2014	31 January 2015	DBJV	For Type 1 (Open Sea Disposal)

Notes:

HyD = Highways Department

DBJV = Dragages - Bouygues Joint Venture

VEP = Variation of Environmental Permit

2.7 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

In response to the site audit findings, the Contractors carried out all corrective actions.

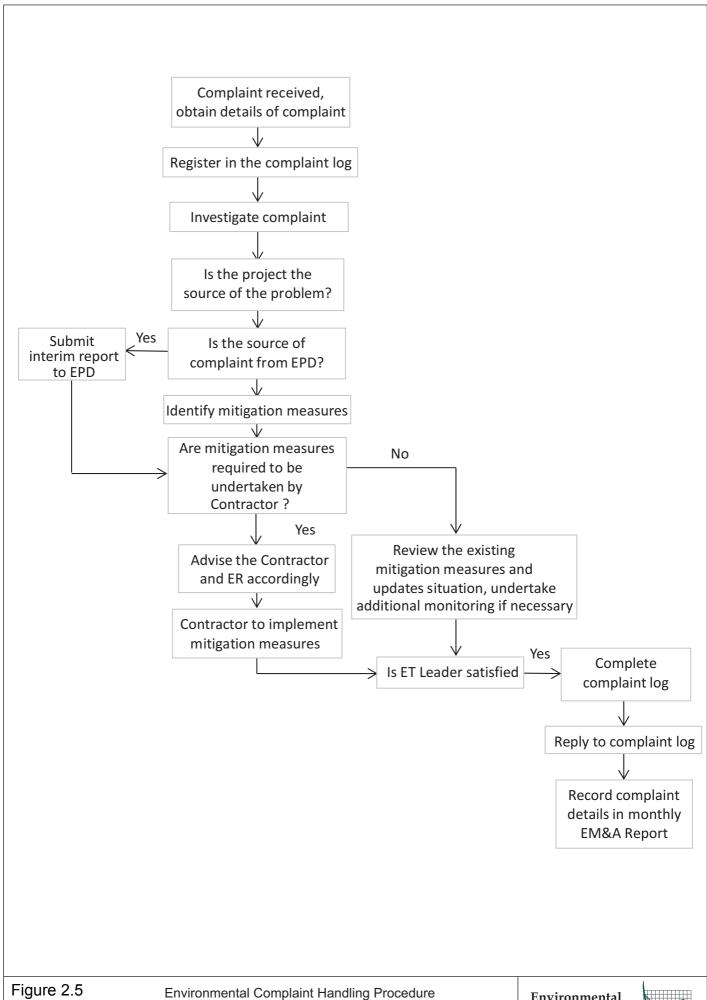
A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in *Appendix C*. The necessary mitigation measures relevant to this Contract were implemented properly.

2.8 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

No Action Level or Limit Level exceedances were recorded in the air quality monitoring of this reporting month.

No Action Level or Limit Level exceedances were recorded in the water quality monitoring of this reporting month.

Cumulative statistics are provided in *Appendix L*.


2.9 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

The Environmental Complaint Handling Procedure is provided in *Figure 2.5*.

No environmental complaint was received in the reporting period.

No notification of summons and prosecution were received in the reporting period.

Statistics on complaints, notifications of summons and successful prosecutions are summarized in *Appendix L*.

Environmental Resources Management

3 FUTURE KEY ISSUES

3.1 CONSTRUCTION ACTIVITIES FOR THE COMING MONTH

As informed by the Contractor, the major works for the Project in February 2015 are summarized in *Table 3.1*.

Table 3.1 Construction Works to Be Undertaken in the Coming Month

Works to be undertaken

Land-based Works

- Diaphragm Wall Construction at Works Area Portion N-C;
- TBM Platform Construction at Works Area Portion N-A;
- Formwork and Metal Scaffolding works at North Launching Shaft at Works Area Portion N-A and,
- Set up of Slurry Treatment Plant at Works Area Portion N-C.

Marine-based Works

Rock Bund Deposition for Marine Sheetpile Remedial at Works Area - Portion N-A.

3.2 KEY ISSUES FOR THE COMING MONTH

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of February 2015 are mainly associated with dust, marine water quality, marine ecology and waste management issues.

3.3 MONITORING SCHEDULE FOR THE COMING MONTH

The tentative schedule for environmental monitoring in February 2015 is provided in *Appendix F*.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

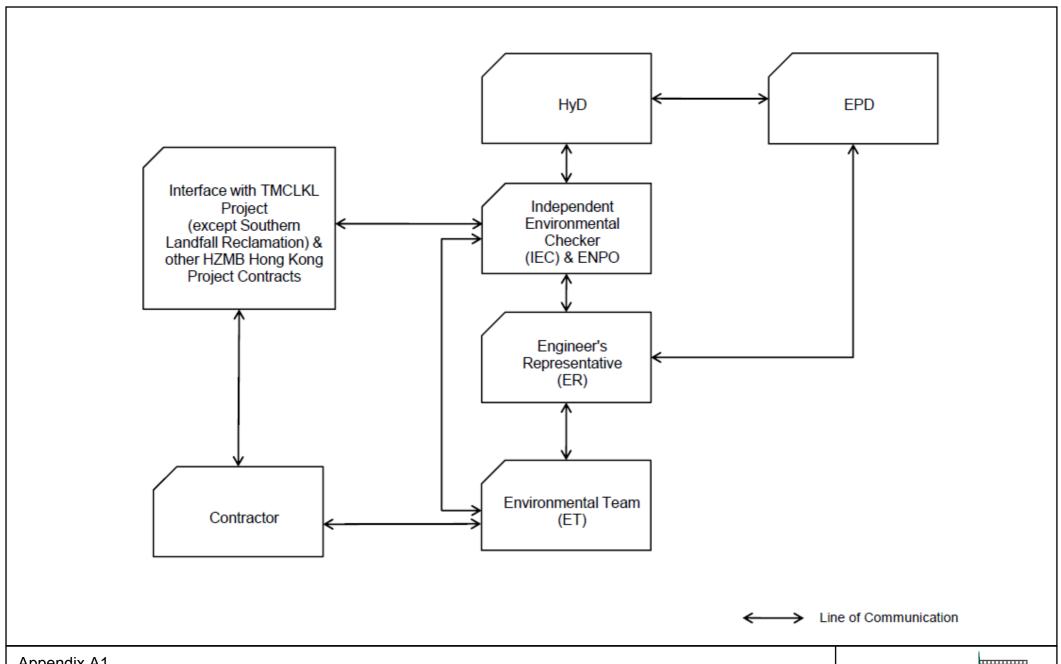
This Fifteenth Monthly EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 to 31 January 2015, in accordance with the Updated EM&A Manual and the requirements of EP-354/2009/C.

Air quality (including 1-hour TSP and 24-hour TSP), water quality and dolphin monitoring were carried out in this reporting month. No Action Level or Limit Level exceedances were recorded in the water quality monitoring of this reporting month. No Action Level or Limit Level exceedances were recorded in the air quality monitoring of this reporting month.

A total of eleven (11) groups of forty-six (46) Chinese White Dolphin sightings were recorded during the two sets of surveys in January 2015. All sighting were made in NWL during the two sets of surveys in January 2015, while no dolphin was sighted in NEL. Eight of the eleven sightings were made on primary lines during on-effort search, and none of the dolphin groups was associated with operating fishing vessel. No unacceptable impact from the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations during the dolphin monitoring in this reporting month.

Environmental site inspection was carried out four (4) times in January 2015. Recommendations on remedial actions recommended for the deficiencies identified during the site audits were properly implemented by the Contractor.

No non-compliance event was recorded during the reporting period.


No environmental complaint was received during the reporting period.

No summons/ prosecution was received during the reporting period.

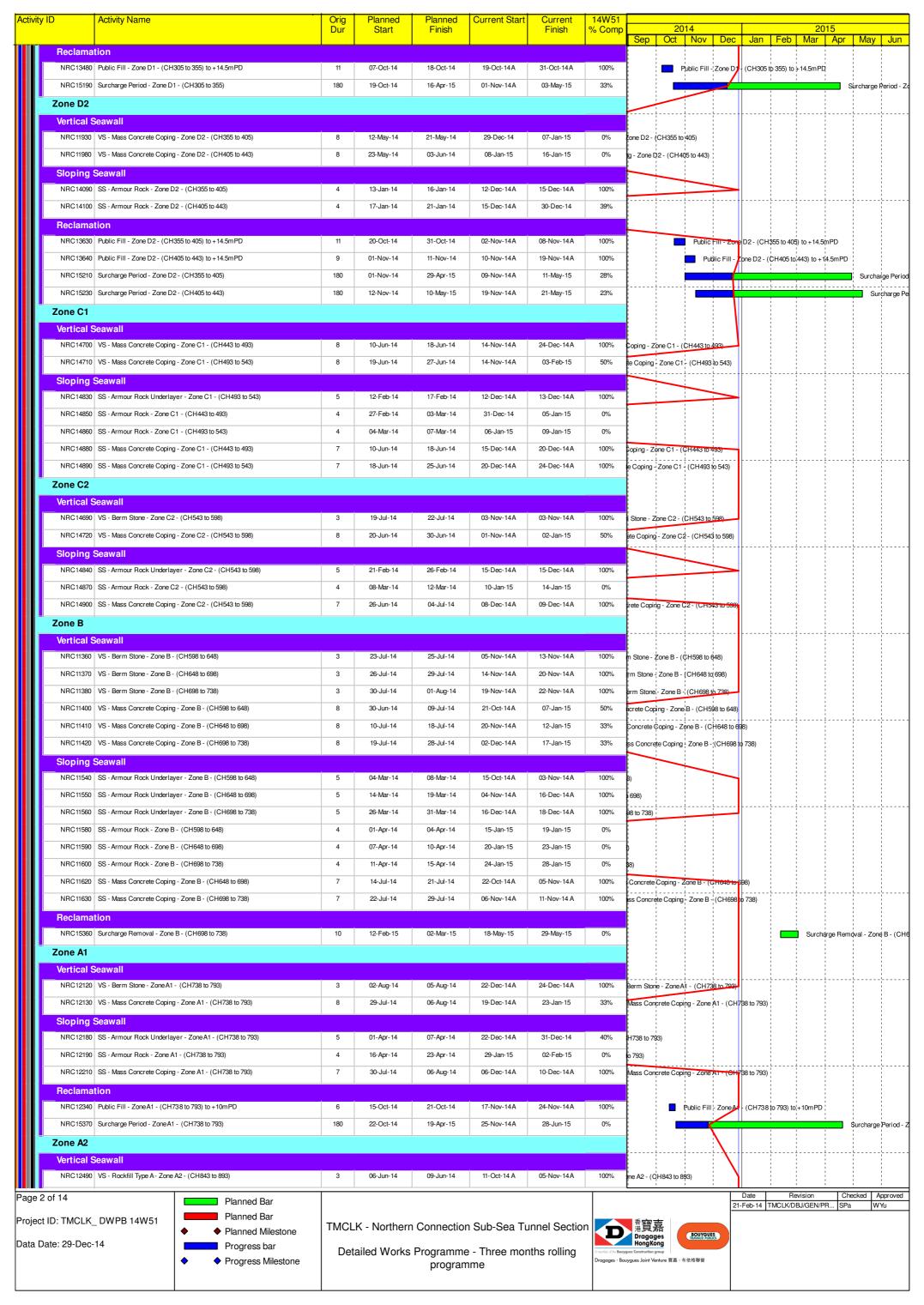
The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Appendix A

Project Organization for Environmental Works

Appendix A1

Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section **Project Organization**

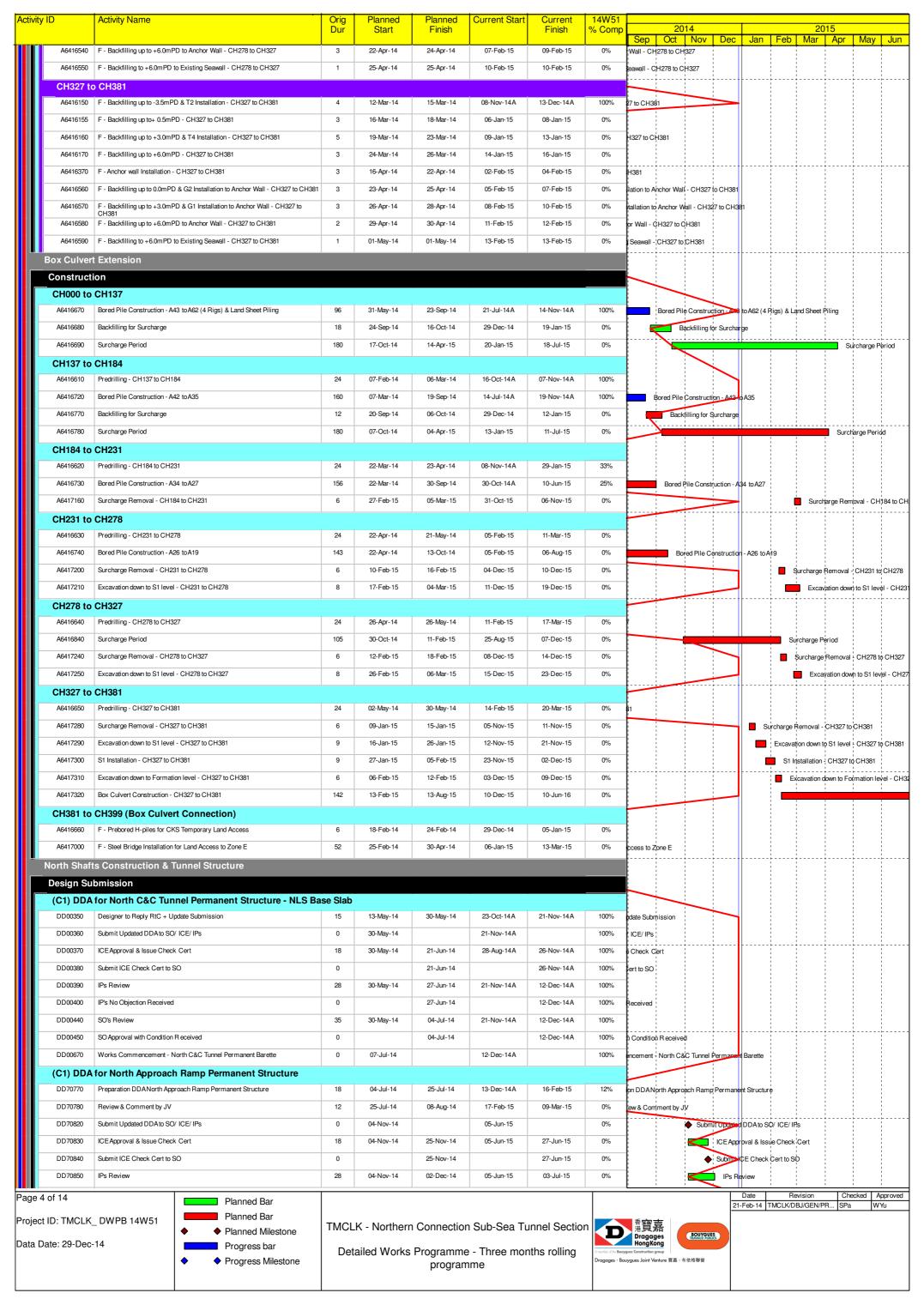

Environmental Resources Management

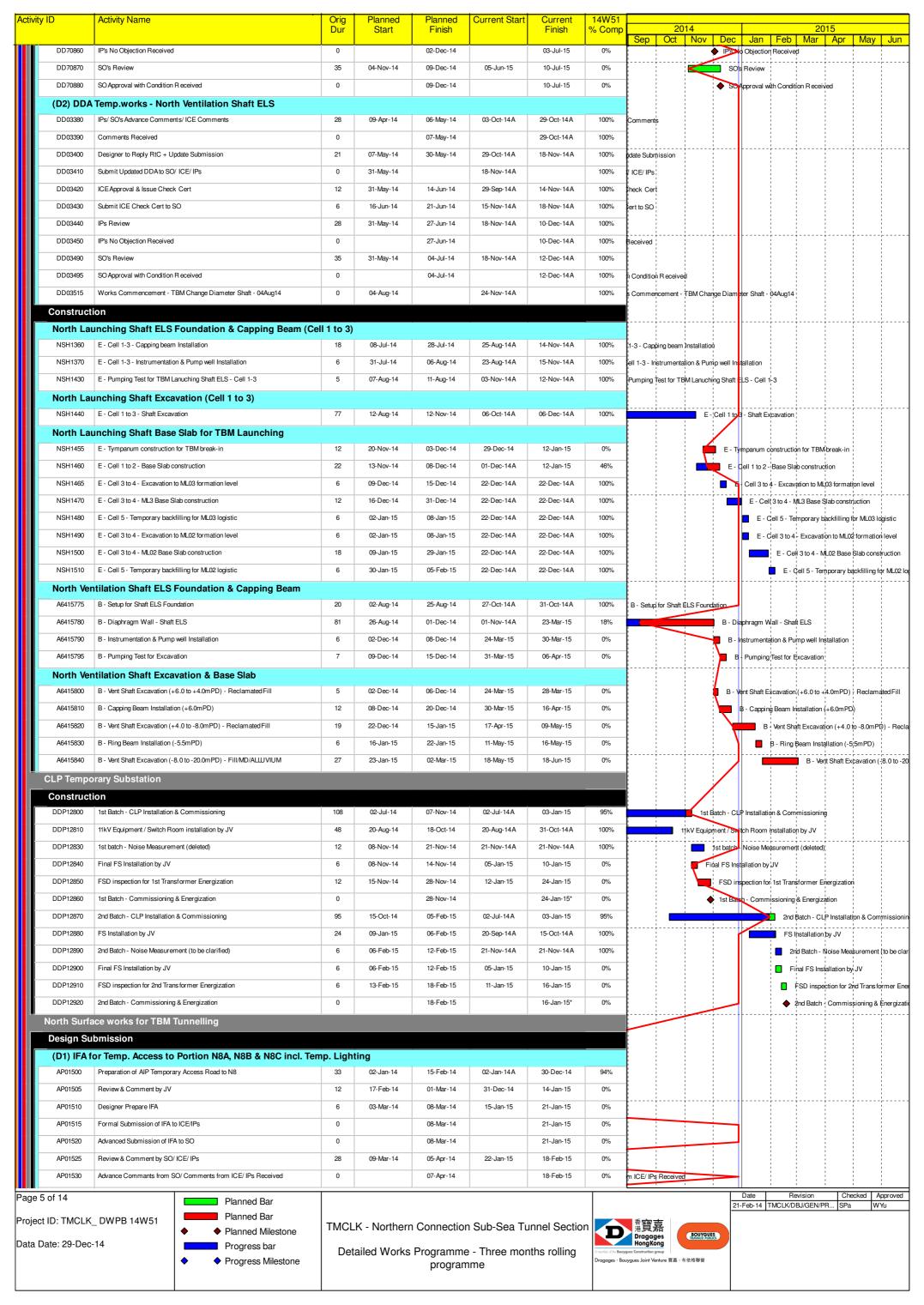
Appendix B

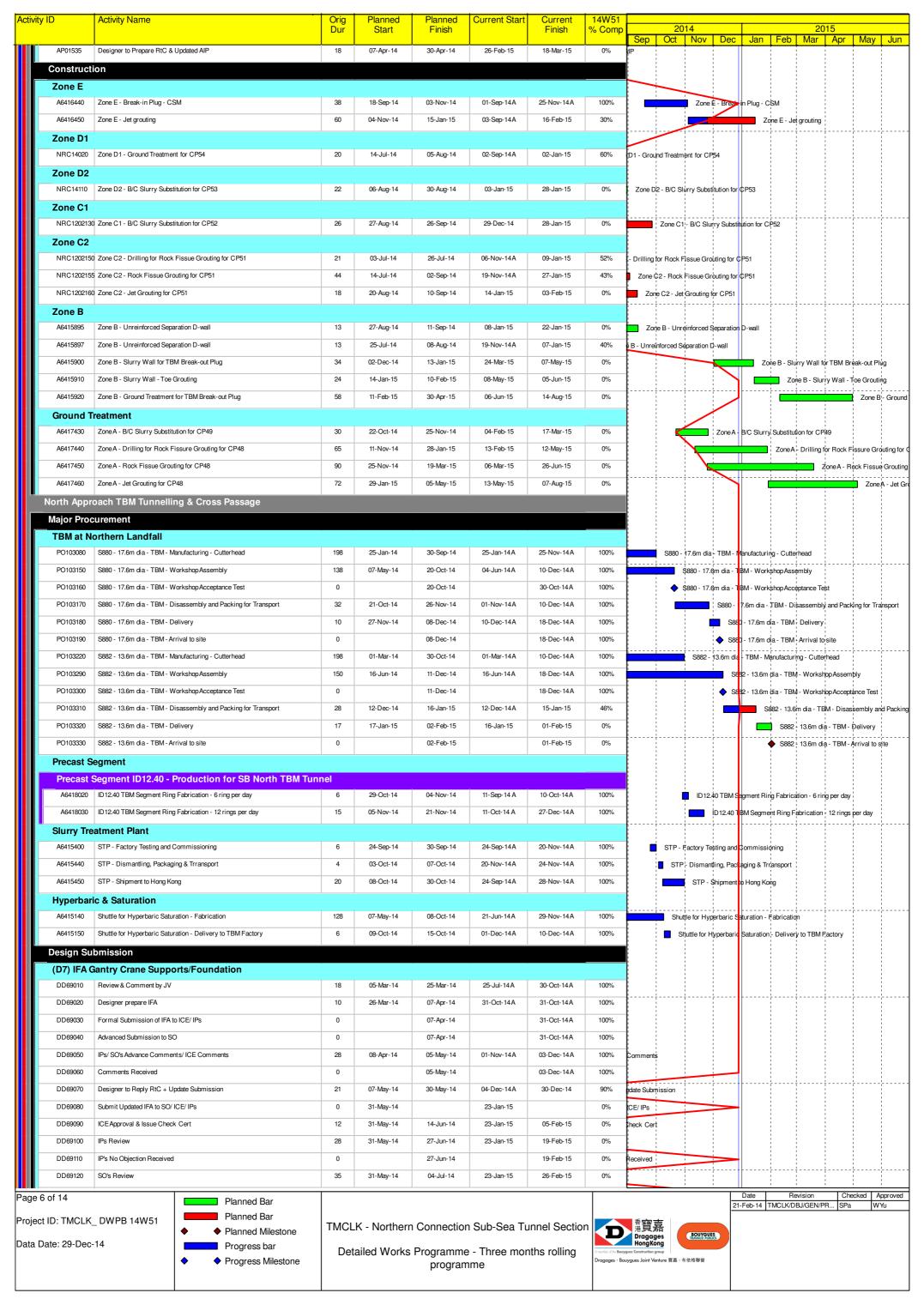
Construction Programme

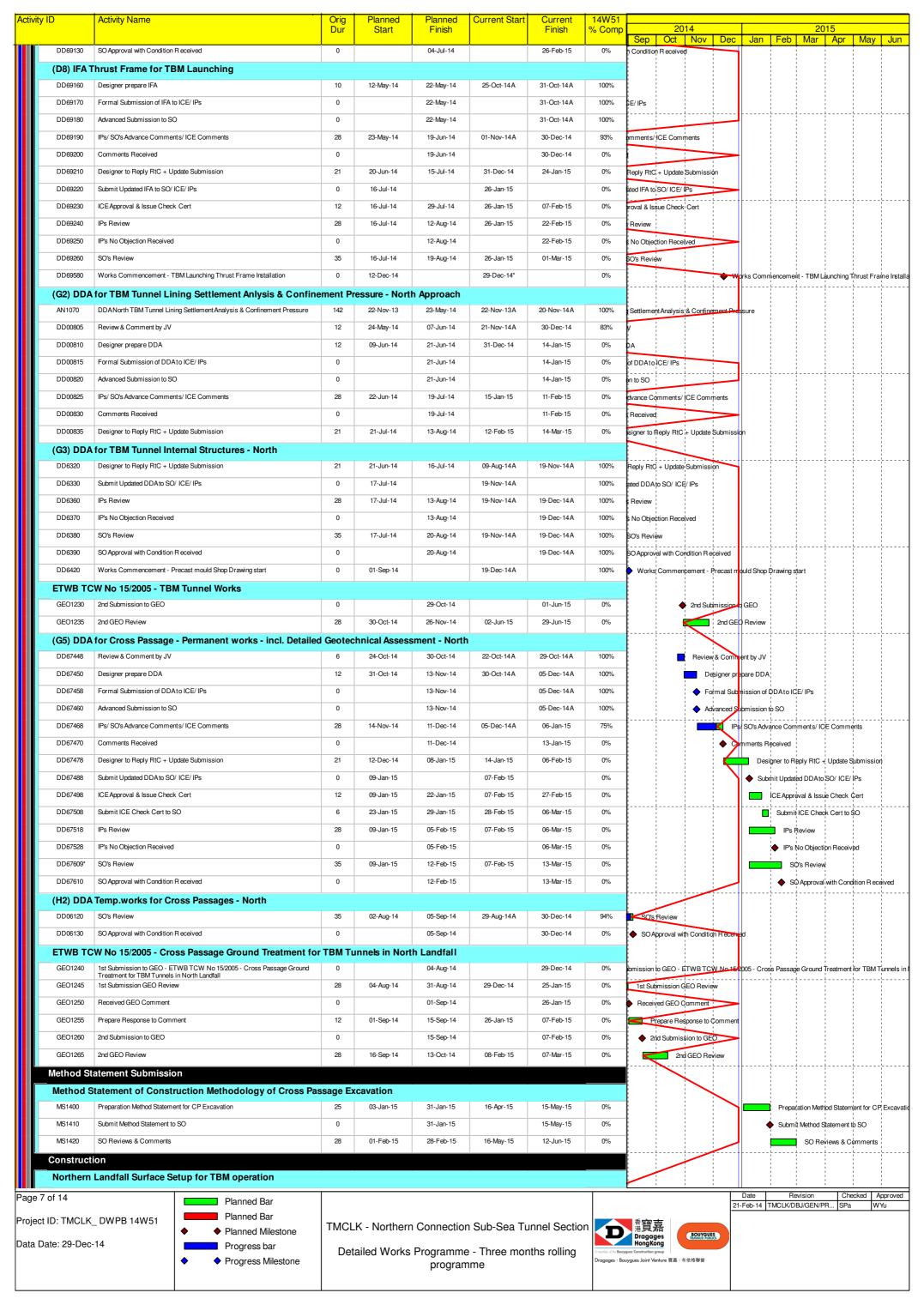
vity ID	Activity Name	Orig	Planned	Planned	Current Start	Current	14W51	2014 2015
		Dur	Start	Finish		Finish	% Comp	Sep Oct Nov Dec Jan Feb Mar Apr May
	orthern Connection Sub-Sea Tunnel Section							
Contract Da		_						
Handover D	Portions: WA18C	0	1	06-Jan-15	1	06-Jan-15*	0%	◆ Portions: WA18C
General Sub								V 13/18/3. Miles
Programme								
SCC0277	Detailed Works Programme - SCC27.2 - Approval by SO	30	11-Feb-14	12-Mar-14	29-Aug-14A	13-Nov-14A	100%	so
General De	sign Submissions							
(A19) DDA 1	for Roadworks & Project Alignment							
DD68310	IPs/ SO's Advance Comments/ ICE Comments	28	26-Jul-14	22-Aug-14	08-Sep-14A	13-Nov-14A	100%	IPs/SO's Advance Comments/ ICE Comments
DD68320	Comments Received	0		22-Aug-14		13-Nov-14A	100%	Comments Received
DD68330	Designer to Reply RtC + Update Submission	21	23-Aug-14	17-Sep-14	14-Nov-14A	22-Dec-14A	100%	Designer to Reply RtC + Updale Submission
DD68340	Submit Updated DDA to SO/ ICE/ IPs	0	18-Sep-14	00.0.1.14	22-Dec-14A	00 las 45	100%	Submit Updated DDA'to SO/ Id E/ IPs
DD68350 DD68360	ICEApproval & Issue Check Cert Submit ICE Check Cert to SO	12	18-Sep-14 04-Oct-14	03-Oct-14 10-Oct-14	03-Sep-14A 03-Jan-15	02-Jan-15 09-Jan-15	83%	ICE Approval & Issue Check Cert Submit ICE Check Cert to SO
DD68370	SO's Review	35	18-Sep-14	22-Oct-14	31-Dec-14	03-Feb-15	0%	SO's Review
DD68380	SO Approval with Condition R eceived	0		22-Oct-14		03-Feb-15	0%	◆ SO Approyal was condition Received
(G6) IFA for	r Tunnel GBP							
DD70750	SO's Review	35	29-Apr-14	02-Jun-14	09-Aug-14A	30-Dec-14	94%	
DD70760	SO Approval with Condition R eceived	0		03-Jun-14		30-Dec-14	0%	Received
Construction	on Supervision Plan							
GEO1115	2nd GEO Review	28	29-Mar-14	25-Apr-14	29-Mar-14A	30-Dec-14	93%	
Self contain	ned Cat I/II supervising monthly report			,				
GEO1425	1st Submission GEO Review	28	31-May-14	27-Jun-14	15-Oct-14A	21-Nov-14A	100%	O Review
GEO1430	Received GEO Comment	0		27-Jun-14		21-Nov-14A	100%	mment
GEO1435	Prepare Response to Comment	12	28-Jun-14	12-Jul-14	21-Nov-14A	21-Nov-14A	100%	onse to Comment
GEO1440 GEO1445	2nd Submission to GEO 2nd GEO Review	28	13-Jul-14	12-Jul-14	21-Nov-14A	21-Nov-14A 21-Nov-14A	100%	on to GEQ
		20	13-Jul- 14	09-Aug-14	21-N0V-14A	21-NOV-14A	100%	GEO Review
Constructio Northern La							_	
	anutaii amation (Phase 1)							
Design Su								
	Construction Risk Assessment - Impact on North L	andfall +	Sub-sea Tun	nel			_	
DD68410	SO's Comments for 1st Submission	35	01-Jun-14	05-Jul-14	27-Sep-14A	30-Dec-14	94%	s for 1st Submission
DD68420	Prepare Re-submission	10	07-Jul-14	17-Jul-14	31-Dec-14	12-Jan-15	0%	submission
DD68430	2nd Submission	0		17-Jul-14		12-Jan-15	0%	sion
DD68490	SO's Condition Approval	35	18-Jul-14	21-Aug-14	13-Jan-15	16-Feb-15	0%	SO's Condition Approval
Method St	atement Submission							
	Statement of Construction Methodology of Culvert E			,				
MS1800	Preparation Method Statement for Culvert Extension	25	24-Jun-14	23-Jul-14	29-Dec-14	27-Jan-15	0%	on Method Statement for Culvert Extension
MS1810	Submit Method Statement to SO	28	24 101 14	23-Jul-14	29 Ion 15	27-Jan-15	0%	ethod Statement to SO
MS1820 MS1830	SO Reviews & Comments Re-submission	18	24-Jul-14 21-Aug-14	20-Aug-14 11-Sep-14	28-Jan-15 26-Feb-15	24-Feb-15 18-Mar-15	0%	SO Reviews & Comments
Construct		10	Z1-Aug-14	11-3ep-14	20-1 60-13	10-iviai - 13	076	Re-submission
Milestone		_						
_	Completion of Zone D1 Reclamation up to +14.5mPD	0		18-Oct-14		31-Oct-14A	100%	Ocmpletion of Zone 01 Reclamation up to +14.5mPD
NRC13180	Completion of Zone D2 Reclamation up tp +14.5mPD	0		11-Nov-14		19-Nov-14A	100%	◆ Completion of Zone D2 Reclamation up tp +,14.5mPD
NRC13210	Completion of Zone C2 Reclamation up to +10mPD	0		17-Sep-14		06-Jan-15A	100%	Completion of Zone C2 Reclanation up to +10mPD
NRC13240	Completion of Zone A1 Reclamation up to +10mPD	0		21-Oct-14		03-Feb-15	0%	◆ Completion of Zone 11 Reclamation up to +10mPD
NRC13250	Completion of Zone A2 Reclamation up to +10mPD (TBC)	0		10-Nov-14		12-Feb-15	0%	◆ Completion of Zone A2 Reclamation up to +10mPD (TBC)
Zone E								
Vertical 9	,							
	VS - Mass Concrete Coping - Zone E - (CH0 to 50)	8	02-May-14	12-May-14	21-Jul-14A	14-Nov-14A	100%	e E - (CH0 to 50)
	VS - Mass Concrete Coping - Zone E - (CH50 to 100)	8	13-May-14	21-May-14	23-Jul-14A	03-Nov-14A	100%	one E - (CH50 to 10b)
	VS - Mass Concrete Coping - Zone E - (CH100 to 150)	8	22-May-14	30-May-14	09-Jul-14A	12-Nov-14A	100%	- Zone E - (CH100 to 150)
	VS - Mass Concrete Coping - Zone E - (CH150 to 205)	11	31-May-14	13-Jun-14	16-Jul-14A	20-Nov-14A	100%	ping - Zone E - (CH 150 to 205)
Zone D1	Seewell							
Vertical S	Seawall VS - Mass Concrete Coping - Zone D1 - (CH205 to 255)	15	02-May-14	20-May-14	22-Dec-14A	10-Jan-15	25%	one D1 - (CH205 to 255)
	VS - Mass Concrete Coping - Zone D1 - (CH205 to 205) VS - Mass Concrete Coping - Zone D1 - (CH255 to 305)	8	02-May-14 21-May-14	20-May-14 29-May-14	12-Jan-15	20-Jan-15	25%	one D1 - (CH205 to 255) - Zone D1 - (CH255 to 305)
	VS - Mass Concrete Coping - Zone D1 - (CH305 to 355)	8	30-May-14	09-Jun-14	21-Jan-15	29-Jan-15	0%	ing - Zone D1 - (CH305 to 355)
Sloping			-9 - 1					
	8 VS - Berm Stone - Zone D1 - RTT	2	20-Jun-14	21-Jun-14	01-Dec-14A	29-Dec-14	50%	one D1 - RTT
	9 VS - Mass Concrete Coping - Zone D1 - RTT	4	26-Apr-14	02-May-14	12-Aug-14A	29-Dec-14	80%	11-RTT
	SS - Armour Rock - Zone D1 - (CH255 to 305)	4	03-Jan-14	07-Jan-14	02-Dec-14A	02-Dec-14A	100%	
	SS - Armour Rock - Zone D1 - (CH305 to 355)	4	08-Jan-14	11-Jan-14	09-Dec-14A	12-Jan-15A	100%	
1 of 14	T	1	<u></u>					Date Revision Checked Ap
	Planned Bar							21-Feb-14 TMCLK/DBJ/GEN/PR SPa WY
ct ID: TMCLK	DWPB 14W51 Planned Bar ◆ Planned Milestone	TMCL	K - Northerr	n Connectio	n Sub-Sea Tu	ınnel Sectio	on D	^香 寶嘉
Date: 29-Dec		D-4	ailed Marks	Drograma	o - Throo man	the rolling		Dragages HongKong BOUYGUES TRANAUX PUBLICS
	◆ Progress Milestone	l Det	an c u vvorks	Programm prograr	e - Three mor nme	inis rolling		ygues Construction group puygues Joint Venture 賈蓋 - 布依格聯營
				prograf	IIIIIC			

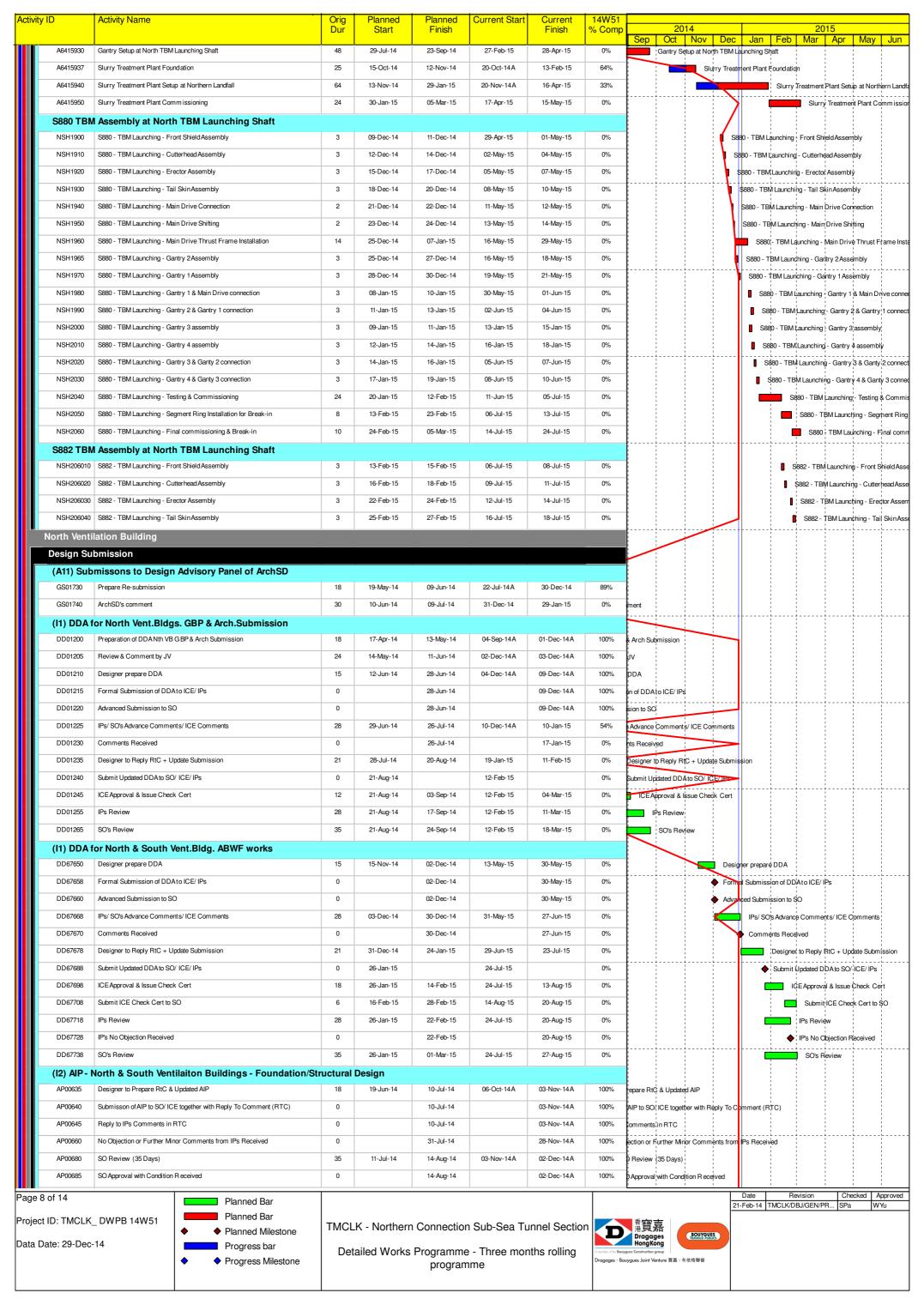
Activ	ity ID	Activity Name	Orig Dur	Planned Start	Planned Finish	Current Start	Current Finish	14W51 % Comp	2014 2015
	NDO (0500	NO DI LENT A 7 TO COLORD SERVICE							Sep Oct Nov Dec Jan Feb Mar Apr May Jun
		VS - Rockfill Type A - Zone A2 - (CH893 to 956)	7	10-Jun-14	17-Jun-14	11-Nov-14 A	23-Nov-14A	100%	Zone A2 - (CH893 tq 956)
Ш		VS - Geotextile - Zone A2 - (C H843 to 893)	2	12-Jun-14	13-Jun-14	11-Oct-14 A	10-Nov-14A	100%	A2 - (C H843 to 893)
Ш		VS - Geotextile - Zone A2 - (C H893 to 956)	5	14-Jun-14	19-Jun-14	12-Nov-14A	23-Nov-14A	100%	e A2 - (C H893 to 956)
Ш		VS - Granular Filter - Zone A2 - (CH843 to 893)	4	19-Jun-14	23-Jun-14	03-Nov-14A	05-Nov-14A	100%	- Zone A2 - (CH843 to 893)
Ш	NRC12560	VS - Granular Filter - Zone A2 - (CH893 to 956)	10	24-Jun-14	05-Jul-14	05-Nov-14A	23-Nov-14A	100%	ilter - Zone A2 - (CH893 to 956)
Ш	NRC12570	VS - Berm Stone - Zone A2 - (CH793 to 843)	3	06-Aug-14	08-Aug-14	01-Dec-14A	07-Dec-14A	100%	Berm Stone - Zone A2 - (CH793 to 843
Ш	NRC12580	VS - Berm Stone - Zone A2 - (CH843 to 893)	3	09-Aug-14	12-Aug-14	08-Dec-14A	10-Dec-14A	100%	- Berm Stone - Zoné A2 - (CH)843 to 898)
	NRC12590	VS - Berm Stone - Zone A2 - (CH893 to 956)	7	13-Aug-14	20-Aug-14	11-Dec-14 A	14-Dec-14A	100%	VS - Berm Stone - Zone A2 - (CH893 te 956)
	NRC12600	VS - Mass Concrete Coping - Zone A2 - (CH793 to 843)	8	07-Aug-14	15-Aug-14	31-Jan-15A	31-Jan-15	18%	s - Mass Concrete Coping - Zone A2 - (C H793 to 843)
	NRC12610	VS - Mass Concrete Coping - Zone A2 - (CH843 to 893)	8	16-Aug-14	25-Aug-14	02-Feb-15	10-Feb-15	0%	VS - Mass Concrete Coping - Zone A2 - (CH843 to 893)
	NRC12620	VS - Mass Concrete Coping - Zone A2 - (CH893 to 956)	18	26-Aug-14	16-Sep-14	11-Feb-15	10-Mar-15	0%	VS - Mass Concrete Coping - Zone A2 - (CH893 to 956)
	Sloping S	Seawall Seawall							
	NRC12680	SS - Rock Grade 400 - Zone A2 - (CH893 to 956) to +2.5mPD (4k/d)	7	16-Apr-14	26-Apr-14	01-Sep-14A	19-Nov-14A	100%	93 to 956) to +2.5mPD (4k/d)
Ш	NRC12720	SS - Armour Rock Underlayer - Zone A2 - (CH793 to 843)	5	09-Apr-14	14-Apr-14	02-Jan-15	07-Jan-15	0%	CH793 to 843)
Н	NRC12730	SS - Armour Rock Underlayer - Zone A2 - (CH843 to 893)	5	16-Apr-14	24-Apr-14	08-Jan-15	13-Jan-15	0%	2 - (CH843 to 893)
	NRC12740	SS - Armour Rock Underlayer - Zone A2 - (CH893 to 956)	5	28-Apr-14	03-May-14	14-Jan-15	19-Jan-15	0%	PA2 - (CH893 to 956)
		SS - Armour Rock - Zone A2 - (CH793 to 843)	4	05-May-14	09-May-14	03-Feb-15	06-Feb-15	0%	793 to 843)
		SS - Armour Rock - Zone A2 - (CH843 to 893)	4	10-May-14	14-May-14	07-Feb-15	11-Feb-15	0%	
1		<u> </u>	4	-					1H843 to 893)
Ш		SS - Armour Rock - Zone A2 - (CH893 to 956)		15-May-14	19-May-14	12-Feb-15	16-Feb-15	0%	CH893 to 956)
		SS - Mass Concrete Coping - Zone A2 - (CH793 to 843)	7	07-Aug-14	14-Aug-14	13-Dec-14A	19-Dec-14A	100%	s - Mass Concrete Coping - Zolite A2 - (SH 793 to 843)
		SS - Mass Concrete Coping - Zone A2 - (CH843 to 893)	7	15-Aug-14	22-Aug-14	20-Dec-14A	06-Feb-15	44%	SS - Mass Concrete Coping - Zone A2 - (CH843 to 893)
	NRC12800	SS - Mass Concrete Coping - Zone A2 - (CH893 to 956)	7	23-Aug-14	30-Aug-14	07-Feb-15	14-Feb-15	0%	SS - Mass Concrete Coping - Zone A2 - (CH893 to 956)
Ш	NRC12820	Sloping - Rockfill Type A- Zone A2 - (CH843 to 893)	1	16-Apr-14	16-Apr-14	08-Nov-14A	13-Nov-14A	100%	43 to 893)
Ш	NRC12830	Sloping - Rockfill Type A- Zone A2 - (CH893 to 956)	1	28-Apr-14	28-Apr-14	21-Nov-14A	21-Nov-14A	100%	CH893 to 956)
Ш	NRC12870	Sloping - Geotextile - Zone A2 - (CH893 to 956)	2	29-Apr-14	30-Apr-14	21-Nov-14A	21-Nov-14A	100%	93 to 956)
Ш	NRC12880	Sloping - Granular Filter - Zone A2 - (CH793 to 843)	3	12-Apr-14	15-Apr-14	29-Oct-14A	31-Oct-14A	100%	93 to 843)
Ш	NRC12890	Sloping - Granular Filter - Zone A2 - (CH843 to 893)	3	23-Apr-14	25-Apr-14	24-Oct-14 A	13-Nov-14A	100%	H843 to 893)
Ш	NRC12900	Sloping - Granular Filter - Zone A2 - (CH893 to 956)	3	02-May-14	05-May-14	22-Nov-14A	22-Nov-14A	100%	(CH893 to 956)
1	Reclamat	ion							·····
1		Public Fill - Zone A2 - (CH843 to 893) to -2.5mPD	6	11-Jul-14	17-Jul-14	03-Oct-14A	04-Nov-14A	100%	Zone A2 - (CH843 to 893) to -2.5mPD
١		Public Fill - Zone A2 - (CH893 to 956) to -2.5mPD	4	18-Jul-14	22-Jul-14	03-Nov-14A	06-Dec-14A	100%	
									- Zone A2;- (CH893;to 956) to -2.5mPD
Ш		Public Fill - ZoneA2 - (CH843 to 893) to +2.5mPD	7	11-Aug-14	18-Aug-14	24-Oct-14A	14-Nov-14A	100%	fublic Fill - Zone A2 - (CH843 to 893) to +2.5mPD
Ш		Public Fill- Zone A2 - (CH893 to 956) to +2.5mPD	6	19-Aug-14	25-Aug-14	13-Nov-14A	10-Dec-14A	100%	Public Fill- Zone A2 - (CH893 to 956) to +2.5mPD
Ш	NRC13080	Public Fill - Zone A2 - (CH793 to 843) to +6.0mPD	7	11-Aug-14	18-Aug-14	18-Oct-14A	31-Oct-14A	100%	ublic Fill - Zone A2 - (CH793 to 843) to 6.0mPD
Ш	NRC13090	Public Fill - Zone A2 - (CH843 to 893) to +6.0mPD	7	19-Aug-14	26-Aug-14	02-Nov-14A	13-Dec-14A	100%	Public Fill - ZoneA2 - (CH843 to 893) to +6.0mPD
Ш	NRC13100	Public Fill - Zone A2 - (CH893 to 956) to +6.0mPD	6	27-Aug-14	02-Sep-14	02-Dec-14A	09-Dec-14A	100%	Public Fill - Zone A2 - (CH893 to 955) to +6.0mPD
m	NRC13110	Public Fill - Zone A2 - (CH793 to 843) to +10mPD	6	22-Oct-14	28-Oct-14	13-Dec-14A	15-Dec-14A	100%	Public Fill - Zope 42 - (CH793 to 843) to +10mPD
Ш	NRC13120	Public Fill - Zone A2 - (CH843 to 893) to +10mPD	7	29-Oct-14	05-Nov-14	20-Dec-14A	07-Feb-15	43%	Public Fill - Zone A2 - (CH843 to 893) to +10m PD
1	NRC13130	Public Fill - Zone A2 - (CH893 to 956) to +10mPD	4	06-Nov-14	10-Nov-14	09-Feb-15	12-Feb-15	0%	Public Fill - Zone A2 - (CH893 to 956) to +10mPD
Ш	NRC15390	Surcharge Period - Zone A2 - (CH793 to 843)	180	11-Nov-14	09-May-15	13-Feb-15	11-Aug-15	0%	Surcharge Po
1	NRC16960	NewActivity	0			29-Dec-14	30-Dec-14	0%	
Н									
Н	Zone F	Olloge							
١	CH184 to			10.14	40.1444	00 D	00 1 45	00/	
Ш		F - Anchor wall Installation - C H184 to CH231	4	10-Mar-14	13-Mar-14	29-Dec-14	02-Jan-15	0%	
Ш		F - Backfilling up to 0.0mPD & G2 Installation to Anchor Wall- CH184 to CH231	3	14-Mar-14	16-Mar-14	03-Jan-15	05-Jan-15	0%	or Wall- CH184 to CH231
		F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall- CH184 to CH231	2	17-Mar-14	18-Mar-14	06-Jan-15	07-Jan-15	0%	chor Wall- CH184 to CH231
Ш	A6416300	F - Backfilling up to +6.0mPD to Anchor Wall - CH184 to CH231	2	19-Mar-14	20-Mar-14	08-Jan-15	09-Jan-15	0%	84 to CH231
	A6416400	F - Backfilling to +6.0mPD to Existing Seawall - CH184 to CH231	1	21-Mar-14	21-Mar-14	10-Jan-15	10-Jan-15	0%	184 to CH231
	CH231 to	CH278							
	A6416273	F - Backfilling up to +0.5mPD & T3 Installation - CH231 to CH278	6	28-Mar-14	02-Apr-14	13-Jan-15	18-Jan-15	0%	CH231 to CH278
	A6416278	F - Backfilling up to +3.0mPD - CH231 to CH278	2	03-Apr-14	04-Apr-14	19-Jan-15	20-Jan-15	0%	78
	A6416280	F - Backfilling up to +6.0mPD - CH231 to CH278	2	05-Apr-14	06-Apr-14	21-Jan-15	22-Jan-15	0%	278
	A6416310	F - Anchor wall Installation - C H231 to CH278	4	07-Apr-14	10-Apr-14	23-Jan-15	27-Jan-15	0%	
	A6416480	F - Backfilling up to 0.0mPD & G2 Installation to Anchor Wall- CH231 to CH278	3	11-Apr-14	13-Apr-14	28-Jan-15	30-Jan-15	0%	in to Anchor Wall- CH231 to CH278
		F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall - CH231 to	2	14-Apr-14	15-Apr-14	31-Jan-15	01-Feb-15	0%	tion to Anchor Wall - CH231 to CH278
		CH278 F - Backfilling up to +6.0mPD to Anchor Wall - CH231 to CH278	2	16-Apr-14	17-Apr-14	02-Feb-15	03-Feb-15	0%	all - CH231 to CH278
1		•			·				
		F - Backfilling to +6.0mPD to Existing Seawall - CH231 to CH278	1	18-Apr-14	18-Apr-14	04-Feb-15	04-Feb-15	0%	wall - CH231 to CH278
	CH278 to		_	10.11		60.5	05.11		
		F - Marine Sheet Piling (H2) - CH278 to CH327	5	12-Mar-14	17-Mar-14	28-Oct-14A	05-Nov-14A	100%	
		F - Backfilling up to -3.5mPD & T2 Installation - CH278 to CH327	5	18-Mar-14	22-Mar-14	15-Dec-14A	24-Dec-14A	100%	1278 to CH327
	A6416210	F - Backfilling up to +0.5mPD - CH278 to CH327	4	23-Mar-14	26-Mar-14	09-Jan-15	12-Jan-15	0%	
	A6416215	F - Backfilling up to +3.0mPD & T4 Installation - CH278 to CH327	5	27-Mar-14	31-Mar-14	14-Jan-15	18-Jan-15	0%	CH278 to/CH327
	A6416220	F - Backfilling up to +6.0mPD - CH278 to CH327	2	01-Apr-14	02-Apr-14	19-Jan-15	20-Jan-15	0%	7
	A6416340	F - Anchor wall Installation - C H278 to CH327	4	11-Apr-14	15-Apr-14	28-Jan-15	31-Jan-15	0%	227
	A6416520	F - Backfilling up to 0.0mPD & G2 Installation to Anchor Wall - CH278 to CH327	3	16-Apr-14	18-Apr-14	01-Feb-15	03-Feb-15	0%	ion to Anchor Wall - CH278 to CH327
		F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall - CH278 to	3	19-Apr-14	21-Apr-14	04-Feb-15	06-Feb-15	0%	lation to Anchor Wall - CH278 to CH327
Dans	3 of 14	CH327	<u> </u>		<u> </u>			<u> </u>	Date Revision Checked Approved
ayt	, 5 51 14	Planned Bar							21-Feb-14 TMCLK/DBJ/GEN/PR SPa WYu
Proje	ect ID: TMCLK_	DWPB 14W51 Planned Bar	TMCI	.K - Northern	Connection	ι Sub-Sea Τι	innel Section	n –	香霉嘉
Data	Date: 29-Dec-	◆ Planned Milestone							Dragages Hongkong

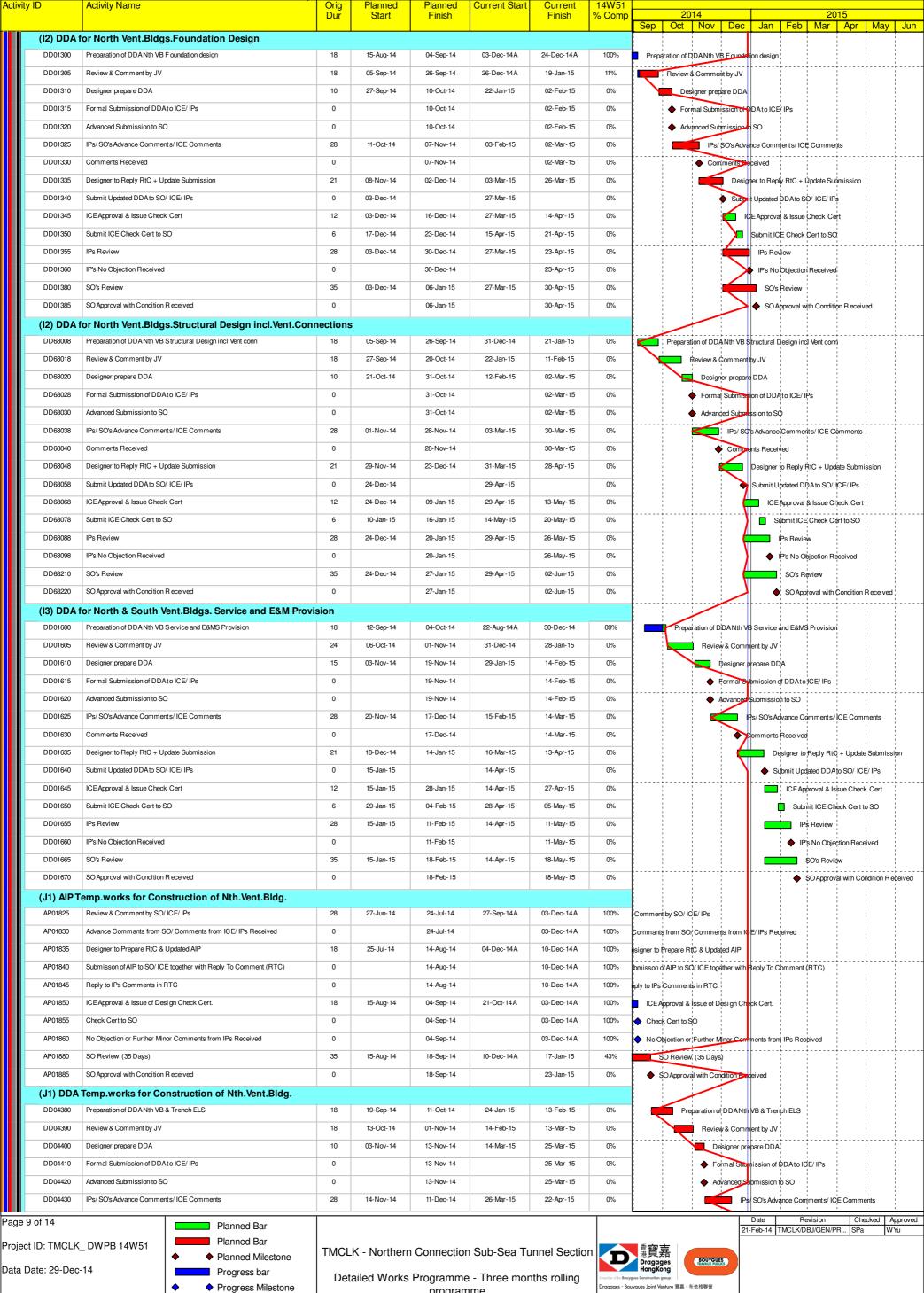

Data Date: 29-Dec-14

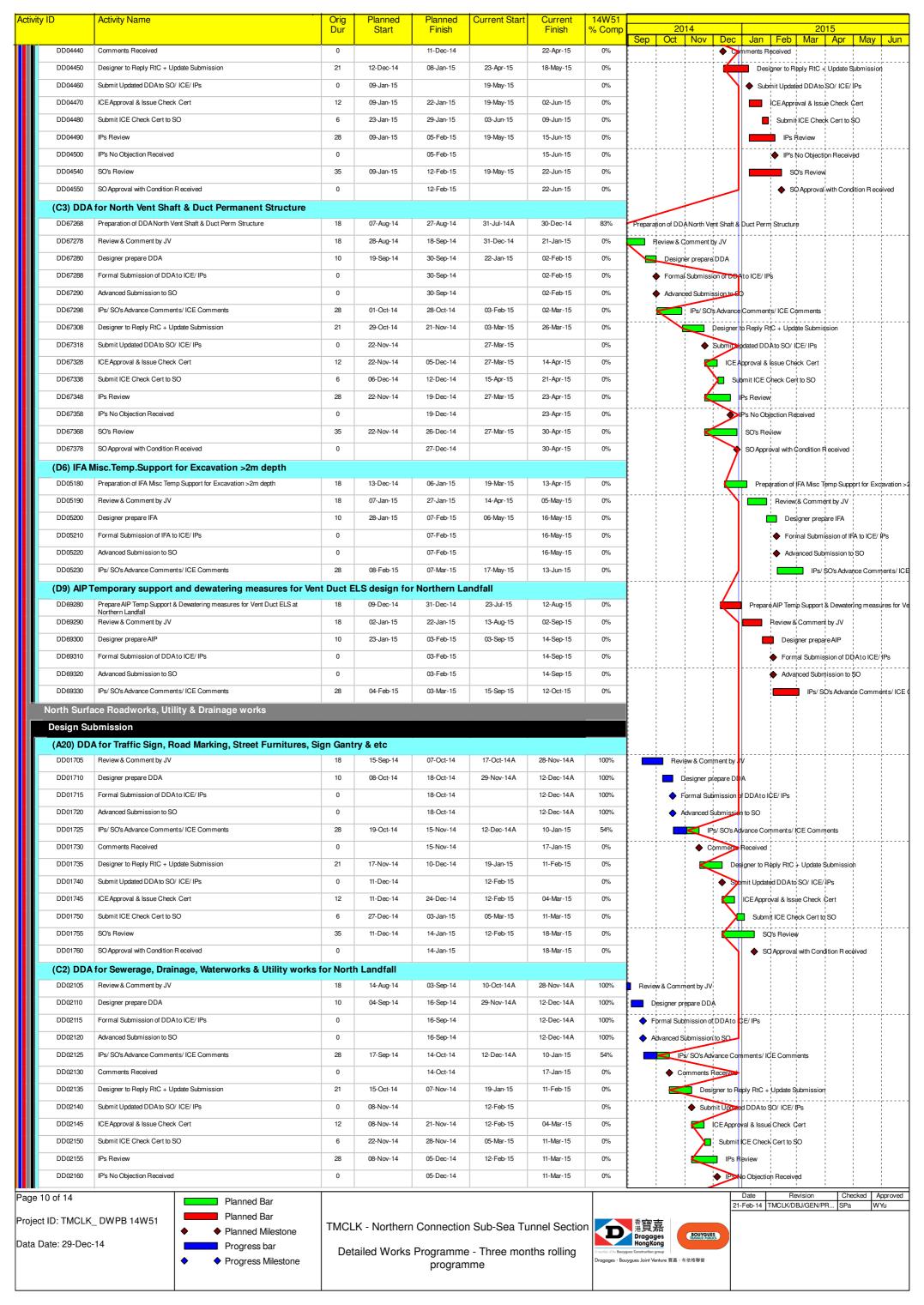

Progress bar ◆ Progress Milestone

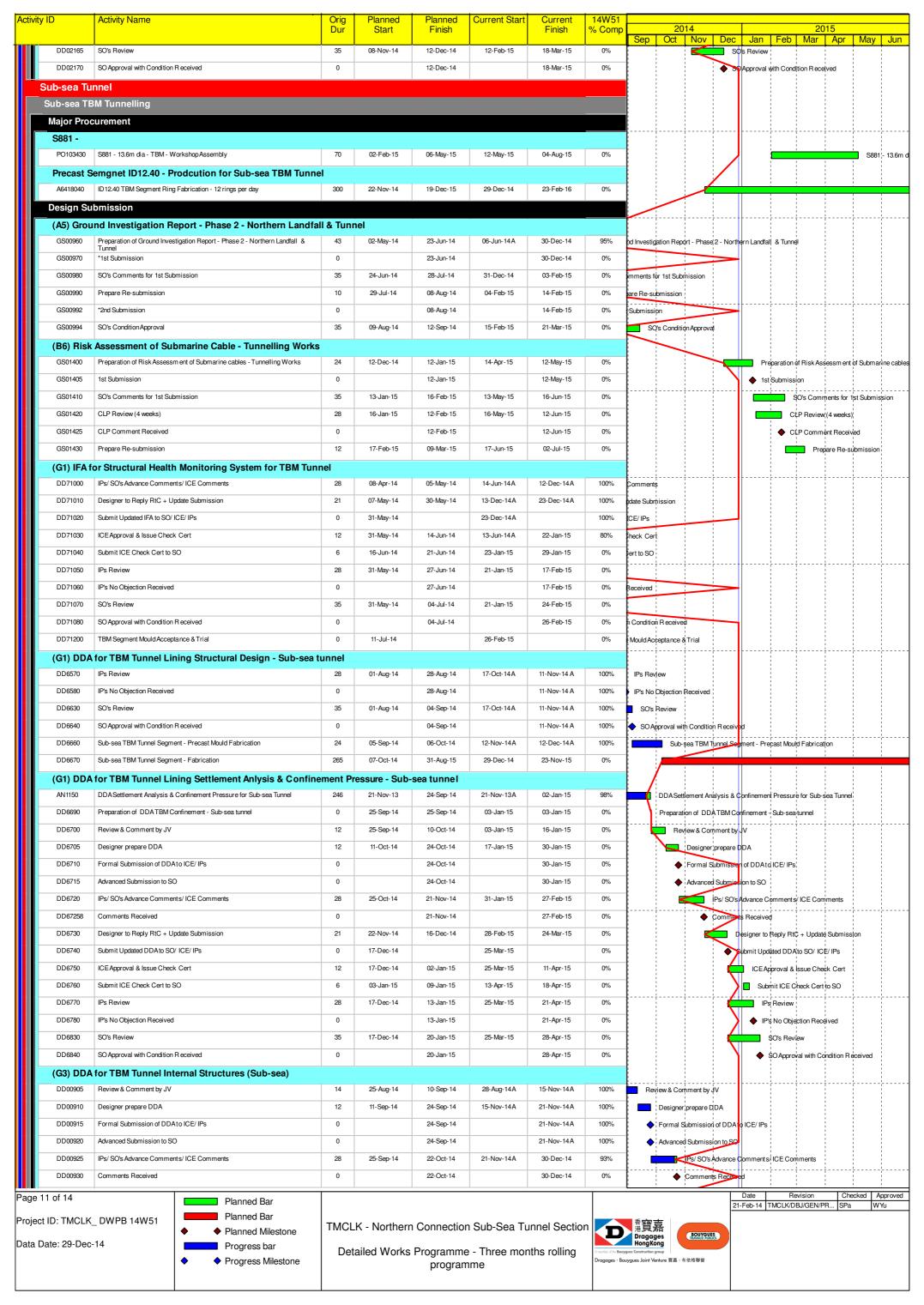

Detailed Works Programme - Three months rolling programme

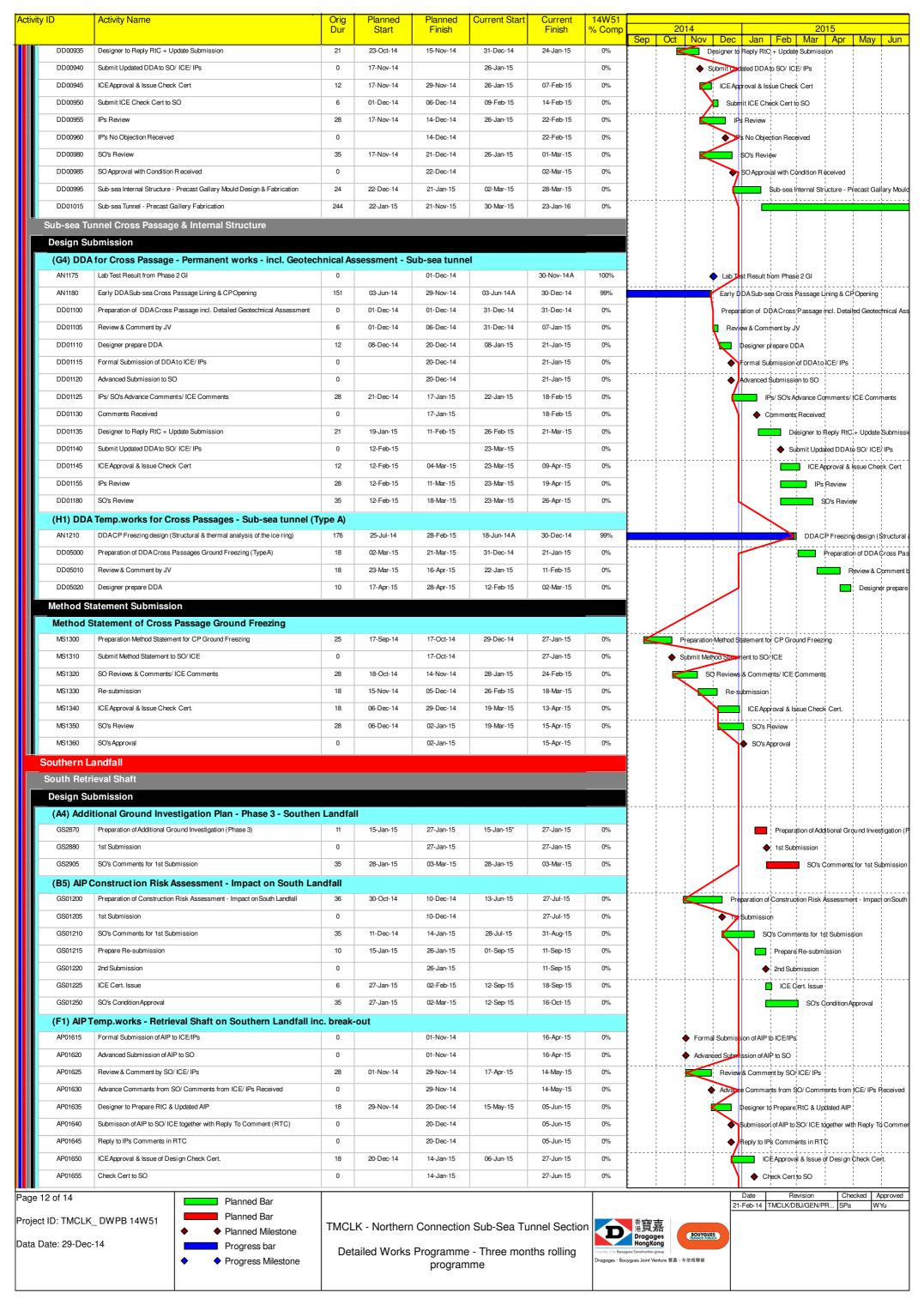


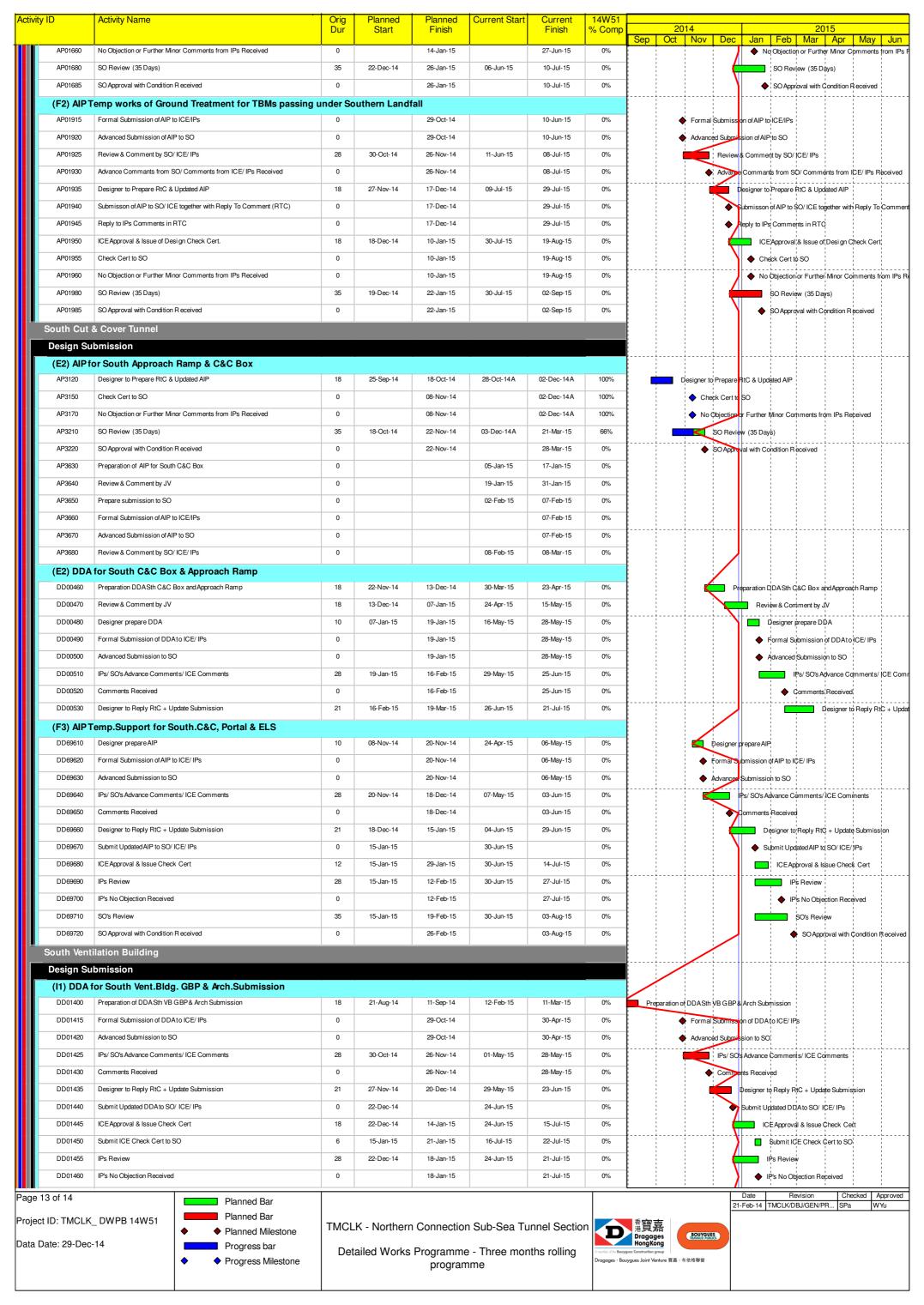


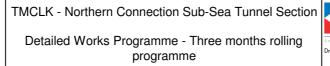












tivity ID	Activity Name	Orig	Planned	Planned	Current Start	Current	14W51									
		Dur	Start	Finish		Finish	% Comp			014				2015		
(= t= t								Sep	Oct	Nov	Dec	Jan	Feb	Mar A	Apr M	lay Jun
DD01465	SO's Review	35	22-Dec-14	25-Jan-15	24-Jun-15	28-Jul-15	0%				(SO's Revie	w		
DD01470	SO Approval with Condition R eceived	0		26-Jan-15		28-Jul-15	0%				\	•	SO Approv	al with Con	dition R ece	ived
(I2) DDA	for South Vent.Bldg.Structural Design incl.Vent.C	connections									!		-			
DD67808	Preparation of DDASth VB Structural Design incl. Vent Conn	18	28-Jan-15	17-Feb-15	29-Jul-15	18-Aug-15	0%						Pre	paration of	DDA \$th V	B Structural D
DD67818	Review & Comment by JV	18	18-Feb-15	17-Mar-15	19-Aug-15	08-Sep-15	0%							Revi	ew & Comn	nent by JV
South Surf	face Roadworks, Utility & Drainage works		<u> </u>	<u> </u>												
Design Su	ubmission						_									
(E3) DDA	A for Sewerage, Drainage, Waterworks & Utility wo	rks for Sout	h Landfall													
DD05810	Preparation of DDA Sewerage & Drainage works for Sth Landfall	18	08-Nov-14	28-Nov-14	12-Feb-15	11-Mar-15	0%				Prepara	ation of DI	Seweraģe	& Drainage	works for	Sth Landfall
DD05820	Review & Comment by JV	18	29-Nov-14	19-Dec-14	12-Mar-15	01-Apr-15	0%					Review &	Comment by	JV		!
DD05830	Designer prepare DDA	10	20-Dec-14	03-Jan-15	02-Apr-15	17-Apr-15	0%					Desi	gner prepare	DDA		
DD05840	Advanced Submission to SO	0		03-Jan-15		17-Apr-15	0%				\	◆ Adva	nced Submis	sion to \$O		
DD05850	Formal Submission of DDAto ICE/ IPs	0		03-Jan-15		17-Apr-15	0%			- +	-	Forn	nal Submissio	n of DDAt	o ICE/ IPs	<u> </u>
DD05860	IPs/ SO's Advance Comments/ ICE Comments	28	04-Jan-15	31-Jan-15	18-Apr-15	15-May-15	0%						IPs/SO's	Advance C	comments/	ICE commer
DD05870	Comments Received	0		31-Jan-15		15-May-15	0%				-		Commen	ıts Receive	ed :	
DD05880	Designer to Reply RtC + Update Submission	21	02-Feb-15	04-Mar-15	16-May-15	10-Jun-15	0%			-	1			Designer	to Reply R	tC + Update S

Appendix C

Environmental Mitigation and Enhancement Measure Implementation Schedules

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	Manual	al	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	O	
Air Quality									
4.8.1	3.8	An effective watering programme of twice daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;	construction period	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		✓
4.8.1	3.8	Watering of the construction sites in Lantau for 8 times/day and in Tuen Mun for 12 times/day to reduce dust emissions by 87.5% and 91.7% respectively and shall be undertaken.		Contractor	TMEIA Avoid dust generation		Y		~
4.8.1	3.8	The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels.	construction period	Contractor	TMEIA Avoid dust generation		Y		-
4.8.1	3.8	The Contractor shall not burn debris or other materials on the works areas.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8. 1	3.8	In hot, dry or windy weather, the watering programme shall maintain all exposed road surfaces and dust sources wet.	All unpaved haul roads / throughout construction period in hot, dry or windy weather	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		✓
4.8.1	3.8	Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.	construction period	Contractor	TMEIA Avoid dust generation		Y		-
4.8. 1	3.8	Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading.		Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.		Contractor	TMEIA Avoid dust generation		Y		✓

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages		Status *
	Reference					D	C	О	
4.8.1	3.8	Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards.	construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8.1	3.8	No earth, mud, debris, dust and the like shall be deposited on public roads. Wheel washing facility shall be usable prior to any earthworks excavation activity on the site.	. 0	Contractor	TMEIA Avoid dust		Y		√
4.8.1	3.8	Areas of exposed soil shall be minimised to areas in which works have been completed shall be restored as soon as is practicable.	All exposed surfaces / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	All stockpiles of aggregate or spoil shall be enclosed or covered and water applied in dry or windy condition.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		<>
4.11	Section 3	EM&A in the form of 1 hour and 24 hour dust monitoring and site audit.	All representative existing ASRs / throughout construction period	Contractor	EM&A Manual		Y		✓
WATER QUAL	ITY								
Marine Works (Seq	uence A)								
6.1	Annex A	Construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. The protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2a and detailed in Appendix D6a. The part of the works where such measures can be undertaken for the majority of the time includes the following locations:		Contractor	TM-EIAO		Y		*
Figure 6.2a Appendix D6a		- TM-CLKL northern reclamation;							
6.1	-	a maximum of 50% public fill to be used for all seawall filling below +2.5mPD for TM-CLKL southern and northern landfalls.	TM-CLKL seawall filling	Contractor	TM-EIAO		Y		- √

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	Implementation Stages		Status *
	Reference					D	C	О	
6.1	-	a maximum of 30% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL southern landfall	TM-CLKL southern landfall reclamation filling	Contractor	TM-EIAO		Y		N/A
6.1	-	a maximum of 100% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL northern landfall	TM-CLKL northern landfall reclamation filling	Contractor	TM-EIAO		Y		✓
6.1	-	Use of cage type silt curtains round allgrab dredgers during the HKBCF, HKLR and TM-CLKL southern reclamation works.	All areas dredging works	Contractor	TM-EIAO		Y		✓
	Annex C	A layer of floating type silt curtain will be applied when dredging and reclamation works are being undertaken at Portion N-a as shown in Figure 1.1 of Annex C of the EM&A Manual.	o o	Contractor	TM-EIAO		Y		✓
6.1	-	Trailer suction hopper dredgers shall not allow mud to overflow.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		√
6.1	-	The use of Lean Material Overboard (LMOB) systems shall be prohibited.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	C	0	
6.1	Annex A	For other parts of the reclamation works construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. It should be noted that the protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2b and detailed in Appendices D6b. The part of the works where such measures can be undertaken for the majority of the time includes the following locations:	Portion D of HKBCF and HKLR	Contractor	TM-EIAO		Y		✓
Figure 6.2b Appendix D6b		 TM-CLKL northern reclamation; Reclamation filling for Portion D of HKBCF; Reclamation filling for FSD berth of HKBCF; and Reclamation dredging and filling for Portion 1 of HKLR; 							
6.1	-	The filling material for the other parts of the works are the same as Sequence A;	All other areas/backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	5.7	Cage type silt curtain (with steel enclosure) shall be used for grab dredgers working in the site of HKBCF and TM- CLKL southern reclamation. Cage type silt curtains will be applied round all grab dredgers at other works area.	grab dredging	Contractor	TM-EIAO		Y		✓
6.1	Annex A	A layer of floating type silt curtain will be applied around all works as defined in Appendix D6b.	All areas/ through out marine works	Contractor	TM-EIAO		Y		√
6.1	-	TM-CLKL northern landfall: - Reclamation filling shall not proceed until at least 200m section of leading seawall at both the east and west sides of the reclamation are formed above +2.5 mPD, except for 100m gaps for marine access;		Contractor	TM-EIAO		Y		V

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	Implementation Stages		Status *
	Reference					D	С	0	
General Marine W	orks								
6.1	-	Use of TBM for the construction of the submarine tunnel.	Tunnel works / Construction phase	Contractor	TM-EIAO		Y		N/A
6.1	-	Export dredged spoils from NWWCZ.	All areas as much as possible / dredging activities	Contractor	DASO Permit conditions		Y		✓
6.1	-	Where public fill is proposed for filling below +2.5mPD, the fine content in the public fill will be controlled to 25%	All areas/ backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	-	Where sand fill is proposed for filling below +2.5mPD, the fine content in the sand fill will be controlled to 5%.	All areas/ backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	-	Mechanical grabs shall be designed and maintained to avoid spillage and should seal tightly while being lifted.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		√
6.1	-	Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		*
6.1	-	Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		~
6.1	-	Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		V

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imj	Stages		Status *
	Reference					D	C	О	
6.1	-	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.1	-	Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		N/A
6.1	-	All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		N/A
6.1	-	The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.		Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.1	5.2	Silt curtain shall have proved effectiveness from the producer and shall be fully maintained throughout the works by the contractor.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.1	-	The daily maximum production rates shall not exceed those assumed in the water quality assessment.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.1	-	The dredging and filling works shall be scheduled to spread the works evenly over a working day.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementat Stages		Status *
7 1747 1	Reference					D	C	0	
Land Works									,
6.1	1	Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.	construction period	Contractor	TM-EIAO		Y		~
6.1	-	Sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided.	construction period	Contractor	TM-EIAO		Y		*
6.1	-	Storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.		Contractor	TM-EIAO		Y		*
6.1	-	Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm.		Contractor	TM-EIAO		Y		√
6.1	-	Temporary access roads should be surfaced with crushed stone or gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.1	-	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.		Contractor	TM-EIAO		Y		✓
6.1	-	Measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		<>
6.1	-	Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.		Contractor	TM-EIAO		Y		√
6.1	5.8	Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.	construction period	Contractor	TM-EIAO		Y		*

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures Lo	ocation/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	О	
6.1	-	Discharges of surface run-off into foul sewers must always be All prevented in order not to unduly overload the foul sewerage system.	. 0	Contractor	TM-EIAO		Y		✓
6.1	-	All vehicles and plant should be cleaned before they leave the All construction site to ensure that no earth, mud or debris is deposited corby them on roads. A wheel washing bay should be provided at every site exit.		Contractor	TM-EIAO		Y		√
6.1	-	Wheel wash overflow shall be directed to silt removal facilities before All being discharged to the storm drain.	l areas/ throughout nstruction period	Contractor	TM-EIAO		Y		√
6.1	-	Section of construction road between the wheel washing bay and the All public road should be surfaced with crushed stone or coarse gravel.	l areas/ throughout nstruction period	Contractor	TM-EIAO		Y		√
6.1	-	Wastewater generated from concreting, plastering, internal All decoration, cleaning work and other similar activities, shall be conscreened to remove large objects.	l areas/ throughout nstruction period	Contractor	TM-EIAO		Y		√
6.1	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication All facilities shall be located under roofed areas. The drainage in corthese covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for off site disposal.		Contractor	TM-EIAO		Y		N/A
6.1	-	The Contractor shall prepare an oil / chemical cleanup plan and All ensure that leakages or spillages are contained and cleaned up cor immediately.		Contractor	TM-EIAO		Y		√
6.1	-	Waste oil should be collected and stored for recycling or disposal, All in accordance with the Waste Disposal Ordinance.	l areas/ throughout nstruction period	Contractor	TM-EIAO Waste Disposal Ordinance		Y		√
6.1	-	All fuel tanks and chemical storage areas should be provided with All locks and be sited on sealed areas. The storage areas should be consurrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.		Contractor	TM-EIAO		Y		
6.1	-	Surface run-off from bunded areas should pass through oil/grease All traps prior to discharge to the stormwater system.	l areas/ throughout nstruction period	Contractor	TM-EIAO		Y		√
6.1	-	Roadside gullies to trap silt and grit shall be provided prior to Ro	padside/design and operation	Design	TM-EIAO	Y		Y	√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Manual Reference	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Im	plementa Stages	tion	Status *
	Reference	discharging the stormwater into the marine environment. The sumps		Conquitont/		D	С	0	
		will be maintained and cleaned at regular intervals.		Consultant/ Contractor					
6.1	Section 5	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All areas/ throughout construction period	Contractor	EM&A Manual		Y		\
Water Quality Mo	nitoring						-	-	
6.1	Section 5	Water quality monitoring shall be undertaken for suspended solids turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline backfilling and post construction period. One year operation phase water quality monitoring at designated stations.	s as defined in EM&A Manual, Section 5/ Before, through-out, marine construction period, post construction and monthly operational phase water quality.	Contractor	EM&A Manual		Y	Y	*
ECOLOGY									
8.14	6.3	Specification for and implement pre, during and post construction dolphin abundance monitoring.	All Areas/Detailed Design/ during construction works/post construction	Design Consultant/ Contractor	TMEIA	Y	Y	Y	✓
8.14	6.3,6.5	Specification and implementation of 250m dolphin exclusion zone.	All dredging and reclamation areas/Detailed Design/during all reclamation and dredging works	Design Consultant/ Contractor	TMEIA	Y	Y		√
8.15	6.3, 6.5	Specification and deployment of an artificial reef of an area of 3,600m2 in an area where fishing activities are prohibited.	Area of prohibited fishing activities/Detailed Design/towards end of construction period	TM-CLKL/ HKBCF Design Consultant/TM- CLKL/ HKBCF Contractor	TMEIA	Y		Y	N/A. To be implemente d by AFCD.
8.14	6.3, 6.5	Specification and implementation of marine vessel control specifications	All areas/Detailed Design/during construction works	Design Consultant/ Contractor	TMEIA	Y	Y		√
8.14	6.3, 6.5	Design and implementation of acoustic decoupling methods for dredging and reclamation works	All areas/ Detailed Design/during dredging and reclamation works	Design Consultant/ Contractor	TMEIA	Y	Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	O	
8.15	6.3, 6.4	Pre-construction phase survey and coral translocation	Detailed Design/Prior to construction	Design Consultant/ Contractor	TMEIA	Y	Y		√
8.15	6.5	Audit coral translocation success	Post translocation	Contractor	TMEIA		Y		✓
7.13	6.5	The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.	All areas / As soon as accessible	Contractor	TMEIA		Y		N/A
7.13	6.5	Spoil heaps shall be covered at all times.	All areas / Throughout construction period	Contractor	TMEIA		Y		√
7.13	6.5	Avoid damage and disturbance to the remaining and surrounding natural habitat	All areas / Throughout construction period	Contractor	TMEIA		Y		√
7.13	6.5	Placement of equipment in designated areas within the existing disturbed land	All areas / Throughout construction period	Contractor	TMEIA		Y		√
7.13	6.5	Disturbed areas to be reinstated immediately after completion of the works.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Construction activities should be restricted to the proposed works boundary.	All areas / Throughout construction period	Contractor	TMEIA		Y		√
LANDSCAPE A	AND VISUAI	L							
10.9	7.6	The colour and shape of the toll control buildings, ventilation building and administration building shall adopt a design which could blend it into the vicinity elements, and the details will be developed in detailed design stage (DM2)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
10.9	7.6	Control night-time lighting and glare by hooding all lights (CM6)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		N/A
10.9	7.6	Ensure no run-off into water body adjacent to the Project Area (CM7)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		√
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (CM8)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	nt Stages		tion	Status *
	Reference					D	C	O	
10.9	7.6	Aesthetically pleasing design (visually unobtrusive and non- reflective) as regard to the form, material and finishes shall be incorporated to all buildings, engineering structures and associated infrastructure facilities (OM5)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (OM6)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
WASTE									
12.6		The Contractor shall identify a coordinator for the management of waste.	Contract mobilisation	Contractor	TMEIA		Y		√
12.6		The Contractor shall prepare and implement a Waste Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated, recycled and disposed. A recording system for the amount of waste generated, recycled and disposed (locations) should be established.		Contractor	TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material		Υ		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages		Status *	
	Kererence					D	C	O	
12.6		The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.	Contract mobilisation	Contractor	TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance.		Y		*
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures including waste reduction, reuse and recycling.		Contractor	TMEIA		Y		√
12.6	8.1	The extent of cutting operation should be optimised where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.		Contractor	TMEIA		Y		√
12.6	8.1	The surplus surcharge should be transferred to a fill bank	Reclamation areas / after surcharge works	Contractor	TMEIA		Y		N/A
12.6	8.1	Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	The site and surroundings shall be kept tidy and litter free.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	No waste shall be burnt on site.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.	Detailed Design	Design Consultant	TMEIA	Y			✓
12.6	8.1	The Contractor shall be prohibited from disposing of C&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation.	construction period	Contractor	TMEIA		Y		√
12.6	8.1	Stockpiled material shall be covered by tarpaulin and /or watered as appropriate to prevent windblown dust/ surface run off.	All areas / throughout construction period	Contractor	TMEIA		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Im	plementa Stages	tion	Status *
	Reference					D	С	0	
12.6	reduce the potential for spillage and dust generation.	Excavated material in trucks shall be covered by tarpaulins to reduce the potential for spillage and dust generation.	construction period	Contractor	TMEIA		Y		~
12.6	8.1	Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Dredged marine mud shall be disposed of in a gazetted marine disposal ground under the requirements of the Dumping at Seas Ordinance.		Contractor	TMEIA		Y		✓
12.6	8.1	Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling Purchasing of construction materials should avoid over-ordering and wastage.	f construction period l l	Contractor	TMEIA		Y		~
12.6	8.1	The Contractor should recycle as many C&D materials (this is a waste section) as possible on-site. The public fill and C&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities.	e construction period) I	Contractor	TMEIA		Y		*
12.6	8.1	All falsework will be steel instead of wood.	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice or the Packaging, Handling and Storage of Chemical Wastes as follows: f suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed;	construction period	Contractor	TMEIA		Y		<>

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	Implementation Stages		Status *
	Reference					D	C	O	
		f Having a capacity of <450L unless the specifications have been approved by the EPD; and f Displaying a label in English and Chinese according to the instructions prescribed in Schedule 2 of the Regulations. f Clearly labelled and used solely for the storage of chemical wastes; f Enclosed with at least 3 sides; f Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest; f Adequate ventilation; f Sufficiently covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and f Incompatible materials are adequately separated.							
12.6	8.1	Waste oils, chemicals or solvents shall not be disposed of to drain,	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Adequate numbers of portable toilets should be provided for onsite workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.		Contractor	TMEIA		Y		*
12.6	8.1	Night soil should be regularly collected by licensed collectors.	All areas / throughout construction period	Contractor	TMEIA		Y		N/A

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	О	
12.6	8.1	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C&D and chemical wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances Bylaws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited.	construction period	Contractor	TMEIA		Y		<>
12.6	8.1	All waste containers shall be in a secure area on hardstanding;	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.	_	Contractor	TMEIA		Y		√
12.6	8.1	Office wastes can be reduced by recycling of paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	construction period	Contractor	TMEIA		Y		✓
12.6	Section 8	EM&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.		Contractor	EM&A Manual		Y		√
CULTURAL HI	ERITAGE								
11.8	Section 9	EM&A in the form of audit of the mitigation measures	All areas / throughout construction period	Highways Department	EIAO-TM		Y		N/A

* Remarks:

✓ Compliance of Mitigation Measures

Compliance of Mitigation but need improvement

x Non-compliance of Mitigation Measures

Non-compliance of Mitigation Measures but rectified by Contractor

Δ Deficiency of Mitigation Measures but rectified by Contractor

N/A Not Applicable in Reporting Period

Legend: D=Design, C=Construction, O=Operation

Appendix D

Summary of Action and Limit Levels

Table D1 Action and Limit Levels for 1-hour and 24-hour TSP

Parameters	Action	Limit
24 Hour TSP Level in μg/m ³	ASR1 = 213	260
	ASR5 = 238	
	AQMS1 = 213	
	ASR6 = 238	
	ASR10 = 214	
1 Hour TSP Level in μg /m³	ASR1 = 331	500
	ASR5 = 340	
	AQMS1 = 335	
	ASR6 = 338	
	ASR10 = 337	

Table D2 Action and Limit Levels for Water Quality

Parameter	Action Level#	Limit Level#
DO in mg/L (a)	Surface and Middle	Surface and Middle
	5.0 mg/L	4.2 mg/L
	Bottom	Bottom
	4.7 mg/L	3.6 mg/L
Turbidity in NTU (Depthaveraged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data, i.e.,
	27.5 NTU	47.0 NTU
SS in mg/L (Depth-averaged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 10mg/L for WSD Seawater Intakes at Tuen Mun and 99%-ile of baseline
	23.5 mg/L	data, i.e.,
		34.4 mg/L

Notes:

Baseline data: data from HKZMB Baseline Water Quality Monitoring between 6 and 31 October 2011.

- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths
- (c) For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (d) All figures given in the table are used for reference only, and EPD may amend the figures whenever it is considered as necessary
- (e) The 1%-ile of baseline data for surface and middle DO is 4.2 mg/L, whilst for bottom DO is 3.6 mg/L.

Table D3 Action and Limit Levels for Impact Dolphin Monitoring

	North Lantau Social Cluster				
	NEL	NWL			
Action Level	STG < 70% of baseline &	STG < 70% of baseline &			
	ANI < 70% of baseline	ANI < 70% of baseline			
Limit Level	[STG < 40% of baseling	ne & ANI < 40% of baseline]			
		and			
STG < 40% of baseline & ANI < 40% of baseli					

Notes:

- STG means quarterly encounter rate of number of dolphin sightings, which is 6.00 in NEL and 9.85 in NWL during the baseline monitoring period
- 2. ANI means quarterly encounter rate of total number of dolphins, which is **22.19 in NEL** and **44.66 in NWL** during the baseline monitoring period
- 3. For North Lantau Social Cluster, AL will be trigger if NEL or NWL fall below the criteria; LL will be triggered if both NEL and NWL fall below the criteria.

Table D4 Derived Value of Action Level (AL) and Limit Level (LL)

	North Lantau	u Social Cluster		
	NEL N			
Action Level	STG < 4.2 & ANI< 15.5	STG < 6.9 & ANI < 31.3		
Limit Level	NEL = [STG <	< 2.4 & ANI <8.9]		
	á á	and		
	NWL = [STG < 3.9 & ANI < 17.9]			

Appendix E

Copies of Calibration Certificates for Air Quality and Water Quality Monitoring

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR 5
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 0816

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.07593

 Intercept (b)
 :
 -0.00102

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.8	3.475	1.674	54	54.62
2	13 holes	9.4	3.101	1.494	47	47.54
3	10 holes	7.0	2.676	1.290	40	40.46
4	7 holes	4.8	2.216	1.068	32	32.37
5	5 holes	2.9	1.722	0.830	24	24.28

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): <u>35.842</u> Intercept(b): <u>-5.713</u> Correlation Coefficient(r): <u>0.9997</u>

Checked by: Magnum Fan Date: 17/12/2014

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR10
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 8162

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.590	1.730	62	62.71
2	13 holes	9.2	3.068	1.478	52	52.60
3	10 holes	7.0	2.676	1.290	45	45.52
4	7 holes	4.6	2.169	1.047	36	36.41
5	5 holes	2.8	1.693	0.816	28	28.32

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): <u>37.576</u> Intercept(b): <u>-2.680</u> Correlation Coefficient(r): <u>0.9997</u>

Checked by: Magnum Fan Date: 17/12/14

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : AQMS1
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 1253

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	13.0	3.647	1.757	56	56.64
2	13 holes	10.2	3.230	1.557	50	50.57
3	10 holes	7.8	2.825	1.361	45	45.52
4	7 holes	5.0	2.262	1.090	37	37.42
5	5 holes	3.0	1.752	0.844	31	31.36

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):27.785 Intercept(b): 7.574 Correlation Coefficient(r): 0.9995

Checked by: Magnum Fan Date: 17/12/2014

<u>High-Volume TSP Sampler</u> 5-Point Calibration Record

Location : ASR 1
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 0146

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.8	3.475	1.674	52	52.60
2	13 holes	9.6	3.134	1.510	47	47.54
3	10 holes	7.0	2.676	1.290	38	38.44
4	7 holes	4.6	2.169	1.046	30	30.34
5	5 holes	2.8	1.693	0.816	22	22.25

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected\ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 35.713 Intercept(b): -7.017 Correlation Coefficient(r): 0.9994

Checked by: Magnum Fan Date: 17/12/2014

High-Volume TSP Sampler 5-Point Calibration Record

Location : ASR 6
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 3957

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.05818

 Intercept (b)
 :
 0.01929

 Correlation Coefficient(r)
 :
 0.99991

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.590	1.730	53	53.61
2	13 holes	9.6	3.134	1.510	46	46.53
3	10 holes	7.2	2.714	1.308	39	39.45
4	7 holes	4.4	2.122	1.023	31	31.36
5	5 holes	3.0	1.752	0.844	25	25.29

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m):31.736 Intercept(b): -1.473 Correlation Coefficient(r): 0.9995

Checked by: Magnum Fan Date: 17/12/2014

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C146966

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC14-2877)

Date of Receipt / 收件日期: 12 November 2014

Description / 儀器名稱

Anemometer

Manufacturer / 製造商

Lutron

Model No. / 型號

AM-4201

Serial No./編號

AF.27513

Supplied By / 委託者

Envirotech Services Co.

Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road,

Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

14 November 2014

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- Testo Industrial Services GmbH, Germany

Tested By

測試

C F Leung Project Engineer

Certified By

核證

Date of Issue

18 November 2014

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab(a)suncreation.com

Website/網址: www.suncreation.com

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C146966

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 10 measurements at each calibration point.

3. Test equipment:

Equipment ID

Description

Certificate No.

CL386

Multi-function Measuring Instrument

S12109

4. Test procedure: MA130N.

5. Results:

Air Velocity

Applied	UUT	Value Measurement Uncertainty				
Value	Reading					
(m/s)	(m/s)	(m/s)	Expanded Uncertainty (m/s)	Coverage Factor		
2.0	1.7	+0.3	0.2	2.0		
4.1	3.8	+0.3	0.3	2.0		
6.1	5.8	+0.3	0.3	2.0		
8.0	7.8	+0.2	0.3	2.0		
10.0	9.9	+0.1	0.4	2.0		

Remarks: - The Measured Corrections are defined as: Value = Applied Value - UUT Reading

- The expanded uncertainties are for a level of confidence of 95 %.

Note:

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門與安里 -號青山灣機樓四樓

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

ENVIROTECH SERVICES CO.

Calibration Report of Wind Meter

Date of Calibration:	29 December 2014	-		
Brand of Test Meter:	Davis	•		
Model:	Weather Wizard III (s/n: WE90911A30)	• ,		
Location:	ASR5	· ·		
Procedures:				
1. Wind Still Test:	The wind speed sensor was hold by hand un	ntil it keep still		
2.Wind Speed Test:	The wind meter was on-site calibrated again	nst the Anemomete	er	
3. Wind Direction Test:	The wind meter was on-site calibrated again	nst the marine com	pass at four direc	ctions
Results:				

Wind Still Test

	Wind Speed (m/s)	
á	0.00	

Wind Speed Test

Davis (m/s)	Anemomete (m/s)
1.4	1.6
1.9	1.7
2.4	2.5

Wind Direction Test

. 2	Davis (o)	Marine Compass (o)		
	271		270	
, .	0	. 8	0	
	91	il god	90	
	179	*	180	

Calibrated by:

Yeung Ping Fai

(Technical Officer)

Checked by:

Ho Kam Fat

(Senior Technical Officer)

Internal Calibration Report of Dissolved Oxygen Meter

Equipment Ref. No.

ET/EW/008/006

Manufacturer

: YSI

Model No.

Pro 2030

Serial No.

12A 100554

Date of Calibration

17/12/2014

Calibration Due Date

16/03/2015

Temperature Verification

Ref. No. of Reference Thermometer:

ET/0521/008

Ref. No. of Water Bath:

		Temperature (°C)			
Reference Thermometer reading	Measured	20.0	Corrected	19.4	
DO Meter reading	Measured	19.4	Difference	0.0	

Standardization of sodium thiosulphate (Na $_2$ S $_2$ O $_3$) solution

Reagent No. of Na ₂ S ₂ O ₃ titrant	CPE/012/4.5/001/9	Reagent No. of 0.025N K ₂ Cr ₂ O ₇	CPE/012/4.4/001/32	
		Trial 1	Trial 2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)		0.00	10.15	
Final Vol. of Na ₂ S ₂ O ₃ (ml)		10.15	20.35	
Vol. of Na ₂ S ₂ O ₃ used (ml)		10.15	10.20	
Normality of Na ₂ S ₂ O ₃ solution (N)		0.02463	0.02451	
Average Normality (N) of Na ₂ S ₂ O ₃ s	solution (N)	0.02457		
Acceptance criteria, Deviation		Less than ± 0.001N		

Calculation:

Normality of $Na_2S_2O_3$, $N = 0.25 / ml Na_2S_2O_3$ used

Lineality Checking

Determination of dissolved oxygen content by Winkler Titration *

Purging Time (min)		2		5		10	
Trial	1	2	1	2	1	2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.40	22.80	0.00	6.60	10.30	
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.40	22.80	29.30	6.60	10.30	14.00	
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.40	11.40	6.50	6.60	3.70	3.70	
Dissolved Oxygen (DO), mg/L	7.52	7.52	4.29	4.35	2.44	2.44	
Acceptance criteria, Deviation	Less than	n + 0.3mg/L	Less than	+ 0.3mg/L	Less than	+ 0.3mg/L	

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Purging time, min	DOr	neter reading	g, mg/L	Winkler Titration result *, mg/L		Difference (%) of DO	
ruiging unic, min	1	2	Average	1	2	Average	Content
2	7.61	7.20	7.41	7.52	7.52	7.52	1.47
5	4.28	4.75	4.52	4.29	4.35	4.32	4.52
10	2.50	2.49	2.50	2.44	2.44	2.44	2.43
Linear regression coefficient						0.9978	

Internal Calibration Report of Dissolved Oxygen Meter

Zero	Point	Checi	king

DO meter reading, mg/L	0.00

Salinity Checking

		·	
	i		
Reagent No. of NaCl (10ppt)	ICPE/012/4.7/002/29	Reagent No. of NaCl (30ppt)	ICPE/012/4.8/002/29
reagent no. of naci (roppi)	CI LII OI LI 11.77 OODI LI	Treasure Trace (5 oppr)	01 2: 012: 110: 002: 22

Determination of dissolved oxygen content by Winkler Titration **

Salinity (ppt)	10)		30
Trial	1	2	1	2
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.90	23.80	34.40
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.90	23.80	34.40	44.90
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11,90	11.90	10.60	10.50
Dissolved Oxygen (DO), mg/L	7.85	7.85	6.99	6.93
Acceptance criteria, Deviation	Less than -	+ 0.3mg/L	Less that	n + 0.3mg/L

Calculation:

DO $(mg/L) = V \times N \times 8000/298$

Salinity (ppt)	DO	meter reading,	mg/L	Winkler	Titration resu	lt**, mg/L	Difference (%) of DO
Samily (ppt)	1	2	Average	1	2	Average	Content
10	7.68	7.78	7.73	7.85	7.85	7.85	1.54
30	6.88	6.89	6.89	6.99	6.93	6.96	1.01

Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer : < 0.5 °C
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within \pm 5%

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

" Delete as appropriate

CEP/012/W

Performa	nce Check of	f Salinity Meter
Equipment Ref. No. : ET/EV	V/008/006	Manufacturer : <u>YSI</u>
Model No. : Pro 20	30	Serial No. : <u>12A 100554</u>
Date of Calibration : 17/12/	2014	Due Date : <u>16/03/2015</u>
Ref. No. of Salinity Stand	dard used (30ppt)	S/001/5
Salinity Standard (ppt)	Measured Salinit (ppt)	Difference %
30.0	30.5	1.7
(*) Difference (%) = (Measured	Salinity – Salinity Sta	ndard value) / Salinity Standard value x 100
Acceptance Criteria	Difference : -10 %	to 10 %
*	_	y * with the specified requirements r use. Measurements are traceable to
Checked by:	Арр	roved by:

Internal	Calibration & I	 Performan	ce Check	of pH Mete	ľ
Equipment Ref. No.: ET		Manufacture		: HANNA	
	8314	Serial No.	,,	: 8246095	Noctobe 5550000 May 0.00000 May 1.00000
MILATONIA.			Jua Data		нен борон на применен от применен от профессиональный применен от применен от применен от применен от применен
Date of Calibration : <u>07</u>	/12/2014	Calibration [Jue Date	: 06/01/2015	
Liquid Junction Error					
Primary Standard Solution U	Jsed : Phosphate		Ref No. of	Primary Solution	: 003/5.2/001/20
Temperature of Solution :	20.0		•	ΔpH ½ :	= +0.08
pH value of diluted buffer :	6.76		•	pH (S) =	
$\triangle pH = pH(S) - pH \text{ of diluted}$	**************************************	(Ohs	served Deviati	, , ,	
Eiquid Junction Error (ΔpH_i)			cived beviali	511)	
Elquid surrottori Error (April _j)	25011 25011 ₂₂ 0.01				
Shift on Stirring					
pH of buffer solution (with st	irring), pH _s =	6.94			
Shift on stirring, ∆pH _s = pH _s	- pH(S) - ΔpH _i =	0.018		•	
Noise					
Noise, ΔpH_n = difference be	tween max and min re	eading :	0.00		ADDRESS AND THE REST AND THE RE
Verification of ATC					
्र Ref. No. of reference thermo	ometer used:		ET/0521/008	3	
Temperature record from the		ter (T _n)·	19.9		°C
Temperature record from the		(, K).	19.8		_ °c
Temperature Difference, 1			0.1	\$\text{\tin}\text{\tetx{\text{\tetx}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin\tint{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\ti}\tint{\text{\text{\text{\texititt{\text{\text{\text{\text{\texi}\tint{\text{\text{\text{\text{\texi}\text{\texit{\text{\text{\tin\tint{\text{\texit{\text{\texi}\tint{\text{\texit{\text{\tin}\	_° c
remperature dinerence, [1	R - 'ATC'		U.1		
Acceptance Criteria					
Performa	nce Characteristic		Accept	able Range	
Liquid Junction Error	∆рНј		***************************************	≤0.05	_
Shift on Stirring	ΔpHs		***************************************	≤0.02	_
Noise	ΔpHn			≤0.02	-
Verifcation of ATC	Temperature	e Difference	<u> </u>	(0.5°C	
The pH meter complies * / unacceptable * for use. Mea * Delete as appropriate				nts and is deem	ed acceptable * /
	1	A STATE OF THE STA		a/	
Calibrated by :	my	our com	Checked by	:	

CPE/015/W

1

Internal Calib	ration & Perform	nance Check	of pH Mete	er
Equipment Ref. No.: ET/EW/00)7/005 Manufac	cturer	: HANNA	
Model No. : HI 8314	Serial N	Ο.	: 8246095	
Date of Calibration : 07/01/201		ion Due Date	: 06/02/2015	
Liquid Junction Error				
Primary Standard Solution Used:	Phosphate	Ref No. o	f Primary Solution	n: <u>003/5.2/001/20</u>
Temperature of Solution:	20.0		∆pH ½	= +0.08
pH value of diluted buffer :	6.79		pH (S) =	= 6.881
△pH = pH(S) - pH of diluted buffer =	0.091	(Observed Deviati	on)	_
Liquid Junction Error (ΔpH_j) = ΔpH -	$\Delta pH_{\frac{1}{2}} = 0.011$			
Shift on Stirring			the manufacture of the same of	
omic on ouring				
pH of buffer solution (with stirring), p	H _s = 6	5.91	······································	
Shift on stirring, $\triangle pH_s = pH_s - pH(S) - pH(S)$	$\Delta pH_j = 0.$.018		
Noise				
Noise, ΔpH_n = difference between m	ax and min reading:	0.00		
Verification of ATC				
Ref. No. of reference thermometer u	and:	ET/0521/00	0	
Temperature record from the referen		19.9	O	- _° c
Temperature record from the ATC (T		19.9	W. W	_ °c
Temperature Difference, $ T_R - T_{ATC} $		0.0	***************************************	_°c
	I	0.0		
Acceptance Criteria				
Performance Cha	racteristic	Accept	table Range	
Liquid Junction Error	∆рНj		≤0.05	
Shift on Stirring	ΔpHs		≤0.02	
Noise Verification of ATC	∆pHn Temperature Difference		≤0.02 ≤0.5°C	_
,verneation of ATO	Temperature Difference	· · · · · · · · · · · · · · · · · · ·		
The pH meter complies * / does nunacceptable * for use. Measureme			nts and is deem	ed acceptable * /
* Delete as appropriate	and an annual section of the section		······································	
Calibrated by :		Checked by	: 1 de	le

CPE/015/W

	Peri	formance C	Sheck of T	urbidity	/ M	leter	
Equipment I	Equipment Ref. No. : <u>ET/0505/010</u>			anufacturer	•	<u>HACH</u>	
Model No.		: <u>2100Q</u>	Se	erial No.	•	11110 C 014260	Softwardte
Date of Cali	bration	: 06/10/2014	Di	ue Date	:	05/01/2015	
Ref. No.	. of Turbi	dity Standard use	ed (4000NTU)		00	05/6.1/001/7	
Theore	tical Val Standard	ue of Turbidity (NTU)	Measured Va	lue (NTU)	-	Difference % *	
	20		20.6			3.00	
	100		102			2.00	
	800		790			-1.25	
(*) Diffe	erence =	(Measured Value	e – Theoretical	Value) / The	eoret	ical Value x 100	_
Acceptance	Criteria	Diffe	erence : -5 % to	5 %			
and is d	•	ceptable * / unac			-	fied requirements ts are traceable to	
Prepared by	6	W	Check	xed by :	1	Je 6	

P	erformance	Check	of I	Furbidity	Meter

Equipment Ref. No. : <u>ET/0505/011</u> Manufacturer : <u>HACH</u>

Model No. : 2100Q Serial No. : 12060 C 018534

Date of Calibration : 05/01/2015 Due Date : 04/04/2015

Ref. No. of Turbidity Standard used (4000NTU) 005/6.1/001/7

Theoretical Value of Turbidity Standard (NTU)	Measured Value (NTU)	Difference % *
20	19.8	-1.00
100	104	4.00
800	788	-1.50

(*) Difference = (Measured Value – Theoretical Value) / Theoretical Value x 100

A ,	\sim .	•
Accentance	('r1f@1	110
Acceptance		ıа

j ...;

Difference: -5 % to 5 %

The turbidity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Prepared by: Checked by:

Appendix F

EM&A Monitoring Schedules

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Impact Dolphin Monitoring Survey Monitoring Schedule - January 2015

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Jan		3-Jan
4-Jan	5-Jan	6-Jan			9-Jan	10-Jan
				Impact Dolphin Monitoring		
11-Jan	12-Jan	13-Jan	14-Jan	15-Jan	16-Jan	17-Jan
				Impact Dolphin Monitoring		
18-Jan	19-Jan	20-Jan	21-Jan	22-Jan	23-Jan	24-Jan
25-Jan	26-Jan				30-Jan	31-Jan
		Impact Dolphin Monitoring		Impact Dolphin Monitoring		

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Tentative Impact Dolphin Monitoring Survey Monitoring Schedule - February 2015

					-	
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Feb	02-Feb	03-Feb		05-Feb Impact Dolphin Monitoring	06-Feb	07-Feb
08-Feb	09-Feb	10-Feb		12-Feb Impact Dolphin Monitoring	13-Feb	14-Feb
	16-Feb Impact Dolphin Monitoring	17-Feb	18-Feb	public holiday 19-Feb	public holiday 20-Feb	public holiday 21-Feb
22-Feb			25-Feb Impact Dolphin Monitoring		27-Feb	

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Air Quality Impact Monitoring Schedule - January 2015

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

1-hour TSP - 3 times								
public holiday 1-Jan 2-Jan 3-1-hour TSP - 3 times								
public holiday 1-Jan 2-Jan 3-1-hour TSP - 3 times								
1-hour TSP - 3 times	Sunday		Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				-	_	public holiday 1-Jan	2-Jan	3-Jan
						1-hour TSP - 3 times		
24-hour TSP - 1 time						24-hour TSP - 1 time		
Impact AQM								
		-Jan	5-Jan			8-Jan	9-Jan	10-Jan
1-hour TSP - 3 times 1-hour TSP - 3 times 1-hour TSP - 3 times								
24-hour TSP - 1 time 24-hour TSP - 1 time 24-hour TSP - 1 time	1-hour TSP - 1 time				24-hour TSP - 1 time			24-hour TSP - 1 time
Impact AQM Impact AQM Impact AQM								
	1	-Jan			14-Jan			17-Jan
1-hour TSP - 3 times 1-hour TSP - 3 times								
24-hour TSP - 1 time				24-hour TSP - 1 time			24-hour TSP - 1 time	
Impact AQM Impact AQM					64.1			
	18			20-Jan			23-Jan	24-Jan
1-hour TSP - 3 times 1-hour TSP - 3 times								
24-hour TSP - 1 time 24-hour TSP - 1 time		24-no	our ISP - 1 time			24-nour ISP - 1 time		
Impact AQM		Impo	ot AOM			Impact AOM		
	2			27 ₋ lan			30- Jan	31-Jan
1-hour TSP - 3 times		Udii	20-0a11			29-Jan	30-0aii	
24-hour TSP - 1 time 24-hour TSP - 1 time 24-hour TSP - 1 time								
								2 :
Impact AQM Impact AQM	npact AQM				Impact AQM			Impact AQM

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Tentative Air Quality Impact Monitoring Schedule - February 2015

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

All quality monitoring static						
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Feb	02-Feb	03-Feb	04-Feb	05-Feb	06-Feb	07-Feb
		1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time	
		Impact AQM			Impact AQM	
08-Feb		10-Feb	11-Feb		13-Feb	14-Feb
	1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time		
	Impact AQM			Impact AQM		
15-Feb	16-Feb		18-Feb	public holiday 19-Feb	public holiday 20-Feb	public holiday 21-Feb
1-hour TSP - 3 times 24-hour TSP - 1 time		1-hour TSP - 3 times 24-hour TSP - 1 time				
Impact AQM		Impact AQM				
22-Feb	23-Feb		25-Feb	26-Feb	27-Feb	28-Feb
	1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time		
	Impact AQM			Impact AQM		

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions. No construction works will be carried out from 19-Feb to 21-Feb hence AQM will postpone to 23-Feb.

HY/2012/08 - Tuen Mun - Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section Impact Marine Water Quality Monitoring (WQM) Schedule (January 15)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				01-Jan	02-Jan	03-Jan
					WQM	
					Mid-Ebb	
					11:02	
					(09:17 - 12:47)	
					Mid-Flood	
					16:29	
					(14:44 - 18:14)	
04-Ja		06-Jan		08-Jan	09-Jan	10-Jan
	WQM		WQM		WQM	
	Mid-Ebb		Mid-Flood		Mid-Flood	
	13:09		9:04		9:59	
	(11:24 - 14:54)		(07:19 - 10:49)		(08:14 - 11:44)	
	Mid-Flood		Mid-Ebb		Mid-Ebb	
	18:25		14:18		15:21	
	(16:40 - 20:10)		(12:33 - 16:03)		(13:36 - 17:06)	
11-Ja	n 12-Jan		14-Jan	15-Jan	16-Jan	17-Jan
	WQM		WQM		WQM	
	Mid-Flood		Mid-Flood		Mid-Ebb	
	11:36		13:04		9:19	
	(09:51 - 13:21)		(11:19 - 14:49)		(07:34 - 11:04)	
	Mid-Ebb		Mid-Ebb		Mid-Flood	
	17:35		20:05		14:49	
	(15:50 - 19:20)		(18:20 - 21:50)		(13:04 - 16:34)	
18-Ja		20-Jan	21-Jan	22-Jan	23-Jan	24-Jan
	WQM		WQM		WQM	
	Mid-Ebb		Mid-Ebb		Mid-Flood	
	12:13		13:42		9:33	
	(10:28 - 13:58)		(11:57 - 15:27)		(07:48 - 11:18)	
	Mid-Flood		Mid-Flood		Mid-Ebb	
	17:26		19:04		15:11	
	(16:13 - 19:43)		(17:19 - 20:49)		(13:26 - 16:56)	
25-Ja	n 26-Jan	27-Jan	28-Jan	29-Jan	30-Jan	31-Jan
	WQM		WQM		WQM	
	Mid-Flood		Mid-Flood		Mid-Ebb	
	11:34		13:09		9:47	
	(09:49 - 13:19)		(11:24 - 14:54)		(08:20 - 11:15)	
	Mid-Ebb		Mid-Ebb		Mid-Flood	
	17:58		20:31		15:04	
	(16:13 - 19:43)		(18:46 - 22:16)		(13:19 - 16:49)	

HY/2012/08 - Tuen Mun - Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section Tentative Impact Marine Water Quality Monitoring (WQM) Schedule (February 15)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Feb		03-Feb	04-Feb	05-Feb		07-Feb
	WQM		WQM		WQM	
	Mid-Ebb		Mid-Ebb		Mid-Flood	
	12:19		13:23		8:46	
	(10:34 - 14:04)		(11:38 - 15:08)		(07:01 - 10:31)	
	Mid-Flood		Mid-Flood		Mid-Ebb	
	17:39		18:54		14:18	
	(15:54 - 19:24)		(17:09 - 20:39)		(12:33 - 16:03)	
08-Feb	09-Feb	10-Feb	11-Feb	12-Feb		14-Feb
	WQM		WQM		WQM	
	Mid-Flood		Mid-Flood		Mid-Flood	
	10:01		11:06		12:43	
	(08:16 - 11:46)		(09:21 - 12:51)		(10:58 - 14:28)	
	Mid-Ebb		Mid-Ebb		Mid-Ebb	
	16:00		17:42		20:24	
	(14:15 - 17:45)		(15:57 - 19:27)		(18:39 - 22:09)	
15-Feb	16-Feb	17-Feb	18-Feb	19-Feb	20-Feb	21-Feb
	WQM		WQM			
	Mid-Ebb		Mid-Ebb			
	11:12		12:42			
	(09:27 - 12:57)		(10:57 - 14:27)			
	Mid-Flood		Mid-Flood			
	16:20		18:11			
	(14:35 - 18:05)		(16:26 - 19:56)			
22-Feb	23-Feb	24-Feb	25-Feb	26-Feb		28-Feb
	WQM		WQM		WQM	
	Mid-Flood		Mid-Flood		Mid-Flood	
	9:56		11:13		7:46	
	(08:11 - 11:41)		(09:28 - 12:58)		(06:45 - 08:45)	
	Mid-Ebb		Mid-Ebb		Mid-Ebb	
	16:16		18:18		13:00	
	(14:31 - 18:01)		(16:33 - 20:03)		(11:15 - 14:45)	

Appendix G

Impact Air Quality Monitoring Results

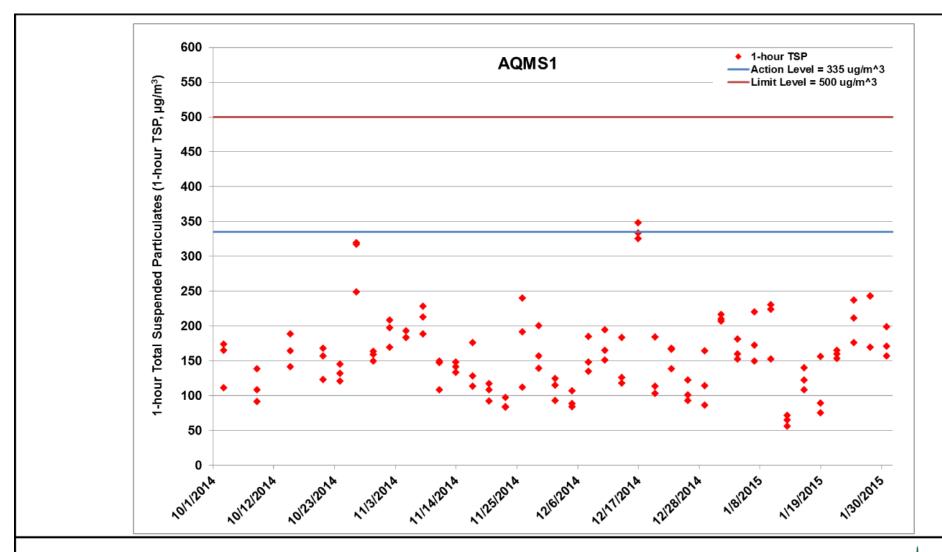


Figure G.1 Impact Monitoring – 1-hour Total Suspended Particulates (µg/m³) at AQMS1 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014). Ref: 0212330_Impact AQM graphs_Jan 2015_REV a.xlsx

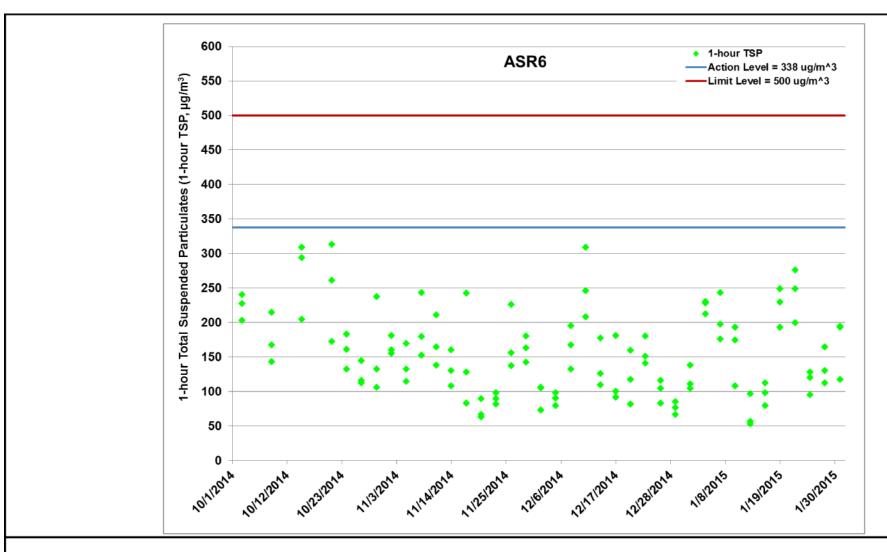


Figure G.2 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR6 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area – Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area – Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014). Ref: 0212330_Impact AQM graphs_Jan 2015_REV a.xlsx

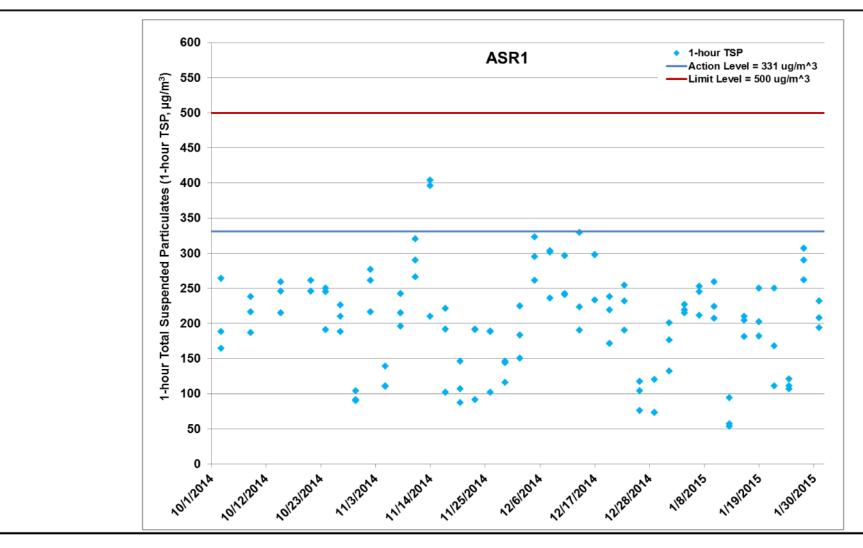


Figure G.3 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR1 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014). Ref: 0212330_Impact AQM graphs_Jan 2015_REV a.xlsx

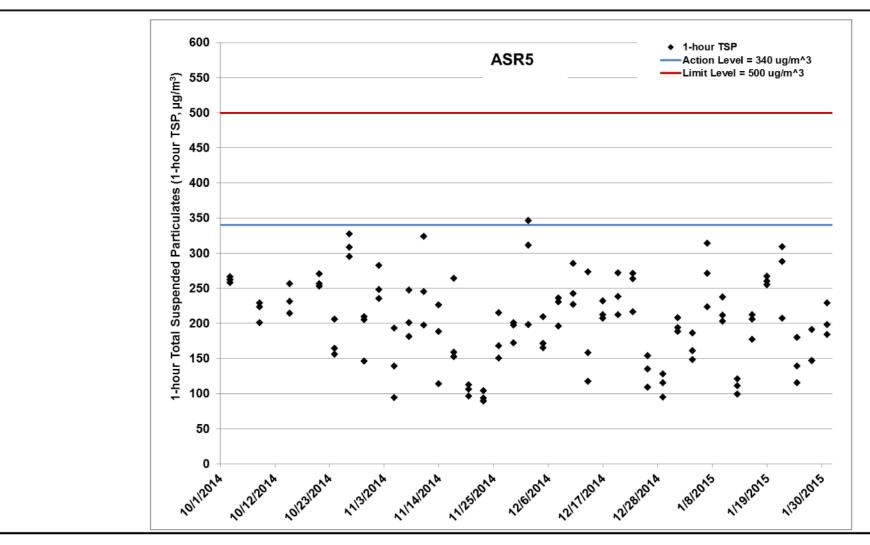


Figure G.4 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR5 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area – Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area – Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).

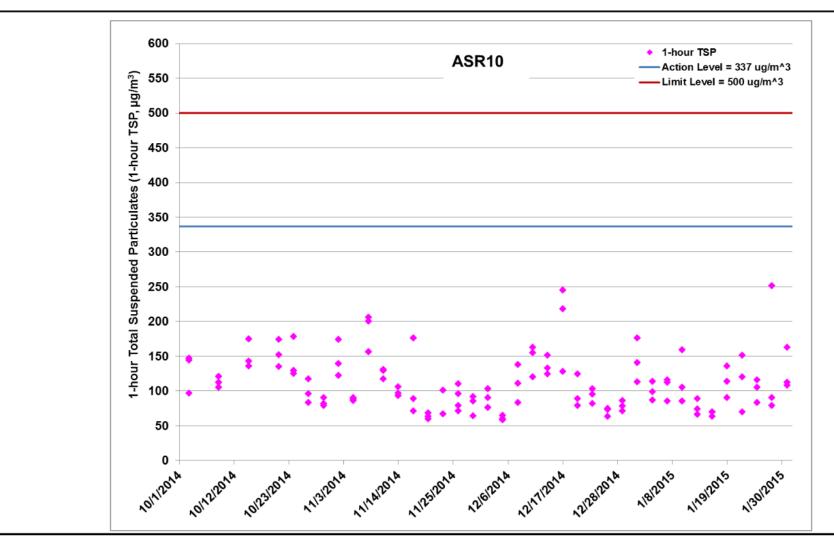


Figure G.5 Impact Monitoring – 1-hour Total Suspended Particulates (μ g/m³) at ASR10 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area – Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area – Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).

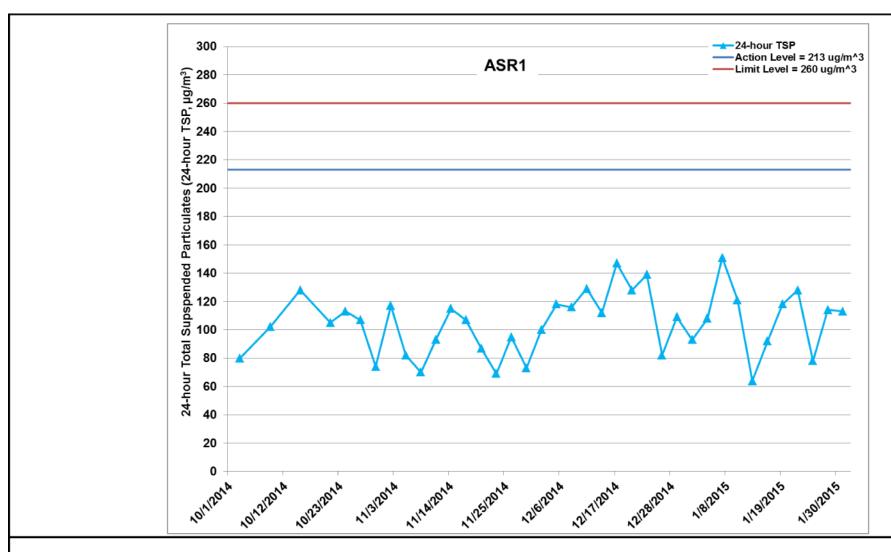


Figure G.6 Impact Monitoring – 24-hour Total Suspended Particulates (μ g/m³) at ASR1 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).

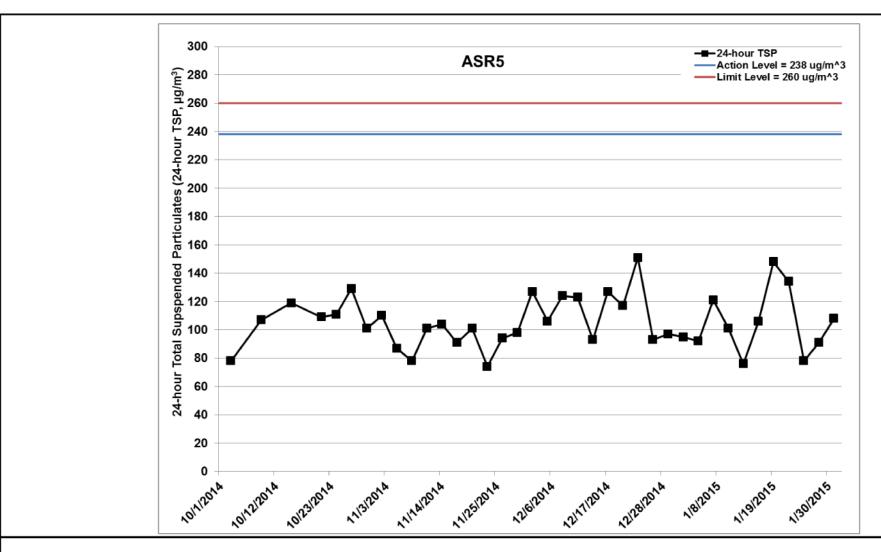


Figure G.7 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR5 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).

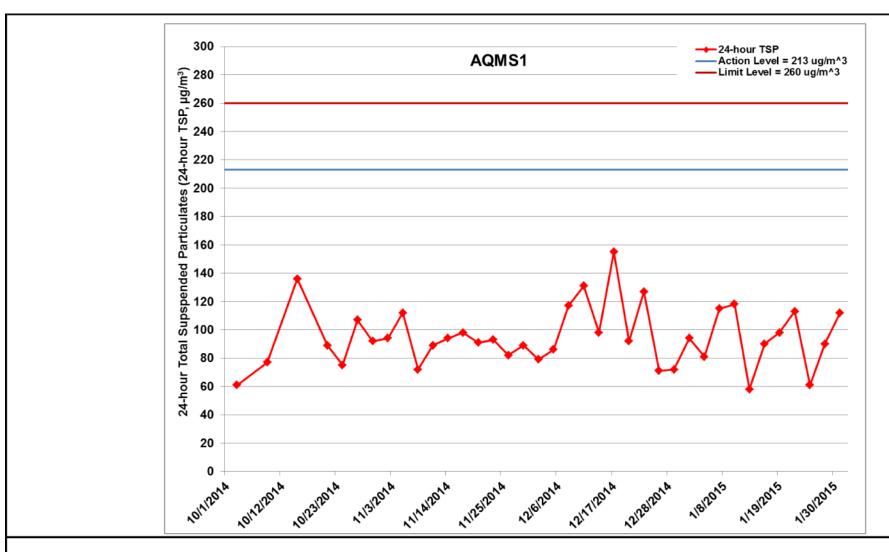


Figure G.8 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at AQMS1 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).

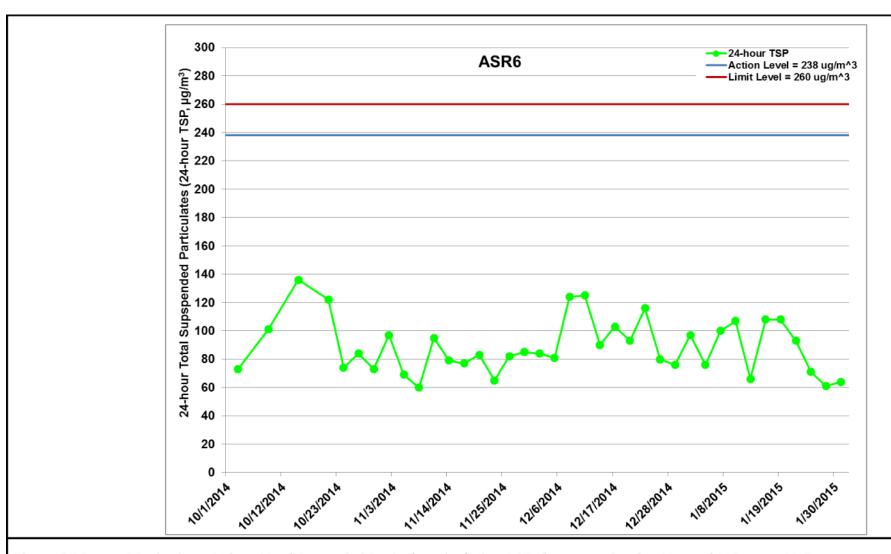


Figure G.9 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR6 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).

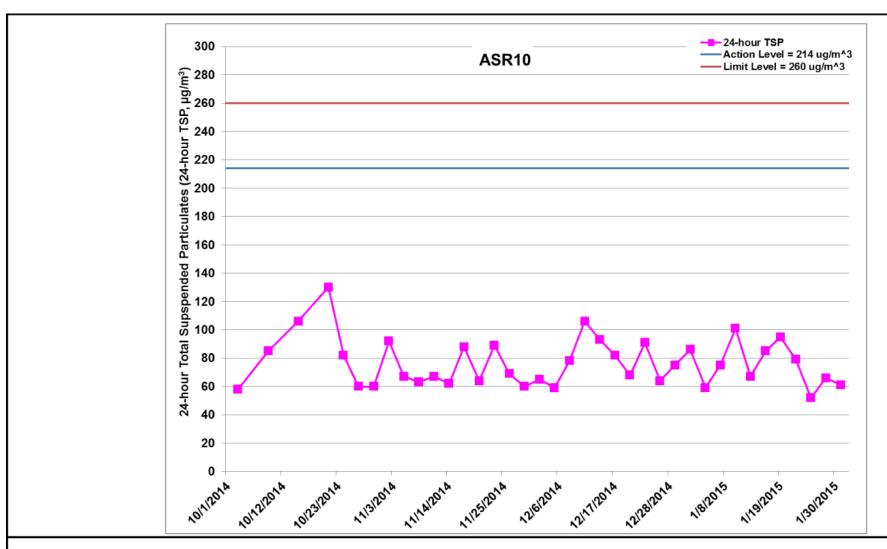


Figure G.10 Impact Monitoring – 24-hour Total Suspended Particulates (μ g/m³) at ASR10 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-01-01	ASR10	Sunny	08:40	1-hour TSP	113	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR10	Sunny	09:42	1-hour TSP	176	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR10	Sunny	10:44	1-hour TSP	141	ug/m3
TMCLKL	HY/2012/08	2015-01-01	AQMS1	Sunny	09:25	1-hour TSP	210	ug/m3
TMCLKL	HY/2012/08	2015-01-01	AQMS1	Sunny	10:27	1-hour TSP	207	ug/m3
TMCLKL	HY/2012/08	2015-01-01	AQMS1	Sunny	11:29	1-hour TSP	216	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR1	Sunny	09:13	1-hour TSP	132	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR1	Sunny	10:15	1-hour TSP	176	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR1	Sunny	11:17	1-hour TSP	201	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR5	Sunny	09:02	1-hour TSP	194	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR5	Sunny	10:04	1-hour TSP	188	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR5	Sunny	11:06	1-hour TSP	208	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR6	Sunny	08:51	1-hour TSP	111	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR6	Sunny	09:53	1-hour TSP	138	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR6	Sunny	10:55	1-hour TSP	104	ug/m3
TMCLKL	HY/2012/08	2015-01-04	AQMS1	Sunny	08:46	1-hour TSP	152	ug/m3
TMCLKL	HY/2012/08	2015-01-04	AQMS1	Sunny	09:48	1-hour TSP	181	ug/m3
TMCLKL	HY/2012/08	2015-01-04	AQMS1	Sunny	10:50	1-hour TSP	160	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR10	Sunny	08:00	1-hour TSP	87	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR10	Sunny	09:02	1-hour TSP	114	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR10	Sunny	10:04	1-hour TSP	99	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR6	Sunny	08:12	1-hour TSP	212	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR6	Sunny	09:14	1-hour TSP	230	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR6	Sunny	10:16	1-hour TSP	228	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR1	Sunny	08:35	1-hour TSP	219	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR1	Sunny	09:37	1-hour TSP	227	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR1	Sunny	10:39	1-hour TSP	215	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR5	Sunny	08:23	1-hour TSP	161	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR5	Sunny	09:25	1-hour TSP	186	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR5	Sunny	10:27	1-hour TSP	148	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-01-07	ASR1	Cloudy	13:20	1-hour TSP	211	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR1	Cloudy	14:22	1-hour TSP	245	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR1	Cloudy	15:24	1-hour TSP	253	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR5	Cloudy	13:08	1-hour TSP	314	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR5	Cloudy	14:10	1-hour TSP	271	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR5	Cloudy	15:12	1-hour TSP	223	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR6	Cloudy	12:56	1-hour TSP	243	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR6	Cloudy	13:58	1-hour TSP	197	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR6	Cloudy	15:00	1-hour TSP	176	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR10	Cloudy	12:45	1-hour TSP	116	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR10	Cloudy	13:47	1-hour TSP	112	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR10	Cloudy	14:49	1-hour TSP	85	ug/m3
TMCLKL	HY/2012/08	2015-01-07	AQMS1	Cloudy	13:32	1-hour TSP	149	ug/m3
TMCLKL	HY/2012/08	2015-01-07	AQMS1	Cloudy	14:34	1-hour TSP	220	ug/m3
TMCLKL	HY/2012/08	2015-01-07	AQMS1	Cloudy	15:36	1-hour TSP	172	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR6	Sunny	13:44	1-hour TSP	193	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR6	Sunny	14:46	1-hour TSP	108	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR6	Sunny	15:48	1-hour TSP	174	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR5	Sunny	13:56	1-hour TSP	237	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR5	Sunny	14:58	1-hour TSP	203	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR5	Sunny	16:00	1-hour TSP	211	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR1	Sunny	14:08	1-hour TSP	207	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR1	Sunny	15:10	1-hour TSP	259	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR1	Sunny	16:12	1-hour TSP	224	ug/m3
TMCLKL	HY/2012/08	2015-01-10	AQMS1	Sunny	14:20	1-hour TSP	152	ug/m3
TMCLKL	HY/2012/08	2015-01-10	AQMS1	Sunny	15:22	1-hour TSP	230	ug/m3
TMCLKL	HY/2012/08	2015-01-10	AQMS1	Sunny	16:24	1-hour TSP	224	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR10	Sunny	13:33	1-hour TSP	159	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR10	Sunny	14:35	1-hour TSP	85	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR10	Sunny	15:37	1-hour TSP	105	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-01-13	ASR10	Cloudy	13:16	1-hour TSP	66	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR10	Cloudy	14:18	1-hour TSP	74	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR10	Cloudy	15:20	1-hour TSP	89	ug/m3
TMCLKL	HY/2012/08	2015-01-13	AQMS1	Cloudy	14:02	1-hour TSP	65	ug/m3
TMCLKL	HY/2012/08	2015-01-13	AQMS1	Cloudy	15:04	1-hour TSP	71	ug/m3
TMCLKL	HY/2012/08	2015-01-13	AQMS1	Cloudy	16:06	1-hour TSP	56	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR1	Cloudy	13:50	1-hour TSP	57	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR1	Cloudy	14:52	1-hour TSP	53	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR1	Cloudy	15:54	1-hour TSP	94	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR5	Cloudy	13:39	1-hour TSP	121	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR5	Cloudy	14:41	1-hour TSP	99	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR5	Cloudy	15:43	1-hour TSP	111	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR6	Cloudy	13:28	1-hour TSP	56	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR6	Cloudy	14:30	1-hour TSP	53	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR6	Cloudy	15:32	1-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR6	Sunny	08:18	1-hour TSP	112	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR6	Sunny	09:20	1-hour TSP	79	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR6	Sunny	10:22	1-hour TSP	98	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR5	Sunny	08:30	1-hour TSP	212	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR5	Sunny	09:32	1-hour TSP	177	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR5	Sunny	10:34	1-hour TSP	206	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR1	Sunny	08:42	1-hour TSP	210	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR1	Sunny	09:44	1-hour TSP	181	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR1	Sunny	10:46	1-hour TSP	204	ug/m3
TMCLKL	HY/2012/08	2015-01-16	AQMS1	Sunny	08:54	1-hour TSP	108	ug/m3
TMCLKL	HY/2012/08	2015-01-16	AQMS1	Sunny	09:56	1-hour TSP	122	ug/m3
TMCLKL	HY/2012/08	2015-01-16	AQMS1	Sunny	10:58	1-hour TSP	140	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR10	Sunny	08:07	1-hour TSP	70	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR10	Sunny	09:09	1-hour TSP	63	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR10	Sunny	10:11	1-hour TSP	70	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-01-19	AQMS1	Sunny	12:57	1-hour TSP	75	ug/m3
TMCLKL	HY/2012/08	2015-01-19	AQMS1	Sunny	13:59	1-hour TSP	156	ug/m3
TMCLKL	HY/2012/08	2015-01-19	AQMS1	Sunny	15:01	1-hour TSP	89	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR10	Sunny	14:14	1-hour TSP	136	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR10	Sunny	13:12	1-hour TSP	90	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR10	Sunny	12:10	1-hour TSP	114	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR6	Sunny	12:22	1-hour TSP	229	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR6	Sunny	13:24	1-hour TSP	193	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR6	Sunny	14:26	1-hour TSP	249	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR5	Sunny	12:33	1-hour TSP	255	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR5	Sunny	13:35	1-hour TSP	260	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR5	Sunny	14:37	1-hour TSP	267	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR1	Sunny	12:45	1-hour TSP	202	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR1	Sunny	13:47	1-hour TSP	182	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR1	Sunny	14:49	1-hour TSP	250	ug/m3
TMCLKL	HY/2012/08	2015-01-22	AQMS1	Sunny	13:47	1-hour TSP	153	ug/m3
TMCLKL	HY/2012/08	2015-01-22	AQMS1	Sunny	14:49	1-hour TSP	160	ug/m3
TMCLKL	HY/2012/08	2015-01-22	AQMS1	Sunny	15:51	1-hour TSP	165	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR10	Sunny	13:02	1-hour TSP	151	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR10	Sunny	14:04	1-hour TSP	120	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR10	Sunny	15:06	1-hour TSP	70	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR6	Sunny	13:13	1-hour TSP	276	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR6	Sunny	14:15	1-hour TSP	249	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR6	Sunny	15:17	1-hour TSP	199	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR5	Sunny	13:23	1-hour TSP	288	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR5	Sunny	14:25	1-hour TSP	309	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR5	Sunny	15:27	1-hour TSP	207	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR1	Sunny	13:35	1-hour TSP	250	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR1	Sunny	14:37	1-hour TSP	111	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR1	Sunny	15:39	1-hour TSP	168	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-01-25	ASR1	Sunny	08:42	1-hour TSP	121	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR1	Sunny	09:44	1-hour TSP	111	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR1	Sunny	10:46	1-hour TSP	107	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR5	Sunny	08:30	1-hour TSP	180	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR5	Sunny	09:32	1-hour TSP	139	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR5	Sunny	10:34	1-hour TSP	115	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR6	Sunny	08:18	1-hour TSP	128	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR6	Sunny	09:20	1-hour TSP	120	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR6	Sunny	10:22	1-hour TSP	95	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR10	Sunny	08:07	1-hour TSP	116	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR10	Sunny	09:09	1-hour TSP	105	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR10	Sunny	10:11	1-hour TSP	83	ug/m3
TMCLKL	HY/2012/08	2015-01-25	AQMS1	Sunny	08:54	1-hour TSP	176	ug/m3
TMCLKL	HY/2012/08	2015-01-25	AQMS1	Sunny	09:56	1-hour TSP	237	ug/m3
TMCLKL	HY/2012/08	2015-01-25	AQMS1	Sunny	10:58	1-hour TSP	211	ug/m3
TMCLKL	HY/2012/08	2015-01-28	AQMS1	Sunny	13:28	1-hour TSP	243	ug/m3
TMCLKL	HY/2012/08	2015-01-28	AQMS1	Sunny	14:30	1-hour TSP	243	ug/m3
TMCLKL	HY/2012/08	2015-01-28	AQMS1	Sunny	15:32	1-hour TSP	169	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR1	Sunny	13:17	1-hour TSP	290	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR1	Sunny	14:19	1-hour TSP	307	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR1	Sunny	15:21	1-hour TSP	262	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR5	Sunny	13:05	1-hour TSP	147	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR5	Sunny	14:07	1-hour TSP	191	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR5	Sunny	15:09	1-hour TSP	147	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR6	Sunny	12:53	1-hour TSP	130	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR6	Sunny	13:55	1-hour TSP	164	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR6	Sunny	14:57	1-hour TSP	112	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR10	Sunny	12:42	1-hour TSP	251	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR10	Sunny	13:44	1-hour TSP	79	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR10	Sunny	14:46	1-hour TSP	90	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-01-31	ASR10	Cloudy	08:00	1-hour TSP	163	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR10	Cloudy	09:02	1-hour TSP	112	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR10	Cloudy	10:04	1-hour TSP	108	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR6	Cloudy	08:13	1-hour TSP	194	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR6	Cloudy	09:15	1-hour TSP	193	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR6	Cloudy	10:17	1-hour TSP	117	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR5	Cloudy	08:24	1-hour TSP	184	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR5	Cloudy	09:26	1-hour TSP	229	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR5	Cloudy	10:28	1-hour TSP	198	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR1	Cloudy	08:36	1-hour TSP	232	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR1	Cloudy	09:38	1-hour TSP	194	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR1	Cloudy	10:40	1-hour TSP	208	ug/m3
TMCLKL	HY/2012/08	2015-01-31	AQMS1	Cloudy	08:47	1-hour TSP	199	ug/m3
TMCLKL	HY/2012/08	2015-01-31	AQMS1	Cloudy	09:49	1-hour TSP	171	ug/m3
TMCLKL	HY/2012/08	2015-01-31	AQMS1	Cloudy	10:51	1-hour TSP	157	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR10	Sunny	11:46	24-hour TSP	86	ug/m3
TMCLKL	HY/2012/08	2015-01-01	AQMS1	Sunny	12:31	24-hour TSP	94	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR1	Sunny	12:19	24-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR5	Sunny	12:08	24-hour TSP	95	ug/m3
TMCLKL	HY/2012/08	2015-01-01	ASR6	Sunny	11:57	24-hour TSP	97	ug/m3
TMCLKL	HY/2012/08	2015-01-04	AQMS1	Sunny	11:52	24-hour TSP	81	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR10	Sunny	11:06	24-hour TSP	59	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR6	Sunny	11:18	24-hour TSP	76	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR1	Sunny	11:41	24-hour TSP	108	ug/m3
TMCLKL	HY/2012/08	2015-01-04	ASR5	Sunny	11:29	24-hour TSP	92	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR1	Cloudy	16:26	24-hour TSP	151	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR5	Cloudy	16:14	24-hour TSP	121	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR6	Cloudy	16:02	24-hour TSP	100	ug/m3
TMCLKL	HY/2012/08	2015-01-07	ASR10	Cloudy	15:51	24-hour TSP	75	ug/m3
TMCLKL	HY/2012/08	2015-01-07	AQMS1	Cloudy	16:38	24-hour TSP	115	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-01-10	ASR6	Sunny	16:50	24-hour TSP	107	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR5	Sunny	17:02	24-hour TSP	101	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR1	Sunny	17:14	24-hour TSP	121	ug/m3
TMCLKL	HY/2012/08	2015-01-10	AQMS1	Sunny	17:26	24-hour TSP	118	ug/m3
TMCLKL	HY/2012/08	2015-01-10	ASR10	Sunny	16:39	24-hour TSP	101	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR10	Cloudy	16:22	24-hour TSP	67	ug/m3
TMCLKL	HY/2012/08	2015-01-13	AQMS1	Cloudy	17:08	24-hour TSP	58	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR1	Cloudy	16:56	24-hour TSP	64	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR5	Cloudy	16:45	24-hour TSP	76	ug/m3
TMCLKL	HY/2012/08	2015-01-13	ASR6	Cloudy	16:34	24-hour TSP	66	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR6	Sunny	11:24	24-hour TSP	108	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR5	Sunny	11:36	24-hour TSP	106	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR1	Sunny	11:48	24-hour TSP	92	ug/m3
TMCLKL	HY/2012/08	2015-01-16	AQMS1	Sunny	12:00	24-hour TSP	90	ug/m3
TMCLKL	HY/2012/08	2015-01-16	ASR10	Sunny	11:13	24-hour TSP	85	ug/m3
TMCLKL	HY/2012/08	2015-01-19	AQMS1	Sunny	16:03	24-hour TSP	98	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR10	Sunny	15:16	24-hour TSP	95	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR6	Sunny	15:28	24-hour TSP	108	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR5	Sunny	15:39	24-hour TSP	148	ug/m3
TMCLKL	HY/2012/08	2015-01-19	ASR1	Sunny	15:51	24-hour TSP	118	ug/m3
TMCLKL	HY/2012/08	2015-01-22	AQMS1	Sunny	16:53	24-hour TSP	113	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR10	Sunny	16:08	24-hour TSP	79	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR6	Sunny	16:19	24-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR5	Sunny	16:29	24-hour TSP	134	ug/m3
TMCLKL	HY/2012/08	2015-01-22	ASR1	Sunny	16:41	24-hour TSP	128	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR1	Sunny	11:48	24-hour TSP	78	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR5	Sunny	11:36	24-hour TSP	78	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR6	Sunny	11:24	24-hour TSP	71	ug/m3
TMCLKL	HY/2012/08	2015-01-25	ASR10	Sunny	11:13	24-hour TSP	52	ug/m3
TMCLKL	HY/2012/08	2015-01-25	AQMS1	Sunny	12:00	24-hour TSP	61	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-01-28	AQMS1	Sunny	16:34	24-hour TSP	90	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR1	Sunny	16:23	24-hour TSP	114	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR5	Sunny	16:11	24-hour TSP	91	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR6	Sunny	15:59	24-hour TSP	61	ug/m3
TMCLKL	HY/2012/08	2015-01-28	ASR10	Sunny	15:48	24-hour TSP	66	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR10	Cloudy	11:06	24-hour TSP	61	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR6	Cloudy	11:19	24-hour TSP	64	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR5	Cloudy	11:30	24-hour TSP	108	ug/m3
TMCLKL	HY/2012/08	2015-01-31	ASR1	Cloudy	11:42	24-hour TSP	113	ug/m3
TMCLKL	HY/2012/08	2015-01-31	AQMS1	Cloudy	11:53	24-hour TSP	112	ug/m3

Appendix H

Meteorological Data

Meteorological Data for Impact Monitoring in the reporting period				
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree	
15/01/01	0:00	0.4	45	
15/01/01	1:00	0.4	38	
15/01/01	2:00	0	52	
15/01/01	3:00	0	10	
15/01/01	4:00	0	345	
15/01/01	5:00	0.9	112	
15/01/01	6:00	1.8	37	
15/01/01	7:00	1.8	41	
15/01/01	8:00	3.6	36	
15/01/01	9:00	4	48	
15/01/01	10:00	3.6	52	
15/01/01	11:00	3.1	51	
15/01/01	12:00	2.2	50	
15/01/01	13:00	0.9	48	
		0.9	254	
15/01/01 15/01/01	14:00	0.9	271	
	15:00			
15/01/01	16:00	0.9	174	
15/01/01	17:00	0.4	200	
15/01/01	18:00	0.4	146	
15/01/01	19:00	0.4	91	
15/01/01	20:00	0	11	
15/01/01	21:00	0	15	
15/01/01	22:00	0	23	
15/01/01	23:00	0	21	
15/01/02	0:00	0	40	
15/01/02	1:00	0.4	100	
15/01/02	2:00	0.4	51	
15/01/02	3:00	0.9	47	
15/01/02	4:00	0.4	84	
15/01/02	5:00	1.3	39	
15/01/02	6:00	1.8	42	
15/01/02	7:00	1.3	51	
15/01/02	8:00	1.8	46	
15/01/02	9:00	1.3	48	
15/01/02	10:00	1.3	52	
15/01/02	11:00	1.3	39	
15/01/02	12:00	1.8	41	
15/01/02	13:00	1.8	191	
15/01/02	14:00	1.3	175	
15/01/02	15:00	1.3	282	
15/01/02	16:00	0.4	245	
15/01/02	17:00	0.4	177	
		2.2	140	
15/01/02	18:00			
15/01/02	19:00	3.1	172	
15/01/02	20:00	2.2	121	
15/01/02	21:00	0.9	101	
15/01/02	22:00	0.9	95	
15/01/02	23:00	0.4	94	
15/01/04	0:00	1.3	84	
15/01/04	1:00	1.3	79	
15/01/04	2:00	0.9	100	
15/01/04	3:00	0.9	95	
15/01/04	4:00	0.4	88	
15/01/04	5:00	0.9	46	

	Meteorolo	ogical Data for Impact Monitoring in the re	eporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree
15/01/04	6:00	0.4	74
15/01/04	7:00	0.4	47
15/01/04	8:00	0.4	84
15/01/04	9:00	0.4	75
15/01/04	10:00	0.9	95
15/01/04	11:00	1.3	146
15/01/04	12:00	1.8	168
15/01/04	13:00	1.8	172
15/01/04	14:00	0.9	301
15/01/04	15:00	0.4	312
15/01/04	16:00	0.4	308
15/01/04	17:00	1.3	94
15/01/04	18:00	1.3	89
15/01/04	19:00	2.2	115
15/01/04	20:00	2.2	121
15/01/04	21:00	1.8	94
15/01/04	22:00	1.8	123
15/01/04	23:00	2.2	109
15/01/05	0:00	2.2	142
15/01/05	1:00	1.8	138
15/01/05	2:00	1.8	127
15/01/05	3:00	1.8	115
15/01/05	4:00	1.8	164
15/01/05	5:00	1.8	137
15/01/05	6:00	2.2	124
15/01/05	7:00	2.2	119
15/01/05	8:00	2.2	126
15/01/05	9:00	1.8	81
15/01/05	10:00	1.3	95
15/01/05	11:00	2.2	101
15/01/05	12:00	2.2	131
15/01/05	13:00	1.3	101
15/01/05	14:00	1.8	95
15/01/05	15:00	1.3	94
15/01/05	16:00	1.8	97
15/01/05	17:00	1.8	92
15/01/05	18:00	2.2	96
15/01/05	19:00	1.8	104
15/01/05	20:00	1.3	111
15/01/05	21:00	1.8	114
15/01/05	22:00	1.8	100
15/01/05	23:00	2.2	125
15/01/07	0:00	0	101
15/01/07	1:00	0	104
15/01/07	2:00	0.4	301
15/01/07	3:00	0.4	305
15/01/07	4:00	0	346
15/01/07	5:00	0	351
15/01/07	6:00	0	142
15/01/07	7:00	1.3	5
15/01/07	8:00	0.4	116
15/01/07	9:00	0.9	45
15/01/07	10:00	0.4	40
15/01/07	11:00	1.8	49

Meteorological Data for Impact Monitoring in the reporting period				
Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree		
12:00	2.7	51		
13:00	2.2	47		
14:00	1.3	43		
15:00	1.8	42		
16:00	1.3	51		
17:00	1.8	5		
		4		
		1		
		354		
		355		
		2		
		4		
		12		
		39		
		41		
1		49		
		51		
		62		
		i		
		48		
1		44		
		49		
		47		
		42		
1		38		
		41		
		38		
1		177		
		225		
16:00	1.8	203		
17:00	0.4	242		
18:00	0.4	115		
19:00	0.9	104		
20:00	0	113		
21:00	0.4	25		
22:00	0	21		
23:00	0	26		
0:00	0.4	5		
1:00	0.4	8		
2:00	0.4	9		
3:00	0	354		
4:00	0	353		
5:00	0.4	52		
	i	49		
1		41		
		45		
		92		
		95		
1		178		
		181		
1		180		
		168		
		175		
	0.4	84		
16:00				
	Time (24hrs) 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00 1:00 5:00 6:00 7:00 8:00 9:00 11:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 11:00 12:00 13:00 11:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 17:00 18:00 17:00 18:00 17:00 18:00 17:00 18:00 19:00 10:00 11:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 17:00 18:00 19:00 20:00 21:00 21:00 22:00 23:00 0:00 2:00 3:00 4:00	Time (24hrs) Average of Wind Speed (m/s) 12:00 2.7 13:00 2.2 14:00 1.3 15:00 1.8 16:00 1.3 17:00 1.8 18:00 2.2 19:00 2.2 20:00 1.3 21:00 1.3 23:00 0.9 0:00 0.4 1:00 1.3 2:00 2.7 3:00 4.5 4:00 4.5 5:00 4.5 6:00 4.9 7:00 4.9 8:00 4 9:00 4 10:00 3.1 11:00 2.7 12:00 2.2 13:00 1.8 14:00 1.3 15:00 1.3 16:00 1.8 17:00 0.4 19:00 0.9 20:00 0		

	Meteorolo	gical Data for Impact Monitoring in tl	he reporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree
15/01/10	18:00	0	265
15/01/10	19:00	0.4	5
15/01/10	20:00	0.4	2
15/01/10	21:00	1.8	353
15/01/10	22:00	0.4	96
15/01/10	23:00	0	21
15/01/11	0:00	0	28
15/01/11	1:00	0.4	12
15/01/11	2:00	1.3	48
15/01/11	3:00	0.9	51
15/01/11	4:00	0.4	47
15/01/11	5:00	1.3	48
15/01/11	6:00	0.9	39
15/01/11	7:00	1.3	40
	8:00	1.3	
15/01/11 15/01/11	9:00	1.3	52 52
15/01/11	10:00	0.9	10
15/01/11	11:00	3.1	47
15/01/11	12:00	3.1	43
15/01/11	13:00	2.2	52
15/01/11	14:00	1.3	251
15/01/11	15:00	0.4	200
15/01/11	16:00	0.9	301
15/01/11	17:00	0	174
15/01/11	18:00	0.9	2
15/01/11	19:00	2.7	10
15/01/11	20:00	2.7	4
15/01/11	21:00	2.2	23
15/01/11	22:00	0.9	21
15/01/11	23:00	1.3	85
15/01/13	0:00	6.3	46
15/01/13	1:00	6.3	52
15/01/13	2:00	4.9	47
15/01/13	3:00	1.8	79
15/01/13	4:00	0.9	333
15/01/13	5:00	0	280
15/01/13	6:00	0.9	20
15/01/13	7:00	0.9	315
15/01/13	8:00	1.8	12
	9:00	0.9	23
15/01/13			
15/01/13	10:00	0.9	341
15/01/13	11:00		352
15/01/13	12:00	0.9	358
15/01/13	13:00	1.8	3
15/01/13	14:00	1.8	11
15/01/13	15:00	1.8	12
15/01/13	16:00	1.3	5
15/01/13	17:00	0.9	6
15/01/13	18:00	0.9	351
15/01/13	19:00	0.4	349
15/01/13	20:00	0	6
15/01/13	21:00	1.3	41
15/01/13	22:00	1.8	2
15/01/13	23:00	0.4	357

	Meteorolog	gical Data for Impact Monitoring in th	ne reporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree
15/01/14	0:00	0.4	62
15/01/14	1:00	0.4	51
15/01/14	2:00	0	54
15/01/14	3:00	0.9	22
15/01/14	4:00	1.8	5
15/01/14	5:00	1.3	11
15/01/14	6:00	0.9	4
15/01/14	7:00	0.4	346
15/01/14	8:00	0.4	351
15/01/14	9:00	0.9	115
15/01/14	10:00	2.2	62
15/01/14	11:00	2.7	39
15/01/14	12:00	2.2	47
15/01/14	13:00	1.8	48
15/01/14	14:00	1.3	35
15/01/14	15:00	1.8	3
15/01/14	16:00	1.8	355
15/01/14	17:00	2.2	4
15/01/14	18:00	1.8	6
15/01/14	19:00	1.3	8
15/01/14	20:00	0.9	10
15/01/14	21:00	2.2	12
15/01/14	22:00	3.1	38
15/01/14	23:00	2.7	42
15/01/16	0:00	0.4	5
15/01/16	1:00	0.4	6
15/01/16	2:00	0	358
15/01/16	3:00	0	4
15/01/16	4:00	0.4	6
15/01/16	5:00	1.3	5
15/01/16	6:00	0.4	11
15/01/16	7:00	0	226
15/01/16	8:00	0.9	35
15/01/16	9:00	2.7	33
15/01/16	10:00	2.2	46
15/01/16	11:00	2.2	49
15/01/16	12:00	1.3	51
15/01/16	13:00	1.3	357
15/01/16	14:00	1.8	351
15/01/16	15:00	1.3	346
15/01/16	16:00	1.8	301
15/01/16	17:00	2.2	310
15/01/16	18:00	1.3	351
15/01/16	19:00	0.9	6
15/01/16	20:00	0.9	23
	21:00	0.4	46
15/01/16 15/01/16	22:00	0.4	41
		0	
15/01/16	23:00		51
15/01/17	0:00	1.3	81
15/01/17	1:00	2.7	76
15/01/17	2:00	2.7	92
15/01/17	3:00	2.7	50
15/01/17	4:00	1.8	98
15/01/17	5:00	1.8	100

	Meteorolog	gical Data for Impact Monitoring in th	
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree
15/01/17	6:00	3.1	35
15/01/17	7:00	3.1	62
15/01/17	8:00	2.2	54
15/01/17	9:00	2.2	46
15/01/17	10:00	1.8	52
15/01/17	11:00	2.2	37
15/01/17	12:00	2.2	128
15/01/17	13:00	4.5	127
15/01/17	14:00	4	130
15/01/17	15:00	3.6	169
15/01/17	16:00	1.8	179
15/01/17	17:00	2.7	177
15/01/17	18:00	1.3	167
15/01/17	19:00	1.3	174
15/01/17	20:00	0.4	72
15/01/17	21:00	0	116
15/01/17	22:00	0.9	121
15/01/17	23:00	0.4	100
15/01/19	0:00	1.3	23
15/01/19	1:00	0.9	25
15/01/19	2:00	2.2	46
15/01/19	3:00	4	47
15/01/19	4:00	3.6	51
15/01/19	5:00	3.6	55
15/01/19	6:00	3.6	60
15/01/19	7:00	2.7	54
15/01/19	8:00	2.2	49
15/01/19	9:00	2.2	52
15/01/19	10:00	2.7	41
15/01/19	11:00	3.1	47
15/01/19	12:00	2.2	39
15/01/19	13:00	1.8	51
15/01/19	14:00	1.3	256
15/01/19	15:00	0.9	263
15/01/19	16:00	0.9	341
15/01/19	17:00	0.9	352
15/01/19	18:00	0.4	243
15/01/19	19:00	0.4	177
15/01/19	20:00	1.8	179
15/01/19	21:00	0.4	175
15/01/19	22:00	0	84
15/01/19	23:00	0	101
15/01/20	0:00	0.4	9
	1:00	0.4	118
15/01/20 15/01/20	2:00	0.9	121
		0.9	
15/01/20	3:00	1.8	114 127
15/01/20	4:00		
15/01/20	5:00	1.3	109
15/01/20	6:00	1.3	84
15/01/20	7:00	1.3	75
15/01/20	8:00	1.3	41
15/01/20	9:00	1.3	94
15/01/20	10:00	0.9	127
15/01/20	11:00	0.9	142

Meteorological Data for Impact Monitoring in the reporting period				
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree	
15/01/20	12:00	0.4	178	
15/01/20	13:00	0.4	200	
15/01/20	14:00	0.9	243	
15/01/20	15:00	1.3	251	
15/01/20	16:00	1.3	238	
15/01/20	17:00	0.9	267	
15/01/22	0:00	0	10	
15/01/22	1:00	0	5	
15/01/22	2:00	0	9	
15/01/22	3:00	1.8	43	
15/01/22	4:00	2.7	35	
15/01/22	5:00	3.1	62	
15/01/22	6:00	4	51	
15/01/22	7:00	4	48	
	8:00	2.2	44	
15/01/22		2.2	39	
15/01/22	9:00			
15/01/22	10:00	2.2	46	
15/01/22	11:00	1.3	175	
15/01/22	12:00	1.8	182	
15/01/22	13:00	0.9	176	
15/01/22	14:00	3.6	69	
15/01/22	15:00	3.1	182	
15/01/22	16:00	0.9	245	
15/01/22	17:00	0.4	236	
15/01/22	18:00	0.9	168	
15/01/22	19:00	0.9	136	
15/01/22	20:00	0.4	91	
15/01/22	21:00	0	85	
15/01/22	22:00	0.4	87	
15/01/22	23:00	0.4	93	
15/01/23	0:00	0.3	91	
15/01/23	1:00	0.1	94	
15/01/23	2:00	0.2	95	
15/01/23	3:00	0.4	101	
15/01/23	4:00	0	105	
15/01/23	5:00	0.4	121	
15/01/23	6:00	0	111	
15/01/23	7:00	0.4	98	
15/01/23	8:00	0	99	
15/01/23	9:00	0.4	101	
15/01/23	10:00	1.3	135	
15/01/23	11:00	3.1	142	
			177	
15/01/23	12:00	3.6		
15/01/23	13:00	2.7	151	
15/01/23	14:00	2.2	146	
15/01/23	15:00	1.8	133	
15/01/23	16:00	2.2	131	
15/01/23	17:00	1.8	111	
15/01/23	18:00	1.8	109	
15/01/23	19:00	2.2	114	
15/01/23	20:00	2.2	115	
15/01/23	21:00	1.8	165	
15/01/23	22:00	2.2	121	
15/01/23	23:00	2.7	124	

Meteorological Data for Impact Monitoring in the reporting period				
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree	
15/01/24	0:00	1.8	129	
15/01/24	1:00	1.8	119	
15/01/24	2:00	2.2	138	
15/01/24	3:00	2.7	101	
15/01/24	4:00	2.7	109	
15/01/24	5:00	3.1	112	
15/01/24	6:00	3.1	131	
15/01/24	7:00	2.7	115	
15/01/24	8:00	2.7	104	
15/01/24	9:00	2.7	122	
15/01/24	10:00	3.1	117	
15/01/24	11:00	3.1	115	
15/01/24	12:00	3.1	137	
15/01/24	13:00	3.6	141	
		3.6	140	
15/01/24	14:00		131	
15/01/24	15:00	4		
15/01/24	16:00	3.1	121	
15/01/24	17:00	2.7	113	
15/01/24	18:00	2.7	109	
15/01/24	19:00	2.7	117	
15/01/24	20:00	2.7	121	
15/01/24	21:00	2.2	125	
15/01/24	22:00	3.1	108	
15/01/24	23:00	3.1	119	
15/01/25	0:00	2.7	85	
15/01/25	1:00	0.4	89	
15/01/25	2:00	2.2	87	
15/01/25	3:00	1.8	92	
15/01/25	4:00	0.9	91	
15/01/25	5:00	1.3	113	
15/01/25	6:00	1.8	125	
15/01/25	7:00	1.8	109	
15/01/25	8:00	1.3	100	
15/01/25	9:00	1.8	123	
15/01/25	10:00	1.8	142	
15/01/25	11:00	1.8	133	
15/01/25	12:00	1.3	91	
15/01/25	13:00	1.8	146	
15/01/25	14:00	1.8	123	
15/01/25	15:00	1.3	85	
15/01/25	16:00	0.9	46	
		1.3	95	
15/01/25	17:00		88	
15/01/25	18:00	1.3		
15/01/25	19:00	1.3	93	
15/01/25	20:00	1.3	91	
15/01/25	21:00	1.3	100	
15/01/25	22:00	0.9	79	
15/01/25	23:00	0.9	86	
15/01/26	0:00	1.8	92	
15/01/26	1:00	1.3	94	
15/01/26	2:00	1.3	88	
15/01/26	3:00	0.4	118	
15/01/26	4:00	0.9	74	
15/01/26	5:00	0.1	46	

Meteorological Data for Impact Monitoring in the reporting period				
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree	
15/01/26	6:00	0.2	47	
15/01/26	7:00	0.3	51	
15/01/26	8:00	0.1	44	
15/01/26	9:00	0.9	40	
15/01/26	10:00	0.9	92	
15/01/26	11:00	0.9	113	
15/01/26	12:00	0.9	181	
15/01/26	13:00	1.8	256	
15/01/26	14:00	1.3	242	
15/01/26	15:00	3.1	240	
15/01/26	16:00	0.9	238	
15/01/26	17:00	0.4	144	
15/01/26	18:00	1.3	93	
15/01/26	19:00	1.8	98	
15/01/26 15/01/26	20:00	1.8	99	
15/01/26	22:00	1.8	122	
15/01/26	23:00	1.3	109	
15/01/28	0:00	3.1	136	
15/01/28	1:00	3.6	135	
15/01/28	2:00	4	142	
15/01/28	3:00	2.7	139	
15/01/28	4:00	2.2	144	
15/01/28	5:00	2.7	151	
15/01/28	6:00	3.6	137	
15/01/28	7:00	3.6	128	
15/01/28	8:00	3.1	134	
15/01/28	9:00	4	128	
15/01/28	10:00	4.5	136	
15/01/28	11:00	4	114	
15/01/28	12:00	3.6	144	
15/01/28	13:00	3.1	151	
15/01/28	14:00	3.6	136	
15/01/28	15:00	3.6	147	
15/01/28	16:00	3.6	135	
15/01/28	17:00	3.6	149	
15/01/28	18:00	3.1	140	
15/01/28	19:00	3.1	118	
15/01/28	20:00	2.2	102	
15/01/28	21:00	2.2	107	
15/01/28	22:00	2.2	95	
15/01/28	23:00	2.7	124	
			94	
15/01/29	0:00	2.2		
15/01/29	1:00	2.7	115	
15/01/29	2:00	2.7	126	
15/01/29	3:00	2.7	117	
15/01/29	4:00	3.6	128	
15/01/29	5:00	2.2	130	
15/01/29	6:00	1.3	88	
15/01/29	7:00	1.8	85	
15/01/29	8:00	1.3	92	
15/01/29	9:00	2.2	116	
15/01/29	10:00	3.6	134	
15/01/29	11:00	3.6	151	

	Meteorological Data for Impact Monitoring in the reporting period				
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree		
15/01/29	12:00	2.7	162		
15/01/29	13:00	2.7	157		
15/01/29	14:00	1.8	149		
15/01/29	15:00	1.3	144		
15/01/29	16:00	0.9	171		
15/01/29	17:00	0.9	246		
15/01/29	18:00	0.4	47		
15/01/29	19:00	0.4	72		
15/01/29	20:00	0.4	75		
15/01/29	21:00	0.4	80		
15/01/29	22:00	0.2	5		
15/01/29	23:00	0.1	69		
15/01/31	0:00	0.1	3		
	_				
15/01/31	1:00	0.4	11		
15/01/31	2:00	0.4	357		
15/01/31	3:00	0.9	67		
15/01/31	4:00	0.4	69		
15/01/31	5:00	1.8	71		
15/01/31	6:00	2.2	74		
15/01/31	7:00	1.8	82		
15/01/31	8:00	2.2	80		
15/01/31	9:00	2.2	74		
15/01/31	10:00	2.2	76		
15/01/31	11:00	1.8	72		
15/01/31	12:00	1.8	69		
15/01/31	13:00	0.9	67		
15/01/31	14:00	0.9	73		
15/01/31	15:00	0.9	182		
15/01/31	16:00	1.3	179		
15/01/31	17:00	1.3	166		
15/01/31	18:00	0.4	184		
15/01/31	19:00	1.3	47		
15/01/31	20:00	0.9	51		
15/01/31	21:00	0.4	46		
15/01/31	22:00	0.9	53		
15/01/31	23:00	0.9	78		
15/02/01	0:00	0.4	76		
15/02/01	1:00	1.3	71		
15/02/01	2:00	1.8	69		
15/02/01	3:00	1.8	81		
15/02/01	4:00	2.2	80		
15/02/01	5:00	2.2	74		
15/02/01	6:00	1.8	88		
15/02/01	7:00	2.2	87		
15/02/01	8:00	2.2	86		
15/02/01	9:00	2.7	81		
15/02/01	10:00	2.2	79		
15/02/01	11:00	1.8	83		
15/02/01	12:00	1.8	84		
15/02/01	13:00	0.9	80		
15/02/01	14:00	1.3	181		
15/02/01	15:00	0.9	275		
15/02/01	16:00	0.9	271		
15/02/01	17:00	0.9	301		

Meteorological Data for Impact Monitoring in the reporting period			
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree)
15/02/01	18:00	0.9	354
15/02/01	19:00	0.9	2
15/02/01	20:00	0.9	6
15/02/01	21:00	0.9	132
15/02/01	22:00	1.3	135
15/02/01	23:00	0	115

Appendix I

Impact Water Quality Monitoring Results

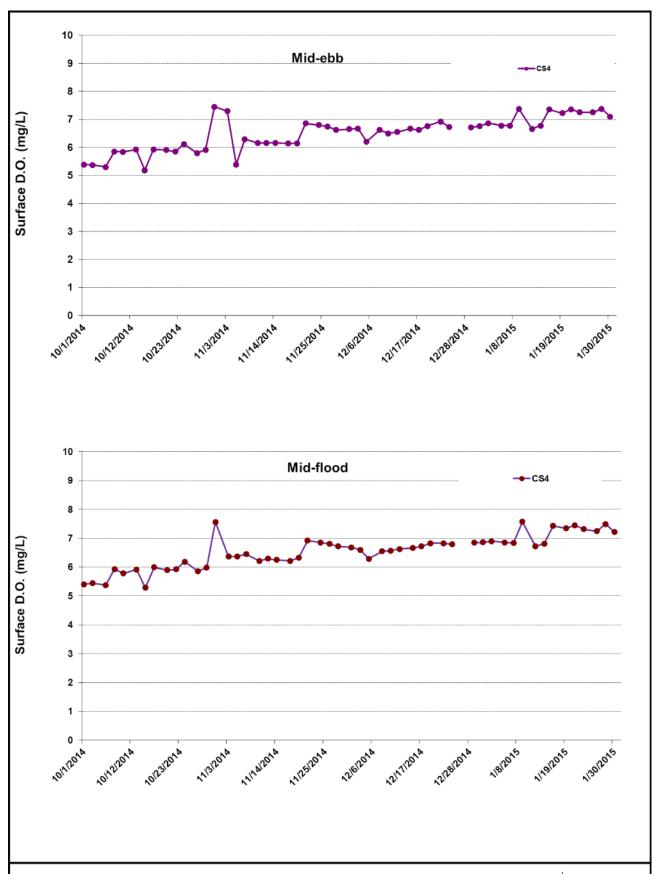


Figure I1 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

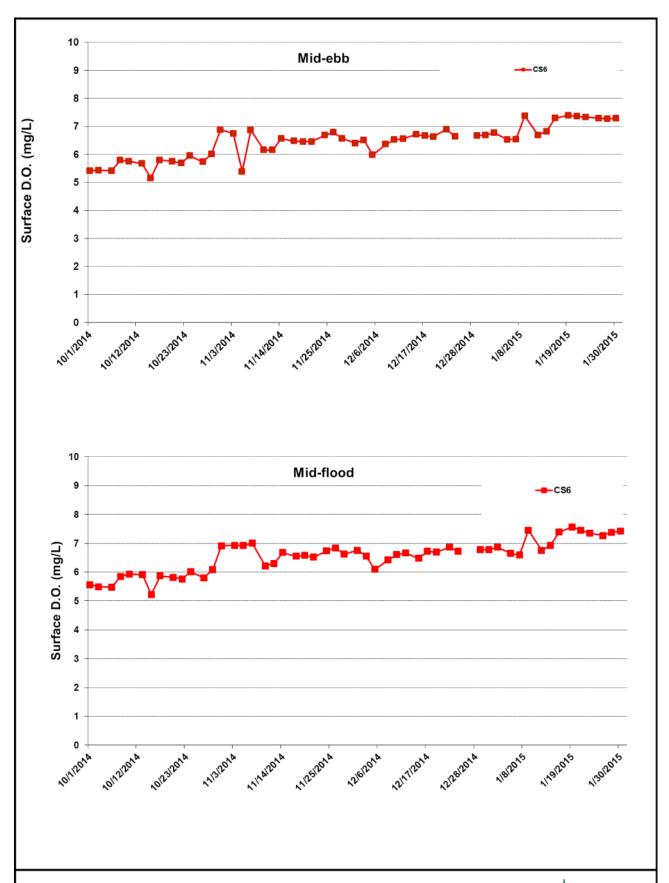


Figure I2 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

Figure I3 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

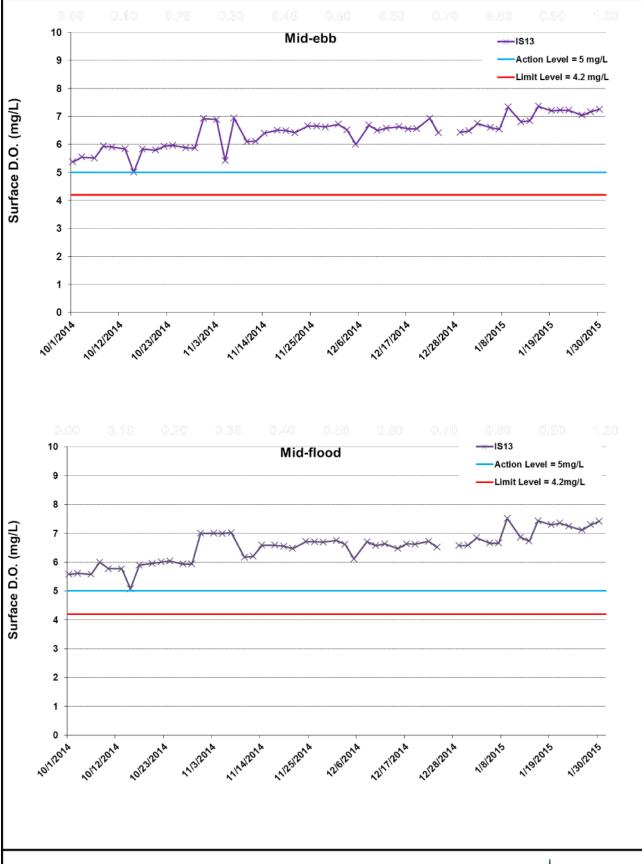


Figure I4 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

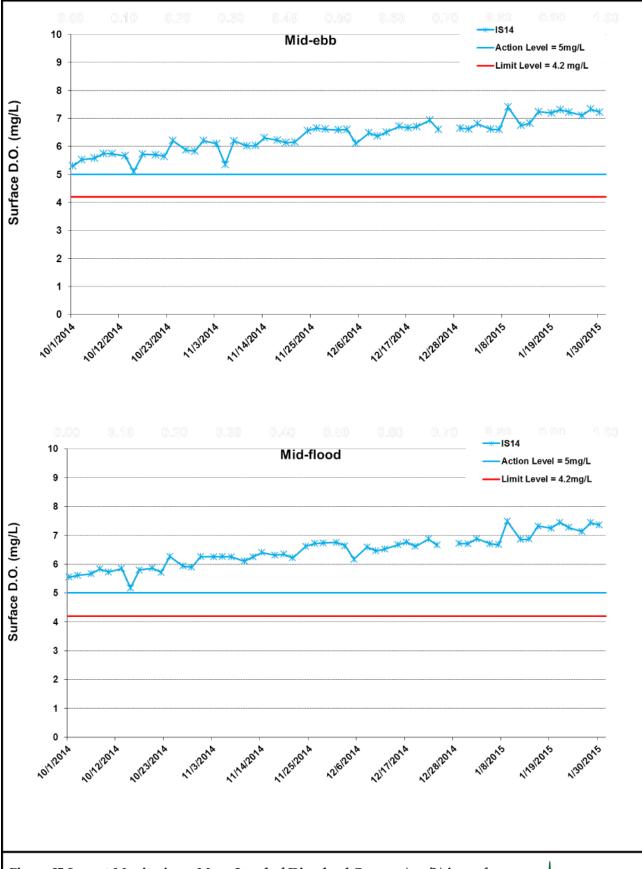


Figure I5 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

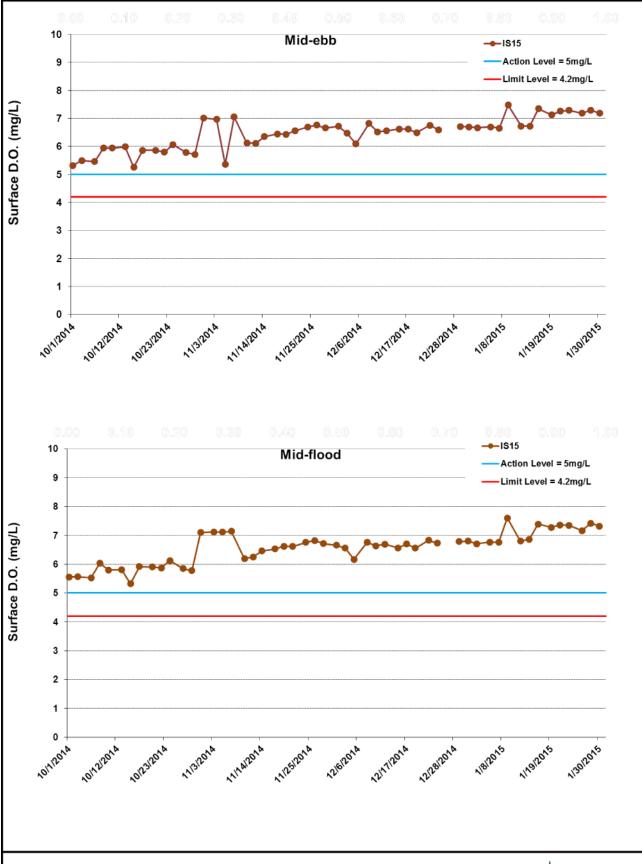


Figure I6 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

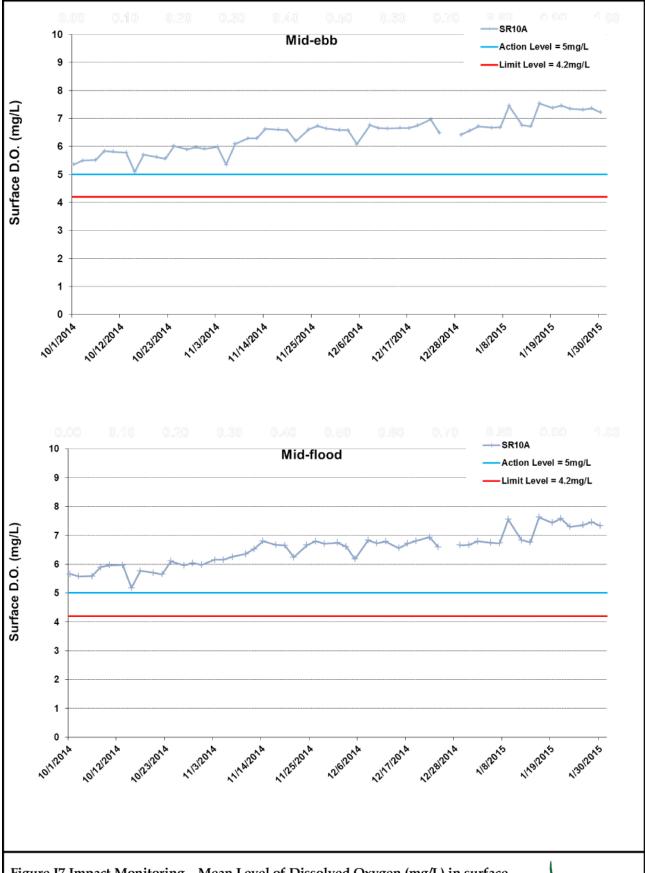


Figure I7 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

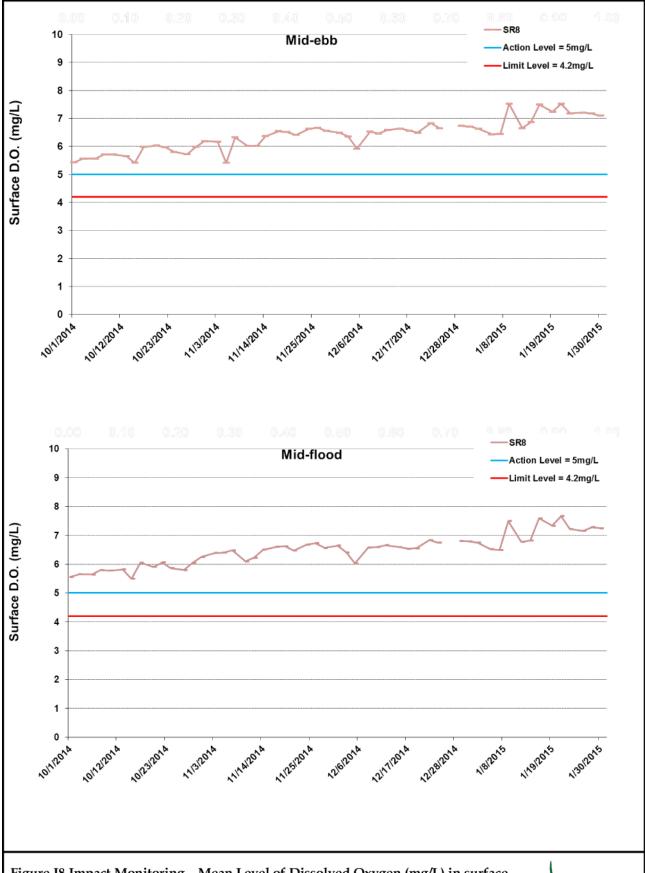


Figure I8 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

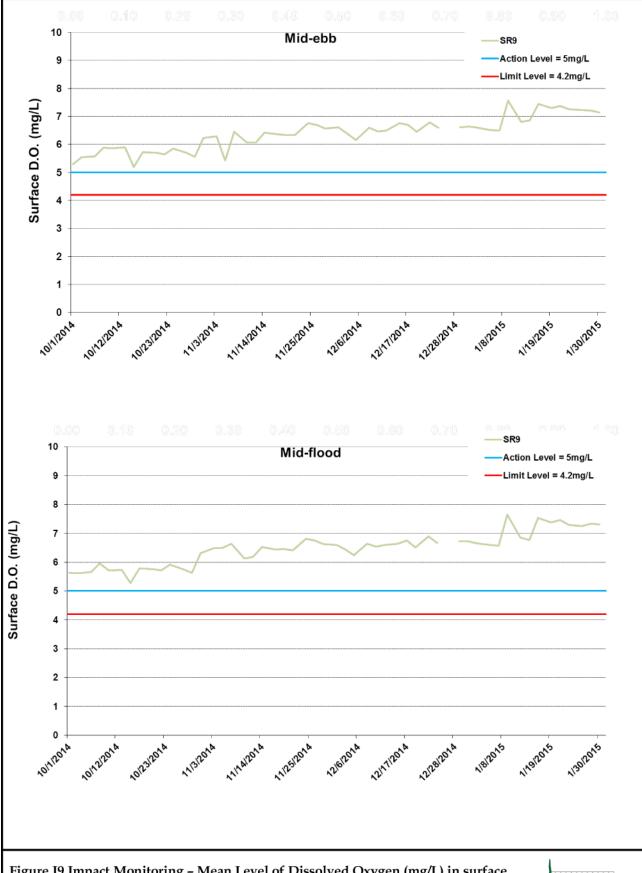


Figure I9 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

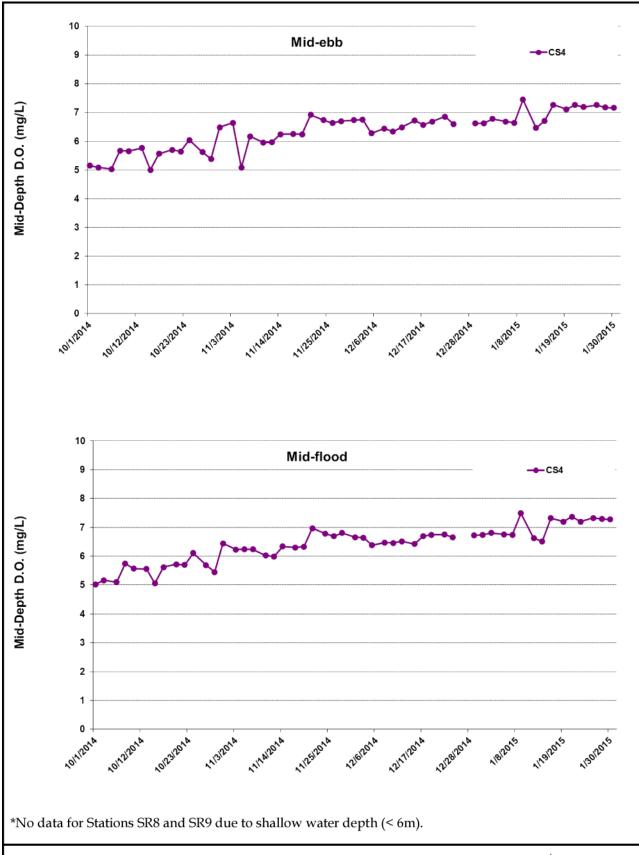


Figure I10 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

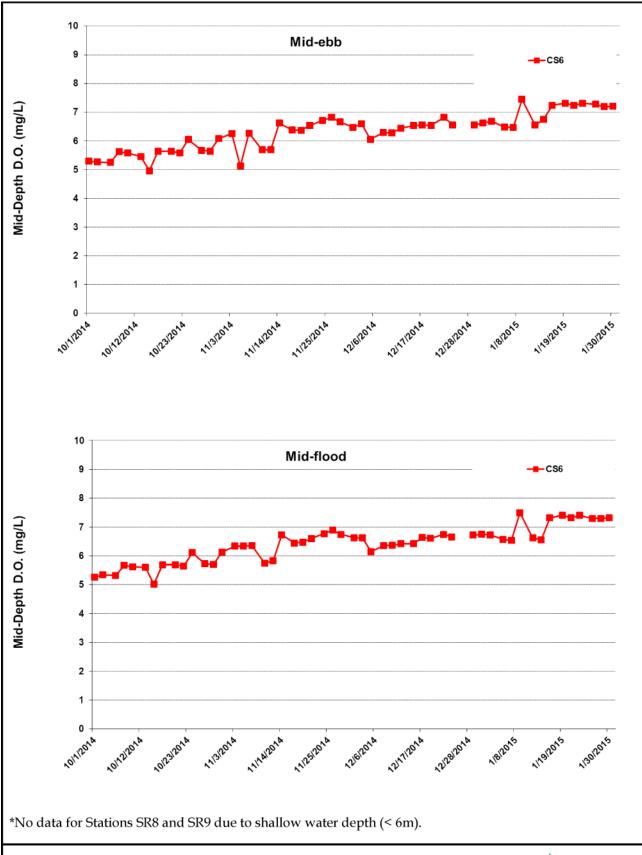


Figure I11 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

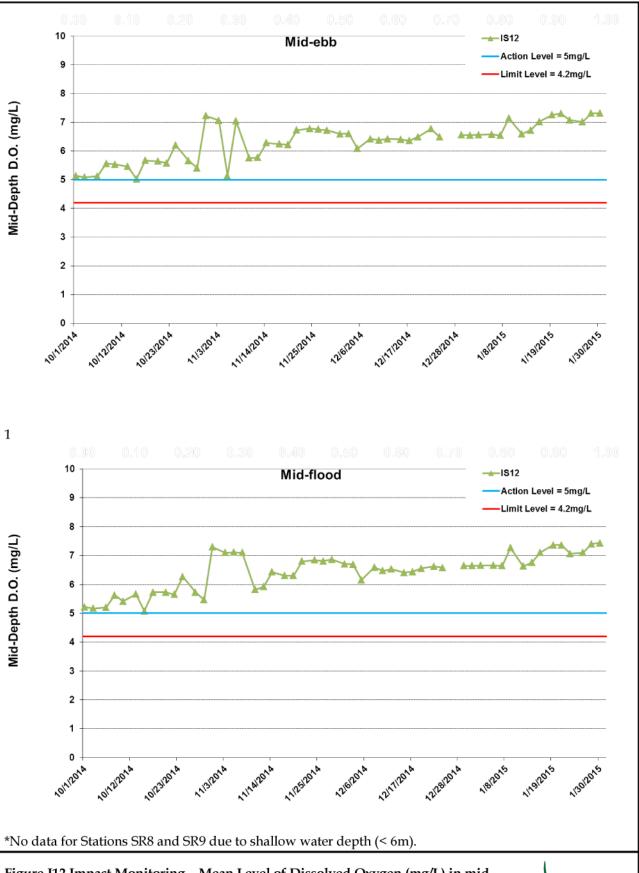


Figure I12 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

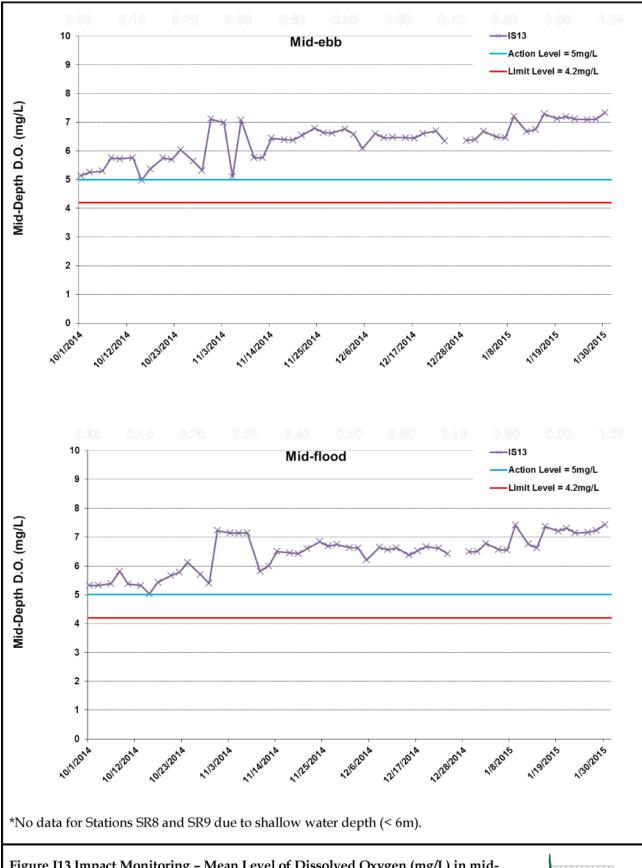


Figure I13 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

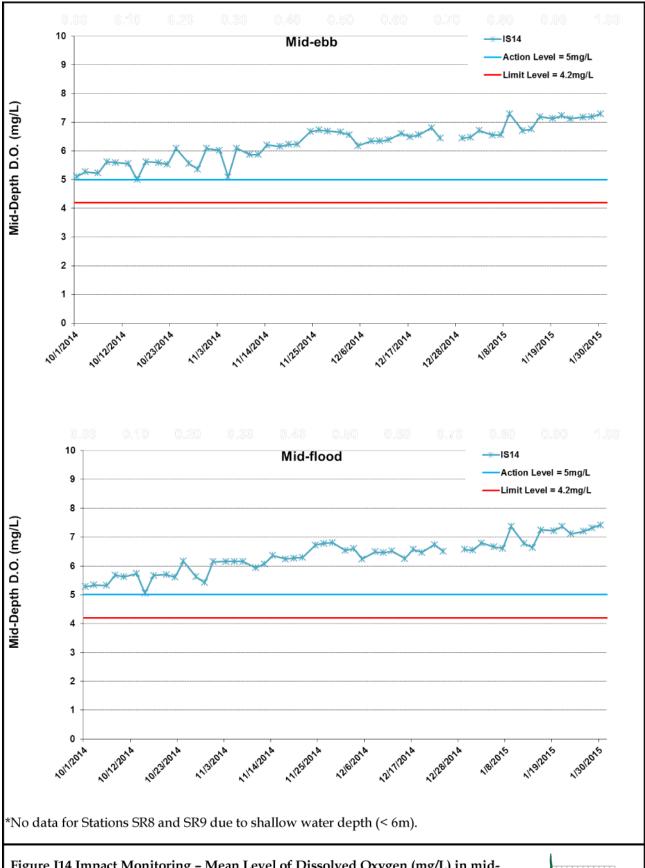


Figure I14 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

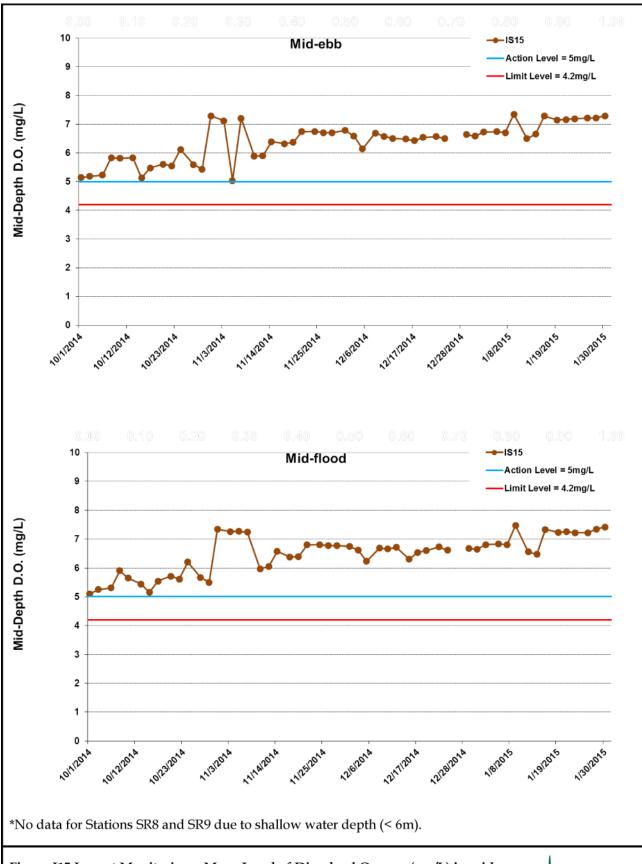


Figure I15 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

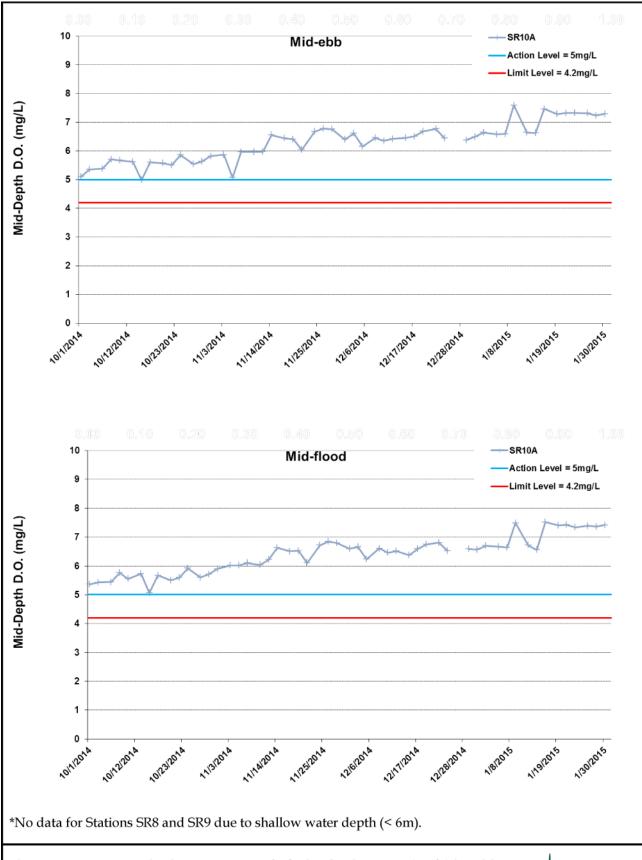


Figure I16 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

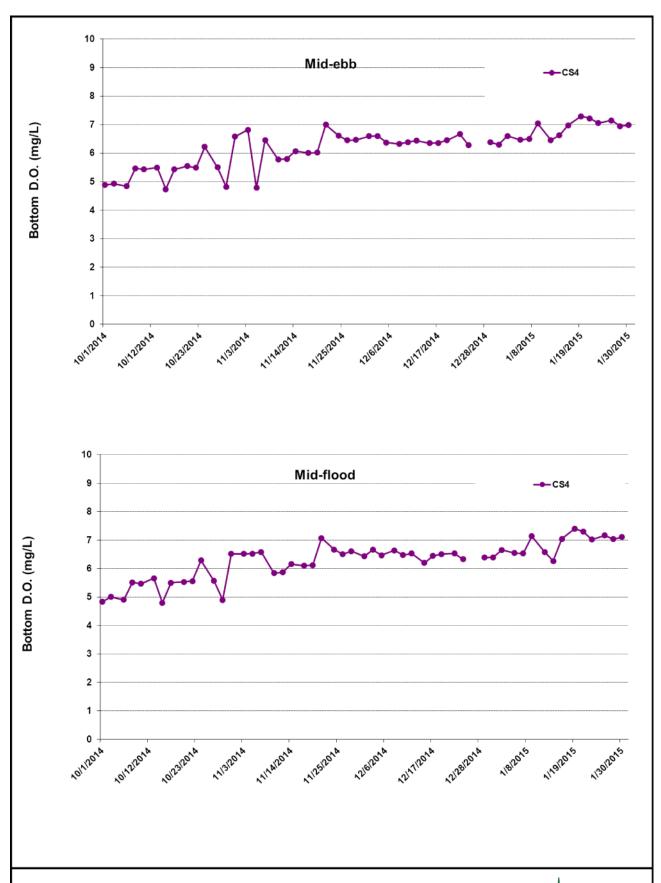


Figure I17 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

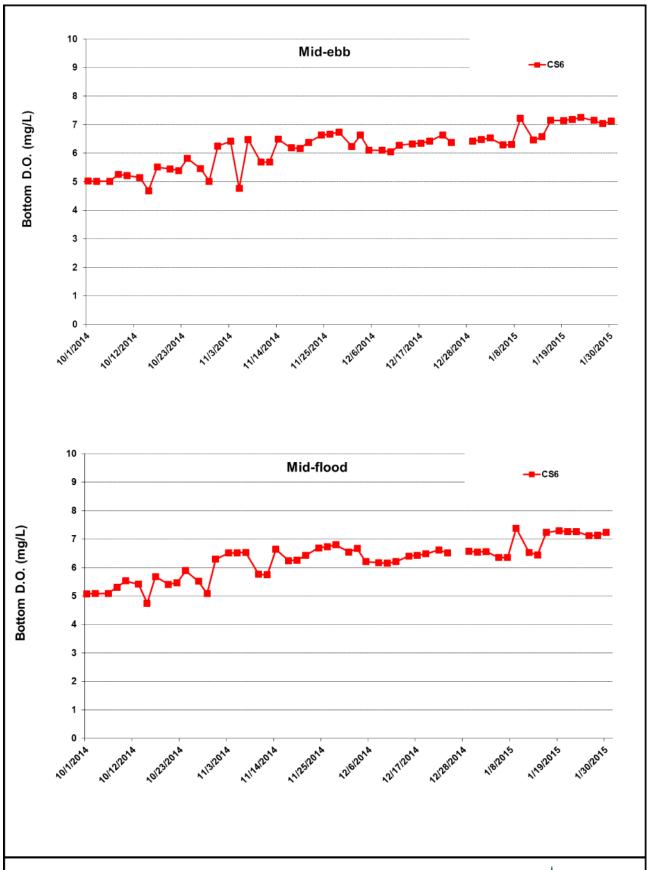


Figure I18 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

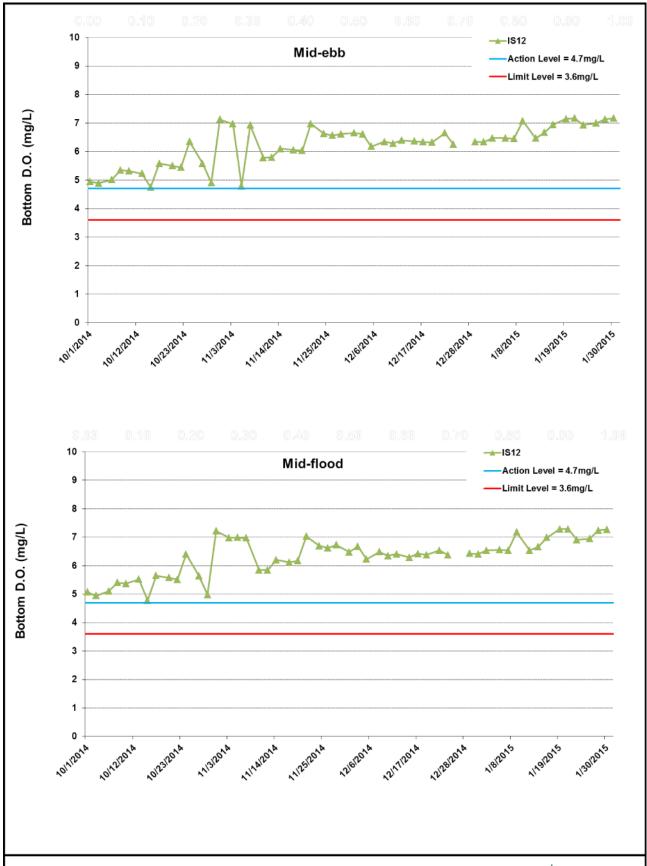


Figure I19 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

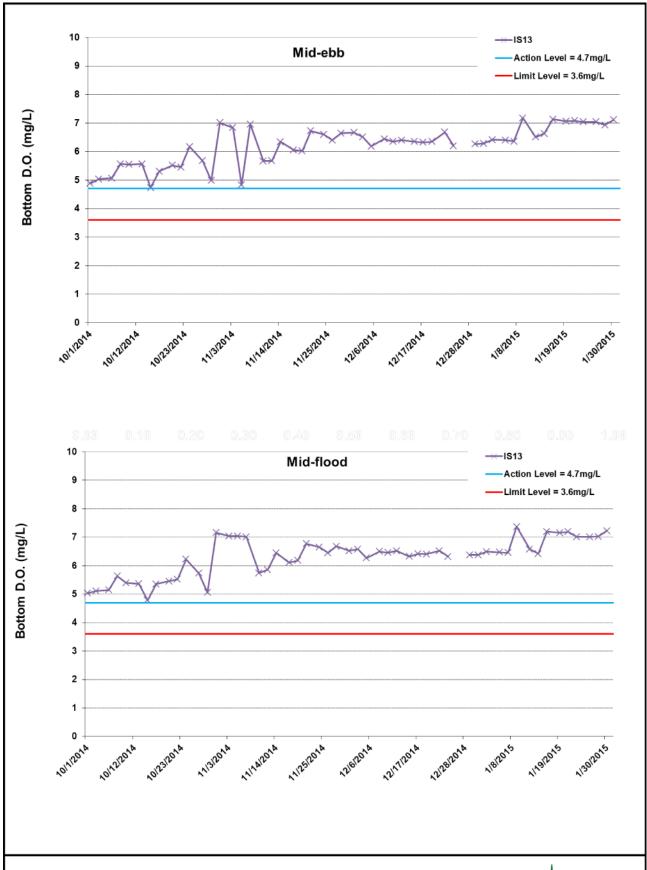


Figure I20 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

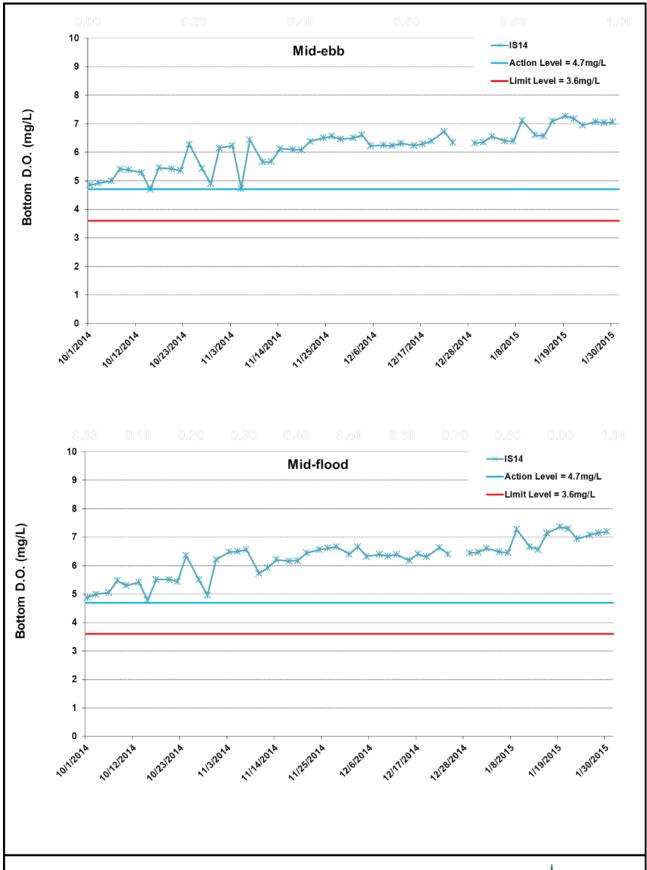


Figure I21 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

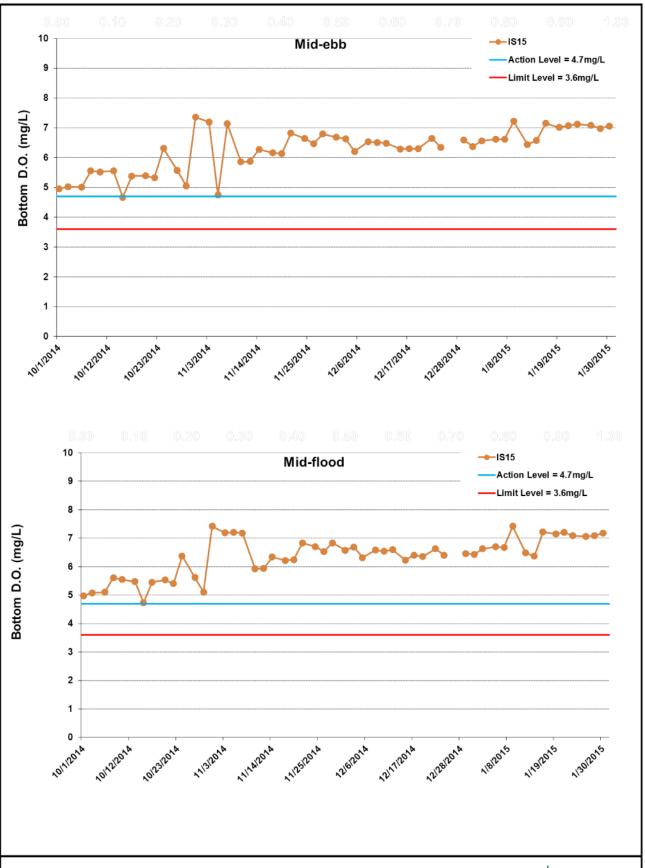


Figure I22 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

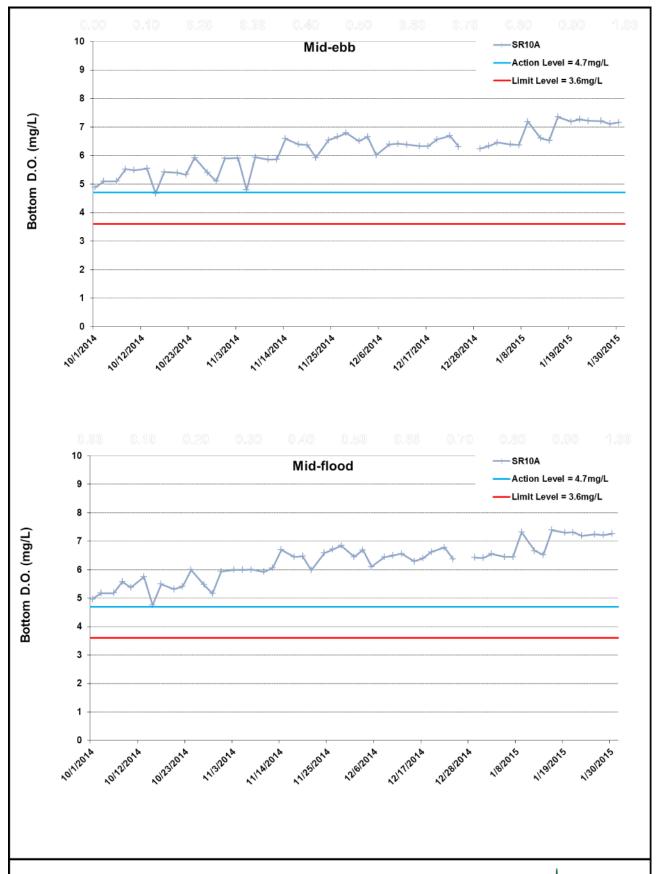


Figure I23 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

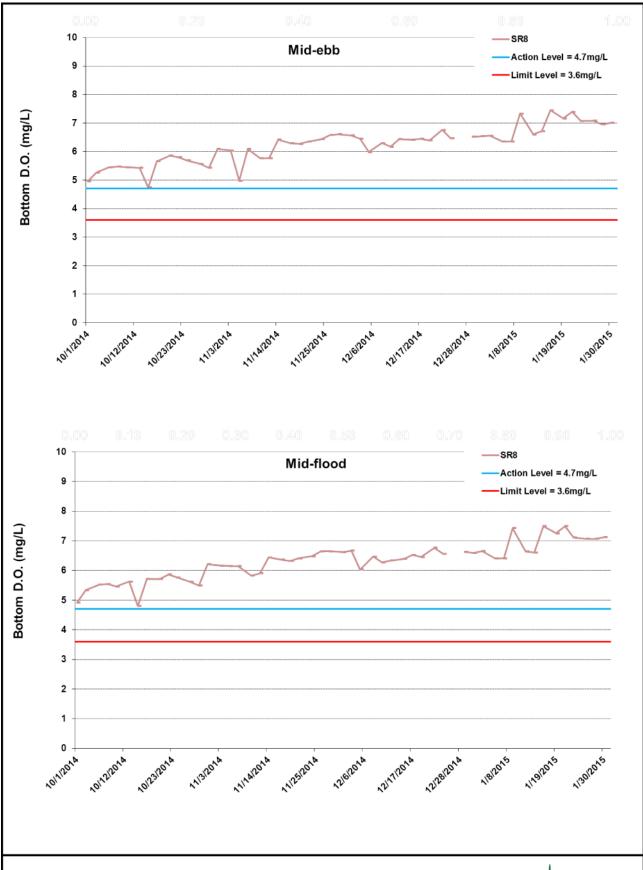


Figure I24 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

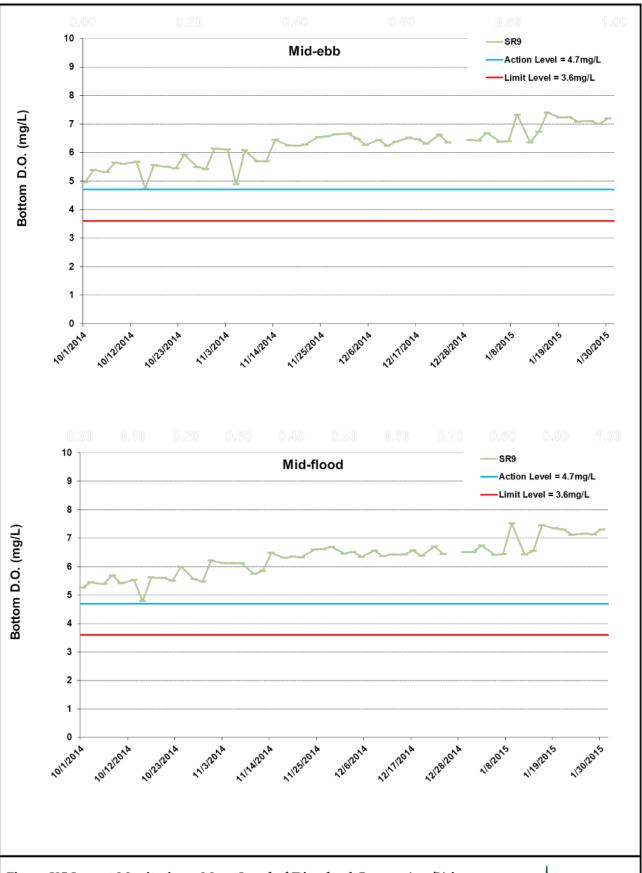


Figure I25 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330_Impact-WQM_January2015_graphs_Rev a.xls

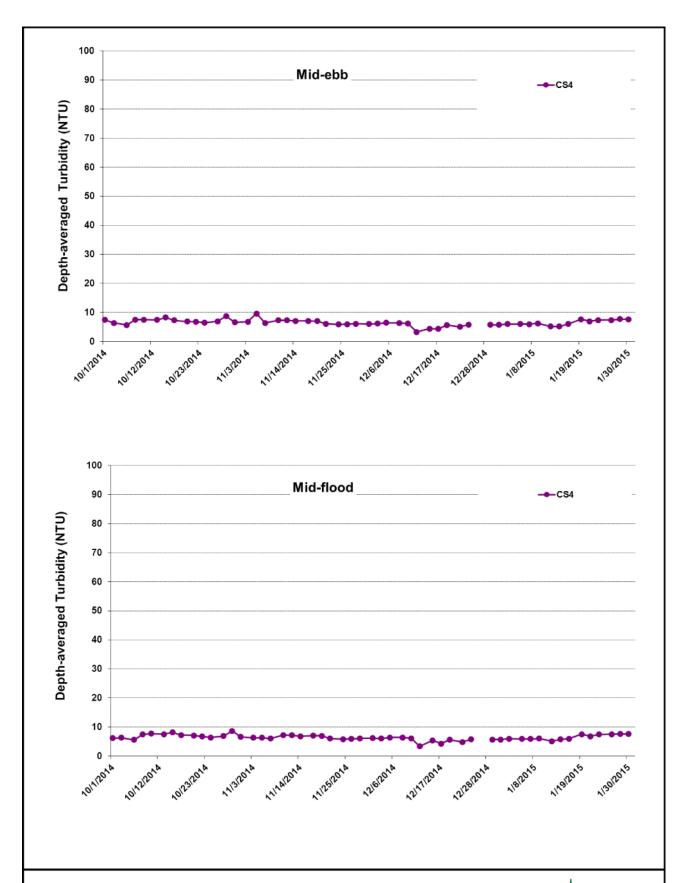


Figure I26 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

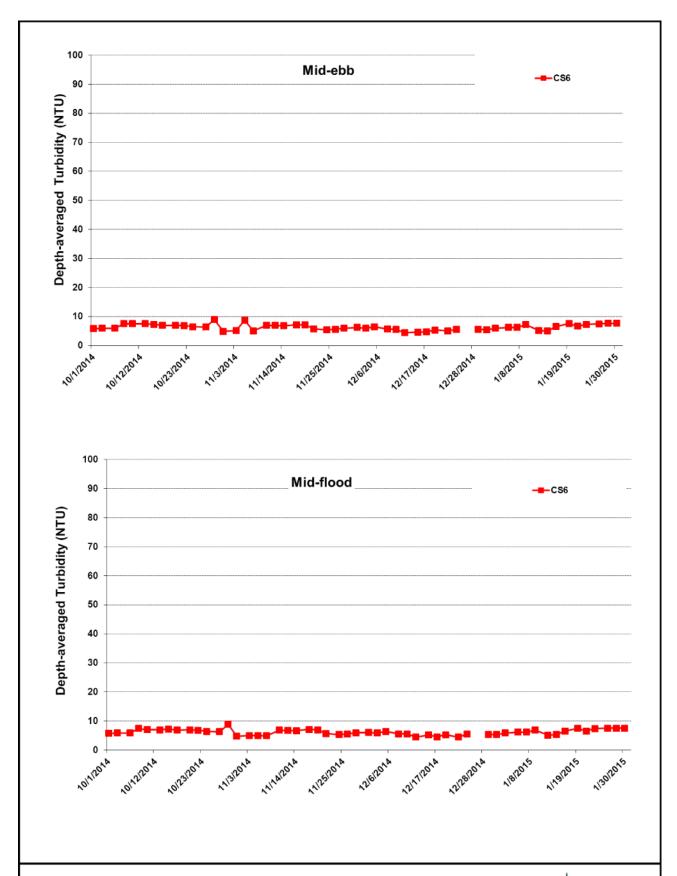


Figure I27 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

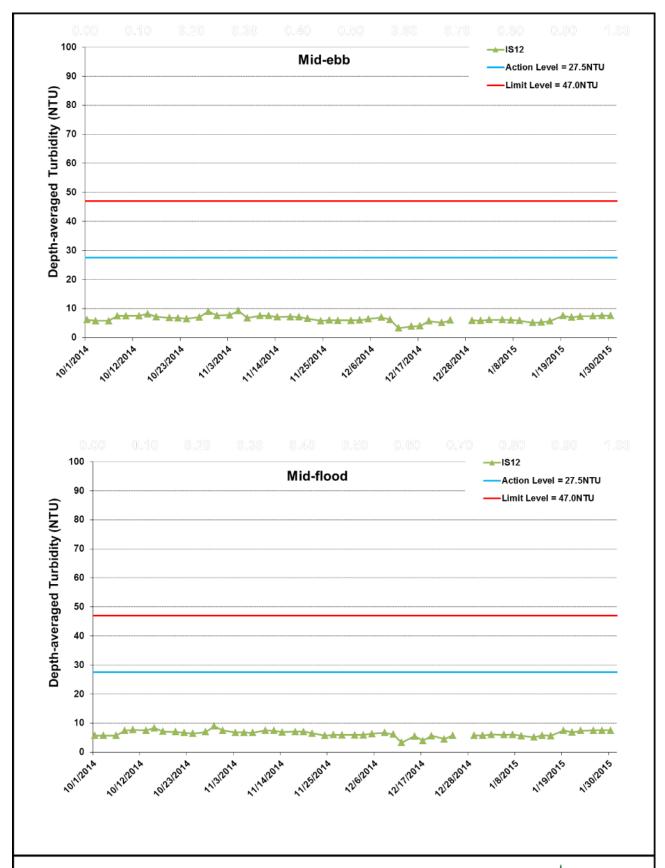


Figure I28 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

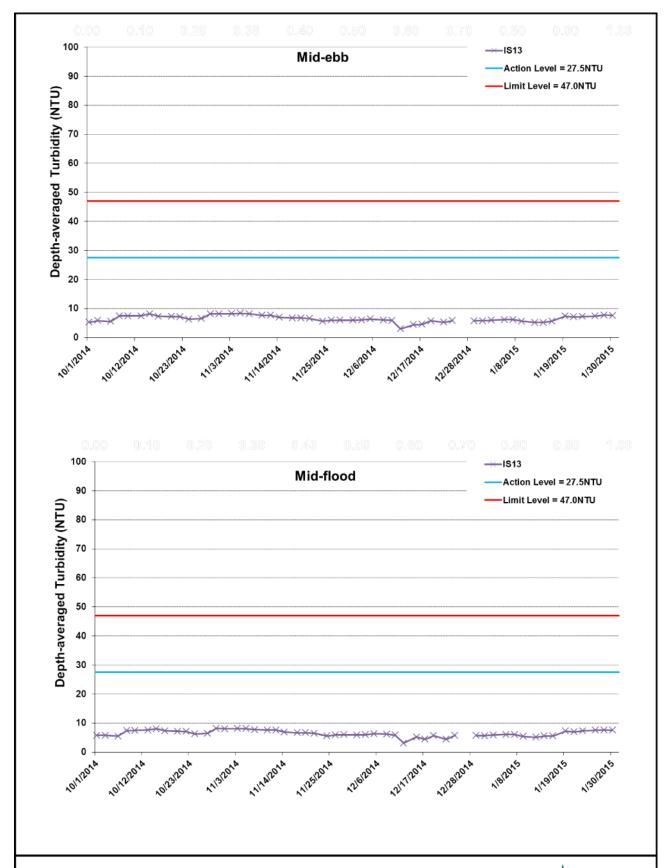


Figure I29 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

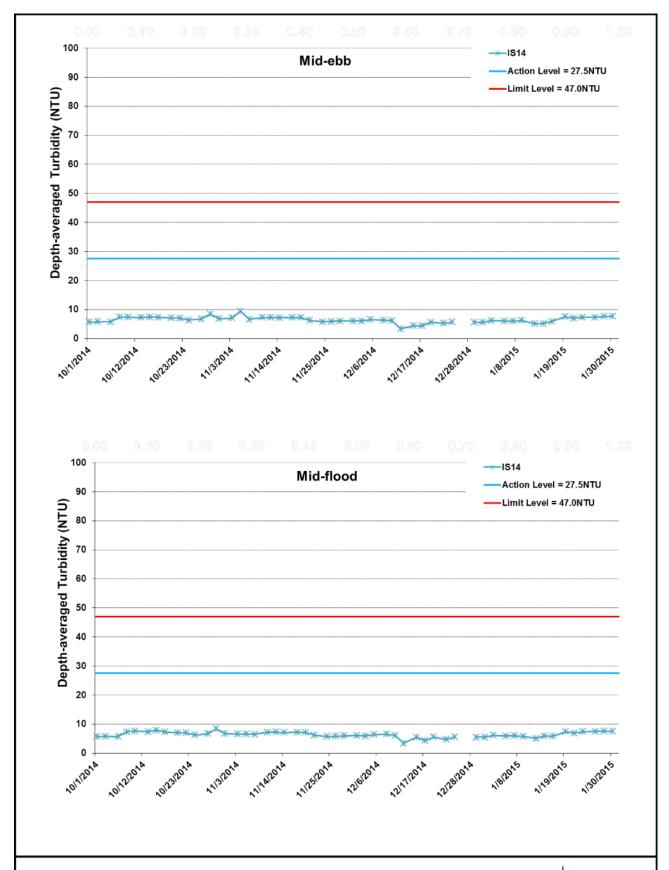


Figure I30 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

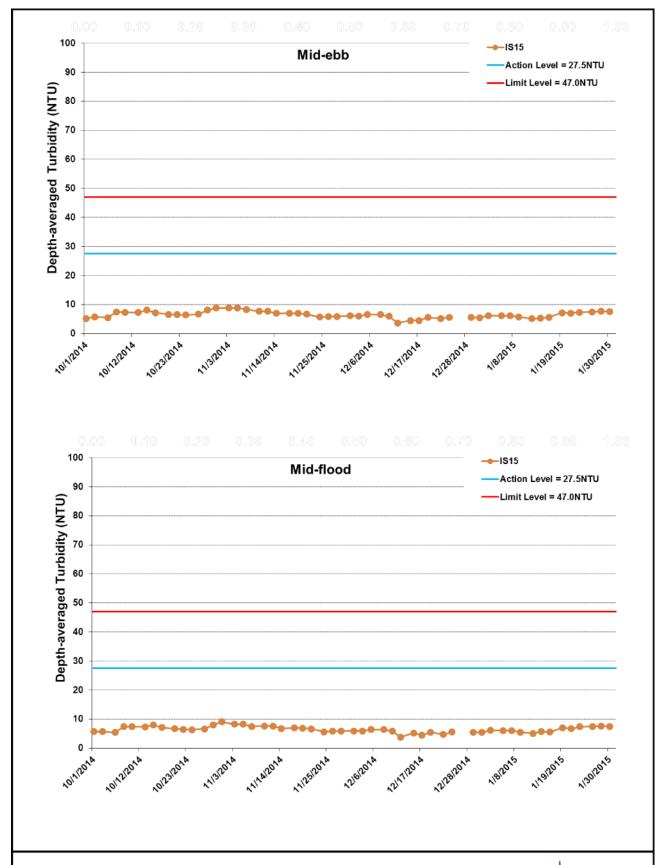


Figure I31 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

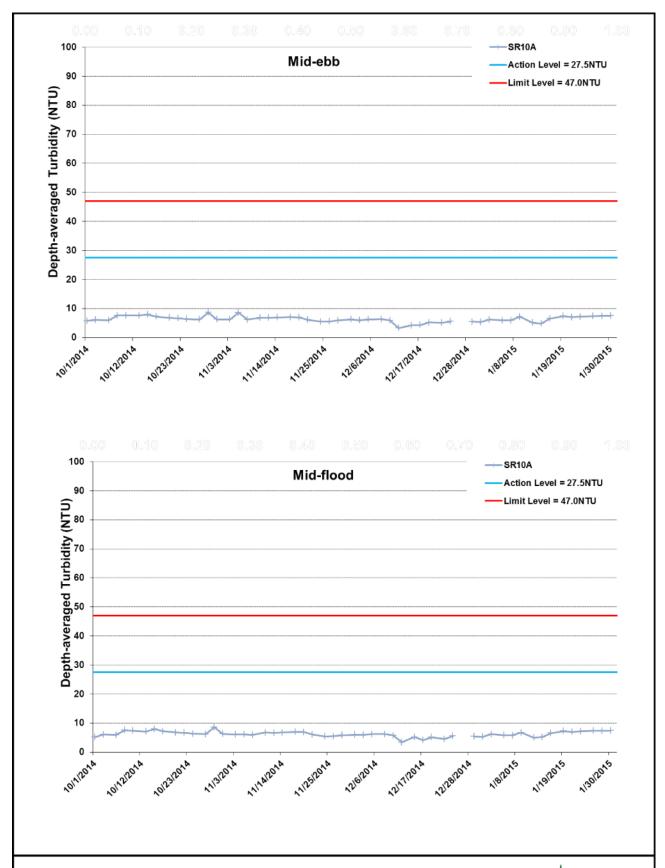


Figure I32 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

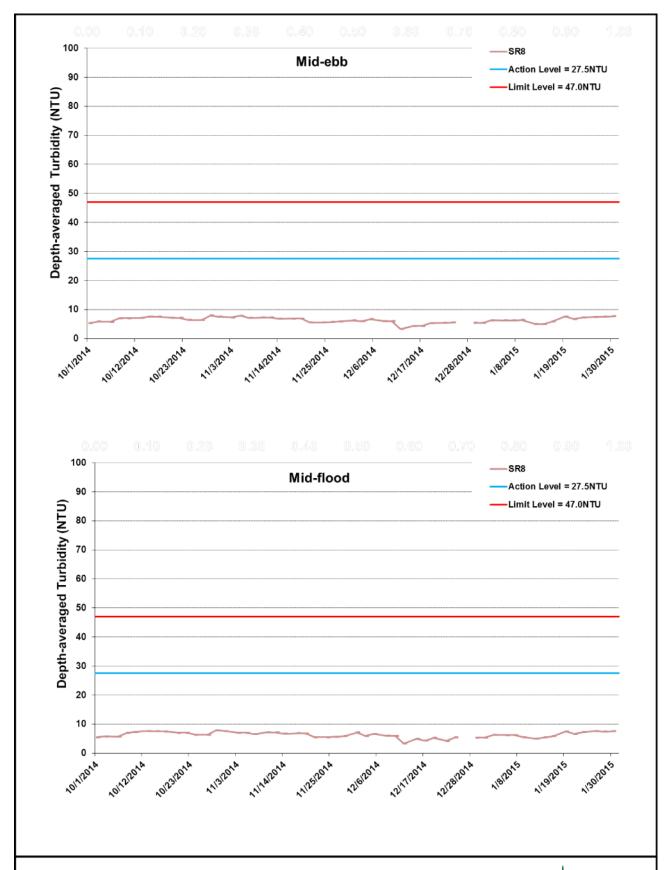


Figure I33 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

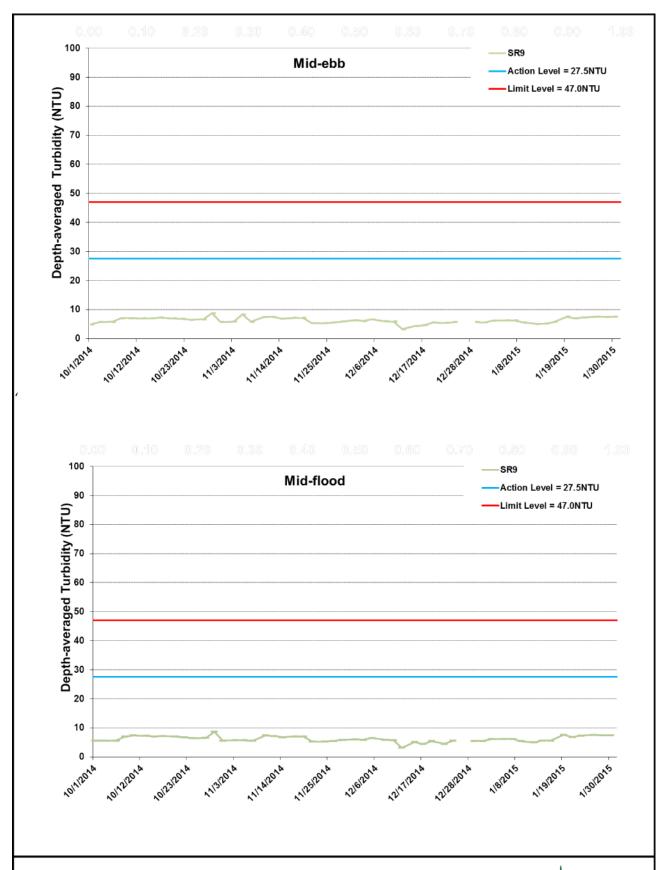


Figure I34 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

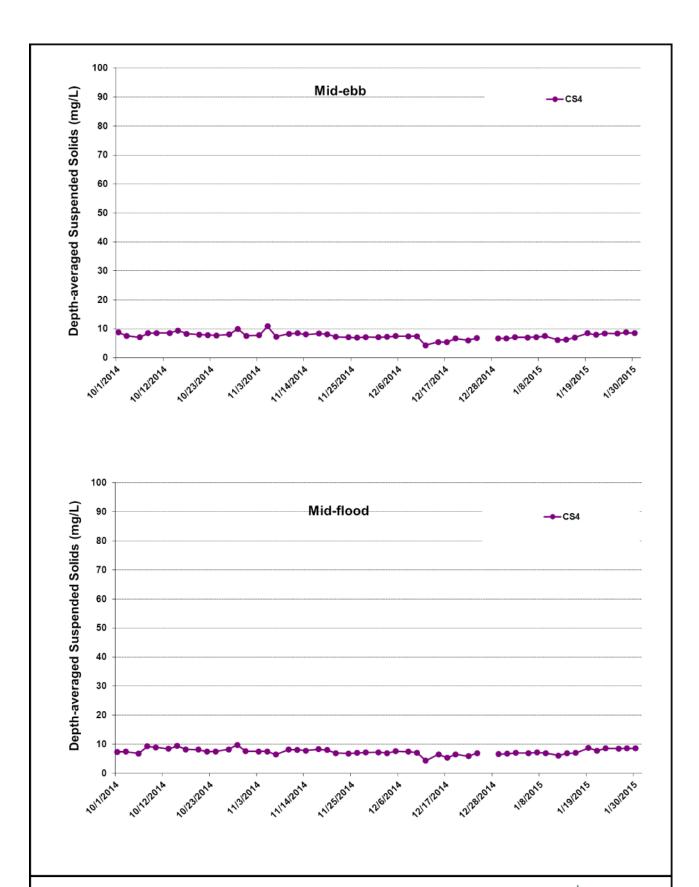


Figure I35 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

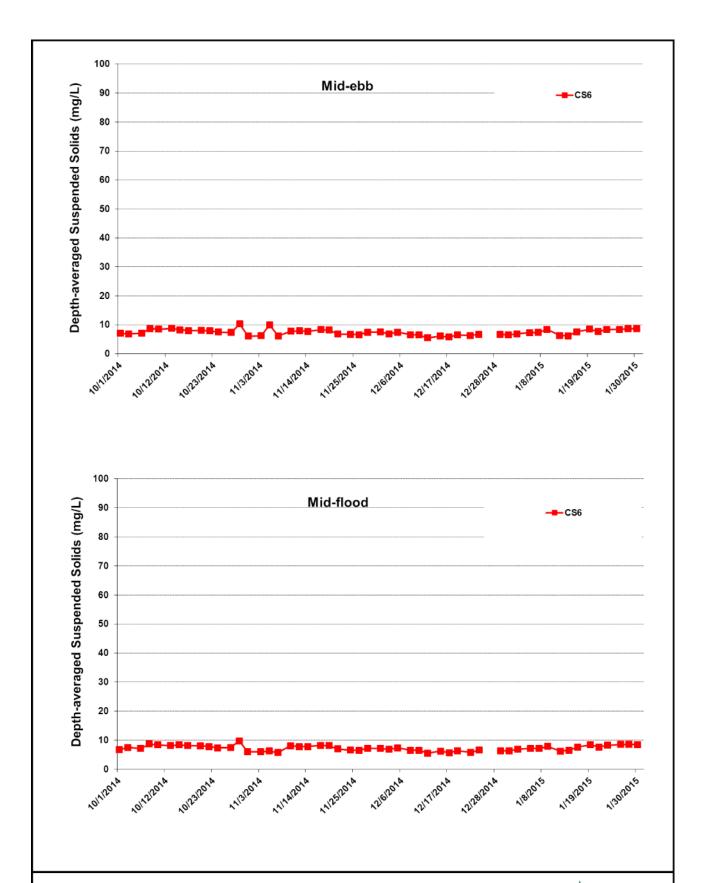


Figure I36 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

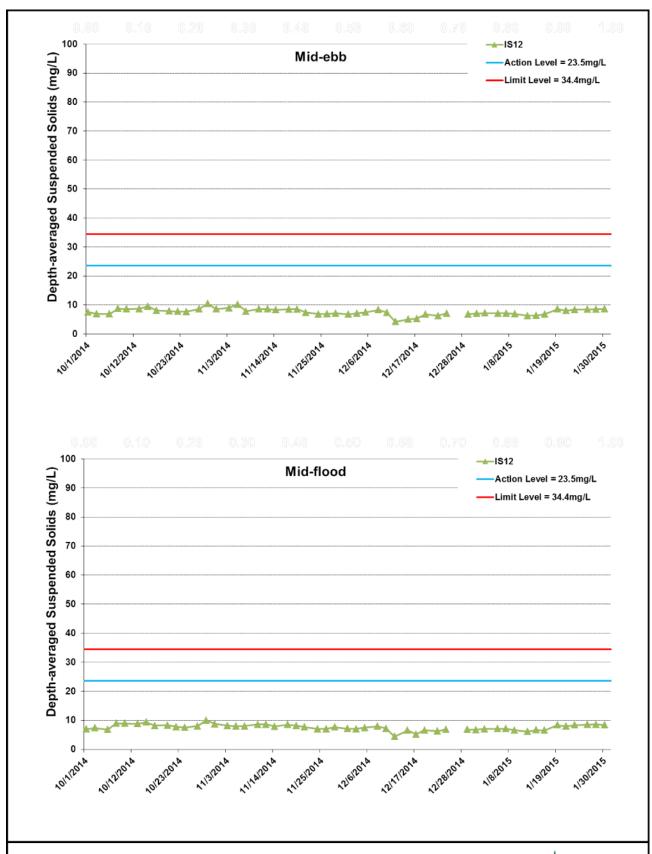


Figure I37 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

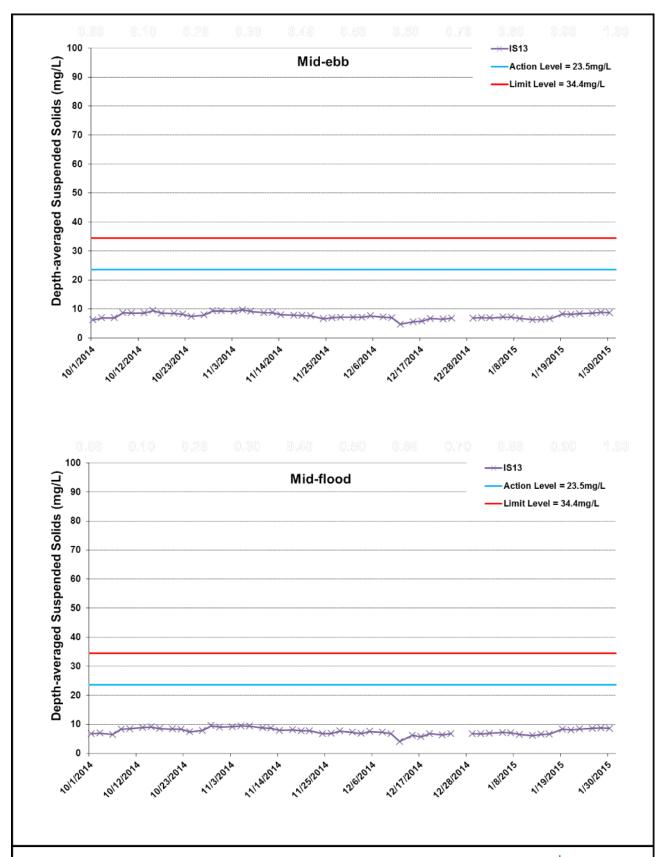


Figure I38 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

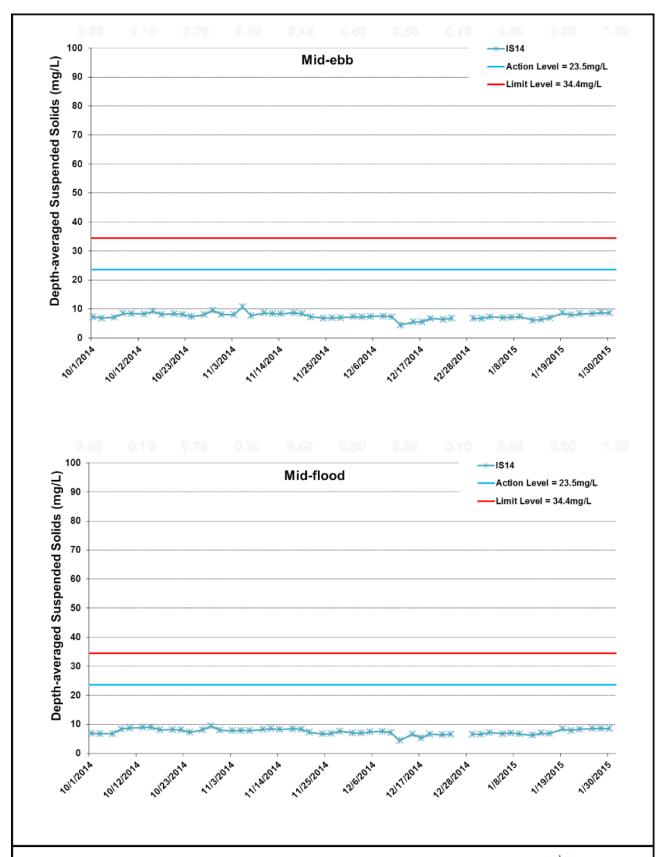


Figure I39 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

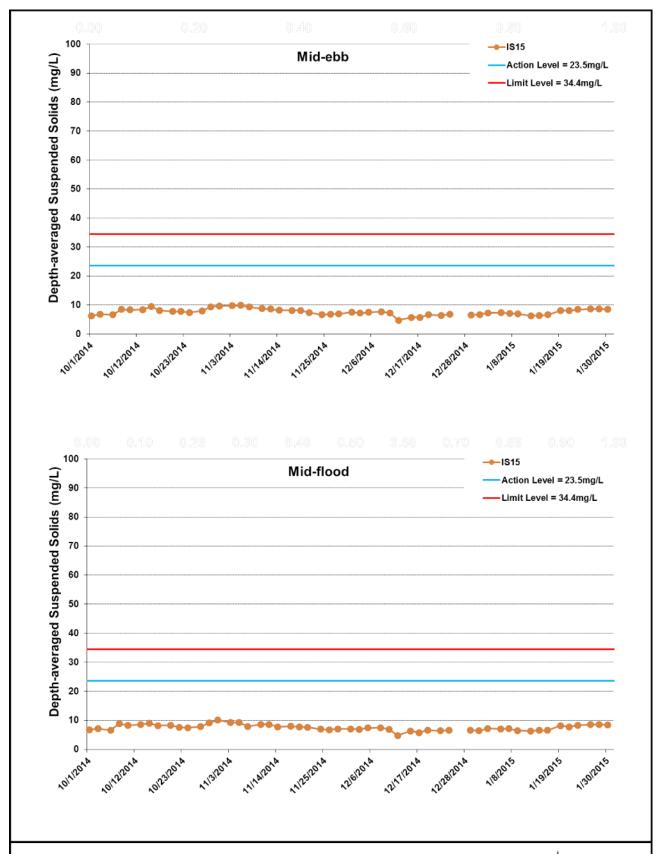


Figure I40 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

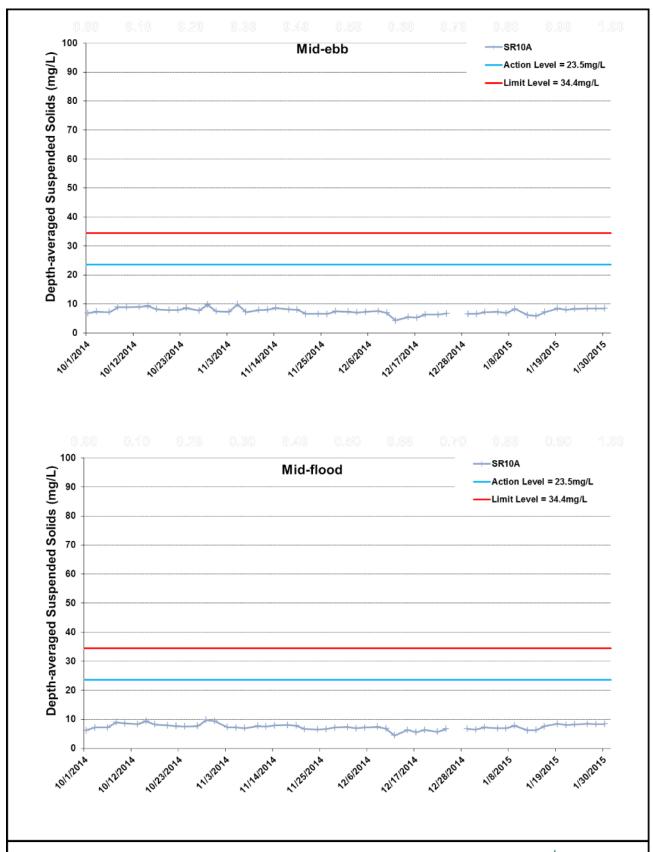


Figure I41 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

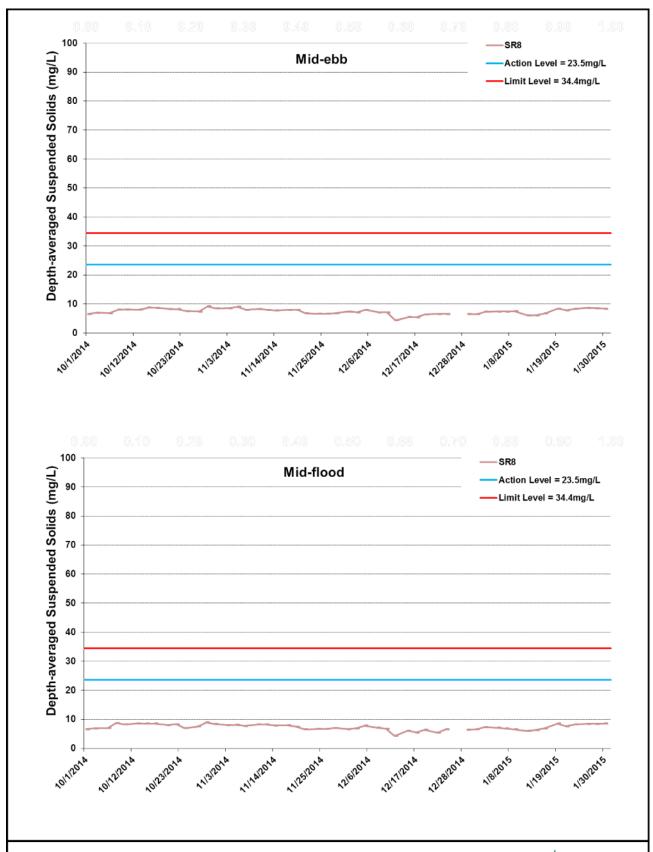


Figure I42 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

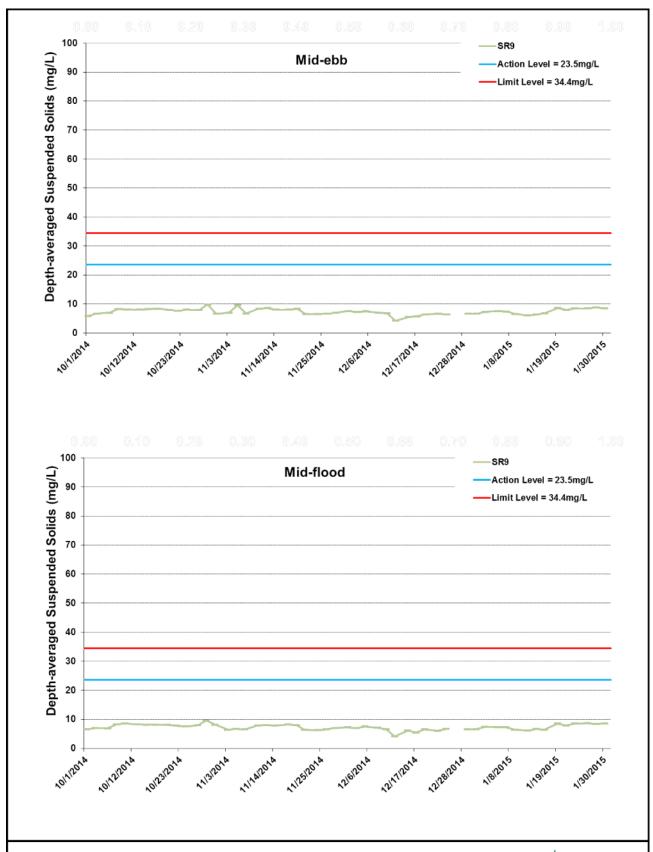


Figure I43 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

Project	Works	Date	Tide	IWeather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood		Small Wave	CS4	Surface	1	1	1	17:25	17.9	8.23	28.7	6.88	5.73	6.8
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood	Fine	Small Wave	CS4	Surface	1	1	2	17:25	17.8	8.22	28.9	6.92	5.64	6.7
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood	Fine	Small Wave	CS4	Middle	10.8	2	1	17:25	18.2	8.27	29.2	6.79	5.81	6.8
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood	Fine	Small Wave	CS4	Middle	10.8	2	2	17:25	18.1	8.26	29.3	6.82	5.95	7.1
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood	Fine	Small Wave	CS4	Bottom	20.5	3	1	17:25	18.2		29.4	6.68	6.25	7.4
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood	Fine	Small Wave		Bottom	20.5	3	2	17:25	18.3	8.24	29.3	6.63	6.21	7.2
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood	Fine	Small Wave		Surface	1	1	1	14:44	17.9	8.13	29	6.84	5.76	6.7
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood	Fine	Small Wave		Surface	1	1	2	14:44	18		29	6.88	5.84	6.9
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood		Small Wave			5.9	2	1	14:44	18.1		29.1	6.77	5.7	6.8
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood		Small Wave			5.9	2	2	14:44	18		29.2	6.69	5.62	6.5
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood		Small Wave		Bottom	10.8	3	1	14:44	18.1		29.2	6.58	6.2	7.4
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood		Small Wave		Bottom	10.8	3	2	14:44	18.1		29.1	6.55	6.27	7.1
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood		Small Wave		Surface	1	1	1	16:41	17.9		28.9	6.83	5.8	6.7
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Surface	1	1	2	16:41	18		28.9	6.74	5.78	7
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood		Small Wave		Middle	7.6	2	1	16:41	18.1		29.2	6.63	5.92	6.8
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Middle	7.6	2	2	16:41	18.2		29.1	6.68	6.03	7.1
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood		Small Wave		Bottom	14.2	3	[1	16:41	18.1	8.21	29.1	6.52	6.24	7.4
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Bottom	14.2	3	2	16:41	18	8.2	29.2	6.55	6.27	7.3
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Surface	1	1	1	16:20	18	8.19	29	6.82	5.87	6.8
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Surface	<u> 1</u>	[1	2	16:20	18.1	8.2	29	6.86	5.92	6.7
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Middle	5.7	2	1	16:20	17.9	8.2	29.1	6.82	5.74	6.9
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood					5.7	2	2	16:20	18	8.21	29	6.73	5.7	6.7
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Bottom	10.3	3	1	16:20	18		29.2	6.52	6.08	7.2
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Bottom	10.3	3	2	16:20	17.9		29.1	6.46	6.17	7.1
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood			 	Surface	1	1	1	17:06	17.8		28.9	6.92	5.83	6.7
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Surface	1	1	2	17:06	17.9		29	6.84	5.92	7.1
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood		Small Wave	<u> </u>		8.2	2	1	17:06	17.9	8.21	29.1	6.77	6.08	7
	HY/2012/08		Mid-Flood					8.2	2	2		18	8.2	29	6.81	6.11	7.2
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood					15.4	3	1	17:06	17.8		29.2	6.63	6.38	7.4
	HY/2012/08	2015-01-02	Mid-Flood					15.4	3	2	17:06	17.9		29.3	6.58	6.3	7.6
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood			i	Surface	1	1	1	16:01	18.1	8.2	28.9	6.72	6.08	7.1
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Surface	1	1	2	16:01	18.2		28.8	6.69	6.14	7.2
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood					5.4	2	1	16:01	18		28.9	6.78	6.01	7.2
	HY/2012/08	2015-01-02	Mid-Flood					5.4	2	2	16:01	18.1		29	6.83	5.93	6.9
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood					9.8	3	1	16:01	18		29.1	6.63	6.14	7.4
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood					9.8	3	2	16:01	18.1		29.1	6.62	6.23	7.3
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Surface	1	1	1	15:32	17.9	8.15		6.72	6.18	7
	HY/2012/08	2015-01-02	Mid-Flood				Surface	1	1	2	15:32	18	8.16	28.9	6.77	6.14	7.3
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Middle		2	1	15:32		 				+
	HY/2012/08	2015-01-02	Mid-Flood				Middle	F 4	2	2	15:32	10	0.40	00.0	0.00	0.00	17.4
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood					5.4	ე <u>ე</u>	10	15:32	18	8.12		6.63	6.33	7.4
	HY/2012/08	2015-01-02	Mid-Flood					5.4	3	2	15:32	18.1	8.13		6.67	6.42	7.6
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Surface			1	15:44	18.1		28.9	6.68	6.03	7.1
	HY/2012/08	2015-01-02	Mid-Flood				Surface		10	<u> </u>	15:44	18.2	8.23	29	6.64	5.98	7.9
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Middle	-	2	10	15:44	+		-	 		+
	HY/2012/08	2015-01-02	Mid-Flood				Middle	1 1	2	1	15:44	10.0	0.04	20.1	6 71	C 10	7.4
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood					4.4	ე <u>ა</u>	2	15:44	18.2		29.1	6.71	6.18	7.4
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood					4.4	ال ا		15:44	18.3		29	6.77	6.26	7.1
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood				Surface	1		10	15:09	18		28.9	6.82	6.01	7.1
	HY/2012/08	2015-01-02	Mid-Flood				Surface	6.7	10	1	15:09	18.1		29	6.76	6.04	7.3
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood		Small Wave			6.7	2	2	15:09	18.1		29.1	6.72	5.92	6.8
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood					6.7	2	1	15:09	18	8.16		6.68	5.87	7.6
TMCLKL	HY/2012/08	2015-01-02	Mid-Flood		Small Wave			12.4	ე <u>ე</u>	10	15:09	18.1	8.18		6.53	6.48	7.6
	HY/2012/08	2015-01-02	Mid-Flood					12.4	ال ا	<u> </u>	15:09	18.1	8.19		6.58	6.52	7.7
TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb				Surface	1		0	09:47	17.8		28.7	6.85	5.81	6.8
TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb				Surface	10.0	1	<u> </u>	09:47	17.9		28.8	6.88	5.74	6.7
		2015-01-02	Mid-Ebb					10.6	2	2	09:47	18.1	8.25		6.79	5.93	7.1
LIVICEKE	HY/2012/08	2015-01-02	ןויווט-⊏טט	Fine	Small Wave	JU04	Middle	ט.טון	2	<u> </u>	09:47	110.1	8.26	∠ 3.∠	6.76	6.02	7.3

Michael Mich	Project	Works	Date	Tide	I Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TACOL POST	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	CS4	Bottom	-	3	1	09:47	18.1	8.23	29.3	6.61	6.38	7.4
		HY/2012/08	2015-01-02		Fine	Small Wave		Bottom		3	2	09:47		8.24		+		
INCLUS MYSTOLEON 215-1-12 Web-EDC Proc Small Wave SSE Models S. S. Z. 1 1210 17.9 8.13 29 5.7 5.73 6.6 Models S. M. C. Models Models S. M. C. Models S. M. C. Models Models S. M. C. Models S. M. C. Models Mod	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	CS6	Surface	1	1	1	12:10	17.9	8.12	28.9	6.79	5.87	6.8
TYPOLICAL TYPOLICAN TYPO	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	CS6	Surface	1	1	2	12:10	17.9	8.11	28.9	6.75	5.95	6.7
TACKLE, MY201208 2515-0-02 Mid-EBD Fine Small Wave CSB Bottom 0.6 3 1 12:10 18 0.17 23:11 6.51 6.51 5.51 7.4	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	CS6	Middle	5.8	2	1	12:10	17.9	8.13	29	6.7	5.73	6.6
TACLICAL PAYOFF 2015-1-100 Mod-Elb Pine Small Wave CSB Solton 10.6 3 2 12.10 18 8.17 28.1 8.51 8.31 7.4	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	CS6	Middle	5.8	2	2	12:10	17.9	8.14	29	6.67	5.66	6.7
TRICKICK MY201208 2015 01 02 Mol Fith Fine Small Wave St2 Suffice 1 1 10.33 17.8 81.2 20.8 6.72 5.86 6.9	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	CS6	Bottom	10.6	3	1	12:10	18	8.16	29.1	6.55	6.23	7.2
TRICKLK PY201208 2015-01-02 Mod-Ebb Fine Small Wave S12 Mod-Ebb Fine Small Wave S13 Mod-Ebb Fine Small Wave S14 Mod-Ebb Fine Small Wave	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	CS6	Bottom	10.6	3	2	12:10	18	8.17	29.1	6.51	6.31	7.4
TRICKLK 1/7201208 2015-01-02 Mol-Ebb Fine Small Wave IS12 Mol-Ebb Fine Small Wave IS13 Mol-Ebb Fine Small Wave IS14 Mol-Ebb F	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS12	Surface	1	1	1	10:33	17.8	8.12	28.8	6.72	5.86	6.9
TRICKLK, WY-2012-08 2015-01-02 Mol-Ebb. Fine Small Wave Siz Moledule 7.5 2 2 10.33 17.9 8.15 29 6.54 6.12 7.4	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS12	Surface	1	1	2	10:33	17.9	8.13	29	6.68	5.92	7
TRICKLK PY-2012-08 2015-01-02 Mid-Ebb Fine Small Wave 512 Battom 4 3 1 10-33 18 8.16 29 6.49 6.35 7.4	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS12		7.5	2	1	10:33	17.9	8.14	29	6.59	6.08	
TRICKLK MY201208 2015-01-20 Mole Ebb Fine Small Wave 512 Septom 4 3 2 10.33 8 8.10 92.1 8.45 5.3 7.3	TMCLKL		2015-01-02			Small Wave			7.5	2	2	10:33	17.9	+	29	+		_
Tricklick Progress	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS12	Bottom	14	3	1	10:33	18	8.18		6.49		
TACKER MY-201200	TMCLKL		2015-01-02			Small Wave		Bottom	14	3	2	10:33						
TACKLK HY201208 2015-01-02 Mof-Ebb Fine Small Wave IS13 Model 5.5 2 1 1055 17.9 8.2 29.9 6.7 5.86 6.5	TMCLKL	HY/2012/08		Mid-Ebb	Fine	Small Wave			1	1	1	10:55	17.9	8.18			5.97	
Trickling	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS13	Surface	1	1	2	10:55	17.8	8.19		6.73		
INCLK, HY/201208 2015-01-02 Mid-Ebb Fine Small Wave IS13 Bottom 10 3 1 10.55 18 B.16 29.1 6.43 6.12 7.3	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave			5.5	2	1	10:55	17.9		28.9	6.7	5.85	6.5
TRICIKE, HY/201208 2015-01-02 Mol-Ebb Fine Small Wave IS13 Bottom 10 3 2 10.55 18 8.17 29.1 6.4 6.21 7.3									_		2	+						
TMCKLK HY201208 2015-01-02 Mid-Ebb Fine Small Wave S14 Surface 1 1 1 10:10 17.8 8.17 28.8 6.83 5.94 7	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS13	Bottom	10	3	1	10:55	18	8.16	29.1	6.43	6.12	7.1
TMCILK, HY20120B 2015-01-02 Mole Ebb Fine Small Wave S14 Surface 1 1 2 10:10 17:8 8.18 28.8 6.79 6.01 6.8									10	3	2	+		_		.		7.3
TMCLIK, HY201208 2015-01-02 Md-Ebb Fine Small Wave IS14 Middle 8.1 2 1 10-10 17.9 8.19 8.9 6.73 6.13 7.2	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS14	Surface	1	1	1	10:10	17.8	8.17	28.8	6.83	5.94	7
TACKLK HY201208 2015-01-02 Mel-Ebb Fine Small Wave IS14 Middle 8.1 2 2 10:10 17.9 8.2 29 6.7 6.19 7.3	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS14	Surface	1	1	2	10:10	17.8	8.18	28.8	6.79	6.01	6.8
TMCLKL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS14 Bottom 15.2 3 1 10:10 18 8.21 29.1 6.57 6.44 7.6	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS14	Middle	8.1	2	1	10:10	17.9	8.19	28.9	6.73	6.13	7.2
TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS15 Surface I 1 1 1 11:4 18 8.19 28 6.68 6.13 7.2 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS15 Surface I 1 1 2 11:14 18 8.19 28 6.65 6.69 7.3 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS15 Surface I 1 2 11:14 18 8.12 28 9.65 6.69 7.3 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS15 Middle 5.3 2 1 11:14 18 8.21 28 9.672 6.04 7.1 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS15 Middle 5.3 2 1 11:14 18 8.21 28 9.672 6.04 7.1 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 1 11:14 18 18 8.21 28 9.674 6.7 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 1 11:14 18 18 18 18 29 6.58 6.55 6.32 7.5 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 1 11:14 18 18 18 18 29 6.58 6.55 6.32 7.5 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 1 11:14 18 18 18 18 29 6.58 6.55 6.32 7.5 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 1 11:15 18 18 18 29 6.58 6.52 7.5 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 1 11:15 18 18 18 28 9 6.54 6.65 6.22 7.3 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 1 11:15 18 18 18 28 28 8 6.61 6.16 7 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS18 Bottom 4.2 2 1 11:52 17:9 8.15 28 8 6.61 6.16 7 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS18 Bottom 4.2 2 1 11:52 17:9 8.12 8.8 6.61 6.16 7 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS18 Bottom 4.2 3 1 11:52 17:9 8.12 8.8 6.57 6.42 7.4 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS18 Bottom 4.2 3 1 11:52 17:9 8.11 28.9 6.54 6.49 7.6 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS18 Bottom 4.2 3 1 11:34 18 8.21 28.9 6.57 6.2 0.57 7.3 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS19 Bottom 4.4 3 2 11:34 18 8.24 28.9 6.57 6.2 0.57 7.3 TMCILL HY201208 2015-01-02 Mid-Ebb Fine Small Wave IS19 Bottom 4.4 3 2 11:34 18 8.24 28.9 6.67 6.67 6.21 7.4 TMCILL HY201208 2015-01-	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS14	Middle	8.1	2	2	10:10	17.9	8.2	29	6.7	6.19	7.3
TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S15 Surface 1 1 1 1 11:14 18 8.19 28.8 6.66 6.13 7.2 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S15 Surface 1 1 2 11:14 17.9 8.2 28.8 6.66 6.19 7.3 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S15 Middle 5.3 2 1 11:14 18 8.2 28.9 6.72 6.04 7.1 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S15 Middle 5.3 2 2 1 11:14 18 8.2 28.9 6.72 6.04 7.1 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S15 Middle 5.3 2 2 1 11:14 18 18 8.15 29 6.58 6.25 7.4 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S15 Bottom 9.6 3 1 1 11:14 18.1 8.15 29 6.58 6.25 7.4 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S16 Bottom 9.6 3 2 1 11:14 18.1 8.15 29 6.58 6.22 7.3 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18 Surface 1 1 1 1 11:52 17.8 8.14 28.7 6.65 6.32 7.5 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18 Surface 1 1 1 1 11:52 17.8 8.14 28.7 6.65 6.22 7.3 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18 Surface 1 1 2 11:52 17.9 8.15 28.8 6.61 6.10 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18 Middle 2 1 11:52 17.9 8.12 28.8 6.67 6.42 7.4 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18 Middle 2 2 1 11:52 17.9 8.12 28.8 6.67 6.42 7.4 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18 Bottom 4.2 3 1 11:52 17.9 8.12 28.8 6.67 6.42 7.4 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18 Bottom 4.2 3 1 11:32 17.9 8.12 28.9 6.54 6.49 7.6 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18 Bottom 4.2 3 1 11:32 17.9 8.12 28.9 6.57 6.42 7.4 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18 Bottom 4.2 3 1 11:34 18 8.22 28.9 6.59 6.09 7.2 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18 Bottom 4.2 3 1 11:34 18 8.22 28.9 6.57 6.42 7.4 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18 Bottom 4.2 3 1 11:34 18 8.22 28.9 6.57 6.27 7.3 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18 Bottom 4.4 3 1 11:34 18 8.22 28.9 6.57 6.27 7.3 TMCLKL HY201208 2016-01-02 Mid-Ebb Fine Small Wave S18	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS14	Bottom	15.2	3	1	10:10	18	8.21	29.1	6.57	6.44	7.6
TMCLKL HY201208 2015-01-02 Mid-Ebb Fine Small Mave S15 Surface 1 2 11:14 17.9 8.2 28.8 6.66 6.19 7.3	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS14	Bottom	15.2	3	2	10:10	18.1	8.22	29.2	6.54	6.38	7.5
TMCLKL HY/201208 2015-01-02 Mid-Ebb Fine Small Wave B15 Model S.3 2 1 11:14 18 8.21 28.9 6.72 6.04 7.1	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS15	Surface	1	1	1	11:14	18	8.19	28.8	6.68	6.13	7.2
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave IS15 Middle 5.3 2 2 11:14 18 8.22 28.9 6.74 6 7	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS15	Surface	1	1	2	11:14	17.9	8.2	28.8	6.65	6.19	7.3
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave S15 Soltom 9.6 3 1 11:14 18.1 8.15 29 6.58 6.25 7.4	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS15	Middle	5.3	2	1	11:14	18	8.21	28.9	6.72	6.04	7.1
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR8 Surface 1 1 1 11:52 17:9 8.14 28.7 6.65 6.22 7.3	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS15	Middle	5.3	2	2	11:14	18	8.22	28.9	6.74	6	7
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR8 Surface 1 1 11:52 17.8 8.14 28.7 6.65 6.22 7.3	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS15	Bottom	9.6	3	1	11:14	18.1	8.15	29	6.58	6.25	7.4
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR8 Middle 2 1 11:52 17:9 8.15 28.8 6.61 6.16 7	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	IS15	Bottom	9.6	3	2	11:14	18.1	8.16	29.1	6.55	6.32	7.5
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR8 Middle 2 1 11:52	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR8	Surface	1	1	1	11:52	17.8	8.14	28.7	6.65	6.22	7.3
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR8 Middle 2 2 11:52 T.9 8.12 28.8 6.57 6.42 7.4	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR8	Surface	1	1	2	11:52	17.9	8.15	28.8	6.61	6.16	7
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR8 Bottom 4.2 3 1 11:52 17.9 8.12 28.8 6.57 6.42 7.4	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR8	Middle		2	1	11:52						
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR8 Bottom 4.2 3 2 11:52 17.9 8.11 28.9 6.54 6.49 7.6	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR8	Middle		2	2	11:52						
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR9 Surface 1 1 11:34 18 8.21 28.9 6.62 6.05 7 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR9 Surface 1 1 2 11:34 18 8.22 28.9 6.59 6.09 7.2 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR9 Middle 2 1 11:34 1 1 1 1 1 1 1:34 1 11:34 1 1 1 1 1 1 1:34 1 1:34 1 1 1 1 1:34 1 1:34 1 1:34 1 1:34 1 1:34 1 1:34 1 1:34 1 1:34 1 1:34 1 1:34 1 1:34 1 1:34 1 1:	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR8	Bottom	4.2	3	1	11:52	17.9	8.12	28.8	6.57	6.42	7.4
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR9 Middle 2 1 11:34 18 8.22 28.9 6.59 6.09 7.2	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR8	Bottom	4.2	3	2	11:52	17.9	8.11	28.9	6.54	6.49	7.6
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR9 Middle 2 1 11:34 8 2 1 11:34 8 2 2 11:34 8 24:28.9 6.67 6.21 7.4 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR9 Bottom 4.4 3 1 11:34 18 8.24 28.9 6.67 6.21 7.4 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR9 Bottom 4.4 3 2 11:34 18 8.25 28.9 6.7 6.27 7.3 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Surface 1 1 12:35 17.9 8.19 28.8 6.7 6.11 7.1 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Middle	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR9	Surface	1	1	1	11:34	18	8.21	28.9	6.62	6.05	7
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR9 Middle 2 2 11:34 18 8.24 28.9 6.67 6.21 7.4 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR9 Bottom 4.4 3 1 11:34 18 8.24 28.9 6.67 6.27 7.3 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Surface 1 1 1:2:35 17.9 8.19 28.8 6.7 6.05 6.9 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Surface 1 1 1:2:35 17.9 8.2 28.9 6.7 6.11 7.1 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Middle 6.5 2 1 1:2:35 17.9 8.12 28.9 6.67 </td <td>TMCLKL</td> <td>HY/2012/08</td> <td>2015-01-02</td> <td>Mid-Ebb</td> <td>Fine</td> <td>Small Wave</td> <td>SR9</td> <td>Surface</td> <td>1</td> <td>1</td> <td>2</td> <td>11:34</td> <td>18</td> <td>8.22</td> <td>28.9</td> <td>6.59</td> <td>6.09</td> <td>7.2</td>	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR9	Surface	1	1	2	11:34	18	8.22	28.9	6.59	6.09	7.2
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR9 Bottom 4.4 3 1 11:34 18 8.24 28.9 6.67 6.21 7.4 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Surface 1 1 1:34 18 8.24 28.9 6.67 6.27 7.3 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Surface 1 1 1:2:35 17.9 8.19 28.8 6.74 6.05 6.9 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Midcle 6.5 2 1 1:2:35 17.9 8.14 28.9 6.7 6.11 7.1 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Middle 6.5 2 1 1:2:35 17.9 8.14 28.9	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR9	Middle		2	1	11:34						
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR9 Bottom 4.4 3 2 11:34 18 8.25 28.9 6.7 6.27 7.3 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Surface 1 1 1 12:35 17.9 8.19 28.8 6.74 6.05 6.9 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Middlele 6.5 2 1 1 12:35 17.9 8.2 28.9 6.7 6.11 7.1 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Middlele 6.5 2 1 12:35 17.9 8.15 29 6.63 5.93 6.8 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Bottom 12 3 1 12:35 17.9 <td>TMCLKL</td> <td>HY/2012/08</td> <td>2015-01-02</td> <td>Mid-Ebb</td> <td>Fine</td> <td>Small Wave</td> <td>SR9</td> <td>Middle</td> <td></td> <td>2</td> <td>2</td> <td>11:34</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR9	Middle		2	2	11:34						
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Surface 1 1 12:35 17.9 8.19 28.8 6.74 6.05 6.9 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Surface 1 1 2 12:35 17.9 8.2 28.9 6.7 6.11 7.1 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Middle 6.5 2 1 12:35 17.9 8.14 28.9 6.66 6 7 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Bottom 12 3 1 12:35 17.9 8.15 29 6.63 5.93 6.8 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Bottom 12 3 1 12:35 18 8.17	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR9	Bottom	4.4	3	1	11:34	18	8.24	28.9	6.67	6.21	7.4
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Surface 1 1 12:35 17.9 8.19 28.8 6.74 6.05 6.9 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Surface 1 1 2 12:35 17.9 8.2 28.9 6.7 6.11 7.1 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Middle 6.5 2 1 12:35 17.9 8.14 28.9 6.66 6 7 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Bottom 12 3 1 12:35 18 8.17 29 6.63 5.93 6.8 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Bottom 12 3 1 12:35 18 8.17	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR9	Bottom	4.4	3	2	11:34	18					7.3
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Middle 6.5 2 1 12:35 17.9 8.14 28.9 6.66 6 7 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Middle 6.5 2 2 12:35 17.9 8.15 29 6.63 5.93 6.8 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Bottom 12 3 1 12:35 18 8.17 29 6.47 6.54 7.4 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Bottom 12 3 2 12:35 18 8.18 29.1 6.44 6.47 7.7 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Surface 1 1 1 18:08 18.3	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR10A	Surface	1	1	1	12:35	17.9	8.19	28.8		6.05	6.9
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Middle 6.5 2 2 12:35 17.9 8.15 29 6.63 5.93 6.8 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Bottom 12 3 1 12:35 18 8.17 29 6.47 6.54 7.4 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Bottom 12 3 2 12:35 18 8.18 29.1 6.47 6.54 7.4 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Surface 1 1 1 18:08 18.4 8.02 28.9 6.84 5.7 6.6 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Surface 1 1 2 18:08 18.3	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR10A	Surface	1	1	2	12:35	17.9	8.2	28.9	6.7	6.11	7.1
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Bottom 12 3 1 12:35 18 8.17 29 6.47 6.54 7.4 TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Bottom 12 3 2 12:35 18 8.18 29.1 6.44 6.47 7.7 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Surface 1 1 18:08 18.4 8.02 28.9 6.84 5.7 6.6 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Surface 1 1 18:08 18.3 8.01 29.1 6.87 5.58 6.5 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Middle 10.9 2 1 18:08 18.2 8.05 2	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR10A	Middle	6.5	2	1	12:35	17.9	8.14	28.9	6.66	6	7
TMCLKL HY/2012/08 2015-01-02 Mid-Ebb Fine Small Wave SR10A Bottom 12 3 2 12:35 18 8.18 29.1 6.44 6.47 7.7 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Surface 1 1 1 18:08 18.4 8.02 28.9 6.84 5.7 6.6 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Surface 1 1 1 18:08 18.3 8.01 29.1 6.87 5.58 6.5 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Middle 10.9 2 1 18:08 18.3 8.03 29 6.74 5.92 7.1 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 1 18:08 1	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR10A	Middle	6.5	2	2	12:35	17.9	8.15	29	6.63		6.8
TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Surface 1 1 18:08 18.4 8.02 28.9 6.84 5.7 6.6 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Surface 1 1 2 18:08 18.3 8.01 29.1 6.87 5.58 6.5 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Middle 10.9 2 1 18:08 18.3 8.03 29 6.74 5.92 7.1 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 1 18:08 18.2 8.05 29.4 6.53 6.13 7 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 2 18:08 18.3	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR10A	Bottom	12	3	1	12:35	18	8.17	29	6.47	6.54	7.4
TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Surface 1 1 2 18:08 18:3 8.01 29.1 6.87 5.58 6.5 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Middle 10.9 2 1 18:08 18.3 8.01 29.1 6.87 5.58 6.5 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Middle 10.9 2 1 18:08 18.3 8.03 29 6.74 5.92 7.1 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 1 18:08 18.2 8.05 29.4 6.53 6.13 7 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 2 18:08	TMCLKL	HY/2012/08	2015-01-02	Mid-Ebb	Fine	Small Wave	SR10A	Bottom	12	3	2	12:35	18	8.18	29.1	6.44		7.7
TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Surface 1 1 2 18:08 18:3 8.01 29.1 6.87 5.58 6.5 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Middle 10.9 2 1 18:08 18.3 8.01 29.1 6.87 5.58 6.5 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Middle 10.9 2 1 18:08 18.3 8.03 29 6.74 5.92 7.1 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 1 18:08 18.2 8.05 29.2 6.57 6.22 7.3 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 2 18:08	TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	CS4	Surface	1	1	1	18:08	18.4	8.02	28.9	6.84	5.7	6.6
TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Middle 10.9 2 2 18:08 18.4 8.02 29.2 6.78 5.99 7.2 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 1 18:08 18.2 8.05 29.4 6.53 6.13 7 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 2 18:08 18.3 8.06 29.2 6.57 6.22 7.3 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS6 Surface 1 1 1 16:40 18.6 8.05 29.2 6.63 5.93 6.9	TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	CS4	Surface	1	1	2	18:08	18.3			6.87	5.58	6.5
TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Middle 10.9 2 2 18:08 18.4 8.02 29.2 6.78 5.99 7.2 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 1 18:08 18.2 8.05 29.4 6.53 6.13 7 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 2 18:08 18.3 8.06 29.2 6.57 6.22 7.3 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS6 Surface 1 1 1 16:40 18.6 8.05 29.2 6.63 5.93 6.9	TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	CS4	Middle	10.9	2	1	18:08	18.3	8.03	29	6.74	5.92	7.1
TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 1 18:08 18.2 8.05 29.4 6.53 6.13 7 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 2 18:08 18.3 8.06 29.2 6.57 6.22 7.3 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS6 Surface 1 1 16:40 18.6 8.05 29.2 6.63 5.93 6.9	TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	CS4	Middle	10.9	2	2	18:08	18.4		29.2	6.78		7.2
TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS4 Bottom 20.7 3 2 18:08 18.3 8.06 29.2 6.57 6.22 7.3 TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS6 Surface 1 1 16:40 18.6 8.05 29.2 6.63 5.93 6.9	TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	CS4	Bottom	20.7	3	1	18:08	18.2			6.53	6.13	7
TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS6 Surface 1 1 1 1 16:40 18.6 8.05 29.2 6.63 5.93 6.9				Mid-Flood	· · · · · · · · · · · · · · · · · · ·				+	3	2	18:08						7.3
	TMCLKL	HY/2012/08	2015-01-05	Mid-Flood					1	1	1	16:40	18.6			6.63		
									1	1	2	+	+			6.67	6.02	7.1

Project	Works	Date	Tide	l Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.9	2	1	16:40	18.5	8.05	29.2	6.55	6.16	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.9	2	2	16:40	18.5	8.06	29.3	6.59	6.12	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	CS6	Bottom	10.8	3	1	16:40	18.4	8.07	29.4	6.32	6.47	7.6
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	CS6	Bottom	10.8	3	2	16:40	18.5	8.06	29.3	6.38	6.38	7.5
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	IS12	Surface	1	1	1	18:36	18.4	7.98	29.1	6.76	5.76	6.8
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	IS12	Surface	1	1	2	18:36	18.3	7.99	29	6.72	5.84	6.9
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	IS12	Middle	7.4	2	1	18:36	18.4	8.01	30.1	6.67	5.92	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	Cloudy	Small Wave	IS12	Middle	7.4	2	2	18:36	18.5	8	30	6.64	6.02	7
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood				Bottom	13.8	3	1	18:36	18.4	7.97	30.1	6.53	6.14	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_			Bottom	13.8	3	2	18:36	18.5	7.98	30.1	6.58	6.26	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_		IS13	Surface	1	1	1	18:16	18.5	7.96	29	6.63	6.02	6.8
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_			Surface	1	1	2	18:16	18.4	7.95	29.1	6.68	5.93	7.1
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_				5.8	2	1	18:16	18.5	7.97	29.2	6.55	5.92	6.9
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_		IS13	Middle	5.8	2	2	18:16	18.4	7.96	29.3	6.58	5.87	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_			Bottom	10.5	3	1	18:16	18.3	8.02	29.3	6.42	6.27	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	,			Bottom	10.5	3	2	18:16	18.3	8.03	29.4	6.51	6.33	7.6
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_			Surface	1	1	1	18:54	18.5	7.96	28.8	6.74	5.63	6.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	,			Surface	1	1	2	18:54	18.4	7.96	28.9	6.68	5.67	6.3
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_				8.4	2	1	18:54	18.4	8.01	29.2	6.63	5.87	6.8
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_		IS14		8.4	2	2	18:54	18.3	8	29.1	6.69	5.91	7.1
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood				Bottom	15.8	3	1	18:54	18.2	8.03	29.1	6.52	6.08	7
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_			Bottom	15.8	3	2	18:54	18.3	8.02	29.2	6.44	6.16	6.9
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_			Surface	1	1	1	17:58	18.5	7.99	29.2	6.74	5.84	6.7
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_			Surface	1	1	2	17:58	18.4	7.98	29.1	6.79	5.91	6.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_	Small Wave	IS15	Middle	5.6	2	1	17:58	18.3	8.02	29.1	6.81	5.97	7.1
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	,		IS15	Middle	5.6	2	2	17:58	18.4	8.01	29.2	6.84	6.08	7.3
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	,	Small Wave		Bottom	10.1	3	1	17:58	18.4	7.98	29.3	6.68	6.16	7.2
			Mid-Flood	_			Bottom	10.1	3	2		18.4	-	29.2	6.71	6.23	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	,		SR8	Surface	1	1	1	17:29	18.5		29.3	6.49	6.02	6.8
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_			Surface	1	1	2	17:29	18.4	8.03	29.2	6.54	6.1	7
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood				Middle		2	1	17:29						
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_		SR8	Middle		2	2	17:29						
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_		SR8	Bottom	4	3	1	17:29	18.4		29.4	6.38	6.29	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_			Bottom	4	3	2	17:29	18.3		29.3	6.42	6.33	7.5
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	•		SR9	Surface	1	1	1	17:43	18.5		29.2	6.58	6.01	7
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_		SR9	Surface	1	1	2	17:43	18.6	8.01	29.1	6.61	6.08	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_		SR9	Middle		2	1	17:43						
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_			Middle		2	2	17:43		ļ				
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	,				4.6	3	1		18.5		29.3	6.45	6.37	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_			 	4.6	3	2	17:43	18.4		29.2	6.39	6.33	7.6
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	,			Surface	1	1	1	17:03	18.5		29.2	6.71	5.86	6.8
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_			Surface	1	1	2	17:03	18.5	-	29.1	6.78	5.82	6.7
	HY/2012/08	2015-01-05	Mid-Flood	,				6.4	2	1	17:03	18.6		29.3	6.64	5.7	6.5
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	,				6.4	2	2	17:03	18.5		29.3	6.69	5.62	6.7
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	_				11.8	3	1	17:03	18.4		29.4	6.48	5.92	7.1
TMCLKL	HY/2012/08	2015-01-05	Mid-Flood	-			Bottom	11.8	3	2	17:03	18.4		29.3	6.41	5.95	7.3
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	_			Surface	1	1	1	11:24	18.2		28.9	6.79	5.74	6.8
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb			CS4	Surface	10.7	1	2	11:24	18.3	8.01	28.9	6.76	5.66	6.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	_				10.7	2	1	11:24	18.3		29	6.7	6.03	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb			CS4	Middle	10.7	2	2	11:24	18.3	+	29.1	6.67	6.1	7
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	_				20.4	<u>ა</u>	1	11:24	18.3		29.2	6.49	6.24	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	,		CS4	 	20.4	<u>კ</u>	2	11:24	18.4		29.3	6.45	6.29	7.3
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	_		CS6	Surface	11	1	1	13:46	18.5		29.1	6.55	6.04	7
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	_		CS6	Surface	[]	1	<u> </u> 2	13:46	18.5	_	29	6.51	6.1	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	,				5.8	2	1	13:46	18.5		29.1	6.49	6.23	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	,		CS6		5.8	2	2	13:46	18.4		29.1	6.46	6.18	7.1
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	,			 	10.6	<u>ა</u>	1	13:46	18.5		29.2	6.3	6.45	7.6
TIVICLKL	HY/2012/08	2015-01-05	ממ⊐-טוועון	Cloudy	Small Wave	US6	Bottom	110.6	[3	2	13:46	ן וא.ט	8.06	29.2	6.28	6.52	7.7

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS12	Surface	1	1	1	12:06	18.3	7.97	28.9	6.64	5.89	6.8
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS12	Surface	1	1	2	12:06	18.3	7.98	28.9	6.67	5.95	6.5
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS12	Middle	7.2	2	1	12:06	18.3	7.99	29	6.6	6.01	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS12	Middle	7.2	2	2	12:06	18.3	7.98	29	6.56	6.09	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS12	Bottom	13.4	3	1	12:06	18.3	7.96	29.1	6.48	6.27	7.5
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS12	Bottom	13.4	3	2	12:06		7.97	29.1	6.46	6.33	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS13	Surface	1	1	1	12:27	18.3	7.93	28.9	6.59	6.08	7.1
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS13	Surface	1	1	2	12:27	-	7.94	29	6.61	6.14	7.3
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.6	2	<u> 1</u>	12:27	-	7.95	29	6.5	6	7
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.6	2	2	12:27		7.93	29.1	6.47	5.93	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom	10.2	3	1	12:27	18.4	7.99	29.2	6.38	6.35	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom	10.2	3	2	12:27	18.4	8	29.1	6.41	6.43	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS14	Surface	1	1	1	11:45		7.94	28.9	6.63	5.79	6.8
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS14	Surface	1	1	2	11:45		7.95	28.8	6.6	5.84	6.5
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS14	Middle	8.3	2	1	11:45	18.3	7.99	28.9	6.57	5.99	7.1
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS14	Middle	8.3	2	2	11:45		7.98	29	6.53	6.05	6.9
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS14	Bottom	15.6	3	1	11:45		8.01	29.1	6.41	6.19	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS14	Bottom	15.6	3	2	11:45		8.02	29.1	6.38	6.25	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS15	Surface	1	1	1	12:49	-	7.98	29	6.68	5.95	7.1
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS15	Surface	1	1	2	12:49		7.99	29	6.71	6	7.3
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS15	Middle	5.4	2	1	12:49	18.4	8	29	6.74	6.09	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS15	Middle	5.4	2	2	12:49		8.01	29.1	6.75	6.16	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom	9.8	3	1	12:49		7.97	29.1	6.63	6.28	7.6
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom	9.8	3	2	12:49	18.3	7.96	29.1	6.6	6.34	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR8	Surface	1	1	1	13:28	18.4	8.01	29	6.45	6.11	7.2
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR8	Surface	1	1	2	13:28	18.4	8.02	29.1	6.42	6.18	7.3
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR8	Middle		2	1	13:28						
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR8	Middle		2	2	13:28						
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom	3.8	3	1	13:28	18.4	8.03	29.1	6.33	6.36	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom	3.8	3	2	13:28	18.5	8.03	29.1	6.37	6.42	7.6
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR9	Surface	1	1	1	13:10	18.4	7.99	29	6.52	6.07	7.1
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR9	Surface	1	1	2	13:10	18.5	8	29	6.49	6.14	7.3
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR9	Middle		2	1	13:10						
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR9	Middle		2	2	13:10						
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR9	Bottom	4.4	3	1	13:10	18.4	8.01	29	6.4	6.4	7.9
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR9	Bottom	4.4	3	2	13:10	18.4	8.02	29	6.36	6.48	7.7
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR10A	Surface	1	1	1	14:09	18.4	8	29.1	6.68	5.92	6.8
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR10A	Surface	1	1	2	14:09	18.5	7.99	29.1	6.65	5.84	6.7
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR10A	Middle	6.2	2	1	14:09	18.5	7.94	29.1	6.59	5.69	7.4
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR10A	Middle	6.2	2	2	14:09	18.5	7.95	29.2	6.56	5.74	7.3
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR10A	Bottom	11.4	3	1	14:09	18.4	7.91	29.2	6.4	5.99	7.6
TMCLKL	HY/2012/08	2015-01-05	Mid-Ebb	Cloudy	Small Wave	SR10A	Bottom	11.4	3	2	14:09	18.5	7.92	29.2	6.38	6.06	7.7
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	CS4	Surface	1	1	1	10:34			28.9	6.85	5.65	6.8
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	CS4	Surface	1	1	2	10:34	+	8.06		6.82	5.57	6.7
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	CS4	Middle	10.8	2	1	10:34			29.1	6.76	5.94	7.2
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	CS4	Middle	10.8	2	2	10:34	18.2	8.08	29.2	6.73	6.01	7.3
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	CS4	Bottom	20.6	3	1	10:34		8.1	29.3	6.55	6.15	7.4
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	CS4	Bottom	20.6	3	2	10:34	18.3	8.09	29.2	6.51	6.2	7.6
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	CS6	Surface	1	1	1	08:10			29.1	6.61	5.95	6.7
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	CS6	Surface	1	1	2	08:10			29.2	6.57	6.01	7
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.9	2	1	08:10	+	8.1	29.2	6.55	6.14	7.3
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.9	2	2	08:10	+	8.11	29.3	6.52	6.09	7.1
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	CS6	Bottom	10.8	3	1	08:10		8.11	29.3	6.36	6.36	7.4
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	CS6	Bottom	10.8	3	2	08:10			29.2	6.34	6.43	7.5
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	IS12	Surface	1	1	1	09:58		_	28.9	6.7	5.8	6.7
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	IS12	Surface	1	1	2	09:58			29	6.73	5.86	6.8
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy		IS12	Middle	7.4	2	1	09:58		8.05		6.66	5.92	7.1
		2015-01-07		Cloudy	Small Wave	+	Middle	+	2	2	09:58		8.04		6.62	6	7.3
			,	1	1	<u>, </u>	1		!		1			<u> </u>	<u>,</u>	i -	

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	IS12	Bottom	13.8	3	1	09:58	18.4	8.02	29.2	6.54	6.18	7.2
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	IS12	Bottom	13.8	3	2	09:58	18.5	8.03	29.1	6.52	6.24	7.4
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	IS13	Surface	1	1	1	09:40	18.3	7.99	29	6.65	5.99	6.8
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	IS13	Surface	1	1	2	09:40	18.2	8	29.1	6.67	6.05	7.1
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	IS13	Middle	5.7	2	1	09:40	18.4	8.01	29.3	6.56	5.91	6.9
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	IS13	Middle	5.7	2	2	09:40	18.3	8	29.2	6.53	5.84	6.9
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	IS13	Bottom	10.4	3	1	09:40	18.4	8.05	29.3	6.44	6.26	7.4
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,	Small Wave		Bottom	10.4	3	2	09:40	18.4	8.06	29.3	6.47	6.34	7.2
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave		Surface	1	1	1	10:16	18.2	8	29	6.69	5.7	6.8
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave		Surface	1	1	2	10:16	18.2	8.01	29.1	6.66	5.75	6.7
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,		IS14	Middle	8.4	2	1	10:16	18.2	8.05	29.1	6.63	5.9	7.2
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,		IS14	Middle	8.4	2	2	10:16	18.1	8.06	29.2	6.59	5.96	6.9
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave		Bottom	15.8	3	1	10:16	18.3	8.07	29.2	6.47	6.1	7.3
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,			Bottom	15.8	3	2	10:16	18.4	8.08	29.1	6.44	6.16	7.4
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,			Surface	1	1	1	09:22	18.2	8.04	29.1	6.74	5.86	6.9
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,			Surface	1	1	2	09:22	18.3	8.05	29	6.77	5.91	6.7
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,	Small Wave		Middle	5.6	2	1	09:22	18.3	+	29.1	6.8	6	7
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,			Middle	5.6	2	2	09:22	18.2	8.06	29.2	6.81	6.07	7.3
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,			Bottom	10.2	3	1	09:22	18.3	8.03	29.2	6.69	6.19	7.2
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,	Small Wave		Bottom	10.2	3	2	09:22	18.4	8.04	29.1	6.66	6.25	7.4
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	1	08:46	18.3	8.07	29.1	6.51	6.02	7
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,	Small Wave		Surface	1	1	2	08:46	18.2	8.08	29.2	6.48	6.09	6.9
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	SR8	Middle		2	1	08:46						
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,	Small Wave	SR8	Middle		2	2	08:46						
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave		Bottom	4.2	3	1	08:46	18.4	8.09	29.2	6.39	6.27	6.8
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	,	Small Wave	+	Bottom	4.2	3	2	08:46	18.4	8.1	29.1	6.43	6.33	6.5
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy	Small Wave	SR9	Surface	1	1	1	09:04	18.4	8.05	29	6.58	5.98	6.9
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy			Surface	1	1	2	+	18.3	8.06	29.1	6.55	6.05	7
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy		SR9	Middle		2	1	09:04						
	HY/2012/08	2015-01-07	Mid-Flood	,		SR9	Middle		2	2	09:04						
	HY/2012/08	2015-01-07	Mid-Flood	_				4.6	3	1	09:04	18.4		29.1	6.46	6.31	7.6
	HY/2012/08	2015-01-07	Mid-Flood	,				4.6	3	2	09:04	18.5	+	29	6.42	6.39	7.4
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy			Surface	1	1	1	08:28	18.4		29.2	6.74	5.83	6.8
	HY/2012/08	2015-01-07	Mid-Flood	•			Surface	1	1	2	08:28	18.3	8.05	29.1	6.71	5.75	7
	HY/2012/08	2015-01-07	Mid-Flood	Cloudy				6.3	2	1	08:28	18.5	8	29.2	6.65	5.6	6.9
	HY/2012/08	2015-01-07	Mid-Flood	Cloudy			Middle	6.3	2	2	08:28	18.4		29.3	6.62	5.65	6.7
TMCLKL	HY/2012/08	2015-01-07	Mid-Flood	Cloudy			-	11.6	3	1	08:28	18.5		29.4	6.46	5.9	7
	HY/2012/08	2015-01-07	Mid-Flood				Bottom	11.6	3	2	08:28	18.6		29.3	6.44	5.97	6.8
	HY/2012/08	2015-01-07	Mid-Ebb	•			Surface	1	1	1	12:33	18.2		29.1	6.81	5.69	6.9
	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy			Surface	1	1	2	12:33	18.1		29.2	6.74	5.63	6.7
	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy			Middle	10.7	2	1	12:33	18.2		29.3	6.63	6.03	7.2
	HY/2012/08	2015-01-07	Mid-Ebb				Middle	10.7	2	2	12:33	18.3		29.2	6.66	6.11	7.3
	HY/2012/08	2015-01-07		Cloudy				20.4	3	1	12:33	18.3		29.4	6.52	6.19	7.4
	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy				20.4	3	2	12:33	18.2		29.3	6.49	6.23	7.5
	HY/2012/08	2015-01-07	Mid-Ebb	•		CS6	Surface	1	1	1	15:12	18.5		29.2	6.57	5.99	6.9
	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy		CS6	Surface	1	1	2	15:12	18.4		29.3	6.52	6.11	7.2
	HY/2012/08	2015-01-07		,				5.8	2	1	15:12	18.4		29.3	6.48	6.18	7.3
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy		CS6	Middle	5.8	2	2	15:12	18.3		29.4	6.46	6.13	7.5
	HY/2012/08	2015-01-07	Mid-Ebb	,		CS6		10.6	3	1	15:12	18.3		29.5	6.3	6.47	7.6
	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy			Bottom	10.6	3	2	15:12	18.4		29.4	6.31	6.51	7.8
	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy		IS12	Surface	1	[1	[1	13:11	18.3		29.2	6.63	5.89	6.9
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy		IS12	Surface	1	1	2	13:11	18.2		29.1	6.67	5.92	6.8
	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy		IS12	Middle	7.3	2	1	13:11	18.3		29.2	6.52	5.98	6.9
	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy		IS12	Middle	7.3	2	2	13:11	18.4		29.3	6.56	6.02	7.1
	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy				13.6	3	1	13:11	18.5		29.3	6.47	6.24	7.4
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy		IS12	Bottom	13.6	3	2	13:11	18.5		29.4	6.43	6.31	7.5
	HY/2012/08	2015-01-07	Mid-Ebb				Surface	1	1	1	13:29	18.3		29.2	6.53	6.08	7
ITMCLKL '	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy	Small Wave	IS13	Surface	1	1	2	13:29	18.4	8	29.1	6.56	6.17	7.2

Project	Works	Date	Tide	IVVESTNER	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.5	2	1	13:29	18.4	8.02	29.4	6.48	5.97	6.9
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.5	2	2	13:29	18.4	8.02	29.3	6.43	5.91	6.7
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom	10.1	3	1	13:29	18.5	8.06	29.4	6.39	6.32	7.6
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	Cloudy	Small Wave		Bottom	10.1	3	2	13:29	18.4		29.5	6.32	6.39	7.7
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	,			Surface	1	1	1	12:52	18.3		29.2	6.63	5.77	6.9
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	_			Surface	1	1	2	12:52	18.2		29.1	6.58	5.82	6.8
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb				Middle	8.2	2	1	12:52	18.3		29.2	6.58	5.96	7
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	•			Middle	8.2	2	2	12:52	18.4	8.07	29.3	6.54	6.03	7.3
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb				Bottom	15.4	3	1	12:52	18.4	8.09	29.3	6.41	6.18	7.2
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb				Bottom	15.4	3	2	12:52	18.5		29.4	6.37	6.22	7.4
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	,			Surface	1	1	1	13:47	18.3		29.3	6.63	5.92	6.9
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	,			Surface	1	1	2	13:47	18.4		29.2	6.68	5.99	6.7
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	,			Middle	5.5	2	1	13:47	18.3		29.2	6.7	6.13	7.2
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	,			Middle	5.5	2	2	13:47	18.2	8.07	29.3	6.72	6.08	7.5
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	,			Bottom	10	3	1	13:47	18.3	8.04	29.3	6.64	6.23	7.4
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	,			Bottom	10	3	2	13:47	18.4		29.4	6.6	6.31	7.1
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	,			Surface	1	<u> 1</u>	1	14:23	18.4		29.3	6.47	6.12	7.3
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	,			Surface	1	11	2	14:23	18.5	8.09	29.2	6.42	6.17	7.1
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb				Middle		2	1	14:23		 				
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb				Middle	1	2	2	14:23	10.0	0.00	00.0	0.00	0.04	17.4
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb				Bottom	4	3	1	14:23	18.6	_	29.3	6.33	6.34	7.4
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb				Bottom	4	3	2	14:23	18.5	8.1	29.4	6.38	6.41	7.6
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	,			Surface	1	1	1	14:06	18.5		29.2	6.52	6.07	7.1
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	•			Surface	1	1	2	14:06	18.4	8.07	29.1	6.46	6.14	7.3
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	•			Middle	<u> </u>	2	1	14:06		 		1		+
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	,			Middle	14.0	2	2	14:06	110.0	0.00	00.0	0.44		
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	_			Bottom	4.3	3	1	14:06	18.6		29.3	6.41	6.38	7.4
	HY/2012/08	2015-01-07						4.3	3	2	14:06	18.5	+	29.2	6.37	6.47	7.7
TMCLKL	t	2015-01-07	Mid-Ebb	,			Surface	1	[1 -	1	14:41	18.5	_	29.3	6.7	5.89	6.8
	HY/2012/08	2015-01-07	Mid-Ebb	_			Surface	1	1	2	14:41	18.4		29.2	6.67	5.84	6.9
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb					6.2	2	1	14:41	18.5		29.4	6.61	5.68	6.6
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	•			Middle	6.2	2	2	14:41	18.6		29.3	6.58	5.74	6.5
TMCLKL	HY/2012/08	2015-01-07	Mid-Ebb	_			Bottom	11.3	3	1	14:41	18.6		29.3	6.4	5.97	/
	HY/2012/08	2015-01-07	Mid-Ebb				Bottom	11.3	3	2	14:41	18.7		29.4	6.33	6.06	7.1
TMCLKL	HY/2012/08	2015-01-09	Mid-Flood				Surface			10	11:32	18		28.7	7.56	5.84	6.7
TMCLKL	HY/2012/08	2015-01-09	Mid-Flood				Surface	10.0	0	2	11:32	17.9		28.6	7.59	5.73	6.6
TMCLKL	HY/2012/08	2015-01-09	Mid-Flood				Middle	10.8	2	0	11:32	18		28.8	7.5	6.04	/
	HY/2012/08	2015-01-09	Mid-Flood				Middle	10.8	2	4	11:32	18.1	7.96	28.8	7.47	5.96	6.8
TMCLKL	HY/2012/08	2015-01-09	Mid-Flood				Bottom	20.6	3	10	11:32	18.1	7 00	28.9	7.13 7.15	6.17	7.1
	HY/2012/08	2015-01-09	Mid-Flood Mid-Flood				Bottom	20.6	1	1	11:32	18.1		29	7.15	6.25 6.84	7.3
TMCLKL	HY/2012/08				Calm		Surface	1	11	10	08:45	17.9		27.2	_		7.8
	HY/2012/08	2015-01-09	Mid-Flood		Calm		Surface Middle	6	2	1	08:45	17.9		27.2	7.44 7.5	6.93 6.69	7 /
TMCLKL	HY/2012/08	2015-01-09	Mid-Flood		Calm		Middle	6	2	12	08:45	17.9		27.2	7.49		7.4 7.7
	HY/2012/08 HY/2012/08	2015-01-09	Mid-Flood Mid-Flood				Bottom	11	2	1	08:45 08:45	18 18	8.05 8.07		7.49	6.72 6.91	7.7
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-01-09	Mid-Flood		Calm		Bottom	11	3	2	08:45	18		27.4 27.5	7.4	6.98	8.2
TMCLKL	HY/2012/08 HY/2012/08	2015-01-09	Mid-Flood		Calm			111	1	1	10:52	17.9			7.38	5.24	6.4
	HY/2012/08 HY/2012/08	2015-01-09	Mid-Flood				Surface	1		2	10:52	17.9		28.4	7.35	5.35	6.6
	HY/2012/08 HY/2012/08	2015-01-09	Mid-Flood		Calm		Surface Middle	7.5	2	1	10:52	17.9		28.4 28.5	7.29	5.86	6.9
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-01-09	Mid-Flood		Calm		Middle	7.5	2	2	10:52	18		28.5	7.29	5.79	6.5
TMCLKL	HY/2012/08 HY/2012/08	2015-01-09	Mid-Flood		Calm		Bottom	14	2	1	10:52	18		28.6	7.16	5.61	6.6
	HY/2012/08 HY/2012/08	2015-01-09	Mid-Flood					14	3	2	10:52	18.1	-		7.16	5.68	6.7
	HY/2012/08 HY/2012/08	2015-01-09	Mid-Flood		Calm		Bottom Surface	14	1	1	10:52	17.9		28.5	7.19	5.06	6.2
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-01-09	Mid-Flood		Calm			1	<u>'</u> 1	2	10:33	17.9		28.5	7.54	4.95	6.3
							Surface	5 7	2	1	+			28.4	7.43		6.8
TMCLKL	HY/2012/08	2015-01-09	Mid-Flood		Calm		Middle	5.7	2	10	10:33	17.9		28.5	_	5.62	
TMCLKL	HY/2012/08	2015-01-09	Mid-Flood		Calm		Middle	5.7	2	1	10:33	17.9		28.5	7.41	5.71	6.5
	HY/2012/08	2015-01-09	Mid-Flood		Calm			10.4	ე <u>ა</u>	2	10:33	18		28.5	7.36	5.43	6.7
TIVICLAL	HY/2012/08	2015-01-09	IVIIU-F100U	Fine	Calm	IS13	Bottom	110.4	3	14	10:33	110	8.06	<u> </u> ∠0.0	7.38	5.5	6.4

	Project	Works	Date	Tide	IVVeather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TRICHE 1979 1988 2016 128 Mic Floor Prop. Calm S14 Model 4 2 1 1 1118 18 709 26 7.88 7.75 5.7 6.5 5.5 1.5	TMCLKL	HY/2012/08	2015-01-09	Mid-Flood	Fine	Calm	IS14	Surface	1	1	1	11:13	17.9	7.94	28.5	7.51	5.54	6.3
TREALIGN Privage 2015-12-01 Mont Food Fine Colors 1514 Montes 1.4 1.5	TMCLKL	HY/2012/08	2015-01-09	Mid-Flood	Fine	Calm	IS14	Surface	1	1	2	11:13	18	7.95	28.4	7.47	5.49	6.4
INCLICAL PAYON 2008 2015-0-100 Mon-Pool Prop. Color Stat Solten Stat Stat Solten Stat Solten Stat Solten Stat S	TMCLKL	HY/2012/08	2015-01-09	Mid-Flood	Fine	Calm	IS14	Middle	8.4	2	1	11:13	18	7.99	28.5	7.38	5.77	6.7
TRICKLE Progress 2019-0-0-0 Mod-Flood Fine Calm Si-1 South Si-1 Si-1 South Si-1 S	TMCLKL	HY/2012/08	2015-01-09	Mid-Flood	Fine	Calm	IS14	Middle	8.4	2	2	11:13	17.9	8	28.6	7.35	5.7	6.5
TRICICAL PAYS 1.09 2015 10.0 Mid Floor Fine Calm 1515 Schem 1 1 1014 77.9 8.16 26.1 7.84 4.57 5.8 1.00	TMCLKL	HY/2012/08	2015-01-09	Mid-Flood	Fine	Calm	IS14	Bottom	15.8	3	1	11:13	18	8.02	28.7	7.29	5.97	6.9
Insert I	TMCLKL	HY/2012/08	2015-01-09	Mid-Flood	Fine	Calm	IS14	Bottom	15.8	3	2	11:13	18	8.03	28.8	7.26	6.04	7.1
TRICKER NY2012-000 2015-01-06 Mof-Flood Fine Color ISST Mokels 6.6 2 1 1014 17:9 8.17 28:5 7.49 5.89 7.1	TMCLKL	HY/2012/08	2015-01-09	Mid-Flood					1	1	1	10:14	17.9	8.15	28.4		4.97	
MICHAEL MY201200 2015-01-09 Mof-Flood Fine Calm S15 Solido 2 2 1014 17.9 21.7 28.8 7.4 5.79 7.1 TMCLKE, MY201200 2015-01-09 Mof-Flood Fine Calm S15 Solido 10.2 3 2 1014 17.9 21.7 28.8 7.4 3.5 5.6 0.7 TMCLKE, MY201200 2015-01-09 Mof-Flood Fine Calm S15 Solido 10.2 3 2 1014 18.2 22.2 28.6 7.4 5.7 6.5 6.7 TMCLKE, MY201200 2015-01-09 Mof-Flood Fine Calm S16 Solido 10.2 3 2 10.0 4.7 3 30.2 7.2 7.4 5.5 6.2 7.1 7.0	TMCLKL		2015-01-09	Mid-Flood					1	1	2	10:14	-			-		5.7
Tricklet NY201200 2015-01-09 Mol-Flood Fine Calm IS15 Solton 10,2 3 1 10,14 17,9 8,17 28,6 7,4 5,7 6,6 6,6 Mol-Flood Fine Calm IS15 Solton 10,2 3 2 10,14 18 2,2 28,6 7,4 5,7 6,6 6,6 Mol-Flood Fine Calm IS15 Solton 10,2 3 2 10,14 18 2,2 28,6 7,4 5,7 6,6 6,6 Mol-Flood Fine Calm IS15 Solton 1,0											1					-		1
INCLINE MY2012009 2016-10-10 3016-10	TMCLKL			Mid-Flood						2	2	10:14		8.16				
Triggle Process Proc											1	_		_		-		
TRICKLK MY201208 2016-0-109 Mole Flood Fine Calm SR8 Surface 1 2 09-43 17-9 8-04 27-2 7-7-8 5-37 8-7-7			-						10.2	3	2		_					_
TRICKLK MY201908 2015-01-00 Mof-Placed Fine Calim SR8 Middle 2 1 09-43									1	1	1							_
TRICKLK PY201208 2015-01-09 Md-Flood Fine Calm SR8 Modele 2 2 0.043 7 8 0.03 27 7.44 5.6 6.8			-						1	1	2		17.9	8.04	27.2	7.48	5.37	6.7
Track.ing											1							
Tracition Product Pr		_									2							
TACULK H7/201208 2015-01-09 Mol-Flood Fine Calm S89 Surface 1 1 1 0.95.8 17.9 8.1 28.8 7.67 5.16 6.1											1		_	-				
TACKLK HY201208 2015-01-09 Md-Flood Fine Calm S819 Mddle 2 1 0.9558 N N N N N N N N N									4.6	3	2	-	_	-				
TMCLIK H7/2012/08 2015-01-09 Midel Flood Fine Calm SF9 Middle 2 1 09:58									1	1	1	_						
TMCLIK, HY/2012/08 2015-01-09 Mid-Flood Fine Calm SFB Middle L 2 2 0.958 T.9 1.1 28.7 7.51 5.67 6.7 7.7 7.5 7.5 7.5 6.8 7.5 7.5 7.5 6.8 7.5 7.5 7.5 7.5 6.8 7.5 7.5 7.5 7.5 7.5 7.5 6.8 7.5									1	1	2		17.8	8.12	28.7	7.64	5.08	6.2
TMCLIK, HY201208											1	_		<u> </u>		ļ		
TMCLIK HY201208 2015-01-09 Mid-Flood Fine Calm SR10A S									1.0	2	2	_	1,70	0.40	00.7	<u> </u>	15.07	
TMCLKL HY/201208 2015-01-09 Mid-Flood Fine Calm SR10A Surface 1 1 1 09-14 17.8 8.04 27.1 7.57 6.73 7.7										3	1	_		_		-		
TMCLKL HY/201208 2015-01-09 Mid-Flood Fine Calm SF110A Middle 6.6 2 1 1 2 09:14 17.9 8.05 27.1 7.5 6.8 7.5		-							4.8	3	2	_		_		-		
TMCUKL HYZ01208 2015-01-09 Mid-Flood Fine Calm SR10A Middle 6.6 2 2 09:14 17.9 8.05 27.1 7.5 6.63 7.9									1	1	1	_		-				
TMCLKL HY/201208 2015-01-09 Mid-Flood Fine Calm SR10A Modele 6.6 2 2 00:14 17.9 8.05 27.2 7.47 6.57 7.7		-							1	1	2			_				
TMCLKL HY/201208 2015-01-09 Mid-Flood Fine Calm SR10A Bottom 12.2 3 1 1 09:14 17.9 8.07 27.2 7.33 6.74 7.9 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS4 Surface 1 1 1 1 13:36 17.9 8.07 28 7.37 6.11 7.3 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS4 Surface 1 1 1 1 13:36 17.9 8.07 28 7.37 6.11 7.3 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS4 Surface 1 1 1 1 13:36 17.9 8.07 28 7.37 6.11 7.3 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS4 Middle 10.7 2 1 13:36 18.1 8.11 28.2 7.44 6.28 7.4 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS4 Middle 10.7 2 2 1 13:36 18.1 8.1 28.2 7.44 6.28 7.6 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS4 Middle 10.7 2 2 1 13:36 18.2 8.3 7.94 8.0 7.9 8.0 7.6 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS4 Bottom 20.3 3 1 1 13:36 18.2 8.3 7.94 28.4 7.03 6.43 7.7 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS4 Bottom 20.3 3 2 13:36 18.2 8.3 7.94 28.4 7.03 6.43 7.7 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS4 Bottom 20.3 3 2 13:36 18.4 7.96 28.5 7.05 6.45 7.7 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Surface 1 1 1 1 16:28 17.8 7.93 27 7.9 6.704 8.2 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Surface 1 1 1 1 16:28 17.8 7.93 27 7.9 6.704 8.2 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Surface 1 1 1 1 16:28 18.3 8.15 27.2 7.44 7.15 8.3 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 1 16:28 18.2 8.1 8.2 8.1 27.2 7.46 7.13 8.4 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 1 16:28 18.2 8.1 8.0 8.1 27.2 7.46 7.13 8.4 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 1 16:28 18.2 8.1 8.2 8.1 27.3 7.4 9 8.6 6 TMCLKL HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 1 16:28 18.2 8.1 8.2 8.1 8.2 8.3 7.3 5.3 5.3 5.3 5.4 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0									1	2	1	+	+					7.9
TMCLKL HY/2012/08 2015-01-99 Mid-Ebb Fine Small Wave CS4 Surface 1 1 13:36 17.9 8.07 22.8 7.37 6.18 8 8 3 3 3 3 3 3 3			-							2	2			-				7.7
TMCLKI. HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS4 Surface I 1 13:36 17.9 9.07 28 7.37 6.11 7.3 TMCLKI. HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS4 Surface 1 2 13:36 18 8.09 28.1 7.39 6.13 7.4 TMCLKI. HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS4 Middle 10.7 2 13:36 18.1 8.11 28.2 7.44 6.28 7.4 TMCLKI. HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS4 Bottom 20.3 3 1 13:36 18.3 7.94 28.4 7.46 6.26 7.6 TMCLKI. HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS4 Bottom 20.3 3 2 13:36 18.3 7.97 27.5 7.										3	1							7.9
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS4 Surface 1 2 13:36 18 8.09 28.1 7.39 6.13 7.1		-							12.2	3	4	+		_				7.0
TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS4 Middle 10,7 2 1 13:36 18:1 8:11 28:2 7.44 6.28 7.4 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS4 Middle 10,7 2 2 13:36 18:2 8:3 28:3 7.46 6.26 7.6 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS4 Bottom 20.3 3 1 13:36 18:3 7.94 28:4 7.03 6.43 7.7 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Surface 1 1 1 16:28 17:8 7.93 27 7.36 7.06 6.45 7.9 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Surface 1 1 1 16:28 17:8 7.93 27 7.36 7.06 8.3 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Surface 1 1 2 16:28 17:9 7.95 27.1 7.39 7.06 8.3 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Middle 5.9 2 1 16:28 18:8 0.1 27.2 7.46 7.13 8.4 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Middle 5.9 2 1 16:28 18:8 0.1 27.2 7.46 7.13 8.4 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Middle 5.9 2 1 16:28 18:8 0.1 27.2 7.46 7.13 8.4 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Middle 5.9 2 1 16:28 18:1 8.03 27.3 7.44 7.15 8.2 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 1 16:28 18.1 8.2 8.13 27.4 7.23 7.49 8.6 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 1 16:28 18.2 8.13 27.4 7.23 7.49 8.6 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 2 16:28 18.3 8.2 8.3 7.13 6.02 7.1 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 2 16:28 18.3 8.5 27.5 7.21 7.47 8.9 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 2 16:28 18.3 8.3 8.15 27.5 7.21 7.47 8.9 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 2 16:28 18.3 8.3 7.13 6.02 7.1 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Middle 7.4 2 1 14:19 18.2 8.3 7.13 6.02 7.1 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Middle 7.4 2 1 14:19 18.2 8.3 7.13 6.02 7.1 TMCLKI. HY/201208 2015-01-09 Mid-Ebb Fine Small Wave CS6 Middle 7.4 2 1 14:19 18.5 8.02 28.4 7.06 6.11 7.3 TMCL									1	1		_	+					
TMCLKI. HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS4 Middle 10.7 2 2 13:36 18.2 8.13 28.3 7.46 6.26 7.6 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS4 Bottom 20.3 3 2 13:36 18.4 7.96 28.5 7.05 6.45 7.7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Surface 1 1 16:28 17.8 7.93 27 7.36 7.04 8.2 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Midcle 5.9 2 1 16:28 18.1 8.01 27.2 7.46 7.13 8.4 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Middle 5.9 2 1 16:28 18.1 8.01		-							10.7	2	1	_						
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS4 Bottom 20.3 3 1 13.36 18.3 7.94 28.4 7.03 6.43 7.7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Surface 1 1 1 16.28 17.8 7.93 27 7.36 7.04 8.2 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Surface 1 1 1 16.28 17.9 7.95 27.1 7.39 7.06 8.3 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Midele 5.9 2 1 16.28 18.1 8.01 27.2 7.46 7.13 8.4 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 1 16.28 18.2										2	2	_						
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Surface 1 1 1 1 16,28 17.8 7.95 27.7 7.36 7.04 8.2 1 1 1 16,28 17.9 7.95 27.1 7.39 7.06 8.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-								2	1	_		_				
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Surface 1 1 1 16:28 17.8 7.93 27 7.36 7.04 8.2										3	2	_	+	_		-		
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Surface 1 1 2 16:28 17.9 7.95 27.1 7.39 7.06 8.3		-							1	1	1	_						
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Middle 5.9 2 1 16:28 18 8.01 27.2 7.46 7.13 8.4 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Middle 5.9 2 1 16:28 18.2 7.3 7.44 7.15 8.2 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 1 16:28 18.2 8.13 27.5 7.21 7.47 8.9 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Surface 1 1 1.41:19 18 7.93 28 7.3 5.33 6.4 MCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Middle 7.4 2 1 14:19 18.2 8.13 28.3									1	1	2	_		_		-		
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 1 16:28 18.1 8.03 27.3 7.44 7.15 8.2									5.0	2	1							
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 1 16:28 18.2 8.13 27.4 7.23 7.49 8.6 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 2 16:28 18.3 8.15 27.5 7.21 7.47 8.9 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Surface 1 1 1 4:19 18.7 7.95 28.1 7.28 5.35 6.5 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Middle 7.4 2 1 1 4:19 18.1 7.95 28.1 7.28 5.35 6.5 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Middle 7.4 2 1 1 14:19 18.2 8.									+	2	2			_				
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave CS6 Bottom 10.8 3 2 16:28 18.3 8.15 27.5 7.21 7.47 8.9 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Surface 1 1 14:19 18 7.93 28 7.3 5.33 6.4 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Surface 1 1 2 14:19 18 7.93 28 7.3 5.35 6.5 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Middle 7.4 2 1 14:19 18.2 8.13 28.3 7.13 6.02 7.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Bottom 13.7 3 1 14:19 18.4 8.04										3	1			_				
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Surface 1 1 14:19 18 7.93 28 7.3 5.33 6.4 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Surface 1 1 14:19 18. 7.93 28 7.3 5.33 6.4 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Middle 7.4 2 1 14:19 18.1 7.95 28.1 7.28 5.35 6.5 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Middle 7.4 2 2 14:19 18.2 8.11 28.2 7.15 6.04 7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Bottom 13.7 3 1 14:19 18.5 8.02 28.4										3	2			_				
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Surface 1 1 2 14:19 18.1 7.95 28.1 7.28 5.35 6.5 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Middle 7.4 2 1 14:19 18.2 8.13 28.3 7.13 6.02 7.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Middle 7.4 2 2 14:19 18.2 8.13 28.3 7.13 6.02 7.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Bottom 13.7 3 1 14:19 18.2 8.01 28.4 7.06 6.11 7.3 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Surface 1 1 14:42 17.9 8									1	1	1							
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Middle 7.4 2 1 14:19 18.2 8.13 28.3 7.13 6.02 7.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Bottom 13.7 3 1 14:19 18.3 8.11 28.2 7.15 6.04 7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Bottom 13.7 3 1 14:19 18.3 8.11 28.2 7.15 6.04 7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Bottom 13.7 3 2 14:19 18.5 8.02 28.4 7.06 6.11 7.3 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Surface 1 1 1 14:42 18									1	1	2							
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Middle 7.4 2 2 14:19 18.3 8.11 28.2 7.15 6.04 7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Bottom 13.7 3 1 14:19 18.4 8.04 28.4 7.06 6.11 7.3 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Bottom 13.7 3 2 14:19 18.5 8.02 28.4 7.08 6.13 7.2 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Surface 1 1 1 14:42 18.9 8.28 7.32 5.27 6.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Middle 5.6 2 1 14:42 18.2 8.19									7.4	2	<u>-</u> 1	+						
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Bottom 13.7 3 1 14:19 18.4 8.04 28.4 7.06 6.11 7.3 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Bottom 13.7 3 2 14:19 18.5 8.02 28.4 7.08 6.13 7.2 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Surface 1 1 1 14:42 17.9 8 28 7.32 5.27 6.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Surface 1 1 2 14:42 18 8.01 28.1 7.34 5.29 6.4 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Middle 5.6 2 1 14:42 18.2										2	2	+						7
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS12 Bottom 13.7 3 2 14:19 18.5 8.02 28.4 7.08 6.13 7.2 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Surface 1 1 14:42 17.9 8 28 7.32 5.27 6.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Surface 1 1 1 14:42 18 8.01 28.1 7.34 5.29 6.4 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Middle 5.6 2 1 14:42 18.2 8.19 28.2 7.21 5.74 6.9 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Bottom 10.1 3 1 14:42 18.1 8.21										3	1	+						7.3
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Surface 1 1 14:42 17.9 8 28 7.32 5.27 6.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Surface 1 1 2 14:42 18 8.01 28.1 7.34 5.29 6.4 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Middle 5.6 2 1 14:42 18.2 8.19 28.2 7.21 5.74 6.9 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Middle 5.6 2 2 14:42 18.1 8.21 28.3 7.19 5.76 6.7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Bottom 10.1 3 1 14:42 18.4 7.93										3	2	+		_				
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Surface 1 1 2 14:42 18 8.01 28.1 7.34 5.29 6.4 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Middle 5.6 2 1 14:42 18.2 8.19 28.2 7.21 5.74 6.9 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Middle 5.6 2 2 14:42 18.2 8.19 28.2 7.21 5.74 6.9 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Bottom 10.1 3 1 14:42 18.4 7.93 28.4 7.16 5.88 6.8 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Surface 1 1 1 13:58 18.1									1	1	1	+		8				
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Middle 5.6 2 1 14:42 18.2 8.19 28.2 7.21 5.74 6.9 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Middle 5.6 2 2 14:42 18.1 8.21 28.3 7.19 5.76 6.7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Bottom 10.1 3 1 14:42 18.4 7.93 28.4 7.16 5.88 6.8 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Bottom 10.1 3 2 14:42 18.4 7.93 28.4 7.18 5.86 7.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Surface 1 1 1 13:58 18.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>2</td> <td>+</td> <td></td> <td>8.01</td> <td></td> <td></td> <td></td> <td></td>									1	1	2	+		8.01				
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Middle 5.6 2 2 14:42 18.1 8.21 28.3 7.19 5.76 6.7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Bottom 10.1 3 1 14:42 18.1 8.21 28.3 7.19 5.76 6.7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Bottom 10.1 3 2 14:42 18.4 7.93 28.4 7.16 5.88 6.8 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Surface 1 1 1 13:58 18.1 8 28.1 7.4 6.03 7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Middle 8.3 2 1 13:58 18.2									5.6	2	1	+		_				
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Bottom 10.1 3 1 14:42 18.4 7.93 28.4 7.16 5.88 6.8 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Bottom 10.1 3 2 14:42 18.5 7.95 28.4 7.18 5.86 7.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Surface 1 1 1 13:58 18.1 8 28.1 7.4 6.03 7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Surface 1 1 1 13:58 18.1 8.02 28.2 7.42 6.05 7.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Middle 8.3 2 1 13:58 18.2										2	2	+		_				
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS13 Bottom 10.1 3 2 14:42 18.5 7.95 28.4 7.18 5.86 7.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Surface 1 1 13:58 18.1 8 28.1 7.4 6.03 7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Surface 1 1 2 13:58 18.1 8.02 28.2 7.42 6.05 7.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Middle 8.3 2 1 13:58 18.2 7.89 28.3 7.3 6.12 7.4							!		+	3	1	+		_				
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Surface 1 1 1 13:58 18.1 8 28.1 7.4 6.03 7 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Surface 1 1 2 13:58 18.1 8.02 28.2 7.42 6.05 7.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Middle 8.3 2 1 13:58 18.2 7.89 28.3 7.3 6.12 7.4										3	2	+		_				7.1
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Surface 1 1 2 13:58 18.1 8.02 28.2 7.42 6.05 7.1 TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Middle 8.3 2 1 13:58 18.2 7.89 28.3 7.3 6.12 7.4									1	1	1			8				7
TMCLKL HY/2012/08 2015-01-09 Mid-Ebb Fine Small Wave IS14 Middle 8.3 2 1 1 13:58 18.2 7.89 28.3 7.3 6.12 7.4									1	1	2			8.02				7.1
									8.3	2	1			_				7.4
										2	2	-				<u> </u>	6.14	7.2

Project	Works	Date	Tide	IVVASTNAR	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb		Small Wave	IS14	Bottom	15.5	3	1	13:58	18.4	8.13	28.5	7.13	6.55	7.7
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb		Small Wave	IS14	Bottom	15.5	3	2	13:58	18.4	8.11	28.5	7.11	6.57	7.6
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb		Small Wave	IS15	Surface	1	1	1	15:04	17.8	8.04	28.1	7.47	5.13	6.3
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave	IS15	Surface	1	1	2	15:04	17.9	8.06	28.2	7.49	5.15	6.1
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb		Small Wave	IS15		5.5	2	1	15:04	18	8.11	28.3	7.36	6.01	7.1
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave	IS15	Middle	5.5	2	2	15:04	18.1	8.13	28.3	7.34	6.03	7.2
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave	IS15	Bottom	4.9	3	1	15:04	18.2	8.24	28.4	7.21	6.12	7.2
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave	IS15	Bottom	4.9	3	2	15:04	18.3	8.22	28.5	7.23	6.19	7.4
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave	SR8	Surface	1	1	1	15:44	17.8	7.99	27.1	7.51	6.23	7.1
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave	SR8	Surface	1	1	2	15:44	17.8	8.01	27.2	7.53	6.25	7.3
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave	SR8	Middle		2	1	15:44						
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave	SR8	Middle		2	2	15:44						
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave	SR8	Bottom	4.4	3	1	15:44	17.9	8.09	27.3	7.34	6.56	7.8
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave	SR8	Bottom	4.4	3	2	15:44	18	8.11	27.4	7.32	6.58	7.7
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave	SR9	Surface	1	1	1	15:26	17.7	8.12	28	7.55	5.24	6.4
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave		Surface	1	1	2	15:26	17.8	8.14	28.1	7.57	5.26	6.2
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb		Small Wave		Middle		2	1	15:26						
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb		Small Wave	SR9	Middle		2	2	15:26						
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb		Small Wave			4.5	3	1	15:26	17.9	8.02	28.3	7.34	5.82	6.8
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb		Small Wave		Bottom	4.5	3	2	15:26	18	8.04	28.4	7.32	5.84	6.7
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb		Small Wave		Surface	1	1	1	16:08	17.9	7.89	27	7.46	7.14	8.2
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb		Small Wave		Surface	1	1	2	16:08	17.9	7.91	27	7.44	7.16	8.4
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave			6.5	2	1	16:08	18	8.12	27.1	7.58	6.94	7.9
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb		Small Wave		Middle	6.5	2	2	16:08	18.1	8.1	27.2	7.6	6.92	7.7
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb		Small Wave		Bottom	11.9	3	1	16:08	18.2	8.03	27.4	7.2	7.36	8.6
TMCLKL	HY/2012/08	2015-01-09	Mid-Ebb	Fine	Small Wave		Bottom	11.9	3	2	16:08	18.2	8.05	27.3	7.18	7.38	8.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	CS4	Surface	1	1	1	12:33	17.9	7.98	28.8	6.71	5.05	5.8
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood				Surface	1	1	2	12:33	18	7.99	28.8	6.73	5.03	5.6
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy			Middle	10.5	2	1	12:33	18.1	8	28.8	6.65	5.11	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,				10.5	2	2	12:33	18.2	+	29	6.6	5.17	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood				Bottom	20	3	1	12:33	18.2		29.1	6.57	5.23	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	_				20	3	2	12:33	18.3		29.1	6.59	5.24	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood			CS6	Surface	1	1	1	09:51	17.9	7.9	28.7	6.77	4.99	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	•		CS6	Surface	1	1	2	09:51	18		28.8	6.75	4.95	6.1
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,				5.7	2	1	09:51	18.1		28.9	6.64	5.12	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	_		CS6		5.7	2	2	09:51	18.2		29	6.6	5.16	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,				10.3	3	1	09:51	18.3	8.05		6.51	5.22	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	•				10.3	3	2	09:51	18.3		29.1	6.56	5.24	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,		IS12	Surface	1	1	1	11:53	17.9		28.8	6.7	4.86	5.8
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,		IS12	Surface	1	1	2	11:53	18		28.7	6.75	4.84	5.6
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,				6.5	2	1	11:53	18.1	8	28.9	6.62	5.14	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,		IS12		6.5	2	2	11:53	18.2		28.9	6.64	5.18	6.4
TMCLKL	HY/2012/08		Mid-Flood	,				13	3	1	11:53	18.3	+	29	6.53	5.24	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood					13	3	2	11:53	18.2		29.1	6.54	5.26	6.3
TMCLKL	HY/2012/08		Mid-Flood			IS13	Surface	1	1	1	11:33	17.9		28.9	6.87	5.01	5.8
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	•		IS13	Surface	17	1	2	11:33	18		28.9	6.85	5.04	6.1
TMCLKL	HY/2012/08		Mid-Flood	,				5.4	2	1	11:33	18.2	_	29	6.74	5.21	6
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,				5.4	2	2	11:33	18.3	+	29	6.78	5.23	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,				9.7	3	1	11:33	18.3	_	29.1	6.59	5.15	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,		IS13		9.7	3	2	11:33	18.4		29	6.56	5.18	6.3
TMCLKL	HY/2012/08		Mid-Flood			IS14	Surface		1	1	12:13	17.9		28.8	6.83	4.92	6.1
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,		IS14	Surface		1	2	12:13	18		28.8	6.88	4.97	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,				8.1	2	1	12:13	18.2		29	6.77	5.02	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,				8.1	2	<u> </u> 2	12:13	18.1		29.8	6.79	5.07	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,				15.2	3	1	12:13	18.3		29.1	6.67	5.17	δ
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	,				15.2	3	2	12:13	18.3		29.1	6.65	5.2	6.3
TMCLKL	HY/2012/08		Mid-Flood	,			Surface		1	1	11:13	18.2		28.9	6.79	4.92	5.9
TIVICLKL	HY/2012/08	2015-01-12	VIIIa- 1000	Cloudy	Small Wave	11912	Surface	П] 1		11:13	۱۱۵.۱	J7.94	28.8	6.81	4.97	6

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	IS15	Middle	5.5	2	1	11:13	18.2	8.01	28.9	6.54	5.02	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	IS15	Middle	5.5	2	2	11:13	18.3	8.02	29	6.58	5.04	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	IS15	Bottom	10	3	1	11:13	18.4	8.03	29	6.47	5.12	6.6
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	IS15	Bottom	10	3	2	11:13	18.4	8.05	29	6.5	5.17	6.7
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	1	10:33	17.9	7.95	28.8	6.78	4.86	5.8
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	2	10:33	18	7.98	28.8	6.76	4.89	5.7
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR8	Middle		2	1	10:33						
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR8	Middle		2	2	10:33						
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR8	Bottom	3.9	3	1	10:33	18.2	8	29	6.63	5.14	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR8	Bottom	3.9	3	2	10:33	18.2	8.02	29	6.65	5.1	6.1
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR9	Surface	1	1	1	10:53	18	7.85	28.8	6.84	4.86	5.7
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR9	Surface	1	1	2	10:53	18.1	7.83	28.9	6.86	4.9	6
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR9	Middle		2	1	10:53						
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR9	Middle		2	2	10:53						
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR9	Bottom	4.5	3	1	10:53		7.92		6.43	5.12	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR9	Bottom	4.5	3	2	10:53		7.94	29.1	6.42	5.14	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	1	10:13		7.9	28.7	6.82	5.02	6.1
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	2	10:13		7.89	28.8	6.85	5.06	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR10A	Middle	6	2	1	10:13	-	7.99	29	6.7	4.97	5.9
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR10A	Middle	6	2	2	10:13	-	8.01	28.9	6.73	4.94	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR10A	Bottom	11	3	1	10:13		8.05	29	6.67	4.99	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Flood	Cloudy	Small Wave	SR10A	Bottom	11	3	2	10:13		8.06	29.1	6.66	5.03	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	CS4	Surface	1	1	1	15:50	17.8	7.99	28.8	6.68	5.09	5.8
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	CS4	Surface	1	1	2	15:50	17.9	7.99	28.7	6.64	5.12	6.1
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	CS4	Middle	10.4	2	1	15:50		8.02	28.8	6.48	5.18	6.1
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	CS4	Middle	10.4	2	2	15:50	18.1	8.01	28.9	6.45	5.21	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom	19.8	3	1	15:50	18.2	8.03	29.2	6.48	5.26	6.5
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom	19.8	3	2	15:50	18.1	8.04	29.1	6.44	5.29	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	CS6	Surface	1	1	1	17:37	17.9	7.88	28.8	6.7	5.08	6
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	CS6	Surface	1	1	2	17:37			28.7	6.68	5.13	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	CS6	Middle	5.5	2	1	17:37			29.1	6.53	5.18	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	CS6	Middle	5.5	2	2	17:37			29	6.57	5.22	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	CS6	Bottom	10	3	1	17:37	-		29.2	6.43	5.28	6.7
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	CS6	Bottom	10	3	2	17:37		8.03		6.49	5.31	6.5
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS12	Surface	1	1	1	16:23	-		28.6	6.63	4.88	5.7
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS12	Surface	1	1	2	16:23		7.95	28.5	6.66	4.97	5.8
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	_	IS12	Middle	6.8	2	1	16:23		8.01	28.7	6.58	5.17	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy		IS12	Middle	6.8	2	2	16:23	18.1	8	28.6	6.6	5.2	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy		IS12	Bottom	12.6	3	1	16:23				6.48	5.28	6.7
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS12	Bottom	12.6	3	2	16:23	17.9		28.8	6.44	5.31	6.5
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy		IS13	Surface	1	1	1	16:39	18.1		28.6	6.82	5.09	6
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy		IS13	Surface	1	1	2	16:39	18		28.7	6.78	5.13	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy		IS13	Middle	5.2	2	1	16:39			28.9	6.7	5.23	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.2	2	2	16:39		7.98	28.8	6.64	5.28	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy		IS13		9.4	3	1	16:39	18.1	8	29.3	6.52	5.18	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS13	+	9.4	3	2	16:39		8.01	29.2	6.49	5.22	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy		IS14	Surface	1	1	1	16:07		-	28.9	6.77	4.98	5.7
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS14	Surface	1	1	2	16:07	18	-	28.8	6.72	5.07	5.6
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy		IS14	Middle	8	2	1	16:07		-	28.8	6.72	5.13	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS14	Middle	8	2	2	16:07			28.9	6.69	5.09	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy		IS14	Bottom	14.9	3	1	16:07			29.2	6.63	5.23	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS14	Bottom	14.9	3	2	16:07	18			6.58	5.26	6.5
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS15	Surface	1	1	1	16:54	18	7.94	28.5	6.71	4.97	5.9
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS15	Surface	1	1	2	16:54	18.1	7.95	28.4	6.74	5.02	6.1
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS15	Middle	5.4	2	1	16:54	18.1	8	29.1	6.48	5.17	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS15	Middle	5.4	2	2	16:54	18	8.01	29.1	6.52	5.13	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy		IS15	Bottom	9.8	3	1	16:54				6.43	5.21	6.5
TMCLKI	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom	9.8	3	2	16:54	18.1	8.03	29.4	6.46	5.18	6.7

Project	Works	Date	Tide	IVVESTNER	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb		Small Wave	SR8	Surface	1	1	1	17:23	18	7.97	28	6.63	4.97	5.9
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb		Small Wave		Surface	1	1	2	17:23	18.1	7.98	28.5	6.68	4.93	5.7
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave		Middle		2	1	17:23						
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	SR8	Middle		2	2	17:23						
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom	3.6	3	1	17:23	18.1	8.02	28.6	6.58	5.21	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom	3.6	3	2	17:23	18	8.01	28.7	6.61	5.19	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	SR9	Surface	1	1	1	17:10	18.1	7.98	28.5	6.79	4.92	5.9
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	SR9	Surface	1	1	2	17:10	18	7.99	28.6	6.83	4.97	5.6
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	SR9	Middle		2	1	17:10						
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	SR9	Middle		2	2	17:10						
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	,				4.3	3	1	17:10	18.1	7.99	29	6.38	5.17	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave		Bottom	4.3	3	2	17:10	18.2	8	28.9	6.33	5.2	6.4
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	_	Small Wave		Surface	1	1	1	18:05	18	7.99	28.6	6.79	5.08	6.1
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	,	Small Wave		Surface	1	1	2	18:05	17.9	7.98	28.7	6.72	5.11	6.3
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	,	Small Wave			5.9	2	1	18:05	18	8.01	29	6.63	5.06	6
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	Cloudy	Small Wave	SR10A	Middle	5.9	2	2	18:05	18.1	8	29.1	6.66	5.09	5.8
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	_	Small Wave		Bottom	10.7	3	1	18:05	18.2	8.02	29.3	6.62	5.07	6.2
TMCLKL	HY/2012/08	2015-01-12	Mid-Ebb	,	Small Wave		Bottom	10.7	3	2	18:05	18.1	8.3	29.2	6.59	5.12	6.4
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave		Surface	1	1	1	14:00	18.2	8.1	28.8	6.8	5.09	6.1
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	_	Small Wave		Surface	1	1	2	14:00	18.1	8.09	28.7	6.83	5.01	6.2
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave		Middle	11.4	2	1	14:00	18.3	8.09	29	6.53	6.04	7.1
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave		Middle	11.4	2	2	14:00	18.2	8.09	29.1	6.5	6.08	7.3
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	,	Small Wave		Bottom	21.8	3	1	14:00	18.3	8.09	29.2	6.29	6.12	7.4
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave	CS4	Bottom	21.8	3	2	14:00	18.3	8.1	29.2	6.25	6.15	7.3
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave	CS6	Surface	1	1	1	11:19	18.1	8.03	28.6	6.94	5.02	6.3
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave	CS6	Surface	1	1	2	11:19	18.2	8.02	28.7	6.9	5.1	6.2
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.7	2	1	11:19	18.2	8.03	28.9	6.57	5.37	6.7
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.7	2	2	11:19	18.2	8.04	29	6.54	5.35	6.4
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy			Bottom	10.4	3	1	11:19	18.2	+	29	6.43	5.68	6.6
	HY/2012/08	2015-01-14	Mid-Flood	,				10.4	3	2	11:19	18.2	+	29.1	6.47	5.65	6.9
	HY/2012/08	2015-01-14	Mid-Flood	,			Surface	1	1	1	13:24	18.1		28.7	6.94	5.15	6
	HY/2012/08	2015-01-14	Mid-Flood	_			Surface	1	1	2	13:24	18.2	-	28.7	6.9	5.1	6.2
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	_			Middle	7.1	2	1	13:24	18.2	-	29	6.74	6.04	7.1
	HY/2012/08	2015-01-14	Mid-Flood	•			Middle	7.1	2	2	13:24	18.3		28.9	6.77	6.09	7.3
	HY/2012/08		Mid-Flood	,				13.2	3	1	13:24	18.3		29.1	6.68	5.99	6.8
	HY/2012/08	2015-01-14	Mid-Flood	_				13.2	3	2	13:24	18.2		29.2	6.65	5.95	6.7
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood				Surface	1	1	1	13:05	18.1		28.7	6.71	5.21	6.4
	HY/2012/08	2015-01-14	Mid-Flood	•			Surface	1	1	2	13:05	18.2	+	28.7	6.75	5.17	6.1
	HY/2012/08		Mid-Flood	,				5.6	2	1	13:05	18.2		29	6.61	5.62	6.6
	HY/2012/08	2015-01-14	Mid-Flood	,				5.6	2	2	13:05	18.2		29.1	6.63	5.58	6.7
	HY/2012/08	2015-01-14	Mid-Flood	,				10.2	3	[1	13:05	18.2	-	29.1	6.43	5.78	6.7
	HY/2012/08	2015-01-14	Mid-Flood	,				10.2	3	2	13:05	18.3	-	29.1	6.4	5.75	6.5
	HY/2012/08		Mid-Flood	,			Surface	1	1	1	13:40	18.2	+	28.7	6.89	5.27	6.1
	HY/2012/08	2015-01-14	Mid-Flood	,			Surface	1	1	2	13:40	18.2		28.8	6.85	5.3	6.3
	HY/2012/08	2015-01-14	Mid-Flood					8.2	2	[1	13:40	18.3	•	29	6.62	6.17	7.1
	HY/2012/08	2015-01-14	Mid-Flood	•				8.2	2	2	13:40	18.3	8.1	29.1	6.65	6.14	7.3
	HY/2012/08	2015-01-14	Mid-Flood	,				15.4	3	1	13:40	18.3		29.1	6.55	6.23	7.4
	HY/2012/08	2015-01-14	Mid-Flood					15.4	3	2	13:40	18.3		29.2	6.58	6.2	7.7
	HY/2012/08	2015-01-14	Mid-Flood	,			Surface	1	1	1	12:50	18.2		28.7	6.88	5.38	6.1
	HY/2012/08	2015-01-14	Mid-Flood	,			Surface	1	1	2	12:50	18.1		28.6	6.84	5.35	6.4
	HY/2012/08	2015-01-14	Mid-Flood	,				5.7	2	[1	12:50	18.2	+	29	6.49	5.77	6.7
	HY/2012/08	2015-01-14	Mid-Flood	,				5.7	2	2	12:50	18.2		29	6.45	5.75	6.9
	HY/2012/08	2015-01-14	Mid-Flood	,				10.4	3	[1	12:50	18.2		29.1	6.38	5.81	6.7
	HY/2012/08	2015-01-14	Mid-Flood	,				10.4	3	2	12:50	18.2		29.1	6.35	5.85	6.5
	HY/2012/08	2015-01-14	Mid-Flood	,			Surface	1	1	1	12:20	18.1		28.6	6.84	4.97	5.9
	HY/2012/08	2015-01-14	Mid-Flood	,			Surface	1	1	2	12:20	18.1	8.06	28.7	6.8	4.94	5.7
	HY/2012/08		Mid-Flood	_			Middle		2	1	12:20	1					
ITMCI KI	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave	SR8	Middle	I	2	2	12:20		1				1

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave	SR8	Bottom	4.2	3	1	12:20	18.2	8.07	28.9	6.62	5.81	6.8
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave	SR8	Bottom	4.2	3	2	12:20	18.2	8.06	28.8	6.59	5.77	7
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave	SR9	Surface	1	1	1	12:35	18.1	8.08	28.7	6.75	5.27	6.4
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave	SR9	Surface	1	1	2	12:35	18	8.07	28.7	6.78	5.3	6.7
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave	SR9	Middle		2	1	12:35						
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave	SR9	Middle		2	2	12:35						
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy			Bottom	4.6	3	1	12:35	18.2	8.08	29	6.54	5.94	6.9
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave		Bottom	4.6	3	2	12:35	18.2	8.08	29	6.57	5.9	6.8
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave		Surface	1	1	1	11:52	18.1	8.04	28.7	6.77	4.77	5.7
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	,	Small Wave		Surface	1	1	2	11:52	18	8.05	28.7	6.74	4.7	5.6
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave		Middle	6.3	2	1	11:52	18.2	8.05	28.9	6.57	5.37	6.2
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	,	Small Wave		Middle	6.3	2	2	11:52	18.2	8.05	28.9	6.54	5.33	6.5
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	Cloudy	Small Wave		Bottom	11.6	3	1	11:52	18.2	8.05	29	6.5	5.49	6.7
TMCLKL	HY/2012/08	2015-01-14	Mid-Flood	,	Small Wave		Bottom	11.6	3	2	11:52	18.3	8.06	29	6.53	5.42	6.9
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave		Surface	1	1	1	18:20	18	8	28.7	6.78	4.98	5.8
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb				Surface	1	1	2	18:20	18	8	28.8	6.77	4.95	5.7
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave		Middle	11.3	2	1	18:20	18.1	8.02	28.9	6.7	5.22	6.4
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb				Middle	11.3	2	2	18:20	18.2	8.01	29	6.73	5.24	6.3
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine			Bottom	21.5	3	[1	18:20	18.2	8.03	29.1	6.63	5.31	6.4
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb		Small Wave		Bottom	21.5	3	2	18:20	18.2	8.05	29.1	6.62	5.34	6.7
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave		Surface	1	1	1	21:00	18	8	28.7	6.84	4.87	5.8
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave		Surface	1	1	2	21:00	18.1	8.01	28.8	6.8	4.85	5.9
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	CS6	Middle	5.6	2	1	21:00	18.2	8.03	28.8	6.74	4.94	6.2
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb		Small Wave	CS6	Middle	5.6	2	2	21:00	18.2	8.05	28.9	6.77	4.97	6.3
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave		Bottom	10.2	3	1	21:00	18.2	8.06	29	6.56	5.04	6.4
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	-	Bottom	10.2	3	2	21:00	18.3	8.07	29.1	6.59	5.08	6.5
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	IS12	Surface	1	1	1	19:00	18	7.98	28.7	6.8	5.12	6.4
TMCLKL	HY/2012/08	2015-01-14	_		Small Wave	IS12	Surface	1	1	2	19:00	18	7.99	28.8	6.78	5.14	6.3
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine		IS12	Middle	7	2	1	19:00	18.1	8.01	28.9	6.7	5.32	6.4
	HY/2012/08	2015-01-14	Mid-Ebb	Fine			Middle	7	2	2	19:00	18.2		28.9	6.74	5.3	6.7
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb					13	3	1	19:00	18.2		29	6.64	5.28	6.2
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine			Bottom	13	3	2	19:00	18.2	8.05	29.1	6.68	5.25	6
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine		IS13	Surface	1	1	1	19:20	18.1	8	28.7	6.82	5	6.2
	HY/2012/08	2015-01-14	Mid-Ebb	Fine			Surface	1	1	2	19:20	18.1		28.7	6.86	5.03	6.4
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	IS13		5.5	2	1	19:20	18.1		28.8	6.73	5.17	6.1
TMCLKL	HY/2012/08	2015-01-14		Fine		IS13		5.5	2	2	19:20	18.2		28.9	6.77	5.2	6.3
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine				10	3	1	19:20	18.2		-	6.65	5.32	6.4
	HY/2012/08	2015-01-14		Fine			Bottom	10	3	2	19:20	18.3		29	6.6	5.36	6.7
	HY/2012/08	2015-01-14	Mid-Ebb			IS14	Surface	1	1	1	18:40	18	7.98	28.8	6.84	5.06	6.1
TMCLKL	HY/2012/08	2015-01-14		Fine		IS14	Surface	1	1	2	18:40	18.1	8	28.8	6.81	5.07	6.3
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine				8.3	2	1	18:40	18.2		28.9	6.77	5.12	6.2
	HY/2012/08	2015-01-14		Fine				8.3	2	2	18:40	18.2		29	6.75	5.14	6.3
	HY/2012/08	2015-01-14	Mid-Ebb	Fine				15.6	3	1	18:40	18.2			6.54	5.27	6.4
TMCLKL	HY/2012/08	2015-01-14		Fine				15.6	3	2	18:40	18.3	8.05	29.1	6.6	5.3	6.7
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine		IS15	Surface	1	1	1	19:40	18	8	28.8	6.7	5.06	5.8
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine		IS15	Surface	1	1	2	19:40	18.1	8.01	28.7	6.75	5.09	5.7
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine				5.6	2	1	19:40	18.2		28.9	6.64	5.24	6.4
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine		IS15	Middle	5.6	2	2	19:40	18.1		28.9	6.68	5.26	6.7
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine		IS15		10.1	3	1	19:40	18.2		29	6.59	5.53	6.6
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine		IS15	Bottom	10.1	3	2	19:40	18.2	8.03	29.1	6.56	5.54	6.8
	HY/2012/08	2015-01-14	Mid-Ebb	Fine		SR8	Surface	1	1	1	20:21	18	8	28.8	6.89	5.02	6.1
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine		SR8	Surface	1	1	2	20:21	18	7.99	28.7	6.84	5.04	6.3
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine		SR8	Middle		2	1	20:21						
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine		SR8	Middle		2	2	20:21						
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine			Bottom	4	3	1	20:21	18.2		28.9	6.7	4.9	5.9
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine		SR8	Bottom	4	3	2	20:21	18.1		28.9	6.72	4.87	6.2
TMCLKL	HY/2012/08		Mid-Ebb				Surface	1	1	1	20:00	18	7.99	28.7	6.84	5.02	6.3
TNACLICE	HY/2012/08	2015-01-14	IMid-Fbb	Fine	Small Wave	ISR9	Surface			2	20:00	118	8	28.8	6.87	5.07	6.2

Project	Works	Date	Tide	IVVeather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	SR9	Middle	'	2	1	20:00						+
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	SR9	Middle		2	2	20:00						
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	SR9	Bottom	4.2	3	1	20:00	18.2	8.01	28.8	6.71	5.14	6.4
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	SR9	Bottom	4.2	3	2	20:00	18.1	8.02	29	6.74	5.18	6.3
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	SR10A	Surface	1	1	1	20:41	18	7.99	28.8	6.71	4.94	5.8
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	SR10A	Surface	1	1	2	20:41	18	8	28.8	6.73	4.95	5.7
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	SR10A	Middle	6.2	2	1	20:41	18.1	8.01	28.9	6.62	4.87	5.9
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	SR10A	Middle	6.2	2	2	20:41	18.1	8.02	28.9	6.64	4.85	6.1
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	SR10A	Bottom	11.3	3	1	20:41	18.2	8.03	29	6.51	4.76	5.8
TMCLKL	HY/2012/08	2015-01-14	Mid-Ebb	Fine	Small Wave	SR10A	Bottom	11.3	3	2	20:41	18.2	8.05	29.1	6.54	4.74	5.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave		Surface	1	1	1	15:50	18.1	7.94	28.2	7.45	5.75	6.8
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine			Surface	1	1	2	15:50	18.1	7.95	28.3	7.41	5.7	6.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine			Middle	10.9	2	1	15:50	18.1	7.99	28.4	7.33	5.96	6.9
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood			CS4	Middle	10.9	2	2	15:50	18.2	8	28.4	7.3	6	7.1
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	CS4	Bottom	20.8	3	1	15:50	18.2	8.01	28.5	7.06	6.17	7.2
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave		Bottom	20.8	3	2	15:50	18.2	8.02	28.6	7.03	6.12	7.4
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood		Small Wave		Surface	1	1	1	13:04	17.8	8.03	27.4	7.37	6.51	7.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood				Surface	1	1	2	13:04	17.8	8.04	27.5	7.41	6.44	7.4
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave			6.1	2	1	13:04	17.8	8.01	27.5	7.33	6.3	7.5
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood		Small Wave	CS6	Middle	6.1	2	2	13:04	17.9	8.02	27.5	7.3	6.36	7.7
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	CS6	Bottom	11.2	3	1	13:04	17.9	8.05	27.7	7.24	6.62	7.8
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	CS6	Bottom	11.2	3	2	13:04	18	8.06	27.8	7.22	6.74	7.9
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS12	Surface	1	1	1	15:11	18	7.97	28.1	7.23	5.48	6.3
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS12	Surface	1	1	2	15:11	18.1	7.98	28.2	7.21	5.54	6.2
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS12	Middle	7.4	2	1	15:11	18.1	7.95	28.3	7.09	5.76	6.9
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS12	Middle	7.4	2	2	15:11	18.1	7.96	28.3	7.12	5.81	6.8
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS12	Bottom	13.8	3	1	15:11	18.1	7.98	28.4	7	5.66	6.4
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS12	Bottom	13.8	3	2	15:11	18.2	7.97	28.5	6.97	5.6	6.4
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS13	Surface	1	1	1	14:51	17.9	7.94	28	7.42	5.33	6.3
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS13	Surface	1	1	2	14:51	17.9	7.95	28.1	7.44	5.41	6.1
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS13	Middle	5.8	2	1	14:51	17.9	7.99	28.1	7.38	5.56	6.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS13	Middle	5.8	2	2	14:51	17.9	8	28.2	7.35	5.5	6.7
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS13	Bottom	10.6	3	1	14:51	17.9	8.01	28.4	7.21	5.71	6.8
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS13	Bottom	10.6	3	2	14:51	18	8.02	28.4	7.18	5.77	7
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS14	Surface	1	1	1	15:30	18.1	7.99	28.2	7.3	5.62	6.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS14	Surface	1	1	2	15:30	18.1	8	28.2	7.34	5.68	6.4
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS14	Middle	8.3	2	1	15:30	18.1	7.96	28.2	7.26	5.93	7.1
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS14	Middle	8.3	2	2	15:30	18.1	7.97	28.3	7.23	5.85	7.2
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS14	Bottom	15.6	3	1	15:30	18.2	8.01	28.5	7.16	5.78	6.7
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS14	Bottom	15.6	3	2	15:30	18.2		28.5	7.13	5.87	6.9
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS15	Surface	1	1	1	14:30	17.8		28	7.41	5.18	6.1
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine			Surface	1	1	2	14:30	17.9	8.02		7.37	5.25	6.3
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood					5.7	2	1	14:30	17.9		28.1	7.34	5.63	6.4
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine				5.7	2	2	14:30	17.9		28.2	7.32	5.55	6.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	IS15		10.4	3	1	14:30	18		28.3	7.24	5.84	6.8
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine		IS15		10.4	3	2	14:30	18		28.4	7.2	5.92	7.1
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood			SR8	Surface	1	1	1	13:58	17.8	+	27.5	7.6	5.58	6.7
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood			SR8	Surface	1	1	2	13:58	17.8	7.99		7.57	5.66	6.5
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood			SR8	Middle		2	1	13:58						
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood			SR8	Middle		2	2	13:58	1					
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood			 		4.8	3	1	13:58	17.8	8.01	27.6	7.51	5.94	7.1
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood			SR8		4.8	3	2	13:58	17.8		27.7	7.48	6.03	7.3
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood			SR9	Surface	1	1	1	14:12	17.8	_	27.9	7.55	5.48	6.2
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood			SR9	Surface	1	1	2	14:12	17.8	8.05		7.53	5.4	6.1
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood				Middle		2	1	14:12	1					
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood			SR9	Middle	1	2	2	14:12	1					
TMCLKL	HY/2012/08		Mid-Flood					4.4	3	1	14:12	17.8	8	28.2	7.47	5.73	6.8
		2015-01-16			Small Wave		Bottom	+	3	2	14:12		8.01		7.44	5.8	6.7
	1, 2012, 00	1-0.00.10	1	ı .	Ja. 11410	10.10	1-2110111	1		<u>, – </u>	1 2	1	15.51	1-0.0	1	12.2	

Project	Works	Date	Tide	IVVeather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	SR10A	Surface	1	1	1	13:30	17.8	7.94	27.4	7.6	6.39	7.2
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	SR10A	Surface	1	1	2	13:30	17.7	7.95	27.4	7.65	6.45	7.4
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	SR10A	Middle	6.5	2	1	13:30	17.8	7.97	27.4	7.5	6.5	7.5
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood	Fine	Small Wave	SR10A	Middle	6.5	2	2	13:30	17.8	7.97	27.5	7.53	6.43	7.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood		Small Wave		Bottom	12	3	1	13:30	17.8	7.99	27.5	7.38	6.63	7.9
TMCLKL	HY/2012/08	2015-01-16	Mid-Flood				Bottom	12	3	2	13:30	17.9	8	27.6	7.4	6.69	8
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb		Small Wave		Surface	1	1	1	07:55	17.8	7.92	28.1	7.38	5.83	6.8
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb		Small Wave		Surface	1	1	2	07:55	17.7	7.93	28.2	7.33	5.87	6.5
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb				Middle	10.8	2	1	07:55	17.7	7.96	28.3	7.29	5.98	7.1
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb			CS4	Middle	10.8	2	2	07:55	17.8	7.97	28.2	7.25	6.07	7.3
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb				Bottom	20.5	3	1	07:55	18	7.99	28.4	7.01	6.21	7.4
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb				Bottom	20.5	3	2	07:55	17.9	7.98	28.5	6.94	6.26	7.2
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb		Small Wave		Surface	1	1	1	09:53	17.6	8.01	27.3	7.28	6.58	7.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb		Small Wave		Surface	1	1	2	09:53	17.7	8	27.4	7.32	6.49	7.3
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb		Small Wave			5.9	2	1	09:53	17.7	8.02	27.4	7.27	6.38	7.4
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb			CS6	Middle	5.9	2	2	09:53	17.6	8.03	27.5	7.22	6.44	7.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb		Small Wave		Bottom	10.9	3	1	09:53	17.8	8.04	27.9	7.17	6.68	7.8
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb				Bottom	10.9	3	2	09:53	17.7		27.8	7.13	6.78	8
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb				Surface	1	1	1	08:28	17.7	-	27.9	7.18	5.52	6.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb				Surface	1	1	2	08:28	17.8	7.99	27.9	7.13	5.59	6.7
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb			IS12	Middle	7.3	2	1	08:28	17.9	7.93	28.2	7.01	5.85	6.9
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb			IS12	Middle	7.3	2	2	08:28	17.8	7.94	28.1	7.03	5.88	7.1
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb				Bottom	13.6	3	1	08:28	18	7.96	28.3	6.96	5.68	6.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb				Bottom	13.6	3	2	08:28	18.1	7.97	28.4	6.91	5.74	6.8
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb		Small Wave		Surface	1	1	1	08:45	17.6	7.92	28	7.38	5.36	6.4
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb		Small Wave		Surface	1	1	2	08:45	17.7	7.93	28	7.34	5.43	6.2
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb		Small Wave	IS13	Middle	5.7	2	1	08:45	17.8	7.96	28	7.31	5.61	6.6
								5.7	2	2	08:45		7.95		7.26	5.57	6.7
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb					10.4	3	1	08:45	17.7	-	28.2	7.16	5.82	6.8
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb					10.4	3	2	08:45	17.8		28.3	7.1	5.86	7
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb			IS14	Surface	1	1	1	08:12	17.7	-	28.1	7.22	5.76	6.7
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb				Surface	1	1	2		17.8	-	28	7.26	5.72	6.9
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb					8.1	2	1		17.9		28.3	7.21	5.95	7.1
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb			IS14		8.1	2	2	08:12	17.8		28.3	7.18	6.01	7.3
TMCLKL	HY/2012/08	2015-01-16						15.2	3	1		17.6	-	28.4	7.12	5.82	6.8
TMCLKL	HY/2012/08	2015-01-16					1	15.2	3	2	08:12	17.7		28.3	7.07	5.89	7.1
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb			IS15	Surface	1	1	1	09:01	17.7	-	28	7.38	5.39	6.4
TMCLKL	HY/2012/08	2015-01-16					Surface	1	1	2		17.6	7.93		7.32	5.47	6.3
TMCLKL	HY/2012/08						-	5.6	2	1		17.6	-	28.1	7.31	5.67	6.7
TMCLKL	HY/2012/08	2015-01-16						5.6	2	2	09:01	17.7	+	+	7.26	5.58	6.8
TMCLKL	HY/2012/08		Mid-Ebb					10.2	3	11		17.6		28.2	7.17	5.76	6.6
TMCLKL	HY/2012/08	2015-01-16					1	10.2	3	2	09:01	17.5		28.3	7.13	5.82	6.9
TMCLKL	HY/2012/08		Mid-Ebb			SR8	Surface	1	1	1	09:38	17.4		27.4	7.51	5.63	6.4
TMCLKL	HY/2012/08	2015-01-16				SR8	Surface	1	1	2	09:38	17.5	7.97	27.5	7.48	5.7	6.2
TMCLKL	HY/2012/08		Mid-Ebb				Middle		2	11	09:38	<u> </u>	 				
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb			SR8	Middle	1.0	2	2	09:38	1.7.0		07.5			
TMCLKL	HY/2012/08							4.6	3	11	09:38	17.6	-	27.5	7.47	6.08	/.1 7.0
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb			SR8		4.6	[3	2	09:38	17.7	7.99		7.42	5.99	7.3
TMCLKL	HY/2012/08		Mid-Ebb			SR9	Surface	11	1 -	11	09:21	-	_	27.9	7.47	5.53	6.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb			SR9	Surface	1	1	2	09:21	17.6	8.03	27.8	7.42	5.58	6.7
TMCLKL	HY/2012/08		Mid-Ebb				Middle		2	1	09:21	1	 	-	-		
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb			SR9	Middle	1.0	2	2	09:21		0.55	100.0	7.40	5.00	
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb			SR9		4.2	3	1	09:21			28.2	7.42	5.83	6.8
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb					4.2	3	2	09:21	17.6	8.01	28.1	7.39	5.88	7.1
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb				Surface	1	1	1	10:14	17.5	+	27.3	7.53	6.47	7.6
TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb				Surface	1	1	2	10:14	17.6	7.9	27.2	7.55	6.41	7.2
TMCLKL	HY/2012/08		Mid-Ebb					6.4	2	11	10:14	17.7		27.3	7.48	6.56	6.6
TMCLKL	HY/2012/08	2015-01-16	IMIG-Fpp	Fine	Small Wave	SK10A	IMiddle	J6.4	2	<u> 2</u>	10:14	[17.8	7.94	27.4	7.44	6.49	6.7

Michael Mich	Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
	TMCLKL	HY/2012/08	2015-01-16	Mid-Ebb	Fine	Small Wave	SR10A	Bottom		3	1	10:14	17.7	7.96	27.7	7.33	6.69	7.4
TRICKLE, MySTOTE 2010-110 Med Food Fine Small Wave CS4 Surface 1 2 1647 712 796 776 778		HY/2012/08		Mid-Ebb	Fine	Small Wave		Bottom	11.8	3	2	10:14	17.6	7.97	27.6			
Include Provided	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	CS4	Surface	1	1	1	18:47	17.1	7.93	27.5	7.37	7.24	8.3
TRICKLK Pro201289 2019-0-10 Mid-Plood Fine Small Wave CS4 Septem O.4 3 1 84.7 17.5 7.91 27.7 7.22 7.61 8.5	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	CS4	Surface	1	1	2	18:47	17.2	7.94	27.6	7.32	7.31	8.5
TRICKLE, INVESTIGED 2016 19 Mod Flood Free Small Wave CS4 Relation 20.4 3 1 10.47 17.5 7.9 17.8 7.8 7.8 8.9 10.00 10.0	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	CS4	Middle	10.7	2	1	18:47	17.3	7.95	27.8	7.18	7.48	8.8
TRCLIC Vivipi 2008 2015 0.1 10 Mod Flood Firm Small Wave C645 Surface 1 1 1 10:13 7.4 7.55 7.56 7.64 9.1	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	CS4	Middle	10.7	2	2	18:47	17.2	7.94	27.7	7.22	7.41	8.6
TRCLK	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	CS4	Bottom	20.4	3	1	18:47	17.5	7.91	27.9	7.42	7.81	8.9
TRCLEAN WYS012006 2016 011 Mal Flood Fine Small Wave GS6 Motion 1 2 1613 17.8 7.8 27.6 7.61 7.33 8.1	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	CS4	Bottom	20.4	3	2	18:47	17.4	7.92	27.8	7.39	7.84	9.1
TRACKER MY-201208 2015-01-19 Mol-Flood Fine Small Wave CS8 Middle 5.7 2 1 161-3 17.6 7.67 12.77 7.98 7.42 8.6	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	CS6	Surface	1	1	1	16:13	17.4	7.85	27.5	7.53	7.26	8.4
TMCLKL MY201208 2015-01-19 ModeFood Fine Small Wave CS8 Modele 5.7 2 2 16:13 17.5 7.88 27.8 7.44 7.48 8.4	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	CS6	Surface	1	1	2	16:13	17.3	7.84	27.6	7.61	7.33	8.1
TMCLIK. MY201208 2015-01-19 Mol-Flood Fine Small Wave CS6 Settom 10.4 3 1 16.13 17.7 7.9 27.9 7.88 7.57 8.7		HY/2012/08	2015-01-19								1	16:13						
Triggraph Program Pr	TMCLKL		2015-01-19	Mid-Flood	Fine	Small Wave		Middle	5.7	2	2	16:13						
Tricklik Progress Progress	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave		Bottom	10.4	3	1	16:13	17.7			7.28	7.57	8.7
TMCLIK HY201208 0715-071-09 Mod-Flood Fine Small Wave IS12 Surface 1 2 18:08 17.1 7.88 27.6 7.43 7.32 0.31 TMCLIK HY201208 0715-071-09 Mod-Flood Fine Small Wave IS12 Middle 7.4 2 18:08 17.3 7.91 27.8 7.39 7.32 0.43 TMCLIK HY201208 0715-071-09 Mod-Flood Fine Small Wave IS12 Middle 7.4 2 18:08 17.3 7.91 27.8 7.39 7.32 7.32 0.43 0.	TMCLKL		2015-01-19					Bottom	10.4	3	2	16:13	17.7					
TMCLIK, HY201208 2015-01-19 Mid-Flood Fine Small Wave IS12 Model 7.4 2 1 18.08 17.4 7.92 27.7 7.33 7.38 9.2	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave			1	1	1	18:08	17.2	7.89			7.41	8.3
TMCLK, HY/201208 2015 0119 Mid-Flood Fine Small Wave S12 Bottom 13.8 3 1 18.08 17.5 7.97 27.7 2.5 7.56 0.3	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS12	Surface	1	1	2	18:08	17.1	7.88				
TMCLIK HYZ01208 2015-0119 Mid-Flood Fine Small Wave IS12 Bottom 1.8 3 1 15:09 17.5 7.97 27.7 7.25 7.56 8.3											1	+	-	-				
TYOLK, K. MY201208 2015-01-19 Mid-Flood Fine Small Wave IS12 Bottom 1.8 3 2 18.08 17.4 7.98 27.8 7.21 7.5 8.6											2	+	-					
TRICKLK H7/2012/08 2015-01-19 Mid-Flood Fine Small Wave S13 Surface 1 1 1 17-49 17.3 7.93 27.6 7.27 7.22 8.2	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS12	Bottom	13.8	3	1	18:08	17.5	7.97	27.7	7.25	7.56	8.3
TMCLIK HY201208 2015-01-19 Mid-Flood Fine Small Wave IS13 Surface 1 2 17-98 17-2 7-94 27.5 7.32 7.19 8 TMCLIK HY201208 2015-01-19 Mid-Flood Fine Small Wave IS13 Middle 5.7 2 2 17-98 17-9 7-95 27.6 7-19 7-02 8.1 TMCLIK HY201208 2015-01-19 Mid-Flood Fine Small Wave IS13 Middle 5.7 2 2 17-98 17-9 7-79 27.8 7-72 7-708 8.3 TMCLIK HY201208 2015-01-19 Mid-Flood Fine Small Wave IS13 Sottom 10.3 3 1 17-98 17.5 7-99 27.8 7-11 7-42 8.4 17-12 7-									13.8	3	2							
TMCLKL HY201208 2015-01-19 Mid-Flood Fine Small Wave IS13 Midelle 5.7 2 1 17-99 17.3 7.55 27.6 7.19 7.02 8.1	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS13	Surface	1	1	1	17:49	17.3	7.93	27.6	7.27	7.22	8.2
TMCLIK HY201208 2015-01-19 Mid-Flood Fine Small Wave IS13 Middle 5.7 2 2 17-94 17.4 7.94 27.5 7.22 7.08 8.3	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS13	Surface	1	1	2	17:49	17.2	7.94	27.5	7.32	7.19	8
TMCLKL HY/201208 2015-01-19 Mid-Flood Fine Small Wave IS13 Bottom 10.3 3 1 17.49 17.6 7.98 27.8 7.13 7.42 8.4	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS13	Middle	5.7	2	1	17:49	17.3	7.95	27.6	7.19	7.02	8.1
TMCILL HY/201208 2015-01-19 Mid-Flood Fine Small Wave IS13 Bottom 10.3 3 2 17.49 17.5 7.99 27.8 7.17 7.45 8.6	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS13	Middle	5.7	2	2	17:49	17.4	7.94	27.5	7.22	7.08	8.3
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Surface 1 1 1 18:26 17.2 7.96 27.6 7.27 7.12 7.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Surface 1 1 2 18:26 17.3 7.97 27.7 7.23 7.23 8.2 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Middle 8.5 2 1 18:26 17.3 7.9 27.6 7.18 7.31 8.1 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Middle 8.5 2 2 18:26 17.4 7.91 27.7 7.26 7.28 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Bottom IS.9 1 18:26 17.4 7.91 27.7 7.26 7.28 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Bottom IS.9 1 18:26 17.6 7.97 27.9 7.33 7.62 8.7 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Bottom IS.9 1 18:26 17.5 7.98 28 7.39 7.62 8.7 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Surface 1 1 1 17:32 17.3 7.99 27.7 7.26 7.01 8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Surface 1 1 1 17:32 17.3 7.99 27.7 7.26 6.97 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Surface 1 1 1 17:32 17.3 7.99 27.7 7.26 6.97 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Middle 8.4 2 1 17:32 17.3 7.99 27.7 7.21 6.93 7.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Bottom IS.9 1 1 12 17:32 17.3 7.99 27.7 7.21 6.93 7.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Bottom IS.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS13	Bottom	10.3	3	1	17:49	17.6	7.98	27.8	7.13	7.42	8.4
TMCLKL HY/201208 2015-01-19 Mid-Flood Fine Small Wave S14 Middle 8.5 2 1 18:26 17.3 7.9 27.7 7.23 8.2	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS13	Bottom	10.3	3	2	17:49	17.5	7.99	27.8	7.17	7.45	8.6
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave S14 Moddle 8.5 2 1 18.26 17.3 7.9 27.6 7.18 7.31 8.1	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS14	Surface	1	1	1	18:26	17.2	7.96	27.6	7.27	7.12	7.8
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Middle 8.5 2 2 18:26 17.4 7.97 27.7 7.26 7.28 8.4	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS14	Surface	1	1	2	18:26	17.3	7.97	27.7	7.23	7.23	8.2
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Softom 15.9 3 1 18.26 17.4 7.97 27.9 7.33 7.62 8.7	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS14	Middle	8.5	2	1	18:26	17.3	7.9	27.6	7.18	7.31	8.1
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave S15 Surface 1 1 1/322 7.3 7.98 28 7.39 7.66 8.8	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS14	Middle	8.5	2	2	18:26	17.4	7.91	27.7	7.26	7.28	8.4
TMCLKI. HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Surface I I 17:32 17:3 7.96 27.7 7.26 7.01 8 TMCLKI. HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Midele 5.4 2 1 7.32 17.3 7.87 27.7 7.21 6.93 7.8 TMCLKI. HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Midele 5.4 2 1 17.32 17.3 7.87 27.7 7.21 6.93 7.8 TMCLKI. HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Bottom 9.8 3 1 17.32 17.4 7.96 28.7 7.21 6.93 8.1 TMCLKI. HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave 878 Surface 1 1 17.02 17.5 7.95	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS14	Bottom	15.9	3	1	18:26	17.4	7.97	27.9	7.33	7.62	8.7
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Surface 1 2 17:32 17:4 7:97 27:6 7.29 6.97 8.3	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS14	Bottom	15.9	3	2	18:26	17.5	7.98	28	7.39	7.66	8.8
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Middle 5.4 2 1 17.32 17.3 7.87 27.7 7.21 6.93 7.8	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS15	Surface	1	1	1	17:32	17.3	7.96	27.7	7.26	7.01	8
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Middle 5.4 2 2 17:32 17.4 7.88 27.8 7.26 6.87 8.1	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS15	Surface	1	1	2	17:32	17.4	7.97	27.6	7.29	6.97	8.3
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Bottom 9.8 3 1 17:32 17.4 7.96 28 7.12 7.11 8.4	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS15	Middle	5.4	2	1	17:32	17.3	7.87	27.7	7.21	6.93	7.8
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR8 Surface 1 1 17:02 17:33 7:96 28.1 7.18 7.2 8.5	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS15	Middle	5.4	2	2	17:32	17.4	7.88	27.8	7.26	6.87	8.1
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR8 Surface 1 1 1 17:02 17.3 7.98 27.7 7.36 7.34 8.4	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS15	Bottom	9.8	3	1	17:32	17.4	7.96	28	7.12	7.11	8.4
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR8 Surface 1 1 2 17:02 17.4 7.99 27.6 7.3 7.41 8.2	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	IS15	Bottom	9.8	3	2	17:32	17.5	7.95	28.1	7.18	7.2	8.5
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR8 Middle 2 1 17:02 8 17:02 8 17:02 <	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR8	Surface	1	1	1	17:02	17.3	7.98	27.7	7.36	7.34	8.4
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR8 Middle 2 2 17:02 17.4 8.02 27.9 7.22 7.58 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR8 Bottom 4.3 3 1 17:02 17.4 8.02 27.9 7.22 7.58 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Surface 1 1 17:17 17.3 7.96 27.7 7.37 7.49 8.2 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Surface 1 1 17:17 17.2 7.97 27.8 7.4 7.55 8.2 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Middle 2 1 17:17 17.2 7.93 27.8 7.4 <td< td=""><td>TMCLKL</td><td>HY/2012/08</td><td>2015-01-19</td><td>Mid-Flood</td><td>Fine</td><td>Small Wave</td><td>SR8</td><td>Surface</td><td>1</td><td>1</td><td>2</td><td>17:02</td><td>17.4</td><td>7.99</td><td>27.6</td><td>7.3</td><td>7.41</td><td>8.2</td></td<>	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR8	Surface	1	1	2	17:02	17.4	7.99	27.6	7.3	7.41	8.2
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR8 Bottom 4.3 3 1 17:02 17.4 8.02 27.9 7.22 7.58 8.6	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR8	Middle		2	1	17:02						
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR8 Bottom 4.3 3 2 17:02 17.5 8.01 27.8 7.28 7.52 8.9 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Surface 1 1 1 17:17 17.3 7.96 27.7 7.37 7.49 8.2 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Surface 1 1 2 17:17 17.2 7.97 27.8 7.4 7.55 8.2 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Middle 2 2 17:17 17.3 7.96 27.9 7.33 7.69 8.9 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Bottom 4.6 3 1 17:17 17.4 7.97<	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR8	Middle		2	2	17:02						
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Surface 1 1 1 1 17:17 17.3 7.96 27.7 7.37 7.49 8.2	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR8	Bottom	4.3	3	1	17:02	17.4	8.02	27.9	7.22	7.58	8.6
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Surface 1 1 17:17 17.3 7.96 27.7 7.37 7.49 8.2 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Surface 1 1 2 17:17 17.2 7.97 27.8 7.4 7.55 8.2 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Middle 2 1 17:17 17.2 7.97 27.8 7.4 7.55 8.2 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Bottom 4.6 3 1 17:17 17.3 7.96 27.9 7.33 7.69 8.9 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Bottom 4.6 3 2 17:17 17.4 7.97 28<	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR8	Bottom	4.3	3	2	17:02	17.5			7.28	7.52	
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Middle 2 1 17:17 1 1 17:17 1 1 17:17 1 1 17:17 1 1 1 17:17 1	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR9	Surface	1	1	1	17:17	17.3	7.96	27.7	7.37	7.49	
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Middle 2 2 17:17 7.33 7.69 8.9 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Bottom 4.6 3 1 17:17 17.3 7.96 27.9 7.33 7.69 8.9 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Bottom 4.6 3 2 17:17 17.4 7.97 28 7.37 7.74 8.7 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Surface 1 1 1 16:38 17.4 7.88 27.6 7.41 7.12 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Middle 6.3 2 1 16:38 17.5 7.91 27.7 7.38 7	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR9	Surface	1	1	2	17:17	17.2	7.97	27.8	7.4	7.55	8.2
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Bottom 4.6 3 1 17:17 17.3 7.96 27.9 7.33 7.69 8.9 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Bottom 4.6 3 2 17:17 17.4 7.97 28 7.37 7.74 8.7 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Surface 1 1 16:38 17.4 7.88 27.6 7.41 7.12 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Middle 6.3 2 1 16:38 17.5 7.89 27.6 7.47 7.07 8.1 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Middle 6.3 2 2 16:38 17.6 <	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR9	Middle		2	1	17:17						
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Bottom 4.6 3 2 17:17 17.4 7.97 28 7.37 7.74 8.7 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Surface 1 1 16:38 17.4 7.88 27.6 7.41 7.12 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Surface 1 1 2 16:38 17.5 7.89 27.6 7.47 7.07 8.1 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Middle 6.3 2 1 16:38 17.5 7.91 27.7 7.38 7.16 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 1 16:38 17.6	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR9	Middle		2	2	17:17						
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR9 Bottom 4.6 3 2 17:17 17.4 7.97 28 7.37 7.74 8.7 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Surface 1 1 16:38 17.4 7.88 27.6 7.41 7.12 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Surface 1 1 2 16:38 17.5 7.89 27.6 7.47 7.07 8.1 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Middle 6.3 2 1 16:38 17.5 7.91 27.7 7.38 7.16 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 1 16:38 17.6	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR9	Bottom	4.6	3	1	17:17	17.3	7.96	27.9	7.33	7.69	8.9
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Surface 1 1 2 16:38 17.5 7.89 27.6 7.47 7.07 8.1 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Middle 6.3 2 1 16:38 17.5 7.91 27.7 7.38 7.16 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 1 16:38 17.6 7.92 27.8 7.43 7.21 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 1 16:38 17.6 7.92 27.8 7.33 7.44 8.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave CS4 Surface 1 1 10:58 17.3	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR9	Bottom	4.6	3	2	17:17	17.4	7.97	28	7.37	7.74	8.7
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Surface 1 1 2 16:38 17.5 7.89 27.6 7.47 7.07 8.1 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Middle 6.3 2 1 16:38 17.5 7.91 27.7 7.38 7.16 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 1 16:38 17.6 7.92 27.8 7.43 7.21 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 1 16:38 17.6 7.92 27.8 7.33 7.44 8.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave CS4 Surface 1 1 10:58 17.3	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR10A		1	1	1	16:38	17.4			7.41	7.12	8.3
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Middle 6.3 2 2 16:38 17.6 7.92 27.8 7.43 7.21 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 1 16:38 17.6 7.99 27.8 7.33 7.44 8.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 2 16:38 17.5 7.98 27.9 7.27 7.51 8.7 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave CS4 Surface 1 1 10:58 17.3 7.94 27.7 7.24 7.34 8.1	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine			Surface	1	1	2	16:38	17.5	7.89	27.6	7.47	7.07	
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Middle 6.3 2 2 16:38 17.6 7.92 27.8 7.43 7.21 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 1 16:38 17.6 7.99 27.8 7.33 7.44 8.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 2 16:38 17.5 7.98 27.9 7.27 7.51 8.7 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave CS4 Surface 1 1 10:58 17.3 7.94 27.7 7.24 7.34 8.1	TMCLKL	HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR10A	Middle	6.3	2	1	16:38	17.5	7.91	27.7	7.38	7.16	8.3
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 1 16:38 17.6 7.99 27.8 7.33 7.44 8.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 2 16:38 17.5 7.98 27.9 7.27 7.51 8.7 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave CS4 Surface 1 1 10:58 17.3 7.94 27.7 7.24 7.34 8.1		HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR10A			2	2	16:38	+					
TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave SR10A Bottom 11.6 3 2 16:38 17.5 7.98 27.9 7.27 7.51 8.7 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave CS4 Surface 1 1 10:58 17.3 7.94 27.7 7.24 7.34 8.1		HY/2012/08	2015-01-19	Mid-Flood	Fine	Small Wave	SR10A	 	+	3	1	16:38	17.6			7.33		
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave CS4 Surface 1 1 1 1 10:58 17.3 7.94 27.7 7.24 7.34 8.1										3	2		+					
					Fine			 	1	1	1		+	_				
								•	1	1	2	+				7.21	7.41	8.3

	Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
INSERT 1979	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	CS4	Middle		2	1	10:58	17.4	8.01	27.9	7.13	7.56	8.6
INCRUSE MYCHIGEN 2015-119 Mod-Sab Prop. Small Wave CS1 Soften DS2 S 2 1038 17.7 F/8 Sa1 7.3 S01 9		HY/2012/08		Mid-Ebb	Fine	Small Wave		Middle		2	2	10:58		8		7.1		8.4
INCLICAL PAYON 2008 2019-01-19 Mile Sebb Prog. Small Wave CSB Surface 1 1 1 1 1377 78.8 78.7 77.8 77.	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	CS4	Bottom	20.2	3	1	10:58	17.7	7.92	28	7.28	7.93	8.7
TRICKLE Progress 2015-01-01 Mod-Ebb Fine Small Waves CS8 Surface 1 2 1817 1/8 7.88 2/9 7.87 7.48 8.3 TRICKLE Progress 2015-01-01 Mod-Ebb Fine Small Waves CS8 Models 6.6 2 1 1817 7.7 7.92 2.9 7.83 7.5 8.8 REPART	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	CS4	Bottom	20.2	3	2	10:58	17.7	7.93	28.1	7.3	8.01	9
INCLIG. MY201288 2015-01-19 Mid-Esp Fine Small Wave CSB Middle Sh 2 2 13.77 17.7 758 23.78 7.88 8.8 MIDDLE MI	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	CS6	Surface	1	1	1	13:17	17.6	7.87	27.8	7.41	7.38	8.1
Incolute Invarigation Agriculture Agriculture Incolute	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	CS6	Surface	1	1	2	13:17	17.6	7.88	27.9	7.37	7.43	8.3
TRICKER NY2012-000 2015-01-19 Mod-Ebb Fine Small Wave GSB Soliton 10,2 3 5 10,17 17,7 7,87 20,11 7,16 8,77 7,70 7,97 8, 0.0 7,76 8, 0.0 7,76 7,76 8, 0.0 7,76 7,76 7,76 7,97	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	CS6	Middle	5.6	2	1	13:17	17.7	7.92	27.9	7.33	7.5	8.8
MACHAEL MY2012008 2015-01-19 Mod Ebb Fine Small Wave IST2 Surface 1 1 1 1.58 17.4 7.96 28.1 7.13 7.78 8.6	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	CS6	Middle	5.6	2	2	13:17	17.7	7.94	28	7.29	7.57	8.6
TACKER MYSSI208 2015 01-19 Mol-Ebb Fine Small Wave 512 Surface 1 1 1138 174 7.92 278 7.44 7.49 9.4	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	CS6	Bottom	10.2	3	1	13:17	17.7	7.97	28.1	7.16	7.76	8.7
Tright My201208 2016-1-19 Mile-Ebb Fine Small Wave 512 Surface 1 2 11.38 17.4 7.91 27.9 7.31 7.41 8.2	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	CS6	Bottom	10.2	3	2	13:17	17.8	7.98	28.1	7.13	7.79	
Triggle Process Proc		HY/2012/08	2015-01-19						1	1	1			_				
INCLINE MY-2012008 2015-0-119 Mode-Eib Fine Small Wave 512 Mode 7.2 2 11.98 17.5 7.59 77.9 77.9 77.0 7.75 7.85 7.75	TMCLKL		2015-01-19			Small Wave			1	1	2	11:38	17.4	-				
Tracker My201208 2015-01-10 Mod-Ebb Fine Small Wave S12 Beston 13.4 3 1 11.38 17.6 7.99 27.9 7.16 7.72 8.8	TMCLKL	HY/2012/08		Mid-Ebb	Fine	Small Wave				2	1	11:38	17.4	7.94		7.27	7.48	
TACKLK PY201208 015-01-19 Mol-Ebb Fine Small Wave S12 Bottom 13.4 3 2 11.38 17.6 8 28 7.13 7.88 3.6	TMCLKL		2015-01-19							2	2	11:38	17.5					
INDUCK, HY/201208 2015-01-19 Mol-Ebb Fine Small Wave IS13 Surface 1 1 1159 17.4 7.91 27.8 7.19 7.29 3.1		HY/2012/08	2015-01-19							3	1		_	7.99				
IMCURL HY/201209 2015 0119 Mol Ebb Fine Small Wave IS13 Surface 1 2 1159 17.5 7.98 27.8 7.22 7.25 0.3			2015-01-19			Small Wave			13.4	3	2	11:38	17.6					8.6
INCILIA,	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave			1	1	1	11:59	17.4	7.91		7.18		8.1
INCLIN, HY/201208 2015-01-19 Mid-Ebb Fine Small Wave IS13 Motion 10 3 2 11:59 17.6 7.96 27.9 7.07 7.54 6.5									1	1	2	+	_					
TMCLIK HYZ01208 2015-01-19 MolEbb Fine Small Wave S13 Settom 10 3 1 11:59 17.6 7.96 27.9 7.07 7.54 8.5	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave			5.5	2	1	11:59	17.5	7.97	27.9	7.13	7.1	7.8
TMCLIK, H7/2012/08 2015-01-19 Mide Ebb Fine Small Wave S13 Solton 10 3 2 11:59 17.7 7.97 27.9 7.04 7.62 8.7	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb		Small Wave	IS13	Middle	5.5	2	2	11:59	17.5	_				
Tricking My201208 2015-01-19 Mid-Ebb Fine Small Wave IS14 Surface 1 1 1 11:17 17.4 7.88 27.8 7.18 7.27 8.1	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS13	Bottom	10	3	1	11:59	17.6	7.96	27.9	7.07	7.54	8.5
TMCLIK HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave IS14 Middle 8.3 2 2 11:17 17.5 7.93 27.9 7.14 7.4 7.8 8.6	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS13	Bottom	10	3	2	11:59	17.7	7.97	27.9	7.04	7.62	8.7
TMCLKL HY/201208 2015-01-19 Mid-Ebb Fine Small Wave IS14 Middle 8.3 2 1 11:17 17.5 7.94 27.9 7.12 7.49 8.6 7.76 Mid-Ebb Fine Small Wave IS14 Middle 8.3 2 2 2 11:17 17.5 7.94 27.9 7.12 7.49 8.7 7.6 Mid-Ebb Fine Small Wave IS14 Middle 8.3 2 2 2 11:17 17.5 7.94 27.9 7.12 7.49 8.7 7.6 Mid-Ebb Fine Small Wave IS14 Middle 8.3 2 2 2 11:17 17.5 7.94 27.9 7.12 7.49 8.7 7.6 Mid-Ebb Fine Small Wave IS14 Middle Small Wave IS14 Middle Small Wave IS14 Middle Small Wave IS15 Middle	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS14	Surface	1	1	1	11:17	17.4	7.98	27.8	7.18	7.27	8.1
TMCLKL HY/201208 2015-01-19 Mid-Ebb Fine Small Wave IS14 Middle 8.3 2 2 11:17 17.5 7.94 27.9 7.12 7.49 8.7	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS14	Surface	1	1	2	11:17	17.4	7.99	27.8	7.21	7.33	8.3
TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S14 Bottom 15.6 3 1 11:17 17.6 8.01 28 7.26 7.76 8.8 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S15 Surface 1 1 1 12:18 17.5 7.98 27.8 7.14 7.09 7.8 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S15 Surface 1 1 1 12:18 17.5 7.98 27.8 7.14 7.09 7.8 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S15 Surface 1 1 1 1 12:18 17.5 7.98 27.8 7.14 7.09 7.8 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S15 Surface 1 1 1 1 12:18 17.5 7.98 27.8 7.14 7.09 7.8 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S15 Middle 5.3 2 1 1 12:18 17.5 7.9 27.9 7.17 7.02 8.1 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S15 Bottom 9.6 3 1 1 12:18 17.5 7.9 27.9 7.17 7.02 8.1 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S15 Bottom 9.6 3 1 1 12:18 17.5 7.9 27.9 7.17 7.02 7.24 8.2 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S15 Bottom 9.6 3 1 1 12:18 17.6 7.93 27.9 7.02 7.24 8.2 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S15 Bottom 9.6 3 2 1 12:18 17.6 7.93 27.9 7.02 7.24 8.2 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S15 Bottom 9.6 3 2 1 12:18 17.6 7.93 27.9 7.02 7.24 8.2 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S18 Surface 1 1 1 1 12:25 17.6 8.02 28 7.25 7.47 8.2 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S18 Surface 1 1 1 1 12:25 17.6 8.02 28 7.25 7.47 8.2 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S18 Bottom 4 3 1 12:25 17.5 8.02 28 7.23 7.54 8.3 TMCLKL HYZ01208 2015-01-19 Mid-Ebb Fine Small Wave S18 Bottom 4 3 1 12:25 17.5 8.04 28 7.17 7.67 8.4 Mid-Ebb Fine Small Wave S18 Bottom 4 3 1 12:25 17.5 8.04 28 7.17 7.67 8.4 Mid-Ebb Fine Small Wave S18 Bottom 4 3 1 12:25 17.5 8.04 28 7.17 7.67 8.4 Mid-Ebb Fine Small Wave S18 Bottom 4 3 1 12:25 17.5 8.03 28.1 7.14 7.6 8.6 Mid-Ebb Fine Small Wave S18 Bottom 4 3 1 12:25 17.5 8.03 28.1 7.14 7.6 8.6 Mid-Ebb Fine Small Wave S18 Bottom 4 3 1 12:25 17.5 8.03 28.1 7.14 7.6 8.6 Mid-Ebb Fine Small Wave S18 Bottom 4 3 1 12:25 17.5 8.03 28.1 7.14 7.6 8.6 Mid-Ebb Fine Small W	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS14	Middle	8.3	2	1	11:17	17.5	7.93	27.9	7.14	7.4	8.6
TMCLKL HY/201208 2015-01-19 Mid-Ebb Fine Small Wave S15 Surface 1 1 12:18 17.5 7.98 27.8 7.14 7.09 7.78 7.76 7.	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS14	Middle	8.3	2	2	11:17	17.5	7.94	27.9	7.12	7.49	8.7
TMCLKL HY201208 2015-01-19 Mid-Ebb Fine Small Wave S15 Surface 1 1 1 12:18 17.5 7.98 27.8 7.14 7.09 7.8	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS14	Bottom	15.6	3	1	11:17	17.6	8.01	28	7.26	7.76	8.8
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS15 Sufface 1 1 2 12-18 17.5 7.99 27.9 7.11 7.14 8.1	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS14	Bottom	15.6	3	2	11:17	17.7	8	28	7.29	7.81	9
TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS15 Middle 5.3 2 1 12-18 17-5 7.9 27-9 7.17 7.02 8.1 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS15 Soltom 9.6 3 1 12-18 17-5 7.91 27-9 7.13 6.95 7.9 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS15 Soltom 9.6 3 1 12-18 17-6 7.94 28 7 7.02 7.24 8.2 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS15 Soltom 9.6 3 2 12-18 17-6 7.94 28 7 7.33 8.4 MID-MID-MID-MID-MID-MID-MID-MID-MID-MID-	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS15	Surface	1	1	1	12:18	17.5	7.98	27.8	7.14	7.09	7.8
TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 12:18 17.6 7.9 7.9 7.13 6.95 7.9 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 12:18 17.6 7.94 28 7.0 7.33 8.4 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 12:18 17.6 7.94 28 7.0 7.33 8.4 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 12:18 17.6 7.94 28 7.2 7.33 8.4 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 12:18 17.6 7.94 28 7.2 7.33 8.4 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Surface 1 1 2 12:55 17.6 8.02 28 7.25 7.47 8.2 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Surface 1 1 1 12:55 17.6 8.03 28 7.23 7.54 8.3 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Bottom 4 3 1 12:55 17.6 8.04 28 7.17 7.67 8.4 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Bottom 4 3 1 12:55 17.5 8.04 28 7.17 7.67 8.4 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Bottom 4 3 1 12:55 17.5 8.04 28 7.17 7.67 8.4 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Bottom 4 3 1 12:39 17.5 7.99 27.9 7.28 7.41 7.6 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Bottom 4 3 1 12:39 17.5 7.99 27.9 7.28 7.41 7.6 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Bottom 4 3 1 12:39 17.5 8.08 28.1 7.14 7.6 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Bottom 4 3 1 12:39 17.5 7.99 27.9 7.28 7.41 8.4 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Bottom 4 3 1 12:39 17.5 8.03 28.1 7.14 7.6 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Bottom 4 1 1 1 12:39 17.5 8.01 28 7.31 7.34 8.4 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Bottom 4 1 1 1 12:39 17.5 8.01 28 7.24 7.62 8.8 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS18 Bottom 4 1 1 1 13:43 17.6 7.99 27.7 7.36 7.36 7.34 8.4 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS10 Bottom 11 1 1 13:43 17.6 7.99 27.7 7.36 7.36 7.34 8.4 TMC	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS15	Surface	1	1	2	12:18	17.5	7.99	27.9	7.11	7.14	8.1
TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 1 12:18 17.6 7.93 27.9 7.02 7.24 8.2 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR8 Surface 1 1 12:55 17.5 8.02 28 7.23 7.54 8.2 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR8 Surface 1 1 1:2:55 17.5 8.02 28 7.23 7.54 8.3 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR8 Middle 2 2 12:55 T. 8.4 7.23 7.54 8.3 TMCLKI. HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR8 Bottom 4 3 1 12:55 T. 8.4 2.7 7.6 8.4 </td <td>TMCLKL</td> <td>HY/2012/08</td> <td>2015-01-19</td> <td>Mid-Ebb</td> <td>Fine</td> <td>Small Wave</td> <td>IS15</td> <td>Middle</td> <td>5.3</td> <td>2</td> <td>1</td> <td>12:18</td> <td>17.5</td> <td>7.9</td> <td>27.9</td> <td>7.17</td> <td>7.02</td> <td>8.1</td>	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS15	Middle	5.3	2	1	12:18	17.5	7.9	27.9	7.17	7.02	8.1
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave IS15 Bottom 9.6 3 2 12:18 17.6 7.94 28 7 7.33 8.4	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS15	Middle	5.3	2	2	12:18	17.5	7.91	27.9	7.13	6.95	7.9
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR8 Surface 1 1 1 12:55 17.5 8.02 28 7.25 7.47 8.2	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS15	Bottom	9.6	3	1	12:18	17.6	7.93	27.9	7.02	7.24	8.2
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR8 Middle 2 1 12:55 17:5 18:04 18:05	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	IS15	Bottom	9.6	3	2	12:18	17.6	7.94	28	7	7.33	8.4
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR8 Middle 2 1 12:55	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR8	Surface	1	1	1	12:55	17.5	8.02	28	7.25	7.47	8.2
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR8 Middle 2 2 12:55	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR8	Surface	1	1	2	12:55	17.6	8.03	28	7.23	7.54	8.3
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR8 Bottom 4 3 1 12:55 17.5 8.04 28 7.17 7.67 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR8 Bottom 4 3 2 12:55 17.5 8.03 28.1 7.14 7.6 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Surface 1 1 12:39 17.5 8.03 28.1 7.31 7.34 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Middle 2 1 1:2:39 17.5 8 28 7.31 7.34 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Bottom 4.4 3 1 12:39 17.5 8.01 28 7	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR8	Middle		2	1	12:55						
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR8 Bottom 4 3 2 12:55 17.5 8.03 28.1 7.14 7.6 8.6	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR8	Middle		2	2	12:55						
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Surface 1 1 12:39 17.5 7.99 27.9 7.28 7.41 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Middle 2 12:39 17.5 8 28 7.31 7.34 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Middle 2 1 12:39 1 12:39 1 1 1 12:39 1 1 1 1:23 1 1:23 1 1:23 1 1:23 1 1:23 1 1:23 1 1:23 1 1:23 1 1:23 1 1:23 1 1:23 1 1:23 1 1:23 1 1:23 1 1:23 1:23 1:7.5 8.01 28 7.24 7.62 8.8 8.6 1	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR8	Bottom	4	3	1	12:55	17.5	8.04	28	7.17	7.67	8.4
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Surface 1 1 2 12:39 17.5 8 28 7.31 7.34 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Middle 2 1 12:39 1 1 2 12:39 1 1 2 12:39 1 1 2 12:39 1 1 2 12:39 1 1 2 12:39 1 1 2 12:39 1 1 2 12:39 1 5 8 8 7.24 7.62 8 8.8 8 1 12:39 17.5 8.01 28 7.24 7.62 8.8 8 8 6 1 1 1 12:39 17.5 8.01 28 7.24 7.62 8.8 8 6 7.42 7.62 8.8 8 6 7.42 <	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR8	Bottom	4	3	2	12:55	17.5	8.03	28.1	7.14	7.6	8.6
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Middle 2 1 12:39 1 12:39 1 12:39 1 12:39 1 12:39 1 1 12:39 1 12:39 1 12:39 1 1 12:39 1 1 12:39 1 1 12:39 1 1 12:39 1 1 12:39 1 2 12:39 1 2 12:39 1 2 12:39 1 2 12:39 1 2 12:39 1 2 1 1 2:39 17.5 8.01 28 7.24 7.62 8.8 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Surface 1 1 1 13:43 17.6 7.9 27.7 7.36 7.23 8.1 1 1 1 13:43 17.6 7.9 27.7 7.36 7.23	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR9	Surface	1	1	1	12:39	17.5	7.99	27.9	7.28	7.41	8.4
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Middle 2 2 12:39 1 12:39 17.5 8.01 28 7.24 7.62 8.8 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Bottom 4.4 3 2 12:39 17.5 8.01 28 7.24 7.62 8.8 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Surface 1 1 1 13:43 17.6 7.9 27.7 7.36 7.23 8.1 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Surface 1 1 2 13:43 17.6 7.92 27.8 7.39 7.16 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Middle 6.2 2 1 13:43	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR9	Surface	1	1	2	12:39	17.5	8	28	7.31	7.34	8.4
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Bottom 4.4 3 1 12:39 17.5 8.01 28 7.24 7.62 8.8 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Bottom 4.4 3 2 12:39 17.5 8.03 28 7.2 7.68 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Surface 1 1 13:43 17.6 7.9 27.7 7.36 7.23 8.1 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Middle 6.2 2 1 13:43 17.6 7.92 27.8 7.39 7.16 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Middle 6.2 2 1 13:43 17.7 7.97	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR9	Middle		2	1	12:39						
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR9 Bottom 4.4 3 2 12:39 17.5 8.03 28 7.2 7.68 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Surface 1 1 13:43 17.6 7.9 27.7 7.36 7.23 8.1 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Surface 1 1 2 13:43 17.6 7.92 27.8 7.39 7.16 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Midelle 6.2 2 1 13:43 17.6 7.94 27.9 7.3 7.34 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Bottom 11.4 3 1 13:43 17.7 7.97 <td>TMCLKL</td> <td>HY/2012/08</td> <td>2015-01-19</td> <td>Mid-Ebb</td> <td>Fine</td> <td>Small Wave</td> <td>SR9</td> <td>Middle</td> <td></td> <td>2</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR9	Middle		2	2							
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Surface 1 1 13:43 17.6 7.9 27.7 7.36 7.23 8.1 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Surface 1 1 2 13:43 17.6 7.92 27.8 7.39 7.16 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Middle 6.2 2 1 13:43 17.6 7.94 27.9 7.3 7.34 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Middle 6.2 2 2 13:43 17.7 7.95 27.9 7.27 7.42 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Bottom 11.4 3 1 13:43 17.7 7.9	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR9	Bottom	4.4	3	1	12:39	17.5	8.01	28	7.24	7.62	8.8
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Surface 1 1 13:43 17.6 7.9 27.7 7.36 7.23 8.1 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Surface 1 1 2 13:43 17.6 7.92 27.8 7.39 7.16 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Middle 6.2 2 1 13:43 17.6 7.94 27.9 7.3 7.34 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Middle 6.2 2 2 13:43 17.7 7.95 27.9 7.27 7.42 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Bottom 11.4 3 1 13:43 17.7 7.9	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR9	Bottom	4.4	3	2	12:39	17.5	8.03	28	7.2	7.68	8.6
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Surface 1 1 2 13:43 17.6 7.92 27.8 7.39 7.16 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Middle 6.2 2 1 13:43 17.6 7.94 27.9 7.3 7.34 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Bottom 11.4 3 1 13:43 17.7 7.95 27.9 7.27 7.42 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Bottom 11.4 3 1 13:43 17.7 7.97 28 7.2 7.55 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave CS4 Surface 1 1 1 13:43 17.7	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR10A		1	1	1	13:43	17.6			7.36	7.23	8.1
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Middle 6.2 2 2 13:43 17.7 7.95 27.9 7.27 7.42 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Bottom 11.4 3 1 13:43 17.7 7.97 28 7.2 7.55 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Bottom 11.4 3 2 13:43 17.7 7.98 28.1 7.18 7.61 8.8 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Surface 1 1 19:53 17.8 7.89 28.1 7.42 6.69 7.6 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Surface 1 1 19:53 17.7 7.88	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR10A	Surface	1	1	2	13:43	17.6	7.92	27.8	7.39	7.16	8.3
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Middle 6.2 2 2 13:43 17.7 7.95 27.9 7.27 7.42 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Bottom 11.4 3 1 13:43 17.7 7.97 28 7.2 7.55 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Bottom 11.4 3 2 13:43 17.7 7.98 28.1 7.18 7.61 8.8 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Surface 1 1 19:53 17.8 7.89 28.1 7.42 6.69 7.6 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Surface 1 1 19:53 17.7 7.88	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR10A	Middle	6.2	2	1	13:43	17.6	7.94	27.9	7.3	7.34	8.4
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Bottom 11.4 3 1 13:43 17.7 7.97 28 7.2 7.55 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Bottom 11.4 3 1 13:43 17.7 7.97 28 7.2 7.55 8.6 TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave CS4 Surface 1 1 19:53 17.8 7.89 28.1 7.42 6.69 7.6 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Surface 1 1 19:53 17.8 7.91 28.3 7.37 6.82 7.8 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Middle 10.9 2 19:53 17.9 7.9 28.4 7.	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR10A	Middle	6.2	2	2	13:43	17.7			7.27	7.42	8.6
TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave SR10A Bottom 11.4 3 2 13:43 17.7 7.98 28.1 7.18 7.61 8.8 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Surface 1 1 19:53 17.8 7.89 28.1 7.42 6.69 7.6 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Surface 1 1 2 19:53 17.7 7.88 28.1 7.42 6.69 7.6 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Middle 10.9 2 1 19:53 17.8 7.9 28.4 7.36 6.89 7.9 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Bottom 20.7 3 1 19:53 18 7.	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine	Small Wave	SR10A	Bottom	11.4	3	1	13:43	17.7	7.97	28	7.2	7.55	8.6
TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Surface 1 1 2 19:53 17.7 7.88 28.2 7.48 6.64 7.7 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Middle 10.9 2 1 19:53 17.8 7.91 28.3 7.37 6.82 7.8 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Bottom 20.7 3 1 19:53 18 7.99 28.6 7.31 7.03 8	TMCLKL	HY/2012/08	2015-01-19	Mid-Ebb	Fine			Bottom	11.4	3	2	13:43	17.7	7.98	28.1	7.18	7.61	
TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Surface 1 1 2 19:53 17.7 7.88 28.2 7.48 6.64 7.7 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Middle 10.9 2 1 19:53 17.8 7.91 28.3 7.37 6.82 7.8 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Bottom 20.7 3 1 19:53 18 7.99 28.6 7.31 7.03 8	TMCLKL	HY/2012/08	2015-01-21	Mid-Flood	Fine	Small Wave	CS4	Surface	1	1	1	19:53	17.8	7.89	28.1	7.42	6.69	7.6
TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Middle 10.9 2 1 19:53 17.8 7.91 28.3 7.37 6.82 7.8 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Middle 10.9 2 2 19:53 17.9 7.9 28.4 7.36 6.89 7.9 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Bottom 20.7 3 1 19:53 18 7.99 28.6 7.31 7.03 8		HY/2012/08	2015-01-21	Mid-Flood	Fine				1	1	2	19:53	17.7			7.48		
TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Middle 10.9 2 2 19:53 17.9 7.9 28.4 7.36 6.89 7.9 TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Bottom 20.7 3 1 19:53 18 7.99 28.6 7.31 7.03 8		HY/2012/08	2015-01-21	Mid-Flood	Fine			Middle	10.9	2	1	19:53	17.8			7.37		7.8
TMCLKL HY/2012/08 2015-01-21 Mid-Flood Fine Small Wave CS4 Bottom 20.7 3 1 1 19:53 18 7.99 28.6 7.31 7.03 8										2	2			+				
										3	1		+	_				8
									_	3	2		17.9					7.8

Project	Works	Date	Tide	IVVeather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood	Fine	Small Wave	CS6	Surface	1	1	1	17:19	17.7	7.63	28.3	7.42	6.26	7.4
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood	Fine	Small Wave	CS6	Surface	1	1	2	17:19	17.8	7.71	28.4	7.47	6.31	7.3
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood	Fine	Small Wave	CS6	Middle	5.9	2	1	17:19	17.9	7.77	28.7	7.31	6.47	7.6
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood	Fine	Small Wave	CS6	Middle	5.9	2	2	17:19	17.8	7.82	28.6	7.33	6.56	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood	Fine	Small Wave	CS6	Bottom	10.8	3	1	17:19	17.9	7.84	28.8	7.23	6.92	8
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood	Fine	Small Wave	CS6	Bottom	10.8	3	2	17:19	18	7.85	28.8	7.29	6.84	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood				Surface	1	1	1	19:09	18	7.98	28.5	7.48	6.62	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood	Fine	Small Wave	IS12	Surface	1	1	2	19:09	18.1	7.99	28.4	7.56	6.59	7.6
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood				Middle	7.4	2	1	19:09	18	7.98	28.5	7.33	6.82	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood		Small Wave	IS12	Middle	7.4	2	2	19:09	18.1	7.97	28.4	7.39	6.88	8
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood				Bottom	13.8	3	1	19:09	18.1	7.99	28.7	7.25	6.97	8.1
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood		Small Wave		Bottom	13.8	3	2	19:09	18.2	8	28.8	7.31	6.93	8.2
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood		Small Wave		Surface	1	1	1	18:54	17.9	7.94	28.3	7.38	6.76	7.7
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood				Surface	1	1	2	18:54	17.8	7.96	28.4	7.32	6.81	7.9
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood					5.8	2	1	18:54	18	7.89	28.6	7.28	7.01	8
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood			IS13	Middle	5.8	2	2	18:54	17.9	7.88	28.5	7.33	7.06	8.1
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood		Small Wave		Bottom	10.5	3	1	18:54	18.2	7.99	28.9	7.16	7.13	8.2
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood				Bottom	10.5	3	2	18:54	18.1	8.01	28.8	7.21	7.09	8
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood				Surface	1	1	1	19:31	17.8	7.96	28.4	7.41	6.92	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood		Small Wave		Surface	1	1	2	19:31	17.7	7.97	28.5	7.48	6.96	8
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood		Small Wave		Middle		2	1	19:31	17.8	7.99	28.8	7.33	7.01	8.1
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood		Small Wave	IS14	Middle		2	2	19:31	17.9	7.99	28.9	7.4	6.94	7.9
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood		Small Wave		Bottom		3	1	19:31	18.1	7.97	28.9	7.27	6.76	7.7
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood		Small Wave		Bottom		3	2	19:31	18	7.96	29	7.32	6.71	7.6
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood		Small Wave		Surface	1	1	1	18:39	17.7	7.95	28.4	7.33	6.98	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood		Small Wave	IS15	Surface	1	1	2	18:39	17.8	7.96	28.5	7.39	6.88	7.9
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood	Fine	Small Wave	IS15	Middle	5.4	2	1	18:39	18	7.92	28.8	7.24	6.32	7.4
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood		Small Wave	IS15	+	5.4	2	2	18:39	18	-	28.7	7.27	6.35	7.5
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood	Fine				9.7	3	1	18:39	18.1		28.9	7.17	6.86	7.8
	HY/2012/08	2015-01-21	Mid-Flood					9.7	3	2	18:39	18		28.8	7.23	6.81	8
	HY/2012/08	2015-01-21	Mid-Flood			SR8	Surface	1	1	1	18:07	17.8	•	28.8	7.64	6.43	7.4
	HY/2012/08	2015-01-21	Mid-Flood			SR8	Surface	1	1	2	18:07	17.7	7.85	28.7	7.69	6.52	7.3
TMCLKL	HY/2012/08	2015-01-21	Mid-Flood				Middle		2	1	18:07						
	HY/2012/08	2015-01-21	Mid-Flood			SR8	Middle		2	2	18:07						
	HY/2012/08	2015-01-21	Mid-Flood					4.5	3	1		17.9		28.9	7.48	6.77	7.9
	HY/2012/08	2015-01-21	Mid-Flood				1	4.5	3	2	18:07	17.8		29	7.51	6.69	7.8
	HY/2012/08	2015-01-21	Mid-Flood			SR9	Surface	1	1	1	18:23	17.7		28.7	7.45	6.77	7.7
	HY/2012/08	2015-01-21	Mid-Flood			SR9	Surface	1	1	2	18:23	17.6	7.88	28.9	7.49	6.69	7.6
	HY/2012/08	2015-01-21	Mid-Flood				Middle		2	1	18:23						
	HY/2012/08	2015-01-21	Mid-Flood			SR9	Middle		2	2	18:23						
	HY/2012/08	2015-01-21	Mid-Flood					4.6	3	[1		17.8	-	29	7.28	6.91	8
	HY/2012/08	2015-01-21	Mid-Flood				+	4.6	3	2	18:23	17.9	-	29.1	7.34	6.96	8.1
	HY/2012/08	2015-01-21	Mid-Flood				Surface	1	1	1	17:43	17.7	-	28.7	7.54	6.71	7.8
	HY/2012/08	2015-01-21	Mid-Flood				Surface	1	1	2	17:43	17.8		28.8	7.62	6.77	7.6
	HY/2012/08	2015-01-21	Mid-Flood				1	6.4	2	1	+	17.9		28.9	7.41	6.91	8.1
	HY/2012/08	2015-01-21	Mid-Flood					6.4	2	2	17:43	18	7.9	28.8	7.44	6.98	8
	HY/2012/08	2015-01-21	Mid-Flood					11.8	3	1	17:43	18.1	_	28.7	7.26	7.11	8.3
	HY/2012/08	2015-01-21	Mid-Flood					11.8	3	2	17:43	18	•	28.8	7.36	7.07	8.2
	HY/2012/08	2015-01-21	Mid-Ebb			CS4	Surface	1	1	1	11:57	18.1		28.7	7.37	6.85	7.8
	HY/2012/08	2015-01-21	Mid-Ebb			CS4	Surface	1	1	2	11:57	18		28.6	7.35	6.89	7.6
	HY/2012/08	2015-01-21	Mid-Ebb				+	10.7	2	1	11:57	18.1	-	28.7	7.27	6.95	7.9
	HY/2012/08	2015-01-21	Mid-Ebb			CS4	Middle	10.7	2	2	11:57	18.2		28.7	7.26	6.97	8.1
	HY/2012/08	2015-01-21	Mid-Ebb			CS4		20.4	3	1	11:57	18.3	_	28.7	7.2	7.07	8
	HY/2012/08	2015-01-21	Mid-Ebb			CS4	1	20.4	3	2	11:57	18.3		28.8	7.24	7.1	8.2
	HY/2012/08	2015-01-21	Mid-Ebb			CS6	Surface	1	1	1	14:19	18		28.6	7.36	6.37	7.2
	HY/2012/08	2015-01-21	Mid-Ebb			CS6	Surface	1	1	2	14:19	18		28.6	7.35	6.4	7.6
	HY/2012/08	2015-01-21	Mid-Ebb					5.3	2	1	14:19	18.1	7.9	28.7	7.26	6.58	7.6
ITMCI KI '	HY/2012/08	2015-01-21	Mid-Ebb	Fine	Small Wave	CS6	Middle	5.3	2	2	14:19	18.2	7.88	28.8	7.21	6.61	7.9

Project	Works	Date	Tide	IWeather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb	Fine	Small Wave	CS6	Bottom	10.5	3	1	14:19	18.2	7.89	28.8	7.18	7.01	8.1
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb	Fine	Small Wave	CS6	Bottom	10.5	3	2	14:19	18.3	7.85	28.9	7.2	7.04	8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb	Fine	Small Wave	IS12	Surface	1	1	1	12:37	18	7.9	28.6	7.42	6.79	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb	Fine	Small Wave	IS12	Surface	1	1	2	12:37	18.2	7.93	28.7	7.45	6.82	7.7
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb	Fine	Small Wave	IS12	Middle	7.3	2	1	12:37	18.2	7.97	28.7	7.29	6.95	7.9
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb	Fine	Small Wave	IS12	Middle	7.3	2	2	12:37	18.2	7.96	28.7	7.32	6.98	8.1
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb	_			Bottom	13.6	3	1	12:37	18.3	8	28.8	7.18	7.05	8.2
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb	Fine	Small Wave	IS12	Bottom	13.6	3	2	12:37	18.3	8.01	28.8	7.15	7.08	8.3
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb				Surface	1	1	1	12:56	18.1	7.98	28.6	7.21	6.85	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb				Surface	1	1	2	12:56	18.1	7.95	28.7	7.24	6.9	7.7
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb			IS13		5.7	2	1	12:56	18.2	7.92	28.7	7.2	7.12	8.2
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb			IS13	Middle	5.7	2	2	12:56	18.3	7.92	28.8	7.18	7.15	8.3
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb				Bottom	10.3	3	1	12:56	18.3	8	28.8	7.09	7.2	8.2
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb				Bottom	10.3	3	2	12:56	18.4	8.01	28.8	7.07	7.24	8.3
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb				Surface	1	1	1	12:17	18.1	7.95	28.6	7.32	7.02	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb				Surface	1	1	2	12:17	18.1	7.96	28.6	7.3	7.03	8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb	_				8.1	2	1	12:17	18.1	7.9	28.7	7.21	7.12	8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb					8.1	2	2	12:17	18.2	7.91	28.6	7.24	7.1	8.2
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb				Bottom	15.1	3	1	12:17	18.2	7.99	28.7	7.16	6.84	7.6
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb				Bottom	15.1	3	2	12:17	18.3	7.98	28.8	7.19	6.88	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb				Surface	1	1	1	13:17	18.1	7.97	28.6	7.27	7.01	8.1
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb				Surface	1	1	2	13:17	18	7.99	28.6	7.25	7.05	8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb			IS15		5.2	2	1	13:17	18.2	7.95	28.7	7.18	6.94	7.9
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb			IS15		5.2	2	2	13:17	18.3	7.94	28.7	7.15	6.9	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb		Small Wave			9.4	3	1	13:17	18.3	7.96	28.7	7.1	6.99	8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb					9.4	3	2	13:17	18.4	7.98	28.8	7.05	7.03	8.2
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb		Small Wave	SR8	Surface	1	1	1	13:57	18.1	7.84	28.6	7.51	6.54	7.6
							Surface	1	1	2	13:57	18	7.88	28.6	7.54	6.6	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb			SR8	Middle		2	1	13:57						
	HY/2012/08	2015-01-21	Mid-Ebb				Middle		2	2	13:57						
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb					4.3	3	1	13:57	18.2		28.7	7.4	6.86	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb					4.3	3	2	13:57	18.2		28.8	7.38	6.85	7.9
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb			SR9	Surface	1	1	1	13:37	18	7.9	28.6	7.36	6.86	7.7
-	HY/2012/08	2015-01-21	Mid-Ebb				Surface	1	1	2	13:37	18	7.93	28.6	7.39	6.9	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb				Middle		2	1	13:37						
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb			SR9	Middle		2	2	13:37						
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb					4.2	3	1	13:37	18.2	8	28.8	7.21	7.02	8
	HY/2012/08	2015-01-21	Mid-Ebb				 	4.2	3	2	13:37	18.2		28.9	7.26	7.05	8.3
	HY/2012/08	2015-01-21	Mid-Ebb				Surface	1	1	1	14:41	18.1		28.6	7.44	6.84	7.6
TMCLKL	HY/2012/08	2015-01-21					Surface	1	1	2	14:41	18		28.5	7.48	6.85	7.8
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb					6.3	2	[1		18.2	-	28.7	7.34	7.04	8
	HY/2012/08	2015-01-21						6.3	2	2	14:41	18.2	-	28.8	7.3	7.06	8.3
	HY/2012/08	2015-01-21	Mid-Ebb					11.6	3	1		18.3		28.9	7.28	7.17	8.2
TMCLKL	HY/2012/08	2015-01-21	Mid-Ebb					11.6	3	2	14:41	18.3		29	7.25	7.19	8.4
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood				Surface	[1	1	[1	10:35	17.7		27.8	7.33	7.18	8.1
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood			CS4	Surface	[1	1	2	10:35	17.8		27.8	7.3	7.24	8.3
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood					10.8	2	1	10:35	17.8		27.9	7.21	7.4	8.6
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood			CS4	Middle	10.8	2	2	10:35	17.9		27.9	7.18	7.48	8.8
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood					20.6	3	[1	10:35	17.9		28	7.04	7.68	8.9
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood			CS4		20.6	3	2	10:35	17.9		28.1	7.01	7.74	8.7
	HY/2012/08	2015-01-23	Mid-Flood				Surface	[1	1	[1	08:05	17.7	_	27.9	7.37	7.18	8.2
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood			CS6	Surface	1	1	2	08:05	17.7	-	27.9	7.34	7.07	8
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood					5.8	2	1	08:05	17.7		27.9	7.39	7.31	8.4
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood					5.8	2	2	08:05	17.8	7.9	27.9	7.41	7.38	8.2
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood					10.6	3	1	08:05	17.8		28	7.28	7.58	8.6
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood			CS6		10.6	3	2	08:05	17.8		28	7.25	7.52	8.4
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood				Surface	1	1	1	10:00	17.7		27.9	7.2	7.17	8
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood	Fine	Small Wave	IS12	Surface	[1	1	2	10:00	17.8	8.02	27.9	7.17	7.25	8.3

Project	Works	Date	Tide	I Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood	Fine	Small Wave	IS12	Middle	7.3	2	1	10:00	17.8	8.08	28	7.08	7.36	8.4
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood	Fine	Small Wave	IS12	Middle	7.3	2	2	10:00	17.8	8.09	28.1	7.05	7.3	8.3
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood	Fine	Small Wave	IS12	Bottom	13.6	3	1	10:00	17.8	8.04	28.1	6.89	7.58	8.7
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood	Fine	Small Wave	IS12	Bottom	13.6	3	2	10:00	17.9	8.03	28.2	6.93	7.65	8.5
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood	Fine	Small Wave	IS13	Surface	1	1	1	09:43	17.8	8.01	27.8	7.26	7.2	8.2
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood	Fine	Small Wave	IS13	Surface	1	1	2	09:43	17.8	8.02	27.9	7.23	7.13	8.3
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood					5.7	2	1	09:43	17.8	8.05	27.9	7.16	7.25	8.2
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood		Small Wave		Middle	5.7	2	2	09:43	17.8	8.03	27.9	7.12	7.3	8.4
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood		Small Wave		Bottom	10.4	3	1	09:43	17.9	8.09	28	7.03	7.56	8.6
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood				Bottom	10.4	3	2	09:43	17.9	8.1	28.1	6.99	7.48	8.4
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood				Surface	1	1	1	10:17	17.7	8.04	27.8	7.25	7.06	7.8
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood				Surface	1	1	2	10:17	17.6	8.05	27.8	7.28	7.13	8
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood		Small Wave			8.4	2	1	10:17	17.7	7.98	28	7.13	7.27	8.2
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood					8.4	2	2	10:17	17.8	7.99	28	7.1	7.34	8.4
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood	_			Bottom	15.8	3	1	10:17	17.9	8.01	28	6.92	7.68	8.6
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood				Bottom	15.8	3	2	10:17	17.8	8.02	28.1	6.97	7.6	8.9
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood		Small Wave		Surface	1	1	1	09:26	17.7	7.97	27.9	7.36	7.19	8
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood				Surface	1	1	2	09:26	17.8	7.95	28	7.33	7.11	8.2
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood					5.4	2	1	09:26	17.7	7.94	28	7.2	7.28	8.2
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood		Small Wave			5.4	2	2	09:26	17.8	7.94	28	7.23	7.34	8.4
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood		Small Wave			9.8	3	1	09:26	17.8	7.95	28.1	7.07	7.6	8.6
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood					9.8	3	2	09:26	17.8	7.96	28.2	7.1	7.52	8.5
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood		Small Wave		Surface	1	1	1	08:56	17.7	8.01	27.9	7.23	7.09	8
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood		Small Wave		Surface	1	1	2	08:56	17.8	8.03	28	7.2	7.14	8.1
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood		Small Wave		Middle		2	1	08:56						
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood		Small Wave		Middle		2	2	08:56						
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood		Small Wave		Bottom	4.2	3	1	08:56	17.8	8.05	28	7.08	7.36	8.6
							Bottom	4.2	3	2	08:56		8.06		7.13	7.29	8.3
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood				Surface	1	1	1	09:11	17.7		28	7.31	7.28	8.4
	HY/2012/08	2015-01-23	Mid-Flood				Surface	1	1	2		17.6	8.05	28.1	7.29	7.22	8.3
	HY/2012/08	2015-01-23	Mid-Flood				Middle		2	1	09:11						
-	HY/2012/08	2015-01-23	Mid-Flood				Middle		2	2	09:11						
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood					4.6	3	1		17.7		28.1	7.14	7.46	8.7
-	HY/2012/08	2015-01-23	Mid-Flood					4.6	3	2		17.8		28.1	7.11	7.39	8.5
-	HY/2012/08	2015-01-23	Mid-Flood				Surface	1	1	1	08:32	17.7		27.9	7.31	7.02	7.8
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood				Surface	1	1	2	08:32	17.7	+	27.9	7.29	6.95	8.2
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood					6.2	2	1	08:32	17.7		27.9	7.35	7.14	8.1
	HY/2012/08	2015-01-23	Mid-Flood					6.2	2	2	08:32	17.7	7.93		7.33	7.21	8.3
	HY/2012/08	2015-01-23	Mid-Flood					11.4	3	1	08:32	17.8	7.99		7.17	7.38	8.7
TMCLKL	HY/2012/08	2015-01-23	Mid-Flood					11.4	3	2	08:32	17.8	_	28.1	7.2	7.42	8.4
	HY/2012/08	2015-01-23	Mid-Ebb				Surface	1	1	1	13:26	18.2	7.99		7.24	7.17	8.2
	HY/2012/08	2015-01-23					Surface	1	1	2	13:26	18.1		28.1	7.26	7.19	8.3
	HY/2012/08	2015-01-23	Mid-Ebb	_				10.8	2	1	13:26	18.1		28.2	7.2	7.34	8.4
TMCLKL	HY/2012/08	2015-01-23						10.8	2	2	13:26	18.1		28.1	7.18	7.4	8.6
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	•				20.5	3	1	13:26	18.2		28.2	7.06	7.54	8.6
	HY/2012/08	2015-01-23	Mid-Ebb					20.5	3	2	13:26	18.1		28.2	7.05	7.5	8.4
	HY/2012/08	2015-01-23	Mid-Ebb				Surface	1	1	1	15:42	17.9	7.9	28.1	7.32	7.12	8
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	_			Surface	1	1	2	15:42	18		28.1	7.35	7.18	7.9
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	_				5.7	2	1	15:42	18		28.2	7.3	7.24	8.3
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	_				5.7	2	2	15:42	17.9		28.2	7.32	7.3	8.4
		2015-01-23	Mid-Ebb					10.4	3	1	15:42	18.1		28.2	7.24	7.54	8.6
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb					10.4	3	2	15:42	18		28.3	7.26	7.49	8.9
	HY/2012/08	2015-01-23	Mid-Ebb				Surface	1	1	1	14:04	18	-	27.9	7.24	7.16	8
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	,			Surface	1	1	2	14:04	18.1	_	28	7.22	7.18	8.2
		2015-01-23	Mid-Ebb	,				7.2	2	1	14:04	18.1	+	28.1	7.1	7.28	8.3
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb				Middle	7.2	2	2	14:04	18.2		28.1	7.06	7.26	8.4
	HY/2012/08		Mid-Ebb					13.4	3	1	14:04	18.2		28.2	6.92	7.5	8.6
TMCLKL	HY/2012/08	2015-01-23	Mid-⊨bb	Sunny	Small Wave	JIS12	Bottom	[13.4	[3	2	14:04	18.2	8.03	28.2	6.94	7.46	8.7

Project	Works	Date	Tide	IVVeather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	Sunny	Small Wave	IS13	Surface	1	1	1	14:23	18.2	7.98	28	7.21	7.1	8.1
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	Sunny	Small Wave	IS13	Surface	1	1	2	14:23	18.1	7.97	28.1	7.22	7.12	8.2
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	Sunny	Small Wave	IS13	Middle	5.6	2	1	14:23	18.1	8.02	28.2	7.1	7.24	8.4
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	Sunny	Small Wave	IS13	Middle	5.6	2	2	14:23	18.2	8.03	28.1	7.12	7.26	8.3
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	Sunny	Small Wave	IS13	Bottom	10.2	3	1	14:23	18.2	8.06	28.2	7.03	7.4	8.6
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	Sunny	Small Wave	IS13	Bottom	10.2	3	2	14:23	18.1	8.09	28.2	7.05	7.42	8.7
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	Sunny	Small Wave	IS14	Surface	1	1	1	13:46	18.1	8.01	28	7.21	7.1	7.8
TMCLKL	HY/2012/08	2015-01-23		Sunny	Small Wave	IS14	Surface	1	1	2	13:46	18.1	8.02	27.9	7.23	7.14	8.2
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	,				8.2	2	1	13:46	18.2	7.98	28	7.1	7.2	8.4
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb			IS14		8.2	2	2	13:46	18.1	7.97	28	7.14	7.22	8.3
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	,			Bottom	15.4	3	1	13:46	18.2	8.02	28.1	6.94	7.56	8.6
TMCLKL	HY/2012/08	2015-01-23		,			Bottom	15.4	3	2	13:46	18.2	8.04	28.2	6.96	7.54	8.7
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	,			Surface	1	1	1	14:42	18.1	7.99	28.1	7.3	7.16	8.2
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	,			Surface	1	1	2	14:42	18	7.96	28.1	7.28	7.14	8.3
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	,		IS15		5.3	2	1	14:42	18.1	7.96	28.2	7.21	7.22	8.4
TMCLKL	HY/2012/08	2015-01-23		,		IS15	Middle	5.3	2	2	14:42	18.1	7.98	28.2	7.18	7.26	8.5
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	,				9.6	3	1	14:42	18	7.98	28.2	7.14	7.54	8.6
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	,				9.6	3	2	14:42	18.1	7.96	28.3	7.1	7.48	8.7
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb				Surface	1	1	[1	15:19	18.2	7.98	28.1	7.2	7.11	8
TMCLKL	HY/2012/08	2015-01-23					Surface	1	1	2	15:19	18.1	7.96	28.1	7.16	7.14	8.3
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb				Middle		2	1	15:19						
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb			SR8	Middle		2	2	15:19		<u> </u>				
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb				Bottom	4	3	1	15:19	18.2	8	28.2	7.06	7.28	8.4
TMCLKL	HY/2012/08	2015-01-23					Bottom	4	3	2	15:19	18.3	7.98	28.1	7.08	7.32	8.6
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	,	Small Wave	SR9	Surface	1	1	1	15:02	18.2	7.99	28.1	7.24	7.18	8.1
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	,		SR9	Surface	1	1	2	15:02	18.1	8.01	28.2	7.26	7.22	8.4
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	•	Small Wave	SR9	Middle		2	1	15:02						
				_			Middle		2	2	15:02						
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	_			Bottom	4	3	1	15:02	18.2		28.2	7.1	7.34	8.6
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	,			Bottom	4	3	2	15:02	18.2		28.2	7.07	7.36	8.7
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb	,			Surface	1	1	1	16:07	18	7.9	28.1	7.34	7.06	8.1
TMCLKL	HY/2012/08	2015-01-23					Surface	1	1	2	16:07	18		28.2	7.36	7.01	8.2
TMCLKL	HY/2012/08	2015-01-23	Mid-Ebb					6.2	2	1	16:07	18	7.9	28.2	7.32	7.16	8.3
TMCLKL	HY/2012/08	2015-01-23		•				6.2	2	2	16:07	18.1		28.1	7.34	7.18	8.4
TMCLKL	HY/2012/08	2015-01-23		,				11.3	3	1	16:07	18.2		28.2	7.21	7.29	8.4
TMCLKL	HY/2012/08	2015-01-23						11.3	3	2	16:07	18.2		28.3	7.22	7.34	8.3
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,			Surface	1	1	1	12:34	17.8		27.8	7.26	7.3	8.1
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	_			Surface	1	1	2	12:34	17.8		27.8	7.23	7.37	8.3
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,				10.7	2	1	12:34	17.8	_	27.8	7.34	7.49	8.5
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	_				10.7	2	2	12:34	17.9	-	27.9	7.31	7.55	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,				20.4	3	1	12:34	17.9		28	7.18	7.8	8.8
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	_				20.4	3	2	12:34	17.9		28	7.15	7.73	8.5
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		CS6	Surface	1	1	11	09:49	17.6		27.6	7.28	7.43	8.2
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood			CS6	Surface	11	1	2	09:49	17.6		27.7	7.25	7.37	8.3
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,				5.9	2	1	09:49	17.6	_	27.7	7.31	7.56	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		CS6		5.9	2	2	09:49	17.7		27.8	7.29	7.5	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,				10.8	3	1	09:49	17.7		27.9	7.13	7.67	8.9
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		CS6		10.8	3	2	09:49	17.8	_	27.9	7.1	7.61	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		IS12	Surface		1	11	11:53	17.7		27.8	7.05	7.36	8.2
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		IS12	Surface	17.0	1	2	11:53	17.8	_	27.8	7.02	7.28	8.3
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,				7.3	2	11	11:53	17.8	_	27.9	7.09	7.41	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		IS12	Middle	7.3	2	<u> 2</u>	11:53	17.8	_	27.9	7.11	7.47	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		IS12		13.6	3	1	11:53	17.8		28	6.96	7.58	8.8
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		IS12		13.6	<u>კ</u>	<u>2</u>	11:53	17.9		28.1	6.92	7.66	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		IS13	Surface	1	1	1	11:30	17.7		27.7	7.09	7.32	8.2
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		IS13	Surface] c = 2	1	2	11:30	17.8		27.7	7.13	7.42	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,				5.7	2	11	11:30	17.8		27.8	7.17	7.46	8.6
TIVICLKL	HY/2012/08	12015-01-26		Cloudy	Small Wave	11913	Middle	ენ./	2		11:30	۱۱/.۵	7.99	21. 8	7.15	7.53	8.4

Project	Works	Date	Tide	IVVESTNER	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy	Small Wave	IS13	Bottom	10.4	3	1	11:30	17.9	8.04	27.9	7.03	7.68	8.8
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy	Small Wave	IS13	Bottom	10.4	3	2	11:30	17.9	8.03	27.9	6.98	7.62	8.9
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy	Small Wave	IS14	Surface	1	1	1	12:15	17.8	7.92	27.7	7.15	7.24	8.3
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy	Small Wave	IS14	Surface	1	1	2	12:15	17.8	7.93	27.8	7.12	7.18	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy	Small Wave	IS14	Middle	8.3	2	1	12:15	17.8	7.99	27.8	7.18	7.36	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy	Small Wave	IS14	Middle	8.3	2	2	12:15	17.9	8.01	27.9	7.21	7.42	8.2
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy	Small Wave	IS14	Bottom	15.6	3	1	12:15	17.9	8.05	28	7.09	7.6	8.8
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy	Small Wave		Bottom	15.6	3	2	12:15	17.9	8.06	28	7.05	7.68	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood				Surface	1	1	1	11:11	17.7	7.98	27.6	7.18	7.32	8
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood				Surface	1	1	2	11:11	17.6	7.99	27.7	7.15	7.39	8.3
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood			IS15		5.5	2	1	11:11	17.7	7.92	27.7	7.21	7.48	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		IS15	Middle	5.5	2	2	11:11	17.7	7.93	27.7	7.23	7.4	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,			Bottom	10	3	1	11:11	17.7	8.01	27.8	7.08	7.57	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,			Bottom	10	3	2	11:11	17.8	8.02	27.9	7.05	7.63	8.9
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		SR8	Surface	1	1	1	10:42	17.6	8.01	27.7	7.17	7.48	8.2
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,			Surface	1	1	2	10:42	17.7	8	27.8	7.14	7.55	8.3
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,			Middle		2	1	10:42						
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,		SR8	Middle		2	2	10:42	1	<u> </u>				
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood					4.4	3	1	10:42	17.6	8.04	27.8	7.09	7.73	8.8
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood				Bottom	4.4	3	2	10:42	17.6	8.05	27.8	7.05	7.68	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood			SR9	Surface	1	1	1	10:56	17.7	8.04	27.8	7.26	7.58	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood			SR9	Surface	1	1	2	10:56	17.7	8.05	27.8	7.23	7.5	8.5
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood			SR9	Middle		2	1	10:56						
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy	Small Wave	SR9	Middle		2	2	10:56						
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	,	Small Wave			4.8	3	1	10:56	17.7	8.09	27.8	7.15	7.61	8.9
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy	Small Wave		Bottom	4.8	3	2	10:56	17.7	8.08	27.9	7.17	7.67	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	1	10:16	17.6	7.92	27.6	7.36	7.29	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy			Surface	1	1	2	10:16	17.6	-	27.5	7.34	7.22	8.2
TMCLKL	HY/2012/08	2015-01-26	Mid-Flood	Cloudy			Middle	6.2	2	1	10:16	17.6	7.96	27.6	7.4	7.38	8.3
	HY/2012/08	2015-01-26	Mid-Flood	,				6.2	2	2	10:16	17.6	-	27.6	7.38	7.45	8.4
	HY/2012/08	2015-01-26	Mid-Flood	-				11.4	3	1	10:16	17.7	+	27.7	7.26	7.5	8.6
	HY/2012/08	2015-01-26	Mid-Flood					11.4	3	2	10:16	17.7	7.92		7.21	7.57	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	•			Surface	1	1	1	16:13	18.1		27.9	7.27	7.24	8.1
	HY/2012/08	2015-01-26		•			Surface	1	1	2	16:13	18.1		27.8	7.24	7.18	8.3
	HY/2012/08	2015-01-26	Mid-Ebb	•				10.7	2	1	16:13	18.2	8.03		7.28	7.25	8.5
TMCLKL	HY/2012/08	2015-01-26		_				10.7	2	2	16:13	18.1	8.02		7.25	7.3	8.2
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	•				20.3	3	1	16:13	18.2	+	28.1	7.14	7.64	8.7
	HY/2012/08	2015-01-26		•				20.3	3	2	16:13	18.2	+	28.1	7.16	7.68	8.6
	HY/2012/08	2015-01-26		_		CS6	Surface	1	1	1		17.8		27.8	7.28	7.34	8.1
TMCLKL	HY/2012/08	2015-01-26		,		CS6	Surface	1	1	2	18:27	17.9	-	27.9	7.3	7.35	8.3
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	,				5.8	2	1	18:27	17.9		27.9	7.3	7.48	8.8
	HY/2012/08	2015-01-26		,				5.8	2	2	18:27	17.8	8.03		7.26	7.46	8.6
	HY/2012/08	2015-01-26		,				10.6	3	1	18:27	17.9	-	28	7.14	7.52	8.4
TMCLKL	HY/2012/08	2015-01-26		,				10.6	3	2	18:27	17.9	8.02		7.16	7.5	8.3
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	_		IS12	Surface	1	1	1		18	8.02		7.03	7.2	8.1
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	•		IS12	Surface	1	1	2	16:51	18	-	27.9	7.05	7.24	8.4
	 	2015-01-26	Mid-Ebb	_				7.2	2	1	16:51	18.1	8.06		7.03	7.36	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	_		IS12	Middle	7.2	2	2	16:51	18		28	7	7.39	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	_				13.4	3	[1	16:51	18.1		28.1	6.98	7.48	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	,				13.4	3	2	16:51	18	+	28.1	7	7.52	8.6
	 	2015-01-26	Mid-Ebb	,		IS13	Surface	[1	1	1	17:10	18		28	7.03	7.27	8.1
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	,		IS13	Surface	1	1	2	17:10	18.1		27.9	7.05	7.26	8.3
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	,				5.6	2	1	17:10	18		27.9	7.08	7.34	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	,		IS13		5.6	2	2	17:10	17.9		28	7.1	7.37	8.7
	HY/2012/08	2015-01-26	Mid-Ebb	,				10.2	3	1	17:10	18.1	8.02		7.05	7.54	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	,		IS13		10.2	3	2	17:10	18.1		28	7.02	7.56	8.8
	HY/2012/08	2015-01-26	Mid-Ebb				Surface	1	1	1	16:32	18.1		27.8	7.1	7.16	8
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	IS14	Surface	[1	1	2	16:32	18.1	8	27.9	7.12	7.2	8.1

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	IS14	Middle	7.7	2	1	16:32	18.1	8.03	27.9	7.2	7.28	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	IS14	Middle	7.7	2	2	16:32	18.2	8.02	27.9	7.16	7.32	8.3
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	IS14	Bottom	15.4	3	1	16:32	18.1	8.04	28.1	7.08	7.54	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	IS14	Bottom	15.4	3	2	16:32	18	8.04	28	7.06	7.52	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	IS15	Surface	1	1	1	17:29	18		27.8	7.18	7.34	8.2
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	IS15	Surface	1	1	2	17:29	17.9	7.99	27.9	7.2	7.3	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	IS15	Middle	5.4	2	1	17:29	18	7.94	27.8	7.2	7.44	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	IS15	Middle	5.4	2	2	17:29	17.9	7.95	27.9	7.22	7.46	8.9
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	IS15	Bottom	9.7	3	1	17:29	17.9	7.98	27.8	7.1	7.48	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	IS15	Bottom	9.7	3	2	17:29	17.9	7.96	27.9	7.06	7.5	8.8
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR8	Surface	11	1 4	1	18:05	17.9		27.9	7.22	7.34	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR8	Surface	1	2	2	18:05	17.9	8.02	27.9	7.2	7.38	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR8	Middle	<u> </u>	2	1	18:05	1	├				
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR8	Middle	1.0	2	2	18:05	10	0.04	100	7.4	7.54	
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR8	Bottom	4.3	3	10	18:05	18	8.01	28	7.1	7.54	8.8
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR8	Bottom	4.3	3	2	18:05	18	8.01	28	7.06	7.56	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR9	Surface	1	1	10	17:47	18		27.8	7.24	7.44	0.1
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-01-26 2015-01-26	Mid-Ebb Mid-Ebb	Sunny Sunny	Small Wave Small Wave	SR9 SR9	Surface Middle	 	2	1	17:47 17:47	18	8.02	27.9	7.2	7.38	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR9	Middle		2	2	17:47	1	 		1		
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR9	Bottom	4.2	2	1	17:47	18.1	8.04	27.9	7.12	7.54	8.7
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR9	Bottom	4.2	3	2	17:47	18.1	8.06	28	7.08	7.6	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR10A	Surface	1	1	1	18:53	17.9	7.94	27.9	7.3	7.3	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR10A	Surface		1	2	18:53	17.8		27.8	7.32	7.32	8.6
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR10A	Middle	6.1	2	1	18:53	17.8		27.8	7.3	7.34	8.3
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR10A	Middle	6.1	2	2	18:53	17.9	7.96	27.9	7.33	7.36	8.1
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny	Small Wave	SR10A	Bottom	11.2	3	1	18:53	18	7.94	28	7.22	7.48	8.4
TMCLKL	HY/2012/08	2015-01-26	Mid-Ebb	Sunny		SR10A	+	11.2	3	2	18:53	18.1	7.96		7.2	7.46	8 7
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	CS4	Surface	1	1	1	14:10	17.8		27.8	7.48	7.58	8.4
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		CS4	Surface	1	1	2	14:10	17.8	_	27.9	7.51	7.51	8.3
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	CS4	Middle	10.9	2	1	14:10	17.9	8.1	27.9	7.31	7.43	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	_	CS4	Middle	10.9	2	2	14:10	17.9	8.11	28	7.27	7.38	8.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	CS4	Bottom	20.8	3	1	14:10	18.1	-	28.1	7.05	7.82	9.1
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	CS4	Bottom	20.8	3	2	14:10	18.1	-	28.2	7.02	7.76	8.8
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	CS6	Surface	1	1	1	11:24	17.8	8.07	27.7	7.4	7.46	8.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	CS6	Surface	1	1	2	11:24	17.8	8.08	27.6	7.37	7.52	8.4
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.9	2	1	11:24	17.8		27.7	7.28	7.28	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.9	2	2	11:24	17.9	8.1	27.7	7.31	7.2	8.5
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	CS6	Bottom	10.8	3	1	11:24	17.9	8.13	27.8	7.16	7.78	8.8
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	CS6	Bottom	10.8	3	2	11:24	18	8.14	27.9	7.12	7.85	9.1
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	IS12	Surface	1	1	1	13:27	17.8	7.99	27.8	7.54	7.39	8.4
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	IS12	Surface	1	1	2	13:27	17.8	-	27.8	7.51	7.45	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	IS12	Middle	7.4	2	1	13:27	17.9		27.9	7.39	7.23	8.5
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS12	Middle	7.4	2	2	13:27	17.9	8.03		7.41	7.28	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS12	Bottom	13.8	3	1	13:27	18		28.1	7.26	7.63	8.8
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS12	Bottom	13.8	3	2	13:27	18	8.08		7.22	7.7	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS13	Surface	1	1	1	13:08	17.8		27.7	7.31	7.64	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS13	Surface	1	1	2	13:08	17.8		27.8	7.28	7.56	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS13	Middle	5.7	2	1	13:08	17.8		27.8	7.25	7.4	8.4
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS13	Middle	5.7	2	2	13:08	17.8	+	27.8	7.22	7.47	8.3
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	IS13	Bottom	10.4	3	1	13:08	17.9	-	28	7.04	7.85	9.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS13	Bottom	10.4	3	2	13:08	17.9	-	28.1	7.01	7.78	9.3
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS14	Surface	1	[1	1	13:49	17.8	-	27.8	7.46	7.49	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS14	Surface	1	1	2	13:49	17.8	-	27.9	7.42	7.55	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS14	Middle	8.3	2	1	13:49	17.8	-	27.9	7.33	7.34	8.4
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS14	Middle	8.3	2	2	13:49	17.9	8.08		7.3	7.31	8.1
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy		IS14	Bottom	15.6	3	1	13:49	17.9	8.12		7.17	7.71	8.8
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	IS14	Bottom	15.6	3	2	13:49	18	8.11	28.1	7.14	7.77	9

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	IS15	Surface	1	1	1	12:47	17.8	8.01	27.7	7.43	7.58	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	IS15	Surface	1	1	2	12:47	17.8	8.03	27.7	7.4	7.5	8.3
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	IS15	Middle	5.6	2	1	12:47	17.8	8.1	27.7	7.36	7.36	8.4
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	IS15	Middle	5.6	2	2	12:47	17.8	8.09	27.8	7.33	7.41	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	IS15	Bottom	10.2	3	1	12:47	17.8	7.99	27.8	7.11	7.73	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	IS15	Bottom	10.2	3	2	12:47	17.9	7.97	27.9	7.07	7.8	9
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	1	12:17	17.8	8.07	27.6	7.27	7.33	8.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	2	12:17	17.8	8.08	27.6	7.3	7.4	8.3
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood		Small Wave		Middle		2	1	12:17						
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave	SR8	Middle		2	2	12:17						
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy				4.6	3	1	12:17	17.8	8.09	27.6	7.05	7.38	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood		Small Wave		Bottom	4.6	3	2	12:17	17.8	8.1	27.7	7.08	7.47	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave		Surface	1	1	1	12:31	17.8	7.97	27.6	7.35	7.43	8.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood		Small Wave	SR9	Surface	1	1	2	12:31	17.7	7.95	27.7	7.32	7.36	8.4
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave		Middle		2	1	12:31						
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood			SR9	Middle		2	2	12:31						
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood		Small Wave			4.8	3	1	12:31	17.8	7.99	27.7	7.16	7.29	8.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood		Small Wave		Bottom	4.8	3	2	12:31	17.8	8.01	27.8	7.12	7.37	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood		Small Wave		Surface	1	1	1	11:50	17.7	+	27.5	7.48	7.24	8.4
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood		Small Wave		Surface	1	11	2	11:50	17.8	8.11	27.6	7.44	7.17	8.1
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave			6.3	2	1	11:50	17.8	8.14	27.6	7.37	7.08	8
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood		Small Wave		Middle	6.3	2	2	11:50	17.8	8.15	27.7	7.35	7.04	7.8
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood	Cloudy	Small Wave		Bottom	11.6	3	1	11:50	17.9	8.08	27.8	7.23	7.55	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Flood		Small Wave		Bottom	11.6	3	2	11:50	17.9	8.09	27.8	7.2	7.61	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb		Small Wave		Surface	1	1	1	18:46	17.9	8.07	27.9	7.36	7.7	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	,	Small Wave		Surface	1	1	2	18:46	17.9	8.06	27.9	7.4	7.65	8.8
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	'	Small Wave	CS4	Middle	10.8	2	1	18:46	17.9	8.11	28	7.21	7.55	8.6
	HY/2012/08		Mid-Ebb					10.8	2	2	18:46		+	28.1	7.15	7.49	8.9
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy				20.6	3	1	18:46	18		28.2	6.94	7.93	9.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb				1	20.6	3	2	18:46	17.9		28.2	6.96	7.88	8.8
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy		CS6	Surface		1	0	21:30	17.8		27.7	7.29	7.57	8.4
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy		CS6	Surface	[] []	1	2	21:30	17.9		27.6	7.25	7.62	8.8
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy				5.8	2	0	21:30	17.8	8.1	27.8	7.17	7.39	8.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb			CS6		5.8	2	4	21:30	17.8	8.1	27.6	7.21	7.33	8.6
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-01-28				CS6 CS6		10.6	3	0	21:30 21:30	17.9	_	27.7	7.06 7.01	7.89 7.96	8.9
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb Mid-Ebb	Cloudy		IS12	i	10.6	3 1	1	19:27	17.9 17.8	0.12	27.8	7.42	7.5	9.1 8.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy Cloudy		IS12	Surface Surface	1	1	2	19:27	17.8	8.01	27.9 27.8	7.42	7.56	8.1
TMCLKL	HY/2012/08	2015-01-28		Cloudy		_		7 2	1	1	19:27	17.8		 	7.27	7.34	8.6
TMCLKL	HY/2012/08	2015-01-28				IS12		7.3	2	2	19:27	17.0		28	7.36	7.39	8.4
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb Mid-Ebb	Cloudy Cloudy				7.3 13.6	3	1	19:27	18	8.04 8.08	28	7.15	7.73	8.8
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy				13.6	3	2	19:27	18		28.1	7.15	7.84	9
TMCLKL	HY/2012/08	2015-01-28		Cloudy		IS12	Surface	1	1	1	19:47	17.7		27.8	7.11	7.77	8.4
TMCLKL	HY/2012/08	2015-01-28		Cloudy		IS13	Surface	1	1	2	19:47	17.7	_	27.8	7.19	7.68	8.6
TMCLKL	HY/2012/08	2015-01-28						5.6	2	1	+	17.8		27.7	7.14	7.55	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy		IS13		5.6	2	2	19:47	17.7		27.6	7.09	7.59	8.9
TMCLKL	HY/2012/08	2015-01-28				!		10.2	3	1	19:47	17.9	8	28.1	6.96	7.96	9.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy		IS13		10.2	3	2	19:47	17.8		28.1	6.9	7.88	8.8
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb			IS14	Surface	1	1	1	19:05	17.8	_	27.9	7.36	7.6	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy		IS14	Surface	1	1	2	19:05	17.7	_	27.8	7.3	7.66	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy				8.2	2	1	19:05	17.8	_	28	7.2	7.46	8.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy		IS14		8.2	2	2	19:05	17.8		28.2	7.17	7.41	8.4
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy				15.4	3	1	19:05	18	_	28.2	7.06	7.82	9.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy		IS14		15.4	3	2	19:05	18		28.2	7.02	7.88	9.3
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy		IS15	Surface	1	1	<u>-</u> 1	20:07	17.9	_	27.6	7.31	7.71	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy		IS15	Surface	1	1	2	20:07	17.8		27.7	7.28	7.62	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb					5.5	2	1	20:07	17.7	+	27.7	7.24	7.47	8.2
		2015-01-28			Small Wave		Middle		2	2	20:07	_	8.09		7.2	7.53	8.4
TIVIOLINE	111/2012/00	12010-01-20	IVIIG LUU	Joioudy	Joinan Wave	11010	Initionic	10.0	<u> -</u>	<u> -</u>	120.07	117.0	JO.UJ	1-1.0	11.5	1,.00	JU. T

Project	Works	Date	Tide	IVVESTNER	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom	10	3	1	20:07	17.7	8	27.7	7	7.84	8.9
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb		Small Wave		Bottom	10	3	2	20:07	17.7	7.98	27.9	6.95	7.93	9.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy	Small Wave	SR8	Surface	1	1	1	20:43	17.8	8.06	27.5	7.14	7.45	8.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy	Small Wave	SR8	Surface	1	1	2	20:43	17.7	8.07	27.7	7.2	7.52	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy	Small Wave	SR8	Middle		2	1	20:43						
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy	Small Wave	SR8	Middle		2	2	20:43						
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom	4.4	3	1	20:43	17.8	8.1	27.7	6.93	7.5	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom	4.4	3	2	20:43	17.8	8.1	27.8	6.97	7.57	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy	Small Wave	SR9	Surface	1	1	1	20:28	17.7	7.99	27.6	7.24	7.54	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy	Small Wave	SR9	Surface	1	1	2	20:28	17.7	7.97	27.6	7.19	7.47	8.9
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy			Middle		2	1	20:28						
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	,			Middle		2	2	20:28						
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	,				4.6	3	1	20:28	17.8	+	27.6	7.02	7.4	8.8
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	Cloudy	Small Wave		Bottom	4.6	3	2	20:28	17.8	+	27.6	6.97	7.5	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	,	Small Wave		Surface	1	1	1	21:05	17.7	-	27.6	7.36	7.35	8.2
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	,	Small Wave		Surface	1	1	2	21:05	17.7		27.5	7.36	7.28	8.3
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	,	Small Wave			6.2	2	1	21:05	17.7		27.5	7.25	7.2	8.4
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	,	Small Wave		Middle	6.2	2	2	21:05	17.8		27.7	7.22	7.27	8.6
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	_	Small Wave		Bottom	11.4	3	1	21:05	17.9	-	27.7	7.12	7.66	8.7
TMCLKL	HY/2012/08	2015-01-28	Mid-Ebb	_	Small Wave		Bottom	11.4	3	2	21:05	17.9	8.07	27.8	7.09	7.74	8.5
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	_	Small Wave		Surface	1	1	1	16:05	17.6	7.93	27.7	7.19	7.26	8
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	_			Surface	1	1	2	16:05	17.7	-	27.8	7.24	7.29	8.3
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood				Middle	10.5	2	1	16:05	17.6	7.94	27.9	7.3	7.51	8.4
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood				Middle	10.5	2	2	16:05	17.7	7.94	27.8	7.25	7.56	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood				Bottom	20	3	1	16:05	17.7	7.98	28	7.13	7.82	8.9
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	,	Small Wave		Bottom	20	3	2	16:05	17.6	7.98	28.1	7.09	7.91	9.1
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy	Small Wave	CS6	Surface	1	1	1	13:19	17.6	8.03	27.6	7.4	7.56	8.2
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy			Surface		1	2	13:19	17.7	8.02		7.44	7.48	8.4
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy				6.7	2	1	13:19	17.6	-	27.8	7.33	7.35	8.6
	HY/2012/08	2015-01-30	Mid-Flood	,				6.7	2	2	13:19	17.7	8.02		7.3	7.31	8.3
	HY/2012/08	2015-01-30	Mid-Flood					12.4	3	1	13:19	17.6		27.7	7.25	7.68	8.8
	HY/2012/08	2015-01-30	Mid-Flood	_				12.4	3	2	13:19	17.6	+	27.8	7.21	7.72	8.9
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	_			Surface	1	1	1	15:22	17.5	-	27.5	7.5	7.37	8.1
	HY/2012/08	2015-01-30	Mid-Flood	•			Surface	1	1	2	15:22	17.5	-	27.7	7.54	7.41	8.4
-	HY/2012/08	2015-01-30	Mid-Flood	,				7.7	2	1	15:22	17.6		27.8	7.42	7.25	8
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	_				7.7	2	2	15:22	17.6		27.8	7.45	7.31	8.3
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood					14.4	3	1	15:22	17.7	+	27.7	7.29	7.56	8.7
	HY/2012/08	2015-01-30	Mid-Flood	•				14.4	3	2	15:22	17.7		27.8	7.25	7.59	8.5
	HY/2012/08	2015-01-30	Mid-Flood	,			Surface	1	1	1	15:03	17.5		27.8	7.45	7.52	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	,			Surface	1	1	2	15:03	17.7		27.8	7.38	7.45	8.5
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	,				6.2	2	1	15:03	17.5	-	27.7	7.44	7.28	8.4
	HY/2012/08	2015-01-30	Mid-Flood	,				6.2	2	2	15:03	17.6		27.9	7.42	7.32	8.3
	HY/2012/08	2015-01-30	Mid-Flood	,				11.4	3	1	15:03	17.7		27.9	7.24	7.71	8.8
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	,				11.4	3	2	15:03	17.6		28	7.21	7.63	9
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	_			Surface	1	1	1	15:44	17.5		27.8	7.39	7.37	8.1
-	HY/2012/08	2015-01-30	Mid-Flood	•			Surface	1	1	2	15:44	17.6	_	27.7	7.32	7.41	8.3
		2015-01-30	Mid-Flood	,				8.1	2	1	15:44	17.6		27.7	7.4	7.53	8.4
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	,				8.1	2	2	15:44	17.6		27.6	7.44	7.46	8.8
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	,				15.2	3	1	15:44	17.7	_	27.7	7.2	7.64	8.7
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	,				15.2	3	2	15:44	17.6		27.8	7.17	7.61	8.6
		2015-01-30	Mid-Flood				Surface	[1	1	<u> 1</u>	14:42	17.5	+	27.8	7.3	7.39	8.1
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	,			Surface	1	1	2	14:42	17.6	_	27.7	7.34	7.45	8.3
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood				Middle	6	2	1	14:42	17.6	+	27.7	7.39	7.26	8.2
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	,			Middle	6	2	2	14:42	17.5		27.7	7.44	7.31	8.4
	HY/2012/08	2015-01-30	Mid-Flood				Bottom	11	3	1	14:42	17.7		27.8	7.16	7.64	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	,			Bottom	11	3	2	14:42	17.7	+	27.7	7.2	7.73	8.9
	HY/2012/08		Mid-Flood	_			Surface	1	1	1	14:12	17.5		27.7	7.23	7.43	8.2
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy	Small Wave	SR8	Surface	[1	1	2	14:12	17.6	8.04	27.8	7.26	7.51	8.3

Project	Works	Date	Tide	Weather	Sea	Stat	Level	Water	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
		0015 01 00	Mid Flood	Classels	Condition	CDO	NA: al all a	Depth				' '	<u> </u>	7,	` ' ' '	, ,	+ , , ,
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-01-30	Mid-Flood Mid-Flood	Cloudy Cloudy			Middle Middle		2	1	14:12 14:12	+	1		 		
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy				4.4	3	1	14:12	17.6	Ω	27.5	7.15	7.55	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy				4.4	3	2	14:12	17.5	8.01	27.7	7.13	7.6	8.9
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	,			Surface	1	1	1	14:26	17.5	8	27.7	7.26	7.44	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood				Surface	1	1	2	14:26	17.6		27.8	7.35	7.51	8.7
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood				Middle	<u> </u>	2	1	14:26	1.7.10	10.02		1.00	1.101	
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy			Middle		2	2	14:26		1				
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood					4.6	3	1	14:26	17.6	7.99	27.5	7.28	7.38	8.4
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy				4.6	3	2	14:26	17.5		27.4	7.34	7.32	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	1	13:45	17.7	8.01	27.4	7.34	7.35	8.1
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	2	13:45	17.7	8.02	27.5	7.31	7.41	8.3
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy	Small Wave	SR10A	Middle	7.2	2	1	13:45	17.7	7.99	27.7	7.4	7.17	8
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy	Small Wave	SR10A	Middle	7.2	2	2	13:45	17.6	7.98	27.7	7.44	7.22	8.4
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy	Small Wave	SR10A	Bottom	13.4	3	1	13:45	17.7	8.03	27.6	7.28	7.56	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Flood	Cloudy			Bottom	13.4	3	2	13:45	17.8		27.7	7.24	7.62	8.8
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb				Surface	1	1	1	08:20	17.5	7.91	27.6	7.08	7.4	8
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb				Surface	1	1	2	08:20	17.6		27.7	7.12	7.32	8.2
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	_			Middle	10.4	2	1	08:20	17.6	7.94	27.8	7.18	7.62	8.3
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy			Middle	10.4	2	2	08:20	17.6	_	27.8	7.15	7.68	8.4
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy			Bottom	21.8	3	1	08:20	17.6	7.97	27.9	7	7.93	9
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy				21.8	3	2	08:20	17.7		28	6.97	8.01	9.3
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb				Surface	1	1	1	11:00	17.7	8.03	27.6	7.28	7.68	8.7
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy			Surface	1	1	2	11:00	17.6	8.04	27.5	7.3	7.6	8.8
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	•				6.6	2	1	11:00	17.7	8.01	27.7	7.22	7.47	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave			6.6	2	2	11:00	17.7	8.01	27.7	7.19	7.42	8.2
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	•				12.2	3	1	11:00	17.7	8.07	27.7	7.14	7.79	9.1
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	_				12.2	3	2	11:00	17.7		27.8	7.11	7.84	8.8
TMCLKL	HY/2012/08 HY/2012/08	2015-01-30	Mid-Ebb Mid-Ebb	_			Surface Surface	1		1	09:00 09:00	17.4		27.6 27.7	7.38 7.41	7.49 7.55	8.6 8.7
TMCLKL TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy Cloudy				7.6	2	1	09:00	17.5 17.5		27.7	7.41	7.36	8
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy				7.6	2	2	09:00	17.6		27.8	7.3	7.42	8.3
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb					14.2	3	1	09:00	17.7		27.8	7.19	7.68	8.8
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy				14.2	3	2	09:00	17.7		27.9	7.14	7.71	8.9
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb				Surface	1	1	1	09:20	17.5		27.7	7.23	7.63	8.4
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy			Surface	1	1	2	09:20	17.6		27.8	7.28	7.58	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb					6.1	2	1	09:20	17.6	_	27.8	7.34	7.5	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy				6.1	2	2	09:20	17.6	8	27.8	7.31	7.43	8.8
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb					11.2	3	1	09:20	17.7	8.01	27.8	7.12	7.82	8.9
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy			Bottom	11.2	3	2	09:20	17.7	_	27.9	7.1	7.75	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb				Surface	1	1	1	08:40	17.5		27.6	7.25	7.48	8.2
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb				Surface	1	1	2	08:40	17.5		27.6	7.2	7.53	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb					8	2	1	08:40	17.6		27.7	7.28	7.64	8.8
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy			Middle	8	2	2	08:40	17.6		27.7	7.31	7.59	8.5
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb					15	3	1	08:40	17.6		27.8	7.08	7.78	8.7
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave			15	3	2	08:40	17.7		27.8	7.05	7.74	8.9
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	IS15	Surface	1	1	1	09:40	17.6	7.98	27.6	7.17	7.5	8.4
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	IS15	Surface	1	1	2	09:40	17.6	8	27.7	7.21	7.57	8.1
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb					5.9	2	1	09:40	17.6	_	27.7	7.28	7.38	8.2
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy				5.9	2	2	09:40	17.6		27.7	7.3	7.44	8.4
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	,				10.8	3	1	09:40	17.7		27.8	7.05	7.76	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy				10.8	3	2	09:40	17.7		27.7	7.07	7.85	9
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	,			Surface	1	1	1	10:13	17.6		27.6	7.09	7.56	8.2
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy			Surface	1	1	2	10:13	17.6	8.05	27.6	7.11	7.63	8.3
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	,			Middle		2	1	10:13						
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy			Middle	ļ	2	2	10:13					1	
	HY/2012/08		Mid-Ebb				Bottom		3	1	10:13			27.6	7.03	7.68	8.4
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom	4.2	3	2	10:13	 17.6	8.02	27.6	6.98	7.73	8.6

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR9	Surface	1	1	1	09:59	17.6	8.01	27.5	7.14	7.57	8.3
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR9	Surface	1	1	2	09:59	17.6	8.03	27.6	7.13	7.65	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR9	Middle		2	1	09:59						
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR9	Middle		2	2	09:59						
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR9	Bottom	4.4	3	1	09:59	17.6	7.98	27.6	7.18	7.5	8.4
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR9	Bottom	4.4	3	2	09:59	17.6	7.99	27.6	7.21	7.44	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR10A	Surface	1	1	1	10:35	17.6	8.02	27.5	7.23	7.47	8.2
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR10A	Surface	1	1	2	10:35	17.7	8.01	27.5	7.2	7.53	8.4
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR10A	Middle	7.1	2	1	10:35	17.7	7.98	27.6	7.28	7.28	8.2
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR10A	Middle	7.1	2	2	10:35	17.7	7.99	27.6	7.31	7.33	8.3
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR10A	Bottom	13.2	3	1	10:35	17.7	8.04	27.7	7.17	7.68	8.6
TMCLKL	HY/2012/08	2015-01-30	Mid-Ebb	Cloudy	Small Wave	SR10A	Bottom	13.2	3	2	10:35	17.8	8.05	27.7	7.14	7.75	8.9

Appendix J

Impact Dolphin Monitoring Survey

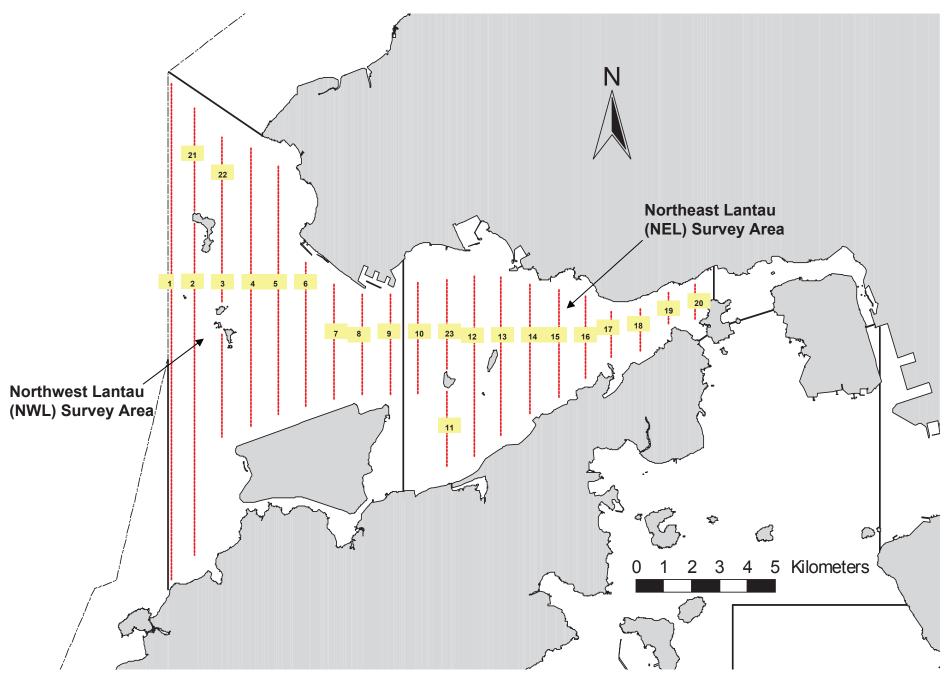


Figure 1. Transect Line Layout in Northwest and Northeast Lantau Survey Areas



Figure 2. Survey Route on January 8th, 2015 (from HKLR03 project)

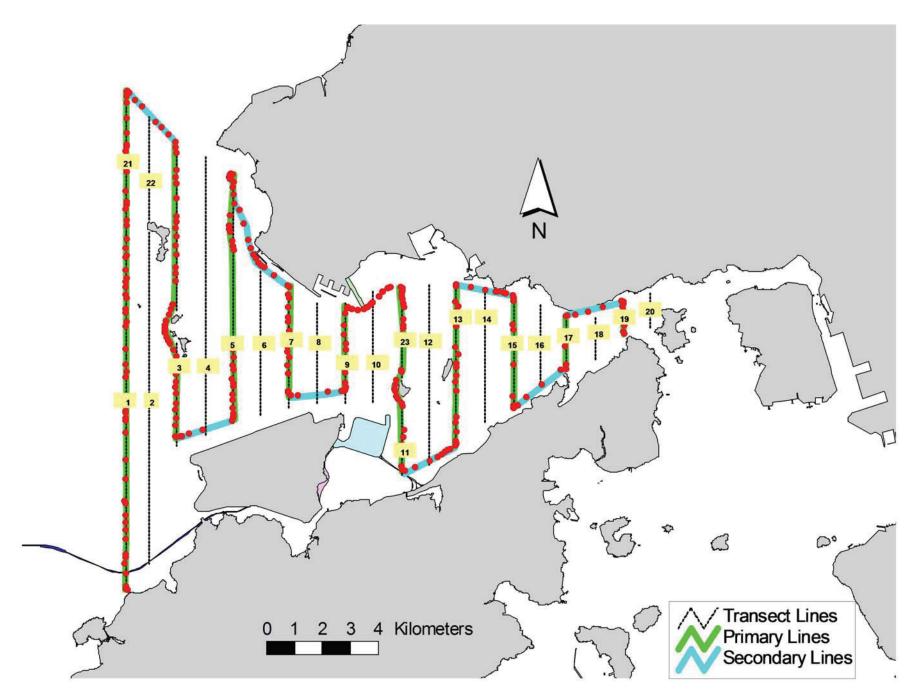


Figure 3. Survey Route on January 15th, 2015 (from HKLR03 project)

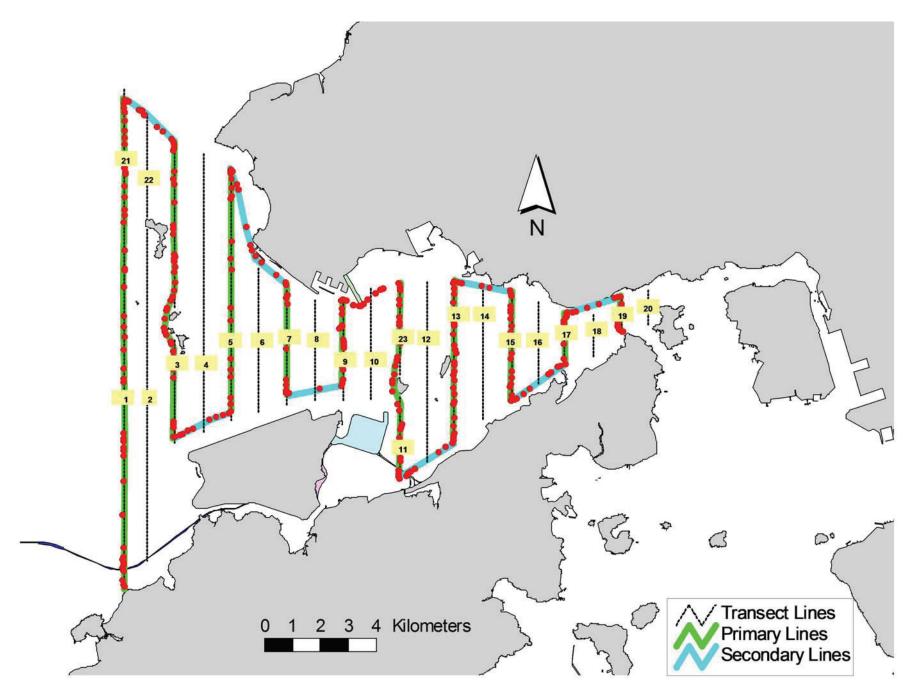


Figure 4. Survey Route on January 27th, 2015 (from HKLR03 project)

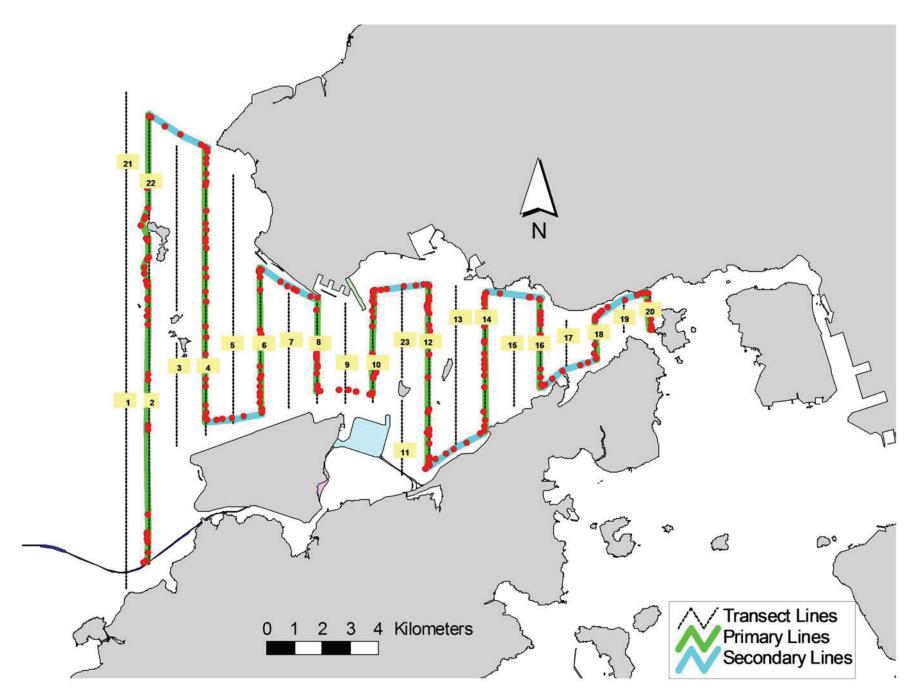


Figure 5. Survey Route on January 29th, 2015 (from HKLR03 project)

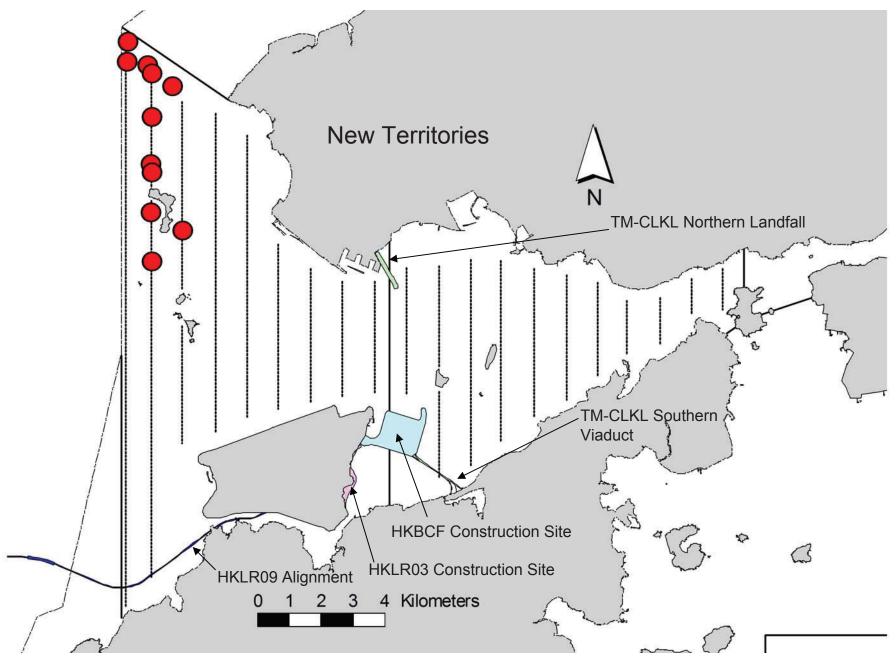


Figure 6. Distribution of Chinese White Dolphin Sightings During January 2015 HKLR03 Monitoring Surveys

Appendix I. HKLR03 Survey Effort Database (January 2015)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
8-Jan-15	NE LANTAU	2	20.00	WINTER	STANDARD31516	HKLR	Р
8-Jan-15	NE LANTAU	2	10.40	WINTER	STANDARD31516	HKLR	S
8-Jan-15	NW LANTAU	2	10.06	WINTER	STANDARD31516	HKLR	Р
8-Jan-15	NW LANTAU	3	21.99	WINTER	STANDARD31516	HKLR	Р
8-Jan-15	NW LANTAU	2	5.53	WINTER	STANDARD31516	HKLR	S
8-Jan-15	NW LANTAU	3	1.94	WINTER	STANDARD31516	HKLR	S
15-Jan-15	NW LANTAU	2	0.89	WINTER	STANDARD31516	HKLR	Р
15-Jan-15	NW LANTAU	3	36.39	WINTER	STANDARD31516	HKLR	Р
15-Jan-15	NW LANTAU	2	1.05	WINTER	STANDARD31516	HKLR	S
15-Jan-15	NW LANTAU	3	11.06	WINTER	STANDARD31516	HKLR	S
15-Jan-15	NE LANTAU	2	9.56	WINTER	STANDARD31516	HKLR	Р
15-Jan-15	NE LANTAU	3	7.91	WINTER	STANDARD31516	HKLR	Р
15-Jan-15	NE LANTAU	2	8.56	WINTER	STANDARD31516	HKLR	S
15-Jan-15	NE LANTAU	3	1.17	WINTER	STANDARD31516	HKLR	S
27-Jan-15	NE LANTAU	2	10.35	WINTER	STANDARD31516	HKLR	Р
27-Jan-15	NE LANTAU	3	7.00	WINTER	STANDARD31516	HKLR	Р
27-Jan-15	NE LANTAU	2	6.55	WINTER	STANDARD31516	HKLR	S
27-Jan-15	NE LANTAU	3	3.90	WINTER	STANDARD31516	HKLR	S
27-Jan-15	NW LANTAU	2	10.38	WINTER	STANDARD31516	HKLR	Р
27-Jan-15	NW LANTAU	3	26.22	WINTER	STANDARD31516	HKLR	Р
27-Jan-15	NW LANTAU	4	3.10	WINTER	STANDARD31516	HKLR	Р
27-Jan-15	NW LANTAU	2	7.53	WINTER	STANDARD31516	HKLR	S
27-Jan-15	NW LANTAU	3	4.15	WINTER	STANDARD31516	HKLR	S
27-Jan-15	NW LANTAU	4	0.80	WINTER	STANDARD31516	HKLR	S
29-Jan-15	NW LANTAU	1	1.41	WINTER	STANDARD31516	HKLR	Р
29-Jan-15	NW LANTAU	2	15.47	WINTER	STANDARD31516	HKLR	Р
29-Jan-15	NW LANTAU	3	13.03	WINTER	STANDARD31516	HKLR	Р
29-Jan-15	NW LANTAU	1	2.34	WINTER	STANDARD31516	HKLR	S
29-Jan-15	NW LANTAU	2	4.25	WINTER	STANDARD31516	HKLR	S
29-Jan-15	NW LANTAU	3	0.60	WINTER	STANDARD31516	HKLR	S
29-Jan-15	NE LANTAU	1	4.67	WINTER	STANDARD31516	HKLR	Р
29-Jan-15	NE LANTAU	2	15.57	WINTER	STANDARD31516	HKLR	Р
29-Jan-15	NE LANTAU	2	10.56	WINTER	STANDARD31516	HKLR	S

Appendix II. HKLR03 Chinese White Dolphin Sighting Database (January 2015)

(Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association P/S: Sighting Made on Primary/Secondary Lines

DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
8-Jan-15	1	1355	1	NW LANTAU	2	148	ON	HKLR	830029	806123	WINTER	NONE	S
8-Jan-15	2	1421	8	NW LANTAU	3	556	ON	HKLR	827716	805449	WINTER	NONE	Р
15-Jan-15	1	1132	2	NW LANTAU	3	189	ON	HKLR	830762	804693	WINTER	NONE	Р
15-Jan-15	2	1143	5	NW LANTAU	3	24	ON	HKLR	831349	804705	WINTER	NONE	Р
15-Jan-15	3	1156	3	NW LANTAU	3	464	ON	HKLR	830673	805331	WINTER	NONE	S
27-Jan-15	1	1409	2	NW LANTAU	3	163	ON	HKLR	825753	806454	WINTER	NONE	S
27-Jan-15	2	1442	3	NW LANTAU	3	410	ON	HKLR	830429	805475	WINTER	NONE	Р
29-Jan-15	1	1104	4	NW LANTAU	3	63	ON	HKLR	824825	805464	WINTER	NONE	Р
29-Jan-15	2	1128	6	NW LANTAU	2	143	ON	HKLR	826287	805456	WINTER	NONE	Р
29-Jan-15	3	1150	7	NW LANTAU	2	343	ON	HKLR	827483	805469	WINTER	NONE	Р
29-Jan-15	4	1208	5	NW LANTAU	2	143	ON	HKLR	829122	805472	WINTER	NONE	Р

Appendix III. Individual dolphins identified during HKLR03 monitoring surveys in January 2015

ID#	DATE	STG#	AREA
CH34	15/01/15	1	NW LANTAU
	15/01/15	2	NW LANTAU
	29/01/15	4	NW LANTAU
NL48	15/01/15	3	NW LANTAU
NL98	15/01/15	2	NW LANTAU
NL103	29/01/15	2	NW LANTAU
NL104	08/01/15	2	NW LANTAU
NL123	08/01/15	2	NW LANTAU
NL145	08/01/15	2	NW LANTAU
	29/01/15	2	NW LANTAU
NL182	15/01/15	1	NW LANTAU
	15/01/15	2	NW LANTAU
NL202	08/01/15	2	NW LANTAU
NL210	29/01/15	2	NW LANTAU
NL259	15/01/15	3	NW LANTAU
NL261	08/01/15	2	NW LANTAU
NL284	15/01/15	2	NW LANTAU
	29/01/15	2	NW LANTAU
NL285	08/01/15	2	NW LANTAU
NL286	08/01/15	2	NW LANTAU
NL287	29/01/15	1	NW LANTAU
NL305	29/01/15	2	NW LANTAU
NL306	29/01/15	1	NW LANTAU
NL307	29/01/15	1	NW LANTAU
WL17	27/01/15	1	NW LANTAU
WL231	29/01/15	2	NW LANTAU

Appendix IV. Photographs of Identified Individual Dolphins in January 2015 (HKLR03)

Appendix IV. (cont'd)

Appendix IV. (cont'd)

Appendix K

Event and Action Plan

Event and Action Plan for Impact Air Monitoring

			Action				
	ET (a)		IEC (a)		SOR (a)		Contractor(s)
Action Level Exceedance							
1. 2. 3. 4. 5. 6. 7.	Identify the source. Repeat measurement to confirm finding. If two consecutive measurements exceed Action Level, the exceedance is then confirmed. Inform the IEC and the SOR. Investigate the cause of exceedance and check Contractor's working procedures to determine possible mitigation to be implemented. If the exceedance is confirmed to be Project related after investigation, increase monitoring frequency to daily. Discuss with the IEC and the Contractor on remedial actions required. If exceedance continues, arrange meeting with the IEC and the SOR.	1. 2. 3. 4.	Check monitoring data submitted by the ET. Check the Contractor's working method. If the exceedance is confirmed to be Project related after investigation, discuss with the ET and the Contractor on possible remedial measures. Advise the SOR on the effectiveness of the proposed remedial measures. Supervise implementation of	1. 2. 3.	Confirm receipt of notification of failure in writing. Notify the Contractor. Ensure remedial measures properly implemented.	1. 2. 3.	Rectify any unacceptable practice Amend working methods if appropriate If the exceedance is confirmed to be Project related, submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Amend proposal if
8.	If exceedance stops, cease additional monitoring.		remedial measures.				appropriate

two consecut Level, the exc 3. Inform the IE Contractor. 4. Investigate the	source. urement to confirm finding. If tive measurements exceed Limit ceedance is then confirmed. EC, the SOR, the DEP and the 3.	submitted by the ET. Check Contractor's working method.	1. Confirm reconstitution writing. 2. Notify the Constitution of the exceed of the exc	of failure in Contractor. 2	1. Ta to exc 2. If t	Contractor(s) ake immediate actio avoid further ceedance. the exceedance is
 Identify the s Repeat meass two consecut Level, the exc Inform the IS Contractor. Investigate the check Contraction. 	urement to confirm finding. If tive measurements exceed Limit 2. ceedance is then confirmed. EC, the SOR, the DEP and the 3.	submitted by the ET. Check Contractor's working method. If the exceedance is	notification writing. 2. Notify the C	of failure in Contractor. 2	to exc exc 2. If t	avoid further ceedance.
 Repeat meast two consecut Level, the exc Inform the IE Contractor. Investigate the check Contraction. 	urement to confirm finding. If tive measurements exceed Limit 2. ceedance is then confirmed. EC, the SOR, the DEP and the 3.	submitted by the ET. Check Contractor's working method. If the exceedance is	notification writing. 2. Notify the C	of failure in Contractor. 2	to exc exc 2. If t	avoid further ceedance.
implemented 5. If the exceedarelated after imonitoring from the control of the co	actor's working procedures to ossible mitigation to be	related after investigation, discuss with the ET and the Contractor on possible remedial measures. Advise the SOR on the effectiveness of the proposed remedial measures. Supervise implementation of remedial measures.	consultation agree with the remedial implemented. Ensure remedial are properly for exceedance consider who work is responsible.	o be Project investigation, in with the IEC, he Contractor on I measures to be d. edial measures implemented. ee continues, at activity of the consible and Contractor to civity of work	rel inv pro act wo no 3. Im pro app. 5. Sto act de un	nfirmed to be Project lated after vestigation, submit oposals for remediations to IEC within orking days of otification. In the agreed oposals. In the proposal if oppopriate, op the relevant tivity of works as extermined by the SC attil the exceedance is nated.

Note: (a) ET - Environmental Team; IEC - Independent Environmental Checker; SOR - Supervising Officer's Representative

Event & Action Plan for Impact Water Quality Monitoring

Event	ET I	eader	IEC		SOR		Contractor	
Action level being exceeded by one sampling day	1. 2. 3. 4.	Repeat <i>in situ</i> measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor and SOR; Check monitoring data, all plant, equipment and Contractor's working methods.	1.	Check monitoring data submitted by ET and Contractor's working methods.	2.	Confirm receipt of notification of non-compliance in writing: Notify Contractor.	 2. 3. 	Inform the SOR and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Amend working methods if appropriate.
Action level being exceeded by two or more consecutive sampling days	 1. 2. 3. 4. 5. 6. 7. 	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, Contractor, SOR and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SOR and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level;	 2. 3. 4. 	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly; Supervise the implementation of mitigation measures.	 2. 3. 	Discuss with IEC on the proposed mitigation measures; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures.	2.	Inform the Supervising Officer and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR; Implement the agreed mitigation measures.
Limit level being exceeded	1.	Repeat measurement on next day of	1.	Check monitoring data	1.	Confirm receipt of	1.	Inform the SOR and
by one sampling day	\perp	exceedance to confirm findings;		submitted by ET and		notification of failure in		confirm notification of the

Event	ET Leader	IEC	SOR	Contractor
	 Identify source(s) of imp Inform IEC, Contractor, EPD; Check monitoring data, equipment and Contract methods; Discuss mitigation measure. SOR and Contractor 	SOR and 2. Discuss with E Contractor on premedial action all plant, sor's working 3. Review the promitigation measubmitted by Cadvise the SOR	2. Discuss with IEC, ET and Contractor on the proposition measures; as; 3. Request Contractor to review the working methods.	
Limit level being exceeded by two or more consecutive sampling days	 Repeat measurement on exceedance to confirm fit Identify source(s) of imp Inform IEC, contractor, SEPD; Check monitoring data, equipment and Contract methods; Discuss mitigation measuremeth of the contract of the contract	submitted by E Contractor's we method; SOR and 2. Discuss with E Contractor on p remedial action all plant, tor's working 3. Review the Con mitigation mea whenever nece their effectiven the SOR accord 4. Supervise the implementation measures.	T and Orking Contractor on the propose mitigation measures; 2. Request Contractor to critically review the working methods; ss; 3. Make agreement on the mitigation measures to be implemented; ssary to assure ess and advise ingly; 5. Consider and instruct, if	avoid further exceedance; 2. Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR; a. Implement the agreed mitigation measures; 4. Resubmit proposals of mitigation measures if problem still not under control; a to or 5. As directed by the Supervising Officer, to slow down or to stop all or part

Note: ET – Environmental Team, IEC – Independent Environmental Checker, SOR – Supervising Officer's Representative

Event/Action Plan for Impact Dolphin Monitoring

EVENT		ACTION		
	ET	IEC	SOR	Contractor
Action Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, SOR and Contractor; Check monitoring data. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and finding with the ET and the Contractor. 	 Discuss monitoring with the IEC and any other measures proposed by the ET; If SOR is satisfied with the proposal of any other measures, SOR to signify the agreement in writing on the measures to be implemented. 	 Inform the SOR and confirm notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SOR; Implement the agreed measures.
Limit Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, SOR and 	 Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. If SOR is satisfied with the 	 Inform the SOR and confirm notification of the non-compliance in writing; Attend the meeting to discuss with ET, IEC and SOR the necessity of additional dolphin monitoring and any other

EVENT		ACTION		
	ET	IEC	SOR	Contractor
	 Identify source(s) of impact; Inform the IEC, SOR and Contractor of findings; Check monitoring data; Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary. 	Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. 4. Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise SOR of the results and findings accordingly. 5. Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise SOR the results and findings accordingly.	proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, SOR to signify the agreement in writing on such proposals and any other mitigation measures. 3. Supervise the implementation of additional monitoring and/or any other mitigation measures.	potential mitigation measures. 3. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary. 4. Implement the agreed additional dolphin monitoring and/or any other mitigation measures.

Note: ET – Environmental Team, IEC – Independent Environmental Checker, SOR – Supervising Officer's Representative

Appendix L

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

 Table L1
 Cumulative Statistics on Exceedances

Parameters	Level of Exceedance	Total No. recorded in this reporting month	Total No. recorded since project commencement
1-hr TSP	Action	0	30
	Limit	0	2
24-hr TSP	Action	0	5
	Limit	0	1
Water Quality	Action	0	6
	Limit	0	1
Impact Dolphin	Action	0	7
Monitoring	Limit	0	0

Table L2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Cumulative Statistics						
_	Complaints	Notifications of	Successful				
		Summons	Prosecutions				
This Reporting Month (January 2015)	0	0	0				
Total No. received since project commencement	4	0	0				

Appendix M

Waste Flow Table

Monthly Summary Waste Flow Table

Name of Department: HyD Contract No. / Works Order No.: HY/2012/08

Monthly Summary Waste Flow Table for <u>January 2015</u> [to be submitted not later than the 15th day of each month following reporting month] (All quantities shall be rounded off to 3 decimal places.)

	Monthly Break-down of <u>Inert</u> Construction & Demolition Materials (i.e. Public Fill Materials)									
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Hard Rock and Large Broken Concrete	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill					
	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)					
Sub-total	64.216	0.000	0.000	0.000	64.216					
Jan-2015	30.877	0.000	0.000	0.000	30.877					
Feb-2015										
Mar-2015										
Apr-2015										
May-2015										
Jun-2015										
Half Year Sub-total										
Jul-2015										
Aug-2015										
Sep-2015										
Oct-2015										
Nov-2015										
Dec-2015										
Project Total Quantities	95.093	0.000	0.000	0.000	95.093					

			Actu	al Quantities of]	Non-inert Cons	struction Waste	Generated Mon	thly	
Month	Ме	etals	Paper/ cardbo	oard packaging		Plastics (see Note 3)		al Waste	Others, e.g. General Refuse disposed at Landfill
	(in '0	000kg)	(in '(000kg)	(in '(000kg)	0kg) (in '000kg)		(in '000ton)
	generated	recycled	generated	recycled	generated	recycled	generated	Disposed	generated
Sub-total	0.000	0.000	1.050	1.050	0.000	0.000	0.110	0.110	0.605
Jan-2015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.080
Feb-2015									
Mar-2015									
Apr-2015									
May-2015									
Jun-2015									
Half Year Sub-total									
Jul-2015									
Aug-2015									
Sep-2015									
Oct-2015									
Nov-2015									
Dec-2015									
Project Total Quantities	0.000	0.000	1.050	1.050	0.000	0.000	0.110	0.110	0.685

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*									
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed of as Public Fill	Imported Fill	Marine Disposal (Cat. L)	Marine Disposal (Cat. M)		
(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 m ³)	(in '000 m ³)		
5.000	0.000	0.000	0.000	5.000	180.000	5.000	40.000		

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*							
Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	General Refuse disposed of at Landfill			
(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)			
0.000	0.050	0.000	0.000	0.100			

Notes:

- (1) The performance targets are given in the **ER Appendix 8J Clause 14** and the EM & A Manual(s).
- (2) The waste flow table shall also include C&D materials to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³. (**ER Part 8 Clause 8.8.5** (d) (ii) refers).