
Report

Contract No. HY/2012/08
Tuen Mun – Chek Lap Kok Link –
Northern Connection Sub-sea Tunnel
Section

Sixteenth Monthly Environmental Monitoring & Audit (EM&A) Report

11 March 2015

Environmental Resources Management

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com

Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section

Sixteenth Monthly Environmental Monitoring & Audit (EM&A) Report

Document Code: 0212330_16th Monthly EM&A_20150311.doc

Environmental Resources Management

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Client:		Project N	0:				
DBJV			212330				
			Date: 11 March 2015 Approved by:				
This document presents the Sixteenth Monthly EM&A Report for Tuen Mun – Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section.							
		Mr Crai	g Reia				
		Certified	bv:				
		Ju	2				
		Mr Jovy ET Leade					
	16 th Monthly EM&A Report	VAR	JT	CAR	11/03/15		
Revision	Description	Ву	Checked	Approved	Date		
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.							
We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.			□ Public □ Public				
		∐ Co	nfidential	ISO 9 Certificate	001 : 2008 • No. FS 32515		

Ref.: HYDHZMBEEM00_0_2791L.15

12 March 2015

AECOM Supervising Officer Representative's Office No.8 Mong Fat Street, Tuen Mun, New Territories, Hong Kong By Fax (2293 6300) and By Post

Attention: Messrs. Edwin Ching / Andy Westmorelan

Dear Sirs,

Re: Agreement No. CE 48/2011 (EP)
Environmental Project Office for the
HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities,
and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2012/08 TM-CLKL Northern Connection Sub-sea Tunnel Section Monthly EM&A Report for February 2015 (EP-354/2009/C)

Reference is made to the Monthly Environmental Monitoring and Audit (EM&A) Report (for February 2015) certified by the ET Leader (ET's ref.: "0212330_16th Monthly EM&A_20150311.doc" dated 11 March 2015) and provided to us via email on 11 March 2015.

We are pleased to inform you that we have no adverse comments on the captioned monthly EM&A Report. We write to verify the captioned submission in accordance with Condition 4.4 of EP-354/2009/C.

Thank you for your kind attention. Please do not hesitate to contact the undersigned or the ENPO Leader Mr. Y. H. Hui should you have any queries.

Yours sincerely,

Traffer Deof

F. C. Tsang

Independent Environmental Checker Tuen Mun – Chek Lap Kok Link

c.c. HyD – Mr. Stephen Chan (By Fax: 3188 6614)

HyD – Mr. Matthew Fung (By Fax: 3188 6614)

AECOM – Mr. Conrad Ng (By Fax: 3922 9797)

ERM – Mr. Jovy Tam (By Fax: 2723 5660)

Dragages – Bouygues JV – Mr. C F Kwong (By Fax: 2293 7499)

Internal: DY, YH, SLUI, ENPO Site

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_2791L.15.doc

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	Ι
1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	SCOPE OF REPORT	2
1.3	ORGANIZATION STRUCTURE	2
1.4	SUMMARY OF CONSTRUCTION WORKS	2
2	EM&A RESULTS	4
2.1	AIR QUALITY	4
2.2	WATER QUALITY MONITORING	6
2.3	DOLPHIN MONITORING	7
2.4	EM&A SITE INSPECTION	12
2.5	Waste Management Status	13
2.6	ENVIRONMENTAL LICENSES AND PERMITS	13
2.7	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	15
2.8	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMA	NCE
	LIMIT	15
2.9	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL	
	Prosecutions	15
3	FUTURE KEY ISSUES	16
3.1	CONSTRUCTION ACTIVITIES FOR THE COMING MONTH	16
3.2	KEY ISSUES FOR THE COMING MONTH	16
3.3	MONITORING SCHEDULE FOR THE COMING MONTH	16
4	CONCLUSIONS AND RECOMMENDATIONS	17
4.1	CONCLUSIONS	17

APPENDIX A PROJECT ORGANIZATION

APPENDIX B CONSTRUCTION PROGRAMME

APPENDIX C ENVIRONMENTAL MITIGATION AND

ENHANCEMENT MEASURE IMPLEMENTATION

SCHEDULES (EMIS)

APPENDIX D ACTION AND LIMIT LEVELS

APPENDIX E CALIBRATION CERTIFICATE

APPENDIX F MONITORING SCHEDULE

APPENDIX G AIR QUALITY MONITORING RESULTS

APPENDIX H METEOROLOGICAL DATA

APPENDIX I WATER QUALITY MONITORING RESULTS

APPENDIX J IMPACT DOLPHIN MONITORING

APPENDIX K EVENT AND ACTION PLAN

APPENDIX L CUMULATIVE STATISTICS ON EXCEEDANCE AND

COMPLAINT

APPENDIX M WASTE FLOW TABLE

EXECUTIVE SUMMARY

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of the Tuen Mun – Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET) in accordance with *Environmental Permit No. EP-354/2009/A*. ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO). Subsequent applications for variation of environmental permits (VEP), *EP-354/2009/B* and *EP-354/2009/C*, were granted on 28 January 2014 and 10 December 2014, respectively.

The construction phase of the Project commenced on 1 November 2013 and will tentatively be completed by the end of 2018. The impact monitoring of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

This is the Sixteenth Monthly EM&A report presenting the EM&A works carried out during the period from 1 to 28 February 2015 for the *Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section* (the "Project") in accordance with the Updated EM&A Manual of the TM-CLK Link Project. As informed by the Contractor, major activities in the reporting period included:

Marine-based Works

 Rock Bund Deposition for Marine Sheet Pile Remedial Works at Works Area - Portion N-A.

Land-based Works

- Diaphragm Wall Construction for Ventilation Shaft at Works Area Portion N-C;
- TBM Platform Construction at Works Area Portion N-A;
- Delivery & Assembly of TBM at Works Area Portion N-A and,
- Set up of Slurry Treatment Plant at Works Area Portion N-C.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP Monitoring 8 sessions

1-hour TSP Monitoring 8 sessions

Impact Water Quality Monitoring 11 sessions

Impact Dolphin Monitoring 2 sessions

Joint Environmental Site Inspection 4 sessions

Implementation of Marine Mammal Exclusion Zone

There was no dredging or marine sheet piling works in open waters during this reporting period. The day-time monitoring of Dolphin Exclusion Zone (DEZ) by dolphin observers was in effect throughout the period of rock bund deposition for marine sheet pile remedial works, in which no sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded during the exclusion zone monitoring in the reporting month. According to the Contractor, rock bund deposition for marine sheet pile remedial works was completed on 28 February 2015. Thus, the day-time monitoring of Dolphin Exclusion Zone (DEZ) by dolphin observers was suspended from 28 February 2015.

Summary of Breaches of Action/Limit Levels

Breaches of Action and Limit Levels for Air Quality

No Action Level or Limit Level of air quality exceedances were recorded in the air quality monitoring of this reporting month.

Breaches of Action and Limit Levels for Water Quality

No Action Level or Limit Level of water quality exceedances were recorded in the water quality monitoring of this reporting month.

Breaches of Action and Limit Levels for Dolphin Monitoring

Whilst one (1) Limit Level exceedance was observed for the quarterly dolphin monitoring data between December 2014 and February 2015, no unacceptable impact from the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations. Due to monthly variation in dolphin occurrence within the study area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section in the quarterly EM&A reports, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

Environmental Complaints, Non-compliance & Summons

No non-compliance with EIA recommendations, EP conditions and other requirements associated with the construction of this Contract was recorded in this reporting period.

No environmental complaint was received in this reporting period.

No environmental summons was received in this reporting period.

Reporting Change

There was no reporting change required in the reporting period.

Upcoming Works for the Next Reporting Month

Works to be undertaken in the next monitoring period of March 2015 include the following:

Land-based Works

- Diaphragm Wall Construction for Ventilation Shaft at Works Area Portion N-C;
- TBM Platform Construction at Works Area Portion N-A;
- Delivery & Assembly of TBM at Works Area Portion N-A;
- Set up of Slurry Treatment Plant at Works Area Portion N-C; and
- Maintenance of armor rocks at Works Area Portion N-A.

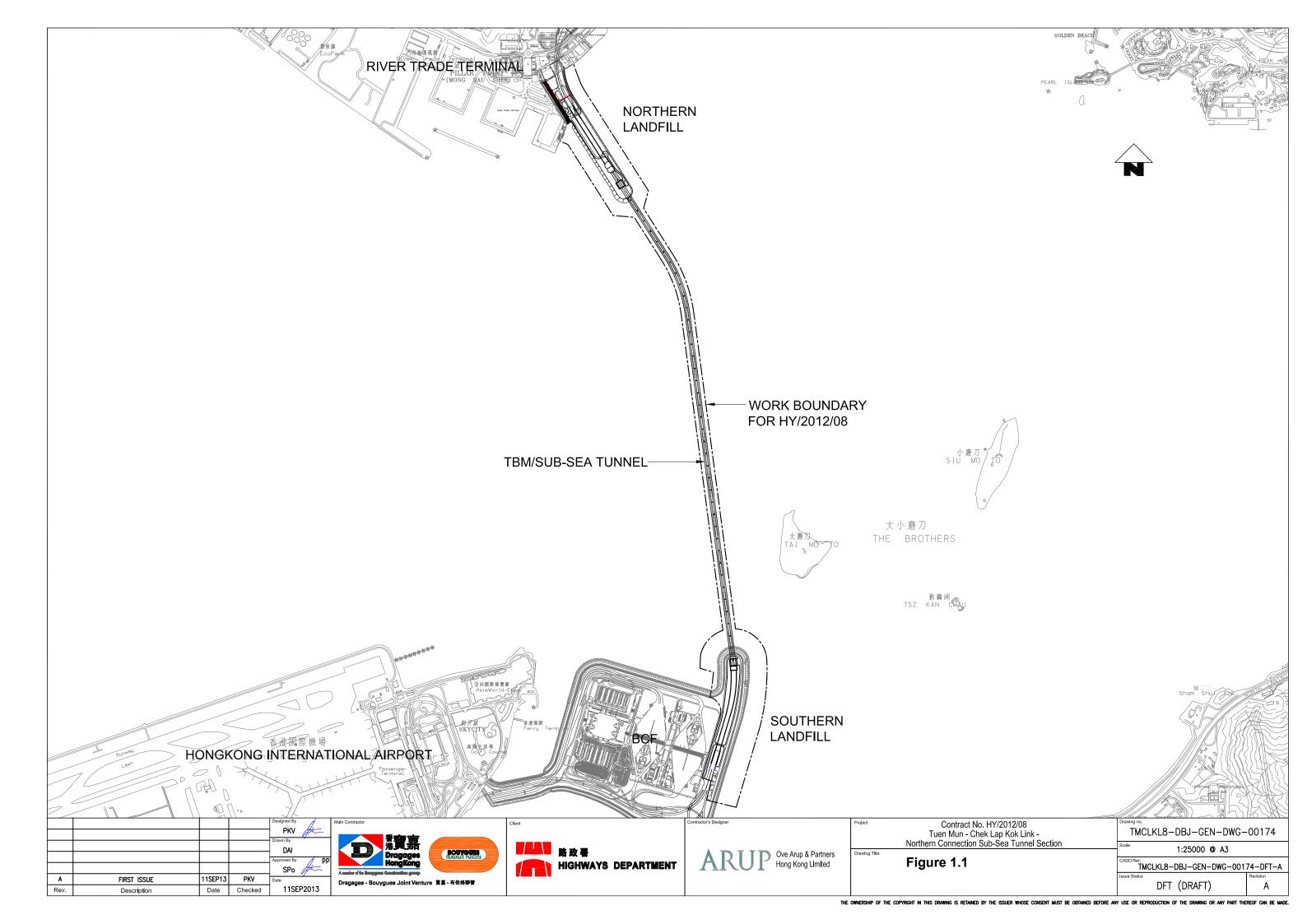
Future Key Issues

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of March 2015 are expected to be mainly associated with dust, marine water quality, marine ecology and waste management.

INTRODUCTION

1.1 BACKGROUND

1


According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong – Zhuhai – Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau – Tuen Mun – Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. ESB-175/2007) and the *Technical Memorandum of the Environmental Impact Assessment Process (EIAO-TM*). The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number AEIAR-146/2009), an Environmental Permit (EP-354/2009) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (VEP) (EP-354/2009A) was issued on 8 December 2010. Subsequent applications for variation of environmental permits (VEPs), *EP-354/2009/B and EP-354/2009/C*, were granted on 28 January 2014 and 10 December 2014, respectively.

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of TM-CLKL while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO).

Layout of the Contract components is presented in *Figure 1.1*.

The construction phase of the Contract commenced on 1 November 2013 and will tentatively be completed by 2018. The impact monitoring phase of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

1.2 Scope of Report

This is the Sixteenth Monthly EM&A Report under the *Contract No*. *HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section*. This report presents a summary of the environmental monitoring and audit works in February 2015.

1.3 ORGANIZATION STRUCTURE

The organization structure of the Contract is shown in *Appendix A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Highways Department	Engr 16/HZMB	Kenneth Lee	2762 4996	3188 6614
SOR (AECOM Asia Company	Chief Resident Engineer	Edwin Ching	2293 6388	2293 6300
Limited)	0	Andrew Westmoreland	2293 6360	2293 6300
ENPO / IEC (ENVIRON Hong Kong	ENPO Leader	Y.H. Hui	3465 2888	3465 2899
Ltd.)	IEC Dr. F.C. Tsang		3465 2828	3465 2899
Contractor (Dragages – Bouygues Joint Venture)	Environmental Manager	C.F. Kwong	2293 7322	2670 2798
,	Environmental Officer	Bryan Lee	2293 7323	2670 2798
	24-hour complaint hotline	Rachel Lam	2293 7342	
ET (ERM-HK)	ET Leader	Jovy Tam	2271 3113	2723 5660

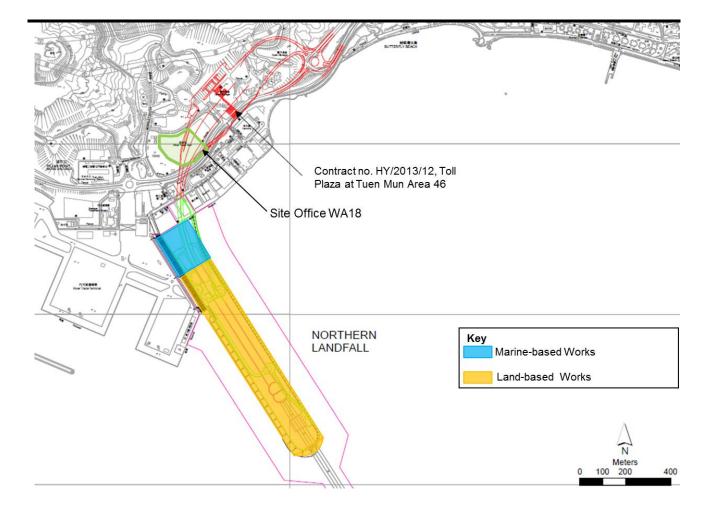
1.4 SUMMARY OF CONSTRUCTION WORKS

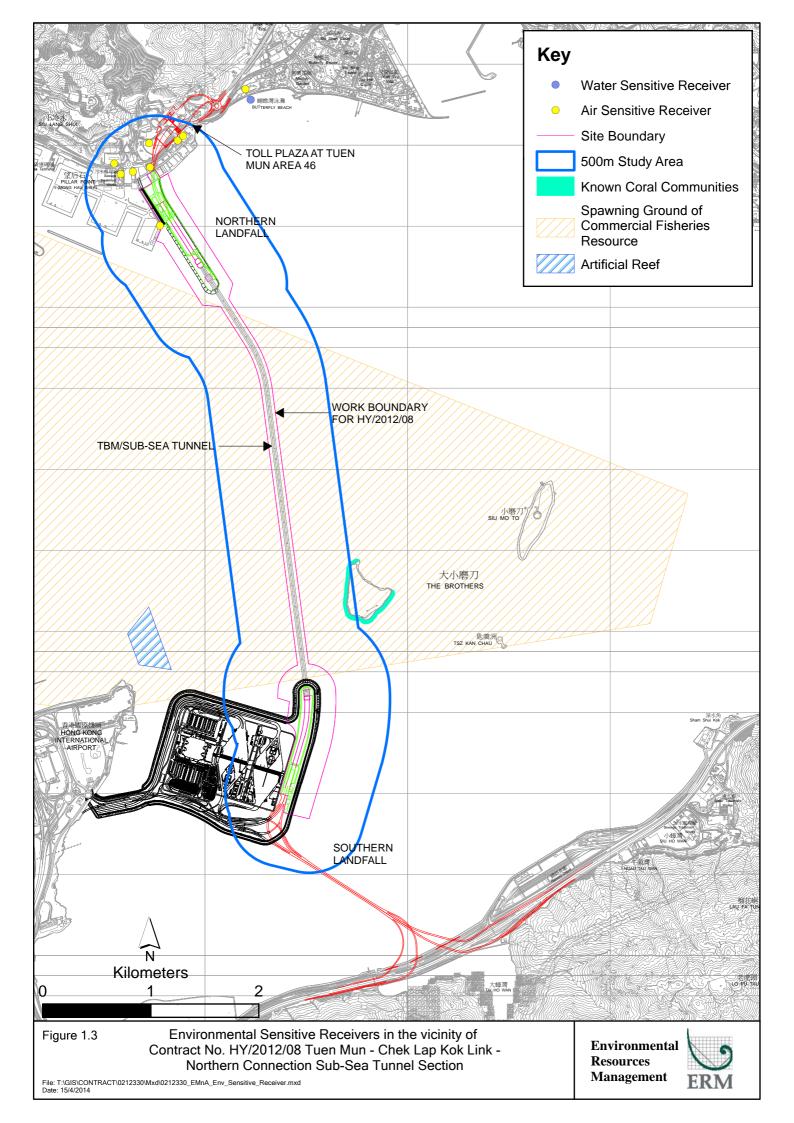
The construction phase of this Contract was commenced on 1 November 2013. The construction programme is shown in *Appendix B*.

As per DBJV's information, details of major construction works carried out in this reporting period are summarized in *Table 1.2*.

The general layout plan of the site showing the detailed works areas is shown in *Figure 1.2*. The Environmental Sensitive Receivers in the vicinity of the Project are shown in *Figure 1.3*.

The implementation schedule of environmental mitigation measures is presented in *Appendix C*.


Table 1.2 Summary of Construction Activities Undertaken during the Reporting Period


Construction Activities Undertaken

Marine-based Works

- Rock Bund Deposition for Marine Sheet Pile Remedial Works at Works Area Portion N-A. *Land-based Works*
- Diaphragm Wall Construction for Ventilation Shaft at Works Area Portion N-C;
- TBM Platform Construction at Works Area Portion N-A;
- Delivery & Assembly of TBM at Works Area Portion N-A; and
- Set up of Slurry Treatment Plant at Works Area Portion N-C.

Figure 1.2 Locations of Construction Activities - February 2015

2 EM&A RESULTS

The EM&A programme required environmental monitoring for air quality, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections

2.1 AIR QUALITY

2.1.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual and the Enhanced TSP Monitoring Plan, impact 1-hour TSP monitoring was conducted three (3) times every six (6) days and impact 24-hour TSP monitoring was carried out once every six (6) days when the highest dust impact was expected. 1-hr and 24-hr TSP monitoring frequency was increased to three times per day every three days and daily every three days, respectively, as excavation works for launching shaft commenced on 24 October 2014.

High volume samplers (HVSs) were used to carry out the 1-hour and 24-hour TSP monitoring on 3, 6, 9, 12, 15, 17, 23 and 26 February 2015 at the five (5) air quality monitoring stations in accordance with the requirements stipulated in the Updated EM&A Manual (*Figure 2.1*; *Table 2.1*). Wind meter was installed at the rooftop of ASR5 for logging wind speed and wind direction. Details of the equipment deployed are provided in *Table 2.2*. Copies of the calibration certificates for the equipment are presented in *Appendix E*.

Table 2.1 Locations of Impact Air Quality Monitoring Stations and Monitoring Dates in this Reporting Period

Monitoring Station	Monitoring Dates	Location	Description	Parameters & Frequency
ASR1	3, 6, 9, 12, 15, 17, 23	Tuen Mun	Office	TSP monitoring
	and 26 February 2015	Fireboat Station		 1-hour Total Suspended
				Particulates (1-hour TSP,
ASR5		Pillar Point Fire	Office	$\mu g/m^3$), 3 times in every 6 days
		Station		 24-hour Total Suspended
				Particulates (24-hour TSP,
AQMS1		Previous River	Bare ground	$\mu g/m^3$), daily for 24-hour in
		Trade Golf		every 6 days
				Enhanced TSP monitoring
ASR6		Butterfly Beach	Office	(commenced on 24 October 2014)
		Laundry		 1-hour Total Suspended
				Particulates (1-hour TSP,
ASR10		Butterfly Beach	Recreational	$\mu g/m^3$), 3 times in every 3 days
		Park	uses	 24-hour Total Suspended
				Particulates (24-hour TSP,
				$\mu g/m^3$), daily for 24-hour in
				every 3 days

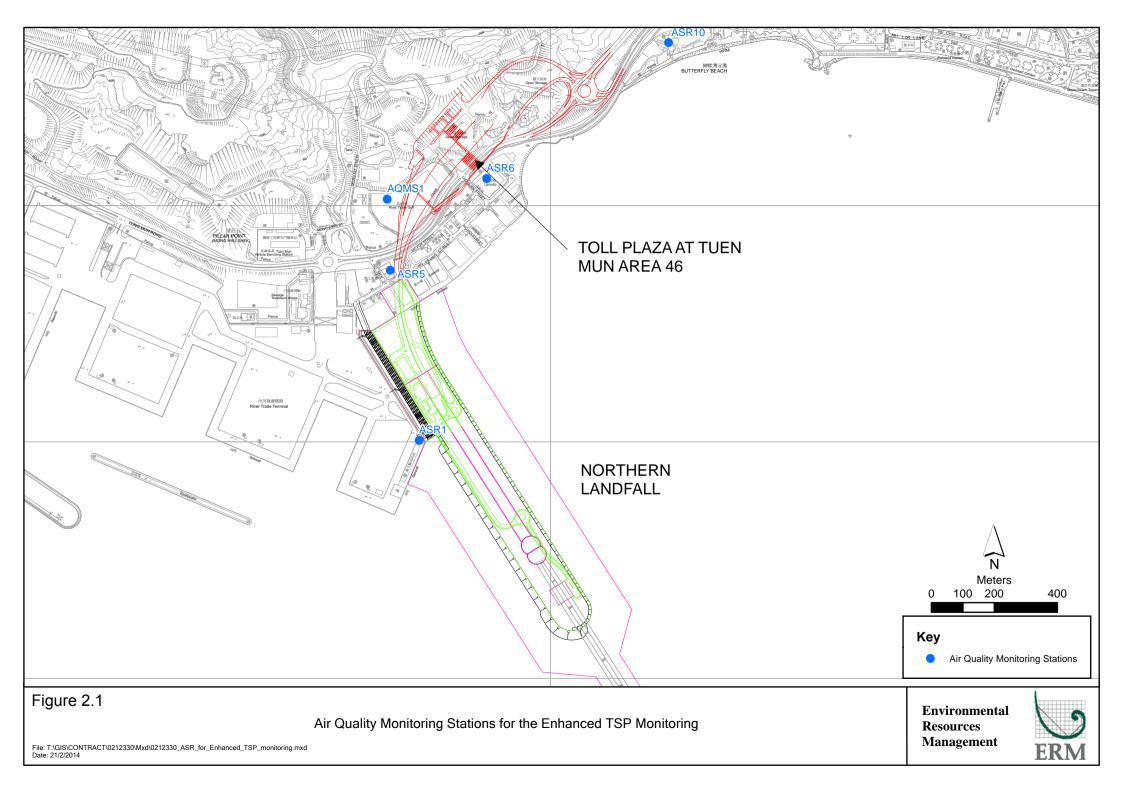


Table 2.2 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (1-hour TSP and 24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Sampler (Model No. TE-5170)
Wind Meter	Davis (Model: Weather Wizard III (S/N: WE90911A30)
Wind Anemometer for calibration	Lutron (Model No. AM-4201)

2.1.2 Action & Limit Levels

The Action and Limit Levels of the air quality monitoring is provided in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.1.3 Monitoring Schedule for the Reporting Month

The schedule for air quality monitoring in February 2015 is provided in *Appendix F*. No construction works was carried out from 19 February 2015 to 21 February 2015, thus Impact Air Quality Monitoring was postponed to 23 February 2015.

2.1.4 Results and Observations

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in *Tables 2.3* and *2.4*, respectively. Detailed impact air quality monitoring results and graphical presentations are presented in *Appendix G*.

Table 2.3 Summary of 1-hour TSP Monitoring Results in this Reporting Period

Station	Average (μg/m³)	Range (µg/m³)	Action Level	Limit Level
			(μg/m³)	(μg/m³)
ASR1	176	102 - 275	331	500
ASR5	189	115 - 285	340	500
AQMS1	172	104 - 269	335	500
ASR6	164	76 - 284	338	500
ASR10	134	55 – 225	337	500

Table 2.4 Summary of 24-hour TSP Monitoring Results in this Reporting Period

Station	Average (μg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ASR1	118	78 - 162	213	260
ASR5	118	82 - 141	238	260
AQMS1	104	67 - 135	213	260
ASR6	98	56 - 123	238	260
ASR10	88	58 - 121	214	260

The weather condition during the monitoring period varied from sunny to cloudy. The major dust sources in the reporting period include construction activities under the Contract as well as nearby traffic emissions.

A total of eight monitoring events were undertaken in which no Action or Limit Level exceedances of 1-hr TSP were recorded in this reporting month. No Action or Limit Level exceedances for 24-hr TSP were record.

Meteorological information collected at the ASR5, including wind speed and wind direction, is provided in *Appendix H*.

2.2 WATER QUALITY MONITORING

2.2.1 Monitoring Requirements & Equipment

In accordance with the Updated EM&A Manual, impact water quality monitoring was carried out three days per week during the construction period at nine (9) water quality monitoring stations (*Figure 2.2*; *Table 2.5*).

Table 2.5 Locations of Water Quality Monitoring Stations and the Corresponding Monitoring Requirements

Station ID	Type	Coordinates		*Parameters, unit	Depth	Frequency
	•	Easting	Northing	_		
IS12	Impact Station	813218	823681	• Temperature(°C)	3 water depths: 1m	Impact
IS13	Impact Station	813667	824325	 pH(pH unit) 	below sea surface,	monitoring: 3
IS14	Impact Station	812592	824172	• Turbidity (NTU)	mid-depth and 1m	days per week,
IS15	Impact Station	813356	825008	 Water depth (m) 	above sea bed. If	at mid-flood
CS4	Control / Far	810025	824004	 Salinity (ppt) 	the water depth is	and mid-ebb
	Field Station			 DO (mg/L and 	less than 3m, mid-	tides during the
CS6	Control / Far	817028	823992	% of	depth sampling	construction
	Field Station			saturation)	only. If water	period of the
SR8	Sensitive	816306	825715	 SS (mg/L) 	depth less than 6m,	Contract.
	receiver				mid-depth may be	
	(Gazettal				omitted.	
	beaches in					
	Tuen Mun)					
SR9	Sensitive	813601	825858			
	receiver					
	(Butterfly					
	Beach)					
SR10A	Sensitive	823741	823495			
	receiver					
	(Ma Wan					
	FCZ)					

^{*}Notes:

In addition to the parameters presented monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or works underway nearby were also recorded.

Table 2.6 summarizes the equipment used in the impact water quality monitoring programme. Copies of the calibration certificates are attached in *Appendix E*.

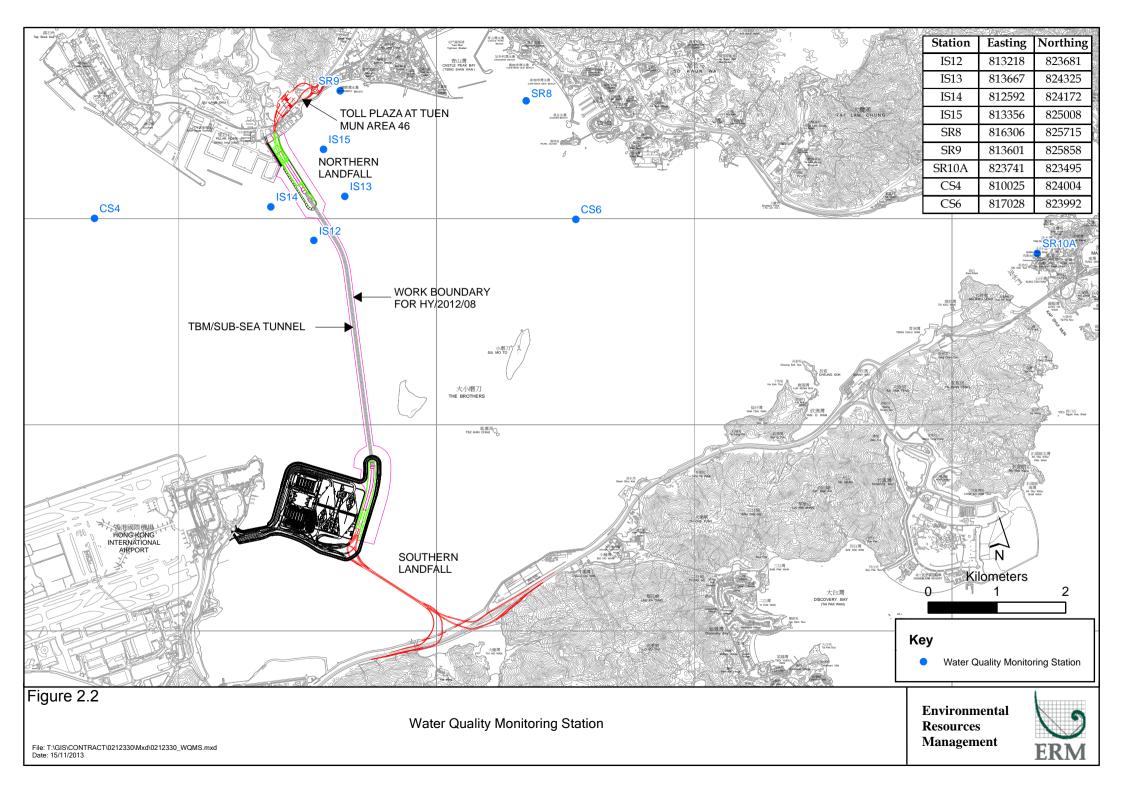


Table 2.6 Water Quality Monitoring Equipment

Equipment	Model
Water Sampler	Kahlsico Water-Bottle Model 135DW 150
Dissolved Oxygen Meter	YSI Pro 2030
pH Meter	HANNA HI 8314
Turbidity Meter	HACH 2100Q
Monitoring Position	"Magellan" Handheld GPS Model explorist GC
Equipment	DGPS Koden KGP913MK2 (1)

2.2.2 Action & Limit Levels

The Action and Limit levels of water quality impact monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.2.3 Monitoring Schedule for the Reporting Month

The schedule for water quality monitoring in February 2015 is provided in *Appendix F*. No construction works was carried out from 19 February 2015 to 21 February 2015, thus Impact Water Quality Monitoring was postponed to 23 February 2015.

2.2.4 Results and Observations

During this reporting period, only minor marine works included rock bund deposition for marine sheetpile remedial works was carried out at Portion N-A. It is useful to note that heavy marine traffic (not associated with the Project) was commonly observed nearby the Project site and its vicinity.

Impact water quality monitoring was conducted at all designated monitoring stations in the reporting month. Results and graphical presentations of impact water quality monitoring are presented in *Appendix I*.

In this reporting period, a total of eleven monitoring events were undertaken in which no Action Level or Limit Levels of exceedances for impact water quality monitoring was recorded.

2.3 DOLPHIN MONITORING

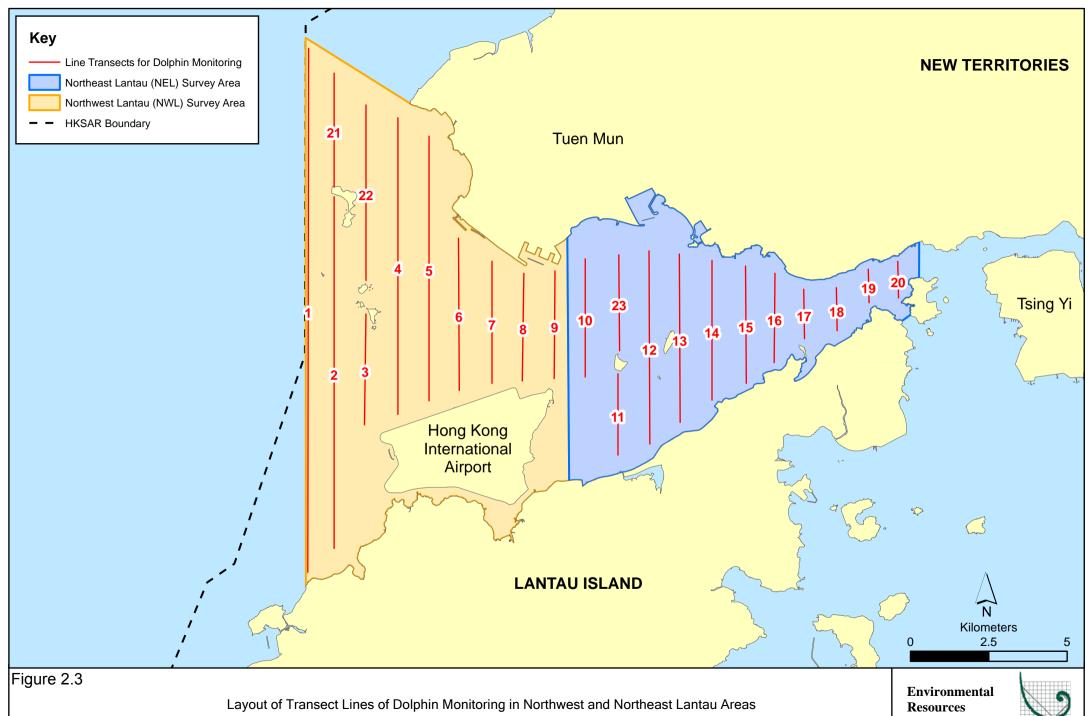
2.3.1 Monitoring Requirements

Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the dolphins. In order to fulfil the EM&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data collected by HyD's *Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge.* Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities on the monthly basis is adopted to avoid duplicates of survey effort.

2.3.2 *Monitoring Equipment*

Table 2.7 summarises the equipment used for the impact dolphin monitoring.

Table 2.7 Dolphin Monitoring Equipment


Equipment	Model
Global Positioning System (GPS)	Garmin 18X-PC
	Geo One Phottix
Camera	Nikon D90 300m 2.8D fixed focus Nikon D90 20-300m zoom lens
Laser Binocular	Infinitor LRF 1000
Marine Binocular	Bushell 7 x 50 marine binocular with compass and reticules
Vessel for Monitoring	65 foot single engine motor vessel with viewing platform 4.5m above water level

2.3.3 Monitoring Parameter, Frequencies & Duration

Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

2.3.4 Monitoring Location

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in *Figure 2.3*. The co-ordinates of all transect lines are shown in *Table 2.8* below.

File: T:\GIS\CONTRACT\0212330\Mxd\0212330_Transect_of_Dolphin_Monitoring.mxd Date: 29/11/2013

Management

 Table 2.8
 Impact Dolphin Monitoring Line Transect Co-ordinates

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	804671	814577	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805475	815457	14	Start Point	817537	820220
2	End Point	805477	826654	14	End Point	817537	824613
3	Start Point	806464	819435	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	819771	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	820220	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	820466	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	820690	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	820847	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	820892	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	820872	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818449	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807				
12	End Point	815542	824882				

2.3.5 Action & Limit Levels

The Action and Limit levels of impact dolphin monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.3.6 *Monitoring Schedule for the Reporting Month*

Dolphin monitoring was carried out on 5, 13, 16 and 25 of February 2015. The dolphin monitoring schedule for the reporting month is shown in *Appendix F*.

2.3.7 Results & Observations

A total of 298.01 km of survey effort was collected, with 100% of the total survey effort being conducted under favourable weather conditions (ie Beaufort Sea State 3 or below with good visibility) in February 2015. Amongst the two areas, 115.15 km and 182.86 km of survey effort were collected from NEL and NWL survey areas, respectively. The total survey effort conducted on primary and secondary lines were 214.26 km and 83.75 km, respectively. The survey efforts are summarized in *Appendix J*.

A total of 1 group of one Chinese White Dolphin sighting was recorded during the two sets of surveys in February 2015. The sighting was made in NWL during the survey in February 2015, while no dolphin was sighted in NEL. The sighting was made on primary lines during on-effort search, and the sighting was not associated with operating fishing vessel.

None of the sightings was made in the vicinity of the TM-CLKL Northern Connection Sub-sea Tunnel Section. The distribution of dolphin sightings during the reporting month is shown in *Figure 2.4*.

Encounter rates of Chinese White Dolphins are deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below with good visibility) in February 2015 with the results present in *Tables 2.9* and 2.10.

Table 2.9 Individual Survey Event Encounter Rates

		Encounter rate (STG)	Encounter rate (ANI)
		(no. of on-effort dolphin	(no. of dolphins from all
		sightings per 100 km of	on-effort sightings per 100
		survey effort)	km of survey effort)
		Primary Lines Only	Primary Lines Only
NEL	Set 1: February 5 th /13 th	0.0	0.0
NEL	Set 2: February 16th/25th	0.0	0.0
NWL	Set 1: February 5 th /13 th	1.4	1.4
NVL	Set 2: February 16th/25th	0.0	0.0

Note: Dolphin Encounter Rates are deduced from the Two Sets of Surveys (Two Surveys in Each Set) in February 2015 in Northeast (NEL) and Northwest Lantau (NWL)

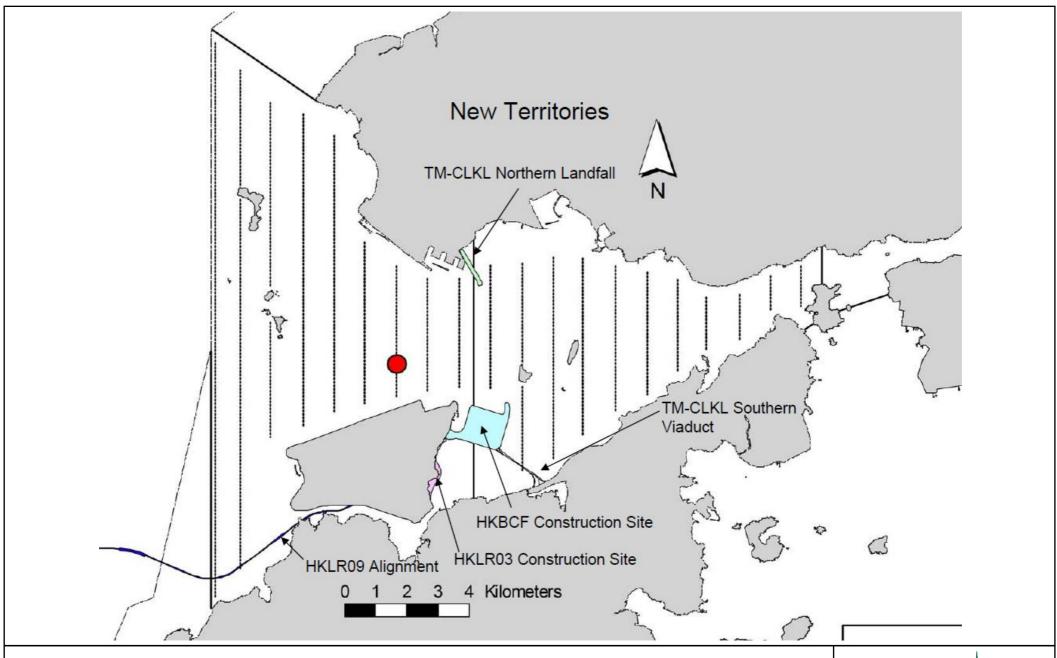


Figure 2.4

HY/2012/08 TM-CLKL Northern Connection Sub-sea Tunnel Section The distribution of dolphin sightings during the reporting period (Source: Adopted from HKLR03 Monitoring Survey in February 2015)

Environmental Resources Management

Table 2.10 Monthly Average Encounter Rates

	(no. of on-ef sightings per 10	rate (STG) fort dolphin 00 km of survey ort)	Encounter rate (ANI) (no. of dolphins from all on- effort sightings per 100 km of survey effort)			
	Primary Lines Only	Both Primary and Secondary Lines	Primary Lines Only	Both Primary and Secondary Lines		
Northeast Lantau	0.0	0.0	0.0	0.0		
Northwest Lantau	0.7	0.5	0.7	0.5		

Note: Overall dolphin encounter rates (sightings per 100 km of survey effort) from all four surveys are conducted in February 2015 on primary lines only as well as both primary lines and secondary lines in Northeast and Northwest Lantau.

Whilst one (1) Limit Level exceedance (Both Northeast Lantau social cluster and Northwest Lantau social cluster exceeded Limit Level) was observed for the quarterly dolphin monitoring data between December 2014 and February 2015, no unacceptable impact from the construction activities of the Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations during the dolphin monitoring in this reporting month.

Due to monthly variation in dolphin occurrence within the survey area, it would be more appropriate to draw conclusion on whether any unacceptable impacts on dolphins have been detected related to the construction activities of this Project in the quarterly EM&A reports, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

2.3.8 Implementation of Marine Mammal Exclusion Zone

There was no dredging or marine sheet piling works in open waters during this reporting period. The day-time monitoring of Dolphin Exclusion Zone (DEZ) by dolphin observers was in effect throughout the period of rock bund deposition for marine sheet pile remedial works, in which no sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded during the exclusion zone monitoring in the reporting month. According to the Contractor, rock bund deposition for marine sheet pile remedial works was completed on 28 February 2015. Thus, the day-time monitoring of Dolphin Exclusion Zone (DEZ) by dolphin observers was suspended from 28 February 2015.

2.4 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting month, four (4) site inspections were carried out on 4, 11, 18 and 25 February 2015.

Key observations and recommendations during the site inspections in this reporting period are summarized in *Table 2.11*.

Table 2.11 Specific Observations and Recommendations during the Weekly Site Inspection in this Reporting Month

Inspection Date	Observations	Recommendations/ Remarks
4 February 2015	 Works Area - Portion N-A Oil drums without drip tray were observed. Works Area - Portion N-B Accumulated general refuse should be cleared more frequently. Chemical containers without drip tray were observed. 	 Works Area - Portion N-A The Contractor was reminded to provide drip tray for the oil drums. Works Area - Portion N-B The Contractor was reminded to clear the general refuse more frequently. The Contractor was reminded to provide drip tray for the chemical containers.
11 February 2015	 Works Area - Portion N-A Used cement bags should be removed or stored properly. Idle stockpile should be covered. Cement bags should be covered. 	 Works Area - Portion N-A The Contractor was reminded to remove the used cement bags. The Contractor was reminded to cover the idle stockpile. The Contractor was reminded to cover the cement bags.
18 February 2015	 Works Area - Portion N-A Drip tray should be cleaned up more frequently. Cement bags were observed without cover. Works Area - Portion N-C Oil leakage was observed under the machine. Chemical containers should be stored in chemical storage area. Accumulated general refuse should be cleared more frequently. 	 Works Area - Portion N-A The Contractor was reminded to clean up the drip tray more frequently. The Contractor was reminded to cover the cement bags. Works Area - Portion N-C The Contractor was reminded to fix the oil leakage problem and clean up the stained soil as chemical waste. The Contractor was reminded to store the chemical containers in proper storage area. The Contractor was reminded to clear the accumulated general refuse more frequently.
25 February 2015	 Works Area - Portion N-A Idle stockpile should be covered by tarpaulin. Works Area - Portion N-B Accumulated general refuse should be cleared. 	 Works Area - Portion N-A The Contractor was reminded to cover the idle stockpile. Works Area - Portion N-B The Contractor was reminded to clear accumulated general refuse.

The Contractor has rectified all of the observations as identified during environmental site inspections in the reporting month.

2.5 WASTE MANAGEMENT STATUS

The Contractor had submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

Wastes generated during this reporting period include mainly construction wastes (inert and non-inert). Reference has been made to the waste flow table prepared by the Contractor (*Appendix M*). The quantities of different types of wastes are summarized in *Table 2.12*.

Table 2.12 Quantities of Different Waste Generated in the Reporting Month

Month/Year		Imported Fill (tonnes)		Non-inert Construction		Chemical Wastes	Marine Sediment (m³)	
	Waste (a) (tonnes)		Waste Re- used (tonnes)	Waste (b) (tonnes)	(kg)	(kg)	Category L	Category M (M _p & M _f)
February 2015	4,152	0	0	74	0	0	0	0

Notes:

- (a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.
- (b) Non-inert construction wastes include general refuse disposed at landfill.
- (c) Recyclable materials include metals, paper, cardboard, plastics, timber and others.

The Contractor was advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/ recycle of C&D materials and wastes. The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

2.6 ENVIRONMENTAL LICENSES AND PERMITS

The status of environmental licensing and permit is summarized in *Table 2.13* below.

Table 2.13 Summary of Environmental Licensing and Permit Status

License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/ Permit Holder	Remarks
Environmental Permit	EP-354/2009/C	28 January 2014	Throughout the Contract	HyD	Application for VEP on 10 December 2014 to replace EP-354/2009/B
Construction Dust Notification	363510	19 August 2013	Throughout the Contract	DBJV	-
Chemical Waste Registration	5213-422-D2516-01	10 September 2013	Throughout the Contract	DBJV	-
Construction Waste Disposal Account	7018108	19 August 2013	Throughout the Contract	DBJV	Waste disposal in Contract No. HY/2012/08
Waste Water Discharge License	WT00017707-2013	18 November 2013	30 November 2018	DBJV	For site WA18
Waste Water Discharge License	WT00019248-2014	5 June 2014	30 June 2019	DBJV	For site Portion N6 and Reclamation Area E
Construction Noise Permit	GW-RW0847-14	11 May 2014	10 May 2015	DBJV	For site WA23
Construction Noise Permit	GW-RW0706-14	29 September 2014	28 March 2015	DBJV	For Portion N6
Construction Noise Permit	GW-RW0970-14	17 December 2014	14 May 2015	DBJV	For Dredging and Reclamation Works
Construction Noise Permit	GW-RW0674-14	18 September 2014	17 March 2015	DBJV	For GI Works at Southern Landfall

Notes:

HyD = Highways Department

DBJV = Dragages - Bouygues Joint Venture

VEP = Variation of Environmental Permit

2.7 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

In response to the site audit findings, the Contractors carried out all corrective actions.

A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in *Appendix C*. The necessary mitigation measures relevant to this Contract were implemented properly.

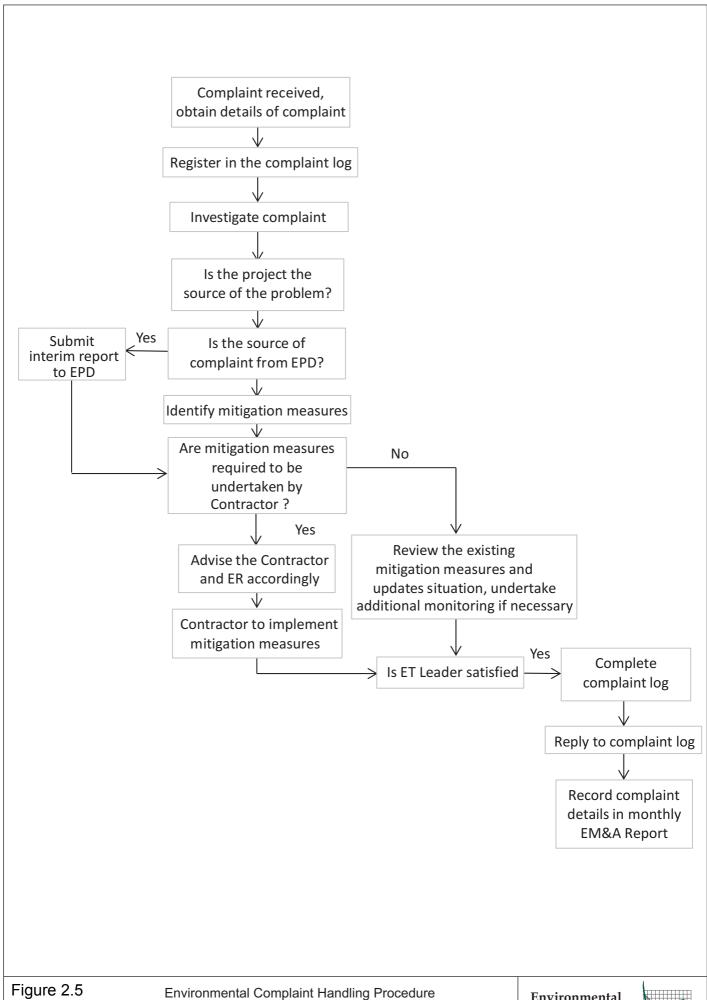
2.8 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

No Action Level or Limit Level exceedances were recorded in the air quality monitoring of this reporting month.

No Action Level or Limit Level exceedances were recorded in the water quality monitoring of this reporting month.

Whilst one (1) Limit Level exceedance was observed for the quarterly dolphin monitoring data between December 2014 and February 2015, no unacceptable impact from the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations. Due to monthly variation in dolphin occurrence within the study area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section in the quarterly EM&A reports, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

Cumulative statistics are provided in *Appendix L*.


2.9 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

The Environmental Complaint Handling Procedure is provided in *Figure 2.5*.

No environmental complaint was received in the reporting period.

No notification of summons and prosecution were received in the reporting period.

Statistics on complaints, notifications of summons and successful prosecutions are summarized in *Appendix L*.

Environmental Resources Management

3 FUTURE KEY ISSUES

3.1 CONSTRUCTION ACTIVITIES FOR THE COMING MONTH

As informed by the Contractor, the major works for the Project in March 2015 are summarized in *Table 3.1*.

Table 3.1 Construction Works to Be Undertaken in the Coming Month

Works to be undertaken

Land-based Works

- Diaphragm Wall Construction for Ventilation Shaft at Works Area Portion N-C;
- TBM Platform Construction at Works Area Portion N-A;
- Maintenance of armor rocks at Works Area Portion N-A;
- Delivery & Assembly of TBM at Works Area Portion N-A and,
- Set up of Slurry Treatment Plant at Works Area Portion N-C.

3.2 KEY ISSUES FOR THE COMING MONTH

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of March 2015 are mainly associated with dust, marine water quality, marine ecology and waste management issues.

3.3 MONITORING SCHEDULE FOR THE COMING MONTH

The tentative schedule for environmental monitoring in March 2015 is provided in *Appendix F*.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

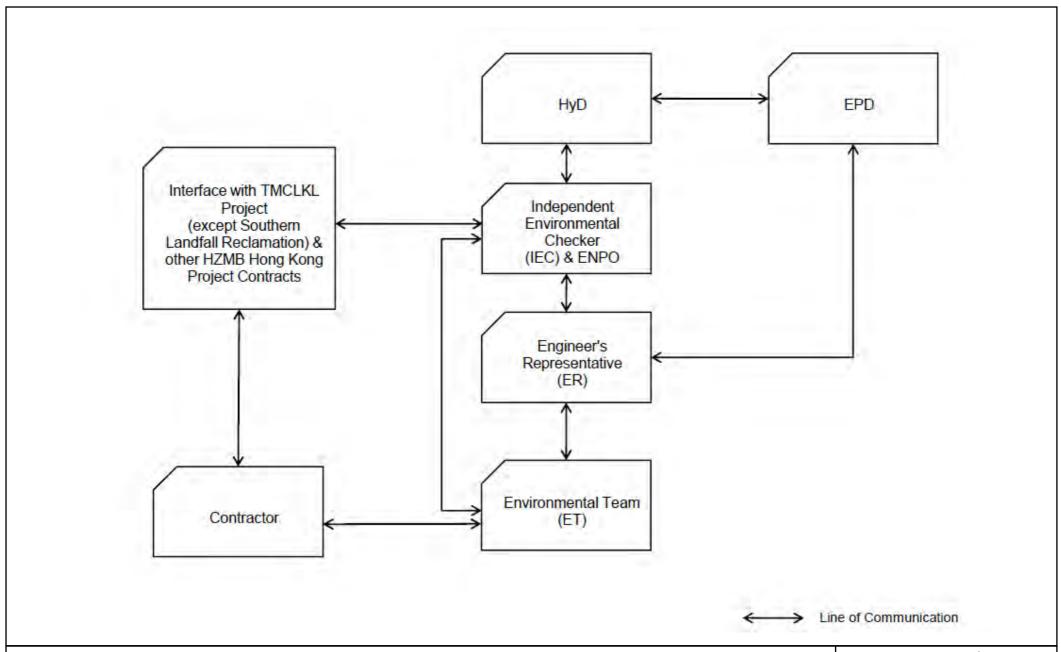
This Sixteenth Monthly EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 to 28 February 2015, in accordance with the Updated EM&A Manual and the requirements of EP-354/2009/C.

Air quality (including 1-hour TSP and 24-hour TSP), water quality and dolphin monitoring were carried out in this reporting month. No Action Level or Limit Level exceedances were recorded in the water quality monitoring of this reporting month. No Action Level or Limit Level exceedances were recorded in the air quality monitoring of this reporting month.

A total of one (1) group of one (1) Chinese White Dolphin sighting was recorded during the two sets of surveys in February 2015. The sighting was made in NWL during the survey in February 2015, while no dolphin was sighted in NEL. The sighting was made on primary line during on-effort search, and none of the dolphin groups was associated with operating fishing vessel. Whilst one (1) Limit Level exceedance was observed for the quarterly dolphin monitoring data between December 2014 and February 2015. No unacceptable impact from the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations during the dolphin monitoring in this reporting month.

Environmental site inspection was carried out four (4) times in February 2015. Recommendations on remedial actions recommended for the deficiencies identified during the site audits were properly implemented by the Contractor.

No non-compliance event was recorded during the reporting period.


No environmental complaint was received during the reporting period.

No summons/ prosecution was received during the reporting period.

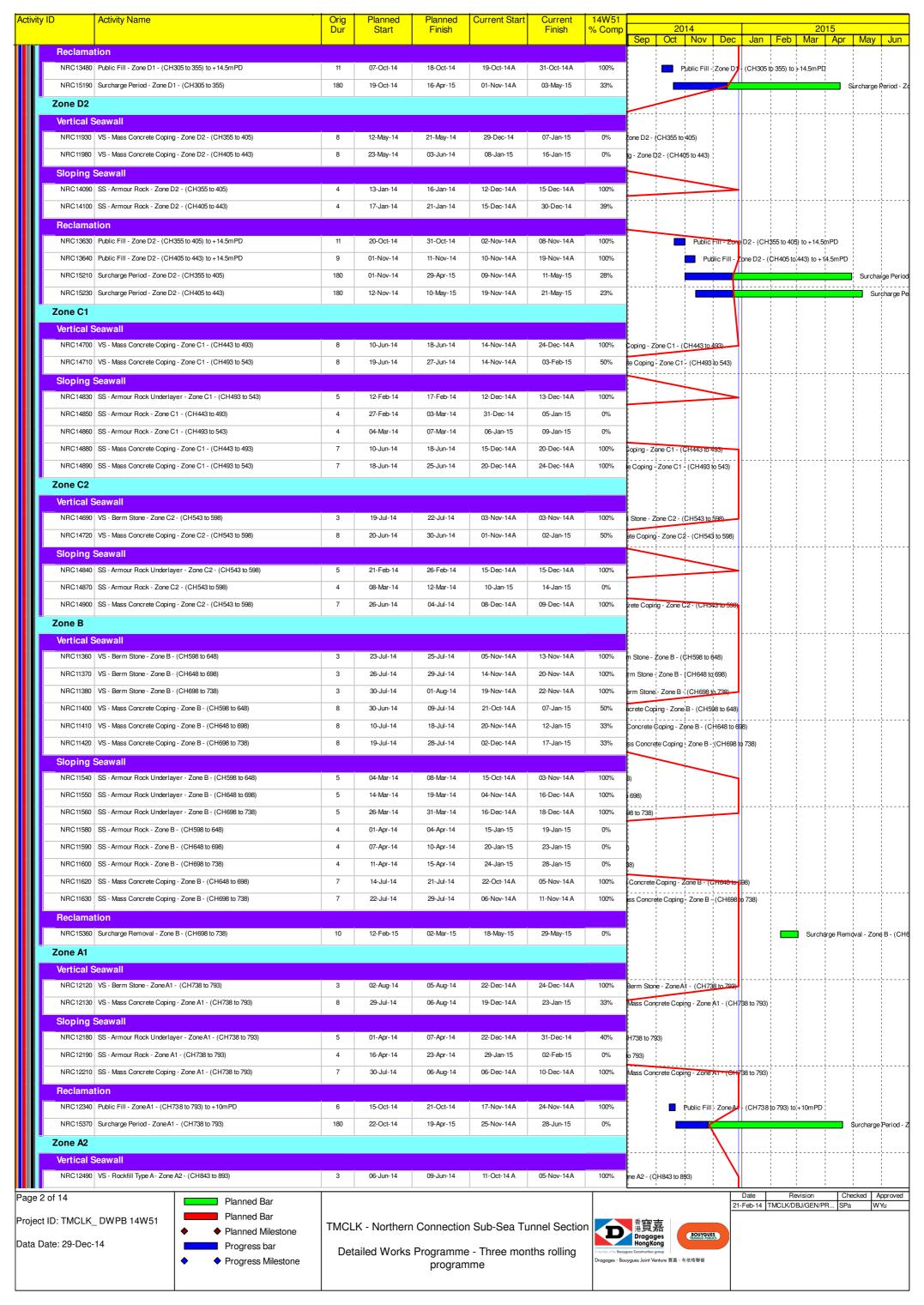
The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Appendix A

Project Organization for Environmental Works

Appendix A1

Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section Project Organization

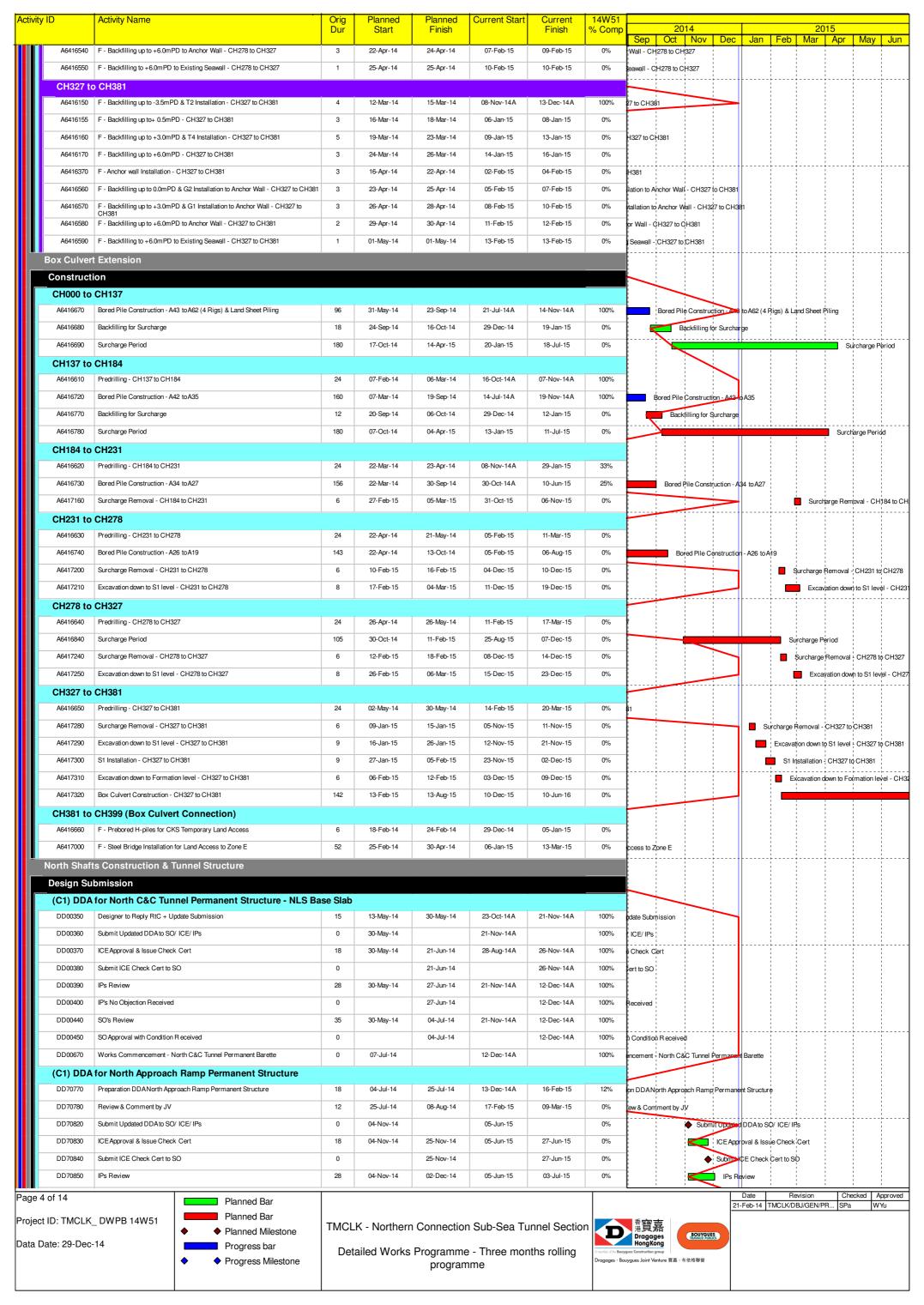

Environmental Resources Management

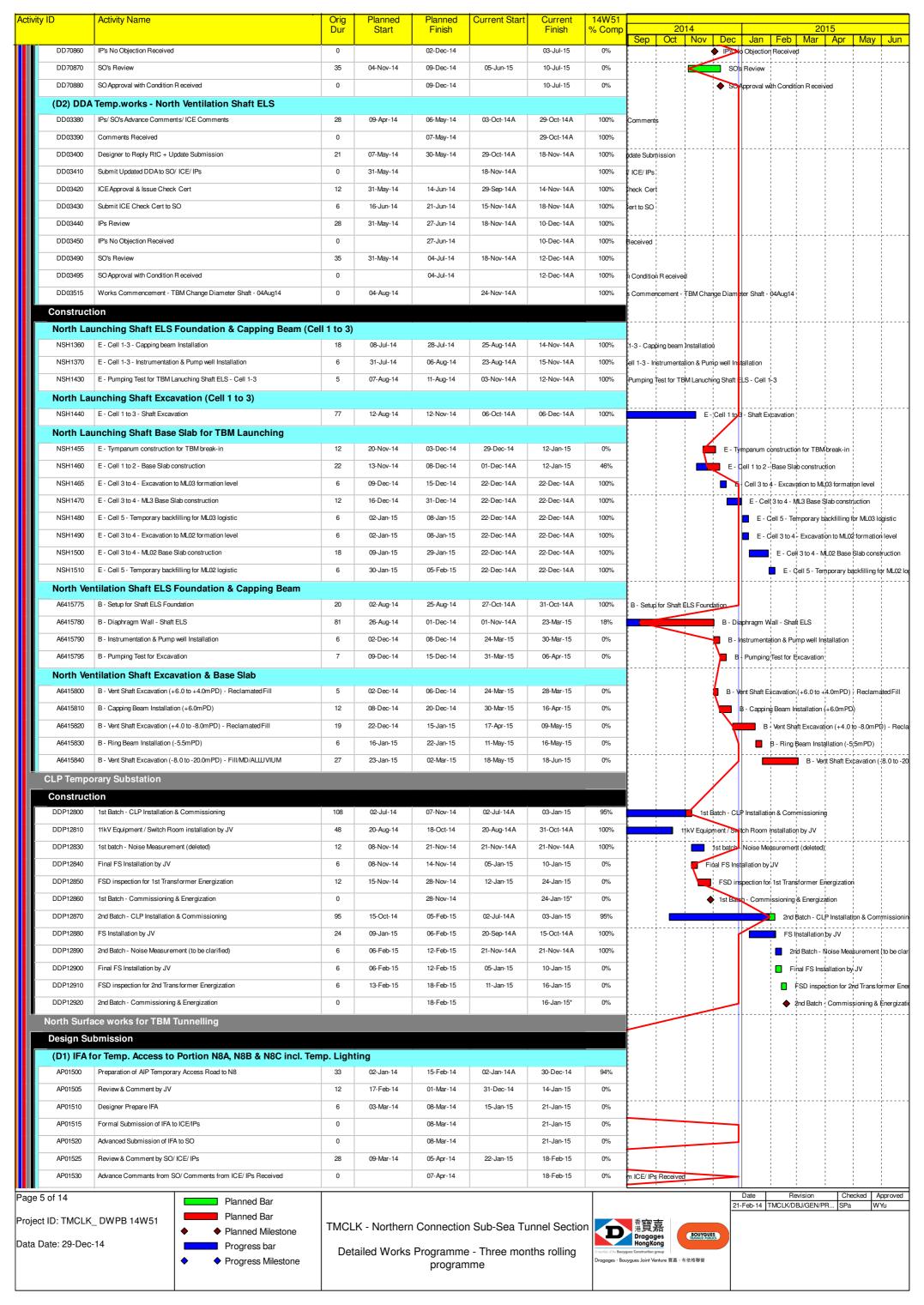
Appendix B

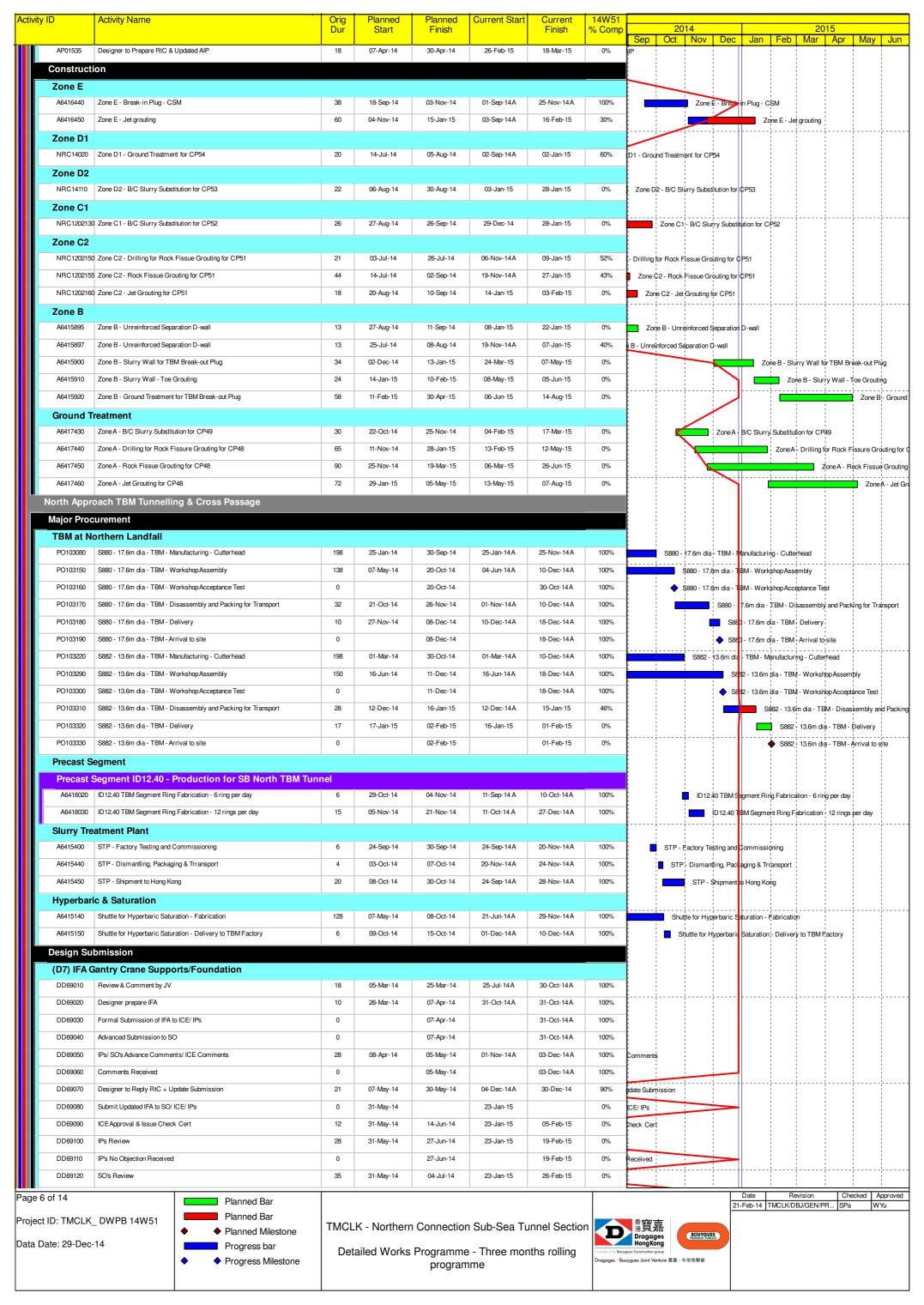
Construction Programme

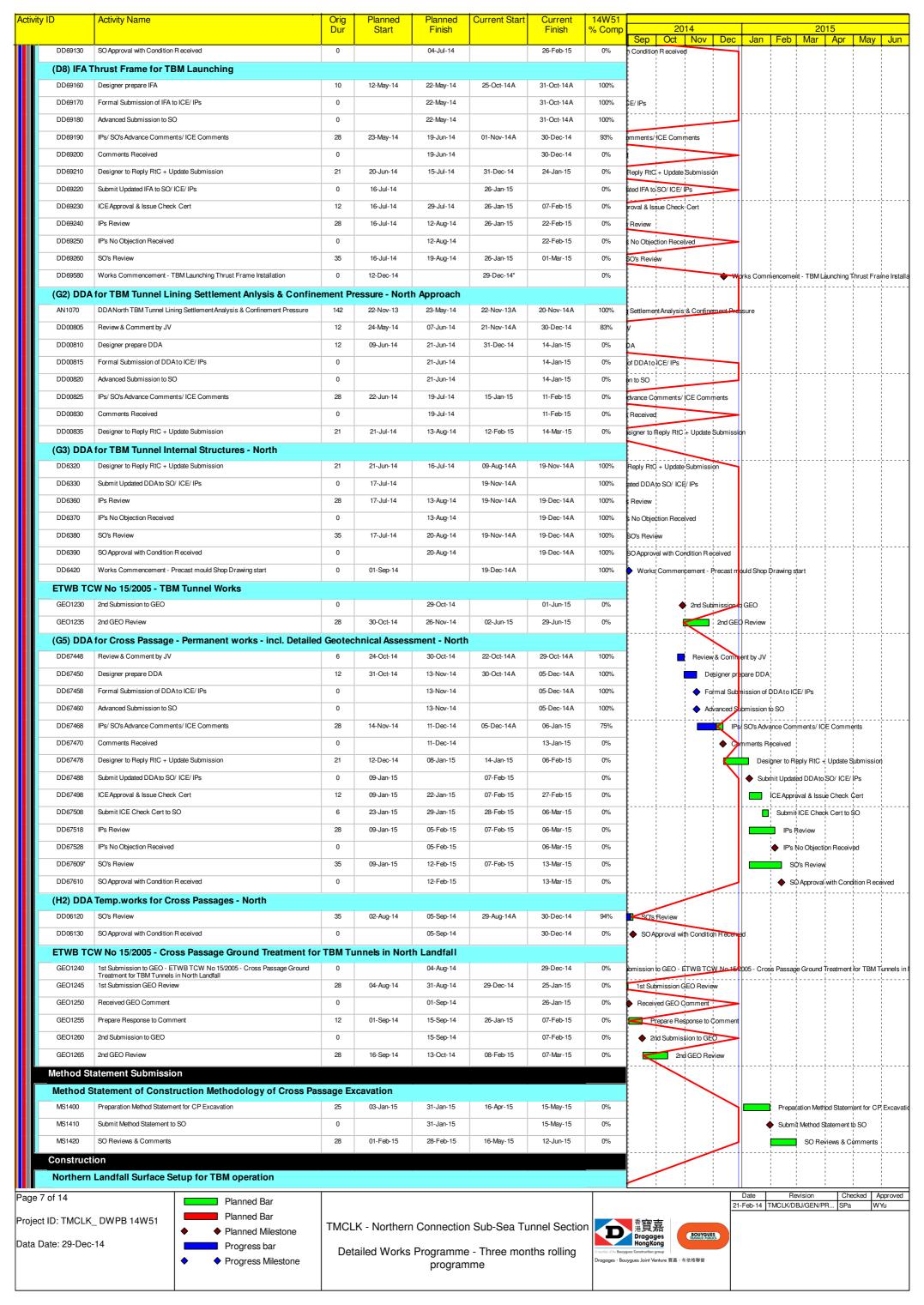
ctivity ID		Activity Name	Orig Dur	Planned Start	Planned Finish	Current Start	Current Finish	14W51 % Comp	2014 2015
THO	IZ N		Dui	Start	1 1111511		1 1111511	/« Comp	Sep Oct Nov Dec Jan Feb Mar Apr May Ju
	.K - Nor act Dat	thern Connection Sub-Sea Tunnel Section							
	dover Dat								
HD010		Portions: WA18C	0		06-Jan-15		06-Jan-15*	0%	◆ Portions: WA18C
Gener	ral Subr	nissions							
	ramme								
SCC02)277	Detailed Works Programme - SCC27.2 - Approval by SO	30	11-Feb-14	12-Mar-14	29-Aug-14A	13-Nov-14A	100%	so
Gene	eral Des	sign Submissions	1						
(A19) DDA fo	or Roadworks & Project Alignment							
DD68		IPs/ SO's Advance Comments/ ICE Comments	28	26-Jul-14	22-Aug-14	08-Sep-14A	13-Nov-14A	100%	IPs/ SO's Advance Comments/ ICE Cornments
DD68		Comments Received	0		22-Aug-14		13-Nov-14A	100%	Comments Received
DD68		Designer to Reply RtC + Update Submission	21	23-Aug-14	17-Sep-14	14-Nov-14A	22-Dec-14A	100%	Qesigner to Reply RtC + Updale Submission
DD68		Submit Updated DDA to SO/ ICE/ IPs ICEApproval & Issue Check Cert	12	18-Sep-14 18-Sep-14	03-Oct-14	22-Dec-14A 03-Sep-14A	02-Jan-15	100%	◆ Submit Updated DDA to SQ/Let P/Ps ICE Approval & Issue Check Cert
DD68		Submit ICE Check Cert to SO	6	04-Oct-14	10-Oct-14	03-Jan-15	09-Jan-15	0%	Submit ICE Check Cert to SO
DD6		SO's Review	35	18-Sep-14	22-Oct-14	31-Dec-14	03-Feb-15	0%	SO's Review
DD68		SO Approval with Condition R eceived	0	12.23	22-Oct-14		03-Feb-15	0%	◆ SO Approval with equation R eceived
(G6)	IFA for	Tunnel GBP							
DD70		SO's Review	35	29-Apr-14	02-Jun-14	09-Aug-14A	30-Dec-14	94%	
DD70	70760	SO Approval with Condition R eceived	0		03-Jun-14		30-Dec-14	0%	R eceived
Con	structio	n Supervision Plan							
GEO	01115	2nd GEO Review	28	29-Mar-14	25-Apr-14	29-Mar-14A	30-Dec-14	93%	
Self	contain	ed Cat I/II supervising monthly report							
GEO)1425	1st Submission GEO Review	28	31-May-14	27-Jun-14	15-Oct-14A	21-Nov-14A	100%	EO Review
GEO		Received GEO Comment	0		27-Jun-14		21-Nov-14A	100%	mment
GEO		Prepare Response to Comment	12	28-Jun-14	12-Jul-14	21-Nov-14A	21-Nov-14A	100%	ponse to Cpmment
GEO		2nd Submission to GEO	0		12-Jul-14		21-Nov-14A	100%	on to GEO
GEO)1445	2nd GEO Review	28	13-Jul-14	09-Aug-14	21-Nov-14A	21-Nov-14A	100%	GEO Review
	truction								
	hern La								
		mation (Phase 1) omission							
		omission Construction Risk Assessment - Impact on North La	ndfall	Sub-soa Tunr	nol.			_	
	D68410	SO's Comments for 1st Submission	35	01-Jun-14	05-Jul-14	27-Sep-14A	30-Dec-14	94%	s for 1st Submission
	D68420	Prepare Re-submission	10	07-Jul-14	17-Jul-14	31-Dec-14	12-Jan-15	0%	submission
DI	D68430	2nd Submission	0		17-Jul-14		12-Jan-15	0%	sion
DI	D68490	SO's Condition Approval	35	18-Jul-14	21-Aug-14	13-Jan-15	16-Feb-15	0%	SO's Condition Approval
Met	thod Sta	tement Submission							
Me	ethod St	atement of Construction Methodology of Culvert Ex	ctension))				_	
M	IS1800	Preparation Method Statement for Culvert Extension	25	24-Jun-14	23-Jul-14	29-Dec-14	27-Jan-15	0%	n Method Statement for Culvert Extension
M	I S1810	Submit Method Statement to SO	0		23-Jul-14		27-Jan-15	0%	ethod Statement to SQ
M	IS1820	SO Reviews & Comments	28	24-Jul-14	20-Aug-14	28-Jan-15	24-Feb-15	0%	SO Reviews & Comments
M	IS1830	Re-submission	18	21-Aug-14	11-Sep-14	26-Feb-15	18-Mar-15	0%	Rehsubmission
Cor	nstruction	on							
	ilestone				10.001.11		01 0 1 1 1 1	1000/	
		Completion of Zone D1 Reclamation up to +14.5mPD Completion of Zone D2 Reclamation up tp +14.5mPD	0		18-Oct-14 11-Nov-14		31-Oct-14A 19-Nov-14A	100%	◆ Completion of Zone of Reclamation up to +14.5mPD
		Completion of Zone C2 Reclamation up to +10mPD	0		17-Sep-14		06-Jan-15A	100%	 Completion of Zone D2 Reclamation up to +14.5mPD Completion of Zone C2 Reclamation up to +10mPD
		Completion of Zone A1 Reclamation up to +10mPD	0		21-Oct-14		03-Feb-15	0%	◆ Completion of Zone A1 Reclamation up to +10mPD
		Completion of Zone A2 Reclamation up to +10mPD (TBC)	0		10-Nov-14		12-Feb-15	0%	◆ Completion of Zone A2 Reclamation up to +10mPD (TBC)
	one E								
	ertical S	eawall							
W		VS - Mass Concrete Coping - Zone E - (CH0 to 50)	8	02-May-14	12-May-14	21-Jul-14A	14-Nov-14A	100%	e E - (CH0 to 50)
1	NRC10490	VS - Mass Concrete Coping - Zone E - (CH50 to 100)	8	13-May-14	21-May-14	23-Jul-14A	03-Nov-14A	100%	tone E - (GH50 to 100)
1	NRC10500	VS - Mass Concrete Coping - Zone E - (CH100 to 150)	8	22-May-14	30-May-14	09-Jul-14A	12-Nov-14A	100%	- Zone E - (CH100 to 150)
1	NRC10510	VS - Mass Concrete Coping - Zone E - (CH150 to 205)	11	31-May-14	13-Jun-14	16-Jul-14A	20-Nov-14A	100%	pring - Zone E - (CH150 to 205)
Zo	one D1								
V	ertical S	eawall							
		VS - Mass Concrete Coping - Zone D1 - (CH205 to 255)	15	02-May-14	20-May-14	22-Dec-14A	10-Jan-15	25%	one D1 - (CH205 to 255)
		VS - Mass Concrete Coping - Zone D1 - (CH255 to 305)	8	21-May-14	29-May-14	12-Jan-15	20-Jan-15	0%	Zone D1 - (CH255 to 305)
		VS - Mass Concrete Coping - Zone D1 - (CH305 to 355)	8	30-May-14	09-Jun-14	21-Jan-15	29-Jan-15	0%	ping - Zone D1 - (CH305 to 355)
	Sloping S			20.1	~	04 B	20.5	E0::	
		VS - Berm Stone - Zone D1 - RTT	2	20-Jun-14	21-Jun-14	01-Dec-14A	29-Dec-14		one D1 - RTT
		VS - Mass Concrete Coping - Zone D1 - RTT	4	26-Apr-14	02-May-14	12-Aug-14A	29-Dec-14	80%	1-RTT
		SS - Armour Rock - Zone D1 - (CH255 to 305)	4	03-Jan-14	07-Jan-14	02-Dec-14A	02-Dec-14A	100%	
		SS - Armour Rock - Zone D1 - (CH305 to 355)	4	08-Jan-14	11-Jan-14	09-Dec-14A	12-Jan-15A	100%	
age 1 of 1 roject ID: ⁻ ata Date: :	TMCLK_	Planned Bar Planned Bar Planned Bar Planned Milestone Progress bar Progress Milestone				n Sub-Sea Tu e - Three mor nme		A member of the Bouy	Date Revision Checked Approved The Province of the Province o

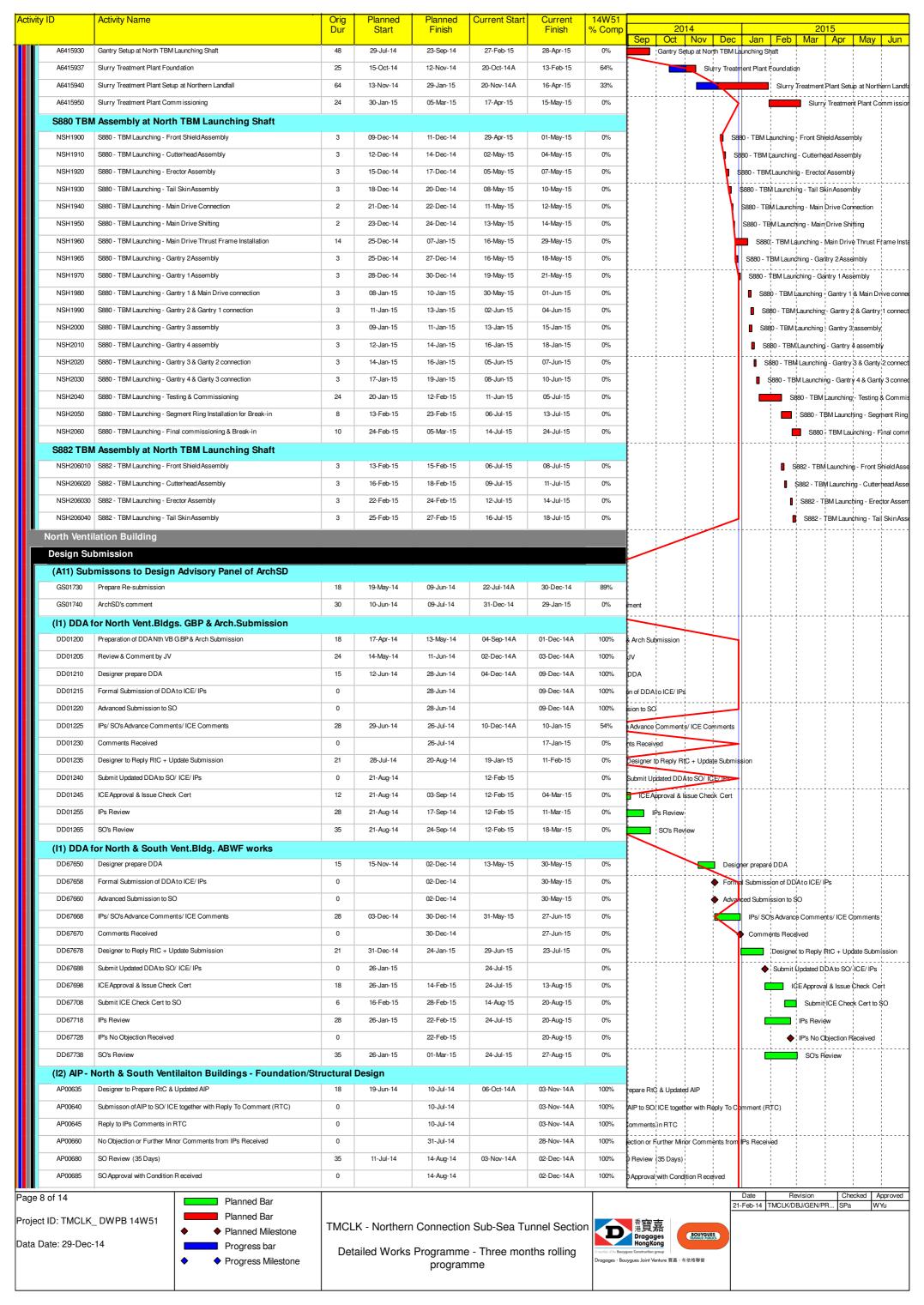
Activ	ity ID	Activity Name	Orig Dur	Planned Start	Planned Finish	Current Start	Current Finish	14W51 % Comp	2014 2015
	NDO (0500	NO DI LENT A 7 TO COLORD SERV							Sep Oct Nov Dec Jan Feb Mar Apr May Jun
		VS - Rockfill Type A - Zone A2 - (CH893 to 956)	7	10-Jun-14	17-Jun-14	11-Nov-14 A	23-Nov-14A	100%	Zone A2 - (CH893 tq 956)
Ш		VS - Geotextile - Zone A2 - (C H843 to 893)	2	12-Jun-14	13-Jun-14	11-Oct-14 A	10-Nov-14A	100%	A2 - (C H843 to 893)
Ш		VS - Geotextile - Zone A2 - (C H893 to 956)	5	14-Jun-14	19-Jun-14	12-Nov-14A	23-Nov-14A	100%	e A2 - (C H893 to 956)
Ш		VS - Granular Filter - Zone A2 - (CH843 to 893)	4	19-Jun-14	23-Jun-14	03-Nov-14A	05-Nov-14A	100%	- Zone A2 - (CH843 to 893)
Ш	NRC12560	VS - Granular Filter - Zone A2 - (CH893 to 956)	10	24-Jun-14	05-Jul-14	05-Nov-14A	23-Nov-14A	100%	ilter - Zone A2 - (CH893 to 956)
Ш	NRC12570	VS - Berm Stone - Zone A2 - (CH793 to 843)	3	06-Aug-14	08-Aug-14	01-Dec-14A	07-Dec-14A	100%	Berm Stone - Zone A2 - (CH793 to 843
Ш	NRC12580	VS - Berm Stone - Zone A2 - (CH843 to 893)	3	09-Aug-14	12-Aug-14	08-Dec-14A	10-Dec-14A	100%	- Berm Stone - Zoné A2 - (CH)843 to 898)
	NRC12590	VS - Berm Stone - Zone A2 - (CH893 to 956)	7	13-Aug-14	20-Aug-14	11-Dec-14 A	14-Dec-14A	100%	VS - Berm Stone - Zone A2 - (CH893 to 956)
	NRC12600	VS - Mass Concrete Coping - Zone A2 - (CH793 to 843)	8	07-Aug-14	15-Aug-14	31-Jan-15A	31-Jan-15	18%	s - Mass Concrete Coping - Zone A2 - (C H793 to 843)
	NRC12610	VS - Mass Concrete Coping - Zone A2 - (CH843 to 893)	8	16-Aug-14	25-Aug-14	02-Feb-15	10-Feb-15	0%	VS - Mass Concrete Coping - Zone A2 - (CH843 to 893)
	NRC12620	VS - Mass Concrete Coping - Zone A2 - (CH893 to 956)	18	26-Aug-14	16-Sep-14	11-Feb-15	10-Mar-15	0%	VS - Mass Concrete Coping - Zone A2 - (CH893 to 956)
	Sloping S	Seawall Seawall							
	NRC12680	SS - Rock Grade 400 - Zone A2 - (CH893 to 956) to +2.5mPD (4k/d)	7	16-Apr-14	26-Apr-14	01-Sep-14A	19-Nov-14A	100%	93 to 956) to +2.5mPD (4k/d)
Ш	NRC12720	SS - Armour Rock Underlayer - Zone A2 - (CH793 to 843)	5	09-Apr-14	14-Apr-14	02-Jan-15	07-Jan-15	0%	CH793 to 843)
Н	NRC12730	SS - Armour Rock Underlayer - Zone A2 - (CH843 to 893)	5	16-Apr-14	24-Apr-14	08-Jan-15	13-Jan-15	0%	2 - (CH843 to 893)
	NRC12740	SS - Armour Rock Underlayer - Zone A2 - (CH893 to 956)	5	28-Apr-14	03-May-14	14-Jan-15	19-Jan-15	0%	PA2 - (CH893 to 956)
		SS - Armour Rock - Zone A2 - (CH793 to 843)	4	05-May-14	09-May-14	03-Feb-15	06-Feb-15	0%	793 to 843)
		SS - Armour Rock - Zone A2 - (CH843 to 893)	4	10-May-14	14-May-14	07-Feb-15	11-Feb-15	0%	
1		<u> </u>	4	-					1H843 to 893)
Ш		SS - Armour Rock - Zone A2 - (CH893 to 956)		15-May-14	19-May-14	12-Feb-15	16-Feb-15	0%	CH893 to 956)
		SS - Mass Concrete Coping - Zone A2 - (CH793 to 843)	7	07-Aug-14	14-Aug-14	13-Dec-14A	19-Dec-14A	100%	s - Mass Concrete Coping - Zolite A2 - (SH 793 to 843)
		SS - Mass Concrete Coping - Zone A2 - (CH843 to 893)	7	15-Aug-14	22-Aug-14	20-Dec-14A	06-Feb-15	44%	SS - Mass Concrete Coping - Zone A2 - (CH843 to 893)
	NRC12800	SS - Mass Concrete Coping - Zone A2 - (CH893 to 956)	7	23-Aug-14	30-Aug-14	07-Feb-15	14-Feb-15	0%	SS - Mass Concrete Coping - Zone A2 - (CH893 to 956)
Ш	NRC12820	Sloping - Rockfill Type A- Zone A2 - (CH843 to 893)	1	16-Apr-14	16-Apr-14	08-Nov-14A	13-Nov-14A	100%	43 to 893)
Ш	NRC12830	Sloping - Rockfill Type A- Zone A2 - (CH893 to 956)	1	28-Apr-14	28-Apr-14	21-Nov-14A	21-Nov-14A	100%	CH893 to 956)
Ш	NRC12870	Sloping - Geotextile - Zone A2 - (CH893 to 956)	2	29-Apr-14	30-Apr-14	21-Nov-14A	21-Nov-14A	100%	93 to 956)
Ш	NRC12880	Sloping - Granular Filter - Zone A2 - (CH793 to 843)	3	12-Apr-14	15-Apr-14	29-Oct-14A	31-Oct-14A	100%	93 to 843)
Ш	NRC12890	Sloping - Granular Filter - Zone A2 - (CH843 to 893)	3	23-Apr-14	25-Apr-14	24-Oct-14 A	13-Nov-14A	100%	H843 to 893)
Ш	NRC12900	Sloping - Granular Filter - Zone A2 - (CH893 to 956)	3	02-May-14	05-May-14	22-Nov-14A	22-Nov-14A	100%	(CH893 to 956)
1	Reclamat	ion							·····
1		Public Fill - Zone A2 - (CH843 to 893) to -2.5mPD	6	11-Jul-14	17-Jul-14	03-Oct-14A	04-Nov-14A	100%	Zone A2 - (CH843 to 893) to -2.5mPD
١		Public Fill - Zone A2 - (CH893 to 956) to -2.5mPD	4	18-Jul-14	22-Jul-14	03-Nov-14A	06-Dec-14A	100%	
									- Zone A2;- (CH893;to 956) to -2.5mPD
Ш		Public Fill - ZoneA2 - (CH843 to 893) to +2.5mPD	7	11-Aug-14	18-Aug-14	24-Oct-14A	14-Nov-14A	100%	fublic Fill - Zone A2 - (CH843 to 893) to +2.5mPD
Ш		Public Fill- Zone A2 - (CH893 to 956) to +2.5mPD	6	19-Aug-14	25-Aug-14	13-Nov-14A	10-Dec-14A	100%	Public Fill- Zone A2 - (CH893 to 956) to +2.5mPD
Ш	NRC13080	Public Fill - Zone A2 - (CH793 to 843) to +6.0mPD	7	11-Aug-14	18-Aug-14	18-Oct-14A	31-Oct-14A	100%	ublic Fill - Zone A2 - (CH793 to 843) to 6.0mPD
Ш	NRC13090	Public Fill - Zone A2 - (CH843 to 893) to +6.0mPD	7	19-Aug-14	26-Aug-14	02-Nov-14A	13-Dec-14A	100%	Public Fill - ZoneA2 - (CH843 to 893) to +6.0mPD
Ш	NRC13100	Public Fill - Zone A2 - (CH893 to 956) to +6.0mPD	6	27-Aug-14	02-Sep-14	02-Dec-14A	09-Dec-14A	100%	Public Fill - Zone A2 - (CH893 to 955) to +6.0mPD
m	NRC13110	Public Fill - Zone A2 - (CH793 to 843) to +10mPD	6	22-Oct-14	28-Oct-14	13-Dec-14A	15-Dec-14A	100%	Public Fill - Zope 42 - (CH793 to 843) to +10mPD
Ш	NRC13120	Public Fill - Zone A2 - (CH843 to 893) to +10mPD	7	29-Oct-14	05-Nov-14	20-Dec-14A	07-Feb-15	43%	Public Fill - Zone A2 - (CH843 to 893) to +10m PD
1	NRC13130	Public Fill - Zone A2 - (CH893 to 956) to +10mPD	4	06-Nov-14	10-Nov-14	09-Feb-15	12-Feb-15	0%	Public Fill - Zone A2 - (CH893 to 956) to +10mPD
Ш	NRC15390	Surcharge Period - Zone A2 - (CH793 to 843)	180	11-Nov-14	09-May-15	13-Feb-15	11-Aug-15	0%	Surcharge Po
1	NRC16960	NewActivity	0			29-Dec-14	30-Dec-14	0%	
Н									
Н	Zone F	Olloge							
١	CH184 to			10.14	40.1444	00 D	00 1 45	00/	
Ш		F - Anchor wall Installation - C H184 to CH231	4	10-Mar-14	13-Mar-14	29-Dec-14	02-Jan-15	0%	
Ш		F - Backfilling up to 0.0mPD & G2 Installation to Anchor Wall- CH184 to CH231	3	14-Mar-14	16-Mar-14	03-Jan-15	05-Jan-15	0%	or Wall- CH184 to CH231
		F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall- CH184 to CH231	2	17-Mar-14	18-Mar-14	06-Jan-15	07-Jan-15	0%	chor Wall- CH184 to CH231
Ш	A6416300	F - Backfilling up to +6.0mPD to Anchor Wall - CH184 to CH231	2	19-Mar-14	20-Mar-14	08-Jan-15	09-Jan-15	0%	84 to CH231
	A6416400	F - Backfilling to +6.0mPD to Existing Seawall - CH184 to CH231	1	21-Mar-14	21-Mar-14	10-Jan-15	10-Jan-15	0%	184 to CH231
	CH231 to	CH278							
	A6416273	F - Backfilling up to +0.5mPD & T3 Installation - CH231 to CH278	6	28-Mar-14	02-Apr-14	13-Jan-15	18-Jan-15	0%	CH231 to CH278
	A6416278	F - Backfilling up to +3.0mPD - CH231 to CH278	2	03-Apr-14	04-Apr-14	19-Jan-15	20-Jan-15	0%	78
	A6416280	F - Backfilling up to +6.0mPD - CH231 to CH278	2	05-Apr-14	06-Apr-14	21-Jan-15	22-Jan-15	0%	278
	A6416310	F - Anchor wall Installation - C H231 to CH278	4	07-Apr-14	10-Apr-14	23-Jan-15	27-Jan-15	0%	
	A6416480	F - Backfilling up to 0.0mPD & G2 Installation to Anchor Wall- CH231 to CH278	3	11-Apr-14	13-Apr-14	28-Jan-15	30-Jan-15	0%	in to Anchor Wall- CH231 to CH278
		F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall - CH231 to	2	14-Apr-14	15-Apr-14	31-Jan-15	01-Feb-15	0%	tion to Anchor Wall - CH231 to CH278
		CH278 F - Backfilling up to +6.0mPD to Anchor Wall - CH231 to CH278	2	16-Apr-14	17-Apr-14	02-Feb-15	03-Feb-15	0%	all - CH231 to CH278
1		•			·				
		F - Backfilling to +6.0mPD to Existing Seawall - CH231 to CH278	1	18-Apr-14	18-Apr-14	04-Feb-15	04-Feb-15	0%	wall - CH231 to CH278
	CH278 to		_	10.11		60.5	05.11		
		F - Marine Sheet Piling (H2) - CH278 to CH327	5	12-Mar-14	17-Mar-14	28-Oct-14A	05-Nov-14A	100%	
		F - Backfilling up to -3.5mPD & T2 Installation - CH278 to CH327	5	18-Mar-14	22-Mar-14	15-Dec-14A	24-Dec-14A	100%	1278 to CH327
	A6416210	F - Backfilling up to +0.5mPD - CH278 to CH327	4	23-Mar-14	26-Mar-14	09-Jan-15	12-Jan-15	0%	
	A6416215	F - Backfilling up to +3.0mPD & T4 Installation - CH278 to CH327	5	27-Mar-14	31-Mar-14	14-Jan-15	18-Jan-15	0%	CH278 to/CH327
	A6416220	F - Backfilling up to +6.0mPD - CH278 to CH327	2	01-Apr-14	02-Apr-14	19-Jan-15	20-Jan-15	0%	7
	A6416340	F - Anchor wall Installation - C H278 to CH327	4	11-Apr-14	15-Apr-14	28-Jan-15	31-Jan-15	0%	227
	A6416520	F - Backfilling up to 0.0mPD & G2 Installation to Anchor Wall - CH278 to CH327	3	16-Apr-14	18-Apr-14	01-Feb-15	03-Feb-15	0%	ion to Anchor Wall - CH278 to CH327
		F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall - CH278 to	3	19-Apr-14	21-Apr-14	04-Feb-15	06-Feb-15	0%	lation to Anchor Wall - CH278 to CH327
Dans	3 of 14	CH327	<u> </u>		<u> </u>			<u> </u>	Date Revision Checked Approved
ayt	, 5 51 14	Planned Bar							21-Feb-14 TMCLK/DBJ/GEN/PR SPa WYu
Proje	ect ID: TMCLK_	DWPB 14W51 Planned Bar	TMCI	.K - Northern	Connection	ι Sub-Sea Τι	innel Section	n –	香寶嘉
Data	Date: 29-Dec-	◆ Planned Milestone							Dragages Hongkong

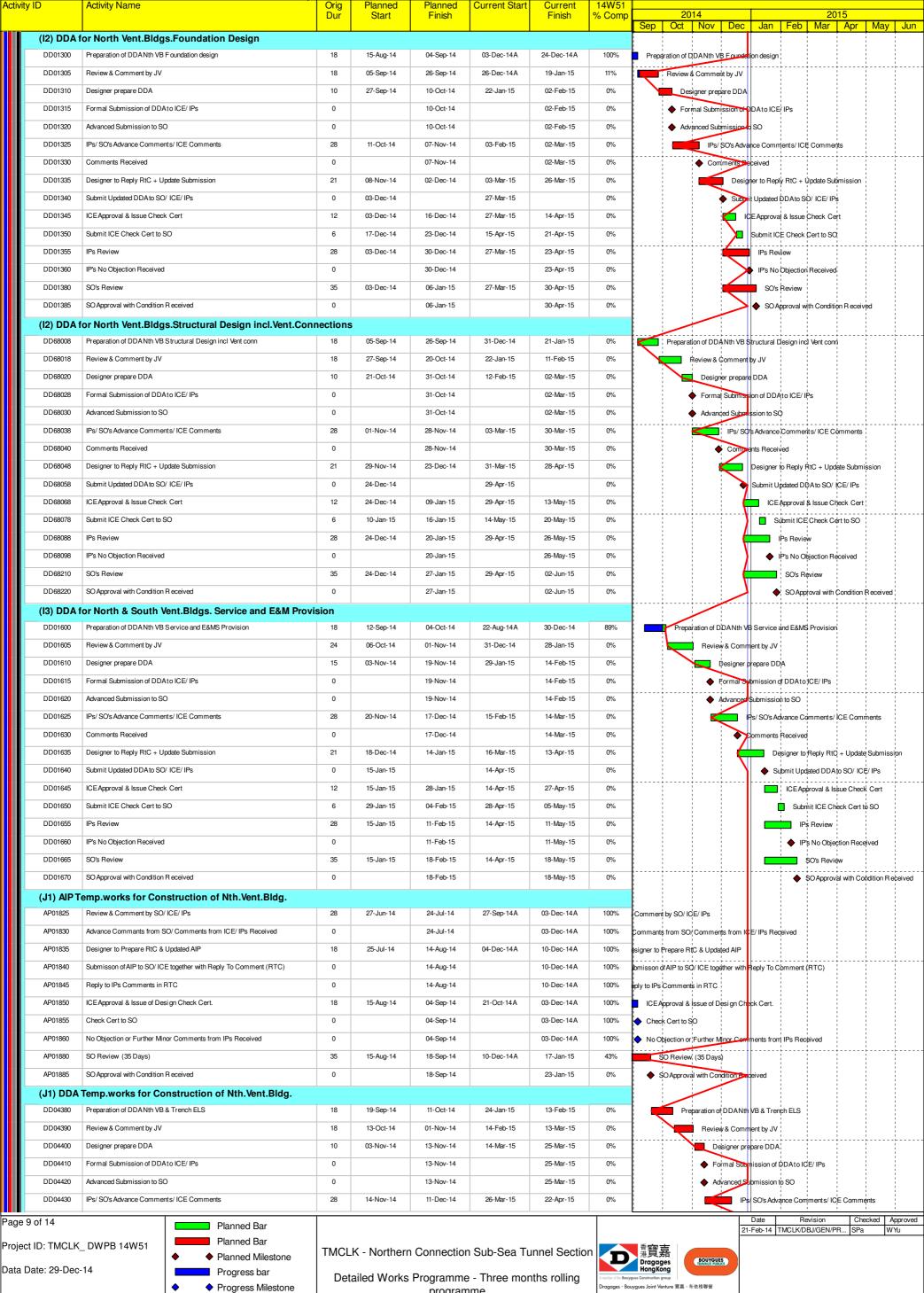

Data Date: 29-Dec-14

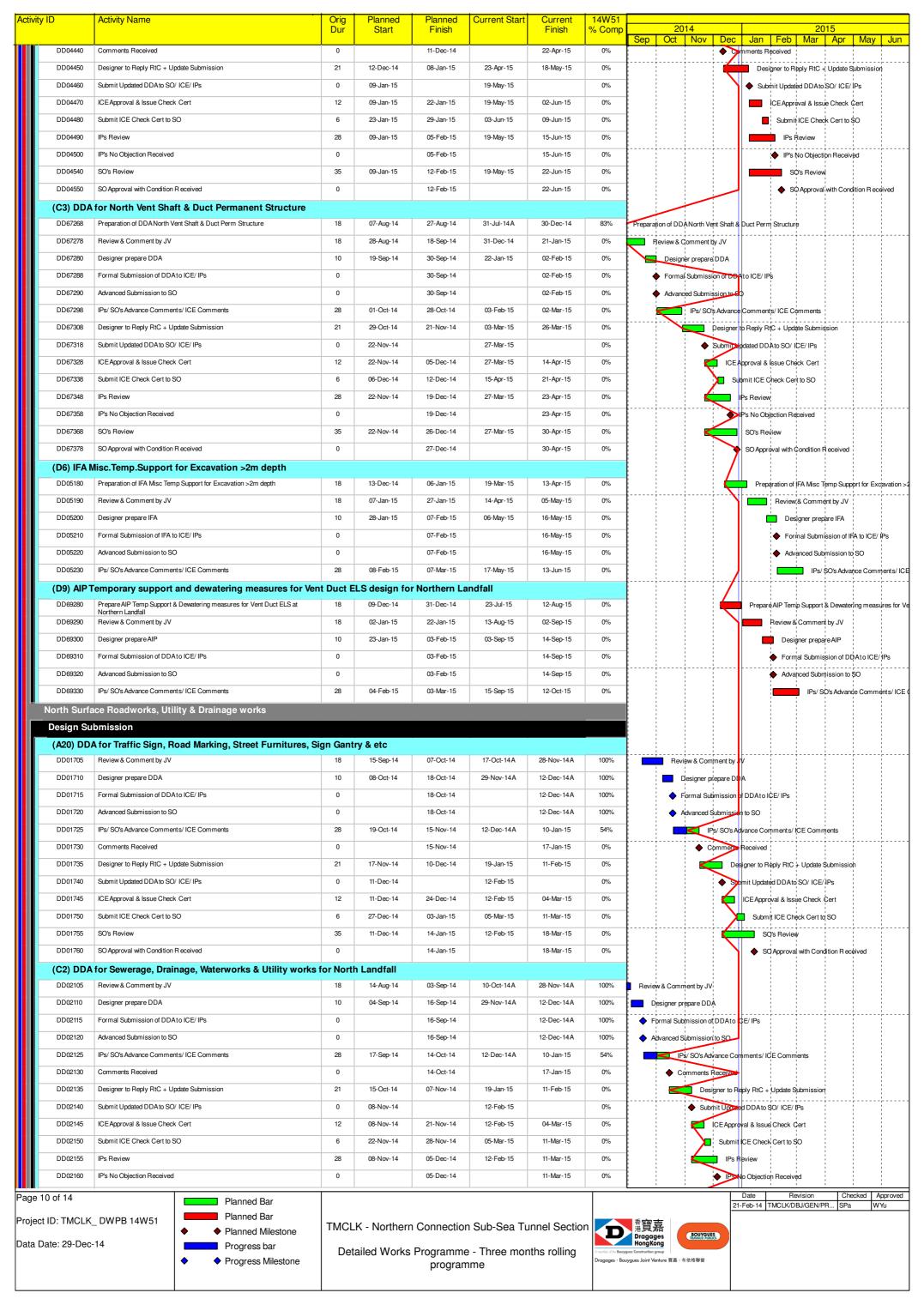

Progress bar ◆ Progress Milestone

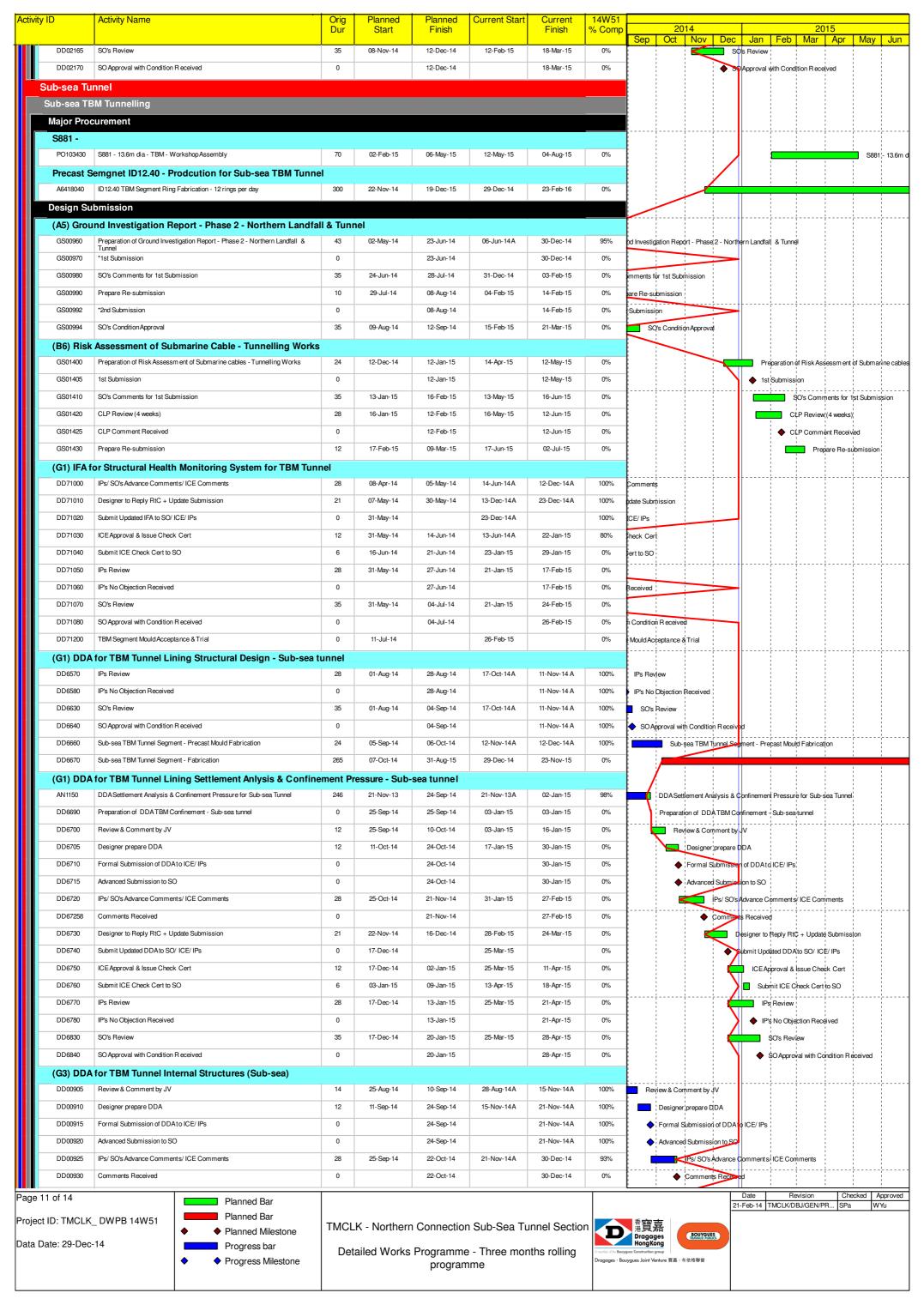

Detailed Works Programme - Three months rolling programme

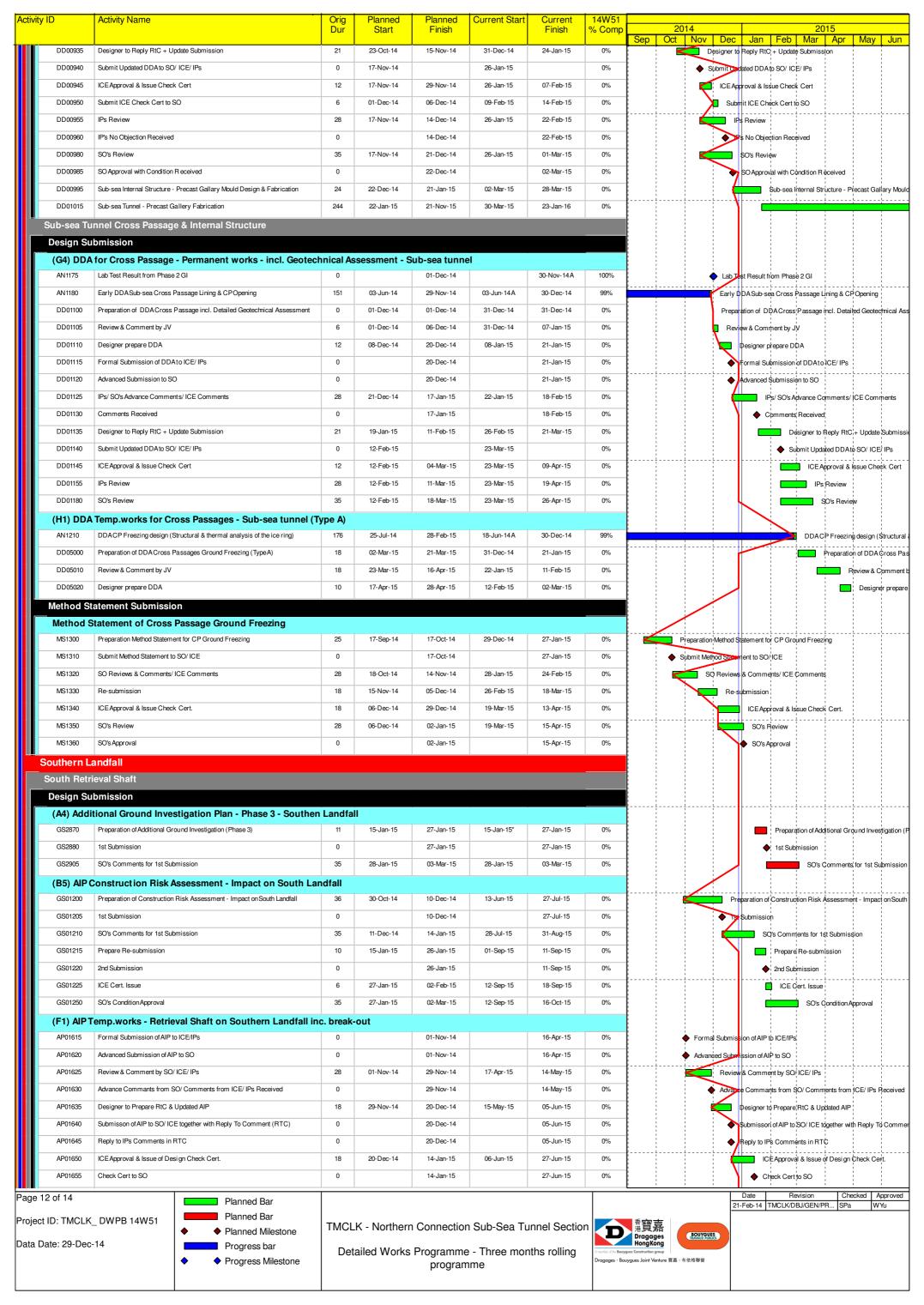


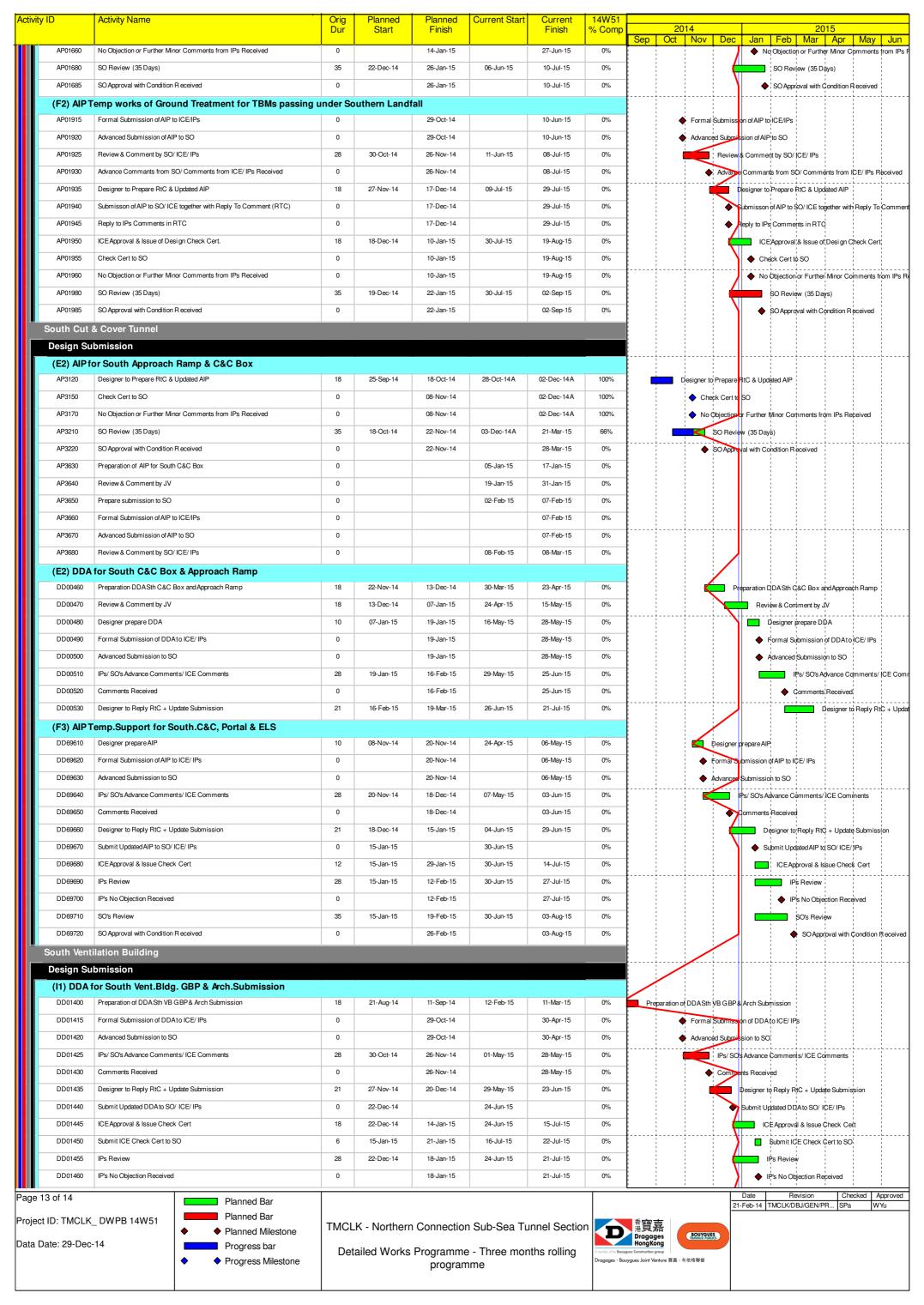


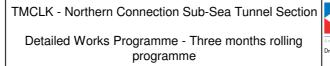












tivity ID	Activity Name	Orig	Planned	Planned	Current Start	Current	14W51									
		Dur	Start	Finish		Finish	% Comp			014				2015		
(= t=t								Sep	Oct	Nov	Dec	Jan	Feb	Mar A	Apr M	lay Jun
DD01465	SO's Review	35	22-Dec-14	25-Jan-15	24-Jun-15	28-Jul-15	0%				(SO's Revie	w		
DD01470	SO Approval with Condition R eceived	0		26-Jan-15		28-Jul-15	0%				\	•	SO Approv	al with Con	dition R ece	ived
(I2) DDA	for South Vent.Bldg.Structural Design incl.Vent.C	connections									!					
DD67808	Preparation of DDASth VB Structural Design incl. Vent Conn	18	28-Jan-15	17-Feb-15	29-Jul-15	18-Aug-15	0%						Pre	paration of	DDA \$th V	B Structural D
DD67818	Review & Comment by JV	18	18-Feb-15	17-Mar-15	19-Aug-15	08-Sep-15	0%							Revi	ew & Comn	nent by JV
South Surf	face Roadworks, Utility & Drainage works		<u> </u>	<u> </u>												
Design Su	ubmission						_									
(E3) DDA	A for Sewerage, Drainage, Waterworks & Utility wo	rks for Sout	h Landfall													
DD05810	Preparation of DDA Sewerage & Drainage works for Sth Landfall	18	08-Nov-14	28-Nov-14	12-Feb-15	11-Mar-15	0%				Prepara	ation of DI	Seweraģe	& Drainage	works for	Sth Landfall
DD05820	Review & Comment by JV	18	29-Nov-14	19-Dec-14	12-Mar-15	01-Apr-15	0%					Review &	Comment by	JV		!
DD05830	Designer prepare DDA	10	20-Dec-14	03-Jan-15	02-Apr-15	17-Apr-15	0%					Desi	gner prepare	DDA		
DD05840	Advanced Submission to SO	0		03-Jan-15		17-Apr-15	0%				\	◆ Adva	nced Submis	sion to \$O		
DD05850	Formal Submission of DDAto ICE/ IPs	0		03-Jan-15		17-Apr-15	0%			- +	-	Forn	nal Submissio	n of DDAt	o ICE/ IPs	<u> </u>
DD05860	IPs/ SO's Advance Comments/ ICE Comments	28	04-Jan-15	31-Jan-15	18-Apr-15	15-May-15	0%						IPs/SO's	Advance C	comments/	ICE commer
DD05870	Comments Received	0		31-Jan-15		15-May-15	0%				-		Commen	ıts Receive	ed :	
DD05880	Designer to Reply RtC + Update Submission	21	02-Feb-15	04-Mar-15	16-May-15	10-Jun-15	0%			-	1			Designer	to Reply R	tC + Update S

Appendix C

Environmental Mitigation and Enhancement Measure Implementation Schedules

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	Manual	ıal	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	O	
Air Quality									
4.8.1	3.8	An effective watering programme of twice daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;	construction period	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		✓
4.8.1	3.8	Watering of the construction sites in Lantau for 8 times/day and in Tuen Mun for 12 times/day to reduce dust emissions by 87.5% and 91.7% respectively and shall be undertaken.		Contractor	TMEIA Avoid dust generation		Y		~
4.8.1	3.8	The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels.	construction period	Contractor	TMEIA Avoid dust generation		Y		7
4.8.1	3.8	The Contractor shall not burn debris or other materials on the works areas.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8. 1	3.8	In hot, dry or windy weather, the watering programme shall maintain all exposed road surfaces and dust sources wet.	All unpaved haul roads / throughout construction period in hot, dry or windy weather	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		✓
4.8.1	3.8	Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.	construction period	Contractor	TMEIA Avoid dust generation		Y		-
4.8. 1	3.8	Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading.		Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.		Contractor	TMEIA Avoid dust generation		Y		✓

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages		Status *
	Reference					D	C	О	
4.8.1	3.8	Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards.	construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8.1	3.8	No earth, mud, debris, dust and the like shall be deposited on public roads. Wheel washing facility shall be usable prior to any earthworks excavation activity on the site.	. 0	Contractor	TMEIA Avoid dust		Y		√
4.8.1	3.8	Areas of exposed soil shall be minimised to areas in which works have been completed shall be restored as soon as is practicable.	All exposed surfaces / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	All stockpiles of aggregate or spoil shall be enclosed or covered and water applied in dry or windy condition.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		<>
4.11	Section 3	EM&A in the form of 1 hour and 24 hour dust monitoring and site audit.	All representative existing ASRs / throughout construction period	Contractor	EM&A Manual		Y		✓
WATER QUAL	ITY								
Marine Works (Seq	uence A)								
6.1	Annex A	Construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. The protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2a and detailed in Appendix D6a. The part of the works where such measures can be undertaken for the majority of the time includes the following locations:		Contractor	TM-EIAO		Y		*
Figure 6.2a Appendix D6a		- TM-CLKL northern reclamation;							
6.1	-	a maximum of 50% public fill to be used for all seawall filling below +2.5mPD for TM-CLKL southern and northern landfalls.	TM-CLKL seawall filling	Contractor	TM-EIAO		Y		- √

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	Implementation Stages		Status *
	Reference					D	C	О	
6.1	-	a maximum of 30% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL southern landfall	TM-CLKL southern landfall reclamation filling	Contractor	TM-EIAO		Y		N/A
6.1	-	a maximum of 100% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL northern landfall	TM-CLKL northern landfall reclamation filling	Contractor	TM-EIAO		Y		✓
6.1	-	Use of cage type silt curtains round allgrab dredgers during the HKBCF, HKLR and TM-CLKL southern reclamation works.	All areas dredging works	Contractor	TM-EIAO		Y		✓
	Annex C	A layer of floating type silt curtain will be applied when dredging and reclamation works are being undertaken at Portion N-a as shown in Figure 1.1 of Annex C of the EM&A Manual.	o o	Contractor	TM-EIAO		Y		✓
6.1	-	Trailer suction hopper dredgers shall not allow mud to overflow.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		√
6.1	-	The use of Lean Material Overboard (LMOB) systems shall be prohibited.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	C	0	
6.1	Annex A	For other parts of the reclamation works construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. It should be noted that the protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2b and detailed in Appendices D6b. The part of the works where such measures can be undertaken for the majority of the time includes the following locations:	Portion D of HKBCF and HKLR	Contractor	TM-EIAO		Υ		✓
Figure 6.2b Appendix D6b		 TM-CLKL northern reclamation; Reclamation filling for Portion D of HKBCF; Reclamation filling for FSD berth of HKBCF; and Reclamation dredging and filling for Portion 1 of HKLR; 							
6.1	-	The filling material for the other parts of the works are the same as Sequence A;	All other areas/backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	5.7	Cage type silt curtain (with steel enclosure) shall be used for grab dredgers working in the site of HKBCF and TM- CLKL southern reclamation. Cage type silt curtains will be applied round all grab dredgers at other works area.	grab dredging	Contractor	TM-EIAO		Y		✓
6.1	Annex A	A layer of floating type silt curtain will be applied around all works as defined in Appendix D6b.	All areas/ through out marine works	Contractor	TM-EIAO		Y		√
6.1	-	TM-CLKL northern landfall: - Reclamation filling shall not proceed until at least 200m section of leading seawall at both the east and west sides of the reclamation are formed above +2.5 mPD, except for 100m gaps for marine access;		Contractor	TM-EIAO		Y		V

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	Implementation Stages		Status *
	Reference					D	С	0	
General Marine W	orks								
6.1	-	Use of TBM for the construction of the submarine tunnel.	Tunnel works / Construction phase	Contractor	TM-EIAO		Y		N/A
6.1	-	Export dredged spoils from NWWCZ.	All areas as much as possible / dredging activities	Contractor	DASO Permit conditions		Y		✓
6.1	-	Where public fill is proposed for filling below +2.5mPD, the fine content in the public fill will be controlled to 25%	All areas/ backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	-	Where sand fill is proposed for filling below +2.5mPD, the fine content in the sand fill will be controlled to 5%.	All areas/ backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	-	Mechanical grabs shall be designed and maintained to avoid spillage and should seal tightly while being lifted.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		√
6.1	-	Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		*
6.1	-	Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		~
6.1	-	Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		V

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imj	Stages		Stages		Status *
	Reference					D	C	O			
6.1	-	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓		
6.1	-	Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		N/A		
6.1	-	All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		N/A		
6.1	-	The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.		Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓		
6.1	5.2	Silt curtain shall have proved effectiveness from the producer and shall be fully maintained throughout the works by the contractor.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓		
6.1	-	The daily maximum production rates shall not exceed those assumed in the water quality assessment.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√		
6.1	-	The dredging and filling works shall be scheduled to spread the works evenly over a working day.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√		

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementat Stages		Status *
7 1747 1	Reference					D	C	0	
Land Works			T		· · · · · · · · · · · · · · · · · · ·				
6.1	-	Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.	construction period	Contractor	TM-EIAO		Y		~
6.1	-	Sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided.	construction period	Contractor	TM-EIAO		Y		*
6.1	-	Storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.		Contractor	TM-EIAO		Y		*
6.1	-	Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm.		Contractor	TM-EIAO		Y		√
6.1	-	Temporary access roads should be surfaced with crushed stone or gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.1	-	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.		Contractor	TM-EIAO		Y		✓
6.1	-	Measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.1	-	Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.		Contractor	TM-EIAO		Y		√
6.1	5.8	Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.	construction period	Contractor	TM-EIAO		Y		*

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures Lo	ocation/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	О	
6.1	-	Discharges of surface run-off into foul sewers must always be All prevented in order not to unduly overload the foul sewerage system.	. 0	Contractor	TM-EIAO		Y		✓
6.1	-	All vehicles and plant should be cleaned before they leave the All construction site to ensure that no earth, mud or debris is deposited corby them on roads. A wheel washing bay should be provided at every site exit.		Contractor	TM-EIAO		Y		√
6.1	-	Wheel wash overflow shall be directed to silt removal facilities before All being discharged to the storm drain.	l areas/ throughout nstruction period	Contractor	TM-EIAO		Y		√
6.1	-	Section of construction road between the wheel washing bay and the All public road should be surfaced with crushed stone or coarse gravel.	l areas/ throughout nstruction period	Contractor	TM-EIAO		Y		√
6.1	-	Wastewater generated from concreting, plastering, internal All decoration, cleaning work and other similar activities, shall be conscreened to remove large objects.	l areas/ throughout nstruction period	Contractor	TM-EIAO		Y		√
6.1	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication All facilities shall be located under roofed areas. The drainage in corthese covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for off site disposal.		Contractor	TM-EIAO		Y		N/A
6.1	-	The Contractor shall prepare an oil / chemical cleanup plan and All ensure that leakages or spillages are contained and cleaned up cor immediately.		Contractor	TM-EIAO		Y		√
6.1	-	Waste oil should be collected and stored for recycling or disposal, All in accordance with the Waste Disposal Ordinance.	l areas/ throughout nstruction period	Contractor	TM-EIAO Waste Disposal Ordinance		Y		√
6.1	-	All fuel tanks and chemical storage areas should be provided with All locks and be sited on sealed areas. The storage areas should be consurrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.		Contractor	TM-EIAO		Y		
6.1	-	Surface run-off from bunded areas should pass through oil/grease All traps prior to discharge to the stormwater system.	l areas/ throughout nstruction period	Contractor	TM-EIAO		Y		√
6.1	-	Roadside gullies to trap silt and grit shall be provided prior to Ro	padside/design and operation	Design	TM-EIAO	Y		Y	√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Im	plementa Stages	tion	Status *
	Reference	discharging the stormwater into the marine environment. The sumps		Conquitont/		D	С	0	
		will be maintained and cleaned at regular intervals.		Consultant/ Contractor					
6.1	Section 5	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All areas/ throughout construction period	Contractor	EM&A Manual		Y		\
Water Quality Mo	nitoring						-	-	
6.1	Section 5	Water quality monitoring shall be undertaken for suspended solids turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline backfilling and post construction period. One year operation phase water quality monitoring at designated stations.	s as defined in EM&A Manual, Section 5/ Before, through-out, marine construction period, post construction and monthly operational phase water quality.	Contractor	EM&A Manual		Y	Y	*
ECOLOGY									
8.14	6.3	Specification for and implement pre, during and post construction dolphin abundance monitoring.	All Areas/Detailed Design/ during construction works/post construction	Design Consultant/ Contractor	TMEIA	Y	Y	Y	✓
8.14	6.3,6.5	Specification and implementation of 250m dolphin exclusion zone.	All dredging and reclamation areas/Detailed Design/during all reclamation and dredging works	Design Consultant/ Contractor	TMEIA	Y	Y		√
8.15	6.3, 6.5	Specification and deployment of an artificial reef of an area of 3,600m2 in an area where fishing activities are prohibited.	Area of prohibited fishing activities/Detailed Design/towards end of construction period	TM-CLKL/ HKBCF Design Consultant/TM- CLKL/ HKBCF Contractor	TMEIA	Y		Y	N/A. To be implemente d by AFCD.
8.14	6.3, 6.5	Specification and implementation of marine vessel control specifications	All areas/Detailed Design/during construction works	Design Consultant/ Contractor	TMEIA	Y	Y		√
8.14	6.3, 6.5	Design and implementation of acoustic decoupling methods for dredging and reclamation works	All areas/ Detailed Design/during dredging and reclamation works	Design Consultant/ Contractor	TMEIA	Y	Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	O	
8.15	6.3, 6.4	Pre-construction phase survey and coral translocation	Detailed Design/Prior to construction	Design Consultant/ Contractor	TMEIA	Y	Y		√
8.15	6.5	Audit coral translocation success	Post translocation	Contractor	TMEIA		Y		✓
7.13	6.5	The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.	All areas / As soon as accessible	Contractor	TMEIA		Y		N/A
7.13	6.5	Spoil heaps shall be covered at all times.	All areas / Throughout construction period	Contractor	TMEIA		Y		√
7.13	6.5	Avoid damage and disturbance to the remaining and surrounding natural habitat	All areas / Throughout construction period	Contractor	TMEIA		Y		√
7.13	6.5	Placement of equipment in designated areas within the existing disturbed land	All areas / Throughout construction period	Contractor	TMEIA		Y		√
7.13	6.5	Disturbed areas to be reinstated immediately after completion of the works.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Construction activities should be restricted to the proposed works boundary.	All areas / Throughout construction period	Contractor	TMEIA		Y		√
LANDSCAPE A	AND VISUAI	L							
10.9	7.6	The colour and shape of the toll control buildings, ventilation building and administration building shall adopt a design which could blend it into the vicinity elements, and the details will be developed in detailed design stage (DM2)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
10.9	7.6	Control night-time lighting and glare by hooding all lights (CM6)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		N/A
10.9	7.6	Ensure no run-off into water body adjacent to the Project Area (CM7)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		√
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (CM8)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	nt Stages		tion	Status *
	Reference					D	C	O	
10.9	7.6	Aesthetically pleasing design (visually unobtrusive and non- reflective) as regard to the form, material and finishes shall be incorporated to all buildings, engineering structures and associated infrastructure facilities (OM5)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (OM6)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
WASTE									
12.6		The Contractor shall identify a coordinator for the management of waste.	Contract mobilisation	Contractor	TMEIA		Y		√
12.6		The Contractor shall prepare and implement a Waste Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated, recycled and disposed. A recording system for the amount of waste generated, recycled and disposed (locations) should be established.		Contractor	TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material		Υ		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	-	olementa Stages		Status *
	Kererence					D	C	O	
12.6		The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.	Contract mobilisation	Contractor	TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance.		Y		*
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures including waste reduction, reuse and recycling.		Contractor	TMEIA		Y		√
12.6	8.1	The extent of cutting operation should be optimised where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.		Contractor	TMEIA		Y		√
12.6	8.1	The surplus surcharge should be transferred to a fill bank	Reclamation areas / after surcharge works	Contractor	TMEIA		Y		N/A
12.6	8.1	Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	The site and surroundings shall be kept tidy and litter free.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	No waste shall be burnt on site.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.	Detailed Design	Design Consultant	TMEIA	Y			✓
12.6	8.1	The Contractor shall be prohibited from disposing of C&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation.	construction period	Contractor	TMEIA		Y		√
12.6	8.1	Stockpiled material shall be covered by tarpaulin and /or watered as appropriate to prevent windblown dust/ surface run off.	All areas / throughout construction period	Contractor	TMEIA		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Im	plementa Stages	tion	Status *
	Reference					D	С	0	
12.6	8.1 Excavated material in trucks shall be covered by tarpauling reduce the potential for spillage and dust generation.		All areas / throughout construction period	Contractor	TMEIA		Y		~
12.6	8.1	Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Dredged marine mud shall be disposed of in a gazetted marine disposal ground under the requirements of the Dumping at Seas Ordinance.		Contractor	TMEIA		Y		✓
12.6	8.1	Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling Purchasing of construction materials should avoid over-ordering and wastage.	f construction period l l	Contractor	TMEIA		Y		~
12.6	8.1	The Contractor should recycle as many C&D materials (this is a waste section) as possible on-site. The public fill and C&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities.	e construction period) I	Contractor	TMEIA		Y		*
12.6	8.1	All falsework will be steel instead of wood.	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice or the Packaging, Handling and Storage of Chemical Wastes as follows: f suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed;	construction period	Contractor	TMEIA		Y		<>

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	Implementation Stages		Status *
	Reference					D	C	O	
		f Having a capacity of <450L unless the specifications have been approved by the EPD; and f Displaying a label in English and Chinese according to the instructions prescribed in Schedule 2 of the Regulations. f Clearly labelled and used solely for the storage of chemical wastes; f Enclosed with at least 3 sides; f Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest; f Adequate ventilation; f Sufficiently covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and f Incompatible materials are adequately separated.							
12.6	8.1	Waste oils, chemicals or solvents shall not be disposed of to drain,	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Adequate numbers of portable toilets should be provided for onsite workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.		Contractor	TMEIA		Y		*
12.6	8.1	Night soil should be regularly collected by licensed collectors.	All areas / throughout construction period	Contractor	TMEIA		Y		N/A

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	О	
12.6	8.1	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C&D and chemical wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances Bylaws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited.	construction period	Contractor	TMEIA		Y		<>
12.6	8.1	All waste containers shall be in a secure area on hardstanding;	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.	_	Contractor	TMEIA		Y		√
12.6	8.1	Office wastes can be reduced by recycling of paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	construction period	Contractor	TMEIA		Y		✓
12.6	Section 8	EM&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.		Contractor	EM&A Manual		Y		√
CULTURAL HI	ERITAGE								
11.8	Section 9	EM&A in the form of audit of the mitigation measures	All areas / throughout construction period	Highways Department	EIAO-TM		Y		N/A

* Remarks:

✓ Compliance of Mitigation Measures

Compliance of Mitigation but need improvement

x Non-compliance of Mitigation Measures

Non-compliance of Mitigation Measures but rectified by Contractor

Δ Deficiency of Mitigation Measures but rectified by Contractor

N/A Not Applicable in Reporting Period

Legend: D=Design, C=Construction, O=Operation

Appendix D

Summary of Action and Limit Levels

Table D1 Action and Limit Levels for 1-hour and 24-hour TSP

Parameters	Action	Limit
24 Hour TSP Level in μg/m ³	ASR1 = 213	260
	ASR5 = 238	
	AQMS1 = 213	
	ASR6 = 238	
	ASR10 = 214	
1 Hour TSP Level in μg /m³	ASR1 = 331	500
-	ASR5 = 340	
	AQMS1 = 335	
	ASR6 = 338	
	ASR10 = 337	

Table D2 Action and Limit Levels for Water Quality

Parameter	Action Level#	Limit Level#
DO in mg/L (a)	Surface and Middle	Surface and Middle
	5.0 mg/L	4.2 mg/L
	Bottom	Bottom
	4.7 mg/L	3.6 mg/L
Turbidity in NTU (Depthaveraged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data, i.e.,
	27.5 NTU	47.0 NTU
SS in mg/L (Depth-averaged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 10mg/L for WSD Seawater Intakes at Tuen Mun and 99%-ile of baseline
	23.5 mg/L	data, i.e.,
		34.4 mg/L

Notes:

Baseline data: data from HKZMB Baseline Water Quality Monitoring between 6 and 31 October 2011.

- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths
- (c) For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (d) All figures given in the table are used for reference only, and EPD may amend the figures whenever it is considered as necessary
- (e) The 1%-ile of baseline data for surface and middle DO is 4.2 mg/L, whilst for bottom DO is 3.6 mg/L.

Table D3 Action and Limit Levels for Impact Dolphin Monitoring

	North Lantau Social Cluster					
	NEL	NWL				
Action Level	STG < 70% of baseline &	STG < 70% of baseline &				
	ANI < 70% of baseline	ANI < 70% of baseline				
Limit Level	[STG < 40% of baseling	ne & ANI < 40% of baseline]				
		and				
	STG < 40% of baseline & ANI < 40% of baseli					

Notes:

- STG means quarterly encounter rate of number of dolphin sightings, which is 6.00 in NEL and 9.85 in NWL during the baseline monitoring period
- 2. ANI means quarterly encounter rate of total number of dolphins, which is **22.19 in NEL** and **44.66 in NWL** during the baseline monitoring period
- 3. For North Lantau Social Cluster, AL will be trigger if NEL or NWL fall below the criteria; LL will be triggered if both NEL and NWL fall below the criteria.

Table D4 Derived Value of Action Level (AL) and Limit Level (LL)

	North Lantau	u Social Cluster		
	NEL NW			
Action Level	STG < 4.2 & ANI< 15.5	STG < 6.9 & ANI < 31.3		
Limit Level	NEL = [STG <	< 2.4 & ANI <8.9]		
	á á	and		
	NWL = [STG < 3.9 & ANI < 17.9]			

Appendix E

Copies of Calibration Certificates for Air Quality and Water Quality Monitoring

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR 5
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 0816

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.07593

 Intercept (b)
 :
 -0.00102

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.8	3.475	1.674	54	54.62
2	13 holes	9.4	3.101	1.494	47	47.54
3	10 holes	7.0	2.676	1.290	40	40.46
4	7 holes	4.8	2.216	1.068	32	32.37
5	5 holes	2.9	1.722	0.830	24	24.28

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): <u>35.842</u> Intercept(b): <u>-5.713</u> Correlation Coefficient(r): <u>0.9997</u>

Checked by: Magnum Fan Date: 17/12/2014

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR10
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 8162

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.590	1.730	62	62.71
2	13 holes	9.2	3.068	1.478	52	52.60
3	10 holes	7.0	2.676	1.290	45	45.52
4	7 holes	4.6	2.169	1.047	36	36.41
5	5 holes	2.8	1.693	0.816	28	28.32

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): <u>37.576</u> Intercept(b): <u>-2.680</u> Correlation Coefficient(r): <u>0.9997</u>

Checked by: Magnum Fan Date: 17/12/14

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : AQMS1
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 1253

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	13.0	3.647	1.757	56	56.64
2	13 holes	10.2	3.230	1.557	50	50.57
3	10 holes	7.8	2.825	1.361	45	45.52
4	7 holes	5.0	2.262	1.090	37	37.42
5	5 holes	3.0	1.752	0.844	31	31.36

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):27.785 Intercept(b): 7.574 Correlation Coefficient(r): 0.9995

Checked by: Magnum Fan Date: 17/12/2014

<u>High-Volume TSP Sampler</u> 5-Point Calibration Record

Location : ASR 1
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 0146

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.8	3.475	1.674	52	52.60
2	13 holes	9.6	3.134	1.510	47	47.54
3	10 holes	7.0	2.676	1.290	38	38.44
4	7 holes	4.6	2.169	1.046	30	30.34
5	5 holes	2.8	1.693	0.816	22	22.25

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected\ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 35.713 Intercept(b): -7.017 Correlation Coefficient(r): 0.9994

High-Volume TSP Sampler 5-Point Calibration Record

Location : ASR 6
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 3957

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.05818

 Intercept (b)
 :
 0.01929

 Correlation Coefficient(r)
 :
 0.99991

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.590	1.730	53	53.61
2	13 holes	9.6	3.134	1.510	46	46.53
3	10 holes	7.2	2.714	1.308	39	39.45
4	7 holes	4.4	2.122	1.023	31	31.36
5	5 holes	3.0	1.752	0.844	25	25.29

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m):31.736 Intercept(b): -1.473 Correlation Coefficient(r): 0.9995

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR 5
Calibrated by : P.F.Yeung
Date : 10/02/2015

Sampler

Model : TE-5170 Serial Number : S/N 0816

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.07593

 Intercept (b)
 :
 -0.00102

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1022 Ta(K) : 288

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.5	3.612	1.741	57	58.24
2	13 holes	9.5	3.149	1.517	50	51.09
3	10 holes	7.4	2.779	1.339	44	44.96
4	7 holes	4.8	2.238	1.079	35	35.76
5	5 holes	2.8	1.710	0.824	28	28.61

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 32.792 Intercept(b): 1.098 Correlation Coefficient(r): 0.9993

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR10
Calibrated by : P.F.Yeung
Date : 10/02/2015

Sampler

Model : TE-5170 Serial Number : S/N 8162

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.07593

 Intercept (b)
 :
 -0.00102

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1022 Ta(K) : 288

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.590	1.730	62	62.71
2	13 holes	9.2	3.068	1.478	52	52.60
3	10 holes	7.0	2.676	1.290	45	45.52
4	7 holes	4.6	2.169	1.047	36	36.41
5	5 holes	2.8	1.693	0.816	28	28.32

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): <u>37.576</u> Intercept(b): <u>-2.680</u> Correlation Coefficient(r): <u>0.9997</u>

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : AQMS1
Calibrated by : P.F.Yeung
Date : 10/02/2015

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 1253

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1022 Ta(K) : 288

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.627	1.748	54	55.17
2	13 holes	9.8	3.198	1.541	48	49.04
3	10 holes	7.5	2.798	1.348	42	42.91
4	7 holes	5.0	2.285	1.101	36	36.78
5	5 holes	2.9	1.740	0.839	29	29.63

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):27.982 Intercept(b): 5.901 Correlation Coefficient(r): 0.9995

<u>High-Volume TSP Sampler</u> 5-Point Calibration Record

Location : ASR 1
Calibrated by : P.F.Yeung
Date : 10/02/2015

Sampler

Model : TE-5170 Serial Number : S/N 0146

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.07593

 Intercept (b)
 :
 -0.00102

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1022 Ta(K) : 288

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.9	3.525	1.698	53	54.15
2	13 holes	9.5	3.149	1.517	47	48.02
3	10 holes	7.0	2.703	1.303	40	40.87
4	7 holes	4.7	2.215	1.068	32	32.70
5	5 holes	2.8	1.710	0.824	24	24.52

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):33.930 Intercept(b): -3.447 Correlation Coefficient(r): 0.9993

High-Volume TSP Sampler 5-Point Calibration Record

Location : ASR 6
Calibrated by : P.F.Yeung
Date : 10/02/2015

Sampler

Model : TE-5170 Serial Number : S/N 3957

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.05818

 Intercept (b)
 :
 0.01929

 Correlation Coefficient(r)
 :
 0.99991

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1022 Ta(K) : 288

			ı			I
Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.8	3.655	1.761	54	55.17
2	13 holes	9.8	3.198	1.541	48	49.04
3	10 holes	7.2	2.742	1.321	41	41.89
4	7 holes	4.5	2.167	1.045	33	33.72
5	5 holes	2.9	1.740	0.839	27	27.59

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m): 30.101 Intercept(b): 2.309 Correlation Coefficient(r): 0.9995

ENVIROTECH SERVICES CO.

Calibration Report of Wind Meter

Date of Calibration:	29 December 2014
Brand of Test Meter:	Davis
Model:	Weather Wizard III (s/n: WE90911A30)
Location:	ASR5
Procedures:	
1. Wind Still Test:	The wind speed sensor was hold by hand until it keep still
2. Wind Speed Test:	The wind meter was on-site calibrated against the Anemometer
3.Wind Direction Test:	The wind meter was on-site calibrated against the marine compass at four directions
Results:	

Wind Still Test

	Wind Speed (m/s)	
á	0.00	

Wind Speed Test

Davis (m/s)	Anemomete (m/s)
1.4	1.6
1.9	1.7
2.4	2.5

Wind Direction Test

. 2	Davis (o)	Marine Compass (o)		
	271		270	
, .	0	. 8	0	
	91	il god	90	
	179	*	180	

Calibrated by:

Yeung Ping Fai

(Technical Officer)

Checked by:

Ho Kam Fat

(Senior Technical Officer)

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C146966

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC14-2877)

Date of Receipt / 收件日期: 12 November 2014

Description / 儀器名稱

Anemometer

Manufacturer / 製造商

Lutron

Model No. / 型號

AM-4201

Serial No./編號

AF.27513

Supplied By / 委託者

Envirotech Services Co.

Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road,

Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

14 November 2014

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- Testo Industrial Services GmbH, Germany

Tested By

測試

CF Leung Project Engineer

Certified By

核證

Date of Issue

18 November 2014

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab(a)suncreation.com

Website/網址: www.suncreation.com

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C146966

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 10 measurements at each calibration point.

3. Test equipment:

Equipment ID

Description

Certificate No.

CL386

Multi-function Measuring Instrument

S12109

4. Test procedure: MA130N.

5. Results:

Air Velocity

Applied	UUT	Measured Correction			
Value	Reading	Value Measurement Uncertainty			
(m/s)	(m/s)	(m/s)	Expanded Uncertainty (m/s)	Coverage Factor	
2.0	1.7	+0.3	0.2	2.0	
4.1	3.8	+0.3	0.3	2.0	
6.1	5.8	+0.3	0.3	2.0	
8.0	7.8	+0.2	0.3	2.0	
10.0	9.9	+0.1	0.4	2.0	

Remarks: - The Measured Corrections are defined as: Value = Applied Value - UUT Reading

- The expanded uncertainties are for a level of confidence of 95 %.

Note:

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門與安里 -號青山灣機樓四樓

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator		Rootsmeter Orifice I.I		438320 2454	Ta (K) - Pa (mm) -	293 - 758.19
PLATE OR Run # 1 2 3 4 5	VOLUME START (m3) NA NA NA NA	VOLUME STOP (m3) NA NA NA NA NA	DIFF VOLUME (m3) 1.00 1.00 1.00 1.00	DIFF TIME (min) 1.4740 1.0340 0.9240 0.8820 0.7270	METER DIFF Hg (mm) 3.2 6.4 7.9 8.8 12.7	ORFICE DIFF H2O (in.) 2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0103 1.0061 1.0040 1.0028 0.9976	0.6854 0.9730 1.0866 1.1370 1.3722	1.4245 2.0146 2.2524 2.3623 2.8491		0.9958 0.9916 0.9895 0.9884 0.9832	0.6755 0.9590 1.0709 1.1206 1.3524	0.8791 1.2433 1.3900 1.4579 1.7583
Qstd slop intercept coefficie	(b) = ent (r) =	2.07593 -0.00102 0.99996		Qa slope intercept coefficie	= (b) $=$	1.29991 -0.00063 0.99996
y axis =	SQRT[H2O(F	a/760) (298/1	ra)]	y axis =	SQRT[H2O(T	[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

P	erformance	Check	of I	Furbidity	Meter

Equipment Ref. No. : <u>ET/0505/011</u> Manufacturer : <u>HACH</u>

Model No. : 2100Q Serial No. : 12060 C 018534

Date of Calibration : 05/01/2015 Due Date : 04/04/2015

Ref. No. of Turbidity Standard used (4000NTU) 005/6.1/001/7

Theoretical Value of Turbidity Standard (NTU)	Measured Value (NTU)	Difference % *
20	19.8	-1.00
100	104	4.00
800	788	-1.50

(*) Difference = (Measured Value – Theoretical Value) / Theoretical Value x 100

A ,	\sim .	•
Accentance	('r1f@1	110
Acceptance		ıа

j ...;

Difference: -5 % to 5 %

The turbidity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Prepared by: Checked by:

Internal Calibration Report of Dissolved Oxygen Meter

Equipment Ref. No.

ET/EW/008/006

Manufacturer

: YSI

Model No.

Pro 2030

Serial No.

12A 100554

Date of Calibration

17/12/2014

Calibration Due Date

16/03/2015

Temperature Verification

Ref. No. of Reference Thermometer:

ET/0521/008

Ref. No. of Water Bath:

		Temperature (°C)				
Reference Thermometer reading	Measured	20.0	Corrected	19.4		
DO Meter reading	Measured	19.4	Difference	0.0		

Standardization of sodium thiosulphate (Na $_2$ S $_2$ O $_3$) solution

Reagent No. of Na ₂ S ₂ O ₃ titrant	CPE/012/4.5/001/9	Reagent No. of 0.025N K ₂ Cr ₂ O ₇	CPE/012/4.4/001/32	
		Trial 1	Trial 2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)		0.00	10.15	
Final Vol. of Na ₂ S ₂ O ₃ (ml)		10.15	20.35	
Vol. of Na ₂ S ₂ O ₃ used (ml)		10.15	10.20	
Normality of Na ₂ S ₂ O ₃ solution (N)		0.02463	0.02451	
Average Normality (N) of Na ₂ S ₂ O ₃ solution (N)		0.02457		
Acceptance criteria, Deviation		Less than ± 0.001N		

Calculation:

Normality of $Na_2S_2O_3$, $N = 0.25 / ml Na_2S_2O_3$ used

Lineality Checking

Determination of dissolved oxygen content by Winkler Titration *

Purging Time (min)		2		5	1	0
Trial	1	2	1	2	1	2
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.40	22.80	0.00	6.60	10.30
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.40	22.80	29.30	6.60	10.30	14.00
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.40	11.40	6.50	6.60	3.70	3.70
Dissolved Oxygen (DO), mg/L	7.52	7.52	4.29	4.35	2.44	2.44
Acceptance criteria, Deviation	Less than	n + 0.3mg/L	Less than	+ 0.3mg/L	Less than	+ 0.3mg/L

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Purging time, min	DO meter reading, mg/L		Winkler Titration result *, mg/L			Difference (%) of DO	
ruiging unic, min	1	2	Average	1	2	Average	Content
2	7.61	7.20	7.41	7.52	7.52	7.52	1.47
5	4.28	4.75	4.52	4.29	4.35	4.32	4.52
10	2.50	2.49	2.50	2.44	2.44	2.44	2.43
Linea	ır regression	coefficient				0.9978	

Internal Calibration Report of Dissolved Oxygen Meter

Zero	Point	Checi	king

DO meter reading, mg/L	0.00

Salinity Checking

		·	
	i		
Reagent No. of NaCl (10ppt)	ICPE/012/4.7/002/29	Reagent No. of NaCl (30ppt)	ICPE/012/4.8/002/29
reagent no. of naci (roppi)	CI LII OI LI 11.77 OODI LI	Treasure Trace (5 oppr)	01 2: 012: 110: 002: 22

Determination of dissolved oxygen content by Winkler Titration **

Salinity (ppt)	10		30		
Trial	1	2	1	2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.90	23.80	34.40	
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.90	23.80	34.40	44.90	
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.90	11.90	10.60	10.50	
Dissolved Oxygen (DO), mg/L	7.85	7.85	6.99	6.93	
Acceptance criteria, Deviation	Less than + 0.3mg/L		Less than + 0.3mg/L		

Calculation:

DO $(mg/L) = V \times N \times 8000/298$

Salinity (ppt)	DO meter reading, mg/L		Winkler	Titration resu	Difference (%) of DO		
Samily (ppt)	1	2	Average	1	2	Average	Content
10	7.68	7.78	7.73	7.85	7.85	7.85	1.54
30	6.88	6.89	6.89	6.99	6.93	6.96	1.01

Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer : < 0.5 °C
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within \pm 5%

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

" Delete as appropriate

CEP/012/W

Performan	nce Check of	f Salinity Meter							
Equipment Ref. No. : <u>ET/EW/008/006</u> Manufacturer : <u>YSI</u>									
Model No. : Pro 20	30	Serial No. : <u>12A 100554</u>							
Date of Calibration : 17/12/2	2014	Due Date : <u>16/03/2015</u>							
Ref. No. of Salinity Stand	dard used (30ppt)	S/001/5							
Salinity Standard (ppt)	Measured Salinit (ppt)	Difference %							
30.0	30.5	1.7							
(*) Difference (%) = (Measured S	Salinity – Salinity Sta	ndard value) / Salinity Standard value x 100							
Acceptance Criteria	Difference : -10 %	to 10 %							
The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.									
Checked by:	Арр	proved by:							

	Internal Calibration & P	Performance Check	of pH Mete	•
	Equipment Ref. No.: ET/EW/007/005	Manufacturer	: HANNA	
	Model No. : HI 8314	Serial No.	: 8246095	
	Date of Calibration : 07/01/2015	Calibration Due Date	: 06/02/2015	W AVI THINK
			. 00/02/2010	
	Liquid Junction Error			
	Primary Standard Solution Used : Phosphate	Ref No. c	of Primary Solution:	: 003/5.2/001/20
	Temperature of Solution : 20.0		∆pH ½ =	
	pH value of diluted buffer : 6.79		pH (S) =	
	ΔpH = pH(S) - pH of diluted buffer = 0.091	(Observed Deviati	, , ,	
ľ	Liquid Junction Error (ΔpH_1) = $\Delta pH - \Delta pH_2$ = 0.011		<u>0117</u>	
	Will the first Manager and the second			
	Shift on Stirring			
	pH of buffer solution (with stirring), pH _s =	6.91		
	Shift on stirring, $\Delta pH_s = pH_s - pH(S) - \Delta pH_i =$	0.018	numa .	
	Noise			
	Noise, ΔpH_n = difference between max and min reactions.	ading: 0.00		-
	Verification of ATC			
	Ref. No. of reference thermometer used:	ET/0521/00	8	
	Temperature record from the reference thermomete	***************************************		-°C
	Temperature record from the ATC (T _{ATC}):	19.9		°c
	Temperature Difference, T _R - T _{ATC}	0.0		-°c
	Acceptance Criteria			
	Performance Characteristic	······································	table Range]
	Liquid Junction Error ΔpHj		≤0.05	
	Shift on Stirring ΔpHs		≤0.02	
•	Noise ΔpHn	· · · · · · · · · · · · · · · · · · ·	≤0.02	-
	Verification of ATC Temperature I	Difference ≤	≤0.5°C	
	The pH meter complies * / does not comply * will unacceptable * for use. Measurements are traceable * Delete as appropriate		nts and is deeme	ed acceptable * /
	Calibrated by :	Checked by	: 1De	le

CPE/015/W

Equipment Ref. No. : ET/EW/007/005 Manufactu			er	: HANNA		
Model No. : HI 8314	** *** *** *** *** *** *** *** *** ***			: 8246095	46095	
Date of Calibration : 07/02/201			Due Date	: 06/03/2015		
Liquid Junction Error					AN ALES AND CONTROL AND CONTRO	
Primary Standard Solution Used:	Phosphate)	_ Ref No. o	of Primary Solutio	on: <u>003/5.2/001/</u>	
Temperature of Solution:	20.0			ΔpH _γ	= +0.08	
pH value of diluted buffer :	6.79			pH (S)	= 6.881	
∆pH = pH(S) - pH of diluted buffer =	0.091	(Ob	– served Deviat	ion)		
Liquid Junction Error ($\triangle pH_j$) = $\triangle pH$ -		11		MANAGEMENT		
Shift on Stirring						
pH of buffer solution (with stirring), p	oH _s =	6.90)			
Shift on stirring, $\Delta pH_s = pH_s - pH(S)$	- ΔpH _i =	0.008	8	-		
Noise						
Noise, ∆pH _n = difference between n	nax and min r	eading :	0.00	MAINTAN MAINTA		
Noise, ∆pH _n = difference between n 	nax and min r	eading :	0.00			
Verification of ATC		eading :	0.00 ET/0521/00	08		
Verification of ATC Ref. No. of reference thermometer to	used:			08	oc	
Verification of ATC Ref. No. of reference thermometer to the control of the reference	used: nce thermome		ET/0521/00	08	°c °c	
Verification of ATC Ref. No. of reference thermometer to the proper sture record from the reference from the ATC (**)	used: nce thermome T _{ATC}):		ET/0521/00	08	MINCHOTO	
Verification of ATC Ref. No. of reference thermometer to the the reference thermometer of the the reference of the	used: nce thermome T _{ATC}):		ET/0521/00 19.9 20.0	08	°C	
Verification of ATC Ref. No. of reference thermometer to the the reference thermometer of the the reference of the	used: nce thermome T _{ATC}): ;		ET/0521/00 19.9 20.0 -0.1	otable Range	°C	
Verification of ATC Ref. No. of reference thermometer of the properties of the properties of the properties of the ATC (Temperature Difference, Temperature Difference Criteria	used: nce thermome T _{ATC}): ;		ET/0521/00 19.9 20.0 -0.1		°C	
Verification of ATC Ref. No. of reference thermometer use the proper ature record from the reference of the proper ature record from the ATC (Temperature Difference, Temperature Difference, Tempera	used: nce thermome T _{ATC}): ;		ET/0521/00 19.9 20.0 -0.1	otable Range ≤0.05 ≤0.02	°C	
Verification of ATC Ref. No. of reference thermometer to Temperature record from the reference Temperature record from the ATC (Temperature Difference, T _R - T _{ATC} Acceptance Criteria Performance Charliquid Junction Error Shift on Stirring Noise	used: nce thermome T _{ATC}): s aracteristic ΔpHj ΔpHs ΔpHn	eter (T _R):	ET/0521/00 19.9 20.0 -0.1	otable Range ≤0.05 ≤0.02 ≤0.02	°C	
Verification of ATC Ref. No. of reference thermometer to Temperature record from the reference Temperature record from the ATC (Temperature Difference, T _R - T _{ATC} Acceptance Criteria Performance Charliquid Junction Error Shift on Stirring Noise	used: nce thermome T _{ATC}): s aracteristic ΔpHj ΔpHs ΔpHn		ET/0521/00 19.9 20.0 -0.1	otable Range ≤0.05 ≤0.02	°C	
Verification of ATC Ref. No. of reference thermometer of Temperature record from the reference Temperature record from the ATC (Temperature Difference, T _R - T _{ATC} Acceptance Criteria Performance Challiquid Junction Error Shift on Stirring Noise Verification of ATC The pH meter complies * / does remacceptable * for use. Measurements	used: nce thermome T _{ATC}): aracteristic ΔpHj ΔpHs ΔpHn Temperatur net comply *	eter (T _R): re Difference with the specif	ET/0521/00 19.9 20.0 -0.1 Acception	otable Range ≤0.05 ≤0.02 ≤0.02 ≤0.5°C	° c ° c	
Verification of ATC Ref. No. of reference thermometer used from the reference themperature record from the ATC (Temperature record from the ATC (Temperature Difference, T _R - T _{ATC}) Acceptance Criteria Performance Charleigh Junction Error Shift on Stirring Noise Verification of ATC The pH meter complies * / does reference themperature of ATC	used: nce thermome T _{ATC}): aracteristic ΔpHj ΔpHs ΔpHn Temperatur net comply *	eter (T _R): re Difference with the specif	ET/0521/00 19.9 20.0 -0.1 Acception	otable Range ≤0.05 ≤0.02 ≤0.02 ≤0.5°C	° c ° c	

Appendix F

EM&A Monitoring Schedules

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Air Quality Impact Monitoring Schedule - February 2015

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

	olis. Adiki, Adika, Adika, A					
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Fel	02-Feb	03-Feb	04-Feb	05-Feb	06-Feb	07-Feb
		1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time	
		Impact AQM			Impact AQM	
08-Fel		10-Feb	11-Feb		13-Feb	14-Feb
	1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time		
	Impact AQM			Impact AQM		
15-Fel	16-Feb	17-Feb	18-Feb	public holiday 19-Feb	public holiday 20-Feb	public holiday 21-Feb
1-hour TSP - 3 times 24-hour TSP - 1 time		1-hour TSP - 3 times 24-hour TSP - 1 time				
Impact AQM	20.5.1	Impact AQM	0= = .			99.5.1
22-Fel	23-Feb 1-hour TSP - 3 times	24-Feb	25-Feb	26-Feb 1-hour TSP - 3 times	27-Feb	28-Feb
	24-hour TSP - 1 time			24-hour TSP - 1 time		
	Impact AQM			Impact AQM		

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions. No construction works was carried out from 19-Feb to 21-Feb hence AQM was postponed to 23-Feb.

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Tentative Air Quality Impact Monitoring Schedule - March 2015

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

Air quality monitoring static	ons: ASR1, ASR5, ASR6, A	SRTU, AQMIST				
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Mar	02-Mar	03-Mar	04-Mar	05-Mar	06-Mar	07-Mar
1-hour TSP - 3 times			1-hour TSP - 3 times			1-hour TSP - 3 times
24-hour TSP - 1 time			24-hour TSP - 1 time			24-hour TSP - 1 time
Impact AQM			Impact AQM			Impact AQM
08-Mar	09-Mar	10-Mar	11-Mar	12-Mar	13-Mar	14-Mar
		1-hour TSP - 3 times			1-hour TSP - 3 times	
		24-hour TSP - 1 time			24-hour TSP - 1 time	
		Impact AQM			Impact AQM	
15-Mar	16-Mar	17-Mar	18-Mar	19-Mar	20-Mar	21-Mar
	1-hour TSP - 3 times			1-hour TSP - 3 times		
	24-hour TSP - 1 time			24-hour TSP - 1 time		
	Impact AQM			Impact AQM		
22-Mar	23-Mar		25-Mar	26-Mar	27-Mar	28-Mar
1-hour TSP - 3 times			1-hour TSP - 3 times			1-hour TSP - 3 times
24-hour TSP - 1 time			24-hour TSP - 1 time			24-hour TSP - 1 time
Impact AQM			Impact AQM			Impact AQM
29-Mar	30-Mar					
		1-hour TSP - 3 times				
		24-hour TSP - 1 time				
		Impact AQM				

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/08 - Tuen Mun - Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section Impact Marine Water Quality Monitoring (WQM) Schedule (February 15)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Feb	02-Feb	03-Feb	04-Feb			07-Feb
	WQM		WQM		WQM	
	Mid-Ebb		Mid-Ebb		Mid-Flood	
	12:19		13:23		8:46	
	(10:34 - 14:04)		(11:38 - 15:08)		(07:01 - 10:31)	
	Mid-Flood		Mid-Flood		Mid-Ebb	
	17:39		18:54		14:18	
	(15:54 - 19:24)		(17:09 - 20:39)		(12:33 - 16:03)	
08-Feb		10-Feb	11-Feb			14-Feb
	WQM		WQM		WQM	
	Mid-Flood		Mid-Flood		Mid-Flood	
	10:01		11:06		12:43	
	(08:16 - 11:46)		(09:21 - 12:51)		(10:58 - 14:28)	
	Mid-Ebb		Mid-Ebb		Mid-Ebb	
	16:00		17:42		20:24	
	(14:15 - 17:45)		(15:57 - 19:27)		(18:39 - 22:09)	
15-Feb	16-Feb	17-Feb	18-Feb	19-Feb	20-Feb	21-Feb
	WQM		WQM			
	Mid-Ebb		Mid-Ebb			
	11:12		12:42			
	(09:27 - 12:57)		(10:57 - 14:27)			
	Mid-Flood		Mid-Flood			
	16:20		18:11			
	(14:35 - 18:05)		(16:26 - 19:56)			
22-Feb		24-Feb	25-Feb			28-Feb
	WQM		WQM		WQM	
	Mid-Flood		Mid-Flood		Mid-Flood	
	9:56		11:13		7:46	
	(08:11 - 11:41)		(09:28 - 12:58)		(06:45 - 08:45)	
	Mid-Ebb		Mid-Ebb		Mid-Ebb	
	16:16		18:18		13:00	
	(14:31 - 18:01)		(16:33 - 20:03)		(11:15 - 14:45)	

Note: No construction works was carried out from 19 February 2015 to 21 February 2015, thus Impact Water Quality Monitoring was postponed to 23 February 2015.

HY/2012/08 - Tuen Mun - Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section HYbhhjj Y'Impact Marine Water Quality Monitoring (WQM) Schedule (March 15)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Mar	02-Mar		04-N	Mar 05-Mar		07-Mar
	WQM		WQM		WQM	
	Mid-Ebb		Mid-Ebb		Mid-Ebb	
	11:32		12:32		13:25	
	(09:47 - 13:17)		(10:47 - 14:17)		(11:40 - 15:10)	
	Mid-Flood		Mid-Flood		Mid-Flood	
	16:52		18:14		19:23	
	(15:07 - 18:37)		(16:29 - 19:59)		(17:38 - 21:08)	
08-Mar	09-Mar	10-Mar	11-N	Mar 12-Mar		14-Mar
	WQM		WQM		WQM	
	Mid-Flood		Mid-Flood		Mid-Flood	
	8:56		9:45		10:53	
	(07:11 - 10:41)		(08:00 - 11:30)		(09:08 - 12:38)	
	Mid-Ebb		Mid-Ebb		Mid-Ebb	
	14:56		16:11		18:04	
	(13:11 - 16:41)		(14:26 - 17:56)		(16:19 - 19:49)	
15-Mar	16-Mar		18-1	Mar 19-Mar		21-Mar
	WQM		WQM		WQM	
	Mid-Ebb		Mid-Ebb		Mid-Ebb	
	10:03		11:42		13:00	
	(08:18 - 11:48)		(09:57 - 13:27)		(11:15 - 14:45)	
	Mid-Flood		Mid-Flood		Mid-Flood	
	14:59		17:12		18:58	
	(13:14 - 16:44)		(15:27 - 18:57)		(17:13 - 20:43)	
22-Mar	23-Mar	24-Mar	25-N	Mar 26-Mar	27-Mar	28-Mar
	WQM		WQM		WQM	
	Mid-Flood		Mid-Flood		Mid-Flood	
	8:40		9:46		11:02	
	(06:55 - 10:25)		(08:01 - 11:31)		(09:17 - 12:47)	
	Mid-Ebb		Mid-Ebb		Mid-Ebb	
	15:04		16:40		18:39	
	(13:19 - 16:49)		(14:55 - 18:25)		(16:54 - 20:24)	
29-Mar	30-Mar	31-Mar	,		,	
	WQM					
	Mid-Ebb					
	10:38					
	(08:53 - 12:23)					
	Mid-Flood					
	15:44					
	(13:59 - 17:29)					

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Impact Dolphin Monitoring Survey Monitoring Schedule - February 2015

Sı	unday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	01-Feb	02-Feb	03-Feb			06-Feb	07-Feb
					Impact Dolphin Monitoring		
	08-Feb	09-Feb	10-Feb	11-Feb	12-Feb	13-Feb	14-Feb
						Impact Dolphin Monitoring	
	15-Feb	16-Feb	17-Feb	18-Feb	public holiday 19-Feb	public holiday 20-Feb	public holiday 21-Feb
		Impact Dolphin Monitoring					
	22-Feb	23-Feb	24-Feb	25-Feb	26-Feb	27-Feb	28-Feb
				Impact Dolphin Monitoring			

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Tentative Impact Dolphin Monitoring Survey Monitoring Schedule - March 2015

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Mar	02-Mar			05-Mar	06-Mar	07-Mar
			Impact Dolphin Monitoring			
08-Mar	09-Mar	10-Mar	11-Mar	12-Mar	13-Mar	14-Mar
			Impact Dolphin Monitoring			
15-Mar	16-Mar		18-Mar	19-Mar	20-Mar	21-Mar
		Impact Dolphin Monitoring				
22-Mar		24-Mar	25-Mar	26-Mar	27-Mar	28-Mar
	Impact Dolphin Monitoring					
29-Mar	30-Mar	31-Mar				

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

Appendix G

Impact Air Quality Monitoring Results

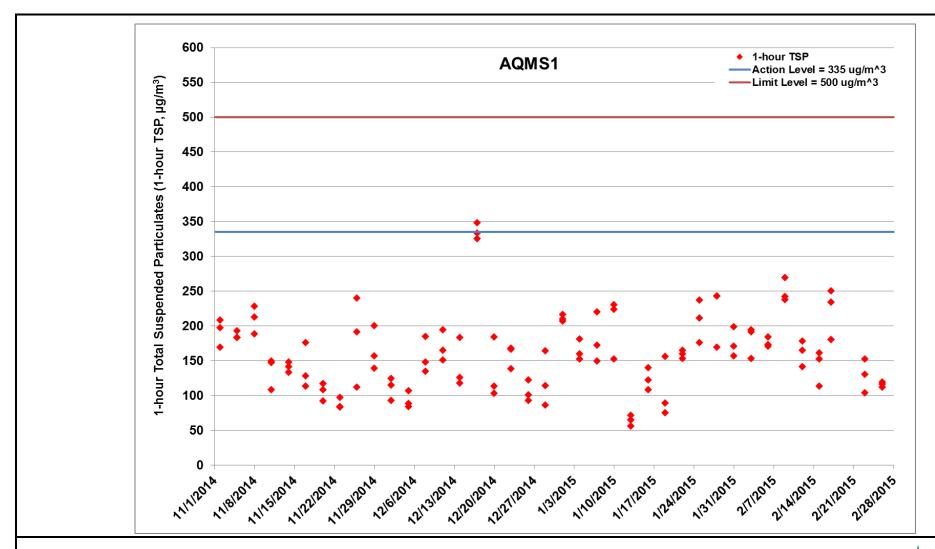


Figure G.1 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at AQMS1 between 1 November 2014 and 28 February 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area – Portion N-A (22/12/2014 – 28/2/2015), Diaphragm Wall Construction at Works Area – Portion N-A (1/11/2014 – 30/11/2014) and Excavation for Launching Shaft (1/11/2014 – 30/11/2014). Ref: 0212330_Impact AQM graphs_Feb 2015_REV a.xlsx

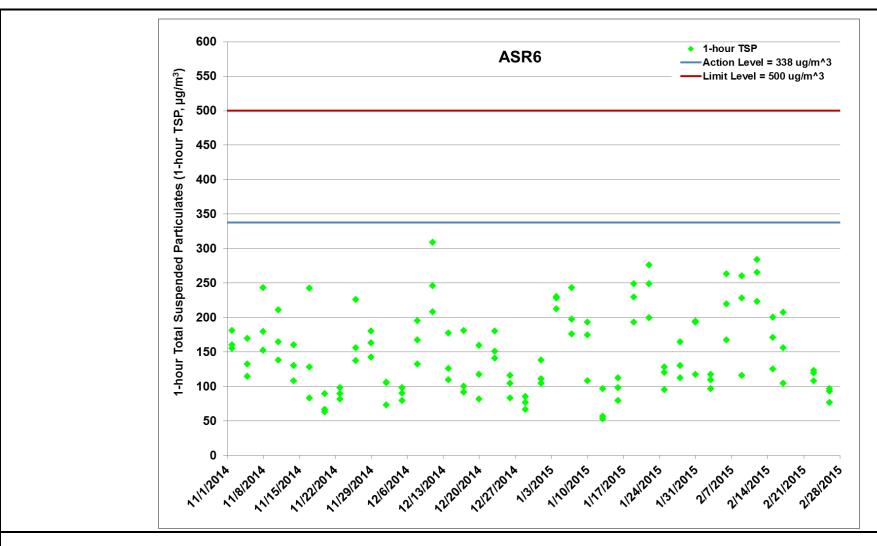


Figure G.2 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR6 between 1 November 2014 and 28 February 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area – Portion N-A (22/12/2014 – 28/2/2015), Diaphragm Wall Construction at Works Area – Portion N-A (1/11/2014 – 30/11/2014) and Excavation for Launching Shaft (1/11/2014 – 30/11/2014). Ref: 0212330_Impact AQM graphs_Feb 2015_REV a.xlsx

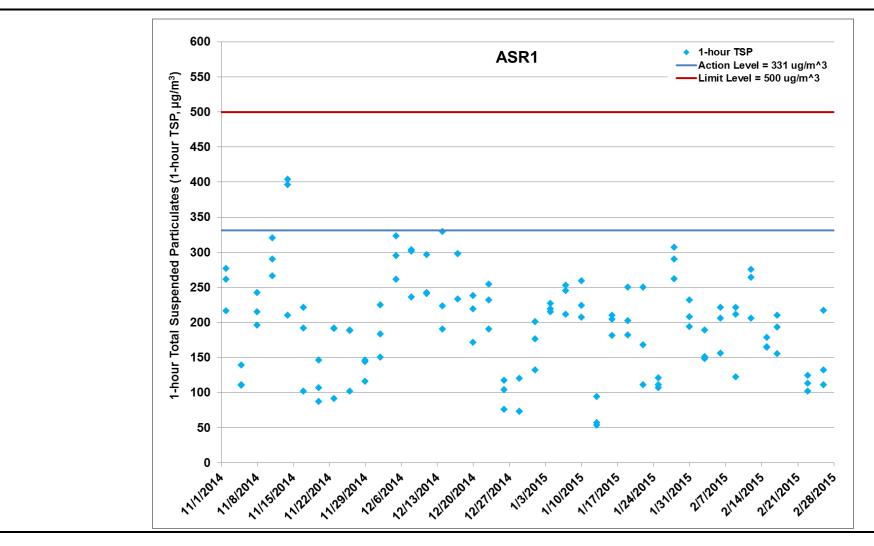


Figure G.3 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR1 between 1 November 2014 and 28 February 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area – Portion N-A (22/12/2014 – 28/2/2015), Diaphragm Wall Construction at Works Area – Portion N-A (1/11/2014 – 30/11/2014) and Excavation for Launching Shaft (1/11/2014 – 30/11/2014). Ref: 0212330_Impact AQM graphs_Feb 2015_REV a.xlsx

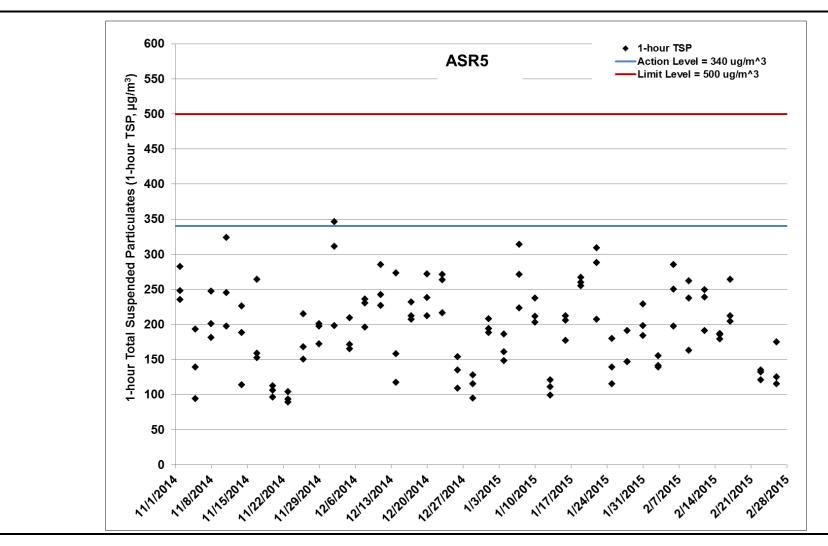


Figure G.4 Impact Monitoring – 1-hour Total Suspended Particulates (μ g/m³) at ASR5 between 1 November 2014 and 28 February 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area – Portion N-A (22/12/2014 – 28/2/2015), Diaphragm Wall Construction at Works Area – Portion N-A (1/11/2014 – 30/11/2014) and Excavation for Launching Shaft (1/11/2014 – 30/11/2014).

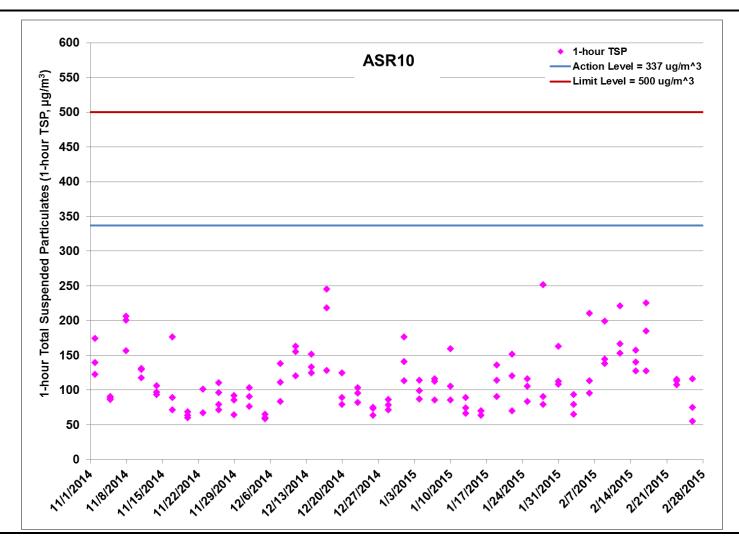


Figure G.5 Impact Monitoring – 1-hour Total Suspended Particulates (μ g/m³) at ASR10 between 1 November 2014 and 28 February 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area – Portion N-A (22/12/2014 – 28/2/2015), Diaphragm Wall Construction at Works Area – Portion N-A (1/11/2014 – 30/11/2014) and Excavation for Launching Shaft (1/11/2014 – 30/11/2014).

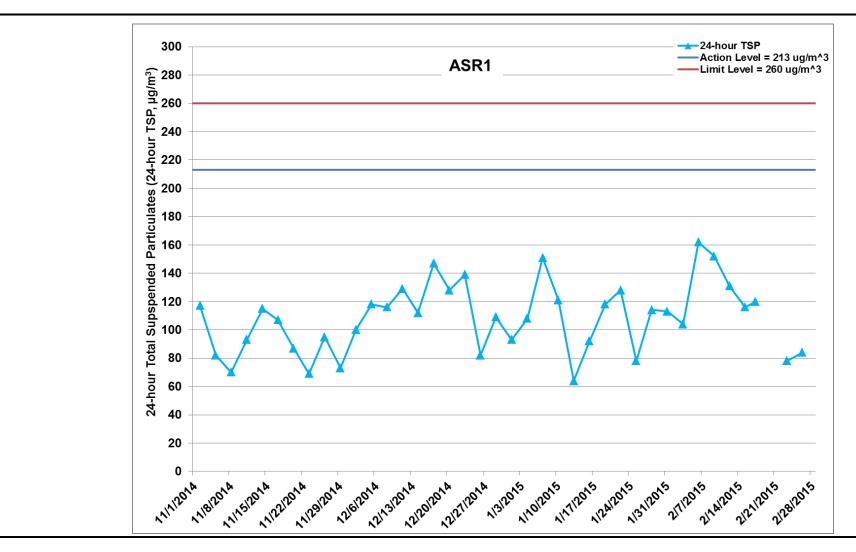


Figure G.6 Impact Monitoring – 24-hour Total Suspended Particulates (μ g/m³) at ASR1 between 1 November 2014 and 28 February 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area – Portion N-A (22/12/2014 – 28/2/2015), Diaphragm Wall Construction at Works Area – Portion N-A (1/11/2014 – 30/11/2014) and Excavation for Launching Shaft (1/11/2014 – 30/11/2014).

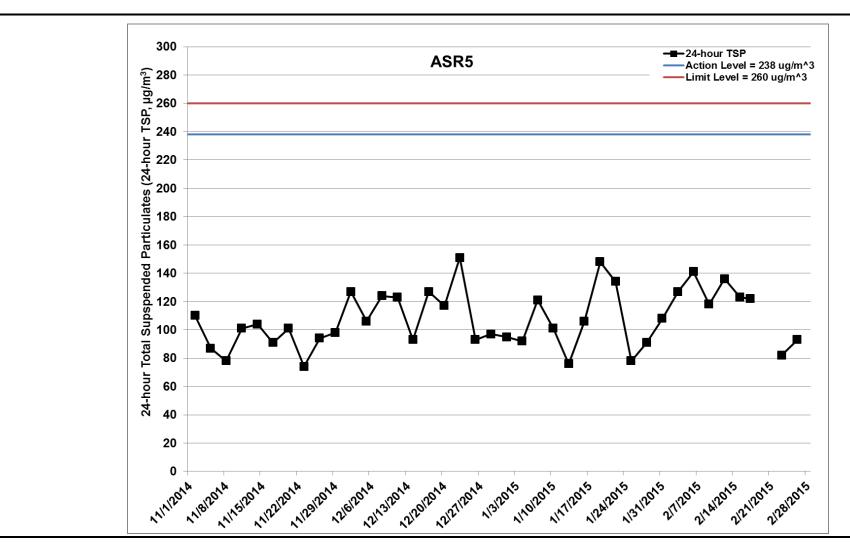


Figure G.7 Impact Monitoring – 24-hour Total Suspended Particulates (μ g/m³) at ASR5 between 1 November 2014 and 28 February 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 28/2/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/11/2014 – 30/11/2014) and Excavation for Launching Shaft (1/11/2014 – 30/11/2014).

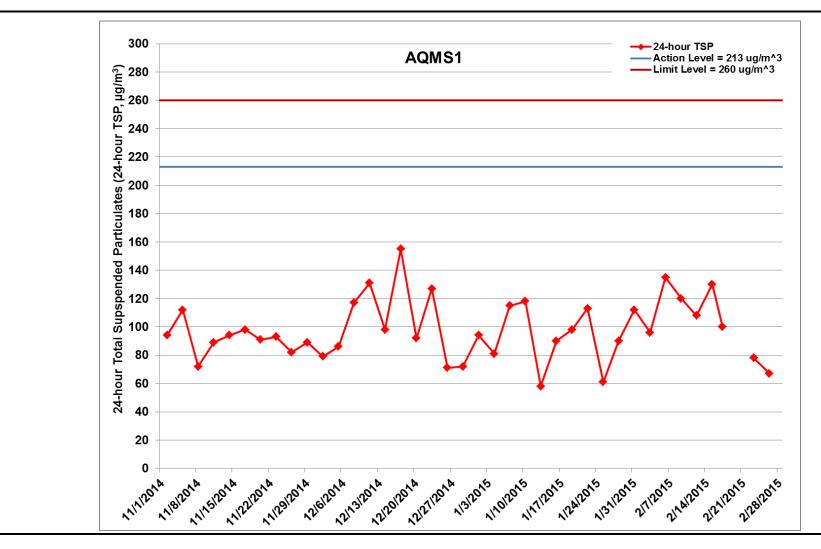


Figure G.8 Impact Monitoring – 24-hour Total Suspended Particulates (μ g/m³) at AQMS1 between 1 November 2014 and 28 February 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 28/2/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/11/2014 – 30/11/2014) and Excavation for Launching Shaft (1/11/2014 – 30/11/2014).

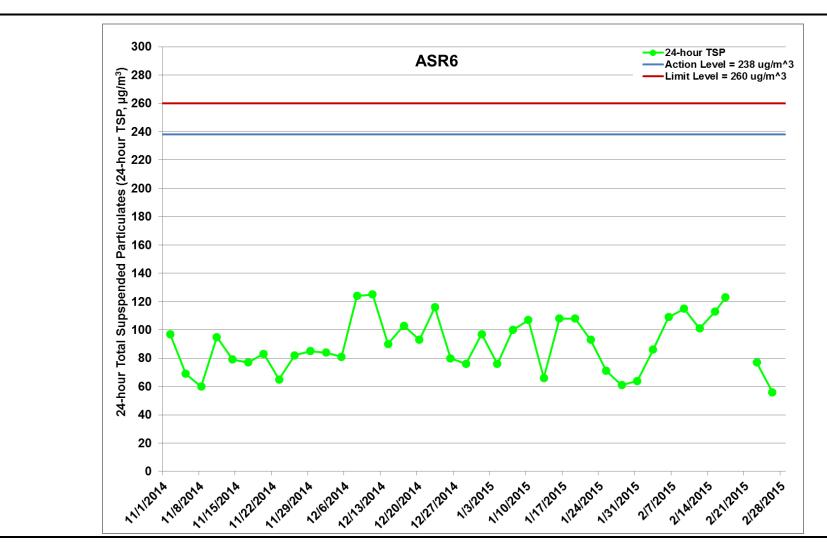


Figure G.9 Impact Monitoring – 24-hour Total Suspended Particulates (μ g/m³) at ASR6 between 1 November 2014 and 28 February 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 28/2/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/11/2014 – 30/11/2014) and Excavation for Launching Shaft (1/11/2014 – 30/11/2014).

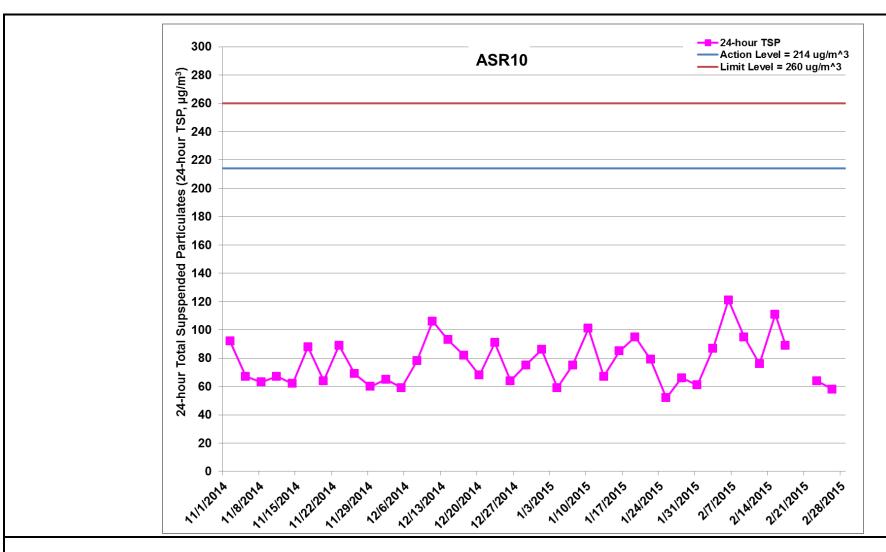


Figure G.10 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR10 between 1 November 2014 and 28 February 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 28/2/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/11/2014 – 30/11/2014) and Excavation for Launching Shaft (1/11/2014 – 30/11/2014).

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-02-03	ASR10	Sunny	12:32	1-hour TSP	79	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR10	Sunny	13:34	1-hour TSP	65	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR10	Sunny	14:36	1-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR6	Sunny	12:33	1-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR6	Sunny	13:35	1-hour TSP	117	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR6	Sunny	14:37	1-hour TSP	109	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR5	Sunny	12:45	1-hour TSP	141	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR5	Sunny	13:47	1-hour TSP	139	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR5	Sunny	14:49	1-hour TSP	155	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR1	Sunny	12:58	1-hour TSP	151	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR1	Sunny	14:00	1-hour TSP	148	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR1	Sunny	15:02	1-hour TSP	189	ug/m3
TMCLKL	HY/2012/08	2015-02-03	AQMS1	Sunny	13:10	1-hour TSP	191	ug/m3
TMCLKL	HY/2012/08	2015-02-03	AQMS1	Sunny	14:12	1-hour TSP	153	ug/m3
TMCLKL	HY/2012/08	2015-02-03	AQMS1	Sunny	15:14	1-hour TSP	194	ug/m3
TMCLKL	HY/2012/08	2015-02-06	AQMS1	Sunny	08:54	1-hour TSP	173	ug/m3
TMCLKL	HY/2012/08	2015-02-06	AQMS1	Sunny	09:56	1-hour TSP	171	ug/m3
TMCLKL	HY/2012/08	2015-02-06	AQMS1	Sunny	10:58	1-hour TSP	184	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR10	Sunny	08:08	1-hour TSP	95	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR10	Sunny	09:10	1-hour TSP	113	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR10	Sunny	10:12	1-hour TSP	210	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR6	Sunny	08:19	1-hour TSP	263	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR6	Sunny	09:21	1-hour TSP	167	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR6	Sunny	10:23	1-hour TSP	219	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR5	Sunny	08:30	1-hour TSP	197	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR5	Sunny	09:32	1-hour TSP	250	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR5	Sunny	10:34	1-hour TSP	285	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR1	Sunny	08:43	1-hour TSP	156	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR1	Sunny	09:45	1-hour TSP	221	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR1	Sunny	10:47	1-hour TSP	206	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-02-09	ASR10	Sunny	13:08	1-hour TSP	138	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR10	Sunny	14:10	1-hour TSP	199	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR10	Sunny	15:12	1-hour TSP	144	ug/m3
TMCLKL	HY/2012/08	2015-02-09	AQMS1	Sunny	13:54	1-hour TSP	238	ug/m3
TMCLKL	HY/2012/08	2015-02-09	AQMS1	Sunny	14:56	1-hour TSP	242	ug/m3
TMCLKL	HY/2012/08	2015-02-09	AQMS1	Sunny	15:58	1-hour TSP	269	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR1	Sunny	13:42	1-hour TSP	211	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR1	Sunny	14:44	1-hour TSP	221	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR1	Sunny	15:46	1-hour TSP	122	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR5	Sunny	13:30	1-hour TSP	262	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR5	Sunny	14:32	1-hour TSP	237	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR5	Sunny	15:34	1-hour TSP	163	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR6	Sunny	13:19	1-hour TSP	260	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR6	Sunny	14:21	1-hour TSP	228	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR6	Sunny	15:23	1-hour TSP	116	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR10	Sunny	13:16	1-hour TSP	153	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR10	Sunny	14:18	1-hour TSP	221	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR10	Sunny	15:20	1-hour TSP	166	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR6	Sunny	13:27	1-hour TSP	265	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR6	Sunny	14:29	1-hour TSP	284	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR6	Sunny	15:31	1-hour TSP	223	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR5	Sunny	13:38	1-hour TSP	239	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR5	Sunny	14:40	1-hour TSP	249	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR5	Sunny	15:42	1-hour TSP	191	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR1	Sunny	13:50	1-hour TSP	275	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR1	Sunny	14:52	1-hour TSP	264	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR1	Sunny	15:54	1-hour TSP	206	ug/m3
TMCLKL	HY/2012/08	2015-02-12	AQMS1	Sunny	14:02	1-hour TSP	178	ug/m3
TMCLKL	HY/2012/08	2015-02-12	AQMS1	Sunny	15:04	1-hour TSP	165	ug/m3
TMCLKL	HY/2012/08	2015-02-12	AQMS1	Sunny	16:06	1-hour TSP	141	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-02-15	ASR10	Rainy	08:30	1-hour TSP	157	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR10	Rainy	09:32	1-hour TSP	140	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR10	Rainy	10:34	1-hour TSP	127	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR6	Rainy	08:42	1-hour TSP	200	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR6	Rainy	09:44	1-hour TSP	171	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR6	Rainy	10:46	1-hour TSP	125	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR5	Rainy	08:53	1-hour TSP	185	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR5	Rainy	09:55	1-hour TSP	179	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR5	Rainy	10:57	1-hour TSP	187	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR1	Rainy	09:05	1-hour TSP	178	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR1	Rainy	10:07	1-hour TSP	164	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR1	Rainy	11:09	1-hour TSP	165	ug/m3
TMCLKL	HY/2012/08	2015-02-15	AQMS1	Rainy	09:17	1-hour TSP	113	ug/m3
TMCLKL	HY/2012/08	2015-02-15	AQMS1	Rainy	10:19	1-hour TSP	152	ug/m3
TMCLKL	HY/2012/08	2015-02-15	AQMS1	Rainy	11:21	1-hour TSP	161	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR10	Sunny	13:40	1-hour TSP	225	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR10	Sunny	14:42	1-hour TSP	185	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR10	Sunny	15:44	1-hour TSP	127	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR6	Sunny	13:50	1-hour TSP	207	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR6	Sunny	14:52	1-hour TSP	156	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR6	Sunny	15:54	1-hour TSP	104	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR5	Sunny	14:02	1-hour TSP	212	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR5	Sunny	15:04	1-hour TSP	204	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR5	Sunny	16:06	1-hour TSP	264	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR1	Sunny	14:14	1-hour TSP	193	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR1	Sunny	15:16	1-hour TSP	210	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR1	Sunny	16:18	1-hour TSP	155	ug/m3
TMCLKL	HY/2012/08	2015-02-17	AQMS1	Sunny	14:26	1-hour TSP	250	ug/m3
TMCLKL	HY/2012/08	2015-02-17	AQMS1	Sunny	15:28	1-hour TSP	234	ug/m3
TMCLKL	HY/2012/08	2015-02-17	AQMS1	Sunny	16:30	1-hour TSP	180	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-02-23	ASR10	Cloudy	13:33	1-hour TSP	107	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR10	Cloudy	14:35	1-hour TSP	113	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR10	Cloudy	15:37	1-hour TSP	115	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR6	Cloudy	13:44	1-hour TSP	108	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR6	Cloudy	14:46	1-hour TSP	119	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR6	Cloudy	15:48	1-hour TSP	123	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR5	Cloudy	13:55	1-hour TSP	121	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR5	Cloudy	14:57	1-hour TSP	132	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR5	Cloudy	15:59	1-hour TSP	135	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR1	Cloudy	14:07	1-hour TSP	102	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR1	Cloudy	15:09	1-hour TSP	124	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR1	Cloudy	16:11	1-hour TSP	113	ug/m3
TMCLKL	HY/2012/08	2015-02-23	AQMS1	Cloudy	14:18	1-hour TSP	104	ug/m3
TMCLKL	HY/2012/08	2015-02-23	AQMS1	Cloudy	15:20	1-hour TSP	130	ug/m3
TMCLKL	HY/2012/08	2015-02-23	AQMS1	Cloudy	16:22	1-hour TSP	152	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR10	Sunny	13:21	1-hour TSP	55	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR10	Sunny	14:23	1-hour TSP	75	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR10	Sunny	15:25	1-hour TSP	116	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR6	Sunny	13:33	1-hour TSP	76	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR6	Sunny	14:35	1-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR6	Sunny	15:37	1-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR5	Sunny	13:45	1-hour TSP	125	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR5	Sunny	14:47	1-hour TSP	175	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR5	Sunny	15:49	1-hour TSP	115	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR1	Sunny	13:57	1-hour TSP	132	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR1	Sunny	14:59	1-hour TSP	217	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR1	Sunny	16:01	1-hour TSP	111	ug/m3
TMCLKL	HY/2012/08	2015-02-26	AQMS1	Sunny	14:08	1-hour TSP	112	ug/m3
TMCLKL	HY/2012/08	2015-02-26	AQMS1	Sunny	15:10	1-hour TSP	119	ug/m3
TMCLKL	HY/2012/08	2015-02-26	AQMS1	Sunny	16:12	1-hour TSP	116	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-02-03	ASR10	Sunny	15:38	24-hour TSP	87	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR6	Sunny	15:39	24-hour TSP	86	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR5	Sunny	15:51	24-hour TSP	127	ug/m3
TMCLKL	HY/2012/08	2015-02-03	ASR1	Sunny	16:04	24-hour TSP	104	ug/m3
TMCLKL	HY/2012/08	2015-02-03	AQMS1	Sunny	16:16	24-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2015-02-06	AQMS1	Sunny	12:00	24-hour TSP	135	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR10	Sunny	11:14	24-hour TSP	121	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR6	Sunny	11:25	24-hour TSP	109	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR5	Sunny	11:36	24-hour TSP	141	ug/m3
TMCLKL	HY/2012/08	2015-02-06	ASR1	Sunny	11:49	24-hour TSP	162	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR10	Sunny	16:14	24-hour TSP	95	ug/m3
TMCLKL	HY/2012/08	2015-02-09	AQMS1	Sunny	17:00	24-hour TSP	120	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR1	Sunny	16:48	24-hour TSP	152	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR5	Sunny	16:36	24-hour TSP	118	ug/m3
TMCLKL	HY/2012/08	2015-02-09	ASR6	Sunny	16:25	24-hour TSP	115	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR10	Sunny	16:22	24-hour TSP	76	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR6	Sunny	16:33	24-hour TSP	101	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR5	Sunny	16:44	24-hour TSP	136	ug/m3
TMCLKL	HY/2012/08	2015-02-12	ASR1	Sunny	16:56	24-hour TSP	131	ug/m3
TMCLKL	HY/2012/08	2015-02-12	AQMS1	Sunny	17:08	24-hour TSP	108	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR10	Rainy	11:36	24-hour TSP	111	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR6	Rainy	11:48	24-hour TSP	113	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR5	Rainy	11:59	24-hour TSP	123	ug/m3
TMCLKL	HY/2012/08	2015-02-15	ASR1	Rainy	12:11	24-hour TSP	116	ug/m3
TMCLKL	HY/2012/08	2015-02-15	AQMS1	Rainy	12:23	24-hour TSP	130	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR10	Sunny	16:46	24-hour TSP	89	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR6	Sunny	16:56	24-hour TSP	123	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR5	Sunny	17:08	24-hour TSP	122	ug/m3
TMCLKL	HY/2012/08	2015-02-17	ASR1	Sunny	17:20	24-hour TSP	120	ug/m3
TMCLKL	HY/2012/08	2015-02-17	AQMS1	Sunny	17:32	24-hour TSP	100	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2015-02-23	ASR10	Cloudy	16:39	24-hour TSP	64	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR6	Cloudy	16:50	24-hour TSP	77	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR5	Cloudy	17:01	24-hour TSP	82	ug/m3
TMCLKL	HY/2012/08	2015-02-23	ASR1	Cloudy	17:13	24-hour TSP	78	ug/m3
TMCLKL	HY/2012/08	2015-02-23	AQMS1	Cloudy	17:24	24-hour TSP	78	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR10	Sunny	16:27	24-hour TSP	58	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR6	Sunny	16:39	24-hour TSP	56	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR5	Sunny	16:51	24-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2015-02-26	ASR1	Sunny	17:03	24-hour TSP	84	ug/m3
TMCLKL	HY/2012/08	2015-02-26	AQMS1	Sunny	17:14	24-hour TSP	67	ug/m3

Appendix H

Meteorological Data

Meteorological Data for Impact Monitoring in the reporting period						
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree			
15/02/03	0:00	0	118			
15/02/03	1:00	0.4	131			
15/02/03	2:00	0.4	88			
15/02/03	3:00	0.4	100			
15/02/03	4:00	0.9	77			
15/02/03	5:00	0	95			
15/02/03	6:00	0.4	96			
15/02/03	7:00	0.4	101			
15/02/03	8:00	0.4	84			
15/02/03	9:00	0.9	126			
15/02/03	10:00	1.8	138			
15/02/03	11:00	0.9	181			
15/02/03	12:00	0.9	274			
15/02/03	13:00	1.8	269			
			301			
15/02/03 15/02/03	14:00	1.3	300			
	15:00					
15/02/03	16:00	2.2	315			
15/02/03	17:00	1.8	317			
15/02/03	18:00	0.4	305			
15/02/03	19:00	0.9	126			
15/02/03	20:00	1.8	131			
15/02/03	21:00	0.9	121			
15/02/03	22:00	0	78			
15/02/03	23:00	0	91			
15/02/04	0:00	0	68			
15/02/04	1:00	0.4	115			
15/02/04	2:00	0.4	123			
15/02/04	3:00	0.4	127			
15/02/04	4:00	0.9	135			
15/02/04	5:00	0	119			
15/02/04	6:00	0	121			
15/02/04	7:00	0	117			
15/02/04	8:00	0	131			
15/02/04	9:00	0.9	74			
15/02/04	10:00	1.3	85			
15/02/04	11:00	0.9	83			
15/02/04	12:00	1.8	81			
15/02/04	13:00	1.3	25			
15/02/04	14:00	0	321			
15/02/04	15:00	2.7	351			
15/02/04	16:00	2.7	356			
15/02/04	17:00	1.8	5			
		1.8	4			
15/02/04	18:00					
15/02/04	19:00	1.8	3			
15/02/04	20:00	2.7	10			
15/02/04	21:00	2.7	10			
15/02/04	22:00	1.3	12			
15/02/04	23:00	0.9	46			
15/02/06	0:00	4	82			
15/02/06	1:00	4	84			
15/02/06	2:00	3.6	79			
15/02/06	3:00	3.1	86			
15/02/06	4:00	2.2	71			
15/02/06	5:00	2.2	69			

Meteorological Data for Impact Monitoring in the reporting period						
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree			
15/02/06	6:00	1.8	75			
15/02/06	7:00	2.7	82			
15/02/06	8:00	2.7	77			
15/02/06	9:00	1.3	79			
15/02/06	10:00	1.8	71			
15/02/06	11:00	1.3	69			
15/02/06	12:00	0.9	46			
15/02/06	13:00	1.3	88			
15/02/06	14:00	0.9	179			
15/02/06	15:00	1.3	280			
15/02/06	16:00	0.4	300			
15/02/06	17:00	1.3	351			
15/02/06	18:00	0.9	356			
15/02/06	19:00	0.4	5			
15/02/06	20:00	0.4	6			
15/02/06	21:00	0.4	191			
15/02/06	22:00	0	200			
15/02/06	23:00	0	94			
15/02/07	0:00	0.4	82			
15/02/07	1:00	1.3	112			
15/02/07	2:00	0.9	75			
15/02/07	3:00	0.9	81			
15/02/07	4:00	0.4	2			
15/02/07	5:00	0.9	101			
15/02/07	6:00	0.9	77			
15/02/07	7:00	0.9	97			
15/02/07	8:00	1.8	126			
15/02/07	9:00	1.3	133			
15/02/07	10:00	1.3	164			
15/02/07	11:00	1.3	185			
15/02/07	12:00	1.3	178			
15/02/07	13:00	0.9	272			
15/02/07	14:00	1.8	281			
15/02/07	15:00	1.3	266			
15/02/07	16:00	2.2	357			
15/02/07	17:00	2.2	6			
15/02/07	18:00	2.2	4			
15/02/07	19:00	1.8	7			
15/02/07	20:00	1.8	5			
	21:00	0.9	9			
15/02/07						
15/02/07	22:00	1.3	357			
15/02/07	23:00	0.9	3			
15/02/09	0:00	1.3	79			
15/02/09	1:00	1.3	92			
15/02/09	2:00	0.4	84			
15/02/09	3:00	0.4	87			
15/02/09	4:00	0	95			
15/02/09	5:00	0.9	76			
15/02/09	6:00	0.9	117			
15/02/09	7:00	0.4	81			
15/02/09	8:00	0.4	75			
15/02/09	9:00	1.8	74			
15/02/09	10:00	2.7	126			
15/02/09	11:00	2.7	167			

Meteorological Data for Impact Monitoring in the reporting period						
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree			
15/02/09	12:00	2.7	171			
15/02/09	13:00	2.7	182			
15/02/09	14:00	1.8	189			
15/02/09	15:00	0.9	275			
15/02/09	16:00	0.4	303			
15/02/09	17:00	1.8	276			
15/02/09	18:00	1.3	264			
15/02/09	19:00	1.8	173			
15/02/09	20:00	2.2	145			
15/02/09	21:00	2.2	138			
15/02/09	22:00	1.8	122			
15/02/09	23:00	1.8	100			
15/02/10	0:00	1.8	123			
	+					
15/02/10	1:00	1.8	119			
15/02/10	2:00	1.8	127			
15/02/10	3:00	1.3	82			
15/02/10	4:00	1.3	71			
15/02/10	5:00	0.9	76			
15/02/10	6:00	0.4	85			
15/02/10	7:00	1.3	74			
15/02/10	8:00	1.3	92			
15/02/10	9:00	2.7	119			
15/02/10	10:00	4	125			
15/02/10	11:00	3.6	118			
15/02/10	12:00	3.1	174			
15/02/10	13:00	2.2	191			
15/02/10	14:00	2.2	185			
15/02/10	15:00	1.8	182			
15/02/10	16:00	2.2	165			
15/02/10	17:00	2.2	178			
15/02/10	18:00	2.2	163			
15/02/10	19:00	2.2	145			
15/02/10	20:00	1.8	149			
15/02/10	21:00	1.8	151			
15/02/10	22:00	0.9	126			
15/02/10	23:00	0.9	119			
15/02/12	0:00	0	2			
15/02/12	1:00	0	6			
15/02/12	2:00	0.4	8			
15/02/12	3:00	0.4	346			
	4:00	1.3	351			
15/02/12	5:00	0.9	356			
15/02/12			356			
15/02/12	6:00	0.4	7			
15/02/12	7:00	0.4				
15/02/12	8:00	0	10			
15/02/12	9:00	0	280			
15/02/12	10:00	1.3	47			
15/02/12	11:00	0.9	273			
15/02/12	12:00	1.3	267			
15/02/12	13:00	0.9	271			
15/02/12	14:00	0.9	312			
15/02/12	15:00	0.9	309			
15/02/12	16:00	1.3	315			
15/02/12	17:00	1.3	184			

Time (24hrs) 18:00 19:00 20:00 21:00 22:00	Average of Wind Speed (m/s) 2.2 1.8	Average of Wind Direction (degree 173 155
19:00 20:00 21:00	1.8	
20:00 21:00		155
21:00	0.0	•
	0.9	127
22.00	0.9	129
22:00	1.3	124
23:00	0.9	119
0:00	0.9	135
1:00	0.1	91
		123
		84
		78
		95
		85
		136
		145
		143
		135
		179
		185
		201
		183
		275
		271
		269
		174
		145
		118
		121
	1.3	109
23:00	0.4	118
0:00	2.7	149
1:00	1.3	150
2:00	2.2	155
3:00	2.2	146
4:00	1.3	127
5:00	0.4	122
6:00	0.4	123
7:00	0.9	137
8:00	0.1	91
9:00	0.1	95
10:00	0.1	102
		88
	0.1	312
		309
		349
		340
		341
		352
		351
		356
		351
		342
		338 331
	2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 20:00 21:00 22:00 23:00 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00	2:00 0.2 3:00 0.1 4:00 0.4 5:00 0.4 6:00 0 7:00 0.4 8:00 0.4 9:00 2.2 10:00 2.2 11:00 2.2 12:00 1.3 13:00 0.4 14:00 0.4 15:00 1.3 16:00 1.3 17:00 0.9 18:00 1.3 19:00 1.3 20:00 1.3 21:00 1.3 22:00 1.3 23:00 0.4 0:00 2.7 1:00 1.3 2:00 2.2 3:00 2.2 4:00 1.3 5:00 0.4 6:00 0.4 7:00 0.9 8:00 0.1 10:00 0.1 11:00 0.1 12:00 0.1 15:00 0.1

Meteorological Data for Impact Monitoring in the reporting period						
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree			
15/02/16	0:00	0.2	352			
15/02/16	1:00	0.1	349			
15/02/16	2:00	0.1	351			
15/02/16	3:00	0.1	352			
15/02/16	4:00	0.2	348			
15/02/16	5:00	0	356			
15/02/16	6:00	0.1	350			
15/02/16	7:00	0.1	348			
15/02/16	8:00	0	342			
15/02/16	9:00	0.1	351			
15/02/16	10:00	0	349			
15/02/16	11:00	0.9	353			
15/02/16	12:00	0.4	301			
15/02/16	13:00	0.9	280			
15/02/16	14:00	0.9	312			
15/02/16	15:00	0.9	6			
15/02/16	16:00	0.4	315			
15/02/16	17:00	0.9	279			
15/02/16	18:00	0.4	5			
15/02/16	19:00	0.1	6			
15/02/16	20:00	0.2	3			
15/02/16	21:00	0.1	355			
15/02/16	22:00	0	4			
15/02/16	23:00	0.1	2			
15/02/17	0:00	0.1	125			
	1:00	0.1	132			
15/02/17 15/02/17	2:00	0.1	114			
15/02/17		0.1				
	3:00		129			
15/02/17	4:00	0.1	130			
15/02/17	5:00	0.1	124			
15/02/17	6:00	0.1	127			
15/02/17	7:00	0.4	119			
15/02/17	8:00	0	108			
15/02/17	9:00	0.2	85			
15/02/17	10:00	0.1	93			
15/02/17	11:00	0.1	87			
15/02/17	12:00	0.1	96			
15/02/17	13:00	0.9	174			
15/02/17	14:00	0.4	169			
15/02/17	15:00	1.3	142			
15/02/17	16:00	1.3	151			
15/02/17	17:00	1.8	122			
15/02/17	18:00	1.8	119			
15/02/17	19:00	1.8	117			
15/02/17	20:00	2.2	109			
15/02/17	21:00	1.8	124			
15/02/17	22:00	1.8	126			
15/02/17	23:00	1.8	118			
15/02/18	0:00	1.8	117			
15/02/18	1:00	2.2	111			
15/02/18	2:00	2.7	135			
15/02/18	3:00	3.1	134			
15/02/18	4:00	2.7	141			
15/02/18	5:00	1.8	149			

	Meteorol	ogical Data for Impact Monitoring in the	reporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree
15/02/18	6:00	3.1	51
15/02/18	7:00	4	144
15/02/18	8:00	3.6	142
15/02/18	9:00	3.6	138
15/02/18	10:00	4.5	133
15/02/18	11:00	4.5	142
15/02/18	12:00	4	151
15/02/18	13:00	3.6	129
15/02/18	14:00	4	134
15/02/18	15:00	4	131
15/02/18	16:00	2.2	137
15/02/18	17:00	3.1	128
15/02/18	18:00	4	133
15/02/18	19:00	3.6	136
15/02/18	20:00	3.6	137
15/02/18	21:00	3.1	125
15/02/18	22:00	3.1	151
15/02/18	23:00	4.5	146
15/02/23	0:00	1.8	133
15/02/23	1:00	1.8	137
15/02/23	2:00	0.9	118
15/02/23	3:00	2.2	132
	4:00	2.2	
15/02/23		1.8	136 151
15/02/23	5:00		
15/02/23	6:00	2.2	141
15/02/23	7:00	2.2	152
15/02/23	8:00	1.3	119
15/02/23	9:00	1.8	106
15/02/23	10:00	2.2	135
15/02/23	11:00	3.1	129
15/02/23	12:00	3.1	140
15/02/23	13:00	3.6	127
15/02/23	14:00	2.7	133
15/02/23	15:00	3.1	141
15/02/23	16:00	2.2	140
15/02/23	17:00	3.1	132
15/02/23	18:00	2.2	124
15/02/23	19:00	3.1	116
15/02/23	20:00	2.2	118
15/02/23	21:00	2.7	126
15/02/23	22:00	3.1	124
15/02/23	23:00	2.2	115
15/02/24	0:00	2.7	123
15/02/24	1:00	2.2	117
15/02/24	2:00	1.3	124
15/02/24	3:00	1.8	138
15/02/24	4:00	1.8	106
15/02/24	5:00	1.8	95
15/02/24	6:00	1.8	111
15/02/24	7:00	2.2	132
15/02/24	8:00	1.8	124
15/02/24	9:00	3.1	135
15/02/24	10:00	3.1	146
15/02/24	11:00	3.1	133

_		reporting period
Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree
12:00	2.7	132
13:00	1.8	140
14:00	1.8	136
15:00	2.7	151
16:00	2.2	121
17:00	2.2	118
18:00	2.2	125
19:00	3.1	151
20:00	3.6	153
21:00	2.7	147
22:00	2.7	152
23:00	3.6	161
0:00	0.9	88
1:00	1.3	126
2:00	1.8	133
3:00	0.9	124
4:00	0.4	117
5:00	0.4	121
6:00	0.9	145
7:00	1.3	136
8:00	0.9	126
9:00	0.9	125
10:00	1.8	121
		130
12:00		124
13:00		117
14:00		125
i e		132
		168
		151
		140
1		137
		173
		152
1		127
1		132
1		110
1		105
		119
		120
		121
1		142
		136
		167
		141
1		174
		152
		136
		148
i e		138
		138
		143
16:00 17:00	3.1	135
	13:00 14:00 15:00 16:00 17:00 18:00 20:00 21:00 22:00 23:00 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 11:00 11:00 12:00	13:00 1.8 14:00 1.8 15:00 2.7 16:00 2.2 17:00 2.2 18:00 2.2 19:00 3.1 20:00 3.6 21:00 2.7 22:00 2.7 23:00 3.6 0:00 0.9 1:00 1.3 2:00 1.8 3:00 0.9 4:00 0.4 5:00 0.4 6:00 0.9 7:00 1.3 8:00 0.9 9:00 0.9 10:00 1.8 11:00 1.8 12:00 1.8 13:00 1.3 14:00 1.8 15:00 1.8 16:00 1.8 17:00 2.2 18:00 2.2 19:00 2.2 20:00 2.2 21:00 2.2 22:00 1.3 1:00 <td< td=""></td<>

Meteorological Data for Impact Monitoring in the reporting period			
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction (degree)
15/02/27	18:00	3.6	137
15/02/27	19:00	3.1	141
15/02/27	20:00	3.6	144
15/02/27	21:00	3.6	150
15/02/27	22:00	2.7	149
15/02/27	23:00	2.7	133

Appendix I

Impact Water Quality Monitoring Results

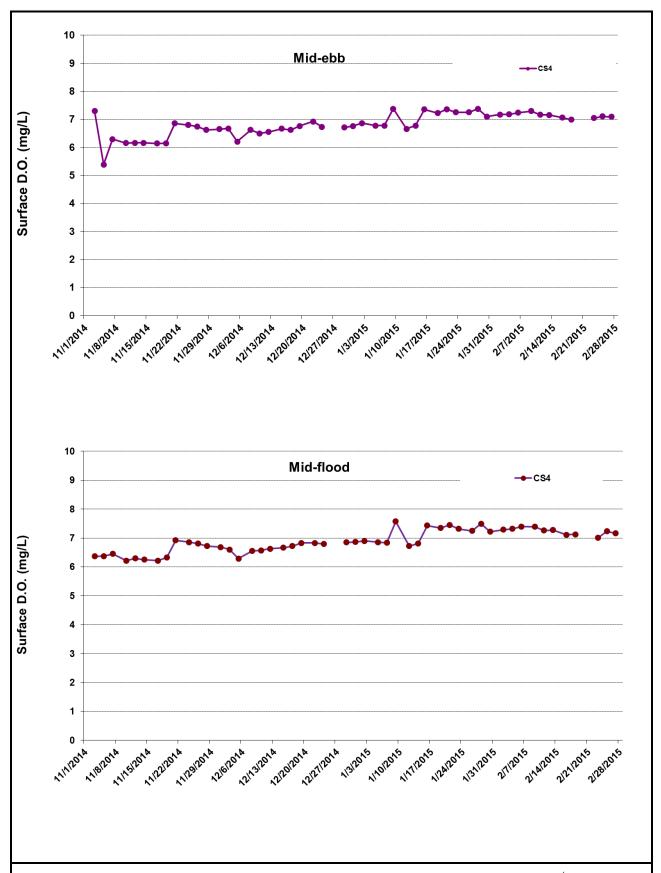


Figure I1 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 November 2014 and 28 February 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

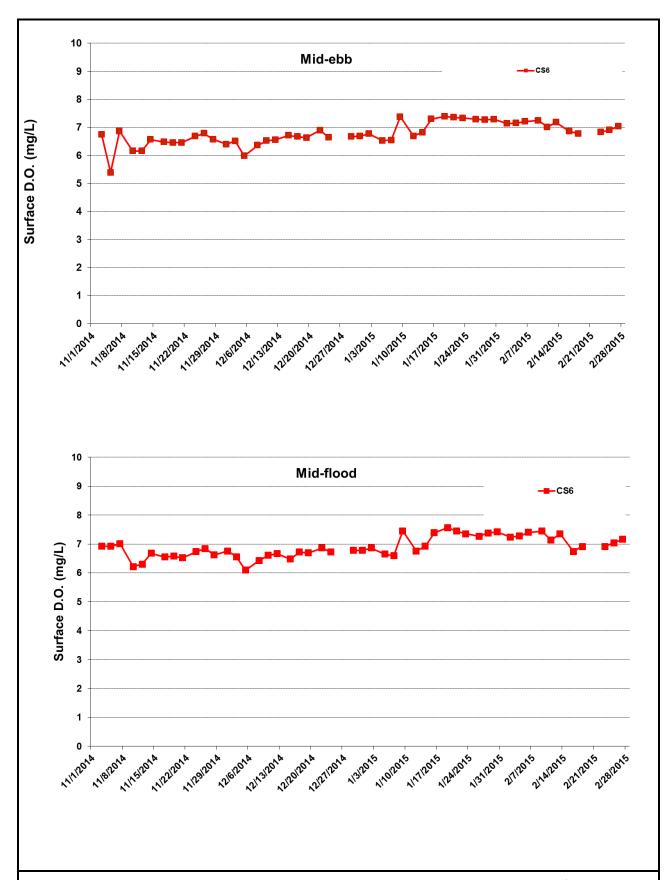


Figure I2 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 November 2014 and 28 February 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls



Figure I3 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 November 2014 and 28 February 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

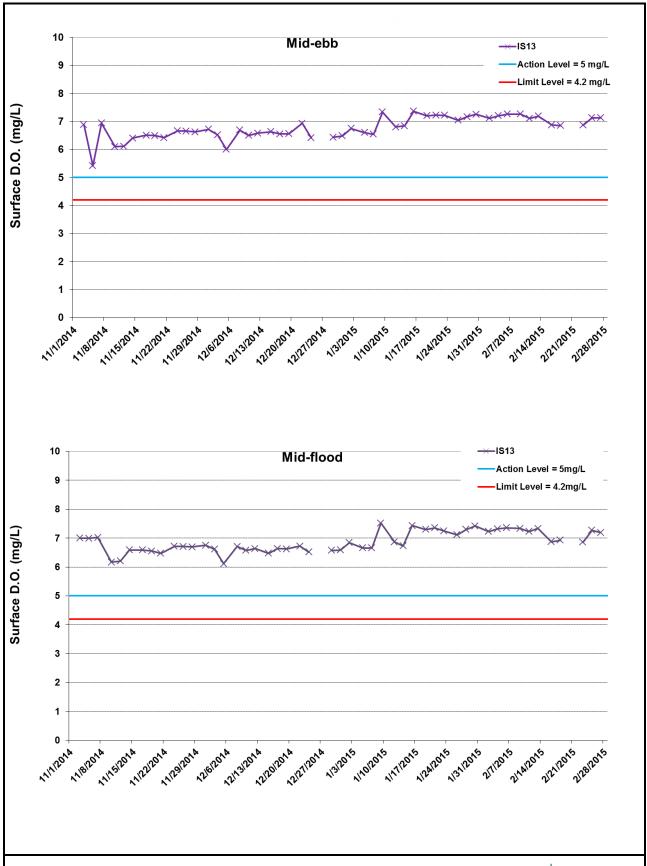
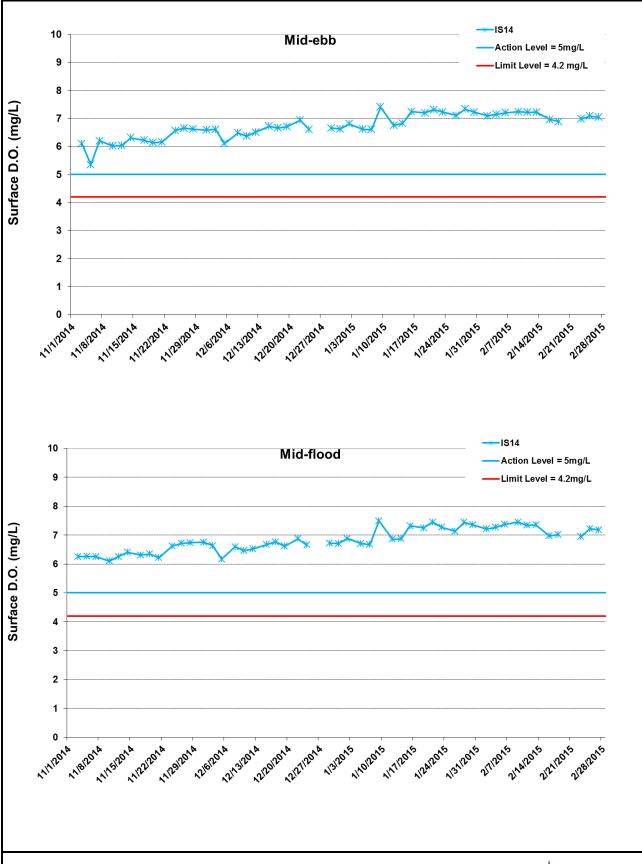
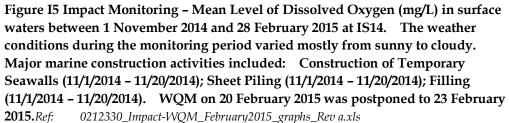




Figure I4 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 November 2014 and 28 February 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

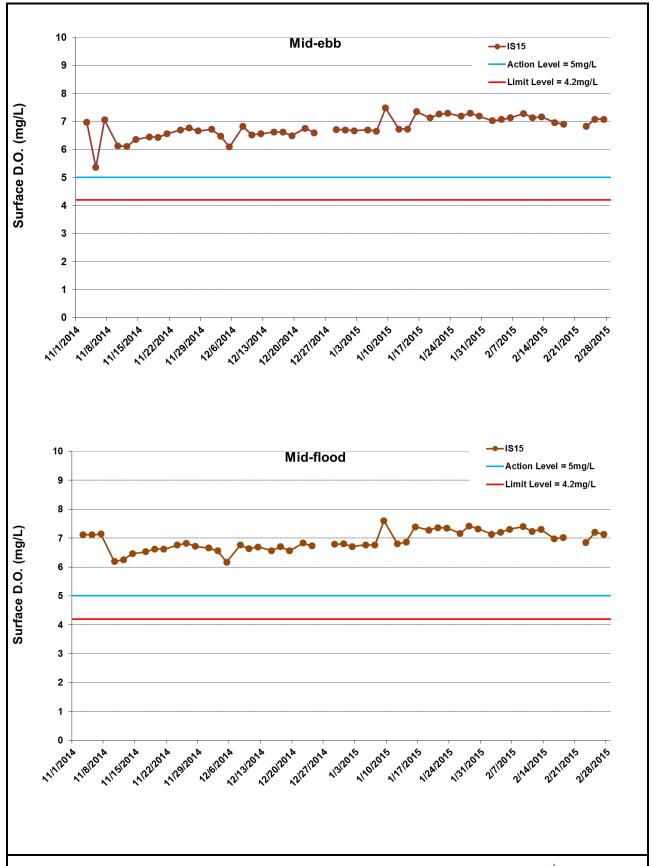


Figure I6 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 November 2014 and 28 February 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

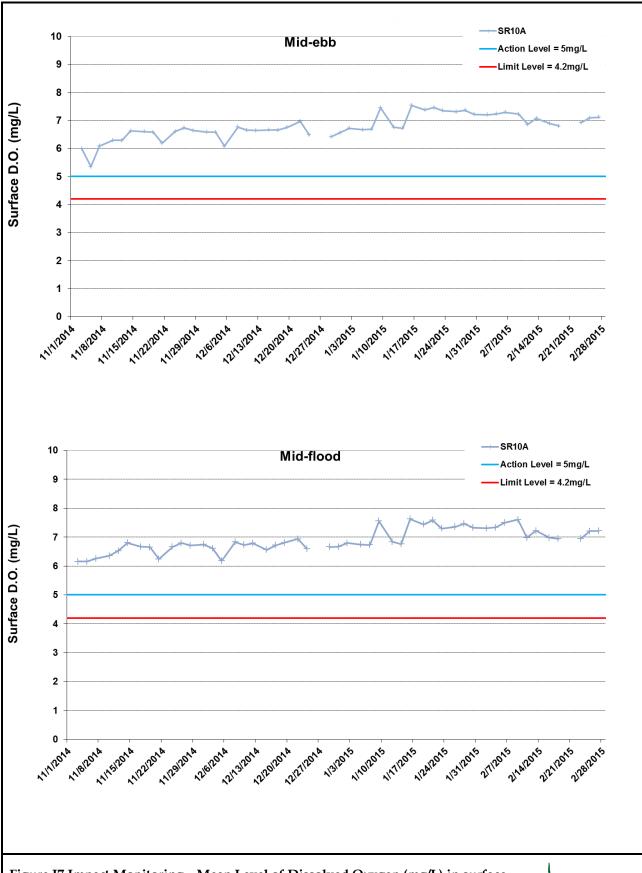


Figure I7 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 November 2014 and 28 February 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

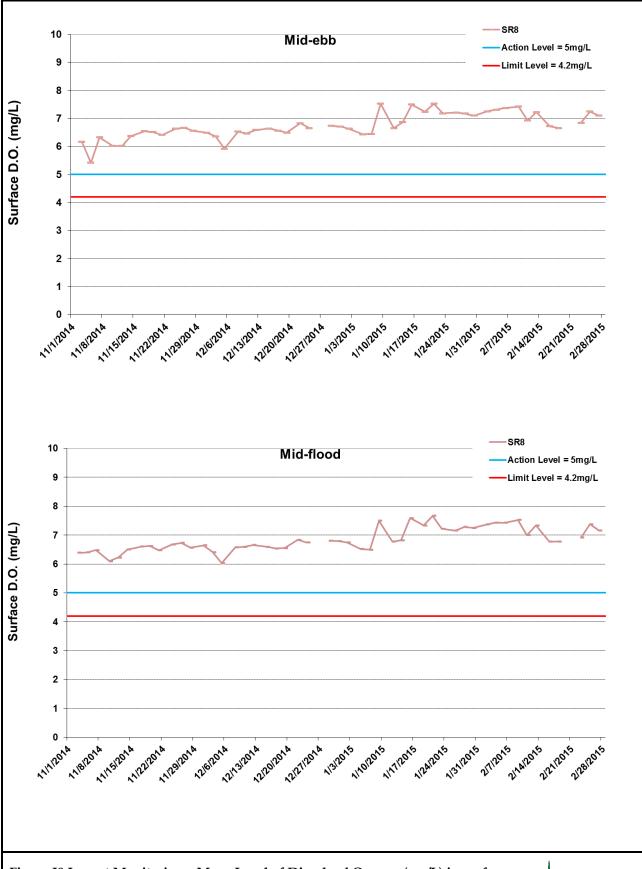


Figure I8 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 November 2014 and 28 February 2015 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

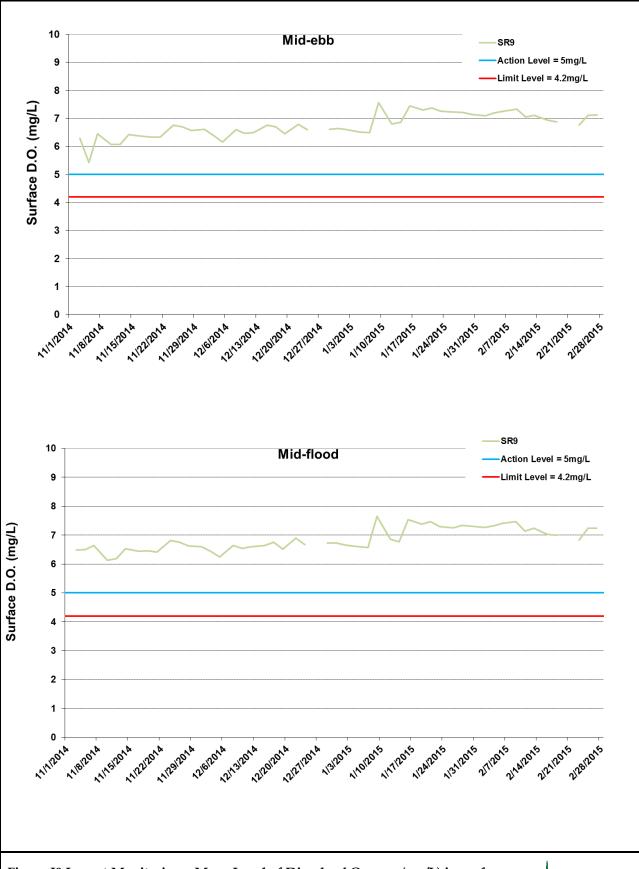


Figure I9 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 November 2014 and 28 February 2015 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

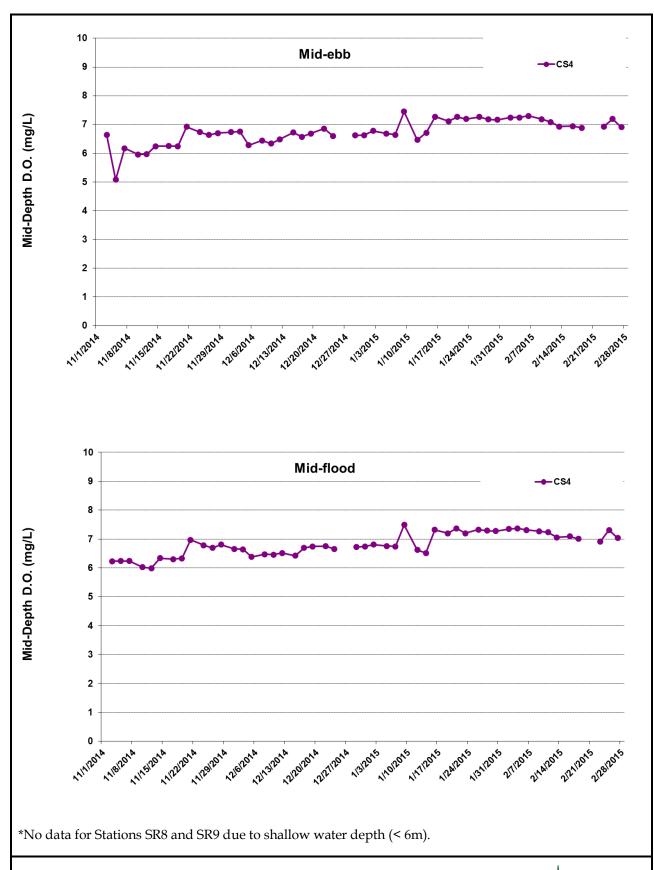


Figure I10 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 November 2014 and 28 February 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

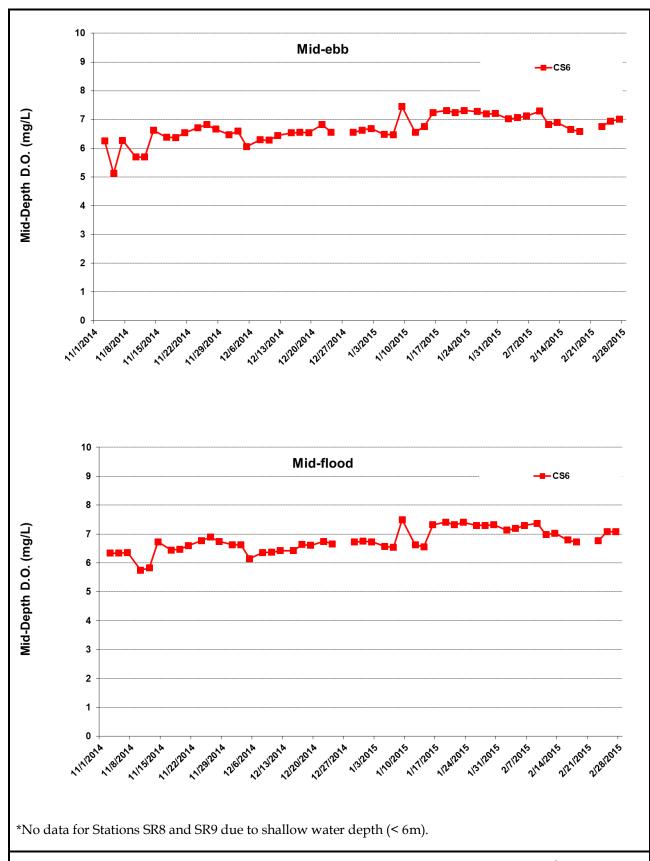


Figure I11 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 November 2014 and 28 February 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

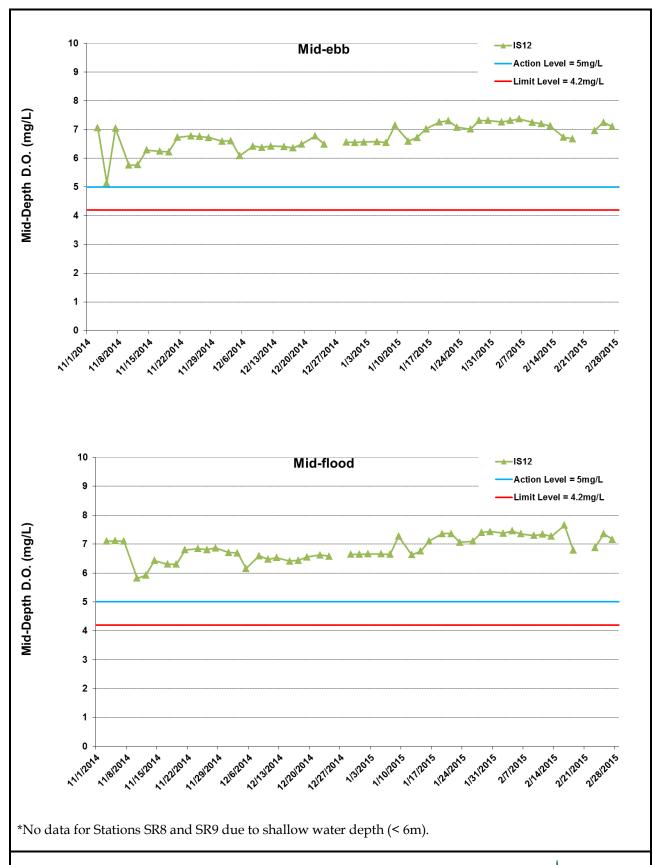


Figure I12 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 November 2014 and 28 February 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

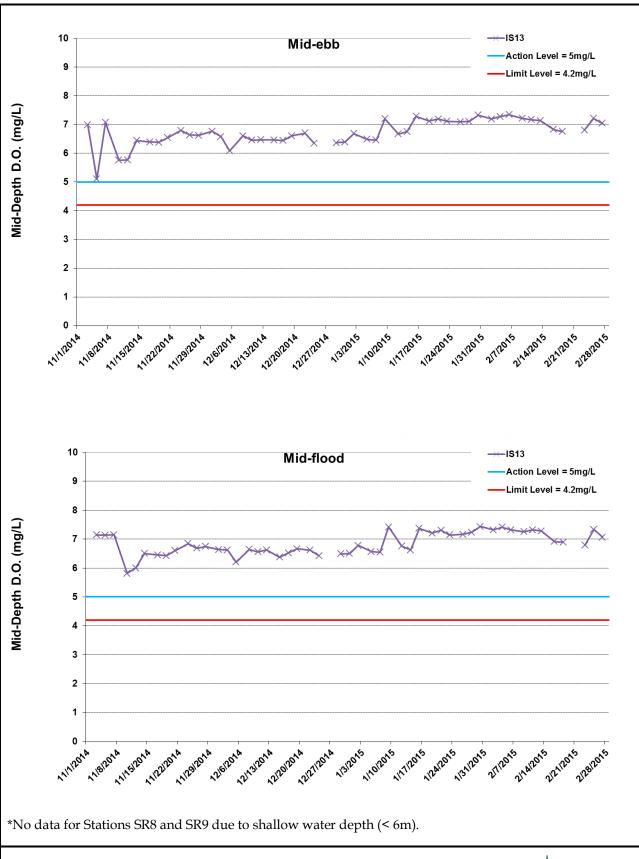


Figure I13 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 November 2014 and 28 February 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

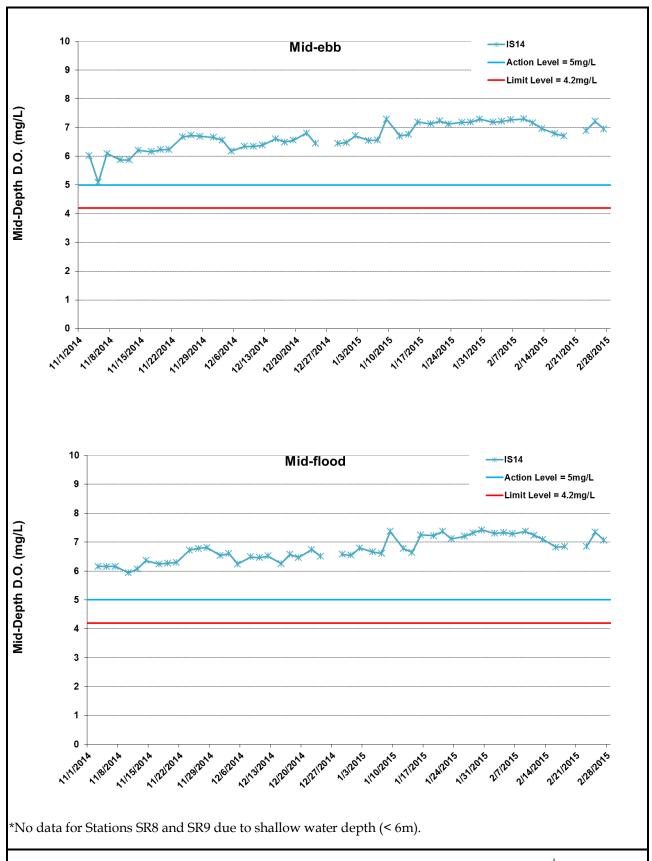


Figure I14 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 November 2014 and 28 February 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

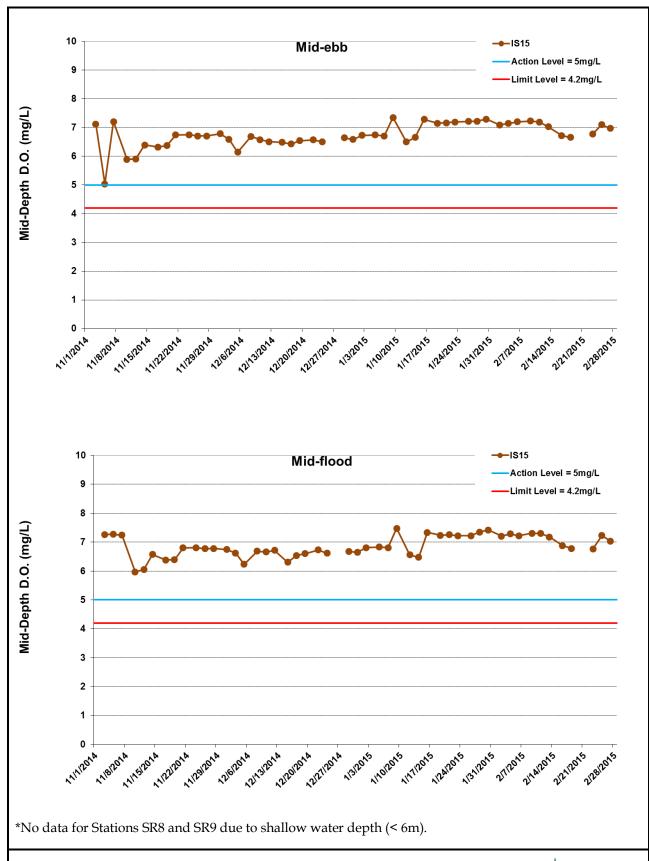


Figure I15 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 November 2014 and 28 February 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

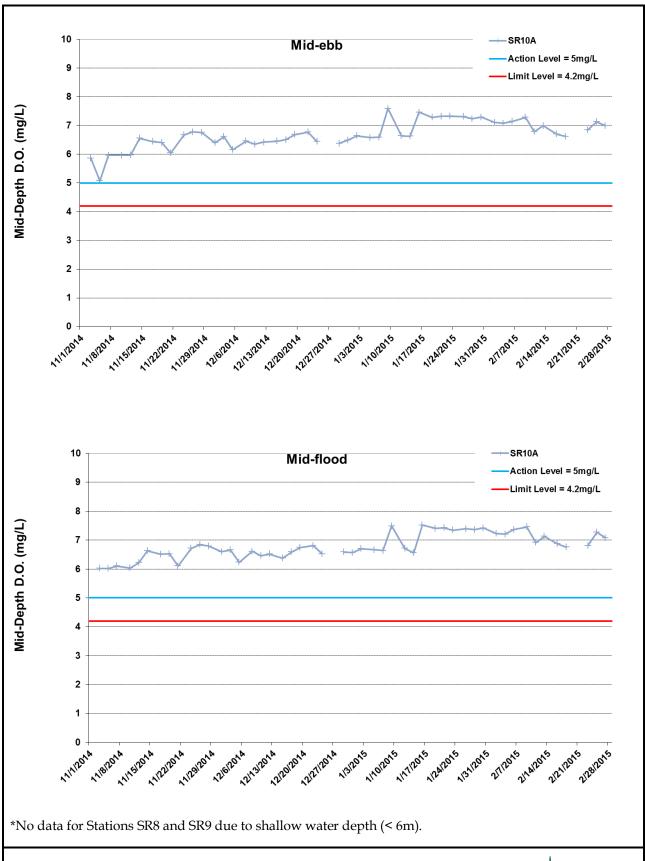


Figure I16 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 November 2014 and 28 February 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

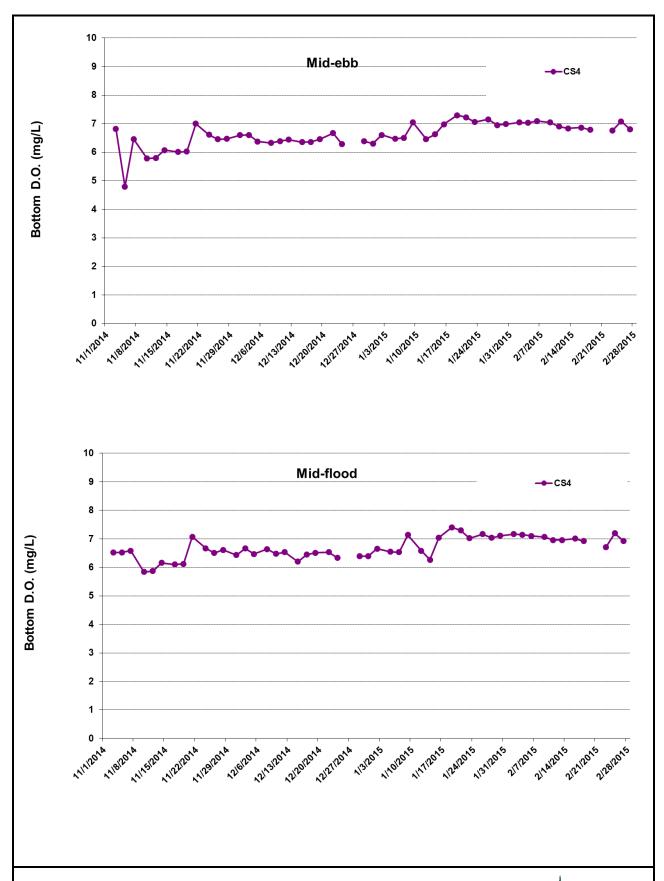


Figure I17 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 November 2014 and 28 February 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

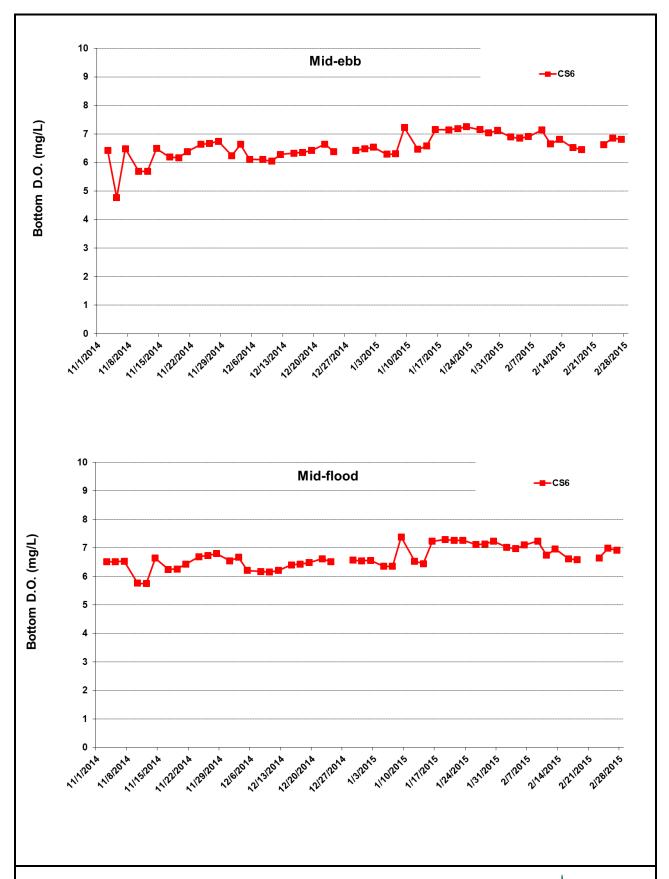


Figure I18 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 November 2014 and 28 February 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330 Impact-WQM_February2015_graphs_Rev a.xls

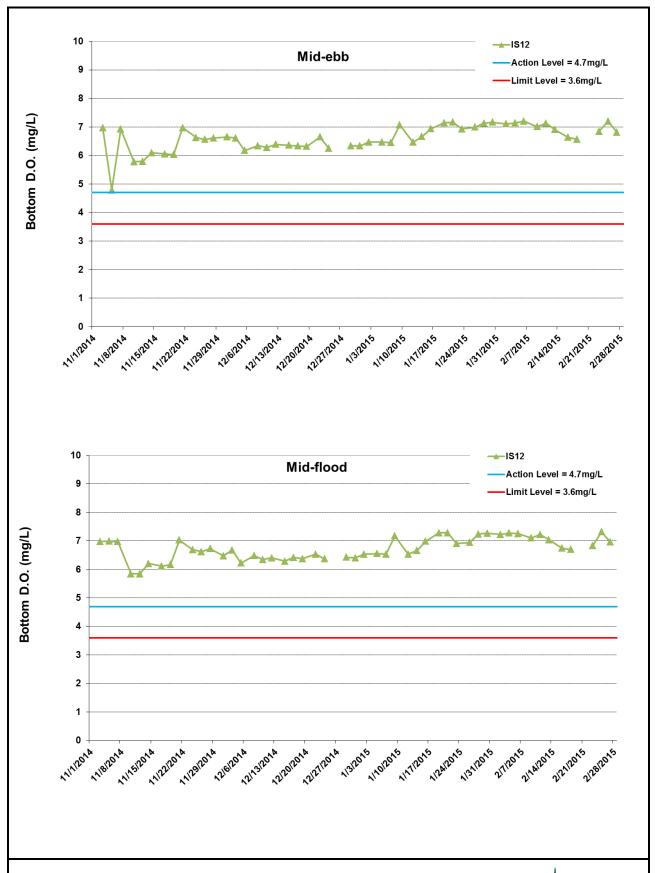


Figure I19 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 November 2014 and 28 February 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

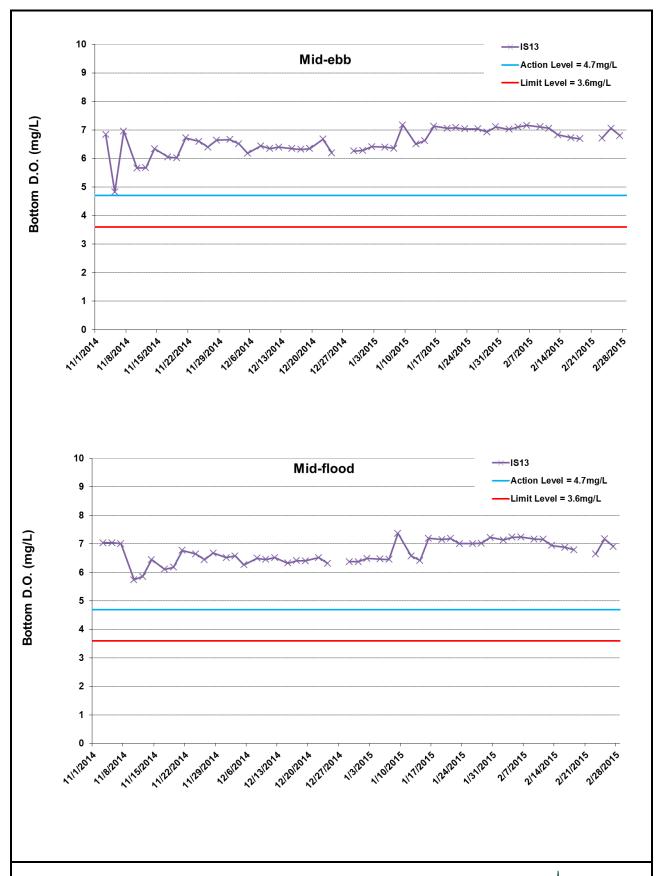


Figure I20 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 November 2014 and 28 February 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

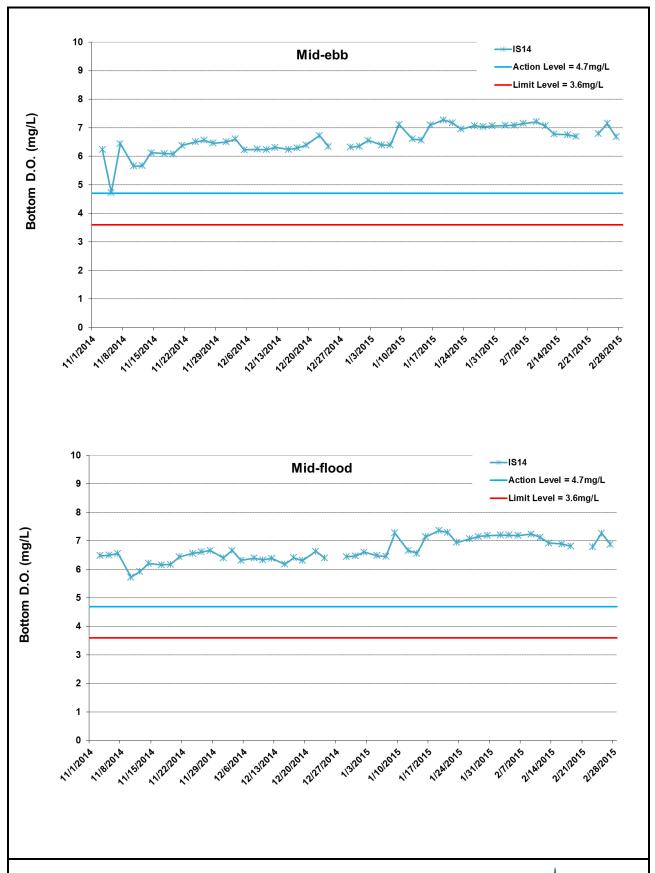


Figure I21 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 November 2014 and 28 February 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

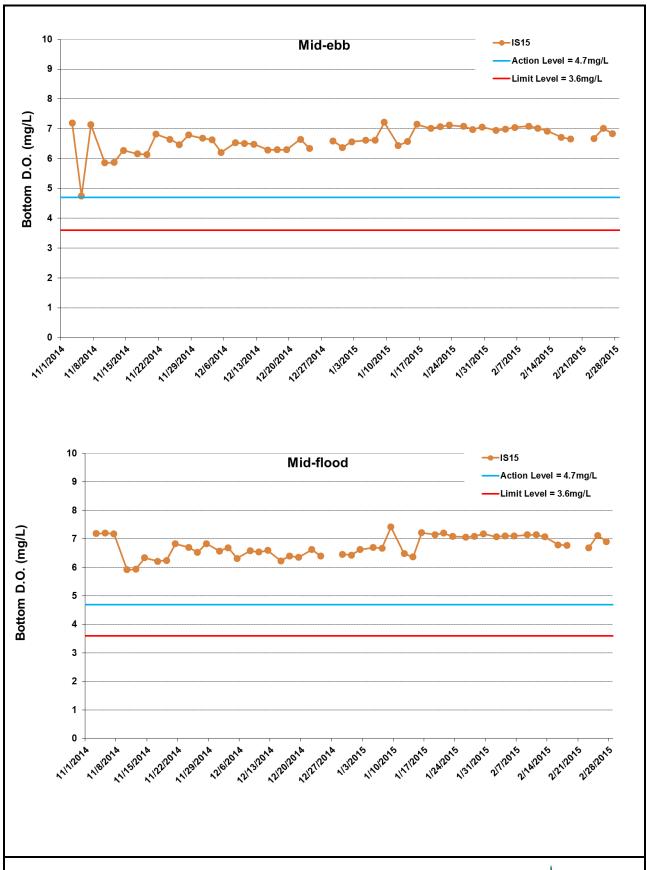


Figure I22 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 November 2014 and 28 February 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

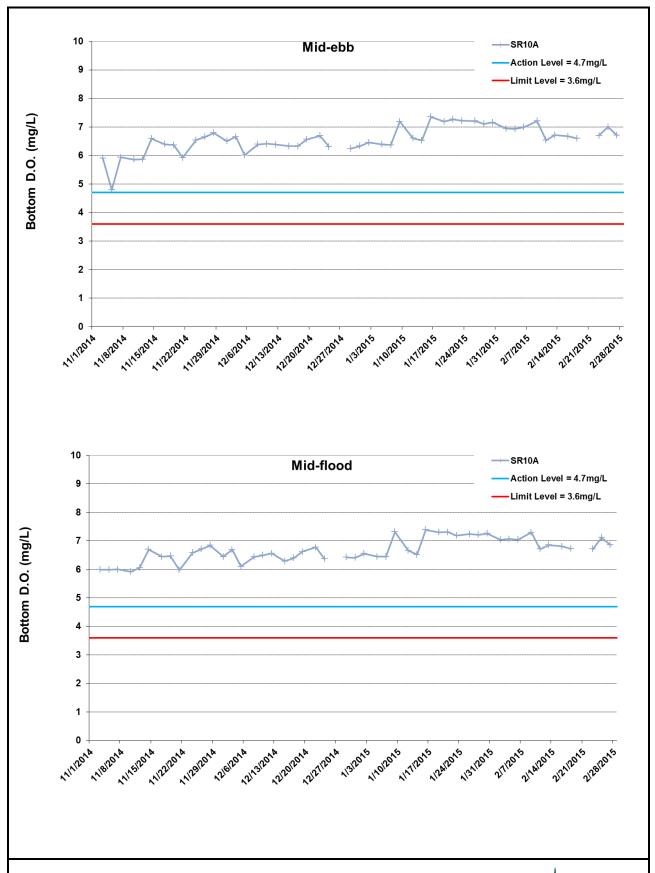


Figure I23 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 November 2014 and 28 February 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

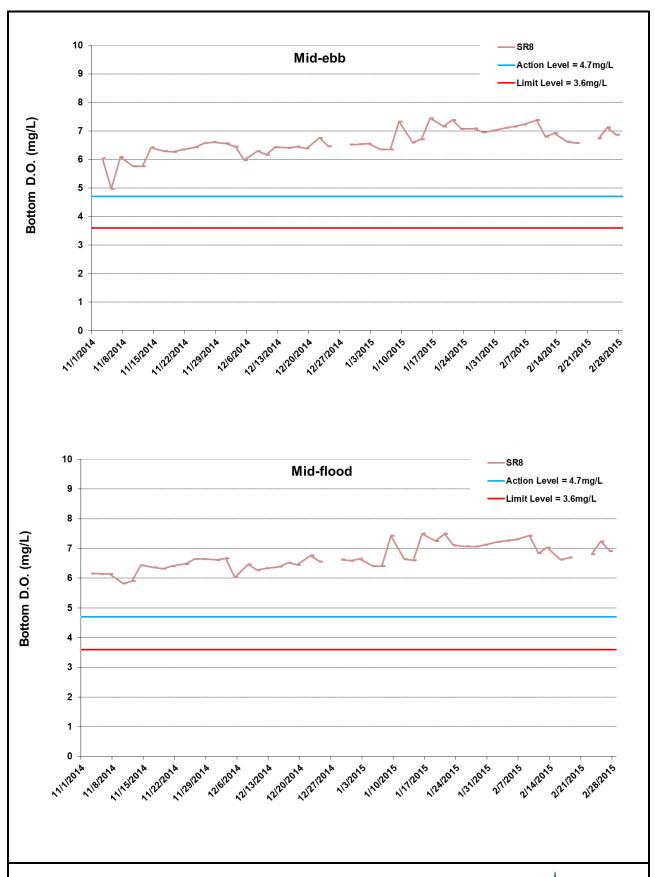


Figure I24 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 November 2014 and 28 February 2015 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls

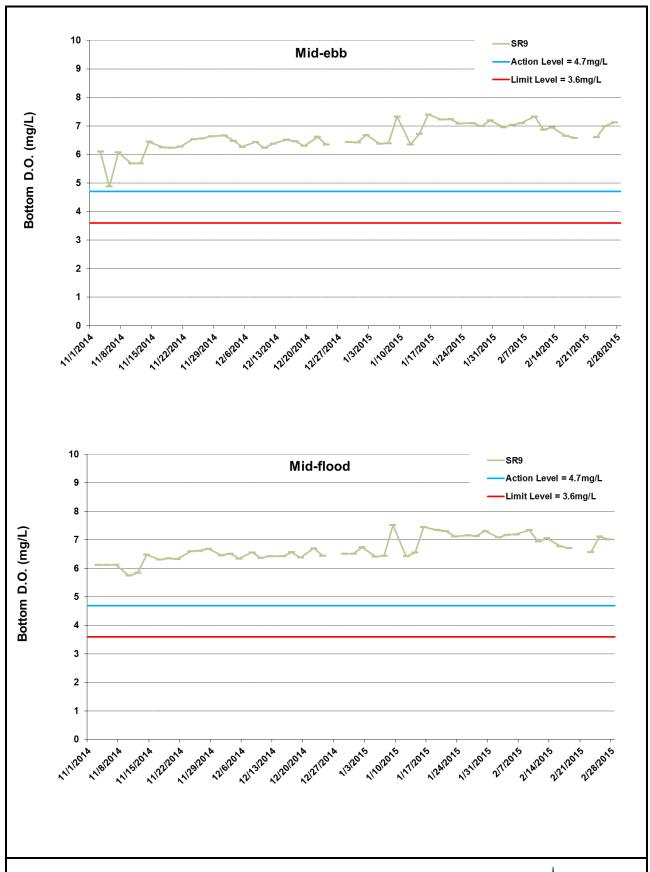


Figure I25 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 November 2014 and 28 February 2015 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015. Ref: 0212330_Impact-WQM_February2015_graphs_Rev a.xls



Figure I26 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 November 2014 and 28 February 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

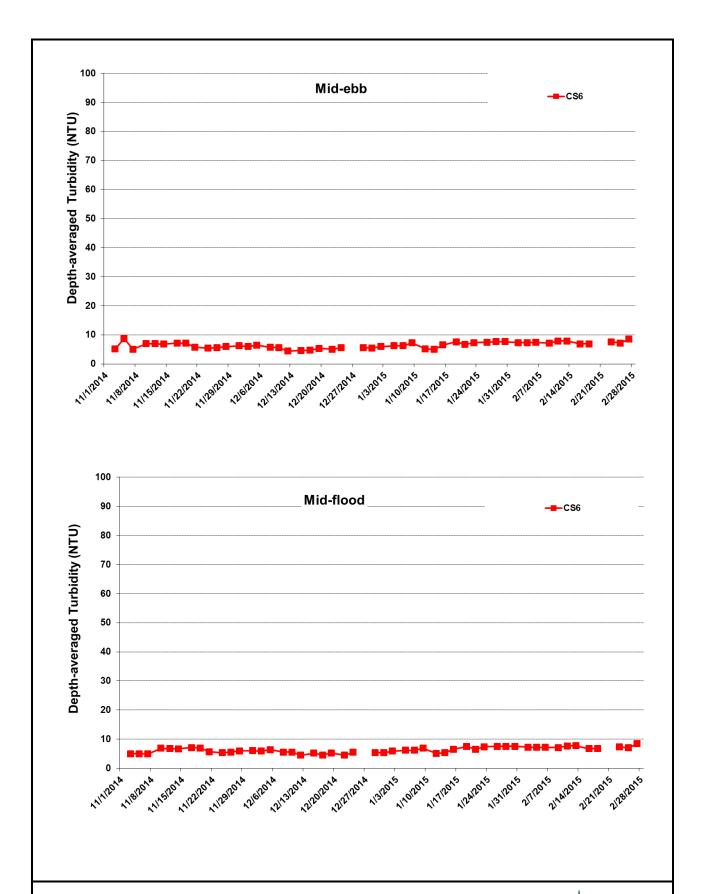


Figure I27 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 November 2014 and 28 February 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

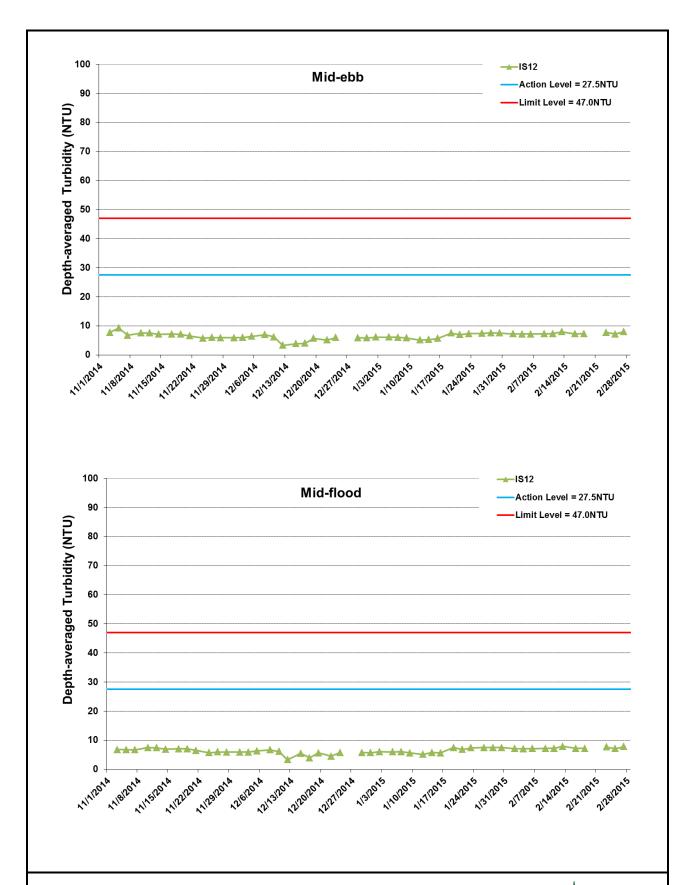


Figure I28 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 November 2014 and 28 February 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

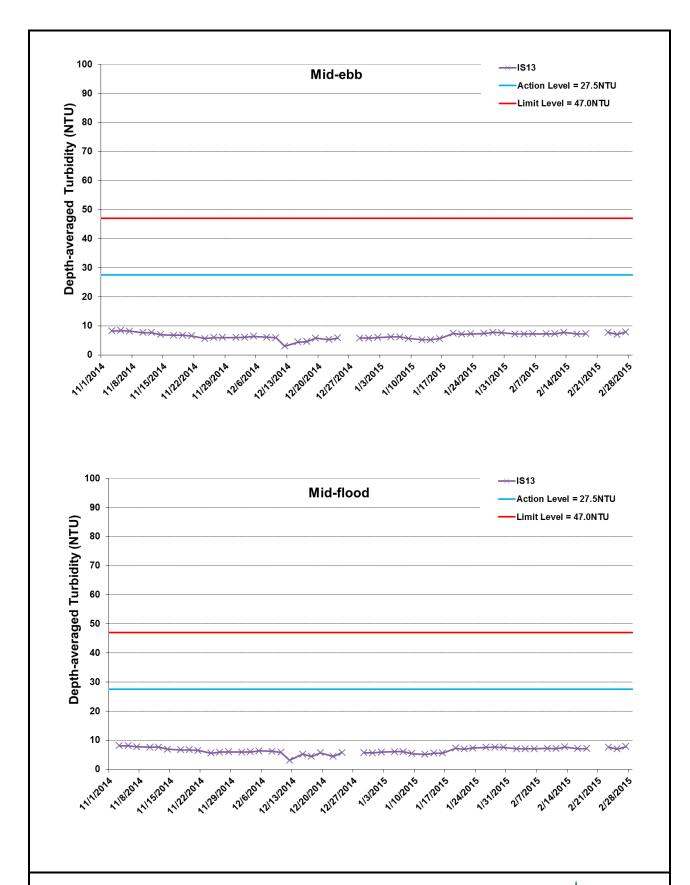


Figure I29 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 November 2014 and 28 February 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

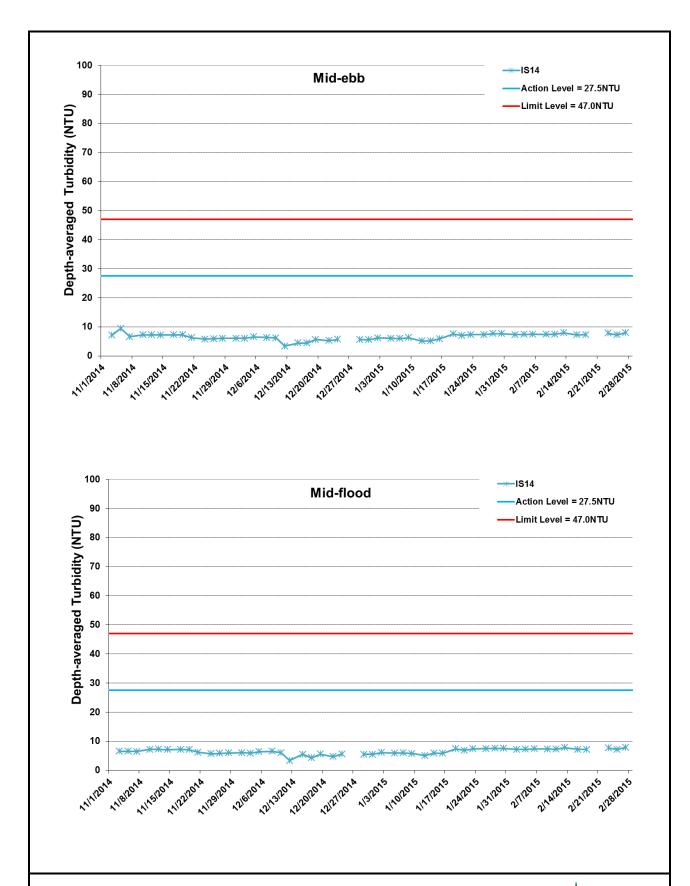


Figure I30 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 November 2014 and 28 February 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

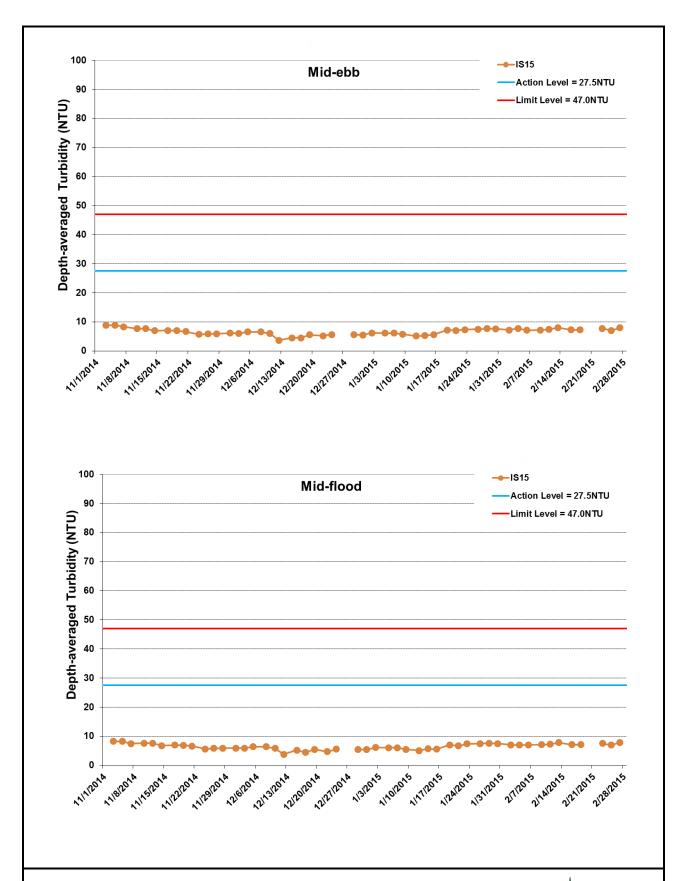


Figure I31 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 November 2014 and 28 February 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

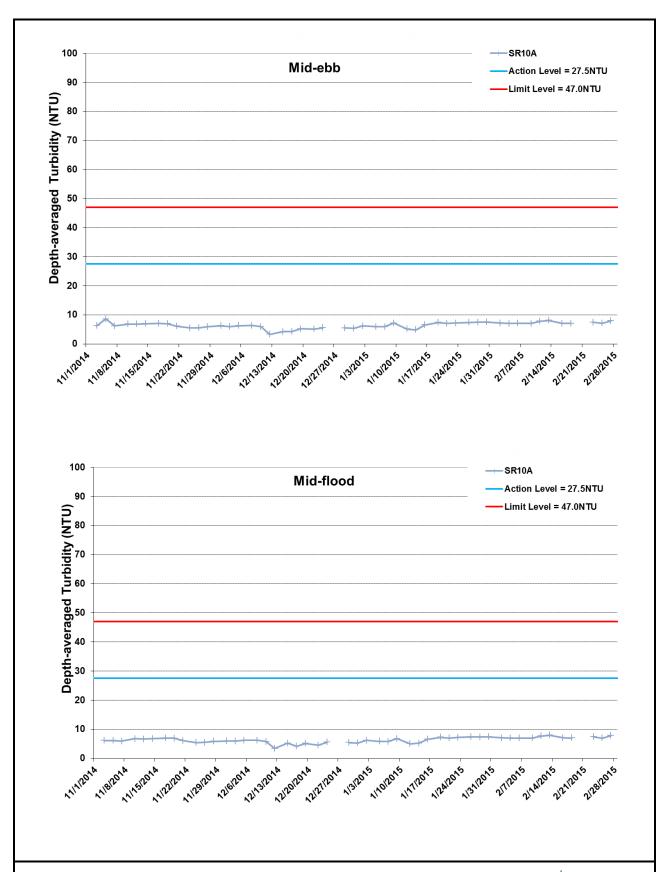


Figure I32 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 November 2014 and 28 February 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

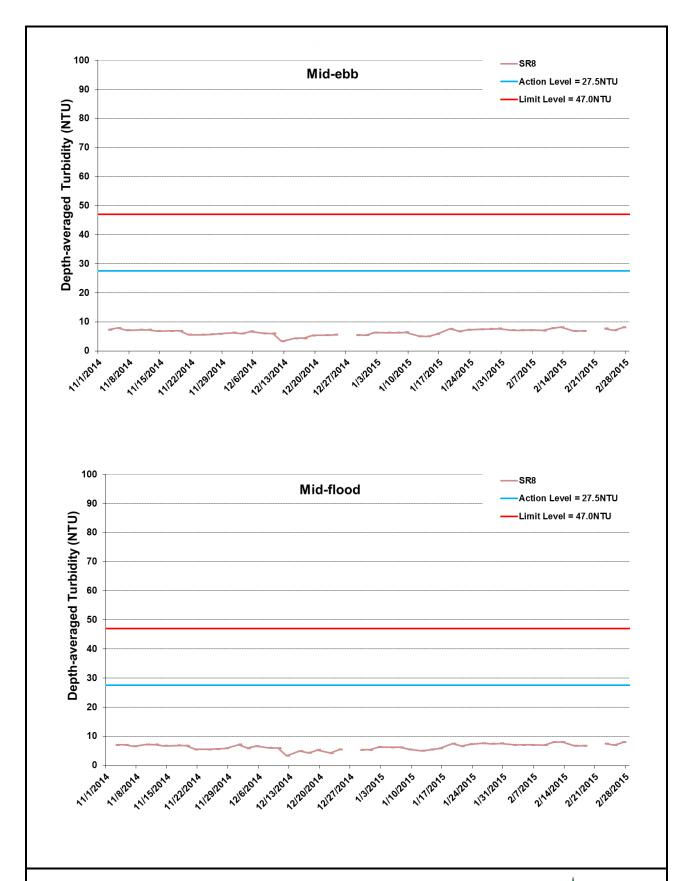


Figure I33 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 November 2014 and 28 February 2015 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

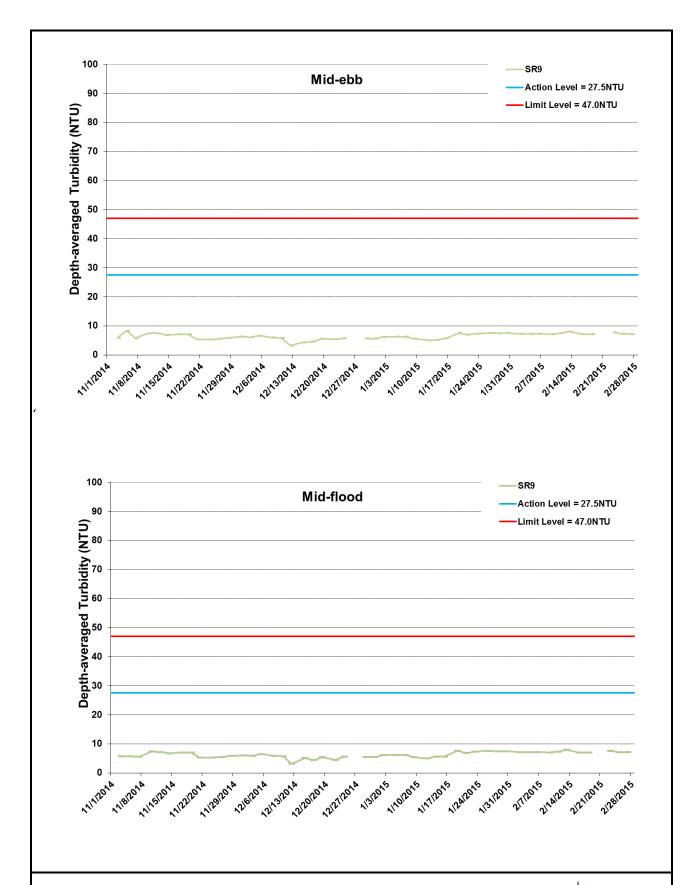
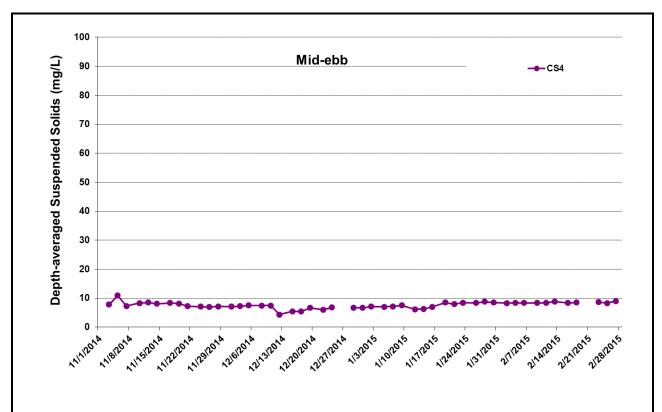



Figure I34 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 November 2014 and 28 February 2015 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

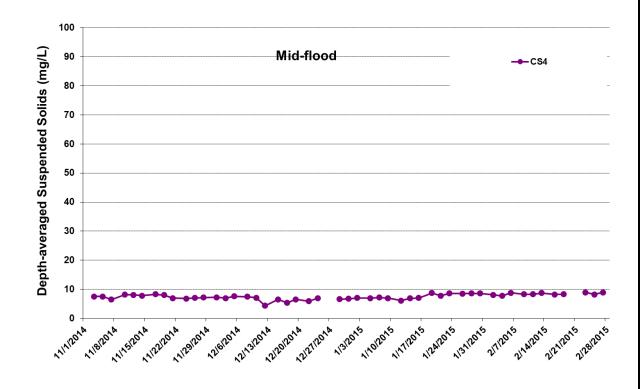
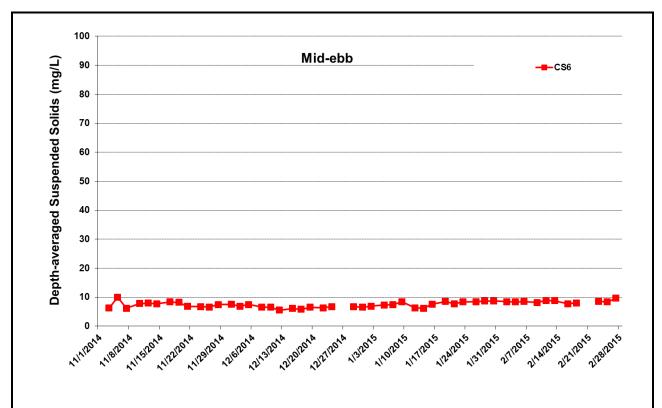



Figure I35 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 November 2014 and 28 February 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

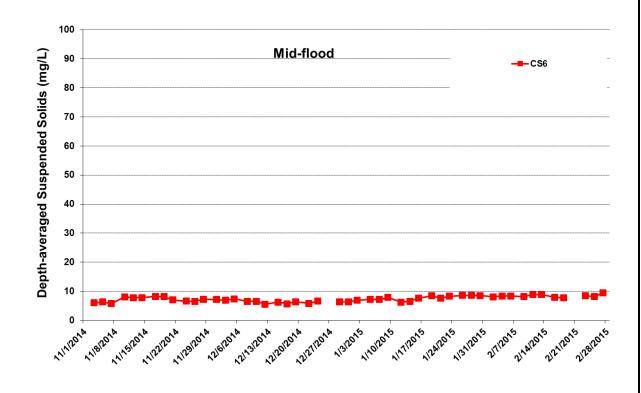


Figure I36 Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 November 2014 and 28 February 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

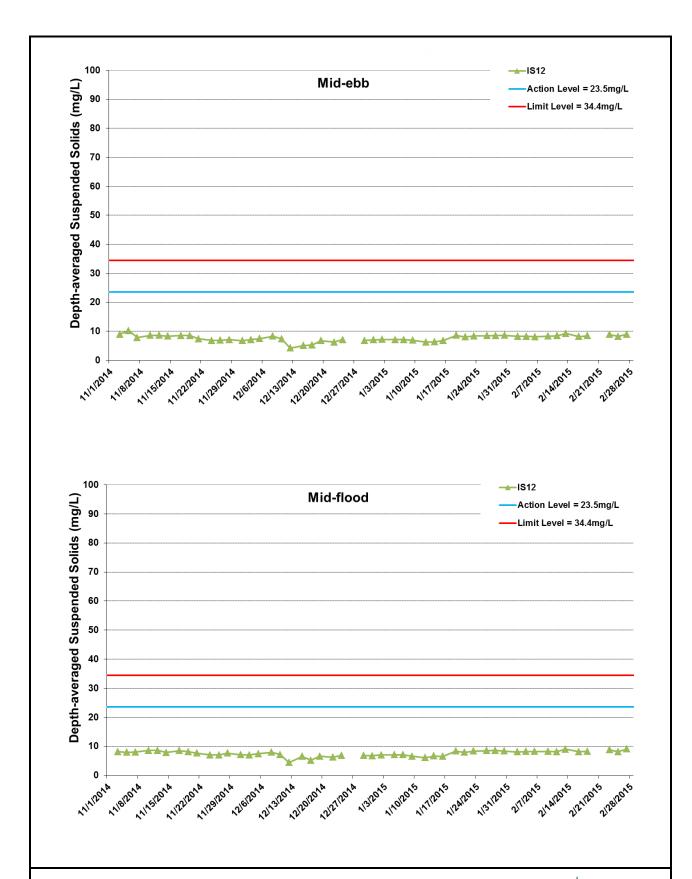


Figure I37 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 November 2014 and 28 February 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

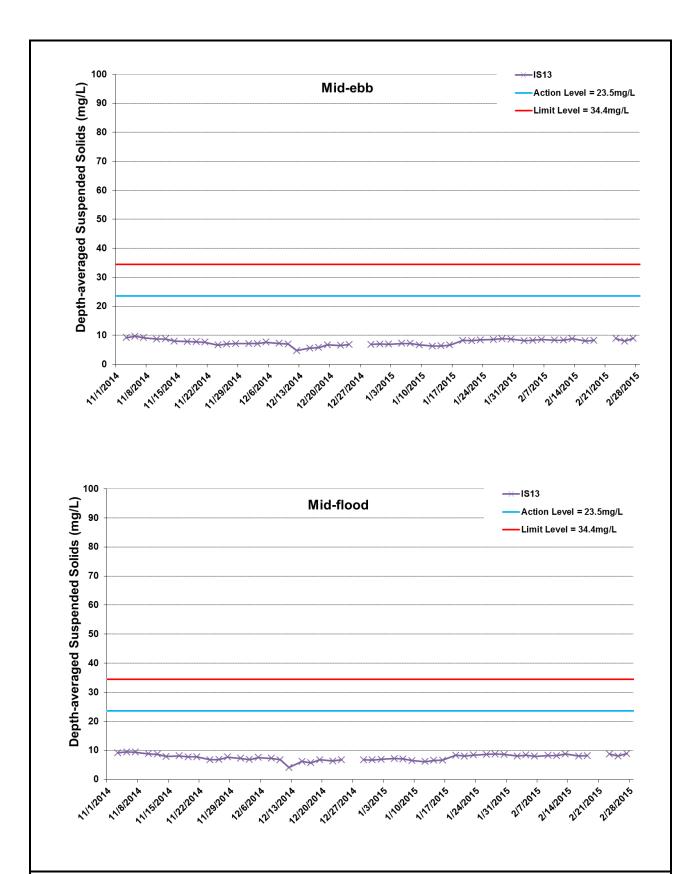


Figure I38 Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 November 2014 and 28 February 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

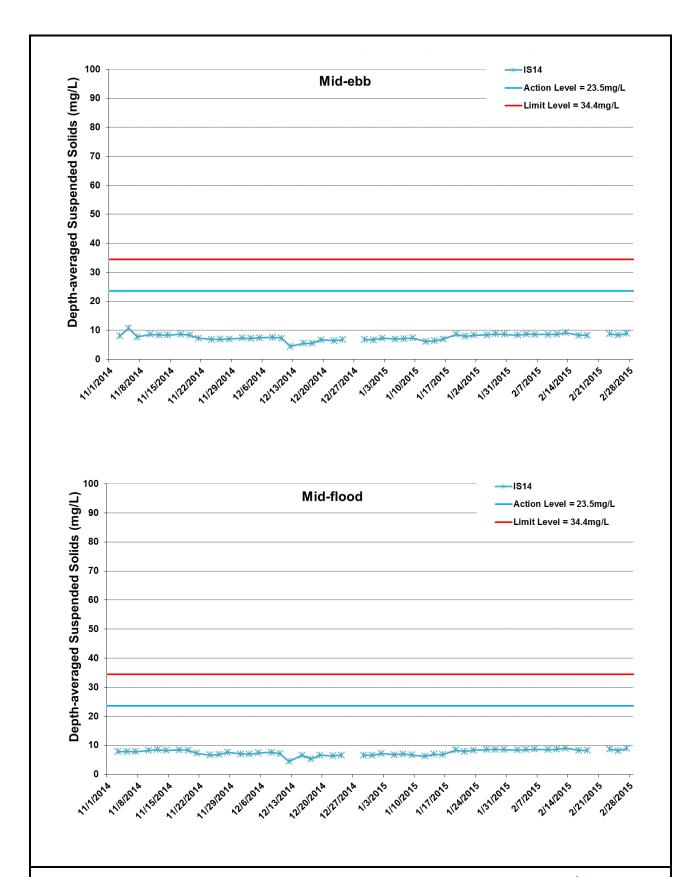


Figure I39 Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 November 2014 and 28 February 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

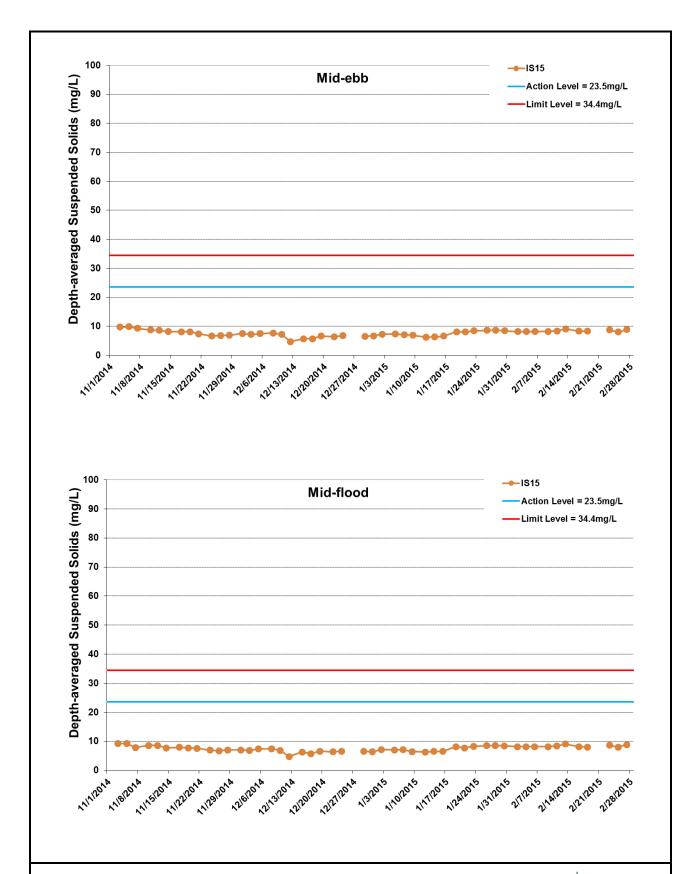


Figure I40 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 November 2014 and 28 February 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

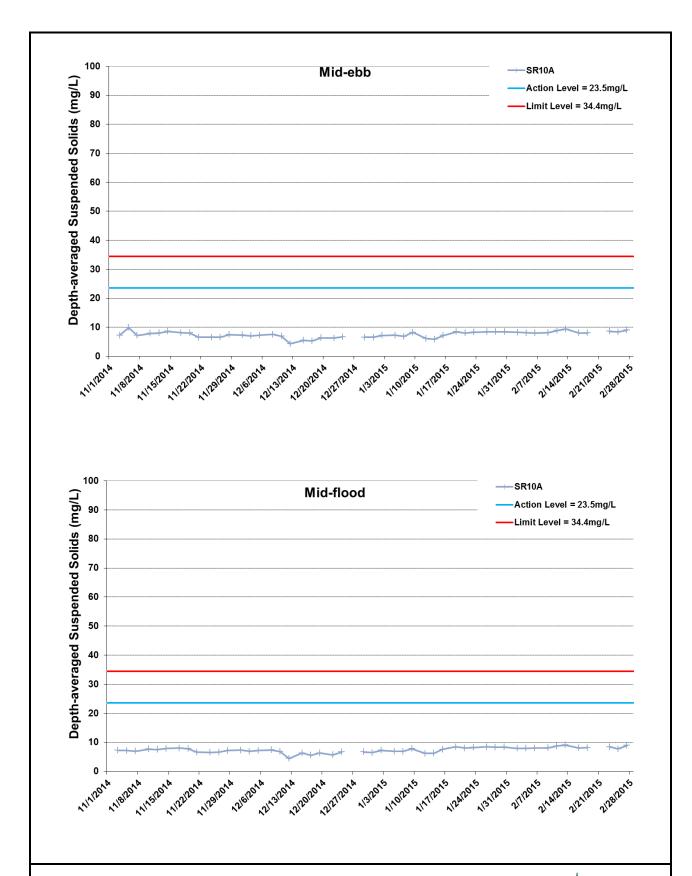


Figure I41 Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 November 2014 and 28 February 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 - 11/20/2014); Sheet Piling (11/1/2014 - 11/20/2014); Filling (11/1/2014 - 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

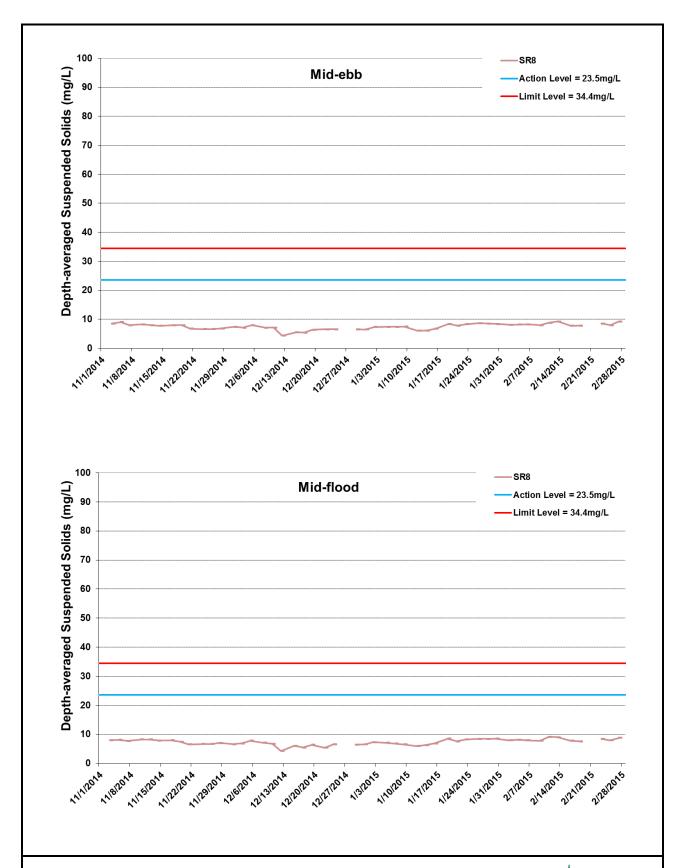


Figure I42 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 November 2014 and 28 February 2015 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

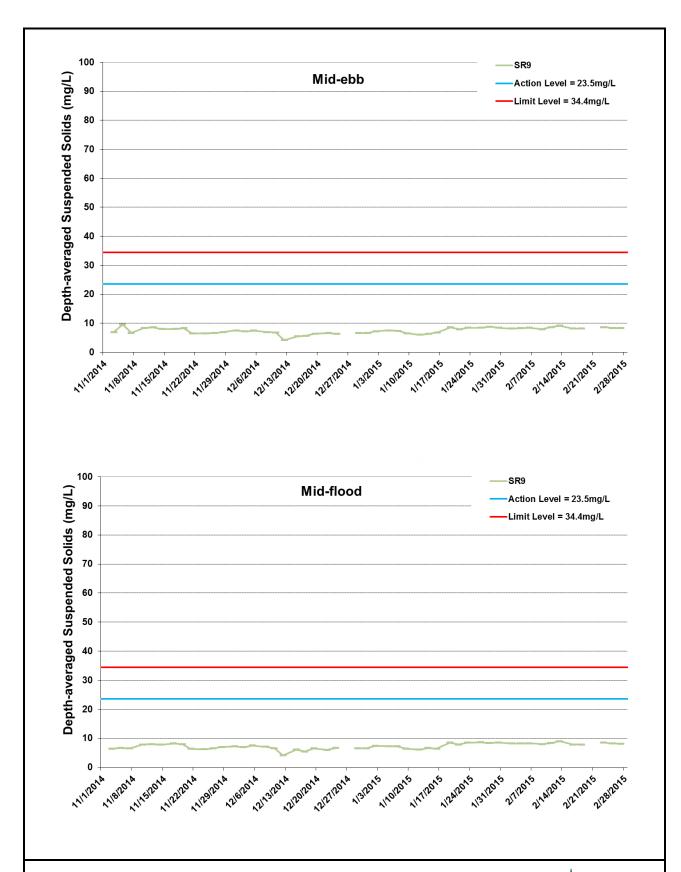


Figure I43 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 November 2014 and 28 February 2015 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (11/1/2014 – 11/20/2014); Sheet Piling (11/1/2014 – 11/20/2014); Filling (11/1/2014 – 11/20/2014). WQM on 20 February 2015 was postponed to 23 February 2015.

Trigoria Properties Prope	Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	CS4		1	1	1	18:37	17.2	7.94	27.1	7.28	7.13	8
TRICLE Hyd201208 2015-0020 MeF-5000 Fine Small Wave C541 Models 10.8 2 2 18.57 17.3 7.98 27.5 7.78 8.88 7.7	TMCLKL	HY/2012/08		Mid-Flood	Fine	Small Wave		Surface	1	1	2	18:37	17.2	7.95	27.3		7.05	8.3
TRICKLE Prizable	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	CS4	Middle	10.8	2	1	18:37	17.2	7.98	27.5	7.33	6.91	7.9
Michael Mich	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	CS4	Middle	10.8	2	2	18:37	17.3	7.99	27.5	7.36	6.85	7.7
MicCle M	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	CS4	Bottom	20.6	3	1	18:37	17.4	7.92	27.6	7.19	7.4	8.4
TRICICLE PROPERTING 1016-0020 1016	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	CS4	Bottom	20.6	3	2	18:37	17.5	7.93	27.6	7.15	7.37	8.3
TRICKER PV2971200 2015-0-20 Mid-Flood Fine Small Wave G81 Mid-Self 6.8 2 1 15.64 17.5 8.06 77.4 7.15 7.17 6.2 Mid-Self Mid-Self Mid-Self Mid-Self 6.8 2 1 15.64 17.4 8.08 27.0 0.6 0.00 7.44 7.15 7.17 6.2 Mid-Self	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	CS6	Surface	1	1	1	15:54	17.4	8.02	27.3	7.26	6.98	7.5
TRICHER 17/2012/08 2015-02-02 Mol-Flood Fine Small Wave CSB Solton 10.0 3 1 15.64 17.4 8.07 77.4 7.11 7.2 8.0	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	CS6	Surface	1	1	2	15:54	17.5	8.02	27.4	7.22	7.03	7.7
TRICLICAL PLAYOLOGIA 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 3 1 1 15.64 17.4 8.08 27.6 7.06 7.39 8.5 Mid-Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 3 2 2 15.04 17.8 8.07 27.2 7.74 7.07 7.8 8.5 Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 3 2 2 15.04 17.8 8.07 27.2 7.74 7.07 7.8 8.5 Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 3 2 2 15.04 17.8 8.07 27.2 7.74 7.07 7.8 8.5 Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 1.2 2 17.50 17.3 8.07 27.5 7.3 8.0 2.7 7.0 7.8 8.5 Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 1.2 2 17.50 17.3 8.0 2.7 7.3 8.0 2.7 7.0 7.8 8.5 Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 1.2 2 17.50 17.2 8.0 6.27 7.3 8.0 2.7 7.9 Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 1.2 2 17.5 6.0 17.2 8.0 6.0 27.5 7.2 7.2 8.8 8.3 Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 1.2 2 17.5 6.0 17.2 8.0 6.0 27.5 7.2 7.2 8.8 8.3 Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 1.2 2 17.5 6.0 17.2 9.0 6.0 27.5 7.2 7.2 8.8 8.3 Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 1.2 2 17.5 6.0 17.2 9.0 17.2 9.0 17.2 7.2 7.2 7.2 8.8 8.3 Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 1.2 2 17.5 6.0 17.2 9.0 17.2 7.2 7.2 7.2 7.2 8.3 8.3 Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 1.2 2 17.5 6.0 17.2 7.0 17.2 7.2 7.2 7.2 7.2 8.0 8.3 Mid-Line Playologia 2015-0-02. Mid-Flood Fine Small Wave (S8 Settlem 10.6 1.2 2 17.5 6.0 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	CS6	Middle	5.8	2	1	15:54	17.5	8.08	27.4	7.15	7.17	8.2
TRICLIC MY201208 2015-02-02 Mol-Pool Fine Small Wave 512 Surface 1 1 1,75 8,00 27.5 7,06 7,30 8.6	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	CS6	Middle	5.8	2	2	15:54	17.4	8.07	27.4	7.11	7.2	8
TRICKLE, Prize P	TMCLKL	HY/2012/08	2015-02-02							3	1	1				 		8.6
MINCHES My201208 2016-20-22 Mid-Flood Fine Small Wave S12 Surface 1 2 17.56 17.2 8.04 27.4 7.29 7.16 8.2	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	CS6	Bottom	10.6	3	2	15:54	17.5			+		
Michael Myzgorios Myzgor	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave			1	1	1	17:56	17.3	8.02	27.2	7.34	7.07	7.8
Model My201208 2015-12-22 Model Mode	TMCLKL	HY/2012/08		Mid-Flood					1	1	2	17:56	_					
TRICKIK MY201208 2015-02-02 Mid-Flood Fine Small Wave S12 Bottom 13.8 3 1 17.95 17.3 7.97 27.4 7.25 7.24 8.4	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS12		7.4	2	1	17:56	17.3	8.06		7.36	7.03	
TMCLKL MY201208 2015-02-02 Mid-Flood Fine Small Wave S12 Bottom 13.8 3 2 17.56 17.4 7.97 27.5 7.2 7.28 8.3	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS12	Middle	7.4	2	2	17:56	17.2	8.06	27.5	7.39		7.7
TMCLKL MY201208 2015-02-02 Mod-Flood Fine Small Wave IS13 Surface 1 1 1 17:35 17.1 7.95 27.3 7.2 5.92 7.9	TMCLKL									3	1		-	-				
MCLKL MY201208 2015-02-02 Mid-Flood Fine Small Wave IS13 Sufface 1 1 2 17:35 17:3 7:9 27:3 7:2 7:01 8:1	TMCLKL								13.8	3	2		-					
McClk. MY201208 2015-02-02 McFlood Fine Small Wave S13 Moddle 5.7 2 2 17.35 17.3 7.99 27.3 7.3 6.88 7.6	TMCLKL								1	1	1			_		!		
MICHAEL MY201208 2016-02.02 Mid-Flood Fine Small Wave S13 Middle 5.7 2 2 17:35 17:2 7:99 27:4 7:34 6.93 7:9	TMCLKL		2015-02-02	Mid-Flood	Fine	Small Wave			1	1	2	17:35	17.2			!		
TMCKLK HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave IS13 Sottom 10.4 3 1 17.35 17.4 8 27.4 7.16 7.14 8.2	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS13	Middle	5.7	2	1	17:35	17.3	7.99	27.3	7.3	6.88	7.6
MCKLK HY/201208 2015-92-02 Mid-Flood Fine Small Wave IS13 Sottom 10.4 3 2 17.35 17.3 8.01 27.3 7.12 7.21 8.3	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS13	Middle	5.7	2	2	17:35	17.2	7.99	27.4	7.34	6.93	7.9
MCLKL H7201208	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS13	Bottom	10.4	3	1	17:35	17.4	8	27.4	7.16	7.14	8.2
MCJKLK HY201208 2015-02-02 Mid-Flood Fine Small Wave IS14 Middle 8.3 2 1 12.16.16 17.1 7.98 27.3 7.23 7.70 3.1	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS13	Bottom	10.4	3	2	17:35	17.3	8.01	27.3	7.12	7.21	8.3
MCLKL H7/2012/08 2015-02-02 McFlood Fine Small Wave S14 Middle 8.3 2 1 18:16 17.3 8.02 27.5 7.28 7.04 8 8 1 1 1 1 1 1 1 1	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS14	Surface	1	1	1	18:16	17.2	7.98	27.2	7.19	7.21	8.4
TMCLIK. HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave S14 Middle 8.3 2 2 18:16 17.4 7.95 27.6 7.22 7.31 7 8.1	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS14	Surface	1	1	2	18:16	17.1	7.98	27.3	7.23	7.13	8.3
TMCLKL HY/201208 2015-02-02 Mid-Flood Fine Small Wave S14 Bottom 15.6 3 2 18.16 17.4 7.95 27.6 7.22 7.31 8.6	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS14	Middle	8.3	2	1	18:16	17.3	8.02	27.5	7.28	7.04	8
TMCLKL HY/201208 2015-02-02 Mid-Flood Fine Small Wave IS14 Bottom 15.6 3 2 18.16 17.4 7.95 27.5 7.16 7.01 8.1	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS14	Middle	8.3	2	2	18:16	17.2	8.01	27.4	7.31	7	8.1
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave IS15 Surface 1 1 1 17:16 17:3 7.95 27:5 7.16 7.01 8.1	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS14	Bottom	15.6	3	1	18:16	17.4	7.95	27.6	7.22	7.31	8.6
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave S15 Surface 1 2 17:16 7.7 7.97 27.5 7.11 7.06 8.3	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS14	Bottom	15.6	3	2	18:16	17.4	7.95	27.5	7.18	7.4	8.7
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave S15 Middle 5.6 2 1 17.16 17.2 7.97 27.5 7.19 6.82 7.8	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS15	Surface	1	1	1	17:16	17.3	7.95	27.5	7.16	7.01	8.1
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave IS15 Middle 5.6 2 2 17-16 17.3 7.98 7.6 7.22 6.9 8 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave IS15 Bottom 10.2 3 1 17-16 17.3 8.04 27.7 7.09 7.2 8.4 17-16 17.3 17.5	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS15	Surface	1	1	2	17:16	17.1	7.97	27.5	7.11	7.06	8.3
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave IS15 Bottom 10.2 3 1 17.16 17.3 8.04 27.7 7.09 7.2 8.4	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS15	Middle	5.6	2	1	17:16	17.2	7.97	27.5	7.19	6.82	7.8
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Surface 1 1 1 1 16:44 17.4 8.05 27.4 7.39 6.92 7.9 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Surface 1 1 1 1 16:44 17.4 8.06 27.3 7.35 6.85 7.7 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Middle 2 1 1 16:44 17.4 8.06 27.3 7.35 6.85 7.7 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Middle 2 1 1 16:44 17.4 8.06 27.3 7.35 6.85 7.7 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Middle 2 2 1 16:44 17.4 8.06 27.3 7.35 6.85 7.7 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Middle 2 2 1 16:44 17.3 8.08 27.6 7.2 7.08 8 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Bottom 4.4 3 1 1 16:44 17.3 8.08 27.6 7.2 7.08 8 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Bottom 4.4 3 2 1 16:44 17.4 8.1 27.5 7.25 7.13 8.2 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Bottom 4.4 3 2 2 16:44 17.4 8.1 27.5 7.25 7.13 8.2 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Surface 1 1 1 17.01 17.4 7.99 27.4 7.26 7.13 8.3 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Middle 2 1 17:01 17.2 8 27.4 7.26 7.13 8.3 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Middle 2 1 17:01 17.2 8 27.4 7.26 7.13 8.3 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Middle 2 2 1 17:01 17.3 8.04 27.4 7.07 7.23 8.2 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Bottom 4.4 3 1 17:01 17.3 8.04 27.5 7.1 7.17 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Bottom 4.4 3 1 1 17:01 17.3 8.04 27.5 7.1 7.17 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Bottom 4.4 3 1 1 17:01 17.3 8.04 27.5 7.1 7.17 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Bottom 4.4 3 1 1 17:01 17.3 8.04 27.5 7.1 7.17 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Surface 1 1 1 1 16:18 17.4 7.95 27.5 7.25 7.05 8.2 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 2 16:18 17.4	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS15	Middle	5.6	2	2	17:16	17.3	7.98	27.6	7.22	6.9	8
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Surface 1 1 1 16:44 17.4 8.05 27.4 7.39 6.92 7.9	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS15	Bottom	10.2	3	1	17:16	17.3	8.04	27.7	7.09	7.2	8.4
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Surface 1 1 2 16:44 17.4 8.06 27.3 7.35 6.85 7.7	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	IS15	Bottom	10.2	3	2	17:16	17.2	8.03	27.6	7.05	7.26	8.1
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Middle 2 1 16:44	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR8	Surface	1	1	1	16:44	17.4	8.05	27.4	7.39	6.92	7.9
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Middle 2 2 16:44	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR8	Surface	1	1	2	16:44	17.4	8.06	27.3	7.35	6.85	7.7
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Bottom 4.4 3 1 16:44 17.3 8.08 27.6 7.2 7.08 8 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Bottom 4.4 3 2 16:44 17.4 8.1 27.5 7.25 7.13 8.2 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Surface 1 1 1 17:01 17.4 7.99 27.4 7.26 7.05 8.1 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Surface 1 1 2 17:01 17.2 8 27.4 7.26 7.05 8.1 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Middle 2 1 17:01 17.0 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Middle 2 1 17:01 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Middle 2 2 17:01 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Bottom 4.4 3 1 17:01 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Bottom 4.4 3 2 17:01 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Bottom 4.4 3 2 17:01 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Bottom 4.4 3 2 17:01 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Surface 1 1 16:18 TM.5 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Surface 1 1 16:18 TM.4 TMCLKL HMCLKL	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR8	Middle		2	1	16:44						
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR8 Bottom 4.4 3 2 16:44 17.4 8.1 27.5 7.25 7.13 8.2 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Surface 1 1 1 1 17:01 17.4 7.99 27.4 7.26 7.05 8.1 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Surface 1 1 1 2 17:01 17.2 8 27.4 7.26 7.05 8.1 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Middle 2 1 17:01 17.2 8 27.4 7.26 7.13 8.3 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Middle 2 1 17:01 17.0	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR8	Middle		2	2	16:44						
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Surface 1 1 1 1 17:01 17.4 7.99 27.4 7.26 7.05 8.1 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Surface 1 1 1 2 17:01 17.2 8 27.4 7.26 7.05 8.3 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Middle 2 1 1 17:01	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR8	Bottom	4.4	3	1	16:44	17.3	8.08	27.6	7.2	7.08	8
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Surface 1 1 2 17:01 17:2 8 27.4 7.26 7.13 8.3 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Middle 2 1 17:01 1 2 17:01 1 17:01 1 17:01 1 17:01 1 17:01 1 17:01 1 17:01 1 17:01 1 17:01 1 17:01 1 1 17:01 1 1 17:01 1 1 17:01 1 3 1 17:01 1 3 1 17:01 1 3 8.04 27.4 7.07 7.23 8.2 2 17:01 17:3 8.04 27.4 7.07 7.23 8.2 1 1 17:01 17:3 8.04 27.4 7.07 7.23 8.2 1 1 <t< td=""><td>TMCLKL</td><td>HY/2012/08</td><td>2015-02-02</td><td>Mid-Flood</td><td>Fine</td><td>Small Wave</td><td>SR8</td><td>Bottom</td><td>4.4</td><td>3</td><td>2</td><td>16:44</td><td>17.4</td><td>8.1</td><td>27.5</td><td>7.25</td><td>7.13</td><td>8.2</td></t<>	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR8	Bottom	4.4	3	2	16:44	17.4	8.1	27.5	7.25	7.13	8.2
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Middle 2 1 17:01 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Middle 2 2 17:01 <td>TMCLKL</td> <td>HY/2012/08</td> <td>2015-02-02</td> <td>Mid-Flood</td> <td>Fine</td> <td>Small Wave</td> <td>SR9</td> <td>Surface</td> <td>1</td> <td>1</td> <td>1</td> <td>17:01</td> <td>17.4</td> <td>7.99</td> <td>27.4</td> <td>7.26</td> <td>7.05</td> <td>8.1</td>	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR9	Surface	1	1	1	17:01	17.4	7.99	27.4	7.26	7.05	8.1
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Bottom 4.4 3 1 17:01 17.3 8.04 27.4 7.07 7.23 8.2	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR9	Surface	1	1	2	17:01	17.2	8	27.4	7.26	7.13	8.3
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Bottom 4.4 3 1 17:01 17:3 8.04 27.4 7.07 7.23 8.2 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Bottom 4.4 3 2 17:01 17:3 8.04 27.5 7.1 7.17 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Surface 1 1 1 6:18 17.5 7.89 27.5 7.29 6.8 7.8 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Middle 6.1 2 1 6:18 17.4 7.9 27.4 7.32 6.74 7.5 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Middle 6.1 2 1 16:18 17.4 7.95	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR9	Middle		2	1	17:01						
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR9 Bottom 4.4 3 2 17:01 17.3 8.04 27.5 7.1 7.17 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Surface 1 1 16:18 17.5 7.89 27.5 7.29 6.8 7.8 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Surface 1 1 16:18 17.4 7.9 27.4 7.32 6.74 7.5 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Middle 6.1 2 1 16:18 17.4 7.95 27.6 7.2 6.97 7.9 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 3 1 16:18 17.4 7.95	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR9	Middle		2	2	17:01						
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Surface 1 1 16:18 17.5 7.89 27.5 7.29 6.8 7.8 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Surface 1 1 2 16:18 17.4 7.9 27.4 7.32 6.74 7.5 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Middle 6.1 2 1 16:18 17.4 7.95 27.6 7.2 6.97 7.9 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 3 1 16:18 17.4 7.95 27.5 7.25 7.05 8 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 3 1 16:18 17.4	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR9	Bottom	4.4	3	1	17:01	17.3	8.04	27.4	7.07	7.23	8.2
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Surface 1 1 2 16:18 17.4 7.9 27.4 7.32 6.74 7.5 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Middle 6.1 2 1 16:18 17.4 7.95 27.6 7.2 6.97 7.9 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Middle 6.1 2 2 16:18 17.4 7.95 27.6 7.2 6.97 7.9 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 3 1 16:18 17.4 7.98 27.6 7.06 7.21 8.2 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave CS4 Surface 1 1 11:04 17.2	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR9	Bottom	4.4	3	2	17:01	17.3	8.04	27.5	7.1	7.17	8.4
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Middle 6.1 2 1 16:18 17.4 7.95 27.6 7.2 6.97 7.9 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Middle 6.1 2 2 16:18 17.4 7.95 27.5 7.25 7.05 8 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 3 1 16:18 17.4 7.95 27.5 7.25 7.05 8 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 3 2 16:18 17.4 7.98 27.6 7.06 7.21 8.2 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 1 11:04 <td< td=""><td>TMCLKL</td><td>HY/2012/08</td><td>2015-02-02</td><td>Mid-Flood</td><td>Fine</td><td>Small Wave</td><td>SR10A</td><td>Surface</td><td>1</td><td>1</td><td>1</td><td>16:18</td><td>17.5</td><td>7.89</td><td>27.5</td><td>7.29</td><td>6.8</td><td>7.8</td></td<>	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR10A	Surface	1	1	1	16:18	17.5	7.89	27.5	7.29	6.8	7.8
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Middle 6.1 2 2 16:18 17.4 7.95 27.5 7.25 7.05 8 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 3 1 16:18 17.4 7.95 27.5 7.06 7.21 8.2 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 3 2 16:18 17.4 7.98 27.6 7.06 7.21 8.2 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave CS4 Surface 1 1 11:04 17.2 7.93 27.2 7.16 7.24 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Middle 10.7 2 1 11:04 17.3	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR10A	Surface	1	1	2	16:18	17.4	7.9	27.4	7.32	6.74	7.5
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 3 1 16:18 17.4 7.98 27.6 7.06 7.21 8.2 TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 3 2 16:18 17.5 7.97 27.5 7.03 7.3 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 1:04 17.2 7.93 27.2 7.16 7.24 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 2 11:04 17.3 7.95 27.3 7.16 7.24 8.1 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Middle 10.7 2 1 11:04 17.3 <	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR10A	Middle	6.1	2	1	16:18	17.4	7.95	27.6	7.2	6.97	7.9
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 3 2 16:18 17.5 7.97 27.5 7.03 7.3 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 1 11:04 17.2 7.93 27.2 7.16 7.24 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Middle 10.7 2 1 11:04 17.3 7.95 27.3 7.19 7.16 8.1 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Middle 10.7 2 1 11:04 17.3 7.99 27.4 7.23 7.02 7.9	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR10A	Middle	6.1	2	2	16:18	17.4	7.95	27.5	7.25	7.05	8
TMCLKL HY/2012/08 2015-02-02 Mid-Flood Fine Small Wave SR10A Bottom 11.2 3 2 16:18 17.5 7.97 27.5 7.03 7.3 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 11:04 17.2 7.93 27.2 7.16 7.24 8.4 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 2 11:04 17.3 7.95 27.3 7.19 7.16 8.1 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Middle 10.7 2 1 11:04 17.3 7.99 27.4 7.23 7.02 7.9	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR10A	Bottom	11.2	3	1	16:18	17.4	7.98	27.6	7.06	7.21	8.2
TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 2 11:04 17.3 7.95 27.3 7.19 7.16 8.1 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Middle 10.7 2 1 11:04 17.3 7.99 27.4 7.23 7.02 7.9	TMCLKL	HY/2012/08	2015-02-02	Mid-Flood	Fine	Small Wave	SR10A	Bottom	11.2	3	2	16:18	17.5			7.03	7.3	8.4
TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 2 11:04 17.3 7.95 27.3 7.19 7.16 8.1 TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Middle 10.7 2 1 11:04 17.3 7.99 27.4 7.23 7.02 7.9	TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	Cloudy	Small Wave	CS4	Surface	1	1	1	11:04	17.2	7.93	27.2	7.16	7.24	8.4
TMCLKL HY/2012/08 2015-02-02 Mid-Ebb Cloudy Small Wave CS4 Middle 10.7 2 1 1 11:04 17.3 7.99 27.4 7.23 7.02 7.9	TMCLKL							Surface	1	1	2	11:04	+			7.19		
	TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb				Middle	10.7	2	1	11:04	17.3			7.23	7.02	
					•				+	2	2		+				6.96	8

Project	Works	Date	Tide	l Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb		Small Wave	CS4	Bottom	20.4	3	1	11:04	17.4	7.91	27.6	7.07	7.51	8.7
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	Cloudy	Small Wave		Bottom	20.4	3	2	11:04	17.5	7.92	27.7	7.02	7.48	8.6
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	Cloudy	Small Wave	CS6	Surface	1	1	1	13:50	17.3	8.02	27.4	7.15	7.09	8.1
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	Cloudy	Small Wave	CS6	Surface	1	1	2	13:50	17.4	8.03	27.3	7.12	7.15	8.2
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	Cloudy	Small Wave	CS6	Middle	5.7	2	1	13:50	17.4	8.07	27.5	7.03	7.28	8.4
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	Cloudy	Small Wave	CS6	Middle	5.7	2	2	13:50	17.4	8.08	27.5	7.01	7.33	8.7
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	Cloudy	Small Wave	CS6	Bottom	10.4	3	1	13:50	17.4	8.09	27.6	6.87	7.56	8.8
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	Cloudy	Small Wave	CS6	Bottom	10.4	3	2	13:50	17.5	8.1	27.6	6.91	7.5	8.6
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	Cloudy	Small Wave	IS12	Surface	1	1	1	11:45	17.2	8.02	27.3	7.23	7.2	8.4
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	Cloudy	Small Wave	IS12	Surface	1	1	2	11:45	17.3	8.03	27.3	7.18	7.28	8.3
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	-			Middle	7.3	2	1	11:45	17.3	8.07	27.4	7.25	7.13	8
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	Cloudy	Small Wave	IS12	Middle	7.3	2	2	11:45	17.3	8.06	27.5	7.27	7.09	7.8
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	Cloudy	Small Wave	IS12	Bottom	13.6	3	1	11:45	17.4	7.98	27.5	7.13	7.36	8.4
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	,			Bottom	13.6	3	2	11:45	17.3	7.97	27.5	7.09	7.41	8.3
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_			Surface	1	1	1	12:05	17.2	7.94	27.4	7.13	7.04	8
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_			Surface	1	1	2	12:05	17.2	7.93	27.3	7.1	7.12	8.2
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb					5.6	2	1	12:05	17.3	7.98	27.4	7.18	7	7.8
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	,		IS13	Middle	5.6	2	2	12:05	17.3	7.99	27.4	7.21	7.07	7.9
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_			Bottom	10.2	3	1	12:05	17.3	8.01	27.4	7.04	7.28	8.4
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_	Small Wave		Bottom	10.2	3	2	12:05	17.4	8.02	27.5	7	7.35	8.3
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_	Small Wave		Surface	1	1	1	11:26	17.2	7.98	27.3	7.07	7.33	8.4
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_			Surface	1	1	2	11:26	17.2	7.99	27.2	7.11	7.25	8.1
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_	Small Wave			8.2	2	1	11:26	17.3	8.01	27.4	7.17	7.16	8.2
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_			Middle	8.2	2	2	11:26	17.3	8.03	27.4	7.2	7.1	8
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_	Small Wave		Bottom	15.4	3	1	11:26	17.3	7.95	27.5	7.1	7.44	8.6
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	,	Small Wave		Bottom	15.4	3	2	11:26	17.4	7.96	27.6	7.06	7.5	8.7
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	,	Small Wave	IS15	Surface	1	1	1	12:27	17.2	7.96	27.4	7.04	7.11	8.1
	HY/2012/08			,			Surface		1	2		17.3	+	27.4	7.01	7.17	8.3
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_		IS15		5.5	2	1	12:27	17.3	7.99	27.4	7.09	6.94	7.9
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	,				5.5	2	2	12:27	17.3	8	27.4	7.1	7.02	8.1
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	-				10	3	1	12:27	17.3		27.5	6.96	7.31	8.4
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	-				10	3	2	12:27	17.3		27.5	6.93	7.39	8.1
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	•		SR8	Surface	1	1	1	13:02	17.3		27.3	7.27	7.05	7.8
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	-		SR8	Surface	1	1	2	13:02	17.4	8.07	27.4	7.24	6.96	8
TMCLKL	HY/2012/08	2015-02-02		•			Middle		2	1	13:02	+	<u> </u>				
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	-		SR8	Middle	1.0	2	2	13:02	1-7-4	0.4	07.4	7.00	7.40	
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_				4.2	3	1	13:02	17.4	8.1	27.4	7.09	7.19	8.2
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	-				4.2	3	2	13:02	17.4		27.5	7.13	7.25	8.4
TMCLKL	HY/2012/08	2015-02-02		_		SR9	Surface	1	1	1	12:46	17.3	+	27.4	7.12	7.18	8.2
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	,		SR9	Surface	1	1	2	12:46	17.3	7.99	27.5	7.07	7.25	8
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_		SR9	Middle		2	1	12:46		 				
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	,			Middle	1 0	2	<u> </u>	12:46	17.0	0.04	07.5	6.04	7.20	0.4
TMCLKL	HY/2012/08	2015-02-02		_				4.2	3	1	12:46	17.3		27.5	6.94	7.36	8.4
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_				4.2	<u>ال</u> ا	1	12:46	17.3	+	27.5	6.97	7.28	8.1
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_			Surface	1	1	2	13:26	17.4	-	27.4	7.19	6.91	7.9
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	-			Surface	6	2	1	13:26	17.4	-	27.4	7.21	6.85	7.7
TMCLKL	HY/2012/08	2015-02-02		_			Middle	6	2	2	13:26	17.4		27.4	7.08	7.09	8.1
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	_			Middle	11	2	1	13:26	17.4		27.5	7.13	7.16 7.34	8.3
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	,			Bottom	11	<u>၁</u>	2	13:26	17.4		27.6	6.96		8.6
TMCLKL	HY/2012/08	2015-02-02	Mid-Ebb	,			Bottom	111	၂ <mark>၂</mark>	1	13:26	17.5		27.6	6.92	7.42	8.7
TMCLKL	HY/2012/08 HY/2012/08	2015-02-04	Mid-Flood Mid-Flood	,		CS4 CS4	Surface Surface	1	1	2	19:52 19:52	17	7.91 7.9	27.1	7.3 7.34	7.12 7.15	7.8 7.5
TMCLKL		2015-02-04		,				10.7	2	1	+	16.9	+	27			
TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	,				10.7	2	2	19:52	17.2	8.01	27	7.36	6.9	7.3
TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	,				10.7	2	1	19:52	17.1	+	27.1	7.38	6.94	7.4
TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	,				20.4	<u>)</u>	<u> </u>	19:52	17.2		27.2	7.12	7.28	8.2
TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	,				20.4	<u>ا</u> ا	1	19:52	17.3	+	27.4	7.17	7.31	8.3
TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	-			Surface	1	1	2	17:09	17.1	7.93 7.95	27	7.26	6.95	7.9
LIVICENE	HY/2012/08	12010-02-04	IIVIIU-FIUUU	Cloudy	Small Wave	1000	Surface	<u> </u>	<u> </u>	<u> </u>	17:09	[17.1	ຸ ກ.ສວ	JZU.3	7.29	6.97	7.7

Table Tabl	Project	Works	Date	Tide	l Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
Michael Mich	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.8	2	1	17:09	17.2	8.04	27	7.18	7.11	8.4
Michael Mich	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.8	2	2	17:09	17.2	8.06	27.2	7.2	7.14	8.7
Michael Mich	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	CS6	Bottom	10.5	3	1	17:09	17.4	8.12	27.4	6.96	7.47	8.6
MIGCLEA MY201208 2019-100-04 MeFlend Globy Small Wave S12 Meflend 1 2 110.08 77 78 27 742 7.06 8.6 MY201209 2019-100-04 MeFlend Chudy Small Wave S12 Meflend 74 2 1 10.08 77 73 27 744 7.00 8.6 MY201209 2019-100-04 MeFlend Chudy Small Wave S12 Meflend 74 2 1 10.08 77 3 27 744 7.00 8.6 MY201209 2019-100-04 MeFlend Chudy Small Wave S12 Meflend 74 2 1 10.08 77 3 27 74 75 75 77 78 77 78 77 78 78	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	CS6	Bottom	10.5	3	2	17:09	17.3	8.11	27.4	6.99	7.46	8.9
INCOLE_N_PYZZIEZSS 2019-02-94 Mid-Flood Cloudy Small Wave St2 Middle 7.4 2 1 1988 7.7 8 27 7.44 7.08 8 8 7 7 7 7 7 7 7	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS12	Surface	1	1	1	19:08	17	7.92	27.1	7.38	7.01	8.4
TRICLIC 1, 1799 1799 1790 1	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS12	Surface	1	1	2	19:08	17	7.93	27	7.42	7.05	8.6
TRICKER MY201200 2019-02-04 MoFFDDDD Cloudy Small Wave S12 Softm 13.7 3 1 1908 17.4 81.2 27.3 7.20 69.3 7.4	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS12	Middle	7.4	2	1	19:08	17.1	8		7.44	7.09	8.5
TRICIAL MY201200 2015-02-04 MorFlood Colough Small Wave Str. Small Wav	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS12	Middle	7.4	2	2	19:08	17.2	8.02	27.1	7.46		
Model Mode		-			_					3	1			+				_
Triggle My201208 2016-02-04 Mol-Ploud Cloudy Small Week B13 Surface 1 2 16-84 I/1 1 8.00 27 7.33 7.4 9.5	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	-			Bottom	13.7	3	2	19:08	17.4	+		7.29		
Michelland Mic		-			_				1	1	1	-	-	+		 	7.02	
Triggle My207208 2019-02-04 Mol-Flood Cloudy Small Wave S13 Middle 7.7 2. 2. 18.64 17.2 7.38 7.73 7.74 7.21 6.94 7.7					_				1	1	2			+		+	7	
Trigging Programs		HY/2012/08	2015-02-04		Cloudy					2	1	18:44		+		+		8.7
Tricking Property	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS13	Middle	5.7	2	2	18:44	17.2	7.93	27.3	7.43		
MINCLEAN MY201208 2015-02-04 Min-Flood Cloudy Small Wave IS14 Surface 1 1 1 1930 17 8.00 27 7.26 7.18 0.2	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS13	Bottom	10.3	3	1	18:44	17.3	8.18	27.4	7.21	6.94	7.9
Tricklick My201208 0115-02-04 Mod-Flood Cloudy Small Wave S14 Surface 1 2 19.30 17.1 8.13 27.2 7.28 7.2 3.3	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS13	Bottom	10.3	3	2	18:44	17.5		27.3	7.25	6.98	7.7
Mickey My201208 2015-02-04 Mid-Flood Cloudy Small Wave S14 Middle 8.3 2 1 19.30 17.1 8.13 27.2 7.36 7.26 8.7					,				1	1	1			+				
MCLKL MYZ01208 2015-02-04 Mol-Flood Cloudy Small Wave S14 Moldo 8.3 2 2 19.30 17.2 8.13 27.4 7.3 7.3 8.5					,				1	1	2	+						
MCKLK HY/201208 2015-02-04 Mid-Flood Cloudy Small Wave S14 Settom 15.5 3 1 19.30 17.4 7.94 27.4 7.21 7.31 8.7	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS14	Middle	8.3	2	1	19:30	17.1	8.13	27.2	7.35	7.25	8.7
Trickitk Hy/201208 2015-02-04 Mid-Flood Cloudy Small Wave S15 Sufface 1 1 1 122 17 8.02 26.9 7.18 6.72 7.6	TMCLKL		2015-02-04	Mid-Flood	Cloudy	Small Wave		Middle	8.3	2	2	19:30	17.2	+		.		
Tricklick H7/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave IS15 Surface 1 1 1 1 1 1 2 2 17, 1 8,02 26.9 7,18 6,72 7,6	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS14	Bottom	15.5	3	1	19:30	17.4	7.94	27.4	7.21	7.31	8.7
Trickick H7/2012/08 075-02-04 Mid-Flood Cloudy Small Wave ISTS Middle 5.6 2 2 18.22 17.2 8.12 27.7 7.27 6.91 8.2	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS14	Bottom	15.5	3	2	19:30	17.4	7.95	27.5	7.19	7.34	8.6
TMCLIK, H7/2012/08 0715-02-04 Mid-Flood Cloudy Small Wave IS15 Middle S.6 2 1 18:22 17.2 8.12 27.1 7.3 6.93 8.5	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS15	Surface	1	1	1	18:22	17	8.02	26.9	7.18	6.72	7.6
TMCLKL HY/201208 2015-02-04 Mid-Flood Cloudy Small Wave IS15 Middle 5.6 2 2 18.22 17 3 7.8 7.7 7.9 7.16 8.6	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS15	Surface	1	1	2	18:22	17.1	8.04	26.9	7.21	6.75	7.4
TMCLKL HY201208 2015-02-04 Mid-Flood Cloudy Small Wave S15 Bottom 10.2 3 1 18.22 17.2 7.89 27.3 7.13 7.2 7.90 7.16 8.6	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS15	Middle	5.6	2	1	18:22	17.2	8.12	27	7.27	6.91	8.2
TMCLKL PY201208 2015-02-04 Mid-Flood Cloudy Small Wave SR Surface 1 1 17:52 17. 7.84 27.1 7.41 6.92 7.5	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS15	Middle	5.6	2	2	18:22	17	8.7	27.1	7.3	6.95	8.5
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR8 Surface 1 1 1.752 17, 7, 74 7, 74 6,92 7,9	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS15	Bottom	10.2	3	1	18:22	17.3	7.88	27.2	7.09	7.16	8.6
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR8 Middle 2 1 1.752 1.71. 7.85 26.9 7.45 6.95 7.5	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	IS15	Bottom	10.2	3	2	18:22	17.2	7.89	27.3	7.13	7.2	8.7
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR8 Middle 2 1 17:52 T.1 8.05 27 7.29 7.05 8.6 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR8 Storm 4.3 3 1 17:52 17:1 8.05 27 7.29 7.05 8.6 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR8 Storm 4.3 3 2 17:52 17:1 8.05 27 7.29 7.05 8.6 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR9 Surface 1 1 1 18:07 17 7.97 27 7.5 7.07 8.7 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR9 Surface 1 1 1 18:07 17 7.97 27 7.5 7.02 8 3.3 3 3 3 3 3 3 3 3	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	1	17:52	17	7.84	27.1	7.41	6.92	7.9
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR8 Middle 2 2 17:52 T.1 0.06 27 7.29 7.05 3.6	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	2	17:52	17.1	7.85	26.9	7.45	6.95	7.5
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR8 Bottom 4.3 3 1 17.52 17.1 8.05 27 7.29 7.05 8.6	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR8	Middle		2	1	17:52						
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR8 Bottom 4.3 3 2 17:52 17.1 8.07 27.2 7.25 7.07 8.7	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR8	Middle		2	2	17:52						
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR9 Surface 1 1 1 1 1 1 1 1 1	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR8	Bottom	4.3	3	1	17:52	17.1	8.05	27	7.29	7.05	8.6
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR9 Middle 2 1 1 1 1 1 1 1 1 1	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR8	Bottom	4.3	3	2	17:52	17.1	8.07	27.2	7.25	7.07	8.7
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR9 Middle 2 1 18:07	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR9	Surface	1	1	1	18:07	17	7.97	27	7.3	7.02	8
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR9 Middle R 2 2 18:07 R R R R R R R R R	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR9	Surface	1	1	2	18:07	17.2	7.97	27.1	7.34	7	8.3
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR9 Bottom 4.3 3 1 18:07 17.2 8.05 27.2 7.16 7.19 8.4 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR9 Bottom 4.3 3 2 18:07 17.3 8.04 27.1 7.2 7.15 8.3 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Surface 1 1 1 17:32 17.2 8.02 27 7.34 6.82 7.6 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Midele 6.1 2 1 17:32 17.1 8.01 27.1 7.34 6.82 7.6 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Bottom 11.2 3 1 17:32	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR9	Middle		2	1	18:07						
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR9 Bottom 4.3 3 2 18:07 17.3 8.04 27.1 7.2 7.15 8.3	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR9	Middle		2	2	18:07						
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Surface 1 1 17:32 17.2 8.02 27 7.33 6.84 7.5 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Surface 1 1 2 17:32 17.1 8.01 27.1 7.33 6.84 7.5 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Middle 6.1 2 1 17:32 17.2 8.2 27.3 7.19 6.93 8.4 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Bottom 11.2 3 1 17:32 17.3 8.18 27.3 7.19 6.98 8.3 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Bottom 11.2 3 1 17:32 17.3<	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR9	Bottom	4.3	3	1	18:07	17.2	8.05	27.2	7.16	7.19	8.4
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Surface 1 1 2 17:32 17.1 8.01 27.1 7.34 6.82 7.6 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Middle 6.1 2 1 17:32 17.2 8.2 27.3 7.19 6.93 8.4 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Bitdle 6.1 2 2 17:32 17.3 8.18 27.3 7.19 6.93 8.3 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Bottom 11.2 3 1 17:32 17.4 7.86 27.2 7.08 7.05 7.02 7.8 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 1	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR9	Bottom	4.3	3	2	18:07	17.3	8.04	27.1	7.2	7.15	8.3
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Middle 6.1 2 1 17:32 17.2 8.2 27.3 7.19 6.93 8.4 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Middle 6.1 2 2 17:32 17.3 8.18 27.3 7.19 6.98 8.3 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Bottom 11.2 3 1 17:32 17.3 7.85 27.2 7.08 7.05 7.02 7.8 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 1 12:08 17 7.9 27 7.17 7.23 8.2 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 2 <td< td=""><td>TMCLKL</td><td>HY/2012/08</td><td>2015-02-04</td><td>Mid-Flood</td><td>Cloudy</td><td>Small Wave</td><td>SR10A</td><td>Surface</td><td>1</td><td>1</td><td>1</td><td>17:32</td><td>17.2</td><td>8.02</td><td>27</td><td>7.33</td><td>6.84</td><td>7.5</td></td<>	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	1	17:32	17.2	8.02	27	7.33	6.84	7.5
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Middle 6.1 2 2 17:32 17:3 8.18 27:3 7.22 6.98 8.3 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Bottom 11.2 3 1 17:32 17:3 7.85 27.4 7.05 7.02 7.8 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Bottom 11.2 3 2 17:32 17.4 7.86 27.2 7.08 7.05 8 MCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 1 12:08 17 7.97 27 7.19 7.25 8.5 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Midele 10.6 2 1 12:08 17.1	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	2	17:32	17.1	8.01	27.1	7.34	6.82	7.6
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Bottom 11.2 3 1 17:32 17.3 7.85 27.4 7.05 7.02 7.8 TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Bottom 11.2 3 2 17:32 17.4 7.86 27.2 7.08 7.05 8 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 1:08 17 7.9 27 7.17 7.23 8.2 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Middle 10.6 2 1 1:2:08 17.1 7.99 27 7.17 7.23 8.5 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Middle 10.6 2 1:2:08 17.1 8.02	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR10A	Middle	6.1	2	1	17:32	17.2	8.2	27.3	7.19		8.4
TMCLKL HY/2012/08 2015-02-04 Mid-Flood Cloudy Small Wave SR10A Bottom 11.2 3 2 17:32 17.4 7.86 27.2 7.08 7.05 8 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 1 12:08 17 7.9 27 7.17 7.23 8.2 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 1 12:08 17 7.9 27 7.19 7.25 8.5 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Midelle 10.6 2 1 12:08 17.1 8 27.1 7.23 7.03 8 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Bottom 20.2 3 1 12:08 17.3	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR10A	Middle	6.1	2	2	17:32	17.3	8.18	27.3			_
TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 12:08 17 7.9 27 7.17 7.23 8.2 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 2 12:08 17 7.97 27 7.19 7.25 8.5 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Middle 10.6 2 1 12:08 17.1 8.2 27.1 7.19 7.25 8.5 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Bottom 20.2 3 1 12:08 17.2 8.02 27.2 7.25 7.05 8.1 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Bottom 20.2 3 2 12:08 17.4 8.09	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR10A	Bottom	11.2	3	1	17:32	17.3	7.85	27.4	7.05		7.8
TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Surface 1 1 2 12:08 17 7.97 27 7.19 7.25 8.5 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Middle 10.6 2 1 12:08 17.1 8 27.1 7.23 7.03 8 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Bottom 20.2 3 1 12:08 17.2 8.02 27.2 7.25 7.05 8.1 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Bottom 20.2 3 1 12:08 17.3 8.07 27.3 7.02 7.39 8.7 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Surface 1 1 1 1 1	TMCLKL	HY/2012/08	2015-02-04	Mid-Flood	Cloudy	Small Wave	SR10A	Bottom	11.2	3	2	17:32	17.4	7.86	27.2	7.08	7.05	8
TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Middle 10.6 2 1 12:08 17.1 8 27.1 7.23 7.03 8 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Middle 10.6 2 1 12:08 17.1 8 27.1 7.23 7.03 8 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Bottom 20.2 3 1 12:08 17.3 8.07 27.3 7.02 7.39 8.7 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Surface 1 1 1 14:55 17 7.92 27 7.14 7.06 8.1 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Mid-Beb 5.7 2 1 1 1 <th< td=""><td>TMCLKL</td><td>HY/2012/08</td><td>2015-02-04</td><td>Mid-Ebb</td><td>Cloudy</td><td>Small Wave</td><td>CS4</td><td>Surface</td><td>1</td><td>1</td><td>1</td><td>12:08</td><td>17</td><td>7.9</td><td>27</td><td>7.17</td><td>7.23</td><td>8.2</td></th<>	TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	CS4	Surface	1	1	1	12:08	17	7.9	27	7.17	7.23	8.2
TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Middle 10.6 2 2 12:08 17.2 8.02 27.2 7.25 7.05 8.1 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Bottom 20.2 3 1 12:08 17.3 8.07 27.3 7.02 7.39 8.7 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Bottom 20.2 3 2 12:08 17.3 8.07 27.3 7.02 7.39 8.7 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Surface 1 1 1 14:55 17 7.92 27 7.14 7.06 8.1 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Middle 5.7 2 1 14:55 17.2<	TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	CS4	Surface	1	1	2	12:08	17	7.97	27	7.19	7.25	8.5
TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Bottom 20.2 3 1 12:08 17.3 8.07 27.3 7.02 7.39 8.7 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Bottom 20.2 3 2 12:08 17.4 8.09 27.4 7.04 7.41 8.6 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Surface 1 1 1 14:55 17 7.92 27 7.14 7.06 8.1 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Middle 5.7 2 1 1 14:55 17.1 7.94 27 7.16 7.08 7.8 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Middle 5.7 2 1 14:55	TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	CS4	Middle	10.6	2	1	12:08	17.1	8	27.1	7.23	7.03	8
TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Bottom 20.2 3 2 12:08 17.4 8.09 27.4 7.04 7.41 8.6 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Surface 1 1 14:55 17 7.92 27 7.14 7.06 8.1 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Surface 1 1 2 14:55 17.1 7.94 27 7.16 7.08 7.8 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Middle 5.7 2 1 14:55 17.2 8.05 27.1 7.05 7.24 8.4 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Bottom 10.3 3 1 14:55 17.4 8.11 </td <td>TMCLKL</td> <td>HY/2012/08</td> <td>2015-02-04</td> <td>Mid-Ebb</td> <td>Cloudy</td> <td>Small Wave</td> <td>CS4</td> <td>Middle</td> <td>10.6</td> <td>2</td> <td>2</td> <td>12:08</td> <td>17.2</td> <td>8.02</td> <td>27.2</td> <td>7.25</td> <td>7.05</td> <td>8.1</td>	TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	CS4	Middle	10.6	2	2	12:08	17.2	8.02	27.2	7.25	7.05	8.1
TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS4 Bottom 20.2 3 2 12:08 17.4 8.09 27.4 7.04 7.41 8.6 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Surface 1 1 14:55 17 7.92 27 7.14 7.06 8.1 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Surface 1 1 1 14:55 17.1 7.92 27 7.14 7.06 8.1 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Middle 5.7 2 1 14:55 17.2 8.05 27.1 7.05 7.24 8.4 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Bottom 10.3 3 1 14:55 17.4 8.11 27.3 6.84 7.58 8.7	TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom	20.2	3	1	12:08	17.3	8.07	27.3	7.02	7.39	8.7
TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Surface 1 1 2 14:55 17.1 7.94 27 7.16 7.08 7.8 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Middle 5.7 2 1 14:55 17.2 8.05 27.1 7.05 7.24 8.4 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Middle 5.7 2 2 14:55 17.3 8.07 27.2 7.07 7.26 8.3 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Bottom 10.3 3 1 14:55 17.4 8.11 27.3 6.84 7.58 8.7	TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom	20.2	3	2	12:08	17.4			7.04	7.41	8.6
TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Surface 1 1 2 14:55 17.1 7.94 27 7.16 7.08 7.8 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Middle 5.7 2 1 14:55 17.2 8.05 27.1 7.05 7.24 8.4 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Middle 5.7 2 2 14:55 17.3 8.07 27.2 7.07 7.26 8.3 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Bottom 10.3 3 1 14:55 17.4 8.11 27.3 6.84 7.58 8.7	TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	CS6	Surface	1	1	1	14:55	17	7.92	27	7.14	7.06	8.1
TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Middle 5.7 2 2 14:55 17.3 8.07 27.2 7.07 7.26 8.3 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Bottom 10.3 3 1 14:55 17.4 8.11 27.3 6.84 7.58 8.7	TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	CS6	Surface	1	1	2	14:55	17.1		27	7.16	7.08	7.8
TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Middle 5.7 2 2 14:55 17.3 8.07 27.2 7.07 7.26 8.3 TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Bottom 10.3 3 1 14:55 17.4 8.11 27.3 6.84 7.58 8.7	TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	CS6	Middle	5.7	2	1	14:55	17.2	8.05	27.1	7.05	7.24	8.4
TMCLKL HY/2012/08 2015-02-04 Mid-Ebb Cloudy Small Wave CS6 Bottom 10.3 3 1 1 14:55 17.4 8.11 27.3 6.84 7.58 8.7			+		•					2	2	14:55						
	TMCLKL	HY/2012/08		Mid-Ebb	_			Bottom	10.3	3	1	14:55				6.84		
in the contract of the contrac					-			 		3	2	+	+			6.86	7.56	8.9

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	IS12	Surface	1	1	1	12:52	17	7.93	27	7.26	7.13	8.1
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	IS12	Surface	1	1	2	12:52	17.1	7.95	26.9	7.28	7.15	8.3
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	IS12	Middle	7.3	2	1	12:52	17.2	8.01	27.1	7.3	7.2	8.4
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	IS12	Middle	7.3	2	2	12:52	17.3	8.03	27.2	7.32	7.22	8.7
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	IS12	Bottom	13.5	3	1	12:52	17.4	8.11	27.3	7.15	7.03	7.9
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	IS12	Bottom	13.5	3	2	12:52	17.4	8.13	27.4	7.13	7.05	8.1
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	IS13	Surface	1	1	1	13:14	17.1	8.12	27.1	7.19	7.13	7.8
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	IS13	Surface	1	1	2	13:14	17.1	8.1	27	7.21	7.11	8.1
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.6	2	1	13:14	17.2	7.93	27.2	7.27	7.24	8.4
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.6	2	2	13:14	17.3	7.95	27.3	7.29	7.22	8.6
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	-			Bottom	10.1	3	1	13:14	17.4	8.2	27.4	7.09	7.06	8.1
TMCLKL	HY/2012/08	2015-02-04		Cloudy			Bottom	10.1	3	2	13:14	17.5	8.22	27.4	7.11	7.09	8.3
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave		Surface	1	1	1	12:30	17.1	8.02	27.1	7.13	7.3	8.4
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy			Surface	1	1	2	12:30	17.1	8	27.2	7.15	7.32	8.2
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	,				8.2	2	1	12:30	17.2		27.3	7.2	7.37	8.6
TMCLKL	HY/2012/08	2015-02-04		_		IS14	Middle	8.2	2	2	12:30	17.3	-	27.3	7.22	7.4	8.7
TMCLKL	HY/2012/08	2015-02-04		,			Bottom	15.3	3	1	12:30	17.4	7.93	27.4	7.1	7.43	9.1
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	,			Bottom	15.3	3	2	12:30	17.5		27.4	7.08	7.45	9
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	_			Surface	1	1	1	13:38	17	8.03	27	7.06	8.83	7.9
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	_			Surface	1	1	2	13:38	17	8.05	26.9	7.08	8.85	7.7
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	_	Small Wave	IS15		5.6	2	1	13:38	17.1		27.1	7.13	7.03	8.1
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy		IS15	Middle	5.6	2	2	13:38	17.2	8.11	27.2	7.15	7.05	8.3
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	-			Bottom	10	3	1	13:38	17.3	7.89	27.3	6.98	7.28	8.4
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom	10	3	2	13:38	17.4	7.9	27.4	6.99	7.3	8.6
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	SR8	Surface	1	1	1	14:15	17	7.83	27	7.3	7.03	7.9
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	SR8	Surface	1	1	2	14:15	17	7.85	26.9	7.32	7.05	8.1
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	SR8	Middle		2	1	14:15						
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy	Small Wave	SR8	Middle		2	2	14:15						
TMCLKL	HY/2012/08	2015-02-04	Mid-Ebb	Cloudy			Bottom	4.1	3	1	14:15	17.1	8.06	27.1	7.17	7.15	8.2
	HY/2012/08	2015-02-04	Mid-Ebb	,			Bottom	4.1	3	2	14:15	17.2		27.2	7.15	7.17	8.4
	HY/2012/08	2015-02-04		-		SR9	Surface	1	1	1	14:00	17.1		27.1	7.19	7.14	8.1
-	HY/2012/08	2015-02-04		-		SR9	Surface	1	1	2	14:00	17.2	7.98	27	7.21	7.12	8.3
TMCLKL	HY/2012/08	2015-02-04		_		SR9	Middle		2	1	14:00						
-	HY/2012/08	2015-02-04					Middle		2	2	14:00						
TMCLKL	HY/2012/08	2015-02-04		_			i	4.1	3	1	 	17.3		27.2	7.03	7.3	8.4
-	HY/2012/08	2015-02-04		_			i	4.1	3	2	14:00	17.4		27.3	7.05	7.28	8.5
TMCLKL	HY/2012/08	2015-02-04		_			Surface	1	1	1	14:35	17.1	_	27.1	7.24	6.94	7.9
	HY/2012/08	2015-02-04					Surface	1	1	2	14:35	17.2	8	27.2	7.22	6.96	7.7
	HY/2012/08	2015-02-04		_			Middle	6	2	1	14:35	17.3		27.3	7.07	7.06	8.1
	HY/2012/08	2015-02-04		,			Middle	6	2	2	14:35	17.3	_	27.4	7.09	7.08	8.3
TMCLKL	HY/2012/08	2015-02-04		_				11	3	1	14:35	17.4		27.5	6.92	7.13	8.2
	HY/2012/08	2015-02-04		_				11	3	2	14:35	17.5		27.4	6.94	7.15	8.4
	HY/2012/08	2015-02-06		,			Surface	1	<u> 1</u>	1	10:17	16.7		26.9	7.42	7.18	8.2
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	_			Surface	1	1	2	10:17	16.8		27	7.37	7.24	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	_				10.5	2	1	 	16.9		27.1	7.33	7.29	8.6
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	,			Middle	10.5	2	2	10:17	16.9		27.2	7.29	7.36	8.9
	HY/2012/08	2015-02-06	Mid-Flood	,			Bottom	20	3	1	10:17	17.1		27.3	7.12	7.48	9.1
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	,		CS4	Bottom	20	3	2	10:17	17.2	8.1	27.4	7.08	7.41	9.3
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	,		CS6	Surface	<u> 1</u>	1	1	07:56	16.6		26.8	7.42	6.98	7.9
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	,		CS6	Surface	1	1	2	07:56	16.5		26.9	7.39	7.05	8.2
	HY/2012/08	2015-02-06	Mid-Flood	,				5.6	2	1	07:56	16.6	_	27.1	7.31	7.19	8.2
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	,		CS6		5.6	2	2	07:56	16.7	_	27.1	7.28	7.14	8.3
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	,				10.2	3	1	07:56	17	_	27.2	7.09	7.44	8.6
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	_		CS6		10.2	3	2	07:56	17.1	_	27.3	7.12	7.38	8.9
	HY/2012/08	2015-02-06	Mid-Flood	,		IS12	Surface	1	1	1	09:41	16.7		26.9	7.48	7.07	8.3
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	,		IS12	Surface	1	1	2	09:41	16.8		27	7.45	7.14	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	,			 	7.2	2	1	09:41	17	-	27.1	7.38	7.18	8.6
IMCLKL	HY/2012/08	2015-02-06	IMIG-Flood	Cloudy	Small Wave	JIS12	Middle	1.2	2	<u> 2</u>	09:41	[17.1	8	27.1	7.33	7.25	8.7

Project	Works	Date	Tide	l Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS12	Bottom	13.4	3	1	09:41	17.2	8.07	27.2	7.27	6.93	7.8
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave		Bottom	13.4	3	2	09:41	17.2	8.08	27.3	7.24	7.01	7.7
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS13	Surface	1	1	1	09:24	16.7	8.11	27	7.37	6.88	7.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS13	Surface	1	1	2	09:24	16.8	8.12	27	7.34	6.95	7.6
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS13	Middle	5.4	2	1	09:24	17	8.04	27.1	7.3	7.13	8.2
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS13	Middle	5.4	2	2	09:24	16.9	8.05	27.2	7.33	7.2	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS13	Bottom	9.8	3	1	09:24	17.2	8.14	27.3	7.26	7.07	8.1
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS13	Bottom	9.8	3	2	09:24	17.1	8.15	27.4	7.22	7.01	8
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS14	Surface	1	1	1	10:00	16.8	8.02	27.1	7.39	7.22	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS14	Surface	1	1	2	10:00	16.8	8.03	27.1	7.35	7.29	8.7
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS14	Middle	8.1	2	1	10:00	16.9	8.11	27.3	7.3	7.34	8.6
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS14	Middle	8.1	2	2	10:00	17	8.12	27.3	7.27	7.4	8.9
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS14	Bottom	15.2	3	1	10:00	17.1	8.01	27.4	7.2	7.47	8.7
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	,			Bottom	15.2	3	2	10:00	17.2	8	27.4	7.17	7.55	8.5
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	-			Surface	1	1	1	09:10	16.7	8.04	26.9	7.32	6.72	7.9
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	IS15	Surface	1	1	2	09:10	16.7	8.05	27	7.29	6.79	7.5
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	_				5.6	2	1	09:10	16.7	8.1	27	7.23	7.01	8.1
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	,				5.6	2	2	09:10	16.8	8.11	27.1	7.2	6.95	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	_			Bottom	10.2	3	1	09:10	16.9	8.02	27.2	7.11	7.24	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	_			Bottom	10.2	3	2	09:10	17	8.01	27.3	7.09	7.3	8.7
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	1	08:45	16.6	7.83	26.9	7.44	6.87	7.8
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy			Surface	1	1	2	08:45	16.6	7.84	26.9	7.41	6.94	7.5
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	-			Middle		2	1	08:45						
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	SR8	Middle		2	2	08:45						
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	SR8	Bottom	4.4	3	1	08:45	16.7	7.28	27	7.32	7.11	8.2
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	SR8	Bottom	4.4	3	2	08:45	16.8	7.29	27.1	7.28	7.17	8.3
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	SR9	Surface	1	1	1	08:58	16.6	7.98	26.9	7.38	7.04	8.1
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy	Small Wave	SR9	Surface	1	1	2	08:58	16.7	7.99	27	7.42	7.09	8.2
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	Cloudy			Middle		2	1	08:58						
	HY/2012/08	2015-02-06	Mid-Flood	_			Middle		2	2	08:58						
	HY/2012/08	2015-02-06	Mid-Flood	•				4.2	3	1	08:58	16.7	8.01	27	7.21	7.18	8.4
	HY/2012/08	2015-02-06	Mid-Flood	_				4.2	3	2	08:58	16.8		27.1	7.18	7.25	8.6
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	_			Surface	1	1	1	08:19	16.6		26.9	7.51	6.78	7.6
	HY/2012/08	2015-02-06	Mid-Flood	•			Surface	1	1	2	08:19	16.6			7.48	6.85	7.9
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	,				5.9	2	1	08:19	16.6	+	27.1	7.39	6.93	8.1
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	_				5.9	2	2	08:19	16.7		27.2	7.33	7	8
TMCLKL	HY/2012/08	2015-02-06	Mid-Flood	_				10.8	3	1	08:19	16.9		27.3	7.02	7.08	8
	HY/2012/08	2015-02-06	Mid-Flood	-				10.8	3	2	08:19	17	7.95		7.07	7.15	8.3
	HY/2012/08	2015-02-06	Mid-Ebb	_			Surface	1	1	1	12:33	16.8		27	7.23	7.29	8.1
	HY/2012/08	2015-02-06	Mid-Ebb	,			Surface	1	1	2	12:33	16.9		27.1	7.25	7.31	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	_				10.4	2	[1	12:33	17.1		27.2	7.29	7.09	8
	HY/2012/08	2015-02-06	Mid-Ebb	_				10.4	2	2	12:33	17		27.3	7.31	7.11	8.3
	HY/2012/08	2015-02-06		_				19.8	3	1	12:33	17.2	8.13		7.08	7.45	8.7
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	_				19.8	3	2	12:33	17.3	8.15		7.1	7.47	8.6
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	•			Surface	1	1	[1	+	16.9	7.98		7.2	7.12	8
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	-			Surface	1	1	2	15:17	17	8	27.1	7.22	7.14	8.3
TMCLKL	HY/2012/08	2015-02-06		_				5.5	2	[1		17.1	_	27.2	7.11	7.3	8.7
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	-				5.5	2	2	15:17	17.2		27.3	7.13	7.32	8.5
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,				9.9	3	1	15:17	17.3		27.4	6.9	7.64	8.8
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	_				9.9	3	2	15:17	17.2		27.5	6.92	7.62	8.6
	HY/2012/08	2015-02-06	Mid-Ebb	,			Surface	1	1	1	13:13	16.9	+	27	7.32	7.19	8
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	_			Surface	1	1	2	13:13	17		27.1	7.34	7.21	8.2
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,				7.1	2	[1	13:13	17.2		27.2	7.36	7.26	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	_			Middle	7.1	2	2	13:13	17.1		27.3	7.38	7.28	8.3
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,				13.2	3	[1	13:13	17.2	_	27.4	7.21	7.09	7.8
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,				13.2	3	2	13:13	17.3		27.5	7.19	7.11	7.9
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Surface	1	1	1	13:33	17		27.1	7.25	7.19	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	Cloudy	Small Wave	JIS13	Surface	<u> 1</u>	<u> </u> 1	[2	13:33	[16.9	8.16	27.2	7.27	7.17	8.5

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.3	2	1	13:33	17.1	7.99	27.3	7.33	7.3	8.7
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.3	2	2	13:33	17.2	8.01	27.4	7.35	7.28	8.8
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom	9.6	3	1	13:33	17.4	8.26	27.5	7.15	7.12	8.2
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom	9.6	3	2	13:33	17.3	8.28	27.4	7.17	7.15	8.3
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	Cloudy	Small Wave	IS14	Surface	1	1	1	12:53	17	8.08	27.2	7.19	7.36	8.1
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	Cloudy	Small Wave	IS14	Surface	1	1	2	12:53	16.9	8.06	27.3	7.21	7.38	8.3
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	Cloudy	Small Wave	IS14	Middle	8	2	1	12:53	17.1	8.18	27.4	7.26	7.43	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	Cloudy			Middle	8	2	2	12:53	17.2	8.2	27.5	7.28	7.46	8.7
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Bottom	15	3	1	12:53	17.3	7.99	27.5	7.16	7.49	8.6
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Bottom	15	3	2	12:53	17.4	8.01	27.4	7.14	7.51	8.9
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Surface	1	1	1	13:53	16.9	8.09	27	7.12	6.89	7.8
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Surface	1	1	2	13:53	16.8	8.11	27.1	7.14	6.91	7.5
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,				5.4	2	1	13:53	17	8.19	27.2	7.19	7.09	8.1
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Middle	5.4	2	2	13:53	17.1	8.17	27.3	7.21	7.11	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,				9.8	3	1	13:53	17.2	7.95	27.4	7.04	7.34	8.6
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,				9.8	3	2	13:53	17.3	7.96	27.5	7.05	7.36	8.7
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Surface	1	1	1	14:33	16.8	7.89	27	7.36	7.09	8
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Surface	1	1	2	14:33	16.9	7.91	27.1	7.38	7.11	8
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Middle		2	1	14:33	1	<u> </u>				
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Middle		2	2	14:33	1	<u> </u>				
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Bottom	4	3	1	14:33	17	7.12	27.2	7.23	7.21	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Bottom	4	3	2	14:33	17.1	7.14	27.3	7.21	7.23	8.6
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Surface	1	1	1	14:13	17	8.02	27.1	7.25	7.2	8.1
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Surface	1	1	2	14:13	17.1	8.04	27.2	7.27	7.18	8.4
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,	Small Wave		Middle		2	1	14:13						
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Middle		2	2	14:13						
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,	Small Wave	SR9	Bottom	3.8	3	1	14:13	17.2	8.12	27.3	7.09	7.36	8.6
				,			Bottom	3.8	3	2	14:13		+	27.4	7.11	7.34	8.7
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,			Surface	1	1	1	14:53	17	+	27.2	7.3	7	8.1
	HY/2012/08	2015-02-06	Mid-Ebb	,			Surface	1	1	2	14:53	17.1		27.3	7.28	7.02	8
	HY/2012/08	2015-02-06	Mid-Ebb	-				5.8	2	1	14:53	17.2	-	27.4	7.13	7.12	8
	HY/2012/08	2015-02-06	Mid-Ebb					5.8	2	2	14:53	17.1		27.5	7.15	7.14	7.8
TMCLKL	HY/2012/08	2015-02-06	Mid-Ebb	,				10.6	3	1	14:53	17.3		27.5	6.98	7.19	8.1
	HY/2012/08	2015-02-06	Mid-Ebb	,				10.6	3	2	14:53	17.4		27.6	7	7.21	8.2
	HY/2012/08	2015-02-09	Mid-Flood				Surface	1	1	1	11:02	16.9		27	7.41	7.08	7.9
	HY/2012/08	2015-02-09	Mid-Flood				Surface	1	1	2	11:02	16.9		27.1	7.37	7.15	8.2
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood					10.6	2	1	11:02	16.9		27.2	7.28	7.31	8.1
	HY/2012/08	2015-02-09	Mid-Flood					10.6	2	2	11:02	17		27.2	7.25	7.37	8
	HY/2012/08	2015-02-09	Mid-Flood					20.2	3	1	11:02	17.1		27.4	7.08	7.56	8.9
	HY/2012/08	2015-02-09	Mid-Flood					20.2	3	2	11:02	17.2		27.5	7.05	7.48	8.7
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Surface	1	1	1	08:16	16.8	+	27	7.46	6.84	7.5
	HY/2012/08	2015-02-09	Mid-Flood				Surface	1	1	2	08:16	16.8	7.99		7.43	6.91	7.7
	HY/2012/08	2015-02-09	Mid-Flood					5.7	2	[1	+	16.8	8.02		7.39	7.04	8.1
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood					5.7	2	2	08:16	16.9	+	27.1	7.35	7.11	8.3
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood					10.4	3	1	+	17.1		27.3	7.26	7.32	8.4
	HY/2012/08	2015-02-09	Mid-Flood					10.4	3	2	08:16	17.1		27.2	7.22	7.27	8.8
	HY/2012/08	2015-02-09	Mid-Flood				Surface	1	1	[1	10:18	16.8		26.9	7.41	7.02	8.4
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Surface	1	<u> 1</u>	2	10:18	16.8		26.9	7.38	7.1	8.1
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood					7.2	2	1	10:18	16.9		27	7.31	7.28	8.2
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Middle	7.2	2	2	10:18	16.9		27.1	7.28	7.34	8.6
	HY/2012/08	2015-02-09	Mid-Flood					13.4	3	1	10:18	17		27.2	7.09	7.13	8.1
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood					13.4	3	2	10:18	17.1		27.2	7.11	7.2	8
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Surface	1	<u> 1</u>	[1	09:58	16.8	+	27	7.35	7.06	7.8
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Surface	1	1	2	09:58	16.8	+	27.1	7.32	7.12	8.1
	HY/2012/08	2015-02-09	Mid-Flood					5.6	2	1	09:58	16.9	+	27.1	7.27	7.23	8.4
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood					5.6	2	2	09:58	16.9	_	27.1	7.24	7.31	8.7
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood					10.2	3	1	09:58	17	8.1	27.3	7.18	7.16	8
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	IS13	Bottom	10.2	3	2	09:58	17	8.11	27.3	7.15	7.24	8.3

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	IS14	Surface	1	1	1	10:40	16.8	7.98	27	7.46	7.14	8
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	IS14	Surface	1	1	2	10:40	16.9	7.99	27	7.43	7.19	8.2
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	IS14	Middle	8	2	1	10:40	16.9	8.07	27.1	7.38	7.29	8.4
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	IS14	Middle	8	2	2	10:40	17	8.09	27.2	7.35	7.22	8.7
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	IS14	Bottom	15	3	1	10:40	17.1	8.04	27.3	7.26	7.38	9
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	IS14	Bottom	15	3	2	10:40	17.1	8.03	27.4	7.22	7.43	8.8
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	IS15	Surface	1	1	1	09:38	16.8	8.01	27	7.41	6.88	7.9
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	IS15	Surface	1	1	2	09:38	16.9	8.02	26.9	7.38	6.95	7.7
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	IS15	Middle	5.7	2	1	09:38	16.8	8.03	27	7.32	7.04	8
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	IS15	Middle	5.7	2	2	09:38	16.9	8.06	27.1	7.29	7.09	8.3
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Bottom	10.4	3	1	09:38	17	8.08	27.1	7.16	7.27	8.4
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Bottom	10.4	3	2	09:38	17	8.09	27.2	7.13	7.21	8.5
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Surface	1	1	1	09:09	16.8	7.89	26.9	7.54	6.79	7.5
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Surface	1	1	2	09:09	16.7	7.9	27	7.51	6.85	7.6
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Middle		2	1	09:09						
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood			SR8	Middle		2	2	09:09						
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood					4.6	3	1	09:09	16.8	7.93	27.1	7.46	7.06	8.1
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Bottom	4.6	3	2	09:09	16.8	7.89	27	7.4	7	7.9
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Surface	1	1	1	09:23	16.8	7.91	27	7.48	6.93	7.9
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Surface	1	1	2	09:23	16.8	7.93	27	7.44	7	8
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine			Middle		2	1	09:23						
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood			SR9	Middle		2	2	09:23						
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave		Bottom	4.2	3	1	09:23	16.8	7.99	27.1	7.37	7.09	8.2
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood		Small Wave		Bottom	4.2	3	2	09:23	16.8	8.01	27.1	7.33	7.15	7.9
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave		Surface	1	1	1	08:42	16.7	8.01	27	7.63	6.67	7.4
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	SR10A	Surface	1	1	2	08:42	16.8	8.03	27.1	7.58	6.75	7.7
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	SR10A	Middle	5.8	2	1	08:42	16.8	8.07	27.1	7.47	6.88	8.2
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood	Fine	Small Wave	SR10A	Middle	5.8	2	2	08:42	16.8	8.08	27.1	7.44	6.95	8.3
TMCLKL	HY/2012/08	2015-02-09	Mid-Flood				Bottom	10.6	3	1	08:42	16.9	8	27.2	7.28	7.17	8.4
	HY/2012/08	2015-02-09	Mid-Flood				Bottom	10.6	3	2	08:42	17		27.2	7.31	7.24	8.3
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb			CS4	Surface	1	1	1	14:15	16.6	-	27.3	7.29	6.96	7.7
-	HY/2012/08	2015-02-09	Mid-Ebb				Surface	1	1	2	14:15	16.6	7.95		7.31	6.97	7.5
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb					10.25	2	1	14:15	12	8.02	27.4	7.18	7.26	8.7
-	HY/2012/08	2015-02-09	Mid-Ebb					10.25	2	2	14:15	12.2	8	27.6	7.19	7.24	8.6
	HY/2012/08	2015-02-09	Mid-Ebb					19.5	3	1	14:15	16.8		27.4	7.06	7.46	8.8
-	HY/2012/08	2015-02-09	Mid-Ebb					19.5	3	2	14:15	17		27.4	7.02	7.47	9
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb			CS6	Surface	1	1	1	16:44	16.4		27.1	7.23	6.97	7.2
	HY/2012/08	2015-02-09	Mid-Ebb				Surface	1	1	2	16:44	16.6	7.98	27.2	7.26	6.96	7.4
	HY/2012/08	2015-02-09	Mid-Ebb					5.4	2	1	16:44	16.7	8	27.2	7.3	7.12	8.1
	HY/2012/08	2015-02-09	Mid-Ebb					5.4	2	2	16:44	17		27.4	7.28	7.14	8.4
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb					9.8	3	1	16:44	16.9		27.3	7.13	7.37	8.7
	HY/2012/08	2015-02-09	Mid-Ebb					9.8	3	2	16:44	17		27.1	7.14	7.41	9
	HY/2012/08	2015-02-09	Mid-Ebb				Surface	1	1	1	14:51	16.2		26.7	7.35	7.13	8
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb			IS12	Surface	1	1	2	14:51	16.2	7.99	26.9	7.33	7.15	8
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb				Middle	7	2	[1	14:51	16.4	8	27.1	7.26	7.33	8.7
	HY/2012/08	2015-02-09	Mid-Ebb				Middle	7	2	2	14:51	16.4	7.98		7.24	7.35	8.8
	HY/2012/08	2015-02-09	Mid-Ebb					13	3	1	14:51	16.8	_	27	7.01	7.18	8.1
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb					13	3	2	14:51	16.9		27.2	7	7.2	8.3
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb			IS13	Surface	1	1	1	15:09	16.8		27.4	7.27	7.14	8
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb			IS13	Surface	1	[1	2	15:09	17.2	8.13		7.25	7.17	8.2
	HY/2012/08	2015-02-09	Mid-Ebb					5.2	2	[1	15:09	16.8		27.3	7.2	7.29	8.4
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb			IS13		5.2	2	2	15:09	16.9	8.1	27.6	7.22	7.31	8.7
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb					9.4	3	1	15:09	16.7		27.8	7.1	7.19	8.1
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb					9.4	3	2	15:09	16.8	_	27.9	7.12	7.22	8.3
	HY/2012/08	2015-02-09	Mid-Ebb				Surface	1	1	1	14:33	16.4		27.5	7.23	7.19	8.2
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb				Surface	1	1	2	14:33	16.4		27.7	7.25	7.23	8.4
	HY/2012/08	2015-02-09	Mid-Ebb					7.6	2	1	14:33	16.2		27.8	7.3	7.34	8.4
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb	Fine	Small Wave	IS14	Middle	7.6	2	2	14:33	16.4	8.04	27.8	7.3	7.36	8.7

Project	Works	Date	Tide	l Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb	Fine	Small Wave	IS14	Bottom	14.2	3	1	14:33	16.7	8.04	27.9	7.2	7.47	8.6
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb	Fine	Small Wave		Bottom	14.2	3	2	14:33	16.6	8.02	27.7	7.22	7.45	8.8
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb	Fine	Small Wave	IS15	Surface	1	1	1	15:27	17	8.04	27.5	7.27	6.92	7.9
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb	Fine	Small Wave	IS15	Surface	1	1	2	15:27	17.2	8.02	28	7.29	6.97	7.7
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb	Fine	Small Wave	IS15	Middle	5.5	2	1	15:27	17.2	8	27.7	7.25	7.12	8.2
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb	Fine	Small Wave	IS15	Middle	5.5	2	2	15:27	17.4	8.01	27.5	7.2	7.17	8.3
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb	Fine	Small Wave	IS15	Bottom	10	3	1	15:27	17	8.05	27.6	7.07	7.33	8.7
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb	Fine	Small Wave	IS15	Bottom	10	3	2	15:27	17.2	8.03	27.4	7.11	7.35	8.6
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb	Fine	Small Wave	SR8	Surface	1	1	1	16:03	16.8	7.92	27.4	7.41	6.92	7.5
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb	Fine	Small Wave	SR8	Surface	1	1	2	16:03	17	7.94	27.2	7.43	6.99	7.7
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Middle		2	1	16:03						
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Middle		2	2	16:03						
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Bottom	4	3	1	16:03	16.8	7.97	27.6	7.4	7.14	8.4
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Bottom	4	3	2	16:03	16.8	7.95	27.2	7.36	7.12	8.1
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Surface	1	1	1	15:45	17	7.88	27.6	7.32	6.98	7.7
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Surface	1	1	2	15:45	17	7.9	27.6	7.33	6.96	7.5
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Middle		2	1	15:45	1					
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Middle		2	2	15:45						
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Bottom	4	3	1	15:45	17	7.93	27.4	7.34	7.13	8.4
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Bottom	4	3	2	15:45	17	7.95	27.4	7.32	7.16	8.1
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Surface	1	1	1	16:21	16.4	8.07	27.2	7.21	6.92	7.9
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Surface	1	1	2	16:21	16.6	8.09	27	7.23	6.94	7.5
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave			5.5	2	1	16:21	16.5	8.07	27.4	7.3	6.94	8
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Middle	5.5	2	2	16:21	16.4	8.07	27.2	7.27	6.98	8.2
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Bottom	10	3	1	16:21	16.6	8.02	27.3	7.2	7.25	8.4
TMCLKL	HY/2012/08	2015-02-09	Mid-Ebb		Small Wave		Bottom	10	3	2	16:21	16.4	8.04	27.2	7.22	7.23	8.7
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood		Small Wave		Surface	1	1	1	11:40	16.5	8.02	26.9	7.25	7.2	8
	HY/2012/08		Mid-Flood				Surface		1	2	11:40		8	26.7	7.27	7.19	8.4
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood				Middle	10.7	2	1	11:40	16.7		26.5	7.22	7.29	8.3
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					10.7	2	2	11:40	16.6		26.7	7.24	7.31	8.5
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					20.4	3	1	11:40	17	_	27	6.94	7.24	8.4
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					20.4	3	2	11:40	16.8	8.1	26.8	6.97	7.3	8.3
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood				Surface	1	1	1	09:21	16.8	_	27.2	7.12	7.77	8.8
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood				Surface	1	1	2	09:21	16.8		27.3	7.14	7.78	9
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					5.8	2	2	09:21	16.4		27	6.99	7.41	8.7
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					5.8	2	4	09:21	16.6	+	27.1	6.97	7.37	8.5
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					10.6	3	2	09:21	16.5		27.3	6.74	7.89	9.2
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					10.6	3	4	09:21	16.3		27.5	6.74	7.92	9.4
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood				Surface	1	1	1	11:06	16.5		26.2	7.32	7.1	8.4
TMCLKL TMCLKL	HY/2012/08	2015-02-11	Mid-Flood Mid-Flood				Surface Middle	7 2	2	1	11:06	16.8		26.4	7.36 7.33	7.14 7.03	8.2 7.8
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					7.3 7.3	2	2	11:06	16.8 16.6	_	26.4	7.35	7	7.7
	HY/2012/08	2015-02-11							2	1	11:06	16.6		26.6	7.35	7.25	
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-02-11	Mid-Flood Mid-Flood					13.6 13.6	2	2	11:06 11:06	16.9	+	27	7.22	7.29	8.4 8.6
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood				Surface	1	1	<u>-</u> 1	-	16.8		26.9 26.4	7.23	7.14	8.2
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood				Surface	1	1	2	10:50	17		26.2	7.24	7.14	8.3
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					5.8	2	1	10:50	16.9	2	26.9	7.31	7.03	7.9
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					5.8	2	2	10:50	17.1	8.02	26.7	7.32	7.02	7.8
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					10.6	3	1	10:50	16.9		26.5	7.14	7.02	8.4
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					10.6	3	2	10:50	17.1		26.6	7.14	7.22	8.5
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood				Surface	1	1	1	11:23	16.5	_	26.5	7.33	7.22	8.6
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood				Surface	1	1	2	11:23	16.6	7.92	26.7	7.35	7.2	8.9
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					8.2	2	1	11:23	17	_	26.5	7.22	7.17	8.4
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					8.2	2	2	11:23	17.1	7.92	26.9	7.25	7.14	8.2
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					15.4	3	1	11:23	17.1	ρ.σ	27	7.11	7.39	8.7
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood					15.4	3	2	11:23	17.1	7.98	27.1	7.13	7.41	8.9
TMCLKL	HY/2012/08	2015-02-11	Mid-Flood				Surface	1	1	1	10:31	17		26.5	7.13	7.26	8.2
		2015-02-11			Small Wave		Surface	1	1	2	10:31		7.65		7.24	7.24	8.5
TIVICLNL	111/2012/00	12010-02-11	IIVIIU-I IUUU	lı ıııc	Joinal Wave	1010	Journale	Ι'	<u> </u>	<u> </u>	10.01	111.1	[1.05	20.0	1.24	11.47	0.0

TMCLKL H	HY/2012/08			Weather	Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL H		2015-02-11	Mid-Flood	Fine	Small Wave	IS15	Middle	6	2	1	10:31	16.5	7.89	26.2	7.29	7.01	8
	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	IS15	Middle	6	2	2	10:31	16.6	7.9	26	7.31	7.05	8.1
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	IS15	Bottom	11	3	1	10:31	17	7.92	26.8	7.14	7.44	8.7
, ' '	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	IS15	Bottom	11	3	2	10:31	17.1	7.93	26.6	7.15	7.47	9
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	SR8	Surface	1	1	1	10:03	17	8	26.2	6.99	8.03	9.2
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	SR8	Surface	1	1	2	10:03	16.8	7.99	26	7.01	8.11	9.4
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	SR8	Middle		2	1	10:03						
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	SR8	Middle		2	2	10:03						
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	SR8	Bottom	4.8	3	1	10:03	16.5	8.05	27	6.85	7.81	8.9
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	SR8	Bottom	4.8	3	2	10:03	16.4	8.06	26.6	6.84	7.79	9
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine			Surface	1	1	1	10:18	16.6	7.94	26.7	7.14	7.26	8.2
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	SR9	Surface	1	1	2	10:18	16.8	7.96	26.8	7.14	7.26	8.2
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine			Middle		2	1	10:18						
	HY/2012/08	2015-02-11	Mid-Flood				Middle		2	2	10:18						
	HY/2012/08	2015-02-11	Mid-Flood					4.8	3	1	10:18	17	7.9	26.5	6.94	7.32	8.6
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood				Bottom	4.8	3	2	10:18	17.1		26.6	6.95	7.36	8.5
	HY/2012/08	2015-02-11	Mid-Flood		Small Wave		Surface	1	1	1	09:42	16.7		26.4	6.99	7.62	8.4
	HY/2012/08	2015-02-11	Mid-Flood		Small Wave		Surface	1	1	2	09:42	16.5		26.2	6.97	7.67	8.7
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave			5.9	2	1	09:42	16.9		26.5	6.93	7.22	8.1
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	SR10A	Middle	5.9	2	2	09:42	17		26.2	6.9	7.25	8.3
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	SR10A	Bottom	10.8	3	1	09:42	16.8	8.03	26.9	6.72	8.1	9.4
TMCLKL H	HY/2012/08	2015-02-11	Mid-Flood	Fine	Small Wave	SR10A	Bottom	10.8	3	2	09:42	16.9	8.05	26.6	6.7	8.06	9.3
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	CS4	Surface	1	1	1	15:57	17.1	8.04	27.1	7.18	7.31	8.1
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	CS4	Surface	1	1	2	15:57	17.1	8.06	27.1	7.15	7.38	8.4
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	CS4	Middle	10.4	2	1	15:57	17.2	8.1	27.2	7.1	7.14	8.2
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	CS4	Middle	10.4	2	2	15:57	17.3	8.11	27.3	7.07	7.2	8.4
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	CS4	Bottom	19.8	3	1	15:57	17.3	8.14	27.5	6.88	7.65	8.7
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	CS4	Bottom	19.8	3	2	15:57	17.4	8.15	27.5	6.92	7.7	8.5
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	CS6	Surface	1	1	1	18:13	17.1	7.97	26.8	7.04	7.93	9.2
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	CS6	Surface	1	1	2	18:13	17.2	7.99	26.8	6.98	7.86	8.8
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	CS6	Middle	5.5	2	1	18:13	17.2	7.99	26.9	6.85	7.58	8.6
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	CS6	Middle	5.5	2	2	18:13	17.2	8.01	27	6.81	7.54	8.5
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	CS6	Bottom	10	3	1	18:13	17.3	8.03	27.1	6.67	8.07	9
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	CS6	Bottom	10	3	2	18:13	17.3	8.04	27.2	6.63	8.15	9.1
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS12	Surface	1	1	1	18:30	17.1	7.98	27.1	7.28	7.24	8.4
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS12	Surface	1	1	2	18:30	17.1	7.99	27	7.25	7.33	8.4
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS12	Middle	7	2	1	18:30	17.1	8.04	27.2	7.21	7.1	8.1
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS12	Middle	7	2	2	18:30	17.2	8.05	27.3	7.19	7.03	8.3
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS12	Bottom	13	3	1	18:30	17.2	8.1	27.4	7.14	7.48	8.7
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS12	Bottom	13	3	2	18:30	17.3	8.08	27.4	7.12	7.55	8.6
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS13	Surface	1	1	1	16:48	17.1	7.99	27	7.12	7.23	8.4
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS13	Surface	1	1	2	16:48	17.2	8.01	27.1	7.09	7.19	8.2
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS13	Middle	5.5	2	1	16:48	17.2	8.02	27.1	7.16	7.03	8
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS13		5.5	2	2	16:48	17.2	8.04	27.2	7.18	7	8.1
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS13	Bottom	10	3	1	16:48	17.3	8.08	27.3	7.07	7.38	8.4
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS13	Bottom	10	3	2	16:48	17.3		27.3	7.04	7.46	8.7
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS14	Surface	1	1	1	16:14	17.1		27.1	7.23	7.46	8.8
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS14	Surface	1	1	2	16:14	17.2	7.95	27.2	7.2	7.4	8.6
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS14	Middle	7.9	2	1	16:14	17.2	7.99	27.3	7.17	7.28	8.1
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS14	Middle	7.9	2	2	16:14	17.2		27.3	7.15	7.31	8.3
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS14	Bottom	14.8	3	1	16:14	17.3		27.3	7.08	7.56	8.8
TMCLKL H	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	IS14	Bottom	14.8	3	2	16:14	17.3		27.4	7.05	7.61	8.7
	HY/2012/08	2015-02-11	Mid-Ebb			 	Surface	1	1	1	17:05	17.2		27	7.14	7.38	8.1
	HY/2012/08	2015-02-11	Mid-Ebb			 	Surface	1	1	2	17:05	17.2	7.89		7.11	7.44	8.3
	HY/2012/08	2015-02-11	Mid-Ebb					5.6	2	1	17:05	17.2		27.1	7.18	7.21	8.2
	HY/2012/08	2015-02-11	Mid-Ebb					5.6	2	2	17:05	17.2		27.1	7.21	7.17	8.2
			Mid-Ebb					10.2	3	1	17:05	17.3		27.2	7.03	7.6	8.8
TMCLKL H		2015-02-11			Small Wave		Bottom	+	3	2	17:05		8.01		7.01	7.54	8.6

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR8	Surface	1	1	1	17:36	17.2	8.04	26.9	6.94	7.63	8.6
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR8	Surface	1	1	2	17:36	17.1	8.05	27	6.91	7.55	8.4
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR8	Middle		2	1	17:36						
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR8	Middle		2	2	17:36						
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR8	Bottom	4.2	3	1	17:36	17.1	8.07	27	6.78	7.94	8.9
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR8	Bottom	4.2	3	2	17:36	17.1	8.08	27.1	6.82	8.02	9.2
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR9	Surface	1	1	1	17:23	17.2	8.01	27.1	7.07	7.4	8.7
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine Fine	Small Wave	SR9 SR9	Surface Middle	1	1	2	17:23	17.2	8.03	27.1	7.03	7.48	8.6
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-02-11	Mid-Ebb Mid-Ebb	Fine	Small Wave Small Wave	SR9	Middle	1	2	12	17:23 17:23		 		+	+	+
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR9	Bottom	4	3	1	17:23	17.2	7.97	27.1	6.85	7.56	8.4
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR9	Bottom	4	3	2	17:23	17.2	7.95	27.2	6.89	7.63	8.9
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR10A	Surface	1	1	1	17:53	17.1	8.01	26.8	6.87	7.75	8.8
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR10A	Surface	1	1	2	17:53	17.1	8.03	26.9	6.84	7.65	9
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR10A	Middle	5.6	2	1	17:53	17.1	8.05	26.9	6.8	7.43	8.4
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR10A	Middle	5.6	2	2	17:53	17.2	8.07	27	6.77	7.49	8.2
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR10A	Bottom	10.2	3	1	17:53	17.2	8.08	27.1	6.56	8.18	9.2
TMCLKL	HY/2012/08	2015-02-11	Mid-Ebb	Fine	Small Wave	SR10A	Bottom	10.2	3	2	17:53	17.2	8.09	27.2	6.51	8.11	9.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	CS4	Surface	1	1	1	13:49	17.3	7.94	27.2	7.27	7.49	8.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	CS4	Surface	1	1	2	13:49	17.2	7.97	27.2	7.28	7.51	8.5
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	CS4	Middle	10.8	2	1	13:49	17.4	7.98	27.3	7.07	7.76	8.6
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	CS4	Middle	10.8	2	2	13:49	17.3	7.99	27.3	7.04	7.79	8.9
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	CS4	Bottom	20.5	3	1	13:49	17.5	7.99	27.5	6.93	7.97	9.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	CS4	Bottom	20.5	3	2	13:49	17.4	8.01	27.4	6.98	8	9
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	CS6	Surface	1	1	1	10:58	17.2	7.99	27.1	7.34	7.57	8.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	CS6	Surface	1	1	2	10:58	17.3	7.98	27.2	7.36	7.58	8.3
TMCLKL	HY/2012/08 HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	CS6	Middle	5.9	2	1	10:58	17.3	8	27.2	7.02	7.69	8.9
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood Mid-Flood	Fine Fine	Small Wave Small Wave	CS6 CS6	Middle Bottom	5.9 10.8	2	1	10:58 10:58	17.4 17.5	7.98 8.01	27.3	7.03 6.98	7.7 7.95	9.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	CS6	Bottom	10.8	3	2	10:58	17.4	8.02		6.95	7.94	9.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS12	Surface	1	1	1	13:12	17.2		27.1	7.3	7.76	8.6
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	IS12	Surface	1	1	2	13:12	17.3	+	27.2	7.34	7.73	8.7
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS12	Middle	7.2	2	1	13:12	17.4	-	27.3	7.27	7.8	9
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS12	Middle	7.2	2	2	13:12	17.5		27.3	7.26	7.85	9.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS12	Bottom	13.3	3	1	13:12	17.5	8	27.4	7.04	8.04	9.1
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	IS12	Bottom	13.3	3	2	13:12		8.01	27.5	7.03	8.05	9.3
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	IS13	Surface	1	1	1	12:49	17.3	8	27.2	7.35	7.23	8
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	IS13	Surface	1	1	2	12:49	17.2	7.99	27.2	7.31	7.24	8.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	IS13	Middle	5.7	2	1	12:49	17.4	8.01	27.3	7.26	7.57	8.7
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	IS13	Middle	5.7	2	2	12:49	17.4	8.02	27.3	7.29	7.59	8.9
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS13	Bottom	10.4	3	1	12:49	17.4		27.4	6.94	8.07	9.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS13	Bottom	10.4	3	2	12:49	17.5	7.98		6.95	8.05	9.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS14	Surface	1	1	1	13:25	17.3		27.1	7.37	7.52	8.6
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS14	Surface	1	1	2	13:25	17.3	7.99		7.33	7.56	8.9
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS14	Middle	8.3	2	1	13:25	17.3	8	27.2	7.08	7.84	9
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS14	Middle	8.3	2	2	13:25	17.3	-	27.3	7.1	7.8	8.8
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS14	Bottom	15.6	3	12	13:25	17.4		27.4	6.94	8.09 8.05	9.4
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-02-13 2015-02-13	Mid-Flood Mid-Flood	Fine Fine	Small Wave Small Wave	IS14 IS15	Bottom Surface	15.6	1	1	13:25 12:26	17.4 17.2	+	27.4 27.1	6.9 7.29	7.42	9.3 8.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	IS15	Surface	1	1	12	12:26	17.3	-	27.2	7.29	7.47	8.5
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS15	Middle	6.1	2	1	12:26	17.4	-	27.3	7.18	7.92	9.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	IS15	Middle	6.1	2	2	12:26	17.4	_	27.3	7.17	7.95	9.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		IS15	Bottom	11.2	3	1 <u>-</u>	12:26	17.5	_	27.4	7.06	8.1	9.5
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	IS15	Bottom	11.2	3	2	12:26	17.5	_	27.4	7.09	8.12	9.7
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		SR8	Surface	1	1	1	11:42	17.2		27.2	7.32	8.01	9.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	SR8	Surface	1	1	2	11:42	17.3	7.95		7.34	8.02	9.3
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine		SR8	Middle		2	1	11:42						
	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	SR8	Middle		2	2	11:42						

Project	Works	Date	Tide	lWeather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood		Small Wave	SR8	Bottom	4.5	3	1	11:42	17.4	7.99	27.4	7.02	7.97	8.8
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood		Small Wave	SR8	Bottom	4.5	3	2	11:42	17.4	8.01	27.4	7.05	7.94	8.6
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood		Small Wave		Surface	1	1	1	12:03	17.2	7.95	27.1	7.22	7.74	8.7
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood		Small Wave		Surface	1	1	2	12:03	17.3	7.97	27.2	7.24	7.78	8.6
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood		Small Wave	SR9	Middle		2	1	12:03				1		
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	SR9	Middle		2	2	12:03						
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	SR9	Bottom	4.5	3	1	12:03	17.4	7.99	27.3	7.05	8.04	9.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	SR9	Bottom	4.5	3	2	12:03	17.4	7.98	27.4	7.07	8.06	9.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave		Surface	1	1	1	11:21	17.2	8.01	27.2	7.2	7.76	8.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	SR10A	Surface	1	1	2	11:21	17.2	8.02	27.2	7.23	7.74	8.5
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	SR10A	Middle	5.8	2	1	11:21	17.3	7.99	27.3	7.1	7.92	9.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	SR10A	Middle	5.8	2	2	11:21	17.3	7.95	27.3	7.15	7.97	9.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	SR10A	Bottom	10.6	3	1	11:21	17.4	8.01	27.4	6.87	8.04	9.5
TMCLKL	HY/2012/08	2015-02-13	Mid-Flood	Fine	Small Wave	SR10A	Bottom	10.6	3	2	11:21	17.5	7.99	27.4	6.84	8.08	9.6
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	CS4	Surface	1	1	1	18:39	17.2	7.96	27	7.14	7.67	8.5
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	CS4	Surface	1	1	2	18:39	17	7.97	27.1	7.17	7.62	8.3
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	CS4	Middle	10.7	2	1	18:39	17.2	7.97	27.1	6.95	7.87	8.8
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	CS4	Middle	10.7	2	2	18:39	17.2	7.98	27.2	6.9	7.92	9.1
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	CS4	Bottom	20.3	3	1	18:39	17.4	8	27.4	6.81	8.08	9
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	CS4	Bottom	20.3	3	2	18:39	17.5	8	27.3	6.85	8.14	9.3
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	CS6	Surface	1	1	1	20:41	17	7.98	27.2	7.21	7.69	8.3
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	CS6	Surface	1	1	2	20:41	17.1	7.98	27.1	7.15	7.72	8.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	CS6	Middle	5.8	2	1	20:41	17.2	7.99	27.1	6.9	7.8	8.8
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	CS6	Middle	5.8	2	2	20:41	17.2	7.98	27.2	6.88	7.84	9.1
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	CS6	Bottom	10.6	3	1	20:41	17.4	8	27.4	6.83	8.1	9.3
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	CS6	Bottom	10.6	3	2	20:41	17.3	8.01	27.4	6.8	8.04	9
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS12	Surface	1	1	1	19:10	17	7.94	27	7.15	7.89	9
	HY/2012/08		Mid-Ebb	Fine	Small Wave	IS12	Surface	1	1	2	19:10	17.1	7.95	27.1	7.18	7.84	9
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS12	Middle	7.1	2	1	19:10	17.2	+	27.2	7.14	7.83	9.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS12	Middle	7.1	2	2	19:10	17.4	7.97	27.1	7.11	7.89	9.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS12	Bottom	13.1	3	1	19:10	17.4	-	27.5	6.93	8.16	9.3
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb					13.1	3	2	19:10	17.4	-	27.7	6.89	8.2	9.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS13	Surface	1	1	1	19:25	17.1	8.01	27	7.21	7.36	8.5
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS13	Surface	1	1	2	19:25	17	8	27.1	7.17	7.39	8.7
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS13	Middle	5.6	2	1	19:25	17.3	7.99	27.3	7.12	7.7	8.6
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS13		5.6	2	2	19:25	17.4	-	27.2	7.15	7.75	8.5
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS13	Bottom	10.2	3	1	19:25	17.3	7.96	27.3	6.8	8.19	9
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS13	Bottom	10.2	3	2	19:25	17.4		27.5	6.85	8.15	9.3
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS14	Surface	1	1	1	18:55	17.1		27.2	7.24	7.64	8.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS14	Surface	1	1	2	18:55	17.2	7.97	27	7.2	7.69	8.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	IS14	Middle	8.2	2	1	18:55	17.2	7.99	27.4	6.95	7.96	9.3
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb					8.2	2	2	18:55	17.3		27.3	6.98	7.92	9.5
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb					15.4	3	1	18:55	17.3	_	27.1	6.8	8.2	9.7
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb					15.4	3	2	18:55	17.4	7.98		6.76	8.15	9.8
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb			IS15	Surface	1	1	1	19:40	17.2	+	27	7.15	7.62	8.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb			IS15	Surface	1	1	2	19:40	17.1	-	27.2	7.18	7.59	8.5
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb				Middle	6	2	1	19:40	17.3	-	27	7.04	8.07	9.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb				Middle	6	2	2	19:40	17.2	_	27.1	7.01	8.1	9.1
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb			!	Bottom	11	3	1	19:40	17.4	8	27.5	6.94	8.22	9.7
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb				Bottom	11	3	2	19:40	17.4	8.02	27.3	6.91	8.26	9.6
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb			SR8	Surface	1	1	1	20:10	17.1		27	7.2	8.13	9.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb			SR8	Surface	1	1	2	20:10	17.1	7.96		7.24	8.16	9.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb			SR8	Middle		2	1	20:10		1		1		
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb			SR8	Middle		2	2	20:10		1				
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb			†		4.3	3	1		17.3	7.98	27.3	6.9	8.1	9
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb					4.3	3	2	20:10	17.4	_	27.4	6.94	8.08	9.3
TMCLKL	HY/2012/08		Mid-Ebb				Surface	1	1	1	19:55	17.1	_	27.2	7.1	7.88	8.6
		2015-02-13			Small Wave		Surface	1	1	2	19:55		7.96		7.13	7.91	9
	1,2012/00	1-0:002 10	1	ı ə	J 11440	10.10	231.400	1.	ı	<u>,-</u>	1.0.00	1	1	<u>,</u>	1	1	<u>,, </u>

Project	Works	Date	Tide	IWeather	Sea Condition	Stat	Level	Water	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb		Small Wave	SR9	Middle	Depth	2	1	19:55						
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb				Middle		2	2	19:55	†					+
TMCLKL	HY/2012/08	2015-02-13						4.3	3	1	19:55	17.4	7.98	27.2	6.93	8.16	9.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb					4.3	3	2	19:55	17.3	_	27.2	6.97	8.2	9.7
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb		Small Wave		Surface	1	1	1	20:26	17.1		27	7.04	7.9	9.4
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	SR10A	Surface	1	1	2	20:26	17		27.2	7.1	7.87	9.3
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	SR10A	Middle	5.7	2	1	20:26	17.2	7.98	27.4	6.98	8.06	9.2
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	SR10A	Middle	5.7	2	2	20:26	17.3	7.96	27.2	7	8.1	9.1
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine	Small Wave	SR10A	Bottom	10.4	3	1	20:26	17.3	8.02	27.2	6.72	8.23	9.7
TMCLKL	HY/2012/08	2015-02-13	Mid-Ebb	Fine			Bottom	10.4	3	2	20:26	17.4	8	27.3	6.7	8.2	9.6
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood				Surface	1	1	1	17:05	17		28.7	7.11	6.91	7.8
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,			Surface	1	1	2	17:05	17.1		28.9	7.12	6.92	7.6
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,			Middle	11.7	2	1	17:05	17.2		28.4	7.1	7.32	8.4
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,			Middle	11.7	2	2	17:05	17		28.7	7.08	7.36	8.3
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,			Bottom	22	3	1	17:05	17.2		28.6	7	7.47	8.6
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,			Bottom	22	3	2	17:05	17		28.9	7.02	7.49	8.5
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,	Small Wave		Surface	1	1	1	14:35	17.4	8.04	28.4	6.72	6.32	7.4
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,			Surface	1	1	2	14:35	17.2	8.02	28.2	6.76	6.33	7.3
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood		Small Wave		Middle	6.4	2	11	14:35	17.2	8.1	28.3	6.8	6.82	8
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,			Middle	6.4	2	2	14:35	17	8.11	28.1	6.78	6.84	8.2
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,			Bottom	11.8	3	1	14:35	17.2		28.2	6.6	7.06	8.3
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood				Bottom	11.8	3	2	14:35	17.2		28.4	6.64	7.08	8.4
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood				Surface	1	1	1	16:25	17.2		28.6	7.19	7.06	7.8
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,			Surface	7.4	1	2	16:25	17		28.8	7.18	7.04	8.1
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,			Middle	7.4	2	1	16:25	17.1	_	28.7	7.64	7.11	8
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,			Middle	7.4		2	16:25	17.2	+	28.5	7.67	7.14	8.1
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,				13.8	3	1	16:25	17.1	8.1	28.6	6.73	7.2	8.4
	HY/2012/08 HY/2012/08	2015-02-16 2015-02-16					Bottom Surface	13.8	3	1	16:25 16:07	17 17.2	8.12	28.7	6.76 6.84	7.22 6.94	8.6 7.8
TMCLKL TMCLKL	HY/2012/08	2015-02-16	Mid-Flood Mid-Flood				Surface	1	1	2	16:07	17.2	8.12		6.9	6.96	7.6
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood				Middle	6	2	1	16:07	16.9		28.9	6.91	7	8
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	-			Middle	6	2	2	16:07	16.8		29	6.92	7.02	8.2
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood				Bottom	11	3	1	16:07	17	8.15		6.9	7.24	8.4
	HY/2012/08	2015-02-16	Mid-Flood				Bottom	11	3	2	16:07	16.9	8.13		6.86	7.26	8.1
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	•			Surface	1	1	1	16:43	17	1	28.6	6.98	6.94	7.9
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,			Surface	1	1	2	16:43	16.9	8.12		6.96	6.92	8.1
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood				Middle	8	2	1	16:43	17.2	_	28.6	6.84	7.06	8.4
	HY/2012/08	2015-02-16	Mid-Flood				Middle	8	2	2	16:43	17.3	8.16		6.8	7.09	8.3
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood					15	3	1	16:43	17.3		28.9	6.91	7.46	8.7
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,		+		15	3	2	16:43	17.1		28.7	6.88	7.44	8.3
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood				Surface	1	1	1	15:50	17.2	_	28.2	7	6.9	7.8
	HY/2012/08	2015-02-16	Mid-Flood	,			Surface	1	1	2	15:50	17.1		28.4	6.96	6.89	7.6
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	_				5.9	2	1	15:50	17.4		28.5	6.9	7.29	8.4
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,				5.9	2	2	15:50	17.4	8.15		6.86	7.31	8.6
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,				10.8	3	1	15:50	17.2	8.13		6.78	7.12	8.4
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	Cloudy	Small Wave	IS15	Bottom	10.8	3	2	15:50	17.4	8.14		6.8	7.14	8.2
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	1	15:24	17.4		28.4	6.76	6.31	7.4
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	2	15:24	17.6	8.23	28.2	6.78	6.34	7.3
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	Cloudy	Small Wave	SR8	Middle		2	1	15:24						
	HY/2012/08	2015-02-16	Mid-Flood	_			Middle		2	2	15:24						
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,				4.8	3	1	15:24	17.3		28.2	6.61	6.94	8.1
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	_				4.8	3	2	15:24	17.4		28.3	6.64	6.95	8.3
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	_			Surface	1	1	1	15:37	17.2		27.9	7.04	6.92	7.6
	HY/2012/08	2015-02-16	Mid-Flood	_			Surface	1	1	2	15:37	17	8.21	28.2	7	6.94	7.9
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood				Middle		2	1	15:37	1					
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	_			Middle		2	2	15:37	1					
TMCLKL	HY/2012/08		Mid-Flood	•				4.6	3	[1		17.2		28.4	6.8	7	8.2
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	Cloudy	Small Wave	SR9	Bottom	4.6	3	[2	15:37	17.4	8.23	28.6	6.76	6.98	7.8

Project	Works	Date	Tide	l Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	1	15:00	17.5	8.16	28.4	6.95	6.72	7.6
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	2	15:00	17.4	8.18	28.4	7	6.69	7.8
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	Cloudy	Small Wave	SR10A	Middle	7.7	2	1	15:00	17.2	8.12	28.3	6.86	7.21	8.4
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	Cloudy	Small Wave	SR10A	Middle	7.7	2	2	15:00	17.3	8.14	28.4	6.88	7.22	8.3
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	,	Small Wave		Bottom	12.4	3	1	15:00	17.5	-	28.2	6.8	7.06	8
TMCLKL	HY/2012/08	2015-02-16	Mid-Flood	_	Small Wave		Bottom	12.4	3	2	15:00	17.4	8.14	28.3	6.81	7.07	8.2
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_	Small Wave		Surface	1	1	1	09:27	17.4	8.22	29.9	7.08	7.02	7.8
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_	Small Wave		Surface	1	1	2	09:27	17.3	8.23	29.8	7.05	7.06	8
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_	Small Wave		Middle	11.4	2	1	09:27	17.3	8.23	30	6.93	7.46	8.4
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_	Small Wave	CS4	Middle	11.4	2	2	09:27	17.3	8.23	29.9	6.96	7.4	8.6
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_			Bottom	21.8	3	1	09:27	17.3	8.23	30.1	6.88	7.61	8.8
TMCLKL	HY/2012/08	2015-02-16		_	Small Wave		Bottom	21.8	3	2	09:27	17.2	8.23	30.2	6.85	7.57	8.5
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_	Small Wave		Surface	1	1	1	12:05	17.4	8.16	29.7	6.87	6.43	7.4
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	,	Small Wave		Surface	1	1	2	12:05	17.4	-	29.7	6.84	6.48	7.1
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_	Small Wave			6.4	2	1	12:05	17.3		29.8	6.68	6.97	7.8
TMCLKL	HY/2012/08	2015-02-16		_	Small Wave	CS6	Middle	6.4	2	2	12:05	17.2	8.17	29.8	6.64	6.91	7.6
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb		Small Wave		Bottom	11.8	3	1	12:05	17.3	8.17	29.9	6.54	7.21	8.2
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	,	Small Wave		Bottom	11.8	3	2	12:05	17.3	8.16	29.9	6.5	7.17	8.3
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_			Surface	1	1	1	10:05	17.4	8.2	29.9	7.02	7.15	8
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_	Small Wave		Surface	1	1	2	10:05	17.4	8.21	29.8	7.05	7.19	8
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_	Small Wave			6.9	2	1	10:05	17.3	8.21	30.1	6.71	7.27	8.4
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_		IS12	Middle	6.9	2	2	10:05	17.3	8.2	30	6.75	7.2	8.1
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_			Bottom	12.8	3	1	10:05	17.3	8.21	30.2	6.62	7.34	8.4
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_	Small Wave		Bottom	12.8	3	2	10:05	17.2	8.21	30.2	6.65	7.3	8.2
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_	Small Wave		Surface	1	1	1	10:22	17.4	8.19	29.9	6.89	7.08	7.7
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	,	Small Wave		Surface	1	1	2	10:22	17.4	8.18	29.9	6.85	7.04	7.9
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_	Small Wave	IS13	Middle	5.6	2	1	10:22	17.3	8.2	30	6.81	7.17	7.9
	HY/2012/08			_				5.6	2	2		17.3	8.2	30	6.85	7.14	8
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	_				10.2	3	1	10:22	17.3	8.2	30.1	6.75	7.39	8.4
TMCLKL	HY/2012/08	2015-02-16		,				10.2	3	2	10:22	17.2	-	30.1	6.71	7.35	8.3
TMCLKL	HY/2012/08	2015-02-16		-		IS14	Surface	1	1 -	1	09:50	17.4	•	29.9	6.97	7.09	7.9
TMCLKL	HY/2012/08	2015-02-16		-		IS14	Surface	1	1	2	09:50	17.3	•	29.9	6.95	7.06	7.8
TMCLKL	HY/2012/08	2015-02-16		_				7.4	2	1	09:50	17.3		30	6.8	7.15	8.1
TMCLKL	HY/2012/08	2015-02-16		-		IS14		7.4	2	2	09:50	17.3		30.1	6.77	7.1	8.3
TMCLKL	HY/2012/08	2015-02-16		_				13.8	3	1	09:50	17.2		30.1	6.74	7.5	8.6
TMCLKL	HY/2012/08	2015-02-16		-				13.8	3	2	09:50	17.2		30.2	6.77	7.54	8.8
TMCLKL	HY/2012/08	2015-02-16		_		IS15	Surface	1	1	1	10:38	17.4		29.8	6.97	6.97	7.9
TMCLKL	HY/2012/08	2015-02-16		-		IS15	Surface	1	1	2	10:38	17.3	8.19		6.95	6.93	8
TMCLKL	HY/2012/08	2015-02-16		_				5.6	2	1	10:38	17.3		30	6.74	7.43	8.4
TMCLKL	HY/2012/08	2015-02-16		,				5.6	2	1	10:38	17.2	_	30.1	6.7	7.46	8.6
TMCLKL	HY/2012/08	2015-02-16		_				10.2	2	2	10:38	17.2		30.1	6.7 6.74	7.27 7.21	8.4
TMCLKL	HY/2012/08	2015-02-16		,			•	10.2	1	1	10:38	17.2	_	30.1	6.74		8.7 7.4
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-02-16 2015-02-16		_		SR8 SR8	Surface Surface	1	11	2	11:10	17.3 17.3	_	29.7	6.74	6.58 6.52	7.4
TMCLKL	HY/2012/08 HY/2012/08	2015-02-16		,			Middle		2	1	11:10	11.3	8.19	29.1	0.7	0.32	1.3
TMCLKL	HY/2012/08	2015-02-16		•		SR8	Middle	-	2	2	11:10	+			+	 	+
TMCLKL	HY/2012/08	2015-02-16		•		i .		4.2	2	1	11:10	17.2	Q 10	20.0	6.6	7.09	Ω
TMCLKL	HY/2012/08 HY/2012/08	2015-02-16		•		SR8		4.2	3	2	11:10	17.2	8.19		6.64	7.09	8.3
TMCLKL	HY/2012/08	2015-02-16		•		SR9	Surface	1	1	1	10:55	17.4	_	29.9	6.92	7.02	ο.υ
TMCLKL	HY/2012/08	2015-02-16		•		SR9	Surface	1		2	10:55	17.4	8.19	29.8	6.95	7.06	8.1
TMCLKL	HY/2012/08	2015-02-16		_			Middle		2	1	10:55	17.4	0.19	23.0	0.30	1.00	0.1
TMCLKL	HY/2012/08	2015-02-16		_		SR9	Middle	-	2	2	10:55	+	-	+	+	+	+
	HY/2012/08			,		 		2 0	2	1	10:55	17.3	8.19	30	6.67	7.14	8.2
TMCLKL	HY/2012/08 HY/2012/08	2015-02-16		•		 	+	3.8	2	2			8.19				
TMCLKL		2015-02-16		,			+	3.8	1	1	10:55	17.3	_	+	6.64	7.1	8.4
TMCLKL	HY/2012/08	2015-02-16		,			Surface	1	1	2	11:30	17.3	-	29.8	6.9	6.6	7.8
TMCLKL	HY/2012/08	2015-02-16		_			Surface	6.2	12	1	11:30	17.3		29.8	6.87	6.64	7.6
TMCLKL	HY/2012/08	2015-02-16		,				6.2	2	2	11:30	17.2		29.9	6.72	7.27	8.4
TIVICLAL	HY/2012/08	2015-02-16	[เกเต-⊏กก	Cloudy	Small Wave	JOKTUA	Imiaaie	J0.Z	2	<u> </u>	11:30	11.2	8.18	∠ 3.3	6.68	7.3	8.1

Project	Works	Date	Tide	l Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	Cloudy	Small Wave	SR10A	Bottom	12.4	3	1	11:30	17.2	8.18	30	6.69	7.15	8
TMCLKL	HY/2012/08	2015-02-16	Mid-Ebb	Cloudy	Small Wave	SR10A	Bottom	12.4	3	2	11:30	17.2	8.18	30	6.65	7.11	8.3
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	Cloudy	Small Wave		Surface	1	1	1	18:42	17.3	8.28	29.9	7.14	6.93	7.8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	Cloudy	Small Wave	CS4	Surface	1	1	2	18:42	17.3	8.29	30	7.11	6.97	8.1
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_	Small Wave		Middle	11.6	2	1	18:42	17.4	8.29	30.1	6.99	7.37	8.4
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_		CS4	Middle	11.6	2	2	18:42	17.3	8.3	30	7.02	7.31	8.1
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_			Bottom	22.2	3	1	18:42	17.4	8.31	30.2	6.94	7.52	8.6
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_	Small Wave		Bottom	22.2	3	2	18:42	17.5	8.3	30.3	6.91	7.48	8.9
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_	Small Wave		Surface	1	1	1	16:26	17.4	8.21	29.6	6.93	6.34	7.2
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_	Small Wave		Surface	1	1	2	16:26	17.3	8.2	29.7	6.9	6.39	7.6
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_	Small Wave			6.2	2	1	16:26	17.4	8.22	29.7	6.74	6.88	7.8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,	Small Wave	CS6	Middle	6.2	2	2	16:26	17.5	8.23	29.8	6.7	6.92	7.5
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_	Small Wave		Bottom	11.4	3	1	16:26	17.5	8.24	29.9	6.6	7.12	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_	Small Wave		Bottom	11.4	3	2	16:26	17.4	8.23	30	6.56	7.08	8.3
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_			Surface	1	1	1	18:08	17.4	8.26	29.8	7.08	7.06	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,			Surface	1	1	2	18:08	17.3	8.27	29.9	7.11	7.1	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood					7.6	2	1	18:08	17.5	8.27	30.1	6.77	7.18	8.2
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,		IS12	Middle	7.6	2	2	18:08	17.4	8.28	30.2	6.81	7.11	8.3
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_			Bottom	14.2	3	1	18:08	17.5	8.27	30.2	6.68	7.25	8.4
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_	Small Wave		Bottom	14.2	3	2	18:08	17.5	8.28	30.3	6.71	7.21	8.6
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_	Small Wave		Surface	1	1	1	17:51	17.3	8.26	29.8	6.95	6.99	7.9
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_			Surface	1	1	2	17:51	17.2	8.25	29.9	6.91	6.95	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_	Small Wave	IS13		5.9	2	1	17:51	17.3	8.26	29.9	6.87	7.08	8.2
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood		Small Wave	IS13	Middle	5.9	2	2	17:51	17.3	8.27	30	6.91	7.05	8.3
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,	Small Wave		Bottom	10.8	3	1	17:51	17.4	8.27	30.2	6.81	7.3	8.4
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,	Small Wave		Bottom	10.8	3	2	17:51	17.4	8.28	30.2	6.77	7.26	8.1
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,	Small Wave	IS14	Surface	1	1	1	18:25	17.3	8.27	29.9	7.03	7	8
	HY/2012/08			,			Surface		1	2	18:25		8.28		7.01	6.97	7.7
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_		IS14		7.9	2	1	18:25	17.3	+	30	6.86	7.06	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_				7.9	2	2	18:25	17.2	+	30.1	6.83	7.01	8.2
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	•				14.8	3	1	18:25	17.3		30.1	6.8	7.41	8.6
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_				14.8	3	2	18:25	17.4		30.2	6.83	7.45	8.7
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_		IS15	Surface	1	1	1	17:34	17.3		29.9	7.03	6.88	7.8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	•		IS15	Surface	1	1	2	17:34	17.2		30	7.01	6.84	7.5
TMCLKL	HY/2012/08	2015-02-18		,				6.1	2	1	17:34	17.3	_	30.1	6.8	7.34	8.4
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_				6.1	2	2	17:34	17.4		30.2	6.76	7.37	8.3
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_				11.2	3	1	17:34	17.4		30.2	6.76	7.18	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_				11.2	3	2	17:34	17.3		30.1	6.8	7.12	8.1
TMCLKL	HY/2012/08	2015-02-18		•		SR8	Surface	1	1	1	17:00	17.2		29.7	6.8	6.49	7.2
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_		SR8	Surface	1	1	2	17:00	17.1	8.25	29.8	6.76	6.43	7.5
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,			Middle		2	1	17:00	1	-		-		1
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_			Middle	1 1	2	2	17:00	47.0	0.0-	00.0	0.00	-	
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,				4.4	3	1		17.2		29.9	6.68	/	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,				4.4	3	2	17:00	17.3		30	6.7	6.93	7.7
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	•		SR9	Surface	1	1 4	1	+	17.2		29.8	6.98	6.93	7.8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	•		SR9	Surface	[1	1	<u> </u>	17:17	17.3	8.25	29.9	7.01	6.97	7.8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,			Middle	-	2	1	17:17	1	-		1		
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,		SR9	Middle	0.0	2	<u> </u>	17:17	47.4	0.05	20	0.70	7.05	
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,				3.8	ა ი	1		17.4	8.25		6.73	7.05	δ
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,				3.8	<u>ა</u>	<u> </u>	17:17	17.4	_	30.1	6.7	7.01	7.9
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,			Surface	1	1	1	16:43	17.2		29.8	6.96	6.51	7.6
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,			Surface	10.0	1	<u> </u>	16:43	17.3		29.7	6.93	6.55	7.8
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	_				6.6	2	1	16:43	17.3		29.8	6.78	7.18	8.2
TMCLKL	HY/2012/08	2015-02-18		,				6.6	2	<u> </u>	16:43	17.2		29.9	6.74	7.21	8.4
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,				12.2	<u>ა</u>	1	16:43	17.3	+	30	6.75	7.06	8.3
TMCLKL	HY/2012/08	2015-02-18	Mid-Flood	,				12.2	<u>ح</u>	<u> </u>	16:43	17.4		30.1	6.71	7.02	8.5
TMCLKL	HY/2012/08	2015-02-18					Surface	1	1 4	1	10:57	17.2		29.8	7.01	7.04	δ
TIVICLKL	HY/2012/08	2015-02-18	ממ∟-בוועון	Cloudy	Small Wave	JUS4	Surface	[1	1		10:57	[17.1	8.28	 29.9	6.97	7.08	8.1

Project	Works	Date	Tide	l Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	Cloudy	Small Wave	CS4	Middle	11.5	2	1	10:57	17.3	8.28	30	6.86	7.49	8.6
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	Cloudy	Small Wave	CS4	Middle	11.5	2	2	10:57	17.3	8.3	30	6.91	7.43	8.9
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom	22	3	1	10:57	17.4	8.32	30.3	6.8	7.65	8.8
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom	22	3	2	10:57	17.5	8.31	30.1	6.77	7.6	8.5
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	Cloudy	Small Wave	CS6	Surface	1	1	1	13:44	17.4	8.2	29.5	6.8	6.47	7.8
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	Cloudy	Small Wave	CS6	Surface	1	1	2	13:44	17.4	8.19	29.7	6.76	6.51	7.4
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	Cloudy	Small Wave		Middle	6.1	2	1	13:44	17.3	8.23	29.6	6.6	7.01	8.1
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	Cloudy	Small Wave	CS6	Middle	6.1	2	2	13:44	17.5	8.21	29.7	6.56	7.06	8.3
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_	Small Wave		Bottom	11.2	3	1	13:44	17.5	8.22	29.8	6.48	7.25	8.4
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_	Small Wave		Bottom	11.2	3	2	13:44	17.5	8.23	29.8	6.43	7.19	8.2
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_			Surface	1	1	1	11:41	17.3	8.25	29.9	6.95	7.19	8.4
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_		IS12	Surface	1	1	2	11:41	17.3	8.26	30	6.99	7.24	8.1
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	,			Middle	7.5	2	1	11:41	17.5	8.26	30	6.65	7.3	8.4
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_		IS12	Middle	7.5	2	2	11:41	17.4	8.26	30.2	6.7	7.23	8.3
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_			Bottom	14	3	1	11:41	17.4	8.28	30.1	6.55	7.37	8.6
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	,			Bottom	14	3	2	11:41	17.5	8.29	30.1	6.59	7.33	8.9
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb				Surface	1	1	1	12:02	17.2	8.28	29.7	6.82	7.11	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	,			Surface	1	1	2	12:02	17.1	8.26	29.9	6.88	7.06	7.8
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_				5.8	2	1	12:02	17.2	8.25	30	6.72	7.2	8.4
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_	Small Wave	IS13	Middle	5.8	2	2	12:02	17.3	8.25	30.1	6.79	7.15	8.1
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_	Small Wave		Bottom	10.6	3	1	12:02	17.5	8.26	30	6.72	7.39	8.4
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_			Bottom	10.6	3	2	12:02	17.4	8.27	30.1	6.66	7.36	8.7
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_	Small Wave		Surface	1	1	1	11:20	17.2	8.28	29.8	6.91	7.13	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_			Surface	1	1	2	11:20	17.2	8.27	29.9	6.87	7.08	7.7
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_	Small Wave		Middle	7.8	2	1	11:20	17.2	8.27	30.1	6.72	7.19	8.2
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	,	Small Wave	IS14	Middle	7.8	2	2	11:20	17.3	8.28	30.2	6.69	7.15	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_	Small Wave		Bottom	14.6	3	1	11:20	17.3	8.3	30	6.68	7.55	8.6
	HY/2012/08			,			Bottom	14.6	3	2		17.4	8.29		6.71	7.58	8.9
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_		IS15	Surface	1	1	1	12:23	17.3		29.8	6.91	6.99	7.9
	HY/2012/08	2015-02-18	Mid-Ebb	,			Surface	1	1	2	12:23	17.2		29.9	6.88	6.95	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	-			Middle	6	2	1	12:23	17.4		30	6.67	7.46	8.7
	HY/2012/08	2015-02-18	Mid-Ebb	-			Middle	6	2	2	12:23	17.4		30.1	6.64	7.5	8.9
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_				11	3	1	12:23	17.3		30.2	6.63	7.3	8.4
-	HY/2012/08	2015-02-18	Mid-Ebb	-				11	3	2	12:23	17.3		30.1	6.68	7.25	8.1
TMCLKL	HY/2012/08	2015-02-18		•		SR8	Surface	1	1	1	13:02	17.2		29.8	6.68	6.63	7.6
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	-		SR8	Surface	1	1	2	13:02	17.2	8.24	29.8	6.62	6.57	7.4
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_			Middle		2	1	13:02						
	HY/2012/08	2015-02-18	Mid-Ebb	-			Middle		2	2	13:02						
	HY/2012/08	2015-02-18		_				4.2	3	1	13:02	17.2		29.8	6.56	7.14	8.3
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	,			 	4.2	3	2	13:02	17.3		29.9	6.59	7.07	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_		SR9	Surface	1	1	1	12:42	17.2		29.8	6.86	7.05	8
	HY/2012/08	2015-02-18	Mid-Ebb	,		SR9	Surface	1	1	2	12:42	17.2	8.24	29.8	6.9	7.09	8.3
	HY/2012/08	2015-02-18		_			Middle		2	[1	12:42						
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_		SR9	Middle		2	2	12:42	1,	-				<u> </u>
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	•			i	3.6	3	1	+	17.3		29.9	6.6	7.17	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	-			i	3.6	3	2	12:42	17.4	8.24	30.1	6.57	7.14	8.2
TMCLKL	HY/2012/08	2015-02-18		_			Surface	1	1	1	13:23	17.3		29.7	6.82	6.64	7.6
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	-			Surface	1	1	2	13:23	17.3		29.8	6.78	6.69	7.8
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	,				6.5	2	1	13:23	17.2	8.24	29.9	6.64	7.3	8.2
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	_			 	6.5	2	2	13:23	17.3		29.9	6.6	7.35	8.4
	HY/2012/08	2015-02-18	Mid-Ebb	,				12	3	1	13:23	17.4		29.9	6.62	7.17	8
TMCLKL	HY/2012/08	2015-02-18	Mid-Ebb	,			 	12	3	2	13:23	17.4		30.1	6.58	7.12	8.3
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	,			Surface	1	[1	[1	17:16	17.2	-	27.1	6.99	7.48	8.6
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	,			Surface	1	1	2	17:16	17.2		27	7.02	7.52	8.2
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	,				10.6	2	1	17:16	17.2		27.2	6.93	7.86	8.9
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	,			Middle	10.6	2	2	17:16	17.3		27.1	6.9	7.9	9.1
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	-			•	20.2	3	1	17:16	17.3		27.2	6.72	8.13	9.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	CS4	Bottom	20.2	3]2	17:16	<u> </u> 17.4	8.03	27.3	6.7	8.16	9.4

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	CS6	Surface	1	1	1	14:35	17.4	7.96	27.2	6.92	7.08	8
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	CS6	Surface	1	1	2	14:35	17.4	7.97	27.1	6.9	7.13	8.3
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.9	2	1	14:35	17.3	8.04	27.3	6.76	7.34	8.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.9	2	2	14:35	17.3	8.04	27.2	6.77	7.39	8.6
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	CS6	Bottom	10.8	3	1	14:35	17.5	8.06	27.3	6.64	7.78	8.8
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	CS6	Bottom	10.8	3	2	14:35	17.5	8.06	27.3	6.66	7.72	8.9
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS12	Surface	1	1	1	16:35	17.3	8.01	27.1	6.94	7.42	8.7
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS12	Surface	1	1	2	16:35	17.2	8.01	27	6.95	7.46	8.8
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS12	Middle	7.3	2	1	16:35	17.3	7.98	27.1	6.9	7.53	8.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS12	Middle	7.3	2	2	16:35	17.3	7.99	27.2	6.86	7.56	8.3
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS12	Bottom	13.6	3	1	16:35	17.3	8.01	27.3	6.83	7.98	9.2
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS12	Bottom	13.6	3	2	16:35	17.4	8.01	27.2	6.84	7.92	9.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS13	Surface	1	1	1	16:18	17.3	7.96	27.1	6.85	7.36	8.2
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS13	Surface	7	2	2	16:18	17.4	7.98	27	6.86	7.38	8.1
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS13	Middle	5.8	2	10	16:18	17.4	_	27.2	6.78	7.48	8.6
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS13	Middle	5.8	2	1	16:18	17.4	8.01	27.1	6.79	7.52	8.9
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-02-23	Mid-Flood Mid-Flood	Cloudy	Small Wave	IS13 IS13	Bottom	10.6 10.6	2	12	16:18 16:18	17.4 17.5	8.03	27.1 27.2	6.65 6.64	7.9 7.86	9.2
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave Small Wave	IS14	Bottom Surface	10.6	1	1	16:53	17.3	8.04 7.98	27	6.95	7.44	9.4 8.7
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS14	Surface	1	1	2	16:53	17.2	7.99	27	6.94	7.46	8.5
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS14	Middle	7.9	2	1	16:53	17.2	7.96	27.1	6.84	7.68	8.6
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS14	Middle	7.9	2	2	16:53	17.2	7.95	27.1	6.85	7.64	8.9
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS14	Bottom	14.8	3	1	16:53	17.3	7.99	27.2	6.8	7.88	8.8
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS14	Bottom	14.8	3	2	16:53	17.3	8	27.1	6.78	7.86	8.7
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS15	Surface	1	1	1	16:00	17.3	8.01	27.1	6.84	7.3	8 1
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS15	Surface	1	1	2	16:00	17.3	8.02	27	6.85	7.32	8.3
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS15	Middle	5.8	2	1	16:00	17.4	8.03	27.1	6.76	7.43	8.8
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy		IS15	Middle	5.8	2	2	16:00	17.4	8.03		6.77	7.46	8 7
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	IS15	Bottom	10.6	3	1	16:00	17.4	+	27.2	6.68	7.86	8.9
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy		IS15	Bottom	10.6	3	2	16:00	17.4	_	27.3	6.7	7.89	9.1
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	1	15:28	17.3	+	27.1	6.92	7.34	8.2
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy		SR8	Surface	1	1	2	15:28	17.3	-	27.2	6.9	7.3	8.3
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR8	Middle		2	1	15:28						
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy		SR8	Middle		2	2	15:28						
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR8	Bottom	4.6	3	1	15:28	17.3	7.99	27.1	6.8	7.6	8.8
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR8	Bottom	4.6	3	2	15:28	17.4	7.98	27.2	6.82	7.54	8.5
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR9	Surface	1	1	1	15:44	17.3	7.98	27.1	6.8	7.4	8.2
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR9	Surface	1	1	2	15:44	17.3	7.98	27.2	6.84	7.36	8.5
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR9	Middle		2	1	15:44						
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR9	Middle		2	2	15:44						
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR9	Bottom	4.5	3	1	15:44	17.4	8.03	27.2	6.56	7.8	8.9
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR9		4.5	3	2	15:44	17.3		27.2	6.58	7.75	8.7
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	1	15:02	17.4	-	27.1	6.94	7.2	8.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	2	15:02	17.3	7.95		6.96	7.22	8.1
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR10A	Middle	6	2	1	15:02	17.4		27.2	6.8	7.4	8.6
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR10A	Middle	6	2	2	15:02	17.4		27.3	6.82	7.36	8.7
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR10A	Bottom	11	3	1	15:02	17.4		27.3	6.72	7.64	8.2
TMCLKL	HY/2012/08	2015-02-23	Mid-Flood	Cloudy	Small Wave	SR10A	Bottom	11	3	2	15:02	17.5		27.3	6.7	7.6	8.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	CS4	Surface	1	1	1	09:27	17.3		26.8	7.07	7.53	8.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy		CS4	Surface	1	1	2	09:27	17.4		26.8	7.03	7.61	8.3
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	CS4	Middle	10.3	2	1	09:27	17.5	7.96		6.94	7.9	8.9
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	CS4	Middle	10.3	2	2	09:27	17.5	7.97		6.92	7.98	9
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom	19.6	3	1	09:27	17.5		27.2	6.77	8.37	8.7
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy		CS4	Bottom	19.6	3	2	09:27	17.6		27.3	6.74	8.44	8.5
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	CS6	Surface	1	1	1	12:13	17.3	7.98		6.84	7.33	8.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	CS6	Surface	<u> 1</u>	1	2	12:13	17.4	-	26.9	6.81	7.39	8.3
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy		CS6		5.5	2	1	12:13		8.02		6.77	7.54	8.6
TMCLKL	HY/2012/08	2015-02-23	Mid-Epp	Cloudy	Small Wave	JCS6	Middle	5.5	2	2	12:13	[17.4	8.03	27.1	6.74	7.62	8.7

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	CS6	Bottom	10	3	1	12:13	17.5	8.05	27.2	6.65	7.88	8.8
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	CS6	Bottom	10	3	2	12:13	17.6	8.06	27.2	6.61	7.96	8.5
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS12	Surface	1	1	1	10:10	17.3	7.99	26.8	6.93	7.37	8.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS12	Surface	1	1	2	10:10	17.4	8.01	26.8	6.91	7.46	8.7
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS12	Middle	7.1	2	1	10:10	17.4	7.95	26.9	6.97	7.63	8.6
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS12	Middle	7.1	2	2	10:10	17.4	7.97	26.9	6.95	7.71	8.9
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS12	Bottom	13.2	3	1	10:10	17.4	7.99	27.1	6.86	8.04	9.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS12	Bottom	13.2	3	2	10:10	17.4	8	27.1	6.83	8.11	9.1
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS13	Surface	1	1	1	10:30		7.98	26.8	6.88	7.47	8.6
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS13	Surface	1	1	2	10:30	17.4	8.01	26.9	6.85	7.55	8.6
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.4	2	1	10:30		8.04	26.9	6.81	7.7	8.8
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.4	2	2	10:30	+	8.05	27	6.8	7.62	8.5
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom	9.8	3	1	10:30		8.07	27.1	6.72	7.93	9.2
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom	9.8	3	2	10:30		8.08	27.2	6.7	8.04	9.5
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS14	Surface	1	1	1	09:49		7.98	26.7	6.97	7.44	8.6
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS14	Surface	1	1	2	09:49		7.99	26.8	6.99	7.5	8.2
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS14	Middle	7.7	2	1	09:49		7.93	26.9	6.88	7.72	8.9
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS14	Middle	7.7	2	2	09:49		7.95	27	6.9	7.79	8.7
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS14	Bottom	14.4	3	1	09:49		7.99	27.2	6.81	8.12	9.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS14	Bottom	14.4	3	2	09:49	17.4	8.01	27.2	6.79	8.2	9.1
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS15	Surface	1	1	1	10:51		8.03	26.8	6.83	7.36	8.2
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS15	Surface	1	1	2	10:51	17.4	8.01	26.8	6.81	7.44	8.6
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS15	Middle	5.6	2	1	10:51		8.05	26.9	6.78	7.66	8.8
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS15	Middle	5.6	2	2	10:51	17.5	8.06	27	6.76	7.6	8.7
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom	10.2	3	1	10:51	17.5	8.07	27.2	6.69	8.08	9
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom	10.2	3	2	10:51	17.6	8.08	27.2	6.66	8.15	9.1
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	SR8	Surface	1	1	1	11:28	17.4	8.01	26.9	6.86	7.4	8.2
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	SR8	Surface	1	1	2	11:28	17.4	8.02	26.9	6.82	7.49	8.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy		SR8	Middle		2	1	11:28						
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy		SR8	Middle		2	2	11:28						
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	+	SR8	_	4.4	3	1	11:28			26.9	6.75	7.77	8.9
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	_	SR8		4.4	3	2	11:28		8.05		6.72	7.84	8.5
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy		SR9	Surface	1	1	1	11:12			26.8	6.77	7.56	8.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	_	SR9	Surface	1	1	2	11:12	17.4	8.04	26.9	6.74	7.67	8.6
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy		SR9	Middle		2	1	11:12						
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy		SR9	Middle		2	2	11:12						
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy		SR9		4.2	3	1	-	+			6.59	7.93	8.9
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy		SR9	Bottom	4.2	3	2	11:12	+	8.06		6.62	7.85	8.7
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	_	SR10A	Surface	1	1	1	11:50			26.9	6.94	7.24	8.2
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy		SR10A	Surface	1	1	2	11:50			26.9	6.91	7.16	8.3
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	SR10A	Middle	5.6	2	1	11:50	+		27	6.86	7.38	8.4
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	SR10A	Middle	5.6	2	2	11:50		7.93		6.83	7.45	8.7
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy	Small Wave	SR10A	Bottom	10.2	3	1	11:50			27.2	6.71	7.6	8.8
TMCLKL	HY/2012/08	2015-02-23	Mid-Ebb	Cloudy		SR10A	Bottom	10.2	3	2	11:50			27.3	6.69	7.68	9
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy		CS4	Surface	1	[1	1	18:59	17		27.5	7.25	7.14	8
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	_	CS4	Surface	1	1	2	18:59	16.8		27.9	7.22	7.12	8.3
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy		CS4	Middle	10.5	2	1	18:59	+	7.79	-	7.33	6.86	8.1
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy		CS4	Middle	10.5	2	2	18:59	1	7.79	-	7.29	6.9	7.9
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy		CS4	Bottom	20	3	1	18:59		7.8	27.8	7.21	7.28	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	_	CS4	Bottom	20	3	2	18:59	-		27.9	7.18	7.31	8.6
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	+	CS6	Surface	1	[1	1	16:26	17		28.7	7.02	6.92	7.9
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	CS6	Surface	1	1	2	16:26			28.6	7.06	6.95	7.7
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	+	CS6	Middle	5.5	2	1	16:26	17		28.9	7.11	6.94	8
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	CS6	Middle	5.5	2	2	16:26	17	7.86		7.05	7	8.2
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy		CS6	Bottom	10	3	1	16:26			29	6.95	7.12	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	CS6	Bottom	10	3	2	16:26			29.2	7.02	7.18	8.7
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy		IS12	Surface	1	1	1	18:20			26.7	7.33	7.04	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	JIS12	Surface	<u> </u> 1	<u> </u> 1]2	18:20	17	7.93	26.6	7.35	7.01	8.3

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS12	Middle	7.1	2	1	18:20	17	7.96	27.1	7.37	7.01	7.7
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS12	Middle	7.1	2	2	18:20	17.1	7.98	27	7.34	7.03	7.9
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS12	Bottom	13.2	3	1	18:20	17	7.91	27.1	7.34	7.16	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS12	Bottom	13.2	3	2	18:20		7.91	27.1	7.3	7.2	8.3
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS13	Surface	1	1	1	18:00		7.83	28.3	7.25	6.84	7.9
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS13	Surface	1	1	2	18:00		7.83	28.2	7.28	6.89	7.5
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS13	Middle	5.5	2	1	18:00	17	7.93	28.5	7.32	6.82	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS13	Middle	5.5	2	2	18:00		7.92	28.3	7.35	6.85	8.7
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS13	Bottom	10	3	1	18:00		7.9	27.8	7.19	7.05	7.7
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS13	Bottom	10	3	2	18:00		7.92	28	7.16	7.1	7.9
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS14	Surface	11	1	1	18:39		7.76	28	7.24	7.15	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS14	Surface	1	1	2	18:39		7.78	28	7.19	7.2	8.3
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS14	Middle	8.1	2	1	18:39		7.83	28.1	7.32	7.01	7.9
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS14	Middle	8.1	2	2	18:39	_	7.84	28.2	7.36	7.04	7.8
TMCLKL TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS14 IS14	Bottom	15.2 15.2	3	1	18:39	_	7.82	28.5	7.28	7.23	8.4
	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	+	Bottom	15.2	3	1	18:39 17:42		7.83	28.3	7.25	7.27 7.1	8.3
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-02-25 2015-02-25	Mid-Flood Mid-Flood	Cloudy Cloudy	Small Wave Small Wave	IS15 IS15	Surface Surface	1	1	12	17:42	_	7.66 7.67	28.1	7.22 7.18	7.06	8.1 8.3
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS15	Middle	5.4	2	1	17:42	_	7.66	28.1	7.16	6.89	7.9
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS15	Middle	5.4	2	2	17:42		7.68	28.2	7.21	6.78	8.1
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS15	Bottom	9.8	2	1	17:42		7.76	28.1	7.14	6.91	7.8
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	IS15	Bottom	9.8	3	2	17:42	-	7.78	28	7.14	6.88	γ.0
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	1	17:12	16.9	7.75	28.2	7.33	6.86	7.5
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR8	Surface	1	1	2	17:12	16.8	7.97	28.4	7.42	6.91	7.9
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR8	Middle	 	2	1	17:12	10.0	1.51	20.4	1.72	0.01	17.5
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR8	Middle	1	2	2	17:12	+			+		
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR8	Bottom	4	3	1	17:12	16.9	7.93	28.6	7.26	7.05	8
TMCLKL	HY/2012/08	_	Mid-Flood	Cloudy		SR8	Bottom	4	3	2			+	28.7	7.22	7.09	8.3
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR9	Surface	1	1	1	17:28	16.9		27.8	7.25	7.02	8
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	_	SR9	Surface	1	1	2	17:28		-	27.9	7.22	7.06	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	_	SR9	Middle		2	1	17:28	1		1	1		
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy		SR9	Middle		2	2	17:28				1		
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy		SR9	Bottom	4	3	1	17:28	17	7.95	28.1	7.13	7.14	8.2
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR9	Bottom	4	3	2	17:28			28.2	7.1	7.18	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	1	16:48			28.5	7.22	6.9	7.9
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR10A	Surface	1	1	2	16:48		-	28.4	7.19	6.82	7.5
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR10A	Middle	5.9	2	1	16:48	17	7.78	28.8	7.28	6.85	7.3
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR10A	Middle	5.9	2	2	16:48	17	7.79	28.7	7.25	6.9	7.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR10A	Bottom	10.8	3	1	16:48	16.9	7.8	28.5	7.14	7.1	8
TMCLKL	HY/2012/08	2015-02-25	Mid-Flood	Cloudy	Small Wave	SR10A	Bottom	10.8	3	2	16:48	16.9	7.81	28.4	7.09	7.06	8.2
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	CS4	Surface	1	1	1	10:57	16.9	7.84	27.6	7.1	7.26	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	CS4	Surface	1	1	2	10:57	17	7.82	28	7.12	7.27	8.3
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	CS4	Middle	10.4	2	1	10:57	17	7.78	27.9	7.21	6.98	8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy		CS4	Middle	10.4	2	2	10:57	_	7.8	28.2	7.18	7.02	7.8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy		CS4	Bottom	19.8	3	1	10:57			27.9	7.1	7.39	8.6
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	CS4	Bottom	19.8	3	2	10:57	17	7.85		7.06	7.42	8.5
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy		CS6	Surface	1	1	1	13:43	17		28.9	6.89	7.04	8.1
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	CS6	Surface	1	1	2	13:43		7.8	28.6	6.93	7.08	8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	CS6	Middle	5.4	2	1	13:43	17	-	28.8	6.97	7.12	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	CS6	Middle	5.4	2	2	13:43			29.2	6.92	7.19	8.3
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	CS6		9.8	3	11	13:43		7.81	28.9	6.84	7.27	8.8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	CS6		9.8	3	2	13:43	17		29.4	6.88	7.32	8.6
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy		IS12	Surface	1	1	11	11:39	17		26.8	7.22	7.14	7.8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS12	Surface	1 	1	2	11:39	17.1		26.6	7.2	7.12	8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy		IS12	Middle	/	2	1	11:39	+	7.97		7.26	7.11	8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS12	Middle	/	2	<u> 2</u>	11:39	17	+	27.2	7.24	7.16	8.2
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy		IS12	Bottom	13	<u>კ</u>	11	11:39		7.92		7.2	7.3	8.7
LIVICLKL	HY/2012/08	12015-02-25	ממ⊐-טוועו	Cloudy	Small Wave	110.17	Bottom	۱۱۵	3		11:39	[17.7	17.9	26.9	7.19	7.32	8.5

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS13	Surface	1	1	1	11:59	16.8	7.84	28.4	7.12	6.97	7.7
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS13	Surface	1	1	2	11:59	17	7.82	28.2	7.14	6.99	7.9
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.4	2	1	11:59	16.9	7.92	28.6	7.2	6.94	8.1
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS13	Middle	5.4	2	2	11:59	17	7.9	28.3	7.22	6.95	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom	9.8	3	1	11:59	17	7.91	27.9	7.07	7.16	7.7
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS13	Bottom	9.8	3	2	11:59	16.8	7.94	28.1	7.05	7.24	7.9
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS14	Surface	1	1	1	11:20	17	7.77	27.9	7.11	7.28	8.5
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS14	Surface	1	1	2	11:20	16.8	7.8	28.1	7.06	7.32	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS14	Middle	8	2	1	11:20	16.9	7.84	28	7.2	7.11	8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS14	Middle	8	2	2	11:20	16.9	7.86	28.2	7.22	7.16	7.8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS14	Bottom	15	3	1	11:20	17	7.81	28.6	7.16	7.36	8.6
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS14	Bottom	15	3	2	11:20	16.9	7.84	28.4	7.14	7.38	8.5
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS15	Surface	1	1	1	12:20	16.8	7.65	28.2	7.11	7.21	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy			Surface	1	1	2	12:20	16.8	7.68	28	7.04	7.18	8.1
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS15		5.3	2	1	12:20	16.9	7.64	28	7.11	7	7.9
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	IS15	Middle	5.3	2	2	12:20	16.8	7.7	28.2	7.09	6.89	8.1
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	-				9.6	3	1	12:20	16.9	7.77	28	7.02	7.02	8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	,				9.6	3	2	12:20	16.9	7.81	27.9	7	7.01	7.8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	,			Surface	1	1	1	12:55	16.8	7.93	28.3	7.21	6.97	7.8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	,			Surface	1	1	2	12:55	16.8	7.98	28.6	7.28	7.02	7.5
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	SR8	Middle		2	1	12:55						
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy		SR8	Middle		2	2	12:55						
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy				3.8	3	1	12:55	16.9	7.94	28.7	7.14	7.16	8.2
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	,				3.8	3	2	12:55	16.8	7.99	28.8	7.1	7.2	8.3
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave		Surface	1	1	1	12:39	16.8	7.64	27.9	7.11	7.15	8.2
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	SR9	Surface	1	1	2	12:39	16.9	7.7	28.1	7.1	7.18	8.3
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy	Small Wave	SR9	Middle		2	1	12:39						
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy			Middle		2	2	12:39						
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	Cloudy			Bottom	3.8	3	1	12:39	16.9		27.9	7.01	7.26	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	,			Bottom	3.8	3	2	12:39	17		28.4	6.99	7.3	8.7
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb				Surface	1	1	1	13:19	16.9	7.64	28.6	7.11	7.02	8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	,			Surface	1	1	2	13:19	16.9	7.6	28.4	7.07	6.93	8.2
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	,				5.8	2	1	13:19	16.9		28.9	7.14	6.98	8.4
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb					5.8	2	2	13:19	17		28.7	7.12	7.04	8.3
TMCLKL	HY/2012/08	2015-02-25		,				10.6	3	1	13:19	16.8	•	28.6	7.01	7.24	8.8
TMCLKL	HY/2012/08	2015-02-25	Mid-Ebb	,				10.6	3	2	13:19	17	7.8	28.4	6.99	7.21	8.6
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,			Surface	1	1	1	13:51	18.4	-	29.3	7.18	7.64	8.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,			Surface	1	1	2	13:51	18.4	-	29.3	7.14	7.6	8.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,				10.7	2	1	13:51	18.3		29.4	7.02	7.92	9
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,				10.7	2	2	13:51	18.2		29.3	7.05	7.9	9.3
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,				20.3	3	1	13:51	18.3		29.4	6.94	8.08	9.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,				20.3	3	2	13:51	18.2		29.4	6.9	8.1	9.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,			Surface	1	1	1	10:58	18.4		29.1	7.14	8	9
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,			Surface	1 7	1	2	10:58	18.4	7.94	29.1	7.18	8.04	9.3
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,				5.7	2	1	10:58	18.4	8	29.3	7.06	8.32	9.7
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,		CS6		5.7	2	2	10:58	18.3	8.01	29.2	7.09	8.36	9.5
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,				10.3	3	1	10:58	18.2	7.94	29.4	6.94	8.95	9.6
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,		CS6		10.3	<u>ا</u>	2	10:58	18.3	•	29.3	6.9	8.9	10
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,		IS12	Surface	1	1	1	13:09	18.3	•	29.2	7.26	7.48	8.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,		IS12	Surface	17.0	1	2	13:09	18.4	-	29.2	7.29	7.51	8.5
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,				7.2	2	1	13:09	18.3		29.3	7.18	7.92	9
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,		IS12	Middle	7.2	2	<u> </u>	13:09	18.3		29.3	7.15	7.95	9.3
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,				13.4	<u>კ</u>	1	13:09	18.2	•	29.4	6.97	8.04	9.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,		IS12		13.4	<u>ح</u>	<u> </u>	13:09	18.2	•	29.4	6.94	8.08	9.6
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,			Surface	1	1	1	12:48	18.3		29.2	7.18	7.49	8.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,		IS13	Surface	1 c =	1	2	12:48	18.3		29.2	7.2	7.51	8.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,				5.7	2	1	12:48	18.4	7.81	29.3	7.08	7.86	8.9
TIVICLKL	HY/2012/08	12015-02-27	IVIIa-F100a	Cloudy	Small Wave	11013	Middle	ენ./	2		12:48	18.3	7.8	29.2	7.05	7.89	9.1

Project	Works	Date	Tide	lWeather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	Cloudy	Small Wave	IS13	Bottom	10.3	3	1	12:48	18.2	7.9	29.4	6.9	8.04	9.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	Cloudy	Small Wave	IS13	Bottom	10.3	3	2	12:48	18.3	7.93	29.3	6.92	8.1	9.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	Cloudy	Small Wave	IS14	Surface	1	1	1	13:30	18.3	7.82	29.3	7.19	7.86	8.8
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	Cloudy	Small Wave	IS14	Surface	1	1	2	13:30	18.3	7.83	29.2	7.16	7.89	8.5
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	Cloudy	Small Wave	IS14	Middle	8	2	1	13:30	18.3	7.84	29.4	7.04	7.74	8.7
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	Cloudy	Small Wave	IS14	Middle	8	2	2	13:30	18.2	7.86	29.3	7.09	7.7	9
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	Cloudy	Small Wave		Bottom	15	3	1	13:30	18.2	7.88	29.4	6.89	8.08	9.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	Cloudy	Small Wave	IS14	Bottom	15	3	2	13:30	18.2	7.86	29.4	6.87	8.05	9.5
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Surface	1	1	1	12:27	18.4	7.99	29.1	7.15	7.54	8.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Surface	1	1	2	12:27	18.3	8	29.2	7.11	7.58	8.3
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Middle	5.3	2	1	12:27	18.4	7.97	29.2	7.02	7.94	8.9
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Middle	5.3	2	2	12:27	18.3	7.99	29.3	7.05	7.96	9.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	/	Small Wave		Bottom	9.5	3	1	12:27	18.2	7.99	29.4	6.89	8.02	9.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Bottom	9.5	3	2	12:27	18.3	7.99	29.4	6.93	8.06	9.3
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,	Small Wave		Surface	1	1	1	11:45	18.4	7.97	29.2	7.17	8	9
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Surface	1	1	2	11:45	18.3	7.98	29.3	7.15	8.01	8.8
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,	Small Wave		Middle		2	1	11:45		<u> </u>				
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,	Small Wave		Middle	1.2	2	2	11:45	10.5		100.0			
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood				Bottom	4.2	3	1	11:45	18.2	8	29.3	6.9	7.84	8.6
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Bottom	4.2	3	2	11:45	18.3	8.01	29.4	6.94	7.88	8.7
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Surface	1	1	1	12:06	18.3	7.95	29.2	7.22	7.04	8.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Surface	1	1	2	12:06	18.3	7.96	29.1	7.24	7.08	8.1
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Middle		2	1	12:06		<u> </u>				
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Middle		2	2	12:06	1.0.0		00.0			
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Bottom	4.4	3	1	12:06	18.2	7.98	29.3	7.01	7.14	8
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Bottom	4.4	3	2	12:06	18.3	7.98	29.3	7.04	7.19	8.3
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood	,	Small Wave		Surface	1	1	1	11:22	18.3	7.95	29.2	7.2	7.27	8.1
	HY/2012/08		Mid-Flood				Surface		1	2		18.4	7.98		7.22	7.3	8.3
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood		Small Wave		Middle	5.8	2	1	11:22	18.3		29.3	7.1	7.94	9
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood				Middle	5.8	2	2	11:22	18.3	7.96	29.2	7.05	7.98	9.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood					10.6	3	1	11:22	18.2	8	29.4	6.84	8.21	9.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Flood					10.6	3	2	11:22			29.4	6.88	8.26	9.7
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	_			Surface	1	1	1	18:39	18.3		29.5	7.12	7.82	8.8
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb				Surface	10.4	1	2	18:39	18.2		29.4	7.07	7.86	8.5
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb Mid-Ebb	_			Middle Middle	10.4	2	1	18:39 18:39	18.2		29.3	6.92 6.89	8.03 8.11	9.2
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2015-02-27 2015-02-27	Mid-Ebb					10.4 19.8	2	1	18:39	18.1	_	29.4	6.82	8.15	9.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb					19.8	<u>ာ</u>	2	18:39	18.1 18.2		29.6 29.7	6.79	8.17	9.4
TMCLKL	HY/2012/08	2015-02-27					Surface	19.0	1	1	20:45	18.2	_	29.2	7.02	8.14	9.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	_			Surface	1	1	2	20:45	18.1	_	29.1	7.02	8.12	9.6
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	_				5.5	2	1	20:45		_	29.4	7.00	8.38	9.6
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb					5.5	2	2	20:45			29.4	7	8.41	9.4
TMCLKL	HY/2012/08	2015-02-27						10	3	1	20:45		_	29.3	6.82	9.02	10
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb					10	3	2			_	29.4	6.79	9.05	10
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb				Surface	1	1	1	19:11	-	-	29.3	7.13	7.62	8.5
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb				Surface	1	1	2	19:11	18.1		29.4	7.17	7.68	8.2
TMCLKL	HY/2012/08	2015-02-27					Middle	7.1	2	1		17.9		29.5	7.09	8.02	9.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	<u> </u>			Middle	7.1	2	2	19:11	18	_	29.6	7.11	8.05	9.3
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb					13.1	3	1		18		29.7	6.82	8.14	9.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	_				13.1	3	2	19:11	17.9		29.6	6.81	8.09	9
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb				Surface	1	1	1	19:27	18.2	_	29.1	7.11	7.57	8.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb				Surface	1	1	2	19:27	18.2	_	29	7.14	7.56	8.5
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb					5.5	2	1	19:27	18	_	29.3	7.02	7.91	9
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	_				5.5	2	2	19:27	18.1	_	29.4	7.06	7.94	8.9
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	,				9.9	3	1	19:27	17.8	_	29.6	6.82	8.14	9.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb					9.9	3	2	19:27	17.7	_	29.5	6.78	8.18	9.6
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb				Surface	1	1	1	18:55	17.9	_	29.4	7.03	7.93	8.8
		2015-02-27			Small Wave		Surface	1	1	2	18:55		7.81		7.05	7.99	8.7
	1, 2012/00	1-0:00 02 21	1	13.3447	J 11410	1.0.1	2 41.400	1.	Ι	ı -	1.0.00	1.0	1	1-0.0	1	1	10

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	IS14	Middle	7.8	2	1	18:55	18.2	7.89	29.2	6.98	7.86	8.5
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	IS14	Middle	7.8	2	2	18:55	18.1	7.87	29.1	6.92	7.8	8.9
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	IS14	Bottom	14.6	3	1	18:55	18.2	7.91	29.4	6.69	8.17	9.3
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	IS14	Bottom	14.6	3	2	18:55	18.1	7.92	29.5	6.66	8.14	9.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	IS15	Surface	1	1	1	19:42	18.2	8.01	29.3	7.1	7.63	8.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	IS15	Surface	1	1	2	19:42	18.1	8.03	29.3	7.06	7.67	8.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	IS15	Middle	5.1	2	1	19:42	18.1	7.98	29.1	6.98	7.99	8.9
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	IS15	Middle	5.1	2	2	19:42	18	7.99	29.2	6.96	8.04	9.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom	9.2	3	1	19:42	17.8	8.06	29.2	6.82	8.13	9
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	IS15	Bottom	9.2	3	2	19:42	17.9	8.07	29.3	6.86	8.1	9.3
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR8	Surface	1	1	1	20:14	18.2	8.01	29.4	7.12	8.18	9.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR8	Surface	1	1	2	20:14	18.3	8.02	29.5	7.08	8.14	9.5
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR8	Middle		2	1	20:14						
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR8	Middle		2	2	20:14						
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom	3.9	3	1	20:14	18.1	8.06	29.4	6.88	7.96	8.9
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR8	Bottom	3.9	3	2	20:14	18.2	8.07	29.5	6.85	7.99	9.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR9	Surface	1	1	1	19:59	18.1	7.99	29.3	7.11	7.09	8
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR9	Surface	1	1	2	19:59	18	7.98	29.4	7.13	7.13	8.3
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR9	Middle		2	1	19:59						
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR9	Middle		2	2	19:59						
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR9	Bottom	4.1	3	1	19:59	17.9	7.96	29.4	7.14	7.21	8.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR9	Bottom	4.1	3	2	19:59	18	7.95	29.5	7.11	7.23	8.6
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR10A	Surface	1	1	1	20:30	18.1	7.98	29.4	7.13	7.36	8.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR10A	Surface	1	1	2	20:30	18	7.97	29.3	7.1	7.34	8.5
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR10A	Middle	5.7	2	1	20:30	18.2	7.91	29.4	7.01	8.1	9.2
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR10A	Middle	5.7	2	2	20:30	18.3	7.93	29.4	6.98	8.07	9
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR10A	Bottom	10.3	3	1	20:30	18	8.05	29.5	6.71	8.32	9.4
TMCLKL	HY/2012/08	2015-02-27	Mid-Ebb	Cloudy	Small Wave	SR10A	Bottom	10.3	3	2	20:30	18.1	8.06	29.4	6.7	8.35	9.7

Appendix J

Impact Dolphin Monitoring Survey

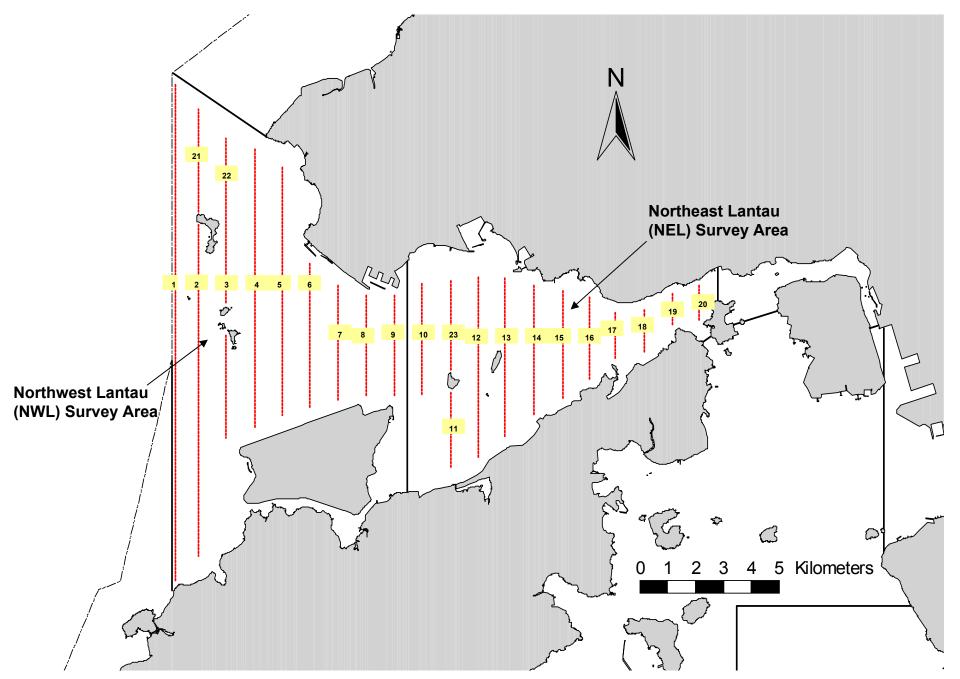


Figure 1. Transect Line Layout in Northwest and Northeast Lantau Survey Areas

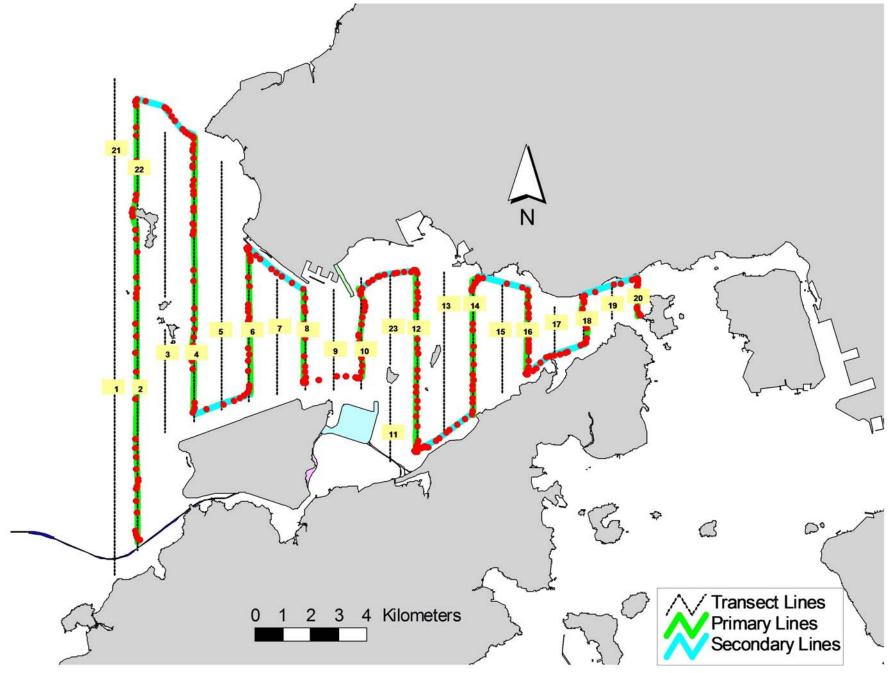


Figure 2. Survey Route on February 5th, 2015 (from HKLR03 project)

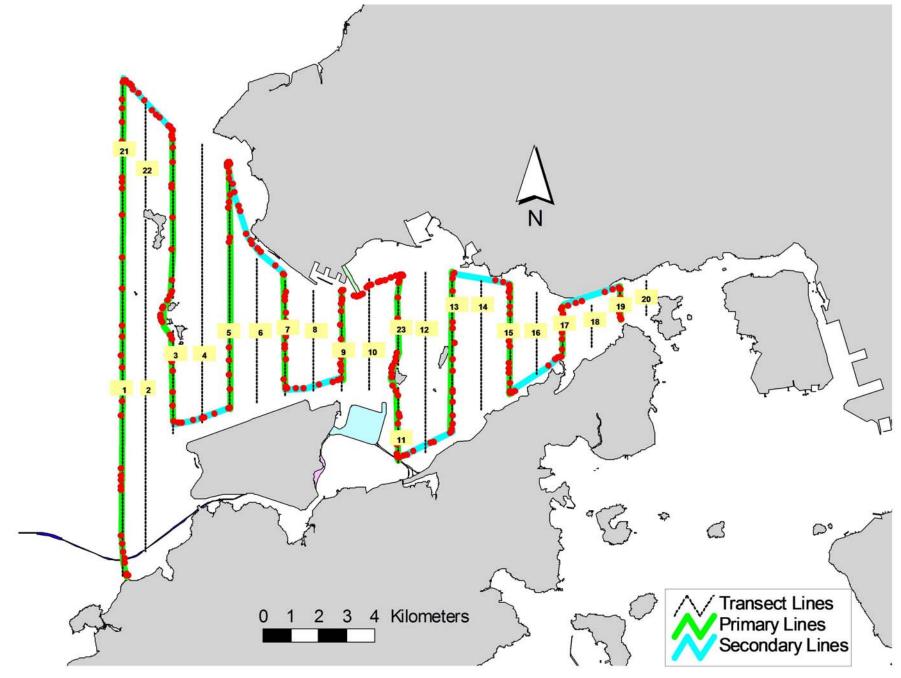


Figure 3. Survey Route on February 13th, 2015 (from HKLR03 project)

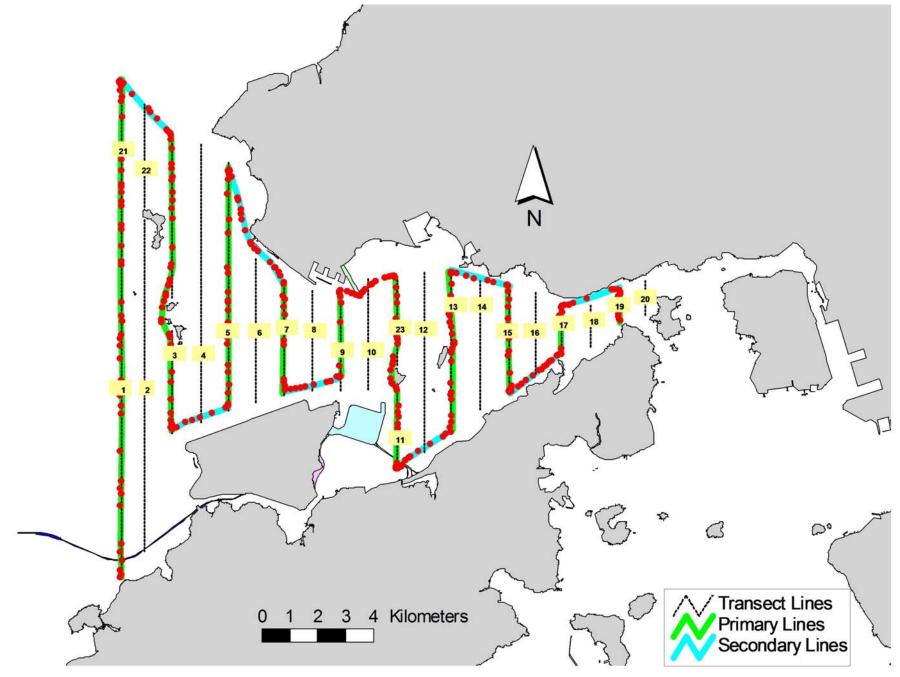


Figure 4. Survey Route on February 16th, 2015 (from HKLR03 project)

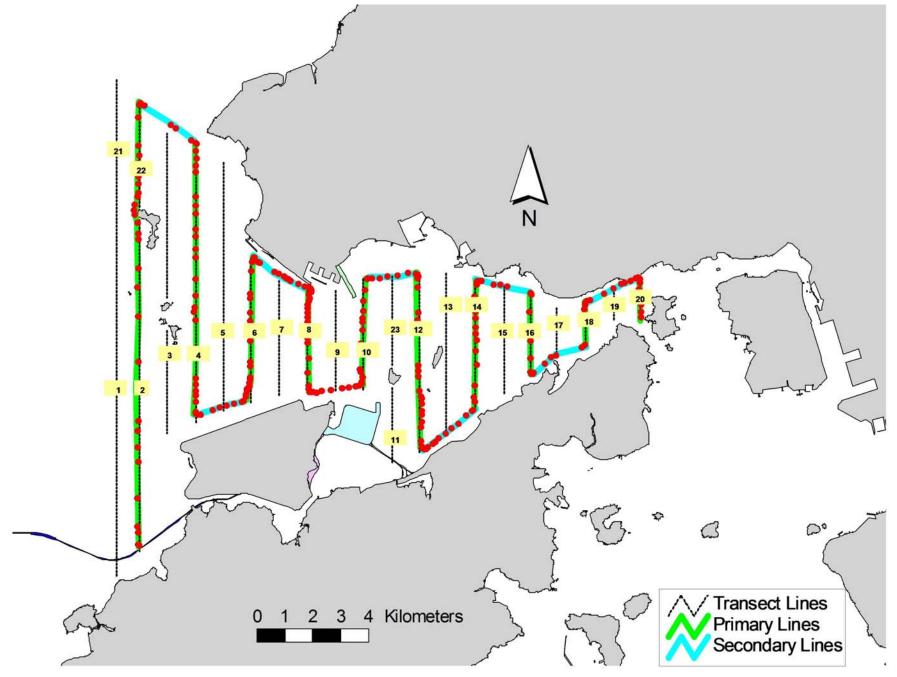


Figure 5. Survey Route on February 25th, 2015 (from HKLR03 project)

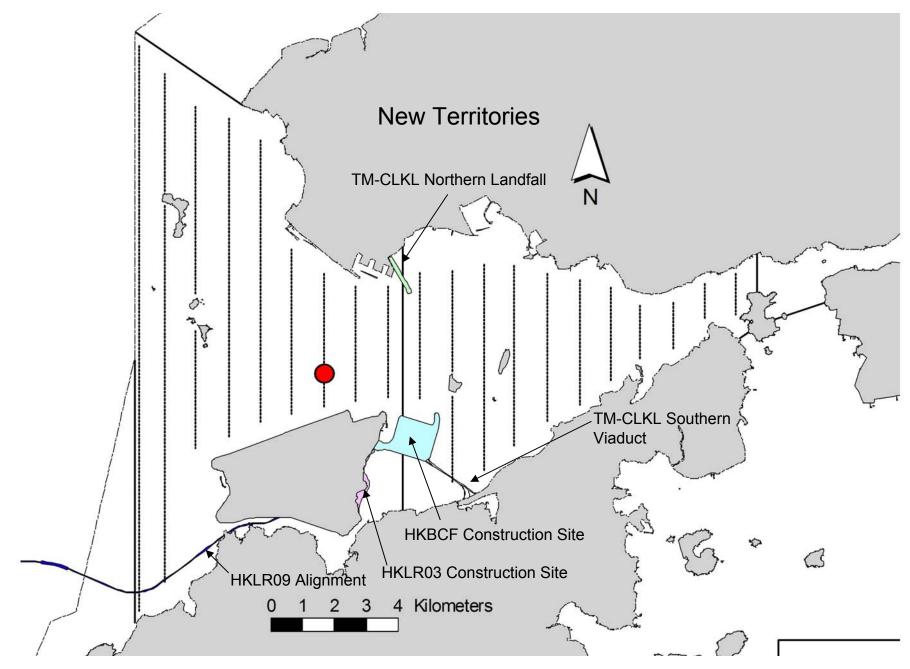


Figure 6. Distribution of Chinese White Dolphin Sightings During February 2015 HKLR03 Monitoring Surveys

Appendix I. HKLR03 Survey Effort Database (February 2015)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
5-Feb-15	NE LANTAU	2	11.79	WINTER	STANDARD31516	HKLR	Р
5-Feb-15	NE LANTAU	3	8.03	WINTER	STANDARD31516	HKLR	Р
5-Feb-15	NE LANTAU	1	0.20	WINTER	STANDARD31516	HKLR	S
5-Feb-15	NE LANTAU	2	7.00	WINTER	STANDARD31516	HKLR	S
5-Feb-15	NE LANTAU	3	3.88	WINTER	STANDARD31516	HKLR	S
5-Feb-15	NW LANTAU	2	11.86	WINTER	STANDARD31516	HKLR	Р
5-Feb-15	NW LANTAU	3	19.78	WINTER	STANDARD31516	HKLR	Р
5-Feb-15	NW LANTAU	2	3.96	WINTER	STANDARD31516	HKLR	S
5-Feb-15	NW LANTAU	3	4.10	WINTER	STANDARD31516	HKLR	S
13-Feb-15	NW LANTAU	1	10.31	WINTER	STANDARD31516	HKLR	Р
13-Feb-15	NW LANTAU	2	24.74	WINTER	STANDARD31516	HKLR	Р
13-Feb-15	NW LANTAU	3	4.98	WINTER	STANDARD31516	HKLR	Р
13-Feb-15	NW LANTAU	1	4.92	WINTER	STANDARD31516	HKLR	S
13-Feb-15	NW LANTAU	2	8.01	WINTER	STANDARD31516	HKLR	S
13-Feb-15	NE LANTAU	2	16.97	WINTER	STANDARD31516	HKLR	Р
13-Feb-15	NE LANTAU	2	9.83	WINTER	STANDARD31516	HKLR	S
16-Feb-15	NE LANTAU	2	17.07	WINTER	STANDARD31516	HKLR	Р
16-Feb-15	NE LANTAU	1	2.87	WINTER	STANDARD31516	HKLR	S
16-Feb-15	NE LANTAU	2	7.61	WINTER	STANDARD31516	HKLR	S
16-Feb-15	NW LANTAU	1	0.90	WINTER	STANDARD31516	HKLR	Р
16-Feb-15	NW LANTAU	2	36.33	WINTER	STANDARD31516	HKLR	Р
16-Feb-15	NW LANTAU	3	2.60	WINTER	STANDARD31516	HKLR	Р
16-Feb-15	NW LANTAU	2	10.57	WINTER	STANDARD31516	HKLR	S
16-Feb-15	NW LANTAU	3	2.60	WINTER	STANDARD31516	HKLR	S
25-Feb-15	NW LANTAU	2	9.90	WINTER	STANDARD31516	HKLR	Р
25-Feb-15	NW LANTAU	3	19.50	WINTER	STANDARD31516	HKLR	Р
25-Feb-15	NW LANTAU	2	3.50	WINTER	STANDARD31516	HKLR	S
25-Feb-15	NW LANTAU	3	4.30	WINTER	STANDARD31516	HKLR	S
25-Feb-15	NE LANTAU	1	1.20	WINTER	STANDARD31516	HKLR	Р
25-Feb-15	NE LANTAU	2	16.30	WINTER	STANDARD31516	HKLR	P
25-Feb-15	NE LANTAU	3	2.00	WINTER	STANDARD31516	HKLR	Р
25-Feb-15	NE LANTAU	2	10.40	WINTER	STANDARD31516	HKLR	S

Appendix II. HKLR03 Chinese White Dolphin Sighting Database (February 2015)

(Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association, P/S: Sighting Made on Primary/Secondary Lines)

DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
13-Feb-15	1	1344	1	NW LANTAU	2	103	ON	HKLR	821649	810495	WINTER	NONE	Р

Appendix III. Individual dolphins identified during HKLR03 monitoring surveys in February 2015

ID#	DATE	STG#	AREA
NL306	13/02/15	1	NW LANTAU

Appendix IV. Photographs of Identified Individual Dolphin in February 2015 (HKLR03)

Appendix K

Event and Action Plan

Event and Action Plan for Impact Air Monitoring

			Action				
	ET (a)		IEC (a)		SOR (a)		Contractor(s)
Action Level							
Exceedance recorded 1. 2.	Identify the source. Repeat measurement to confirm finding. If two consecutive measurements exceed Action Level, the	1. 2.	Check monitoring data submitted by the ET. Check the Contractor's	1.	Confirm receipt of notification of failure in writing.	 1. 2. 	Rectify any unacceptable practice Amend working
3.	exceedance is then confirmed. Inform the IEC and the SOR.	3.	working method. If the exceedance is	2. 3.	Notify the Contractor. Ensure remedial measures	3.	methods if appropriate If the exceedance is
4.	Investigate the cause of exceedance and check Contractor's working procedures to determine possible mitigation to be implemented.		confirmed to be Project related after investigation, discuss with the ET and the		properly implemented.		confirmed to be Project related, submit proposals for remedial
5.	If the exceedance is confirmed to be Project related after investigation, increase monitoring frequency to daily.		Contractor on possible remedial measures.				actions to IEC within 3 working days of
6.	Discuss with the IEC and the Contractor on remedial actions required.	4.	Advise the SOR on the effectiveness of the proposed			4.	notification Implement the agreed
7.	If exceedance continues, arrange meeting with the IEC and the SOR.	5.	remedial measures. Supervisor implementation			5.	proposals Amend proposal if
8.	If exceedance stops, cease additional monitoring.		of remedial measures.			-	appropriate

				Action			
		ET (a)		IEC (a)		SOR (a)	Contractor(s)
Limit Level							
Limit Level Exceedance recorded	 3. 4. 5. 8. 	Identify the source. Repeat measurement to confirm finding. If two consecutive measurements exceed Limit Level, the exceedance is then confirmed. Inform the IEC, the SOR, the DEP and the Contractor. Investigate the cause of exceedance and check Contractor's working procedures to determine possible mitigation to be implemented. If the exceedance is confirmed to be Project related after investigation, increase monitoring frequency to daily. Carry out analysis of the Contractor's working procedures to determine possible mitigation to be implemented. Arrange meeting with the IEC and the SOR to discuss the remedial actions to be taken. Assess effectiveness of the Contractor's remedial actions and keep the IEC, the DEP and the SOR informed of the results.	1. 2. 3. 4.	Check monitoring data submitted by the ET. Check Contractor's working method. If the exceedance is confirmed to be Project related after investigation, discuss with the ET and the Contractor on possible remedial measures. Advise the SOR on the effectiveness of the proposed remedial measures. Supervisor implementation of remedial measures.	1. 2. 3. 4. 5.	Confirm receipt of notification of failure in writing. Notify the Contractor. If the exceedance is confirmed to be Project related after investigation, in consultation with the IEC, agree with the Contractor on the remedial measures to be implemented. Ensure remedial measures are properly implemented. If exceedance continues, consider what activity of the work is responsible and instruct the Contractor to stop that activity of work until the exceedance is abated.	Take immediate action to avoid further exceedance. If the exceedance is confirmed to be Project related after investigation, submit proposals for remedia actions to IEC within a working days of notification. Implement the agreed proposals. Amend proposal if appropriate. Stop the relevant activity of works as determined by the SO until the exceedance is abated.
		If exceedance stops, cease additional monitoring.					

Note: (a) ET - Environmental Team; IEC - Independent Environmental Checker; SOR - Supervising Officer's Representative

Event & Action Plan for Water Quality

Event	ET I	Leader	IEC		SOR			Contractor		
Action level being exceeded by one sampling day	 2. 3. 4. 	Repeat <i>in situ</i> measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor and SOR; Check monitoring data, all plant, equipment and Contractor's working methods.	1.	Check monitoring data submitted by ET and Contractor's working methods.	2.	Confirm receipt of notification of non-compliance in writing; Notify Contractor.	 2. 3. 	Inform the SOR and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Amend working methods if appropriate.		
Action level being exceeded by two or more consecutive sampling days	 2. 3. 4. 6. 7. 	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SOR and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SOR and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level;	 2. 3. 4. 	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly; Supervise the implementation of mitigation measures.	 2. 3. 	Discuss with IEC on the proposed mitigation measures; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures.	 2. 3. 4. 	Inform the Supervising Officer and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR; Implement the agreed mitigation measures.		
Limit level being exceeded by one sampling day	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and	1.	Confirm receipt of notification of failure in	1.	Inform the SOR and confirm notification of the		

Event	ET Leader	IEC	SOR	Contractor
	 Identify source(s) of impact; Inform IEC, contractor, SOR and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SOR and Contractor; 	Contractor's working method; 2. Discuss with ET and Contractor on possible remedial actions; 3. Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly.	 writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to review the working methods. 	non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment and consider changes of working methods; 4. Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR.
Limit level being exceeded by two or more consecutive sampling days	 Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SOR and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SOR and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days; 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the SOR accordingly; Supervise the implementation of mitigation measures. 	are properly implemented;Consider and instruct, if	 Take immediate action to avoid further exceedance; Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

Note: ET – Environmental Team, IEC – Independent Environmental Checker, SOR – Supervising Officer's Representative

Event/Action Plan for Impact Dolphin Monitoring

EVENT	ACTION*								
	ET	IEC	SOR	Contractor					
Action Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, SOR and Contractor; Check monitoring data. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and finding with the ET and the Contractor. 	 Discuss monitoring with the IEC and any other measures proposed by the ET; If SOR is satisfied with the proposal of any other measures, SOR to signify the agreement in writing on the measures to be implemented. 	 Inform the SOR and confirm notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SOR; Implement the agreed measures. 					
Limit Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, SOR and 	 Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. If SOR is satisfied with the 	 Inform the SOR and confirm notification of the non-compliance in writing; Attend the meeting to discuss with ET, IEC and SOR the necessity of additional dolphin monitoring and any other 					

EVENT	ACTION*								
	ET	IEC	SOR	Contractor					
	 Identify source(s) of impact; Inform the IEC, SOR and Contractor of findings; Check monitoring data; Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary. 	Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. 4. Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise SOR of the results and findings accordingly. 5. Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise SOR the results and findings accordingly.	proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, SOR to signify the agreement in writing on such proposals and any other mitigation measures. 3. Supervise the implementation of additional monitoring and/or any other mitigation measures.	potential mitigation measures. 3. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary. 4. Implement the agreed additional dolphin monitoring and/or any other mitigation measures.					

Appendix L

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

 Table L1
 Cumulative Statistics on Exceedances

Parameters	Level of Exceedance	Total No. recorded in this reporting month	Total No. recorded since project commencement
1-hr TSP	Action	0	30
	Limit	0	2
24-hr TSP	Action	0	5
	Limit	0	1
Water Quality	Action	0	6
	Limit	0	1
Impact Dolphin	Action	0	7
Monitoring	Limit	1	1

Table L2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Cumulative Statistics						
_	Complaints	Notifications of	Successful				
		Summons	Prosecutions				
This Reporting Month (February 2015)	0	0	0				
Total No. received since project commencement	4	0	0				

Appendix M

Waste Flow Table

Monthly Summary Waste Flow Table

Name of Department: HyD Contract No. / Works Order No.: HY/2012/08

Monthly Summary Waste Flow Table for February 2015 [to be submitted not later than the 15th day of each month following reporting month] (All quantities shall be rounded off to 3 decimal places.)

	Monthly Break-down of <u>Inert</u> Construction & Demolition Materials (i.e. Public Fill Materials)								
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Hard Rock and Large Broken Concrete	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill				
	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)				
Sub-total	64.216	0.000	0.000	0.000	64.216				
Jan-2015	30.877	0.000	0.000	0.000	30.877				
Feb-2015	4.152	0.000	0.000	0.000	4.152				
Mar-2015									
Apr-2015									
May-2015									
Jun-2015									
Half Year Sub-total									
Jul-2015									
Aug-2015									
Sep-2015									
Oct-2015									
Nov-2015									
Dec-2015									
Project Total Quantities	99.245	0.000	0.000	0.000	99.245				

		Actual Quantities of Non-inert Construction Waste Generated Monthly								
Month	Me	etals	Paper/ cardboard packaging			Plastics (see Note 3)		al Waste	Others, e.g. General Refuse disposed at Landfill	
	(in '0	000kg)	(in '(000kg)	(in '(000kg)	(in '000kg)		(in '000ton)	
	generated	recycled	generated	recycled	generated	recycled	generated	Disposed	generated	
Sub-total	0.000	0.000	1.050	1.050	0.000	0.000	0.110	0.110	0.605	
Jan-2015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.080	
Feb-2015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.074	
Mar-2015										
Apr-2015										
May-2015										
Jun-2015										
Half Year Sub-total										
Jul-2015										
Aug-2015										
Sep-2015										
Oct-2015										
Nov-2015										
Dec-2015	_									
Project Total Quantities	0.000	0.000	1.050	1.050	0.000	0.000	0.110	0.110	0.759	

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*								
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed of as Public Fill	Imported Fill	Marine Disposal (Cat. L)	Marine Disposal (Cat. M)	
(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 m ³)	(in '000 m ³)	
5.000	0.000	0.000	0.000	5.000	180.000	5.000	40.000	

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*							
Metals	Paper/ cardboard packaging Plastics (see Note 3) Chemical Waste General Refuse disposed of at Landfill						
(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)			
0.000	0.050	0.000	0.000	0.100			

Notes:

- (1) The performance targets are given in the **ER Appendix 8J Clause 14** and the EM & A Manual(s).
- (2) The waste flow table shall also include C&D materials to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³. (**ER Part 8 Clause 8.8.5** (d) (ii) refers).