

China Harbour Engineering Company Limited

Contract No. HY/2010/02

Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for March 2015

[04/2015]

	Name	Signature
Prepared & Checked:	Y T Tang	Constain
Reviewed, Approved and Certified:	Echo Leong (ETL)	Schokeon

Version:	Rev. 0	Date:	16 April 2015
----------	--------	-------	---------------

Disclaimer

This report is prepared for China Harbour Engineering Company Limited and is given for its sole benefit in relation to and pursuant to Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities-Reclamation Works and may not be disclosed to, quoted to or relied upon by any person other than China Harbour Engineering Company Limited without our prior written consent. No person (other than China Harbour Engineering Company Limited) into whose possession a copy of this report comes may rely on this report without our express written consent and China Harbour Engineering Company Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: HYDHZMBEEM00_0_2884L.15 16 April 2015

Engineer's Representative Ove Arup & Partners Chief Resident Engineer's Office 5 Ying Hei Road, Tung Chung, Lantau Hong Kong By Fax (3698 5999) and By Post

Attention: Mr. Roger Marechal

Dear Sir,

Re: Agreement No. CE 48/2011 (EP)
Environmental Project Office for the
HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities,
and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2010/02 HZMB HKBCF – Reclamation Works Monthly Environmental Monitoring & Audit Report for March 2015

Reference is made to the Environmental Team's submission of the Monthly Environmental Monitoring & Audit Report for March 2015 (letter ref: 60249820/C/RMKY15041601 dated 16 April 2015) copied to us by E-mail on 16 April 2015.

We are pleased to inform you that we have no adverse comment on the captioned Monthly EM&A Report. We write to verify the captioned report in accordance with Condition 5.4 of EP-353/2009/H and Condition 4.4 of EP-354/2009/D (for TM-CLKL Southern Landfall Reclamation only).

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,

Raymond Dai

Independent Environmental Checker

Longuet

c.c. HyD Mr. Matthew Fung (By Fax: 3188 6614) HyD Mr. Wai-ping Lee (By Fax: 3188 6614) AECOM Ms. Echo Leong (By Fax: 2317 7609) CHEC Mr. Lim Kim Chuan (By Fax: 2578 0413)

Internal: DY, YH, SL, JM, ENPO Site

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_2884L.15.docx

TABLE OF CONTENTS

			Page
EXE	ECUTIVE SUMMARY		3
1	INTRODUCTION		5
	1.1 Background1.2 Scope of Report1.3 Project Organization1.4 Summary of Const1.5 Summary of EM&A		5 5 6 6 7
2	AIR QUALITY MONITOR	RING	8
	2.5 Monitoring Method	nent ins eters, Frequency and Duration lology ule for the Reporting Month	8 8 10 10 12 12
3	NOISE MONITORING		13
	3.5 Monitoring Method	nent ins eters, Frequency and Duration lology ule for the Reporting Month	13 13 13 14 14 14 15
4	WATER QUALITY MON	ITORING	16
	4.4 Monitoring Locatio4.5 Monitoring Method	nent eters, Frequency and Duration ins lology ule for the Reporting Month	16 16 16 17 17 19
5	DOLPHIN MONITORING	3	23
	5.4 Monitoring Method5.5 Monitoring Proced	nent ncy and Conditions dology and Location ures ule for the Reporting Month	23 23 23 23 25 25 25
6	ENVIRONMENTAL SITE	E INSPECTION AND AUDIT	29
	6.3 Environmental Lice6.4 Implementation State6.5 Summary of Exceed	d and Liquid Waste Management Status enses and Permits atus of Environmental Mitigation Measures edances of the Environmental Quality Performance Limit blaints, Notification of Summons and Successful Prosecutions	29 31 32 32 34 34
7	FUTURE KEY ISSUES		36
	7.3 Key Issues for the	ramme for the Coming Months Coming Month ule for the Coming Month	36 37 37

List of Tables

Table 1.1	Contact Information of Key Personnel
Table 2.1	Air Quality Monitoring Equipment
Table 2.2	Locations of Impact Air Quality Monitoring Stations
Table 2.3	Air Quality Monitoring Parameters, Frequency and Duration
Table 2.4	Summary of 1-hour TSP Monitoring Results in the Reporting Period
Table 2.5	Summary of 24-hour TSP Monitoring Results in the Reporting Period
Table 3.1	Noise Monitoring Equipment
Table 3.2	Locations of Impact Noise Monitoring Stations
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Summary of Construction Noise Monitoring Results in the Reporting Period
Table 4.1	Water Quality Monitoring Equipment
Table 4.2	Impact Water Quality Monitoring Parameters and Frequency
Table 4.3	Impact Water Quality Monitoring Stations
Table 4.4	Laboratory Analysis for Suspended Solids
Table 4.5	Summary of Water Quality Exceedances
Table 5.1	Dolphin Monitoring Equipment
Table 5.2	Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD)
Table 5.3	Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State
Table 5.4	Impact Dolphin Monitoring Survey Details March 2015
Table 5.5	The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^
Table 6.1	Summary of Environmental Licensing and Permit Status

Figures

Figure 1	General Project Layout Plan
Figure 2	Impact Air Quality and Noise Monitoring Stations and Wind Station
Figure 3	Impact Water Quality Monitoring Stations
Figure 4	Impact Dolphin Monitoring Line Transect Layout Map
Figure 5	Impact Dolphin Monitoring Survey Efforts and Sightings in March 2015
Figure 6	Environmental Complaint Handling Procedures

Project Organization for Environmental Works

List of Appendices

Appendix A

Appendix B	Three Month Rolling Construction Programmes
Appendix C	Implementation Schedule of Environmental Mitigation Measures (EMIS)
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Monitoring Equipments
Appendix F	EM&A Monitoring Schedules
Appendix G	Impact Air Quality Monitoring Results and their Graphical Presentation
Appendix H	Meteorological Data for Monitoring Periods on Monitoring Dates in March 2015
Appendix I	Impact Construction Noise Monitoring Results and their Graphical Presentation
Appendix J	Impact Water Quality Monitoring Results and their Graphical Presentation
Appendix K	Impact Dolphin Monitoring Survey Sighting Summary
Appendix L	Event Action Plan
Appendix M	Monthly Summary of Waste Flow Table
Appendix N	Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful
	Prosecutions

EXECUTIVE SUMMARY

Contract No. HY/2010/02 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun - Chek Lap Kok Link (TMCLKL). It is a designated project and is governed by the current permits for the Project, i.e. the amended Environmental Permits (EPs) issued on 19 January 2015 (EP-353/2009/H) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).

Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Project).

China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Project.

ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Project for carrying out the environmental monitoring and audit (EM&A) works.

The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2016. The EM&A programme, including air quality, noise, water quality and dolphin monitoring and environmental site inspections, was commenced on 12 March 2012.

This report documents the findings of EM&A works conducted in the period between 1 and 31 March 2015. As informed by the Contractor, major activities in the reporting period were:-

Marine-base

- Cellular structure installation and backfilling
- Capping Beams structures
- Conforming sloping seawalls
- Surcharge remove & laying
- Earthwork fill
- Deep Cement Mixing
- Jet grout columns works
- Geotechnical Instrumentation works
- Maintenance of silt curtain & silt screen at sea water intake of HKIA

Land-base

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour Total Suspended Particulates (TSP) monitoring5 sessions1-hour TSP monitoring5 sessionsNoise monitoring5 sessionsImpact water quality monitoring13 sessionsImpact dolphin monitoring2 surveysJoint Environmental site inspection4 sessions

Breaches of Action and Limit Levels for Air Quality

All 1-Hour TSP and 24-Hour TSP results were below the Action and Limit Level in the reporting month.

Breaches of Action and Limit Levels for Noise

For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.

Breaches of Action and Limit Levels for Water Quality

For water quality, two (2) Action Level Exceedances of SS at IS10 and SR5 during Flood tide were recorded on 23 March 2015. No Action and Limit Level exceedances were recorded on other monitoring date in the reporting month. After investigation, there is no adequate information to conclude the recorded exceedances are related to this Contract.

Impact Dolphin Monitoring

A total of five sightings were made, three "on effort" and two "opportunistic". Three sightings were recorded on 19 March 2015 and two sightings were made on 30 March 2015 in NWL. A total of twelve individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.

Behaviour: Of the five sightings, one group was noted as feeding, three group has boat association behavior and one group was noted as travelling, locations of sighting with different behaviour are mapped in Figure 5d

Complaint, Notification of Summons and Successful Prosecution

As informed by the Contractor on 09 March 2015, there is an air quality complaint received on 06 March 2015. The complainant Mr. Fung requested for follow-up actions to be taken by relevant departments in response to his Complaint about sand and dust emission from 4-5 uncovered sand barges parking near the coastline of Tuen Mun, the complainant concerns about the health problems to residents as the sand is blown to their apartments. After investigation, there is no adequate information to conclude the observed impact is related to this Contract.

No notification of summons or prosecution was received in the reporting period

Reporting Change

There was no reporting change required in the reporting period.

Future Key Issues

Key issues to be considered in the coming month included:-

- Site runoff should be properly collected and treated prior to discharge;
- Minimize loss of sediment from filling works;
- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
- Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission:
- Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures for operating equipment and machinery on-site, such as erection of movable noise barriers or enclosure for noisy plants;
- Closely check and replace the sound insulation materials regularly;
- Better scheduling of construction works to minimize noise nuisance;
- Properly store and label oil drums and chemical containers placed on site;
- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved and confined areas;
- Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.
- Control night-time lighting and glare by hooding all lights.

- Regular review and provide maintenance to dust control measures such as sprinkler system.

1 INTRODUCTION

1.1 Background

- 1.1.1 Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun Chek Lap Kok Link (TMCLKL).
- 1.1.2 The environmental impact assessment (EIA) reports (Hong Kong Zhuhai Macao Bridge Hong Kong Boundary Crossing Facilities EIA Report (Register No. AEIAR-145/2009) (HKBCFEIA) and Tuen Mun Chek Lap Kok Link EIA Report (Register No. AEIAR-146/2009) (TMCLKLEIA), and their environmental monitoring and audit (EM&A) Manuals (original EM&A Manuals), for the Project were approved by Environmental Protection Department (EPD) in October 2009.
- 1.1.1 EPD subsequently issued the Environmental Permit (EP) for HKBCF in November 2009 (EP-353/2009) and the Variation of Environmental Permit (VEP) in June 2010 (EP-353/2009/A), November 2010 (EP-353/2009/B), November 2011 (EP-353/2009/C), March 2012 (EP-353/2009/D), October 2012 (EP-353/2009/E), April 2013 (EP-353/2009/F), August 2013 (EP-353/2009/G) and January 2015 (EP-353/2009/H). Similarly, EPD issued the Environmental Permit (EP) for TMCLKL in November 2009 (EP-354/2009) and the Variation of Environmental Permit (VEP) in December 2010 (EP-354/2009/A), January 2014 (EP-354/2009/B), December 2014 (EP-354/2009/C) and March 2015 (EP-354/2009/D).
- 1.1.2 The Project is a designated project and is governed by the current permits for the Project, i.e. the amended EPs issued on 19 January 2015 (EP-353/2009/H) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).
- 1.1.3 A Project Specific EM&A Manual, which included all project-relation contents from the original EM&A Manuals for the Project, was issued in May 2012.
- 1.1.4 Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Project).
- 1.1.5 China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Project.
- 1.1.6 ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.
- 1.1.7 AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Project for carrying out the EM&A works.
- 1.1.8 The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2016.
- 1.1.9 According to the Project Specific EM&A Manual, there is a need of an EM&A programme including air quality, noise, water quality and dolphin monitoring and environmental site inspections. The EM&A programme of the Project commenced on 12 March 2012.

1.2 Scope of Report

1.2.1 This is the thirty-seventh monthly EM&A Report under the Contract No.HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in March 2015.

1.3 Project Organization

1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Engineer's Representative (ER) (Ove Arup & Partners Hong Kong Limited)	Chief Resident Engineer	Roger Marechal	3698 5700	2698 5999
IEC / ENPO	Independent Environmental Checker	Raymond Dai	3465 2888	3465 2899
(ENVIRON Hong Kong Limited)	Environmental Project Office Leader	Y. H. Hui	3465 2868	3465 2899
Contractor (China Harbour	Environmental Officer	Richard Ng	36932253	2578 0413
`Engineering Company Limited)	24-hour Hotline	Alan C.C. Yeung	9448 0325	
ET (AECOM Asia Company Limited)	ET Leader	Echo Leong	3922 9280	2317 7609

1.4 Summary of Construction Works

- 1.4.1 The construction phase of the Project under the EP commenced on 12 March 2012.
- 1.4.2 As informed by the Contractor, details of the major works carried out in this reporting period are listed below:-

Marine-base

- Cellular structure installation and backfilling
- Capping Beams structures
- Conforming sloping seawalls
- Surcharge remove & laying
- Earthwork fill
- Deep Cement Mixing
- Jet grout columns works
- Geotechnical Instrumentation works
- Maintenance of silt curtain & silt screen at sea water intake of HKIA

Land-base

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

- 1.4.3 The 3-month rolling construction programme of the Project is shown in Appendix B.
- 1.4.4 The general layout plan of the Project site showing the detailed works areas is shown in Figure 1.
- 1.4.5 The environmental mitigation measures implementation schedule are presented in Appendix C.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise, water quality, marine ecology and environmental site inspections for air quality, noise, water quality, waste management, marine ecology, and landscape and visual impact. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming month;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA reports; and
 - Environmental requirement in contract documents.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the Project Specific EM&A Manual, baseline 1-hour and 24-hour Total Suspended Particulates (TSP) levels at 4 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix D.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the Project Specific EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Air Sampler (Model No. TE-5170)

2.3 Monitoring Locations

- 2.3.1 Monitoring locations AMS2 and AMS7 were set up at the proposed locations in accordance with Project Specific EM&A Manual. For AMS6 (Dragonair/CNAC (Group) Building), permission on setting up and carrying out impact monitoring works was sought, however, access to the premise has not been granted yet on this report issuing date. For monitoring location AMS3 (Ho Yu College), as proposed in the Project Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact air quality monitoring was conducted at site boundary of the site office area in Works Area WA2 (AMS3B) respectively. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.2 It was observed that a tree near AMS3B may affect the wind flow around the HVS located at AMS3B. With no further comment received from IEC, the HVS at AMS3B has been relocated on 8 September 2014 to slightly more than 2 meters separation from it, measured horizontally. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.3 Reference is made to ET's proposal of the omission of air monitoring station (AMS 6) dated on 1 November 2012 and EPD's letter dated on 19 November 2012 regarding the conditional approval of the proposed omission of air monitoring station (AMS 6) for Contract No. HY/2010/02. The aforesaid omission of Monitoring Station AMS6 is effective since 19 November 2012.
- 2.3.4 Reference is made to ET's proposal of relocation of air quality monitoring station (AMS7) dated on 2 February 2015, with no further comment received from IEC on 2 February 2015 and no objection received from EPD on 5 February 2015, the impact air quality monitoring station AMS7 (Hong Kong SkyCity Marriott Hotel) has been relocated to AMS7A (Chu Kong Air-Sea Union Transportation Company Limited) on 3 February 2015. Action Level for air quality, as derived from the baseline monitoring data recorded at Hong Kong SkyCity Marriott Hotel, was adopted for this alternative air quality location.

2.3.5 Figure 2 shows the locations of monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 Locations of Impact Air Quality Monitoring Stations

Monitoring Station Location		Description	
AMS2 Tung Chung Development Pier		Rooftop of the premise	
AMS3B Site Boundary of Site Office Area at Works Area WA2		On ground at the area boundary	
AMS6* Dragonair/CNAC (Green		On ground at boundary of the premise	
Chu Kong Air-Sea Union AMS7A Transportation Company Limited		On ground at boundary of the premise	

*Remarks: Reference is made to EPD conditional approval of the omission of air monitoring station (AMS 6) for the project. The omission will be effective on 19 November 2012.

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration		
1-hour TSP	Three times every 6 days while the highest dust impact was expected		
24-hour TSP	Once every 6 days		

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) No two samplers should be placed less than 2 meters apart.
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (ix) A secured supply of electricity was obtained to operate the samplers.
 - (x) The sampler was located more than 20 meters from any dripline.
 - (xi) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xii) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.

(iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminum strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.1 m³/min, and complied with the range specified in the updated EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) 5-point calibration of the HVS was conducted using TE-5025A Calibration Kit prior to the commencement of baseline monitoring. Bi-monthly 5-point calibration of the HVS will be carried out during impact monitoring.
- (iii) Calibration certificate of the HVSs are provided in Appendix E.

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

- (b) Maintenance and Calibration
 - (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix E.
 - (ii) 1-hour validation checking of the TSP meter against HVS is carried out on half-year basis at the air quality monitoring locations.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for air quality monitoring in March 2015 is provided in Appendix F.

2.7 Results and Observations

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Table 2.4 and 2.5 respectively. Detailed impact air quality monitoring results are presented in Appendix G.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AMS2	77	72-85	374	500
AMS3B	77	72-84	368	500
AMS7A	78	72-84	370	500

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AMS2	55	35-96	176	260
AMS3B	62	47-95	167	260
AMS7A	36	24-50	183	260

- 2.7.2 The event action plan is annexed in Appendix L.
- 2.7.3 Meteorological information collected from the wind station during the monitoring periods on the monitoring dates, as shown in Figure 2, including wind speed and wind direction, is annexed in Appendix H.

3 NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the Project Specific EM&A Manual, impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix D.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	Rion NL-31 & B&K2238
Acoustic Calibrator	Rion NC-74 & B&K 4231

3.3 Monitoring Locations

- 3.3.1 Monitoring locations NMS2 was set up at the proposed locations in accordance with Project Specific EM&A Manual. However, for monitoring location NMS3 (Ho Yu College), as proposed in the Project Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact noise monitoring was conducted at site boundary of the site office area in Works Area WA2 (NMS3B) respectively. Same baseline noise level (as derived from the baseline monitoring data recorded at Ho Yu College) and Limit Level were adopted for this alternative noise monitoring location.
- 3.3.2 Figure 2 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 Locations of Impact Noise Monitoring Stations

Monitoring Station Location		Description	
NMS2	Seaview Crescent Tower 1	Free-field on the rooftop of the premise	
NMS3B	Site Boundary of Site Office Area at Works Area WA2	Free-field on ground at the area boundary.	

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). L_{eq} , L_{10} and L_{90} would be recorded.	At least once per week

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground for free-field measurements at NMS2. A correction of +3 dB(A) shall be made to the free field measurements.
- (b) All measurement at NMS3B were free field measurements in the reporting month at NMS3B. A correction of +3 dB(A) shall be made to the free field measurements.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:-
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: $L_{eq(30-minutes)}$ during non-restricted hours i.e. 07:00-1900 on normal weekdays.
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix E.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for construction noise monitoring in March 2015 is provided in Appendix F.

3.7 Monitoring Results

3.7.1 The monitoring results for construction noise are summarized in Table 3.4 and the monitoring data is provided in Appendix I.

Table 3.4 Summary of Construction Noise Monitoring Results in the Reporting Period

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),	
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq (30 mins)}	
NMS2	68	67-69*	75	
NMS3B	67	64-68*	70/65^	

^{*+3}dB(A) Façade correction included

- 3.7.2 No Action or Limit Level Exceedance of construction noise was recorded in the reporting month.
- 3.7.3 Major noise sources during the noise monitoring included construction activities of the Project, construction activities by other contracts and nearby traffic noise.
- 3.7.4 The event action plan is annexed in Appendix L.

[^] Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

4 WATER QUALITY MONITORING

4.1 Monitoring Requirements

4.1.1 Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. For impact water quality monitoring, measurements were taken in accordance with the Project Specific EM&A Manual. Appendix D shows the established Action/Limit Levels for the environmental monitoring works.

4.2 Monitoring Equipment

4.2.1 Table 4.1 summarises the equipment used in the impact water quality monitoring programme.

Table 4.1 Water Quality Monitoring Equipment

Equipment	Brand and Model
Dissolved Oxygen (DO) and Temperature Meter, Salinity	YSI Model 6820
Meter and Turbidimeter	
pH Meter	YSI Model 6820 or Thermo Orion 230A+
Positioning Equipment	JRC DGPS 224 Model JLR-4341 with J-NAV
	500 Model NWZ4551
Water Depth Detector	Eagle Cuda-168 and Lowrance x-4
Water Sampler	Kahlsio Water Sampler (Vertical) 2.2 L with
	messenger

4.3 Monitoring Parameters, Frequency and Duration

4.3.1 Table 4.2 summarises the monitoring parameters, frequency and monitoring depths of impact water quality monitoring as required in the Project Specific EM&A Manual.

Table 4.2 Impact Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameter, unit	Frequency	No. of depth
Impact Stations: IS5, IS(Mf)6, IS7, IS8, IS(Mf)9, IS10, IS(Mf)11, IS(Mf)16, IS17 Control/Far Field Stations: CS(Mf)3, CS(Mf)5, CS4, CS6, CSA Sensitive Receiver Stations: SR3-SR7, SR10A&SR10B	 Depth, m Temperature, °C Salinity, ppt Dissolved Oxygen (DO), mg/L DO Saturation, % Turbidity, NTU pH Suspended Solids (SS), mg/L 	Three times per week during mid- ebb and mid- flood tides (within ± 1.75 hour of the predicted time)	3 (1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the middepth station may be omitted. Should the water depth be less than 3 m, only the mid-depth station will be monitored).

4.4 Monitoring Locations

- 4.4.1 In accordance with the Project Specific EM&A Manual, twenty-one stations (9 Impact Stations, 7 Sensitive Receiver Stations and 5 Control/Far Field Stations) were designated for impact water quality monitoring. The nine Impact Stations (IS) were chosen on the basis of their proximity to the reclamation and thus the greatest potential for water quality impacts, the seven Sensitive Receiver Stations (SR) were chosen as they are close to the key sensitive receives and the five Control/ Far Field Stations (CS) were chosen to facilitate comparison of the water quality of the IS stations with less influence by the Project/ ambient water quality conditions.
- 4.4.2 Due to safety concern and topographical condition of the original locations of SR4 and SR10B, alternative impact water quality monitoring stations, naming as SR4 (N) and SR10B (N), were adopted, which are situated in vicinity of the original impact water quality monitoring stations (SR4 and SR10B) and could be reachable.
- 4.4.3 Same baseline and Action Level for water quality, as derived from the baseline monitoring data recorded, were adopted for these alternative impact water quality monitoring stations.
- 4.4.4 The locations of these monitoring stations are summarized in Table 4.3 and depicted in Figure 3.

Table 4.3 Impact Water Quality Monitoring Stations

Station	Description	East	North
IS5	Impact Station (Close to HKBCF construction site)	811579	817106
IS(Mf)6	Impact Station (Close to HKBCF construction site)	812101	817873
IS7	Impact Station (Close to HKBCF construction site)	812244	818777
IS8	Impact Station (Close to HKBCF construction site)	814251	818412
IS(Mf)9	Impact Station (Close to HKBCF construction site)	813273	818850
IS10	Impact Station (Close to HKBCF construction site)	812577	820670
IS(Mf)11	Impact Station (Close to HKBCF construction site)	813562	820716
IS(Mf)16	Impact Station (Close to HKBCF construction site)	814328	819497
IS17	Impact Station (Close to HKBCF construction site)	814539	820391
SR3	Sensitive receivers (San Tau SSSI)	810525	816456
SR4(N)	Sensitive receivers (Tai Ho)	814705	817859
SR5	Sensitive receivers (Artificial Reef in NE Airport)	811489	820455
SR6	Sensitive receivers (Sha Chau and Lung Kwu Chau Marine Park)	805837	821818
SR7	Sensitive receivers (Tai Mo Do)	814293	821431
SR10A	Sensitive receivers (Ma Wan FCZ)1	823741	823495
SR10B(N)	Sensitive receivers (Ma Wan FCZ)2	823683	823187
CS(Mf)3	Control Station	809989	821117
CS(Mf)5	Control Station	817990	821129
CS4	Control Station	810025	824004
CS6	Control Station	817028	823992
CSA	Control Station	818103	823064

4.5 Monitoring Methodology

4.5.1 Instrumentation

(a) The in-situ water quality parameters, viz. dissolved oxygen, temperature, salinity, turbidity and pH, were measured by multi-parameter meters (i.e. Model YSI 6820 CE-C-M-Y) and pH meter (i.e. Thermo Orion 230A+) respectively.

4.5.2 Operating/Analytical Procedures

- (a) Digital Differential Global Positioning Systems (DGPS) were used to ensure that the correct location was selected prior to sample collection.
- (b) Portable, battery-operated echo sounders were used for the determination of water depth at each designated monitoring station.
- (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
- (d) At each measurement/sampling depth, two consecutive in-situ monitoring (DO concentration and saturation, temperature, turbidity, pH, salinity) and water sample for SS. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of DO or turbidity parameters was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- (e) Duplicate samples from each independent sampling event were collected for SS measurement. Water samples were collected using the water samplers and the samples were stored in high-density polythene bottles. Water samples collected were well-mixed in the water sampler prior to pre-rinsing and transferring to sample bottles. Sample bottles were pre-rinsed with the same water samples. The sample bottles were then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. for the analysis of suspended solids concentrations. The laboratory determination work would be started within 24 hours after collection of the water samples. ALS Technichem (HK) Pty Ltd. is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples was analyzed.
- (f) The analysis method and reporting and detection limit for SS is shown in Table 4.4.

Table 4.4 Laboratory Analysis for Suspended Solids

Parameters	Instrumentation	Analytical Method	Reporting Limit	Detection Limit
Suspended Solid (SS)	Weighting	APHA 2540-D	0.5mg/L	0.5mg/L

(g) Other relevant data were recorded, including monitoring location / position, time, water depth, tidal stages, weather conditions and any special phenomena or work underway at the construction site in the field log sheet for information.

4.5.3 Maintenance and Calibration

- (a) All in situ monitoring instruments would be calibrated and calibrated by ALS Technichem (HK) Pty Ltd. before use and at 3-monthly intervals throughout all stages of the water quality monitoring programme. Calibration details are provided in Appendix E.
- (b) The dissolved oxygen probe of YSI 6820 was calibrated by wet bulb method. Before the calibration routine, the sensor for dissolved oxygen was thermally equilibrated in water-saturated air. Calibration cup is served as a calibration chamber and it was loosened from airtight condition before it is used for the calibration. Calibration at ALS Technichem (HK) Pty Ltd. was carried out once every three months in a water sample with a known concentration of dissolved oxygen. The sensor was immersed in the water and after thermal equilibration, the known mg/L value was keyed in and the calibration was carried out automatically.
- (c) The turbidity probe of YSI 6820 is calibrated two times a month. A zero check in distilled water was performed with the turbidity probe of YSI 6820 once per monitoring day. The probe will be calibrated with a solution of known NTU at ALS Technichem (HK) Pty Ltd. once every three months.

4.6 Monitoring Schedule for the Reporting Month

4.6.1 The schedule for impact water quality monitoring in March 2015 is provided in Appendix F.

4.7 Results and Observations

4.7.1 Impact water quality monitoring results and graphical presentations are provided in Appendix J.

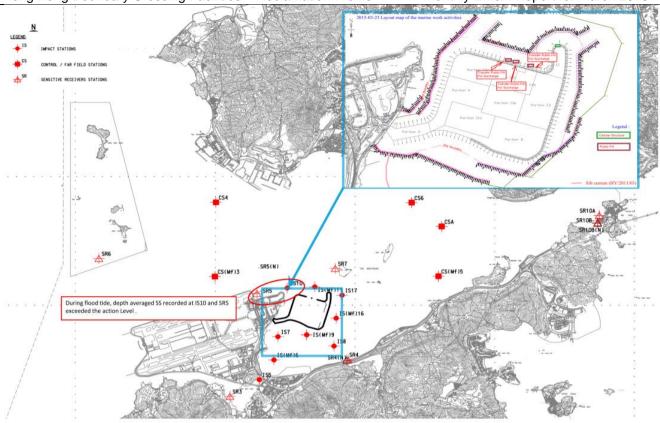


Table 4.5 Summary of Water Quality Exceedances

Station	Exceedance Level	DO (S&M)	DO (B	ottom)	Tur	bidity	SS		T	otal
	Levei	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood
ICE	Action	0	0	0	0	0	0	0	0	0	0
IS5	Limit	0	0	0	0	0	0	0	0	0	0
IC/Mf\C	Action	0	0	0	0	0	0	0	0	0	0
IS(Mf)6	Limit	0	0	0	0	0	0	0	0	0	0
IS7	Action	0	0	0	0	0	0	0	0	0	0
137	Limit	0	0	0	0	0	0	0	0	0	0
IS8	Action	0	0	0	0	0	0	0	0	0	0
130	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)9	Action	0	0	0	0	0	0	0	0	0	0
13(1111)3	Limit	0	0	0	0	0	0	0	0	0	0
IS10	Action	0	0	0	0	0	0	0	(1) 23 Mar15	0	1
	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)11	Action	0	0	0	0	0	0	0	0	0	0
13(1011)11	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)16	Action	0	0	0	0	0	0	0	0	0	0
13(1011)10	Limit	0	0	0	0	0	0	0	0	0	0
IS17	Action	0	0	0	0	0	0	0	0	0	0
1017	Limit	0	0	0	0	0	0	0	0	0	0
SR3	Action	0	0	0	0	0	0	0	0	0	0
Orto	Limit	0	0	0	0	0	0	0	0	0	0
SR4(N)	Action	0	0	0	0	0	0	0	0	0	0
O1(4(1 1)	Limit	0	0	0	0	0	0	0	0	0	0
SR5	Action	0	0	0	0	0	0	0	(1) 23 Mar15	0	1
	Limit	0	0	0	0	0	0	0	0	0	0
SR6	Action	0	0	0	0	0	0	0	0	0	0
5110	Limit	0	0	0	0	0	0	0	0	0	0
SR7	Action	0	0	0	0	0	0	0	0	0	0
5117	Limit	0	0	0	0	0	0	0	0	0	0
SR10A	Action	0	0	0	0	0	0	0	0	0	0
	Limit	0	0	0	0	0	0	0	0	0	0
SR10B	Action	0	0	0	0	0	0	0	0	0	0
(N)	Limit	0	0	0	0	0	0	0	0	0	0
Total	Action	0	0	0	0	0	0	0	2		2
	Limit	0	0	0	0	0	0	0	0		0

Note: S: Surface; and M: Mid-depth.

- 4.7.2 For water quality, two (2) Action Level Exceedances of SS at IS10 and SR5 during Flood tide were recorded on 23 March 2015. No Action and Limit Level exceedances were recorded on other monitoring date in the reporting month.
- 4.7.2.1 The exceedance was confirmed after checking against relevant control station(s) during flood tide i.e. CS6, CSA and CS(Mf)5 following the Action and Limit Levels for Water Quality.
- 4.7.2.2 Layout map below shows active works conducted on 23 March 2015. Transfer of public fill for surcharge was conducted at north part of HKBCF reclamation works and marine based construction works such cellular structure was conducted at northeast part of the HKBCF Reclamation Works.

4.7.2.3 Photo record which shows the sea condition near IS10 at northwest part of the HKBCF during flood tide on 23 March 2015

4.7.2.4 Exceedance recorded at IS10 and SR5 during mid-flood tide are unlikely due to marine based construction activities of the Project because:

- 4.7.2.5 With reference to the silt curtain checking record, defects such as disconnection of the silt curtain was not observed at northwest part of the perimeter silt curtain which are close to the IS10 and SR5.
- 4.7.2.6 The attached layout map shows transfer of public fill for surcharge was conducted at north part of HKBCF reclamation works, since it is not marine based work, therefore it was considered unlikely to cause the SS exceedances recorded at IS10 and SR5 during mid-flood tide.
- 4.7.2.7 The attached layout map shows that cellular structure was conducted at northeast part of the HKBCF Reclamation Works, however, the turbidity data retrieved from the IS17 and IS(Mf)11 which are in the vicinity of marine-based works (cellular structure) undertaken on 23 March 2015, did not exceed the action and limit level. As such, it was considered unlikely to cause the SS exceedances recorded at IS10 and SR5 during mid-flood tide.
- 4.7.2.8 Furthermore, no filling activities were observed in progress and no silt plume was observed to flow from the inside of the perimeter silt curtain to the outside of the perimeter silt curtain when monitoring was conducted at IS10 and SR5. (Also see attached for sea condition observed on 23 March 2015 during flood tide.)
- 4.7.2.9 Also, turbidity level recorded at SR5, IS10 and IS(Mf)11 were below the action and limit level. This indicates the turbidity level at area near SR5 and IS10 was not adversely affected.
- 4.7.2.10 The exceedances were likely due to local effects in the vicinity of SR5 and IS10.
- 4.7.2.11 After investigation, there is no adequate information to conclude the recorded exceedances are related to this Contract.
- 4.7.2.12 Action taken under the action plan:
 - 1. Not applicable as SS was not measured in situ;
 - 2. After considering the above mentioned investigation results, it appears that it was unlikely that the SS exceedances were attributed to active construction activities of this Contract;
 - 3. IEC, contractor and ER were informed via email;
 - 4. Monitoring data, all plant, equipment and Contractor's working methods were checked;
 - 5. Since it is considered that the SS exceedance is unlikely to be project related, as such, actions 5-7 under the EAP are not considered applicable.
- 4.7.2.13 Nevertheless, the Contractor was reminded to ensure provision of ongoing maintenance to the silt curtains and to carry out maintenance work once defects were found.
- 4.7.2.14 Maintenance work of the silt curtain was carried out by the Contractor on a daily basis as necessary.
 - 4.7.3 The event action plan is annexed in Appendix L.

5 DOLPHIN MONITORING

5.1 Monitoring Requirements

- 5.1.1 Vessel based surveys for the Chinese White Dolphin (CWD), Sousa chinensis, are to be conducted by a dedicated team comprising a qualified marine mammal ecologist and experienced marine mammal observers (MMOs). The purpose of the surveys are to evaluate the impact of the HKCBF reclamation and, if deemed detrimental, to take appropriate action as per the EM&A manual.
- 5.1.2 This 'Impact Monitoring' follows several months of 'Baseline Monitoring' so similar survey methodologies have been adopted to facilitate comparisons between datasets. Further, the data collected are compatible with, and are available for, incorporation into the data set managed by the Agriculture, Fisheries and Conservation Department (AFCD) as part of Hong Kong's long term Marine Mammal Monitoring Programme.

5.2 Monitoring Equipment

Table 5.1 summarises the equipment used for the impact dolphin monitoring.

Table 5.1 Dolphin Monitoring Equipment

Equipment	Model
Commercially licensed motor vessel	15m in length with a 4.5m viewing platform
Global Positioning System (GPS) x2	Integrated into T7000
	Garmin GPS Map 76C
Computers (T7000 Tablet, Intel Atom)	Windows 7/MSO 13
	Logger
Camera	Nikon D7100 300m 2.8D fixed focus
	Nikon D90 80-400mm zoom lens
Laser Rangefinder	Range Finder Bushnell 1000m
Marine Binocular x3	Nexus 7 x 50 marine binocular with compass
	and reticules
	Fujinon 7 x 50 marine binocular with compass
	and reticules

5.3 Monitoring Frequency and Conditions

- 5.3.1 Dolphin monitoring is conducted twice per month in each survey area.
- 5.3.2 Dolphin monitoring is conducted only when visibility is good (e.g., over 1km) and the sea condition is at a Beaufort Sea State of 4 or better.
- 5.3.3 When thunder storm, black rain or typhoon warnings are in force, all survey effort is stopped.

5.4 Monitoring Methodology and Location

- 5.4.1 The impact dolphin monitoring is vessel-based and combines line-transect and photo-ID methodology. The survey follows pre-set and fixed transect lines in the two areas defined by AFCD as:
- 5.4.2 Northeast Lantau survey area; and
- 5.4.3 Northwest Lantau survey area.
- 5.4.4 The co-ordinates for the transect lines and layout map have been provided by AFCD and are shown in Table 5.2 and Figure 4.

Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD) Table 5.2

	HK Grid	System	Long Lat	in WGS84
ID	X	Υ	Long	Lat
1	804671	814577	113.870308	22.269741
1	804671	831404	113.869975	22.421696
2	805475	815457	113.878087	22.277704
2	805477	826654	113.877896	22.378814
3	806464	819435	113.887615	22.313643
3	806464	822911	113.887550	22.345030
4	807518	819771	113.897833	22.316697
4	807518	829230	113.897663	22.402113
5	808504	820220	113.907397	22.320761
5	808504	828602	113.907252	22.396462
6	809490	820466	113.916965	22.323003
6	809490	825352	113.916884	22.367128
7	810499	820690	113.926752	22.325043
7	810499	824613	113.926688	22.360464
8	811508	820847	113.936539	22.326475
8	811508	824254	113.936486	22.357241
9	812516	820892	113.946329	22.326894
9	812516	824254	113.946279	22.357255
10*	813525	818270	113.956156	22.303225
10*	813525	824657	113.956065	22.360912
11	814556	818449	113.966160	22.304858
11	814556	820992	113.966125	22.327820
12	815542	818807	113.975726	22.308109
12	815542	824882	113.975647	22.362962
13	816506	819480	113.985072	22.314192
13	816506	824859	113.985005	22.362771
14	817537	820220	113.995070	22.320883
14	817537	824613	113.995018	22.360556
15	818568	820735	114.005071	22.325550
15	818568	824433	114.005030	22.358947
16	819532	821420	114.014420	22.331747
16	819532	824209	114.014390	22.356933
17	820451	822125	114.023333	22.338117
17	820451	823671	114.023317	22.352084
18	821504	822371	114.033556	22.340353
18	821504	823761	114.033544	22.352903
19	822513	823268	114.043340	22.348458
19	822513	824321	114.043331	22.357971
20	823477	823402	114.052695	22.349680
20	823477	824613	114.052686	22.360610
21	805476	827081	113.877878	22.382668
21	805476	830562	113.877811	22.414103
22	806464	824033	113.887520	22.355164
22	806464	829598	113.887416	22.405423
23	814559	821739	113.966142	22.334574
23	814559	824768	113.966101	22.361920

*Remark: Due to the presence of deployed silt curtain systems at the site boundaries of the Project, some of the transect lines shown in Figure 5 could not be fully surveyed during the regular survey. Transect 10 is reduced from 6.4km to approximately 3.6km in length due to the HKBCF construction site. Therefore the total transect length for both NEL and NWL combined is reduced to approximately 111km.

5.5 Monitoring Procedures

- 5.5.1 The study area incorporates 23 transects which are to be surveyed twice per month. Each survey day lasts approximately 9 hours.
- 5.5.2 The survey vessel departs from Tung Chung Development Pier, Tsing Yi Public Pier or the nearest safe and convenient pier.
- 5.5.3 When the vessel reaches the start of a transect line, "on effort" survey begins. Areas between transect lines and traveling to and from the study area are defined as "off effort".
- 5.5.4 The transect line is surveyed at a speed of 6-8 knots (11-14 km/hr). For the sake of safety, the speed was sometimes a bit slower to avoid collision with other vessels. During some periods, tide and current flow in the survey areas exceeds 7 knots which can affect survey speed. There are a minimum of four marine mammal observers (MMOs) present on each survey, rotating through four positions, observers (2), data recorder (1) and 'rest' (1). Rotations occur every 30 minutes or at the end of dolphin encounters. The data recorder records effort, weather and sightings data directly onto the programme Logger and is not part of the observer team. The observers search with naked eye and binoculars between 90° and 270° abeam (bow being 0°).
- 5.5.5 When a group of dolphins is sighted, position, bearing and distance data are recorded immediately onto the computer and, after a short observation, an estimate made of group size. These parameters are linked to the time-GPS-ships data which are automatically stored in the programme Logger throughout the survey period. In this manner, information on heading, position, speed, weather, effort and sightings are stored in a format suitable for use with DISTANCE software for subsequent line transect analyses.
- 5.5.6 Once the vessel leaves the transect line, it is deemed to be "off effort". The dolphins are approached with the purpose of taking high resolution pictures for proper photo-identification of individual CWD. Attempts to photograph all dolphins in the group are made. Both the left and right hand sides of the dorsal fin area of each dolphin in the group are photographed, if possible. On finishing photographing, the vessel will return to the transect line at the point of departure and "on effort" survey is resumed.
- 5.5.7 Sightings which are made while on the transect line are referred to as "on effort sightings", while not on the actual transect line are referred to as an "opportunistic sightings" (e.g. another group of dolphins is sighted while travelling back to the transect line). Only "on effort sightings" can be used in analyses which require effort or rate quantification, e.g., encounter rate per 100km searched. This is also how "on effort sightings" are treated in the baseline report. "Opportunistic sightings" provide additional information on individual habitat use and population distribution and they are noted accordingly.
- 5.5.8 As time and GPS data are automatically logged throughout the survey and are linked to sightings data input, start and end times of encounters and deviation from the transect lines are recorded and can be subsequently reviewed.

5.6 Monitoring Schedule for the Reporting Month

- 5.6.1 The schedule for dolphin monitoring in March 2015 is provided in Appendix F.
- 5.6.2 Two surveys covering both study areas were completed.

5.7 Results and Observations

5.7.1 Dolphin surveys were conducted on 19, 20, 30 and 31 March 2015. A total of 218.9 km of transect line was conducted all of which during Beaufort Sea State 2 or better (favourable water conditions). Please note that that some lines were shortened due to works and/or shipping traffic.

The effort summary and sightings data are shown in Tables 5.3 and 5.4, respectively. The survey efforts conducted in March 2015 are plotted in Figure 5a-b. For Table 5.3, only on-effort information is included. Transects conducted in all Beaufort Sea State are included. Compared to previous monthly reports, the whole number Beaufort Sea State scale is used so as to ease comparison with other dolphin monitoring reports.

Table 5.3 Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State

Survey	Date	Area	Beaufort	Effort (km)	Total Distance Travelled (km)
	03/19/2015	NWL	1	67	67
1	03/20/2015	NWL	1	6.1	
	03/20/2015	NEL	1	30.3	42.6
	03/20/2015	NEL	2	6.2	
	03/30/2015	NWL	0	1.8	
	03/30/2015	NWL	1	53	63.3
0	03/30/2015	NWL	2	8.5	
2	03/31/2015	NWL	1	4.9	
	03/31/2015	NWL	2	5	46
	03/31/2015	NEL	1	30.3	40
	03/31/2015	NEL	2	5.8	
			TOTA	L in March 2015	218.9

^{*}Remark: Surveys conduct under Beaufort Sea State 3 or below are considered as under favourable condition.

Table 5.4 Impact Dolphin Monitoring Survey Details March 2015

Date	Location	No. Sightings "on effort"	No. Sightings "opportunistic"
	NW L	2	1
03/19/2015	NEL	0	0
	NW L	0	0
03/20/2015	NEL	0	0
	NW L	1	1
03/30/2015	NEL	0	0
	NW L	0	0
03/31/2015	NEL	0	0
	TOTAL in March 2015	3	2

Table 5.5 The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^

Encounter Rate of Number of Dolphin Sightings (STG)*								
Date	NEL Track (km)	NWL Track (km)	NEL Sightings	NWL Sightings	NEL Encounter Rate	NWL Encounter Rate		
19 & 20 March 2015	36.5	73.1	0	2	0.0	2.7		
30 & 31 March 2015	36.1	73.2	0	1	0.0	1.4		
Encounter Rate of Total Number of Dolphins (ANI)**								
Date	NEL Track (km)	NWL Track (km)	NEL Dolphins	NWL Dolphins	NEL Encounter Rate	NWL Encounter Rate		
19 & 20 March 2015	36.5	73.1	0	4	0.0	5.5		
30 & 31 March 2015	36.1	73.2	0	3	0.0	4.1		

^{*} Encounter Rate of Number of Dolphin Sightings (STG) presents encounter rates in terms of groups per 100km.

- 5.7.2 A total of five sightings were made, three "on effort" and two "opportunistic". Three sightings were recorded on 19 March 2015 and two sightings were made on 30 March 2015 in NWL. A total of twelve individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- 5.7.3 Behaviour: Of the five sightings, one group was noted as feeding, three group has boat association behavior and one group was noted as travelling, locations of sighting with different behaviour are mapped in Figure 5d
- 5.7.4 Photo ID analyses for February 2015 is presented in Appendix K.
- 5.7.5 Three resightings were noted in February 2015. On 9 February 2015, HZMB 005 was seen twice in one day on different transect lines. On 23 February 2015, HZNB 098 and HZMB 126 were sighted in different groups. Images and resightings data are included in Annex I of Appendix K.
- 5.7.6 Noteworthy Observation¹:
- 5.7.7.1 When impact monitoring was conducted at the southern parts of transect lines 1 & 2, the view of the area was partially blocked by the working vessels and fixed structures which do not belong to HKBCF Reclamation Works. The number of fixed structures has increased and in many areas, it is no longer possible to pass between them by ship. As the working vessels will move during the on-going works, it is considered that they will temporarily affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour, whereas the fixed structures will continuously affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour.
- 5.7.7.2 The HKBCF and adjoining "Southern Landfall" Projects effected lines 11 and 12. The view of the area was partially blocked by the working vessels and in water structures. As the working vessels will move as construction progresses, they will cause temporary effects to survey protocol and survey data collection. In time, the fixed structures will affect all survey protocols and dolphin ecology in the long term.

^{**} Encounter Rate of Total Number of Dolphins (ANI) presents encounter rates in terms of individuals per 100km. And the encounter rate is not corrected for individuals, calculation may represent double counting.

[^]The table is made only for reference to the quarterly STG & ANI, which were adopted for the Event & Action Plan.

¹ A noteworthy observation is to show that either the conduct of the surveys themselves is affected, i.e., the noted vessel or works impedes the progress or view of the survey platform. In addition, the vessel or construction works may be different or additional to that observed previously and further, are of such a nature that they are a likely to create an impact on the movement or behaviour of the subject of the impact survey, in this case, the dolphins.

A=COM

- 5.7.7.3 The northern end of lines 9-10 was affected by works which do not belong to the HKBCF Project; in particular, the view of the area was partially blocked by the now fixed structure. An anchorage also is located in this area. Due to its permanency, the reclamation will continuously affect all survey protocols and dolphin ecology.
- 5.7.7.4 New projects were ongoing at the southern ends of lines 3 and 5. At line 3, the platform partially blocked some of the survey view. At line 5, an anchored vessel with an extended perimeter designated by yellow buoys overlapped the transect line. There are no apparent fixed structure associated with either of these projects only platforms and servicing vessels. As it is not known what activity was being conducted, the effect that this project may have specifically on dolphins is not known.
- 5.7.7.5 A shipping hazard (a sunken ship) was observed at line 3, however, on the 19th March, works were in progress and the sunken ship was completely removed by the next survey of that area (30 March 2015).
- 5.7.7.6 The survey effort log notes the areas in which the visibility is limited or the survey is affected so that these can be accounted for in any subsequent analyses. Some of these obstructions will become permanent and some will be temporary as the HZMB is built and other projects progress. It is advised that the impact monitoring surveys should be completed as close to the predefined lines as possible (as per Figure 4 of this report).
- 5.7.7.7 The above noteworthy observations are largely a result of multiple and on-going infrastructure projects within the Lantau area. No amendment to EM&A protocols can negate the effects of these projects, e.g., it is a highly dynamic environment and viewing conditions may alter every survey (sometimes within surveys) and most of the survey area is affected, to some degree, by marine construction works. Instead, survey data analyses should incorporate any noteworthy observations which may affect either data collection or dolphin distribution and behavioural changes. The above mentioned activities recorded during boat survey will not affect implementation of the EM&A Programme provided appropriate data analyses are conducted.
- 5.7.7.8 A review of survey conditions was conducted. The works at lines 1 and 2 are progressing and permanent in water structures are in place. Given that these lines are now truncated due to these structures, it is advised that the start/end points of these lines be revised to reflect the new navigation required. A draft proposal to alter transect lines 1 and 2 was submitted to IEC/ENPO on 23 January 2015 to account for the permanent structures in the water. Further comments were given by IEC/ENPO on 26 February 2015 and the draft proposal is currently under ET's review.
- 5.7.7 The event action plan is annexed in Appendix L.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

6.1 Site Inspection

- 6.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 4 site inspections were carried out on 5, 12, 19 and 26 March 2015.
- 6.1.2 Particular observations during the site inspections are described below:

Air Quality

- 6.1.3 Fugitive dust was observed generated when spoil was excavated at east side of the reclamation works. The Contractor was advised to provide dust control measures when material during excavated of the spoil. The Contractor applied water on exposed soil during excavation of spoil. (Closed)
- 6.1.4 Cement was observed on surface of grout production facility; the Contractor was reminded that to ensure generation of fugitive dust is prevented and the entire grouting process and materials unloading, loading and transfer shall be performed within an enclosed system. (Reminder)

Noise

6.1.5 The Contractor was reminded to provide the facilities with acoustic decoupling measures in accordance with the proposed mitigation measures for noise stated in the EP-353/2009/H. (Reminder)

Water Quality

6.1.6 No adverse observation was identified in the reporting month.

Chemical and Waste Management

- 6.1.7 Defective drip tray was observed on barge, the Contractor was advised to provide drip tray without defects on barges. The Contractor rectified the defect of the drip tray. (Closed)
- 6.1.8 Waste water generated from the grout mixing process was stored within soil bund; the Contractor was advised to provide sufficient enclosure and ensure the wastewater from the work process is not released to the sea. The Contractor provided sufficient enclosure to the waste water observed. (Closed)
- 6.1.9 General refuse was observed stored on site without proper covers. The Contractor was reminded to provide rubbish bin with over to general refuse. General refuse was cleared by the Contractor. (Closed)
- 6.1.10 Oil drums without drip trays were observed on deck surface of barge DL4. The Contractor was reminded to provide mitigation measures such as drip tray to oil drums. The Contractor removed the oil drum. (Closed)
- 6.1.11 It was observed that the pipes used for transferring grout between barge DL4 and 天駿 3 were not fully enclosed, the Contractor was advised to provide measures to ensure potential leakage of grout from the grouting production process to the sea can be effective prevented. The Contractor provided measures to prevent potential leakage of grout from the grouting production process to the sea. (Closed)
- 6.1.12 Solidified grout was observed on deck of barge DL4. The Contractor was reminded to keep the deck surface clean and tidy. The solidified grouts were cleared by the Contractor. (Closed)
- 6.1.13 Oil drums without drip trays were observed at portion C2a. The Contractor was reminded to provide mitigation measures such as drip tray to oil drums. The oil drums were removed by the Contractor. (Closed)

- 6.1.14 Stagnant water was observed accumulated inside a drip tray on Barge Luen Hing 368, the Contractor was reminded to clear the water regularly to prevent potential runoff. (Reminder)
- 6.1.15 Hole was observed within bunding placed on Barge SHB 209, the Contractor was advised to provide effective mitigation measures by sealing the hole to prevent leakage and potential runoff. The Contractor rectified the deficiency by sealing the hole within the bunding on barge SHB 209. (Closed)

Landscape and Visual Impact

6.1.16 No relevant adverse impact was observed in the reporting month.

Others

6.1.17 Rectifications of remaining identified items are undergoing by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly.

6.2 Advice on the Solid and Liquid Waste Management Status

- 6.2.1 The Contractor had registered as a chemical waste producer for this Project. Receptacles were available for general refuse collection and sorting.
- 6.2.2 As advised by the Contractor, 390,873.5m³ of fill were imported for the Project use in the reporting period. 334kg of paper/cardboard packaging, 2kg plastic waste, 4kg of metals and 39m³ of general refuse were generated and disposed of in the reporting period. Monthly summary of waste flow table is detailed in Appendix M.
- 6.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes storage, collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 6.2.4 The Contractor is reminded that chemical waste should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labeling and Storage of Chemical Wastes.

6.3 Environmental Licenses and Permits

6.3.1 The environmental licenses and permits for the Project and valid in the reporting month is summarized in Table 6.1.

Table 6.1 Summary of Environmental Licensing and Permit Status

Statutory Reference	License/ Permit	License or Permit No.	Valid Period		License/ Permit	Remarks	
11010101100			From	То	Holder		
EIAO	Environmental Permit	EP- 353/2009/H	19/01/2015	N/A	HyD	Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities	
		EP- 354/2009/D	13/03/2015	N/A		Tuen Mun – Chek Lap Kok Link (TMCLKL Southern Landfall Reclamation only)	
APCO	NA notification		30/12/2011		CHEC	Works Area WA2 and WA3	
APCO	NA notification		17/01/2012		CHEC	Works Area WA4	
WDO	Chemical Waste Producer Registration	5213-951- C1186-21	30/3/2012	N/A	CHEC	Chemical waste produced in Contract HY/2010/02	
WDO	Chemical Waste Producer Registration	5213-974- C3750-01	31/10/2012		CHEC	Registration as Chemical Waste Producer at To Kau Wan(WA4)	
WDO	Chemical Waste Producer Registration	5213-839- C3750-02	13/09/2012		CHEC	Registration as Chemical Waste Producer at TKO 137(FB)	
WDO	Billing Account for Disposal of Construction Waste	7014181	05/12/2011	N/A	CHEC	Waste disposal in Contract HY/2010/02	
NCO	Construction Noise Permit	GW-RS0049- 15	20/01/2015	17/03/2015	CHEC	Reclamation Works in Contract HY/2010/02	
NCO	Construction Noise Permit	GW-RS0270- 15	18/03/2015	20/06/2015	CHEC	Reclamation Works in Contract HY/2010/02	
NCO	Construction Noise Permit	GW-RE1405- 14	22/12/2014	21/06/2015	CHEC	Section of TKO Fill Bank under Contract HY/2010/02	

6.4 Implementation Status of Environmental Mitigation Measures

- 6.4.1 In response to the site audit findings, the Contractors carried out corrective actions.
- 6.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix C. Most of the necessary mitigation measures were implemented properly.
- 6.4.3 Training of marine travel route for marine vessels operator was given to relevant staff and relevant records were kept properly.
- 6.4.4 Regarding the implementation of dolphin monitoring and protection measures (i.e. implementation of Dolphin Watching Plan, Dolphin Exclusion Zone and Silt Curtain integrity Check), regular checking

were conducted by the experienced MMOs within the works area to ensure no dolphin was trapped by the enclosed silt curtain systems. Any dolphin spotted within the enclosed silt curtain systems was reported and recorded. Relevant procedures were followed and measures were well implemented. Silt curtain systems were also inspected timely in accordance to the submitted plan. All inspection records were kept properly.

- 6.4.5 Acoustic decoupling measures on noisy plants on construction vessels were checked regularly and the Contractor was reminded to ensure provision of ongoing maintenance to noisy plants and to carry out improvement work once insufficient acoustic decoupling measures were found.
- 6.4.6 Frequency of watering per day on exposed soil was checked; with reference to the record provided by the Contract, watering was conducted at least 8 times per day on reclaimed land. The frequency of watering is the mainly refer to water truck. Sprinklers are only served to strengthen dust control measure for busy traffic at the entrance of Portion D. As informed by the Contractor, during the malfunction period of sprinkler, water truck will enhance watering at such area. The Contractor was reminded to ensure provision of watering of at least 8 times per day on all exposed soil within the Project site and associated works areas throughout the construction phase.

6.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 6.5.1 All 1-Hour TSP and 24-Hour TSP results were below the Action and Limit Level in the reporting month.
- 6.5.2 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.3 For water quality, two (2) Action Level Exceedances of SS at IS10 and SR5 during Flood tide were recorded on 23 March 2015. No Action and Limit Level exceedances were recorded on other monitoring date in the reporting month. After investigation, there is no adequate information to conclude the recorded exceedances are related to this Contract.
- 6.5.4 A total of five sightings were made, three "on effort" and two "opportunistic". Three sightings were recorded on 19 March 2015 and two sightings were made on 30 March 2015 in NWL. A total of twelve individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- 6.5.5 Behaviour: Of the five sightings, one group was noted as feeding, three group has boat association behavior and one group was noted as travelling, locations of sighting with different behaviour are mapped in Figure 5d.
- 6.5.6 Environmental site inspection was carried out 4 times in March 2015. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.
- 6.5.7 Cumulative statistics on exceedance is provided in Appendix N.

6.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 6.6.1 The Environmental Complaint Handling Procedure is annexed in Figure 6.
- 6.6.2 One (1) environmental complaint has been received in the reporting month.
- 6.6.2.1 As informed by the Contractor on 09 March 2015, there is an air quality complaint received on 06 March 2015. The complainant Mr. Fung requested for follow-up actions to be taken by relevant departments in response to his Complaint about sand and dust emission from 4-5 uncovered sand barges parking near the coastline of Tuen Mun, the complainant concerns about the health problems to residents as the sand is blown to their apartments.

6.6.2.2 Investigation Actions:

- Date of the observed impact was not specified by the complainant so the site activities/active construction works within the complaint period 2-6 March 2015 were reviewed.
- 1hr TSP and 24hrs TSP monitoring data within the complaint period 1- 16 March 2015 have been reviewed.
- Site inspections were conducted jointly with RSS and the Contractor on 12 March 2015.

6.6.2.3 Investigation findings:

- There is no sufficient information provided by the complainant to make sure that the concerned barges are related to this project.
- Date of the observed impact was not specified by the complainant so the impact air quality monitoring (IAQM) results within the period 1- 16 March 2015 for monitoring stations close to the concerned area AQMS1, ASR1, ASR5, ASR6 and ASR10 have been reviewed, AL/LL exceedance of 24hr TSP and 1-hr was not recorded within the period 1- 16 March 2015.
- In addition, the sand delivery record from 2 to 6 March 2015 provided by the Contractor shows that there was no delivery of sand material by pelican barge from 2 to 6 March 2015.
- Furthermore, site inspections were conducted jointly with RSS and the Contractor on 12 March 2015, no generation of fugitive dust and barges loaded with sand material were observed.

- 6.6.2.4 After investigation, there is no adequate information to conclude the observed impact is related to this Contract.
- 6.6.2.5 Recommended Mitigation Measures:
- 6.6.2.6 The Contractor was advised to ensure to continue the provision of fugitive dust mitigation measures to barges loaded with filling material such as watering to sand filling material on sand barges to keep the surface of stockpile of filling material wet.
- 6.6.3 No notification of summons and successful prosecutions was received in the reporting period.
- 6.6.4 Statistics on complaints, notifications of summons and successful prosecutions are summarized in Appendix N.

7 FUTURE KEY ISSUES

7.2 Construction Programme for the Coming Months

7.2.1 As informed by the Contractor, the major works for the Project in April and May 2015 will be *:-

Marine-base

- Cellular structure installation and backfilling
- Capping Beams structures
- Conforming sloping seawalls
- Surcharge remove & laying
- Marine fill
- Earthwork fill
- Deep Cement Mixing
- Jet grout columns works
- Geotechnical Instrumentation works
- Removal of Temporary Seawall
- Installations of Precast Culverts except sloping outfalls
- Maintenance of silt curtain & silt screen at sea water intake of HKIA

Land-base

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

^{*}Construction activities in April and May 2015 will be changed subject to works progress.

7.3 Key Issues for the Coming Month

- 7.3.1 Key issues to be considered in the coming months:-
 - Site runoff should be properly collected and treated prior to discharge;
 - Minimize loss of sediment from filling works;
 - Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
 - Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface runoff during rainstorm;
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
 - Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission:
 - Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
 - Quieter powered mechanical equipment should be used;
 - Provision of proper and effective noise control measures for operating equipment and machinery onsite, such as erection of movable noise barriers or enclosure for noisy plants;
 - Closely check and replace the sound insulation materials regularly;
 - Better scheduling of construction works to minimize noise nuisance;
 - Properly store and label oil drums and chemical containers placed on site:
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved and confined areas;
 - Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.
 - Control night-time lighting and glare by hooding all lights.
 - Regular review and provide maintenance to dust control measures such as sprinkler system.

7.4 Monitoring Schedule for the Coming Month

7.4.1 The tentative schedule for environmental monitoring in April 2015 is provided in Appendix F.

8 CONCLUSIONS AND RECOMMENDATIONS

8.2 Conclusions

- 8.2.1 The construction phase and EM&A programme of the Project commenced on 12 March 2012.
- 8.2.2 All 1-Hour TSP and 24-Hour TSP results were below the Action and Limit Level in the reporting month.
- 8.2.3 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.2.4 For water quality, two (2) Action Level Exceedances of SS at IS10 and SR5 during Flood tide were recorded on 23 March 2015. No Action and Limit Level exceedances were recorded on other monitoring date in the reporting month. After investigation, there is no adequate information to conclude the recorded exceedances are related to this Contract.
- 8.2.5 A total of five sightings were made, three "on effort" and two "opportunistic". Three sightings were recorded on 19 March 2015 and two sightings were made on 30 March 2015 in NWL. A total of twelve individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- 8.2.6 Behaviour: Of the five sightings, one group was noted as feeding, three group has boat association behavior and one group was noted as travelling, locations of sighting with different behaviour are mapped in Figure 5d
- 8.2.7 As informed by the Contractor on 09 March 2015, there is an air quality complaint received on 06 March 2015. The complainant Mr. Fung requested for follow-up actions to be taken by relevant departments in response to his Complaint about sand and dust emission from 4-5 uncovered sand barges parking near the coastline of Tuen Mun, the complainant concerns about the health problems to residents as the sand is blown to their apartments. After investigation, there is no adequate information to conclude the observed impact is related to this Contract.
- 8.2.8 No notification of summons or prosecution was received in the reporting period.
- 8.2.9 Environmental site inspection was carried out 4 times in March 2015. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.

8.3 Recommendations

8.3.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

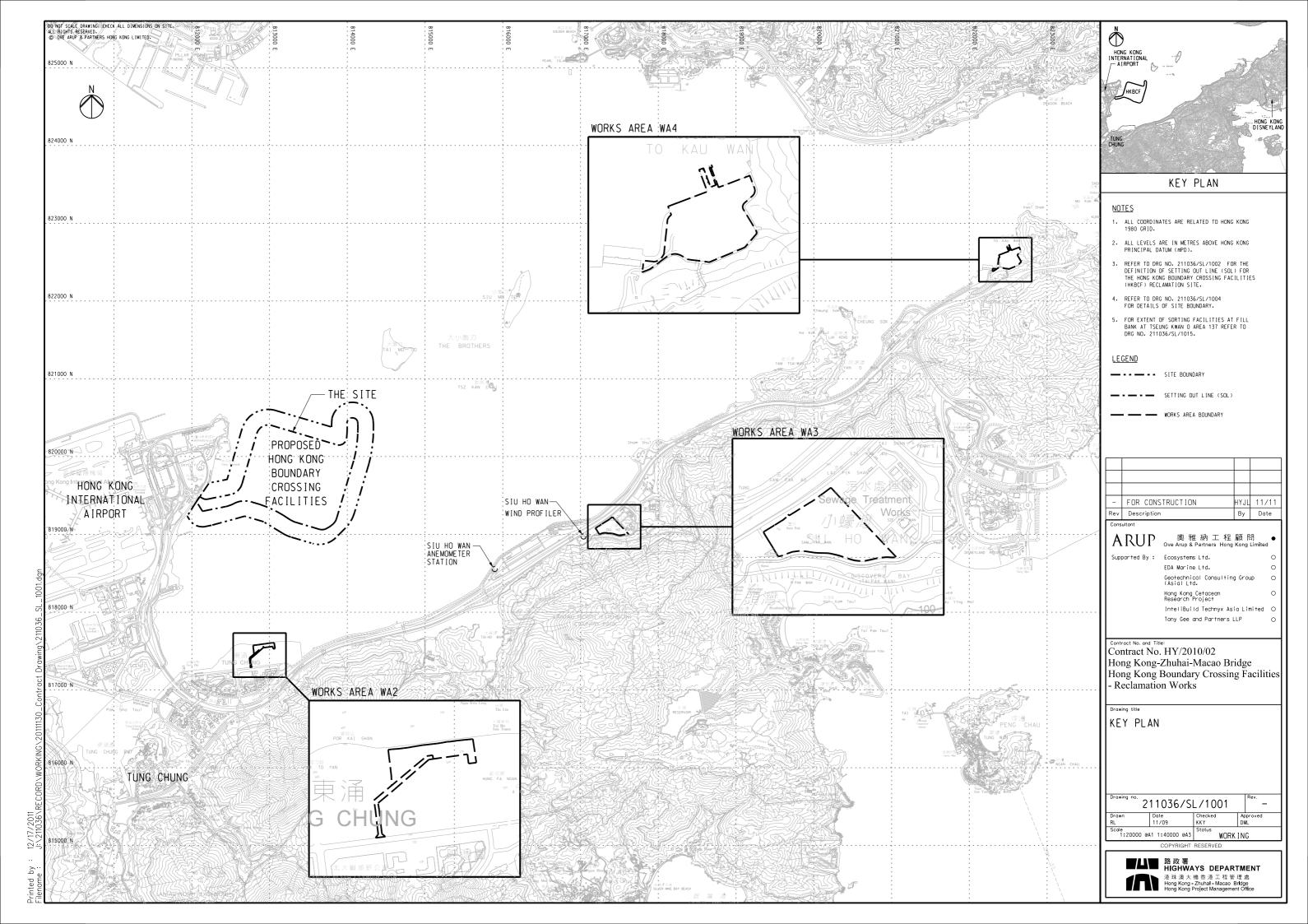
Air Quality Impact

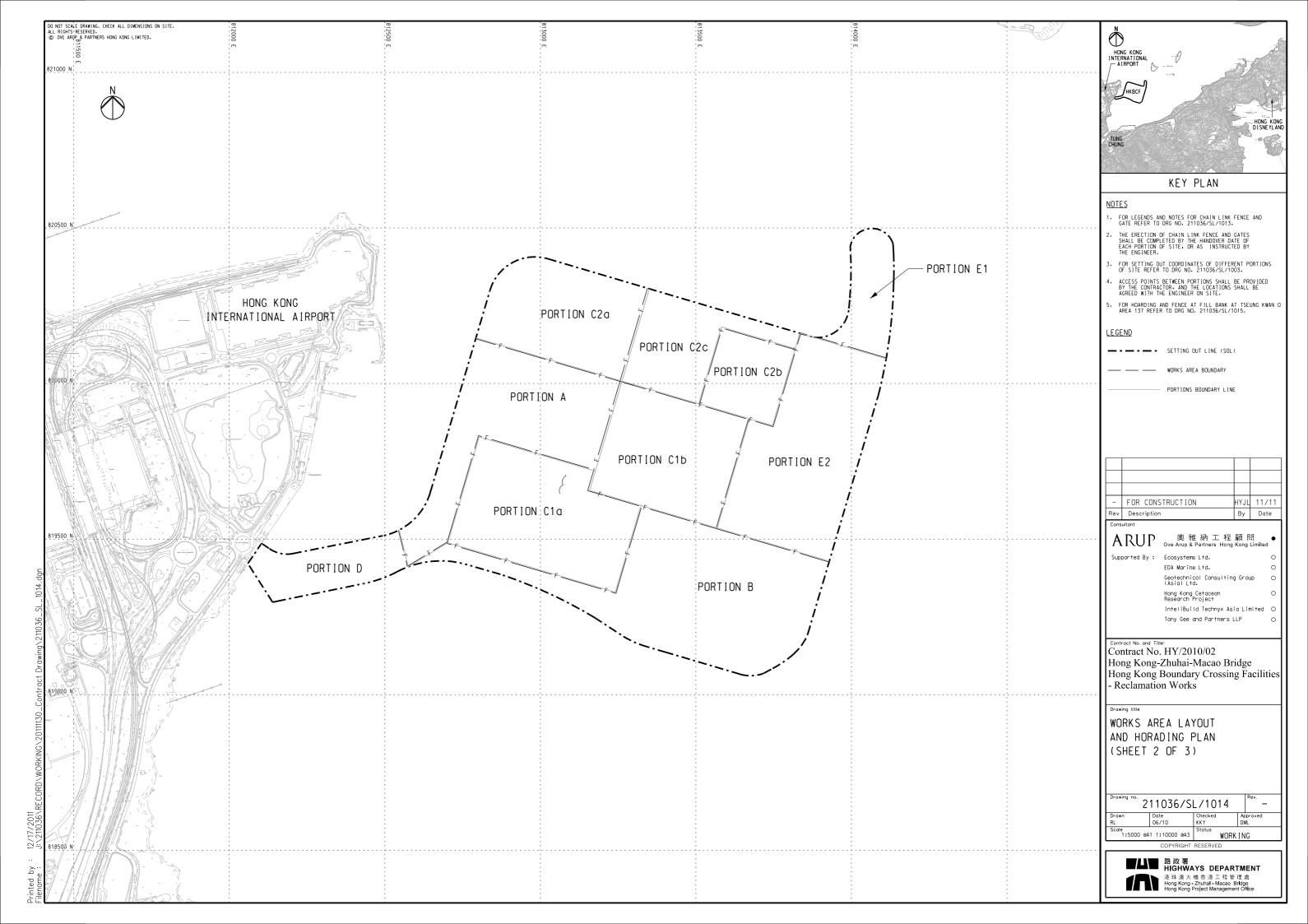
- All working plants and vessels on site should be regularly inspected and properly maintained to avoid dark smoke emission.
- All vehicles should be washed to remove any dusty materials before leaving the site.
- Haul roads should be sufficiently dampened to minimize fugitive dust generation.
- Wheel washing facilities should be properly maintained and reviewed to ensure properly functioning.
- Temporary exposed slopes and open stockpiles should be properly covered.
- Enclosure should be erected for cement debagging, batching and mixing operations.
- Water spraying should be provided to suppress fugitive dust for any dusty construction activity.
- Regular review and provide maintenance to dust control measures such as sprinkler system.

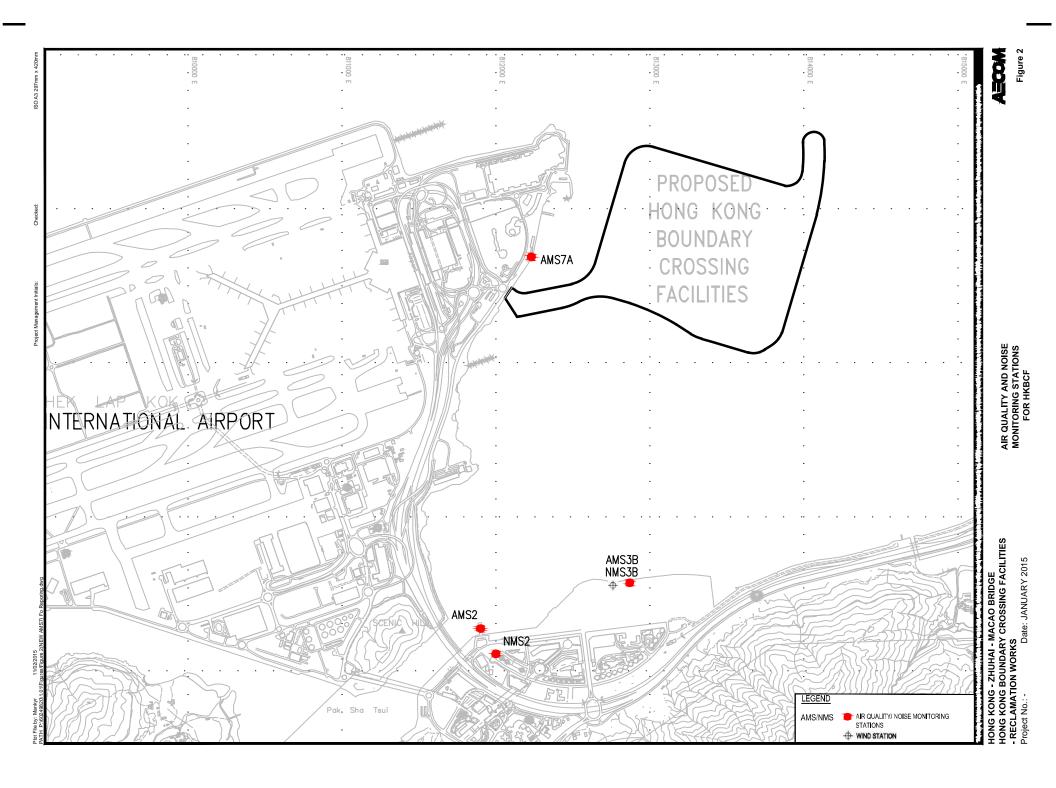
Construction Noise Impact

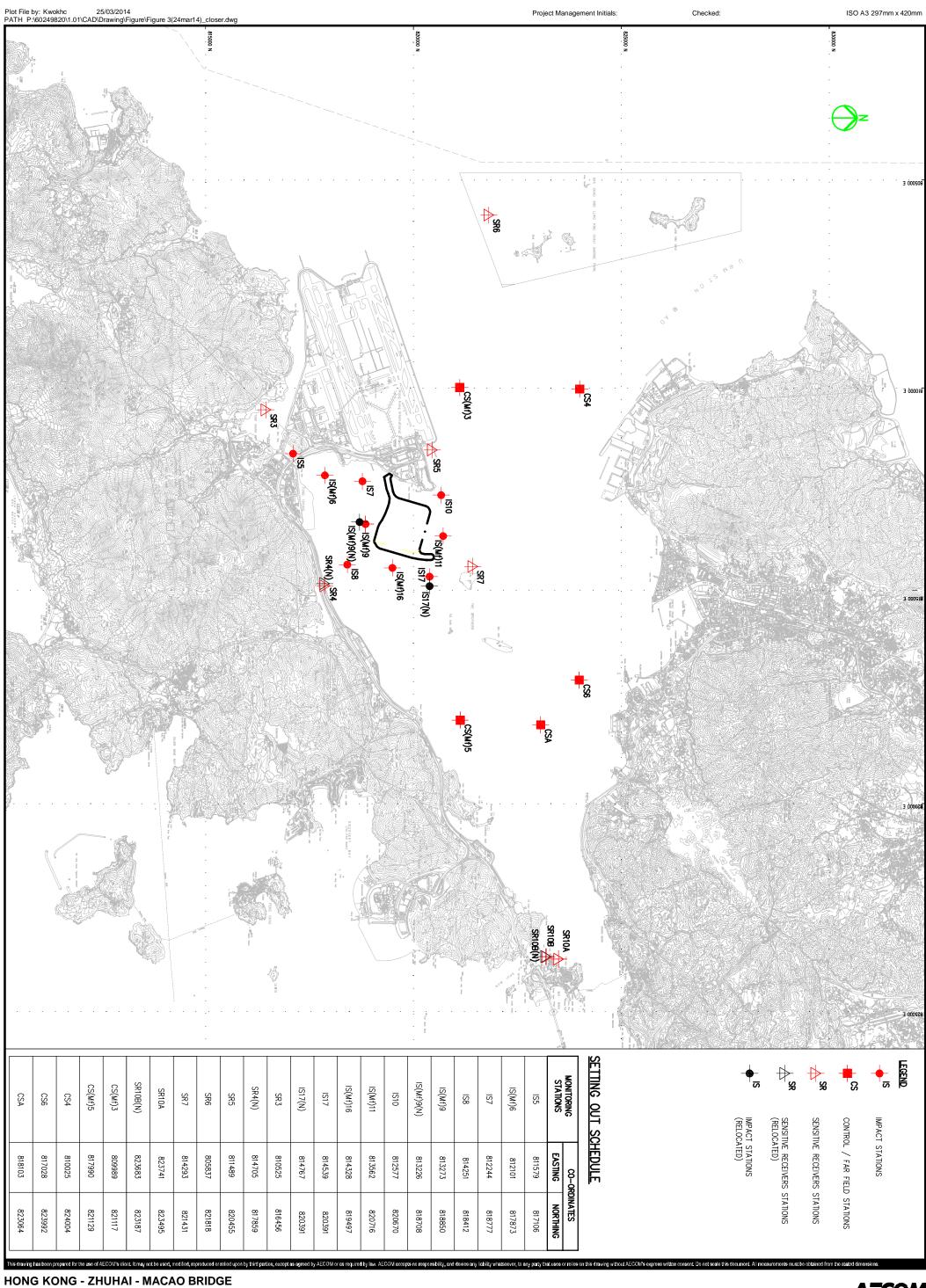
- Quieter powered mechanical equipment should be used as far as possible.
- Noisy operations should be oriented to a direction away from sensitive receivers as far as possible.
- Proper and effective noise control measures for operating equipment and machinery on-site should be provided, such as erection of movable noise barriers, enclosure for noisy plants or enhancement works to provide sufficient acoustic decoupling measure(s). Closely check and replace the sound insulation materials regularly
- Vessels and equipment operating should be checked regularly and properly maintained.
- Noise Emission Label (NEL) shall be affixed to the air compressor and hand-held breaker operating within works area.
- Acoustic decoupling measures should be properly implemented for all existing and incoming construction vessels with continuous and regularly checking to ensure effective implementation of acoustic decoupling measures.

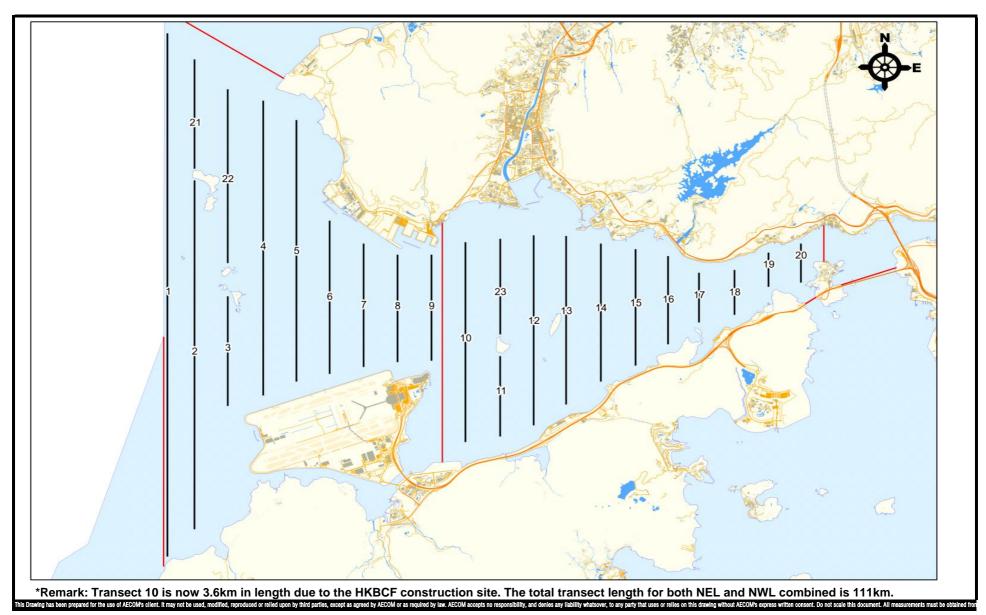
Water Quality Impact

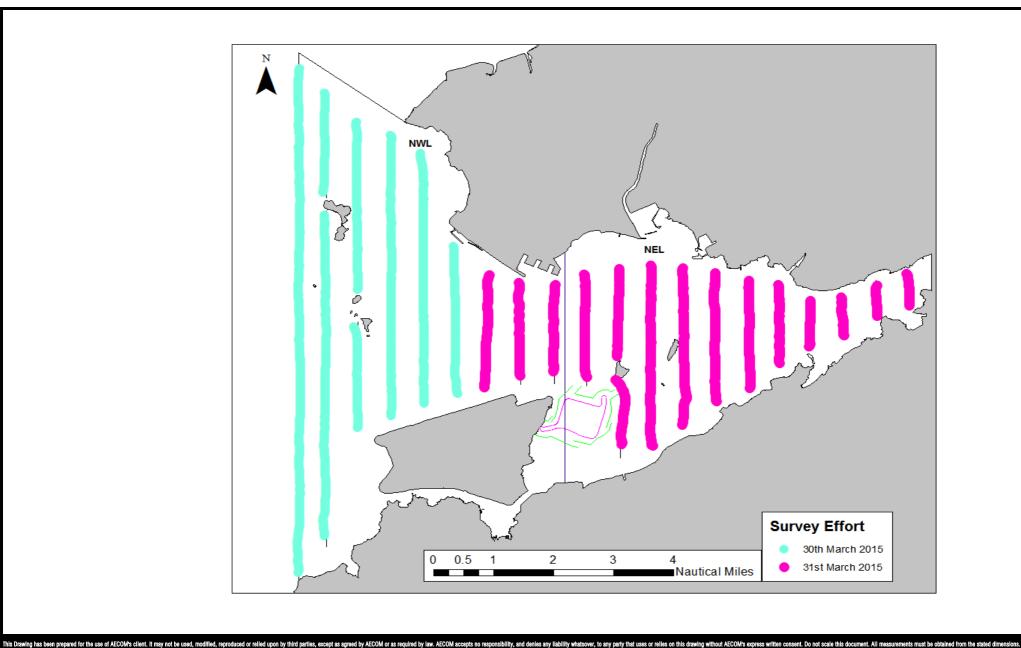

- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities in order to make sure they are functioning effectively.
- Construction of seawall should be completed as early as possible.
- Regular inspect and review the loading process from barges to avoid splashing of material.
- Silt, debris and leaves accumulated at public drains, wheel washing bays and perimeter uchannels and desilting facilities should be cleaned up regularly.
- Silty effluent should be treated/ desilted before discharged. Untreated effluent should be prevented from entering public drain channel.
- Proper drainage channels/bunds should be provided at the site boundaries to collect/intercept the surface run-off from works areas.
- Exposed slopes and stockpiles should be covered up properly during rainstorm.


Chemical and Waste Management

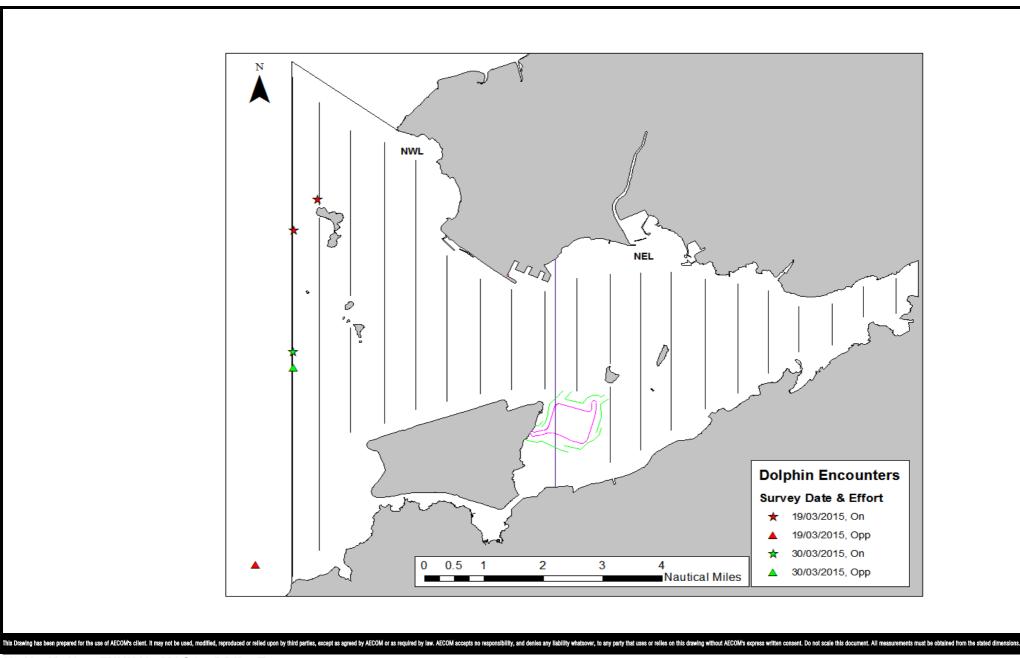

- All types of wastes, both on land and floating in the sea, should be collected and sorted properly
 and disposed of timely and properly. They should be properly stored in designated areas within
 works areas temporarily.
- All chemical containers, batteries and oil drums should be properly stored and labelled.
- All plants and vehicles on site should be properly maintained to prevent oil leakage. Proper measures, like drip trays and/or bundings, should be provided for retaining leaked oil/chemical from plants.
- All kinds of maintenance works should be carried out within roofed, paved and confined areas.
- All drain holes of the drip trays utilized within works areas should be properly plugged to avoid any oil and chemical waste leakage.
- Oil stains on soil surface, accumulated oil mixture and empty chemical containers should be cleared and disposed of as chemical waste.
- Regular review should be conducted for working barges and patrol boats to ensure sufficient
 measures and spill control kits were provided on working barges and patrol boats to avoid any
 spreading of leaked oil/chemicals.


Landscape and Visual Impact

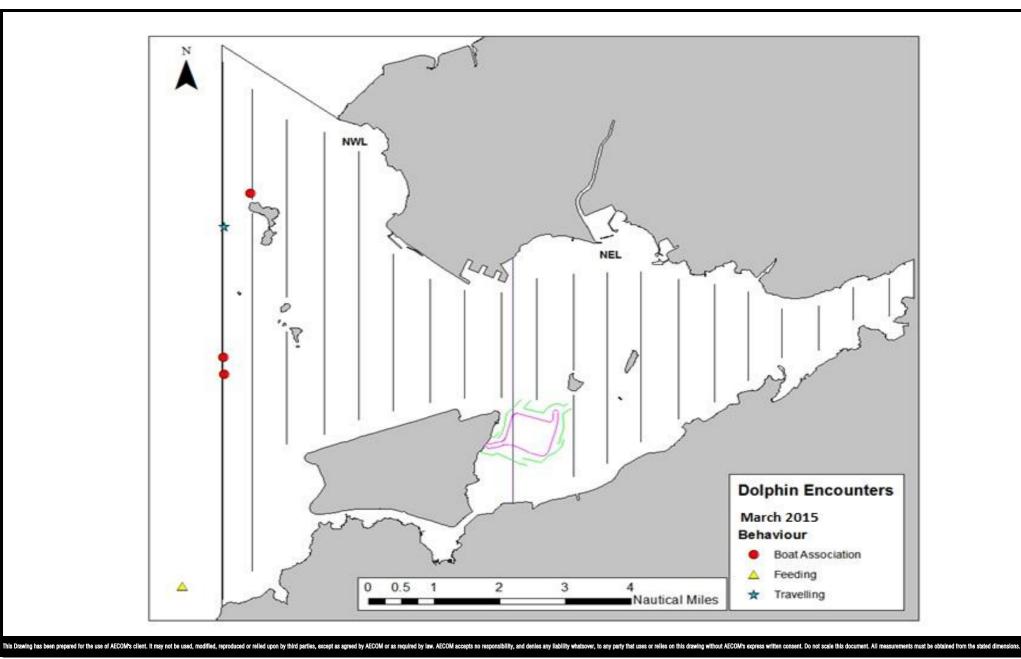

- All existing, retained/transplanted trees at the works areas should be properly fenced off and regularly inspected.
- Control night-time lighting and glare by hooding all lights.

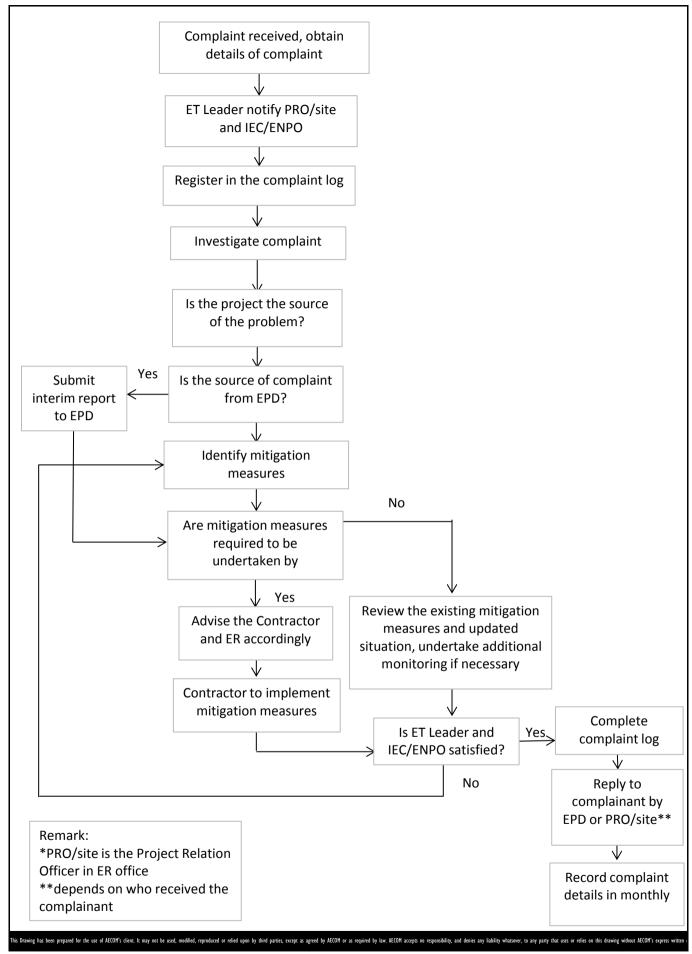

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

Project No.: 60249820 Date: January 13



- RECLAMATION WORKS

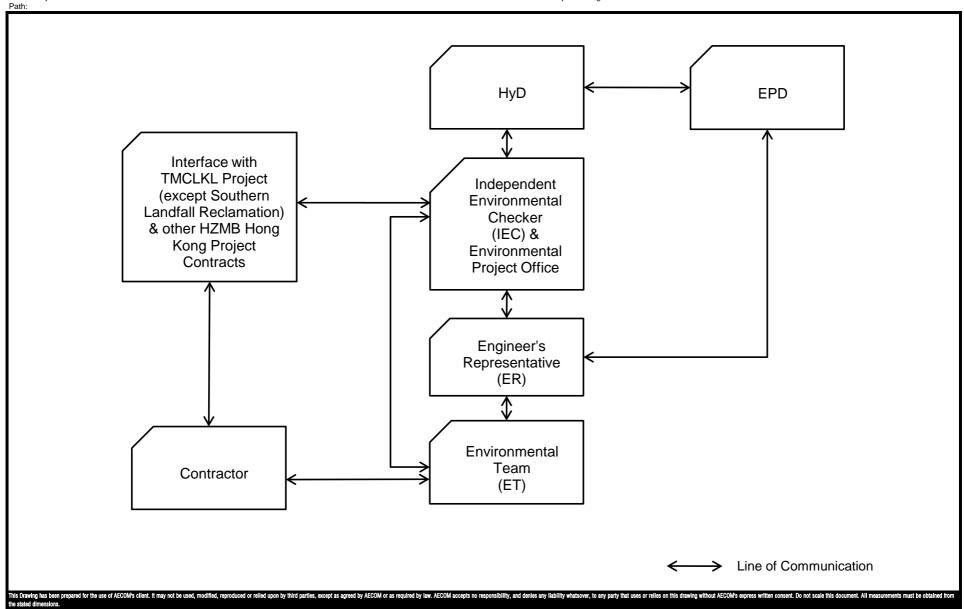

- RECLAMATION WORKS


HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

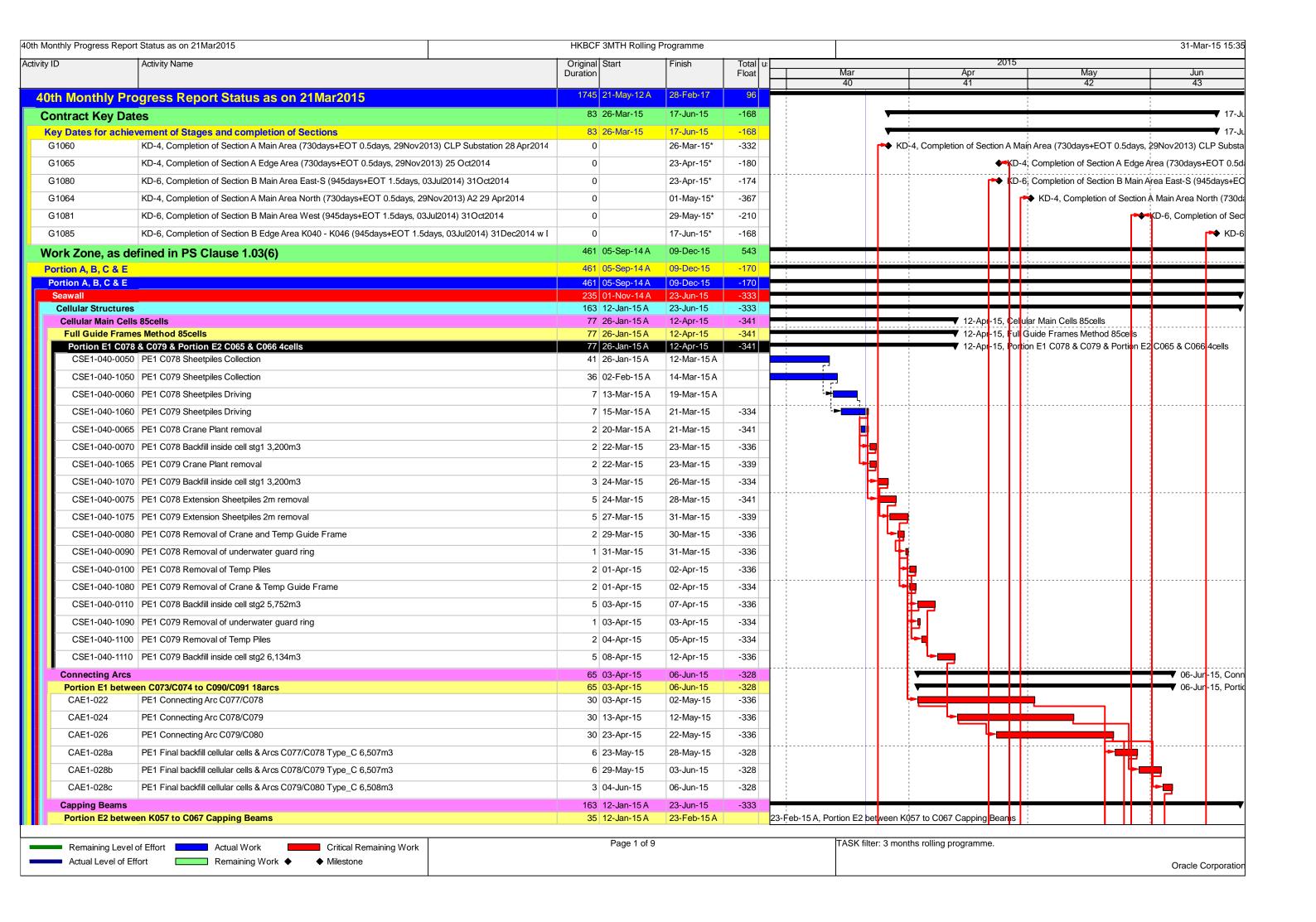
- RECLAMATION WORKS

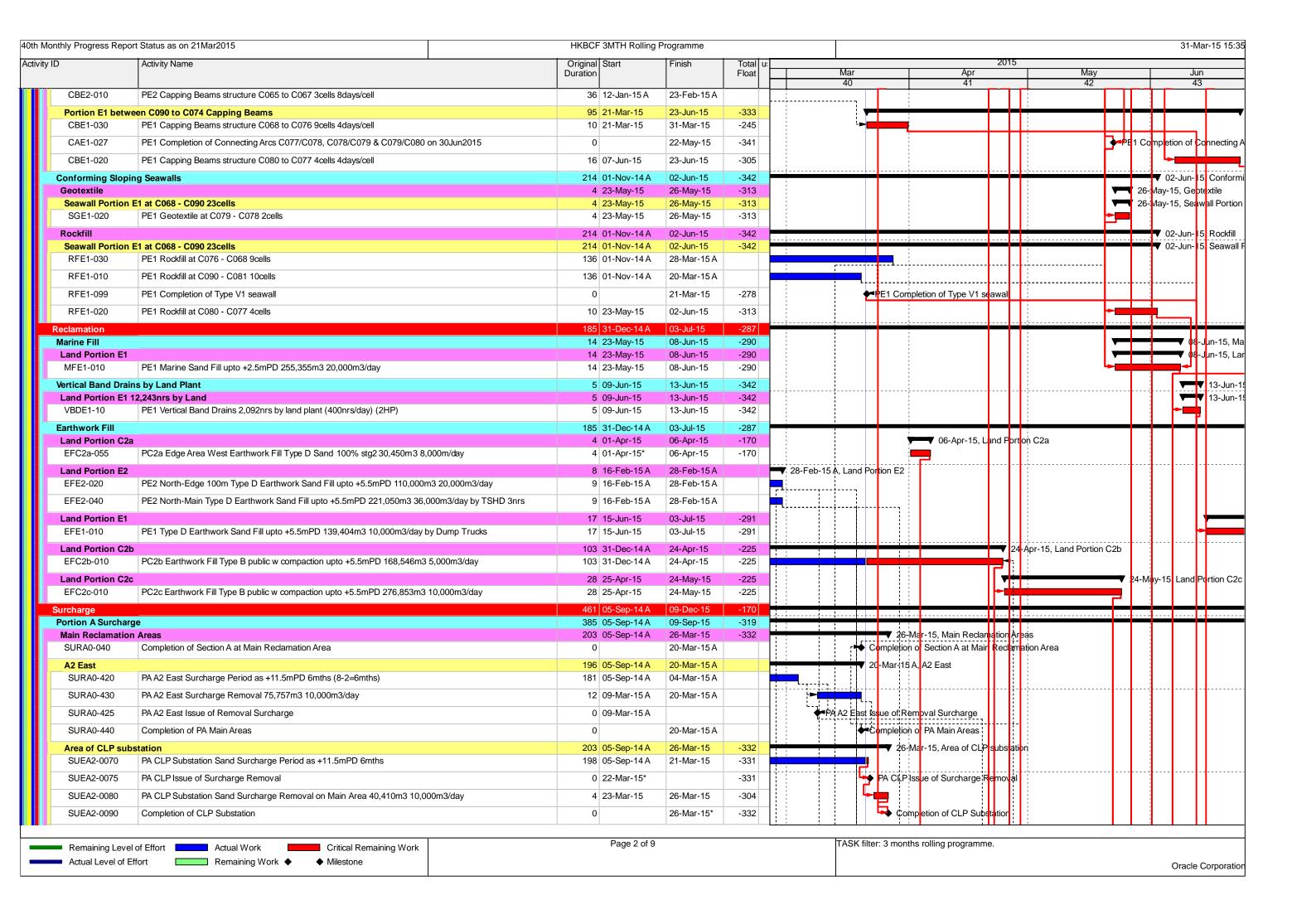


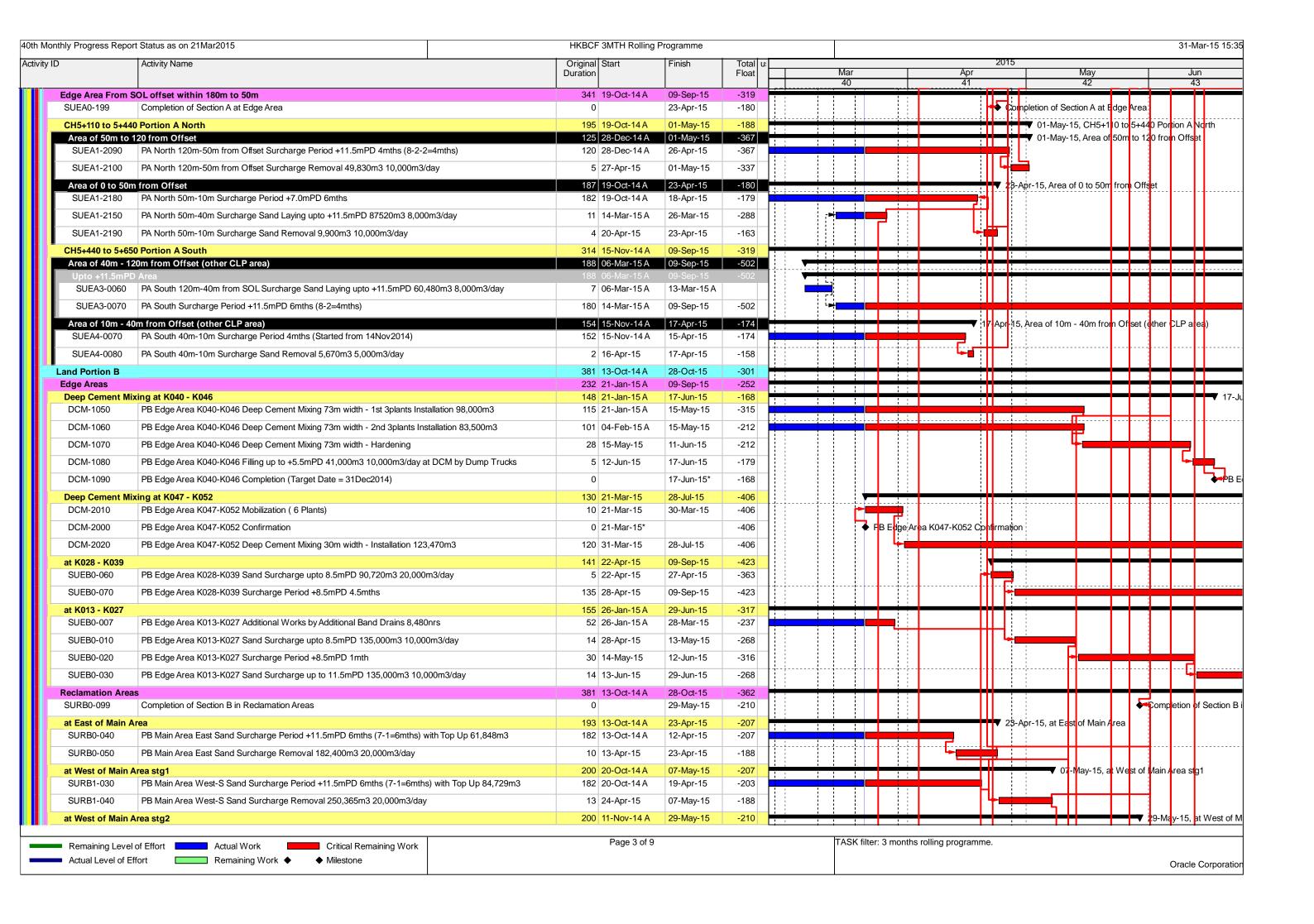
IES AECOM

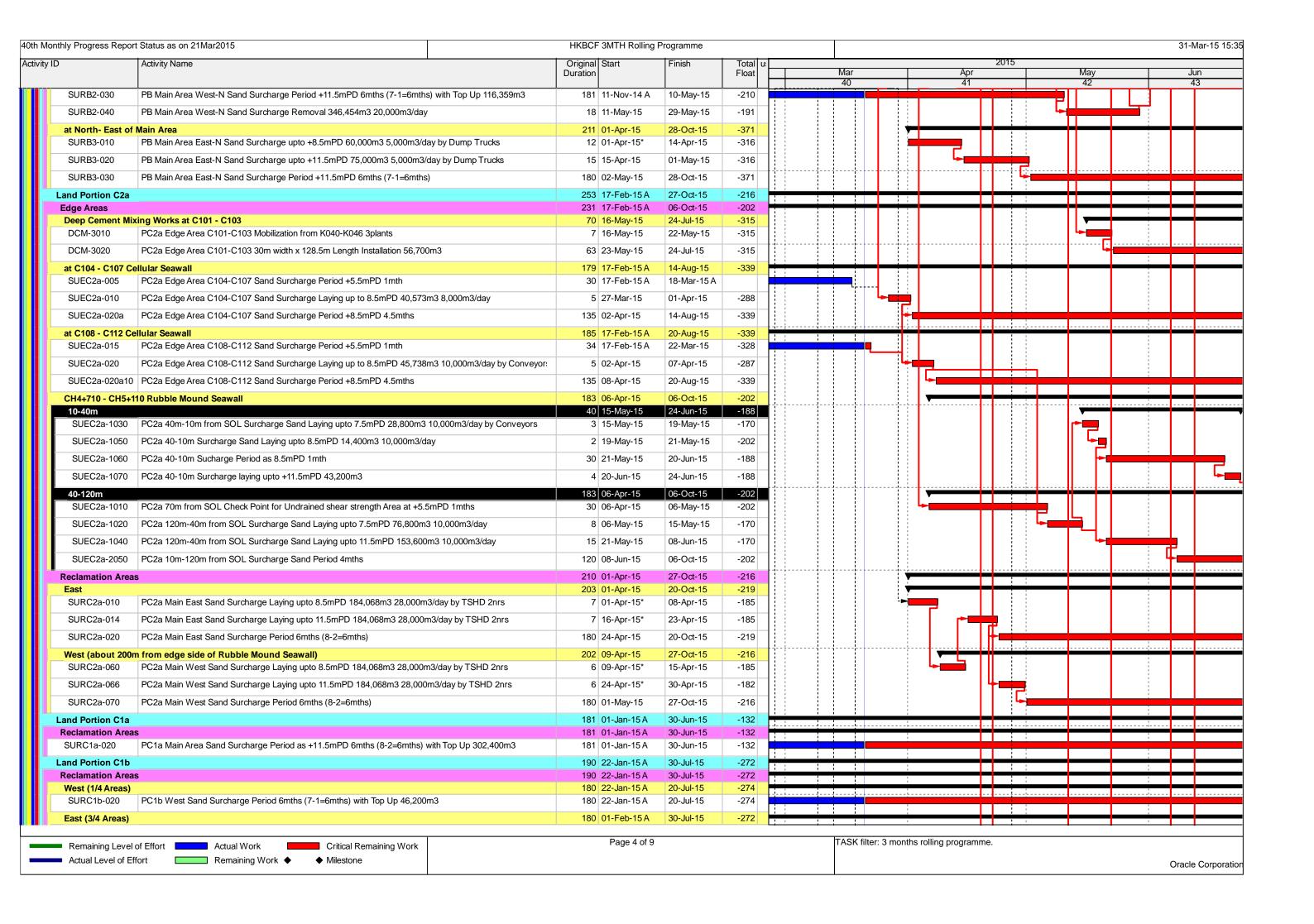
- RECLAMATION WORKS

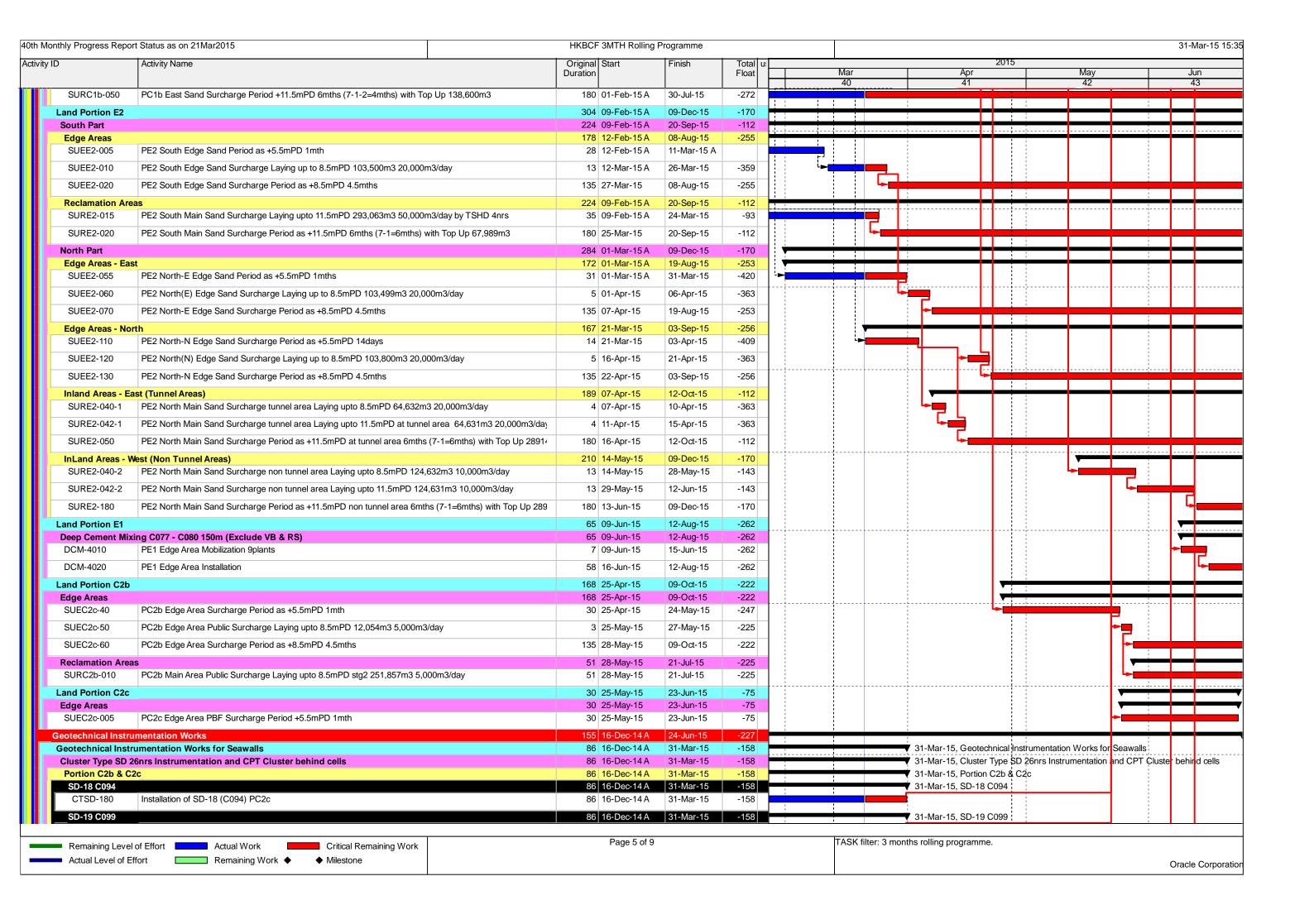
Environmental Complaint Handling Procedure

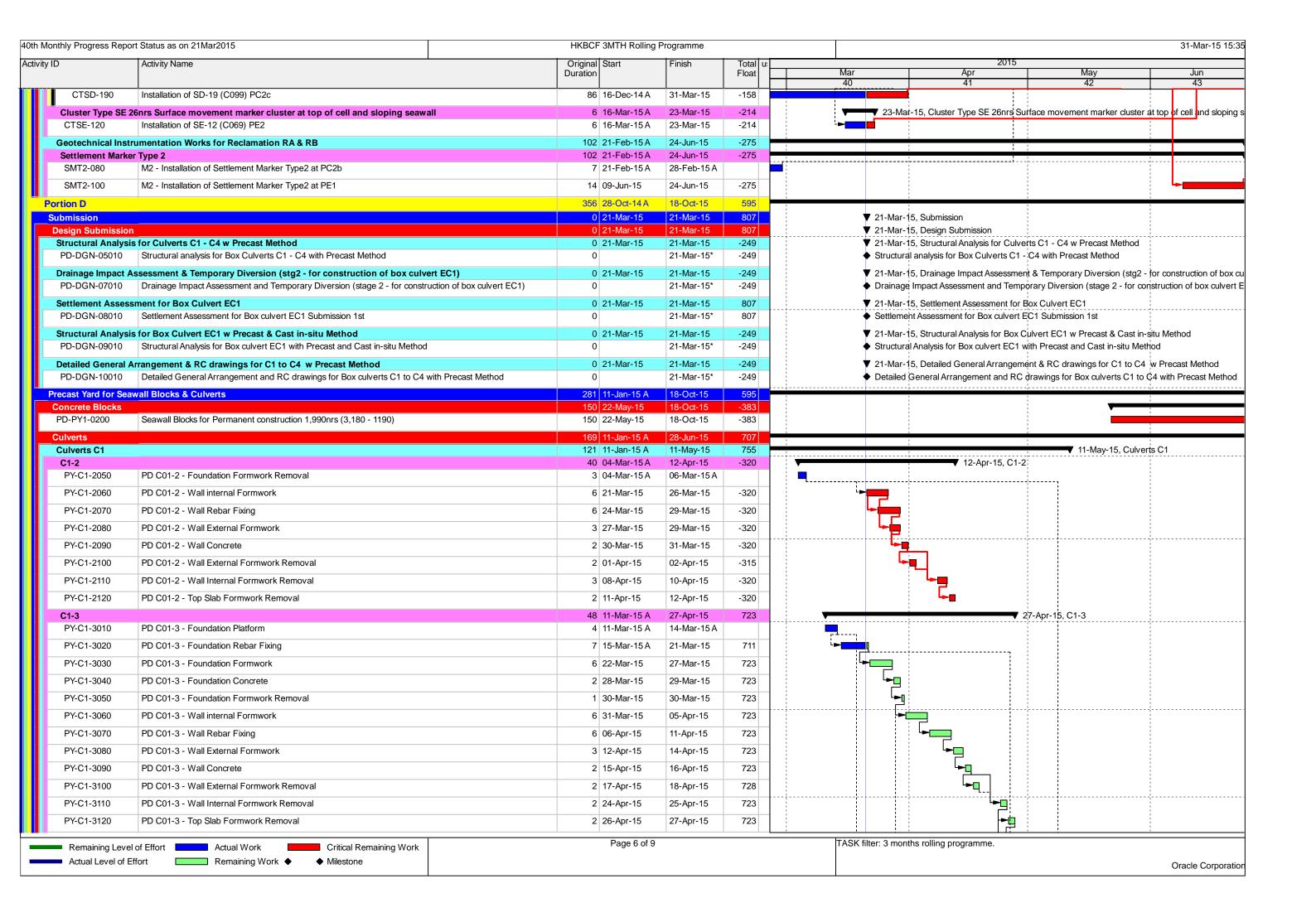

Project No.: 60249820 Date: July 2012 Figure 6

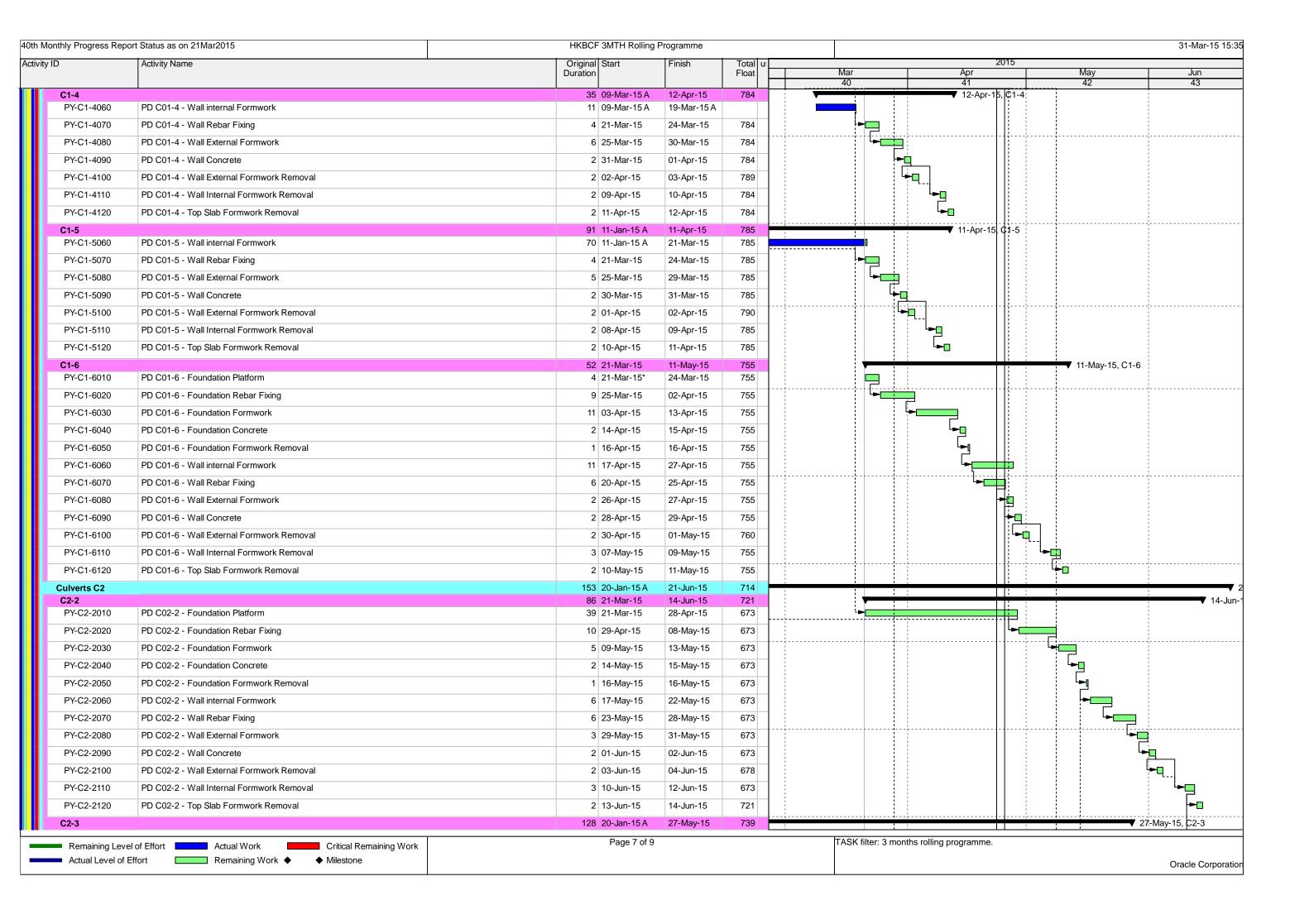


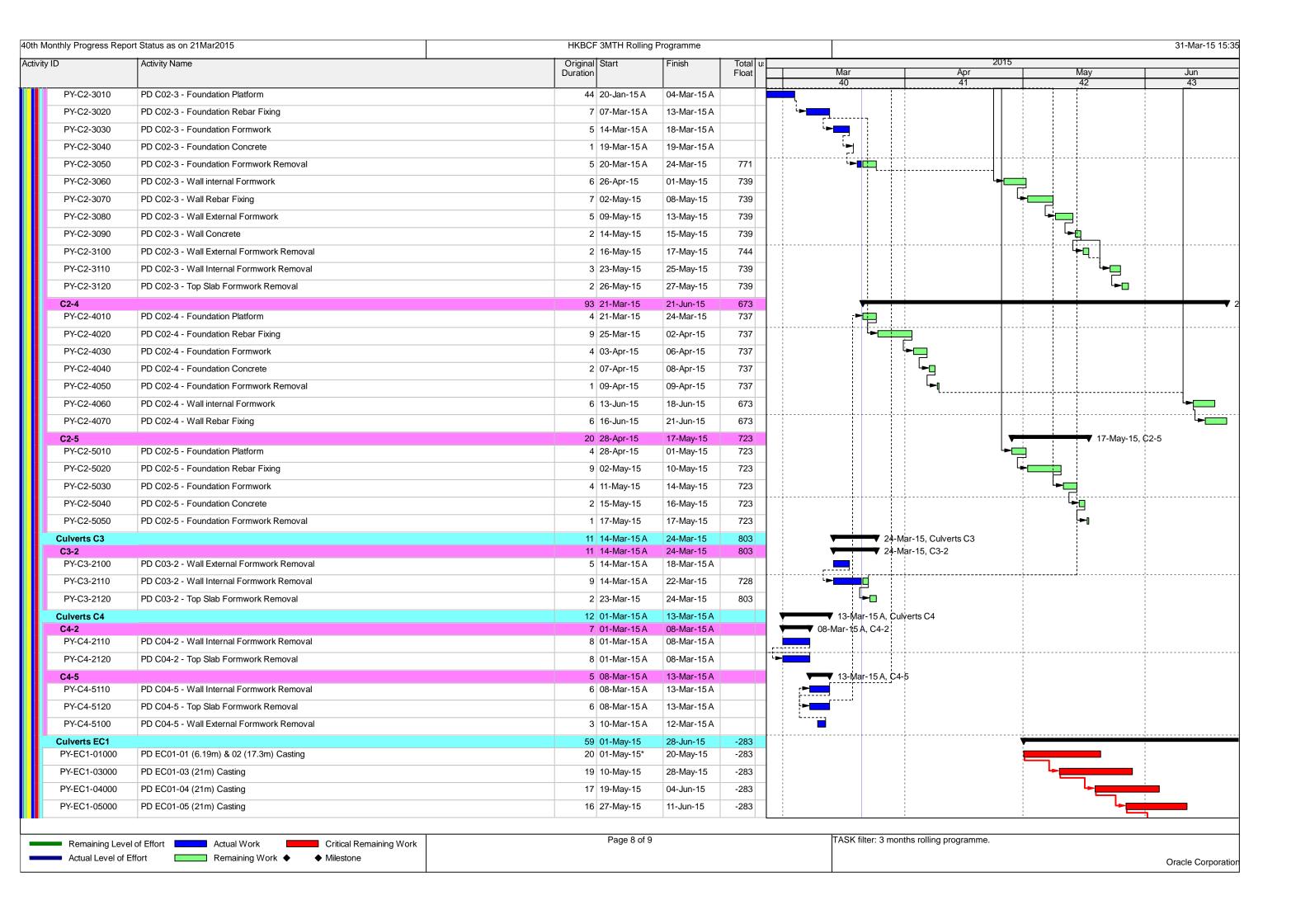

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES --RECLAMATION WORKS

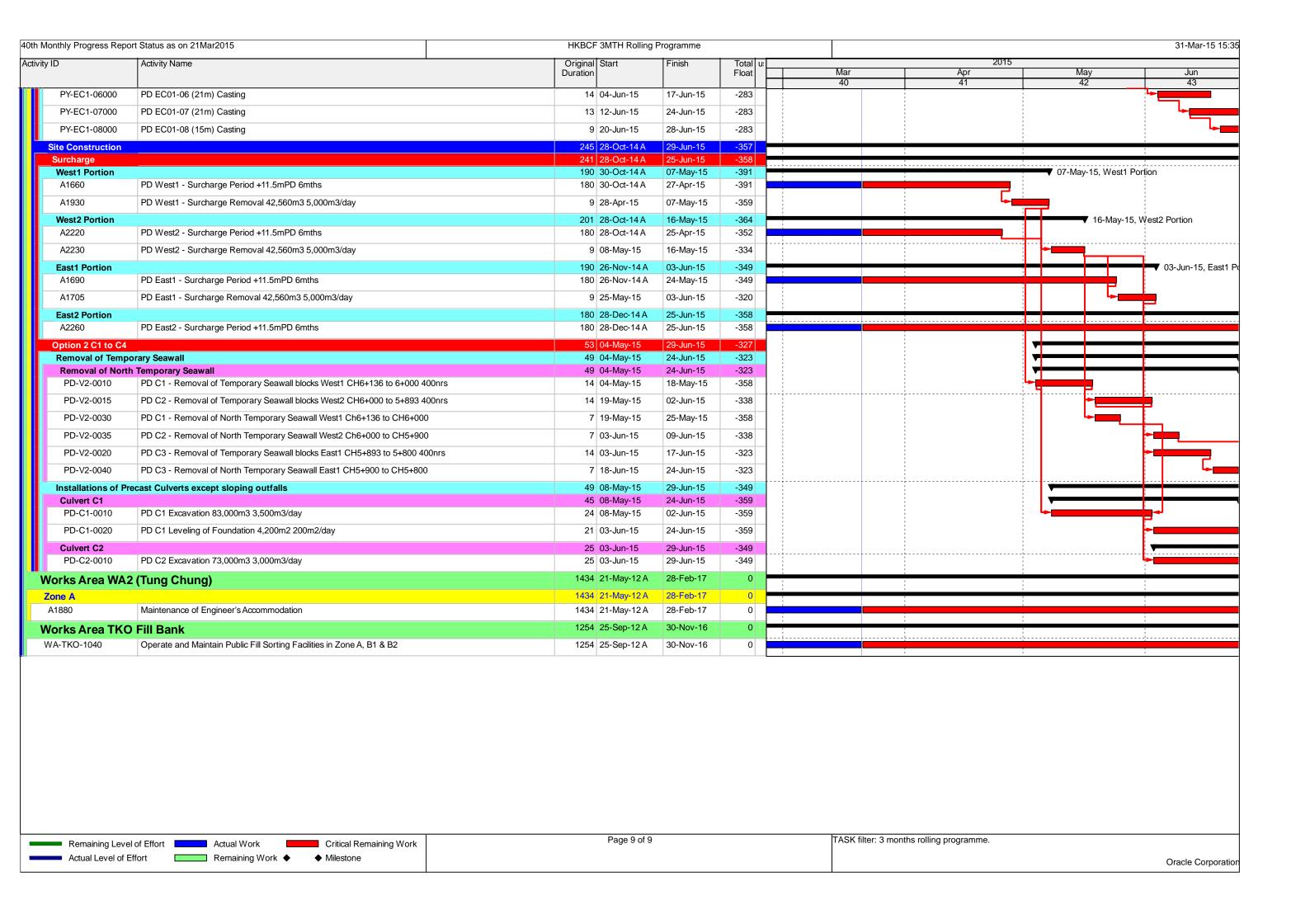












Appendix C - Implementation Schedule of Environmental Mitigation Measures

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
Air Quality				
S5.5.6.1 of	A1	The contractor shall follow the procedures and requirements given in the Air Pollution	All construction sites	V
HKBCFEIA		Control (Construction Dust) Regulation		
S5.5.6.2 of	A2	Proper watering of exposed spoil should be undertaken throughout the construction	All construction sites	V
HKBCFEIA		phase:		
and S4.8.1 of		Any excavated or stockpile of dusty material should be covered entirely by		
TKCLKLEIA		impervious sheeting or sprayed with water to maintain the entire surface wet and		
		then removed or backfilled or reinstated where practicable within 24 hours of the		
		excavation or unloading;		
		Any dusty materials remaining after a stockpile is removed should be wetted with		
		water and cleared from the surface of roads;		
		A stockpile of dusty material should not be extend beyond the pedestrian barriers,		
		fencing or traffic cones.		
		Where practicable, vehicle washing facilities with high pressure water jet should be		
		provided at every discernible or designated vehicle exit point. The area where		
		vehicle washing takes place and the road section between the washing facilities		
		and the exit point should be paved with concrete, bituminous materials or		
		hardcores;		
		When there are open excavation and reinstatement works, hoarding of not less		
		than 2.4m high should be provided as far as practicable along the site boundary		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;		
		The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials;		
		Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously;		
		Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet;		
		Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding;		
		Any skip hoist for material transport should be totally enclosed by impervious sheeting;		
		Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides;		
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		audible high level alarm which is interlocked with the material filling line and no		
		overfilling is allowed;		
		All unpaved roads/exposed area shall be watered which results in dust suppression		
		by forming moist cohesive films among the discrete grains of road surface material.		
		No burning of debris or other materials on the works areas is allowed;		
		Water spray shall be used during the handling of fill material at the site and at active		
		cuts, excavation and fill sites where dust is likely to be created;		
		Open dropping heights for excavated materials shall be controlled to a maximum		
		height of 2m to minimise the fugitive dust arising from unloading;		
		During transportation by truck, materials shall not be loaded to a level higher than		
		the side and tail boards, and shall be dampened or covered before transport.		
		Materials having the potential to create dust shall not be loaded to a level higher		
		than the side and tail boards, and shall be covered by a clean tarpaulin. The		
		tarpaulin shall be properly secured and shall extend at least 300mm over the edges		
		of the side and tail boards;		
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should		
		be carried out in a totally enclosed system or facility, and any vent or exhaust		
		should be fitted with an effective fabric filter or equivalent air pollution control		
		system; and		
		Exposed earth should be properly treated by compaction, turfing, hydroseeding,		
		vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		surface stabiliser within six months after the last construction activity on the		
		construction site or part of the construction site where the exposed earth lies.		
S5.5.6.3 of	A3	The Contractor should undertake proper watering on all exposed spoil and associated	All construction sites	V
HKBCFEIA		work areas (with at least 8 times per day) throughout the construction phase.		
and S4.8.1 of				
TKCLKLEIA				
S5.5.6.4 of	A4	Implement regular dust monitoring under EM&A programme during the construction	Selected	V
HKBCFEIA		stage.	representative dust	
and S4.11 of			monitoring station	
TKCLKLEIA				
S5.5.7.1 of	A5	The following mitigation measures should be adopted to prevent fugitive dust emissions	All construction sites	N/A
HKBCFEIA		for concrete batching plant:		
		Loading, unloading, handling, transfer or storage of any dusty materials should be		
		carried out in totally enclosed system;		
		All dust-laden air or waste gas generated by the process operations should be		
		properly extracted and vented to fabric filtering system to meet the emission limits		
		for TSP;		
		Vents for all silos and cement/ pulverised fuel ash (PFA) weighing scale should be		
		fitted with fabric filtering system;		
		The materials which may generate airborne dusty emissions should be wetted by		
		water spray system;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		All receiving hoppers should be enclosed on three sides up to 3m above unloading point;		
		All conveyor transfer points should be totally enclosed;		
		All access and route roads within the premises should be paved and wetted; and		
		Vehicle cleaning facilities should be provided and used by all concrete trucks		
		before leaving the premises to wash off any dust on the wheels and/or body.		
S5.5.2.7 of	A6	The following mitigation measures should be adopted to prevent	All construction sites	N/A
HKBCFEIA		fugitive dust emissions at barging point:		(Construction in
		All road surface within the barging facilities will be paved;		process)
		Dust enclosures will be provided for the loading ramp;		
		Vehicles will be required to pass through designated wheels wash facilities; and		
		Continuous water spray at the loading points.		
Construction	Noise (Air bor	rne)		1
S6.4.10 of	N1	Use of good site practices to limit noise emissions by considering the following:	All construction sites	V
HKBCFEIA		only well-maintained plant should be operated on-site and plant should be		
		serviced regularly during the construction programme;		
		machines and plant (such as trucks, cranes) that may be in intermittent use should		
		be shut down between work periods or should be throttled down to a minimum;		
		plant known to emit noise strongly in one direction, where possible, be orientated		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		so that the noise is directed away from nearby NSRs;		
		silencers or mufflers on construction equipment should be properly fitted and		
		maintained during the construction works;		
		mobile plant should be sited as far away from NSRs as possible and practicable;		
		material stockpiles, mobile container site officer and other structures should be		
		effectively utilised, where practicable, to screen noise from on-site construction		
		activities.		
S6.4.11 of	N2	Install temporary hoarding located on the site boundaries between noisy construction	All construction sites	V
HKBCFEIA		activities and NSRs. The conditions of the hoardings shall be properly maintained		
		throughout the construction period.		
S6.4.12 of	N3	Install movable noise barriers (typically density @14kg/m²), acoustic mat or full	For plant items listed	N/A
HKBCFEIA		enclosure close to noisy plants including air compressor, generators, saw.	in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.13 of	N4	Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	For plant items listed	V
HKBCFEIA			in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.14 of	N5	Sequencing operation of construction plants where practicable.	All construction sites	V
HKBCFEIA			where practicable	
S5.1 of	N6	Implement a noise monitoring under EM&A programme.	Selected	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA			representative noise	
			monitoring station	
Waste Manag	ement (Constr	ruction Waste)		
S12.6 of	WM1	The Contractor shall identify a coordinator for the management of waste.	All construction sites	V
TMCLKLEIA			All construction sites	
S12.6 of	WM2	The Contractor shall apply for and obtain the appropriate licenses for the disposal of	All construction sites	V
TMCLKLEIA		public fill, chemical waste and effluent discharges.	All construction sites	
S12.6 of	WM3	EM&A of waste handling, storage, transportation, disposal procedures and		V
TMCLKLEIA		documentation through the site audit programme shall be undertaken.	All construction sites	
S8.3.8 of	WM4	Construction and Demolition Material		V
HKBCFEIA		The following mitigation measures should be implemented in handling the waste:		
and S12.6 of		Maintain temporary stockpiles and reuse excavated fill material for backfilling and		
TMCLKLEIA		reinstatement;		
		Carry out on-site sorting;	All construction sites	
		Make provisions in the Contract documents to allow and promote the use of	All construction sites	
		recycled aggregates where appropriate;		
		Adopt 'Selective Demolition' technique to demolish the existing structures and		
		facilities with a view to recovering broken concrete effectively for recycling purpose,		
		where possible;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; 		
		 Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction; In addition, disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation; and 		
		The surplus surcharge should be transferred to a fill bank.		
S8.3.9- S8.3.11 of HKBCFEIA and S12.6 of TMCLKLEIA	WM5	 Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding and falsework should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage. The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers 	All construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		or skips to enhance reuse or recycling of materials and their proper disposal.		
		Where practicable, concrete and masonry can be crushed and used as fill. Steel		
		reinforcement bar can be used by scrap steel mills. Different areas of the sites		
		should be considered for such segregation and storage.		
S8.2.12-	WM6	Chemical Waste	All construction sites	V
S8.3.15 of		Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal		
HKBCFEIA		(Chemical Waste) (General) Regulation, should be handled in accordance with the		
and S12.6 of		Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.		
TMCLKLEIA		 Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation. The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the 		
		 largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated. Disposal of chemical waste should be via a licensed waste collector; be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre 		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		which also offers a chemical waste collection service and can supply the necessary		
		storage containers; or be to a reuser of the waste, under approval from the EPD.		
S8.3.16 of	WM7	<u>Sewage</u>	All construction sites	V
HKBCFEIA		Adequate numbers of portable toilets should be provided for the workers. The		
and S12.6 of		portable toilets should be maintained in a state, which will not deter the workers		
TMCLKLEIA		from utilizing these portable toilets. Night soil should be collected by licensed		
		collectors regularly.		
S8.3.17 of	WM8	General Refuse	All construction sites	V
HKBCFEIA		The site and surroundings shall be kept tidy and litter free. General refuse		
and S12.6 of		generated on-site should be stored in enclosed bins or compaction units separately		
TMCLKLEIA		from construction and chemical wastes.		
		A reputable waste collector should be employed by the Contractor to remove		
		general refuse from the site, separately from construction and chemical wastes, on		
		a daily basis to minimize odour, pest and litter impacts. Burning of refuse on		
		construction sites is prohibited by law.		
		Aluminium cans are often recovered from the waste stream by individual collectors		
		if they are segregated and made easily accessible. Separate labelled bins for their		
		deposit should be provided if feasible.		
		Office wastes can be reduced through the recycling of paper if volumes are large		
		enough to warrant collection. Participation in a local collection scheme should be		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 considered by the Contractor. In addition, waste separation facilities for paper, aluminum cans, plastic bottles etc., should be provided. Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including reduction, reuse and recycling of wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By-laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. All waste containers shall be in a secure area on hardstanding. 		
Water Quality	(Construction	Phase)		1
	W1	Mitigation during the marine works to reduce impacts to within acceptable levels have been recommended and will comprise a series of measures that restrict the method and sequencing of backfilling, as well as protection measures. Details of the measures are provided below:	During filling	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 Reclamation filling for the Project shall not proceed until at least 200m of leading seawall at the reclamation area formed above +2.2mPD, unless otherwise agreement was obtained from EPD, except for the 300m gaps for marine access. All underwater filling works shall be carried out behind seawalls to avoid dispersion of suspended solids outside the Project limit; Except for the filling of the cellular structures, not more than 15% public fill shall be used for reclamation filling below +2.5mPD during construction of the seawall; 		
		 After the seawall is completed except for the 300m marine access as indicated in the EPs, not more than 30% public fill shall be used for reclamation filling below +2.5mPD, unless otherwise agreement from EPD was obtained; Upon completion of 200m leading seawall, no more than a total of 60 filling barge trips per day shall be made with a cumulative maximum daily filling rate of 60,000 m3 for HKBCF and TMCLKL southern landfall reclamation during the filling operation; and 		
		 Upon completion of the whole section of seawall except for the 300m marine access as indicated in the EPs, no more than a total of 190 filling barge trips per day shall be made with a cumulative maximum daily filling rate of 190,000 m3 for the remaining filling operations for HKBCF and TMCLKL southern landfall reclamation. Floating type perimeter silt curtains shall be around the HKBCF site before the commencement of marine works. Staggered layers of silt curtain shall be provided 		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		to prevent sediment loss at navigation accesses. The length of each staggered layers shall be at least 200m; Single layer silt curtain to be applied around the North-east airport water intake; The silt-curtains should be maintained in good condition to ensure the sediment plume generated from filling be confined effectively within the site boundary; The filling works shall be scheduled to spread the works evenly over a working day; Cellular structure shall be used for seawall construction;		
		 A layer of geotextile shall be placed on top of the seabed before any filling activities take place inside the cellular structures to form the seawall; The conveyor belts shall be fitted with windboards and conveyor release points shall be covered with curtain to prevent any spillage of filling materials onto the surrounding waters; and An additional layer of silt curtain shall be installed near the active stone column installation points. A layer of geotextile with stone blanket on top shall be placed on 		
		the seabed prior to stone column installation works.		
S9.11.1.3 of HKBCFEIA and S6.10 of	W2	Land Works General construction activities on land should also be governed by standard good working practice. Specific measures to be written into the works contracts should include:	All land-based construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA		 wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters; sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided; storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks; silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm; temporary access roads should be surfaced with crushed stone or gravel; rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities; 	Location	· .
		 measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system; open stockpiles of construction materials (e.g. aggregates and sand) on site 		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		should be covered with tarpaulin or similar fabric during rainstorms;		
		manholes (including any newly constructed ones) should always be adequately		
		covered and temporarily sealed so as to prevent silt, construction materials or		
		debris from getting into the drainage system, and to prevent storm run-off		
		from getting into foul sewers;		
		discharges of surface run-off into foul sewers must always be prevented in		
		order not to unduly overload the foul sewerage system;		
		all vehicles and plant should be cleaned before they leave the construction site to		
		ensure that no earth, mud or debris is deposited by them on roads. A wheel		
		washing bay should be provided at every site exit;		
		wheel wash overflow shall be directed to silt removal facilities before being		
		discharged to the storm drain;		
		the section of construction road between the wheel washing bay and the public road		
		should be surfaced with crushed stone or coarse gravel;		
		wastewater generated from concreting, plastering, internal decoration, cleaning		
		work and other similar activities, shall be screened to remove large objects;		
		vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall		
		be located under roofed areas. The drainage in these covered areas shall be		
		connected to foul sewers via a petrol interceptor in accordance with the		
		requirements of the WPCO or collected for offsite disposal;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 the contractors shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately; waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance; all fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a 		
		 capacity equal to 110% of the storage capacity of the largest tank; and surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the storm water system 		
S9.14 of HKBCFEIA	W3	Implement a water quality monitoring programme	At identified monitoring location	V
and S6.10 of TMCLKLEIA				
S6.10 of TMCLKLEIA	W4	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All construction site areas	V
Ecology (Cons	struction Phas	e)	,	
S10.7 of HKBCFEIA and S8.14 of TMCLKLEIA	E1	 Install silt curtain during the construction Limit works fronts Construct seawall prior to reclamation filling where practicable 	Seawall, reclamation area	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Good site practices		
		Strict enforcement of no marine dumping		
		Site runoff control		
		Spill response plan		
S10.7 of	E2	Watering to reduce dust generation; prevention of siltation of freshwater habitats;	Land-based works	V
HKBCFEIA		Site runoff should be desilted, to reduce the potential for suspended sediments,	areas	
		organics and other contaminants to enter streams and standing freshwater.		
S10.7 of	E3	Good site practices, including strictly following the permitted works hours, using	Land-based works	V
HKBCFEIA		quieter machines where practicable, and avoiding excessive lightings during night	areas	
and S8.14 of		time.		
TMCLKLEIA				
S10.7 of	E4	Dolphin Exclusion Zone	Marine works	V
HKBCFEIA		Dolphin watching plan		
and S8.14 of				
TMCLKLEIA				
S10.7 of	E5	Decouple compressors and other equipment on working vessels	Marine works	V
HKBCFEIA		Proposal on design and implementation of acoustic decoupling measures applied		
and S8.14 of		during reclamation works		
TMCLKLEIA		Avoidance of percussive piling		
S10.7 of	E6	Control vessel speed	Marine traffic	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
HKBCFEIA		Skipper training		
and S8.14 of		Predefined and regular routes for working vessels; avoid Brothers Islands		
TMCLKLEIA				
S10.10 of	E7	Vessel based dolphin monitoring	Northeast and	V
HKBCFEIA			Northwest	
and S8.14 of			Lantau	
TMCLKLEIA				
Fisheries				
S11.7 of	F1	Reduce re-suspension of sediments	Seawall, reclamation	V
HKBCFEIA		Limit works fronts	area	
		Good site practices		
		Strict enforcement of no marine dumping		
		Spill response plan		
S11.7 of	F2	Install silt-grease trap in the drainage system collecting surface runoff	Reclamation area	V
HKBCFEIA				
Landscape &	Visual (Constr	uction Phase)		
S14.3.3. 3 of	LV1	Mitigate Landscape Impacts	All construction site	N/A
HKBCFEIA			areas	
and S10.9 of		G1/CM4 Grass-hydroseed or sheeting bare soil surface and stock pile areas.		
TMCLKLEIA		G9 Reserve of loose natural granite rocks for re-use. Provide new coastline to		
		adopt "natural-look" by means of using armour rocks in the form of natural		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		rock materials and planting strip area accommodating screen buffer to enhance "natural-look" of new coastline.		
S10.9 of TMCLKLEIA	LV2	Mitigate Landscape Impacts CM7 Ensure no run-off into water body adjacent to the Project Area.	All construction site areas	V
S14.3.3. 3 of HKBCFEIA	LV4	Mitigate Visual Impacts V1 Minimize time for construction activities during construction period.	All construction site areas	V
S10.9 of TMCLKLEIA	LV5	Mitigate Visual Impacts CM6 Control night-time lighting and glare by hooding all lights.	All construction site areas	V
EM&A				
S15.2.2 of HKBCFEIA	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual.	All construction site areas	V
S15.5 - S15.6 of HKBCFEIA	EM2	 An Environmental Team needs to be employed as per the EM&A Manual. Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with. 	All construction site areas	V

Legend: V = implemented;

x = not implemented;

N/A = not applicable

Appendix D - Summary of Action and Limit Levels

Table 1 - Action and Limit Levels for 1-hour TSP

Location	Action Level	Limit Level
AMS2	374 μg/m³	500 μg/m³
AMS3B*	368 μg/m³	500 μg/m³
AMS6	360 μg/m ³	500 μg/m³
AMS7A [#]	370 μg/m³	500 μg/m³

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

Table 2 - Action and Limit Levels for 24-hour TSP

Location	Action Level	Limit Level
AMS2	176 μg/m³	260 μg/m³
AMS3B*	167 μg/m³	260 μg/m³
AMS6	173 μg/m³	260 μg/m³
AMS7A [#]	183 μg/m³	260 μg/m ³

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

Table 3 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Location	Action Level	Limit Level
NMS2	When one documented	75 dB(A)
	complaint, related to 0700 -	
	1900 hours on normal	
NMS3B	weekdays, is received	*65 / 70 dB(A)
	from any one of the sensitive	
	receivers	

^{*}Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

^{*}Action level set out at AMS7 Hong Kong SkyCity Marriott Hotel is adopted.

[#]Action level set out at AMS7 Hong Kong SkyCity Marriott Hotel is adopted.

Table 4 - Action and Limit Levels for Water Quality

Parameters	Action	Limit
DO in mg L ⁻¹	Surface and Middle	Surface and Middle
(Surface, Middle & Bottom)	5.0	4 .2 (except 5 mg/L for FCZ)
	<u>Bottom</u>	<u>Bottom</u>
	4.7	3.6
SS in mg L ⁻¹	23.5 and 120% of upstream	34.4 and 130% of upstream
(depth-averaged)	control station's SS at the	control station's SS at the same
	same tide of the same day	tide of the same day and
		10mg/L for WSD Seawater
		intakes
Turbidity in NTU	27.5 and 120% of upstream	47.0 and130% of upstream
(depth-averaged)	control station's turbidity at	control station's turbidity at the
	the same tide of the same	same tide of the same day
	day	

Notes:

- "depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 5(a) Action and Limit Levels for Chinese White Dolphin Monitoring - Approach to Define Action Level (AL) and Limit Level (LL):

	North Lantau	Social Cluster				
	NEL NWL					
Action Level	(STG < 70% of baseline) &	(STG < 70% of baseline) &				
	(ANI < 70% of baseline)	(ANI < 70% of baseline)				
Limit Level	[(STG < 40% of baseline) & (Al	NI < 40% of baseline)] AND				
	[(STG < 40% of baseline) & (A	NI < 40% of baseline)]				

For North Lantau Social Cluster, action level will be trigger if either NEL **or** NWL fall below the criteria; limit level will be triggered if both NEL **and** NWL fall below the criteria.

Table 5(b) Derived Value of Action Level (AL) and Limit Level (LL) for Chinese White Dolphin Monitoring

	North Lantau	Social Cluster
	NEL	NWL
Action Level	(STG < 4.2) &	(STG < 6.9) &
	(ANI < 15.5)	(ANI < 31.3)
Limit Level	[(STG < 2.4) & (ANI <8.9)] ANI	D
	[(STG < 3.9)& (ANI < 17.9)]	

Station	Tung Chung Dev	elopment Pier (Al	MS2)	Operator:	Cheung H	lung Wai	
al. Date:	27-Jan-15			Next Due Date:	27-Ma	ar-15	
quipment No.:	A-001-78T	_		Serial No.	I No. 3383		
			Ambient	Condition			
Temperatu	re, Ta (K)	292	Pressure, F	Pa (mmHg)		764.4	
		(Orifice Transfer St	andard Informatio	n		
Serial	No:	988	Slope, mc	1.97518	Interce		-0.0100
Last Calibra	ation Date:	28-May-14			= [DH x (Pa/760) x		
Next Calibra	ation Date:	28-May-15		Qstd = {[DH x (F	Pa/760) x (298/Ta)] ¹	^{/2} -bc} / mc	
				f TSP Sampler		No. 1	
Dooistores		0	rfice		HVS	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF	
18	8.4		2.94	1.49	48.0	48.63	}
13	7.0		2.68	1.36	43.0	43.57	7
10	5.5		2.38	1.21	36.0	36.47	7
7	4.0		2.03	1.03	31.0	31.4	
5	2.7		1.66	0.85	23.0	23.30)
Slope , mw = Correlation Coe	-		9957	Intercept, bw =	-9.3	624	-
*If Correlation Co	pefficient < 0.990,	check and recalit	orate.				
			Set Point	Calculation			
From the TSP Fi	eld Calibration Cu	ırve, take Qstd =	1.30m³/min	,			
From the Regres	sion Equation, the	e "Y" value accore	ding to				
			0.41-1-10	(O) (700)	- >1/2	ь	
		mw	x Qsta + bw = IC	x [(Pa/760) x (298/	ı a)j		
Therefore, Set P	oint: IC = (mw x	Qstd + bw) x [(7	60 / Pa) x (Ta / 29	98)] ^{1/2} =		40.48	
, ,	, ,	, , , , , , , , , , , , , , , , , , , ,		,-		ALLON	_
							2
Remarks:	38.70.10						
					1		
							,
				A		Date: 28/	-

Station	Tung Chung Dev	velopment Pier (Al	MS2)	Operator:	Leung \	/iu Ting
Cal. Date:	27-Mar-15			Next Due Date:	26-Ma	ay-15
Equipment No.:	A-001-78T	_		Serial No.	33	83
			Ambient	Condition		
Temperatu	re, Ta (K)	294	Pressure, I	Pa (mmHg)		763.0
•				, ,,		17 Montesoper
		(Orifice Transfer S	tandard Informatio	n	
Seria	l No:	988	Slope, mc	1.97518	Interce	ept, bc -0.010
Last Calibra	ation Date:	28-May-14		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}
Next Calibra	ation Date:	28-May-15		Qstd = {[DH x (I	Pa/760) x (298/Ta)]	^{1/2} -bc} / mc
				of TSP Sampler		
Resistance		0	rfice		HV	S Flow Recorder
Plate No.	DH (orifice), in. of water	[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-ax
18	8.2		2.89	1.47	48.0	48.41
13	7.0		2.67	1.36	44.0	44.38
10	5.3		2.32	1.18	36.0	36.31
7	4.2		2.07	1.05	32.0	32.27
5	2.6		1.63	0.83	24.0	24.21
By Linear Regre Slope , mw = Correlation Coe	38.1883	_	9965	Intercept, bw =	-7.8	238
		check and recalib		-		
			Set Point	Calculation		
From the TSP Fig	eld Calibration Cu	urve, take Qstd = 1	1.30m³/min		Creative State of Sta	
From the Regres	sion Equation, th	e "Y" value accord	ling to			
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Га)] ^{1/2}	
Therefore, Set Po	oint; IC = (mw x	Qstd + bw) x [(76	60 / Pa) x (Ta / 29	98)] ^{1/2} =	,	41.46
Remarks:		2			-	
		.				
QC Reviewer:	1 Leura		Signature:			Date: 7-3-15

D:\HVS Calibration Certificate (Existing)

Cal. Date:	Olto Bouridary of	Site Office (WA2)	(AMS3B)	Operator:	Leung Y	iu Ting	
al. Date.	6-Mar-15			Next Due Date:	6-Ma	y-15	
quipment No.:	A-001-79T	_		Serial No.	3384		
			Ambient	Condition			
Temperatu	re, Ta (K)	290	Pressure, F	Pa (mmHg)		762.2	
				•			
		(Orifice Transfer St	andard Informatio	n		
Serial	No:	988	Slope, mc	1.97518	Interce	ept, bc -0.0100	
Last Calibra	ation Date:	28-May-14		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	28-May-15		Qstd = {[DH x (F	Pa/760) x (298/Ta)] ¹	^{/2} -bc} / mc	
			SHARWAY THE PARTY OF THE PARTY	f TSP Sampler			
Decistores		0	rfice	, -	HVS	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/76	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Flow Recorder Reading (CFM)	Continuous Flow Recorde Reading IC (CFM) Y-axis	
18	7.6		2.80	1.42	52.0	52.79	
13	6.0		2.49		44.0	44.67	
10	5.0		2.27		36.0	36.55	
7	3.0		1.76	0.90	24.0	24.36	
5	2.0		1.44	0.73	16.0	16.24	
Slope , mw = Correlation Coe	53.0294 fficient* = pefficient < 0.990,		9960 brate.	Intercept, bw =	-23.0	0658	
			Set Point	Calculation			
				Valculation			
From the TSD Fig	eld Calibration Cu	irve take Oetd =	1.30m [°] /min				
	eld Calibration Cu						
	eld Calibration Cu ssion Equation, th						
		e "Y" value accor	ding to	x [(Pa/760) x (298/	Га)] ^{1/2}		
rom the Regres	ssion Equation, th	e "Y" value accord	ding to x Qstd + bw = IC		Га)] ^{1/2}	45.40	
From the Regres	ssion Equation, th	e "Y" value accord	ding to		Га)] ^{1/2}	45.19	
From the Regres	ssion Equation, th	e "Y" value accord	ding to x Qstd + bw = IC		Га)] ^{1/2}	45.19	
From the Regres	ssion Equation, th	e "Y" value accord	ding to x Qstd + bw = IC		Га)] ^{1/2}	45.19	
From the Regres	ssion Equation, th	e "Y" value accord	ding to x Qstd + bw = IC		Га)] ^{1/2}	45.19	
From the Regres	ssion Equation, th	e "Y" value accord	ding to x Qstd + bw = IC		Γa)] ^{1/2}	45.19	
From the Regres	ssion Equation, th	e "Y" value accord	ding to x Qstd + bw = IC		Γa)] ^{1/2}	45.19	

Call Date: 6-Jan-15 Next Due Date: 6-Mar-15 Serial No. 3384 March Serial No. 3384	Station	Site Boundary o	f Site Office (WA2) (AMS3B)	Operator:	Leuna	Yiu Ting		
Ambient Condition Temperature, Ta (K) 292 Pressure, Pa (mmHg) 764.1	Cal. Date:								
Temperature, Ta (K) 292 Pressure, Pa (mmHg) 764.1	Equipment No.:	A-001-79T	_		Serial No.			-	
Temperature, Ta (K) 292 Pressure, Pa (mmHg) 764.1								_	
Orifice Transfer Standard Information	T	T- (10)	200						
Serial No: 988 Slope, mc 1.97518 Intercept, bc -0.010	remperatu	re, Ta (K)	292	Pressure,	Pa (mmHg)		764.1		
Serial No: 988 Slope, mc 1.97518 Intercept, bc -0.010				Orifice Transfer S	Standard Information	on			
Last Calibration Date: 28-May-14 mc x Qstd + bc = [DH x (Pa/760) x (298/Ta)] 1/2 Qstd = {[DH x (Pa/760) x (298/Ta)] 1/2 bc} / mc	Serial	No:					ent bc	-0.0100	
Calibration Date: 28-May-15 Qstd = {[DH x (Pa760) x (298/Ta)]}^{1/2} -bc} / Imc	Last Calibra	ition Date:	28-May-14					-0.0100	
Calibration of TSP Sampler	Next Calibra	ation Date:	28-May-15						
Continuous Flow Recorder Plate No. DH (orifice), in. of water [DH x (Pa/760) x (298/Ta)] Tax Plate No. DH (orifice), in. of water [DH x (Pa/760) x (298/Ta)] Tax Plate No. Tax Plate No. DH (orifice), in. of water [DH x (Pa/760) x (298/Ta)] Tax Plate No. Tax Plate N									
Continuous Flow Recorder Reading (CFM) Continuous Flow Recorder Reading (CFM) Reading (C					of TSP Sampler				
Plate No. DH (orifice), in. of water	Resistance		0	rfice		HV	S Flow Recorder		
13 6.0 2.48 1.26 43.0 43.56 10 4.9 2.24 1.14 36.0 36.47 7 3.3 1.84 0.94 26.0 26.34 5 2.1 1.47 0.75 18.0 18.23 y Linear Regression of Y on X lope , mw =			[DH x (Pa/76	0) x (298/Ta)] ^{1/2}	,				
10	18	7.5		2.77	1.41	52.0	52.67		
7 3.3 1.84 0.94 26.0 26.34 5 2.1 1.47 0.75 18.0 18.23 y Linear Regression of Y on X lope , mw = 51.9424 Intercept, bw = -21.6419 orrelation Coefficient* = 0.9946 f Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation om the TSP Field Calibration Curve, take Qstd = 1.30m ³ /min om the Regression Equation, the "Y" value according to mw x Qstd + bw = IC x [(Pa/760) x (298/Ta)] ^{1/2} herefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)] ^{1/2} 45.30	13	6.0		2.48	1.26	43.0	43.56		
5 2.1 1.47 0.75 18.0 18.23 y Linear Regression of Y on X ope , mw =51.9424		4.9	1	2.24	1.14	36.0	36.47		
y Linear Regression of Y on X lope , mw = 51.9424		3.3	·	1.84	0.94	26.0	26.34		
y Linear Regression of Y on X lope , mw =	5	2.1	1	1.47	0.75	18.0	18.23		
Set Point Calculation rom the TSP Field Calibration Curve, take Qstd = 1.30m³/min rom the Regression Equation, the "Y" value according to mw x Qstd + bw = IC x [(Pa/760) x (298/Ta)] ^{1/2} herefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)] ^{1/2} = 45.30	lope , mw = orrelation Coeff	51.9424 ficient* =			Intercept, bw = _				
mw x Qstd + bw = IC x [(Pa/760) x (298/Ta)] ^{1/2} herefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)] ^{1/2} = 45.30				Set Point	Calculation				
mw x Qstd + bw = IC x [(Pa/760) x (298/Ta)] ^{1/2} nerefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)] ^{1/2} = 45.30	rom the TSP Fiel	d Calibration Cur	ve, take Qstd = 1						
nerefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)] ^{1/2} =	rom the Regressi	ion Equation, the	"Y" value accordi	ng to		,			
nerefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)] ^{1/2} =				w one whom		10		,	
			mw x	Qstd + bw = IC >	([(Pa/760) x (298/T	a)] ^{1/2}		,	
emarks:	nerefore, Set Poi	nt; IC = (mw x Q	std + bw) x [(760) / Pa) x (Ta / 29	8)] ^{1/2} =		45.30		
emarks:									
emarks:									
	emarks:								
	_								
	C Reviewer:	K Cum		ignature:	21	_	Date: 07 /01	1 -	

Cal. Date:	Cita Kong Ali-Sea Oi	nion Transportation C	o.Ltd. (AMS7A)	Operator:	Cheung H	lung Wai	
ui. Dule.	5-Feb-15			Next Due Date:	5-Ap	r-15	
quipment No.:	A-001-80T	-		Serial No.	338	35	_
		,	Ambient	Condition			
Temperatu	re, Ta (K)	289	Pressure, F	Pa (mmHg)		760.7	
		(Orifice Transfer St	tandard Informatio	n		
Serial	No:	988	Slope, mc	1.97518	Interce	ept, bc	-0.0100
Last Calibra	ation Date:	28-May-14		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	28-May-15		Qstd = {[DH x (F	Pa/760) x (298/Ta)] ¹	^{/2} -bc} / mc	
			Calibration	of TSP Sampler			
		0	rfice	1 1 or Sampler	HV5	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	T	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X -	Flow Recorder Reading (CFM)	Continuous Flo Reading IC (C	ow Recorder
18	7.0		2.69	1.37	46.0	46.7	73
13	6.1		2.51	1.28	40.0	40.6	64
10	4.7		2.20	1.12	33.0	33.5	53
7	3.7		1.95	0.99	27.0	27.4	13
5	2.8		1.70	0.87	20.0	20.3	32
3y Linear Regre	ession of Y on X 51.3624	_	9972	Intercept, bw =	-24.0	0191	_
Correlation Coe		check and recalil		_			
Correlation Coe			brate.	Calculation			
Correlation Coe	pefficient < 0.990,		orate. Set Point	Calculation			
Correlation Coe If Correlation Co	pefficient < 0.990,	check and recalil	Set Point 1.30m³/min	Calculation			
Correlation Coe If Correlation Co	pefficient < 0.990,	check and recalil	Set Point 1.30m³/min	Calculation			
Correlation Coe If Correlation Co	pefficient < 0.990,	rve, take Qstd = e "Y" value accord	Set Point 1.30m³/min ding to	Calculation x [(Pa/760) x (298/	Га)] ^{1/2}		
Correlation Coe If Correlation Coe From the TSP Fig.	pefficient < 0.990,	urve, take Qstd = e "Y" value accord	Set Point 1.30m³/min ding to x Qstd + bw = IC	x [(Pa/760) x (298/	Га)] ^{1/2}	40.00	
Correlation Coe If Correlation Coe From the TSP Fig.	pefficient < 0.990,	urve, take Qstd = e "Y" value accord	Set Point 1.30m³/min ding to	x [(Pa/760) x (298/	Γa)] ^{1/2}	42.08	
Correlation Coe If Correlation Coe From the TSP Fie	pefficient < 0.990,	urve, take Qstd = e "Y" value accord	Set Point 1.30m³/min ding to x Qstd + bw = IC	x [(Pa/760) x (298/	Га)] ^{1/2}	42.08	
Correlation Coe If Correlation Coe From the TSP Fig.	pefficient < 0.990,	urve, take Qstd = e "Y" value accord	Set Point 1.30m³/min ding to x Qstd + bw = IC	x [(Pa/760) x (298/	Γa)] ^{1/2}	42.08	
From the TSP Fig.	pefficient < 0.990,	urve, take Qstd = e "Y" value accord	Set Point 1.30m³/min ding to x Qstd + bw = IC	x [(Pa/760) x (298/	Га)] ^{1/2}	42.08	_
From the TSP Fig.	pefficient < 0.990,	urve, take Qstd = e "Y" value accord	Set Point 1.30m³/min ding to x Qstd + bw = IC	x [(Pa/760) x (298/	Γa)] ^{1/2}	42.08	
From the TSP Fide	pefficient < 0.990,	urve, take Qstd = e "Y" value accord	Set Point 1.30m³/min ding to x Qstd + bw = IC	x [(Pa/760) x (298/	Га)] ^{1/2}	42.08	_

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - M Operator		Rootsmeter Orifice I.I		438320 0988	Ta (K) - Pa (mm) -	296 - 751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3790 0.9720 0.8690 0.8260 0.6830	3.2 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd (x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9917 0.7191 0.9875 1.0159 0.9854 1.1339 0.9843 1.1916 0.9790 1.4333	1.4113 1.9959 2.2315 2.3405 2.8227	0.9957 0.9915 0.9894 0.9883 0.9829	0.7221 1.0201 1.1385 1.1965 1.4392	0.8874 1.2549 1.4030 1.4715 1.7747
Qstd slope (m) = intercept (b) = coefficient (r) =	1.97518 -0.01001 0.99998	Qa slope intercept coefficie	t (b) =	1.23683 -0.00630 0.99998
y axis = SQRT[H2O(H	Pa/760)(298/Ta)]	y axis =	SQRT[H20(Га/Ра)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Type:			3)	Laser Du	st Moni	tor		
	acturer/Brand:			SIBATA				
Model	No.:		_	LD-3				
	ment No.:			A.005.07				
Sensit	ivity Adjustment	Scale Setting:		557 CPI	/			
Opera	tor:			Mike She	k (MSKN	1)		
Standa	rd Equipment							
	Addition and Property . V							
Equip		Rupprech		the same of the sa				
Venue		Cyberpor		ring Seco	naary So	chool)		
Model		Series 14		A D 240 00	20002			
Serial	NO:	Control:		DAB21989	-	V . 40500		
Last C	alibration Date*:	Sensor: 10 May 2		00C14365	9803	K _o : <u>12500</u>		
Last	anbration bate .	_ TO May 2	014		-		****	
*Remar	ks: Recommend	ed interval for h	ardwar	e calibrat	ion is 1 y	/ear		
Calibra	tion Result							
0	: : . A . P	01-0-11-1		0 . !!! !!		557 00		
	ivity Adjustment					557 CP		
Sensit	ivity Adjustment	Scale Setting (A	Affer Ca	alibration)	1.	_557 CP	IVI	
Hour	Date	Time		Amb	ient	Concentration	Total	Count/
100000000000000000000000000000000000000	(dd-mm-yy)	(10.00000000000000000000000000000000000		Cond		(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
				(°C)	(%)			
1	11-05-14		10:30	26.7	75	0.04434	1775	29.58
2	11-05-14		11:30	26.7	75	0.04716	1880	31.33
3	11-05-14		12:30	26.8	76	0.04927	1964	32.73
4	11-05-14		13:30	26.8	75	0.05035	2015	33.58
Note:		lata was measu				shnick TEOM®		
		was logged by						
	3. Count/minut	te was calculate	ea by (I	otal Coul	11/60)			
By Line	ar Regression of	Y or X						
	(K-factor):		015					
	ation coefficient:		982					
V / P P:				0.45				
Validit	y of Calibration F	Record: 11	May 20	015				
DI								
Remark	is:							
					1./			
QC Re	eviewer: YW F	ung	Signat	ture:	9/	Date	: 12 Ma	y 2014

Model N Equipm		Scale Setting	- - - g: _	Laser D SIBATA LD-3 A.005.08 702 CP	Ва	nitor		
Operator: Mike Shek (MSKM)								
Standard	l Equipment							
Equipmovenue: Model N Serial N Last Ca	lo.:	Cyber Series Contro Senso	70.00		ondary S 99803	School)	500	
*Remarks	s: Recommend	ed interval fo	or hardwa	re calibra	ation is 1	year		
Calibrati	on Result					40.00		W-
	rity Adjustment rity Adjustment		-			702 702	CPM CPM	
Hour	Date (dd-mm-yy)	Tim	е	Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	11-05-14	09:45 -	10:45	26.7	75	0.04568	1713	28.50
2	11-05-14	10:45 -	11:45	26.7	75	0.04857	1819	30.32
3	11-05-14	11:45 -	12:45	26.8	76	0.05063	1903	31.72
4	11-05-14	12:45 -	13:45	26.8	75	0.05116	1922	32.03
	1. Monitoring of 2. Total Count 3. Count/minuter Regression of K-factor):	was logged te was calcul	by Laser	Dust Mor	nitor	tashnick TEOM [®]		
	tion coefficient:	_	0.9984					
•	of Calibration F	Record: _	11 May 2	2015				
Remarks	:							
QC Rev	viewer: YW F	-una	Signa	ature:	4/		Date: 1	2 May 2014

Model Equipr Sensit Opera	ment No.: ivity Adjustment	Scale Setting:		Laser Du SIBATA LD-3 A.005.09a 797 CPM Mike She	a 1			
Equipr		Rupprechi				L N		
Venue		Cyberport		ing Seco	ndary Sc	nooi)		
Model		Series 140		A D24000	0000			
Serial	No:	Control:		AB21989		K _o : 12500		- 10-1 00
1 4 0	alibuatian Data*.	Sensor:		0C14365	9803	K _o : <u>12500</u>		
Last C	Calibration Date*:	10 May 20)14					
*Remar	ks: Recommend	ed interval for ha	ardwar	e calibrat	ion is 1 y	/ear		
Calibra	tion Result	all and a second						
	ivity Adjustment ivity Adjustment					797 CP 797 CP		
Hour	Date	Time		Amb	ient	Concentration ¹	Total	Count/
l loui	(dd-mm-yy)			Conc		(mg/m ³)	Count ²	Minute ³
	(44)))			Temp	R.H.	Y-axis		X-axis
				(°C)	(%)	3 100000000		
1	11-05-14	13:30 - 1	4:30	26.8	75	0.05034	2017	33.62
2	11-05-14	14:30 - 1	15:30	26.9	76	0.05211	2084	34.73
3	11-05-14	15:30 - 1	16:30	26.9	76	0.05163	2066	34.43
4	11-05-14		17:30	26.9	76	0.05272	2113	35.22
Slope Corre	2. Total Count 3. Count/minut ar Regression of (K-factor): lation coefficient: ty of Calibration F	0.0	Laser [Oust Mon Total Cou	itor	ashnick TEOM [™]		
		Fung	Signa	ture:	9/	Date	e: 12 Ma	ay 2014

Model Equipr	acturer/Brand: No.: nent No.: ivity Adjustment	Scale Setti		Laser Du SIBATA LD-3 A.005.10 753 CPN	а	tor		
Opera	•		_	Mike She	600 0000 000	1)		
Standar	rd Equipment			****				
Equipr Venue Model	: No.:	Cybe Serie	precht & Par erport (Pui \ es 1400AB	ing Seco	ndary So	chool)		
Serial Last C	No: alibration Date*:	Cont Sens 10 M		0AB21989 00C14365		K _o : _1250	00	
*Remarl	ks: Recommend	ed interval	for hardwar	e calibrat	ion is 1 y	year		
Calibra	tion Result							
	ivity Adjustment ivity Adjustment		• ,				CPM CPM	
Hour	Date (dd-mm-yy)	Ti	me	Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	11-05-14	13:45	- 14:45	26.8	75	0.04984	1996	33.27
2	11-05-14		- 15:45	26.9	76	0.05196	2077	34.62
3	11-05-14	15:45	- 16:45	26.9	76	0.05141	2055	34.25
4	11-05-14		- 17:45	26.9	76	0.05263	2109	35.15
Slope Correl	2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient: y of Calibration F	was logge e was calc Y or X	d by Laser [Oust Mon otal Cou	itor	ashnick TEOM [®]		
Siliain			2					
QC Re	eviewer: YW F	ung	_ Signa	ture:	4/	Da	ate: 12 Ma	y 2014

Model Equipr Sensit Opera	ment No.: ivity Adjustment	Scale Setting	g: _	Laser Du SIBATA LD-3 A.005.11 799 CPI Mike She	а И			
	(New York)	_						
Equipr			echt & Pa			, ,		
Venue			port (Pui \	ring Seco	ndary So	chool)		
Model	46 NTHE		1400AB	0400400	20000			
Serial	NO:	Contro		DAB21989		V . 40500		
Loot C	alibration Data*	Senso		00C1436	9803	K _o : <u>12500</u>	,	
Last C	alibration Date*:	_10 Ma	y 2014					
*Remar	ks: Recommend	ed interval fo	or hardwar	re calibra	tion is 1 v	vear		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 00		,		
Calibra	tion Result						A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
Sensit	ivity Adjustment	Scale Setting	g (Before	Calibratio	n):	799 CF	PM	
Sensit	ivity Adjustment	Scale Setting	g (After Ca	alibration):	799 CF	PM	
Hour	Date	Tim	е	Amb	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)			Cond	dition	(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
				(°C)	(%)			
1	18-05-14	09:00 -	10:00	28.3	77	0.04527	1815	30.25
2	18-05-14	10:00 -	11:00	28.3	77	0.04811	1923	32.05
3	18-05-14	11:00 -	12:00	28.3	77	0.05103	2041	34.02
4	18-05-14	12:00 -	13:00	28.4	77	0.05366	2157	35.95
Note:	 Monitoring of 	lata was mea	asured by	Rupprec	ht & Pata	ashnick TEOM®		R-12
	Total Count	was logged	by Laser [Dust Mon	itor			
	Count/minut	e was calcul	ated by (T	Total Cou	nt/60)			
	ar Regression of							
	(K-factor):	-	0.0015					
Correl	ation coefficient:	_	0.9987					
Validit	y of Calibration F	Record: _	18 May 20	015				
Remark	e.							
Temark	.5.		* 100	TO .				
	400							
					11	/		
QC Re	eviewer: YW F	-ung	Signa	ture:		Date	e: 19 Ma	y 2014

Model Equipm	acturer/Brand: No.: nent No.: vity Adjustment S	Scale Settin		_aser Du SIBATA _D-3B A.005.13a 643 CPN	3	or		
Operat	tor:		_!	Mike She	k (MSKM)		
Standar	d Equipment							
	: No.:	Cyber Series Contro Senso 10 Ma	or: 120 by 2014	ing Seco AB21989 0C14365	ndary Sc 99803 99803	K _o : _12500		
Calibrat	tion Result							
	ivity Adjustment ivity Adjustment					643 CF	PM PM	
Hour	Date (dd-mm-yy)	Tin	ne		dition R.H. (%)	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	18-05-14	09:30 -	10:30	28.3	77	0.04614	1846	30.77
2	18-05-14	10:30 -	11:30	28.3	77	0.04823	1934	32.23
3	18-05-14	11:30 -	12:30	28.3	77	0.05152	2053	34.22
4	18-05-14	12:30 -	13:30	28.4	77	0.05391	2162	36.03
Slope	Monitoring of 2. Total Count 3. Count/minuter Regression of (K-factor): ation coefficient:	was logged te was calcu Y or X	by Laser I	Just Mon	itor	shnick TEOM®		
Validit	y of Calibration I	Record:	18 May 2	015				
Remark	KS:							
OC B	eviewer VW	Funa	Signa	iture:	4/	Da	te: 19 Ma	ay 2014

		а И			
	Mike She	k (MSKN	1)		
1170			***		
Cyberport (Pui Y Series 1400AB Control: 140 Sensor: 120 10 May 2014	/ing Seco 0AB21989 00C14365	99803 99803	K _o : <u>12500</u>		
				200	
Setting (After Ca	alibration)): [*]			
Time	Cond Temp	lition R.H.	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
45 - 13:45	28.4	77	0.05027	2158	35.97
	28.5	76	0.05161	2211	36.85
	28.5	76	0.05235	2247	37.45
45 - 16:45	28.4	77	0.05203	2233	37.22
ogged by Laser Escalculated by (TX) 0.0014 0.9969	Oust Moni otal Cour	tor	shnick TEOM®		
	Rupprecht & Pail Cyberport (Pui Y Series 1400AB Control: 140 Sensor: 120 10 May 2014 terval for hardwar e Setting (Before 0 Setting (After Ca Time 45 - 13:45 45 - 14:45 45 - 15:45 45 - 16:45 Vas measured by ogged by Laser Description of the control of the co	Rupprecht & Patashnick Cyberport (Pui Ying Second Series 1400AB	Rupprecht & Patashnick TEOM® Cyberport (Pui Ying Secondary Scotes 1400AB	Cyberport (Pui Ying Secondary School) Series 1400AB Control: 140AB219899803 Sensor: 1200C143659803 K _o : 12500 10 May 2014 Series In Indian	Rupprecht & Patashnick TEOM® Cyberport (Pui Ying Secondary School) Series 1400AB

Type:			_	Laser Du	st Moni	tor		
	facturer/Brand:			SIBATA				
Model				LD-3B				
	ment No.: tivity Adjustment	Scale Setting:	_	A.005.16 521 CPN				
Serisi	ivity Aujustinent	ocale Setting.	_	JZT OF	"			
Opera	tor:			Mike She	k (MSKN	1)		
Standa	rd Equipment			**************************************				
			301					
Equip				ashnick		, n		
Venue				ing Seco	ndary So	chool)		
Model		Series 1		A DO 400	20000			
Serial	No:	Control:		AB21989		1/ 10500		
1 1 0	Nalibuatian Datata	Sensor:		0C14365	9803	K _o : 12500		
Last	Calibration Date*:	_10 May :	2014					
*Remar	ks: Recommend	ed interval for	hardwar	e calibrat	tion is 1 y	/ear		
Calibra	tion Result					3 - 3		
	tivity Adjustment tivity Adjustment					521 CF		
Hour	Date	Time		Amb	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)			Cond	dition	(mg/m ³)	Count ²	Minute ³
	,			Temp	R.H.	Y-axis		X-axis
				(°C)	(%)		1	
1	26-07-14	10:30 -	11:30	28.6	77	0.04931	1971	32.85
2	26-07-14	11:45 -	12:45	28.6	77	0.05142	2052	34.20
3	26-07-14	13:15 -	14:15	28.7	77	0.05589	2243	37.38
4	26-07-14	14:40 -	15:40	28.8	78	0.05293	2116	35.27
Note:	Monitoring of 2. Total Count 3. Count/minut ar Regression of	was logged by te was calculat	Laser [Dust Mon	itor	ashnick TEOM [®]		
	(K-factor):		0015					
	lation coefficient:		9934					
	y of Calibration F	· · · · · · · · · · · · · · · · · · ·	6 July 20	015				
Remark	(S:							
QC R	eviewer: YW F	-ung	Signat	ture:		Date	e: 28 Jul	y 2014

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F, 9/F, 12/F, 13/F. & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA0408 01-02

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Rion Co., Ltd.

Type/Model No.: Serial/Equipment No.: NC-74 34246490

Adaptors used:

Yes

N.004.10

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

-

Request No.:

-

Date of receipt:

08-Apr-2014

Date of test:

15-Apr-2014

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	17-Apr-2014	SCL
Preamplifier	B&K 2673	2239857	10-Apr-2015	CEPREI
Measuring amplifier	B&K 2610	2346941	08-Apr-2015	CEPREI
Signal generator	DS 360	61227	09-Apr-2015	CEPREI
Digital multi-meter	34401A	US36087050	17-Dec-2014	CEPREI
Audio analyzer	8903B	GB41300350	07-Apr-2015	CEPREI
Universal counter	53132A	MY40003662	11-Apr-2015	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 60 ± 10 %

Relative humidity: Air pressure:

1000 ± 10 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

23-Apr-2014

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA0408 01-01

Page:

of

2

to:

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: B & K 4231

Serial/Equipment No.: Adaptors used: 3006428

06428 / 00 4 03

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

177

Request No.: Date of receipt:

08-Apr-2014

Date of test:

15-Apr-2014

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable t
Lab standard microphone	B&K 4180	2341427	17-Apr-2014	SCL
Preamplifier	B&K 2673	2743150	10-Apr-2015	CEPREI
Measuring amplifier	B&K 2610	2346941	08-Apr-2015	CEPREI
Signal generator	DS 360	61227	09-Apr-2015	CEPREI
Digital multi-meter	34401A	US36087050	17-Dec-2014	CEPREI
Audio analyzer	8903B	GB41300350	07-Apr-2015	CEPREI
Universal counter	53132A	MY40003662	11-Apr-2015	CEPREI

Ambient conditions

Temperature: Relative humidity:

22 ± 1 °C 60 ± 10 %

Air pressure:

1000 ± 10 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

hin/Feng Jun Qi

Huang Jian

Approved Signatory:

Date:

23-Apr-2014

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F, 9/F, 12/F, 13/F. & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA1106 04-01

Page

of

2

Item tested

Description:
Manufacturer:
Type/Model No.:

Sound Level Meter (Type 1)

Rion Co., Ltd.

Microphone Rion Co., Ltd.

NL-31 00320528 / N.007.03A UC-53A 90565

Serial/Equipment No.: Adaptors used:

Item submitted by

AECOM ASIA CO., LTD.

Customer Name: Address of Customer:

Request No.:

-

Date of receipt:

06-Nov-2014

Date of test:

07-Nov-2014

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: or B&K 422 Serial No. 2288444 Expiry Date: 15-Jun-2015 Traceable to: CIGISMEC

Signal generator Signal generator B&K 4226 DS 360 DS 360

33873 61227

09-Apr-2015 09-Apr-2015 CEPREI CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 65 ± 10 %

Relative humidity: Air pressure:

1010 ± 10 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

08-Nov-2014

Company Chop:

Huang Jian-Min/Feng Jun Qi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F, 9/F., 12/F, 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

14CA0702 01-01

B&K

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer: Type/Model No.:

1

B & K

Serial/Equipment No.:

2238 , 2800927 / N.009.06 , 4188 2791211

Adaptors used:

-

-

Item submitted by

Customer Name: Address of Customer: AECOM ASIA CO., LTD.

Request No.:

-

Date of receipt:

02-Jul-2014

Date of test:

03-Jul-2014

Reference equipment used in the calibration

Description:Multi function sound calibrator

Model: B&K 4226 **Serial No.** 2288444

Expiry Date: 20-Jun-2015 09-Apr-2015

Traceable to: CIGISMEC CEPREI

CEPREI

Signal generator Signal generator DS 360 DS 360

33873 61227 09-Apr-2015 09-Apr-2015

Ambient conditions

Temperature: Relative humidity:

Air pressure:

21 ± 1 °C 60 ± 10 % 1000 ± 10 hPa

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

 The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

A/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Huang Jian I

Approved Signatory:

Date:

04-Jul-2014

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Work Order:

HK1504531

Sub-batch:

Date of Issue:

07/02/2015

Client:

AECOM ASIA COMPANY LIMITED

Description:

Multifunctional Meter

Brand Name:

Model No.:

6820 V2

Serial No.:

12A101545

Equipment No.:

W.026.35

Date of Calibration: 05 February, 2015

Date of next Calibration:

05 May, 2015

Parameters:

Conductivity

Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	147.7	+0.5
6667	6600	-1.0
12890	12750	-1.1
58670	58200	-0.8
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
12.5	12.45	-0.1
25.0	25.02	+0.0
39.0	38.91	-0.1
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard

General Manager 7

Greater China & Hong Kong

Work Order:

HK1504531

Sub-batch:

Date of Issue:

07/02/2015

Client:

AECOM ASIA COMPANY LIMITED

Description:

Multifunctional Meter

Brand Name:

Model No.:

6820 V2

Serial No.:

12A101545

Equipment No.:

W.026.35

Date of Calibration: 05 February, 2015

Date of next Calibration:

05 May, 2015

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	
0	0.00		
10	9.95	-0.5	
20	19.62	-1.9	
30	29.56	-1.5	
	Tolerance Limit (%)	±10.0	

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)	
0	0.0		
4	3.9	-2.5	
10	9.6	-4.0	
20	19.7	-1.5	
50	49.4	-1.2	
100	99.1	-0.9	
	Tolerance Limit (%)	±10.0	

pH Value

Displayed Reading (pH Unit)	Tolerance (pH unit)	
Displayed Redding (pri ome)	Total and (pri and)	
4.02	+0.02	
7.03	+0.03	
10.02	+0.02	
Tolorance Limit (nH IInit)	±0.20	
	100000000	

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard

General Manager

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

Work Order:

HK1504530

Sub-batch:

Date of Issue:

07/02/2015

Client:

AECOM ASIA COMPANY LIMITED

Description:

Multifunctional Meter

Brand Name:

Model No.:

6820 V2

Serial No.:

12D100972

Equipment No.:

W.026.36

Date of Calibration: 05 February, 2015

Date of next Calibration:

05 May, 2015

Parameters:

Conductivity

Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)	
ec si			
146.9	145.0	-1.3	
6667	6640	-0.4	
12890	12800	-0.7	
58670	58850	+0.3	
	Tolerance Limit (%)	±10.0	

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	
3.50	3.44	-0.06	
5.85	5.81	-0.04	
7.70	7.66	-0.04	
7.70	7.00	-0.04	
	Tolerance Limit (mg/L)	±0.20	

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	
12.5	12.53	+0.0	
25.0	25.05	+0.1	
39.0	38.85	-0.1	
	Tolerance Limit (°C)	±2.0	

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

Work Order:

HK1504530

Sub-batch:

0

Date of Issue:

07/02/2015

Client:

AECOM ASIA COMPANY LIMITED

Description:

Multifunctional Meter

Brand Name:

YS

Model No.:

6820 V2

Serial No.:

12D100972

Equipment No.:

W.026.36

Date of Calibration: 05 February, 2015

W.020.30

Date of next Calibration:

05 May, 2015

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	
0	0.00		
10	9.98	-0.2	
20	20.03	+0.2	
30	30.05	+0.2	
	Tolerance Limit (%)	±10.0	

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)	
v			
0	0.0	i 	
4	4.1	+2.5	
10	9.7	-3.0	
20	20.2	+1.0	
50	50.5	+1.0	
100	100.6	+0.6	
	Tolerance Limit (%)	±10.0	

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)	
4.0	4.01	+0.01	
7.0	7.03	+0.03	
10.0	9.95	-0.05	

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard

General Manager/

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Environmental

Hong Kong Boundary Crossing Facilities – Reclamation Works Impact Monitoring Schedule for March 2015

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Mar	02-Mai	03-Mar	04-Mar	05-Mar	06-Mar	07-Mar
	Mid-Ebb 11:42 Mid-Flood 16:57		Mid-Ebb 12:36 Mid-Flood 18:17		Mid-Flood 07:45 Mid-Ebb 13:27	
					24-hour TSP 1-hour TSP Noise	
08-Mar	09-Mai	10-Mar	11-Mar	12-Mar	13-Mar	14-Mar
	Mid-Flood 08:54 Mid-Ebb 14:59		Mid-Flood 09:49 Mid-Ebb 16:15	24-hour TSP 1-hour TSP Noise	Mid-Flood 10:59 Mid-Ebb 18:07	
15-Mar	16-Ma	17-Mar	18-Mar	19-Mar	20-Mar	21-Mar
	Mid-Ebb 10:12 Mid-Flood 15:08		Mid-Ebb 11:47 Mid-Flood 17:14		Mid-Flood 07:08 Mid-Ebb 13:05	
			24-hour TSP 1-hour TSP Noise	Dolphin Monitoring	Dolphin Monitoring	
22-Mar	23-Mai	24-Mar	25-Mar	26-Mar	27-Mar	28-Mar
	Mid-Flood 08:43 Mid-Ebb 15:07		Mid-Flood 09:50 Mid-Ebb 16:41		Mid-Flood 11:10 Mid-Ebb 18:41	
29-Mar	30-Ma	31-Mar				
	Mid-Ebb 10:48 Mid-Flood 15:53 Dolphin Monitoring 24-hour TSP 1-hour TSP Noise					

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix F Schedule Jan 2015

Hong Kong Boundary Crossing Facilities – Reclamation Works Tentative Impact Monitoring Schedule for April 2015

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			01-Apr	02-Apr	03-Apr	04-Apr
			Mid-Ebb 11:45 Mid-Flood 17:29		Mid-Ebb 12:37 Mid-Flood 18:45	
05-Apr	06-Apr	07-Apr	08-Apr	09-Apr	10-Apr	11-Apr
	Mid-Flood 07:48 Mid-Ebb 14:03		Mid-Flood 08:43 Mid-Ebb 15:12 24-hour TSP 1-hour TSP Noise		Mid-Flood 09:47 Mid-Ebb 16:41	
12-Apr	13-Apr	14-Apr	15-Apr	16-Apr	17-Apr	18-Apr
	Mid-Ebb 08:48 Mid-Flood 13:27 24-hour TSP 1-hour TSP Noise		Mid-Ebb 10:42 Mid-Flood 16:07		Mid-Ebb 12:04 Mid-Flood 18:03 24-hour TSP 1-hour TSP	
19-Apr	20-Apr	21-Apr	22-Apr	23-Apr	24-Apr	25-Apr
	Mid-Flood 07:34 Mid-Ebb 14:05		Mid-Flood 08:41 Mid-Ebb 15:31	24-hour TSP	Mid-Flood 09:52 Mid-Ebb 17:03	
26-Apr	27-Apr	28-Apr	29-Apr	30-Apr		
·	Mid-Ebb 09:07 Mid-Flood 13:46		Mid-Ebb 10:42 Mid-Flood 16:24 Dolphin Monitoring 24-hour TSP 1-hour TSP Noise			

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix F Schedule Jan 2015

Appendix G Impact Air Quality Monitoring Results

1-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

D. 1	Cassian	Weather	averaged Wind Speed (m/s)*	Time	Conc. (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
Date	Session	Condition	_ `	(hh:mm)	(, 0 ,	(µg/III)	(µg/III)
06-Mar-15	1st Hour	Fine	3.8	10:00	72	374	500
06-Mar-15	2nd Hour	Fine	5.0	11:00	76	374	500
06-Mar-15	3rd Hour	Fine	0.5	12:00	77	374	500
12-Mar-15	1st Hour	Cloudy	0.3	10:12	73	374	500
12-Mar-15	2nd Hour	Cloudy	0.2	11:12	74	374	500
12-Mar-15	3rd Hour	Cloudy	1.2	12:12	72	374	500
18-Mar-15	1st Hour	Sunny	0.8	10:12	74	374	500
18-Mar-15	2nd Hour	Sunny	1.6	11:12	75	374	500
18-Mar-15	3rd Hour	Sunny	3.1	13:12	76	374	500
24-Mar-15	1st Hour	Sunny	0.9	10:30	82	374	500
24-Mar-15	2nd Hour	Sunny	0.7	11:30	83	374	500
24-Mar-15	3rd Hour	Sunny	0	12:30	80	374	500
30-Mar-15	1st Hour	Sunny	0	12:15	85	374	500
30-Mar-15	2nd Hour	Sunny	0	13:15	82	374	500
30-Mar-15	3rd Hour	Sunny	0.4	14:15	83	374	500
				Average	77		
				Min	72		
				Max	85		

1-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

Date	Session	Weather Condition	averaged Wind Speed (m/s)*	Time (hh:mm)	Conc. (µg/m³)	Action Level (µg/m³) ^	Limit Level (µg/m³)
06-Mar-15	1st Hour	Fine	3.8	10:05	74	368	500
06-Mar-15	2nd Hour	Fine	5.0	11:05	74	368	500
06-Mar-15	3rd Hour	Fine	0.5	12:05	77	368	500
12-Mar-15	1st Hour	Cloudy	0.3	10:26	72	368	500
12-Mar-15	2nd Hour	Cloudy	0.2	11:26	73	368	500
12-Mar-15	3rd Hour	Cloudy	1.2	12:26	73	368	500
18-Mar-15	1st Hour	Sunny	0.8	10:25	73	368	500
18-Mar-15	2nd Hour	Sunny	1.6	11:25	74	368	500
18-Mar-15	3rd Hour	Sunny	3.1	12:25	74	368	500
24-Mar-15	1st Hour	Sunny	0.9	10:50	78	368	500
24-Mar-15	2nd Hour	Sunny	0.7	11:50	82	368	500
24-Mar-15	3rd Hour	Sunny	0	12:50	81	368	500
30-Mar-15	1st Hour	Sunny	0.2	11:20	82	368	500
30-Mar-15	2nd Hour	Sunny	0	12:20	84	368	500
30-Mar-15	3rd Hour	Sunny	0	13:20	82	368	500
		•		Average	77		

 Average
 77

 Min
 72

 Max
 84

Remarks:

1-hour TSP Monitoring Results at Station AMS7A - Chu Kong Air-Sea Union Transportation Company Limited

Date	Session	Weather Condition	averaged Wind Speed (m/s)*	Time (hh:mm)	Conc. (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
06-Mar-15	1st Hour	Fine	3.8	09:50	76	370	500
06-Mar-15	2nd Hour	Fine	5.0	10:50	76	370	500
06-Mar-15	3rd Hour	Fine	0.5	11:50	78	370	500
12-Mar-15	1st Hour	Cloudy	0.2	11:40	74	370	500
12-Mar-15	2nd Hour	Cloudy	1.2	12:40	72	370	500
12-Mar-15	3rd Hour	Cloudy	0.1	13:40	74	370	500
18-Mar-15	1st Hour	Sunny	3.1	12:09	73	370	500
18-Mar-15	2nd Hour	Sunny	3.7	13:09	72	370	500
18-Mar-15	3rd Hour	Sunny	0.1	14:09	73	370	500
24-Mar-15	1st Hour	Sunny	0.9	11:10	84	370	500
24-Mar-15	2nd Hour	Sunny	0.7	12:10	81	370	500
24-Mar-15	3rd Hour	Sunny	0	13:10	83	370	500
30-Mar-15	1st Hour	Sunny	0	12:25	84	370	500
30-Mar-15	2nd Hour	Sunny	0	13:25	84	370	500
30-Mar-15	3rd Hour	Sunny	0.4	14:25	81	370	500

 Average
 78

 Min
 72

 Max
 84

[^] Action Level set out at AMS3 Ho Yu College is adopted.

Appendix G Impact Air Quality Monitoring Results

24-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m³)	(µg/m ³)
05-Mar-15	16:00	06-Mar-15	16:00	Fine	17	1017	1.33	1.33	1.33	1912.3	2.7458	2.8252	0.0794	4661.84	4685.84	24.00	42	176	260
11-Mar-15	16:00	12-Mar-15	16:00	Cloudy	16	1021	1.33	1.33	1.33	1912.3	2.7114	2.7999	0.0885	4685.84	4709.84	24.00	46	176	260
17-Mar-15	16:00	18-Mar-15	16:00	Sunny	23	1012	1.33	1.33	1.33	1912.3	2.7304	2.7980	0.0676	4709.84	4733.84	24.00	35	176	260
23-Mar-15	16:00	24-Mar-15	16:00	Fine	18	1023	1.33	1.33	1.33	1912.3	2.8164	3.0000	0.1836	4733.84	4757.84	24.00	96	176	260
30-Mar-15	09:00	31-Mar-15	09:00	Sunny	23	1015	1.33	1.33	1.33	1912.3	2.7598	2.8667	0.1069	4757.84	4781.84	24.00	56	176	260

Average 55
Min 35
Max 96

24-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

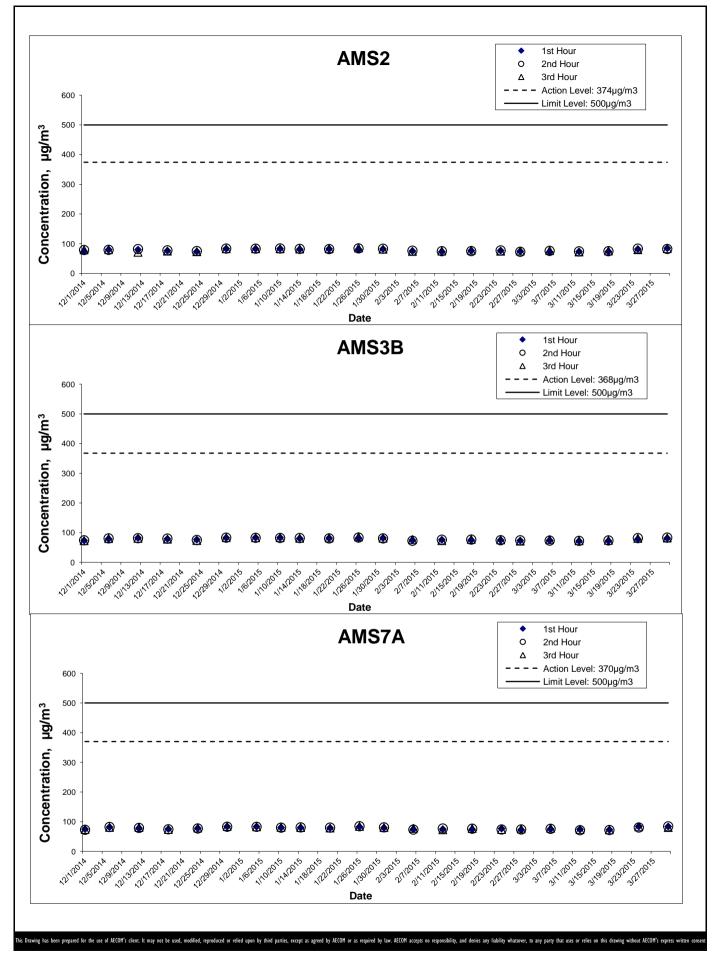
Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	$(\mu q/m^3)$	(µg/m ³)	(µg/m ³)
05-Mar-15	16:00	06-Mar-15	16:00	Fine	17	1017	1.34	1.34	1.34	1923.8	2.7280	2.8376	0.1096	4597.80	4621.80	24.00	57	167	260
11-Mar-15	16:00	12-Mar-15	16:00	Cloudy	16	1021	1.34	1.34	1.34	1923.8	2.7222	2.8126	0.0904	4621.80	4645.80	24.00	47	167	260
17-Mar-15	16:00	18-Mar-15	16:00	Sunny	23	1012	1.34	1.34	1.34	1923.8	2.7882	2.9040	0.1158	4645.80	4669.80	24.00	60	167	260
23-Mar-15	16:00	24-Mar-15	16:00	Fine	18	1023	1.34	1.34	1.34	1923.8	2.8313	3.0150	0.1837	4669.80	4693.80	24.00	95	167	260
30-Mar-15	09:00	31-Mar-15	09:00	Sunny	23	1015	1.34	1.34	1.34	1923.8	2.7596	2.8545	0.0949	4693.80	4717.80	24.00	49	167	260
																Average	62		

Average 62

Min 47

Max 95

24-hour TSP Monitoring Results at Station AMS7A - Chu Kong Air-Sea Union Transportation Company Limited

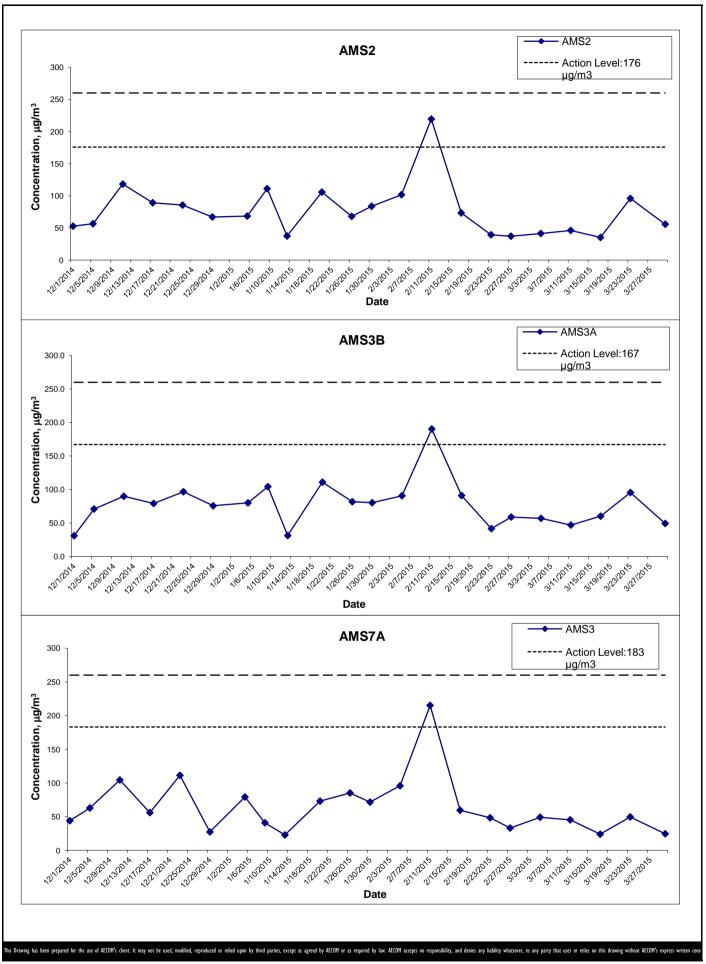

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m ³)	(µg/m ³)
05-Mar-15	16:00	06-Mar-15	16:00	Fine	17	1017	1.31	1.31	1.31	1890.7	2.7273	2.8202	0.0929	4518.98	4542.98	24.00	49	183	260
11-Mar-15	16:00	12-Mar-15	16:00	Cloudy	16	1021	1.31	1.31	1.31	1890.7	2.7261	2.8117	0.0856	4542.98	4566.98	24.00	45	183	260
17-Mar-15	16:00	18-Mar-15	16:00	Sunny	23	1012	1.31	1.31	1.31	1890.7	2.7765	2.8218	0.0453	4566.98	4590.98	24.00	24	183	260
23-Mar-15	16:00	24-Mar-15	16:00	Fine	18	1023	1.31	1.31	1.31	1890.7	2.8316	2.9254	0.0938	4590.98	4614.98	24.00	50	183	260
30-Mar-15	09:00	31-Mar-15	09:00	Sunny	23	1015	1.31	1.31	1.31	1890.7	2.7402	2.7866	0.0464	4614.98	4638.98	24.00	25	183	260

 Average
 36

 Min
 24

 Max
 50

[^] Action Level set out at AMS3 Ho Yu College is adopted.


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

Graphical Presentation of Impact 1-hour TSP

Monitoring Results

AECOM

Project No.: 60249820 Date: April 2015 Appendix G

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES

Project No.: 60249820

- RECLAMATION WORKS Graphical Presentation of Impact 24-hour TSP

Monitoring Results

Date: April 2015

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in March 2015

WIND DATA

WIND DATA			
Date	Time	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)
03/05/15	16:00:15	1.11	15
3/5/15	17:00:15	0.20	77
3/5/15	18:00:15	0.29	162
3/5/15	19:00:15	1.09	38
3/5/15	20:00:15	3.23	98
3/5/15	21:00:15	4.88	113
3/5/15	22:00:15	0.50	103
3/5/15	23:00:15	1.92	32
3/6/15	00:00:15	5.22	113
3/6/15	01:00:15	0.14	270
3/6/15	02:00:15	3.40	96
3/6/15	03:00:15	0.70	123
3/6/15	04:00:15	0.64	140
3/6/15	05:00:15	3.64	98
3/6/15	06:00:15	2.67	99
3/6/15	07:00:15	3.01	116
3/6/15	08:00:15	0.77	110
3/6/15	09:00:15	5.25	95
3/6/15	10:00:15	3.80	116
3/6/15	11:00:15	5.02	108
3/6/15	12:00:15	0.46	66
3/6/15	13:00:15	0.10	104
3/6/15	14:00:15	0.67	353
3/6/15	15:00:15	0.17	343
3/6/15	16:00:15	0.11	17
3/11/15	16:00:15	0.15	107
3/11/15	17:00:15	0.21	94 107
3/11/15	18:00:15	0.25	
3/11/15	19:00:15	0.35	119
3/11/15	20:00:15	0.90	80
3/11/15	21:00:15	0.77	106
3/11/15 3/11/15	22:00:15 23:00:15	2.08 0.81	113 65
3/12/15		0.43	144
3/12/15	00:00:15 01:00:15	0.43	84
3/12/15	02:00:15	0.06	93
3/12/15		0.42	152
3/12/15	03:00:15 04:00:15	0.42	103
3/12/15	05:00:15	0.11	62
3/12/15	06:00:15	0.10	258
3/12/15	07:00:15	0.25	244
3/12/15	08:00:15	0.22	106
3/12/15	09:00:15	0.13	14
3/12/15	10:00:15	0.25	92
3/12/15	11:00:15	0.15	253
3/12/15	12:00:15	1.15	262
3/12/15	13:00:15	0.13	69
3/12/15	14:00:15	0.14	-50
3/12/15	15:00:15	0.14	350
3/12/15	16:00:15	0.13	101
3/17/15	16:00:15	3.09	111
3/17/15	17:00:15	2.84	168
3/17/15	18:00:15	1.75	202
3/17/15	19:00:15	2.64	119
3/17/15	20:00:15	2.07	101
3/17/15	21:00:15	2.95	136
3/17/15	22:00:15	0.91	84
3/17/15	23:00:15	1.34	117
3/18/15	00:00:15	0.34	135
3/18/15	01:00:15	0.97	123
3/18/15	02:00:15	0.04	84
3/18/15	03:00:15	0.03	182
3/18/15	04:00:15	2.62	117
3/18/15	05:00:15	0.22	116
3/18/15	06:00:15	0.10	29
3/18/15	07:00:15	1.99	79
3/18/15	08:00:15	4.24	112
3/18/15	09:00:15	0.18	55
3/18/15	10:00:15	0.77	90
3/18/15	11:00:15	1.57	92
3/18/15	12:00:15	3.09	110
3/18/15	13:00:15	3.66	115
3/18/15	14:00:15	0.06	330
3/18/15	15:00:15	0.84	117
3/18/15	16:00:15	0.13	161
3/18/15	17:00:15	1.71	116
3/18/15	18:00:15	0.35	351
3/18/15	19:00:15	0.76	54
3/18/15	20:00:15	3.06	111
3/18/15	21:00:15	0.27	60
3/18/15	22:00:15	0.69	98

Appendix H Wind Data 1 April 2015

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in March 2015

WIND DATA

WIND DATA			
Date 3/18/15	Time 23:00:15	Averaged Wind Speed (m/s) 1.16	Averaged Wind Direction (degrees) 309
3/19/15	00:00:15	0.17	277
3/19/15	01:00:15	0.06	37
3/19/15	02:00:15	0.06	239
3/19/15	03:00:15	0.04	262
3/19/15	04:00:15	0.14	194
3/19/15 3/19/15	05:00:15 06:00:15	0.95 0.14	290 67
3/19/15	07:00:15	0.21	326
3/19/15	08:00:15	0.55	262
3/19/15	09:00:15	0.10	87
3/19/15	10:00:15	0.07	112
3/19/15	11:00:15	1.44	143
3/19/15 3/19/15	12:00:15 13:00:15	1.05 0.06	145 83
3/19/15	14:00:15	1.51	300
3/19/15	15:00:15	0.07	41
3/19/15	16:00:15	1.16	290
3/19/15	17:00:15	0.14	16
3/19/15 3/19/15	18:00:15 19:00:15	0.52 0.48	118 104
3/19/15	20:00:15	0.46	117
3/19/15	21:00:15	0.21	67
3/19/15	22:00:15	0.20	290
3/19/15	23:00:15	0.15	137
3/20/15	00:00:15	0.35	55
3/20/15 3/20/15	01:00:15 02:00:15	0.17 0.06	333 73
3/20/15	03:00:15	0.06	43
3/20/15	04:00:15	0.06	49
3/20/15	05:00:15	0.03	47
3/20/15	06:00:15	0.15	114
3/20/15 3/20/15	07:00:15 08:00:15	0.17 0.14	285 38
3/20/15	09:00:15	0.14	15
3/20/15	10:00:15	0.10	353
3/20/15	11:00:15	0.06	66
3/20/15	12:00:15	0.06	59
3/20/15 3/20/15	13:00:15	0.56	302
3/20/15	14:00:15 15:00:15	1.06 0.04	288 233
3/20/15	16:00:15	0.67	93
3/20/15	17:00:15	0.08	41
3/20/15	18:00:15	0.21	96
3/20/15	19:00:15	0.56	223
3/20/15 3/20/15	20:00:15 21:00:15	0.52 0.46	258 258
3/20/15	22:00:15	0.63	282
3/20/15	23:00:15	0.21	67
3/21/15	00:00:15	0.15	291
3/21/15	01:00:15	0.13	291
3/21/15	02:00:15	0.04	268
3/21/15 3/21/15	03:00:15 04:00:15	0.04 0.52	13 290
3/21/15	05:00:15	0.04	126
3/21/15	06:00:15	0.27	297
3/21/15	07:00:15	0.21	308
3/21/15	08:00:15	0.18	89
3/21/15 3/21/15	09:00:15 10:00:15	0.38 0.18	87 86
3/21/15	11:00:15	0.50	104
3/21/15	12:00:15	0.06	63
3/21/15	13:00:15	0.60	117
3/21/15	14:00:15	0.08	122
3/21/15 3/21/15	15:00:15 16:00:15	1.24 0.78	108 101
3/21/15	17:00:15	0.42	112
3/21/15	18:00:15	0.22	282
3/21/15	19:00:15	1.29	102
3/21/15	20:00:15	0.76	99
3/21/15 3/21/15	21:00:15	0.45 0.98	108 84
3/21/15	22:00:15 23:00:15	0.83	283
3/22/15	00:00:15	0.29	246
3/22/15	01:00:15	0.22	325
3/22/15	02:00:15	0.81	113
3/22/15	03:00:15	0.11	281
3/22/15 3/22/15	04:00:15 05:00:15	0.46 0.10	113 224
3/22/15	06:00:15	0.15	42
3/22/15	07:00:15	1.65	297
· · · · · · · · · · · · · · · · · · ·			

Appendix H Wind Data 2 April 2015

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in March 2015

WIND DATA

WIND DATA			
Date	Time	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)
3/22/15	08:00:15	0.46	76
3/22/15	09:00:15	4.42	91
3/22/15	10:00:15	0.25	90
3/22/15	11:00:15	0.31	312
3/22/15			90
	12:00:15	3.12	
3/22/15	13:00:15	1.86	51
3/22/15	14:00:15	2.55	108
3/22/15	15:00:15	3.12	112
3/22/15	16:00:15	0.76	37
3/22/15	17:00:15	2.97	123
3/22/15	18:00:15	2.18	73
3/22/15	19:00:15	1.08	67
3/22/15	20:00:15	2.66	88
3/22/15	21:00:15	2.98	142
3/22/15	22:00:15	5.90	115
3/22/15	23:00:15	3.41	137
3/23/15	00:00:15	3.44	112
3/23/15	01:00:15	7.85	105
3/23/15	02:00:15	2.29	81
3/23/15	03:00:15	0.55	58
3/23/15			121
	04:00:15	3.47	
3/23/15	05:00:15	1.08	112
3/23/15	06:00:15	5.94	102
3/23/15	07:00:15	3.96	90
3/23/15	08:00:15	1.05	113
3/23/15	09:00:15	0.49	100
3/23/15	10:00:15	3.05	79
3/23/15	11:00:15	0.14	23
3/23/15	12:00:15	1.26	116
3/23/15	13:00:15	0.29	118
3/23/15	14:00:15	0.28	73
3/23/15	15:00:15	0.74	12
3/23/15	16:00:15	0.13	81
3/23/15	17:00:15	0.14	286
3/23/15	18:00:15	0.21	190
3/23/15	19:00:15	0.22	321
3/23/15	20:00:15	0.98	281
3/23/15	21:00:15	1.23	338
3/23/15	22:00:15	0.87	141
3/23/15	23:00:15	0.98	118
3/24/15	00:00:15	0.15	36
3/24/15	01:00:15	1.27	304
3/24/15	02:00:15	0.18	25
3/24/15	03:00:15	0.73	41
3/24/15	04:00:15	0.11	42
3/24/15	05:00:15	0.25	300
3/24/15	06:00:15	0.14	95
3/24/15	07:00:15	0.46	125
3/24/15	08:00:15	0.35	83
3/24/15	09:00:15	0.15	55
3/24/15	10:00:15	0.43	119
3/24/15	11:00:15	0.91	78
3/24/15	12:00:15	0.71	114
3/24/15	13:00:14	0.03	25
3/24/15	14:00:15	0.81	95
3/24/15		2.00	107
3/24/15	15:00:15 16:00:15		
		0.66	108
3/30/15	09:00:15	0.63	147
3/30/15	10:00:15	0.24	50
3/30/15	11:00:15	0.15	356
3/30/15	12:00:15	0.04	235
3/30/15	13:00:15	0.04	299
3/30/15	14:00:15	0.39	329
3/30/15	15:00:15	1.38	317
3/30/15	16:00:15	0.06	251
			54
3/30/15	17:00:15	0.11	
3/30/15	18:00:15	0.46	106
3/30/15	19:00:15	0.21	118
3/30/15	20:00:15	0.56	124
3/30/15	21:00:15	0.38	187
3/30/15	22:00:15	1.01	72
3/30/15	23:00:15	0.43	156
3/31/15	00:00:15	1.45	119
3/31/15	01:00:15	0.17	319
3/31/15	02:00:15	0.48	101
3/31/15	03:00:15	0.03	304
3/31/15	04:00:15	0.32	129
3/31/15	05:00:15	0.06	257
3/31/15	06:00:15	0.17	112
3/31/15	07:00:15	0.38	320
3/31/15	08:00:15	0.08	343
3/31/15	09:00:15	0.97	74
5/5//15	00.00.10	0.01	.7

Appendix H Wind Data 3 April 2015

Appendix I Impact Daytime Construction Noise Monitoring Results

Daytime Noise Monitoring Results at Station NMS2 - Seaview Crescent Tower 1

Average

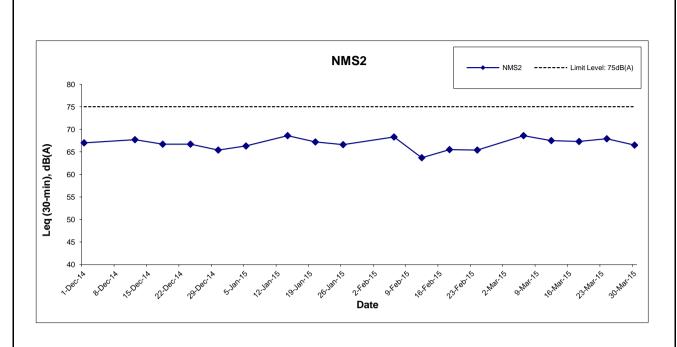
		Nois	se Level for 30	O-min, dB(A)					
Date	Weather Condition	Time	L90	L10	Leq	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
06-Mar-15	Fine	10:35	62	71	69	<5m/s	62.9	75	N
12-Mar-15	Cloudy	10:38	64	69	68	<5m/s	62.9	75	N
18-Mar-15	Sunny	10:40	64	69	67	<5m/s	62.9	75	N
24-Mar-15	Sunny	10:40	64	71	68	<5m/s	62.9	75	N
30-Mar-15	Sunny	10:30	61	70	67	<5m/s	62.9	75	N
<u> </u>	·	Min	61	69	67		·	·	
		Max	64	71	69				

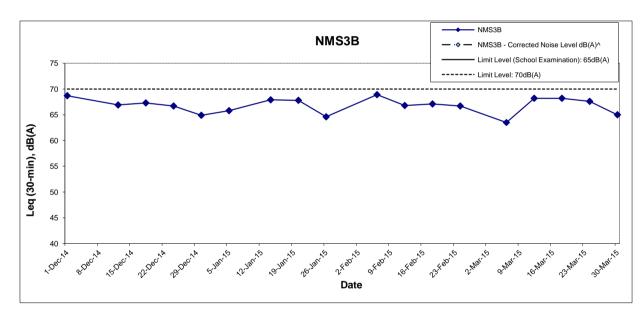
69 68

Daytime Noise Monitoring Results at Station NMS3B - Site Boundary of Site Office (WA2)

		Nois	se Level for 30	O-min, dB(A)#					
Date	Weather Condition	Time	L90	L10	Leq	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A) ^	Limit Level, dB(A)**	Exceedance (Y/N)
06-Mar-15	Fine	14:15	62	65	64	<5m/s	66.3	70	N
12-Mar-15	Cloudy	11:30	64	70	68	<5m/s	66.3	70	N
18-Mar-15	Sunny	11:26	64	70	68	<5m/s	66.3	70	N
24-Mar-15	Sunny	14:22	62	71	68	<5m/s	66.3	70	N
30-Mar-15	Sunny	11:15	62	67	65	<5m/s	66.3	70	N
		Min	61	69	64				

 Max
 64
 70
 68


 Average
 - - 67


[#] A correction of +3dB(A) was made to the free field measurement.

^{*} Façade measurement.

[^] Averaged baseline noise level recorded at NMS3 Ho Yu College is adopted.

^{**} Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.

Remarks: Effective from July 2012, the Limit Level at NMS3A was revised to 70dB(A). Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

his Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third paries, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and denies any liability whatsover, to any party that uses or relies on this drawing without AECOM's express written cons

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

Graphical Presentation of Impact Daytime
Construction Noise Monitoring Results

Project No.: 60249820 Date: April 2015 Appendix I

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Math	Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ıration (%)	Dissolv	red Oxygen	(mg/L)	Ti	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
Properation		Condition			Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
Moderna Moderna Moderna Moderna 12-54 Moderna 12-54	2-Mar-15	Sunny	Calm	11:50		Surface	1.0		17.9		7.9		30.7		92.8		7.3			2.4			7.1	
A-Main Sing Modernia Sing S					6.9	Middle	3.5	17.9	17.9	7.9	7.9	30.8	30.8	92.0	92.1	7.3	7.3	7.3	2.9	2.9	3.0	7.3	7.4	6.9
Moder Mode						Bottom	5.9	17.8	17.8	7.9	7.9	31.1	31.1	91.8	91 7	7.2	72	7.2	3.5	3.6		6.4	6.3	1
Summary Muderstate Fire Muderstate 12-14 Summary Summary Muderstate 12-14 Summary Summary Muderstate 12-14 Summary Summary Muderstate 12-14 Summary Summary Summary Muderstate 12-14 Summary Summary Muderstate 12-14 Summary Summa	4.1445	F	Madagas	40.50		20	0.0				7.0		0		0					0.0			0.0	——
Mindersite Min	4-Mar-15	rine	ivioderate	12:52		Surface	1.0		18.1	7.9	7.9	29.0	29.0	95.6	95.9	7.6	7.6	7.6	2.7	2.6		4.9	4.4	
6-Mar-15 Fine Moderate 12-49					6.5	Middle	3.3		18.1		8.0		29.6		95.9		7.6			4.1	4.6		6.2	5.3
Surface 10 17,7 17,6 7,9 7,9 7,9 31,7 31						Bottom	5.5		18.0		8.0		30.1		95.9		7.6	7.6		7.2			5.4	
Moderate Moderate	6-Mar-15	Fine	Moderate	12:49		Surface	1.0		17.7		7.9		31.7		91.7		7.2			3.0			4.2	
Surface Fire Moderate Surface Fire Moderate Surface Fire Moderate Surface Fire Surface Fire Moderate Surface Fire Fire Surface Fire Surface Fire Surface Fire Fire Surface Fire Surface Fire Surface Fire Fire Surface Fire Surface Fire Fire Surface Fire Surface Fire Surface Fire Fire Fire Surface Fire Fire Fire Surface Fire Fire Fire Fire Surface Fire Fire Fire					6.2	Middle	3.1	17.6	17.6	7.9	7.9	32.0	31.9	91.4	91.2	7.2	7.2	7.2	3.1	3.0	3.4	4.4	4.7	4.7
9-Mar-15 Sunny Moderate 14:28						Bottom	5.2	17.5	17.5	7.9	7.9	32.1	32.2	91.4	91.2	7.2	7.2	7.2	4.0	4.1		4.8	5.1	1
Middle 33 18.2 7.8 7.8 7.8 30.6 30.6 30.6 30.6 30.7 30.	9-Mar-15	Sunny	Moderate	14:28				11.0		7.10														
Secondary Seco		,				-		18.4		7.8		30.6				7.1		7.1	3.9					1
1-Mar-15 Cloudy Moderate 15-37 Residence 15-37 Resid					6.6	Middle	3.3	18.3	18.2	7.8	7.8	30.7	30.7	89.8	89.8	7.0	7.0		4.3	4.3	4.4	6.6	6.7	6.2
Surface 1.0 1.9 1.9 7.9 7.9 7.9 31.6 3.0						Bottom	5.6	18.1	18.1	7.8	7.8	30.9	30.8	89.4	89.5		7.0	7.0	5.0	5.2		5.6	5.9	<u> </u>
Fine Moderate 17:36 Moderate 10:44 Moderate 10:44 Moderate 12:01 Moderate 12:02 Moderate 12:02 Moderate 12:03 Moderate 12:05 Mode	11-Mar-15	Cloudy	Moderate	15:37		Surface	1.0		17.9		7.9		30.8		89.9		7.1	7 1		2.3			4.1	j
13-Mar-15 Fine Moderate 17:36					6.6	Middle	3.3		17.9		7.9		31.1		89.5		7.0	7.1		2.4	2.6		4.3	4.2
13-Mar-15 Fine Moderate 17:36						Bottom	5.6		17.9		7.9		31.4		89.7		7.1	7.1		3.2		1	4.3	1
Reference Refe	13-Mar-15	Fine	Moderate	17:36		Surface	1.0		17.7		7.9		31.5		89.5		71			3.1			72	
16-Mar-15 Cloudy Moderate 10:44					66													7.1			2.1			
16-Mar-15 Cloudy Moderate 10:44					0.0	-															3.1			0.0
Surface 1.0 18.9 16.6 7.9 7.9 29.3 29.3 92.9 92.9 7.3 7.3 7.3 1.9 2.0 2.5						Bottom	5.6	17.7	17.7	7.9	7.9	31.6	31.7	89.2	90.1	7.0	7.1	7.1	2.7	2.9		10.3	9.7	<u> </u>
6.7 Middle 3.4 18.3 18.3 7.9 7.9 31.6 31.7 91.8 91.8 7.2 7.2 7.2 2.5 2.5 2.5 2.4 4.6 4.6 4.1 4.1 8.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	16-Mar-15	Cloudy	Moderate	10:44		Surface	1.0		18.8		7.9		29.3		92.9		7.3	7.2		2.0			3.5	
Bottom 5.7 18.3 18.2 7.9 7.9 31.9 31.9 92.4 92.4 7.2 7.2 7.2 7.2 2.6 2.7 4.5 4.3					6.7	Middle	3.4		18.3		7.9		31.7		91.9		7.2	1.3		2.5	2.4		4.6	4.1
18-Mar-15 Sunny Moderate 12:01						Bottom	5.7	18.3	18.2	7.9	7.9	31.9	31.9	92.4	92.4	7.2	7.2	7.2	2.6	2.7		4.5	4.3	1
7.2 Middle 3.6 19.1 19.1 7.9 7.9 30.1 91.9 92.9 7.3 7.2 7.3 7.3 7.2 7.3 7.3 7.2 7.3 7.3 11.2 11.3 11.3 11.6 11.3 11.3 11.3 11.6 11.3 11.3	18-Mar-15	Sunny	Moderate	12:01		Surface	1.0	19.2	19.3	7.9	7.9	29.5	29.4	93.9	94.0	7.3	7.3		7.9	7.8		11.2	10.9	
Sunny Moderate 12:25 Surface 1.0 20.8 20.8 7.8 7.8 25.9 26.0 93.2 7.2					7.2		3.6		10.1		7.0		30.0		92.9			7.3			Ω 1			10.6
20-Mar-15 Sunny Moderate 12:25 Surface 1.0 20.8 20.8 7.8 7.8 25.9 26.0 95.2 94.8 95.0 7.3 7.3 7.3 7.3 90.0 9.0 9.0 9.0 9.0 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1					1.2	+												7.0			0.1			10.0
6.2 Middle 3.1 20.5 20.5 7.8 7.8 26.8 26.8 94.0 93.0 93.5 7.2 7.2 9.0 9.0 9.0 9.7 9.7 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	20-Mar-15	Suppy	Moderate	12:25				19.1		7.9		29.9		93.3		7.2		7.2	8.4			9.6		<u> </u>
6.2 Middle 3.1 20.5 20.5 7.8 7.8 26.8 26.8 93.0 93.5 7.2 7.2 10.3 10.1 9.7 9.5 9.1 8.1 8.7 Parton 5.2 20.5 20.5 7.8 7.8 7.8 27.0 27.1 92.9 93.3 7.1 7.2 7.2 10.2 10.0 8.1 8.7	20-IVIAI-13	Suring	Woderale	12.23		Surface	1.0	20.8	20.8	7.8	7.8	26.0	26.0	94.8	95.0	7.3	7.3	7.3	9.0	9.0		9.4	9.2	
					6.2	Middle	3.1	20.5	20.5	7.8	7.8	26.8	26.8	93.0	93.5	7.2	7.2		10.3	10.1	9.7	9.7	9.5	9.1
						Bottom	5.2	20.5 20.5	20.5	7.8 7.8	7.8	27.0 27.1	27.1	92.9 93.7	93.3	7.1 7.2	7.2	7.2	10.2 9.7	10.0		8.1 9.3	8.7	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Tempera	ature (°C)	F	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	14:36		Surface	1.0	20.7 20.7	20.7	8.0 8.1	8.0	27.6 28.0	27.8	96.5 95.7	96.1	7.5 7.3	7.4	7.4	8.2 8.3	8.3		6.6 8.0	7.3	
				6.4	Middle	3.2	20.6 20.6	20.6	8.0 8.0	8.0	27.9 28.3	28.1	96.9 94.9	95.9	7.4 7.2	7.3	7.4	8.6 8.6	8.6	8.5	7.5 8.3	7.9	7.5
					Bottom	5.4	20.7 20.7	20.7	8.0 8.0	8.0	28.5 28.6	28.5	95.4 94.6	95.0	7.3 7.2	7.2	7.2	8.6 8.5	8.6		7.2 7.1	7.2	
25-Mar-15	Cloudy	Moderate	16:15		Surface	1.0	20.3 20.3	20.3	7.6 7.9	7.8	28.4 28.3	28.3	96.8 97.0	96.9	7.4 7.4	7.4	7.4	5.3 5.4	5.4		6.6 8.0	7.3	
				6.4	Middle	3.2	20.3 20.3	20.3	7.9 7.9	7.9	28.7 28.8	28.7	96.8 96.5	96.7	7.4 7.4	7.4	7.4	5.6 5.5	5.6	5.5	6.9 8.0	7.5	8.4
					Bottom	5.4	20.3 20.3	20.3	7.9 7.9	7.9	29.2 29.3	29.2	96.4 96.4	96.4	7.3 7.3	7.3	7.3	5.4 5.4	5.4		10.7 10.2	10.5	
27-Mar-15	Sunny	Moderate	18:02		Surface	1.0	20.9 20.9	20.9	8.2 8.1	8.1	30.1 30.1	30.1	93.5 93.4	93.5	7.0 7.0	7.0	7.0	1.6 1.7	1.7		2.5 2.8	2.7	
				6.3	Middle	3.2	20.8 20.7	20.7	8.1 8.1	8.1	30.4 30.5	30.5	93.0 92.1	92.6	7.0 6.9	6.9	7.0	3.0 2.6	2.8	2.6	2.7 2.2	2.5	2.6
					Bottom	5.3	20.5 20.4	20.5	8.1 8.1	8.1	31.9 31.9	31.9	94.5 92.9	93.7	7.1 6.9	7.0	7.0	3.4 3.3	3.4		2.8 2.5	2.7	
30-Mar-15	Sunny	Moderate	10:28		Surface	1.0	20.9 20.7	20.8	7.9 7.9	7.9	29.6 29.7	29.7	99.0 97.2	98.1	7.4 7.3	7.4	7.4	3.2 3.0	3.1		2.2 2.8	2.5	
				6.4	Middle	3.2	20.0 20.3	20.1	7.9 7.9	7.9	31.2 30.1	30.6	96.5 95.7	96.1	7.3 7.3	7.3	7.4	3.4 3.2	3.3	3.2	2.8 2.6	2.7	2.6
					Bottom	5.4	20.3 20.0	20.2	7.9 7.9	7.9	31.0 31.3	31.2	98.1 95.7	96.9	7.4 7.2	7.3	7.3	3.3 3.3	3.3		2.6 2.8	2.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	16:12		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	30.8 30.8	30.8	96.1 96.1	96.1	7.6 7.6	7.6		2.5 2.3	2.4		5.0 4.4	4.7	
				6.9	Middle	3.5	17.9 17.9	17.9	7.9 7.9	7.9	30.8 30.8	30.8	96.0 95.9	96.0	7.6 7.5	7.5	7.6	2.5 2.4	2.5	2.6	3.6 4.6	4.1	4.7
					Bottom	5.9	17.9 17.8	17.9	7.9 7.9	7.9	30.8 30.8	30.8	95.9 96.1	96.0	7.5 7.6	7.5	7.5	2.7	2.8		4.8	5.2	
4-Mar-15	Fine	Moderate	17:37		Surface	1.0	18.1	18.1	7.9	7.9	28.9	28.9	94.3	94.5	7.5	7.5		4.4	4.3		5.1	4.4	
				6.4	Middle	3.2	18.1 18.1	18.1	7.9 7.9	7.9	28.9 29.3	29.3	94.6 94.6	94.4	7.5 7.5	7.5	7.5	4.2 6.1	6.3	5.5	3.6 4.2	3.8	4.0
				0	Bottom	5.4	18.1 18.1	18.1	7.9 8.0	8.0	29.2 29.9	29.9	94.1 93.9	94.2	7.5 7.4	7.4	7.4	6.4	5.8	0.0	3.3	3.7	
6-Mar-15	Fine	Moderate	07:51				18.1 17.6		8.0 7.9		29.9 31.8		94.5 91.7		7.5 7.2		7.4	5.6 7.8			3.7 9.1		
					Surface	1.0	17.6 17.6	17.6	7.9 8.0	7.9	31.7 31.8	31.8	93.1 93.4	92.4	7.3 7.4	7.3	7.3	7.7 9.4	7.8		9.4	9.3	
				6.4	Middle	3.2	17.6 17.6	17.6	7.9 7.9	8.0	31.8 31.8	31.8	91.8 92.3	92.6	7.2	7.3		9.7	9.6	9.6	11.2	11.1	10.4
0.11					Bottom	5.4	17.6	17.6	8.0	8.0	31.8	31.8	95.1	93.7	7.5	7.4	7.4	11.5	11.4		10.7	10.7	
9-Mar-15	Sunny	Moderate	09:23		Surface	1.0	18.0 18.0	18.0	7.9 7.9	7.9	30.5 30.5	30.5	90.2 90.8	90.5	7.1 7.2	7.1	7.2	5.6 5.8	5.7		6.1 7.5	6.8	
				6.7	Middle	3.4	17.9 17.9	17.9	7.9 7.9	7.9	30.8 30.7	30.8	91.4 90.1	90.8	7.2 7.1	7.2		10.2 9.3	9.8	9.0	8.2 7.5	7.9	7.0
					Bottom	5.7	17.9 17.9	17.9	7.9 7.9	7.9	30.9 31.0	31.0	92.6 90.2	91.4	7.3 7.1	7.2	7.2	12.0 11.2	11.6		6.8 5.7	6.3	
11-Mar-15	Cloudy	Moderate	10:31		Surface	1.0	18.0 18.0	18.0	7.8 7.8	7.8	30.9 30.9	30.9	91.7 90.5	91.1	7.2 7.1	7.2	7.2	6.7 6.4	6.6		6.9 8.1	7.5	
				6.6	Middle	3.3	18.0 18.0	18.0	7.8 7.9	7.9	30.9 30.9	30.9	90.4 92.1	91.3	7.1 7.3	7.2	1.2	6.3 6.0	6.2	6.2	9.4 8.8	9.1	8.5
					Bottom	5.6	18.0 18.0	18.0	7.8 7.9	7.9	30.9 31.0	30.9	90.9 93.6	92.3	7.2 7.4	7.3	7.3	6.0 5.6	5.8		8.5 9.3	8.9	
13-Mar-15	Fine	Moderate	11:36		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	31.3 31.3	31.3	90.3 91.4	90.9	7.1 7.2	7.2		3.4 3.5	3.5		4.7 5.8	5.3	
				6.6	Middle	3.3	17.6 17.6	17.6	7.9 7.9	7.9	31.5 31.5	31.5	90.1 91.6	90.9	7.1 7.2	7.2	7.2	5.3 5.3	5.3	5.0	5.6 5.1	5.4	5.3
					Bottom	5.6	17.6	17.6	7.9	7.9	31.6	31.6	91.9	91.2	7.3	7.2	7.2	6.3	6.1		5.4	5.1	
16-Mar-15	Sunny	Moderate	14:29		Surface	1.0	17.6 19.1	19.1	7.9 7.9	7.9	31.6 29.7	29.7	90.4 94.1	93.6	7.1 7.3	7.3		5.8 1.3	1.4		4.8 3.5	3.6	
				6.6	Middle	3.3	19.1 18.3	18.3	7.9 7.9	7.9	29.8 30.9	30.9	93.0 91.6	91.5	7.2 7.2	7.2	7.3	2.3	2.2	2.1	3.6 2.6	2.5	2.8
					Bottom	5.6	18.3 18.3	18.3	7.9 7.9	7.9	30.9 31.2	31.1	91.4 91.9	91.8	7.1 7.2	7.2	7.2	2.1	2.6		2.3	2.4	
18-Mar-15	Sunny	Moderate	16:27			1.0	18.3 19.8	19.7	7.9 7.8	7.9	31.0 27.0	27.0	91.6 93.7	93.3	7.2 7.3		7.2	2.5			2.1		
	·				Surface		19.6 19.2		7.9 7.8		27.1 28.7		92.8 93.3		7.3 7.3	7.3	7.3	2.8	2.8		2.5	2.6	
				7.0	Middle	3.5	19.2 19.2	19.2	7.8 7.8	7.8	28.5 28.9	28.6	92.0 92.3	92.7	7.2	7.2		3.0	2.9	2.9	3.2	2.8	2.9
00 May 45	Common	Madagat	07.00		Bottom	6.0	19.2	19.2	7.8	7.8	29.0	29.0	91.8	92.1	7.2	7.2	7.2	3.1	3.1		2.9	3.2	
20-Mar-15	Sunny	Moderate	07:28		Surface	1.0	20.5 20.5	20.5	7.7 7.6	7.7	25.7 24.7	25.2	105.7 105.4	105.6	8.2 8.2	8.2	8.0	10.3	10.2		7.6 7.5	7.6	
				6.7	Middle	3.4	20.4 20.4	20.4	7.6 7.7	7.6	24.9 26.1	25.5	100.2 98.2	99.2	7.8 7.6	7.7	-	10.1 10.3	10.2	10.2	6.7 7.8	7.3	7.5
					Bottom	5.7	20.4 20.4	20.4	7.7 7.6	7.6	26.2 24.9	25.5	97.6 97.3	97.5	7.6 7.5	7.5	7.5	10.2 10.2	10.2		7.0 8.4	7.7	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	08:57		Surface	1.0	21.3 21.2	21.3	7.7 7.9	7.8	24.2 25.6	24.9	85.3 81.4	83.4	6.6 6.2	6.4	6.5	23.2 22.3	22.8		18.7 18.1	18.4	
				6.6	Middle	3.3	21.3 21.2	21.3	7.7 7.8	7.7	23.9 23.4	23.7	86.7 82.3	84.5	6.7 6.4	6.5	0.5	23.3 22.2	22.8	23.2	20.4 20.0	20.2	19.7
					Bottom	5.6	21.3 21.3	21.3	7.7 7.8	7.7	23.3 25.1	24.2	89.1 82.9	86.0	6.9 6.4	6.6	6.6	24.4 23.4	23.9		20.7 20.1	20.4	
25-Mar-15	Cloudy	Moderate	10:40		Surface	1.0	20.5 20.5	20.5	7.5 7.5	7.5	28.9 28.8	28.8	97.6 98.9	98.3	7.6 7.5	7.5	7.5	8.5 8.6	8.6		9.4 8.8	9.1	
				6.5	Middle	3.3	20.5 20.5	20.5	7.5 7.5	7.5	28.9 28.9	28.9	99.8 97.5	98.7	7.6 7.4	7.5	7.0	8.8 8.5	8.7	8.7	8.3 9.7	9.0	9.2
					Bottom	5.5	20.5 20.5	20.5	7.5 7.5	7.5	29.0 29.0	29.0	97.8 101.5	99.7	7.4 7.7	7.6	7.6	8.8 8.8	8.8		8.8 10.1	9.5	
27-Mar-15	Cloudy	Moderate	11:36		Surface	1.0	20.6 20.6	20.6	7.9 7.9	7.9	26.5 26.7	26.6	100.7 98.1	99.4	7.8 7.5	7.6	7.7	2.3 2.0	2.2		2.4 1.7	2.1	
				6.7	Middle	3.4	20.4 20.5	20.5	7.9 7.9	7.9	26.8 27.5	27.1	103.2 98.4	100.8	8.0 7.5	7.7	7.7	3.0 2.6	2.8	3.8	2.4 1.7	2.1	2.2
					Bottom	5.7	20.4 20.3	20.4	7.9 7.8	7.9	27.8 28.3	28.1	98.8 97.9	98.4	7.6 7.5	7.5	7.5	6.2 6.8	6.5		2.8 2.1	2.5	
30-Mar-15	Sunny	Moderate	16:00		Surface	1.0	20.5 20.5	20.5	8.0 8.0	8.0	29.1 29.0	29.1	100.5 101.4	101.0	7.6 7.7	7.7	7.6	3.2 3.1	3.2		1.0 1.5	1.3	
				6.6	Middle	3.3	20.1 20.1	20.1	8.0 8.0	8.0	30.6 30.6	30.6	100.4 98.3	99.4	7.6 7.4	7.5	7.0	3.5 3.3	3.4	3.4	1.1 2.0	1.6	1.9
					Bottom	5.6	20.1 20.1	20.1	8.0 8.0	8.0	31.0 31.0	31.0	97.1 100.5	98.8	7.3 7.6	7.5	7.5	3.5 3.5	3.5		2.6 2.9	2.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	12:07		Surface	1.0	17.9 18.0	18.0	7.9 7.9	7.9	30.8 30.7	30.7	93.1 93.6	93.4	7.4 7.4	7.4		2.1 2.3	2.2		5.3 5.4	5.4	
				18.4	Middle	9.2	18.0 17.9	17.9	7.9 7.9	7.9	30.7 30.9	30.8	93.1 93.0	93.1	7.3 7.3	7.3	7.4	2.5 2.3	2.4	2.4	4.9 5.6	5.3	5.4
					Bottom	17.4	17.8 17.8	17.8	7.9 7.9	7.9	31.2 31.0	31.1	92.7 92.8	92.8	7.3 7.3	7.3	7.3	2.6	2.5		4.7 6.2	5.5	
4-Mar-15	Fine	Moderate	13:14		Surface	1.0	18.1	18.1	7.9	7.9	29.0	29.0	95.5	95.7	7.6	7.6		4.6	4.5		5.1	4.8	
				16.3	Middle	8.2	18.1 18.1	18.1	7.9 8.0	8.0	29.0 30.1	30.1	95.8 94.7	94.8	7.6 7.5	7.5	7.6	9.6	9.4	7.8	4.5 3.7	4.3	4.5
				10.0	Bottom	15.3	18.1 18.1	18.1	8.0 8.0	8.0	30.1 30.1	30.1	94.9 95.5	95.1	7.5 7.6	7.5	7.5	9.1 9.3	9.6		4.8 4.5	4.4	
6-Mar-15	Fine	Moderate	12:35			1.0	18.0 17.6	17.6	8.0 7.9	7.9	30.1 31.9	31.8	94.7 90.1	90.4	7.5 7.1	7.1	7.5	9.8	4.2		4.3 4.4	4.5	
				40.0	Surface		17.6 17.5		7.9 7.9		31.8 32.3		90.6 90.6		7.1 7.1		7.1	4.0 6.1			4.5 5.7		
				16.3	Middle	8.2	17.5 17.5	17.5	7.9 7.9	7.9	32.3 32.3	32.3	90.4	90.5	7.1 7.2	7.1		6.5 6.6	6.3	5.8	6.3 5.4	6.0	5.2
9-Mar-15	Sunny	Moderate	14:07		Bottom	15.3	17.5 18.5	17.5	7.9	7.9	32.2 30.6	32.3	91.6 90.4	91.2	7.2 7.1	7.2	7.2	7.1	6.9		5.0	5.2	1
9-IVIAI-13	Sullily	Moderate	14.07		Surface	1.0	18.5 18.1	18.5	7.7 7.7	7.7	30.6 30.9	30.6	90.4 90.4 88.4	90.4	7.1 7.1 7.0	7.1	7.1	3.7 5.5	3.8		6.2	6.0	1
				16.9	Middle	8.5	18.1	18.1	7.8	7.8	30.9	30.9	89.0	88.7	7.0	7.0		5.3	5.4	5.1	6.5	6.3	6.2
					Bottom	15.9	18.1 18.0	18.1	7.7 7.7	7.7	30.9 31.0	31.0	89.4 88.9	89.2	7.0 7.0	7.0	7.0	6.0 5.9	6.0		5.3 7.3	6.3	
11-Mar-15	Cloudy	Moderate	15:20		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	30.7 30.6	30.7	90.3 90.9	90.6	7.1 7.2	7.2	7.2	3.4 3.1	3.3		4.0 5.6	4.8	
				16.6	Middle	8.3	17.9 17.9	17.9	7.9 7.9	7.9	31.4 31.5	31.5	89.9 90.4	90.2	7.1 7.1	7.1		5.3 5.5	5.4	4.8	3.5 4.7	4.1	4.3
					Bottom	15.6	17.9 17.9	17.9	7.9 7.9	7.9	31.5 31.4	31.5	91.0 91.0	91.0	7.2 7.2	7.2	7.2	5.9 5.6	5.8		3.7 4.2	4.0	Ì
13-Mar-15	Fine	Moderate	17:18		Surface	1.0	17.7 17.7	17.7	7.9 7.9	7.9	31.5 31.5	31.5	89.5 89.7	89.6	7.1 7.1	7.1		4.0 4.5	4.3		6.9 7.9	7.4	
				17.0	Middle	8.5	17.7 17.7	17.7	7.9 7.9	7.9	32.2 32.0	32.1	88.8 89.0	88.9	7.0 7.0	7.0	7.1	8.8 8.3	8.6	7.3	8.9 9.0	9.0	7.8
					Bottom	16.0	17.7 17.7	17.7	7.9 7.9	7.9	32.2 32.3	32.3	88.8 88.9	88.9	7.0 7.0	7.0	7.0	8.7 9.1	8.9		6.6 7.5	7.1	Ì
16-Mar-15	Cloudy	Moderate	11:05		Surface	1.0	18.8 18.7	18.8	7.9 7.9	7.9	29.3 29.3	29.3	92.1 92.6	92.4	7.2 7.3	7.2		2.5 2.6	2.6		3.2 2.2	2.7	
				16.3	Middle	8.2	18.1 18.1	18.1	7.9 7.9	7.9	32.1 32.1	32.1	91.5 91.3	91.4	7.1 7.1	7.1	7.2	3.5	3.6	3.3	6.0 5.8	5.9	4.9
					Bottom	15.3	18.2	18.2	7.9	7.9	32.1	32.1	91.7	91.6	7.1	7.1	7.1	3.5	3.6		7.0	6.0	Ì
18-Mar-15	Sunny	Moderate	12:14		Surface	1.0	18.1	19.2	7.9	7.9	32.1 29.6	29.4	91.5 94.4	94.3	7.1	7.3		8.1	8.2		9.6	10.3	
				18.1	Middle	9.1	19.3 19.0	19.0	7.9 7.9	7.9	29.3 30.0	30.1	94.1 93.7	93.9	7.3 7.3	7.3	7.3	8.2 8.4	8.4	8.4	9.1	9.7	10.1
					Bottom	17.1	19.0 19.2	19.1	7.9 7.9	7.9	30.2 29.9	30.1	94.1 93.9	93.6	7.3 7.3	7.3	7.3	8.4 8.8	8.7		10.2 11.3	10.4	
20-Mar-15	Sunny	Moderate	12:11		Surface	1.0	19.0 20.7	20.7	7.9 7.8	7.8	30.2 25.9	26.1	93.2 94.4	94.6	7.2 7.3		7.5	8.6 9.5	9.7		9.5 7.3	7.7	<u> </u>
	Í			40.0			20.7 20.5		7.8 7.8	_	26.2 27.1		94.7 94.2		7.3 7.2	7.3	7.3	9.8		40.4	8.0 8.3		0.4
				16.0	Middle	8.0	20.5	20.5	7.8 7.8	7.8	27.2 27.2	27.1	94.8	94.5	7.3	7.3		10.9 10.4	11.0	10.4	9.6	9.0	8.4
					Bottom	15.0	20.5	20.5	7.8	7.8	27.2	27.2	94.4	94.7	7.2	7.3	7.3	10.7	10.6		8.7	8.5	<u>i </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ıg	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	14:11		Surface	1.0	20.7 20.7	20.7	8.0 8.0	8.0	27.7 24.2	25.9	97.4 95.2	96.3	7.4 7.4	7.4	7.4	8.4 8.4	8.4		6.6 6.9	6.8	
				16.1	Middle	8.1	20.6 20.6	20.6	8.0 8.0	8.0	28.4 25.0	26.7	96.4 95.2	95.8	7.3 7.4	7.4	7.4	8.7 8.6	8.7	8.6	6.0 6.4	6.2	6.6
					Bottom 1	15.1	20.6 20.7	20.7	8.0 7.9	8.0	28.2 28.3	28.3	95.4 95.7	95.6	7.3 7.3	7.3	7.3	8.8 8.8	8.8		7.1 6.6	6.9	
25-Mar-15	Cloudy	Moderate	15:51		Surface	1.0	20.3 20.3	20.3	7.9 7.9	7.9	26.7 28.3	27.5	97.1 97.0	97.1	7.4 7.4	7.4	7.4	6.6 6.5	6.6		7.4 7.0	7.2	
				15.9	Middle	8.0	20.3 20.3	20.3	7.9 7.9	7.9	28.4 28.9	28.7	96.2 96.1	96.2	7.4 7.3	7.4	7.4	6.7 6.6	6.7	6.7	6.3 7.2	6.8	7.0
					Bottom 1	14.9	20.3 20.3	20.3	7.9 7.8	7.8	29.0 29.2	29.1	95.1 95.9	95.5	7.3 7.3	7.3	7.3	6.8 6.8	6.8		6.1 8.0	7.1	
27-Mar-15	Sunny	Moderate	17:43		Surface	1.0	20.8 20.9	20.8	7.7 8.0	7.8	30.5 30.3	30.4	95.7 93.2	94.5	7.2 7.0	7.1	7.1	3.6 3.5	3.6		2.1 2.5	2.3	
				16.3	Middle	8.2	20.4 20.4	20.4	8.0 8.0	8.0	32.4 32.5	32.5	93.4 97.2	95.3	7.0 7.3	7.1	7.1	4.8 5.3	5.1	5.0	2.3 3.1	2.7	2.5
					Bottom 1	15.3	20.4 20.4	20.4	8.0 8.0	8.0	32.5 32.7	32.6	95.9 98.2	97.1	7.2 7.3	7.2	7.2	5.9 6.6	6.3		2.8 2.2	2.5	
30-Mar-15	Sunny	Moderate	10:49		Surface	1.0	20.3 20.8	20.5	7.9 7.9	7.9	30.4 29.9	30.1	96.1 98.1	97.1	7.3 7.4	7.3	7.3	5.2 5.0	5.1		2.9 3.0	3.0	
				16.7	Middle	8.4	20.0 19.9	20.0	7.9 7.9	7.9	30.3 31.2	30.8	96.4 95.1	95.8	7.3 7.2	7.3	1.3	5.2 5.2	5.2	5.2	2.7 3.9	3.3	3.2
					Bottom 1	15.7	20.5 20.1	20.3	7.9 7.9	7.9	30.5 31.1	30.8	97.1 96.1	96.6	7.3 7.3	7.3	7.3	5.1 5.3	5.2		2.5 3.9	3.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	16:01		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	30.8 30.8	30.8	96.1 96.0	96.1	7.6 7.6	7.6		2.0 2.1	2.1		3.5 5.5	4.5	
				18.3	Middle	9.2	17.9 17.9	17.9	7.9 7.9	7.9	30.8 30.8	30.8	95.9 95.9	95.9	7.5 7.5	7.5	7.6	2.2 2.1	2.2	2.2	4.1 4.1	4.1	4.1
					Bottom	17.3	17.9 17.8	17.9	7.9 7.9	7.9	30.8 30.8	30.8	95.9 95.9	95.9	7.5 7.5	7.5	7.5	2.2	2.3		3.1	3.8	
4-Mar-15	Fine	Moderate	17:17		Surface	1.0	18.1	18.1	7.9	7.9	28.9	29.0	94.1	94.5	7.5	7.5		3.8	3.9		2.9	3.1	
				16.5	Middle	8.3	18.1 18.1	18.1	7.9 7.9	8.0	29.0 29.7	29.8	94.8 94.3	94.6	7.5 7.5	7.5	7.5	4.0 6.1	6.2	5.7	3.3 5.2	5.2	4.3
					Bottom	15.5	18.1 18.1	18.1	8.0	8.0	29.9 30.0	30.0	94.9 94.6	94.7	7.5 7.5	7.5	7.5	6.2 7.0	7.1	• • •	5.1 4.4	4.6	
6-Mar-15	Fine	Moderate	08:11				18.1 17.6		7.9 7.9		29.9 31.8		94.7 91.3		7.5 7.2		7.5	7.2 7.7			4.7 9.6		
o mai ro		moderate	00.11		Surface	1.0	17.6 17.6	17.6	7.9	7.9	31.8 31.8	31.8	91.6 91.6	91.5	7.2	7.2	7.2	7.3	7.5		8.3 9.4	9.0	
				16.1	Middle	8.1	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.8	31.8	90.3	91.0	7.1 7.2	7.2		9.2	9.4	9.0	9.3	9.4	9.5
					Bottom	15.1	17.6	17.6	7.9	7.9	31.8	31.8	90.6	91.0	7.1	7.2	7.2	9.7	10.1		10.2	10.0	
9-Mar-15	Sunny	Moderate	09:44		Surface	1.0	18.0 18.0	18.0	7.9 7.9	7.9	30.6 30.5	30.5	89.9 89.2	89.6	7.1 7.0	7.1	7.1	7.7 7.4	7.6		7.7 7.6	7.7	
				16.6	Middle	8.3	17.9 17.9	17.9	7.9 7.9	7.9	31.1 31.2	31.2	89.2 89.8	89.5	7.0 7.1	7.1		12.2 12.6	12.4	10.2	6.4 6.9	6.7	7.5
					Bottom	15.6	17.9 17.9	17.9	7.9 7.9	7.9	31.1 31.1	31.1	89.7 89.4	89.6	7.1 7.0	7.1	7.1	11.0 10.2	10.6		8.4 7.9	8.2	
11-Mar-15	Cloudy	Moderate	10:53		Surface	1.0	18.0 18.0	18.0	7.9 7.9	7.9	30.9 30.9	30.9	89.9 89.6	89.8	7.1 7.1	7.1		6.4 6.1	6.3		8.7 8.4	8.6	
				16.6	Middle	8.3	18.0 18.0	18.0	7.9 7.9	7.9	30.9 30.9	30.9	89.5 89.4	89.5	7.1 7.0	7.0	7.1	8.8 8.7	8.8	8.1	7.3 8.4	7.9	8.3
					Bottom	15.6	18.0	18.0	7.9	7.9	30.9	31.0	90.0	90.1	7.1	7.1	7.1	9.1	9.2		8.4	8.5	
13-Mar-15	Fine	Moderate	11:58		Surface	1.0	18.0 17.6	17.6	7.9 7.9	7.9	31.0 31.3	31.3	90.1 89.6	89.6	7.1 7.1	7.1		9.3 5.0	5.1		8.5 6.0	5.5	
				16.7	Middle	8.4	17.6 17.6	17.6	7.9 7.9	7.9	31.3 31.6	31.6	89.6 89.3	89.0	7.1 7.1	7.0	7.1	5.2 11.0	10.9	8.9	5.0 5.2	5.7	5.4
				10.7	Bottom	15.7	17.6 17.6	17.6	7.9 7.9	7.9	31.6 31.6	31.6	88.7 89.4	89.2	7.0 7.1	7.0	7.0	10.7 10.7	10.6	0.0	6.2 4.2	4.9	0.4
16-Mar-15	Sunny	Moderate	14:09				17.6 19.0		7.9 7.9		31.6 29.8		88.9 93.1		7.0 7.2		7.0	10.4			5.5 4.3		
10 11101	Cumy	moderate			Surface	1.0	19.1	19.1	7.9 7.9	7.9	29.7	29.7	93.4	93.3	7.3 7.1	7.2	7.2	1.5	1.5		2.5	3.4	
				16.0	Middle	8.0	18.3 18.3	18.3	7.9 7.9	7.9	31.3 31.5	31.1	91.7 91.8	91.3	7.2 7.2	7.1		3.0	3.0	2.9	2.1	2.8	3.0
					Bottom	15.0	18.3	18.3	7.9	7.9	31.4	31.4	92.4	92.1	7.2	7.2	7.2	4.0	4.1		3.1	2.9	
18-Mar-15	Sunny	Moderate	16:08		Surface	1.0	19.9 19.7	19.8	7.9 7.9	7.9	27.0 27.1	27.0	94.1 93.1	93.6	7.3 7.3	7.3	7.3	3.2 3.0	3.1		2.3 2.9	2.6	
				18.0	Middle	9.0	19.4 19.2	19.3	7.9 7.9	7.9	27.6 28.8	28.2	93.1 92.8	93.0	7.3 7.2	7.2	7.5	3.2 3.1	3.2	3.2	3.1 3.0	3.1	2.9
					Bottom	17.0	19.2 19.3	19.3	7.9 7.8	7.9	29.0 28.9	29.0	92.4 92.8	92.6	7.2 7.2	7.2	7.2	3.4 3.3	3.4		3.1 2.6	2.9	
20-Mar-15	Sunny	Moderate	07:47		Surface	1.0	20.5 20.5	20.5	7.7 7.7	7.7	26.3 26.1	26.2	104.6 101.3	103.0	8.1 7.8	7.9		9.4 9.6	9.5		5.9 5.6	5.8	
				16.1	Middle	8.1	20.4	20.4	7.7	7.7	27.3	27.1	99.1	99.1	7.6	7.6	7.8	9.9	9.8	9.7	8.0	7.6	7.6
					Bottom	15.1	20.4	20.4	7.7 7.7	7.7	26.9 26.7	27.0	99.0 92.3	92.5	7.6 7.1	7.1	7.1	9.7 9.9	9.9		9.0	9.5	
					Dottom	10.1	20.4	20.7	7.7		27.3	27.0	92.7	52.5	7.1	/··	7.1	9.9	0.0		9.9	0.0	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Te	nperature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m) Va	ue Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	09:21		Surface 1	1.0 21		7.9 7.9	7.9	26.0 26.2	26.1	82.1 82.3	82.2	6.3 6.3	6.3	6.3	22.0 21.1	21.6		19.3 19.0	19.2	
				16.8	Middle 8	8.4 21 21	1 213	7.9 7.9	7.9	26.5 26.3	26.4	82.0 82.0	82.0	6.2 6.2	6.2	0.5	21.2 22.1	21.7	21.8	19.0 18.4	18.7	19.0
					Bottom 1	5.8 21 21		7.9 7.9	7.9	26.5 26.3	26.4	81.6 81.9	81.8	6.2 6.2	6.2	6.2	22.2 22.1	22.2		18.9 19.0	19.0	
25-Mar-15	Cloudy	Moderate	11:01		Surface 1	1.0 20		7.5 7.6	7.6	28.7 28.7	28.7	96.9 96.2	96.6	7.4 7.3	7.3	7.3	7.3 7.7	7.5		11.5 10.5	11.0	
				16.2	Middle 8	8.1		7.6 7.6	7.6	28.7 28.9	28.8	96.0 96.8	96.4	7.3 7.4	7.3	7.0	8.3 8.3	8.3	8.0	13.1 13.1	13.1	12.4
					Bottom 1	5.2 20	20.5	7.6 7.5	7.6	28.2 29.0	28.6	96.0 96.4	96.2	7.3 7.3	7.3	7.3	8.4 8.1	8.3		14.0 12.4	13.2	
27-Mar-15	Cloudy	Moderate	11:56		Surface 1	1.0 20		8.0 8.0	8.0	26.6 26.7	26.6	98.3 98.3	98.3	7.6 7.6	7.6	7.6	5.3 5.2	5.3		1.5 2.3	1.9	
				16.2	Middle 8	8.1	20.4	8.0 8.0	8.0	25.3 28.4	26.9	98.2 98.0	98.1	7.6 7.5	7.6	7.0	5.7 5.5	5.6	6.1	1.0 1.6	1.3	1.5
					Bottom 1	5.2 20	2014	8.0 8.0	8.0	28.4 28.5	28.4	98.1 98.0	98.1	7.5 7.5	7.5	7.5	7.1 7.4	7.3		0.9 1.6	1.3	
30-Mar-15	Sunny	Moderate	15:38		Surface 1	1.0 20		7.9 8.0	8.0	30.0 30.0	30.0	98.2 97.3	97.8	7.5 7.4	7.4	7.4	5.3 5.1	5.2		2.4 2.4	2.4	
				16.9	Middle 8	8.5		7.9 7.9	7.9	30.5 30.2	30.3	98.2 96.5	97.4	7.5 7.3	7.4	7.4	5.4 5.3	5.4	5.4	3.5 2.7	3.1	2.8
					Bottom 1	5.9 20	20.2	8.0 7.9	8.0	30.5 30.1	30.3	97.8 98.6	98.2	7.4 7.5	7.4	7.4	5.5 5.5	5.5		2.7 3.0	2.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	11:36		Surface	1.0	18.7 18.6	18.6	7.2 7.3	7.2	27.1 28.3	27.7	91.5 91.1	91.3	7.3 7.2	7.2		2.1 2.1	2.1		6.3 5.3	5.8	
				12.4	Middle	6.2	18.3 18.3	18.3	7.2 7.0	7.1	29.0 27.1	28.0	90.5 89.7	90.1	7.2 7.2	7.2	7.2	2.2	2.2	2.2	4.7 4.2	4.5	5.3
					Bottom	11.4	18.4 18.3	18.3	7.1 6.9	7.0	28.6	27.2	91.4 90.4	90.9	7.2 7.3	7.3	7.3	2.2	2.2		6.3 5.0	5.7	
4-Mar-15	Fine	Moderate	11:57		Surface	1.0	18.7	18.7	7.4	7.4	29.8	29.8	94.3	94.2	7.4	7.4		5.8	5.9		8.0	7.7	
				13.2	Middle	6.6	18.7 18.6	18.6	7.4 7.4	7.4	29.8 30.1	30.0	94.0 92.0	92.1	7.4 7.2	7.2	7.3	5.9 5.1	5.2	5.6	7.3 6.5	6.1	6.6
				13.2			18.6 18.5		7.4 7.4		30.0		92.2 92.4		7.2 7.3		7.0	5.3 5.6		5.0	5.7 6.3		0.0
6-Mar-15	Fine	Moderate	14:03		Bottom	12.2	18.5 18.5	18.5	7.4 7.6	7.4	30.2 30.1	30.2	92.6 92.5	92.5	7.3 7.3	7.3	7.3	6.0 7.3	5.8		5.8 4.5	6.1	
0-Iviai-13	rine	Moderate	14.03		Surface	1.0	18.5	18.5	7.6	7.6	30.1	30.1	92.5	92.5	7.3	7.3	7.3	7.1	7.2		3.8	4.2	1
				13.4	Middle	6.7	18.4 18.4	18.4	7.6 7.6	7.6	30.5 30.5	30.5	91.7 91.7	91.7	7.2 7.2	7.2		8.0 7.7	7.9	7.7	4.4 5.5	5.0	4.5
					Bottom	12.4	18.3 18.3	18.3	7.6 7.6	7.6	30.6 30.6	30.6	92.1 91.9	92.0	7.2 7.2	7.2	7.2	7.9 8.3	8.1		4.4 4.2	4.3	
9-Mar-15	Sunny	Moderate	15:06		Surface	1.0	19.1 19.0	19.1	7.5 7.5	7.5	30.5 30.5	30.5	91.2 91.4	91.3	7.1 7.1	7.1	7.1	6.7 6.6	6.7		6.3 6.2	6.3	
				12.2	Middle	6.1	18.9 18.8	18.9	7.5 7.5	7.5	30.8 30.9	30.8	90.5 90.7	90.6	7.0 7.0	7.0	7.1	6.5 6.8	6.7	6.7	6.3 7.0	6.7	7.4
					Bottom	11.2	18.8 18.9	18.8	7.4 7.5	7.5	31.0 30.9	30.9	91.5 91.0	91.3	7.1 7.1	7.1	7.1	6.6 6.6	6.6		9.6 8.9	9.3	İ
11-Mar-15	Cloudy	Moderate	16:19		Surface	1.0	18.8	18.8	7.5	7.5	31.0	30.9	91.3	91.9	7.1	7.1		7.2	7.3		5.3	5.5	
				12.4	Middle	6.2	18.8 18.7	18.7	7.6 7.5	7.5	30.9 31.4	31.4	92.4 90.2	90.5	7.2 7.0	7.0	7.1	7.3	7.6	7.5	5.6 5.1	5.1	5.2
					Bottom	11.4	18.7 18.7	18.7	7.5 7.5	7.5	31.3 31.8	31.6	90.7 92.7	92.5	7.0 7.2	7.2	7.2	7.5 7.7	7.7		5.1 5.6	5.1	
13-Mar-15	Fine	Moderate	18:27		Surface	1.0	18.7 18.6	18.6	7.5 7.5	7.5	31.4 31.3	31.4	92.3 91.3	91.0	7.1 7.1	7.1	7.2	7.7 5.2	5.3		4.6 5.7	5.8	
							18.6 18.6		7.4 7.5		31.4 32.0		90.6 89.1		7.0 6.9		7.1	5.4 5.3			5.9 4.8		
				12.1	Middle	6.1	18.6 18.6	18.6	7.5 7.4	7.5	32.0 32.1	32.0	91.4	90.3	7.1	7.0		5.3 5.6	5.3	5.4	5.0	4.9	5.3
					Bottom	11.1	18.6	18.6	7.4	7.4	32.2	32.2	93.5	92.1	7.2	7.1	7.1	5.5	5.6		5.4	5.1	<u> </u>
16-Mar-15	Cloudy	Moderate	10:07		Surface	1.0	19.1 19.2	19.2	7.5 7.6	7.5	30.6 30.5	30.6	89.7 92.0	90.9	6.9 7.1	7.0	7.0	7.6 7.4	7.5		4.4 3.4	3.9	
				12.9	Middle	6.5	18.7 18.7	18.7	7.5 7.4	7.5	31.0 31.0	31.0	89.2 87.9	88.6	6.9 6.8	6.9		7.7 7.6	7.7	7.7	4.3 4.0	4.2	4.2
					Bottom	11.9	18.7 18.8	18.7	7.4 7.5	7.4	31.1 31.0	31.0	89.3 90.1	89.7	6.9 7.0	7.0	7.0	7.7 7.8	7.8		4.6 4.2	4.4	1
18-Mar-15	Sunny	Moderate	11:25		Surface	1.0	20.2 20.2	20.2	7.4 7.4	7.4	28.9 29.0	29.0	95.0 93.9	94.5	7.3 7.2	7.2		3.3 3.3	3.3		3.7 3.5	3.6	
				12.1	Middle	6.1	19.4 19.4	19.4	7.3 7.3	7.3	30.3 30.2	30.3	91.0 89.9	90.5	7.0 6.9	7.0	7.1	3.4 3.5	3.5	3.5	3.5 3.1	3.3	3.7
					Bottom	11.1	19.4	19.5	7.2	7.3	30.4	30.3	90.9	91.7	7.0	7.0	7.0	3.5	3.6		3.5	4.1	
20-Mar-15	Sunny	Moderate	13:16		Surface	1.0	19.5 20.2	20.0	7.3	7.9	30.2 29.5	29.7	92.5 91.5	90.6	7.1	6.9		3.6	3.2		6.7	6.8	
				12.9	Middle	6.5	19.8 19.2	19.2	7.9 7.9	7.9	29.9 30.7	30.7	89.6 88.8	88.7	6.9 6.8	6.8	6.9	3.1	3.6	3.4	6.8 5.8	6.2	6.3
				12.3			19.2 19.2		7.9 7.9		30.7 30.8		88.6 89.2		6.8 6.9		0.0	3.7 3.5		J. 4	6.6 5.3		0.5
					Bottom	11.9	19.2	19.2	7.9	7.9	30.7	30.8	89.4	89.3	6.9	6.9	6.9	3.4	3.5		6.5	5.9	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ıg	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	15:12		Surface	1.0	19.9 19.9	19.9	7.9 7.9	7.9	30.2 30.2	30.2	91.5 90.4	91.0	7.0 6.9	6.9	7.0	4.6 4.8	4.7		6.2 7.0	6.6	
				13.0	Middle	6.5	19.7 19.7	19.7	7.9 7.9	7.9	30.4 30.3	30.4	92.4 90.7	91.6	7.1 6.9	7.0	7.0	4.0 4.4	4.2	4.5	7.4 7.6	7.5	7.0
					Bottom 1	12.0	19.7 19.7	19.7	7.9 7.9	7.9	30.4 30.5	30.5	90.8 93.0	91.9	6.9 7.1	7.0	7.0	4.5 4.4	4.5		6.9 6.6	6.8	
25-Mar-15	Cloudy	Moderate	16:38		Surface	1.0	19.5 19.5	19.5	7.9 7.9	7.9	30.4 30.3	30.3	92.0 91.1	91.6	7.1 7.0	7.0	7.1	1.8 2.0	1.9		6.7 5.7	6.2	
				13.4	Middle	6.7	19.4 19.4	19.4	7.9 7.9	7.9	31.0 31.0	31.0	93.1 91.0	92.1	7.1 7.0	7.1	7	1.7 1.7	1.7	1.9	7.4 7.5	7.5	7.1
					Bottom 1	12.4	19.4 19.4	19.4	7.9 7.9	7.9	31.0 31.0	31.0	94.3 91.3	92.8	7.2 7.0	7.1	7.1	2.0 2.1	2.1		7.4 7.8	7.6	
27-Mar-15	Sunny	Moderate	18:46		Surface	1.0	19.3 19.4	19.4	8.1 7.8	8.0	30.8 30.8	30.8	87.5 88.4	88.0	6.7 6.8	6.8	6.8	2.4 2.3	2.4		2.1 2.5	2.3	
				12.2	Middle	6.1	19.1 19.1	19.1	7.8 7.8	7.8	32.6 32.6	32.6	87.3 88.8	88.1	6.7 6.8	6.7	0.0	2.4 2.3	2.4	2.4	2.4 2.0	2.2	2.2
					Bottom 1	11.2	19.1 19.1	19.1	7.7 7.8	7.8	32.8 32.8	32.8	88.1 90.8	89.5	6.7 6.9	6.8	6.8	2.3 2.4	2.4		2.0 2.1	2.1	
30-Mar-15	Sunny	Moderate	10:23		Surface	1.0	21.2 20.8	21.0	6.8 6.8	6.8	29.8 30.2	30.0	93.0 91.3	92.2	7.0 6.9	6.9	6.9	3.1 3.1	3.1		2.6 3.0	2.8	
				12.0	Middle	6.0	20.5 20.5	20.5	6.8 6.8	6.8	31.0 30.9	31.0	90.1 89.9	90.0	6.8 6.8	6.8	0.3	3.0 3.0	3.0	3.1	2.6 2.5	2.6	2.9
					Bottom 1	11.0	20.4 20.4	20.4	6.8 6.7	6.8	31.1 31.1	31.1	90.7 90.9	90.8	6.8 6.8	6.8	6.8	3.1 3.1	3.1		2.5 3.8	3.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	17:06		Surface	1.0	18.5 18.6	18.6	7.5 7.6	7.6	31.2 31.1	31.1	93.0 94.7	93.9	7.2 7.4	7.3		6.1 6.3	6.2		3.8 3.8	3.8	
				12.8	Middle	6.4	18.4 18.3	18.3	7.6 7.5	7.6	31.5 31.5	31.5	92.3 92.0	92.2	7.2 7.2	7.2	7.3	6.6 6.5	6.6	6.4	4.6 2.6	3.6	3.4
					Bottom	11.8	18.3	18.3	7.5	7.6	31.6	31.6	92.8	92.6	7.2 7.2	7.2	7.2	6.5	6.5		3.2	2.7	
4-Mar-15	Fine	Moderate	19:18		Surface	1.0	18.3 18.7	18.7	7.6 7.5	7.5	31.6 30.1	30.1	92.3 94.9	95.0	7.4	7.4		6.5	6.3		5.6	5.6	
				13.6	Middle	6.8	18.7 18.6	18.6	7.5 7.5	7.5	30.1 30.4	30.4	95.1 92.7	92.7	7.4 7.3	7.2	7.3	6.2 7.9	7.7	7.7	5.5 6.0	5.4	5.3
				13.0			18.6 18.5		7.5 7.5		30.4 30.7		92.7 93.2		7.2 7.3			7.5 9.2		7.7	4.7 4.6		5.5
6-Mar-15	Fine	Moderate	06:58		Bottom	12.6	18.5 18.5	18.5	7.5 7.6	7.5	30.6 29.2	30.7	93.3 92.1	93.3	7.3	7.3	7.3	8.9	9.1		5.2	4.9	
6-Mai-15	rille	ivioderate	00.56		Surface	1.0	18.5	18.5	7.6	7.6	29.2	29.2	91.6	91.9	7.2	7.3	7.3	8.3	8.3		5.2	4.7	
				13.6	Middle	6.8	18.4 18.4	18.4	7.6 7.6	7.6	29.4 29.4	29.4	91.2 90.3	90.8	7.2 7.2	7.2		9.1 9.5	9.3	9.3	5.8 5.6	5.7	5.7
					Bottom	12.6	18.4 18.4	18.4	7.6 7.6	7.6	29.4 29.4	29.4	90.5 91.5	91.0	7.2 7.2	7.2	7.2	10.2 10.5	10.4		6.0 7.3	6.7	
9-Mar-15	Sunny	Moderate	08:40		Surface	1.0	18.8 18.8	18.8	7.3 7.3	7.3	29.7 29.7	29.7	90.2 90.9	90.6	7.1 7.1	7.1	7.1	6.4 6.3	6.4		5.4 3.9	4.7	
				12.4	Middle	6.2	18.7 18.7	18.7	7.3 7.3	7.3	29.9 29.9	29.9	89.4 90.4	89.9	7.0 7.1	7.0	7.1	6.4 6.4	6.4	6.4	4.2 4.5	4.4	4.8
					Bottom	11.4	18.7 18.7	18.7	7.3 7.2	7.2	30.2 30.4	30.3	90.1 91.6	90.9	7.0	7.1	7.1	6.5 6.5	6.5		5.2 5.3	5.3	
11-Mar-15	Cloudy	Moderate	09:19		Surface	1.0	18.8	18.8	7.4	7.4	30.0	30.0	90.6	91.2	7.1	7.1		7.9	7.8		4.7	4.5	
				12.6	Middle	6.3	18.8 18.8	18.8	7.4 7.4	7.4	30.0 30.3	30.3	91.7 91.5	90.7	7.2 7.1	7.1	7.1	7.7 8.2	8.4	8.4	3.7	3.9	4.7
					Bottom	11.6	18.8 18.8	18.8	7.4	7.4	30.3 30.6	30.5	89.8 94.1	92.3	7.0 7.3	7.2	7.2	8.5 8.9	8.9		4.0 5.8	5.6	
13-Mar-15	Fine	Moderate	10:26		Surface	1.0	18.8 18.5	18.5	7.4 7.5	7.5	30.5 30.7	30.7	90.4 88.2	88.2	7.0 6.9	6.9	7.2	8.9 4.1	4.2		5.4 3.0	2.8	
							18.5 18.6		7.5 7.5		30.7 31.0		88.1 87.5		6.9 6.8		6.9	4.2 6.4			2.6 3.2	_	
				12.7	Middle	6.4	18.6 18.6	18.6	7.5 7.5	7.5	31.0 31.1	31.0	87.1 88.6	87.3	6.8	6.8		6.1	6.3	5.6	2.4	2.8	3.4
					Bottom	11.7	18.6	18.6	7.5	7.5	31.2	31.1	87.4	88.0	6.8	6.8	6.8	6.2	6.2		4.7	4.7	
16-Mar-15	Sunny	Moderate	15:12		Surface	1.0	19.6 19.5	19.5	7.4 7.5	7.4	30.4 30.6	30.5	93.0 91.1	92.1	7.1 7.0	7.1	7.0	4.6 4.5	4.6		4.8 4.7	4.8	
				12.7	Middle	6.4	18.8 19.0	18.9	7.5 7.5	7.5	31.3 31.0	31.2	88.2 89.8	89.0	6.8 6.9	6.9		4.6 4.8	4.7	4.7	4.9 5.1	5.0	5.2
					Bottom	11.7	18.9 18.7	18.8	7.4 7.5	7.5	31.4 31.6	31.5	90.7 88.1	89.4	7.0 6.8	6.9	6.9	4.7 4.7	4.7		6.4 5.2	5.8	
18-Mar-15	Sunny	Moderate	17:17		Surface	1.0	20.3 20.4	20.4	7.4 7.4	7.4	29.1 29.0	29.0	93.2 93.4	93.3	7.1 7.1	7.1		3.2 3.2	3.2		4.7 5.3	5.0	
				12.4	Middle	6.2	19.8 19.9	19.8	7.4 7.4	7.4	30.1 29.9	30.0	90.3 91.8	91.1	6.9 7.0	7.0	7.1	3.2 3.4	3.3	3.3	4.7 3.6	4.2	4.6
					Bottom	11.4	19.5	19.7	7.4	7.4	30.9	30.6	89.1	90.8	6.8	6.9	6.9	3.3	3.4		5.0	4.5	
20-Mar-15	Sunny	Moderate	06:39		Surface	1.0	19.9 19.2	19.2	7.4 7.8	7.8	30.2 30.7	30.6	92.4 88.5	88.7	7.0 6.8	6.8		3.5 4.3	4.2		4.0 5.6	5.4	
				13.1	Middle	6.6	19.3 19.1	19.1	7.8 7.8	7.8	30.5 31.0	31.1	88.9 87.2	87.7	6.8 6.7	6.7	6.8	4.1 5.8	5.8	5.4	5.2 4.4	4.5	5.0
				13.1			19.1 19.1		7.8 7.8		31.1 31.1		88.1 87.7		6.8 6.8			5.7 6.1		5.4	4.6 7.6		5.8
					Bottom	12.1	19.1	19.1	7.8	7.8	31.1	31.1	88.2	88.0	6.8	6.8	6.8	6.4	6.3		7.5	7.6	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	08:13		Surface 1.	0 19.6 19.6	19.6	7.9 7.9	7.9	30.2 30.3	30.3	91.2 89.5	90.4	7.0 6.9	6.9	7.0	5.2 4.9	5.1		5.0 5.3	5.2	
				13.3	Middle 6.	7 19.6 19.6	19.6	7.9 7.9	7.9	30.6 30.6	30.6	89.9 92.1	91.0	6.9 7.1	7.0	7.0	5.7 5.5	5.6	5.5	6.1 6.2	6.2	5.8
					Bottom 12	.3 19.6 19.6	19.6	7.9 7.9	7.9	30.6 30.6	30.6	90.6 95.7	93.2	6.9 7.3	7.1	7.1	6.0 5.6	5.8		5.9 5.8	5.9	
25-Mar-15	Cloudy	Moderate	09:22		Surface 1.	0 19.4 19.4	19.4	7.9 7.9	7.9	30.5 30.6	30.6	89.6 90.3	90.0	6.9 6.9	6.9	6.9	1.9 2.0	2.0		3.7 3.9	3.8	
				13.7	Middle 6.	9 19.4 19.4	19.4	7.9 7.9	7.9	31.1 31.3	31.2	89.5 90.4	90.0	6.8 6.9	6.9	0.5	1.5 1.4	1.5	1.5	3.2 4.6	3.9	4.0
					Bottom 12	.7 19.4 19.4	19.4	7.9 7.9	7.9	31.4 31.4	31.4	90.9 89.7	90.3	6.9 6.9	6.9	6.9	1.1 1.1	1.1		5.2 3.4	4.3	
27-Mar-15	Cloudy	Moderate	10:24		Surface 1.	0 19.3 19.3	19.3	7.7 7.8	7.8	30.2 30.3	30.3	89.0 88.5	88.8	6.9 6.8	6.8	6.8	2.2 2.1	2.2		2.1 2.3	2.2	
				12.5	Middle 6.	3 19.3 19.2	19.2	7.8 7.6	7.7	30.9 31.0	31.0	87.5 88.5	88.0	6.7 6.8	6.8	0.0	2.1 2.2	2.2	2.2	2.8 2.2	2.5	2.1
					Bottom 11	.5 19.1 19.2	19.2	7.6 7.7	7.7	32.5 32.4	32.5	89.9 88.8	89.4	6.9 6.8	6.8	6.8	2.2 2.2	2.2		1.6 1.5	1.6	
30-Mar-15	Sunny	Moderate	15:56		Surface 1.	0 21.4 21.4	21.4	7.4 7.4	7.4	31.4 31.3	31.4	99.2 101.3	100.3	7.3 7.5	7.4	7.3	3.0 3.1	3.1		2.4 2.5	2.5	
				12.6	Middle 6.	20.8	20.9	7.4 7.4	7.4	32.0 32.2	32.1	96.4 99.1	97.8	7.1 7.3	7.2	7.5	2.8 3.0	2.9	3.0	2.5 2.2	2.4	2.6
					Bottom 11	.6 20.8 21.0	20.9	7.3 7.4	7.4	32.4 32.1	32.3	95.2 100.1	97.7	7.1 7.4	7.2	7.2	2.9 3.0	3.0		2.7 3.2	3.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	To	urbidity(NTI	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	10:38		Surface	1.0	17.6 17.5	17.5	7.9 7.9	7.9	31.8 31.9	31.9	92.4 92.4	92.4	7.3 7.3	7.3		1.6 1.6	1.6		4.2 7.0	5.6	
				10.1	Middle	5.1	17.4	17.4	7.9	7.9	32.3	32.3	91.9	91.8	7.3	7.2	7.3	1.7	1.8	1.7	6.2	5.7	5.2
							17.4 17.3		7.9 7.9		32.2 32.7		91.7 91.9		7.2 7.2		7.0	1.8 1.7			5.1 4.3		
			44.00		Bottom	9.1	17.3	17.3	7.9	7.9	32.7	32.7	91.7	91.8	7.2	7.2	7.2	1.8	1.8		4.0	4.2	
4-Mar-15	Fine	Moderate	11:30		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.8	31.8	91.6 92.2	91.9	7.2 7.3	7.2	7.2	1.0 1.1	1.1		3.4 2.4	2.9	<u> </u>
				10.2	Middle	5.1	17.5 17.5	17.5	7.9 7.9	7.9	32.3 32.3	32.3	91.3 91.4	91.4	7.2 7.2	7.2	7.2	0.8 0.8	0.8	0.9	2.4 3.3	2.9	3.1
					Bottom	9.2	17.5 17.5	17.5	7.9 7.9	7.9	32.3 32.3	32.3	91.4 91.3	91.4	7.2 7.2	7.2	7.2	0.9 0.9	0.9		4.0 3.1	3.6	
6-Mar-15	Fine	Moderate	14:05		Surface	1.0	17.5	17.5	7.9	7.9	32.3	32.3	92.7	92.0	7.3	7.2		1.4	1.4		3.9	4.0	
				10.2		5.1	17.5 17.5	17.5	7.9 7.9	7.9	32.3 32.5	32.5	91.3 91.9	92.9	7.2 7.2	7.3	7.3	1.4		1.6	4.0 3.6	3.6	2.0
				10.2	Middle		17.5 17.5		7.9 7.9		32.5 32.5		93.8 92.3		7.4 7.3			1.5 2.0	1.5	1.0	3.6		3.6
					Bottom	9.2	17.5	17.5	7.9	7.9	32.5	32.5	95.0	93.7	7.5	7.4	7.4	2.0	2.0		3.6	3.3	
9-Mar-15	Sunny	Moderate	15:44		Surface	1.0	18.6 18.6	18.6	7.8 7.8	7.8	31.1 31.0	31.0	90.5 91.0	90.8	7.0 7.1	7.1	7.1	1.4 1.4	1.4		6.0 6.2	6.1	
				9.9	Middle	5.0	18.0 18.0	18.0	7.8 7.8	7.8	31.9 31.9	31.9	89.3 88.8	89.1	7.0 7.0	7.0	7	1.4 1.5	1.5	1.3	4.5 6.3	5.4	5.9
					Bottom	8.9	17.9 18.2	18.1	7.8 7.8	7.8	32.0 31.7	31.9	89.6 90.2	89.9	7.0 7.0	7.0	7.0	1.2 1.0	1.1		5.8 6.4	6.1	
11-Mar-15	Cloudy	Moderate	16:55		Surface	1.0	17.8	17.8	7.9	7.9	32.0	31.9	90.9	91.7	7.1	7.2		1.1	1.1		2.7	2.7	
				9.9	Middle	5.0	17.8 17.8	17.8	7.9 7.9	7.9	31.9 32.4	32.4	92.5 94.3	92.8	7.3 7.4	7.3	7.3	1.0	1.2	1.3	2.6	2.4	2.5
				3.3			17.8 17.8		7.9 7.9		32.4 32.5		91.3 97.2		7.2 7.6			1.2 1.5		1.5	2.1		2.5
40.1445	F*	Madagata	40.50		Bottom	8.9	17.8	17.8	7.9	7.9	32.3	32.4	92.1	94.7	7.2	7.4	7.4	1.6	1.6		2.6	2.4	
13-Mar-15	Fine	Moderate	18:52		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	32.2 32.2	32.2	90.5 89.6	90.1	7.1 7.1	7.1	7.1	1.3 1.3	1.3		5.3 4.1	4.7	<u> </u>
				10.0	Middle	5.0	17.6 17.6	17.6	7.9 7.9	7.9	32.3 32.3	32.3	91.4 89.4	90.4	7.2 7.0	7.1		1.1 1.1	1.1	1.2	3.4 3.2	3.3	4.0
					Bottom	9.0	17.6 17.6	17.6	7.9 7.9	7.9	32.4 32.3	32.4	89.8 92.6	91.2	7.1 7.3	7.2	7.2	1.2 1.2	1.2		4.2 3.5	3.9	i
16-Mar-15	Cloudy	Moderate	09:25		Surface	1.0	18.1	18.1	7.9	7.9	32.4	32.4	87.9	88.3	6.9	6.9		1.5	1.5		3.9	3.1	
				10.1	Middle	5.1	18.2 17.7	17.7	7.9 7.9	7.9	32.3 33.1	33.1	88.6 87.7	87.6	6.9 6.9	6.8	6.9	1.4	1.3	1.3	2.3 4.8	5.2	4.0
							17.7 17.7		7.9 7.9		33.1 33.1		87.4 88.3		6.8		0.0	1.2		1.0	5.5 4.2		
18-Mar-15	Sunny	Moderate	10:55		Bottom	9.1	17.8 19.0	17.7	7.9 7.9	7.9	33.0 30.9	33.0	88.4 92.2	88.4	6.9 7.1	6.9	6.9	1.0	1.0		3.3 2.8	3.8	
10-IVIAI-15	Suring	Woderate	10.55		Surface	1.0	19.0	19.0	7.9	7.9	30.8	30.8	92.1	92.2	7.1	7.1	7.1	1.1	1.1		1.5	2.2]
				11.1	Middle	5.6	18.8 18.8	18.8	7.9 7.9	7.9	31.2 31.2	31.2	92.1 91.9	92.0	7.1 7.1	7.1		1.1 1.2	1.2	1.2	2.3 2.3	2.3	2.4
					Bottom	10.1	18.9 18.8	18.9	7.9 7.9	7.9	31.2 31.4	31.3	91.6 91.6	91.6	7.1 7.1	7.1	7.1	1.2 1.3	1.3		2.4 2.8	2.6	i l
20-Mar-15	Sunny	Moderate	13:46		Surface	1.0	21.0	20.9	7.7	7.7	23.9	23.8	102.3	104.3	8.0	8.1		3.2	3.2		7.1	6.5	
				10.2	Middle	5.1	20.8	20.3	7.7	7.7	23.8 28.4	28.2	106.2 103.3	102.0	7.9	7.9	8.0	3.2	3.3	3.3	5.8 7.5	7.2	6.7
							20.2 19.9		7.7 7.7		28.1 29.2		100.7 97.2		7.8 7.5		7.0	3.3		0.0	6.9		0
					Bottom	9.2	20.0	20.0	7.7	7.7	29.1	29.2	101.6	99.4	7.8	7.6	7.6	3.2	3.3		6.3	6.4	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (ı	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	15:41		Surface	1.0	21.1 21.0	21.0	7.7 7.6	7.7	29.2 29.3	29.3	102.5 105.3	103.9	7.8 8.0	7.9	7.8	2.0 2.1	2.1		4.0 4.9	4.5	
				10.1	Middle	5.1	20.2 20.3	20.3	7.7 7.7	7.7	30.4 30.3	30.4	101.4 99.6	100.5	7.6 7.5	7.6	7.0	2.2 2.2	2.2	2.2	4.6 3.8	4.2	4.4
					Bottom	9.1	20.1 20.3	20.2	7.6 7.6	7.6	31.2 30.9	31.0	100.4 99.2	99.8	7.6 7.5	7.5	7.5	2.2 2.3	2.3		4.8 4.4	4.6	
25-Mar-15	Cloudy	Moderate	17:31		Surface	1.0	20.2 20.2	20.2	7.9 7.5	7.7	29.8 29.7	29.7	98.7 97.9	98.3	7.5 7.5	7.5	7.5	1.8 1.9	1.9		7.5 7.9	7.7	
				9.7	Middle	4.9	20.1 20.1	20.1	7.5 7.5	7.5	30.0 30.2	30.1	99.2 98.1	98.7	7.5 7.5	7.5	7.5	2.1 2.2	2.2	2.1	7.6 6.1	6.9	6.9
					Bottom	8.7	20.0 20.1	20.1	7.5 7.5	7.5	30.6 30.8	30.7	100.7 98.2	99.5	7.6 7.4	7.5	7.5	2.2 2.3	2.3		6.8 5.4	6.1	
27-Mar-15	Sunny	Moderate	19:15		Surface	1.0	20.5 20.4	20.4	8.0 8.1	8.1	30.9 31.0	31.0	101.0 92.9	97.0	7.6 7.0	7.3	7.2	1.5 1.5	1.5		2.1 1.9	2.0	
				10.0	Middle	5.0	20.2 20.2	20.2	8.1 8.1	8.1	32.4 32.3	32.3	95.7 92.9	94.3	7.2 7.0	7.1	1.2	1.6 1.5	1.6	1.8	2.3 3.1	2.7	2.2
					Bottom	9.0	20.2 20.1	20.2	8.1 8.1	8.1	32.6 32.7	32.6	89.6 90.1	89.9	6.7 6.7	6.7	6.7	2.4 2.2	2.3		2.2 1.7	2.0	
30-Mar-15	Sunny	Moderate	09:26		Surface	1.0	20.0 20.1	20.1	7.9 7.9	7.9	31.5 31.3	31.4	96.4 97.8	97.1	7.3 7.4	7.4	7.3	2.9 2.7	2.8		2.4 3.1	2.8	
				10.3	Middle	5.2	19.7 19.7	19.7	7.9 7.9	7.9	32.3 32.2	32.3	95.0 92.8	93.9	7.2 7.0	7.1	1.3	2.8 3.0	2.9	2.9	2.9 3.9	3.4	2.9
					Bottom	9.3	19.6 19.6	19.6	7.9 7.9	7.9	32.6 32.6	32.6	94.4 94.1	94.3	7.1 7.1	7.1	7.1	2.9 2.9	2.9		2.6 2.6	2.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ţ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	17:28		Surface	1.0	18.7 18.7	18.7	7.9 7.9	7.9	31.1 31.1	31.1	95.0 95.1	95.1	7.4 7.4	7.4		2.2 2.2	2.2		4.5 5.5	5.0	
				10.1	Middle	5.1	18.7 18.7	18.7	7.9 7.9	7.9	31.1	31.1	94.9 95.0	95.0	7.4 7.4 7.4	7.4	7.4	2.4	2.5	2.5	2.9 3.8	3.4	4.1
					Bottom	9.1	18.7	18.7	7.9	7.9	31.1 31.1	31.1	94.9	94.9	7.4	7.4	7.4	2.7	2.7		3.1	4.0	
4-Mar-15	Fine	Moderate	18:57				18.7 17.7		7.9 8.0		31.1 31.5		94.9 93.4		7.4 7.4			2.7 0.9			4.9 2.5		
4-Wai-15	Tille	Woderate	10.57		Surface	1.0	17.7	17.7	8.0	8.0	31.7	31.6	94.0	93.7	7.4	7.4	7.4	1.0	1.0		3.7	3.1	
				10.3	Middle	5.2	17.6 17.6	17.6	8.0 8.0	8.0	32.0 32.1	32.1	93.6 94.6	94.1	7.4 7.5	7.4		0.9 0.8	0.9	0.9	3.9 3.9	3.9	3.4
					Bottom	9.3	17.6 17.6	17.6	8.0 8.0	8.0	32.1 32.3	32.2	93.9 95.3	94.6	7.4 7.5	7.4	7.4	0.9 0.8	0.9		3.0 3.6	3.3	
6-Mar-15	Fine	Moderate	06:36		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	31.9 31.9	31.9	91.2 91.2	91.2	7.2 7.2	7.2		1.4 1.4	1.4		4.1 5.3	4.7	
				10.1	Middle	5.1	17.6 17.6	17.6	7.9 7.9	7.9	32.1 32.0	32.1	91.3 91.7	91.5	7.2 7.2	7.2	7.2	1.4	1.4	1.3	6.0 5.1	5.6	4.9
					Bottom	9.1	17.6 17.6	17.6	7.9 7.9	7.9	32.1 32.1	32.1	91.7 91.3	91.5	7.2	7.2	7.2	1.2	1.2		4.7	4.4	
9-Mar-15	Sunny	Moderate	08:02		Surface	1.0	17.9	17.9	7.9	7.9	31.0	31.0	90.5	90.5	7.1	7.1		2.1	2.2		4.3	4.4	
				9.9	Middle	5.0	17.9 17.9	17.9	7.9 7.9	7.9	31.0 31.2	31.2	90.4 90.0	90.0	7.1 7.1	7.1	7.1	1.7	1.8	2.0	4.5 4.1	4.7	4.6
					Bottom	8.9	17.9 17.9	17.9	7.9 7.9	7.9	31.2 31.2	31.2	89.9 89.8	90.0	7.1 7.1	7.1	7.1	1.9 1.8	1.9		5.2 4.6	4.6	
11-Mar-15	Cloudy	Moderate	09:04				17.9 17.9		7.9 7.9		31.2 31.3		90.1 91.6		7.1 7.2		7.1	2.0			4.6 4.9		
	,				Surface	1.0	17.9 18.0	17.9	7.8 7.8	7.9	31.4 31.4	31.3	91.2 91.2	91.4	7.2 7.2	7.2	7.2	1.2 1.5	1.2		5.2 4.8	5.1	
				10.0	Middle	5.0	18.0	18.0	7.9	7.9	31.4	31.4	91.3	91.3	7.2 7.2	7.2		1.4	1.5	1.4	3.5	4.2	4.2
					Bottom	9.0	18.0 18.0	18.0	7.8 7.9	7.8	31.4 31.4	31.4	91.3 91.4	91.4	7.2	7.2	7.2	1.3 1.4	1.4		3.1	3.4	
13-Mar-15	Fine	Moderate	10:16		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.8	31.8	90.3 90.0	90.2	7.1 7.1	7.1	7.1	1.5 1.5	1.5		2.7 4.2	3.5	
				9.8	Middle	4.9	17.6 17.6	17.6	7.9 7.9	7.9	31.9 31.9	31.9	90.3 89.5	89.9	7.1 7.1	7.1	7	1.5 1.5	1.5	1.5	3.0 3.8	3.4	3.4
					Bottom	8.8	17.6 17.6	17.6	7.9 7.9	7.9	31.9 31.9	31.9	89.5 90.4	90.0	7.1 7.1	7.1	7.1	1.5 1.4	1.5		2.7 4.1	3.4	
16-Mar-15	Sunny	Moderate	15:46		Surface	1.0	18.7 18.7	18.7	7.9 7.9	7.9	31.9 31.8	31.9	93.1 94.8	94.0	7.2 7.3	7.3		1.2 1.3	1.3		3.6 4.4	4.0	
				10.2	Middle	5.1	18.6 18.4	18.5	7.9 7.9	7.9	32.1 32.3	32.2	93.9 92.4	93.2	7.3 7.2	7.2	7.3	1.1	1.0	1.1	2.7	2.5	3.6
					Bottom	9.2	18.4	18.4	8.0	7.9	32.3	32.3	92.1	92.9	7.1	7.2	7.2	0.9	1.0		3.9	4.4	
18-Mar-15	Sunny	Moderate	17:41		Surface	1.0	18.4 19.1	19.1	7.9 7.9	7.9	32.3 30.5	30.4	93.7 93.1	93.4	7.3 7.2	7.2		1.0	1.2		4.8 3.0	3.1	
				11.1	Middle	5.6	19.1 19.0	19.1	7.9 7.9	7.9	30.4 30.6	30.5	93.6 92.7	92.8	7.2 7.2	7.2	7.2	1.2	1.3	1.3	3.2	3.7	2.9
				11.1			19.1 18.9		7.9 7.9		30.4 31.1		92.8 92.3		7.2 7.1			1.3 1.2		1.3	3.6 2.2		2.9
20-Mar-15	Sunny	Moderate	06:12	<u> </u>	Bottom	10.1	18.9	18.9	7.9	7.9	31.1 27.1	31.1	92.3 105.1	92.3	7.1 8.1	7.1	7.1	1.3	1.3		1.7	2.0	
20-iviai-13	Suring	Woderate	00.12		Surface	1.0	20.9	20.9	7.7	7.7	27.2	27.2	107.8	106.5	8.5	8.3	8.1	3.2	3.3		5.6	5.7	
				10.5	Middle	5.3	20.1 20.3	20.2	7.6 7.7	7.7	28.3 23.8	26.1	101.9 103.8	102.9	7.8 7.9	7.9		3.3 3.3	3.3	3.3	7.0 7.9	7.5	6.8
					Bottom	9.5	19.8 20.0	19.9	7.6 7.7	7.6	29.2 29.1	29.2	96.4 98.7	97.6	7.3 7.6	7.5	7.5	3.2 3.3	3.3		6.4 7.7	7.1	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Te	nperature (°C)	F	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth (m) Va	ie Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	07:55		Surface 1	1.0 20		8.1 8.1	8.1	25.3 25.3	25.3	95.5 95.1	95.3	7.4 7.4	7.4	7.3	3.6 3.6	3.6		7.0 7.5	7.3	
				10.4	Middle 5	5.2 20	20.6	8.1 8.1	8.1	25.6 25.6	25.6	94.6 91.2	92.9	7.3 7.1	7.2	7.5	3.8 3.7	3.8	3.7	7.4 7.3	7.4	7.0
					Bottom 9	9.4 20		8.0 8.0	8.0	25.2 24.8	25.0	88.7 92.7	90.7	6.9 7.2	7.0	7.0	3.8 3.8	3.8		6.0 6.6	6.3	
25-Mar-15	Cloudy	Moderate	09:21		Surface 1	1.0 20		7.4 7.5	7.4	27.4 27.4	27.4	96.9 96.5	96.7	7.4 7.5	7.5	7.5	2.4 2.2	2.3		7.1 6.2	6.7	
				10.2	Middle 5	5.1 20		7.5 7.4	7.4	27.5 27.5	27.5	96.5 97.2	96.9	7.4 7.6	7.5	7.0	2.4 2.5	2.5	2.4	7.7 8.5	8.1	7.5
					Bottom 9	9.2	20.6	7.4 7.4	7.4	27.6 27.8	27.7	96.9 96.5	96.7	7.4 7.4	7.4	7.4	2.5 2.4	2.5		7.7 7.9	7.8	
27-Mar-15	Cloudy	Moderate	10:18		Surface 1	1.0 20		7.9 7.9	7.9	25.5 25.7	25.6	99.1 95.8	97.5	7.7 7.4	7.6	7.8	1.3 1.2	1.3		2.1 2.5	2.3	
				10.3	Middle 5	5.2 20	20.2	7.9 7.9	7.9	26.3 22.2	24.3	99.7 102.6	101.2	7.7 8.2	8.0	7.0	1.1 1.1	1.1	1.2	1.4 2.8	2.1	2.5
					Bottom 9	9.3 20		7.8 7.9	7.9	26.3 26.5	26.4	101.6 100.7	101.2	7.9 7.8	7.8	7.8	1.0 1.2	1.1		2.6 3.3	3.0	
30-Mar-15	Sunny	Moderate	17:01		Surface 1	1.0 20	20.3	8.0 8.0	8.0	30.9 30.8	30.8	100.9 102.8	101.9	7.6 7.7	7.7	7.7	2.4 2.5	2.5		3.0 3.7	3.4	
				10.3	Middle 5	5.2 20	0 20.0	8.0 8.0	8.0	31.2 31.3	31.2	98.9 100.7	99.8	7.5 7.6	7.6	1.1	2.6 2.5	2.6	2.6	2.3 2.2	2.3	2.8
					Bottom 9	9.3	20.0	8.0 8.0	8.0	31.4 31.2	31.3	101.7 98.0	99.9	7.7 7.4	7.6	7.6	2.6 2.6	2.6		2.8 2.5	2.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	10:29		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	31.6 31.7	31.7	93.6 93.1	93.4	7.4 7.4	7.4		1.8 1.8	1.8		3.5 4.5	4.0	
				36.6	Middle	18.3	17.5 17.5	17.5	7.9 7.9	7.9	31.9 31.8	31.8	92.4 92.9	92.7	7.3 7.3	7.3	7.4	1.8	1.8	1.8	4.3 4.2	4.3	4.0
					Bottom	35.6	17.4 17.4	17.4	7.9 7.9	7.9	32.3 32.6	32.4	92.3 92.5	92.4	7.3 7.3	7.3	7.3	1.8	1.8		3.7 3.6	3.7	1
4-Mar-15	Fine	Moderate	11:15		Surface	1.0	17.5	17.5	7.9	7.9	32.4	32.2	91.9	91.9	7.2	7.2		0.8	0.8		3.2	3.2	
				35.3	Middle	17.7	17.6 17.5	17.5	7.9 7.9	7.9	32.0 32.5	32.4	91.9 91.7	91.6	7.2 7.2	7.2	7.2	0.8	0.7	0.8	3.1 4.8	5.1	4.4
					Bottom	34.3	17.5 17.5	17.5	7.9 8.0	8.0	32.4 32.6	32.5	91.4 92.2	91.8	7.2 7.3	7.2	7.2	0.7	0.8		5.3 4.4	4.9	1
6-Mar-15	Fine	Moderate	14:21		Surface	1.0	17.5 17.5	17.5	7.9 8.0	8.0	32.4 32.3	32.3	91.4 91.0	91.3	7.2 7.2	7.2	7.2	0.7 1.1	1.2		5.4 3.3	3.9	
							17.5 17.5		8.0 8.0		32.3 32.6		91.5 90.4		7.2 7.1		7.2	1.2			4.4		
				34.8	Middle	17.4	17.4 17.4	17.5	8.0 7.9	8.0	32.7 32.7	32.7	90.0	90.2	7.1 7.2	7.1		1.8 2.7	1.8	2.0	3.7 4.1	3.9	4.0
9-Mar-15	Sunny	Moderate	16:01		Bottom	33.8	17.4 18.7	17.4	8.0 7.8	8.0	32.7 31.0	32.7	90.3	90.7	7.1 7.0	7.1	7.1	3.0	2.9		4.5 6.3	4.3	1
9-Wai-13	Suring	Moderate	10.01		Surface	1.0	18.6	18.6	7.8	7.8	31.1	31.0	90.1	90.3	7.0	7.0	7.0	2.0	2.0		6.8	6.6	
				34.9	Middle	17.5	17.8 17.8	17.8	7.8 7.8	7.8	32.3 32.3	32.3	87.6 87.4	87.5	6.9 6.9	6.9		2.0	1.9	2.0	5.9 6.0	6.0	5.9
					Bottom	33.9	17.8 17.8	17.8	7.8 7.8	7.8	32.3 32.3	32.3	87.8 88.3	88.1	6.9 6.9	6.9	6.9	2.2 2.1	2.2		4.9 5.3	5.1	
11-Mar-15	Cloudy	Moderate	17:12		Surface	1.0	17.8 17.8	17.8	7.9 7.9	7.9	31.7 31.8	31.8	89.3 89.9	89.6	7.0 7.1	7.0	7.0	1.2 1.2	1.2		2.4 2.5	2.5	
				35.0	Middle	17.5	17.8 17.8	17.8	7.9 7.9	7.9	32.7 32.6	32.6	88.3 88.5	88.4	6.9 6.9	6.9		1.4 1.5	1.5	1.6	3.4 2.1	2.8	2.9
					Bottom	34.0	17.7 17.8	17.8	7.9 7.9	7.9	32.7 32.7	32.7	88.5 88.7	88.6	6.9 6.9	6.9	6.9	1.8 2.1	2.0		3.3 3.7	3.5	Ì
13-Mar-15	Fine	Moderate	19:08		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	32.2 32.1	32.2	88.5 87.9	88.2	7.0 6.9	6.9		1.5 1.3	1.4		2.8 2.7	2.8	
				34.8	Middle	17.4	17.6 17.6	17.6	7.9 7.9	7.9	32.6 32.6	32.6	86.4 86.9	86.7	6.8 6.8	6.8	6.9	1.1	1.1	1.3	4.6 5.3	5.0	3.9
					Bottom	33.8	17.6 17.6	17.6	7.9 7.9	7.9	32.7 32.7	32.7	87.8 87.2	87.5	6.9 6.8	6.9	6.9	1.2	1.3		3.3 4.5	3.9	Ì
16-Mar-15	Cloudy	Moderate	09:12		Surface	1.0	18.3	18.3	7.9 7.9	7.9	32.2 32.1	32.2	89.7 89.2	89.5	7.0	7.0		0.8	0.8		3.4	3.2	
				35.2	Middle	17.6	18.2	17.7	7.9	7.9	33.1	33.0	86.9	87.0	6.9	6.8	6.9	0.8	0.6	0.7	2.6	3.0	3.3
					Bottom	34.2	17.7	17.7	7.9	7.9	33.0 33.1	33.0	87.1 87.2	87.8	6.8	6.9	6.9	0.6	0.6		3.4 4.4	3.6	Ì
18-Mar-15	Sunny	Moderate	10:37		Surface	1.0	17.7 19.2	19.1	7.9 7.9	7.9	32.8 30.6	30.6	92.6	92.2	7.1	7.1		0.5 1.1	1.1		2.7	2.5	
				36.1	Middle	18.1	19.0 19.0	18.9	7.9 7.9	7.9	30.7 30.9	30.9	91.7 92.1	91.7	7.1 7.1	7.1	7.1	1.1	1.1	1.2	2.4	2.3	2.3
				30.1			18.9 18.9		7.9 7.9		30.9 31.0		91.2 91.7		7.1 7.1		7.4	1.1 1.2		1.2	2.3		۷.۵
20-Mar-15	Sunny	Moderate	13:56		Bottom	35.1	18.8 20.7	18.9	7.9 7.8	7.9	30.9 27.4	31.0	91.1 99.9	91.4	7.1 7.7	7.1	7.1	1.3 2.4	1.3		2.2 4.6	2.2	
20 19101 10	Curry	Moderate	10.00		Surface	1.0	21.1 19.9	20.9	7.8 7.8	7.8	27.4	27.4	98.3 94.9	99.1	7.7	7.7	7.6	2.5	2.5		6.5 5.1	5.6	İ
				34.0	Middle	17.0	19.8	19.9	7.7	7.8	29.4	29.3	98.0	96.5	7.5	7.4		2.5	2.5	2.5	5.3	5.2	5.3
					Bottom	33.0	19.8 19.9	19.8	7.7 7.8	7.7	29.6 29.6	29.6	97.1 94.1	95.6	7.4 7.2	7.3	7.3	2.5 2.6	2.6		6.1 4.2	5.2	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Temper	ature (°C)	pl	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	16:03		Surface 1.0	21.2 21.1	21.1	7.8 7.8	7.8	29.2 29.3	29.3	101.1 95.5	98.3	7.6 7.2	7.4	7.3	2.0 2.1	2.1		4.0 4.5	4.3	
				33.7	Middle 16.9	20.0	20.0	7.8 7.8	7.8	31.1 31.1	31.1	95.4 95.2	95.3	7.2 7.2	7.2	7.3	2.3 2.2	2.3	2.3	6.1 3.8	5.0	4.9
					Bottom 32.7	20.0 20.0	20.0	7.8 7.8	7.8	31.3 31.3	31.3	95.7 95.8	95.8	7.2 7.2	7.2	7.2	2.3 2.4	2.4		5.0 5.9	5.5	
25-Mar-15	Cloudy	Moderate	17:41		Surface 1.0	20.2 20.2	20.2	7.5 7.6	7.6	30.1 29.9	30.0	96.2 96.4	96.3	7.3 7.3	7.3	7.3	2.1 2.1	2.1		5.6 6.8	6.2	
				34.0	Middle 17.0	20.0	20.0	7.6 7.6	7.6	28.2 31.0	29.6	96.0 96.1	96.1	7.4 7.3	7.3	7.5	2.4 2.2	2.3	2.2	5.7 6.5	6.1	6.4
					Bottom 33.0	19.9 20.0	20.0	7.6 7.6	7.6	28.3 31.4	29.8	95.7 96.0	95.9	7.4 7.3	7.3	7.3	2.4 2.2	2.3		6.9 6.9	6.9	
27-Mar-15	Sunny	Moderate	19:32		Surface 1.0	20.3 20.4	20.4	8.1 8.2	8.1	31.1 31.0	31.1	90.0 88.5	89.3	6.8 6.7	6.7	6.7	1.5 1.6	1.6		0.8 1.1	1.0	
				34.7	Middle 17.4	20.1	20.1	8.0 8.2	8.1	33.1 33.1	33.1	89.3 88.7	89.0	6.7 6.6	6.7	0.7	1.7 2.0	1.9	2.1	3.3 1.7	2.5	1.9
					Bottom 33.7	, 20.1 20.1	20.1	8.2 8.2	8.2	33.3 30.2	31.7	88.6 89.6	89.1	6.6 6.8	6.7	6.7	2.8 2.6	2.7		2.7 1.8	2.3	
30-Mar-15	Sunny	Moderate	09:08		Surface 1.0	19.5 19.7	19.6	7.9 7.9	7.9	32.7 32.1	32.4	98.0 99.1	98.6	7.4 7.5	7.5	7.5	2.6 2.6	2.6		2.8 2.6	2.7	
				35.2	Middle 17.6	19.7 19.4	19.6	7.9 7.9	7.9	32.3 32.8	32.6	97.1 97.6	97.4	7.4 7.4	7.4	1.5	2.8 2.8	2.8	2.8	2.2 2.8	2.5	2.7
					Bottom 34.2	19.4 19.5	19.5	7.9 7.9	7.9	32.9 32.8	32.9	96.4 96.4	96.4	7.3 7.3	7.3	7.3	2.8 2.9	2.9		2.4 3.2	2.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	17:40		Surface	1.0	18.7 18.7	18.7	7.9 7.9	7.9	31.1 31.1	31.1	95.4 95.0	95.2	7.4 7.4	7.4		2.2 2.1	2.2		4.0 6.4	5.2	
				36.5	Middle	18.3	18.7	18.7	7.9	7.9	31.1	31.1	95.3	95.0	7.4	7.4	7.4	2.2	2.2	2.2	2.6	3.8	5.0
					Bottom	35.5	18.7 18.7	18.7	7.9 7.9	7.9	31.1 31.1	31.1	94.7 94.6	94.9	7.3 7.3	7.4	7.4	2.2	2.3		6.4	5.9	
4.14 45	F'	Madagas	10.11		Bottom	00.0	18.7	10.1	7.9	1.0	31.1	0	95.2	0 1.0	7.4			2.3	2.0		5.3	0.0	
4-Mar-15	Fine	Moderate	19:11		Surface	1.0	17.7 17.7	17.7	8.0 8.0	8.0	31.4 31.2	31.3	94.1 94.6	94.4	7.4 7.5	7.5	7.4	1.0 1.1	1.1		3.1 2.5	2.8	<u> </u>
				35.5	Middle	17.8	17.6 17.5	17.6	8.0 8.0	8.0	32.0 32.3	32.1	92.7 92.7	92.7	7.3 7.3	7.3		0.7 0.6	0.7	0.8	2.7 3.6	3.2	3.1
					Bottom	34.5	17.6 17.6	17.6	8.0 8.0	8.0	32.3 32.2	32.2	93.4 93.5	93.5	7.4 7.4	7.4	7.4	0.7 0.7	0.7		4.0 2.4	3.2	
6-Mar-15	Fine	Moderate	06:23		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.7	31.7	92.4 92.3	92.4	7.3 7.3	7.3		1.6 1.4	1.5		5.3 5.3	5.3	
				34.7	Middle	17.4	17.6 17.5	17.6	7.9 7.9	7.9	31.9 32.1	32.0	92.2 91.3	91.8	7.3 7.2	7.2	7.3	1.2	1.2	1.3	4.3 3.8	4.1	4.4
					Bottom	33.7	17.6	17.6	7.9	7.9	31.5	31.8	94.2	92.8	7.5	7.3	7.3	1.2	1.3		3.7	3.8	
9-Mar-15	Sunny	Moderate	07:50		Surface	1.0	17.5 17.9	17.9	7.9 7.9	7.9	32.1 31.1	31.1	91.3 90.3	90.3	7.2 7.1	7.1		1.3 2.0	2.1		3.9 7.3	6.7	
				34.6	Middle	17.3	17.9 17.8	17.8	7.9 7.9	7.9	31.1 31.4	31.4	90.3 89.8	89.6	7.1 7.1	7.1	7.1	2.1 1.5	1.6	1.8	6.1 3.6	3.4	4.7
				04.0		33.6	17.8 17.8	17.8	7.9 7.9	7.9	31.4 31.4	31.4	89.3 90.0	89.7	7.0 7.1	7.1	7.1	1.7 1.4	1.6	1.0	3.2 4.2	4.1	
11-Mar-15	Cloudy	Moderate	08:48		Bottom		17.8 18.0		7.9 7.8		31.5 31.2		89.3 91.8		7.0 7.2		7.1	1.7			4.0 2.9		
	Cicacy	modorato	00.10		Surface	1.0	18.0	18.0	7.8	7.8	31.3 31.4	31.2	91.5 91.5	91.7	7.2	7.2	7.2	1.0	1.0		3.6	3.3	
				34.8	Middle	17.4	17.9	17.9	7.8	7.8	31.4	31.4	91.3	91.4	7.2	7.2		1.2	1.2	1.2	3.1	3.1	3.2
					Bottom	33.8	17.9 18.0	17.9	7.8 7.8	7.8	31.6 31.4	31.5	94.6 91.2	92.9	7.4 7.2	7.3	7.3	1.4 1.5	1.5		2.8 3.6	3.2	
13-Mar-15	Fine	Moderate	10:05		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.8	31.8	90.6 91.1	90.9	7.2 7.2	7.2	7.2	1.6 1.5	1.6		7.5 6.7	7.1	
				34.6	Middle	17.3	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.8	31.8	90.4 91.1	90.8	7.1 7.2	7.2	1.2	1.4 1.5	1.5	1.5	5.6 4.8	5.2	5.3
					Bottom	33.6	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.7	31.8	90.6 91.9	91.3	7.2 7.3	7.2	7.2	1.5 1.4	1.5		3.3 4.0	3.7	
16-Mar-15	Sunny	Moderate	16:01		Surface	1.0	18.7 18.8	18.7	7.9 7.9	7.9	31.8 31.8	31.8	95.0 95.0	95.0	7.3 7.3	7.3		1.3	1.4		2.9 2.8	2.9	
				35.5	Middle	17.8	18.6	18.6	7.9	7.9	32.1	32.1	94.7	94.6	7.3	7.3	7.3	1.2	1.2	1.3	2.5	2.9	3.1
					Bottom	34.5	18.6 18.5	18.6	7.9 7.9	7.9	32.1 32.2	32.1	94.5 94.4	94.5	7.3	7.3	7.3	1.2	1.2		3.3	3.5	
18-Mar-15	Sunny	Moderate	18:00		Surface	1.0	18.6 19.5	19.4	7.9 7.9	7.9	32.1 29.6	29.7	94.6 94.5	94.4	7.3 7.3	7.3		1.2	1.2		3.5 1.8	1.9	
				36.1			19.3 18.9	19.0	7.9 7.9	7.9	29.9 30.9		94.3 92.8		7.3 7.2		7.3	1.1		4.0	2.0 1.6		0.7
				30.1	Middle	18.1	19.0 18.9		7.9 7.9	-	30.5 31.1	30.7	93.7 92.7	93.3	7.2 7.2	7.2		1.2 1.3	1.2	1.2	2.7 3.6	2.2	2.7
20-Mar-15	Sunny	Moderate	06:03	<u> </u>	Bottom	35.1	18.9 20.8	18.9	7.9 7.6	7.9	30.8 24.1	31.0	93.6 103.2	93.2	7.2	7.2	7.2	1.3	1.3		4.3	4.0	<u> </u>
20-iviai - 13	Suring	Woderate	00.03		Surface	1.0	20.8	20.8	7.5	7.6	24.2	24.1	105.6	104.4	8.2	8.1	7.9	3.4	3.4		7.2	7.0	İ
				35.3	Middle	17.7	20.2 19.7	20.0	7.5 7.6	7.5	28.5 29.2	28.8	102.3 98.3	100.3	7.8 7.6	7.7		3.3 3.3	3.3	3.4	5.9 6.9	6.4	7.1
					Bottom	34.3	19.8 19.7	19.7	7.5 7.6	7.5	29.2 29.5	29.4	98.6 94.0	96.3	7.6 7.2	7.4	7.4	3.3 3.5	3.4		7.0 8.5	7.8	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	ature (°C)	pl	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	07:45		Surface 1.0	20.5 20.5	20.5	7.9 7.7	7.8	21.8 22.6	22.2	103.3 101.4	102.4	8.1 8.0	8.1	8.0	3.5 3.3	3.4		7.2 6.4	6.8	
				34.4	Middle 17.	20.5	20.5	7.9 7.6	7.8	23.7 23.7	23.7	99.3 101.1	100.2	7.8 8.0	7.9	8.0	3.4 3.5	3.5	3.4	6.8 6.2	6.5	6.6
					Bottom 33.	20.4 20.5	20.5	7.6 7.8	7.7	24.7 24.2	24.5	94.1 93.3	93.7	7.5 7.3	7.4	7.4	3.3 3.4	3.4		5.5 7.2	6.4	
25-Mar-15	Cloudy	Moderate	09:14		Surface 1.0	20.6 20.5	20.5	7.3 7.2	7.3	24.6 26.7	25.6	96.4 95.5	96.0	7.5 7.4	7.4	7.4	2.2 2.2	2.2		6.6 6.6	6.6	
				34.4	Middle 17.	20.5 20.5	20.5	7.2 7.3	7.3	26.9 25.2	26.1	93.8 95.5	94.7	7.2 7.3	7.3	7.4	2.2 2.2	2.2	2.2	5.9 7.1	6.5	6.7
					Bottom 33.	20.5 20.5	20.5	7.3 7.2	7.2	27.6 26.5	27.1	95.7 93.4	94.6	7.4 7.2	7.3	7.3	2.1 2.0	2.1		6.3 7.8	7.1	
27-Mar-15	Cloudy	Moderate	10:05		Surface 1.0	20.3 20.3	20.3	7.8 7.8	7.8	23.9 25.1	24.5	97.8 104.7	101.3	7.7 8.2	7.9	7.9	1.5 1.4	1.5		2.1 2.6	2.4	
				34.7	Middle 17.	20.1 20.1	20.1	7.8 7.8	7.8	23.4 25.6	24.5	100.8 100.9	100.9	8.0 7.9	7.9	7.5	0.8 0.8	0.8	1.0	2.2 2.8	2.5	2.3
					Bottom 33.	20.1 20.0	20.1	7.8 7.8	7.8	25.5 20.6	23.1	100.4 96.2	98.3	7.9 7.7	7.8	7.8	0.5 0.6	0.6		1.3 2.5	1.9	
30-Mar-15	Sunny	Moderate	17:19		Surface 1.0	20.6 20.5	20.5	8.0 8.0	8.0	31.2 31.3	31.3	102.5 100.6	101.6	7.7 7.5	7.6	7.6	2.5 2.5	2.5		2.7 2.8	2.8	
				35.4	Middle 17.	20.2	20.2	8.0 8.0	8.0	31.5 31.5	31.5	101.1 98.8	100.0	7.6 7.4	7.5	7.0	2.6 2.7	2.7	2.7	2.6 2.8	2.7	2.7
					Bottom 34.	20.2	20.3	8.0 8.0	8.0	31.6 31.4	31.5	97.0 100.7	98.9	7.3 7.6	7.4	7.4	2.8 2.8	2.8		2.9 2.4	2.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	12:43		Surface	1.0	19.4 19.4	19.4	7.4 7.4	7.4	28.1 27.9	28.0	96.8 96.4	96.6	7.6 7.5	7.5		5.5 5.5	5.5		10.7 9.8	10.3	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	5.5	-	-	9.4
					Bottom	2.2	19.4 19.4	19.4	7.4 7.4	7.4	28.6 29.0	28.8	98.5 97.1	97.8	7.7 7.5	7.6	7.6	5.5 5.4	5.5		8.9 7.9	8.4	
4-Mar-15	Fine	Moderate	13:13		Surface	1.0	19.2 19.2	19.2	7.3 7.4	7.4	29.1 29.1	29.1	92.9 93.4	93.2	7.3 7.3	7.3		20.4 20.5	20.5		13.6 13.6	13.6	
				3.1	Middle	-	- 19.2	-	-	-	-	-	93.4	-	-	-	7.3	- 20.5	-	21.0	-	-	13.8
					Bottom	2.1	19.2	19.2	7.3	7.4	29.0	29.1	93.4	93.7	7.3	7.3	7.3	21.4	21.5		14.3	14.0	
6-Mar-15	Fine	Moderate	12:51		Surface	1.0	19.2 19.0	19.0	7.4 7.6	7.6	29.1 28.9	28.9	94.0 93.2	93.2	7.3 7.3	7.3		21.5 13.9	14.0		13.6 8.1	7.9	
				3.1	Middle	_	19.0	_	7.6	_	28.9	_	93.2	_	7.3	_	7.3	14.0		14.4	7.7		8.0
				0	Bottom	2.1	19.0	19.0	7.6	7.6	28.9	28.9	92.9	93.2	7.3	7.3	7.3	14.9	14.7		7.8	8.0	0.0
9-Mar-15	Sunny	Moderate	13:45		Surface	1.0	19.0 19.8	19.8	7.6 7.5	7.4	28.9 30.7	30.7	93.4 92.8	92.8	7.3 7.1	7.1		14.5 15.3	15.4		7.3	7.8	
				3.2	Middle	-	19.7	-	7.4		30.7	-	92.8	-	7.1 -		7.1	15.4		15.5	8.2	-	8.5
				0.2	Bottom	2.2	19.5	19.5	7.4	7.4	30.8	30.7	94.3	93.5	7.2	7.2	7.2	15.5	15.6	10.0	8.9	9.2	0.0
11-Mar-15	Cloudy	Moderate	15:09		Surface	1.0	19.6 18.8	18.8	7.4 7.5	7.5	30.7 31.1	31.1	92.7 93.6	94.4	7.1 7.2	7.3		15.6 13.8	13.7		9.4 7.2	7.9	
	•			3.2		1.0	18.8	10.0	7.5 -	7.5	31.1	31.1	95.1	94.4	7.4	1.3	7.3	13.5	13.7	13.7	8.5		7.0
				3.2	Middle	-	- 18.8	-	7.5	-	31.1	-	96.9	-	7.5	-		13.5	-	13.7	6.0	-	7.3
13-Mar-15	Fine	Moderate	17:04	<u> </u>	Bottom	2.2	18.8 18.4	18.8	7.5 7.5	7.5	31.1 31.7	31.1	94.6 93.6	95.8	7.3 7.3	7.4	7.4	13.9 15.2	13.7		7.2 11.2	6.6	
10 11101		moderate			Surface	1.0	18.4	18.4	7.5	7.5	31.7	31.7	93.3	93.5	7.3	7.3	7.3	15.3	15.3		9.9	10.6	
				3.2	Middle	-	- 18.4	-	- 7.5	-	31.7	-	93.4	-	7.3	-		- 15.6	-	15.5	7.8	-	9.4
16-Mar-15	Classalis	Madagata	11:25		Bottom	2.2	18.4	18.4	7.5	7.5	31.7 30.4	31.7	94.9	94.2	7.4	7.3	7.3	15.5	15.6		8.6 7.5	8.2	
16-Mar-15	Cloudy	Moderate	11:25		Surface	1.0	20.2	20.2	7.5 7.5	7.5	30.3	30.3	94.6	94.4	7.1 7.2	7.2	7.2	14.5	14.5		8.7	8.1	
				3.0	Middle	-		-		-	-	-	-	-	-	-		-	-	14.6	-	-	9.0
					Bottom	2.0	20.1 20.4	20.3	7.4 7.5	7.5	30.4 30.2	30.3	94.4 95.7	95.1	7.2 7.2	7.2	7.2	14.5 14.8	14.7		9.5 10.2	9.9	
18-Mar-15	Sunny	Moderate	12:33		Surface	1.0	21.3 21.3	21.3	7.4 7.4	7.4	29.8 29.8	29.8	97.6 98.0	97.8	7.3 7.3	7.3	7.3	6.8 6.7	6.8		6.2 5.1	5.7	
				3.1	Middle	-	-	-		-		-		-	-	-		-	-	6.7	-	-	7.0
					Bottom	2.1	21.3 21.3	21.3	7.4 7.4	7.4	29.8 29.7	29.8	97.9 97.0	97.5	7.3 7.2	7.3	7.3	6.5 6.6	6.6		9.0 7.3	8.2	
20-Mar-15	Sunny	Moderate	12:01		Surface	1.0	20.9 20.8	20.8	7.9 7.9	7.9	30.2 30.2	30.2	92.1 92.4	92.3	6.9 6.9	6.9	6.9	5.9 6.6	6.3		9.6 9.4	9.5	
				3.2	Middle	-	-	•		-		•		-			0.0	-	-	6.7	-	-	9.4
					Bottom	2.2	20.6 20.7	20.6	7.9 7.9	7.9	30.3 30.2	30.3	92.6 92.0	92.3	7.0 6.9	6.9	6.9	7.0 7.2	7.1		9.7 8.7	9.2	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	13:52		Surface	1.0	20.0 20.0	20.0	7.9 7.9	7.9	29.9 30.0	29.9	91.6 93.3	92.5	7.0 7.1	7.0	7.0	15.0 14.8	14.9		19.9 18.7	19.3	
				3.2	Middle			•		-	-	-		-	1 1	-	7.0	-	-	15.2	-	-	19.7
					Bottom	2.2	20.0 20.0	20.0	7.9 7.9	7.9	30.0 30.0	30.0	92.4 95.1	93.8	7.1 7.3	7.2	7.2	15.5 15.3	15.4		19.5 20.7	20.1	
25-Mar-15	Cloudy	Moderate	15:21		Surface	1.0	19.5 19.5	19.5	7.9 7.9	7.9	30.5 30.4	30.5	96.5 94.2	95.4	7.4 7.2	7.3	7.3	4.0 4.2	4.1		6.4 6.9	6.7	
				3.2	Middle	-		-		-	-	-		-		-	7.0	-	-	4.4	-	-	6.7
					Bottom	2.2	19.5 19.5	19.5	7.9 7.9	7.9	30.5 30.5	30.5	97.7 95.5	96.6	7.5 7.3	7.4	7.4	4.5 4.7	4.6		6.3 7.1	6.7	
27-Mar-15	Sunny	Moderate	17:37		Surface	1.0	19.5 19.4	19.5	7.7 7.8	7.8	30.4 30.5	30.4	90.8 90.3	90.6	7.0 6.9	7.0	7.0	3.2 3.3	3.3		3.7 3.3	3.5	
				3.1	Middle	-		-		-	-	-		-	1 1	-	7.0	-	-	3.4	-	-	3.4
					Bottom	2.1	19.4 19.4	19.4	7.7 7.8	7.7	30.6 30.6	30.6	92.0 90.4	91.2	7.1 6.9	7.0	7.0	3.4 3.4	3.4		2.9 3.6	3.3	
30-Mar-15	Sunny	Moderate	11:31		Surface	1.0	21.7 21.8	21.7	7.2 7.2	7.2	29.4 29.4	29.4	96.7 97.6	97.2	7.2 7.2	7.2	7.2	6.2 6.4	6.3		5.4 4.4	4.9	
				3.1	Middle	-		-	-	-	-	-		-		-	1.2	-	-	6.3	-	-	4.5
					Bottom	2.1	21.5 21.6	21.6	7.2 7.2	7.2	29.4 29.4	29.4	96.6 96.7	96.7	7.2 7.2	7.2	7.2	6.1 6.3	6.2		4.5 3.4	4.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	16:00		Surface	1.0	19.6 19.6	19.6	7.5 7.5	7.5	28.5 28.5	28.5	104.6 104.3	104.5	8.1 8.1	8.1	0.4	11.2 11.4	11.3		6.8 6.6	6.7	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	8.1	-	-	11.3	-	-	6.6
					Bottom	2.2	19.6 19.5	19.6	7.5 7.5	7.5	28.5 28.5	28.5	104.8 103.7	104.3	8.1 8.0	8.1	8.1	11.3	11.2		6.2 6.5	6.4	
4-Mar-15	Fine	Moderate	17:56		Confess	4.0	19.5	40.0	7.5	7.4	29.4	29.4	93.9	94.2	7.3	7.4		11.0 15.5	15.5		8.6	8.7	
					Surface	1.0	19.0	19.0	7.4		29.4		94.5		7.4	7.4	7.4	15.4	15.5		8.8		
				3.2	Middle	-	- 19.0	-	7.4	-	29.4	-	94.5	-	7.4	-		- 15.6	-	15.6	9.6	-	9.1
					Bottom	2.2	19.0	19.0	7.4	7.4	29.4	29.4	93.8	94.2	7.4	7.4	7.4	15.6	15.6		9.1	9.4	
6-Mar-15	Fine	Moderate	08:07		Surface	1.0	18.8 18.8	18.8	7.6 7.6	7.6	28.9 28.9	28.9	93.7 94.1	93.9	7.4 7.4	7.4	7.4	16.5 16.6	16.6		11.4 11.9	11.7	
				3.3	Middle	-	-	-	-	-	-	-		-		-		-	-	16.7	-	-	11.7
					Bottom	2.3	18.8 18.9	18.9	7.6 7.6	7.6	28.9 28.9	28.9	93.9 93.5	93.7	7.4 7.3	7.4	7.4	16.7 16.7	16.7		11.1 12.1	11.6	
9-Mar-15	Sunny	Moderate	09:49		Surface	1.0	19.1 19.1	19.1	7.5 7.5	7.5	30.3 30.3	30.3	92.2 92.3	92.3	7.1 7.1	7.1		12.2 11.8	12.0		9.1 9.2	9.2	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	12.0	-	-	9.2
					Bottom	2.3	19.1 19.1	19.1	7.5 7.5	7.5	30.3	30.3	92.4 92.2	92.3	7.2 7.1	7.1	7.1	12.0 11.7	11.9		10.3	9.2	
11-Mar-15	Cloudy	Moderate	10:24		Surface	1.0	18.8	18.8	7.4	7.4	30.3 30.1	30.1	96.2	95.5	7.5	7.4		22.8	22.8		8.0 13.7	14.2	
				3.2	Middle		18.8	_	7.4 -	_	30.1	_	94.8	_	7.4	_	7.4	22.7	_	22.6	14.7	_	14.2
				0.2	Bottom	2.2	18.8	18.8	7.4	7.4	30.1	30.1	97.6	96.5	7.6	7.5	7.5	22.4	22.4	22.0	14.5	14.1	
13-Mar-15	Fine	Moderate	11:31				18.8 18.3		7.4 7.5		30.1 30.4		95.4 91.6		7.4 7.2		7.5	22.3 16.7			13.7 16.4		
					Surface	1.0	18.3	18.3	7.5	7.5	30.4	30.4	93.2	92.4	7.3	7.3	7.3	16.7	16.7		14.4	15.4	
				3.0	Middle	-	- 18.3	-	7.5	-	30.4	-	92.2	-	7.2	-		- 17.3	-	16.9	13.2	-	14.4
					Bottom	2.0	18.3	18.3	7.5	7.5	30.4	30.4	94.3	93.3	7.4	7.3	7.3	16.6	17.0		13.4	13.3	
16-Mar-15	Sunny	Moderate	14:01		Surface	1.0	20.5 20.5	20.5	7.4 7.4	7.4	30.4 30.4	30.4	94.0 94.1	94.1	7.1 7.1	7.1	7.1	16.5 16.9	16.7		9.7 8.7	9.2	
				3.2	Middle	-	-	-	-	-	-	-		-		-		-	-	16.6	-	-	9.4
					Bottom	2.2	20.1 19.9	20.0	7.4 7.4	7.4	30.4 30.5	30.5	93.0 92.5	92.8	7.1 7.0	7.0	7.0	16.4 16.6	16.5		9.9 9.1	9.5	
18-Mar-15	Sunny	Moderate	16:07		Surface	1.0	21.3 21.3	21.3	7.4 7.4	7.4	30.1 30.1	30.1	98.4 98.1	98.3	7.3 7.3	7.3		11.2 11.2	11.2		13.5 15.1	14.3	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	11.2	-	-	14.3
					Bottom	2.1	21.3	21.3	7.4	7.4	30.1	30.1	96.8	97.4	7.2	7.2	7.2	11.1	11.2		14.1	14.2	
20-Mar-15	Sunny	Moderate	07:49		Surface	1.0	21.3 20.4	20.4	7.4 7.9	7.9	30.1 30.3	30.3	98.0 90.7	90.6	7.3 6.8	6.8		11.3 4.3	4.3		14.2 5.2	5.7	
				3.2	Middle		20.5		7.9 -	-	30.3	-	90.4	_	6.8		6.8	4.2		4.4	6.2	-	5.5
				3.2		-	20.4		7.9		30.3		90.5		6.8	-		4.6	4.5	4.4	4.6		5.5
					Bottom	2.2	20.4	20.4	7.9	7.9	30.3	30.3	91.0	90.8	6.9	6.9	6.9	4.3	4.5		6.0	5.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	09:29		Surface	1.0	20.0 20.0	20.0	7.9 7.9	7.9	30.1 30.1	30.1	92.7 94.4	93.6	7.1 7.2	7.1	7.1	10.3 9.6	10.0		12.1 12.4	12.3	
				3.1	Middle	-		-	-	-	-	-	-	-		-	7.1	-	-	10.5		-	12.0
					Bottom	2.1	20.0 20.0	20.0	7.9 7.9	7.9	30.1 30.1	30.1	96.5 93.1	94.8	7.4 7.1	7.2	7.2	10.7 11.0	10.9		11.4 11.8	11.6	
25-Mar-15	Cloudy	Moderate	10:41		Surface	1.0	19.6 19.6	19.6	7.9 7.9	7.9	30.6 30.6	30.6	94.3 93.1	93.7	7.2 7.1	7.2	7.2	5.8 6.3	6.1		9.9 8.3	9.1	
				3.2	Middle	-		-	-	-	-	-	-	-	1 1	-	7.2	-	-	6.0		-	9.5
					Bottom	2.2	19.6 19.6	19.6	7.9 7.9	7.9	30.6 30.6	30.6	93.7 95.2	94.5	7.2 7.3	7.2	7.2	5.8 5.7	5.8		9.3 10.2	9.8	
27-Mar-15	Cloudy	Moderate	11:59		Surface	1.0	19.3 19.3	19.3	7.8 7.8	7.8	30.3 30.3	30.3	90.7 91.6	91.2	7.0 7.1	7.0	7.0	1.9 1.8	1.9		1.6 1.1	1.4	
				3.5	Middle	-		-	-	-	-	-	-	-	1 1	-	7.0	-	-	1.9		-	2.0
					Bottom	2.5	19.3 19.3	19.3	7.8 7.7	7.8	30.3 30.4	30.4	91.0 92.8	91.9	7.0 7.2	7.1	7.1	1.8 1.8	1.8		2.5 2.4	2.5	
30-Mar-15	Sunny	Moderate	14:47		Surface	1.0	22.5 22.4	22.4	7.4 7.3	7.4	31.5 31.7	31.6	104.1 102.5	103.3	7.5 7.4	7.5	7.5	5.2 5.3	5.3		2.9 2.6	2.8	
				3.2	Middle	-		-	-	-	-	-	-	-	1 1	-	7.5	-	-	5.4		-	3.2
					Bottom	2.2	21.8 22.3	22.1	7.3 7.4	7.3	31.8 31.5	31.7	100.4 102.7	101.6	7.3 7.4	7.4	7.4	5.2 5.5	5.4		2.7 4.3	3.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	12:29		Surface	1.0	19.3 19.3	19.3	7.5 7.5	7.5	28.1 28.1	28.1	100.2 99.8	100.0	7.8 7.8	7.8	7.8	2.8 2.7	2.8		6.0 5.2	5.6	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	2.8	-	-	5.0
					Bottom	2.7	19.3 19.3	19.3	7.4 7.5	7.5	28.2 28.1	28.1	100.1 99.8	100.0	7.8 7.8	7.8	7.8	2.7 2.7	2.7		4.7 4.1	4.4	
4-Mar-15	Fine	Moderate	12:57		Surface	1.0	19.1 19.1	19.1	7.4 7.4	7.4	28.9 28.9	28.9	94.2 93.4	93.8	7.4 7.3	7.4		9.3 9.4	9.4		7.7	7.6	
				3.5	Middle	-	-	-	-	-	-	-	- 93.4	-	-	-	7.4	- 9.4	-	9.9	-	-	7.9
					Bottom	2.5	19.1 19.1	19.1	7.3 7.4	7.3	28.8	28.8	93.7	93.7	7.4 7.3	7.4	7.4	10.4	10.4		7.2 9.0	8.1	
6-Mar-15	Fine	Moderate	13:07		Surface	1.0	18.7	18.8	7.6	7.6	28.8	29.3	93.7 94.1	93.9	7.4	7.4		10.3	11.7		7.3	7.1	
				3.4	Middle	_	18.8	-	7.6	-	29.3	-	93.7	_	7.4	-	7.4	11.7	-	11.9	6.9	-	7.1
					Bottom	2.4	18.7	18.7	7.6	7.6	29.3	29.3	94.0	94.0	7.4	7.4	7.4	11.9	12.0		6.3	7.1	
9-Mar-15	Sunny	Moderate	13:59		Surface	1.0	18.7 20.1	20.1	7.6 7.5	7.5	29.3 30.7	30.7	93.9 94.6	94.3	7.4 7.2	7.1		12.0 13.2	13.3		7.8 5.7	5.6	
				3.6	Middle	_	20.1	_	7.5 -	_	30.7	_	94.0	_	7.1	_	7.1	13.3	-	13.4	5.5	_	5.5
					Bottom	2.6	19.7	19.7	7.4	7.5	30.6	30.6	94.6	94.1	7.2	7.2	7.2	13.4	13.4		5.7	5.3	
11-Mar-15	Cloudy	Moderate	15:25	<u> </u>	Surface	1.0	19.7 18.7	18.7	7.5 7.5	7.6	30.5 30.8	30.9	93.5 96.3	95.9	7.1 7.5	7.5		13.3 16.4	16.6		9.3	9.0	
				3.8	Middle	-	18.7		7.6		30.9		95.5 -		7.4	-	7.5	16.8	-	16.4	8.7		9.4
				0.0	Bottom	2.8	18.7	18.7	7.6	7.5	30.8	30.8	95.9	96.7	7.5	7.5	7.5	16.1	16.2		9.8	9.8	
13-Mar-15	Fine	Moderate	17:17				18.7 18.4		7.5 7.4		30.8 31.3		97.4 94.0		7.6 7.3		7.0	16.3 16.8		<u> </u>	9.7 11.4		<u> </u>
13-Wai-13	Tille	Woderate	17.17		Surface	1.0	18.5	18.5	7.4	7.4	31.3	31.3	93.3	93.7	7.3	7.3	7.3	16.9	16.9		9.5	10.5	
				3.7	Middle	-	18.5	-	-	-	31.3	-	94.8	-	-	-		16.6	-	16.8	9.2	-	10.0
					Bottom	2.7	18.5	18.5	7.4 7.4	7.4	31.3	31.3	93.7	94.3	7.4 7.3	7.3	7.3	16.8	16.7		9.6	9.4	<u> </u>
16-Mar-15	Cloudy	Moderate	11:11		Surface	1.0	19.7 19.7	19.7	7.5 7.5	7.5	30.4 30.4	30.4	93.7 93.9	93.8	7.2 7.2	7.2	7.2	12.9 12.5	12.7		7.4 7.6	7.5	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	12.5	-	-	7.7
					Bottom	2.5	19.7 19.7	19.7	7.5 7.4	7.5	30.3 30.4	30.4	93.7 93.7	93.7	7.2 7.2	7.2	7.2	12.3 12.2	12.3		7.5 8.3	7.9	
18-Mar-15	Sunny	Moderate	12:20		Surface	1.0	20.7 20.7	20.7	7.4 7.4	7.4	29.2 29.1	29.2	96.5 96.6	96.6	7.3 7.3	7.3	7.3	4.4 4.4	4.4		6.3 6.4	6.4	
				3.7	Middle	-	-	-		-	-	-	-	-	-	-	7.0	-	-	4.5	-	-	5.9
					Bottom	2.7	20.7 20.7	20.7	7.4 7.4	7.4	29.2 29.2	29.2	96.8 96.4	96.6	7.3 7.3	7.3	7.3	4.5 4.5	4.5		5.8 5.0	5.4	
20-Mar-15	Sunny	Moderate	12:15		Surface	1.0	20.4 20.3	20.4	7.9 7.9	7.9	29.5 29.7	29.6	94.3 93.2	93.8	7.2 7.1	7.1	7.1	5.7 5.9	5.8		5.7 7.0	6.4	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	6.3	-	-	7.0
					Bottom	2.4	20.4 20.4	20.4	7.9 7.9	7.9	29.8 29.6	29.7	93.7 95.6	94.7	7.1 7.3	7.2	7.2	6.6 7.0	6.8		7.8 7.3	7.6	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling		Temperature (°C)		рН		Salinity (ppt)		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)		
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	14:07		Surface	1.0	20.0 20.0	20.0	7.9 7.9	7.9	29.8 29.7	29.8	91.3 91.5	91.4	7.0 7.0	7.0	7.0	5.3 4.8	5.1		5.5 5.1	5.3	
				3.3	Middle	-		-		-		-	-	-		-	7.0	-	-	5.5	-	-	5.7
					Bottom	2.3	20.1 19.9	20.0	7.9 7.9	7.9	29.8 29.8	29.8	91.7 91.3	91.5	7.0 7.0	7.0	7.0	6.0 5.6	5.8		6.0 6.0	6.0	
25-Mar-15	Cloudy	Moderate	15:37		Surface	1.0	19.5 19.5	19.5	7.9 7.9	7.9	30.2 30.2	30.2	91.7 92.0	91.9	7.0 7.1	7.1	7.1	3.4 3.4	3.4		6.7 6.5	6.6	
				3.6	Middle	-		-		-	-	-	-	-		-	7.1	-	-	3.5	-	-	7.1
					Bottom	2.6	19.5 19.5	19.5	7.9 7.9	7.9	30.2 30.2	30.2	92.0 92.1	92.1	7.1 7.1	7.1	7.1	3.4 3.5	3.5		6.5 8.4	7.5	
27-Mar-15	Sunny	Moderate	17:51		Surface	1.0	19.5 19.5	19.5	7.8 7.8	7.8	30.3 30.3	30.3	91.8 92.4	92.1	7.1 7.1	7.1	7.1	7.6 7.7	7.7		2.9 3.3	3.1	
				3.6	Middle	-		-		-		-		-		-	7.1	-	-	7.7	-	-	3.2
					Bottom	2.6	19.5 19.5	19.5	7.8 7.7	7.8	30.3 30.3	30.3	92.1 93.0	92.6	7.1 7.2	7.1	7.1	7.5 7.7	7.6		3.4 2.9	3.2	
30-Mar-15	Sunny	Moderate	11:18		Surface	1.0	21.5 21.5	21.5	7.3 7.3	7.3	29.3 29.2	29.2	98.8 99.2	99.0	7.4 7.4	7.4	7.4	6.5 6.6	6.6		5.9 4.8	5.4	
				3.7	Middle	-	1 1	-	1 1	-		-		-		-	7.4	-	-	6.7	-	-	5.3
					Bottom	2.7	21.5 21.5	21.5	7.3 7.2	7.2	29.2 29.3	29.3	98.9 97.4	98.2	7.4 7.3	7.3	7.3	6.7 6.6	6.7		5.2 5.1	5.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling		Temperature (°C)		F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	Dissolved Oxygen		Turbidity(NTU)			Suspended Solids (mg/L)		
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	16:11		Surface	1.0	19.4 19.4	19.4	7.6 7.6	7.6	29.2 29.1	29.2	96.3 97.0	96.7	7.5 7.5	7.5		13.4 13.7	13.6		9.6 9.4	9.5	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	13.6	-	-	9.2
					Bottom	2.6	19.4 19.4	19.4	7.5 7.6	7.5	29.3 29.2	29.2	95.6 96.6	96.1	7.4 7.5	7.4	7.4	13.3 13.7	13.5		8.4 9.2	8.8	
4-Mar-15	Fine	Moderate	18:12		Surface	1.0	19.2	19.2	7.4	7.4	29.4	29.4	93.2	93.3	7.3	7.3		13.9	13.9		10.9	10.7	
				3.6	Middle	1.0	19.2	-	7.4	-	29.5	-	93.3	-	7.3	7.0	7.3	13.8	-	14.5	10.4	-	11.9
				3.0		-	- 19.2		7.4		29.4		92.7		7.2	7.0	7.0	14.7		14.5	13.6		11.9
6-Mar-15	Fine	Moderate	07:51		Bottom	2.6	19.2 18.7	19.2	7.4 7.6	7.4	29.4 29.1	29.4	93.0 92.8	92.9	7.2 7.3	7.2	7.2	15.3 11.3	15.0		12.3 8.2	13.0	<u> </u>
0-IVIAI-13	rine	Moderate	07.51		Surface	1.0	18.7	18.7	7.6	7.6	29.1	29.1	92.8	92.8	7.3	7.3	7.3	11.3	11.3		7.3	7.8]
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	11.4	-	-	8.1
					Bottom	2.6	18.7 18.7	18.7	7.6 7.6	7.6	29.1 29.2	29.1	92.3 92.3	92.3	7.2 7.2	7.2	7.2	11.5 11.4	11.5		9.1 7.4	8.3	
9-Mar-15	Sunny	Moderate	09:33		Surface	1.0	19.0 19.0	19.0	7.5 7.5	7.5	30.0 30.0	30.0	92.0 91.5	91.8	7.1 7.1	7.1	7.1	13.2 13.3	13.3		6.0 6.1	6.1	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	13.4	-	-	6.2
					Bottom	2.8	19.1 19.1	19.1	7.5 7.5	7.5	30.1 30.1	30.1	91.8 92.0	91.9	7.1 7.1	7.1	7.1	13.5 13.3	13.4		5.8 6.6	6.2	
11-Mar-15	Cloudy	Moderate	10:10		Surface	1.0	18.8 18.8	18.8	7.4 7.4	7.4	30.1 30.1	30.1	94.0 93.0	93.5	7.3 7.2	7.3		16.8	17.1		10.1 11.3	10.7	
				3.7	Middle	_	- 18.8	-	- 7.4	-	- 30.1	-	93.0	_	-	-	7.3	17.3	-	17.0	-	-	11.1
					Bottom	2.7	18.8	18.8	7.4	7.4	30.1	30.1	95.8	94.8	7.5	7.4	7.4	16.7	16.9		11.4	11.5	
13-Mar-15	Fine	Moderate	11:16		Surface	1.0	18.8 18.3	18.3	7.4 7.5	7.5	30.1 30.2	30.2	93.7 92.1	91.8	7.3 7.2	7.2		17.0 13.5	13.5		11.6	9.6	
				2.0		1.0	18.3	10.5	7.5	7.5	30.2	30.2	91.4	31.0	7.2	7.2	7.2	13.5		13.7	9.1	-	44.5
				3.6	Middle	-	- 18.3	-	- 7.5		30.2	-	93.1		7.3	-		13.9	-	13.7	14.5		11.5
16-Mar-15	Cuppy	Madarata	14.10		Bottom	2.6	18.3	18.3	7.5	7.5	30.2	30.2	91.6 95.6	92.4	7.2	7.3	7.3	13.6	13.8		12.2	13.4	
16-Mar-15	Sunny	Moderate	14:12		Surface	1.0	20.2	20.2	7.5 7.5	7.5	30.6	30.6	96.0	95.8	7.2 7.3	7.3	7.3	12.7	12.5		9.2	8.7]
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	12.5	-	-	9.0
					Bottom	2.6	20.1 20.1	20.1	7.4 7.5	7.5	30.6 30.6	30.6	95.4 95.6	95.5	7.2 7.3	7.2	7.2	12.2 12.8	12.5		9.1 9.5	9.3	
18-Mar-15	Sunny	Moderate	16:22		Surface	1.0	21.3 21.3	21.3	7.4 7.4	7.4	30.3 30.3	30.3	96.3 96.9	96.6	7.2 7.2	7.2	7.0	7.2 7.0	7.1		7.7 9.3	8.5	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	7.1	-	-	7.7
					Bottom	2.6	21.3 21.3	21.3	7.4 7.4	7.4	30.3 30.3	30.3	96.8 97.1	97.0	7.2 7.2	7.2	7.2	7.0 7.1	7.1		6.8	6.9	
20-Mar-15	Sunny	Moderate	07:35		Surface	1.0	19.4	19.3	7.8	7.8	30.3	30.4	89.7	89.5	6.9	6.9		2.3	2.2		5.4	5.1	
				3.5	Middle	_	19.3	-	7.8	_	30.5	_	89.3	_	6.9	_	6.9	2.1	_	2.5	4.8	-	6.5
					Bottom	2.5	19.3	19.2	7.8	7.8	30.7	30.8	89.4	89.3	6.9	6.9	6.9	2.8	2.7		7.3	7.8	
					DULLUITI	2.5	19.1	19.2	7.8	1.0	31.0	30.0	89.2	09.3	6.9	0.9	0.9	2.5	2.1		8.3	1.0	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Te	mperature (°C)	p	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)) Va	lue Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	09:12		Surface 1	()	9.8 9.8	7.9 7.9	7.9	29.9 29.9	29.9	95.7 93.0	94.4	7.3 7.1	7.2	7.2	7.6 7.9	7.8		10.0 9.0	9.5	
				3.3	Middle	-	-	-	-	-	-	1 1	-	-	-	7.2	-	-	7.8	-	-	10.3
					Bottom 2	73	9.8 9.8	7.9 7.9	7.9	29.9 29.9	29.9	97.4 94.1	95.8	7.5 7.2	7.3	7.3	7.8 7.7	7.8		10.8 11.2	11.0	
25-Mar-15	Cloudy	Moderate	10:23		Surface 1		0.5 0.5	7.9 7.9	7.9	30.3 30.3	30.3	93.3 92.4	92.9	7.2 7.1	7.1	7.1	5.1 5.1	5.1		9.8 9.0	9.4	
				3.4	Middle	-	·	-	-	-	-	1 1	-	-	-	7	-	-	5.4	-	-	9.2
					Bottom 2		0.5 0.5	7.9 7.9	7.9	30.3 30.3	30.3	94.5 92.7	93.6	7.3 7.1	7.2	7.2	5.8 5.5	5.7		9.1 8.7	8.9	
27-Mar-15	Cloudy	Moderate	11:42		Surface 1	()	0.3 0.3	7.7 7.8	7.7	30.4 30.4	30.4	92.2 90.9	91.6	7.1 7.0	7.0	7.0	5.5 5.5	5.5		1.5 1.1	1.3	
				4.0	Middle	-	-	-	-	-	-	1 1	-	-	-	7.0	-	-	5.5	-	-	2.7
					Bottom 3	3 ()	0.3 0.3	7.7 7.5	7.6	30.5 30.3	30.4	91.4 94.9	93.2	7.0 7.3	7.2	7.2	5.4 5.6	5.5		4.5 3.7	4.1	
30-Mar-15	Sunny	Moderate	15:02		Surface 1		2.0 22.0	7.0 7.0	7.0	31.5 31.4	31.4	103.0 102.0	102.5	7.5 7.4	7.5	7.5	4.8 4.7	4.8		4.4 4.8	4.6	
				3.7	Middle	-		-	-	-	-	1 1	-	-	-	1.5	-	-	4.8	-	-	4.6
					Bottom 2		2.0	7.0 7.0	7.0	31.4 31.4	31.4	102.5 100.7	101.6	7.5 7.3	7.4	7.4	4.8 4.8	4.8		4.0 5.0	4.5	İ

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	11:27		Surface	1.0	18.1 18.1	18.1	7.9 7.9	7.9	30.5 30.5	30.5	93.3 92.9	93.1	7.4 7.3	7.3		3.5 3.4	3.5		8.4 5.5	7.0	
				11.6	Middle	5.8	18.0 18.1	18.1	7.9 7.9	7.9	30.6 30.6	30.6	93.0 92.6	92.8	7.3 7.3	7.3	7.3	4.2 4.3	4.3	4.3	5.7 7.4	6.6	6.9
					Bottom	10.6	18.0	18.0	7.9 7.9	7.9	30.9 31.0	30.9	92.7 92.7	92.7	7.3 7.3	7.3	7.3	5.0	5.0		6.3	7.1	İ
4-Mar-15	Fine	Moderate	12:26		Surface	1.0	18.1	18.1	7.9	7.9	29.6	29.5	94.2	94.4	7.5	7.5		4.7	4.5		4.4	4.5	
				10.1	Middle	5.1	18.1 18.0	18.0	7.9 7.9	7.9	29.3 30.6	30.6	94.5 94.4	94.4	7.5 7.4	7.4	7.5	4.3 5.7	5.7	5.2	4.5 5.3	5.7	5.2
					Bottom	9.1	18.0 18.0	18.0	7.9 7.9	7.9	30.6 30.8	30.7	94.4 94.7	94.7	7.4 7.5	7.5	7.5	5.7 5.4	5.5		6.0 4.4	5.4	
6-Mar-15	Fine	Moderate	13:16			1.0	18.0 18.0	18.0	7.9 7.9	7.9	30.6 29.7	29.7	94.6 92.7	92.7	7.5 7.4	7.4	7.5	5.6 2.9	2.9		6.3 4.6	5.4	
					Surface		17.9 17.7		7.9 7.9		29.7 31.6		92.6 92.0		7.4		7.4	2.9 3.1			6.2 6.3		
				9.7	Middle	4.9	17.7 17.7	17.7	7.9 7.9	7.9	31.5 31.7	31.5	92.0 91.9	92.0	7.3 7.3	7.3		3.0	3.1	3.1	5.7 7.0	6.0	6.1
9-Mar-15	Sunny	Moderate	14:53		Bottom	8.7	17.7 18.1	17.7	7.9 7.8	7.9	31.7 30.4	31.7	91.9 88.2	91.9	7.3 6.9	7.3	7.3	3.2	3.2		6.5 5.3	6.8	<u> </u>
3-Wai-13	Odility	Woderate	14.55		Surface	1.0	18.2	18.2	7.8 7.8	7.8	30.4 30.8	30.4	88.7 88.2	88.5	7.0 6.9	7.0	7.0	4.1	4.3		6.4	5.9	1
				10.1	Middle	5.1	18.0	18.0	7.8 7.8	7.8	30.8 30.8	30.8	87.8 88.5	88.0	6.9	6.9		5.6 5.0	5.6	4.9	5.1 6.1	4.9	6.0
	2				Bottom	9.1	18.0 18.0	18.0	7.8	7.8	30.8	30.8	88.8	88.7	7.0 7.0	7.0	7.0	4.8	4.9		8.2	7.2	
11-Mar-15	Cloudy	Moderate	16:03		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	30.5 30.5	30.5	89.6 89.6	89.6	7.1 7.1	7.1	7.1	3.1 3.1	3.1		3.3 3.7	3.5	
				10.0	Middle	5.0	17.9 17.9	17.9	7.9 7.9	7.9	31.3 31.3	31.3	89.2 89.2	89.2	7.0 7.0	7.0		4.5 4.3	4.4	3.9	3.0 4.1	3.6	3.7
					Bottom	9.0	17.9 17.9	17.9	7.9 7.9	7.9	31.3 31.3	31.3	90.5 90.0	90.3	7.1 7.1	7.1	7.1	4.4 4.2	4.3		3.7 4.2	4.0	
13-Mar-15	Fine	Moderate	18:01		Surface	1.0	17.7 17.7	17.7	7.9 7.9	7.9	31.5 31.5	31.5	88.8 88.7	88.8	7.0 7.0	7.0	7.0	3.6 3.8	3.7		6.6 6.0	6.3	
				10.3	Middle	5.2	17.7 17.7	17.7	7.9 7.9	7.9	31.7 31.7	31.7	88.5 88.4	88.5	7.0 7.0	7.0	7.0	4.5 4.6	4.6	4.2	6.5 8.2	7.4	7.0
					Bottom	9.3	17.7 17.7	17.7	7.9 7.9	7.9	31.7 31.8	31.8	88.6 88.8	88.7	7.0 7.0	7.0	7.0	4.2 4.5	4.4		7.8 6.9	7.4	Ì
16-Mar-15	Cloudy	Moderate	10:17		Surface	1.0	18.5 18.8	18.7	8.0 7.9	7.9	30.1 29.7	29.9	91.9 92.8	92.4	7.2 7.2	7.2		2.6 2.5	2.6		2.9 3.5	3.2	
				10.4	Middle	5.2	18.1 18.1	18.1	7.9 7.9	7.9	32.1 32.1	32.1	91.6 91.2	91.4	7.1 7.1	7.1	7.2	2.9 3.0	3.0	2.9	2.7 4.2	3.5	3.8
					Bottom	9.4	18.1	18.2	7.9 7.9	7.9	32.2 32.1	32.1	91.1 91.8	91.5	7.1 7.2	7.1	7.1	3.1 2.9	3.0		5.2	4.6	İ
18-Mar-15	Sunny	Moderate	11:40		Surface	1.0	19.4	19.4	7.9	7.9	28.9	28.9	92.2	92.4	7.2	7.2		2.7	2.7		6.6	7.1	
				11.1	Middle	5.6	19.4	19.2	7.9 7.9	7.9	28.8	29.3	92.5 92.0	91.8	7.2 7.1	7.1	7.2	2.7	2.9	2.9	7.5 6.9	6.4	7.4
					Bottom	10.1	19.2 19.3	19.2	7.9 7.9	7.9	29.4	29.9	91.6 92.1	91.7	7.1	7.1	7.1	3.0	3.0		5.8 8.2	8.6	
20-Mar-15	Sunny	Moderate	12:46	<u> </u> 	Surface	1.0	19.1 20.8	20.9	7.9 7.8	7.8	30.0 25.9	25.9	91.2 95.6	96.0	7.1 7.3	7.4		3.0 11.1	11.4		9.0 8.8	8.7	
				10.4	Middle	5.2	20.9 20.6	20.6	7.8 7.8	7.8	25.8 26.8	26.8	96.3 90.6	92.1	7.4 7.0	7.1	7.3	11.7 12.2	12.3	12.0	8.6 8.8	8.1	8.7
				10.4			20.6 20.6		7.8 7.8		26.7 27.1		93.6 89.3		7.2 6.9		6.0	12.3 12.2		12.0	7.4 9.5		0.7
					Bottom	9.4	20.6	20.6	7.8	7.8	27.1	27.1	91.8	90.6	7.0	6.9	6.9	12.2	12.2		8.8	9.2	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Temperatu	ure (°C)	p	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n) '	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	14:58		Surface		21.2 21.1	21.1	8.0 8.0	8.0	27.9 27.9	27.9	98.4 96.8	97.6	7.4 7.3	7.4	7.4	8.5 8.5	8.5		6.8 7.0	6.9	
				10.8	Middle	54	20.6 20.6	20.6	8.0 8.0	8.0	28.7 28.7	28.7	96.9 98.4	97.7	7.4 7.5	7.4	7.4	8.7 8.7	8.7	8.7	6.8 6.1	6.5	6.7
					Bottom		20.6 20.6	20.6	8.0 8.0	8.0	29.0 29.0	29.0	97.3 98.4	97.9	7.4 7.5	7.4	7.4	8.8 8.9	8.9		5.6 7.6	6.6	
25-Mar-15	Cloudy	Moderate	16:38		Surface		20.4 20.4	20.4	7.6 7.6	7.6	28.6 28.6	28.6	94.9 95.0	95.0	7.2 7.3	7.2	7.3	9.2 9.1	9.2		6.5 6.1	6.3	
				10.6	Middle		20.3 20.3	20.3	7.6 7.6	7.6	28.7 29.0	28.8	95.2 94.7	95.0	7.3 7.2	7.3	7.0	9.5 9.5	9.5	9.4	8.2 6.0	7.1	7.3
					Bottom		20.3 20.3	20.3	7.6 7.6	7.6	29.3 29.3	29.3	95.3 95.7	95.5	7.3 7.3	7.3	7.3	9.3 9.4	9.4		8.5 8.3	8.4	
27-Mar-15	Sunny	Moderate	18:25		Surface		20.9 20.8	20.8	8.1 8.1	8.1	29.8 29.9	29.8	89.0 89.0	89.0	6.7 6.7	6.7	6.7	2.0 2.2	2.1		2.6 2.1	2.4	
				10.6	Middle	531	20.4 20.4	20.4	8.1 8.1	8.1	31.6 31.7	31.7	89.1 89.3	89.2	6.7 6.7	6.7	0.7	3.4 3.4	3.4	3.0	2.2 2.8	2.5	2.4
					Bottom	96	20.4 20.4	20.4	8.1 8.1	8.1	28.8 32.0	30.4	90.6 90.1	90.4	6.9 6.7	6.8	6.8	3.4 3.3	3.4		2.5 2.1	2.3	
30-Mar-15	Sunny	Moderate	10:14		Surface	1 ()	20.1 19.9	20.0	7.9 7.9	7.9	30.9 31.2	31.1	95.7 95.3	95.5	7.2 7.2	7.2	7.2	3.4 3.3	3.4		3.7 3.5	3.6	
				10.4	Middle	5.2	19.9 19.9	19.9	7.9 7.9	7.9	31.4 31.4	31.4	95.0 95.1	95.1	7.2 7.2	7.2	1.2	3.3 3.4	3.4	3.4	4.0 2.3	3.2	3.2
					Bottom	9.4	19.9 19.9	19.9	7.9 8.0	8.0	31.3 31.4	31.3	96.0 95.0	95.5	7.3 7.2	7.2	7.2	3.5 3.5	3.5		2.5 3.0	2.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	16:42		Surface	1.0	18.1 18.1	18.1	7.9 7.9	7.9	30.9 30.9	30.9	99.3 99.4	99.4	7.8 7.8	7.8		2.1 2.2	2.2		4.2 4.5	4.4	
				11.3	Middle	5.7	18.0 18.1	18.0	7.9 7.9	7.9	30.9 30.9	30.9	99.0 99.2	99.1	7.8 7.8	7.8	7.8	2.2	2.2	2.3	3.8 5.1	4.5	4.2
					Bottom	10.3	18.0	18.0	7.9 7.9	7.9	30.9 30.9	30.9	99.2 99.1 99.0	99.1	7.8 7.8	7.8	7.8	2.4	2.4		3.8	3.7	
4-Mar-15	Fine	Moderate	18:01		Curtons	4.0	18.0 18.1	18.1	7.9	7.9	29.6	29.6	99.0	93.1	7.8	7.4		3.5	2.4		4.2	4.4	
					Surface	1.0	18.1 18.0		7.9 7.9		29.6 30.3		93.2 93.2		7.4 7.4		7.4	3.3	3.4		3.9 3.1	4.1	-
				9.8	Middle	4.9	18.0	18.0	7.9 7.9	7.9	30.3 30.2	30.3	93.2 93.8	93.2	7.4 7.4	7.4		3.7	3.8	3.7	3.4	3.3	3.5
					Bottom	8.8	18.0	18.0	7.9	7.9	30.2	30.2	93.7	93.8	7.4	7.4	7.4	4.0	3.8		3.4	3.2	
6-Mar-15	Fine	Moderate	07:28		Surface	1.0	17.7 17.7	17.7	7.9 7.9	7.9	31.5 31.5	31.5	92.6 92.2	92.4	7.3 7.3	7.3	7.3	9.1 9.6	9.4		12.7 13.7	13.2	
				10.0	Middle	5.0	17.6 17.7	17.7	7.9 8.0	8.0	31.8 31.8	31.8	92.5 92.9	92.7	7.3 7.3	7.3	7.5	8.9 8.0	8.5	8.8	13.9 12.6	13.3	13.3
					Bottom	9.0	17.7 17.7	17.7	7.9 8.0	8.0	31.8 31.8	31.8	92.6 93.5	93.1	7.3 7.4	7.3	7.3	8.9 8.2	8.6		13.6 13.1	13.4	
9-Mar-15	Sunny	Moderate	08:54		Surface	1.0	17.9	17.9	7.9	7.9	31.2	31.2	91.4	90.9	7.2	7.2		9.8	10.3		15.7	15.6	
				9.8	Middle	4.9	17.8 17.8	17.8	7.9 7.9	7.9	31.2 31.2	31.2	90.4 91.9	91.2	7.1 7.2	7.2	7.2	10.7	11.2	10.9	15.4 15.0	15.3	15.3
					Bottom	8.8	17.8 17.8	17.8	7.9 7.9	7.9	31.2 31.2	31.2	90.5 90.5	91.7	7.1 7.1	7.2	7.2	11.7 11.7	11.3		15.6 15.1	15.0	
11-Mar-15	Cloudy	Moderate	10:01		Surface	1.0	17.8 17.9	17.9	7.9 7.9	7.9	31.2 31.6	31.6	92.9 89.8	90.8	7.3 7.1	7.1		10.9 6.2	6.3		14.8 7.9	7.8	
							17.9 17.9		7.9 7.9		31.5 31.7		91.7 92.7		7.2 7.3		7.2	6.3 7.8	-		7.7		
				10.3	Middle	5.2	17.9 17.9	17.9	7.9 7.9	7.9	31.7 31.7	31.7	89.8 94.7	91.3	7.1 7.4	7.2		8.0 5.6	7.9	6.6	7.7	7.7	7.8
					Bottom	9.3	17.9	17.9	7.9	7.9	31.8	31.7	89.9	92.3	7.4 7.1	7.2	7.2	5.8	5.7		7.5	7.9	
13-Mar-15	Fine	Moderate	11:11		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	31.6 31.6	31.6	90.5 88.7	89.6	7.1 7.0	7.1	7.1	10.5 9.8	10.2		14.7 14.0	14.4	
				10.7	Middle	5.4	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.8	31.8	89.5 91.9	90.7	7.1 7.2	7.1	7.1	11.0 11.3	11.2	10.6	13.8 15.7	14.8	14.5
					Bottom	9.7	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.8	31.8	90.1 93.3	91.7	7.1 7.4	7.2	7.2	10.2 10.6	10.4		14.4 14.0	14.2	
16-Mar-15	Sunny	Moderate	14:55		Surface	1.0	19.2	19.2	7.9 7.9	7.9	29.3 29.4	29.4	95.6 95.1	95.4	7.4	7.4		2.8	2.7		3.5	3.3	
				10.4	Middle	5.2	19.1	18.4	7.9	7.9	31.4	31.4	93.0	93.0	7.4	7.2	7.3	3.3	3.2	2.9	3.0	3.2	3.3
					Bottom	9.4	18.4 18.4	18.4	7.9 7.9	7.9	31.4 31.4	31.5	92.9 94.9	94.6	7.2 7.4	7.4	7.4	3.1 2.7	2.9		2.6 3.5	3.5	1
18-Mar-15	Sunny	Moderate	16:59			1.0	18.4 19.7	19.7	7.9 7.8	7.8	31.5 27.5	27.6	94.2 94.3	94.0	7.3 7.3			3.0			3.5		
	•				Surface		19.6 19.3		7.8 7.8		27.6 28.2		93.7 93.1		7.3 7.3	7.3	7.3	3.1	3.1		3.1	3.1	
				11.0	Middle	5.5	19.5 19.3	19.4	7.8 7.8	7.8	28.2	28.2	93.7	93.4	7.3 7.2	7.3		3.0	3.2	3.2	3.1	3.5	3.6
					Bottom	10.0	19.4	19.3	7.8	7.8	28.9	29.0	93.4	93.3	7.3	7.2	7.2	3.3	3.3		4.2	4.1	
20-Mar-15	Sunny	Moderate	07:06		Surface	1.0	20.9 20.8	20.8	7.7 7.7	7.7	25.9 26.3	26.1	99.0 101.0	100.0	7.6 7.8	7.7	7.7	11.1 11.1	11.1		8.9 9.6	9.3	
				10.7	Middle	5.4	20.6 20.6	20.6	7.7 7.7	7.7	27.0 27.1	27.1	98.4 98.8	98.6	7.5 7.6	7.6		12.8 13.1	13.0	12.5	9.5 8.3	8.9	9.1
					Bottom	9.7	20.6 20.5	20.5	7.7 7.7	7.7	27.3 27.7	27.5	96.3 98.6	97.5	7.4 7.6	7.5	7.5	13.2 13.3	13.3		9.6 8.4	9.0	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	erature (°C)	p	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	08:37		Surface 1.	0 20.5 20.5	20.5	7.9 7.9	7.9	26.7 26.7	26.7	86.3 84.8	85.6	6.6 6.5	6.6	6.7	21.1 21.4	21.3		23.7 23.6	23.7	
				10.6	Middle 5.	3 20.4 20.5	20.5	7.8 7.9	7.9	25.0 27.0	26.0	88.5 84.9	86.7	6.9 6.5	6.7	0.7	22.2 22.4	22.3	22.0	24.7 24.3	24.5	24.2
					Bottom 9.	6 20.5 20.4	20.4	7.8 7.8	7.8	27.2 27.2	27.2	85.1 92.2	88.7	6.5 7.1	6.8	6.8	22.4 22.2	22.3		23.6 24.9	24.3	
25-Mar-15	Cloudy	Moderate	10:22		Surface 1.	0 20.6 20.5	20.5	7.5 7.5	7.5	28.2 28.3	28.2	96.7 95.8	96.3	7.4 7.4	7.4	7.4	14.5 14.5	14.5		11.0 11.9	11.5	
				11.1	Middle 5	6 20.5 20.5	20.5	7.5 7.5	7.5	28.4 28.8	28.6	97.1 96.0	96.6	7.4 7.3	7.3	,,,	14.7 15.2	15.0	14.7	10.3 10.7	10.5	11.7
					Bottom 10	.1 20.5 20.5	20.5	7.5 7.4	7.5	28.9 29.1	29.0	96.2 99.2	97.7	7.3 7.5	7.4	7.4	14.5 14.4	14.5		13.4 12.8	13.1	
27-Mar-15	Cloudy	Moderate	11:10		Surface 1.	0 20.5 20.5	20.5	7.9 7.8	7.8	26.5 26.4	26.4	96.0 96.1	96.1	7.4 7.4	7.4	7.4	4.0 3.8	3.9		1.8 1.1	1.5	
				10.4	Middle 5.	2 20.3 20.3	20.3	7.9 7.8	7.8	27.1 27.4	27.2	96.3 95.1	95.7	7.4 7.3	7.4	7.4	6.7 7.2	7.0	6.1	0.8 0.9	0.9	1.3
					Bottom 9	4 20.3 20.3	20.3	7.7 7.8	7.8	28.1 25.7	26.9	93.4 96.8	95.1	7.2 7.5	7.3	7.3	7.7 7.3	7.5		1.6 1.3	1.5	
30-Mar-15	Sunny	Moderate	16:15		Surface 1.	0 20.7 20.5	20.6	8.0 8.0	8.0	29.1 29.3	29.2	102.2 103.1	102.7	7.7 7.8	7.8	7.8	2.2 2.4	2.3		1.8 1.9	1.9	
				10.5	Middle 5.	20.4	20.4	8.0 8.0	8.0	29.5 29.3	29.4	102.5 99.7	101.1	7.8 7.6	7.7	7.0	2.4 2.2	2.3	2.4	1.7 1.3	1.5	1.6
					Bottom 9.	5 20.4 20.2	20.3	8.0 8.0	8.0	30.5 30.6	30.6	103.4 98.3	100.9	7.8 7.4	7.6	7.6	2.5 2.5	2.5		1.5 1.2	1.4	İ

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	p	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	11:17		Surface	1.0	17.9 18.0	18.0	7.9 7.9	7.9	30.6 30.5	30.5	92.3 92.5	92.4	7.3 7.3	7.3		2.4 2.4	2.4		5.3 4.5	4.9	1
				11.4	Middle	5.7	17.9 17.8	17.9	7.9 7.9	7.9	30.9 31.0	31.0	91.9 91.7	91.8	7.2 7.2	7.2	7.3	2.5	2.6	2.6	6.0 3.9	5.0	5.0
					Bottom	10.4	17.6 17.6	17.6	7.9 7.9 7.9	7.9	31.7 31.7	31.7	91.8 91.6	91.7	7.2 7.2	7.2	7.2	2.7	2.7		5.2 5.0	5.1	
4-Mar-15	Fine	Moderate	12:13		Surface	1.0	18.1	18.0	7.9	7.9	29.4	29.5	92.8	92.4	7.4	7.3		5.0	5.1		6.6	6.4	
				10.3		5.2	17.9 17.6	17.6	7.9 7.9	7.9	29.6 31.8	31.9	92.0 91.4	91.4	7.3 7.2	7.2	7.3	5.1 4.3		5.0	6.2 5.8	5.7	6.4
				10.3	Middle		17.6 17.8		7.9 7.9		31.9 31.8		91.4 92.3		7.2 7.3			4.4 5.7	4.4	5.0	5.5 5.1		6.1
6-Mar-15	Fine	Moderate	13:25		Bottom	9.3	17.6 18.0	17.7	7.9 7.9	7.9	32.0 29.8	31.9	91.7	92.0	7.2	7.2	7.2	5.3	5.5		7.1	6.1	<u> </u>
0-IVIAI-15	Fine	Moderate	13.25		Surface	1.0	17.8	17.9	7.9	7.9	30.7	30.3	93.0	92.9	7.4	7.4	7.3	3.4	3.3		4.7	4.5	1
				10.2	Middle	5.1	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.9	31.9	91.1 92.0	91.6	7.2 7.3	7.2		4.0 4.0	4.0	3.8	5.6 6.5	6.1	5.4
					Bottom	9.2	17.6 17.6	17.6	7.9 7.9	7.9	31.9 31.9	31.9	91.3 92.7	92.0	7.2 7.3	7.3	7.3	4.4 4.0	4.2		5.6 5.4	5.5	
9-Mar-15	Sunny	Moderate	15:03		Surface	1.0	18.6 18.5	18.6	7.8 7.8	7.8	30.3 30.3	30.3	90.7 89.7	90.2	7.1 7.0	7.0	7.0	2.8 2.7	2.8		6.3 7.0	6.7	
				10.2	Middle	5.1	18.0 18.0	18.0	7.8 7.8	7.8	30.9 30.9	30.9	89.4 88.7	89.1	7.0 7.0	7.0	7.0	3.4 3.3	3.4	3.4	6.7 5.7	6.2	6.6
					Bottom	9.2	18.0 18.0	18.0	7.8 7.8	7.8	31.1 31.1	31.1	89.2 90.6	89.9	7.0 7.1	7.1	7.1	4.0	4.1		6.5 7.0	6.8	
11-Mar-15	Cloudy	Moderate	16:14		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	30.8 30.8	30.8	90.6 89.6	90.1	7.1 7.1	7.1		2.7	2.7		3.5 4.2	3.9	
				10.2	Middle	5.1	17.9	17.9	7.9	7.9	31.4	31.4	91.1	90.4	7.2	7.1	7.1	3.3	3.5	3.2	2.8	3.4	3.6
					Bottom	9.2	17.9 17.9	17.9	7.9	7.9	31.4	31.5	89.7 89.8	90.8	7.1	7.1	7.1	3.6	3.4		3.9	3.6	
13-Mar-15	Fine	Moderate	18:12		Surface	1.0	17.9 17.7	17.7	7.9 7.9	7.9	31.5 31.5	31.5	91.8 90.1	91.0	7.2 7.1	7.2		3.4 4.0	4.2		3.3 6.0	6.7	
				10.7	Middle	5.4	17.7 17.7	17.7	7.9 7.9	7.9	31.5 31.7	31.7	91.9 93.3	92.1	7.2 7.4	7.3	7.3	4.3 5.6	5.5	5.1	7.3 4.2	4.1	5.5
					Bottom	9.7	17.7 17.7	17.7	7.9 7.9	7.9	31.6 31.6	31.7	90.9 91.6	93.1	7.2 7.2	7.3	7.3	5.3 5.5	5.6	0	4.0 5.2	5.7	0.0
16-Mar-15	Cloudy	Moderate	10:08				17.7 18.4		7.9 7.9		31.7 31.1		94.6 91.8		7.5 7.2		7.5	5.7 3.6			6.2 3.8		—
	,				Surface	1.0	18.7 18.1	18.6	7.9 7.9	7.9	31.0 32.2	31.0	92.7 91.3	92.3	7.2 7.1	7.2	7.2	3.5	3.6		2.9	3.4	
				10.8	Middle	5.4	18.1	18.1	7.9 7.9	7.9	32.2 31.9	32.2	91.1 93.0	91.2	7.1 7.2	7.1		3.6 4.6	3.7	3.9	3.2	3.0	3.2
					Bottom	9.8	18.1	18.2	7.9	7.9	32.2	32.1	93.1	93.1	7.3	7.3	7.3	4.4	4.5		3.6	3.3	
18-Mar-15	Sunny	Moderate	11:22		Surface	1.0	19.4 19.3	19.4	7.9 7.9	7.9	28.5 28.6	28.5	93.4 93.5	93.5	7.3 7.3	7.3	7.3	2.1 2.0	2.1		5.9 4.9	5.4	
				11.1	Middle	5.6	19.1 19.0	19.1	7.9 7.9	7.9	30.0 30.4	30.2	92.6 92.6	92.6	7.2 7.2	7.2		2.2 2.1	2.2	2.2	6.5 5.3	5.9	5.0
					Bottom	10.1	18.7 18.8	18.8	7.9 7.9	7.9	31.1 31.0	31.0	92.6 92.3	92.5	7.2 7.2	7.2	7.2	2.3 2.2	2.3		4.3 3.2	3.8	<u> </u>
20-Mar-15	Sunny	Moderate	12:57		Surface	1.0	20.7 20.9	20.8	7.9 7.9	7.9	26.2 24.0	25.1	98.1 95.4	96.8	7.6 7.4	7.5	7.4	10.4 10.2	10.3		6.7 6.1	6.4	
				10.1	Middle	5.1	20.5 20.5	20.5	7.9 7.9	7.9	25.9 26.2	26.1	95.4 95.3	95.4	7.3 7.3	7.3	7.4	10.3	10.6	10.5	6.2 7.4	6.8	7.3
					Bottom	9.1	20.5	20.5	7.9 7.9	7.9	25.6 27.8	26.7	92.4 91.3	91.9	7.1 7.1	7.1	7.1	10.5	10.5		8.7 8.5	8.6	
		l					20.4		7.9		27.8		91.3		7.1			10.4			8.5	l	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	15:07		Surface	1.0	20.9 21.1	21.0	8.1 8.1	8.1	28.4 28.1	28.2	104.3 98.2	101.3	7.9 7.4	7.7	7.6	8.6 8.4	8.5		5.1 6.5	5.8	
				10.4	Middle	5.2	20.6 20.6	20.6	8.0 8.1	8.0	29.1 29.0	29.1	100.7 97.4	99.1	7.6 7.4	7.5	7.0	8.6 8.8	8.7	8.6	5.8 5.5	5.7	5.8
					Bottom	9.4	20.5 20.6	20.6	8.0 8.0	8.0	29.6 29.5	29.6	98.8 96.6	97.7	7.5 7.3	7.4	7.4	8.6 8.7	8.7		5.6 6.3	6.0	
25-Mar-15	Cloudy	Moderate	16:48		Surface	1.0	20.3 20.3	20.3	7.6 7.6	7.6	26.7 26.0	26.4	95.5 97.7	96.6	7.3 7.6	7.4	7.4	5.5 5.7	5.6		7.2 6.5	6.9	
				10.3	Middle	5.2	20.3 20.3	20.3	7.6 7.6	7.6	29.7 28.9	29.3	94.0 95.9	95.0	7.3 7.3	7.3	7.4	5.6 5.4	5.5	5.5	6.4 6.5	6.5	6.9
					Bottom	9.3	20.3 20.3	20.3	7.5 7.6	7.5	29.7 29.6	29.6	90.3 96.2	93.3	6.9 7.3	7.1	7.1	5.5 5.5	5.5		6.9 7.6	7.3	
27-Mar-15	Sunny	Moderate	18:33		Surface	1.0	20.8 20.7	20.8	8.1 8.1	8.1	30.0 27.3	28.7	71.8 73.3	72.6	5.4 5.6	5.5	5.5	2.3 2.6	2.5		2.7 2.5	2.6	
				10.2	Middle	5.1	20.4 20.4	20.4	8.1 8.1	8.1	31.5 28.7	30.1	73.0 69.4	71.2	5.5 5.3	5.4	3.3	3.8 4.2	4.0	4.0	2.5 2.9	2.7	2.7
					Bottom	9.2	20.4 20.5	20.4	8.1 8.0	8.1	31.6 31.6	31.6	68.2 74.3	71.3	5.1 5.6	5.3	5.3	5.5 5.2	5.4		2.3 3.2	2.8	
30-Mar-15	Sunny	Moderate	10:04		Surface	1.0	19.9 19.8	19.8	7.9 7.9	7.9	31.4 31.5	31.5	98.2 97.1	97.7	7.4 7.4	7.4	7.4	2.5 2.5	2.5		3.1 3.7	3.4	
				10.5	Middle	5.3	19.7 19.8	19.7	7.9 7.9	7.9	31.9 31.6	31.8	96.7 97.2	97.0	7.3 7.4	7.3	7.4	2.8 2.8	2.8	2.7	3.1 2.6	2.9	3.1
					Bottom	9.5	19.7 19.7	19.7	7.9 7.9	7.9	31.8 32.0	31.9	96.4 95.3	95.9	7.3 7.2	7.3	7.3	2.8 2.7	2.8		2.4 3.5	3.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	16:52		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	30.9 30.9	30.9	98.1 98.3	98.2	7.7 7.7	7.7		2.4 2.4	2.4		3.7 4.1	3.9	
				11.3	Middle	5.7	17.8	17.9	7.9	7.9	30.9	30.9	98.1	98.0	7.7	7.7	7.7	2.5	2.5	2.5	2.6	3.0	3.4
					Bottom	10.3	17.9 17.8 17.9	17.8	7.9 7.9 7.9	7.9	30.9 30.9 30.9	30.9	97.9 98.0 97.8	97.9	7.7 7.7 7.7	7.7	7.7	2.4 2.6 2.5	2.6		3.4 3.0 3.3	3.2	
4-Mar-15	Fine	Moderate	18:12		Surface	1.0	17.9	17.9	8.0	8.0	30.5	30.5	94.5	93.8	7.5	7.4		4.4	4.4		3.4	3.6	
				9.8		4.9	17.9 17.9	17.9	7.9 8.0	8.0	30.5 30.9		93.1 95.1	94.2	7.4 7.5	7.4	7.4	4.3 6.1		5.7	3.7 6.0		5.3
				9.0	Middle		17.9 17.9		7.9 8.0		30.8 30.9	30.9	93.2 98.2		7.4 7.7			6.2 6.6	6.2	5.7	5.0 7.4	5.5	5.5
C May 45	Fina	Madagata	07.40		Bottom	8.8	17.9	17.9	7.9	8.0	30.7 31.8	30.8	94.4	96.3	7.5	7.6	7.6	6.3	6.5		6.2	6.8	
6-Mar-15	Fine	Moderate	07:18		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	31.8	31.8	91.9	91.8	7.2 7.2	7.2	7.2	7.2 7.7	7.5		10.3	9.4	
				10.3	Middle	5.2	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.8	31.8	91.3 91.0	91.2	7.2 7.2	7.2		9.3 9.0	9.2	9.0	11.6 11.5	11.6	10.7
					Bottom	9.3	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.8	31.8	91.5 91.5	91.5	7.2 7.2	7.2	7.2	10.0 10.6	10.3		10.5 11.8	11.2	
9-Mar-15	Sunny	Moderate	08:46		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	31.1 31.1	31.1	89.9 90.2	90.1	7.1 7.1	7.1		6.5 6.0	6.3		9.4 9.6	9.5	
				9.9	Middle	5.0	17.9 17.9	17.9	7.9 7.9	7.9	31.2 31.2	31.2	89.8 89.9	89.9	7.1 7.1	7.1	7.1	8.0 8.2	8.1	7.6	9.8 9.2	9.5	9.4
					Bottom	8.9	17.9 17.9	17.9	7.9 7.9	7.9	31.2 31.2	31.2	90.1	90.0	7.1 7.1 7.1	7.1	7.1	8.3 8.4	8.4		9.2	9.1	
11-Mar-15	Cloudy	Moderate	09:50		Surface	1.0	17.8	17.9	7.9	7.9	31.3	31.4	90.7	90.3	7.1	7.1		3.5	3.5		3.6	3.6	
				10.3	Middle	5.2	17.9 17.9	17.9	7.9 7.9	7.9	31.5 31.5	31.6	89.8 90.2	90.0	7.1 7.1	7.1	7.1	6.3	6.3	5.5	3.6	3.6	4.4
					Bottom	9.3	17.9 17.9	17.9	7.9 7.9	7.9	31.6 31.6	31.6	89.8 90.6	90.5	7.1 7.1	7.1	7.1	6.3	6.6		3.5 5.5	6.0	
13-Mar-15	Fine	Moderate	10:58		Surface	1.0	17.9 17.6	17.6	7.9 7.9	7.9	31.6 31.6	31.6	90.3 88.6	89.4	7.1 7.0	7.1		6.3 10.3	10.0		6.4 14.6	14.9	
							17.5 17.6		7.9 7.9		31.5 31.6		90.1 90.9		7.1 7.2		7.1	9.6 9.8			15.1 15.2		
				11.1	Middle	5.6	17.6 17.6	17.6	7.9 7.9	7.9	31.7 31.7	31.6	88.7 89.7	89.8	7.0 7.1	7.1		10.5 12.0	10.2	10.8	16.4 14.4	15.8	15.0
16-Mar-15	C	Madagata	45.04		Bottom	10.1	17.6 19.2	17.6	7.9 7.9	7.9	31.7 29.4	31.7	93.7 95.5	91.7	7.4 7.4	7.2	7.2	12.6	12.3		14.4	14.4	
16-Mar-15	Sunny	Moderate	15:04		Surface	1.0	19.2	19.2	7.9	7.9	29.3	29.3	95.4	95.5	7.4	7.4	7.4	1.7	1.7		3.0	3.1	
				10.4	Middle	5.2	18.4 18.4	18.4	7.9 7.9	7.9	31.1 31.1	31.1	94.1 92.9	93.5	7.3 7.2	7.3		2.6 2.8	2.7	2.8	4.5 4.1	4.3	3.5
					Bottom	9.4	18.4 18.4	18.4	7.9 7.9	7.9	31.3 31.2	31.3	94.6 92.6	93.6	7.4 7.2	7.3	7.3	4.0 3.8	3.9		4.0 2.4	3.2	
18-Mar-15	Sunny	Moderate	17:12		Surface	1.0	19.2 19.2	19.2	7.9 7.9	7.9	29.8 29.8	29.8	91.5 91.3	91.4	7.1 7.1	7.1	7.1	6.8 6.9	6.9		5.8 6.5	6.2	
				11.2	Middle	5.6	19.1 19.1	19.1	7.9 7.9	7.9	30.0 30.1	30.0	90.6 90.6	90.6	7.0 7.0	7.0	7.1	7.1 6.9	7.0	7.0	6.9 7.7	7.3	7.0
					Bottom	10.2	19.1	19.1	7.9 7.9	7.9	30.1 30.1	30.1	90.5 90.5	90.5	7.0 7.0 7.0	7.0	7.0	7.2 7.1	7.2		7.4 7.8	7.6	İ
20-Mar-15	Sunny	Moderate	06:55		Surface	1.0	20.8	20.8	7.7 7.7	7.7	25.4 24.9	25.2	98.1 100.1	99.1	7.6 7.7	7.6		11.4 11.5	11.5		6.3 6.0	6.2	
				10.5	Middle	5.3	20.5	20.5	7.7	7.7	27.1	27.2	98.7	97.4	7.6	7.5	7.6	12.1	12.2	12.0	6.9	6.9	7.8
					Bottom	9.5	20.5 20.4	20.4	7.7 7.7	7.7	27.2 27.7	27.7	96.0 92.3	93.1	7.4 7.1	7.2	7.2	12.3 12.6	12.4		6.8 10.9	10.3	İ
					DOLLOIT	9.5	20.4	20.7	7.7	1.1	27.6	21.1	93.8	30.1	7.3	1.2	1.2	12.2	12.7		9.7	10.5	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	08:30		Surface	1.0	20.4 20.4	20.4	7.9 7.9	7.9	25.7 25.3	25.5	86.3 86.7	86.5	6.7 6.7	6.7	6.7	16.8 16.2	16.5		9.9 8.1	9.0	
				10.7	Middle	5.4	20.4 20.4	20.4	7.9 7.9	7.9	26.0 25.4	25.7	86.4 86.8	86.6	6.7 6.7	6.7	0.7	16.9 16.5	16.7	16.6	9.5 8.9	9.2	9.3
					Bottom	9.7	20.4 20.4	20.4	7.8 7.8	7.8	25.2 26.1	25.6	86.8 86.3	86.6	6.8 6.7	6.7	6.7	16.6 16.7	16.7		9.4 9.7	9.6	
25-Mar-15	Cloudy	Moderate	10:09		Surface	1.0	20.6 20.6	20.6	7.4 7.4	7.4	25.4 25.4	25.4	96.6 96.7	96.7	7.4 7.4	7.4	7.5	13.4 13.6	13.5		13.3 13.2	13.3	
				12.1	Middle	6.1	20.6 20.6	20.6	7.4 7.4	7.4	27.8 28.1	28.0	95.8 98.8	97.3	7.3 7.7	7.5	7.0	13.2 13.4	13.3	13.4	14.0 13.7	13.9	14.0
					Bottom	11.1	20.6 20.6	20.6	7.3 7.4	7.4	28.3 28.5	28.4	101.4 95.2	98.3	7.7 7.4	7.5	7.5	13.5 13.3	13.4		14.2 15.1	14.7	
27-Mar-15	Cloudy	Moderate	10:59		Surface	1.0	20.4 20.4	20.4	7.9 7.9	7.9	27.2 27.3	27.2	93.8 97.6	95.7	7.2 7.5	7.4	7.4	4.2 4.2	4.2		2.9 3.5	3.2	
				10.1	Middle	5.1	20.3 20.3	20.3	7.9 7.9	7.9	25.0 27.8	26.4	95.5 95.7	95.6	7.5 7.4	7.4	7.4	5.1 5.0	5.1	5.2	1.2 2.1	1.7	2.4
					Bottom	9.1	20.3 20.2	20.3	7.9 7.9	7.9	28.1 27.9	28.0	99.9 90.5	95.2	7.7 7.0	7.3	7.3	6.3 6.1	6.2		2.4 1.9	2.2	
30-Mar-15	Sunny	Moderate	16:27		Surface	1.0	20.4 20.8	20.6	8.0 8.0	8.0	29.8 29.4	29.6	102.6 102.4	102.5	7.8 7.7	7.7	7.7	2.4 2.4	2.4		1.8 1.5	1.7	
				10.7	Middle	5.4	20.4 20.5	20.4	8.0 8.0	8.0	30.0 29.6	29.8	102.1 101.5	101.8	7.7 7.7	7.7	1.1	2.4 2.5	2.5	2.5	3.1 3.4	3.3	2.6
					Bottom	9.7	20.4 20.3	20.4	8.0 8.0	8.0	29.7 30.1	29.9	100.0 101.5	100.8	7.6 7.7	7.6	7.6	2.6 2.6	2.6		3.4 2.2	2.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

2-Mar-15	Condition					ling	remper	ature (°C)	١	Н	Sallfil	ty (ppt)	มบ อลเน	ration (%)	DISSOI/	ed Oxygen	(mg/L)	1	urbidity(NTl	ر د	Suspe	nded Solids	s (IIIg/L)
2-Mar-15		Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
	Sunny	Calm	12:07		Surface	1.0	19.1 19.1	19.1	7.4 7.3	7.4	28.2 28.0	28.1	92.7 93.5	93.1	7.3 7.3	7.3		2.5 2.5	2.5		8.2 8.5	8.4	
				6.3	Middle	3.2	18.8	18.7	7.4	7.3	29.1	28.9	92.0	92.4	7.2	7.3	7.3	2.5 2.5	2.5	2.5	7.3	7.0	7.5
					Bottom	5.3	18.7 18.7 18.7	18.7	7.3 7.3 7.2	7.3	28.7 29.3 28.5	28.9	92.7 92.1 94.2	93.2	7.3 7.2 7.4	7.3	7.3	2.5 2.6 2.5	2.6		6.6 6.8 7.1	7.0	
4-Mar-15	Fine	Moderate	12:31		Surface	1.0	18.9	18.9	7.4	7.4	28.6	28.5	94.3	94.7	7.4	7.4		16.4	16.5		10.9	11.3	
				6.2	Middle	3.1	18.9 18.9	19.0	7.3 7.4	7.3	28.5 28.5	28.5	95.0 93.3	93.6	7.5 7.3	7.4	7.4	16.6 16.5	16.3	15.9	11.7 12.1	11.7	11.6
				0.2	Bottom	5.2	19.0 19.0	19.0	7.3 7.3	7.3	28.5 28.7	28.8	93.9 92.8	92.8	7.4 7.3	7.3	7.3	16.1 15.2		15.5	11.2 11.6	11.7	11.0
6-Mar-15	Fine	Moderate	13:36				19.0 18.6		7.3 7.6		28.8 29.5		92.7 93.7		7.3 7.4		7.3	14.8 8.4	15.0		11.7 6.2		
o Mar 10	1 1110	Moderate	10.00		Surface	1.0	18.6 18.6	18.6	7.6 7.6	7.6	29.5 29.5	29.5	93.8	93.8	7.4	7.4	7.4	8.6 9.5	8.5		5.4	5.8	
				6.4	Middle	3.2	18.6	18.6	7.6	7.6	29.5	29.5	92.9	93.1	7.3	7.3		9.7	9.6	9.7	5.6	5.8	5.5
					Bottom	5.4	18.5 18.5	18.5	7.6 7.6	7.6	29.6 29.6	29.6	92.7 93.1	92.9	7.3 7.3	7.3	7.3	11.1 10.8	11.0		4.8 4.9	4.9	
9-Mar-15	Sunny	Moderate	14:23		Surface	1.0	19.4 19.5	19.4	7.5 7.5	7.5	30.3 30.2	30.2	94.1 94.0	94.1	7.2 7.2	7.2	7.2	12.6 12.0	12.3		6.8 5.9	6.4	
				6.3	Middle	3.2	19.4 19.4	19.4	7.5 7.5	7.5	30.3 30.2	30.2	94.2 94.0	94.1	7.2 7.2	7.2		12.4 11.8	12.1	12.2	6.8 8.0	7.4	7.0
					Bottom	5.3	19.4 19.4	19.4	7.5 7.5	7.5	30.4 30.2	30.3	94.8 93.7	94.3	7.3 7.2	7.3	7.3	12.2 12.0	12.1		7.7 6.7	7.2	
11-Mar-15	Cloudy	Moderate	15:49		Surface	1.0	18.8 18.8	18.8	7.6 7.6	7.6	30.8 30.8	30.8	92.2 92.0	92.1	7.2 7.1	7.1		14.7 14.0	14.4		8.1 8.2	8.2	
				6.4	Middle	3.2	18.8 18.8	18.8	7.5 7.6	7.6	30.8 30.8	30.8	92.3 91.3	91.8	7.2 7.1	7.1	7.1	14.5 15.1	14.8	14.6	7.6 7.8	7.7	7.6
					Bottom	5.4	18.8 18.8	18.8	7.5 7.5	7.5	30.8 30.8	30.8	93.3 91.9	92.6	7.2 7.1	7.2	7.2	14.2 14.9	14.6		7.1 6.7	6.9	
13-Mar-15	Fine	Moderate	17:41		Surface	1.0	18.4	18.4	7.5	7.5	31.2	31.2	90.8	91.1	7.1	7.1		16.3	16.3		11.8	12.8	
				6.3	Middle	3.2	18.4	18.5	7.5 7.5	7.5	31.2 31.3	31.2	91.4 92.4	91.6	7.1	7.1	7.1	16.2 15.4	16.0	16.1	13.8	13.3	12.4
					Bottom	5.3	18.5 18.5	18.5	7.5 7.5	7.5	31.2 31.5	31.4	90.7 94.0	92.5	7.1 7.3	7.2	7.2	16.6 15.8	15.9		13.7 11.7	11.0	
16-Mar-15	Cloudy	Moderate	10:42		Surface	1.0	18.5 19.4	19.4	7.5 7.5	7.5	31.3 30.2	30.2	91.0 93.9	94.1	7.1 7.2	7.2		16.0 6.6	6.6		10.3 2.4	2.6	
				0.0			19.4 19.3	19.4	7.5 7.5	7.5	30.2 30.2	30.2	94.3 93.8	93.8	7.3 7.2		7.2	6.6 8.0		0.0	2.8 5.3		4.7
				6.0	Middle	3.0	19.4 19.3		7.5 7.5	-	30.2 30.3		93.8 93.3		7.2 7.2	7.2		7.8 10.1	7.9	8.2	5.2 5.7	5.3	4.7
18-Mar-15	Sunny	Moderate	11:56		Bottom	5.0	19.3	19.3	7.5 7.4	7.5	30.2 29.3	30.2	93.9 92.8	93.6	7.2	7.2	7.2	10.2	10.2		6.5 3.7	6.1	
10-IVIAI-15	Suriny	Moderate	11.56		Surface	1.0	20.3	20.3	7.4	7.4	29.3	29.3	92.9	92.9	7.1	7.1	7.1	4.4	4.3		3.7	3.7	
				6.2	Middle	3.1	19.9 19.9	19.9	7.4 7.4	7.4	29.5 29.5	29.5	92.6 92.0	92.3	7.1 7.0	7.1		4.3 4.3	4.3	4.3	3.5 4.7	4.1	4.1
					Bottom	5.2	20.0 19.7	19.9	7.4 7.4	7.4	29.4 29.6	29.5	91.9 91.5	91.7	7.0 7.0	7.0	7.0	4.1 4.3	4.2		4.2 4.8	4.5	
20-Mar-15	Sunny	Moderate	12:46		Surface	1.0	20.1 20.1	20.1	7.9 7.9	7.9	29.7 29.5	29.6	91.1 92.2	91.7	6.9 7.0	7.0	7.0	4.1 4.2	4.2		6.2 6.6	6.4	
				6.2	Middle	3.1	20.0 19.9	20.0	7.9 7.9	7.9	29.9 29.9	29.9	90.8 92.2	91.5	6.9 7.0	7.0	7.0	5.8 5.3	5.6	5.1	6.6 6.4	6.5	7.1
					Bottom	5.2	19.7 19.9	19.8	7.9 7.9	7.9	30.0 29.9	30.0	91.2 92.8	92.0	7.0 7.1	7.0	7.0	5.1 5.6	5.4		7.8 8.8	8.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)) Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	14:38		Surface 1	20.0	20.0	7.9 7.9	7.9	30.0 30.0	30.0	92.4 92.4	92.4	7.1 7.0	7.0	7.0	5.3 5.0	5.2		6.6 7.9	7.3	
				6.5	Middle 3	3.3 19.8 19.7	19.7	7.9 7.9	7.9	30.1 30.1	30.1	91.5 92.4	92.0	7.0 7.1	7.0	7.0	5.0 5.3	5.2	5.3	6.7 6.8	6.8	6.9
					Bottom 5	5.5 19.7 19.7	19.7	7.9 7.9	7.9	30.2 30.2	30.2	92.0 93.4	92.7	7.0 7.2	7.1	7.1	5.3 5.6	5.5		6.9 6.2	6.6	
25-Mar-15	Cloudy	Moderate	16:09		Surface 1	1.0 19.5 19.5	19.5	7.9 7.9	7.9	30.9 30.8	30.8	90.5 93.7	92.1	6.9 7.2	7.1	7.1	5.0 5.4	5.2		8.9 9.8	9.4	
				6.5	Middle 3	3.3 19.4 19.4	19.4	7.9 7.9	7.9	30.9 31.0	30.9	95.5 90.6	93.1	7.3 6.9	7.1	7.1	6.2 6.4	6.3	5.9	9.9 9.7	9.8	10.4
					Bottom 5	5.5 19.4 19.4	19.4	7.9 7.9	7.9	31.1 30.9	31.0	91.6 97.2	94.4	7.0 7.4	7.2	7.2	6.2 6.3	6.3		12.2 11.7	12.0	
27-Mar-15	Sunny	Moderate	18:15		Surface 1	1.0 19.5 19.5	19.5	7.8 7.8	7.8	30.7 30.6	30.7	88.7 88.5	88.6	6.8 6.8	6.8	6.8	4.1 4.2	4.2		9.7 8.6	9.2	
				6.2	Middle 3	3.1 19.4 19.3	19.4	7.8 7.7	7.8	30.8 31.1	31.0	88.7 88.9	88.8	6.8 6.8	6.8	0.0	4.1 4.4	4.3	4.3	7.7 7.9	7.8	8.0
					Bottom 5	5.2 19.3 19.4	19.4	7.7 7.8	7.7	31.4 30.9	31.2	90.9 88.7	89.8	7.0 6.8	6.9	6.9	4.4 4.3	4.4		6.7 7.2	7.0	
30-Mar-15	Sunny	Moderate	10:53		Surface 1	1.0 21.2 21.3	21.2	7.3 7.3	7.3	29.3 29.2	29.3	98.7 98.3	98.5	7.4 7.4	7.4	7.4	3.2 3.1	3.2	1	3.1 3.2	3.2	
				6.1	Middle 3	3.1 21.0 21.0	21.0	7.2 7.3	7.3	29.4 29.4	29.4	97.0 98.1	97.6	7.3 7.4	7.3	7.4	3.0 3.1	3.1	3.2	2.7 4.4	3.6	3.8
					Bottom 5	5.1 21.1 21.1	21.1	7.2 7.3	7.2	29.5 29.5	29.5	96.7 98.4	97.6	7.2 7.4	7.3	7.3	3.1 3.2	3.2		5.0 3.9	4.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	16:34		Surface	1.0	18.8 18.8	18.8	7.5 7.5	7.5	30.0 30.0	30.0	97.6 96.2	96.9	7.6 7.5	7.5		13.8 13.6	13.7		9.8 8.5	9.2	
				6.4	Middle	3.2	18.8 18.8	18.8	7.5 7.5	7.5	30.0 30.0	30.0	97.4 95.4	96.4	7.6 7.4	7.5	7.5	13.9 14.0	14.0	13.8	11.1 8.9	10.0	8.7
					Bottom	5.4	18.8	18.8	7.5 7.5	7.5	30.0 30.0	30.0	96.8 99.2	98.0	7.5 7.7	7.6	7.6	13.7	13.8		6.7	7.0	
4-Mar-15	Fine	Moderate	18:43		Surface	1.0	18.8	18.8	7.4	7.4	29.5	29.5	95.4	95.5	7.5	7.5		13.8	11.3		7.4	6.5	
				6.4	Middle	3.2	18.8 18.8	18.8	7.4 7.4	7.4	29.5 29.5	29.5	95.5 94.5	94.7	7.5 7.4	7.4	7.5	11.3	13.2	13.1	5.5 6.0	5.2	6.0
				0.4			18.8 18.9		7.4 7.4		29.5 29.6		94.9 93.8		7.4 7.3			13.1 14.5		13.1	4.3 6.7		6.0
6-Mar-15	Fine	Madarata	07:26		Bottom	5.4	18.9 18.6	18.9	7.4	7.4	29.6 29.2	29.6	94.2	94.0	7.4	7.3	7.3	14.9	14.7		5.8 9.1	6.3	<u> </u>
6-Mar-15	Fine	Moderate	07:26		Surface	1.0	18.6	18.6	7.6	7.6	29.2	29.2	92.6	92.7	7.3	7.3	7.3	13.4	13.6		8.8	9.0	
				6.6	Middle	3.3	18.6 18.6	18.6	7.6 7.6	7.6	29.2 29.2	29.2	92.6 92.9	92.8	7.3 7.3	7.3		14.1 14.0	14.1	14.2	10.4 9.6	10.0	9.6
					Bottom	5.6	18.6 18.6	18.6	7.6 7.6	7.6	29.1 29.1	29.1	93.2 92.8	93.0	7.3 7.3	7.3	7.3	14.7 14.8	14.8		10.0 9.4	9.7	
9-Mar-15	Sunny	Moderate	09:10		Surface	1.0	18.8 18.8	18.8	7.4 7.4	7.4	29.8 29.8	29.8	92.8 92.6	92.7	7.2 7.2	7.2		15.6 15.4	15.5		6.6 6.1	6.4	
				6.3	Middle	3.2	18.7 18.7	18.7	7.4 7.4	7.4	29.9	29.9	93.1 92.6	92.9	7.3 7.2	7.2	7.2	15.3 15.4	15.4	15.4	6.0	6.3	7.0
					Bottom	5.3	18.7 18.8	18.8	7.4 7.4	7.4	29.9	29.9	94.0 92.9	93.5	7.3 7.3	7.3	7.3	15.5 15.3	15.4		8.9 7.6	8.3	
11-Mar-15	Cloudy	Moderate	09:45		Surface	1.0	18.8	18.8	7.4	7.4	30.2	30.2	90.5	91.1	7.0	7.1		14.1	14.2		11.4	11.4	
				6.2	Middle	3.1	18.8 18.8	18.8	7.4 7.4	7.4	30.1 30.2	30.2	91.6 90.1	91.6	7.1 7.0	7.1	7.1	14.2	13.7	14.0	11.4 8.6	9.1	10.0
					Bottom	5.2	18.8 18.8	18.8	7.4 7.4	7.4	30.2 30.2	30.2	93.1 91.0	92.6	7.2 7.1	7.2	7.2	14.0 13.6	14.0		9.5 9.5	9.5	
13-Mar-15	Fine	Moderate	10:51				18.8 18.5		7.3 7.5		30.2 30.2		94.1 91.3		7.3 7.1		1.2	14.3			9.4		
					Surface	1.0	18.5 18.5	18.5	7.5 7.4	7.5	30.2 30.2	30.2	90.2 92.1	90.8	7.1 7.2	7.1	7.1	10.4 10.6	10.4		9.2 7.5	9.6	
				6.5	Middle	3.3	18.5 18.5	18.5	7.5 7.4	7.5	30.2 30.2	30.2	90.4	91.3	7.1	7.1		10.7	10.7	10.5	8.5 7.4	8.0	8.7
	-				Bottom	5.5	18.5	18.5	7.5	7.4	30.2	30.2	91.1	92.3	7.3 7.1	7.2	7.2	10.3	10.5		9.3	8.4	
16-Mar-15	Sunny	Moderate	14:36		Surface	1.0	20.0 19.9	19.9	7.4 7.4	7.4	30.6 30.7	30.7	95.2 94.8	95.0	7.2 7.2	7.2	7.2	15.9 15.5	15.7		12.2 11.6	11.9	
				6.3	Middle	3.2	19.6 19.6	19.6	7.4 7.4	7.4	30.7 30.7	30.7	93.8 93.8	93.8	7.2 7.2	7.2		15.0 16.1	15.6	15.6	12.4 12.6	12.5	11.9
					Bottom	5.3	19.6 19.4	19.5	7.4 7.4	7.4	30.6 30.7	30.7	93.6 93.3	93.5	7.2 7.2	7.2	7.2	15.5 15.3	15.4		11.0 11.3	11.2	
18-Mar-15	Sunny	Moderate	16:42		Surface	1.0	20.3 20.3	20.3	7.4 7.4	7.4	29.7 29.7	29.7	94.6 94.5	94.6	7.2 7.2	7.2		6.3 6.6	6.5		6.1 6.8	6.5	
				6.4	Middle	3.2	20.4	20.4	7.4 7.4	7.4	29.7 29.8	29.7	94.6 94.5	94.6	7.2	7.2	7.2	6.6	6.7	6.6	6.5	6.3	6.1
					Bottom	5.4	20.4	20.4	7.4	7.4	29.8	29.8	94.2	94.5	7.2	7.2	7.2	6.8	6.7		5.8	5.4	İ
20-Mar-15	Sunny	Moderate	07:04		Surface	1.0	20.3 19.2	19.2	7.4 7.8	7.8	29.8 30.8	30.8	94.7 88.5	88.6	7.2 6.8	6.8		6.6 4.1	4.3		5.0 6.6	6.9	
				6.4	Middle	3.2	19.2 19.1	19.1	7.8 7.8	7.8	30.8 31.0	31.0	88.6 88.1	88.1	6.8	6.8	6.8	6.3	6.4	5.7	7.1 6.5	6.3	6.2
				0.4			19.1 19.1		7.8 7.8		31.0 31.0		88.0 87.8		6.8		0.0	6.4 6.7		5.1	6.1 4.8		0.2
					Bottom	5.4	19.1	19.1	7.8	7.8	31.0	31.0	88.0	87.9	6.8	6.8	6.8	6.2	6.5		6.0	5.4	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Temper	rature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	08:42		Surface 1.0	19.6 19.6	19.6	7.9 7.9	7.9	30.0 30.0	30.0	92.6 91.0	91.8	7.1 7.0	7.1	7.1	6.9 7.5	7.2		9.9 9.4	9.7	
				6.6	Middle 3.3	19.6 19.6	19.6	7.9 7.9	7.9	30.0 30.0	30.0	91.1 94.2	92.7	7.0 7.2	7.1	7.1	8.1 7.4	7.8	7.5	9.8 9.3	9.6	9.3
					Bottom 5.6	19.6 19.6	19.6	7.9 7.9	7.9	30.1 30.1	30.1	97.8 92.3	95.1	7.5 7.1	7.3	7.3	7.4 7.5	7.5		8.8 8.4	8.6	
25-Mar-15	Cloudy	Moderate	09:51		Surface 1.0	19.6 19.6	19.6	7.9 7.9	7.9	30.2 30.2	30.2	89.5 89.7	89.6	6.9 6.9	6.9	6.9	4.0 4.0	4.0		5.5 4.5	5.0	
				6.3	Middle 3.2	19.6 19.6	19.6	7.9 7.9	7.9	30.2 30.2	30.2	89.4 89.7	89.6	6.9 6.9	6.9	0.0	4.1 4.3	4.2	4.2	6.9 5.5	6.2	6.2
					Bottom 5.3	19.6 19.6	19.6	7.9 7.9	7.9	30.3 30.3	30.3	89.8 89.8	89.8	6.9 6.9	6.9	6.9	4.1 4.4	4.3		8.1 6.8	7.5	
27-Mar-15	Cloudy	Moderate	10:51		Surface 1.0	19.5 19.4	19.5	7.8 7.7	7.8	30.1 30.1	30.1	89.7 90.5	90.1	6.9 7.0	6.9	6.9	3.2 3.1	3.2		1.6 1.8	1.7	
				6.5	Middle 3.3	19.4 19.4	19.4	7.7 7.8	7.7	30.4 30.2	30.3	91.3 89.4	90.4	7.0 6.9	6.9	0.9	3.5 3.5	3.5	3.4	2.0 2.1	2.1	2.0
					Bottom 5.5	19.4 19.3	19.4	7.6 7.8	7.7	30.6 30.6	30.6	93.9 89.9	91.9	7.2 6.9	7.1	7.1	3.5 3.6	3.6		1.8 2.4	2.1	
30-Mar-15	Sunny	Moderate	15:25		Surface 1.0	21.8 21.8	21.8	7.4 7.4	7.4	31.2 31.2	31.2	101.1 101.9	101.5	7.4 7.5	7.4	7.4	4.8 4.5	4.7		2.4 3.4	2.9	
				6.4	Middle 3.2	21.3 21.3	21.3	7.4 7.3	7.4	31.5 31.6	31.5	100.2 99.1	99.7	7.4 7.3	7.3	7.4	4.5 4.6	4.6	4.6	5.0 3.3	4.2	3.4
					Bottom 5.4	21.2 21.5	21.3	7.3 7.4	7.4	31.7 31.4	31.6	99.7 101.1	100.4	7.4 7.4	7.4	7.4	4.6 4.6	4.6		4.2 2.2	3.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ıration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	12:51		Surface	1.0	19.6	19.6	7.4	7.4	29.3	29.3	91.0	91.3	7.0	7.0		5.6	5.6		10.0	10.6	
				8.5	Middle	4.3	19.6 19.6	19.6	7.4 7.4	7.4	29.3 29.3	29.3	91.5 90.9	91.2	7.1 7.0	7.0	7.0	5.5 5.5	5.6	5.6	8.4	9.3	9.9
				0.0			19.6 19.6		7.4 7.4		29.3 29.3		91.5 91.2		7.1 7.0			5.6 5.7		0.0	9.2		- 0.0
					Bottom	7.5	19.6	19.6	7.4	7.4	29.3	29.3	92.3	91.8	7.1	7.1	7.1	5.7	5.7		10.5	9.9	
4-Mar-15	Fine	Moderate	13:23		Surface	1.0	19.2 19.2	19.2	7.4 7.4	7.4	29.2 29.2	29.2	94.4 94.4	94.4	7.3 7.4	7.3		10.9 10.6	10.8		8.8 7.7	8.3	
				8.2	Middle	4.1	19.2	19.2	7.4	7.4	29.2	29.2	93.9	94.0	7.3	7.3	7.3	10.8	10.9	10.8	8.3	9.0	8.9
					Bottom	7.2	19.2 19.2	19.2	7.4 7.4	7.4	29.2 29.2	29.2	94.0 93.7	93.6	7.3 7.3	7.3	7.3	11.0	10.8		9.6 9.6	9.3	1
0.14:45		Madagas	40.44		Dottom	1.2	19.2	19.2	7.4	7.4	29.2	29.2	93.5	33.0	7.3	7.5	7.5	10.7	10.0		8.9	3.3	
6-Mar-15	Fine	Moderate	12:41		Surface	1.0	19.0 19.0	19.0	7.6 7.6	7.6	29.1 29.1	29.1	93.5 93.7	93.6	7.3 7.3	7.3	7.3	18.2 18.4	18.3		9.0 8.0	8.5	
				8.4	Middle	4.2	19.0 19.0	19.0	7.6 7.6	7.6	29.2 29.2	29.2	93.4 93.4	93.4	7.3 7.3	7.3	1.3	18.8 19.1	19.0	18.9	8.6 7.4	8.0	8.4
					Bottom	7.4	19.0	19.0	7.6	7.6	29.3	29.3	92.9	92.9	7.3	7.3	7.3	19.4	19.5		8.6	8.8	
9-Mar-15	Sunny	Moderate	13:39		Dottom	7	18.9 19.4	10.0	7.6 7.5	7.0	29.2 30.8	20.0	92.8 91.6	02.0	7.3 7.0	7.0	7.0	19.5 16.8	10.0	l	8.9 10.9	0.0	<u> </u>
9-IVIAI-13	Suriny	Moderate	13.39		Surface	1.0	19.5	19.5	7.5	7.5	30.8	30.8	92.3	92.0	7.0	7.0	7.0	16.4	16.6		11.2	11.1	
				8.7	Middle	4.4	19.4 19.4	19.4	7.5 7.5	7.5	30.8 30.8	30.8	91.5 91.4	91.5	7.0 7.0	7.0	7.0	16.5 16.6	16.6	16.7	10.1 10.7	10.4	11.0
					Bottom	7.7	19.4 19.4	19.4	7.5 7.4	7.5	30.9 30.8	30.9	91.6 91.7	91.7	7.0 7.0	7.0	7.0	16.5 17.4	17.0		11.6 11.4	11.5	
11-Mar-15	Cloudy	Moderate	15:01		Surface	1.0	18.9	18.9	7.4	7.5	31.4	31.4	91.7	92.0	7.0	7.1		17.4	17.9		8.8	8.7	
				0.7			18.9 18.9		7.5 7.5		31.4 31.4		92.2 91.6		7.1 7.1		7.1	17.8 18.3		40.0	8.6 8.8		0.7
				8.7	Middle	4.4	18.9 18.9	18.9	7.5 7.5	7.5	31.4 31.5	31.4	91.9 91.6	91.8	7.1 7.1	7.1		18.3 18.2	18.3	18.2	9.0 8.5	8.9	8.7
					Bottom	7.7	18.9	18.9	7.5 7.5	7.5	31.4	31.5	92.0	91.8	7.1 7.1	7.1	7.1	18.4	18.3		8.2	8.4	
13-Mar-15	Fine	Moderate	16:57		Surface	1.0	18.5 18.5	18.5	7.4 7.4	7.4	32.3 32.3	32.3	91.3 91.3	91.3	7.1 7.1	7.1		16.3 16.4	16.4		8.8 8.1	8.5	
				8.3	Middle	4.2	18.5	18.5	7.5	7.5	32.3	32.3	91.1	91.0	7.0	7.0	7.1	16.8	16.8	16.6	10.2	10.3	9.4
					Bottom	7.3	18.5 18.5	18.5	7.4 7.4	7.4	32.3 32.3	32.3	90.9 91.0	91.0	7.0	7.0	7.0	16.8 16.6	16.6		10.3 10.0	9.5	1
					Bottom	7.3	18.5	18.5	7.4	7.4	32.3	32.3	91.0	91.0	7.0	7.0	7.0	16.5	16.6		9.0	9.5	<u> </u>
16-Mar-15	Cloudy	Moderate	11:34		Surface	1.0	19.9 19.9	19.9	7.4 7.4	7.4	30.5 30.5	30.5	94.1 94.3	94.2	7.2 7.2	7.2	7.0	14.2 14.1	14.2		9.5 9.0	9.3	
				8.1	Middle	4.1	19.9 19.9	19.9	7.4 7.4	7.4	30.5 30.5	30.5	94.0 94.1	94.1	7.2 7.2	7.2	7.2	14.9 15.3	15.1	14.7	8.7 9.0	8.9	9.4
					Bottom	7.1	19.9	19.9	7.4	7.4	30.5	30.5	94.1	94.1	7.2	7.2	7.2	15.0	14.8		9.9	10.0	1
18-Mar-15	Sunny	Moderate	12:41				19.9 20.8		7.4 7.5		30.6 29.2		94.0 93.5		7.2 7.1			7.5			10.1 8.7		
TO War 10	Guiniy	Woderate	12.71		Surface	1.0	20.8	20.8	7.5	7.5	29.2	29.2	93.8	93.7	7.1	7.1	7.1	7.6	7.6		8.8	8.8	_
				8.0	Middle	4.0	20.8 20.8	20.8	7.5 7.5	7.5	29.3 29.3	29.3	93.4 92.9	93.2	7.0 7.0	7.0		7.8 7.6	7.7	7.7	10.7 9.1	9.9	9.1
					Bottom	7.0	20.8 20.9	20.8	7.5 7.5	7.5	29.5 29.6	29.5	93.2 92.9	93.1	7.0 7.0	7.0	7.0	7.8 7.7	7.8		9.5 7.9	8.7	
20-Mar-15	Sunny	Moderate	11:51		Surface	1.0	20.3	20.3	7.9	7.9	30.3	30.3	91.0	91.1	6.9	6.9		8.9	9.2		8.4	8.7	
				8.6	Middle	4.3	20.3	20.2	7.9 7.9	7.9	30.3 30.3	30.3	91.1 90.7	90.7	6.9 6.9	6.9	6.9	9.5 9.7	9.8	9.6	9.0	9.3	9.2
				0.0			20.1		7.9 7.9		30.3 30.3		90.6 90.5		6.9 6.9			9.8 10.3		9.0	9.3 9.2		9.2
					Bottom	7.6	20.3	20.2	7.9	7.9	30.3	30.3	90.7	90.6	6.9	6.9	6.9	9.4	9.9		10.2	9.7	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	13:41		Surface 1.0	19.9 19.9	19.9	7.9 7.9	7.9	30.4 30.4	30.4	91.6 91.7	91.7	7.0 7.0	7.0	7.0	9.4 9.2	9.3		10.6 10.3	10.5	
				8.3	Middle 4.2	19.9 19.9	19.9	7.9 7.9	7.9	30.5 30.5	30.5	91.4 91.2	91.3	7.0 7.0	7.0	7.0	9.0 10.0	9.5	9.6	11.6 11.5	11.6	10.9
					Bottom 7.3	19.9 19.9	19.9	7.9 7.9	7.9	30.5 30.5	30.5	91.4 91.4	91.4	7.0 7.0	7.0	7.0	9.5 10.3	9.9		11.2 10.0	10.6	
25-Mar-15	Cloudy	Moderate	15:14		Surface 1.0	19.5 19.5	19.5	7.9 7.9	7.9	30.7 30.8	30.8	91.0 91.3	91.2	7.0 7.0	7.0	7.0	6.0 6.1	6.1		7.9 8.9	8.4	
				8.4	Middle 4.2	19.5 19.5	19.5	7.9 7.9	7.9	30.8 30.8	30.8	91.3 91.1	91.2	7.0 7.0	7.0	7.0	6.2 6.6	6.4	6.4	10.0 8.9	9.5	9.0
					Bottom 7.4	19.5 19.5	19.5	7.9 7.9	7.9	30.8 30.8	30.8	91.4 91.1	91.3	7.0 7.0	7.0	7.0	6.7 6.9	6.8		9.0 8.9	9.0	
27-Mar-15	Sunny	Moderate	17:30		Surface 1.0	19.4 19.4	19.4	7.8 7.8	7.8	30.8 30.8	30.8	89.4 89.2	89.3	6.9 6.8	6.9	6.9	4.7 4.8	4.8		4.8 5.4	5.1	
				8.6	Middle 4.3	19.4 19.4	19.4	7.8 7.8	7.8	30.8 30.8	30.8	89.1 89.2	89.2	6.8 6.9	6.8	0.9	4.7 4.7	4.7	4.8	4.3 4.6	4.5	5.1
					Bottom 7.6	19.4 19.4	19.4	7.8 7.8	7.8	30.8 30.8	30.8	89.8 89.2	89.5	6.9 6.8	6.9	6.9	4.7 4.8	4.8		5.6 5.8	5.7	
30-Mar-15	Sunny	Moderate	11:39		Surface 1.0	21.5 21.5	21.5	7.3 7.3	7.3	29.6 29.6	29.6	96.2 96.1	96.2	7.2 7.2	7.2	7.2	4.8 5.1	5.0		3.3 4.0	3.7	
				8.1	Middle 4.1	21.4 21.4	21.4	7.2 7.3	7.3	29.6 29.6	29.6	95.3 95.3	95.3	7.1 7.1	7.1	1.2	5.0 5.0	5.0	5.0	4.0 4.1	4.1	4.0
					Bottom 7.1	21.4 21.3	21.3	7.3 7.2	7.2	29.6 29.7	29.7	95.2 94.8	95.0	7.1 7.1	7.1	7.1	5.0 5.1	5.1		4.2 4.4	4.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ıration (%)	Dissolv	red Oxyger	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	15:50		Surface	1.0	19.6 19.6	19.6	7.4 7.4	7.4	28.5 28.6	28.5	99.2 100.8	100.0	7.7 7.8	7.8		11.9 11.5	11.7		8.9 8.3	8.6	
				8.6	Middle	4.3	19.6	19.6	7.4	7.4	28.9	28.8	97.8	98.4	7.6	7.6	7.7	12.7	12.5	12.2	6.2	5.9	7.5
					Bottom	7.6	19.6 19.6	19.6	7.4 7.4	7.4	28.8 29.1	29.2	98.9 99.8	99.7	7.7 7.7	7.7	7.7	12.2 12.5	12.4		5.6 7.6	7.9	
111 15			47.40		Dottom	1.0	19.6	10.0	7.4	7	29.3	20.2	99.6	55.7	7.7	7.7	7.7	12.2	12.4		8.2	7.0	
4-Mar-15	Fine	Moderate	17:48		Surface	1.0	19.1 19.1	19.1	7.4 7.3	7.4	29.7 29.7	29.7	93.5 94.1	93.8	7.3 7.3	7.3	7.3	22.3 22.0	22.2		16.9 17.1	17.0	
				8.4	Middle	4.2	19.1 19.1	19.1	7.3 7.4	7.3	29.8 29.8	29.8	93.5 93.3	93.4	7.3 7.2	7.2	7.0	22.8 22.9	22.9	22.9	17.0 17.0	17.0	16.7
					Bottom	7.4	19.1 19.1	19.1	7.3 7.3	7.3	29.8 29.8	29.8	93.1 93.6	93.4	7.2 7.3	7.2	7.2	23.7 23.7	23.7		16.1 15.9	16.0	
6-Mar-15	Fine	Moderate	08:16		Surface	1.0	18.9 18.9	18.9	7.6 7.6	7.6	29.0 28.9	29.0	93.0 93.0	93.0	7.3 7.3	7.3		13.5 14.1	13.8		8.1 8.1	8.1	
				8.6	Middle	4.3	18.9	18.9	7.6	7.6	29.0	29.0	92.7	92.9	7.3	7.3	7.3	11.1	11.4	12.6	8.4	9.4	9.6
					Bottom	7.6	18.9 19.0	19.0	7.6 7.6	7.6	29.1 29.1	29.1	93.0 93.0	93.0	7.3 7.3	7.3	7.3	11.7 12.5	12.7		10.4	11.2	1
9-Mar-15	Sunny	Moderate	09:57		Surface	1.0	19.0 19.1	19.1	7.6 7.5	7.5	29.1 30.4	30.4	93.0 91.3	91.4	7.3 7.1	7.1		12.8 13.4	13.2		11.7 8.2	8.7	
							19.1 19.1	-	7.4 7.6		30.4 30.4		91.4		7.1 7.0		7.1	13.0 13.1			9.2		
				8.6	Middle	4.3	19.1 19.1	19.1	7.4 7.6	7.5	30.4 30.4	30.4	90.8 90.2	90.9	7.0	7.0		13.2 13.2	13.2	13.3	10.7 9.6	10.7	9.7
					Bottom	7.6	19.1	19.1	7.4	7.5	30.4	30.4	90.9	90.6	7.0	7.0	7.0	13.6	13.4		9.6	9.6	
11-Mar-15	Cloudy	Moderate	10:31		Surface	1.0	18.8 18.8	18.8	7.4 7.4	7.4	30.2 30.2	30.2	93.1 92.4	92.8	7.3 7.2	7.2	7.2	14.3 14.6	14.5		8.8 9.1	9.0	
				8.8	Middle	4.4	18.9 18.9	18.9	7.4 7.4	7.4	30.2 30.2	30.2	93.7 92.4	93.1	7.3 7.2	7.2	7.2	14.1 14.4	14.3	14.4	10.0 9.4	9.7	8.8
					Bottom	7.8	18.8 18.9	18.9	7.4 7.4	7.4	30.2 30.2	30.2	92.8 95.1	94.0	7.2 7.4	7.3	7.3	14.4 14.2	14.3		8.3 7.2	7.8	
13-Mar-15	Fine	Moderate	11:38		Surface	1.0	18.2	18.2	7.4	7.4	30.4	30.4	91.1	90.9	7.2	7.1		21.4	21.5		14.5	14.6	
				8.6	Middle	4.3	18.2 18.2	18.2	7.4 7.5	7.5	30.4 30.4	30.4	90.6 91.4	90.8	7.1 7.2	7.1	7.1	21.5	20.6	20.8	14.7 14.4	14.7	15.3
					Bottom	7.6	18.2 18.2	18.2	7.4 7.4	7.4	30.4 30.4	30.4	90.2 90.8	91.5	7.1 7.1	7.2	7.2	20.7 20.5	20.4		14.9 16.7	16.6	
10.11			10.51		Dottom	7.0	18.2	10.2	7.4	7.4	30.4	30.4	92.2	31.5	7.2	1.2	1.2	20.3	20.4		16.5	10.0	<u> </u>
16-Mar-15	Sunny	Moderate	13:51		Surface	1.0	20.1 20.1	20.1	7.5 7.5	7.5	30.7 30.7	30.7	95.0 94.6	94.8	7.2 7.2	7.2	7.2	14.7 14.4	14.6		7.7 7.5	7.6	
				8.4	Middle	4.2	20.0 20.0	20.0	7.5 7.5	7.5	30.7 30.7	30.7	94.4 94.2	94.3	7.2 7.2	7.2		15.9 15.2	15.6	15.3	8.7 9.1	8.9	8.7
					Bottom	7.4	19.9 20.0	20.0	7.5 7.5	7.5	30.7 30.7	30.7	94.1 94.5	94.3	7.2 7.2	7.2	7.2	15.4 15.7	15.6		9.8 9.1	9.5	
18-Mar-15	Sunny	Moderate	15:56		Surface	1.0	21.2	21.2	7.4 7.4	7.4	30.4 30.3	30.4	95.8 95.7	95.8	7.1 7.1	7.1		8.2 8.2	8.2		11.1 11.9	11.5	
				8.5	Middle	4.3	21.2	21.2	7.4	7.5	30.4	30.4	95.3	95.2	7.1	7.1	7.1	8.3	8.4	8.4	11.9	12.5	11.6
					Bottom	7.5	21.2 21.2	21.2	7.5 7.5	7.4	30.4 30.5	30.5	95.1 95.7	95.4	7.1 7.1	7.1	7.1	8.5 8.6	8.5		13.0	10.9	
20-Mar-15	Sunny	Moderate	08:02		Surface	1.0	21.2 20.4	20.4	7.4 7.9	7.9	30.4 30.3	30.3	95.0 90.6	90.6	7.1 6.8			8.4 6.3			10.8 11.6	12.0	
	·				-		20.4		7.9 7.9		30.3 30.3		90.6 90.5		6.8	6.8	6.8	6.1	6.2		12.3 11.7		
				8.3	Middle	4.2	20.4	20.4	7.9 7.9	7.9	30.3 30.3	30.3	90.5 90.4	90.5	6.8	6.8		6.3	6.2	6.1	12.3	12.0	13.1
					Bottom	7.3	20.4	20.4	7.9	7.9	30.3	30.3	90.4	90.5	6.8	6.8	6.8	6.0	6.0		15.9	15.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	ŀ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	09:41		Surface 1.	0 19.9 19.9	19.9	7.9 7.9	7.9	30.1 30.1	30.1	92.0 91.2	91.6	7.0 7.0	7.0	7.0	10.1 9.7	9.9		11.8 13.1	12.5	
				8.4	Middle 4.	2 19.9 19.9	19.9	7.9 7.9	7.9	30.1 30.1	30.1	92.7 91.5	92.1	7.1 7.0	7.0	7.0	10.0 9.6	9.8	9.8	12.8 12.1	12.5	12.4
					Bottom 7.	4 19.9 19.9	19.9	7.9 7.9	7.9	30.1 30.1	30.1	96.9 92.0	94.5	7.4 7.0	7.2	7.2	9.9 9.7	9.8		12.4 12.1	12.3	
25-Mar-15	Cloudy	Moderate	10:48		Surface 1.	0 19.5 19.5	19.5	7.9 7.9	7.9	30.5 30.5	30.5	91.1 92.6	91.9	7.0 7.1	7.0	7.1	6.6 6.1	6.4		10.6 11.9	11.3	
				8.4	Middle 4.	2 19.5 19.5	19.5	7.9 7.9	7.9	30.6 30.6	30.6	94.6 90.9	92.8	7.2 7.0	7.1	,	5.9 6.5	6.2	6.3	11.6 12.7	12.2	11.9
					Bottom 7.	4 19.5 19.5	19.5	7.9 7.9	7.9	30.6 30.6	30.6	91.0 96.1	93.6	7.0 7.4	7.2	7.2	6.4 6.2	6.3		12.1 12.2	12.2	
27-Mar-15	Cloudy	Moderate	11:16		Surface 1.	0 19.2 19.2	19.2	7.7 7.8	7.8	30.5 30.6	30.6	90.0 89.4	89.7	6.9 6.9	6.9	6.9	2.8 3.0	2.9		3.2 3.1	3.2	
				8.8	Middle 4.	4 19.2 19.2	19.2	7.8 7.7	7.7	30.7 30.7	30.7	89.5 90.3	89.9	6.9 7.0	6.9	0.9	3.0 2.9	3.0	3.0	3.6 3.9	3.8	3.4
					Bottom 7.	8 19.2 19.2	19.2	7.8 7.6	7.7	30.7 30.8	30.8	89.7 92.2	91.0	6.9 7.1	7.0	7.0	3.2 3.0	3.1		3.0 3.1	3.1	
30-Mar-15	Sunny	Moderate	14:39		Surface 1.	0 21.9 21.8	21.9	7.4 7.4	7.4	31.6 31.6	31.6	99.7 99.2	99.5	7.3 7.2	7.3	7.3	5.3 5.4	5.4		3.4 3.1	3.3	
				8.5	Middle 4.	21.7	21.7	7.4 7.4	7.4	31.9 31.9	31.9	98.4 99.0	98.7	7.2 7.2	7.2	1.5	5.5 5.3	5.4	5.4	3.4 2.4	2.9	3.3
					Bottom 7.	5 21.6 21.8	21.7	7.3 7.4	7.4	31.9 31.7	31.8	99.2 99.4	99.3	7.3 7.3	7.3	7.3	5.4 5.4	5.4		2.9 4.3	3.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	12:36		Surface	1.0	19.3 19.3	19.3	7.6 7.6	7.6	27.9 27.9	27.9	101.4 101.8	101.6	7.9 8.0	7.9		4.4 4.5	4.5		3.6 4.2	3.9	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.9	-	-	4.5	-	-	4.8
					Bottom	2.2	19.3 19.3	19.3	7.6 7.6	7.6	27.9 27.9	27.9	101.5 101.4	101.5	7.9 7.9	7.9	7.9	4.4 4.4	4.4		5.3 5.9	5.6	
4-Mar-15	Fine	Moderate	13:04		Surface	1.0	19.0	19.0	7.4	7.4	29.0	29.0	93.1	93.3	7.3	7.3		16.8	16.6		9.0	10.0	
				3.3	Middle	-	19.0	_	7.4	_	28.9	_	93.4	_	7.3	_	7.3	16.4	_	16.9	10.9	_	10.4
					Bottom	2.3	19.0	19.0	7.4	7.4	28.9	28.9	93.1	93.4	7.3	7.3	7.3	17.2	17.1		10.3	10.8	
6-Mar-15	Fine	Moderate	12:59		Surface	1.0	19.0 19.0	19.0	7.4 7.6	7.6	28.9 29.3	29.3	93.7 94.3	94.5	7.3 7.4	7.4	7.0	16.9 13.5	13.6		7.0	6.8	
				2.2		1.0	19.0 -	19.0	7.6	7.0	29.3	29.3	94.6	-	7.4	7.4	7.4	13.7	-	13.8	6.6	-	
				3.3	Middle	2.3	- 19.0	19.0	7.6	7.6	29.3	29.3	93.9	94.2	7.3	7.4	7.4	13.9		13.8	6.2	6.7	6.8
9-Mar-15	Sunny	Moderate	13:53		Bottom		19.0 19.4		7.6 7.5		29.3 30.7		94.5 94.0	-	7.4 7.2		7.4	14.0 24.6	14.0		7.2 16.6		
	,				Surface	1.0	19.5 -	19.5	7.5	7.5	30.6	30.7	94.7	94.4	7.3	7.2	7.2	25.4	25.0		16.2	16.4	
				3.3	Middle	-	- 19.5	-	7.4	-	30.7	-	94.4	-	7.2	-		- 25.5	-	25.1	15.6	-	16.4
11-Mar-15	Cloudy	Moderate	15:17		Bottom	2.3	19.5 18.9	19.5	7.5 7.6	7.4	30.7 31.0	30.7	94.6 94.6	94.5	7.3	7.2	7.2	24.7	25.1		17.0	16.3	
11-Wai-15	Cloudy	Moderate	15.17		Surface	1.0	18.9	18.9	7.6	7.6	31.0	31.0	95.5	95.1	7.4	7.3	7.3	11.5	11.3		6.6	6.2	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	11.4	-	-	6.2
					Bottom	2.3	18.9 18.9	18.9	7.6 7.6	7.6	31.1 31.1	31.1	94.8 95.2	95.0	7.3 7.4	7.3	7.3	11.4 11.4	11.4		6.0 6.2	6.1	
13-Mar-15	Fine	Moderate	17:12		Surface	1.0	18.4 18.4	18.4	7.5 7.5	7.5	31.5 31.5	31.5	93.8 95.9	94.9	7.3 7.5	7.4	7.4	14.5 14.9	14.7		8.4 8.8	8.6	
				3.1	Middle	ı	-	-		-		-		-		-	7	-	-	14.7	-	-	9.3
					Bottom	2.1	18.4 18.4	18.4	7.5 7.5	7.5	31.5 31.5	31.5	97.5 95.2	96.4	7.6 7.4	7.5	7.5	14.8 14.6	14.7		11.0 9.0	10.0	
16-Mar-15	Cloudy	Moderate	11:18		Surface	1.0	20.1 20.0	20.1	7.4 7.5	7.5	30.3 30.3	30.3	95.4 95.3	95.4	7.2 7.3	7.2	7.2	13.3 13.1	13.2		6.4 7.3	6.9	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	13.4	-	-	6.8
					Bottom	2.2	19.8 20.0	19.9	7.4 7.4	7.4	30.3 30.2	30.2	93.5 95.1	94.3	7.1 7.2	7.2	7.2	13.4 13.5	13.5		6.1 7.3	6.7	
18-Mar-15	Sunny	Moderate	12:26		Surface	1.0	20.9 20.9	20.9	7.4 7.4	7.4	29.3 29.3	29.3	96.7 96.9	96.8	7.3 7.3	7.3		5.7 5.7	5.7		5.9 6.0	6.0	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	5.6	-	-	6.5
					Bottom	2.2	20.9	20.9	7.4 7.4	7.4	29.3 29.4	29.3	96.5 96.4	96.5	7.3 7.3	7.3	7.3	5.5 5.5	5.5		6.5 7.4	7.0	1
20-Mar-15	Sunny	Moderate	12:08		Surface	1.0	21.1 21.0	21.1	7.9 7.9	7.9	30.2 30.2	30.2	94.3 93.9	94.1	7.0 7.0	7.0		2.4 2.3	2.4		11.2 10.6	10.9	
				3.4	Middle	-	-	-	-	-	- 30.2	-	- 93.9	-	-	-	7.0	- 2.3	-	2.4	-	-	10.8
					Bottom	2.4	20.9	20.9	7.9	7.9	30.1	30.1	93.5	94.0	7.0	7.0	7.0	2.4	2.3		11.5	10.7	1
							20.8		7.9		30.1		94.4		7.1			2.2			9.8	1	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	13:59		Surface	1.0	20.0 20.1	20.1	7.9 7.9	7.9	29.8 29.8	29.8	93.1 94.7	93.9	7.1 7.2	7.2	7.2	4.7 4.4	4.6		5.3 4.4	4.9	
				3.2	Middle	-		-		-		-		-		-	1.2	-	-	4.9	-	-	5.5
					Bottom	2.2	20.0 20.0	20.0	7.9 7.9	7.9	29.8 29.8	29.8	96.3 93.6	95.0	7.4 7.2	7.3	7.3	5.3 5.1	5.2		6.8 5.2	6.0	
25-Mar-15	Cloudy	Moderate	15:29		Surface	1.0	19.5 19.5	19.5	7.9 7.9	7.9	30.2 30.3	30.2	94.7 96.5	95.6	7.3 7.4	7.4	7.4	3.6 3.6	3.6		7.5 6.3	6.9	
				3.4	Middle	-		-		-	-	-		-		-	7.4	-	-	3.6	-	-	7.2
					Bottom	2.4	19.5 19.5	19.5	7.9 7.9	7.9	30.2 30.2	30.2	95.3 97.8	96.6	7.3 7.5	7.4	7.4	3.5 3.6	3.6		7.0 7.7	7.4	
27-Mar-15	Sunny	Moderate	17:44		Surface	1.0	19.7 19.6	19.6	7.8 7.8	7.8	30.1 30.1	30.1	92.3 92.7	92.5	7.1 7.1	7.1	7.1	4.4 4.5	4.5		1.7 3.2	2.5	
				3.3	Middle	-		-		-		-		-		-	7.1	-	-	4.5	-	-	2.4
					Bottom	2.3	19.4 19.4	19.4	7.8 7.8	7.8	30.2 30.3	30.2	92.5 92.2	92.4	7.1 7.1	7.1	7.1	4.3 4.4	4.4		1.9 2.6	2.3	
30-Mar-15	Sunny	Moderate	11:24		Surface	1.0	21.6 21.6	21.6	7.0 7.3	7.1	29.2 29.2	29.2	100.5 100.5	100.5	7.5 7.5	7.5	7.5	3.5 3.6	3.6		3.1 3.8	3.5	
				3.1	Middle	-	1 1	-	1 1	-	1 1	-	1 1	-		-	1.5	-	-	3.6	-	-	3.1
					Bottom	2.1	21.6 21.6	21.6	6.9 7.3	7.1	29.2 29.1	29.1	98.8 99.4	99.1	7.3 7.4	7.4	7.4	3.5 3.7	3.6		2.1 3.0	2.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	16:03		Surface	1.0	19.5 19.5	19.5	7.6 7.6	7.6	28.5 28.5	28.5	103.7 104.5	104.1	8.1 8.1	8.1		9.4 9.3	9.4		4.3 4.4	4.4	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	8.1	-	-	9.5	-	-	4.8
					Bottom	2.1	19.5	19.5	7.6	7.6	28.5	28.5	104.0	104.2	8.1	8.1	8.1	9.5	9.5		4.5	5.1	-
4-Mar-15	Fine	Moderate	18:05				19.5 19.0		7.6 7.4		28.5 29.5		104.4 94.1		8.1 7.3			9.4			5.7 12.1		
4-IVIAI-13	Tille	Woderate	18.03		Surface	1.0	19.0	19.0	7.4	7.4	29.6	29.6	94.1	94.1	7.3	7.3	7.3	21.1	21.2		12.9	12.5	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	21.4	-	-	13.1
					Bottom	2.4	19.0 19.0	19.0	7.4 7.4	7.4	29.5 29.5	29.5	94.3 94.0	94.2	7.4 7.3	7.4	7.4	21.9 21.2	21.6		13.1 14.1	13.6	
6-Mar-15	Fine	Moderate	07:58		Surface	1.0	18.8 18.8	18.8	7.6 7.6	7.6	29.2 29.2	29.2	93.2 93.0	93.1	7.3 7.3	7.3	7.3	16.7 17.0	16.9		12.4 11.8	12.1	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	1.3	-	-	16.9	-	-	11.9
					Bottom	2.4	18.8 18.8	18.8	7.6 7.6	7.6	29.2 29.2	29.2	93.4 93.4	93.4	7.3 7.3	7.3	7.3	16.9 16.8	16.9		10.7 12.7	11.7	
9-Mar-15	Sunny	Moderate	09:42		Surface	1.0	19.2 19.2	19.2	7.3 7.3	7.3	30.0 29.8	29.9	91.7 92.1	91.9	7.1 7.1	7.1		13.9	13.6		8.3 8.7	8.5	
				3.4	Middle	-	-	-	-	-	- 29.0	-	- 92.1	-	-	-	7.1	13.2	-	13.5	-	-	8.4
					Bottom	2.4	19.1	19.1	7.2	7.3	29.7	29.8	92.8	92.4	7.2	7.2	7.2	13.1	13.3		8.0	8.2	-
11-Mar-15	Cloudy	Moderate	10:17		Surface	1.0	19.2 18.9	18.9	7.3 7.4	7.4	29.9 30.2	30.2	91.9 96.7	96.0	7.1 7.5	7.5		13.4 22.9	22.8		8.4 14.2	14.8	
				0.4		1.0	18.9	10.9	7.4		30.2		95.3 -		7.4	7.5	7.5	22.7			15.3		
				3.1	Middle	-	18.9	-	7.4	-	30.2	-	- 95.8	-	7.4	-		- 22.7	-	22.9	13.5	-	14.6
40.14			11.00		Bottom	2.1	18.9	18.9	7.4	7.4	30.2	30.2	98.6	97.2	7.7	7.6	7.6	23.1	22.9		15.0	14.3	<u> </u>
13-Mar-15	Fine	Moderate	11:23		Surface	1.0	18.1 18.2	18.2	7.5 7.5	7.5	30.4 30.3	30.4	94.2 92.2	93.2	7.4 7.3	7.3	7.3	21.4 21.2	21.3		16.9 14.8	15.9	
				3.1	Middle	-	-	-	-	-	-	-	-	-		-		-	-	21.3	-	-	15.9
					Bottom	2.1	18.2 18.2	18.2	7.5 7.5	7.5	30.3 30.3	30.3	92.3 94.4	93.4	7.3 7.4	7.3	7.3	20.8 21.5	21.2		17.1 14.7	15.9	
16-Mar-15	Sunny	Moderate	14:09		Surface	1.0	20.2 20.2	20.2	7.5 7.5	7.5	30.5 30.5	30.5	95.8 95.9	95.9	7.3 7.3	7.3		15.7 15.5	15.6		9.9 10.6	10.3	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	15.7	-	-	10.4
					Bottom	2.2	20.2	20.1	7.5 7.5	7.5	30.5 30.6	30.5	95.6 94.7	95.2	7.2 7.2	7.2	7.2	15.8 15.5	15.7		10.7 10.0	10.4	•
18-Mar-15	Sunny	Moderate	16:14		Surface	1.0	21.4	21.4	7.5	7.5	30.0	29.9	100.0	99.4	7.4	7.4		11.4	11.5		4.9	5.1	
				3.0	Middle	-	21.4	-	7.5	-	29.9	_	98.8	_	7.3	_	7.4	11.6	_	11.6	5.2	_	5.9
					Bottom	2.0	21.4	21.4	7.5	7.5	30.0	30.0	100.3	100.3	7.5	7.4	7.4	11.6	11.7		7.2	6.7	-
20-Mar-15	Sunny	Moderate	07:42			1.0	21.4 20.4	20.4	7.5 7.9	7.9	30.0 30.3		100.2 90.8	91.3	7.4 6.9		7.3	11.7 5.7			6.2 5.0		
	·				Surface	1.0	20.4	20.4	7.9	7.9	30.3	30.3	91.7	91.3	6.9	6.9	6.9	6.3	6.0		3.7	4.4	ļ ,
				3.3	Middle	-	20.4	-	- 7.9	-	30.3	-	91.3	-	6.9	-		- 5.9	-	6.1	4.3	-	4.5
					Bottom	2.3	20.4	20.4	7.9	7.9	30.3	30.3	92.0	91.7	7.0	6.9	6.9	6.4	6.2		4.3	4.5	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	09:20		Surface	1.0	19.8 19.8	19.8	7.9 7.9	7.9	29.8 29.8	29.8	90.6 90.5	90.6	6.9 6.9	6.9	6.9	8.2 8.0	8.1		8.5 8.7	8.6	
				3.4	Middle	-	-	-		-	-	-	-			-	0.5	-	-	8.6	-	-	9.6
					Bottom	2.4	19.8 19.8	19.8	7.9 7.9	7.9	29.9 29.9	29.9	90.7 90.8	90.8	6.9 7.0	6.9	6.9	9.2 9.0	9.1		9.9 11.1	10.5	
25-Mar-15	Cloudy	Moderate	10:31		Surface	1.0	19.5 19.5	19.5	7.9 7.9	7.9	30.3 30.3	30.3	90.9 90.8	90.9	7.0 7.0	7.0	7.0	5.0 4.9	5.0		9.2 8.4	8.8	
				3.2	Middle	-	-	-		-	-	-	-			-	7.0	-	-	5.1	-	-	8.4
					Bottom	2.2	19.5 19.5	19.5	7.9 7.9	7.9	30.3 30.3	30.3	90.9 90.9	90.9	7.0 7.0	7.0	7.0	5.1 5.2	5.2		7.8 8.1	8.0	
27-Mar-15	Cloudy	Moderate	11:51		Surface	1.0	19.3 19.3	19.3	7.8 7.8	7.8	30.1 30.2	30.1	91.1 90.4	90.8	7.0 7.0	7.0	7.0	2.4 2.5	2.5		1.2 1.6	1.4	
				3.6	Middle	-	-	-		-	-	-		-		-	7.0	-	-	2.5	-	-	1.7
					Bottom	2.6	19.2 19.3	19.3	7.8 7.8	7.8	30.4 30.3	30.3	92.6 91.3	92.0	7.1 7.0	7.1	7.1	2.5 2.5	2.5		1.6 2.2	1.9	
30-Mar-15	Sunny	Moderate	14:54		Surface	1.0	22.1 22.1	22.1	7.4 7.4	7.4	31.4 31.4	31.4	105.7 104.6	105.2	7.7 7.6	7.7	7.7	4.7 4.7	4.7	_	3.6 3.5	3.6	
				3.3	Middle	-	-	-	1 1	-	-	-		-		-	1.1	-	-	4.8	-	-	3.7
					Bottom	2.3	22.0 22.0	22.0	7.4 7.4	7.4	31.4 31.4	31.4	105.0 101.2	103.1	7.7 7.4	7.5	7.5	4.8 4.7	4.8		3.8 3.7	3.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	12:15		Surface	1.0	19.1 19.2	19.2	7.5 7.5	7.5	28.2 28.2	28.2	97.4 97.7	97.6	7.6 7.6	7.6		6.6 6.6	6.6		4.3 4.1	4.2	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	6.7	-	-	4.4
					Bottom	3.0	19.3 19.2	19.2	7.4 7.5	7.5	28.6 28.5	28.5	98.8 98.1	98.5	7.7	7.7	7.7	6.6 6.7	6.7		4.4	4.6	
4-Mar-15	Fine	Moderate	12:38		Surface	1.0	19.0	19.0	7.4	7.4	28.7	28.7	98.5	98.6	7.7	7.7		8.8	8.7		5.7	6.2	
				3.6	Middle	_	19.0	-	7.3	_	28.7	-	98.6	-	7.8	_	7.7	8.6	_	9.2	6.6	-	6.3
				3.0	Bottom	2.6	19.0	19.0	7.3	7.3	28.7	28.6	98.5	98.5	7.7	7.8	7.8	9.4	9.7	3.2	6.2	6.3	0.5
6-Mar-15	Fine	Moderate	13:26				19.0 18.7		7.3 7.6		28.6 29.5		98.5 94.3		7.8 7.4		7.0	9.9			6.3 6.6		
0 Mai 10	1 1110	moderate	10.20		Surface	1.0	18.7	18.7	7.6	7.6	29.5	29.5	94.7	94.5	7.4	7.4	7.4	9.8	10.0		7.2	6.9	
				3.6	Middle	-	18.6	-	7.6	-	29.5	-	94.6	-	-	-		9.9	-	10.0	6.5	-	6.8
					Bottom	2.6	18.6	18.6	7.6	7.6	29.6	29.5	94.5	94.6	7.4 7.4	7.4	7.4	9.9	9.9		6.9	6.7	
9-Mar-15	Sunny	Moderate	14:16		Surface	1.0	19.5 19.6	19.5	7.5 7.5	7.5	30.6 30.6	30.6	92.9 93.6	93.3	7.1 7.2	7.1	7.1	10.6 10.5	10.6		8.7 7.7	8.2	
				4.2	Middle	1	-	-		-		-		-		-		-	-	10.6	-	-	9.9
					Bottom	3.2	19.6 19.3	19.4	7.5 7.5	7.5	30.5 30.5	30.5	92.9 92.8	92.9	7.1 7.2	7.1	7.1	10.5 10.5	10.5		11.6 11.6	11.6	
11-Mar-15	Cloudy	Moderate	15:39		Surface	1.0	18.8 18.8	18.8	7.5 7.5	7.5	30.8 30.8	30.8	91.2 91.1	91.2	7.1 7.1	7.1		11.3 11.2	11.3		6.6 6.3	6.5	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	11.3	-	-	6.3
					Bottom	3.0	18.8 18.8	18.8	7.5 7.5	7.5	30.8 30.8	30.8	91.0 90.8	90.9	7.1 7.0	7.1	7.1	11.3 11.3	11.3		6.2 5.8	6.0	
13-Mar-15	Fine	Moderate	17:33		Surface	1.0	18.5	18.5	7.5	7.5	31.2	31.2	92.6	92.4	7.2	7.2		22.0	22.2		17.0	17.4	
				3.8	Middle	-	18.5 -	-	7.5	-	31.2	-	92.1	-	7.2	-	7.2	22.4	-	22.3	17.7	-	16.1
					Bottom	2.8	18.5	18.5	7.5	7.5	31.2	31.2	92.3	92.5	7.2	7.2	7.2	22.1	22.3		15.3	14.8	
16-Mar-15	Cloudy	Moderate	10:53		Surface	1.0	18.5 19.6	19.6	7.5 7.5	7.5	31.2 30.3	30.3	92.6 92.6	92.8	7.2 7.1	7.1		22.5 15.5	16.2		14.2 14.6	14.0	
				3.9	Middle		19.6 -	-	7.5	-	30.3	-	93.0	-	7.1		7.1	16.8		16.4	13.4	-	14.5
				0.5	Bottom	2.9	19.6	19.6	7.5	7.5	30.3	30.3	92.7	93.2	7.1	7.1	7.1	16.9	16.6	10.4	14.0	15.0	14.0
18-Mar-15	Sunny	Moderate	12:04				19.6 20.5		7.5 7.4		30.3 29.1		93.7 94.2		7.2		7.1	16.3 6.4			16.0 4.0		
	,				Surface	1.0	20.5	20.5	7.4	7.4	29.0	29.0	93.6	93.9	7.1	7.1	7.1	6.3	6.4		4.2	4.1	
				4.0	Middle	-	20.6	-	- 7.4	-	29.7	-	94.3	-	- 7.1	-		6.3	-	6.4	4.2	-	4.3
00.14			40.00		Bottom	3.0	20.6	20.6	7.3	7.4	29.6	29.6	94.1	94.2	7.1	7.1	7.1	6.4	6.4		4.6	4.4	
20-Mar-15	Sunny	Moderate	12:36		Surface	1.0	20.3 20.2	20.2	7.9 7.9	7.9	29.8 29.6	29.7	90.8 90.8	90.8	6.9 6.9	6.9	6.9	4.2 4.3	4.3		10.6 10.9	10.8	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.2	-	-	11.2
					Bottom	2.7	20.3 20.4	20.3	7.9 7.9	7.9	30.1 30.2	30.2	91.1 91.6	91.4	6.9 6.9	6.9	6.9	6.0 6.2	6.1		11.9 11.0	11.5	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	p	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (n	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	14:30		Surface	1.0	19.9 20.0	20.0	7.9 7.9	7.9	29.7 29.7	29.7	91.1 90.4	90.8	7.0 6.9	6.9	6.9	4.8 4.9	4.9		6.5 7.1	6.8	
				3.6	Middle	-	-	-		-	-	i		-	-	-	0.9	-	-	4.9	-	-	6.5
					Bottom	2.6	19.9 19.9	19.9	7.9 7.9	7.9	29.8 29.8	29.8	91.5 90.5	91.0	7.0 6.9	7.0	7.0	4.8 4.9	4.9		6.8 5.6	6.2	
25-Mar-15	Cloudy	Moderate	15:58		Surface	1.0	19.4 19.4	19.4	7.9 7.9	7.9	30.2 30.2	30.2	90.0 90.2	90.1	6.9 6.9	6.9	6.9	5.8 6.3	6.1		8.9 9.7	9.3	
				3.6	Middle	-	-	-		-	-	i		-	-	-	0.9	-	-	6.7	-	-	10.7
					Bottom	2.6	19.4 19.4	19.4	7.9 7.9	7.9	30.2 30.3	30.2	90.2 90.1	90.2	6.9 6.9	6.9	6.9	7.4 7.0	7.2		11.3 12.9	12.1	
27-Mar-15	Sunny	Moderate	18:07		Surface	1.0	19.6 19.6	19.6	7.9 7.9	7.9	30.2 30.2	30.2	91.6 91.9	91.8	7.0 7.0	7.0	7.0	10.3 10.6	10.5		4.0 3.7	3.9	
				4.0	Middle	-	-	-		-	-	-		-	-	-	7.0	-	-	10.4	-	-	4.8
					Bottom	3.0	19.6 19.5	19.6	7.9 7.8	7.9	30.3 30.3	30.3	91.7 91.5	91.6	7.0 7.0	7.0	7.0	10.4 10.2	10.3		5.6 5.6	5.6	
30-Mar-15	Sunny	Moderate	11:01		Surface	1.0	21.3 21.3	21.3	7.3 7.3	7.3	29.4 29.4	29.4	95.4 95.6	95.5	7.1 7.1	7.1	7.1	17.4 17.2	17.3		14.6 14.8	14.7	
				3.8	Middle	-	-	-	1 1	-	-	-	1 1	-	-	-	7.1	-	-	17.3	-	-	14.8
					Bottom	2.8	21.2 21.3	21.2	7.3 7.3	7.3	29.4 29.4	29.4	95.3 95.3	95.3	7.1 7.1	7.1	7.1	17.3 17.1	17.2		14.9 14.7	14.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	16:27		Surface	1.0	19.1 19.1	19.1	7.6 7.6	7.6	29.3 29.3	29.3	95.8 95.9	95.9	7.5 7.5	7.5		18.8 19.0	18.9		16.2 13.8	15.0	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	19.0	-	-	15.0
					Bottom	3.1	19.1 19.1	19.1	7.6 7.6	7.6	29.3 29.3	29.3	95.8 95.8	95.8	7.5 7.5	7.5	7.5	18.8 19.2	19.0		14.0 15.9	15.0	-
4-Mar-15	Fine	Moderate	18:33				18.9		7.6		29.3		93.9		7.3			25.8			17.3		
T Mai 10		Moderate	10.00		Surface	1.0	18.9	18.9	7.4	7.4	29.7	29.7	94.2	94.1	7.3	7.3	7.3	25.5	25.7		16.0	16.7	=
				3.7	Middle	-	18.9	-	- 7.4	-	29.7	-	94.5	-	- 7.4	-		- 27.1	-	26.3	22.2	-	19.9
					Bottom	2.7	18.9	18.9	7.4	7.4	29.7	29.7	94.4	94.5	7.4	7.4	7.4	26.6	26.9		23.9	23.1	<u> </u>
6-Mar-15	Fine	Moderate	07:33		Surface	1.0	18.5 18.5	18.5	7.6 7.6	7.6	29.4 29.4	29.4	91.8 91.5	91.7	7.2 7.2	7.2	7.2	10.5 10.4	10.5		7.6 7.9	7.8	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	10.3	-	-	7.6
					Bottom	2.8	18.4 18.5	18.5	7.6 7.6	7.6	29.6 29.6	29.6	90.8 91.1	91.0	7.2 7.2	7.2	7.2	10.0 10.1	10.1		7.4 7.1	7.3	1
9-Mar-15	Sunny	Moderate	09:20		Surface	1.0	18.8 18.8	18.8	7.3 7.1	7.2	28.8 28.2	28.5	90.4 91.5	91.0	7.1 7.2	7.2		24.5 24.3	24.4		18.4 19.4	18.9	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	24.5	-	-	18.7
					Bottom	3.0	18.8	18.8	7.2	7.0	28.6	27.9	90.6	91.4	7.1 7.3	7.2	7.2	24.6	24.5		18.3	18.5	1
11-Mar-15	Cloudy	Moderate	09:53		Surface	1.0	18.8 18.7	18.7	6.8 7.4	7.4	27.1 30.1	30.1	90.8	90.3	7.1	7.0		9.2	9.4		18.6 8.3	8.4	
				4.1	Middle	_	18.7	_	7.4	_	30.1	_	89.7	_	7.0	_	7.0	9.6	_	9.5	8.5	_	8.3
					Bottom	3.1	18.7	18.8	7.4	7.4	30.1	30.1	90.3	91.5	7.0	7.1	7.1	9.5	9.5	0.0	8.1	8.1	-
					Bollom	3.1	18.8	10.0	7.4	7.4	30.1	30.1	92.7	91.5	7.2	7.1	7.1	9.4	9.5		8.0	0.1	<u> </u>
13-Mar-15	Fine	Moderate	10:58		Surface	1.0	18.5 18.5	18.5	7.5 7.5	7.5	30.1 30.1	30.1	91.2 92.0	91.6	7.1 7.2	7.2	7.2	11.2 11.0	11.1		9.2 8.2	8.7	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	11.1	-	-	8.7
					Bottom	3.0	18.5 18.5	18.5	7.5 7.5	7.5	30.1 30.1	30.1	93.6 91.6	92.6	7.3 7.2	7.2	7.2	10.9 11.1	11.0		9.2 8.0	8.6	
16-Mar-15	Sunny	Moderate	14:28		Surface	1.0	20.5 20.4	20.4	7.5 7.5	7.5	30.6 30.7	30.6	96.4 96.2	96.3	7.3 7.3	7.3	7.0	16.3 16.0	16.2		12.2 12.5	12.4	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	16.5	-	-	12.6
					Bottom	2.8	20.5	20.2	7.5 7.5	7.5	30.5 30.6	30.6	95.8 94.5	95.2	7.2 7.2	7.2	7.2	16.8 16.6	16.7		12.3 13.1	12.7	
18-Mar-15	Sunny	Moderate	16:34		Surface	1.0	20.3	20.3	7.5	7.5	29.9	29.9	92.4	92.5	7.0	7.0		14.3	14.3		17.0	16.2	†
				4.3	Middle	_	20.3	-	7.5	-	29.8	_	92.5	_	7.0	_	7.0	14.2	_	14.4	15.3	_	15.5
					Bottom	3.3	20.3	20.3	7.5	7.5	29.8	29.8	92.4	92.2	7.0	7.0	7.0	14.4	14.5	1	13.8	14.7	1
20-Mar-15	Sunny	Moderate	07:12			1.0	20.3 19.5	19.6	7.5 7.8	7.8	29.9 30.1		91.9 90.2	90.4	7.0 6.9		7.0	14.6 2.0			15.6 5.2		<u> </u>
	,				Surface	1.0	19.7	19.0	7.8	7.8	30.0	30.1	90.6	90.4	7.0	6.9	6.9	2.1	2.1		6.4	5.8	-
				3.6	Middle	-	19.3	-	- 7.8	-	30.6	-	- 89.8	-	6.9	-		3.3	-	2.7	6.6	-	5.9
					Bottom	2.6	19.5	19.5	7.8	7.8	30.0	30.3	90.4	90.1	6.9	6.9	6.9	3.0	3.2		5.2	5.9	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	08:50		Surface	1.0	19.6 19.6	19.6	7.9 7.9	7.9	30.1 30.1	30.1	95.1 92.5	93.8	7.3 7.1	7.2	7.2	15.9 15.3	15.6		12.9 12.2	12.6	
				3.6	Middle	-	-	-		-	-	-	-			-	7.2	-	-	15.7	-	-	13.0
					Bottom	2.6	19.6 19.6	19.6	7.9 7.9	7.9	30.1 30.1	30.1	96.3 93.6	95.0	7.4 7.2	7.3	7.3	16.0 15.4	15.7		13.5 13.1	13.3	
25-Mar-15	Cloudy	Moderate	10:03		Surface	1.0	19.5 19.5	19.5	7.9 7.9	7.9	30.5 30.5	30.5	91.9 96.9	94.4	7.0 7.4	7.2	7.2	9.1 9.6	9.4		9.8 9.7	9.8	
				3.6	Middle	-	-	-		-	-	-	-			-	7.2	-	-	9.5	-	-	10.3
					Bottom	2.6	19.5 19.5	19.5	7.9 7.9	7.9	30.5 30.5	30.5	94.7 98.4	96.6	7.3 7.6	7.4	7.4	9.9 9.0	9.5		10.9 10.6	10.8	
27-Mar-15	Cloudy	Moderate	10:59		Surface	1.0	19.5 19.5	19.5	7.7 7.7	7.7	30.3 30.3	30.3	90.8 89.4	90.1	7.0 6.9	6.9	6.9	6.7 6.9	6.8		7.8 7.2	7.5	
				4.1	Middle	-	-	-	1 1	-	-	-		-		-	0.5	-	-	6.9	-	-	5.8
					Bottom	3.1	19.5 19.5	19.5	7.6 7.7	7.7	30.3 30.3	30.3	92.6 90.2	91.4	7.1 6.9	7.0	7.0	6.8 6.9	6.9		4.1 3.8	4.0	
30-Mar-15	Sunny	Moderate	15:18		Surface	1.0	21.6 21.6	21.6	7.5 7.5	7.5	31.4 31.4	31.4	97.7 98.0	97.9	7.2 7.2	7.2	7.2	13.0 13.2	13.1		9.2 9.3	9.3	
				4.1	Middle	-	-	-		-	-	-		-		-	1.2	-	-	13.2	-	-	10.1
					Bottom	3.1	21.5 21.7	21.6	7.5 7.5	7.5	31.4 31.3	31.4	97.8 98.1	98.0	7.2 7.2	7.2	7.2	13.3 13.0	13.2		11.5 10.3	10.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ıration (%)	Dissolv	ed Oxygen	(mg/L)	Ti	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	12:00		Surface	1.0	18.8	18.8	7.3	7.3	29.2	29.3	92.0 90.4	91.2	7.2	7.1		15.6	16.1		10.8 13.1	12.0	
				10.4	Middle	5.2	18.8 18.6	18.6	7.3 7.2	7.3	29.4 29.9	29.9	89.5	89.9	7.1 7.0	7.0	7.1	16.6 15.1	15.3	15.8	13.1	13.9	13.0
							18.6 18.7	18.7	7.3 7.3	7.2	30.0 29.8		90.2 91.1		7.1 7.1		7.1	15.5 16.3			14.7 12.3		•
					Bottom	9.4	18.6	18.7	7.1	7.2	29.9	29.9	90.8	91.0	7.1	7.1	7.1	15.8	16.1		13.9	13.1	<u> </u>
4-Mar-15	Fine	Moderate	12:23		Surface	1.0	18.8 18.8	18.8	7.4 7.4	7.4	29.0 29.1	29.0	93.2 93.5	93.4	7.3 7.3	7.3	7.3	16.8 17.5	17.2		9.8 10.9	10.4	
				10.6	Middle	5.3	18.8 18.8	18.8	7.4 7.4	7.4	29.0 29.1	29.1	93.1 93.2	93.2	7.3 7.3	7.3	7.3	15.3 15.0	15.2	15.1	10.8 11.2	11.0	10.8
					Bottom	9.6	18.7 18.7	18.7	7.4 7.4	7.4	29.4 29.4	29.4	92.3 92.9	92.6	7.3 7.3	7.3	7.3	12.9	13.0		10.6	11.1	1
6-Mar-15	Fine	Moderate	13:44		Surface	1.0	18.5	18.5	7.4	7.6	29.4	29.6	92.9	91.9	7.2	7.2		13.0 19.3	19.5		10.9	10.5	
							18.5 18.5		7.6 7.6		29.6 29.6		91.8 91.4		7.2 7.2		7.2	19.6 19.7			10.0		
				10.8	Middle	5.4	18.5 18.5	18.5	7.6 7.6	7.6	29.6 29.6	29.6	91.8 91.6	91.6	7.2 7.2	7.2		19.5 19.8	19.6	19.7	12.1 11.3	11.2	10.9
					Bottom	9.8	18.5	18.5	7.6	7.6	29.6	29.6	91.5	91.6	7.2	7.2	7.2	20.3	20.1		10.9	11.1	
9-Mar-15	Sunny	Moderate	14:32		Surface	1.0	19.0 18.9	19.0	7.5 7.5	7.5	30.4 30.4	30.4	90.6 91.0	90.8	7.0 7.1	7.0		11.6 11.4	11.5		7.4 7.1	7.3	
				10.3	Middle	5.2	18.8 18.8	18.8	7.5 7.5	7.5	30.5 30.5	30.5	90.6 90.0	90.3	7.0 7.0	7.0	7.0	11.8 11.5	11.7	11.5	7.6 7.9	7.8	7.7
					Bottom	9.3	18.8	18.8	7.4	7.4	30.6	30.7	90.6	90.0	7.0	7.0	7.0	11.5	11.4		7.8	8.0	1
11-Mar-15	Cloudy	Moderate	15:56		Surface	1.0	18.8 18.8	18.8	7.5 7.5	7.5	30.7 30.9	30.9	89.4 90.8	90.1	6.9 7.0	7.0		11.3 11.7	11.7		8.1 9.4	9.7	
							18.8 18.8		7.5 7.5		30.9 31.0		89.4 89.3		6.9		7.0	11.6 11.5			10.0 9.7		
				10.2	Middle	5.1	18.8	18.8	7.5 7.5	7.5	31.1 31.2	31.1	91.2 92.3	90.3	7.1	7.0		11.2 11.4	11.4	11.6	10.5	10.1	9.6
					Bottom	9.2	18.8	18.8	7.5	7.5	31.2	31.2	89.0	90.7	6.9	7.0	7.0	11.8	11.6		9.2	8.9	
13-Mar-15	Fine	Moderate	17:48		Surface	1.0	18.6 18.6	18.6	7.5 7.5	7.5	31.3 31.4	31.4	89.5 90.8	90.2	7.0 7.1	7.0	7.0	20.6 21.7	21.2		15.4 14.1	14.8	
				10.0	Middle	5.0	18.6 18.6	18.6	7.5 7.5	7.5	31.5 31.5	31.5	89.2 92.0	90.6	6.9 7.1	7.0	7.0	21.1 21.2	21.2	21.4	15.0 14.3	14.7	15.0
					Bottom	9.0	18.6 18.6	18.6	7.4 7.4	7.4	31.7 31.6	31.6	89.8 94.3	92.1	7.0 7.3	7.1	7.1	22.1	21.7		14.3	15.5	1
16-Mar-15	Cloudy	Moderate	10:32		Surface	1.0	19.4	19.4	7.5	7.5	29.7	29.7	93.1	93.1	7.2	7.2		11.6	11.7		7.8	8.3	
				10.5			19.4 19.2	19.2	7.5 7.5		29.7 30.3		93.1 92.5	92.3	7.2 7.1		7.2	11.8 22.1		40.0	8.8 7.9		0.4
				10.5	Middle	5.3	19.2 19.1		7.5 7.5	7.5	30.3 30.3	30.3	92.0 92.0		7.1 7.1	7.1		22.4 23.0	22.3	18.9	7.0 9.2	7.5	8.4
					Bottom	9.5	19.1	19.1	7.4	7.4	30.4	30.4	92.6	92.3	7.2	7.1	7.1	22.5	22.8		9.7	9.5	<u> </u>
18-Mar-15	Sunny	Moderate	11:50		Surface	1.0	20.1 20.0	20.1	7.4 7.3	7.4	28.5 28.7	28.6	93.7 92.5	93.1	7.2 7.1	7.1	7.1	14.1 14.1	14.1		14.4 12.4	13.4	
				10.5	Middle	5.3	19.8 19.7	19.7	7.2 7.3	7.2	28.0 29.1	28.6	90.7 92.0	91.4	7.0 7.1	7.1	7.1	14.2 14.3	14.3	14.3	10.4 10.2	10.3	12.9
					Bottom	9.5	19.7 19.8	19.8	7.1 7.3	7.2	27.8 29.0	28.4	91.5 92.8	92.2	7.1 7.1	7.1	7.1	14.4 14.6	14.5		14.5 15.6	15.1	
20-Mar-15	Sunny	Moderate	12:55		Surface	1.0	20.0	20.0	7.9	7.9	29.7	29.6	91.3	91.6	7.0	7.0		3.2	3.3		6.8	7.0	<u> </u>
				10.6	Middle	5.3	20.1 19.2	19.2	7.9 7.9	7.9	29.6 30.6	30.6	91.9 90.3	90.1	7.0 7.0	6.9	7.0	3.4	3.4	3.4	7.2 5.2	5.4	6.6
				10.0			19.2 19.3	-	7.9 8.0		30.6 30.6		89.8 91.8		6.9 7.1		7.0	3.5 3.3		5.4	5.6 6.9		0.0
					Bottom	9.6	19.3	19.3	7.9	7.9	30.6	30.6	90.4	91.1	7.0	7.0	7.0	3.7	3.5		7.8	7.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	14:49		Surface 1.	0 20.2 20.1	20.1	7.9 7.9	7.9	29.9 29.9	29.9	91.8 90.9	91.4	7.0 6.9	7.0	6.9	3.9 4.3	4.1		5.1 6.4	5.8	
				10.7	Middle 5.	4 19.7 19.6	19.6	7.9 7.9	7.9	30.1 30.3	30.2	89.3 89.1	89.2	6.8 6.8	6.8	0.9	5.5 6.0	5.8	5.7	7.0 6.7	6.9	6.5
					Bottom 9.	7 19.6 19.7	19.6	7.9 7.9	7.9	30.6 30.3	30.4	89.8 90.5	90.2	6.9 6.9	6.9	6.9	7.2 7.1	7.2		6.7 7.1	6.9	
25-Mar-15	Cloudy	Moderate	16:22		Surface 1.	0 19.5 19.4	19.5	7.9 7.9	7.9	30.7 30.9	30.8	89.2 91.9	90.6	6.8 7.0	6.9	7.0	5.9 5.8	5.9		7.2 8.0	7.6	
				10.7	Middle 5	4 19.4 19.4	19.4	7.9 7.9	7.9	31.1 31.1	31.1	89.4 93.5	91.5	6.8 7.2	7.0	7.0	6.9 6.2	6.6	6.3	8.6 7.8	8.2	8.8
					Bottom 9	7 19.4 19.4	19.4	7.9 7.9	7.9	31.0 31.1	31.1	95.3 89.9	92.6	7.3 6.9	7.1	7.1	6.3 6.6	6.5		10.9 10.1	10.5	
27-Mar-15	Sunny	Moderate	18:23		Surface 1.	0 19.4 19.5	19.5	7.8 7.8	7.8	30.7 30.5	30.6	86.9 88.2	87.6	6.7 6.8	6.7	6.7	3.1 3.2	3.2		4.9 5.2	5.1	
				10.1	Middle 5	1 19.2 19.3	19.3	7.8 7.8	7.8	31.7 31.3	31.5	86.6 87.3	87.0	6.6 6.7	6.7	0.7	3.3 3.1	3.2	3.2	4.4 5.7	5.1	4.5
					Bottom 9	1 19.2 19.2	19.2	7.7 7.8	7.8	31.9 32.0	32.0	89.5 87.1	88.3	6.8 6.7	6.7	6.7	3.2 3.2	3.2		3.1 3.7	3.4	
30-Mar-15	Sunny	Moderate	10:46		Surface 1.	0 21.4 21.1	21.3	7.2 7.3	7.2	28.9 29.3	29.1	95.0 93.8	94.4	7.1 7.0	7.1	7.1	7.5 7.5	7.5		3.7 2.7	3.2	
				10.0	Middle 5	20.8	20.8	7.1 7.2	7.2	29.9 29.9	29.9	92.6 92.7	92.7	7.0 7.0	7.0	7.1	7.7 7.7	7.7	7.7	3.4 3.5	3.5	3.1
					Bottom 9	0 20.8 20.8	20.8	7.1 7.2	7.2	29.9 29.9	29.9	93.4 93.6	93.5	7.0 7.0	7.0	7.0	7.7 7.8	7.8		2.5 2.9	2.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	16:42		Surface	1.0	18.7 18.7	18.7	7.6 7.6	7.6	30.3 30.3	30.3	90.8 91.1	91.0	7.1 7.1	7.1		19.1 20.1	19.6		8.5 7.5	8.0	
				10.6	Middle	5.3	18.5 18.5	18.5	7.6 7.6	7.6	30.8 30.8	30.8	91.2 90.0	90.6	7.1 7.0	7.1	7.1	20.0	19.9	19.9	9.3 7.4	8.4	9.0
					Bottom	9.6	18.5	18.5	7.5	7.5	30.9	30.9	92.2	91.4	7.2	7.1	7.1	20.5	20.3		10.8	10.7	
4-Mar-15	Fine	Moderate	18:53				18.5 18.8		7.5 7.4		30.9 29.3		90.6 93.8		7.1 7.3			9.2			10.5 5.5		$igwdate{}$
4-IVIAI-13	Tille	Moderate	10.55		Surface	1.0	18.8	18.8	7.4	7.4	29.3	29.3	94.3	94.1	7.4	7.4	7.3	8.7	9.0		6.2	5.9	
				10.8	Middle	5.4	18.7 18.8	18.8	7.4 7.4	7.4	29.9 29.9	29.9	92.3 91.7	92.0	7.2 7.2	7.2		11.9 11.4	11.7	11.1	6.0 4.8	5.4	5.7
					Bottom	9.8	18.7 18.7	18.7	7.4 7.4	7.4	30.0 30.0	30.0	93.3 92.5	92.9	7.3 7.2	7.3	7.3	12.8 12.4	12.6		6.8 5.0	5.9	
6-Mar-15	Fine	Moderate	07:17		Surface	1.0	18.6 18.6	18.6	7.6 7.6	7.6	29.4 29.4	29.4	93.2 94.0	93.6	7.3 7.4	7.4		7.6 7.8	7.7		6.9 6.5	6.7	
				11.0	Middle	5.5	18.6 18.6	18.6	7.6 7.6	7.6	29.5 29.5	29.5	92.0 92.3	92.2	7.2 7.3	7.2	7.3	8.6 8.5	8.6	8.6	5.3 4.8	5.1	5.6
					Bottom	10.0	18.6	18.6	7.6	7.6	29.6	29.6	92.7	92.8	7.3	7.3	7.3	9.5	9.4		5.6	4.9	
9-Mar-15	Sunny	Moderate	09:02		Surface	1.0	18.6 18.8	18.9	7.6 7.4	7.4	29.6 29.4	29.4	92.8 91.0	91.2	7.3 7.1	7.1		9.3 16.7	16.7		4.1 4.7	4.8	
				40.5			18.9 18.8		7.4 7.4		29.4 29.5		91.3 90.3		7.1 7.1		7.1	16.7 16.7		40.7	4.8		
				10.5	Middle	5.3	18.8 18.8	18.8	7.4 7.4	7.4	29.5 29.6	29.5	91.7 91.1	91.0	7.2 7.1	7.1		16.5 16.9	16.6	16.7	3.9 4.5	4.4	4.8
					Bottom	9.5	18.8	18.8	7.4	7.4	29.7	29.7	92.1	91.6	7.2	7.2	7.2	16.6	16.8		5.8	5.2	
11-Mar-15	Cloudy	Moderate	09:37		Surface	1.0	18.8 18.8	18.8	7.4 7.3	7.4	29.9 29.9	29.9	91.0 91.6	91.3	7.1 7.1	7.1	7.2	9.2 9.5	9.4		5.7 4.9	5.3	
				10.1	Middle	5.1	18.8 18.8	18.8	7.4 7.3	7.3	30.0 30.0	30.0	91.1 92.7	91.9	7.1 7.2	7.2		10.7 10.3	10.5	10.1	5.8 4.8	5.3	5.1
					Bottom	9.1	18.8 18.8	18.8	7.3 7.3	7.3	30.0 30.0	30.0	94.4 91.1	92.8	7.4 7.1	7.2	7.2	10.1 10.4	10.3		4.4 4.8	4.6	
13-Mar-15	Fine	Moderate	10:44		Surface	1.0	18.5 18.5	18.5	7.5 7.5	7.5	30.2 30.2	30.2	90.0 89.3	89.7	7.0 7.0	7.0		8.3 7.8	8.1		5.4 5.4	5.4	
				11.0	Middle	5.5	18.6	18.6	7.5	7.5	30.4	30.5	90.2	89.6	7.0	7.0	7.0	10.2	10.2	9.6	8.1	8.0	7.0
					Bottom	10.0	18.6 18.6	18.6	7.5 7.4	7.4	30.5 30.8	30.7	88.9 93.3	91.5	6.9 7.3	7.1	7.1	10.1 10.4	10.4		7.8	7.6	
16-Mar-15	Sunny	Moderate	14:42				18.6 19.8		7.5 7.4	7.4	30.7 30.6		89.7 95.9		7.0			7.8			7.8 5.8		
	,				Surface	1.0	19.8 19.3	19.8	7.4 7.4		30.5 30.8	30.5	95.0 92.9	95.5	7.2 7.1	7.3	7.2	8.1 8.5	8.0		6.2 6.0	6.0	
				11.1	Middle	5.6	19.1 19.3	19.2	7.4 7.4	7.4	30.8	30.8	92.8 93.8	92.9	7.2 7.2	7.1		8.3 8.5	8.4	8.4	6.4 5.8	6.2	6.0
					Bottom	10.1	19.2	19.2	7.4	7.4	30.8	30.7	93.6	93.7	7.2	7.2	7.2	8.8	8.7		5.9	5.9	
18-Mar-15	Sunny	Moderate	16:50		Surface	1.0	20.3 20.4	20.3	7.4 7.5	7.5	29.1 28.6	28.9	93.4 94.4	93.9	7.1 7.2	7.2	7.1	5.8 5.9	5.9		4.2 4.8	4.5	
				10.6	Middle	5.3	20.0 20.1	20.1	7.4 7.4	7.4	29.8 29.8	29.8	91.8 92.9	92.4	7.0 7.1	7.0	7.1	5.8 5.8	5.8	5.8	4.7 4.6	4.7	4.8
					Bottom	9.6	19.9 20.2	20.1	7.4 7.4	7.4	30.1 29.5	29.8	91.5 93.4	92.5	7.0 7.1	7.0	7.0	5.9 5.7	5.8		4.7 5.5	5.1	
20-Mar-15	Sunny	Moderate	06:53		Surface	1.0	19.2	19.2	7.8	7.8	30.8	30.8	88.3	88.2	6.8	6.8		5.1	5.2		4.9	5.5	
				10.9	Middle	5.5	19.2 19.1	19.1	7.8 7.8	7.8	30.9 31.1	31.1	88.0 88.1	88.0	6.8	6.8	6.8	5.3 6.5	6.4	5.9	6.0 8.1	7.8	6.5
				10.9	-		19.1 19.1		7.8 7.8		31.1 31.1		87.8 88.1		6.8 6.8			6.3 6.2		5.5	7.5 5.8		0.5
					Bottom	9.9	19.1	19.1	7.8	7.8	31.1	31.1	87.8	88.0	6.8	6.8	6.8	5.9	6.1		6.7	6.3	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	08:30		Surface 1	.0 19.7 19.7	19.7	7.9 7.9	7.9	29.9 29.9	29.9	91.8 90.0	90.9	7.1 6.9	7.0	7.0	6.9 6.4	6.7		8.6 8.1	8.4	
				11.0	Middle 5	i.5 19.7 19.7	19.7	7.9 7.9	7.9	30.0 30.1	30.1	89.9 93.1	91.5	6.9 7.1	7.0	7.0	6.8 7.0	6.9	7.0	8.4 8.4	8.4	8.3
					Bottom 10	0.0 19.6 19.6	19.6	7.9 7.9	7.9	30.2 30.3	30.2	90.8 95.1	93.0	7.0 7.3	7.1	7.1	7.5 7.0	7.3		8.1 8.2	8.2	
25-Mar-15	Cloudy	Moderate	09:40		Surface 1	.0 19.6 19.6	19.6	7.9 7.9	7.9	30.2 30.2	30.2	91.4 90.1	90.8	7.0 6.9	7.0	7.0	4.4 4.6	4.5		6.4 6.6	6.5	
				10.7	Middle 5	19.6 19.6	19.6	7.9 7.9	7.9	30.3 30.3	30.3	92.4 90.4	91.4	7.1 6.9	7.0	7.0	5.0 5.6	5.3	5.0	7.9 7.5	7.7	7.4
					Bottom 9	19.6 19.6	19.6	7.9 7.9	7.9	30.4 30.5	30.4	91.2 93.9	92.6	7.0 7.2	7.1	7.1	5.0 5.1	5.1		7.9 7.9	7.9	
27-Mar-15	Cloudy	Moderate	10:44		Surface 1	.0 19.4 19.4	19.4	7.8 7.8	7.8	30.0 29.8	29.9	87.8 88.5	88.2	6.8 6.8	6.8	6.8	2.3 2.2	2.3		2.2 2.0	2.1	
				10.4	Middle 5	19.3 19.3	19.3	7.8 7.7	7.8	31.2 31.2	31.2	87.5 88.0	87.8	6.7 6.7	6.7	0.0	3.1 3.0	3.1	2.9	1.7 1.7	1.7	1.9
					Bottom 9	19.3 19.3	19.3	7.6 7.8	7.7	31.7 31.4	31.6	88.9 88.5	88.7	6.8 6.8	6.8	6.8	3.2 3.3	3.3		1.9 1.8	1.9	
30-Mar-15	Sunny	Moderate	15:32		Surface 1	.0 21.7 21.6	21.6	7.4 7.4	7.4	31.1 31.2	31.2	99.2 99.5	99.4	7.3 7.3	7.3	7.2	7.2 7.2	7.2		2.9 2.5	2.7	
				10.6	Middle 5	21.0 21.2	21.1	7.4 7.4	7.4	31.8 31.6	31.7	95.6 97.4	96.5	7.1 7.2	7.1	1.2	8.0 7.8	7.9	7.7	2.6 2.3	2.5	2.7
					Bottom 9	20.9 21.1	21.0	7.4 7.4	7.4	32.1 31.8	31.9	96.5 98.7	97.6	7.2 7.3	7.2	7.2	7.8 8.2	8.0		2.9 2.8	2.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ing	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.2	Middle	0.6	19.6 19.6	19.6	7.4 7.4	7.4	29.3 29.3	29.3	91.7 91.1	91.4	7.1 7.0	7.1	7.1	4.6 4.6	4.6	4.6	7.6 7.2	7.4	7.4
					Bottom		-	-	-	-	-	-	-	-	-		-	-	-		-	_	1
4-Mar-15	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-		-	-	
				1.2	Middle	0.6	19.2 19.2	19.2	7.4 7.4	7.4	29.2 29.2	29.2	94.9 95.2	95.1	7.4 7.4	7.4	7.4	10.0 9.9	10.0	10.0	8.1 8.3	8.2	8.2
					Bottom		-	-	-	-	-	-		-		-	1	-	-		-	-	
6-Mar-15	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-		-	-	
				1.2	Middle	0.6	19.0 19.0	19.0	7.6 7.6	7.6	29.0 29.0	29.0	94.1 94.2	94.2	7.4 7.4	7.4	7.4	17.7 17.9	17.8	17.8	8.1 9.0	8.6	8.6
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
9-Mar-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-		-	-	-	7.1	-	-		-	-	
				1.4	Middle	0.7	19.5 19.5	19.5	7.4 7.4	7.4	30.9 30.9	30.9	92.6 92.4	92.5	7.1 7.1	7.1	7	14.5 14.2	14.4	14.4	10.5 9.8	10.2	10.2
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
11-Mar-15	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-		-	-	
				1.4	Middle	0.7	18.9 18.9	18.9	7.5 7.5	7.5	31.4 31.4	31.4	94.2 93.3	93.8	7.3 7.2	7.2		16.5 16.3	16.4	16.4	9.4 10.4	9.9	9.9
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
13-Mar-15	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-		-	-	
				1.2	Middle	0.6	18.4 18.5	18.5	7.3 7.4	7.4	32.2 32.2	32.2	95.5 93.2	94.4	7.4 7.2	7.3		15.5 15.4	15.5	15.5	9.8 8.9	9.4	9.4
	2				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
16-Mar-15	Cloudy	Moderate	-		Surface	-	-	-		-	-	-	-	-	-	-	7.2	-	-		-	-	
				1.4	Middle	0.7	19.9 19.9	19.9	7.5 7.5 -	7.5	30.5 30.5	30.5	94.0 94.3	94.2	7.2 7.2	7.2		12.2 13.6	12.9	12.9	4.8 5.7	5.3	5.3
19 Mor 15	Cuppy	Moderate			Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<u> </u>	-	
18-Mar-15	Sunny	Moderate	_		Surface	-	20.8	-	7.5	-	29.0	-	94.3	-	7.1	-	7.1	5.4	-		8.1	-	
				1.4	Middle	0.7	20.8	20.8	7.5 7.5	7.5	29.0	29.0	94.3	94.3	7.1	7.1		5.1	5.3	5.3	9.6	8.9	8.9
20-Mar-15	Sunny	Moderate	 	<u> </u>	Bottom	-		-	-	-	-	-	-	-	-	-	-	-	-			-	
20-iviai - 15	Suring	woderate	_		Surface	-	20.1	-	8.0	-	30.4	-	91.6	-	7.0	-	6.9	7.4	-		9.3	-	
				1.6	Middle	8.0	20.1	20.1	8.0	8.0	30.3	30.3	91.3	91.5	6.9	6.9		7.4	7.2	7.2	9.0	9.2	9.2
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	ţ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	-		Surface		-	-	-	-	-	-	-	-	-	-	6.9	-	-		-	-	
				1.6	Middle	0.8	19.9 20.0	19.9	8.0 8.1	8.1	30.8 30.8	30.8	90.8 90.5	90.7	6.9 6.9	6.9	0.9	8.0 8.4	8.2	8.2	17.3 18.6	18.0	18.0
					Bottom	-	-	-		-	-	-	-	-		-	-	-	-		-	-	
25-Mar-15	Cloudy	Moderate	-		Surface	-	-	-		-	-	-	-	-		-	7.3	-	-		-	-	
				1.4	Middle	0.7	19.5 19.5	19.5	8.0 8.0	8.0	30.8 30.8	30.8	94.5 95.7	95.1	7.2 7.3	7.3	7.5	5.2 5.2	5.2	5.2	9.4 9.7	9.6	9.6
					Bottom	-	-	-		-	-	-	-	-		-	-	-	-		-	-	
27-Mar-15	Sunny	Moderate	-		Surface		-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
				1.4	Middle	0.7	19.4 19.4	19.4	7.7 7.7	7.7	30.8 30.8	30.8	90.9 90.5	90.7	7.0 6.9	7.0	7.0	3.8 4.0	3.9	3.9	5.7 5.9	5.8	5.8
					Bottom	-	-	-		-	-	-	-	-		-	-	-	-		-	-	
30-Mar-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-		-	-	
				1.4	Middle	0.7	21.5 21.5	21.5	7.4 7.4	7.4	29.6 29.6	29.6	96.6 96.5	96.6	7.2 7.2	7.2	1.2	5.1 5.0	5.1	5.1	4.5 6.0	5.3	5.3
					Bottom	-		-		-		-	-	-		-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				3.2	Middle	1.6	19.6 19.5	19.6	7.3 7.2	7.3	28.1 27.7	27.9	103.8 102.7	103.3	8.1 8.0	8.0	8.0	10.9 10.7	10.8	10.8	7.0 8.3	7.7	7.7
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
4-Mar-15	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.4	Middle	0.7	19.1 19.1	19.1	7.4 7.4	7.4	29.7 29.7	29.7	93.8 94.2	94.0	7.3 7.3	7.3	7.3	19.0 19.1	19.1	19.1	18.1 20.2	19.2	19.2
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
6-Mar-15	Fine	Moderate	-		Surface	-	-	-	-	-	-	-		-		-		-	-		-	-	
				1.4	Middle	0.7	18.9 18.9	18.9	7.7 7.7	7.7	29.0 29.0	29.0	94.8 94.5	94.7	7.4 7.4	7.4	7.4	14.9 14.2	14.6	14.6	9.8 9.6	9.7	9.7
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
9-Mar-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-		-	-	-		-	-		-	-	
				1.6	Middle	0.8	19.1 19.1	19.1	7.4 7.4	7.4	30.4 30.4	30.4	91.3 91.1	91.2	7.1 7.0	7.0	7.0	12.8 12.7	12.8	12.8	8.1 8.2	8.2	8.2
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
11-Mar-15	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.4	Middle	0.7	18.8 18.8	18.8	7.5 7.5	7.5	30.1 30.1	30.1	92.6 92.3	92.5	7.2 7.2	7.2	7.2	13.4 13.3	13.4	13.4	7.8 8.0	7.9	7.9
					Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	
13-Mar-15	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.2	Middle	0.6	18.2 18.2	18.2	7.5 7.5	7.5	30.4 30.4	30.4	90.7 90.3	90.5	7.1 7.1	7.1	7.1	20.9 20.8	20.9	20.9	18.8 16.2	17.5	17.5
					Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	
16-Mar-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-		-	-	
				1.4	Middle	0.7	20.0 20.1	20.0	7.4 7.5	7.4	30.7 30.6	30.7	94.6 95.1	94.9	7.2 7.2	7.2	1.2	12.1 12.5	12.3	12.3	9.6 8.8	9.2	9.2
					Bottom	-	-	-	-	-		-		-		-	-	-	-		-	-	
18-Mar-15	Sunny	Moderate	-		Surface	-	-	-	-	-		-		-	-	-	7.1	-	-		-	-	
				1.4	Middle	0.7	21.2 21.2	21.2	7.5 7.5	7.5	30.5 30.5	30.5	95.6 95.9	95.8	7.1 7.1	7.1	7.1	8.8 8.7	8.8	8.8	10.6 11.7	11.2	11.2
					Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	
20-Mar-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	_	-	-	
				1.6	Middle	0.8	20.4 20.4	20.4	7.9 7.9	7.9	30.3 30.3	30.3	90.9 90.7	90.8	6.9 6.9	6.9	0.0	4.9 5.0	5.0	5.0	13.5 14.7	14.1	14.1
					Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	ţ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	-		Surface		-	-	-	-	-	-	-	-	-	-	6.9	-	-		-	-	
				1.6	Middle	0.8	19.9 19.9	19.9	7.9 7.9	7.9	30.1 30.1	30.1	90.7 90.7	90.7	6.9 6.9	6.9	6.9	9.3 8.6	9.0	9.0	11.9 12.2	12.1	12.1
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
25-Mar-15	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
				1.6	Middle	8.0	19.5 19.5	19.5	7.9 7.9	7.9	30.5 30.5	30.5	91.0 91.2	91.1	7.0 7.0	7.0	7.0	6.0 5.8	5.9	5.9	12.2 13.0	12.6	12.6
					Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	
27-Mar-15	Cloudy	Moderate	-		Surface		-	-	-	-	-	-	-	-	-	-	6.9	-	-		-	-	
				1.4	Middle	0.7	19.2 19.3	19.3	7.9 7.9	7.9	30.6 30.5	30.5	88.8 89.0	88.9	6.8 6.9	6.9	0.9	2.5 2.6	2.6	2.6	1.7 2.2	2.0	2.0
					Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	
30-Mar-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-		-	7.2	-	-	_	-	-	
				1.2	Middle	0.6	22.0 22.0	22.0	7.3 7.2	7.3	31.1 30.9	31.0	99.7 97.2	98.5	7.3 7.1	7.2	1.2	5.2 5.2	5.2	5.2	4.1 5.0	4.6	4.6
					Bottom	-	-	-		-		-	-	-		-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	12:21		Surface	1.0	19.2 19.1	19.2	7.6 7.6	7.6	28.2 28.2	28.2	96.6 95.9	96.3	7.6 7.5	7.5		4.6 4.4	4.5		5.4 4.5	5.0	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	4.5	-	-	5.2
					Bottom	2.7	19.4 19.2	19.3	7.5 7.5	7.5	28.7 28.5	28.6	96.6 97.0	96.8	7.5 7.6	7.5	7.5	4.4	4.4		5.7 5.0	5.4	
4-Mar-15	Fine	Moderate	12:46		Surface	1.0	19.0	19.0	7.3	7.3	29.0	29.0	98.8	98.9	7.7	7.7		8.1	8.1		6.7	6.5	
				3.6	Middle	-	19.0	_	7.3	-	29.1	_	98.9	_	7.7	_	7.7	8.0	_	8.4	6.2	_	6.8
					Bottom	2.6	19.0	19.0	7.1	7.2	29.0	29.0	99.2	99.1	7.8	7.7	7.7	8.7	8.7		6.5	7.1	
6-Mar-15	Fine	Moderate	13:18		Surface	1.0	19.0 18.6	18.6	7.3 7.6	7.6	29.0 29.5	29.6	99.0 93.4	93.4	7.7	7.3		8.7 10.6	10.5		7.6 6.7	7.1	
				0.5		1.0	18.6 -		7.6		29.6		93.3		7.3	1.3	7.3	10.4		44.0	7.5		
				3.5	Middle	-	- 18.6	-	7.6	-	29.6	-	93.3	-	7.3	-		11.6	-	11.0	7.2	-	6.9
9-Mar-15	Sunny	Moderate	14:08		Bottom	2.5	18.6 19.6	18.6	7.6 7.5	7.6	29.5 30.6	29.6	93.1 93.3	93.2	7.3 7.1	7.3	7.3	11.3	11.5		6.1	6.7	
3-Wai-13	Odility	Woderate	14.00		Surface	1.0	19.7	19.7	7.5	7.5	30.6	30.6	93.8	93.6	7.2	7.1	7.1	11.4	11.2		10.1	10.5	
				3.7	Middle	-	-	-	-	-	-	-	-	-		-		-	-	11.2	-	-	9.6
					Bottom	2.7	19.6 19.3	19.4	7.5 7.4	7.5	30.5 30.6	30.5	92.8 93.5	93.2	7.1 7.2	7.2	7.2	11.1 11.1	11.1		8.8 8.4	8.6	<u> </u>
11-Mar-15	Cloudy	Moderate	15:32		Surface	1.0	18.8 18.8	18.8	7.6 7.6	7.6	30.8 30.8	30.8	93.4 92.4	92.9	7.3 7.2	7.2	7.2	11.3 11.1	11.2		7.2 7.3	7.3	
				3.7	Middle	-	-	-		-		-		-	-	-		-	-	11.4	-	-	7.2
					Bottom	2.7	18.8 18.8	18.8	7.6 7.6	7.6	30.8 30.8	30.8	92.2 94.1	93.2	7.2 7.3	7.2	7.2	11.6 11.6	11.6		7.2 6.8	7.0	
13-Mar-15	Fine	Moderate	17:28		Surface	1.0	18.5 18.5	18.5	7.5 7.5	7.5	31.2 31.2	31.2	93.9 94.4	94.2	7.3 7.3	7.3	7.3	21.4 21.1	21.3		13.9 12.3	13.1	
				3.7	Middle	-	-	-		-		-	-	-	-	-	7.3	-	-	21.2	-	-	13.3
					Bottom	2.7	18.5 18.5	18.5	7.4 7.5	7.5	31.2 31.2	31.2	96.4 94.0	95.2	7.5 7.3	7.4	7.4	21.5 20.6	21.1		13.0 13.7	13.4	
16-Mar-15	Cloudy	Moderate	11:00		Surface	1.0	19.8 19.8	19.8	7.4 7.4	7.4	30.0 30.0	30.0	90.8 91.2	91.0	6.9 7.0	7.0		8.4 8.7	8.6		5.6 7.2	6.4	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	8.6	-	-	6.8
					Bottom	2.6	19.8 19.8	19.8	7.4 7.4	7.4	30.0 30.1	30.1	90.9	91.8	6.9 7.1	7.0	7.0	8.6 8.4	8.5		6.0 8.1	7.1	
18-Mar-15	Sunny	Moderate	12:12		Surface	1.0	20.5	20.5	7.4	7.4	28.8	28.9	94.0	94.2	7.1	7.2		5.5	5.5		6.1	6.2	
				3.6	Middle	-	20.5	-	7.4	-	28.9	-	94.3	-	7.2	-	7.2	5.4	-	5.5	6.2	-	5.9
					Bottom	2.6	20.6	20.6	7.4	7.4	29.8	29.7	94.3	94.4	7.1	7.1	7.1	5.3	5.4		5.5	5.5	
20-Mar-15	Sunny	Moderate	12:26		Surface	1.0	20.6 20.1	20.1	7.4 7.9	7.9	29.7 29.4	29.3	94.5 93.0	92.7	7.1 7.1	7.1		5.5 3.4	3.5		5.5 7.4	7.5	
				3.6	Middle	1.0	20.1	20.1	7.9	7.9	29.3	29.3	92.3	- 52.1	7.1	/	7.1	3.6	-	3.7	7.5	7.5	7.5
				3.0		- 0.0	20.2		7.9		29.9		94.1		7.1	7.4	7.4	4.0		3.1	7.5		7.5
					Bottom	2.6	20.2	20.2	7.9	7.9	30.2	30.1	92.8	93.5	7.0	7.1	7.1	3.8	3.9		7.4	7.5	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ng	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	14:19		Surface	1.0	20.2 20.1	20.1	7.9 7.9	7.9	29.6 29.7	29.6	92.9 92.0	92.5	7.1 7.0	7.0	7.0	4.8 4.7	4.8		6.0 5.6	5.8	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	4.9	-	-	6.5
					Bottom	2.4	20.0 19.9	20.0	7.9 7.9	7.9	29.6 29.7	29.7	92.6 93.8	93.2	7.1 7.2	7.1	7.1	4.8 5.0	4.9		8.1 6.1	7.1	
25-Mar-15	Cloudy	Moderate	15:48		Surface	1.0	19.4 19.4	19.4	7.9 7.9	7.9	30.2 30.2	30.2	93.7 92.0	92.9	7.2 7.1	7.1	7.1	4.8 4.8	4.8		8.7 8.5	8.6	
				3.7	Middle	-	-	•		-		-	-	-	-	-	7.1	-	-	4.9	-	-	8.1
					Bottom	2.7	19.4 19.4	19.4	7.9 7.9	7.9	30.2 30.2	30.2	92.5 95.8	94.2	7.1 7.4	7.2	7.2	4.8 4.9	4.9		8.0 7.0	7.5	
27-Mar-15	Sunny	Moderate	18:03		Surface	1.0	19.6 19.6	19.6	7.8 7.8	7.8	30.2 30.2	30.2	93.3 92.8	93.1	7.1 7.1	7.1	7.1	11.1 11.1	11.1		4.9 4.8	4.9	
				3.7	Middle	-	-	-		-		-	-	-	-	-	7.1	-	-	11.2	-	-	4.4
					Bottom	2.7	19.5 19.6	19.6	7.7 7.8	7.8	30.3 30.3	30.3	93.1 93.0	93.1	7.1 7.1	7.1	7.1	11.2 11.1	11.2		3.6 4.0	3.8	
30-Mar-15	Sunny	Moderate	11:07		Surface	1.0	21.3 21.3	21.3	7.4 7.4	7.4	29.4 29.4	29.4	96.0 96.0	96.0	7.2 7.2	7.2	7.2	14.1 14.4	14.3		15.4 14.2	14.8	
				3.8	Middle	-	-	-	1 1	-		-	-	-	-	-	1.2	-	-	14.7	-	-	14.3
					Bottom	2.8	21.3 21.3	21.3	7.4 7.4	7.4	29.4 29.4	29.4	95.9 95.7	95.8	7.2 7.2	7.2	7.2	15.1 15.1	15.1		14.1 13.5	13.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	16:22		Surface	1.0	19.1 19.1	19.1	7.6 7.6	7.6	29.3 29.2	29.3	96.0 96.6	96.3	7.5 7.5	7.5		20.3 20.4	20.4		13.5 15.5	14.5	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	20.3	-	-	14.3
					Bottom	2.8	19.1 19.1	19.1	7.5 7.6	7.6	29.4	29.3	98.3 96.7	97.5	7.7 7.5	7.6	7.6	20.3	20.2		13.4 14.8	14.1	
4-Mar-15	Fine	Moderate	18:25		Surface	1.0	18.9	18.9	7.4	7.4	29.6	29.6	93.6	93.5	7.3	7.3		24.8	24.5		18.8	18.4	
				3.6	Middle	1.0	18.9	-	7.4	-	29.6	-	93.4	-	7.3	7.0	7.3	24.1	24.0	25.0	17.9	10.4	17.9
				3.0			- 18.9		7.4		29.6		93.8		7.3	7.0	7.0	25.3	25.5	23.0	17.4	47.4	17.9
6-Mar-15	Fine	Moderate	07:41		Bottom	2.6	18.9 18.5	18.9	7.4 7.6	7.4	29.6 29.4	29.6	93.8 92.3	93.8	7.3 7.3	7.3	7.3	25.7 10.6	25.5		17.4 8.0	17.4	
0-IVIAI-13	Fille	Moderate	07.41		Surface	1.0	18.5	18.5	7.6	7.6	29.4	29.4	92.0	92.2	7.2	7.2	7.2	10.6	10.6		6.6	7.3	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	10.7	-	-	7.5
					Bottom	2.7	18.5 18.5	18.5	7.6 7.6	7.6	29.5 29.6	29.5	91.6 92.1	91.9	7.2 7.2	7.2	7.2	10.5 10.8	10.7		8.2 7.0	7.6	
9-Mar-15	Sunny	Moderate	09:26		Surface	1.0	18.8 18.8	18.8	7.4 7.4	7.4	29.5 29.4	29.5	90.4 90.2	90.3	7.1 7.1	7.1	7.1	25.3 25.3	25.3		14.2 14.4	14.3	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	25.3	-	-	14.1
					Bottom	2.8	18.8 18.8	18.8	7.4 7.4	7.4	29.5 29.5	29.5	90.4 90.4	90.4	7.1 7.1	7.1	7.1	25.3 25.1	25.2		13.8 14.0	13.9	
11-Mar-15	Cloudy	Moderate	10:00	1	Surface	1.0	18.7 18.7	18.7	7.5 7.4	7.5	30.1 30.1	30.1	90.4 90.8	90.6	7.1 7.1	7.1		14.6 14.1	14.4		8.0 9.2	8.6	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	14.2	-	-	10.5
					Bottom	2.6	18.7	18.7	7.4	7.5	30.1	30.1	90.3	90.4	7.0	7.0	7.0	13.8	14.0		11.9	12.3	
13-Mar-15	Fine	Moderate	11:06	<u> </u>	Surface	1.0	18.7 18.5	18.5	7.5 7.5	7.5	30.1 30.1	30.1	90.4	90.0	7.1 7.1	7.0		14.2 13.5	13.3		12.6 9.1	8.3	
				3.8	Middle		18.5 -	_	7.5	_	30.1	_	89.9	_	7.0		7.0	13.1	_	13.4	7.5		8.5
				0.0	Bottom	2.8	18.5	18.5	7.5	7.5	30.1	30.1	89.3	89.5	7.0	7.0	7.0	13.6	13.5	10.4	8.5	8.6	0.0
16-Mar-15	Sunny	Moderate	14:21				18.5 20.5		7.5 7.5		30.1 30.6		89.7 95.6		7.0 7.2		7.0	13.3 18.7			8.6 9.4		
					Surface	1.0	20.5	20.5	7.5	7.5	30.6	30.6	96.6	96.1	7.3	7.2	7.2	18.9	18.8		9.2	9.3	
				3.6	Middle	-	20.4	-	- 7.5	-	30.6	-	- 95.8	-	7.2	-		- 18.8	-	18.8	9.6	-	9.4
					Bottom	2.6	20.1	20.2	7.5	7.5	30.6	30.6	95.6	95.7	7.3	7.2	7.2	18.5	18.7		9.3	9.5	
18-Mar-15	Sunny	Moderate	16:28		Surface	1.0	20.4 20.3	20.3	7.4 7.4	7.4	29.8 29.9	29.8	94.6 92.7	93.7	7.2 7.0	7.1	7.1	12.3 12.5	12.4		15.0 14.5	14.8	
				3.7	Middle	-	-	-	-	-	-	-		-	-	-		-	-	12.3	-	-	16.0
					Bottom	2.7	20.3 20.3	20.3	7.5 7.4	7.4	29.9 29.9	29.9	92.9 93.2	93.1	7.1 7.1	7.1	7.1	12.3 12.1	12.2		16.8 17.6	17.2	
20-Mar-15	Sunny	Moderate	07:25		Surface	1.0	19.5 19.4	19.5	7.8 7.8	7.8	30.2 30.3	30.2	89.9 89.7	89.8	6.9 6.9	6.9	0.0	2.3 2.3	2.3		5.9 5.2	5.6	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	2.4	-	-	5.8
					Bottom	2.4	19.2	19.3	7.8	7.8	30.8	30.6	89.2	89.4	6.9	6.9	6.9	2.5	2.5		6.1	5.9	
					Domoili	2.7	19.4	19.0	7.8	7.0	30.5	30.0	89.6	00.4	6.9	0.9	0.0	2.4	2.0		5.6	5.5	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Temper	ature (°C)	ţ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (ı	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	09:00		Surface	1.0	19.6 19.6	19.6	7.9 7.9	7.9	30.1 30.1	30.1	89.1 89.7	89.4	6.8 6.9	6.9	6.9	10.5 10.9	10.7		13.6 14.3	14.0	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-		0.5	-	-	12.0	-	-	13.7
					Bottom	2.4	19.6 19.6	19.6	7.9 7.9	7.9	30.1 30.1	30.1	89.4 89.6	89.5	6.9 6.9	6.9	6.9	13.7 12.6	13.2		13.7 13.1	13.4	
25-Mar-15	Cloudy	Moderate	10:13		Surface	1.0	19.5 19.5	19.5	7.9 7.9	7.9	30.5 30.5	30.5	89.9 90.0	90.0	6.9 6.9	6.9	6.9	8.8 8.4	8.6		11.5 11.2	11.4	
				3.6	Middle	-	-	-		-		-		-		-	0.9	-	-	8.8	-	-	12.1
					Bottom	2.6	19.5 19.5	19.5	7.9 7.9	7.9	30.5 30.5	30.5	90.0 90.0	90.0	6.9 6.9	6.9	6.9	9.2 8.8	9.0		12.7 12.7	12.7	
27-Mar-15	Cloudy	Moderate	11:04		Surface	1.0	19.5 19.5	19.5	7.8 7.9	7.9	30.3 30.3	30.3	87.7 87.6	87.7	6.7 6.7	6.7	6.7	8.1 8.6	8.4		10.5 11.0	10.8	
				3.9	Middle	-	-	-		-		-		-		-	0.7	-	-	8.4	-	1	8.4
					Bottom	2.9	19.4 19.5	19.5	7.8 7.8	7.8	30.3 30.3	30.3	87.8 87.7	87.8	6.7 6.7	6.7	6.7	8.1 8.5	8.3		5.9 6.0	6.0	
30-Mar-15	Sunny	Moderate	15:12		Surface	1.0	21.6 21.6	21.6	7.4 7.4	7.4	31.4 31.4	31.4	97.1 97.5	97.3	7.1 7.2	7.1	7.1	14.2 14.0	14.1		9.8 9.3	9.6	
				3.7	Middle	-	-	-		-	-	-		-		-	7.1	-	-	14.3	-	-	9.8
					Bottom	2.7	21.6 21.6	21.6	7.3 7.4	7.4	31.4 31.4	31.4	96.4 97.3	96.9	7.1 7.1	7.1	7.1	14.3 14.4	14.4		9.2 10.6	9.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	11:40		Surface	1.0	18.1 18.1	18.1	7.9 7.9	7.9	30.6 30.4	30.5	93.4 93.5	93.5	7.4 7.4	7.4	7.4	2.6 2.5	2.6		5.0 5.9	5.5	
				5.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	2.6	-	-	6.0
					Bottom	4.6	18.1 18.1	18.1	7.9 7.9	7.9	30.6 30.7	30.7	93.4 93.6	93.5	7.4 7.4	7.4	7.4	2.6 2.6	2.6		6.9 6.0	6.5	
4-Mar-15	Fine	Moderate	12:38		Surface	1.0	18.1 18.1	18.1	7.9 7.9	7.9	29.4 29.4	29.4	95.2 95.1	95.2	7.5 7.5	7.5		3.5 3.3	3.4		6.3 6.0	6.2	
				5.0	Middle	-	-	-		-	-	-		-	-	-	7.5	-	-	3.2	-	-	5.5
					Bottom	4.0	18.1 18.1	18.1	7.9 7.9	7.9	29.5 29.5	29.5	94.0 95.3	94.7	7.5 7.6	7.5	7.5	3.0 2.8	2.9		4.6 5.0	4.8	
6-Mar-15	Fine	Moderate	13:03		Surface	1.0	18.0 18.0	18.0	7.9 7.9	7.9	30.0 29.8	29.9	93.5 92.9	93.2	7.4 7.4	7.4		2.9 2.9	2.9		5.5 4.4	5.0	
				5.2	Middle	-	-	-		-	-	-	-	-	-	-	7.4	-	-	3.2	-	-	5.0
					Bottom	4.2	17.7 17.8	17.8	7.9 7.9	7.9	31.3 31.3	31.3	94.5 93.1	93.8	7.5 7.3	7.4	7.4	3.5	3.4		4.9 4.9	4.9	
9-Mar-15	Sunny	Moderate	14:41		Surface	1.0	18.3 18.2	18.2	7.8 7.8	7.8	30.1 30.2	30.2	89.0 89.1	89.1	7.0 7.0	7.0		2.6 2.7	2.7		5.0 6.0	5.5	
				5.3	Middle	-	-	-		-	-	-	-	-	-	-	7.0	-	-	2.9	-	-	6.4
					Bottom	4.3	18.1 18.2	18.1	7.8 7.8	7.8	30.6 30.6	30.6	89.7 89.4	89.6	7.1 7.0	7.0	7.0	3.1 2.8	3.0		7.6 6.9	7.3	
11-Mar-15	Cloudy	Moderate	15:50		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	30.6 31.0	30.8	93.5 91.5	92.5	7.4 7.2	7.3		2.7 2.8	2.8		3.8 2.9	3.4	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	3.3	-	-	4.0
					Bottom	4.3	17.9 17.9	17.9	7.9 7.9	7.9	31.1 31.3	31.2	92.8 95.2	94.0	7.3 7.5	7.4	7.4	4.0 3.6	3.8		4.6 4.4	4.5	
13-Mar-15	Fine	Moderate	17:52		Surface	1.0	17.7 17.7	17.7	7.9 7.9	7.9	31.5 31.5	31.5	89.5 90.4	90.0	7.1 7.1	7.1		3.7 3.9	3.8		8.7 8.8	8.8	
				5.3	Middle	-		-		-	-	-	-	-	-	-	7.1	-	-	4.1	-	-	8.1
					Bottom	4.3	17.7 17.7	17.7	7.9 7.9	7.9	31.6 31.6	31.6	91.3 89.5	90.4	7.2 7.1	7.1	7.1	4.5 4.0	4.3		7.0 7.5	7.3	
16-Mar-15	Cloudy	Moderate	10:29		Surface	1.0	18.6 18.5	18.5	7.9 7.9	7.9	30.0 30.0	30.0	93.2 93.0	93.1	7.3 7.3	7.3		2.3	2.3		4.2 3.1	3.7	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	2.5	-	-	4.1
					Bottom	4.0	18.5 18.2	18.4	7.9 7.9	7.9	31.7 32.0	31.9	92.9 92.6	92.8	7.2 7.2	7.2	7.2	2.5 2.6	2.6		4.7 4.1	4.4	
18-Mar-15	Sunny	Moderate	11:45		Surface	1.0	19.4 19.5	19.4	7.9 7.9	7.9	28.9 28.8	28.8	93.3 93.1	93.2	7.2 7.2	7.2		2.6 2.6	2.6		3.0 4.2	3.6	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	2.7	-	-	4.7
					Bottom	4.2	19.3 19.4	19.4	7.9 7.9	7.9	29.1 29.0	29.0	92.8 92.8	92.8	7.2 7.2	7.2	7.2	2.7 2.6	2.7		6.2 5.2	5.7	
20-Mar-15	Sunny	Moderate	12:37		Surface	1.0	20.8	20.8	7.8 7.8	7.8	25.8 25.8	25.8	94.7 93.8	94.3	7.3 7.2	7.2	7.0	12.2 12.6	12.4		6.4 7.6	7.0	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	12.3	-	-	7.4
					Bottom	4.0	20.7 20.7	20.7	7.8 7.8	7.8	26.5 26.4	26.5	91.2 93.0	92.1	7.0 7.2	7.1	7.1	12.1 12.1	12.1		8.1 7.3	7.7	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	14:48		Surface	1.0	21.0 21.0	21.0	7.9 7.9	7.9	27.9 27.9	27.9	104.6 100.0	102.3	7.9 7.6	7.8	7.8	7.8 7.8	7.8		7.4 7.2	7.3	
				5.0	Middle			•		-	-	-	-	-	1 1	-	7.0	-	-	7.8	-	-	7.3
					Bottom	4.0	20.7 20.7	20.7	7.8 7.9	7.9	28.6 28.6	28.6	102.5 99.3	100.9	7.8 7.5	7.6	7.6	7.7 7.8	7.8		7.0 7.5	7.3	
25-Mar-15	Cloudy	Moderate	16:27		Surface	1.0	20.3 20.3	20.3	7.6 7.6	7.6	28.8 28.9	28.8	95.0 95.0	95.0	7.3 7.2	7.2	7.2	10.2 10.3	10.3		6.5 4.6	5.6	
				4.8	Middle			-	-	-	-	-	-	-		-	1.2	-	-	10.3	-	-	6.3
					Bottom	3.8	20.3 20.3	20.3	7.6 7.6	7.6	29.2 29.2	29.2	95.2 95.3	95.3	7.3 7.3	7.3	7.3	10.2 10.1	10.2		7.3 6.6	7.0	
27-Mar-15	Sunny	Moderate	18:14		Surface	1.0	20.9 20.8	20.9	8.0 8.0	8.0	29.9 29.8	29.9	95.8 97.9	96.9	7.2 7.4	7.3	7.3	1.7 1.8	1.8		2.1 3.1	2.6	
				5.1	Middle	-		-		-	-	-	-	-	1 1	-	7.3	-	-	2.2	-	-	2.4
					Bottom	4.1	20.6 20.5	20.6	8.0 8.0	8.0	31.4 31.2	31.3	97.8 101.7	99.8	7.3 7.6	7.5	7.5	2.4 2.6	2.5		2.2 2.0	2.1	
30-Mar-15	Sunny	Moderate	10:21		Surface	1.0	19.9 20.0	20.0	7.9 7.9	7.9	31.3 31.3	31.3	95.5 95.0	95.3	7.2 7.2	7.2	7.2	2.2 2.3	2.3		3.6 2.9	3.3	
				5.0	Middle	-		-	-	-	-	-	-	-		-	1.2	-	-	2.3	-	-	3.3
					Bottom	4.0	19.9 20.0	20.0	7.9 7.9	7.9	31.4 31.3	31.3	95.6 95.9	95.8	7.2 7.3	7.2	7.2	2.3 2.1	2.2		2.9 3.6	3.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	16:29		Surface	1.0	18.1 18.1	18.1	7.9 7.9	7.9	30.9 30.9	30.9	100.0 100.1	100.1	7.8 7.8	7.8		2.0 2.1	2.1		3.1 3.5	3.3	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	2.2	-	-	3.7
					Bottom	4.5	18.1 18.0	18.0	7.9 7.9	7.9	30.9 30.9	30.9	99.9	100.1	7.8 7.8	7.8	7.8	2.3	2.3		3.2	4.1	Ì
4-Mar-15	Fine	Moderate	17:49		0 (4.0	18.1	40.4	7.9		29.4	20.4	95.5		7.6			2.5			3.4		
					Surface	1.0	18.1	18.1	8.0	8.0	29.3	29.4	96.5	96.0	7.7	7.6	7.6	2.6	2.6		4.0	3.7	
				5.3	Middle	-	- 18.1	-	- 8.0	-	- 29.6	-	98.2	-	- 7.8	-		2.7	-	2.7	4.6	-	4.6
					Bottom	4.3	18.1	18.1	7.9	8.0	29.6	29.6	96.1	97.2	7.6	7.7	7.7	2.6	2.7		6.1	5.4	
6-Mar-15	Fine	Moderate	07:38		Surface	1.0	17.7 17.7	17.7	7.9 8.0	8.0	31.6 31.6	31.6	92.3 92.4	92.4	7.3 7.3	7.3	7.3	8.7 8.8	8.8		12.2 10.8	11.5	
				4.7	Middle	-	-	-	-	-	-	-		-	-	-	7.5	-	-	8.8	-	-	11.8
					Bottom	3.7	17.7 17.7	17.7	7.9 8.0	8.0	31.6 31.7	31.7	92.4 92.1	92.3	7.3 7.3	7.3	7.3	8.7 8.9	8.8		13.0 11.0	12.0	
9-Mar-15	Sunny	Moderate	09:07		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	31.1 31.1	31.1	89.4 90.0	89.7	7.1 7.1	7.1		9.1 9.0	9.1		15.4 15.2	15.3	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	9.4	-	-	14.9
					Bottom	4.0	17.9	17.9	7.9	7.9	31.1	31.2	89.9	89.9	7.1	7.1	7.1	9.5	9.7		13.7	14.4	
11-Mar-15	Cloudy	Moderate	10:17		Surface	1.0	17.8 17.8	17.8	7.9 7.9	7.9	31.2 31.4	31.4	89.9 90.3	89.8	7.1 7.1	7.1		9.9 8.1	8.3		15.1 9.2	9.2	
				5.4		1.0	17.8	17.0	7.9	7.5	31.5	31.4	89.3	03.0	7.0	7.1	7.1	8.4	0.5	8.4	9.2		0.0
				5.1	Middle	-	- 17.9	-	- 7.9		31.7	-	- 88.8	-	7.0	-		8.4	-	8.4	8.6	-	8.8
13-Mar-15	Cia a	Madagata	44.00		Bottom	4.1	17.9	17.9	7.9	7.9	31.7	31.7	88.9	88.9	7.0	7.0	7.0	8.3	8.4		8.0	8.3	
13-Mar-15	Fine	Moderate	11:20		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	31.6 31.6	31.6	88.1 88.2	88.2	7.0 7.0	7.0	7.0	10.1 9.8	10.0		14.3 14.7	14.5	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	10.0	-	-	13.6
					Bottom	4.2	17.6 17.6	17.6	7.9 7.9	7.9	31.7 31.7	31.7	88.6 88.7	88.7	7.0 7.0	7.0	7.0	9.7 10.1	9.9		12.1 13.0	12.6	
16-Mar-15	Sunny	Moderate	14:45		Surface	1.0	19.2 19.3	19.3	7.9 7.9	7.9	29.4 29.3	29.4	95.9 94.8	95.4	7.4 7.4	7.4	7.4	1.7 1.8	1.8		2.9 3.9	3.4	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	2.3	-	-	3.1
					Bottom	4.3	18.5 18.7	18.6	7.9 7.9	7.9	31.0 30.6	30.8	91.5 94.8	93.2	7.1 7.4	7.2	7.2	2.6 2.8	2.7		2.2 3.4	2.8	
18-Mar-15	Sunny	Moderate	16:51	<u> </u>	Surface	1.0	19.6	19.6	7.9	7.9	27.8	27.7	93.7	93.6	7.3	7.3		2.5	2.5		4.2	4.0	
				5.1	Middle	_	19.6	_	7.9	_	27.7	_	93.4	_	7.3	_	7.3	2.4	_	2.6	3.7	_	3.6
					Bottom	4.1	19.5	19.5	7.9	7.9	28.4	28.4	93.7	93.2	7.3	7.2	7.2	2.7	2.7		2.8	3.2	
20-Mar-15	Sunny	Moderate	07:14	<u> </u>			19.5 20.8		7.9 7.8		28.4 26.0		92.7 100.8		7.2 7.8		1.2	2.6 11.3			3.5 9.3		
	,				Surface	1.0	20.8	20.8	7.8	7.8	25.8	25.9	105.3	103.1	8.1	7.9	7.9	10.9	11.1		8.4	8.9	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	11.1	-	-	8.3
					Bottom	4.2	20.7 20.6	20.7	7.8 7.8	7.8	26.4 26.7	26.5	101.3 94.8	98.1	7.8 7.3	7.5	7.5	11.0 11.2	11.1		8.0 7.2	7.6	<u>j</u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	08:48		Surface	1.0	20.5 20.5	20.5	7.9 7.9	7.9	26.9 26.8	26.8	83.3 83.7	83.5	6.4 6.4	6.4	6.4	22.7 22.5	22.6		24.4 23.7	24.1	
				5.3	Middle	-		-		-	-	-		-		-	0.4	-	-	22.9		-	24.3
					Bottom	4.3	20.5 20.5	20.5	7.9 7.9	7.9	27.0 27.1	27.1	83.3 83.1	83.2	6.4 6.4	6.4	6.4	23.3 23.1	23.2		24.6 24.4	24.5	
25-Mar-15	Cloudy	Moderate	10:27		Surface	1.0	20.5 20.5	20.5	7.6 7.6	7.6	28.6 28.5	28.5	94.9 94.9	94.9	7.2 7.2	7.2	7.2	11.8 12.0	11.9		10.8 11.0	10.9	
				5.4	Middle			-	-	-	-	-				-	1.2	-	-	12.0	-	-	11.6
					Bottom	4.4	20.5 20.5	20.5	7.6 7.6	7.6	28.8 28.6	28.7	94.6 94.6	94.6	7.2 7.3	7.3	7.3	12.1 12.0	12.1		12.9 11.7	12.3	
27-Mar-15	Cloudy	Moderate	11:22		Surface	1.0	20.6 20.6	20.6	8.0 8.0	8.0	26.4 26.4	26.4	98.2 98.1	98.2	7.6 7.6	7.6	7.6	1.5 1.6	1.6		1.4 1.1	1.3	
				5.0	Middle	•		-		-	-	-		-		-	7.0	-	-	1.8		-	1.6
					Bottom	4.0	20.5 20.5	20.5	8.0 8.0	8.0	27.3 24.8	26.0	98.6 98.4	98.5	7.6 7.7	7.6	7.6	1.8 1.9	1.9		1.8 1.7	1.8	
30-Mar-15	Sunny	Moderate	16:09		Surface	1.0	20.2 20.3	20.3	8.0 8.0	8.0	29.5 29.4	29.5	97.8 100.4	99.1	7.4 7.6	7.5	7.5	2.0 2.2	2.1		2.8 3.3	3.1	
				5.3	Middle	-		-		-	-	-		-		-	1.5	-	-	2.2		-	2.8
					Bottom	4.3	20.3 20.1	20.2	8.0 7.9	8.0	30.9 31.0	31.0	100.2 97.1	98.7	7.6 7.3	7.4	7.4	2.2 2.1	2.2		2.4 2.4	2.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	12:18		Surface	1.0	18.0 18.1	18.1	7.9 7.9	7.9	30.6 30.6	30.6	94.6 94.9	94.8	7.5 7.5	7.5		2.1 2.1	2.1		4.1 6.3	5.2	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	2.2	-	-	5.9
					Bottom	4.5	18.0 18.1	18.1	7.9 7.9	7.9	30.6 30.6	30.6	94.6 94.6	94.6	7.5 7.5	7.5	7.5	2.1	2.2		5.6 7.4	6.5	
4-Mar-15	Fine	Moderate	13:33		Surface	1.0	18.1	18.1	7.9	7.9	29.0	29.0	96.1	96.1	7.6	7.6		3.1	3.1		4.9	4.9	
				4.0	Middle		18.1	-	7.9	-	29.0	-	96.1	-	7.6		7.6	3.1	_	3.2	4.9	-	5.4
				4.0	Bottom	3.0	18.1	18.1	8.0	8.0	29.1	29.1	95.4	95.8	7.6	7.6	7.6	3.3	3.2	0.2	5.1	5.9	
6-Mar-15	Fine	Moderate	12:12				18.1 17.6		7.9 7.9		29.0 31.8		96.2 91.9		7.6 7.2		7.0	3.1 2.9			6.7 5.8		
					Surface	1.0	17.6	17.6	7.9	7.9	31.8	31.8	92.2	92.1	7.3	7.3	7.3	2.8	2.9		5.2	5.5	-
				3.7	Middle	-	17.6	-	7.9	-	31.8	-	92.2	-	7.3	-		- 2.9	-	2.9	5.7	-	5.8
9-Mar-15	Comment	Madaata	42:40		Bottom	2.7	17.6	17.6	8.0	8.0	31.8	31.8	92.1	92.2	7.3	7.3	7.3	2.6	2.8		6.2	6.0	
9-Mar-15	Sunny	Moderate	13:49		Surface	1.0	18.2 18.2	18.2	7.7 7.7	7.7	30.7 30.8	30.8	90.1 90.0	90.1	7.1 7.1	7.1	7.1	3.6 3.6	3.6		7.3 6.3	6.8	
				4.3	Middle	-		-		-		-	-	-	-	-		-	-	3.8	-	-	6.9
					Bottom	3.3	18.2 18.2	18.2	7.7 7.7	7.7	30.9 30.9	30.9	90.2 90.0	90.1	7.1 7.1	7.1	7.1	3.7 4.0	3.9		7.0 6.9	7.0	
11-Mar-15	Cloudy	Moderate	14:58		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	30.7 30.7	30.7	91.9 92.4	92.2	7.3 7.3	7.3	7.3	2.3 2.0	2.2		3.9 4.0	4.0	
				4.0	Middle	-		-		-		-		-	-	-	7.5	-	-	2.6	-	-	4.2
					Bottom	3.0	17.9 17.9	17.9	7.9 7.9	7.9	30.9 31.1	31.0	92.2 90.6	91.4	7.3 7.1	7.2	7.2	3.0 2.9	3.0		4.3 4.4	4.4	
13-Mar-15	Fine	Moderate	16:55		Surface	1.0	17.7 17.7	17.7	7.9 7.9	7.9	31.5 31.6	31.6	89.8 90.0	89.9	7.1 7.1	7.1		2.6 2.6	2.6		7.0 7.7	7.4	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	2.7	-	-	7.7
					Bottom	3.3	17.7 17.7	17.7	7.9 7.9	7.9	31.6 31.6	31.6	90.0 89.8	89.9	7.1 7.1	7.1	7.1	2.6 3.0	2.8		8.1 7.6	7.9	
16-Mar-15	Cloudy	Moderate	11:26		Surface	1.0	18.9	18.9	7.9	7.9	29.5	29.4	93.3	93.3	7.3	7.3		1.5	1.6		2.8	3.2	
				4.0	Middle	-	18.9	-	7.9	-	29.3	-	93.2	-	7.3	-	7.3	1.6	-	1.8	3.5	-	3.6
					Bottom	3.0	18.4	18.5	7.9	7.9	31.1	31.0	92.2	92.5	7.2	7.2	7.2	2.0	2.0		3.4	4.0	1
18-Mar-15	Sunny	Moderate	12:29		Surface	1.0	18.6 19.2	19.2	7.9 7.9	7.9	31.0 29.6	29.5	92.8 94.2	94.3	7.2 7.3	7.3		2.0 8.3	8.3		4.6 17.6	17.5	
				5.2	Middle	-	19.3	-	7.9 -	-	29.4	-	94.4	-	7.3	-	7.3	8.2	-	8.5	17.4	-	15.3
				0.2	Bottom	4.2	19.2	19.1	7.9	7.9	29.7	30.0	94.2	94.2	7.3	7.3	7.3	8.7	8.7	0.0	13.1	13.0	
20-Mar-15	Sunny	Moderate	11:50				19.0 20.6		7.9 7.8		30.2 26.2		94.2 96.3		7.3 7.4		1.3	8.7 8.4			12.9 7.4		
					Surface	1.0	20.7	20.7	7.8	7.8	26.1	26.1	95.7	96.0	7.4	7.4	7.4	8.5	8.5		7.9	7.7	-
				4.1	Middle	-	20.6	-	7.8	-	26.6	-	95.7	-	7.4	-		8.7	-	8.6	8.7	-	7.9
					Bottom	3.1	20.5	20.6	7.8	7.8	26.7	26.7	95.7 97.0	96.4	7.4 7.5	7.4	7.4	8.5	8.6		7.4	8.1	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	13:50		Surface	1.0	20.7 20.8	20.7	7.9 7.9	7.9	23.8 23.9	23.8	99.1 100.7	99.9	7.7 7.8	7.8	7.8	7.3 7.2	7.3		7.0 7.5	7.3	
				4.1	Middle	-		-		-	-	-	-	-	-	-	7.0	-	-	7.3	-	-	8.1
					Bottom	3.1	20.7 20.7	20.7	7.9 7.9	7.9	27.5 24.3	25.9	99.0 97.9	98.5	7.6 7.6	7.6	7.6	7.4 7.2	7.3		8.0 9.6	8.8	
25-Mar-15	Cloudy	Moderate	15:31		Surface	1.0	20.3 20.3	20.3	7.8 7.8	7.8	28.1 28.0	28.0	95.2 95.3	95.3	7.3 7.3	7.3	7.3	5.2 5.6	5.4		5.9 5.3	5.6	
				4.1	Middle	-		•		-	-	-	-	-	-	-	7.5	-	-	5.5	-	-	5.9
					Bottom	3.1	20.3 20.3	20.3	7.8 7.8	7.8	28.3 28.4	28.4	94.8 94.8	94.8	7.3 7.2	7.3	7.3	5.5 5.4	5.5		6.6 5.5	6.1	
27-Mar-15	Sunny	Moderate	17:22		Surface	1.0	20.9 20.9	20.9	8.0 8.0	8.0	30.1 26.7	28.4	97.4 98.2	97.8	7.3 7.5	7.4	7.4	1.4 1.3	1.4		1.9 2.3	2.1	
				4.4	Middle	•		-		-	-	-	-	-	-	-	7.4	-	-	1.7	-	-	2.3
					Bottom	3.4	20.9 20.8	20.8	8.0 8.0	8.0	30.6 27.3	28.9	98.0 97.0	97.5	7.3 7.4	7.4	7.4	2.0 1.7	1.9		2.2 2.6	2.4	
30-Mar-15	Sunny	Moderate	11:11		Surface	1.0	20.6 20.6	20.6	7.9 7.9	7.9	30.1 30.0	30.0	99.7 101.1	100.4	7.5 7.6	7.6	7.6	4.3 4.3	4.3		2.9 2.2	2.6	
				4.1	Middle	-	1 1	-	1 1	-	-	-	-	-	-	-	7.0	-	-	4.3	-	-	2.7
					Bottom	3.1	20.6 20.6	20.6	7.9 7.9	7.9	30.1 30.0	30.1	98.6 100.6	99.6	7.4 7.6	7.5	7.5	4.3 4.2	4.3		3.2 2.1	2.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ļ.	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	15:49		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	30.8 30.8	30.8	96.4 96.5	96.5	7.6 7.6	7.6		2.2 2.2	2.2		4.4 5.1	4.8	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	2.2	-	-	4.3
					Bottom	4.5	17.9 17.9	17.9	7.9 7.9	7.9	30.8 30.8	30.8	96.5 96.4	96.5	7.6 7.6	7.6	7.6	2.2	2.2		4.1 3.2	3.7	
4-Mar-15	Fine	Moderate	16:56		Surface	1.0	18.1	18.1	7.9	7.9	29.0	29.0	94.1	94.1	7.5	7.5		3.6	3.6		4.2	4.5	
				4.2	Middle	-	18.1	-	7.9	-	29.0	_	94.0	-	7.5 -	_	7.5	3.6	-	3.7	4.8	_	5.0
					Bottom	3.2	18.1	18.1	7.9	7.9	29.4	29.3	94.1	94.1	7.5	7.5	7.5	3.7	3.7		5.9	5.4	
6-Mar-15	Fine	Moderate	08:32		Surface	1.0	18.1 17.6	17.6	7.9 7.9	7.9	29.2 31.7	31.8	94.0 90.7	90.9	7.5 7.2	7.2	7.0	3.6 5.1	5.3		4.9 9.6	9.1	
				4.0		1.0	17.6 -	-	7.9	7.9	31.8	31.0	91.0	-	7.2	1.2	7.2	5.5	3.3	6.5	8.5	9.1	10.3
				4.0	Middle	-	- 17.6		7.9		- 31.8	-	90.7		7.2	7.4	7.1	7.4	7.0	6.5	11.0	1	10.3
9-Mar-15	Sunny	Moderate	10:06		Bottom	3.0	17.6 18.0	17.6	7.9 7.9	7.9	31.8 30.5	31.8	90.5 89.5	90.6	7.1 7.1	7.1	7.1	7.7 6.0	7.6		11.9 8.6	11.5	
	,				Surface	1.0	18.0	18.0	7.9	7.9	30.5	30.5	89.6	89.6	7.1	7.1	7.1	5.8	5.9		9.0	8.8	
				4.1	Middle	-	- 17.9	-	- 7.9	-	30.8	-	- 89.0	-	7.0	-		6.3	-	6.2	7.2	-	8.3
11-Mar-15	Cloudy	Moderate	11:11		Bottom	3.1	17.9 18.0	17.9	7.9 7.9	7.9	30.7 30.9	30.8	89.4 89.6	89.2	7.1 7.1	7.0	7.0	6.4	6.4		8.2 13.3	7.7	
11-Mai-15	Cloudy	Moderate	11.11		Surface	1.0	18.0	18.0	7.9	7.9	30.9	30.9	89.6	89.6	7.1	7.1	7.1	4.9	4.8		11.6	12.5	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.1	-	-	12.7
					Bottom	3.0	18.0 18.0	18.0	7.9 7.9	7.9	30.9 30.9	30.9	89.3 89.5	89.4	7.0 7.1	7.0	7.0	5.2 5.6	5.4		13.0 12.7	12.9	
13-Mar-15	Fine	Moderate	12:17		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	31.3 31.4	31.4	89.8 89.5	89.7	7.1 7.1	7.1	7.1	3.3 3.5	3.4		4.0 4.6	4.3	
				4.2	Middle	-	-	-	-	-	-	-		-		-		-	-	3.9	-	-	4.2
					Bottom	3.2	17.6 17.6	17.6	7.9 7.9	7.9	31.5 31.6	31.5	89.5 89.4	89.5	7.1 7.1	7.1	7.1	4.2 4.4	4.3		4.1 3.9	4.0	
16-Mar-15	Sunny	Moderate	13:48		Surface	1.0	19.2 19.1	19.2	7.9 7.9	7.9	29.6 29.7	29.7	93.6 93.1	93.4	7.3 7.2	7.2	7.2	1.3 1.2	1.3		2.0 2.2	2.1	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	1.2	-	-	1.5	-	-	2.2
					Bottom	3.2	18.5 18.4	18.4	7.9 7.9	7.9	30.8 30.9	30.8	92.2 91.7	92.0	7.2 7.2	7.2	7.2	1.5 1.6	1.6		2.5 2.1	2.3	1
18-Mar-15	Sunny	Moderate	15:50		Surface	1.0	19.9 19.8	19.9	7.9 7.9	7.9	27.0 27.0	27.0	94.2 94.1	94.2	7.3 7.3	7.3		2.8	2.9		3.0	3.4	
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	3.0	-	-	3.4
					Bottom	3.8	19.4 19.3	19.4	7.8 7.9	7.9	28.9 29.0	29.0	93.1 92.8	93.0	7.2 7.2	7.2	7.2	3.1 3.0	3.1		2.6	3.4	
20-Mar-15	Sunny	Moderate	08:00		Surface	1.0	20.5 20.5	20.5	7.7 7.7	7.7	26.3 26.4	26.3	98.0 96.7	97.4	7.5 7.5	7.5		7.1	7.4		6.8 6.6	6.7	
				4.2	Middle	-	- 20.5	-	-	-	- 20.4	-	96.7	-	-	-	7.5	7.6	-	7.4	-	-	7.4
					Bottom	3.2	20.5	20.4	7.7	7.7	26.8	26.8	95.1	95.3	7.3	7.3	7.3	7.5	7.4		8.1	8.0	İ
					20110.11	0.2	20.4		7.7	···	26.9	20.0	95.4	00.0	7.4			7.3			7.8		<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	09:41		Surface	1.0	21.2 21.3	21.2	8.0 7.9	8.0	24.5 24.6	24.6	81.3 82.5	81.9	6.3 6.3	6.3	6.3	22.1 22.3	22.2		16.6 17.8	17.2	
				4.2	Middle			-		-	-	-	-			-	0.5	-	-	22.5	-		20.4
					Bottom	3.2	21.3 21.2	21.3	7.9 8.0	8.0	26.6 26.5	26.6	81.3 82.7	82.0	6.2 6.4	6.3	6.3	22.2 23.3	22.8		23.3 23.9	23.6	
25-Mar-15	Cloudy	Moderate	11:17		Surface	1.0	20.5 20.5	20.5	7.6 7.6	7.6	28.5 28.6	28.6	95.8 95.8	95.8	7.3 7.3	7.3	7.3	7.4 7.5	7.5		7.9 7.7	7.8	
				4.2	Middle	,	-	-	-	-	-	-	-	-	-		7.3	-	-	7.5	-		7.5
					Bottom	3.2	20.5 20.5	20.5	7.6 7.6	7.6	28.5 28.8	28.7	95.8 95.7	95.8	7.3 7.3	7.3	7.3	7.7 7.3	7.5		6.1 8.1	7.1	İ
27-Mar-15	Cloudy	Moderate	12:15		Surface	1.0	20.6 20.6	20.6	8.0 8.0	8.0	26.7 26.7	26.7	98.3 98.4	98.4	7.6 7.6	7.6	7.6	1.7 1.8	1.8		1.6 1.6	1.6	
				4.3	Middle	•		-		-	-	-		-		-	7.0	-	-	2.1	-	-	1.7
					Bottom	3.3	20.6 20.6	20.6	8.0 8.0	8.0	27.2 27.0	27.1	98.3 98.3	98.3	7.5 7.5	7.5	7.5	2.3 2.3	2.3		2.0 1.6	1.8	
30-Mar-15	Sunny	Moderate	15:17		Surface	1.0	20.4 20.2	20.3	8.0 8.0	8.0	30.0 30.1	30.0	101.3 99.2	100.3	7.7 7.5	7.6	7.6	4.4 4.3	4.4		2.6 3.2	2.9	
				4.3	Middle	-	1 1	-	1 1	-	-	-	-	-	1 1	-	1.0	-	-	4.5	-	-	2.7
					Bottom	3.3	20.4 20.2	20.3	8.0 8.0	8.0	29.9 30.3	30.1	100.4 98.5	99.5	7.6 7.5	7.5	7.5	4.4 4.5	4.5		2.0 2.7	2.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	11:06		Surface	1.0	18.0 17.8	17.9	7.9 7.9	7.9	30.4 30.8	30.6	92.7 92.5	92.6	7.3 7.3	7.3		2.2 2.2	2.2		4.8 4.8	4.8	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	2.3	-	-	4.3
					Bottom	4.5	17.7 17.7	17.7	7.9 7.9	7.9	31.4 31.5	31.4	92.1 92.1	92.1	7.3 7.3	7.3	7.3	2.3	2.3		3.2	3.8	
4-Mar-15	Fine	Moderate	12:05		Surface	1.0	18.1	18.0	7.9	7.9	29.6	29.6	94.6	94.8	7.5	7.5		3.5	3.7		5.4	5.3	
				4.0		1.0	18.0		8.0	7.9	29.6		95.0		7.5	7.5	7.5	3.8		0.0	5.1		1.0
				4.2	Middle		17.9	-	7.9		30.7	-	94.7	-	7.5	-		3.7	-	3.8	3.8	-	4.6
C Man 45	Fin a	Madagata	40.04		Bottom	3.2	17.6	17.8	8.0	7.9	31.9	31.3	95.8 92.8	95.3	7.5	7.5	7.5	4.0	3.9		3.7	3.8	
6-Mar-15	Fine	Moderate	13:31		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	29.8 29.8	29.8	92.9	92.9	7.4 7.4	7.4	7.4	2.5	2.6		5.2 4.4	4.8	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.7	-	-	4.8
					Bottom	3.0	17.7 17.9	17.8	7.9 7.9	7.9	31.4 31.2	31.3	92.5 92.7	92.6	7.3 7.3	7.3	7.3	2.7 2.6	2.7		3.5 5.8	4.7	
9-Mar-15	Sunny	Moderate	15:10		Surface	1.0	18.4 18.7	18.6	7.8 7.8	7.8	30.4 30.3	30.4	90.0 90.8	90.4	7.1 7.1	7.1		3.2 3.5	3.4		5.8 6.8	6.3	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	3.1	-	-	6.5
					Bottom	3.1	18.2 18.4	18.3	7.8 7.8	7.8	30.6 30.4	30.5	89.5 89.9	89.7	7.0	7.0	7.0	2.7	2.7		6.1 7.0	6.6	
11-Mar-15	Cloudy	Moderate	16:21		Surface	1.0	17.9	17.9	7.9	7.9	30.8	30.8	89.9	90.1	7.1	7.1		2.5	2.5		3.7	3.6	
				4.0	Middle	_	17.9	_	7.9	_	30.8	_	90.2	_	7.1	_	7.1	2.4	_	2.6	3.5	-	3.8
					Bottom	3.0	17.9	17.9	7.9	7.9	31.0	31.2	90.1	90.0	7.1	7.1	7.1	2.6	2.7		3.6	3.9	
13-Mar-15	Fine	Moderate	18:18		Surface	1.0	17.9 17.7	17.7	7.9 7.9	7.9	31.3 31.5	31.5	89.8 89.7	89.7	7.1 7.1	7.1		2.7	2.9		4.1 6.0	5.8	
				0.0		1.0	17.7	17.7	7.9		31.5	31.3	89.6	09.7	7.1	7.1	7.1	2.9		0.0	5.6		
				3.6	Middle		- 17.7	-	7.9	-	31.6	-	89.8	-	7.1	-		2.6	-	2.8	5.7	-	5.6
40 May 45	Ol. I	Madaga	00.50		Bottom	2.6	17.7	17.7	7.9	7.9	31.6	31.6	89.6	89.7	7.1	7.1	7.1	2.8	2.7		5.1	5.4	<u> </u>
16-Mar-15	Cloudy	Moderate	09:59		Surface	1.0	18.8 18.5	18.7	7.9 7.9	7.9	30.8 30.0	30.4	92.2 92.5	92.4	7.2 7.3	7.2	7.2	2.7 2.7	2.7		5.4 4.5	5.0	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.9	-	-	4.9
					Bottom	4.0	18.1 18.2	18.1	8.0 7.9	8.0	32.3 32.1	32.2	90.1 91.7	90.9	7.0 7.1	7.1	7.1	3.0 3.2	3.1		5.0 4.3	4.7	
18-Mar-15	Sunny	Moderate	11:14		Surface	1.0	19.4 19.6	19.5	7.9 7.9	7.9	28.5 28.4	28.5	94.1 95.3	94.7	7.3 7.4	7.4	7.4	2.0 2.0	2.0		2.7 3.3	3.0	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	2.1	-	-	3.1
					Bottom	4.0	19.1 19.2	19.1	7.9 7.9	7.9	30.5 30.2	30.4	94.2 94.9	94.6	7.3 7.3	7.3	7.3	2.2	2.2		2.8	3.2	
20-Mar-15	Sunny	Moderate	13:05		Surface	1.0	20.9	20.9	7.9	7.9	23.5	23.3	93.2	92.6	7.2	7.2		11.2	11.5		7.4	7.7	
				4.2	Middle		21.0	_	7.9	-	23.1	-	92.0	_	7.2	-	7.2	11.7	_	11.4	7.9	-	7.6
					Bottom	3.2	20.6	20.6	7.9	7.9	26.0	26.5	85.3	84.4	6.6	6.5	6.5	11.2	11.2		7.4	7.4	
					Dolloili	J.Z	20.6	20.0	7.9	۳. ت	26.9	20.0	83.5	0+.4	6.4	0.0	0.0	11.1	11.4		7.3	7.4	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	15:16		Surface	1.0	21.3 21.1	21.2	8.1 8.1	8.1	28.0 28.1	28.1	98.3 98.2	98.3	7.4 7.4	7.4	7.4	6.6 6.6	6.6		5.0 5.2	5.1	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7	-	-	6.7	-	-	5.3
					Bottom	3.3	20.8 20.7	20.8	7.9 8.0	8.0	28.5 28.6	28.6	98.1 98.0	98.1	7.4 7.4	7.4	7.4	6.8 6.6	6.7		5.6 5.2	5.4	
25-Mar-15	Cloudy	Moderate	16:56		Surface	1.0	20.4 20.3	20.4	7.6 7.6	7.6	28.6 28.6	28.6	96.3 96.3	96.3	7.4 7.4	7.4	7.4	4.2 4.2	4.2		9.0 9.1	9.1	
				4.2	Middle	-		-		-	-	-		-	-	-	7.4	-	-	4.2	-	-	8.9
					Bottom	3.2	20.3 20.4	20.4	7.6 7.6	7.6	29.2 29.2	29.2	96.2 95.8	96.0	7.3 7.3	7.3	7.3	4.0 4.1	4.1		8.7 8.7	8.7	
27-Mar-15	Sunny	Moderate	18:42		Surface	1.0	20.8 20.7	20.7	8.1 8.1	8.1	30.0 30.0	30.0	75.3 77.1	76.2	5.7 5.8	5.7	5.7	3.2 3.3	3.3		1.5 2.4	2.0	
				4.2	Middle	-		-		-		-	1 1	-	-	-	5.7	-	-	3.7	-	-	2.0
					Bottom	3.2	20.5 20.7	20.6	8.2 8.1	8.1	30.9 31.0	31.0	74.9 76.6	75.8	5.6 5.7	5.7	5.7	4.2 3.9	4.1		1.8 2.2	2.0	
30-Mar-15	Sunny	Moderate	09:58		Surface	1.0	20.5 20.7	20.6	7.9 7.9	7.9	29.9 30.4	30.2	99.7 99.3	99.5	7.5 7.5	7.5	7.5	3.3 3.2	3.3		2.3 2.9	2.6	
				4.0	Middle	-	1 1	-		-	1 1	-	1 1	-	-	-	7.5	-	-	3.4	-	-	2.5
					Bottom	3.0	20.4 20.7	20.5	7.9 7.9	7.9	30.3 29.6	29.9	99.1 98.5	98.8	7.5 7.4	7.5	7.5	3.3 3.4	3.4		2.3 2.4	2.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	17:03		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	30.9 30.9	30.9	98.2 98.1	98.2	7.7 7.7	7.7		2.8 3.0	2.9		1.6 2.7	2.2	
				5.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	3.0	-	-	2.6
					Bottom	4.6	17.9 17.9	17.9	7.9 7.9	7.9	30.9 30.9	30.9	98.0 98.0	98.0	7.7	7.7	7.7	3.0	3.1		2.6	2.9	•
4-Mar-15	Fine	Moderate	18:21				17.9		7.9		30.9		94.2		7.5			3.1			4.5		
T Mai 10		Moderate	10.21		Surface	1.0	17.9	17.9	7.9	7.9	30.3	30.2	93.1	93.7	7.4	7.4	7.4	3.5	3.3		3.4	4.0	-
				4.4	Middle	-	- 17.9	-	- 7.9	-	30.2	-	93.5	-	7.4	-		3.7	-	3.4	5.3	-	4.4
0.14 45			07.00		Bottom	3.4	17.9	17.9	7.9	7.9	30.4	30.3	93.0	93.3	7.4	7.4	7.4	3.3	3.5		4.1	4.7	<u> </u>
6-Mar-15	Fine	Moderate	07:09		Surface	1.0	17.6 17.6	17.6	7.9 7.9	7.9	31.8 31.8	31.8	93.2 93.8	93.5	7.4 7.4	7.4	7.4	7.9 8.0	8.0		13.5 12.7	13.1	
				4.0	Middle	-	-	-	-	-	-	-	-	-		-		-	-	8.0	-	-	13.1
					Bottom	3.0	17.6 17.6	17.6	7.9 8.0	8.0	31.8 31.8	31.8	93.4 94.7	94.1	7.4 7.5	7.4	7.4	8.1 7.9	8.0		12.8 13.4	13.1	
9-Mar-15	Sunny	Moderate	08:37		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	31.1 31.2	31.1	91.7 90.8	91.3	7.2 7.2	7.2	7.2	4.6 4.9	4.8		8.8 9.9	9.4	
				4.1	Middle		-	-	-	-	-	-	-	-	-	-	1.2	-	-	4.9	-	-	10.1
					Bottom	3.1	17.9 17.9	17.9	7.9 7.9	7.9	31.1 31.2	31.2	91.2 92.4	91.8	7.2 7.3	7.2	7.2	4.9 5.0	5.0		11.4 10.2	10.8	
11-Mar-15	Cloudy	Moderate	09:39		Surface	1.0	17.9 17.9	17.9	7.9 7.9	7.9	31.4 31.4	31.4	93.7 92.0	92.9	7.4 7.2	7.3		4.9 4.7	4.8		5.8 6.2	6.0	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	5.2	-	-	6.5
					Bottom	3.3	17.9 17.9	17.9	7.9 7.9	7.9	31.5 31.5	31.5	96.5 93.3	94.9	7.6 7.3	7.5	7.5	5.6 5.3	5.5		6.9	6.9	•
13-Mar-15	Fine	Moderate	10:47		Confess	4.0	17.6	47.0	7.9	7.9	31.7	24.7	94.3	00.4	7.5	7.4		7.2	7.4		4.9		<u> </u>
					Surface	1.0	17.6	17.6	7.9 -	-	31.7	31.7	91.8	93.1	7.3	7.4	7.4	7.0	7.1		6.0	5.5	
				3.4	Middle	-	17.6	-	- 7.9	-	31.7	-	92.5	-	7.3	-		6.9	-	7.1	14.2	-	9.4
					Bottom	2.4	17.5	17.5	8.0	8.0	31.8	31.8	96.3	94.4	7.6	7.5	7.5	7.0	7.0		12.2	13.2	
16-Mar-15	Sunny	Moderate	15:11		Surface	1.0	19.3 19.1	19.2	7.9 7.9	7.9	29.3 29.4	29.3	96.0 96.0	96.0	7.5 7.5	7.5	7.5	1.3 1.4	1.4		2.7 4.2	3.5	
				4.2	Middle		-	-	-	-	-	-		-		-	7.5	-	-	1.5	-	-	3.9
					Bottom	3.2	18.6 18.9	18.8	7.9 7.9	7.9	30.0 29.7	29.8	94.3 95.5	94.9	7.4 7.4	7.4	7.4	1.4 1.5	1.5		4.1 4.2	4.2	
18-Mar-15	Sunny	Moderate	17:21		Surface	1.0	19.1 19.1	19.1	7.9 7.9	7.9	29.9 29.9	29.9	91.0 90.9	91.0	7.1 7.0	7.0		6.7 6.6	6.7		8.8 8.6	8.7	
				4.9	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	6.8	-	-	8.4
					Bottom	3.9	19.1 19.1	19.1	7.9 7.9	7.9	30.0 30.0	30.0	90.9 90.6	90.8	7.0	7.0	7.0	6.7 6.8	6.8	1	8.2 8.0	8.1	
20-Mar-15	Sunny	Moderate	06:46		Surface	1.0	20.9 20.9	20.9	7.7	7.7	26.0	25.9	100.8	100.8	7.7	7.7		11.2	11.2		8.0	8.1	
				4.2	Middle	-	- 20.9	-	7.7	-	25.9	-	100.8	-	7.7	-	7.7	11.1	-	11.2	8.1	-	9.1
					Bottom	3.2	20.8	20.7	7.7	7.7	26.6	26.3	94.5	92.9	7.3	7.2	7.2	11.3	11.2		10.0	10.1	
							20.6		7.7	L	26.0		91.3		7.2			11.1			10.2		<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplii	ng	Tempera	ature (°C)	p	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	08:20		Surface	1.0	20.4 20.4	20.4	7.8 7.8	7.8	23.2 22.4	22.8	88.8 92.1	90.5	7.0 7.3	7.1	7.1	15.3 15.4	15.4		9.0 8.3	8.7	
				4.3	Middle	-	-	-		-	-	-	1 1	-	-	-	7.1	-	-	15.4	-	1	9.1
					Bottom	3.3	20.4 20.4	20.4	7.8 7.8	7.8	21.4 23.3	22.4	92.4 90.9	91.7	7.4 7.2	7.3	7.3	15.5 15.2	15.4		9.4 9.6	9.5	
25-Mar-15	Cloudy	Moderate	09:59		Surface	1.0	20.6 20.6	20.6	7.3 7.2	7.3	26.8 25.4	26.1	92.7 94.8	93.8	7.1 7.2	7.2	7.2	12.2 11.7	12.0		9.5 8.8	9.2	
				4.6	Middle	-	-	-		-	-	-		-	-	-	7.2	-	-	12.4	-	-	9.4
					Bottom	3.6	20.6 20.6	20.6	7.3 7.2	7.2	28.5 28.3	28.4	93.8 96.3	95.1	7.1 7.5	7.3	7.3	12.4 13.0	12.7		9.3 9.8	9.6	
27-Mar-15	Cloudy	Moderate	10:50		Surface	1.0	20.3 20.3	20.3	7.8 7.8	7.8	27.0 22.7	24.9	111.5 102.7	107.1	8.6 8.1	8.4	8.4	3.2 3.1	3.2		2.9 2.9	2.9	
				4.1	Middle	-	-	-		-	-	-		-	-	-	0.4	-	-	3.4	-	-	2.5
					Bottom	3.1	20.3 20.3	20.3	7.7 7.8	7.8	27.4 27.3	27.4	113.2 111.4	112.3	8.7 8.6	8.7	8.7	3.6 3.3	3.5		1.7 2.3	2.0	
30-Mar-15	Sunny	Moderate	16:33		Surface	1.0	20.8 20.7	20.8	8.0 8.0	8.0	30.0 30.2	30.1	104.1 102.1	103.1	7.8 7.7	7.7	7.7	3.5 3.4	3.5		1.1 1.1	1.1	
				4.2	Middle	-	-	-	1 1	-	-	-	1 1	-	-	-	1.1	-	-	3.5	-	-	1.9
					Bottom	3.2	20.5 20.5	20.5	8.0 8.0	8.0	30.5 30.6	30.5	102.9 99.2	101.1	7.7 7.5	7.6	7.6	3.4 3.5	3.5		2.4 2.9	2.7	İ

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	11:01		Surface	1.0	18.2 18.2	18.2	7.4 7.4	7.4	29.3 29.5	29.4	90.8 90.6	90.7	7.2 7.2	7.2		2.7 2.8	2.8		4.5 5.5	5.0	
				6.5	Middle	3.3	18.2 18.2	18.2	7.4 7.4	7.4	29.2 29.5	29.4	90.4 90.6	90.5	7.2 7.2	7.2	7.2	2.7 2.7	2.7	2.8	3.7 4.8	4.3	4.9
					Bottom	5.5	18.2 18.2	18.2	7.4 7.4	7.4	29.2 29.5	29.3	90.6 90.3	90.5	7.2 7.1	7.2	7.2	2.8	2.9		4.9 5.6	5.3	Ì
4-Mar-15	Fine	Moderate	11:21		Surface	1.0	18.4	18.4	7.4	7.4	30.2	30.3	91.2	90.8	7.2	7.2		4.0	4.1		5.4	5.0	
				6.4	Middle	3.2	18.4 18.4	18.4	7.4 7.4	7.4	30.3 30.2	30.2	90.3 90.2	90.5	7.1 7.1	7.1	7.2	4.1	3.9	3.9	4.5 4.8	4.5	5.3
				0	Bottom	5.4	18.4 18.4	18.4	7.4 7.4	7.4	30.2 30.1	30.1	90.7 89.8	90.5	7.1 7.2	7.2	7.2	3.8	3.7	0.0	4.2 7.1	6.5	
6-Mar-15	Fine	Moderate	14:29				18.4 18.4		7.4 7.6		30.2 30.7		91.2 91.2		7.2 7.1		7.2	3.6 4.8			5.9 3.1		
					Surface	1.0	18.4 18.4	18.4	7.6 7.6	7.6	30.6 30.6	30.6	91.2 90.8	91.2	7.1 7.1	7.1	7.1	4.5 4.6	4.7		2.7 3.7	2.9	ł
				6.4	Middle	3.2	18.4	18.4	7.6 7.6	7.6	30.7	30.7	91.1	91.0	7.1	7.1		4.8	4.7	4.7	3.1	3.4	3.1
0.145-45	0	Madaga	45.40		Bottom	5.4	18.3	18.3	7.6	7.6	30.7	30.7	90.9	90.9	7.1	7.1	7.1	4.6	4.8		2.8	3.1	
9-Mar-15	Sunny	Moderate	15:42		Surface	1.0	18.9 18.9	18.9	7.5 7.6	7.6	31.2 31.2	31.2	91.1 90.7	90.9	7.0 7.0	7.0	7.0	4.3 4.4	4.4		4.4	4.5	
				6.5	Middle	3.3	18.9 18.9	18.9	7.6 7.6	7.6	31.2 31.2	31.2	90.3 90.3	90.3	7.0 7.0	7.0		4.5 4.5	4.5	4.4	5.1 4.5	4.8	4.3
					Bottom	5.5	18.9 18.9	18.9	7.5 7.5	7.5	31.2 31.2	31.2	90.4 90.9	90.7	7.0 7.0	7.0	7.0	4.4 4.3	4.4		3.3 3.9	3.6	
11-Mar-15	Cloudy	Moderate	16:45		Surface	1.0	18.7 18.7	18.7	7.5 7.4	7.5	31.7 31.7	31.7	91.0 93.1	92.1	7.0 7.2	7.1	7.2	2.7 2.7	2.7		2.5 1.8	2.2	
				6.6	Middle	3.3	18.7 18.7	18.7	7.4 7.5	7.5	31.8 31.8	31.8	93.9 91.3	92.6	7.3 7.1	7.2	1.2	2.7 2.6	2.7	2.7	1.8 2.1	2.0	2.1
					Bottom	5.6	18.7 18.7	18.7	7.4 7.5	7.4	31.8 31.8	31.8	96.8 92.6	94.7	7.5 7.2	7.3	7.3	2.6 2.8	2.7		2.3 2.1	2.2	Ì
13-Mar-15	Fine	Moderate	18:51		Surface	1.0	18.6	18.6	7.5	7.5	32.3	32.3	90.6	90.1	7.0	7.0		4.5	4.4		4.8	4.5	
				6.3	Middle	3.2	18.6 18.6	18.6	7.5 7.5	7.5	32.3 32.3	32.3	89.5 91.7	91.0	7.1	7.0	7.0	4.3	4.3	4.3	8.1	7.8	6.3
					Bottom	5.3	18.6 18.5	18.6	7.5 7.4	7.5	32.3 32.3	32.3	90.2	92.0	7.0	7.1	7.1	4.4	4.3		7.4 6.9	6.6	Ì
16-Mar-15	Cloudy	Moderate	09:29		Surface	1.0	18.6 18.7	18.7	7.5 7.5	7.5	32.3 30.7	30.6	90.3 89.5	89.6	7.0	7.0		4.2 1.5	1.6		6.2 2.7	2.7	
				6.7	Middle	3.4	18.7 18.7	18.7	7.4 7.5	7.4	30.6 30.7	30.6	89.7 89.2	89.3	7.0 6.9	7.0	7.0	1.6 1.5	1.5	1.6	2.6 2.9	3.1	3.3
				0.7			18.7 18.7		7.4 7.4	7.4	30.5 30.5		89.4 91.9		7.0 7.2		7.1	1.5 1.5		1.0	3.2 4.8	4.0	3.5
18-Mar-15	Sunny	Moderate	10:48		Bottom	5.7	18.6 19.3	18.7	7.4 7.5		30.7 29.6	30.6	89.4 88.2	90.7	7.0 6.8	7.1	7.1	1.6 2.2	1.6		3.2		
To man 10	Curry	moderate	10.10		Surface	1.0	19.3 19.3	19.3	7.5 7.5	7.5	29.8 29.8	29.7	88.3 87.3	88.3	6.8	6.8	6.8	2.2	2.2		2.8	3.1	ł
				6.6	Middle	3.3	19.3 19.2	19.3	7.5 7.4	7.5	29.6 29.2	29.7	88.0 88.0	87.7	6.8	6.8		2.2	2.2	2.2	4.1 2.9	3.6	3.2
			10.10		Bottom	5.6	19.3	19.3	7.5	7.4	29.8	29.5	88.1	88.1	6.8 6.8	6.8	6.8	2.1	2.2		3.1	3.0	
20-Mar-15	Sunny	Moderate	13:43		Surface	1.0	20.0 20.0	20.0	7.9 7.9	7.9	30.5 30.5	30.5	90.8 91.6	91.2	6.9 7.0	6.9	6.9	1.4 1.5	1.5		5.2 5.0	5.1	
				6.5	Middle	3.3	19.9 19.7	19.8	7.9 7.9	7.9	30.5 30.7	30.6	91.8 90.4	91.1	7.0 6.9	6.9		1.2 1.2	1.2	1.3	6.4 5.7	6.1	5.5
					Bottom	5.5	19.4 19.5	19.4	7.9 8.0	7.9	30.9 30.8	30.9	90.6 92.2	91.4	7.0 7.1	7.0	7.0	1.0 1.1	1.1		5.5 5.3	5.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tem	erature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)) Valu	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	15:43		Surface 1	1.0 20.0 19.9	20.0	7.9 7.9	7.9	30.2 30.2	30.2	89.7 89.7	89.7	6.8 6.8	6.8	6.8	5.2 5.4	5.3		6.9 7.9	7.4	
				6.3	Middle 3	3.2 19.7 19.7	19.7	7.9 7.9	7.9	30.2 30.2	30.2	89.2 89.5	89.4	6.8 6.8	6.8	0.8	5.2 5.1	5.2	5.2	6.6 7.2	6.9	7.2
					Bottom 5	5.3 19.7 19.8	19.8	7.9 7.9	7.9	30.3 30.2	30.2	89.8 89.6	89.7	6.9 6.9	6.9	6.9	4.9 5.2	5.1		7.1 7.7	7.4	
25-Mar-15	Cloudy	Moderate	17:06		Surface 1	1.0 19.3 19.2	19.3	7.9 7.9	7.9	31.5 31.8	31.7	92.0 89.9	91.0	7.0 6.9	7.0	7.0	1.5 1.4	1.5		7.2 8.3	7.8	
				6.3	Middle 3	3.2 19.3 19.3	19.3	7.9 7.9	7.9	31.6 31.5	31.5	89.9 92.6	91.3	6.9 7.1	7.0	7.0	2.3 2.2	2.3	2.0	8.9 8.0	8.5	8.0
					Bottom 5	5.3 19.2 19.3	19.2	7.9 7.9	7.9	32.0 31.5	31.7	89.9 93.4	91.7	6.9 7.2	7.0	7.0	2.3 2.2	2.3		7.2 7.9	7.6	
27-Mar-15	Sunny	Moderate	19:21		Surface 1	1.0 19.6 19.6	19.6	7.8 7.8	7.8	31.0 31.0	31.0	92.4 91.7	92.1	7.1 7.0	7.0	7.0	1.6 1.6	1.6		1.7 2.7	2.2	
				6.4	Middle 3	3.2 19.5 19.5	19.5	7.8 7.8	7.8	31.1 31.2	31.2	92.6 91.6	92.1	7.1 7.0	7.0	7.0	1.5 1.5	1.5	1.5	2.4 2.0	2.2	2.2
					Bottom 5	5.4 19.5 19.5	19.5	7.8 7.7	7.8	31.4 31.1	31.3	91.9 93.3	92.6	7.0 7.1	7.1	7.1	1.5 1.5	1.5		2.1 2.1	2.1	
30-Mar-15	Sunny	Moderate	09:51		Surface 1	1.0 20.7 20.7	20.7	6.9 6.9	6.9	29.8 29.9	29.9	92.0 91.8	91.9	6.9 6.9	6.9	6.9	2.9 2.8	2.9		3.8 2.0	2.9	
				6.4	Middle 3	3.2 20.6 20.6	20.6	6.9 6.9	6.9	29.9 30.1	30.0	91.5 91.4	91.5	6.9 6.9	6.9	0.9	2.9 2.9	2.9	3.0	3.7 2.3	3.0	3.0
					Bottom 5	5.4 20.6	20.6	6.8 6.8	6.8	30.1 30.0	30.0	91.8 91.9	91.9	6.9 6.9	6.9	6.9	3.2 3.1	3.2		3.2 3.0	3.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	17:41		Surface	1.0	18.6 18.6	18.6	7.6 7.6	7.6	31.0 31.0	31.0	95.0 95.6	95.3	7.4 7.4	7.4	7.4	4.2 4.2	4.2		4.0 2.8	3.4	1
				6.5	Middle	3.3	18.5 18.6	18.5	7.5 7.6	7.6	31.1 31.1	31.1	94.1 94.8	94.5	7.3 7.4	7.3	7.4	4.6 4.4	4.5	4.4	2.5 2.3	2.4	3.2
					Bottom	5.5	18.6 18.3	18.5	7.6 7.5	7.5	31.1 31.4	31.3	94.2 93.2	93.7	7.3 7.3	7.3	7.3	4.5 4.2	4.4		4.3	3.8	
4-Mar-15	Fine	Moderate	19:56		Surface	1.0	18.4 18.4	18.4	7.4 7.5	7.4	30.8 30.8	30.8	90.7 90.7	90.7	7.1 7.1	7.1		4.0	3.9		2.6 4.0	3.3	
				6.6	Middle	3.3	18.4 18.4	18.4	7.4 7.5	7.4	30.8 30.7	30.8	90.5 90.9	90.7	7.1 7.1	7.1	7.1	3.8 3.8	3.8	3.9	4.5 5.8	5.2	5.1
					Bottom	5.6	18.4 18.4	18.4	7.4 7.4	7.4	30.7 30.7	30.7	89.9 90.3	90.1	7.1 7.1	7.1	7.1	4.0	3.9		6.0 7.4	6.7	1
6-Mar-15	Fine	Moderate	06:27		Surface	1.0	18.3 18.3	18.3	7.6 7.6	7.6	31.0 31.0	31.0	90.5 91.0	90.8	7.1 7.1	7.1		5.1 4.9	5.0		6.8 6.3	6.6	
				6.6	Middle	3.3	18.3 18.3	18.3	7.6 7.6	7.6	31.0 31.0	31.0	90.1 90.4	90.3	7.0 7.1	7.1	7.1	5.3 5.4	5.4	5.5	6.7 4.7	5.7	6.2
					Bottom	5.6	18.3 18.3	18.3	7.6 7.6	7.6	31.0 30.9	31.0	90.2	90.3	7.1 7.1	7.1	7.1	5.8	6.0		6.9	6.3	
9-Mar-15	Sunny	Moderate	08:11		Surface	1.0	18.7 18.7	18.7	7.4 7.4	7.4	29.4 29.2	29.3	89.5 89.9	89.7	7.0 7.1	7.0		3.5 3.4	3.5		6.5 6.7	6.6	
				6.6	Middle	3.3	18.7 18.7	18.7	7.4 7.4	7.4	29.2 29.4	29.3	89.3 89.7	89.5	7.0 7.0	7.0	7.0	3.7	3.7	3.7	7.7 7.4	7.6	7.1
					Bottom	5.6	18.7	18.7	7.4 7.4	7.4	29.3 29.2	29.3	89.8 89.2	89.5	7.0 7.0	7.0	7.0	3.7 3.8	3.8		7.8 6.4	7.1	1
11-Mar-15	Cloudy	Moderate	08:51		Surface	1.0	18.7 18.7	18.7	7.3 7.3	7.3	29.7 29.6	29.7	88.6 88.7	88.7	6.9 7.0	6.9	0.0	5.3 5.1	5.2		2.0 2.4	2.2	
				6.5	Middle	3.3	18.7 18.7	18.7	7.2 7.3	7.3	29.5 29.7	29.6	88.4 88.2	88.3	6.9 6.9	6.9	6.9	5.4 5.4	5.4	5.4	4.5 3.8	4.2	3.2
					Bottom	5.5	18.7 18.7	18.7	7.2 7.3	7.2	29.4 29.7	29.5	88.5 88.4	88.5	6.9 6.9	6.9	6.9	5.5 5.6	5.6		3.0 3.3	3.2	
13-Mar-15	Fine	Moderate	10:02		Surface	1.0	18.5 18.5	18.5	7.5 7.5	7.5	30.3 30.1	30.2	86.5 87.1	86.8	6.8 6.8	6.8	6.8	1.5 1.5	1.5		3.1 3.3	3.2	
				6.4	Middle	3.2	18.5 18.5	18.5	7.4 7.5	7.4	30.1 30.4	30.3	86.3 86.5	86.4	6.8 6.8	6.8	0.0	1.9 1.8	1.9	1.7	3.5 2.2	2.9	2.9
					Bottom	5.4	18.5 18.5	18.5	7.4 7.4	7.4	30.5 30.2	30.3	86.3 86.7	86.5	6.7 6.8	6.8	6.8	1.7 1.8	1.8		2.3 2.6	2.5	<u> </u>
16-Mar-15	Sunny	Moderate	15:48		Surface	1.0	18.7 18.7	18.7	7.3 7.3	7.3	31.8 31.8	31.8	88.1 87.8	88.0	6.8 6.8	6.8	6.8	2.5 2.5	2.5		2.7 2.9	2.8	
				6.7	Middle	3.4	18.7 18.7	18.7	7.3 7.3	7.3	31.9 31.8	31.9	88.0 87.8	87.9	6.8 6.8	6.8	0.0	2.5 2.5	2.5	2.6	4.0 3.2	3.6	3.1
					Bottom	5.7	18.7 18.7	18.7	7.3 7.3	7.3	31.8 31.9	31.9	88.0 88.1	88.1	6.8 6.8	6.8	6.8	2.7 2.8	2.8		2.0 3.9	3.0	
18-Mar-15	Sunny	Moderate	17:51		Surface	1.0	19.7 19.7	19.7	7.4 7.4	7.4	30.8 30.7	30.8	90.9 90.6	90.8	6.9 6.9	6.9	6.9	2.2 2.2	2.2		2.4 2.2	2.3	
				6.5	Middle	3.3	19.6 19.6	19.6	7.4 7.4	7.4	31.0 30.9	31.0	90.4 90.5	90.5	6.9 6.9	6.9	5.5	2.2 2.1	2.2	2.2	2.8 2.1	2.5	2.4
					Bottom	5.5	19.6 19.5	19.6	7.4 7.4	7.4	30.9 31.1	31.0	90.5 91.2	90.9	6.9 7.0	6.9	6.9	2.2 2.2	2.2		2.0 2.8	2.4	<u> </u>
20-Mar-15	Sunny	Moderate	06:02		Surface	1.0	19.2 19.3	19.3	7.8 7.8	7.8	30.5 30.4	30.5	88.6 88.9	88.8	6.8 6.9	6.8	6.8	5.0 5.3	5.2		4.7 5.1	4.9	
				6.7	Middle	3.4	19.1 19.1	19.1	7.8 7.8	7.8	31.0 31.0	31.0	88.2 88.1	88.2	6.8 6.8	6.8	0.0	6.7 6.3	6.5	5.8	4.6 5.8	5.2	4.8
					Bottom	5.7	19.1 19.1	19.1	7.8 7.8	7.8	31.0 31.0	31.0	88.2 88.1	88.2	6.8 6.8	6.8	6.8	5.5 5.6	5.6		4.5 4.3	4.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	erature (°C)	p	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	07:47		Surface 1.	.0 19.4 19.4	19.4	7.9 7.9	7.9	31.0 30.8	30.9	88.4 89.0	88.7	6.8 6.8	6.8	6.8	4.2 3.8	4.0		6.0 7.8	6.9	
				6.7	Middle 3.	.4 19.4 19.4	19.4	7.9 7.9	7.9	31.1 31.1	31.1	88.4 88.5	88.5	6.8 6.8	6.8	0.0	3.9 4.0	4.0	4.5	7.1 6.4	6.8	6.9
					Bottom 5.	.7 19.4 19.4	19.4	7.9 7.9	7.9	31.1 31.1	31.1	88.7 88.9	88.8	6.8 6.8	6.8	6.8	5.3 5.9	5.6		7.3 6.8	7.1	
25-Mar-15	Cloudy	Moderate	08:53		Surface 1.	.0 19.3 19.3	19.3	7.9 7.9	7.9	31.5 31.5	31.5	88.1 88.0	88.1	6.7 6.7	6.7	6.7	1.5 1.5	1.5		7.0 6.7	6.9	
				6.8	Middle 3.	.4 19.3 19.3	19.3	7.9 7.9	7.9	31.7 31.7	31.7	88.0 88.2	88.1	6.7 6.7	6.7	0.1	1.9 1.8	1.9	1.8	7.3 5.9	6.6	7.2
					Bottom 5.	.8 19.3 19.3	19.3	7.9 7.9	7.9	31.8 31.6	31.7	88.2 88.3	88.3	6.7 6.8	6.7	6.7	1.8 2.0	1.9		7.9 8.4	8.2	
27-Mar-15	Cloudy	Moderate	09:51		Surface 1.	.0 19.2 19.2	19.2	7.9 7.9	7.9	31.7 31.7	31.7	87.1 87.5	87.3	6.7 6.7	6.7	6.7	2.2 2.2	2.2		1.8 1.1	1.5	
				6.5	Middle 3.	.3 19.2 19.2	19.2	7.9 7.9	7.9	32.1 32.0	32.0	87.4 87.3	87.4	6.7 6.7	6.7	0.7	2.2 2.2	2.2	2.2	2.0 2.0	2.0	1.7
					Bottom 5	.5 19.2 19.2	19.2	7.9 7.9	7.9	32.0 32.1	32.1	87.7 87.4	87.6	6.7 6.7	6.7	6.7	2.3 2.2	2.3		2.0 1.1	1.6	
30-Mar-15	Sunny	Moderate	16:29		Surface 1.	.0 21.2 20.9	21.1	7.4 7.4	7.4	32.4 32.5	32.5	96.6 96.6	96.6	7.1 7.1	7.1	7.1	2.7 2.8	2.8		4.1 3.8	4.0	
				6.4	Middle 3	.2 20.9 20.9	20.9	7.4 7.1	7.3	32.7 32.8	32.7	96.3 95.0	95.7	7.1 7.0	7.1	7.1	3.1 3.1	3.1	3.0	3.6 3.6	3.6	3.7
					Bottom 5.	.4 21.0 20.9	20.9	7.4 7.1	7.2	32.6 32.8	32.7	96.8 94.7	95.8	7.1 7.0	7.1	7.1	3.1 3.2	3.2		4.0 3.1	3.6	l

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	10:53		Surface	1.0	18.2 18.2	18.2	7.2 7.1	7.1	26.5 24.5	25.5	92.0 92.0	92.0	7.4 7.5	7.4		3.3 3.3	3.3		6.3 7.3	6.8	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	3.3	-	-	5.2
					Bottom	4.3	18.2 18.2	18.2	7.1 7.1	7.1	23.1	24.3	93.5 91.7	92.6	7.7 7.4	7.6	7.6	3.3	3.3		2.5	3.6	
4-Mar-15	Fine	Moderate	11:08		0 (4.0	18.4	40.4	7.1	7.5	29.5	00.0	90.5	00.0	7.4	7.0		2.8	0.7	l 	6.3	5.0	
					Surface	1.0	18.4	18.4	7.5	7.5	29.6	29.6	91.0	90.8	7.2	7.2	7.2	2.5	2.7		5.5	5.9	
				5.0	Middle	-	18.4	-	- 7.5	-	29.5	-	90.3	-	7.2	-		3.5	-	3.2	6.0	-	6.2
					Bottom	4.0	18.4	18.4	7.5	7.5	29.5	29.5	90.8	90.6	7.2	7.2	7.2	3.6	3.6		6.7	6.4	<u> </u>
6-Mar-15	Fine	Moderate	14:40		Surface	1.0	18.4 18.4	18.4	7.6 7.6	7.6	30.8 30.8	30.8	92.1 92.2	92.2	7.2 7.2	7.2	7.2	4.7 4.6	4.7		2.7 2.8	2.8	
				5.1	Middle	-	-	-		-		-		-		-		-	-	4.8	-	-	2.8
					Bottom	4.1	18.4 18.4	18.4	7.6 7.6	7.6	30.9 30.8	30.8	92.4 92.3	92.4	7.2 7.2	7.2	7.2	4.9 4.8	4.9		3.0 2.6	2.8	
9-Mar-15	Sunny	Moderate	15:51		Surface	1.0	18.9 18.9	18.9	7.5 7.5	7.5	31.2 31.2	31.2	90.9 90.3	90.6	7.0 7.0	7.0		3.5 3.6	3.6		3.7 3.8	3.8	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	3.6	-	-	4.2
					Bottom	4.2	18.9 18.9	18.9	7.5 7.5	7.5	31.2	31.3	90.1	90.3	7.0 7.0	7.0	7.0	3.5 3.5	3.5		5.6 3.6	4.6	
11-Mar-15	Cloudy	Moderate	16:56		Surface	1.0	18.7	18.7	7.6	7.6	31.3 31.7	31.7	90.5 90.1	90.1	7.0	7.0		2.5	2.6		1.8	1.7	
				5.1	Middle		18.7	_	7.6	_	31.7	_	90.0	_	7.0		7.0	2.7	_	2.6	1.6	_	1.7
				0	Bottom	4.1	18.7	18.7	7.6	7.6	31.7	31.7	90.5	90.4	7.0	7.0	7.0	2.6	2.6	2.0	1.6	1.7	1
40.145	F	Martinet	40.00		Bollom	4.1	18.7	10.7	7.5	7.0	31.7	31.7	90.2	30.4	7.0	7.0	7.0	2.6	2.0		1.7	1.7	<u> </u>
13-Mar-15	Fine	Moderate	19:00		Surface	1.0	18.6 18.6	18.6	7.5 7.5	7.5	32.2 32.2	32.2	88.7 88.5	88.6	6.9 6.8	6.8	6.8	1.2 1.3	1.3		6.0 4.4	5.2	
				4.9	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	1.3	-	-	4.6
					Bottom	3.9	18.6 18.6	18.6	7.5 7.5	7.5	32.3 32.2	32.3	88.4 88.4	88.4	6.8 6.8	6.8	6.8	1.3 1.2	1.3		3.4 4.3	3.9	
16-Mar-15	Cloudy	Moderate	09:17		Surface	1.0	18.7 18.7	18.7	7.3 7.3	7.3	29.1 28.6	28.9	87.1 87.5	87.3	6.8 6.9	6.9	6.9	1.7 1.8	1.8		4.5 4.2	4.4	
				5.4	Middle	-	-	-	-	-	-	-		-	-	-	6.9	-	-	1.8	-	-	4.1
					Bottom	4.4	18.7 18.7	18.7	7.3 7.3	7.3	28.9 28.1	28.5	87.2 86.9	87.1	6.9 6.9	6.9	6.9	1.8 1.8	1.8		4.2 3.1	3.7	
18-Mar-15	Sunny	Moderate	10:39		Surface	1.0	19.3 19.3	19.3	7.2 7.3	7.2	27.5 28.3	27.9	88.2 88.3	88.3	6.9 6.9	6.9		2.2	2.3		2.9 4.1	3.5	
				4.9	Middle	-	-	-	-	-	- 28.3	-	- 88.3	-	- 6.9	-	6.9	2.3	-	2.3	- 4.1	-	3.1
					Bottom	3.9	19.2	19.3	7.2	7.2	26.6	27.3	87.6	87.8	6.9	6.9	6.9	2.2	2.2		2.4	2.6	
20-Mar-15	Sunny	Moderate	13:55		Surface	1.0	19.3 19.9	19.8	7.2 7.9	7.9	28.0 30.5	30.6	91.0	90.9	6.9 6.9	6.9		2.1 1.4	1.4		2.8 5.3	5.9	
				5.4	Middle		19.7		7.9		30.7	-	90.7	-	6.9	-	6.9	1.3	-	1.4	6.5	-	5.7
				5.4		4.4	19.3	40.5	7.9	7.0	30.9	20.0	90.2	00.0	6.9	-	0.0	1.3		1.4	5.2		5.1
					Bottom	4.4	19.6	19.5	7.9	7.9	30.8	30.8	90.2	90.2	6.9	6.9	6.9	1.3	1.3		5.5	5.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Sunny	Moderate	15:55		Surface	1.0	19.8 19.9	19.8	7.9 7.9	7.9	30.2 30.2	30.2	89.1 89.3	89.2	6.8 6.8	6.8	6.8	5.8 5.5	5.7		6.3 6.0	6.2	
				4.9	Middle	-		•	1 1	-	-	-		-	1 1	-	0.0	-	-	5.7	-	-	6.6
					Bottom	3.9	19.8 19.7	19.7	7.9 7.9	7.9	30.2 30.3	30.3	89.6 88.9	89.3	6.8 6.8	6.8	6.8	5.7 5.7	5.7		7.3 6.5	6.9	
25-Mar-15	Cloudy	Moderate	17:18		Surface	1.0	19.2 19.2	19.2	7.9 7.9	7.9	31.8 31.8	31.8	89.6 89.4	89.5	6.9 6.8	6.8	6.8	0.5 0.5	0.5		4.7 4.6	4.7	
				5.0	Middle	-		-		-	-	-		-		-	0.0	-	-	0.8	-	-	5.3
					Bottom	4.0	19.2 19.3	19.3	7.9 7.9	7.9	31.8 31.7	31.8	89.5 89.4	89.5	6.8 6.8	6.8	6.8	1.0 0.9	1.0		5.6 5.9	5.8	
27-Mar-15	Sunny	Moderate	19:31		Surface	1.0	19.5 19.5	19.5	7.9 7.9	7.9	31.2 31.2	31.2	91.3 91.3	91.3	7.0 7.0	7.0	7.0	1.3 1.4	1.4		1.6 0.8	1.2	
				5.0	Middle	-		-		-	-	-		-		-	7.0	-	-	1.4	-	-	1.6
					Bottom	4.0	19.5 19.5	19.5	7.9 7.9	7.9	31.3 31.3	31.3	91.3 91.2	91.3	7.0 7.0	7.0	7.0	1.3 1.3	1.3		1.4 2.4	1.9	
30-Mar-15	Sunny	Moderate	09:41		Surface	1.0	20.7 20.7	20.7	7.2 7.2	7.2	27.7 28.5	28.1	93.1 92.4	92.8	7.1 7.0	7.1	7.1	2.7 2.7	2.7		2.5 2.6	2.6	
				4.9	Middle	-		-	1 1	-	-	-		-	1 1	-	7.1	-	-	2.8	-	-	2.7
					Bottom	3.9	20.6 20.6	20.6	7.2 6.8	7.0	28.3 26.9	27.6	92.5 93.2	92.9	7.0 7.1	7.1	7.1	2.8 2.8	2.8		2.7 2.6	2.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Mar-15	Sunny	Calm	17:51		Surface	1.0	18.6 18.6	18.6	7.6 7.6	7.6	31.0 31.0	31.0	93.6 94.3	94.0	7.3 7.3	7.3		5.5 5.7	5.6		3.0 4.5	3.8	
				5.4	Middle	-	-	-	-	_	-	-	- 94.3	-	-	-	7.3	-	_	5.6	- 4.5	-	4.2
					Bottom	4.4	18.5	18.5	7.6	7.6	31.3	31.2	91.5	92.8	7.1	7.2	7.2	5.5	5.6		3.7	4.5	
4.545	F'	Ma land	00.07		Dottom	-17	18.6	10.0	7.6	7.0	31.1	01.2	94.0	32.0	7.3	7.2	7.2	5.6	0.0		5.3	4.0	
4-Mar-15	Fine	Moderate	20:07		Surface	1.0	18.4 18.4	18.4	7.5 7.5	7.5	30.9 30.8	30.8	91.5 91.3	91.4	7.2 7.1	7.1	7.1	3.5 3.7	3.6		3.9 3.3	3.6	
				5.2	Middle	-	-	-		-	-	-	-	-		-		-	-	3.7	-	-	4.0
					Bottom	4.2	18.4 18.4	18.4	7.5 7.5	7.5	30.9 30.9	30.9	91.6 91.7	91.7	7.2 7.2	7.2	7.2	3.6 4.0	3.8		4.2 4.4	4.3	
6-Mar-15	Fine	Moderate	06:14		Surface	1.0	18.3 18.3	18.3	7.6 7.6	7.6	30.7 30.6	30.6	89.9 90.0	90.0	7.1 7.1	7.1		3.7 3.7	3.7		4.6 4.3	4.5	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	4.0	-	-	5.3
					Bottom	4.3	18.3	18.3	7.6	7.6	30.5	30.6	89.7	89.8	7.0	7.1	7.1	4.3	4.3		5.2	6.1	
9-Mar-15	Sunny	Moderate	08:02		Surface	1.0	18.3 18.7	18.7	7.6 7.2	7.2	30.6 27.9	27.5	89.8 89.8	90.2	7.1 7.1	7.2		4.3 3.6	3.6		7.0 7.8	7.1	
				5.2	Middle		18.7	_	7.1	_	27.1	_	90.6	_	7.2	_	7.2	3.5		3.6	6.3	_	7.4
				0.2		4.2	18.7	18.7	7.2	7.0	27.7	26.5	90.1	90.6	7.1	7.2	7.2	3.6	3.6	0.0	8.0	7.6	7
11-Mar-15	Cloudy	Moderate	08:41		Bottom	4.2	18.7 18.7	18.7	6.9 7.3	7.0	25.4 27.6	20.5	91.0 89.3	90.6	7.3 7.1	1.2	1.2	3.5 6.5	3.0		7.2 4.4	7.0	
TT-Wat-15	Cloudy	Moderate	00.41		Surface	1.0	18.7	18.7	7.2	7.3	26.5	27.1	90.4	89.9	7.2	7.1	7.1	6.3	6.4		4.7	4.6	
				4.8	Middle	-	-	-		-	-	-	-	-	1 1	-		-	-	6.5	-	-	3.7
					Bottom	3.8	18.7 18.7	18.7	7.2 7.2	7.2	27.1 24.7	25.9	89.5 91.6	90.6	7.1 7.4	7.2	7.2	6.4 6.6	6.5		2.5 3.1	2.8	
13-Mar-15	Fine	Moderate	09:51		Surface	1.0	18.5 18.5	18.5	7.3 7.3	7.3	28.0 28.9	28.5	88.0 87.6	87.8	7.0 6.9	6.9	0.0	2.4 2.4	2.4		1.7 2.4	2.1	
				5.2	Middle	-	-	-		-	-	-	-	-		-	6.9	-	-	2.4	-	-	2.9
					Bottom	4.2	18.5 18.5	18.5	7.3 7.3	7.3	28.7 27.0	27.8	87.3 89.3	88.3	6.9 7.1	7.0	7.0	2.3 2.4	2.4		2.8 4.3	3.6	
16-Mar-15	Sunny	Moderate	16:00		Surface	1.0	18.7	18.7	7.4	7.4	31.8	31.8	87.5	87.6	6.8	6.8		1.6	1.6		2.9	2.8	
				5.2	Middle	_	18.7	_	7.4	_	31.8	-	87.6 -	-	6.8	-	6.8	1.5	-	1.6	2.7	-	3.3
					Bottom	4.2	18.7	18.7	7.3	7.4	31.8	31.8	87.6	87.4	6.8	6.7	6.7	1.5	1.6		4.0	3.8	
18-Mar-15	Sunny	Moderate	18:00			1.0	18.7 19.7		7.4 7.4		31.8 30.7		87.2 91.3		6.7 7.0			1.6 2.2			3.6 2.8		
	,				Surface	1.0	19.7	19.7	7.4	7.4	30.6	30.6	91.2	91.3	7.0	7.0	7.0	2.1	2.2		2.7	2.8	
				5.5	Middle	-	- 19.6	-	- 7.4	-	30.9	-	90.8	-	6.9	-		- 2.1	-	2.2	2.4	-	2.7
00 May 45	0	Madaga	05.40	<u> </u>	Bottom	4.5	19.7	19.6	7.4	7.4	30.8	30.8	90.8	90.8	6.9	6.9	6.9	2.2	2.2		2.8	2.6	
20-Mar-15	Sunny	Moderate	05:49		Surface	1.0	19.1 19.1	19.1	7.8 7.8	7.8	30.7 30.9	30.8	89.6 88.8	89.2	6.9 6.8	6.9	6.9	4.6 4.3	4.5		4.2 3.8	4.0	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.6	-	-	5.0
					Bottom	4.3	19.1 19.1	19.1	7.8 7.8	7.8	30.8 30.9	30.8	89.9 89.1	89.5	6.9 6.9	6.9	6.9	6.3 6.9	6.6		6.0 5.8	5.9	
		•	•	•	•			•		•		•	00	•	0.0			. 0.0	•		. 0.0		•

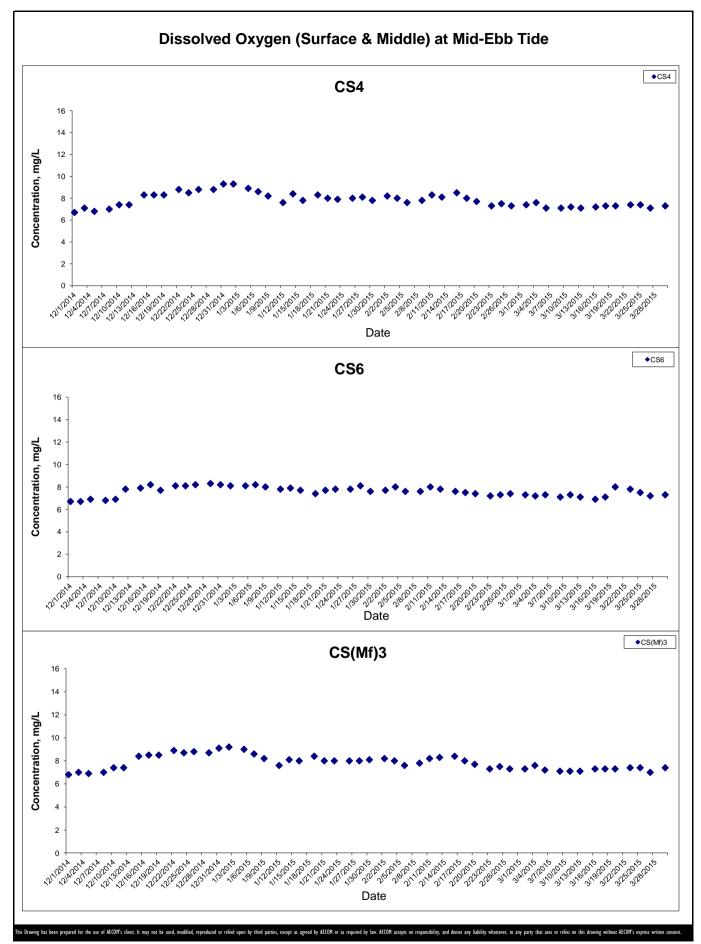
Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

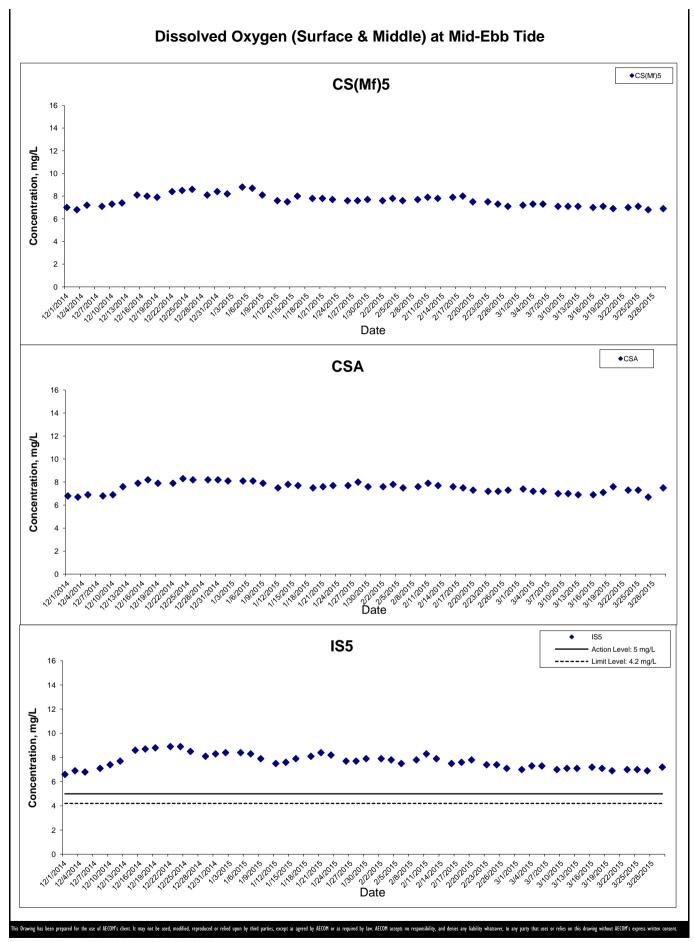
Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	ŀ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Mar-15	Cloudy	Moderate	07:34		Surface	1.0	19.4 19.4	19.4	7.9 7.9	7.9	31.0 31.0	31.0	94.4 91.9	93.2	7.2 7.0	7.1	7.1	4.5 4.7	4.6		6.9 6.2	6.6	
				5.0	Middle	-		-		-	-	-	-			-	7.1	-	-	4.5	-	-	6.5
					Bottom	4.0	19.4 19.4	19.4	7.9 7.9	7.9	31.1 31.1	31.1	97.6 92.8	95.2	7.5 7.1	7.3	7.3	4.4 4.2	4.3		5.9 6.6	6.3	
25-Mar-15	Cloudy	Moderate	08:41		Surface	1.0	19.3 19.3	19.3	7.9 7.9	7.9	31.6 31.7	31.6	91.5 89.7	90.6	7.0 6.9	6.9	6.9	1.8 1.7	1.8		7.3 6.7	7.0	
				5.4	Middle	,	-	-	-	-	-	-	-	-	-		0.5	-	-	1.8	-	-	7.9
					Bottom	4.4	19.3 19.3	19.3	7.9 7.9	7.9	31.5 31.6	31.6	93.2 90.6	91.9	7.1 6.9	7.0	7.0	1.6 1.7	1.7		9.3 8.0	8.7	
27-Mar-15	Cloudy	Moderate	09:43		Surface	1.0	19.2 19.2	19.2	7.8 7.9	7.9	31.4 31.6	31.5	90.8 89.2	90.0	7.0 6.8	6.9	6.9	2.1 2.2	2.2		2.0 2.1	2.1	
				5.3	Middle	•		-		-	-	-		-		-	0.5	-	-	2.2	-	-	1.7
					Bottom	4.3	19.2 19.2	19.2	7.8 7.8	7.8	31.7 31.0	31.4	90.0 93.5	91.8	6.9 7.2	7.0	7.0	2.1 2.1	2.1		1.3 1.0	1.2	
30-Mar-15	Sunny	Moderate	16:41		Surface	1.0	20.9 20.9	20.9	7.3 7.4	7.4	32.5 32.5	32.5	97.2 96.7	97.0	7.2 7.1	7.2	7.2	2.5 2.5	2.5	_	2.8 2.5	2.7	
				5.2	Middle	-	1 1	-		-	-	-		-		-	1.2	-	-	2.6	-	-	2.8
					Bottom	4.2	20.9 20.9	20.9	7.4 7.5	7.4	32.6 32.7	32.6	97.0 96.5	96.8	7.2 7.1	7.1	7.1	2.6 2.6	2.6		2.6 2.9	2.8	


Remarks:

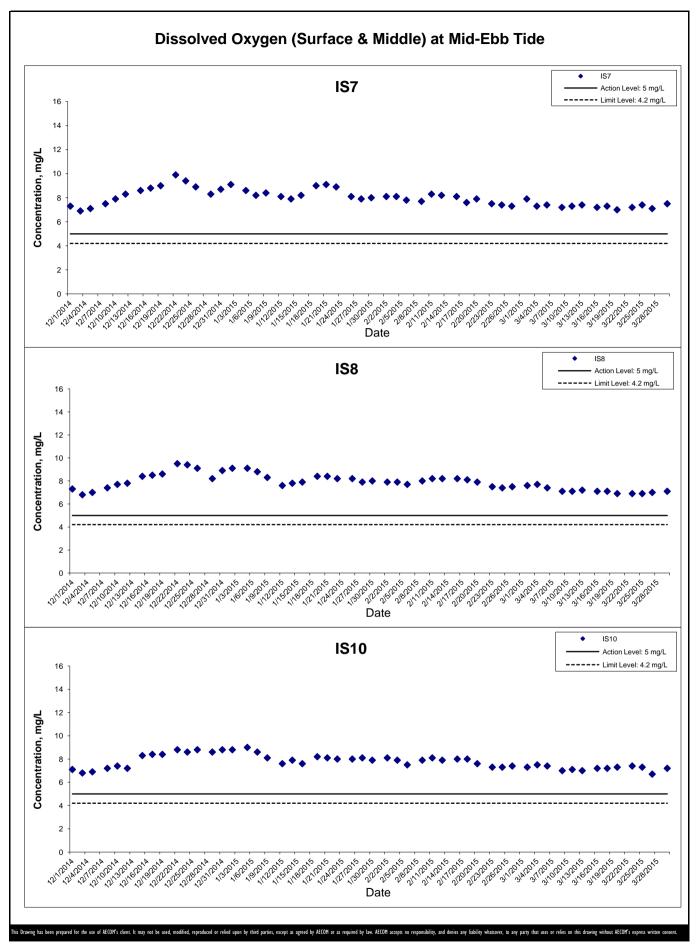
Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

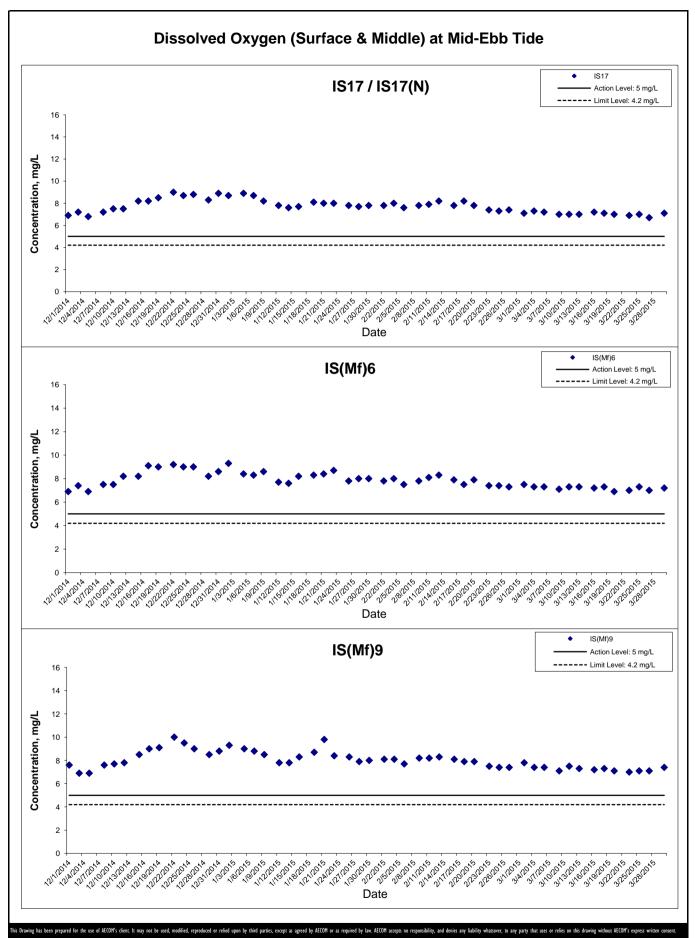
CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.


^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

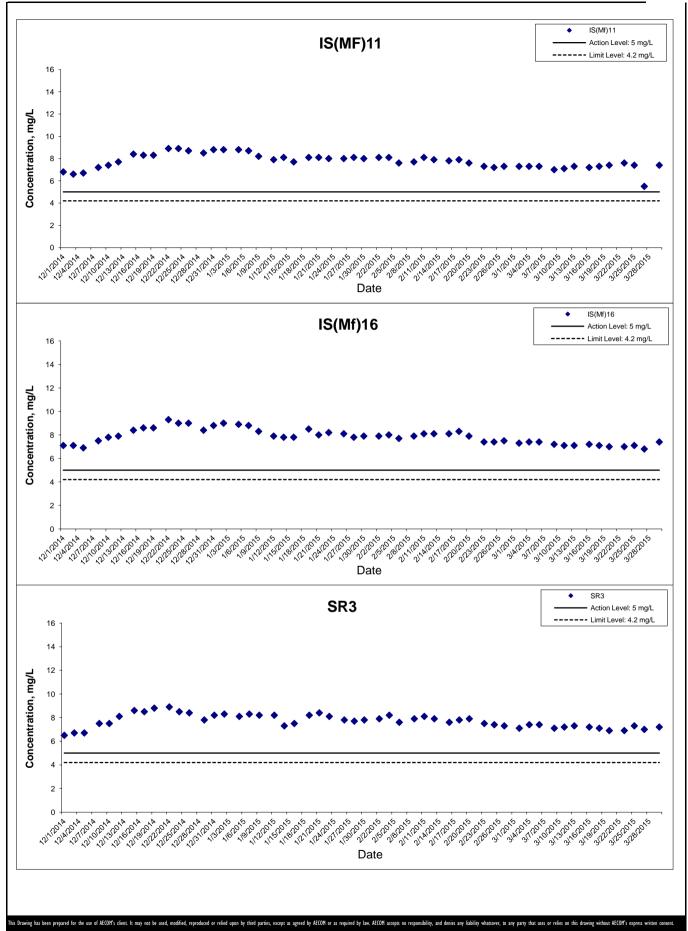
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

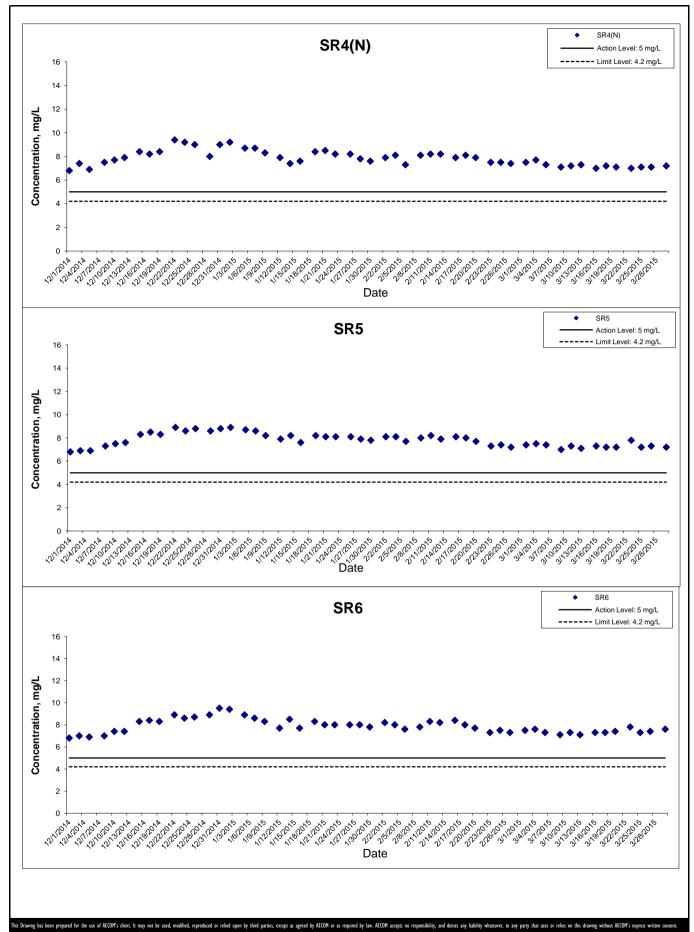

AECOM


- RECLAMATION WORKS

ES
Graphical Presentation of Impact Water Quality

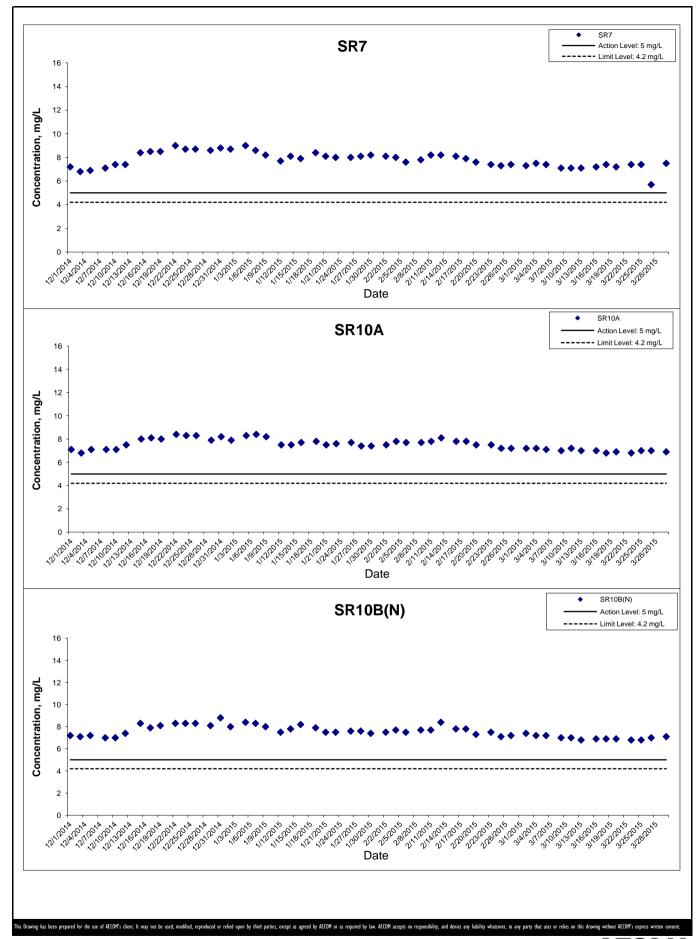
Monitoring Results

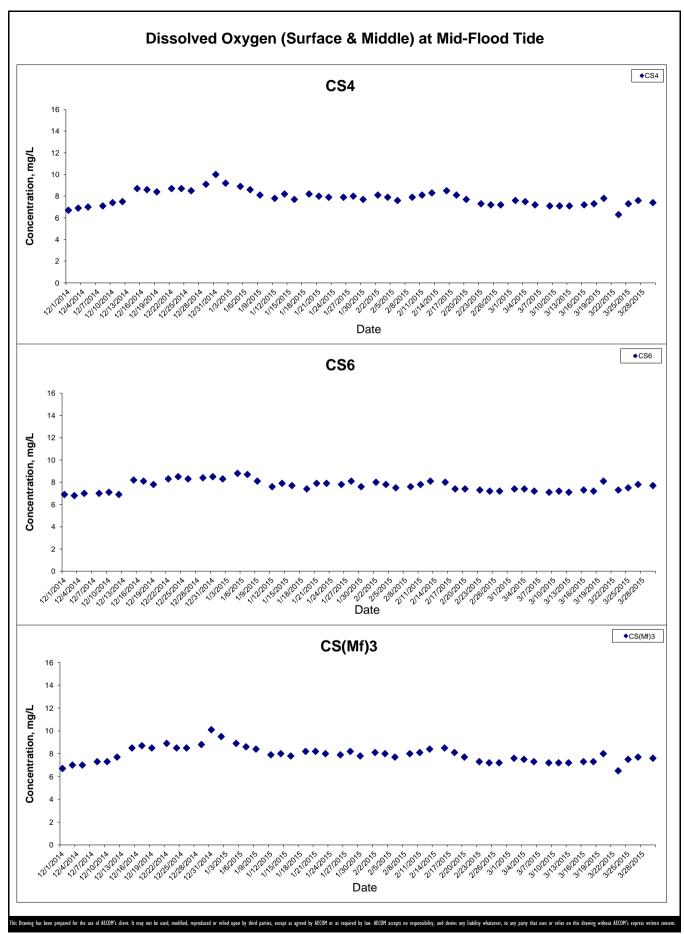

AECOM


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

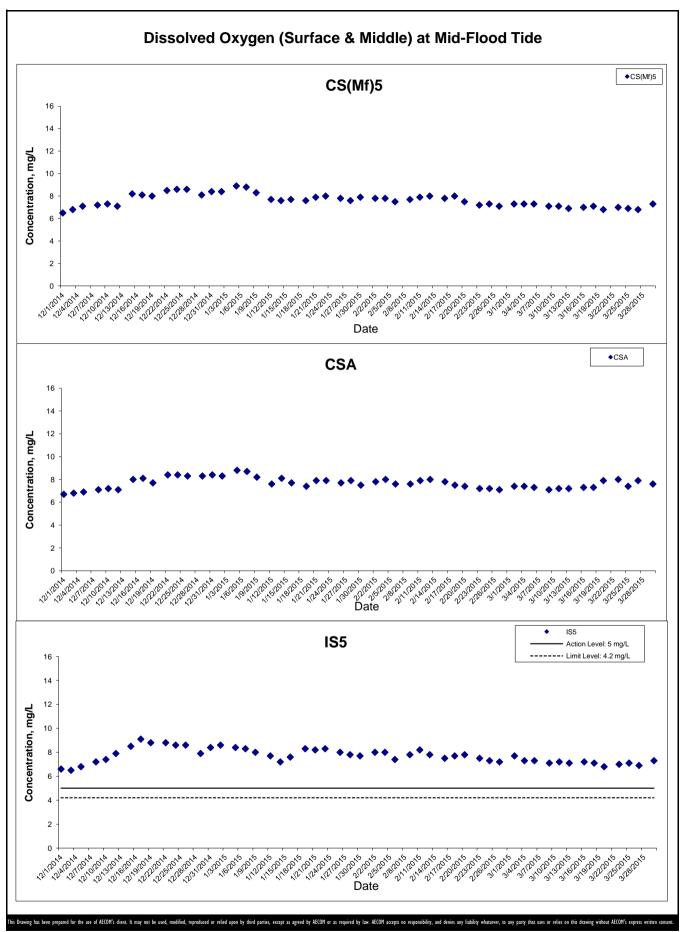
Monitoring Results


AECOM

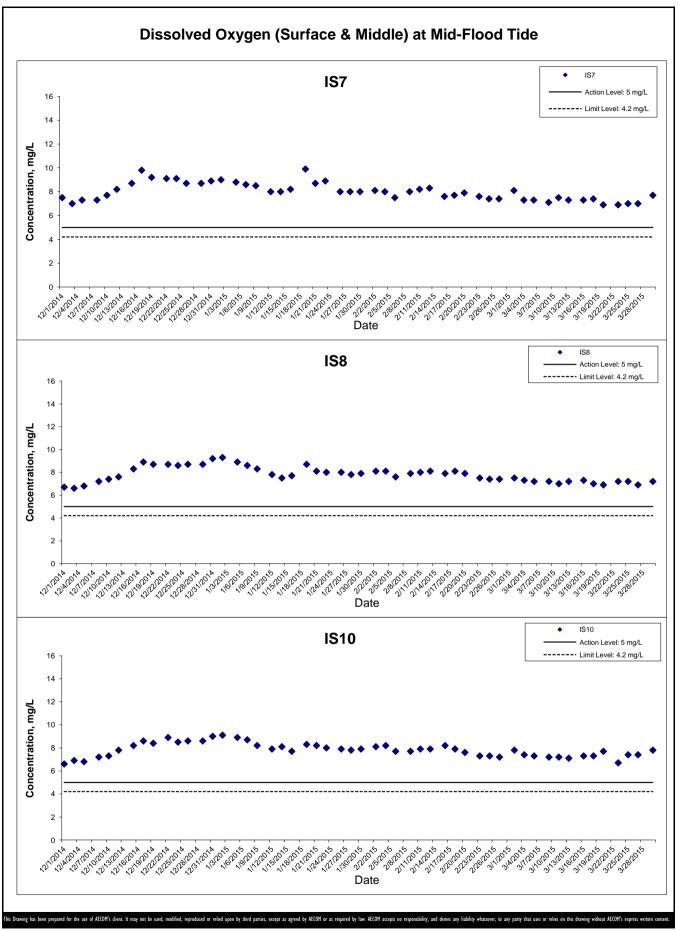

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

Monitoring Results



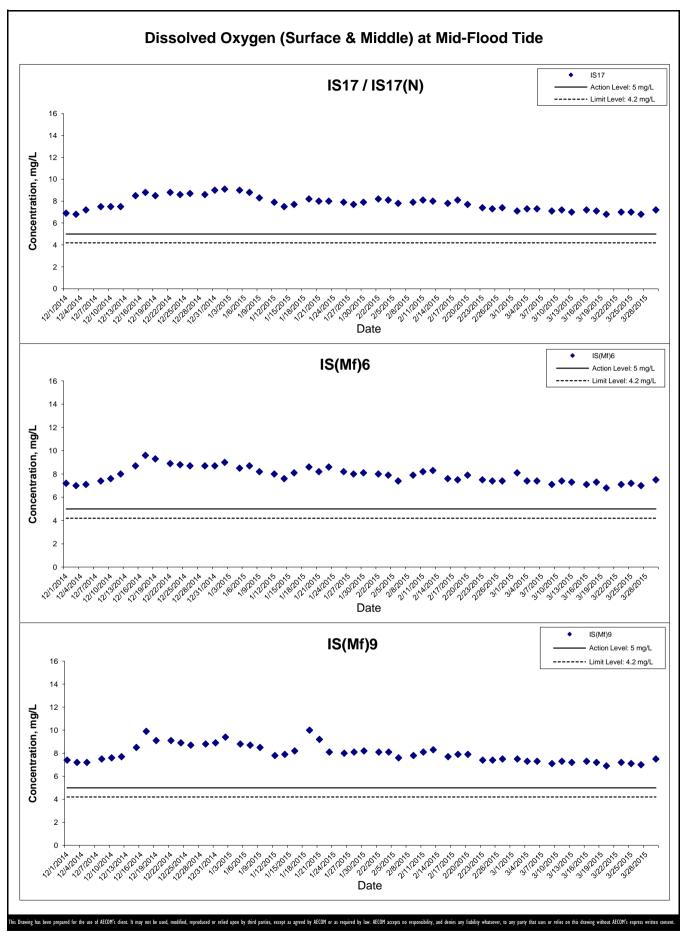
AECOM


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
G1

AECOM

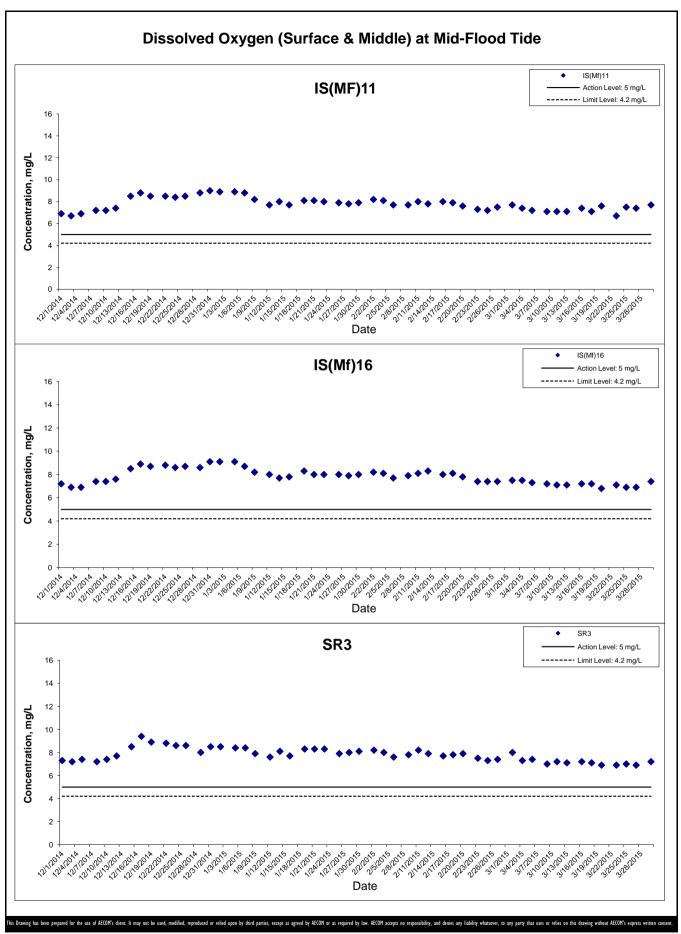
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

Graphical Presentation of Impact Water Quality
Monitoring Results



HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

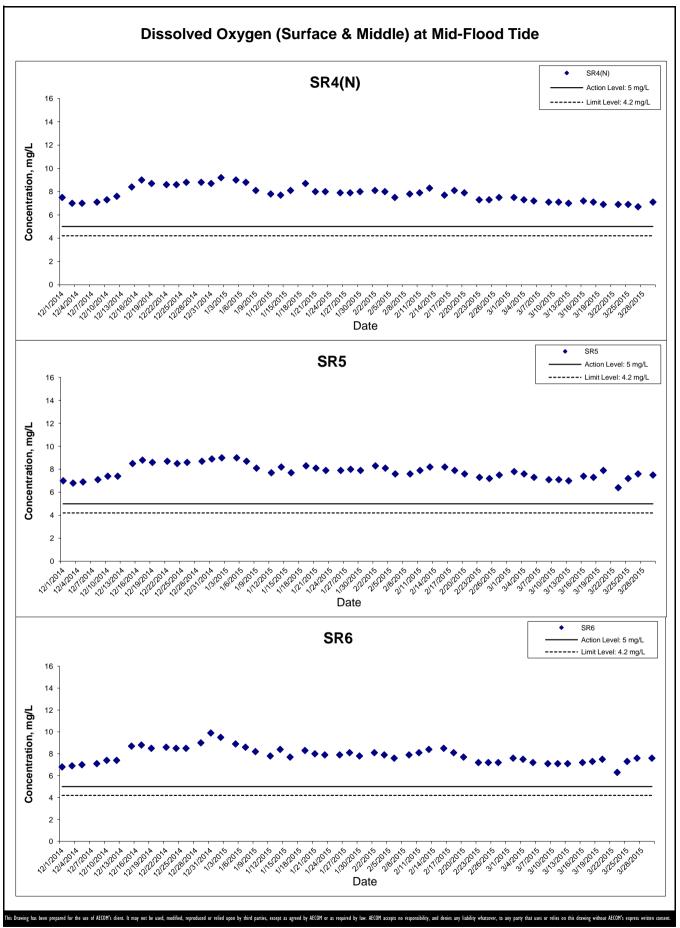
Graphical Presentation of Impact Water Quality
Monitoring Results


Project No.: 60249820 Date: Apr 2015 Appendix J

AECOM

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

Graphical Presentation of Impact Water Quality
Monitoring Results

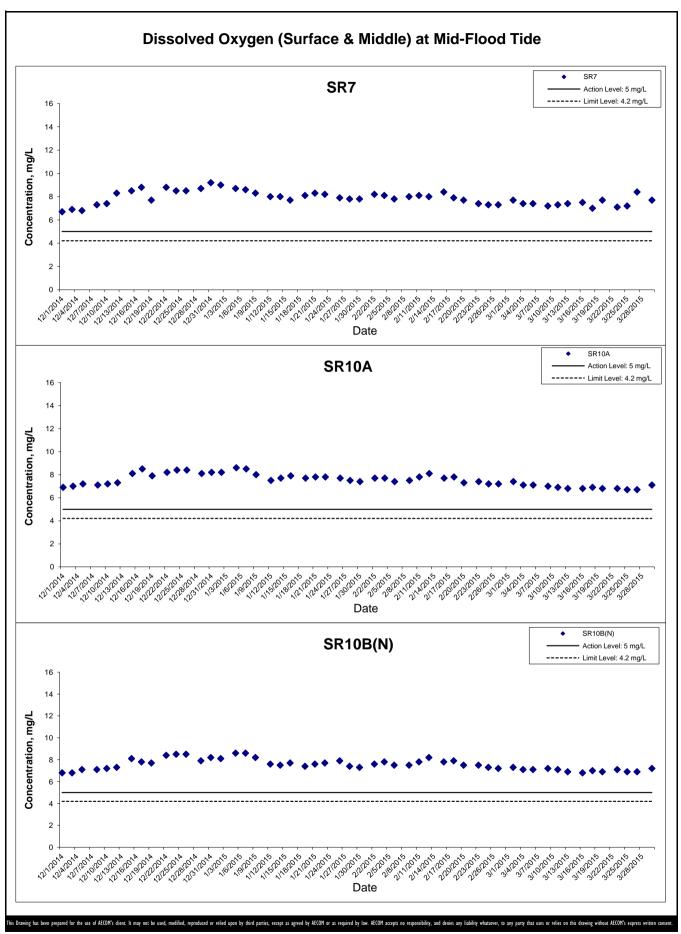


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

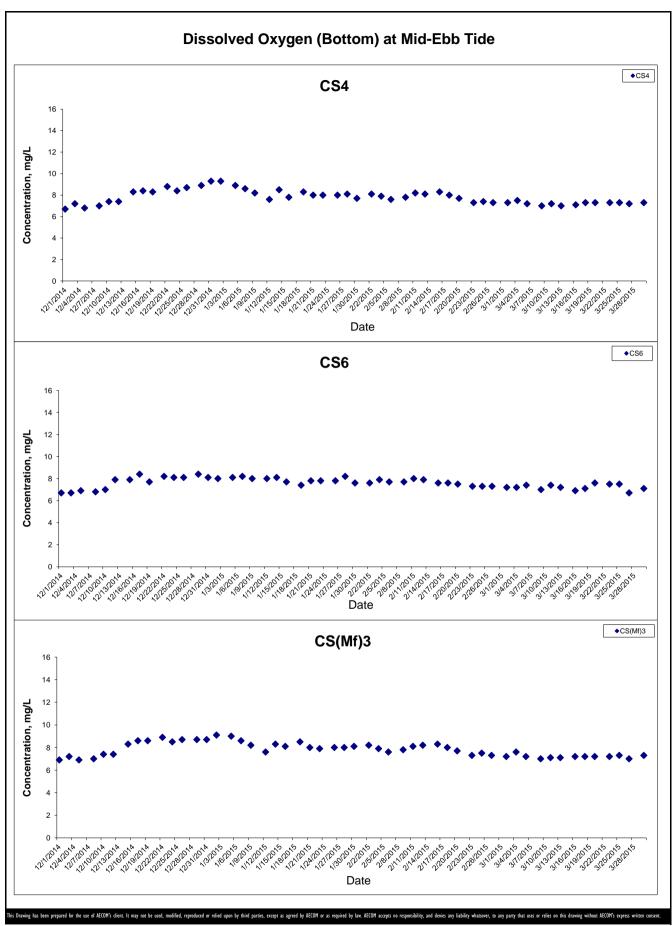
Project No.: 60249820 Date: Apr 2015 Appendix J

AECOM

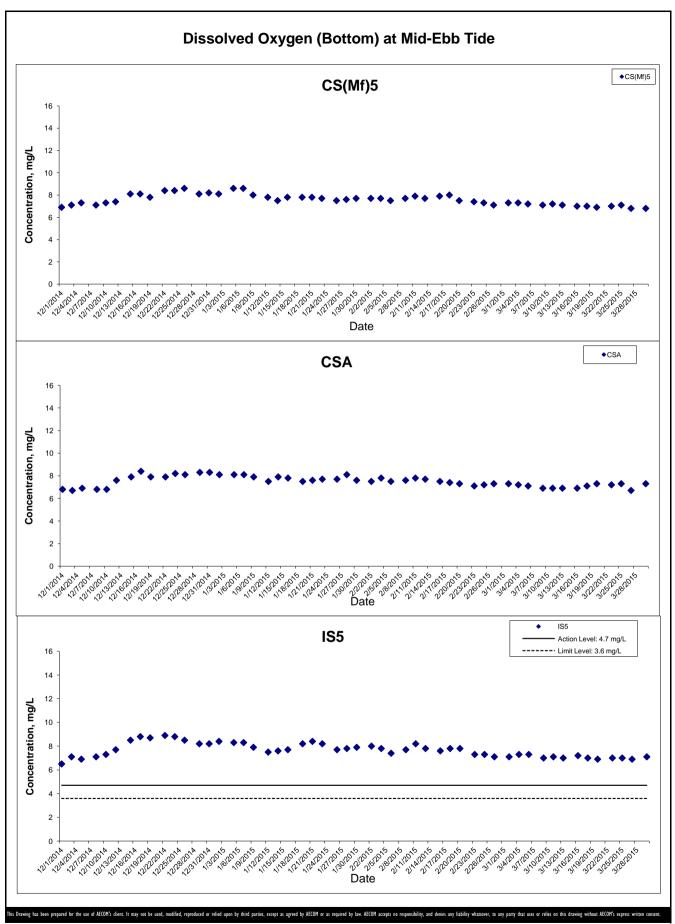


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

Graphical Presentation of Impact Water Quality
Monitoring Results

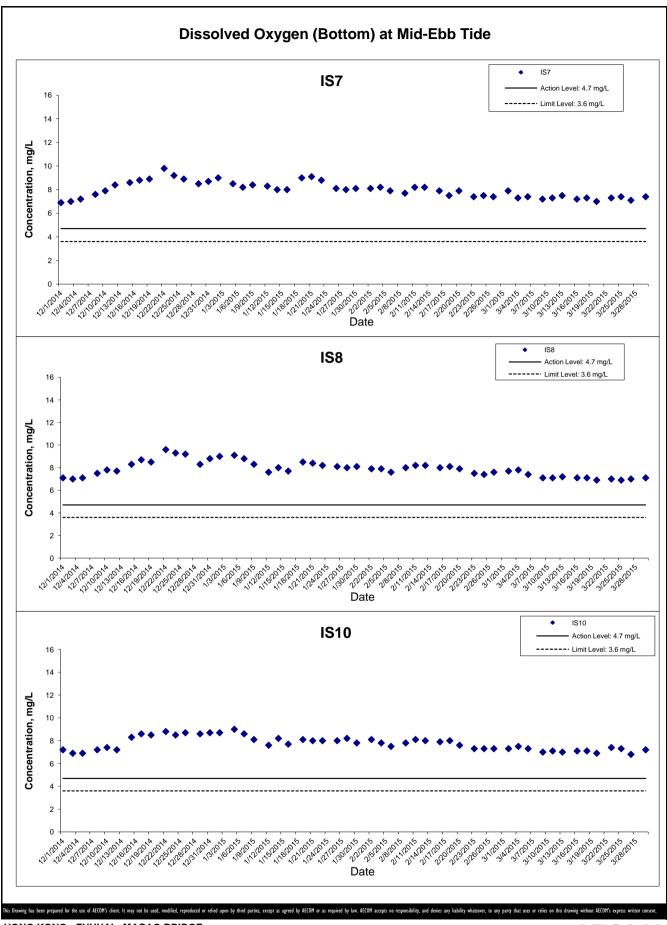

Project No.: 60249820 Date: Apr 2015 Appendix J

AECOM

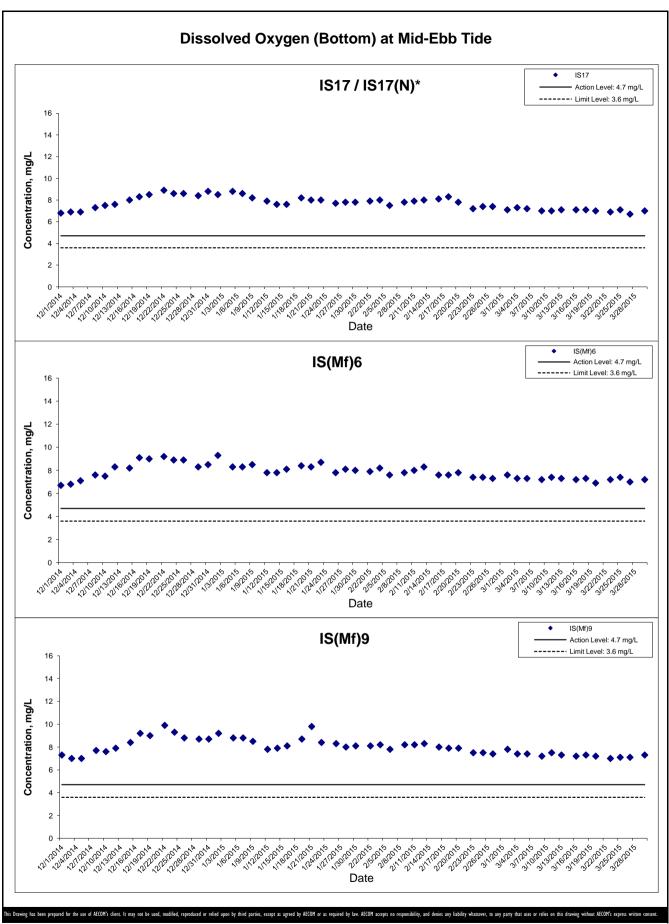

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr.

Graphical Presentation of Impact Water Quality
Monitoring Results

- RECLAMATION WORKS


AECOM

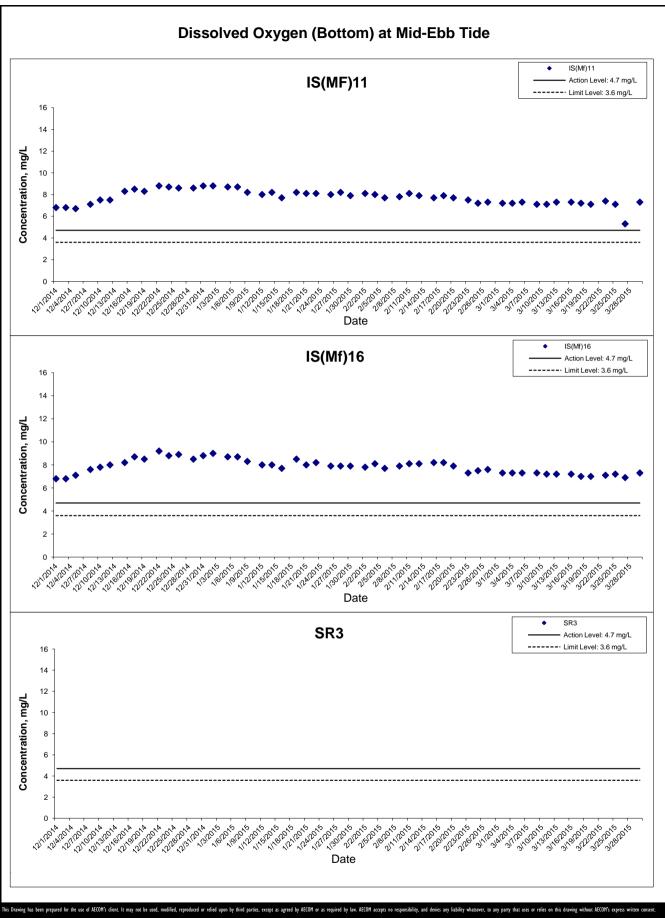
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr


Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

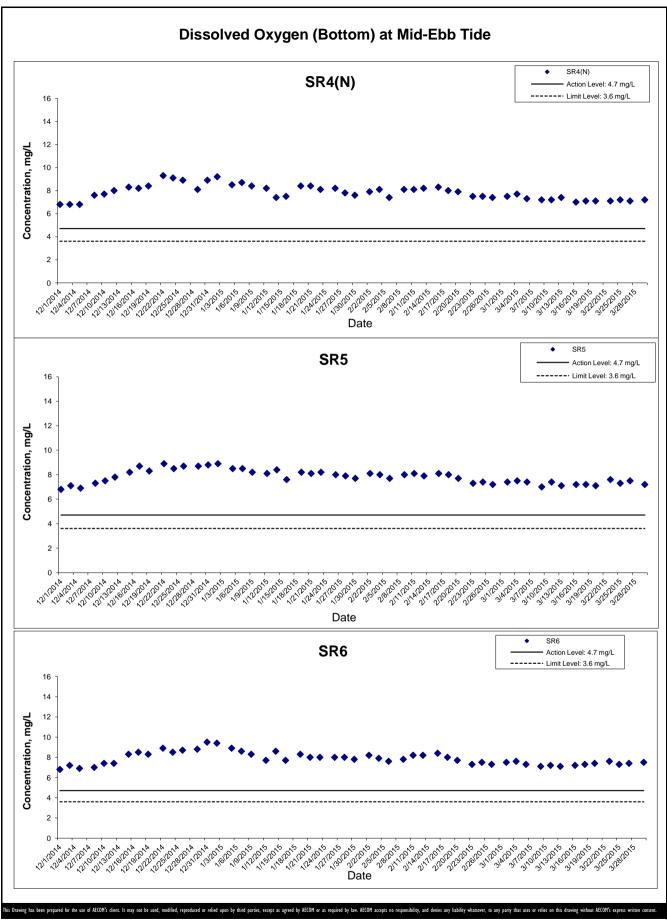
AECOM



HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

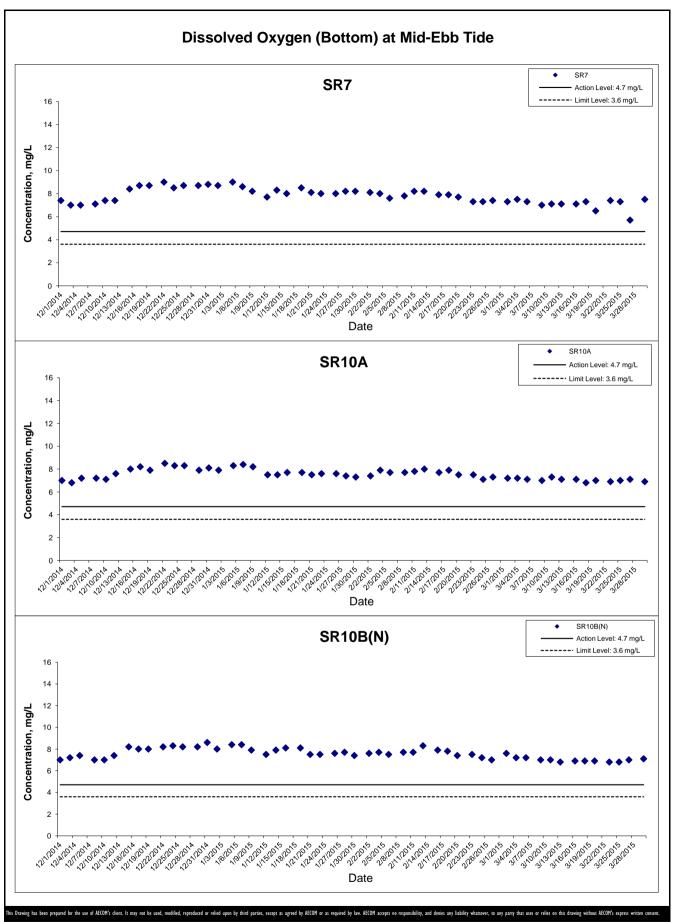
IES
Graphical Presentation of Impact Water Quality

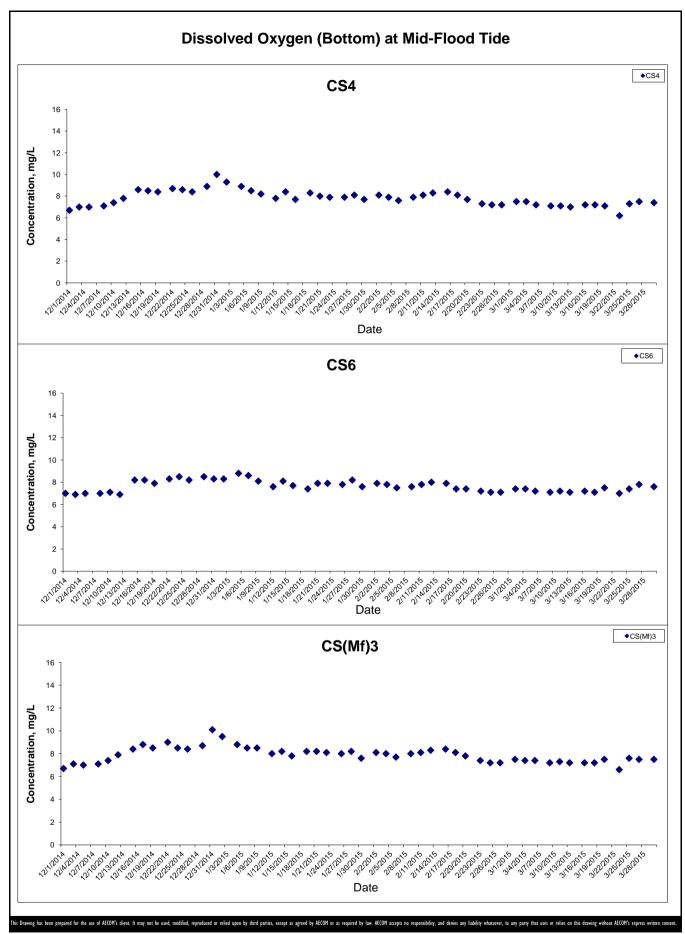
Appendix J


Monitoring Results
Project No.: 60249820 Date: Apr 2015

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS Gra

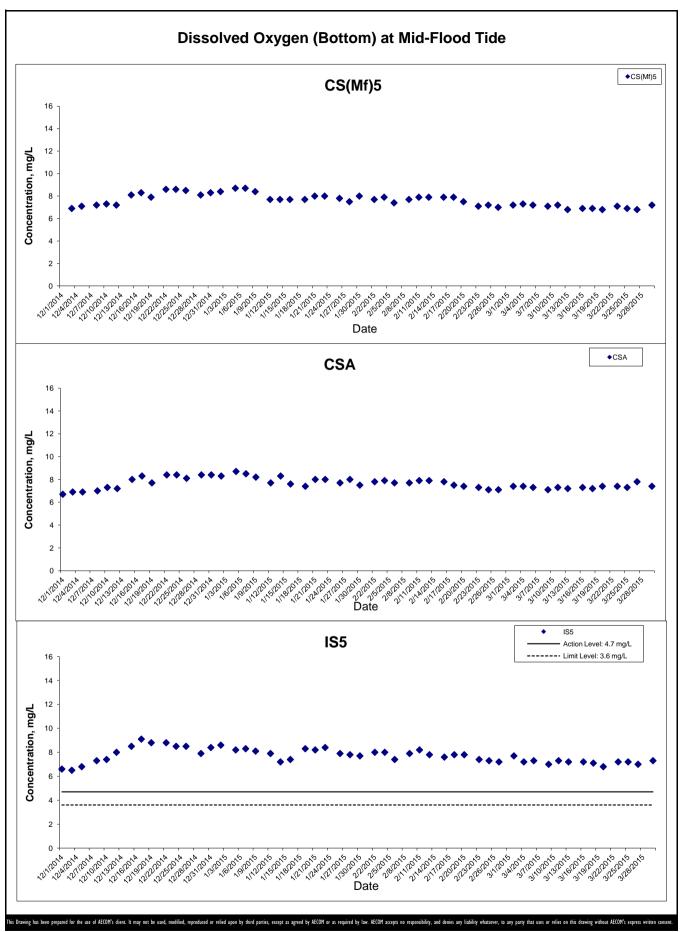
AECOM


Graphical Presentation of Impact Water Quality
Monitoring Results

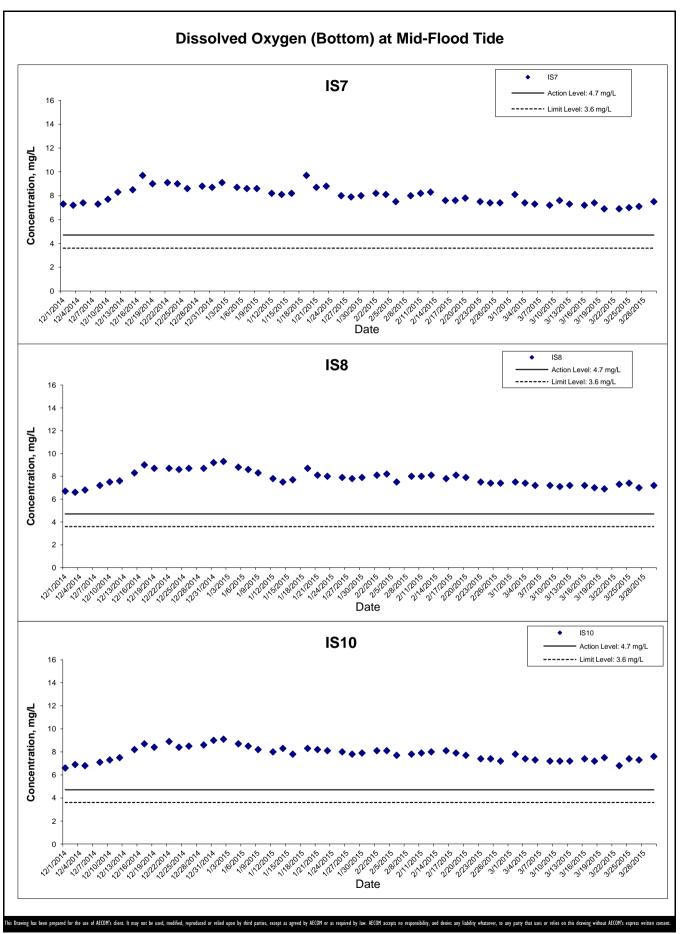

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM

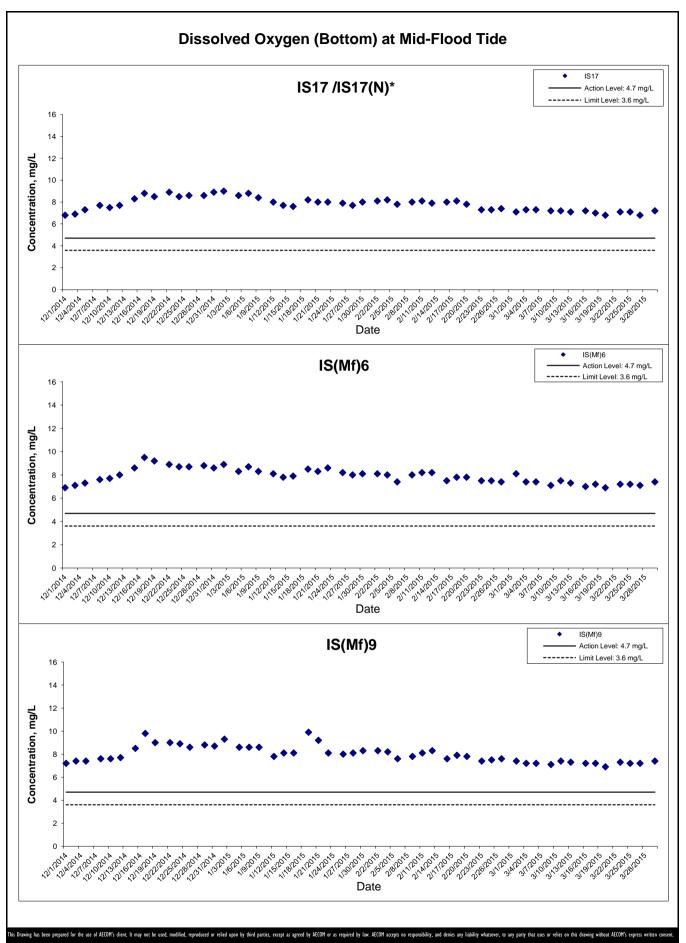


AECOM


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

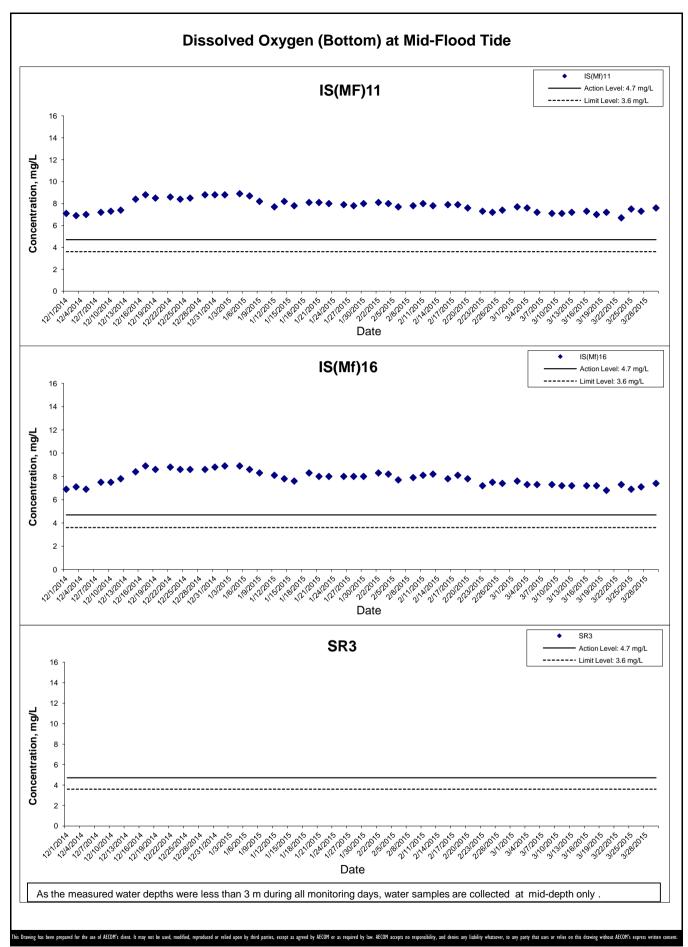
AECOM

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr


AECOM

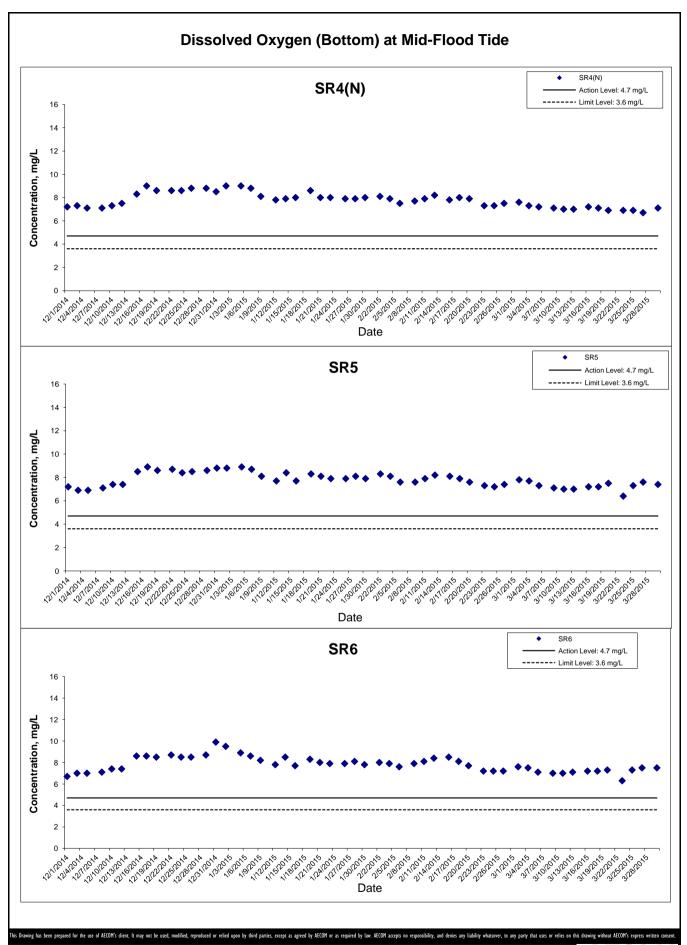
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
G1

ES
Graphical Presentation of Impact Water Quality


Monitoring Results
Project No.: 60249820 Date: Apr 2015

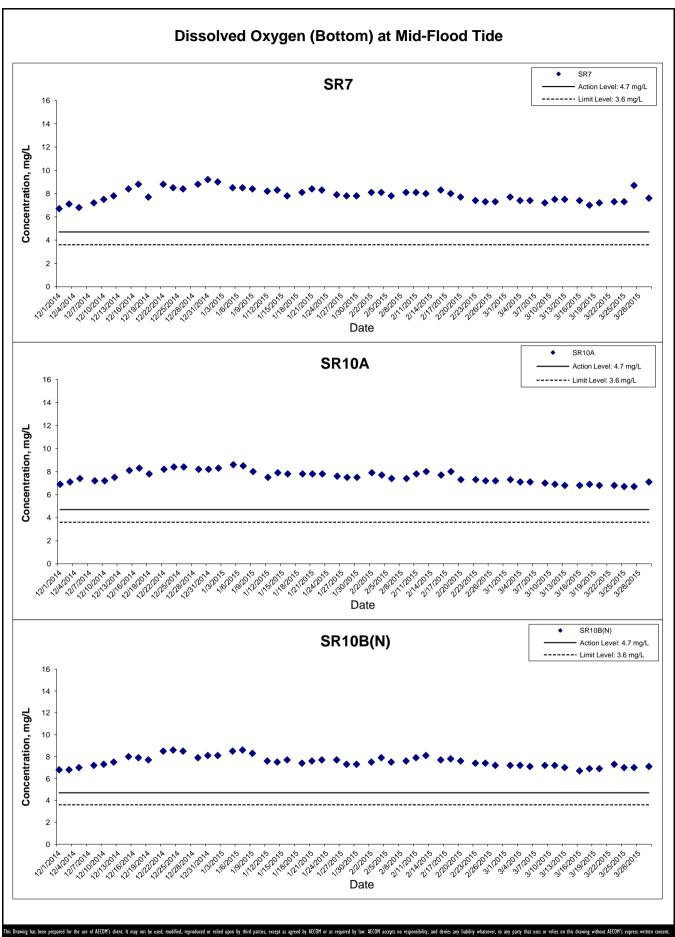
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results



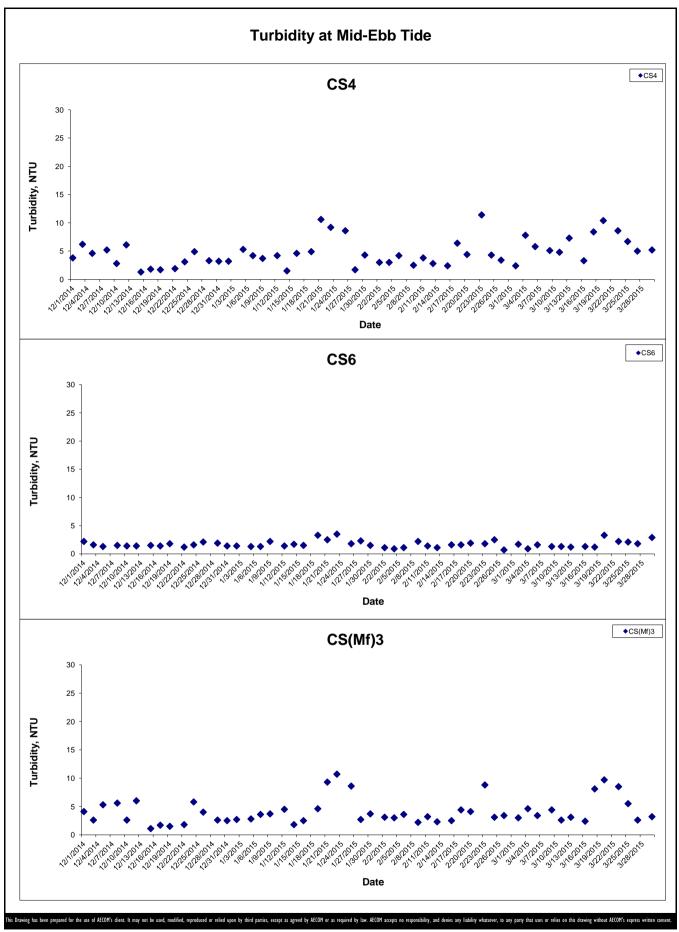
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results


AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

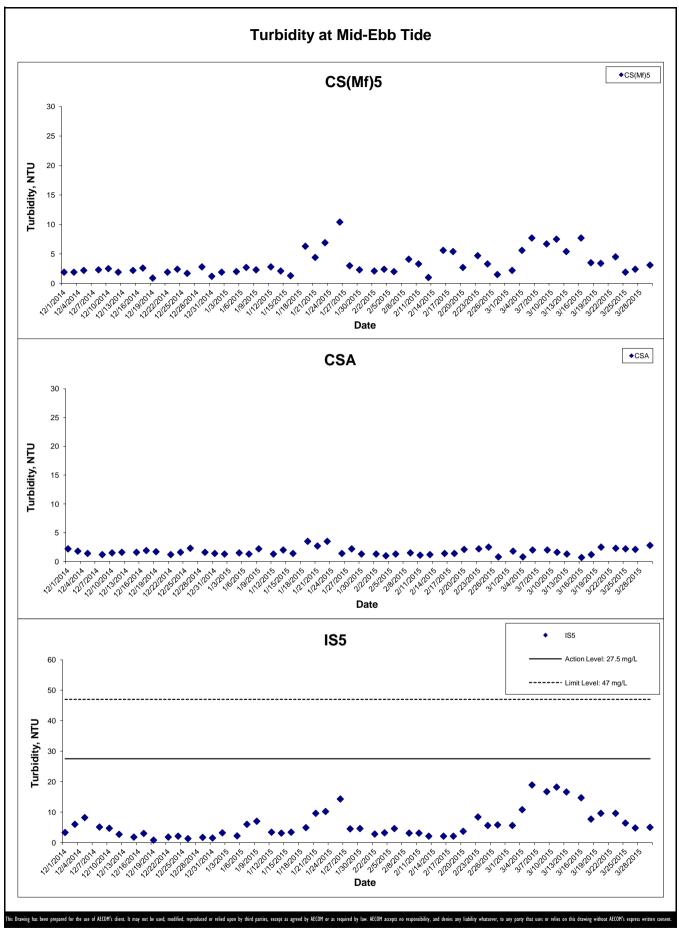
Monitoring Results


AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

AECOM

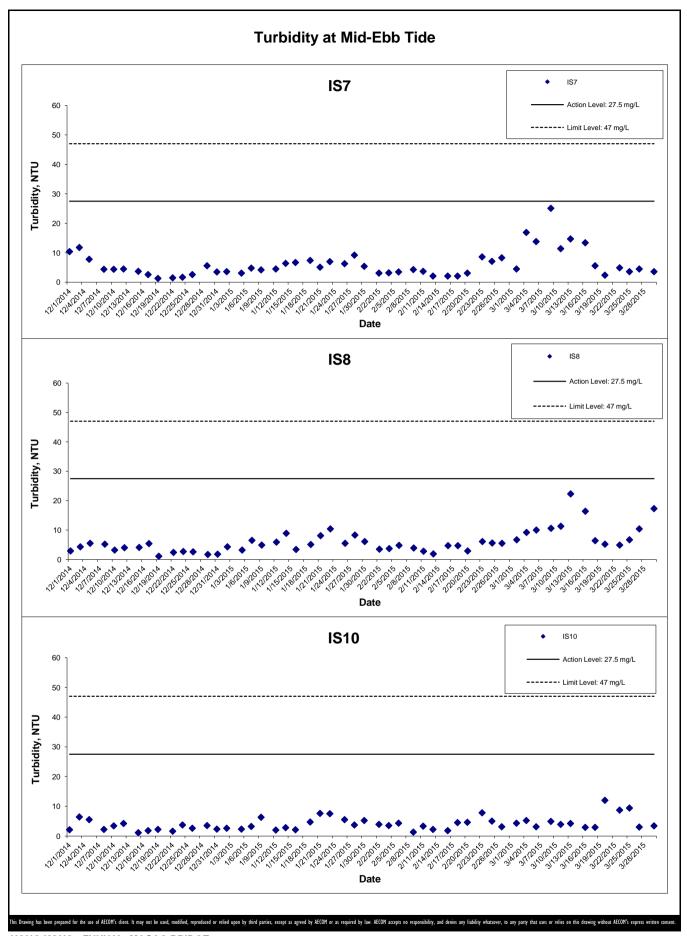


- RECLAMATION WORKS

ES
Graphical Presentation of Impact Water Quality

Monitoring Results

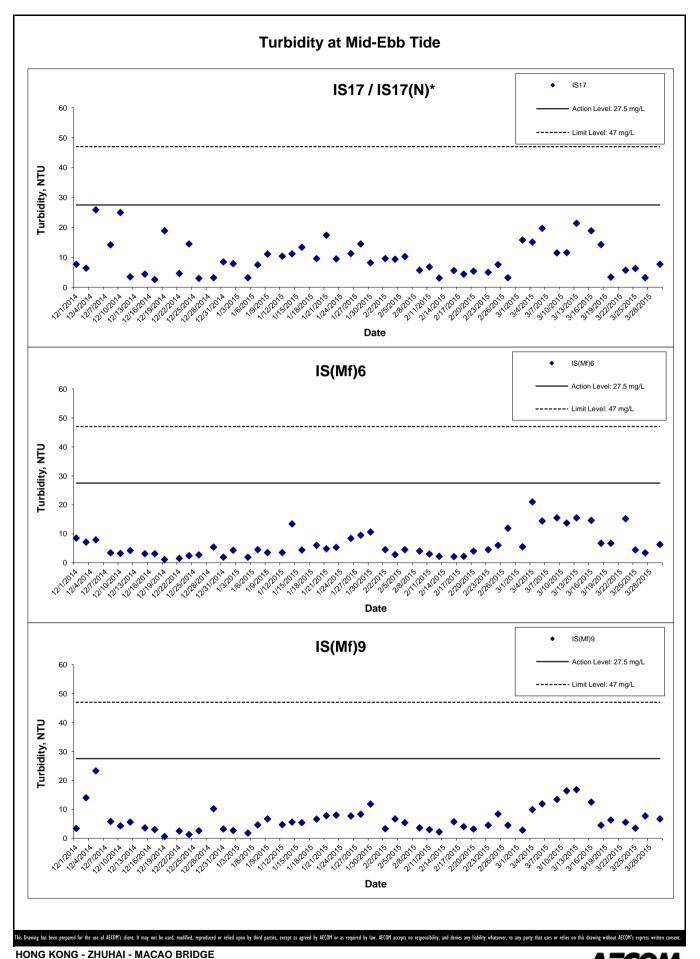
Project No.: 60249820 Date: Apr 2015 Appendix J



HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI

ES
Graphical Presentation of Impact Water Quality

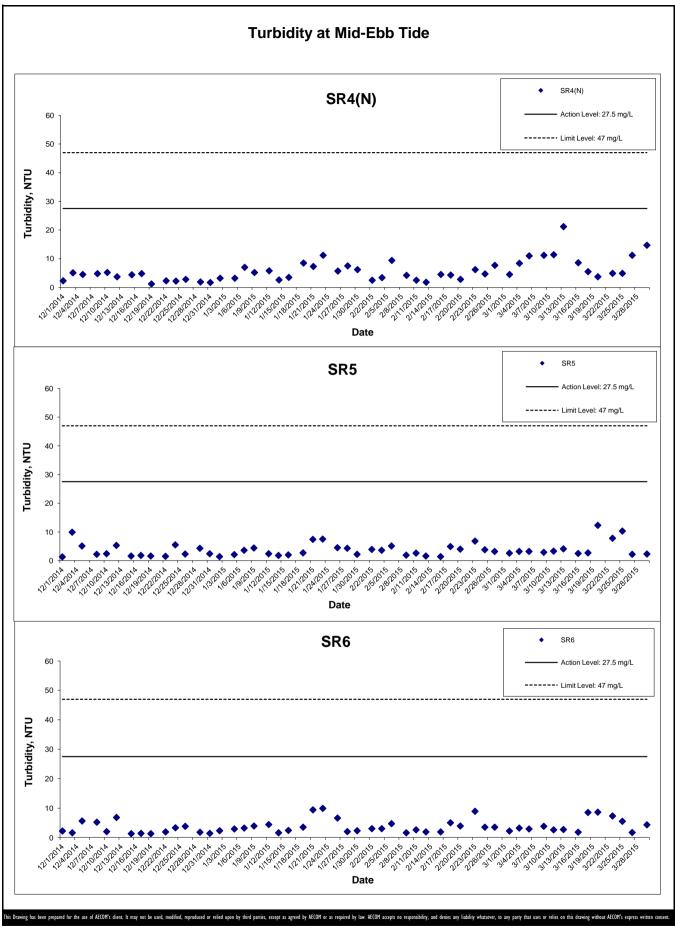
Project No.: 60249820 Date: Apr 2015 Appendix J


Monitoring Results


- RECLAMATION WORKS

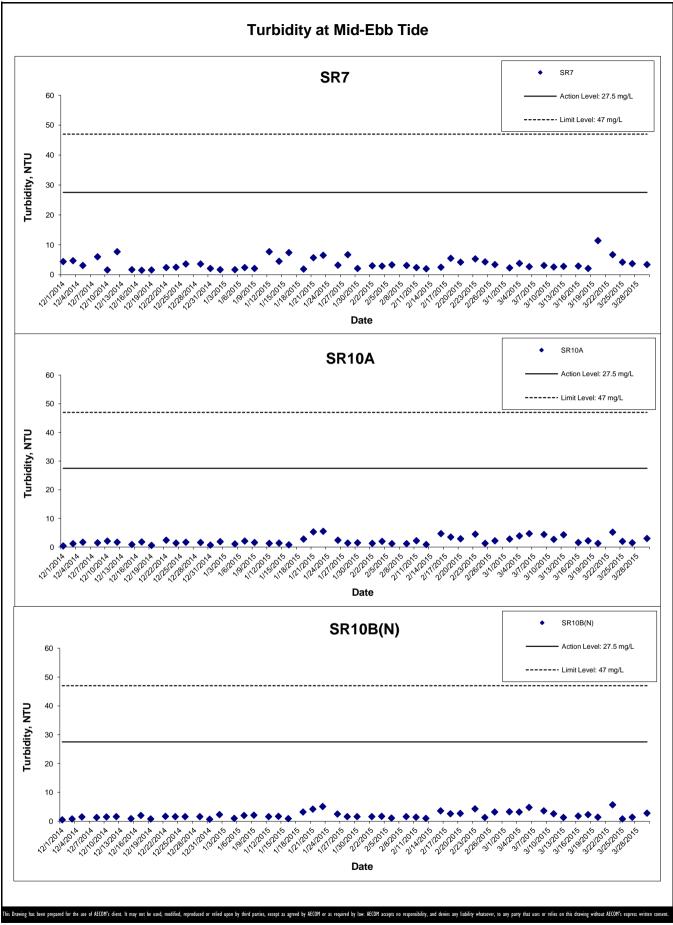
ES
Graphical Presentation of Impact Water Quality

Monitoring Results
Project No.: 60249820 Date: Apr 2015



AECOM

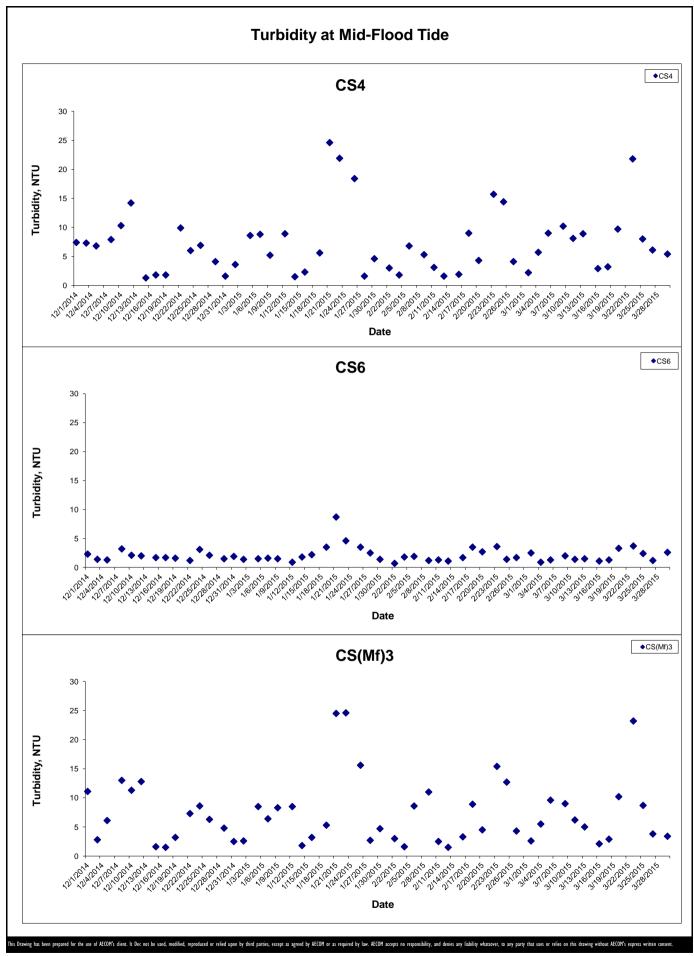
- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

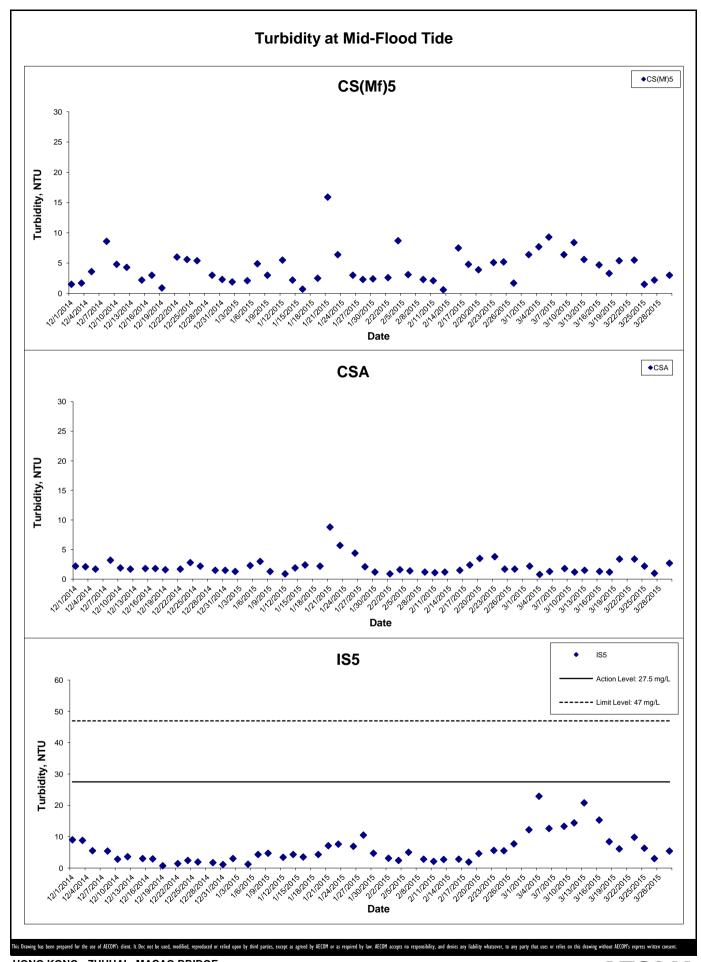
AECOM



- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

Monitoring Results

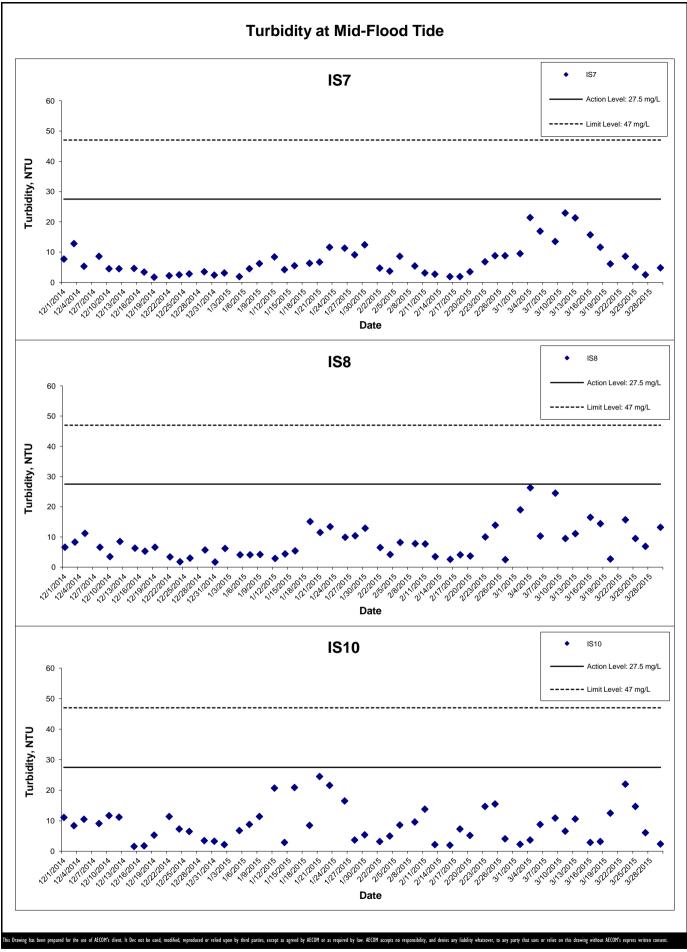

AECOM

AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

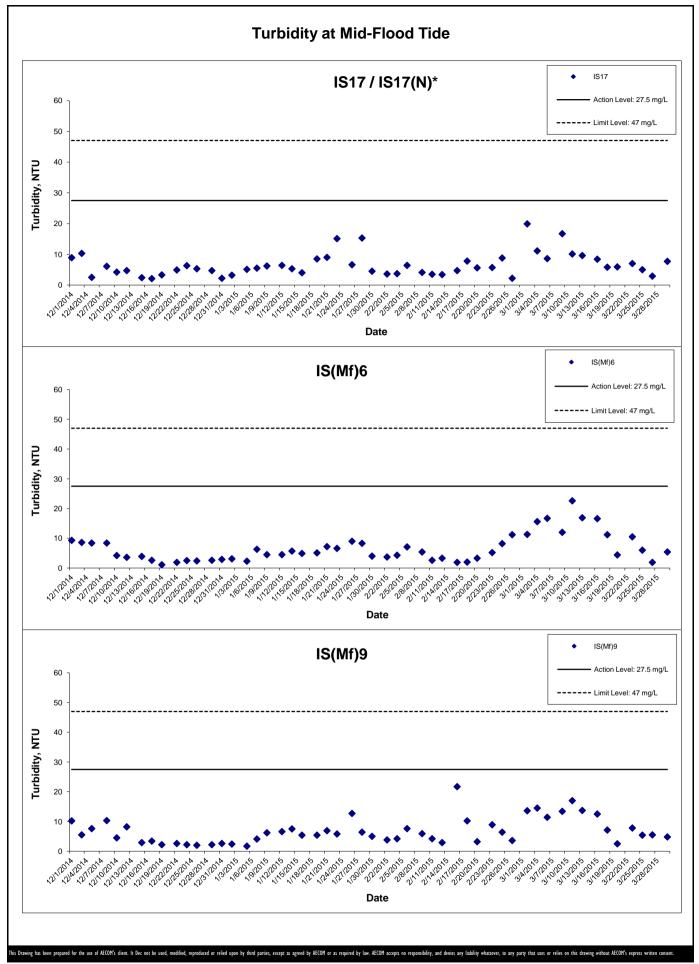
Monitoring Results

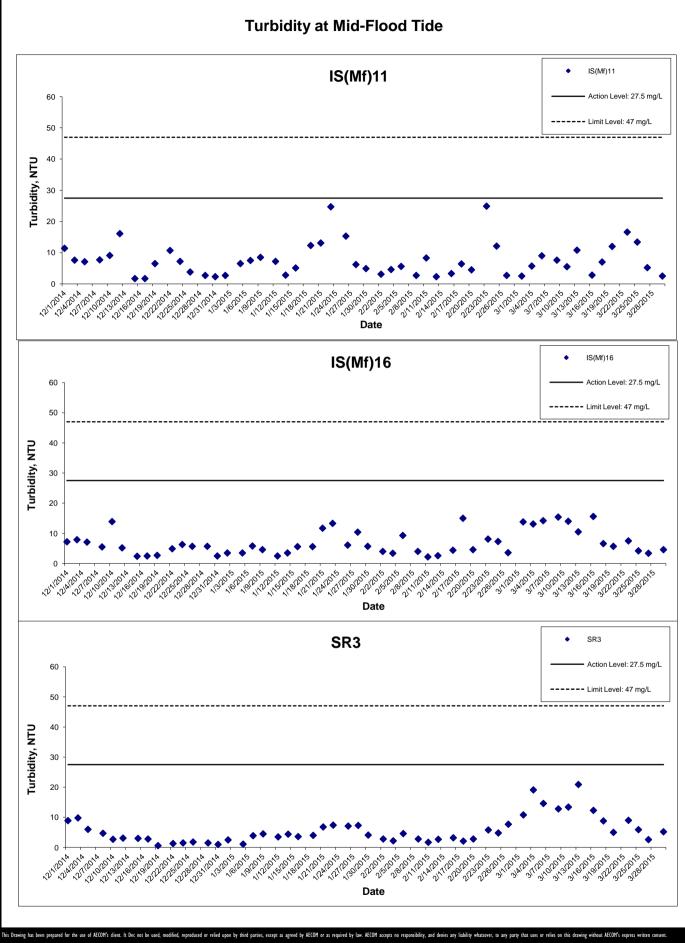
Project No.: 60249820


Graphical Presentation of Impact Water Quality

- RECLAMATION WORKS **Monitoring Results**

Date: Apr 2015

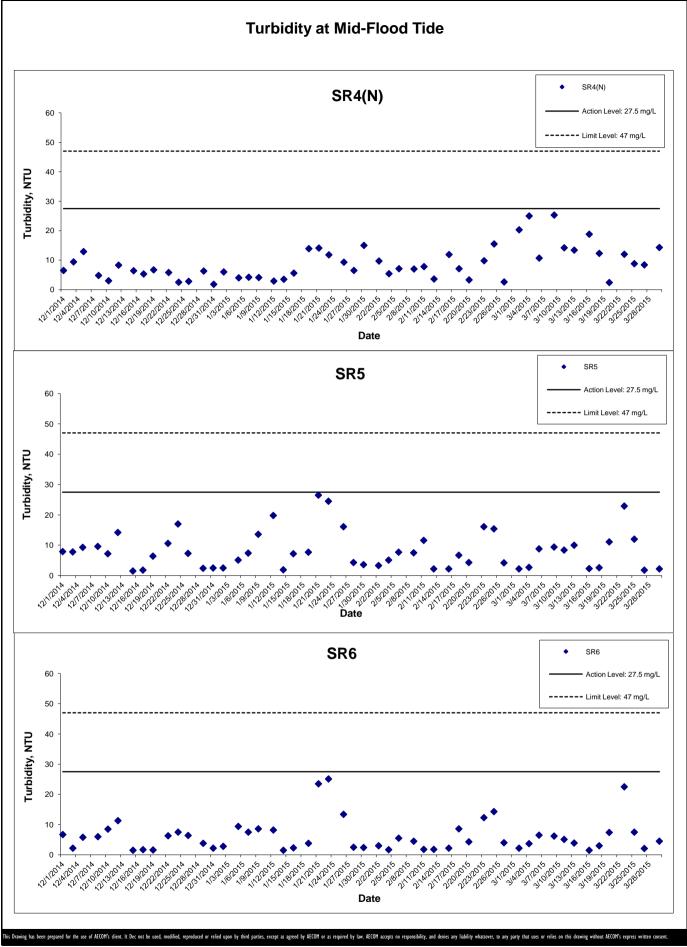

Appendix J


AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

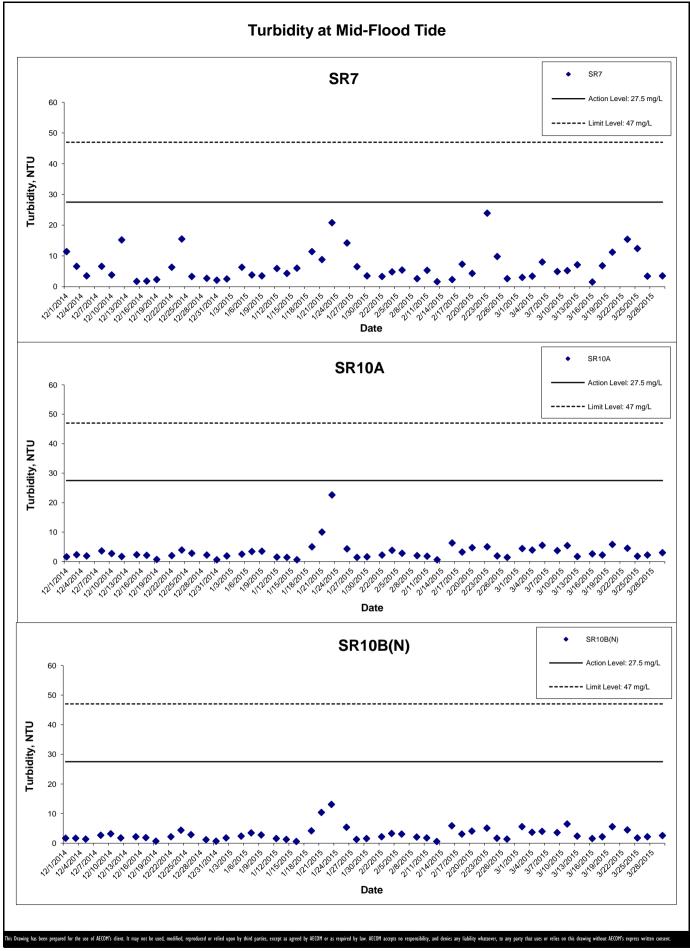
Monitoring Results

AECOM


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

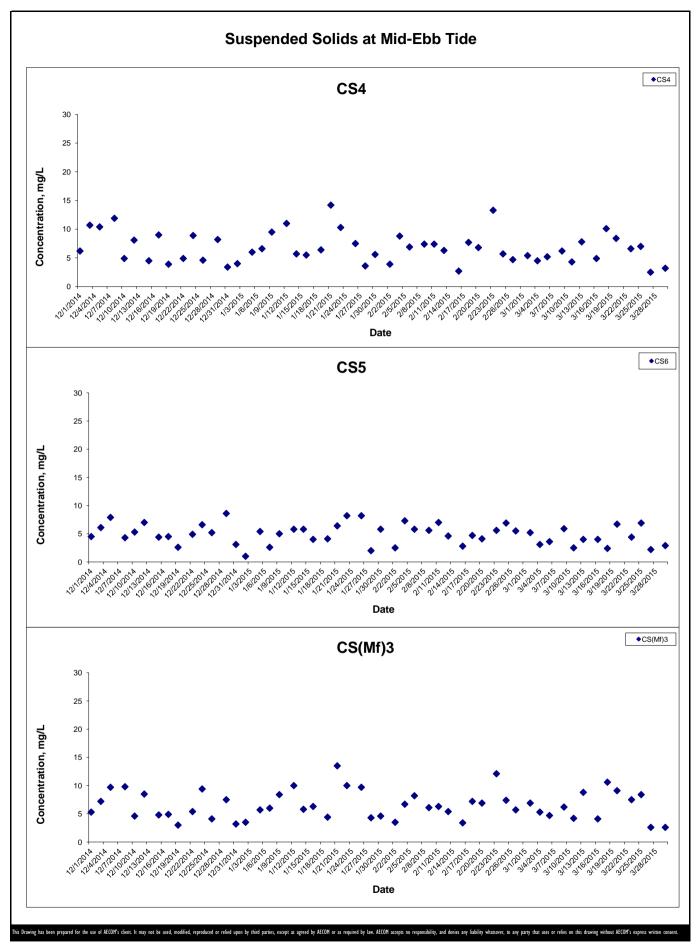
Monitoring Results


Project No.: 60249820 Date: Apr 2015 Appendix J

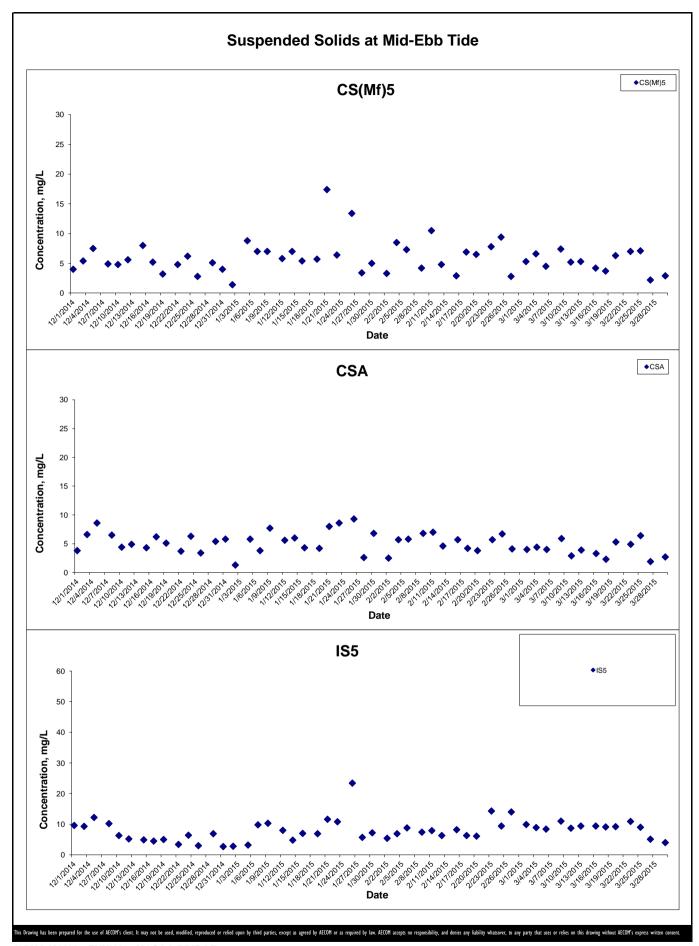
A=COM

- RECLAMATION WORKS

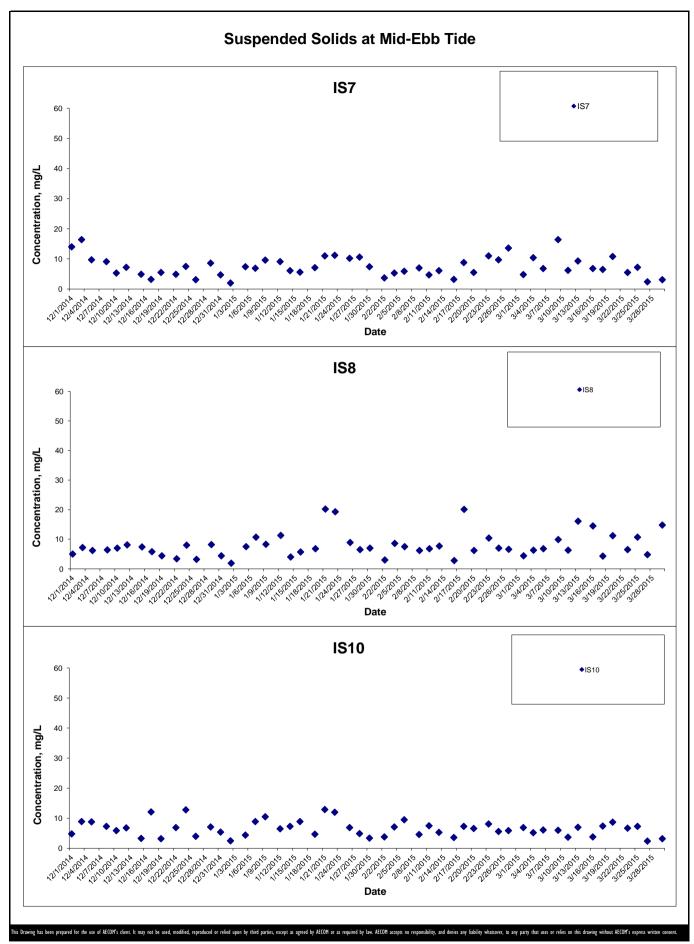
Graphical Presentation of Impact Water Quality
Monitoring Results



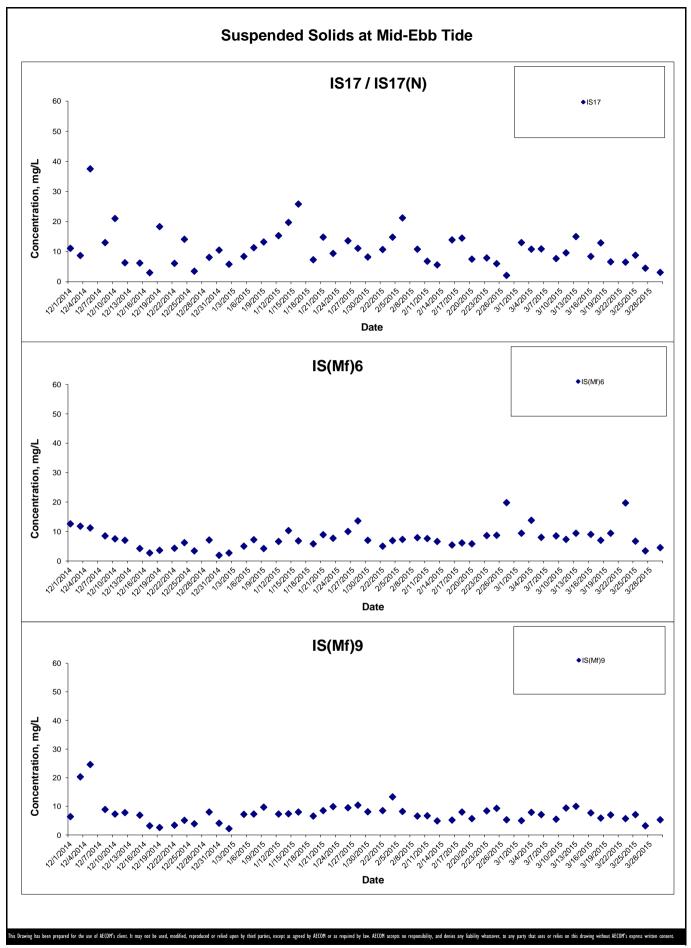
Graphical Presentation of Impact Water Quality


- RECLAMATION WORKS **Monitoring Results** Project No.: 60249820 Date: Apr 2015

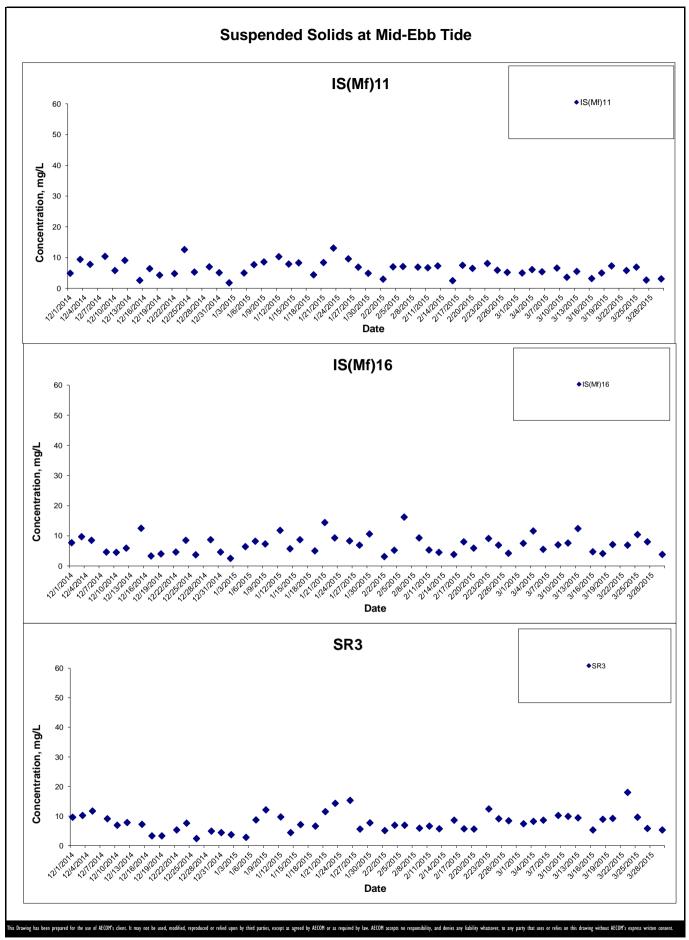
Appendix J



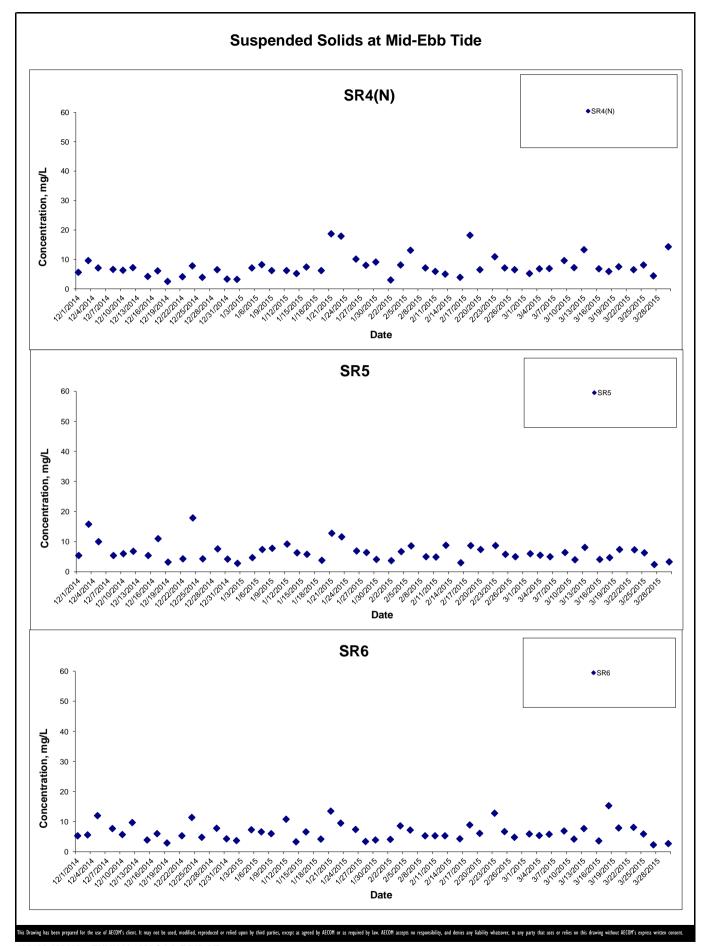
AECOM


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

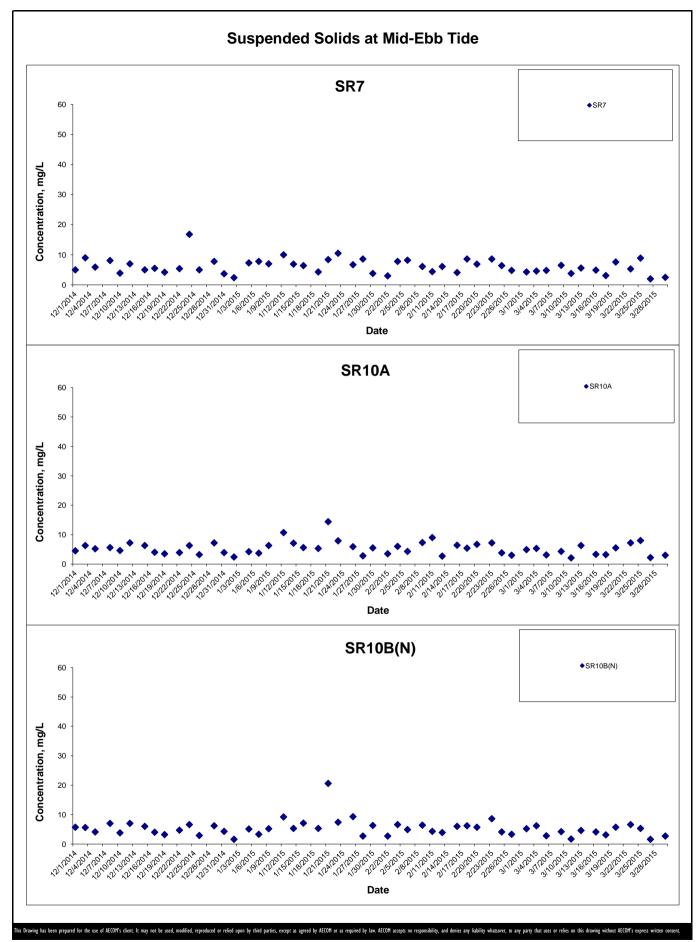
AECOM



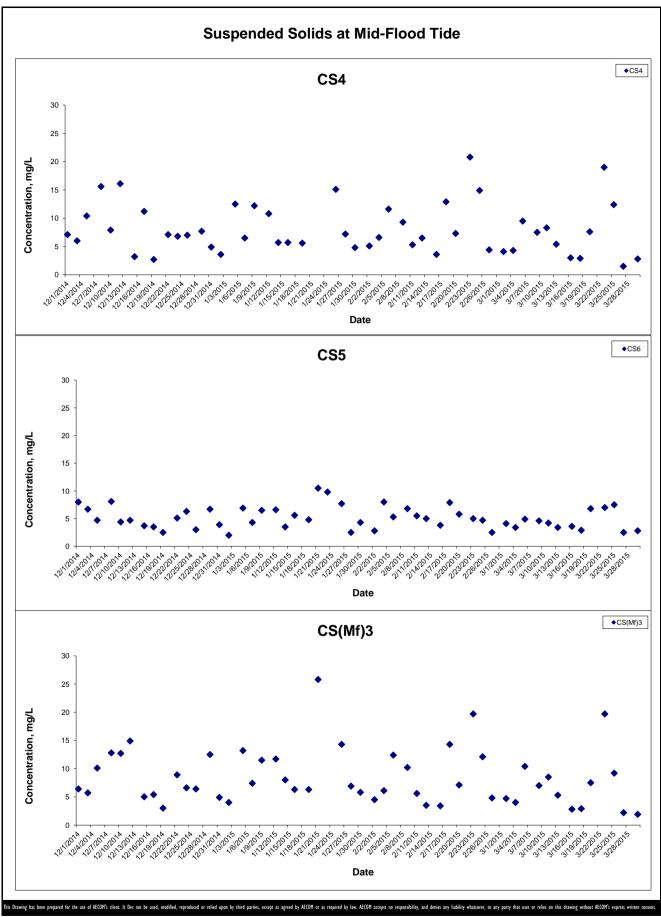
- RECLAMATION WORKS


AECOM

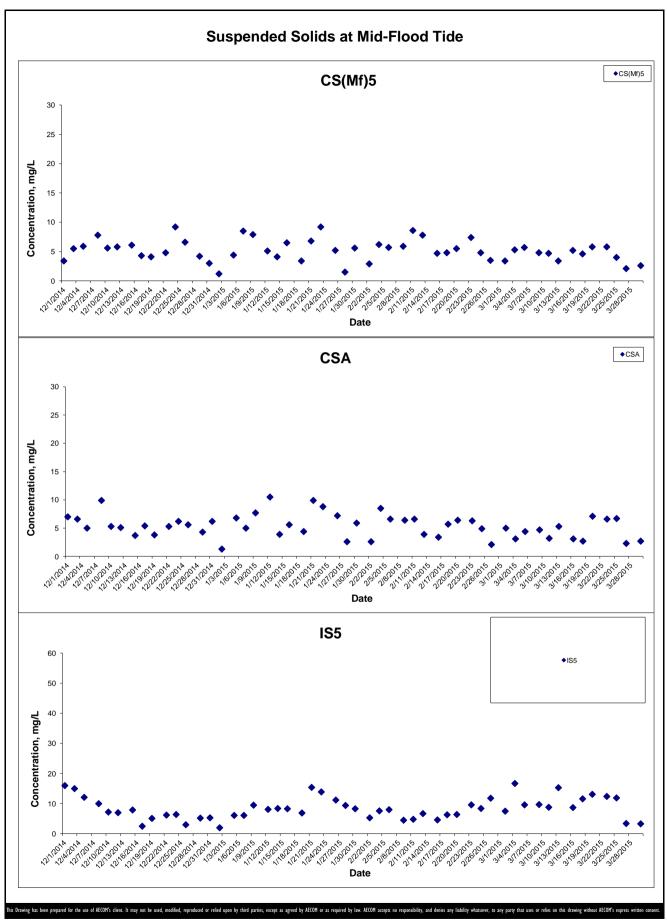
AECOM



AECOM

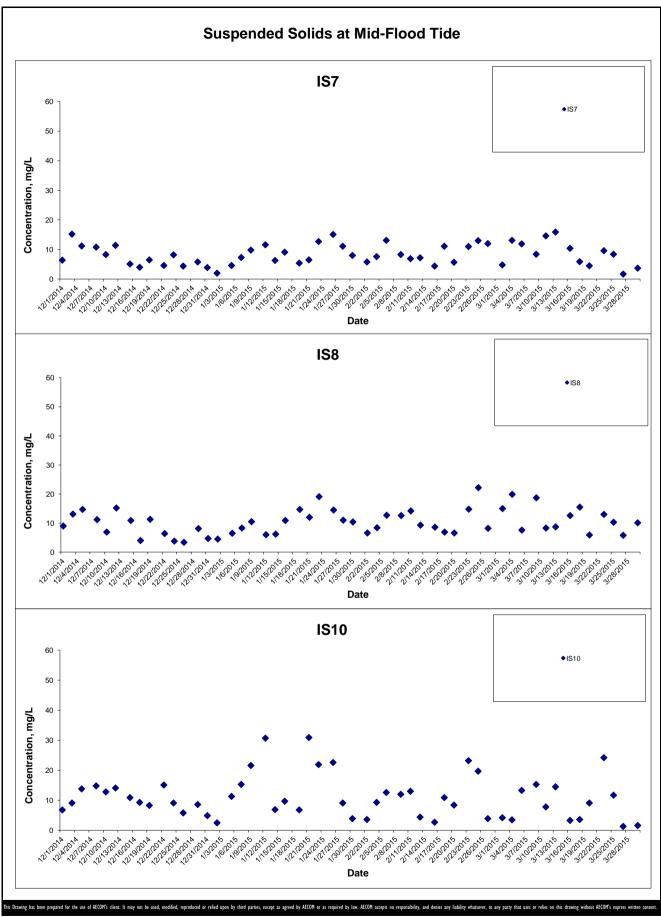


Graphical Presentation of Impact Water Quality


Appendix J Project No.: 60249820 Date: Apr 2015

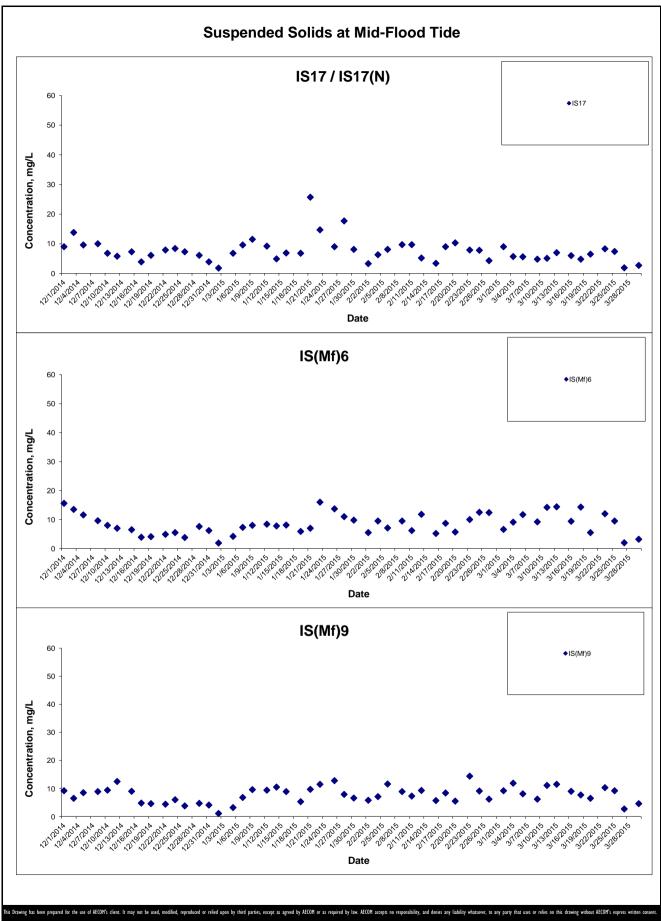
AECOM

AECOM


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

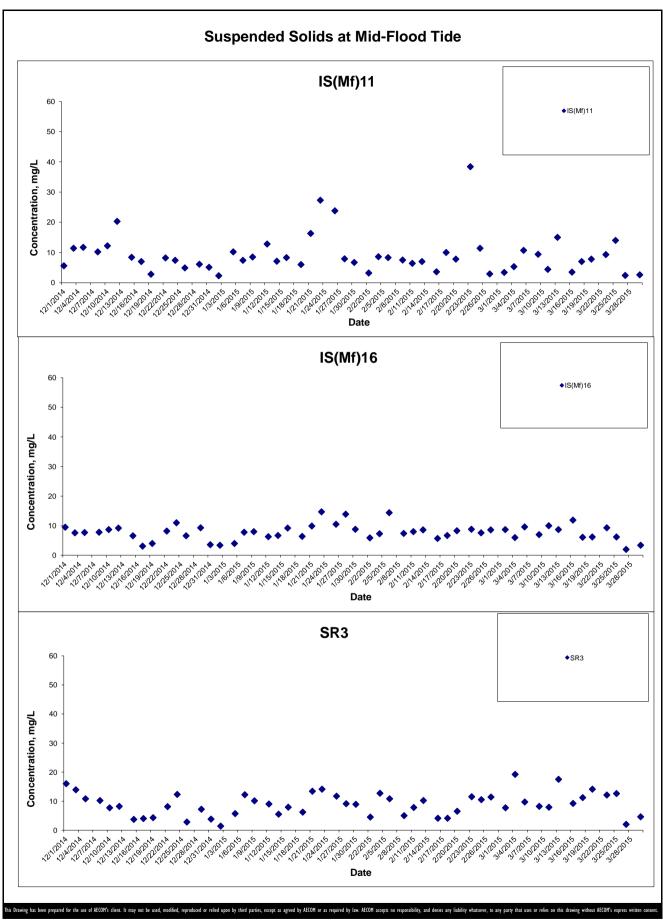
Graphical Presentation of Impact Water Quality

Monitoring Results Project No.: 60249820 Date: Apr 2015


Appendix J

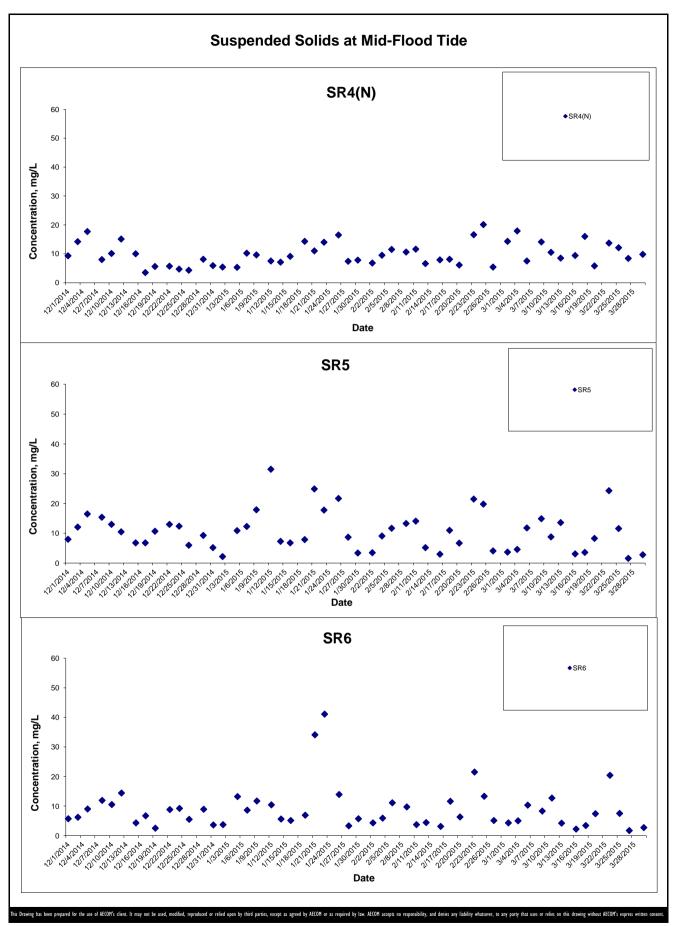
AECOM

- RECLAMATION WORKS

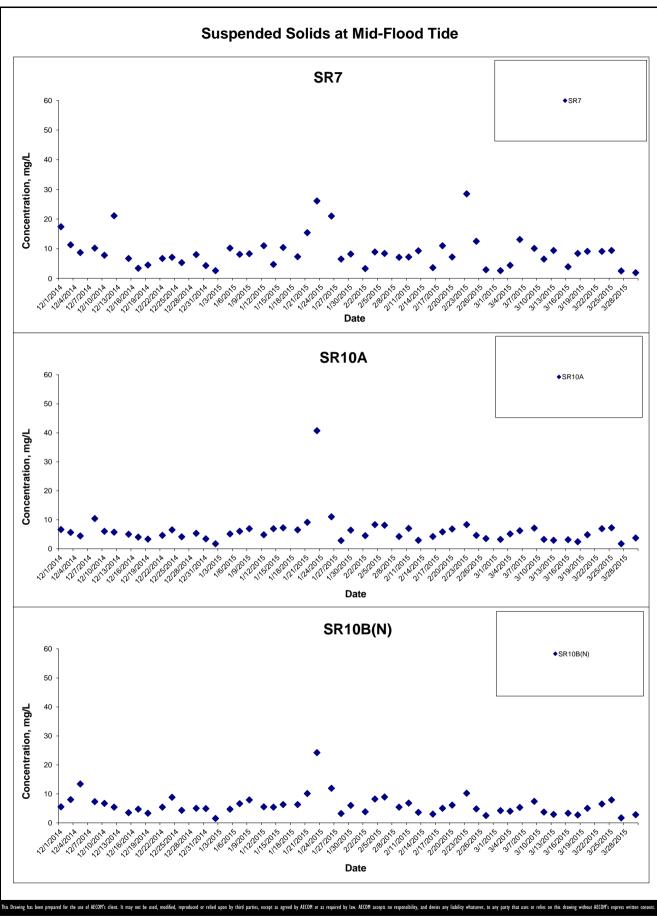

Graphical Presentation of Impact Water Quality
Monitoring Results

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results


AECOM

AECOM


- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

Graphical Presentation of Impact Water Quality
Monitoring Results

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

AECON

North East Lantau

North West Lantau

Appendix K Impact Dolphin Monitoring Survey Sighting Summary

Table 1 Impact Dolphin Monitoring Survey Sighting Table

Project	Contract	Date	Sighting No.	Time	Group Size	Area	Beaufort	PSD	Effort	Туре	Northing	Easting	Season	Boat Association
HKBCF	HY/2010/02	19-Mar-15	1084	9:23	2	NWL	1	N/A	Орр	Impact	814960	803527	Spring	No
HKBCF	HY/2010/02	19-Mar-15	1085	10:43	1	NWL	1	669	On	Impact	826250	804694	Spring	No
HKBCF	HY/2010/02	19-Mar-15	1086	11:25	3	NWL	1	85	On	Impact	827296	805448	Spring	PS
HKBCF	HY/2010/02	30-Mar-15	1089	10:16	3	NWL	1	N/A	Орр	Impact	821632	804695	Spring	HT
HKBCF	HY/2010/02	30-Mar-15	1090	10:46	3	NWL	1	299	On	Impact	822161	804676	Spring	HT

NEL

NWL

KEY:

Sighting Opp Opportunistic

On On effort

PSD Perpendicular Sighting Distance

Group Size Represents best estimate for group encountered

PS = Purse Seine trawler (active)

HT = Hang Trawler (not active but sorting fish and cleaning nets)

Annex I

February 2015 Photo Identification Information

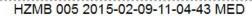
Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
HZMB 128		2015/01/03	1056	NWL
HZMB 127		2015/01/03	1056	NWL
117MD 400		2015/02/23	1068	NWL
HZMB 126		2015/01/03	1054	NWL
HZMB 125		2014/10/13	1019	NWL
HZMB 124		2014/09/22	1005	NWL
HZMB 123		2014/08/25	998	NWL
HZMB 122		2014/08/04	989	NWL
HZMB 121		2014/07/14	968	NWL
HZMB 120		2014/05/31	951	NWL
HZMB 119		2014/04/19	940	NWL
HZMB 118		2014/01/06	890	NWL
117MD 447		2014/06/17	964	NWL
HZMB 117		2014/01/06	888	NWL
HZMB 116		2014/08/25	999	NWL
		2014/07/14	972	NWL
117MD 445		2014/07/14	971	NWL
HZMB 115		2013/12/26	879	NWL
		2013/12/26	879	NWL
HZMB 114		2013/10/24	827	NWL
HZMB 113		2013/10/24	827	NWL
HZMB 112		2013/10/15	815	NWL
HZMB 111		2013/10/15	815	NWL
HZMB 110		2013/10/15	812	NWL
HZMB 108		2013/08/30	780	NEL
HZMB 107		2014/10/13	1019	NWL
U7MD 106		2013/08/21	770	NWL
HZMB 106		2013/08/21	769	NWL
		2014/05/31	951	NWL
HZMB 105		2013/07/08	711	NWL
HZMB 104		2013/07/08	711	NWL
HZMB 103		2013/07/08	711	NWL
HZMB 102		2013/07/08	706	NWL
HZMB 101		2013/07/08	706	NWL
HZMB 100		2013/07/08	706	NWL

		2013/06/13	681	NWL
HZMB 099		2013/06/13	680	NWL
		2015/02/23	1077	NWL
		2014/12/18	1044	NWL
		2014/08/04	992	NWL
		2014/01/06	888	NWL
HZMB 098	NL104	2013/11/02	849	NWL
1121112 000	112101	2013/11/02	845	NWL
		2013/10/24	831	NWL
		2013/07/08	711	NWL
		2013/05/24	659	NWL
HZMB 097		2013/05/09	647	NWL
HZMB 096		2013/04/01	621	NWL
1121112 000		2013/08/30	780	NEL
		2013/06/25	697	NWL
HZMB 095		2013/06/13	682	NWL
		2013/04/01	621	NWL
		2014/10/13	1019	NWL
		2014/05/31	954	NWL
		2014/02/17	910	NWL
HZMB 094		2013/06/26	703	NWL
		2013/06/25	698	NWL
		2013/03/18	601	NWL
		2013/05/24	657	NWL
HZMB 093		2013/02/21	587	NWL
		2013/02/21	589	NWL
HZMB 092		2013/02/15	581	NWL
HZMB 091		2013/02/15	579	NWL
		2013/06/25	697	NWL
HZMB 090		2013/06/13	682	NWL
1.22		2013/02/15	579	NWL
HZMB 089		2013/02/15	579	NWL
HZMB 088		2013/02/15	579	NWL
HZMB 087		2013/02/15	579	NWL
		2013/05/09	642	NWL
HZMB 086	NL242	2013/02/15	579	NWL
		2011/10/10	Baseline	NWL
		2014/10/13	1019	NWL
HZMB 085		2014/05/31	954	NWL

		2013/06/26	703	NWL
HZMB 084		2013/02/15	579	NWL
		2013/02/14	575	NWL
		2013/12/19	863	NWL
		2013/03/28	607	NWL
HZMB 083	NL136	2013/02/15	579	NWL
		2013/01/28	568	NWL
		2012/01/28	564	NWL
		2014/10/20	1024	NWL
LIZMD 000		2013/02/21	587	NWL
HZMB 082		2013/02/15	579	NWL
		2013/01/28	563	NWL
117MD 004		2013/01/28	559	NWL
HZMB 081		2013/01/28	557	NWL
HZMB 080		2013/01/28	556	NWL
HZMB 079		2013/01/28	556	NWL
117MD 070		2013/02/15	579	NWL
HZMB 078		2013/01/08	552	NWL
		2013/12/26	878	NWL
HZMB 077		2013/07/08	706	NWL
		2012/12/11	541	NWL
LIZMD 070		2013/07/08	706	NWL
HZMB 076		2012/12/11	541	NWL
HZMB 075		2012/12/06	525	NEL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
HZMB 074		2013/04/01	621	NWL
HZIVID U/4		2013/02/21	594	NEL
		2012/12/10	529	NEL
		2012/12/06	525	NEL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
HZMD 070		2013/04/01	621	NWL
HZMB 073		2013/02/21	594	NEL
		2012/12/10	529	NEL
		2012/12/06	525	NEL
HZMB 072		2012/10/24	476	NWL
□7MD ∩74		2012/10/24	475	NWL
HZMB 071		2012/10/12	466	NWL
HZMB 070		2012/10/24	476	NWL

HZMB 069 2013/08/21 774 NWL 2013/07/08 711 NWL 2012/10/24 476 NWL 2014/10/20 1025 NWL 2014/10/24 476 NWL 2014/10/24 476 NWL 2012/10/24 476 NWL 2012/10/24 476 NWL 2012/10/24 476 NWL 2013/01/28 559 NWL 2012/10/24 475 NWL 2012/10/24 475 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2013/05/09 647 NWL 2013/05/09 647 NWL 2012/10/12 466 NWL 2013/05/09 647 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/14 457 NWL 2012/10/14 457 NWL 2012/10/14 457 NWL 2012/10/14 457 NWL 2012/10/14 457 NWL 2012/10/14 457 NWL 2012/10/14 457 NWL 2012/10/15 591 NWL 2012/09/18 445 NWL 2012/09/18 445 NWL 2012/09/18 445 NWL 2012/09/18 445 NWL 2012/09/18 445 NWL 2012/09/15 433 NEL 2012/09/05 433 NEL 2014/05/31 953 NWL 2013/01/15 1062 NWL 2013/01/15 1062 NWL 2013/01/10/2 845 NWL 2013/01/10/2 845 NWL 2013/01/10/2 845 NWL 2013/01/10/2 845 NWL 2013/01/10/2 845 NWL 2013/01/10/2 845 NWL 2013/09/18 448 NWL 2011/11/100 2016/09/18 NWL 2011/11/100 2016/09/18 NWL 20					
HZMB 068 2012/10/24 476 NWL			2013/08/21	774	NWL
HZMB 068	HZMB 069		2013/07/08	711	NWL
HZMB 068 2013/11/01 839 NWL 2012/10/24 476 NWL 2012/10/24 475 NWL 2013/01/28 559 NWL 2012/10/24 475 NWL 2012/10/24 475 NWL 2012/10/24 475 NWL 2012/10/24 475 NWL 2012/10/12 466 NWL 2013/05/09 647 NWL 2013/05/09 647 NWL 2013/05/09 647 NWL 2013/05/09 647 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/13 445 NWL HZMB 060 2012/09/18 447 NWL HZMB 059 2012/09/18 445 NWL HZMB 057 2012/09/18 445 NWL HZMB 056 2012/09/18 440 NWL HZMB 056 2012/09/18 442 NWL 2012/09/05 433 NEL HZMB 055 2012/09/04 425 NWL 2014/05/31 953 NWL 2014/05/31 953 NWL 2014/01/06 888 NWL 2013/11/07 854 NWL 2013/11/02 845 NWL 2013/10/24 831 NWL 2013/10/24 831 NWL 2013/10/24 831 NWL 2013/10/24 831 NWL 2013/10/24 831 NWL 2013/10/24 831 NWL 2013/10/26 432 NEL 2013/10/06 432 NEL 2013/10/06 432 NEL 2013/09/05 432 NEL 2011/11/07 Baseline NWL 2011/11/105 Baseline NWL			2012/10/24	476	NWL
HZMB 067 2012/10/24 476 NWL			2014/10/20	1025	NWL
HZMB 067	HZMB 068		2013/11/01	839	NWL
HZMB 066 NL93 2013/01/28 559 NWL 2012/12/11 537 NWL 2012/10/24 475 NWL 2012/10/12 466 NWL 2014/06/17 964 NWL 2013/05/09 647 NWL 2013/01/28 561 NWL 2012/10/24 475 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/14 457 NWL 2012/10/14 457 NWL 457			2012/10/24	476	NWL
HZMB 066 NL93 2012/10/24	HZMB 067		2012/10/24	475	NWL
HZMB 066 NL93 2012/10/12 2014/06/17 2013/05/09 647 NWL 2013/01/28 561 NWL 2012/10/12 466 NWL 2013/05/09 647 NWL 2012/10/24 475 NWL 2013/01/28 561 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/11 457 NWL 4012/10/11 457 NWL 4012/10/11 457 NWL 4012/10/11 457 NWL 4012/10/11 457 NWL 4012/10/11 457 NWL 4012/10/11 457 NWL 4012/10/11 457 NWL 4012/10/11 457 NWL 4012/10/11 457 NWL 4012/10/11 457 NWL 4012/10/11 457 NWL 4012/10/11 457 NWL 4012/10/11 405 NWL 2012/09/18 405 Auto A			2013/01/28	559	NWL
Part	LIZMD OCC	NII OO	2012/12/11	537	NWL
HZMB 064 HZMB 064 HZMB 064 BELLET STATE OF THE PRINCIPLE OF THE PRINCIP	HZIVID U00	INL93	2012/10/24	475	NWL
HZMB 064 HZMB 064 2013/05/09 647 NWL			2012/10/12	466	NWL
HZMB 064 2013/01/28 561 NWL			2014/06/17	964	NWL
Deciding the content of the conten			2013/05/09	647	NWL
HZMB 063 2012/10/12 466 NWL	HZMB 064		2013/01/28	561	NWL
HZMB 063 2013/05/09 647 NWL 2012/10/12 466 NWL 2012/12/06 525 NEL 2012/10/11 457 NWL 477 NWL 478 NWL 4			2012/10/24	475	NWL
HZMB 063 2012/10/12			2012/10/12	466	NWL
HZMB 062 HZMB 060 HZMB 060 HZMB 059 HZMB 057 HZMB 056 HZMB 056 HZMB 055 HZMB 056 HZMB 056 HZMB 056 HZMB 057 HZMB 056 HZMB 056 HZMB 057 CO12/09/18 HZMB 056 HZMB 056 HZMB 056 HZMB 056 HZMB 056 HZMB 056 HZMB 056 CO12/09/04 HZMB 056 HZMB 056 HZMB 056 HZMB 056 CO12/09/04 HZMB 056 HZMB 056 HZMB 056 CO12/09/04 A25 NWL CO13/01/06 B88 NWL CO13/11/07 B54 NWL CO13/11/02 B45 NWL CO13/11/02 B45 NWL CO13/11/02 CH34 CH34 CH34 CH34 CH34 CH34 CH34 CH34 RWL CO13/09/08 T11 NWL CO13/09/05 A32 NEL CH34 CH36 RWL CO11/11/07 Baseline NWL CO11/11/07 Baseline NWL	LIZMD 000		2013/05/09	647	NWL
HZMB 062 HZMB 060 2012/09/18 447 NWL 42013/02/21 591 NWL 2012/09/18 HZMB 057 2012/09/18 440 NWL 2012/09/18 442 NWL 2012/09/05 433 NEL 425 NWL 2012/09/04 425 NWL 2014/05/31 2014/01/06 888 NWL 2013/11/07 854 NWL 2013/11/07 854 NWL 2013/11/02 845 NWL 2013/11/02 845 NWL 2013/10/24 831 NWL 2013/10/24 831 NWL 2013/09/08 711 NWL 2013/09/08 432 NEL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL	HZIVIB 063		2012/10/12	466	NWL
HZMB 060 HZMB 059 2012/09/18 447 NWL 2013/02/21 591 NWL 2012/09/18 445 NWL HZMB 057 2012/09/18 440 NWL 2012/09/18 442 NWL 2012/09/05 433 NEL HZMB 055 2012/09/04 425 NWL 2015/01/15 1062 NWL 2014/05/31 2014/05/31 2013/11/07 854 NWL 2013/11/07 854 NWL 2013/11/02 845 NWL 2013/10/24 831 NWL 2013/10/24 831 NWL 2013/09/08 711 NWL 2013/09/08 711 NWL 2013/09/08 432 NEL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL	LIZMD 000		2012/12/06	525	NEL
HZMB 059 2013/02/21 591 NWL 2012/09/18	HZIVIB 062		2012/10/11	457	NWL
HZMB 059 2012/09/18	HZMB 060		2012/09/18	447	NWL
HZMB 057 HZMB 056 HZMB 056 HZMB 056 HZMB 055 2012/09/18 440 NWL 2012/09/05 433 NEL 425 NWL 2012/09/04 425 NWL 2014/05/31 2014/05/31 2014/01/06 888 NWL 2013/11/07 854 NWL 2013/11/02 845 NWL 2013/10/24 831 NWL 2013/09/18 448 NWL 2013/09/18 448 NWL 2012/09/05 432 NEL 2011/11/07 Baseline NWL	LIZMD 050		2013/02/21	591	NWL
HZMB 056 2012/09/05	HZIVIB 059		2012/09/18	445	NWL
HZMB 056 HZMB 055 2012/09/04 425 NWL 2015/01/15 1062 NWL 2014/05/31 953 NWL 2014/01/06 888 NWL 2013/11/07 854 NWL 2013/11/02 845 NWL 2013/10/24 831 NWL 2013/09/08 TRIN NWL 2013/09/08 TRIN NWL 2013/09/18 448 NWL 2012/09/05 432 NEL 2011/11/07 Baseline NWL	HZMB 057		2012/09/18	440	NWL
HZMB 055 2012/09/04 425 NWL 2015/01/15 1062 NWL 2014/05/31 953 NWL 2014/01/06 888 NWL 2013/11/07 854 NWL 2013/11/02 845 NWL 2013/10/24 831 NWL 2013/08/30 780 NEL HZMB 054 CH3	LIZMD OFC		2012/09/18	442	NWL
HZMB 054 CH34 CH34 CH34 CH34 CH34 D15/01/15 1062 NWL 2014/05/31 953 NWL 2014/01/06 888 NWL 2013/11/07 854 NWL 2013/11/02 845 NWL 2013/10/24 831 NWL 2013/08/30 780 NEL 2013/09/18 711 NWL 2013/09/18 448 NWL 2012/09/05 432 NEL 2011/11/07 Baseline NWL 2011/11/05 Baseline NWL	HZIVIB UDO		2012/09/05	433	NEL
HZMB 054 CH34 CH34 2014/05/31 2014/01/06 888 NWL 2013/11/07 854 NWL 2013/11/02 845 NWL 2013/10/24 831 NWL 2013/08/30 780 NEL 2013/09/18 448 NWL 2012/09/05 432 NEL 2011/11/07 Baseline NWL 2011/11/05 Baseline NWL	HZMB 055		2012/09/04	425	NWL
HZMB 054 CH34 CH			2015/01/15	1062	NWL
HZMB 054 CH34 CH			2014/05/31	953	NWL
HZMB 054 CH34 CH			2014/01/06	888	NWL
HZMB 054 CH34 CH34 831 NWL 2013/08/30 780 NEL 2013/07/08 711 NWL 2013/09/18 448 NWL 2012/09/05 432 NEL 2011/11/07 Baseline NWL 2011/11/05 Baseline NWL			2013/11/07	854	NWL
HZMB 054 CH34 CH34 CH34 CH34 CH34 CH34 CH34 CH3			2013/11/02	845	NWL
HZMB 054 CH34 2013/07/08 711 NWL 2013/09/18 448 NWL 2012/09/05 432 NEL 2011/11/07 Baseline NWL 2011/11/05 Baseline NWL			2013/10/24	831	NWL
2013/09/18 448 NWL 2012/09/05 432 NEL 2011/11/07 Baseline NWL 2011/11/05 Baseline NWL	HZMB 054		2013/08/30	780	NEL
2012/09/05 432 NEL 2011/11/07 Baseline NWL 2011/11/05 Baseline NWL		CH34	2013/07/08	711	NWL
2011/11/07 Baseline NWL 2011/11/05 Baseline NWL			2013/09/18	448	NWL
2011/11/05 Baseline NWL			2012/09/05	432	NEL
			2011/11/07	Baseline	NWL
2011/11/02 Baseline NWL			2011/11/05	Baseline	NWL
			2011/11/02	Baseline	NWL

		2011/11/01	Baseline	NEL
HZMB 054	CH34	2011/11/01	Baseline	NEL
		2011/10/28	Baseline	NWL
		2011/10/06	Baseline	NWL
HZMB 053		2012/09/04	425	NWL
HZMB 052		2012/09/04	423	NWL
		2014/08/04	989	NWL
		2013/05/09	644	NWL
		2013/04/01	622	NWL
LIZMD 054	NII 040	2013/02/15	582	NWL
HZMB 051	NL213	2013/02/15	581	NWL
		2013/01/28	559	NWL
		2013/01/28	556	NWL
		2012/09/04	422	NWL
		2014/07/14	971	NWL
		2014/01/10	900	NWL
HZMB 050		2014/01/06	888	NWL
		2013/02/15	579	NWL
		2012/09/04	421	NWL
LIZMD 040		2014/07/29	982	NWL
HZMB 049		2012/09/03	419	NWL
HZMB 048		2012/09/03	419	NWL
HZMB 047		2012/09/03	412	NWL
HZMB 046		2012/09/03	412	NWL
		2014/02/17	910	NWL
HZMB 045		2013/06/13	682	NWL
HZIVID U43		2013/02/15	579	NWL
		2012/11/01	495	NWL
		2014/10/13	1019	NWL
		2014/02/17	910	NWL
		2013/12/19	864	NWL
		2013/11/02	845	NWL
		2013/11/01	842	NWL
LIZMR 044	NL98	2013/10/15	819	NWL
HZMB 044	INERO	2013/05/09	648	NWL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
		2013/04/01	621	NWL
		2013/02/15	579	NWL
		2012/11/01	495	NWL


HZMB 043		2012/09/03	407	NWL
		2013/12/19	863	NWL
HZMB 042	NL260	2012/11/01	495	NWL
		2011/11/07	Baseline	NWL
		2014/06/05	960	NEL
		2014/02/17	910	NWL
		2013/11/02	845	NWL
		2013/05/09	648	NWL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
HZMB 041	NL24	2013/04/01	621	NWL
		2013/02/15	579	NWL
		2012/11/01	495	NWL
		2011/11/06	Baseline	NEL
		2011/11/05	Baseline	NWL
		2011/11/05	Baseline	NWL
		2011/10/10	Baseline	NWL
		2014/02/17	910	NWL
		2014/01/06	893	NWL
		2013/10/15	821	NWL
HZMB 040		2013/07/08	714	NWL
		2013/07/08	711	NWL
		2013/02/21	589	NWL
		2012/11/01	493	NWL
HZMB 038		2012/11/01	490	NWL
HZMB 037		2012/11/01	490	NWL
LIZMD 000		2012/09/03	407	NWL
HZMB 036		2012/11/01	490	NWL
LIZMD 025		2013/02/15	579	NWL
HZMB 035		2012/11/01	490	NWL
HZMB 034		2012/11/01	493	NWL
		2014/11/17	1035	NWL
HZMB 028		2013/04/01	625	NWL
		2012/08/06	373	NWL
		2013/12/19	863	NWL
HZMB 027		2013/02/15	579	NWL
		2013/01/28	568	NWL
		2013/01/28	564	NWL
		2012/06/14	299	NWL
HZMB 026		2014/10/13	1018	NWL

		2013/06/25	697	NWL
HZMB 026		2013/05/09	642	NWL
		2013/01/28	561	NWL
		2012/06/13	295	NEL
		2013/02/22	596	NEL
		2013/02/21	591	NWL
HZMB 025		2012/12/06	525	NEL
		2012/10/11	457	NWL
		2012/06/13	295	NEL
LIZMD 004		2013/03/18	601	NWL
HZMB 024		2012/06/13	295	NEL
		2014/12/18	1044	NWL
		2014/11/17	1035	NWL
		2014/01/06	888	NWL
		2013/07/08	715	NWL
HZMB 023		2013/07/08	711	NWL
		2013/04/01	619	NWL
		2013/02/21	589	NWL
		2013/02/15	579	NWL
		2012/07/10	330	NWL
		2014/12/18	1044	NWL
		2014/11/17	1035	NWL
		2014/08/04	991	NWL
		2014/01/06	888	NWL
		2013/10/24	827	NWL
HZMB 022		2013/07/08	715	NWL
		2013/07/08	711	NWL
		2013/04/01	619	NWL
		2013/02/21	589	NWL
		2013/02/15	579	NWL
		2012/07/10	330	NWL
U7MD 024	NII 27	2012/07/10	330	NWL
HZMB 021	NL37	2011/09/16	Baseline	NWL
HZMB 020		2012/07/10	330	NWL
HZMB 019		2012/07/10	330	NWL
		2014/02/17	910	NWL
		2013/05/09	647	NWL
HZMB 018		2013/02/21	594	NEL
		2012/12/10	529	NEL
		2012/07/10	330	NWL


117140 647	1	0040/0=/::		A D A //
HZMB 017		2012/07/10	330	NWL
		2013/07/08	706	NWL
		2012/12/11	539	NWL
HZMB 016		2012/09/18	446	NWL
		2012/09/04	421	NWL
		2012/07/10	330	NWL
HZMB 015		2012/07/10	330	NEL
		2013/12/26	880	NWL
		2012/08/06	373	NWL
HZMB 014	NL176	2012/06/13	295	NEL
MZIVID U14	INL 176	2011/11/06	Baseline	NEL
		2011/11/01	Baseline	NEL
		2011/11/01	Baseline	NEL
HZMB 013		2012/05/28	281	NWL
HZMB 012		2012/05/28	281	NWL
		2013/02/22	597	NEL
		2013/02/21	592	NEL
		2013/02/14	572	NEL
		2012/11/06	517	NEL
HZMB 011	EL01	2012/09/19	452	NWL
		2012/03/31	261	NEL
		2011/11/02	Baseline	NWL
		2011/11/01	Baseline	NEL
HZMB 009		2012/05/28	281	NWL
HZMB 008		2012/05/28	281	NWL
HZMB 007	NL246	2012/12/10	529	NEL
		2013/02/21	594	NEL
		2012/12/11	539	NWL
HZMB 006		2012/11/01	495	NWL
		2012/03/29	250	NWL
		2015/02/09	1070	NWL
		2015/02/09	1069	NWL
		2013/11/09	860	NWL
		2013/11/07	858	NWL
HZMB 005		2013/10/15	813	NWL
		2012/12/10	532	NWL
		2012/08/06	374	NWL
		2012/05/28	287	NWL
		2012/09/04	421	NWL
HZMB 004		2012/03/04	262	NWL
		2012/03/31	202	IAAAF

HZMB 003 HZMB 004 HZMB 005 HZMB 005 HZMB 005 HZMB 005 HZMB 005 HZMB 006 HZMB 007 HZMB 0					
HZMB 003 NL179 2012/03/31 261 NWL 2011/11/06 Baseline NEL 2011/09/16 Baseline NWL 2011/09/16 Baseline NWL 2011/05/31 951 NWL 2013/12/26 878 NWL 2013/12/19 863 NWL 2013/12/19 863 NWL 2013/10/15 819 NWL 2013/09/24 798 NWL 2013/09/24 798 NWL 2013/09/24 798 NWL 2013/09/24 798 NWL 2012/12/11 536 NWL 2012/12/11 536 NWL 2012/12/11 536 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/01/2 475 NWL 2012/03/29 250 NWL 2012/03/29 250 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/09/24 573 NWL 2013/09/24 573 NWL 2013/09/29 250 NWL 2013/09/21 577 NWL 2013/09/21 577 NWL 2013/09/21 577 NWL 2013/09/21 577 NWL 2013/09/21 577 NWL 2013/09/21 577 NWL 2013/09/21 577 NWL 2013/09/21 577 NWL 2013/09/21 577 NWL 2013/09/21 577 NWL 2013/09/21 578 NWL 2011/11/07 Baseline NWL NL11 2011/11/02 Baseline NWL NL12 2011/11/07 Baseline NWL NL33 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/107 Baseline NWL 2011/11/107 Baseline NWL 2011/11/107 Baseline NWL 2011/11/107 Baseline NWL 2011/11/107 Baseline NWL 2011/11/107 Baseline NWL			2013/10/15	812	NWL
HZMB 003 NL179 2012/03/31 261 NWL			2013/06/25	697	NWL
A		NI 470	2012/12/10	529	NEL
2011/09/16 Baseline NWL	HZIVIB 003	NL179	2012/03/31	261	NWL
HZMB 002 WL111 BYML 2013/12/26 878 NWL 2013/11/01 839 NWL 2013/10/15 819 NWL 2013/09/24 798 NWL 2013/09/24 798 NWL 2012/12/11 536 NWL 2012/12/11 535 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/24 475 NWL 2012/05/28 281 NWL 2012/03/29 250 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/13 681 NWL 2013/08/14 573 NWL 2013/08/17 Easeline NWL NL11 2011/11/02 Baseline NWL NL12 2011/11/07 Baseline NWL NL13 NL33 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL NL37 2011/11/07 Baseline NWL NL37 RUL RUL RUL RUL RUL RUL RUL RU			2011/11/06	Baseline	NEL
HZMB 002 WL111 2013/12/19 863 NWL 2013/11/01 839 NWL 2013/10/15 819 NWL 2013/09/24 798 NWL 2013/09/24 798 NWL 2012/12/11 536 NWL 2012/12/11 536 NWL 2012/12/11 535 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/24 475 NWL 2012/05/28 281 NWL 2012/03/29 250 NWL 2013/08/25 997 NWL 2013/08/25 997 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2011/09/29 250 NWL 2011/03/29 250 NWL 2011/03/29 250 NWL 2011/03/29 250 NWL 2011/03/29 250 NWL 2011/03/29 250 NWL 2011/03/29 250 NWL 2011/03/29 250 NWL 2011/03/29 250 NWL 2011/03/29 250 NWL 2011/11/02 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NEL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL			2011/09/16	Baseline	NWL
HZMB 002 WL111 2013/10/15 863 NWL 2013/11/01 839 NWL 2013/09/24 798 NWL 2013/09/24 798 NWL 2013/09/24 573 NWL 2012/12/11 536 NWL 2012/12/11 536 NWL 2012/10/12 466 NWL 2012/10/12 466 NWL 2012/10/24 475 NWL 2012/05/28 281 NWL 2012/03/29 250 NWL 2013/08/25 997 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2011/10/8/25 997 NWL 2011/10/8/25 997 NWL 2011/10/8/25 997 NWL 2011/10/8/25 997 NWL 2011/10/8/25 997 NWL 2011/10/8/25 997 NWL 2011/10/8/25 997 NWL 2011/10/8/25 997 NWL 2011/10/8/25 997 NWL 2011/10/8/25 997 NWL 2011/10/8/25 997 NWL 2011/10/8/25 997 NWL 2011/10/8/25 997 NWL 2011/09/29 250 NWL 2011/11/02 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NEL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL			2014/05/31	951	NWL
HZMB 002 WL111 ### Accord of the proof of			2013/12/26	878	NWL
HZMB 002 WL111 2013/09/24 798 NWL 2013/02/14 573 NWL 2012/12/11 536 NWL 2012/12/11 535 NWL 2012/10/12 466 NWL 2012/10/24 475 NWL 2012/05/28 281 NWL 2012/03/29 250 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/13 681 NWL 2013/08/13 6			2013/12/19	863	NWL
HZMB 002 WL111 2013/09/24 798 NWL 2013/02/14 573 NWL 2012/12/11 536 NWL 2012/10/12 466 NWL 2012/10/24 475 NWL 2012/05/28 281 NWL 2012/05/28 281 NWL 2012/03/29 250 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/06/13 681 NWL 2013/04/01 617 NWL 2013/02/14 573 NWL 2013/02/14 573 NWL 2013/02/14 573 NWL 2013/02/14 573 NWL 2013/02/14 573 NWL 2011/11/02 Baseline NWL NL11 NL11 PL12 2011/11/02 Baseline NWL 2011/11/07 Baseline NWL			2013/11/01	839	NWL
HZMB 002 WL111 2013/02/14 573 NWL 2012/12/11 536 NWL 2012/10/12 466 NWL 2012/10/24 475 NWL 2012/05/28 281 NWL 2012/03/29 250 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/13 681 NWL 2013/04/01 617 NWL 2013/02/14 573 NWL 2011/09/29 250 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/08/21 771 NWL 2013/02/14 573 NWL 2013/02/14 573 NWL 2011/03/29 250 NWL 2011/01/02 Baseline NWL NL11 011/11/02 Baseline NWL 2011/11/07 Baseline NWL			2013/10/15	819	NWL
HZMB 001 WL46 2012/12/11 536 NWL			2013/09/24	798	NWL
HZMB 001 HZMB 001 CH98 CH98 NL11 NL11 NL12 NL12 NL33 2012/10/24 2012/10/24 475 NWL 2012/05/28 281 NWL 2012/03/29 250 NWL 2013/08/21 771 NWL 2013/06/13 681 NWL 2013/06/13 681 NWL 2013/02/14 573 NWL 2012/03/29 250 NWL 2013/02/14 573 NWL 2011/02/03/29 250 NWL 2011/11/02 Baseline NWL NUL 2011/11/02 Baseline NWL NWL 2011/11/02 Baseline NWL NWL 2011/11/02 Baseline NWL 2011/11/03 Baseline NWL 2011/11/05 Baseline NWL NUL 2011/11/07 Baseline NWL NUL 2011/11/07 Baseline NWL NUL NUL 2011/11/07 Baseline NWL NUL NUL 2011/11/07 Baseline NWL NUL NUL 2011/11/07 Baseline NWL NUL NUL NUL NUL NUL NUL NUL	HZMB 002	WL111	2013/02/14	573	NWL
HZMB 001 HZMB 0			2012/12/11	536	NWL
HZMB 001 HZMB 0			2012/12/11	535	NWL
HZMB 001 HZMB 0			2012/10/12	466	NWL
HZMB 001 HZMB 001 WL46 WU4 WL46 WU4 WL46 WU4 WL46 WU4 WL46 WU4 WL46 WU4 WL46 WU4 WU4 WU4 WU4 WU4 WU4 WU4 W			2012/10/24	475	NWL
HZMB 001 HZMB 001 WL46 2013/08/21 771 NWL 2013/06/13 681 NWL 2013/04/01 617 NWL 2013/02/14 573 NWL 2012/03/29 250 NWL CH98 2011/11/02 Baseline NWL 2011/11/07 Baseline NWL NL11 NL12 2011/11/02 Baseline NWL 2011/11/02 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL NL12 2011/11/01 Baseline NWL 2011/11/01 Baseline NWL 2011/11/01 Baseline NWL 2011/11/01 Baseline NWL 2011/11/01 Baseline NEL 2011/11/05 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL			2012/05/28	281	NWL
HZMB 001 WL46 WL46 WL46 WL46 2013/08/21 771 NWL 2013/06/13 681 NWL 2013/02/14 573 NWL 2012/03/29 250 NWL CH98 2011/11/02 Baseline NWL 2011/11/07 Baseline NWL NL11 NL12 2011/11/07 Baseline NWL 2011/11/01 Baseline NWL 2011/11/01 Baseline NWL 2011/11/05 Baseline NWL 2011/11/05 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL			2012/03/29	250	NWL
HZMB 001 WL46 2013/06/13 681 NWL 2013/04/01 617 NWL 2013/02/14 573 NWL 2012/03/29 250 NWL CH98 2011/11/02 Baseline NWL 2011/11/07 Baseline NWL NL11 NL12 2011/11/07 Baseline NWL 2011/11/01 Baseline NWL 2011/11/01 Baseline NWL 2011/11/01 Baseline NWL 2011/11/01 Baseline NWL 2011/11/01 Baseline NWL 2011/11/01 Baseline NWL 2011/11/05 Baseline NWL 2011/11/05 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL			2014/08/25	997	NWL
HZMB 001 WL46 2013/04/01 617 NWL 2013/02/14 573 NWL 2012/03/29 250 NWL 2012/03/29 250 NWL NUL NUL 2011/11/02 Baseline NWL 2011/11/07 Baseline NWL NUL NUL 2011/11/07 Baseline NWL NUL 2011/11/02 Baseline NWL 2011/11/02 Baseline NWL 2011/11/01 Baseline NWL 2011/11/01 Baseline NEL 2011/11/05 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL 2011/11/07 Baseline NWL NUL			2013/08/21	771	NWL
2013/04/01 617 NWL	UZMB 001	\\/\ 46	2013/06/13	681	NWL
2012/03/29 250 NWL	HZIVID UUT	VVL40	2013/04/01	617	NWL
CH98 2011/11/02 Baseline NWL NL11 2011/11/02 Baseline NWL 2011/11/07 Baseline NWL NL12 2011/11/02 Baseline NWL 2011/09/23 Baseline NWL 2011/11/01 Baseline NEL 2011/11/05 Baseline NWL 2011/11/07 Baseline NWL NL37 2011/09/16 Baseline NWL			2013/02/14	573	NWL
NL11 2011/11/02 Baseline NWL 2011/11/07 Baseline NWL NL12 2011/11/02 Baseline NWL 2011/09/23 Baseline NWL 2011/11/01 Baseline NEL 2011/11/05 Baseline NWL 2011/11/07 Baseline NWL NL37 2011/09/16 Baseline NWL			2012/03/29	250	NWL
NL11 2011/11/07 Baseline NWL NL12 2011/11/02 Baseline NWL 2011/09/23 Baseline NWL 2011/11/01 Baseline NEL 2011/11/05 Baseline NWL 2011/11/07 Baseline NWL NL37 2011/09/16 Baseline NWL		CH98	2011/11/02	Baseline	NWL
NL12 2011/11/07 Baseline NWL		NII 11	2011/11/02	Baseline	NWL
NL33 2011/09/23 Baseline NWL 2011/11/01 Baseline NEL 2011/11/05 Baseline NWL 2011/11/07 Baseline NWL NL37 2011/09/16 Baseline NWL		INLII	2011/11/07	Baseline	NWL
NL33 2011/11/01 Baseline NEL 2011/11/05 Baseline NWL 2011/11/07 Baseline NWL NL37 2011/09/16 Baseline NWL		NL12	2011/11/02	Baseline	NWL
NL33 2011/11/05 Baseline NWL 2011/11/07 Baseline NWL NL37 2011/09/16 Baseline NWL			2011/09/23	Baseline	NWL
2011/11/05 Baseline NWL 2011/11/07 Baseline NWL NL37 2011/09/16 Baseline NWL NWL		NI 33	2011/11/01	Baseline	NEL
NL37 2011/09/16 Baseline NWL		INLOG	2011/11/05	Baseline	NWL
			2011/11/07	Baseline	NWL
NL46 2011/10/28 Baseline NWL		NL37	2011/09/16	Baseline	NWL
		NL46	2011/10/28	Baseline	NWL

HZMB 005 2015-02-09-10-56-37_03 MED

HZMB 005 2015-02-09-11-54-53 Med

HZMB 098 2015-02-23-12-15-40 Med

HZMB 126 2015-02-09-09-55-35 MED

Appendix L – Event Action Plan

Event / Action Plan for Air Quality

Event		1		
	ET Leader	IEC	ER	Contractor
Action Level				
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily.	Check monitoring data submitted by ET; Check Contractor's working method.	1. Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	1. Submit proposals for remedial to ER within 3 working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate.

Event	Action						
	ET Leader	IEC	ER	Contractor			
Limit Level							
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	Contractor on possible	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 			

Event				
	ET Leader	IEC	ER	Contractor
Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	notification of failure in writing; 2. Notify Contractor; 3. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event / Action Plan for Construction Noise

Event		Action							
	ET Leader	IEC	ER	Contractor					
Action Level	 Notify IEC and Contractor; Identify source, investigate the causes of exceedance and propose remedial measures; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.					
Limit Level	 Inform IEC, ER, EPD and Contractor; Identify source; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 					

Event / Action Plan for Water Quality

Event	Action								
	ET Leader	IEC	ER	Contractor					
Action level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Repeat measurement on next day of exceedance to confirm findings. 	 Check monitoring data submitted by ET and Contractor's working methods; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented.	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. Amend working methods if appropriate. 					

Event	Action							
	ET Leader	IEC	ER	Contractor				
Action level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level; Repeat measurement on next day of exceedance to confirm findings. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC or possible remedial actions and propose mitigation measures to IEC and ER within 3 working days of notification; Implement the agreed mitigation measures; Amend working methods if appropriate. 				

Event		Action					
	ET Leader	IEC	ER	Contractor			
Limit level being exceeded by one sampling day	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Amend working methods if appropriate. 			

Event	Action					
	ET Leader	IEC	ER	Contractor		
or more consecutive sampling days	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the ER accordingly. 	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 	 Inform the ER and confirm notification of the non-compliance in writing; Take immediate action to avoid further exceedance; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Engineer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 		

Event / Action Plan for Dolphin Monitoring

Event	ET Leader	IEC	ER / SOR	Contractor
Action Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor; Check monitoring data. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and finding with the ET and the Contractor. 	 Discuss monitoring with the IEC and any other measures proposed by the ET; If ER/SOR is satisfied with the proposal of any other measures, ER/SOR to signify the agreement in writing on the measures to be implemented. 	Inform the ER/SOR and confirm notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the ER/SOR; Implement the agreed measures.
Limit Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor of findings; Check monitoring data; 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. Review proposals for additional monitoring and any other mitigation measures submitted 	 Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. If ER/SOR is satisfied with the proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, ER/SOR to signify the agreement in writing on such proposals and any other mitigation measures. 	 Inform the ER/SOR and confirm notification of the non-compliance in writing; Attend the meeting to discuss with ET, IEC and ER/SOR the necessity of additional dolphin monitoring and any other potential mitigation measures. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary. Implement the agreed additional dolphin monitoring dolphin monitoring

6	. Repeat review to ensure all the	by ET and Contractor and	3. Supervise the implementation	and/or any other mitigation
	dolphin protective measures	advise ER/SOR of the results	of additional monitoring and/or	measures.
	are fully and properly	and findings accordingly.	any other mitigation measures.	
	implemented and advise on	5. Supervise / Audit the		
	additional measures if	implementation of additional		
	necessary.	monitoring and/or any other		
7	. If ET proves that the source of	mitigation measures and		
	impact is caused by any of the	advise ER/SOR the results and		
	construction activity by the	findings accordingly.		
	works contract, ET to arrange a			
	meeting to discuss with IEC,			
	ER/SOR and Contractor the			
	necessity of additional dolphin			
	monitoring and/or any other			
	potential mitigation measures			
	(e.g., consider to modify the			
	perimeter silt curtain or			
	consider to control/temporarily			
	stop relevant construction			
	activity etc.) and submit to IEC			
	a proposal of additional dolphin			
	monitoring and/or mitigation			
	measures where necessary.			

China Harbour Engineering Company Limited

Monthly Summary Waste Flow Table for March / 2015 (year)

Project: Hong Kong – Zhuhai – Macao Bridge, Hong Kong Boundary Crossing Facilities – Reclamation Works

Contract No.: HY/2010/02

110,000.1	Iong Rong Z	iiuiiai – iviacao	<u> </u>			5 I delittles IX				Contract No	
	Actual Quantities of Inert C&D Materials Generated Monthly					Α	Actual Quantities of C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste (see Note 4)	Others, e.g. general refuse (see Note 3)
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan-15	0.0000	0.0000	0.0000	0.0000	0.0000	1774.7845	0.0000	0.4200	4.0000	2.4000	0.0455
Feb-15	0.0000	0.0000	0.0000	0.0000	0.0000	1120.6675	0.0000	0.1400	0.0000	0.0000	0.0390
Mar-15	0.0000	0.0000	0.0000	0.0000	0.0000	390.8735	0.0040	0.3340	0.0020	0.0000	0.0390
Apr-15											
May-15											
Jun-15											
Sub-total	0.0000	0.0000	0.0000	0.0000	0.0000	3286.3255	0.0040	0.8940	4.0020	2.4000	0.1235
Jul-15											
Aug-15		_			_	_	_	_	_	_	_
Sep-15											
Oct-15											
Nov-15											
Dec-15											
Total	0.0000	0.0000	0.0000	0.0000	0.0000	3286.3255	0.0040	0.8940	4.0020	2.4000	0.1235

Notes:

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials.
- (3) Use the conversion factor: 1 full load of dumping truck being equivalent to 6.5 m³ by volume.
- (4) Chemical waste refer to spent "battery" and "oil with water".

Appendix N

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in this month	Total no. recorded since project commencement
1-Hour TSP	Action	-	-
	Limit	-	-
24-Hour TSP	Action	-	-
	Limit	-	-
Noise	Action	-	-
	Limit	-	-
Water Quality	Action	-	2
	Limit	-	3
Dolphin Monitoring	Action	-	-
	Limit	-	-

Remarks: Exceedances which are not project-related are not presented in this table.

Cumulative statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no.	Total no.
				received	received since
				in this	project
				month	commencement
Environmental		As informed by the Contractor on 09			
complaints		March 2015, there is an air quality			
		complaint received on 06 March			
		2015. The complainant Mr. Fung			
		requested for follow-up actions to be			
	9 March 2015	taken by relevant departments in	Closed	1	28
		response to his Complaint about			
		sand and dust emission from 4-5			
		uncovered sand barges parking near			
		the coastline of Tuen Mun, the			
		complainant concerns about the			

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation

Monthly EM&A Report for March 2015

		health problems to residents as the			
		sand is blown to their apartments.			
		After investigation, there is no			
		adequate information to conclude the			
		observed impact is related to this			
		Contract.			
Notification of					2
summons	-	-	-		2
Successful					2
Prosecutions	-	-	-	=	2