

China Harbour Engineering Company Limited

Contract No. HY/2010/02

Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for May 2015

[06/2015]

	Name	Signature
Prepared & Checked:	Y T Tang	Carrythan
Reviewed, Approved and Certified:	Echo Leong (ETL)	Ethokeouf

Version:	Rev. 0	Date:	11 June 2015
		Dato.	
Disclaimer			
pursuant to Contract N Facilities-Reclamation Wo Harbour Engineering Cor	No. HY/2010/02 Hong Kong-Zhu rks and may not be disclosed to, o npany Limited without our prior v	uhai-Macao Bridge quoted to or relied up vritten consent. No	n for its sole benefit in relation to and Hong Kong Boundary Crossing pon by any person other than China person (other than China Harbour smay rely on this report without our

Engineering Company Limited) into whose possession a copy of this report comes may rely on this report without our express written consent and China Harbour Engineering Company Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd. 15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

By Fax (3698 5999) and By Post

Ref.: HYDHZMBEEM00_0_3042L.15

11 June 2015

Engineer's Representative Ove Arup & Partners Chief Resident Engineer's Office 5 Ying Hei Road, Tung Chung, Lantau Hong Kong

Attention: Mr. Roger Marechal

Dear Sir,

Re: Agreement No. CE 48/2011 (EP) Environmental Project Office for the HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities, and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2010/02 HZMB HKBCF – Reclamation Works Monthly Environmental Monitoring & Audit Report for May 2015

Reference is made to the Environmental Team's submission of the Monthly Environmental Monitoring & Audit Report for May 2015 (letter ref: 60249820/C/RMKY15061101 dated 11 June 2015) copied to us by E-mail on 11 June 2015.

We are pleased to inform you that we have no adverse comment on the captioned Monthly EM&A Report. We write to verify the captioned report in accordance with Condition 5.4 of EP-353/2009/H and Condition 4.4 of EP-354/2009/D (for TM-CLKL Southern Landfall Reclamation only).

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,

Kong

Raymond Dai Independent Environmental Checker

c.c.	HyD	Mr. Matthew Fung	(By Fax: 3188 6614)
	HyD	Mr. Wai-ping Lee	(By Fax: 3188 6614)
	AECOM	Ms. Echo Leong	(By Fax: 2317 7609)
	CHEC	Mr. Lim Kim Chuan	(By Fax: 2578 0413)

Internal: DY, YH, SL, JM, ENPO Site

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_3042L.15.docx

TABLE OF CONTENTS

			Page
EXE	KECUTIVE SUMMARY		3
1	INTRODUCTION		6
	 Background Scope of Report Project Organization Summary of Construction Works Summary of EM&A Programme F 	Requirements	6 6 7 7 8
2	AIR QUALITY MONITORING		9
	 2.1 Monitoring Requirements 2.2 Monitoring Equipment 2.3 Monitoring Locations 2.4 Monitoring Parameters, Frequence 2.5 Monitoring Methodology 2.6 Monitoring Schedule for the Repo 2.7 Results and Observations 		9 9 11 11 13 13
3	NOISE MONITORING		14
	 3.1 Monitoring Requirements 3.2 Monitoring Equipment 3.3 Monitoring Locations 3.4 Monitoring Parameters, Frequence 3.5 Monitoring Methodology 3.6 Monitoring Schedule for the Report 3.7 Monitoring Results 		14 14 15 15 15 16
4	WATER QUALITY MONITORING		17
	 4.1 Monitoring Requirements 4.2 Monitoring Equipment 4.3 Monitoring Parameters, Frequence 4.4 Monitoring Locations 4.5 Monitoring Methodology 4.6 Monitoring Schedule for the Report 4.7 Results and Observations 		17 17 18 19 20 20
5	DOLPHIN MONITORING		22
	 5.1 Monitoring Requirements 5.2 Monitoring Equipment 5.3 Monitoring Frequency and Condit 5.4 Monitoring Methodology and Loca 5.5 Monitoring Procedures 5.6 Monitoring Schedule for the Repo 5.7 Results and Observations 	ation	22 22 22 22 24 24 24 24
6	ENVIRONMENTAL SITE INSPECTION	I AND AUDIT	28
	6.6 Summary of Complaints, Notificat	nits	28 30 31 31 36 36
7	FUTURE KEY ISSUES		38
	7.2 Construction Programme for the 07.3 Key Issues for the Coming Month7.4 Monitoring Schedule for the Coming		38 39 39

i

8.2 Conclusions

8.3 Recommendations

List of Tables

- Table 1.1 Contact Information of Key Personnel
- Table 2.1
 Air Quality Monitoring Equipment
- Table 2.2Locations of Impact Air Quality Monitoring Stations
- Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration
- Table 2.4
 Summary of 1-hour TSP Monitoring Results in the Reporting Period
- Table 2.5
 Summary of 24-hour TSP Monitoring Results in the Reporting Period
- Table 3.1 Noise Monitoring Equipment
- Table 3.2
 Locations of Impact Noise Monitoring Stations
- Table 3.3
 Noise Monitoring Parameters, Frequency and Duration
- Table 3.4
 Summary of Construction Noise Monitoring Results in the Reporting Period
- Table 4.1
 Water Quality Monitoring Equipment
- Table 4.2
 Impact Water Quality Monitoring Parameters and Frequency
- Table 4.3Impact Water Quality Monitoring Stations
- Table 4.4 Laboratory Analysis for Suspended Solids
- Table 4.5Summary of Water Quality Exceedances
- Table 5.1 Dolphin Monitoring Equipment
- Table 5.2
 Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD)
- Table 5.3
 Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State
- Table 5.4Impact Dolphin Monitoring Survey Details May 2015
- Table 5.5 The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^
- Table 6.1
 Summary of Environmental Licensing and Permit Status

Figures

- Figure 1 General Project Layout Plan
- Figure 2 Impact Air Quality and Noise Monitoring Stations and Wind Station
- Figure 3 Impact Water Quality Monitoring Stations
- Figure 4 Impact Dolphin Monitoring Line Transect Layout Map
- Figure 5 Impact Dolphin Monitoring Survey Efforts and Sightings in May 2015
- Figure 6 Environmental Complaint Handling Procedures

List of Appendices

- Appendix A Project Organization for Environmental Works
- Appendix B Three Month Rolling Construction Programmes
- Appendix C Implementation Schedule of Environmental Mitigation Measures (EMIS)
- Appendix D Summary of Action and Limit Levels
- Appendix E Calibration Certificates of Monitoring Equipments
- Appendix F EM&A Monitoring Schedules
- Appendix G Impact Air Quality Monitoring Results and their Graphical Presentation
- Appendix H Meteorological Data for Monitoring Periods on Monitoring Dates in May 2015
- Appendix I Impact Construction Noise Monitoring Results and their Graphical Presentation
- Appendix J Impact Water Quality Monitoring Results and their Graphical Presentation
- Appendix K Impact Dolphin Monitoring Survey Sighting Summary
- Appendix L Event Action Plan
- Appendix M Monthly Summary of Waste Flow Table
- Appendix N Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

40 40 41

EXECUTIVE SUMMARY

Contract No. HY/2010/02 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun - Chek Lap Kok Link (TMCLKL). It is a designated project and is governed by the current permits for the Project, i.e. the amended Environmental Permits (EPs) issued on 19 January 2015 (EP-353/2009/H) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).

Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Project).

China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Project.

ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Project for carrying out the environmental monitoring and audit (EM&A) works.

The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2016. The EM&A programme, including air quality, noise, water quality and dolphin monitoring and environmental site inspections, was commenced on 12 March 2012.

This report documents the findings of EM&A works conducted in the period between 1 and 31 May 2015. As informed by the Contractor, major activities in the reporting period were:-

Marine-base

- Cellular structure installation and backfilling
- Capping Beams structures
- Surcharge remove & laying
- Earthwork fill
- Deep Cement Mixing
- Jet grout columns works
- Geotechnical Instrumentation works
- Removal of Temporary Seawall
- Installations of Precast Culverts except sloping outfalls
- Maintenance of silt curtain & silt screen at sea water intake of HKIA

Land-base

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour Total Suspended Particulates (TSP) monitoring 1-hour TSP monitoring	5 sessions 5 sessions
Noise monitoring	4 sessions
Impact water quality monitoring	13 sessions
Impact dolphin monitoring	2 surveys
Joint Environmental site inspection	4 sessions

Breaches of Action and Limit Levels for Air Quality

All 1-Hour TSP and 24-Hour TSP results were below the Action and Limit Level in the reporting month.

Breaches of Action and Limit Levels for Noise

For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.

Breaches of Action and Limit Levels for Water Quality

All impact water quality monitoring results were below the Action and Limit Level in the reporting month.

Impact Dolphin Monitoring

Limit level exceedances for dolphin monitoring (NEL and NWL) for the quarterly monitoring period (March 2015 – May 2015) has been recorded. Investigation report will be provided in the quarterly report (March 2015 – May 2015).

A total of three sightings were made, two "on effort" sightings and one "opportunistic" sighting. One sighting was recorded on 11 May 2015 and two sightings were recorded on 18 May 2015 in NWL. A total of 9 individuals were sighted from the two impact dolphin surveys in the reporting period. The group sighted on the 11 May 2015 contained five individuals; the first sighting on the 18 May 2015 contained three individuals and the second group on the same day, one individual. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.

Behaviour: Of the three sightings, on the 11 May 2015, the group was milling ("other"), the first sighting on the 18 May 2015 was feeding and the second sighting on the same day was feeding and travelling ("multiple"). Locations of sighting with different behaviour are mapped in Figure 5d.

Complaint, Notification of Summons and Successful Prosecution

A complainant contacted EPD through EPD's hotline on 21 May 2015 and complained that noise was generated from construction works when construction of artificial island at Lantau Island area was carried out overnight and dark smoke was emitted by construction plant. EPD's staff has contacted complainant and came to know that the dark smoke referring to could also be construction dust emitting from the filling work at the HKBCF. This complaint was subsequently referred by EPD to HZMB project team on 22 May 2015 to follow-up. With referred to the available information, it is unable to determine whether the night time noise and dark smoke complaint is related to this Contract.

No notification of summons or prosecution was received in the reporting period

Reporting Change

There was no reporting change required in the reporting period.

Future Key Issues

Key issues to be considered in the coming month included:

- Site runoff should be properly collected and treated prior to discharge;
- Minimize loss of sediment from filling works;
- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
- Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission;
- Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic:
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures for operating equipment and machinery on-site, such as erection of movable noise barriers or enclosure for noisy plants;
- Closely check and replace the sound insulation materials regularly;
- Better scheduling of construction works to minimize noise nuisance;

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facil

Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for May 2015

- Properly store and label oil drums and chemical containers placed on site;
- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved and confined areas;
- Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.
- Control night-time lighting and glare by hooding all lights.
- Regular review and provide maintenance to dust control measures such as sprinkler system.

1 INTRODUCTION

1.1 Background

- 1.1.1 Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun - Chek Lap Kok Link (TMCLKL).
- 1.1.2 The environmental impact assessment (EIA) reports (Hong Kong Zhuhai Macao Bridge Hong Kong Boundary Crossing Facilities EIA Report (Register No. AEIAR-145/2009) (HKBCFEIA) and Tuen Mun Chek Lap Kok Link EIA Report (Register No. AEIAR-146/2009) (TMCLKLEIA), and their environmental monitoring and audit (EM&A) Manuals (original EM&A Manuals), for the Project were approved by Environmental Protection Department (EPD) in October 2009.
- 1.1.3 EPD subsequently issued the Environmental Permit (EP) for HKBCF in November 2009 (EP-353/2009) and the Variation of Environmental Permit (VEP) in June 2010 (EP-353/2009/A), November 2010 (EP-353/2009/B), November 2011 (EP-353/2009/C), March 2012 (EP-353/2009/D), October 2012 (EP-353/2009/E), April 2013 (EP-353/2009/F), August 2013 (EP-353/2009/G) and January 2015 (EP-353/2009/H). Similarly, EPD issued the Environmental Permit (EP) for TMCLKL in November 2009 (EP-354/2009) and the Variation of Environmental Permit (VEP) in December 2010 (EP-354/2009/A), January 2014 (EP-354/2009/B), December 2014 (EP-354/2009/C) and March 2015 (EP-354/2009/D).
- 1.1.4 The Project is a designated project and is governed by the current permits for the Project, i.e. the amended EPs issued on 19 January 2015 (EP-353/2009/H) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).
- 1.1.5 A Project Specific EM&A Manual, which included all project-relation contents from the original EM&A Manuals for the Project, was issued in May 2012.
- 1.1.6 Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Project).
- 1.1.7 China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Project.
- 1.1.8 ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Project for carrying out the EM&A works.
- 1.1.10 The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2016.
- 1.1.11 According to the Project Specific EM&A Manual, there is a need of an EM&A programme including air quality, noise, water quality and dolphin monitoring and environmental site inspections. The EM&A programme of the Project commenced on 12 March 2012.

1.2 Scope of Report

1.2.1 This is the thirty-ninth monthly EM&A Report under the Contract No.HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in May 2015.

1.3 Project Organization

1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Party	Position	Name	Telephone	Fax
Engineer's Representative (ER) (Ove Arup & Partners Hong Kong Limited)	Chief Resident Engineer	Roger Marechal	3698 5700	2698 5999
IEC / ENPO	Independent Environmental Checker	Raymond Dai	3465 2888	3465 2899
(ENVIRON Hong Kong Limited)	Environmental Project Office Leader	Y. H. Hui	3547 2133	3465 2899
Contractor (China Harbour	Environmental Officer	Richard Ng	36932253	2578 0413
Engineering Company Limited)	24-hour Hotline	Alan C.C. Yeung	9448 0325	
ET (AECOM Asia Company Limited)	ET Leader	Echo Leong	3922 9280	2317 7609

Table 1.1 Contact Information of Key Personnel

1.4 Summary of Construction Works

- 1.4.1 The construction phase of the Project under the EP commenced on 12 March 2012.
- 1.4.2 As informed by the Contractor, details of the major works carried out in this reporting period are listed below:-

Marine-base

- Cellular structure installation and backfilling
- Capping Beams structures
- Surcharge remove & laying
- Earthwork fill
- Deep Cement Mixing
- Jet grout columns works
- Geotechnical Instrumentation works
- Removal of Temporary Seawall
- Installations of Precast Culverts except sloping outfalls
- Maintenance of silt curtain & silt screen at sea water intake of HKIA

Land-base

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

- 1.4.3 The 3-month rolling construction programme of the Project is shown in Appendix B.
- 1.4.4 The general layout plan of the Project site showing the detailed works areas is shown in Figure 1.
- 1.4.5 The environmental mitigation measures implementation schedule are presented in Appendix C.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise, water quality, marine ecology and environmental site inspections for air quality, noise, water quality, waste management, marine ecology, and landscape and visual impact. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming month;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA reports; and
 - Environmental requirement in contract documents.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the Project Specific EM&A Manual, baseline 1-hour and 24-hour Total Suspended Particulates (TSP) levels at 4 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix D.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the Project Specific EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

 Table 2.1
 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Air Sampler (Model No. TE-5170)

2.3 Monitoring Locations

- 2.3.1 Monitoring locations AMS2 and AMS7 were set up at the proposed locations in accordance with Project Specific EM&A Manual. For AMS6 (Dragonair/CNAC (Group) Building), permission on setting up and carrying out impact monitoring works was sought, however, access to the premise has not been granted yet on this report issuing date. For monitoring location AMS3 (Ho Yu College), as proposed in the Project Specific EM&A Manual, approval for carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact air quality monitoring was conducted at site boundary of the site office area in Works Area WA2 (AMS3B) respectively. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.2 It was observed that a tree near AMS3B may affect the wind flow around the HVS located at AMS3B. With no further comment received from IEC, the HVS at AMS3B has been relocated on 8 September 2014 to slightly more than 2 meters separation from it, measured horizontally. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.3 Reference is made to ET's proposal of the omission of air monitoring station (AMS 6) dated on 1 November 2012 and EPD's letter dated on 19 November 2012 regarding the conditional approval of the proposed omission of air monitoring station (AMS 6) for Contract No. HY/2010/02. The aforesaid omission of Monitoring Station AMS6 is effective since 19 November 2012.
- 2.3.4 Reference is made to ET's proposal of relocation of air quality monitoring station (AMS7) dated on 2 February 2015, with no further comment received from IEC on 2 February 2015 and no objection received from EPD on 5 February 2015, the impact air quality monitoring station AMS7 (Hong Kong SkyCity Marriott Hotel) has been relocated to AMS7A (Chu Kong Air-Sea Union Transportation Company Limited) on 3 February 2015. Action Level for air quality, as derived from the baseline monitoring data recorded at Hong Kong SkyCity Marriott Hotel, was adopted for this alternative air quality location.

2.3.5 Figure 2 shows the locations of monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 Locations of Impact Air Quality Monitoring Stations

Monitoring Station	Location	Description
AMS2	Tung Chung Development Pier	Rooftop of the premise
AMS3B	Site Boundary of Site Office Area at Works Area WA2	On ground at the area boundary
AMS6*	Dragonair/CNAC (Group) Building	On ground at boundary of the premise
AMS7A	Chu Kong Air-Sea Union Transportation Company Limited	On ground at boundary of the premise

[#]Remarks: Reference is made to EPD conditional approval of the omission of air monitoring station (AMS 6) for the project. The omission will be effective on 19 November 2012.

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

 Table 2.3
 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration	
1-hour TSP	Three times every 6 days while the highest dust impact was expected	
24-hour TSP	Once every 6 days	

2.5 Monitoring Methodology

- 2.5.1 24-hour TSP Monitoring
 - (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) No two samplers should be placed less than 2 meters apart.
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (ix) A secured supply of electricity was obtained to operate the samplers.
 - (x) The sampler was located more than 20 meters from any dripline.
 - (xi) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xii) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.
 - (b) Preparation of Filter Papers
 - (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
 - (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.

- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.
- (c) Field Monitoring
 - (i) The power supply was checked to ensure the HVS works properly.
 - (ii) The filter holder and the area surrounding the filter were cleaned.
 - (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
 - (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
 - (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
 - (vi) Then the shelter lid was closed and was secured with the aluminum strip.
 - (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
 - (viii) A new flow rate record sheet was set into the flow recorder.
 - (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.1 m³/min, and complied with the range specified in the updated EM&A Manual (i.e. 0.6-1.7 m³/min).
 - (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
 - (xi) The initial elapsed time was recorded.
 - (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
 - (xiii) The final elapsed time was recorded.
 - (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
 - (xv) It was then placed in a clean plastic envelope and sealed.
 - (xvi) All monitoring information was recorded on a standard data sheet.
 - (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.
- (d) Maintenance and Calibration
 - (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
 - (ii) 5-point calibration of the HVS was conducted using TE-5025A Calibration Kit prior to the commencement of baseline monitoring. Bi-monthly 5-point calibration of the HVS will be carried out during impact monitoring.
 - (iii) Calibration certificate of the HVSs are provided in Appendix E.

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

- (b) Maintenance and Calibration
 - (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix E.
 - (ii) 1-hour validation checking of the TSP meter against HVS is carried out on half-year basis at the air quality monitoring locations.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for air quality monitoring in May 2015 is provided in Appendix F.

2.7 Results and Observations

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Table 2.4 and 2.5 respectively. Detailed impact air quality monitoring results are presented in Appendix G.

 Table 2.4
 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (µg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
AMS2	74	70-77	374	500
AMS3B	74	69-80	368	500
AMS7A	74	72-78	370	500

 Table 2.5
 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (µg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m ³)
AMS2	23	14-30	176	260
AMS3B	35	25-44	167	260
AMS7A	33	27-38	183	260

- 2.7.2 The event action plan is annexed in Appendix L.
- 2.7.3 Meteorological information collected from the wind station during the monitoring periods on the monitoring dates, as shown in Figure 2, including wind speed and wind direction, is annexed in Appendix H.

3 NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the Project Specific EM&A Manual, impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix D.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

 Table 3.1
 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	Rion NL-31 & B&K2238
Acoustic Calibrator	Rion NC-73 & B&K 4231

3.3 Monitoring Locations

- 3.3.1 Monitoring locations NMS2 was set up at the proposed locations in accordance with Project Specific EM&A Manual. However, for monitoring location NMS3 (Ho Yu College), as proposed in the Project Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact noise monitoring was conducted at site boundary of the site office area in Works Area WA2 (NMS3B) respectively. Same baseline noise level (as derived from the baseline monitoring data recorded at Ho Yu College) and Limit Level were adopted for this alternative noise monitoring location.
- 3.3.2 Figure 2 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

 Table 3.2
 Locations of Impact Noise Monitoring Stations

Monitoring Station Location		Description
NMS2	Seaview Crescent Tower 1	Free-field on the rooftop of the premise
NMS3B	Site Boundary of Site Office Area at Works Area WA2	Free-field on ground at the area boundary.

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). L_{eq} , L_{10} and L_{90} would be recorded.	At least once per week

3.5 Monitoring Methodology

- 3.5.1 Monitoring Procedure
 - (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground for free-field measurements at NMS2. A correction of +3 dB(A) shall be made to the free field measurements.
 - (b) All measurement at NMS3B were free field measurements in the reporting month at NMS3B. A correction of +3 dB(A) shall be made to the free field measurements.
 - (c) The battery condition was checked to ensure the correct functioning of the meter.
 - (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:-
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: $L_{eq(30-minutes)}$ during non-restricted hours i.e. 07:00 1900 on normal weekdays.
 - (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
 - (f) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
 - (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
 - (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.2 Maintenance and Calibration
 - (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
 - (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
 - (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix E.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for construction noise monitoring in May 2015 is provided in Appendix F.

3.7 Monitoring Results

3.7.1 The monitoring results for construction noise are summarized in Table 3.4 and the monitoring data is provided in Appendix I.

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq} (30 mins)
NMS2	68	65-71*	75
NMS3B	66	64-68*	70/65^

Table 3.4 Summary of Construction Noise Monitoring Results in the Reporting Period

*+3dB(A) Façade correction included

^ Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

- 3.7.2 No Action or Limit Level Exceedance of construction noise was recorded in the reporting month.
- 3.7.3 Major noise sources during the noise monitoring included construction activities of the Project, construction activities by other contracts and nearby traffic noise.
- 3.7.4 The event action plan is annexed in Appendix L.

4 WATER QUALITY MONITORING

4.1 Monitoring Requirements

4.1.1 Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. For impact water quality monitoring, measurements were taken in accordance with the Project Specific EM&A Manual. Appendix D shows the established Action/Limit Levels for the environmental monitoring works.

4.2 Monitoring Equipment

4.2.1 Table 4.1 summarises the equipment used in the impact water quality monitoring programme.

 Table 4.1
 Water Quality Monitoring Equipment

Equipment	Brand and Model
Dissolved Oxygen (DO) and Temperature Meter, Salinity Meter and Turbidimeter	YSI Model 6820
pH Meter	YSI Model 6820 or Thermo Orion 230A+
Positioning Equipment	JRC DGPS 224 Model JLR-4341 with J-NAV 500 Model NWZ4551
Water Depth Detector	Eagle Cuda-168 and Lowrance x-4
Water Sampler	Kahlsio Water Sampler (Vertical) 2.2 L with messenger

4.3 Monitoring Parameters, Frequency and Duration

4.3.1 Table 4.2 summarises the monitoring parameters, frequency and monitoring depths of impact water quality monitoring as required in the Project Specific EM&A Manual.

 Table 4.2
 Impact Water Quality Monitoring Parameters and Frequency

-			
Monitoring Stations	Parameter, unit	Frequency	No. of depth
Impact Stations: IS5, IS(Mf)6, IS7, IS8, IS(Mf)9, IS10, IS(Mf)11, IS(Mf)16, IS17 Control/Far Field Stations: CS(Mf)3, CS(Mf)5, CS4, CS6, CSA Sensitive Receiver Stations: SR3-SR7, SR10A&SR10B	 Depth, m Temperature, °C Salinity, ppt Dissolved Oxygen (DO), mg/L DO Saturation, % Turbidity, NTU pH Suspended Solids (SS), mg/L 	Three times per week during mid- ebb and mid- flood tides (within ± 1.75 hour of the predicted time)	3 (1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the mid- depth station may be omitted. Should the water depth be less than 3 m, only the mid-depth station will be monitored).

4.4 Monitoring Locations

- 4.4.1 In accordance with the Project Specific EM&A Manual, twenty-one stations (9 Impact Stations, 7 Sensitive Receiver Stations and 5 Control/Far Field Stations) were designated for impact water quality monitoring. The nine Impact Stations (IS) were chosen on the basis of their proximity to the reclamation and thus the greatest potential for water quality impacts, the seven Sensitive Receiver Stations (SR) were chosen as they are close to the key sensitive receives and the five Control/ Far Field Stations (CS) were chosen to facilitate comparison of the water quality of the IS stations with less influence by the Project/ ambient water quality conditions.
- 4.4.2 Due to safety concern and topographical condition of the original locations of SR4 and SR10B, alternative impact water quality monitoring stations, naming as SR4 (N) and SR10B (N), were adopted, which are situated in vicinity of the original impact water quality monitoring stations (SR4 and SR10B) and could be reachable.
- 4.4.3 Same baseline and Action Level for water quality, as derived from the baseline monitoring data recorded, were adopted for these alternative impact water quality monitoring stations.
- 4.4.4 The locations of these monitoring stations are summarized in Table 4.3 and depicted in Figure 3.

Station	Description	East	North
IS5	Impact Station (Close to HKBCF construction site)	811579	817106
IS(Mf)6	Impact Station (Close to HKBCF construction site)	812101	817873
IS7	Impact Station (Close to HKBCF construction site)	812244	818777
IS8	Impact Station (Close to HKBCF construction site)	814251	818412
IS(Mf)9	Impact Station (Close to HKBCF construction site)	813273	818850
IS10	Impact Station (Close to HKBCF construction site)	812577	820670
IS(Mf)11	Impact Station (Close to HKBCF construction site)	813562	820716
IS(Mf)16	Impact Station (Close to HKBCF construction site)	814328	819497
IS17	Impact Station (Close to HKBCF construction site)	814539	820391
SR3	Sensitive receivers (San Tau SSSI)	810525	816456
SR4(N)	Sensitive receivers (Tai Ho)	814705	817859
SR5	Sensitive receivers (Artificial Reef in NE Airport)	811489	820455
SR6	Sensitive receivers (Sha Chau and Lung Kwu Chau Marine Park)	805837	821818
SR7	Sensitive receivers (Tai Mo Do)	814293	821431
SR10A	Sensitive receivers (Ma Wan FCZ)1	823741	823495
SR10B(N)	Sensitive receivers (Ma Wan FCZ)2	823683	823187
CS(Mf)3	Control Station	809989	821117
CS(Mf)5	Control Station	817990	821129
CS4	Control Station	810025	824004
CS6	Control Station	817028	823992
CSA	Control Station	818103	823064

Table 4.3Impact Water Quality Monitoring Stations

4.5 Monitoring Methodology

4.5.1 Instrumentation

- (a) The in-situ water quality parameters, viz. dissolved oxygen, temperature, salinity, turbidity and pH, were measured by multi-parameter meters (i.e. Model YSI 6820 CE-C-M-Y) and pH meter (i.e. Thermo Orion 230A+) respectively.
- 4.5.2 Operating/Analytical Procedures
 - (a) Digital Differential Global Positioning Systems (DGPS) were used to ensure that the correct location was selected prior to sample collection.
 - (b) Portable, battery-operated echo sounders were used for the determination of water depth at each designated monitoring station.
 - (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
 - (d) At each measurement/sampling depth, two consecutive in-situ monitoring (DO concentration and saturation, temperature, turbidity, pH, salinity) and water sample for SS. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of DO or turbidity parameters was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
 - (e) Duplicate samples from each independent sampling event were collected for SS measurement. Water samples were collected using the water samplers and the samples were stored in highdensity polythene bottles. Water samples collected were well-mixed in the water sampler prior to pre-rinsing and transferring to sample bottles. Sample bottles were pre-rinsed with the same water samples. The sample bottles were then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. for the analysis of suspended solids concentrations. The laboratory determination work would be started within 24 hours after collection of the water samples. ALS Technichem (HK) Pty Ltd. is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples was analyzed.
 - (f) The analysis method and reporting and detection limit for SS is shown in Table 4.4.

Parameters	Instrumentation	Analytical Method	Reporting Limit	Detection Limit
Suspended Solid (SS)	Weighting	APHA 2540-D	0.5mg/L	0.5mg/L

Table 4.4Laboratory Analysis for Suspended Solids

(g) Other relevant data were recorded, including monitoring location / position, time, water depth, tidal stages, weather conditions and any special phenomena or work underway at the construction site in the field log sheet for information.

- 4.5.3 Maintenance and Calibration
 - (a) All in situ monitoring instruments would be calibrated and calibrated by ALS Technichem (HK) Pty Ltd. before use and at 3-monthly intervals throughout all stages of the water quality monitoring programme. Calibration details are provided in Appendix E.
 - (b) The dissolved oxygen probe of YSI 6820 was calibrated by wet bulb method. Before the calibration routine, the sensor for dissolved oxygen was thermally equilibrated in water-saturated air. Calibration cup is served as a calibration chamber and it was loosened from airtight condition before it is used for the calibration. Calibration at ALS Technichem (HK) Pty Ltd. was carried out once every three months in a water sample with a known concentration of dissolved oxygen. The sensor was immersed in the water and after thermal equilibration, the known mg/L value was keyed in and the calibration was carried out automatically.
 - (c) The turbidity probe of YSI 6820 is calibrated two times a month. A zero check in distilled water was performed with the turbidity probe of YSI 6820 once per monitoring day. The probe will be calibrated with a solution of known NTU at ALS Technichem (HK) Pty Ltd. once every three months.

4.6 Monitoring Schedule for the Reporting Month

4.6.1 The schedule for impact water quality monitoring in May 2015 is provided in Appendix F.

4.7 Results and Observations

4.7.1 Impact water quality monitoring results and graphical presentations are provided in Appendix J.

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for May 2015

Table 4.5 Summary of Water Quality Exceedances

Station	Exceedance Level	DO (S&M) DO (Bo		ottom)	Tur	bidity		SS	Т	otal	
	Level	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood
IS5	Action	0	0	0	0	0	0	0	0	0	0
155	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)6	Action	0	0	0	0	0	0	0	0	0	0
13(111)0	Limit	0	0	0	0	0	0	0	0	0	0
IS7	Action	0	0	0	0	0	0	0	0	0	0
137	Limit	0	0	0	0	0	0	0	0	0	0
IS8	Action	0	0	0	0	0	0	0	0	0	0
130	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)9	Action	0	0	0	0	0	0	0	0	0	0
13(111)9	Limit	0	0	0	0	0	0	0	0	0	0
IS10	Action	0	0	0	0	0	0	0	0	0	0
1310	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)11	Action	0	0	0	0	0	0	0	0	0	0
13(101)11	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)16	Action	0	0	0	0	0	0	0	0	0	0
13(101)10	Limit	0	0	0	0	0	0	0	0	0	0
IS17	Action	0	0	0	0	0	0	0	0	0	0
1517	Limit	0	0	0	0	0	0	0	0	0	0
SR3	Action	0	0	0	0	0	0	0	0	0	0
513	Limit	0	0	0	0	0	0	0	0	0	0
SR4(N)	Action	0	0	0	0	0	0	0	0	0	0
SI(4(IN)	Limit	0	0	0	0	0	0	0	0	0	0
SR5	Action	0	0	0	0	0	0	0	0	0	0
363	Limit	0	0	0	0	0	0	0	0	0	0
SR6	Action	0	0	0	0	0	0	0	0	0	0
5110	Limit	0	0	0	0	0	0	0	0	0	0
SR7	Action	0	0	0	0	0	0	0	0	0	0
0117	Limit	0	0	0	0	0	0	0	0	0	0
SR10A	Action	0	0	0	0	0	0	0	0	0	0
	Limit	0	0	0	0	0	0	0	0	0	0
SR10B	Action	0	0	0	0	0	0	0	0	0	0
(N)	Limit	0	0	0	0	0	0	0	0	0	0
Total	Action	0	0	0	0	0	0	0	0		0
	Limit	0	0	0	0	0	0	0	0		0
		Surface; a	nd								

: S: Surface; and M: Mid-depth.

4.7.2 The event action plan is annexed in Appendix L.

5 DOLPHIN MONITORING

5.1 Monitoring Requirements

- 5.1.1 Vessel based surveys for the Chinese White Dolphin (CWD), *Sousa chinensis,* are to be conducted by a dedicated team comprising a qualified marine mammal ecologist and experienced marine mammal observers (MMOs). The purpose of the surveys are to evaluate the impact of the HKCBF reclamation and, if deemed detrimental, to take appropriate action as per the EM&A manual.
- 5.1.2 This 'Impact Monitoring' follows several months of 'Baseline Monitoring' so similar survey methodologies have been adopted to facilitate comparisons between datasets. Further, the data collected are compatible with, and are available for, incorporation into the data set managed by the Agriculture, Fisheries and Conservation Department (AFCD) as part of Hong Kong's long term Marine Mammal Monitoring Programme.

5.2 Monitoring Equipment

Table 5.1 summarises the equipment used for the impact dolphin monitoring.

Table 5.1 Dolphin Monitoring Equipment

Equipment	Model
Commercially licensed motor vessel	15m in length with a 4.5m viewing platform
Global Positioning System (GPS) x2	Integrated into T7000
	Garmin GPS Map 76C
Computers (T7000 Tablet, Intel Atom)	Windows 7/MSO 13
	Logger
Camera	Nikon D7100 300m 2.8D fixed focus
	Nikon D90 80-400mm zoom lens
Laser Rangefinder	Range Finder Bushnell 1000m
Marine Binocular x3	Nexus 7 x 50 marine binocular with compass
	and reticules
	Fujinon 7 x 50 marine binocular with compass
	and reticules

5.3 Monitoring Frequency and Conditions

- 5.3.1 Dolphin monitoring is conducted twice per month in each survey area.
- 5.3.2 Dolphin monitoring is conducted only when visibility is good (e.g., over 1km) and the sea condition is at a Beaufort Sea State of 4 or better.
- 5.3.3 When thunder storm, black rain or typhoon warnings are in force, all survey effort is stopped.

5.4 Monitoring Methodology and Location

- 5.4.1 The impact dolphin monitoring is vessel-based and combines line-transect and photo-ID methodology. The survey follows pre-set and fixed transect lines in the two areas defined by AFCD as:
- 5.4.2 Northeast Lantau survey area; and
- 5.4.3 Northwest Lantau survey area.
- 5.4.4 The co-ordinates for the transect lines and layout map have been provided by AFCD and are shown in Table 5.2 and Figure 4.

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for May 2015

	HK Grid	System	Long Lat in WGS84		
ID	X	Y	Long	Lat	
1	804671	814577	113.870308	22.269741	
1	804671	831404	113.869975	22.421696	
2	805475	815457	113.878087	22.277704	
2	805477	826654	113.877896	22.378814	
3	806464	819435	113.887615	22.313643	
3	806464	822911	113.887550	22.345030	
4	807518	819771	113.897833	22.316697	
4	807518	829230	113.897663	22.402113	
5	808504	820220	113.907397	22.320761	
5	808504	828602	113.907252	22.396462	
6	809490	820466	113.916965	22.323003	
6	809490	825352	113.916884	22.367128	
7	810499	820690	113.926752	22.325043	
7	810499	824613	113.926688	22.360464	
8	811508	820847	113.936539	22.326475	
8	811508	824254	113.936486	22.357241	
9	812516	820892	113.946329	22.326894	
9	812516	824254	113.946279	22.357255	
10*	813525	820827	113.956112	22.326321	
10*	813525	824657	113.956066	22.360908	
11	814556	818449	113.966160	22.304858	
11	814556	820992	113.966125	22.327820	
12	815542	818807	113.975726	22.308109	
12	815542	824882	113.975647	22.362962	
13	816506	819480	113.985072	22.314192	
13	816506	824859	113.985005	22.362771	
14	817537	820220	113.995070	22.320883	
14	817537	824613	113.995018	22.360556	
15	818568	820735	114.005071	22.325550	
15	818568	824433	114.005030	22.358947	
16	819532	821420	114.014420	22.331747	
16	819532	824209	114.014390	22.356933	
17	820451	822125	114.023333	22.338117	
17	820451	823671	114.023317	22.352084	
18	821504	822371	114.033556	22.340353	
18	821504	823761	114.033544	22.352903	
10	822513	823268	114.043340	22.348458	
19	822513	824321	114.043331	22.346456	
20	823477	823402	114.043331	22.349680	
20 20	823477	824613	114.052695	22.349680	
20 21	805476		113.877878	22.360610	
21	805476	827081 830562	113.877878	22.382668	
21		830562	113.887520	22.355164	
	806464				
22	806464	829598	113.887416	22.405423	
23 23	814559 814559	821739 824768	113.966142 113.966101	22.334574 22.361920	

*Remark: Due to the presence of deployed silt curtain systems at the site boundaries of the Project, some of the transect lines shown in Figure 5 could not be fully surveyed during the regular survey. Transect 10 is reduced from 6.4km to approximately 3.6km in length due to the HKBCF construction site. Therefore the total transect length for both NEL and NWL combined is reduced to approximately 111km.

5.5 Monitoring Procedures

- 5.5.1 The study area incorporates 23 transects which are to be surveyed twice per month. Each survey day lasts approximately 9 hours.
- 5.5.2 The survey vessel departs from Tung Chung Development Pier, Tsing Yi Public Pier or the nearest safe and convenient pier.
- 5.5.3 When the vessel reaches the start of a transect line, "on effort" survey begins. Areas between transect lines and traveling to and from the study area are defined as "off effort".
- 5.5.4 The transect line is surveyed at a speed of 6-8 knots (11-14 km/hr). For the sake of safety, the speed was sometimes a bit slower to avoid collision with other vessels. During some periods, tide and current flow in the survey areas exceeds 7 knots which can affect survey speed. There are a minimum of four marine mammal observers (MMOs) present on each survey, rotating through four positions, observers (2), data recorder (1) and 'rest' (1). Rotations occur every 30 minutes or at the end of dolphin encounters. The data recorder records effort, weather and sightings data directly onto the programme Logger and is not part of the observer team. The observers search with naked eye and binoculars between 90° and 270° abeam (bow being 0°).
- 5.5.5 When a group of dolphins is sighted, position, bearing and distance data are recorded immediately onto the computer and, after a short observation, an estimate made of group size. These parameters are linked to the time-GPS-ships data which are automatically stored in the programme Logger throughout the survey period. In this manner, information on heading, position, speed, weather, effort and sightings are stored in a format suitable for use with DISTANCE software for subsequent line transect analyses.
- 5.5.6 Once the vessel leaves the transect line, it is deemed to be "off effort". The dolphins are approached with the purpose of taking high resolution pictures for proper photo-identification of individual CWD. Attempts to photograph all dolphins in the group are made. Both the left and right hand sides of the dorsal fin area of each dolphin in the group are photographed, if possible. On finishing photographing, the vessel will return to the transect line at the point of departure and "on effort" survey is resumed.
- 5.5.7 Sightings which are made while on the transect line are referred to as "on effort sightings", while not on the actual transect line are referred to as an "opportunistic sightings" (e.g. another group of dolphins is sighted while travelling back to the transect line). Only "on effort sightings" can be used in analyses which require effort or rate quantification, e.g., encounter rate per 100km searched. This is also how "on effort sightings" are treated in the baseline report. "Opportunistic sightings" provide additional information on individual habitat use and population distribution and they are noted accordingly.
- 5.5.8 As time and GPS data are automatically logged throughout the survey and are linked to sightings data input, start and end times of encounters and deviation from the transect lines are recorded and can be subsequently reviewed.

5.6 Monitoring Schedule for the Reporting Month

- 5.6.1 The schedule for dolphin monitoring in May 2015 is provided in Appendix F.
- 5.6.2 Two surveys covering both study areas were completed.

5.7 Results and Observations

5.7.1 Dolphin surveys were conducted on 11, 12, 18 and 20 May 2015. A total of 218.4 km of transect line was conducted all of which during Beaufort Sea State 3 or better (favourable water conditions). Please note that that some lines were shortened due to works and/or shipping traffic.

The effort summary and sightings data are shown in Tables 5.3 and 5.4, respectively. The survey efforts conducted in May 2015 are plotted in Figure 5a-b. For Table 5.3, only on-effort information is included. Transects conducted in all Beaufort Sea State are included. Compared to previous monthly reports, the whole number Beaufort Sea State scale is used so as to ease comparison with other dolphin monitoring reports.

Table 5.3	Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State

Survey	Date	Area	Beaufort	Effort (km)	Total Distance Travelled (km)		
	05/11/2015	NWL	1	8			
	05/11/2015	NWL	2	52.3	62.9		
1	05/11/2015	NWL	3	2.6			
	05/12/2015	NWL	1	9.8	46.1		
	05/12/2015	NEL	1	36.3	40.1		
	05/18/2015	NWL	1	17.2			
	05/18/2015	NWL	2	34.4	67		
2	05/18/2015	NWL	3	15.4			
2	05/20/2015	NWL	1	6			
	05/20/2015	NEL	1	26	42.4		
	05/20/2015	NEL	2	10.4			
	TOTAL in MAY 2015						

*Remark: Surveys conduct under Beaufort Sea State 3 or below are considered as under favourable condition.

Table 5.4	Impact Dolphin Monitoring Survey Details May 2015

Date	Location	No. Sightings "on effort"	No. Sightings "opportunistic"
	NW L	1	0
05/11/2015	NEL	0	0
	NW L	0	0
05/12/2015	NEL	0	0
	NW L	1	1
05/18/2015	NEL	0	0
	NW L	0	0
05/20/2015	NEL	0	0
	TOTAL in MAY 2015	2	1

Table 5.5 The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^

Encounter Rate of Number of Dolphin Sightings (STG) [*]						
Date	NEL Track (km)	NWL Track (km)	NEL Sightings	NWL Sightings	NEL Encounter Rate	NWL Encounter Rate
11 & 12 May 2015	36.3	72.7	0	1	0.0	1.4
18 & 20 May 2015	36.4	73.0	0	1	0.0	1.4
Encounter Rate of Total Number of Dolphins (ANI)**						
Date	NEL Track (km)	NWL Track (km)	NEL Dolphins	NWL Dolphins	NEL Encounter Rate	NWL Encounter Rate
11 & 12 May 2015	36.3	72.7	0	5	0.0	6.9
18 & 20 May 2015	36.4	73.0	0	1	0.0	1.4

* Encounter Rate of Number of Dolphin Sightings (STG) presents encounter rates in terms of groups per 100km.

** Encounter Rate of Total Number of Dolphins (ANI) presents encounter rates in terms of individuals per 100km. And the encounter rate is not corrected for individuals, calculation may represent double counting.

[^]The table is made only for reference to the quarterly STG & ANI, which were adopted for the Event & Action Plan.

- 5.7.2 Limit level exceedances for dolphin monitoring (NEL and NWL) for the quarterly monitoring period (March 2015 May 2015) has been recorded. Investigation report will be provided in the quarterly report (March 2015 May 2015).
- 5.7.3 A total of three sightings were made, two "on effort" sightings and one "opportunistic" sighting. One sighting was recorded on 11 May 2015 and two sightings were recorded on 18 May 2015 in NWL. A total of 9 individuals were sighted from the two impact dolphin surveys in the reporting period. The group sighted on the 11 May 2015 contained five individuals; the first sighting on the 18 May 2015 contained three individuals and the second group on the same day, one individual. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- 5.7.4 Behaviour: Of the three sightings, on the 11 May 2015, the group was milling ("other"), the first sighting on the 18 May 2015 was feeding and the second sighting on the same day was feeding and travelling ("multiple"). Locations of sighting with different behaviour are mapped in Figure 5d.
- 5.7.5 Five re-sightings were noted in April 2015. On 20 April 2015, HZMB 022, HZMB 023, HZMB 054 and HZMB 092 were re-sighted. On 28 April 2015, HZMB 047 was re-sighted. All sightings were in NWL. HZMB 022 and HZMB 023 (a juvenile and its mother) have been sighted throughout the impact monitoring period, HZMB 022 now 11 times and HZMB 023, 9 times. This is only the second time HZMB 047 has been sighted during impact monitoring, having been first identified in September 2012. HZMB 054 (AFCD CH54) has been sighted during baseline monitoring as well as during impact monitoring, now 11 times during impact monitoring and in both NEL and NWL. HZMB 092 has been sighted 3 times during impact monitoring, all times in NWL, and previous to April 2015 encounter, twice in February 2013. Images and resightings data are included in Annex I of Appendix K.
- 5.7.6 Noteworthy Observation¹:
- 5.7.6.1 When impact monitoring was conducted at the southern parts of transect lines 1 & 2, the view of the area was partially blocked by the working vessels and fixed structures which do not belong to HKBCF Reclamation Works. The number of fixed structures has increased and in many areas, it is no longer possible to pass between them by ship. As the working vessels will move during the on-going works, it is considered that they will temporarily affect survey protocol, survey data collection, dolphin movement,

¹ A noteworthy observation is to show that either the conduct of the surveys themselves is affected, i.e., the noted vessel or works impedes the progress or view of the survey platform. In addition, the vessel or construction works may be different or additional to that observed previously and further, are of such a nature that they are a likely to create an impact on the movement or behaviour of the subject of the impact survey, in this case, the dolphins.

dolphin habitat use and dolphin behaviour, whereas the fixed structures will continuously affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour.

- 5.7.6.2 The HKBCF and adjoining "Southern Landfall" Projects effected lines 11 and 12. The view of the area was partially blocked by the working vessels and in water structures. As the working vessels will move as construction progresses, they will cause temporary effects to survey protocol and survey data collection. In time, the fixed structures will affect all survey protocols and dolphin ecology in the long term.
- 5.7.6.3 The northern end of lines 10 was affected by works which do not belong to the HKBCF Project; in particular, the view of the area was partially blocked by the now fixed structure. An anchorage also is located in this area. Due to its permanency, the reclamation will continuously affect all survey protocols and dolphin ecology.
- 5.7.6.4 New projects were ongoing at the southern ends of line 5. At line 5, an anchored vessel with an extended perimeter designated by yellow buoys overlapped the transect line. There are no apparent fixed structures associated with this project, only platforms and servicing vessels. As it is not known what activity was being conducted, the effect that this project may have specifically on dolphins is not known.
- 5.7.6.5 The survey effort log notes the areas in which the visibility is limited or the survey is affected so that these can be accounted for in any subsequent analyses. Some of these obstructions will become permanent and some will be temporary as the HZMB is built and other projects progress. It is advised that the impact monitoring surveys should be completed as close to the predefined lines as possible (as per Figure 4 of this report).
- 5.7.6.6 The above noteworthy observations are largely a result of multiple and on-going infrastructure projects within the Lantau area. No amendment to EM&A protocols can negate the effects of these projects, e.g., it is a highly dynamic environment and viewing conditions may alter every survey (sometimes within surveys) and most of the survey area is affected, to some degree, by marine construction works. Instead, survey data analyses should incorporate any noteworthy observations which may affect either data collection or dolphin distribution and behavioural changes. The above mentioned activities recorded during boat survey will not affect implementation of the EM&A Programme provided appropriate data analyses are conducted.
- 5.7.6.7 The works at lines 1 and 2 are progressing and permanent in water structures are in place. A review of survey conditions was conducted on 27 April 2015 and discussion with other project teams and ENPO has reached an agreement on the new positions of transect lines 1, 2, 7, 8, 9 and 11. The proposal for change of these transects lines will be finalized for submission to the EPD in the coming reporting period.
- 5.7.7 The event action plan is annexed in Appendix L.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

6.1 Site Inspection

- 6.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 4 site inspections were carried out on 7, 14, 21 and 28 May 2015.
- 6.1.2 Particular observations during the site inspections are described below:

Air Quality

- 6.1.3 Road was observed moistened. The Contractor was reminded to continue to provide control measures to prevent generation of fugitive dust. (Reminder)
- 6.1.4 Fugitive dust was observed at Portion E1. The Contractor was reminded to provide effective dust control measures such as sufficient watering on road. Photo record shows that watering was provided on site to prevent generation of fugitive dust. The Contractor was reminded to provide sufficient measures to prevent generation of fugitive dust. (Reminder)
- 6.1.5 Dark smoke was observed from an excavator at Portion C2c. The Contractor was reminded to maintain to equipment in good condition. Photo record shows that dark smoke was no longer observed from the excavator and barge near Portion C2c. The Contractor was reminded to check the dark smoke of machineries and ensure proper implementation of air quality mitigation measures. (Reminder)

Noise

6.1.6 No adverse observation was identified in the reporting month.

Water Quality

- 6.1.7 Soil was observed at area near water outlet. The Contractor was reminded to provide measures such as sand bags to prevent silty water at water outlet. (Reminder)
- 6.1.8 Silt plume was observed at the northern part of the Portion C2b inside area enclosed by perimeter silt curtain. The Contractor was reminded to properly implement water quality mitigation measures. The Contractor provided measures such as rock bund the edge of Portion C2b. The contractor was reminded to ensure silt plume is prevented (Reminder)
- 6.1.9 Oil was observed in water adjacent to Portion C2c. The Contractor was reminded to clear the oil and take actions in accordance with the Spill Response Plan. The oil was cleared by the Contractor using oil spill kit and the used spill kit was disposed of by the Contractor as chemical waste. (Closed)
- 6.1.10 Turbid water was observed to flow from land area to seawall. The Contractor was advised to provide measures to prevent turbid water from going to the sea area. The Contractor provided measure to prevent the turbid water from going into the sea area from the land area. (Closed)

Chemical and Waste Management

- 6.1.11 General refuse was observed near pier at southern part and south eastern part of the site. The Contractor was reminded to regularly clear the general refuse and dispose of properly to keep the site clean and tidy. The Contractor collected and cleared the general refuse at southern part of the site. (Closed)
- 6.1.12 Oil drums were observed without drip tray on barge 利航 8, the Contractor was reminded to provide mitigation measures such as drip tray to all oil drums. (Pending for Contractor's rectification)
- 6.1.13 Oil and water mixture was observed on barge 振明 18; the Contractor was reminded to clear the oil and water mixture and disposed of properly and regularly. As informed by the Contractor, the barge had left

Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for May 2015

construction site of HKBCF reclamation works. The Contractor was reminded to clear the oil and water mixture and disposed of properly and regularly. (Reminder)

Landscape and Visual Impact

6.1.14 No relevant adverse impact was observed in the reporting month.

Others

6.1.15 Rectifications of remaining identified items are undergoing by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly.

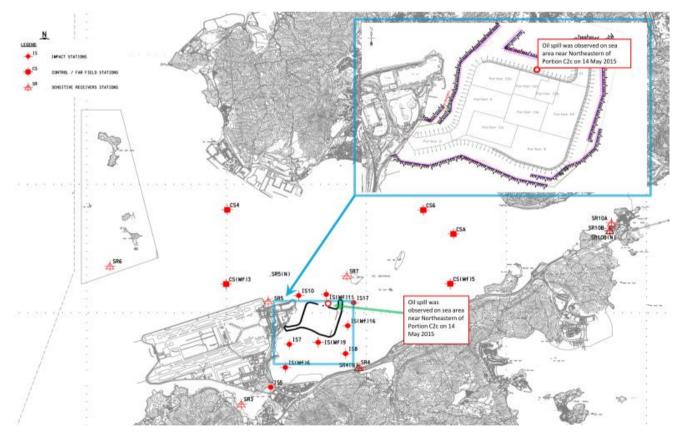
- 6.2.1 The Contractor had registered as a chemical waste producer for this Project. Receptacles were available for general refuse collection and sorting.
- 6.2.2 As advised by the Contractor, 778,984.2m³ of fill were imported for the Project use in the reporting period. 196kg of paper/cardboard packaging and 26m³ of general refuse were generated and disposed of in the reporting period. Monthly summary of waste flow table is detailed in Appendix M.
- 6.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes storage, collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 6.2.4 The Contractor is reminded that chemical waste should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labeling and Storage of Chemical Wastes.

6.3 Environmental Licenses and Permits

6.3.1 The environmental licenses and permits for the Project and valid in the reporting month is summarized in Table 6.1.

Table 6.1 Summary of Environmental Licensing and Permit Status

Statutory Reference	License/ Permit	License or Permit No.	Valid	Period	License/ Permit	Remarks	
			From	То	Holder		
EIAO	Environmental Permit	EP- 353/2009/H	19/01/2015	N/A	HyD	Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities	
		EP- 354/2009/D	13/03/2015	N/A		Tuen Mun – Chek Lap Kok Link (TMCLKL Southern Landfall Reclamation only)	
APCO	NA notification		30/12/2011		CHEC	Works Area WA2 and WA3	
APCO	NA notification		17/01/2012		CHEC	Works Area WA4	
WDO	Chemical Waste Producer Registration	5213-951- C1186-21	30/3/2012	N/A	CHEC	Chemical waste produced in Contract HY/2010/02	
WDO	Chemical Waste Producer Registration	5213-974- C3750-01	31/10/2012		CHEC	Registration as Chemical Waste Producer at To Kau Wan(WA4)	
WDO	Chemical Waste Producer Registration	5213-839- C3750-02	13/09/2012		CHEC	Registration as Chemical Waste Producer at TKO 137(FB)	
WDO	Billing Account for Disposal of Construction Waste	7014181	05/12/2011	N/A	CHEC	Waste disposal in Contract HY/2010/02	
NCO	Construction Noise Permit	GW-RS0270- 15	18/03/2015	20/06/2015	CHEC	Reclamation Works in Contract HY/2010/02	
NCO	Construction Noise Permit	GW-RS0503- 15	10/05/2015	10/08/2015	CHEC	Reclamation Works in Contract HY/2010/02	
NCO	Construction Noise Permit	GW-RE1405- 14	22/12/2014	21/06/2015	CHEC	Section of TKO Fill Bank under Contract HY/2010/02	


6.4 Implementation Status of Environmental Mitigation Measures

- 6.4.1 In response to the site audit findings, the Contractors carried out corrective actions.
- 6.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix C. Most of the necessary mitigation measures were implemented properly.
- 6.4.3 Training of marine travel route for marine vessels operator was given to relevant staff and relevant records were kept properly.
- 6.4.4 Regarding the implementation of dolphin monitoring and protection measures (i.e. implementation of Dolphin Watching Plan, Dolphin Exclusion Zone and Silt Curtain integrity Check), regular checking

were conducted by the experienced MMOs within the works area to ensure no dolphin was trapped by the enclosed silt curtain systems. Any dolphin spotted within the enclosed silt curtain systems was reported and recorded. Relevant procedures were followed and measures were well implemented. Silt curtain systems were also inspected timely in accordance to the submitted plan. All inspection records were kept properly.

- 6.4.5 Acoustic decoupling measures on noisy plants on construction vessels were checked regularly and the Contractor was reminded to ensure provision of ongoing maintenance to noisy plants and to carry out improvement work once insufficient acoustic decoupling measures were found.
- 6.4.6 Frequency of watering per day on exposed soil was checked; with reference to the record provided by the Contract, watering was conducted at least 8 times per day on reclaimed land. The frequency of watering is the mainly refer to water truck. Sprinklers are only served to strengthen dust control measure for busy traffic at the entrance of Portion D. As informed by the Contractor, during the malfunction period of sprinkler, water truck will enhance watering at such area. The Contractor was reminded to ensure provision of watering of at least 8 times per day on all exposed soil within the Project site and associated works areas throughout the construction phase.
- 6.4.7 Oil spillage was observed on 14 May 2015 on sea area near Northeastern of Portion C2c (also refer to layout map below). There oil spillage incident including size, location, time of the spillage and Contractor's actions taken in response to the spill incident have been reviewed and summarised as follow.

- 6.4.7.1 Investigation actions includes review of Contractor's actions taken in response to the spill incident and review of impact water quality monitoring records of 15 May 2015. Contractor's actions taken in response to the spill incident:
 - The oil on sea was observed during inspection jointly conducted by Contractor, ET, ESS and the RSS on 14 March 2015.
 - The Contractor organised manpower to identify the spill source, but the source of oil spill was not identified.
 - The Contractor equipped people involved in the cleanup works with personal protective equipment such as gloves prior to the removal of any leaked chemical or chemical waste.

6.4.7.2 Investigation observations and results:

- Oil was observed on sea next to Northeastern of Portion C2c within silt curtain at 10:45 a.m. on 14 May 2015 during joint inspection conducted by Contractor, ET, ESS and the RSS. The following actions was taken by the Contractor:
- The Contractor organised manpower to identify the spill source, the vessel (Evershin no.8) located close to the oil spill was inspected but the source of oil spill was not identified.
- The oil spill was identified during join site inspection conducted by the Contractor, ET, ESS and RSS on 14 May 2015 as discrete, non-continuous source with approximately 10m² spread. Also refer to photo below:

• The Contractor deployed absorption booms to remove the floating oil from water and the used absorption booms were collected using disposal bags as part of the spill kits item. The used absorption booms were disposed of as chemical waste by the Contractor. (Also refer to photo record below).

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for May 2015

- The oil stain observed was limited at nearby Northeastern sea area within the silt curtain.
- Photo record shows that oil on sea was no longer observed at sea area near Northeastern of Portion C2c. (Also refer to photo record below)

 Monitoring stations IS10, IS(Mf)11 and IS17 are the monitoring stations close to location of observed oil spill (also refer to above layout map). Impact water quality monitoring data record of IS10, IS(Mf)11 and IS17 have been reviewed. There is no water quality exceedance recorded at IS10, IS(Mf)11 and IS17 on 15 May 2015.

Hong Kong Boundary Crossing Facilities – Reclamation WorksMonthly EM&A Report for May 20156.4.7.3 The contractor was reminded to continue to follow the spill response plan when oil is observed on sea.

6.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 6.5.1 All 1-Hour TSP and 24-Hour TSP results were below the Action and Limit Level in the reporting month.
- 6.5.2 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.3 For water quality, no exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.4 Limit level exceedances for dolphin monitoring (NEL and NWL) for the quarterly monitoring period (March 2015 May 2015) has been recorded. Investigation report will be provided in the quarterly report (March 2015 May 2015).
- 6.5.5 A total of three sightings were made, two "on effort" sightings and one "opportunistic" sighting. One sighting was recorded on 11 May 2015 and two sightings were recorded on 18 May 2015 in NWL. A total of 9 individuals were sighted from the two impact dolphin surveys in the reporting period. The group sighted on the 11 May 2015 contained five individuals; the first sighting on the 18 May 2015 contained three individuals and the second group on the same day, one individual. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- 6.5.6 Behaviour: Of the three sightings, on the 11 May 2015, the group was milling ("other"), the first sighting on the 18 May 2015 was feeding and the second sighting on the same day was feeding and travelling ("multiple"). Locations of sighting with different behaviour are mapped in Figure 5d.
- 6.5.7 Environmental site inspection was carried out 4 times in May 2015. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.
- 6.5.8 Cumulative statistics on exceedance is provided in Appendix N.

6.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 6.6.1 The Environmental Complaint Handling Procedure is annexed in Figure 6.
- 6.6.2 One (1) environmental complaint has been received in the reporting month.
- 6.6.3 A complainant contacted EPD through EPD's hotline on 21 May 2015 and complained that noise was generated from construction works when construction of artificial island at Lantau Island area was carried out overnight and dark smoke was emitted by construction plant. EPD's staff has contacted complainant and came to know that the dark smoke referring to could also be construction dust emitting from the filling work at the HKBCF. This complaint was subsequently referred by EPD to HZMB project team on 22 May 2015 to follow-up.
- 6.6.3.1 Investigation actions for the part of the complaint which is related to noise:
- CNP compliance checking record of 21 and 22 May 2015 provided by the Contractor has been reviewed; please see the following for details of investigation results.

6.6.3.2 Investigation findings for the part of the complaint which is related to noise:

- Compliance checking record of 21 and 22 May provided by the Contractor was reviewed and it shows that construction works were carried out in compliance with the CNP in force.
- As such, with referred to the available information, it is unable to determine whether the night time noise complaint is related to this Contract.

6.6.3.3 Investigation actions for the part of the complaint which is related to air quality

- The watering record of 15 21 May 2015 provided by the Contractor was reviewed.
- Available impact air quality monitoring data recorded in May 2015 at AMS2, AMS3B, and AMS7A were reviewed.

Monthly EM&A Report for May 2015

A weekly site inspection was jointly conducted by ET, RSS and the Contractor on 21 May 2015 and the
observations made during this weekly site inspection were reviewed. Please see the following for details
of investigation results.

6.6.3.4 Investigation findings for the part of the complaint which is related to air quality:

- With referred to the watering record provided by the Contractor, it shows that watering 8 times per day was provided by the Contractor on site on 15, 17, and 18 and 21 May 2015 except 16, 19 and 20 May 2015 which were rainy most of the time.
- No impact air quality monitoring exceedance was recorded in May 2015
- A weekly site inspection was jointly conducted by ET, RSS and the Contractor on 21 May 2015, no dark smoke or construction dust emitting from the filling work was observed during the site inspection.
- With referred to the available information, it is unable to determine whether the air quality complaint is related to this Contract.
- 6.6.3.5 Recommended mitigation measures for the part of the complaint which is related to noise:
- The Contractor was reminded to continue to properly implement all noise mitigation measures.
- 6.6.3.6 Recommended mitigation measures for the part of the complaint which is related to air quality:
- The Contractor was reminded to continue to properly implement existing mitigation measure for construction dust and prevention of dark smoke.
- 6.6.4 No notification of summons and successful prosecutions was received in the reporting period.
- 6.6.5 Statistics on complaints, notifications of summons and successful prosecutions are summarized in Appendix N.

7 FUTURE KEY ISSUES

7.2 Construction Programme for the Coming Months

7.2.1 As informed by the Contractor, the major works for the Project in June and July 2015 will be *:-

Marine-base

- Cellular structure installation and backfilling
- Capping Beams structures
- Conforming sloping seawalls
- Laying geo-textile
- Surcharge remove & laying
- Rock fill
- Marine fill
- Earthwork fill
- Deep Cement Mixing
- Jet grout columns works
- Removal of Temporary Seawall
- Installations of Precast Culverts except sloping outfalls
- Maintenance of silt curtain & silt screen at sea water intake of HKIA

Land-base

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

*Construction activities in June and July 2015 will be changed subject to works progress.

7.3 Key Issues for the Coming Month

- 7.3.1 Key issues to be considered in the coming months:-
 - Site runoff should be properly collected and treated prior to discharge;
 - Minimize loss of sediment from filling works;
 - Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
 - Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface runoff during rainstorm;
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
 - Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission;
 - Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
 - Quieter powered mechanical equipment should be used;
 - Provision of proper and effective noise control measures for operating equipment and machinery onsite, such as erection of movable noise barriers or enclosure for noisy plants;
 - Closely check and replace the sound insulation materials regularly;
 - Better scheduling of construction works to minimize noise nuisance;
 - Properly store and label oil drums and chemical containers placed on site;
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved and confined areas;
 - Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.
 - Control night-time lighting and glare by hooding all lights.
 - Regular review and provide maintenance to dust control measures such as sprinkler system.

7.4 Monitoring Schedule for the Coming Month

7.4.1 The tentative schedule for environmental monitoring in June 2015 is provided in Appendix F.

8 CONCLUSIONS AND RECOMMENDATIONS

8.2 Conclusions

- 8.2.1 The construction phase and EM&A programme of the Project commenced on 12 March 2012.
- 8.2.2 All 1-Hour TSP and 24-Hour TSP results were below the Action and Limit Level in the reporting month.
- 8.2.3 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.2.4 All impact water quality monitoring results were below the Action and Limit Level in the reporting month.
- 8.2.5 Limit level exceedances for dolphin monitoring (NEL and NWL) for the quarterly monitoring period (March 2015 May 2015) has been recorded. Investigation report will be provided in the quarterly report (March 2015 May 2015).
- 8.2.6 A total of three sightings were made, two "on effort" sightings and one "opportunistic" sighting. One sighting was recorded on 11 May 2015 and two sightings were recorded on 18 May 2015 in NWL. A total of 9 individuals were sighted from the two impact dolphin surveys in the reporting period. The group sighted on the 11 May 2015 contained five individuals; the first sighting on the 18 May 2015 contained three individuals and the second group on the same day, one individual. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- 8.2.7 Behaviour: Of the three sightings, on the 11 May 2015, the group was milling ("other"), the first sighting on the 18 May 2015 was feeding and the second sighting on the same day was feeding and travelling ("multiple"). Locations of sighting with different behaviour are mapped in Figure 5d.
- 8.2.8 A complainant contacted EPD through EPD's hotline on 21 May 2015 and complained that noise was generated from construction works when construction of artificial island at Lantau Island area was carried out overnight and dark smoke was emitted by construction plant. EPD's staff has contacted complainant and came to know that the dark smoke referring to could also be construction dust emitting from the filling work at the HKBCF. This complaint was subsequently referred by EPD to HZMB project team on 22 May 2015 to follow-up. With referred to the available information, it is unable to determine whether the night time noise and dark smoke complaint is related to this Contract.
- 8.2.9 No notification of summons or prosecution was received in the reporting period.
- 8.2.10 Environmental site inspection was carried out 4 times in May 2015. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.

8.3 Recommendations

8.3.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

Air Quality Impact

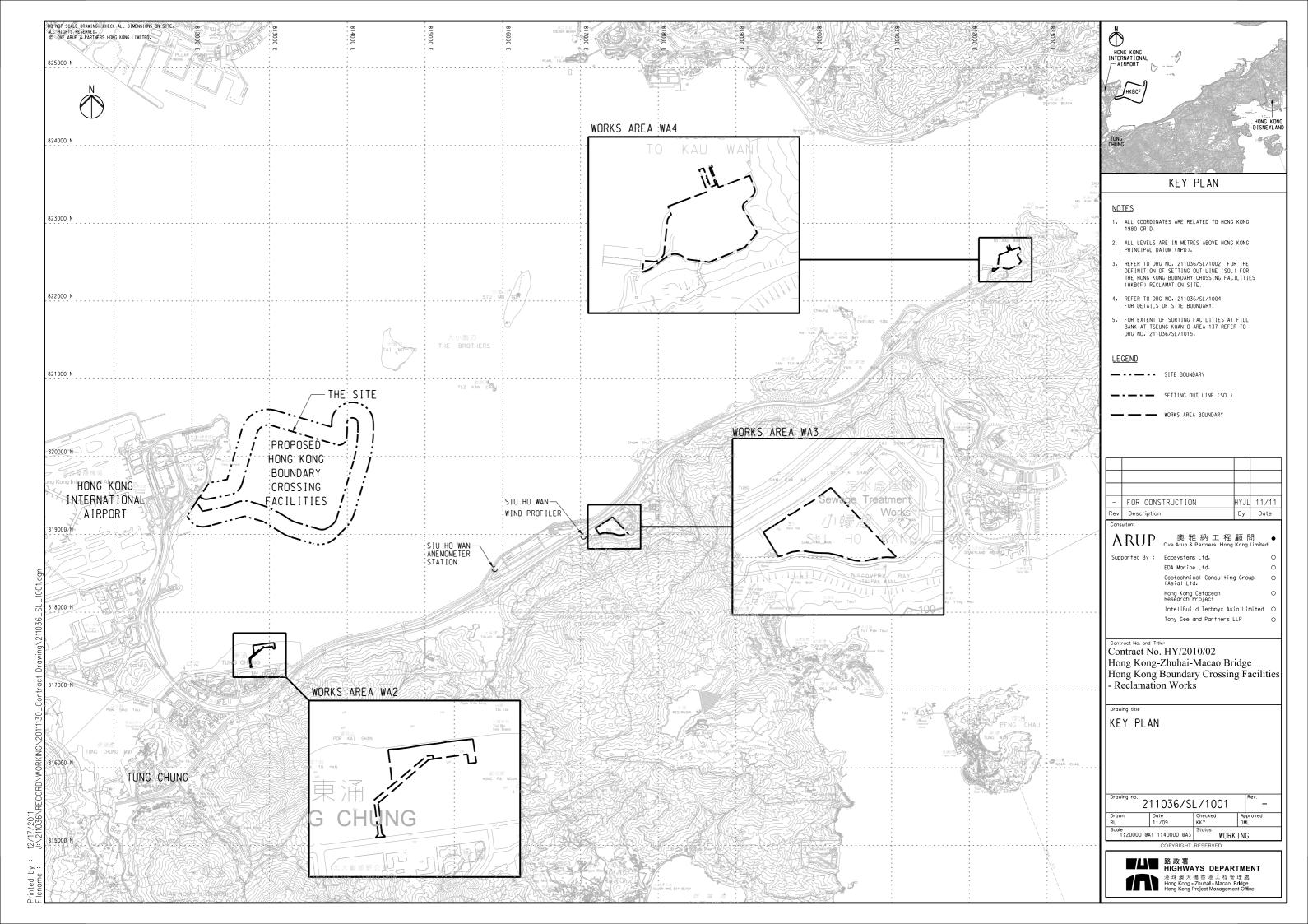
- All working plants and vessels on site should be regularly inspected and properly maintained to avoid dark smoke emission.
- All vehicles should be washed to remove any dusty materials before leaving the site.
- Haul roads should be sufficiently dampened to minimize fugitive dust generation.
- Wheel washing facilities should be properly maintained and reviewed to ensure properly functioning.
- Temporary exposed slopes and open stockpiles should be properly covered.
- Enclosure should be erected for cement debagging, batching and mixing operations.
- Water spraying should be provided to suppress fugitive dust for any dusty construction activity.
- Regular review and provide maintenance to dust control measures such as sprinkler system.

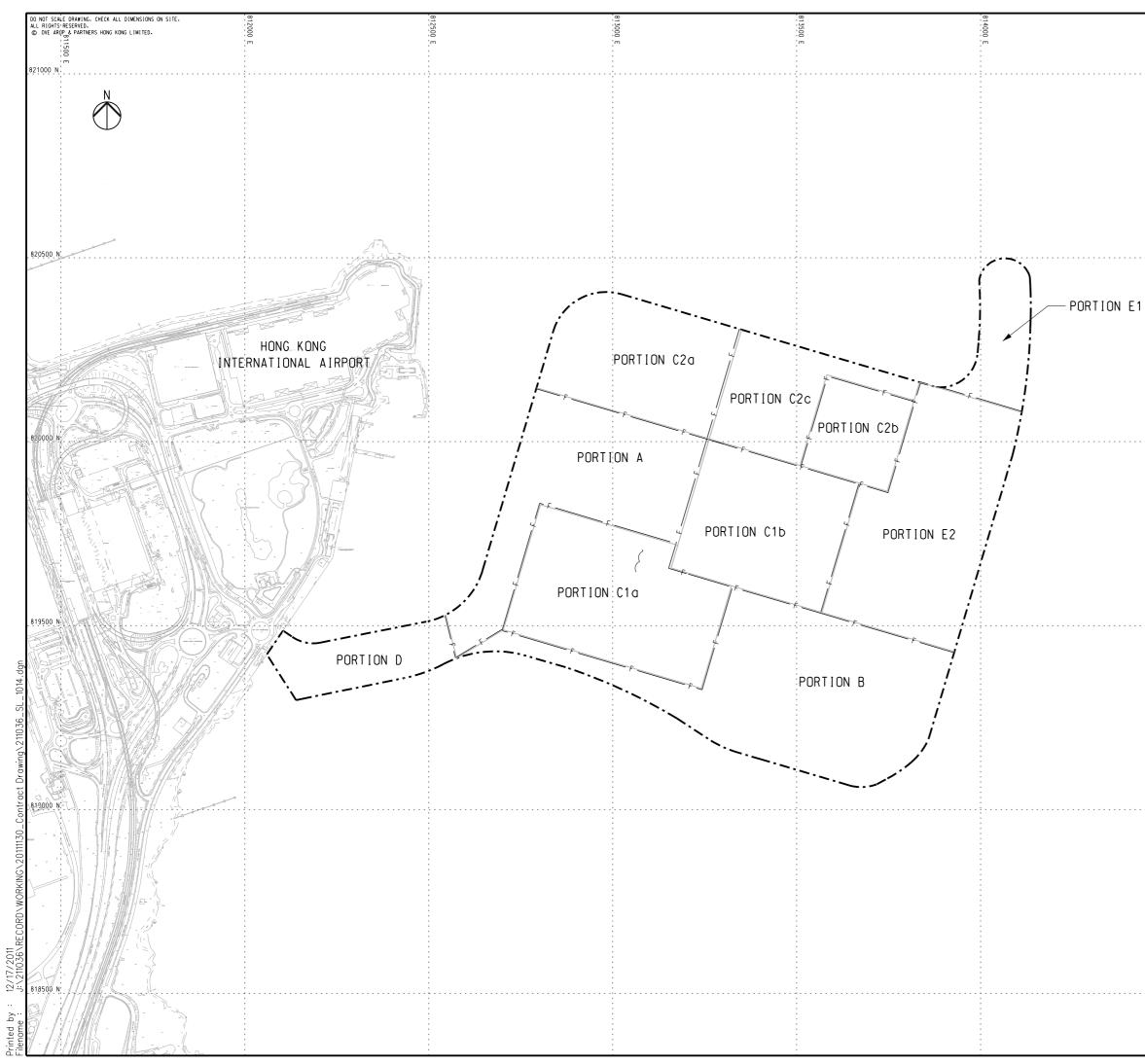
Construction Noise Impact

- Quieter powered mechanical equipment should be used as far as possible.
- Noisy operations should be oriented to a direction away from sensitive receivers as far as possible.
- Proper and effective noise control measures for operating equipment and machinery on-site should be provided, such as erection of movable noise barriers, enclosure for noisy plants or enhancement works to provide sufficient acoustic decoupling measure(s). Closely check and replace the sound insulation materials regularly
- Vessels and equipment operating should be checked regularly and properly maintained.
- Noise Emission Label (NEL) shall be affixed to the air compressor and hand-held breaker operating within works area.
- Acoustic decoupling measures should be properly implemented for all existing and incoming construction vessels with continuous and regularly checking to ensure effective implementation of acoustic decoupling measures.

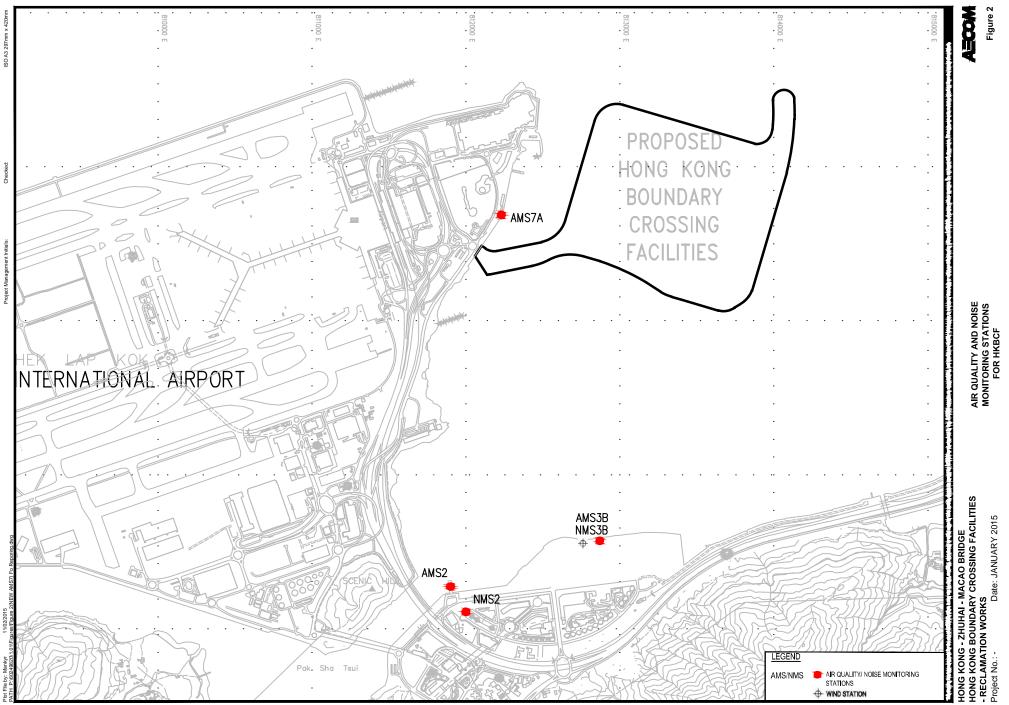
Water Quality Impact

- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities in order to make sure they are functioning effectively.
- Construction of seawall should be completed as early as possible.
- Regular inspect and review the loading process from barges to avoid splashing of material.
- Silt, debris and leaves accumulated at public drains, wheel washing bays and perimeter uchannels and desilting facilities should be cleaned up regularly.
- Silty effluent should be treated/ desilted before discharged. Untreated effluent should be prevented from entering public drain channel.
- Proper drainage channels/bunds should be provided at the site boundaries to collect/intercept the surface run-off from works areas.
- Exposed slopes and stockpiles should be covered up properly during rainstorm.

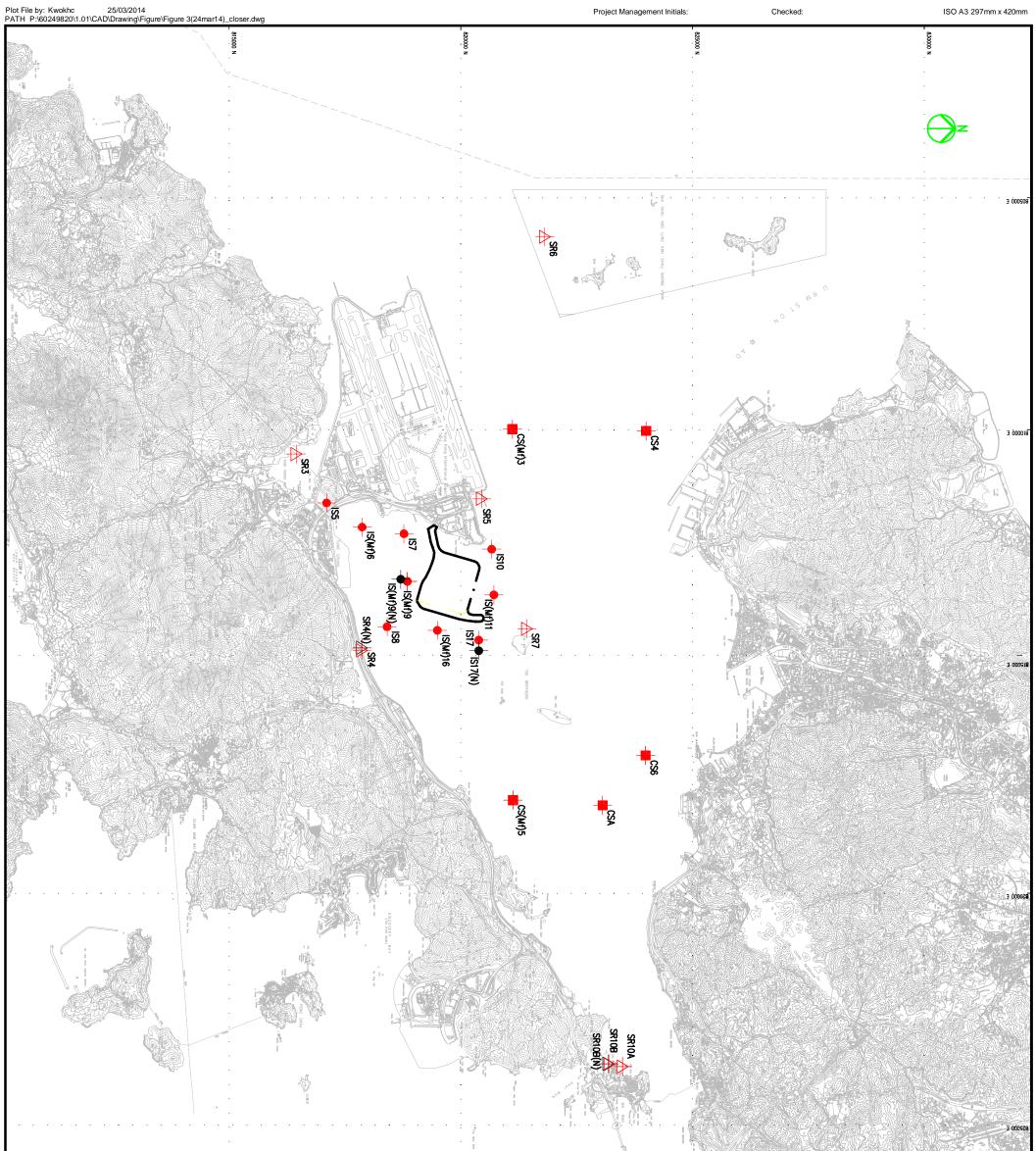



Chemical and Waste Management

- All types of wastes, both on land and floating in the sea, should be collected and sorted properly and disposed of timely and properly. They should be properly stored in designated areas within works areas temporarily.
- All chemical containers, batteries and oil drums should be properly stored and labelled.
- All plants and vehicles on site should be properly maintained to prevent oil leakage. Proper measures, like drip trays and/or bundings, should be provided for retaining leaked oil/chemical from plants.
- All kinds of maintenance works should be carried out within roofed, paved and confined areas.
- All drain holes of the drip trays utilized within works areas should be properly plugged to avoid any oil and chemical waste leakage.
- Oil stains on soil surface, accumulated oil mixture and empty chemical containers should be cleared and disposed of as chemical waste.
- Regular review should be conducted for working barges and patrol boats to ensure sufficient measures and spill control kits were provided on working barges and patrol boats to avoid any spreading of leaked oil/chemicals.


Landscape and Visual Impact

- All existing, retained/transplanted trees at the works areas should be properly fenced off and regularly inspected.
- Control night-time lighting and glare by hooding all lights.



	\land
	HONG KONG INTERNATIONAL
	AIRPORT
	нквсг
	HONG KONG DISNEYLAND
	TUNG CHUNG
	KEY PLAN
	NOTES
	 FOR LEGENDS AND NOTES FOR CHAIN LINK FENCE AND GATE REFER TO DRG ND. 211036/SL/1013.
	 THE ERECTION OF CHAIN LINK FENCE AND GATES SHALL BE COMPLETED BY THE HANDOVER DATE OF
	EACH PORTION OF SITE, OR AS INSTRUCTED BY THE ENGINEER.
	 FOR SETTING OUT COORDINATES OF DIFFERENT PORTIONS OF SITE REFER TO DRG NO. 211036/SL/1003.
	 ACCESS POINTS BETWEEN PORTIONS SHALL BE PROVIDED BY THE CONTRACTOR, AND THE LOCATIONS SHALL BE AGREED WITH THE ENGINEER ON SITE.
	 FOR HOARDING AND FENCE AT FILL BANK AT TSEUNG KWAN O AREA 137 REFER TO DRG NO. 211036/SL/1015.
	LEGEND
	SETTING OUT LINE (SOL)
	WORKS AREA BOUNDARY
	PORTIONS BOUNDARY LINE
	- FOR CONSTRUCTION HYJL 11/11 Rev Description By Date
	Consultant
	ARUP 奥雅納工程顧問 ● Ove Arup & Partners Hong Kong Limited
	Supported By: Ecosystems Ltd. O EDA Marine Ltd. O
	Geotechnical Consulting Group O (Asia) Ltd.
	Hong Kong Cetacean O Research Project
	InteliBuild Technyx Asia Limited O Tony Gee and Partners LLP O
	Contract No. and Title: Contract No. HY/2010/02
	Hong Kong-Zhuhai-Macao Bridge
	Hong Kong Boundary Crossing Facilities - Reclamation Works
	Drawing title
	WORKS AREA LAYOUT
	AND HORADING PLAN
	(SHEET 2 OF 3)
	Drawing no. Rev.
	Drawn Date Checked Approved
	RL 06/10 KKY DML Scale Status
	1:5000 @A1 1:10000 @A3 WORKING COPYRIGHT RESERVED
	■山■ 路政署 HIGHWAYS DEPARTMENT
:	港珠澳大橋香港工程管理處 Hong Kong - Zhuhal - Macao Bridge Hong Kong Project Management Office
	in grinning material

Hoitiale.

Setting out sc	Schedule	
MONITORING	CO-OR EASTING	CO-ORDINATES
IS2	811579	817106
IS(Mf)6	812101	817873
IS7	812244	818777
8SI	814251	818412
IS(Mf)9	813273	818850
IS(Mf)9(N)	813226	818708
IS10	812577	029028
IS(Mf)11	813562	820716
IS(Mf)16	814328	819497
IS17	814539	820391
IS17(N)	814767	820391
SR3	810525	816456
SR4(N)	814705	817859
SR5	811489	820455
SR6	805837	821818
SR7	814293	821431
SR10A	823741	823495
SR10B(N)	823683	823187
CS(Mf)3	686608	821117
CS(Mf)5	817990	821129
CS4	810025	824004
CS6	817028	823992
CSA	818103	823064

This drawing has been prepared for the uses of AECON's client, It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECON or as required by law. AECON accepts no responsibility, and denices any liability windsboever, to any party that uses or relies on this drawing witbut AECON's express written consent. Do not scale this document. All measurements must be obtained from the stability and denices any liability windsboever, to any party that uses or relies on this drawing witbut AECON's express written consent. Do not scale this document. All measurements must be obtained from the stability and denices any liability windsboever, to any party that uses or relies on this drawing witbut AECON's express written consent. Do not scale this document. All measurements must be obtained from the stability and there any liability windsboever, to any party that uses or relies on this drawing witbut AECON's express written consent. Do not scale this document. All measurements must be obtained from the stability and there any liability windsboever, to any party that uses or relies on this drawing witbut AECON's express written consent. Do not scale this document. All measurements must be obtained from the stability and there any liability windsboever, to any party that uses or relies on this drawing witbut AECON's express written consent. Do not scale this document.

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

Project No.: -Date: MAR 2014

WATER QUALITY MONITORING STATION

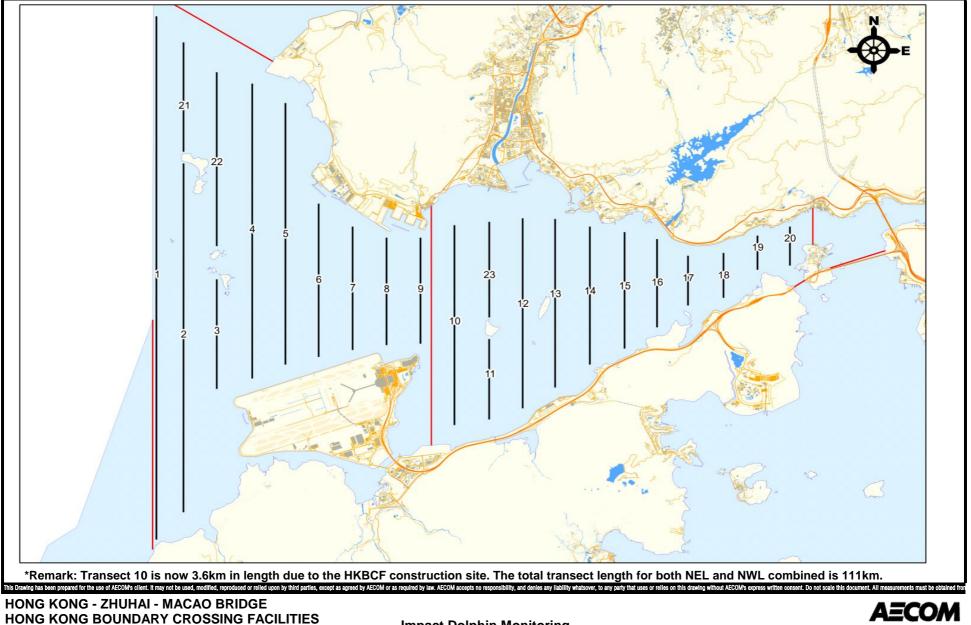
Figure 3

IMPACT STATIONS

↓ IEGEND

ខ

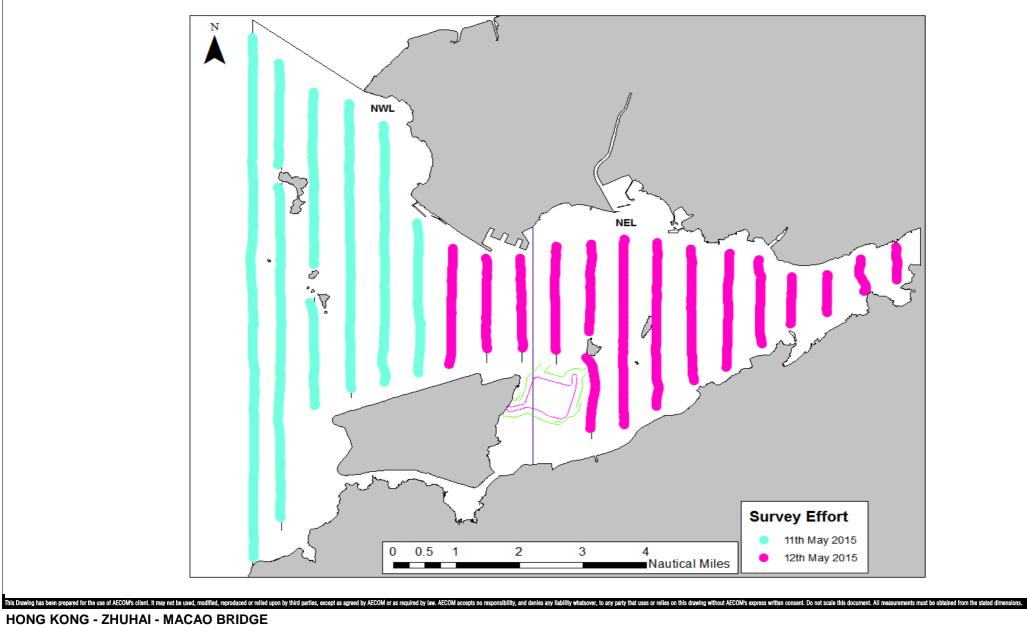
CONTROL / FAR FIELD STATIONS


SENSITIVE RECEIVERS STATIONS

SENSITIVE RECEIVERS STATIONS (RELOCATED)

IMPACT STATIONS (RELOCATED)

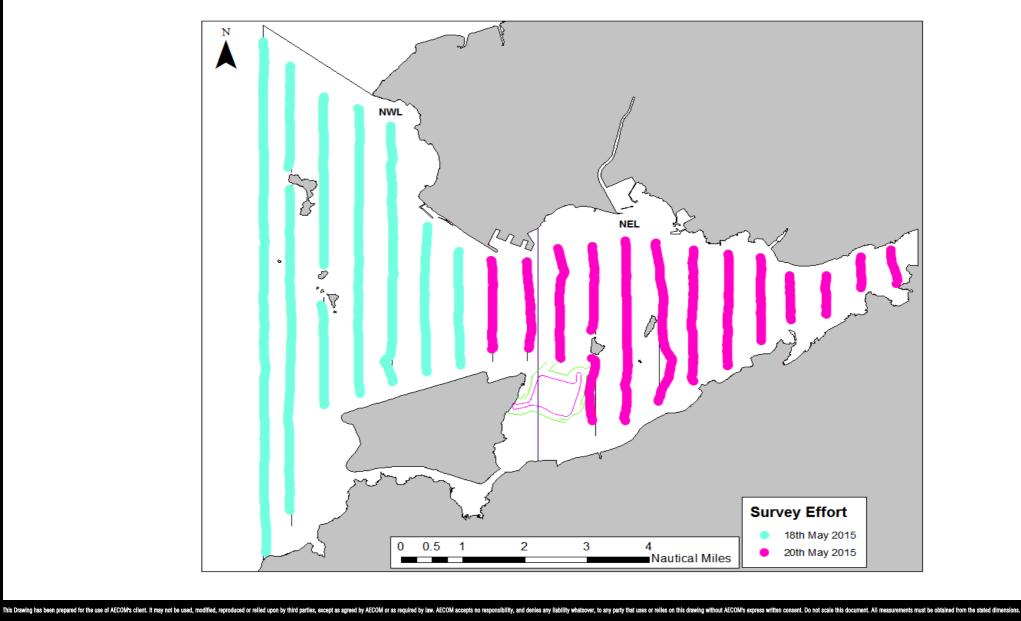
\$ ₽ \$ ₽ SR -∳-



HONG KONG - 2HUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS Project No.: 60249820 Date: January 13

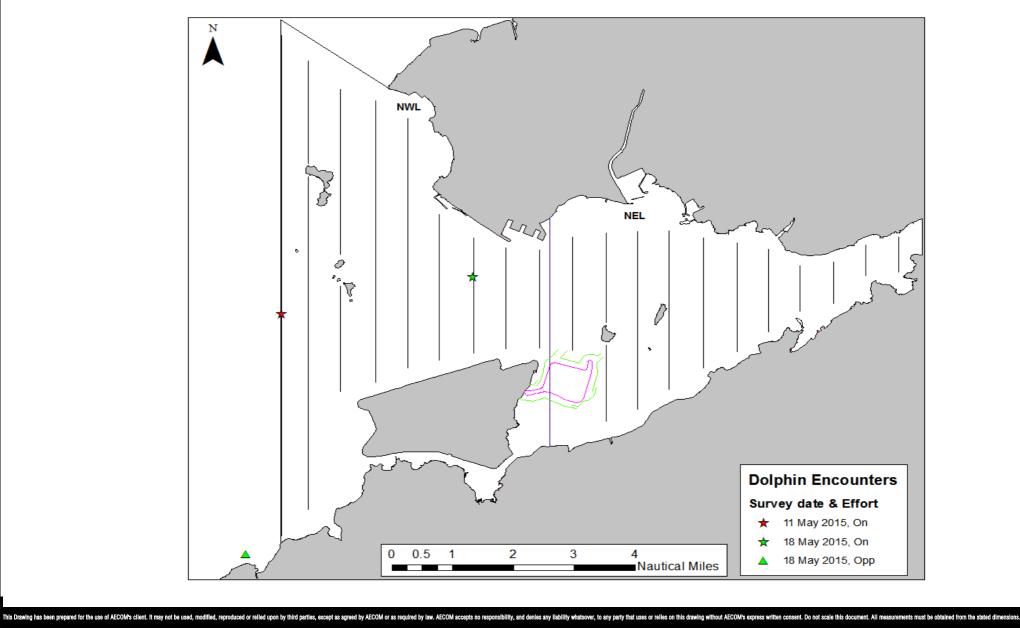
Impact Dolphin Monitoring Line Transect Layout Map

Figure 4

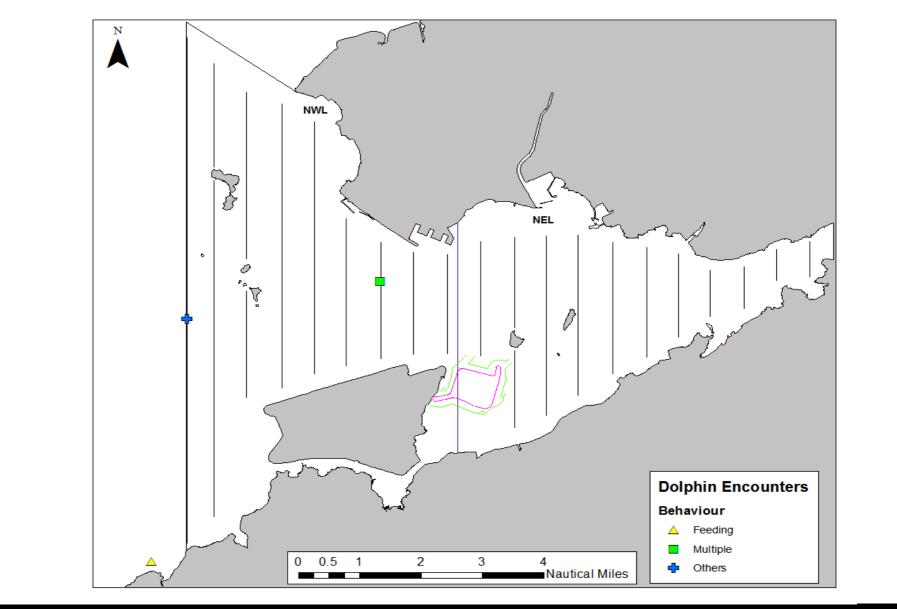


HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

Date: June 2015

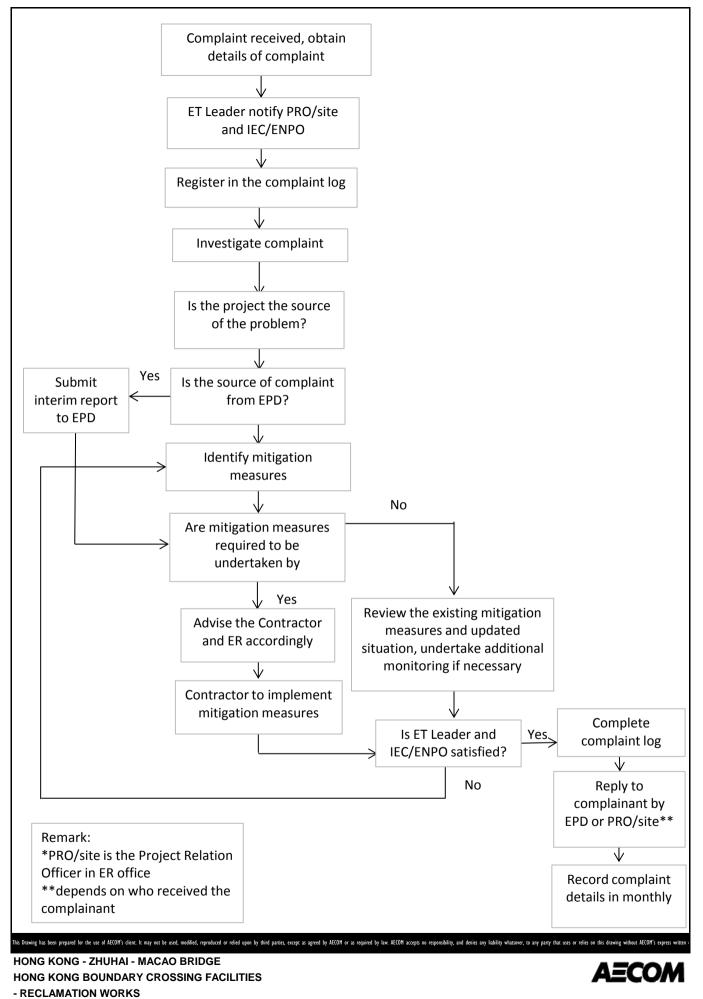

Project No.: 60249820

Impact Dolphin Monitoring Survey Efforts on 11 and 12 May 2015


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS Project No.: 60249820 Date: June 2015

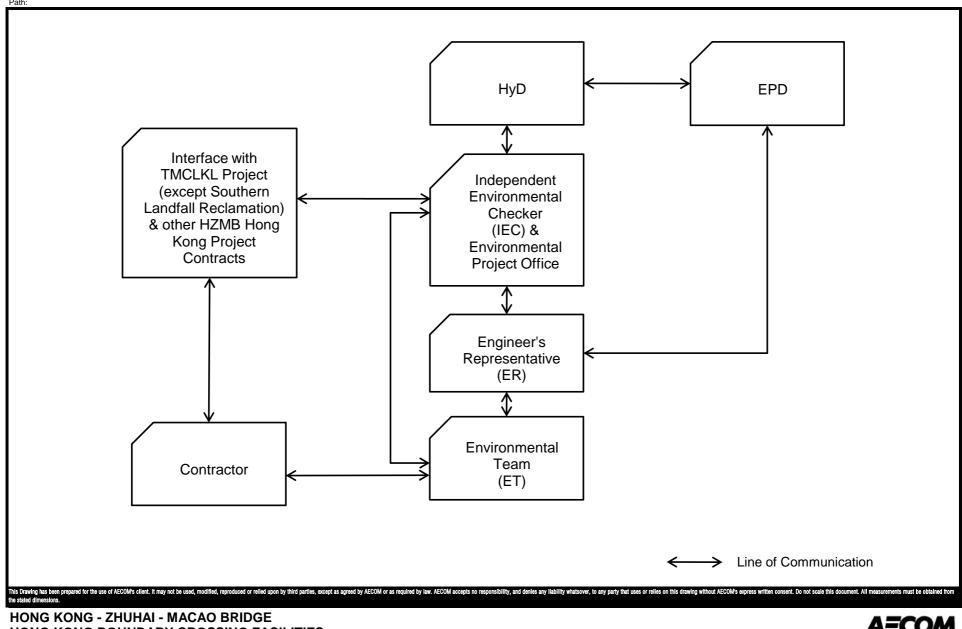
Impact Dolphin Monitoring Survey Efforts on 18 and 20 May 2015

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS Project No.: 60249820 Date: June 2015


Impact Dolphin Monitoring Survey Sightings in May 2015

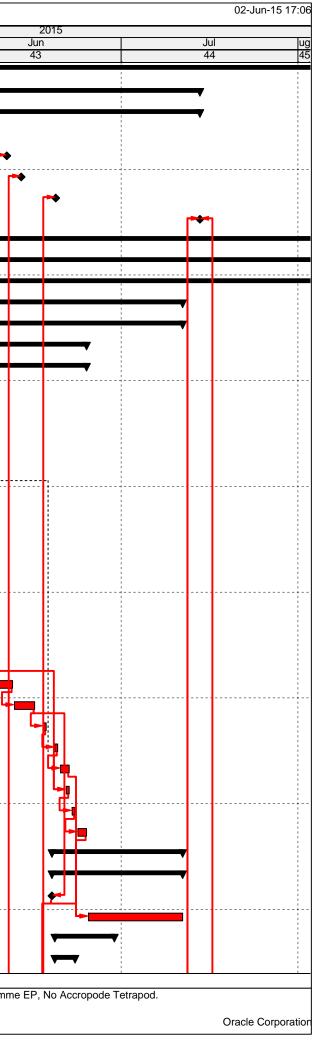
This Drawing has been propared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM scepts no responsibility, and denies any liability whatsover, to any party that uses or relies on this drawing without AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law.

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS Project No.: 60249820 Date: June 2015


Impact Dolphin Monitoring Survey Behaviour Map in May 2015

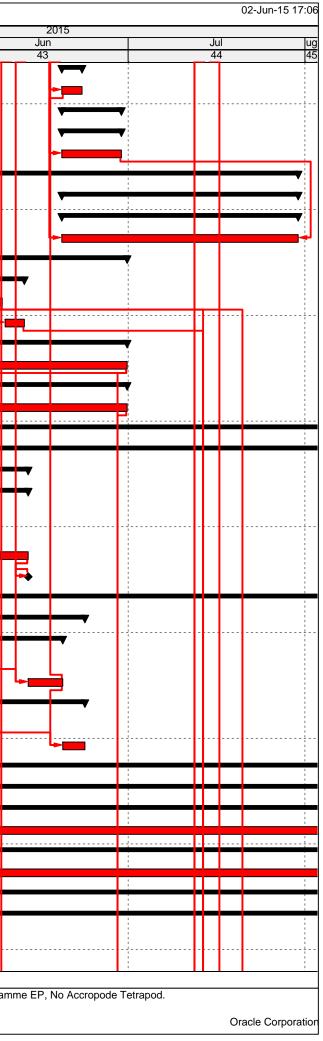
Environmental Complaint Handling Procedure

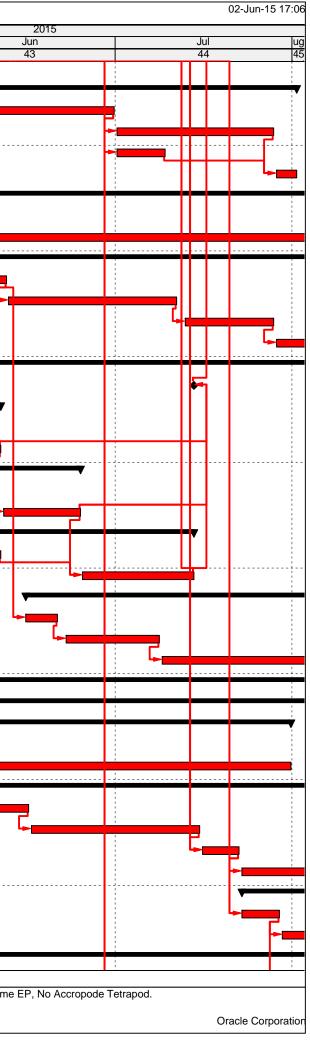
Checked:



HONG KONG BOUNDARY CROSSING FACILITIES --RECLAMATION WORKS Project No.: 60249820 Date: April 2013

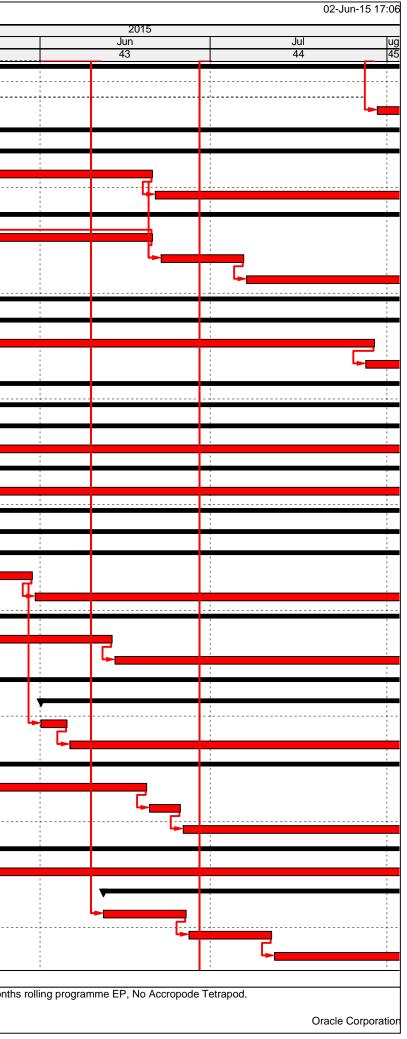
Project Organisation for Environmental Works


ity ID	Activity Name	Original Duration	Start	Finish	Total Float	May
						42
2nd Monthly Pr	ogress Report Status as on 21May2015		21-May-12 A	28-Feb-17	142	
Contract Key Dat			21-May-15	14-Jul-15	-195	
	vement of Stages and completion of Sections	55	21-May-15	14-Jul-15	-195	
G1085	KD-6, Completion of Section B Edge Area K040 - K046 (945days+EOT 1.5days, 03Jul2014) 31Dec2014 w	0		21-May-15*	-140	*
G1080	KD-6, Completion of Section B Main Area East-S (945days+EOT 1.5days, 03Jul2014) 31Oct2014	0		10-Jun-15*	-222	
G1060	KD-4, Completion of Section A Main Area (730days+EOT 0.5days, 29Nov2013) CLP Substation 28 Apr201	0		13-Jun-15*	-410	
G1064	KD-4, Completion of Section A Main Area North (730days+EOT 0.5days, 29Nov2013) A2 29 Apr2014	0		19-Jun-15*	-415	
G1081	KD-6, Completion of Section B Main Area West (945days+EOT 1.5days, 03Jul2014) 31Oct2014	0		14-Jul-15*	-256	
Work Zone, as de	fined in PS Clause 1.03(6)	490	05-Sep-14 A	07-Jan-16	560	
Portion A, B, C & E		490	05-Sep-14 A	07-Jan-16	-199	
Portion A, B, C & E		490	05-Sep-14 A	07-Jan-16	-199	
Seawall		52	29-Apr-15 A	11-Jul-15	-351	
Cellular Structures		52	29-Apr-15 A	11-Jul-15	-351	
Connecting Arcs		35	29-Apr-15 A	24-Jun-15	-351	
Portion E1 betwe	en C073/C074 to C090/C091 18arcs	35	29-Apr-15 A	24-Jun-15	-351	
CAE1-2060	PE1 C077/078 - Land Side Arc Sheetpile Assemby	9	29-Apr-15 A	06-May-15 A		-
CAE1-3040	PE1 C079/080 - Sea Side Arc Sheetpile Assemby	6	29-Apr-15 A	06-May-15 A		
CAE1-2070	PE1 C077/078 - Land Side Arc Sheetpile Drivening	4	07-May-15 A	10-May-15 A		
CAE1-3050	PE1 C079/080 - Sea Side Arc Sheetpile Drivening	3	07-May-15 A	08-May-15 A		▶
CAE1-2100	PE1 C077/078 - Backfill	3	10-May-15 A	18-May-15 A		
CAE1-2080	PE1 C077/078 - Removal of Guide Frame	1	12-May-15 A	12-May-15 A		·►
CAE1-2090	PE1 C077/078 - Removal of Temp Piles	3	13-May-15 A	15-May-15 A		
CAE1-4010	PE1 C078/079 - Temp Piles Drivening	5	13-May-15 A	15-May-15 A		►
CAE1-4020	PE1 C078/079 - Temp Guide Frame Installation	1	17-May-15 A	18-May-15 A		
CAE1-3060	PE1 C079/080 - Land Side Arc Sheetpile Assemby	9	18-May-15 A	29-May-15	-386	
CAE1-4030	PE1 C078/079 - ICE Certificate & Form 5	2	19-May-15 A	20-May-15 A		
CAE1-4040	PE1 C078/079 - Sea Side Arc Sheetpile Assemby	6	21-May-15	26-May-15	-382	
CAE1-4050	PE1 C078/079 - Sea Side Arc Sheetpile Drivening	3	27-May-15	29-May-15	-382	
CAE1-3070	PE1 C079/080 - Land Side Arc Sheetpile Drivening	4	30-May-15	02-Jun-15	-386	
CAE1-4060	PE1 C078/079 - Land Side Arc Sheetpile Assemby	9	03-Jun-15	11-Jun-15	-386	
CAE1-4070	PE1 C078/079 - Land Side Arc Sheetpile Drivening	4	12-Jun-15	15-Jun-15	-386	
CAE1-4080	PE1 C078/079 - Removal of Guide Frame	1	17-Jun-15	17-Jun-15	-346	
CAE1-4090	PE1 C078/079 - Removal of Temp Piles	1	19-Jun-15	19-Jun-15	-346	
CAE1-4100	PE1 C078/079 - Backfill	2	20-Jun-15	21-Jun-15	-348	
CAE1-3080	PE1 C079/080 - Removal of Guide Frame	1	21-Jun-15	21-Jun-15	-346	
CAE1-3090	PE1 C079/080 - Removal of Temp Piles	1	22-Jun-15	22-Jun-15	-346	
CAE1-3100	PE1 C079/080 - Backfill	2	23-Jun-15	24-Jun-15	-351	
Capping Beams		23	18-Jun-15	11-Jul-15	-351	
Portion E1 betwe	en C090 to C074 Capping Beams	23	18-Jun-15	11-Jul-15	-351	
CAE1-027	PE1 Completion of Connecting Arcs C077/C078, C078/C079 & C079/C080 on 30Jun2015	0		18-Jun-15*	-394	
CBE1-020	PE1 Capping Beams structure C080 to C077 4cells 4days/cell	16	25-Jun-15	11-Jul-15	-322	
Conforming Slopin		10	19-Jun-15	29-Jun-15	-338	
Geotextile		4	19-Jun-15	22-Jun-15	-338	

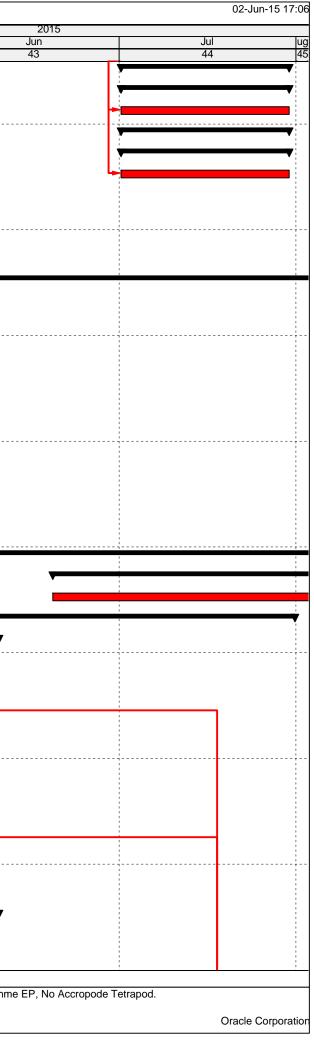

D	t Status as on 21May2015 Activity Name	Original Duration	Start	Finish	Total		
D	ACIMITY Name	Original Duration	Start	Finish	Total Float	May	
Segural Portion E	1 at C068 - C090 23cells	1	19-Jun-15	22-Jun-15	-338	42	-
SGE1-020			19-Jun-15	22-Jun-15			
	PE1 Geotextile at C079 - C078 2cells				-338		
Rockfill			19-Jun-15	29-Jun-15	-338		
Seawall Portion E	1 at C068 - C090 23cells		19-Jun-15	29-Jun-15	-338		
RFE1-020	PE1 Rockfill at C080 - C077 4cells	10	19-Jun-15	29-Jun-15	-338		
Reclamation		212	31-Dec-14 A	30-Jul-15	-314		-
Marine Fill		36	19-Jun-15	30-Jul-15	-335		
Land Portion E1		36	19-Jun-15	30-Jul-15	-335		
MFE1-010	PE1 Marine Sand Fill upto +2.5mPD 355,355m3 10,000m3/day	36	19-Jun-15	30-Jul-15	-335		
Earthwork Fill		179 3	31-Dec-14 A	30-Jun-15	-284		
Land Portion C2a		116	23-Mar-15 A	12-Jun-15	-417	;	
EFC2a-051	PC2a Edge Area C108-C112 Remedial works by additional band drains		23-Mar-15 A	08-Jun-15	-418		
EFC2a-055	PC2a Edge Area EastWest Earthwork Fill Type D Sand 100% stg2 30,450m3 7,500m/day		09-Jun-15*	12-Jun-15	-356		
Land Portion C2b			31-Dec-14 A	30-Jun-15	-287		
	DO2h Forthwork Fill Time D public us come attent write 15 For DD 400 F40 v0 F 000 v0/14						
EFC2b-010	PC2b Earthwork Fill Type B public w compaction upto +5.5mPD 168,546m3 5,000m3/day		31-Dec-14 A	30-Jun-15	-287		
Land Portion C2c			31-Dec-14 A	30-Jun-15	-259		
EFC2c-010	PC2c Earthwork Fill Type B public w compaction upto +5.5mPD 276,853m3 10,000m3/day	163 3	31-Dec-14 A	30-Jun-15	-259		
Surcharge		490 (05-Sep-14 A	07-Jan-16	-199		
Portion A Surcharge	e	385 (05-Sep-14 A	13-Sep-15	-323		-
Main Reclamation	Areas	281 (05-Sep-14 A	13-Jun-15	-410		
Area of CLP subs	tation	281 (05-Sep-14 A	13-Jun-15	-410		
SUEA2-0070	PA CLP Substation Sand Surcharge Period as +11.5mPD (4 May2015 after 8mths surcharge)	198 (05-Sep-14 A	04-May-15 A			
SUEA2-0075	PA CLP Issue of Surcharge Removal	0	01-Jun-15*		-415		Let
SUEA2-0080	PA CLP Substation Sand Surcharge Removal on Main Area 40,410m3 10,000m3/day	5 (08-Jun-15	13-Jun-15	-381		
SUEA2-0090	Completion of CLP Substation	0		13-Jun-15*	-410		
	OL offset within 180m to 50m	341	19-Oct-14 A	13-Sep-15	-323		
CH5+110 to 5+440			19-Oct-14 A	23-Jun-15	-240		
Area of 50m to 12							
			28-Dec-14 A	19-Jun-15	-415		
SUEA1-2090	PA North 120m-50m from Offset Surcharge Period +11.5mPD 4mths (8-2-2=4mths)		28-Dec-14 A	27-May-15	-398		
SUEA1-2100	PA North 120m-50m from Offset Surcharge Removal 49,830m3 10,000m3/day		13-Jun-15	19-Jun-15	-381		
Area of 0 to 50m			19-Oct-14 A	23-Jun-15	-240		
SUEA1-2180	PA North 50m-10m Surcharge Period +7.0mPD (18Apr2015 after 6mths surcharge)	182	19-Oct-14 A	27-May-15	-218		
SUEA1-2190	PA North 50m-10m Surcharge Sand Removal 9,900m3 10,000m3/day	4	19-Jun-15	23-Jun-15	-219		
CH5+440 to 5+650	Portion A South	314	15-Nov-14 A	13-Sep-15	-325		
Area of 40m - 120	0m from Offset (other CLP area)	180 1	14-Mar-15 A	13-Sep-15	-506		
Upto +11.5mPD	Area	180	14-Mar-15 A	13-Sep-15	-506		
SUEA3-0070	PA South Surcharge Period +11.5mPD (13Sep2015 after 6mths surcharge)	180	14-Mar-15 A	13-Sep-15	-506		
Area of 10m - 40r	m from Offset (other CLP area)	180	15-Nov-14 A	10-Aug-15	-291		
SUEA4-0070	PA South 40m-10m Surcharge Period (14May2015 after 6mths surcharge)		15-Nov-14 A	10-Aug-15	-291		
Land Portion B			13-Oct-14 A	04-Jan-16	-386		
Edge Areas			11-Mar-15 A	25-Nov-15	-346		
	ing at K040 - K046		29-Apr-15 A		040		
			· · · · · · · · · · · · · · · · · · ·	02-May-15 A			
DCM-1080	PB Edge Area K040-K046 Filling up to +5.5mPD 41,000m3 10,000m3/day at DCM by Dump Trucks	5 2	29-Apr-15 A	02-May-15 A			

Actual Level of Effort Remaining Work

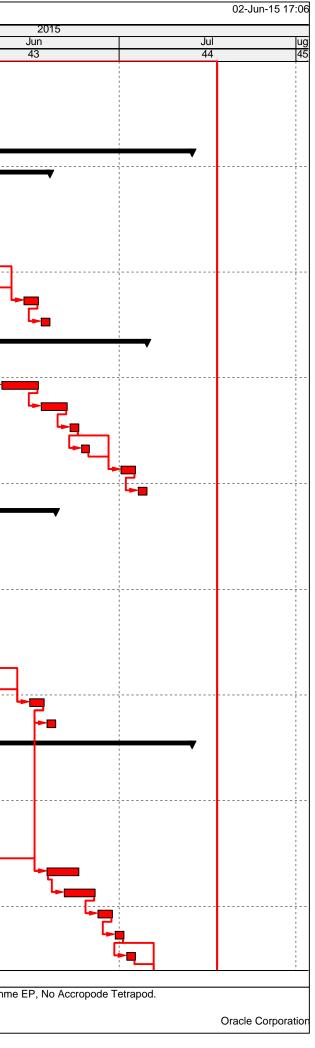
Milestone

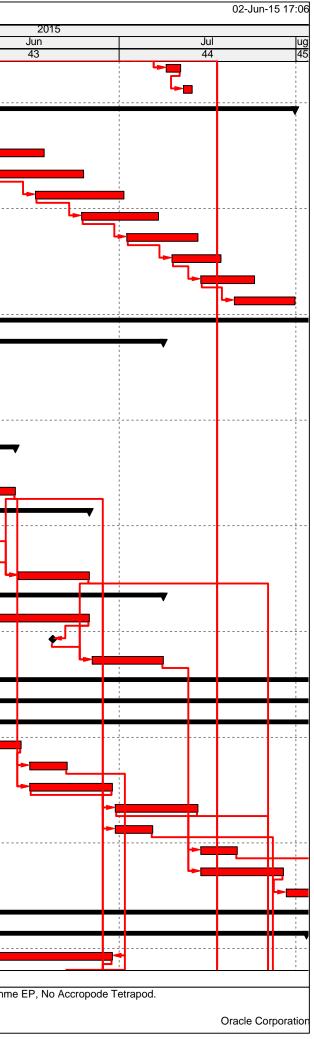


	Activity Name	Original Duration	Start	Finish	Total	Max
					Float	May 42
DCM-1090	PB Edge Area K040-K046 Completion (Target Date = 31Dec2014)	0		02-May-15 A		
Deep Cement Mixi	ing at K047 - K052	120	11-Mar-15 A	01-Aug-15	-368	
DCM-2020	PB Edge Area K047-K052 Deep Cement Mixing 30m width - Installation 123,470m3	120	11-Mar-15 A	30-Jun-15	-369	
DCM-2030	PB Edge Area K047-K052 Deep Cement Mixing 30m width - Hardening	28	01-Jul-15	28-Jul-15	-369	
DCM-2040	PB Edge Area K047-K052 Filling up to +5.5mPD 74,000m3 10,000m3/day at DCM by Dump Trucks	8	01-Jul-15	09-Jul-15	-297	
DCM-2060	PB Edge Area K047-K052 Filling up to +8.5mPD 40,000m3 10,000m3/day at DCM by Dump Trucks	4	29-Jul-15	01-Aug-15	-313	
at K028 - K039		199	01-Apr-15 A	28-Sep-15	-442	
SUEB0-060	PB Edge Area K028-K039 Sand Surcharge upto 8.5mPD 90,720m3 5,000m3/day	29	01-Apr-15 A	16-May-15 A		
SUEB0-070	PB Edge Area K028-K039 Surcharge Period +8.5mPD 4.5mths	135	17-May-15 A	28-Sep-15	-442	
at K013 - K027		183	27-May-15	25-Nov-15	-346	
SUEB0-010	PB Edge Area K013-K027 Sand Surcharge upto 8.5mPD 135,000m3 10,000m3/day	14	27-May-15*	11-Jun-15	-372	
SUEB0-020	PB Edge Area K013-K027 Surcharge Period +8.5mPD 1mth		- 12-Jun-15	11-Jul-15	-345	
SUEB0-030	PB Edge Area K013-K027 Sand Surcharge up to 11.5mPD 135,000m3 10,000m3/day		13-Jul-15	28-Jul-15	-293	
SUEB0-040	PB Edge Area K013-K027 Sand Surcharge Period as +11.5mPD 4mths (6-2=4mths)		29-Jul-15	25-Nov-15	-346	
Reclamation Areas			13-Oct-14 A	04-Jan-16	-430	
SURB0-099	Completion of Section B in Reclamation Areas	0		14-Jul-15	-256	
at East of Main Are			13-Oct-14 A	10-Jun-15	-255	
			13-Oct-14 A		-255	
SURB0-040	PB Main Area East Sand Surcharge Period +11.5mPD (12May2015 after 7mths surcharge)			12-May-15 A	000	
SURB0-050	PB Main Area East Sand Surcharge Removal 182,400m3 20,000m3/day		01-Jun-15*	10-Jun-15	-233	
at West of Main Ar			20-Oct-14 A	24-Jun-15	-255	
SURB1-030	PB Main Area West-S Sand Surcharge Period +11.5mPD (19May2015 after 7mths surcharge)		20-Oct-14 A	19-May-15 A		l
SURB1-040	PB Main Area West-S Sand Surcharge Removal 250,365m3 20,000m3/day		11-Jun-15	24-Jun-15	-233	
at West of Main Ar			11-Nov-14 A	14-Jul-15	-256	
SURB2-030	PB Main Area West-N Sand Surcharge Period +11.5mPD (10Jun2015 after 7mths)		11-Nov-14 A	10-Jun-15	-241	
SURB2-040	PB Main Area West-N Sand Surcharge Removal 346,454m3 20,000m3/day	18	25-Jun-15	14-Jul-15	-233	
at North- East of M	Main Area	204	15-Jun-15	04-Jan-16	-439	
SURB3-010	PB Main Area East-N Sand Surcharge upto +8.5mPD 60,000m3 10,000m3/day by Dump Trucks	6	15-Jun-15*	20-Jun-15	-374	
SURB3-020	PB Main Area East-N Sand Surcharge upto +11.5mPD 75,000m3 5,000m3/day by Dump Trucks	15	22-Jun-15	08-Jul-15	-374	
SURB3-030	PB Main Area East-N Sand Surcharge Period +11.5mPD 6mths (7-1=6mths)	180	09-Jul-15	04-Jan-16	-439	
and Portion C2a		277	01-Mar-15 A	02-Jan-16	-283	
Edge Areas		255	01-Mar-15 A	11-Dec-15	-413	
Deep Cement Mixi	ing Works at C101 - C103	72	30-Apr-15 A	31-Jul-15	-322	
DCM-3010	PC2a Edge Area C101-C103 Mobilization from K040-K046 3plants	7	30-Apr-15 A	29-May-15	-322	
DCM-3020	PC2a Edge Area C101-C103 30m width x 128.5m Length Installation 56,700m3	63	30-May-15	31-Jul-15	-322	╘╸╝
at C104 - C107 Cel	llular Seawall	248	01-Apr-15 A	04-Dec-15	-451	
SUEC2a-004	PC2a Edge Area C108-C112 Remedial Works and Instrucmentation installation	4	01-Apr-15 A	15-Jun-15	-450	
SUEC2a-005	PC2a Edge Area C104-C107 Sand Surcharge Period +5.5mPD 1mth	30	16-Jun-15	15-Jul-15*	-450	
SUEC2a-010	PC2a Edge Area C104-C107 Sand Surcharge Laying up to 8.5mPD 40,573m3 7,500m3/day	6	16-Jul-15	22-Jul-15	-384	
SUEC2a-020a	PC2a Edge Area C104-C107 Sand Surcharge Period +8.5mPD 4.5mths	135	23-Jul-15	04-Dec-15	-451	
at C108 - C112 Cel	lular Seawall	142	23-Jul-15	11-Dec-15	-452	
SUEC2a-020	PC2a Edge Area C108-C112 Sand Surcharge Laying up to 8.5mPD 45,738m3 7,500m3/day	6	23-Jul-15	29-Jul-15	-384	
SUEC2a-020a10	PC2a Edge Area C108-C112 Sand Surcharge Period +8.5mPD 4.5mths	135	30-Jul-15	11-Dec-15	-452	
CH4+710 - CH5+11	0 Rubble Mound Seawall	109	01-Mar-15 A	07-Aug-15	-287	
						!

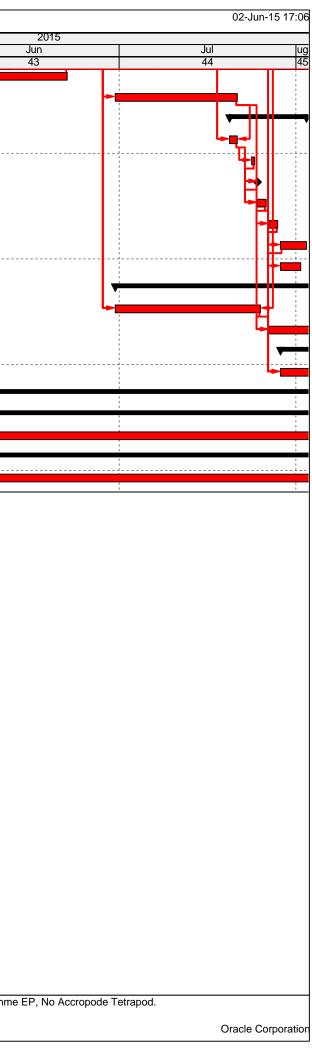


ID	Activity Name	Original Duration	Start	Finish	Total			
					Float	May 42		_
40-120m		109	01-Mar-15 A	07-Aug-15	-287			
SUEC2a-1010	PC2a 70m from SOL Check Point for Undrained shear strength Area at +5.5mPD 1mths	30	01-Mar-15 A	10-May-15 A		─ [◄ [!]		
SUEC2a-1020	PC2a 120m-40m from SOL Surcharge Sand Laying upto 7.5mPD 76,800m3 10,000m3/day	8	30-Jul-15	07-Aug-15	-243			
Reclamation Areas		269	09-Apr-15 A	02-Jan-16	-283			_
South		246	16-Apr-15 A	17-Dec-15	-277			_
SURC2a-014	PC2a Main South Sand Surcharge Laying upto 11.5mPD 184,068m3 7,500m3/day by TSHD	20	16-Apr-15 A	20-Jun-15	-239			-
SURC2a-020	PC2a Main South Sand Surcharge Period 6mths (8-2=6mths)	180	21-Jun-15	17-Dec-15	-277			
North		269	09-Apr-15 A	02-Jan-16	-283			
SURC2a-060	PC2a Main North Sand Surcharge Laying upto 8.5mPD 184,068m3 7,500m3/day by TSHD	19	09-Apr-15 A	20-Jun-15	-239			
SURC2a-066	PC2a Main North Sand Surcharge Laying upto 11.5mPD 184,068m3 14,000m3/day by TSHD	13	22-Jun-15*	06-Jul-15	-239			
SURC2a-070	PC2a Main North Sand Surcharge Period 6mths (8-2=6mths)	180	07-Jul-15	02-Jan-16	-283			
Land Portion C1a		230	01-Jan-15 A	18-Aug-15	-156			
Reclamation Areas		230	01-Jan-15 A	18-Aug-15	-156			_
SURC1a-020	PC1a Main Area Sand Surcharge Period as +11.5mPD (30Jun2015 after 7mths surcharge)	212	01-Jan-15 A	29-Jul-15	-161			:
SURC1a-030	PC1a Main Area Sand Surcharge Removal stg1 420,000m3 20,000m3/day	21	28-Jul-15	18-Aug-15	-145			
Land Portion C1b		222	22-Jan-15 A	31-Aug-15	-304			
Reclamation Areas		222	22-Jan-15 A	31-Aug-15	-304			
West (1/4 Areas)		212	22-Jan-15 A	18-Aug-15	-303			_
SURC1b-020	PC1b West Sand Surcharge Period (21Aug2015 after 7mths surcharge)	212	22-Jan-15 A	18-Aug-15	-303			
East (3/4 Areas)		212	01-Feb-15 A	31-Aug-15	-304			
SURC1b-050	PC1b East Sand Surcharge Period +11.5mPD (31Aug2015 after 7mths surcharge)	212	01-Feb-15 A	31-Aug-15	-304			
Land Portion E2		333	09-Feb-15 A	07-Jan-16	-199			
South Part		305	09-Feb-15 A	10-Dec-15	-193			
Edge Areas			12-Mar-15 A	12-Oct-15	-320			
SUEE2-010	PE2 South Edge Sand Surcharge Laying up to 8.5mPD 103,500m3 20,000m3/day		12-Mar-15 A	30-May-15	-272			
SUEE2-020	PE2 South Edge Sand Surcharge Period as +8.5mPD 4.5mths		31-May-15	12-Oct-15	-320]	Ī
Reclamation Areas			09-Feb-15 A	10-Dec-15	-193			
SURE2-015	PE2 South Main Sand Surcharge Laying upto 11.5mPD 293,063m3 20,000m3/day by TSHD		09-Feb-15 A	13-Jun-15	-163			
SURE2-020	PE2 South Main Sand Surcharge Period as +11.5mPD 6mths (7-1=6mths) with Top Up 67,989m3		14-Jun-15	10-Dec-15	-193			
North Part			16-Apr-15 A	07-Jan-16	-199		_	
Edge Areas - East			01-Jun-15	18-Oct-15	-313			
SUEE2-060	PE2 North(E) Edge Sand Surcharge Laying up to 8.5mPD 103,499m3 20,000m3/day		01-Jun-15	05-Jun-15	-266			
SUEE2-070	PE2 North-E Edge Sand Surcharge Period as +8.5mPD 4.5mths		06-Jun-15	18-Oct-15	-313			
Edge Areas - Nort			21-May-15	07-Nov-15	-313			
SUEE2-110	PE2 North-N Edge Sand Surcharge Period as +5.5mPD 30days		21-May-15	19-Jun-15	-320			
			-					
SUEE2-120 SUEE2-130	PE2 North (N) Edge Sand Surcharge Laying up to 8.5mPD 103,800m3 20,000m3/day		20-Jun-15	25-Jun-15	-272			
	PE2 North-N Edge Sand Surcharge Period as +8.5mPD 4.5mths		26-Jun-15	07-Nov-15	-321			
Inland Areas - Eas			16-Apr-15 A	15-Nov-15	-146			
SURE2-050	PE2 North Main Sand Surcharge Period as +11.5mPD at tunnel area 6mths (7-1=6mths) with Top Up		16-Apr-15 A	15-Nov-15	-146			
	est (Non Tunnel Areas)		12-Jun-15	07-Jan-16	-199			
SURE2-040-2	PE2 North Main Sand Surcharge non tunnel area Laying upto 8.5mPD 124,632m3 10,000m3/day		12-Jun-15	26-Jun-15	-168			
SURE2-042-2	PE2 North Main Sand Surcharge non tunnel area Laying upto 11.5mPD 124,631m3 10,000m3/day		27-Jun-15	11-Jul-15	-168			
SURE2-180	PE2 North Main Sand Surcharge Period as +11.5mPD non tunnel area 6mths (7-1=6mths) with Top	Jp 28 180	12-Jul-15	07-Jan-16	-199			


Remaining Level of Effort Actual Work Critical Remaining W	Page 4 of 8	TASK filters: 3 mor
Actual Level of Effort Remaining Work Milestone		


Induction Instant of the server is a set of the se	ID	Activity Name	Original Duration	Start	Finish	Total Float	May	
Bigs Ansa:000							,	
Build Bodd Notability Scients Notability <th>Land Portion C2b</th> <th></th> <th>30</th> <th>01-Jul-15</th> <th>30-Jul-15</th> <th>-314</th> <th></th> <th></th>	Land Portion C2b		30	01-Jul-15	30-Jul-15	-314		
Land Proton Cic900011-bit field30-bit for110Bigs Area00 </td <td>Edge Areas</td> <td></td> <td>30</td> <td>01-Jul-15</td> <td>30-Jul-15</td> <td>-314</td> <td></td> <td></td>	Edge Areas		30	01-Jul-15	30-Jul-15	-314		
Eige Area30014.44.5030.34.151.12SUC2005PC02 Export PS durage Period 45.8m/P0 mm000 <td< td=""><td>SUEC2c-40</td><td>PC2b Edge Area Surcharge Period as +5.5mPD 1mth</td><td>30</td><td>01-Jul-15</td><td>30-Jul-15</td><td>-314</td><td></td><td></td></td<>	SUEC2c-40	PC2b Edge Area Surcharge Period as +5.5mPD 1mth	30	01-Jul-15	30-Jul-15	-314		
BLCC:::005 PC2:: Ego Aves PDF Surdarg: Paired ::5mP0 Inth 0 0 0 0	Land Portion C2c		30	01-Jul-15	30-Jul-15	-112		
Genetical Instrumentation Works for Seavalls Image: Control In	Edge Areas		30	01-Jul-15	30-Jul-15	-112		
Genetic hubit later	SUEC2c-005	PC2c Edge Area PBF Surcharge Period +5.5mPD 1mth	30	01-Jul-15	30-Jul-15	-112		
Cluster Type SE Xim Surface movement marker cluster at top of call and sloping scawall I = Nato 15A 20Mip15A 20Mip15A CTE 120 Induction of SE-12 (C000) PE2 500 510	Geotechnical Instru	mentation Works	6	16-Mar-15 A	20-May-15 A			
CTSE:120 Installation of SE:12 (0000) PE2. 0.6 16 Man:15A 20 Man;15A 20 Man;15A 20 Man;15A Structural Analysis DF Loc User SE:12 (0000) PE2. 0.0 21 Man;15	Geotechnical Instru	umentation Works for Seawalls	6	16-Mar-15 A	20-May-15 A			
territoria D ABB Selection L ABB	Cluster Type SE 26	Gnrs Surface movement marker cluster at top of cell and sloping seawall	6	16-Mar-15 A	20-May-15 A			
Submission 0 21 May 16 21 May 16 21 May 16 21 May 16 700 Design Submission Curver S1 - C4 wP necess Method 0 21 May 15 2	CTSE-120	Installation of SE-12 (C069) PE2	6	16-Mar-15 A	20-May-15 A			
Design Submitsior Q 11 Muy 15 Q 11 Muy 1	Portion D		355	26-Nov-14 A	15-Nov-15	613		
Structural Analysis for Culveris C1 - C4 w Precast Method 0 21 May-15 21 May-15 2-1 May-15 3-10 PD-D0N-00010 Torkural analysis for Dox Culveris C1 - C4 with Precast Method 0 21 May-15 3-10 PD-D0N-00010 Trainage Impact Assessment and Temporary Diversion (atage 2-16 croanstruction of box culvert EC1) 0 21 May-15 2-1 May-15 3-10 PD-D0N-00010 Settlement Assessment for Dox Culvert EC1 W Precast As Cast in situ Method 0 21 May-15 2-1 May-15 3-10 PD-D0N-00010 Settlement Assessment for Dox Culvert EC1 W Precast As Cast in situ Method 0 21 May-15 3-10 PD-D0N-00010 Settlement Assessment and Cast in situ Method 0 21 May-15 3-10 PD-D0N-00100 Dealade General Arrangement and Cast in situ Method 0 21 May-15 3-10 PD-D0N-00100 Dealade General Arrangement and Cast in situ Method 0 21 May-15 3-10 PD-D0N-00100 Dealade General Arrangement and Cast in situ Method 0 21 May-15 3-10 PD-D0N-00100 Dealade General Arrangement and Cast in situ Method 0 21 May-15 3-10 <td>Submission</td> <td></td> <td>0</td> <td>21-May-15</td> <td>21-May-15</td> <td>792</td> <td>•</td> <td></td>	Submission		0	21-May-15	21-May-15	792	•	
Structural Analysis for Culveris C1 - C4 w Precast Method 0 21 May-15 21 May-15 2-1 May-15 3-10 PD-D0N-00010 Torkural analysis for Dox Culveris C1 - C4 with Precast Method 0 21 May-15 3-10 PD-D0N-00010 Trainage Impact Assessment and Temporary Diversion (atage 2-16 croanstruction of box culvert EC1) 0 21 May-15 2-1 May-15 3-10 PD-D0N-00010 Settlement Assessment for Dox Culvert EC1 W Precast As Cast in situ Method 0 21 May-15 2-1 May-15 3-10 PD-D0N-00010 Settlement Assessment for Dox Culvert EC1 W Precast As Cast in situ Method 0 21 May-15 3-10 PD-D0N-00010 Settlement Assessment and Cast in situ Method 0 21 May-15 3-10 PD-D0N-00100 Dealade General Arrangement and Cast in situ Method 0 21 May-15 3-10 PD-D0N-00100 Dealade General Arrangement and Cast in situ Method 0 21 May-15 3-10 PD-D0N-00100 Dealade General Arrangement and Cast in situ Method 0 21 May-15 3-10 PD-D0N-00100 Dealade General Arrangement and Cast in situ Method 0 21 May-15 3-10 <td>Design Submission</td> <td></td> <td>0</td> <td>21-May-15</td> <td>21-May-15</td> <td>792</td> <td>•</td> <td></td>	Design Submission		0	21-May-15	21-May-15	792	•	
PD-D6N+05010 Structural analysis for Box Culverts C1 - C4 with Process Method O 21-May:15 21-May:15 310 PD-B0R+05010 Drainage Impact Assessment and Temporary Diversion (stage 2- for construction of box culvert EC1) 0 21-May:15 21-May:15 21-May:15 720 PD-D6N+08010 Settement Assessment for Box culvert EC1 Submission 14 0 21-May:15 720 Structural Analysis for Box Culvert EC1 with Precast Method 0 21-May:15 730 PD-D6N+08010 Settement Assessment EC1 with Precast Method 0 21-May:15 730 PD-D6N+08010 Subtament Analysis for Sc Culvert EC1 with Precast Method 0 21-May:15 731 PD-D6N+08010 Settement Assessment EC1 with Precast Method 0 24-May:15 740 730 PD-D6N+08010 Settement Assessment and RC drawngs for Sc AubertSC 10 C4 with Precast Method 0 740 154 May:16 410 PD-D6N+08010 Settement Assessment and RC drawngs for Sc AubertSC 10 C4 with Precast Method 0 144 144 144 PD-D6N+0801 Bocker S* Settement Assessement and RC drawngs for Sc AubertSC 10 C4 with Precast Metho						-310	•••••	
Drainage Impact Assessment & Temporary Diversion (stage 2 - for construction of box culvert EC1) 0 21-May-15 21-May-16 -310 PP-D0R-N07010 Diamage Impact Assessment and Temporary Diversion (stage 2 - for construction of box culvert EC1) 0 21-May-15 21-May-16 722 Settlement Assessment To Box Culvert EC1 Sattlement Assessment To Box culvert EC1 submission 1st 0 21-May-15 21-May-15 724 Ph-D0R-N09010 Sattlement Assessment To Box culvert EC1 with Precast and Cast in-situ Method 0 21-May-15 21-May-15 310 Ph-D0R-N09010 Detailed General Arrangement and RC drawings for Ch O4 with Precast Method 0 21-May-15 310 - Ph-D0R-N09010 Detailed General Arrangement and RC drawings for Box culvert SC th C4 with Precast Method 0 21-May-15 14-May-15 310 Ph-D0R-N09010 Detailed General Arrangement and RC drawings for Box culvert SC th C4 with Precast Method 0 10-Jun-15 14-May-15 310 Ph-DP-H1-1000 Detailed General Arrangement and RC drawings for Box culvert SC th C4 with Precast Method 10 10-Jun-15 14-May-15 340 440 DP-DP-H1-1000 Dextine 12				-	-		•	
Pb-DBN-07010 Drainage Impact Assessment and Tumporary Diversion (stage 2 · for construction of box culvent EC1) 0 21.May-15 3-30 Settlement Assessment for Box Culvent EC1 0 21.May-15 21.May-15 772 Pb-DBN-08010 Settlement Assessment for Box culvent EC1 Submeson 1st 0 21.May-15 21.May-15 772 Pb-DBN-09010 Structural Analysis for Box culvent EC1 with Precess and Cast in-situ Method 0 21.May-15 21.May-15 3-30 Pb-DBN-09010 Destate General Arrangement and RC drawings for Box culvents C1 to C4 with Precess Method 0 21.May-15 15.May-15 3-30 Pb-DBN-10010 Destate General Arrangement and RC drawings for Box culvents C1 to C4 with Precess Method 0 21.May-15 15.May-15 3-30 Pb-DBN-10010 Destate General Arrangement and RC drawings for Box culvents C1 to C4 with Precess Method 0 21.May-15 15.May-15 3-41 Concerteal Block Councerts Seawal Block for Permanent construction 1,980 ms (3,180 · 1190) 15.May-15 15.May-15 3-41 Charter Fp-C1-12.Wall Internal Formwork Removal 21.May-15 25.May-15 2-36			0	21-Mav-15			▼	
Settlement Assessment for Box Culvent EC1 Submission 1st Image: Column 1 and Set				-			•	
PD-DSN-08010 Settlement Assessment for Box outvert EC1 submission 1st Image: Structural Analysis for Sox Culvent EC1 with Precast at Cast in-situ Method Image: Structural Analysis for Box culvert EC1 with Precast at Cast in-situ Method Image: Structural Analysis for Box culvert EC1 with Precast at Cast in-situ Method Image: Structural Analysis for Box culvert EC1 with Precast at Cast in-situ Method Image: Structural Analysis for Box culvert EC1 with Precast Method Image: Structural Analysis for Box culvert EC1 with Precast Method Image: Structural Analysis for Box culverts C1 to C4 with Precast Method Image: Structural Method							L	
Structural Analysis for Box Culvert EC1 w Precast & Cast in-situ Method Image: Control of the Control of the Cast in-situ Method Image: Control of the Control of the Cast in-situ Method Image: Control of the Cast in Situ Method Image: Control o								
PD-DSN-09010 Structural Analysis for Box curvert EC1 with Precast and Cast in-sku Method 0 21-May-15 3-10 PD-DSN-10010 Detailed General Arrangement and RC drawings for Box culverts C1 to C4 with Precast Method 0 21-May-15 3-10 PD-DSN-10010 Detailed General Arrangement and RC drawings for Box culverts C1 to C4 with Precast Method 0 21-May-15 3-10 Process With Conserved With Structure Structu					-		L L L L L L L L L L L L L L L L L L L	
Detailed General Arran gement & RC drawings for C1 to C4 wiPrecast Method 0 21-May 15 21-May 15 310 PD-DGN-10010 Detailed General Arrangement and RC drawings for Box culverts C1 to C4 with Precast Method 0 21-May 15 310 Precast Yard for Seawall Blocks & Culverts 105 01 17-Apr 15/A 15-Nov-15 411 Concrete Blocks 19-Jun 15 15-Nov-15 411 411 Concrete Blocks 19-Jun 15 15-Nov-15 411 411 Culverts C1 19-Jun 15 15-Nov-15 411 Culverts C1 21-May 15 25-May 15 364 PY-C1-200 De Col-2 - Wall Internal Formwork Removal 21-May 15 25-May 15 363 PY-C1-210 PD C01-2 - Top Slab Formwork Removal 21-May 15 25-May 15 363 PY-C1-2100 PD C01-2 - Top Slab Formwork Removal 21-May 15 25-May 15 363 PY-C1-1300 PD C01-3 - Wall External Formwork Removal 2 24-May 15 25-May 15 374 PY-C1-3000 PD C01-3 - Wall External Formwork Removal 2 2-May 15 2-May 15 </td <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>				-	-			
PD-DGN-10010 Dataled General Arrangement and RC drawings for Box culverts C1 to C4 with Precast Method 0 21-May-15* 310 Precast Yard for Seawall Blocks & Culverts 196 17-Apr-15A 15-Nor-15 410 Concrete Blocks 150 19-Jun-16 15-Nor-15 411 PD-PD-10200 Seawall Blocks for Permanent construction 1,990nrs (3,180-1190) 150 19-Jun-15 15-Nor-15 411 Culverts 20 21-May-15 09-Jun-15 15-Nor-15 411 Culverts C1 20 21-May-15 09-Jun-15 5-Nor-15 411 Culverts C1 22 21-May-15 09-Jun-15 5-Nor-15 430 C1-2 PD C01-2 - Wall Internal Formwork Removal 21-May-15 23-May-15 363 PY-C1-2100 PD C01-2 - Top Slab Formwork Removal 21-May-15 25-May-15 363 PY-C1-2100 PD C01-3 - Wall External Formwork Removal 21-May-15 25-May-15 363 PY-C1-3000 PD C01-3 - Wall External Formwork Removal 22 24-May-15 25-May-15 374								
Precast Yard for Seawall Blocks & Culvents 196 17-Apr-15A 15-Nov-15 -410 Concrete Blocks 150 19-Jun-15 15-Nov-15 4411 PD-PY1-0200 Seawall Blocks for Permanent construction 1,990nrs (3,180 - 1190) 150 19-Jun-15 15-Nov-15 4411 Culvents 689 17-Apr-15A 31-Jul-15 3-303 Culvents C1 20 21-May-15 25-May-15 3-364 C1-2 62 21-May-15 25-May-15 3-364 PY-C1-2110 PD C01-2 - Vall Internal Formwork Removal 2 24-May-15 25-May-15 3-363 PY-C1-2100 PD C01-2 - Top Sab Formwork Removal 2 24-May-15 25-May-15 3-364 PY-C1-2100 PD C01-3 - Wall External Formwork Removal 2 24-May-15 25-May-15 3-374 PY-C1-3000 PD C01-3 - Wall External Formwork Removal 2 24-May-15 3-374 PY-C1-3100 PD C01-3 - Wall External Formwork Removal 2 04-Jun-15 0-Jun-15 3-374 PY-C1-3100 PD C01-3 - Wall Internal Formwork Remo				-				
Concrete Blocks 150 19-Jun-15 15-Nov-15 4-41 PD-PYI-0200 Seawall Blocks for Permanent construction 1,990nrs (3,180 - 1190) 1150 19-Jun-15 15-Nov-15 4-11 Culverts 381 17-Apr.15A 31-Jul-15 363 Culverts C1 20 21-May-15 25-May-15 363 PY-C1-2110 PD C01-2 - Wall Internal Formwork Removal 2 24-May-15 25-May-15 363 PY-C1-2110 PD C01-2 - Wall Internal Formwork Removal 2 24-May-15 25-May-15 363 PY-C1-2100 PD C01-2 - Wall Internal Formwork Removal 2 24-May-15 25-May-15 363 PY-C1-2100 PD C01-2 - Wall Internal Formwork Removal 2 24-May-15 25-May-15 374 PY-C1-3080 PD C01-3 - Wall External Formwork 3 21-May-15 25-May-15 374 PY-C1-3100 PD C01-3 - Wall External Formwork Removal 2 2-May-15 374 PY-C1-3100 PD C01-3 - Wall Internal Formwork Removal 2 0-Jun-15 374 PY-C1-3100								
PD-PY1-0200 Seawall Blocks for Permanent construction 1,990/nrs (3,180 - 1190) 150 19-Jun-15 15-Nov-15 -441 Culverts C1 080 17-Apr-15-A 31-Jul-15 0-303 C1-2 21-May-15 25-May-15 25-May-15 25-May-15 -363 PY-C1-2110 PD C01-2 · Vall Internal Formwork Removal 32 1-May-15 23-May-15 23-63 PY-C1-2120 PD C01-2 · Top Slab Formwork Removal 32 1-May-15 23-May-15 -363 C1-3 05-U1-2 · Top Slab Formwork Removal 32 1-May-15 23-May-15 -363 C1-3 PY-C1-3100 PD C01-3 · Vall External Formwork Removal 32 1-May-15 23-May-15 -374 PY-C1-3100 PD C01-3 · Wall External Formwork Removal 32 1-May-15 23-May-15 -374 PY-C1-3100 PD C01-3 · Wall External Formwork Removal 32 2-May-15 33-May -374 PY-C1-3100 PD C01-3 · Wall Internal Formwork Removal 32 2-May-15 348 -374 PY-C1-3100 PD C01-3 · Wall Internal Formwork Removal 32 2-May-15 348 -374 PY-C1-3100 </td <td></td> <td>vall Blocks & Culverts</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		vall Blocks & Culverts						
Culverts 69 17-Apr-15A 31-Jul-15 -303 Culverts C1 20 21-May-15 09-Jun-15 -364 C1-2 5 21-May-15 25-May-15 -363 PY-C1-2110 PD C01-2 - Wall Internal Formwork Removal -363 -363 PY-C1-2120 PD C01-2 - Top Slab Formwork Removal -363 -363 C1-3 21-May-15 25-May-15 -363 C1-3 05-Jun-15 05-Jun-15 -363 PY-C1-2100 PD C01-3 - Wall External Formwork Removal -33 21-May-15 25-May-15 -363 PY-C1-3000 PD C01-3 - Wall External Formwork Removal -33 21-May-15 25-May-15 -374 PY-C1-3100 PD C01-3 - Wall External Formwork Removal -2 2-Jun-15 03-Jun-15 -374 PY-C1-3110 PD C01-3 - Wall External Formwork Removal -2 2-Jun-15 03-Jun-15 -374 PY-C1-3110 PD C01-3 - Wall Internal Formwork Removal -2 0-Jun-15 0-Jun-15 -374 PY-C1-3110 PD C01-4 - Wall Internal Formwork Re								
Culverts C1 09 Jun-15 0-364 C1-2 21-May-15 25-May-15 2-5-May-15 2-5-May-15 2-3-May-15 2-3-May		Seawall Blocks for Permanent construction 1,990nrs (3,180 - 1190)						
C1-2 5 21-May-15 25-May-15 2-383 PY-C1-2100 PD C012 - Wal Internal Formwork Removal 3 21-May-15 23-May-15 2-383 PY-C1-2120 PD C012 - Top Slab Formwork Removal 2 24-May-15 25-May-15 3-363 C1-3 05-001 - 3-Wal External Formwork 3 21-May-15 23-May-15 3-374 PY-C1-3080 PD C01-3-Wal External Formwork 3 21-May-15 23-May-15 3-374 PY-C1-3090 PD C01-3-Wal External Formwork Removal 2 24-May-15 25-May-15 3-374 PY-C1-3100 PD C01-3-Wal External Formwork Removal 2 2-Jun-15 03-Jun-15 3-374 PY-C1-3110 PD C01-3-Wal Internal Formwork Removal 2 02-Jun-15 03-Jun-15 3-374 PY-C1-3120 PD C01-3-Wal Internal Formwork Removal 2 02-Jun-15 05-Jun-15 3-374 PY-C1-4110 PD C01-4-Wal Internal Formwork Removal 2 21-May-15 2-348 3-348 PY-C1-4120 PD C01-4- Wal Internal Formwork Removal 2 21-May-15 3-348 PY-C1-4120 PD C01-4- Wal Internal Formwork Removal <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
PY-C1-2110 PD C01-2 · Wall Internal Formwork Removal 3 21-May-15 23-May-15 -363 PY-C1-2120 PD C01-2 · Top Slab Formwork Removal 2 24-May-15 25-May-16 -363 C1-3 16 21-May-15 25-May-16 -374 PY-C1-3080 PD C01-3 · Wall External Formwork 3 21-May-15 25-May-16 -374 PY-C1-3090 PD C01-3 · Wall External Formwork Removal 3 21-May-15 25-May-15 -374 PY-C1-3100 PD C01-3 · Wall External Formwork Removal 3 21-May-15 25-May-15 -374 PY-C1-3100 PD C01-3 · Wall External Formwork Removal 3 22-May-15 3-74 PY-C1-3110 PD C01-3 · Wall Internal Formwork Removal 3 22-May-15 3-74 PY-C1-3120 PD C01-3 · Wall Internal Formwork Removal 3 21-May-15 3-74 PY-C1-4110 PD C01-4 · Wall Internal Formwork Removal 3 21-May-15 2-May-15 3-84 PY-C1-4120 PD C01-4 · Wall Internal Formwork Removal 2 2-May-15 2-May-15 3-84 PY-C1-4120 PD C01-4 · Wall Internal Formwork Removal 2						-364		
PY-C1-2120 PD C01-2 - Top Slab Formwork Removal 24 May-15 25-May-15 -363 C1-3 21 - May-15 05 - Jun-15 -374 PY-C1-3080 PD C01-3 - Wall External Formwork 23 21 - May-15 23 - May-15 -374 PY-C1-3090 PD C01-3 - Wall External Formwork Removal 24 24 -374 -374 PY-C1-3100 PD C01-3 - Wall External Formwork Removal 24 24 -374 -374 PY-C1-3100 PD C01-3 - Wall Internal Formwork Removal 24 24 -374 -374 PY-C1-3100 PD C01-3 - Wall Internal Formwork Removal 24 24 -374 -374 PY-C1-3100 PD C01-3 - Wall Internal Formwork Removal 24 24 -374 -374 PY-C1-3100 PD C01-3 - Wall Internal Formwork Removal 24 03 -374 PY-C1-3120 PD C01-3 - Top Slab Formwork Removal 24 04 -374 PY-C1-4110 PD C01-4 - Wall Internal Formwork Removal 24 24 -348 PY-C1-4120 PD C01-4 - Top Slab Formwork Removal 21 24 -348 PY-C1-4070 PD C01-6 -			5	21-May-15	25-May-15	-363		
C1-3 D5-Jun-15 O5-Jun-15 O-374 PY-C1-3080 PD C01-3 - Wall External Formwork C1-3 21-May-15 23-May-15 3-374 PY-C1-3090 PD C01-3 - Wall External Formwork Removal C1-2 24-May-15 25-May-15 3-374 PY-C1-3100 PD C01-3 - Wall External Formwork Removal C1-2 26-May-15 27-May-15 3-68 PY-C1-3100 PD C01-3 - Wall Internal Formwork Removal C1-2 04-Jun-15 03-Jun-15 3-374 PY-C1-3100 PD C01-3 - Wall Internal Formwork Removal C1-2 04-Jun-15 05-Jun-15 3-374 PY-C1-3100 PD C01-3 - Wall Internal Formwork Removal C1-2 04-Jun-15 05-Jun-15 3-374 PY-C1-3100 PD C01-4 - Wall Internal Formwork Removal C1-2 04-Jun-15 05-Jun-15 3-374 PY-C1-4110 PD C01-4 - Wall Internal Formwork Removal C1-2 21-May-15 24-May-15 3-48 PY-C1-4110 PD C01-4 - Top Slab Formwork Removal C1-2 21-May-15 0-348	PY-C1-2110	PD C01-2 - Wall Internal Formwork Removal	3	21-May-15	23-May-15	-363	-	
PY-C1-3080 PD C01-3 · Wall External Formwork C1	PY-C1-2120	PD C01-2 - Top Slab Formwork Removal	2	24-May-15	25-May-15	-363	┕╴╸	
PY-C1-3090 PD C01-3 - Wall Concrete 24-May-15 25-May-15 -374 PY-C1-3100 PD C01-3 - Wall External Formwork Removal 0.2 26-May-15 27-May-15 -369 PY-C1-3110 PD C01-3 - Wall Internal Formwork Removal 0.2 02-Jun-15 03-Jun-15 -374 PY-C1-3120 PD C01-3 - Top Slab Formwork Removal 0.2 04-Jun-15 05-Jun-15 -374 PY-C1-3120 PD C01-4 - Wall Internal Formwork Removal 0.4 21-May-15 24-May-15 -374 PY-C1-4110 PD C01-4 - Wall Internal Formwork Removal 0.2 21-May-15 24-May-15 -348 PY-C1-4120 PD C01-4 - Top Slab Formwork Removal 0.2 21-May-15 -348 PY-C1-4120 PD C01-4 - Top Slab Formwork Removal 0.2 23-May-15 -348 PY-C1-4120 PD C01-4 - Top Slab Formwork Removal 0.2 21-May-15 -348 PY-C1-6070 PD C01-6 - Wall Rebar Fixing 6.2 21-May-15 -364	C1-3		16	21-May-15	05-Jun-15	-374		_
PY-C1-3100 PD C01-3 - Wall External Formwork Removal 26-May-15 27-May-15 -369 PY-C1-3100 PD C01-3 - Wall Internal Formwork Removal 20-Jun-15 03-Jun-15 -374 PY-C1-3120 PD C01-3 - Top Slab Formwork Removal 20 04-Jun-15 05-Jun-15 -374 PY-C1-3120 PD C01-4 - Wall Internal Formwork Removal 21-May-15 24-May-15 -348 PY-C1-4110 PD C01-4 - Top Slab Formwork Removal 21-May-15 24-May-15 -348 PY-C1-4120 PD C01-4 - Top Slab Formwork Removal 21-May-15 24-May-15 -348 PY-C1-4120 PD C01-4 - Top Slab Formwork Removal 21-May-15 24-May-15 -348 PY-C1-4120 PD C01-4 - Top Slab Formwork Removal 21-May-15 24-May-15 -348 PY-C1-4120 PD C01-4 - Top Slab Formwork Removal 21-May-15 09-Jun-15 -348 PY-C1-6070 PD C01-6 - Wall Rebar Fixing 6 21-May-15 26-May-15 -364	PY-C1-3080	PD C01-3 - Wall External Formwork	3	21-May-15	23-May-15	-374	-	
PY-C1-3110 PD C01-3 - Wall Internal Formwork Removal Image: Constraint of the second sec	PY-C1-3090	PD C01-3 - Wall Concrete	2	24-May-15	25-May-15	-374	ـــــــــــــــــــــــــــــــــــــ	
PY-C1-3120 PD C01-3 - Top Slab Formwork Removal Image: C1-4	PY-C1-3100	PD C01-3 - Wall External Formwork Removal	2	26-May-15	27-May-15	-369		
C1-4 24-May-15 24-May-15 -348 PY-C1-4110 PD C01-4 - Wall Internal Formwork Removal 1 21-May-15 22-May-15 -348 PY-C1-4120 PD C01-4 - Top Slab Formwork Removal 1 23-May-15 24-May-15 -348 C1-6 21-May-15 09-Jun-15 -364 PY-C1-6070 PD C01-6 - Wall Rebar Fixing 1 6 21-May-15 26-May-15 -364	PY-C1-3110	PD C01-3 - Wall Internal Formwork Removal	2	02-Jun-15	03-Jun-15	-374		╘┝┏
PY-C1-4110 PD C01-4 - Wall Internal Formwork Removal 1 21-May-15 22-May-15 -348 PY-C1-4120 PD C01-4 - Top Slab Formwork Removal 1 23-May-15 24-May-15 -348 C1-6 20 21-May-15 09-Jun-15 -364 PY-C1-6070 PD C01-6 - Wall Rebar Fixing 1 6 21-May-15 -364	PY-C1-3120	PD C01-3 - Top Slab Formwork Removal	2	04-Jun-15	05-Jun-15	-374		
PY-C1-4120 PD C01-4 - Top Slab Formwork Removal C1 C1 <thc1< th=""> C1 C1 C1</thc1<>	C1-4		4	21-May-15	24-May-15	-348		
C1-6 20 21-May-15 09-Jun-15 -364 PY-C1-6070 PD C01-6- Wall Rebar Fixing G 21-May-15 26-May-15 -364	PY-C1-4110	PD C01-4 - Wall Internal Formwork Removal	2	21-May-15	22-May-15	-348	 _	
PY-C1-6070 PD C01-6 - Wall Rebar Fixing 6 21-May-15 26-May-15 -364	PY-C1-4120	PD C01-4 - Top Slab Formwork Removal	2	23-May-15	24-May-15	-348		
PY-C1-6070 PD C01-6 - Wall Rebar Fixing 6 21-May-15 26-May-15 -364	C1-6		20	21-May-15	09-Jun-15	-364		
	PY-C1-6070	PD C01-6 - Wall Rebar Fixing				-364		
PY-C1-6080 PD C01-6 - Wall External Formwork 2 2 25-Mav-15 -364 -364 -	PY-C1-6080	PD C01-6 - Wall External Formwork		25-May-15	26-May-15	-364		ן נ

D	Activity Name	Original Duration	Start	Finish	Total Float	May	
						42	
PY-C1-6090	PD C01-6 - Wall Concrete		27-May-15	28-May-15	-364		
PY-C1-6100	PD C01-6 - Wall External Formwork Removal		29-May-15	30-May-15	-359		
PY-C1-6110	PD C01-6 - Wall Internal Formwork Removal		05-Jun-15	07-Jun-15	-364		
PY-C1-6120	PD C01-6 - Top Slab Formwork Removal		08-Jun-15	09-Jun-15	-364		
Culverts C2			17-Apr-15 A	13-Jul-15	-363		
C2-2		29	21-May-15	18-Jun-15	-352		
PY-C2-2060	PD C02-2 - Wall internal Formwork	6	21-May-15	26-May-15	-352		
PY-C2-2070	PD C02-2 - Wall Rebar Fixing	6	27-May-15	01-Jun-15	-352		
PY-C2-2080	PD C02-2 - Wall External Formwork	3	02-Jun-15	04-Jun-15	-352		- L
PY-C2-2090	PD C02-2 - Wall Concrete	2	05-Jun-15	06-Jun-15	-352		
PY-C2-2100	PD C02-2 - Wall External Formwork Removal	2	07-Jun-15	08-Jun-15	-347		
PY-C2-2110	PD C02-2 - Wall Internal Formwork Removal	3	14-Jun-15	16-Jun-15	-352		
PY-C2-2120	PD C02-2 - Top Slab Formwork Removal	2	17-Jun-15	18-Jun-15	-352		
C2-3		32	04-Jun-15	05-Jul-15	-369		
PY-C2-3060	PD C02-3 - Wall internal Formwork	6	04-Jun-15	09-Jun-15	-369		
PY-C2-3070	PD C02-3 - Wall Rebar Fixing	7	10-Jun-15	16-Jun-15	-369		
PY-C2-3080	PD C02-3 - Wall External Formwork	5	17-Jun-15	21-Jun-15	-369		
PY-C2-3090	PD C02-3 - Wall Concrete	2	22-Jun-15	23-Jun-15	-369		
PY-C2-3100	PD C02-3 - Wall External Formwork Removal	2	24-Jun-15	25-Jun-15	-364		1
PY-C2-3110	PD C02-3 - Wall Internal Formwork Removal	3	01-Jul-15	03-Jul-15	-369		
PY-C2-3120	PD C02-3 - Top Slab Formwork Removal	2	04-Jul-15	05-Jul-15	-369		
C2-4			17-Apr-15 A	19-Jun-15	-339		
PY-C2-4030	PD C02-4 - Foundation Formwork		17-Apr-15 A	21-May-15	-363		
PY-C2-4040	PD C02-4 - Foundation Concrete		22-May-15	23-May-15	-363	Ľ,	
PY-C2-4050	PD C02-4 - Foundation Formwork Removal		24-May-15	24-May-15	-363	L L	
PY-C2-4060	PD C02-4 - Wall internal Formwork		25-May-15	30-May-15	-363		
PY-C2-4070	PD C02-4 - Wall Rebar Fixing		28-May-15	02-Jun-15	-363		
PY-C2-4080	PD C02-4 - Wall External Formwork		03-Jun-15	05-Jun-15	-363		1
PY-C2-4090	PD C02-4 - Wall Concrete		06-Jun-15	07-Jun-15	-363		
PY-C2-4100	PD C02-4 - Wall External Formwork Removal		08-Jun-15	09-Jun-15	-358		
PY-C2-4110	PD C02-4 - Wall Internal Formwork Removal		15-Jun-15	17-Jun-15	-363		
PY-C2-4120	PD C02-4 - Top Slab Formwork Removal		18-Jun-15	19-Jun-15	-339		1
C2-5			21-May-15	13-Jul-15	-363		
PY-C2-5010	PD C02-5 - Foundation Platform		21-May-15	24-May-15	-355		
PY-C2-5010	PD C02-5 - Foundation Platform PD C02-5 - Foundation Rebar Fixing		21-May-15	02-Jun-15	-355		
	PD C02-5 - Foundation Repar Fixing PD C02-5 - Foundation Formwork						
PY-C2-5030			03-Jun-15	06-Jun-15	-355		
PY-C2-5040	PD C02-5 - Foundation Concrete		07-Jun-15	08-Jun-15	-355		
PY-C2-5050	PD C02-5 - Foundation Formwork Removal		09-Jun-15	09-Jun-15	-355		
PY-C2-5060	PD C02-5 - Wall internal Formwork		18-Jun-15	23-Jun-15	-363		
PY-C2-5070	PD C02-5 - Wall Rebar Fixing		21-Jun-15	26-Jun-15	-363		
PY-C2-5080	PD C02-5 - Wall External Formwork		27-Jun-15	29-Jun-15	-363		
PY-C2-5090	PD C02-5 - Wall Concrete		30-Jun-15	01-Jul-15	-363		
PY-C2-5100	PD C02-5 - Wall External Formwork Removal	2	02-Jul-15	03-Jul-15	-358		



ID	Activity Name	Original Duration Start	Finish		Total	May	
			145			42	
PY-C2-5110	PD C02-5 - Wall Internal Formwork Removal	3 09-Jul			363		
PY-C2-5120	PD C02-5 - Top Slab Formwork Removal	2 12-Ju			363		
Culverts EC1		72 21-Ma	-		303		
PY-EC1-01000	PD EC01-01 (6.19m) & 02 (17.3m) Casting	20 21-Ma			303		
PY-EC1-03000	PD EC01-03 (21m) Casting	19 30-Ma	-		303		
PY-EC1-04000	PD EC01-04 (21m) Casting	17 08-Ju			303		
PY-EC1-05000	PD EC01-05 (21m) Casting	16 16-Ju			303		
PY-EC1-06000	PD EC01-06 (21m) Casting	14 24-Ju		-15 -	303		
PY-EC1-07000	PD EC01-07 (21m) Casting	13 02-Ju	l-15 14-Jul-	-15 -	303		
PY-EC1-08000	PD EC01-08 (15m) Casting	9 10-Jul	l-15 18-Jul-	-15 -	303		
PY-EC1-09000	PD EC01-09 (15.23+3m) Casting	10 15-Ju	l-15 24-Jul-	-15 -	303		
PY-EC1-10000	PD EC01-10 Sloping Outfall Casting	11 21-Ju	l-15 31-Jul-	-15 -	303		
Site Construction		269 26-No	ov-14 A 21-Aug	g-15 ·	387		
Surcharge		225 26-Nc	ov-14 A 08-Jul-	·15 ·	362		
West1 Portion		20 05-Ma	ay-15 A 30-Ma	y-15 ·	417		
A1670	PD West1 - Advanced 7days notice to remove surcharge issued by RE	0	05-Ma	y-15 A	÷		
A1700	PD West1 - Mobilization of plant & Preparation work for access road divertion	7 05-Ma	ay-15 A 26-Ma	y-15 A			-
A1930	PD West1 - Surcharge Removal 60,000m3 5,000m3/day	12 19-Ma	ay-15 A 30-Ma	y-15 ·	384		
West2 Portion		23 05-Ma	ay-15 A 12-Jun	n-15 ·	391		-F ÷
A2224	PD West2 - Advanced 7days notice to remove surcharge issued by RE	0	05-Ma	y-15 A	•		
A2230	PD West2 - Surcharge Removal 60,000m3 5,000m3/day	12 01-Ju	n-15 12-Jur	n-15 ·	359		-
East1 Portion		212 26-No	ov-14 A 25-Jun	n-15 ·	371		
A1690	PD East1 - Surcharge Period +11.5mPD 6mths	180 26-No	ov-14 A 24-Ma	y-15 ·	352		
A1695	PD East1 - Advanced 7days notice to remove surcharge issued by RE	0	28-Ma		356		
A1705	PD East1 - Surcharge Removal 60,000m3 5,000m3/day	12 13-Ju			341		
East2 Portion		193 28-De			362		
	PD East2 - Surcharge Period +11.5mPD 6mths	180 28-De			361		
A2265	PD East2 - Advanced 7days notice to remove surcharge issued by RE	0	19-Jur		354		
A2270	PD East2 - Surcharge Removal 60,000m3 5,000m3/day	12 26-Ju			332		
C1 to C4		84 30-Ma			387		
Removal of Tempo	stativ Seawall	63 30-Ma			341		
PD-V2-0010	Temporary Seawall PD C1 - Removal of Temporary Seawall blocks West1 CH6+136 to 6+000 400nrs	63 30-Ma 14 30-Ma			341		
			-				
PD-V2-0030	PD C1 - Removal of North Temporary Seawall West1 Ch6+136 to CH6+000	7 15-Ju			383		
PD-V2-0015	PD C2 - Removal of Temporary Seawall blocks West2 CH6+000 to 5+893 400nrs	14 15-Ju			363		
PD-V2-0020	PD C3 - Removal of Temporary Seawall blocks East1 CH5+893 to 5+800 400nrs	14 30-Ju			348		
PD-V2-0035	PD C2 - Removal of North Temporary Seawall West2 Ch6+000 to CH5+900	7 30-Ju			363		
PD-V2-0040	PD C3 - Removal of North Temporary Seawall East1 CH5+900 to CH5+800	7 15-Jul			348		
PD-V2-0025	PD C4 - Removal of Temporary Seawall blocks East2 CH5+800 to 5+650 400nrs	14 15-Jul			341		
PD-V2-0045	PD C4 - Removal of North Temporary Seawall East2 CH5+800 to CH5+650	7 30-Jul	l-15 05-Au	g-15 ·	341		
Installations of Pre	ecast Culverts except sloping outfalls	82 01-Ju	n-15 21-Au	g-15 ·	403		
Culvert C1		63 01-Ju	n-15 02-Au	g-15 ·	405		
PD-C1-0010	PD C1 Excavation 83,000m3 3,500m3/day	27 01-Ju	n-15 29-Jur	n-15 ·	384		L-E
						I	i

nd Monthly Progress Repo	ort Status as on 21May2015	HKBCF Period Wo	ks Programme	1			
ivity ID	Activity Name	Original Duration	Start	Finish	Total Float	May 42	
PD-C1-0005	PD C1 Pipe Piling Installation	14	08-Jun-15*	21-Jun-15	-410		
PD-C1-0020	PD C1 Leveling of Foundation 4,200m2 200m2/day	21	30-Jun-15	21-Jul-15	-384		
C1-2		14	20-Jul-15	02-Aug-15	-405		
PD-C1-2-010	PD C1-2 & C1-3 Delivery to site	2	20-Jul-15	21-Jul-15	-384		
PD-C1-2-020	PD C1-2 floating to the location	1	24-Jul-15	24-Jul-15	-386		
PD-C1-2-030	PD C1-2 Allow to the site	0	25-Jul-15		-120		
PD-C1-2-040	PD C1-2 Installation	2	25-Jul-15	26-Jul-15	-120		
PD-C1-2-050	PD C1-2 Removal of rear Steel Bulkhead	2	27-Jul-15	28-Jul-15	-373		
PD-C1-2-100	PD C1-2 Backfill Beside of Culvert	5	29-Jul-15	02-Aug-15	-373		
PD-C1-2-060	PD C1-2 Removal of front Steel Bulkhead	4	29-Jul-15	01-Aug-15	-371		
Culvert C2		43	30-Jun-15	14-Aug-15	-374		
PD-C2-0010	PD C2 Excavation 73,000m3 3,000m3/day	25	30-Jun-15	25-Jul-15	-374		
PD-C2-0020	PD C2 Leveling of Foundation	18	27-Jul-15	14-Aug-15	-374		
Culvert C3		23	29-Jul-15	21-Aug-15	-371		
PD-C3-0010	PD C3 Excavation 68,000m3 3,000m3/day	23	29-Jul-15	21-Aug-15	-371		·
Works Area WA2	(Tung Chung)	1434	21-May-12 A	28-Feb-17	0		
Zone A		1434	21-May-12 A	28-Feb-17	0		
A1880	Maintenance of Engineer's Accommodation	1434	21-May-12 A	28-Feb-17	0		
Works Area TKO	Fill Bank	1254	25-Sep-12 A	30-Nov-16	0		
WA-TKO-1040	Operate and Maintain Public Fill Sorting Facilities in Zone A, B1 & B2	1254	25-Sep-12 A	30-Nov-16	0		· · · · · · · · · · · · · · · · · · ·

Remaining Level of Effort	Actual Work	Critical Remaining W	Page 8 of 8	TASK filters: 3 months rolling program
Actual Level of Effort	Remaining Work 🔶	♦ Milestone		
				1

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
Air Quality		•	•	
S5.5.6.1 of	A1	The contractor shall follow the procedures and requirements given in the Air Pollution	All construction sites	V
HKBCFEIA		Control (Construction Dust) Regulation		
S5.5.6.2 of	A2	Proper watering of exposed spoil should be undertaken throughout the construction	All construction sites	V
HKBCFEIA		phase:		
and S4.8.1 of		Any excavated or stockpile of dusty material should be covered entirely by		
TKCLKLEIA		impervious sheeting or sprayed with water to maintain the entire surface wet and		
		then removed or backfilled or reinstated where practicable within 24 hours of the		
		excavation or unloading;		
		Any dusty materials remaining after a stockpile is removed should be wetted with		
		water and cleared from the surface of roads;		
		• A stockpile of dusty material should not be extend beyond the pedestrian barriers,		
		fencing or traffic cones.		
		• Where practicable, vehicle washing facilities with high pressure water jet should be		
		provided at every discernible or designated vehicle exit point. The area where		
		vehicle washing takes place and the road section between the washing facilities		
		and the exit point should be paved with concrete, bituminous materials or		
		hardcores;		
		• When there are open excavation and reinstatement works, hoarding of not less		
		than 2.4m high should be provided as far as practicable along the site boundary		

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;		
		• The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials;		
		 Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; 		
		• Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet;		
		 Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; 		
		 Any skip hoist for material transport should be totally enclosed by impervious sheeting; 		
		• Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides;		
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an		

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		audible high level alarm which is interlocked with the material filling line and no overfilling is allowed;		
		 All unpaved roads/exposed area shall be watered which results in dust suppression by forming moist cohesive films among the discrete grains of road surface material. No burning of debris or other materials on the works areas is allowed; Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created; 		
		 Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading; 		
		• During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.		
		Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The		
		tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards;		
		• Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control		
		 system; and Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable 		

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		surface stabiliser within six months after the last construction activity on the		
		construction site or part of the construction site where the exposed earth lies.		
S5.5.6.3 of	A3	The Contractor should undertake proper watering on all exposed spoil and associated	All construction sites	V
HKBCFEIA		work areas (with at least 8 times per day) throughout the construction phase.		
and S4.8.1 of				
TKCLKLEIA				
S5.5.6.4 of	A4	Implement regular dust monitoring under EM&A programme during the construction	Selected	V
HKBCFEIA		stage.	representative dust	
and S4.11 of			monitoring station	
TKCLKLEIA				
S5.5.7.1 of	A5	The following mitigation measures should be adopted to prevent fugitive dust emissions	All construction sites	N/A
HKBCFEIA		for concrete batching plant:		
		• Loading, unloading, handling, transfer or storage of any dusty materials should be		
		carried out in totally enclosed system;		
		All dust-laden air or waste gas generated by the process operations should be		
		properly extracted and vented to fabric filtering system to meet the emission limits		
		for TSP;		
		• Vents for all silos and cement/ pulverised fuel ash (PFA) weighing scale should be		
		fitted with fabric filtering system;		
		The materials which may generate airborne dusty emissions should be wetted by		
		water spray system;		

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 All receiving hoppers should be enclosed on three sides up to 3m above unloading point; 		
		All conveyor transfer points should be totally enclosed;		
		All access and route roads within the premises should be paved and wetted; and		
		Vehicle cleaning facilities should be provided and used by all concrete trucks		
		before leaving the premises to wash off any dust on the wheels and/or body.		
S5.5.2.7 of	A6	The following mitigation measures should be adopted to prevent	All construction sites	N/A
HKBCFEIA		fugitive dust emissions at barging point:		(Construction in
		All road surface within the barging facilities will be paved;		process)
		Dust enclosures will be provided for the loading ramp;		
		Vehicles will be required to pass through designated wheels wash facilities; and		
		Continuous water spray at the loading points.		
Construction	Noise (Air bor	ne)	l	I
S6.4.10 of	N1	Use of good site practices to limit noise emissions by considering the following:	All construction sites	V
HKBCFEIA		only well-maintained plant should be operated on-site and plant should be		
		serviced regularly during the construction programme;		
		• machines and plant (such as trucks, cranes) that may be in intermittent use should		
		be shut down between work periods or should be throttled down to a minimum;		
		• plant known to emit noise strongly in one direction, where possible, be orientated		

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		so that the noise is directed away from nearby NSRs;		
		silencers or mufflers on construction equipment should be properly fitted and		
		maintained during the construction works;		
		• mobile plant should be sited as far away from NSRs as possible and practicable;		
		• material stockpiles, mobile container site officer and other structures should be		
		effectively utilised, where practicable, to screen noise from on-site construction		
		activities.		
S6.4.11 of	N2	Install temporary hoarding located on the site boundaries between noisy construction	All construction sites	V
HKBCFEIA		activities and NSRs. The conditions of the hoardings shall be properly maintained		
		throughout the construction period.		
S6.4.12 of	N3	Install movable noise barriers (typically density @14kg/m ²), acoustic mat or full	For plant items listed	N/A
HKBCFEIA		enclosure close to noisy plants including air compressor, generators, saw.	in Appendix 6D of the	
1			EIA report at all	
			construction sites	
S6.4.13 of	N4	Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	For plant items listed	V
HKBCFEIA			in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.14 of	N5	Sequencing operation of construction plants where practicable.	All construction sites	V
HKBCFEIA			where practicable	
S5.1 of	N6	Implement a noise monitoring under EM&A programme.	Selected	V

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA			representative noise	
			monitoring station	
Waste Manag	ement (Const	ruction Waste)		
S12.6 of	WM1	The Contractor shall identify a coordinator for the management of waste.	All construction sites	V
TMCLKLEIA			All construction sites	
S12.6 of	WM2	The Contractor shall apply for and obtain the appropriate licenses for the disposal of	All construction sites	V
TMCLKLEIA		public fill, chemical waste and effluent discharges.	All construction sites	
S12.6 of	WM3	EM&A of waste handling, storage, transportation, disposal procedures and		V
TMCLKLEIA		documentation through the site audit programme shall be undertaken.	All construction sites	
S8.3.8 of	WM4	Construction and Demolition Material		V
HKBCFEIA		The following mitigation measures should be implemented in handling the waste:		
and S12.6 of		Maintain temporary stockpiles and reuse excavated fill material for backfilling and		
TMCLKLEIA		reinstatement;		
		Carry out on-site sorting;	All construction sites	
		Make provisions in the Contract documents to allow and promote the use of	All construction sites	
		recycled aggregates where appropriate;		
		Adopt 'Selective Demolition' technique to demolish the existing structures and		
		facilities with a view to recovering broken concrete effectively for recycling purpose,		
		where possible;		

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; 		
		 Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction; In addition, disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation; 		
		andThe surplus surcharge should be transferred to a fill bank.		
S8.3.9- S8.3.11 of HKBCFEIA and S12.6 of TMCLKLEIA	WM5	 <u>C&D Waste</u> Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding and falsework should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage. The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers 	All construction sites	V

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		or skips to enhance reuse or recycling of materials and their proper disposal.		
		Where practicable, concrete and masonry can be crushed and used as fill. Steel		
		reinforcement bar can be used by scrap steel mills. Different areas of the sites		
		should be considered for such segregation and storage.		
S8.2.12-	WM6	Chemical Waste	All construction sites	V
S8.3.15 of		Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal		
HKBCFEIA		(Chemical Waste) (General) Regulation, should be handled in accordance with the		
and S12.6 of		Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.		
TMCLKLEIA		• Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition,		
		and securely closed; have a capacity of less than 450 liters unless the specification		
		has been approved by the EPD; and display a label in English and Chinese in		
		accordance with instructions prescribed in Schedule 2 of the regulation.		
		• The storage area for chemical wastes should be clearly labelled and used solely for		
		the storage of chemical waste; enclosed on at least 3 sides; have an impermeable		
		floor and bunding of sufficient capacity to accommodate 110% of the volume of the		
		largest container or 20 % of the total volume of waste stored in that area, whichever		
		is the greatest; have adequate ventilation; covered to prevent rainfall entering; and		
		arranged so that incompatible materials are adequately separated.		
		• Disposal of chemical waste should be via a licensed waste collector; be to a facility		
		licensed to receive chemical waste, such as the Chemical Waste Treatment Centre		

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		which also offers a chemical waste collection service and can supply the necessary		
		storage containers; or be to a reuser of the waste, under approval from the EPD.		
S8.3.16 of	WM7	Sewage	All construction sites	V
HKBCFEIA		Adequate numbers of portable toilets should be provided for the workers. The		
and S12.6 of		portable toilets should be maintained in a state, which will not deter the workers		
TMCLKLEIA		from utilizing these portable toilets. Night soil should be collected by licensed		
		collectors regularly.		
S8.3.17 of	WM8	General Refuse	All construction sites	V
HKBCFEIA		The site and surroundings shall be kept tidy and litter free. General refuse		
and S12.6 of		generated on-site should be stored in enclosed bins or compaction units separately		
TMCLKLEIA		from construction and chemical wastes.		
		A reputable waste collector should be employed by the Contractor to remove		
		general refuse from the site, separately from construction and chemical wastes, on		
		a daily basis to minimize odour, pest and litter impacts. Burning of refuse on		
		construction sites is prohibited by law.		
		• Aluminium cans are often recovered from the waste stream by individual collectors		
		if they are segregated and made easily accessible. Separate labelled bins for their		
		deposit should be provided if feasible.		
		Office wastes can be reduced through the recycling of paper if volumes are large		
		enough to warrant collection. Participation in a local collection scheme should be		

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 considered by the Contractor. In addition, waste separation facilities for paper, aluminum cans, plastic bottles etc., should be provided. Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including reduction, reuse and recycling of wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By-laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. All waste containers shall be in a secure area on hardstanding. 		
Water Quality	(Construction	Phase)		
	W1	Mitigation during the marine works to reduce impacts to within acceptable levels have been recommended and will comprise a series of measures that restrict the method and sequencing of backfilling, as well as protection measures. Details of the measures are provided below:	During filling	V

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
EIA Ref.		 Environmental Mitigation Measures Reclamation filling for the Project shall not proceed until at least 200m of leading seawall at the reclamation area formed above +2.2mPD, unless otherwise agreement was obtained from EPD, except for the 300m gaps for marine access. All underwater filling works shall be carried out behind seawalls to avoid dispersion of suspended solids outside the Project limit; Except for the filling of the cellular structures, not more than 15% public fill shall be used for reclamation filling below +2.5mPD during construction of the seawall; After the seawall is completed except for the 300m marine access as indicated in the EPs, not more than 30% public fill shall be used for reclamation filling below +2.5mPD, unless otherwise agreement from EPD was obtained; Upon completion of 200m leading seawall, no more than a total of 60 filling barge trips per day shall be made with a cumulative maximum daily filling rate of 60,000 m3 for HKBCF and TMCLKL southern landfall reclamation during the filling operation; and Upon completion of the whole section of seawall except for the 300m marine access as indicated in the EPs, no more than a total of 190 filling barge trips per day shall be made with a cumulative maximum daily filling rate of 60,000 m3 for HKBCF and TMCLKL southern landfall reclamation during the filling operation; and 	Location	-
		Floating type perimeter silt curtains shall be around the HKBCF site before the commencement of marine works. Staggered layers of silt curtain shall be provided		

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 to prevent sediment loss at navigation accesses. The length of each staggered layers shall be at least 200m; Single layer silt curtain to be applied around the North-east airport water intake; The silt-curtains should be maintained in good condition to ensure the sediment plume generated from filling be confined effectively within the site boundary; The filling works shall be scheduled to spread the works evenly over a working day; Cellular structure shall be used for seawall construction; A layer of geotextile shall be placed on top of the seabed before any filling activities take place inside the cellular structures to form the seawall; The conveyor belts shall be fitted with windboards and conveyor release points shall be covered with curtain to prevent any spillage of filling materials onto the surrounding waters; and An additional layer of silt curtain shall be installed near the active stone column installation points. A layer of geotextile with stone blanket on top shall be placed on the seabed prior to stone column installation works. 		
S9.11.1.3 of HKBCFEIA and S6.10 of	W2	Land Works General construction activities on land should also be governed by standard good working practice. Specific measures to be written into the works contracts should include:	All land-based construction sites	V

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA	Ref	 wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters; sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided; storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks; silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm; temporary access roads should be surfaced with crushed stone or gravel; rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities; measures should be taken to prevent the washout of construction materials, soil, silt 		Status
		or debris into any drainage system;open stockpiles of construction materials (e.g. aggregates and sand) on site		

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 should be covered with tarpaulin or similar fabric during rainstorms; manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers; 		
		 discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system; all vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit; 		
		 wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain; the section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel; 		
		 wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects; vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for offsite disposal; 		

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		the contractors shall prepare an oil / chemical cleanup plan and ensure that		
		leakages or spillages are contained and cleaned up immediately;		
		 waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance; 		
		• all fuel tanks and chemical storage areas should be provided with locks and be		
		sited on sealed areas. The storage areas should be surrounded by bunds with a		
		capacity equal to 110% of the storage capacity of the largest tank; and		
		surface run-off from bunded areas should pass through oil/grease traps prior to		
		discharge to the storm water system		
S9.14 of	W3	Implement a water quality monitoring programme	At identified	V
HKBCFEIA			monitoring location	
and S6.10 of				
TMCLKLEIA				
S6.10 of	W4	All construction works shall be subject to routine audit to ensure implementation of all	All construction site	V
TMCLKLEIA		EIA recommendations and good working practice.	areas	
Ecology (Con	struction Phas	e)		
S10.7 of	E1	Install silt curtain during the construction	Seawall, reclamation	V
HKBCFEIA		Limit works fronts	area	
and S8.14 of		 Construct seawall prior to reclamation filling where practicable 		
TMCLKLEIA				

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Good site practices		
		Strict enforcement of no marine dumping		
		Site runoff control		
		Spill response plan		
S10.7 of	E2	 Watering to reduce dust generation; prevention of siltation of freshwater habitats; 	Land-based works	V
HKBCFEIA		Site runoff should be desilted, to reduce the potential for suspended sediments,	areas	
		organics and other contaminants to enter streams and standing freshwater.		
S10.7 of	E3	Good site practices, including strictly following the permitted works hours, using	Land-based works	V
HKBCFEIA		quieter machines where practicable, and avoiding excessive lightings during night	areas	
and S8.14 of		time.		
TMCLKLEIA				
S10.7 of	E4	Dolphin Exclusion Zone	Marine works	V
HKBCFEIA		Dolphin watching plan		
and S8.14 of				
TMCLKLEIA				
S10.7 of	E5	Decouple compressors and other equipment on working vessels	Marine works	V
HKBCFEIA		Proposal on design and implementation of acoustic decoupling measures applied		
and S8.14 of		during reclamation works		
TMCLKLEIA		Avoidance of percussive piling		
S10.7 of	E6	Control vessel speed	Marine traffic	V

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
HKBCFEIA		Skipper training		
and S8.14 of		Predefined and regular routes for working vessels; avoid Brothers Islands		
TMCLKLEIA				
S10.10 of	E7	Vessel based dolphin monitoring	Northeast and	V
HKBCFEIA			Northwest	
and S8.14 of			Lantau	
TMCLKLEIA				
Fisheries				
S11.7 of	F1	Reduce re-suspension of sediments	Seawall, reclamation	V
HKBCFEIA		Limit works fronts	area	
		Good site practices		
		Strict enforcement of no marine dumping		
		Spill response plan		
S11.7 of	F2	 Install silt-grease trap in the drainage system collecting surface runoff 	Reclamation area	V
HKBCFEIA				
Landscape &	Visual (Constr	uction Phase)		
S14.3.3. 3 of	LV1	Mitigate Landscape Impacts	All construction site	N/A
HKBCFEIA			areas	
and S10.9 of		G1/CM4 Grass-hydroseed or sheeting bare soil surface and stock pile areas.		
TMCLKLEIA		G9 Reserve of loose natural granite rocks for re-use. Provide new coastline to		
		adopt "natural-look" by means of using armour rocks in the form of natural		

Monthly EM&A Report for May 2015

EIA Ref.	EM&A Log Ref	Environmental Mitigation Measures	Location	Implementation Status
		rock materials and planting strip area accommodating screen buffer to enhance "natural-look" of new coastline.		Status
S10.9 of TMCLKLEIA	LV2	Mitigate Landscape ImpactsCM7Ensure no run-off into water body adjacent to the Project Area.	All construction site areas	V
S14.3.3. 3 of HKBCFEIA	LV4	Mitigate Visual ImpactsV1Minimize time for construction activities during construction period.	All construction site areas	V
S10.9 of TMCLKLEIA	LV5	<u>Mitigate Visual Impacts</u> CM6 Control night-time lighting and glare by hooding all lights.	All construction site areas	V
EM&A		•		
S15.2.2 of HKBCFEIA	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual.	All construction site areas	V
S15.5 - S15.6 of HKBCFEIA	EM2	 An Environmental Team needs to be employed as per the EM&A Manual. Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with. 	All construction site areas	V

Legend: V = implemented;

x = not implemented;

N/A = not applicable

Appendix D - Summary of Action and Limit Levels

Location	Action Level	Limit Level		
AMS2	374 μg/m ³	500 μg/m ³		
AMS3B*	368 μg/m ³	500 μg/m ³		
AMS6	360 μg/m ³	500 μg/m ³		
AMS7A [#]	370 μg/m ³	500 μg/m ³		

Table 1 – Action and Limit Levels for 1-hour TSP

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

[#]Action level set out at AMS7 Hong Kong SkyCity Marriott Hotel is adopted.

Table 2 – Action and	I Limit Levels for	24-hour TSP
----------------------	--------------------	-------------

Location	Action Level	Limit Level
AMS2	176 μg/m³	260 μg/m ³
AMS3B*	167 μg/m³	260 μg/m ³
AMS6	173 μg/m³	260 μg/m ³
AMS7A [#]	183 μg/m³	260 μg/m ³

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

[#]Action level set out at AMS7 Hong Kong SkyCity Marriott Hotel is adopted.

Table 3 – Action and Limit Levels for Construction Noise ((0700-1900 hrs of normal weekdays)
--	------------------------------------

Location	Action Level	Limit Level
NMS2	When one documented	75 dB(A)
	complaint, related to 0700 –	
	1900 hours on normal	
NMS3B	weekdays, is received	*65 / 70 dB(A)
	from any one of the sensitive	
	receivers	

*Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

Parameters	Action	Limit
DO in mg L ⁻¹	Surface and Middle	Surface and Middle
(Surface, Middle & Bottom)	5.0	4 .2 (except 5 mg/L for FCZ)
	Bottom	<u>Bottom</u>
	4.7	3.6
SS in mg L ⁻¹	23.5 and 120% of upstream	34.4 and 130% of upstream
(depth-averaged)	control station's SS at the	control station's SS at the same
	same tide of the same day	tide of the same day and
		10mg/L for WSD Seawater
		intakes
Turbidity in NTU	27.5 and 120% of upstream	47.0 and 130% of upstream
(depth-averaged)	control station's turbidity at	control station's turbidity at the
	the same tide of the same	same tide of the same day
	day	

Table 4 – Action and Limit Levels for Water Quality

Notes:

- 1. "depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 5(a) Action and Limit Levels for Chinese White Dolphin Monitoring - Approach to Define Action Level (AL) and Limit Level (LL):

	North Lantau	Social Cluster
	NEL	NWL
Action Level	(STG < 70% of baseline) &	(STG < 70% of baseline) &
	(ANI < 70% of baseline)	(ANI < 70% of baseline)
Limit Level	[(STG < 40% of baseline) & (Al	NI < 40% of baseline)] AND
	[(STG < 40% of baseline) & (A	NI < 40% of baseline)]

For North Lantau Social Cluster, action level will be trigger if either NEL **or** NWL fall below the criteria; limit level will be triggered if both NEL **and** NWL fall below the criteria.

Table 5(b) Derived Value of Action Level (AL) and Limit Level (LL) for Chinese White Dolphin Monitoring

	North Lantau	Social Cluster
	NEL	NWL
Action Level	(STG < 4.2) &	(STG < 6.9) &
	(ANI < 15.5)	(ANI < 31.3)
Limit Level	[(STG < 2.4) & (ANI <8.9)] ANI	D
	[(STG < 3.9)& (ANI < 17.9)]	

Station	Tung Chung Deve	elopment Pier (AM	IS2) Operator:	Leung Yiu Ting	
Cal. Date:	27-Mar-15		Next Due Date:	26-May-15	
Equipment No.:	A-001-78T	- -	Serial No.	3383	
			Ambient Condition		
Temperat	ure, Ta (K)	294	Pressure, Pa (mmHg)	763.0	

	A States	Orifice Transfer St	andard Information		
Serial No:	988	Slope, mc	1.97518	Intercept, bc	-0.01001
Last Calibration Date:	28-May-14	1.2.1	mc x Qstd + bc = [I	DH x (Pa/760) x (298/Ta)] ^{1/2}	
Next Calibration Date:	28-May-15		Qstd = {[DH x (Pa/	760) x (298/Ta)] ^{1/2} -bc} / mc	

		Calibration o	of TSP Sampler		
		Orfice		HV	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	8.2	2.89	1.47	48.0	48.41
13	7.0	2.67	1.36	44.0	44.38
10	5.3	2.32	1.18	36.0	36.31
7	4.2	2.07	1.05	32.0	32.27
5	2.6	1.63	0.83	24.0	24.21
By Linear Regre Slope , mw = Correlation Coe	ession of Y on X 38.1883 fficient* =	0.9965	Intercept, bw =	-7.8	238
Slope , mw = Correlation Coe	38.1883 fficient* =	0.9965 heck and recalibrate.	Intercept, bw =	-7.8	238
Slope , mw = Correlation Coe	38.1883 fficient* =	heck and recalibrate.	Intercept, bw = Calculation	-7.8	238
Slope , mw = Correlation Coe *If Correlation Co	38.1883 fficient* = pefficient < 0.990, c	heck and recalibrate.	-	-7.8	238
Slope , mw = Correlation Coe If Correlation Co From the TSP Fig	38.1883 fficient* = pefficient < 0.990, c eld Calibration Cur	heck and recalibrate.	-	-7.8	238
Slope , mw = Correlation Coe If Correlation Co From the TSP Fig	38.1883 fficient* = pefficient < 0.990, c eld Calibration Cur	heck and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min	Calculation		238

Remarks:

QC Reviewer: Lenna

Signature:

Date: <u>)7-3-/1</u>

D:\HVS Calibration Certificate (Existing)

Station	Tung Chung Deve	lopment Pier (A	MS2) Operator:	Leung Yiu Ting	_
Cal. Date:	27-May-15		Next Due Date:	27-Jul-15	
Equipment No.:	A-001-78T		Serial No.	3383	_
	,		Ambient Condition		
Temperat	ure, Ta (K)	303	Pressure, Pa (mmHg)	754.0	

	(Drifice Transfer St	andard Information		
Serial No:	988	Slope, mc	1.97518	Intercept, bc	-0.01001
Last Calibration Date:	28-May-14		mc x Qstd + bc = [[DH x (Pa/760) x (298/Ta)] ^{1/2}	
Next Calibration Date:	28-May-15		Qstd = {[DH x (Pa/7	760) x (298/Ta)] ^{1/2} -bc} / mc	

		Calibration of	of TSP Sampler		
		Orfice		HVS	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	8.0	2.79	1.42	47.0	46.43
13	6.9	2.59	1.32	44.0	43.46
10	5.1	2.23	1.13	37.0	36.55
7	4.0	1.98	1.01	31.0	30.62
5	2.5	1.56	0.80	22.0	21.73
Slope , mw = Correlation Coe		- 0.9962 check and recalibrate.	Intercept, bw =	-9.6	798
Slope , mw = Correlation Coe	40.0416 fficient* =	- 0.9962	Intercept, bw =	-9.6	798
Slope , mw = Correlation Coe	40.0416 fficient* =	check and recalibrate.	Intercept, bw = t Calculation	-9.6	798
Slope , mw = Correlation Coe	40.0416 fficient* = 	check and recalibrate.	_	-9.6	798
Slope , mw = Correlation Coe If Correlation Co From the TSP Fi	40.0416 fficient* = pefficient < 0.990, of eld Calibration Cur	check and recalibrate.	_	-9.6	798
Slope , mw = Correlation Coe If Correlation Co From the TSP Fi	40.0416 fficient* = pefficient < 0.990, of eld Calibration Cur	check and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min "Y" value according to	 t Calculation		798
Slope , mw = Correlation Coe If Correlation Co From the TSP Fi	40.0416 fficient* = pefficient < 0.990, of eld Calibration Cur	check and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min	 t Calculation		
Slope , mw = Correlation Coe If Correlation Co From the TSP Fi From the Regres	40.0416 fficient* = pefficient < 0.990, of eld Calibration Cur sion Equation, the	check and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min "Y" value according to	 t Calculation x [(Pa/760) x (298/		42.90

P

Signature: _

QC Reviewer: WS CHAN

Date: 28/05/15

D:\HVS Calibration Certificate (Existing

Station	Site Boundary of S	Site Office (WA2) (AMS3B) Operator:	Leung Yiu Ting	
Cal. Date:	6-Mar-15		Next Due Date:	6-May-15	
Equipment No.:	A-001-79T	-1	Serial No.	3384	
		, 	Ambient Condition		
Temperati	ure, Ta (K)	290	Pressure, Pa (mmHg)	762.2	

Orifice Transfer Standard Information								
Serial No:	988	Slope, mc	1.97518	Intercept, bc	-0.01001			
Last Calibration Date:	28-May-14	1923a	mc x Qstd + bc = [[DH x (Pa/760) x (298/Ta)] ^{1/2}				
Next Calibration Date:	28-May-15	Qstd = {[DH x (Pa/760) x (298/Ta)] ^{1/2} -bc} / mc						

		Calibration of	of TSP Sampler		
		Orfice	HVS Flow Recorder		
	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	7.6	2.80	1.42	52.0	52.79
13	6.0	2.49	1.26	44.0	44.67
10	5.0	2.27	1.15	36.0	36.55
7	3.0	1.76	0.90	24.0	24.36
5	2.0	1.44	0.73	16.0	16.24
Slope , mw = Correlation Coe	efficient* =	0.9960			
-	ffiniantt -	- 0.0060			
Correlation Coe	i i i i i i i i i i i i i i i i i i i	0.9960	_		
Correlation Coe	i i i i i i i i i i i i i i i i i i i		_		
Correlation Coe	pefficient < 0.990, o	check and recalibrate.	Calculation		
Correlation Coe	pefficient < 0.990, o	check and recalibrate.	Calculation		
Correlation Coe *If Correlation Co From the TSP Fi	befficient < 0.990, o	check and recalibrate.	– Calculation		
Correlation Coe *If Correlation Co From the TSP Fi	befficient < 0.990, o	check and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min "Y" value according to		- 1/2	
Correlation Coe If Correlation Co From the TSP Fi	befficient < 0.990, o	check and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min		Ta)] ^{1/2}	
From the TSP Fi	befficient < 0.990, o	check and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min "Y" value according to	x [(Pa/760) x (298/	Ta)] ^{1/2}	45.19

Remarks:			
QC Reviewer:	WS CHAN	Signature:	Date: 06/2/15
			D:\HVS Calibration Certificate (Existing)

Station	Site Boundary of S	Site Office (WA2) (AMS3B) Operator:	Leung Yiu Ting	_
Cal. Date:	6-May-15	6-May-15	Next Due Date:	6-Jul-15	
Equipment No.:	A-001-79T	-0	Serial No.	3384	-
	,		Ambient Condition		
Temperatu	ure, Ta (K)	301	Pressure, Pa (mmHg)	755.1	
Temperati	ure, Ta (K)	301	Pressure, Pa (mmHg)	755.1	

Orifice Transfer Standard Information								
Serial No:	988	Slope, mc	1.97518	Intercept, bc	-0.01001			
Last Calibration Date:	28-May-14		mc x Qstd + bc = [[OH x (Pa/760) x (298/Ta)] ^{1/2}				
Next Calibration Date: 28-May-15 Qstd = {[DH x (Pa/760) x (298/Ta)] ^{1/2} -bc} / mc								

		Calibration of	of TSP Sampler	Carlos de C		
		Orfice	HVS Flow Recorder			
Resistance Plate No. in. of water		[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Recorde Reading IC (CFM) Y-axis	
18	7.4	2.70	1.37	50.0	49.59	
13	6.1	2.45	1.25	43.0	42.65	
10	4.9	2.20	1.12	36.0	35.70	
7	3.1	1.75	0.89	26.0	25.79	
5	2.0	1.40	0.72	15.0	14.88	
Slope , mw = Correlation Coe		- 0.9967 check and recalibrate.	Intercept, bw =	-21.	3607	
Slope , mw = Correlation Coe	51.6022 efficient* =	and the second	Intercept, bw =	-21.	3607	
Slope , mw = Correlation Coe	51.6022	check and recalibrate. Set Point	Intercept, bw =	-21.	3607	
Slope , mw = Correlation Coe	51.6022	check and recalibrate.	_	-21.	3607	
Slope , mw = Correlation Coe If Correlation Co From the TSP F	51.6022 efficient* = pefficient < 0.990, of ield Calibration Cur	check and recalibrate. Set Point	_	-21.	3607	
Slope , mw = Correlation Coe If Correlation Co From the TSP F	51.6022 efficient* = pefficient < 0.990, of ield Calibration Cur	check and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min	Calculation		3607	

Remarks:						
QC Reviewer: _	WS	CHAN	Signature:	R	Date:	02/05/15

D:\HVS Calibration Certificate (Existing)

Station	Chu Kong Air-Sea Uni	ion Transportation C	o.Ltd. (AMS7A) Operator:	Cheung Hung Wai	
Cal. Date:	2-Apr-15	2-Apr-15		2-Jun-15	
Equipment No.:	A-001-80T	-	Serial No.	3385	
			Ambient Condition		
Temperat	ure, Ta (K)	297	Pressure, Pa (mmHg)	755.1	

Orifice Transfer Standard Information								
Serial No:	988	Slope, mc	1.97518	Intercept, bc	-0.01001			
Last Calibration Date:	28-May-14	mc x Qstd + bc = [DH x (Pa/760) x (298/Ta)] ^{1/2}						
Next Calibration Date:	28-May-15	Qstd = {[DH x (Pa/760) x (298/Ta)] ^{1/2} -bc} / mc						

		Calibration C	of TSP Sampler		
		Orfice		HVS	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	6.9	2.62	1.33	48.0	47.93
13	6.0	2.45	1.24	42.0	41.93
10	4.7	2.16	1.10	34.0	33.95
7	3.6	1.89	0.96	28.0	27.96
5	2.8	1.67	0.85	21.0	20.97
Slope , mw = Correlation Coe	54.4381 fficient* =	0.9963	Intercept, bw = 	-25.2	2512
*If Correlation Co	pefficient < 0.990, o	check and recalibrate.	_		
		Set Point	Calculation		
From the TSP Fi	eld Calibration Cur	Set Point ve, take Qstd = 1.30m ³ /min	Calculation		
			Calculation		
		ve, take Qstd = 1.30m ³ /min "Y" value according to		rov1/2	
		ve, take Qstd = 1.30m ³ /min		Γa)] ^{1/2}	
From the Regres	sion Equation, the	ve, take Qstd = 1.30m ³ /min "Y" value according to	x [(Pa/760) x (298/	Γa)] ^{1/2}	45.59
From the Regres	sion Equation, the	ve, take Qstd = 1.30m ³ /min "Y" value according to mw x Qstd + bw = IC	x [(Pa/760) x (298/	「a)] ^{1/2}	45.59
From the Regres	sion Equation, the	ve, take Qstd = 1.30m ³ /min "Y" value according to mw x Qstd + bw = IC	x [(Pa/760) x (298/	[a)] ^{1/2}	45.59
From the Regres	sion Equation, the	ve, take Qstd = 1.30m ³ /min "Y" value according to mw x Qstd + bw = IC	x [(Pa/760) x (298/	Γa)] ^{1/2}	45.59
From the Regres	sion Equation, the	ve, take Qstd = 1.30m ³ /min "Y" value according to mw x Qstd + bw = IC	x [(Pa/760) x (298/	Γa)] ^{1/2}	45.59
From the Regres Therefore, Set P Remarks:	sion Equation, the	ve, take Qstd = 1.30m ³ /min "Y" value according to mw x Qstd + bw = IC std + bw) x [(760 / Pa) x (Ta / 29	x [(Pa/760) x (298/ 98)] ^{1/2} =	Γa)] ^{1/2}	45.59

Date: 2/4/15

D:\HVS Calibration Certificate (Existing)\@

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator		Rootsmeter Orifice I.I		438320 0988	Ta (K) - Pa (mm) -	296 - 751.84
PLATE OR Run # 1 2 3 4 5	VOLUME START (m3) NA NA NA NA NA	VOLUME STOP (m3) NA NA NA NA NA NA	DIFF VOLUME (m3) 1.00 1.00 1.00 1.00 1.00	DIFF TIME (min) 1.3790 0.9720 0.8690 0.8260 0.6830	METER DIFF Hg (mm) 3.2 6.4 7.9 8.8 12.8	ORFICE DIFF H2O (in.) 2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9917 0.9875 0.9854 0.9843 0.9790	0.7191 1.0159 1.1339 1.1916 1.4333	1.4113 1.9959 2.2315 2.3405 2.8227	0.9957 0.9915 0.9894 0.9883 0.9829	0.7221 1.0201 1.1385 1.1965 1.4392	$\begin{array}{c} 0.8874 \\ 1.2549 \\ 1.4030 \\ 1.4715 \\ 1.7747 \end{array}$
Qstd slog intercep coefficie	t (b) = ent (r) =	1.97518 -0.01001 0.99998 Pa/760) (298/'	Qa slop intercep coeffici	t (b) =	1.23683 -0.00630 0.99998

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$

Туре:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.07a
Sensitivity Adjustment Scale Setting:	557 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]				
Venue:	Cyberport (Pui Ying Secondary School)				
Model No.:	Series 1400AB				
Serial No:	Control: 140AB219899803				_
	Sensor:	1200C143659803	K _o :	12500	_
Last Calibration Date*:	10 May 2014				_

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 557 CPM 557 CPM

Hour	Date (dd-mm-yy)	Time			bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	11-05-14	09:30	-	10:30	26.7	75	0.04434	1775	29.58
2	11-05-14	10:30	-	11:30	26.7	75	0.04716	1880	31.33
3	11-05-14	11:30	-	12:30	26.8	76	0.04927	1964	32.73
4	11-05-14	12:30	-	13:30	26.8	75	0.05035	2015	33.58

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

 By Linear Regression of Y or X

 Slope (K-factor):
 0.0015

 Correlation coefficient:
 0.9982

 Validity of Calibration Record:
 11 May 2015

Remarks:

QC Reviewer: YW Fung	Signature:	4/	Date:	12 May 2014

Туре:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.07a
Sensitivity Adjustment Scale Setting:	557 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]				
Venue:	Cyberport (Pui Ying Secondary School)				
Model No.:	Series 1400AB				
Serial No:	Control: 140AB219899803				
	Sensor:	1200C143659803	K _o :	12500	
Last Calibration Date*:	7 May 2015				

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

557	CPM
557	CPM

Hour	Date (dd-mm-yy)	Time			bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	08-05-15	09:15	-	10:15	26.9	76	0.04417	1763	29.38
2	08-05-15	10:15	-	11:15	26.9	76	0.04625	1851	30.85
3	08-05-15	11:15	-	12:15	26.9	77	0.04513	1805	30.08
4	08-05-15	12:15	-	13:15	27.1	77	0.04828	1926	32.10

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X		
Slope (K-factor):	0.0015	
Correlation coefficient:	0.9983	

Validity of Calibration Record: 8 May 2016

Remarks:					
QC Reviewer:	YW Fung	Signature:	1.	Date:	11 May 2015

Туре:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.08a
Sensitivity Adjustment Scale Setting:	702 CPM
, , , ,	

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht	& Patashnick TEOM®			
Venue:	Cyberport	Pui Ying Secondary Scho	ol)		
Model No.:	Series 140	0AB			
Serial No:	Control:	140AB219899803			
	Sensor:	1200C143659803	K _o :	12500	
Last Calibration Date*:	10 May 20	14			

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

702	CPM
702	CPM

Hour	Date	0	Tim	е	Amb	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)				Conc	lition	(mg/m³)	Count ²	Minute ³
					Temp	R.H.	Y-axis		X-axis
					(°C)	(%)			
1	11-05-14	09:45	-	10:45	26.7	75	0.04568	1713	28.50
2	11-05-14	10:45	-	11:45	26.7	75	0.04857	1819	30.32
3	11-05-14	11:45	-	12:45	26.8	76	0.05063	1903	31.72
4	11-05-14	12:45	-	13:45	26.8	75	0.05116	1922	32.03

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

Slope (K-factor):	0.0016	
Correlation coefficient:	0.9984	

Validity of Calibration Record: <u>11 May 2015</u>

Re	m	ar	KS:	:
		-		-

QC Reviewer:	YW Fung	Signature:	4	Date:	12 May 2014

Laser Dust Monitor
SIBATA
LD-3
A.005.08a
702 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht	& Patashnick TEOM [®]			
Venue:	Cyberport	Pui Ying Secondary Scho	ool)		
Model No.:	Series 140	0AB			
Serial No:	Control:	140AB219899803			
	Sensor:	1200C143659803	K _o :	12500	
Last Calibration Date*:	7 May 201	5			

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

_

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

702	CPM
702	CPM

Hour	Date (dd-mm-yy)		Tim	е	Amb Cond		Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	08-05-15	09:30	-	10:30	26.9	76	0.04587	1722	28.70
2	08-05-15	10:30	-	11:30	26.9	76	0.04774	1795	29.92
3	08-05-15	11:30	-	12:30	26.9	77	0.04976	1864	31.07
4	08-05-15	12:30	-	13:30	27.1	77	0.05051	1901	31.68

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

Slope (K-factor):	0.0016	
Correlation coefficient:	0.9978	

1212112

Validity of Calibration Record: 8 May 2016

Remarks:

tomarto.					
			4		
QC Reviewer:	YW Fung	Signature:		Date:	11 May 2015

Туре:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.09a
Sensitivity Adjustment Scale Setting:	797 CPM

Mike Shek (MSKM)

Standard Equipment

Operator:

Equipment:	Rupprecht	& Patashnick TEOM [®]			
Venue: Cyberport (Pui Ying Secondary School)					
Model No.: Series 1400AB					
Serial No:	Control:	140AB219899803			
	Sensor:	1200C143659803	K _o :	12500	
Last Calibration Date*:	10 May 20	14			

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 797 CPM 797 CPM

Hour	Date (dd-mm-yy)	Time			bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	11-05-14	13:30	-	14:30	26.8	75	0.05034	2017	33.62
2	11-05-14	14:30	-	15:30	26.9	76	0.05211	2084	34.73
3	11-05-14	15:30	-	16:30	26.9	76	0.05163	2066	34.43
4	11-05-14	16:30	-	17:30	26.9	76	0.05272	2113	35.22

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X		
Slope (K-factor):	0.0015	
Correlation coefficient:	0.9965	
Validity of Calibration Record:	11 May 2015	

Remarks:					
			1		
QC Reviewer:	YW Fung	Signature:		Date:	12 May 2014

Type:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.09a
Sensitivity Adjustment Scale Setting:	797 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht	& Patashnick TEOM [®]				
Venue:	Cyberport	Cyberport (Pui Ying Secondary School)				
Model No.:	Series 1400AB					
Serial No:	Control:	140AB219899803				
	Sensor:	1200C143659803	K _o :	12500		
Last Calibration Date*:	7 May 201	5				

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

797	CPM
797	CPM

Hour	Date (dd-mm-yy)	Time		Amb Cond	pient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³
				Temp (°C)	R.H. (%)	Y-axis		X-axis
1	08-05-15	13:15	- 14:15	27.1	77	0.04986	1994	33.23
2	08-05-15	14:15	- 15:15	27.1	77	0.05083	2037	33.95
3	08-05-15	15:15	- 16:15	27.1	77	0.05012	2003	33.38
4	08-05-15	16:15	- 17:15	27.1	76	0.05241	2095	34.92

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X		
Slope (K-factor):	0.0015	
Correlation coefficient:	0.9968	

Validity of Calibration Record: 8 May 2016

Remarks:				
QC Reviewer:YW Fung	Signature:	n/	Date:	11 May 2015

Laser Dust Monitor
SIBATA
LD-3
A.005.10a
753 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]				
Venue:	Cyberport (Pui Ying Secondary School)				
Model No.:	Series 1400AB				
Serial No:	Control:	Control: 140AB219899803			
	Sensor:	1200C143659803	K _o :	12500	
Last Calibration Date*:	10 May 2014				

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 753 CPM 753 CPM

Hour	Date (dd-mm-yy)	Time			bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp	R.H.	Y-axis		X-axis
					(°C)	(%)			
1	11-05-14	13:45	-	14:45	26.8	75	0.04984	1996	33.27
2	11-05-14	14:45	-	15:45	26.9	76	0.05196	2077	34.62
3	11-05-14	15:45	-	16:45	26.9	76	0.05141	2055	34.25
4	11-05-14	16:45	-	17:45	26.9	76	0.05263	2109	35.15

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X		
Slope (K-factor):	0.0015	
Correlation coefficient:	0.9969	
Validity of Calibration Record:	11 May 2015	

Remarks:

QC Reviewer: YW Fung	Signature:	4/	Date:	12 May 2014

Type:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.10a
Sensitivity Adjustment Scale Setting:	753 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht of	& Patashnick TEOM [®]					
Venue:	Cyberport (Cyberport (Pui Ying Secondary School)					
Model No.:	Series 1400	Series 1400AB					
Serial No:	Control:	140AB219899803					
	Sensor:	1200C143659803	K _o :	12500			
Last Calibration Date*:	7 May 2015	5					

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

753	CPM
753	CPM

Hour	Date (dd-mm-yy)	Time			bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	08-05-15	13:45	-	14:45	27.1	77	0.04963	1989	33.15
2	08-05-15	14:45	-	15:45	27.1	77	0.05131	2054	34.23
3	08-05-15	15:45	-	16:45	27.1	77	0.05170	2066	34.43
4	08-05-15	16:45	-	17:45	27.1	77	0.05269	2110	35.17

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X		
Slope (K-factor):	0.0015	
Correlation coefficient:	0.9974	

Validity of Calibration Record: 8 May 2016

Remarks:			
QC Reviewer: YW Fung	_ Signature:	Date:	11 May 2015

Laser Dust Monitor
SIBATA
LD-3
A.005.11a
799 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]				
Venue:	Cyberport (Pui Ying Secondary School)				
Model No.:	Series 1400AB				
Serial No:	Control: 140AB219899803				
	Sensor:	1200C143659803	K _o :	12500	
Last Calibration Date*:	10 May 2014				

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 799 CPM 799 CPM

Hour	Date (dd-mm-yy)		Time)		bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	18-05-14	09:00	-	10:00	28.3	77	0.04527	1815	30.25
2	18-05-14	10:00	-	11:00	28.3	77	0.04811	1923	32.05
3	18-05-14	11:00	-	12:00	28.3	77	0.05103	2041	34.02
4	18-05-14	12:00	-	13:00	28.4	77	0.05366	2157	35.95

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X

Slope (K-factor):	0.0015	
Correlation coefficient:	0.9987	
Validity of Calibration Record:	18 May 2015	
Validity of Calibration Record:	18 May 2015	

Remarks:

QC Reviewer:	YW Fung	Signature:	4/	Date:	19 May 2014

Laser Dust Monitor
SIBATA
LD-3
A.005.11a
799 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht	& Patashnick TEOM [®]				
Venue:	Cyberport	Cyberport (Pui Ying Secondary School)				
Model No.:		Series 1400AB				
Serial No:	Control:	140AB219899803			×	
	Sensor:	1200C143659803	K _o :	12500		
Last Calibration Date*:	7 May 2015					

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

799	CPM
799	CPM

Hour	Date (dd-mm-yy)	Time			dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	13-05-15	09:15	-	10:15	27.3	78	0.04635	1853	30.88
2	13-05-15	10:15	-	11:15	27.3	78	0.04788	1916	31.93
3	13-05-15	11:15	-	12:15	27.3	78	0.04943	1985	33.08
4	13-05-15	12:15	-	13:15	27.4	78	0.05176	2075	34.58

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X		
Slope (K-factor):	0.0015	
Correlation coefficient:	0.9983	
Correlation coefficient:	0.9983	

Validity of Calibration Record: 13 May 2016

Remarks:

QC	Reviewer:	YW Fung

g_____ Signature: ______ Date: __14 May 2015

Type:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3B
Equipment No.:	A.005.13a
Sensitivity Adjustment Scale Setting:	643 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]					
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 1400AB					
Serial No:	Control:	140AB219899803				
	Sensor:	1200C143659803	K _o :	12500		
Last Calibration Date*:	10 May 20	14				

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

643	CPM
643	CPM

Hour	Date (dd-mm-yy)	Time		Ambient Condition		Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
	(Temp (°C)	R.H. (%)	Y-axis		X-axis
1	18-05-14	09:30	-	10:30	28.3	77	0.04614	1846	30.77
2	18-05-14	10:30	-	11:30	28.3	77	0.04823	1934	32.23
3	18-05-14	11:30	-	12:30	28.3	77	0.05152	2053	34.22
4	18-05-14	12:30	-	13:30	28.4	77	0.05391	2162	36.03

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X					
Slope (K-factor):	0.0015				
Correlation coefficient:	0.9981				
Validity of Calibration Record:	18 May 2015				

Remarks:					
		er en son de la seconda de	/		-
QC Reviewer:	YW Fung	Signature:		Date:	19 May 2014

Type:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3B
Equipment No.:	A.005.13a
Sensitivity Adjustment Scale Setting:	643 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht	& Patashnick TEOM [®]				
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 140	DOAB				
Serial No:	Control:	140AB219899803				
	Sensor:	1200C143659803	K _o :	12500		
Last Calibration Date*:	7 May 201	5	_ •			

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 643 CPM 643 CPM

Hour	Date (dd-mm-yy)	Time		Ambient Condition		Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H.	Y-axis		X-axis
					(\mathbf{C})	(%)			
1	13-05-15	09:45	-	10:45	27.3	78	0.04654	1867	31.12
2	13-05-15	10:45	-	11:45	27.3	78	0.04743	1901	31.68
3	13-05-15	11:45	-	12:45	27.3	78	0.05036	2010	33.50
4	13-05-15	12:45	-	13:45	27.4	78	0.05271	2112	35.20

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X Slope (K-factor): 0.0015 Correlation coefficient: 0.9984

Validity of Calibration Record: 13 May 2016

Remarks:

QC	Reviewer:	YW Fung

Signature:

Date: 14 May 2015

Туре:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3B
Equipment No.:	A.005.14a
Sensitivity Adjustment Scale Setting:	786 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht	& Patashnick TEOM®				
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 140	DOAB				
Serial No:	Control:	140AB219899803				
	Sensor:	1200C143659803	K _o :	12500		
Last Calibration Date*:	10 May 2014					

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 786 CPM 786 CPM

Hour	Date (dd-mm-yy)	Time		Time Ambient Condition		Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	18-05-14	12:45	-	13:45	28.4	77	0.05027	2158	35.97
2	18-05-14	13:45	-	14:45	28.5	76	0.05161	2211	36.85
3	18-05-14	14:45	-	15:45	28.5	76	0.05235	2247	37.45
4	18-05-14	15:45	-	16:45	28.4	77	0.05203	2233	37.22

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X

Slope (K-factor):	0.0014	
Correlation coefficient:	0.9969	
Validity of Calibration Record:	18 May 2015	

Remarks:	1				
QC Reviewer:	YW Fung	Signature:	4	_ Date:	19 May 2014

Туре:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3B
Equipment No.:	A.005.14a
Sensitivity Adjustment Scale Setting:	786 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht	& Patashnick TEOM [®]				
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 140	OAB				
Serial No:	Control:	140AB219899803				
	Sensor:	1200C143659803	K _o :	12500		
Last Calibration Date*:	7 May 201	5				

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

786	CPM
786	CPM

Hour	Date (dd-mm-yy)	Time			bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	13-05-15	13:15	-	14:15	27.4	78	0.05084	2178	36.30
2	13-05-15	14:15	-	15:15	27.5	78	0.05236	2243	37.38
3	13-05-15	15:15	-	16:15	27.5	78	0.05345	2295	38.25
4	13-05-15	16:15	-	17:15	27.4	77	0.05272	2261	37.68

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X Slope (K-factor):	0.0014	
Correlation coefficient:	0.9972	

Validity of Calibration Record: 13 May 2016

Remarks:					
QC Reviewer:	YW Fung	Signature:	9/	Date:	14 May 2015

Туре:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3B
Equipment No.:	A.005.16a
Sensitivity Adjustment Scale Setting:	521 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]					
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 1400AB					
Serial No:	Control:	140AB219899803	8			
	Sensor:	1200C143659803	K _o :	12500		
Last Calibration Date*:	10 May 20	14				

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 521 CPM 521 CPM

Hour	Date (dd-mm-yy)	Time		Amb Conc	bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	26-07-14	10:30	-	11:30	28.6	77	0.04931	1971	32.85
2	26-07-14	11:45	-	12:45	28.6	77	0.05142	2052	34.20
3	26-07-14	13:15	-	14:15	28.7	77	0.05589	2243	37.38
4	26-07-14	14:40	-	15:40	28.8	78	0.05293	2116	35.27

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

.0015
.9934

Validity of Calibration Record:

26 July 2015

Remarks:

QC	Reviewer:	YW	Fung

Signature:

Date: 28 July 2014

Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.: 14CA1106 04-02		Page:	1 of 2		
Item tested					
Description:	Acoustical Calib	rator (Class 1)			
Manufacturer:	Rion Co., Ltd.				
Type/Model No.:	NC-73				
Serial/Equipment No.:	10307223 / N.00	4.08			
Adaptors used:	-				
Item submitted by					
Curstomer:	AECOM ASIA C	O., LTD.			
Address of Customer:					
Request No.:	-				
Date of receipt:	06-Nov-2014				
Date of test:	07-Nov-2014				
Reference equipment	used in the cali	bration			
Description:	Model:	Serial No.	Expiry Date:	Traceable to:	:
Lab standard microphone	B&K 4180	2412857	13-May-2015	SCL	
Preamplifier	B&K 2673	2239857	10-Apr-2015	CEPREI	
Measuring amplifier	B&K 2610	2346941	08-Apr-2015	CEPREI	
Signal generator	DS 360	61227	09-Apr-2015	CEPREI	
Digital multi-meter	34401A	US36087050	17-Dec-2014	CEPREI	
	8903B	GB41300350	07-Apr-2015	CEPREI	
Audio analyzer	00000	0011000000			

Ambient conditions

22 ± 1 °C		
65 ± 10 %		
1010 ± 10 hPa		

Test specifications

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

08-Nov-2014 Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Approved Signatory:

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

	15CA0303 01-02				
Certificate No.:			Page:	1 of 2	
Item tested					
Description:	Acoustical Calibra	ator (Class 1)			
Manufacturer:	B & K				
Type/Model No.:	4231				
Serial/Equipment No.:	3006428				
Adaptors used:					
Item submitted by					
Curstomer:	AECOM ASIA CO LIMITED				
Address of Customer:					
Request No.:	-				
Date of receipt:	03-Mar-2015				
Date of test:	03-Mar-2015				
Reference equipment	used in the calib	oration			
Description:	Model:	Serial No.	Expiry Date:	Traceable to	
Lab standard microphone	B&K 4180	2412857	13-May-2015	SCL	
Preamplifier	B&K 2673	2743150	10-Apr-2015	CEPREI	
Measuring amplifier	B&K 2610	2346941	08-Apr-2015	CEPREI	
Signal generator	DS 360	61227	09-Apr-2015	CEPREI	
Digital multi-meter	34401A	US36087050	01-Dec-2015	CEPREI	
Audio analyzer	8903B	GB41300350	07-Apr-2015	CEPREI	
Universal counter	53132A	MY40003662	11-Apr-2015	CEPREI	
Ambient conditions					
	21 + 1 °C				
Ambient conditions	21 ± 1 °C 60 ± 10 %				

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Huang Jian Min/Feng Jun Qi

Date: 04-Mar-2015

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

Company Chop:

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

G/F, 9/F, 12/F, 13/F. & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Rold, 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	14CA1106 04-01		Page	1	of	2
Item tested						
Description: Manufacturer: Type/Model No.: Serial/Equipment No.:	Sound Level Meter (Rion Co., Ltd. NL-31 00320528 / N.007.03	, з∧	Microphone Rion Co., Ltd. UC-53A 90565			
Adaptors used:	-	, , ,	-			
Item submitted by						
Customer Name:	AECOM ASIA CO.,	LTD.				
Address of Customer:	-					
Request No.:	1 27					
Date of receipt:	06-Nov-2014					
Date of test:	07-Nov-2014					
Date of lest.						
	used in the calibra	tion				
Reference equipment (used in the calibra Model:	tion Serial No.	Expiry Date:		Traceat	ole to:
Reference equipment u			15-Jun-2015		Traceat CIGISME	
Reference equipment under the second	Model:	Serial No.				
Reference equipment u Description: Multi function sound calibrator Signal generator	Model: B&K 4226	Serial No. 2288444	15-Jun-2015		CIGISME	
Reference equipment i Description: Multi function sound calibrator Signal generator Signal generator	Model: B&K 4226 DS 360	Serial No. 2288444 33873	15-Jun-2015 09-Apr-2015		CIGISME CEPREI	
Reference equipment of Description: Multi function sound calibrator Signal generator Signal generator Ambient conditions	Model: B&K 4226 DS 360	Serial No. 2288444 33873	15-Jun-2015 09-Apr-2015		CIGISME CEPREI	
Reference equipment i Description: Multi function sound calibrator Signal generator Signal generator Ambient conditions Temperature: Relative humidity:	Model: B&K 4226 DS 360 DS 360	Serial No. 2288444 33873	15-Jun-2015 09-Apr-2015		CIGISME CEPREI	

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

08-Nov-2014 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

G/F, 9/F, 12/F, 13/F. & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	14CA0702 01-01			Page	1	of	2
Item tested							
Description:	Sound Level Meter (Type 1)	,	Microphone			
Manufacturer:	B&K		,	B&K			
Type/Model No.:	2238			4188			
Serial/Equipment No.:	2800927 / N.009.06			2791211			
Adaptors used:			,	-			
Item submitted by							
Customer Name:	AECOM ASIA CO.,	LTD.					
Address of Customer:	-						
Request No.:	÷						
Date of receipt:	02-Jul-2014						
Date of test:	03-Jul-2014						
Date of test: Reference equipment		tion					
Reference equipment		tion Serial No.		Expiry Date:		Traceat	ole to:
Reference equipment	used in the calibra			Expiry Date: 20-Jun-2015		Traceat CIGISME	
Reference equipment Description: Multi function sound calibrator	used in the calibra Model:	Serial No.					
Reference equipment Description: Multi function sound calibrator Signal generator	used in the calibra Model: B&K 4226	Serial No. 2288444		20-Jun-2015		CIGISME	
Reference equipment	Model: B&K 4226 DS 360	Serial No. 2288444 33873		20-Jun-2015 09-Apr-2015		CIGISME CEPREI	
Reference equipment Description: Multi function sound calibrator Signal generator Signal generator Ambient conditions	Model: B&K 4226 DS 360	Serial No. 2288444 33873		20-Jun-2015 09-Apr-2015		CIGISME CEPREI	
Reference equipment Description: Multi function sound calibrator Signal generator Signal generator	used in the calibra Model: B&K 4226 DS 360 DS 360	Serial No. 2288444 33873		20-Jun-2015 09-Apr-2015		CIGISME CEPREI	

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jian Min/Feng Jun Qi

04-Jul-2014 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

Work Order: Sub-batch: Date of Issue: Client:	HK1504531 0 07/02/2015 AECOM ASIA COMPANY LIMITED		(ALS)
Description:	Multifunctional Meter		
Brand Name:	YSI		
Model No.:	6820 V2		
Serial No.:	12A101545		
Equipment No.:	W.026.35		
Date of Calibration:	05 February, 2015	Date of next Calibration:	05 May, 2015

Parameters:

Conductivity Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	147.7	+0.5
6667	6600	-1.0
12890	12750	-1.1
58670	58200	-0.8
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.50	3.40	-0.10
5.85	5.88	+0.03
7.70	7.65	-0.05
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.					
Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)			
12.5	12.45	-0.1			
25.0	25.02	+0.0			
39.0	38.91	-0.1			
	Tolerance Limit (°C)	±2.0			

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

Work Order: Sub-batch: Date of Issue: Client:	HK1504531 0 07/02/2015 AECOM ASIA COMPANY LIMITED		(ALS)
Description:	Multifunctional Meter		
Brand Name:	YSI		
Model No.:	6820 V2		
Serial No.:	12A101545		
Equipment No.:	W.026.35		
Date of Calibration:	05 February, 2015	Date of next Calibration:	05 May, 2015

Parameters:

Sa	lin	ity
Ju		ii cy

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	
10	9.95	-0.5
20	19.62	-1.9
30	29.56	-1.5
	Tolerance Limit (%)	±10.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	3.9	-2.5
10	9.6	-4.0
20	19.7	-1.5
50	49.4	-1.2
100	99.1	-0.9
	Tolerance Limit (%)	±10.0

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.02	+0.02
7.0	7.03	+0.03
10.0	10.02	+0.02
	Tolerance Limit (pH Unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard General Manager Greater China & Hong Kong

Work Order: Sub-batch: Date of Issue: Client:	HK1514515 0 11/05/2015 AECOM ASIA COMPANY LIMITED		(ALS)
Description:	Multifunctional Meter		
Brand Name:	YSI		
Model No.:	6820 V2		
Serial No.:	12A101545		
Equipment No.:	W.026.35		
Date of Calibration:	05 May, 2015	Date of next Calibration:	05 August, 2015

Parameters:

Conductivity

Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	145.0	-1.3
6667	6610	-0.9
12890	12680	-1.6
58670	58050	-1.1
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 4500O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.35	3.32	-0.03
5.75	5.71	-0.04
7.80	7.77	-0.03
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
13.0	12.85	-0.2
26.0	25.91	-0.1
38.0	37.93	-0.1
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard General Manager-Greater China & Hong Kong

Work Order: Sub-batch: Date of Issue: Client:	HK1514515 0 11/05/2015 AECOM ASIA COMPANY LIMITED	
Description: Brand Name: Model No.: Serial No.: Equipment No.:	Multifunctional Meter YSI 6820 V2 12A101545 W.026.35	
Date of Calibration:	05 May, 2015	Date of next Calibration:

05 August, 2015

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	
10	10.05	+0.5
20	20.08	+0.4
30	30.06	+0.2
	Tolerance Limit (%)	±10.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	4.1	+2.5
10	10.2	+2.0
20	20.1	+0.5
50	50.5	+1.0
100	100.8	+0.8
	Tolerance Limit (%)	±10.0

pH Value

Method Ref: APHA (21st edition), 450UH:BExpected Reading (pH Unit)Displayed Reading (pH Unit)Tolerance (pH unit)4.04.01+0.017.06.96-0.0410.09.99-0.01Tolerance Limit (pH Unit)±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

R:Mt

Mr Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

Work Order: Sub-batch: Date of Issue: Client:	HK1504530 0 07/02/2015 AECOM ASIA COMPANY LIMITED	
Description:	Multifunctional Meter	
Brand Name:	YSI	
Model No.:	6820 V2	
Serial No.:	12D100972	
Equipment No.:	W.026.36	
Date of Calibration:	05 February, 2015	Date of next Calibration:

05 May, 2015

Parameters:

Conductivity Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	145.0	-1.3
6667	6640	-0.4
12890	12800	-0.7
58670	58850	+0.3
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.50	3.44	-0.06
5.85	5.81	-0.04
7.70	7.66	-0.04
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

uide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.		
Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
12.5	12.53	+0.0
25.0	25.05	+0.1
39.0	38.85	-0.1
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

R. W. J. Mr Fung Lim Chee, Richard General Manager-Greater China & Hong Kong

Work Order: Sub-batch: Date of Issue: Client:	HK1504530 0 07/02/2015 AECOM ASIA COMPANY LIMITED		(ALS)
Description:	Multifunctional Meter		
Brand Name:	YSI		
Model No.:	6820 V2		
Serial No.:	12D100972		
Equipment No.:	W.026.36		
Date of Calibration:	05 February, 2015	Date of next Calibration:	05 May, 2015

Parameters:

Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	
10	9.98	-0.2
20	20.03	+0.2
30	30.05	+0.2
		±10.0
50	Tolerance Limit (%)	

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	ng (NTU) Displayed Reading (NTU)	
· · · · · · · · · · · · · · · · · · ·		
0	0.0	
4	4.1	+2.5
10	9.7	-3.0
20	20.2	+1.0
50	50.5	+1.0
100	100.6	+0.6
	Tolerance Limit (%)	±10.0

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	ng (pH Unit) Displayed Reading (pH Unit)	
4.0	4.01	+0.01
7.0	7.03	+0.03
10.0	9.95	-0.05
	Tolerance Limit (pH Unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

K: ill-Mr Fung Lim Chee, Richard General Manager Greater China & Hong Kong

Work Order:	HK1514511
Sub-batch:	0
Date of Issue:	11/05/2015
Client:	AECOM ASIA COMPANY LIMITED
Description:	Multifunctional Meter
Description: Brand Name:	Multifunctional Meter YSI
20 ¹⁰	
Brand Name:	YSI

Date of next Calibration:

05 August, 2015

Parameters:

Date of Calibration: 05 May, 2015

Conductivity

Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Reading (uS/cm) Displayed Reading (uS/cm)	
146.9	144.0	-2.0
6667	6630	-0.6
12890	12850	-0.3
58670	58520	-0.3
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	ted Reading (mg/L) Displayed Reading (mg/L)	
2.25	2.20	. 0. 01
3.35	3.36	+0.01
5.75	5.77	+0.02
7.80	7.81	+0.01
		.0.20
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.						
Reading of Ref. thermometer (°C)	Displayed Reading (°C) Tolerance (
13.0	12.95	-0.1				
26.0	26.04	+0.0				
38.0	37.94	-0.1				
	Tolerance Limit (°C)	±2.0				

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

K.U.J. Mr Fung Lim Shee, Richard General Manager -Greater China & Hong Kong

Work Order:	HK1514511	
Sub-batch:	0	
Date of Issue:	11/05/2015	
Client:	AECOM ASIA COMPANY LIMITED	
Description:	Multifunctional Meter	
Brand Name:	YSI	
Model No.:	6820 V2	
Serial No.:	12D100972	
Equipment No.:	W.026.36	
Equipment no	W.020.30	

05 August, 2015

Parameters:

Date of Calibration: 05 May, 2015

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	
10	10.04	+0.4
20	20.02	+0.1
30	30.01	+0.0
	Tolerance Limit (%)	±10.0

Date of next Calibration:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	4.2	+5.0
10	10.2	+2.0
20	19.9	-0.5
50	50.3	+0.6
100	100.6	+0.6
	Tolerance Limit (%)	±10.0

pH Value

Method Ref: APHA (21st edition), 4500H:B Expected Reading (pH Unit) Displayed Reading (pH Unit) Tolerance (pH unit)

4.0	4.02	+0.02
7.0	6.97	-0.03
10.0	9.96	-0.04
	Tolerance Limit (pH Unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

R.U.J. Mr Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					01-May	02-May
					Mid-Ebb 11:43 Mid-Flood 17:53	
03-May	04-May	05-May	06-May	07-May	08-May	09-May
	Mid-Flood 06:43 Mid-Ebb 13:11		Mid-Flood 07:42 Mid-Ebb 14:18		Mid-Flood 08:50 Mid-Ebb 15:39	
10-May	11-May	12-May	13-May	14-May	15-May	16-May
	Mid-Flood 11:34 Mid-Ebb 18:27 Dolphin monitoring 24-hour TSP 1-hour TSP Noise	Dolphin monitoring	Mid-Ebb 09:25 Mid-Flood 14:44		Mid-Ebb 11:02 Mid-Flood 17:01 24-hour TSP 1-hour TSP	
17-May	18-May	19-May	20-May	21-May	22-May	23-May
	Mid-Flood 06:26 Mid-Ebb 13:06 Dolphin monitoring		Mid-Flood 07:37 Mid-Ebb 14:30 Dolphin monitoring		Mid-Flood 08:49 Mid-Ebb 15:53	
24-May	25-May	26-May	27-May	28-May	29-May	30-May
	Mid-Flood 11:08 Mid-Ebb 18:11		Mid-Ebb 09:06 Mid-Flood 14:24 24-hour TSP 1-hour TSP Noise		Mid-Ebb 10:38 Mid-Flood 16:47	,
31-May						-
		sircumetancos (o a advorso				

Hong Kong Boundary Crossing Facilities – Reclamation Works Impact Monitoring Schedule for May 2015

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	01-Jur	ı 02-Jun	03-Jun	04-Jun	05-Jun	06-Jun
	Mid-Flood 05:33 Mid-Ebb 12:15		Mid-Flood 06:41 Mid-Ebb 13:27 Dolphin monitoring*		Mid-Flood 07:56 Mid-Ebb 14:46 Dolphin monitoring*	
07-Jun	08-Jur	ı 09-Jun	10-Jun	11-Jun	12-Jun	13-Jun
	Mid-Flood 10:2' Mid-Ebb 17:0s 24-hour TSP 1-hour TSP Noise		Mid-Ebb 07:46 Mid-Flood 13:05		Mid-Ebb 09:50 Mid-Flood 15:50 Dolphin monitoring*	24-hour TSP 1-hour TSP
14-Jun	15-Jur	ı 16-Jun	17-Jun	18-Jun	19-Jun	20-Jun
	Mid-Ebb 12:00 Mid-Flood 19:02		Mid-Flood 06:37 Mid-Ebb 13:33		Mid-Flood 07:52 Mid-Ebb 14:53 24-hour TSP 1-hour TSP Noise	
21-Jun	22-Jur	ı 23-Jun	24-Jun	25-Jun	26-Jun	27-Jun
	Mid-Flood 09:51 Mid-Ebb 16:44		Mid-Flood 11:47 Mid-Ebb 18:11		Mid-Ebb 09:02 Mid-Flood 14:57	
28-Jun	29-Jur	i 30-Jun				
	Mid-Ebb 11:13 Mid-Flood 18:07					

Hong Kong Boundary Crossing Facilities – Reclamation Works Tentative Impact Monitoring Schedule for June 2015

*The tentative CWD Monitoring schedule for June is 3, 4, 5, 11 and 12 for monitoring in June 2015. The extra day is to facilitate any poor weather. The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix G Impact Air Quality Monitoring Results

1-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

		Weather	averaged Wind	Time	Conc.	Action Level	Limit Level
Date	Session	Condition	Speed (m/s)*	(hh:mm)	(µg/m³)	(µg/m ³)	(µg/m ³)
05-May-15	1st Hour	Sunny	2.21	10:10	73	374	500
05-May-15	2nd Hour	Sunny	2.74	11:10	76	374	500
05-May-15	3rd Hour	Sunny	0.98	12:10	77	374	500
11-May-15	1st Hour	Rainy	0.00	10:00	70	374	500
11-May-15	2nd Hour	Rainy	2.01	11:00	72	374	500
11-May-15	3rd Hour	Rainy	0.00	12:00	74	374	500
15-May-15	1st Hour	Sunny	0.95	10:00	75	374	500
15-May-15	2nd Hour	Sunny	3.51	11:00	76	374	500
15-May-15	3rd Hour	Sunny	0.32	12:00	73	374	500
21-May-15	1st Hour	Fine	2.88	10:18	76	374	500
21-May-15	2nd Hour	Fine	1.94	11:18	77	374	500
21-May-15	3rd Hour	Fine	4.48	12:18	75	374	500
27-May-15	1st Hour	Fine	0.20	10:00	72	374	500
27-May-15	2nd Hour	Fine	0.07	11:00	74	374	500
27-May-15	3rd Hour	Fine	0.01	12:00	71	374	500
				Average	74		
				Min	70		
				Max	77		

1-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

		Weather	averaged Wind	Time	Conc.	Action Level	Limit Level
Date	Session	Condition	Speed (m/s)*	(hh:mm)	(µg/m³)	(µg/m³) ^	(µg/m ³)
05-May-15	1st Hour	Sunny	2.74	11:15	72	368	500
05-May-15	2nd Hour	Sunny	0.98	12:15	74	368	500
05-May-15	3rd Hour	Sunny	0.32	13:15	75	368	500
11-May-15	1st Hour	Rainy	0.00	10:10	72	368	500
11-May-15	2nd Hour	Rainy	2.01	11:10	74	368	500
11-May-15	3rd Hour	Rainy	0.00	12:10	73	368	500
15-May-15	1st Hour	Sunny	0.95	10:10	74	368	500
15-May-15	2nd Hour	Sunny	3.51	11:10	75	368	500
15-May-15	3rd Hour	Sunny	0.32	12:10	77	368	500
21-May-15	1st Hour	Fine	2.88	10:32	80	368	500
21-May-15	2nd Hour	Fine	1.94	11:32	76	368	500
21-May-15	3rd Hour	Fine	4.48	12:32	76	368	500
27-May-15	1st Hour	Fine	0.20	10:15	69	368	500
27-May-15	2nd Hour	Fine	0.07	11:15	72	368	500
27-May-15	3rd Hour	Fine	0.01	12:15	73	368	500
				Average	74		
				Min	69		
				Max	80		

Remarks:

^ Action Level set out at AMS3 Ho Yu College is adopted.

1-hour TSP Monitoring Results at Station AMS7A - Chu Kong Air-Sea Union Transportation Company Limited

		Weather	averaged Wind	Time	Conc.	Action Level	Limit Level
Date	Session	Condition	Speed (m/s)*	(hh:mm)	(µg/m³)	(µg/m ³)	(µg/m ³)
05-May-15	1st Hour	Sunny	2.21	10:00	73	370	500
05-May-15	2nd Hour	Sunny	2.74	11:00	75	370	500
05-May-15	3rd Hour	Sunny	0.98	12:00	74	370	500
11-May-15	1st Hour	Rainy	0.00	09:50	73	370	500
11-May-15	2nd Hour	Rainy	2.01	10:50	74	370	500
11-May-15	3rd Hour	Rainy	0.00	11:50	76	370	500
15-May-15	1st Hour	Sunny	0.95	09:50	72	370	500
15-May-15	2nd Hour	Sunny	3.51	10:50	74	370	500
15-May-15	3rd Hour	Sunny	0.32	11:50	77	370	500
21-May-15	1st Hour	Fine	2.88	10:50	74	370	500
21-May-15	2nd Hour	Fine	1.94	11:50	76	370	500
21-May-15	3rd Hour	Fine	4.48	12:50	78	370	500
27-May-15	1st Hour	Fine	0.20	09:50	73	370	500
27-May-15	2nd Hour	Fine	0.07	10:50	73	370	500
27-May-15	3rd Hour	Fine	0.01	11:50	74	370	500
				Average	74		
				Min	72		
				Max	78		

^ Action Level set out at AMS7 Hong Kong SkyCity Marriot Hotel is adopted

Appendix G Impact Air Quality Monitoring Results

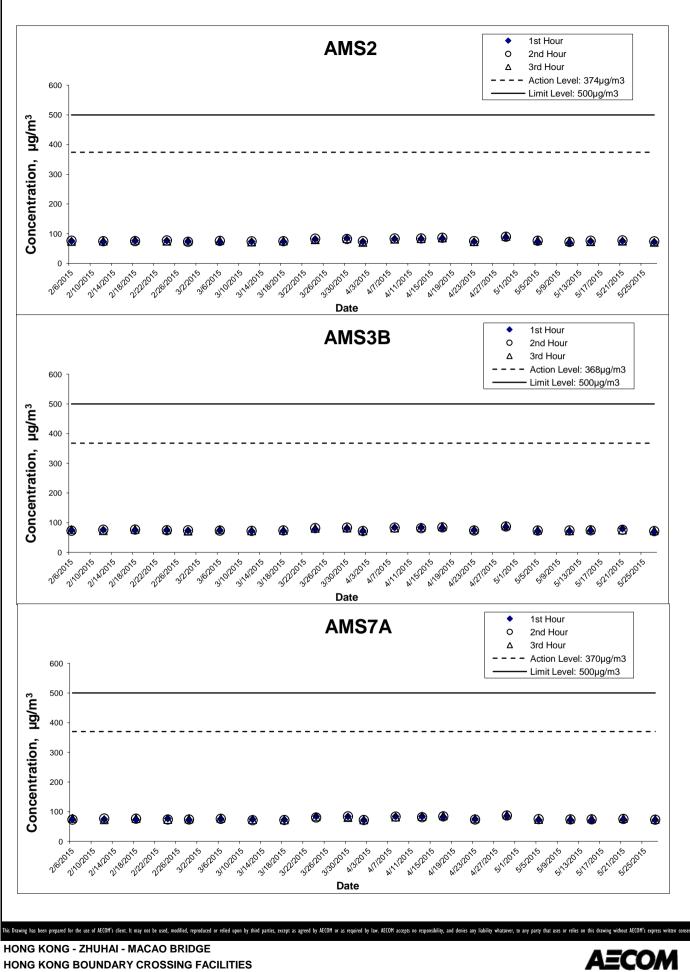
24-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µq/m ³)	(µg/m ³)
04-May-15	16:00	05-May-15	16:00	Sunny	27.3	1008.9	1.33	1.33	1.33	1912.3	2.8592	2.9033	0.0441	4925.84	4949.84	24.00	23	176	260
11-May-15	09:00	12-May-15	09:00	Rainy	25.6	1010.3	1.33	1.33	1.33	1912.3	2.8417	2.8998	0.0581	4949.84	4973.84	24.00	30	176	260
14-May-15	16:00	15-May-15	16:00	Sunny	28.5	1012.1	1.33	1.33	1.33	1912.3	2.8680	2.8956	0.0276	4997.84	5021.84	24.00	14	176	260
20-May-15	16:00	21-May-15	16:00	Rainy	24.2	1008.4	1.33	1.33	1.33	1912.3	2.8914	2.9255	0.0341	4997.84	5021.84	24.00	18	176	260
26-May-15	16:00	27-May-15	16:00	Cloudy	29.2	1007.0	1.33	1.33	1.33	1912.3	2.8792	2.9349	0.0557	5021.84	5045.84	24.00	29	176	260
-																Average	23		
																Min	14		
																Max	30		

24-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

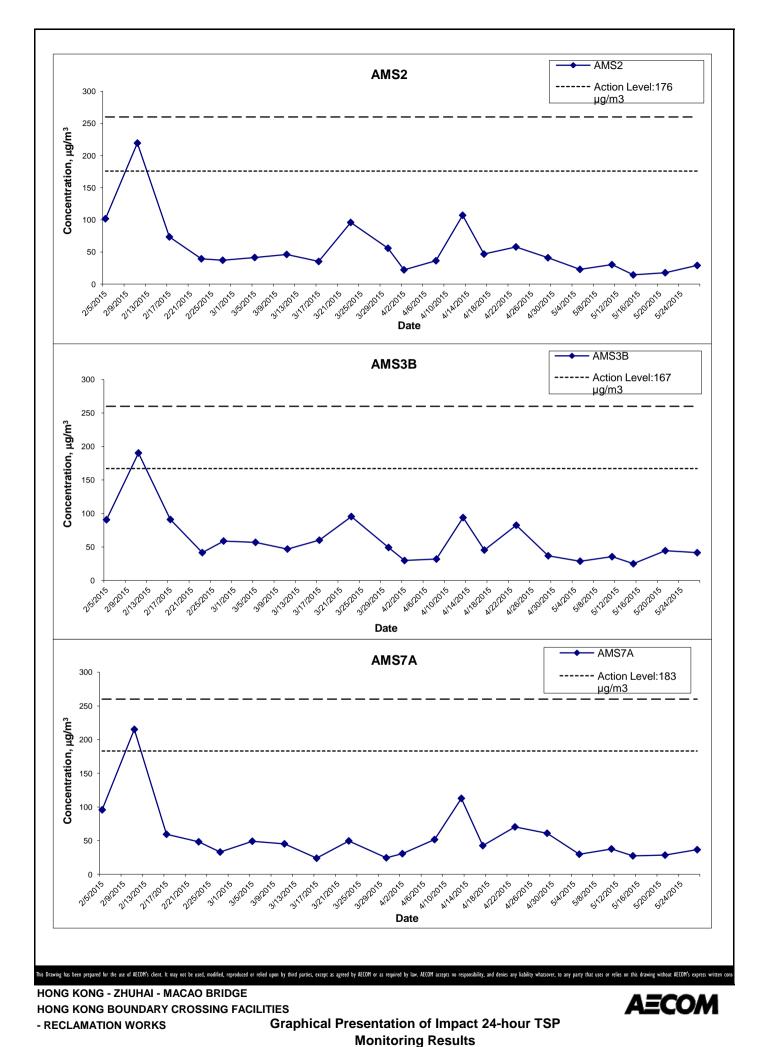
Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m ³)	(µg/m ³)
04-May-15	16:00	05-May-15	16:00	Sunny	27.3	1008.9	1.34	1.34	1.34	1923.8	2.8704	2.9259	0.0555	4861.80	4885.80	24.00	29	167	260
11-May-15	09:00	12-May-15	09:00	Rainy	25.6	1010.3	1.34	1.34	1.34	1923.8	2.8652	2.9337	0.0685	4885.80	4909.80	24.00	36	167	260
14-May-15	16:00	15-May-15	16:00	Sunny	28.5	1012.1	1.34	1.34	1.34	1923.8	2.7188	2.7670	0.0482	4933.80	4957.80	24.00	25	167	260
20-May-15	16:00	21-May-15	16:00	Rainy	24.2	1008.4	1.34	1.34	1.34	1923.8	2.8729	2.9585	0.0856	4933.80	4957.80	24.00	44	167	260
26-May-15	16:00	27-May-15	16:00	Cloudy	29.2	1007.0	1.34	1.34	1.34	1923.8	2.8887	2.9686	0.0799	4957.80	4981.80	24.00	42	167	260
																Average	35		

Average	30
Min	25
Max	44
Re	


^ Action Level set out at AMS3 Ho Yu College is adopted.

24-hour TSP Monitoring Results at Station AMS7A - Chu Kong Air-Sea Union Transportation Company Limited

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m ³ /min.)	Av. flow	Total vol.	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µq/m ³)	(µg/m ³)	(µg/m ³)
04-May-15	16:00	05-May-15	16:00	Sunny	27.3	1008.9	1.30	1.30	1.30	1869.1	2.8336	2.8894	0.0558	4782.98	4806.98	24.00	30	183	260
11-May-15	09:00	12-May-15	09:00	Rainy	25.6	1010.3	1.30	1.30	1.30	1869.1	2.8482	2.9187	0.0705	4806.98	4830.98	24.00	38	183	260
14-May-15	16:00	15-May-15	16:00	Sunny	28.5	1012.1	1.30	1.30	1.30	1869.1	2.7217	2.7730	0.0513	4854.98	4878.98	24.00	27	183	260
20-May-15	16:00	21-May-15	16:00	Rainy	24.2	1008.4	1.30	1.30	1.30	1869.1	2.8837	2.9370	0.0533	4902.98	4926.98	24.00	29	183	260
26-May-15	16:00	27-May-15	16:00	Cloudy	29.2	1007.0	1.30	1.30	1.30	1869.1	2.8982	2.9666	0.0684	4926.98	4950.98	24.00	37	183	260


^ Action Level set out at AMS7 Hong Kong SkyCity Marriot Hotel is adopted

24.00	51
Average	33
Min	27
Max	38

Graphical Presentation of Impact 1-hour TSP Monitoring Results

- RECLAMATION WORKS

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in May 2015

WIND DATA

WIND DATA			
Date 05/04/2015	Time 15:47:10	Averaged Wind Speed (m/s) 1.41	Averaged Wind Direction (degrees) 282
05/04/2015	16:47:10	1.01	282
05/04/2015	17:47:10	1.22	301
05/04/2015	18:47:10	2.31	294
05/04/2015	19:47:10	1.04	291
05/04/2015	20:47:10	0.32	259
05/04/2015	21:47:10	0.35	242
05/04/2015	22:47:10	0.35	313
05/04/2015 05/05/2015	23:47:10 00:47:10	0.49 0.15	<u>333</u> 326
05/05/2015	01:47:10	0.04	326
05/05/2015	02:47:10	0.18	312
05/05/2015	03:47:10	0.18	328
05/05/2015	04:47:10	0.74	309
05/05/2015	05:47:10	0.01	12
05/05/2015	06:47:10	0.07	243
05/05/2015	07:47:10	0.10	353
05/05/2015	08:47:10	0.17	231
05/05/2015	09:47:10	1.08	31
05/05/2015	10:47:10	2.21	299
05/05/2015	11:47:10	2.74	295
05/05/2015 05/05/2015	12:47:10 13:47:10	0.98 0.32	<u>350</u> 292
05/05/2015	14:47:10	0.32	292
05/05/2015	15:47:10	0.55	238
05/05/2015	16:47:10	1.01	284 286
05/11/2015	08:47:10	2.00	77
05/11/2015	09:47:10	0.90	51
05/11/2015	10:47:10	0.00	96
05/11/2015	11:47:10	2.01	94
05/11/2015	12:47:10	0.00	63
05/11/2015	13:47:10	1.15	89
05/11/2015	14:47:10	0.00	112
05/11/2015	15:47:10 16:47:10	1.22	120
05/11/2015 05/11/2015	16:47:10 17:47:10	0.60 0.03	<u>336</u> 193
05/11/2015	18:47:10	0.03	216
05/11/2015	19:47:10	1.45	253
05/11/2015	20:47:10	0.13	169
05/11/2015	21:47:10	0.13	112
05/11/2015	22:47:10	0.14	130
05/11/2015	23:47:10	0.18	266
05/12/2015	00:47:10	0.32	255
05/12/2015	01:47:10	0.71	15
05/12/2015	02:47:10	0.59	347
05/12/2015	03:47:10	0.01	348
05/12/2015 05/12/2015	04:47:10 05:47:10	0.84 0.11	<u>99</u> 47
05/12/2015	06:47:10	0.08	104
05/12/2015	07:47:10	1.30	116
05/12/2015	08:47:10	0.42	131
05/12/2015	09:47:10	0.00	53
05/14/2015	15:47:10	3.08	309
05/14/2015	16:47:10	0.17	287
05/14/2015	17:47:10	0.01	26
05/14/2015	18:47:10	0.67	36
05/14/2015	19:47:10	0.49	105
05/14/2015 05/14/2015	20:47:10 21:47:10	0.27 0.14	<u>98</u> 145
05/14/2015	21:47:10	0.14	145
05/14/2015	23:47:10	0.25	63
05/15/2015	00:47:10	2.10	286
05/15/2015	01:47:10	0.81	118
05/15/2015	02:47:10	0.45	44
05/15/2015	03:47:10	0.13	132
05/15/2015	04:47:10	0.99	68
05/15/2015	05:47:10	0.01	39
05/15/2015	06:47:10	0.04	202
05/15/2015 05/15/2015	07:47:10 08:47:10	2.32 1.45	<u>277</u> 305
05/15/2015	09:47:10	1.45	258
05/15/2015	10:47:10	0.95	330
05/15/2015	11:47:10	3.51	293
05/15/2015	12:47:10	0.32	283
05/15/2015	13:47:10	0.21	158
05/15/2015	14:47:10	1.80	341
05/15/2015	15:47:10	1.13	294
05/15/2015	16:47:10	0.00	81
05/20/2015 05/20/2015	15:47:10	1.27 1.34	<u>271</u> 269
05/20/2015	16:47:10 17:47:10	1.34 1.47	269 280
05/20/2015	17:47:10	0.14	280
05/20/2015	19:47:10	2.95	106
05/20/2015	20:47:10	0.21	120
05/20/2015	21:47:10	1.05	140
05/20/2015	22:47:10	0.21	277
05/20/2015	23:47:10	0.69	279
05/21/2015	00:47:10	0.21	272
	01:47:10	0.07	121
05/21/2015			
05/21/2015	02:47:10	0.01	141
05/21/2015 05/21/2015	03:47:10	0.03	276
05/21/2015			

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in May 2015

WIND DATA Date Time Averaged Wind Speed (m/s) Averaged Wind Direction (degrees) 05/21/2015 05/21/2015 05/21/2015 06:47:10 07:47:10 0.08 292 314 08:47:10 0.08 9 05/21/2015 09:47:10 0.95 139 10:47:10 05/21/2015 2.88 106 05/21/2015 11:47:10 1.94 126 05/21/2015 12:47:10 4.48 104 13:47:10 05/21/2015 3.20 106 05/21/2015 14:47:10 3.55 110 05/21/2015 15:47:10 1.11 155 05/21/2015 05/26/2015 16:47:10 15:47:10 2.92 15 182 0.00 05/26/2015 16:47:10 0.00 58 17:47:10 302 05/26/2015 0.04 05/26/2015 05/26/2015 307 18:47:10 0.10 19:47:10 69 0.32 05/26/2015 20:47:10 0.15 95 21:47:10 05/26/2015 0.28 302 22:47:10 05/26/2015 327 1.83 05/26/2015 23:47:10 0.21 345 00:47:10 05/27/2015 0.08 68 05/27/2015 01:47:10 0.69 251 05/27/2015 02:47:10 0.18 90 05/27/2015 03:47:10 0.06 301 04:47:10 0.28 0.67 326 72 05/27/2015 05:47:10 05/27/2015 06:47:10 0.07 310 05/27/2015 07:47:10 0.08 287 05/27/2015 08:47:10 0.03 34 05/27/2015 09:47:10 0.20 310 05/27/2015 10:47:10 0.07 343 05/27/2015 11:47:10 0.01 199 05/27/2015 12:47:10 0.78 309 05/27/2015 13:47:10 14:47:10 0.71 282 0.69 05/27/2015 295 05/27/2015 15:47:10 0.64 318 05/27/2015 16:47:10 1.59 284

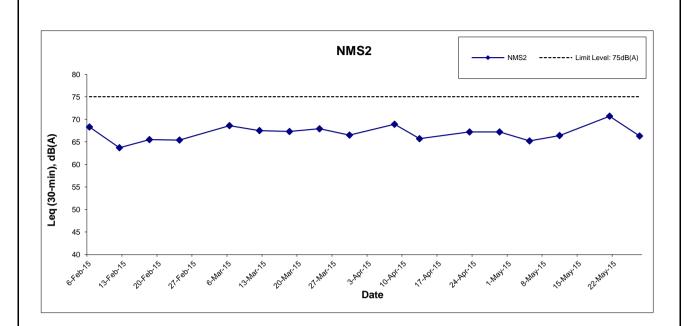
Appendix I Impact Daytime Construction Noise Monitoring Results

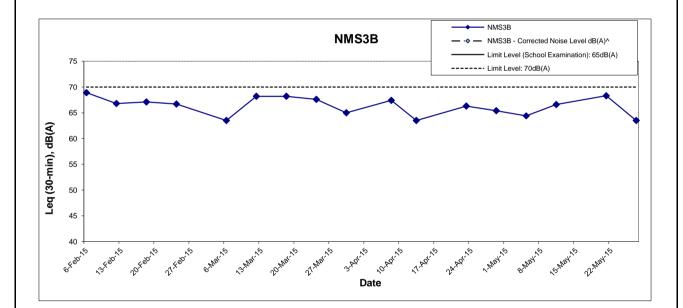
Daytime Noise Monitoring Results at Station NMS2 - Seaview Crescent Tower 1

		Nois	se Level for 30	0-min, dB(A) [#]					
Date	Weather Condition	Time	L90	L10	Leq	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
05-May-15	Sunny	Time L90 L10 10:35 63 67 10:30 63 69 10:15 64 73 10:35 64 68			65	<5m/s	62.9	75	Ν
11-May-15	Cloudy	10:30 63 69 10:15 64 73		66	<5m/s	62.9	75	Ν	
21-May-15	Fine	10:30 63 69 10:15 64 73		71	<5m/s	62.9	75	Ν	
27-May-15	Fine	10:35	64	68	66	<5m/s	62.9	75	Ν
		Min	63	67	65				
		Max	64	73	71				
		Average			68				

Daytime Noise Monitoring Results at Station NMS3B - Site Boundary of Site Office (WA2)

		Nois	se Level for 30	0-min, dB(A) [#]	:				
Date	Weather Condition	Time	L90	70 67 72 68 65 64 65 64		Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A) ^	Limit Level, dB(A)**	Exceedance (Y/N)
05-May-15	Sunny	11:15	63	66	64	<5m/s	66.3	70	N
11-May-15	Cloudy	11:20 63 70 6		67	<5m/s	66.3	70	Ν	
21-May-15	Fine	11:20 63 70		68	<5m/s	66.3	70	Ν	
27-May-15	Fine	14:15	60	65	64	<5m/s	66.3	70	N
		Min	60	65	64				
		Max	63	72	68				
				66					


Remark:


 $^{\rm \#}$ A correction of +3dB(A) was made to the free field measurement.

* Façade measurement.

^ Averaged baseline noise level recorded at NMS3 Ho Yu College is adopted.

** Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.

Remarks: Effective from July 2012, the Limit Level at NMS3A was revised to 70dB(A). Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

HONG KONG - ZHUHAI - MACAO BRIDGE

HONG KONG BOUNDARY CROSSING FACILITIES

Graphical Presentation of Impact Daytime Construction Noise Monitoring Results

Project No.: 60249820

- RECLAMATION WORKS

Date: June 2015

red for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as

Appendix I

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	oling	Tempera	ature (°C)	ŕ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	12:07		Surface	1.0	24.9 24.9	24.9	8.0 8.0	8.0	24.1 24.1	24.1	106.0 105.8	105.9	7.7 7.6	7.6	7.5	1.2 1.1	1.2		2.6 3.3	3.0	
				6.7	Middle	3.4	24.6 24.3	24.5	8.0 8.0	8.0	24.7 26.3	25.5	101.3 102.5	101.9	7.3 7.4	7.4	7.5	2.2 2.1	2.2	2.2	2.4 2.0	2.2	3.0
					Bottom	5.7	24.2 24.3	24.2	8.0 8.0	8.0	26.7 26.6	26.7	99.7 104.6	102.2	7.2	7.4	7.4	3.3 3.0	3.2		3.3 4.0	3.7	
4-May-15	Sunny	Moderate	12:39		Surface	1.0	25.3 25.4	25.4	7.9 7.9 7.9	7.9	24.5 24.2	24.4	88.2 89.5	88.9	6.3 6.4	6.4		2.3 2.2	2.3		2.7	3.3	
				6.5	Middle	3.3	25.1 25.0	25.0	7.9 7.8	7.9	25.4 25.4	25.4	85.5 85.6	85.6	6.1 6.1	6.1	6.3	3.6 3.7	3.7	3.6	3.6 3.8	3.7	3.7
					Bottom	5.5	24.9 24.9	24.9	7.8	7.8	25.7 25.8	25.8	85.5 85.8	85.7	6.1 6.1	6.1	6.1	4.6	4.7		4.8	4.1	
6-May-15	Sunny	Moderate	13:41		Surface	1.0	25.6 25.6	25.6	8.0 8.0	8.0	22.9 22.9	22.9	97.4 95.7	96.6	7.0	6.9		3.6 3.7	3.7		3.8 3.5	3.7	
				6.4	Middle	3.2	25.6 25.5	25.5	8.0 8.0	8.0	23.0 23.0	23.0	96.0 93.9	95.0	6.9 6.8	6.8	6.9	3.7 3.7	3.7	3.7	4.0	3.3	3.2
					Bottom	5.4	25.3 25.5	25.4	8.0 8.0	8.0	24.6 23.3	23.9	94.5 96.8	95.7	6.8 6.9	6.8	6.8	3.8	3.8		2.7	2.5	
8-May-15	Sunny	Moderate	15:06		Surface	1.0	26.4 26.4	26.4	8.0 8.0	8.0	20.1	20.1	91.9 90.6	91.3	6.6 6.5	6.6		6.1 6.1	6.1		4.5	4.7	
				6.4	Middle	3.2	26.2 26.1	26.2	8.0 8.0	8.0	22.4 22.0	22.2	86.9 88.0	87.5	6.2 6.3	6.2	6.4	6.5 6.3	6.4	6.3	4.5	4.9	4.9
					Bottom	5.4	25.6 25.9	25.7	8.0 8.0	8.0	23.3 23.1	23.2	86.8 90.8	88.8	6.2 6.5	6.4	6.4	6.5 6.4	6.5		4.2	5.0	
11-May-15	Cloudy	Moderate	17:46		Surface	1.0	25.4 26.0	25.7	7.7 7.6	7.6	29.1 29.2	29.2	99.4 98.7	99.1	7.1 7.1	7.1	7.4	2.8 2.9	2.9		5.7 5.7	5.7	
				6.7	Middle	3.4	25.3 24.9	25.1	7.5 7.7	7.6	29.3 29.1	29.2	97.2 100.1	98.7	7.0 7.2	7.1	7.1	3.1 2.9	3.0	3.1	5.0 4.7	4.9	5.0
					Bottom	5.7	25.1 25.3	25.2	7.6 7.7	7.6	29.1 32.0	30.5	95.4 98.2	96.8	6.8 7.0	6.9	6.9	3.3 3.2	3.3		4.6 4.1	4.4	
13-May-15	Sunny	Moderate	09:58		Surface	1.0	25.3 25.3	25.3	7.8 7.8	7.8	21.1 21.1	21.1	85.2 91.3	88.3	6.3 6.7	6.5	6.1	3.4 3.2	3.3		4.6 5.0	4.8	
				6.7	Middle	3.4	24.7 24.3	24.5	7.8 7.8	7.8	25.4 26.4	25.9	76.8 83.4	80.1	5.5 5.9	5.7	0.1	4.4 4.1	4.3	4.6	5.0 4.5	4.8	4.6
					Bottom	5.7	24.4 24.1	24.3	7.8 7.8	7.8	28.0 28.0	28.0	72.7 75.8	74.3	5.2 5.4	5.3	5.3	6.2 6.1	6.2		4.2 4.4	4.3	
15-May-15	Sunny	Moderate	11:43		Surface	1.0	26.4 26.4	26.4	7.7 7.7	7.7	16.9 16.8	16.9	83.6 86.5	85.1	6.1 6.3	6.2	6.0	7.6 7.8	7.7		7.2 8.1	7.7	
				6.4	Middle	3.2	25.2 25.3	25.2	7.6 7.6	7.6	21.5 21.4	21.4	78.5 81.3	79.9	5.7 6.0	5.8	0.0	7.7 7.7	7.7	7.7	6.8 7.8	7.3	7.9
					Bottom	5.4	25.2 25.1	25.2	7.6 7.6	7.6	21.8 21.8	21.8	81.0 82.1	81.6	5.9 6.0	5.9	5.9	7.7 7.7	7.7		8.3 9.0	8.7	
18-May-15	Sunny	Moderate	12:36		Surface	1.0	25.2 25.2	25.2	7.6 7.6	7.6	18.9 19.5	19.2	72.7 72.5	72.6	5.4 5.4	5.4	5.4	6.7 6.6	6.7		6.9 7.0	7.0	
				6.5	Middle	3.3	25.0 25.0	25.0	7.6 7.6	7.6	20.7 20.7	20.7	71.7 71.9	71.8	5.3 5.3	5.3	0	6.7 6.8	6.8	6.8	7.0 8.8	7.9	7.6
					Bottom	5.5	25.1 24.9	25.0	7.6 7.6	7.6	21.1 21.1	21.1	73.0 72.0	72.5	5.3 5.3	5.3	5.3	6.8 6.7	6.8		7.6 8.3	8.0	
20-May-15	Rainy	Moderate	13:51		Surface	1.0	25.4 25.3	25.4	7.7 7.7	7.7	17.8 18.0	17.9	85.8 85.4	85.6	6.4 6.3	6.3	6.3	5.8 5.6	5.7		8.2 8.6	8.4	
				6.5	Middle	3.3	25.3 25.3	25.3	7.7 7.7	7.7	18.2 18.4	18.3	85.6 85.1	85.4	6.3 6.3	6.3	0.0	5.7 5.7	5.7	5.7	8.4 8.7	8.6	9.4
					Bottom	5.5	25.2 25.3	25.2	7.7 7.7	7.7	18.8 18.8	18.8	84.8 84.7	84.8	6.3 6.3	6.3	6.3	5.7 5.7	5.7		11.2 10.9	11.1	

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	p	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	ended Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	15:17		Surface	1.0	24.8 24.8	24.8	7.8 7.8	7.8	18.0 17.9	18.0	81.5 82.1	81.8	6.1 6.1	6.1	6.1	3.5 3.3	3.4		5.2 4.8	5.0	
				6.6	Middle	3.3	24.8 24.8	24.8	7.8 7.8	7.8	18.5 18.1	18.3	79.6 81.0	80.3	6.0 6.1	6.0	0.1	4.1 4.0	4.1	3.8	4.4 5.7	5.1	5.1
					Bottom	5.6	24.7 24.7	24.7	7.8 7.8	7.8	19.4 19.7	19.6	79.5 81.9	80.7	5.9 6.1	6.0	6.0	4.0 3.7	3.9		5.0 5.4	5.2	
25-May-15	Cloudy	Moderate	11:29		Surface	1.0	24.6 24.6	24.6	7.4 7.4	7.4	14.3 14.3	14.3	69.1 68.8	69.0	5.3 5.3	5.3	5.3	3.0 2.9	3.0		5.3 6.0	5.7	
				2.1	Middle	1.1	24.0 24.0	24.0	7.6 7.6	7.6	23.6 23.6	23.6	70.0 70.7	70.4	5.2 5.2	5.2	0.0	1.9 2.1	2.0	3.1	5.6 5.4	5.5	5.8
					Bottom	1.1	25.8 25.9	25.9	7.3 7.3	7.3	10.3 10.3	10.3	70.2 70.2	70.2	5.4 5.4	5.4	5.4	4.5 4.3	4.4		7.1 5.2	6.2	
27-May-15	Cloudy	Moderate	08:49		Surface	1.0	24.9 24.8	24.8	7.5 7.5	7.5	11.9 12.8	12.4	72.7 75.7	74.2	5.7 6.0	5.8	5.8	5.5 5.4	5.5		6.6 6.6	6.6	
				6.5	Middle	3.3	24.6 24.7	24.7	7.5 7.5	7.5	15.8 14.5	15.2	70.8 72.9	71.9	5.6 5.7	5.7	5.0	5.8 5.7	5.8	5.9	6.5 6.1	6.3	6.2
					Bottom	5.5	24.8 24.9	24.9	7.3 7.3	7.3	20.5 19.7	20.1	74.1 68.6	71.4	5.8 5.4	5.6	5.6	6.3 6.4	6.4		5.9 5.6	5.8	
29-May-15	Sunny	Moderate	11:27		Surface	1.0	26.0 25.9	25.9	7.7 7.8	7.8	8.2 8.3	8.2	76.3 74.9	75.6	5.9 5.7	5.8	5.6	7.8 7.9	7.9		4.4 5.2	4.8	
				6.4	Middle	3.2	25.2 25.0	25.1	7.8 7.8	7.8	15.8 15.8	15.8	75.7 73.6	74.7	5.6 5.3	5.4	5.0	7.7 7.7	7.7	7.8	4.4 5.3	4.9	4.8
					Bottom	5.4	24.5 24.3	24.4	7.6 7.7	7.7	24.4 26.4	25.4	72.6 69.6	71.1	5.5 5.3	5.4	5.4	7.8 7.8	7.8		4.4 4.9	4.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	Furbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	17:17		Surface	1.0	25.3 25.4	25.3	8.0 8.0	8.0	23.0 23.0	23.0	108.3 110.0	109.2	7.8 7.9	7.9	7.8	1.4 1.6	1.5		2.2 2.6	2.4	
				6.3	Middle	3.2	24.5 24.5	24.5	8.0 8.0	8.0	25.6 25.7	25.6	106.9 104.6	105.8	7.7 7.5	7.6	7.0	2.5 2.1	2.3	2.2	2.7 2.8	2.8	2.7
					Bottom	5.3	24.4 24.6	24.5	8.0 8.0	8.0	25.9 25.7	25.8	104.5 107.9	106.2	7.5 7.8	7.6	7.6	3.0 2.7	2.9		2.9 3.0	3.0	
4-May-15	Sunny	Moderate	07:01		Surface	1.0	25.1 25.1	25.1	7.9 7.9	7.9	24.8 24.7	24.8	88.9 88.3	88.6	6.4 6.3	6.3		3.5 3.3	3.4		2.4 3.7	3.1	
				6.8	Middle	3.4	24.8 24.6	24.7	7.9 7.9	7.9	25.8 25.9	25.9	88.1 86.7	87.4	6.3 6.2	6.3	6.3	6.2 5.8	6.0	5.2	3.6 3.0	3.3	3.2
					Bottom	5.8	24.1 24.2	24.1	7.9 7.9	7.9	29.6 29.5	29.6	90.7 86.9	88.8	6.4 6.2	6.3	6.3	6.3 6.1	6.2		3.1 3.1	3.1	
6-May-15	Sunny	Moderate	08:05		Surface	1.0	25.1 25.1	25.1	8.0 7.9	7.9	25.6 25.6	25.6	86.0 87.9	87.0	6.1 6.3	6.2		4.3 4.4	4.4		9.0 8.0	8.5	
				6.4	Middle	3.2	25.1 25.0	25.0	7.9 7.9	7.9	25.7 25.9	25.8	88.7 85.5	87.1	6.3 6.1	6.2	6.2	4.4 4.4	4.4	4.4	7.2 8.5	7.9	8.1
					Bottom	5.4	24.9 24.8	24.9	7.8 7.9	7.9	26.2 26.7	26.4	91.3 86.0	88.7	6.5 6.1	6.3	6.3	4.4 4.5	4.5		8.3 7.5	7.9	
8-May-15	Sunny	Moderate	09:15		Surface	1.0	25.8 25.7	25.8	8.0 8.0	8.0	21.8 21.3	21.6	87.9 84.4	86.2	6.4 6.1	6.3	6.3	5.9 5.6	5.8		8.3 7.7	8.0	
				6.6	Middle	3.3	25.7 25.6	25.7	8.0 8.0	8.0	21.4 21.6	21.5	88.7 84.5	86.6	6.4 6.1	6.3	0.3	6.9 6.7	6.8	6.5	7.1 6.5	6.8	7.5
					Bottom	5.6	25.5 25.6	25.6	8.0 7.9	8.0	23.1 22.8	23.0	86.2 92.9	89.6	6.2 6.7	6.4	6.4	6.7 6.9	6.8		7.8 7.7	7.8	
11-May-15	Cloudy	Moderate	11:33		Surface	1.0	24.8 25.2	25.0	7.7 7.5	7.6	34.4 28.1	31.3	102.0 100.3	101.2	7.3 7.2	7.2	7.1	3.2 3.3	3.3		4.7 4.5	4.6	
				6.8	Middle	3.4	24.5 25.2	24.9	7.6 7.6	7.6	30.7 29.3	30.0	98.9 95.5	97.2	7.1 6.8	7.0	7.1	3.3 3.4	3.4	3.4	4.3 5.4	4.9	4.9
					Bottom	5.8	24.9 24.3	24.6	7.6 7.6	7.6	34.5 32.9	33.7	95.2 97.2	96.2	6.7 7.0	6.8	6.8	3.5 3.6	3.6		4.7 5.7	5.2	
13-May-15	Sunny	Moderate	14:15		Surface	1.0	25.1 25.1	25.1	7.8 7.8	7.8	22.0 22.0	22.0	80.3 81.5	80.9	5.9 6.0	6.0	5.7	2.5 2.3	2.4		3.7 5.0	4.4	
				6.7	Middle	3.4	24.7 24.4	24.5	7.9 7.9	7.9	24.3 23.7	24.0	75.1 73.1	74.1	5.4 5.3	5.4	5.7	4.5 4.4	4.5	4.5	5.7 6.0	5.9	5.2
					Bottom	5.7	24.2 23.9	24.1	7.9 7.9	7.9	28.2 27.1	27.6	76.7 78.0	77.4	5.5 5.6	5.6	5.6	6.2 6.8	6.5		4.9 5.9	5.4	
15-May-15	Sunny	Moderate	16:21		Surface	1.0	26.9 26.9	26.9	7.8 7.8	7.8	14.8 14.8	14.8	81.7 84.1	82.9	6.0 6.2	6.1	6.0	6.6 6.3	6.5		5.8 6.1	6.0	
				6.4	Middle	3.2	25.5 25.5	25.5	7.7 7.7	7.7	20.1 19.8	20.0	75.9 83.6	79.8	5.6 6.1	5.8	0.0	6.7 6.6	6.7	6.6	8.0 6.8	7.4	6.8
					Bottom	5.4	25.1 25.1	25.1	7.7 7.7	7.7	23.0 22.4	22.7	74.8 79.8	77.3	5.4 5.9	5.6	5.6	6.6 6.6	6.6		7.5 6.6	7.1	
18-May-15	Cloudy	Moderate	06:53		Surface	1.0	25.0 24.9	25.0	7.6 7.6	7.6	21.4 21.4	21.4	74.9 73.6	74.3	5.5 5.4	5.4	5.4	6.0 6.2	6.1		8.1 9.1	8.6	
				6.7	Middle	3.4	24.7 25.0	24.8	7.7 7.6	7.6	24.2 23.6	23.9	72.5 75.6	74.1	5.3 5.5	5.4	0.1	6.3 6.4	6.4	6.3	8.4 9.4	8.9	8.9
					Bottom	5.7	24.4 24.4	24.4	7.7 7.7	7.7	28.6 28.7	28.7	73.3 72.8	73.1	5.2 5.2	5.2	5.2	6.3 6.5	6.4		9.3 8.9	9.1	
20-May-15	Rainy	Moderate	07:51		Surface	1.0	25.2 25.2	25.2	7.6 7.6	7.6	17.7 17.4	17.6	82.5 78.0	80.3	6.1 5.8	5.9	5.9	8.6 8.5	8.6		6.0 5.7	5.9	
				6.5	Middle	3.3	25.0 25.1	25.1	7.6 7.6	7.6	19.8 20.1	19.9	77.8 79.6	78.7	5.8 5.9	5.8	0.0	8.8 8.8	8.8	8.7	6.3 6.5	6.4	6.5
					Bottom	5.5	25.0 25.0	25.0	7.6 7.6	7.6	20.7 20.7	20.7	79.1 77.0	78.1	5.8 5.7	5.8	5.8	8.8 8.7	8.8		7.4 7.1	7.3	

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	08:56		Surface	1.0	24.7 24.7	24.7	7.8 7.8	7.8	17.7 17.7	17.7	80.1 78.7	79.4	6.0 5.9	6.0	5.8	3.8 3.7	3.8		5.5 6.2	5.9	
				6.7	Middle	3.4	24.5 24.5	24.5	7.8 7.8	7.8	19.7 20.2	20.0	74.8 75.6	75.2	5.6 5.6	5.6	5.0	3.9 3.8	3.9	4.0	5.7 5.9	5.8	5.8
					Bottom	5.7	24.4 24.4	24.4	7.8 7.8	7.8	22.8 23.1	23.0	75.6 75.3	75.5	5.6 5.5	5.5	5.5	4.2 4.5	4.4		5.8 5.3	5.6	
25-May-15	Sunny	Moderate	17:54		Surface	1.0	24.5 24.5	24.5	7.5 7.5	7.5	18.3 18.4	18.4	69.4 69.6	69.5	5.2 5.2	5.2	5.2	1.9 2.1	2.0		6.8 5.8	6.3	
				2.1	Middle	1.1	24.1 24.1	24.1	7.6 7.5	7.6	22.4 22.4	22.4	68.8 69.2	69.0	5.1 5.1	5.1	0.2	2.0 2.0	2.0	2.9	6.5 6.3	6.4	6.6
					Bottom	1.1	25.5 25.5	25.5	7.5 7.4	7.4	10.8 10.7	10.7	71.2 71.6	71.4	5.5 5.5	5.5	5.5	4.4 4.7	4.6		7.3 7.0	7.2	
27-May-15	Cloudy	Moderate	14:29		Surface	1.0	24.8 25.1	24.9	7.5 7.5	7.5	11.8 11.2	11.5	73.2 74.2	73.7	5.8 5.8	5.8	5.8	6.4 6.3	6.4		10.8 10.5	10.7	
				6.5	Middle	3.3	24.6 24.7	24.6	7.4 7.4	7.4	13.8 14.5	14.1	71.0 72.6	71.8	5.6 5.7	5.7	5.0	6.6 6.6	6.6	6.6	10.7 10.6	10.7	10.4
					Bottom	5.5	24.9 25.1	25.0	7.3 7.3	7.3	18.4 19.9	19.1	69.0 70.4	69.7	5.4 5.5	5.5	5.5	6.8 6.9	6.9		10.4 9.2	9.8	
29-May-15	Sunny	Moderate	16:20		Surface	1.0	26.0 26.4	26.2	7.8 7.7	7.8	6.8 6.1	6.5	72.2 76.6	74.4	5.6 6.0	5.8	5.5	6.4 6.6	6.5		6.0 5.2	5.6	
				6.6	Middle	3.3	25.5 25.6	25.6	7.8 7.8	7.8	14.8 14.7	14.8	73.6 67.2	70.4	5.3 5.1	5.2	0.0	6.6 6.4	6.5	6.6	6.4 5.4	5.9	5.9
					Bottom	5.6	24.4 24.5	24.4	7.6 7.7	7.7	25.9 25.6	25.8	68.8 69.8	69.3	5.2 5.0	5.1	5.1	6.7 6.6	6.7		6.3 6.1	6.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Η	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NTl	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	12:28		Surface	1.0	25.0 25.0	25.0	8.0 8.0	8.0	24.0 24.0	24.0	105.4 105.7	105.6	7.6 7.6	7.6		4.4 4.5	4.5		0.5 0.5	0.5	ĺ
				16.3	Middle	8.2	24.1 24.1	24.1	7.9 7.9	7.9	27.0 27.1	27.1	99.2 99.7	99.5	7.1 7.2	7.2	7.4	3.4 3.6	3.5	4.5	0.5 1.0	0.8	0.8
					Bottom	15.3	24.1 24.1	24.1	7.9	7.9	27.1 27.1	27.1	101.2 99.6	100.4	7.3	7.2	7.2	5.5 5.3	5.4		0.5	1.0	
4-May-15	Sunny	Moderate	12:17		Surface	1.0	25.3 25.3	25.3	7.9 7.9	7.9	24.2 24.4	24.3	87.0 86.6	86.8	6.2 6.2	6.2		3.6 3.5	3.6		4.2 3.6	3.9	
				16.3	Middle	8.2	24.8 24.8	24.8	7.8 7.8 7.8	7.8	26.0 26.1	26.1	84.4 84.2	84.3	6.0 6.0	6.0	6.1	5.9 6.2	6.1	5.2	4.1 3.0	3.6	3.9
					Bottom	15.3	24.8 25.0	24.9	7.8 7.9	7.9	26.1 25.9	26.0	84.7 88.1	86.4	6.1 6.3	6.2	6.2	6.2 5.7	6.0		4.7	4.2	
6-May-15	Sunny	Moderate	13:21		Surface	1.0	25.5 25.5	25.5	8.0 8.1	8.1	23.0 23.0	23.0	91.3 91.0	91.2	6.6 6.5	6.5		5.3 5.4	5.4		3.0 3.2	3.1	
				16.3	Middle	8.2	25.2 25.1	25.2	8.0 8.0	8.0	25.4 25.7	25.6	90.0 86.6	88.3	6.4 6.2	6.3	6.4	5.5 5.5	5.5	5.5	2.4 3.7	3.1	3.0
					Bottom	15.3	25.1 25.4	25.2	8.0 8.0	8.0	25.7 25.5	25.6	87.7 92.9	90.3	6.3 6.6	6.4	6.4	5.5 5.6	5.6		2.6 3.1	2.9	
8-May-15	Sunny	Moderate	14:40		Surface	1.0	26.3 26.3	26.3	8.0 8.0	8.0	20.1 20.1	20.1	89.8 88.8	89.3	6.4 6.3	6.4		4.4	4.3		5.7 5.9	5.8	
				16.4	Middle	8.2	25.6 25.6	25.6	8.0 8.0	8.0	23.3 23.3	23.3	86.5 87.7	87.1	6.2 6.3	6.3	6.4	4.5	4.5	4.4	6.5 5.1	5.8	5.6
					Bottom	15.4	25.9 25.6	25.7	7.9 8.0	8.0	23.1 23.3	23.2	84.6 83.6	84.1	6.1 6.0	6.0	6.0	4.5 4.4	4.5		5.4 4.9	5.2	
11-May-15	Cloudy	Moderate	17:28		Surface	1.0	25.2 25.2	25.2	7.6 7.6	7.6	29.0 29.2	29.1	102.4 98.3	100.4	7.3 7.0	7.2	7.1	4.6 4.6	4.6		4.8 4.4	4.6	
				16.8	Middle	8.4	24.9 24.8	24.9	7.7 7.6	7.7	31.2 30.4	30.8	97.2 99.4	98.3	7.0 7.1	7.0	7.1	4.7 4.8	4.8	4.8	4.4 5.1	4.8	5.0
					Bottom	15.8	25.0 24.8	24.9	7.6 7.6	7.6	31.3 32.5	31.9	95.3 96.6	96.0	6.8 6.9	6.9	6.9	5.0 5.1	5.1		5.9 5.3	5.6	
13-May-15	Sunny	Moderate	10:22		Surface	1.0	25.3 25.3	25.3	7.8 7.8	7.8	21.3 21.3	21.3	85.7 89.4	87.6	6.3 6.6	6.4	6.0	3.0 2.9	3.0		4.6 3.3	4.0	
				16.3	Middle	8.2	24.0 23.9	24.0	7.8 7.8	7.8	28.4 28.6	28.5	77.4 76.0	76.7	5.6 5.4	5.5	0.0	3.4 3.1	3.3	3.6	4.4 5.3	4.9	4.9
					Bottom	15.3	24.2 23.9	24.0	7.8 7.8	7.8	28.9 29.3	29.1	82.3 81.7	82.0	5.9 5.8	5.8	5.8	4.4 4.5	4.5		6.4 5.4	5.9	
15-May-15	Sunny	Moderate	12:06		Surface	1.0	26.4 26.3	26.4	7.7 7.7	7.7	16.8 17.0	16.9	81.8 81.6	81.7	6.0 5.9	5.9	5.8	8.5 8.5	8.5		7.5 8.4	8.0	
				16.1	Middle	8.1	25.1 25.1	25.1	7.6 7.6	7.6	22.2 22.1	22.1	77.3 79.0	78.2	5.7 5.7	5.7	0.0	8.8 8.7	8.8	8.7	8.0 7.9	8.0	7.9
					Bottom	15.1	25.0 25.1	25.0	7.6 7.6	7.6	24.2 22.6	23.4	75.2 74.8	75.0	5.5 5.4	5.5	5.5	8.8 8.7	8.8		7.7 7.8	7.8	
18-May-15	Sunny	Moderate	12:12		Surface	1.0	25.4 25.3	25.3	7.6 7.6	7.6	18.3 18.3	18.3	73.9 73.5	73.7	5.5 5.4	5.5	5.4	5.6 5.4	5.5		6.9 6.4	6.7	
				16.4	Middle	8.2	24.9 24.9	24.9	7.6 7.6	7.6	21.1 21.2	21.2	72.3 72.3	72.3	5.3 5.3	5.3	-	5.5 5.5	5.5	5.5	7.3 8.6	8.0	7.8
					Bottom	15.4	25.1 25.0	25.0	7.6 7.6	7.6	21.2 21.1	21.2	74.3 74.4	74.4	5.4 5.5	5.5	5.5	5.4 5.5	5.5		8.5 8.6	8.6	<u> </u>
20-May-15	Rainy	Moderate	13:32		Surface	1.0	25.4 25.4	25.4	7.7	7.7	17.8 17.9	17.8	84.7 85.0	84.9	6.3 6.3	6.3	6.3	6.4 6.4	6.4		11.0 9.4	10.2	
				16.2	Middle	8.1	25.2 25.2	25.2	7.7	7.7	18.8 18.8	18.8	84.4 83.7	84.1	6.3 6.2	6.2		6.6 6.7	6.7	6.6	11.1 10.7	10.9	10.5
					Bottom	15.2	25.1 25.2	25.2	7.7 7.7	7.7	19.2 18.7	18.9	83.0 83.7	83.4	6.1 6.2	6.2	6.2	6.6 6.6	6.6		10.2 10.5	10.4	

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	F	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	1	urbidity(NTl	J)	Suspe	ended Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	15:00		Surface 1.	0 24.8 24.8	24.8	7.8 7.8	7.8	18.0 18.0	18.0	81.1 82.4	81.8	6.1 6.2	6.1	5.7	4.1 3.9	4.0		5.0 4.8	4.9	
				16.8	Middle 8.	4 24.5 24.5	24.5	7.8 7.8	7.8	22.3 22.2	22.3	71.1 72.3	71.7	5.2 5.3	5.3	5.7	5.9 5.6	5.8	5.6	4.7 6.1	5.4	5.4
					Bottom 15	.8 24.4 24.5	24.5	7.8 7.8	7.8	23.2 23.1	23.1	73.0 76.3	74.7	5.3 5.6	5.5	5.5	7.0 6.8	6.9		5.5 6.3	5.9	1
25-May-15	Cloudy	Moderate	11:08		Surface 1.	0 24.1 24.1	24.1	7.6 7.6	7.6	21.8 21.9	21.9	72.3 70.8	71.6	5.4 5.3	5.3	5.2	5.6 5.4	5.5		6.8 5.1	6.0	
				2.1	Middle 1.	1 23.7 23.8	23.7	7.6 7.6	7.6	26.4 26.4	26.4	69.8 70.3	70.1	5.1 5.1	5.1	0.2	6.5 6.4	6.5	5.1	5.0 5.7	5.4	5.7
					Bottom 1.	1 24.8 24.7	24.8	7.4 7.4	7.4	12.5 12.5	12.5	70.7 70.5	70.6	5.5 5.4	5.5	5.5	3.3 3.3	3.3		5.5 5.8	5.7	
27-May-15	Cloudy	Moderate	09:10		Surface 1.	0 24.8 24.7	24.8	7.4 7.5	7.5	11.4 12.4	11.9	75.2 75.1	75.2	5.9 5.9	5.9	5.8	6.0 5.9	6.0		6.9 7.1	7.0	1
				16.6	Middle 8.	3 24.5 24.8	24.6	7.5 7.4	7.5	17.0 15.8	16.4	70.9 73.4	72.2	5.6 5.8	5.7	5.0	6.2 6.3	6.3	6.3	8.1 6.9	7.5	7.1
					Bottom 15	.6 24.8 24.5	24.6	7.3 7.4	7.3	20.6 22.7	21.7	71.5 68.9	70.2	5.6 5.4	5.5	5.5	6.4 6.5	6.5		6.6 7.2	6.9	
29-May-15	Sunny	Moderate	11:47		Surface 1.	0 26.1 26.1	26.1	7.7 7.8	7.7	8.2 8.4	8.3	76.8 72.9	74.9	5.9 5.6	5.8	5.5	9.6 9.4	9.5		5.4 4.7	5.1	
				16.1	Middle 8.	24.3	24.3	7.8 7.8	7.8	26.3 27.0	26.7	72.4 70.9	71.7	5.2 5.1	5.2	0.0	9.7 9.5	9.6	9.6	5.0 4.4	4.7	5.1
					Bottom 15	.1 24.2 24.2	24.2	7.8 7.7	7.7	27.2 27.2	27.2	66.5 66.9	66.7	4.8 4.8	4.8	4.8	9.7 9.7	9.7		5.6 5.3	5.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ing	Tempera	ature (°C)	p	н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	ı (mg/L)	Т	urbidity(NT	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	16:59		Surface	1.0	25.3 25.2	25.3	8.0 8.0	8.0	23.2 23.0	23.1	106.1 105.5	105.8	7.6 7.6	7.6	7.5	4.4 4.5	4.5		2.4 4.2	3.3	
				16.2	Middle	8.1	24.3 24.3	24.3	7.9 7.9	7.9	26.2 26.3	26.3	101.5 102.7	102.1	7.3 7.4	7.4	1.5	6.0 5.5	5.8	5.3	4.0 3.3	3.7	3.5
					Bottom	15.2	24.3 24.6	24.5	7.9 8.0	8.0	26.7 26.1	26.4	103.9 106.5	105.2	7.5 7.6	7.6	7.6	5.8 5.6	5.7		3.2 3.7	3.5	
4-May-15	Sunny	Moderate	07:21		Surface	1.0	25.0 24.9	25.0	7.9 7.9	7.9	25.2 25.1	25.2	86.5 85.2	85.9	6.2 6.1	6.2		2.4 2.3	2.4		4.1 2.0	3.1	
				16.6	Middle	8.3	23.9 23.9	23.9	7.9 7.9	7.9	29.9 29.9	29.9	84.0 83.2	83.6	6.0 5.9	5.9	6.1	4.7 4.7	4.7	3.9	3.1 2.9	3.0	3.4
					Bottom	15.6	23.9 23.9	23.9	7.9 7.9	7.9	29.9 29.9	29.9	84.3 84.4	84.4	6.0 6.0	6.0	6.0	4.7 4.5	4.6		4.3 3.6	4.0	
6-May-15	Sunny	Moderate	08:26		Surface	1.0	25.0 25.0	25.0	8.0 8.0	8.0	25.7 25.7	25.7	83.5 83.1	83.3	6.0 5.9	6.0		7.2 7.1	7.2		6.5 6.9	6.7	
				16.7	Middle	8.4	24.8 24.7	24.7	8.0 7.8	7.9	26.7 27.6	27.2	82.4 82.4	82.4	5.9 5.9	5.9	6.0	7.4 7.5	7.5	7.5	6.3 7.8	7.1	6.9
					Bottom	15.7	24.7 24.6	24.7	8.0 8.0	8.0	27.6 27.6	27.6	83.3 83.2	83.3	5.9 5.9	5.9	5.9	7.6 7.7	7.7		6.8 7.1	7.0	
8-May-15	Sunny	Moderate	09:36		Surface	1.0	25.8 25.9	25.9	8.0 8.0	8.0	21.6 21.6	21.6	82.5 83.0	82.8	6.0 6.1	6.0	5.9	4.4 4.3	4.4		2.2 4.2	3.2	
				16.7	Middle	8.4	25.4 25.4	25.4	8.0 7.9	8.0	23.6 23.5	23.6	80.8 80.5	80.7	5.8 5.8	5.8	5.9	4.4 4.4	4.4	4.4	2.6 2.4	2.5	3.2
					Bottom	15.7	25.4 25.5	25.5	7.9 7.9	7.9	23.6 23.5	23.5	81.9 83.1	82.5	5.9 6.0	5.9	5.9	4.4 4.5	4.5		3.5 4.4	4.0	
11-May-15	Cloudy	Moderate	11:55		Surface	1.0	25.5 25.1	25.3	7.6 7.6	7.6	29.5 29.6	29.5	98.6 103.5	101.1	7.1 7.4	7.2	7.2	4.5 4.7	4.6		3.2 3.7	3.5	
				17.0	Middle	8.5	24.9 25.1	25.0	7.6 7.6	7.6	30.0 29.8	29.9	100.1 97.5	98.8	7.2 7.0	7.1	1.2	4.9 4.8	4.9	4.9	4.7 3.5	4.1	4.3
					Bottom	16.0	25.0 25.1	25.0	7.7 7.6	7.7	31.7 30.5	31.1	101.8 95.1	98.5	7.3 6.8	7.1	7.1	5.2 5.2	5.2		4.8 5.6	5.2	
13-May-15	Sunny	Moderate	13:53		Surface	1.0	25.1 25.1	25.1	7.9 7.8	7.9	20.0 20.1	20.0	83.7 78.4	81.1	6.2 5.6	5.9	5.8	3.5 3.3	3.4		4.9 5.4	5.2	
				16.5	Middle	8.3	24.3 24.1	24.2	7.9 7.9	7.9	25.4 27.4	26.4	77.6 77.2	77.4	5.7 5.7	5.7		5.2 5.4	5.3	5.0	4.2 4.0	4.1	4.9
					Bottom	15.5	24.0 24.0	24.0	7.8 7.8	7.8	28.3 28.3	28.3	71.1 73.2	72.2	5.2 5.3	5.2	5.2	6.1 6.3	6.2		5.0 5.9	5.5	
15-May-15	Sunny	Moderate	16:01		Surface	1.0	26.0 26.7	26.4	7.7 7.7	7.7	15.4 15.2	15.3	83.0 85.3	84.2	6.0 6.3	6.2	6.1	5.5 5.6	5.6		4.8 5.2	5.0	
				16.8	Middle	8.4	25.3 25.1	25.2	7.7	7.7	21.3 22.7	22.0	82.7 81.4	82.1	6.0 6.0	6.0	-	5.6 5.5	5.6	5.6	5.5 5.8	5.7	5.4
					Bottom	15.8	25.1 25.3	25.2	7.7 7.7	7.7	22.8 21.5	22.1	75.2 77.2	76.2	5.5 5.6	5.5	5.5	5.5 5.6	5.6		6.0 5.2	5.6	
18-May-15	Cloudy	Moderate	07:21		Surface	1.0	24.9 24.9	24.9	7.6 7.7	7.7	21.5 21.5	21.5	73.3 72.4	72.9	5.4 5.3	5.3	5.2	7.1	7.3		9.4 8.6	9.0	_
				17.1	Middle	8.6	24.1 24.4	24.3	7.7 7.7	7.7	29.2 28.7	29.0	70.9 71.3	71.1	5.0 5.1	5.1		7.5 7.4	7.5	7.5	9.0 9.8	9.4	9.0
					Bottom	16.1	24.4 24.1	24.3	7.7 7.7	7.7	29.1 29.2	29.1	73.4 71.5	72.5	5.2 5.1	5.1	5.1	7.7 7.7	7.7		8.8 8.4	8.6	
20-May-15	Rainy	Moderate	08:21		Surface	1.0	25.3 25.2	25.3	7.6 7.6	7.6	17.3 17.2	17.3	77.8 79.6	78.7	5.8 5.9	5.8	5.8	6.5 6.8	6.7		6.1 6.4	6.3	_
				16.7	Middle	8.4	25.0 25.0	25.0	7.6 7.6	7.6	20.7 20.6	20.6	77.3 77.8	77.6	5.8 5.8	5.8		6.7 6.7	6.7	6.7	6.9 6.3	6.6	8.0
					Bottom	15.7	25.1 25.1	25.1	7.6 7.6	7.6	20.7 20.5	20.6	75.5 76.3	75.9	5.6 5.6	5.6	5.6	6.8 6.7	6.8		11.2 10.9	11.1	

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	p	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl))	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	09:16		Surface	1.0	24.8 24.7	24.8	7.8 7.8	7.8	16.3 16.6	16.4	83.1 78.7	80.9	6.3 6.0	6.1	5.8	5.0 5.3	5.2		5.4 5.9	5.7	
				16.5	Middle	8.3	24.3 24.3	24.3	7.8 7.8	7.8	23.5 23.8	23.7	75.3 71.7	73.5	5.5 5.2	5.4	5.6	9.2 8.9	9.1	8.2	5.5 6.3	5.9	5.8
					Bottom	15.5	24.4 24.4	24.4	7.7 7.8	7.8	23.9 24.0	24.0	80.8 80.2	80.5	5.9 5.9	5.9	5.9	10.5 10.2	10.4		5.8 5.6	5.7	
25-May-15	Sunny	Moderate	18:14		Surface	1.0	24.0 24.1	24.1	7.6 7.6	7.6	22.9 23.0	23.0	69.8 69.5	69.7	5.2 5.2	5.2	5.2	4.2 4.4	4.3		4.9 4.9	4.9	
				2.0	Middle	1.0	23.7 23.7	23.7	7.6 7.6	7.6	27.2 27.2	27.2	70.7 70.2	70.5	5.1 5.1	5.1	0.2	5.0 4.8	4.9	4.5	4.6 5.6	5.1	5.5
					Bottom	1.0	25.6 26.6	26.1	7.4 7.4	7.4	11.0 10.9	10.9	71.4 71.3	71.4	5.5 5.4	5.5	5.5	4.3 4.2	4.3		6.7 6.3	6.5	
27-May-15	Cloudy	Moderate	14:06		Surface	1.0	25.0 25.1	25.1	7.5 7.5	7.5	10.0 11.7	10.8	70.8 72.0	71.4	5.6 5.7	5.6	5.7	6.7 6.8	6.8		11.5 11.8	11.7	
				16.7	Middle	8.4	24.7 24.7	24.7	7.4 7.4	7.4	16.9 17.1	17.0	69.4 75.0	72.2	5.5 5.9	5.7	5.7	7.0 6.9	7.0	7.1	10.8 10.4	10.6	11.2
					Bottom	15.7	24.7 25.0	24.8	7.4 7.3	7.3	22.0 20.7	21.4	68.2 73.2	70.7	5.4 5.8	5.6	5.6	7.3 7.4	7.4	. <u> </u>	11.6 11.2	11.4	
29-May-15	Sunny	Moderate	15:56		Surface	1.0	26.4 26.3	26.3	7.8 7.7	7.7	6.1 6.3	6.2	74.4 76.8	75.6	5.8 6.0	5.9	5.6	7.7 7.8	7.8		4.8 5.3	5.1	
				16.8	Middle	8.4	24.8 24.5	24.7	7.7 7.7	7.7	26.2 24.2	25.2	71.2 72.7	72.0	5.1 5.2	5.2	5.0	7.8 7.8	7.8	7.8	4.8 5.2	5.0	5.4
					Bottom	15.8	24.3 24.2	24.3	7.6 7.7	7.7	26.5 26.6	26.6	67.1 67.1	67.1	4.9 5.0	4.9	4.9	7.8 7.9	7.9		6.1 6.0	6.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Η	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	T	Turbidity(NTL	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	11:25		Surface	1.0	25.6 25.5	25.6	8.2 8.2	8.2	28.2 28.2	28.2	105.8 104.7	105.3	7.4 7.3	7.3	7.1	3.5 3.7	3.6		1.8 2.1	2.0	
				12.5	Middle	6.3	24.7 24.4	24.6	8.2 8.2	8.2	31.4 31.5	31.4	100.5 98.4	99.5	7.0 6.9	6.9	7.1	4.6 4.6	4.6	4.2	2.4 2.6	2.5	2.6
					Bottom	11.5	24.7 24.3	24.5	8.1 8.1	8.1	33.7 34.0	33.9	103.5 99.8	101.7	7.1 6.9	7.0	7.0	4.4 4.5	4.5		3.3 3.0	3.2	l
4-May-15	Sunny	Moderate	13:12		Surface	1.0	26.2 26.2	26.2	8.0 8.0	8.0	27.6 27.5	27.5	86.4 86.1	86.3	6.0 6.0	6.0		6.1 6.3	6.2		2.6 2.6	2.6	
				12.0	Middle	6.0	25.9 26.0	26.0	8.0 8.0	8.0	28.2 28.1	28.2	84.8 85.6	85.2	5.9 5.9	5.9	6.0	6.9 6.8	6.9	6.8	4.4 3.8	4.1	3.4
					Bottom	11.0	26.0 25.9	26.0	8.0 8.0	8.0	28.2 28.6	28.4	86.0 85.0	85.5	6.0 5.9	5.9	5.9	7.3 7.1	7.2		3.2 3.7	3.5	l
6-May-15	Sunny	Moderate	14:27		Surface	1.0	26.4 26.4	26.4	8.1 8.1	8.1	26.7 26.8	26.8	84.9 85.0	85.0	5.9 5.9	5.9	5.0	7.9 7.8	7.9		6.8 7.7	7.3	i
				13.5	Middle	6.8	25.9 25.9	25.9	8.1 8.1	8.1	29.0 29.0	29.0	81.9 82.1	82.0	5.7 5.7	5.7	5.8	9.0 9.9	9.5	9.1	6.4 7.4	6.9	6.9
					Bottom	12.5	26.0 25.9	25.9	8.1 8.1	8.1	29.1 29.1	29.1	83.3 82.8	83.1	5.7 5.7	5.7	5.7	9.6 10.1	9.9		7.3 5.8	6.6	l
8-May-15	Sunny	Moderate	15:13		Surface	1.0	27.0 27.2	27.1	8.0 8.0	8.0	23.1 22.9	23.0	81.9 83.8	82.9	5.7 5.9	5.8	5.0	9.0 9.0	9.0		5.4 5.2	5.3	i
				13.2	Middle	6.6	25.7 26.8	26.3	8.0 8.0	8.0	27.6 26.7	27.1	80.2 78.9	79.6	5.5 5.4	5.4	5.6	9.2 9.0	9.1	9.2	5.5 6.5	6.0	6.0
					Bottom	12.2	25.8 25.4	25.6	8.0 8.0	8.0	31.3 31.5	31.4	76.8 76.6	76.7	5.3 5.3	5.3	5.3	9.3 9.4	9.4		6.9 6.4	6.7	l
11-May-15	Cloudy	Moderate	18:20		Surface	1.0	26.9 27.0	27.0	8.1 8.1	8.1	23.8 23.7	23.8	83.4 82.4	82.9	5.8 5.7	5.8	5.6	7.3 7.6	7.5		6.7 8.0	7.4	
				12.2	Middle	6.1	25.2 26.0	25.6	8.1 8.1	8.1	28.6 27.8	28.2	80.7 73.2	77.0	5.5 5.1	5.3	0.0	7.8 7.7	7.8	7.7	8.9 8.3	8.6	8.3
					Bottom	11.2	24.8 24.6	24.7	8.1 8.1	8.1	33.9 34.2	34.0	75.7 71.7	73.7	5.3 4.9	5.1	5.1	7.6 7.7	7.7		9.9 7.7	8.8	l
13-May-15	Sunny	Moderate	09:25		Surface	1.0	25.9 25.9	25.9	8.1 8.1	8.1	25.4 25.2	25.3	80.2 80.0	80.1	5.7 5.6	5.6	5.5	6.5 6.7	6.6		7.2 7.5	7.4	
				11.9	Middle	6.0	25.4 25.6	25.5	8.1 8.1	8.1	28.2 27.8	28.0	74.9 78.1	76.5	5.2 5.5	5.3	5.5	6.6 6.4	6.5	6.6	7.3 7.4	7.4	7.0
					Bottom	10.9	24.6 24.8	24.7	8.1 8.1	8.1	33.5 33.2	33.4	71.5 75.5	73.5	4.9 5.2	5.1	5.1	6.6 6.9	6.8		7.0 5.6	6.3	
15-May-15	Sunny	Moderate	10:41		Surface	1.0	27.5 27.0	27.3	8.1 8.1	8.1	19.4 20.9	20.2	82.8 84.9	83.9	5.9 6.0	5.9	5.7	10.8 10.4	10.6		6.0 5.1	5.6	
				13.8	Middle	6.9	26.0 26.0	26.0	8.1 8.1	8.1	26.5 26.6	26.6	79.1 79.8	79.5	5.5 5.6	5.5	5.7	13.1 12.8	13.0	12.2	5.4 4.7	5.1	5.2
					Bottom	12.8	26.0 26.1	26.1	8.1 8.1	8.1	26.8 27.2	27.0	81.0 82.2	81.6	5.7 5.7	5.7	5.7	13.4 12.7	13.1		4.5 5.2	4.9	l
18-May-15	Sunny	Moderate	13:07		Surface	1.0	26.4 26.5	26.4	8.0 8.0	8.0	21.7 21.7	21.7	76.9 79.8	78.4	5.5 5.7	5.6	5.5	10.4 10.5	10.5		8.5 7.7	8.1	
				13.6	Middle	6.8	26.1 26.1	26.1	8.0 8.0	8.0	24.6 24.5	24.6	76.5 75.3	75.9	5.4 5.3	5.4	5.5	12.2 12.1	12.2	12.1	9.0 8.4	8.7	8.6
					Bottom	12.6	26.1 26.0	26.1	8.0 8.0	8.0	25.3 25.3	25.3	76.5 78.3	77.4	5.4 5.5	5.4	5.4	13.3 13.7	13.5		9.1 8.9	9.0	<u> </u>
20-May-15	Rainy	Moderate	14:37		Surface	1.0	26.6 26.6	26.6	8.0 8.0	8.0	19.1 19.3	19.2	77.9 82.0	80.0	5.6 5.9	5.8	5.5	14.1 14.3	14.2		11.8 11.4	11.6	
				10.0	Middle	5.0	25.9 25.8	25.9	8.0 8.0	8.0	25.1 24.8	25.0	73.2 72.8	73.0	5.1 5.1	5.1	5.5	14.3 14.4	14.4	14.4	10.6 11.0	10.8	11.4
					Bottom	9.0	25.9 25.7	25.8	8.0 8.0	8.0	27.2 27.3	27.2	70.1 69.6	69.9	4.9	4.9	4.9	14.6 14.6	14.6		11.2 12.5	11.9	

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	p	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	ended Solids	, (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	15:51		Surface	1.0	26.0 25.9	26.0	8.1 8.1	8.1	20.3 20.3	20.3	73.7 72.9	73.3	5.3 5.3	5.3	5.2	8.5 8.5	8.5		4.6 4.2	4.4	
				12.2	Middle	6.1	25.3 25.1	25.2	8.0 8.0	8.0	24.9 26.1	25.5	72.2 72.1	72.2	5.1 5.1	5.1	J.2	10.3 10.7	10.5	9.8	5.1 4.8	5.0	4.8
					Bottom	11.2	24.7 25.1	24.9	8.0 8.0	8.0	30.3 29.8	30.0	71.5 70.0	70.8	5.0 4.9	4.9	4.9	10.3 10.5	10.4		4.1 6.0	5.1	
25-May-15	Cloudy	Moderate	17:47		Surface	1.0	27.9 27.0	27.5	7.8 7.9	7.8	12.7 13.3	13.0	76.6 72.2	74.4	5.6 5.2	5.4	5.2	7.2 7.2	7.2		3.8 3.0	3.4	
				13.2	Middle	6.6	25.3 25.2	25.3	7.8 7.8	7.8	23.7 23.8	23.7	70.9 70.7	70.8	5.0 5.1	5.0	0.2	7.3 7.3	7.3	7.3	4.4 4.1	4.3	3.8
					Bottom	12.2	24.9 24.9	24.9	7.8 7.8	7.8	31.4 31.2	31.3	70.1 70.3	70.2	5.0 4.9	5.0	5.0	7.5 7.5	7.5		3.3 4.1	3.7	
27-May-15	Cloudy	Moderate	08:57		Surface	1.0	26.1 26.1	26.1	7.8 7.9	7.8	9.5 9.6	9.5	67.7 67.0	67.4	5.2 5.2	5.2	5.1	7.1 7.2	7.2		8.0 9.4	8.7	
				12.1	Middle	6.1	25.7 25.7	25.7	7.8 7.8	7.8	20.4 22.8	21.6	65.8 66.1	66.0	5.0 5.0	5.0	5.1	7.2 7.0	7.1	7.5	8.6 9.7	9.2	8.8
					Bottom	11.1	25.2 25.6	25.4	7.8 7.7	7.8	30.0 30.0	30.0	65.4 67.0	66.2	4.8 4.9	4.8	4.8	8.1 8.4	8.3		8.0 9.0	8.5	
29-May-15	Sunny	Moderate	10:08		Surface	1.0	27.1 27.2	27.1	8.0 8.0	8.0	12.3 11.5	11.9	78.3 80.0	79.2	5.8 6.0	5.9	5.6	8.2 7.7	8.0		4.2 4.0	4.1	
				13.6	Middle	6.8	25.9 25.9	25.9	7.9 8.0	7.9	26.5 25.7	26.1	76.8 72.6	74.7	5.4 5.1	5.2	5.0	6.0 5.7	5.9	6.5	4.6 4.5	4.6	4.6
					Bottom	12.6	25.9 25.9	25.9	7.9 7.9	7.9	26.9 27.3	27.1	74.4 79.5	77.0	5.2 5.5	5.4	5.4	5.3 5.8	5.6		4.6 5.5	5.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	р	н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	17:52		Surface	1.0	26.1 25.9	26.0	8.1 8.2	8.2	27.3 27.8	27.6	110.9 110.1	110.5	7.7 7.7	7.7	7.5	2.8 2.8	2.8		2.0 2.4	2.2	
				12.7	Middle	6.4	25.2 25.4	25.3	8.2 8.2	8.2	30.8 29.3	30.1	106.0 105.3	105.7	7.3 7.3	7.3	7.5	2.7 2.7	2.7	2.8	3.1 2.4	2.8	2.5
					Bottom	11.7	25.1 24.8	24.9	8.2 8.1	8.2	31.0 32.3	31.7	105.4 104.4	104.9	7.3	7.3	7.3	2.9	2.9		2.7	2.5	
4-May-15	Sunny	Moderate	06:27		Surface	1.0	26.0 26.2	26.1	8.0 7.9	8.0	27.4 26.6	27.0	86.1 86.8	86.5	6.0 6.0	6.0		5.5 5.7	5.6		5.2 5.4	5.3	
				12.5	Middle	6.3	25.0 25.0	25.0	8.0 7.9	8.0	31.8 32.1	32.0	81.9 82.1	82.0	5.7 5.7	5.7	5.9	5.7 5.7	5.7	5.7	4.7	5.3	4.9
					Bottom	11.5	25.0 25.0	25.0	8.0 7.9	8.0	31.9 32.4	32.2	82.2 82.4	82.3	5.7 5.7	5.7	5.7	5.7 5.8	5.8		4.6	4.1	
6-May-15	Sunny	Moderate	07:22		Surface	1.0	25.9 25.8	25.8	8.0 8.0	8.0	28.1 27.3	27.7	81.4 82.4	81.9	5.7 5.8	5.7		5.6 5.1	5.4		5.1 5.2	5.2	
				13.7	Middle	6.9	25.2 25.2	25.2	8.0 8.0	8.0	31.8 31.8	31.8	78.8	80.5	5.4 5.6	5.5	5.6	6.5 6.1	6.3	6.0	4.0	3.7	4.3
					Bottom	12.7	25.3 25.2	25.2	8.0 8.0	8.0	31.8 31.8	31.8	85.3 79.7	82.5	5.9 5.5	5.7	5.7	6.0 6.6	6.3		3.9 4.3	4.1	
8-May-15	Sunny	Moderate	08:07		Surface	1.0	27.0 27.0	27.0	8.0 8.0	8.0	20.9 20.9	20.9	85.2 84.4	84.8	6.0 6.0	6.0		6.0 6.0	6.0		4.9 4.2	4.6	
				12.8	Middle	6.4	25.8 25.5	25.7	8.0 8.0	8.0	27.2 28.0	27.6	79.2 75.3	77.3	5.4 5.3	5.4	5.7	6.0 6.1	6.1	6.1	4.5 4.1	4.3	4.4
					Bottom	11.8	25.3 25.4	25.3	8.0 8.0	8.0	31.4 31.5	31.5	75.8 77.0	76.4	5.2 5.4	5.3	5.3	6.2 6.1	6.2		4.4	4.4	
11-May-15	Cloudy	Moderate	10:42		Surface	1.0	26.5 26.6	26.6	8.1 8.1	8.1	22.4 22.8	22.6	79.3 80.6	80.0	5.6 5.7	5.7		5.9 5.7	5.8		4.8 3.8	4.3	
				12.4	Middle	6.2	25.4 25.7	25.6	8.1 8.1	8.1	28.8 27.4	28.1	72.4 78.4	75.4	5.0 5.4	5.2	5.5	5.8 6.1	6.0	5.9	4.0 4.0	4.0	4.3
					Bottom	11.4	24.9 25.0	25.0	8.0 8.0	8.0	32.4 32.2	32.3	71.9 76.0	74.0	5.0 5.3	5.2	5.2	5.9 6.0	6.0		4.4 4.5	4.5	
13-May-15	Sunny	Moderate	14:56		Surface	1.0	26.1 26.1	26.1	8.2 8.2	8.2	25.7 25.5	25.6	82.7 82.0	82.4	5.8 5.8	5.8	6.7	6.4 6.3	6.4		5.7 6.4	6.1	
				12.6	Middle	6.3	25.0 25.0	25.0	8.1 8.1	8.1	31.0 31.7	31.3	78.2 81.1	79.7	5.4 5.6	5.5	5.7	6.4 6.6	6.5	6.5	5.2 5.3	5.3	5.7
					Bottom	11.6	24.9 24.8	24.9	8.1 8.1	8.1	32.7 33.0	32.9	75.7 75.9	75.8	5.3 5.2	5.2	5.2	6.7 6.6	6.7		5.1 6.0	5.6	
15-May-15	Sunny	Moderate	17:10		Surface	1.0	28.0 27.8	27.9	8.1 8.1	8.1	19.9 20.1	20.0	86.8 91.5	89.2	6.1 6.4	6.3	6.2	9.1 8.8	9.0		5.7 4.6	5.2	
				13.9	Middle	7.0	25.9 26.0	25.9	8.1 8.1	8.1	26.8 25.6	26.2	88.3 82.0	85.2	6.2 5.8	6.0	0.2	10.3 10.8	10.6	10.2	5.9 7.1	6.5	5.7
					Bottom	12.9	25.8 25.8	25.8	8.1 8.1	8.1	27.3 27.2	27.2	77.4 75.3	76.4	5.4 5.3	5.3	5.3	10.9 11.1	11.0		5.3 5.6	5.5	
18-May-15	Cloudy	Moderate	06:01		Surface	1.0	25.9 26.0	25.9	8.0 7.9	8.0	25.9 25.2	25.6	77.8 79.8	78.8	5.5 5.6	5.5	5.4	9.2 8.7	9.0		8.5 8.2	8.4	
				13.3	Middle	6.7	25.4 25.4	25.4	7.9 8.0	7.9	30.1 30.1	30.1	77.2 75.2	76.2	5.4 5.2	5.3	0.7	11.2 10.2	10.7	10.8	8.2 6.9	7.6	7.9
					Bottom	12.3	25.3 25.5	25.4	7.8 8.0	7.9	30.1 29.9	30.0	79.6 77.6	78.6	5.5 5.4	5.4	5.4	12.5 12.8	12.7		7.4 8.1	7.8	
20-May-15	Rainy	Moderate	06:56		Surface	1.0	26.5 26.3	26.4	7.9 8.0	8.0	18.1 18.2	18.2	73.4 71.0	72.2	5.3 5.1	5.2	5.2	7.0 7.1	7.1		4.4 3.5	4.0	
				11.1	Middle	5.6	25.6 25.6	25.6	7.9 7.9	7.9	25.1 27.3	26.2	71.6 70.6	71.1	5.1 5.1	5.1	0.2	7.0 7.1	7.1	7.2	5.0 3.5	4.3	4.2
					Bottom	10.1	25.9 25.5	25.7	7.9 7.9	7.9	28.1 28.5	28.3	70.9 70.4	70.7	5.0 5.1	5.1	5.1	7.2 7.4	7.3		4.6 4.1	4.4	

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ng	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	08:21		Surface	1.0	25.9 26.0	26.0	8.0 8.0	8.0	19.6 19.5	19.5	73.9 74.6	74.3	5.4 5.4	5.4	5.3	6.7 6.7	6.7		4.5 5.5	5.0	
				12.5	Middle	6.3	25.1 24.8	25.0	8.0 8.0	8.0	27.6 28.4	28.0	70.8 71.5	71.2	5.1 5.2	5.1	5.5	6.6 6.6	6.6	6.7	4.6 4.1	4.4	4.6
					Bottom	11.5	24.7 24.8	24.8	8.0 8.0	8.0	30.6 30.4	30.5	70.2 69.5	69.9	5.1 5.0	5.0	5.0	6.8 6.9	6.9	<u> </u>	4.5 4.5	4.5	
25-May-15	Sunny	Moderate	10:33		Surface	1.0	25.3 25.7	25.5	7.9 7.9	7.9	17.2 16.9	17.0	71.2 71.2	71.2	5.3 5.3	5.3	5.2	6.0 6.0	6.0		2.7 4.0	3.4	
				13.3	Middle	6.7	24.9 24.8	24.9	7.9 7.9	7.9	26.9 28.3	27.6	70.4 70.2	70.3	5.0 5.0	5.0	0.2	6.0 6.0	6.0	6.1	4.1 4.2	4.2	3.8
					Bottom	12.3	25.1 24.9	25.0	7.9 7.8	7.9	30.3 30.5	30.4	69.9 69.7	69.8	4.9 4.9	4.9	4.9	6.0 6.3	6.2	<u> </u>	3.1 4.4	3.8	
27-May-15	Cloudy	Moderate	14:27		Surface	1.0	26.8 27.1	27.0	7.9 7.9	7.9	9.7 10.3	10.0	69.9 73.5	71.7	5.3 5.3	5.3	5.2	9.6 9.4	9.5		4.5 4.1	4.3	
				12.9	Middle	6.5	25.4 25.4	25.4	7.9 8.0	8.0	24.6 23.7	24.2	71.2 71.4	71.3	5.1 5.1	5.1	5.2	9.5 9.3	9.4	9.4	6.2 6.1	6.2	5.4
					Bottom	11.9	25.4 25.2	25.3	7.9 7.9	7.9	31.2 31.3	31.2	69.8 68.6	69.2	5.0 4.9	5.0	5.0	9.5 9.3	9.4	<u> </u>	5.2 6.4	5.8	
29-May-15	Sunny	Moderate	16:58		Surface	1.0	27.5 27.6	27.6	8.1 8.1	8.1	13.4 13.1	13.2	88.1 89.0	88.6	6.5 6.5	6.5	6.1	6.8 6.7	6.8		4.4 3.3	3.9	
				12.2	Middle	6.1	25.5 25.5	25.5	8.0 8.0	8.0	28.4 28.1	28.3	80.0 81.1	80.6	5.6 5.8	5.7	0.1	7.0 6.7	6.9	6.8	5.3 4.1	4.7	4.6
					Bottom	11.2	25.5 25.6	25.5	8.0 8.0	8.0	28.4 28.5	28.5	74.6 73.8	74.2	5.2 5.2	5.2	5.2	6.4 6.8	6.6	L	5.0 5.2	5.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ĥ	H	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	/ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	10:46		Surface	1.0	24.4 24.5	24.4	8.0 8.0	8.0	26.7 26.6	26.7	106.3 102.3	104.3	7.6 7.3	7.5		0.5 0.6	0.6		1.7 1.1	1.4	
				10.0	Middle	5.0	23.4 23.1	23.3	7.9 7.9	7.9	30.4 31.3	30.8	101.2 98.7	100.0	7.2	7.2	7.4	0.6	0.6	0.6	0.5	0.9	0.9
					Bottom	9.0	23.1	23.1	7.9 7.9 7.9	7.9	31.6 31.2	31.4	98.7 102.2	100.5	7.1 7.3	7.2	7.2	0.6	0.6		0.5	0.5	
4-May-15	Sunny	Moderate	13:53		Surface	1.0	25.5	25.5	7.9	7.9	23.7	23.8	90.8	90.5	6.5	6.5		0.9	1.0		5.2	4.5	
				9.8	Middle	4.9	25.5 25.0	25.0	7.9	7.9	23.8 25.7	25.6	90.2 89.6	89.1	6.5 6.4	6.4	6.5	1.0	1.4	1.3	3.8 4.2	4.0	4.2
					Bottom	8.8	25.0 24.9	24.8	7.9 7.9	7.9	25.6 26.1	26.4	88.5 88.6	89.8	6.3 6.3	6.4	6.4	1.5 1.4	1.4		3.8 4.4	4.2	
6-May-15	Sunny	Moderate	14:52		Surface	1.0	24.8 25.5	25.5	8.0 8.1	8.1	<u>26.7</u> 23.6	23.6	90.9 88.5	88.4	6.5 6.3	6.3		1.3	1.7		3.9 5.8	5.8	
				9.9	Middle	5.0	25.5 24.7	24.6	8.1 8.1	8.1	23.7	27.0	88.2 85.2	84.8	6.3 6.1	6.1	6.2	1.7 2.1	2.1	2.0	5.8 4.1	5.1	5.1
					Bottom	8.9	24.5 24.4	24.3	8.0 8.1	8.1	27.2 29.2	29.0	84.4 86.8	85.6	6.0 6.2	6.1	6.1	2.1 2.1	2.1		6.0 4.5	4.5	
8-May-15	Sunny	Moderate	16:11		Surface	1.0	24.3 25.9	25.9	8.0 8.0	8.0	28.9 20.5	20.1	84.3 86.6	86.3	6.0 6.3	6.3		2.1	2.7		4.4	5.9	
				9.9	Middle	5.0	26.0 25.4	25.3	8.1 8.1	8.1	<u>19.7</u> 24.6	24.5	86.0 84.8	83.9	6.3 6.1	6.0	6.2	2.7	2.7	2.7	6.1 7.2	7.2	6.7
					Bottom	8.9	25.3 24.3	24.4	8.1 8.0	8.0	24.3 29.0	28.5	82.9 85.2	86.0	5.9 6.0	6.1	6.1	2.6 2.7	2.8		7.2 6.6	7.0	
11-May-15	Cloudy	Moderate	18:45		Surface	1.0	24.5 25.7	25.7	8.0 7.5	7.5	28.1 29.7	29.6	86.8 98.2	96.5	6.2 7.0	6.9		2.8	2.1		7.4 5.5	5.1	
				10.4	Middle	5.2	25.8 25.6	25.6	7.5	7.5	29.5 29.8	29.8	94.7 101.5	97.9	6.8 7.3	7.0	7.0	2.1 2.1	2.2	2.2	4.7 5.4	5.5	5.8
					Bottom	9.4	25.6 25.8	25.5	7.5	7.5	29.7 29.2	28.7	94.2 95.7	97.7	6.8 6.9	7.0	7.0	2.2 2.3	2.3		5.6 7.0	6.9	
13-May-15	Sunny	Moderate	08:37		Surface	1.0	25.3 24.8	24.8	7.5	7.8	28.1 23.4	23.4	99.7 87.0	86.8	7.1 6.3	6.3		2.3	1.2		6.7 4.7	4.6	
				9.9	Middle	5.0	24.8 23.9	23.9	7.8	7.8	23.5 29.2	28.9	86.5 81.5	81.3	6.3 5.8	5.8	6.1	1.2	1.0	1.1	4.4	5.0	5.0
					Bottom	8.9	24.0 23.9	23.9	7.8	7.8	28.6 29.4	29.5	81.0 82.9	82.8	5.8 5.9	5.9	5.9	1.0	1.1		5.4 6.2	5.4	
15-May-15	Sunny	Moderate	10:30		Surface	1.0	23.8 25.9	25.8	7.8	7.8	29.6 19.8	19.2	82.7 84.9	84.6	5.9 6.2	6.2		1.1 2.4	2.4		4.6 5.1	5.2	
				9.7	Middle	4.9	25.7 24.8	24.7	7.8	7.7	18.6 24.9	24.9	84.3 78.9	81.3	6.2 5.7	5.8	6.0	2.3 2.4	2.5	2.5	5.2 6.9	6.9	6.4
					Bottom	8.7	24.7 24.1	24.3	7.7	7.7	24.9	28.7	83.7 78.1	79.6	6.0 5.6	5.7	5.7	2.5 2.4	2.5		6.8 6.4	7.0	
18-May-15	Sunny	Moderate	13:48		Surface	1.0	24.4 25.3	25.3	7.7	7.7	28.2 18.9	18.9	81.1 77.6	76.8	5.9 5.7	5.7		2.5 7.5	7.5		7.5 5.4	5.1	
				9.8	Middle	4.9	25.2 24.6	24.6	7.7	7.7	18.9 25.1	24.9	75.9 75.4	74.9	5.6 5.4	5.4	5.6	7.5	7.7	7.7	4.7	4.9	5.3
					Bottom	8.8	24.6 24.4	24.5	7.7	7.7	24.7	27.0	74.3 78.1	77.5	5.4 5.6	5.5	5.5	7.7	7.8		5.2 6.0	6.0	
20-May-15	Rainy	Moderate	15:08		Surface	1.0	24.7 25.3	25.2	7.7	7.6	26.9 18.7	18.9	76.8 80.3	80.8	5.5 5.9	5.9		7.8	7.7		6.0 7.9	7.7	
				10.1	Middle	5.1	25.2 25.0	25.0	7.6 7.6	7.6	19.0 20.4	20.5	81.2 79.7	77.4	6.0 5.9	5.7	5.8	7.8	7.7	7.7	7.5 9.8	9.5	9.4
					Bottom	9.1	25.0 25.1	25.0	7.6	7.6	20.7	21.2	75.0 79.4	76.5	5.5 5.8	5.6	5.6	7.7	7.8		9.1 10.9	11.1	
				1		-	24.8		7.6	-	21.5		73.6	1	5.4			7.7	-		11.3		

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling		Tempera	ature (°C)	p	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	I)	Suspended Solids (mg/L)		
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	16:36		Surface 1.0 Middle 4.9	1.0	24.6 24.6 24.6	7.8 7.8	7.8	20.4 20.5	20.4	74.9 76.6	75.8	5.6 5.7	5.6	5.4	2.6 2.7	2.7		4.9 3.5	4.2		
				9.7		4.9	24.2 24.2	24.2	7.7 7.8	7.8	24.8 24.6	24.7	72.6 71.1	71.9	5.3 5.2	5.2	5.4	3.4 3.2	3.3	3.1	3.9 4.2	4.1	4.5
					Bottom	8.7	24.2 24.2	24.2	7.8 7.7	7.7	25.1 25.1	25.1	73.3 76.1	74.7	5.3 5.5	5.4	5.4	3.2 3.4	3.3		5.5 4.8	5.2	
25-May-15	Cloudy	Moderate	10:58		Surface	1.0	24.5 24.5	24.5	7.5 7.5	7.5	16.9 16.9	16.9	68.8 69.1	69.0	5.2 5.2	5.2	5.2	4.1 4.4	4.3		1.6 2.3	2.0	
				2.0	Middle	1.0	23.9 23.9	23.9	7.6 7.6	7.6	24.6 24.5	24.5	69.5 69.4	69.5	5.1 5.1	5.1	0.2	5.3 5.5	5.4	4.6	2.6 2.6	2.6	2.5
					Bottom	1.0	24.9 24.9	24.9	7.4 7.4	7.4	12.5 12.5	12.5	71.8 72.3	72.1	5.6 5.6	5.6	5.6	4.0 3.9	4.0		3.2 2.6	2.9	
27-May-15	Cloudy	Moderate	07:38		Surface	1.0	24.8 24.8	24.8	7.4 7.5	7.5	11.1 11.3	11.2	75.5 73.8	74.7	5.9 5.8	5.9	5.8	5.5 5.5	5.5		7.3 7.3	2.9 7.3	
				9.9	Middle	5.0	24.3 24.4	24.4	7.5 7.6	7.5	17.3 16.9	17.1	71.0 71.3	71.2	5.6 5.6	5.6	5.0	5.7 5.8	5.8	5.9	6.5 6.8	6.7	7.1
					Bottom	8.9	24.6 24.4	24.5	7.4 7.5	7.4	22.2 24.6	23.4	69.1 68.5	68.8	5.4 5.4	5.4	5.4	6.4 6.6	6.5		8.0 6.4	7.2	
29-May-15	Sunny	Moderate	09:51		Surface	1.0	25.6 25.6	25.6	7.7 7.7	7.7	10.9 10.9	10.9	79.7 79.9	79.8	6.1 6.1	6.1	6.0	2.2 2.3	2.3		3.7 3.6	3.7	
				10.2	Middle	5.1	25.2 25.2	25.2	7.7 7.7	7.7	18.0 17.5	17.8	76.8 78.3	77.6	5.7 5.8	5.8	0.0	2.5 2.4	2.5	2.4	4.8 4.9	4.9	4.4
					Bottom	9.2	25.1 24.7	24.9	7.7 7.8	7.7	19.8 21.4	20.6	78.6 76.1	77.4	5.8 5.6	5.7	5.7	2.3 2.4	2.4		4.6 4.3	4.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling		Tempera	ature (°C)	p	н	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Turbidity(NTU)			Suspe	Suspended Solids (mg		
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
1-May-15	Sunny	Moderate	18:34		Surface	1.0	24.7 24.7	24.7	8.0 8.0	8.0	26.2 26.3	26.2	106.8 104.3	105.6	7.7 7.5	7.6	7.5	1.8 1.6	1.7		2.5 2.1	2.3		
				10.2	Middle	5.1	24.4 24.4	24.4	8.0 8.0	8.0	26.6 26.9	26.8	104.6 101.5	103.1	7.5 7.3	7.4	7.5	1.3 1.2	1.3	1.5	2.1 4.2	3.2	2.7	
					Bottom	9.2	24.4 24.3	24.3	8.0 8.0	8.0	27.3 28.1	27.7	99.7 105.2	102.5	7.1 7.5	7.3	7.3	1.5 1.7	1.6		2.4 2.8	2.6		
4-May-15	Sunny	Moderate	05:50		Surface	1.0	24.5 24.5	24.5	7.9 7.9	7.9	27.4 27.3	27.4	85.7 86.0	85.9	6.1 6.1	6.1		1.2 1.2	1.2		2.0 1.8	1.9		
				9.6	Middle	4.8	23.9 23.9	23.9	7.9 7.9	7.9	29.7 29.7	29.7	83.6 84.6	84.1	5.9 6.0	6.0	6.1	1.6	1.6	1.3	1.6	1.8	2.0	
					Bottom	8.6	23.9 24.0	24.0	7.9	7.9	29.9 29.7	29.8	87.0 85.7	86.4	6.2 6.1	6.1	6.1	1.2	1.2		2.7	2.4	1	
6-May-15	Sunny	Moderate	06:57		Surface	1.0	25.2 25.3	25.3	8.0 8.0	8.0	24.1 24.0	24.1	91.6 90.5	91.1	6.6 6.5	6.5		1.5 1.5	1.5		3.0 2.1	2.6		
				10.2	Middle	5.1	25.2 25.1	25.1	8.0 8.0	8.0	24.6 24.9	24.8	88.9 89.4	89.2	6.4 6.4	6.4	6.5	1.5	1.5	1.5	4.1	3.9	3.4	
					Bottom	9.2	25.0 25.0	25.0	7.9 8.0	8.0	25.6 25.7	25.6	89.9 88.6	89.3	6.4 6.3	6.4	6.4	1.6 1.6	1.6		2.9 4.2	3.6		
8-May-15	Sunny	Moderate	07:56		Surface	1.0	25.8 25.8	25.8	8.0 8.0	8.0	20.1 20.2	20.1	86.4 84.8	85.6	6.3 6.2	6.2		1.6 1.6	1.6		3.2 2.8	3.0		
				10.5	Middle	5.3	25.7 25.5	25.6	8.0 8.0	8.0	21.5 21.3	21.4	83.9 82.2	83.1	6.1 6.0	6.0	6.1	1.7 1.5	1.6	1.6	3.9 2.4	3.2	3.3	
					Bottom	9.5	24.8 25.1	24.9	8.0 8.0	8.0	26.6 26.3	26.4	81.0 83.5	82.3	5.8 5.9	5.9	5.9	1.6 1.5	1.6		4.5 3.1	3.8		
11-May-15	Cloudy	Moderate	10:47		Surface	1.0	24.9 25.3	25.1	7.5 7.6	7.5	29.5 29.0	29.2	97.2 102.4	99.8	7.0 7.3	7.1	7.2	2.1 2.0	2.1		8.2 8.7	8.5		
				10.7	Middle	5.4	24.7 24.9	24.8	7.5 7.6	7.5	31.5 29.4	30.5	100.7 99.6	100.2	7.2 7.1	7.2	1.2	2.2 2.3	2.3	2.2	6.6 8.2	7.4	7.8	
					Bottom	9.7	25.0 24.9	24.9	7.5 7.6	7.5	33.4 31.6	32.5	98.7 95.3	97.0	7.1 6.8	6.9	6.9	2.3 2.3	2.3		7.1 7.9	7.5		
13-May-15	Sunny	Moderate	15:39		Surface	1.0	24.9 24.9	24.9	7.9 7.9	7.9	24.3 24.2	24.2	84.3 83.0	83.7	6.1 6.0	6.0	5.7	2.0 1.9	2.0		5.5 5.8	5.7		
				10.2	Middle	5.1	24.1 24.0	24.0	7.9 7.9	7.9	28.4 28.7	28.5	75.8 75.6	75.7	5.4 5.4	5.4	5.7	3.0 2.7	2.9	2.6	5.0 5.5	5.3	5.4	
					Bottom	9.2	24.0 23.9	24.0	7.9 7.9	7.9	29.0 29.2	29.1	77.7 78.0	77.9	5.5 5.6	5.6	5.6	2.9 2.7	2.8		4.4 5.7	5.1		
15-May-15	Sunny	Moderate	17:40		Surface	1.0	26.2 26.2	26.2	7.8 7.8	7.8	19.1 19.1	19.1	91.9 93.2	92.6	6.7 6.7	6.7	6.7	3.2 3.2	3.2		6.1 6.9	6.5		
				10.5	Middle	5.3	25.9 25.9	25.9	7.8 7.7	7.8	20.4 20.6	20.5	91.1 92.0	91.6	6.6 6.7	6.6	0.7	3.1 3.3	3.2	3.2	7.0 8.2	7.6	7.0	
					Bottom	9.5	25.9 26.0	25.9	7.8 7.8	7.8	20.6 20.5	20.5	93.6 90.9	92.3	6.8 6.6	6.7	6.7	3.1 3.3	3.2		6.6 7.2	6.9		
18-May-15	Cloudy	Moderate	05:42		Surface	1.0	24.2 24.2	24.2	7.7 7.7	7.7	28.6 28.6	28.6	72.1 72.2	72.2	5.1 5.1	5.1	5.1	6.5 6.3	6.4		11.6 11.5	11.6		
				10.1	Middle	5.1	24.2 24.2	24.2	7.7 7.7	7.7	28.7 28.6	28.7	71.9 72.2	72.1	5.1 5.1	5.1	0.1	6.4 6.2	6.3	6.8	10.0 10.7	10.4	10.7	
					Bottom	9.1	24.2 24.2	24.2	7.7 7.7	7.7	28.8 28.9	28.9	71.8 71.4	71.6	5.1 5.1	5.1	5.1	7.5 7.7	7.6		11.1 9.3	10.2		
20-May-15	Rainy	Moderate	06:48		Surface	1.0	25.2 25.2	25.2	7.5 7.5	7.5	17.5 17.5	17.5	78.4 78.6	78.5	5.8 5.8	5.8	5.8	3.5 3.5	3.5		6.0 5.5	5.8		
				10.0	Middle	5.0	25.2 25.2	25.2	7.5 7.5	7.5	17.6 17.6	17.6	78.3 77.5	77.9	5.8 5.8	5.8	0.0	3.6 3.6	3.6	3.5	5.5 4.1	4.8	5.1	
					Bottom	9.0	25.2 25.2	25.2	7.5 7.5	7.5	18.7 18.4	18.6	77.4 77.9	77.7	5.7 5.8	5.8	5.8	3.4 3.4	3.4		4.9 4.2	4.6		

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling		Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspended Solids (mg/L)			
	Condition	Condition**	Time	Depth (m)	Depth (Depth (m)		Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
22-May-15	Rainy	Moderate	07:38		Surface	1.0	24.6 24.6	24.6	7.8 7.8	7.8	18.9 19.0	18.9	77.7 78.5	78.1	5.8 5.9	5.8	5.7	1.9 1.9	1.9		4.8 3.6	4.2	Í	
				9.9	Middle	5.0	24.4 24.5	24.5	7.8 7.8	7.8	23.1 22.9	23.0	74.8 74.7	74.8	5.5 5.5	5.5	5.7	1.9 1.9	1.9	1.9	4.9 4.9	4.9	4.3	
					Bottom	8.9	24.4 24.1	24.2	7.8 7.8	7.8	23.9 24.5	24.2	78.0 75.5	76.8	5.7 5.5	5.6	5.6	2.0 1.9	2.0		4.3 3.5	3.9		
25-May-15	Sunny	Moderate	18:25		Surface	1.0	24.4 24.3	24.4	7.6 7.6	7.6	19.3 19.3	19.3	70.9 70.3	70.6	5.3 5.3	5.3	5.2	2.8 2.9	2.9		1.4 1.5	1.5		
				2.0	Middle	1.0	23.8 23.8	23.8	7.6 7.6	7.6	25.7 25.7	25.7	70.2 70.3	70.3	5.1 5.1	5.1	0.2	2.5 2.2	2.4	3.0	0.6 1.2	0.9	1.7	
					Bottom	1.0	25.5 25.7	25.6	7.6 7.6	7.6	11.5 11.4	11.4	73.7 73.3	73.5	5.7 5.6	5.6	5.6	3.6 3.8	3.7		2.9 2.2	2.6		
27-May-15	Cloudy	Moderate	15:30		Surface	1.0	25.1 24.6	24.9	7.5 7.6	7.5	10.9 11.1	11.0	74.6 75.6	75.1	5.9 6.0	5.9	5.8	5.8 5.7	5.8		8.2 7.9	8.1		
				10.2	10.2	Middle	5.1	24.3 24.7	24.5	7.5 7.5	7.5	17.5 14.1	15.8	71.3 70.3	70.8	5.6 5.5	5.6	5.0	5.9 6.1	6.0	6.0	7.7 7.9	7.8	8.0
					Bottom	9.2	25.3 25.5	25.4	7.4 7.4	7.4	23.9 21.0	22.4	74.6 71.0	72.8	5.9 5.6	5.7	5.7	6.2 6.3	6.3		7.9 8.2	8.1		
29-May-15	Sunny	Moderate	17:41		Surface	1.0	24.9 25.4	25.1	7.8 7.8	7.8	18.7 16.3	17.5	77.6 74.1	75.9	5.6 5.6	5.6	5.5	2.3 2.2	2.3		3.5 3.6	3.6		
				11.0	Middle	5.5	24.7 24.7	24.7	7.8 7.8	7.8	22.5 23.0	22.7	73.2 71.6	72.4	5.4 5.2	5.3	0.0	2.2 2.2	2.2	2.3	3.2 4.0	3.6	3.7	
					Bottom	10.0	24.7 24.7	24.7	7.8 7.8	7.8	23.8 23.6	23.7	70.1 72.2	71.2	5.1 5.4	5.2	5.2	2.3 2.3	2.3		4.2 3.8	4.0		

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	Η	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Susp	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	10:33		Surface	1.0	24.5 24.5	24.5	8.0 8.0	8.0	26.7 26.6	26.6	99.7 104.3	102.0	7.2 7.5	7.3		0.5 0.6	0.6		0.5 0.8	0.7	
				35.2	Middle	17.6	22.9 22.9	22.9	7.9 8.0	8.0	32.1 32.1	32.1	96.3 95.3	95.8	6.9 6.8	6.8	7.1	0.7 0.8	0.8	0.9	1.8 0.6	1.2	0.9
					Bottom	34.2	22.9 23.0	23.0	8.0 8.0	8.0	32.1 32.1	32.1	95.7 99.5	97.6	6.8 7.1	7.0	7.0	1.1	1.2		0.8	0.7	
4-May-15	Sunny	Moderate	14:08		Surface	1.0	25.5 25.4	25.5	7.9 7.9	7.9	23.7 24.1	23.9	90.2 89.5	89.9	6.5 6.4	6.4		1.1	1.2		4.8 6.3	5.6	
				34.4	Middle	17.2	24.5 24.6	24.6	7.9 7.9 7.9	7.9	27.5 27.4	27.5	86.4 86.6	86.5	6.2 6.2	6.2	6.3	1.2 1.3 1.4	1.4	1.6	5.7 5.2	5.5	5.6
					Bottom	33.4	24.0 24.4 24.2	24.3	7.9	7.9	28.1 29.0	28.6	86.7 86.3	86.5	6.2 6.1	6.2	6.2	2.1	2.1		5.7 5.7	5.7	
6-May-15	Sunny	Moderate	15:02		Surface	1.0	25.3 25.4	25.4	8.1 8.1	8.1	24.1 23.7	23.9	86.7 87.0	86.9	6.2 6.2	6.2		1.6 1.6	1.6		8.0 7.3	7.7	
				34.0	Middle	17.0	23.4 24.1 24.3	24.2	8.1 8.1	8.1	29.2 28.7	28.9	82.2 82.8	82.5	5.9 5.9	5.9	6.1	1.7	1.7	1.7	6.3 5.9	6.1	7.0
					Bottom	33.0	24.3 24.0 23.7	23.9	8.1 8.1	8.1	31.1 31.2	31.1	85.3 83.0	84.2	6.0 5.9	5.9	5.9	1.7	1.7		7.3	7.2	
8-May-15	Sunny	Moderate	16:21		Surface	1.0	26.0 26.1	26.1	8.1 8.1	8.1	21.7 21.7	21.7	83.6 85.6	84.6	6.1 6.2	6.1		2.3	2.3		5.6 5.8	5.7	
				33.1	Middle	16.6	24.2 24.6	24.4	8.1 8.0	8.0	29.4 28.1	28.7	78.4 79.0	78.7	5.6 5.6	5.6	5.9	2.5	2.5	2.4	6.2 5.3	5.8	6.1
					Bottom	32.1	24.2	24.2	8.0 8.0	8.0	29.4	29.3	80.5 82.2	81.4	5.7 5.8	5.8	5.8	2.5	2.5		6.3 7.2	6.8	
11-May-15	Cloudy	Moderate	18:55		Surface	1.0	25.7 25.7	25.7	7.6 7.5	7.6	29.7 29.4	29.5	98.8 97.4	98.1	7.1	7.1		2.0 1.9	2.0		5.3 5.4	5.4	
				35.5	Middle	17.8	25.6 25.5	25.6	7.5 7.6	7.6	29.7 29.9	29.8	98.0 100.0	99.0	7.1 7.2	7.2	7.2	2.1 2.3	2.2	2.2	5.1 5.3	5.2	5.4
					Bottom	34.5	25.5 25.8	25.7	7.7	7.6	29.0 28.9	29.0	103.1	101.1	7.4	7.3	7.3	2.3 2.4	2.4		6.0 4.9	5.5	
13-May-15	Sunny	Moderate	08:22		Surface	1.0	24.2 24.8	24.5	7.8 7.9	7.9	23.2	23.0	80.1 87.4	83.8	5.9 6.4	6.1		0.9	1.0		4.2	4.3	
				35.2	Middle	17.6	23.6 23.7	23.6	7.8 7.9	7.9	31.2 30.6	30.9	77.7 80.0	78.9	5.5 5.7	5.6	5.9	0.7	0.7	0.8	4.4 5.0	4.7	4.7
					Bottom	34.2	23.6 23.6	23.6	7.9 7.8	7.9	30.8 31.7	31.3	83.8 82.1	83.0	6.0 5.8	5.9	5.9	0.7 0.8	0.8		4.4 5.9	5.2	
15-May-15	Sunny	Moderate	10:22		Surface	1.0	25.9 25.9	25.9	7.7 7.7	7.7	18.6 19.3	19.0	89.0 87.0	88.0	6.5 6.3	6.4		1.5 1.4	1.5		6.9 7.4	7.2	
				33.8	Middle	16.9	24.1 24.3	24.2	7.7 7.7	7.7	29.2 28.0	28.6	82.2 79.1	80.7	5.8 5.6	5.7	6.1	1.5 1.4	1.5	1.5	6.9 7.0	7.0	7.2
					Bottom	32.8	24.0 23.9	24.0	7.7 7.7	7.7	29.9 30.5	30.2	77.3 77.0	77.2	5.5 5.5	5.5	5.5	1.5 1.5	1.5		7.1 7.5	7.3	
18-May-15	Sunny	Moderate	14:02		Surface	1.0	25.4 25.4	25.4	7.6 7.6	7.6	18.8 18.8	18.8	75.2 75.1	75.2	5.5 5.5	5.5	E 4	7.5 7.3	7.4		5.0 5.0	5.0	
				33.8	Middle	16.9	24.6 24.6	24.6	7.7 7.7	7.7	25.1 25.6	25.4	71.9 71.7	71.8	5.2 5.2	5.2	5.4	7.7 7.8	7.8	7.7	6.6 6.6	6.6	5.9
					Bottom	32.8	24.4 24.4	24.4	7.7 7.7	7.7	27.2 27.1	27.2	72.3 72.7	72.5	5.2 5.2	5.2	5.2	7.7 7.8	7.8		6.6 5.3	6.0	
20-May-15	Rainy	Moderate	15:16		Surface	1.0	25.3 25.3	25.3	7.6 7.6	7.6	18.3 18.4	18.4	80.6 80.5	80.6	6.0 6.0	6.0	5.8	7.6 7.7	7.7		8.0 9.0	8.5	
				33.5	Middle	16.8	24.9 25.0	24.9	7.6 7.6	7.6	21.3 20.3	20.8	76.6 76.3	76.5	5.5 5.6	5.5	5.0	7.8 7.9	7.9	7.8	8.0 7.6	7.8	7.9
					Bottom	32.5	24.8 24.7	24.8	7.6 7.6	7.6	23.4 24.2	23.8	76.1 74.6	75.4	5.5 5.5	5.5	5.5	7.9 7.8	7.9		7.2 7.4	7.3	

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Tempera	ature (°C)	р	Η	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	ended Solids	, (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	16:52		Surface '	1.0	24.7 24.7	24.7	7.8 7.8	7.8	20.1 20.2	20.2	79.8 74.3	77.1	5.9 5.5	5.7	5.4	3.0 2.8	2.9		4.2 4.0	4.1	
				34.3	Middle 1	17.2	24.1 24.1	24.1	7.8 7.8	7.8	25.1 25.3	25.2	69.8 69.4	69.6	5.0 5.1	5.0	5.4	3.9 3.7	3.8	3.5	4.4 5.4	4.9	4.4
					Bottom 3	33.3	24.1 24.1	24.1	7.8 7.8	7.8	25.6 25.6	25.6	71.0 69.2	70.1	5.2 5.0	5.1	5.1	3.6 4.0	3.8		4.4 3.9	4.2	
25-May-15	Cloudy	Moderate	10:48		Surface	1.0	25.4 25.4	25.4	7.5 7.5	7.5	13.9 13.9	13.9	78.3 78.7	78.5	6.0 6.0	6.0	6.0	1.8 1.6	1.7		3.0 2.1	2.6	
				2.1	Middle	1.1	24.7 24.7	24.7	7.5 7.5	7.5	15.5 15.5	15.5	77.5 77.8	77.7	5.9 5.9	5.9	0.0	1.7 1.6	1.7	2.0	2.0 2.4	2.2	2.3
					Bottom	1.1	25.3 25.2	25.3	7.5 7.5	7.5	13.9 13.9	13.9	73.9 74.2	74.1	5.6 5.7	5.6	5.6	2.6 2.5	2.6		1.8 2.4	2.1	
27-May-15	Cloudy	Moderate	07:26		Surface	1.0	24.8 24.8	24.8	7.4 7.6	7.5	11.5 10.4	11.0	75.5 73.3	74.4	5.9 5.8	5.9	5.8	5.0 5.1	5.1		7.6 7.6	7.6	
				#VALUE!	Middle 1	17.4	24.8 24.5	24.6	7.5 7.5	7.5	13.8 13.6	13.7	72.9 72.4	72.7	5.7 5.7	5.7	5.0	5.3 5.6	5.5	5.3	5.9 8.0	7.0	7.4
					Bottom	-	-	-	7.4 7.4	7.4	-	-	-	-	-	-	-	-	-		7.8 7.6	7.7	
29-May-15	Sunny	Moderate	09:44		Surface	1.0	26.0 26.2	26.1	7.6 7.6	7.6	7.1 7.6	7.4	82.4 85.6	84.0	6.4 6.6	6.5	6.1	2.2 2.3	2.3		3.6 3.5	3.6	
				34.2	Middle 1	17.1	25.1 25.2	25.1	7.7 7.7	7.7	18.5 18.6	18.6	77.0 77.8	77.4	5.7 5.8	5.7	0.1	2.3 2.3	2.3	2.4	4.0 5.0	4.5	4.2
					Bottom 3	33.2	24.9 24.8	24.8	7.7 7.7	7.7	23.1 23.3	23.2	78.8 77.4	78.1	5.7 5.6	5.7	5.7	2.5 2.4	2.5		4.2 4.5	4.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	18:50		Surface	1.0	24.6 24.7	24.6	8.0 8.0	8.0	26.2 26.2	26.2	105.5 107.5	106.5	7.6 7.7	7.6	7.6	1.2 1.1	1.2		3.7 3.6	3.7	
				35.3	Middle	17.7	23.9 24.3	24.1	8.0 8.0	8.0	28.3 27.1	27.7	103.9 106.3	105.1	7.5 7.6	7.5	7.0	1.2 1.1	1.2	1.3	2.9 2.8	2.9	3.2
					Bottom	34.3	24.3 23.9	24.1	8.0 8.0	8.0	27.2 28.5	27.8	106.6 104.6	105.6	7.6 7.5	7.6	7.6	1.4 1.5	1.5		2.6 3.5	3.1	
4-May-15	Sunny	Moderate	05:37		Surface	1.0	24.6 24.6	24.6	7.9 7.9	7.9	27.1 27.2	27.2	86.0 86.6	86.3	6.1 6.2	6.2		0.9 1.0	1.0		1.6 1.8	1.7	
				34.7	Middle	17.4	23.8 23.8	23.8	7.9 7.9	7.9	29.9 30.1	30.0	83.7 84.0	83.9	6.0 6.0	6.0	6.1	1.5 1.4	1.5	1.3	2.0 1.4	1.7	2.4
					Bottom	33.7	23.9 23.8	23.9	7.9 7.9	7.9	30.1 29.9	30.0	84.9 84.6	84.8	6.0 6.0	6.0	6.0	1.4 1.5	1.5		3.8 4.0	3.9	
6-May-15	Sunny	Moderate	06:46		Surface	1.0	25.3 25.3	25.3	8.1 8.0	8.0	23.9 24.0	23.9	90.0 89.9	90.0	6.5 6.5	6.5		1.4 1.4	1.4		3.5 4.3	3.9	
				34.7	Middle	17.4	24.7 24.7	24.7	8.0 8.0	8.0	27.0 26.8	26.9	86.0 86.4	86.2	6.1 6.2	6.1	6.3	1.6 1.5	1.6	1.5	2.6	3.1	3.4
					Bottom	33.7	24.6 24.6	24.6	8.0 7.9	7.9	27.7	27.4	87.1 89.1	88.1	6.2 6.4	6.3	6.3	1.5	1.5		2.5	3.2	1
8-May-15	Sunny	Moderate	07:48		Surface	1.0	25.8 25.8	25.8	8.0 8.0	8.0	20.2	20.2	83.8 85.8	84.8	6.1 6.2	6.2		2.5 2.4	2.5		3.0 3.4	3.2	
				34.7	Middle	17.4	24.7 24.7	24.7	8.0 8.0	8.0	27.3 27.4	27.3	78.9 83.5	81.2	5.6 5.9	5.8	6.0	2.5 2.7	2.6	2.6	2.0 2.8	2.4	3.0
					Bottom	33.7	24.2 24.1	24.2	8.0 8.0	8.0	29.4 29.5	29.4	79.2 78.0	78.6	5.6 5.5	5.6	5.6	2.6 2.5	2.6		3.2 3.7	3.5	
11-May-15	Cloudy	Moderate	10:36		Surface	1.0	25.5 25.5	25.5	7.5 7.5	7.5	29.4 29.5	29.4	101.4 103.1	102.3	7.3 7.4	7.3	7.0	2.2 2.1	2.2		6.6 7.2	6.9	
				35.8	Middle	17.9	25.0 24.8	24.9	7.5 7.7	7.6	30.6 31.4	31.0	98.9 100.0	99.5	7.1 7.2	7.1	7.2	2.3 2.2	2.3	2.3	6.2 4.5	5.4	5.6
					Bottom	34.8	24.9 24.9	24.9	7.5 7.6	7.5	33.0 31.0	32.0	96.6 98.7	97.7	6.9 7.1	7.0	7.0	2.5 2.4	2.5		4.5 4.6	4.6	
13-May-15	Sunny	Moderate	15:54		Surface	1.0	24.8 24.9	24.9	7.9 7.9	7.9	24.5 24.6	24.5	84.1 85.6	84.9	6.1 6.2	6.1	5.7	1.6 1.5	1.6		2.8 2.5	2.7	
				36.1	Middle	18.1	23.7 23.8	23.8	7.9 7.9	7.9	30.0 29.6	29.8	74.5 74.4	74.5	5.3 5.3	5.3	5.7	2.4 2.5	2.5	2.1	4.3 4.6	4.5	4.4
					Bottom	35.1	23.9 23.8	23.8	7.9 7.9	7.9	29.8 30.5	30.1	79.6 75.8	77.7	5.7 5.4	5.5	5.5	2.2 2.4	2.3		6.8 5.0	5.9	
15-May-15	Sunny	Moderate	17:51		Surface	1.0	26.3 26.3	26.3	7.8 7.8	7.8	19.3 19.2	19.2	90.0 90.1	90.1	6.5 6.5	6.5	6.2	2.7 2.6	2.7		6.4 6.4	6.4	
				34.2	Middle	17.1	25.4 25.1	25.3	7.7 7.7	7.7	21.9 23.6	22.8	81.9 82.9	82.4	5.9 5.8	5.9	0.2	2.9 3.0	3.0	2.9	6.8 5.8	6.3	6.6
					Bottom	33.2	25.1 25.1	25.1	7.7 7.7	7.7	27.9 23.8	25.9	80.4 81.3	80.9	5.8 5.9	5.8	5.8	3.0 2.9	3.0		7.0 7.4	7.2	
18-May-15	Cloudy	Moderate	05:33		Surface	1.0	24.6 24.6	24.6	7.6 7.6	7.6	24.9 25.9	25.4	74.4 75.4	74.9	5.4 5.4	5.4	5.3	4.0 4.0	4.0		8.0 6.7	7.4	
				34.3	Middle	17.2	24.2 24.2	24.2	7.7 7.7	7.7	28.7 28.6	28.7	73.2 73.3	73.3	5.2 5.2	5.2	0.0	6.3 6.1	6.2	5.5	12.5 12.0	12.3	11.8
					Bottom	33.3	24.1 24.2	24.1	7.6 7.7	7.7	28.9 29.0	29.0	70.2 71.5	70.9	5.0 5.1	5.1	5.1	6.3 6.3	6.3		15.3 16.2	15.8	
20-May-15	Rainy	Moderate	06:39		Surface	1.0	25.2 25.2	25.2	7.5 7.5	7.5	17.6 17.5	17.5	76.7 78.5	77.6	5.7 5.9	5.8	5.8	3.2 3.2	3.2		6.2 5.0	5.6	
				34.8	Middle	17.4	25.2 25.0	25.1	7.5 7.6	7.5	18.5 20.1	19.3	78.2 74.4	76.3	5.8 5.5	5.7	5.0	3.1 3.0	3.1	3.1	5.5 4.8	5.2	5.9
					Bottom	33.8	24.6 24.9	24.7	7.6 7.6	7.6	24.6 20.5	22.6	74.7 78.1	76.4	5.4 5.8	5.6	5.6	3.1 3.1	3.1		7.4 6.5	7.0	

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	p	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl))	Suspe	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	07:27		Surface	1.0	24.6 24.6	24.6	7.8 7.8	7.8	18.9 19.0	18.9	75.7 78.3	77.0	5.7 5.9	5.8	5.6	2.3 2.2	2.3		2.9 3.9	3.4	Í
				35.7	Middle	17.9	24.0 23.6	23.8	7.8 7.8	7.8	27.4 27.6	27.5	73.3 75.6	74.5	5.3 5.5	5.4	5.0	2.9 2.9	2.9	2.7	3.6 5.0	4.3	3.8
					Bottom	34.7	23.9 23.5	23.7	7.8 7.8	7.8	26.8 29.4	28.1	71.2 69.7	70.5	5.1 5.0	5.1	5.1	2.8 3.0	2.9		3.8 3.5	3.7	
25-May-15	Sunny	Moderate	18:34		Surface	1.0	25.3 25.3	25.3	7.5 7.5	7.5	10.3 10.2	10.3	72.5 71.9	72.2	5.6 5.5	5.6	5.5	3.4 3.6	3.5		3.3 2.9	3.1	
				2.1	Middle	1.1	24.6 24.6	24.6	7.5 7.5	7.5	18.2 18.3	18.3	70.2 71.4	70.8	5.3 5.4	5.3	0.0	1.5 1.4	1.5	3.0	3.7 2.8	3.3	3.1
					Bottom	1.1	25.5 25.4	25.5	7.5 7.5	7.5	10.8 10.8	10.8	73.7 73.5	73.6	5.7 5.7	5.7	5.7	3.9 4.2	4.1		2.9 2.7	2.8	
27-May-15	Cloudy	Moderate	15:45		Surface	1.0	24.9 25.0	25.0	7.6 7.6	7.6	11.5 10.7	11.1	70.8 74.6	72.7	5.6 5.9	5.7	5.7	4.9 4.8	4.9		7.1 6.9	7.0	
				35.2	Middle	17.6	24.7 24.4	24.6	7.5 7.5	7.5	18.3 16.7	17.5	72.6 69.4	71.0	5.7 5.5	5.6	5.7	5.1 5.2	5.2	5.2	7.3 6.2	6.8	6.9
					Bottom	34.2	25.2 25.4	25.3	7.5 7.5	7.5	22.0 23.5	22.8	69.9 68.0	69.0	5.5 5.4	5.4	5.4	5.5 5.6	5.6		7.2 6.4	6.8	
29-May-15	Sunny	Moderate	17:50		Surface	1.0	25.4 25.9	25.7	7.8 7.8	7.8	16.4 15.4	15.9	73.3 73.7	73.5	5.5 5.5	5.5	5.3	2.2 2.3	2.3		4.2 3.7	4.0	
				35.1	Middle	17.6	24.4 24.4	24.4	7.9 7.9	7.9	24.6 25.5	25.1	70.5 70.6	70.6	5.0 5.1	5.1	0.0	2.2 2.2	2.2	2.3	4.5 3.4	4.0	3.9
					Bottom	34.1	24.2 24.4	24.3	7.9 7.8	7.8	29.5 30.4	30.0	69.4 71.2	70.3	4.9 5.0	5.0	5.0	2.3 2.2	2.3		3.8 3.6	3.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	oling	Tempera	ature (°C)	F	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	12:33		Surface	1.0	26.8 27.1	27.0	8.2 8.2	8.2	27.4 27.1	27.2	115.5 117.7	116.6	7.9 8.0	8.0		7.7 7.6	7.7		2.3 4.3	3.3	
				3.0	Middle	-	-	-	-	-	-	-		-		-	8.0		-	7.8		-	3.6
					Bottom	2.0	26.8 26.7	26.7	8.2 8.1	8.2	27.5 27.6	27.5	116.1 111.4	113.8	8.0 7.7	7.8	7.8	7.7 7.8	7.8		3.1 4.4	3.8	ļ
4-May-15	Sunny	Moderate	12:07		Surface	1.0	27.1 27.0	27.0	8.1 8.1	8.1	28.4 28.4	28.4	94.2 94.0	94.1	6.4 6.4	6.4		5.7 5.6	5.7		2.4 3.3	2.9	i
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	5.7	-	-	3.1
					Bottom	2.2	27.0 27.0	27.0	8.1 8.1	8.1	28.5 28.5	28.5	94.0 93.9	94.0	6.4 6.4	6.4	6.4	5.6 5.7	5.7		2.7 3.7	3.2	
6-May-15	Sunny	Moderate	13:07		Surface	1.0	26.9 26.9	26.9	8.1 8.1	8.1	26.9 26.8	26.9	90.8 92.4	91.6	6.2 6.4	6.3		6.6 6.4	6.5		10.7 9.3	10.0	i
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	6.4	-	-	9.6
					Bottom	2.4	26.9 26.9	26.9	8.1 8.1	8.1	26.9 26.9	26.9	91.3 94.5	92.9	6.3 6.5	6.4	6.4	6.5 6.0	6.3		8.5 9.9	9.2	
8-May-15	Sunny	Moderate	14:16		Surface	1.0	27.1 27.1	27.1	8.0 7.9	8.0	25.9 25.9	25.9	88.1 94.5	91.3	6.1 6.5	6.3	6.2	11.5 11.7	11.6		7.7 8.1	7.9	i
				3.4	Middle	-	-	-		-		-	-	-	-	-	6.3	-	-	11.9	-	-	8.7
					Bottom	2.4	27.1 27.1	27.1	7.9 8.0	8.0	25.9 25.9	25.9	87.2 88.7	88.0	6.0 6.1	6.0	6.0	12.1 12.0	12.1		9.8 8.9	9.4	
11-May-15	Cloudy	Moderate	17:17		Surface	1.0	27.5 27.5	27.5	8.2 8.2	8.2	22.0 22.1	22.1	104.0 97.9	101.0	7.3 6.8	7.1	7.1	7.4 7.5	7.5		4.2 4.8	4.5	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	7.5	-	-	4.3
					Bottom	2.3	27.4 27.1	27.3	8.2 8.1	8.1	23.5 24.1	23.8	101.5 95.1	98.3	7.0 6.6	6.8	6.8	7.3 7.6	7.5		3.2 4.9	4.1	
13-May-15	Sunny	Moderate	10:37		Surface	1.0	26.7 26.7	26.7	8.1 8.1	8.1	21.6 21.7	21.7	91.8 87.9	89.9	6.5 6.2	6.4	6.4	11.3 12.0	11.7		3.6 3.8	3.7	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-	11.6	-	-	4.0
					Bottom	2.1	26.5 26.3	26.4	8.1 8.1	8.1	24.5 24.6	24.6	84.3 90.1	87.2	5.9 6.4	6.2	6.2	11.6 11.3	11.5		3.7 4.7	4.2	
15-May-15	Sunny	Moderate	12:24		Surface	1.0	27.6 27.6	27.6	8.2 8.2	8.2	22.3 22.3	22.3	104.4 102.7	103.6	7.3 7.1	7.2	7.2	6.3 6.1	6.2		4.9 4.7	4.8	
				3.2	Middle	-	-	-		-		-	-	-	-	-	1.2	-	-	6.2	-	-	4.2
					Bottom	2.2	27.6 27.2	27.4	8.2 8.2	8.2	22.2 22.6	22.4	103.4 98.5	101.0	7.2 6.9	7.0	7.0	6.2 6.0	6.1		3.7 3.4	3.6	
18-May-15	Sunny	Moderate	11:58		Surface	1.0	26.3 26.3	26.3	8.0 8.0	8.0	23.1 23.1	23.1	79.4 82.2	80.8	5.6 5.8	5.7	5.7	14.8 15.5	15.2		15.7 16.3	16.0	
				3.2	Middle	-	-	-		-		-	-	-	-	-	5.7	-	-	15.9	-	-	15.9
					Bottom	2.2	26.3 26.3	26.3	8.0 8.0	8.0	23.1 23.1	23.1	80.4 80.8	80.6	5.7 5.7	5.7	5.7	16.9 16.2	16.6		15.0 16.6	15.8	
20-May-15	Rainy	Moderate	13:29		Surface	1.0	26.7 26.7	26.7	8.0 8.0	8.0	21.3 21.3	21.3	82.5 89.9	86.2	5.9 6.4	6.1	6.1	15.1 15.2	15.2		10.4 9.5	10.0	
				3.4	Middle	-	-	-		-		-	-	-	-	-	0.1	-	-	15.3	-	-	11.2
					Bottom	2.4	26.7 26.7	26.7	8.0 8.0	8.0	21.3 21.3	21.3	85.2 81.5	83.4	6.1 5.8	5.9	5.9	15.5 15.3	15.4		12.6 12.1	12.4	l

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	ЪН	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	, (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	14:47		Surface	1.0	25.9 25.9	25.9	8.1 8.1	8.1	20.1 20.0	20.1	87.1 87.4	87.3	6.3 6.3	6.3	6.3	10.3 10.4	10.4		7.9 7.3	7.6	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	10.4	-	-	7.6
					Bottom	2.2	25.9 25.9	25.9	8.1 8.1	8.1	20.3 20.1	20.2	90.7 87.2	89.0	6.6 6.3	6.4	6.4	10.2 10.4	10.3		7.7 7.4	7.6	
25-May-15	Cloudy	Moderate	16:50		Surface	1.0	27.2 26.9	27.1	7.9 7.8	7.9	13.3 14.3	13.8	92.2 95.7	94.0	6.8 6.9	6.9	6.9	6.7 6.6	6.7		1.4 0.9	1.2	
				3.3	Middle	-	-	-	-	-		-	-	-	-	-	0.0	-	-	6.7	-	-	1.4
					Bottom	2.3	27.4 26.6	27.0	7.8 7.8	7.8	16.0 16.9	16.4	92.5 85.4	89.0	6.8 6.2	6.5	6.5	6.7 6.7	6.7		1.9 1.2	1.6	
27-May-15	Cloudy	Moderate	10:05		Surface	1.0	26.8 26.8	26.8	7.8 7.8	7.8	14.6 14.5	14.5	76.6 75.0	75.8	5.7 5.5	5.6	5.6	8.5 8.6	8.6		2.7 3.8	3.3	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	5.0	-	-	8.7	-	-	3.6
					Bottom	2.2	26.5 26.6	26.6	7.8 7.8	7.8	16.2 17.1	16.6	77.0 75.9	76.5	5.7 5.5	5.6	5.6	8.8 8.6	8.7		3.6 3.9	3.8	
29-May-15	Sunny	Moderate	11:20		Surface	1.0	28.5 28.6	28.6	8.3 8.3	8.3	12.8 12.7	12.7	124.0 120.9	122.5	9.0 8.7	8.8	8.8	8.2 8.9	8.6		5.9 6.1	6.0	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	8.8	-	-	6.4
					Bottom	2.1	28.1 27.3	27.7	8.2 8.2	8.2	16.8 20.3	18.6	118.9 123.3	121.1	8.4 8.7	8.6	8.6	9.1 8.9	9.0		7.0 6.5	6.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

1-May-15 Sunny Modi 4-May-15 Sunny Modi 6-May-15 Sunny Modi 8-May-15 Sunny Modi 11-May-15 Cloudy Modi 13-May-15 Sunny Modi	Anderate Anderate Anderate Anderate Anderate Anderate Anderate Anderate	Time 16:36 07:28 08:40 09:16 11:46	Depth (m) 3.1 3.2 3.3 3.3	Depth Surface Middle Bottom Surface Middle Bottom Surface Middle Surface	m (m) 1.0 - 2.1 1.0 - 2.2 1.0 - 2.3 1.0	Value 27.3 27.3 27.1 26.9 26.6 26.6 26.7 26.7 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8	Average 27.3 - 27.0 26.6 - 26.8 26.8 -	Value 8.2 8.3	Average 8.3 - 8.2 8.0 - 8.0 - 8.0 - 8.1	Value 27.3 27.4 27.7 28.0 27.2 27.2 27.2 27.6 27.6 27.6 26.4	Average 27.4 - 27.9 27.2 - 27.6	Value 120.3 123.8 - 121.9 120.1 93.9 93.9 - - 94.4 94.4	Average 122.1 - 121.0 93.9 -	Value 8.2 8.4 - - 8.3 8.2 6.5 6.5 - -	Average 8.3 - 8.2 6.5 -	DA* 8.3 8.2 6.5	Value 6.7 6.6 - 6.5 6.6 4.1 4.3 -	Average 6.7 - 6.6 4.2 -	DA* 6.7 4.3	Value 3.4 3.6 - 4.2 4.2 4.3 4.8 -	Average 3.5 - 4.2 4.6 -	DA* 3.9 5.0
4-May-15 Sunny Mode 6-May-15 Sunny Mode 8-May-15 Sunny Mode 11-May-15 Cloudy Mode 13-May-15 Sunny Mode	Aoderate Aoderate	07:28 08:40 09:16	3.2	Middle Bottom Surface Middle Bottom Surface Bottom	- 2.1 1.0 - 2.2 1.0 - 2.3	27.3 27.1 26.9 26.6 26.6 26.7 26.7 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8	27.0 26.6 26.8 26.8 26.8	8.3 - - 8.3 8.1 8.0 8.0 8.0 8.0 8.1 8.0 8.1 8.0	- 8.2 8.0 - 8.0	27.4 - 27.7 28.0 27.2 27.2 27.2 - 27.6 27.6 27.6	- 27.9 27.2 -	123.8 - 121.9 120.1 93.9 93.9 - - 94.4	- 121.0 93.9 -	8.4 - 8.3 8.2 6.5 6.5 -	- 8.2	8.2	6.6 - - 6.5 6.6 4.1 4.3	- 6.6		3.6 - 4.2 4.2 4.3 4.8	- 4.2	
6-May-15 Sunny Mode 8-May-15 Sunny Mode 11-May-15 Cloudy Mode 13-May-15 Sunny Mode	/loderate /loderate	08:40 09:16	3.2	Bottom Surface Middle Bottom Surface Bottom	1.0 - 2.2 1.0 - 2.3	- 27.1 26.9 26.6 26.6 - - 26.7 26.8 26.8 26.8 26.8 26.8 26.8	26.6 - 26.8 26.8 -	- 8.3 8.0 8.0 - - 8.0 8.0 8.1 8.0	8.0 - 8.0	27.7 28.0 27.2 27.2 27.2 27.6 27.6 27.6	27.2	- 121.9 120.1 93.9 93.9 - - - 94.4	93.9 -	8.3 8.2 6.5 6.5 -		8.2	- 6.5 6.6 4.1 4.3			- 4.2 4.2 4.3 4.8		
6-May-15 Sunny Mode 8-May-15 Sunny Mode 11-May-15 Cloudy Mode 13-May-15 Sunny Mode	/loderate /loderate	08:40 09:16	3.3	Surface Middle Bottom Surface Middle Bottom Surface	1.0 - 2.2 1.0 - 2.3	26.9 26.6 26.6 - 26.7 26.8 26.8 26.8 26.8 26.8 26.8	26.6 - 26.8 26.8 -	8.1 8.0 - - 8.0 8.0 8.1 8.0	8.0 - 8.0	28.0 27.2 27.2 - 27.6 27.6	27.2	120.1 93.9 93.9 - - 94.4	93.9 -	8.2 6.5 6.5 -			6.6 4.1 4.3		4.3	4.2 4.3 4.8		5.0
6-May-15 Sunny Mode 8-May-15 Sunny Mode 11-May-15 Cloudy Mode 13-May-15 Sunny Mode	/loderate /loderate	08:40 09:16	3.3	Middle Bottom Surface Middle Bottom Surface	- 2.2 1.0 - 2.3	26.6 - 26.7 26.8 26.8 26.8 - - 26.8 26.8 26.8	- 26.8 26.8	8.0 - - 8.0 8.0 8.1 8.0	- 8.0	27.2 - 27.6 27.6	-	93.9 - - 94.4	-	6.5 - -	6.5 -	6.5	4.3	4.2	4.3	4.8	4.6	5.0
8-May-15 Sunny Mode 11-May-15 Cloudy Mode 13-May-15 Sunny Mode	Noderate	09:16	3.3	Bottom Surface Middle Bottom Surface	1.0 - 2.3	 26.7 26.8 26.8 26.8 26.8 26.8 26.8	26.8	- 8.0 8.0 8.1 8.0		- 27.6 27.6	- 27.6	- 94.4	-	-	-	0.5	-	-	4.3	-	-	5.0
8-May-15 Sunny Mode 11-May-15 Cloudy Mode 13-May-15 Sunny Mode	Noderate	09:16		Surface Middle Bottom Surface	1.0 - 2.3	26.8 26.8 - - 26.8 26.8 26.8 26.8	26.8	8.0 8.1 8.0		27.6	27.6									-		
8-May-15 Sunny Mode 11-May-15 Cloudy Mode 13-May-15 Sunny Mode	Noderate	09:16		Middle Bottom Surface	- 2.3	26.8 - 26.8 26.8	-	8.0	8.1	26.4		94.1	94.3	6.5 6.4	6.5	6.5	4.3 4.3	4.3		4.7 5.9	5.3	l.
11-May-15 Cloudy Mode 13-May-15 Sunny Mode				Bottom Surface	 	26.8 26.8	-	-		26.4	26.4	92.2 92.8	92.5	6.4 6.4	6.4	6.4	5.7 5.9	5.8		5.4 4.6	5.0	
11-May-15 Cloudy Mode 13-May-15 Sunny Mode			3.4	Surface	 	26.8		-	-	-	-	-	-	-	-	6.4		-	5.9		-	4.8
11-May-15 Cloudy Mode 13-May-15 Sunny Mode			3.4		1.0		26.8	8.0 8.0	8.0	26.5 26.4	26.5	95.4 92.4	93.9	6.6 6.4	6.5	6.5	6.0 5.8	5.9		4.8 4.3	4.6	i.
13-May-15 Sunny Mod	Noderate	11:46	3.4	Middle		27.0 27.0	27.0	8.0 8.0	8.0	24.3 24.3	24.3	91.2 91.5	91.4	6.3 6.4	6.3		6.4 6.6	6.5		3.4 2.3	2.9	
13-May-15 Sunny Mod	Noderate	11:46			-		-	-	-	-	-	-	-	-	-	6.3	-	-	6.6	-	-	3.5
13-May-15 Sunny Mod	Noderate	11:46		Bottom	2.4	27.0 27.0	27.0	8.0 8.0	8.0	25.0 25.1	25.0	89.4 89.5	89.5	6.2 6.2	6.2	6.2	6.6 6.6	6.6		3.5 4.7	4.1	i.
		11.40		Surface	1.0	27.2 27.3	27.2	8.1 8.1	8.1	21.0 21.0	21.0	87.5 92.3	89.9	6.2 6.5	6.3		10.3 10.9	10.6		8.2 8.8	8.5	
			3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	10.6	-	-	8.0
				Bottom	2.3	27.3 27.1	27.2	8.1 8.0	8.1	21.0 22.1	21.6	90.0 86.4	88.2	6.4 6.1	6.2	6.2	10.7 10.4	10.6		7.5 7.5	7.5	i.
15-May-15 Sunny Mod	Noderate	13:38		Surface	1.0	26.6 26.6	26.6	8.2 8.2	8.2	21.7 22.0	21.9	99.1 99.1	99.1	7.0 7.0	7.0	7.0	13.3 13.6	13.5		12.4 10.9	11.7	
15-May-15 Sunny Mode			3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0		-	13.4	-	-	11.2
15-May-15 Sunny Mod				Bottom	2.2	26.6 26.6	26.6	8.2 8.2	8.2	22.3 22.1	22.2	99.2 99.6	99.4	7.0 7.1	7.0	7.0	13.3 13.1	13.2		11.1 10.3	10.7	i.
	Noderate	15:46		Surface	1.0	27.6 28.0	27.8	8.3 8.3	8.3	22.0 21.4	21.7	121.1 121.6	121.4	8.4 8.4	8.4		9.6 10.3	10.0		11.9 11.9	11.9	
			3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	8.4		-	11.2		-	11.7
				Bottom	2.1	27.7 28.1	27.9	8.2 8.3	8.3	22.1 22.1	22.1	121.6 122.1	121.9	8.5 8.4	8.5	8.5	12.1 12.4	12.3		12.4 10.3	11.4	i.
18-May-15 Cloudy Mode	Noderate	07:14		Surface	1.0	26.4 26.4	26.4	7.9 7.9	7.9	21.7 21.7	21.7	86.1 85.6	85.9	6.1 6.1	6.1		9.0 8.9	9.0		5.6 5.3	5.5	
			3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	9.1	-	-	5.0
				Bottom	2.1	26.4 26.4	26.4	7.9 7.9	7.9	21.7 21.7	21.7	85.7 86.9	86.3	6.1 6.2	6.2	6.2	9.1 9.1	9.1		4.3 4.6	4.5	l.
20-May-15 Rainy Mode		07:55		Surface	1.0	26.6 26.6	26.6	8.0 8.0	8.0	20.4 20.3	20.4	82.4 82.3	82.4	5.9 5.9	5.9		8.5 8.6	8.6		5.0 4.8	4.9	
	Noderate		3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	8.7	-	-	4.5
	Noderate			Bottom	2.3	26.6 26.6	26.6	8.0 8.0	8.0	20.4 20.6	20.5	82.2 82.1	82.2	5.9 5.9	5.9	5.9	8.8	8.8		4.8	4.0	

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	09:34		Surface	1.0	25.8 25.8	25.8	8.0 8.0	8.0	18.5 18.5	18.5	90.1 90.2	90.2	6.6 6.6	6.6	6.6	12.5 12.1	12.3		10.2 9.7	10.0	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	12.4	-	-	9.8
					Bottom	2.1	25.8 25.8	25.8	8.0 8.0	8.0	18.6 19.0	18.8	90.2 90.3	90.3	6.6 6.6	6.6	6.6	12.5 12.4	12.5		9.3 9.7	9.5	
25-May-15	Sunny	Moderate	11:31		Surface	1.0	27.2 27.5	27.4	7.9 7.9	7.9	12.7 12.3	12.5	89.4 95.7	92.6	6.6 7.1	6.8	6.8	5.8 5.9	5.9		0.5 1.2	0.9	
				3.4	Middle	-		-	• •	-		-	• •	-	-	-	0.0		-	5.9	-	-	0.8
					Bottom	2.4	27.6 26.7	27.2	7.9 7.9	7.9	12.4 13.4	12.9	89.2 90.2	89.7	6.6 6.6	6.6	6.6	5.9 5.9	5.9		0.5 0.8	0.7	
27-May-15	Cloudy	Moderate	13:20		Surface	1.0	27.4 27.4	27.4	7.9 7.9	7.9	13.6 13.7	13.6	74.5 78.5	76.5	5.5 5.8	5.6	5.6	12.3 11.9	12.1		6.1 7.0	6.6	
				3.2	Middle	-	-	-		-	-	-	-	-	-	-	5.0		-	12.3	-	-	6.3
					Bottom	2.2	26.6 27.3	26.9	7.7 7.8	7.8	17.9 17.6	17.8	73.9 78.6	76.3	5.4 5.7	5.5	5.5	12.2 12.7	12.5		6.1 5.9	6.0	
29-May-15	Sunny	Moderate	15:37		Surface	1.0	28.9 28.3	28.6	8.4 8.4	8.4	12.7 12.9	12.8	117.0 117.6	117.3	8.5 8.5	8.5	8.5	15.3 14.2	14.8		8.3 7.9	8.1	
				3.1	Middle	-	-	-		-	-	-	-	-	-	-	0.0		-	15.4	-	-	8.6
					Bottom	2.1	27.7 27.4	27.6	8.3 8.1	8.2	15.5 16.7	16.1	92.2 91.0	91.6	6.7 6.6	6.6	6.6	16.2 15.8	16.0	<u> </u>	8.8 9.2	9.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	ЪН	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	i (mg/L)	٦	Furbidity(NT	J)	Susp	ended Solid	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	12:20		Surface	1.0	26.4 26.4	26.4	8.2 8.2	8.2	26.8 26.8	26.8	120.7 121.2	121.0	8.4 8.4	8.4		7.6 7.9	7.8		3.8 3.7	3.8	
				3.6	Middle	-	-	-		-		-		-		-	8.4		-	7.8	-	-	3.8
					Bottom	2.6	26.4 26.4	26.4	8.2 8.2	8.2	26.8 26.8	26.8	118.6 120.9	119.8	8.2 8.4	8.3	8.3	7.7 7.7	7.7		3.7 3.8	3.8	
4-May-15	Sunny	Moderate	12:21		Surface	1.0	26.9 26.9	26.9	8.2 8.2	8.2	26.8 26.6	26.7	95.6 95.5	95.6	6.6 6.6	6.6		6.7 6.9	6.8		2.9 2.4	2.7	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	6.8	-	-	3.1
					Bottom	2.6	26.8 26.7	26.8	8.2 8.1	8.2	27.3 27.4	27.3	95.4 95.4	95.4	6.6 6.6	6.6	6.6	6.7 6.7	6.7		3.1 3.7	3.4	
6-May-15	Sunny	Moderate	13:22		Surface	1.0	26.9 26.9	26.9	8.1 8.2	8.2	26.8 26.7	26.7	95.7 99.5	97.6	6.6 6.8	6.7		7.2 6.9	7.1		7.2	6.7	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	7.0	-	-	6.5
					Bottom	2.8	26.9 27.0	26.9	8.2 8.1	8.1	26.8 27.0	26.9	99.2 95.4	97.3	6.8 6.5	6.7	6.7	7.0 6.8	6.9		6.3 6.1	6.2	
8-May-15	Sunny	Moderate	14:28		Surface	1.0	27.5 27.5	27.5	8.1 8.0	8.1	24.0 24.0	24.0	100.2 99.7	100.0	6.9 6.9	6.9		7.4 7.0	7.2		6.8 6.6	6.7	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	7.3	-	-	6.2
					Bottom	2.5	27.5 27.4	27.5	8.0 8.1	8.1	24.0 24.0	24.0	99.7 99.7	99.7	6.9 6.9	6.9	6.9	7.3 7.4	7.4		6.0 5.2	5.6	
11-May-15	Cloudy	Moderate	17:34		Surface	1.0	27.5 27.5	27.5	8.2 8.2	8.2	21.8 21.7	21.8	105.8 103.7	104.8	7.4 7.3	7.3	7.0	8.6 8.5	8.6		4.8 4.9	4.9	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	8.6	-	-	4.8
					Bottom	2.6	27.5 27.3	27.4	8.2 8.1	8.2	22.0 22.5	22.3	105.8 102.8	104.3	7.4 7.2	7.3	7.3	8.5 8.5	8.5		4.4 4.8	4.6	
13-May-15	Sunny	Moderate	10:23		Surface	1.0	26.4 26.5	26.4	8.1 8.1	8.1	21.8 21.7	21.7	94.1 90.7	92.4	6.6 6.5	6.5	0.5	6.6 6.5	6.6		3.5 3.8	3.7	
				3.7	Middle	-	-	-	-	-	-	-		-	-	-	6.5	-	-	6.6	-	-	4.5
					Bottom	2.7	26.4 26.4	26.4	8.1 8.1	8.1	24.6 25.9	25.2	90.9 87.7	89.3	6.4 6.3	6.3	6.3	6.6 6.5	6.6		4.7 5.8	5.3	
15-May-15	Sunny	Moderate	12:10		Surface	1.0	27.5 27.3	27.4	8.2 8.2	8.2	22.3 22.4	22.3	100.7 96.4	98.6	7.0 6.7	6.9	6.9	8.5 8.8	8.7		3.8 2.6	3.2	
				3.5	Middle	-	-	-	-	-	-	-		-	-	-	6.9	-	-	10.3	-	-	3.7
					Bottom	2.5	27.0 27.1	27.1	8.2 8.2	8.2	23.0 23.5	23.2	96.2 96.7	96.5	6.7 6.7	6.7	6.7	12.0 11.7	11.9		4.4 3.9	4.2	
18-May-15	Sunny	Moderate	12:12		Surface	1.0	26.5 26.5	26.5	7.8 7.9	7.9	21.5 21.4	21.5	84.1 80.2	82.2	6.0 5.7	5.9	5.9	13.6 12.6	13.1		6.0 6.7	6.4	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	13.4	-	-	7.1
					Bottom	2.7	26.4 26.5	26.5	7.8 7.9	7.8	22.8 22.8	22.8	81.5 81.6	81.6	5.8 5.8	5.8	5.8	13.6 13.8	13.7		7.8 7.6	7.7	
20-May-15	Rainy	Moderate	13:46		Surface	1.0	26.7 26.6	26.7	8.0 8.0	8.0	19.2 19.0	19.1	85.2 90.1	87.7	6.1 6.5	6.3	6.3	7.6 7.7	7.7		5.2 4.5	4.9	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	0.3	-	-	7.7	-	-	4.6
					Bottom	2.4	26.6 26.7	26.7	8.1 8.0	8.1	20.0 19.1	19.5	85.8 84.4	85.1	6.2 6.1	6.1	6.1	7.8 7.6	7.7		4.7	4.2	1

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	ኔ (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	15:02		Surface	1.0	26.0 26.0	26.0	8.1 8.0	8.1	18.7 18.9	18.8	85.4 86.0	85.7	6.2 6.3	6.3	6.3	8.8 8.5	8.7		7.4 8.2	7.8	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	8.8	-	-	8.4
					Bottom	2.7	26.0 26.0	26.0	8.0 8.0	8.0	20.0 19.5	19.7	85.5 86.2	85.9	6.2 6.3	6.2	6.2	8.8 8.8	8.8		9.1 8.9	9.0	
25-May-15	Cloudy	Moderate	17:02		Surface	1.0	26.8 27.7	27.2	7.8 7.8	7.8	13.6 13.2	13.4	94.0 87.7	90.9	6.8 6.4	6.6	6.6	6.5 6.6	6.6		1.8 1.5	1.7	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	6.7	-	-	1.4
					Bottom	2.4	26.4 26.4	26.4	7.8 7.8	7.8	16.4 17.8	17.1	85.7 87.9	86.8	6.3 6.5	6.4	6.4	6.7 6.6	6.7		1.4 0.8	1.1	
27-May-15	Cloudy	Moderate	09:50		Surface	1.0	26.9 26.9	26.9	7.8 7.8	7.8	13.7 13.6	13.6	76.0 74.8	75.4	5.6 5.5	5.6	5.6	7.5 7.5	7.5		4.4 4.0	4.2	
				3.5	Middle	I	-	-		-	-	-		-		-	5.0	-	-	7.6	-	-	6.1
					Bottom	2.5	26.6 26.8	26.7	7.7 7.7	7.7	16.0 15.9	16.0	71.2 76.8	74.0	5.2 5.6	5.4	5.4	7.7 7.7	7.7		7.9 7.9	7.9	
29-May-15	Sunny	Moderate	11:07		Surface	1.0	28.1 28.2	28.2	8.1 8.2	8.2	13.2 13.9	13.5	86.8 93.8	90.3	6.3 6.8	6.5	6.5	9.9 9.3	9.6		3.9 3.8	3.9	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	9.5	-	-	4.5
					Bottom	2.5	26.9 26.8	26.8	8.1 8.1	8.1	18.9 18.8	18.8	89.6 90.3	90.0	6.4 6.5	6.5	6.5	8.9 9.8	9.4		5.0 4.9	5.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	þ	н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	٦	Furbidity(NTl	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	16:52		Surface	1.0	26.7 26.6	26.6	8.3 8.3	8.3	27.7 27.7	27.7	117.3 118.4	117.9	8.1 8.1	8.1	8.1	6.4 6.3	6.4		5.1 4.5	4.8	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	6.5	-	-	4.9
					Bottom	2.6	26.4 26.5	26.4	8.2 8.3	8.3	28.3 28.1	28.2	114.3 117.9	116.1	7.9 8.1	8.0	8.0	6.6 6.5	6.6		4.9 5.0	5.0	
4-May-15	Sunny	Moderate	07:15		Surface	1.0	26.6 26.5	26.5	8.1 8.1	8.1	26.8 26.9	26.9	89.6 90.8	90.2	6.2 6.3	6.2	6.2	4.7 4.8	4.8		3.5 3.1	3.3	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	4.8	-	-	3.5
					Bottom	2.9	26.7 26.7	26.7	8.0 8.1	8.0	27.9 28.0	27.9	93.3 90.1	91.7	6.4 6.2	6.3	6.3	4.8 4.7	4.8		4.3 2.8	3.6	
6-May-15	Sunny	Moderate	08:23		Surface	1.0	26.5 26.5	26.5	8.1 8.1	8.1	25.8 25.8	25.8	93.4 90.7	92.1	6.5 6.3	6.4	6.4	5.1 4.9	5.0		4.7 4.5	4.6	
				3.7	Middle	-	-	-		-	-	-		-	-	-	6.4	-	-	5.2	-	-	4.1
					Bottom	2.7	26.4 26.5	26.4	8.1 8.1	8.1	26.1 25.9	26.0	97.4 92.1	94.8	6.8 6.4	6.6	6.6	5.5 5.0	5.3		3.8 3.1	3.5	
8-May-15	Sunny	Moderate	08:57		Surface	1.0	27.0 27.0	27.0	8.0 8.0	8.0	23.5 23.3	23.4	88.0 95.4	91.7	6.2 6.7	6.4	6.4	8.5 8.5	8.5		7.6 8.4	8.0	
				3.5	Middle	-	-	-		-	-	-		-	-	-	6.4	-	-	8.6	-	-	8.1
					Bottom	2.5	26.9 26.9	26.9	8.0 8.0	8.0	23.9 24.1	24.0	88.1 89.2	88.7	6.2 6.2	6.2	6.2	8.7 8.7	8.7		8.7 7.4	8.1	
11-May-15	Cloudy	Moderate	11:31		Surface	1.0	27.2 27.0	27.1	8.0 8.1	8.1	22.0 22.0	22.0	93.0 90.1	91.6	6.5 6.3	6.4	6.4	7.2 7.5	7.4		4.0 4.2	4.1	
				3.7	Middle	-	-	-	-	-	-	-		-	-	-	6.4	-	-	7.5	-	-	4.0
					Bottom	2.7	27.1 27.0	27.0	8.1 8.0	8.1	22.2 22.4	22.3	89.7 85.8	87.8	6.3 6.1	6.2	6.2	7.5 7.4	7.5		3.5 4.3	3.9	
13-May-15	Sunny	Moderate	13:53		Surface	1.0	26.6 26.7	26.7	8.2 8.2	8.2	22.7 22.6	22.7	95.0 95.3	95.2	6.7 6.7	6.7	6.7	7.9 7.8	7.9		5.0 2.6	3.8	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	0.7	-	-	8.0	-	-	3.8
					Bottom	2.8	26.4 26.6	26.5	8.1 8.1	8.1	24.7 24.6	24.6	96.6 95.9	96.3	6.8 6.7	6.7	6.7	7.8 8.2	8.0		4.0 3.6	3.8	
15-May-15	Sunny	Moderate	16:01		Surface	1.0	27.9 27.7	27.8	8.3 8.2	8.2	22.3 22.5	22.4	106.2 107.1	106.7	7.4 7.4	7.4	7.4	12.2 11.6	11.9		6.9 7.3	7.1	
				3.2	Middle	-	-	-		-	-	-		-	-	-	7.4	-	-	11.8	-	-	6.9
					Bottom	2.2	27.4 27.7	27.5	8.2 8.2	8.2	23.2 22.7	23.0	100.4 107.9	104.2	7.0 7.5	7.2	7.2	11.8 11.5	11.7		7.1 6.3	6.7	
18-May-15	Cloudy	Moderate	06:59		Surface	1.0	26.4 26.4	26.4	7.9 7.9	7.9	21.0 21.0	21.0	86.4 87.9	87.2	6.2 6.3	6.2		8.9 9.0	9.0		6.3 7.8	7.1	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	9.0	-	-	7.3
					Bottom	2.4	26.4 26.4	26.4	7.9 7.8	7.9	21.0 21.0	21.0	86.9 89.8	88.4	6.2 6.4	6.3	6.3	8.9 9.0	9.0		7.6 7.4	7.5	1
20-May-15	Rainy	Moderate	07:42		Surface	1.0	26.6 26.6	26.6	8.0 7.9	8.0	18.2 18.0	18.1	88.4 83.0	85.7	6.4 6.0	6.2		10.1 9.8	10.0		5.9 7.2	6.6	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	10.1	-	-	6.4
					Bottom	2.2	26.6 26.6	26.6	7.9 8.0	8.0	18.1 18.9	18.5	81.5 84.1	82.8	5.9 6.1	6.0	6.0	10.0 10.1	10.1		6.4 5.9	6.2	1

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	09:20		Surface	1.0	26.0 26.0	26.0	8.0 8.0	8.0	18.8 18.9	18.9	83.1 83.1	83.1	6.1 6.1	6.1	6.1	8.9 9.0	9.0		5.7 6.2	6.0	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	9.0	-	-	6.6
					Bottom	2.6	26.0 26.0	26.0	8.0 8.0	8.0	19.0 19.5	19.2	83.1 83.9	83.5	6.1 6.1	6.1	6.1	9.1 8.8	9.0	<u> </u>	7.6 6.5	7.1	
25-May-15	Sunny	Moderate	11:17		Surface	1.0	26.7 26.6	26.7	7.8 7.8	7.8	14.5 14.5	14.5	79.5 83.6	81.6	5.9 6.2	6.0	6.0	7.0 7.0	7.0		1.2 0.7	1.0	
				3.3	Middle	-		-		-	-	-	-	-	-	-	0.0	-	-	7.1	-	-	1.6
					Bottom	2.3	26.5 26.7	26.6	7.9 7.8	7.8	15.2 15.1	15.2	77.2 77.4	77.3	5.7 5.7	5.7	5.7	7.1 7.3	7.2		2.2 2.1	2.2	
27-May-15	Cloudy	Moderate	13:32		Surface	1.0	27.4 27.5	27.5	7.9 7.9	7.9	13.1 13.1	13.1	84.4 86.5	85.5	6.2 6.4	6.3	6.3	8.2 7.9	8.1		6.4 5.1	5.8	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	8.2	-	-	6.1
					Bottom	2.7	27.2 26.9	27.1	7.9 7.9	7.9	15.1 15.1	15.1	84.4 81.7	83.1	6.2 6.0	6.1	6.1	8.1 8.2	8.2		6.2 6.3	6.3	
29-May-15	Sunny	Moderate	15:54		Surface	1.0	29.8 29.1	29.4	8.4 8.4	8.4	12.1 12.6	12.4	128.0 123.7	125.9	9.1 8.9	9.0	9.0	12.0 10.9	11.5		5.7 5.8	5.8	
				3.4	Middle	-		-	• •	-	-	-	-	-	-	-	5.0	-	-	11.7	-	-	6.0
					Bottom	2.4	28.9 27.6	28.3	8.3 8.3	8.3	13.6 14.4	14.0	120.4 122.1	121.3	8.8 8.9	8.8	8.8	12.1 11.7	11.9	<u> </u>	6.3 5.8	6.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	Η	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Susp	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	11:40		Surface	1.0	24.7 24.8	24.7	8.0 8.0	8.0	24.2 24.1	24.2	100.3 101.3	100.8	7.3 7.3	7.3	-	2.6 2.4	2.5		2.1 1.6	1.9	
				10.6	Middle	5.3	24.2 24.2	24.2	7.9 8.0	8.0	26.8 26.8	26.8	98.6 96.7	97.7	7.1	7.0	7.2	4.1	4.1	3.8	1.6 2.1	1.9	1.8
					Bottom	9.6	24.2	24.2	7.9 8.0	8.0	26.9 26.9	26.9	99.5 96.3	97.9	7.2	7.1	7.1	4.5	4.7		1.1	1.7	
4-May-15	Sunny	Moderate	13:02		Surface	1.0	25.3 25.2	25.3	7.9 7.9	7.9	24.6	24.4	85.9 86.2	86.1	6.1	6.2		3.7	3.7		5.2 4.1	4.7	
				10.6	Middle	5.3	25.2 25.1 25.1	25.1	7.9 7.9 7.9	7.9	24.1 25.4 25.4	25.4	85.3 85.5	85.4	6.2 6.1 6.1	6.1	6.2	3.6 4.7 4.5	4.6	4.3	4.1 4.8 4.2	4.5	4.4
					Bottom	9.6	25.1 25.1 25.1	25.1	7.9 7.9 7.9	7.9	25.4 25.4 25.4	25.4	86.0 85.6	85.8	6.2 6.1	6.1	6.1	4.5	4.7		4.2	4.1	
6-May-15	Sunny	Moderate	14:01		Surface	1.0	25.4 25.4	25.4	7.9 7.8 7.8	7.8	24.4 24.5	24.5	87.4 86.6	87.0	6.2 6.2	6.2		4.0	4.2		3.9 3.1 2.0	2.6	
				10.9	Middle	5.5	25.4 25.2 25.2	25.2	7.8 7.8 7.8	7.8	24.5 25.4 25.4	25.4	85.0 85.1	85.1	6.1 6.1	6.1	6.2	4.4	4.4	4.4	2.0 2.5 2.6	2.6	2.6
					Bottom	9.9	25.2 25.1 25.2	25.2	7.7	7.8	25.6 25.6	25.6	84.9 86.5	85.7	6.1 6.2	6.1	6.1	4.4	4.5		2.2	2.5	
8-May-15	Sunny	Moderate	15:27		Surface	1.0	26.2 26.1	26.2	8.1 8.1	8.1	20.4 20.4	20.4	86.9 84.7	85.8	6.3 6.1	6.2		6.2 6.1	6.2		4.8	4.6	
				10.5	Middle	5.3	25.5 25.5	25.5	8.1 8.1	8.1	23.5 23.4	23.5	85.2 82.6	83.9	6.1 5.9	6.0	6.1	6.5 6.6	6.6	6.4	4.6	5.2	4.9
					Bottom	9.5	25.6 25.5	25.5	8.1 8.1	8.1	23.5 23.6	23.5	82.1 81.1	81.6	5.9 5.8	5.8	5.8	6.4 6.5	6.5		4.5	4.9	
11-May-15	Cloudy	Moderate	18:00		Surface	1.0	25.8 25.4	25.6	7.6 7.6	7.6	29.6 29.5	29.5	97.8 99.9	98.9	7.0	7.1		4.3	4.4		3.7 3.3	3.5	
				10.4	Middle	5.2	25.1 25.3	25.2	7.6 7.6	7.6	30.3 29.9	30.1	99.2 98.6	98.9	7.1	7.1	7.1	4.5 4.6	4.6	4.6	5.2 5.0	5.1	4.7
					Bottom	9.4	25.6 25.1	25.4	7.6	7.6	29.7 30.4	30.1	95.8 96.6	96.2	6.9 6.9	6.9	6.9	4.7	4.7		5.9 5.3	5.6	
13-May-15	Sunny	Moderate	09:31		Surface	1.0	25.1 25.0	25.1	7.8 7.8	7.8	21.3 21.4	21.4	82.9 83.1	83.0	6.2 6.2	6.2		2.6 2.7	2.7		4.9 5.6	5.3	
				10.4	Middle	5.2	24.5 24.5	24.5	7.8 7.8	7.8	25.9 26.0	26.0	81.9 78.2	80.1	5.9 5.6	5.8	6.0	4.3 4.2	4.3	3.9	4.9 4.6	4.8	5.1
					Bottom	9.4	24.5 24.4	24.4	7.8 7.8	7.8	26.3 26.6	26.5	74.2 77.7	76.0	5.3 5.6	5.5	5.5	4.5 4.8	4.7		5.2 5.4	5.3	
15-May-15	Sunny	Moderate	11:23		Surface	1.0	26.0 26.1	26.1	7.7 7.7	7.7	17.2 17.1	17.2	79.9 80.4	80.2	5.9 5.9	5.9	F 7	8.6 8.6	8.6		6.7 7.0	6.9	
				10.5	Middle	5.3	25.3 25.2	25.3	7.6 7.7	7.7	20.9 20.9	20.9	75.8 74.6	75.2	5.5 5.5	5.5	5.7	8.8 8.8	8.8	8.8	6.6 8.2	7.4	7.2
					Bottom	9.5	25.2 24.8	25.0	7.6 7.7	7.7	24.1 25.5	24.8	76.5 74.3	75.4	5.5 5.3	5.4	5.4	8.8 8.9	8.9		6.1 8.3	7.2	
18-May-15	Sunny	Moderate	12:58		Surface	1.0	25.2 25.2	25.2	7.6 7.6	7.6	19.3 19.5	19.4	72.5 73.1	72.8	5.4 5.4	5.4	5.3	8.8 8.5	8.7		8.5 7.8	8.2	
				10.6	Middle	5.3	24.9 24.9	24.9	7.6 7.6	7.6	21.4 21.4	21.4	71.3 71.4	71.4	5.2 5.2	5.2	0.0	8.8 8.7	8.8	8.7	8.3 7.8	8.1	8.3
					Bottom	9.6	24.9 24.7	24.8	7.6 7.6	7.6	23.2 23.6	23.4	72.3 72.3	72.3	5.3 5.3	5.3	5.3	8.7 8.6	8.7		8.1 8.8	8.5	
20-May-15	Rainy	Moderate	14:12		Surface	1.0	25.3 25.3	25.3	7.7 7.7	7.7	17.8 17.8	17.8	81.2 81.5	81.4	6.0 6.1	6.1	6.0	8.7 8.7	8.7		6.1 6.6	6.4	
				10.5	Middle	5.3	25.0 25.1	25.1	7.7 7.7	7.7	19.0 19.0	19.0	78.5 78.2	78.4	5.8 5.8	5.8	0.0	8.8 8.9	8.9	8.8	6.9 6.1	6.5	7.0
					Bottom	9.5	25.0 24.8	24.9	7.6 7.6	7.6	22.8 23.2	23.0	81.1 75.3	78.2	5.9 5.5	5.7	5.7	8.8 8.9	8.9		8.4 7.5	8.0	

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	I T	emperatur	ure (°C)	р	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	1	urbidity(NTL	J)	Suspe	ended Solids	, (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)) V	alue A	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	15:41		Surface 1		4.8 4.9	24.8	7.9 7.9	7.9	18.6 18.5	18.6	86.7 88.8	87.8	6.5 6.6	6.5	6.5	2.8 2.7	2.8		4.6 5.0	4.8	
				10.3	Middle 5	22	4.8 4.8	24.8	7.8 7.9	7.9	18.8 18.7	18.7	85.7 87.2	86.5	6.4 6.5	6.4	0.5	3.4 3.2	3.3	3.1	5.7 4.3	5.0	4.7
					Bottom 9	13	4.8 4.8	24.8	7.8 7.8	7.8	20.5 18.8	19.6	87.7 87.6	87.7	6.5 6.5	6.5	6.5	3.1 3.0	3.1		5.0 3.6	4.3	
25-May-15	Cloudy	Moderate	11:46		Surface 1		3.8 3.9	23.8	7.5 7.5	7.5	25.8 25.8	25.8	70.1 70.0	70.1	5.3 5.3	5.3	5.2	3.6 3.5	3.6		5.7 6.1	5.9	
				2.1	Middle 1	11	2.8 2.8	22.8	7.6 7.6	7.6	29.5 29.4	29.5	69.6 69.7	69.7	5.1 5.1	5.1	0.2	4.2 4.4	4.3	3.3	4.3 5.2	4.8	5.0
					Bottom 1	11	24.8 24.8	24.8	7.5 7.5	7.5	14.3 14.2	14.2	72.3 73.2	72.8	5.5 5.6	5.6	5.6	1.9 2.1	2.0		3.7 5.1	4.4	
27-May-15	Cloudy	Moderate	08:33		Surface 1	1.0	24.7 24.4	24.5	7.4 7.5	7.4	14.0 13.1	13.5	75.3 75.1	75.2	5.9 5.9	5.9	5.8	4.3 4.4	4.4		5.2 6.2	5.7	
				10.4	Middle 5	12	4.6 4.3	24.4	7.5 7.5	7.5	19.1 20.1	19.6	73.3 70.3	71.8	5.8 5.5	5.7	5.0	4.8 4.7	4.8	4.8	4.6 5.9	5.3	5.5
					Bottom 9	14	24.4 24.3	24.4	7.5 7.5	7.5	22.9 22.5	22.7	69.6 71.3	70.5	5.5 5.6	5.5	5.5	5.2 5.1	5.2		4.7 6.3	5.5	
29-May-15	Sunny	Moderate	11:06		Surface 1	10	.6.2 .6.1	26.1	7.7 7.7	7.7	9.4 9.3	9.4	81.7 87.0	84.4	6.3 6.7	6.5	6.0	6.2 6.3	6.3		5.3 4.8	5.1	
				11.0	Middle 5		24.7 24.9	24.8	7.6 7.7	7.6	22.2 22.9	22.6	73.7 73.1	73.4	5.4 5.3	5.4	0.0	6.6 6.7	6.7	6.6	4.5 5.4	5.0	5.9
					Bottom 1	00	4.3 4.2	24.3	7.7 7.7	7.7	26.7 26.9	26.8	69.0 70.3	69.7	5.0 5.1	5.0	5.0	6.7 6.8	6.8		7.5 7.7	7.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	н	Salini	ty (ppt)	DO Satu	iration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	17:42		Surface	1.0	25.3 25.2	25.3	8.0 8.0	8.0	23.0 23.1	23.1	109.4 107.9	108.7	7.9 7.8	7.8	7.8	1.2 1.1	1.2		2.6 2.2	2.4	
				10.7	Middle	5.4	24.4 24.5	24.5	8.0 8.0	8.0	25.8 25.8	25.8	106.3 107.1	106.7	7.7 7.7	7.7	7.0	1.6 1.4	1.5	1.6	2.2 2.8	2.5	2.5
					Bottom	9.7	24.5 24.8	24.6	8.0 8.0	8.0	25.8 25.6	25.7	107.7 108.6	108.2	7.8 7.8	7.8	7.8	2.1 1.8	2.0		2.5 2.5	2.5	
4-May-15	Sunny	Moderate	06:40		Surface	1.0	25.1 25.1	25.1	7.9 7.9	7.9	25.2 25.2	25.2	87.6 88.5	88.1	6.3 6.3	6.3		12.4 12.8	12.6		11.0 11.5	11.3	
				10.6	Middle	5.3	25.1 25.1	25.1	7.9 7.9	7.9	25.3 25.3	25.3	88.9 87.6	88.3	6.4 6.3	6.3	6.3	14.2 13.2	13.7	13.8	11.7 12.3	12.0	11.7
					Bottom	9.6	25.1 25.1	25.1	7.9 7.9	7.9	25.4 25.4	25.4	90.3 87.8	89.1	6.5 6.3	6.4	6.4	15.7 14.6	15.2		12.2 11.4	11.8	
6-May-15	Sunny	Moderate	07:44		Surface	1.0	25.0 25.1	25.1	8.0 8.0	8.0	25.7 25.7	25.7	84.2 85.6	84.9	6.0 6.1	6.1		8.9 8.8	8.9		8.3 9.9	9.1	
				10.9	Middle	5.5	25.0 25.0	25.0	8.0 8.0	8.0	26.2 26.1	26.2	84.1 85.3	84.7	6.0 6.1	6.0	6.1	8.8 8.8	8.8	8.9	8.3 8.9	8.6	9.4
					Bottom	9.9	25.0 25.0	25.0	8.0 8.0	8.0	26.2 26.1	26.2	86.5 85.3	85.9	6.2 6.1	6.1	6.1	8.9 8.9	8.9		11.1 9.7	10.4	1
8-May-15	Sunny	Moderate	08:55		Surface	1.0	25.7 25.6	25.7	7.9 7.9	7.9	20.6 20.7	20.7	84.0 84.2	84.1	6.1 6.1	6.1		6.3 6.4	6.4		8.3 9.3	8.8	
				10.7	Middle	5.4	25.3 25.3	25.3	7.9 7.9	7.9	23.9 23.9	23.9	83.4 82.1	82.8	6.0 5.9	5.9	6.0	6.7 6.7	6.7	6.6	9.0 8.2	8.6	9.1
					Bottom	9.7	25.3 25.3	25.3	7.9 7.9	7.9	24.3 24.2	24.2	83.2 85.3	84.3	6.0 6.1	6.0	6.0	6.7 6.8	6.8		9.0 10.9	10.0	
11-May-15	Cloudy	Moderate	11:20		Surface	1.0	25.0 25.0	25.0	7.6 7.7	7.6	29.2 29.4	29.3	99.0 101.7	100.4	7.1 7.3	7.2	7.0	4.3 4.4	4.4		8.2 7.2	7.7	
				10.8	Middle	5.4	24.9 24.9	24.9	7.6 7.6	7.6	31.4 31.0	31.2	90.3 99.7	95.0	6.5 7.1	6.8	7.0	4.5 4.6	4.6	4.6	7.4 7.7	7.6	7.6
					Bottom	9.8	25.0 25.1	25.0	7.5 7.6	7.6	31.5 31.4	31.5	96.4 98.3	97.4	6.9 7.0	7.0	7.0	4.8 4.7	4.8		7.8 7.3	7.6	
13-May-15	Sunny	Moderate	14:42		Surface	1.0	25.2 25.1	25.2	7.8 7.9	7.9	20.1 20.2	20.2	88.0 86.6	87.3	6.5 6.5	6.5	6.0	3.4 3.6	3.5		4.1 3.8	4.0	
				10.5	Middle	5.3	24.2 24.3	24.3	7.8 7.8	7.8	27.6 27.3	27.5	77.5 77.3	77.4	5.6 5.5	5.5	0.0	4.6 5.1	4.9	4.5	7.3 5.9	6.6	5.5
					Bottom	9.5	24.3 24.4	24.4	7.8 7.8	7.8	28.0 27.6	27.8	83.3 83.2	83.3	5.9 5.9	5.9	5.9	5.1 4.9	5.0		5.1 6.8	6.0	
15-May-15	Sunny	Moderate	16:42		Surface	1.0	26.6 26.2	26.4	7.8 7.7	7.8	16.5 17.7	17.1	86.4 86.2	86.3	6.3 6.3	6.3	6.2	11.1 11.4	11.3		5.8 6.4	6.1	
				10.8	Middle	5.4	25.5 25.4	25.4	7.7 7.7	7.7	21.1 20.8	21.0	84.4 82.0	83.2	6.1 6.0	6.1	0.2	11.5 11.1	11.3	11.6	7.4 5.2	6.3	6.1
					Bottom	9.8	25.1 25.4	25.2	7.7 7.7	7.7	24.8 24.6	24.7	84.8 87.1	86.0	6.1 6.2	6.2	6.2	12.2 12.1	12.2		6.0 5.5	5.8	
18-May-15	Cloudy	Moderate	06:34		Surface	1.0	25.0 25.0	25.0	7.6 7.6	7.6	20.9 21.1	21.0	78.4 73.6	76.0	5.7 5.4	5.5	5.5	11.8 11.2	11.5		13.7 14.1	13.9	
				10.8	Middle	5.4	24.8 24.8	24.8	7.6 7.6	7.6	24.1 23.9	24.0	72.4 75.6	74.0	5.2 5.6	5.4	0.0	11.3 11.3	11.3	11.4	12.8 14.8	13.8	13.6
					Bottom	9.8	24.8 24.7	24.8	7.6 7.6	7.6	25.1 25.1	25.1	74.4 74.6	74.5	5.4 5.5	5.4	5.4	11.5 11.2	11.4		12.8 13.5	13.2	
20-May-15	Rainy	Moderate	07:32		Surface	1.0	25.1 25.0	25.0	7.6 7.6	7.6	18.9 19.2	19.0	75.9 83.1	79.5	5.6 6.1	5.8	5.7	6.5 6.5	6.5		7.4 7.1	7.3	
				10.7	Middle	5.4	24.9 24.9	24.9	7.6 7.6	7.6	21.7 21.7	21.7	77.5 75.6	76.6	5.7 5.5	5.6	5.1	6.6 6.6	6.6	6.6	8.3 8.3	8.3	8.3
					Bottom	9.7	24.9 24.9	24.9	7.6 7.6	7.6	21.9 22.0	22.0	74.7 76.4	75.6	5.5 5.7	5.6	5.6	6.6 6.6	6.6		10.1 8.2	9.2	

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	p	ЪН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	, (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	08:31		Surface	1.0	24.7 24.7	24.7	7.8 7.8	7.8	17.9 17.9	17.9	78.4 77.1	77.8	5.9 5.8	5.8	5.7	4.2 4.1	4.2		4.7 4.8	4.8	Í
				10.5	Middle	5.3	24.4 24.4	24.4	7.8 7.8	7.8	22.3 22.7	22.5	77.2 76.0	76.6	5.7 5.6	5.6	5.7	4.6 4.6	4.6	4.4	5.2 6.7	6.0	5.8
					Bottom	9.5	24.4 24.5	24.4	7.7 7.8	7.7	22.6 22.8	22.7	79.3 77.7	78.5	5.8 5.7	5.8	5.8	4.4 4.3	4.4		7.1 6.2	6.7	
25-May-15	Sunny	Moderate	17:34		Surface	1.0	24.1 24.1	24.1	7.6 7.6	7.6	24.2 24.2	24.2	71.1 71.4	71.3	5.3 5.3	5.3	5.2	3.1 3.3	3.2		4.5 3.8	4.2	
				2.0	Middle	1.0	23.7 23.7	23.7	7.7 7.7	7.7	28.1 28.1	28.1	70.4 69.4	69.9	5.2 5.1	5.1	0.2	2.4 2.2	2.3	2.4	5.1 4.9	5.0	4.6
					Bottom	1.0	26.3 26.3	26.3	7.6 7.6	7.6	14.1 14.0	14.0	81.4 80.7	81.1	6.1 6.0	6.0	6.0	1.9 1.7	1.8		4.8 4.5	4.7	
27-May-15	Cloudy	Moderate	14:43		Surface	1.0	25.2 25.4	25.3	7.5 7.5	7.5	11.2 10.0	10.6	75.5 70.5	73.0	5.9 5.6	5.7	5.7	5.1 5.3	5.2		9.6 9.9	9.8	
				10.6	Middle	5.3	24.4 24.5	24.5	7.4 7.4	7.4	16.5 15.7	16.1	71.4 73.3	72.4	5.6 5.8	5.7	5.7	5.5 5.4	5.5	5.5	9.2 9.9	9.6	9.5
					Bottom	9.6	25.5 24.9	25.2	7.4 7.4	7.4	20.3 21.4	20.8	71.0 68.0	69.5	5.6 5.4	5.5	5.5	5.7 5.8	5.8		9.9 8.2	9.1	
29-May-15	Sunny	Moderate	16:44		Surface	1.0	26.8 26.8	26.8	7.7 7.7	7.7	7.1 6.6	6.9	83.5 85.7	84.6	6.4 6.6	6.5	6.0	7.7 7.5	7.6		6.8 6.1	6.5	
				10.9	Middle	5.5	25.4 25.4	25.4	7.8 7.8	7.8	17.8 17.7	17.8	73.4 80.8	77.1	5.3 5.8	5.5	0.0	7.4 7.7	7.6	7.7	5.9 6.1	6.0	6.1
					Bottom	9.9	24.3 24.3	24.3	7.7 7.8	7.7	27.8 26.7	27.2	73.2 70.1	71.7	5.4 5.2	5.3	5.3	7.8 7.8	7.8		6.2 5.6	5.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	ended Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	11:29		Surface	1.0	24.5 24.8	24.6	8.0 8.0	8.0	25.8 24.6	25.2	105.7 107.6	106.7	7.6 7.8	7.7	7.6	6.0 5.8	5.9		3.3 2.8	3.1	
				10.7	Middle	5.4	24.4 24.4	24.4	8.0 8.0	8.0	26.3 26.4	26.3	103.0 105.5	104.3	7.4 7.6	7.5	7.6	5.5 5.3	5.4	6.1	4.0 3.9	4.0	3.7
					Bottom	9.7	24.4 24.4	24.4	8.0 8.0	8.0	25.0 26.2	25.6	104.7 106.0	105.4	7.6	7.6	7.6	7.0	7.1		4.0	4.0	
4-May-15	Sunny	Moderate	13:11		Surface	1.0	25.4 25.3	25.3	7.9 7.9	7.9	24.2 24.8	24.5	87.3 87.5	87.4	6.2 6.3	6.3		3.0 3.2	3.1		4.6 4.0	4.3	
				10.3	Middle	5.2	25.1 25.1	25.1	7.9 7.9	7.9	25.4 25.4	25.4	86.9 86.0	86.5	6.2 6.1	6.2	6.3	3.9 3.6	3.8	3.8	4.6 5.1	4.9	4.4
					Bottom	9.3	25.1 25.0	25.1	7.9 7.9	7.9	25.4 25.5	25.4	87.0 87.7	87.4	6.2 6.3	6.2	6.2	4.4 4.3	4.4		4.6 3.5	4.1	
6-May-15	Sunny	Moderate	14:11		Surface	1.0	25.4 25.4	25.4	8.0 8.1	8.1	24.2 24.3	24.3	89.4 87.2	88.3	6.4 6.2	6.3		3.2 3.1	3.2		2.9 3.0	3.0	
				10.2	Middle	5.1	25.1 25.1	25.1	8.0 8.2	8.1	25.6 25.6	25.6	87.8 85.7	86.8	6.3 6.1	6.2	6.3	3.8	3.8	3.7	2.2	2.8	3.4
					Bottom	9.2	24.9 25.0	25.0	8.0 8.1	8.0	27.1 27.1	27.1	92.0 88.2	90.1	6.5 6.2	6.4	6.4	4.1 3.9	4.0		4.3 4.5	4.4	
8-May-15	Sunny	Moderate	15:36		Surface	1.0	26.1 25.9	26.0	8.1 8.1	8.1	20.4 20.6	20.5	88.2 87.2	87.7	6.3 6.2	6.3	6.3	6.3 6.1	6.2		3.5 3.5	3.5	
				10.2	Middle	5.1	25.5 25.5	25.5	8.1 8.1	8.1	23.5 23.5	23.5	86.5 83.8	85.2	6.2 6.1	6.2	0.3	6.6 6.4	6.5	6.4	3.5 2.6	3.1	3.4
					Bottom	9.2	25.5 25.7	25.6	8.1 8.1	8.1	23.6 23.6	23.6	84.4 83.6	84.0	6.1 6.0	6.0	6.0	6.6 6.4	6.5		3.1 4.1	3.6	
11-May-15	Cloudy	Moderate	18:09		Surface	1.0	25.6 25.6	25.6	7.6 7.5	7.6	28.0 28.1	28.1	103.2 95.4	99.3	7.4 6.8	7.1	7.1	3.7 3.9	3.8		5.7 5.9	5.8	
				10.7	Middle	5.4	25.3 25.4	25.3	7.6 7.6	7.6	29.8 29.9	29.9	99.3 94.0	96.7	7.1 6.8	7.0	7.1	3.9 4.1	4.0	4.0	6.7 6.9	6.8	6.4
					Bottom	9.7	25.5 25.5	25.5	7.7 7.6	7.6	30.7 29.1	29.9	102.1 99.9	101.0	7.3 7.2	7.2	7.2	4.2 4.3	4.3		6.2 7.0	6.6	
13-May-15	Sunny	Moderate	09:22		Surface	1.0	25.0 25.1	25.0	7.8 7.8	7.8	21.6 21.6	21.6	82.7 83.4	83.1	6.2 6.2	6.2	5.9	2.7 2.5	2.6		6.0 6.3	6.2	
				10.3	Middle	5.2	24.4 24.4	24.4	7.8 7.8	7.8	27.1 26.9	27.0	79.9 77.2	78.6	5.7 5.5	5.6	5.5	3.4 3.3	3.4	3.3	4.4 5.3	4.9	5.6
					Bottom	9.3	24.6 24.4	24.5	7.8 7.8	7.8	27.3 27.0	27.2	82.6 79.1	80.9	5.9 5.7	5.8	5.8	4.0 3.9	4.0		6.2 5.3	5.8	
15-May-15	Sunny	Moderate	11:11		Surface	1.0	25.5 25.3	25.4	7.7 7.7	7.7	19.0 20.4	19.7	76.8 77.4	77.1	5.7 5.6	5.6	5.6	11.8 11.4	11.6		6.4 5.7	6.1	
				10.4	Middle	5.2	25.0 25.0	25.0	7.7 7.7	7.7	22.9 22.9	22.9	78.0 74.8	76.4	5.7 5.5	5.6	5.0	11.5 11.7	11.6	11.6	5.4 6.3	5.9	6.0
					Bottom	9.4	25.1 25.0	25.1	7.6 7.7	7.7	22.9 23.1	23.0	75.2 75.6	75.4	5.5 5.5	5.5	5.5	11.8 11.3	11.6		5.5 6.2	5.9	
18-May-15	Sunny	Moderate	13:06		Surface	1.0	25.3 25.3	25.3	7.6 7.6	7.6	18.5 18.4	18.5	75.6 73.6	74.6	5.6 5.4	5.5	5.5	8.2 8.2	8.2		8.9 8.5	8.7	
				10.1	Middle	5.1	24.7 24.8	24.8	7.7 7.7	7.7	22.2 22.5	22.4	75.0 72.4	73.7	5.5 5.3	5.4	0.0	8.1 8.2	8.2	8.2	8.2 8.5	8.4	9.2
					Bottom	9.1	24.7 24.8	24.7	7.7 7.6	7.7	24.9 25.1	25.0	77.1 74.2	75.7	5.6 5.3	5.5	5.5	8.2 8.3	8.3		11.0 10.0	10.5	
20-May-15	Rainy	Moderate	14:27		Surface	1.0	25.3 25.3	25.3	7.7 7.7	7.7	17.7 17.6	17.6	87.1 84.0	85.6	6.4 6.2	6.3	6.2	6.5 6.5	6.5		8.3 8.7	8.5	
				10.4	Middle	5.2	25.0 25.0	25.0	7.7 7.6	7.7	19.6 20.3	20.0	82.7 81.3	82.0	6.2 6.1	6.1	0.2	6.4 6.6	6.5	6.5	9.0 8.7	8.9	8.4
					Bottom	9.4	25.2 25.0	25.1	7.6 7.6	7.6	20.7 20.7	20.7	80.7 82.5	81.6	5.9 6.1	6.0	6.0	6.7 6.5	6.6		7.8 7.7	7.8	

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Tempera	ature (°C)	p	Η	Salini	y (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	urbidity(NTL	J)	Suspe	ended Solids	, (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	ı)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	15:52		Surface '	1.0	24.7 24.7	24.7	7.8 7.8	7.8	19.0 19.0	19.0	75.0 74.7	74.9	5.6 5.6	5.6	5.5	6.5 6.6	6.6		5.0 4.0	4.5	
				10.0	Middle	5.0	24.5 24.5	24.5	7.8 7.8	7.8	22.7 22.5	22.6	71.9 73.2	72.6	5.3 5.4	5.3	5.5	7.8 8.0	7.9	7.4	5.6 5.8	5.7	5.5
					Bottom	9.0	24.4 24.4	24.4	7.8 7.7	7.7	23.4 23.4	23.4	75.0 76.1	75.6	5.5 5.6	5.5	5.5	7.8 7.6	7.7		5.9 6.5	6.2	
25-May-15	Cloudy	Moderate	10:17		Surface	1.0	24.0 24.0	24.0	7.6 7.7	7.7	23.6 23.6	23.6	71.2 71.9	71.6	5.2 5.3	5.3	5.2	1.1 1.0	1.1		5.3 5.2	5.3	
				2.1	Middle	1.1	23.6 23.6	23.6	7.7 7.7	7.7	28.7 28.7	28.7	70.1 70.8	70.5	5.0 5.1	5.1	0.2	0.6 0.7	0.7	1.4	5.8 4.0	4.9	5.1
					Bottom	1.1	25.3 25.3	25.3	7.4 7.4	7.4	13.2 13.2	13.2	75.6 75.4	75.5	5.8 5.8	5.8	5.8	2.5 2.5	2.5		4.6 5.3	5.0	
27-May-15	Cloudy	Moderate	08:19		Surface	1.0	24.8 24.7	24.8	7.5 7.6	7.5	11.1 12.8	12.0	74.6 75.3	75.0	5.9 5.9	5.9	5.9	4.1 4.0	4.1		6.0 6.3	6.2	
				10.4	Middle	5.2	24.3 24.5	24.4	7.6 7.5	7.6	20.7 19.2	20.0	73.8 73.1	73.5	5.8 5.8	5.8	5.5	4.3 4.3	4.3	4.4	6.3 6.7	6.5	6.2
					Bottom	9.4	24.3 24.4	24.4	7.5 7.4	7.4	23.4 21.8	22.6	71.5 70.9	71.2	5.6 5.6	5.6	5.6	4.7 4.6	4.7		5.6 6.4	6.0	
29-May-15	Sunny	Moderate	10:50		Surface	1.0	25.9 25.9	25.9	7.7 7.8	7.8	9.0 8.8	8.9	74.5 72.4	73.5	5.8 5.6	5.7	5.5	6.8 6.6	6.7		4.7 4.3	4.5	
				10.8	Middle 5	5.4	24.5 24.3	24.4	7.7 7.8	7.7	23.1 23.4	23.2	71.1 71.3	71.2	5.3 5.1	5.2	0.0	6.7 6.7	6.7	6.7	4.5 4.4	4.5	4.6
					Bottom	9.8	24.1 24.2	24.1	7.7 7.7	7.7	28.0 27.8	27.9	67.0 65.8	66.4	4.9 4.8	4.9	4.9	6.8 6.8	6.8		4.7 5.0	4.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	17:51		Surface	1.0	25.2 25.1	25.1	8.0 8.0	8.0	23.6 23.8	23.7	106.9 106.4	106.7	7.7 7.7	7.7	7.6	2.4 2.3	2.4		1.6 2.1	1.9	
				10.8	Middle	5.4	24.5 24.5	24.5	8.0 8.0	8.0	25.9 25.8	25.9	103.2 105.2	104.2	7.4 7.6	7.5	7.0	2.6 2.7	2.7	2.9	2.0 2.4	2.2	2.5
					Bottom	9.8	24.7 24.6	24.6	8.0 8.0	8.0	25.7 25.8	25.8	103.1 107.0	105.1	7.4 7.7	7.6	7.6	3.8 3.4	3.6		3.6 3.4	3.5	
4-May-15	Sunny	Moderate	06:31		Surface	1.0	25.2 25.1	25.1	7.9 7.9	7.9	24.5 24.6	24.5	86.1 85.4	85.8	6.2 6.1	6.2		5.2 5.1	5.2		4.8 4.8	4.8	
				10.3	Middle	5.2	25.0 25.0	25.0	7.9 7.9	7.9	25.4 25.2	25.3	85.7 85.0	85.4	6.1 6.1	6.1	6.2	7.7 7.6	7.7	7.1	3.7 4.2	4.0	4.1
					Bottom	9.3	24.9 25.0	25.0	7.9 7.9	7.9	25.7 25.3	25.5	85.6 86.3	86.0	6.1 6.2	6.1	6.1	8.5 8.0	8.3		3.8 3.0	3.4	
6-May-15	Sunny	Moderate	07:34		Surface	1.0	25.3 25.3	25.3	7.9 8.0	8.0	23.8 23.8	23.8	85.2 84.8	85.0	6.1 6.1	6.1		8.1 8.2	8.2		5.0 4.7	4.9	
				10.6	Middle	5.3	24.9 25.0	24.9	7.9 8.0	7.9	26.3 25.9	26.1	83.0 83.6	83.3	5.9 6.0	5.9	6.0	8.8 8.6	8.7	8.6	4.4	4.7	5.1
					Bottom	9.6	25.1 24.9	25.0	7.9 7.9	7.9	26.3 26.5	26.4	85.8 83.4	84.6	6.1 5.9	6.0	6.0	8.8 8.9	8.9		6.5 5.0	5.8	1
8-May-15	Sunny	Moderate	08:46		Surface	1.0	25.5 25.6	25.6	8.1 8.1	8.1	21.3 21.3	21.3	82.8 83.7	83.3	6.0 6.1	6.0		3.8 3.8	3.8		4.4 4.6	4.5	
				10.4	Middle	5.2	25.2 25.3	25.2	8.1 8.1	8.1	24.1 24.6	24.4	81.3 81.4	81.4	5.8 5.8	5.8	5.9	3.8 3.9	3.9	3.8	5.7 6.0	5.9	5.1
					Bottom	9.4	25.2 25.1	25.1	8.0 8.1	8.1	25.0 25.2	25.1	83.6 82.5	83.1	6.0 5.9	5.9	5.9	3.8 3.8	3.8		5.5 4.5	5.0	
11-May-15	Cloudy	Moderate	11:12		Surface	1.0	25.4 25.4	25.4	7.6 7.7	7.7	29.2 29.2	29.2	101.1 102.8	102.0	7.2 7.4	7.3	7.0	4.3 4.3	4.3		5.0 6.0	5.5	
				10.9	Middle	5.5	25.1 25.2	25.1	7.7 7.8	7.7	29.8 29.2	29.5	98.9 99.7	99.3	7.1 7.1	7.1	7.2	4.5 4.4	4.5	4.5	6.2 7.2	6.7	7.0
					Bottom	9.9	25.3 25.2	25.3	7.7 7.6	7.6	31.6 29.3	30.4	95.4 102.8	99.1	6.8 7.4	7.1	7.1	4.5 4.6	4.6		9.5 8.1	8.8	
13-May-15	Sunny	Moderate	14:51		Surface	1.0	24.6 24.6	24.6	7.9 7.9	7.9	24.5 24.5	24.5	82.7 80.5	81.6	6.0 5.8	5.9	5.8	1.7 1.8	1.8		4.3 6.2	5.3	
				10.7	Middle	5.4	24.0 23.9	24.0	7.8 7.8	7.8	28.5 28.9	28.7	81.7 78.5	80.1	5.8 5.6	5.7	5.6	2.0 2.0	2.0	2.0	5.6 5.9	5.8	5.7
					Bottom	9.7	24.0 24.0	24.0	7.8 7.8	7.8	29.2 29.1	29.1	86.7 81.1	83.9	6.2 5.8	6.0	6.0	2.0 2.1	2.1		5.3 6.5	5.9	
15-May-15	Sunny	Moderate	16:53		Surface	1.0	26.5 26.5	26.5	7.8 7.8	7.8	16.3 16.0	16.1	96.1 95.3	95.7	7.1 7.0	7.0	6.8	3.4 3.3	3.4		5.6 4.5	5.1	
				10.5	Middle	5.3	25.9 25.7	25.8	7.8 7.8	7.8	22.3 22.5	22.4	90.4 90.8	90.6	6.5 6.5	6.5	0.0	3.5 3.5	3.5	3.5	5.3 5.6	5.5	5.3
					Bottom	9.5	25.5 25.7	25.6	7.8 7.8	7.8	22.7 22.5	22.6	88.9 93.7	91.3	6.4 6.7	6.6	6.6	3.5 3.5	3.5		4.7 5.9	5.3	
18-May-15	Cloudy	Moderate	06:22		Surface	1.0	25.0 24.9	25.0	7.6 7.6	7.6	21.0 21.3	21.1	74.4 74.9	74.7	5.5 5.4	5.4	5.4	9.4 9.4	9.4		9.5 9.5	9.5	
				10.9	Middle	5.5	24.6 24.6	24.6	7.6 7.7	7.7	26.3 26.2	26.3	73.3 73.4	73.4	5.3 5.3	5.3	5.7	9.7 9.6	9.7	9.6	9.5 9.2	9.4	10.2
					Bottom	9.9	24.5 24.5	24.5	7.7 7.7	7.7	26.7 26.5	26.6	72.1 72.0	72.1	5.2 5.2	5.2	5.2	9.8 9.8	9.8		11.9 11.4	11.7	
20-May-15	Rainy	Moderate	07:22		Surface	1.0	25.0 25.1	25.1	7.6 7.6	7.6	18.7 17.4	18.1	75.9 76.6	76.3	5.5 5.7	5.6	5.6	5.4 5.2	5.3		3.6 5.2	4.4	
				10.3	Middle	5.2	24.9 24.9	24.9	7.6 7.6	7.6	22.2 21.7	22.0	73.9 75.5	74.7	5.5 5.6	5.6	5.0	5.4 5.5	5.5	5.4	5.3 4.1	4.7	5.0
					Bottom	9.3	24.8 24.9	24.9	7.6 7.6	7.6	22.6 22.7	22.7	74.0 73.1	73.6	5.4 5.3	5.4	5.4	5.4 5.3	5.4		5.7 5.8	5.8	

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	08:23		Surface	1.0	24.6 24.6	24.6	7.8 7.8	7.8	19.2 20.0	19.6	78.3 76.6	77.5	5.9 5.7	5.8	5.6	7.5 7.3	7.4		6.0 6.2	6.1	
				10.0	Middle	5.0	24.3 24.3	24.3	7.8 7.8	7.8	24.3 23.5	23.9	72.1 72.7	72.4	5.3 5.3	5.3	5.0	6.8 6.9	6.9	7.7	5.4 5.7	5.6	5.6
					Bottom	9.0	24.3 24.3	24.3	7.8 7.8	7.8	24.6 24.5	24.5	75.3 74.9	75.1	5.5 5.5	5.5	5.5	9.0 8.4	8.7		5.3 5.1	5.2	I
25-May-15	Sunny	Moderate	19:02		Surface	1.0	25.3 25.3	25.3	7.6 7.6	7.6	16.6 16.7	16.7	76.4 75.5	76.0	5.7 5.7	5.7	5.6	1.5 1.5	1.5		3.4 3.6	3.5	
				2.1	Middle	1.1	23.9 23.9	23.9	7.7 7.7	7.7	22.9 23.0	23.0	74.3 73.9	74.1	5.4 5.4	5.4	0.0	1.5 1.5	1.5	1.6	4.0 4.8	4.4	4.2
					Bottom	1.1	26.5 26.5	26.5	7.6 7.6	7.6	13.9 13.8	13.8	82.9 82.0	82.5	6.2 6.1	6.1	6.1	1.9 1.8	1.9		5.3 4.0	4.7	
27-May-15	Cloudy	Moderate	14:55		Surface	1.0	25.5 25.4	25.4	7.4 7.5	7.5	11.1 11.5	11.3	74.6 74.7	74.7	5.9 5.9	5.9	5.9	4.8 4.7	4.8		7.3 8.6	8.0	
				10.5	Middle	5.3	25.4 25.2	25.3	7.5 7.4	7.5	16.5 15.3	15.9	72.4 75.5	74.0	5.7 5.9	5.8	5.5	5.1 4.9	5.0	5.0	7.2 7.2	7.2	8.1
					Bottom	9.5	25.4 25.4	25.4	7.4 7.4	7.4	23.2 21.2	22.2	71.5 70.4	71.0	5.6 5.5	5.6	5.6	5.3 5.2	5.3		9.9 8.0	9.0	
29-May-15	Sunny	Moderate	16:56		Surface	1.0	27.0 26.9	27.0	7.9 7.9	7.9	8.1 9.0	8.5	92.7 94.2	93.5	6.9 7.1	7.0	6.8	6.5 6.5	6.5		5.3 5.7	5.5	
				10.9	Middle	5.5	25.2 25.3	25.3	7.8 7.8	7.8	20.3 18.7	19.5	87.3 87.3	87.3	6.6 6.5	6.5	0.0	6.5 6.6	6.6	6.6	5.2 5.4	5.3	5.3
					Bottom	9.9	25.0 24.8	24.9	7.8 7.8	7.8	21.6 21.6	21.6	82.4 76.7	79.6	6.0 5.6	5.8	5.8	6.6 6.5	6.6		5.2 4.9	5.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	ended Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	11:57		Surface	1.0	25.6 25.9	25.8	8.2 8.2	8.2	28.1 28.0	28.0	111.6 112.1	111.9	7.8 7.8	7.8	7 7	3.1 3.0	3.1		3.1 4.5	3.8	
				6.2	Middle	3.1	25.5 25.3	25.4	8.1 8.2	8.1	29.3 29.8	29.6	109.5 109.9	109.7	7.6 7.6	7.6	7.7	2.9 2.8	2.9	3.0	4.6 3.8	4.2	4.0
					Bottom	5.2	25.4 25.2	25.3	8.1 8.1	8.1	31.2 30.8	31.0	110.7 107.2	109.0	7.6	7.5	7.5	2.9	2.9		4.1	4.0	
4-May-15	Sunny	Moderate	12:43		Surface	1.0	26.9 26.7	26.8	8.1 8.1	8.1	26.5 27.0	26.7	90.8 88.4	89.6	6.3 6.1	6.2		6.1 6.1	6.1		3.1 2.5	2.8	
				6.5	Middle	3.3	26.3 26.1	26.2	8.1 8.1	8.1	28.4 28.6	28.5	88.2 85.5	86.9	6.1 5.9	6.0	6.1	6.3 6.3	6.3	6.2	4.7	5.0	4.6
					Bottom	5.5	26.3 25.8	26.1	8.1 8.1	8.1	28.5 29.1	28.8	89.3 85.4	87.4	6.1 5.9	6.0	6.0	6.3 6.2	6.3		6.2 5.7	6.0	
6-May-15	Sunny	Moderate	13:56		Surface	1.0	26.6 26.7	26.6	8.1 8.1	8.1	26.3 26.2	26.3	88.1 90.4	89.3	6.1 6.3	6.2		6.2 5.8	6.0		7.7 6.7	7.2	
				6.3	Middle	3.2	25.9 26.1	26.0	8.1 8.1	8.1	28.3 28.1	28.2	82.8 86.1	84.5	5.7 6.0	5.8	6.0	7.1	7.2	6.9	7.2	7.5	7.6
					Bottom	5.3	26.0 25.9	26.0	8.1 8.1	8.1	29.3 29.2	29.2	90.8 84.3	87.6	6.3 5.8	6.0	6.0	7.6 7.1	7.4		7.8 8.6	8.2	
8-May-15	Sunny	Moderate	14:48		Surface	1.0	27.1 27.1	27.1	8.0 8.0	8.0	24.6 24.6	24.6	92.6 87.6	90.1	6.3 6.0	6.1	6.1	8.0 8.1	8.1		6.8 7.0	6.9	
				7.1	Middle	3.6	26.4 26.5	26.5	8.0 8.0	8.0	26.7 26.6	26.7	87.0 87.5	87.3	6.0 6.1	6.0	0.1	8.1 8.0	8.1	8.1	6.5 6.8	6.7	7.9
					Bottom	6.1	26.9 26.5	26.7	8.0 8.0	8.0	28.4 29.0	28.7	84.1 84.3	84.2	5.8 5.8	5.8	5.8	8.2 8.1	8.2		10.4 10.0	10.2	
11-May-15	Cloudy	Moderate	17:58		Surface	1.0	26.7 26.8	26.7	8.1 8.1	8.1	24.3 24.1	24.2	82.0 84.8	83.4	5.7 5.9	5.8	5.7	8.3 8.2	8.3		6.9 6.8	6.9	
				6.2	Middle	3.1	26.1 26.1	26.1	8.1 8.1	8.1	25.9 26.1	26.0	81.6 77.2	79.4	5.7 5.4	5.5	5.7	8.3 8.3	8.3	8.3	7.7 7.6	7.7	6.9
					Bottom	5.2	26.0 26.0	26.0	8.1 8.1	8.1	27.9 28.4	28.1	79.7 78.5	79.1	5.6 5.4	5.5	5.5	8.4 8.4	8.4		6.0 6.4	6.2	
13-May-15	Sunny	Moderate	09:57		Surface	1.0	26.2 26.1	26.2	8.1 8.1	8.1	24.8 24.3	24.5	82.5 80.6	81.6	5.8 5.7	5.7	5.7	12.6 12.7	12.7		5.6 7.0	6.3	
				6.2	Middle	3.1	25.7 25.7	25.7	8.1 8.1	8.1	26.8 27.5	27.1	81.3 80.0	80.7	5.6 5.5	5.6	5.7	12.6 12.4	12.5	12.6	5.8 5.7	5.8	6.5
					Bottom	5.2	25.6 25.4	25.5	8.1 8.1	8.1	29.8 30.2	30.0	78.8 79.5	79.2	5.5 5.6	5.5	5.5	12.4 12.5	12.5		7.2 7.7	7.5	
15-May-15	Sunny	Moderate	11:39		Surface	1.0	27.2 26.8	27.0	8.2 8.1	8.2	23.6 23.9	23.8	89.1 85.3	87.2	6.2 6.0	6.1	5.9	8.8 9.3	9.1		7.2 6.7	7.0	
				6.2	Middle	3.1	26.1 26.4	26.2	8.1 8.1	8.1	26.1 25.9	26.0	80.2 82.7	81.5	5.6 5.8	5.7	0.0	9.6 10.2	9.9	10.9	8.3 7.0	7.7	7.3
					Bottom	5.2	26.0 25.7	25.9	8.1 8.1	8.1	28.4 28.9	28.7	83.1 79.6	81.4	5.7 5.5	5.6	5.6	13.5 14.1	13.8		7.3 7.3	7.3	
18-May-15	Sunny	Moderate	12:43		Surface	1.0	26.2 26.2	26.2	8.0 8.0	8.0	24.0 23.8	23.9	75.5 74.8	75.2	5.3 5.3	5.3	5.3	12.1 12.4	12.3		8.4 9.5	9.0	
				6.1	Middle	3.1	26.1 26.1	26.1	8.0 8.0	8.0	24.8 24.8	24.8	75.9 74.1	75.0	5.3 5.2	5.3	0.0	14.2 15.0	14.6	14.5	8.7 7.1	7.9	8.2
					Bottom	5.1	26.0 26.0	26.0	8.0 8.0	8.0	26.5 26.4	26.5	74.2 78.9	76.6	5.2 5.5	5.4	5.4	16.8 16.3	16.6		7.8 7.6	7.7	
20-May-15	Rainy	Moderate	14:07		Surface	1.0	26.5 26.6	26.6	8.0 8.0	8.0	21.1 21.1	21.1	75.3 78.0	76.7	5.3 5.6	5.5	5.5	10.3 10.1	10.2		4.9 5.6	5.3	
				7.1	Middle	3.6	26.1 26.4	26.3	8.0 8.0	8.0	22.5 22.7	22.6	74.8 76.6	75.7	5.3 5.4	5.4	2.0	10.5 10.6	10.6	10.5	4.0 5.4	4.7	5.0
					Bottom	6.1	26.0 26.3	26.1	8.0 8.0	8.0	24.6 25.3	24.9	73.5 72.5	73.0	5.2 5.2	5.2	5.2	10.8 10.6	10.7		5.1 4.9	5.0	

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	ended Solids	, (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	15:24		Surface	1.0	25.9 25.9	25.9	8.1 8.1	8.1	19.3 19.2	19.2	81.9 83.9	82.9	6.0 6.1	6.0	5.8	9.4 9.5	9.5		8.6 7.7	8.2	
				6.3	Middle	3.2	25.7 25.7	25.7	8.0 8.0	8.0	20.9 21.1	21.0	76.9 76.4	76.7	5.6 5.5	5.6	5.0	9.4 9.4	9.4	9.4	8.4 7.5	8.0	8.4
					Bottom	5.3	25.7 25.6	25.7	8.0 8.0	8.0	25.3 24.4	24.9	81.0 83.4	82.2	5.7 5.9	5.8	5.8	9.4 9.3	9.4		8.4 9.6	9.0	
25-May-15	Cloudy	Moderate	17:20		Surface	1.0	27.2 27.9	27.5	7.8 7.9	7.9	14.5 14.0	14.3	83.5 89.9	86.7	5.9 6.5	6.2	5.9	6.6 6.7	6.7		2.7 2.1	2.4	
				7.1	Middle	3.6	25.2 25.6	25.4	7.8 7.8	7.8	20.2 20.4	20.3	77.5 76.8	77.2	5.7 5.4	5.5	0.0	6.8 6.8	6.8	6.8	1.9 1.3	1.6	1.9
					Bottom	6.1	25.3 25.2	25.2	7.8 7.8	7.8	27.2 27.7	27.4	75.8 72.9	74.4	5.5 5.3	5.4	5.4	6.9 6.9	6.9		2.2 1.2	1.7	
27-May-15	Cloudy	Moderate	09:28		Surface	1.0	26.5 26.6	26.6	7.8 7.8	7.8	12.3 13.9	13.1	73.4 72.0	72.7	5.4 5.4	5.4	5.3	7.7 7.5	7.6		4.3 4.8	4.6	
				6.2	Middle	3.1	25.9 26.2	26.0	7.8 7.8	7.8	16.0 16.8	16.4	72.4 72.1	72.3	5.1 5.1	5.1	5.5	7.6 7.5	7.6	7.6	5.2 5.3	5.3	5.2
					Bottom	5.2	25.7 26.2	25.9	7.7 7.7	7.7	24.6 22.8	23.7	68.6 68.6	68.6	5.1 5.1	5.1	5.1	7.5 7.6	7.6		5.5 5.9	5.7	
29-May-15	Sunny	Moderate	10:37		Surface	1.0	27.6 27.7	27.6	8.0 8.0	8.0	13.0 12.9	12.9	88.2 91.2	89.7	6.5 6.7	6.6	6.3	11.3 10.8	11.1		7.4 8.6	8.0	
				6.8	Middle	3.4	26.8 26.8	26.8	7.9 7.9	7.9	15.8 15.9	15.8	80.8 82.8	81.8	5.9 6.1	6.0	0.0	9.2 10.0	9.6	9.9	8.8 9.1	9.0	8.5
					Bottom	5.8	26.6 26.9	26.8	7.8 7.9	7.9	24.0 23.3	23.7	85.7 88.1	86.9	6.0 6.2	6.1	6.1	8.9 9.2	9.1		8.7 8.1	8.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Furbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	17:16		Surface	1.0	26.2 26.2	26.2	8.3 8.3	8.3	28.2 28.2	28.2	115.8 115.5	115.7	8.0 8.0	8.0		2.7 2.8	2.8		3.9 3.7	3.8	
				6.4	Middle	3.2	25.9 25.9	25.9	8.3 8.3	8.3	28.5 28.5	28.5	114.4 115.0	114.7	7.9 8.0	7.9	8.0	2.8 2.9	2.9	2.9	3.1 2.8	3.0	3.3
					Bottom	5.4	26.1 26.1	26.1	8.3 8.3	8.3	29.5 29.5	29.5	115.0 114.6	114.8	7.9	7.9	7.9	2.9	2.9		2.5	3.1	1
4-May-15	Sunny	Moderate	06:53		Surface	1.0	26.4 26.4	26.4	7.9 8.0	7.9	26.1 26.3	26.2	87.6 87.4	87.5	6.1 6.1	6.1		4.9 5.1	5.0		3.6 4.0	3.8	
				6.3	Middle	3.2	26.4 26.4	26.4	7.9 7.9 7.9	7.9	26.5 26.5	26.5	87.3 87.9	87.6	6.1 6.1	6.1	6.1	5.0 4.8	4.9	4.9	4.1 4.0	4.1	4.2
					Bottom	5.3	26.4 26.3	26.4	7.9	7.9	26.5 26.7	26.6	87.4 88.8	88.1	6.1 6.2	6.1	6.1	5.0 4.7	4.9		4.0	4.6	
6-May-15	Sunny	Moderate	07:47		Surface	1.0	26.4 26.5	26.5	8.1 8.1	8.1	26.2 26.0	26.1	85.7 85.7	85.7	6.0 6.0	6.0		4.9 5.1	5.0		4.2	4.9	
				6.4	Middle	3.2	26.3 26.4	26.3	8.1 8.1	8.1	26.6 26.6	26.6	84.2 85.4	84.8	5.9 5.9	5.9	6.0	5.5 5.2	5.4	5.9	5.1 4.3	4.7	5.1
					Bottom	5.4	26.1 26.1	26.1	8.1 8.0	8.1	28.3 28.3	28.3	84.0 85.9	85.0	5.8 5.9	5.9	5.9	7.0	7.2		6.1 5.5	5.8	
8-May-15	Sunny	Moderate	08:34		Surface	1.0	27.0 27.0	27.0	8.0 8.0	8.0	22.4 22.4	22.4	95.4 89.0	92.2	6.7 6.3	6.5		6.4 6.5	6.5		2.5 4.3	3.4	
				7.0	Middle	3.5	26.8 26.8	26.8	8.0 8.0	8.0	23.1 23.2	23.2	89.8 86.0	87.9	6.3 6.0	6.1	6.3	6.5 6.6	6.6	6.6	5.7	5.4	4.3
					Bottom	6.0	26.9 26.8	26.8	8.0 8.0	8.0	24.4 24.9	24.6	88.8 84.4	86.6	6.3 5.9	6.1	6.1	6.7 6.6	6.7		4.2	4.2	
11-May-15	Cloudy	Moderate	11:08		Surface	1.0	27.0 26.9	27.0	8.1 8.1	8.1	22.1 22.3	22.2	84.1 84.1	84.1	5.9 5.9	5.9	5.0	6.5 6.5	6.5		4.2 3.6	3.9	
				6.3	Middle	3.2	26.8 26.8	26.8	8.0 8.1	8.1	22.4 22.5	22.5	78.7 82.0	80.4	5.6 5.8	5.7	5.8	6.7 6.7	6.7	6.6	2.5 3.1	2.8	3.4
					Bottom	5.3	26.7 26.8	26.8	8.0 8.0	8.0	25.4 24.9	25.1	82.8 77.1	80.0	5.8 5.4	5.6	5.6	6.6 6.6	6.6		3.0 4.2	3.6	
13-May-15	Sunny	Moderate	14:15		Surface	1.0	26.4 26.3	26.3	8.1 8.1	8.1	23.8 24.1	23.9	83.1 81.9	82.5	5.9 5.8	5.8	5.7	15.7 15.3	15.5		5.7 6.6	6.2	
				6.4	Middle	3.2	26.0 25.9	26.0	8.1 8.1	8.1	25.2 25.3	25.3	80.4 82.4	81.4	5.6 5.7	5.6	5.7	15.8 15.3	15.6	15.6	7.3 6.5	6.9	6.7
					Bottom	5.4	25.9 25.8	25.8	8.1 8.1	8.1	28.3 28.8	28.6	77.5 77.1	77.3	5.5 5.4	5.4	5.4	15.7 15.5	15.6		6.5 7.2	6.9	
15-May-15	Sunny	Moderate	16:39		Surface	1.0	27.4 27.4	27.4	8.2 8.2	8.2	21.4 21.4	21.4	95.5 94.9	95.2	6.7 6.7	6.7	6.5	10.8 10.2	10.5		6.0 7.6	6.8	
				6.4	Middle	3.2	27.1 27.0	27.1	8.1 8.1	8.1	22.2 22.3	22.3	88.9 90.5	89.7	6.2 6.4	6.3	0.5	13.3 13.6	13.5	12.4	7.5 6.9	7.2	6.9
					Bottom	5.4	26.8 27.1	27.0	8.1 8.1	8.1	22.7 22.4	22.6	88.3 92.7	90.5	6.2 6.5	6.4	6.4	13.5 13.0	13.3		6.3 6.8	6.6	
18-May-15	Cloudy	Moderate	06:27		Surface	1.0	26.3 26.3	26.3	7.9 7.9	7.9	21.5 21.9	21.7	79.3 78.3	78.8	5.7 5.6	5.6	5.6	12.5 13.3	12.9		7.2 6.9	7.1	
				6.2	Middle	3.1	26.2 26.2	26.2	7.9 7.9	7.9	23.3 23.4	23.3	78.5 77.6	78.1	5.6 5.5	5.5	5.0	15.8 15.4	15.6	14.6	8.3 7.2	7.8	7.0
					Bottom	5.2	26.2 26.1	26.1	7.9 7.8	7.9	25.0 24.9	25.0	78.2 80.5	79.4	5.5 5.7	5.6	5.6	15.7 14.7	15.2		5.8 6.1	6.0	
20-May-15	Rainy	Moderate	07:19		Surface	1.0	26.6 26.6	26.6	8.0 7.9	7.9	17.2 17.4	17.3	79.8 79.3	79.6	5.8 5.8	5.8	5.8	9.0 9.2	9.1		4.3 4.6	4.5	
				7.4	Middle	3.7	26.4 26.4	26.4	8.0 7.9	7.9	19.8 19.8	19.8	79.2 79.2	79.2	5.7 5.6	5.7	0.0	9.3 9.4	9.4	9.3	5.0 4.5	4.8	4.1
					Bottom	6.4	26.3 26.5	26.4	7.9 7.9	7.9	22.0 21.9	22.0	75.7 75.6	75.7	5.5 5.5	5.5	5.5	9.5 9.4	9.5		3.0 3.0	3.0	

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	08:54		Surface	1.0	26.0 26.0	26.0	8.0 8.0	8.0	18.8 18.7	18.8	83.9 82.8	83.4	6.1 6.1	6.1	6.0	9.8 9.5	9.7		3.5 2.8	3.2	
				6.5	Middle	3.3	25.9 25.9	25.9	8.0 8.0	8.0	18.7 18.8	18.7	77.4 83.0	80.2	5.7 5.9	5.8	0.0	10.4 10.2	10.3	10.1	4.3 3.2	3.8	3.3
					Bottom	5.5	25.9 25.8	25.9	8.0 8.0	8.0	22.7 23.8	23.2	80.7 76.6	78.7	5.9 5.5	5.7	5.7	10.5 10.3	10.4		2.8 2.8	2.8	
25-May-15	Sunny	Moderate	10:58		Surface	1.0	25.9 26.3	26.1	7.9 7.9	7.9	16.7 14.1	15.4	73.1 81.8	77.5	5.3 5.9	5.6	5.6	7.0 7.0	7.0		1.6 1.9	1.8	
				6.5	Middle	3.3	25.7 25.7	25.7	7.9 7.9	7.9	19.8 17.9	18.9	71.7 78.9	75.3	5.3 5.8	5.5	0.0	7.1 7.0	7.1	7.2	3.4 2.7	3.1	2.6
					Bottom	5.5	25.8 25.7	25.8	7.8 7.8	7.8	21.5 21.5	21.5	71.1 76.7	73.9	5.2 5.7	5.4	5.4	7.7 7.3	7.5		2.5 3.5	3.0	
27-May-15	Cloudy	Moderate	13:56		Surface	1.0	27.4 27.3	27.3	7.8 7.8	7.8	11.1 11.1	11.1	80.8 79.4	80.1	6.0 5.9	6.0	5.7	10.3 10.5	10.4		5.2 5.0	5.1	
				6.4	Middle	3.2	27.0 26.9	27.0	7.8 7.8	7.8	13.3 13.3	13.3	72.7 73.0	72.9	5.4 5.4	5.4	5.7	10.7 10.2	10.5	10.4	5.0 4.6	4.8	4.9
					Bottom	5.4	25.7 25.7	25.7	7.7 7.7	7.7	23.4 24.6	24.0	69.5 73.6	71.6	5.0 5.2	5.1	5.1	10.3 10.5	10.4		4.5 5.1	4.8	
29-May-15	Sunny	Moderate	16:31		Surface	1.0	28.4 28.6	28.5	8.5 8.5	8.5	12.6 12.6	12.6	114.8 111.9	113.4	8.3 8.2	8.3	7.4	12.6 12.4	12.5		7.1 7.4	7.3	
				6.3	Middle	3.2	28.1 27.6	27.9	8.3 8.2	8.2	14.1 15.7	14.9	88.2 92.7	90.5	6.4 6.7	6.5	7.4	12.3 12.9	12.6	12.9	7.8 7.6	7.7	7.7
					Bottom	5.3	26.4 26.4	26.4	8.2 8.2	8.2	20.9 20.7	20.8	94.5 92.6	93.6	6.8 6.6	6.7	6.7	13.5 13.6	13.6		7.4 8.8	8.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	ЪН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	/ed Oxygen	(mg/L)	Т	Furbidity(NTL	J)	Suspe	ended Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	12:41		Surface	1.0	26.2 26.3	26.3	8.2 8.2	8.2	27.7 27.6	27.6	107.3 106.8	107.1	7.4 7.4	7.4	= 0	4.1 4.1	4.1		4.5 3.3	3.9	
				8.2	Middle	4.1	26.1 25.9	26.0	8.2 8.1	8.2	27.9 28.0	27.9	105.4 101.7	103.6	7.3	7.2	7.3	4.2	4.3	4.2	4.1	4.1	4.2
					Bottom	7.2	25.9 25.7	25.8	8.2 8.1	8.1	28.3 28.5	28.4	105.4	103.1	7.3 7.0	7.1	7.1	4.2	4.3		5.0	4.6	
4-May-15	Sunny	Moderate	12:00		Surface	1.0	26.8 26.8	26.8	8.0 8.0	8.0	28.9 28.8	28.9	93.1 93.1	93.1	6.3 6.3	6.3		5.0 5.2	5.1		3.0 3.0	3.0	
				8.6	Middle	4.3	26.8 26.8	26.8	8.0 8.0	8.0	28.9 28.8	28.9	92.9 92.8	92.9	6.3 6.3	6.3	6.3	5.2 5.3	5.3	5.2	4.1 2.9	3.5	3.6
					Bottom	7.6	26.8 26.8	26.8	8.0 8.0	8.0	28.9 28.8	28.8	92.8 92.9	92.9	6.3 6.3	6.3	6.3	5.4 5.1	5.3		4.6	4.2	
6-May-15	Sunny	Moderate	12:57		Surface	1.0	26.8 26.8	26.8	8.1 8.1	8.1	27.0 26.9	27.0	89.8 89.7	89.8	6.2 6.2	6.2		8.6 8.7	8.7		10.4 10.0	10.2	
				8.7	Middle	4.4	26.8 26.8	26.8	8.1 8.1	8.1	26.9 27.0	26.9	89.5 89.8	89.7	6.2 6.2	6.2	6.2	8.7 8.4	8.6	8.5	10.4	10.2	10.4
					Bottom	7.7	26.8 26.8	26.8	8.1 8.1	8.1	26.9 27.0	26.9	89.7 89.7	89.7	6.2 6.2	6.2	6.2	8.3 8.0	8.2		11.1 10.6	10.9	
8-May-15	Sunny	Moderate	14:09		Surface	1.0	27.1 27.1	27.1	8.0 8.0	8.0	25.2 25.4	25.3	85.9 85.7	85.8	5.9 5.9	5.9		11.6 11.6	11.6		7.0	7.8	
				9.1	Middle	4.6	27.1	27.1	8.0 8.0	8.0	25.1 25.4	25.2	85.8 85.4	85.6	5.9 5.9	5.9	5.9	11.7	11.7	11.8	9.0 9.5	9.3	9.0
					Bottom	8.1	27.1 27.1	27.1	8.0 8.0	8.0	25.1 25.3	25.2	85.6 85.4	85.5	5.9 5.9	5.9	5.9	12.0 11.9	12.0		10.1 9.4	9.8	
11-May-15	Cloudy	Moderate	17:12		Surface	1.0	27.0 27.1	27.0	8.1 8.1	8.1	24.3 24.4	24.3	81.8 83.9	82.9	5.7 5.8	5.7	5.7	9.3 9.3	9.3		6.1 6.0	6.1	
				8.4	Middle	4.2	26.2 26.3	26.2	8.1 8.1	8.1	26.2 26.0	26.1	81.4 83.4	82.4	5.6 5.7	5.7	5.7	9.6 9.7	9.7	9.5	5.3 6.1	5.7	5.7
					Bottom	7.4	26.3 26.2	26.2	8.1 8.1	8.1	29.7 29.8	29.7	77.5 76.5	77.0	5.4 5.3	5.4	5.4	9.5 9.7	9.6		4.8 6.0	5.4	
13-May-15	Sunny	Moderate	10:45		Surface	1.0	26.2 26.2	26.2	8.1 8.1	8.1	23.1 23.4	23.3	75.8 76.6	76.2	5.4 5.4	5.4	5.3	6.5 6.4	6.5		5.6 5.9	5.8	
				8.3	Middle	4.2	25.3 25.4	25.3	8.1 8.1	8.1	29.6 28.9	29.3	74.4 73.3	73.9	5.2 5.1	5.1	5.5	6.6 6.6	6.6	6.6	6.4 7.3	6.9	7.1
					Bottom	7.3	25.4 25.3	25.4	8.1 8.1	8.1	29.7 29.9	29.8	69.7 70.7	70.2	4.8 4.9	4.9	4.9	6.6 6.7	6.7		9.0 8.2	8.6	
15-May-15	Sunny	Moderate	12:34		Surface	1.0	26.9 26.8	26.8	8.1 8.2	8.1	23.6 23.6	23.6	81.7 83.6	82.7	5.7 5.9	5.8	5.7	14.6 14.5	14.6		9.2 7.5	8.4	
				8.6	Middle	4.3	26.2 26.0	26.1	8.1 8.1	8.1	25.4 26.7	26.1	82.1 77.3	79.7	5.8 5.4	5.6	0.7	13.5 13.8	13.7	14.1	8.5 7.6	8.1	8.5
					Bottom	7.6	26.2 26.1	26.2	8.2 8.1	8.1	26.7 26.9	26.8	80.4 80.1	80.3	5.6 5.6	5.6	5.6	14.3 13.9	14.1		9.8 8.4	9.1	
18-May-15	Sunny	Moderate	11:47		Surface	1.0	26.3 26.3	26.3	8.0 8.0	8.0	22.7 22.7	22.7	79.1 78.8	79.0	5.6 5.6	5.6	5.6	17.4 17.0	17.2		17.6 16.4	17.0	
				8.5	Middle	4.3	26.3 26.3	26.3	8.0 8.0	8.0	22.8 22.8	22.8	78.5 78.5	78.5	5.6 5.6	5.6		17.6 17.5	17.6	17.5	15.9 17.0	16.5	16.9
					Bottom	7.5	26.3 26.3	26.3	8.0 8.0	8.0	22.8 22.8	22.8	78.8 78.8	78.8	5.6 5.6	5.6	5.6	17.5 18.1	17.8		16.5 17.6	17.1	
20-May-15	Rainy	Moderate	13:23		Surface	1.0	26.5 26.5	26.5	8.0 8.0	8.0	20.7 20.6	20.7	77.9 78.9	78.4	5.6 5.6	5.6	5.6	14.4 14.5	14.5		12.2 11.9	12.1	
				9.1	Middle	4.6	26.5 26.5	26.5	8.0 8.0	8.0	21.1 21.1	21.1	78.4 76.9	77.7	5.6 5.5	5.6		14.6 14.8	14.7	14.7	11.5 12.6	12.1	12.1
					Bottom	8.1	26.5 26.5	26.5	8.0 8.0	8.0	21.3 21.3	21.3	78.5 76.8	77.7	5.6 5.5	5.5	5.5	14.8 15.0	14.9		11.8 12.3	12.1	

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Tempera	ature (°C)	F	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	1	urbidity(NTl	J)	Suspe	ended Solids	ኔ (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	14:40		Surface	1.0	26.0 26.0	26.0	8.0 8.0	8.0	20.4 20.7	20.6	76.8 76.0	76.4	5.6 5.5	5.5	5.4	10.2 10.1	10.2		6.7 6.8	6.8	
				8.5	Middle	4.3	25.9 25.9	25.9	8.0 8.0	8.0	21.9 21.9	21.9	72.7 74.1	73.4	5.2 5.3	5.3	5.1	10.2 10.2	10.2	10.3	6.6 7.0	6.8	7.2
					Bottom	7.5	25.9 25.8	25.9	8.0 8.0	8.0	23.4 23.6	23.5	76.4 72.5	74.5	5.4 5.2	5.3	5.3	10.5 10.4	10.5		7.7 8.1	7.9	
25-May-15	Cloudy	Moderate	-		Surface	-	-	-	7.9 7.9	7.9	-	-	-	-		-	5.0	-	-		2.2 1.9	2.1	
				9.0	Middle	4.5	25.4 25.4	25.4	7.8 7.8	7.8	23.9 23.6	23.7	71.1 71.2	71.2	5.1 5.0	5.0	5.0	6.6 6.8	6.7	6.8	1.0 2.2	1.6	1.9
					Bottom	8.0	25.3 25.3	25.3	7.8 7.8	7.8	26.6 26.3	26.5	67.3 70.6	69.0	4.9 5.0	5.0	5.0	6.8 6.8	6.8		1.7 2.4	2.1	
27-May-15	Cloudy	Moderate	10:15		Surface	1.0	26.8 26.7	26.8	7.9 7.9	7.9	13.4 14.2	13.8	72.3 69.2	70.8	5.4 5.1	5.2	5.2	11.9 11.5	11.7		4.2 3.3	3.8	
				8.6	Middle	4.3	25.5 25.6	25.5	7.9 7.9	7.9	25.8 24.4	25.1	69.2 70.1	69.7	5.1 5.2	5.1	5.2	11.4 11.5	11.5	11.6	2.7 2.8	2.8	3.2
					Bottom	7.6	25.5 25.8	25.6	7.8 7.8	7.8	27.2 26.9	27.1	68.4 67.8	68.1	5.0 4.8	4.9	4.9	11.2 11.7	11.5		2.8 3.0	2.9	
29-May-15	Sunny	Moderate	11:31		Surface	1.0	27.9 27.8	27.9	8.2 8.2	8.2	13.7 13.2	13.5	86.3 87.3	86.8	6.3 6.4	6.3	6.1	11.6 11.9	11.8		7.7 7.3	7.5	
				8.3	Middle	4.2	25.8 25.8	25.8	8.0 8.0	8.0	26.7 26.3	26.5	80.8 86.7	83.8	5.7 6.0	5.9	0.1	15.2 14.9	15.1	13.8	7.5 6.7	7.1	7.3
					Bottom	7.3	26.1 25.8	25.9	8.1 8.1	8.1	27.1 27.4	27.3	75.6 77.4	76.5	5.6 5.4	5.5	5.5	14.8 14.3	14.6		7.1 7.2	7.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	1	Furbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	16:30		Surface	1.0	26.8 26.6	26.7	8.2 8.2	8.2	27.8 28.2	28.0	108.9 107.7	108.3	7.5 7.4	7.4	7.3	3.9 3.8	3.9		5.2 4.6	4.9	
				8.8	Middle	4.4	26.0 26.1	26.1	8.2 8.1	8.2	29.0 28.5	28.8	105.4 103.5	104.5	7.3 7.1	7.2	7.5	3.8 3.9	3.9	3.9	5.8 6.2	6.0	6.0
					Bottom	7.8	25.5 26.3	25.9	8.1 8.2	8.2	29.9 29.4	29.7	104.9 108.5	106.7	7.3 7.4	7.3	7.3	3.8 3.8	3.8		7.4 6.8	7.1	
4-May-15	Sunny	Moderate	07:38		Surface	1.0	26.7 26.7	26.7	8.1 8.1	8.1	27.8 27.8	27.8	92.5 92.2	92.4	6.3 6.3	6.3	6.3	4.4 4.4	4.4		5.4 5.9	5.7	
				8.8	Middle	4.4	26.7 26.7	26.7	8.1 8.1	8.1	27.9 27.9	27.9	92.2 91.3	91.8	6.3 6.3	6.3	0.3	4.5 4.6	4.6	4.5	5.7 4.5	5.1	5.5
					Bottom	7.8	26.7 26.7	26.7	8.1 8.1	8.1	27.9 27.9	27.9	92.3 91.4	91.9	6.3 6.3	6.3	6.3	4.4 4.5	4.5		5.0 6.3	5.7	
6-May-15	Sunny	Moderate	08:49		Surface	1.0	26.8 26.8	26.8	8.1 8.1	8.1	26.4 26.4	26.4	91.0 91.0	91.0	6.3 6.3	6.3	6.3	6.0 5.5	5.8		5.5 6.8	6.2	
				8.7	Middle	4.4	26.9 26.9	26.9	8.1 8.1	8.1	26.6 26.6	26.6	90.8 90.8	90.8	6.2 6.2	6.2	6.3	5.7 5.7	5.7	5.8	4.5 6.4	5.5	6.3
					Bottom	7.7	26.9 26.9	26.9	8.1 8.1	8.1	26.6 26.7	26.7	91.2 91.0	91.1	6.3 6.3	6.3	6.3	6.0 5.8	5.9		6.7 7.5	7.1	
8-May-15	Sunny	Moderate	09:22		Surface	1.0	27.0 26.9	27.0	8.0 8.0	8.0	24.3 24.5	24.4	90.8 87.9	89.4	6.3 6.1	6.2	6.2	6.4 6.6	6.5		5.6 5.6	5.6	
				9.1	Middle	4.6	26.9 26.9	26.9	8.0 7.9	8.0	25.0 24.9	25.0	87.7 89.4	88.6	6.1 6.2	6.1	0.2	6.6 6.5	6.6	6.6	5.2 4.7	5.0	5.4
					Bottom	8.1	26.9 26.9	26.9	8.0 7.9	7.9	25.2 25.3	25.3	86.1 86.7	86.4	6.0 6.0	6.0	6.0	6.7 6.8	6.8		5.6 5.4	5.5	
11-May-15	Cloudy	Moderate	11:54		Surface	1.0	27.1 27.2	27.1	8.1 8.1	8.1	22.0 22.0	22.0	80.1 83.5	81.8	5.6 5.9	5.8	5.6	9.5 9.1	9.3		5.4 5.6	5.5	
				8.6	Middle	4.3	26.2 26.1	26.2	8.0 8.0	8.0	26.3 26.7	26.5	77.1 81.3	79.2	5.3 5.6	5.4	0.0	9.6 9.6	9.6	9.5	4.6 5.9	5.3	6.1
					Bottom	7.6	26.2 25.8	26.0	8.0 8.0	8.0	27.7 28.2	27.9	71.8 69.1	70.5	5.0 4.8	4.9	4.9	9.7 9.7	9.7		7.0 8.1	7.6	
13-May-15	Sunny	Moderate	13:30		Surface	1.0	26.1 26.5	26.3	8.1 8.1	8.1	22.9 23.0	22.9	77.0 78.8	77.9	5.3 5.6	5.4	5.4	11.1 11.0	11.1		5.1 6.5	5.8	
				8.2	Middle	4.1	25.4 25.3	25.3	8.1 8.1	8.1	29.7 29.8	29.8	72.2 78.7	75.5	5.1 5.4	5.3	-	11.4 11.5	11.5	11.3	7.8 6.7	7.3	6.8
					Bottom	7.2	25.6 25.3	25.5	8.1 8.1	8.1	30.1 30.4	30.3	70.3 72.8	71.6	4.9 5.1	5.0	5.0	11.2 11.4	11.3		7.6 7.0	7.3	
15-May-15	Sunny	Moderate	15:36		Surface	1.0	27.5 27.6	27.6	8.1 8.1	8.1	22.7 22.6	22.7	99.2 101.1	100.2	6.9 7.0	7.0	6.9	9.8 9.1	9.5		11.8 11.7	11.8	
				8.4	Middle	4.2	27.2 27.4	27.3	8.1 8.1	8.1	23.5 23.3	23.4	95.9 98.5	97.2	6.7 6.8	6.8		8.5 9.0	8.8	9.6	11.6 11.5	11.6	11.6
					Bottom	7.4	27.0 27.3	27.1	8.0 8.1	8.1	24.2 23.5	23.8	97.3 99.6	98.5	6.8 6.9	6.8	6.8	10.1 10.7	10.4		11.0 11.8	11.4	
18-May-15	Cloudy	Moderate	07:27		Surface	1.0	26.4 26.4	26.4	7.9 7.9	7.9	23.2 23.2	23.2	74.0 73.6	73.8	5.2 5.2	5.2	5.2	19.4 18.7	19.1		18.4 18.7	18.6	4
				8.1	Middle	4.1	26.4 26.4	26.4	7.9 7.9	7.9	23.2 23.2	23.2	73.6 74.3	74.0	5.2 5.3	5.2		19.1 19.8	19.5	19.3	18.2 17.3	17.8	18.0
					Bottom	7.1	26.4 26.4	26.4	7.9 7.9	7.9	23.2 23.2	23.2	73.7 75.1	74.4	5.2 5.3	5.3	5.3	19.1 19.6	19.4		16.9 18.0	17.5	<u> </u>
20-May-15	Rainy	Moderate	08:02		Surface	1.0	26.6 26.6	26.6	8.0 8.0	8.0	20.7 20.8	20.8	80.6 77.9	79.3	5.8 5.6	5.7	5.6	8.8 8.6	8.7		6.4 6.0	6.2	1
				9.3	Middle	4.7	26.5 26.5	26.5	8.0 8.0	8.0	21.2 21.4	21.3	77.9 77.6	77.8	5.6 5.5	5.5		8.6 8.8	8.7	8.7	4.7 6.1	5.4	6.3
					Bottom	8.3	26.5 26.5	26.5	8.0 8.0	8.0	21.6 21.7	21.7	76.6 76.2	76.4	5.5 5.4	5.4	5.4	8.8 8.8	8.8		8.2 6.3	7.3	

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	p	ЪН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	09:42		Surface	1.0	25.8 25.8	25.8	8.0 8.0	8.0	18.9 18.9	18.9	83.0 79.5	81.3	6.1 5.8	6.0	5.8	11.5 11.3	11.4		10.6 10.4	10.5	
				8.7	Middle	4.4	25.8 25.8	25.8	8.0 8.0	8.0	20.6 20.2	20.4	79.0 72.8	75.9	5.8 5.3	5.5	5.6	11.6 11.4	11.5	11.5	9.5 10.4	10.0	10.2
					Bottom	7.7	25.8 25.8	25.8	8.0 8.0	8.0	24.3 24.1	24.2	74.3 75.4	74.9	5.3 5.5	5.4	5.4	11.6 11.4	11.5		10.7 9.6	10.2	
25-May-15	Sunny	Moderate	11:37		Surface	1.0	27.4 27.3	27.3	7.9 8.0	8.0	12.6 12.7	12.7	83.4 82.9	83.2	6.1 6.1	6.1	5.7	6.0 6.1	6.1		0.5 0.5	0.5	
				9.0	Middle	4.5	25.4 25.7	25.6	7.9 7.9	7.9	21.1 21.6	21.3	71.5 77.5	74.5	5.1 5.5	5.3	0.7	6.1 6.0	6.1	6.1	1.0 0.5	0.8	0.9
					Bottom	8.0	25.3 25.3	25.3	7.9 7.9	7.9	26.5 26.6	26.5	69.3 66.3	67.8	5.0 4.8	4.9	4.9	6.1 6.3	6.2		0.9 1.6	1.3	
27-May-15	Cloudy	Moderate	13:12		Surface	1.0	27.0 27.1	27.1	7.8 7.8	7.8	15.7 15.2	15.5	74.4 78.6	76.5	5.4 5.7	5.6	5.4	7.9 8.1	8.0		5.0 5.6	5.3	
				8.2	Middle	4.1	25.8 25.8	25.8	7.8 7.7	7.7	23.6 24.3	24.0	70.3 68.8	69.6	5.2 5.0	5.1	5.4	8.8 8.6	8.7	8.5	5.8 5.6	5.7	5.3
					Bottom	7.2	25.4 25.5	25.5	7.8 7.7	7.8	28.4 28.1	28.3	69.2 69.4	69.3	5.1 4.8	5.0	5.0	8.7 8.7	8.7		4.8 4.9	4.9	
29-May-15	Sunny	Moderate	15:27		Surface	1.0	28.2 27.8	28.0	8.2 8.1	8.2	14.2 14.5	14.3	94.9 103.6	99.3	6.9 7.3	7.1	6.6	13.7 13.4	13.6		7.8 8.1	8.0	
				8.3	Middle	4.2	26.0 26.0	26.0	7.9 7.9	7.9	23.0 24.1	23.6	84.4 84.2	84.3	6.0 6.0	6.0	0.0	14.3 13.7	14.0	14.0	8.1 8.3	8.2	9.0
					Bottom	7.3	25.9 25.9	25.9	8.0 8.0	8.0	25.6 25.9	25.8	72.3 79.7	76.0	5.2 5.6	5.4	5.4	14.6 14.4	14.5		11.1 10.4	10.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	ъН	Salini	ity (ppt)	DO Satu	iration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NT	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	12:25		Surface	1.0	27.1 27.1	27.1	8.3 8.3	8.3	26.7 26.7	26.7	123.9 122.1	123.0	8.5 8.4	8.4		6.2 6.4	6.3		3.5 3.4	3.5	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	8.4	-	-	6.3	-	-	2.9
					Bottom	2.3	27.0 27.0	27.0	8.2 8.3	8.2	26.8 26.8	26.8	- 121.5 122.5	122.0	8.3 8.4	8.4	8.4	6.3 6.3	6.3		2.1 2.3	2.2	
4-May-15	Sunny	Moderate	12:14		Surface	1.0	26.9 26.9	26.9	8.1 8.0	8.1	27.4 27.5	27.5	96.8 96.0	96.4	6.6 6.6	6.6		5.5 5.5	5.5		2.1 3.7	2.9	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6		-	5.5	-	-	3.0
					Bottom	2.2	27.0 27.0	27.0	8.1 8.0	8.0	28.0 28.1	28.0	97.0 96.1	96.6	6.6 6.5	6.6	6.6	5.4 5.5	5.5		2.8 3.3	3.1	
6-May-15	Sunny	Moderate	13:15		Surface	1.0	26.9 26.9	26.9	8.2 8.2	8.2	26.6 26.6	26.6	101.5 101.6	101.6	7.0 7.0	7.0	7.0	5.7 6.0	5.9		6.4 7.4	6.9	
				3.5	Middle	-	-	-		-		-		-	-	-	7.0	-	-	5.9	-	-	6.7
					Bottom	2.5	26.9 26.9	26.9	8.2 8.2	8.2	26.7 26.8	26.7	101.9 101.7	101.8	7.0 7.0	7.0	7.0	6.0 5.5	5.8		5.4 7.4	6.4	
8-May-15	Sunny	Moderate	14:21		Surface	1.0	27.4 27.3	27.3	8.0 8.0	8.0	24.2 24.4	24.3	99.1 98.1	98.6	6.8 6.7	6.8	6.8	7.3 7.4	7.4		3.6 3.6	3.6	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	7.5	-	-	3.7
					Bottom	2.4	27.3 27.3	27.3	8.0 8.0	8.0	24.8 25.4	25.1	98.6 95.8	97.2	6.8 6.6	6.7	6.7	7.5 7.5	7.5		3.7 3.8	3.8	
11-May-15	Cloudy	Moderate	17:23		Surface	1.0	27.4 27.4	27.4	8.2 8.2	8.2	21.7 21.9	21.8	105.2 103.5	104.4	7.4 7.2	7.3	7.3	7.5 7.4	7.5		5.3 4.3	4.8	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	7.4	-	-	5.4
			10.00		Bottom	2.3	27.4 27.4	27.4	8.2 8.1	8.2	22.5 22.7	22.6	104.2 100.9	102.6	7.3 7.0	7.2	7.2	7.2 7.3	7.3		5.4 6.3	5.9	
13-May-15	Sunny	Moderate	10:30		Surface	1.0	26.4 26.4	26.4	8.2 8.2	8.2	21.5 21.6	21.6	97.0 97.4	97.2	6.9 7.0	6.9	6.9	12.2 12.1	12.2		8.8 9.6	9.2	
				3.2	Middle	-	26.4	-	- 8.2	-	21.5	-	- - 97.1	-	6.9	-		12.3	-	12.3	8.3	-	9.1
45 May 45		Madavata	40.47		Bottom	2.2	26.4 26.4 27.4	26.4	8.2	8.2	21.5 21.6 22.4	21.6	97.1 97.3 93.4	97.2	6.9	6.9	6.9	12.3 12.2 7.5	12.3		9.4 3.2	8.9	
15-May-15	Sunny	Moderate	12:17		Surface	1.0	27.4 27.3	27.4	8.2 8.2	8.2	22.4	22.5	93.4 97.8	95.6	6.5 6.8	6.7	6.7	7.5	7.7		3.8	3.5	
				3.4	Middle	-	27.3	-	8.2	-	22.6	-	97.3	-	6.8	-		- 8.8	-	8.4	4.1	-	3.8
18-May-15	Sunny	Moderate	12:06		Bottom	2.4	27.0	27.1	8.1 8.0	8.2	23.4	23.0	94.2 81.4	95.8	6.6 5.8	6.7	6.7	9.2	9.0		4.0	4.1	
	<i>cu,</i>	moderato	12.00		Surface	1.0	26.5	26.5	8.0	8.0	21.6	21.5	81.4	81.4	5.8	5.8	5.8	12.1	12.0	46 -	5.8	6.6	0.0
				3.4	Middle	-	- 26.5	-	- 8.0	-	- 22.9	-	- 80.3	-	- 5.7	-	5.0	- 13.3	-	12.5	- 7.3	-	6.8
20-May-15	Rainy	Moderate	13:35		Bottom	2.4 1.0	26.5 26.7	26.5 26.7	8.0 8.0	8.0 8.0	22.7 19.3	22.8 19.3	83.2 83.7	81.8 85.2	5.9 6.0	5.8	5.8	12.5 8.0	12.9		6.6 4.1	7.0	
				25	Surface	1.0	26.8	20.7	8.0	δ.U	19.3	19.3	86.7	85.2	6.2	6.1	6.1	8.2	8.1	0.0	4.2	4.2	4.0
				3.5	Middle Bottom	- 2.5	- 26.7	- 26.7	- 8.0	- 8.0	- 21.1	- 21.1	- 84.6	- 83.9	- 6.1	- 6.0	6.0	- 8.3	- 8.2	8.2	- 3.8	- 3.8	4.0
					BOllow	2.5	26.7	20.7	8.0	8.0	21.2	21.1	83.1	83.9	6.0	0.0	0.0	8.1	ö.2		3.8	3.8	

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	, (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	14:55		Surface	1.0	25.9 25.9	25.9	8.1 8.1	8.1	18.0 18.0	18.0	98.7 99.1	98.9	7.3 7.3	7.3	7.3	8.1 8.0	8.1		4.8 5.4	5.1	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	8.1	-	-	5.5
					Bottom	2.2	25.9 25.9	25.9	8.1 8.1	8.1	18.0 18.1	18.1	99.1 99.0	99.1	7.3 7.3	7.3	7.3	8.1 7.9	8.0		5.8 5.8	5.8	
25-May-15	Cloudy	Moderate	16:57		Surface	1.0	26.5 26.9	26.7	7.8 7.9	7.8	13.5 13.3	13.4	91.9 92.8	92.4	6.7 6.9	6.8	6.8	8.5 8.5	8.5		1.7 2.1	1.9	
				3.4	Middle	-	-	-	-	-	-	-		-		-	0.0	-	-	8.6	-	-	1.3
					Bottom	2.4	26.7 26.4	26.6	7.8 7.8	7.8	16.2 17.3	16.8	87.0 88.2	87.6	6.5 6.4	6.4	6.4	8.5 8.6	8.6		0.8 0.5	0.7	
27-May-15	Cloudy	Moderate	09:57		Surface	1.0	26.8 26.8	26.8	7.8 7.8	7.8	15.1 14.2	14.7	73.1 74.9	74.0	5.4 5.5	5.4	5.4	11.3 11.2	11.3		5.3 5.0	5.2	
				3.2	Middle	-	-	-	-	-	-	-		-		-	5.	-	-	11.3	-	-	5.4
					Bottom	2.2	26.7 26.7	26.7	7.8 7.8	7.8	15.0 15.6	15.3	74.0 72.1	73.1	5.5 5.3	5.4	5.4	11.2 11.4	11.3		5.3 5.6	5.5	
29-May-15	Sunny	Moderate	11:14		Surface	1.0	27.9 27.9	27.9	8.2 8.2	8.2	12.7 13.0	12.8	86.9 94.2	90.6	6.4 6.9	6.6	6.6	14.9 15.1	15.0		5.2 4.5	4.9	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	16.1	-	-	5.5
					Bottom	2.4	27.7 27.5	27.6	8.1 8.0	8.1	16.7 16.2	16.4	92.9 83.8	88.4	6.7 6.1	6.4	6.4	17.2 16.9	17.1		5.8 6.1	6.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Г	urbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	16:44		Surface	1.0	27.4 27.3	27.4	8.3 8.3	8.3	27.0 27.1	27.0	124.6 127.2	125.9	8.5 8.7	8.6		4.5 4.7	4.6		2.6 3.9	3.3	
				3.1	Middle	-	-	-	-	-	-	-		-	-	-	8.6	-	-	4.6	-	-	3.3
					Bottom	2.1	27.3 27.3	27.3	8.3 8.2	8.3	27.2 27.1	27.1	126.1 120.3	123.2	8.6 8.2	8.4	8.4	4.6 4.6	4.6		3.5 2.8	3.2	-
4-May-15	Sunny	Moderate	07:21		Surface	1.0	26.5 26.5	26.5	8.1 8.1	8.1	26.4 26.6	26.5	92.0 91.1	91.6	6.4 6.3	6.3		4.3	4.3		4.5	4.3	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	4.3	-	-	4.0
					Bottom	2.2	26.5 26.6	26.6	8.1 8.0	8.1	26.9 27.2	27.1	91.3 92.7	92.0	6.3 6.4	6.4	6.4	4.2 4.4	4.3		3.1 4.2	3.7	
6-May-15	Sunny	Moderate	08:31		Surface	1.0	26.5 26.6	26.5	8.1 8.1	8.1	25.8 25.7	25.7	89.2 89.8	89.5	6.2 6.2	6.2		4.8	4.8		4.5	4.3	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	4.8	-	-	5.7
					Bottom	2.3	26.5 26.5	26.5	8.1 8.1	8.1	25.9 26.0	26.0	88.7 89.3	89.0	6.2 6.2	6.2	6.2	4.8 4.8	4.8		6.2 7.9	7.1	
8-May-15	Sunny	Moderate	09:06		Surface	1.0	27.1 27.1	27.1	8.0 8.0	8.0	23.4 23.5	23.4	92.9 92.3	92.6	6.5 6.4	6.5		6.5 6.6	6.6		6.4 5.5	6.0	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-	6.7	-	-	5.8
					Bottom	2.5	27.1 27.0	27.0	8.0 8.0	8.0	23.7 23.5	23.6	91.9 92.1	92.0	6.4 6.4	6.4	6.4	6.7 6.6	6.7		6.0 5.0	5.5	
11-May-15	Cloudy	Moderate	11:39		Surface	1.0	27.2 27.2	27.2	8.1 8.1	8.1	21.0 20.9	21.0	91.6 90.5	91.1	6.5 6.4	6.4		15.7 15.7	15.7		11.6 11.2	11.4	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	15.8	-	-	12.2
					Bottom	2.2	27.2 27.1	27.1	8.1 8.1	8.1	20.9 21.0	21.0	88.1 90.8	89.5	6.2 6.4	6.3	6.3	15.8 15.8	15.8		12.7 13.1	12.9	
13-May-15	Sunny	Moderate	13:46		Surface	1.0	26.7 26.7	26.7	8.1 8.1	8.1	21.6 21.6	21.6	95.7 92.3	94.0	6.8 6.6	6.7	0.7	12.2 12.2	12.2		11.2 12.0	11.6	
				3.2	Middle	-	-	-	-	-	-	-		-	-	-	6.7	-	-	12.2	-	-	11.8
					Bottom	2.2	26.6 26.7	26.7	8.1 8.1	8.1	21.6 21.7	21.7	90.1 94.2	92.2	6.4 6.7	6.5	6.5	12.3 12.1	12.2		12.0 12.0	12.0	
15-May-15	Sunny	Moderate	15:53		Surface	1.0	28.5 28.2	28.3	8.3 8.3	8.3	21.3 21.5	21.4	106.5 114.5	110.5	7.3 7.9	7.6	7.0	11.1 10.2	10.7		8.6 8.2	8.4	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	12.0	-	-	8.4
					Bottom	2.2	27.5 27.6	27.6	8.2 8.2	8.2	22.6 22.5	22.5	101.5 111.1	106.3	7.1 7.7	7.4	7.4	13.1 13.3	13.2		8.1 8.6	8.4	
18-May-15	Cloudy	Moderate	07:06		Surface	1.0	26.4 26.4	26.4	7.8 7.9	7.9	20.8 20.9	20.9	88.4 87.2	87.8	6.3 6.3	6.3	6.2	7.8 8.2	8.0		5.4 5.4	5.4	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	7.8	-	-	6.0
					Bottom	2.1	26.4 26.4	26.4	7.9 7.8	7.8	20.9 21.0	21.0	87.6 90.1	88.9	6.3 6.5	6.4	6.4	7.8 7.2	7.5		6.0 6.9	6.5	1
20-May-15	Rainy	Moderate	07:49		Surface	1.0	26.6 26.5	26.6	8.0 8.0	8.0	19.6 19.3	19.5	81.7 86.6	84.2	5.9 6.2	6.1	6.4	9.3 9.2	9.3		5.9 5.7	5.8	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	9.4	-	-	5.7
					Bottom	2.6	26.6 26.6	26.6	8.0 8.0	8.0	19.6 19.9	19.8	81.4 82.1	81.8	5.9 5.9	5.9	5.9	9.5 9.2	9.4		5.9 5.3	5.6	1

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	09:27		Surface	1.0	25.7 25.7	25.7	8.0 8.0	8.0	17.9 18.0	18.0	90.8 90.7	90.8	6.7 6.7	6.7	6.7	11.1 11.2	11.2		9.5 9.5	9.5	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.7	-	-	11.3	-	-	8.9
					Bottom	2.2	25.8 25.8	25.8	8.0 8.0	8.0	18.4 19.1	18.7	91.2 93.1	92.2	6.7 6.8	6.8	6.8	11.3 11.3	11.3		8.5 8.1	8.3	
25-May-15	Sunny	Moderate	11:23		Surface	1.0	26.7 26.8	26.8	7.8 7.8	7.8	13.3 13.3	13.3	91.7 82.2	87.0	6.8 6.1	6.4	6.4	6.2 6.2	6.2		1.7 1.7	1.7	
				3.4	Middle	1	-	-	-	-	• •	-	-	-	-	-	0.4	-	-	6.3	-	-	1.5
					Bottom	2.4	26.7 26.8	26.8	7.8 7.8	7.8	13.4 13.3	13.4	83.7 82.0	82.9	6.2 6.1	6.1	6.1	6.3 6.3	6.3		1.5 0.9	1.2	
27-May-15	Cloudy	Moderate	13:27		Surface	1.0	27.5 27.7	27.6	7.9 7.9	7.9	13.4 13.3	13.4	77.0 84.7	80.9	5.7 6.2	5.9	5.9	10.0 9.8	9.9		6.1 6.2	6.2	
				3.3	Middle	I	-	-	-	-		-	-	-	-	-	5.5	-	-	10.1	-	-	6.3
					Bottom	2.3	26.9 26.8	26.9	7.8 7.8	7.8	15.9 17.5	16.7	75.5 73.7	74.6	5.5 5.3	5.4	5.4	10.4 10.2	10.3		6.1 6.6	6.4	
29-May-15	Sunny	Moderate	15:46		Surface	1.0	28.0 28.0	28.0	8.2 8.2	8.2	13.9 13.6	13.7	112.5 109.2	110.9	8.2 7.9	8.0	8.0	10.7 11.1	10.9		7.4 8.3	7.9	
				3.2	Middle	-	-	-	-	-		-	-	-	-	-	0.0	-	-	11.7	-	-	7.9
					Bottom	2.2	28.0 27.5	27.8	8.2 8.0	8.1	14.0 15.8	14.9	99.6 90.4	95.0	7.2 6.5	6.9	6.9	12.6 12.2	12.4		8.5 7.2	7.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	рН	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	/ed Oxyger	(mg/L)	Т	urbidity(NTU	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	12:05		Surface	1.0	26.3 26.4	26.3	8.1 8.1	8.1	27.5 27.3	27.4	111.7 109.5	110.6	7.7 7.6	7.6	7.6	4.6 4.5	4.6		3.1 3.4	3.3	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	4.5	-	-	3.6
					Bottom	3.1	26.1 26.1	26.1	8.1 8.0	8.1	28.6 28.5	28.5	111.2 106.6	108.9	7.7 7.4	7.5	7.5	4.4 4.4	4.4		4.5 3.0	3.8	
4-May-15	Sunny	Moderate	12:35		Surface	1.0	26.9 26.8	26.9	8.1 8.2	8.1	25.9 26.0	26.0	93.1 93.1	93.1	6.4 6.4	6.4		5.8 5.7	5.8		4.9 3.6	4.3	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	5.8	-	-	4.3
					Bottom	3.0	26.8 26.8	26.8	8.1 8.1	8.1	27.8 28.0	27.9	93.1 93.1	93.1	6.4 6.4	6.4	6.4	5.6 5.7	5.7		3.7 4.6	4.2	
6-May-15	Sunny	Moderate	13:46		Surface	1.0	26.8 26.8	26.8	8.1 8.1	8.1	26.3 26.3	26.3	94.8 93.5	94.2	6.6 6.5	6.5	0.5	5.5 5.0	5.3		3.3 4.1	3.7	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-	5.6	-	-	5.0
					Bottom	2.9	26.9 26.8	26.9	8.1 8.1	8.1	26.8 26.6	26.7	93.0 94.5	93.8	6.4 6.5	6.5	6.5	6.0 5.8	5.9		5.6 6.8	6.2	
8-May-15	Sunny	Moderate	14:41		Surface	1.0	27.2 27.3	27.3	8.0 8.0	8.0	24.6 24.3	24.5	90.8 92.5	91.7	6.3 6.4	6.3	6.3	8.0 8.0	8.0		7.0 5.8	6.4	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	8.0	-	-	6.9
					Bottom	2.5	27.2 27.3	27.2	8.0 8.0	8.0	24.6 24.4	24.5	90.6 91.4	91.0	6.3 6.3	6.3	6.3	8.0 8.0	8.0		6.9 7.9	7.4	
11-May-15	Cloudy	Moderate	17:48		Surface	1.0	26.6 27.0	26.8	8.1 8.1	8.1	23.5 22.2	22.9	85.1 85.4	85.3	5.9 6.0	6.0	6.0	8.8 8.8	8.8		5.9 4.9	5.4	
				4.0	Middle	-	-	-		-		-	-	-	-	-	0.0	-	-	8.9	-	-	5.3
					Bottom	3.0	26.1 26.8	26.5	8.1 8.1	8.1	26.9 26.2	26.6	80.8 82.8	81.8	5.7 5.7	5.7	5.7	8.8 9.2	9.0		5.0 5.4	5.2	
13-May-15	Sunny	Moderate	10:05		Surface	1.0	26.6 26.5	26.5	8.1 8.1	8.1	22.0 22.0	22.0	89.2 82.8	86.0	6.3 5.9	6.1	6.1	11.5 11.8	11.7		3.2 3.4	3.3	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	11.6	-	-	4.1
					Bottom	3.0	26.2 26.3	26.3	8.1 8.1	8.1	25.3 25.9	25.6	82.7 81.0	81.9	5.8 5.7	5.7	5.7	11.7 11.2	11.5		4.0 5.6	4.8	1
15-May-15	Sunny	Moderate	11:46		Surface	1.0	27.3 27.2	27.2	8.2 8.2	8.2	23.0 23.0	23.0	97.1 96.3	96.7	6.8 6.7	6.8	6.8	9.2 8.8	9.0		4.3 4.6	4.5	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	9.1	-	-	5.0
					Bottom	2.8	27.1 27.2	27.2	8.2 8.2	8.2	24.5 24.3	24.4	96.5 96.9	96.7	6.7 6.7	6.7	6.7	8.9 9.4	9.2		5.4 5.4	5.4	1
18-May-15	Sunny	Moderate	12:34		Surface	1.0	26.5 26.5	26.5	8.0 8.0	8.0	21.9 21.9	21.9	81.1 81.1	81.1	5.8 5.8	5.8	5.8	8.1 8.5	8.3		3.6 3.8	3.7	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	2.0	-	-	9.4	-	-	4.2
					Bottom	2.7	26.4 26.5	26.4	8.0 8.0	8.0	23.2 23.1	23.2	81.7 81.3	81.5	5.8 5.7	5.8	5.8	9.9 10.9	10.4		4.6 4.5	4.6	
20-May-15	Rainy	Moderate	13:59		Surface	1.0	26.7 26.7	26.7	8.0 8.0	8.0	19.1 19.3	19.2	82.4 82.0	82.2	5.9 5.9	5.9	5.9	8.0 8.1	8.1		3.1 3.6	3.4	, 7
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	8.1	-	-	4.0
					Bottom	2.4	26.7 26.7	26.7	8.0 8.0	8.0	20.1 20.0	20.1	81.9 81.5	81.7	5.9 5.9	5.9	5.9	8.1 8.0	8.1		4.6 4.6	4.6	1

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	, (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	15:17		Surface	1.0	26.0 26.0	26.0	8.0 8.0	8.0	18.9 18.9	18.9	85.6 82.4	84.0	6.2 6.0	6.1	6.1	8.6 8.8	8.7		4.0 3.1	3.6	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	8.8	-	-	4.5
					Bottom	3.2	26.0 26.0	26.0	8.0 8.0	8.0	19.2 22.0	20.6	84.1 85.2	84.7	6.1 6.1	6.1	6.1	8.9 8.8	8.9		5.4 5.1	5.3	
25-May-15	Cloudy	Moderate	17:14		Surface	1.0	26.8 26.4	26.6	7.8 7.8	7.8	13.7 13.7	13.7	85.6 81.7	83.7	6.3 6.0	6.2	6.2	6.8 6.7	6.8		2.2 3.2	2.7	
				3.4	Middle	-	-	-		-	-	-	-	-		-	0.2	-	-	6.8	-	-	2.7
					Bottom	2.4	26.1 27.9	27.0	7.8 7.9	7.8	17.6 15.0	16.3	81.1 83.3	82.2	6.0 6.0	6.0	6.0	6.8 6.8	6.8		2.6 2.7	2.7	
27-May-15	Cloudy	Moderate	09:36		Surface	1.0	26.7 26.7	26.7	7.8 7.8	7.8	12.3 12.5	12.4	75.1 74.2	74.7	5.6 5.5	5.6	5.6	9.6 9.4	9.5		5.2 4.8	5.0	
				3.8	Middle	-	-	-		-		-		-		-	5.0	-	-	9.6	-	-	5.0
					Bottom	2.8	26.8 26.7	26.7	7.7 7.7	7.7	14.6 14.7	14.6	76.7 73.2	75.0	5.7 5.4	5.5	5.5	9.6 9.5	9.6		4.9 5.0	5.0	
29-May-15	Sunny	Moderate	10:46		Surface	1.0	28.1 28.6	28.4	8.2 8.1	8.2	12.7 12.0	12.3	109.0 115.0	112.0	7.9 8.3	8.1	8.1	12.9 12.1	12.5		2.8 4.4	3.6	
				3.7	Middle	-	-	-		-		-	-	-	-	-	0.1	-	-	13.0	-	-	3.5
					Bottom	2.7	27.6 28.3	28.0	8.0 8.2	8.1	14.4 14.2	14.3	94.6 93.1	93.9	6.9 6.7	6.8	6.8	13.3 13.5	13.4		3.6 3.1	3.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	þ	ЪН	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	F	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	17:09		Surface	1.0	26.2 26.1	26.2	8.3 8.3	8.3	28.2 28.3	28.2	115.9 115.5	115.7	8.0 8.0	8.0		3.1 3.2	3.2		3.4 2.5	3.0	
				4.4	Middle	-	-	-	-	-	-	-	-	-	-	-	8.0	-	-	3.2	-	-	3.5
					Bottom	3.4	26.1 25.8	26.0	8.3 8.3	8.3	28.4 28.9	28.7	115.0 114.5	114.8	7.9 7.9	7.9	7.9	3.2 3.1	3.2		3.8 4.2	4.0	
4-May-15	Sunny	Moderate	07:00		Surface	1.0	26.4 26.4	26.4	8.0 8.0	8.0	25.7 25.7	25.7	86.9 86.9	86.9	6.1 6.1	6.1		6.5 6.5	6.5		3.3 2.9	3.1	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	6.5	-	-	3.0
					Bottom	3.2	26.4 26.4	26.4	8.0 8.0	8.0	26.0 26.2	26.1	87.0 87.2	87.1	6.1 6.1	6.1	6.1	6.5 6.5	6.5		3.3 2.4	2.9	
6-May-15	Sunny	Moderate	07:59		Surface	1.0	26.5 26.6	26.5	8.0 8.0	8.0	25.6 25.5	25.6	92.6 88.5	90.6	6.5 6.2	6.3	6.3	8.2 7.7	8.0		4.5 4.6	4.6	
				4.0	Middle	-	-	-	-	-	-	-		-	-	-	6.3	-	-	8.4	-	-	5.6
					Bottom	3.0	26.4 26.5	26.4	8.0 8.0	8.0	26.0 25.8	25.9	96.7 89.5	93.1	6.7 6.2	6.5	6.5	9.0 8.4	8.7		6.9 6.0	6.5	
8-May-15	Sunny	Moderate	08:42		Surface	1.0	26.9 26.9	26.9	8.0 7.9	8.0	22.7 22.5	22.6	85.6 89.7	87.7	6.0 6.3	6.1	6.1	8.8 8.8	8.8		6.2 6.0	6.1	
				3.4	Middle	-	-	-	-	-	-	-		-	-	-	0.1	-	-	8.9	-	-	5.3
					Bottom	2.4	26.9 26.9	26.9	7.9 7.9	7.9	23.6 23.5	23.6	84.9 87.1	86.0	6.0 6.1	6.1	6.1	9.0 9.0	9.0		4.7 4.2	4.5	
11-May-15	Cloudy	Moderate	11:15		Surface	1.0	27.1 27.1	27.1	8.1 8.0	8.1	22.2 22.1	22.2	85.3 81.0	83.2	6.0 5.7	5.8	5.8	8.7 8.7	8.7		4.7 4.9	4.8	
				4.1	Middle	-		-	-	-	-	-	-	-	-	-	5.0	-	-	8.8	-	-	5.8
					Bottom	3.1	27.0 26.9	26.9	8.0 8.0	8.0	22.6 22.8	22.7	83.8 80.4	82.1	5.9 5.7	5.8	5.8	8.7 8.8	8.8		6.6 6.9	6.8	
13-May-15	Sunny	Moderate	14:08		Surface	1.0	26.3 26.3	26.3	8.1 8.1	8.1	24.5 24.5	24.5	84.8 85.2	85.0	6.0 6.0	6.0	6.0	22.2 22.3	22.3		6.9 6.8	6.9	
				4.4	Middle	I	-	-	-	-	-	-		-	-	-	0.0	-	-	22.4	-	-	6.4
					Bottom	3.4	26.2 26.2	26.2	8.1 8.1	8.1	25.2 24.9	25.1	84.9 85.2	85.1	6.0 6.0	6.0	6.0	22.2 22.5	22.4		5.1 6.4	5.8	
15-May-15	Sunny	Moderate	16:27		Surface	1.0	27.6 27.6	27.6	8.2 8.2	8.2	22.0 22.2	22.1	101.3 101.2	101.3	7.1 7.1	7.1	7.1	11.1 11.5	11.3		6.7 6.7	6.7	
				3.8	Middle	I	-	-	-	-	-	-		-	-	-	7.1	-	-	11.6	-	-	7.3
					Bottom	2.8	27.4 27.6	27.5	8.2 8.2	8.2	22.6 22.4	22.5	101.5 101.4	101.5	7.1 7.1	7.1	7.1	11.9 11.6	11.8		8.2 7.5	7.9	
18-May-15	Cloudy	Moderate	06:36		Surface	1.0	26.4 26.4	26.4	7.9 7.8	7.9	20.7 20.8	20.7	82.0 82.8	82.4	5.9 5.9	5.9	5.9	10.0 9.8	9.9		8.0 7.6	7.8	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	10.0	-	-	7.7
					Bottom	2.7	26.4 26.4	26.4	7.8 7.9	7.8	21.6 22.2	21.9	83.5 82.2	82.9	6.0 5.8	5.9	5.9	9.7 10.4	10.1		7.4 7.6	7.5	
20-May-15	Rainy	Moderate	07:28		Surface	1.0	26.6 26.6	26.6	7.9 7.9	7.9	18.2 18.1	18.1	79.5 82.2	80.9	5.8 6.0	5.9	5.9	13.0 12.8	12.9		7.0 7.2	7.1	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	3.5	-	-	13.1	-	-	7.8
					Bottom	2.6	26.6 26.5	26.6	7.9 7.9	7.9	18.1 18.4	18.3	78.6 79.8	79.2	5.7 5.8	5.7	5.7	13.3 13.0	13.2		7.6 9.2	8.4]

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	09:02		Surface	1.0	26.0 26.0	26.0	8.0 8.0	8.0	18.5 18.5	18.5	81.9 83.4	82.7	6.0 6.1	6.0	6.0	8.8 8.9	8.9		2.8 4.2	3.5	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	8.9	-	-	3.7
					Bottom	3.2	26.0 26.0	26.0	8.0 8.0	8.0	18.8 19.1	19.0	82.6 85.7	84.2	6.0 6.3	6.1	6.1	8.9 8.8	8.9		3.6 4.0	3.8	
25-May-15	Sunny	Moderate	11:05		Surface	1.0	26.4 26.3	26.4	7.8 7.8	7.8	15.6 15.1	15.4	78.2 80.9	79.6	5.7 6.0	5.9	5.9	10.0 10.1	10.1		3.0 2.4	2.7	
				3.4	Middle	1	-	-	-	-	-	-	-	-	-	-	5.5	-	-	10.2	-	-	2.9
					Bottom	2.4	26.2 26.5	26.3	7.8 7.8	7.8	16.2 15.9	16.0	80.3 76.6	78.5	5.9 5.6	5.8	5.8	10.2 10.3	10.3		3.1 3.0	3.1	
27-May-15	Cloudy	Moderate	13:49		Surface	1.0	27.5 27.5	27.5	7.9 7.9	7.9	13.1 13.2	13.2	88.1 85.3	86.7	6.5 6.3	6.4	6.4	12.4 12.3	12.4		9.5 9.2	9.4	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-	12.4	-	-	10.1
					Bottom	2.8	27.5 27.0	27.3	7.9 7.9	7.9	14.2 14.7	14.5	87.6 83.5	85.6	6.4 6.1	6.3	6.3	12.5 12.3	12.4		10.9 10.4	10.7	
29-May-15	Sunny	Moderate	16:19		Surface	1.0	29.3 29.2	29.2	8.5 8.4	8.5	12.7 12.7	12.7	115.2 104.2	109.7	8.2 7.5	7.8	7.8	13.3 13.9	13.6		11.8 12.0	11.9	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	1.0	-	-	14.2	-	-	12.5
					Bottom	2.7	27.1 27.2	27.2	8.3 8.2	8.2	15.9 15.6	15.8	103.4 102.1	102.8	7.5 7.4	7.5	7.5	14.8 14.5	14.7		13.2 12.7	13.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	Η	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	i (mg/L)	Т	urbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	11:50		Surface	1.0	25.8 25.6	25.7	8.1 8.0	8.1	28.1 28.3	28.2	108.7 106.0	107.4	7.6 7.4	7.5		3.8 3.8	3.8		4.1 3.9	4.0	
				10.4	Middle	5.2	25.1 25.0	25.1	8.0 8.0	8.0	29.3 29.9	29.6	105.3 103.1	104.2	7.4 7.2	7.3	7.4	3.8 3.9	3.9	3.9	4.4 3.7	4.1	4.2
					Bottom	9.4	24.9 25.4	25.1	8.0 8.0	8.0	31.9 31.2	31.6	103.3 106.4	104.9	7.1	7.2	7.2	3.9 3.9	3.9		4.7	4.6	
4-May-15	Sunny	Moderate	12:50		Surface	1.0	26.6 26.6	26.6	8.1 8.1	8.1	26.7 26.7	26.7	88.2 88.5	88.4	6.1 6.1	6.1		5.2 5.2	5.2		4.1	3.6	
				10.1	Middle	5.1	26.1 26.0	26.0	8.1 8.0	8.1	27.6 27.7	27.7	86.9 85.7	86.3	6.0 6.0	6.0	6.1	5.3 5.3	5.3	5.3	3.1 3.1	3.1	3.7
					Bottom	9.1	26.1 25.6	25.9	8.1 8.0	8.0	28.9 29.7	29.3	87.5 85.3	86.4	6.0 5.9	6.0	6.0	5.3 5.3	5.3		4.6	4.4	l
6-May-15	Sunny	Moderate	14:07		Surface	1.0	26.6 26.4	26.5	8.1 8.1	8.1	26.3 26.4	26.3	87.3 84.7	86.0	6.0 5.9	6.0		6.2 6.0	6.1		7.9	8.2	{
				11.1	Middle	5.6	25.8 25.8	25.8	8.1 8.1	8.1	29.3 29.3	29.3	81.4 80.2	80.8	5.6 5.5	5.6	5.8	5.9 6.0	6.0	6.1	6.3 7.1	6.7	7.1
					Bottom	10.1	25.8 25.8	25.8	8.1 8.1	8.1	29.5 29.5	29.5	83.4 80.3	81.9	5.8 5.5	5.6	5.6	6.2 6.3	6.3		6.9 6.1	6.5	l
8-May-15	Sunny	Moderate	14:55		Surface	1.0	27.0 26.9	26.9	8.0 8.0	8.0	24.7 24.7	24.7	86.1 84.7	85.4	5.9 5.8	5.9	5.0	11.4 11.3	11.4		7.6 8.7	8.2	i
				10.8	Middle	5.4	26.4 26.4	26.4	8.0 8.0	8.0	25.8 25.0	25.4	83.1 85.4	84.3	5.8 5.9	5.8	5.9	11.4 11.4	11.4	11.4	9.0 9.4	9.2	8.9
					Bottom	9.8	26.8 26.3	26.6	8.0 7.9	8.0	28.3 29.2	28.7	82.5 82.5	82.5	5.8 5.8	5.8	5.8	11.6 11.4	11.5		9.5 8.8	9.2	
11-May-15	Cloudy	Moderate	18:05		Surface	1.0	26.7 26.9	26.8	8.1 8.1	8.1	24.3 24.2	24.2	82.0 86.5	84.3	5.7 6.0	5.9	5.6	11.2 11.4	11.3		7.6 7.1	7.4	
				10.2	Middle	5.1	26.5 25.8	26.2	8.1 8.1	8.1	25.3 26.1	25.7	76.3 78.1	77.2	5.3 5.4	5.3	5.0	11.1 11.3	11.2	11.3	7.4 7.9	7.7	7.7
					Bottom	9.2	25.3 25.3	25.3	8.0 8.1	8.1	31.4 31.5	31.5	74.4 75.9	75.2	5.1 5.3	5.2	5.2	11.2 11.4	11.3		8.6 7.1	7.9	
13-May-15	Sunny	Moderate	09:50		Surface	1.0	26.3 26.3	26.3	8.1 8.1	8.1	23.2 22.9	23.1	83.4 82.3	82.9	5.9 5.8	5.9	5.8	8.3 8.5	8.4		5.2 5.1	5.2	
				9.9	Middle	5.0	26.1 26.2	26.2	8.1 8.0	8.1	24.2 25.5	24.9	77.9 82.6	80.3	5.5 5.8	5.6	0.0	8.5 8.8	8.7	8.6	6.2 7.2	6.7	6.2
					Bottom	8.9	26.0 25.2	25.6	8.1 8.1	8.1	26.3 31.6	29.0	81.9 76.5	79.2	5.7 5.3	5.5	5.5	8.8 8.7	8.8		6.0 7.3	6.7	
15-May-15	Sunny	Moderate	11:29		Surface	1.0	26.9 26.8	26.9	8.1 8.1	8.1	22.7 22.7	22.7	85.6 84.4	85.0	6.0 5.9	6.0	5.9	13.4 13.8	13.6		9.4 10.3	9.9	
				10.6	Middle	5.3	26.5 26.3	26.4	8.1 8.1	8.1	24.8 25.2	25.0	82.2 81.7	82.0	5.8 5.7	5.7		14.2 14.6	14.4	14.0	11.1 11.5	11.3	10.6
					Bottom	9.6	26.2 26.2	26.2	8.1 8.1	8.1	26.1 26.2	26.2	79.3 82.3	80.8	5.5 5.7	5.6	5.6	13.5 14.3	13.9		10.2 10.7	10.5	
18-May-15	Sunny	Moderate	12:51		Surface	1.0	26.4 26.3	26.4	8.0 8.0	8.0	23.2 23.4	23.3	78.6 76.4	77.5	5.6 5.4	5.5	5.5	14.5 14.4	14.5		9.6 8.5	9.1	
				10.6	Middle	5.3	26.2 26.2	26.2	8.0 8.0	8.0	24.0 24.6	24.3	77.5 76.1	76.8	5.5 5.4	5.4		14.2 13.9	14.1	15.2	10.8 10.7	10.8	12.1
					Bottom	9.6	26.2 26.2	26.2	8.0 8.0	8.0	24.5 24.6	24.6	79.7 77.0	78.4	5.6 5.4	5.5	5.5	16.8 17.2	17.0		16.4 16.4	16.4	
20-May-15	Rainy	Moderate	14:13		Surface	1.0	26.5 26.5	26.5	8.0 8.0	8.0	20.8 20.8	20.8	76.6 75.1	75.9	5.5 5.4	5.4	5.3	11.5 11.4	11.5		7.7 6.2	7.0	Ì
				11.2	Middle	5.6	26.1 26.2	26.1	8.0 8.0	8.0	21.3 21.4	21.3	74.7 71.3	73.0	5.2 5.1	5.2		11.7 11.8	11.8	11.7	8.0 7.3	7.7	7.2
					Bottom	10.2	25.8 26.3	26.0	8.0 8.0	8.0	25.4 25.5	25.4	70.8 72.5	71.7	5.0 5.2	5.1	5.1	12.0 11.8	11.9		7.1 6.9	7.0	

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	ended Solids	, (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	15:32		Surface	1.0	26.0 25.9	26.0	8.0 8.0	8.0	19.8 19.9	19.9	77.6 73.8	75.7	5.6 5.4	5.5	5.4	12.4 12.3	12.4		6.5 7.7	7.1	
				10.2	Middle	5.1	25.6 25.7	25.6	8.0 8.0	8.0	22.6 21.6	22.1	71.7 71.2	71.5	5.2 5.1	5.2	5.4	12.4 12.2	12.3	12.3	8.3 9.3	8.8	8.5
					Bottom	9.2	25.7 25.3	25.5	8.0 8.0	8.0	26.9 27.1	27.0	76.2 74.9	75.6	5.3 5.3	5.3	5.3	12.1 12.3	12.2		8.9 10.4	9.7	
25-May-15	Cloudy	Moderate	17:28		Surface	1.0	27.5 28.0	27.7	7.9 7.8	7.8	13.2 13.3	13.3	71.0 83.5	77.3	5.2 6.1	5.6	5.3	9.6 9.6	9.6		4.8 5.4	5.1	
				11.2	Middle	5.6	24.9 24.8	24.9	7.8 7.8	7.8	26.5 27.6	27.0	70.3 70.9	70.6	5.0 5.1	5.0	0.0	9.7 9.7	9.7	9.7	5.6 5.0	5.3	5.6
					Bottom	10.2	24.8 24.8	24.8	7.8 7.8	7.8	30.8 30.3	30.6	68.9 69.9	69.4	4.9 5.0	4.9	4.9	9.9 9.9	9.9		7.1 5.5	6.3	
27-May-15	Cloudy	Moderate	09:22		Surface	1.0	26.3 26.3	26.3	7.7 7.7	7.7	11.4 12.0	11.7	66.3 66.4	66.4	5.0 5.0	5.0	5.0	13.2 12.8	13.0		8.7 8.1	8.4	
				10.2	Middle	5.1	25.6 25.6	25.6	7.8 7.8	7.8	23.3 22.4	22.8	66.3 66.1	66.2	5.0 5.0	5.0	5.0	13.1 13.2	13.2	13.1	9.0 7.7	8.4	8.5
					Bottom	9.2	25.3 25.9	25.6	7.8 7.7	7.7	29.7 28.9	29.3	65.8 65.9	65.9	5.0 5.0	5.0	5.0	13.1 13.2	13.2		9.1 8.0	8.6	
29-May-15	Sunny	Moderate	10:31		Surface	1.0	27.6 27.6	27.6	8.0 8.0	8.0	12.6 13.1	12.9	84.9 88.8	86.9	6.2 6.5	6.4	5.8	12.1 11.9	12.0		10.6 10.4	10.5	
				11.2	Middle	5.6	25.9 25.9	25.9	7.9 7.9	7.9	22.6 22.6	22.6	74.5 75.1	74.8	5.2 5.3	5.2	5.0	9.8 10.0	9.9	11.0	11.4 11.0	11.2	11.0
					Bottom	10.2	26.0 25.9	26.0	7.8 7.9	7.9	24.8 24.3	24.5	71.2 72.2	71.7	5.0 5.1	5.1	5.1	11.4 10.7	11.1		10.9 11.4	11.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	L I	Furbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	17:24		Surface	1.0	25.9 26.0	26.0	8.3 8.3	8.3	28.3 28.2	28.2	112.0 109.3	110.7	7.8 7.6	7.7	7.5	5.2 5.0	5.1		4.5 4.7	4.6	
				10.1	Middle	5.1	25.3 25.4	25.3	8.3 8.3	8.3	29.9 29.8	29.9	101.4 109.0	105.2	7.0 7.6	7.3	7.5	6.6 6.5	6.6	6.1	4.9 3.7	4.3	4.5
					Bottom	9.1	25.8 25.1	25.4	8.3 8.3	8.3	30.5 31.0	30.8	110.6 100.5	105.6	7.6 7.0	7.3	7.3	6.8 6.6	6.7		4.5 4.9	4.7	
4-May-15	Sunny	Moderate	06:46		Surface	1.0	26.4 26.4	26.4	8.0 8.0	8.0	25.7 26.0	25.9	87.7 87.1	87.4	6.1 6.1	6.1		6.6 6.3	6.5		4.1 2.8	3.5	
				10.1	Middle	5.1	26.3 26.3	26.3	8.0 7.9	8.0	26.2 26.2	26.2	86.8 87.6	87.2	6.0 6.1	6.1	6.1	6.7 6.7	6.7	6.7	3.0	2.6	2.8
					Bottom	9.1	26.0 26.1	26.1	7.9	7.9	28.3 28.3	28.3	89.6 86.5	88.1	6.2 6.0	6.1	6.1	6.7 6.8	6.8		2.0	2.2	1
6-May-15	Sunny	Moderate	07:39		Surface	1.0	26.6 26.6	26.6	8.1 8.0	8.0	25.3 25.2	25.2	87.0 88.2	87.6	6.1 6.2	6.1		4.8 5.0	4.9		4.1 5.4	4.8	
				11.2	Middle	5.6	26.2 26.1	26.2	8.0 8.0	8.0	26.9 28.4	27.7	86.6 83.6	85.1	6.0 5.8	5.9	6.0	6.0 6.8	6.4	6.2	4.8	4.1	4.4
					Bottom	10.2	26.0 26.2	26.1	8.0 8.0	8.0	28.6 28.5	28.6	83.8 88.4	86.1	5.8 6.1	5.9	5.9	7.5 6.9	7.2		4.3 4.3	4.3	
8-May-15	Sunny	Moderate	08:26		Surface	1.0	27.0 26.9	27.0	8.0 8.0	8.0	22.3 22.3	22.3	86.3 85.7	86.0	6.1 6.0	6.1	5.0	7.7 7.6	7.7		3.3 3.9	3.6	
				10.9	Middle	5.5	26.5 26.4	26.5	8.0 8.0	8.0	25.0 24.9	25.0	82.2 80.6	81.4	5.7 5.6	5.6	5.9	7.7 7.7	7.7	7.8	5.1 4.3	4.7	4.4
					Bottom	9.9	26.4 26.0	26.2	8.0 8.0	8.0	28.0 28.5	28.2	80.2 79.1	79.7	5.6 5.5	5.6	5.6	8.0 7.9	8.0		5.6 3.9	4.8	
11-May-15	Cloudy	Moderate	11:02		Surface	1.0	26.7 26.7	26.7	8.1 8.1	8.1	22.9 23.3	23.1	78.6 78.2	78.4	5.5 5.5	5.5	5.4	8.1 8.4	8.3		5.1 4.8	5.0	
				10.3	Middle	5.2	26.2 26.2	26.2	8.1 8.0	8.0	25.0 24.9	24.9	75.7 73.4	74.6	5.3 5.2	5.2	5.4	8.5 8.5	8.5	8.5	5.6 5.4	5.5	6.0
					Bottom	9.3	26.1 26.3	26.2	8.0 8.0	8.0	29.6 29.9	29.7	72.3 76.9	74.6	5.0 5.2	5.1	5.1	8.8 8.6	8.7		7.5 7.3	7.4	
13-May-15	Sunny	Moderate	14:22		Surface	1.0	26.3 25.8	26.1	8.1 8.1	8.1	24.0 26.2	25.1	80.4 77.8	79.1	5.7 5.3	5.5	5.4	12.3 12.2	12.3		10.4 10.8	10.6	
				10.6	Middle	5.3	25.7 25.4	25.5	8.1 8.1	8.1	27.4 27.7	27.6	75.1 76.4	75.8	5.3 5.4	5.3	5.4	12.3 12.1	12.2	12.3	9.7 9.7	9.7	10.0
					Bottom	9.6	25.2 25.6	25.4	8.1 8.1	8.1	30.9 30.7	30.8	80.6 74.7	77.7	5.6 5.2	5.4	5.4	12.3 12.6	12.5		9.8 9.4	9.6	
15-May-15	Sunny	Moderate	16:49		Surface	1.0	27.5 27.6	27.6	8.1 8.1	8.1	21.3 21.4	21.4	92.5 94.6	93.6	6.5 6.6	6.6	6.4	9.7 10.3	10.0		6.5 7.3	6.9	
				10.9	Middle	5.5	26.9 26.9	26.9	8.1 8.1	8.1	22.6 22.7	22.6	87.5 86.9	87.2	6.2 6.1	6.1	0.4	11.3 11.6	11.5	11.8	8.0 7.9	8.0	7.4
					Bottom	9.9	27.0 26.5	26.7	8.1 8.1	8.1	24.5 25.1	24.8	92.4 90.4	91.4	6.4 6.3	6.4	6.4	14.2 13.8	14.0		7.2 7.5	7.4	
18-May-15	Cloudy	Moderate	06:20		Surface	1.0	26.3 26.3	26.3	7.8 7.9	7.9	22.0 22.1	22.1	80.2 79.6	79.9	5.7 5.7	5.7	5.7	8.9 9.6	9.3		7.1 6.6	6.9	
				10.6	Middle	5.3	26.1 26.0	26.1	7.9 7.8	7.8	24.0 25.0	24.5	78.5 79.6	79.1	5.6 5.6	5.6	0	11.9 10.8	11.4	11.0	8.3 6.2	7.3	7.7
					Bottom	9.6	26.1 26.0	26.0	7.9 7.7	7.8	26.4 26.1	26.3	79.3 81.1	80.2	5.5 5.7	5.6	5.6	12.4 12.1	12.3		9.4 8.6	9.0	
20-May-15	Rainy	Moderate	07:12		Surface	1.0	26.5 26.5	26.5	7.9 8.0	8.0	18.8 18.8	18.8	77.8 78.1	78.0	5.6 5.7	5.6	5.5	8.3 8.4	8.4		5.1 3.4	4.3	
				11.6	Middle	5.8	26.1 26.2	26.2	8.0 8.0	8.0	21.3 21.6	21.5	74.2 77.1	75.7	5.2 5.4	5.3	0.0	8.6 8.8	8.7	8.6	5.2 5.6	5.4	5.0
					Bottom	10.6	26.1 26.1	26.1	7.9 8.0	7.9	24.5 24.5	24.5	72.0 72.2	72.1	5.2 5.2	5.2	5.2	8.6 8.8	8.7		5.9 4.7	5.3	

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl))	Suspe	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	08:40		Surface	1.0	25.9 25.9	25.9	8.0 8.0	8.0	18.9 19.0	19.0	80.2 77.6	78.9	5.9 5.7	5.8	5.5	9.0 9.5	9.3		3.8 4.8	4.3	Í
				10.0	Middle	5.0	25.5 25.8	25.7	8.0 8.0	8.0	22.5 21.9	22.2	71.1 76.3	73.7	5.0 5.4	5.2	5.5	12.1 12.1	12.1	11.6	3.0 3.6	3.3	3.9
					Bottom	9.0	25.3 25.5	25.4	8.0 8.0	8.0	27.4 27.5	27.5	68.7 72.6	70.7	5.0 5.2	5.1	5.1	13.5 13.2	13.4		3.5 4.6	4.1	
25-May-15	Sunny	Moderate	10:51		Surface	1.0	26.1 26.2	26.2	7.9 7.9	7.9	16.2 16.9	16.6	72.9 73.1	73.0	5.4 5.4	5.4	5.3	6.4 6.0	6.2		2.2 2.8	2.5	
				11.2	Middle	5.6	25.5 25.5	25.5	7.9 7.9	7.9	20.2 20.6	20.4	70.3 70.4	70.4	5.1 5.1	5.1	0.0	6.6 6.3	6.5	6.4	2.6 2.3	2.5	2.5
					Bottom	10.2	25.0 25.4	25.2	7.9 7.8	7.9	28.0 27.9	27.9	69.2 69.9	69.6	4.9 4.9	4.9	4.9	6.6 6.6	6.6		2.7 2.4	2.6	
27-May-15	Cloudy	Moderate	14:04		Surface	1.0	27.1 27.3	27.2	7.9 7.9	7.9	12.3 11.2	11.8	76.1 78.4	77.3	5.7 5.8	5.7	5.4	8.3 8.3	8.3		5.3 5.1	5.2	
				10.4	Middle	5.2	26.0 26.3	26.2	7.8 7.8	7.8	18.6 18.9	18.8	72.1 72.1	72.1	5.1 5.1	5.1	5.4	8.5 8.8	8.7	8.6	5.7 6.0	5.9	5.5
					Bottom	9.4	25.6 26.0	25.8	7.8 7.8	7.8	24.8 24.7	24.7	65.2 71.3	68.3	4.8 5.0	4.9	4.9	8.8 8.6	8.7		5.3 5.5	5.4	
29-May-15	Sunny	Moderate	16:40		Surface	1.0	27.7 28.6	28.2	8.1 8.4	8.3	12.6 12.3	12.4	95.7 98.1	96.9	7.0 7.1	7.0	6.8	6.2 6.1	6.2		5.4 5.6	5.5	
				10.0	Middle	5.0	26.6 26.6	26.6	8.1 8.1	8.1	17.6 18.6	18.1	88.8 89.2	89.0	6.5 6.6	6.5	0.0	6.6 6.4	6.5	6.4	6.2 5.7	6.0	5.9
					Bottom	9.0	26.7 26.5	26.6	8.1 8.1	8.1	19.3 19.0	19.1	79.5 75.9	77.7	5.7 5.5	5.6	5.6	6.7 6.4	6.6		6.7 5.9	6.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ing	Tempera	ature (°C)	p	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	۲	urbidity(NT	U)	Susp	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-		-	-	
				1.2	Middle	0.6	26.3 26.4	26.4	8.3 8.3	8.3	27.6 27.6	27.6	109.9 109.9	109.9	7.6 7.6	7.6	7.0	3.8 3.8	3.8	3.8	3.3 3.2	3.3	3.3
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
4-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-		-	-	
				1.6	Middle	0.8	26.9 26.9	26.9	8.1 8.1	8.1	28.2 27.8	28.0	93.6 93.1	93.4	6.4 6.4	6.4	6.4	4.5 4.6	4.6	4.6	3.7 4.1	3.9	3.9
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
6-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-		-	-	
				1.8	Middle	0.9	26.7 26.7	26.7	8.1 8.1	8.1	26.5 26.6	26.6	93.2 91.5	92.4	6.4 6.3	6.4	6.4	6.9 7.1	7.0	7.0	9.4 8.4	8.9	8.9
					Bottom	-		-	-	-		-		-	-	-	-	-	-		-	-	
8-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-		-	-	
				1.6	Middle	0.8	27.2 27.2	27.2	8.0 8.0	8.0	24.3 24.6	24.4	89.6 87.8	88.7	6.2 6.1	6.1	0.1	11.9 11.6	11.8	11.8	6.6 7.1	6.9	6.9
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
11-May-15	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-		-	-	
				1.2	Middle	0.6	27.4 27.4	27.4	8.1 8.1	8.1	24.0 24.0	24.0	97.3 96.0	96.7	6.7 6.6	6.7	0.7	7.8 7.8	7.8	7.8	4.2 5.0	4.6	4.6
					Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	
13-May-15	Sunny	Moderate	-		Surface	-		-		-	-	-		-	-	-	6.3	-	-		-	-	
				1.2	Middle	0.6	26.4 26.4	26.4	8.2 8.2	8.2	22.5 22.5	22.5	88.8 89.6	89.2	6.3 6.4	6.3	0.0	6.5 6.5	6.5	6.5	6.0 7.4	6.7	6.7
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
15-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-		-	-	
				1.6	Middle	0.8	27.0 27.0	27.0	8.1 8.1	8.1	23.5 23.5	23.5	88.7 88.3	88.5	6.2 6.2	6.2	0.2	9.6 9.1	9.4	9.4	8.1 7.6	7.9	7.9
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
18-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-		-	-	
				1.6	Middle	0.8	26.3 26.3	26.3	7.9 7.9	7.9	22.4 22.3	22.3	78.8 79.9	79.4	5.6 5.7	5.6		16.5 16.5	16.5	16.5	17.3 15.7	16.5	16.5
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
20-May-15	Rainy	Moderate	-		Surface	-		-	-	-	-	-		-	-	-	6.0	-	-		-	-	
				1.6	Middle	0.8	26.5 26.5	26.5	8.1 8.1	8.1	20.2 20.3	20.2	83.6 82.9	83.3	6.0 6.0	6.0	0.0	14.6 14.5	14.6	14.6	12.0 13.2	12.6	12.6
					Bottom	-		-		-	-	-		-	-	-	•	-	-		-	-	

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	1	urbidity(NTL	J)	Suspe	ended Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-		-	-	
				1.4	Middle	0.7	26.1 26.0	26.1	8.1 8.1	8.1	20.3 20.4	20.4	83.9 82.6	83.3	6.1 6.0	6.0	6.0	11.7 11.5	11.6	11.6	8.6 9.0	8.8	8.8
					Bottom		-	-	-	-	-	-		-		-	-	-	-		-	-	
25-May-15	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
				1.4	Middle	0.7	27.8 27.7	27.7	8.0 7.9	8.0	14.0 14.2	14.1	97.6 96.3	97.0	7.1 7.0	7.0	7.0	6.8 6.7	6.8	6.8	2.3 1.6	2.0	2.0
					Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	
27-May-15	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	5.4	-	-		-	-	
				1.4	Middle	0.7	26.2 26.8	26.5	7.8 7.9	7.8	13.7 13.4	13.5	73.1 73.6	73.4	5.4 5.5	5.4	5.4	8.8 8.7	8.8	8.8	2.9 2.4	2.7	2.7
					Bottom	-	-	-	-	-	-	-		-		-	•	-	-		-	-	
29-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-		-	-	
				1.6	Middle	0.8	28.0 28.0	28.0	8.2 8.2	8.2	12.8 12.8	12.8	98.9 100.6	99.8	7.2 7.3	7.3	1.5	10.4 10.4	10.4	10.4	7.5 8.0	7.8	7.8
					Bottom	-	-	-	-	-	-	-		-		-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	k	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-		-	-	
				1.4	Middle	0.7	26.9 26.8	26.9	8.0 8.1	8.1	27.0 27.2	27.1	111.8 113.5	112.7	7.7 7.8	7.7	1.1	3.9 3.8	3.9	3.9	5.4 4.7	5.1	5.1
					Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	
4-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-		-	-	
				1.6	Middle	0.8	26.7 26.7	26.7	8.2 8.2	8.2	27.8 27.8	27.8	92.9 92.8	92.9	6.4 6.4	6.4	0.4	3.8 3.8	3.8	3.8	5.0 4.6	4.8	4.8
					Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	
6-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-		-	-	
				1.6	Middle	0.8	26.8 26.8	26.8	8.1 8.1	8.1	26.4 26.4	26.4	91.7 91.6	91.7	6.3 6.3	6.3	0.5	5.6 5.3	5.5	5.5	7.3 7.7	7.5	7.5
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
8-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-		-	-	-	6.3	-	-		-	-	
				1.4	Middle	0.7	27.0 27.0	27.0	8.0 8.0	8.0	24.4 24.4	24.4	90.4 90.3	90.4	6.3 6.3	6.3	0.5	6.6 6.7	6.7	6.7	4.6 5.1	4.9	4.9
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
11-May-15	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-		-	-	
				2.0	Middle	1.0	27.2 27.2	27.2	8.1 8.1	8.1	22.1 22.1	22.1	90.1 90.7	90.4	6.3 6.4	6.3	0.0	7.2 7.1	7.2	7.2	5.0 6.4	5.7	5.7
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
13-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-		-	-	
				1.2	Middle	0.6	26.7 26.7	26.7	8.2 8.2	8.2	22.7 22.6	22.6	98.4 97.7	98.1	6.9 6.9	6.9		9.2 9.2	9.2	9.2	5.1 6.9	6.0	6.0
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
15-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
				1.8	Middle	0.9	27.6 27.6	27.6	8.2 8.1	8.2	22.3 22.3	22.3	100.4 101.8	101.1	7.0 7.1	7.0		10.2 10.3	10.3	10.3	10.5 10.1	10.3	10.3
10 M 15					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
18-May-15	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	5.2	-	-		-	-	
				1.6	Middle	0.8	26.4 26.4	26.4	8.0 8.0	8.0	23.2 23.2	23.2	73.9 73.8	73.9	5.2 5.2	5.2		17.1 17.6	17.4	17.4	16.5 17.2	16.9	16.9
00 May 45	Delta	Madaaat			Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
20-May-15	Rainy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-			-	
				1.6	Middle	0.8	26.6 26.6	26.6	8.0 8.0	8.0	20.6 20.6	20.6	80.7 80.8	80.8	5.8 5.8	5.8		8.4 8.6	8.5	8.5	7.4 6.9	7.2	7.2
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-		-	-	
				1.6	Middle	0.8	25.8 25.8	25.8	8.0 8.0	8.0	18.9 18.9	18.9	88.0 87.7	87.9	6.4 6.4	6.4	6.4	11.7 11.5	11.6	11.6	12.0 11.9	12.0	12.0
					Bottom	-	-	-		-		-	-	-		-	-	-	-		-	-	
25-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-		-	-	
				1.4	Middle	0.7	27.3 27.3	27.3	7.9 7.9	7.9	12.8 12.8	12.8	87.4 86.7	87.1	6.4 6.4	6.4	0.4	6.0 6.0	6.0	6.0	1.3 1.1	1.2	1.2
					Bottom	-	-	-		-		-	-	-		-	-	-	-		-	-	
27-May-15	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-		-	-	
				1.4	Middle	0.7	27.3 27.3	27.3	8.0 7.9	7.9	14.6 14.9	14.7	89.1 87.5	88.3	6.5 6.4	6.4	0.4	6.9 6.9	6.9	6.9	2.2 3.3	2.8	2.8
					Bottom	-	-	-		-		-	-	-		-	-	-	-		-	-	
29-May-15	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		-	-	
				1.4	Middle	0.7	28.0 28.0	28.0	8.3 8.2	8.2	14.8 14.9	14.9	101.0 106.5	103.8	7.3 7.7	7.5	1.5	10.6 10.1	10.4	10.4	13.7 12.6	13.2	13.2
					Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	oling	Tempera	ature (°C)	p	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	12:10		Surface	1.0	26.6 26.4	26.5	8.3 8.2	8.3	27.3 27.3	27.3	116.9 112.6	114.8	8.0 7.8	7.9	1	4.4 4.3	4.4		2.9 3.0	3.0	
				3.7	Middle	-	-	-	-	-	-	-		-		-	7.9		-	4.3		-	3.0
					Bottom	2.7	26.5 25.9	26.2	8.3 8.2	8.2	27.7 28.7	28.2	114.9 109.7	112.3	7.9 7.6	7.7	7.7	4.1 4.2	4.2		3.6 2.4	3.0	l
4-May-15	Sunny	Moderate	12:29		Surface	1.0	27.0 27.0	27.0	8.0 8.0	8.0	25.9 25.9	25.9	93.8 93.5	93.7	6.5 6.5	6.5		5.7 5.5	5.6		3.9 3.7	3.8	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-	5.7	-	-	3.7
					Bottom	2.7	26.7 26.8	26.8	8.0 8.0	8.0	27.7 27.9	27.8	94.5 93.7	94.1	6.5 6.4	6.4	6.4	5.7 5.7	5.7		3.3 3.6	3.5	l
6-May-15	Sunny	Moderate	13:33		Surface	1.0	26.8 26.7	26.8	8.1 8.1	8.1	26.2 26.1	26.2	95.7 96.5	96.1	6.6 6.7	6.6		5.2 5.0	5.1		4.6 5.7	5.2	
				3.9	Middle	-		-	-	-	-	-	-	-	-	-	6.6	-	-	5.3	-	-	5.7
					Bottom	2.9	26.8 26.9	26.8	8.1 8.1	8.1	26.5 26.5	26.5	96.2 98.2	97.2	6.6 6.8	6.7	6.7	5.4 5.6	5.5		5.4 7.0	6.2	l
8-May-15	Sunny	Moderate	14:35		Surface	1.0	27.2 27.2	27.2	8.0 8.0	8.0	24.3 24.4	24.3	97.0 93.5	95.3	6.7 6.4	6.6		8.4 8.2	8.3		6.6 6.1	6.4	i
				3.3	Middle	-	-	-	-	-		-	-	-	-	-	6.6	-	-	8.3	-	-	6.4
					Bottom	2.3	27.3 27.0	27.1	8.0 8.0	8.0	25.1 25.2	25.2	92.0 93.3	92.7	6.4 6.5	6.4	6.4	8.2 8.4	8.3		5.8 6.9	6.4	l
11-May-15	Cloudy	Moderate	17:44		Surface	1.0	27.1 27.0	27.1	8.1 8.1	8.1	22.1 22.1	22.1	89.2 87.5	88.4	6.3 6.1	6.2	6.2	8.6 8.5	8.6		4.7 5.0	4.9	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	8.6	-	-	4.7
					Bottom	2.8	26.6 27.0	26.8	8.0 8.1	8.1	24.9 25.0	24.9	81.0 82.3	81.7	5.7 5.8	5.7	5.7	8.6 8.5	8.6		4.2 4.6	4.4	l
13-May-15	Sunny	Moderate	10:13		Surface	1.0	26.6 26.5	26.6	8.1 8.1	8.1	22.0 22.0	22.0	83.7 84.8	84.3	5.9 6.0	6.0	6.0	10.2 10.6	10.4		3.3 4.4	3.9	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	10.6	-	-	3.9
					Bottom	2.8	26.5 26.5	26.5	8.1 8.1	8.1	24.8 23.8	24.3	84.9 81.3	83.1	5.9 5.7	5.8	5.8	10.8 10.6	10.7		3.1 4.6	3.9	
15-May-15	Sunny	Moderate	11:55		Surface	1.0	27.4 27.4	27.4	8.2 8.2	8.2	22.7 22.7	22.7	97.2 98.8	98.0	6.8 6.9	6.8	6.8	5.5 5.7	5.6		3.5 3.8	3.7	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	6.9	-	-	4.0
					Bottom	2.7	27.0 27.2	27.1	8.2 8.2	8.2	24.4 24.0	24.2	95.4 98.3	96.9	6.6 6.8	6.7	6.7	8.0 8.3	8.2		4.2 4.2	4.2	
18-May-15	Sunny	Moderate	12:25		Surface	1.0	26.5 26.5	26.5	8.0 8.0	8.0	22.0 22.0	22.0	80.2 80.4	80.3	5.7 5.7	5.7	5.7	12.9 12.2	12.6		5.6 6.2	5.9	
				3.5	Middle	-	-	-		-		-	-	-	-	-	5.1	-	-	13.1	-	-	5.9
					Bottom	2.5	26.5 26.4	26.4	8.0 7.9	8.0	23.2 23.4	23.3	81.1 79.1	80.1	5.7 5.6	5.7	5.7	13.2 13.8	13.5		5.8 5.7	5.8	<u> </u>
20-May-15	Rainy	Moderate	13:52		Surface	1.0	26.6 26.7	26.7	8.0 8.0	8.0	20.7 19.6	20.2	92.6 83.1	87.9	6.6 5.9	6.3	6.3	8.4 8.6	8.5		3.0 3.5	3.3	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	8.5	-	-	3.6
					Bottom	2.4	26.6 26.6	26.6	8.0 8.0	8.0	21.1 21.2	21.1	81.8 84.5	83.2	5.9 6.0	6.0	6.0	8.6 8.4	8.5		4.0 3.8	3.9	l

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTl))	Suspe	nded Solids	ኔ (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	15:09		Surface	1.0	26.0 26.0	26.0	8.1 8.0	8.1	18.9 18.9	18.9	88.0 87.7	87.9	6.4 6.4	6.4	6.4	7.6 7.5	7.6		4.9 5.0	5.0	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-	7.6	-	-	5.9
					Bottom	2.7	26.0 26.0	26.0	8.0 8.1	8.1	18.9 19.1	19.0	88.0 88.9	88.5	6.4 6.5	6.4	6.4	7.5 7.7	7.6		6.7 6.6	6.7	
25-May-15	Cloudy	Moderate	17:08		Surface	1.0	27.1 26.8	26.9	7.9 7.9	7.9	13.5 14.4	14.0	94.3 102.3	98.3	6.9 7.5	7.2	7.2	6.9 6.7	6.8		3.1 2.1	2.6	
				3.5	Middle	-	-	-		-	-	-		-	-	-	1.2	-	-	6.9	-	-	2.5
					Bottom	2.5	27.0 27.2	27.1	7.9 7.9	7.9	15.0 15.0	15.0	95.7 93.7	94.7	7.1 6.9	7.0	7.0	6.9 7.0	7.0	L	2.0 2.5	2.3	
27-May-15	Cloudy	Moderate	09:42		Surface	1.0	26.8 26.7	26.8	7.7 7.7	7.7	12.9 13.0	13.0	76.2 73.1	74.7	5.7 5.4	5.6	5.6	8.7 8.8	8.8		5.1 4.5	4.8	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	5.0	-	-	8.7	-	-	5.0
					Bottom	2.7	26.5 26.8	26.6	7.7 7.7	7.7	14.4 14.3	14.3	70.4 75.4	72.9	5.2 5.6	5.4	5.4	8.5 8.6	8.6	L	5.1 5.0	5.1	
29-May-15	Sunny	Moderate	10:57		Surface	1.0	28.1 28.4	28.2	8.2 8.2	8.2	12.2 12.3	12.2	103.5 102.6	103.1	7.6 7.4	7.5	7.5	12.0 12.1	12.1		3.8 4.2	4.0	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	13.4	-	-	4.1
					Bottom	2.8	27.9 26.6	27.3	8.1 8.0	8.1	14.5 15.2	14.9	98.8 95.6	97.2	7.2 6.9	7.1	7.1	14.8 14.5	14.7		3.6 4.5	4.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	oling	Tempera	ature (°C)	p	н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	ı (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	17:05		Surface	1.0	26.1 26.2	26.1	8.2 8.2	8.2	28.3 28.2	28.3	114.7 113.9	114.3	7.9 7.9	7.9	7.9	3.1 3.3	3.2		3.5 3.1	3.3	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.9	-	-	3.2	-	-	3.6
					Bottom	2.8	26.0 26.0	26.0	8.2 8.2	8.2	28.5 28.5	28.5	111.6 114.1	112.9	7.7 7.9	7.8	7.8	3.2 3.1	3.2		2.8 4.8	3.8	
4-May-15	Sunny	Moderate	07:07		Surface	1.0	26.4 26.4	26.4	8.1 8.0	8.1	25.7 25.7	25.7	87.0 86.6	86.8	6.1 6.0	6.0		6.0 6.2	6.1		4.5 3.6	4.1	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	6.2	-	-	3.7
					Bottom	2.7	26.4 26.4	26.4	8.1 8.1	8.1	26.0 26.2	26.1	86.9 86.8	86.9	6.1 6.0	6.0	6.0	6.1 6.2	6.2		3.3 3.1	3.2	
6-May-15	Sunny	Moderate	08:10		Surface	1.0	26.5 26.6	26.6	8.0 8.0	8.0	25.6 25.5	25.6	87.0 87.1	87.1	6.1 6.1	6.1		6.2 6.7	6.5		7.8 8.0	7.9	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	7.1	-	-	8.3
					Bottom	2.7	26.5 26.5	26.5	8.0 8.0	8.0	25.9 26.0	26.0	87.1 86.0	86.6	6.1 6.0	6.0	6.0	7.5 7.8	7.7		8.9 8.2	8.6	
8-May-15	Sunny	Moderate	08:48		Surface	1.0	26.9 26.9	26.9	8.0 8.0	8.0	22.4 22.4	22.4	83.8 84.2	84.0	5.9 5.9	5.9	5.0	9.7 9.8	9.8		6.9 6.3	6.6	
				3.4	Middle	-	-	-	-	-		-	-	-	-	-	5.9	-	-	9.8	-	-	7.0
					Bottom	2.4	26.9 26.9	26.9	8.0 8.0	8.0	23.3 23.8	23.5	84.2 83.0	83.6	5.9 5.8	5.9	5.9	9.8 9.8	9.8		6.4 8.3	7.4	
11-May-15	Cloudy	Moderate	11:22		Surface	1.0	27.1 27.1	27.1	8.1 8.1	8.1	22.2 22.2	22.2	87.5 86.4	87.0	6.2 6.1	6.1	6.4	7.3 7.6	7.5		6.2 4.9	5.6	
				3.8	Middle	-	-	-	-	-		-	-	-		-	6.1	-	-	7.5	-	-	5.3
					Bottom	2.8	26.9 27.1	27.0	8.1 8.1	8.1	22.7 22.3	22.5	84.5 87.6	86.1	5.9 6.2	6.0	6.0	7.5 7.5	7.5		4.8 4.9	4.9	
13-May-15	Sunny	Moderate	14:02		Surface	1.0	26.3 26.3	26.3	8.1 8.1	8.1	24.3 24.3	24.3	88.9 88.6	88.8	6.3 6.2	6.2		23.1 23.3	23.2		8.5 8.3	8.4	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	23.3	-	-	10.1
					Bottom	2.8	26.2 26.3	26.3	8.1 8.1	8.1	24.8 24.8	24.8	88.0 87.8	87.9	6.2 6.2	6.2	6.2	23.3 23.4	23.4		11.1 12.5	11.8	
15-May-15	Sunny	Moderate	16:15		Surface	1.0	27.7 27.6	27.6	8.2 8.2	8.2	22.0 22.1	22.0	101.2 102.5	101.9	7.1 7.1	7.1	7.1	10.8 11.1	11.0		5.0 4.4	4.7	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	11.4	-	-	5.9
					Bottom	2.6	27.7 27.5	27.6	8.2 8.2	8.2	22.1 22.3	22.2	103.3 100.4	101.9	7.2 7.0	7.1	7.1	11.2 12.1	11.7		6.6 7.5	7.1	
18-May-15	Cloudy	Moderate	06:48		Surface	1.0	26.4 26.4	26.4	7.9 7.9	7.9	20.8 20.8	20.8	82.6 82.7	82.7	5.9 5.9	5.9	5.0	9.6 9.7	9.7		6.1 7.5	6.8	
				3.3	Middle	-	-	-		-		-	-	-	-	-	5.9	-	-	9.6	-	-	7.2
					Bottom	2.3	26.4 26.4	26.4	7.9 7.9	7.9	21.1 21.1	21.1	83.2 82.8	83.0	6.0 5.9	5.9	5.9	9.3 9.7	9.5		7.8 7.4	7.6	
20-May-15	Rainy	Moderate	07:35		Surface	1.0	26.5 26.5	26.5	7.9 7.9	7.9	18.5 18.4	18.4	76.4 76.1	76.3	5.5 5.5	5.5		13.2 13.0	13.1		8.1 8.1	8.1	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-	13.2	-	-	8.6
					Bottom	2.4	26.5 26.5	26.5	7.9 7.9	7.9	18.4 18.6	18.5	76.3 76.1	76.2	5.5 5.5	5.5	5.5	13.3 13.1	13.2		8.9 9.1	9.0	1

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	09:11		Surface	1.0	26.0 26.0	26.0	7.9 8.0	8.0	18.4 18.4	18.4	81.4 79.7	80.6	6.0 5.8	5.9	5.9	9.0 8.9	9.0		3.4 2.6	3.0	
				3.9	Middle	•	-	-	-	-	-	-	-	-	-	-	5.9	-	-	8.9	-	-	4.5
					Bottom	2.9	26.0 26.0	26.0	7.9 8.0	7.9	18.6 19.3	18.9	81.0 77.5	79.3	5.9 5.6	5.8	5.8	8.8 8.8	8.8		6.2 5.8	6.0	
25-May-15	Sunny	Moderate	11:11		Surface	1.0	26.6 26.3	26.4	7.8 7.8	7.8	14.6 14.8	14.7	75.1 76.2	75.7	5.5 5.6	5.6	5.6	10.0 10.1	10.1		2.3 2.8	2.6	
				3.4	Middle	-		-		-		-		-		-	5.0		-	10.2	-	-	3.7
					Bottom	2.4	26.2 26.6	26.4	7.8 7.8	7.8	15.7 15.7	15.7	75.0 74.9	75.0	5.6 5.5	5.5	5.5	10.3 10.2	10.3		4.7 4.6	4.7	
27-May-15	Cloudy	Moderate	13:40		Surface	1.0	27.5 27.6	27.6	7.9 7.9	7.9	13.1 13.2	13.1	88.6 90.8	89.7	6.5 6.7	6.6	6.6	14.2 14.1	14.2		8.3 8.0	8.2	
				3.7	Middle	-		-		-		-		-		-	0.0		-	14.2	-	-	8.5
					Bottom	2.7	27.1 27.2	27.2	7.9 7.9	7.9	14.1 14.6	14.3	88.7 89.6	89.2	6.5 6.6	6.5	6.5	14.1 14.2	14.2		8.9 8.6	8.8	
29-May-15	Sunny	Moderate	16:06		Surface	1.0	29.4 29.4	29.4	8.5 8.5	8.5	12.7 12.6	12.6	126.3 122.2	124.3	9.0 8.7	8.8	8.8	13.4 13.1	13.3		12.5 12.2	12.4	
				3.4	Middle	-	-	-	-	-	-	-	-	-		-	0.0	-	-	14.0	-	-	12.1
					Bottom	2.4	27.1 27.7	27.4	8.3 8.4	8.3	15.3 14.1	14.7	121.8 121.1	121.5	8.9 8.8	8.9	8.9	14.7 14.5	14.6	<u> </u>	11.9 11.7	11.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	ended Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	11:52		Surface	1.0	24.7 24.7	24.7	8.0 8.0	8.0	24.2 24.2	24.2	104.6 104.9	104.8	7.6 7.6	7.6		1.4 1.4	1.4		0.8 1.6	1.2	
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	1.7	-	-	1.1
					Bottom	3.8	24.3 24.5	24.4	8.0 8.0	8.0	26.4 26.4	26.4	103.8 104.5	104.2	7.5 7.5	7.5	7.5	1.9 1.8	1.9		1.0 0.7	0.9	
4-May-15	Sunny	Moderate	12:52		Surface	1.0	25.7 25.6	25.7	7.9 7.9	7.9	22.9 23.0	23.0	90.0 89.8	89.9	6.5 6.4	6.4		2.7	2.7		4.8	3.9	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	3.2		-	3.9
					Bottom	4.2	25.2 25.2	25.2	7.9 7.9	7.9	25.2 25.3	25.3	89.2 89.5	89.4	6.4 6.4	6.4	6.4	3.5 3.9	3.7		3.5 4.0	3.8	
6-May-15	Sunny	Moderate	13:52		Surface	1.0	25.4 25.4	25.4	7.8 7.8	7.8	24.7 24.7	24.7	90.2 88.8	89.5	6.4 6.3	6.4	6.4	2.6 2.7	2.7		4.1 3.7	3.9	
				5.2	Middle	-	-	-		-		-	-	-	-	-	6.4	-	-	2.7	-	-	3.6
					Bottom	4.2	25.3 25.3	25.3	7.8 7.9	7.8	25.2 25.3	25.3	89.5 92.0	90.8	6.4 6.6	6.5	6.5	2.7 2.7	2.7		3.7 2.6	3.2	
8-May-15	Sunny	Moderate	15:17		Surface	1.0	26.0 26.1	26.0	8.1 8.1	8.1	20.5 20.5	20.5	90.9 92.1	91.5	6.6 6.7	6.6	6.6	5.4 5.4	5.4		5.1 5.2	5.2	
				5.1	Middle	-	-	-		-		-	-	-	-	-	0.0	-	-	5.4	-	-	5.1
					Bottom	4.1	25.7 26.0	25.8	8.1 8.0	8.1	23.1 22.8	23.0	96.0 92.3	94.2	6.9 6.6	6.7	6.7	5.2 5.3	5.3		4.2 5.8	5.0	
11-May-15	Cloudy	Moderate	17:54		Surface	1.0	25.6 25.7	25.6	7.7 7.6	7.7	29.4 29.8	29.6	95.7 102.7	99.2	6.9 7.4	7.1	7.1	4.5 4.4	4.5		4.0 3.1	3.6	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.6	-	-	4.3
					Bottom	4.2	25.5 25.8	25.7	7.5 7.7	7.6	29.8 29.3	29.6	100.0 94.3	97.2	7.2 6.8	7.0	7.0	4.6 4.6	4.6		4.5 5.3	4.9	
13-May-15	Sunny	Moderate	09:42		Surface	1.0	25.1 25.0	25.0	7.8 7.8	7.8	21.4 21.5	21.5	85.6 81.4	83.5	6.4 6.1	6.2	6.2	2.0 2.1	2.1		5.2 5.0	5.1	
				4.6	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.2	-	-	5.3
					Bottom	3.6	24.9 24.7	24.8	7.8 7.8	7.8	24.5 24.8	24.7	83.1 80.5	81.8	6.0 5.8	5.9	5.9	2.1 2.3	2.2		4.9 5.9	5.4	
15-May-15	Sunny	Moderate	11:31		Surface	1.0	26.1 25.9	26.0	7.6 7.7	7.7	17.1 17.2	17.2	84.0 80.7	82.4	6.2 6.0	6.1	6.1	4.6 4.5	4.6		5.4 5.0	5.2	
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.6	-	-	6.4
					Bottom	3.8	25.8 25.4	25.6	7.6 7.6	7.6	20.4 20.5	20.4	82.6 80.6	81.6	6.0 5.9	5.9	5.9	4.6 4.5	4.6		7.3 7.9	7.6	
18-May-15	Sunny	Moderate	12:46		Surface	1.0	25.2 25.2	25.2	7.6 7.6	7.6	19.2 19.1	19.1	75.7 77.7	76.7	5.6 5.7	5.7	5.7	7.5 7.3	7.4		9.8 9.4	9.6	
				4.9	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	7.5	-	-	9.2
20 Mc 15	Dein	Maderete	44.00		Bottom	3.9	25.1 25.1	25.1	7.6 7.6	7.6	20.5 20.6	20.5	76.1 80.0	78.1	5.6 5.9	5.7	5.7	7.6 7.5	7.6		8.5 8.9	8.7	
20-May-15	Rainy	Moderate	14:02		Surface	1.0	25.3 25.4	25.4	7.7 7.7	7.7	17.9 17.9	17.9	86.7 92.1	89.4	6.4 6.8	6.6	6.6	5.8 5.8	5.8		8.3 9.7	9.0	
				5.0	Middle	-	-	-		-	-	-	-	-	-	-		-	-	5.9	-	-	9.2
					Bottom	4.0	25.3 25.3	25.3	7.7 7.7	7.7	18.3 18.4	18.3	88.8 87.5	88.2	6.6 6.5	6.5	6.5	5.8 6.1	6.0		9.4 9.1	9.3	

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	15:31		Surface	1.0	24.8 24.8	24.8	7.8 7.8	7.8	18.7 18.6	18.7	88.5 88.6	88.6	6.6 6.6	6.6	6.6	2.5 2.7	2.6		3.7 3.1	3.4	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	2.7	-	-	4.6
					Bottom	4.1	24.8 24.8	24.8	7.8 7.8	7.8	18.7 18.7	18.7	88.8 89.0	88.9	6.6 6.6	6.6	6.6	2.7 2.8	2.8		5.2 6.1	5.7	
25-May-15	Cloudy	Moderate	12:08		Surface	1.0	24.6 24.6	24.6	7.4 7.4	7.4	15.1 15.1	15.1	68.3 66.0	67.2	5.1 5.0	5.1	5.1	3.1 3.3	3.2		5.6 5.4	5.5	
				2.1	Middle	-	-	-	-	-		-		-		-	5.1	-	-	3.1	-	-	5.6
					Bottom	1.1	25.7 25.6	25.6	7.3 7.3	7.3	10.7 10.8	10.8	70.7 70.7	70.7	5.4 5.4	5.4	5.4	3.1 2.9	3.0		5.5 5.8	5.7	
27-May-15	Cloudy	Moderate	08:41		Surface	1.0	24.5 24.8	24.7	7.6 7.5	7.6	12.8 11.3	12.1	71.3 75.1	73.2	5.6 5.9	5.8	5.8	4.6 4.7	4.7		4.9 5.8	5.4	
				5.1	Middle	-	-	-	-	-		-		-		-	5.0	-	-	4.9	-	-	4.9
					Bottom	4.1	24.9 24.3	24.6	7.5 7.5	7.5	20.4 22.3	21.3	73.2 67.5	70.4	5.8 5.3	5.5	5.5	5.1 4.9	5.0		4.7 4.0	4.4	
29-May-15	Sunny	Moderate	11:17		Surface	1.0	25.5 25.7	25.6	7.7 7.7	7.7	12.5 11.7	12.1	72.9 73.7	73.3	5.6 5.6	5.6	5.6	7.4 7.5	7.5		6.3 5.2	5.8	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	5.0	-	-	7.4	-	-	5.7
					Bottom	4.1	25.2 25.0	25.1	7.6 7.7	7.6	19.1 18.8	19.0	74.8 73.9	74.4	5.5 5.5	5.5	5.5	7.2 7.4	7.3		5.4 5.7	5.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	эΗ	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	17:31		Surface	1.0	25.0 25.2	25.1	8.0 8.0	8.0	23.5 23.3	23.4	105.4 108.3	106.9	7.6 7.8	7.7	7.7	1.1 1.0	1.1		3.2 2.2	2.7	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	1.1	-	-	1.2	-	-	2.6
					Bottom	3.1	24.8 25.0	24.9	8.0 8.0	8.0	25.0 25.0	25.0	103.2 106.8	105.0	7.4 7.7	7.5	7.5	1.2 1.1	1.2		2.7 2.1	2.4	
4-May-15	Sunny	Moderate	06:50		Surface	1.0	25.1 25.1	25.1	7.9 7.9	7.9	25.3 25.3	25.3	86.9 87.1	87.0	6.2 6.2	6.2	6.2	12.1 12.5	12.3		11.0 10.5	10.8	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	12.7	-	-	11.3
					Bottom	4.1	25.1 25.1	25.1	7.9 7.9	7.9	25.4 25.4	25.4	86.7 86.8	86.8	6.2 6.2	6.2	6.2	12.6 13.3	13.0		12.1 11.3	11.7	
6-May-15	Sunny	Moderate	07:54		Surface	1.0	25.1 25.1	25.1	8.0 8.0	8.0	25.5 25.5	25.5	84.8 84.2	84.5	6.1 6.0	6.0		5.4 5.4	5.4		6.3 8.0	7.2	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	5.4	-	-	8.0
					Bottom	4.2	25.0 25.0	25.0	8.0 8.0	8.0	25.9 25.9	25.9	84.2 84.8	84.5	6.0 6.0	6.0	6.0	5.4 5.3	5.4		8.7 8.7	8.7	
8-May-15	Sunny	Moderate	09:05		Surface	1.0	25.6 25.7	25.7	8.0 8.0	8.0	20.5 21.0	20.7	83.3 83.9	83.6	6.1 6.1	6.1		6.6 6.6	6.6		8.6 8.7	8.7	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	6.7	-	-	10.0
					Bottom	4.3	25.3 25.3	25.3	8.0 7.9	8.0	23.9 24.0	23.9	81.8 83.0	82.4	5.9 6.0	5.9	5.9	6.6 6.7	6.7		11.3 11.2	11.3	
11-May-15	Cloudy	Moderate	11:27		Surface	1.0	25.1 25.0	25.0	7.5 7.7	7.6	30.5 30.0	30.3	97.1 99.6	98.4	7.0 7.1	7.0	7.0	4.9 4.7	4.8		8.4 9.8	9.1	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	4.9	-	-	10.0
					Bottom	4.5	25.1 25.0	25.1	7.6 7.5	7.6	30.3 30.7	30.5	101.7 95.2	98.5	7.3 6.8	7.1	7.1	4.9 4.9	4.9		11.6 10.0	10.8	
13-May-15	Sunny	Moderate	14:31		Surface	1.0	25.3 25.2	25.2	7.9 7.9	7.9	20.2 20.2	20.2	91.9 91.0	91.5	6.7 6.7	6.7		1.7 2.0	1.9		5.7 4.0	4.9	
				4.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	2.4	-	-	5.4
					Bottom	3.5	25.0 24.9	25.0	7.9 7.9	7.9	24.0 24.8	24.4	89.5 84.3	86.9	6.5 6.1	6.3	6.3	2.8 3.0	2.9		5.0 6.5	5.8	
15-May-15	Sunny	Moderate	16:32		Surface	1.0	26.2 26.3	26.2	7.7 7.8	7.8	17.5 17.2	17.3	90.3 91.7	91.0	6.6 6.7	6.7		10.5 10.3	10.4		5.7 4.6	5.2	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	10.4	-	-	5.8
					Bottom	4.0	26.1 26.0	26.0	7.7 7.7	7.7	19.5 19.3	19.4	92.0 91.4	91.7	6.7 6.7	6.7	6.7	10.2 10.3	10.3		6.9 5.9	6.4	
18-May-15	Cloudy	Moderate	06:41		Surface	1.0	24.9 25.0	25.0	7.6 7.6	7.6	22.1 21.4	21.7	72.3 72.6	72.5	5.3 5.3	5.3		14.2 14.1	14.2		13.6 13.5	13.6	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	5.3	-	-	14.3	-	-	14.2
					Bottom	4.2	24.8 24.9	24.9	7.6 7.6	7.6	23.6 23.4	23.5	71.5 72.8	72.2	5.2 5.3	5.2	5.2	14.4 14.2	14.3		15.4 14.0	14.7	
20-May-15	Rainy	Moderate	07:41		Surface	1.0	25.1 25.1	25.1	7.6 7.6	7.6	18.7 18.6	18.7	75.4 76.2	75.8	5.6 5.7	5.6		7.6 7.8	7.7		6.8 7.4	7.1	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-	7.7	-	-	7.8
					Bottom	4.0	25.0 25.1	25.0	7.6 7.6	7.6	20.8 20.5	20.7	75.6 76.3	76.0	5.6 5.6	5.6	5.6	7.7	7.7		8.5 8.3	8.4	1

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	ЪН	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	08:43		Surface	1.0	24.6 24.6	24.6	7.8 7.8	7.8	18.0 17.9	17.9	76.6 76.7	76.7	5.8 5.8	5.8	5.8	4.3 4.3	4.3		4.3 4.8	4.6	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	5.0	-	-	4.3	-	-	4.7
					Bottom	4.3	24.5 24.5	24.5	7.8 7.8	7.8	22.6 22.8	22.7	77.7 77.4	77.6	5.7 5.7	5.7	5.7	4.1 4.5	4.3		4.4 4.9	4.7	
25-May-15	Sunny	Moderate	17:15		Surface	1.0	24.5 24.4	24.4	7.5 7.5	7.5	18.9 18.9	18.9	69.3 68.9	69.1	5.2 5.1	5.2	5.2	1.9 2.1	2.0		4.1 4.5	4.3	
				2.1	Middle	-	-	-	-	-		-		-		-	5.2	-	-	3.1	-	-	4.8
					Bottom	1.1	25.6 25.6	25.6	7.5 7.5	7.5	10.4 10.4	10.4	75.5 76.2	75.9	5.8 5.9	5.9	5.9	3.9 4.2	4.1		5.0 5.3	5.2	
27-May-15	Cloudy	Moderate	14:38		Surface	1.0	25.3 25.1	25.2	7.4 7.4	7.4	11.2 12.6	11.9	75.6 74.1	74.9	6.0 5.8	5.9	5.9	5.2 5.1	5.2		7.5 8.6	8.1	
				5.1	Middle	-	-	-	-	-		-		-		-	5.5	-	-	5.4	-	-	8.3
					Bottom	4.1	25.3 25.0	25.2	7.4 7.4	7.4	21.7 20.5	21.1	73.3 69.1	71.2	5.8 5.4	5.6	5.6	5.5 5.4	5.5		9.4 7.5	8.5	
29-May-15	Sunny	Moderate	16:33		Surface	1.0	26.4 26.6	26.5	7.8 7.7	7.8	8.4 8.2	8.3	85.9 88.5	87.2	6.6 6.8	6.7	6.7	5.4 5.5	5.5		6.4 6.8	6.6	
				5.0	Middle	-	-	-	-	-		-	-	-		-	0.7	-	-	5.5	-	-	6.8
					Bottom	4.0	25.5 25.5	25.5	7.8 7.7	7.7	15.5 15.7	15.6	80.8 82.6	81.7	6.1 6.2	6.1	6.1	5.5 5.2	5.4		7.2 6.6	6.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	эΗ	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	urbidity(NT	J)	Suspe	ended Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	12:48		Surface	1.0	24.8 24.7	24.8	8.0 8.0	8.0	24.1 24.2	24.1	106.3 105.7	106.0	7.7 7.7	7.7	7.7	1.8 1.6	1.7		1.5 2.3	1.9	ļ
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	1.1	-	-	2.0	-	-	1.9
					Bottom	3.1	24.4 24.4	24.4	8.0 8.0	8.0	26.0 25.9	26.0	104.2 106.1	105.2	7.5 7.6	7.6	7.6	2.2 2.4	2.3		2.1 1.4	1.8	
4-May-15	Sunny	Moderate	11:55		Surface	1.0	25.4 25.4	25.4	7.9 7.9	7.9	23.1 23.7	23.4	89.5 90.9	90.2	6.4 6.5	6.5	6.5	2.0 1.9	2.0		4.8 4.9	4.9	i
				4.4	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	2.2	-	-	4.6
					Bottom	3.4	25.2 25.0	25.1	7.9 7.9	7.9	25.3 25.5	25.4	90.2 87.7	89.0	6.4 6.3	6.4	6.4	2.3 2.5	2.4		4.0 4.6	4.3	
6-May-15	Sunny	Moderate	13:00		Surface	1.0	25.6 25.6	25.6	8.1 8.1	8.1	23.1 23.1	23.1	95.3 95.0	95.2	6.8 6.8	6.8	6.8	2.3 2.3	2.3		2.7 2.1	2.4	
				4.0	Middle	-	-	-		-	-	-	-	-	-	-	0.0	-	-	2.3	-	-	2.7
					Bottom	3.0	25.6 25.6	25.6	8.1 8.1	8.1	23.0 23.0	23.0	95.7 94.8	95.3	6.9 6.8	6.8	6.8	2.3 2.3	2.3		3.6 2.3	3.0	
8-May-15	Sunny	Moderate	14:21		Surface	1.0	26.4 26.4	26.4	8.1 8.0	8.1	20.1 20.1	20.1	93.4 92.5	93.0	6.7 6.7	6.7	6.7	2.2 2.2	2.2		6.2 5.9	6.1	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	2.2	-	-	5.4
					Bottom	3.2	26.4 25.8	26.1	8.0 8.0	8.0	21.4 21.6	21.5	94.3 88.7	91.5	6.7 6.4	6.6	6.6	2.2 2.2	2.2		4.5 4.6	4.6	l
11-May-15	Cloudy	Moderate	17:06		Surface	1.0	25.4 24.9	25.1	7.6 7.5	7.6	29.0 30.4	29.7	97.3 103.4	100.4	7.0 7.4	7.2	7.2	6.3 6.3	6.3		6.0 7.0	6.5	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	6.4	-	-	7.4
					Bottom	3.2	25.3 25.1	25.2	7.6 7.6	7.6	31.9 31.4	31.6	99.2 94.0	96.6	7.1 6.7	6.9	6.9	6.4 6.5	6.5		8.0 8.4	8.2	I
13-May-15	Sunny	Moderate	10:43		Surface	1.0	25.3 25.3	25.3	7.8 7.8	7.8	21.4 21.3	21.3	88.6 91.2	89.9	6.5 6.7	6.6	6.6	1.6 1.5	1.6		2.7 4.2	3.5	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.1	-	-	4.1
					Bottom	2.8	24.7 24.9	24.8	7.8 7.8	7.8	24.9 24.0	24.4	84.1 85.8	85.0	6.1 6.2	6.1	6.1	2.5 2.4	2.5		4.4 4.9	4.7	
15-May-15	Sunny	Moderate	12:20		Surface	1.0	26.0 26.2	26.1	7.7 7.7	7.7	17.0 16.9	16.9	84.3 85.4	84.9	6.2 6.3	6.3	6.3	5.5 5.5	5.5		7.5 7.2	7.4	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.6	-	-	7.6
					Bottom	3.3	25.3 25.5	25.4	7.6 7.6	7.6	21.5 21.3	21.4	84.8 85.2	85.0	6.2 6.2	6.2	6.2	5.5 5.6	5.6		7.8 7.5	7.7	
18-May-15	Sunny	Moderate	11:50		Surface	1.0	25.4 25.4	25.4	7.6 7.6	7.6	18.2 18.3	18.3	75.8 75.9	75.9	5.6 5.6	5.6	5.6	4.3 4.2	4.3		7.2 7.3	7.3	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.4	-	-	7.9
					Bottom	3.1	25.3 25.2	25.3	7.6 7.6	7.6	19.4 19.7	19.5	76.2 75.9	76.1	5.6 5.6	5.6	5.6	4.4 4.3	4.4		8.5 8.2	8.4	
20-May-15	Rainy	Moderate	13:11		Surface	1.0	25.4 25.4	25.4	7.7 7.7	7.7	17.8 17.9	17.8	85.9 86.1	86.0	6.4 6.4	6.4	6.4	5.4 5.5	5.5		11.1 10.1	10.6	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.6	-	-	11.5
					Bottom	3.2	25.4 25.3	25.3	7.7 7.7	7.7	17.9 18.3	18.1	86.2 85.8	86.0	6.4 6.4	6.4	6.4	5.6 5.5	5.6		12.5 12.0	12.3	I

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	14:38		Surface	1.0	24.8 24.8	24.8	7.8 7.8	7.8	18.0 18.1	18.1	83.1 82.4	82.8	6.2 6.2	6.2	6.2	3.1 3.0	3.1		6.4 6.2	6.3	
				4.4	Middle	-	-	-	-	-	-	-	-	-		-	0.2	-	-	3.1	-	-	6.0
					Bottom	3.4	24.8 24.8	24.8	7.8 7.8	7.8	18.7 18.9	18.8	83.2 81.6	82.4	6.2 6.1	6.2	6.2	3.2 3.0	3.1	<u> </u>	6.4 4.9	5.7	1
25-May-15	Cloudy	Moderate	11:19		Surface	1.0	24.4 24.4	24.4	7.4 7.4	7.4	19.2 19.2	19.2	70.5 70.1	70.3	5.3 5.3	5.3	5.3	3.4 3.2	3.3		5.7 5.2	5.5	
				2.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	3.8	-	-	6.0
					Bottom	1.1	25.9 25.9	25.9	7.3 7.3	7.3	10.3 10.2	10.3	69.8 69.8	69.8	5.4 5.4	5.4	5.4	4.1 4.2	4.2		5.9 6.8	6.4	
27-May-15	Cloudy	Moderate	09:31		Surface	1.0	24.6 24.5	24.6	7.5 7.5	7.5	11.2 12.2	11.7	75.6 72.4	74.0	6.0 5.7	5.8	5.8	6.0 5.9	6.0		6.4 6.0	6.2	1
				4.1	Middle	-	-	-	-	-		-		-		-	5.0	-	-	6.2	-	-	5.7
					Bottom	3.1	24.7 24.7	24.7	7.4 7.4	7.4	22.2 21.1	21.6	71.5 73.4	72.5	5.6 5.8	5.7	5.7	6.4 6.4	6.4		5.4 5.0	5.2	
29-May-15	Sunny	Moderate	12:00		Surface	1.0	25.9 26.0	25.9	7.8 7.7	7.7	7.9 7.9	7.9	74.4 77.9	76.2	5.8 6.1	5.9	5.9	5.5 5.5	5.5		6.2 5.3	5.8	
				4.0	Middle	-	-	-	-	-		-	-	-		-	5.5	-	-	5.5	-	-	6.1
					Bottom	3.0	25.7 24.7	25.2	7.6 7.7	7.7	17.4 16.6	17.0	76.6 71.5	74.1	5.7 5.4	5.5	5.5	5.3 5.5	5.4		6.3 6.3	6.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	oling	Tempera	ature (°C)	p	н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	ı (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	16:37		Surface	1.0	25.3 25.4	25.4	8.1 8.1	8.1	23.4 23.1	23.2	111.9 113.0	112.5	8.1 8.1	8.1	8.1	0.9 0.8	0.9		2.2 2.9	2.6	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	0.9	-	-	2.5
					Bottom	2.9	25.4 25.2	25.3	8.1 8.1	8.1	23.4 23.9	23.6	112.8 111.6	112.2	8.1 8.0	8.1	8.1	0.9 0.9	0.9		2.5 2.2	2.4	ſ
4-May-15	Sunny	Moderate	07:39		Surface	1.0	25.0 25.1	25.0	7.9 7.9	7.9	25.3 25.0	25.1	87.2 87.7	87.5	6.2 6.3	6.3	6.3	2.2 2.1	2.2		1.3 1.8	1.6	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	2.1	-	-	2.3
					Bottom	3.2	24.9 24.9	24.9	7.9 7.9	7.9	25.8 25.6	25.7	86.9 87.2	87.1	6.2 6.2	6.2	6.2	2.0 1.9	2.0		2.4 3.5	3.0	
6-May-15	Sunny	Moderate	08:46		Surface	1.0	25.1 25.1	25.1	8.0 8.0	8.0	25.6 25.6	25.6	84.8 85.3	85.1	6.1 6.1	6.1	6.1	3.9 4.2	4.1		8.6 8.4	8.5	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	4.1	-	-	8.4
					Bottom	3.3	25.1 25.0	25.1	8.0 8.0	8.0	25.6 25.8	25.7	85.4 84.9	85.2	6.1 6.1	6.1	6.1	4.1 3.9	4.0		8.1 8.3	8.2	ſ
8-May-15	Sunny	Moderate	09:55		Surface	1.0	25.9 25.9	25.9	8.0 8.0	8.0	21.5 21.6	21.6	85.5 85.7	85.6	6.3 6.3	6.3	6.2	2.4 2.3	2.4		6.0 6.9	6.5	
				4.1	Middle	-	-	-		-		-	-	-	-	-	6.3	-	-	2.5	-	-	6.3
					Bottom	3.1	25.7 25.8	25.8	8.0 8.0	8.0	21.2 21.2	21.2	85.0 86.1	85.6	6.2 6.2	6.2	6.2	2.4 2.5	2.5		6.3 5.6	6.0	
11-May-15	Cloudy	Moderate	12:15		Surface	1.0	25.2 25.1	25.1	7.6 7.6	7.6	29.7 29.1	29.4	102.9 95.8	99.4	7.4 6.9	7.1	7.1	6.7 6.6	6.7		4.2 5.5	4.9	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	6.8	-	-	5.1
					Bottom	3.3	25.2 25.0	25.1	7.6 7.7	7.6	30.2 30.4	30.3	100.0 97.8	98.9	7.2 7.0	7.1	7.1	6.7 6.8	6.8		4.2 6.2	5.2	
13-May-15	Sunny	Moderate	13:29		Surface	1.0	25.1 25.1	25.1	7.8 7.9	7.9	20.1 20.0	20.0	84.6 84.4	84.5	6.2 6.2	6.2	6.2	2.4 2.3	2.4		4.5 4.6	4.6	
				3.9	Middle	-	-	-	-	-	-	-	-	-		-	0.2	-	-	2.5	-	-	4.9
					Bottom	2.9	25.0 25.0	25.0	7.8 7.9	7.9	21.9 22.1	22.0	85.0 82.4	83.7	6.2 6.0	6.1	6.1	2.5 2.5	2.5		5.5 4.6	5.1	
15-May-15	Sunny	Moderate	15:45		Surface	1.0	26.9 26.8	26.9	7.8 7.8	7.8	14.8 15.1	15.0	90.3 89.3	89.8	6.6 6.6	6.6	6.6	3.9 3.9	3.9		6.2 7.5	6.9	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	4.3	-	-	6.9
					Bottom	3.1	25.6 25.5	25.6	7.7 7.7	7.7	20.0 20.4	20.2	86.5 86.2	86.4	6.3 6.3	6.3	6.3	4.5 4.6	4.6		7.2 6.3	6.8	
18-May-15	Cloudy	Moderate	07:40		Surface	1.0	25.0 25.0	25.0	7.6 7.6	7.6	21.4 21.4	21.4	74.4 74.4	74.4	5.4 5.5	5.4	5.4	5.8 5.7	5.8		6.1 5.9	6.0	
				4.3	Middle	-	-	-		-		-	-	-	-	-	5.4	-	-	5.8	-	-	6.6
					Bottom	3.3	24.9 25.0	24.9	7.6 7.6	7.6	23.0 23.0	23.0	74.6 75.2	74.9	5.4 5.5	5.4	5.4	5.8 5.8	5.8		6.8 7.3	7.1	
20-May-15	Rainy	Moderate	08:40		Surface	1.0	25.2 25.2	25.2	7.6 7.6	7.6	17.2 17.2	17.2	79.1 79.2	79.2	5.9 5.9	5.9	5.9	7.9 7.8	7.9		5.4 6.7	6.1	
				4.0	Middle	-	-	-		-		-	-	-	-	-	5.9	-	-	7.9	-	-	7.2
					Bottom	3.0	25.2 25.2	25.2	7.6 7.6	7.6	18.9 18.8	18.9	79.7 79.2	79.5	5.9 5.9	5.9	5.9	7.8 7.7	7.8		8.9 7.4	8.2	

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	ended Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	09:34		Surface	1.0	24.8 24.8	24.8	7.8 7.8	7.8	16.4 16.4	16.4	84.3 84.1	84.2	6.4 6.4	6.4	6.4	3.3 3.3	3.3		6.3 5.1	5.7	
				4.3	Middle		-	-	-	-	-	-	-	-	-	-	0.4	-	-	3.4	-	-	5.3
					Bottom	3.3	24.5 24.7	24.6	7.8 7.8	7.8	18.3 19.2	18.8	80.2 84.8	82.5	6.0 6.3	6.2	6.2	3.6 3.3	3.5		5.2 4.6	4.9	
25-May-15	Sunny	Moderate	18:03		Surface	1.0	24.4 24.3	24.4	7.6 7.5	7.5	18.9 18.8	18.9	68.2 67.9	68.1	5.1 5.1	5.1	5.1	2.5 2.6	2.6		6.7 6.7	6.7	
				2.1	Middle	-	-	-		-	-	-	-	-	-	-	5.1	-	-	3.3	-	-	6.8
					Bottom	1.1	25.5 25.5	25.5	7.5 7.5	7.5	10.8 10.9	10.9	70.3 70.1	70.2	5.4 5.4	5.4	5.4	3.9 4.0	4.0		6.7 6.9	6.8	
27-May-15	Cloudy	Moderate	13:45		Surface	1.0	25.1 25.2	25.2	7.4 7.4	7.4	12.9 11.9	12.4	71.3 74.8	73.1	5.6 5.9	5.8	5.8	6.5 6.5	6.5		9.8 9.5	9.7	
				4.3	Middle	-	-	-	-	-	-	-	-	-		-	5.0	-	-	6.7	-	-	9.7
					Bottom	3.3	24.9 25.0	24.9	7.4 7.4	7.4	20.8 20.3	20.6	70.3 73.6	72.0	5.5 5.8	5.7	5.7	6.7 6.8	6.8		9.7 9.4	9.6	
29-May-15	Sunny	Moderate	15:41		Surface	1.0	26.3 26.1	26.2	7.7 7.8	7.7	6.6 6.1	6.4	79.7 75.9	77.8	6.2 5.9	6.1	6.1	7.4 7.6	7.5		5.9 5.8	5.9	
				4.2	Middle	-	-	-		-	-	-	-	-	-	-	0.1	-	-	7.5	-	-	6.2
					Bottom	3.2	26.0 25.1	25.5	7.6 7.7	7.6	13.5 15.4	14.5	78.1 74.7	76.4	5.9 5.6	5.8	5.8	7.4 7.6	7.5		6.5 6.3	6.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	ъН	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	11:20		Surface	1.0	24.8 24.6	24.7	8.0 8.0	8.0	24.9 25.6	25.3	105.3 105.9	105.6	7.6 7.6	7.6		1.5 1.6	1.6		3.1 2.6	2.9	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	1.8	-	-	2.7
					Bottom	3.2	24.6 24.8	24.7	8.0 8.0	8.0	25.7 24.7	25.2	106.7 104.7	105.7	7.7	7.6	7.6	1.9 2.0	2.0		2.5 2.4	2.5	
4-May-15	Sunny	Moderate	13:19		Surface	1.0	25.5 25.3	25.4	7.9 7.9	7.9	23.7 24.1	23.9	88.0 86.9	87.5	6.3 6.2	6.3		2.3	2.3		4.7	4.6	
				3.7	Middle	-	-	-		-		-		-	-	-	6.3	-	-	2.9	-	-	4.8
					Bottom	2.7	25.2 25.1	25.1	7.9 7.9	7.9	25.2 25.4	25.3	87.1 86.2	86.7	6.2 6.2	6.2	6.2	3.3 3.6	3.5		5.0 4.7	4.9	
6-May-15	Sunny	Moderate	14:21		Surface	1.0	25.3 25.4	25.3	8.1 8.1	8.1	24.5 24.4	24.5	87.3 87.8	87.6	6.2 6.3	6.3		3.3 3.2	3.3		6.1 5.8	6.0	
				4.1	Middle	-	-	-	-	-		-	-	-	-	-	6.3	-	-	3.3	-	-	5.5
					Bottom	3.1	25.3 25.2	25.2	8.1 8.1	8.1	25.5 25.5	25.5	88.2 86.2	87.2	6.3 6.1	6.2	6.2	3.3 3.3	3.3		4.2 5.7	5.0	
8-May-15	Sunny	Moderate	15:45		Surface	1.0	26.2 26.2	26.2	8.0 8.0	8.0	20.4 20.4	20.4	89.9 89.0	89.5	6.5 6.4	6.4	6.4	3.2 3.2	3.2		4.6 4.5	4.6	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-	3.3	-	-	5.5
					Bottom	3.1	26.0 25.7	25.8	8.0 8.0	8.0	22.6 22.9	22.7	89.9 86.4	88.2	6.4 6.2	6.3	6.3	3.4 3.2	3.3		6.2 6.3	6.3	
11-May-15	Cloudy	Moderate	18:14		Surface	1.0	25.3 25.3	25.3	7.6 7.5	7.6	28.1 29.7	28.9	98.2 96.8	97.5	7.0 6.9	7.0	7.0	6.2 6.2	6.2		9.1 8.9	9.0	
				4.3	Middle	-	-	-		-		-		-	-	-	1.0	-	-	6.3	-	-	8.5
					Bottom	3.3	25.5 25.5	25.5	7.6 7.6	7.6	30.7 30.9	30.8	100.4 102.0	101.2	7.2 7.3	7.2	7.2	6.4 6.3	6.4		7.5 8.3	7.9	
13-May-15	Sunny	Moderate	09:14		Surface	1.0	25.0 24.9	24.9	7.9 7.9	7.9	21.6 21.7	21.7	83.7 86.8	85.3	6.2 6.5	6.3	6.3	2.1 2.1	2.1		6.0 5.2	5.6	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.2	-	-	5.7
					Bottom	3.1	24.7 24.8	24.8	7.9 7.9	7.9	23.9 24.5	24.2	83.5 88.7	86.1	6.1 6.4	6.2	6.2	2.3 2.2	2.3		5.6 5.8	5.7	
15-May-15	Sunny	Moderate	11:01		Surface	1.0	25.5 25.9	25.7	7.7 7.7	7.7	18.3 17.9	18.1	82.6 83.5	83.1	6.0 6.1	6.1	6.1	5.5 5.4	5.5		5.0 6.1	5.6	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.5	-	-	5.2
					Bottom	3.1	25.1 25.2	25.2	7.7 7.6	7.7	22.4 22.1	22.3	81.0 80.0	80.5	6.0 5.8	5.9	5.9	5.5 5.3	5.4		4.3 5.3	4.8	
18-May-15	Sunny	Moderate	13:17		Surface	1.0	25.4 25.4	25.4	7.6 7.6	7.6	18.4 18.4	18.4	75.2 75.8	75.5	5.6 5.6	5.6	5.6	8.3 8.4	8.4		4.8 4.9	4.9	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	8.4	-	-	5.6
00 May 45	Data	Madaaad	44.00		Bottom	3.1	24.9 25.2	25.1	7.6 7.6	7.6	21.3 21.1	21.2	73.1 75.4	74.3	5.4 5.5	5.4	5.4	8.0 8.5	8.3		7.2 5.4	6.3	
20-May-15	Rainy	Moderate	14:32		Surface	1.0	25.4 25.4	25.4	7.7 7.6	7.7	17.6 17.5	17.5	84.3 85.8	85.1	6.3 6.4	6.3	6.3	6.2 6.3	6.3		8.0 8.1	8.1	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	6.3	-	-	8.5
					Bottom	3.2	25.4 25.1	25.3	7.6 7.7	7.7	17.6 18.4	18.0	85.5 84.0	84.8	6.4 6.2	6.3	6.3	6.1 6.4	6.3		9.1 8.6	8.9	

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	ه (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	16:01		Surface	1.0	24.8 24.8	24.8	7.8 7.8	7.8	18.9 19.0	18.9	81.5 80.2	80.9	6.1 6.0	6.0	6.0	3.1 3.2	3.2		5.6 6.2	5.9	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	3.2	-	-	6.5
					Bottom	3.0	24.8 24.7	24.8	7.8 7.8	7.8	19.0 19.1	19.1	81.2 79.3	80.3	6.1 5.9	6.0	6.0	3.1 3.0	3.1		7.0 7.0	7.0	<u> </u>
25-May-15	Cloudy	Moderate	10:06		Surface	1.0	23.5 23.5	23.5	7.7 7.7	7.7	30.2 30.2	30.2	70.9 71.6	71.3	5.1 5.2	5.1	5.1	0.7 0.7	0.7		5.7 6.7	6.2]
				35.2	Middle	-	-	-	-	-	-	-	-	-	-	-	5.1	-	-	0.7	-	-	6.2
					Bottom	34.2	23.4 23.4	23.4	7.7 7.7	7.7	32.2 32.2	32.2	73.4 73.5	73.5	5.3 5.3	5.3	5.3	0.5 0.6	0.6		6.1 6.1	6.1	
27-May-15	Cloudy	Moderate	08:10		Surface	1.0	24.6 24.8	24.7	7.6 7.5	7.6	12.5 12.8	12.6	69.1 70.6	69.9	5.4 5.6	5.5	5.5	8.5 8.7	8.6		8.4 9.3	8.9	
				4.2	Middle	-	-	-	-	-	-	-	-	-		-	5.5	-	-	9.3	-	-	9.5
					Bottom	3.2	24.7 24.6	24.6	7.4 7.5	7.4	22.3 23.3	22.8	67.5 68.2	67.9	5.3 5.4	5.3	5.3	9.8 10.1	10.0		10.7 9.5	10.1	
29-May-15	Sunny	Moderate	10:41		Surface	1.0	26.1 26.0	26.1	7.7 7.6	7.6	6.6 7.3	7.0	85.9 84.8	85.4	6.7 6.6	6.7	6.7	6.6 6.7	6.7		5.1 4.8	5.0	
				4.4	Middle	-	-	-	-	-	-	-	-	-	-	-	0.7	-	-	6.7	-	-	5.0
					Bottom	3.4	26.0 26.0	26.0	7.6 7.5	7.6	8.4 8.4	8.4	88.1 85.6	86.9	6.8 6.5	6.7	6.7	6.6 6.7	6.7		5.1 4.7	4.9	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ł	Η	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	ัurbidity(NTเ	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	17:59		Surface	1.0	25.0 25.1	25.0	8.0 8.0	8.0	23.8 23.6	23.7	110.3 110.9	110.6	8.0 8.0	8.0	8.0	1.8 1.9	1.9		4.3 3.6	4.0	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	2.1	-	-	3.9
					Bottom	4.3	25.1 24.7	24.9	8.0 8.0	8.0	25.4 25.7	25.5	110.4 110.3	110.4	7.9 7.9	7.9	7.9	2.3 2.0	2.2		4.6 3.0	3.8	
4-May-15	Sunny	Moderate	06:23		Surface	1.0	25.1 25.1	25.1	7.9 7.9	7.9	24.6 24.6	24.6	90.7 88.9	89.8	6.5 6.4	6.4	6.4	5.1 4.8	5.0		3.3 5.0	4.2	
				3.8	Middle	-	-	-		-	-	-		-	-	-	6.4	-	-	5.6	-	-	4.6
					Bottom	2.8	25.0 25.1	25.1	7.9 7.9	7.9	25.3 24.8	25.0	92.1 89.4	90.8	6.6 6.4	6.5	6.5	5.9 6.2	6.1		4.6 5.2	4.9	
6-May-15	Sunny	Moderate	07:24		Surface	1.0	25.3 25.3	25.3	8.0 8.0	8.0	23.8 23.7	23.7	89.5 88.9	89.2	6.4 6.4	6.4		4.5 4.3	4.4		4.3 4.3	4.3	
				4.3	Middle	-		-	-	-	-	-	-	-	-	-	6.4	-	-	4.4	-	-	4.1
					Bottom	3.3	25.0 25.2	25.1	8.0 8.0	8.0	26.0 25.3	25.6	89.8 89.1	89.5	6.4 6.4	6.4	6.4	4.4 4.4	4.4		4.0 3.8	3.9	
8-May-15	Sunny	Moderate	08:37		Surface	1.0	25.6 25.6	25.6	8.0 8.0	8.0	21.3 21.4	21.3	88.3 89.0	88.7	6.4 6.5	6.4		2.3 2.3	2.3		2.5 4.4	3.5	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	2.4	-	-	3.9
					Bottom	3.3	25.6 25.6	25.6	8.1 8.0	8.1	21.4 21.4	21.4	92.0 88.5	90.3	6.7 6.4	6.5	6.5	2.3 2.4	2.4		3.6 4.7	4.2	
11-May-15	Cloudy	Moderate	11:08		Surface	1.0	25.2 25.2	25.2	7.7	7.7	28.0 29.2	28.6	100.4 99.6	100.0	7.2	7.2	7.0	6.6 6.6	6.6		4.9 3.9	4.4	
				4.5	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	6.6	-	-	4.7
					Bottom	3.5	25.4 25.2	25.3	7.7 7.8	7.7	29.3 29.3	29.3	97.1 98.2	97.7	7.0 7.0	7.0	7.0	6.7 6.5	6.6		4.7 5.1	4.9	
13-May-15	Sunny	Moderate	14:59		Surface	1.0	24.8 25.2	25.0	7.9 7.9	7.9	23.0 22.6	22.8	86.2 91.8	89.0	6.2 6.7	6.4		1.4 1.4	1.4		6.1 5.5	5.8	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	1.4	-	-	6.8
					Bottom	2.9	24.2 25.0	24.6	7.9 7.9	7.9	26.3 24.5	25.4	80.1 82.9	81.5	5.8 6.0	5.9	5.9	1.2 1.3	1.3		7.3 8.3	7.8	
15-May-15	Sunny	Moderate	17:00		Surface	1.0	26.7 26.6	26.7	7.8	7.8	15.4 16.0	15.7	99.2 100.3	99.8	7.3 7.4	7.3		3.1 3.3	3.2		5.3 5.3	5.3	
				4.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	3.3		-	5.4
					Bottom	3.4	26.5 26.2	26.3	7.8 7.8	7.8	20.1 20.0	20.0	101.1 97.3	99.2	7.3 7.0	7.1	7.1	3.3 3.2	3.3		5.3 5.4	5.4	
18-May-15	Cloudy	Moderate	06:13		Surface	1.0	24.9 25.0	25.0	7.6 7.6	7.6	21.0 21.0	21.0	74.8 75.0	74.9	5.5 5.4	5.5		9.7 9.6	9.7		8.8 9.6	9.2	<u> </u>
				4.4	Middle	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-	9.7	-	-	9.2
					Bottom	3.4	24.8 24.7	24.8	7.6 7.6	7.6	24.4 24.5	24.5	78.5 80.5	79.5	5.8 5.8	5.8	5.8	9.6 9.7	9.7		8.6 9.6	9.1	1
20-May-15	Rainy	Moderate	07:12		Surface	1.0	25.2 25.2	25.2	7.6 7.6	7.6	17.2 17.5	17.4	78.4 79.8	79.1	5.9 6.0	5.9		4.7 4.4	4.6		2.6 3.9	3.3	<u> </u>
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	4.5	-	-	3.8
					Bottom	3.1	25.1 25.0	25.1	7.6 7.6	7.6	- 19.5 19.6	19.6	- 78.5 81.1	79.8	5.8 6.0	5.9	5.9	4.4	4.4		4.6	4.3	1

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	ЪН	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	08:14		Surface	1.0	24.6 24.5	24.6	7.8 7.8	7.8	20.4 19.4	19.9	84.2 81.2	82.7	6.2 6.1	6.1	6.1	6.0 6.2	6.1		4.1 4.5	4.3	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	6.8	-	-	4.6
					Bottom	3.1	24.5 24.5	24.5	7.7 7.7	7.7	21.5 21.5	21.5	79.4 79.8	79.6	5.9 5.9	5.9	5.9	7.0 7.7	7.4		4.8 4.8	4.8	
25-May-15	Sunny	Moderate	19:14		Surface	1.0	23.4 23.4	23.4	7.7 7.7	7.7	29.3 29.2	29.2	75.0 75.3	75.2	5.5 5.4	5.4	5.4	1.9 1.7	1.8		3.4 2.3	2.9	
				34.8	Middle	1	-	-	-	-		-		-		-	5.4	-	-	2.2	-	-	3.4
					Bottom	33.8	22.7 22.7	22.7	7.8 7.8	7.8	32.3 32.3	32.3	73.5 72.9	73.2	5.2 5.2	5.2	5.2	2.5 2.4	2.5		4.0 3.7	3.9	
27-May-15	Cloudy	Moderate	15:00		Surface	1.0	25.2 24.8	25.0	7.5 7.5	7.5	12.0 10.8	11.4	75.3 73.1	74.2	5.9 5.8	5.8	5.8	8.9 9.1	9.0		6.5 6.3	6.4	
				4.3	Middle	-	-	-	-	-		-		-		-	5.0	-	-	9.3	-	-	5.9
					Bottom	3.3	24.7 25.2	25.0	7.3 7.5	7.4	19.2 20.3	19.7	71.8 70.6	71.2	5.7 5.6	5.6	5.6	9.6 9.5	9.6		5.2 5.4	5.3	
29-May-15	Sunny	Moderate	17:00		Surface	1.0	26.8 26.9	26.9	7.9 7.9	7.9	9.1 8.7	8.9	100.5 101.4	101.0	7.6 7.7	7.7	7.7	5.5 5.5	5.5		5.0 4.3	4.7	
				4.3	Middle	-	-	-	-	-		-		-	-	-		-	-	5.5	-	-	4.4
					Bottom	3.3	26.6 26.7	26.7	7.9 7.9	7.9	10.2 10.4	10.3	97.8 101.7	99.8	7.4 7.7	7.6	7.6	5.5 5.4	5.5		4.1 3.9	4.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	H	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	10:50		Surface	1.0	25.7 25.7	25.7	8.2 8.2	8.2	28.1 28.2	28.1	110.6 110.3	110.5	7.7 7.7	7.7		2.7 2.7	2.7		2.3 2.4	2.4	
				6.6	Middle	3.3	25.4 25.3	25.3	8.2 8.2	8.2	29.0 29.2	29.1	107.6 107.8	107.7	7.5 7.5	7.5	7.6	2.8	2.8	2.8	2.4	2.6	2.4
					Bottom	5.6	25.2 24.9	25.1	8.2 8.1	8.1	30.9 31.2	31.1	107.0 107.1	108.0	7.5 7.4	7.5	7.5	2.8	2.8		2.2	2.3	
4-May-15	Sunny	Moderate	13:41		Surface	1.0	26.7 26.6	26.7	8.0 8.1	8.1	26.9 27.0	26.9	94.8 94.3	94.6	6.5 6.5	6.5		3.7 3.7	3.7		4.8	4.7	
				6.5	Middle	3.3	26.0 26.2 26.3	26.3	8.0 8.1	8.0	27.0 27.9 27.9	27.9	94.3 93.0 93.2	93.1	6.4 6.4	6.4	6.5	3.6 3.6	3.6	3.6	4.5 6.2 4.7	5.5	5.4
					Bottom	5.5	26.3 26.4	26.3	8.0 8.0	8.0	27.9 28.0 27.7	27.9	93.2 94.0 94.0	94.0	6.5 6.5	6.5	6.5	3.6 3.6	3.6		6.4 5.7	6.1	
6-May-15	Sunny	Moderate	15:03		Surface	1.0	26.3	26.3	8.1	8.1	27.1	27.1	89.5	89.7	6.2	6.2		4.8	4.9		4.8	4.5	
				6.3	Middle	3.2	26.3 26.3 26.3	26.3	8.1 8.1 8.1	8.1	27.1 27.1 27.2	27.1	89.9 90.4 88.9	89.7	6.2 6.3 6.2	6.2	6.2	4.9 4.8 4.8	4.8	4.8	4.2 6.6 5.8	6.2	6.4
					Bottom	5.3	26.3 26.3	26.3	8.1 8.1	8.1	27.2	27.2	88.8 92.0	90.4	6.2 6.4	6.3	6.3	4.8	4.8		9.3 7.8	8.6	
8-May-15	Sunny	Moderate	15:51		Surface	1.0	26.3 27.1 27.3	27.2	8.0 8.0	8.0	27.2 22.6 22.6	22.6	92.0 83.6 86.8	85.2	5.9 6.1	6.0		4.7 8.7 8.6	8.7		8.0 6.9	7.5	
				6.6	Middle	3.3	27.0 26.5	26.7	8.0 8.0 8.0	8.0	22.6 23.7 24.5	24.1	84.8 80.7	82.8	5.9 5.6	5.8	5.9	8.8 8.7	8.8	8.8	6.3 6.5	6.4	7.8
					Bottom	5.6	20.3 27.1 26.4	26.8	8.0 8.0 8.0	8.0	24.3 26.3 26.9	26.6	84.9 80.2	82.6	5.8 5.6	5.7	5.7	8.8 8.9	8.9		9.2	9.6	
11-May-15	Cloudy	Moderate	19:01		Surface	1.0	26.6 26.6	26.6	8.1 8.1	8.1	24.6 24.7	24.7	89.0 88.4	88.7	6.2 6.2	6.2		4.7	4.7		3.6 3.5	3.6	
				6.3	Middle	3.2	26.0 26.4	26.2	8.1 8.1	8.1	26.2 25.7	26.0	87.4 87.6	87.5	6.1 6.1	6.1	6.2	4.7	4.7	4.7	3.7 3.1	3.4	3.3
					Bottom	5.3	26.3 26.3	26.3	8.1 8.1	8.1	27.3 26.3	26.8	84.7 87.0	85.9	5.9 6.1	6.0	6.0	4.7	4.7		3.2	2.8	
13-May-15	Sunny	Moderate	08:43		Surface	1.0	25.2 25.4	25.3	8.1 8.1	8.1	27.5 27.3	27.4	77.2	77.8	5.4 5.5	5.5		4.5	4.5		2.8	3.0	
				6.5	Middle	3.3	24.9 24.9	24.9	8.1 8.1	8.1	31.4 31.5	31.4	76.7	76.4	5.4 5.3	5.3	5.4	4.5	4.6	4.6	3.5	3.0	3.3
					Bottom	5.5	24.9 24.8	24.9	8.1 8.1	8.1	32.0 31.9	31.9	75.9 75.1	75.5	5.3 5.2	5.2	5.2	4.6	4.6		4.3	3.9	
15-May-15	Sunny	Moderate	09:56		Surface	1.0	26.5 26.0	26.3	8.1 8.1	8.1	24.2 25.0	24.6	87.1 82.7	84.9	6.1 5.8	6.0		5.5 5.8	5.7		7.4 6.0	6.7	
				6.8	Middle	3.4	25.7 25.9	25.8	8.1 8.1	8.1	27.2	27.4	78.6 82.4	80.5	5.5 5.7	5.6	5.8	5.8 6.0	5.9	5.7	6.1 7.9	7.0	7.2
					Bottom	5.8	25.5 25.8	25.6	8.1 8.1	8.1	29.2 27.8	28.5	78.3 84.8	81.6	5.4 5.9	5.7	5.7	5.4 5.8	5.6		8.6 7.3	8.0	
18-May-15	Sunny	Moderate	13:29		Surface	1.0	26.7 26.5	26.6	8.0 8.0	8.0	21.0 21.8	21.4	83.1 81.3	82.2	5.9 5.8	5.9	5.0	7.7 8.3	8.0		5.2 6.4	5.8	
				6.4	Middle	3.2	26.3 26.2	26.3	8.0 8.0	8.0	22.8 23.6	23.2	79.9 80.5	80.2	5.7 5.7	5.7	5.8	8.6 8.5	8.6	8.5	5.4 6.4	5.9	5.5
					Bottom	5.4	26.1 26.2	26.2	8.0 8.0	8.0	24.1 24.1	24.1	84.4 80.7	82.6	6.0 5.7	5.8	5.8	9.0 8.7	8.9		4.7	4.7	
20-May-15	Rainy	Moderate	15:07		Surface	1.0	26.4 26.4	26.4	8.0 8.0	8.0	19.3 19.4	19.3	75.5 76.9	76.2	5.5 5.5	5.5	5.5	14.2 14.1	14.2		14.8 14.7	14.8	
				6.5	Middle	3.3	26.2 26.3	26.2	8.0 8.0	8.0	21.4 21.1	21.3	75.2 75.9	75.6	5.4 5.5	5.4	5.5	14.3 14.4	14.4	14.3	13.7 15.1	14.4	14.8
					Bottom	5.5	26.0 26.5	26.2	8.0 8.0	8.0	21.9 21.4	21.6	74.6 75.6	75.1	5.4 5.4	5.4	5.4	14.4 14.4	14.4		15.8 14.7	15.3	

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	ended Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	16:21		Surface	1.0	25.8 25.8	25.8	8.1 8.1	8.1	21.2 21.2	21.2	77.7 79.0	78.4	5.6 5.7	5.7	5.6	5.5 5.6	5.6		3.2 2.3	2.8	
				6.4	Middle	3.2	25.6 25.6	25.6	8.0 8.0	8.0	24.1 23.8	23.9	76.5 77.3	76.9	5.5 5.5	5.5	5.0	5.6 5.7	5.7	5.6	2.5 3.4	3.0	3.3
					Bottom	5.4	25.6 25.6	25.6	8.0 8.1	8.0	24.4 24.1	24.3	78.6 83.2	80.9	5.6 5.9	5.8	5.8	5.5 5.6	5.6		4.7 3.7	4.2	
25-May-15	Cloudy	Moderate	18:19		Surface	1.0	27.5 27.5	27.5	7.8 7.8	7.8	12.9 13.5	13.2	73.9 76.7	75.3	5.4 5.6	5.5	5.5	6.8 7.0	6.9		2.7 2.9	2.8	
				6.0	Middle	3.0	26.3 25.7	26.0	7.8 7.8	7.8	16.9 17.2	17.0	76.4 70.8	73.6	5.6 5.2	5.4	0.0	7.1 7.0	7.1	7.0	3.3 3.2	3.3	3.1
					Bottom	5.0	26.5 25.7	26.1	7.8 7.8	7.8	18.6 21.4	20.0	75.3 70.0	72.7	5.5 5.1	5.3	5.3	7.1 7.0	7.1		3.0 3.4	3.2	
27-May-15	Cloudy	Moderate	08:19		Surface	1.0	26.3 26.3	26.3	7.7 7.7	7.7	13.6 13.6	13.6	76.6 76.3	76.5	5.7 5.7	5.7	5.7	7.6 7.5	7.6		4.8 5.7	5.3	
				6.5	Middle	3.3	26.2 26.3	26.3	7.7 7.7	7.7	13.9 13.6	13.8	75.5 76.5	76.0	5.6 5.7	5.7	5.7	7.4 7.6	7.5	7.5	6.4 6.7	6.6	5.6
					Bottom	5.5	26.0 26.3	26.2	7.7 7.7	7.7	14.7 13.7	14.2	75.0 76.5	75.8	5.6 5.7	5.7	5.7	7.5 7.5	7.5		4.9 5.0	5.0	
29-May-15	Sunny	Moderate	09:26		Surface	1.0	27.5 27.5	27.5	8.0 7.9	7.9	12.9 12.7	12.8	87.6 87.9	87.8	6.4 6.5	6.5	6.4	5.5 5.4	5.5		3.2 3.3	3.3	
				6.7	Middle	3.4	27.2 27.2	27.2	7.9 7.9	7.9	15.0 14.9	15.0	85.4 85.2	85.3	6.2 6.2	6.2	0.4	5.4 5.4	5.4	5.5	3.7 3.9	3.8	3.3
					Bottom	5.7	27.1 27.1	27.1	7.9 7.9	7.9	15.7 15.3	15.5	85.9 85.9	85.9	6.3 6.3	6.3	6.3	5.6 5.3	5.5		2.6 2.9	2.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	н	Salini	ty (ppt)	DO Satu	iration (%)	Dissol	ved Oxygen	(mg/L)	Г	Furbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	18:31		Surface	1.0	26.0 25.8	25.9	8.3 8.3	8.3	27.7 27.9	27.8	112.4 111.6	112.0	7.8 7.8	7.8	7.8	2.7 2.5	2.6		2.8 3.8	3.3	
				6.5	Middle	3.3	25.7 25.6	25.7	8.3 8.3	8.3	28.6 28.8	28.7	111.6 110.4	111.0	7.7 7.7	7.7	7.0	2.6 2.6	2.6	2.6	3.5 2.2	2.9	3.3
					Bottom	5.5	25.3 25.8	25.6	8.3 8.3	8.3	29.3 28.6	28.9	109.4 111.6	110.5	7.6 7.7	7.7	7.7	2.7 2.6	2.7		4.2 3.2	3.7	
4-May-15	Sunny	Moderate	05:56		Surface	1.0	25.6 25.6	25.6	8.0 8.0	8.0	29.2 29.3	29.2	86.0 85.9	86.0	6.0 6.0	6.0		3.2 3.1	3.2		2.7 3.0	2.9	
				6.6	Middle	3.3	25.5 25.5	25.5	8.0 8.0	8.0	29.7 29.6	29.6	85.4 85.5	85.5	5.9 5.9	5.9	6.0	3.2 3.2	3.2	3.2	3.0 4.6	3.8	3.8
					Bottom	5.6	25.4 25.4	25.4	8.0 8.0	8.0	30.0 29.9	29.9	85.4 85.3	85.4	5.9 5.9	5.9	5.9	3.2 3.2	3.2		4.0 5.5	4.8	
6-May-15	Sunny	Moderate	06:51		Surface	1.0	25.6 25.5	25.5	8.0 8.0	8.0	28.8 28.8	28.8	80.9 80.8	80.9	5.6 5.6	5.6	5.6	3.8 3.7	3.8		4.6 3.1	3.9	
				6.6	Middle	3.3	25.4 25.4	25.4	8.0 8.0	8.0	30.2 30.2	30.2	80.2 80.3	80.3	5.6 5.6	5.6	5.0	3.8 3.6	3.7	4.0	3.3 2.9	3.1	3.7
					Bottom	5.6	25.4 25.4	25.4	8.0 8.0	8.0	30.3 30.3	30.3	80.5 80.4	80.5	5.6 5.6	5.6	5.6	4.5 4.7	4.6		5.0 3.3	4.2	
8-May-15	Sunny	Moderate	07:39		Surface	1.0	26.9 27.0	27.0	8.0 8.0	8.0	21.0 20.9	21.0	83.2 84.5	83.9	5.9 6.0	6.0	5.9	6.0 6.0	6.0		4.4 4.4	4.4	
				6.2	Middle	3.1	26.8 26.8	26.8	8.0 8.0	8.0	23.0 22.9	23.0	82.8 82.4	82.6	5.8 5.8	5.8	0.0	6.1 6.0	6.1	6.1	6.3 5.8	6.1	5.1
					Bottom	5.2	26.6 26.6	26.6	7.9 7.9	7.9	25.2 25.3	25.3	82.3 83.2	82.8	5.7 5.8	5.8	5.8	6.0 6.1	6.1		4.0 5.4	4.7	
11-May-15	Cloudy	Moderate	10:11		Surface	1.0	26.5 26.5	26.5	8.0 8.0	8.0	23.0 23.0	23.0	85.8 86.0	85.9	6.1 6.1	6.1	6.0	4.7 4.7	4.7		3.1 3.9	3.5	
				6.5	Middle	3.3	26.2 26.0	26.1	8.0 8.0	8.0	24.7 25.0	24.8	81.8 83.8	82.8	5.8 5.9	5.8		4.7 4.7	4.7	4.7	3.9 4.1	4.0	5.0
					Bottom	5.5	26.3 25.7	26.0	8.0 8.0	8.0	27.3 27.6	27.4	86.1 80.3	83.2	6.0 5.6	5.8	5.8	4.7 4.7	4.7		7.7 7.5	7.6	
13-May-15	Sunny	Moderate	15:32		Surface	1.0	25.6 25.8	25.7	8.1 8.1	8.1	27.4 27.9	27.7	85.1 88.3	86.7	5.9 6.1	6.0	5.9	4.9 4.8	4.9		3.7 3.2	3.5	-
				6.4	Middle	3.2	25.2 25.2	25.2	8.1 8.1	8.1	30.3 30.3	30.3	80.9 84.7	82.8	5.6 5.9	5.8		5.1 5.1	5.1	5.1	2.9 3.1	3.0	3.5
			17.10		Bottom	5.4	25.3 25.2	25.2	8.1 <u>8.1</u>	8.1	30.3 30.5	30.4	82.8 80.9	81.9	5.7 5.6	5.7	5.7	5.2 5.2	5.2		3.4 4.8	4.1	
15-May-15	Sunny	Moderate	17:49		Surface	1.0	26.4 26.3	26.3	8.1 8.1	8.1	24.4 24.4	24.4	81.5 81.2	81.4	5.7 5.7	5.7	5.7	7.3 7.4	7.4		6.0 5.7	5.9	-
				6.8	Middle	3.4	26.2 26.1 25.9	26.2	8.1 <u>8.1</u> 8.1	8.1	26.4 26.6 27.9	26.5	80.2 80.2 79.7	80.2	5.6 5.6 5.5	5.6		7.9 7.8 8.6	7.9	7.9	5.7 5.1 5.6	5.4	5.5
40 May 45		Madaaata	05.07		Bottom	5.8	26.1	26.0	8.1	8.1	27.5	27.7	80.6	80.2	5.6	5.6	5.6	7.9	8.3		5.0	5.3	
18-May-15	Cloudy	Moderate	05:27		Surface	1.0	25.7 25.7	25.7	8.1 8.1	8.1	26.8 26.7	26.8	76.5 76.3	76.4	5.4 5.4	5.4	5.4	8.8 8.6	8.7		9.4 9.8	9.6	
				6.2	Middle	3.1	25.6 25.6 25.5	25.6	8.1 <u>8.1</u> 8.1	8.1	28.3 28.4 28.8	28.3	76.0 75.9 76.0	76.0	5.3 5.3 5.3	5.3		9.0 9.5 7.8	9.3	8.7	9.5 9.7 8.9	9.6	9.6
20 Mc: 45	Do:	Moderate	06:24		Bottom	5.2	25.6	25.6	8.1	8.1	28.7	28.7	76.1	76.1	5.3	5.3	5.3	8.2	8.0		10.0	9.5	<u> </u>
20-May-15	Rainy	Moderate	06:31		Surface	1.0	26.4 26.3	26.4	7.9	7.9	18.1 18.2	18.2	73.7 75.1	74.4	5.4 5.3	5.3	5.3	7.1 6.8 7.2	7.0		3.4 4.4	3.9	-
				6.3	Middle	3.2	26.1 26.1	26.1	7.9	7.9	20.5	20.6	73.3 73.1	73.2	5.2 5.3	5.3		6.9	7.1	7.1	4.6 4.3 3.9	4.5	4.1
					Bottom	5.3	26.2 26.1	26.2	7.9 7.9	7.9	25.0 24.6	24.8	72.5 72.5	72.5	5.2 5.2	5.2	5.2	7.2 6.9	7.1		3.9 3.6	3.8	

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	ЪН	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	07:55		Surface	1.0	25.8 25.8	25.8	8.0 8.0	8.0	20.0 21.1	20.6	78.6 77.4	78.0	5.7 5.6	5.7	5.6	6.2 6.4	6.3		4.2 3.6	3.9	
				6.5	Middle	3.3	25.5 25.5	25.5	8.0 8.0	8.0	24.4 23.3	23.9	77.7 77.0	77.4	5.5 5.5	5.5	5.0	6.3 6.4	6.4	6.4	4.4 3.1	3.8	3.7
					Bottom	5.5	25.4 25.6	25.5	8.0 8.0	8.0	24.0 24.6	24.3	75.6 76.0	75.8	5.4 5.4	5.4	5.4	6.3 6.4	6.4		2.8 4.1	3.5	
25-May-15	Sunny	Moderate	10:07		Surface	1.0	25.8 25.8	25.8	7.8 7.8	7.8	16.7 16.4	16.5	71.5 71.0	71.3	5.3 5.3	5.3	5.3	5.9 5.9	5.9		2.8 2.7	2.8	
				6.4	Middle	3.2	25.7 25.3	25.5	7.8 7.8	7.8	19.0 19.7	19.4	70.8 71.5	71.2	5.2 5.2	5.2	0.0	6.0 5.9	6.0	6.0	3.1 3.0	3.1	3.2
					Bottom	5.4	25.1 25.9	25.5	7.8 7.8	7.8	23.7 22.1	22.9	70.6 70.8	70.7	5.1 5.1	5.1	5.1	6.0 6.1	6.1		3.9 3.3	3.6	
27-May-15	Cloudy	Moderate	15:12		Surface	1.0	26.9 26.5	26.7	7.8 7.8	7.8	11.0 12.7	11.9	75.0 73.6	74.3	5.6 5.5	5.6	5.5	7.4 7.5	7.5		2.9 3.7	3.3	
				6.5	Middle	3.3	26.1 26.1	26.1	7.8 7.8	7.8	19.4 19.0	19.2	72.5 73.1	72.8	5.3 5.3	5.3	5.5	7.7 7.3	7.5	7.6	4.2 5.1	4.7	4.4
					Bottom	5.5	26.3 25.7	26.0	7.8 7.8	7.8	20.7 25.1	22.9	73.4 74.7	74.1	5.3 5.3	5.3	5.3	7.7 7.7	7.7		4.8 5.6	5.2	
29-May-15	Sunny	Moderate	17:31		Surface	1.0	27.4 27.5	27.5	8.1 8.1	8.1	14.0 14.0	14.0	88.5 91.2	89.9	6.5 6.7	6.6	6.4	5.9 5.9	5.9		4.2 3.3	3.8	
				6.8	Middle	3.4	26.9 26.7	26.8	8.1 8.0	8.1	18.4 20.2	19.3	88.6 85.3	87.0	6.4 6.1	6.2	0.4	5.6 5.5	5.6	5.7	4.0 4.9	4.5	4.2
					Bottom	5.8	26.6 26.9	26.8	8.0 8.0	8.0	21.9 21.5	21.7	87.0 91.0	89.0	6.2 6.4	6.3	6.3	5.5 5.6	5.6		4.2 4.5	4.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	Ł	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	10:41		Surface	1.0	25.6 25.5	25.6	8.1 8.1	8.1	28.2 28.4	28.3	109.3 107.5	108.4	7.6 7.5	7.6	7.0	3.3 3.4	3.4		2.3 3.1	2.7	
				5.4	Middle	-		-	-	-	-	-		-		-	7.6		-	3.4		-	2.8
					Bottom	4.4	25.1 25.2	25.2	8.1 8.1	8.1	30.1 30.5	30.3	104.2 107.4	105.8	7.2 7.4	7.3	7.3	3.5 3.3	3.4		2.9 2.6	2.8	l
4-May-15	Sunny	Moderate	13:51		Surface	1.0	26.7 26.4	26.6	8.2 8.1	8.2	26.8 27.2	27.0	94.7 93.3	94.0	6.5 6.4	6.5		3.6 3.6	3.6		4.0 5.5	4.8	
				5.0	Middle	-		-	-	-		-	-	-	-	-	6.5	-	-	3.6	-	-	5.1
					Bottom	4.0	26.5 26.3	26.4	8.1 8.1	8.1	27.4 27.8	27.6	93.6 92.9	93.3	6.5 6.4	6.4	6.4	3.6 3.6	3.6		4.8 5.7	5.3	
6-May-15	Sunny	Moderate	15:15		Surface	1.0	26.3 26.3	26.3	8.1 8.1	8.1	27.1 27.1	27.1	89.3 89.4	89.4	6.2 6.2	6.2	<u> </u>	5.4 5.6	5.5		5.3 6.4	5.9	
				4.9	Middle	-	-	-		-	-	-	-	-	-	-	6.2	-	-	5.7	-	-	6.1
					Bottom	3.9	26.3 26.3	26.3	8.1 8.1	8.1	27.1 27.1	27.1	89.2 89.3	89.3	6.2 6.2	6.2	6.2	5.5 6.0	5.8		7.1 5.5	6.3	
8-May-15	Sunny	Moderate	15:59		Surface	1.0	27.2 27.3	27.2	8.0 8.0	8.0	23.0 22.8	22.9	87.7 88.0	87.9	6.1 6.1	6.1	6.1	8.5 8.6	8.6		6.7 8.3	7.5	
				4.7	Middle	-	-	-		-	-	-	-	-	-	-	0.1	-	-	8.7	-	-	7.4
					Bottom	3.7	27.1 27.2	27.2	8.0 8.0	8.0	24.2 24.1	24.2	87.5 87.7	87.6	6.1 6.1	6.1	6.1	8.6 8.7	8.7		7.2 7.1	7.2	
11-May-15	Cloudy	Moderate	19:10		Surface	1.0	26.7 26.6	26.7	8.1 8.1	8.1	24.6 24.6	24.6	92.7 91.3	92.0	6.5 6.4	6.4	6.4	4.7 4.7	4.7		3.1 3.3	3.2	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-	4.7	-	-	4.6
					Bottom	4.1	26.6 26.5	26.5	8.1 8.1	8.1	25.5 25.8	25.6	91.9 92.9	92.4	6.4 6.5	6.4	6.4	4.6 4.7	4.7		5.8 5.9	5.9	
13-May-15	Sunny	Moderate	08:38		Surface	1.0	25.2 25.4	25.3	8.1 8.1	8.1	28.4 28.1	28.3	78.8 80.3	79.6	5.5 5.6	5.6	5.6	4.5 4.5	4.5		4.6 3.5	4.1	
				5.4	Middle	•	-	-		-		-	-	-	-	-	5.0	-	-	4.5	-	-	4.0
					Bottom	4.4	25.1 25.0	25.1	8.1 8.0	8.0	31.3 31.6	31.5	79.7 77.0	78.4	5.5 5.3	5.4	5.4	4.4 4.5	4.5		4.2 3.6	3.9	
15-May-15	Sunny	Moderate	09:42		Surface	1.0	25.7 26.1	25.9	8.1 8.1	8.1	27.2 27.0	27.1	78.8 82.2	80.5	5.5 5.7	5.6	5.6	5.4 5.4	5.4		8.8 8.7	8.8	
				5.2	Middle	•	-	-		-		-	-	-	-	-	5.0	-	-	5.4	-	-	7.7
					Bottom	4.2	25.5 25.4	25.4	8.1 8.0	8.0	30.5 31.8	31.2	79.5 81.5	80.5	5.5 5.6	5.5	5.5	5.3 5.2	5.3		6.6 6.6	6.6	
18-May-15	Sunny	Moderate	13:42		Surface	1.0	26.5 26.4	26.5	8.0 8.0	8.0	22.3 22.0	22.1	81.0 80.4	80.7	5.8 5.7	5.7	5.7	8.3 8.0	8.2		5.4 5.0	5.2	
				5.1	Middle	-	-	-		-		-	-	-	-	-	5.7	-	-	8.2	-	-	6.2
					Bottom	4.1	26.4 26.3	26.4	8.0 8.0	8.0	22.5 23.1	22.8	80.7 79.8	80.3	5.7 5.7	5.7	5.7	8.1 8.2	8.2		6.9 7.5	7.2	<u> </u>
20-May-15	Rainy	Moderate	15:15		Surface	1.0	26.5 26.5	26.5	8.0 8.0	8.0	19.4 20.1	19.8	77.3 78.3	77.8	5.6 5.6	5.6	5.6	14.4 14.2	14.3		9.2 10.8	10.0	
				5.2	Middle	-	-	-		-		-	-	-	-	-	5.0	-	-	14.4	-	-	10.7
					Bottom	4.2	26.3 26.5	26.4	8.0 8.0	8.0	21.1 20.8	20.9	77.1 77.9	77.5	5.5 5.6	5.6	5.6	14.5 14.5	14.5		12.3 10.5	11.4	l

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	ኔ (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Cloudy	Moderate	16:31		Surface	1.0	25.9 25.9	25.9	8.0 8.0	8.0	21.5 21.4	21.5	80.3 81.6	81.0	5.8 5.9	5.8	5.8	5.5 5.4	5.5		3.8 3.1	3.5	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	5.0	-	-	5.6	-	-	3.4
					Bottom	4.2	25.8 25.8	25.8	8.0 8.0	8.0	22.0 22.0	22.0	81.2 79.6	80.4	5.8 5.7	5.8	5.8	5.5 5.6	5.6		2.9 3.5	3.2	
25-May-15	Cloudy	Moderate	18:31		Surface	1.0	27.5 26.9	27.2	7.7 7.8	7.8	13.3 13.6	13.4	80.3 79.4	79.9	5.9 5.8	5.8	5.8	6.3 6.5	6.4		2.9 2.6	2.8	
				5.0	Middle	-	-	-	-	-	-	-		-		-	5.0	-	-	6.5	-	-	2.8
					Bottom	4.0	26.1 27.0	26.5	7.7 7.7	7.7	17.4 16.8	17.1	74.4 78.7	76.6	5.5 5.8	5.6	5.6	6.4 6.6	6.5		2.9 2.4	2.7	
27-May-15	Cloudy	Moderate	08:09		Surface	1.0	26.3 26.3	26.3	7.7 7.7	7.7	13.9 13.8	13.9	77.6 77.3	77.5	5.8 5.8	5.8	5.8	7.5 7.6	7.6		6.4 6.3	6.4	
				5.1	Middle	-	-	-	-	-	-	-	-	-		-	5.0	-	-	7.6	-	-	6.2
					Bottom	4.1	26.3 26.3	26.3	7.7 7.7	7.7	14.6 14.1	14.3	78.1 77.5	77.8	5.8 5.8	5.8	5.8	7.5 7.6	7.6		5.6 6.1	5.9	
29-May-15	Sunny	Moderate	09:13		Surface	1.0	27.5 27.4	27.4	8.0 8.0	8.0	12.0 12.2	12.1	89.0 87.3	88.2	6.6 6.5	6.5	6.5	5.5 5.4	5.5		2.9 3.0	3.0	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	5.5	-	-	3.2
					Bottom	4.2	27.1 27.3	27.2	7.9 7.9	7.9	16.9 16.2	16.6	87.0 88.2	87.6	6.3 6.4	6.3	6.3	5.4 5.4	5.4		3.5 3.0	3.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

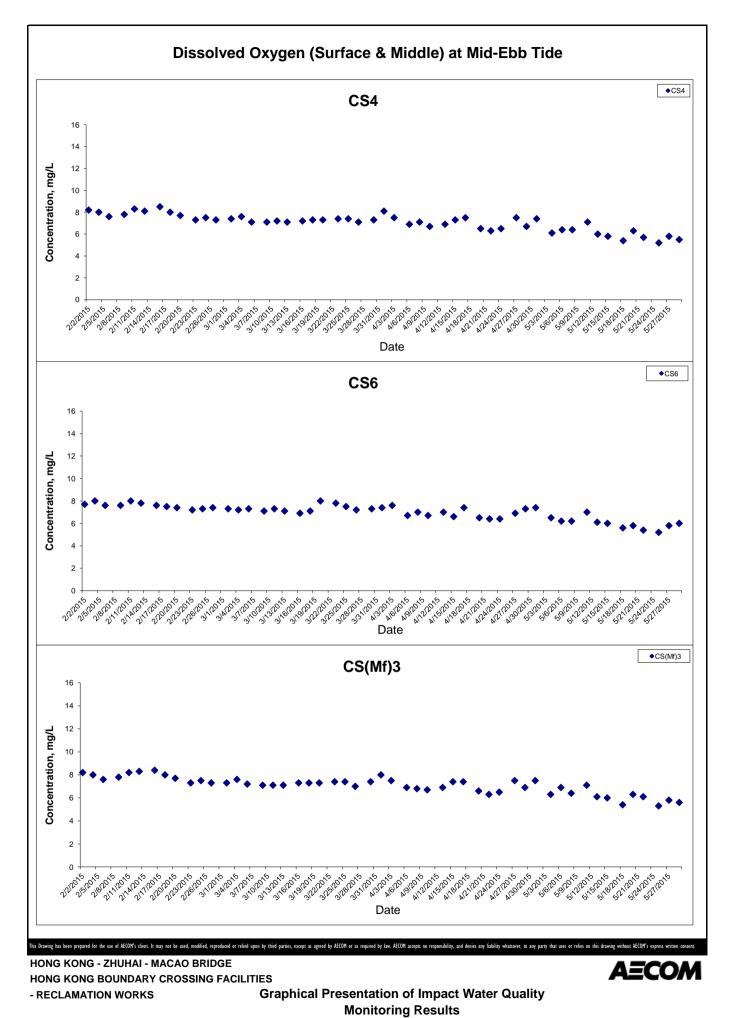
* DA: Depth-Averaged

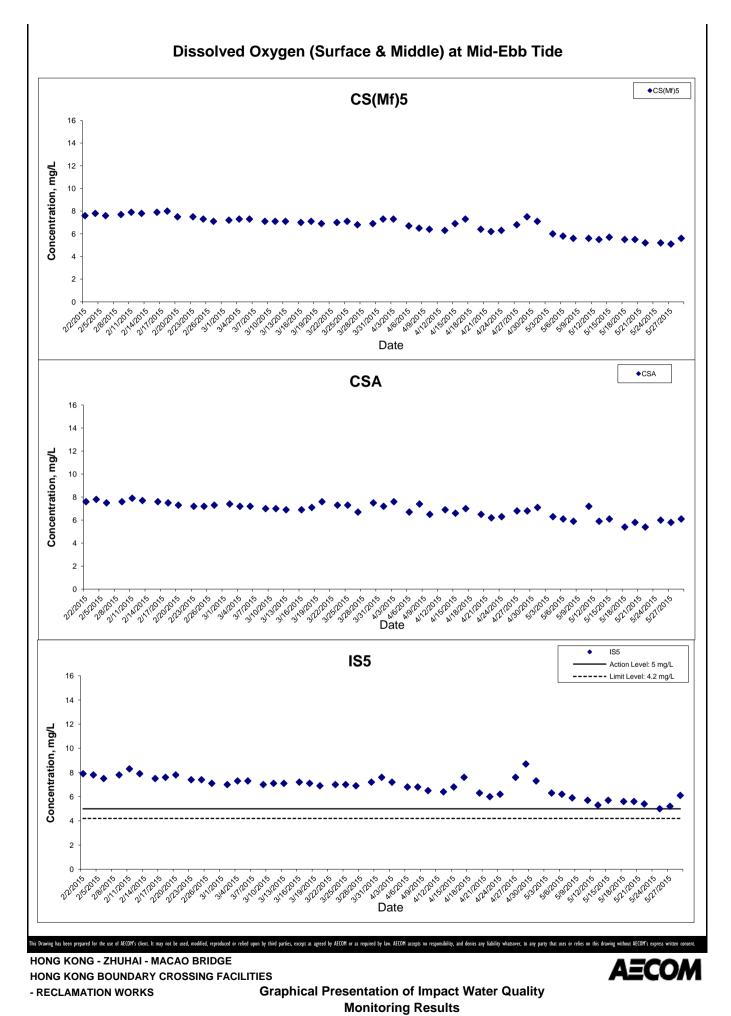
Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

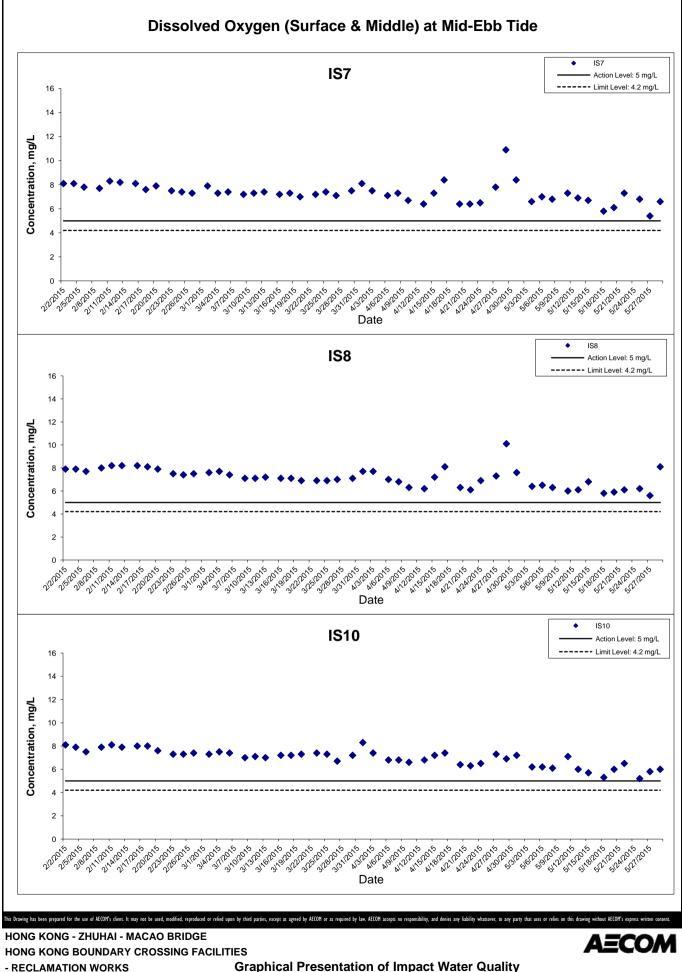
Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-May-15	Sunny	Moderate	18:40		Surface	1.0	25.7 25.8	25.8	8.3 8.3	8.3	28.3 28.2	28.3	111.6 111.8	111.7	7.8 7.8	7.8	7.0	2.6 2.6	2.6		2.4 2.3	2.4	
				5.3	Middle	-	-	-	-	-		-		-	-	-	7.8	-	-	2.6	-	-	2.7
					Bottom	4.3	25.6 25.8	25.7	8.3 8.3	8.3	28.9 28.6	28.7	111.1 111.4	111.3	7.7 7.7	7.7	7.7	2.6 2.6	2.6		2.8 2.9	2.9	
4-May-15	Sunny	Moderate	05:47		Surface	1.0	25.6 25.6	25.6	8.0 8.0	8.0	29.5 29.4	29.5	86.2 86.1	86.2	6.0 6.0	6.0		3.3 3.3	3.3		2.5 2.6	2.6	
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	3.4	-	-	2.4
					Bottom	3.8	25.5 25.5	25.5	8.0 8.0	8.0	30.2 29.8	30.0	86.0 86.1	86.1	5.9 6.0	5.9	5.9	3.3 3.4	3.4		2.3 2.0	2.2	
6-May-15	Sunny	Moderate	06:37		Surface	1.0	25.6 25.5	25.6	7.9 7.9	7.9	29.2 30.1	29.6	82.1 82.8	82.5	5.7 5.7	5.7	5.7	3.7 3.8	3.8		2.8 2.1	2.5	
				5.1	Middle	-	-	-	-	-		-		-	-	-	5.7	-	-	3.9	-	-	3.0
					Bottom	4.1	25.6 25.4	25.5	7.9 7.8	7.9	30.5 31.7	31.1	82.3 84.5	83.4	5.7 5.8	5.7	5.7	4.1 3.9	4.0		3.8 3.1	3.5	
8-May-15	Sunny	Moderate	07:34		Surface	1.0	27.0 27.0	27.0	8.0 8.0	8.0	21.1 21.1	21.1	86.9 84.2	85.6	6.1 6.0	6.0	6.0	6.6 6.5	6.6		4.7 3.5	4.1	
				5.0	Middle	-	-	-	-	-		-		-	-	-	6.0	-	-	6.6	-	-	4.2
					Bottom	4.0	26.9 26.8	26.8	7.9 7.9	7.9	23.1 24.8	23.9	85.0 83.9	84.5	6.0 5.8	5.9	5.9	6.6 6.5	6.6		4.6 3.8	4.2	
11-May-15	Cloudy	Moderate	10:02		Surface	1.0	26.5 26.5	26.5	7.9 7.8	7.9	24.8 23.6	24.2	87.3 87.7	87.5	6.2 6.2	6.2	6.2	4.7 4.8	4.8		4.2 4.7	4.5	
				4.9	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	4.8	-	-	5.6
					Bottom	3.9	26.3 26.3	26.3	7.9 7.7	7.8	25.3 25.8	25.6	86.4 87.0	86.7	6.1 6.1	6.1	6.1	4.8 4.7	4.8		6.3 6.9	6.6	
13-May-15	Sunny	Moderate	15:40		Surface	1.0	25.6 25.8	25.7	8.2 8.2	8.2	26.3 26.1	26.2	83.2 86.7	85.0	5.9 6.1	6.0	6.0	4.9 5.0	5.0		3.0 2.1	2.6	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	5.1	-	-	2.7
					Bottom	4.3	25.1 25.4	25.3	8.1 8.1	8.1	30.7 30.4	30.6	81.0 85.6	83.3	5.6 5.9	5.8	5.8	5.1 5.0	5.1		2.3 3.0	2.7	
15-May-15	Sunny	Moderate	18:00		Surface	1.0	26.5 26.4	26.4	8.1 8.1	8.1	24.1 24.3	24.2	81.7 81.5	81.6	5.7 5.7	5.7	5.7	6.7 6.1	6.4		3.2 3.3	3.3	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-	6.6	-	-	4.5
					Bottom	4.5	26.1 26.2	26.2	8.1 8.1	8.1	26.9 27.0	26.9	81.1 81.1	81.1	5.6 5.6	5.6	5.6	6.7 6.8	6.8		7.2 4.1	5.7	
18-May-15	Cloudy	Moderate	05:14		Surface	1.0	25.8 25.8	25.8	8.0 7.9	8.0	26.9 27.1	27.0	77.6 78.4	78.0	5.4 5.5	5.5		8.2 8.1	8.2		7.4 7.8	7.6	
				5.0	Middle	-	-	-	-	-		-		-	-	-	5.5	-	-	8.6	-	-	7.4
					Bottom	4.0	25.7 25.7	25.7	8.0 8.0	8.0	28.1 28.0	28.0	77.1 77.4	77.3	5.4 5.4	5.4	5.4	9.2 8.7	9.0		8.1 6.0	7.1	
20-May-15	Rainy	Moderate	06:26		Surface	1.0	26.5 26.4	26.5	7.9 7.9	7.9	17.9 18.0	18.0	76.5 75.3	75.9	5.6 5.5	5.5	5.5	7.0 7.1	7.1		3.8 4.8	4.3	
				5.0	Middle	-	-	-	-	-		-		-	-	-	5.5	-	-	7.3	-	-	4.7
					Bottom	4.0	26.3 26.4	26.3	7.9 7.9	7.9	20.6 20.5	20.5	73.8 75.4	74.6	5.3 5.4	5.4	5.4	7.5 7.3	7.4		6.0 4.2	5.1	

Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

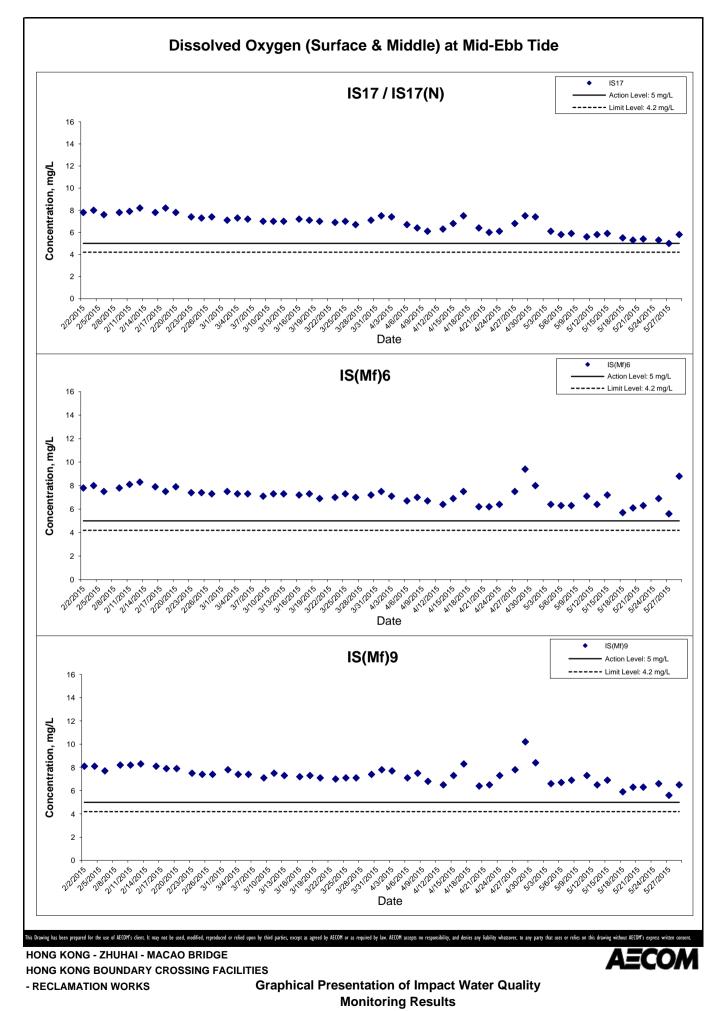
Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-May-15	Rainy	Moderate	07:46		Surface	1.0	25.8 25.6	25.7	7.9 7.9	7.9	20.7 21.7	21.2	78.3 77.1	77.7	5.7 5.6	5.6	5.6	6.6 6.5	6.6		5.0 5.6	5.3	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	5.0	-	-	6.6	-	-	4.8
					Bottom	4.1	25.7 25.5	25.6	7.9 7.9	7.9	24.4 23.3	23.9	78.7 73.7	76.2	5.6 5.3	5.4	5.4	6.6 6.6	6.6	<u> </u>	4.2 4.3	4.3	
25-May-15	Sunny	Moderate	10:02		Surface	1.0	26.0 25.9	26.0	7.7 7.7	7.7	16.2 16.4	16.3	72.3 80.0	76.2	5.3 5.8	5.6	5.6	6.2 6.2	6.2		3.8 3.7	3.8	
				5.1	Middle	-	-	-		-	-	-	-	-	-	-	0.0	-	-	6.3	-	-	3.8
					Bottom	4.1	25.9 25.7	25.8	7.7 7.7	7.7	19.1 19.4	19.3	71.6 73.8	72.7	5.3 5.4	5.4	5.4	6.4 6.2	6.3		4.2 3.4	3.8	
27-May-15	Cloudy	Moderate	15:20		Surface	1.0	26.2 26.4	26.3	7.9 7.9	7.9	13.3 13.7	13.5	72.9 73.0	73.0	5.5 5.5	5.5	5.5	7.8 8.0	7.9		5.2 5.3	5.3	
				5.5	Middle	-	-	-		-	-	-	-	-	-	-	5.5	-	-	7.9	-	-	5.5
					Bottom	4.5	26.1 26.2	26.2	7.8 7.8	7.8	19.8 20.3	20.0	72.9 72.7	72.8	5.3 5.2	5.3	5.3	7.8 7.7	7.8		5.6 5.5	5.6	
29-May-15	Sunny	Moderate	17:45		Surface	1.0	27.4 27.3	27.4	8.1 8.1	8.1	14.0 14.2	14.1	90.6 89.3	90.0	6.6 6.5	6.6	6.6	6.0 5.8	5.9		4.3 3.2	3.8	
				5.6	Middle	-	-	-		-	-	-	-	-	-	-	0.0	-	-	5.8	-	-	3.9
					Bottom	4.6	26.9 27.3	27.1	8.0 8.1	8.0	19.0 19.1	19.0	89.5 90.2	89.9	6.4 6.4	6.4	6.4	5.5 5.8	5.7	<u> </u>	3.8 4.1	4.0	

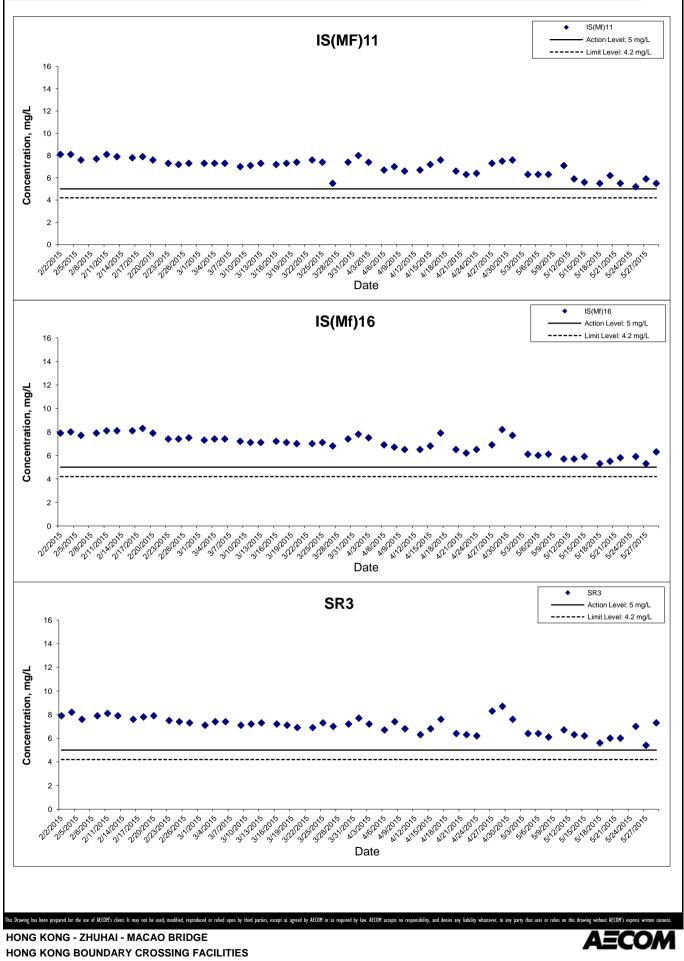

Remarks:

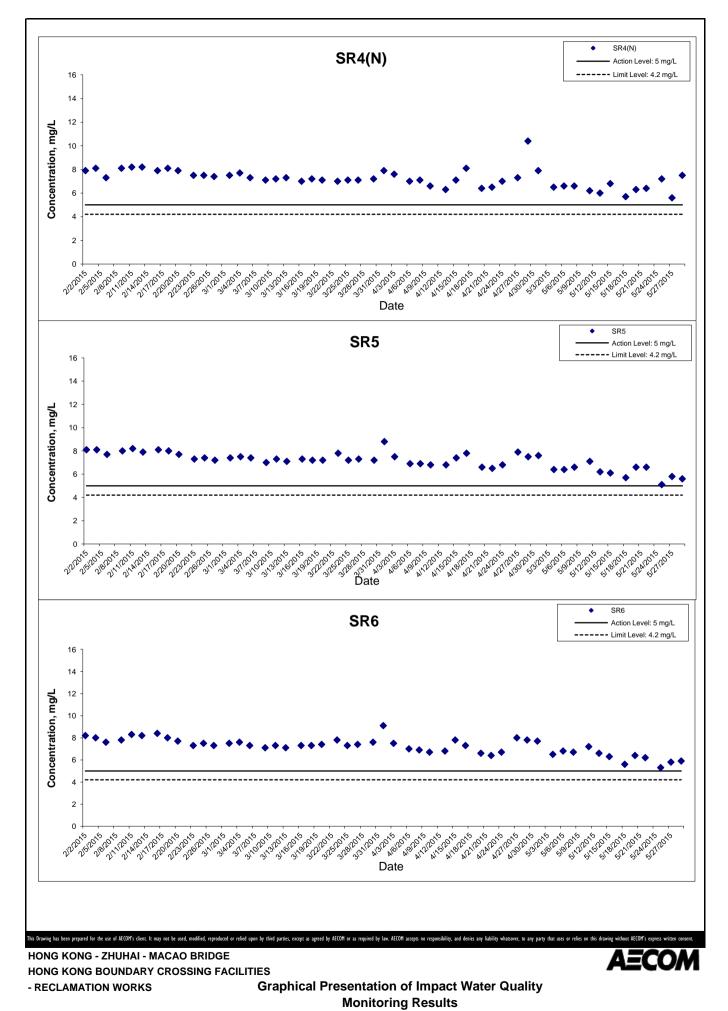

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

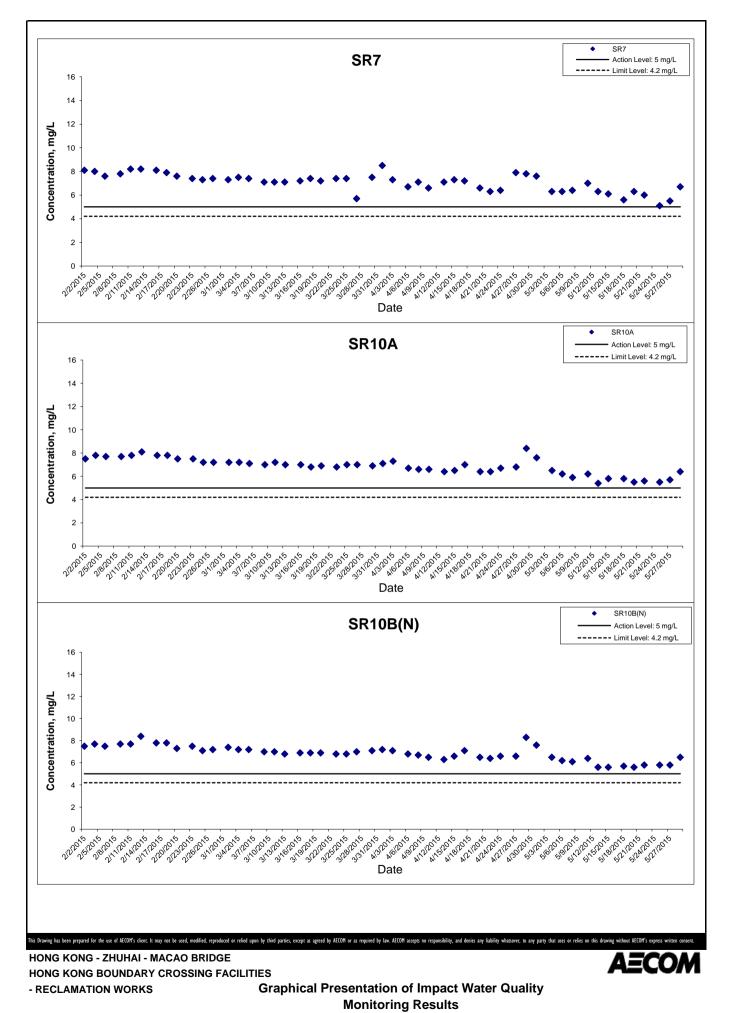

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

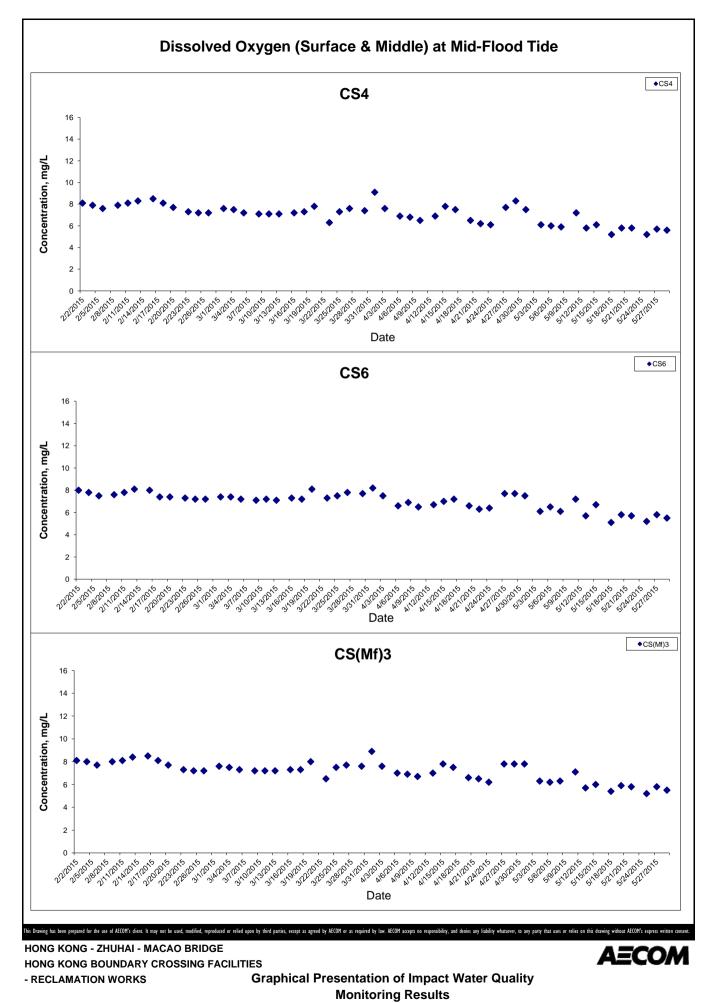
Remarks:

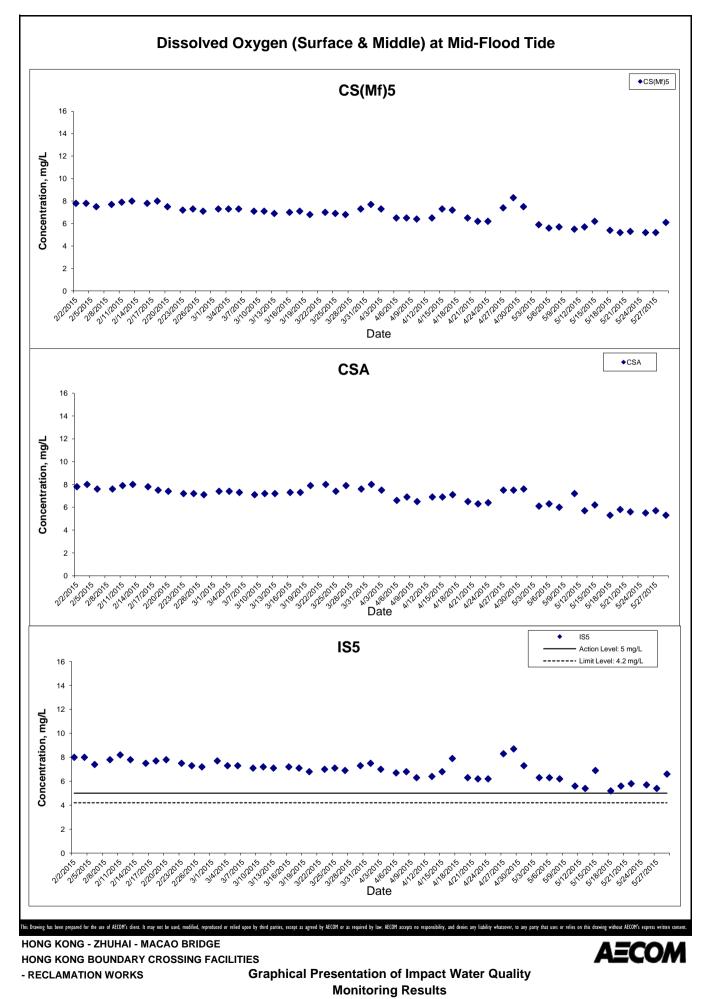

* DA: Depth-Averaged

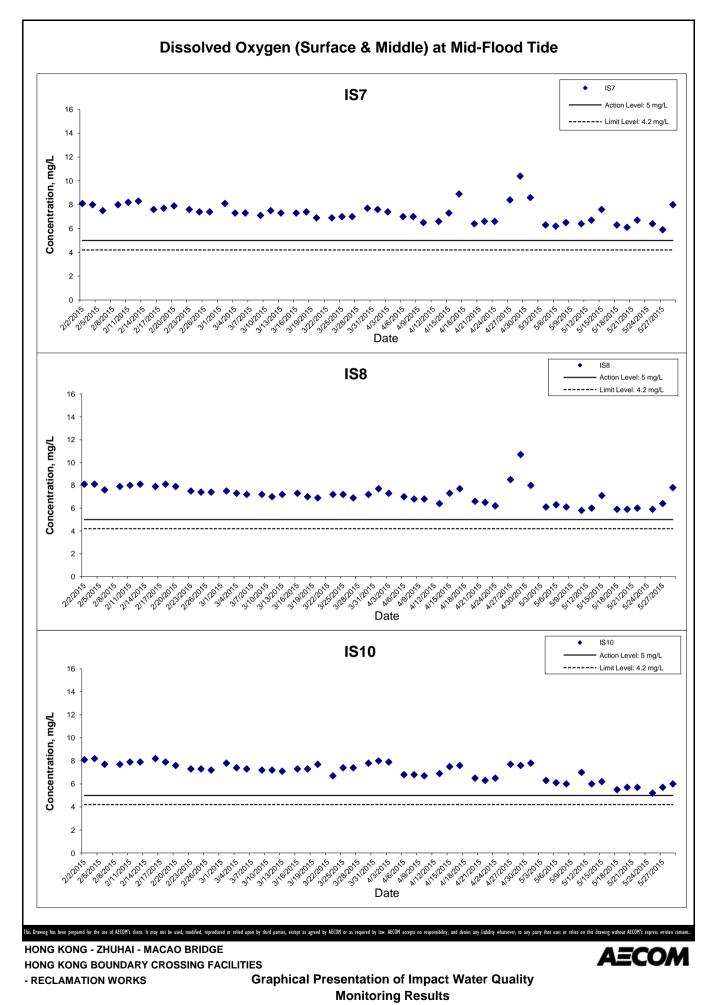


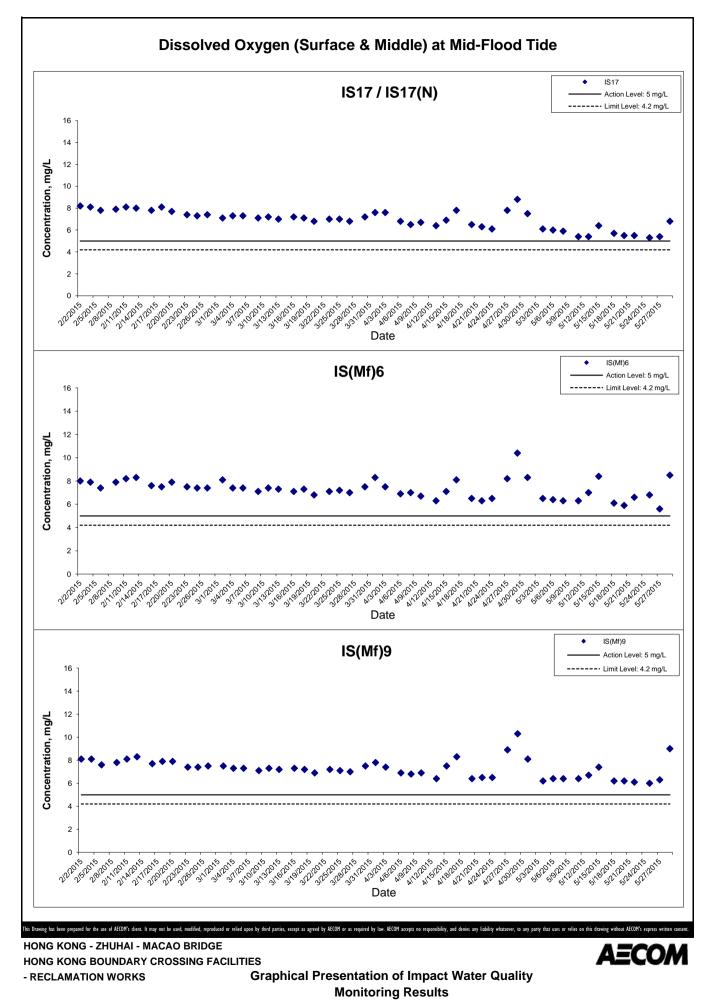


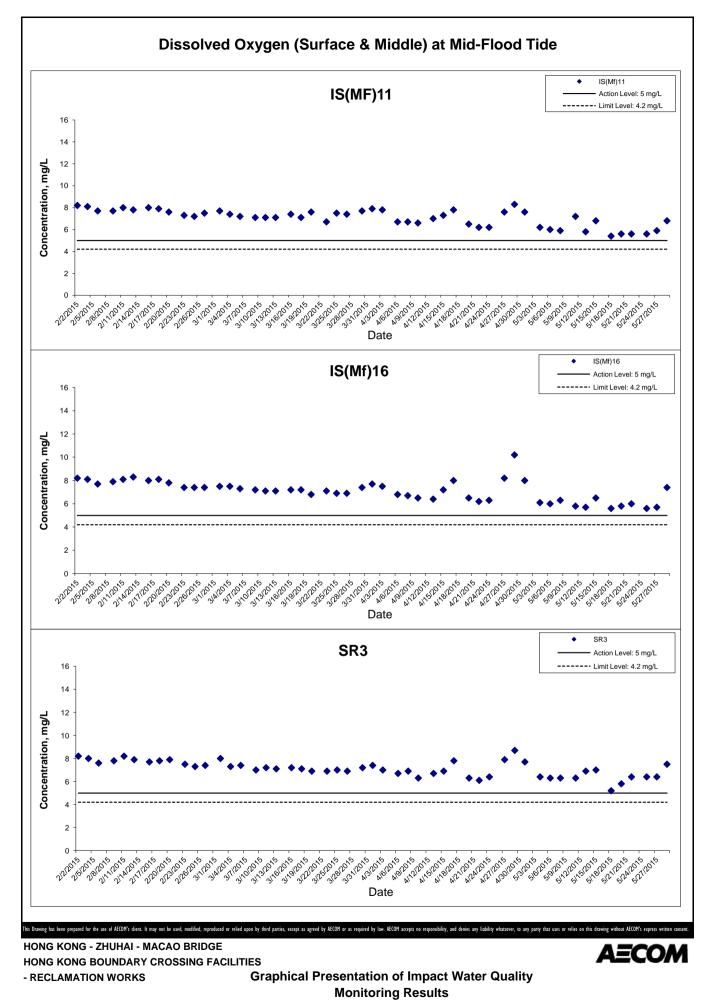

Graphical Presentation of Impact Water Quality Monitoring Results

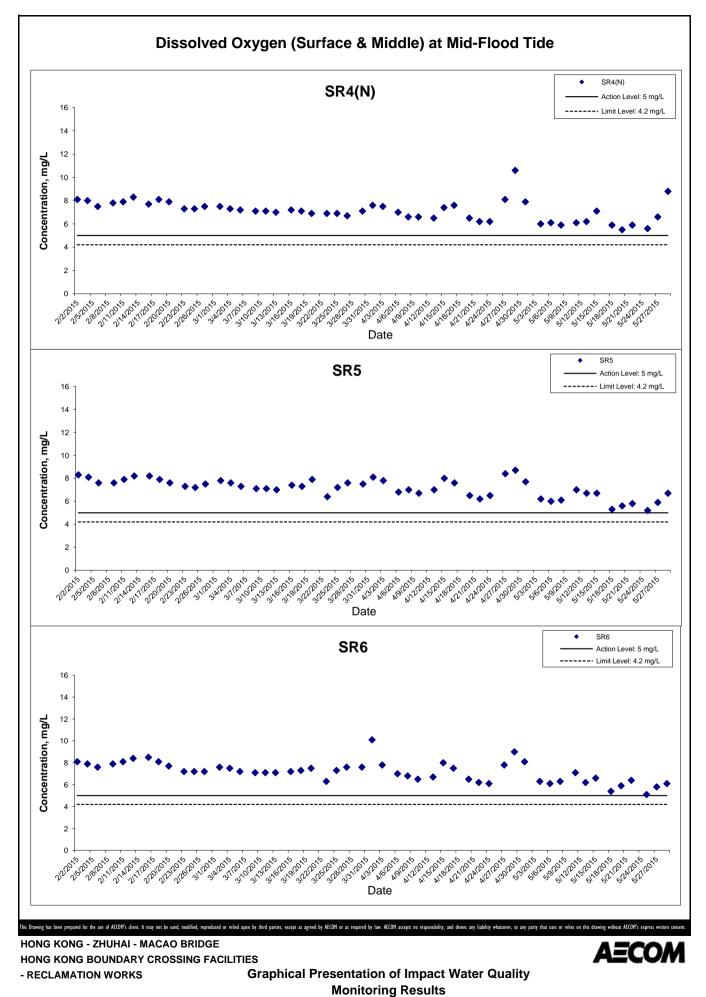


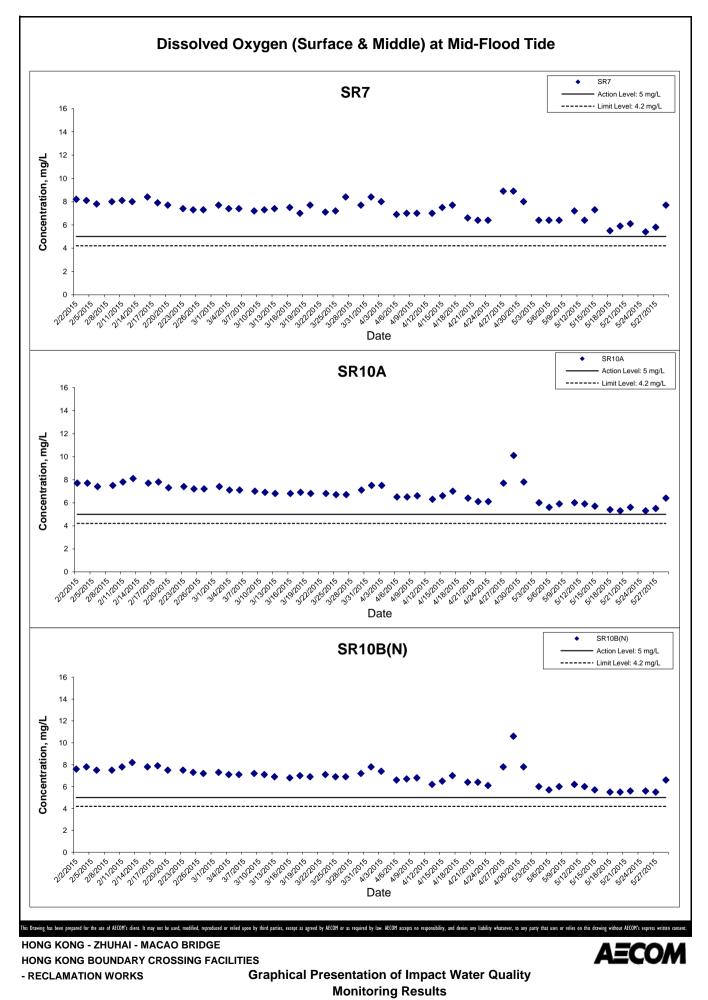


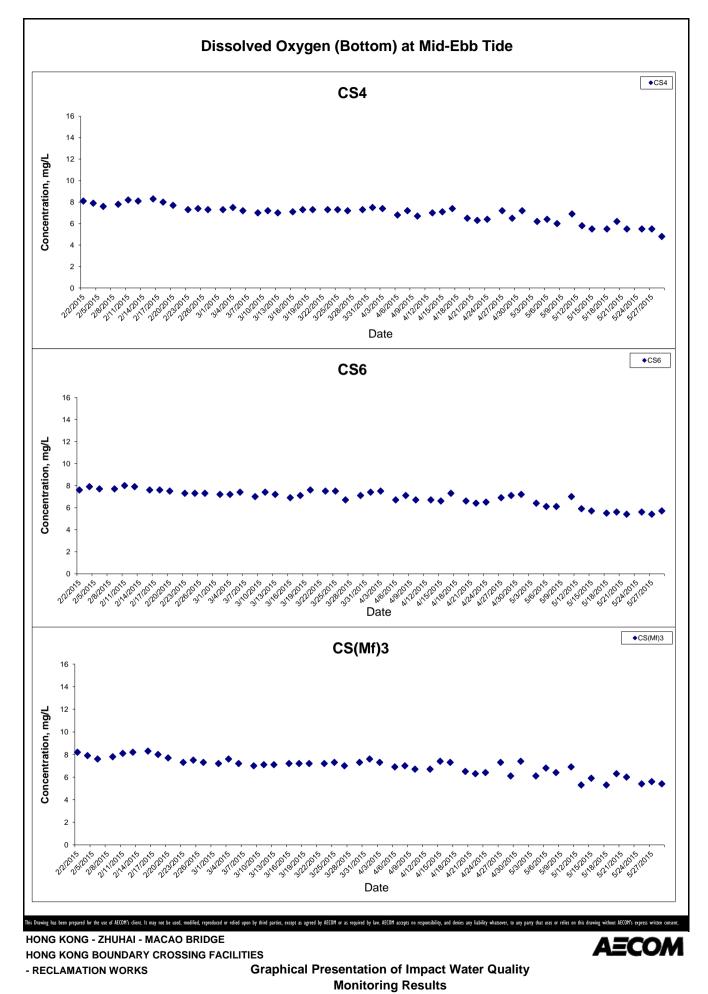

- RECLAMATION WORKS

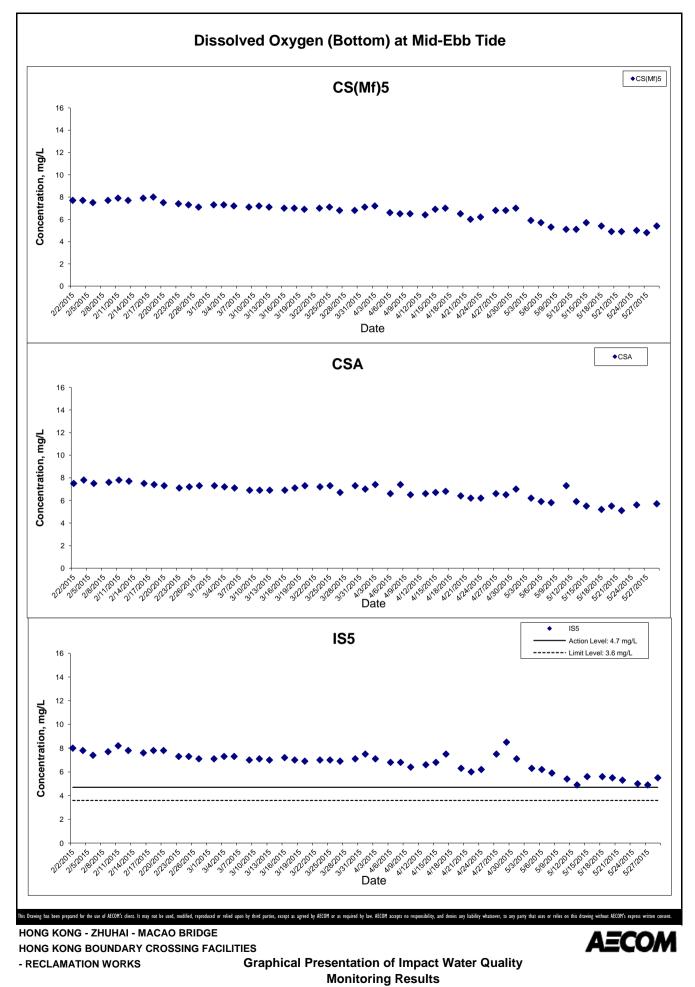


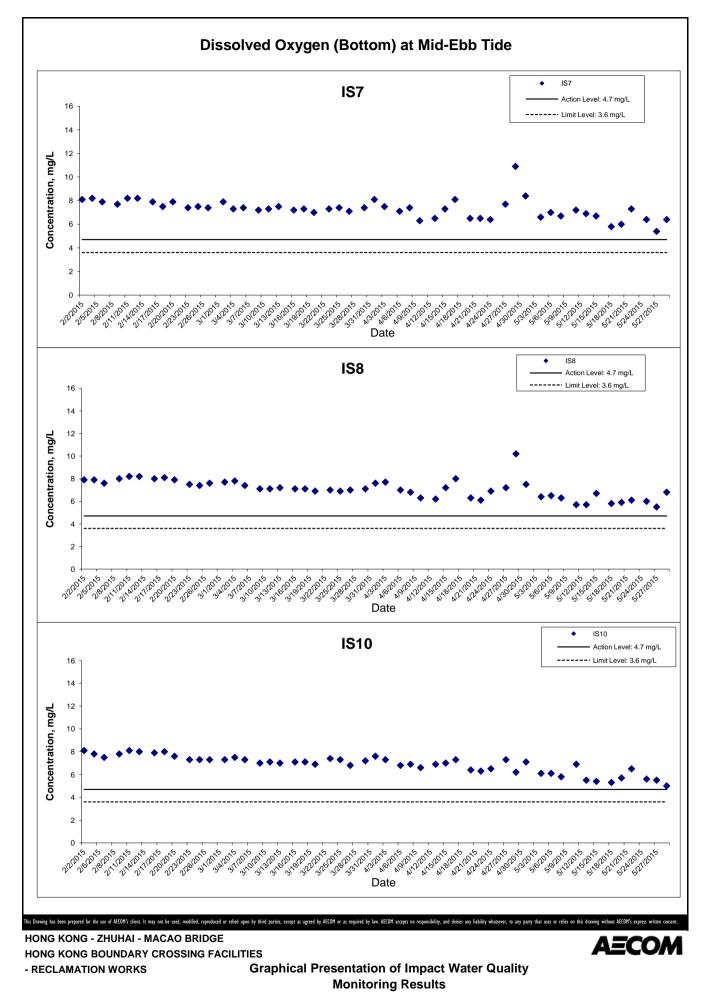


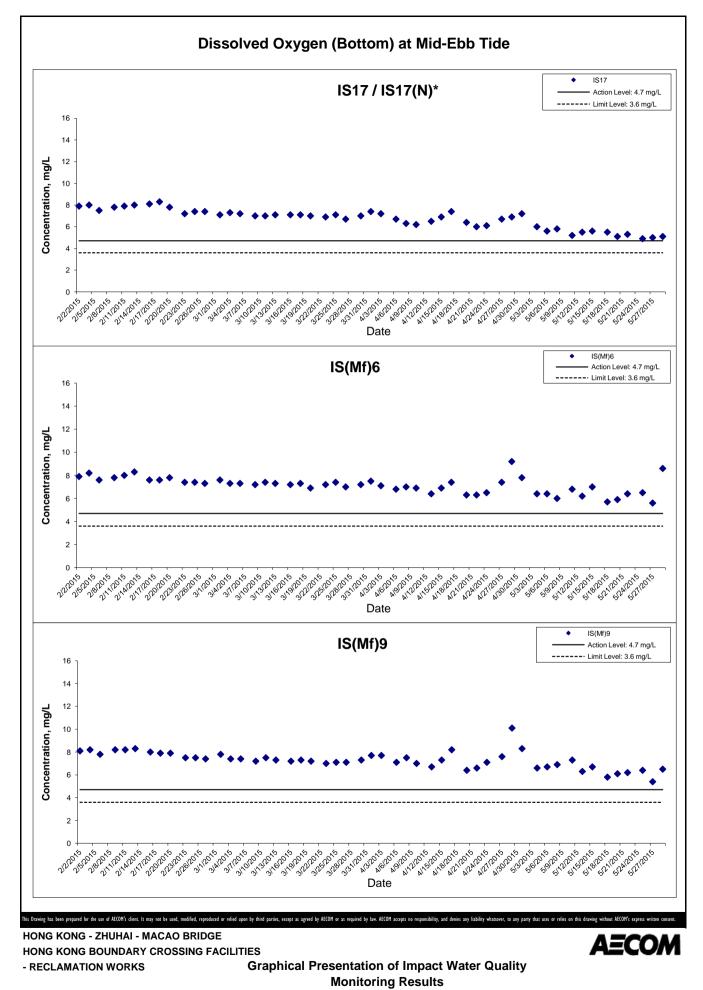


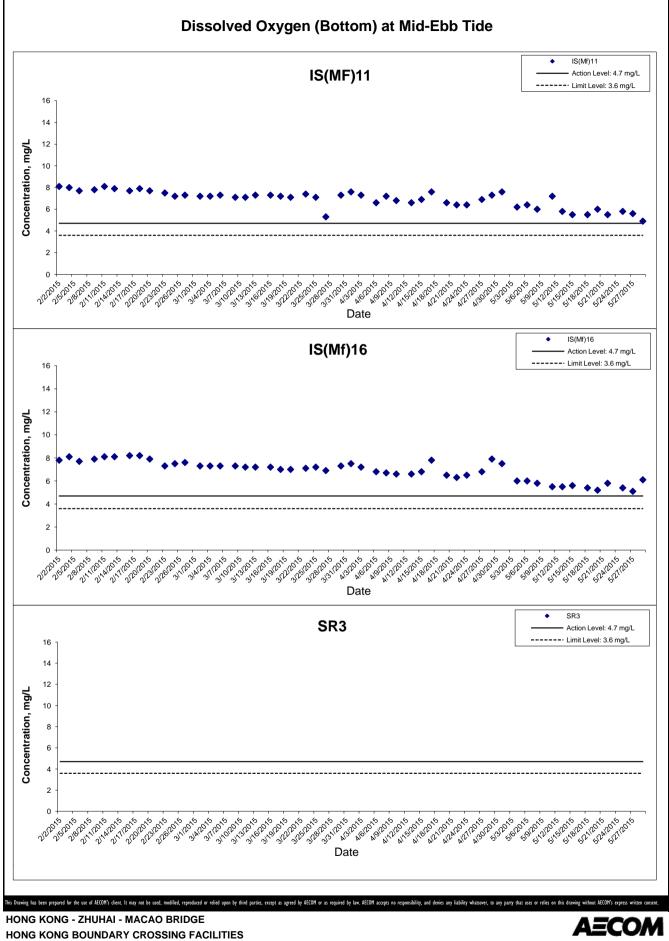


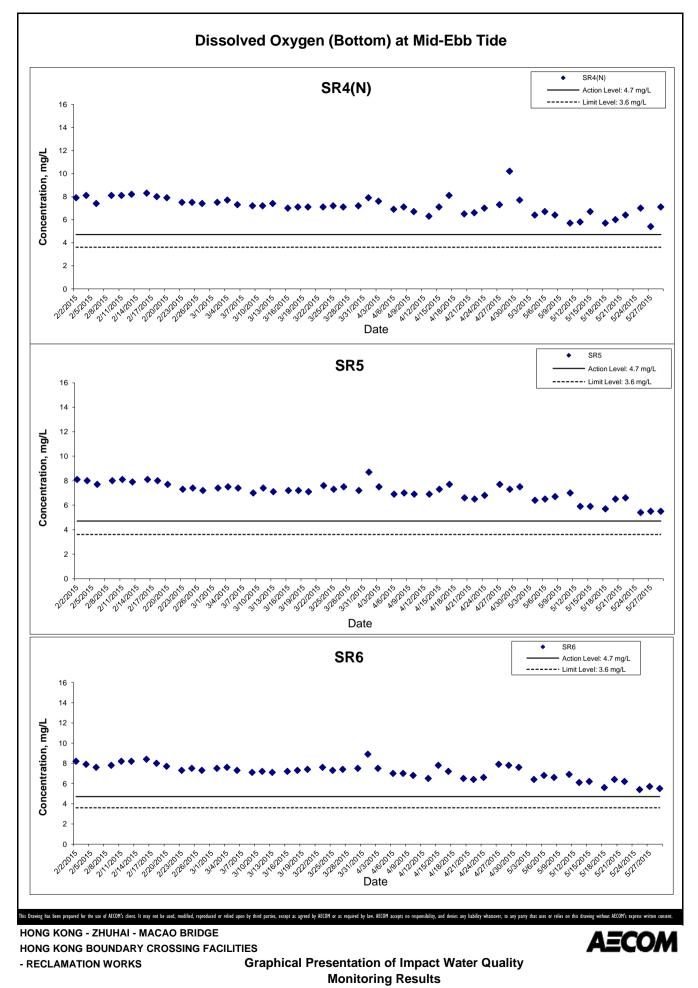

Project No.: 60249820 Date: June 2015

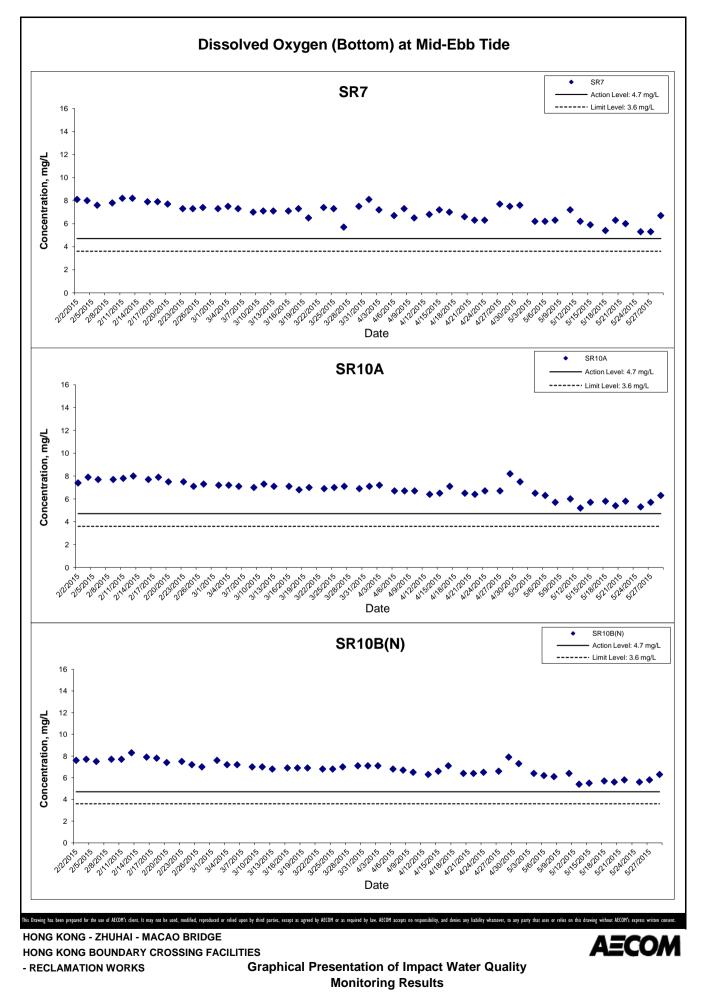


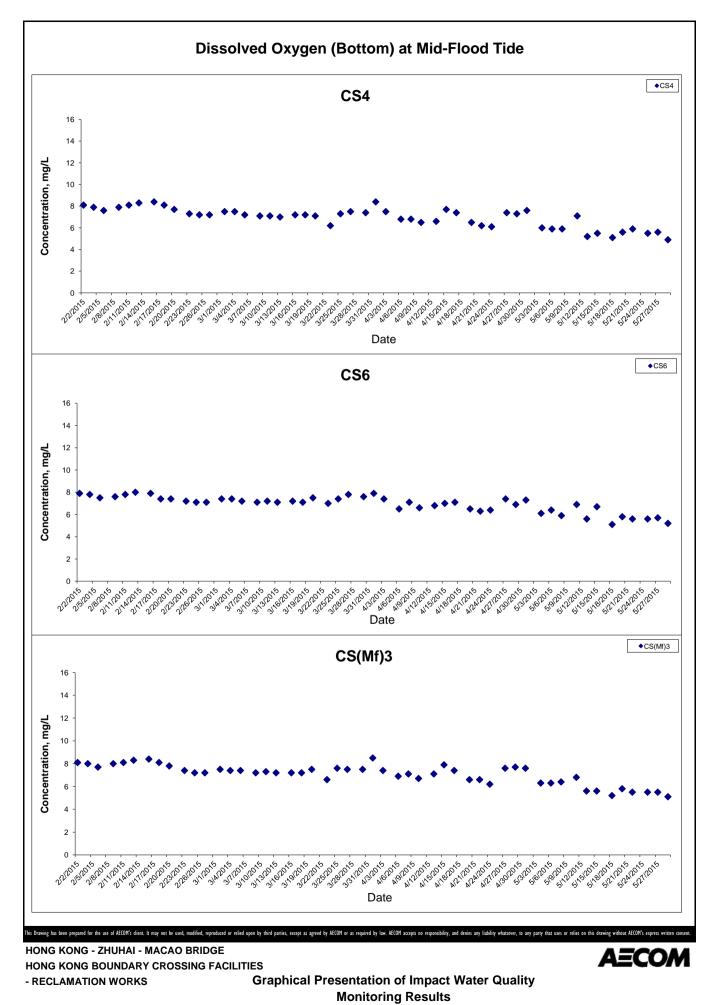


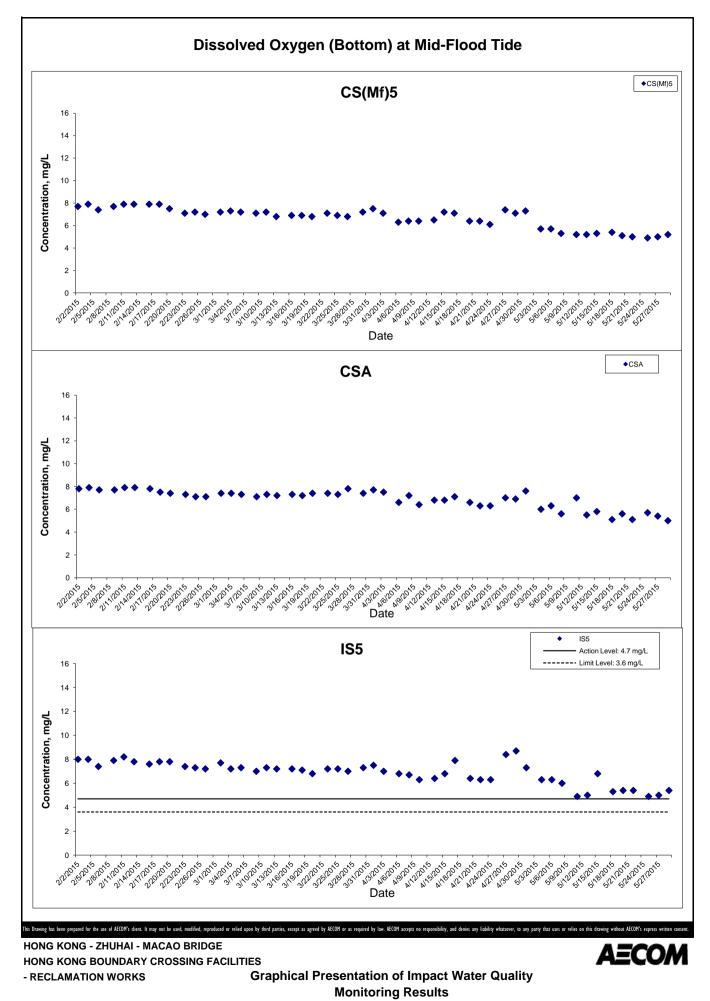


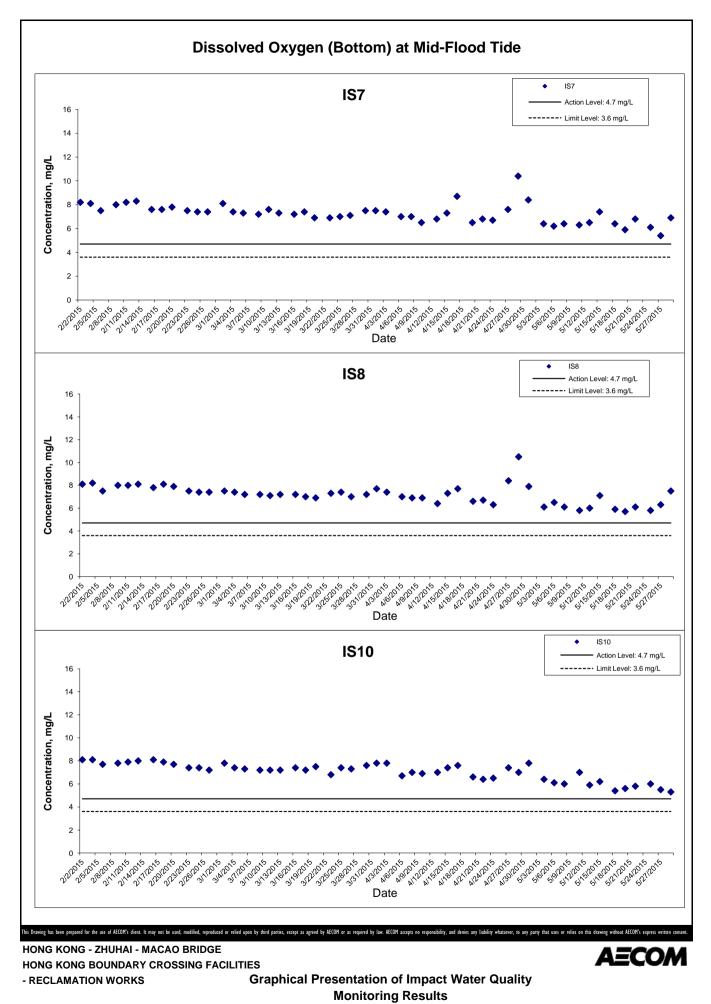

Project No.: 60249820 Date: June 2015

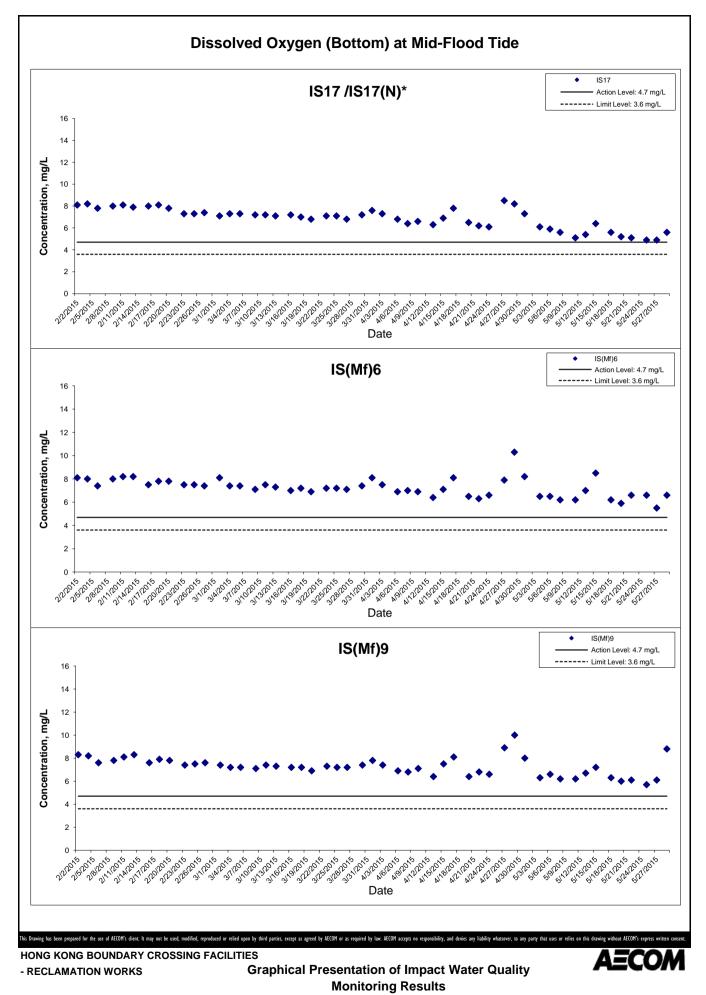


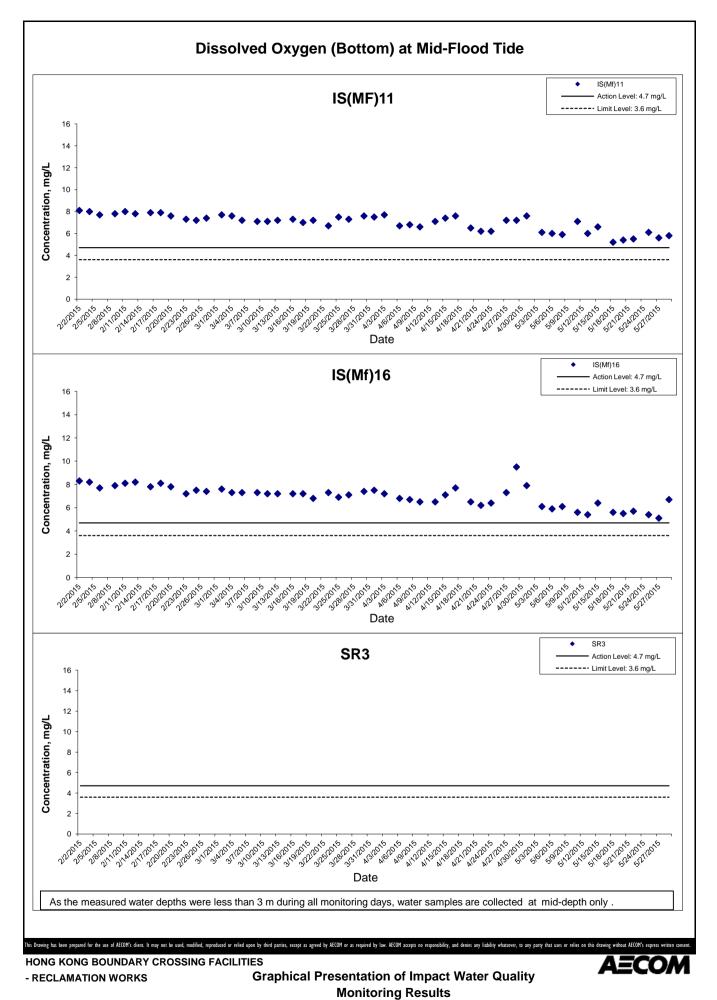


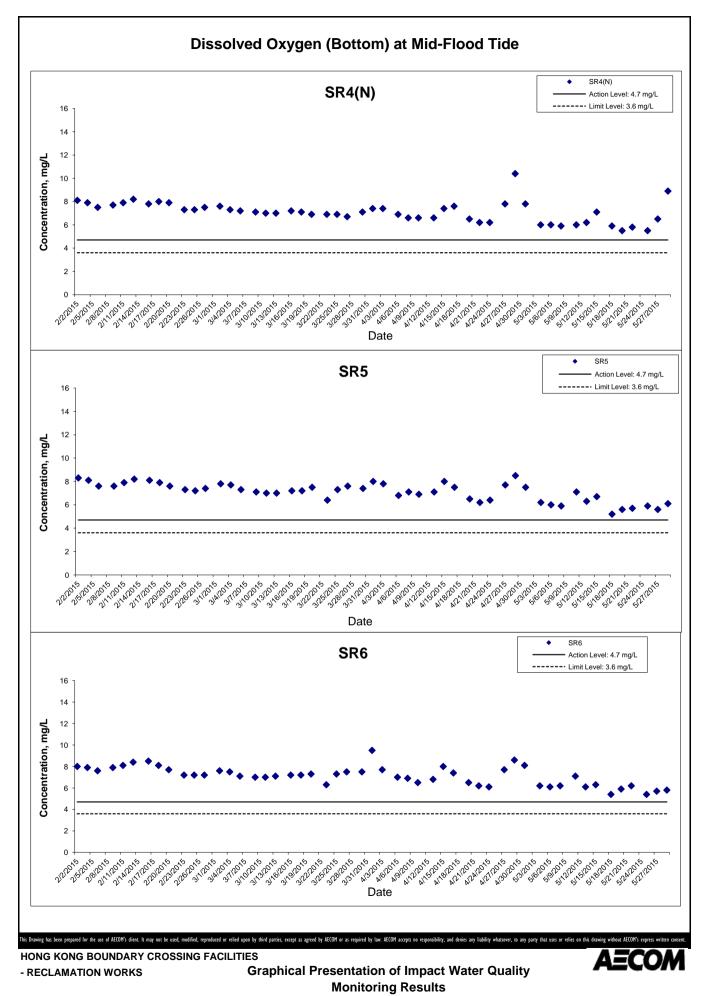


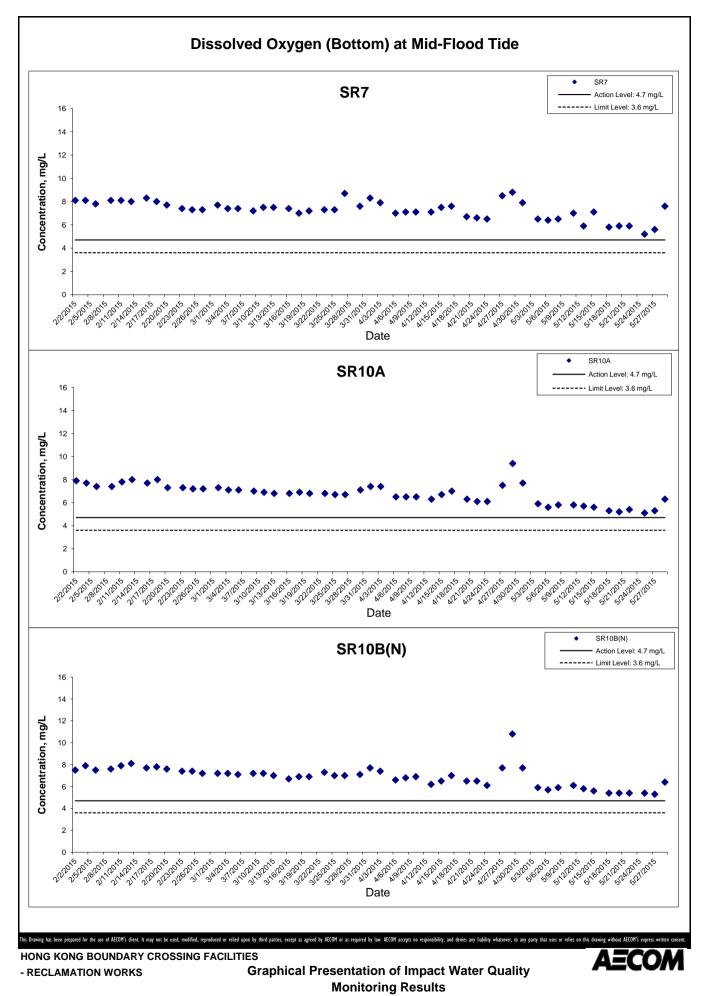

Graphical Presentation of Impact Water Quality Monitoring Results

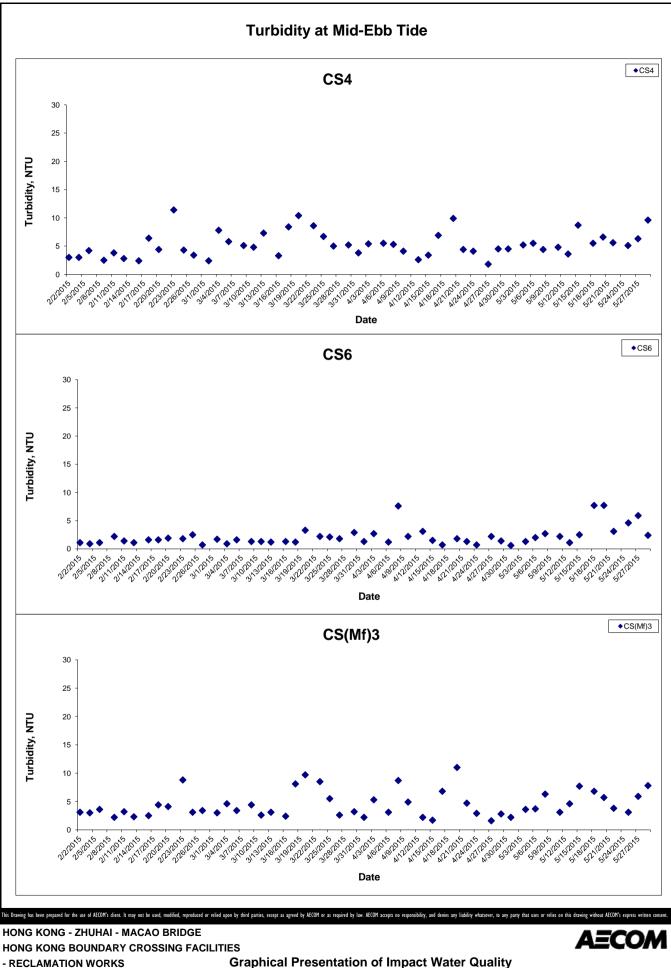

- RECLAMATION WORKS

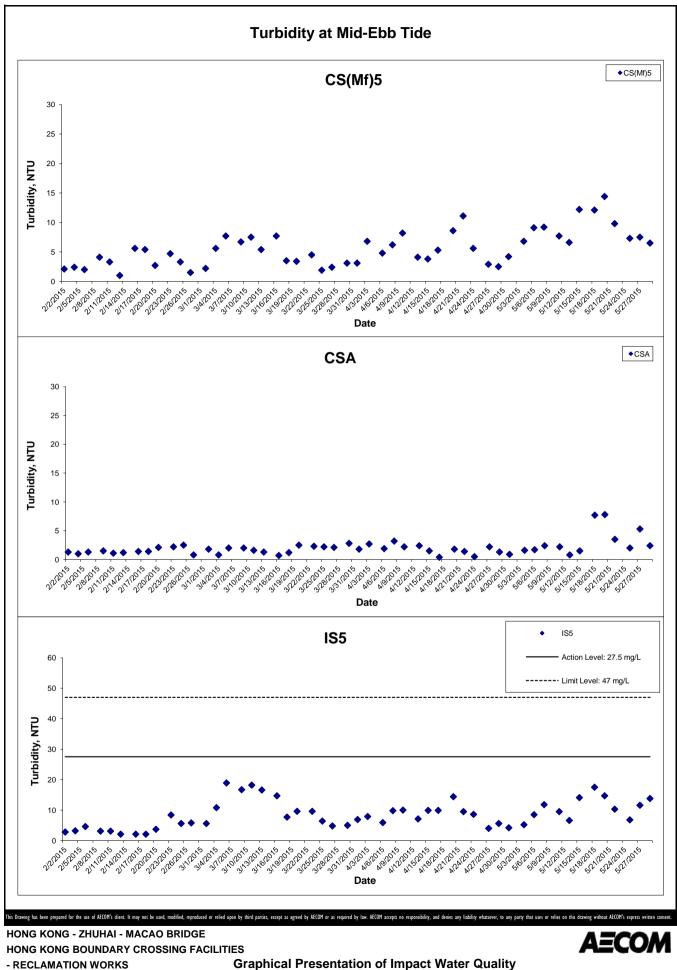


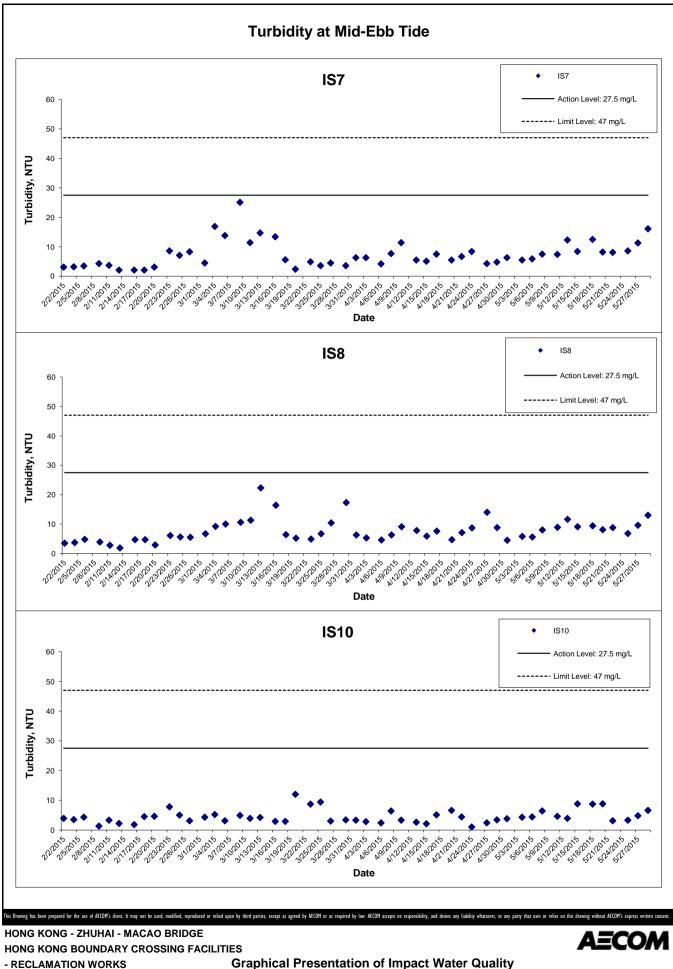


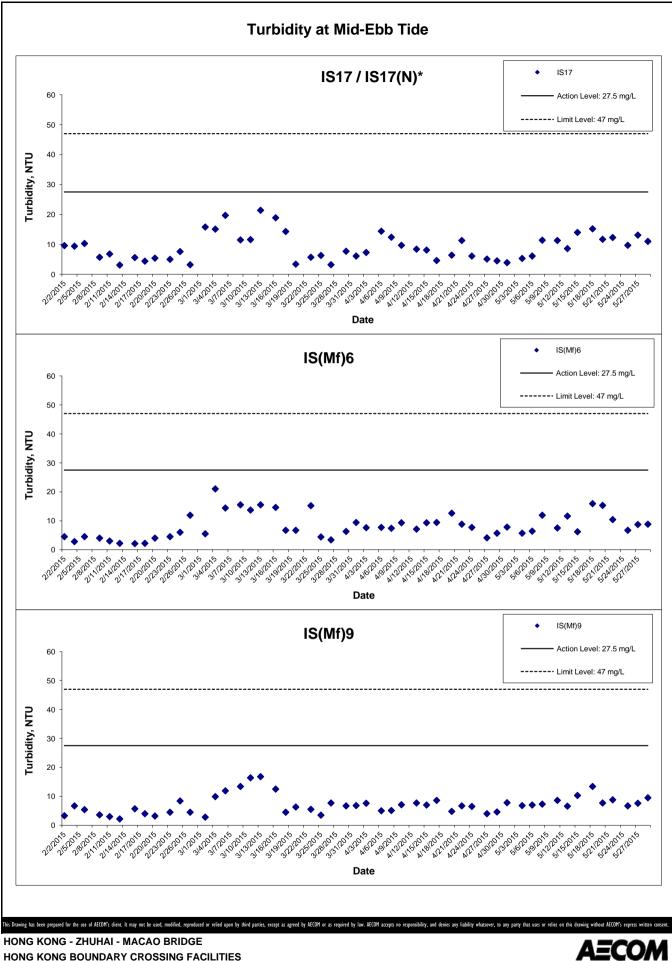


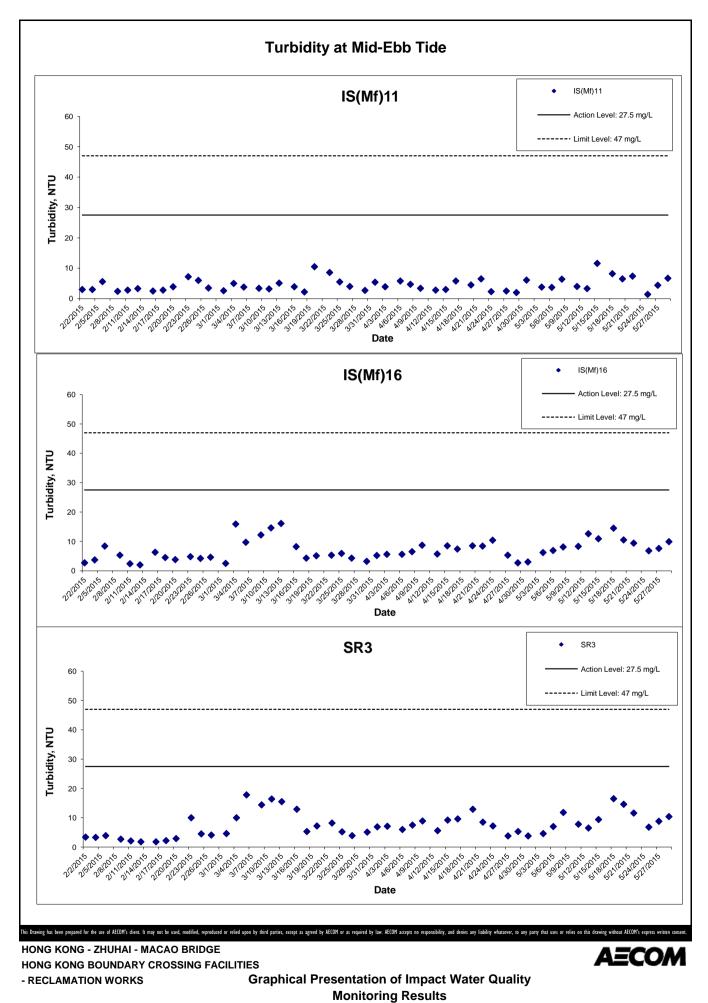


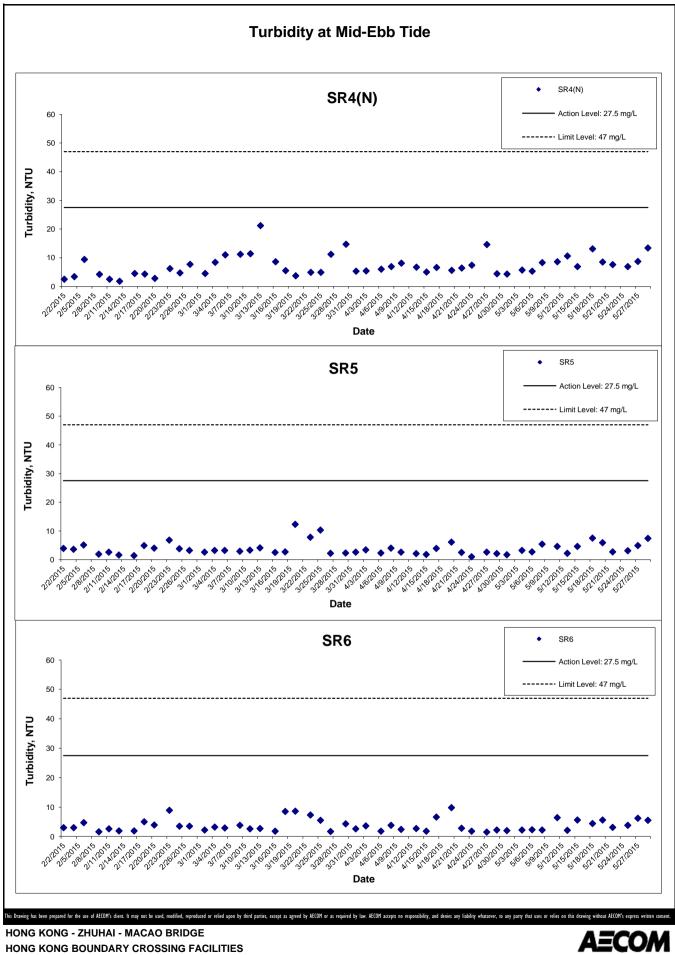


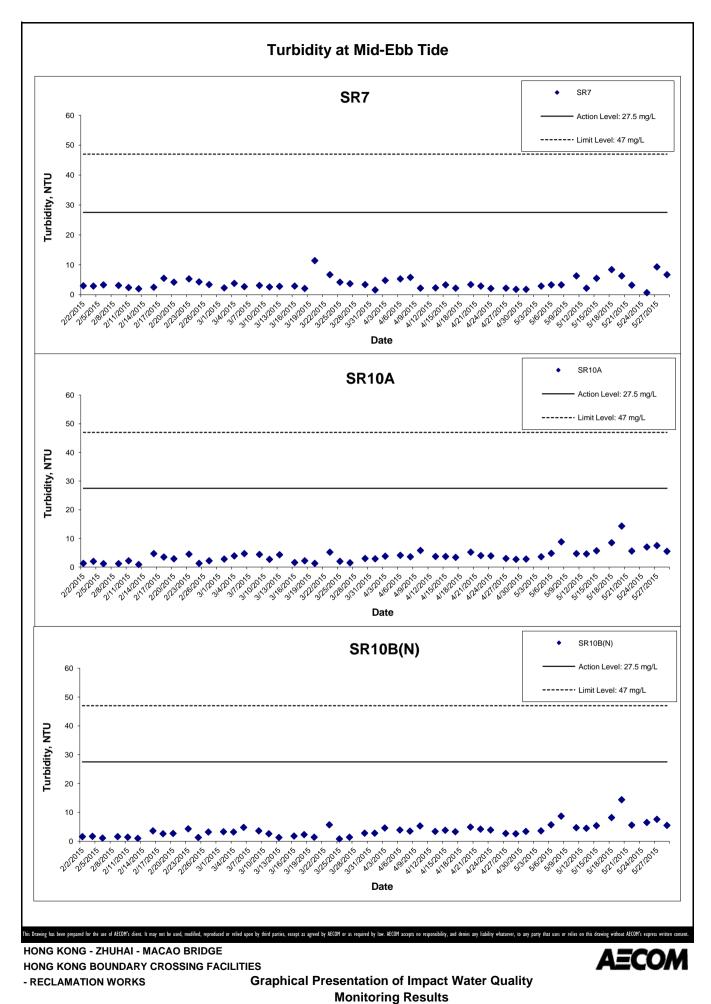


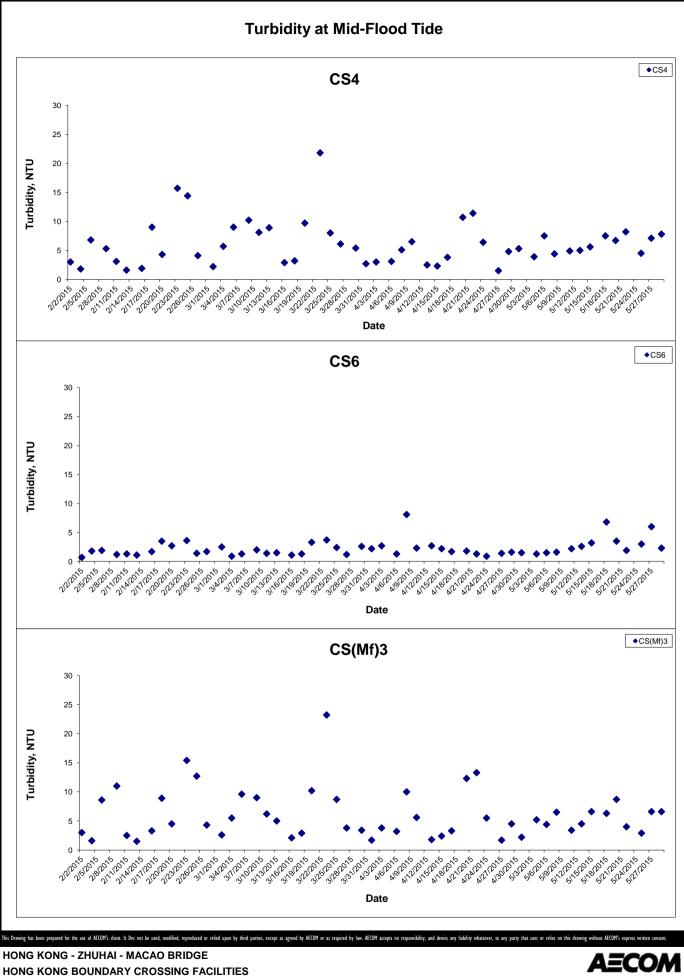


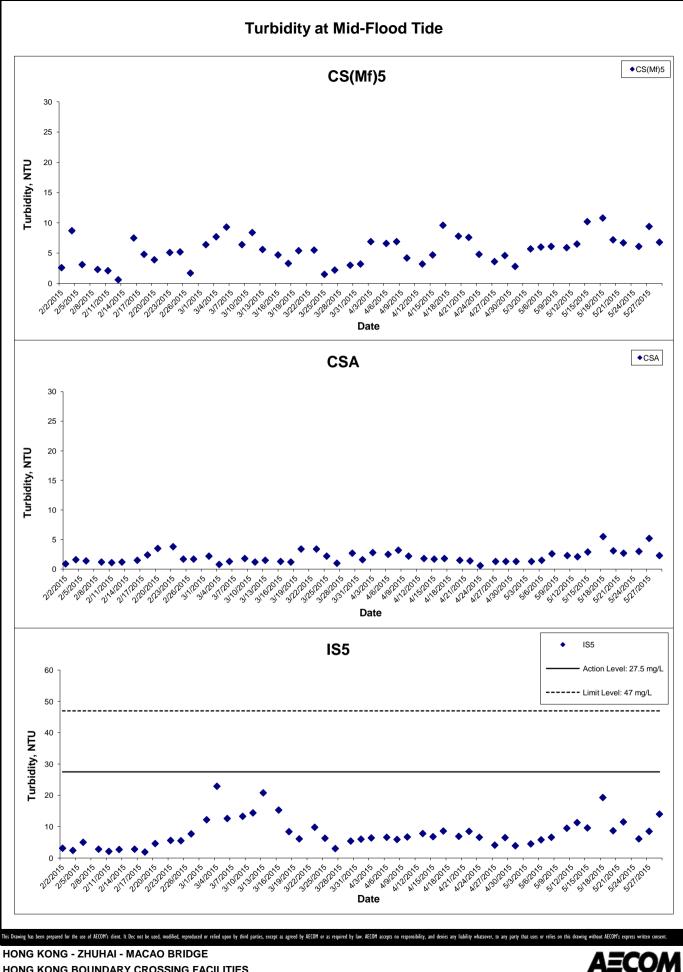



. Monitoring Results

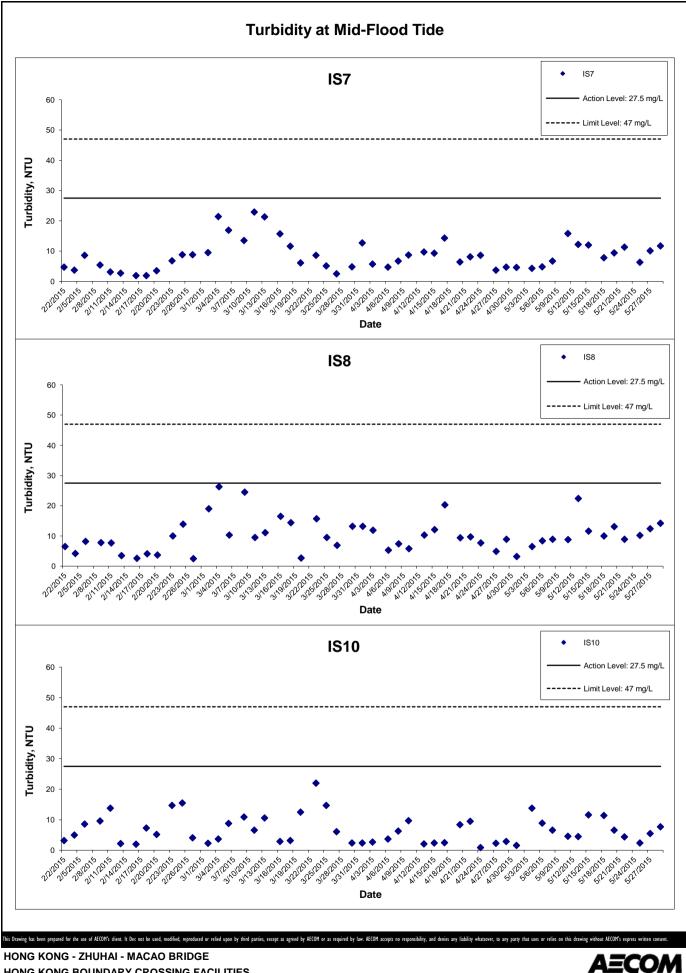



HONG KONG BOUNDARY CROSSING FACILITIES

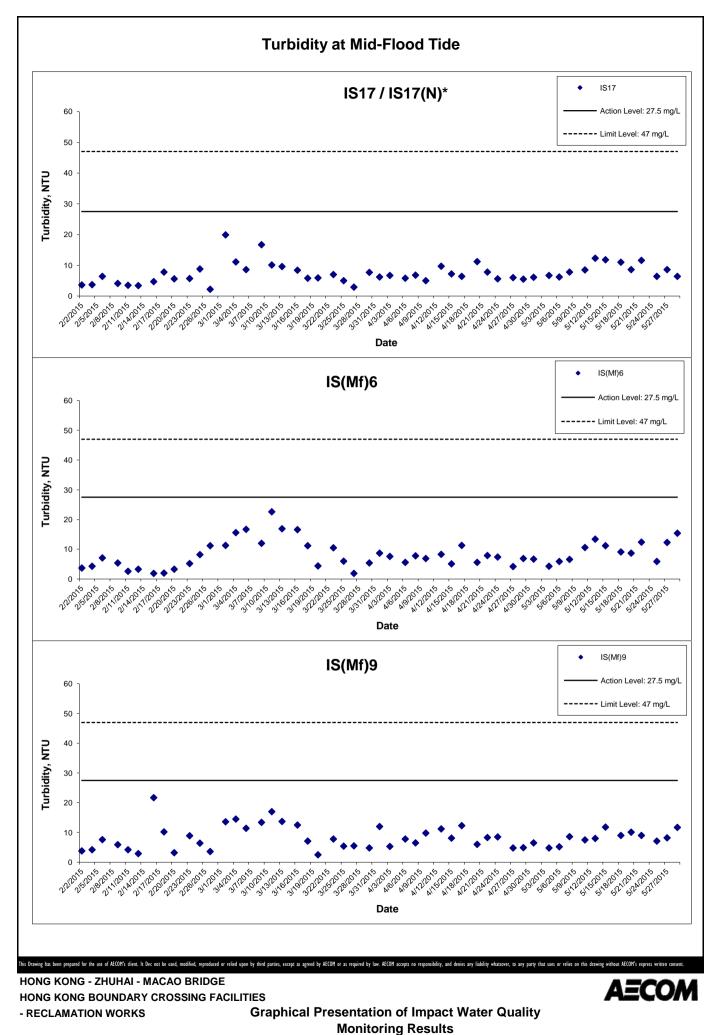

Graphical Presentation of Impact Water Quality Monitoring Results



- RECLAMATION WORKS



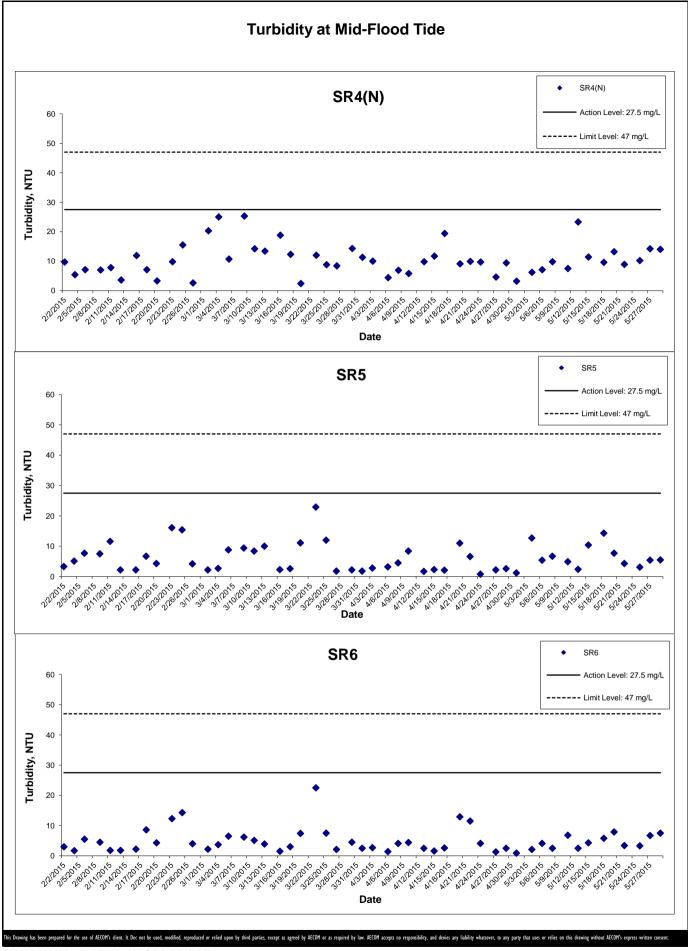
HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

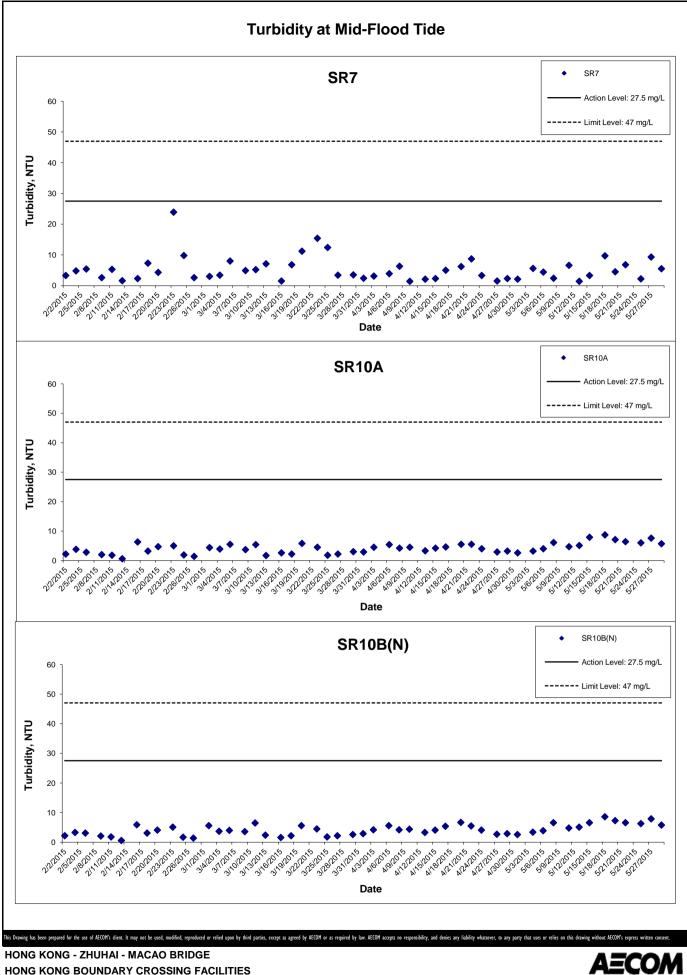

Graphical Presentation of Impact Water Quality Monitoring Results

HONG KONG BOUNDARY CROSSING FACILITIES

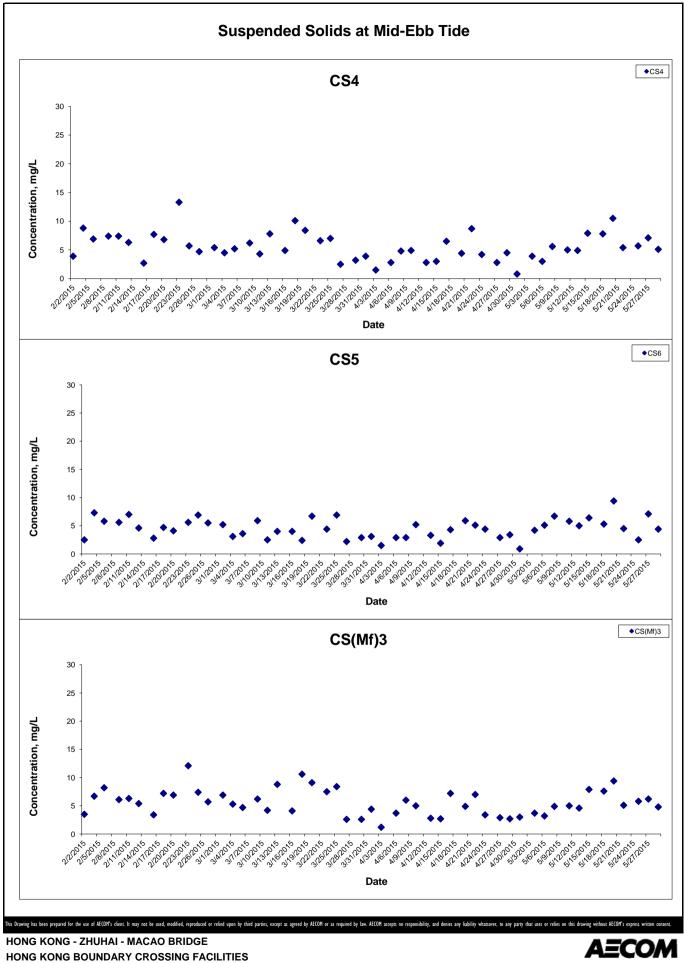
- RECLAMATION WORKS



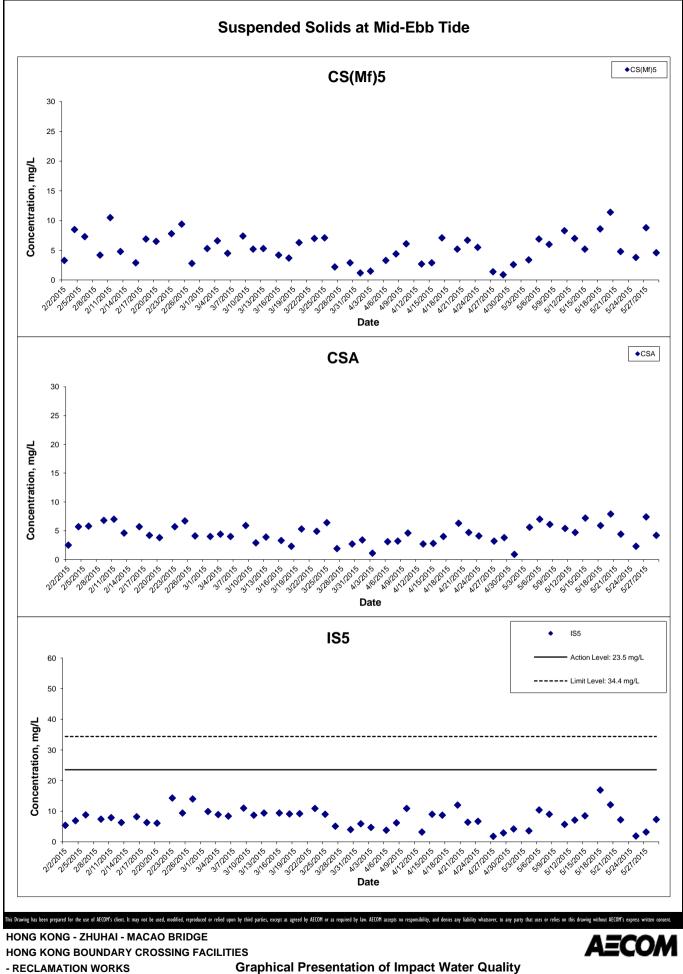
HONG KONG BOUNDARY CROSSING FACILITIES


Graphical Presentation of Impact Water Quality Monitoring Results

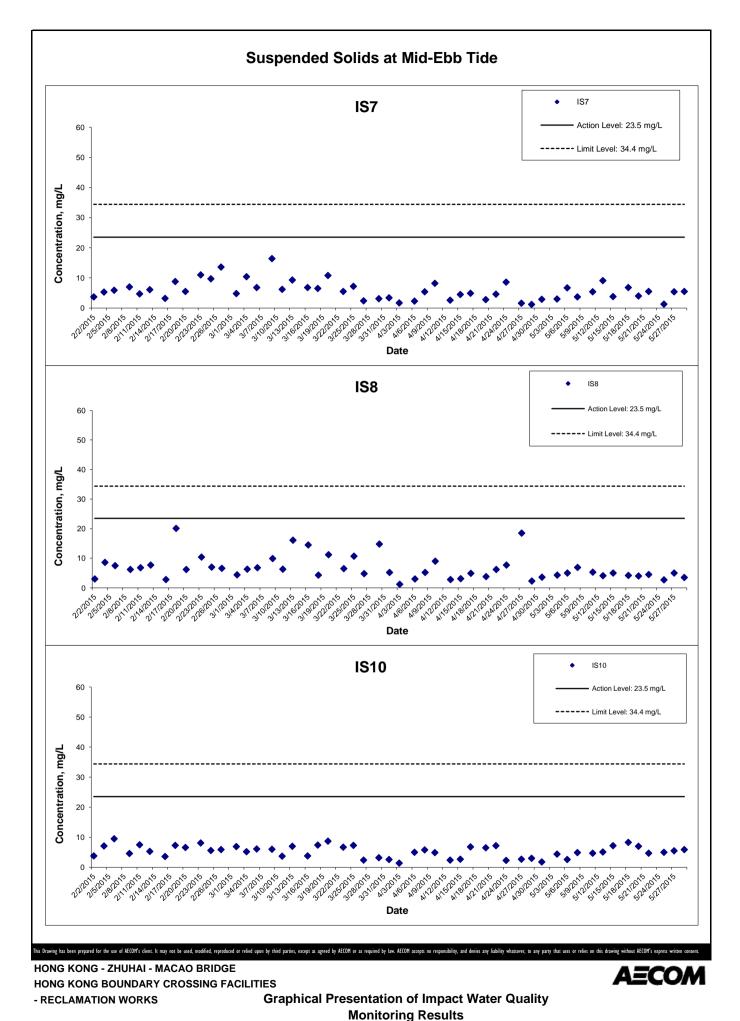
- RECLAMATION WORKS

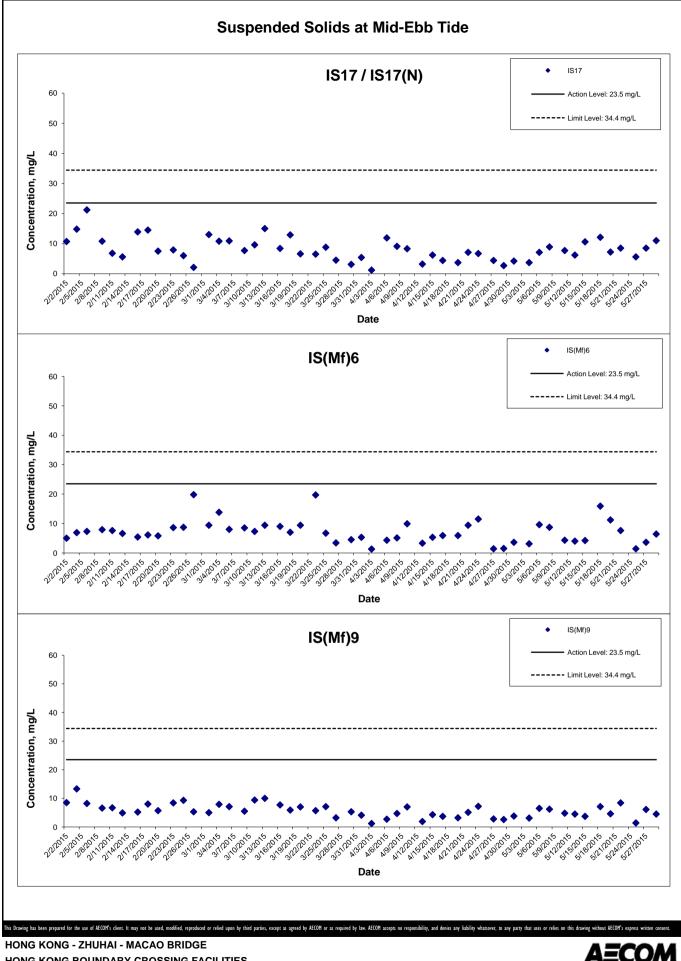

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS Graphical Pr

Graphical Presentation of Impact Water Quality Monitoring Results AECOM


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

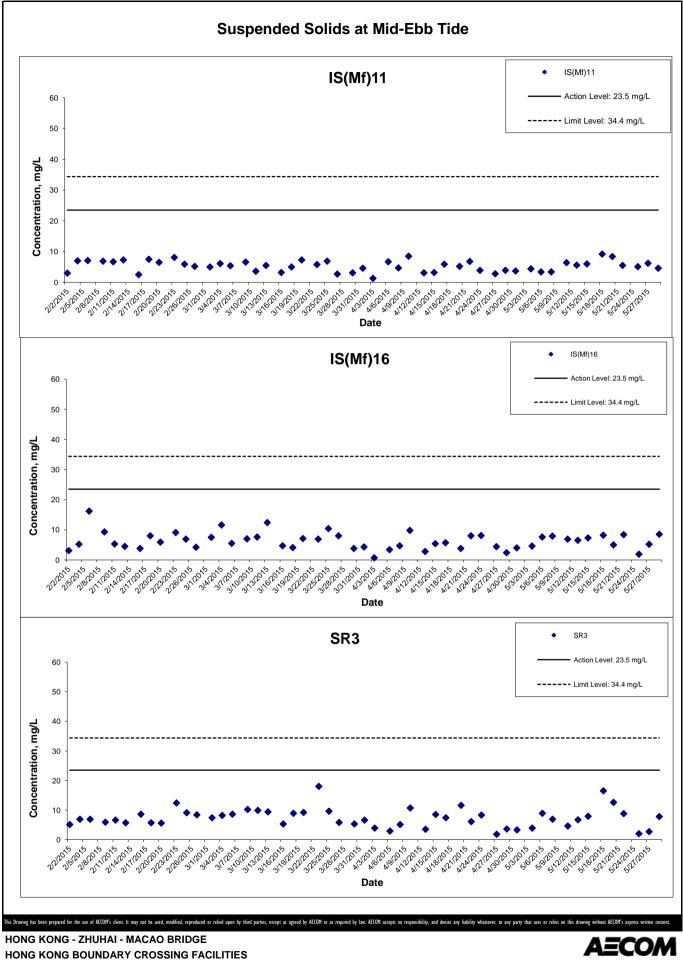
Graphical Presentation of Impact Water Quality Monitoring Results



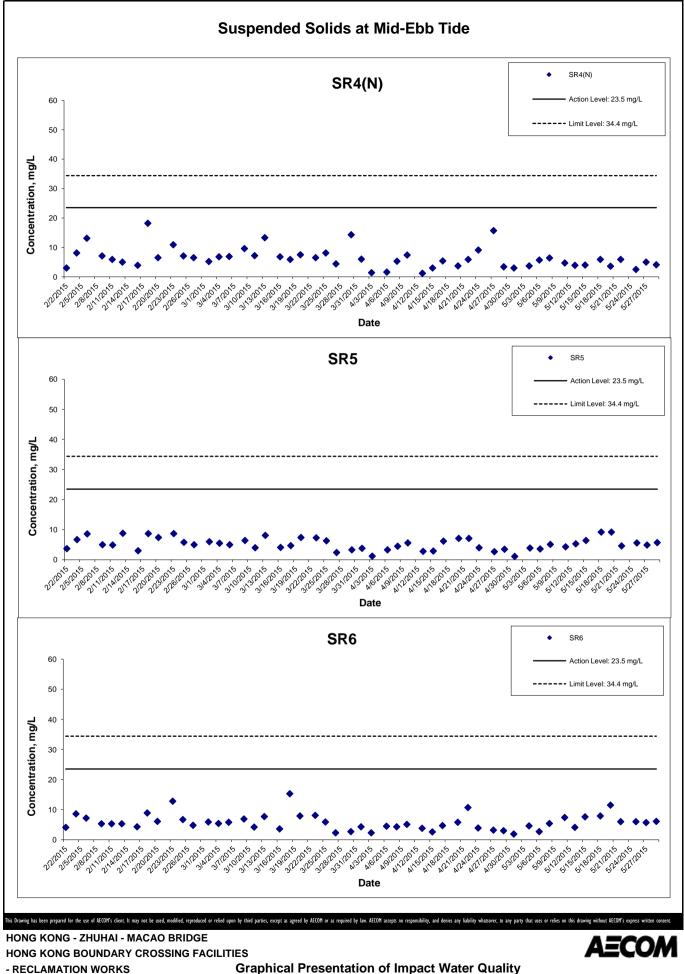

Graphical Presentation of Impact Water Quality Monitoring Results

- RECLAMATION WORKS

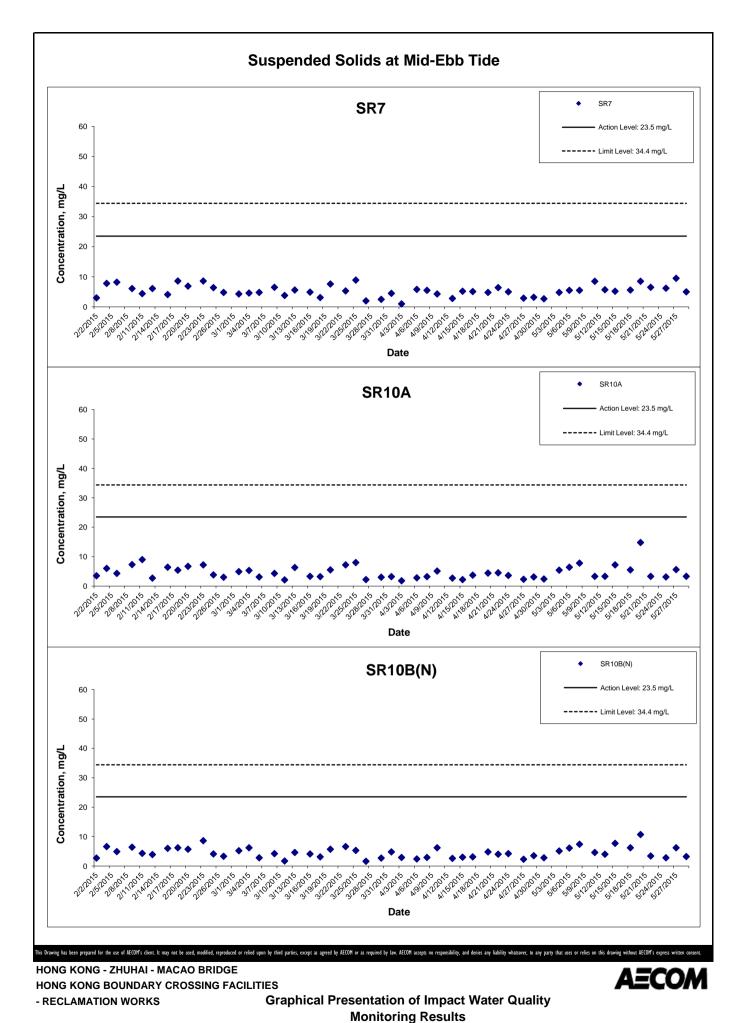
Graphical Presentation of Impact Water Quality Monitoring Results



HONG KONG BOUNDARY CROSSING FACILITIES

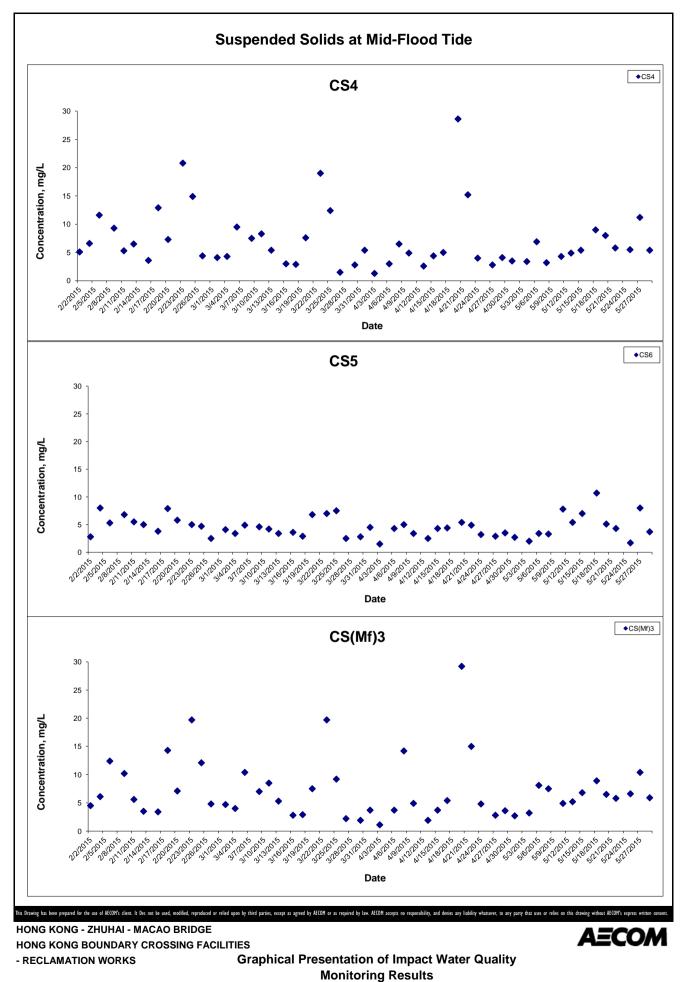

Graphical Presentation of Impact Water Quality Monitoring Results

- RECLAMATION WORKS

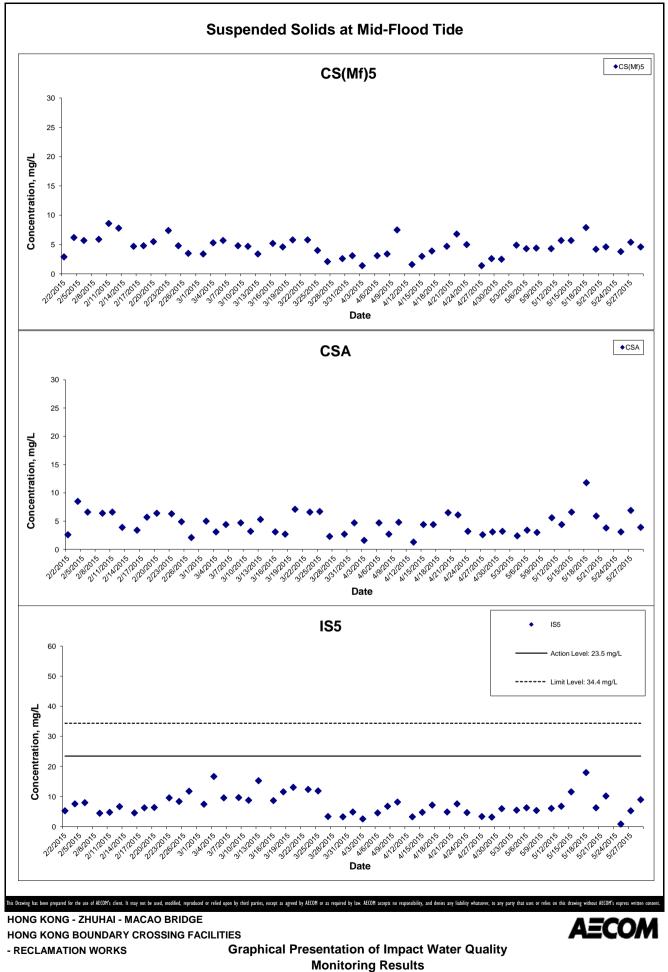


Graphical Presentation of Impact Water Quality Monitoring Results

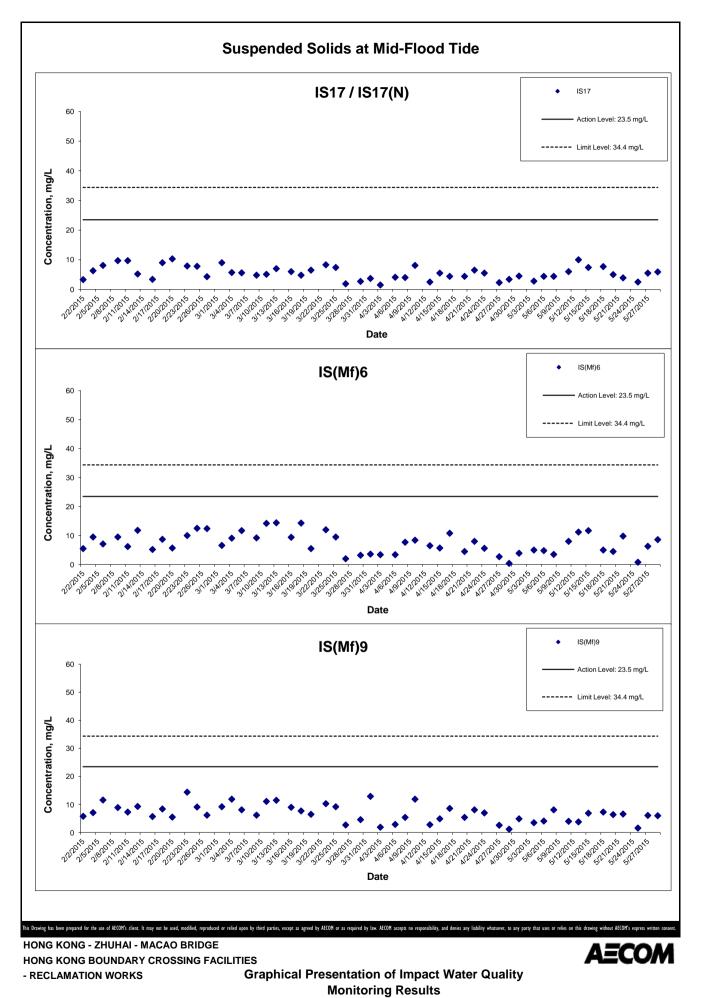
- RECLAMATION WORKS

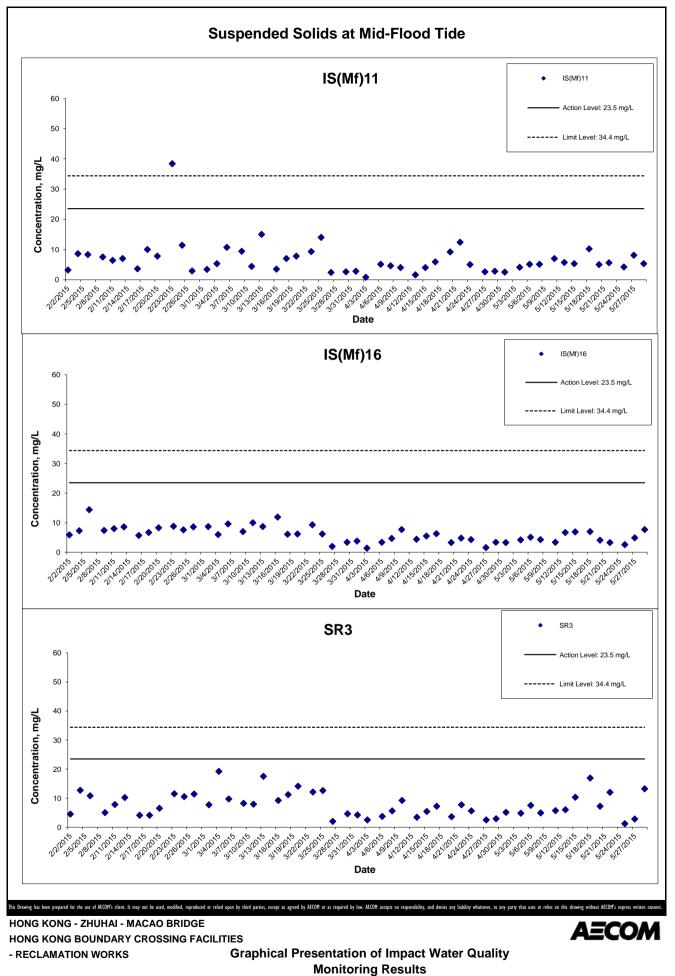


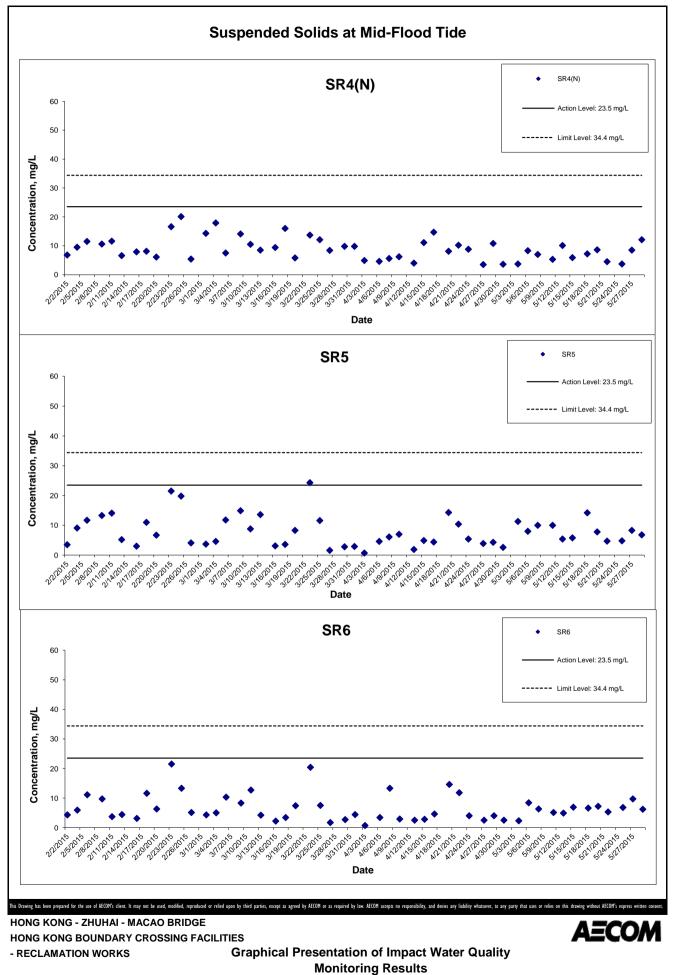
Graphical Presentation of Impact Water Quality Monitoring Results

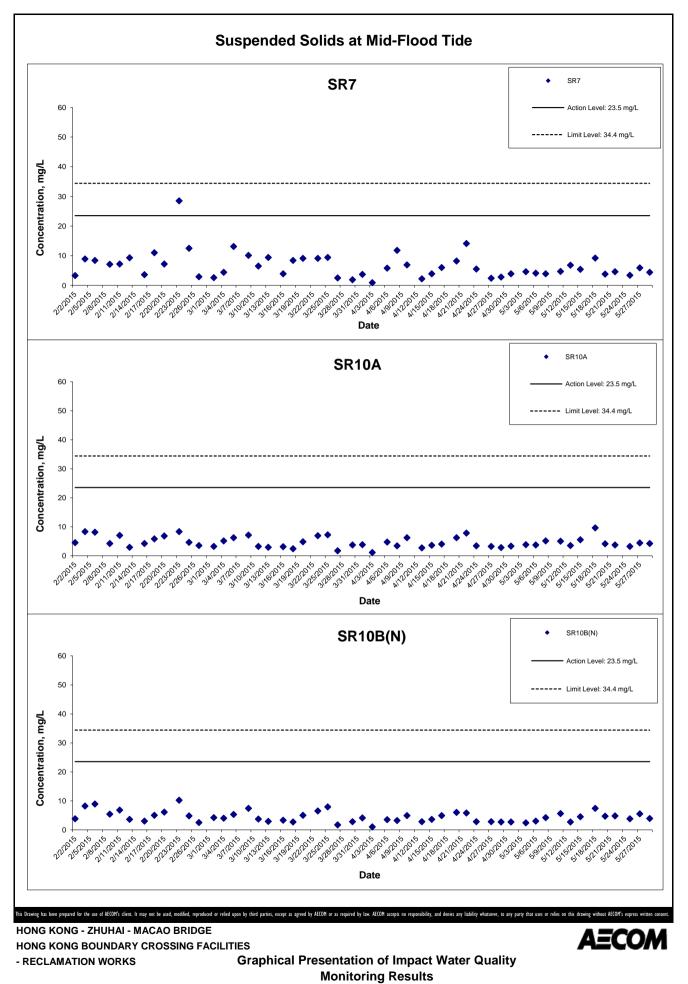



Project No.: 60249820 Date: June 2015


Appendix J


Project No.: 60249820 Date: June 2015





Project No.: 60249820 Date: June 2015

Appendix K Impact Dolphin Monitoring Survey Sighting Summary

Impact Dolphin Monitoring Survey Sighting Table Table 1

Project	Contract	Date	Sighting No.	Time	Group Size	Area	Beaufort	PSD	Effort	Туре	Northing	Easting	Season	Boat Association
HKBCF	HY/2010/02	11-May-15	1104	10:29	5	NWL	2	346	On	Impact	822043.8	804654.8	Spring	No
HKBCF	HY/2010/02	18-May-15	1108	10:04	3	NWL	1	N/A	Орр	Impact	813963.5	803576.8	Spring	No
HKBCF	HY/2010/02	18-May-15	1109	16:16	1	NWL	2	0	On	Impact	823298.8	810498.0	Spring	No

NEL

NWL

KEY:

Sighting	Opp Opportunistic				
0 0	On On effort				
PSD	Perpendicular Sighting Distance				
Group Size	Represents best estimate for group encountered				
PS = Purse Seine trawler (active)					

North East Lantau North West Lantau

HT = Hang Trawler (not active but sorting fish and cleaning nets)

Annex I

APRIL 2015 Photo Identification Information

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
HZMB 128		2015/01/03	1056	NWL
HZMB 127		2015/01/03	1056	NWL
		2015/02/23	1068	NWL
HZMB 126		2015/01/03	1054	NWL
HZMB 125		2014/10/13	1019	NWL
HZMB 124		2014/09/22	1005	NWL
HZMB 123		2014/08/25	998	NWL
HZMB 122		2014/08/04	989	NWL
HZMB 121		2014/07/14	968	NWL
HZMB 120		2014/05/31	951	NWL
HZMB 119		2014/04/19	940	NWL
HZMB 118		2014/01/06	890	NWL
		2014/06/17	964	NWL
HZMB 117		2014/01/06	888	NWL
HZMB 116		2014/08/25	999	NWL
		2014/07/14	972	NWL
		2014/07/14	971	NWL
HZMB 115		2013/12/26	879	NWL
		2013/12/26	879	NWL
HZMB 114		2013/10/24	827	NWL
HZMB 113		2013/10/24	827	NWL
HZMB 112		2013/10/15	815	NWL
HZMB 111		2013/10/15	815	NWL
HZMB 110		2013/10/15	812	NWL
HZMB 108		2013/08/30	780	NEL
HZMB 107		2014/10/13	1019	NWL
		2013/08/21	770	NWL
HZMB 106		2013/08/21	769	NWL
		2014/05/31	951	NWL
HZMB 105		2013/07/08	711	NWL
HZMB 104		2013/07/08	711	NWL
HZMB 103		2013/07/08	711	NWL
HZMB 102		2013/07/08	706	NWL
HZMB 101		2013/07/08	706	NWL
HZMB 100		2013/07/08	706	NWL
		2013/06/13	681	NWL
HZMB 099		2013/06/13	680	NWL
HZMB 098	NL104	2015/02/23	1077	NWL
		2014/12/18	1044	NWL

HZMB 084		2013/02/14 2013/12/19	575 863	NWL NWL
HZMB 084				
		2013/02/15	579	NWL
		2013/06/26	703	NWL
		2014/05/31	954	NWL
HZMB 085		2014/10/13	1019	NWL
		2011/10/10	Baseline	NWL
		2013/02/15	579	NWL
HZMB 086	NL242	2013/05/09	642	NWL
		2015/03/19	1086	NWL
HZMB 087		2013/02/15	579	NWL
HZMB 088		2013/02/15	579	NWL
HZMB 089		2013/02/15	579	NWL
		2013/02/15	579	NWL
HZMB 090		2013/06/13	682	NWL
		2013/06/25	697	NWL
HZMB 091		2013/02/15	579	NWL
		2013/02/15	581	NWL
HZMB 092		2013/02/21	589	NWL
		2015/04/20	1097	NWL
		2013/02/21	587	NWL
HZMB 093		2013/05/24	657	NWL
		2013/03/18	601	NWL
		2013/06/25	698	NWL
		2013/06/26	703	NWL
HZMB 094		2014/02/17	910	NWL
		2014/05/31	954	NWL
		2014/10/13	1019	NWL
		2013/04/01	621	NWL
HZMB 095		2013/06/13	682	NWL
		2013/06/25	697	NWL
		2013/08/30	780	NEL
HZMB 096		2013/04/01	621	NWL
HZMB 097		2013/05/09	647	NWL
		2013/05/24	659	NWL
		2013/07/08	711	NWL
		2013/10/24	831	NWL
		2013/11/02	845	NWL
		2013/11/02	849	NWL
		2014/01/06	888	NWL
		2014/08/04	992	NWL

	2013/02/15	579	NWL
	2013/01/28	568	NWL
	2012/01/28	564	NWL
	2014/10/20	1024	NWL
	2013/02/21	587	NWL
HZMB 082	2013/02/15	579	NWL
	2013/01/28	563	NWL
	2013/01/28	559	NWL
HZMB 081	2013/01/28	557	NWL
HZMB 080	2013/01/28	556	NWL
HZMB 079	2013/01/28	556	NWL
	2013/02/15	579	NWL
HZMB 078	2013/01/08	552	NWL
	2013/12/26	878	NWL
HZMB 077	2013/07/08	706	NWL
	2012/12/11	541	NWL
	2013/07/08	706	NWL
HZMB 076	2012/12/11	541	NWL
HZMB 075	2012/12/06	525	NEL
	2013/05/09	647	NWL
	2013/04/01	623	NWL
	2013/04/01	621	NWL
HZMB 074	2013/02/21	594	NEL
	2012/12/10	529	NEL
	2012/12/06	525	NEL
	2013/05/09	647	NWL
	2013/04/01	623	NWL
	2013/04/01	621	NWL
HZMB 073	2013/02/21	594	NEL
	2012/12/10	529	NEL
	2012/12/06	525	NEL
HZMB 072	2012/10/24	476	NWL
	2012/10/24	475	NWL
HZMB 071	2012/10/12	466	NWL
HZMB 070	2012/10/24	476	NWL
	2013/08/21	774	NWL
HZMB 069	2013/07/08	711	NWL
	2012/10/24	476	NWL
	2014/10/20	1025	NWL
HZMB 068	2013/11/01	839	NWL
	2012/10/24	476	NWL
HZMB 067	2012/10/24	475	NWL

		2013/01/28	559	NWL
HZMB 066		2012/12/11	537	NWL
	NL93	2012/10/24	475	NWL
		2012/10/12	466	NWL
		2015/03/19	1086	NWL
		2014/06/17	964	NWL
		2013/05/09	647	NWL
HZMB 064		2013/01/28	561	NWL
		2012/10/24	475	NWL
		2012/10/12	466	NWL
		2013/05/09	647	NWL
HZMB 063		2012/10/12	466	NWL
		2012/12/06	525	NEL
HZMB 062		2012/10/11	457	NWL
HZMB 060		2012/09/18	447	NWL
		2013/02/21	591	NWL
HZMB 059		2012/09/18	445	NWL
HZMB 057		2012/09/18	440	NWL
		2012/09/18	442	NWL
HZMB 056		2012/09/05	433	NEL
HZMB 055		2012/09/04	425	NWL
		2015/04/20	1097	NWL
		2015/01/15	1062	NWL
		2014/05/31	953	NWL
		2014/01/06	888	NWL
		2013/11/07	854	NWL
		2013/11/02	845	NWL
		2013/10/24	831	NWL
		2013/08/30	780	NEL
	0424	2013/07/08	711	NWL
HZMB 054	CH34	2013/09/18	448	NWL
		2012/09/05	432	NEL
		2011/11/07	Baseline	NWL
		2011/11/05	Baseline	NWL
		2011/11/02	Baseline	NWL
		2011/11/01	Baseline	NEL
		2011/11/01	Baseline	NEL
		2011/10/28	Baseline	NWL
		2011/10/06	Baseline	NWL
HZMB 053		2012/09/04	425	NWL
HZMB 052		2012/09/04	423	NWL
HZMB 051	NL213	2014/08/04	989	NWL

		2013/05/09	644	NWL
		2013/03/03	622	NWL
		2013/02/15	582	NWL
		2013/02/15	581	NWL
		2013/01/28	559	NWL
		2013/01/28	556	NWL
		2012/09/04	422	NWL
		2014/07/14	971	NWL
		2014/01/10	900	NWL
HZMB 050		2014/01/06	888	NWL
		2013/02/15	579	NWL
		2012/09/04	421	NWL
		2014/07/29	982	NWL
HZMB 049		2012/09/03	419	NWL
HZMB 048		2012/09/03	419	NWL
		2015/04/28	1100	NWL
HZMB 047		2012/09/03	412	NWL
HZMB 046		2012/09/03	412	NWL
		2014/02/17	910	NWL
		2013/06/13	682	NWL
HZMB 045		2013/02/15	579	NWL
		2012/11/01	495	NWL
		2014/10/13	1019	NWL
		2014/02/17	910	NWL
		2013/12/19	864	NWL
		2013/11/02	845	NWL
		2013/11/01	842	NWL
HZMB 044	NL98	2013/10/15	819	NWL
	INL90	2013/05/09	648	NWL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
		2013/04/01	621	NWL
		2013/02/15	579	NWL
		2012/11/01	495	NWL
HZMB 043		2012/09/03	407	NWL
		2013/12/19	863	NWL
HZMB 042	NL260	2012/11/01	495	NWL
		2011/11/07	Baseline	NWL
		2014/06/05	960	NEL
HZMB 041	NL24	2014/02/17	910	NWL
		2013/11/02	845	NWL
		2013/05/09	648	NWL

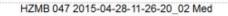
	2013/05/09	647	NWL
	2013/04/01	623	NWL
	2013/04/01	621	NWL
	2013/02/15	579	NWL
	2012/11/01	495	NWL
	2011/11/06	Baseline	NEL
	2011/11/05	Baseline	NWL
	2011/11/05	Baseline	NWL
	2011/10/10	Baseline	NWL
	2014/02/17	910	NWL
	2014/01/06	893	NWL
	2013/10/15	821	NWL
HZMB 040	2013/07/08	714	NWL
	2013/07/08	711	NWL
	2013/02/21	589	NWL
	2012/11/01	493	NWL
HZMB 038	2012/11/01	490	NWL
HZMB 037	2012/11/01	490	NWL
	2012/09/03	407	NWL
HZMB 036	2012/11/01	490	NWL
	2013/02/15	579	NWL
HZMB 035	2012/11/01	490	NWL
HZMB 034	2012/11/01	493	NWL
	2014/11/17	1035	NWL
HZMB 028	2013/04/01	625	NWL
	2012/08/06	373	NWL
	2013/12/19	863	NWL
	2013/02/15	579	NWL
HZMB 027	2013/01/28	568	NWL
	2013/01/28	564	NWL
	2012/06/14	299	NWL
	2014/10/13	1018	NWL
	2013/06/25	697	NWL
HZMB 026	2013/05/09	642	NWL
	2013/01/28	561	NWL
	2012/06/13	295	NEL
	2013/02/22	596	NEL
	2013/02/21	591	NWL
HZMB 025	2012/12/06	525	NEL
	2012/10/11	457	NWL
	2012/06/13	295	NEL
HZMB 024	2013/03/18	601	NWL

		2012/06/13	295	NEL
		2015/04/20	1097	NWL
		2014/12/18	1044	NWL
		2014/11/17	1035	NWL
		2014/01/06	888	NWL
		2013/07/08	715	NWL
HZMB 023		2013/07/08	711	NWL
		2013/04/01	619	NWL
		2013/02/21	589	NWL
		2013/02/15	579	NWL
		2012/07/10	330	NWL
		2015/04/20	1097	NWL
		2014/12/18	1044	NWL
		2014/11/17	1035	NWL
		2014/08/04	991	NWL
		2014/01/06	888	NWL
		2013/10/24	827	NWL
HZMB 022		2013/07/08	715	NWL
		2013/07/08	711	NWL
		2013/04/01	619	NWL
		2013/02/21	589	NWL
		2013/02/15	579	NWL
		2012/07/10	330	NWL
		2012/07/10	330	NWL
HZMB 021	NL37	2011/09/16	Baseline	NWL
HZMB 020		2012/07/10	330	NWL
HZMB 019		2012/07/10	330	NWL
		2014/02/17	910	NWL
		2013/05/09	647	NWL
HZMB 018		2013/02/21	594	NEL
		2012/12/10	529	NEL
		2012/07/10	330	NWL
HZMB 017		2012/07/10	330	NWL
		2013/07/08	706	NWL
		2012/12/11	539	NWL
HZMB 016		2012/09/18	446	NWL
		2012/09/04	421	NWL
		2012/07/10	330	NWL
HZMB 015		2012/07/10	330	NEL
		2013/12/26	880	NWL
HZMB 014	NL176	2012/08/06	373	NWL
		2012/00/00	010	

.

		2011/11/06	Baseline	NEL
		2011/11/01	Baseline	NEL
		2011/11/01	Baseline	NEL
HZMB 013		2012/05/28	281	NWL
HZMB 012		2012/05/28	281	NWL
		2013/02/22	597	NEL
		2013/02/21	592	NEL
		2013/02/14	572	NEL
	FLOA	2012/11/06	517	NEL
HZMB 011	EL01	2012/09/19	452	NWL
		2012/03/31	261	NEL
		2011/11/02	Baseline	NWL
		2011/11/01	Baseline	NEL
HZMB 009		2015/03/19	1084	NWL
		2012/05/28	281	NWL
HZMB 008		2012/05/28	281	NWL
HZMB 007	NL246	2012/12/10	529	NEL
		2013/02/21	594	NEL
		2012/12/11	539	NWL
HZMB 006		2012/11/01	495	NWL
		2012/03/29	250	NWL
		2015/02/09	1070	NWL
		2015/02/09	1069	NWL
		2013/11/09	860	NWL
HZMB 005		2013/11/07	858	NWL
		2013/10/15	813	NWL
		2012/12/10	532	NWL
		2012/08/06	374	NWL
		2012/05/28	287	NWL
HZMB 004		2012/09/04	421	NWL
		2012/03/31	262	NWL
		2013/10/15	812	NWL
		2013/06/25	697	NWL
	NI 170	2012/12/10	529	NEL
HZMB 003	NL179	2012/03/31	261	NWL
		2011/11/06	Baseline	NEL
		2011/09/16	Baseline	NWL
		2014/05/31	951	NWL
		2013/12/26	878	NWL
HZMB 002	WL111	2013/12/19	863	NWL
		2013/11/01	839	NWL
		2013/10/15	819	NWL

.


		2013/09/24	798	NWL
		2013/02/14	573	NWL
		2012/12/11	536	NWL
		2012/12/11	535	NWL
		2012/10/12	466	NWL
		2012/10/24	475	NWL
		2012/05/28	281	NWL
		2012/03/29	250	NWL
		2014/08/25	997	NWL
	WL46	2013/08/21	771	NWL
HZMB 001		2013/06/13	681	NWL
		2013/04/01	617	NWL
		2013/02/14	573	NWL
		2012/03/29	250	NWL
	CH98	2011/11/02	Baseline	NWL
	NL11	2011/11/02	Baseline	NWL
		2011/11/07	Baseline	NWL
	NL12	2011/11/02	Baseline	NWL
		2011/09/23	Baseline	NWL
	NL33	2011/11/01	Baseline	NEL
	INL33	2011/11/05	Baseline	NWL
		2011/11/07	Baseline	NWL
	NL37	2011/09/16	Baseline	NWL
	NL46	2011/10/28	Baseline	NWL

HZMB 022 LL 2015-04-20-13-15-38_02 Med

HZMB 023 2015-04-20-13-10-30 Med

HZMB 054 2015-04-20-13-10-36 Med

HZMB 092 LL 2015-04-20-13-13-20 Med

Appendix L – Event Action Plan

Event / Action Plan for Air Quality

Event		Action						
	ET Leader	IEC	ER	Contractor				
Action Level	·	·	·	·				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 				
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				

Event	Action							
	ET Leader	IEC	ER	Contractor				
Limit Level								
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				

Event	Action						
	ET Leader	IEC	ER	Contractor			
Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 notification of failure in writing; 2. Notify Contractor; 3. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; 	 proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is 			

Event / Action Plan for Construction Noise

Event	nt Action					
	ET Leader	IEC	ER	Contractor		
Action Level	 Notify IEC and Contractor; Identify source, investigate the causes of exceedance and propose remedial measures; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals. 		
Limit Level	 Inform IEC, ER, EPD and Contractor; Identify source; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 		

Event / Action Plan for Water Quality

Event	Action							
	ET Leader	IEC	ER	Contractor				
sampling day	 Repeat <i>in situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Repeat measurement on next day of exceedance to confirm findings. 	 Check monitoring data submitted by ET and Contractor's working methods; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. Amend working methods if appropriate. 				

Event	Action						
	ET Leader	IEC	ER	Contractor			
Action level being exceeded by two or more consecutiv e sampling days	 Repeat <i>in situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level; Repeat measurement on next day of exceedance to confirm findings. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER within 3 working days of notification; Implement the agreed mitigation measures; Amend working methods if appropriate. 			

Event				
	ET Leader	IEC	ER	Contractor
Limit level being exceeded by one sampling day	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Amend working methods if appropriate.

Event				
	ET Leader	IEC	ER	Contractor
or more consecutive sampling days	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the ER accordingly. 	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 	 Inform the ER and confirm notification of the non-compliance in writing; Take immediate action to avoid further exceedance; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Engineer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

Event / Action Plan for Dolphin Monitoring

Event	ET Leader	IEC	ER / SOR	Contractor
Action Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor; Check monitoring data. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and finding with the ET and the Contractor. 	 Discuss monitoring with the IEC and any other measures proposed by the ET; If ER/SOR is satisfied with the proposal of any other measures, ER/SOR to signify the agreement in writing on the measures to be implemented. 	 Inform the ER/SOR and confirm notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the ER/SOR; Implement the agreed measures.
Limit Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor of findings; Check monitoring data; 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. Review proposals for additional monitoring and any other mitigation measures submitted 	 Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. If ER/SOR is satisfied with the proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, ER/SOR to signify the agreement in writing on such proposals and any other mitigation measures. 	 Inform the ER/SOR and confirm notification of the non-compliance in writing; Attend the meeting to discuss with ET, IEC and ER/SOR the necessity of additional dolphin monitoring and any other potential mitigation measures. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary. Implement the agreed additional dolphin monitoring

 6. Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 7. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, ER/SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary. 	by ET and Contractor and advise ER/SOR of the results and findings accordingly. 5. Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise ER/SOR the results and findings accordingly.	 Supervise the implementation of additional monitoring and/or any other mitigation measures. 	and/or any other mitigation measures.
--	---	---	---------------------------------------

China Harbour Engineering Company Limited

Monthly Summary Waste Flow Table for <u>May / 2015 (year)</u>

Project : H	Hong Kong – Z	huhai – Macao	Bridge, Hong	Kong Bound	ary Crossing	g Facilities – Re	eclamation V	Works		Contract No.:]	HY/2010/02
		Actual Quantities of Inert C&D Materials Generated Monthly				А	ctual Quantiti	es of C&D Wa	astes Generated Mo	onthly	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste (see Note 4)	Others, e.g. general refuse (see Note 3)
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan-15	0.0000	0.0000	0.0000	0.0000	0.0000	1774.7845	0.0000	0.4200	4.0000	2.4000	0.0455
Feb-15	0.0000	0.0000	0.0000	0.0000	0.0000	1120.6675	0.0000	0.1400	0.0000	0.0000	0.0390
Mar-15	0.0000	0.0000	0.0000	0.0000	0.0000	390.8735	0.0040	0.3340	0.0020	0.0000	0.0390
Apr-15	0.0000	0.0000	0.0000	0.0000	0.0000	251.3183	0.0000	0.1400	0.0000	0.0000	0.0390
May-15	0.0000	0.0000	0.0000	0.0000	0.0000	778.9842	0.0000	0.1960	0.0000	0.0000	0.0260
Jun-15											
Sub-total	0.0000	0.0000	0.0000	0.0000	0.0000	4316.6281	0.0040	1.2300	4.0020	2.4000	0.1885
Jul-15											
Aug-15											
Sep-15											
Oct-15											
Nov-15											
Dec-15											
Total	0.0000	0.0000	0.0000	0.0000	0.0000	4316.6281	0.0040	1.2300	4.0020	2.4000	0.1885

Notes: (1) Broken concrete for recycling into aggregates.

(2) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials.

(3) Use the conversion factor : 1 full load of dumping truck being equivalent to $6.5m^3$ by volume.

(4) Chemical waste refer to spent "battery" and "oil with water".

Appendix N

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in	Total no. recorded since
		this month	project commencement
1-Hour TSP	Action	-	-
	Limit	-	-
24-Hour TSP	Action	-	-
	Limit	-	-
Noise	Action	-	-
	Limit	-	-
Water Quality	Action	-	2
	Limit	-	3
Dolphin Monitoring	Action	-	-
	Limit	-	-

Remarks: Exceedances which are not project-related are not presented in this table.

Cumulative statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints	22 May 2015	A complainant contacted EPD through EPD's hotline on 21 May 2015 and complained that noise was generated from construction works when construction of artificial island at Lantau Island area was carried out overnight and dark smoke was emitted by construction plant. EPD's staff has contacted complainant and	Closed	1	30
		came to know that the dark smoke referring to could also be			

Monthly EM&A	Report for May 2015	;
--------------	---------------------	---

	construction dust emitting from the			
	filling work at the HKBCF. This			
	complaint was subsequently referred			
	by EPD to HZMB project team on 22			
	May 2015 to follow-up. Investigation			
	was conducted and with referred to			
	the available information; it is unable			
	to determine whether the night time			
	noise and dark smoke complaint is			
	related to this Contract.			
Notification of				2
summons	_	-	-	۷.
Successful			_	2
Prosecutions	_	-	-	۷.