

JOB NO.: TCS00694/13

AGREEMENT NO. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (NO.39) – OCTOBER 2016

PREPARED FOR CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT (CEDD)

Date	Reference No.	Prepared By	Certified By
11 November 2016	TCS00694/13/600/R0714v2	Anh	Am

Nicola Hon (Environmental Consultant) Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks
1	8 November 2016	First Submission
2	11 November 2016	Amended according to the IEC's comments on 10 November 2016

Unit A-C, 27/F Ford Glory Plaza 37-39 Wing Hong Street Cheung Sha Wan, Kowloon, Hong Kong T +852 3995 8100 F +852 3995 8101 E hongkong@smec.com www.smec.com

14 November 2016

Our ref: 7076192/L21165/AB/AW/MC/rw

AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T.

By Email & Post

Attention: Mr Simon LEUNG

Dear Sirs

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Independent Environmental Checker – Investigation Monthly EM&A Report (No. 39) – October 2016

With reference to the Monthly EM&A Report No. 39 for October 2016 (Version 2) certified by the ET Leader, please be noted that we have no adverse comments on the captioned submission. We herewith verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-404/2011/C.

Thank you for your attention and please do not hesitate to contact the undersigned on tel. 3995-8120 or by email to antony.wong@smec.com; or our Mr Man CHEUNG on tel. 3995 8132 or by email to man.cheung@smec.com.

Yours faithfully for and on behalf of SMEC Asia Limited

Antony WONG

Independent Environmental Checker

СС	CEDD/BCP	-	Mr Desmond LAM	by
	ArchSD	-	Mr William WL CHENG	by
	AECOM	æ	Mr Pat LAM / Mr Perry YAM	by
	Ronald Lu	-	Mr Peter YAM / Mr Justin CHEUNG	by
	CW	-	Mr Daniel HO	by
	DHK	×	Mr Daniel ALTIER	by
	CCKJV	≂	Mr Vincent CHAN	by
	KRSJV	2	Mr TY LEUNG	by
	Leighton	5	Mr Jon KITCHING	by
	AUES	÷	Mr TW TAM	by

by fax: 3547 1659 by fax: 2804 6805 by email by email

Contract No. Q0022

\\hksmecdf01\share\jobs\7076192 - cedd - iec for liantang heung yuen wai bcp\02 out\02_161114-01-o-l verify monthly report (oct 16)_121165.docx

EXECUTIVE SUMMARY

ES01 This is the **39th** monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from **1 to 31 October 2016** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

- ES02 To facilitate the project management and implementation, Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project is divided to seven CEDD contracts including Contract 2 (CV/2012/08), Contract 3 (CV/2012/09), Contract 4 (TCSS), Contract 5 (CV/2013/03), Contract 6 (CV/2013/08) and Contract 7 (NE/2014/03) and an ArshSD contract (Contract SS C505).
- ES03 In the Reporting Period, the major construction activities under Contract 5 have been substantially completed. The construction works under Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project included Contract 2, Contract 3, Contract 6, Contract 7 and Contract SS C505. Environmental monitoring activities under the EM&A programme in the Reporting Period are summarized in the following table.

Environmental	Environmental Monitoring	Reporting 1	Period
Aspect	Parameters / Inspection	Number of Monitoring Locations to undertake	Total Occasions
Air Quality	1-hour TSP	9	135
Air Quality	24-hour TSP	9	45
Construction Noise	L _{eq(30min)} Daytime	10	40
		WM1 & WM1-C	13 Scheduled & 0 extra
	Water in-situ measurement and/or sampling	WM2A(a) & WM2A-Cx	13 Scheduled & 3 extra
Water Quality		WM2B & WM2B-C	13 Scheduled & 1 extra
		WM3x &WM3-C	13 Scheduled & 2 extra
		WM4, WM4-CA &WM4-CB	13 Scheduled & 3 extra
Ecology	Woodland compensationi) General Health condition of planted speciesii) Survival of planted species	9 Quadrats	0
		Contract 2	3 (#)
Joint Site	IEC, ET, the Contractor and	Contract 3	5
Inspection /	RE joint site Environmental	Contract 6	4
Audit	Inspection and Auditing	Contract 7	4
		Contract SS C505	4

Note: Extra monitoring day was due to measurement results exceedance (#) Site inspection scheduled on 21 October 2016 was cancelled due to typhoon signal no. 8

ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE

ES04 In the Reporting Period, no air quality exceedance and construction noise exceedance was registered for the Project. For water quality monitoring, a total of thirty-seven (37) Limit Level exceedances were recorded. The summary of exceedance in the Reporting Period is shown below.

ſ					Event & Action			
Environmental Aspect	Monitoring Parameters	Action Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions	
ſ	Air Quality	1-hour TSP	0	0	0			
		24-hour TSP	0	0	0			

					Even	t & Action	
Environmental Aspect	Monitoring Parameters	Action Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
Construction Noise	L _{eq(30min)} Daytime	0	0	0			
	DO	0	0	0	-		
Water Quality	Turbidity	0	17	17	All exceedances on 4 to 18 Oct were not project related, except for exceedances at WM2A(a) on 4 Oct	1 (#)	The Contractors were reminded to implement water quality mitigation
	SS	0	20	20	were due to damage pipe under C6 Exceedances on 19 to 31 Oct at WM2A are under investigation.	1 (*)	measures in accordance with ISEMM of the EM&A Manual requirements

(#) 6 number of NUT exceedances at WM2A(a) are under investigated by ET. (*) 7 number of SS exceedances at WM2A(a) are under investigated by ET.

ENVIRONMENTAL COMPLAINT

ES05 In this Reporting Period, two (2) documented environmental complaints were received. One of the complaints was about transportation of dusty construction waste material under Contract 6 and another complaint was about wastewater discharge from construction site near the works areas of Contracts 2 and 6. The summary of complaint received in the Reporting Period is shown below.

		Environmental Complaint				
Reporting Period	Contract No	Frequency	Complaint Nature	Project related complaint		
	Contract 2	1	• Wastewater (1)	0		
-	Contract 3	0	NA	0		
1 – 31 Oct 2016	Contract 6	2	Wastewater (1)Dust (1)	1 (Dust)		
	Contract 7	0	NA	0		
	SS C505	0	NA	0		

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES06 No environmental summons or successful prosecutions were recorded in the Reporting Period.

REPORTING CHANGE

ES07 In the Reporting period, no reporting changes were made.

SITE INSPECTION

- ES08 In this Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 2* has been carried out by the RE, IEC, ET and the Contractor on 7, 14 and 28 October 2016 in which the site inspection scheduled on 21 October 2016 was cancelled due to typhoon signal no. 8. No non-compliance was noted during the site inspection.
- ES09 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 3* has been carried out by the RE, IEC, ET and the Contractor on **3**, **11**, **19**, **24** and **31 October 2016**. No non-compliance was noted during the site inspection.

- ES10 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 6* has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 20 and 27 October 2016. No non-compliance was noted during the site inspection.
- ES11 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract SS C505* has been carried out by the RE, IEC, ET and the Contractor on **4**, **12**, **19** and **26 October 2016**. No non-compliance was noted during the site inspection.
- ES12 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract* 7 has been carried out by the RE, IEC, ET and the Contractor on 4, 11, 18 and 25 October 2016. No non-compliance was noted during the site inspection.

FUTURE KEY ISSUES

- ES13 During dry season, special attention should be paid on the potential construction dust impact since most of the construction sites are adjacent to villages. The Contractor should fully implement the construction dust mitigation measures.
- ES14 Preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River. Moreover, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- ES15 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.

Table of Contents

1	INTRODUC	TION	1
		ROJECT BACKGROUND	1
	1.2 R	EPORT STRUCTURE	1
2	PROJECT (DRGANIZATION AND CONSTRUCTION PROGRESS	3
		ONSTRUCTION CONTRACT PACKAGING	3
		ROJECT ORGANIZATION	5
		ONCURRENT PROJECTS	7
		ONSTRUCTION PROGRESS	7
	2.5 St	UMMARY OF ENVIRONMENTAL SUBMISSIONS	9
3		OF IMPACT MONITORING REQUIREMENTS	14
		ENERAL	14
		IONITORING PARAMETERS	14
		IONITORING LOCATIONS	14
		IONITORING FREQUENCY AND PERIOD	16 17
		Ionitoring Equipment Ionitoring Methodology	17
		QUIPMENT CALIBRATION	21
		ERIVATION OF ACTION/LIMIT (A/L) LEVELS	21
		ATA MANAGEMENT AND DATA QA/QC CONTROL	21
4			
4	-	TY MONITORING ENERAL	23 23
		IN QUALITY MONITORING RESULTS	23
_			
5		CTION NOISE MONITORING	26
		ENERAL	26
		OISE MONITORING RESULTS (NORMAL DAYTIME)	26 26
		OISE MONITORING RESULTS (RESTRICTED HOURS)	
6		ALITY MONITORING	28
		ENERAL	28
	6.2 R	ESULTS OF WATER QUALITY MONITORING	28
7		MONITORING	32
	7.1 G	ENERAL	32
8	WASTE MA	NAGEMENT	33
~		ENERAL WASTE MANAGEMENT	33
		ECORDS OF WASTE QUANTITIES	33
9	SITE INSPE	CTION	34
,		EQUIREMENTS	3 4 34
		NDINGS / DEFICIENCIES DURING THE REPORTING MONTH	34
10			
10		IENTAL COMPLAINT AND NON-COMPLIANCE nvironmental Complaint, Summons and Prosecution	38 38
11		TATION STATUS OF MITIGATION MEASURES	42
		ENERAL REQUIREMENTS	42
		ENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	42
	11.3 K	EY ISSUES FOR THE COMING MONTH	43
12	CONCLUSI	ONS AND RECOMMENDATIONS	45
		ONCLUSIONS	45
	12.2 R	ECOMMENDATIONS	45

AUES

LIST OF TABLES

TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	IMPACT MONITORING STATIONS - AIR QUALITY
TABLE 3-3	IMPACT MONITORING STATIONS - CONSTRUCTION NOISE
TABLE 3-4	IMPACT MONITORING STATIONS - WATER QUALITY
TABLE 3-5	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-6	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-7	WATER QUALITY MONITORING EQUIPMENT
TABLE 3-8	ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING
TABLE 3-9	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-10	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM1A
TABLE 4-2	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM2
TABLE 4-3	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM3
TABLE 4-4	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM4B
TABLE 4-5	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM5A
TABLE 4-6	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM6
TABLE 4-7	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM7A
TABLE 4-8	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM8
TABLE 4-9	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM9B
TABLE 5-1	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-2	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-3	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS (EVENING TIME)
TABLE 5-4	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS (NIGHT TIME)
TABLE 6-1	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 3
TABLE 6-2	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 5 AND SS C505
TABLE 6-3	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 6
TABLE 6-4	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 6
TABLE 6-5	ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE RECORDED
TABLE 6-6	SUMMARY OF WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
TABLE 6-7	SUMMARY OF WATER QUALITY EXCEEDANCE WHICH WERE UNDER REVIEW BY IEC IN APRIL 2016
TABLE 8-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
TABLE 8-2	SUMMARY OF QUANTITIES OF C&D WASTES
TABLE 9-1	SITE OBSERVATIONS FOR CONTRACT 2
TABLE 9-2	SITE OBSERVATIONS FOR CONTRACT 3
TABLE 9-3	SITE OBSERVATIONS FOR CONTRACT 5
TABLE 9-4	SITE OBSERVATIONS FOR CONTRACT 6
TABLE 9-5	SITE OBSERVATIONS FOR CONTRACT SS C505
TABLE 9-6	SITE OBSERVATIONS FOR CONTRACT 7
TABLE 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
TABLE 11-1	ENVIRONMENTAL MITIGATION MEASURES

 $[\]label{eq:loss_2013} Z: \label{eq:loss_2013} CS00694 \\ \end{eq:loss_2013} \\ \end{eq:loss_20$

LIST OF APPENDICES

APPENDIX A	LAYOUT PLAN OF THE PROJECT
APPENDIX B	ORGANIZATION CHART
APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
APPENDIX D	DESIGNATED MONITORING LOCATIONS AS RECOMMENDED IN THE APPROVED EM&A MANUAL
APPENDIX E	MONITORING LOCATIONS FOR IMPACT MONITORING
APPENDIX F	CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT AND HOKLAS-ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY
APPENDIX G	EVENT AND ACTION PLAN
APPENDIX H	IMPACT MONITORING SCHEDULE
APPENDIX I	DATABASE OF MONITORING RESULT
APPENDIX J	GRAPHICAL PLOTS FOR MONITORING RESULT
APPENDIX K	METEOROLOGICAL DATA
APPENDIX L	WASTE FLOW TABLE
APPENDIX M	IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES
APPENDIX N	INVESTIGATION REPORT FOR EXCEEDANCE

1 INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department is the Project Proponent and the Permit Holder of Agreement No. CE 45/2008 (CE) Liantang / Heung Yuen Wai Boundary Control Point and Associated Works, which is a Designated Project to be implemented under Environmental Permit number EP-404/2011/C granted on 12 March 2015.
- 1.1.2 The Project consists of two main components: Construction of a Boundary Control Point (hereinafter referred as "BCP"); and Construction of a connecting road alignment. Layout plan of the Project is shown in *Appendix A*.
- 1.1.3 The proposed BCP is located at the boundary with Shenzhen near the existing Chuk Yuen Village, comprising a main passenger building with passenger and cargo processing facilities and the associated customs, transport and ancillary facilities. The connecting road alignment consists of six main sections:
 - 1) Lin Ma Hang to Frontier Closed Area (FCA) Boundary this section comprises at-grade and viaducts and includes the improvement works at Lin Ma Hang Road;
 - Ping Yeung to Wo Keng Shan this section stretches from the Frontier Closed Area Boundary to the tunnel portal at Cheung Shan and comprises at-grade and viaducts including an interchange at Ping Yeung;
 - 3) North Tunnel this section comprises the tunnel segment at Cheung Shan and includes a ventilation building at the portals on either end of the tunnel;
 - 4) Sha Tau Kok Road this section stretches from the tunnel portal at Wo Keng Shan to the tunnel portal south of Loi Tung and comprises at-grade and viaducts including an interchange at Sha Tau Kok and an administration building;
 - 5) South Tunnel this section comprises a tunnel segment that stretches from Loi Tung to Fanling and includes a ventilation building at the portals on either end of the tunnel as well as a ventilation building in the middle of the tunnel near Lau Shui Heung;
 - 6) Fanling this section comprises the at-grade, viaducts and interchange connection to the existing Fanling Highway.
- 1.1.4 Action-United Environmental Services & Consulting has been commissioned as an Independent ET to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. As part of the EM&A program, the baseline monitoring has carried out between **13 June 2013** and **12 July 2013** for all parameters including air quality, noise and water quality before construction work commencement. The Baseline Monitoring Report summarized the key findings and the rationale behind determining a set of Action and Limit Levels (A/L Levels) from the baseline data. Also, the Project baseline monitoring report which verified by the IEC has been submitted to EPD on **16 July 2013** for endorsement. The major construction works of the Project was commenced on **16 August 2013** in accordance with the EP Section 5.3 stipulation.
- 1.1.5 This is **39th** monthly EM&A report presenting the monitoring results and inspection findings for reporting period from **1** to **31 October 2016**.

1.2 REPORT STRUCTURE

- 1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-
 - Section 1 Introduction
 - Section 2 Project Organization and Construction Progress
 - Section 3 Summary of Impact Monitoring Requirements
 - Section 4 Air Quality Monitoring
 - Section 5 Construction Noise Monitoring
 - Section 6 Water Quality Monitoring

Section 7	Waste Management
Section 8	Site Inspections
Section 9	Environmental Complaints and Non-Compliance
Section 10	Implementation Status of Mitigation Measures
Section 11	Conclusions and Recommendations

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 CONSTRUCTION CONTRACT PACKAGING

- 2.1.1 To facilitate the project management and implementation, the Project would be divided by the following contracts:
 - Contract 2 (CV/2012/08)
 - Contract 3 (CV/2012/09)
 - Contract 4 (NE/2014/02)
 - Contract 5 (CV/2013/03)
 - Contract 6 (CV/2013/08)
 - Contract 7 (NE/2014/03)
 - ArchSD Contract No. SS C505
- 2.1.2 The details of each contracts is summarized below and the delineation of each contracts is shown in *Appendix A*.

Contract 2 (CV/2012/08)

- 2.1.3 Contract 2 has awarded in December 2013 and construction work was commenced on 19 May 2014. Major Scope of Work of the Contract 2 is listed below:
 - construction of an approximately 5.2km long dual two-lane connecting road (with about 0.4km of at-grade road and 4.8km of tunnel) connecting the Fanling Interchange with the proposed Sha Tau Kok Interchange;
 - construction of a ventilation adit tunnel and the mid-ventilation building;
 - construction of the north and south portal buildings of the Lung Shan Tunnel and their associated slope works;
 - provision and installation of ventilation system, E&M works and building services works for Lung Shan tunnel and Cheung Shan tunnel and their portal buildings;
 - construction of Tunnel Administration Building adjacent to Wo Keng Shan Road and the associated E&M and building services works; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 3 (CV/2012/09)

- 2.1.4 Contract 3 was awarded in July 2013 and construction work was commenced on 5 November 2013. Major Scope of Work of the Contract 3 is listed below:
 - construction of four link roads connecting the existing Fanling Highway and the south portal of the Lung Shan Tunnel;
 - realignment of the existing Tai Wo Service Road West and Tai Wo Service Road East;
 - widening of the existing Fanling Highway (HyD's entrustment works);
 - demolishing existing Kiu Tau vehicular bridge and Kiu Tau footbridge and reconstruction of the existing Kiu Tau Footbridge (HyD's entrustment works); and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 4 (NE/2014/02)

- 2.1.5 Contract 4 has awarded in mid-April 2016. However, the major construction work still is not yet commenced. The scope of work of the Contract 4 includes:
 - design, supply, delivery, installation, testing and commissioning of a traffic control and surveillance system for the connecting road linking up the Liantang / Heung Yuen Wai Boundary Control Point and the existing Fanling Highway.

Contract 5 (CV/2013/03)

- 2.1.6 Contract 5 has awarded in April 2013 and construction work was commenced in August 2013. Major Scope of Work of the Contract 5 is listed below:
 - site formation of about 23 hectares of land for the development of the BCP;
 - construction of an approximately 1.6 km long perimeter road at the BCP including a 175m long depressed road;
 - associated diversion/modification works at existing local roads and junctions including Lin Ma Hang Road;
 - construction of pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provision of resite area with supporting infrastructure for reprovisioning of the affected village houses; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 6 (CV/2013/08)

- 2.1.7 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. Major Scope of Work of the Contract 6 would be included below:
 - construction of an approximately 4.6km long dual two-lane connecting road (with about 0.6km of at-grade road, 3.3km of viaduct and 0.7km of tunnel) connecting the BCP with the proposed Sha Tau Kok Road Interchange and the associated ventilation buildings;
 - associated diversion/modification works at access roads to the resite of Chuk Yuen Village;
 - provision of sewage collection, treatment and disposal facilities for the BCP and the resite of Chuk Yuen Village;
 - construction of a pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provisioning of the affected facilities including Wo Keng Shan Road garden; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 7 (NE/2014/03)

- 2.1.8 Contract 7 has awarded in December 2015 and the construction works of Contract 7 was commenced on 15 February 2016. Major Scope of Work of the Contract 7 would be included below:
 - construction of the Hong Kong Special Administrative Region (HKSAR) portion of four vehicular bridge
 - construction of one pedestrian bridge crossing Shenzhen (SZ) River (cross boundary bridges)

ArchSD Contract No. SS C505

- 2.1.9 SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. Major Scope of Work of the SS C505 would be included below:
 - passenger-related facilities including processing kiosks and examination facilities for private cars and coaches, passenger clearance building and halls, the interior fitting works for the pedestrian bridge crossing Shenzhen River, etc.;
 - cargo processing facilities including kiosks for clearance of goods vehicles, customs inspection platforms, X-ray building, etc.;
 - accommodation for the facilities inside of the Government departments providing services in connection with the BCP;
 - transport-related facilities inside the BCP including road networks, public transport interchange, transport drop-off and pick-up areas, vehicle holding areas and associated road furniture etc;
 - a public carpark; and

• other ancillary facilities such as sewerage and drainage, building services provisions and electronic systems, associated environmental mitigation measure and landscape works.

2.2 **PROJECT ORGANIZATION**

2.2.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

Civil Engineering and Development Department (CEDD)

2.2.2 CEDD is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. An Independent Environmental Checker (IEC) shall be employed by CEDD to audit the results of the EM&A works carried out by the ET.

Architectural Services Department (ArchSD)

2.2.3 ArchSD acts as the works agent for Development Bureau (DEVB), for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities.

Environmental Protection Department (EPD)

2.2.4 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

Ronald Lu & Partners (Hong Kong) Ltd (The Architect)

- 2.2.5 Ronald Lu & Partners (Hong Kong) Ltd is appointed by ArchSD as an Architect for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) BCP Buildings and Associated Facilities. It responsible for overseeing the construction works of Contract SS C505 and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Architect with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors' and ET's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation
 - Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulation of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

Engineer or Engineers Representative (ER)

- 2.2.6 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors's, ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance

- Adhere to the procedures for carrying out complaint investigation
- Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulaiton of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

The Contractor(s)

- 2.2.7 There will be one contractor for each individual works contract. Once the contractors are appointed, EPD, ET and IEC will be notified the details of the contractor.
- 2.2.8 The Contractor for Contracts under CEDD should report to the ER. For ArchSD Contract, the Contractor should report to the Architect or Architect's Representative (AR). The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Employ an Environmental Team (ET) to undertake monitoring, laboratory analysis and reporting of EM &A Facilitate ET's monitoring and site inspection activities
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.2.9 Once the ET is appointed, the EPD, CEDD, ER, Architect and IEC will be notified the details of the ET.
- 2.2.10 The ET shall not be in any way an associated body of the Contractor(s), and shall be employed by the Project Proponent/Contractor to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitably qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. The ET shall report to the Project Proponent and the duties shall include:
 - Monitor and audit various environmental parameters as required in this EM&A Manual
 - Analyse the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications
 - Audit environmental conditions on site
 - Report on the environmental monitoring and audit results to EPD, the ER, the Architect, the IEC and Contractor or their delegated representatives
 - Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
 - Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
 - Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
 - Adhere to the procedures for carrying out complaint investigation

• Liaison with the client departments, Engineer/Engineer's Representative, ET, IEC and the Contractor(s) of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

Independent Environmental Checker (IEC)

- 2.2.11 One IEC will be employed for this Project. Once the IEC is appointed, EPD, ER, the Architect and ET will be notified the details of the IEC.
- 2.2.12 The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 10 years' experience in EM&A and have relevant professional qualifications. The appointment of IEC should be subject to the approval of EPD. The IEC should:
 - Provide proactive advice to the ER and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Verify the log-book(s) mentioned in Condition 2.2 of the EP, notify the Director by fax, within one working day of receipt of notification from the ET Leader of each and every occurrence, change of circumstances or non-compliance with the EIA Report and/or the EP, which might affect the monitoring or control of adverse environmental impacts from the Project
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the ER and Project Proponent on a monthly basis
 - Liaison with the client departments, Engineer/Engineer's Representative, the Architect, ET, IEC and the Contractor of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

2.3 CONCURRENT PROJECTS

- 2.3.1 The concurrent construction works that may be carried out include, but not limited to, the following:
 - (a) Regulation of Shenzhen River Stage IV;
 - (b) Widening of Fanling Highway Tai Hang to Wo Hop Shek Interchange Contract No. HY/2012/06;
 - (c) Construction of BCP facilities in Shenzhen.

2.4 CONSTRUCTION PROGRESS

2.4.1 In the Reporting Period, the major construction activity conducted under the Project is located in Contracts 2, 3, 6, 7 and SS C505 and they are summarized in below. Moreover, 3-month rolling construction program for all the current contracts is enclosed in *Appendix C*.

Contract 2 (CV/2012/08)

The contract commenced in May 2014. In this Reporting Period, construction activities conducted 2.4.2 are listed below:

Mid-Vent	Stud tunnel and cavern excavation
Portal	• Adit invert slab, waterproofing and lining
	• Ventilation building superstructure and backfilling
North Portal	Slope stabilization and retaining wall
	Southbound Tunnel Boring Machine (TBM) excavation
	Northbound bench excavation
	• Tunnel enlargement and construction of cross passage
	• Tunnel internal structure and cross passage
	ventilation building foundation
South Portal	Southbound and northbound Drill Blast Excavation
	• South ventilation and building superstructure
	• Tunnel invert, waterproofing and lining
Admin Building	• Building superstructure and external wall

Admin Building Building superstructure and external wall

Contract 3 (CV/2012/09)

- 2.4.3 The Contract commenced in November 2013. In this Reporting Period, construction activities conducted are listed below:
 - Boundary wall for pumping station
 - Cable detection and trial trenches .
 - Construction of remaining slab of Box Culvert ID05
 - Demolition of Valve Control House
 - Footbridge construction
 - Gabion wall construction
 - Re-provisioning of Kiu Tau Footbridge
 - Storm drains laying
 - Noise barrier construction
 - Pier / pier table construction
 - Pile cap works
 - Portal beam construction .
 - Retaining wall construction
 - Road works
 - Sewer works
 - Slope reinstatement works near Bridge E
 - Utilities Duct Laying
 - Water Main Laying
 - Viaduct segment erection

Contract 4 (Contract number to be assigned)

The Contract was awarded in mid-April 2016 and the major construction work has not yet 2.4.4commenced.

Contract 5 (CV/2013/03)

2.4.5As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016.

Contract 6 (CV/2013/08)

- 2.4.6 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. In this Reporting Period, construction activities conducted are listed below:
 - Slope Works .
 - **Bored** Piling •

- Pile Cap Construction
- Bridge Pier Construction
- Bridge Segment Erection
- Tunnel Excavation
- Sewage Treatment Plant Construction

Contract 7 (NE/2014/03)

- 2.4.7 Contract 7 has awarded in December 2015 and construction work was commenced on 15 February 2016. In this Reporting Period, construction activities conducted are listed below:
 - Piling Works at Bridges A and E
 - Pile Caps Construction at Bridges B, C and D
 - Column construction at Bridge C

Contract SS C505

- 2.4.8 Contract SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. In this Reporting Period, construction activities conducted are listed below:
 - General Site Set-up
 - Building no.4, 5, 6, 7, 9, 10, 11 and 36 construction
 - Excavation waterproofing works for Building no. 4, 6 & 11
 - Pile cap construction for Building no.4,6&7
 - Tower crane operation
 - Bridge construction works including construction of bridge column, retaining wall, pile cap and pier
 - Underground drainage works
 - Prototype "A" & "B" construction works
 - Mock up for south entrance double curve cladding
 - Formwork and falsework for PTB's slab construction
 - Construction PTB M/F & 1/F flat slab
 - Steel beam works for maintenance platform for PTB
 - Pile cap construction for PTB, including excavation and backfilling works
 - Bridge deck construction for Bridges 1 5
 - Footing construction

2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

- 2.5.1 In according to the EP, the required documents have submitted to EPD which listed in below:
 - Project Layout Plans of Contracts 2, 3, 5, 6, 7 and SS C505
 - Landscape Plan
 - Topsoil Management Plan
 - Environmental Monitoring and Audit Programme
 - Baseline Monitoring Report (*TCS00690/13/600/R0030v3*) for the Project
 - Waste Management Plan of the Contracts 2, 3, 5, 6, 7 and SS C505
 - Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR) for Po Kat Tsai, Loi Tung and the workshops in Fanling
 - Vegetation Survey Report
 - Woodland Compensation Plan
 - Habitat Creation Management Plan
 - Wetland Compensation Plan
- 2.5.2 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project of each contracts are presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits of the Contracts

T	D /:	License/Permit Status		
Item	Description	tion Ref. no. Effective Date Ex		Expiry Date
		Contract 2		
1	Air pollution Control (Construction Dust) Regulation			Till Contract ends
2	Chemical Waste Producer Registration	North Portal Waste Producers Number: No.5213-652-D2523-01	25 Mar 2014	Till Contract ends
		<i>Mid-Vent Portal</i> Waste Producers Number: No.5213-634-D2524-01	25 Mar 2014	Till Contract ends
		South Portal Waste Producers Number: No.5213-634-D2526-01	9 Apr 2014	Till Contract ends
3	Water Pollution	No.WT00018374-2014	8 Oct 2014	30 Sep 2019
	Control Ordinance -	No.: W5/1I389	28 Mar 2014	31 Mar 2019
	Discharge License	No. WT00023063-2015	18 Dec 2015	31 Mar 2019
		No.: W5/1I392	28 Mar 2014	31 Mar 2019
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7019105	8 Jan 2014	Till Contract ends
5	Construction Noise	GW-RN0457-16	22 Jun 2016	14 Dec 2016
	Permit	GW-RN0435-16	27 Jun 2016	26 Dec 2016
		GW-RN0519-16	1 Aug 2016	30 Oct 2016
		GW-RN0543-16	18 Jul 2016	13 Jan 2017
		GW-RN0582-16	09 Aug 2016	08 Nov 2016
		GW-RN0590-16	09 Aug 2016	08 Nov 2016
		GW-RN0579-16	11 Aug 2016	07 Jan 2017
		GW-RN0604-16	11 Aug 2016	07 Jan 2017
		GW-RN0695-16	18 Sep 2016	17 Mar 2017
		GW-RN0700-16	20 Sep 2016	19 Feb 2017
		GW-RN0759-16	12 Oct 2016	11 Apr 2017
		GW-RN0780-16	27 Oct 2016	26 Dec 2016
		GW-RN0788-16	27 Oct 2016	26 Dec 2016
6	Specified Process License (Mortar Plant Operation)	L-3-251(1)	12-Apr-2016	11-Apr-2021
		Contract 3		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 362101	17 Jul 2013	Till Contract ends
2	Chemical Waste Producer Registration	Waste Producers Number: No.:5113-634-C3817-01	7 Oct 2013	Till Contract ends
3	Water Pollution	No.:WT00016832 - 2013	28 Aug 13	31 Aug 2018

 $Z: \label{eq:loss_2013} CS00694 \\ \end{tabular} BM&A \ Report \\$

14	Description	License/Permit Status		
Item	Description	Ref. no.	Effective Date	Expiry Date
	Control Ordinance - Discharge License			
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017914	2 Aug 13	Till Contract ends
5	Construction Noise	GW-RN0233-16	11 Apr 2016	10 Oct 2016
	Permit	GW-RN0309-16	30 Apr 2016	29 Oct 2016
		GW-RN0414-16	18 Jun 2016	17 Dec 2016
		GW-RN0434-16	22 Jun 2016	21 Dec 2016
		GW-RN0514-16	16 Jul 2016	15 Oct 2016
		GW-RN0525-16	20 Jul 2016	7 Jan 2017
		GW-RN0541-16	5 Aug 2016	4 Nov 2016
		GW-RN0549-16	30 Jul 2016	9 Jan 2017
		GW-RN0557-16	8 Aug 2016	30 Sep 2016
		GW-RN0561-16	16 Aug 2016	11 Feb 2017
		GW-RN0580-16	25 Aug 2016	24 Feb 2017
		GW-RN0581-16	25 Aug 2016	24 Feb 2017
		GW-RN0596-16	17 Aug 2016	15 Feb 2017
		GW-RN0606-16	27 Aug 2016	2 Oct 2016
		GW-RN0619-16	22 Aug 2016	14 Feb 2017
		GW-RN0646-16	10 Sep 2016	9 Mar 2017
		GW-RN0649-16	3 Sep 2016	7 Jan 2017
		GW-RN0653-16	11 Sep 2016	10 Mar 2017
		GW-RN0654-16	15 Sep 2016	14 Mar 2017
		GW-RN0708-16	8 Oct 2016	28 Jan 2017
		GW-RN0711-16	1 Oct 2016	13 Jan 2017
		GW-RN0720-16	4 Oct 2016	31 Mar 2017
		GW-RN0729-16	5 Oct 2016	31 Mar 2017
		GW-RN0756-16	18 Oct 2016	13 Apr 2017
		Contract 5		- -
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 359338	13 May 2013	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-642-S3735-01	8 Jun 2013	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: W5/1G44/1	8 Jun 13	30 Jun 2018
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017351	29 Apr 13	Till the end of Contract

T	D	License/	Permit Status	
Item	Description Ref. no. Ef		Effective Date	Expiry Date
		Contract 6		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390614	29 Jun 2015	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-652-C3969-01	31 Aug 2015	Till the end of Contract
3	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022707	9 Jul 2015	Till the end of Contract
4	Water Pollution Control Ordinance -	No.:WT00024574-2016	31 May 2016	31 May 2021
	Discharge License	No.:WT00024576-2016	31 May 2016	31 May 2021
		No.:WT00024742-2016	14 June 2016	30 June 2021
		No.:WT00024746-2016	14 June 2016	30 June 2021
5	Construction Noise	GW-RW0588-16	19 Oct 2016	18 Apr 2017
	Permit	GW-RN0766-16	21 Oct 2016	20 Jan 2017
		Contract SS C505	1	-
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390974	13 Jul 2015	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producer No.: 5213-642-L1048-07	16 Sep 2015	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024865-2016	8 Jul 2016	30 Nov 2020
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022831 23 Jul 2015		Till the end of Contract
5	Construction Noise	GW-RN0396-16	5 June 2016	4 Nov 2016
	Permit	PP-RN0020-16	16 Jul 2016	14 Jan 2017
		GW-RN0520-16	23 Jul 2016	22 Jan 2017
		Contract 7		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 397015	21 Dec 2015	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producer No.: 5214-641-K3202-01	24 Mar 2016	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024422-2016	10 May 2016	31 May 2021
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024129	21 Jan 2016	Till the end of Contract

Térre	Description	License/	Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
5	Construction Noise Permit	GW-RN0538-16	23 Jul 2016	4 Nov 2016
		Contract 4	•	
1	Air pollution Control (Construction Dust) Regulation	Form of Notification of Construction work has submitted to EPD in July 2016.		as submitted to
2	Chemical Waste Producer Registration	Application is under preparation		
3	Water Pollution Control Ordinance - Discharge License	Application is under preparation		
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Application is under preparation		

3 SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

- 3.1.1 The Environmental Monitoring and Audit requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project.
- 3.1.2 A summary of construction phase EM&A requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

- 3.2.1 The EM&A program of construction phase monitoring shall cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Water quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1*.

Table 3-1Summary of EM&A Requirements

Environmental Issue	Parameters
Air Quality	 1-hour TSP by Real-Time Portable Dust Meter; and
	 24-hour TSP by High Volume Air Sampler.
	• L _{eq(30min)} in normal working days (Monday to Saturday) 07:00-19:00
	except public holiday; and
Noise	• 3 sets of consecutive L _{eq(5min)} on restricted hours i.e. 19:00 to 07:00
INDISC	next day, and whole day of public holiday or Sunday
	• Supplementary information for data auditing, statistical results such
	as L_{10} and L_{90} shall also be obtained for reference.
	In-situ Measurements
	 Dissolved Oxygen Concentration (mg/L);
	 Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Water Quality	• pH unit;
	• Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	Suspended Solids (mg/L)

3.3 MONITORING LOCATIONS

3.3.1 The designated monitoring locations as recommended in the *EM&A Manual* are shown in *Appendix D*. As the access to some of the designated monitoring locations was questionable due to safety reason or denied by the landlords, alternative locations therefore have had proposed. The proposed alternative monitoring locations has updated in the revised EM&A Programme which verified by IEC and certified by ET Leader prior submitted to EPD on 10 July 2013. *Table 3-2, Table 3-3* and *Table 3-4* are respectively listed the air quality, construction noise and water quality monitoring locations for the Project and a map showing these monitoring stations is presented in *Appendix E*.

Station ID	Description	Works Area	Related to the Work Contract
AM1b^	Open area at Tsung Yuen Ha Village	BCP	SS C505
			Contract 7
AM2	Village House near Lin Ma Hang Road	LMH to Frontier	Contract 6
		Closed Area	
AM3	Ta Kwu Ling Fire Service Station of Ta	LMH to Frontier	Contract 6

 Table 3-2
 Impact Monitoring Stations - Air Quality

Station ID	Description	Works Area	Related to the Work Contract
	Kwu Ling Village.	Closed Area	
AM4b^	House no. 10B1 Nga Yiu Ha Village	LMH to Frontier	Contract 6
		Closed Area	
AM5a^	Ping Yeung Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM6	Wo Keng Shan Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM7b [@]	Loi Tung Village House	Sha Tau Kok	Contract 2
		Road	Contract 6
AM8	Po Kat Tsai Village No. 4	Po Kat Tsai	Contract 2
AM9b#	Nam Wa Po Village House No. 80	Fanling	Contract 3

Proposal for the change of air quality monitoring location from AM9a to AM9b was submitted to EPD on 4 Nov 2013 after verified by the IEC and it was approved by EPD (EPD's ref.: (15) in EP 2/N7/A/52 Pt.10 dated 8 Nov 2013).

* Proposal for the change of air quality monitoring location from AM1to AM1a was submitted to EPD on 24 March 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (6) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

@ Proposal for the change of air quality monitoring location from AM7a to AM7b was submitted to EPD on 4 June 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (7) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

^ Proposal for change of air quality monitoring locations was enclosed in the updated EM&A Programme which approval by EPD on 29 Mar 2016.

Station ID	Description	Works Area	Related to the Work Contract
NM1	Tsung Yuen Ha Village House No. 63	BCP	SS C505 Contract 7
NM2a#	Village House near Lin Ma Hang Road	Lin Ma Hang to Frontier Closed Area	Contract 6
NM3	Ping Yeung Village House (facade facing northeast)	Ping Yeung to Wo Keng Shan	Contract 6
NM4	Wo Keng Shan Village House	Ping Yeung to Wo Keng Shan	Contract 6
NM5	Village House, Loi Tung	Sha Tau Kok Road	Contract 2, Contract 6
NM6	Tai Tong Wu Village House 2	Sha Tau Kok Road	Contract 2, Contract 6
NM7	Po Kat Tsai Village	Po Kat Tsai	Contract 2
NM8	Village House, Tong Hang	Fanling	Contract 2 Contract 3
NM9	Village House, Kiu Tau Village	Fanling	Contract 3
NM10	Nam Wa Po Village House No. 80	Fanling	Contract 3

 Table 3-3
 Impact Monitoring Stations - Construction Noise

Proposal for the change of construction noise monitoring location from NM2 to NM2a was verified by the IEC on 6 May 2016 and was effective on 9 May 2016.

Table 3-4 Impact Momenting Stations - Water Quanty							
Station ID	Description	Coordinates of Designated / Alternative Location Easting Northing		inflon Solution		Nature of the location	Related to the Work
					Contract		
WM1	Downstream of Kong Yiu Channel	833 679	845 421	Alternative location located at upstream 51m of the designated location	SS C505 Contract 6		
WM1- Control	Upstream of Kong Yiu Channel	834 185	845 917	NA	SS C505 Contract 6		
WM2A	Downstream of River Ganges	834 204	844 471	Alternative location located at upstream 81m of the designated location	Contract 6		
WM2A(a)*	Downstream of River Ganges	834 191	844 474	Alternative location located at upstream 70m of the designated location	Contract 6		
WM2A- Controlx#	Upstream of River Ganges	835 377	844 188	Alternative location located at upstream 160m of the designated location	Contract 6		
WM2B	Downstream of River Ganges	835 433	843 397	NA	Contract 6		
WM2B- Control	Upstream of River Ganges	835 835	843 351	Alternative location located at downstream 31m of the designated location	Contract 6		
WM3x#	Downstream of River Indus	836 206	842 270	Alternative location located at downstream 180m of the designated location	Contract 2 Contract 6		
WM3- Control	Upstream of River Indus	836 763	842 400	Alternative location located at downstream 26m of the designated location	Contract 2 Contract 6		
WM4	Downstream of Ma Wat Channel	833 850	838 338	Alternative location located at upstream 11m of the designated location	Contract 2 Contract 3		
WM4– Control A	Kau Lung Hang Stream	834 028	837 695	Alternative location located at downstream 28m of the designated location	Contract 2 Contract 3		
WM4– Control B	Upstream of Ma Wat Channel	833760	837395	Alternative location located at upstream 15m of the designated location	Contract 2 Contract 3		

Table 3-4 Impact Monitoring Stations - Water Quality

Note: EPD has approved the revised EM&A Programme on 29th March 2016. If the measured water depth of the monitoring station is lower than 150 mm, alternative location (WM3x and WM2A-Controlx) based on the criteria were selected to perform water monitoring in accordance with the updated EM&A Programme (Rev. 05) (Section 4.1.4)

* Proposal for the change of water monitoring location from WM2A to WM2A(a) was verified by the IEC and it was approved by EPD. (EPD's ref. (10) in EP 2/N7/A/52 Pt.19)

3.4 MONITORING FREQUENCY AND PERIOD

The requirements of impact monitoring are stipulated in *Sections 2.1.6, 3.1.5* and *4.1.6* of the approved *EM&A Manual* and presented as follows.

Air Quality Monitoring

- 3.4.1 Frequency of impact air quality monitoring is as follows:
 - 1-hour TSP 3 times every six days during course of works

• 24-hour TSP Once every 6 days during course of works.

Noise Monitoring

3.4.2 One set of $L_{eq(30min)}$ as 6 consecutive $L_{eq(5min)}$ between 0700-1900 hours on normal weekdays and once every week during course of works. If construction work necessary to carry out at other time periods, i.e. restricted time period (19:00 to 07:00 the next morning and whole day on public holidays) (hereinafter referred as "the restricted hours"), additional weekly impact monitoring for $L_{eq(5min)}$ measurement shall be employed during respective restricted hours periods.. Supplementary information for data auditing, statistical results such as L_{10} and L_{90} shall also be obtained for reference.

Water Quality Monitoring

3.4.3 The water quality monitoring frequency shall be 3 days per week during course of works. The interval between two sets of monitoring shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve.
- 3.5.2 The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.3 All equipment to be used for air quality monitoring is listed in *Table 3-5*.

Equipment	Model	
24-Hr TSP		
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170*	
Calibration Kit	TISCH Model TE-5025A*	
1-Hour TSP		
Portable Dust Meter	Sibata LD-3B Laser Dust monitor Particle Mass Profiler &	
i ortable Dust Meter	Counter*	

Table 3-5Air Quality Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

Wind Data Monitoring Equipment

- 3.5.4 According to the approved EM&A Manual, wind data monitoring equipment shall also be provided and set up for logging wind speed and wind direction near the dust monitoring locations. The equipment installation location shall be proposed by the ET and agreed with the IEC. For installation and operation of wind data monitoring equipment, the following points shall be observed:
 - 1) The wind sensors should be installed 10 m above ground so that they are clear of obstructions or turbulence caused by buildings.
 - 2) The wind data should be captured by a data logger. The data shall be downloaded for analysis at least once a month.
 - 3) The wind data monitoring equipment should be re-calibrated at least once every six months.
 - 4) Wind direction should be divided into 16 sectors of 22.5 degrees each.
- 3.5.5 ET has liaised with the landlords of the successful granted HVS installation premises. However, the owners rejected to provide premises for wind data monitoring equipment installation.

3.5.6 Under this situation, the ET proposed alternative methods to obtain representative wind data. Meteorological information as extracted from "the Hong Kong Observatory Ta Kwu Ling Station" is alternative method to obtain representative wind data. For Ta Kwu Ling Station, it is located nearby the Project site. Moreover, this station is located at 15m above mean sea level while its anemometer is located at 13m above the existing ground which in compliance with the general setting up requirement. Furthermore, this station also can be to provide the humidity, rainfall, and air pressure and temperature etc. meteorological information. In Hong Kong of a lot development projects, weather information extracted from Hong Kong Observatory is common alternative method if weather station installation not allowed.

Noise Monitoring

- 3.5.7 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.8 Noise monitoring equipment to be used for monitoring is listed in *Table 3-6*.

Equipment	Model
Integrating Sound Level Meter	B&K Type 2238* or Rion NL-31 or Rion NL-52*
Calibrator	B&K Type 4231* or Cesva CB-5 or Rion NC-74*
Portable Wind Speed Indicator	Testo Anemometer

Table 3-6Construction Noise Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.5.9 Sound level meters listed above comply with the *International Electrotechnical Commission Publications 651: 1979 (Type 1)* and *804: 1985 (Type 1)* specifications, as recommended in TM issued under the NCO. The acoustic calibrator and sound level meter to be used in the impact monitoring will be calibrated yearly.

Water Quality Monitoring

- 3.5.10 DO and water temperature should be measured in-situ by a DO/temperature meter. The instrument should be portable and weatherproof using a DC power source. It should have a membrane electrode with automatic temperature compensation complete with a cable. The equipment should be capable of measuring:
 - a DO level in the range of 0-20 mg/l and 0-200% saturation; and
 - a temperature of between 0 and 45 degree Celsius.
- 3.5.11 A portable pH meter capable of measuring a range between 0.0 and 14.0 should be provided to measure pH under the specified conditions accordingly to the APHA Standard Methods.
- 3.5.12 The instrument should be portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
- 3.5.13 A portable, battery-operated echo sounder or tape measure will be used for the determination of water depth at each designated monitoring station as appropriate.
- 3.5.14 A water sampler e.g. Kahlsico Water Sampler, which is a transparent PVC cylinder with capacity not less than 2 litres, will be used for water sampling if water depth over than 0.5m. For sampling from very shallow water depths e.g. <0.5 m, water sample collection will be directly from water surface below 100mm use sampling plastic bottle to avoid inclusion of bottom sediment or humus. Moreover, Teflon/stainless steel bailer or self-made sampling buckets maybe used for water sampling. The equipment used for sampling will be depended the sampling location and depth situations.

- 3.5.15 Water samples for laboratory measurement of SS will be collected in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to the laboratory in the same day as the samples were collected.
- 3.5.16 Analysis of suspended solids should be carried out in a HOKLAS or other accredited laboratory. Water samples of about 1L should be collected at the monitoring stations for carrying out the laboratory suspended solids determination. The SS determination work should start within 24 hours after collection of the water samples. The SS analyses should follow the *APHA Standard Methods 2540D* with Limit of Reporting of 2 mg/L.
- 3.5.17 Water quality monitoring equipment used in the impact monitoring is listed in *Table 3-7*. Suspended solids (SS) analysis is carried out by a local HOKLAS-accredited laboratory, namely *ALS Technichem (HK) Pty Ltd*.

Equipment	Model
Water Depth Detector	Eagle Sonar or tape measures
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends or teflon/stainless steel bailer or self-made sampling bucket
Thermometer & DO meter	YSI Professional Plus /YSI PRO20 Handheld Dissolved Oxygen Instrument / YSI 550A Multifunctional Meter*/ YSI Professional DSS
pH meter	YSI Professional Plus / AZ8685 pH pen-style meter*/ YSI 6820/ 650MDS/ YSI Professional DSS
Turbidimeter	Hach 2100Q*/ YSI 6820/ 650MDS/ YSI Professional DSS*
Sample Container	High density polythene bottles (provided by laboratory)
Storage Container	'Willow' 33-liter plastic cool box with Ice pad

Table 3-7Water Quality Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.6 MONITORING METHODOLOGY

<u>1-hour TSP Monitoring</u>

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.2 The 1-hour TSP meter is used within the valid period as follow manufacturer's Operation and Service Manual.

24-hour TSP Monitoring

- 3.6.3 The equipment used for 24-hour TSP measurement is Tisch Environmental, Inc. Model TE-5170 TSP high volume air sampling system, which complied with *EPA Code of Federal Regulation*, *Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:
 - (a.) An anodized aluminum shelter;
 - (b.) A 8"x10" stainless steel filter holder;
 - (c.) A blower motor assembly;
 - (d.) A continuous flow/pressure recorder;

- (e.) A motor speed-voltage control/elapsed time indicator;
- (f.) A 7-day mechanical timer, and
- (g.) A power supply of 220v/50 Hz
- 3.6.4 The HVS is operated and calibrated on a regular basis in accordance with the manufacturer's instruction using Tisch Calibration Kit Model TE-5025A. Calibration would carry out in two month interval.
- 3.6.5 24-hour TSP is collected by the ET on filters of HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% RH (Relative Humidity) and 25°C, for six months prior to disposal.

Noise Monitoring

- 3.6.6 Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels dB(A). Supplementary statistical results (L_{10} and L_{90}) were also obtained for reference.
- 3.6.7 During the monitoring, all noise measurements would be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). Leq_(30min) in six consecutive Leq_(5min) measurements will use as the monitoring parameter for the time period between 0700-1900 hours on weekdays; Leq_(5min) measurements would be used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.6.8 Prior of noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The checking is performed before and after the noise measurement.

Water Quality

3.6.9 Water quality monitoring is conducted at the designated or alternative locations. The sampling procedures with the in-situ monitoring are presented as below:

Sampling Procedure

- 3.6.10 A Digital Global Positioning System (GPS) is used to identify the designated monitoring stations prior to water sampling. A portable, battery-operated echo sounder or tape measurement is used for the determination of water depth at each station. At each station, water sample would be collected from 0.1m below water surface or the water surface to prevent the river bed sediment for stirring.
- 3.6.11 The sample container will be rinsed with a portion of the water sample. The water sample then will be transferred to the high-density polythene bottles as provided by the laboratory, labeled with a unique sample number and sealed with a screw cap.
- 3.6.12 Before sampling, general information such as the date and time of sampling, weather condition as well as the personnel responsible for the monitoring would be recorded on the field data sheet.
- 3.6.13 A 'Willow' 33-liter plastic cool box packed with ice will be used to preserve the water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box is maintained at a temperature as close to 4^oC as possible without being frozen. Samples collected are delivered to the laboratory upon collection.

<u>In-situ Measurement</u>

3.6.14 YSI 550A Handheld Dissolved Oxygen Instrument is used for water in-situ measures, which automates the measurements and data logging of temperature, dissolved oxygen and dissolved oxygen saturation.

- 3.6.15 A portable AZ Model 8685 is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 14 and readable to 0.1.
- 3.6.16 A portable Hach 2100Q Turbidimeter or YSI Professional DSS is used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU.
- 3.6.17 All in-situ measurement equipment are calibrated by HOKLAS accredited laboratory of three month interval.

Laboratory Analysis

3.6.18 All water samples analyzed Suspended Solids (SS) will be carried out by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS determination using *APHA Standard Methods 2540D* as specified in the *EM&A Manual* will start within 48 hours of water sample receipt.

3.7 EQUIPMENT CALIBRATION

- 3.7.1 Calibration of the HVS is performed upon installation and thereafter at bimonthly intervals in accordance with the manufacturer's instruction using the certified standard calibrator (TISCH Model TE-5025A). Moreover, the Calibration Kit would be calibrated annually. The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.7.2 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment would be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.
- 3.7.3 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.7.4 All water quality monitoring equipment would be calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.7.5 The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period and the HOKLAS accredited certificate of laboratory are attached in *Appendix F*.

3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality, construction noise and water quality criteria were set up, namely Action and Limit levels are listed in *Tables 3-8, 3-9* and *3-10*.

Monitoring Station	Action 1	Level (µg /m ³)	Limit Level (µg/m ³)		
Monitoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP	
AM1b	265	143			
AM2	268	149			
AM3	269	145		260	
AM4b	267	148	500		
AM5a	268	143			
AM6	269	148			
AM7b	275	156			
AM8	269	144			
AM9b	271	151			

Table 3-8Action and Limit Levels for Air Quality Monitoring

Table 3-9Action and Limit Levels for Construction Noise

Monitoring Location	Action Level	Limit Level in dB(A)		
Wollitoning Location	Time Period: 0700-1900 hours on normal weekdays			
NM1, NM2a, NM3, NM4, NM5, NM6, NM7, NM8, NM9, NM10	When one or more documented complaints are received	75 dB(A) ^{Note 1 & Note 2}		

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and65 dB(A) during examination period

Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

Table 3-10	Action and	Limit L	levels for	Water	Ouality

Danamatan	Performance	Monitoring Location						
Parameter	criteria	WM1	WM2A(a)	WM2B	WM3x	WM4		
DO	Action Level	^(*) 4.23	^(**) 4.00	^(*) 4.74	^(**) 4.00	^(*) 4.14		
(mg/L)	Limit Level	^(#) 4.19	^(**) 4.00	^(#) 4.60	^(**) 4.00	^(#) 4.08		
	Action Level	51.3	24.9	11.4	13.4	35.2		
Turbidity		AND	120% of ups	tream control s	tation of the s	ame day		
(NTU)	Limit Level	67.6	33.8	12.3	14.0	38.4		
	Linin Level	AND	130% of upstream control station of the same day					
	Action Level	54.5	14.6	11.8	12.6	39.4		
SS (ma/I)		AND	120% of upstream control station of the same day					
SS (mg/L)		64.9	17.3	12.4	12.9	45.5		
	Limit Level	AND	130% of ups	130% of upstream control station of the same day				

Remarks:

(*) The Proposed <u>Action Level</u> of Dissolved Oxygen is adopted to be used 5%-ile of baseline data

(**) The Proposed Action & Limit Level of Dissolved Oxygen is used 4mg/L

(#) The Proposed <u>Limit Level</u> of Dissolved Oxygen is adopted to be used 1%-ile of baseline data

3.8.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix G*.

3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.9.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.
- 3.9.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4 AIR QUALITY MONITORING

4.1 GENERAL

- 4.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 6, 7 and Contract SS C505. Hence, air quality monitoring was performed at all designated locations.
- 4.1.2 The air quality monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

4.2 AIR QUALITY MONITORING RESULTS

4.2.1 In the Reporting Period, a total of *135* events of 1-hour TSP and *45* events 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Tables 4-1 to 4-9*. The detailed 24-hour TSP monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

24-hour 1-hour TSP ($\mu g/m^3$) TSP Date Start 1st reading 2nd reading 3rd reading Date $(\mu g/m^3)$ Time 73 3-Oct-16 40 5-Oct-16 9:10 80 83 59 8-Oct-16 78 9:20 73 11-Oct-16 64 14-Oct-16 60 17-Oct-16 9:40 140 108 103 13:01 70 39 39 39 20-Oct-16 22-Oct-16 43 28-Oct-16 25 32 26-Oct-16 9:40 26 Average 58 Average 66 (Range) (40 - 78)(Range) (25 - 140)

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1b

	24-hour		1-hour TSP (µg/m ³)			
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
3-Oct-16	104	5-Oct-16	9:05	87	85	87
8-Oct-16	144	11-Oct-16	9:25	84	74	62
14-Oct-16	120	17-Oct-16	9:29	170	135	119
20-Oct-16	60	22-Oct-16	13:03	43	44	46
26-Oct-16	106	28-Oct-16	9:46	57	60	55
Average (Range)	107 (60 - 144)	Average (Range)		81 (43 – 170)		

Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
-----------	--

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
3-Oct-16	108	5-Oct-16	9:00	89	88	91	
8-Oct-16	137	11-Oct-16	9:29	93	91	70	
14-Oct-16	104	17-Oct-16	8:56	178	153	119	
20-Oct-16	49	22-Oct-16	13:07	45	46	44	
26-Oct-16	101	28-Oct-16	9:52	65	65	54	
Average (Range)	100 (49 - 137)	Average (Range)			86 (44 - 178)		

Table 4-4Summary of 24-hour and 1-hour TSP Monitoring Results – AM4b

	24 h	1-hour TSP (µg/m ³)					
Date	24-hour TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
5-Oct-16	42	6-Oct-16	9:42	67	74	75	
11-Oct-16	30	12-Oct-16	9:45	85	86	82	
17-Oct-16	59	18-Oct-16	13:03	31	24	28	
22-Oct-16	35	24-Oct-16	9:47	61	62	60	
28-Oct-16	54	29-Oct-16	9:11	74	73	68	
Average	44	Average			63		
(Range)	(30 – 59)	(Rang	(Range)		(24 - 86)		

Table 4-5Summary of 24-hour and 1-hour TSP Monitoring Results – AM5a

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
5-Oct-16	80	6-Oct-16	9:51	77	73	81	
11-Oct-16	51	12-Oct-16	9:40	89	87	84	
17-Oct-16	35	18-Oct-16	13:14	33	26	26	
22-Oct-16	35	24-Oct-16	9:51	58	66	64	
28-Oct-16	27	29-Oct-16	9:17	69	68	64	
Average (Range)	46 (27 - 80)	Average (Range)		64 (26 - 89)			

Table 4-6Summary of 24-hour and 1-hour TSP Monitoring Results – AM6

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
5-Oct-16	138	6-Oct-16	9:30	87	79	82	
11-Oct-16	97	12-Oct-16	9:30	95	98	93	
17-Oct-16	60	18-Oct-16	12:50	35	33	27	
22-Oct-16	63	24-Oct-16	9:37	56	64	62	
28-Oct-16	97	29-Oct-16	9:19	76	77	75	
Average (Range)	91 (60 - 138)	Average (Range)			69 (27 - 98)		

Table 4-7	Summary of 24-hour and 1-hour TSP Monitoring Results – AM7b
-----------	---

	24-hour		1	-hour TSP (µg	m^3)	
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
5-Oct-16	86	6-Oct-16	13:03	68	73	71
11-Oct-16	39	12-Oct-16	9:12	72	68	68
17-Oct-16	75	18-Oct-16	9:41	25	27	26
22-Oct-16	54	24-Oct-16	9:19	81	88	67
28-Oct-16	64	29-Oct-16	9:29	142	184	200
Average	63	Average		84		
(Range)	(39 - 86)	(Rang	ge)		(25 - 200)	

Table 4-8	Summary of 24-hour and 1-hour TSP Monitoring Results – AM8
-----------	--

	24-hour		1	-hour TSP (µg	y/m^3)	
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
5-Oct-16	59	6-Oct-16	13:11	84	74	75
11-Oct-16	49	12-Oct-16	13:09	59	61	52
17-Oct-16	47	18-Oct-16	9:35	31	29	31
22-Oct-16	37	24-Oct-16	13:02	64	77	53
28-Oct-16	36	29-Oct-16	13:10	128	95	93
Average	46	Average			67	
(Range)	(36 – 59)	(Range)		(29 -128)		

Table 4-9	Summary of 24-hour and 1-hour TSP Monitoring Results – AM9b
-----------	---

24-hour		1	-hour TSP (µg	g/m ³)	
TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
34	5-Oct-16	12:52	106	117	111
57	11-Oct-16	13:05	59	60	56
43	17-Oct-16	13:08	100	69	54
31	22-Oct-16	13:21	47	49	46
27	28-Oct-16	12:52	38	32	35
38 (27 - 57)	Average (Range)		65 (32 – 117)		
	TSP (μg/m ³) 34 57 43 31 27	TSP (μg/m³) Date 34 5-Oct-16 57 11-Oct-16 43 17-Oct-16 31 22-Oct-16 27 28-Oct-16 38 Avera	TSP (μg/m³) Date Start Time 34 5-Oct-16 12:52 57 11-Oct-16 13:05 43 17-Oct-16 13:08 31 22-Oct-16 13:21 27 28-Oct-16 12:52 38 Average	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

- 4.2.1 As shown in *Tables 4-1 to 4-9*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action/Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.2 The meteorological data during the impact monitoring days are summarized in *Appendix K*.
- 4.2.3 For the outstanding investigation result for 24-hour TSP exceedances at AM2 and AM3 on 27 September 2016, the investigation report (IR) conducted by the ET was completed and submitted to relevant parties. The IR revealed that the exceedances were not project related and therefore no remedial measures were proposed. The detail IR is presented *Appendix N*.

5 CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 6, 7 and Contract SS C505 and noise monitoring was performed at all designated locations.
- 5.1.2 The noise monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

5.2 NOISE MONITORING RESULTS (NORMAL DAYTIME)

5.2.1 In the Reporting Period, a total of **40** event noise measurements were carried out at the designated locations. The sound level meter was set in 1m from the exterior of the building façade including noise monitoring locations NM1, NM3, NM4, NM5, NM6, NM7, NM8 and NM9. Therefore, no façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines. However, free-field status were performed at NM2a and NM10 and façade correction (+3 dB(A)) has added according to the requirement in this month. The noise monitoring results at the designated locations are summarized in *Tables 5-1 and 5-2*. The detailed noise monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

Construction Noise Level (L _{eq30min}), dB(A)								
Date	NM1	NM2a ^(*)	NM8	NM9	NM10 ^(*)			
5-Oct-16	52	75	56	64	67			
11-Oct-16	62	73	59	63	67			
17-Oct-16	52	63	59	62	65			
28-Oct-16	58	64	56	62	65			
Limit Level			75 dB(A)					

Table 5-1Summary of Construction Noise Monitoring Results

Remarks

(*) façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines

Table 5-2Summary of Construction Noise Monitoring Results

Construction Noise Level (L _{eq30min}), dB(A)								
Date	NM3	NM4	NM5	NM6	NM7			
6-Oct-16	66	59	60	56	60			
12-Oct-16	60	68	56	58	69			
18-Oct-16	64	74	62	63	63			
24-Oct-16	59	62	56	57	69			
Limit Level			75 dB(A)					

5.2.2 As shown in *Tables 5-1 and 5-2*, the noise level measured at all designated monitoring locations were below 75dB(A). Furthermore, there was no noise complaints (Action Level exceedance) received by the RE, CEDD, Architect/AR/ and the Contractors in the Reporting Period. Therefore, no Action or Limit Level exceedance was triggered and no corrective action was required.

5.3 NOISE MONITORING RESULTS (RESTRICTED HOURS)

- 5.3.1 In the Reporting Period, CNPs were granted by Contracts 2, 3, 6 and 7 for use of Powered Mechanical Equipment (PME) during restricted hour. As confirmed by both Contractors with their works schedules, construction works would be conducted at Contract 6 and 7 during restricted hours with the granted CNP. Noise monitoring was therefore conducted at the relevant noise monitoring locations during respective restricted hour periods.
- 5.3.2 Based on the works schedule by the Contractor of Contracts 2, 3, 6 and 7, the involved noise monitoring locations included NM5, NM7, NM8, NM9 and NM10 and the noise monitoring

results are summarized in Tables 5-3 and 5-4.

 Table 5-3
 Summary of Construction Noise Monitoring Results (Evening Time)

Construction Noise Level (L _{eq5min}), dB(A)										
Date	N	M5	NM7		NM8		18 NM9		NM10 ^(*)	
	Start Time	L _{eq5min}	Start Time	L _{eq5min}						
13-Oct-16	22:47	46.9	22:31	48.5	21:57	58.8				
23-Oct-16	22:47	47.8	22:16	47.2	20:57	58.4	21:25	66.3	21:36	59.0
28-Oct-16	22:09	44.9	21:55	52.0	21:26	62.8				
Observation/ other noise source	NA							close to	barking	rious dog in the

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

(*) façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines

Table 5-4	Summary of Construction Noise Monitoring Results (Night Time)
-----------	---

	Construction Noise Level (L _{eq5min}), dB(A)										
Date (#)	N	M5	NM7		NM8		NM9		NM10 ^(*)		
	Start Time	L _{eq5min}	Start Time	L _{eq5min}	Start Time	L _{eq5min}	Start Time	L _{eq5min}	Start Time	L _{eq5min}	
13-Oct-16	23:00	46.8	23:15	49.1	23:40	56.0	0:00	63.8	0:11	58.3	
23-Oct-16	23:01	46.1	23:27	49.6	23:49	59.6	0:06	61.6	0:19	59.3	
28-Oct-16	23:00	45.7	23:14	50.8	23:34	64.2	0:00	59.7	0:09	56.0	
Observation/ other noise source	NA		NA			rains as close to		01000 00	dogs ba	serious arking in ge	

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

(#) the monitoring date for NM9 and NM10 shall be the next day of the "Date"

(*) façade correction (+3 dB(A) is added according to acoustical principles and EPD guidelines

5.3.3 According to the site records by the monitoring team, no construction noise from the construction was noted during the course of monitoring at all locations. On the other hand, traffic noise was dominated at NM8 and NM9 since the monitoring locations were closed to the train tracks and very serious dogs barking were recorded at NM10. Therefore, it is considered that the measurement results were likely to be the background noise.

6 WATER QUALITY MONITORING

6.1 GENERAL

6.1.1 In the Reporting Period, construction works under the project has been commenced in Contracts 2, 3, 6, 7 and Contract SS C505 and water quality monitoring was performed at all designated locations. The water quality monitoring schedule is presented in *Appendix H*. The monitoring results are summarized in the following sub-sections.

6.2 **RESULTS OF WATER QUALITY MONITORING**

- 6.2.1 In the Reporting Period, a total of thirteen (13) sampling days was scheduled to carry out for all designated locations with their control stations. Since exceedances were recorded at WM2A(a), WM2B, WM3x and WM4, according to *"Event and Action Plan"* stipulation, three (3) additional water quality monitoring day was conducted for WM2A(a) and WM4 and its control stations. Also, one (1) and two (2) additional water quality monitoring days were conducted for WM2B and WM3x respectively and its control stations in the reporting period.
- 6.2.2 The key monitoring parameters including Dissolved Oxygen, Turbidity and Suspended Solids are summarized in *Tables 6-1 to 6-5*. Breaches of water quality monitoring criteria are shown in *Table 6-6*. Detailed monitoring database including in-situ measurements and laboratory analysis data are shown in *Appendix I* and the relevant graphical plot are shown in *Appendix J*.

Date	Dissolved Oxygen (mg/L)				Turbidity (NTU)	r	Suspended Solids (mg/L)			
	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	
4-Oct-16	6.7	7.2	7.0	15.1	7.7	7.5	13.0	7.5	8.0	
6-Oct-16	6.7	7.0	7.0	15.7	4.9	9.6	13.5	4.0	13.0	
8-Oct-16	6.3	6.8	5.8	34.9	11.7	11.2	13.5	7.5	9.5	
11-Oct-16	6.8	7.6	6.9	250.0	12.2	21.4	153.5	6.0	34.5	
12-Oct-16	0.0	0.0	0.0	<u>179.0</u>	6.4	4.8	122.0	5.0	28.0	
13-Oct-16	6.2	7.2	5.4	<u>369.5</u>	5.7	11.8	240.5	9.0	22.5	
14-Oct-16#				13.3	3.3	4.7	15.0	6.0	17.0	
15-Oct-16	6.2	6.9	6.0	16.6	29.3	11.4	11.0	20.5	10.0	
18-Oct-16	7.0	7.3	6.8	<u>156.0</u>	95.7	94.3	108.0	69.0	59.0	
19-Oct-16#				561.5	522.5	281.0	536.0	539.0	220.0	
20-Oct-16	6.4	6.0	5.0	<u>162.5</u>	19.1	47.3	<u>118.5</u>	5.0	27.5	
22-Oct-16	6.8	6.3	5.7	25.8	11.6	11.8	19.0	6.5	7.5	
24-Oct-16	6.6	6.1	6.0	33.7	8.2	26.9	25.5	3.5	19.5	
26-Oct-16	6.2	6.5	5.6	30.1	19.6	16.8	34.0	<2	8.5	
28-Oct-16	7.3	7.7	6.4	25.5	11.1	15.6	27.5	3.0	6.0	
31-Oct-16	6.9	7.0	6.7	19.7	5.6	9.9	19.0	3.0	11.5	

 Table 6-1
 Water Quality Monitoring Results Associated of Contracts 2 and 3

Remarks:

bold with underline indicated Limit Level exceedance

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Table 6-2	Water Quality Monitoring Results Associated of Contracts 5, 6 and SS C505
-----------	---

Date	Dissolved Oxygen (mg/L)		Turbidity (NTU)		Suspended Solids (mg/L)	
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C
4-Oct-16	6.5	6.6	23.8	12.4	17.5	5.5
6-Oct-16	7.2	7.3	46.3	12.0	47.0	6.5
8-Oct-16	7.3	6.5	49.7	9.6	36.5	5.0
11-Oct-16	7.7	7.5	11.3	8.5	9.5	5.0
13-Oct-16	6.8	6.8	15.6	7.4	18.0	6.5
15-Oct-16	6.8	6.1	10.3	8.1	10.0	4.0
18-Oct-16	7.3	7.2	Over range	Over range	1055.0	919.5
20-Oct-16	6.1	6.0	99.3	87.5	75.5	98.0
22-Oct-16	5.4	5.6	21.8	32.9	10.0	21.5

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.39) – October 2016

Date	Dissolved Oxygen (mg/L)		Turk (N	Suspended Solids (mg/L)		
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C
24-Oct-16	6.0	6.2	16.2	26.3	12.5	8.0
26-Oct-16	6.6	6.7	15.6	15.9	15.5	10.0
28-Oct-16	7.4	7.5	49.5	16.4	48.5	7.5
31-Oct-16	6.7	7.0	44.9	11.8	51.0	3.0

Table 6-3 Water Quality Monitoring Results Associated only Contract 6

Date	I	Dissolved Oxygen (mg/L) WM2A(WM2A- unitability of the second				Turb (N7	v		Suspended Solids (mg/L)			
Dutt	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A (a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A- Cx	WM2B	WM2 B- C
4-Oct-16	5.8	5.6	6.9	4.6	124.5	7.6			102.0	4.0		
5-Oct-16#					24.1	4.6			19.0	<2		
6-Oct-16	7.2	7.1	6.8	4.9	18.6	8.8	2.9	1.8	12.5	6.0	4.5	4.5
8-Oct-16	6.9	6.1	7.6	5.5	23.7	9.7	4.7	2.1	14.5	2.5	7.0	2.0
11-Oct-16	7.7	7.3	6.5	7.5	24.4	9.9	4.8	3.1	<u>19.0</u>	2.0	<2	5.5
13-Oct-16	6.6	6.1	7.2	5.0	14.5	10.6	2.8	1.6	11.5	<2	6.5	3.5
15-Oct-16	6.8	6.9	8.2	5.8	23.4	7.8	3.7	1.8	14.0	<2	6.5	<2
18-Oct-16	7.8	7.5	7.5	6.2	389.5	351.0	<u>641.0</u>	40.6	317.0	330.5	<u>669.0</u>	26.0
19-Oct-16#							240.5	91.2			261.0	96.0
20-Oct-16	6.3	6.7	6.7	5.1	329.5	32.1	26.8	4.8	156.0	5.0	24.0	<2
22-Oct-16	6.6	6.3	6.4	5.0	261.0	6.3	9.2	4.5	183.0	4.0	7.5	<2
24-Oct-16	6.2	6.6	6.3	5.0	<u>128.0</u>	8.8	9.8	3.7	<u>120.0</u>	4.0	11.0	<2
25-Oct-16#					24.5	10.5			18.0	7.0		
26-Oct-16	7.0	7.1	6.9	4.5	22.4	8.6	10.1	3.4	14.5	6.5	10.5	<2
28-Oct-16	7.1	7.6	7.7	6.4	53.0	8.6	4.4	3.0	48.0	5.0	5.5	<2
29-Oct-16#					45.4	9.1			88.0	8.0		
31-Oct-16	7.4	7.6	6.8	6.2	69.3	23.5	10.9	3.9	111.5	7.5	5.5	<2

Remarks:

bold with underline indicated Limit Level exceedance

bold with italic indicated Action Level exceedance

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Table 6-4Water Quality Monitoring Results Associated Contracts 2 and 6

Date	Dissolved Oxygen (mg/L)			oidity ΓU)	Suspended Solids (mg/L)		
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C	
4-Oct-16	6.6	6.4	12.3	9.1	12.0	5.0	
6-Oct-16	6.4	6.8	12.9	8.4	10.5	6.0	
8-Oct-16	6.3	7.3	89.3	3.0	77.0	4.5	
11-Oct-16	6.5	6.5	9.9	5.2	8.5	3.0	
12-Oct-16#			7.0	3.1	9.0	3.0	
13-Oct-16	6.4	5.4	13.2	1.8	12.0	6.0	
15-Oct-16	5.5	5.8	13.1	2.2	12.5	<2	
18-Oct-16	6.9	6.6	267.0	129.5	<u>395.0</u>	87.0	
19-Oct-16#			318.5	723.5	445.0	635.0	
20-Oct-16	5.9	6.5	12.9	7.0	12.0	4.0	
22-Oct-16	6.5	5.9	12.8	8.2	9.5	4.0	
24-Oct-16	6.2	5.9	8.6	9.2	6.5	4.0	
26-Oct-16	6.1	5.1	12.2	5.1	12.0	<2	
28-Oct-16	6.9	6.7	12.7	5.0	10.5	4.0	
31-Oct-16	6.6	7.3	7.1	4.7	10.5	7.5	

Remarks:

bold with underline indicated Limit Level exceedance

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Location		olved ygen	Turt	oidity	-	ended lids		otal edance	•	t Related edance
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
WM1	0	0	0	0	0	0	0	0	0	0
WM2A(a)	0	0	0	7	0	10	0	17	0	2 (#)
WM2B	0	0	0	3	0	3	0	6	0	0
WM3x	0	0	0	2	0	2	0	4	0	0
WM4	0	0	0	5	0	5	0	10	0	0
No of Exceedance	0	0	0	17	0	20	0	37	1	1

 Table 6-5
 Action and Limit (A/L) Levels Exceedance Recorded

(#) 13 number of exceedances at WM2A(a) are under investigated by ET.

- 6.2.3 In this Reporting Period, a total of thirty-seven (37) Limit Level (LL) exceedances, namely seventeen (17) LL exceedance of turbidity and twenty (20) LL exceedances of Suspended Solids were recorded for the Project and they are summarized in *Table 6-5*.
- 6.2.4 NOE was issued to relevant parties upon confirmation of the monitoring result. The investigation results and summary of exceedances are summarized in *Table 6-6*. The details of the completed investigation reports for the exceedances are attached in *Appendix N*.

Table 6-6	Summary of Water Quality Exceedance in the Reporting Period
	Summary of Water Quanty Exceedance in the Reporting renou

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance In Brief
28 and 30 Sep 2016 (last reporting month)	WM2A(a) (C6)	SS	Inspection was carried out align the existing river course of upstream of WM3x and it was observed that the river water adjacent the construction site was clear and no muddy discharge from the site was observed. The monitored drainage channel also collected the rain water from the Sha Tau Kok road surface via open drain and communal channel and it is believed that the water quality at monitored channel was affected by rain. In our investigation, it is considered that <u>the exceedances were unlikely caused by</u> the works under the Project.
4, 5 and 11 Oct 2016	WM2A(a) (C6)	NTU &SS	As reported by CCKJV, a fresh water pipe at Ping Yeung Interchange was damaged in the morning of 4 October 2016. CCKJV was promptly repaired the pipe which completed by noon of 4 October 2016. However, some muddy runoff was generated due to the damaged pipe and it was accidentally got into the adjacent Ping Yuen River. It is considered that the exceedances on 4 October 2016 were related to the pipe damage incident.
			During weekly site inspection, water quality mitigation measures implemented on site was in order and no adverse water impact was identified. It is considered <u>the exceedances</u> were due to natural variation and unlikely caused by the works under the project.
	WM2x (C2		Inspection was carried out align the existing river course of upstream of WM3x and it was observed that the river water adjacent the construction site was clear and no muddy discharge from the site was observed.
8 Oct 2016	WM3x (C2 and C6)	NTU &SS	Since there were no source of muddy water found from construction site and the wastewater treatment facilities and mitigation measures were properly maintained as observed during regularly site inspection. It is considered that <u>the</u> <u>exceedances were due to natural variation and unlikely</u> caused by the works under the Project.
11, 12, 13, 18	WM4 (C2	NTU &SS	Inspection was carried out at upstream area of impact station

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance In Brief
and 20 Oct 2016	and C3)		WM4 to investigate the source of muddy water. Muddy water was found flowing from the river branch near Kiu Tau Road. There was active construction site of other Contractor near Kiu Tak Road and muddy water was observed outside their site area and the underpass drain near that construction site. During weekly site inspection, the condition was generally in order and no adverse water quality impacts under the Contract were identified. In our investigation, it is considered that <u>exceedances were due to the muddy water from the outside of site boundary and not likely related to the works under the Project.</u>
18 Oct 2016	WM3x (C2 and C6)	NTU &SS	In our investigation, it is considered that the water quality in the channel on 18 October 2016 was deteriorated by heavy rain due to vigorous water flow and stir up sediment. Moreover, the monitored drainage channel near WM3x would be collected the rain water from the Sha Tau Kok road surface via open drain and communal channel. It is concluded that <u>the exceedances</u> were likely due to rain and not caused by the works under the Project .
20, 22 and 24 Oct 2016	WM2A(a) (C6)	NTU &SS	To be reported in next reporting period.
18, 19 and 20 Oct 2016	WM2B (C6)	NTU &SS	On 18 and 19 October 2016, the water flow in the channel was very vigorous due to heavy rain and turbid water was observed throughout the channel. Moreover, there were trails of muddy runoff getting into the existing river channel from the adjacent public road due to rainstorm. On 20 October 2016, there were no muddy water discharged from the site, it is considered that the exceedances were due to the disturbance of silt and sediment at the channel bed during sampling at shallow water. It is considered that the <u>exceedances were not likely caused by</u> <i>the Project</i> .
25, 28, 29 and 31 Oct 2016	WM2A(a) (C6)	NTU &SS	To be reported in next reporting period.

7 ECOLOGY MONITORING

7.1 GENERAL

7.1.1 In the Reporting Period, no ecology monitoring for woodland compensation was conducted.

8 WASTE MANAGEMENT

8.1 GENERAL WASTE MANAGEMENT

8.1.1 Waste management was carried out in accordance with the Waste Management Plan (WMP) for each contract.

8.2 **RECORDS OF WASTE QUANTITIES**

- 8.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 8.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix L*. Whenever possible, materials were reused on-site as far as practicable.

Type of	Cont	tract 2	Cor	ntract 3	Con	tract 6	Co	ntract 7	Contra	act SS C505	Total
Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Quantity
C&D Materials (Inert) (in '000m ³)	92.8467		1.115		36.479		0		1.164		131.6047
Reused in this Contract (Inert) (in '000 m ³)	0.8666		0.177		5.359		0		0		6.4026
Reused in other Contracts/ Projects (Inert) (in '000 m ³)	39.8733	C6/ NENT# & other projects approved by the ER	0	-	9.743	C5 & other projects approved by the ER	0	-	0		49.6163
Disposal as Public Fill (Inert) (in '000 m ³)	52.1068	Tuen Mun 38	0.453	Tuen Mun 38	21.377	Tuen Mun 38	0	Tuen Mun 38	1.164	TKO 137	75.1008

 Table 8-1
 Summary of Quantities of Inert C&D Materials for the Project

Remark #: The C&D materials were delivered to NENT for reuse by laying cover of the landfilling area.

Table 8-2

S-2 Summary of Quantities of C&D Wastes for the Project

	Cont	tract 2	Cont	tract 3	Cont	tract 6	Cont	ract 7	Contract	SS C505	Total
Type of Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Quantity
Recycled Metal ('000kg) #	0	-	0	-	0		0.2	Licensed collector	988.585	Licensed collector	988.785
Recycled Paper / Cardboard Packing (*000kg) #	0	-	0	-	0		0.04	Licensed collector	0.36	Licensed collector	0.4
Recycled Plastic ('000kg) #	0		0.002	Licensed collector	0		0.001	Licensed collector	0.098	Licensed collector	0.002#+0.099
Chemical Wastes ('000kg) #	0		0.800	Licensed collector	1.475	Licensed collector	0		0		0.8#+1.475
General Refuses ('000m ³)	0.1852	NENT	0.120	NENT	0.075	NENT	0		0.189	NENT	0.5692

Remark #: Unit of recycled metal, recycled paper/ cardboard packing, recycled plastic and chemical waste for Contract 3 was in ('000m³).

9 SITE INSPECTION

9.1 **REQUIREMENTS**

9.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

Contract 2

- 9.2.1 In the Reporting Period, joint site inspection for Contract 2 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **7**, **14 and 28 October 2016** in which the site inspection scheduled on 21 October 2016 was cancelled due to typhoon signal no. 8. No non-compliance was noted.
- 9.2.2 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 9-1*.

Date	Findings / Deficiencies	Follow-Up Status
30 September 2016 (last reporting period)	• Free standing oil drums without drip tray storage on site was observed. Drip tray should be provided for all chemical storage on site. (North Portal)	• Oil drums were removed.
7 October 2016	• Truck without NRMM label was observed. Proper NRMM label should be displayed. (South Portal)	• NRMM label attached.
	• Oil drums without drip tray and waste oil spillage on ground was observed. Drip tray should be provided for all chemical storage on site and the spillage oil should be cleaned ASAP. (North Portal)	• Oil drums were removed and the spillage oil was cleaned.
	• Stagnant water cumulated inside the drip tray should be cleaned after the rainstorm. (South Portal)	• Not required for reminder.
14 October 2016	• Proper maintanence should be provided for the broken water barriers to prevent stagnant water accmulation. (South Portal)	• All openings of water barriers have been sealed to avoid mosquito breeding.
21 October 2016	• Joint site inspection was cancelled due to typh	oon signal no. 8
28 October 2016	• As a reminder, waste oil cumulated inside the drip tray should be cleaned. Also, waste oil spillage at workshop area should be cleaned up regularly. (South Portal)	• Not required for reminder.

Table 9-1Site Observations for Contract 2

<u>Contract 3</u>

- 9.2.3 In the Reporting Period, joint site inspection for Contract 3 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 3, 11, 19, 24 and 31 October 2016. No non-compliance was noted.
- 9.2.4 The findings / deficiencies of *Contract 3* that observed during the weekly site inspection are listed in *Table 9-2*.

Date	Findings / Deficiencies	Follow-Up Status
3 October 2016	• Stagnant water was observed at the lifting eyes of concrete block at AC1. The Contractor should remove the stagnant water and fill sand to the lifting eyes to avoid accumulation of stagnant water.	• The stagnant water has been removed from the lifting eyes and the lifting eyes were sealed up.
11 October 2016	• No adverse environmental issue was observed.	• NA
19 October 2016	• The Contractor was reminded to dispose of the general refuse on regular basis and maintain the site tidiness.	• Not required for reminder.
	• The Contractor was reminded to remove the stagnant water after rain.	• Not required for reminder.
24 October 2016	• The Contractor was reminded to remove the stagnant water within the site to prevent mosquito breeding.	• Not required for reminder.
31 October 2016	• No adverse environmental issue was observed.	• NA

Table 9-2Site Observations for Contract 3

Contract 6

- 9.2.5 In the Reporting Period, joint site inspection for Contract 6 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 20 and 27 October 2016. No non-compliance was noted.
- 9.2.6 The findings / deficiencies of *Contract 6* that observed during the weekly site inspection are listed in *Table 9-4*.

Table 9-4Site Observations for Contract 6

Date	Findings / Deficiencies	Follow-Up Status				
6 October 2016	• It was reminded that the mosquito control measures should be maintained.	• Not required for reminder.				
13 October 2016	• It was reminded that the earth bund should be maintained to avoid surface run-off for the construction area where is near Nylon Dam	• Not required for reminder.				
20 October 2016	• No adverse environmental issue was observed.	• NA				
27 October 2016	• Stagnant water was observed at the roof of the subway in BCP, the Contractor should provide mitigation measures to prevent mosquito breeding.	To be followed				

Contract SS C505

- 9.2.7 In the Reporting Period, joint site inspection for Contract SS C505 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 4, 12, 19 and 26 October 2016. No non-compliance was noted.
- 9.2.8 The findings / deficiencies of *Contract SS C505* that observed during the weekly site inspection are listed in *Table 9-5*.

Date	Findings / Deficiencies	Follow-Up Status
4 October 2016	 Stagnant water was observed at drainage channel near training center. The Contractor should remove the stagnant water to prevent mosquito breeding. The Contractor was reminded to ensure 	 Water pump was used to remove the stagnant water. Not required for reminder.
	the caps of the water-filled road barriers on site were provided.	1
12 October 2016	• Obstacles were observed at drainage channel near PTB. The Contractor should remove the obstacles and ensure the drainage channel function properly.	• No obstacles was observed at the drainage channel near PTB.
	• Stagnant water was observed at drainage channel near Building 1-3. The Contractor should ensure the channel function properly to avoid accumulation of stagnant water.	• No stagnant water was observed at the drainage channel near Building 1-3.
19 October 2016	• No adverse environmental issue was observed.	• NA
26 October 2016	• Temporary drainage blocked by mud and silt was observed. Mud and silt cumulated inside the drainage should be cleaned to maintain the drainage is functional. (Whole site area)	• Mud and silt removal work was carried out to maintain the temporary drainage.
	• Stagnant water cumulated inside the drip tray was observed. Stagnant water inside the drip tray should be removed. (Near Gate 2)	• The drip tray and the generator were removed from site and no stagnant water was observed.
	• Ponding water cumulated after rainstorm should be removed to prevent mosquito breeding.	• Not required for reminder.

Table 9-5Site Observations for Contract SS C505

Contract 7

- 9.2.9 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 4, 11, 18 and 25 October 2016. No non-compliance was noted.
- 9.2.10 The findings / deficiencies of *Contract* 7 that observed during the weekly site inspection are listed in *Table 9-6*.

Table 9-6	Site Observations for	Contract 7

Date	Findings / Deficiencies	Follow-Up Status
4 October 2016	• No adverse environmental issue was observed.	• NA
11 October 2016	• No adverse environmental issue was observed.	• NA
18 October 2016	• No adverse environmental issue was observed.	• NA
25 October 2016	• Open stockpile was found in Bridge A, the Contractor should cover the stockpile to avoid surface runoff and dust impact.	• The open stockpile was removed.
	• It was reminded that stagnant water should be cleaned up to prevent mosquito breeding.	• Not required for reminder.

9.2.11 General housekeeping such as daily site tidiness and cleanliness should be maintained for all Contracts. Furthermore, the Contractors were reminded to implement Waste Management Plan of the Project.

Other Contracts

9.2.12 Since the construction work of Contract 5 has substantially completed and Contract 4 has not commenced, no site inspection was performed.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION

10.1.1 In the Reporting Period, no summons and prosecution under the EM&A Programme was lodged for Contracts 2, 3, 6, 7 and Contract SS C505. However, two (2) documented environmental complaints were received. In brief, one of the complaints was about transportation of dusty construction waste material which related to Contract 6 and another complaint was about wastewater discharge from construction site which related to Contracts 2 and 6. Investigation reports have been completed by the ET and the detail of the complaints and the investigation results are presented below.

<u>Investigation Result for the Documented Complaints received by EPD on 20 October 2016</u> (Contracts 6)

- 10.1.2 A warning letter (ref.: EP560/G1/1(VII)) was issued from EPD to CCKJV on 25 October 2016 regarding a dump truck vehicle (vehicle registration mark: <u>RX2229</u>) carrying dusty construction waste materials arisen under the subject account travelling to the North East New Territories (NENT) Landfill on 20 October 2016 without proper cover.
- 10.1.3 Joint site inspection was carried out by the RE, IEC, CCKJV and ET on 27 October 2016 for the complaint investigation. The aim of the inspection was to spot check whether the skip of the dump truck under the Contract were properly covered before leaving the site until it reached the check point at NENT. The inspection area included the subject site exit, Wo Keng Shan Road as well as NENT Landfill. The observations during the site inspection are summarized in below.
 - (a) At the subject site exit (Ng Chow Road), all vehicles were thoroughly washed in the wheel washing facilities implemented at the site exit.
 - (b) There were two stationary frontline staff deployed at the site exit to check whether the skip of the dump truck was properly covered and carry out cleaning for all vehicles. After final checking, trip ticket was given to the dump truck driver after before it leaving the site.
 - (c) All dump trucks left the site were properly covered without leakage of dusty materials and wastewater. The concerned dump truck vehicle (vehicle registration mark: RX2229) was spotted in the inspection and it was noted that the skip this dump truck was well covered.
 - (d) The dump trucks travelling on Wo Keng Shan Road were properly covered.
 - (e) Inspection inside NENT Landfill was unable to carry out as it was restricted to public access. At the entrance of NENT Landfill, there was queue of dump truck vehicles with properly covered and some of them were belong to the Contract. However, it was observed that one of the dump truck flipped over the skip cover when queueing outside NENT and this dump truck was not belong to the Contract after checking.
- 10.1.4 CCKJV has conducted an interview with the caught dump truck drivers after receipt of the warning letter. According to the incident report prepared by CCKJV, the dump truck driver had covered the dump skip before leaving the site. However, the driver unintentionally pressed the open button and triggered one side of the mechanical cover when he travelling to NENT Landfill.
- 10.1.5 In our investigation, no dump trucks vehicles under the Contract violated the legal requirement. As a preventive measures for ensuring covering of skip and cleaning of vehicle leaving works area, the driver would check whether dump skip was properly covered according to rear mirror of the truck and two stationary frontline staff would conduct final checking at the checking point of the site exit. The trip ticket will only be given to the driver if vehicle is thoroughly cleaned and skip is properly covered before leaving the site. It is considered that the complaint was a single incident which resulted of careless mistake of the dump truck driver.
- 10.1.6 As additional measures, CCKJV agreed to erect signage at the site exit to aware all vehicles drivers to check the vehicles were washed and well covered before leaving the construction. Moreover, CCKJV was advised to conduct surprise check for the dump truck on regular basis

(such as twice per month) to ensure the dump trucks driver strictly follow all the procedure when carrying dusty materials from the construction site to the disposal locations.

10.1.7 In response to the complaint, CCKJV has arranged a specified training on topic of "proper cover of dump trucks, wheel washing and responsibility" to all sub-constructor representative of dump truck on 2 November 2016. The aim of the training is to ensure all responsible parties are fully understand the requirements and their duties, in particular, to ensure all dump trucks are covered and checked when they leave the site. An incident report for uncovered dump trucks was prepared by CCKJV and issued to EPD 2 November 2016 which included the investigation result for the incident, interview record for RX2229 dump truck driver and the specified training record.

Investigation Result for the Documented Complaints received by 1823 on 28 October 2016 (Contracts 2 and 6)

- 10.1.8 A complaint was received from 1823 on 28 October 2016 regard to muddy water discharged out of the construction sites near the traffic light post at the junction of Sha Tau Kok Road and Wo Keng Shan Road. The cumulated muddy water splashed on the pedestrian when vehicles passing by the road which causing inconvenience to the pedestrian and public.
- 10.1.9 Joint site inspection was carried out by RE, IEC, CCKJV and ET on 3 November 2016 at the suspected four (4) site exits along the Sha Tau Kok Road and Wo Keng Shan Road for the complaint investigation. The aim of the inspection was to check condition of the site exit and the implementation the wheel washing facilities and to assess the possibility of muddy water discharge out of the construction site to the public road. The observations during the site inspection are summarized in below.

North Portal under Contract 2

10.1.10 The site exit of North Portal under Contract 2 is located on Sha Tau Kok Road. As observed during weekly site inspection, wheel washing facilities were provided within the construction site. The vehicles after wheel washing were pass through a hard paved haul road and reached the main site exit before leaving construction site. A cut-off drain was accompanied at the exit to divert the runoff from the construction area. As advised by the Contractor, manual water spraying was provided at the entrance of North Portal, it is not a wheel washing facilites but to clean and tidy the site entrance as needed. The condition of the site exit was clean and satisfactory and no trails of mud and muddy water were observed on the adjacent Sha Tau Kok Road.

Proposed Sha Tau Kok Interchange under Contract 6

10.1.11 The site exit of proposed Sha Tau Kok Interchange under Contract 6 was located at the junction of Sha Tau Kok Road and Wo Keng Shan Road. Wheel washing facilities was properly implemented at the site exit and the area between the wheel washing bay and site exit was hard paved. No trails of mud and muddy water were observed on the adjacent Sha Tau Kok Road and Wo Keng Shan Road.

Wo Keng Shan Park under Contract 6

10.1.12 The site exit of Wo Keng Shan Park under Contract 6 was located on Wo Keng Shan Road. Wheel washing facilities was properly implemented at the site exit and the area between the wheel washing bay and site exit was hard paved. No trails of mud and muddy water were observed on the adjacent Wo Keng Shan Road.

10.1.13 South Portal and Site Office under Contract 6

- 10.1.14 The site exit of South Portal and Site Office under Contract 6 was located on Wo Keng Shan Road. Wheel washing facilities was properly implemented at the site exit and the area between the wheel washing bay and site exit was hard paved. No trails of mud and muddy water were observed on the adjacent Wo Keng Shan Road.
- 10.1.15 In our investigation, the site exits near the complaint location under the project were satisfactory and muddy water discharge out of the construction site to the public roads was unlikely to occur.

It is considered that the suspected muddy water discharge from the works area out to Sha Tau Kok Road and Wo Keng Shan Road was unlikely due to the project.

10.1.16 As advised by both contractors, road washing/ cleaning by water bowsers was provided along Wo Keng Shan Road to Sha Tau Kok Road in every normal working day (Mon-Sat), except for rainy day. Moreover, road sweeping would be provided for the concerned roads twice a week. To address the complainant's concern, the ET will keep closely inspection on the cleanliness situation on both roads during weekly site inspection.

		E	nvironmenta	I Complaint Statistics
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature
19 May 2014 – 30 Sep 2016	Contract 2	0	20	 (9)Water Quality (8) Dust (3) Noise
06 Nov 2013 – 30 Sep 2016	Contract 3	0	4	 (1) Dust (2) Water quality (1) Noise
16 Aug 2013 – 30 Sep 2016	Contract 5	0	4	 (3) Dust (1) Noise
16 Aug 2013 – 30 Sep 2016	Contract 6	0	24	 (18) Water Quality (5) Dust (1) Noise
15 Feb 2016 – 30 Sep 2016	Contract 7	0	0	N/A
16 Aug 2013 – 30 Sep 2016	SS C505	0	1	(1) Noise
	Contract 2	1	21	 (10)Water Quality (8) Dust (3) Noise
1 – 31 Oct 2016	Contract 3	0	4	 (1) Dust (2) Water quality (1) Noise
	Contract 6	2	26	 (19) Water Quality (6) Dust (1) Noise
	Contract 7	0	0	N/A
	SS C505	0	0	N/A

 Table 10-1
 Statistical Summary of Environmental Complaints

Table 10-2	Statistical Summary of Environmental Summons
-------------------	--

	Contract No	E	nvironmental	Summons Statistics
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature
19 May 2014 – 30 Sep 2016	Contract 2	0	0	NA
06 Nov 2013 – 30 Sep 2016	Contract 3	0	0	NA
16 Aug 2013 – 30 Sep 2016	Contract 5	0	0	NA
16 Aug 2013 – 30 Sep 2016	Contract 6	0	0	NA
15 Feb 2016 – 30 Sep 2016	Contract 7	0	0	NA
16 Aug 2013 – 30 Sep 2016	SS C505	0	0	NA
1 – 31 Oct 2016	Contract 2	0	0	NA

Contract 3	0	0	NA
Contract 6	0	0	NA
Contract 7	0	0	NA
SS C505	0	0	NA

	Table 10-3	Statistical Summary	y of Environmental Prosecution
--	------------	----------------------------	--------------------------------

Donoutin a Donio d	Contro et No	En	vironmental I	Prosecution Statistics
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature
19 May 2014 – 30 Sep 2016	Contract 2	0	0	NA
06 Nov 2013 – 30 Sep 2016	Contract 3	0	0	NA
16 Aug 2013 – 30 Sep 2016	Contract 5	0	0	NA
16 Aug 2013 – 30 Sep 2016	Contract 6	0	0	NA
15 Feb 2016 – 30 Sep 2016	Contract 7	0	0	NA
16 Aug 2013 – 30 Sep 2016	SS C505	0	0	NA
	Contract 2	0	0	NA
	Contract 3	0	0	NA
1 – 31 Oct 2016	Contract 6	0	0	NA
l	Contract 7	0	0	NA
	SS C505	0	0	NA

The Other Contracts

10.1.17 Since the construction works at the Contract 5 was substantially completed and Contract 4 has not yet commenced, no environmental complaint, summons and prosecution under the EM&A Programme are registered in the Reporting Period.

IMPLEMENTATION STATUS OF MITIGATION MEASURES 11

11.1 **GENERAL REOUIREMENTS**

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in Appendix M.
- 11.1.2 All contracts under the Project shall be implementing the required environmental mitigation measures according to the approved EM&A Manual as subject to the site condition. Environmental mitigation measures generally implemented by Contracts 2, 3, 5, 6, 7 and Contract SS C505 in this Reporting Period are summarized in Table 11-1.

Issues	Environmental Mitigation Measures
Water Quality	• Wastewater to be treated by the wastewater treatment facilities i.e. sedimentation tank or similar facility before discharge.
Air Quality	 Maintain damp / wet surface on access road Low vehicular speed within the works areas. All vehicles must use wheel washing facility before off site Sprayed water during breaking works A cleaning truck was regularly performed on the public road to prevent fugitive dust emission
Noise	 Restrain operation time of plants from 07:00 to 19:00 on any working day except for Public Holiday and Sunday. Keep good maintenance of plants Place noisy plants away from residence or school Provide noise barriers or hoarding to enclose the noisy plants or works Shut down the plants when not in used.
Waste and Chemical Management	 On-site sorting prior to disposal Follow requirements and procedures of the "Trip-ticket System" Predict required quantity of concrete accurately Collect the unused fresh concrete at designated locations in the sites for subsequent disposal
General	The site was generally kept tidy and clean.

Table 11-1 Environmental Mitigation Measures

11.2 **TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH**

11.2.1 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016. Construction activities for other Contracts in the coming month are listed below:

Contract 2

Contract 2	
Mid-Vent Portal	Stud tunnel and cavern excavation
	• Adit invert slab, water proofing and lining
	• Ventilation building superstructure and backfilling
North Portal	Slope stabilization & retaining wall
	Southbound TBM excavation
	Northbound bench excavation
	• Tunnel enlargement and construction of cross passage
	Tunnel internal structure and cross passage
	Ventilation building foundation
South Portal	Southbound and Northbound D&B excavation
	• South ventilation building superstructure
	• Tunnel invert, waterproofing and lining
Admin Building	• Building superstructure and external wall

Admin Building

Contract 3

Cable detection and trial trenches

- Demolition of existing vehicular bridge
- Footbridge construction
- Storm drains laying
- Noise barrier construction
- Pier / Pier Table construction
- Pile cap works
- Portal beam construction
- Retaining Wall construction
- Road works
- Sewer works
- Utilities duct laying
- Viaduct segment erection
- Water Main Laying

Contract 6

- Slope Works
- Bored Piling
- Pile Cap Construction
- Bridge Pier Construction
- Segment section
- Sewage Treatment Plant Construction
- Tunnel Works

Contract 7

- Piling Works at Bridge A and E
- Pile caps construction at Bridge A, B,D and E
- Column construction at Bridge B, C and D
- 2nd floor construction of Bridge C

Contract SS C505

- General Site Set-up
- Building no. 4, 5, 6, 7, 9, 10, 11 and 36 construction
- Excavation waterproofing works for Building no. 4, 6 & 11
- Substructure for Building no.4,6&7
- Tower crane operation
- Bridge construction works including construction of bridge column, retaining wall, pile cap and pier
- Underground drainage works
- Prototype "A" & "B" construction works
- Mock up for south entrance double curve cladding
- Formwork and falsework for PTB's slab construction
- Construction PTB M/F & 1/F flat slab
- Steel beam works for maintenance platform for PTB
- Pile cap construction for PTB, including excavation and backfilling works
- Bridge deck construction for Bridges 1 5
- Footing construction

11.3 KEY ISSUES FOR THE COMING MONTH

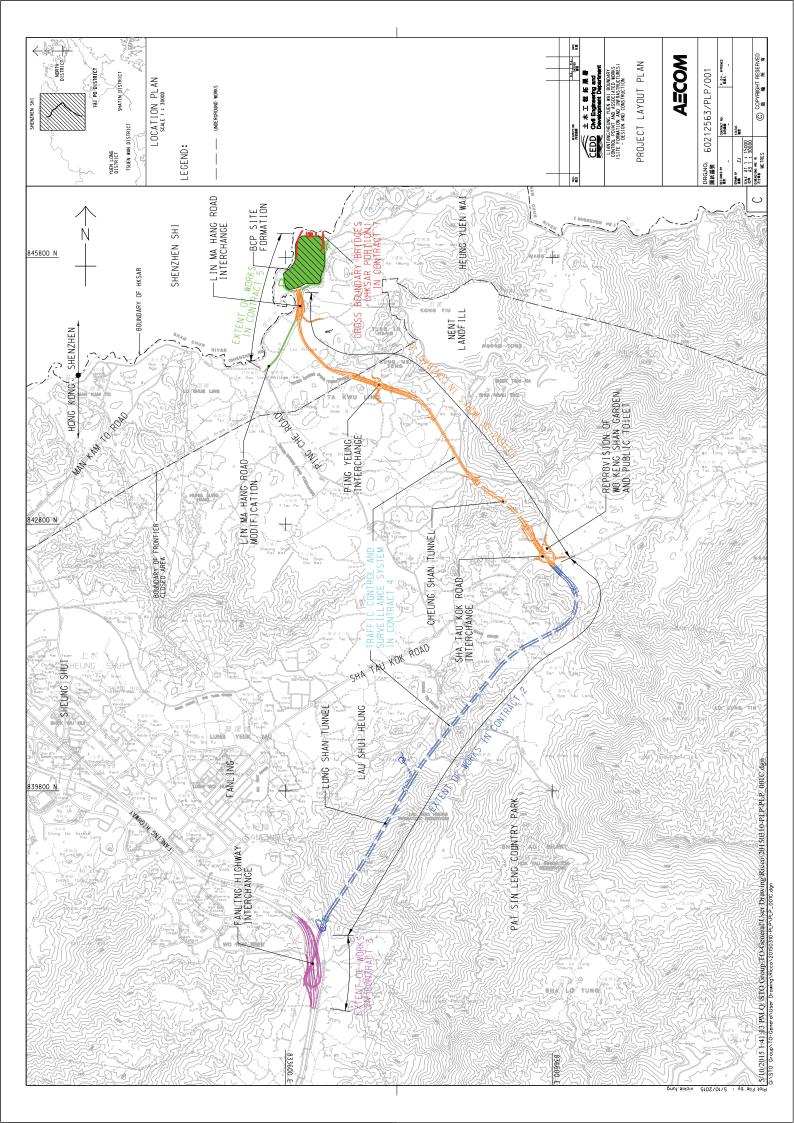
- 11.3.1 Key issues to be considered in the coming month for Contracts 2, 3, 6, 7 and SS C505 include:
 - Implementation of control measures for rainstorm;
 - Regular clearance of stagnant water during wet season;
 - Implementation of dust suppression measures at all times;
 - Potential wastewater quality impact due to surface runoff;

- Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
- Disposal of empty engine oil containers within site area;
- Ensure dust suppression measures are implemented properly;
- Sediment catch-pits and silt removal facilities should be regularly maintained;
- Management of chemical wastes;
- Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
- Follow-up of improvement on general waste management issues; and
- Implementation of construction noise preventative control measures
- 11.3.2 Since the construction work of Contract 4 has not commenced, no environmental issue is presented.

12 CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

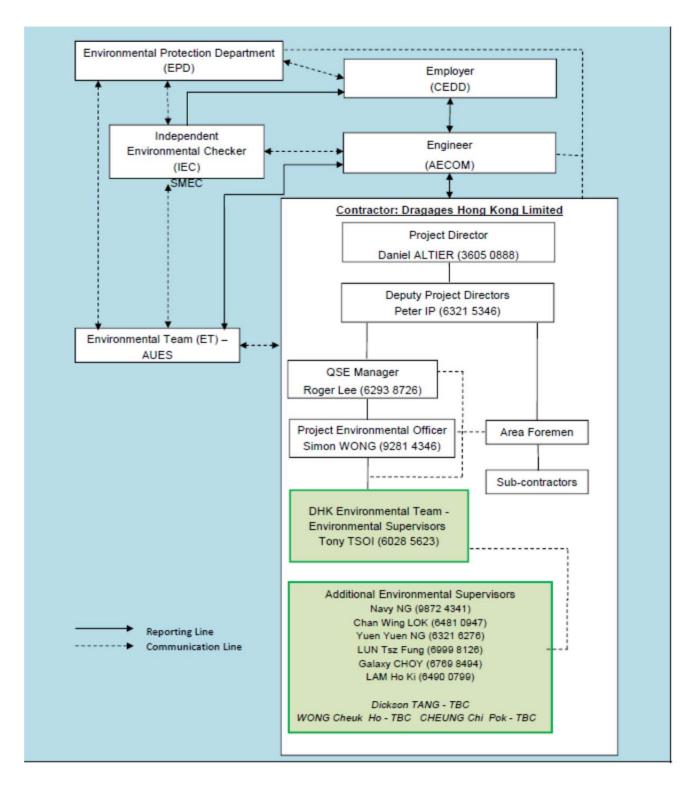
- 12.1.1 This is the **39th** monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from **1** to **31 October 2016**.
- 12.1.2 For air quality monitoring, no 1-hour and 24-hour TSP monitoring results triggered the Action or Limit Levels were recorded. No NOEs or the associated corrective actions were therefore issued.
- 12.1.3 No noise complaint (which is an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in the Reporting Period. No NOEs or the associated corrective actions were therefore issued.
- 12.1.4 For water quality monitoring, thirty-seven (37) LL exceedances, namely seventeen (17) LL exceedance of turbidity and twenty (20) LL exceedances of Suspended Solids were recorded for the Project. Investigations reports revealed that all exceedances on 4 to 18 October 2016 were not project related, except for exceedances at WM2A(a) on 4 Oct were due to damage pipe under C6. Exceedances on 18 to 31 October 2016 at WM2A(a) are under investigated by ET. The completed IRs had submitted to relevant parties.
- 12.1.5 No environmental summons or successful prosecutions were recorded in the Reporting Period.
- 12.1.6 In this Reporting Period, two (2) documented environmental complaints were received. One of the complaints was about transportation of dusty construction waste material and investigation result revealed that the complaint was related to works under Contract 6. Another complaint was about wastewater discharge from construction site near the works areas of Contracts 2 and 6 and investigation result revealed that the complaint was not related to works under Contracts.
- 12.1.7 During the Reporting Period, weekly joint site inspection by the RE, IEC, ET with the relevant Main-contractor were carried out for Contracts 2, 3, 6, 7 and SS C505 in accordance with the EM&A Manual stipulation. No non-compliance observed during the site inspection.


12.2 RECOMMENDATIONS

- 12.2.1 During dry season, special attention should be paid on the potential construction dust impact since most of the construction sites are adjacent to villages. The Contractor should fully implement the construction dust mitigation measures properly.
- 12.2.2 Preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River. Moreover, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- 12.2.3 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- 12.2.4 Furthermore, daily cleaning and weekly tidiness shall be properly performed and maintained. In addition, mosquito control should be kept to prevent mosquito breeding on site.

Appendix A

Layout plan of the Project



Appendix B

Organization Chart

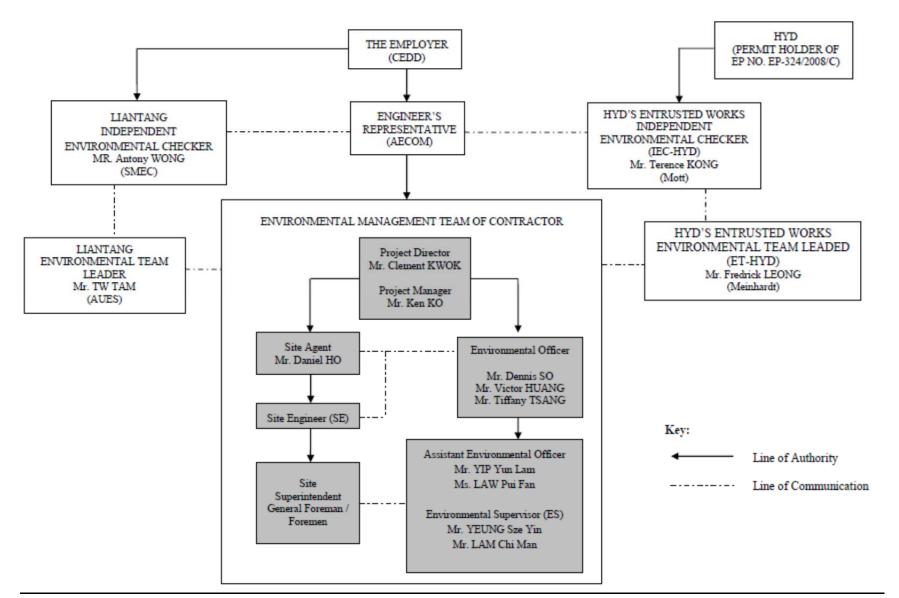
Environmental Management Organization for Contract 2 - (CV/2012/08)

|--|

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Gregory Lo	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
DHK	Project Director	Daniel Altier	2171 3004	2171 3299
DHK	Deputy Project Manager	Peter Ip	6321 5346	2171 3299
DHK	QSE Manager	Roger Lee	6293 8726	2171 3299
DHK	Environmental Officer	Simon Wong	2171 3004	2171 3299
DHK	Environmental Supervisor	Tony Tsoi	6028 5623	2171 3299
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:

CEDD (Employer) – Civil Engineering and Development Department


AECOM (Engineer) – AECOM Asia Co. Ltd.

DHK(Main Contractor) – Dragages Hong Kong Ltd.

SMEC (IEC) – SMEC Asia Limited

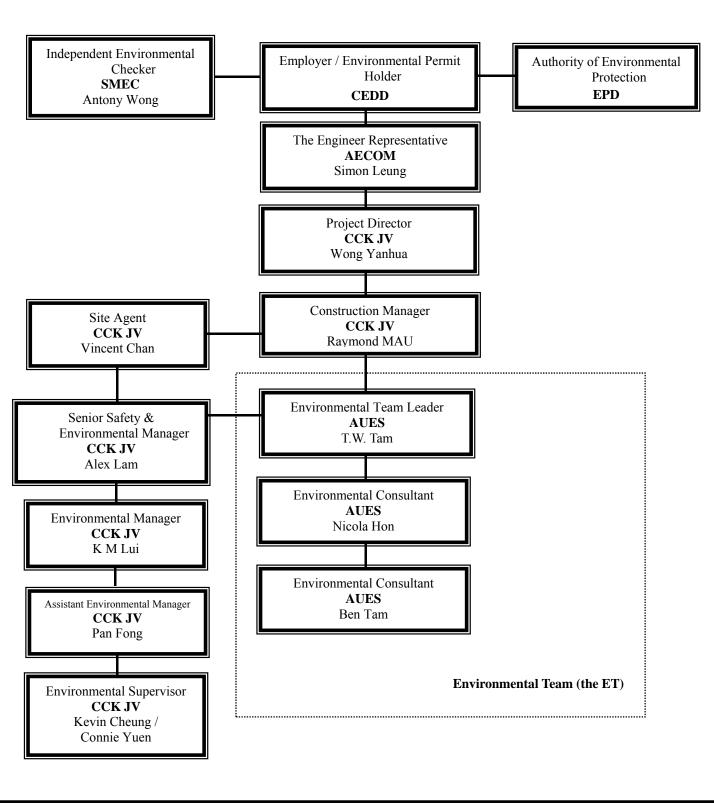
AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization for Contract 3 - CV/2012/09

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Bobby Hung	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Chun Wo	Project Director	Clement Kwok	3758 8735	2638 7077
Chun Wo	Project Manager	Ken Ko	2638 6136	2638 7077
Chun Wo	Site Agent	Daniel Ho	2638 6144	2638 7077
Chun Wo	Environmental Officer	Victor Huang Tiffany Tsang Dennis So	2638 6115	2638 7077
Chun Wo	Assistant Environmental Officer	Yip Yun Lam Law Pui Fan	2638 6125	2638 7077
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 3 - CV/2012/09

Legend:


CEDD (Employer) – Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

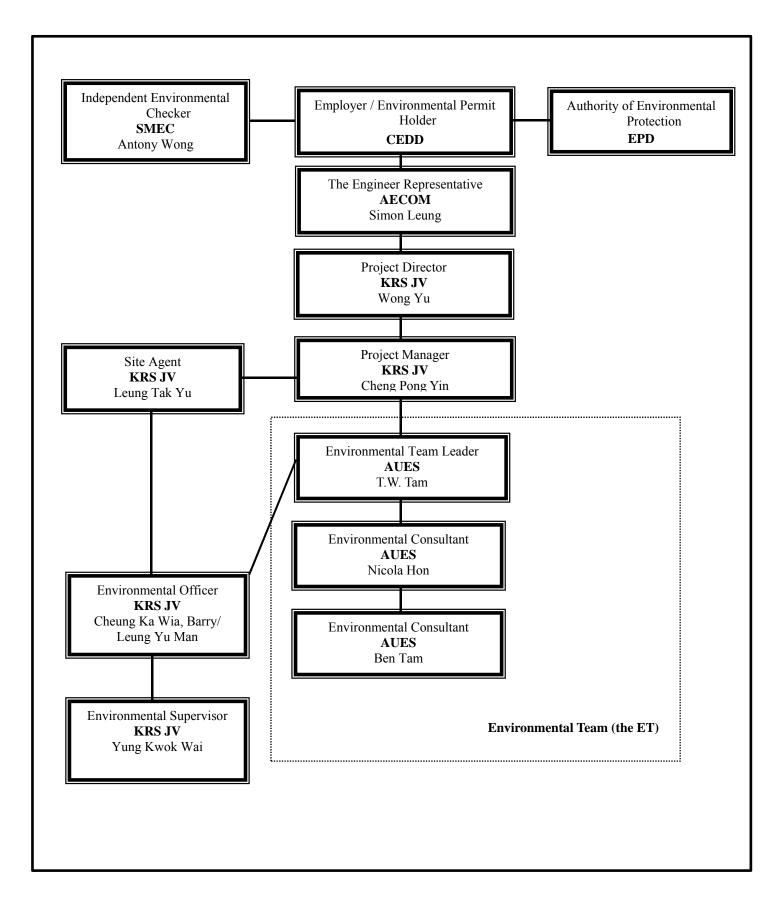
Chun Wo (Main Contractor) – Chun Wo Construction Ltd.

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

AUES

Environmental Management Organization - CV/2013/08



Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
CCK JV	Project Director	Wang Yanhua	6190 4212	
CCK JV	Construction Manager	Raymond Mau Sai-Wai	9011 5340	
CCK JV	Site Agent	Vincent Chan	9655 9404	
CCK JV	Senior Safety & Environmental Manager	Alex Lam	5547 0181	
CCK JV	Environmental Manager	K M Lui	51138223	
CCK JV	Assistant Environmental Officer	Pan Fong	9436 9432	
CCK JV	Environmental Supervisor	Kevin Cheung/ Connie Yuen	6316 6931 6117 1344	
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

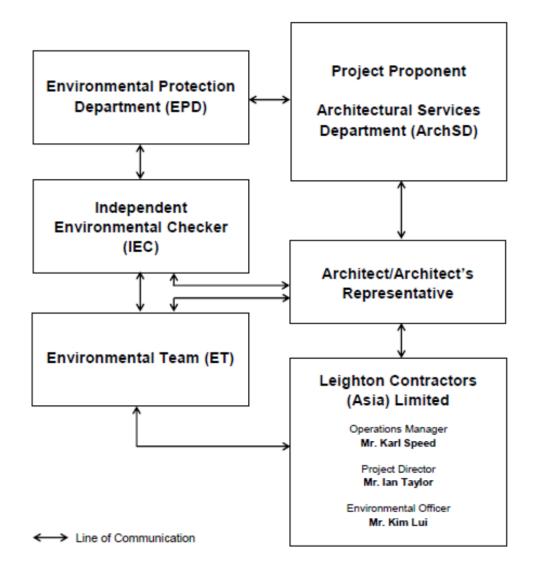
Contact Details of Key Personnel for Contract 6 - CV/2013/08

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. CCK JV (Main Contractor) – CRBE-CEC-Kaden Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

AUES

Environmental Management Organization -NE/2014/03


Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
KRSJV	Project Director	Wong Yu	2682 6691	2682 2783
KRSJV	Project Manager	Cheng Pong Yin	9023 4821	2682 2783
KRSJV	Site Agent	Leung Tak Yu	9705 7536	2682 2783
KRSJV	Environmental Officer	Cheung Ka Wia, Barry	6117 2339	2682 2783
KRSJV	Environmental Officer	Leung Yu Man	6592 3084	2682 2783
KRSJV	Environmental Supervisor	Yung Kwok Wai	6592 3084	2682 2783
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 7 – NE/2014/03

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. KRS JV (Main Contractor) –Kwan On-Richwell-SCG Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organigram

Environmental Management Organization for Contract SS C505

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
ArchSD	Works agent for the Development Bureau (DEVB)	Mr. William Cheng	2867 3904	2804 6805
Ronald Lu & Partners	Architect/ Architect's Representative	Mr. Justin Cheung	3189 9272	2834 5442
SMEC	Independent Environmental Checker	Mr. Antony Wong	3995 8120	3995 8101
Leighton	Operation Manager	Mr. Karl Speed	2823 1433	25298784
Leighton	Project Director	Mr. Ian Taylor	2858 1519	2858 1899
Leighton	Environmental Officer	Mr. Kim Lui	3973 1069	-
Leighton	Assistant Environmental Officer	Ms. Penny Yiu	3973 0818	-
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Mr. Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract SS C505

Legend:

ArchSD(Project Proponent) – Architectural Services Department

Ronald Lu & Partners (Architect/Architect's Representative) –Ronald Lu & Partners (Hong Kong) Ltd

Leighton (Main Contractor) – Leighton Contractors (Asia) Limited

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Appendix C

3-month rolling construction program

Contract 2

Tentative Three Months (November 2016 - January 2017) Construction Rolling Progam

Item	Major Construction Activites
1	Admin Bldg - Construction of superstructure and external wall
	Mid Vent Portal - Adit invert slab, waterproofing and lining
	Mid Vent Portal - Stud tunnel and Cavern D&B excavation
5	Mid Vent Portal - Backfilling and Ventilation building superstructure works
6	North Portal - Northbound tunnel bench mechanical excavation
	North Portal - Southbound tunnel excavation by TBM
	North Portal - Southbound tunnel enlargement
9	North Portal - Tunnel internal structure and construction of cross passage
10	North Portal - Retaining walls and slope stabilizations
11	North Portal - North ventilation building foundations
	South Portal - Northbound and Southbound tunnel D&B excavation
13	South Portal - South ventilation building superstructure works
14	South Portal - Tunnel invert, waterproofing and lining

Contract 3

Liantang / Heung Yuen Wai Boundary Control Point and Associated Works

CEDD Contract No: CV/2012/09

Main Contractor: Chun Wo Construction Ltd

後和建築工程有限公司 CHUN WO CONSTRUCTION & ENGINEERING CO., LTD.

Tentative Three Months (October, November and December 2016) Construction Rolling Progam

Item	Construction Activites
1	Cable Detection and Trial Trenches
2	Demolition of Existing Vehicular Bridge
3	Footbridge Construction
4	Storm Drains Laying
5	Noise Barrier Construction
6	Pier / Pier Table Construction
7	Pile Cap Works
8	Portal Beam Construction
9	Retaining Wall Construction
10	Road Works
11	Sewer Works
12	Utilities Duct Laying
13	Viaduct Segment Erection
14	Water Main Laying

Contract 6

Tentative Three Months (October, November and December 2016) Construction Rolling Progam

Item	Construction Activites
1	Slope Works
2	Bored Piling
3	Pile Cap Construction
4	Bridge Pier Constrcution
5	Segment Erection
6	Tunnel Works
7	Sewage Treatment Plant Construction

Contract 7

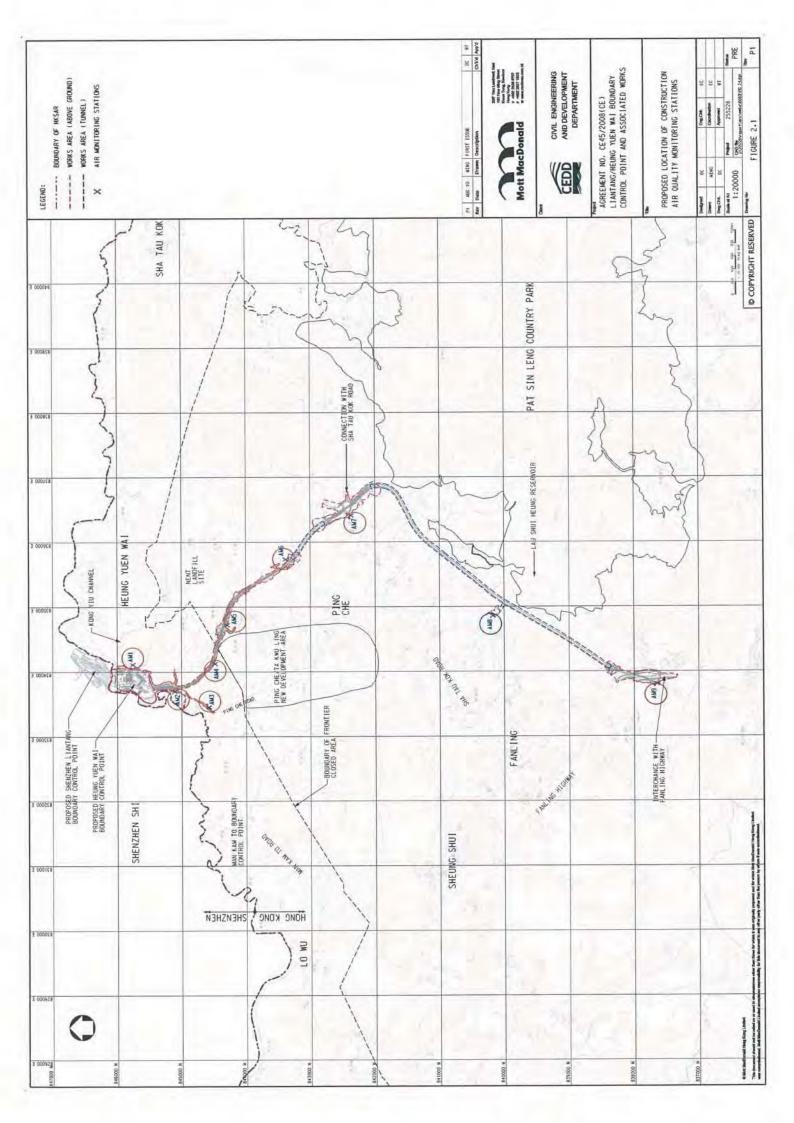
Main Contractor: Kwan On-Richwell-SCG Joint Venture

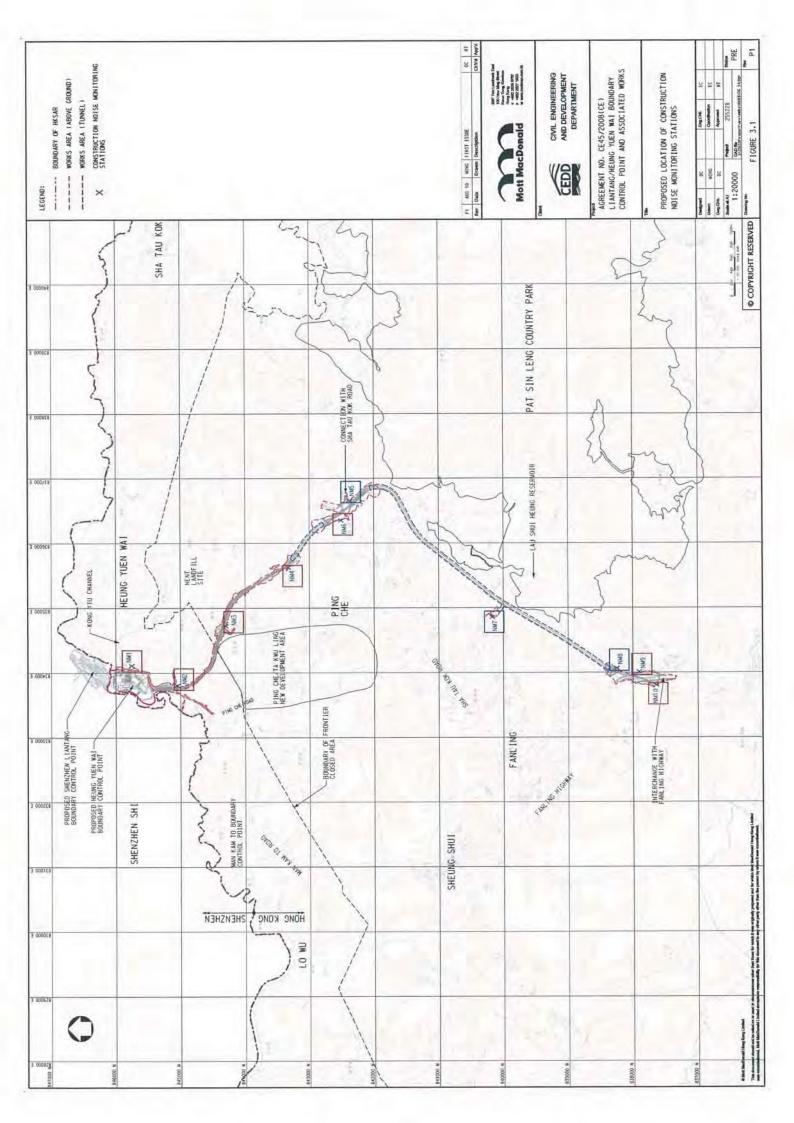
◆ 變 ↓ 均安 - 顯豐機械 - 上海建工 聯營 Kwan On - Richwell - SCG JV

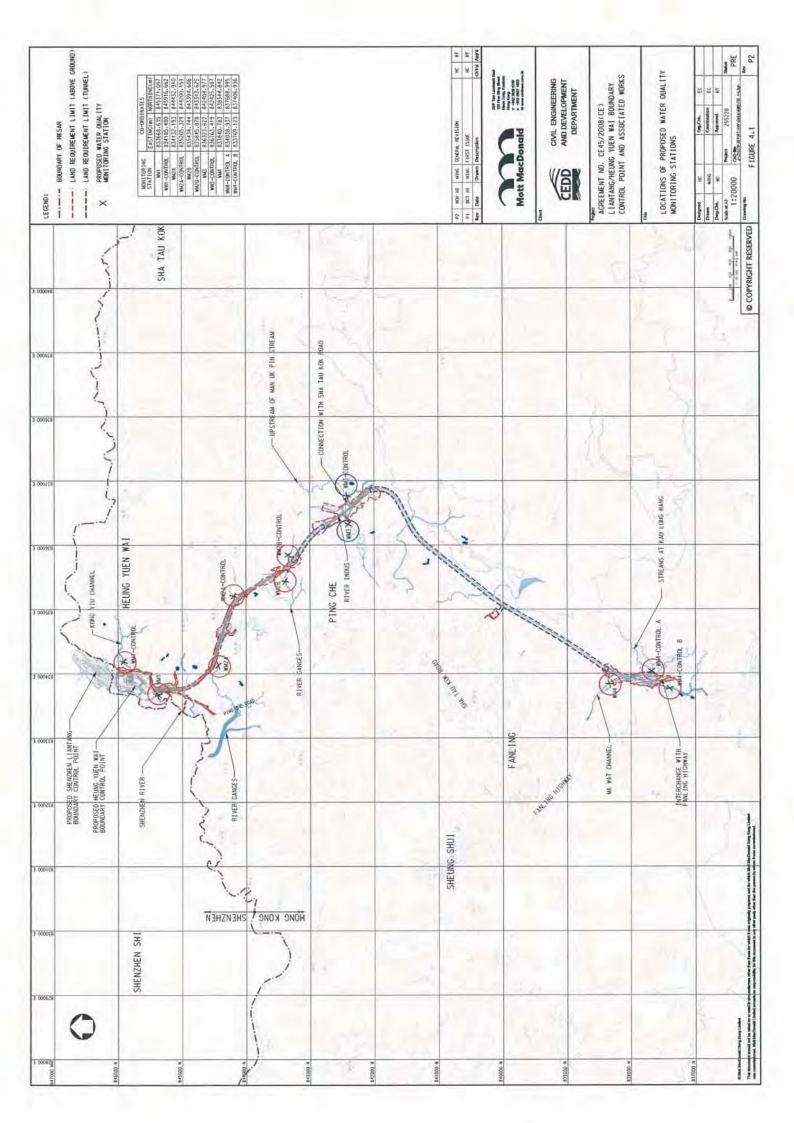
Tentative Three Months(October, Novemeber and December 2016) Construction Rolling Progam

Item	Construction Activites										
1	Bridge A - Piling Works										
	Bridge A - Pile Caps and Column										
3	Bridge B - Pile Caps and Column										
4	Bridge C - Pile Caps and Column										
5	Bridge C - Construction of 2nd Floor Slab										
6	Bridge D - Pile Caps and Column										
7	Bridge E - Piling Works										
8	Bridge E - Pile Caps and Column										

Contract SS C505

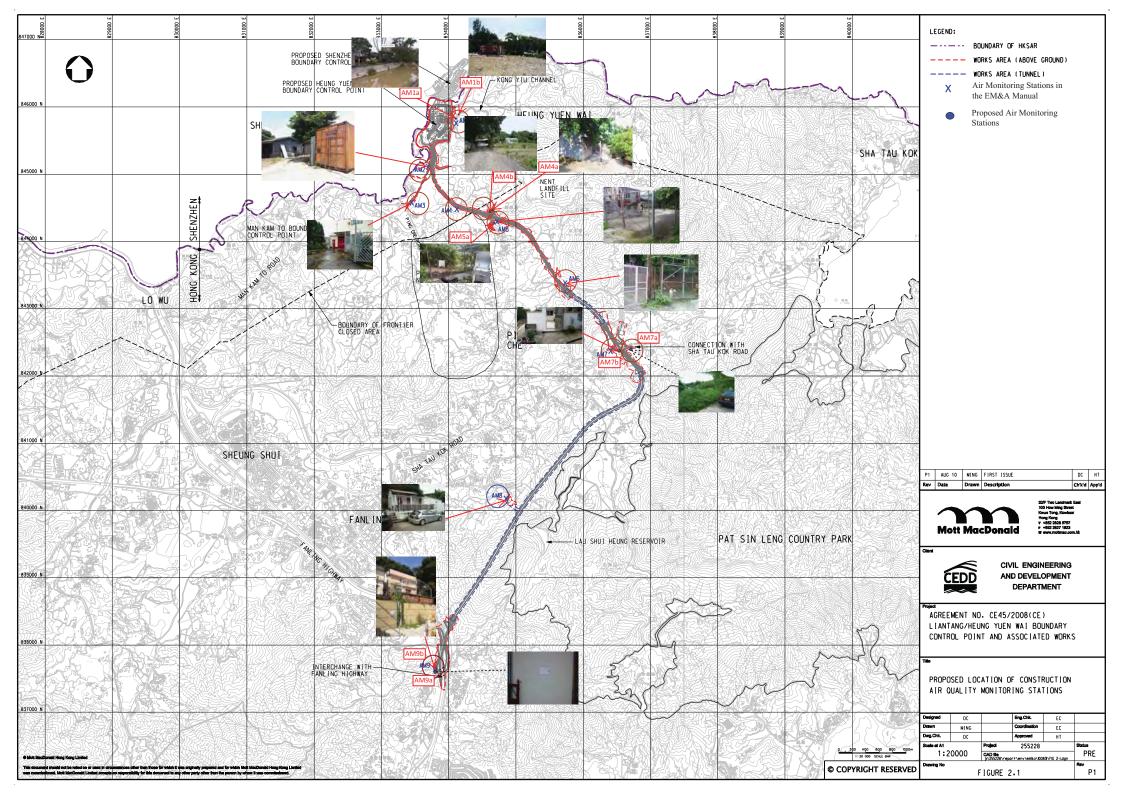

Tentative Three Months (October, November and December 2016) Construction Rolling Progam

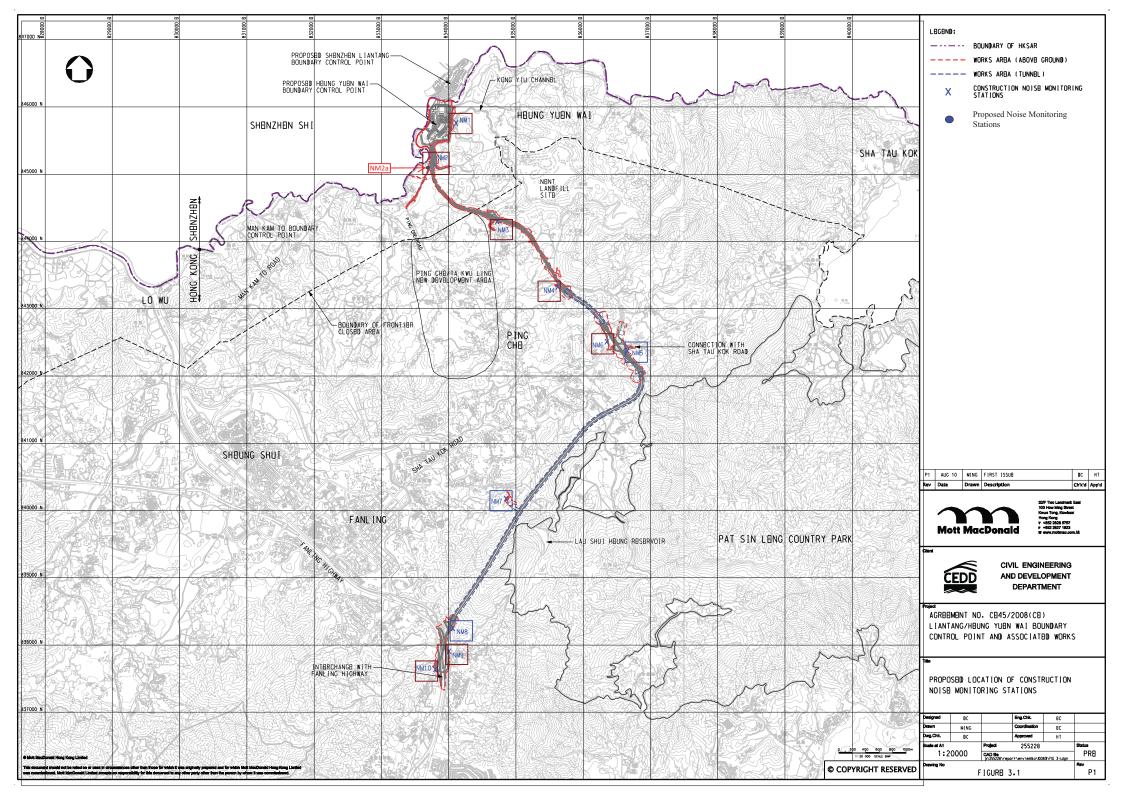

Item	Construction Activites										
1	Establishment Mobilisation & Advance Works										
2	Passenger Terminal Building - Substructure Works										
3	Passenger Terminal Building - Superstructure Works										
4	Passenger Terminal Building - ABWF Works										
5	C&ED Detector Dog Base - Substructure and RC structures										
6	HKPF Building - Substructure, RC structures, Integrated ABWF and BS Works										
	Fire Station and Drill Tower - Pilecap Construction, substructures, structures, Integradted ABWF and MEP Works										
8	Cargo Examination Building (Inbound) - Substructures, RC Structure and ABWF & MEP										
9	Cargo Examination Building (Outbound) - Substructures and RC Structure, ABWF & MEP										
10	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Inbound) - Substructures, RC Structures and ABWF & MEP										
	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Outbound) - Pile Cap Construction, Structural Works and ABWF 8										
	GV Kiosk (Inbound) - Earthworks and RC structures										
	MXRVSS (Outbound) - Structures works										
14	Fire Hydrant Tank & Pump Room - Structural Works, ABWF & MEP works										
15	Elevated Walkway - Foundation Works										
	Vehicular bridges - Foundation works, Pilecaps / Piers / abutment / retaining walls / portal, Bridge Decks										
	External Works in Portion 1 - laying utilities & pile ducts & CLP cable ducts										
18	External Works in Portion 2 - Site formation, laying utilities & pipe ducts & CLP cable ducts										

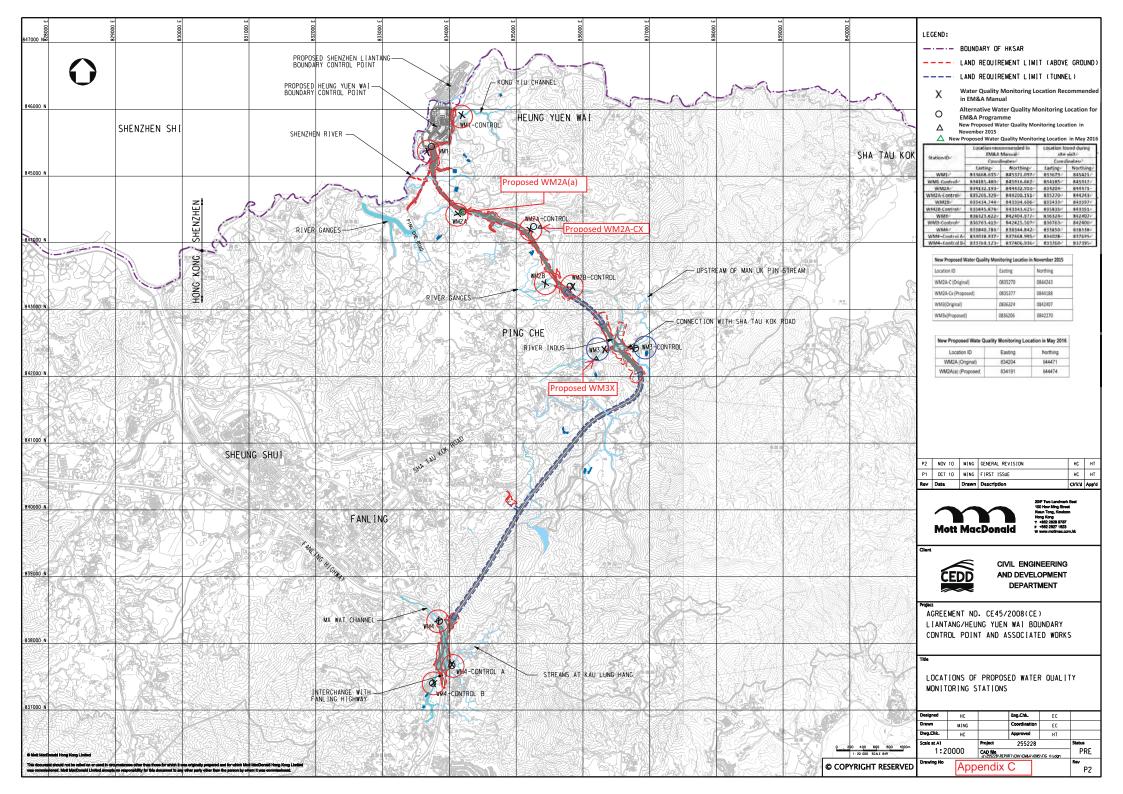


Appendix D

Designated Monitoring Locations as Recommended in the Approved EM&A Manual







Appendix E

Monitoring Locations for Impact Monitoring

Appendix F

Calibration Certificate of Monitoring Equipment and HOKLAS-accreditation Certificate of the Testing Laboratory

Location : Location I		Farm, Ts AM1b	sung Yu	en Ha Villa	ge		Date of C Next Calibra T	25/8/2016 25/10/2016 Fai So	
					(CONDITIONS			
	Se	a Level I Temp	Pressure erature		<u>1004.2</u> 30.4		Corrected Pressure (Temperature (753.15 303
					CALIE	BRATION OR	FICE		
				Make-> Model-> Serial # ->	5025A		Qstd Slope -> Qstd Intercept ->		.00411 0.03059
					С	ALIBRATION	I		
Plate No.	(in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINE. REGRES	SION	
18 13 10 7 5	5.9 4.6 3.4 2.3 1.4	5.9 4.6 3.4 2.3 1.4	11.8 9.2 6.8 4.6 2.8	1.706 1.508 1.299 1.071 0.839	50 44 40 31 23	49.33 43.41 39.46 30.58 22.69	Slope = Intercept = Corr. coeff. =	30.5221 -2.1180 0.9943	
Calculatio Qstd = 1/1 IC = I[Sq1	m[Sqrt(H			l/Ta))-b]		60.00	FLOW RATI	ECHART	
Qstd = sta IC = corre I = actual m = calibreb = calibre	ected char chart resp rator Qsto	rt respon ponse 1 slope				50.00		•/	
	al temper	ature dur	ing cali	bration (de ation (mm		40.00 UC (C) 30.00 UC (C) 30.00 UC (C)	/		
For subse 1/m((I)[\$	-			mpler flow: b)		90.02 Gtra	<u> </u>		
m = samp b = samp I = chart r Tav = dai	ler interc response	_	ature			0.00			
Pav = dail		_				0.000	0.500 1. Standard Flow F		1.500 2.000

Location : Location I	-	House ne AM2	ear Lin I	Ma Hang Ro				Date of Calibration:25/8/2016Next Calibration Date:25/10/2016Technician:Fai So				
	_						IDITIONS					
	Se	a Level I Temp	Pressure perature	. ,	1004 30	1.2).4		Corrected Pressure (mm Hg)753.15Temperature (K)303				
					CALIB	RA	TION ORIF	FICE				
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059				
	CALIBRATION											
Plate		H2O (R)	H20	Qstd (m ² /min)	I	\ \	IC	LINEAR				
No. 18 13 10 7 5	(in) 5.7 4.6 3.6 2.1 1.4	(in) 5.7 4.6 3.6 2.1 1.4	(in) 11.4 9.2 7.2 4.2 2.8	(m3/min) 1.677 1.508 1.336 1.024 0.839	(chart) 53 46 40 30		corrected 52.29 45.38 39.46 29.60 20.72	REGRESSION Slope = 36.3739 Intercept = -8.9604 Corr. coeff. = 0.9978				
Calculatic Qstd = 1/r IC = I[Sqr	o ns : n[Sqrt(H	20(Pa/Ps	td)(Tstd		21		60.00	FLOW RATE CHART				
Qstd = sta IC = corre I = actual m = calibr	cted cha chart res ator Qsto	rt respone ponse 1 slope				lse (IC)	50.00 40.00					
	ıl temper	ature dur	ing calib	oration (deg ation (mm)		ual chart respo	40.00 30.00 20.00					
For subse 1/m((I)[S	-			-		Act	20.00					
m = samp b = samp I = chart r Tav = dail	ler interc esponse y averag	e tempera					10.00 0.00 0.000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)				
Pav = dail	y averag	e pressur	e									

Location : Location I		1 Ling Fir AM3	e Servic	ce Station				Date of Calibration:25/8/2016Next Calibration Date:25/10/2016Technician:Fai So	
					С	ON	DITIONS		
	Se	ea Level I Temp	Pressure erature	. ,	<u>1004</u> 30	4. <u>2</u>).4		Corrected Pressure (mm Hg) 753.15 Temperature (K) 303	
					CALIB	RAT		FICE	
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059	
					C	ALIE	BRATION		
Plate		H2O (R)	H20	Qstd	Ι		IC	LINEAR	
No.	(in)	(in)	(in)	(m3/min)	(chart)) (corrected	REGRESSION	
18 13	5.6 4.3	5.6 4.3	11.2 8.6	1.663 1.459	54 48		53.28 47.36	Slope = 31.0492 Intercept = 2.0333	
10	3.3	3.3	6.6	1.280	44		43.41	Corr. coeff. = 0.9929	
7	2.3	2.3	4.6	1.071	34		33.54		
5	1.3	1.3	2.6	0.809	28		27.62		
			t d)(Tat d	/T)) 1-1		FLOW RATE CHART			
Qstd = 1/r IC = I[Squ	·			/1a))-b]			60.00		
Qstd = sta	ndard flo	ow rate					50.00		
IC = correction			es						
I = actual		-				<u>(</u>]	40.00	Y	
m = calibr	-	-				onse			
b = calibraTa - actua	-	-		oration (deg	v K)	respo	30.00	•	
	-		-	ation (mm		chart response	00.00	✓	
						tual c	20.00		
	-			npler flow:		Ac	20.00		
1/m((I)[S	sqrt(298/	Tav)(Pav	//00)]-0))					
m = samp	ler slope						10.00		
b = samp	ler interc	ept							
I = chart r	-						0.00	0.500 1.000 1.500 2.000	
Tav = dail		-					0.000	Standard Flow Rate (m3/min)	
Pav = dail	y averag	e piessur	J		L				

Location :	Ping Ye	eung Vill	age Hou	se				Date of Calibration: 25/8/2016	
Location I	D :	AM4b						Next Calibration Date: 25/10/2016	
								Technician: Fai So	
					С	ON	DITIONS		
	Se	ea Level I	Pressure	(hPa)	1004	.2		Corrected Pressure (mm Hg) 753.15	
			erature	. ,	30			Temperature (K) 303	
		Temp	oracare	(C)	50	/ .			
					CALIB	RA		ICE	
				Make->	TISCH			Qstd Slope -> 2.00411	
				Model->				Qstd Intercept -> -0.03059	
				Serial # ->					
					1012				
					C	ALII	BRATION		
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι		IC	LINEAR	
No.	(in)	(in)	(in)	(m3/min)	(chart))	corrected	REGRESSION	
18	5.6	5.6	11.2	1.663	54		53.28	Slope = 31.7450	
13	4.6	4.6	9.2	1.508	48		47.36	Intercept = 0.5925	
10	3.4	3.4	6.8	1.299	44		43.41	Corr. coeff. = 0.9917	
7	2.3	2.3	4.6	1.071	36		35.52		
5	1.7	1.7	3.4	0.923	29		28.61		
					-				
Calculatio	ons :							FLOW RATE CHART	
Qstd = 1/n	n[Sqrt(H	[20(Pa/Ps	td)(Tstd	/Ta))-b]		60.00			
IC = I[Sqr	t(Pa/Psto	d)(Tstd/T	a)]						
								▶ ▶	
Qstd = sta	ndard flo	ow rate					50.00		
IC = corre	cted cha	rt respon	es						
I = actual	chart res	ponse				ΰ	40.00		
m = calibr	ator Qst	d slope							
b = calibra	tor Qstd	l intercep	t			üöd		★	
	-	_		oration (de	gK)	res	30.00		
	-		-	ation (mm		chart response		•	
	1		2	,	2,	alc			
For subse	equent c	alculatio	n of san	pler flow:		Actu	20.00		
1/m((I)[S	- Sart(298/	/Tav)(Pav	/760)]-b)					
	1			/					
m = sampl	er slope						10.00		
b = sample	-								
I = chart relations							0.00		
T = chart R Tav = dail	-	re temner	ature				0.000	0.500 1.000 1.500 2.000	
Pav = dail		-						Standard Flow Rate (m3/min)	
i uv – uall	, averag	e pressui	C		L				

Location :	Ping Ye	ung Villa	age Hou	se				Date of Calibration: 25/8/2016
Location I	D :	AM5a						Next Calibration Date: 25/10/2016 Technician: Fai So
					CC	NDITIO	NS	
	Se	a Level I Temp	Pressure erature	, ,	1004.2 30.4			Corrected Pressure (mm Hg) 753.15 Temperature (K) 303
					CALIBR	ATION	ORIFI	ICE
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CA	LIBRAT	ION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC correc		LINEAR REGRESSION
18 13 10	5.2 4 3.2	5.2 4 3.2	10.4 8.0 6.4	1.603 1.408 1.261	52 46 43	51.3 45.3 42.4	60 68 -2	Slope = 32.8135 Intercept = -0.4377 Corr. coeff. = 0.9925
7 5	2 1.3	2 1.3	4.0 2.6	1.000 0.809	34 25	33.5 24.6		
Calculatio Qstd = 1/n IC = I[Sqr	n[Sqrt(H			/Ta))-b]		60.00		FLOW RATE CHART
Qstd = sta IC = corre I = actual	cted char	rt respone	es			50.00 () 40.00		
	ator Qstd 11 temper	intercept ature dur	ing calib	pration (deg ation (mm	g K) Hg)	chart response		
For subse 1/m((I)[S	-			npler flow:		Actual 20.00		
m = sampl b = sampl I = chart re Tav = dail Pav = dail	ler interc esponse y averag	e tempera				10.00 0.00 0.0	000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ng Shan V AM6	√illage H	House				Date of Calibration:25/8/2016Next Calibration Date:25/10/2016Technician:Fai So
					С	ON	DITIONS	Technician: Fai So
	Se	ea Level I Temp	Pressure perature	. ,	1004 30	4.2 0.4		Corrected Pressure (mm Hg) 753.15 Temperature (K) 303
					CALIB	RAT	FION ORI	FICE
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CA	ALIE	BRATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)		IC corrected	LINEAR REGRESSION
18	6.4	6.4	12.8	1.777	48		47.36	Slope = 25.0376
13	4.8	4.8	9.6	1.541	50		49.33	Intercept = 7.1507
10	3.7	3.7	7.4	1.354	44		43.41	Corr. coeff. = 0.9321
7 5	2.3 1.5	2.3 1.5	4.6 3.0	1.071 0.868	36 26		35.52 25.65	
	n[Sqrt(H t(Pa/Psto ndard flo ccted cha chart res ator Qsto ator Qsto l temper	(20(Pa/Ps d)(Tstd/T ow rate rt respond ponse d slope l intercept rature dur	td)(Tstd a)] es t	•	g K)	sponse (IC)	60.00 50.00 40.00 30.00	FLOW RATE CHART
	equent c	alculatio	n of san	npler flow:		Actual c	20.00	
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept se tempera					0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		House of AM7b	Loi Tu	Date of Calibratic Next Calibration Da								
	D .	1111110					Technicia					
					COND	ITIONS						
	G	T 11			1004.0	т						
	Se	a Level I		. ,	<u>1004.2</u> 30.4	-	Corrected Pressure (mm H	0,				
		Tem	erature	(C)	30.4	1	Temperature (K)	303				
				C	ALIBRATI	ON ORIFICE						
				Make->	TISCH]	Qstd Slope ->	2.00411				
				Model->	5025A]	Qstd Intercept ->	-0.03059				
				Serial # ->	1612	1						
	CALIBRATION											
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR					
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION					
18	4.1	4.1	8.2	1.425	54	51.00	Slope = 30.84					
13	3.3	3.3	6.6	1.280	48	47.00	Intercept = 7.19					
10	2.6	2.6	5.2	1.138	42	42.00	Corr. coeff. = 0.99	93				
7	1.7	1.7	3.4	0.923	35	36.00						
5	1.2	1.2	2.4	0.778	27	31.00						
Calculatio	ons :						FLOW RATE CHAR	-				
Qstd = 1/r	n[Sqrt(H	20(Pa/Ps	td)(Tstd	/Ta))-b]		60.00						
IC = I[Sqr	t(Pa/Pstd)(Tstd/T	a)]									
						50.00						
Qstd = sta								*				
IC = correction		-	es			<u> </u>						
I = actual						<u>9</u> 40.00						
m = calibr b = calibra	-	-	+			suod	*					
	-	-		bration (de	αK)	Actual chart Actual chart Actua	▲					
	-		-	ation (mm		снац						
1 5ta – dot	uur press	are durin	ig ounor		115)							
For subse	equent ca	alculatio	n of san	npler flow:		ō∠0.00 ▼						
1/m((I)[S	Sqrt(298/	Гav)(Pav	/760)] - ł))								
	-		<i>,</i> <u>-</u>			10.00						
m = samp												
b = samp	ler interce	ept				0.00						
I = chart r	-					0.00	0.500 1.000	1.500				
Tav = dail		-					Standard Flow Rate (m3/m	nin)				
Pav = dail	y average	e pressur	e									

Location :	Po Kat '	Tsai Vill	age No.	4			Date of Calibration: 25/8/2016					
Location 1	D :	AM8					Next Calibration Date: 25/10/2016					
					CONF	DITIONS	Technician: Fai So					
					CONL	DITIONS						
	Se	a Level I	Pressure	(hPa)	1004.	2	Corrected Pressure (mm Hg) 753.15					
		Temp	erature	(°C)	30.	4	Temperature (K) 303					
				C	ALIBRAT	ION ORIFICE						
				Make->	TISCH]	Qstd Slope -> 2.00411					
				Model->		_	Qstd Intercept -> -0.03059					
				Serial # ->	1612							
CALIBRATION												
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR					
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION					
18	5.7	5.7	11.4	1.677	63	62.15	Slope = 37.2726					
13	4.5	4.5	9.0	1.492	56	55.25	Intercept = -0.0759					
10 7	3.6 2.3	3.6 2.3	7.2 4.6	1.336 1.071	51 41	50.32 40.45	Corr. coeff. = 0.9990					
5	2.3 1.4	2.3 1.4	4.0 2.8	0.839	41 31	40.43 30.58						
		00/D /D				70.00	FLOW RATE CHART					
Qstd = 1/r IC = I[Sq1				/1a))-b]								
IC – I[SYI		1)(1510/1	a)]			60.00	^					
Qstd = sta												
IC = correction		-	es			^{50.00}	y					
I = actual m = calibi						se (IC						
b = calibra			t			6 40.00	*					
	-	-		bration (de	gK)	artre						
Pstd = act	ual press	ure durin	ig calibr	ation (mm	Hg)	00.05 Actual chart response (IC)						
For subse	equent ca	alculatio	n of san	npler flow:		90.00 VC						
1/m((I)[S	-			-								
	1					10.00						
m = samp b = samp		ant										
o = samp I = chart r		τρι				0.00						
T = chart T Tav = dail	-	e temper	ature			0.000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)					
Pav = dail												
	_											

Location : Location]		a Po Vill AM9b	age Hoi	ise No. 80	Date of Calibration:25/8/2016Next Calibration Date:25/10/2016Technician:Fai So		
						CONDITION	DNS
	Se	ea Level I Temp	Pressure perature		<u>1004</u> 30		Corrected Pressure (mm Hg) 753.15 Temperature (K) 303
					CAL	IBRATION O	ORIFICE
				Make-> Model-> Serial # ->	5025A		Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
						CALIBRATIC	ION
Plate No. 18 13 10 7 5	H20 (L) (in) 6.2 4.9 3.7 2.4 1.5	H2O (R) (in) 6.2 4.9 3.7 2.4 1.5	H20 (in) 12.4 9.8 7.4 4.8 3.0	Qstd (m3/min) 1.749 1.556 1.354 1.094 0.868	I (chart) 54 48 41 34 25	IC corrected 53.28 47.36 40.45 33.54 24.66	Slope = 31.9186 Intercept = -2.4102 Corr. coeff. = 0.9984
Calculatio Qstd = 1/1 IC = I[Sq1	m[Sqrt(H			/Ta))-b]		60.00	FLOW RATE CHART
Pstd = act For subse	ected chan chart resp rator Qstd ator Qstd al temper rual press equent ca	rt respone ponse d slope intercept ature dur ure durin	t ing calil g calibra n of san	oration (deg ation (mm I n pler flow:		50.00 40.00 30.00 90.02 90.00 90.02 90.00	
1/m((I)[S m = samp b = samp I = chart r Tav = dai Pav = dail	oler slope oler interco response ly average	ept e tempera	ature))		10.00 0.00 0.000	000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location]		ea at Tsu AM1b	ng Yuer	n Ha Village			Next Calibra	alibration: ation Date: 'echnician:	24/10/2016 24/12/2016 Fai So
					(CONDITIONS			
	Se	a Level I Temp	Pressure perature		1011.3 27.3		Corrected Pressure (Temperature (758.475 300
					CALIE	BRATION ORI	FICE		
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> Qstd Intercept ->		00411 .03059
					С		l		
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINE. REGRES		
18 13 10 7 5	6.2 4.7 3.6 2.5 1.4	6.2 4.7 3.6 2.5 1.4	12.4 9.4 7.2 5.0 2.8	1.764 1.538 1.348 1.126 0.846	51 45 38 28 18	50.75 44.78 37.82 27.86 17.91	Slope = Intercept = Corr. coeff. =	36.7893 -12.8904 0.9967	
Calculatio Qstd = 1/1 IC = I[Sq1	m[Sqrt(H			l/Ta))-b]		60.00	FLOW RATI	E CHART	
Qstd = sta IC = corre I = actual m = calibr b = calibra	ected char chart resp rator Qsto	rt respone ponse d slope				50.00 (j) 40.00			•
Ta = actua	al temper	ature dur	ring cali	bration (deg ration (mm		40.00 (C) 30.00 set 1 (C) 30.00 set 1 (C) 40.00 set 1 (C) 40.0			
For subse 1/m((I)[\$	-			mpler flow: b)		90.02 Actual			
m = samp b = samp I = chart r Tav = dai	ler interc response	-	ature			10.00		.000 1.	
Pav = dail		-				0.000	0.500 1. Standard Flow F		.500 2.000

Location : Location I		House ne AM2	ear Lin I	Ma Hang Ro				Date of Calibration:24/10/2016Next Calibration Date:24/12/2016Technician:Fai So
					C	OND	DITIONS	
	Se	a Level I Temp	Pressure erature	. ,	<u>1011.</u> 27.			Corrected Pressure (mm Hg) 758.475 Temperature (K) 300
					CALIBR	RATI	ION ORIF	FICE
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CA	LIB	RATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)		IC corrected	LINEAR REGRESSION
18 13 10 7 5	6.1 4.7 3.6 2.4 1.4	6.1 4.7 3.6 2.4 1.4	(iii) 12.2 9.4 7.2 4.8 2.8	1.750 1.538 1.348 1.103 0.846	55 50 44 35 26		54.73 49.76 43.79 34.83 25.87	Slope = 32.5271 Intercept = -1.0373 Corr. coeff. = 0.9970
Calculatio Qstd = 1/r IC = I[Squ Qstd = sta IC = corre I = actual m = calibr b = calibra	n[Sqrt(H t(Pa/Pstc ndard flc cted char chart resj ator Qstc	l)(Tstd/Ta ow rate ct respond ponse d slope	a)] es	/Ta))-b]		(IC)	60.00 50.00 40.00	FLOW RATE CHART
Ta = actua Pstd = act For subse	al tempers ual press	ature dur ure durin alculation	ing calib g calibra n of san	oration (deg ation (mm) npler flow:		ual chart	20.00	
1/m((I)[S m = samp b = samp I = chart r Tav = dail Pav = dail	ler slope ler interc esponse y averag	ept e tempera	ature))			0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		a Ling Fir AM3	e Servic	ce Station				Date of Calibration:24/10/2016Next Calibration Date:24/12/2016Technician:Fai So
					CC	OND	ITIONS	
	Se	ea Level I Temp	Pressure erature	. ,	1011. 27.			Corrected Pressure (mm Hg) 758.475 Temperature (K) 300
					CALIBR	RATI	ION ORIF	ICE
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CA	LIB	RATION	
Plate		H2O (R)	H20	Qstd	I		IC	LINEAR
No. 18	(in) 5.7	(in) 5.7	(in) 11.4	(m3/min) 1.692	(chart) 57	C	orrected 56.72	REGRESSION Slope = 29.2918
13	4.5	4.5	9.0	1.505	50		49.76	Intercept = 6.8324
10	3.4	3.4	6.8	1.310	46		45.78	Corr. coeff. = 0.9957
7 5	2.2	2.2	4.4	1.057	39 21		38.81	
Calculatio	1.4	1.4	2.8	0.846	31		30.85	FLOW RATE CHART
Qstd = 1/r IC = I[Sqr				/Ta))-b]		6	60.00	
Qstd = sta IC = corre	cted cha	rt respone	es			5	60.00	
I = actual m = calibr b = calibra	ator Qst	d slope	-				0.00	
				oration (deg ation (mm	Hg)	chart	80.00	
For subse 1/m((I)[S	-			npler flow:		Actual 5	20.00	
m = samp b = samp I = chart r	ler interc						0.00	
I = chart r Tav = dail Pav = dail	y averag	-					0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location :	-		age					Date of Calibration:24/10/2016Next Calibration Date:24/12/2016
Location I	D.	AM4b						Next Calibration Date: 24/12/2016 Technician: Fai So
					C	ON	DITIONS	
	Se	ea Level I Temp	Pressure perature	. ,	1011. 27.			Corrected Pressure (mm Hg) 758.475 Temperature (K) 300
					CALIBR	RAT		ICE
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CA	ALIE	BRATION	
Plate		H2O (R)		Qstd	I		IC	LINEAR
No. 18	(in) 5.6	(in) 5.6	(in) 11.2	(m3/min) 1.677	(chart) 56		corrected 55.73	REGRESSION Slope = 29.4637
13	4.4	4.4	8.8	1.488	51		50.75	Intercept = 6.8795
10	3.3	3.3	6.6	1.291	46		45.78	Corr. coeff. = 0.9973
7 5	2.1 1.5	2.1 1.5	4.2 3.0	1.033 0.875	38 32		37.82 31.85	
Calculatio Qstd = 1/n IC = I[Sqr Qstd = sta IC = corre	n[Sqrt(H t(Pa/Psto ndard flo	d)(Tstd/T ow rate	a)]	/Ta))-b]			60.00	FLOW RATE CHART
	ator Qsto ator Qsto al temper	d slope l intercep ⁻ ature dur	ing calib	pration (deg ation (mm		sponse	40.00	
For subse 1/m((I)[S	equent c	alculatio	n of san	pler flow:		Actual c	20.00	
m = sampl b = sampl I = chart re Tav = dail Pav = dail	ler interc esponse y averag	cept se tempers					0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I	_	eung Villa AM5a	age Hou	se				Date of Calibration:24/10/2016Next Calibration Date:24/12/2016
Location	D .	1 11 0 10 u						Technician: Fai So
					C	ON	DITIONS	
	Se	ea Level I Temp	Pressure perature	. ,	1011			Corrected Pressure (mm Hg) 758.475 Temperature (K) 300
					CALIB	RAT	FION ORIF	FICE
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CA	ALIE	BRATION	
Plate		H2O (R)	H20	Qstd	Ι		IC	LINEAR
No. 18	(in) 6.2	(in) 6.2	(in) 12.4	(m3/min) 1.764	(chart) 53) (corrected 52.74	REGRESSION Slope = 34.6053
13	4.9	4.9	9.8	1.570	47		46.77	Intercept = -7.9320
10	3.8	3.8	7.6	1.384	40		39.81	Corr. coeff. = 0.9993
7 5	2.4 1.5	2.4 1.5	4.8 3.0	1.103 0.875	31 22		30.85 21.89	
	1.5	1.5	5.0	0.075			21.07	
Calculatio Qstd = 1/r		[20(Pa/Ps	td)(Tstd	/Ta))-b]			60.00	FLOW RATE CHART
IC = I[Sqr	·			· · · -				
Qstd = sta	ndard flo	ow rate					50.00	
IC = corre I = actual		-	es			â		
m = calibr	ator Qst	d slope					40.00	
	al temper	ature dur	ing calib	oration (de		chart response	30.00	
Pstd = act	ual press	ure durin	g calibra	ation (mm	Hg)	al cha		
	-			pler flow:		Actu	20.00	
1/m((I)[S	Sqrt(298/	'Tav)(Pav	/760)] - b)				
m = samp	ler slope						10.00	
b = samp		cept						
I = chart r Tav = dail	y averag						0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)
Pav = dail	y averag	e pressur	e					

Location : Location I		ng Shan V AM6	/illage H	House				Date of Calibration:24/10/2016Next Calibration Date:24/12/2016
	2 .	11110						Technician: Fai So
					C	ONI	DITIONS	
	Se	ea Level I Temp	Pressure erature	, ,	1011. 27.			Corrected Pressure (mm Hg) 758.475 Temperature (K) 300
					CALIBR	RAT		ICE
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CA	ALIE	BRATION	
		H2O (R)	H20	Qstd	I (-1t)		IC	LINEAR
No. 18	(in) 6.2	(in) 6.2	(in) 12.4	(m3/min) 1.764	(chart) 57		corrected 56.72	REGRESSION Slope = 35.0492
13	4.9	4.9	9.8	1.570	50		49.76	Intercept = -4.9242
10	3.6	3.6	7.2	1.348	43		42.79	Corr. coeff. = 0.9984
7 5	2.3 1.7	2.3 1.5	4.6 3.2	1.080 0.904	34 26		33.84 25.87	
Calculatio Qstd = 1/n IC = I[Sqr Qstd = sta IC = corre I = actual	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res	d)(Tstd/Ta ow rate rt respond ponse	a)]	/Ta))-b]		(C)	60.00	FLOW RATE CHART
Pstd = acti For subse	ator Qstd 11 temper 12 ual press 14 equent c	intercept ature dur ure durin alculation	ing calib g calibra n of san	pration (deg ation (mm apler flow:		Actual chart response	30.00	•
1/m((I)[S	Sqrt(298/	Tav)(Pav	/760)]-b))				
m = sampl b = sampl I = chart re Tav = dail Pav = dail	ler interc esponse y averag	e tempera					0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location :	-		Loi Tur	ng Village			Date of Calibration: 24/10/2016
Location I	D :	AM7b					Next Calibration Date: 24/12/2016 Technician: Fai So
					COND	ITIONS	
						т	
	Se	a Level 1		. ,	1011.3		Corrected Pressure (mm Hg) 758.475
		Temp	berature	(°C)	27.3	1	Temperature (K) 300
				C	ALIBRATI	ON ORIFICE	
				Make->	TISCH]	Qstd Slope -> 2.00411
				Model->	5025A]	Qstd Intercept -> -0.03059
				Serial # ->	1612	<u> </u>	
					CALIB	RATION	
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4.2	4.2	8.4	1.454	56	51.00	Slope = 31.3023
13	3.4	3.4	6.8	1.310	53	47.00	Intercept = 5.8059
10	2.6	2.6	5.2	1.148	48	42.00	Corr. coeff. = 0.9993
7	1.8	1.8	3.6	0.957	41	36.00	
5	1.3	1.3	2.6	0.816	38	31.00	
Calculatio	ons :						FLOW RATE CHART
Qstd = 1/r	n[Sqrt(H	20(Pa/Ps	std)(Tstd	/Ta))-b]		60.00	
IC = I[Sqr	t(Pa/Pstd	l)(Tstd/T	a)]				
						50.00	/
Qstd = sta							×
IC = correction		-	es				• • • • • • • • • • • • • • • • • • •
I = actual	-	-				9 40.00	
m = calibr	-	-				suoc	× (
b = calibra				bration (de	αV)	esu od se 30.00	•
	-		-	ation (mm		chart	
$1 \operatorname{stu} - \operatorname{act}$	uai piess		ig canor		IIg)	Page 1 - 20.00	
For subse	equent ca	alculatio	n of san	npler flow:		ช20.00 ศ	
1/m((I)[S	Sqrt(298/	Tav)(Pav	/760)] - t)			
	1			,		10.00	
m = samp	ler slope						
b = samp	ler interc	ept					
I = chart r	esponse					0.00	0.500 1.000 1.500 2.000
Tav = dail		-					Standard Flow Rate (m3/min)
Pav = dail	y average	e pressur	e				

Location : Location I		Гsai Vill AM8	age No.	4			Date of Calibration: 24/10/2016 Next Calibration Date: 24/12/2016
Location	D.	Alvio					Technician: Fai So
					CONE	DITIONS	
	Se	a Level I Temp	Pressure erature	. ,	1011. 27.		Corrected Pressure (mm Hg) 758.475 Temperature (K) 300
				C	ALIBRAT	ION ORIFICE	
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CALIB	RATION	
Plate	H20 (L)		H20	Qstd	Ι	IC	LINEAR
No. 18 13 10 7 5	(in) 5.9 4.5 3.5 2.2 1.3	(in) 5.9 4.5 3.5 2.2 1.3	(in) 11.8 9.0 7.0 4.4 2.6	(m3/min) 1.721 1.505 1.329 1.057 0.816	(chart) 62 54 50 40 32	corrected 61.70 53.74 49.76 39.81 31.85	REGRESSION Slope = 32.7068 Intercept = 5.3232 Corr. coeff. = 0.9985
Calculatic Qstd = 1/r IC = I[Sqr Qstd = sta IC = corre	n[Sqrt(Hi t(Pa/Pstd ndard flo	l)(Tstd/T w rate	a)]	/Ta))-b]		60.00	FLOW RATE CHART
I = actual m = calibr b = calibra Ta = actua	chart resp ator Qsto ator Qstd al tempera	ponse l slope intercep ature dur	t ing calil	bration (deg ation (mm)		Vectural chart response (IC)	
For subse 1/m((I)[S	-			npler flow:		20.00	
m = samp b = samp I = chart r Tav = dail Pav = dail	ler slope ler interce esponse ly average	ept e temper	ature	, ,		0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location]		a Po Vill AM9b	age Hou	ise No. 80					Next Calibra	Calibration: ation Date: Sechnician:		24/10/2016 24/12/2016 Fai So
						CON	DITIONS					
	Se	ea Level I Temp	Pressure perature		<u>1011</u> 27				ed Pressure Cemperature			758.475
					CALI	IBRAT	ION ORI	FICE				
				Make-> Model-> Serial # ->	5025A			-	std Slope -> Intercept ->		2.00411 -0.03059	
						CALIE	BRATION					
Plate No. 18 13 10 7 5	H20 (L) (in) 5.5 4.5 3.5 2.3 1.3	H2O (R) (in) 5.5 4.5 3.5 2.3 1.3	H20 (in) 11.0 9.0 7.0 4.6 2.6	Qstd (m3/min) 1.662 1.505 1.329 1.080 0.816	I (chart) 55 50 44 38 30	2	IC rrected 54.73 49.76 43.79 37.82 29.85	Co	LINE <u>REGRES</u> Slope = Intercept = prr. coeff. =			
Calculatio Qstd = 1/1 IC = I[Squ	ons : n[Sqrt(H	20(Pa/Ps	td)(Tstd				50.00	I	FLOW RATE	CHART		
Qstd = sta $IC = correction I = actual$ $m = calibridation b = calibridation Ta = actuation Ta = actuation Pstd = actuation Ta = actuation T$	endard flo ected char chart resp rator Qstd ator Qstd al tempera ual press equent ca Sqrt(298/ ler slope	ow rate t respond ponse l slope intercept ature dur ure durin alculation Tav)(Pav	es t ing calil g calibr n of san	oration (deg ation (mm I n pler flow: o)		Actual chart response (IC)	50.00 10.00 30.00 0.00			× *		
I = chart r $Tav = dai$ $Pav = dai$	response ly average	e tempera					0.00	0.50 St	00 1.0 tandard Flow Ra	000 ate (m3/min)	1.500	2.000

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Operator		5 Rootsmeter Orifice I.I		438320 1612	Ta (K) - Pa (mm) -	295 745,49
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP - (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3770 0.9710 0.8710 0.8310 0.6860	3.2 6.4 7.8 8.7 12.6	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9866 0.9824 0.9804 0.9793 0.9741	0.7165 1.0117 1.1256 1.1785 1.4200	1.4078 1.9909 2.2259 2.3345 2.8155		0.9957 0.9914 0.9894 0.9883 0.9830	0.7231 1.0210 1.1360 1.1893 1.4330	0.8896 1.2581 1.4066 1.4753 1.7792
Qstd slop intercept coefficie y axis =	t (b) = ent (r) =	2.00411 -0.03059 0.99995 Pa/760) (298/Ta	a)]	Qa slop intercep coeffici y axis =	ot (b) =	1.25494 -0.01933 0.99995 Ca/Pa)l

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	2X6145
Equipment Ref:	EQ105
Job Order	HK1603558

Standard Equipment:

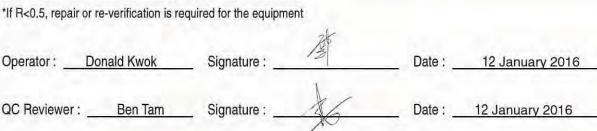
Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	2 January 2016

Equipment Verification Results:

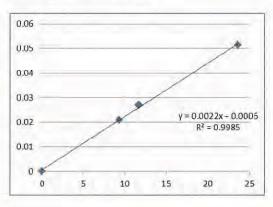
	-
Testing	Date:
rooming	Duit.

4 to 6 January 2016

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1602	11.7
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1522	9.3
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3347	23.6


Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear	Regression	of Y or X	


Slope (K-factor):	0.0022		
Correlation Coefficient	0.9985		
Date of Issue	11 January 2016		

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0022 should be apply for TSP monitoring

593 (CPM) 596 (CPM)

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room					Date of Calibrat Next Calibration D				
					(COND	ITIONS		
						1022 18.9		Corrected Pressure (mm H Temperature (K)	rg) 766.5 292
					CALIE	BRATI	ON ORIFIC	E	
					TIS 502 24-Ma	25A		Qstd Slope -> Qstd Intercept -> Expiry Date->	2.10265 -0.00335 24-Mar-16
					C	CALIB	RATION		
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
18 13 10 8 5	4.1 3.2 2.4 1.6 1.0	4.1 3.2 2.4 1.6 1.0	8.2 6.4 4.8 3.2 2.0	1.384 1.222 1.059 0.865 0.684	50 52 48 42 35	6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1 Intercept = 15.8	1332
Pstd = actu For subse 1/m((I)[S m = sampl	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto ator Qsto al temper ual press sequent ca Sqrt(298/ ler slope	d)(Tstd/T ow rate ort respond sponse d slope l intercep rature dur sure durin alculatior (Tav)(Pav	a)] es t ring cali ring calibr g calibr	bration (de ation (mm ppler flow:		.00 Actual chart response (IC) .05 .02 .02	.00	FLOW RATE CHART	
b = sampl I = chart r Tav = dail Pav = dail	esponse y averag	ge temper				0.	0.000	0.500 1.000 Standard Flow Rate (m3/min)	1.500

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	366409
Equipment Ref:	EQ109
Job Order	HK1603560

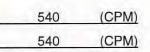
Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	2 January 2016

Equipment Verification Results:

Testing Date:

4 to 6 January 2016


0.0022

0.9975

11 January 2016

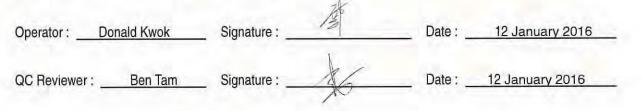
Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1577	11.5
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1433	8.8
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3328	23.5

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Remarks:

Slope (K-factor):

Date of Issue


Correlation Coefficient

1. Strong Correlation (R>0.8)

Linear Regression of Y or X

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room								Date of Calibration: 2-Jan-16 Next Calibration Date: 2-Apr-16	
					(COND	ITIONS		
	Se	ea Level F Temp	Pressure perature	, ,		1022 18.9		Corrected Pressure (mm Hg) 766. Temperature (K) 29	
					CALIE	BRATI	ON ORIFIC	CE	
Make-> TIS Model-> 502 Calibration Date-> 24-M						25A Qs		Qstd Slope ->2.10265Qstd Intercept ->-0.00335Expiry Date->24-Mar-1	5
					C	ALIB	RATION		
Plate		H2O (R)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
18 13 10 8 5	18 4.1 4.1 8.2 1.384 50 13 3.2 3.2 6.4 1.222 55 10 2.4 2.4 4.8 1.059 4 8 1.6 1.6 3.2 0.865 4					6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1332 Intercept = 15.8637 Corr. coeff. = 0.9950	
Pstd = actu For subse 1/m((I)[S m = sampl	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto al temper ual press sequent ca Sqrt(298/ ler slope	d)(Tstd/T ow rate ort respond sponse d slope l intercep rature dur sure durin alculatior (Tav)(Pav	a)] es t ring cali ring calibr g calibr	bration (de ation (mm ppler flow:		.00 Actual chart response (IC) .05 .05 .02	.00	FLOW RATE CHART	
I = chart r Tav = dail	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure 						0.000	0.500 1.000 1.500 Standard Flow Rate (m3/min)	C

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	366410
Equipment Ref:	EQ110
Job Order	HK1603561

Standard Equipment:

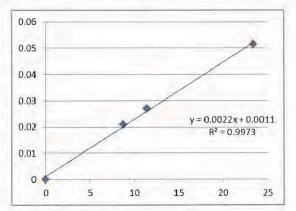
Standard Equipment:	Higher Volume Sampler					
Location & Location ID:	AUES office (calibration room)					
Equipment Ref:	HVS 018					
Last Calibration Date:	2 January 2016					

Equipment Verification Results:

Testing Date:

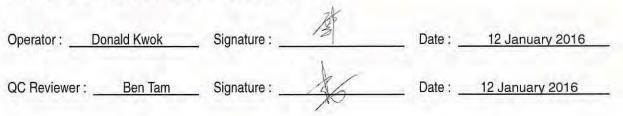
4 to 6 January 2016

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1566	11.4
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1422	8.7
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3318	23.4


Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Slope (K-factor): Correlation Coefficient Date of Issue

0.00)22	
0.99	973	
11 Jar	nuary 2	2016



Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room								Date of Calibration: 2-Jan-16 Next Calibration Date: 2-Apr-16	
					(COND	ITIONS		
	Se	ea Level F Temp	Pressure perature	, ,		1022 18.9		Corrected Pressure (mm Hg) 766. Temperature (K) 29	
					CALIE	BRATI	ON ORIFIC	CE	
Make-> TIS Model-> 502 Calibration Date-> 24-M						25A Qs		Qstd Slope ->2.10265Qstd Intercept ->-0.00335Expiry Date->24-Mar-1	5
					C	ALIB	RATION		
Plate		H2O (R)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
18 13 10 8 5	18 4.1 4.1 8.2 1.384 50 13 3.2 3.2 6.4 1.222 55 10 2.4 2.4 4.8 1.059 4 8 1.6 1.6 3.2 0.865 4					6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1332 Intercept = 15.8637 Corr. coeff. = 0.9950	
Pstd = actu For subse 1/m((I)[S m = sampl	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto al temper ual press sequent ca Sqrt(298/ ler slope	d)(Tstd/T ow rate ort respond sponse d slope l intercep rature dur sure durin alculatior (Tav)(Pav	a)] es t ring cali ring calibr g calibr	bration (de ation (mm ppler flow:		.00 Actual chart response (IC) .05 .05 .02	.00	FLOW RATE CHART	
I = chart r Tav = dail	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure 						0.000	0.500 1.000 1.500 Standard Flow Rate (m3/min)	C

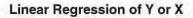
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	3Y6503
Equipment Ref:	EQ112
Job Order	HK1603553

Standard Equipment:

Standard Equipment:	Higher Volume Sampler					
Location & Location ID:	AUES office (calibration room)					
Equipment Ref:	HVS 018					
Last Calibration Date:	2 January 2016					


Equipment Verification Results:

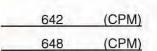
Testing Date:

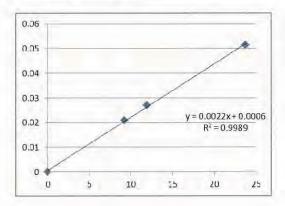
4 to 6 January 2016

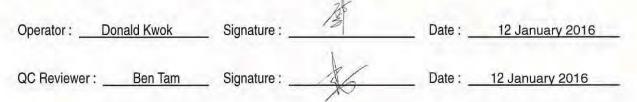
Hour	Time Mean Temp °C Pressure (hPa)		Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)	
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1633	11.9
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1502	9.2
2hr21min	18:00 ~ 20:21	20,9	1018.8	0.051	3365	23.8

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Slope (K-factor): Correlation Coefficient Date of Issue


(0.002	2	
(0.998	9	_
11	Janu	ary 20	16


Remarks:


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room								Date of Calibration: 2-Jan-16 Next Calibration Date: 2-Apr-16	
					(COND	ITIONS		
	Se	ea Level F Temp	Pressure perature	, ,		1022 18.9		Corrected Pressure (mm Hg) 766. Temperature (K) 29	
					CALIE	BRATI	ON ORIFIC	CE	
Make-> TIS Model-> 502 Calibration Date-> 24-M						25A Qs		Qstd Slope ->2.10265Qstd Intercept ->-0.00335Expiry Date->24-Mar-1	5
					C	ALIB	RATION		
Plate		H2O (R)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
18 13 10 8 5	18 4.1 4.1 8.2 1.384 50 13 3.2 3.2 6.4 1.222 55 10 2.4 2.4 4.8 1.059 4 8 1.6 1.6 3.2 0.865 4					6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1332 Intercept = 15.8637 Corr. coeff. = 0.9950	
Pstd = actu For subse 1/m((I)[S m = sampl	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto al temper ual press sequent ca Sqrt(298/ ler slope	d)(Tstd/T ow rate ort respond sponse d slope l intercep rature dur sure durin alculatior (Tav)(Pav	a)] es t ring cali ring calibr g calibr	bration (de ation (mm ppler flow:		.00 Actual chart response (IC) .05 .05 .02	.00	FLOW RATE CHART	
I = chart r Tav = dail	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure 						0.000	0.500 1.000 1.500 Standard Flow Rate (m3/min)	C

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	3Y6505
Equipment Ref:	EQ114
Job Order	HK1603562

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	2 January 2016

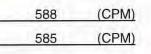
Equipment Verification Results:

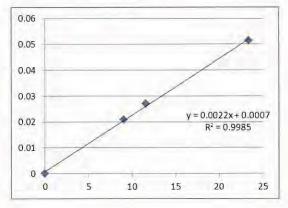
Testing	Data:	
resung	Dale.	

4 to 6 January 2016

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1589	11.6
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1473	9.0
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3314	23.4

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)


Linear Regression of Y or X


Slope (K-factor):	0.0022
Correlation Coefficient	0.9985
Date of Issue	11 January 2016

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room						ung	Date of Calibration: 2-Jan-16 Next Calibration Date: 2-Apr-16		
					(COND	ITIONS		
	Sea Level Pressure (hPa) Temperature (°C)							Corrected Pressure (mm Hg) 766. Temperature (K) 29	
					CALIE	3RATI	ON ORIFIC	CE	
	Make-> TISO Model-> 502 Calibration Date-> 24-Ma					25A		Qstd Slope ->2.10265Qstd Intercept ->-0.00335Expiry Date->24-Mar-1	5
					C	ALIB	RATION		
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
18 13 10 8 5	4.1 3.2 2.4 1.6 1.0	4.1 3.2 2.4 1.6 1.0	8.2 6.4 4.8 3.2 2.0	1.384 1.222 1.059 0.865 0.684	50 52 48 42 35	6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1332 Intercept = 15.8637 Corr. coeff. = 0.9950	
Pstd = actu For subse 1/m((I)[S m = sampl	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto al temper ual press sequent ca Sqrt(298/ ler slope	d)(Tstd/T ow rate ort respond sponse d slope l intercep rature dur sure durin alculatior (Tav)(Pav	a)] es t ring cali ring calibr g calibr	bration (de ation (mm ppler flow:		.00 Actual chart response (IC) .05 .05 .02	.00	FLOW RATE CHART	
I = chart r Tav = dail	b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure					0.	0.000	0.500 1.000 1.500 Standard Flow Rate (m3/min)	C

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162996 證書編號

ITEM TESTED / 送檢項目	(Job No. / 序引編號: IC16-0843) Date of Receipt / 收件日期: 26 May 2016
Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :	Integrating Sound Level Meter (EQ065) Brüel & Kjær 2238 2337676 Action-United Environmental Services and Consulting Unit A, 20/F., Gold King Industrial Building.
	35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 . . 2 June 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA
- Rohde & Schwarz Laboratory, Germany

Tested By 測試

H T Wong

Technical Officer

Certified By 核證

K¢ Lee Project Engineer

Date of Issue : 簽發日期

6 June 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

z/o 4/F. Tsing Shan Wan Exchange Building, 1 Hing On Lanc, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 z/o 香港新界屯門與安里一號背頂讀機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No. : C162996 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

UUT Setting				Applie	d Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec (dB)
50 - 130	LAFP	L _{AFP} A L _{ASP}	F	94.00	1	94.0	Ref.
	L _{ASP}		S			94.1	± 0.1
	L _{AIP}		I			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

UUT Setting				App	lied Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAFP	А	F	106.0	Continuous	106.0	Ref.
	L _{AFMax} L _{ASP} S			200 ms	105.0	-1.0 ± 1.0	
		S	S	Continuous	106.0	Ref.	
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Appli	ied Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)	
50 - 130	LAFP	А	F	94.00	31.5 Hz	54.9	-39.4 ± 1.5	
					63 Hz	67.9	-26.2 ± 1.5	
					125 Hz	77.9	-16.1 ± 1.0	
					250 Hz	85.4	-8.6 ± 1.0	
					500 Hz	90.8	-3.2 ± 1.0	
					1 kHz	94.0	Ref.	
					2 kHz	95.2	$+1.2 \pm 1.0$	
					4 kHz	95.0	$+1.0 \pm 1.0$	
					8 kHz	92.9	-1.1 (+1.5 ; -3.0)	
					12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)	

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 枝正及检測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傅真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Certificate of Calibration 校正證書

Certificate No. : C162996 證書編號

6.3.2 C-Weighting

UUT Setting				Appli	ed Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)	
50 - 130	L _{CFP}	С	F	94.00	31.5 Hz	91.2	-3.0 ± 1.5	
					63 Hz	93.2	-0.8 ± 1.5	
					125 Hz	93.8	-0.2 ± 1.0	
					250 Hz	94.0	0.0 ± 1.0	
					500 Hz	94.0	0.0 ± 1.0	
					1 kHz	94.0	Ref.	
					2 kHz	93.8	-0.2 ± 1.0	
					4 kHz	93.2	-0.8 ± 1.0	
					8 kHz	91.0	-3.0 (+1.5 ; -3.0)	
					12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)	

Time Averaging 6.4

	UUT	Setting			Applied Value			UUT	IEC 60804	
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAcq	L _{Acq} A 10 sec.	LAco A 10 sec.	4	4 1	1/10	110.0	100	100.2	± 0.5
			1.11		1/102	10 ²	90	90.1	± 0.5	
			60 sec.			1/103		80	79.8	±1.0
			5 min.			1/104		70	69.8	± 1.0

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812708

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value :	94 dB : 31.5 Hz - 125 Hz 250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz	
	104 dB : 1 kHz 114 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB) $\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	Burst equivalent level	: ± 0.2 dB (Ref. 110 dB continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162991 證書編號

ITEM TESTED / 送檢) Description / 儀器名稱 Manufacturer / 製造商 Model No. / 型號	(Job No. / 序引編號: IC16-0843) Sound Calibrator (EQ083) Rion NC-74	Date of Receipt / 收件日期:24 May 2016
Serial No. / 編號 Supplied By / 委託者	34246492 Action-United Environmental Services and Cor Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.	nsulting

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 . 2 June 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

- The test equipment used for calibration are traceable to National Standards via :
- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

Project Engineer

Certified By 核證

K C/Lee

Date of Issue 簽發日期

3

3 June 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong c/o 香港新界屯門與安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com Website 網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No.: C162991 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A <u>Description</u> Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier Certificate No. C153519 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C161797 證書編號

ITEM TESTED / 送檢項目	(Job No./序引編號: IC16-0662)	Date of Receipt / 收件日期: 22 March 2016
Description / 儀器名稱 :	Sound Level Meter (EQ014)	
Manufacturer / 製造商 :	Rion	
Model No. / 型號 :	NL-52	
Serial No. / 編號 :	00142580	
Supplied By / 委託者 :	Action-United Environmental Services and	d Consulting
	Unit A, 20/F., Gold King Industrial Buildi	ing,
	35-41 Tai Lin Pai Road, Kwai Chung, N.T	Γ.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage/ 電壓 :

Relative Humidity / 相對濕度 ; $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期 6 April 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification. (after adjustment) The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

Certified By 核證

K C Lee Project Engineer

Date of Issue 簽發日期

7 April 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shant Wan Exchange Building, I Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所

e/o 香港新界屯鬥興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳道: 2744 8986 E-mail/IE \$\$; callab@suncreation.com Websue/期时: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C161797 證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.1.2 to 6.3.2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281 Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator Certificate No. C160077 PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Adjustment

UUT Setting				Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	1	* 91.9	± 1.1

* Out of IEC 61672 Class 1 Spec.

6.1.1.2 After Adjustment

UUT Setting				Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	94.0	± 1.1

6.1.2 Linearity

	UUT Setting				Applied Value	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	L _A	A	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

即創工程有限公司 - 校正及檢測實驗所

ela 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Pax/傳真: 2744 8986 E-mail/電郵: callab/@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in fall, without the prior written approval of this laboratory.

Sun Creation Engineering Limited - Calibration & Testing Laboratory

e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

Certificate of Calibration 校正證書

Certificate No. : C161797 證書編號

6.2 Time Weighting

UUT Setting			Applied Value		UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)		Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	1	94.0	Ref.
			Slow		1.1	94.0	± 0.3

6.3 Frequency Weighting

A-Weighting 6.3.1

UUT Setting				Appl	Applied Value		IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	63 Hz	67.7	-26.2 ± 1.5
				125 Hz	77.8	-16.1 ± 1.5	
				250 Hz	85.3	-8.6 ± 1.4	
					500 Hz	90.7	-3.2 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.6$
					4 kHz	95.0	$+1.0 \pm 1.6$
					8 kHz	92.9	-1.1 (+2.1 ; -3.1)
		-			12.5 kHz	89.5	-4.3 (+3.0 ; -6.0)

C-Weighting 6.3.2

	UUT	Setting		Appl	Applied Value		IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	Lc	C	Fast	94.00	63 Hz	93.1	-0.8 ± 1.5
				125 Hz	93.8	-0.2 ± 1.5	
				250 Hz	94.0	0.0 ± 1.4	
					500 Hz	94.0	0.0 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.6
					4 kHz	93.2	-0.8 ± 1.6
					8 kHz	91.0	-3.0 (+2.1 ; -3.1)
	1				12.5 kHz	87.6	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部視印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

Sun Creation Engineering Contrast Canona on Carona Constrainty Catobratory co 47, Fring Shant Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 co 香港新界屯門興安里一號青山灣機樣四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab/@suncreation.com Website/# Website/網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No.: C161797 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 07725

- Mfr's Spec. : IEC 61672 Class 1

Hz - 125 Hz : ± 0.35 dB 0 Hz - 500 Hz : ± 0.30 dB kHz : ± 0.20 dB
kHz $: \pm 0.20 \text{ dB}$
11- 4 LTL + 0.25 4D
$kHz - 4 kHz$: $\pm 0.35 dB$
kHz : ± 0.45 dB
.5 kHz : ± 0.70 dB
kHz : $\pm 0.10 \text{ dB}$ (Ref. 94 dB)
kHz $:\pm 0.10 \text{ dB}$ (Ref. 94 dB)
k.k

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準,局部復印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/a 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門與安里一號背山灣機械四樓 Tel/電話: 2927 2606 Fax/標準: 2744 8986 E-mail/電郵; callab@suncreation.com Website/網知: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C162177 證書編號

ITEM TESTED / 送檢」	頁目	(Job No./序引編號: IC16-0843)	Date of Receipt / 收件日期: 14 April 2016
Description / 儀器名稱	:	Integrating Sound Level Meter (EQ006)	
Manufacturer / 製造商	1	Brüel & Kjær	
Model No. / 型號	:	2238	
Serial No. / 編號	:	2285762	
Supplied By/委託者	ĸ	Action-United Environmental Services and Unit A, 20/F., Gold King Industrial Buildin	
		35-41 Tai Lin Pai Road, Kwai Chung, N.T	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55±20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 25 April 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA
- Rohde & Schwarz Laboratory, Germany

Tested By 測試	÷	H T Wong Technical Officer			
Certified By 核證	: ~	K C/Lee Project Engineer	Date of Issue 簽發日期	ŧ	27 April 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所咸枝正用之測試器材均可溯源至國際標準。局部被印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory v/o 4/T, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 師創工程有限公司 - 校正及檢測實驗所 v/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162177 證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C160077
CL281	Multifunction Acoustic Calibrator	PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

UUT Setting				Applied Value		UUT	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq, (kHz)	Reading (dB)	
50 - 130	LAFP	A	F	94.00	I	94.2	

6.1.1.2 After Self-calibration

	UUT Setting				d Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	А	F	94.00	1	94.0	± 0.7

6.1.2 Linearity

UUT Setting				Applied	UUT	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	LAFP	A	F	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		113.9

IEC 60651 Type I Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C162177 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT	Setting		Applie	d Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 120 T	LAFP	A	F	94.00	94.00 1	94.0	Ref.
	LASP		S			94.0	± 0.1
	L _{AiP}		I			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

UUT Setting			Applied Value		UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	The second se	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAFP	A	F	106.0	Continuous	106.0	Ref.
	LAFMax				200 ms	105.0	-1.0 ± 1.0
	LASP		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Applied Value		UUT	IEC 60651		
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)		
50 - 130	LAFP	A	F	94.00	31.5 Hz	55.1	-39.4 ± 1.5		
					63 Hz	67.9	-26.2 ± 1.5		
					125 Hz	77.9	-16.1 ± 1.0		
					250 Hz	85.3	-8.6 ± 1.0		
					500 Hz	90.7	-3.2 ± 1.0		
					1 kHz	94.0	Ref.		
					2 kHz	95.2	$+1.2 \pm 1.0$		
							4 kHz	95.0	$+1.0 \pm 1.0$
				8 kHz	91.0	-1.1 (+1.5 ; -3.0)			
		A			12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)		

本證書所載校正用之測試器材均可溯源至國際標準。局部視印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162177 證書編號

6.3.2 C-Weighting

	UUT	Setting		Appli	Applied Value		IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LCFP	C	F	94.00	31.5 Hz	91.5	-3.0 ± 1.5
					63 Hz	93.4	-0.8 ± 1.5
					125 Hz	93.9	-0.2 ± 1.0
					250 Hz	94.1	0.0 ± 1.0
					500 Hz	94.1	0.0 ± 1.0
					1 kHz	94.1	Ref.
	1				2 kHz	93.9	-0.2 ± 1.0
				4 kHz	93.2	-0.8 ± 1.0	
				8 kHz	92.9	-3.0 (+1.5 ; -3.0)	
	-				12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)

6.4

Time Averaging UUT Setting Applied Value UUT IEC 60804 Burst Burst Burst Equivalent Reading Type 1 Parameter Frequency Frequency Integrating Range (kHz) Duration Duty Level Level (dB) Spec. Weighting Time (dB) Factor (dB) (dB) (dB) (ms) 30 - 110 10 sec. 4 1/10 110.0 100 100.0 ±0.5 1 LAcq A $1/10^{2}$ 90 89.9 ±0.5 1/103 80 79.2 ±1.0 60 sec. 1/104 70 69.2 ± 1.0 5 min.

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812705

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

94 dB : 31.5 Hz - 125 Hz 250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz 104 dB : 1 kHz 114 dB : 1 kHz Burst equivalent level	: \pm 0.30 dB : \pm 0.20 dB : \pm 0.35 dB : \pm 0.45 dB : \pm 0.70 dB : \pm 0.10 dB (Ref. 94 dB) : \pm 0.10 dB (Ref. 94 dB) : \pm 0.2 dB (Ref. 110 dB
and a second second	continuous sound level)
	250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz 104 dB : 1 kHz 114 dB : 1 kHz

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准・

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162438 證書編號

ITEM TESTED / 送檢 Description / 儀器名稱 Manufacturer / 製造商 Model No. / 型號 Serial No. / 編號 Supplied By / 委託者	 夏目 (Job No. / 序引編號: IC16-0843 Acoustical Calibrator (EQ081) Brüel & Kjær 4231 2326408 Action-United Environmental Servi Unit A, 20/F., Gold King Industrial 	ices and Consulting
	35-41 Tai Lin Pai Road, Kwai Chu	
TEST CONDITIONS /	測試條件	
Temperature / 溫度 : Line Voltage / 電壓 :	(23 ± 2)°C	Relative Humidity / 相對濕度 : (55 ± 20)%
TEST SPECIFICATIO	NS/測試規範	
DATE OF TEST / 測試	日期 : 10 May 2016	
TEST RESULTS / 測記	結果	
The results do not excee	particular unit-under-test only. d manufacturer's specification. n the subsequent page(s).	
	ooratory, Germany	

Tested By 測試	ų,	H T Wong Technical Officer			
Certified By 核證	:	K C/Lee Project Engineer	Date of Issue 簽發日期	:	11 May 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本質驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun. New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山體機模四樓 Tel/電話: 2927 2606 Fax/佛真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No.: C162438 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL130	Universal Counter	C153519
CL281	Multifunction Acoustic Calibrator	PA160023
TST150A	Measuring Amplifier	C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C162125 證書編號

ITEM TESTED / 送檢 Description / 儀器名稱 Manufacturer / 製造商 Model No. / 型號	項目 : ::	(Job No. / 序引編號: IC16-0843) Acoustical Calibrator (EQ082) Brüel & Kjær 4231	Date of Receipt / 收件日期: 14	April 2016
Serial No. / 編號 Supplied By / 委託者	•••••	2713428 Action-United Environmental Services a Unit A, 20/F., Gold King Industrial Build 35-41 Tai Lin Pai Road, Kwai Chung, N	ting,	
TEST CONDITIONS / Temperature / 溫度 :	Server.		Relative Humidity / 相對濕度 :	(55 ± 20)%
Line Voltage / 電壓 :				

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 22 April 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

worth.
H T Wong
Technical Officer

Certified By 核證 Date of Issue 簽發日期 25 April 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載枚正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所習面批准,

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新昇屯門與安里一號肾山灣機機四艘 Tel/電話: 2927 2606 Fax/健真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

K C/Lee Project Engineer

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162125 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A DescriptionQUniversal CounterQMultifunction Acoustic CalibratorPMeasuring AmplifierQ

Certificate No. C153519 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.1		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark 1 The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部海印本證書需先獲本實驗所書面批准。

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong I +852 2610 1044 <u>F</u>+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG.

WORK ORDER:	HK1638606
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	22/09/2016
DATE OF ISSUE:	29/09/2016

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen and Temperature
Equipment Type:	Dissolved Oxygen Meter
Brand Name:	YSI
Model No.:	550A
Serial No.:	16A104433
Equipment No.:	
Date of Calibration:	26 September, 2016

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Sub-Batch: Date of Issue: Client:	HK1638606 0 29/09/2016 ACTION UNITED ENVIRO SI	ERVICES	ALS
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Dissolved Oxygen Meter YSI 550A 16A104433 26 September, 2016	Date of next Calibration:	26 December, 2016

Parameters:

Disso

lund	0	Mashaal	D.C. ADUA	121-1		45000.0
iveu	Oxygen	Method	Ref: APHA	(2151	eaition),	45000: G

C

played Reading (mg/L) 3.02	Tolerance (mg/L)
2 0 2	
2 0 2	
5.02	-0.12
5.36	-0.18
8.51	-0.09
olerance Limit (mg/L)	±0.20
	8.51

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.				
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)		
7 25 42	7.2 24.7 41.9	+0.2 -0.3 -0.1		
	Tolerance Limit (°C)	±2.0		

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>1</u>+852 2610 1044 <u>F</u>+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR BEN TAM
CLIENT:	ACTION UNITED ENVIRO SERVICES
ADDRESS:	RM A 20/F., GOLDEN KING IND BLDG,
	NO. 35-41 TAI LIN PAI ROAD,
	KWAI CHUNG,
	N.T., HONG KONG

WORK ORDER:	HK1638998
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	26/09/2016
DATE OF ISSUE:	04/10/2016

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:pH and TemperatureDescription:pH MeterBrand Name:AZModel No.:8685Serial No.:1127748Equipment No.:--Date of Calibration:03 October, 2016

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

2P	Tan	
(1	Mr Fung Lim Chee, Richard	
	÷	

General Manager – Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1638998
Sub-batch:	0
Date of Issue:	04/10/2016
Client:	ACTION UNITED ENVIRO SERVICES
Description:	pH Meter
Brand Name:	AZ
Model No.:	8685
Serial No.:	1127748
E	

Equipment No.: --Date of Calibration: 03 October, 2016

Date of next Calibration:

03 January, 2017

Parameters:

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.1	+0.10
7.0	6.9	-0.10
10.0	9.9	-0.10
	Tolerance Limit (pH Unit)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

	JU8: Working Thermometer Calibrati	
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
8.5	9.0	+0.5
26.0	25.5	-0.5
41.0	40.5	-0.5
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard General Manager – Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: CLIENT: ADDRESS:

ACTION UNITED ENVIRO SERVICES RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG

MR BEN TAM

WORK ORDER:	HK1629461
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	21/07/2016
DATE OF ISSUE:	27/07/2016

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	HACH
Model No.:	2100Q
Serial No.:	12060C018266
Equipment No.:	
Date of Calibration:	22 July, 2016

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Sub-batch: Date of Issue: Client:	HK1629461 0 27/07/2016 ACTION UNITED ENVIRO SE	RVICES	A
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Turbidimeter HACH 2100Q 12060C018266 22 July, 2016	Date of next Calibration:	22 October, 2016

Parameters:

	Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
	0	0.15	.==0
	4	3.75	-6.3
	40	43.0	+7.5
	80	86.3	+7.9
	400	390	-2.5
	800	860	+7.5
		Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

R.ul-p Mr. Fung Lim Chee, Richard

Mr. Fung Lim Chee, Richard General Manager Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>T</u>+852 2610 1044 <u>E</u>+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR BEN TAM
CLIENT:	ACTION UNITED ENVIRO SERVICES
ADDRESS:	RM A 20/F., GOLD KING IND BLDG,
	NO. 35-41 TAI LIN PAI ROAD,
	KWAI CHUNG,
	N.T., HONG KONG.

1632472
IG KONG
08/2016
08/2016

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Conductivity, Dissolved Oxygen, pH, Salinity, Temperature and Turbidity
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional DSS
Serial No.:	15H102620 / 15H103928
Equipment No.:	EQW018
Date of Calibration:	12 August, 2016

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Sub-Batch: Date of Issue: Client:	HK1632472 0 15/08/2016 ACTION UNITED ENVIRO SER	VICES		
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional DSS 15H102620 / 15H103928 EQW018 12 August, 2016	Date of next Calibration:	12 November, 2016	
Parameters:				
Conductivity	Method Ref: APHA (21st edition	on), 2510B		
	Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)	
	146.9 6667 12890 58670	147.0 6517 12903 57534	+0.1 -2.2 +0.1 -1.9	
		Tolerance Limit (%)	±10.0	
Dissolved OxygenMethod Ref: APHA (21st edition), 45000: G				
	Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	
	3.51 5.06	3.63 5.10	+0.12 +0.04	

pH Value

Method Ref: APHA 21st Ed. 4500H:B

7.71

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.10	+0.10
7.0	7.03	+0.03
10.0	10.14	+0.14
	Tolerance Limit (pH unit)	±0.20

7.63

Tolerance Limit (mg/L)

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.08	
10	10.04	+0.4
20	19.82	-0.9
30	28.89	-3.7
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

-0.08

±0.20

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:HK16Sub-Batch:0Date of Issue:15/0Client:ACTIEquipment Type:MultiBrand Name:YSIModel No.:ProfeSerial No.:15H1Equipment No.:EQW0Date of Calibration:12 A

HK1632472 0

15/08/2016 ACTION UNITED ENVIRO SERVICES

Multifunctional Meter YSI Professional DSS 15H102620 / 15H103928 EQW018 12 August, 2016 Date of ne

Date of next Calibration:

12 November, 2016

Parameters:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

uide No. 3 Second edition Ma	rch 2008: Working Thermometer	Calibration Procedure.
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	10.8	+0.8
24.0	24.3	+0.3
40.0	39.5	-0.5
	Tolerance Limit (°C)	±2.0

Turbidity

Method	Ref: APHA	(21st	edition).	2130B
-ictiiou	11011 / 11 / 11/1	(= + > +	curron/,	

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.3	12023
4	3.8	-5.0
40	40.2	+0.5
80	77.2	-3.5
400	390.0	-2.5
800	781.3	-2.3
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd

Appendix G

Event and Action Plan

 $Z: Jobs \ 2013 \ CS00694 \ 600 \ EM\&A \ Report \ Monthly \ EM\&A \ Report \ 39th \ (October \ 2016) \ R0714v \ 2.docx$

Event and Action Plan for Air Quality

Event				Action
Action Level	ET	IEC	ER ER	Contractor
Action Level 1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	1. Identify source;	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Limit Level				
 Exceedance for one sample 	 I. Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Monitor theimplementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
 Exceedance for two or more consecutive samples 		submitted by ET; 2. Check Contractor's working method; 3. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 4. Review Contractor's remedial actions whenever necessary to assure their	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not
	and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	the ER accordingly; 5. Monitor the implementation of remedial measures.	5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Construction Noise

Event Action Level	1. Notify ER, IEC and Contractor; 2. Carry out investigation; 3. Report the results of investigation to the IEC, ER and Contractor; 4. Discuss with the IEC and Contractor on remedial measures required; 5. Increase monitoring frequency to check mitigation effectiveness. 1. Inform IEC, ER	1. Review the investigation results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the ER accordingly; 3. Advise the ER on the effectiveness of the proposed remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures. 1. Confirm receipt of	Action Contractor 1. Submit noise mitigation proposals to IEC and ER; 2. Implement noise mitigation proposals.
Limit Level	Inform IEC, ER, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Contractor and ER on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring.	 Discuss amongst ER, ET, and Contractor on the ootential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. 	 Confirm receipt of notification of failure in writino: Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. 	 Take immediate action to avoid further <u>exceedance</u>: Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Event and Action Plan for Water Quality

EVENT	ET	IEC	ER	ACTION
Action level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures.
Action Level being exceeded by more than two consecutive sampling days	Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working matherie: Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit Level being exceeded by one sampling day	exceedance. 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Lovel	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigatio measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit level being exceeded by more than one consecutive sampling days	Level. 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days.	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level. 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigatio measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; As directed by the ER, to slow down or to stop all of part of the construction activities.

Appendix H

Impact Monitoring Schedule

 $Z: Jobs \ 2013 \ CS00694 \ 600 \ EM\&A \ Report \ Monthly \ EM\&A \ Report \ 39th \ (October \ 2016) \ R0714v \ 2.docx$

Impact Monitoring Schedule for Reporting Period –October 2016

	D. (Dust Mo	nitoring		
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
Sat	1-Oct-16				
Sun	2-Oct-16				
Mon	3-Oct-16		AM1b, AM2, AM3 & AM9b		
Tue	4-Oct-16				All Water Quality Monitoring Locations
Wed	5-Oct-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
Thu	6-Oct-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Fri	7-Oct-16				
Sat	8-Oct-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Sun	9-Oct-16				
Mon	10-Oct-16				
Tue	11-Oct-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Wed	12-Oct-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
Thu	13-Oct-16				All Water Quality Monitoring Locations
Fri	14-Oct-16		AM1b, AM2, AM3 & AM9b		
Sat	15-Oct-16				All Water Quality Monitoring Locations
Sun	16-Oct-16				
Mon	17-Oct-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
Tue	18-Oct-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Wed	19-Oct-16				
Thu	20-Oct-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Fri	21-Oct-16				
Sat	22-Oct-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
Sun	23-Oct-16				
Mon	24-Oct-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Tue	25-Oct-16				
Wed	26-Oct-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Thu	27-Oct-16				
Fri	28-Oct-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Sat	29-Oct-16	AM4b, AM5, AM6, AM7b & AM8			
Sun	30-Oct-16				
Mon	31-Oct-16				All Water Quality Monitoring Locations

Monitoring Day Sunday or Public Holiday

Impact Monitoring Schedule for next Reporting Period – November 2016

	Data	Dust Mo	onitoring	N	
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
TUE	1-Nov-16		AM1b, AM2, AM3 & AM9b		
WED	2-Nov-16				All Water Quality Monitoring Locations
THU	3-Nov-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
Fri	4-Nov-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
SAT	5-Nov-16	AM70 & AM0			Locations
SUN	6-Nov-16				
Mon	7-Nov-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
TUE	8-Nov-16				
WED	9-Nov-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
THU	10-Nov-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	Locations
Fri	11-Nov-16				All Water Quality Monitoring Locations
SAT	12-Nov-16		AM1b, AM2, AM3 & AM9b		Locations
SUN	13-Nov-16		AMD		
Mon	14-Nov-16				
TUE	15-Nov-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
WED	16-Nov-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
Thu	17-Nov-16				All Water Quality Monitoring Locations
Fri	18-Nov-16		AM1b, AM2, AM3 & AM9b		
SAT	19-Nov-16				All Water Quality Monitoring Locations
SUN	20-Nov-16				
Mon	21-Nov-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
TUE	22-Nov-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
WED	23-Nov-16				
THU	24-Nov-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Fri	25-Nov-16				
SAT	26-Nov-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
SUN	27-Nov-16				
Mon	28-Nov-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
TUE	29-Nov-16				
WED	30-Nov-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
		Monitoring Day			

Monitoring Day Sunday or Public Holiday

Appendix I

Database of Monitoring Result

24-hour TSP Monitoring Data

DATE	SAMPLE	EL	APSED TIN	ſΕ		CHAR EADII		AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER V (g		DUST WEIGHT COLLECTED	24-HR TSP (u_{2}/w_{3}^{3})
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$
AM1b – Op	pen Area, Ts	ung Yuen H	Ia Village												
3-Oct-16	29992	12119.68	12143.82	1448.40	45	45	45.0	27.5	1007.8	1.53	2221	2.8120	2.9008	0.0888	40
8-Oct-16	20020	12143.82	12167.99	1450.20	51	51	51.0	28.1	1006.8	1.73	2504	2.8072	3.0014	0.1942	78
14-Oct-16	20077	12167.99	12192.16	1450.20	50	50	50.0	26.7	1013.2	1.70	2469	2.8575	3.0048	0.1473	60
20-Oct-16	20070	12192.16	12216.30	1448.40	50	50	50.0	27.3	1004.6	1.69	2454	2.8587	3.0300	0.1713	70
26-Oct-16	20062	12216.30	12240.47	1450.20	49	50	49.5	25.7	1015.6	1.70	2459	2.8683	2.9730	0.1047	43
	age House ne								•		•				
3-Oct-16	29991	7642.64	7666.44	1428.00	36	36	36.0	27.5	1007.8	1.23	1755	2.8144	2.9970	0.1826	104
8-Oct-16	20019	7666.44	7690.25	1428.60	42	42	42.0	28.1	1006.8	1.39	1988	2.8152	3.1015	0.2863	144
14-Oct-16	20078	7690.25	7714.07	1429.20	35	35	35.0	26.7	1013.2	1.21	1723	2.8778	3.0847	0.2069	120
20-Oct-16	20071	7714.07	7737.80	1423.80	33	33	33.0	27.3	1004.6	1.15	1632	2.8591	2.9567	0.0976	60
26-Oct-16	20063	7737.80	7761.55	1425.00	28	28	28.0	25.7	1015.6	0.89	1272	2.8672	3.0017	0.1345	106
	Kwu Ling Fi	1			<u> </u>	0							[
3-Oct-16	29993	8766.26	8790.26	1440.00		50	50.0	27.5	1007.8	1.53	2209	2.8164	3.0547	0.2383	108
8-Oct-16	20021	8790.26	8814.26	1440.00	52	52	52.0	28.1	1006.8	1.60	2297	2.8209	3.1367	0.3158	137
14-Oct-16	20080	8814.26	8838.26	1440.00	54	54	54.0	56.7	1013.2	1.59	2287	2.8677	3.1050	0.2373	104
20-Oct-16	20072	8838.26	8862.26	1440.00	54	54	54.0	27.3	1004.6	1.66	2390	2.8707	2.9878	0.1171	49
26-Oct-16	20116	8876.10	8900.10	1440.00	54	54	54.0	25.7	1015.6	1.61	2319	2.8593	3.0943	0.2350	101
AM4 - Hou	ise no. 10B1	Nga Yiu Ha	ı Village												
5-Oct-16	29998	10770.53	10794.54	1440.60	43	43	43.0	28.6	1008.9	1.32	1909	2.8137	2.8935	0.0798	42
11-Oct-16	20025	10794.54	10818.53	1439.40	40	40	40.0	24.5	1010.7	1.24	1786	2.8235	2.8763	0.0528	30
17-Oct-16	20076	10818.53	10842.53	1440.00	42	42	42.0	26.6	1009.1	1.30	1869	2.8686	2.9780	0.1094	59
22-Oct-16	20067	10842.53	10866.53	1440.00	40	40	40.0	27.5	1007.8	1.23	1775	2.8668	2.9287	0.0619	35
28-Oct-16	20055	10881.39	10905.39	1440.00	40	40	40.0	28.2	1014.9	1.12	1610	2.8940	2.9807	0.0867	54
	ng Yeung Vil												1		_
5-Oct-16	20018	8632.43	8656.43	1440.00	32	32	32.0	28.6	1008.9	0.98	1412	2.8073	2.9198	0.1125	80
11-Oct-16	20026	8656.43	8680.45	1441.20		34	34.0	24.5	1010.7	1.05	1512	2.8176	2.8952	0.0776	51
17-Oct-16	20083	8680.45	8704.46	1440.60		50	50.0	26.6	1009.1	1.53	2204	2.8592	2.9355	0.0763	35
22-Oct-16	20068	8704.46	8728.47	1440.60	40	40	40.0	27.5	1007.8	1.22	1763	2.8580	2.9199	0.0619	35
28-Oct-16	20059	8728.47	8752.47	1440.00		32	32.0	28.2	1014.9	1.15	1656	2.8764	2.9213	0.0449	27
	Keng Shan V							20.2	101.09						_,
5-Oct-16	29997	7214.38	7238.38	1440.00	38	38	38.0	28.6	1008.9	1.22	1756	2.8020	3.0441	0.2421	138
		/211.30	, 250.50	1110.00	50	50	50.0	20.0	1000.7	1.44	1750	2.0020	2.0111	V.2 121	1.70

DATE	SAMPLE	EL	APSED TIM	ſE		CHAR READII		AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER V		DUST WEIGHT COLLECTED	24-HR TSP
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$
11-Oct-16	20027	7238.38	7262.39	1440.60	32	32	32.0	24.5	1010.7	0.99	1429	2.8064	2.9449	0.1385	97
17-Oct-16	20074	7262.39	7286.39	1440.00	32	32	32.0	26.6	1009.1	0.99	1420	2.8599	2.9449	0.0850	60
22-Oct-16	20069	7286.39	7310.39	1440.00	28	28	28.0	27.5	1007.8	0.83	1188	2.8405	2.9151	0.0746	63
28-Oct-16	20060	7310.39	7334.39	1440.00	28	28	28.0	28.2	1014.9	0.94	1347	2.8770	3.0072	0.1302	97
AM7b - Lo	i Tung Villag	ge House				-									
5-Oct-16	20023	16250.58	16274.59	1440.60	38	38	38.0	28.6	1008.9	0.99	1424	2.8230	2.9460	0.1230	86
11-Oct-16	20079	16274.59	16298.60	1440.60	32	32	32.0	24.5	1010.7	0.80	1158	2.8686	2.9135	0.0449	39
17-Oct-16	20082	16298.60	16322.61	1440.60	38	38	38.0	26.6	1009.1	0.99	1430	2.8720	2.9790	0.1070	75
22-Oct-16	20065	16322.61	16346.60	1439.40	40	40	40.0	27.5	1007.8	1.05	1518	2.8556	2.9374	0.0818	54
28-Oct-16	20057	16346.60	16370.61	1440.60	38	38	38.0	28.2	1014.9	1.02	1474	2.8789	2.9731	0.0942	64
AM8 - Po F	Kat Tsai Villa	nge No. 4													
5-Oct-16	20022	10157.15	10181.15	1440.00	43	43	43.0	28.6	1008.9	1.15	1651	2.8221	2.9192	0.0971	59
11-Oct-16	20081	10181.15	10205.15	1440.00	44	44	44.0	24.5	1010.7	1.18	1702	2.8898	2.9733	0.0835	49
17-Oct-16	20075	10205.15	10229.16	1440.60	44	44	44.0	26.6	1009.1	1.18	1695	2.8738	2.9533	0.0795	47
22-Oct-16	20066	10229.16	10253.16	1440.00	43	43	43.0	27.5	1007.8	1.15	1653	2.8705	2.9311	0.0606	37
28-Oct-16	20056	10253.16	10277.16	1440.00	42	42	42.0	28.2	1014.9	1.12	1606	2.8749	2.9333	0.0584	36
AM9b - Na	m Wa Po Vil	lage House	No. 80												
3-Oct-16	29990	17536.35	17560.34	1439.40	32	32	32.0	27.5	1007.8	1.07	1542	2.8242	2.8766	0.0524	34
8-Oct-16	20024	17560.34	17584.35	1440.60	38	38	38.0	28.1	1006.8	1.26	1809	2.8177	2.9207	0.1030	57
14-Oct-16	20084	17584.35	17608.36	1440.60	39	39	39.0	26.7	1013.2	1.29	1864	2.8710	2.9513	0.0803	43
20-Oct-16	20073	17608.36	17632.36	1440.00	36	36	36.0	27.3	1004.6	1.19	1720	2.8734	2.9263	0.0529	31
26-Oct-16	20064	17632.36	17656.37	1440.60	42	42	42.0	25.7	1015.6	1.24	1783	2.8581	2.9065	0.0484	27

Construction Noise Monitoring Results, dB(A)

Date	Start Time	1 st Leq _{5mi}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
NM1 - Tsung	g Yuen	Ha Vill	age Hou	ise No. (63					-										-	
5-Oct-16	11:25	52.0	53.6	50.3	52.8	54.7	50.1	52.8	54.8	48.2	52.8	55.2	47.9	51.8	53.5	47.3	48.7	51.0	46.4	52	NA
11-Oct-16	10:14	55.5	57.0	47.0	53.0	53.5	47.5	68.8	59.5	48.0	56.5	51.0	47.5	51.5	52.5	47.5	50.8	51.5	48.0	62	NA
17-Oct-16	11:27	51.5	52.7	49.2	50.4	52.0	48.7	51.8	53.9	49.2	52.5	55.3	48.5	54.1	57.9	48.8	52.1	54.7	47.5	52	NA
28-Oct-16	9:33	56.4	59.0	49.5	55.5	55.5	48.5	60.3	62.0	50.0	60.9	63.0	50.5	56.8	58.5	50.0	56.3	57.5	49.0	58	NA
NM2a - Villa	0			0						•	1 1		1	1 1			1			T	
5-Oct-16	10:30		75.1	60.9	72.5	74.7	57.7	71.3	74.0	61.1	73.6	75.7	60.8	71.0	74.2	61.1	72.1	74.9	61.3	72	75
11-Oct-16	9:38	59.9	62.0	53.0	64.2	67.5	59.5	62.6	65.0	57.0	70.8	74.5	56.5	72.9	75.5	67.0	72.5	75.0	65.5	70	73
17-Oct-16	9:46	57.6	58.9	48.4	64.3	62.6	48.4	54.8	57.2	49.2	55.8	59.1	50.3	54.5	57.1	50.2	61.5	61.4	51.3	60	63
28-Oct-16	10:16		62.0	50.0	60.9	63.5	50.0	60.6	62.5	49.0	56.2	55.5	47.5	64.7	63.0	59.5	60.6	61.0	52.5	61	64
NM3 - Ping Y	0	0						1		1	T T		1	1			1			1	
6-Oct-16	10:23		71.0	58.0	66.2	69.0	56.5	61.0	60.0	53.0	60.8	61.5	54.0	65.6	64.5	54.5	65.9	68.5	60.0	66	NA
12-Oct-16	10:15		65.5	49.4	59.5	55.3	49.6	54.5	52.9	49.8	55.7	56.1	50.0	51.1	52.2	49.9	60.6	55.1	49.7	60	NA
18-Oct-16	13:48		70.0	59.5	62.7	65.0	59.0	63.0	65.0	59.0	62.9	65.0	59.0	63.1	65.5	58.0	61.9	63.5	57.0	64	NA
	10:35	l	63.4	51.3	58.8	63.3	53.0	59.5	57.7	51.6	58.9	61.8	51.5	56.8	57.5	51.3	60.3	60.0	50.7	59	NA
NM4 - Wo Ko			0		(1.1	50.5	51.0	50.6	50.5	50.5		50.5	50.0	(0.0	(1.5	10.0	15.5	40.0	16.5	50	274
6-Oct-16	9:40	60.4	60.5	52.5	61.1	59.5	51.0	59.6	59.5	50.5	56.5	58.5	50.0	60.3	61.5	49.0	47.7	48.0	46.5	59	NA
12-Oct-16	9:30	69.1	70.3	66.8	68.6	69.4	67.0	68.4	70.0	63.6	66.1	68.0	67.2	68.6	70.0	65.1	69.1	70.2	67.3	68	NA
	13:00		78.0	68.5	72.0	73.5	64.0	73.6	76.5	64.5	73.0	76.0	63.5	71.2	74.0	62.0	75.3	78.0	64.5	74	NA
24-Oct-16	9:47	59.5	60.3	52.2	63.8	62.2	53.8	60.5	59.9	52.4	62.6	63.3	52.9	62.1	63.7	52.7	61.5	63.1	53.1	62	NA
NM5 - Ping Y				515	55 <u>5</u>	57.5	52.5		59.0	52.0	<i>EE</i> 1	57 E	51.5	57.2	50.0	54.0	5(5	59.5	52.5	(0	
	13:00		58.5	51.5	55.5	57.5	52.5	66.6	58.0	52.0	55.4	57.5	51.5	57.3	59.0	54.0	56.5	58.5	53.5	60	NA
12-Oct-16	9:23	56.3	59.0	50.5	56.0	59.0	51.0	56.1	58.5	51.5	56.0	59.0	51.5	56.2	59.0	50.0	57.7	60.0	50.5	56	NA
18-Oct-16	10:15		65.0	57.5	62.9	65.5	57.0	62.6	65.0	55.5	60.7	63.5	56.0	59.6	61.5	55.5	57.7	59.5	54.0	62	NA
	9:29	54.7	56.5	51.0	56.1	57.5	51.5	54.8	56.5	52.0	56.2	58.5	51.0	58.4	59.0	51.0	55.7	58.0	51.0	56	NA
<u>NM6 – Tai To</u>	0	<u> </u>			52.0	55.0	40.5	55 4	57.5	52.0	566	50.0	52.5	59.2	(15)	52.5	561	(0.5	44.0	50	
	13:41	55.6	55.5	49.5	53.0	55.0	49.5	55.4	57.5	52.0	56.6	59.0	52.5	58.3	61.5		56.4	60.5	44.0	56	NA
12-Oct-16	10:14		64.5	52.0	55.2	57.0	51.5	55.9	58.5	51.5	57.4	59.0	50.5	56.1	59.0	51.0	55.0	57.5	50.0	58	NA
18-Oct-16	10:51	60.4	62.5	53.0	61.7	63.5	54.0	57.4	59.5	53.0	67.3	66.0	54.5	62.9	62.5	53.5	56.9	58.0	52.0	63	NA
	10:17		62.0	48.5	56.6	60.5	49.0	55.4	59.0	47.5	57.4	60.0	49.0	55.5	58.5	49.0	58.0	61.5	49.5	57	NA
NM7 – Po Ka			60.5	51.5	57.6	59.5	52.5	63.6	66.5	52.5	63.2	66.5	54.0	54.9	55.5	51.5	55.4	57.0	51.0	60	NA
6-Oct-16	11:12	56.4	00.3	31.3	37.0	39.3	32.3	03.0	66.5	32.3	03.2	66.5	34.0	54.9	33.3	31.3	33.4	37.0	31.0	60	NA

Date	Start Time	1 st Leq _{5mi}	L10	L90	2 nd Leq _{5min}	L10	L90	$3^{nd} \\ Leq_{5min}$	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
12-Oct-16	13:15	56.9	59.0	52.0	61.6	63.0	53.0	76.5	73.0	55.5	61.4	63.0	54.0	60.0	62.5	52.5	58.4	61.5	52.0	69	NA
18-Oct-16	9:31	62.2	65.0	56.5	62.5	65.0	57.0	62.1	65.0	58.0	62.6	65.0	57.0	64.5	67.0	58.5	63.9	64.0	57.0	63	NA
24-Oct-16	13:10	56.9	59.0	52.0	61.6	63.0	53.0	76.5	73.0	55.5	61.4	63.0	54.0	60.0	62.5	52.5	58.4	61.5	52.0	69	NA
NM8 - Villag	e Hous	se, Tong	g Hang																		
5-Oct-16	9:55	56.7	56.7	51.5	54.5	56.5	51.7	55.6	57.7	52.5	56.7	58.8	52.7	57.7	61	51.5	55.8	60.2	51.2	56	NA
11-Oct-16	9:44	59.6	64.6	51.1	58.7	64	51.7	58.7	64.1	51.5	57.5	63.7	50	58.9	63.5	50.5	57.3	62.7	50.7	59	NA
17-Oct-16	10:11	59.5	64.2	48.5	58.9	63.4	47.9	56.4	62.2	47.7	58.2	62.1	48	59.7	63	48	60.5	64.4	49.4	59	NA
28-Oct-16	9:42	55.6	57.2	52.2	53.7	55.7	51	56.4	56.2	51.2	54.9	56.1	51.6	55.7	57.4	52.4	56.9	58.4	52	56	NA
NM9 - Villag	e Hous	e, Kiu '	Tau Vill	lage																	
5-Oct-16	10:39	68.5	67.5	58.2	61.7	63.7	57.1	62.0	66.5	57.7	62.4	65.9	57.1	60.0	62.5	57.2	61.6	64.3	57.5	64	NA
11-Oct-16	10:28	64.1	67.3	59.0	63.8	66.5	59.7	64.4	66.6	60.5	62.5	64.9	58.1	60.2	63.4	57.5	61.3	63.5	57.1	63	NA
17-Oct-16	10:53	61.7	64.6	58.2	60.7	63.5	58.0	62.2	65.7	58.5	60.8	63.5	58.5	61.6	64.5	58.7	62.6	65.7	59.0	62	NA
28-Oct-16	10:27	61.2	64.7	58.0	60.4	63.6	58.7	62.6	65.9	58.6	62.6	65.0	58.0	63.7	66.4	59.1	61.2	65.7	58.1	62	NA
NM10 - Nam	Wa Po	o Villag	e House	e No. 80	1					P			1			r.			r.		
5-Oct-16	15:05	65.4	68.8	61.3	63.9	65.7	60.2	62.8	65.2	59.4	62.8	65.1	60.4	63.6	65.8	60.1	63.7	64.7	59.7	64	67
11-Oct-16	15:11		65.5	62.4	65.5	66.7	62.8	64.7	65.7	62.4	63.9	64.9	61.4	62.5	63.8	60.8	62.0	62.2	59.1	64	67
17-Oct-16	15:31	61.8	62.2	59.2	60.4	61.5	59.4	59.7	61.9	58.0	60.2	62.0	59.5	62.7	64.2	60.9	63.5	65.6	61.1	62	65
28-Oct-16	15:15	63.6	64.7	60.3	61.4	62.8	59.1	60.5	61.4	59.9	62.2	63.7	60.0	60.3	61.2	59.0	61.9	62.4	59.7	62	65

Noise Monitoring Results for Restricted Hour, dB(A)

		Evening Tim	e					Niş	ght Time		
Date	Start Time	Leq _{5min}	L10	L90	façade correction Leq _{5min}	Date	Start Time	Leq _{5min}	L10	L90	façade correction Leq _{5min}
NM5– Ping Yeung Vil	llage House					•					
13-Oct-16	22:47	46.9	49.5	43.5	NA	13-Oct-16	23:00	46.8	50.6	40.5	NA
23-Oct-16	22:47	47.8	50.3	44.1	NA	23-Oct-16	23:01	46.1	49.3	43.8	NA
28-Oct-16	22:09	44.9	47	42.7	NA	28-Oct-16	23:00	45.7	48.3	42.7	NA
NM7 – Po Kat Tsai V	illage		•	•		•					
13-Oct-16	22:31	48.5	49.1	47.6	NA	13-Oct-16	23:15	49.1	49.8	47.8	NA
23-Oct-16	22:16	47.2	48.6	46.3	NA	23-Oct-16	23:27	49.6	50.2	46.9	NA
28-Oct-16	21:55	52.0	52.8	50.9	NA	28-Oct-16	23:14	50.8	51.5	49.8	NA
NM8 - Village House,	, Tong Hang					•					
13-Oct-16	21:57	58.8	64.6	47.0	NA	13-Oct-16	23:40	56.0	56.7	46.4	NA
23-Oct-16	20:57	58.4	64.2	47.7	NA	23-Oct-16	23:49	59.6	63.2	47.5	NA
28-Oct-16	21:26	62.8	64.6	55.5	NA	28-Oct-16	23:34	64.2	58.1	46.1	NA
NM9 - Village House,	, Kiu Tau Vil	lage									
13-Oct-16					NA	14-Oct-16	0:00	63.8	68.3	54.2	NA
23-Oct-16	21:25	66.3	71.3	56.9	NA	24-Oct-16	0:06	61.6	65.6	55.5	NA
28-Oct-16					NA	29-Oct-16	0:00	59.7	62.4	52.3	NA
NM10 - Nam Wa Po	Village House	e No. 80									
13-Oct-16						14-Oct-16	0:11	58.3	62.6	57.5	61.3
23-Oct-16	21:36	59	62	63.4	62	24-Oct-16	0:19	59.3	63.6	60.8	62.3
28-Oct-16						29-Oct-16	0:09	56	60.9	56.4	59

Water Quality Monitoring Data for Contract 6 and SS C505

Date	4-Oct-16	-	-		_	-	-	-	-			-	•	-
Location	Time	Depth (m)	Temp) (oC)	DO (r	ng/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS(n	ng/L)
	11 15	0.04	28.9	20.0	6.69		86.2		12.1	10.4	6.8	(0	5	
WM1-C	11:15	0.34	28.9	28.9	6.6	6.6	85.5	85.9	12.6	12.4	6.8	6.8	6	5.5
\\/\/\/1	11.00	0.26	28	20.0	6.55	4 E	84.3	02.0	23.5	22.0	6.8	4.0	18	17 E
WM1	11:00	0.26	28	28.0	6.46	6.5	83.3	83.8	24.0	23.8	6.8	6.8	17	17.5

Date	6-Oct-16													
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS(n	ng/L)
	11 15	0.24	27.2	07.0	7.31	7.0	92.0	02.1	11.9	10.0	7	7.0	6	/ F
WM1-C	11:15	0.34	27.2	27.2	7.32	7.3	92.1	92.1	12.1	12.0	7	7.0	7	6.5
14/11/1	11.00	0.2/	27.7		7.2	7.2	91.3	00.0	45.7	44.0	6.8	(0	48	47.0
WM1	11:25	0.26	27.7	27.7	7.14	1.2	90.5	90.9	46.8	46.3	6.8	6.8	46	47.0

Date	8-Oct-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (n	ng/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS(n	ng/L)
	0.07	0.24	27.7	27.7	6.45		82.0	0.2 5	9.6	0.(9.3	0.0	6	ГО
WM1-C	9:07	0.34	27.6	27.7	6.49	6.5	82.9	82.5	9.7	9.6	9.3	9.3	4	5.0
10/0.41	0.10	0.1/	28.4	20.4	7.27	73	93.5	04.2	49.3	40.7	8.9	0.0	35	27 Г
VVIVI I	WM1 9:19	0.16	28.4	28.4	7.34	1.3	94.8	94.2	50.0	49.7	8.9	8.9	38	36.5

Date	11-Oct-16													
Location	Time	Depth (m)	Temp) (oC)	DO (n	ng/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS(n	ng/L)
	10.00	0.24	23	22.0	7.5	7 6	87.2	07.0	8.4	0.5	9.6	0 (5	ГО
WM1-C	10:00	0.34	23	23.0	7.46	7.5	86.8	87.0	8.6	8.5	9.6	9.6	5	5.0
\\\/\\	10.15	0.2/	23.3	22.2	7.65		89.6	00.7	11.1	11.2	9	0.0	9	0.5
WM1	10:15	0.26	23.3	23.3	7.66	1.1	89.7	89.7	11.4	11.3	9	9.0	10	9.5

Date	13-Oct-16	· · · · · · · · · · · · · · · · · · ·	-	-	-	-	-		-			-		-
Location	Time	Depth (m)	Tem	o (oC)	DO (r	ng/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS(n	ng/L)
	11.05	0.24	25.8	25.0	6.84	()	83.6	02.0	7.6	7 4	6.9	()	7	
WM1-C	11:35	0.34	25.8	25.8	6.84	6.8	83.8	83.8	7.2	7.4	6.9	6.9	6	6.5
14/14/1	11.05	0.07	25.7		6.85	(0	84.0	04.0	15.6	15 /	7.1	7 1	18	10.0
WM1	11:25	0.26	25.7	25.7	6.84	6.8	84.3	84.2	15.5	15.6	7.1	7.1	18	18.0

`

Date	15-Oct-16													
Location	Time	Depth (m)	Temp) (oC)	DO (r	ng/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS(n	ng/L)
	10.15	0.24	26.6	24.4	6.09	1.1	75.5		8.3	0.1	9.1	01	4	4.0
WM1-C	10:15	0.34	26.6	26.6	6.13	6. I	76.0	75.8	7.9	8. I	9.1	9.1	4	4.0
14/11/1	10.00	0.2/	27.2	27.2	6.74	(0	84.1	04.4	10.6	10.2	9.6	0.4	9	10.0
WM1	10:00	0.26	27.2	27.2	6.8	6.8	84.6	84.4	10.0	10.3	9.6	9.6	11	10.0

Date	18-Oct-16	· · · · · · · · · · · · · · · · · · ·	-		-	-	-	-	-	-		-	•	-
Location	Time	Depth (m)	Temp) (oC)	DO (r	ng/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS(n	ng/L)
	11.00	0.27	25	25.0	7.18	7.0	87.0	0/ 0	over		6.9	(0	941	010 5
WM1-C	11:30	0.36	25	25.0	7.14	1.2	86.5	86.8	range	over range	6.9	6.9	898	919.5
14/5.4.1	11 15	0.00	24.5	24 5	7.25	73	87.0	07.0	over		7.1	7 1	1050	
WM1	11:15	0.28	24.5	24.5	7.27	1.3	87.3	87.2	range	over range	7.1	7.1	1060	1055.0

Date	20-Oct-16	•	-	-	-		-		-			-		-
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS(n	ng/L)
	10.00	0.27	28.6	20 (5.98	()	77.1	77 1	85.3	07.5	6.6		96	00.0
WM1-C	10:00	0.36	28.6	28.6	5.99	6.0	77.1	77.1	89.7	87.5	6.6	6.6	100	98.0
	10.15	0.00	28.1	20.1	6.12	/ 1	78.2	70.0	101.0	00.2	6.6		72	75 5
WM1	10:15	0.28	28.1	28.1	6.09	6.1	78.1	78.2	97.5	99.3	6.6	6.6	79	75.5

Date	22-Oct-16													
Location	Time	Depth (m)	Temp) (oC)	DO (r	ng/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS(r	ng/L)
	11 47	0.00	28.3	20.2	5.59	Γ /	71.6	71 /	32.0	22.0	6.6		21	01 5
WM1-C	11:46	0.29	28.3	28.3	5.58	5.6	71.1	/1.4	33.7	32.9	6.6	6.6	22	21.5
\\/\/\/	12.00	0.00	28.4	20.4	5.35	г и	68.6	(0.2	21.5	21.0	6.4		9	10.0
WM1	12:00	0.20	28.4	28.4	5.4	5.4	69.8	69.2	22.1	21.8	6.4	6.4	11	10.0

Date	24-Oct-16		-		-	-	-	-			-	-	•	-
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS(n	ng/L)
	11.00	0.24	27.9	27.0	6.15	()	79.2	00.0	26.0	24.2	6.9	(0	7	0.0
WM1-C	11:09	0.34	27.9	27.9	6.21	6.2	80.7	80.0	26.5	26.3	6.9	6.9	9	8.0
\\/\/\/	10.51	0.17	27.9	27.0	6	()	77.2	ר רר	15.9	1/ 0	6.8	(0	13	10 г
WM1	10:51	0.17	27.9	27.9	6.07	6.0	78.1	11.1	16.4	16.2	6.8	6.8	12	12.5

Date	26-Oct-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (r	ng/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS(n	ng/L)
	11.45	0.24	27.9	27.0	6.75	(7	86.4		15.8	15.0	6.5		9	10.0
WM1-C	11:45	0.34	27.9	27.9	6.55	6.7	84.4	85.4	15.9	15.9	6.5	6.5	11	10.0
WM1	11:20	0.26	28.4	28.4	6.56	6 6	84.4	84.4	16.7	15.6	6.6	6.6	16	15.5
	11.20	0.20	28.4	20.4	6.55	6.6	84.4	04.4	14.5	15.0	6.6	0.0	15	15.5

Date	28-Oct-16													
Location	Time	Depth (m)	Temp	(OC)	DO (r	ng/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS(n	ng/L)
	11.20	0.24	26.7	24.7	7.49	7 5	93.6	93.9	16.9	14 4	6.7	47	7	7 5
WM1-C	11:30	0.34	26.7	26.7	7.54	7.5	94.1	93.9	15.9	16.4	6.7	6.7	8	7.5
WM1	11:15	0.26	26.7	26.7	7.44	7 /	92.7	92.3	47.7	49.5	6.6	6 6	49	48.5
	11:15	0.20	26.7	20.7	7.36	7.4	91.8	92.3	51.2	47.0	6.6	6.6	48	40.0

Date	31-Oct-16	· · · · · ·			-	-	-	-	-	·		-	-	-
Location	Time	Depth (m)	Temp	o (oC)	DO (r	ng/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS(n	ng/L)
WM1-C	0.57	0.21	27.1	27.1	7	7.0	87.8	00.4	11.5	11.0	7.5	7 5	3	2.0
VVIVIT-C	8:57	0.31	27	27.1	7.07	7.0	88.9	88.4	12.1	11.8	7.5	7.5	3	3.0
WM1	0.11	0.19	26.9	26.0	6.63	47	83.0	83.8	44.4	44.0	7.3	7.3	48	F1 0
	9:11	0.18	26.9	26.9	6.71	6.7	84.5	03.8	45.3	44.9	7.3	1.5	54	51.0

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.39) – October 2016

Water Quality Monitoring Data for Contract 2 and 3

Date	4-Oct-16	-	•				-		-	-		_	•	_
Location	Time	Depth (m)	Temp) (oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ng/L)
WM4-CA	10.45	0.10	28.5	28.5	7.2	7.2	92.4	02.7	7.9		6.7	47	8	7.5
WWW4-CA	12:45	0.18	28.5	28.5	7.26	1.2	93.0	92.7	7.5	1.1	6.7	6.7	7	7.5
	12.00	0.01	29.8	20.0	7.05	7.0	92.7	00.7	7.7	7 5	6.6		8	0.0
WM4-CB	13:00	0.31	29.8	29.8	7.02	7.0	92.6	92.7	7.3	7.5	6.6	6.6	8	8.0
	10.00	0.14	29.1	00.1	6.74	(7	87.9	07.7	15.2	45.4	6.8		12	10.0
WM4	12:30	0.14	29.1	29.1	6.7	6.7	87.5	87.7	14.9	15.1	6.8	6.8	14	13.0

Date	6-Oct-16	-					-	•	-		•	-	•	-
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
WM4-CA	10.15	0.10	30.1	20.1	7.04	7.0	92.9	92.9	4.9	4.0	8.3	0.2	3	4.0
WW4-CA	13:15	0.18	30.1	30.1	7.03	7.0	92.8	92.9	4.9	4.9	8.3	8.3	5	4.0
	12.20	0.21	30.5	20 F	6.99	7.0	93.0	02.7	10.3	0.(7.6	7 /	12	12.0
WM4-CB	13:30	0.31	30.5	30.5	7.01	7.0	94.3	93.7	8.9	9.6	7.6	7.0	14	13.0
	12.00	0.14	29.8	20.0	6.73		88.6	00.0	16.5	15 7	8.5	0.5	13	10 F
WM4	13:00	0.14	29.8	29.8	6.75	6.7	89.0	88.8	14.8	15.7	8.5	8.5	14	13.5

Date	8-Oct-16													
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	11.04	0.10	28.2	20.2	6.72	(0	85.9	0/ 1	11.6	11 7	7.2	7.0	8	7.5
WM4-CA	11:34	0.10	28.3	28.3	6.79	6.8	86.3	86.1	11.8	11.7	7.2	1.2	7	7.5
	11.5/	0.20	27.8	27.0	5.78	F 0	73.6	74.0	11.0	11.0	6.7	(7	9	0.5
WM4-CB	11:56	0.29	27.8	27.8	5.83	5.8	74.3	74.0	11.3	11.2	6.7	6./	10	9.5
	11.10	0.07	27	07.0	6.3		79.1	70.0	34.7	24.0	7.1	7.4	13	40 F
WM4	11:19	0.37	27	27.0	6.26	6.3	78.9	79.0	35.0	34.9	7.1	7.1	14	13.5

Date	11-Oct-16	-		-	-		-		-	-		-		-
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	13:15	0.10	24.5	24.5	7.54	7.4	90.4	90.5	12.5	12.2	8.9	0.0	5	6.0
WM4-CA	13:15	0.18	24.5	24.5	7.56	/.6	90.6	90.5	11.8	12.2	8.9	8.9	7	6.0
	12.20	0.21	25.6	25.4	6.91	(0	84.6	04.4	21.1	21.4	8	0.0	33	24 5
WM4-CB	13:30	0.31	25.6	25.6	6.9	6.9	84.5	84.6	21.6	21.4	8	8.0	36	34.5
	12.00	0.14	24.7	04.7	6.77	(0	81.3	01.4	253.0	250.0	9.2	0.0	160	
WM4	13:00	0.14	24.7	24.7	6.79	6.8	81.5	81.4	247.0	250.0	9.2	9.2	147	153.5

Date	12-Oct-16 #								
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	рН	SS(mg	g/L)
	10.10	0.10				6.6		5	ГО
WM4-CA	13:15	0.18				6.3 6.4			5.0
	12.20	0.21				5.3		28	20.0
WM4-CB	13:30	0.31				4.4 4.8			28.0
	10.00	0.14				181.0		122	
WM4	13:00	0.14				177.0 179.0			122.0

Date	13-Oct-16													
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
WM4-CA	13:15	0.18	25.3	25.3	7.17	7.2	87.3	87.1	5.5	5.7	6.8	4.0	9	9.0
WWW4-CA	15.15	0.10	25.3	20.5	7.14	1.2	86.9	07.1	5.8	5.7	6.8	6.8	9	9.0
	12.20	0.21	27	27.0	5.4	Г 4	67.1	(7.2	12.0	11.0	6.6		22	22 F
WM4-CB	13:30	0.31	27	27.0	5.41	5.4	67.4	67.3	11.6	11.8	6.6	6.6	23	22.5
10/04/	12.00	0.14	26.6	24.4	6.19	()	77.0	7/ 0	365.0		6.7	(0	243	
VVIVI4	WM4 13:00	0.14	26.6	26.6	6.18	6.2	76.8	76.9	374.0	369.5	6.8	6.8	238	240.5

Date	14-Oct-16 #				_	•	-		-	-	•	-		-
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	10.15	0.10							3.4	2.2			6	6.0
WM4-CA	13:15	0.18							3.2	3.3				6.0
	12.20	0.21							4.8	4.7			17	17.0
WM4-CB	13:30	0.31							4.6	4.7				17.0
	10.00	0.14							13.1	10.0			15	45.0
WM4	13:00	0.14							13.5	13.3				15.0

Date	15-Oct-16													
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	10.15	0.10	27.7	27.7	6.95	(0	87.9	07.0	29.3	20.2	6.8	(0	21	20 F
WM4-CA	13:15	0.18	27.7	27.7	6.93	6.9	87.7	87.8	29.2	29.3	6.8	6.8	20	20.5
	12.20	0.21	28.5	20 F	6.02	()	77.1	77.0	11.4	11 /	6.6		11	10.0
WM4-CB	13:30	0.31	28.5	28.5	6.01	6.0	76.9	77.0	11.4	11.4	6.6	6.6	9	10.0
	10.00	0.14	27.5	07.5	6.17	()	78.0	70.7	17.2		6.8	()	12	11.0
WM4	13:00	0.14	27.5	27.5	6.3	6.2	79.3	78.7	16.0	16.6	6.8	6.8	10	11.0

Date	18-Oct-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (n	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(m	ng/L)
	10.15	0.20	24.5	24 5	7.27	7.0	87.2	07.0	94.3		6.6		69	(0.0
WM4-CA	13:15	0.20	24.5	24.5	7.26	1.3	87.1	87.2	97.0	95.7	6.6	6.6	69	69.0
WM4-CB	12.20	0.35	24.8	24.0	6.7	(0	82.1	82.4	92.1	04.2	6.6		58	59.0
VVIVI4-CB	13:30	0.35	24.8	24.8	6.85	6.8	82.7	82.4	96.5	94.3	6.6	6.6	60	59.0
	10.00	0.10	24.9	04.0	7.03	7.0	84.8	04.0	152.0	454.0	6.8	()	110	100.0
WM4	13:00	0.18	24.9	24.9	7.02	7.0	84.7	84.8	160.0	156.0	6.8	6.8	106	108.0

Date	19-Oct-16 #				•		-	-	-				-
Location	Time	Depth (m)	Temp (oC)) DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	pł	4	SS(m	ng/L)
	11.45	0.05						518.0	Г ЭЭ Г			539	F 20 0
WM4-CA	11:45	0.25						527.0	522.5				539.0
	12.00	0.45						276.0	201.0			220	220.0
WM4-CB	12:00	0.45						286.0	281.0				220.0
10/044	11.00	0.05						569.0	F/4 F			536	524.0
WM4	11:30	0.05						554.0	561.5				536.0

Date	20-Oct-16	-				•	-		-	-		-	•	-
Location	Time	Depth (m)	Temp	(0C)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	10.15	0.20	28.6	20.4	6	6.0	77.4	77.4	19.3	19.1	6.3	4.2	4	FO
WM4-CA	13:15	0.20	28.6	28.6	6.01	6.0	77.4	//.4	18.8	19.1	6.3	6.3	6	5.0
	12.20	0.22	28.1	20.1	5.03	ГО	64.4	(48.3	47.0	6.2	()	28	07 F
WM4-CB	13:30	0.33	28.1	28.1	5.01	5.0	64.3	64.4	46.2	47.3	6.2	6.2	27	27.5
	12.00	0.17	28.2	20.0	6.42		82.0	02.2	160.0	1/05	6.4	()	114	440 5
WM4	13:00	0.17	28.2	28.2	6.45	6.4	82.5	82.3	165.0	162.5	6.4	6.4	123	118.5

Date	22-Oct-16													
Location	Time	Depth (m)	Temp) (oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	9:26	0.21	27.5	27.5	6.33	4.0	80.1	79.6	11.3	11 4	8.4	0.4	6	4 F
WM4-CA	9:20	0.31	27.5	27.5	6.26	6.3	79.1	79.0	11.9	11.6	8.4	8.4	7	6.5
	9:45	0.25	27.2	27.2	5.77	5.7	72.5	70.0	11.8	11.0	7.6	7.4	8	7.5
WM4-CB	9:45	0.35	27.2	21.2	5.71	Э. <i>Т</i>	71.8	72.2	11.8	11.8	7.6	7.0	7	7.5
	0.01	0.57	27.5	07.5	6.73		85.1	05.7	25.5	05.0	8.4	0.4	18	10.0
WM4	9:01	0.57	27.5	27.5	6.79	6.8	86.3	85.7	26.1	25.8	8.4	8.4	20	19.0

Date	24-Oct-16													
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ng/L)
	10.05	0.01	29.4	20.4	6.09	/ 1	79.5	00.0	8.1	0.0	6.8	(0	3	2 5
WM4-CA	12:25	0.21	29.4	29.4	6.14	6.1	80.5	80.0	8.2	8.2	6.8	6.8	4	3.5
WM4-CB	10.41	0.36	28.6	20 (5.95	(0	76.6	7/ 0	26.2	26.9	6.6		19	19.5
VVIVI4-CB	12:41	0.30	28.6	28.6	5.97	6.0	77.0	76.8	27.5	20.9	6.6	6.6	20	19.5
	10.11	0.10	29	00.0	6.52		84.9	05.0	33.3	00.7	6.8	(0	26	05.5
WM4	12:11	0.19	29	29.0	6.6	6.6	85.7	85.3	34.1	33.7	6.8	6.8	25	25.5

Date	26-Oct-16	-			_	•	-	-	-	-	•	-	•	-
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
WM4-CA	10.15	0.10	27.4	27.4	6.5	4 E	82.5	82.1	19.2	10 4	8.8	8.8	<2	.2
VVIVI4-CA	13:15	0.19	27.4	27.4	6.42	6.5	81.6	82.1	19.9	19.6	8.8	0.0	<2	<2
	12.20	0.22	29.6	20.4	5.65	Γ /	74.1	72.0	17.3	1/ 0	8.1	0.1	8	0.5
WM4-CB	13:30	0.32	29.6	29.6	5.59	5.6	73.5	73.8	16.3	16.8	8.1	8.1	9	8.5
	12.00	0.14	28.7	20.7	6.25	()	80.7	00.4	30.0	20.1	8.7	0.7	33	24.0
WM4	13:00	0.14	28.7	28.7	6.19	6.2	80.0	80.4	30.1	30.1	8.7	8.7	35	34.0

Date	28-Oct-16	-	-	-	-		-		-	-		-		-
Location	Time	Depth (m)	Temp	o (oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	12.15	0.10	25.7	25.7	7.69		94.3	02.0	11.2	11 1	8.2	0.0	3	2.0
WM4-CA	13:15	0.18	25.7	25.7	7.61	1.1	93.3	93.8	10.9	11.1	8.2	8.2	<2	3.0
	10.00	0.01	27	07.0	6.4		81.0	01.1	16.3	15 /	7.6	7/	5	()
WM4-CB	13:30	0.31	27	27.0	6.44	6.4	81.2	81.1	14.9	15.6	7.6	7.6	7	6.0
	10.00	0.14	25.9	05.0	7.28	7.0	89.7	00 (24.8	05.5	8.6	o (27	07.5
WM4	13:00	0.14	25.9	25.9	7.26	7.3	89.5	89.6	26.1	25.5	8.6	8.6	28	27.5

Date	31-Oct-16													
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	11.40	0.18	25.7	25.7	6.95	7.0	85.3	04 1	5.9	5.6	8.7	0.7	2	2.0
WM4-CA	11:48	0.18	25.7	25.7	7.11	7.0	86.9	86.1	5.3	0.0	8.7	8.7	4	3.0
WM4-CB	12:09	0.21	25.6	25.6	6.69	47	82.0	02.2	9.6	9.9	7.8	7.0	12	11.5
WWW4-CB	12:09	0.31	25.6	25.0	6.72	6./	82.5	82.3	10.1	9.9	7.8	7.8	11	11.5
	11.04	0.14	26.4	04.4	6.95	(0	85.5	05.0	19.2	10 7	8.4	0.4	18	10.0
WM4	11:34	0.14	26.4	26.4	6.91	6.9	84.9	85.2	20.1	19.7	8.4	8.4	20	19.0

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Water Quality Monitoring Data for Contract 6

Date	4-Oct-16				-	•		-	-	•		-	-	•
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	10.20	0.00	29.1	20.1	5.54	Γ /	72.2	70.0	7.7	7 /	7.80	7.0	5	4.0
WM2A-C	10:30	0.28	29.1	29.1	5.56	5.6	72.4	72.3	7.5	7.6	7.80	7.8	3	4.0
	10.45	0.17	30.1	20.1	5.81	го	77.0	77.1	126.0	104 F	7.30	7.0	101	100.0
WM2A	10:45	0.17	30.1	30.1	5.83	5.8	77.2	77.1	123.0	124.5	7.30	7.3	103	102.0

Date	5-Oct-16 #								-					
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ig/L)
WM2A-C	11:20	0.28							4.7 4.4	4.6			<2	<2
WM2A	11:10	0.17							24.4 23.8	24.1			19	19.0

Date	6-Oct-16													
Location	Time	Depth (m)	Temp	(0C)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Η	SS(m	ng/L)
	10.20	0.00	25.2	25.2	7.16	7 1	86.8	0/ /	9.0	0.0	8.10	0.1	7	()
WM2A-C	10:30	0.28	25.2	25.2	7.11	7.1	86.3	86.6	8.6	8.8	8.10	8.1	5	6.0
	11.00	0.17	27.8	07.0	7.11	7.0	90.7	01.0	18.9	10 (7.30	7.0	12	10 F
WM2A	11:00	0.17	27.8	27.8	7.19	7.2	91.6	91.2	18.2	18.6	7.30	7.3	13	12.5

Date	8-Oct-16							-	-			-		
Location	Time	Depth (m)	Temp) (oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ng/L)
	0.47	0.27	27.4	<u>о</u> д г	6.06	/ 1	76.5	7/ 0	9.6	07	8.00	0.0	2	2 5
WM2A-C	9:47	0.37	27.5	27.5	6.13	6.1	77.3	76.9	9.7	9.7	8.00	8.0	3	2.5
	0.00	0.00	26.8	24.0	6.87	()	86.0	0/ 5	23.4	00.7	8.10	0.1	15	145
WM2A	9:33	0.20	26.7	26.8	6.91	6.9	87.0	86.5	24.0	23.7	8.10	8.1	14	14.5

Date	11-Oct-16													
Location	Time	Depth (m)	Temp	(0C)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Η	SS(m	ng/L)
WM2A-C	10:45	0.20	23	23.0	7.33	7.3	85.6	85.7	9.9	9.9	8.00	0.0	2	2.0
WWZA-C	10:45	0.28	23	23.0	7.34	1.3	85.8	85.7	10.0	9.9	8.00	8.0	2	2.0
	10.20	0.17	24.5	24 5	7.42		88.9	01.0	24.3	24.4	8.50	0.5	20	10.0
WM2A	10:30	0.17	24.5	24.5	7.91	1.1	93.1	91.0	24.5	24.4	8.50	8.5	18	19.0

 $\label{eq:loss_2013} CS00694 \\ 600 \\ EM\&A \ Report \\ Monthly \ EM\&A \ Report \\ 39th \ (October \ 2016) \\ R0714v2. \\ docx \ R0714v2. \\ do$

Date	13-Oct-16													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ng/L)
	11.00	0.00	26.4	24.4	6.1	/ 1	75.7	75 /	10.8	10 /	8.10	0.1	<2	.0
WM2A-C	11:00	0.28	26.4	26.4	6.09	0. I	75.5	75.6	10.4	10.6	8.10	8.1	<2	<2
	44.45	0.17	26.5	о (г	6.57		81.5	01.4	15.0	145	7.50	7 5	11	11 F
WM2A	11:15	0.17	26.5	26.5	6.58	6.6	81.3	81.4	14.5	14.5	7.50	1.5	12	11.5

Date	15-Oct-16				-			-	-			-	-	
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ng/L)
	10.45	0.00	25.1	25 1	6.85	(0	82.9	02.0	7.8	7.0	8.30	0.0	<2	0
WM2A-C	10:45	0.28	25.1	25.1	6.87	6.9	83.1	83.0	7.8	7.8	8.30	8.3	<2	<2
	10.00	0.17	26.5	27 Г	6.83	(0	83.7	00.0	22.4	22.4	8.50	0.5	14	14.0
WM2A	10:30	0.17	26.5	26.5	6.85	6.8	83.9	83.8	24.4	23.4	8.50	8.5	14	14.0

Date	18-Oct-16							-	•			-	-	
Location	Time	Depth (m)	Temp	(OC)	D0 (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
WM2A-C	10.45	0.20	24.7	247	7.46	7 5	89.8	00.1	352.0	251.0	8.20	0.0	321	220 E
WWZA-C	10:45	0.30	24.7	24.7	7.51	1.5	90.3	90.1	350.0	351.0	8.20	8.2	340	330.5
	11.00	0.00	24	24.0	7.81	7.0	92.9	00.4	383.0	200 5	6.80	(0	314	217.0
WM2A	11:00	0.20	24	24.0	7.72	7.8	91.9	92.4	396.0	389.5	6.80	6.8	320	317.0

Date	20-Oct-16													
Location	Time	Depth (m)	Temp	(OC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	10.45	0.20	26.9	24.0	6.63	/ 7	82.9	02.2	33.1	22.1	6.60		4	ГО
WM2A-C	10:45	0.30	26.9	26.9	6.7	6.7	83.6	83.3	31.0	32.1	6.60	6.6	6	5.0
	10.00	0.00	27.5	07 F	6.36	()	80.4	00.0	325.0	220 F	6.70		155	15/ 0
WM2A	10:30	0.20	27.5	27.5	6.33	6.3	79.9	80.2	334.0	329.5	6.70	6.7	157	156.0

Date	22-Oct-16	•			-			-	-			-		
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
	11.17	0.24	27.5	<u>о</u> т г	6.34	()	80.3	70.0	6.3	()	6.70	(7	5	4.0
WM2A-C	11:17	0.34	27.5	27.5	6.29	6.3	79.2	79.8	6.3	6.3	6.70	6.7	3	4.0
	11.00	0.17	25.9	25.0	6.69		83.1	02.0	255.0	2/1.0	6.70	(7	180	102.0
WM2A	11:29	0.17	25.9	25.9	6.6	6.6	82.4	82.8	267.0	261.0	6.70	6.7	186	183.0

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\39th (October 2016)\R0714v2.docx

Date	24-Oct-16						•	-	-			-		
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
	10.21	0.24	27	27.0	6.58		82.6	02.0	8.9	0 0	7.60	7 /	4	1.0
WM2A-C	10:31	0.34	27	27.0	6.63	6.6	83.1	82.9	8.8	8.8	7.60	7.6	4	4.0
	10.47	0.17	29	20.0	6.15	()	79.5	70.0	126.0	100.0	7.30	7.0	122	100.0
WM2A	10:47	0.17	28.9	29.0	6.2	6.2	80.1	79.8	130.0	128.0	7.30	7.3	118	120.0

Date	25-Oct-16 #													
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
WM2A-C	10:40	0.29							10.8 10.2	10.5			7	7.0
WM2A	10:30	0.19							24.8	24.5			18	18.0

Date	26-Oct-16													
Location	Time	Depth (m)	Temp) (oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ng/L)
	10.55	0.20	25.2	25.2	7.11	7 1	87.3	07.1	8.6	0 (6.80	(0	6	
WM2A-C	10:55	0.28	25.2	25.2	7.06	7.1	86.8	87.1	8.7	8.6	6.80	6.8	7	6.5
	11 10	0.17	28.5	00 F	7	7.0	90.5	00 (21.4	00.4	6.70		14	145
WM2A	11:10	0.17	28.5	28.5	7.01	7.0	90.6	90.6	23.3	22.4	6.70	6.7	15	14.5

Date	28-Oct-16				_			-	-			-		
Location	Time	Depth (m)	Temp) (oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	н	SS(m	ng/L)
	10.45	0.00	24.6	24.7	7.57	7 /	90.7	00.0	8.7	0 (6.90	()	5	ГО
WM2A-C	10:45	0.28	24.6	24.6	7.58	/.6	90.8	90.8	8.5	8.6	6.90	6.9	5	5.0
	11.00	0.17	25.5		7.14	7 1	87.1	0(0	52.3	52.0	6.80	()	49	40.0
WM2A	11:00	0.17	25.5	25.5	7.09	7.1	86.5	86.8	53.7	53.0	6.80	6.8	47	48.0

Date	29-Oct-16 #	; ;							-			-	-	
Location	Time	Depth (m)	Temp	(0C)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ig/L)
WM2A-C	11:21	0.34							9.1 9.1	9.1			8	8.0
WM2A	11:37	0.17							45.7 45.0	45.4			88	88.0

Date	31-Oct-16													
Location	Time	Depth (m)	Temp	(OC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	0.40	0.24	23.4	22.4	7.57	7 /	89.1	00 F	23.8	22 F	6.80	(0	7	7 -
WM2A-C	9:40	0.34	23.4	23.4	7.63	7.6	89.8	89.5	23.1	23.5	6.80	6.8	8	7.5
	0.57	0.17	24.3	24.2	7.37	7 4	88.2	00 (69.9		6.90	()	115	111 F
WM2A	9:57	0.17	24.3	24.3	7.43	7.4	89.0	88.6	68.7	69.3	6.90	6.9	108	111.5

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Date	4-Oct-16													
Location	Time	Depth (m)	Tem	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Η	SS(m	ng/L)
	10.15	0.00	30.3	20.2	4.63	A /	61.3	/1 F	2.0	2.0	9.10	0.1	3	2 5
WM2B-C	10:15	0.02	30.3	30.3	4.66	4.6	61.7	61.5	1.9	2.0	9.10	9.1	2	2.5
	10.05	0.00	30.8	20.0	6.88	()	92.4	02.2	4.2	4 5	9.20	0.0	8	7.0
WM2B	10:05	0.02	30.8	30.8	6.86	6.9	92.1	92.3	4.7	4.5	9.20	9.2	6	7.0
Date	6-0ct-16	-				-	-	-	-			-		
Location	Time	Depth (m)	Tem	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ng/L)

Location	Time	Depth (m)	Tem) (UC)	DO (I	ng/L)	טע	(70)	Turbiali	y (NTU)	р	п	33 (II	Ig/L)
	10.15	0.00	29.7	20.7	4.83	4.0	63.4	(27	1.8	1 0	9.20	0.2	5	4 5
WM2B-C	10:15	0.02	29.7	29.7	4.88	4.9	64.0	63.7	1.7	1.8	9.20	9.2	4	4.5
	10.00	0.00	31.2	21.0	6.77	(0	91.3	01.4	3.1	2.0	8.80	0.0	5	4 5
WM2B	10:00	0.02	31.2	31.2	6.8	6.8	91.4	91.4	2.7	2.9	8.80	8.8	4	4.5

Date	8-Oct-16	-			_	-	-	-					-	
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
WM2B-C	10.17	0.00	7.5	17 /	5.43	5.5	68.8	(0.1	2.1	0.1	7.80	7.0	2	2.0
WWIZB-C	10:17	0.02	27.7	17.6	5.57	5.5	69.3	69.1	2.2	2.1	7.80	7.8	2	2.0
	0.50	0.00	26.7	2/ 7	7.53	7 /	94.3		4.6	4 7	7.50	7 5	8	7.0
WM2B	9:59	0.02	26.7	26.7	7.6	7.6	95.7	95.0	4.7	4.7	7.50	7.5	6	7.0

Date	11-Oct-16													
Location	Time	Depth (m)	Tem	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ig/L)
	14 45	0.00	24.2	04.0	7.48	7 5	89.6	00.0	3.1	0.1	6.90	()	5	
WM2B-C	11:15	0.02	24.2	24.2	7.55	7.5	90.1	89.9	3.1	3.1	6.90	6.9	6	5.5
	11.00	0.00	24.1	04.1	6.47		77.2	77.0	4.9	4.0	7.60	7 /	<2	.0
WM2B	11:00	0.02	24.1	24.1	6.46	6.5	77.1	77.2	4.6	4.8	7.60	7.6	<2	<2

Date	13-Oct-16	-			-	-	-	-				-	-	
Location	Time	Depth (m)	Tem	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ng/L)
WM2B-C	10.15	0.02	28.4	20.4	5.02	5.0	64.4	6 A E	1.8	1 4	9.60	0.4	4	2 F
WIVIZD-C	10:15	0.02	28.4	28.4	5.03	5.0	64.6	64.5	1.5	1.0	9.60	9.6	3	3.5
	10.00	0.00	29	20.0	7.16	7.0	92.8	00.0	3.1	2.0	9.50	0.5	7	/ F
WM2B	10:00	0.02	29	29.0	7.15	1.2	93.0	92.9	2.5	2.8	9.50	9.5	6	6.5

Date	15-Oct-16													
Location	Time	Depth (m)	Tem	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ng/L)
	11 15	0.00	26.8	24.0	5.77	гo	71.8	70.4	1.7	1.0	7.90	7.0	<2	
WM2B-C	11:15	0.02	26.8	26.8	5.88	5.8	73.0	72.4	1.8	1.8	7.90	7.9	<2	<2
	11.00	0.00	26.6	24.4	8.33	0.0	103.6	100.0	3.9	0.7	8.00	0.0	6	
WM2B	11:00	0.02	26.6	26.6	8.06	8.2	100.9	102.3	3.5	3.7	8.00	8.0	7	6.5

Date	18-Oct-16	-				-	•	-	•	-		•	-	-
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	10.20	0.04	24.3	24.2	6.25	()	75.4		42.2	40.7	9.10	0.1	25	24.0
WM2B-C	10:30	0.04	24.3	24.3	6.24	6.2	75.4	75.4	39.0	40.6	9.10	9.1	27	26.0
	10.15	0.04	25.2	0F 0	7.44	7 5	90.5	00.7	637.0	(11 0	9.00	0.0	647	((0 0
WM2B	10:15	0.04	25.2	25.2	7.46	7.5	90.8	90.7	645.0	641.0	9.00	9.0	691	669.0

Date	19-Oct-16 #					-	-		·		<u> </u>	-	-
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	рН	SS(n	ng/L)
WM2B-C	11:15	0.05							92.8 89.5	91.2		96	96.0
WM2B	11:00	0.05							239.0 242.0	240.5		261	261.0

Date	20-Oct-16													
Location	Time	Depth (m)	Tem	o (oC)	D0 (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	11.05	0.02	26.3	24.2	5.13	Γ 1	63.6	(2.4	4.8	4.0	6.50		<2	
WM2B-C	11:05	0.03	26.3	26.3	5.07	5.1	63.1	63.4	4.7	4.8	6.50	6.5	<2	<2
	11.00	0.04	26.9	24.0	6.67	(7	84.0	04.2	27.1	2/ 0	6.50		24	24.0
WM2B	11:00	0.04	26.9	26.9	6.72	6.7	84.6	84.3	26.4	26.8	6.50	6.5	24	24.0

Date	22-Oct-16	-			-	-	-	-				-	-	
Location	Time	Depth (m)	Tem	o (oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	10.47	0.02	27.8	27.0	4.93	ГO	62.8	(2.2	4.5	4 5	7.20	7.0	<2	.0
WM2B-C	10:47	0.03	27.8	27.8	4.99	5.0	63.7	63.3	4.5	4.5	7.20	7.2	<2	<2
	10.57	0.04	28.3	20.2	6.36	<i>(</i>)	81.4	01 7	9.2	0.0	6.80	(0	8	7 6
WM2B	10:57	0.04	28.3	28.3	6.41	6.4	82.0	81.7	9.2	9.2	6.80	6.8	7	7.5

Date	24-Oct-16													
Location	Time	Depth (m)	Tem	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	10.14	0.00	29.2	20.2	4.95	ГO	64.5	7 - 1	3.7	2.7	8.60	0.4	<2	
WM2B-C	10:14	0.02	29.2	29.2	5.04	5.0	65.7	65.1	3.7	3.7	8.60	8.6	<2	<2
	0.57	0.00	29.2	20.2	6.28	()	81.3	00.0	9.8	0.0	8.20	0.0	11	11.0
WM2B	9:57	0.02	29.2	29.2	6.31	6.3	82.7	82.0	9.9	9.8	8.20	8.2	11	11.0

Date	26-Oct-16	-			-	-	-	-	•			-		
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	10.25	0.00	30.3	20.2	4.49	4 5	59.6		3.5	2.4	7.00	7.0	<2	2
WM2B-C	10:35	0.02	30.3	30.3	4.48	4.5	59.6	59.6	3.3	3.4	7.00	7.0	<2	<2
	10.45	0.00	28	20.0	6.92	()	88.3	00 F	10.2	10.1	6.80	(0	10	10 F
WM2B	10:45	0.02	28	28.0	6.94	6.9	88.6	88.5	10.0	10.1	6.80	6.8	11	10.5

Date	28-Oct-16	-			_	-	-	-				-	-	
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ng/L)
	10.25	0.00	24.9	24.0	6.41	()	77.1	77 1	3.0	2.0	7.70		<2	.0
WM2B-C	10:35	0.02	24.9	24.9	6.39	6.4	77.0	//.1	2.9	3.0	7.70	1.1	<2	<2
	10.00	0.00	25.9	25.0	7.66		94.3	04.0	4.6		7.00	7.0	5	
WM2B	10:20	0.02	25.9	25.9	7.65	1.1	94.1	94.2	4.3	4.4	7.00	7.0	6	5.5

Date	31-Oct-16													
Location	Time	Depth (m)	Tem	o (oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
WM2B-C	10.22	0.02	24.9	24.0	6.14	4.0	74.2	74.0	3.9	2.0	6.80	6.0	<2	.0
WINZB-C	10:23	0.02	24.9	24.9	6.19	6.2	75.3	74.8	3.9	3.9	6.80	6.8	<2	<2
WM2B	10.11	0.02	24.7	247	6.76	6.0	81.4	02.0	10.8	10.0	6.80	6.0	6	F F
VVIVIZD	10:11	0.02	24.7	24.7	6.81	6.8	82.5	82.0	11.0	10.9	6.80	6.8	5	5.5

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Water Quality Monitoring Data for Contract 2 and 6

Date	4-Oct-16				-	-	•	•	-	-		•	-	-
Location	Time	Depth (m)	Temp	(OC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
	11.55	0.02	29.5	20 F	6.43	<i>(</i>)	84.4	04.4	9.0	0 1	6.60		5	ГО
WM3-C	11:55	0.03	29.5	29.5	6.42	6.4	84.3	84.4	9.1	9.1	6.60	6.6	5	5.0
14/14/2	11 40	0.15	29.6	20 (6.62		87.0	04.0	12.2	10.0	6.60		12	10.0
WM3	11:40	0.15	29.6	29.6	6.6	6.6	86.8	86.9	12.3	12.3	6.60	6.6	12	12.0

Date	6-Oct-16								-	-				
Location	Time	Depth (m)	Temp	(OC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ıg/L)
	11.40	0.02	28.3	20.2	6.79	(0	87.0	07.1	8.5	0.4	10.20	10.0	6	()
WM3-C	11:45	0.03	28.3	28.3	6.8	6.8	87.2	87.1	8.3	8.4	10.20	10.2	6	6.0
14/14/2	10.00	0.15	30.4	20.4	6.35		85.0	05.1	13.2	10.0	9.40	0.4	10	10 г
WM3	12:00	0.15	30.4	30.4	6.36	6.4	85.2	85.1	12.6	12.9	9.40	9.4	11	10.5

Date	8-Oct-16													
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ng/L)
	10.24	0.00	27.6	27 /	7.25	7.0	92.0	00.7	2.9	2.0	6.80	(0	5	4 5
WM3-C	10:34	0.23	27.6	27.6	7.31	1.3	93.3	92.7	3.0	3.0	6.80	6.8	4	4.5
	10.40	0.17	27.5	27.4	6.27	()	79.5	00.0	88.1	00.0	6.90	()	80	77.0
WM3	10:49	0.17	27.6	27.6	6.31	6.3	80.4	80.0	90.4	89.3	6.90	6.9	74	77.0

Date	11-Oct-16	-				-	•		-	-		-	-	
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	11.20	0.02	25.6	25.4	6.47	<u>/г</u>	78.8	70.1	5.1	ГO	10.90	10.0	4	2.0
WM3-C	11:30	0.03	25.6	25.6	6.53	6.5	79.3	79.1	5.4	5.2	10.90	10.9	2	3.0
	11 45	0.15	25.2	25.2	6.5		79.0	70.1	10.1	0.0	9.90	0.0	8	0.5
WM3	11:45	0.15	25.2	25.2	6.52	6.5	79.2	79.1	9.7	9.9	9.90	9.9	9	8.5

Date	12-Oct-16 #					-				-			-	-
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	н	SS(m	ng/L)
WM3-C	11:15	0.03							3.2	2.1			3	3.0
WW18-C	11:15	0.03							3.0	3.1				3.0
WM3	11:25	0.15							6.8	7.0			9	9.0

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.39) – October 2016

					7 0			
					1.3			1
	h						-	

Date	13-Oct-16													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	10.20	0.02	27.7	777	5.41		68.9	(0.0	2.1	1.0	8.10	0.1	5	()
WM3-C	10:30	0.03	27.7	27.7	5.39	5.4	69.1	69.0	1.8	1.8	8.10	8.1	7	6.0
	10.40	0.15	26.4	24.4	6.41		79.3	70.4	13.0	10.0	8.10	0.1	12	10.0
WM3	10:40	0.15	26.4	26.4	6.42	6.4	79.5	79.4	13.3	13.2	8.10	8.1	12	12.0

Date	15-Oct-16													
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	11.00	0.00	27.4	07.4	5.75	F 0	72.7	70.0	2.3		6.80	(0	<2	
WW3-C	M3-C 11:30	0.03	27.4	27.4	5.78	5.8	73.1	72.9	2.0	2.2	6.80	6.8	<2	<2
14/14/2	11 45	0.15	30.4	20.4	5.48		72.7	70.0	13.0	10.1	6.80	(0	12	10 5
WM3	11:45	0.15	30.4	30.4	5.56	5.5	73.7	73.2	13.2	13.1	6.80	6.8	13	12.5

Date	18-Oct-16					_		-	-	_			-	-
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	н	SS(n	ng/L)
	12.00	0.05	24.9	24.0	6.64		80.3	00.0	136.0	100 г	6.80	(0	89	07.0
WM3-C	B-C 12:00	0.05	24.9	24.9	6.5	6.6	79.7	80.0	123.0	129.5	6.80	6.8	85	87.0
	11:45	0.00	24.6	24.7	6.93	(0	83.2	02.2	268.0	2/70	6.90	20.0	379	205.0
WM3	11:45	0.20	24.6	24.6	6.92	6.9	83.1	83.2	266.0	267.0	69.00	38.0	411	395.0

Date	19-Oct-16#													
Location	Time	Depth (m)	Temp (oC)	DO (r	ng/L)	DO ((%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
WM3-C	10:45	0.10							727.0	723.5			635	635.0
VVIVIS-C	10.45	0.10							720.0	723.0				035.0
WM3	10:30	0.25							330.0	318.5			445	445.0
101013	10.30	0.25							307.0	310.0				443.0

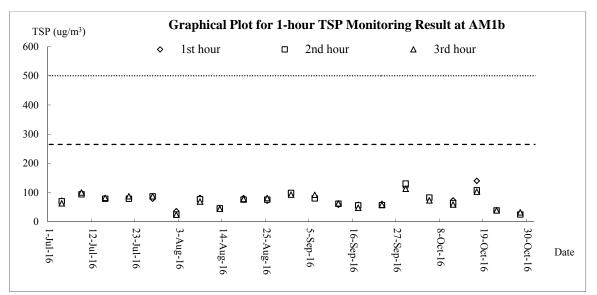
Date	20-Oct-16													
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	н	SS(n	ng/L)
	11 15	0.04	26.9	24.0	6.48		81.5	01 5	7.0	7.0	6.20	()	4	4.0
WM3-C	3-C 11:15	0.04	26.9	26.9	6.48	6.5	81.4	81.5	7.1	7.0	6.20	6.2	4	4.0
	11.00	0.10	28.8	20.0	5.9	ГО	76.5	7/ /	13.0	10.0	6.40		12	10.0
WM3	11:30	0.18	28.8	28.8	5.91	5.9	76.7	76.6	12.8	12.9	6.40	6.4	12	12.0

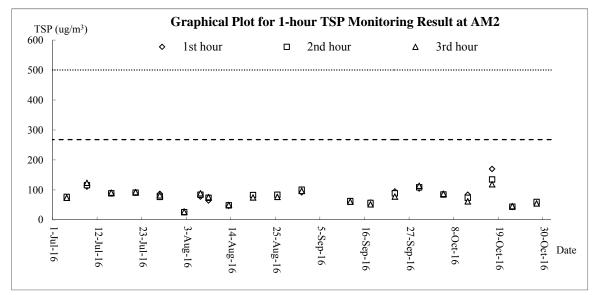
Date	22-Oct-16													
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	10.00	0.10	28.1	20.1	5.91	ГО	75.7	74.0	8.2	0.0	6.70	(7	4	1.0
WM3-C	10:29	0.18	28.1	28.1	5.86	5.9	74.1	74.9	8.2	8.2	6.70	6.7	4	4.0
	10.11	0.10	27.3	07.0	6.48		81.7	00.1	12.9	10.0	7.10	7 1	10	0.5
WM3	10:11	0.19	27.3	27.3	6.51	6.5	82.4	82.1	12.7	12.8	7.10	7.1	9	9.5

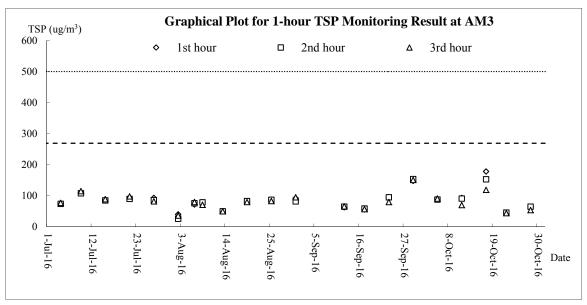
Date	24-Oct-16								-					
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
WM3-C	11:24	0.17	29.5	29.5	5.93	5.9	77.7	77.1	9.1	0.2	6.90	6.0	3	1.0
WWI3-C	11:24	0.17	29.5	29.5	5.87	5.9	76.4	//.1	9.2	9.2	6.90	6.9	5	4.0
14/14/2	11.00	0.10	29.4	20.4	6.17	()	80.6	01 1	8.6	0 (7.30	7 0	7	
WM3	11:33	0.18	29.4	29.4	6.21	6.2	81.5	81.1	8.7	8.6	7.30	7.3	6	6.5

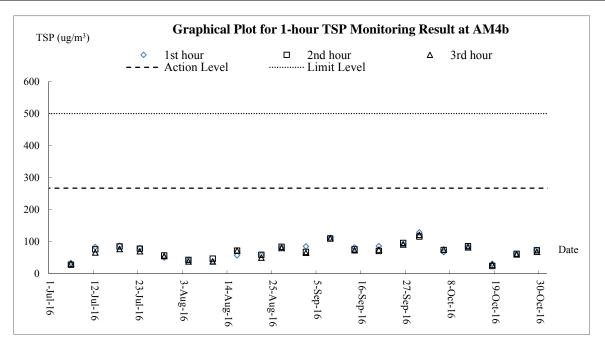
Date	26-Oct-16	<u> </u>							-					-
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	10.15	0.00	30.6	20 (5.11	F 1	68.2	(0.2	5.4	г 1	6.80	(0	<2	
WM3-C	13-C 10:15	0.03	30.6	30.6	5.12	5.1	68.4	68.3	4.8	5.1	6.80	6.8	<2	<2
14/14/2	10.00	0.15	30.6	20 (6.09	11	81.7	01.0	12.6	10.0	7.60	7 /	12	10.0
WM3	10:00	0.15	30.6	30.6	6.11	6.1	81.9	81.8	11.7	12.2	7.60	7.6	12	12.0

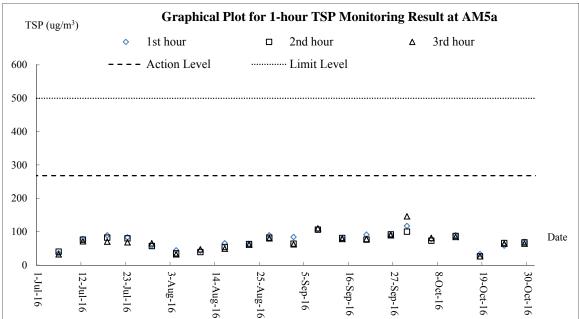
Date	28-Oct-16													
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
14/14/2 0	10.10	0.00	27.4	07.4	6.74	(7	85.1	04.0	5.0	5.0	6.80	()	4	1.0
WM3-C	C 10:10	0.03	27.4	27.4	6.59	6.7	83.5	84.3	5.1	5.0	6.80	6.8	4	4.0
14/14/2	10.00	0.15	28	20.0	6.91	(0	84.6	047	12.8	10.7	7.20	7.0	11	10 F
WM3	10:00	0.15	28	28.0	6.93	6.9	84.8	84.7	12.6	12.7	7.20	7.2	10	10.5

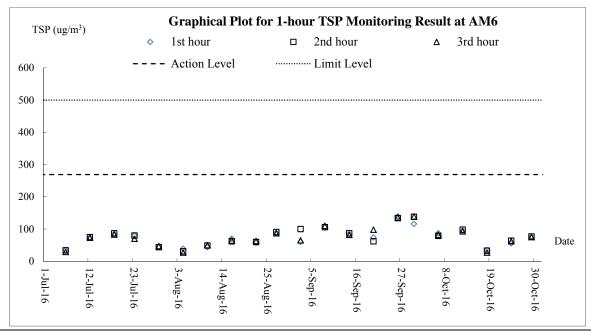

Date	31-Oct-16													
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	н	SS(n	ng/L)
	10.40	0.10	25.9	25.0	7.23	7.0	88.9	00.4	4.7	4 7	6.40		8	7 5
WM3-C	10:40	0.18	25.9	25.9	7.3	7.3	89.9	89.4	4.7	4.7	6.40	6.4	7	7.5
14/14/2	10 57	0.17	27.5	27.5	6.56		83.1	00.7	7.1	7 1	6.60		10	10 5
WM3	10:57	0.17	27.5	27.5	6.61	6.6	84.3	83.7	7.2	7.1	6.60	6.6	11	10.5

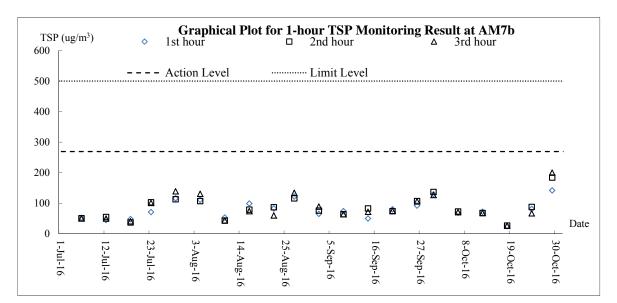

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

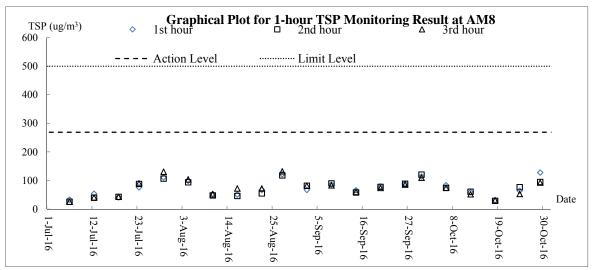

Appendix J

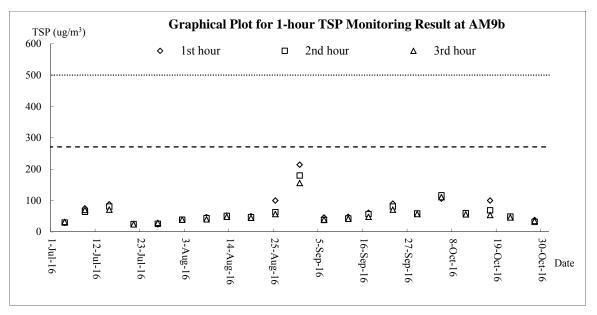

Graphical Plots for Monitoring Result

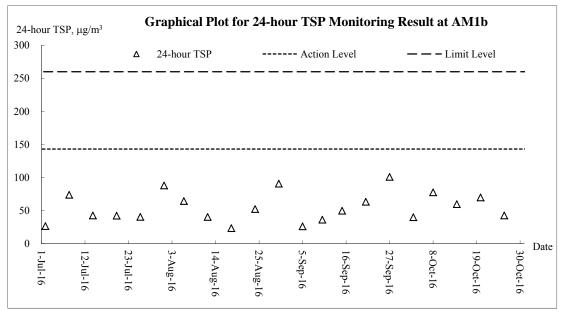

<u>Air Quality – 1-hour TSP</u>

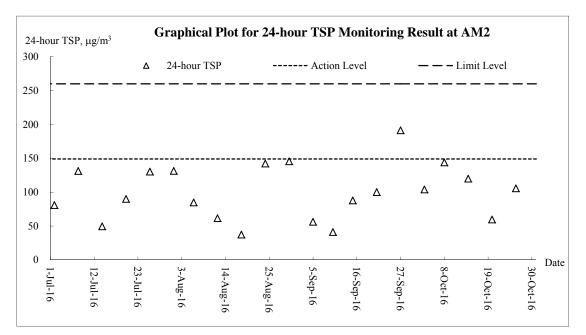




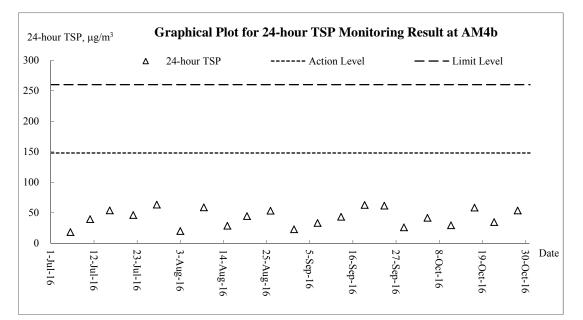


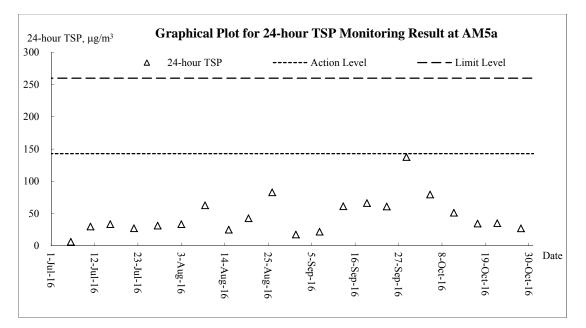


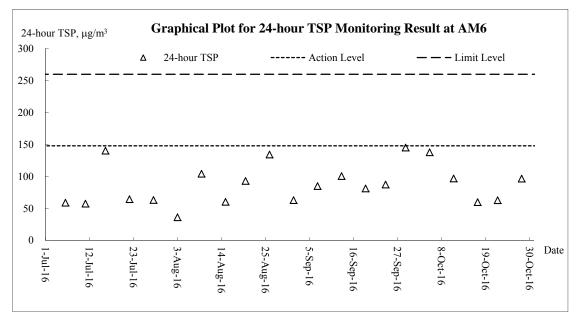

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\39th (October 2016)\R0714v2.docx

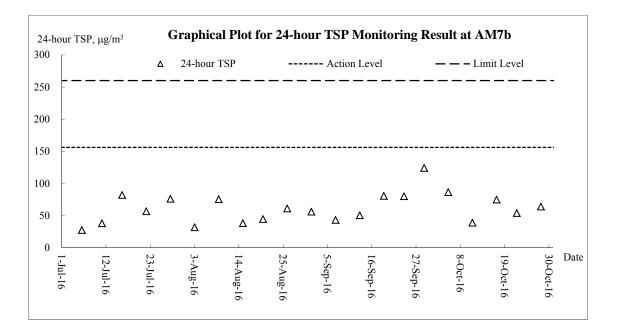


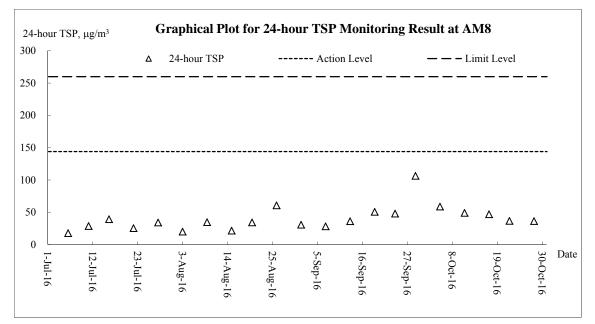


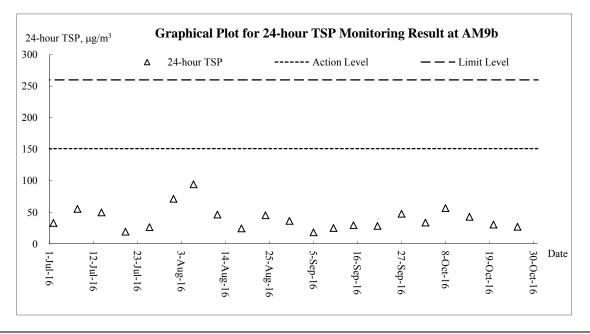


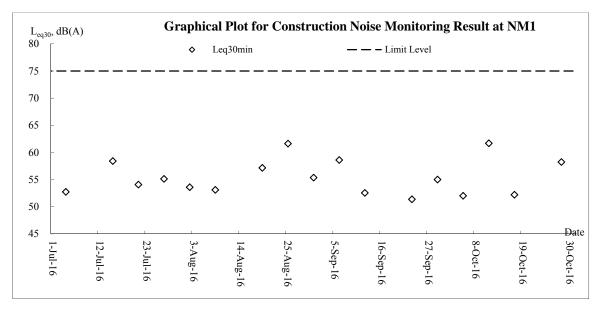

Air Quality – 24-hour TSP

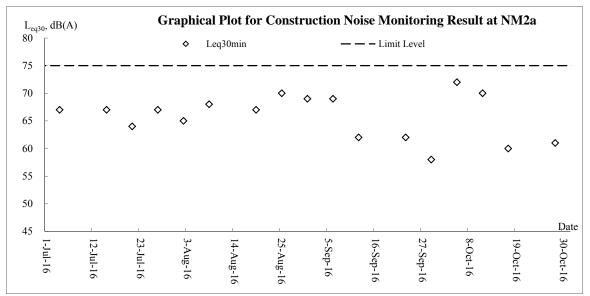


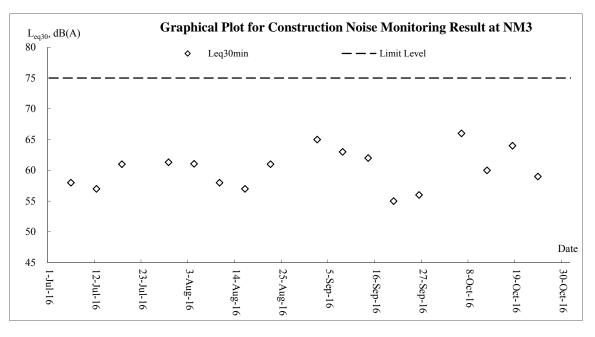


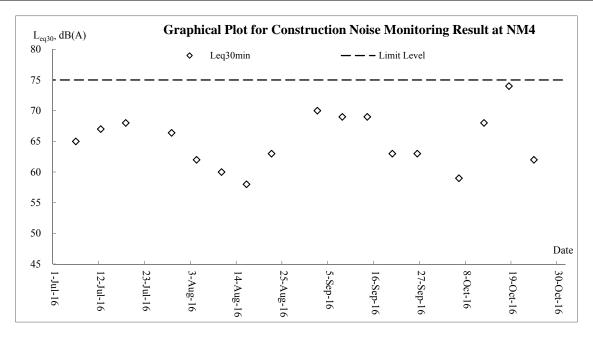


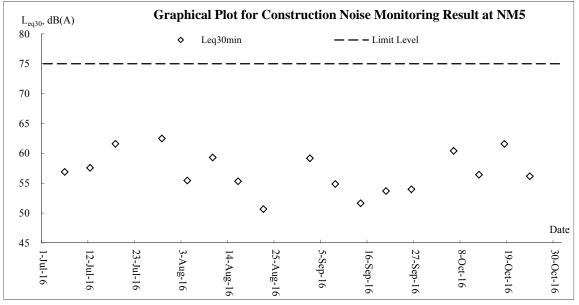


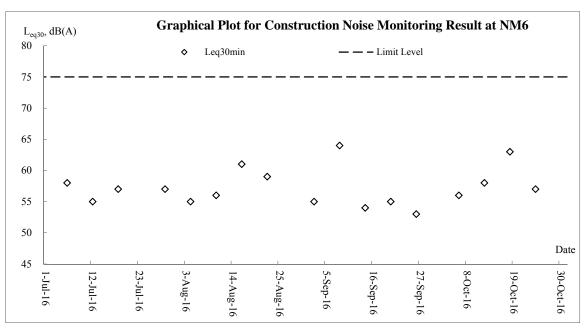


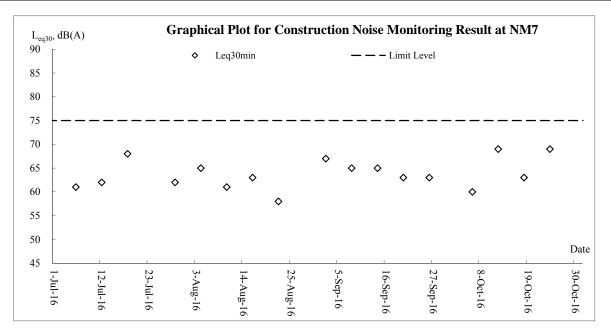


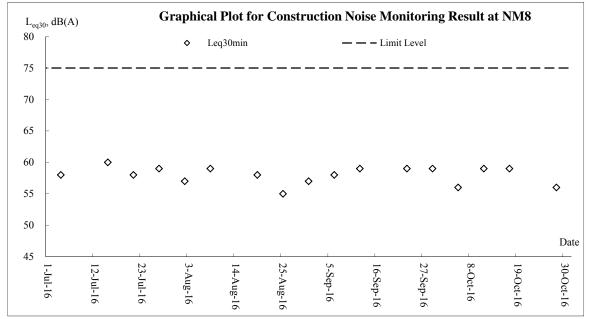


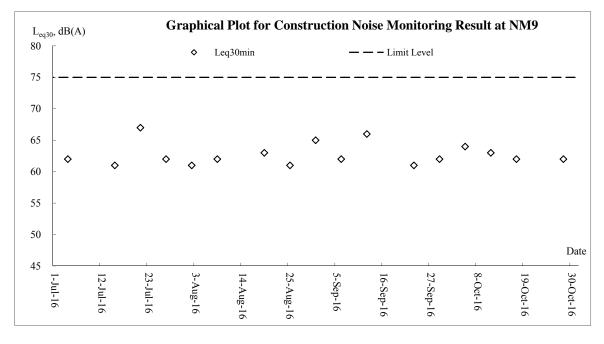


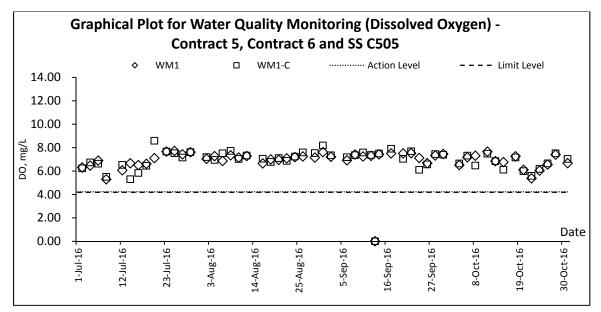

Noise

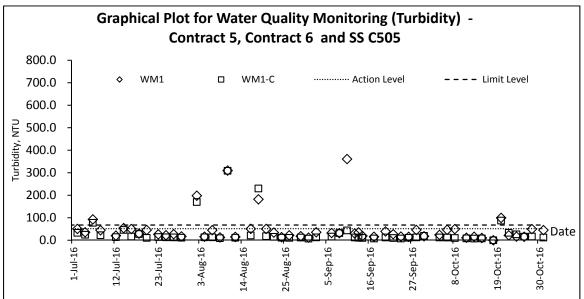


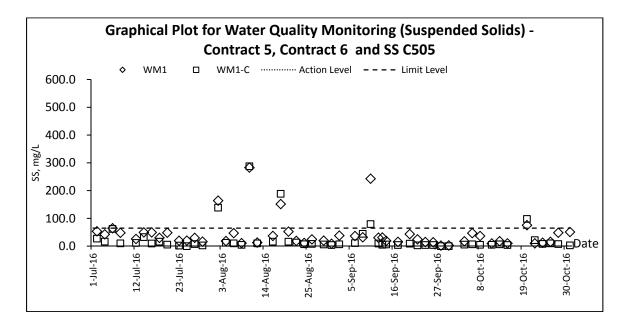


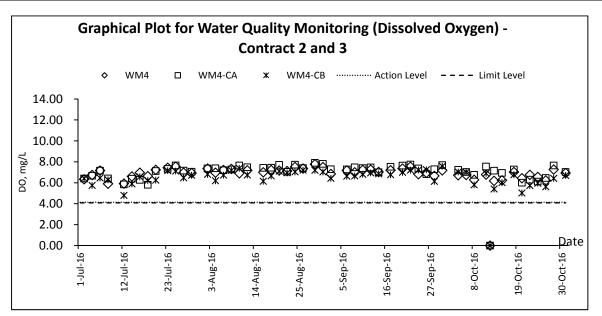


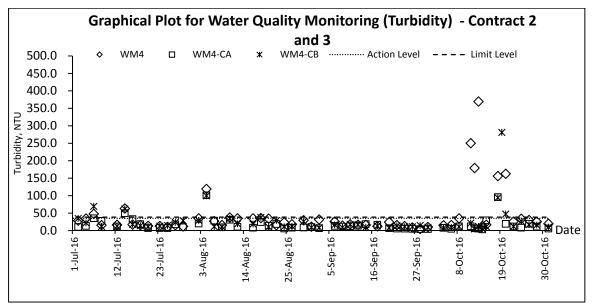


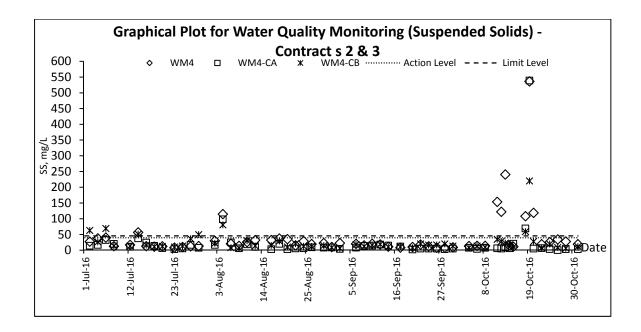


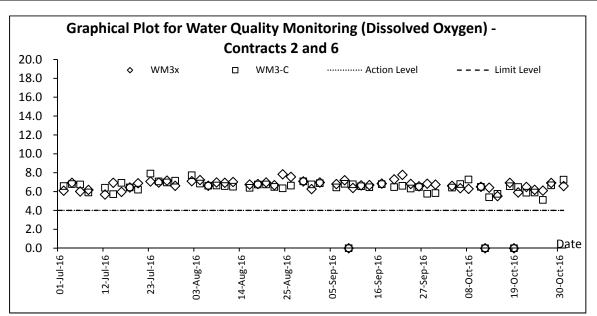


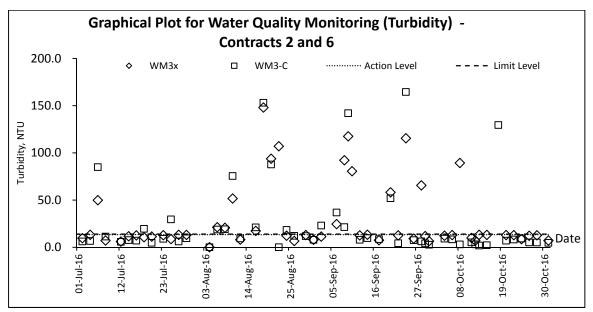


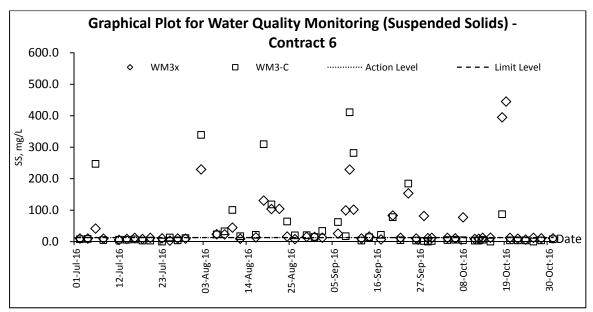

L _{eq30}	₀ , dB(A)			G	raph	ical	Plot	for	Cons	truc	ction	Nois	e Mo	onite	oring	Result a	at NM10)
80	[\$	L	eq30mi	in			— — L	imit L	level			0	Correc	ted Leq 30	min	
75																		
70	0																	
65	- 🛇	0		0					0	0	0 ♦			0	0			
60	-	\$	0	\$	0 ♦	0 ♦		0 ♦	\$	\$		0 ♦		\$	\$			
55	-		\$			-		-				-						
50	-																	
45		1			1						1		1		1	1		Date
	1-Jul-16	12-Jul-16	23-Jul-16		3-Aug-16		14-Aug-16		25-Aug-16		5-Sep-16		16-Sep-16		27-Sep-16	8-Oct-16	19-Oct-16	30-Oct-16

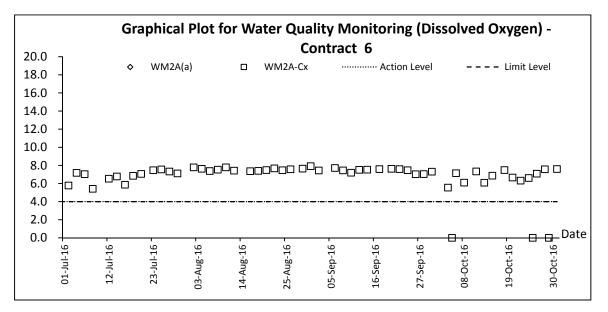

Water Quality

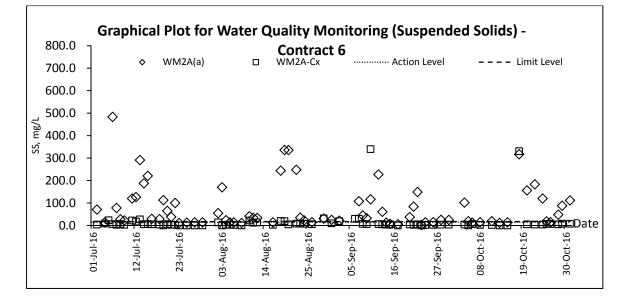


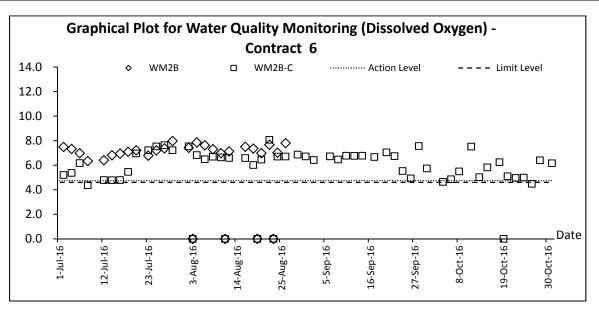


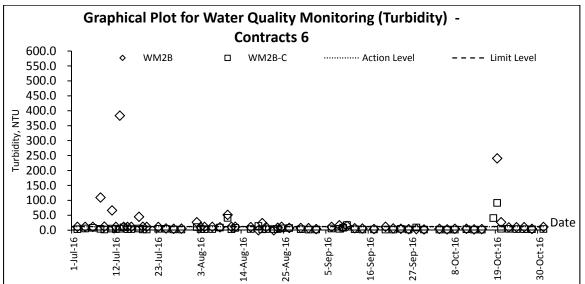


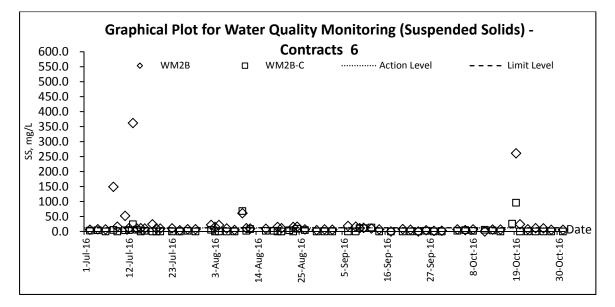












Appendix K

Meteorological Data

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.39) – October 2016

				r	Ta Kwu 🛛	Ling Statior	1
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction
1-Oct-16	Sat	Moderate easterly winds, fresh overnight.	95.5	27.1	#	89	#
2-Oct-16	Sun	Moderate easterly winds, fresh overnight.	Trace	28	5.5	77.5	N/NW
	Mon	Mainly cloudy with a few showers.	0.2	27.1	6.5	82.2	E/NE
4-Oct-16	Tue	Mainly cloudy with a few showers.	0	28.2	6.6	77	E/NE
5-Oct-16	Wed	Mainly cloudy with a few showers.	Trace	28.9	5.5	77	N/NW
6-Oct-16	Thu	Sunny periods. Moderate to fresh northerly winds.	16.7	28.6	7.5	74	N/NW
7-Oct-16	Fri	Sunny periods. Moderate to fresh northerly winds.	17.3	27.2	7.5	79.2	N/NW
8-Oct-16	Sat	Mainly cloudy with a few showers.	Trace	27.7	#	69	#
9-Oct-16	Sun	Mainly cloudy with a few showers.	0	26	#	70	#
10-Oct-16	Mon	Cloudy. Occasional rain tomorrow. Rain will ease off later	0	25.5	99	63.2	N
11-Oct-16	Tue	Cloudy. Occasional rain tomorrow. Rain will ease off later	0.1	23.2	12.1	76.5	N/NW
12-Oct-16	Wed	Mainly cloudy with a few showers.	0.9	22.9	5.6	85.5	N/NW
13-Oct-16	Thu	Mainly cloudy with a few showers.	Trace	26.1	5.7	71.5	N/NW
14-Oct-16	Fri	Mainly cloudy with a few showers.	Trace	26.9	6	69	N/NW
15-Oct-16	Sat	Mainly cloudy with a few showers.	0	25.5			
16-Oct-16	Sun	Mainly cloudy with a few showers.	0	26.9	9	76.5	E/NE
17-Oct-16	Mon	Cloudy. Rain	16.7	27.4	8.1	74.2	E/NE
18-Oct-16	Tue	Cloudy. Rain	178.7	24.4	15.4	92.5	E/NE
19-Oct-16	Wed	Cloudy. Rain	223.4	25.2	13.2	92.5	E/NE
20-Oct-16	Thu	Sunny periods. Moderate to fresh northerly winds.	0	26.9	7.1	80.7	N/NW
21-Oct-16	Fri	Sunny periods. Moderate to fresh northerly winds.	16.7	27.4	#	86	#
22-Oct-16	Sat	Mainly fine. Moderate easterly winds.	1.9	28.3		84	
23-Oct-16	Sun	Mainly fine. Moderate easterly winds.	0	26.6	5	83.5	E/NE
24-Oct-16	Mon	Mainly fine. Moderate easterly winds.	Trace	27.9	6.5	82.2	E/NE
25-Oct-16	Tue	Mainly fine. Moderate easterly winds.	Trace	27.1	7.8	83	E/NE
	Wed	Mainly fine. Moderate easterly winds.	0	27.3	5.4	81	E/NE
27-Oct-16	Thu	Mainly fine. Light to moderate easterly winds.	0	27.3	5.5	77.2	E/SE
28-Oct-16	Fri	Mainly fine. Moderate easterly winds.	0	27.5	4.8	73.5	Е
29-Oct-16	Sat	It will be fine. Dry in the afternoon.	0.5	26	#	79	#
	Sun	Mainly fine. Moderate easterly winds.	0	23.7	4.6	73	N/NW
31-Oct-16		Light to moderate northeasterly winds.	0	21.6	6.5	70	N/NW

Maintenance

Appendix L

Waste Flow Table

Name of Department : CEDD

Contract No./ Work Order No. :

CV/2012/08

Appendix I - Monthly Summary Waste Flow Table for 2016

(All quantities shall be rounded off to 3 decimal places)

		Actual Quantitie	es of Inert C&D Mater	ials Generated / Importe	ed (in '000 m3)			Actual Quantities of	f Other C&D Materials /	Wastes Generated	
Month	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Metal	Paper/ Cardboard Packaging	Plastic (bottles/containers, plastic sheets/ foams from package material)	Chemical Waste	Others (e.g. General Refuse etc.)
	[a+b+c+d)	(a)	(b)	(c)	(d)		(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
January	72.2029	0.0000	0.6482	31.8061	39.7486	0.9345	26.2000	0.0000	0.7600	1.2320	0.1247
February	55.6715	0.0000	1.0145	38.3484	16.3085	1.3108	8.3800	0.9800	0.4000	1.4080	0.1089
March	34.1757	0.0000	0.3241	29.3514	4.5003	1.0325	44.1700	0.0000	1.0700	11.9680	0.0732
April	86.9048	0.0000	0.7045	32.8811	53.3191	1.3786	31.8220	0.4000	1.0900	1.6456	0.1306
May	77.5386	0.0000	0.1268	38.9050	38.5068	6.3690	44.8000	0.3500	1.1400	2.7280	0.1246
June	62.4192	0.0000	0.5848	45.2952	16.5392	2.4119	35.7300	0.3700	1.8200	1.7600	0.0916
Half-year total	388.9127	0.0000	3.4030	216.5873	168.9224	13.4373	191.1020	2.1000	6.2800	20.7416	0.6536
July	65.3701	0.0000	0.4227	25.0255	39.9219	2.4087	11.3820	0.3500	1.5510	2.9920	0.1794
August	88.4708	0.0000	0.1283	27.0545	61.2879	2.0077	23.0010	0.3300	2.0110	5.2800	0.1482
September	97.0232	0.0000	1.5359	50.8682	44.6191	1.8765	4.6810	0.3000	1.9410	3.8720	0.2018
October	92.8467	0.0000	0.8666	39.8733	52.1068	0	0	0	0	0.0000	0.1852
November	0.0000										
December	0.0000										
Yearly Total	732.6234	0.0000	6.3565	359.4088	366.8582	19.7302	230.1660	3.0800	11.7830	32.8856	1.3682

(All quantities shall be rounded off to 3 decimal places)

		Actual Quantitie	es of Inert C&D Mater	ials Generated / Importe	ed (in '000 m3)			Actual Quantities of	f Other C&D Materials	Wastes Generated	
Year	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Metal	Paper/ Cardboard Packaging	Plastic (bottles/containers, plastic sheets/ foams from package material)	Chemical Waste	Others (e.g. General Refuse etc.)
	[a+b+c+d)	(a)	(b)	(c)	(d)		(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
2013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2014	425.4406	0.0000	2.7362	376.3945	46.3099	5.6245	3.2100	0.4390	0.0070	10.8800	2.2609
2015	570.9459	0.0000	20.8159	543.2162	6.9138	4.5492	14.1300	3.9220	11.9700	16.1920	1.1696
2016	732.6234	0.0000	6.3565	359.4088	366.8582	19.7302	230.1660	3.0800	11.7830	32.8856	1.3682
2017											
2018											
Total	1729.0099	0.0000	29.9086	1279.0195	420.0819	29.9038	247.5060	7.4410	23.7600	59.9576	4.7987

Remark:

1) Density of C&D material to be

2) Density of General Refuse to be

2.2metric ton/m31.6metric ton/m3

3) Density of Spent Oil to be

0.88 metric ton/m3

Monthly Summary Waste Flow Table for 2016 (year)

	Actua	l Quantities	of Inert C&D	Materials G	enerated Mo	onthly	Actual	Quantities o	f C&D Wastes	Generated	Monthly
		Hard Rock									
	Total	and Large	Reused in	Reused in	Disposed			Paper/			Others, e.g.
Month	Quantity	Broken	the	other	as Public	Imported		cardboard		Chemical	general
	Generated	Concrete	Contract	Projects	Fill	Fill	Metals	packaging	Plastics	Waste	refuse
	(in '000m ³)	(in m³)	(in '000m ³)								
Jan	2.683	0.253	0.030	0.000	2.400	0.799	0.001	0.000	0.000	0.000	0.115
Feb	1.877	0.651	0.020	0.000	1.205	1.141	0.000	0.000	0.000	0.000	0.110
Mar	1.501	0.417	0.000	0.000	1.084	0.831	0.000	0.000	0.001	0.000	0.090
Apr	0.472	0.046	0.018	0.000	0.408	0.647	0.000	0.000	0.000	0.000	0.135
May	0.488	0.013	0.000	0.000	0.475	2.479	0.000	0.000	0.000	0.000	0.105
Jun	0.523	0.103	0.000	0.000	0.420	0.716	0.000	0.000	0.001	0.000	0.135
Sub-total	7.544	1.483	0.068	0.000	5.993	6.613	0.001	0.000	0.002	0.000	0.690
Jul	0.565	0.019	0.000	0.000	0.546	1.407	0.000	0.001	0.004	1.000	0.085
Aug	0.582	0.088	0.000	0.000	0.494	0.715	0.000	0.000	0.001	0.000	0.105
Sep	1.797	0.604	0.258	0.000	0.935	0.038	0.001	0.000	0.002	0.000	0.090
Oct	1.115	0.485	0.177	0.000	0.453	0.395	0.000	0.000	0.002	0.800	0.120
Nov											
Dec											
Total	11.602	2.679	0.503	0.000	8.420	9.168	0.002	0.001	0.011	1.800	1.090

Note: 1. Assume the density of soil fill is 2 ton/m³.

2. Assume the density of rock and broken concrete is 2.5 ton/m^3 .

3. Assume each truck of C&D wastes is 5m³.

4. The inert C&D materials except slurry and bentonite are disposed at Tuen Mun 38.

5. The slurry and bentonite are disposed at Tseung Kwun O 137.

6. The non-inert C&D wastes are disposed at NENT.

7. Assume the density of metal is $7,850 \text{ kg/m}^3$.

8. Assume the density of plastic is 941 kg/m^3 .

Monthly Summary Waste Flow Table for <u>2016</u> (year)

Name of Person completing the record: K.M. Lui (EO)

Project : Liangtang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 6

Contract No.: CV/2013/08

		Actual Quantit	ies of Inert C&l	D Materials Ger	nerated Monthly		Ac	tual Quantities	of C&D Waste	s Generated Mo	nthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan	58.943	0	3.811	12.131	43.001	31.248	0	0	0	0	0.695
Feb	74.418	0	8.785	39.85	25.783	6.552	0	0.097	0	0	0.339
Mar	43.764	0	6.438	12.034	25.292	3.288	0	0.206	0.007	0	0.042
Apr	33.767	0	1.933	5.759	26.075	0	0	0.221	0	0	0.070
May	51.115	0	3.229	17.469	30.417	0.928	0	0.211	0	0	0.079
Jun	61.126	0	6.921	23.286	30.919	3.693	0	0.166	0	0	0.043
Sub-total	323.133	0	31.117	110.529	181.487	45.709	0	0.901	0.007	0	1.268
Jul	73.407	0	0.951	32.858	39.598	0.827	0	0.271	0	0	0.094
Aug	45.652	0	6.653	5.933	33.066	0	0	0.323	0	0	0.110
Sep	31.086	0	2.089	11.529	17.468	0.048	0	0.231	0	0	0.049
Oct	36.479	0	5.359	9.743	21.377	0.01	0	0	0	1.475	0.075
Nov											
Dec											
Total	678.98	0	64.703	187.376	426.901	53.843	0	2.02	0.007	33.755	4.672

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.

(3) Broken concrete for recycling into aggregates.

Appendix I

MONTHLY SUMMARY WASTE FLOW TABLE

NE/2014/03

Name of Department: CEDD

Contract Title:Liantang/ Heung Yuen Wai Boundary Control Point
Site Formation and Infrastructure Works – Contract 7Contract No.:

			tities of Inert C&I	O Materials Generat	ted Monthly		1	Actual Quantities of	Inert C&D Waste	es Generated Month	iy
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastic (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
Jan	0	0	0	0	0	0	0	0	0	0	0
Feb	0.16	0	0	0	0.16	0	0	0	0	0	0
Mar	0.135	0	0	0	0.135	0	0	0	0	0	0.005
Apr	0.313	0	0	0	0.313	0	0	0	0	0	0.005
May	0.505	0	0	0	0.505	0	0	0	0	0	0
June	0.613	0	0	0	0.613	0	0	0.005	0.001	0	0
Sub-total	1.726	0	0	0	1.726	0	0	0.005	0.001	0	0.01
July	0.207	0	0	0	0.207	0	0	0.047	0.001	0	0
Aug	0.464	0	0	0	0.464	0	0	0.03	0.001	0	0
Sept	0.207	0	0	0	0.207	0	0.1	0.05	0.001	0	0
Oct	0	0	0	0	0	0	0.2	0.04	0.001	0	0
Nov											
Dec											
Total	2.604	0	0	0	2.604	0	0.3	0.172	0.005	0	0.01

Monthly Summary Waste Flow Table for <u>2016</u> (year)

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Architectural Services Department

Form No. D/OI.03/09.002

Contract No. / Works Order No.: - SSC505

Monthly Summary Waste Flow Table for <u>2016</u> [year] [to be submitted not later than the 15th day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

		Actual Quantities of I	nert Construction Waste Ge	nerated Monthly	
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Broken Concrete (see Note 4)	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)
Jan	0.800	0	0	0	0.800
Feb	0.858	0	0	0	0.858
Mar	0.793	0	0	0	0.793
Apr	0.111	0	0	0	0.111
May	1.087	0	1.074	0	0.013
Jun	8.645	0	8.541	0	0.104
Sub-total	12.293	0	9.615	0	2.678
Jul	2.942	0	2.884	0	0.059
Aug	4.247	0	4.182	0	0.065
Sep	2.963	0	2.911	0	0.052
Oct	1.164	0	0.000	0	1.164
Nov					
Dec					
Total	23.608	0	19.591	0	4.017

Architectural Services Department

Form No. D/OI.03/09.002

					Actual Qua	ntities of Nor	n-inert Constr	uction Waste	Generated M	onthly			
Month	Tim	ber	Ме	tals	Paper/ ca packa			stics lote 3)	Chemica	al Waste	Mate	ecyclable erials age 3)	General Refuse disposed of at Landfill
	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '000m ³)
	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated
Jan	0.000	0.000	4.73	4.73	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.072
Feb	0.000	0.000	0.0004	0.0004	0.0186	0.0186	0.000	0.000	0.000	0.000	0.021	0.021	0.065
Mar	0	0	52.752	52.752	0.044	0.044	0	0	0	0	0.05	0.05	0.059
Apr	0	0	1465.5906	1465.5906	0.09	0.09	0	0	0	0	0.084	0.084	0.091
May	0	0	1587.5818	1587.5818	0	0	0.004	0.004	0	0	0.153	0.153	0.156
Jun	0	0	725.0582	725.0582	0.33	0.33	0.0045	0.0045	0	0	0.067	0.067	0.117
Sub-total	0	0	3818.7330	3818.7330	0.4826	0.4826	0.0085	0.0085	0	0	0.375	0.375	0.559
Jul	0	0	265.690	265.690	0.430	0.430	0.020	0.020	0.000	0.000	0.194	0.194	0.189
Aug	0	0	298.260	298.260	0.360	0.360	0.025	0.025	0.000	0.000	0.069	0.069	0.228
Sep	0	0	572.15	572.15	0.370	0.370	0.048	0.048	0.000	0.000	0.088	0.088	0.241
Oct	0	0	988.585	988.585	0.36	0.36	0.098	0.098	0.000	0.000	0.112	0.112	0.189
Nov													
Dec													
Total	0	0	5943.418	5943.418	2.003	2.003	0.199	0.199	0.000	0.000	0.837	0.837	1.404

Architectural Services Department

Description of mod	e and details of recycling if	any for the month e.g. X	X kg of used timber was se	ent to YY site for transform	ation into fertilizers
K ong Han for recycling			988.585 tons of scrap metals from LCAL were sent for recycling.		

Notes: (1) The performance targets are given in the Particular Specification on Environmental Management Plan.

(2) The waste flow table shall also include construction waste that are specified in the Contract to be imported for use at the site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) Broken concrete for recycling into aggregates.

(5) If necessary, use the conversion factor: 1 full load of dumping truck being equivalent to 6.5 m^3 by volume.

Appendix M

Implementation Schedule for Environmental Mitigation Measures

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
Air Quali	ty Impact (Construction)					
3.6.1.1	2.1	 General Dust Control Measures The following dust suppression measures should be implemented: Frequent water spraying for active construction areas (4 times per day for active areas in Po Kak Tsai and 8 times per day for all other active areas), including areas with heavy construction and slope cutting activities 80% of stockpile areas should be covered by impervious sheets Speed of trucks within the site should be controlled to about 10 km/hr All haul roads within the site should be paved to avoid dust 	To minimize adverse dust emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		emission due to vehicular movement					
3.6.1.2	2.1	Best Practice for Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (Construction Dust) Regulation should be adopted to further reduce the construction dust impacts of the Project. These best practices include:	To minimize adverse dust emission generated from various construction activities of the	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		 Good site management The Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. 	works sites				
		 Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimize the release of visible dust emission. 					
		 Any piles of materials accumulated on or around the work areas should be cleaned up regularly. 					
		 Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimizing generation of fugitive dust emissions. 					
		 The material should be handled properly to prevent fugitive dust emission before cleaning. Disturbed Parts of the Roads 					
		 Each and every main temporary access should be paved with 					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	Ref.		& Main Concerns to address	the measure?	measure	measure?	measure to achieve?
		concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or					
		 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 					
		Exposed Earth					
		Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies.					
		Loading, Unloading or Transfer of Dusty Materials					
		 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 					
		Debris Handling					
		 Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides. 					
		 Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped. 					
		Transport of Dusty Materials					
		 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards. 					
		Wheel washing					
		Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Use of vehicles					
		Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.					

		intorning and Addit Mandal					
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		Site hoarding					
		Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit.					
		Blasting					
		The areas within 30m from the blasting area should be wetted with water prior to blasting.					
Air Quali	ty Impact (Operation)					
3.5.2.2	2.2	 The following odour containment and control measures will be provided for the proposed sewage treatment work at the BCP site: The treatment work will be totally enclosed. Negative pressure ventilation will be provided within the enclosure to avoid any fugitive odorous emission from the treatment work. Further odour containment will be achieved by covering or confining the sewage channels, sewage tanks, and equipment with potential odour emission. Proper mixing will be provided at the equalization and sludge holding tanks to prevent sewage septicity. Chemical or biological deodorisation facilities with a minimum odour removal efficiency of 90% will be provided to treat potential odorous emissions from the treatment plant including sewage channels / tanks, filter press and screening facilities so as to minimize any potential odour impact to the nearby ASRs. 	To minimize potential odour impact from operation of the proposed sewage treatment work at BCP	DSD	BCP	Operation Phase	EIA recommendation
Noise Im	pact (Cons	truction)					
4.4.1.4	3.1	Adoption of Quieter PME	To minimize the	Contractors	Construction	During	EIA recommendation,
		Use of the recommended quieter PME such as those given in the BS5228: Part 1:2009 and presented in Table 4.14 , which can be found in Hong Kong.	construction air- borne noise impact		Work Sites	Construction	EIAO and Noise Control Ordinance (NCO)

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
4.4.1.4	3.1	Use of Movable Noise Barrier The use of movable barrier for certain PME can further alleviate the construction noise impacts. In general, a 5 dB(A) reduction for movable PME and 10 dB(A) for stationary PME can be achieved depending on the actual design of the movable noise barrier. The Contractor shall be responsible for design of the movable noise barrier with due consideration given to the size of the PME and the requirement for intercepting the line of sight between the NSRs and PME. Barrier material with surface mass in excess of 7 kg/m ² is recommended to achieve the predicted screening effect.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Enclosure/ Acoustic Shed The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the GW-TM.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Insulating Fabric Noise insulating fabric can be adopted for certain PME (e.g. drill rig, pilling auger etc). The insulating fabric should be lapped such that there are no openings or gaps on the joints. Technical data from manufacturers state that by using the Fabric, a noise reduction of over 10 dB(A) can be achieved on noise level.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO

			Objectives of the	Who to			What requirements
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Recommended Measure	implement the	Location of the measure	When to implement the	or standards for the measure to
	nei.		& Main Concerns to address	measure?	measure	measure?	achieve?
4.4.1.4	3.1	Good Site Practice	To minimize the	Contractors	Construction	During	EIA recommendation, EIAO and NCO
		The good site practices listed below should be followed during each phase of construction:	construction air- borne noise impact		Work Sites	Construction	
		• Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;					
		 Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction programme; 					
		• Mobile plant, if any, should be sited as far from NSRs as possible;					
		 Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 					
		• Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and					
		• Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities.					
Noise Im	pact (Oper	ation)					
		Road Traffic Noise					
Table 4.42 and Figure 4.20.1 to 4.20.4	3.2	Erection of noise barrier/ enclosure along the viaduct section.	To minimize the road traffic noise along the connecting road of BCP	Contractor	Loi Tung and Fanling Highway Interchange	Before Operation	EIAO and NCO
		Fixed Plant Noise					
Table 4.46	3.2	Specification of the maximum allowable sound power levels of the proposed fixed plants during daytime and night-time.	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIA recommendation, EIAO and NCO

	ientai wor	nitoring and Audit Manual	Objectives of the				
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirement or standards for th measure to achieve?
4.5.2.4	3.2	 The following noise reduction measures shall be considered as far as practicable during operation: Choose quieter plant such as those which have been effectively silenced; Include noise levels specification when ordering new plant (including chillier and E/M equipment); Locate fixed plant/louver away from any NSRs as far as practicable; Locate fixed plant in walled plant rooms or in specially designed enclosures; Locate noisy machines in a basement or a completely separate building; Install direct noise mitigation measures including silencers, acoustic louvers and acoustic enclosure where necessary; and Develop and implement a regularly scheduled plant maintenance programme so that equipment is properly operated and serviced in order to maintain a controlled level of noise. 	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIAO and NCO
Vater Qu	uality Impa	ct (Construction)					
5.6.1.1	4.1	 Construction site runoff and drainage The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts: At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the Contractor prior to the commencement of 	To control site runoff and drainage; prevent high sediment loading from reaching the nearby watercourses	Contractor	Construction Works Sites	Construction Phase	Practice Note for Professional Persons on Construction Site Drainage (ProPECC Note PN 1/94)

The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas.

construction.

EIA Ref.	EM&A Ref.		Objectives of the Recommended Measure	Who to implement the	Location of the	When to implement the	What requirements or standards for the measure to
	nel.		& Main Concerns to address	measure?	measure	measure?	achieve?
		Temporary ditches should be provided to facilitate the runoff discharge into stormwater drainage system through a sediment/silt trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates, if practical.					
	-	Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the Contractor prior to the commencement of construction.					
	•	All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.					
	•	Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities.					
	•	If surface excavation works cannot be avoided during the wet season (April to September), temporarily exposed slope/soil surfaces should be covered by tarpaulin or other means, as far as practicable, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Interception channels should be provided (e.g. along the crest/edge of the excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. Other measures that need to be implemented before, during and after rainstorms are summarized in ProPECC Note PN 1/94.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		the erosive potential of surface water flows.					

All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.

- Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.
- Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.
- Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.
- Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.

5.6.1.1	4.1	Good site practices for works within water gathering grounds	To minimize water	Contractor	Construction	Construction	ProPECC Note PN
		The following conditions should be complied, if there is any works to be	quality impacts to		Works Sites	Phase	1/94
		carried out within the water gathering grounds:	the water gathering		within the water		
		g'	grounds		gathering		

255228/ENL/ENL/61/C December 2010

nvironmenta	al Monitc	pring and Audit Manual					
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for th measure to achieve?
	•	Adequate measures should be implemented to ensure no pollution or siltation occurs to the catchwaters and catchments.			grounds		
	•	No earth, building materials, oil or fuel, soil, toxic materials or any materials that may possibly cause contamination to water gathering grounds are allowed to be stockpiled on site.					
	•	All surplus spoil should be removed from water gathering grounds as soon as possible.					
	•	Temporary drains with silt traps should be constructed at the site boundary before the commencement of any earthworks.					
	•	Regular cleaning of silt traps should be carried out to ensure proper operation at all time.					
	•	All excavated or filled surfaces which have the risk of erosion should always be protected form erosion.					
	•	Facilities for washing the wheels of vehicles before leaving the site should be provided.					
	•	Any construction plant which causes pollution to catchwaters or catchments due to the leakage of oil or fuel should be removed off site immediately.					
	-	No maintenance activities which may generate chemical wastes should be undertaken in the water gathering grounds. Vehicle maintenance should be confined to designated paved areas only and any spillages should be cleared up immediately using absorbents and waste oils should be collected in designated tanks prior to disposal off site. All storm water run-off from these areas should be discharged via oil/petrol separators and sand/silt removal traps.					
	•	Any soil contaminated with fuel leaked from plant should be removed off site and the voids arising from removal of contaminated soil should be replaced by suitable material approved by the Director of Water Supplies.					
	•	Provision of temporary toilet facilities and use of chemicals or insecticide of any kind are subject to the approval of the Director of Water Supplies.					

Drainage plans should be submitted for approval by the Director of

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	non		& Main Concerns to address	measure?	mououro	measure?	achieve?
		Water Supplies.					
		 An unimpeded access through the waterworks access road should always be maintained. 					
		 Earthworks near catchwaters or streamcourses should only be carried out in dry season between October and March, 					
		 Advance notice must be given before the commencement of works on site quoting WSD's approval letter reference. 					
5.6.1.2	4.1	Good site practices of general construction activities	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby stormwater drain. Stockpiles of cement and other construction materials should be kept covered when not being used.	quality impacts		works sites	phase	
		Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby stormwater drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event.					
5.6.1.3	4.1	Sewage effluent from construction workforce	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	quality impacts		works sites with on-site sanitary facilities	phase	and Water Pollution Control Ordinance (WPCO)
5.6.1.4	4.1	Hydrogeological Impact	To minimize water	Contractor	Construction	Construction	EIA Recommendation
		Grout injection works would be conducted before blasting, for sealing a limited area around the tunnel with a grout of a suitable strength for controlling the potential groundwater inflows. The pre-injection grouting method would be supplemented by post-injection grouting where necessary to further enhance the groundwater inflow control. On-site treatment for the groundwater ingress pumped out would be required to remove any contamination by grouting materials before discharge off-site.	quality impacts		works sites of the drill and blast tunnel	phase	and WPCO
Water Qu	ality Impa	ct (Operation)					
		No mitigation measure is required.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns	Who to implement the	Location of the measure	When to implement the measure?	What requirements or standards for the measure to
			to address	measure?			achieve?
Sewage a	and Sewera	age Treatment Impact (Construction)					
6.7	5	The sewage generated by the on-site workforce should be collected in chemical toilets and disposed of off-site by a licensed waste collector.	To minimize water quality impacts	Contractor	All construction works sites with on-site sanitary facilities	Construction phase	EIA recommendation and WPCO
Sewage a	and Sewera	age Treatment Impact (Operation)					
6.6.3	5	Sewage generated by the BCP and Chuk Yuen Village Resite will be collected and treated by the proposed on-site sewage treatment facility using Membrane Bioreactor treatment with a portion of the treated wastewater reused for irrigation and flushing within the BCP.	To minimize water quality impacts	DSD	BCP	Operation phase	EIA recommendation and WPCO
6.5.3	5	Sewage generated from the Administration Building will be discharged to the existing local sewerage system.	To minimize water quality impacts	DSD	Administration Building	Operation phase	EIA recommendation and WPCO
Waste Ma	anagement	t Implication (Construction)					
7.6.1.1	6	Good Site Practices	To minimize	Contractor	Construction	Construction	EIA recommendation
		Adverse impacts related to waste management such as potential hazard, air, odour, noise, wastewater discharge and public transport as mentioned in section 3.4.7.2 (ii)(c) of the Study Brief are not expected to arise, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities include:	adverse environmental impact		works sites (general)	Phase	Waste Disposal Ordinance; Waste Disposal (Chemical Wastes) (General) Regulation; and ETWB TC(W) No. 19/2005,
		Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site					Environmental Management on Construction Site
		 Training of site personnel in proper waste management and chemical handling procedures 					
		 Provision of sufficient waste disposal points and regular collection of waste 					
		 Dust suppression measures as required under the Air Pollution Control (Construction Dust) Regulation should be followed as far as practicable. Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by covering trucks or in enclosed containers 					
		 General refuse shall be removed away immediately for disposal. As 					

EIA Ref.	EM&A	EM&A Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	Implement the	What requirements or standards for the measure to
	nei.		& Main Concerns to address	measure?	measure	measure?	achieve?
		such odour is not anticipated to be an issue to distant sensitive receivers					
		 Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction from public road 					
		 Covers and water spraying system should be provided for the stockpiled C&D material to prevent dust impact or being washed away 					
		 Designate different locations for storage of C&D material to enhance reuse 					
		 Well planned programme for transportation of C&D material to lessen the off-site traffic impact. Well planned delivery programme for offsite disposal and imported filling material such that adverse noise impact from transporting of C&D material is not anticipated 					
		 Site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be adopted as far as practicable, such as cleaning and maintenance of drainage systems regularly 					
		 Provision of cover for the stockpile material, sand bag or earth bund as barrier to prevent material from washing away and entering the drains 					
.6.1.2	6	Waste Reduction Measures	To reduce the	Contractor	Construction	Construction	EIA recommendation
	-	Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	a quantity of wastes e n		works sites (General)	Phase	and Waste Disposal Ordinance
		 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 					
		 Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force 					
		 Proper storage and site practices to minimise the potential for damage or contamination of construction materials 					
		Plan and stock construction materials carefully to minimise amount					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		of waste generated and avoid unnecessary generation of waste					
		In addition to the above measures, specific mitigation measures are recommended below for the identified waste arising to minimise environmental impacts during handling, transportation and disposal of these wastes.					
7.6.1.3	6	C&D Materials In order to minimise impacts resulting from collection and transportation of C&D material for off-site disposal, the excavated materials should be reused on-site as backfilling material as far as practicable. The surplus rock and other inert C&D material would be disposed of at the Government's Public Fill Reception Facilities (PFRFs) at Tuen Mun Area 38 for beneficial use by other projects in the HKSAR as the last resort. C&D waste generated from general site clearance and tree felling works would require disposal to the designated landfill site. Other mitigation requirements are listed below:	To minimize impacts resulting from C&D material	Contractor	Construction Works Sites (General)	Construction Phase	EIA recommendation; Waste Disposal Ordinance; and ETWB TCW No. 31/2004
		 A Waste Management Plan should be prepared and implemented in accordance with ETWB TC(W) No. 19/2005 Environmental Management on Construction Site; and In order to monitor the disposal of C&D material and solid wastes at public filling facilities and landfills, and to control fly-tipping, a trip-ticket system (e.g. ETWB TCW No. 31/2004) should be included. 					
7.6.1.4	6	General refuse General refuse should be stored in enclosed bins or compaction units separated from other C&D material. A reputable waste collector is to be employed by the Contractor to remove general refuse from the site separately. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' litter.	To minimize impacts resulting from collection and transportation of general refuse for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal Ordinance and Public Health and Municipal Services Ordinance - Public Cleansing and Prevention of Nuisances Regulation
7.6.1.5	6	Chemical waste If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the <i>Code of Practice on the</i> <i>Packaging, Labelling and Storage of Chemical Wastes.</i> Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical	To minimize impacts resulting from collection and transportation of chemical waste for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal (Chemical Waste) (General) Regulation and Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes

Appendix N

Investigation Report for Exceedance

То	Mr. Vincent Chan	Fax No	By e-m	ail	
Company	CRBC-CEC-Kaden JV				
сс					
From	Nicola Hon	Date	25 October 2016		
Our Ref	TCS00694/13/300/ F0662a	No of Pages	7	(Incl. cover sheet)	
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Air Quality Monitoring (24-hour TSP) at Locations AM2 and AM3 on 27 September 2016				

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0639 dated 3 October 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. Simon Leung (ER of C6/ AECOM) Mr. Antony Wong (IEC, SMEC) Fax: 2251 0698 By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project	CE 45/2008			
Date	27 Sep 2016	27 Sep 2016		
Location	AM2	AM3		
Time	00:00	00:00		
Parameter	24 hour TSP ($\mu g/m^3$)	24 hour TSP ($\mu g/m^3$)		
Action Level	148	145		
Limit Level	260	260		
Measured Level	191	193		
Exceedance	Action Level	Action Level		
Investigation Results, Recommendations & Mitigation Measures	construction activities carried of near air monitoring location AM piling and steel bar fixing. Th close to air monitoring location boundary of Contract 6. The	ording to the site information provided from the CCKJV, struction activities carried out Bridge D – Lin Ma Hang which ar monitoring location AM2 on 27 September 2016 was bored ing and steel bar fixing. There was no site activities carried out e to air monitoring location AM3 as it is located far from the indary of Contract 6. The monitoring location AM2 and AM3 its related works area are shown in Figures 1 and 2.		
	 Joint site inspection by RE, IEC, CCKJV and ET was conducted on 6 October 2016 for investigation. The observations during site inspection are summarized below. 			
		e house in Lin Ma Hang Road and ge D – Lin Ma Hang of Contract 6.		
	and AM2 was separated by	construction activities at Bridge D Lin Ma Hang Road. The main dust d be dominated by traffic dust in Lin		
		as provided at site exit of Bridge D ughly washed and before leaving the		
	with concrete and water s	wheel washing facilities was paved spraying was provided on the road ppressive measures. (<i>Photo 4</i>)		
	(e) No dusty material was obs Road. (<i>Photo 5</i>)	served on the existing Lin Ma Hang		
	(f) No dusty work and stock within the works area of C6	bile of dusty material was observed		
	portion of Lin Ma Hang R	ties carried out by CCKJV in the load adjacent to AM3. No adverse dance to AM3 was observed. (<i>Photo</i>		

6)
3. As advised by CCKJV, though CCKJV is not the only user of Lin Man Hang Road, regularly water spraying on Lin Ma Hang Road by water truck is provided daily to suppress fugitive dust along the road. Moreover, there was no dust related complaint received in September 2016.
4. There were no exceedance recorded in the subsequent 1-hr and 24-hr TSP monitoring in October 2016. In our investigation, it is considered that the 24-hr TSP exceedances at AM2 and AM3 on 27 September 2016 were a short term impact and unlikely caused by the works under the project.
5. The Contractor should continually implement the dust mitigation measures in full gear as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Auch	
Date :	25 October 2016	

Photo 1

AM2 is located at a village house in Lin Ma Hang Road and close to Works Area Bridge D – Lin Ma Hang of Contract 6.

The active construction activities at Bridge D and AM2 was separated by Lin Ma Hang Road. The main dust impact pose to AM2 should be dominated by traffic dust in Lin Ma Hang Road.

Photo 3

Wheel washing facilities was provided at site exit of Bridge D and all vehicles were thoroughly washed and before leaving the site.

The road surface after the wheel washing facilities was paved with concrete and water spraying was provided on the road surface regularly as dust suppressive measures.

There were no site activities carried out by CCKJV in the portion of Lin Ma Hang Road adjacent to AM3. No adverse dust impact causing exceedance to AM3 was observed.

Figure 1 Location Map for Air Monitoring Location AM2 and works area under Contract 6

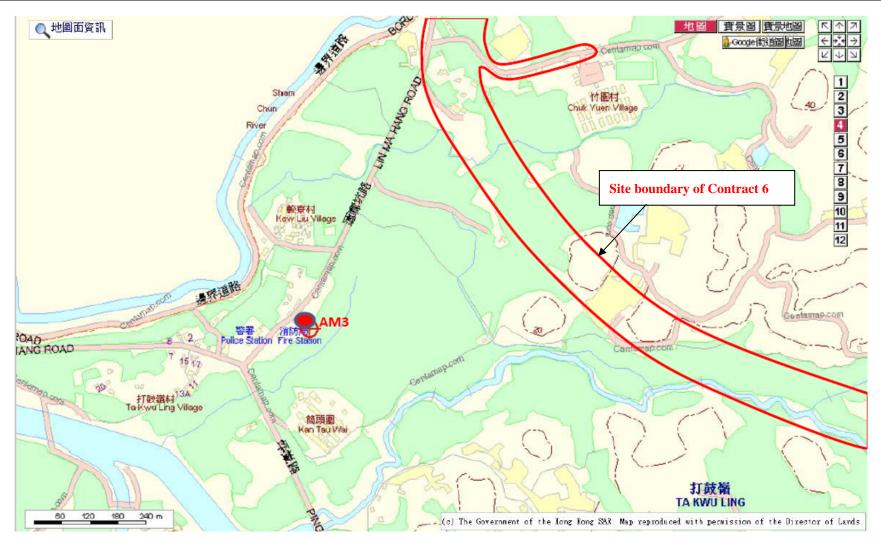


Figure 2 Location Map for Air Monitoring Location AM3 and works area under Contract 6

То	Mr. Vincent Chan	Fax No	By e-m	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	26 Octol	ber 2016
Our Ref	TCS00694/13/300/ F0653a	No of Pages	7	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary O Investigation Report of Exceedance of and 30 September 2016			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0650 dated 11 October 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008			
Date			28 Sep 2016 30 Sep 2016		
Location		WM2A(a)			
Time			11:55 11:00		
Parameter	•		Suspended S	Solids (mg/L)	
Action Lev	vel		14.6 AND 120% of upstream	control station of the same day	
Limit Leve	el		17.3 AND 130% of upstream control station of the same day		
Measure	WM2A-C		3.5	3.5	
d Levels	WM2A(a)		25.0	24.5	
Exceedanc			Limit level	Limit level	
Investigation Results, Recommendations & Mitigation Measures			construction activities carried of Bridge D (upstream of WM2A monitoring locations and works	area are shown in Figure 1.	
			2. According to the site record from the monitoring team on 28 and 30 September 2016, the water quality observed at both WM2A(a) and WM2-C were visually clear and there was no discharge made on the river course on 28 and 30 September 2016. However, loose soil and sediment cumulated at the river bed was observed at WM2A(a) and the loose soil would be easily stirred up during water sampling. (<i>Photo 1 to 4</i>)		
			was conducted in September	ection by RE, IEC, CCKJV and ET er 2016, the implemented water ed during the site inspection is	
				ites were provided for Bridge D and ated water in the AquaSed was clear.	
			covered the exposed slope	noff from the site, the Contractor has es as far as practicable. Moreover, were bund up to minimize surface	
				ry bund was provided align the river f was observed from the site. (<i>Photo</i>	
			collect the site runoff fo	at the lowest point of the site to or primary sedimentation and then there treatment facility for chemical	
			site was in order and no adverse	mitigation measures implemented on e water quality impact was identified. lances on 28 and 30 September 2016	

were due partially related to the loose soil at the river bed and unlikely caused by the works under the project.
5. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There were exceedances of SS and NTU on 3 October 2016. The Contractor should continually implement the water mitigation measures in full gear as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	26 October 2016

Photo 1

On 28 Sep 2016, visually clear water was observed WM2A(a).

Photo 2 On 28 Sep 2016, visually clear water was observed at WM2A-C.

Photo 3

On 30 Sep 2016, visually clear water was observed WM2A(a).

Photo 4 On 30 Sep 2016, visual

On 30 Sep 2016, visually clear water was observed at WM2A-C.

Photo 5 Wastewater treatment facilites were provided for Bridge D.

Photo 6The treated water in the AquaSed in Bridge was clear.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0653a.doc Action-United Environmental Services & Consulting

Photo 7

The exposed slopes have been covered with tarpaulin as far as practicable.

Photo 8

The edges of slope top have been bund up to minimize muddy runoff.

Photo 9

Concrete block as temporary bund was provided align the river course and no turbid runoff was observed from the site.



Photo 10

Sump pit was constructed to collect the runoff of the site before diverted to the wastewater treatment facility.

Figure 1 Location Map for Water Quality Monitoring Locations WM2A, WM2A-Control and work area under Contract 6

То	Mr. Vincent Chan	Fax No	By e-n	nail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	26 Octo	ber 2016
Our Ref	TCS00694/13/300/ F0682	No of Pages	7	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of and 11 October 2016			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0645 dated 5 October 2016 TCS00694/13/300/F0662 dated 14 October 2016 TCS00694/13/300/F0669 dated 17 October 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008				
Date			4 Oct	4 Oct	5 Oct	11 Oct
Location			W	M2A(a)		
Time			10:45	10:45	11:10	10:30
Parameter	,		Turbidity (NTU)	Suspen	ded Solids (r	ng/L)
Action Lev	/el		AND 120% of upstream of station of the same day	14.6 AND 12 station	20% of upstre	am control day
Limit Leve	el	33.8	AND 130% of upstream of station of the same day	17.3 AND 13		eam control
Measure	WM2A-C		7.6	4.0	<2	2
d Levels	WM2A(a)		124.5	102.0	19.0	19.0
Exceedanc	e		Limit level	Limit level	Limit level	Limit level
	on Results, ndations & Measures	co Br ca Fig	cording to the site infor nstruction activities carried idge D (upstream of WM2 p works. The monitoring gure 1.	l out on 4, 5 a A) were main locations and v	and 11 Octol ly bored pili: works area ai	per 2016 at ng and pile re shown in
		2016, it was observed that the water quality at WM2A(a) was turbid and the water at WM2A-C was clear On 5 and 11 October 2016, the water quality at WM2A(a) was slightly turbid and at WM2A-C was clear. There was no discharge made from the AquaSed into the river course on 4, 5 and 11 October 2016. (<i>Photo 1 to 6</i>)				
		Int CC of ge the ex	a reported by CCKJV, a terchange was damaged in CKJV was promptly repaired 4 October 2016. (<i>Photo 7</i>) nerated due to the damaged e adjacent Ping Yuen River ceedances on 4 October 2 bident.	n the mornin ed the pipe wh) However, s d pipe and it w r. (<i>Photo 8</i>)	g of 4 Oct nich complete come muddy yas accidenta It is consider	ober 2016. ed by noon runoff was lly got into red that the
		4. Weekly joint site inspection by RE, IEC, CCKJV and ET was conducted on 6 and 13 October 2016 at Bridge D. The observation during the site inspection is summarized below.				
		(a)	Wastewater treatment fa provided for Bridge D (daily record of wastewat Contractor of Contract 6, was compliance with the B	Figures 2 and er treatment sy the wastewate	d 3) Accord ystems provi r discharge fi	ding to the ided by the rom the site
		(b)	A sump pit was construct particulars in the water proper treatment. (<i>Photo</i>)	before diverte	ed to the A	quaSed for

·····	
	was clear.
	(c) It was observed that the water quality at WM2A(a) was clear.(<i>Photo 10</i>)
	(d) Concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. (<i>Photo 11</i>)
	(e) To minimize the muddy runoff from the site, the Contractor has covered the exposed slopes as far as practicable. (<i>Photo 12</i>)
5.	In our investigation, the water mitigation measures implemented on site was in order and no adverse water impact was identified. It is considered the exceedances on 5 and 11 October 2016 were due to natural variation and unlikely caused by the works under the project.
6.	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Since the SS result required 5 working days to process, the need for repeated measurement could only rely on the result of turbidity which is in-situ measurement. Therefore, there were no repeated monitoring carried out on 6 and 12 October 2016 as no exceedance of turbidity recorded on those days. Nevertheless, there were exceedances of SS and NTU on 6 and 13 October 2016. The Contractor should continually implement the water mitigation measures in full gear as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

ltant

Photo 1

On 4 October 2016, turbid water was observed in the existing river course and WM2A(a).

Photo 3

On 5 October 2016, the quality water observed in the existing river course and WM2A(a) was slightly turbid.

Photo 4

Photo 2

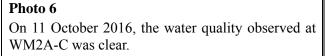

On 5 October 2016, the water quality observed at WM2A-C was clear.

Photo 5

On 11 October 2016, the quality water observed in the existing river course and WM2A(a) was slightly turbid.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0682.doc Action-United Environmental Services & Consulting

On 4 October 2016, the water quality observed at

Photo 7

On 4 October 2016, a fresh water pipe at Ping Yeung Interchange was damaged in the morning of 4 October 2016. CCKJV was promptly repaired the pipe which completed by noon.

Photo 9

A sump pit was constructed to preliminary settled the particulars in the water before diverted to the AquaSed for proper treatment.

Photo 11

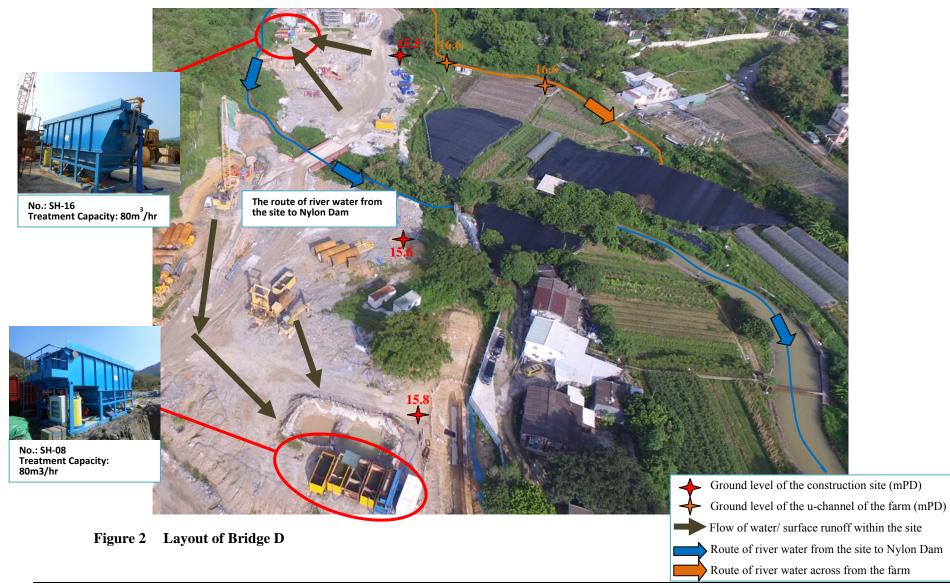
Concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site.

Photo 8

On 4 October 2016, some muddy runoff was generated due to the damaged pipe and it was accidentally got into the adjacent Ping Yuen River.

Photo 10

During site inspection on 6 October 2016, the water quality at WM2A(a) was clear.


Photo 12

The exposed slopes have been covered with tarpaulin as far as practicable.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0682.doc Action-United Environmental Services & Consulting

Figure 1 Location Map for Water Quality Monitoring Locations WM2A, WM2A-Control and work area under Contract 6

То	Mr. Vincent Chan	Fax No	By e-mail
Company	CRBC-CEC-Kaden JV		
сс			
From	Nicola Hon	Date	2 November 2016
Our Ref	TCS00694/13/300/ F0690a	No of Pages	5 (Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary O Investigation Report of Exceedance of October 2016		

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0654 dated 11 October 2016 TCS00694/13/300/F0670dated 17 October 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

C.C.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project	Project CE 45/2008			
Date		8 October 2016		
Location			/13x	
Time		10:	:49	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
Action Leve	el	13.4 AND 120% of upstream control station of the same day	12.6 AND 120% of upstream control station of the same day	
Limit Leve	l	14.0 AND 130% of upstream control station of the same day	12.9 AND 130% of upstream control station of the same day	
Measured	WM3-C	3.0	4.5	
Level	WM3x	89.3	77.0	
Exceedance	e	Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		(CCKJV), the main construction a WM3) carried out on 8 October 200	provided from the Contractor of C6 activities at South Portal (upstream of 16 was mainly pre-bored socketed steel e monitoring locations and works areas	
		2. According to the site record from the monitoring team on 8 October 2016, turbid water was observed at WM3x while the water quality at WM3-C was clear. (<i>Photo 1 and 2</i>)		
		3. In order to trace the source of turbid water, inspection was subsequently carried out aligned the existing river course of upstream of WM3x. It was observed that the river water adjacent the construction site was clear and no muddy discharge from the site was observed. (<i>Photo 3 and 4</i>)		
		on 13 October 2016 at South Por treatment facilites were maintained clear. (<i>Photo 5 and 6</i>) No adver was observed and the condition connecting to Ng Tung River which	E, IEC, CCKJV and ET was conducted tal. It was observed that wastewater properly and the effluent was visually se water impact and muddy discharge of water in the existing river branch h adjacent to the site was visually clear. off, temporary bunds were in place for gn the river course.	
		and the wastewater treatment fac properly maintained as observed of	dy water found from construction site cilities and mitigation measures were during regularly site inspection. It is ere due to natural variation and unlikely ect.	
		he monitoring frequency at WM3x has imit level exceedance recorded until no consecutive days. There were no hitoring result on 11 and 12 October		

Action to be taken		implement the water mitigation measures on schedule for environmental mitigation
Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Anh	
Date :	2 November 2016	

Photo 1

Turbid water was observed at WM3x on 8 October 2016.

Photo 2 During water sampling on 8 October 2016, the water quality at WM3-C was clear.

Photo 3

On 8 October 2016, the river water adjacent the construction site was clear and no muddy discharge from the site was observed.

Photo 4

On 8 October 2016, the river water adjacent the construction site was clear and no muddy discharge from the site was observed.

Photo 5 Wastewater treatment facilities was properly maintained and the effluent from the wastewater treatment facilities was visually clear.

During site inspection on 13 October 2016, the effluent from the wastewater treatment facilities was visually clear.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0690a.doc Action-United Environmental Services & Consulting

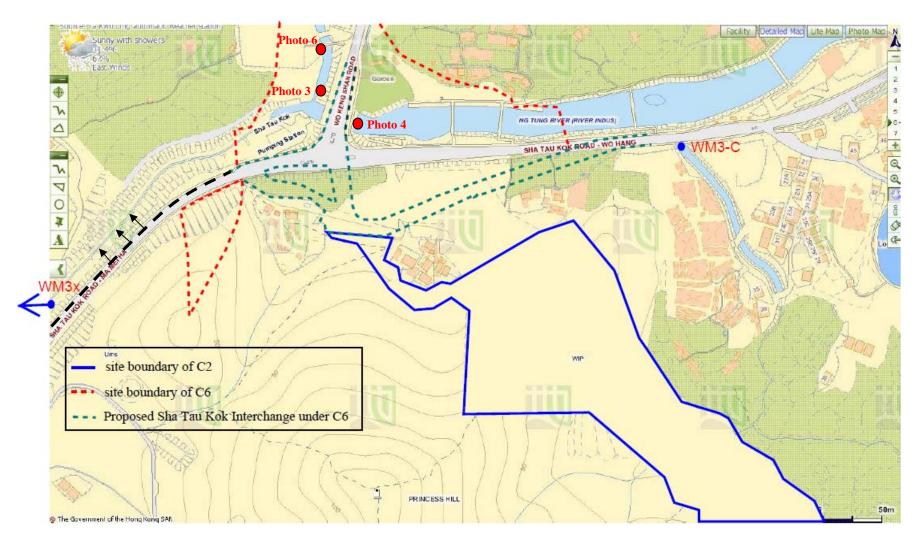


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 3	299	
Company	Dragages Hong Kong Limited				
сс					
From	Nicola Hon	Date	2 Nover	nber 2016	
Our Ref	TCS00697/13/300/ F0691	No of Pages	4	(Incl. cover sheet)	
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 8 Octol 2016 (Contract 2)				

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0655 dated 11 October 2016 TCS00694/13/300/F0671 dated 17 October 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Gregory Lo (ER, AECOM)	Fax:	2171 3498
Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008		
Date		8 October	2016	
Location		WM3x		
Time		10:49	9	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
Action Leve	1	13.4 AND 120% of upstream control	12.6 AND 120% of upstream	
Action Level	•	station of the same day	control station of the same day	
Limit Level		14.0 AND 130% of upstream control	12.9 AND 130% of upstream	
		station of the same day	control station of the same day	
Measured	WM3-C	3.0	4.5	
Level	WM3x	89.3	77.0	
Exceedance		Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		1. According to the site information provided from the Contractor of C2 (DHK), the construction activities carried out on 8 October 2016 at upstream of WM3 was superstructure work at Admin Building. The relevant works area under C2 and the water monitoring location WM3C and WM3 are shown in Figure 1.		
		2. According to the site record from the monitoring team on 8 October 2016, turbid water was observed at WM3x while the water quality at WM3-C was clear. (<i>Photo 1 and 2</i>)		
		3. In order to trace the source of turbid water, inspection was subsequently carried out aligned the existing river course of upstream of WM3x. It was observed that the river water adjacent the construction site was clear and no muddy discharge from the site was observed. (<i>Photo 3 and 4</i>)		
		4. During routine weekly site inspecti works for Admin Building was carrie area was mostly hard paved and no (<i>Photo5</i>) Moreover, it was observe construction site was clear. (<i>Photo6</i>)	ed out at Admin Building and the site adverse water impact was observed.	
		5. Since there were no sources of muddy water found from construction s and no adverse impact was observed during regularly site inspection. is considered that the exceedances were due to natural variation a unlikely caused by the works under the Project.		
		6. According to Event and Action, the been increased to daily due to the limexceedances were triggered in cexceedances triggered in the monitori	nit level exceedance recorded until no consecutive days. There were no	

Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Anh	
Date :	2 November 2016	

Photo 1

Turbid water was observed at WM3x on 8 October 2016.

Photo 3

On 8 October 2016, the river water adjacent the construction site was clear and no muddy discharge from the site was observed.

Photo 5

Superstructure works for Admin Building was carried out at Admin Building and the site area was mostly hard paved and no adverse water impact was observed.

Photo 2

During water sampling on 8 October 2016, the water quality at WM3-C was clear.

Photo 4

On 8 October 2016, the river water adjacent the construction site was clear and no muddy discharge from the site was observed.

Photo 6 During weekly site inspection, it was observed that the river channel next to the construction site was clear.

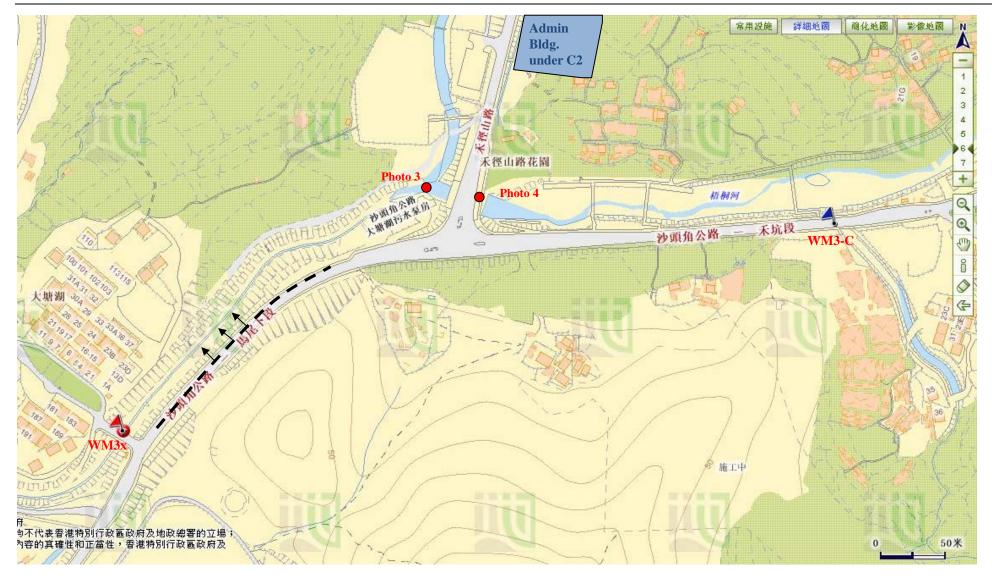


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Daniel Ho	Fax No	2638 70)77	
Company	Chun Wo Construction Ltd				
сс					
From	Nicola Hon	Date	27 October 2016		
Our Ref	TCS00670/13/300/ F0692	No of Pages	7	(Incl. cover sheet)	
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM4 on 11, 12 and 13 October 2016 (Contract 3)				

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Ho,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F0658 dated 12 October 2016 TCS00670/13/300/F0665 dated 14 October 2016. TCS00670/13/300/F0675 dated 20 October 2016.

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Bobby Hung (ER of C3, AECOM)	Fax:	2171 3498
Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Project CE 45/2008			CE 45	/2008			
Date		11 Oct	12 Oct	13 Oct	11 Oct	12 Oct	13 Oct
Location				WN	/ [4	1	1
Time		13:00	13:00	13:00	13:00	13:00	13:00
Parameter		Tur	bidity (NT	U)	Susper	nded Solids (mg/L)
Action Level) 120% of u	1		D 120% of u	
			tion of the 130% of u			tation of the s	
Limit Level			tion of the			tation of the s	
	WM4-CA	12.2	6.4	5.7	6.0	5.0	9.0
Measured Level	WM4-CB	21.4	4.8	11.8	34.5	28.0	22.5
	WM4	250.0	179.0	369.5	153.5	122.0	240.5
Exceedance		Limit	Limit	Limit	Limit	Limit	Limit
Investigation	Results,	Level 1. Accordi	Level	Level	Level	Level ed by the Cor	Level
Recommendations & Mitigation Measures		 to 13 C excavat backfill activitie 2. Accordination 2. Accordination 3. Ad-hoc Chun W investig muddy Tau Row site of a was ob- near that 4. During condition impacts investig muddy related 5. Accordination 5. Accordination 6. Accordination 7. Accordination 7. Accordination 7. Accordination 8. Accordination 8. Accordination 8. Accordination 9. Accordi	Detober 20 ion, breal ing which es would no ing to the s ober 2016, ter quality acept for so bed atWM inspection Wo at the gate the sou water was ad. (<i>Photo</i> other Cont served out at construct weekly si on was gen aunder t gation, it is water from to the work ing to the ed station aceedance r ecutive da no exceeda r 2016. H ent the nended in	16 were making work as same as of generated ite record fi muddy wa at WM4-Come silt and I4-CB. (Pri was carried upstream a rice of mudd found flowi of 10 to 12) ractor near side their s ion site. (Ri te inspection erally in or the Contra considered the outsid as under the Event and A shall be inter- recorded unitys. In vie inces were lowever, th environt	ainly gener , erection s the previous excessive work for the mo- ter was obsected and Will sandy parti- <i>hoto 1 to 9</i> d out by the area of im- dy water. Ing from the There was Kiu Tak R ite area and <i>Photo 13 to</i> on by ET der and no ct were that exceed e of site boo Contract. Action, the creased to til no exceed wof the s triggered at e Contract	nitoring team served at WI M4-CB were iculars obser and Figure I e monitoring pact station During the in e river branch as active con oad and muc d the underp 15) in October I adverse wat identified. lances were of oundary and monitoring I daily due to edances were ubsequent m t WM4 on 1 or should co	s such as york and and these n on 11 to M4 while e visually wed at the team and WM4 to nspection, n near Kiu nstruction ddy water pass drain 2016, the er quality In our due to the not likely frequency the limit triggered nonitoring 4 and 15 ontinue to measures

Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Aug.	
Date :	27 October 2016	
—	_,	

Photo 1

Turbid water was observed at WM4 on 11 October 2016.

Photo 3

On 11 October 2016, the water quality at WM4-CB was generally clear but some silt and sandy particulars were observed at the channel bed.



Photo 5 The water quality at WM4-CA was visually clear on 12 October 2016

Photo 2

The water quality at WM4-CA was visually clear on 11 October 2016.

Photo 4

Turbid water was observed at WM4 on 12 October 2016.

Photo 6

On 12 October 2016, the water quality at WM4-CB was generally clear but some silt and sandy particulars were observed at the channel bed.

Photo 7

Turbid water was observed at WM4 on 13 October 2016.

Photo 9

On 13 October 2016, the water quality at WM4-CB was generally clear but some silt and sandy particulars were observed at the channel bed.

Photo 8

The water quality at WM4-CA was visually clear on 13 October 2016.

Photo 10 On 11 October 2016, muddy water was found flowing from the river branch near Kiu Tau Road.

Photo 11 On 12 October 2016, muddy water was found flowing from the river branch near Kiu Tau Road.

Photo 12 On 13 October 2016, muddy water was found flowing from the river branch near Kiu Tau Road.

Photo 13

There was construction activities carried by other Contractor near Kiu Tak Road and muddy water was observed outside the site area.

Photo 14

There was construction activities carried by other Contractor near Kiu Tak Road and muddy water was observed outside the site area.

Photo 15

There was construction activities carried by other Contractor near Kiu Tak Road and muddy water was observed at the underpass drain near that construction site.

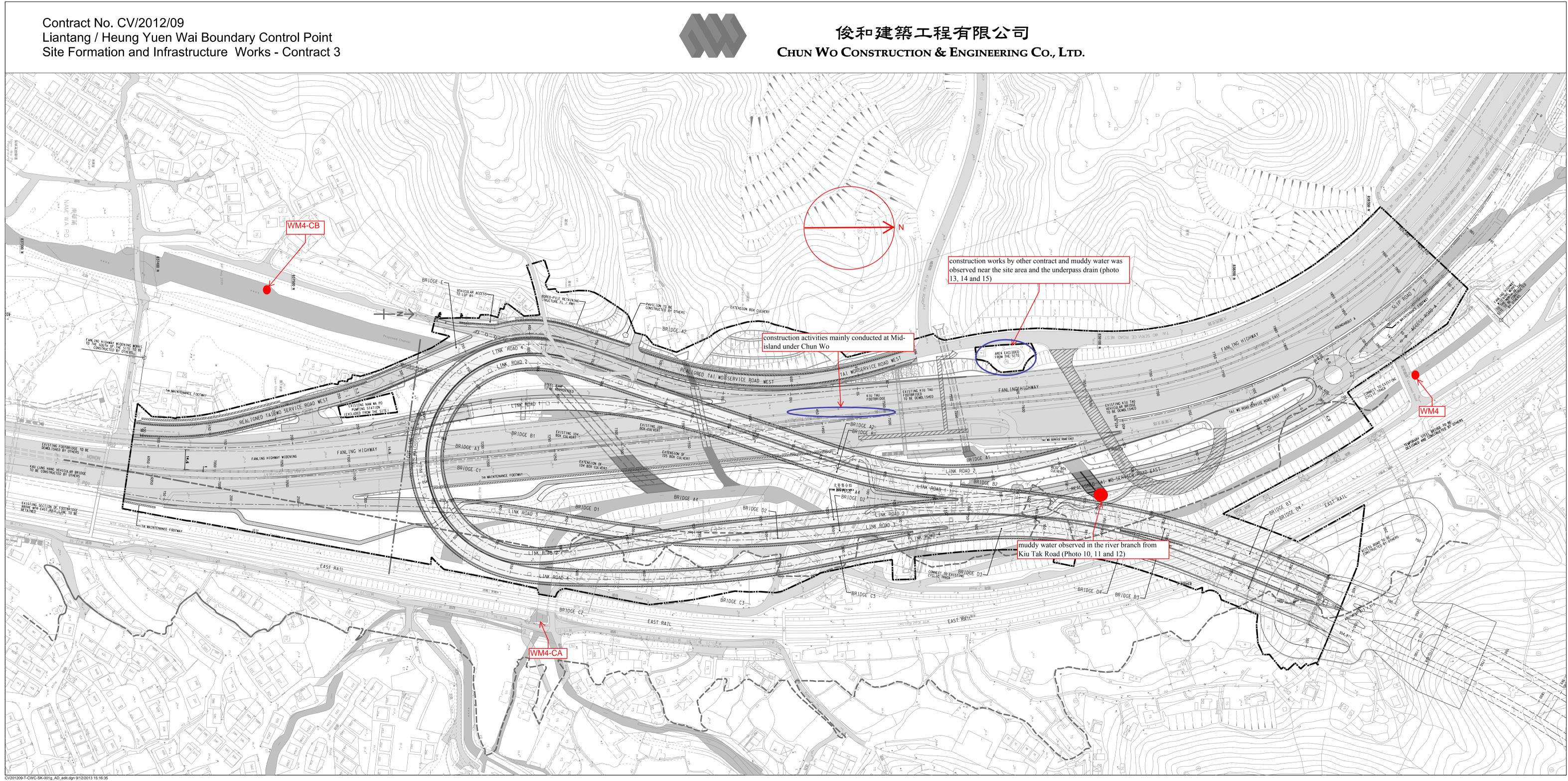


Figure 1. Location of Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 3	299	
Company	Dragages Hong Kong Limited				
сс					
From	Nicola Hon	Date	31 Octo	ber 2016	
Our Ref	TCS00697/13/300/ F0693	No of Pages	7	(Incl. cover sheet)	
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM4 on 11, 12 an 13 October 2016 (Contract 2)				

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F0659 dated 12 October 2016 TCS00670/13/300/F0666 dated 14 October 2016. TCS00670/13/300/F0676 dated 20 October 2016.

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Gregory Lo (ER, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project	CE 45/2008							
Date		11 Oct	12 Oct	13 Oct	11 Oct	12 Oct	13 Oct	
Location		WM4						
Time		13:00	13:00	13:00	13:00	13:00	13:00	
Parameter		Turbidity (NTU)			Suspended Solids (mg/L)			
Action Level		35.2 AND 120% of upstream control station of the same day			39.4 AND 120% of upstream control station of the same day			
Limit Level		38.4 AND 130% of upstream control station of the same day			45.5 AND 130% of upstream control station of the same day			
	WM4-CA	12.2	6.4	5.7	6.0	5.0	9.0	
Measured Level	WM4-CB	21.4	4.8	11.8	34.5	28.0	22.5	
	WM4	250.0	179.0	369.5	153.5	122.0	240.5	
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	
Recommendation Mitigation Measure Mitigation Measur	 Contract 2 (DHK), construction activities carried out at South Portal during 11 to 13 October 2016 included tunnel excavation and ventilation building superstructure. According to the site record from the monitoring team on 11 to 13 October 2016, muddy water was observed at WM4 while the water quality at WM4-CA and WM4-CB were visually clear except for some silt and sandy particulars observed at the channel bed atWM4-CB. (<i>Photo 1 to 9 and Figure 1</i>) Ad-hoc inspection was carried out by the monitoring team at the upstream area of impact station WM4 to investigate the source of muddy water. During the inspection, muddy water was found flowing from the river branch near Kiu Tau Road. (<i>Photo 10 to 12</i>) There was active construction site of other Contractor near Kiu Tak Road and muddy water was observed outside their site area and the underpass drain near that construction site. (<i>Photo 13 to 15</i>) During weekly site inspection by ET in October 2016, the condition was generally in order and no adverse water quality impacts under the Contract were identified. In our investigation, it is considered that exceedances were due to the muddy water from the Outside of site boundary and not likely related to the works under the Contract. According to the Event and Action, the monitoring frequency at exceed station shall be increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. In view of the subsequent monitoring result, no exceedances were triggered at WM4 on 14 and 15 October 2016. However, the Contractor should continue to implement the environmental mitigation measures recommended in implementation schedule in the EM&A Manual. 							

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	27 October 2016

Photo 1

Turbid water was observed at WM4 on 11 October 2016.

Photo 3

On 11 October 2016, the water quality at WM4-CB was generally clear but some silt and sandy particulars were observed at the channel bed.

Photo 5 The water quality at WM4-CA was visually clear on 12 October 2016

Photo 2

The water quality at WM4-CA was visually clear on 11 October 2016.

Photo 4

Turbid water was observed at WM4 on 12 October 2016.

Photo 6

On 12 October 2016, the water quality at WM4-CB was generally clear but some silt and sandy particulars were observed at the channel bed.

Photo 7

Turbid water was observed at WM4 on 13 October 2016.

Photo 9

On 13 October 2016, the water quality at WM4-CB was generally clear but some silt and sandy particulars were observed at the channel bed.

Photo 8

The water quality at WM4-CA was visually clear on 13 October 2016.

Photo 10 On 11 October 2016, muddy water was found flowing from the river branch near Kiu Tau Road.

Photo 11 On 12 October 2016, muddy water was found flowing from the river branch near Kiu Tau Road.

Photo 12 On 13 October 2016, muddy water was found flowing from the river branch near Kiu Tau Road.

Photo 13

There was construction activities carried by other Contractor near Kiu Tak Road and muddy water was observed outside the site area.

Photo 14

There was construction activities carried by other Contractor near Kiu Tak Road and muddy water was observed outside the site area.

Photo 15

There was construction activities carried by other Contractor near Kiu Tak Road and muddy water was observed at the underpass drain near that construction site.

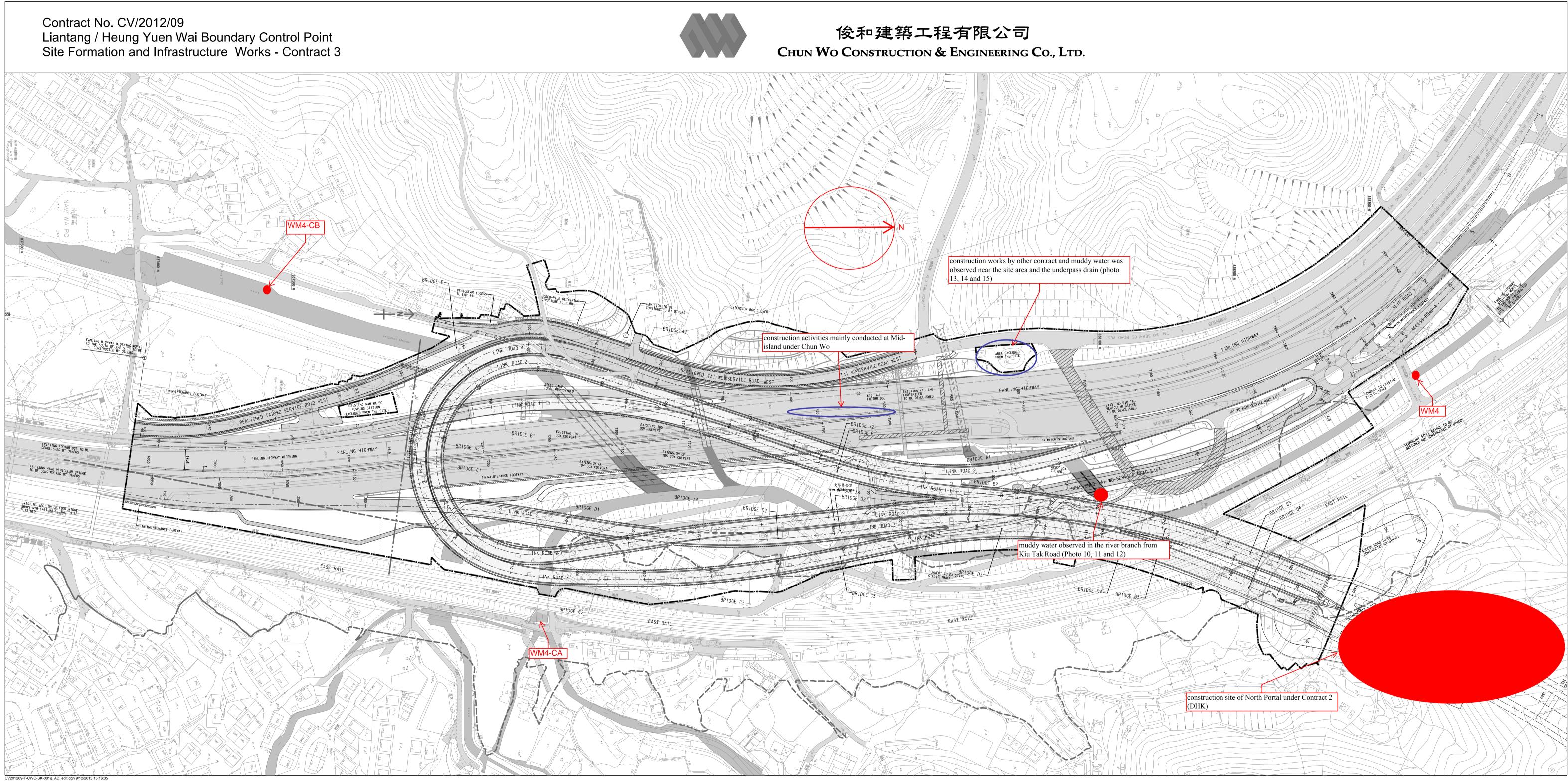


Figure 1. Location of Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-m	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	8 Novem	lber 2016
Our Ref	TCS00694/13/300/ F0706	No of Pages	5	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary O Investigation Report of Exceedance of October 2016			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0678 dated 20 October 2016 TCS00694/13/300/F0704dated 2 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Steve Lo (CEDD/C6)	Fax:	2714 0103
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45	5/2008
Date			ber 2016
Location			//3x
Time			:45
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)
Action Lev	el	13.4 AND 120% of upstream control station of the same day	12.6 AND 120% of upstream control station of the same day
Limit Leve	1	14.0 AND 130% of upstream control station of the same day	12.9 AND 130% of upstream control station of the same day
Measured	WM3-C	129.5	87.0
Level	WM3x	267.0	395.0
Exceedance	e	Limit Level	Limit Level
Investigation Recommen Mitigation	dations &	(CCKJV), the main construction a WM3) carried out on 18 October	a provided from the Contractor of C6 activities at South Portal (upstream of 2016 was mainly pre-bored socketed The monitoring locations and works
		2016, there was heavy rainstorm	n the monitoring team on 18 October a during the course of sampling and hout the channel including WM3x and
		on 20 October 2016 at South Por treatment facilites were maintained clear. (<i>Photo 3</i>) No adverse wa observed and the condition of connecting to Ng Tung River which	E, IEC, CCKJV and ET was conducted tal. It was observed that wastewater l properly and the effluent was visually ter impact and muddy discharge was water in the existing river branch h adjacent to the site was visually clear. e surface runoff, temporary bunds were lities and align the river course.
		on 18 October 2016 was deteriorat flow and stir up sediment. More near WM3x would be collected the surface via open drain and commu	ed that the water quality in the channel ed by heavy rain due to vigorous water eover, the monitored drainage channel e rain water from the Sha Tau Kok road unal channel. It is concluded that the n and not caused by the works under the
		been increased to daily due to the lexceedances were triggered in	he monitoring frequency at WM3x has imit level exceedance recorded until no consecutive days. There were no hitoring result on 19 and 20 October

Action to be taken		implement the water mitigation measures ion schedule for environmental mitigation
Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Anh	
Date :	8 November 2016	

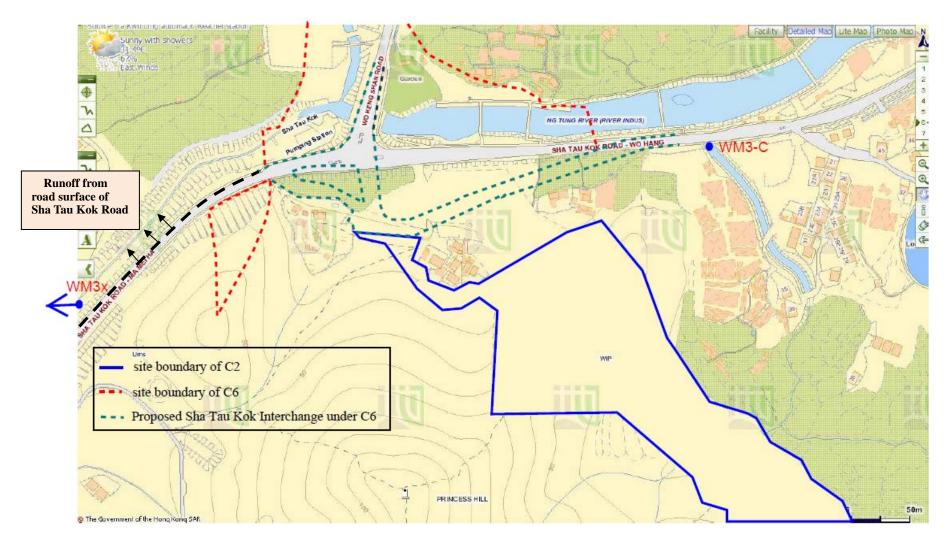


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 32	299
Company	Dragages Hong Kong Limited			
сс				
From	Nicola Hon	Date	8 Novem	ıber 2016
Our Ref	TCS00697/13/300/ F0707	No of Pages	4	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance October 2016 (Contract 2)			
Humen do mot	ussains all massa on the main is illesible places	a autorat the a aniain ator	(952) 20	50 6050 to up and Should

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0679 dated 20 October 2016 TCS00694/13/300/F0705 dated 2 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

C.C.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Gregory Lo (ER, AECOM)	Fax:	2171 3498
	Mr. B.K. Chow(CEDD/C2)	Fax:	2714 0103
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2	008
Date		18 October	
Location		WM3	
Time		11:45	5
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)
Action Leve	1	13.4 AND 120% of upstream control	12.6 AND 120% of upstream
	-	station of the same day	control station of the same day
Limit Level		14.0 AND 130% of upstream control station of the same day	12.9 AND 130% of upstream
		2	control station of the same day
Measured	WM3-C	129.5	87.0
Level	WM3x	267.0	395.0
Exceedance		Limit Level	Limit Level
Investigation Results, Recommenn & M Measures		1. According to the site information p (DHK), the construction activities upstream of WM3 was superstructurelevant works area under C2 and shown in Figure 1.	carried out on 8 October 2016 at ire work at Admin Building. The
		2. According to the site record from t 2016, there was heavy rainstorm durin water was observed throughout th WM3-C. (<i>Photo 1 and 2</i>)	ng the course of sampling and muddy
		3. During routine weekly site inspecti- works for Admin Building was carrie area was mostly hard paved and no (<i>Photo3</i>) Moreover, it was observe construction site was clear. (<i>Photo 4</i>)	d out at Admin Building and the site adverse water impact was observed.
		4. In our investigation, it is considered on 18 October 2016 was deteriorated flow and stir up sediment. Moreov near WM3x would be collected the ra surface via open drain and communa exceedances were likely due to rain an Project.	by heavy rain due to vigorous water ver, the monitored drainage channel ain water from the Sha Tau Kok road al channel. It is concluded that the
		5. According to Event and Action, the been increased to daily due to the lim exceedances were triggered in c exceedances triggered in the monitori	it level exceedance recorded until no onsecutive days. There were no

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Aul
Date :	8 November 2016

AUES

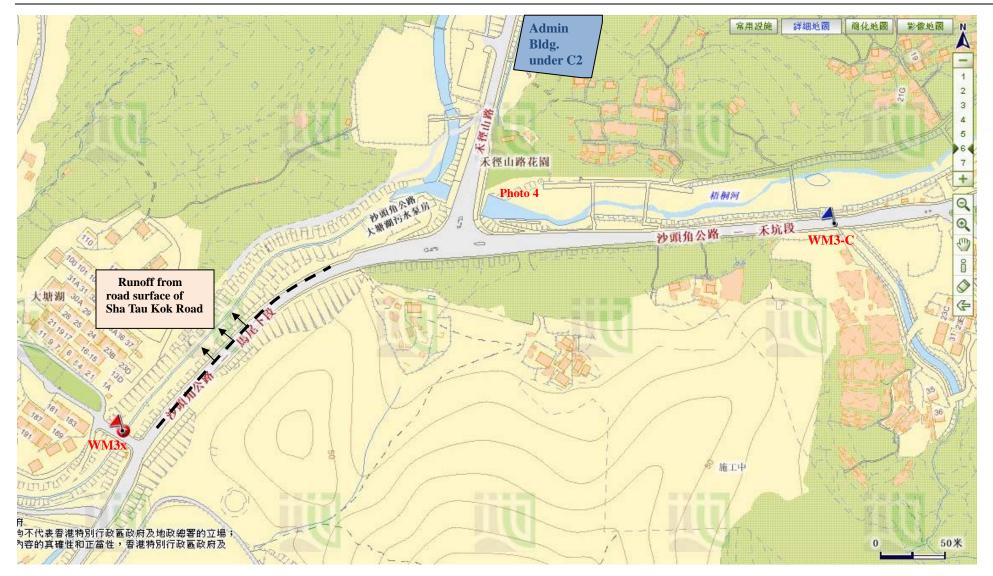


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Daniel Ho	Fax No	2638 7077
Company	Chun Wo Construction Ltd		
сс			
From	Nicola Hon	Date	4 November 2016
Our Ref	TCS00670/13/300/ F0708	No of Pages	6 (Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of October 2016 (Contract 3)		

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Ho,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F0680 dated 20 October 2016 TCS00670/13/300/F0686 dated 25 October 2016. TCS00670/13/300/F0700 dated 1 November 2016.

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Bobby Hung (ER of C3, AECOM)	Fax:	2171 3498
Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

|--|

Project		CE 45/2008			
Date		18 Oct 2016	20 Oct 2016	18 Oct 2016	20 Oct 2016
Location			WN	M4	
Time		13:00	13:00	13:00	13:00
Parameter		Turbidity	(NTU)	Suspended S	olids (mg/L)
Action Level		35.2 AND 120%		39.4 AND 120	
		control station of 38.4 AND 130%		control station of 45.5 AND 130	
Limit Level		control station of	1	control station of	
	WM4-CA	95.7	19.1	69.0	5.0
Measured Level	WM4-CB	94.3	59.0	47.3	27.5
	WM4	156.0	162.5	108.0	118.5
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level
Investigation Results, Recommendations & Mitigation Measures		 C3 (Chun Wa 18 and 20 Oct as excavation backfilling wa activities wou 2. According to October 2016 channel inclue 3) Accordin was heavy rais considered th deteriorated be water flow un 3. On 20 Octobe WM4-CB. Th some silt and (<i>Photo 4 to</i> monitoring test station WM4 observed that Kiu Tau Road of other Cont observed outs 4. During week condition was impacts und investigation, heavy rain an and not likely 5. According to at exceed stat level exceedation 	b), the construct stober 2016 were h, breaking wo hich as same as ld not generated the site record 6, muddy water ding WM4, WM g to the rainfall in (rainfall 178.7 hat the water by the sediment der rain. er 2016, turbid water le water quality as a sandy particula 6) Ad-hoc ins am and Chun W to investigate the muddy water fled d. (Photo 7) T ractor near Kiu ide their site area ly site inspection generally in or er the Contra it is considered d muddy water fred to the Event and A tion shall be ind nce recorded uni- e days. In vie	ion provided by the tion activities can be mainly general ork, erection of a the previous more excessive wastew from the monitor r was observed [4-CA and WM4 l recorded from the fund) on 18 Octo quality in the that stirred up of water was observed at WM-CA was v ars observed at the spection was carn to at the upstream e source of muddy owing from the ri- here was active of Tak Road and m a. (<i>Photo 8</i>) on by ET in Oct- der and no adverse ct were identified that exceedance from the outside of orks under the Co Action, the monit creased to daily of til no exceedances w of the subsequent triggered at WM4-	ried out during site works such formwork and onths and these vater. ing team on 18 throughout the CB. (<i>Photo 1 to</i> the HKO, there ber 2016. It is channel was due to vigorous ed at WM4 and isually clear but he channel bed. ried out by the n area of impact y water. it was ver branch near construction site uddy water was tober 2016, the se water quality ied. In our es were due to of site boundary ntract. oring frequency due to the limit s were triggered uent monitoring

AUES

October 2016 (no monitoring on 21 October 2016 due to
typhoon signal no. 8). However, the Contractor should
continue to implement the environmental mitigation measures
recommended in implementation schedule in the EM&A
Manual.

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Aul		
Date :	4 November 2016		

Photo 1

Turbid water was observed at WM4 on 18 October 2016.

Photo 2 Turbid water was observed at WM4-CA on 18 October 2016.

Photo 3

Turbid water was observed at WM4-CB on 18 October 2016.

Photo 5

On 20 October 2016, the water quality at WM-CA was visually clear but some silt and sandy particulars observed at the channel bed.

Photo 4 Turbid water was observed at WM4 on 20 October 2016.

Photo 6 Turbid water was observed at WM4 on 20 October 2016.

AUES

Photo 7

On 20 October 2016, muddy water was found flowing from the river branch near Kiu Tau Road.

Photo 8 There was construction activities carried by other Contractor near Kiu Tak Road and muddy water was observed outside the site area.

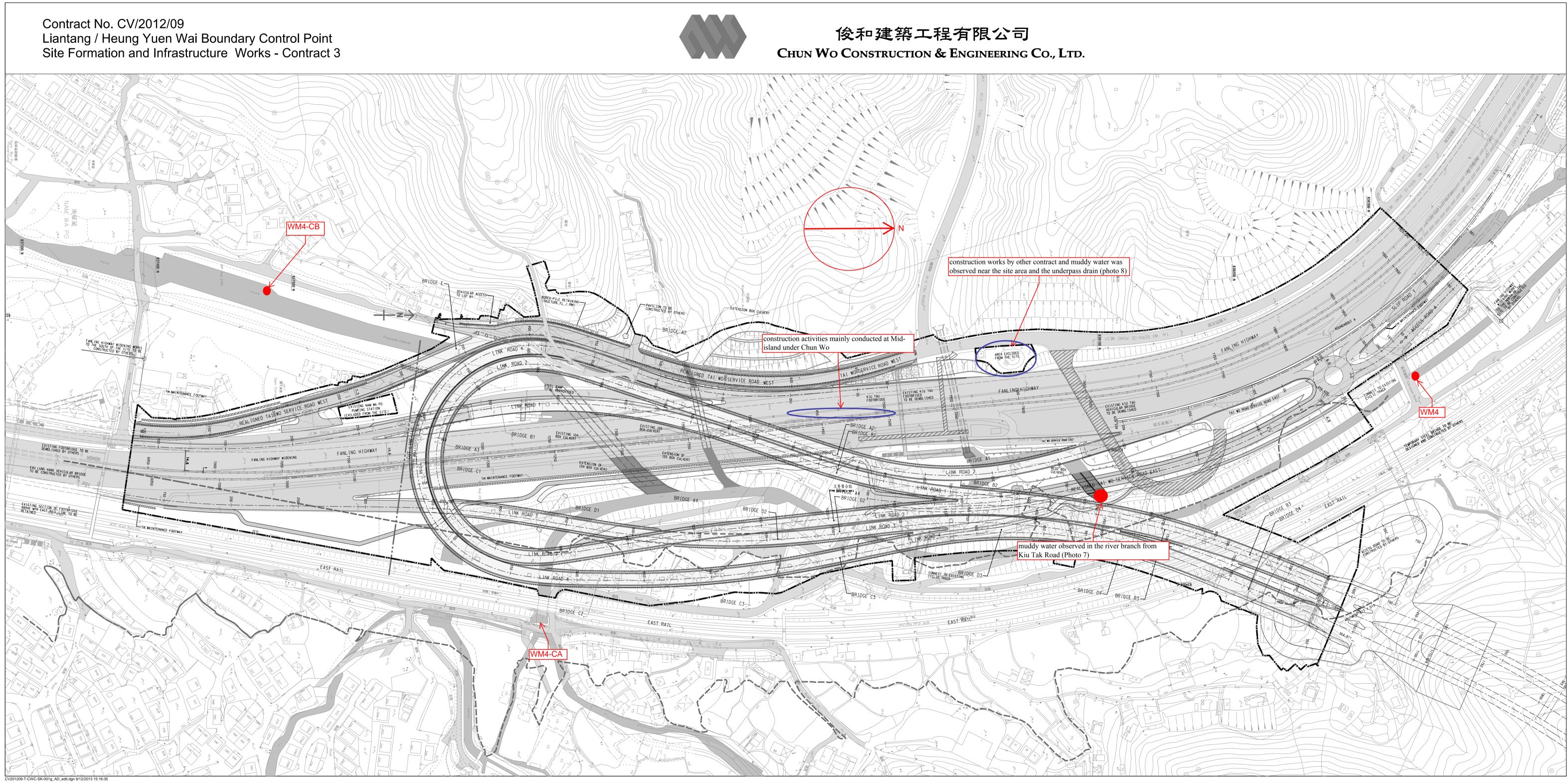


Figure 1. Location of Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 3	299
Company	Dragages Hong Kong Limited			
сс				
From	Nicola Hon	Date	4 Noven	nber 2016
Our Ref	TCS00697/13/300/ F0709	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of October 2016 (Contract 2)			
IC 1			(052) 20	50 6050 (

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F0681 dated 20 October 2016 TCS00670/13/300/F0687 dated 25 October 2016. TCS00670/13/300/F0701 dated 1 November 2016.

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Gregory Lo (ER, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008			
Date		18 Oct 2016	20 Oct 2016	18 Oct 2016	20 Oct 2016
Location		WM4			
Time		13:00	13:00	13:00	13:00
Parameter		Turbidit	ty (NTU)	Suspended S	Solids (mg/L)
Action Level			0% of upstream		% of upstream
			of the same day 0% of upstream		of the same day % of upstream
Limit Level			of the same day		of the same day
	WM4-CA	95.7	19.1	69.0	5.0
Measured Level	WM4-CB	94.3	59.0	47.3	27.5
Level	WM4	156.0	162.5	108.0	118.5
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level
Investigation Results, Recommendations & Mitigation Measures		 Contract 2 (Portal during and ventilation According to October 2010 including W According to rain (rainfall the water quat that stirred up On 20 Octob WM4-CB. T some silt ar (<i>Photo 4 to</i> monitoring t station WM4 observed that Tau Road. (<i>F</i> Contractor n outside their During week observed their During week observed their According to exceed station exceedance consecutive of no exceedance 2016 (no mon no. 8). How the environ 	the site information (DHK), construction (DHK)	on activities carri r 2016 included t ructure. from the monitor s observed throug and WM4-CB. (ed from the HKO, ctober 2016. It is was deteriorated ater flow under ra- vater was observed t WM-CA was v rs observed at t pection was carri- o at the upstream source of muddy ing from the river as active construct and muddy wat 8) by ET in Octobe enerally in order Contract were ide it is considered from the outside ks under the Contra- ction, the monitor ed to daily due t exceedances we the subsequent n at WM4 on 22 tober 2016 due te tor should contin n measures re	ed out at South unnel excavation ing team on 18 shout the channel Photo 1 to 3) there was heavy s considered that by the sediment tin. ed at WM4 and isually clear but he channel bed. ried out by the n area of impact y water. It was branch near Kiu tion site of other er was observed ber 2016, it was and no adverse entified. (Photo 9 that exceedances of site boundary ract. ing frequency at o the limit level ere triggered in nonitoring result, and 24 October o typhoon signal ue to implement

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Anh		
Date :	4 November 2016		

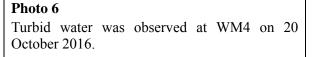
Photo 2

October 2016.

Turbid water was observed at WM4 on 18 October 2016.

Turbid water was observed at WM4-CA on 18 October 2016.

Photo 3


Turbid water was observed at WM4-CB on 18 October 2016.

Turbid water was observed at WM4 on 20

Photo 5

On 20 October 2016, the water quality at WM-CA was visually clear but some silt and sandy particulars observed at the channel bed.

Photo 7

On 20 October 2016, muddy water was found flowing from the river branch near Kiu Tau Road.

Photo 8

There was construction activities carried by other Contractor near Kiu Tak Road and muddy water was observed outside the site area.

Photo 9 The site exit was paved and gets rid of muddy materials.

Photo 10 No muddy water was observed at the discharge point from the site.

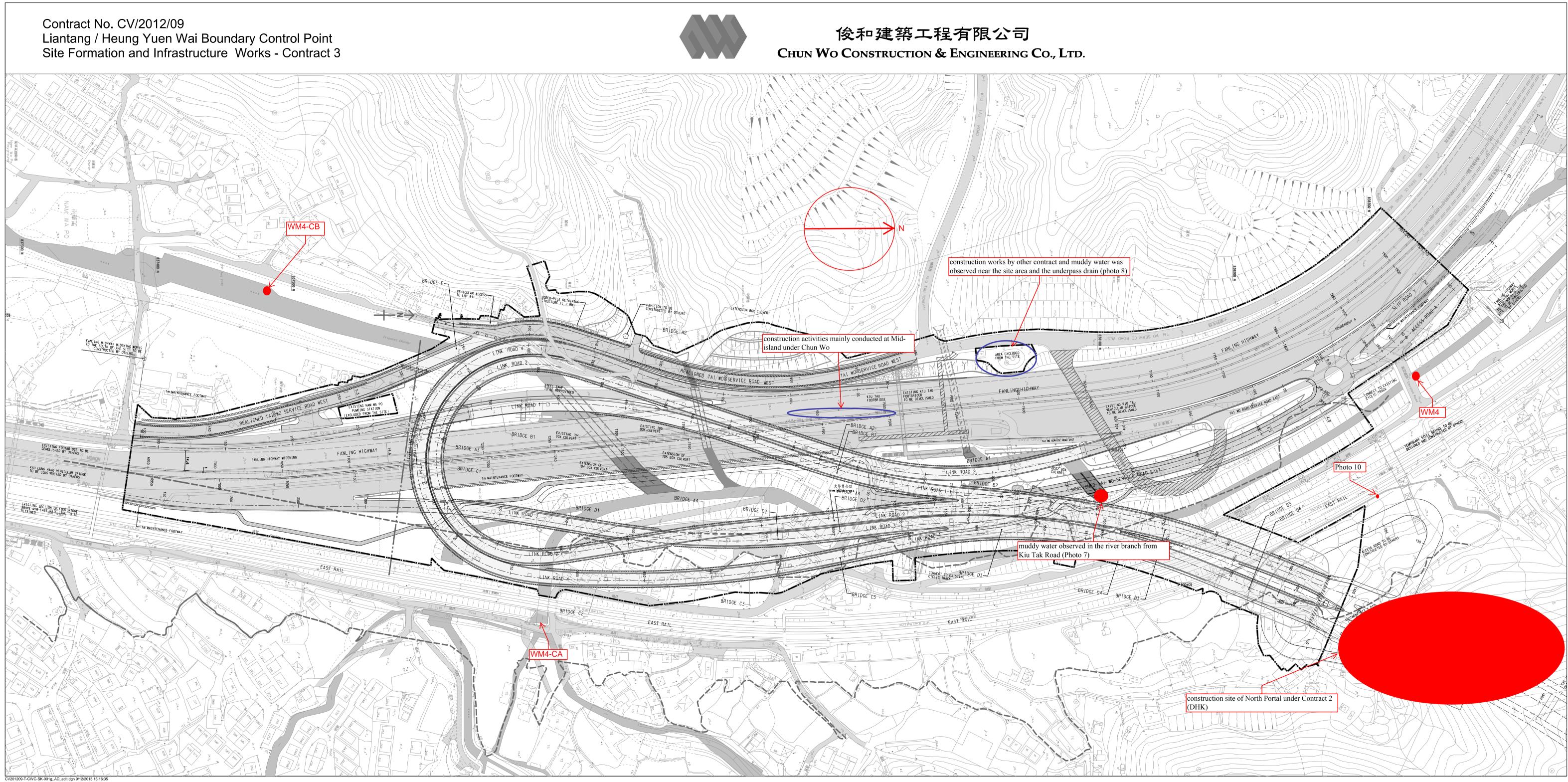


Figure 1. Location of Water Quality Monitoring Location

Mr. Vincent Chan	Fax No	By e-ma	ail
CRBC-CEC-Kaden JV			
Nicola Hon	Date	10 Nover	nber 2016
TCS00694/13/300/ F0711	No of Pages	6	(Incl. cover sheet)
8 8 .			
	CRBC-CEC-Kaden JV Nicola Hon TCS00694/13/300/F0711 Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary O Investigation Report of Exceedance of V and 20 October 2016	CRBC-CEC-Kaden JV Nicola Hon Date TCS00694/13/300/F0711 No of Pages Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point a Investigation Report of Exceedance of Water Quality	CRBC-CEC-Kaden JV Nicola Hon Date 10 Nover TCS00694/13/300/F0711 No of Pages 6 Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Assocc 6 Investigation Report of Exceedance of Water Quality at Locatt and 20 October 2016 10 Nover

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref. of following:

TCS00694/13/300/F0677 dated 20 October 2016 TCS00694/13/300/F0684 dated 25 October 2016 TCS00694/13/300/F0703 dated 1 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

c.c.

Nicola Hon Environmental Consultant Encl.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Steve Lo (CEDD/C6)	Fax:	2714 0103
Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project				CE 45/	2008		
Date		18 Oct 2016	19 Oct 2016	20 Oct 2016	18 Oct 2016	19 Oct 2016	20 Oct 2016
Location				WM			
Time		10:15	11:00	11:00	10:15	11:00	
Parameter		Tu	rbidity (NTU)		Suspen	ded Solids (mg/L)
Action Lev	el	11.4 AND 12 station	20% of upstrea n of the same	am control day		0 120% of untion of the s	
Limit Leve	1		30% of upstrea			D 130% of unition of the s	
Measured	WM2B-C	40.6	91.2	4.8	26.0	96.0	<2
Levels	WM2B	641.0	240.5	26.8	699.0	261.0	24.0
Exceedance	e	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level
Investigation Results, Recommendations & Mitigation Measures		 activities (upstream locations 2. Accordint team on 1 the channel that the v (Photo 1) 3. Accordint 19 Octob was very throughout 	carried out n of WM2B) w and works are g to the site r l8 and 19 Octo nel including vater flow in t to 4) g to the site c er 2016, the w vigorous du ut the channe	from 18 to vere bored p ea are shown ecord and pl ober 2016, m Locations W the channel observations vater flow in e to heavy l. Moreove	provided from 20 October iling and slope in Figure 1. hotograph take uddy water w VM2B and WI was very vigo from the mon the channel of rain and turbi er, there were hel from the ad	2016 at N e work. The en from the as observed M2B-C. It rous due to itoring team f WM2B and d water wa trails of mu	North Portal monitoring monitoring throughout t was noted heavy rain. n on 18 and d WM2B-C as observed uddy runoff
		 to rainsto considerer rainstorm 4. Accordin team on 2 WM2B-C channel 1 water dis were due during sa 5. There wa 22 and 2 October implement 	orm. (<i>Photo 5</i> and that the ex and runoff fra- g to the site r 20 October 20 C was clear, b bed of WM21 scharged from e to the distu- mpling at shal is no exceedar 4 October 20 due to typho the water nation schedu	& 6 and F ceedances o om road and ecord and pl 16, the water but some sil 3. (Photo 7 a the site, it rbance of si low water. nce recorded 16 in which oon No.8. mitigation	<i>Figure 1)</i> In n 18 and 19 not likely cau hotograph take r quality at the t and sedimer & 8) Since is considered in the subsequence no sampling Nevertheless, measures as onmental miti	our investi October 21 sed by the F en from the channel of it was obse there were that the e ent at the c uent monito was carried CCKJV s recommen	gation, it is 6 were due Project. monitoring WM2B and erved at the e no muddy exceedances channel bed pring day on d out on 21 hould fully ded in the

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	10 November 2016

On 18 October 2016, turbid water was observed

throughout the channel of WM2B. Monitoring was

carried out during heavy rain.

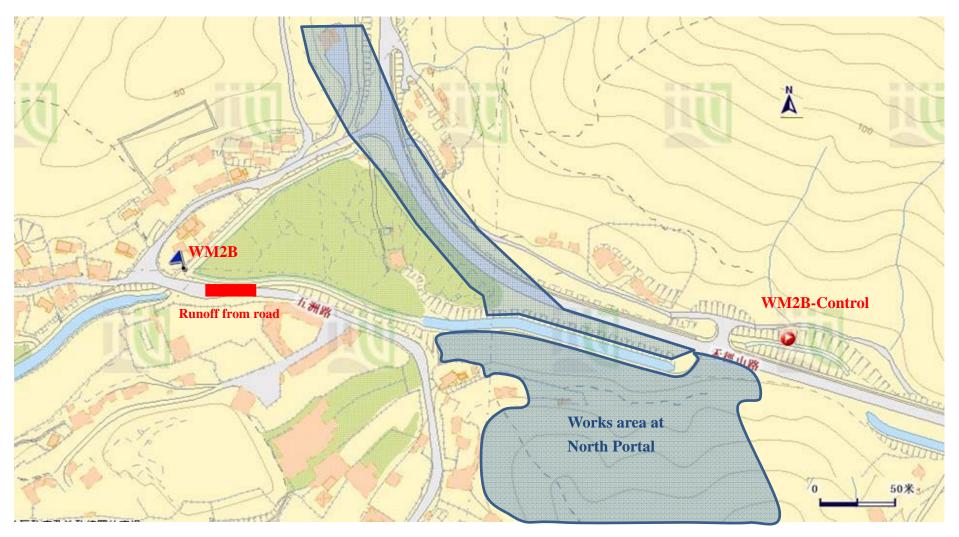
On 18 October 2016, turbid water was observed at the channel of WM2B-C. Monitoring was carried out during heavy rain.

Photo 3

On 19 October 2016, turbid water was observed throughout the channel and WM2B. Monitoring was carried out during heavy rain and vigorous water flow was observed.

Photo 4

On 19 October 2016, turbid water was observed at the channel of WM2B-C. Monitoring was carried out during heavy rain. Runoff into the channel was observed at channel of WM2B-C.



On 20 October 2016, the water at the channel of WM2B was clear, but some silt and sediment was observed at the channel bed.

On 20 October 2016, the water at the channel of WM2B-C was clear,

AUES

