

JOB NO.: TCS00694/13

AGREEMENT NO. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (NO.40) – NOVEMBER 2016

PREPARED FOR CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT (CEDD)

Date	Reference No.	Prepared By	Certified By
13 December 2016	TCS00694/13/600/R0782v2	Anh	The

Nicola Hon (Environmental Consultant) Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks
1	8 December 2016	First Submission
2	13 December 2016	Amended against the IEC's comments on 9 December 2016

Unit A-C, 27/F Ford Glory Plaza 37- 39 Wing Hong Street Cheung Sha Wan, Kowloon, Hong Kong T +852 3995 8100 F +852 3995 8101 E hongkong@smec.com www.smec.com

14 December 2016

Our ref: 7076192/L21285/AB/AW/MC/rw

By Email & Post

AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T.

Attention: Mr Simon LEUNG

Dear Sirs

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Independent Environmental Checker – Investigation Monthly EM&A Report (No. 40) – November 2016

With reference to the Monthly EM&A Report No. 40 for November 2016 (Version 2) certified by the ET Leader, please be noted that we have no adverse comments on the captioned submission. We herewith verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-404/2011/C.

Thank you for your attention and please do not hesitate to contact the undersigned on tel. 3995-8120 or by email to antony.wong@smec.com; or our Mr Man CHEUNG on tel. 3995 8132 or by email to man.cheung@smec.com.

Yours faithfully for and on behalf of SMEC Asia Limited

Antony WONG Independent Environmental Checker

сс	CEDD/BCP	(a)	Mr Desmond LAM	by fax: 3547 1659 by fax: 2804 6805
	ArchSD	575	Mr William WL CHENG	
	AECOM	(m)	Mr Pat LAM / Mr Perry YAM	by email
	Ronald Lu		Mr Peter YAM / Mr Justin CHEUNG	by email
	CW	243	Mr Daniel HO	by email
	DHK		Mr Daniel ALTIER	by email
	CCKJV	-	Mr Vincent CHAN	by email
	KRSJV	7	Mr TY LEUNG	by email
	Leighton	÷	Mr Jon KITCHING	by email
	AUES	÷.	Mr TW TAM	by email

\\hksmecdf01\share\jobs\7076192 - cedd - iec for liantang heung yuen wai bcp\02 out\02_161214-01-o-l verify monthly report (nov 16)_121285.docx

EXECUTIVE SUMMARY

ES01 This is the **40th** monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from **1 to 30 November 2016** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

- ES02 To facilitate the project management and implementation, Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project is divided to seven CEDD contracts including Contract 2 (CV/2012/08), Contract 3 (CV/2012/09), Contract 4 (TCSS), Contract 5 (CV/2013/03), Contract 6 (CV/2013/08) and Contract 7 (NE/2014/03) and an ArshSD contract (Contract SS C505).
- ES03 In the Reporting Period, the major construction works under Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project included Contract 2, Contract 3, Contract 6, Contract 7 and Contract SS C505. Environmental monitoring activities under the EM&A programme in the Reporting Period are summarized in the following table.

Environmental	Environmental Monitoring	Reporting	Period
Aspect	Parameters / Inspection	Number of Monitoring Locations to undertake	Total Occasions
Air Quality	1-hour TSP	9	135
Air Quality	24-hour TSP	9	49
Construction Noise	L _{eq(30min)} Daytime	10	45
		WM1 & WM1-C	13 Scheduled & 0 extra
	Water in-situ measurement and/or sampling	WM2A(a) & WM2A-Cx	13 Scheduled & 8 extra
Water Quality		WM2B & WM2B-C	13 Scheduled & 1 extra
		WM3x &WM3-C	13 Scheduled & 8 extra
		WM4, WM4-CA &WM4-CB	13 Scheduled & 1 extra
Ecology	Woodland compensationi) General Health condition of planted speciesii) Survival of planted species	9 Quadrats	1
		Contract 2	4
Joint Site	IEC, ET, the Contractor and	Contract 3	4
Inspection /	RE joint site Environmental	Contract 6	4
Audit	Inspection and Auditing	Contract 7	5
		Contract SS C505	5

Note: Extra monitoring day was due to measurement results exceedance

ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE

ES04 In the Reporting Period, no air quality exceedances were recorded. However, one noise complaint which triggered Action Level was registered for construction noise. For water quality monitoring, a total of forty-five (45) Acton Level/ Limit Level exceedances were recorded. The summary of exceedance in the Reporting Period is shown below.

				Event & Action				
Environmental Aspect	Monitoring Parameters	Action Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions	
Air Quality	1-hour TSP	0	0	0				
	24-hour TSP	0	0	0				
Construction Noise	L _{eq(30min)} Daytime	1	0	0	IR revealed that the noise complaint was non-project related	0	NA	

				Event & Action			
Environmental Aspect	Monitoring Parameters	Action Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
	DO	0	0	0	-		
Water Quality	Turbidity	1	20	21	- All NOEs were concluded as non-project related except for NTU and SS	2	The Contractors were reminded to implement water quality mitigation
	SS	1	23	24	exceedances recorded at WM2A(a) on 2 & 4 Nov were related to works under C6.	2	measures in accordance with ISEMM of the EM&A Manual requirements

ENVIRONMENTAL COMPLAINT

ES05 In this Reporting Period, three (3) documented environmental complaints were received under the EM&A Programme in respect wastewater and noise issue. Investigation result revealed that the complaints were not related to works under Project. The summary of complaint received in the Reporting Period is summarized below.

		Environmental Complaint				
Reporting Period	Contract No	Frequency	Complaint Nature	Project related complaint		
	Contract 2	1	• Wastewater (1)	0		
	Contract 3	0	NA	NA		
1 – 30 Nov 2016	Contract 6	2	• Wastewater (2)	0		
	Contract 7	1	• Noise (1)	0		
	SS C505	0	NA	NA		

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES06 No environmental summons or successful prosecutions were recorded in the Reporting Period.

REPORTING CHANGE

ES07 In the Reporting period, no reporting changes were made.

SITE INSPECTION

- ES08 In this Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 2* has been carried out by the RE, IEC, ET and the Contractor on **4**, **11**, **18 and 25** November 2016. No non-compliance was noted during the site inspection.
- ES09 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 3* has been carried out by the RE, IEC, ET and the Contractor on **7**, **16**, **21** and **28** November 2016. No non-compliance was noted during the site inspection.
- ES10 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 6* has been carried out by the RE, IEC, ET and the Contractor on **3**, **10**, **17 and 24** November 2016. No non-compliance was noted during the site inspection.
- ES11 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract SS C505* has been carried out by the RE, IEC, ET and the Contractor on 2, 9, 17, 23 and 30 November 2016. No non-compliance was noted during the site inspection.

ES12 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract* 7 has been carried out by the RE, IEC, ET and the Contractor on 1, 8, 15, 22 and 29 November 2016. No non-compliance was noted during the site inspection.

FUTURE KEY ISSUES

- ES13 During dry season, special attention should be paid on the potential construction dust impact since most of the construction sites are adjacent to villages. The Contractor should fully implement the construction dust mitigation measures.
- ES14 Preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River. Moreover, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- ES15 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.

Table of Contents

1	INTROD	UCTION	1
	1.1	PROJECT BACKGROUND	1
	1.2	REPORT STRUCTURE	1
2	PROJEC	T ORGANIZATION AND CONSTRUCTION PROGRESS	3
-	2.1	CONSTRUCTION CONTRACT PACKAGING	3
	2.2	PROJECT ORGANIZATION	5
	2.3	CONCURRENT PROJECTS	7
	2.4	CONSTRUCTION PROGRESS	7
	2.5	SUMMARY OF ENVIRONMENTAL SUBMISSIONS	9
3	SUMMAI	RY OF IMPACT MONITORING REQUIREMENTS	14
5	3.1	GENERAL	14
	3.2	MONITORING PARAMETERS	14
	3.3	MONITORING LOCATIONS	14
	3.4	MONITORING FREQUENCY AND PERIOD	16
	3.5	MONITORING EQUIPMENT	17
	3.6	MONITORING METHODOLOGY	19
	3.7	EQUIPMENT CALIBRATION	21
	3.8	DERIVATION OF ACTION/LIMIT (A/L) LEVELS	21
	3.9	DATA MANAGEMENT AND DATA QA/QC CONTROL	22
4		LITY MONITORING	23
4	4.1	GENERAL	23
	4.1	AIR QUALITY MONITORING RESULTS	23
5		UCTION NOISE MONITORING	26
	5.1	GENERAL	26
	5.2	NOISE MONITORING RESULTS (NORMAL DAYTIME)	26
	5.3	NOISE MONITORING RESULTS (RESTRICTED HOURS)	26
6	WATER (QUALITY MONITORING	28
	6.1	GENERAL	28
	6.2	RESULTS OF WATER QUALITY MONITORING	28
7	ECOLOG	SY MONITORING	33
	7.1	GENERAL	33
0			
8		MANAGEMENT	34
	8.1	GENERAL WASTE MANAGEMENT	34
	8.2	RECORDS OF WASTE QUANTITIES	34
9	SITE INS	PECTION	35
	9.1	REQUIREMENTS	35
	9.2	FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	35
10	ENVIRO	NMENTAL COMPLAINT AND NON-COMPLIANCE	39
10	10.1	ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	39
11		ENTATION STATUS OF MITIGATION MEASURES	44
	11.1	GENERAL REQUIREMENTS	44
	11.2	TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	44
	11.3	KEY ISSUES FOR THE COMING MONTH	45
12	CONCLU	USIONS AND RECOMMENDATIONS	47
	12.1	CONCLUSIONS	47
	12.2	RECOMMENDATIONS	47

LIST OF TABLES

TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	IMPACT MONITORING STATIONS - AIR QUALITY
TABLE 3-3	IMPACT MONITORING STATIONS - CONSTRUCTION NOISE
TABLE 3-4	IMPACT MONITORING STATIONS - WATER QUALITY
TABLE 3-5	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-6	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-7	WATER QUALITY MONITORING EQUIPMENT
TABLE 3-8	ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING
TABLE 3-9	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-10	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM1A
TABLE 4-2	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM2
TABLE 4-3	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM3
TABLE 4-4	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM4B
TABLE 4-5	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM5A
TABLE 4-6	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM6
TABLE 4-7	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM7A
TABLE 4-8	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM8
TABLE 4-9	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM9B
TABLE 5-1	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-2	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-3	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS (EVENING TIME)
TABLE 5-4	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS (NIGHT TIME)
TABLE 6-1	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 3
TABLE 6-2	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 5 AND SS C505
TABLE 6-3	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 6
TABLE 6-4	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 6
TABLE 6-5	ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE RECORDED
TABLE 6-6	SUMMARY OF WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
TABLE 6-7	SUMMARY OF WATER QUALITY EXCEEDANCE WHICH WERE UNDER REVIEW BY IEC IN APRIL 2016
TABLE 8-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
TABLE 8-2	SUMMARY OF QUANTITIES OF C&D WASTES
TABLE 9-1	SITE OBSERVATIONS FOR CONTRACT 2
TABLE 9-2	SITE OBSERVATIONS FOR CONTRACT 3
TABLE 9-3	SITE OBSERVATIONS FOR CONTRACT 5
TABLE 9-4	SITE OBSERVATIONS FOR CONTRACT 6
TABLE 9-5	SITE OBSERVATIONS FOR CONTRACT SS C505
TABLE 9-6	SITE OBSERVATIONS FOR CONTRACT 7
TABLE 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
TABLE 11-1	ENVIRONMENTAL MITIGATION MEASURES

AUES

 $[\]label{eq:loss_2013} CS00694 \\ 600 \\ EM\&A \ Report \\ Monthly \ EM\&A \ Report \\ 40th \ (November \ 2016) \\ R0782v2. \\ docx \ R0782v2. \\ d$

LIST OF APPENDICES

APPENDIX A	LAYOUT PLAN OF THE PROJECT
APPENDIX B	ORGANIZATION CHART
APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
Appendix D	DESIGNATED MONITORING LOCATIONS AS RECOMMENDED IN THE APPROVED EM&A MANUAL
APPENDIX E	MONITORING LOCATIONS FOR IMPACT MONITORING
Appendix F	CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT AND HOKLAS-ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY
APPENDIX G	EVENT AND ACTION PLAN
APPENDIX H	IMPACT MONITORING SCHEDULE
APPENDIX I	DATABASE OF MONITORING RESULT
APPENDIX J	GRAPHICAL PLOTS FOR MONITORING RESULT
APPENDIX K	METEOROLOGICAL DATA
APPENDIX L	WASTE FLOW TABLE
APPENDIX M	IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES
APPENDIX N	INVESTIGATION REPORT FOR EXCEEDANCE

1 INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department is the Project Proponent and the Permit Holder of Agreement No. CE 45/2008 (CE) Liantang / Heung Yuen Wai Boundary Control Point and Associated Works, which is a Designated Project to be implemented under Environmental Permit number EP-404/2011/C granted on 12 March 2015.
- 1.1.2 The Project consists of two main components: Construction of a Boundary Control Point (hereinafter referred as "BCP"); and Construction of a connecting road alignment. Layout plan of the Project is shown in *Appendix A*.
- 1.1.3 The proposed BCP is located at the boundary with Shenzhen near the existing Chuk Yuen Village, comprising a main passenger building with passenger and cargo processing facilities and the associated customs, transport and ancillary facilities. The connecting road alignment consists of six main sections:
 - 1) Lin Ma Hang to Frontier Closed Area (FCA) Boundary this section comprises at-grade and viaducts and includes the improvement works at Lin Ma Hang Road;
 - Ping Yeung to Wo Keng Shan this section stretches from the Frontier Closed Area Boundary to the tunnel portal at Cheung Shan and comprises at-grade and viaducts including an interchange at Ping Yeung;
 - 3) North Tunnel this section comprises the tunnel segment at Cheung Shan and includes a ventilation building at the portals on either end of the tunnel;
 - 4) Sha Tau Kok Road this section stretches from the tunnel portal at Wo Keng Shan to the tunnel portal south of Loi Tung and comprises at-grade and viaducts including an interchange at Sha Tau Kok and an administration building;
 - 5) South Tunnel this section comprises a tunnel segment that stretches from Loi Tung to Fanling and includes a ventilation building at the portals on either end of the tunnel as well as a ventilation building in the middle of the tunnel near Lau Shui Heung;
 - 6) Fanling this section comprises the at-grade, viaducts and interchange connection to the existing Fanling Highway.
- 1.1.4 Action-United Environmental Services & Consulting has been commissioned as an Independent ET to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. As part of the EM&A program, the baseline monitoring has carried out between **13 June 2013** and **12 July 2013** for all parameters including air quality, noise and water quality before construction work commencement. The Baseline Monitoring Report summarized the key findings and the rationale behind determining a set of Action and Limit Levels (A/L Levels) from the baseline data. Also, the Project baseline monitoring report which verified by the IEC has been submitted to EPD on **16 July 2013** for endorsement. The major construction works of the Project was commenced on **16 August 2013** in accordance with the EP Section 5.3 stipulation.
- 1.1.5 This is **40th** monthly EM&A report presenting the monitoring results and inspection findings for reporting period from **1** to **30 November 2016**.

1.2 REPORT STRUCTURE

- 1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-
 - Section 1 Introduction
 - Section 2 Project Organization and Construction Progress
 - Section 3 Summary of Impact Monitoring Requirements
 - Section 4 Air Quality Monitoring
 - Section 5 Construction Noise Monitoring
 - Section 6 Water Quality Monitoring

Section 7	Waste Management
Section 8	Site Inspections
Section 9	Environmental Complaints and Non-Compliance
Section 10	Implementation Status of Mitigation Measures
Section 11	Conclusions and Recommendations

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 CONSTRUCTION CONTRACT PACKAGING

- 2.1.1 To facilitate the project management and implementation, the Project would be divided by the following contracts:
 - Contract 2 (CV/2012/08)
 - Contract 3 (CV/2012/09)
 - Contract 4 (NE/2014/02)
 - Contract 5 (CV/2013/03)
 - Contract 6 (CV/2013/08)
 - Contract 7 (NE/2014/03)
 - ArchSD Contract No. SS C505
- 2.1.2 The details of each contracts is summarized below and the delineation of each contracts is shown in *Appendix A*.

Contract 2 (CV/2012/08)

- 2.1.3 Contract 2 has awarded in December 2013 and construction work was commenced on 19 May 2014. Major Scope of Work of the Contract 2 is listed below:
 - construction of an approximately 5.2km long dual two-lane connecting road (with about 0.4km of at-grade road and 4.8km of tunnel) connecting the Fanling Interchange with the proposed Sha Tau Kok Interchange;
 - construction of a ventilation adit tunnel and the mid-ventilation building;
 - construction of the north and south portal buildings of the Lung Shan Tunnel and their associated slope works;
 - provision and installation of ventilation system, E&M works and building services works for Lung Shan tunnel and Cheung Shan tunnel and their portal buildings;
 - construction of Tunnel Administration Building adjacent to Wo Keng Shan Road and the associated E&M and building services works; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 3 (CV/2012/09)

- 2.1.4 Contract 3 was awarded in July 2013 and construction work was commenced on 5 November 2013. Major Scope of Work of the Contract 3 is listed below:
 - construction of four link roads connecting the existing Fanling Highway and the south portal of the Lung Shan Tunnel;
 - realignment of the existing Tai Wo Service Road West and Tai Wo Service Road East;
 - widening of the existing Fanling Highway (HyD's entrustment works);
 - demolishing existing Kiu Tau vehicular bridge and Kiu Tau footbridge and reconstruction of the existing Kiu Tau Footbridge (HyD's entrustment works); and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 4 (NE/2014/02)

- 2.1.5 Contract 4 has awarded in mid-April 2016. However, the major construction work still is not yet commenced. The scope of work of the Contract 4 includes:
 - design, supply, delivery, installation, testing and commissioning of a traffic control and surveillance system for the connecting road linking up the Liantang / Heung Yuen Wai Boundary Control Point and the existing Fanling Highway.

Contract 5 (CV/2013/03)

- 2.1.6 Contract 5 has awarded in April 2013 and construction work was commenced in August 2013. Major Scope of Work of the Contract 5 is listed below:
 - site formation of about 23 hectares of land for the development of the BCP;
 - construction of an approximately 1.6 km long perimeter road at the BCP including a 175m long depressed road;
 - associated diversion/modification works at existing local roads and junctions including Lin Ma Hang Road;
 - construction of pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provision of resite area with supporting infrastructure for reprovisioning of the affected village houses; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 6 (CV/2013/08)

- 2.1.7 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. Major Scope of Work of the Contract 6 would be included below:
 - construction of an approximately 4.6km long dual two-lane connecting road (with about 0.6km of at-grade road, 3.3km of viaduct and 0.7km of tunnel) connecting the BCP with the proposed Sha Tau Kok Road Interchange and the associated ventilation buildings;
 - associated diversion/modification works at access roads to the resite of Chuk Yuen Village;
 - provision of sewage collection, treatment and disposal facilities for the BCP and the resite of Chuk Yuen Village;
 - construction of a pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provisioning of the affected facilities including Wo Keng Shan Road garden; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 7 (NE/2014/03)

- 2.1.8 Contract 7 has awarded in December 2015 and the construction works of Contract 7 was commenced on 15 February 2016. Major Scope of Work of the Contract 7 would be included below:
 - construction of the Hong Kong Special Administrative Region (HKSAR) portion of four vehicular bridge
 - construction of one pedestrian bridge crossing Shenzhen (SZ) River (cross boundary bridges)

ArchSD Contract No. SS C505

- 2.1.9 SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. Major Scope of Work of the SS C505 would be included below:
 - passenger-related facilities including processing kiosks and examination facilities for private cars and coaches, passenger clearance building and halls, the interior fitting works for the pedestrian bridge crossing Shenzhen River, etc.;
 - cargo processing facilities including kiosks for clearance of goods vehicles, customs inspection platforms, X-ray building, etc.;
 - accommodation for the facilities inside of the Government departments providing services in connection with the BCP;
 - transport-related facilities inside the BCP including road networks, public transport interchange, transport drop-off and pick-up areas, vehicle holding areas and associated road furniture etc;
 - a public carpark; and

• other ancillary facilities such as sewerage and drainage, building services provisions and electronic systems, associated environmental mitigation measure and landscape works.

2.2 **PROJECT ORGANIZATION**

2.2.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

Civil Engineering and Development Department (CEDD)

2.2.2 CEDD is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. An Independent Environmental Checker (IEC) shall be employed by CEDD to audit the results of the EM&A works carried out by the ET.

Architectural Services Department (ArchSD)

2.2.3 ArchSD acts as the works agent for Development Bureau (DEVB), for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities.

Environmental Protection Department (EPD)

2.2.4 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

Ronald Lu & Partners (Hong Kong) Ltd (The Architect)

- 2.2.5 Ronald Lu & Partners (Hong Kong) Ltd is appointed by ArchSD as an Architect for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) BCP Buildings and Associated Facilities. It responsible for overseeing the construction works of Contract SS C505 and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Architect with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors' and ET's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation
 - Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulation of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

Engineer or Engineers Representative (ER)

- 2.2.6 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors's, ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance

- Adhere to the procedures for carrying out complaint investigation
- Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulaiton of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

The Contractor(s)

- 2.2.7 There will be one contractor for each individual works contract. Once the contractors are appointed, EPD, ET and IEC will be notified the details of the contractor.
- 2.2.8 The Contractor for Contracts under CEDD should report to the ER. For ArchSD Contract, the Contractor should report to the Architect or Architect's Representative (AR). The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Employ an Environmental Team (ET) to undertake monitoring, laboratory analysis and reporting of EM &A Facilitate ET's monitoring and site inspection activities
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.2.9 Once the ET is appointed, the EPD, CEDD, ER, Architect and IEC will be notified the details of the ET.
- 2.2.10 The ET shall not be in any way an associated body of the Contractor(s), and shall be employed by the Project Proponent/Contractor to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitably qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. The ET shall report to the Project Proponent and the duties shall include:
 - Monitor and audit various environmental parameters as required in this EM&A Manual
 - Analyse the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications
 - Audit environmental conditions on site
 - Report on the environmental monitoring and audit results to EPD, the ER, the Architect, the IEC and Contractor or their delegated representatives
 - Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
 - Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
 - Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
 - Adhere to the procedures for carrying out complaint investigation

• Liaison with the client departments, Engineer/Engineer's Representative, ET, IEC and the Contractor(s) of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

Independent Environmental Checker (IEC)

- 2.2.11 One IEC will be employed for this Project. Once the IEC is appointed, EPD, ER, the Architect and ET will be notified the details of the IEC.
- 2.2.12 The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 10 years' experience in EM&A and have relevant professional qualifications. The appointment of IEC should be subject to the approval of EPD. The IEC should:
 - Provide proactive advice to the ER and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Verify the log-book(s) mentioned in Condition 2.2 of the EP, notify the Director by fax, within one working day of receipt of notification from the ET Leader of each and every occurrence, change of circumstances or non-compliance with the EIA Report and/or the EP, which might affect the monitoring or control of adverse environmental impacts from the Project
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the ER and Project Proponent on a monthly basis
 - Liaison with the client departments, Engineer/Engineer's Representative, the Architect, ET, IEC and the Contractor of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

2.3 CONCURRENT PROJECTS

- 2.3.1 The concurrent construction works that may be carried out include, but not limited to, the following:
 - (a) Regulation of Shenzhen River Stage IV;
 - (b) Widening of Fanling Highway Tai Hang to Wo Hop Shek Interchange Contract No. HY/2012/06;
 - (c) Construction of BCP facilities in Shenzhen.

2.4 CONSTRUCTION PROGRESS

2.4.1 In the Reporting Period, the major construction activity conducted under the Project is located in Contracts 2, 3, 6, 7 and SS C505 and they are summarized in below. Moreover, 3-month rolling construction program for all the current contracts is enclosed in *Appendix C*.

Contract 2 (CV/2012/08)

2.4.2 The contract commenced in May 2014. In this Reporting Period, construction activities conducted are listed below.

Mid-Vent	Stud tunnel and cavern excavation
Portal	• Adit invert slab, waterproofing and lining
	 Ventilation building superstructure and backfilling
North Portal	Slope stabilization and retaining wall
	Southbound Tunnel Boring Machine (TBM) excavation
	Northbound bench excavation
	• Tunnel enlargement and construction of cross passage
	Tunnel internal structure and cross passage
	ventilation building foundation
South Portal	Southbound and northbound Drill & Blast Excavation
	• South ventilation and building superstructure
	• Tunnel invert, waterproofing and lining
Admin Building	Building superstructure and external wall

Building superstructure and external wall Admin Building

Contract 3 (CV/2012/09)

- 2.4.3 The Contract commenced in November 2013. In this Reporting Period, construction activities conducted are listed below:
 - Cable detection and trial trenches
 - Demolition of existing Vehicular Bridge
 - Footbridge construction .
 - Storm drains laying
 - Noise barrier construction
 - Pier / pier table construction
 - Pile cap works
 - Portal beam construction
 - Retaining wall construction
 - Road works
 - Sewer works
 - Utilities Duct Laying
 - Water Main Laying
 - Viaduct segment erection

Contract 4 (Contract number to be assigned)

2.4.4 The Contract was awarded in mid-April 2016 and the major construction work has not yet commenced.

Contract 5 (CV/2013/03)

2.4.5 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016.

Contract 6 (CV/2013/08)

- Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. 2.4.6 In this Reporting Period, construction activities conducted are listed below:
 - Slope Works
 - **Bored** Piling .
 - Pile Cap Construction •
 - **Bridge Pier Construction**
 - **Bridge Segment Erection**
 - **Tunnel Excavation**
 - Sewage Treatment Plant Construction

Contract 7 (NE/2014/03)

- 2.4.7 Contract 7 has awarded in December 2015 and construction work was commenced on 15 February 2016. In this Reporting Period, construction activities conducted are listed below:
 - Piling Works at Bridges A and E
 - Pile Caps Construction at Bridges A, B, C, D and E
 - Column construction at Bridge C

Contract SS C505

2.4.8 Contract SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. In this Reporting Period, construction activities conducted are listed below:

- General Site Set-up
- Building no.4, 5, 6, 7, 9, 10, 11 and 36 construction
- Excavation waterproofing works for Building no. 4, 6 & 11
- Pile cap construction for Building no.4,6&7
- Tower crane operation
- Bridge construction works including construction of bridge column, retaining wall, pile cap and pier
- Underground drainage works
- Prototype "A" & "B" construction works
- Mock up for south entrance double curve cladding
- Formwork and falsework for PTB's slab construction
- Construction PTB M/F & 1/F flat slab
- Steel beam works for maintenance platform for PTB
- Pile cap construction for PTB, including excavation and backfilling works
- Bridge deck construction for Bridges 1 5
- Footing construction

2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

- 2.5.1 In according to the EP, the required documents have submitted to EPD which listed in below:
 - Project Layout Plans of Contracts 2, 3, 5, 6, 7 and SS C505
 - Landscape Plan
 - Topsoil Management Plan
 - Environmental Monitoring and Audit Programme
 - Baseline Monitoring Report (*TCS00690/13/600/R0030v3*) for the Project
 - Waste Management Plan of the Contracts 2, 3, 5, 6, 7 and SS C505
 - Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR) for Po Kat Tsai, Loi Tung and the workshops in Fanling
 - Vegetation Survey Report
 - Woodland Compensation Plan
 - Habitat Creation Management Plan
 - Wetland Compensation Plan
- 2.5.2 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project of each contracts are presented in *Table 2-1*.

 Table 2-1
 Status of Environmental Licenses and Permits of the Contracts

Item	Description	License/Permit Status				
Item	Description	Ref. no.	Effective Date	Expiry Date		
	Contract 2					
1	Air pollution Control (Construction Dust)	Ref No.: 368864	31 Dec 2013	Till Contract ends		

- .	-	License	/Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
	Regulation			
2	Chemical Waste Producer Registration	<i>North Portal</i> Waste Producers Number: No.5213-652-D2523-01	25 Mar 2014	Till Contract ends
		<i>Mid-Vent Portal</i> Waste Producers Number: No.5213-634-D2524-01	25 Mar 2014	Till Contract ends
		South Portal Waste Producers Number: No.5213-634-D2526-01	9 Apr 2014	Till Contract ends
3	Water Pollution	No.WT00018374-2014	8 Oct 2014	30 Sep 2019
	Control Ordinance -	No.: W5/1I389	28 Mar 2014	31 Mar 2019
	Discharge License	No. WT00023063-2015	18 Dec 2015	31 Mar 2019
		No.: W5/1I392	28 Mar 2014	31 Mar 2019
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7019105	8 Jan 2014	Till Contract ends
5	Construction Noise	GW-RN0457-16	22 Jun 2016	14 Dec 2016
	Permit	GW-RN0435-16	27 Jun 2016	26 Dec 2016
		GW-RN0543-16	18 Jul 2016	13 Jan 2017
		GW-RN0582-16	09 Aug 2016	08 Nov 2016
		GW-RN0590-16	09 Aug 2016	08 Nov 2016
		GW-RN0579-16	11 Aug 2016	07 Jan 2017
		GW-RN0604-16	11 Aug 2016	07 Jan 2017
		GW-RN0695-16	18 Sep 2016	17 Mar 2017
		GW-RN0700-16	20 Sep 2016	19 Feb 2017
		GW-RN0759-16	12 Oct 2016	11 Apr 2017
		GW-RN0780-16	27 Oct 2016	26 Dec 2016
		GW-RN0788-16	27 Oct 2016	26 Dec 2016
		GW-RN0852-16	23 Nov 2016	2 May 2017
		GW-RN0839-16	20 Nov 2016	07 May 2017
		GW-RN0822-16	09 Nov 2016	08 May 2017
		GW-RN0823-16	09 Nov 2016	08 May 2017
		GW-RN0800-16	01 Nov 2016	29 Apr 2017
		GW-RN0814-16	06 Nov 2016	27 Nov 2016
6	Specified Process License (Mortar Plant Operation)	L-3-251(1)	12-Apr-2016	11-Apr-2021
		Contract 3		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 362101	17 Jul 2013	Till Contract ends
2	Chemical Waste	Waste Producers Number:		Till Contract

T	D : /:	License/	Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
	Producer Registration	No.:5113-634-C3817-01	7 Oct 2013	ends
3	Water Pollution Control Ordinance - Discharge License	No.:WT00016832 – 2013 28 Aug 13 31 Au		31 Aug 2018
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017914	Account No. 7017914 2 Aug 13	
5	Construction Noise	GW-RN0414-16	18 Jun 2016	17 Dec 2016
	Permit	GW-RN0434-16	22 Jun 2016	21 Dec 2016
		GW-RN0525-16	20 Jul 2016	7 Jan 2017
		GW-RN0541-16	5 Aug 2016	4 Nov 2016
		GW-RN0549-16	30 Jul 2016	9 Jan 2017
		GW-RN0561-16	16 Aug 2016	11 Feb 2017
		GW-RN0580-16	25 Aug 2016	24 Feb 2017
		GW-RN0581-16	25 Aug 2016	24 Feb 2017
		GW-RN0596-16	17 Aug 2016	15 Feb 2017
		GW-RN0619-16	22 Aug 2016	14 Feb 2017
		GW-RN0646-16	10 Sep 2016	9 Mar 2017
		GW-RN0649-16	3 Sep 2016	7 Jan 2017
		GW-RN0653-16	11 Sep 2016	10 Mar 2017
		GW-RN0654-16	15 Sep 2016	14 Mar 2017
		GW-RN0708-16	8 Oct 2016	28 Jan 2017
		GW-RN0711-16	1 Oct 2016	13 Jan 2017
		GW-RN0720-16	4 Oct 2016	31 Mar 2017
		GW-RN0729-16	5 Oct 2016	31 Mar 2017
		GW-RN0756-16	18 Oct 2016	13 Apr 2017
		GW-RN0759-16	5 Nov 2016	29 Apr 2017
		GW-RN0816-16	13 Nov2016	27 Mar 2017
		GW-RN0833-16	13 Nov2016	10 May 2017
		GW-RN0836-16	15 Nov2016	31 Mar 2017
		GW-RN0843-16	18 Nov2016	17 May 2017
		GW-RN0856-16	17 Nov2016	7 Jan 2017
		GW-RN0870-16	30 Nov2016	13 May 2017
		GW-RN0871-16	29 Nov2016	20 May 2017
		GW-RN0872-16	29 Nov2016	20 May 2017
		Contract 5		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 359338	13 May 2013	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-642-S3735-01	8 Jun 2013	Till the end of Contract

-		License/	Permit Status				
Item	Description	Ref. no.	Effective Date	Expiry Date			
3	Water Pollution Control Ordinance - Discharge License	No.: W5/1G44/1	8 Jun 13	30 Jun 2018			
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017351	29 Apr 13	Till the end of Contract			
		Contract 6	I				
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390614	29 Jun 2015	Till the end of Contract			
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-652-C3969-01	31 Aug 2015	Till the end of Contract			
3	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022707	9 Jul 2015	Till the end of Contract			
4	Water Pollution Control Ordinance -	No.:WT00024574-2016	31 May 2016	31 May 2021			
	Discharge License	No.:WT00024576-2016	31 May 2016	31 May 2021			
		No.:WT00024742-2016	14 June 2016	30 June 2021			
		No.:WT00024746-2016	14 June 2016	30 June 2021			
5	Construction Noise	GW-RW0588-16	19 Oct 2016	18 Apr 2017			
	Permit	GW-RN0766-16	21 Oct 2016	20 Jan 2017			
	Contract SS C505						
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390974	13 Jul 2015	Till the end of Contract			
2	Chemical Waste Producer Registration	Waste Producer No.: 5213-642-L1048-07	16 Sep 2015	Till the end of Contract			
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024865-2016	8 Jul 2016	30 Nov 2020			
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022831	23 Jul 2015	Till the end of Contract			
5	Construction Noise	GW-RN0396-16	5 June 2016	4 Nov 2016			
	Permit	GW-RN0806-16	5 Nov 2016	4 May 2017			
		PP-RN0020-16	16 Jul 2016	14 Jan 2017			
		GW-RN0520-16	23 Jul 2016	22 Jan 2017			
		Contract 7					
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 397015	21 Dec 2015	Till the end of Contract			

Item	Description	License/	Permit Status			
Item	Description	Ref. no.	Effective Date	Expiry Date		
2	Chemical Waste Producer Registration	Waste Producer No.: 5214-641-K3202-01	24 Mar 2016	Till the end of Contract		
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024422-2016	10 May 2016	31 May 2021		
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste			Till the end of Contract		
5	Construction Noise	GW-RN0538-16	23 Jul 2016	4 Nov 2016		
Permit		GW-RN0799-16	5 Nov 2016	4 May 2017		
	Contract 4					
1	Air pollution Control (Construction Dust) Regulation	Form of Notification of Construction work has submitted to EPD in July 2016.				
2	Chemical Waste Producer Registration	Application is under preparation				
3	Water Pollution Control Ordinance - Discharge License	Application is under preparation				
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Application is under preparat	ion			

3 SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

- 3.1.1 The Environmental Monitoring and Audit requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project.
- 3.1.2 A summary of construction phase EM&A requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

- 3.2.1 The EM&A program of construction phase monitoring shall cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Water quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1*.

Table 3-1Summary of EM&A Requirements

Environmental Issue	Parameters
Air Quality	 1-hour TSP by Real-Time Portable Dust Meter; and
	 24-hour TSP by High Volume Air Sampler.
	• L _{eq(30min)} in normal working days (Monday to Saturday) 07:00-19:00
	except public holiday; and
Noise	• 3 sets of consecutive L _{eq(5min)} on restricted hours i.e. 19:00 to 07:00
INDISC	next day, and whole day of public holiday or Sunday
	• Supplementary information for data auditing, statistical results such
	as L_{10} and L_{90} shall also be obtained for reference.
	In-situ Measurements
	 Dissolved Oxygen Concentration (mg/L);
	 Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Water Quality	• pH unit;
	• Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	Suspended Solids (mg/L)

3.3 MONITORING LOCATIONS

3.3.1 The designated monitoring locations as recommended in the *EM&A Manual* are shown in *Appendix D*. As the access to some of the designated monitoring locations was questionable due to safety reason or denied by the landlords, alternative locations therefore have had proposed. The proposed alternative monitoring locations has updated in the revised EM&A Programme which verified by IEC and certified by ET Leader prior submitted to EPD on 10 July 2013. *Table 3-2, Table 3-3* and *Table 3-4* are respectively listed the air quality, construction noise and water quality monitoring locations for the Project and a map showing these monitoring stations is presented in *Appendix E*.

Station ID	Description	Works Area	Related to the Work Contract
AM1b^	Open area at Tsung Yuen Ha Village	BCP	SS C505
			Contract 7
AM2	Village House near Lin Ma Hang Road	LMH to Frontier	Contract 6
		Closed Area	
AM3	Ta Kwu Ling Fire Service Station of Ta	LMH to Frontier	Contract 6

Table 3-2Impact Monitoring Stations - Air Quality

Station ID	Description	Works Area	Related to the Work Contract
	Kwu Ling Village.	Closed Area	
AM4b^	House no. 10B1 Nga Yiu Ha Village	LMH to Frontier	Contract 6
		Closed Area	
AM5a^	Ping Yeung Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM6	Wo Keng Shan Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM7b [@]	Loi Tung Village House	Sha Tau Kok	Contract 2
		Road	Contract 6
AM8	Po Kat Tsai Village No. 4	Po Kat Tsai	Contract 2
AM9b#	Nam Wa Po Village House No. 80	Fanling	Contract 3

Proposal for the change of air quality monitoring location from AM9a to AM9b was submitted to EPD on 4 Nov 2013 after verified by the IEC and it was approved by EPD (EPD's ref.: (15) in EP 2/N7/A/52 Pt.10 dated 8 Nov 2013).

* Proposal for the change of air quality monitoring location from AM1to AM1a was submitted to EPD on 24 March 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (6) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

@ Proposal for the change of air quality monitoring location from AM7a to AM7b was submitted to EPD on 4 June 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (7) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

^ Proposal for change of air quality monitoring locations was enclosed in the updated EM&A Programme which approval by EPD on 29 Mar 2016.

Station ID	Description	Works Area	Related to the Work Contract
NM1	Tsung Yuen Ha Village House No. 63	ВСР	SS C505 Contract 7
NM2a#	Village House near Lin Ma Hang Road	Lin Ma Hang to Frontier Closed Area	Contract 6
NM3	Ping Yeung Village House (facade facing northeast)	Ping Yeung to Wo Keng Shan	Contract 6
NM4	Wo Keng Shan Village House	Ping Yeung to Wo Keng Shan	Contract 6
NM5	Village House, Loi Tung	Sha Tau Kok Road	Contract 2, Contract 6
NM6	Tai Tong Wu Village House 2	Sha Tau Kok Road	Contract 2, Contract 6
NM7	Po Kat Tsai Village	Po Kat Tsai	Contract 2
NM8	Village House, Tong Hang	Fanling	Contract 2 Contract 3
NM9	Village House, Kiu Tau Village	Fanling	Contract 3
NM10	Nam Wa Po Village House No. 80	Fanling	Contract 3

 Table 3-3
 Impact Monitoring Stations - Construction Noise

Proposal for the change of construction noise monitoring location from NM2 to NM2a was verified by the IEC on 6 May 2016 and was effective on 9 May 2016.

Table 3-4 Impact Monitoring Stations - Water Quanty					
Station ID	Description	Location		Nature of the location	Related to the Work Contract
		Easting	Northing		Contract
WM1	Downstream of Kong Yiu Channel	833 679	845 421	Alternative location located at upstream 51m of the designated location	SS C505 Contract 6
WM1- Control	Upstream of Kong Yiu Channel	834 185	845 917	NA SS C505 Contrac	
WM2A	Downstream of River Ganges	834 204	844 471	Alternative location located at upstream 81m of the designated location	Contract 6
WM2A(a)*	Downstream of River Ganges	834 191	844 474	Alternative location located at upstream 70m of the designated location	Contract 6
WM2A- Controlx#	Upstream of River Ganges	835 377	844 188	Alternative location located at upstream 160m of the designated location	Contract 6
WM2B	Downstream of River Ganges	835 433	843 397	NA	Contract 6
WM2B- Control	Upstream of River Ganges	835 835	843 351	Alternative location located at downstream 31m of the designated location	Contract 6
WM3x#	Downstream of River Indus	836 206	842 270	Alternative location located at downstream 180m of the designated location	Contract 2 Contract 6
WM3- Control	Upstream of River Indus	836 763	842 400	Alternative location located at downstream 26m of the designated location	Contract 2 Contract 6
WM4	Downstream of Ma Wat Channel	833 850	838 338	Alternative location located at upstream 11m of the designated location	Contract 2 Contract 3
WM4– Control A	Kau Lung Hang Stream	834 028	837 695	Alternative location located at downstream 28m of the designated location	Contract 2 Contract 3
WM4– Control B	Upstream of Ma Wat Channel	833760	837395	Alternative location located at upstream 15m of the designated location	Contract 2 Contract 3

Table 3-4Impact Monitoring Stations - Water Quality

Note: EPD has approved the revised EM&A Programme on 29th March 2016. If the measured water depth of the monitoring station is lower than 150 mm, alternative location (WM3x and WM2A-Controlx) based on the criteria were selected to perform water monitoring in accordance with the updated EM&A Programme (Rev. 05) (Section 4.1.4)

* Proposal for the change of water monitoring location from WM2A to WM2A(a) was verified by the IEC and it was approved by EPD. (EPD's ref. (10) in EP 2/N7/A/52 Pt.19)

3.4 MONITORING FREQUENCY AND PERIOD

The requirements of impact monitoring are stipulated in *Sections 2.1.6, 3.1.5* and *4.1.6* of the approved *EM&A Manual* and presented as follows.

Air Quality Monitoring

- 3.4.1 Frequency of impact air quality monitoring is as follows:
 - 1-hour TSP 3 times every six days during course of works

• 24-hour TSP Once every 6 days during course of works.

Noise Monitoring

3.4.2 One set of $L_{eq(30min)}$ as 6 consecutive $L_{eq(5min)}$ between 0700-1900 hours on normal weekdays and once every week during course of works. If construction work necessary to carry out at other time periods, i.e. restricted time period (19:00 to 07:00 the next morning and whole day on public holidays) (hereinafter referred as "the restricted hours"), additional weekly impact monitoring for $L_{eq(5min)}$ measurement shall be employed during respective restricted hours periods.. Supplementary information for data auditing, statistical results such as L_{10} and L_{90} shall also be obtained for reference.

Water Quality Monitoring

3.4.3 The water quality monitoring frequency shall be 3 days per week during course of works. The interval between two sets of monitoring shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve.
- 3.5.2 The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.3 All equipment to be used for air quality monitoring is listed in *Table 3-5*.

Equipment	Model			
24-Hr TSP				
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170*			
Calibration Kit TISCH Model TE-5025A*				
1-Hour TSP				
Portable Dust Meter	Sibata LD-3B Laser Dust monitor Particle Mass Profiler &			
Fortable Dust Meter	Counter*			

Table 3-5Air Quality Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

Wind Data Monitoring Equipment

- 3.5.4 According to the approved EM&A Manual, wind data monitoring equipment shall also be provided and set up for logging wind speed and wind direction near the dust monitoring locations. The equipment installation location shall be proposed by the ET and agreed with the IEC. For installation and operation of wind data monitoring equipment, the following points shall be observed:
 - 1) The wind sensors should be installed 10 m above ground so that they are clear of obstructions or turbulence caused by buildings.
 - 2) The wind data should be captured by a data logger. The data shall be downloaded for analysis at least once a month.
 - 3) The wind data monitoring equipment should be re-calibrated at least once every six months.
 - 4) Wind direction should be divided into 16 sectors of 22.5 degrees each.
- 3.5.5 ET has liaised with the landlords of the successful granted HVS installation premises. However, the owners rejected to provide premises for wind data monitoring equipment installation.

3.5.6 Under this situation, the ET proposed alternative methods to obtain representative wind data. Meteorological information as extracted from "the Hong Kong Observatory Ta Kwu Ling Station" is alternative method to obtain representative wind data. For Ta Kwu Ling Station, it is located nearby the Project site. Moreover, this station is located at 15m above mean sea level while its anemometer is located at 13m above the existing ground which in compliance with the general setting up requirement. Furthermore, this station also can be to provide the humidity, rainfall, and air pressure and temperature etc. meteorological information. In Hong Kong of a lot development projects, weather information extracted from Hong Kong Observatory is common alternative method if weather station installation not allowed.

Noise Monitoring

- 3.5.7 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.8 Noise monitoring equipment to be used for monitoring is listed in *Table 3-6*.

Equipment	Model
Integrating Sound Level Meter	B&K Type 2238* or Rion NL-31 or Rion NL-52*
Calibrator	B&K Type 4231* or Cesva CB-5 or Rion NC-74*
Portable Wind Speed Indicator	Testo Anemometer

Table 3-6Construction Noise Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.5.9 Sound level meters listed above comply with the *International Electrotechnical Commission Publications 651: 1979 (Type 1)* and *804: 1985 (Type 1)* specifications, as recommended in TM issued under the NCO. The acoustic calibrator and sound level meter to be used in the impact monitoring will be calibrated yearly.

Water Quality Monitoring

- 3.5.10 DO and water temperature should be measured in-situ by a DO/temperature meter. The instrument should be portable and weatherproof using a DC power source. It should have a membrane electrode with automatic temperature compensation complete with a cable. The equipment should be capable of measuring:
 - a DO level in the range of 0-20 mg/l and 0-200% saturation; and
 - a temperature of between 0 and 45 degree Celsius.
- 3.5.11 A portable pH meter capable of measuring a range between 0.0 and 14.0 should be provided to measure pH under the specified conditions accordingly to the APHA Standard Methods.
- 3.5.12 The instrument should be portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
- 3.5.13 A portable, battery-operated echo sounder or tape measure will be used for the determination of water depth at each designated monitoring station as appropriate.
- 3.5.14 A water sampler e.g. Kahlsico Water Sampler, which is a transparent PVC cylinder with capacity not less than 2 litres, will be used for water sampling if water depth over than 0.5m. For sampling from very shallow water depths e.g. <0.5 m, water sample collection will be directly from water surface below 100mm use sampling plastic bottle to avoid inclusion of bottom sediment or humus. Moreover, Teflon/stainless steel bailer or self-made sampling buckets maybe used for water sampling. The equipment used for sampling will be depended the sampling location and depth situations.

- 3.5.15 Water samples for laboratory measurement of SS will be collected in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to the laboratory in the same day as the samples were collected.
- 3.5.16 Analysis of suspended solids should be carried out in a HOKLAS or other accredited laboratory. Water samples of about 1L should be collected at the monitoring stations for carrying out the laboratory suspended solids determination. The SS determination work should start within 24 hours after collection of the water samples. The SS analyses should follow the *APHA Standard Methods 2540D* with Limit of Reporting of 2 mg/L.
- 3.5.17 Water quality monitoring equipment used in the impact monitoring is listed in *Table 3-7*. Suspended solids (SS) analysis is carried out by a local HOKLAS-accredited laboratory, namely *ALS Technichem (HK) Pty Ltd*.

Equipment Model Water Depth Detector Eagle Sonar or tape measures A 2-litre transparent PVC cylinder with latex cups at both ends or Water Sampler teflon/stainless steel bailer or self-made sampling bucket YSI Professional Plus /YSI PRO20 Handheld Dissolved Oxygen Thermometer DO & Instrument / YSI 550A Multifunctional Meter*/ YSI Professional meter DSS YSI Professional Plus / AZ8685 pH pen-style meter*/ YSI 6820/ pH meter 650MDS/ YSI Professional DSS Turbidimeter Hach 2100Q*/ YSI 6820/ 650MDS/ YSI Professional DSS* High density polythene bottles (provided by laboratory) Sample Container 'Willow' 33-liter plastic cool box with Ice pad Storage Container

 Table 3-7
 Water Quality Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.6 MONITORING METHODOLOGY

1-hour TSP Monitoring

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.2 The 1-hour TSP meter is used within the valid period as follow manufacturer's Operation and Service Manual.

24-hour TSP Monitoring

- 3.6.3 The equipment used for 24-hour TSP measurement is Tisch Environmental, Inc. Model TE-5170 TSP high volume air sampling system, which complied with *EPA Code of Federal Regulation*, *Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:
 - (a.) An anodized aluminum shelter;
 - (b.) A 8"x10" stainless steel filter holder;
 - (c.) A blower motor assembly;
 - (d.) A continuous flow/pressure recorder;

- (e.) A motor speed-voltage control/elapsed time indicator;
- (f.) A 7-day mechanical timer, and
- (g.) A power supply of 220v/50 Hz
- 3.6.4 The HVS is operated and calibrated on a regular basis in accordance with the manufacturer's instruction using Tisch Calibration Kit Model TE-5025A. Calibration would carry out in two month interval.
- 3.6.5 24-hour TSP is collected by the ET on filters of HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% RH (Relative Humidity) and 25°C, for six months prior to disposal.

Noise Monitoring

- 3.6.6 Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels dB(A). Supplementary statistical results (L_{10} and L_{90}) were also obtained for reference.
- 3.6.7 During the monitoring, all noise measurements would be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). Leq_(30min) in six consecutive Leq_(5min) measurements will use as the monitoring parameter for the time period between 0700-1900 hours on weekdays; Leq_(5min) measurements would be used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.6.8 Prior of noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The checking is performed before and after the noise measurement.

Water Quality

3.6.9 Water quality monitoring is conducted at the designated or alternative locations. The sampling procedures with the in-situ monitoring are presented as below:

Sampling Procedure

- 3.6.10 A Digital Global Positioning System (GPS) is used to identify the designated monitoring stations prior to water sampling. A portable, battery-operated echo sounder or tape measurement is used for the determination of water depth at each station. At each station, water sample would be collected from 0.1m below water surface or the water surface to prevent the river bed sediment for stirring.
- 3.6.11 The sample container will be rinsed with a portion of the water sample. The water sample then will be transferred to the high-density polythene bottles as provided by the laboratory, labeled with a unique sample number and sealed with a screw cap.
- 3.6.12 Before sampling, general information such as the date and time of sampling, weather condition as well as the personnel responsible for the monitoring would be recorded on the field data sheet.
- 3.6.13 A 'Willow' 33-liter plastic cool box packed with ice will be used to preserve the water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box is maintained at a temperature as close to 4^oC as possible without being frozen. Samples collected are delivered to the laboratory upon collection.

<u>In-situ Measurement</u>

3.6.14 YSI 550A Handheld Dissolved Oxygen Instrument is used for water in-situ measures, which automates the measurements and data logging of temperature, dissolved oxygen and dissolved oxygen saturation.

- 3.6.15 A portable AZ Model 8685 is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 14 and readable to 0.1.
- 3.6.16 A portable Hach 2100Q Turbidimeter or YSI Professional DSS is used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU.
- 3.6.17 All in-situ measurement equipment are calibrated by HOKLAS accredited laboratory of three month interval.

Laboratory Analysis

3.6.18 All water samples analyzed Suspended Solids (SS) will be carried out by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS determination using *APHA Standard Methods 2540D* as specified in the *EM&A Manual* will start within 48 hours of water sample receipt.

3.7 EQUIPMENT CALIBRATION

- 3.7.1 Calibration of the HVS is performed upon installation and thereafter at bimonthly intervals in accordance with the manufacturer's instruction using the certified standard calibrator (TISCH Model TE-5025A). Moreover, the Calibration Kit would be calibrated annually. The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.7.2 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment would be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.
- 3.7.3 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.7.4 All water quality monitoring equipment would be calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.7.5 The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period and the HOKLAS accredited certificate of laboratory are attached in *Appendix F*.

3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality, construction noise and water quality criteria were set up, namely Action and Limit levels are listed in *Tables 3-8, 3-9* and *3-10*.

Monitoring Station	Action	Level (µg /m ³)	Limit Level (µg/m ³)	
Monitoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP
AM1b	265	143		
AM2	268	149		
AM3	269	145		
AM4b	267	148		
AM5a	268	143	500	260
AM6	269	148		
AM7b	275	156		
AM8	269	144		
AM9b	271	151		

 Table 3-8
 Action and Limit Levels for Air Quality Monitoring

Table 3-9Action and Limit Levels for Construction Noise

Monitoring Location	Action Level	Limit Level in dB(A)	
Wollitoning Location	Time Period: 0700-1900 hours on normal weekdays		
NM1, NM2a, NM3, NM4, NM5, NM6, NM7, NM8, NM9, NM10	When one or more documented complaints are received	75 dB(A) ^{Note 1 & Note 2}	

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and65 dB(A) during examination period

Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

Table 3-10	Action and	l Limit Leve	els for `	Water (Ouality
	riction and			···ucci ·	Vuunty.

Danamatan	Performance		Monitoring Location					
Parameter	criteria	WM1	WM2A(a)	WM2B	WM3x	WM4		
DO	Action Level	^(*) 4.23	^(**) 4.00	^(*) 4.74	^(**) 4.00	^(*) 4.14		
(mg/L)	Limit Level	^(#) 4.19	^(**) 4.00	^(#) 4.60	^(**) 4.00	^(#) 4.08		
	A ation I aval	51.3	24.9	11.4	13.4	35.2		
Turbidity	Action Level	AND	120% of ups	tream control s	tation of the s	ame day		
(NTU)	Limit Level	67.6	33.8	12.3	14.0	38.4		
	Lillit Level	AND	130% of upstream control station of the same day					
	Action Level	54.5	14.6	11.8	12.6	39.4		
SS (ma/I)	Action Level	AND	120% of ups	tream control s	tation of the s	ame day		
SS (mg/L)		64.9	17.3	12.4	12.9	45.5		
	Limit Level		130% of ups	130% of upstream control station of the same day				

Remarks:

(*) The Proposed <u>Action Level</u> of Dissolved Oxygen is adopted to be used 5%-ile of baseline data

(**) The Proposed Action & Limit Level of Dissolved Oxygen is used 4mg/L

(#) The Proposed <u>Limit Level</u> of Dissolved Oxygen is adopted to be used 1%-ile of baseline data

3.8.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix G*.

3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.9.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.
- 3.9.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4 **AIR QUALITY MONITORING**

4.1 GENERAL

- 4.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 6, 7 and Contract SS C505. Hence, air quality monitoring was performed at all designated locations.
- 4.1.2 The air quality monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

4.2 AIR QUALITY MONITORING RESULTS

4.2.1 In the Reporting Period, a total of *135* events of 1-hour TSP and *49* events 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Tables 4-1 to 4-9*. The detailed 24-hour TSP monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

24-hour 1-hour TSP ($\mu g/m^3$) Date TSP Start 2nd reading 3rd reading 1st reading Date $(\mu g/m^3)$ Time 100 9:47 1-Nov-16 3-Nov-16 71 69 62 91 7-Nov-16 66 9-Nov-16 9:17 93 88 12-Nov-16 15-Nov-16 117 123 65 9:51 108 18-Nov-16 75 21-Nov-16 12:41 95 99 94 24-Nov-16 51 26-Nov-16 38 33 9:47 36 30-Nov-16 117 79 Average Average 81 (Range) (51 - 117)(Range) (33 - 123)

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1b

Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
-----------	--

	24-hour	1-hour TSP (µg/m ³)				
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
1-Nov-16	124	3-Nov-16	9:38	79	88	74
7-Nov-16	144	9-Nov-16	9:26	95	97	94
12-Nov-16	132	15-Nov-16	9:33	103	117	124
18-Nov-16	146	21-Nov-16	12:50	94	95	92
24-Nov-16	62	26-Nov-16	9:43	46	52	42
30-Nov-16	142					
Average	125	Avera	ge		86	
(Range)	(62 - 146)	(Rang	ge)		(42 - 124)	

Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
-----------	--

	24-hour	1-hour TSP (µg/m ³)				
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
1-Nov-16	100	3-Nov-16	9:28	108	85	76
7-Nov-16	115	9-Nov-16	12:58	97	85	83
12-Nov-16	126	15-Nov-16	13:44	110	121	132
18-Nov-16	110	21-Nov-16	12:56	86	85	83
24-Nov-16	16	26-Nov-16	9:39	43	46	40
30-Nov-16	114					
Average	97	Avera	ge		85	
(Range)	(16 – 126)	(Rang	ge)		(40 - 132)	

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\40th (November 2016)\R0782v2.docx

Table 4-4Summary of 24-hour and 1-hour TSP Monitoring Results – AM4b

	24.1		1	-hour TSP (μg/m³)		
Date	24-hour TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
3-Nov-16	49	4-Nov-16	9:55	89	89	86
9-Nov-16	46	10-Nov-16	9:25	49	43	40
15-Nov-16	89	16-Nov-16	9:53	96	87	93
21-Nov-16	60	22-Nov-16	9:42	36	38	39
26-Nov-16	24	28-Nov-16	9:00	63	65	66
Average	54	Avera	ge		65	
(Range)	(24 - 89)	(Rang	ge)		(36 - 96)	

Table 4-5Summary	of 24-hour and 1-hour	r TSP Monitoring Results – AM5a
------------------	-----------------------	---------------------------------

	24-hour		1	-hour TSP (µg	g/m^3)	
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
3-Nov-16	60	4-Nov-16	9:43	85	91	95
9-Nov-16	29	10-Nov-16	9:20	44	47	43
15-Nov-16	74	16-Nov-16	9:34	90	93	86
21-Nov-16	46	22-Nov-16	9:51	35	36	38
26-Nov-16	12	28-Nov-16	9:03	63	66	60
Average (Range)	44 (12 - 74)	Avera (Rang	0		65 (35 - 95)	

Table 4-6	Summary of 24-hour and 1-hour	FSP Monitoring Results – AM6
-----------	-------------------------------	-------------------------------------

	24-hour	1-hour TSP (µg/m ³)							
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading			
3-Nov-16	144	4-Nov-16	9:26	75	75	89			
9-Nov-16	62	10-Nov-16	9:05	56	57	54			
15-Nov-16	119	16-Nov-16	9:28	95	88	67			
21-Nov-16	88	22-Nov-16	10:02	39	40	42			
26-Nov-16	43	28-Nov-16 8:50		58	60	57			
Average (Range)	91 (43 - 144)	Avera (Rang	•	63 (39 – 95)					

	24-hour	1-hour TSP (µg/m ³)							
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	1 st reading 2 nd reading				
3-Nov-16	76	4-Nov-16	12:50	95	88	67			
9-Nov-16	51	10-Nov-16	9:42	50	43	44			
15-Nov-16	84	16-Nov-16	9:13	79	93	105			
21-Nov-16	59	22-Nov-16	9:40	72	69	62			
26-Nov-16	19	28-Nov-16	13:03	60	53	54			
Average	58	Average		69					
(Range)	(19 – 84)	(Rang	ge)	(43 – 105)					

	24-hour	1-hour TSP (µg/m ³)							
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading			
3-Nov-16	44	4-Nov-16	13:10	90	79	65			
9-Nov-16	51	10-Nov-16	12:48	57	51	47			
15-Nov-16	77	16-Nov-16	13:07	82	99	105			
21-Nov-16	36	22-Nov-16	10:05	60	78	76			
26-Nov-16	23	28-Nov-16 12:54		50	54	53			
Average (Ranga)	46	Average		70 (47, 105)					
(Range)	(23 - 77)	(Rang	ge)	(47 -105)					

Table 4-9	Summary of 24-hour and 1-hour TSP Monitoring Results – AM9b
-----------	---

	24-hour	1-hour TSP (µg/m ³)							
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading			
1-Nov-16	82	3-Nov-16	13:24	68	55	55			
7-Nov-16	52	9-Nov-16	13:19	108	102	101			
12-Nov-16	22	15-Nov-16	13:16	122	133	117			
18-Nov-16	80	21-Nov-16 13:29		57	60	61			
24-Nov-16	52	26-Nov-16	9:16	52	58	57			
30-Nov-16	54								
Average	57	Avera	ge	80					
(Range)	(22 - 82)	(Rang	ge)	(52–133)					

^{4.2.1} As shown in *Tables 4-1 to 4-9*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action/Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.

^{4.2.2} The meteorological data during the impact monitoring days are summarized in *Appendix K*.

5 CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 6, 7 and Contract SS C505 and noise monitoring was performed at all designated locations.
- 5.1.2 The noise monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

5.2 NOISE MONITORING RESULTS (NORMAL DAYTIME)

5.2.1 In the Reporting Period, a total of **45** event noise measurements were carried out at the designated locations. The sound level meter was set in 1m from the exterior of the building façade including noise monitoring locations NM1, NM3, NM4, NM5, NM6, NM7, NM8 and NM9. Therefore, no façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines. However, free-field status were performed at NM2a and NM10 and façade correction (+3 dB(A)) has added according to the requirement in this month. The noise monitoring results at the designated locations are summarized in *Tables 5-1 and 5-2*. The detailed noise monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

Construction Noise Level (L _{eq30min}), dB(A)								
Date	NM1	NM2a ^(*)	NM8	NM9	NM10 ^(*)			
3-Nov-16	58	61	60	62	61			
9-Nov-16	58	63	58	64	66			
15-Nov-16	58	63	59	62	66			
21-Nov-16	52	63	56	63	64			
Limit Level			75 dB(A)					

Table 5-1Summary of Construction Noise Monitoring Results

Remarks

(*) façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines

 Table 5-2
 Summary of Construction Noise Monitoring Results

Construction Noise Level (L _{eq30min}), dB(A)								
Date	NM3	NM4	NM5	NM6	NM7			
4-Nov-16	57	71	53	56	63			
10-Nov-16	57	69	60	63	64			
16-Nov-16	59	69	58	57	60			
22-Nov-16	60	64	61	58	64			
28-Nov-16	63	63	52	55	62			
Limit Level			75 dB(A)					

5.2.2 As shown in *Tables 5-1 and 5-2*, the noise level measured at all designated monitoring locations were below 75dB(A). However, there was a noise complaint which triggered the Action Level exceedance received in the period of 31 October to 2 November 2016. The investigation report for the complaint has completed by the ET which concluded that the complaint was not related to the project. The details of the investigation result could be referred to Section 10.

5.3 NOISE MONITORING RESULTS (RESTRICTED HOURS)

- 5.3.1 In the Reporting Period, CNPs were granted by Contracts 2, 3, 6, 7 and SS C505 for use of Powered Mechanical Equipment (PME) during restricted hour. As confirmed by both Contractors with their works schedules, construction works would be conducted at Contract 6, 7 and SS C505 during restricted hours with the granted CNP. Noise monitoring was therefore conducted at the relevant noise monitoring locations during respective restricted hour periods.
- 5.3.2 Based on the works schedule by the Contractor of Contracts 2, 3, 6, 7 and SS C505, the involved

noise monitoring locations included NM1, NM5, NM7, NM8, NM9 and NM10 and the noise monitoring results are summarized in *Tables 5-3 and 5-4*.

Table 5-3	Summary of Construction	Noise Monitoring	Results (Evening Time)
-----------	-------------------------	-------------------------	-------------------------------

		Const	ruction N	Noise Leve	l (L _{eq5min})), dB(A)	T	
Date	NM1		NM5		I	NM7	NM8	
	Start Time	L _{eq5min}	Start Time	${ m L}_{ m eq5min}$	Start Time	L _{eq5min}	Start Time	L _{eq5min}
4-Nov-16			22:45	46.1	22:22	55.8	21:43	57.3
11-Nov-16			22:47	46.1	22:24	46.4	21:50	55.9
18-Nov-16			22:40	52.6	22:21	49.5	21:38	59.6
25-Nov-16	22:22	51.6	22:47 45.3		21:58	46.8	21:21	57.6
Observation/ other noise sourceOccasionally barking villageNoise from vehicle hoise from vehicle fromoccasionally barking willageNoise from vehicle hoise from vehicle dogs barking 								

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

		Co	nstructi	ion Noise	e Level (L _{eq5min}),	dB(A)		1		
Date (#)	NM5		N	NM7		NM8		NM9		NM10 ^(*)	
	Start Time	L _{eq5min}	Start Time	L _{eq5min}	Start Time	L _{eq5min}	Start Time	L _{eq5min}	Start Time	L _{eq5min}	
4-Nov-16	23:00	44.8	23:17	49.8	23:41	62.5	0:00	59.1	0:11	55.2	
11-Nov-16	23:01	48.0	23:20	50.7	23:53	59.4	0:12	60.5	0:33	56.7	
18-Nov-16	23:00	50.0	23:22	48.2	23:49	57.8	0:13	61.5	0:24	56.6	
25-Nov-16	23:00	45.6	23:21	42.7	23:49	56.7	0:07	60	0:20	55.7	
Observation/ other noise source	Noise vehicle occasion dogs from vil	parking, nally barking	Noise water fl the occasion dogs from vil	from owing in gully, nally barking	NM8 train tr	rains as close to acks and nally barking	NM9 train tr occasio	close to acks and nally barking	Traffic from and occ dogs	Darking	

Table 5-4Summary of Construction Noise Monitoring Results (Night Time)

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

- (#) the monitoring date for NM9 and NM10 shall be the next day of the "Date"
- (*) façade correction $(+3 \, dB(A)$ is added according to acoustical principles and EPD guidelines
- 5.3.3 According to the site records by the monitoring team, no construction noise from the construction was noted during the course of monitoring at all locations. On the other hand, traffic noise was dominated at NM8 and NM9 since the monitoring locations were closed to the train tracks and occasionally noise from vehicle and dogs barking were recorded at all stations. Therefore, it is considered that the measurement results were likely to be the background noise.

6 WATER QUALITY MONITORING

6.1 GENERAL

6.1.1 In the Reporting Period, construction works under the project has been commenced in Contracts 2, 3, 6, 7 and Contract SS C505 and water quality monitoring was performed at all designated locations. The water quality monitoring schedule is presented in *Appendix H*. The monitoring results are summarized in the following sub-sections.

6.2 **RESULTS OF WATER QUALITY MONITORING**

- 6.2.1 In the Reporting Period, a total of thirteen (13) sampling days was scheduled to carry out for all designated locations with their control stations. Since exceedances were recorded at WM2A(a), WM2B, WM3x and WM4, according to "Event and Action Plan" stipulation, one (1) additional water quality monitoring day was conducted for WM2B and WM4 and its control stations. Also, eight (8) additional water quality monitoring days were conducted for WM2A(a) and WM3x and its control stations in the reporting period.
- 6.2.2 The key monitoring parameters including Dissolved Oxygen, Turbidity and Suspended Solids are summarized in Tables 6-1 to 6-5. Breaches of water quality monitoring criteria are shown in *Table 6-6.* Detailed monitoring database including in-situ measurements and laboratory analysis data are shown in *Appendix I* and the relevant graphical plot are shown in *Appendix J*.

Date	Dissolved Oxygen (mg/L)			Turbidity (NTU)			Suspended Solids (mg/L)		
	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB
2-Nov-16	7.9	8.1	7.7	33.0	6.0	8.7	31.5	3.5	9.0
4-Nov-16	7.5	8.9	7.2	15.7	5.6	7.1	13.0	<2	5.5
7-Nov-16	7.2	7.5	6.7	22.9	10.0	7.8	18.0	4.5	7.5
9-Nov-16	7.4	7.7	6.8	18.9	4.4	9.5	17.5	<2	7.0
11-Nov-16	7.8	8.5	6.4	7.3	4.5	9.1	10.0	4.0	14.5
15-Nov-16	7.3	7.7	6.8	242.5	10.3	25.1	116.5	<2	22.0
16-Nov-16#				20.3	3.3	4.5	18.0	<2	4.0
17-Nov-16	7.7	7.7	6.7	24.2	3.4	9.3	26.5	<2	5.5
19-Nov-16	7.5	7.7	6.2	9.3	5.5	25.0	10.5	2.0	31.5
22-Nov-16	6.6	7.1	5.5	25.0	9.9	14.7	20.0	7.0	15.0
24-Nov-16	7.7	9.9	6.5	23.3	5.8	18.5	26.5	2.5	30.0
26-Nov-16	8.1	7.9	7.4	119.5	110.5	107.5	114.5	134.0	98.0
28-Nov-16	8.4	8.5	7.4	21.5	18.1	25.0	16.0	13.0	32.0
30-Nov-16	8.2	8.2	6.7	14.2	5.0	13.8	12.0	2.5	16.0
Remarks: bold with underline indicated Limit Level exceedance									

Water Quality Monitoring Results Associated of Contracts 2 and 3 Table 6-1

bold with underline indicated Limit Level exceedance

Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Table 6-2	Water Quality Monitoring Results Associated of Contracts 5, 6 a	nd SS C505

	mater Qu	water Quarty Monitoring Results Associated of Contracts 2, 0 and 55 C205								
Date		d Oxygen g/L)		bidity TU)	Suspended Solids (mg/L)					
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C				
2-Nov-16	8.2	8.2	13.9	7.9	9.0	4.0				
4-Nov-16	8.2	8.3	12.9	12.6	8.0	2.0				
7-Nov-16	7.9	8.2	15.5	10.2	15.5	5.0				
9-Nov-16	6.9	5.8	10.5	7.4	9.5	4.5				
11-Nov-16	8.9	8.5	11.4	7.4	7.5	4.0				
15-Nov-16	8.5	8.2	14.2	10.9	11.0	3.0				
17-Nov-16	7.9	8.1	12.4	8.7	12.0	3.0				
19-Nov-16	7.6	7.4	15.7	8.7	10.0	3.0				
22-Nov-16	7.4	6.8	48.7	41.4	40.0	23.0				
24-Nov-16	8.2	8.5	22.7	14.2	17.5	3.5				
26-Nov-16	8.3	8.9	34.2	6.9	50.5	3.5				

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.40) – November 2016

Date		l Oxygen g/L)		oidity ΓU)	Suspended Solids (mg/L)		
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C	
28-Nov-16	8.7	8.7	17.6	9.7	14.0	2.5	
30-Nov-16	8.3	9.0	13.8	5.6	12.0	2.0	

Table 6-3 Water Quality Monitoring Results Associated only Contract	Table 6-3	Water Quality Monitoring Results Associated only Contract 6
---	-----------	---

Date	Dissolved Oxygen (mg/L)				Turbidity (NTU)				Suspended Solids (mg/L)			
Date	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A (a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A- Cx	WM2B	WM2 B- C
1-Nov-16#					22.3	8.9			14.5	4.0		
2-Nov-16	7.5	8.0	8.6	7.5	131.5	7.6	2.8	2.4	<u>113.0</u>	<2	2.5	<2
3-Nov-16#					22.6	7.2			14.0	4.0		
4-Nov-16	7.3	7.8	8.3	6.7	260.5	11.8	3.4	2.1	<u>196.5</u>	<2	2.0	<2
5-Nov-16#					7.5	4.7			7.0	<2		
7-Nov-16	7.3	6.7	7.4	6.3	8.3	6.8	4.5	2.4	6.0	2.5	3.5	<2
9-Nov-16	8.3	8.2	9.1	7.6	24.7	8.8	4.2	2.2	14.0	<2	3.0	<2
11-Nov-16	8.6	8.1	8.6	6.5	89.2	11.7	11.1	2.7	70.5	6.5	8.0	<2
12-Nov-16#					31.3	6.0			<u>40.0</u>	<2		
14-Nov-16#					<u>48.4</u>	11.0			<u>61.0</u>	<2		
15-Nov-16	7.7	7.9	8.0	7.0	23.5	11.8	7.4	3.3	17.0	<2	4.0	<2
16-Nov-16#			-		17.4	8.5			9.0	2.0		
17-Nov-16	7.7	7.8	8.3	7.0	12.8	9.5	5.3	3.4	7.5	3.5	3.0	<2
19-Nov-16	7.2	7.6	8.1	6.7	17.8	7.5	5.4	4.7	11.5	<2	<2	<2
22-Nov-16	7.0	7.4	7.6	6.7	210.5	84.5	11.1	3.1	157.5	44.0	11.0	2.5
23-Nov-16#					<u>319.0</u>	20.2			223.0	20.0		
24-Nov-16	8.1	8.5	8.7	7.1	313.5	7.6	11.1	7.0	200.0	<2	7.0	<2
25-Nov-16#					19.3	7.3			14.0	3.0		
26-Nov-16	8.4	8.4	7.2	8.3	19.9	34.2	306.5	4.3	16.0	29.5	368.5	5.5
28-Nov-16	8.5	8.7	7.3	7.2	23.9	11.5	3.4	2.2	21.5	4.0	<2	<2
29-Nov-16#							7.8	2.0			7.0	<2
30-Nov-16	8.5	8.5	8.9	7.0	21.3	7.6	6.1	2.2	<u>17.5</u>	<2	4.0	<2

Remarks:

bold with underline indicated Limit Level exceedance

bold with italic indicated Action Level exceedance

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Date	Dissolved Oxygen (mg/L)		Turb (N7	v	Suspended Solids (mg/L)		
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C	
2-Nov-16	7.2	8.6	12.3	5.2	12.0	4.0	
4-Nov-16	7.3	6.6	12.0	3.5	10.5	6.0	
7-Nov-16	6.7	6.5	12.9	6.1	11.5	3.5	
9-Nov-16	6.8	7.8	<u>34.7</u>	3.0	<u>44.5</u>	<2	
10-Nov-16#			>999 (over range)	3.6	<u>826.0</u>	8.0	
11-Nov-16	7.0	5.6	10.3	6.3	11.0	7.5	
12-Nov-16#			3.5	2.3	10.0	20.0	
15-Nov-16	7.1	5.9	347.5	3.8	272.0	<2	
16-Nov-16#			224.5	6.9	274.0	8.0	
17-Nov-16	7.1	6.7	13.1	3.0	12.5	5.0	
18-Nov-16#			9.3	3.7	8.0	6.0	
19-Nov-16	6.4	7.1	<u>38.8</u>	10.7	<u>40.5</u>	3.0	
21-Nov-16#			24.3	6.7	<u>18.0</u>	<2	
22-Nov-16	6.5	6.1	126.0	8.7	127.5	16.5	
23-Nov-16#			37.7	21.0	38.0	16.0	

Date		d Oxygen g/L)	Turk (N)	oidity ΓU)	Suspended Solids (mg/L)		
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C	
24-Nov-16	7.7	6.3	12.1	5.9	5.0	2.5	
25-Nov-16#			23.4	6.6	27.0	11.0	
26-Nov-16	7.3	7.5	531.5	28.9	<u>492.0</u>	31.5	
28-Nov-16	7.7	7.3	26.8	8.5	<u>13.0</u>	5.0	
29-Nov-16#			12.6	2.3	12.0	3.0	
30-Nov-16	7.5	7.2	13.0	4.0	12.5	19.5	

Remarks:

bold with underline indicated Limit Level exceedance

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Table 6-5	Action and Limit (A/L) Levels Exceedance Recorded
-----------	---

Location		olved ygen	Turbidity		Suspended Solids		Total Exceedance		Project Related exceedance	
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
WM1	0	0	0	0	0	0	0	0	0	0
WM2A(a)	0	0	1	7	1	10	2	17	0	4
WM2B	0	0	0	1	0	1	0	2	0	0
WM3x	0	0	0	11	0	11	0	22	0	0
WM4	0	0	0	1	0	1	0	2	0	0
No of Exceedance	0	0	1	20	1	23	2	43	0	4

- 6.2.3 In this Reporting Period, a total of forty-five (45) Action Limit (AL)/ Limit Level (LL) exceedances, namely twenty-one (21) AL/LL exceedance of turbidity and twenty-four (24) AL/LL exceedances of Suspended Solids were recorded for the Project and they are summarized in *Table 6-5*. According to the investigation result, only 2 numbers of turbidity and 2 numbers of suspended solid exceedances were concluded as works related under Contract 6. Corrective measures had been provided by the relevant contractor to rectify the deficiency.
- 6.2.4 NOE was issued to relevant parties upon confirmation of the monitoring result. The investigation results and summary of exceedances are summarized in *Table 6-6*. The details of the completed investigation reports for the exceedances are attached in *Appendix N*.

Table 6-6	Summary of Water Quality Exceedance in the Reporting Period
-----------	---

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance In Brief
25, 28, 29 and 31 Oct 2016 (last reporting month)	WM2A(a) (C6)	NTU &SS	The IR revealed that the water mitigation measures implemented on site was in order and no adverse water impact was identified. Moreover, there were no rain recorded during the exceedance days and surface runoff generated from the site area was unlikely to occur. It is considered the exceedances were due to natural variation and unlikely caused by the works under the project.
2 and 4 Nov 2016	WM2A(a) (C6)	NTU &SS	The IR revealed the exceedances were related to the exposed slope adjacent to the river course. As remedial measures, CCKJV was immediately hard paved the exposed slope and erected sand bag barrier at the edge of slope. There were no exceedances recorded on the subsequent water quality monitoring 5 and 7 November 2016, thus it is considered that the remedial measures provided by CCKJV were effective.

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance In Brief
			CCKJV reported that a pipe which carrying slurry from H-pipe works area to primary sedimentation tank at Wo Keng Shan was burst accidentally in the morning of 10 November 2016. The burst pipe was immediately replaced but some slurry was flowing into the adjacent river channel.
9 and 10 Nov 2016			In our investigation, it is considered that the exceedances on 9 November 2016 were due to natural variation and unlikely caused by the works under the Project. For the exceedances on 10 November 2016, it is considered that the exceedances were related to the pipe burst incident. CCKJV was advised to regularly check up the condition of water pipe particularly carrying untreated water and ensure the wastewater treatment systems are well maintained.
15 Nov 2016	WM4 (C2 and C3)	NTU &SS	The IR revealed that muddy water was found in the river branch from Kiu Tau Road from an active construction site by other Contractor. In our investigation, it is considered that exceedances were due to the muddy water from the outside of site boundary and not likely related to the works under the Contract.
11, 12, 14 and 15 Nov 2016	WM2A(a) (C6)	NTU &SS	The IR revealed that the water mitigation measures implemented on site was in order and no adverse water impact was identified. Moreover, there were no rain recorded during the exceedance days and surface runoff generated from the site area was unlikely to occur. It is considered the exceedances were due to natural variation and unlikely caused by the works under the project.
15 and 16 Nov 2016	WM3x (C2 and C6)	NTU &SS	CCKJV reported that a portion of area Sha Tau Kok Road was handed over to other Contractor since 5 September 2016 and discharge of turbid water to the gully was observed in that portion area on 15 and 16 November 2016.
			In our investigation, it is considered that the exceedances were due to the discharge of muddy water by other Contractor and unlikely caused by the works under the Project.
22, 23 and 24 Nov 2016	WM2A(a) (C6)	NTU &SS	According to the rainfall record from the Hong Kong Observatory (HKO), there were rainstorms on 22 and 23 November 2016. Muddy water generated from runoff from the surrounding environment and turbid water was also found throughout Ping Yeung River. Thick sediment was cumulated at the river bed and more muddy water was generated under vigorous water flow and stir up sediment. In our investigation, the implementation of water
			mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 22 and 23 November 2016 were due to rainstorm and exceedances on 24 November 2016 was due to residual impact after rainstorm and not caused by the works under the Contract.

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance In Brief			
19, 21, 22 and 23, 25, 26 and 28 Nov 2016	WM3x (C2 and C6)	NTU &SS	The IR revealed that there was thick sediment cumulated at the channel bed of Ng Tung River and muddy turbulence was readily formed under water flow. In our investigation, it is considered that the exceedances were likely due to the muddy turbulence formed by the loose sediment cumulated at the channel bed. Moreover, exceedances on 22, 23 and 26 November 2016 were also related to impact by rain.			
26 Nov 2016	WM2B (C6)	NTU &SS	The IR revealed that there was heavy rain on 26 November 2016and runoff from public road and getting into the channel was observed. It is considered that the exceedance were due rainstorm and runoff from road and not likely caused by the Project			
28 and 30 Nov 2016	WM2A(a) (C6)	NTU &SS	The IR revealed that the water mitigation measures implemented on site was in order and no adverse water impact was identified. Moreover, there were no rain recorded during the exceedance days and surface runoff			

7 ECOLOGY MONITORING

7.1 GENERAL

7.1.1 In the Reporting Period, ecology monitoring for woodland compensation was conducted on 24, 28, 29 and 30 November 2016. The Monitoring Report for Woodland Compensation will be prepared and submitted as a stand-alone report as supplementary for the EM&A Report.

8 WASTE MANAGEMENT

8.1 GENERAL WASTE MANAGEMENT

8.1.1 Waste management was carried out in accordance with the Waste Management Plan (WMP) for each contract.

8.2 **RECORDS OF WASTE QUANTITIES**

- 8.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 8.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix L*. Whenever possible, materials were reused on-site as far as practicable.

	Cont	ract 2	Cor	ntract 3	Con	tract 6	Co	ntract 7	Contra	act SS C505	
Type of Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Total Quantity
C&D Materials (Inert) (in '000m ³)	100.2462		0.747		35.682		0		4.841		141.5162
Reused in this Contract (Inert) (in '000 m ³)	0.4509		0.201		8.541		0	-	4.0475		13.2404
Reused in other Contracts/ Projects (Inert) (in '000 m ³)	45.5418	C6/ NENT# & other projects approved by the ER	0		4.298	C5 & other projects approved by the ER	0	-	0		49.8398
Disposal as Public Fill (Inert) (in '000 m ³)	54.2534	Tuen Mun 38	0.407	Tuen Mun 38	22.843	Tuen Mun 38	0	Tuen Mun 38	0.793	TKO 137	78.2964

 Table 8-1
 Summary of Quantities of Inert C&D Materials for the Project

Remark #: The C&D materials were delivered to NENT for reuse by laying cover of the landfilling area.

Table 8-2

2 Summary of Quantities of C&D Wastes for the Project

	Cont	tract 2	Cont	tract 3	Cont	tract 6	Cont	ract 7	Contract	SS C505	Total
Type of Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Quantity
Recycled Metal ('000kg)#	6.4300	Licensed collector	0.001	Licensed collector	0		0.1	Licensed collector	268.18	Licensed collector	0.001#+274.71
Recycled Paper / Cardboard Packing (*000kg) #	0	-	0	-	0.252	Licensed collector	0.04	Licensed collector	0.54	Licensed collector	0.832
Recycled Plastic ('000kg) #	0		0.001	Licensed collector	0		0.001	Licensed collector	0.087	Licensed collector	0.001#+0.088
Chemical Wastes ('000kg) #	2.4640	Licensed collector	0	-	0	Licensed collector	0		0		2.4640
General Refuses ('000m ³)	0.3216	NENT	0.125	NENT	0.115	NENT	0.005	NENT	0.423	NENT	0.9986

Remark #: Unit of recycled metal, recycled paper/ cardboard packing, recycled plastic and chemical waste for Contract 3 was in ('000m³).

9 SITE INSPECTION

9.1 **REQUIREMENTS**

9.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

Contract 2

- 9.2.1 In the Reporting Period, joint site inspection for Contract 2 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 4, 11, 18 and 25 November 2016. No non-compliance was noted.
- 9.2.2 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 9-1*.

Date	Findings / Deficiencies	Follo	ow-Up Status
4 November 2016	• No adverse environmental issue was observed.	• NA	
11 November 2016	 Waste oil spillage on ground near the workshop area was observed. Oil spillage on ground should be cleared to prevent contamination. (South Portal) It was reminded that waste oil cumulated inside the drip tray should be cleaned to maintain the capacity of the drip tray. 	clear prov chem	required for
18 November 2016	• No adverse environmental issue was observed.	• NA	
25 November 2016	• Mixture of oil and water cumulated in the drip tray was observed, the Contractor should clean the drip tray regularly to prevent overflow and contamination.	wate the c colle chem	mixture of oil and r trapped inside lrip tray has been cted into a proper nical waste ainer.

Table 9-1Site Observations for Contract 2

Contract 3

- 9.2.3 In the Reporting Period, joint site inspection for Contract 3 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 7, 6, 21 and 28 November 2016. No non-compliance was noted.
- 9.2.4 The findings / deficiencies of *Contract 3* that observed during the weekly site inspection are listed in *Table 9-2*.

Table 9-2Site Observations for Contract 3

Date	Findings / Deficiencies Follow-Up Status				
7 November 2016	• No adverse environmental issue was observed.	• NA			
16 November 2016	• Stagnant water was observed at PC4. The Contractor should remove the stagnant water to prevent mosquito breeding.	• Stagnant water was removed at PC4.			
	• The Contractor was reminded to cover the stockpile properly near Tai Wo Service Road West at the end of the work	1			

 $Z: \label{eq:loss_2013} TCS00694 \\ 600 \\ EM\&A \ Report \\ Monthly \ EM\&A \ Report \\ 40th \ (November \ 2016) \\ R0782v2. \\ docx \ Row \\ Ro$

Date	Findings / Deficiencies	Follow-Up Status
	day to reduce dust generation.	
21 November 2016	• Chemical containers without drip tray were observed near AA14. The Contractor should provide drip tray to the containers to avoid land contamination.	• The chemical containers without drip tray were removed from the site area.
28 November 2016	• Stagnant water was observed in drip tray under the generator near Bridge J. The Contractor should remove the stagnant water to prevent mosquito breeding.	• The generator with the drip tray was removed from site area and no stagnant water was observed.

<u>Contract 6</u>

- 9.2.5 In the Reporting Period, joint site inspection for Contract 6 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **3**, **10**, **17 and 24** November 2016. No non-compliance was noted.
- 9.2.6 The findings / deficiencies of *Contract 6* that observed during the weekly site inspection are listed in *Table 9-4*.

Date	Findings / Deficiencies	Follow-Up Status
27 October 2016 (last reporting month)	• Stagnant water was observed at the roof of the subway in BCP, the Contractor should provide mitigation measures to prevent mosquito breeding.	• The stagnant water has been removed.
3 November 2016	 Muddy trails were observed at the site exit, the Contractor should ensure all vehicles leaving the site were washed in the wheel washing facilities. Moreover, the Contractor should modify the wheel washing bay in order to prevent the wastewater overflow to the road. (Nga Yiu Ha) 	 Public road has been kept clean and wheel washing has been performed without overflowing of water from wheel washing basin.
	• Construction works next to the river course was observed, the Contractor should provide proper mitigation measures to prevent water quality impact. (Bridge D)	• Sandbag bund has been set along riverside so as to prevent river from being contaminated.
10 November 2016	• Muddy trails were observed at the site exit in Bridge Y, the Contractor should maintain the vehicle wheel washing procedure and improve the cleanliness on the public road.	• The site exit was cleaned.
17 November 2016	• Potential runoff from wheel washing bay into the river course was observed, the Contractor should provide mitigation measures to prevent water quality impact. (Bridge Y)	Concrete bund has been provided to prevent surface run-off from entering Kong Yiu River
	• Stagnant water was observed at works area of Bridge Y, the Contractor was reminded to divert the stagnant water to wastewater treatment facility for proper treatment before discharge off site.	• Not required for reminder.

Table 9-4Site Observations for Contract 6

Date	Findings / Deficiencies	Follow-Up Status
	• Scattered general refuse was observed at works area of Bridge Y, the Contractor was reminded to maintain housekeeping of the construction site.	• Not required for reminder.
24 November 2016	• Inefficient wheel-washing facility at Bridge D was observed, the Contractor should maintain the wheel-washing facility and improve the cleanliness at the public road.	 Water level in wheel washing basin has been lowered so as to avoid overflow. Cleanliness in the public road has been maintained.

Contract SS C505

- 9.2.7 In the Reporting Period, joint site inspection for Contract SS C505 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 2, 9, 17, 23 and 30 November 2016. No non-compliance was noted.
- 9.2.8 The findings / deficiencies of *Contract SS C505* that observed during the weekly site inspection are listed in *Table 9-5*.

Date	Findings / Deficiencies	Follow-Up Status
2 November 2016	• Stagnant water was observed at PTB and near Building 9. The Contractor should remove the stagnant water to prevent mosquito breeding.	• Stagnant water was removed at PTB and Building 9.
	• The Contractor was reminded to ensure the temporary drainage function properly.	• Not required for reminder.
	• The Contractor was reminded to carry out dust control measure regularly on site.	• Not required for reminder.
9 November 2016	 Stagnant water was observed at drainage channel near PTB. The Contractor should ensure the channel function properly to avoid accumulation of water. Stagnant water was observed in drip tray near Bridge 5. The Contractor should remove the stagnant water to prevent mosquito breeding 	 Stagnant water was removed and the drainage channel near PTB was removed for the pile cap construction. Stagnant water in drip tray was removed.
17 November 2016	• Stagnant water was observed near TC5 at PTB Area. The Contractor should remove the stagnant water to prevent mosquito breeding.	• Stagnant water near TC5 at PTB Area was removed.
23 November 2016	• Temporary waste storage area without label was observed in PTB West, the Contractor should be provide a label and fence off the waste storage area.	• A label was provided for the waste storage area.

Table 9-5Site Observations for Contract SS C505

Date	Findings / Deficiencies	Follow-Up Status
30 November 2016	• Stagnant water was observed at pit near Building 5 and in drip tray at PTB. The Contractor should remove the stagnant water to prevent mosquito breeding.	0

Contract 7

- 9.2.9 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 1, 8, 15, 22 and 29 November 2016. No non-compliance was noted.
- 9.2.10 The findings / deficiencies of *Contract* **7** that observed during the weekly site inspection are listed in *Table 9-6*.

Date	Findings / Deficiencies	Follow-Up Status
1 November 2016	• No adverse environmental issue was observed.	• NA
8 November 2016	• It was reminded that the stagnant water should be removed regularly and the discharge water should be complied with the discharge license.	• Not required for reminder.
15 November 2016	• Open stockpile was observed on site, the Contractor should cover the dusty stockpile with tarpaulin to minimize the dust impact. (Location: Near the BCP)	• The stockpile has been covered up with tarpaulin, and also water spraying is applied.
22 November 2016	• The Contractor should provide sand bag bunds along the chain link fencing at Bridge E to prevent site runoff.	 Sand bag bunds have been provided along chain link fencing at Bridge E.
29 November 2016	 Stagnant water was found in the abandoned wheel washing bay and a drip tray of a generator, the Contractor should remove the stagnant water to prevent mosquito breeding. It was reminded that open stockpile should be covered to avoid surface run-off and dust impact. 	 The stagnant water was removed. Not required for reminder.

Table 9-6Site Observations for Contract 7

9.2.11 General housekeeping such as daily site tidiness and cleanliness should be maintained for all Contracts. Furthermore, the Contractors were reminded to implement Waste Management Plan of the Project.

Other Contracts

9.2.12 Since the construction work of Contract 5 has substantially completed and Contract 4 has not commenced, no site inspection was performed.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION

10.1.1 In the Reporting Period, no summons and prosecution under the EM&A Programme was lodged for Contracts 2, 3, 6, 7 and Contract SS C505. However, three (3) documented environmental complaints were received in respect to the noise and wastewater issue. Investigation reports have been completed by the ET and the detail of the complaints and the investigation results are presented below.

Investigation Result for the Documented Complaints received by 1823 on 4 November 2016 (Contracts 2 and 6)

- 10.1.2 A complaint was received from 1823 on 4 November 2016 regarding muddy water discharged out of the construction sites near the traffic light post at the junction of Sha Tau Kok Road and Wo Keng Shan Road. The suspected muddy water from the construction site affecting the environment and causing inconvenience to the pedestrian and public.
- 10.1.3 Joint site inspection was carried out by RE, IEC, CCKJV and ET on 10 and 11 November 2016 at the suspected four (4) site exits along the Sha Tau Kok Road and Wo Keng Shan Road and the traffic light post for the complaint investigation. The aim of the inspection was to check condition of the site exit and the implementation the wheel washing facilities and to assess the possibility of muddy water discharge out of the construction site to the public road. The observations during the site inspection are summarized in below.

North Portal under Contract 2

10.1.4 Site inspection was conducted on 11 November 2016. The site exit of North Portal under Contract 2 is located on Sha Tau Kok Road. As observed during weekly site inspection, wheel washing facilities were provided within the construction site. The vehicles after wheel washing were pass through a hard paved haul road and reached the main site exit before leaving construction site. A cut-off drain was accompanied at the exit to divert the runoff from the construction area. As advised by the Contractor, manual water spraying was provided at the entrance of North Portal, it is not a wheel washing facilities but to clean and tidy the site entrance as needed. The condition of the site exit was clean and satisfactory and no trails of mud and muddy water were observed on the adjacent Sha Tau Kok Road.

Proposed Sha Tau Kok Interchange under Contract 6

10.1.5 Site inspection was conducted on 10 November 2016 during rainy day. The site exit of proposed Sha Tau Kok Interchange under Contract 6 was located at the junction of Sha Tau Kok Road and Wo Keng Shan Road. Wheel washing facilities was properly implemented at the site exit and the area between the wheel washing bay and site exit was hard paved. No trails of mud and muddy water were observed on the adjacent Sha Tau Kok Road and Wo Keng Shan Road.

Traffic light post at junction of Tau Kok Road and Wo Keng Shan Road

10.1.6 The traffic light post as mentioned by the complainant was located at junction of Tau Kok Road and Wo Keng Shan Road. During site inspection on 10 November 2016, no muddy water and mud trails were observed at the traffic light post and adjoin public roads.

Wo Keng Shan Park under Contract 6

10.1.7 Site inspection was conducted on 10 November 2016 during rainy day. The site exit of Wo Keng Shan Park under Contract 6 was located on Wo Keng Shan Road. Wheel washing facilities was properly implemented at the site exit and the area between the wheel washing bay and site exit was hard paved. No trails of mud and muddy water were observed on the adjacent Wo Keng Shan Road.

South Portal and Site Office under Contract 6

10.1.8 Site inspection was conducted on 10 November 2016 during rainy day. The site exit of South Portal and Site Office under Contract 6 was located on Wo Keng Shan Road. Wheel washing facilities was properly implemented at the site exit and the area between the wheel washing bay and site exit was hard paved. No trails of mud and muddy water were observed on the adjacent Wo Keng Shan Road.

- 10.1.9 In our investigation, the site exits near the complaint location under the project were satisfactory. Even though the inspection was carried out in rainy day, no muddy water discharge out of the construction site to the public roads was observed. It is considered that the suspected muddy water discharge from the works area out to Sha Tau Kok Road and Wo Keng Shan Road was unlikely due to the project.
- 10.1.10 As advised by both contractors, road washing/ cleaning by water bowsers was provided along Wo Keng Shan Road to Sha Tau Kok Road in every normal working day (Mon-Sat), except for rainy day. Moreover, road sweeping would be provided for the concerned roads twice a week. To address the complainant's concern, the ET will keep closely inspection on the cleanliness situation on both roads during weekly site inspection.

Investigation Result for the Documented Complaints received by 1823 on 31 October and 2 November 2016 (Contract 7)

- 10.1.11 A complaint was received from 1823 regarding noise nuisance generated from the piling works for the cross-boundary bridges under CEDD's works contract at 10pm on 31 October 2016. On 2 November 2016, the same complainant contact 1823 again and complained the same issue and a photo showing the concerned piling works was provided by the complainant.
- 10.1.12 According to the complaint details, it is considered that the concerned period of the complainant would be 31 October to 2 November 2016. As discussed with the Contractor of Contract 7 (KRSJV), the machinery appeared in Photo provided by the complainant was pre-bored socketed pile in Bridge A. According to the site diary provided by KRSJV 7 during 31 October to 2 November 2016, apart from the operation of generator for lighting and some material preparation works without use of any PME carried out at Portion G till 22:00, there were no piling works undertaken within the construction site after 19:00 on 31 October and 1 to 2 November 2016. There was a Construction Noise Permit (CNP) granted by KRSJV for use of powered mechanical equipment for carrying out construction works during specified restricted hours. As advised by KRSJV, The pre-bored socketed pile is only operated during daytime as it does not include in the CNP.
- 10.1.13 During site inspection by ET in November 2016, it was observed that concerned pre-bored socketed pile was assembly at the complaint location. There was no adverse noise impact recorded during the site inspection and no piling activities were observed.
- 10.1.14 Since there were no piling works undertaken by KRSJV during the concerned period, it is considered that the complaint was not valid to the Contract. Nevertheless, KRSJV is reminded to strictly comply with CNP requirement when there would be works undertaken during restricted hours and noise mitigation measures as recommended in the EM&A Programme should be adopted as far as practicable.

Investigation Result for the Documented Complaints received by 1823 on 16 November 2016 (Contract 6)

- 10.1.15 A complaint was received from 1823 on 16 November 2016 regarding construction of road bridge at higher ground level near Nga Yiu Ha Village caused water flowing to the complainant's water well and led to flooding. Moreover, the complainant pointed out that severe noise impact was generated and uneven presidential road were formed due to the construction. According to the complaint description, the related site area should be Bridge D and Ping Yeung Interchange under Contract 6.
- 10.1.16 Joint site inspection among the RE, IEC, Contractor of Contract 6 (CCKJV) and ET was carried out on 24 November 2016 in Nga Yiu Ha Village for the complaint investigation. However, the complaint location (14B Nga Yiu Ha) and the complainant's water well could not be found during the site inspection. To address the complainant's concern, the status of implemented mitigation measures provided by CCKJV and general condition of the site were inspected. The

observations during site inspection area summarized below.

- (a) The recent construction activities undertaken at Bridge D were bridge column and pier construction. It is considered that wastewater generated from the work was limited due to the works nature. No adverse water impact was observed during site inspection.
- (b) There were only vehicular roads lead to Nga Yiu Ha Village and the roads were mostly hard paved and no uneven ground was observed. There were no damage footpath observed and the villagers are using the vehicular roads to access Nga Yiu Ha Village.
- (c) The construction activities carried out in Bridge D and Ping Yeung Interchange involved bridge column and pier construction which would not generated excess noise. Based on the noise monitoring result at the nearest monitoring location NM3 (Ping Yeung Village), the measured noise level in November 2016 were all below the acceptable noise level.
- (d) Site hoarding had constructed along the site boundary for Nga Yiu Ha Village to demarcate the construction area. It also acted as temporary noise and dust screen to minimize the impact to the villagers.
- (e) As observed during the site inspection on 24 November 2016 and 1 December 2016, the village houses of Nga Yiu Ha were sat on the ground level slightly higher than the construction site. It is considered that wastewater flowing from construction site and getting into the village was unlikely to occur.
- 10.1.17 In our investigation, no deficiencies due to construction under the Contract were identified and affecting Nga Yiu Ha Village. Since the complaint location could not be found, it is considered the complaint was not evident due to the Contract and no remedial action was taken by CCKJV. Nevertheless, ET will keep closely monitor the site condition and status of implemented mitigation measures by CCKJV. Also, CCKJV is reminded to fully implement the mitigation measures as recommended in the EM&A Programme.
- 10.1.18 Upon receipt of the complaint, follow up action has been undertaken by both Contractor promptly to resolve the complaints and deficiencies. During the complaint investigation work, the Contractor was co-operated with the ET in providing all the necessary information and assistance for completion of the investigation. Investigation report for the complained has been submitted to all relevant parties for review.
- 10.1.19 The statistical summary table of environmental complaint is presented in *Tables 10-1, 10-2* and *10-3*.

	Contract	Envi	ronmental Co	mplaint Statistics	Project
Reporting Period	No	Frequency	Cumulative	Complaint Nature	related complaint
19 May 2014 – 31 Oct 2016	Contract 2	0	22	 (12)Water Quality (7) Dust (2) Noise (1) dust & noise 	(3) water(2) dust(1) noise
06 Nov 2013 – 31 Oct 2016	Contract 3	0	4	 (1) Dust (2) Water quality (1) Noise 	0
16 Aug 2013 – 31 Oct 2016	Contract 5	0	4	 (3) Dust (1) Noise 	0
16 Aug 2013 – 31 Oct 2016	Contract 6	0	26	 (19) Water Quality (6) Dust (1) Noise 	(6) water (2) dust
15 Feb 2016 – 31 Oct 2016	Contract 7	0	0	N/A	NA

 Table 10-1
 Statistical Summary of Environmental Complaints

	Contract	Envi	ronmental Co	mplaint Statistics	Project
Reporting Period	No			Complaint Nature	related complaint
16 Aug 2013 – 31 Oct 2016	SS C505	0	2	(1) Noise(1) dust	0
	Contract 2	1	23	 (13)Water Quality (7) Dust (2) Noise (1) dust & noise 	0
1 – 30 Nov 2016	Contract 3	0	4	 (1) Dust (2) Water quality (1) Noise 	0
1 501100 2010	Contract 6	2	28	 (21) Water Quality (6) Dust (1) Noise 	0
	Contract 7	1	1	• (1) Noise	0
	SS C505	0	2	(1) Noise(1) dust	0

Table 10-2	Statistical Summary of Environmental Summons
-------------------	--

		Environmental Summons Statistics			
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature	
19 May 2014 – 31 Oct 2016	Contract 2	0	0	NA	
06 Nov 2013 – 31 Oct 2016	Contract 3	0	0	NA	
16 Aug 2013 – 31 Oct 2016	Contract 5	0	0	NA	
16 Aug 2013 – Contract 6 31 Oct 2016 Contract 6		0	0	NA	
15 Feb 2016 – 31 Oct 2016 Contract 7		0	0	NA	
16 Aug 2013 – 31 Oct 2016		0	0	NA	
	Contract 2	0	0	NA	
1 – 30 Nov 2016	Contract 3	0	0	NA	
	Contract 6	0	0	NA	
l	Contract 7	0	0	NA	
	SS C505	0	0	NA	

Doporting Doriod	Contract No.	Environmental Prosecution Statistics			
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature	
19 May 2014 – 31 Oct 2016	Contract 2	0	0	NA	
06 Nov 2013 – 31 Oct 2016	Contract 3	0	0	NA	
16 Aug 2013 – 31 Oct 2016	Contract 5	0	0	NA	
16 Aug 2013 – 31 Oct 2016	Contract 6	0	0	NA	
15 Feb 2016 – 31 Oct 2016	Contract 7	0	0	NA	

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.40) – November 2016

16 Aug 2013 – 31 Oct 2016	SS C505	0	0	NA
	Contract 2	0	0	NA
1 – 30 Nov 2016	Contract 3	0	0	NA
	Contract 6	0	0	NA
	Contract 7	0	0	NA
	SS C505	0	0	NA

The Other Contracts

10.1.20 Since the construction works at the Contract 5 was substantially completed and Contract 4 has not yet commenced, no environmental complaint, summons and prosecution under the EM&A Programme are registered in the Reporting Period.

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL REQUIREMENTS

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- 11.1.2 All contracts under the Project shall be implementing the required environmental mitigation measures according to the approved EM&A Manual as subject to the site condition. Environmental mitigation measures generally implemented by Contracts 2, 3, 5, 6, 7 and Contract SS C505 in this Reporting Period are summarized in *Table 11-1*.

Issues	Environmental Mitigation Measures
Water Quality	• Wastewater to be treated by the wastewater treatment facilities i.e. sedimentation tank or similar facility before discharge.
Air Quality	 Maintain damp / wet surface on access road Low vehicular speed within the works areas. All vehicles must use wheel washing facility before off site Sprayed water during breaking works A cleaning truck was regularly performed on the public road to prevent fugitive dust emission
Noise	 Restrain operation time of plants from 07:00 to 19:00 on any working day except for Public Holiday and Sunday. Keep good maintenance of plants Place noisy plants away from residence or school Provide noise barriers or hoarding to enclose the noisy plants or works Shut down the plants when not in used.
Waste and Chemical Management	 On-site sorting prior to disposal Follow requirements and procedures of the "Trip-ticket System" Predict required quantity of concrete accurately Collect the unused fresh concrete at designated locations in the sites for subsequent disposal
General	The site was generally kept tidy and clean.

 Table 11-1
 Environmental Mitigation Measures

11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016. Construction activities for other Contracts in the coming month are listed below:

Contract 2

Contract 2		
Mid-Vent Portal	•	Stud tunnel and cavern D&B excavation
	•	Adit invert slab, water proofing and lining
	•	Ventilation building superstructure and backfilling
North Portal	•	Slope stabilization & retaining wall
	•	Southbound TBM excavation
	•	Northbound bench excavation
	•	Tunnel enlargement and construction of cross passage
	•	Tunnel internal structure and cross passage
	•	Ventilation building foundation
South Portal	•	Southbound and Northbound D&B excavation
	•	South ventilation building superstructure
	•	Tunnel invert, waterproofing and lining
Admin Building	•	Building superstructure and external wall

Contract 3

Boundary Wall for Pumping Station

- Cable detection and trial trenches
- Construction of Remaining Slab of Box Culvert ID05
- Demolition of Valve Control House
- Footbridge construction
- Gabion wall construction
- Re-provisioning of Kiu Tau Footbridge
- Storm drains laying
- Noise barrier construction
- Pier / Pier Table construction
- Pile cap works
- Portal beam construction
- Retaining Wall construction
- Road works
- Sewer works
- Slope reinstatement works near Bridge E
- Utilities duct laying
- Viaduct segment erection
- Water Main Laying

Contract 6

- Slope Works
- Bored Piling
- Pile Cap Construction
- Bridge Pier Construction
- Segment section
- Sewage Treatment Plant Construction
- Tunnel Works

Contract 7

- Piling Works at Bridge A and E
- Pile caps construction at Bridge A and E
- Column construction at Bridge B and D
- 2nd floor construction of Bridge C

Contract SS C505

- Building no.4, 5, 6, 7, 9, 10, 11 and 36 construction
- Excavation for drainage works for Building no. 4 & 5
- Pile cap construction for Building no. 7
- Tower crane operation
- Bridge construction works including construction of bridge column, retaining wall, pile cap and pier
- Underground drainage works
- Mock up for south entrance double curve cladding
- Formwork and falsework for PTB's slab construction
- Construction PTB M/F & 1/F flat slab
- Steel beam works for maintenance platform for PTB
- Pile cap construction for PTB, including excavation and backfilling works
- Bridge deck construction for Bridges 1 5
- Footing construction

11.3 KEY ISSUES FOR THE COMING MONTH

- 11.3.1 Key issues to be considered in the coming month for Contracts 2, 3, 6, 7 and SS C505 include:
 - Implementation of control measures for rainstorm;

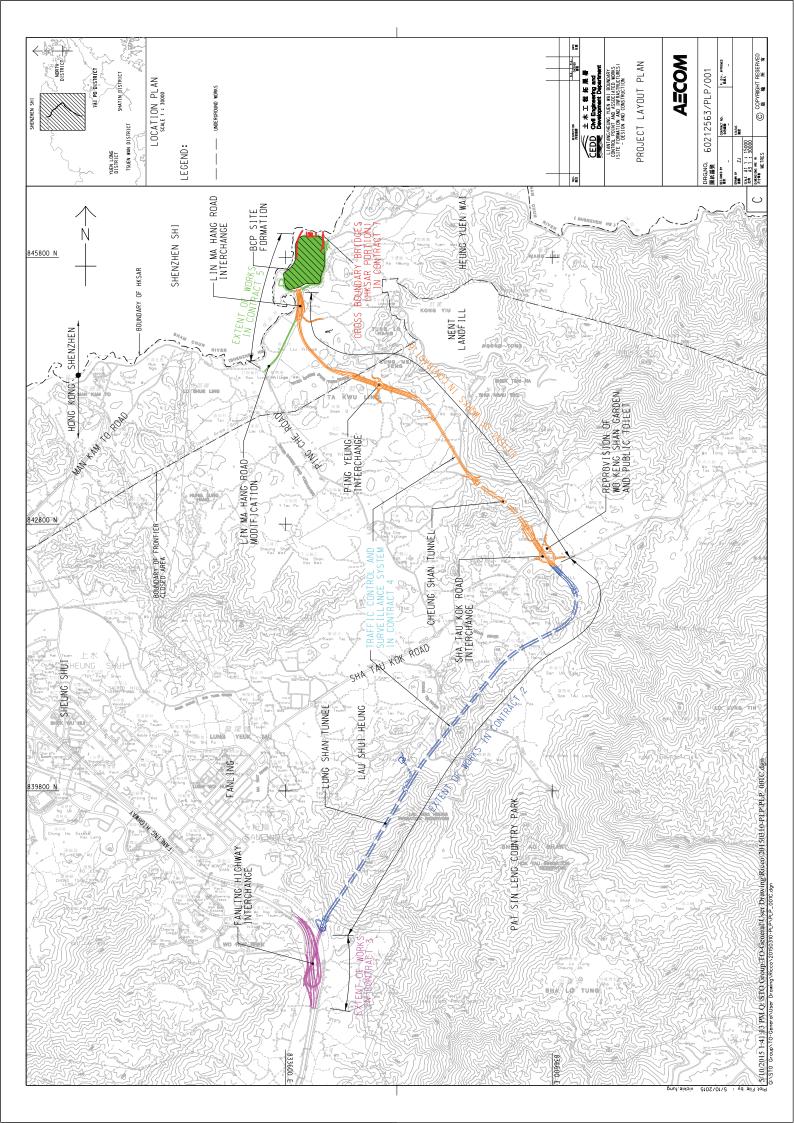
- Regular clearance of stagnant water during wet season;
- Implementation of dust suppression measures at all times;
- Potential wastewater quality impact due to surface runoff;
- Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
- Disposal of empty engine oil containers within site area;
- Ensure dust suppression measures are implemented properly;
- Sediment catch-pits and silt removal facilities should be regularly maintained;
- Management of chemical wastes;
- Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
- Follow-up of improvement on general waste management issues; and
- Implementation of construction noise preventative control measures
- 11.3.2 Since the construction work of Contract 4 has not commenced, no environmental issue is presented.

12 CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

- 12.1.1 This is the **40th** monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from **1** to **30 November 2016**.
- 12.1.2 For air quality monitoring, no 1-hour and 24-hour TSP monitoring results triggered the Action or Limit Levels were recorded. No NOEs or the associated corrective actions were therefore issued.
- 12.1.3 In the Reporting Period, no construction noise measurement results that exceeded the Limit Level were recorded. However, one noise complaint which triggered an Action Level exceedance was received. Investigation report revealed that the complaint was not related to the Project.
- 12.1.4 For water quality monitoring, forty-five (45) AL/LL exceedances, namely twenty-one (21) AL/LL exceedance of turbidity and twenty-four (24) AL/LL exceedances of Suspended Solids were recorded for the Project. According to the investigation result, only 2 numbers of turbidity and 2 numbers of suspended solid exceedances were concluded as works related under Contract 6. Corrective measures had been provided by the relevant contractor to rectify the deficiency.
- 12.1.5 No environmental summons or successful prosecutions were recorded in the Reporting Period.
- 12.1.6 In this Reporting Period, three (3) documented environmental complaints were received under the EM&A Programme in respect wastewater and noise issue. Investigation result revealed that the complaints were not related to works under Project.
- 12.1.7 During the Reporting Period, weekly joint site inspection by the RE, IEC, ET with the relevant Main-contractor were carried out for Contracts 2, 3, 6, 7 and SS C505 in accordance with the EM&A Manual stipulation. No non-compliance observed during the site inspection.

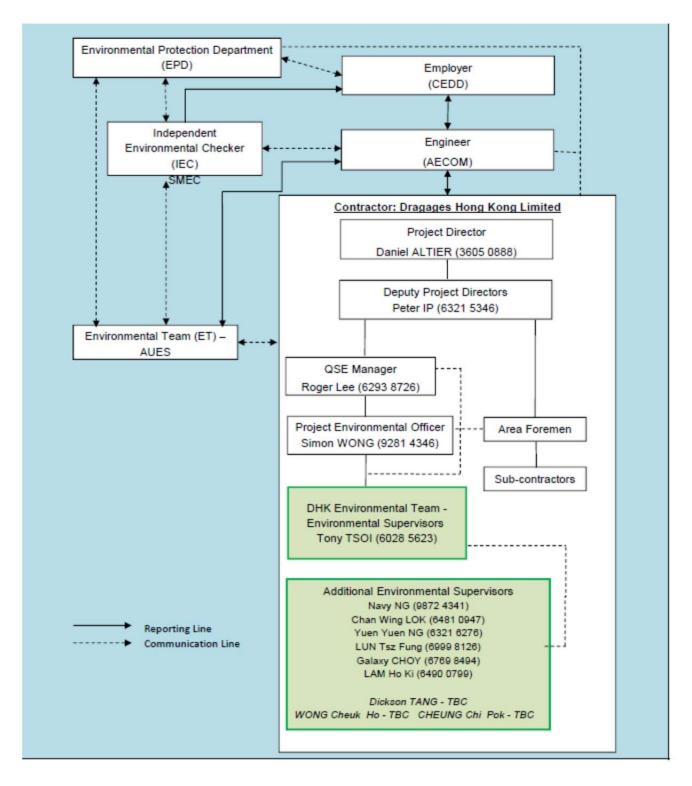
12.2 RECOMMENDATIONS


- 12.2.1 During dry season, special attention should be paid on the potential construction dust impact since most of the construction sites are adjacent to villages. The Contractor should fully implement the construction dust mitigation measures properly.
- 12.2.2 Preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River. Moreover, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- 12.2.3 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- 12.2.4 Furthermore, daily cleaning and weekly tidiness shall be properly performed and maintained. In addition, mosquito control should be kept to prevent mosquito breeding on site.

Appendix A

Layout plan of the Project

 $Z: Jobs \ 2013 \ CS00694 \ 600 \ EM\&A\ Report \ Monthly\ EM\&A\ Report \ 40th\ (November\ 2016) \ R0782v2. docx$



Appendix B

Organization Chart

Environmental Management Organization for Contract 2 - (CV/2012/08)

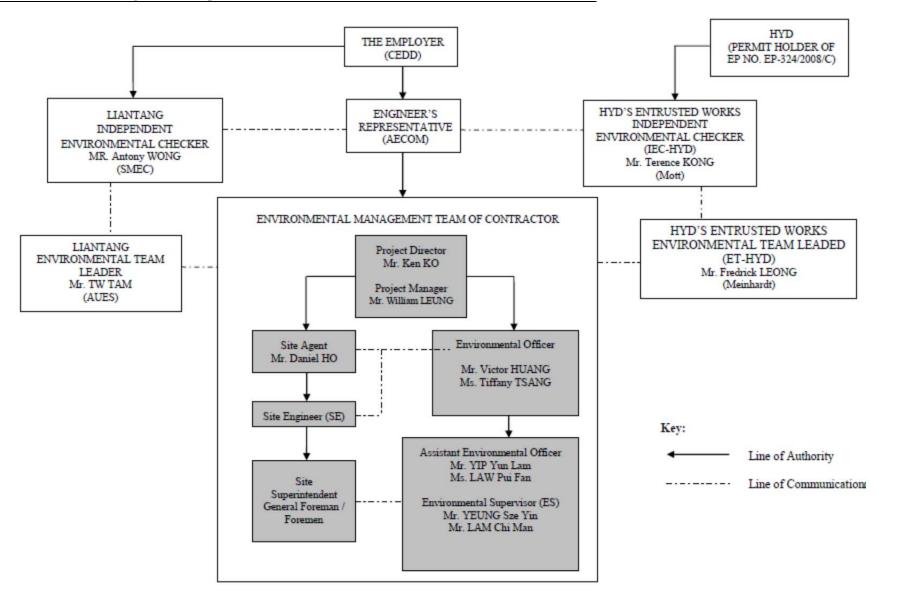
|--|

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	CT Wong	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
DHK	Project Director	Daniel Altier	2171 3004	2171 3299
DHK	Deputy Project Manager	Peter Ip	6321 5346	2171 3299
DHK	QSE Manager	Roger Lee	6293 8726	2171 3299
DHK	Environmental Officer	Simon Wong	2171 3004	2171 3299
DHK	Environmental Supervisor	Tony Tsoi	6028 5623	2171 3299
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:

CEDD (Employer) – Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.


DHK(Main Contractor) – Dragages Hong Kong Ltd.

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.40) – November 2016

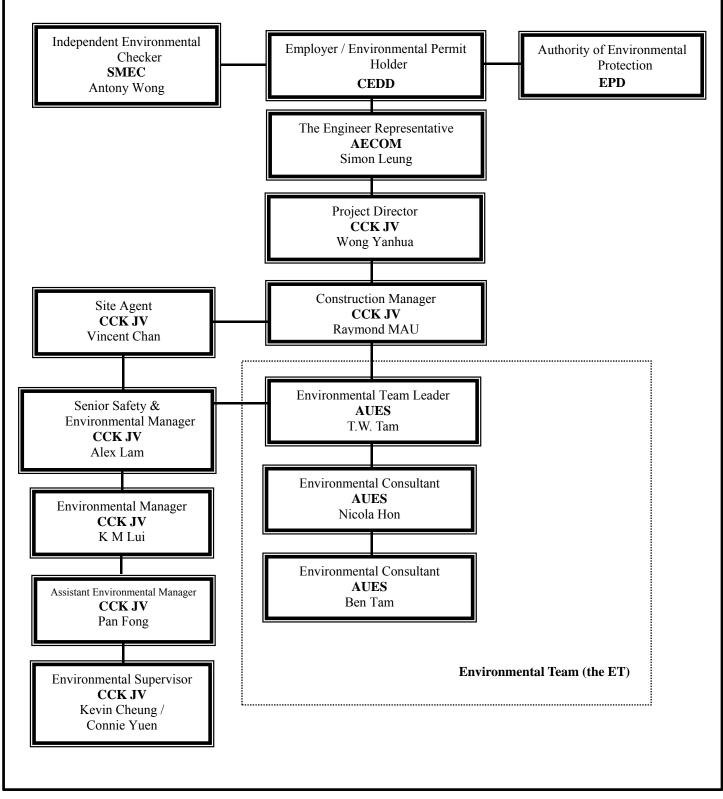
Environmental Management Organization for Contract 3 - CV/2012/09

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Alan Lee	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Chun Wo	Project Director	Ken Ko	3758 8735	2638 7077
Chun Wo	Project Manager	William Leung	2638 6136	2638 7077
Chun Wo	Site Agent	Daniel Ho	2638 6144	2638 7077
Chun Wo	Environmental Officer	Victor Huang Tiffany Tsang Dennis So	2638 6115	2638 7077
Chun Wo	Assistant Environmental Officer	Yip Yun Lam Law Pui Fan	2638 6125	2638 7077
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 3 - CV/2012/09

Legend:

CEDD (Employer) – Civil Engineering and Development Department

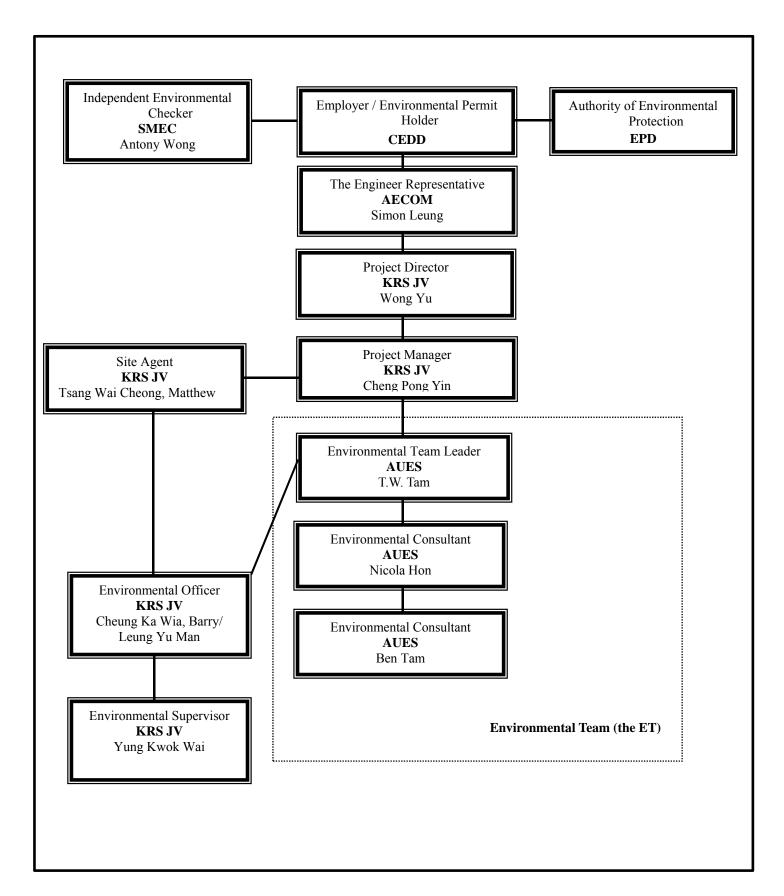

AECOM (Engineer) – AECOM Asia Co. Ltd.

Chun Wo (Main Contractor) – Chun Wo Construction Ltd.

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization – CV/2013/08


Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
CCK JV	Project Director	Wang Yanhua	6190 4212	
CCK JV	Construction Manager	Raymond Mau Sai-Wai	9011 5340	
CCK JV	Site Agent	Vincent Chan	9655 9404	
CCK JV	Senior Safety & Environmental Manager	Alex Lam	5547 0181	
CCK JV	Environmental Manager	K M Lui	51138223	
CCK JV	Assistant Environmental Officer	Pan Fong	9436 9432	
CCK JV	Environmental Supervisor	Kevin Cheung/ Connie Yuen	6316 6931 6117 1344	
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 6 - CV/2013/08

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. CCK JV (Main Contractor) – CRBE-CEC-Kaden Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

AUES

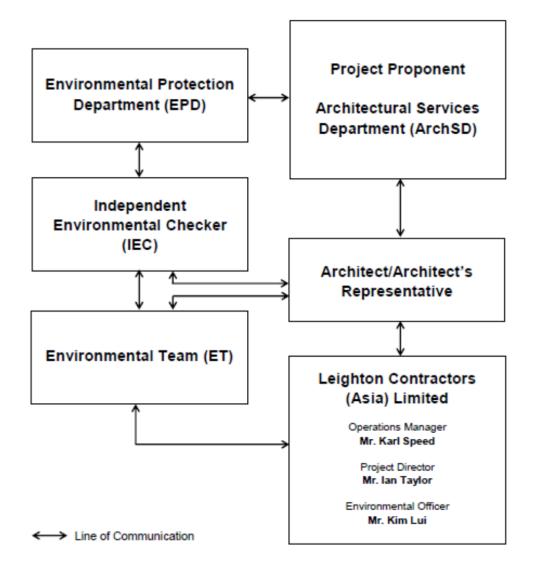
Environmental Management Organization -NE/2014/03

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
KRSJV	Project Director	Wong Yu	2682 6691	2682 2783
KRSJV	Project Manager	Cheng Pong Yin	9023 4821	2682 2783
KRSJV	Site Agent	Tsang Wai Cheong, Matthew	9705 7536	2682 2783
KRSJV	Environmental Officer	Cheung Ka Wia, Barry	6117 2339	2682 2783
KRSJV	Environmental Officer	Leung Yu Man	6592 3084	2682 2783
KRSJV	Environmental Supervisor	Yung Kwok Wai	6592 3084	2682 2783
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 7 – NE/2014/03

Legend:

CEDD (Employer) – Civil Engineering and Development Department


AECOM (Engineer) – AECOM Asia Co. Ltd.

KRS JV (Main Contractor) –Kwan On-Richwell-SCG Joint Venture

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organigram

Environmental Management Organization for Contract SS C505

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
ArchSD	Works agent for the Development Bureau (DEVB)	Mr. William Cheng	2867 3904	2804 6805
Ronald Lu & Partners	Architect/ Architect's Representative	Mr. Justin Cheung	3189 9272	2834 5442
SMEC	Independent Environmental Checker	Mr. Antony Wong	3995 8120	3995 8101
Leighton	Operation Manager	Mr. Karl Speed	2823 1433	25298784
Leighton	Project Director	Mr. Ian Taylor	2858 1519	2858 1899
Leighton	Environmental Officer	Mr. Kim Lui	3973 1069	-
Leighton	Assistant Environmental Officer	Ms. Penny Yiu	3973 0818	-
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Mr. Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract SS C505

Legend:

ArchSD(Project Proponent) – Architectural Services Department

Ronald Lu & Partners (Architect/Architect's Representative) –Ronald Lu & Partners (Hong Kong) Ltd

Leighton (Main Contractor) – Leighton Contractors (Asia) Limited

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Appendix C

3-month rolling construction program

Contract 2

Tentative Three Months (December 2016 - February 2017) Construction Rolling Progam

Item	Major Construction Activites
1	Admin Bldg - Construction of superstructure and external wall
2	Mid Vent Portal - Adit invert slab, waterproofing and lining
4	Mid Vent Portal - Stud tunnel and Cavern D&B excavation
5	Mid Vent Portal - Backfilling and Ventilation building superstructure works
6	North Portal - Northbound tunnel bench mechanical excavation
	North Portal - Southbound tunnel excavation by TBM
8	North Portal - Southbound tunnel enlargement
	North Portal - Tunnel internal structure and construction of cross passage
10	North Portal - Retaining walls and slope stabilizations
11	North Portal - North ventilation building foundations
	South Portal - Northbound and Southbound tunnel D&B excavation
13	South Portal - South ventilation building superstructure works
14	South Portal - Tunnel invert, waterproofing and lining

Contract 3

Liantang / Heung Yuen Wai Boundary Control Point and Associated Works

CEDD Contract No: CV/2012/09

Main Contractor: Chun Wo Construction Ltd

後和建築工程有限公司 CHUN WO CONSTRUCTION & ENGINEERING CO., LTD.

Tentative Three Months (November 2016, December 2016 and January 2017) Construction Rolling Pro-

Item	Construction Activites
1	Cable Detection and Trial Trenches
2	Demolition of Existing Vehicular Bridge
3	Footbridge Construction
4	Storm Drains Laying
5	Noise Barrier Construction
6	Pier / Pier Table Construction
7	Pile Cap Works
8	Portal Beam Construction
9	Retaining Wall Construction
10	Road Works
11	Sewer Works
12	Utilities Duct Laying
13	Viaduct Segment Erection
14	Water Main Laying
15	Boundary Wall for Pumping Station
16	Construction of Remaining Slab of Box Culvert ID05
17	Demolition of Valve Control House
18	Gabion wall construction
19	Re-provisioning of Kiu Tau Footbridge
20	Slope Reinstatement Works near Bridge E

Contract 6

Tentative Three Months (November 2016, December 2016 and January 2017) Construction Rolling Progam

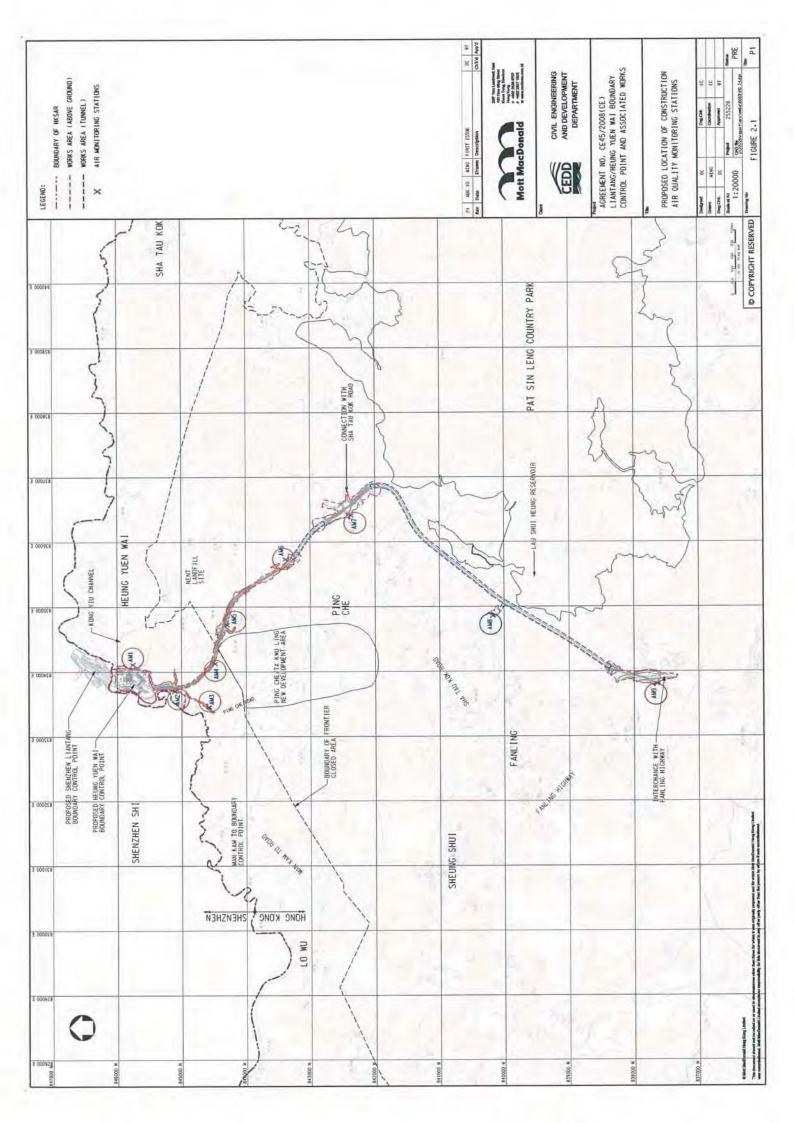
ltem	Construction Activites
1	Slope Works
2	Bored Piling
3	Pile Cap Construction
4	Bridge Pier Constrcution
5	Segment Erection
6	Tunnel Works
7	Sewage Treatment Plant Construction

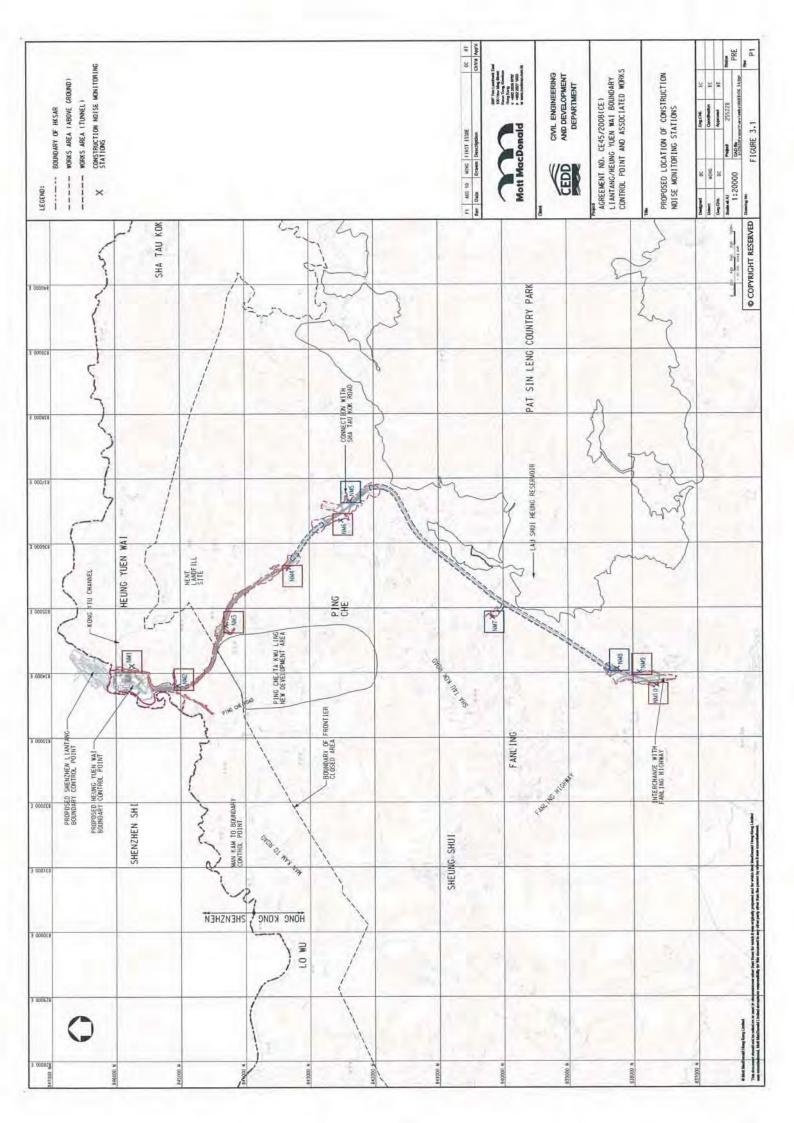
Contract 7

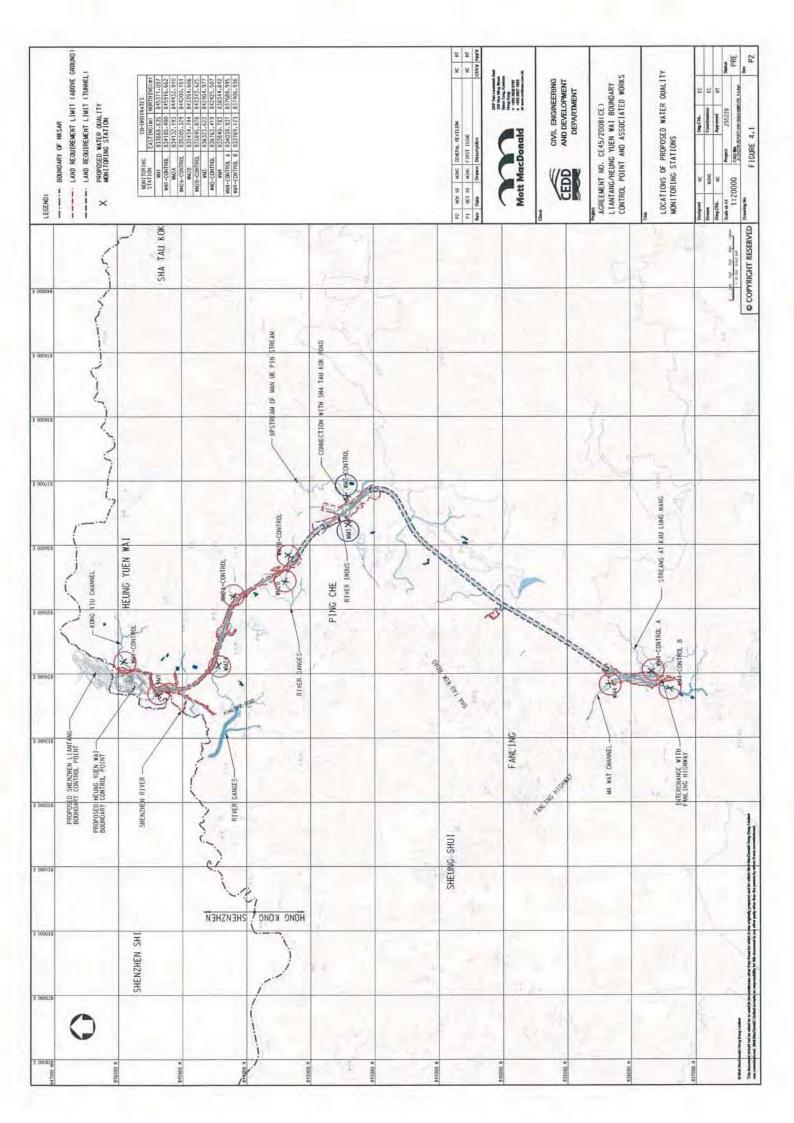
entative Three Months(November 2016, December 2016 and January 2017) Construction Rolling Progar

Item	Construction Activites
1	Bridge A - Piling Works
	Bridge A - Pile Caps and Column
3	Bridge B - Pile Caps and Column
4	Bridge C - Pile Caps and Column
	Bridge C - Construction of 2nd Floor Slab
	Bridge D - Pile Caps and Column
7	Bridge E - Piling Works
8	Bridge E - Pile Caps and Column

Contract SS C505

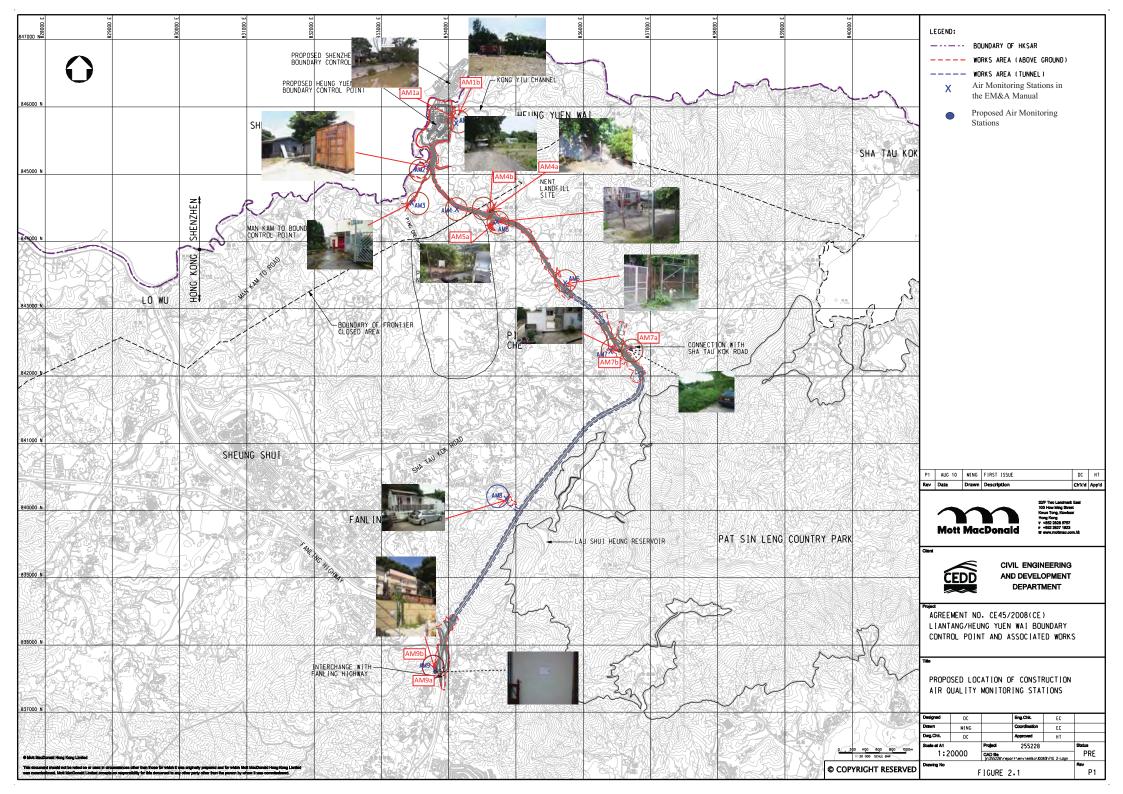

Tentative Three Months (November and December 2016 and January 2017) Construction Rolling Progam

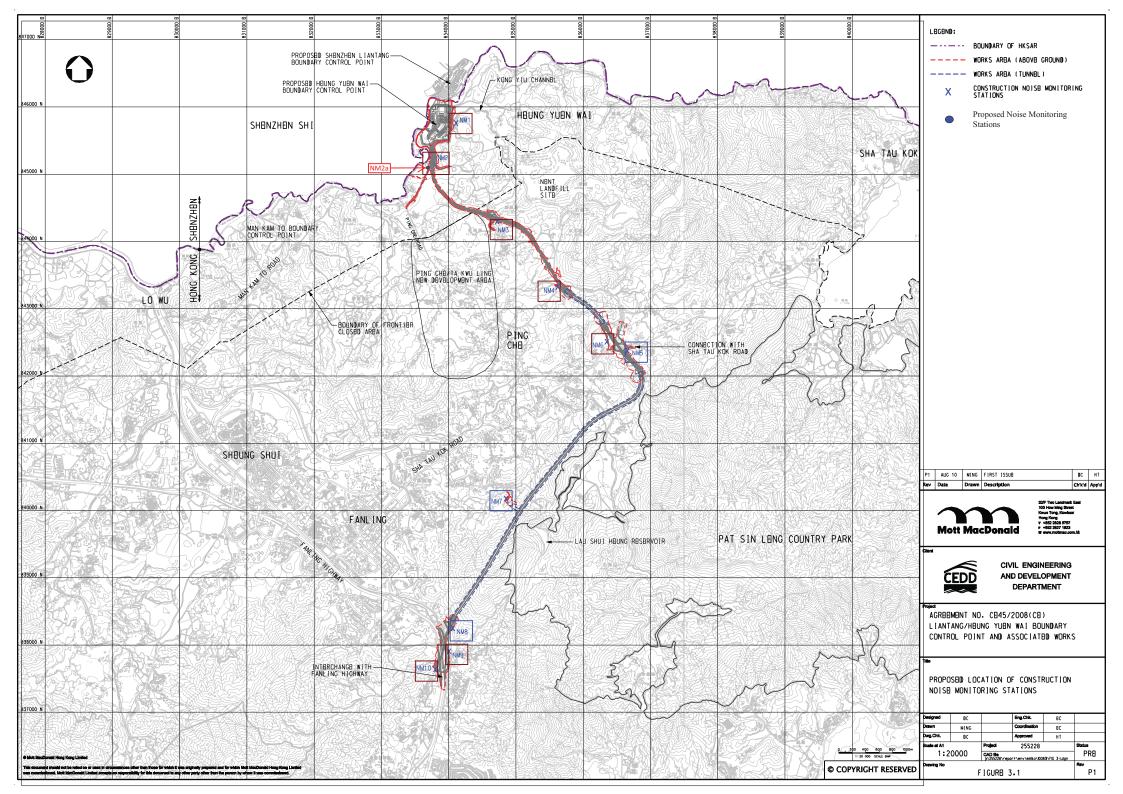

Item	Construction Activites
1	Passenger Terminal Building - Substructure Works
2	Passenger Terminal Building - RC Superstructure Works
3	Passenger Terminal Building - ABWF Works & Building Services Installation Works
4	C&ED Detector Dog Base - Substructure, RC structures and Integrated ABWF & BS Works
5	HKPF Building - Substructure, RC structures, Integrated ABWF and BS Works
6	Fire Station and Drill Tower - Substructures, RC structures, Integradted ABWF and MEP Works
7	Cargo Examination Building (Inbound) - Underground Drainage & Utilities, RC Structure and ABWF & MEP
8	Cargo Examination Building (Outbound) - Underground Drainage & Utilities and RC Structure, ABWF & MEP
9	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Inbound) - Substructures, RC Structures and ABWF & MEP
10	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Outbound) - Pile Cap Construction, Structural Works and ABWF &
11	GV Kiosk (Inbound) - Earthworks and RC structures
12	Public Toilets (Inbound) - Earthworks
13	MXRVSS (Outbound) - Structures works
14	Fire Hydrant Tank & Pump Room - Structural Works, ABWF & MEP works
15	Elevated Walkway - Structure Works
16	Vehicular bridges - Pilecaps / Piers / abutment / retaining walls / portal, Bridge Decks
17	External Works in Portion 1 - Underground utilities, Road Works and Landscaping
18	External Works in Portion 2 - Underground utilities, Road Works and Landscaping

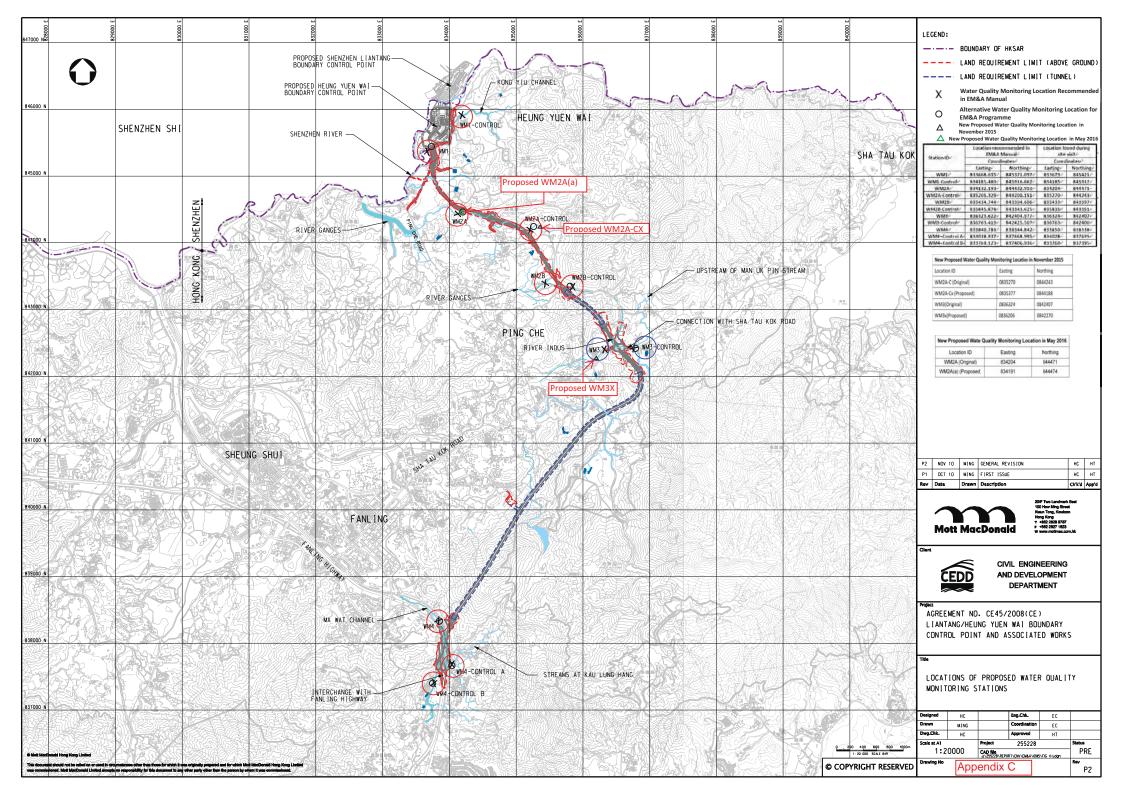


Appendix D

Designated Monitoring Locations as Recommended in the Approved EM&A Manual







Appendix E

Monitoring Locations for Impact Monitoring

Appendix F

Calibration Certificate of Monitoring Equipment and HOKLAS-accreditation Certificate of the Testing Laboratory

Location : Location]		ea at Tsu AM1b	ng Yuer	n Ha Village	Date of Calibration:24/10/2016Next Calibration Date:24/12/2016Technician:Fai So				
					(CONDITIONS			
	Se	a Level I Temp	Pressure perature		1011.3 27.3		Corrected Pressure (Temperature (758.475 300
					CALIE	BRATION ORI	FICE		
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> Qstd Intercept ->		00411 .03059
					С		l		
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINE. REGRES		
18 13 10 7 5	6.2 4.7 3.6 2.5 1.4	6.2 4.7 3.6 2.5 1.4	12.4 9.4 7.2 5.0 2.8	1.764 1.538 1.348 1.126 0.846	51 45 38 28 18	50.75 44.78 37.82 27.86 17.91	Slope = Intercept = Corr. coeff. =	36.7893 -12.8904 0.9967	
Calculatio Qstd = 1/1 IC = I[Sq1	m[Sqrt(H			l/Ta))-b]		60.00	FLOW RATI	E CHART	
Qstd = sta IC = corre I = actual m = calibr b = calibra	ected char chart resp rator Qsto	rt respone ponse d slope				50.00 (j) 40.00			•
Ta = actua	al temper	ature dur	ring cali	bration (deg ration (mm		40.00 (C) 30.00 set 1 (C) 30.00 set 1 (C) 40.00 set 1 (C) 40.0			
<i>For subsequent calculation of sampler flow:</i> 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)						90.02 Actual			
m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature						10.00		.000 1.	
Pav = dail		-				0.000	0.500 1. Standard Flow F		.500 2.000

Location : Location I		House ne AM2	ear Lin I	Ma Hang Ro		Date of Calibration:24/10/2016Next Calibration Date:24/12/2016Technician:Fai So		
					C	OND	DITIONS	
	Se	a Level I Temp	Pressure erature	. ,	<u>1011.</u> 27.			Corrected Pressure (mm Hg) 758.475 Temperature (K) 300
					CALIBR	RATI	ION ORIF	FICE
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CA	LIB	RATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)		IC corrected	LINEAR REGRESSION
18 13 10 7 5	6.1 4.7 3.6 2.4	6.1 4.7 3.6 2.4	(iii) 12.2 9.4 7.2 4.8 2.8	1.750 1.538 1.348 1.103 0.846	55 50 44 35 26		54.73 49.76 43.79 34.83 25.87	Slope = 32.5271 Intercept = -1.0373 Corr. coeff. = 0.9970
51.41.42.80.84626Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]ICIC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]Qstd = standard flow rateIC = corrected chart responesI = actual chart responsem = calibrator Qstd slope							60.00 50.00 40.00	FLOW RATE CHART
 b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 						ual chart	20.00	
1/m((I)[S m = samp b = samp I = chart r Tav = dail Pav = dail	ler slope ler interc esponse y averag	ept e tempera	ature))			0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		a Ling Fir AM3	e Servic	ce Station				Date of Calibration:24/10/2016Next Calibration Date:24/12/2016Technician:Fai So
					CC	OND	ITIONS	
	Se	ea Level I Temp	Pressure erature	. ,	1011. 27.			Corrected Pressure (mm Hg) 758.475 Temperature (K) 300
					CALIBR	RATI	ION ORIF	ICE
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CA	LIB	RATION	
Plate		H2O (R)	H20	Qstd	I		IC	LINEAR
No. 18	(in) 5.7	(in) 5.7	(in) 11.4	(m3/min) 1.692	(chart) 57	C	orrected 56.72	REGRESSION Slope = 29.2918
13	4.5	4.5	9.0	1.505	50		49.76	Intercept = 6.8324
10	3.4	3.4	6.8	1.310	46		45.78	Corr. coeff. = 0.9957
7 5	2.2	2.2	4.4	1.057	39 21		38.81	
Calculatio	1.4	1.4	2.8	0.846	31		30.85	FLOW RATE CHART
Qstd = 1/r IC = I[Sqr				/Ta))-b]		6	60.00	
Qstd = sta IC = corre	cted cha	rt respone	es			5	60.00	
I = actual m = calibr b = calibra	ator Qst	d slope	-			chart response (IC)	0.00	
Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg)							80.00	
<i>For subsequent calculation of sampler flow:</i> 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)							20.00	
m = samp b = samp I = chart r	ler interc						0.00	
I = chart r Tav = dail Pav = dail	y averag	-					0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location :	-		age					Date of Calibration:24/10/2016Next Calibration Date:24/12/2016
Location I	D:	AM4b						Next Calibration Date: 24/12/2016 Technician: Fai So
					C	ONI	DITIONS	
	Se	ea Level I Temp	Pressure perature	. ,	1011. 27.			Corrected Pressure (mm Hg) 758.475 Temperature (K) 300
					CALIBR	RAT		ICE
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CA	ALIE	BRATION	
Plate		H2O (R)		Qstd	I		IC	LINEAR
No. 18	(in) 5.6	(in) 5.6	(in) 11.2	(m3/min) 1.677	(chart) 56		corrected 55.73	REGRESSION Slope = 29.4637
13	4.4	4.4	8.8	1.488	51		50.75	Intercept = 6.8795
10	3.3	3.3	6.6	1.291	46		45.78	Corr. coeff. = 0.9973
7 5	2.1 1.5	2.1 1.5	4.2 3.0	1.033 0.875	38 32		37.82 31.85	
Calculatio Qstd = 1/n IC = I[Sqr Qstd = sta IC = corre	n[Sqrt(H t(Pa/Psto ndard flo	d)(Tstd/T ow rate	a)]	/Ta))-b]			60.00	FLOW RATE CHART
I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg)							40.00	
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)							20.00	
m = sampl b = sampl I = chart re Tav = dail Pav = dail	ler interc esponse y averag	cept se tempers					0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I	_	eung Villa AM5a	age Hou	se				Date of Calibration:24/10/2016Next Calibration Date:24/12/2016	
Location	D .	1 11 0 10 u						Technician: Fai So	
					C	ON	DITIONS		
	Se	ea Level I Temp	Pressure perature	. ,	1011			Corrected Pressure (mm Hg) 758.475 Temperature (K) 300	
					CALIB	RAT	FION ORIF	FICE	
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059	
					CA	ALIE	BRATION		
Plate		H2O (R)	H20	Qstd	Ι		IC	LINEAR	
No. 18	(in) 6.2	(in) 6.2	(in) 12.4	(m3/min) 1.764	(chart) 53) (corrected 52.74	REGRESSION Slope = 34.6053	
13	4.9	4.9	9.8	1.570	47		46.77	Intercept = -7.9320	
10	3.8	3.8	7.6	1.384	40		39.81	Corr. coeff. = 0.9993	
7 5	2.4 1.5	2.4 1.5	4.8 3.0	1.103 0.875	31 22		30.85 21.89		
	1.5	1.5	5.0	0.075			21.07		
Calculatio Qstd = 1/r		[20(Pa/Ps	td)(Tstd	/Ta))-b]		FLOW RATE CHART			
IC = I[Sqr	·			· · · -					
Qstd = sta	ndard flo	ow rate					50.00		
IC = corre I = actual		-	es			â			
m = calibr	ator Qst	d slope					40.00		
	al temper	ature dur	ing calib	oration (de		chart response	30.00		
Pstd = act	ual press	ure durin	g calibra	ation (mm	Hg)	al cha			
For subsequent calculation of sampler flow:							20.00		
1/m((I)[S	Sqrt(298/	'Tav)(Pav	/760)] - b)					
m = samp	ler slope						10.00		
b = samp		cept							
I = chart r Tav = dail	y averag						0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)	
Pav = dail	y averag	e pressur	e						

Location : Location I		ng Shan V AM6	/illage H	House				Date of Calibration:24/10/2016Next Calibration Date:24/12/2016
	2 .	111,10						Technician: Fai So
					C	ONI	DITIONS	
	Se	ea Level I Temp	Pressure erature	, ,	1011. 27.			Corrected Pressure (mm Hg) 758.475 Temperature (K) 300
					CALIBR	RAT		ICE
				Make-> Model-> Serial # ->	5025A			Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CA	ALIE	BRATION	
		H2O (R)	H20	Qstd	I (-1t)		IC	LINEAR
No. 18	(in) 6.2	(in) 6.2	(in) 12.4	(m3/min) 1.764	(chart) 57		corrected 56.72	REGRESSION Slope = 35.0492
13	4.9	4.9	9.8	1.570	50		49.76	Intercept = -4.9242
10	3.6	3.6	7.2	1.348	43		42.79	Corr. coeff. = 0.9984
7 5	2.3 1.7	2.3 1.5	4.6 3.2	1.080 0.904	34 26		33.84 25.87	
Calculatio Qstd = 1/n IC = I[Sqr Qstd = sta IC = corre I = actual	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res	d)(Tstd/Ta ow rate rt respond ponse	a)]	/Ta))-b]		(C)	60.00	FLOW RATE CHART
 m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 						Actual chart response	30.00	•
1/m((I)[S	Sqrt(298/	Tav)(Pav	/760)]-b))				
m = sampl b = sampl I = chart re Tav = dail Pav = dail	ler interc esponse y averag	e tempera					0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location :	-		Loi Tur	Date of Calibration: 24/10/2016			
Location I	D :	AM7b					Next Calibration Date: 24/12/2016 Technician: Fai So
					COND	ITIONS	
						т	
	Se	a Level 1		. ,	1011.3		Corrected Pressure (mm Hg) 758.475
		Temp	berature	(°C)	27.3	1	Temperature (K) 300
				C	ALIBRATI	ON ORIFICE	
				Make->	TISCH]	Qstd Slope -> 2.00411
				Model->	5025A]	Qstd Intercept -> -0.03059
				Serial # ->	1612	<u> </u>	
					CALIB	RATION	
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4.2	4.2	8.4	1.454	56	51.00	Slope = 31.3023
13	3.4	3.4	6.8	1.310	53	47.00	Intercept = 5.8059
10	2.6	2.6	5.2	1.148	48	42.00	Corr. coeff. = 0.9993
7	1.8	1.8	3.6	0.957	41	36.00	
5	1.3	1.3	2.6	0.816	38	31.00	
Calculatio	ons :						FLOW RATE CHART
Qstd = 1/r	n[Sqrt(H	20(Pa/Ps	std)(Tstd	/Ta))-b]		60.00	
IC = I[Sqr	t(Pa/Pstd	l)(Tstd/T	a)]				
						50.00	/
Qstd = sta							×
IC = correction		-	es				• • • • • • • • • • • • • • • • • • •
I = actual		-				9 40.00	
m = calibr	-	-				suoc	× (
b = calibra				bration (de	αV)	esu od se 30.00	•
	-		-	ation (mm		chart	
$1 \operatorname{stu} - \operatorname{act}$	uai piess		ig canor		IIg)	Page 1 - 20.00	
For subse	equent ca	alculatio	n of san	npler flow:		ช20.00 ศ	
1/m((I)[S	Sqrt(298/	Tav)(Pav	/760)]-t)			
	1			,		10.00	
m = samp	ler slope						
b = samp	ler interc	ept					
I = chart r	esponse					0.00	0.500 1.000 1.500 2.000
Tav = dail		-					Standard Flow Rate (m3/min)
Pav = dail	y average	e pressur	e				

Location : Location I		Гsai Vill AM8	age No.	4			Date of Calibration: 24/10/2016 Next Calibration Date: 24/12/2016
Location	D.	Alvio					Technician: Fai So
					CONE	DITIONS	
	Se	a Level I Temp	Pressure erature	. ,	1011. 27.		Corrected Pressure (mm Hg) 758.475 Temperature (K) 300
				C	ALIBRAT	ION ORIFICE	
				Make-> Model-> Serial # ->	5025A		Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CALIB	RATION	
Plate	H20 (L)		H20	Qstd	Ι	IC	LINEAR
No. 18 13 10 7 5	(in) 5.9 4.5 3.5 2.2 1.3	(in) 5.9 4.5 3.5 2.2 1.3	(in) 11.8 9.0 7.0 4.4 2.6	(m3/min) 1.721 1.505 1.329 1.057 0.816	(chart) 62 54 50 40 32	corrected 61.70 53.74 49.76 39.81 31.85	REGRESSION Slope = 32.7068 Intercept = 5.3232 Corr. coeff. = 0.9985
Calculatic Qstd = 1/r IC = I[Sqr Qstd = sta IC = corre	n[Sqrt(Hi t(Pa/Pstd ndard flo	l)(Tstd/T w rate	a)]	/Ta))-b]		60.00	FLOW RATE CHART
I = actual m = calibr b = calibra Ta = actua	chart resp ator Qsto ator Qstd al tempera	ponse l slope intercep ature dur	t ing calil	bration (deg ation (mm)		Vectural chart response (IC)	
For subse 1/m((I)[S	-			npler flow:		20.00	
m = samp b = samp I = chart r Tav = dail Pav = dail	ler slope ler interce esponse ly average	ept e temper	ature	<i>.</i>		0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Nam Wa Po Village House No. 80 Location ID : AM9b									Next Calibra	Calibration: ation Date: Sechnician:		24/10/2016 24/12/2016 Fai So
						CON	DITIONS					
	Se	ea Level I Temp	Pressure perature		<u>1011</u> 27				ed Pressure Cemperature			758.475
					CALI	IBRAT	ION ORI	FICE				
				Make-> Model-> Serial # ->	5025A			-	std Slope -> Intercept ->		2.00411 -0.03059	
						CALIE	BRATION					
Plate No. 18 13 10 7 5	H20 (L) (in) 5.5 4.5 3.5 2.3 1.3	H2O (R) (in) 5.5 4.5 3.5 2.3 1.3	H20 (in) 11.0 9.0 7.0 4.6 2.6	Qstd (m3/min) 1.662 1.505 1.329 1.080 0.816	I (chart) 55 50 44 38 30	2	IC rrected 54.73 49.76 43.79 37.82 29.85	Co	LINE <u>REGRES</u> Slope = Intercept = prr. coeff. =			
Calculatio Qstd = 1/1	ons : n[Sqrt(H	20(Pa/Ps	td)(Tstd				50.00	I	FLOW RATE	CHART		
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept				Actual chart response (IC)	50.00 10.00 30.00 0.00			× *				
I = chart response Tav = daily average temperature Pav = daily average pressure					0.00	0.50 St	00 1.0 tandard Flow Ra	000 ate (m3/min)	1.500	2.000		

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Operator		5 Rootsmeter Orifice I.I		438320 1612	Ta (K) - Pa (mm) -	295 745,49
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP - (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3770 0.9710 0.8710 0.8310 0.6860	3.2 6.4 7.8 8.7 12.6	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9866 0.9824 0.9804 0.9793 0.9741	0.7165 1.0117 1.1256 1.1785 1.4200	1.4078 1.9909 2.2259 2.3345 2.8155		0.9957 0.9914 0.9894 0.9883 0.9830	0.7231 1.0210 1.1360 1.1893 1.4330	0.8896 1.2581 1.4066 1.4753 1.7792
Qstd slop intercept coefficie y axis =	t (b) = ent (r) =	2.00411 -0.03059 0.99995 Pa/760) (298/Ta	a)]	Qa slop intercep coeffici y axis =	ot (b) =	1.25494 -0.01933 0.99995 Ca/Pa)1

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	2X6145
Equipment Ref:	EQ105
Job Order	HK1603558

Standard Equipment:

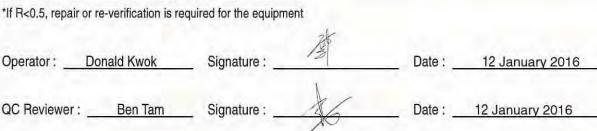
Standard Equipment:	Higher Volume Sampler	
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	2 January 2016	

Equipment Verification Results:

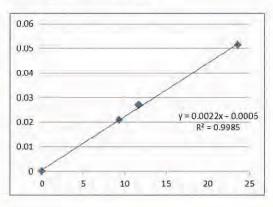
	-
Testing	Date:
rooming	Duit.

4 to 6 January 2016

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1602	11.7
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1522	9.3
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3347	23.6


Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear	Regression	of Y	or X	


Slope (K-factor):	0.0022
Correlation Coefficient	0.9985
Date of Issue	11 January 2016

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0022 should be apply for TSP monitoring

593 (CPM) 596 (CPM)

Location : Gold King Industrial Building, Kwai (Location ID : Calibration Room					ng, Kv	vai Ch	ung	Date of Calibration: 2-Jan-16 Next Calibration Date: 2-Apr-16	
					(COND	ITIONS		
	Se	ea Level F Temp	Pressure perature	, ,		1022 18.9		Corrected Pressure (mm Hg) 766. Temperature (K) 29	
					CALIE	3RATI	ON ORIFIC	CE	
					TIS 502 24-Ma	25A		Qstd Slope ->2.10265Qstd Intercept ->-0.00335Expiry Date->24-Mar-1	5
					C	ALIB	RATION		
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
18 13 10 8 5	4.1 3.2 2.4 1.6 1.0	4.1 3.2 2.4 1.6 1.0	8.2 6.4 4.8 3.2 2.0	1.384 1.222 1.059 0.865 0.684	50 52 48 42 35	6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1332 Intercept = 15.8637 Corr. coeff. = 0.9950	
Pstd = actu For subse 1/m((I)[S m = sampl	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto ator Qsto al temper ual press sequent ca Sqrt(298/ ler slope	d)(Tstd/T ow rate ort respond sponse d slope l intercep rature dur sure durin alculatior (Tav)(Pav	a)] es t ring cali ring calibr g calibr	bration (de ation (mm apler flow:		.00 Actual chart response (IC) .05 .05 .02	.00	FLOW RATE CHART	
b = sampl I = chart r Tav = dail Pav = dail	esponse y averag	ge temper				0.	0.000	0.500 1.000 1.500 Standard Flow Rate (m3/min)	C

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	366409
Equipment Ref:	EQ109
Job Order	HK1603560

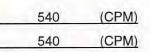
Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	2 January 2016

Equipment Verification Results:

Testing Date:

4 to 6 January 2016


0.0022

0.9975

11 January 2016

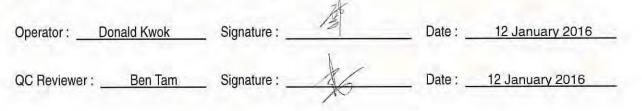
Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1577	11.5
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1433	8.8
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3328	23.5

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Remarks:

Slope (K-factor):

Date of Issue


Correlation Coefficient

1. Strong Correlation (R>0.8)

Linear Regression of Y or X

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Location : Gold King Industrial Building, Kwai Chu Location ID : Calibration Room							ung	Date of Calibration: 2-Jan-16 Next Calibration Date: 2-Apr-16	
					(COND	ITIONS		
	Se	ea Level F Temp	Pressure perature	, ,		1022 18.9		Corrected Pressure (mm Hg) 766. Temperature (K) 29	
					CALIE	3RATI	ON ORIFIC	CE	
Make-> TIS Model-> 502 Calibration Date-> 24-M						25A		Qstd Slope ->2.10265Qstd Intercept ->-0.00335Expiry Date->24-Mar-1	5
					C	ALIB	RATION		
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
18 13 10 8 5	4.1 3.2 2.4 1.6 1.0	4.1 3.2 2.4 1.6 1.0	8.2 6.4 4.8 3.2 2.0	1.384 1.222 1.059 0.865 0.684	50 52 48 42 35	6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1332 Intercept = 15.8637 Corr. coeff. = 0.9950	
S 1.0 2.0 0.084 3.0 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones IC = corrected chart response m = calibrator Qstd slope b = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope						.00 Actual chart response (IC) .05 .05 .02	.00	FLOW RATE CHART	
 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure 						0.	0.000	0.500 1.000 1.500 Standard Flow Rate (m3/min)	C

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	366410
Equipment Ref:	EQ110
Job Order	HK1603561

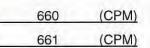
Standard Equipment:

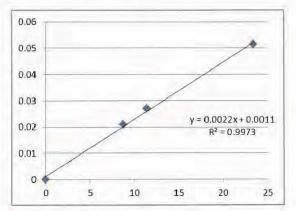
Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	2 January 2016

Equipment Verification Results:

Testing Date:

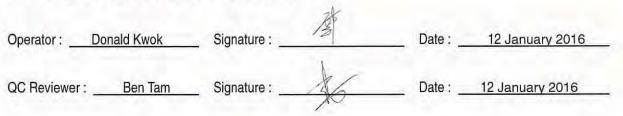
4 to 6 January 2016


Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1566	11.4
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1422	8.7
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3318	23.4


Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Slope (K-factor): Correlation Coefficient Date of Issue

0.00)22	
0.99	973	
11 Jar	nuary 2	2016



Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Location : Gold King Industrial Building, Kwai Chu Location ID : Calibration Room							ung	Date of Calibration: 2-Jan-16 Next Calibration Date: 2-Apr-16	
					(COND	ITIONS		
	Se	ea Level F Temp	Pressure perature	, ,		1022 18.9		Corrected Pressure (mm Hg) 766. Temperature (K) 29	
					CALIE	BRATI	ON ORIFIC	CE	
Make-> TIS Model-> 502 Calibration Date-> 24-M						25A		Qstd Slope ->2.10265Qstd Intercept ->-0.00335Expiry Date->24-Mar-1	5
					C	ALIB	RATION		
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
18 13 10 8 5	4.1 3.2 2.4 1.6 1.0	4.1 3.2 2.4 1.6 1.0	8.2 6.4 4.8 3.2 2.0	1.384 1.222 1.059 0.865 0.684	50 52 48 42 35	6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1332 Intercept = 15.8637 Corr. coeff. = 0.9950	
S 1.0 2.0 0.084 5.0 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC IC IC IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC corrected chart respones IC = corrected chart response m = calibrator Qstd slope b calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope Sampler slope						.00 Actual chart response (IC) .05 .05 .02	.00	FLOW RATE CHART	
 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure 						0.	0.000	0.500 1.000 1.500 Standard Flow Rate (m3/min)	C

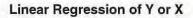
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	3Y6503
Equipment Ref:	EQ112
Job Order	HK1603553

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	2 January 2016


Equipment Verification Results:

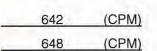
Testing Date:

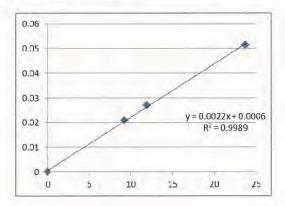
4 to 6 January 2016

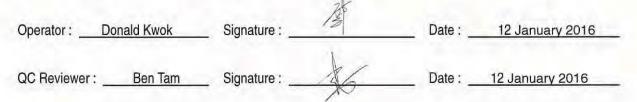
Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1633	11.9
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1502	9.2
2hr21min	18:00 ~ 20:21	20,9	1018.8	0.051	3365	23.8

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Slope (K-factor): Correlation Coefficient Date of Issue


(0.002	2	
(0.998	9	_
11	Janu	ary 20	16


Remarks:


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Location : Gold King Industrial Building, Kwai Chu Location ID : Calibration Room							ung	Date of Calibration: 2-Jan-16 Next Calibration Date: 2-Apr-16	
					(COND	ITIONS		
	Se	ea Level F Temp	Pressure perature	, ,		1022 18.9		Corrected Pressure (mm Hg) 766. Temperature (K) 29	
					CALIE	BRATI	ON ORIFIC	CE	
Make-> TIS Model-> 502 Calibration Date-> 24-M						25A		Qstd Slope ->2.10265Qstd Intercept ->-0.00335Expiry Date->24-Mar-1	5
					C	ALIB	RATION		
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
18 13 10 8 5	4.1 3.2 2.4 1.6 1.0	4.1 3.2 2.4 1.6 1.0	8.2 6.4 4.8 3.2 2.0	1.384 1.222 1.059 0.865 0.684	50 52 48 42 35	6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1332 Intercept = 15.8637 Corr. coeff. = 0.9950	
S 1.0 2.0 0.084 3.0 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC IC IC IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC corrected chart respones IC = corrected chart response m = calibrator Qstd slope b calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope Sampler slope						.00 Actual chart response (IC) .05 .05 .02	.00	FLOW RATE CHART	
 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure 						0.	0.000	0.500 1.000 1.500 Standard Flow Rate (m3/min)	C

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor			
Manufacturer:	Sibata LD-3B			
Serial No.	3Y6505			
Equipment Ref:	EQ114			
Job Order	HK1603562			

Standard Equipment:

Standard Equipment:	Higher Volume Sampler				
Location & Location ID:	AUES office (calibration room)				
Equipment Ref:	HVS 018				
Last Calibration Date:	2 January 2016				

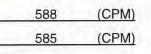
Equipment Verification Results:

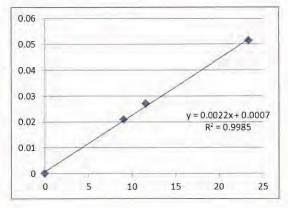
Testing	Data:	
resung	Dale.	

4 to 6 January 2016

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)	
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1589	11.6	
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1473	9.0	
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3314	23.4	

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)


Linear Regression of Y or X


Slope (K-factor):	0.0022		
Correlation Coefficient	0.9985		
Date of Issue	11 January 2016		

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Location : Gold King Industrial Building, Kw Location ID : Calibration Room						vai Ch	Date of Calibration: 2-Jan-16 Next Calibration Date: 2-Apr-16		
					(COND	ITIONS		
Sea Level Pressure (hPa) Temperature (°C)						1022 18.9		Corrected Pressure (mm Hg) Temperature (K)	766.5 292
					CALIE	3RATI	ON ORIFIC	CE	
					TIS 502 24-Ma	25A		Qstd Slope ->2.10Qstd Intercept ->-0.00Expiry Date->24-Ma)335
					C	ALIB	RATION		
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
18 13 10 8 5	4.1 3.2 2.4 1.6 1.0	4.1 3.2 2.4 1.6 1.0	8.2 6.4 4.8 3.2 2.0	1.384 1.222 1.059 0.865 0.684	50 52 48 42 35	6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1332 Intercept = 15.8637 Corr. coeff. = 0.9950	
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope						.00 Actual chart response (IC) .05 .05 .02	.00	FLOW RATE CHART	
 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure 						0.	0.000	0.500 1.000 Standard Flow Rate (m3/min)	1.500

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162996 證書編號

ITEM TESTED / 送檢項目	(Job No. / 序引編號: IC16-0843) Date of Receipt / 收件日期: 26 May 2016
Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :	Integrating Sound Level Meter (EQ065) Brüel & Kjær 2238 2337676 Action-United Environmental Services and Consulting Unit A, 20/F., Gold King Industrial Building.
	35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 . . 2 June 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA
- Rohde & Schwarz Laboratory, Germany

Tested By 測試

H T Wong

Technical Officer

Certified By 核證

K¢ Lee Project Engineer

Date of Issue : 簽發日期

6 June 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

z/o 4/F. Tsing Shan Wan Exchange Building, 1 Hing On Lanc, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 z/o 香港新界屯門與安里一號背頂讀機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No. : C162996 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

UUT Setting				Applied Value		UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec (dB)
50 - 130	LAFP	А	F	94.00	1	94.0	Ref.
	L _{ASP}		S			94.1	± 0.1
	L _{AIP}		1	_		94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

UUT Setting				Applied Value		UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAFP		F	F 106.0	Continuous	106.0	Ref.
	LAFMax				200 ms	105.0	-1.0 ± 1.0
	L _{ASP}		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT Setting				ied Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	А	F	94.00	31.5 Hz	54.9	-39.4 ± 1.5
					63 Hz	67.9	-26.2 ± 1.5
					125 Hz	77.9	-16.1 ± 1.0
					250 Hz	85.4	-8.6 ± 1.0
					500 Hz	90.8	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.9	-1.1 (+1.5 ; -3.0)
					12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 枝正及检測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傅真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Certificate of Calibration 校正證書

Certificate No. : C162996 證書編號

6.3.2 C-Weighting

UUT Setting			Appli	ed Value	UUT	IEC 60651			
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)		
50 - 130	L _{CFP}	С	F	94.00	31.5 Hz	91.2	-3.0 ± 1.5		
					63 Hz	93.2	-0.8 ± 1.5		
					125 Hz	93.8	-0.2 ± 1.0		
					250 Hz	94.0	0.0 ± 1.0		
							500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.		
					2 kHz	93.8	-0.2 ± 1.0		
					4 kHz	93.2	-0.8 ± 1.0		
					8 kHz	91.0	-3.0 (+1.5 ; -3.0)		
	· · · · · ·				12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)		

Time Averaging 6.4

	UUT	Setting	Applied Value					UUT	IEC 60804	
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAcq	L _{Acq} A	A 10 sec.	4	1	1/10	10 110.0	100	100.2	± 0.5
							1/102		90	90.1
			60 sec.			1/103		80	79.8	±1.0
			5 min.			1/104		70	69.8	± 1.0

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812708

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value :	94 dB : 31.5 Hz - 125 Hz 250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz	
	104 dB : 1 kHz 114 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB) $\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	Burst equivalent level	: ± 0.2 dB (Ref. 110 dB continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162991 證書編號

ITEM TESTED / 送檢 Description / 儀器名稱 Manufacturer / 製造商 Model No. / 型號	(Job No. / 序引編號: IC16-0843) Sound Calibrator (EQ083) Rion NC-74	Date of Receipt / 收件日期:24 May 2016
Serial No. / 編號 Supplied By / 委託者	34246492 Action-United Environmental Services and Cor Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.	nsulting

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 . 2 June 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

- The test equipment used for calibration are traceable to National Standards via :
- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

Project Engineer

Certified By 核證

K C/Lee

Date of Issue 簽發日期

3

3 June 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong c/o 香港新界屯門與安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com Website 網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No.: C162991 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A <u>Description</u> Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier Certificate No. C153519 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C161797 證書編號

ITEM TESTED / 送檢項目	(Job No./序引編號: IC16-0662)	Date of Receipt / 收件日期: 22 March 2016
Description / 儀器名稱 :	Sound Level Meter (EQ014)	
Manufacturer / 製造商 :	Rion	
Model No. / 型號 :	NL-52	
Serial No. / 編號 :	00142580	
Supplied By / 委託者 :	Action-United Environmental Services and	d Consulting
	Unit A, 20/F., Gold King Industrial Buildi	ing,
	35-41 Tai Lin Pai Road, Kwai Chung, N.T	Γ.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage/ 電壓 :

Relative Humidity / 相對濕度 ; $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期 6 April 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification. (after adjustment) The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

Certified By 核證

K C Lee Project Engineer

Date of Issue 簽發日期

7 April 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shant Wan Exchange Building, I Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所

e/o 香港新界屯鬥興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳道: 2744 8986 E-mail/1099: callab@suncreation.com Websue/期时: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C161797 證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.1.2 to 6.3.2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281 Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator Certificate No. C160077 PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Adjustment

UUT Setting				Applie	d Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	1	* 91.9	± 1.1

* Out of IEC 61672 Class 1 Spec.

6.1.1.2 After Adjustment

UUT Setting				Applie	d Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class I Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	94.0	± 1.1

6.1.2 Linearity

	UUT Setting				Applied Value		
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	
30 - 130	L _A	А	Fast	94.00	1	94.0 (Ref.)	
				104.00		104.0	
				114.00		114.0	

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

即創工程有限公司 - 校正及檢測實驗所

ela 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Pax/傳真: 2744 8986 E-mail/電郵: callab/@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in fall, without the prior written approval of this laboratory.

Sun Creation Engineering Limited - Calibration & Testing Laboratory

e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

Certificate of Calibration 校正證書

Certificate No. : C161797 證書編號

6.2 Time Weighting

	UUT Setting				d Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	1	94.0	Ref.
			Slow		1.1	94.0	± 0.3

6.3 Frequency Weighting

A-Weighting 6.3.1

	UUT	Setting		Appl	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130 L _A	A	Fast	94.00	63 Hz	67.7	-26.2 ± 1.5	
		1.000			125 Hz	77.8	-16.1 ± 1.5
					250 Hz	85.3	-8.6 ± 1.4
					500 Hz	90.7	-3.2 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.6$
					4 kHz	95.0	$+1.0 \pm 1.6$
					8 kHz	92.9	-1.1 (+2.1 ; -3.1)
		-			12.5 kHz	89.5	-4.3 (+3.0 ; -6.0)

C-Weighting 6.3.2

	UUT	Setting		Appl	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	Lc	C	Fast	94.00	63 Hz	93.1	-0.8 ± 1.5
				1.000	125 Hz	93.8	-0.2 ± 1.5
					250 Hz	94.0	0.0 ± 1.4
					500 Hz	94.0	0.0 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.6
					4 kHz	93.2	-0.8 ± 1.6
					8 kHz	91.0	-3.0 (+2.1 ; -3.1)
	1				12.5 kHz	87.6	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部視印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

Sun Creation Engineering Canoratory & reading Laboratory co 4/氏 Tsing Shant Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 co 香港新界屯門興安里一號青山灣機樣四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab/@suncreation.com Website/翻 Website/網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No.: C161797 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 07725

- Mfr's Spec. : IEC 61672 Class 1

Hz - 125 Hz : ± 0.35 dB 0 Hz - 500 Hz : ± 0.30 dB kHz : ± 0.20 dB
kHz $: \pm 0.20 \text{ dB}$
11- 4 LTL + 0.25 4D
$kHz - 4 kHz$: $\pm 0.35 dB$
kHz : ± 0.45 dB
.5 kHz : ± 0.70 dB
kHz : $\pm 0.10 \text{ dB}$ (Ref. 94 dB)
kHz $:\pm 0.10 \text{ dB}$ (Ref. 94 dB)
k.k

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準,局部復印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/a 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門與安里一號背山灣機械四樓 Tel/電話: 2927 2606 Fax/標準: 2744 8986 E-mail/電郵; callab@suncreation.com Website/網知: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C162177 證書編號

ITEM TESTED / 送檢」	頁目	(Job No./序引編號: IC16-0843)	Date of Receipt / 收件日期: 14 April 2016
Description / 儀器名稱	:	Integrating Sound Level Meter (EQ006)	
Manufacturer / 製造商	1	Brüel & Kjær	
Model No. / 型號	:	2238	
Serial No. / 編號	:	2285762	
Supplied By/委託者	ĸ	Action-United Environmental Services and Unit A, 20/F., Gold King Industrial Buildin	
		35-41 Tai Lin Pai Road, Kwai Chung, N.T	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55±20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 25 April 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA
- Rohde & Schwarz Laboratory, Germany

Tested By 測試	÷	H T Wong Technical Officer			
Certified By 核證	: ~	K C/Lee Project Engineer	Date of Issue 簽發日期	ŧ	27 April 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所咸枝正用之測試器材均可溯源至國際標準。局部被印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory v/o 4/T, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 師創工程有限公司 - 校正及檢測實驗所 v/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162177 證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C160077
CL281	Multifunction Acoustic Calibrator	PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

	UUT	Setting	Applied	UUT		
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq, (kHz)	Reading (dB)
50 - 130	LAFP	A	F	94.00	I	94.2

6.1.1.2 After Self-calibration

UUT		Setting		Applied Value		UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	А	F	94.00	1	94.0	± 0.7

6.1.2 Linearity

	UUT Setting				Applied Value	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	LAFP	A	F	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		113.9

IEC 60651 Type I Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C162177 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

UUT Setting				Applied Value		UUT	IEC 60651
Range (dB)	Parameter	Frequency Time Weighting Weighting		TimeLevelFreq.Weighting(dB)(kHz)		Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	A	F	94.00	1	94.0	Ref.
	LASP		S			94.0	± 0.1
	L _{AiP}		I			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

UUT Setting			Applied Value		UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAFP	A	F	106.0	Continuous	106.0	Ref.
	LAFMax			a second	200 ms	105.0	-1.0 ± 1.0
	LASP		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Applied Value		UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130 LAFP	A	F	94.00	31.5 Hz	55.1	-39.4 ± 1.5	
					63 Hz	67.9	-26.2 ± 1.5
					125 Hz	77.9	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.7	-3.2 ± 1.0
				1 kHz	94.0	Ref.	
	-			2 kHz	95.2	$+1.2 \pm 1.0$	
					4 kHz	95.0	$+1.0 \pm 1.0$
				8 kHz	91.0	-1.1 (+1.5 ; -3.0)	
	1				12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)

本證書所載校正用之測試器材均可溯源至國際標準。局部視印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162177 證書編號

6.3.2 C-Weighting

UUT Setting			Applied Value		UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130 L _{CFP}	C	F	94.00	31.5 Hz	91.5	-3.0 ± 1.5	
				63 Hz	93.4	-0.8 ± 1.5	
				125 Hz	93.9	-0.2 ± 1.0	
					250 Hz	94.1	0.0 ± 1.0
				500 Hz	94.1	0.0 ± 1.0	
			1 kHz	94.1	Ref.		
			2 kHz	93.9	-0.2 ± 1.0		
				4 kHz	93.2	-0.8 ± 1.0	
					8 kHz	92.9	-3.0 (+1.5 ; -3.0)
	-				12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)

6.4

Time Averaging UUT Setting Applied Value UUT IEC 60804 Burst Burst Burst Equivalent Reading Type 1 Parameter Frequency Frequency Integrating Range (kHz) Duration Duty Level Level (dB) Spec. Weighting Time (dB) Factor (dB) (dB) (dB) (ms) 30 - 110 10 sec. 4 1/10 110.0 100 100.0 ±0.5 1 LAcq A $1/10^{2}$ 90 89.9 ±0.5 1/103 80 79.2 ±1.0 60 sec. 1/104 70 69.2 ± 1.0 5 min.

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812705

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

94 dB : 31.5 Hz - 125 Hz 250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz 104 dB : 1 kHz 114 dB : 1 kHz Burst equivalent level	: \pm 0.30 dB : \pm 0.20 dB : \pm 0.35 dB : \pm 0.45 dB : \pm 0.70 dB : \pm 0.10 dB (Ref. 94 dB) : \pm 0.10 dB (Ref. 94 dB) : \pm 0.2 dB (Ref. 110 dB
and a second second	continuous sound level)
	250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz 104 dB : 1 kHz 114 dB : 1 kHz

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准・

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162438 證書編號

ITEM TESTED / 送檢 Description / 儀器名稱 Manufacturer / 製造商 Model No. / 型號 Serial No. / 編號 Supplied By / 委託者	 夏目 (Job No. / 序引編號: IC16-0843 Acoustical Calibrator (EQ081) Brüel & Kjær 4231 2326408 Action-United Environmental Servi Unit A, 20/F., Gold King Industrial 	ices and Consulting				
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.				
TEST CONDITIONS /	測試條件					
Temperature / 溫度 : Line Voltage / 電壓 :	(23 ± 2)°C	Relative Humidity / 相對濕度 : (55 ± 20)%				
TEST SPECIFICATIO	NS/測試規範					
DATE OF TEST / 測試	日期 : 10 May 2016					
TEST RESULTS / 測記	結果					
The results do not excee	particular unit-under-test only. d manufacturer's specification. n the subsequent page(s).					
	ooratory, Germany					

Tested By 測試	ų,	H T Wong Technical Officer			
Certified By 核證	:	K C/Lee Project Engineer	Date of Issue 簽發日期	:	11 May 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本質驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun. New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山體機模四樓 Tel/電話: 2927 2606 Fax/佛真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No.: C162438 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL130	Universal Counter	C153519
CL281	Multifunction Acoustic Calibrator	PA160023
TST150A	Measuring Amplifier	C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C162125 證書編號

ITEM TESTED / 送檢 Description / 儀器名稱 Manufacturer / 製造商 Model No. / 型號	項目 : :	(Job No. / 序引編號: IC16-0843) Acoustical Calibrator (EQ082) Brüel & Kjær 4231	Date of Receipt / 收件日期: 14	April 2016	
Serial No. / 編號 : Supplied By / 委託者 :		2713428 Action-United Environmental Services and Consulting Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.			
TEST CONDITIONS / Temperature / 溫度 :	Server.		Relative Humidity / 相對濕度 :	(55 ± 20)%	
Line Voltage / 電壓 :					

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 22 April 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

worth.
H T Wong
Technical Officer

Certified By 核證 Date of Issue 簽發日期 25 April 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載枚正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所習面批准,

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新昇屯門與安里一號肾山灣機機四艘 Tel/電話: 2927 2606 Fax/健真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

K C/Lee Project Engineer

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162125 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A DescriptionQUniversal CounterQMultifunction Acoustic CalibratorPMeasuring AmplifierQ

Certificate No. C153519 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.1		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark 1 The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部海印本證書需先獲本實驗所書面批准。

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong I +852 2610 1044 <u>F</u>+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG.

WORK ORDER:	HK1638606
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	22/09/2016
DATE OF ISSUE:	29/09/2016

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen and Temperature
Equipment Type:	Dissolved Oxygen Meter
Brand Name:	YSI
Model No.:	550A
Serial No.:	16A104433
Equipment No.:	
Date of Calibration:	26 September, 2016

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Sub-Batch: Date of Issue: Client:	HK1638606 0 29/09/2016 ACTION UNITED ENVIRO SI	ERVICES	ALS
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Dissolved Oxygen Meter YSI 550A 16A104433 26 September, 2016	Date of next Calibration:	26 December, 2016

Parameters:

Disso

lund	0	Mashaal	D.C. ADUA	121-1		45000.0
iveu	Oxygen	Method	Ref: APHA	(2151	eaition),	45000: G

C

played Reading (mg/L) 3.02	Tolerance (mg/L)
2 0 2	
2 0 2	
5.02	-0.12
5.36	-0.18
8.51	-0.09
olerance Limit (mg/L)	±0.20
	8.51

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.				
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)		
7 25 42	7.2 24.7 41.9	+0.2 -0.3 -0.1		
	Tolerance Limit (°C)	±2.0		

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>1</u>+852 2610 1044 <u>F</u>+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR BEN TAM
CLIENT:	ACTION UNITED ENVIRO SERVICES
ADDRESS:	RM A 20/F., GOLDEN KING IND BLDG,
	NO. 35-41 TAI LIN PAI ROAD,
	KWAI CHUNG,
	N.T., HONG KONG

WORK ORDER:	HK1638998
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	26/09/2016
DATE OF ISSUE:	04/10/2016

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:pH and TemperatureDescription:pH MeterBrand Name:AZModel No.:8685Serial No.:1127748Equipment No.:--Date of Calibration:03 October, 2016

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

PP	Tan	
[]	Mr Fung Lim Chee, Richard	
	÷	

General Manager – Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1638998
Sub-batch:	0
Date of Issue:	04/10/2016
Client:	ACTION UNITED ENVIRO SERVICES
Description:	pH Meter
Brand Name:	AZ
Model No.:	8685
Serial No.:	1127748
E	

Equipment No.: --Date of Calibration: 03 October, 2016

Date of next Calibration:

03 January, 2017

Parameters:

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.1	+0.10
7.0	6.9	-0.10
10.0	9.9	-0.10
	Tolerance Limit (pH Unit)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

	JU8: Working Thermometer Calibrati	
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
8.5	9.0	+0.5
26.0	25.5	-0.5
41.0	40.5	-0.5
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard General Manager – Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>T</u>+852 2610 1044 <u>E</u>+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR BEN TAM
CLIENT:	ACTION UNITED ENVIRO SERVICES
ADDRESS:	RM A 20/F., GOLD KING IND BLDG,
	NO. 35-41 TAI LIN PAI ROAD,
	KWAI CHUNG,
	N.T., HONG KONG.

1632472
NG KONG
/08/2016
/08/2016

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Conductivity, Dissolved Oxygen, pH, Salinity, Temperature and Turbidity
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional DSS
Serial No.:	15H102620 / 15H103928
Equipment No.:	EQW018
Date of Calibration:	12 August, 2016

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Sub-Batch: Date of Issue: Client:	HK1632472 0 15/08/2016 ACTION UNITED ENVIRO SERVICES			
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional DSS 15H102620 / 15H103928 EQW018 12 August, 2016	Date of next Calibration:	12 November, 2016	
Parameters:				
Conductivity	Method Ref: APHA (21st edition), 2510B			
	Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)	
	146.9 6667 12890 58670	147.0 6517 12903 57534	+0.1 -2.2 +0.1 -1.9	
		Tolerance Limit (%)	±10.0	
Dissolved Oxygen	Method Ref: APHA (21st editio			
	Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	
	3.51 5.06	3.63 5.10	+0.12 +0.04	

pH Value

Method Ref: APHA 21st Ed. 4500H:B

7.71

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.10	+0.10
7.0	7.03	+0.03
10.0	10.14	+0.14
	Tolerance Limit (pH unit)	±0.20

7.63

Tolerance Limit (mg/L)

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.08	
10	10.04	+0.4
20	19.82	-0.9
30	28.89	-3.7
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

-0.08

±0.20

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:HK16Sub-Batch:0Date of Issue:15/0Client:ACTIEquipment Type:MultiBrand Name:YSIModel No.:ProfeSerial No.:15H1Equipment No.:EQW0Date of Calibration:12 A

HK1632472 0

15/08/2016 ACTION UNITED ENVIRO SERVICES

Multifunctional Meter YSI Professional DSS 15H102620 / 15H103928 EQW018 12 August, 2016 Date of ne

Date of next Calibration:

12 November, 2016

Parameters:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

uide No. 3 Second edition Ma	rch 2008: Working Thermometer	Calibration Procedure.	
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)	
10.0	10.8	+0.8	
24.0	24.3	+0.3	
40.0	39.5	-0.5	
	Tolerance Limit (°C)	±2.0	

Turbidity

Method	Ref: APHA	(21st	edition).	2130B
-ictiiou	11011 / 11 / 11/1	(= + > +	curron/,	

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.3	122
4	3.8	-5.0
40	40.2	+0.5
80	77.2	-3.5
400	390.0	-2.5
800	781.3	-2.3
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>T</u> +852 2610 1044 <u>F</u> +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG

WORK ORDER:	HK1645701
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	11/11/2016
DATE OF ISSUE:	15/11/2016

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	HACH
Model No.:	2100Q
Serial No.:	11030C008499
Equipment No.:	
Date of Calibration:	12 November, 2016

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Fung Lim Chee, Richard General Manager – Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1645701		
Sub-batch:	0		
Date of Issue:	15/11/2016		
Client:	ACTION UNITED ENVIRO SEF	RVICES	
Equipment Type:	Turbidimeter		
Brand Name:	HACH		
Model No.:	2100Q		
Serial No.:	11030C008499		
Equipment No.:			
Date of Calibration:	12 November, 2016	Date of next Calibration:	12 February, 2017

Parameters:

Turbidity

Method Ref: APHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)		
0	0.76			
4	4.29	+7.3		
40	43.4	+8.5		
80	86.2	+7.8		
400	410	+2.5		
800	852	+6.5		
	Tolerance Limit (%)	±10.0		

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager Greater China & Hong Kong

Appendix G

Event and Action Plan

 $Z: Jobs \ 2013 \ CS00694 \ 600 \ EM\&A\ Report \ Monthly \ EM\&A\ Report \ 40th\ (November\ 2016) \ R0782v2. docx$

Event and Action Plan for Air Quality

Event				Action
Action Level	ET	IEC	ER ER	Contractor
Action Level 1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	1. Identify source;	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Limit Level				
 Exceedance for one sample 	 I. Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Monitor theimplementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
 Exceedance for two or more consecutive samples 		submitted by ET; 2. Check Contractor's working method; 3. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 4. Review Contractor's remedial actions whenever necessary to assure their	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not
	and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	the ER accordingly; 5. Monitor the implementation of remedial measures.	5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Construction Noise

Event	a	IEC	ER	Action Contractor
Action Level	 Notify ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures.	 Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals.
Limit Level	Inform IEC, ER, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Contractor and ER on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring.	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Z. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly.	Confirm receipt of notification of failure in writina: Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated.	1. Take immediate action to avoid further exceedance: 2. Submit proposals for remedial actions to IEC and ER within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Event and Action Plan for Water Quality

EVENT	ET	IEC	ER	ACTION
Action level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures.
Action Level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methyote: Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit Level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigatio measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit level being exceeded by more than one consecutive sampling days	Level. Level. Level. Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days.	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level. 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigatio measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; As directed by the ER, to slow down or to stop all o part of the construction activities.

 $Z: Jobs \ 2013 \ CS00694 \ 600 \ EM\&A\ Report \ Monthly \ EM\&A\ Report \ 40th\ (November\ 2016) \ R0782v2. docx$

Appendix H

Impact Monitoring Schedule

 $Z: Jobs \ 2013 \ CS00694 \ 600 \ EM\&A\ Report \ Monthly \ EM\&A\ Report \ 40th\ (November\ 2016) \ R0782v2. docx$

Impact Monitoring Schedule for Reporting Period –November 2016

	Data	Dust Mo	onitoring	NT-1 NT	
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
TUE	1-Nov-16		AM1b, AM2, AM3 & AM9b		
WED	2-Nov-16				All Water Quality Monitoring Locations
THU	3-Nov-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
Fri	4-Nov-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
SAT	5-Nov-16				Locations
SUN	6-Nov-16				
Mon	7-Nov-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
TUE	8-Nov-16				
WED	9-Nov-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
THU	10-Nov-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
Fri	11-Nov-16				All Water Quality Monitoring Locations
SAT	12-Nov-16		AM1b, AM2, AM3 & AM9b		
SUN	13-Nov-16				
Mon	14-Nov-16				
TUE	15-Nov-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
WED	16-Nov-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
THU	17-Nov-16				All Water Quality Monitoring Locations
Fri	18-Nov-16		AM1b, AM2, AM3 & AM9b		
SAT	19-Nov-16				All Water Quality Monitoring Locations
SUN	20-Nov-16				
Mon	21-Nov-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
TUE	22-Nov-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
WED	23-Nov-16				
Thu	24-Nov-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Fri	25-Nov-16				
SAT	26-Nov-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
SUN	27-Nov-16				
Mon	28-Nov-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
TUE	29-Nov-16				
WED	30-Nov-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations

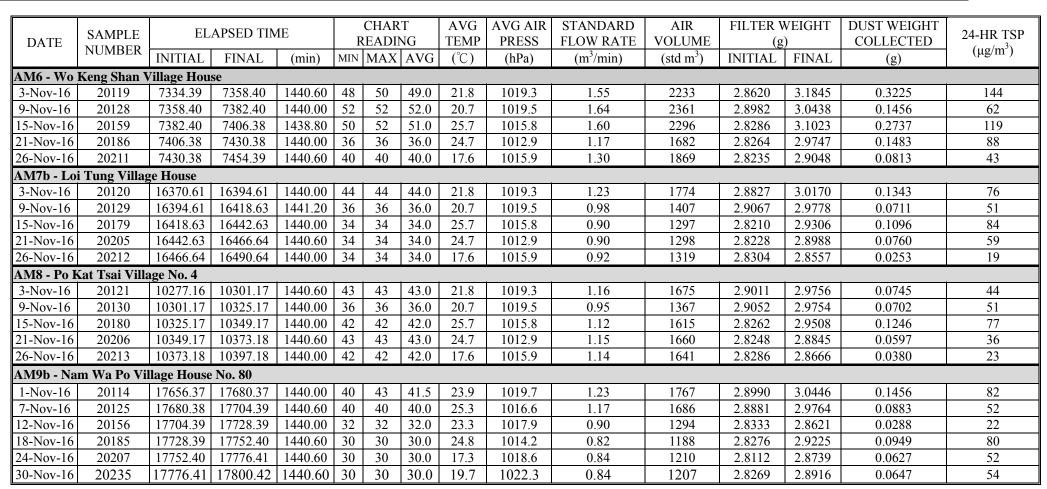
Monitoring Day Sunday or Public Holiday

Impact Monitoring Schedule for next Reporting Period – December 2016

Date		Dust Mo	onitoring	Noize Menitoring	Watan Quality
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
Thu	1-DEC-16				
Fri	2-DEC-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
SAT	3-DEC-16	AM4b, AM5, AM6, AM7b & AM8			
SUN	4-DEC-16				
Mon	5-DEC-16				
TUE	6-DEC-16		AM1b, AM2, AM3 & AM9b		All Water Quality
WED	7-DEC-16		& AM90		Monitoring Locations
THU	8-DEC-16	AM1b, AM2, AM3	AM4b, AM5, AM6,	NM1, NM2a, NM8,	All Water Quality
FRI	9-DEC-16	& AM9b AM4b, AM5, AM6,	AM7b & AM8	NM9 & NM10 NM3, NM4, NM5,	Monitoring Locations
SAT	10-DEC-16	AM7b & AM8		NM6 & NM7	All Water Quality
SUN	10 DEC 10				Monitoring Locations
Mon	12-DEC-16		AM1b, AM2, AM3 & AM9b		
TUE	13-DEC-16		& ANI50		All Water Quality Monitoring Locations
WED	14-DEC-16	AM1b, AM2, AM3		NM1, NM2a, NM8, NM9 & NM10	Monitoring Locations
THU	15-DEC-16	& AM9b AM4b, AM5, AM6, AM7b & AM8	AM7b & AM8	NM9 & NM10 NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Fri	16-DEC-16	AW1/D & AW10			Monitoring Locations
SAT	17-DEC-16		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
SUN	18-DEC-16				G
Mon	19-DEC-16				All Water Quality Monitoring Locations
TUE	20-DEC-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	8
WED	21-DEC-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
THU	22-DEC-16		AM1b, AM2, AM3 & AM9b		Monthing Documents
Fri	23-DEC-16	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
SAT	24-DEC-16	AM4b, AM5, AM6, AM7b & AM8			
SUN MON	25-DEC-16 26-DEC-16				
TUE	20-DEC-10 27-DEC-16				All Water Quality Monitoring Locations
WED	28-DEC-16		AM1b, AM2, AM3 & AM9b		Montoring Docations
THU	29-DEC-16	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Fri	30-DEC-16	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
SAT	31-DEC-16				All Water Quality Monitoring Locations

Monitoring Day Sunday or Public Holiday

Appendix I


Database of Monitoring Result

24-hour TSP Monitoring Data

DATE	SAMPLE NUMBER		APSED TIN		R	CHAR EADI	NG	AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER V (g	()	DUST WEIGHT COLLECTED	24-HR TSP (µg/m ³)
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	(µg/III)
AM1b – Op	en Area, Tsi	ung Yuen H	Ia Village												
1-Nov-16	20117	12240.47	12264.59	1447.20	49	50	49.5	23.9	1019.7	1.70	2464	2.8735	3.1197	0.2462	100
7-Nov-16	20123	12264.60	12288.72	1447.20	49	50	49.5	25.3	1016.6	1.70	2456	2.8736	3.0351	0.1615	66
12-Nov-16	20157	12288.72	12312.92	1452.00	52	52	52.0	23.3	1017.9	1.77	2572	2.8350	3.0022	0.1672	65
18-Nov-16	20182	12312.92	12337.09	1450.20	52	52	52.0	24.8	1014.2	1.76	2559	2.8265	3.0189	0.1924	75
24-Nov-16	20210	12337.09	12361.23	1448.40	50	50	50.0	17.3	1018.6	1.73	2507	2.8224	2.9491	0.1267	51
30-Nov-16	20233	12361.23	12385.37	1448.40	52	52	52.0	19.7	1022.3	1.78	2582	2.8169	3.1196	0.3027	117
AM2 - Villa	ige House ne		Hang Road												
1-Nov-16	20115	7761.55	7785.32	1426.20	35	35	35.0	23.9	1019.7	1.11	1588	2.8727	3.0689	0.1962	124
7-Nov-16	20124	7785.32	7809.11	1427.40	35	35	35.0	25.3	1016.6	1.11	1583	2.8816	3.1099	0.2283	144
12-Nov-16	20158	7809.11	7832.93	1429.20	35	35	35.0	23.3	1017.9	1.11	1591	2.8326	3.0421	0.2095	132
18-Nov-16	20183	7832.93	7856.74	1428.60	40	40	40.0	24.8	1014.2	1.26	1804	2.8195	3.0828	0.2633	146
24-Nov-16	20208	7856.74	7880.48	1424.40	36	36	36.0	17.3	1018.6	1.16	1647	2.8152	2.9177	0.1025	62
30-Nov-16	20232	7880.48	7904.19	1422.60	40	40	40.0	19.7	1022.3	1.28	1818	2.8237	3.0812	0.2575	142
AM3 - Ta K	Kwu Ling Fir	re Service S	tation of Ta	a Kwu Lin	g Vill	age					-				
1-Nov-16	20118	8900.10	8924.10	1440.00	50	52	51.0	23.9	1019.7	1.52	2184	2.8853	3.1026	0.2173	100
7-Nov-16	20127	8924.10	8948.10	1440.00	50	50	50.0	25.3	1016.6	1.48	2125	2.8615	3.1064	0.2449	115
12-Nov-16	20155	8948.13	8972.13	1440.00	52	52	52.0	23.3	1017.9	1.55	2234	2.8301	3.1114	0.2813	126
18-Nov-16	20182	8972.13	8996.14	1440.60	50	50	50.0	24.8	1014.2	1.48	2125	2.8288	3.0625	0.2337	110
24-Nov-16	20209	8996.14	9020.14	1440.00	50	50	50.0	17.3	1018.6	1.50	2161	2.8087	2.8426	0.0339	16
30-Nov-16	20259	9020.14	9044.14	1440.00	52	52	52.0	19.7	1022.3	1.57	2255	2.8559	3.1124	0.2565	114
AM4 - Hous	se no. 10B1 N	Nga Yiu Ha	Village	-					-						
3-Nov-16	20058	10905.39	10929.38	1439.40	38	38	38.0	21.8	1019.3	1.07	1536	2.8612	2.9361	0.0749	49
9-Nov-16	20131	10929.38	10953.44	1443.60	38	38	38.0	20.7	1019.5	1.07	1544	2.8956	2.9669	0.0713	46
15-Nov-16	20161	10953.44	10977.45	1440.60	42	42	42.0	25.7	1015.8	1.19	1717	2.8365	2.9888	0.1523	89
21-Nov-16	20188	10977.45	11001.46	1440.60	42	42	42.0	24.7	1012.9	1.19	1718	2.8394	2.9424	0.1030	60
26-Nov-16	20215	11001.46	11025.47	1440.60	40	40	40.0	17.6	1015.9	1.14	1647	2.8289	2.8677	0.0388	24
AM5a - Pin	g Yeung Vill	lage House													
3-Nov-16	20122	8752.47	8776.48	1440.60	32	32	32.0	21.8	1019.3	1.16	1673	2.8883	2.9894	0.1011	60
9-Nov-16	20152	8776.48	8800.48	1440.00	32	32	32.0	20.7	1019.5	1.16	1675	2.8509	2.9002	0.0493	29
15-Nov-16	20160	8800.48	8824.41	1435.80	32	32	32.0	25.7	1015.8	1.15	1657	2.8282	2.9512	0.1230	74
21-Nov-16	20187	8824.41	8848.41	1440.00	54	54	54.0	24.7	1012.9	1.79	2578	2.8365	2.9560	0.1195	46
26-Nov-16	20214	8848.41	8872.42	1440.60	52	52	52.0	17.6	1015.9	1.75	2525	2.8323	2.8633	0.0310	12

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No. 40) – November 2016

AUES

Construction Noise Monitoring Results, dB(A)

Date	Start Time	1 st Leq _{5mi}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
NM1 - Tsung	g Yuen	Ha Vill	lage Hou	ise No. (63																
3-Nov-16	9:40	57.8	59.5	55.0	58.3	60.5	55.5	57.8	59.0	55.5	57.6	59.0	55.0	59.5	62.0	56.0	57.8	59.0	55.0	58	NA
9-Nov-16	9:42	56.2	58.3	54.9	57.1	59.2	55.1	57.6	59.8	55.6	56.4	59.7	55.0	57.4	58.3	54.1	59.6	62.3	56.5	58	NA
15-Nov-16	9:56	57.2	58.4	51.6	55.7	59.5	52.3	57.7	60.2	53.4	58.1	59.2	54.1	57.4	58.3	54.3	59.6	62.3	56.4	58	NA
21-Nov-16	9:51	52.1	53.6	49.6	53.4	55.5	48.9	51.9	53.4	49.9	51.8	53.1	50.1	54.3	55.9	48.2	50.4	52.3	49.7	52	NA
NM2a - Villa	0	use near		a Hang I	Road															-	
3-Nov-16	9:29	57.6	59.7	52.2	57.6	59.5	51.5	58.1	61.3	51.2	60.4	63.0	50.8	59.6	62.9	51.1	55.7	58.0	51.2	58	61
9-Nov-16	10:09	59.4	61.8	52.7	58.5	60.7	54.3	59.9	62.7	53.9	61.8	63.4	55.0	60.4	62.7	54.3	61.6	64.7	56.1	60	63
15-Nov-16	11:03	60.9	63.5	51.8	61.5	63.4	54.7	59.4	61.8	53.7	58.9	60.5	54.3	57.6	59.5	51.5	57.6	58.9	50.6	60	63
21-Nov-16			59.3	50.4	59.7	61.2	52.2	60.1	62.4	51.8	59.2	60.1	51.6	61.1	62.1	52.4	58.1	60.6	50.1	60	63
NM3 - Ping Y				1	· · · · · · · · · · · · · · · · · · ·					1	1		1							1	
	10:11		58.0	49.0	56.6	58.5	53.5	58.3	60.5	53.0	55.5	57.5	52.5	56.6	58.5	53.0	56.5	58.0	52.5	57	NA
	9:44		59.5	55.0	56.5	57.5	54.5	56.2	57.0	54.5	56.8	58.0	55.5	57.4	58.5	55.5	57.1	58.5	55.0	57	NA
	10:15		63.0	51.2	58.9	63.3	53.1	59.4	57.4	51.3	58.2	61.5	51.3	56.8	57.7	51.3	60.1	60.0	50.5	59	NA
22-Nov-16			61.6	52.3	59.2	62.4	51.3	61.2	63.1	50.4	60.2	62.8	49.2	60.9	63.1	51.6	58.2	60.3	50.1	60	NA
28-Nov-16			64.1	50.2	64.0	67.5	48.7	62.3	65.5	54.5	63.3	66.8	49.7	64.5	67.5	56.3	64.7	68.5	53.1	63	NA
NM4 - Wo K			U		5 2 1	72.0	70.5	72.1	73 0	70.5	(0.7	72.0	47.5	50.0	545	10.0	67.1	(0, 7	47.5		274
	9:30		73.5	69.5	73.1	73.0	72.5	73.1	73.0	72.5	68.7	73.0	47.5	52.3	54.5	48.0	57.1	60.5	47.5	71	NA
	9:02	63.7	67.5	57.5	63.5	67.5	57.5	70.3	74.0	60.0	70.7	73.5	63.0	69.6	72.5	60.0	68.3	71.5	57.5	69	NA
	9:35		65.7	54.0	67.1	66.9	55.4	73.5	69.5	55.2	66.7	69.6	58.1	68.7	70.9	54.6	62.9	6.4	54.6	69 64	NA NA
22-Nov-16 28-Nov-16			64.1 62.5	53.1 63.1	63.7 61.9	65.3 63.7	52.2 53.4	64.2 62.5	66.7 63.7	53.1 53.8	65.1 63.1	67.3 62.8	52.3 53.7	64.3 59.8	65.4 62.0	51.7 53.8	62.3 62.0	64.1 65.0	55.2 54.1	63	NA NA
NM5– Ping Y				05.1	01.9	03.7	55.4	02.5	03.7	33.0	05.1	02.0	33.7	39.0	02.0	55.0	02.0	03.0	34.1	03	INA
	10:57		55.5	50.5	51.8	52.5	50.0	54.7	53.5	50.5	51.9	52.5	50.5	52.2	53.0	50.5	53.5	54.5	50.5	53	NA
	10:25		62.0	54.0	59.1	62.5	53.5	60.9	64.5	55.5	61.0	64.5	55.5	59.2	62.0	54.5	62.5	64.0	55.0	60	NA
	9:10	55.7	57.0	52.0	56.8	58.0	54.0	59.5	62.5	54.0	57.3	59.0	53.0	57.3	59.0	53.0	60.0	62.0	54	58	NA
	9:33	59.7	62.0	50.0	60.9	63.5	50.0	60.6	62.5	49.0	56.2	55.5	47.5	64.7	63.0	49.5	60.6	61.0	52.5	61	NA
	9:40	57.0	59.5	42.5	53.4	56.0	42.0	51.0	50.5	42.0	45.8	48.5	41.5	44.9	47.0	41.0	45.0	46.0	41.0	52	NA
<u>NM6 – Tai To</u>					JJ.7	50.0	-12.0	51.0	50.5	- <u>2</u> .0	т <i>Э</i> .0	- 1 0.J	- 1.J	.,	-T / .U	-1.0	-5.0	- 1 0.0	-1.0	52	11/1
	11:31		62.0	53.5	54.5	55.0	53.5	54.7	55.5	53.0	54.7	55.0	53.5	54.2	55.0	53.0	56.5	59.0	53.0	56	NA
	11:07		63.5	48.5	56.5	57.0	48.0	66.6	69.0	49.0	57.0	57.5	48.0	66.0	64.0	49.0	63.6	65.5	50.5	63	NA
	9:53	56.2	58.0	53.5	56.7	58.5	53.5	59.7	61.0	54.5	56.0	57.5	53.5	55.7	57.5	53.0	55.6	57.0	53.0	57	NA
10-110 - 10	1.55	50.2	50.0	55.5	50.7	50.5	55.5	57.1	01.0	54.5	50.0	51.5	55.5	55.1	51.5	55.0	55.0	57.0	55.0	51	11/1

Date	Start Time	1 st Leq _{5mi}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
22-Nov-16	10:16	56.4	59.0	49.5	55.5	55.5	48.5	60.3	62.0	50.0	60.9	63.0	50.5	56.8	58.5	50.0	56.3	57.5	49.0	58	NA
28-Nov-16	10:23	52.5	59.5	47.0	59.6	61.5	45.0	51.5	52.0	45.0	49.0	50.5	46.5	52.4	51.5	47.5	55.0	53.0	47.5	55	NA
NM7 – Po Ka	at Tsai	Village		-	-		-				-		-							-	
4-Nov-16	13:02	62.5	64.5	56.5	59.5	62.0	56.0	60.0	62.5	56.0	63.6	66.5	58.5	63.8	66.0	61.0	63.7	66.0	59.5	63	NA
10-Nov-16	12:58	66.8	68.5	61.0	62.7	64.0	60.5	63.5	65.0	61.5	62.5	63.5	61.0	62.1	63.5	60.0	64.6	66.0	61.0	64	NA
16-Nov-16	13:10	58.8	64.0	50.5	61.3	63.0	50.0	55.4	56.0	50.0	56.6	57.0	50.5	57.6	57.0	51.0	62.8	59.5	50.0	60	NA
22-Nov-16	11:20	62.0	64.0	52.5	64.1	67.0	51.5	64.8	66.0	51.5	64.1	62.5	51.0	65.7	68.0	52.0	61.6	59.5	53.0	64	NA
28-Nov-16	12:58	62.5	66.5	51.0	64.1	68.0	51.0	61.1	66.5	51.0	62.5	65.5	50.0	58.6	64.5	48.5	59.1	62.5	48.5	62	NA
NM8 - Villag	e Hous	se, Tong	g Hang																		
3-Nov-16	9:47	59.6	63.6	50.3	60.6	64.9	51.4	60.7	64	51.7	59.2	63.1	50	59.8	63.7	50.5	58.4	62.5	49.1	60	NA
9-Nov-16	10:07	58.6	59.6	51.2	56.9	57.8	51	57.4	58.7	51.7	56.7	57	51.8	57.2	58.1	51	58.2	59	52.4	58	NA
15-Nov-16	10:09	58.9	60.2	50.1	59.1	61.7	51.7	58.9	60.5	50.4	58.4	60.7	50.6	59.7	61.6	51.6	60.6	62.4	50.7	59	NA
21-Nov-16	9:49	56.9	56.9	52.9	55.2	55.9	51.5	56.5	56.4	52.7	54.7	54.8	51.2	55.5	55.9	51.3	54.5	54.6	51.1	56	NA
NM9 - Villag	e Hous	se, Kiu '	Tau Vill	lage																	
3-Nov-16	10:30	61.7	64.4	58.6	60.6	63.7	58.0	61.4	64.5	58.7	62.0	65.2	58.1	61.8	64.4	58.0	63.2	65.5	59.5	62	NA
	10:50		66.6	57.0	65.7	67.9	58.7	62.6	65.7	56.0	63.9	66.8	57.9	62.4	65.1	56.9	61.4	64.4	56.4	64	NA
15-Nov-16			64.5	58.3	60.7	62.0	57.8	61.6	63.7	57.0	61.7	63.0	57.4	62.9	64.4	58.5	63.4	64.1	58.7	62	NA
21-Nov-16			65.3	58.8	63.5	66.5	58.9	64.8	67.6	59.0	64.2	66.9	59.6	57.4	70.4	61.0	62.4	65.1	58.1	63	NA
NM10 - Nam					1			1		1	1 1		r.	1			-			1	
3-Nov-16			59.6	55.9	58.7	59.6	55.4	57.2	58.9	54.0	56.7	57.4	54.7	57.2	58.7	54.0	56.8	57.0	54.4	58	61
-	15:36		68.1	59.8	61.4	63.0	58.9	61.2	62.7	59.0	62.9	64.8	59.9	61.8	63.6	58.2	62.7	64.9	59.2	63	66
15-Nov-16			66.6	60.6	62.9	65.8	59.8	63.2	66.7	60.7	62.7	65.5	59.0	62.5	65.4	59.4	61.5	64.2	58.1	63	66
21-Nov-16	15:09	59.8	62.6	58.3	60.2	63.8	59.0	59.7	62.1	58.4	61.5	63.8	59.0	61.6	64.9	59.0	62.6	64.2	59.6	61	64

Noise Monitoring Results for Restricted Hour, dB(A)

		Evening Tin	ie					Nig	ght Time		
Date	Start Time	Leq _{5min}	L10	L90	façade correction Leq _{5min}	Date	Start Time	Leq _{5min}	L10	L90	façade correction Leq _{5min}
NM1 – Tsung Yuen H			Γ		T		1		T	T	
25-Nov-16	22:22	51.6	51.7	44.8	NA						
NM5- Ping Yeung Vi	0		T		1		1 1		1	1	
4-Nov-16	22:45	46.1	54.4	38.9	NA	4-Nov-16	23:00	44.8	48.7	38.9	NA
11-Nov-16	22:47	46.1	48.2	37.6	NA	11-Nov-16	23:01	48.0	51.3	38.2	NA
18-Nov-16	22:40	52.6	57.2	38.7	NA	18-Nov-16	23:00	50.0	53.0	38.2	NA
25-Nov-16	22:47	45.3	48.4	38.4	NA	25-Nov-16	23:00	45.6	49.2	37.4	NA
NM7 – Po Kat Tsai V	illage										
4-Nov-16	22:22	55.8	57.8	48.5	NA	4-Nov-16	23:17	49.8	51.5	48.5	NA
11-Nov-16	22:24	46.4	49.7	44.1	NA	11-Nov-16	23:20	50.7	52.0	47.7	NA
18-Nov-16	22:21	49.5	52.9	44.6	NA	18-Nov-16	23:22	48.2	50.2	45.6	NA
25-Nov-16	21:58	46.8	47.0	44.3	NA	25-Nov-16	23:21	42.7	46.2	36.2	NA
NM8 - Village House	, Tong Hang										
4-Nov-16	21:43	57.3	63.3	47.2	NA	4-Nov-16	23:41	62.5	64.9	46.6	NA
11-Nov-16	21:50	55.9	58.9	45.4	NA	11-Nov-16	23:53	59.4	63.9	44.4	NA
18-Nov-16	21:38	59.6	62.6	48.4	NA	18-Nov-16	23:49	57.8	62.8	43.1	NA
25-Nov-16	21:21	57.6	57.5	47.0	NA	25-Nov-16	23:49	56.7	55.2	44.0	NA
NM9 - Village House	, Kiu Tau Vill	age									
						5-Nov-16	0:00	59.1	63.9	51.5	NA
						12-Nov-16	0:12	60.5	61.9	53.8	NA
						19-Nov-16	0:13	61.5	66.4	51.9	NA
						26-Nov-16	0:07	60	64.3	52.8	NA
NM10 - Nam Wa Po	Village House	No. 80									
						5-Nov-16	0:11	55.2	58.2	60	56
						12-Nov-16	0:33	56.7	59.7	61.9	56.9
						19-Nov-16	0:24	56.6	59.6	61.5	56.3
						26-Nov-16	0:20	55.7	58.7	60.6	55.7

Water Quality Monitoring Data for Contract 6 and SS C505

Date	2-Nov-16	-	-				-		-	-	-		-	•
Location	Time	Depth (m)	Temp	(OC)	DO (r	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
	0.05	0.04	22.4	22.4	8.19	0.0	93.8	04.0	8.1	7.0	8.4	0.4	3	4.0
WM1-C	9:25	0.34	22.4	22.4	8.23	8.2	94.2	94.0	7.7	7.9	8.4	8.4	5	4.0
10/0.41	0.27	0.05	21.8	21.0	8.23	0.0	93.6	02 5	14.3	12.0	8.3	0.2	10	0.0
WM1	9:36	0.25	21.8	21.8	8.21	8.2	93.3	93.5	13.5	13.9	8.3	8.3	8	9.0

Date	4-Nov-16	-	=				-		-		-		-	
Location	Time	Depth (m)	Temp	o (oC)	DO (n	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	Η	SS(r	ng/L)
WM1-C	11.00	0.24	22.6	22.4	8.38	0.2	97.2	04 7	12.7	12.6	10.3	10.2	2	2.0
WWINT-C	11:00	0.34	22.6	22.6	8.26	8.3	96.1	96.7	12.5	12.0	10.3	10.3	2	2.0
10/0.41	10.50	0.2/	22.1	22.1	8.32	0.0	95.8	04.7	12.4	12.0	9.4	0.4	8	0.0
WM1	10:50	0.26	22.1	22.1	8.08	8.2	93.5	94.7	13.3	12.9	9.4	9.4	8	8.0

Date	7-Nov-16	-	-				-		-	•	=		-	
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(n	ng/L)
	11.05	0.24	24.6	24.7	8.21	0.0	98.2	00.1	10.5	10.0	6.7	(7	6	ГO
WM1-C	11:05	0.34	24.6	24.6	8.19	8.2	98.0	98.1	9.9	10.2	6.7	6.7	4	5.0
	10.55	0.2/	24.2	24.2	7.98	7.0	95.4	05.1	15.8	15.5	6.7	(7	16	1 F F
WM1	10:55	0.26	24.2	24.2	7.9	7.9	94.7	95.1	15.2	15.5	6.7	6.7	15	15.5

Date	9-Nov-16	-	-			•	-		-	-	-		-	
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	10.07	0.24	25	25.0	5.8	ГО	70.2	70.7	7.3	7.4	8.3	0.2	4	4 5
WM1-C	10:07	0.34	25	25.0	5.87	5.8	71.1	70.7	7.4	7.4	8.3	8.3	5	4.5
10/0.01	10.2/	0.17	23.2	22.2	6.88	(0	80.4	00.7	10.9	10 г	8.1	0.1	10	0.5
WM1	10:26	0.17	23.2	23.2	6.91	6.9	81.0	80.7	10.1	10.5	8.1	8.1	9	9.5

Date	11-Nov-16	-					_		-				-	
Location	Time	Depth (m)	Temp	(OC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	10.15	0.24	18.1	10.1	8.49	0.5	90.6	00 (7.4	7.4	6.5	(5	4	4.0
WM1-C	12:15	0.34	18.1	18.1	8.48	8.5	90.5	90.6	7.5	7.4	6.5	6.5	4	4.0
10/0.01	12.00	0.2/	18.5	10 Г	8.9	0.0	94.7	04.7	11.3	11.4	6.6		8	7 5
WM1	12:00	0.26	18.5	18.5	8.9	8.9	94.6	94.7	11.5	11.4	6.6	6.6	7	7.5

Date	15-Nov-16													
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(n	ng/L)
	10.10	0.24	23.2	22.2	8.19	0.0	85.3	00.0	11.4	10.0	3.2	3.2	4	2.0
WM1-C	10:10	0.34	23.2	23.2	8.22	8.2	96.2	90.8	10.3	10.9	3.2	3.2	2	3.0
10/0/1	10.00	0.26	23.4	JJ 1	8.48	8.5	99.7	99.3	14.3	14.0	3.9	2.0	12	11.0
WM1	10:00	0.26	23.4	23.4	8.45	8.5	98.8	99.3	14.1	14.2	3.9	3.9	10	11.0

Date	17-Nov-16													
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	10.00	0.24	23.1	22.1	8.02	0.1	93.3	04.1	9.0	0.7	9.1	01	3	2.0
WM1-C	10:00	0.34	23.1	23.1	8.1	8.1	94.8	94.1	8.4	8.7	9.1	9.1	3	3.0
WM1	10.10	0.26	23.3	22.2	7.93	7.0	93.2	93.2	12.1	10.4	9.7	9.7	11	12.0
VVIVI I	10:10	0.26	23.3	23.3	7.94	1.9	93.1	93.Z	12.6	12.4	9.7	9.7	13	12.0

Date	19-Nov-16													
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	11.45	0.20	24.7	247	7.34	7 4	88.9	00.0	9.0	07	9.8	0.0	3	2.0
WM1-C	11:45	0.30	24.7	24.7	7.4	7.4	89.4	89.2	8.4	8.7	9.8	9.8	3	3.0
WM1	11:13	0.07	25	25.0	7.63	7.4	92.0	02 F	15.4	15.7	9.5	9.5	9	10.0
VVIVI I	11:13	0.27	25	23.0	7.6	7.6	93.0	92.5	16.0	13.7	9.5	9.5	11	10.0

Date	22-Nov-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
M/M11_0	11 45	0.05	23.7	00.7	6.77	(0	80.2	00.0	40.2	41.4	10	10.0	23	22.0
WM1-C	11:45	0.35	23.7	23.7	6.78	6.8	80.4	80.3	42.6	41.4	10	10.0	23	23.0
14/6.41	11.20	0.2/	23.6	22.4	7.43	7 4	87.8	87.8	48.2	40.7	10.4	10.4	39	10.0
VVIVI I	WM1 11:30	0.26	23.6	23.6	7.44	7.4	87.8	87.8	49.2	48.7	10.4	10.4	41	40.0

Date	24-Nov-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	н	SS(n	ng/L)
M/M11_0	10.05	0.24	18.1	10.1	8.54	0.5	90.7	00 (14.8	14.0	9.2	0.0	3	2.5
WM1-C	12:25	0.34	18.1	18.1	8.55	8.5	90.5	90.6	13.5	14.2	9.2	9.2	4	3.5
WM1	12.10	0.26	18.2	10.0	8.16	8.2	86.4	86.9	23.6	22.7	9.1	0 1	17	17 E
VVIVI I	12:10	0.26	18.2	18.2	8.24	ð.2	87.4	80.9	21.8	22.1	9.1	9.1	18	17.5

Date	26-Nov-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	н	SS(n	ng/L)
	0.21	0.27	18.9	10.0	8.81	0.0	94.8	05.0	6.9	(0	8.9	0.0	3	2 5
WM1-C	9:31	0.37	18.9	18.9	8.89	8.9	95.2	95.0	7.0	6.9	8.9	8.9	4	3.5
WM1	0.49	0.17	19.4	19.4	8.25	8.3	90.9	01.4	33.4	34.2	8.9	8.9	48	50.5
	9:48	0.17	19.4	19.4	8.31	8.3	91.8	91.4	35.0	34.2	8.9	8.9	53	50.5

Date	28-Nov-16													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
M/M11_C	10.04	0.07	19.8	10.0	8.64	0.7	94.9	OF 1	9.7	0.7	10	10.0	3	2 5
WM1-C	12:24	0.27	19.8	19.8	8.71	8.7	95.3	95.1	9.7	9.7	10	10.0	2	2.5
WM1	10.07	0.19	19	10.0	8.64	8.7	92.9	02.1	17.1	17.6	9.8	9.8	13	14.0
	12:37	0.18	19	19.0	8.7	0.7	93.3	93.1	18.0	17.0	9.8	9.8	15	14.0

Date	30-Nov-16	-	-				-		-		-	·		
Location	Time	Depth (m)	Temp	(0C)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	10.00	0.24	18.4	10.4	9.02	0.0	95.5		5.4	Γ /	9.6	0.(2	2.0
WM1-C	10:00	0.34	18.4	18.4	8.99	9.0	95.1	95.3	5.8	5.6	9.6	9.6	2	2.0
WM1	10.15	0.26	19.5	10 F	8.26	8.3	89.2	00.0	13.9	12.0	10.7	10.7	13	12.0
VVIVI I	10:15	0.26	19.5	19.5	8.36	ö.3	90.7	90.0	13.7	13.8	10.7	10.7	11	12.0

Г

18

Water Quality Monitoring Data for Contract 2 and 3

Date	2-Nov-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
WM4-CA	11:14	0.16	24.1 24.1	24.1	8.16 8.13	8.1	97.1 96.7	96.9	6.1 6.0	6.0	6.8 6.8	6.8	3	3.5
WM4-CB	11:30	0.31	24.8 24.8	24.8	7.71	7.7	93.2 93.6	93.4	9.1 8.4	8.7	6.6 6.6	6.6	9	9.0
WM4	11:06	0.12	23.6 23.6	23.6	7.94	7.9	93.8 93.4	93.6	33.3 32.7	33.0	6.7 6.7	6.7	32 31	31.5
Date	4-Nov-16	-	<u>.</u>	<u>.</u>	-	<u>.</u>	-		-	-		-	<u>.</u>	
Location	Time	Depth (m)	Temj	p (oC)	DO (I	mg/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(n	ng/L)
WM4-CA	13:15	0.18	24.4 24.4	24.4	7.87 9.9	8.9	94.2 94.5	94.4	6.1 5.1	5.6	7.5 7.5	7.5	<2 <2	<2
WM4-CB	13:30	0.31	25.6 25.6	25.6	7.18 7.19	7.2	87.8 87.9	87.9	7.3	7.1	6.9 6.9	6.9	5	5.5
WM4	13:00	0.14	25.1 25.1	25.1	7.52 7.53	7.5	91.1 91.3	91.2	15.5 15.8	15.7	7.5 7.5	7.5	12 14	13.0
Date	7-Nov-16	• 												
Location	Time	Depth (m)	Tem	o (oC)	DO (I	mg/L)	DO	(%)	Turbidit	ty (NTU)	q	H	SS(n	ng/L)
WM4-CA	13:15	0.18	26.8 26.8	26.8	7.49	7.5	93.5 93.1	93.3	10.1 10.0	10.0	6.6 6.6	6.6	5 4	4.5
WM4-CB	13:30	0.31	27.7 27.7	27.7	6.68 6.69	6.7	84.9 85.0	85.0	7.9 7.8	7.8	6.4 6.4	6.4	7 8	7.5
WM4	13:00	0.14	27.4	27.4	7.16	7.2	90.6 90.3	90.5	24.1	22.9	6.7	6.7	18	18.0

Date	9-Nov-16	-				-	-		-	-		-		
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidi	y (NTU)	р	Н	SS(m	ng/L)
WM4-CA	12.21	0.16	22.3	22.2	7.79	77	89.1	88.5	4.4	1 1	6.9	6.9	<2	\sim
WM4-CA	13:21	0.16	22.3	22.3	7.7	1.1	87.9	00.3	4.4	4.4	6.9	0.9	<2	~2

90.3

21.7

6.7

7.15

27.4

AUES

WM4-CB	13:49	0.26	22.3 22.3	22.3	6.72 6.8	6.8	77.3	78.0	9.4 9.6	9.5	6.6 6.6	6.6	8 6	7.0
WM4	13:08	0.20	22.8 22.8	22.8	7.4 7.47	7.4	85.3 86.4	85.9	18.6 19.2	18.9	6.8 6.8	6.8	18 17	17.5
Date	11-Nov-16				_		-		-	-		-		
Location	Time	Denth (m)	T	$\langle \mathbf{O} \rangle$		(-)				(~~ (
	Time	Depth (m)	Temp	o (oC)	DO (I	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
WM4-CA	10:10	0.18	18.4 18.4	18.4	8.55 8.5	ng/L) 8.5	91.1 90.5	(%) 90.8	Turbidit 4.7 4.2	ty (NTU) 4.5	p 7.5 7.5	H 7.5	SS(n 4 4	ng/L) 4.0
			18.4		8.55		91.1		4.7		7.5		4	

Date	15-Nov-16	-		-	_		-		-			-		-
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(n	ng/L)
WM4-CA	12.15	0.18	26.2	26.2	7.67	77	94.7	94.9	9.7	10.3	7.6	76	<2	<2
WW4-CA	12:15	0.18	26.2	20.2	7.68	1.1	95.0	94.9	10.8	10.5	7.6	7.6	<2	~2
WM4-CB	12:30	0.31	27.5	27.5	6.81	6.8	86.3	85.8	24.7	25.1	7.9	7.9	22	22.0
W W14-CD	12.30	0.51	27.5	27.5	6.76	0.8	85.3	03.0	25.5	23.1	7.9	7.9	22	22.0
WINAA	12.00	0.14	26.2	26.2	7.34	7.2	90.8	00.5	242.0	242 5	8	8.0	115	116.5
WM4	12:00	0.14	26.2	26.2	7.31	7.3	90.2	90.5	243.0	242.5	8	8.0	118	110.5

Date	16-Nov-16#	-											
Location	Time	Depth (m)	Temp (oC	C) DO (I	ng/L)	DO ((%)	Turbidit	y (NTU)	pl	H	SS(n	ng/L)
WM4-CA	11:45	0.18						3.5	3.3			<2	<2
WM4-CA	11.43	0.18						3.1	3.3				~2
	12.00	0.21						4.8	15			4	4.0
WM4-CB	12:00	0.31						4.3	4.5				4.0
	11.20	0.14						20.5	20.2			18	10.0
WM4	11:30	0.14						20.1	20.3				18.0

Date 17-Nov-16

Location	Time	Depth (m)	Temp) (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM4-CA	13:15	0.18	25	25.0	7.68	77	93.1	93.3	3.8	2.4	9.8	9.8	<2	<2
WWWH-CA	15.15	0.18	25	23.0	7.71	1.1	93.5	95.5	3.1	3.4	9.8	9.0	<2	~2
	12.20	0.21	25.8	25.9	6.7	67	82.4	82.5	9.5	93	9.4	0.4	6	5.5
WM4-CB	13:30	0.31	25.8	25.8	6.77	0./	82.5	82.3	9.0	9.5	9.4	9.4	5	5.5
	12.00	0.14	25.1	25.1	7.64	7 7	92.7	02.0	24.4	24.2	9.7	0.7	27	26.5
WM4	13:00	0.14	25.1	25.1	7.66	1.1	92.9	92.8	23.9	24.2	9.7	9.7	26	26.5

Date	19-Nov-16	-				•	-			-		-		
Location	Time	Depth (m)	Temp) (oC)	DO (r	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
WM4-CA	9:04	0.17	23.9	23.9	7.64	77	90.3	90.8	5.5	5.5	9.8	9.8	2	2.0
WM4-CA	9.04	0.17	23.9	25.9	7.7	1.1	91.3	90.8	5.5	5.5	9.8	9.8	2	2.0
	0.24	0.27	24.4	24.4	6.13	()	73.3	72.0	25.2	25.0	9	0.0	30	21.5
WM4-CB	9:24	0.27	24.4	24.4	6.23	6.2	74.5	73.9	24.7	25.0	9	9.0	33	31.5
	9.52	0.10	24.7	24.6	7.45	7.5	89.5	00.7	9.3	93	8.8	0.0	11	10.5
WM4	8:53	0.19	24.5	24.6	7.48	7.5	89.9	89.7	9.3	9.3	8.8	8.8	10	10.5

Date	22-Nov-16	-			-		-		-			-	•	-
Location	Time	Depth (m)	Temp	o (oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
	12.40	0.10	23.9	22.0	7.14	7.1	84.6	015	9.7	0.0	10	10.1	6	7.0
WM4-CA	13:40	0.19	23.9	23.9	7.13	/.1	84.4	84.5	10.1	9.9	10.1	10.1	8	7.0
	12.50	0.21	24.3	24.2	5.48	5.5	65.6	(5.5	14.7	147	9.7	97	14	15.0
WM4-CB	13:50	0.31	24.3	24.3	5.45	5.5	65.4	65.5	14.6	14.7	9.7	9.7	16	15.0
	12.20	0.14	24.3	24.2	6.57		78.6	70 (25.0	25.0	9.8	0.0	20	20.0
WM4	13:30	0.14	24.3	24.3	6.57	6.6	78.5	78.6	25.0	25.0	9.7	9.8	20	20.0

Date	24-Nov-16				_	•	-	•	-	-	•	-	•	-
Location	Time	Depth (m)	Temp	o (oC)	DO (I	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
WM4-CA	10:10	0.19	19.2	19.2	10.43	9.9	110.3	106.1	5.9	5.8	10.2	10.2	2	2.5
WM4-CA	10:10	0.18	19.2	19.2	9.4	9.9	101.8	100.1	5.6	5.8	10.2	10.2	3	2.5
	10.25	0.21	20.4	20.4	6.45	6.5	71.9	72.0	19.4	10.5	9.6	0.6	31	20.0
WM4-CB	10:25	0.31	20.4	20.4	6.48	6.5	72.0	72.0	17.5	18.5	9.6	9.6	29	30.0
W/N/A	10.00	0.14	20.8	20.9	7.72	7 7	88.0	00 2	24.2	22.2	8.8	0.0	26	26.5
WM4	10:00	0.14	20.8	20.8	7.76	1.1	88.6	88.3	22.4	23.3	8.8	8.8	27	26.5

Date	26-Nov-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	p	H	SS(n	ng/L)
WM4-CA	11.57	0.19	19.6	19.6	7.81	7.9	85.6	86.3	108.0	110.5	9.6	9.6	128	134.0
WW4-CA	11:57	0.18	19.6	19.0	7.9	7.9	87.0	80.5	113.0	110.5	9.6	9.0	140	134.0
WM4-CB	12:08	0.10	20	20.0	7.42	7 4	81.6	82.1	105.0	107.5	9.5	0.5	96	98.0
WIVI4-CD	12.08	0.19	20	20.0	7.47	7.4	82.5	82.1	110.0	107.5	9.5	9.5	100	98.0
WINAA	11.45	0.24	18.9	10.0	8.05	0.1	87.8	00 2	122.0	110.5	9.4	0.4	117	1145
W M4	WM4 11:45	0.34	18.9	18.9	8.11	8.1	88.7	88.3	117.0	119.5	9.4	9.4	112	114.5

Date	28-Nov-16	-							-	-				-
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
	11.50	0.19	20.1	20.1	8.51	0.5	93.4	02.6	17.8	10.1	10.3	10.2	14	12.0
WM4-CA	11:50	0.18	20.1	20.1	8.53	8.5	93.7	93.6	18.3	18.1	10.3	10.3	12	13.0
	11.15	0.27	21.4	21.5	7.38	7.4	83.3	02.7	25.0	25.0	10.3	10.2	31	22.0
WM4-CB	11:15	0.37	21.5	21.5	7.41	7.4	84.0	83.7	25.0	25.0	10.3	10.3	33	32.0
	11.22	0.22	20.6	20.6	8.42	0.4	93.8	04.2	20.9	21.5	10	10.0	17	16.0
WM4	4 11:32	0.23	20.6	20.6	8.47	8.4	94.5	94.2	22.0	21.5	10	10.0	15	16.0

Date	30-Nov-16				-		-		-					
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(n	ng/L)
	12.15	0.19	21.8	21.0	8.19	0.2	93.4	02.9	5.2	5.0	10.4	10.4	2	2.5
WM4-CA	13:15	0.18	21.8	21.8	8.24	8.2	94.1	93.8	4.8	5.0	10.4	10.4	3	2.5
WM4-CB	13:30	0.31	23.1	23.1	6.65	6.7	77.6	77.7	14.3	13.8	9.8	9.8	16	16.0
W W14-CD	15.50	0.51	23.1	23.1	6.66	0.7	77.8	//./	13.2	15.0	9.8	9.0	16	10.0
WMA	12.00	0.14	22.3	22.2	8.17	0 2	93.6	02.0	13.2	14.2	10	10.0	12	12.0
W 1V14	WM4 13:00	0.14	22.3	22.3	8.18	8.2	93.9	93.8	15.1	14.2	10	10.0	12	12.0

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 6

Date	1-Nov-16 #									-				
Location	Time	Depth (m)	Temp (o	oC)	DO (n	ng/L)	DO	(%)	Turbidit	ty (NTU)	p	H	SS(m	ng/L)
WM2A-C	11:05	0.28							8.9	8.9			4	4.0
WM2A-C	11.05	0.28							939	0.9				4.0
	11.25	0.17							22.6	22.2			14	145
WM2A	11:35	0.17							21.9	22.3			15	14.5

Date	2-Nov-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
WM2A-C	10:08	0.26	21.6	21.6	8.01	8.0	90.5	90.4	7.6	7.6	7.60	76	<2	$\langle \rangle$
WMZA-C	10.08	0.26	21.6	21.0	7.99	8.0	90.2	90.4	7.6	7.0	7.60	7.6	<2	<2
WM2A	9:55	0.15	22.4	22.4	7.54	7.5	86.9	96.0	130.0	121 5	7.70	77	112	112.0
W WIZA	9.33	0.15	22.4	22.4	7.53	1.5	86.8	86.9	133.0	131.5	7.70	1.1	114	113.0

Date	3-Nov-16#	-							-	-			-	
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbidit	y (NTU)	p	H	SS(n	ng/L)
	10.15	0.29							7.4	7 2			4	4.0
WM2A-C	10:15	0.28							7.0	1.2				4.0
	10.00	0.17							23.0	22.6			14	14.0
WM2A	10:00	0.17							22.2	22.6				14.0

Date	4-Nov-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbidi	y (NTU)	р	H	SS(m	ng/L)
	10.25	0.29	21.5	21.5	7.87	7.0	89.2	00.5	12.0	11.0	8.50	0.5	<2	~2
WM2A-C	10:25	0.28	21.5	21.5	7.68	7.8	87.7	88.5	11.5	11.8	8.50	8.5	<2	<2
	10.25	0.17	22.2	22.2	7.27	7.2	83.5	02.5	264.0	0 (0 F	8.90	0.0	204	106 5
WM2A 10:	10:35	0.17	22.2	22.2	7.28	1.3	83.5	83.5	257.0	260.5	8.90	8.9	189	196.5

Date	5-Nov-16#	-			-		-		-	-		-	-	
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidit	y (NTU)	p	H	SS(m	ng/L)
WM2A-C	10.00	0.29							4.8	17			<2	\sim
WM2A-C	10:00	0.28							4.7	4./			<2	<2
	10.15	0.17							7.8	7.5			7	7.0
WM2A	10:15	0.17							7.3	7.5			7	7.0

Date	7-Nov-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	ıg/L)
	10.25	0.20	23.8	22.0	6.67	(7	80.6	00.4	6.7	()	7.10	7.1	3	2.5
WM2A-C	10:25	0.28	23.8	23.8	6.63	6.7	80.2	80.4	6.9	6.8	7.10	/.1	2	2.5
	10.40	0.17	24.1	24.1	7.36	7.2	88.2	077	8.7	0.2	6.80	()	6	()
WM2A	WM2A 10:40	0.17	24.1	24.1	7.24	1.3	87.1	87.7	8.0	8.3	6.80	6.8	6	6.0

Date	9-Nov-16#													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	p	H	SS(m	ng/L)
WM2A-C	11.17	0.22	20.7	20.7	8.12	0.2	90.3	01.0	8.8	8.8	7.40	7 4	<2	$\langle \rangle$
WM2A-C	11:17	0.33	20.7	20.7	8.2	8.2	91.7	91.0	8.9	8.8	7.40	7.4	<2	<2
WM2A	10.40	0.17	21.2	21.2	8.34	8.3	93.0	02.2	24.5	24.7	7.60	76	15	14.0
WMZA	10:49	0.17	21.2	21.2	8.35	8.3	93.5	93.3	24.8	24.7	7.60	7.6	13	14.0

Date	11-Nov-16	-				•	-		-			-	-	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
	11.40	0.29	19.1	10.1	8.13	0.1	87.9	07.0	11.5	11.7	6.70	67	7	6.5
WM2A-C	11:40	0.28	19.1	19.1	8.12	8.1	87.7	87.8	11.8	11.7	6.70	6.7	6	6.5
WM2A	11:50	0.17	18.3	10.2	8.6	9.6	91.4	01.5	90.9	89.2	6.70	67	70	70 F
W WIZA	11.50	0.17	18.3	18.3	8.61	8.6	91.5	91.5	87.4	89. 2	6.70	6.7	71	70.5

Date	12-Nov-16#					-				-			-	
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	p.	Н	SS(m	ng/L)
	9.55	0.29							5.8	6.0			<2	~2
WM2A-C	8:55	0.28							6.3	6.0				<2
	0.05	0.17							31.7	21.2			40	40.0
WM2A	9:05	0.17							30.8	31.3				40.0

Date	14-Nov-16	-			-	•	-					•	• · · ·	
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
	11.15	0.29							11.0	11.0			<2	2
WM2A-C	11:15	0.28							10.9	11.0				<2
	11.00	0.17							46.5	40.4			61	(1.0
WM2A	11:00	0.17							50.3	48.4				61.0

Date	15-Nov-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(r	ng/L)
WM2A-C	10:40	0.28	23 23	23.0	7.91 7.92	7.9	91.9 92.1	92.0	11.7 11.9	11.8	8.80 8.80	8.8	<2 <2	<2
WM2A	10:25	0.17	24.2	24.2	7.68	7.7	91.3	91.9	23.5	23.5	8.90	8.9	16	17.0
			24.2		7.7		92.4		23.4		8.90		18	
Date	16-Nov-16#	<u> </u>				•	-	•			•		-	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(r	ng/L)
		1 ()	1		, ,				8.5		1		2	
WM2A-C	10:00	0.28							8.6	8.5				2.0
	10.17	0.17							17.2	17.4			9	0.0
WM2A	10:15	0.17							17.6	17.4				9.0
Date	17-Nov-16	<u> </u>				-	-	-	-	-			-	-
		Dentle (m)	Τ	(-(-))			DO	(0/)	T 1. 1. 1.				00(
Location	Time	Depth (m)	1	o (oC)		mg/L)		(%)		y (NTU)	1	H	, , , , , , , , , , , , , , , , , , ,	ng/L)
WM2A-C	10:40	0.28	23.1 23.1	23.1	7.81 7.84	7.8	90.7 91.0	90.9	9.5 9.5	9.5	9.30 9.30	9.3	4 3	3.5
	10.05	0.17	23.5	22.5	7.66		90.3	00.0	13.0	10.0	8.90	0.0	8	7.6
WM2A	10:25	0.17	23.5	23.5	7.71	7.7	90.8	90.6	12.5	12.8	8.90	8.9	7	7.5
Date	19-Nov-16	r <u> </u>		-	r	<u> </u>	r .	·	r	<u> </u>	r	-	r	
Location	Time	Depth (m)	-	o (oC)	ĺ.	mg/L)		(%)		y (NTU)	1	Н		ng/L)
WM2A-C	10:49	0.34	23.6	23.6	7.58	7.6	89.0	89.4	7.5	7.5	9.70	9.7	<2	<2
			23.6		7.64		89.7		7.5		9.70		<2	
WM2A	11:00	0.14	25.3 25.3	25.3	7.23 7.26	7.2	87.9 88.2	88.1	17.6 18.0	17.8	9.30 9.30	9.3	12 11	11.5
			25.5	l	/.20		88.2		18.0		9.30		11	
Date	22-Nov-16	<u>.</u>				•	-	•			•	-	-	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(r	ng/L)
WM2A-C	11:00	0.30	23.1	23.1	7.36	7.4	86.1	86.2	84.7	84.5	10.80	10.8	43	44.0
W WIZA-C	11.00	0.30	23.1	23.1	7.37	/.4	86.2	ð0.2	84.3	04.3	10.80	10.8	45	44.0
WM2A	11:15	0.19	23.8 23.8	23.8	6.95 6.96	7.0	82.6 82.9	82.8	209.0 212.0	210.5	10.50 10.50	10.5	164 151	157.5

Date	23-Nov-16#													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	pl	H	SS(n	ng/L)
WM2A-C	11:00	0.30							20.5	20.2			20	20.0
WM2A-C	11.00	0.30							19.8	20.2			20	20.0
	11.15	0.10							318.0	210.0			223	222.0
WM2A	11:15	0.19							320.0	319.0			223	223.0

Date	24-Nov-16	-					-	•	-	-		-	-	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	11.45	0.28	18.5	10.5	8.53	9.5	91.0	01.1	7.8	7.6	7.90	7.0	<2	\sim
WM2A-C	11:45	0.28	18.5	18.5	8.56	8.5	91.2	91.1	7.5	7.6	7.90	7.9	<2	<2
	11.55	0.17	18.7	10.7	8.13	0.1	87.2	07.0	314.0	010 F	9.30	0.2	206	200.0
WM2A	11:55	0.17	18.7	18.7	8.1	8.1	86.8	87.0	313.0	313.5	9.30	9.3	194	200.0

Date	25-Nov-16#				-		-		-	-		-	-	
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
WM2A-C	10:25	0.28							7.6	73			3	3.0
WWZA-C	10.23	0.28							7.0	1.5			3	5.0
WM2A	10.15	0.17							19.8	19.3			14	14.0
W MZA	10:15	0.17							18.7	19.5			14	14.0

Date	26-Nov-16	-					-			-			-	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	10.10	0.20	19.7	10.7	8.34	0.4	91.7	02.0	33.9	24.2	9.00	0.0	30	20.5
WM2A-C	10:19	0.30	19.7	19.7	8.4	8.4	92.3	92.0	34.5	34.2	9.00	9.0	29	29.5
	10.04	0.12	19.5	10.5	8.39	0.4	92.8	02.0	19.3	10.0	9.00	0.0	17	16.0
WM2A	M2A 10:04 0.12	19.5	19.5	8.45	8.4	93.0	92.9	20.4	19.9	9.00	9.0	15	16.0	

Date	28-Nov-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
	12.10	0.28	18.9	10.0	8.63	0.7	92.5	02.2	11.0	11.5	9.60	0.6	4	4.0
WM2A-C	13:10	0.28	18.9	18.9	8.7	8.7	93.9	93.2	12.0	11.5	9.60	9.6	4	4.0
	12.50	0.10	19.6	10 (8.45	0.5	92.3	02.0	23.7	22.0	9.60	0.6	21	01 E
WM2A	7M2A 12:56 0.18	19.6	19.6	8.49	8.5	93.7	93.0	24.0	23.9	9.60	9.6	22	21.5	

Date	30-Nov-16													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(m	ng/L)
WM2A-C	10:40	0.28	18.7	18.7	8.44	8.5	90.3	90.7	7.7	7.6	9.50	0.5	<2	\sim
WM2A-C	10.40	0.28	18.7	16.7	8.49	8.3	91.0	90.7	7.4	7.0	9.50	9.5	<2	<2
WM2A	10:25	0.17	18.6	18.6	8.44	8.5	90.2	90.2	21.8	21.3	9.10	0.1	18	175
W WIZA	10.23	0.17	18.6	18.0	8.46	8.3	90.1	90.2	20.8	21.5	9.10	9.1	17	17.5
Remarks:														

exceedance triggered only.

Action Level
Limit Level

Date	2-Nov-16													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
WMAD C	10.22	0.01	21.8	21.0	7.52	7.5	86.4	96.2	2.4	2.4	7.40	7.4	<2	~2
WM2B-C	10:22	0.01	21.8	21.8	7.48	1.5	85.9	86.2	2.4	2.4	7.40	7.4	<2	<2
	10.16	0.02	22.1	22.1	8.64	0.(99.1	00.0	2.7	2.0	7.30	7.2	2	2.5
WM2B	10:16	0.02	22.1	22.1	8.61	8.6	98.7	98.9	2.9	2.8	7.30	1.3	3	2.5

Date	4-Nov-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(n	ng/L)
	10.10	0.02	23.6	22.6	6.71	(7	79.1	70.2	2.1	2.1	8.60	0.6	<2	-0
WM2B-C	10:10	0.02	23.6	23.6	6.72	6.7	79.2	79.2	2.0	2.1	8.60	8.6	<2	<2
	10.00	0.02	23.9	22 0	8.2	0.2	97.1	07.5	3.5	2.4	7.90	7.0	<2	2.0
WM2B	10:00	0.02	23.9	23.9	8.3	8.3	97.8	97.5	3.3	3.4	7.90	7.9	2	2.0

Date	7-Nov-16													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	ty (NTU)	p	H	SS(n	ng/L)
	10.10	0.02	24.2	24.2	6.36	()	75.8	75 7	2.5	2.4	8.30	0 2	<2	-2
WM2B-C	10:10	0.02	24.2	24.2	6.32	6.3	75.5	75.7	2.3	2.4	8.30	8.3	<2	<2
WMOD	10.00	0.02	27	27.0	7.55	7.4	93.9	02.4	4.7	15	8.80	0.0	3	2.5
WM2B	10:00	0.02	27	27.0	7.3	7.4	90.8	92.4	4.3	4.5	8.80	8.8	4	3.5

Date	9-Nov-16													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	ng/L)
	11.40	0.02	21.9	21.0	7.52	7.6	85.9	96.2	2.2	2.2	7.20	7.2	<2	-2
WM2B-C	11:49	0.02	21.9	21.9	7.6	7.6	86.7	86.3	2.2	2.2	7.20	1.2	<2	<2
WMAD	11.24	0.02	21.5	21.5	9.03	0.1	102.2	102.0	4.1	4.2	7.10	7.1	3	2.0
WM2B	11:34	0.02	21.5	21.5	9.1	9.1	103.3	102.8	4.2	4.2	7.10	/.1	3	3.0

Date	11-Nov-16							-	-					
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
	11.25	0.02	23	22.0	6.56	65	76.7	765	2.7	27	6.90	6.0	<2	\sim
WM2B-C	11:25	0.02	23	23.0	6.52	6.5	76.3	76.5	2.7	2.7	6.90	6.9	<2	<2
WAAD	11.25	0.02	19.4	10.4	8.53	9.6	92.3	02.5	11.0	11.1	6.60		9	0.0
WM2B	11:35	0.02	19.4	19.4	8.57	8.6	92.6	92.5	11.1	11.1	6.60	6.6	7	8.0

Date	15-Nov-16				-	-			-				_	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
WM2B-C	11.05	0.02	24	24.0	6.97	7.0	82.8	22 7	3.2	2.2	7.60	7.6	<2	\sim
WM2B-C	11:05	0.02	24	24.0	6.98	7.0	82.6	82.7	3.3	3.3	7.60	7.6	<2	<2
WAAD	10.55	0.02	24.9	24.0	8.01	8.0	96.2	06.2	7.4	7.4	7.70	77	4	4.0
WM2B	10:55	0.02	24.9	24.9	8.04	8.0	96.4	96.3	7.5	/.4	7.70	1.1	4	4.0

Date	17-Nov-16					-								
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	ty (NTU)	p	H	SS(n	ng/L)
WM2B-C	11.05	0.02	24	24.0	7.01	7.0	83.0	02.0	2.58.	2.4	9.70	0.7	<2	~2
WM2B-C	11:05	0.02	24	24.0	6.96	7.0	82.6	82.8	3.4	3.4	9.70	9.7	<2	<2
WAAD	10.55	0.02	24.3	24.2	8.31	0.2	99.4	00.0	5.1	5.2	8.80	0.0	2	2.0
WM2B	10:55	0.02	24.3	24.3	8.34	8.3	99.8	99.6	5.6	5.5	8.80	8.8	4	3.0

Date	19-Nov-16					-		-	-				-	
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
WMOD C	10.20	0.02	24.1	24.1	6.61	67	77.8	70 /	4.7	47	9.60	0.6	<2	$\langle \rangle$
WM2B-C	10:29	0.02	24.1	24.1	6.7	0.7	78.9	78.4	4.7	4.7	9.60	9.6	<2	<2
WAAD	10.27	0.02	24.9	24.0	8.04	0.1	97.5	0.0 0	5.4	5 4	9.60	0.6	<2	~?
WM2B	10:37	0.02	24.9	24.9	8.17	8.1	98.5	98.0	5.4	5.4	9.60	9.6	<2	<2

Date	22-Nov-16							-	-				-	
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
WMAD C	10.05	0.02	23.9	22.0	6.73	(7	79.8	00.0	3.1	2.1	9.40	0.4	3	2.5
WM2B-C	10:05	0.02	23.9	23.9	6.76	6./	80.1	80.0	3.0	3.1	9.40	9.4	2	2.5
WAAD	10.20	0.02	24.5	24.5	7.62	7(91.4	01.4	11.2	11.1	8.50	9.6	11	11.0
WM2B	10:20	0.02	24.5	24.5	7.61	7.6	91.3	91.4	11.0	11.1	8.60	8.6	11	11.0

Date	24-Nov-16	-				-			-	-				
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
WMOD C	11.20	0.02	23	22.0	7.06	7 1	82.3	9 2 5	7.3	7.0	9.90	0.0	<2	~2
WM2B-C	11:20	0.02	23	23.0	7.09	/.1	82.6	82.5	6.6	7.0	9.90	9.9	<2	<2
WMOD	11.20	0.02	19.8	10.9	8.72	0.7	95.5	05.6	11.0	11.1	9.40	0.4	6	7.0
WM2B	11:30	0.02	19.8	19.8	8.75	8.7	95.7	95.6	11.2	11.1	9.40	9.4	8	7.0

Date	26-Nov-16					-	-	-	-				-	
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	p	H	SS(n	ng/L)
	10.54	0.02	19.7	10.9	8.28	0.2	91.3	01.6	4.4	4.2	9.40	0.4	6	5 5
WM2B-C	10:54	0.02	19.8	19.8	8.31	8.3	91.9	91.6	4.3	4.3	9.40	9.4	5	5.5
WAAD	10.42	0.02	19.8	10.9	7.12	7.2	77.9	70.5	301.0	206 5	8.80	0.0	377	269 5
WM2B	10:43	0.02	19.8	19.8	7.2	1.2	79.0	78.5	312.0	306.5	8.80	8.8	360	368.5

Date	28-Nov-16													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
WMOD C	12.29	0.02	23.3	22.4	7.19	7.2	84.3	047	2.2	2.2	9.90	0.0	<2	~2
WM2B-C	13:38	0.02	23.4	23.4	7.2	1.2	85.0	84.7	2.2	2.2	9.90	9.9	<2	<2
WAAD	12.27	0.02	23.1	22.1	7.27	7.2	85.0	95 (3.3	2.4	9.90	0.0	<2	~
WM2B	13:27	0.02	23.1	23.1	7.31	1.3	86.1	85.6	3.5	3.4	9.90	9.9	<2	<2

Date	29-Nov-16 #		-		-	-	•	-	-	•	-	•	-	
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(n	ng/L)
WM2B-C	10:00	0.02							2.0 1.9	2.0			<2	<2
WM2B	10:10	0.02							8.3 7.4	7.8		-	7	7.0

Date	30-Nov-16					-							-	
Location	Time	Depth (m)	Temp	• (oC)	DO (1	ng/L)	DO	(%)	Turbidi	ty (NTU)	p	H	SS(n	ng/L)
WM2B-C	11.00	0.02	22.6	22.6	7.03	7.0	81.5	01.6	2.3	2.2	10.10	10.1	<2	~2
WM2B-C	11:00	0.02	22.6	22.6	7.05	7.0	81.7	81.6	2.0	2.2	10.10	10.1	<2	<2
WMOD	10.50	0.02	20	20.0	8.88	8.0	97.6	07.2	6.3	6.1	9.40	0.4	4	4.0
WIVI2B	WM2B 10:50	0.02	20	20.0	8.9	8.9	97.0	97.3	6.0	6.1	9.40	9.4	4	4.0

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 2 and 6

Date	2-Nov-16				_	-	•	•	-	-				
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidi	ty (NTU)	p]	H	SS(n	ng/L)
	10.21	0.02	24.3	24.3	8.63	8.6	101.1	100.9	5.2	5.2	6.60	6.6	5	4.0
WM3-C	10:31	0.02	24.3	24.5	8.6	8.0	100.7	100.9	5.2	5.2	6.60	0.0	3	4.0
1111.62	10.27	0.12	24.2	24.2	7.2	7.0	86.0	06.0	12.1	10.0	6.80	6.0	12	12.0
WM3	10:37	0.13	24.2	24.2	7.21	7.2	86.3	86.2	12.4	12.3	6.80	6.8	12	12.0
				-	_	-	-	-	-	-				
Date	4-Nov-16				5.0 ((2.())				1		<u> </u>
Location	Time	Depth (m)	Тетр	(oC)	DO (1	ng/L)	DO	(%)	1	ty (NTU)	p]	H	SS(n	ng/L)
WM3-C	11:20	0.03	23.9	23.9	6.52	6.6	76.4	77.3	3.6	3.5	11.40	11.4	6	6.0
wind c	11.20	0.05	23.9	23.9	6.71	0.0	78.1	11.5	3.5	5.5	11.40	11.1	6	0.0
WM3	11:35	0.15	24.2	24.2	7.27	7.3	86.8	86.9	11.6	12.0	11.10	11.1	11	10.5
W WIJ	11.55	0.15	24.2	24.2	7.28	7.5	86.9	80.9	12.3	12.0	11.10	11.1	10	10.5
Date	7-Nov-16								-	-		. <u> </u>		-
Location	Time	Depth (m)	Тетр	$(\mathbf{0C})$	DO (r	ng/L)	DO	<u>(%)</u>	Turbidi	ty (NTU)	p	H	SS(n	ng/L)
			26.1		6.51		80.7		6.6	Ĩ	6.70		3	
WM3-C	11:20	0.03	26.1	26.1	6.5	6.5	80.6	80.7	5.7	6.1	6.70	6.7	4	3.5
			25.6		6.7		82.6		13.0		6.90		12	
WM3	11:35	0.15	25.6	25.6	6.68	6.7	82.5	82.6	12.8	12.9	6.90	6.9	11	11.5
		· · · · ·		<u>.</u>	<u>.</u>	-	<u>ь</u>	<u>.</u>	<u>.</u>	-				
Date	9-Nov-16	·			T		1		T					
Location	Time	Depth (m)	Тетр	(oC)	DO (1	ng/L)	DO	(%)	1	ty (NTU)	p]	H	SS(n	ng/L)
WM3-C	12:10	0.18	22.1	22.1	7.72	7.8	88.2	88.8	2.9	3.0	6.60	6.6	<2	<2
WIND C	12.10	0.10	22.1	22.1	7.8	7.0	89.4	00.0	3.0	5.0	6.60	0.0	<2	~2
WM3	12:31	0.14	22.6	22.6	6.74	6.8	77.9	78.1	34.1	34.7	6.80	6.8	46	44.5
W 1015	12.51	0.14	22.6	22.0	6.81	0.0	78.3	70.1	35.3	37.1	6.80	0.0	43	
Data	10 Nor 16#	•					,		-	<u>.</u>		·		
Date Location	<u>10-Nov-16#</u> Time	Depth (m)	Temp	(\mathbf{aC})	DO (I	$\frac{1}{na/I}$	DO	(0/_)	Turbidi	ty (NTU)	p	u [SS(n	$\frac{1}{1}$
LUCALIUII	1 mie	Deptii (m)	remp	$(\mathbf{U}\mathbf{U})$	ו) טע	ing/L)	00	(70)	i ur plai	(JNIU)	p.	11	D26	ig/L)

3.7 8 WM3-C 11:00 0.03 3.6 8.0 3.5 8 >999 826 826.0 WM3 11:10 0.15 overange >999 826

Date	11-Nov-16													
Location	Time	Depth (m)	Temp	Temp (oC)		mg/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
	11.10	0.02	21.6	21.6	5.6	5 (63.7	(2.0	6.3	()	6.60		7	7.5
WM3-C 11:1	11:10	0.03	21.6	21.6	5.61	5.6	64.0	63.9	6.3	6.3	6.60	6.6	8	7.5
110.62	10.55	0.15	19.5	10.5	6.96	7.0	76.2	76.4	10.1	10.2	6.80	()	12	11.0
WM3	10:55	0.15	19.5	19.5	6.97	7.0	76.5	76.4	10.4	10.3	6.80	6.8	10	11.0

Date	12-Nov-16#				· · · · · ·				-
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	рН	SS(m	ng/L)
	9.40	0.02				2.2		20	20.0
WM3-C	8:40	0.03				2.4 2.3			20.0
11/1/2	9.20	0.15				3.5 2.5		10	10.0
WM3	8:30	0.15				3.5 3.5			10.0

Date	15-Nov-16					-			-	-	•	-	-	
Location	Time	Depth (m)	Тетр	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	11.20	0.02	27.6	27.6	5.89	59	75.0	74.4	3.8	2.0	7.80	7.0	<2	-0
WM3-C	WM3-C 11:20	0.03	27.6	27.6	5.83	5.9	73.7	74.4	3.8	3.8	7.80	7.8	<2	<2
W/M2	11.25	0.15	25.2	25.2	7.06	7 1	85.5	95 (344.0	247 5	8.00	0.0	285	272.0
WM3	11:25	0.15	25.2	25.2	7.09	/.1	85.6	85.6	351.0	347.5	8.00	8.0	259	272.0

Date	16-Nov-16#							· · · · ·	-	-	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity	y (NTU)	pН		SS(m	ng/L)
	10.40	0.02				7.4	()			8	0.0
WM3-C	10:40	0.03				6.4	6.9				8.0
3373.42	10.55	0.15				222.0	224 5		2	274	074.0
WM3	10:55	0.15				227.0	224.5				274.0

Date	17-Nov-16				-	-	•		-	•		•	•	-
Location	Time	Depth (m)	Temp	Temp (oC)		mg/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
	11.20	0.02	25.6	25.6	6.68	(7	82.9	02.0	3.3	2.0	7.90	7.0	4	5.0
WM3-C	WM3-C 11:20	0.03	25.6	25.6	6.67	6.7	82.7	82.8	2.8	3.0	7.90	7.9	6	5.0
3373.42	11.20	0.15	25.5	25.5	7.09	7 1	86.7	07.1	13.0	12.1	9.30	0.2	13	10.5
WM3	11:30	0.15	25.5	25.5	7.13	/.1	87.4	87.1	13.2	13.1	9.30	9.3	12	12.5

Date	18-Nov-16#								
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(m	g/L)
WM3-C	10:30	0.03				3.8 3.6 3.7		6	6.0
WM3	10:20	0.15				<u>9.6</u> 9.0 9.3		8	8.0

Date	19-Nov-16	•	-			-			-	-		•	-	-
Location	Time	Depth (m)	Temp	Temp (oC)		mg/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
	10.14	0.12	25.2	25.2	7.02	7 1	85.3	96.0	10.4	10.7	8.90	0.0	3	2.0
WM3-C	3-C 10:14	0.13	25.2	25.2	7.1	/.1	86.7	86.0	11.0	10.7	8.90	8.9	3	3.0
W/M2	0.57	0.14	24.6	24.6	6.32	6.4	75.8	75.0	38.1	20 0	9.00	0.0	39	40.5
WM3	9:57	0.14	24.6	24.6	6.4	6.4	76.0	75.9	39.4	38.8	9.00	9.0	42	40.5

Date	21-Nov-16#				-			-	-		-	-	-
Location	Time	Depth (m)	Temp (oC	C) D (O (mg/L)	DO ((%)	Turbidit	y (NTU)	p]	H	SS(n	ng/L)
WM3-C	10:15	0.03						6.7 6.7	6.7			<2	<2
WM3	10:00	0.15						23.9 24.7	24.3			18	18.0

Date	22-Nov-16													_
Location	Time	Depth (m)	Temp	Temp (oC)		ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
WM2 C	10.25	0.02	25.1	25.1	6.1	6.1	73.9	74.0	8.5	07	10.90	10.0	17	165
WM3-C	M3-C 10:35	0.03	25.1	25.1	6.13	6.1	74.1	74.0	8.9	8.7	10.90	10.9	16	16.5
11/1/2	10.45	0.16	23.9	22.0	6.54	(5	77.8	77.0	132.0	10(0	10.70	10.0	122	105 5
WM3	10:45	0.16	23.9	23.9	6.55	6.5	77.7	77.8	120.0	126.0	10.80	10.8	133	127.5

Date	23-Nov-16#								-		•	-	-
Location	Time	Depth (m)	Temp (oC)	DO (r	ng/L)	DO (9	%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
	10.40	0.04						21.4	21.0			16	16.0
WM3-C	10:40	0.04						20.6	21.0] [16	16.0
1111.62	10.20	0.10						39.3	25.5			38	20.0
WM3	10:30	0.18						36.0	37.7			38	38.0

Date	24-Nov-16													
Location	Time	Depth (m)	Temp (oC)		DO (mg/L)		DO (%)		Turbidi	ty (NTU)	р	Н	SS(mg/L)	
	11.10	0.02	22.5	22.5	6.26	()	72.5	72 (6.7	5.0	8.50	0.5	3	2.5
WM3-C	11:10	0.03	22.5	22.5	6.31	6.3	72.7	72.6	5.2	5.9	8.50	8.5	2	2.5
11/1 / 2	11.00	0.15	20.6	20.6	7.68		85.6	05.0	12.7	12.1	9.40	0.4	4	5.0
WM3	11:00	0.15	20.6	20.6	7.72	1.1	85.9	85.8	11.5	12.1	9.40	9.4	6	5.0

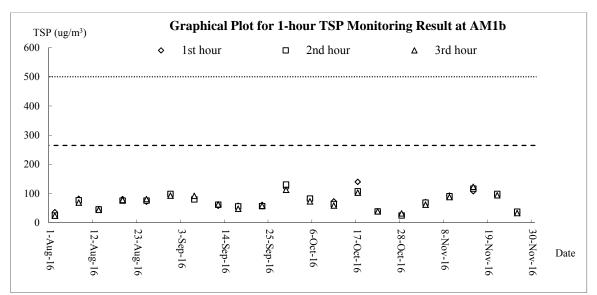
Date	25-Nov-16#								
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NT	U) pH	SS(n	ng/L)
	10.25	0.02				7.3	C	11	11.0
WM3-C	10:35	0.03				6.0 6.	0	11	11.0
WAA2	10.45	0.15				24.3	1	27	27.0
WM3	10:45	0.15				22.5 23	.4	27	27.0

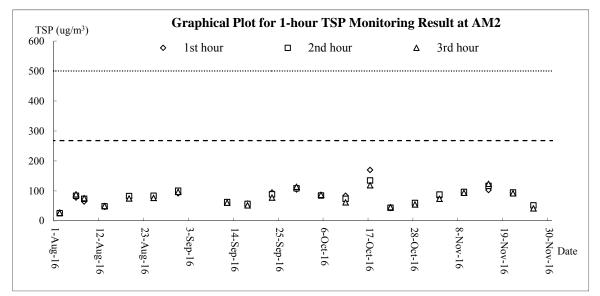
Date	26-Nov-16								-	-		•	-	
Location	Time	Depth (m)	Temp (oC)		DO (mg/L)		DO (%)		Turbidity (NTU)		pН		SS(mg/L)	
WM2 C	11.12	0.17	19.6	10.6	7.51	7.5	82.9	02.4	28.8	28.0	11.10	11 1	31	21.5
WM3-C	11:13	0.17	19.6	19.6	7.57	1.5	83.8	83.4	29.0	28.9	11.10	11.1	32	31.5
WAA2	11.20	0.14	19.5	10.5	7.3	7.2	79.5	20.2	526.0	E21 E	11.00	11.0	509	402.0
WM3	11:29	0.14	19.5	19.5	7.35	35 7.3	81.0	80.3	537.0	531.5	11.00	11.0	475	492.0

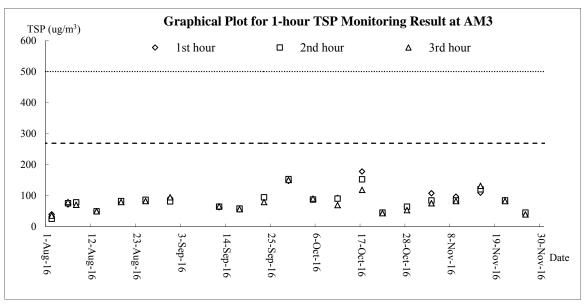
Date	28-Nov-16													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	12.50	0.17	22.6	22.7	7.29	7.2	84.6	04.0	8.4	0.5	8.60	0.(6	5.0
WM3-C	13:59	0.17	22.7	22.7	7.33	/.3	85.0	84.8	8.6	8.5	8.60	8.6	4	5.0
11/1/2	14.10	0.10	21.3	01.4	7.68		86.4	0.6.1	26.5	2(0	9.00	0.0	12	12.0
WM3	14:18	0.10	21.4	21.4	7.65	85.7	86.1	27.0	26.8	9.00	9.0	14	13.0	

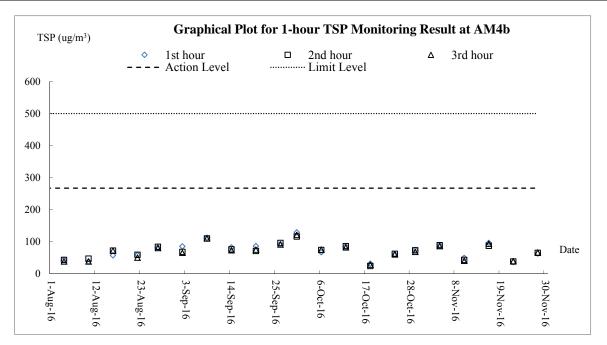
Date	29-Nov-16#									
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidit	y (NTU)	рH	SS(1	ng/L)
	10.05	0.02				2.7	2.2		3	2.0
WM3-C	10:25	0.03				1.9	2.3			3.0
11/1/2	10.40	0.15				13.3	12 (12	12.0
WM3	10:40	0.15				11.9	12.6			12.0

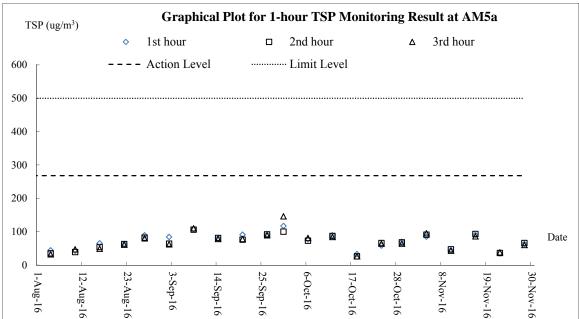
Date	30-Nov-16													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	ng/L)
	11.10	0.02	22.8	22.9	7.19	7.2	84.1	02 (3.8	4.0	10.30	10.2	19	10.5
WM3-C	11:10	0.03	22.8	22.8	7.14	1.2	83.1	83.6	4.2	4.0	10.30	10.3	20	19.5
WM3	11.20	0.15	20.6	20.6	7.44	75	82.7	82.0	13.0	12.0	10.30	10.3	12	12.5
vv IVI3	11:20	0.15	20.6	20.0	7.48	48 7.5	83.2	83.0	12.9	13.0	10.30	10.5	13	12.5

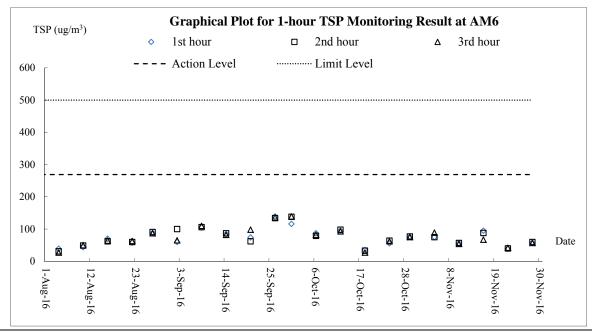

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

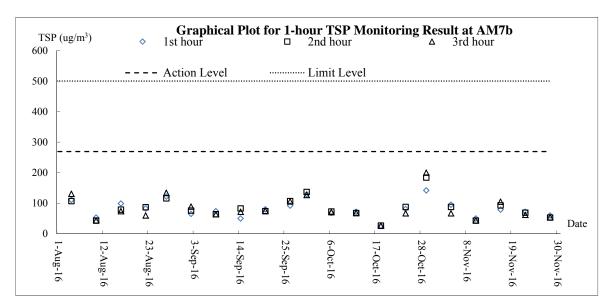

Action Level
Limit Level

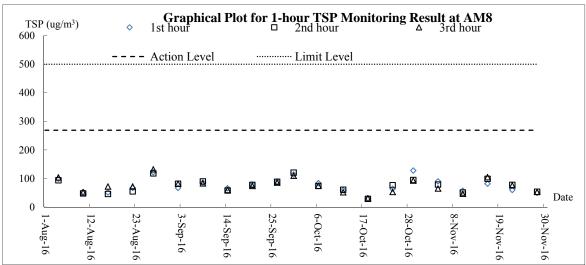

Appendix J

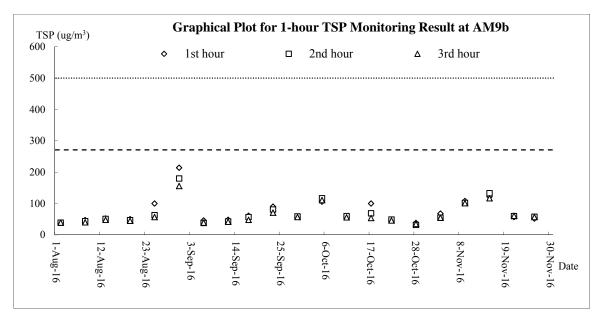

Graphical Plots for Monitoring Result

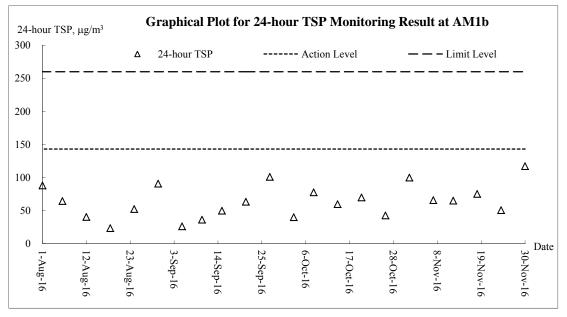

Air Quality – 1-hour TSP

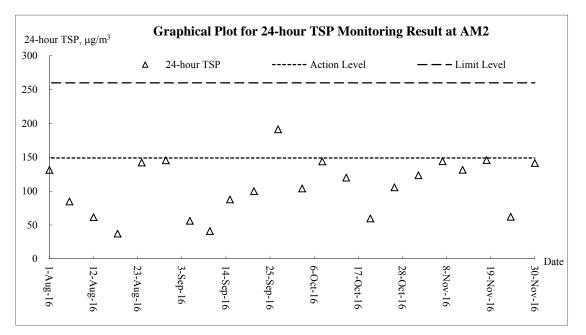


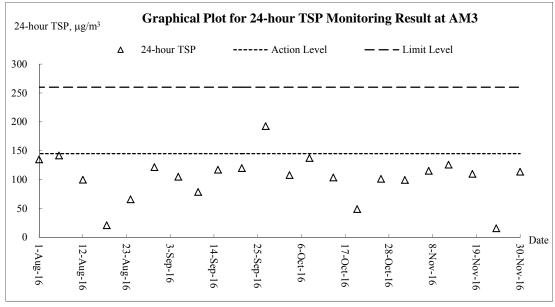


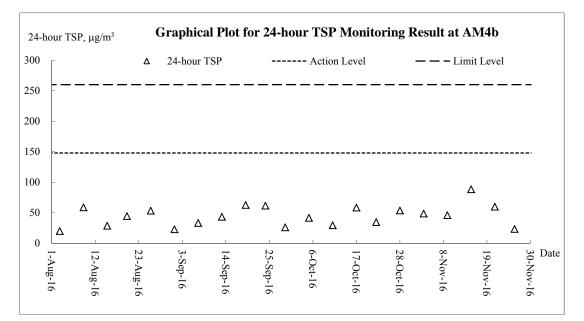


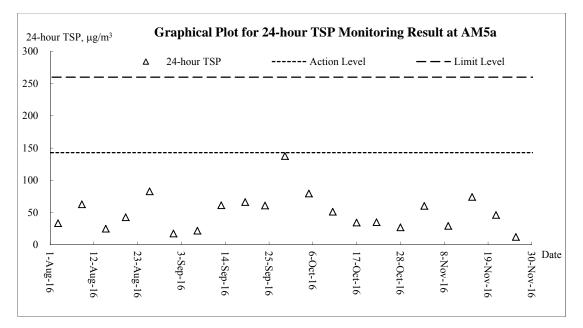


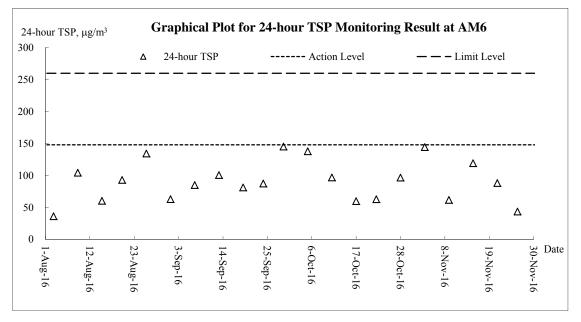

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\40th (November 2016)\R0782v2.docx

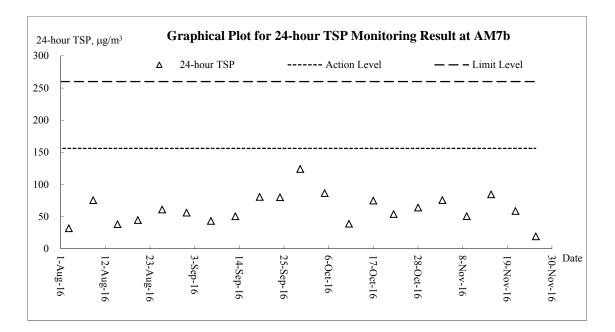


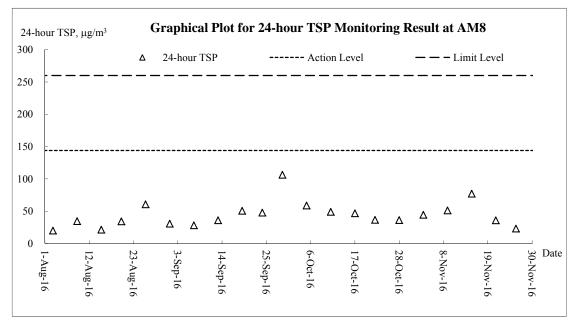


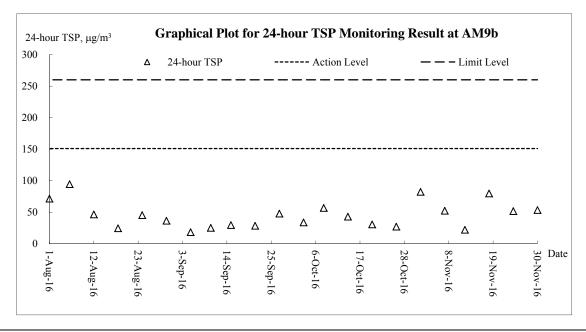


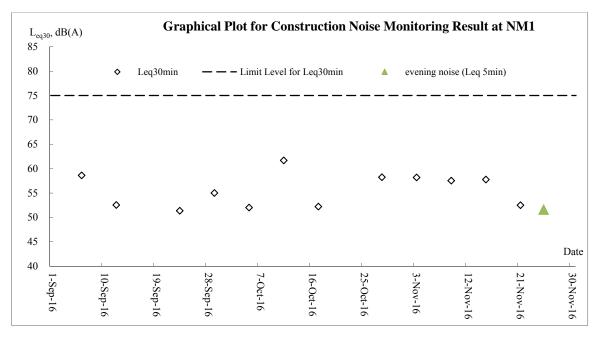

Air Quality – 24-hour TSP

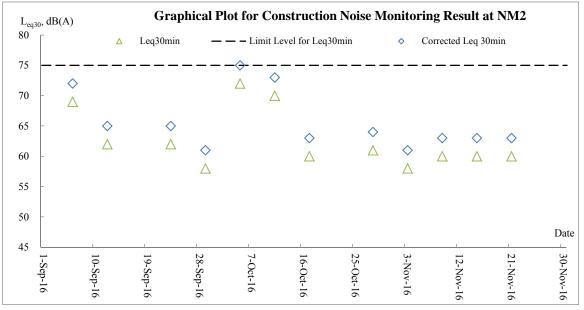


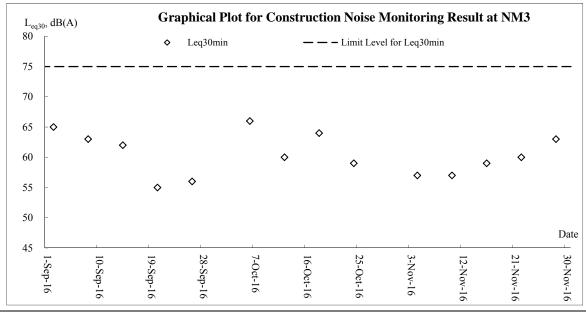


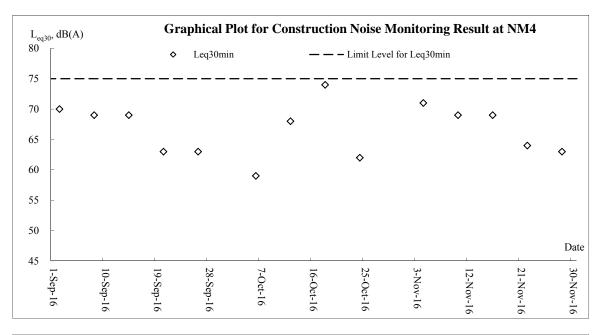


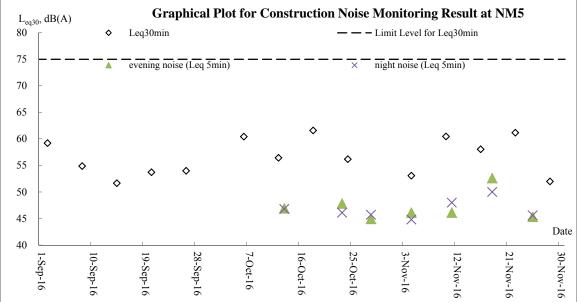


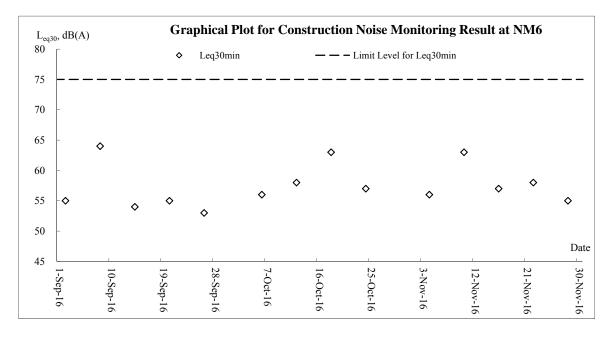


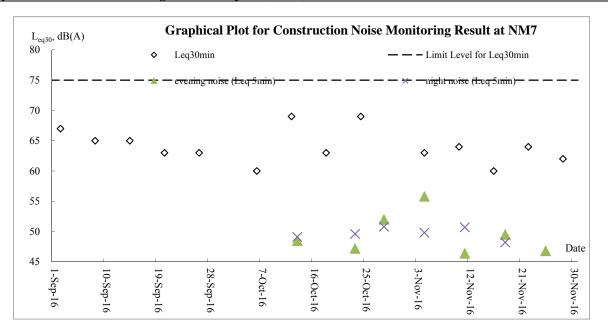


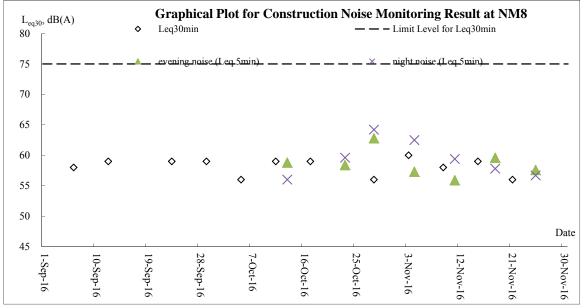


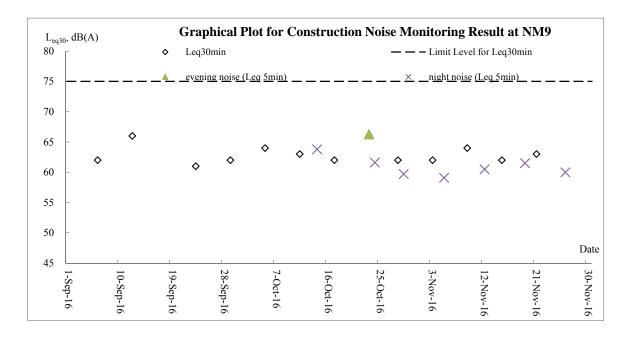

Noise

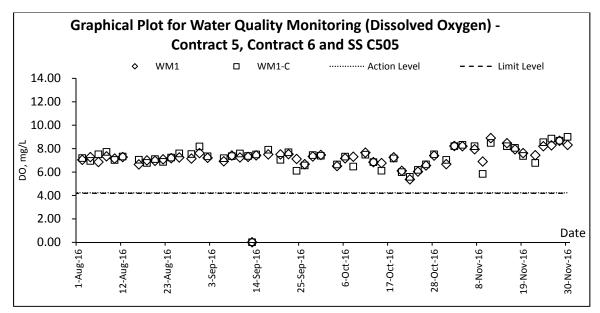


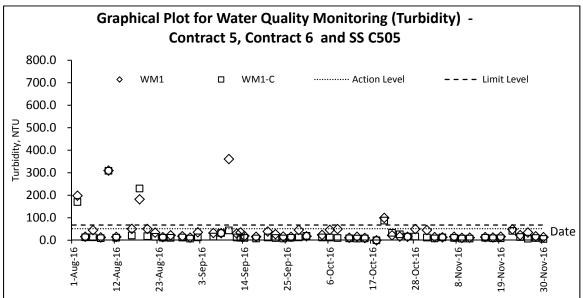


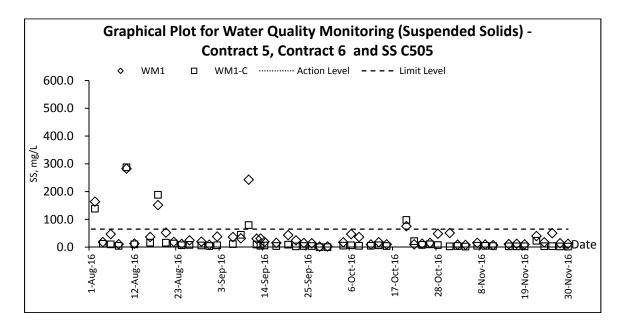


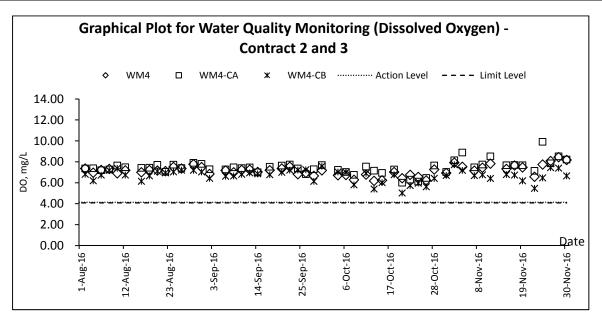

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\40th (November 2016)\R0782v2.docx

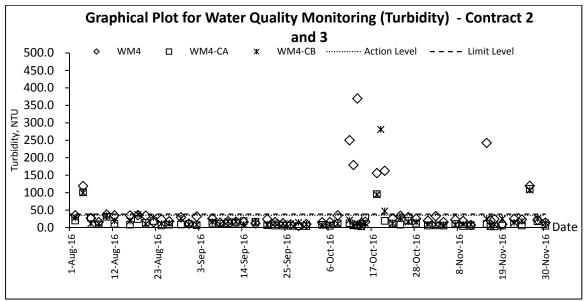


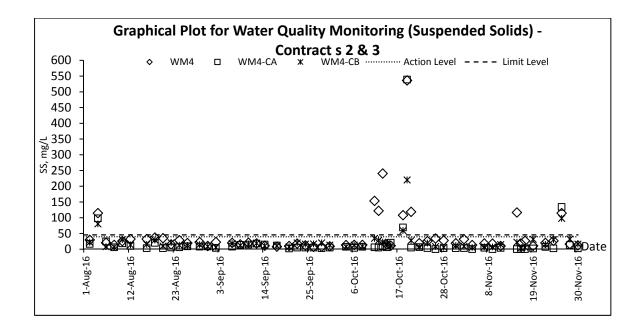


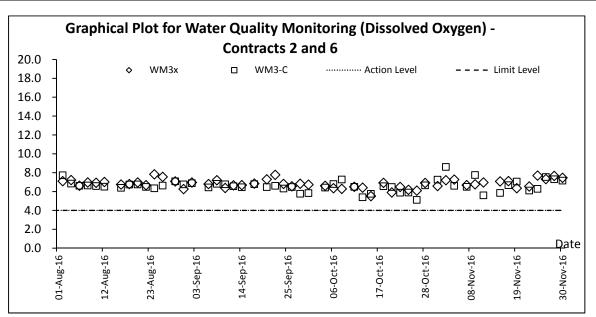


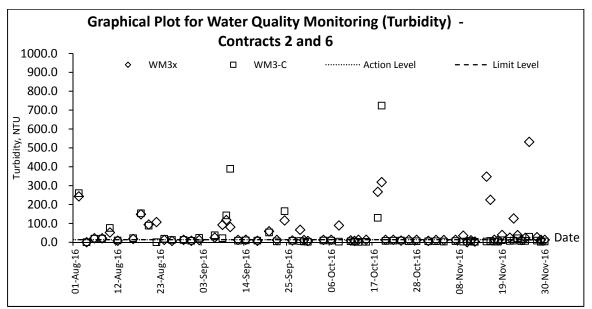


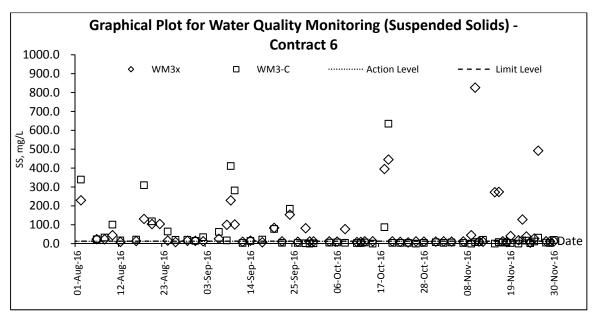

L _{eq} 80	₃₀ , dB	(A)	♦ L	G a eq30min	raphical I				on Noise Me		ng Result		0
75			× e	vening noise	e (Leq 5min)	*	night	noise (Le	q 5min) — — — — — —	·			
70	-												
65		0 ♦			o o	0 ♦	0 ♦	0 ♦	0 ♦		o o ♦ ♦	0	
60	-		0 ♦		^{\$} \$			*	*	0 ♦	ж	★	NZ
55	-								*	ж			ж
50	-												Date
45	1-Sep-16		10-Sep-16	19-Sep-16	28-Sep-16	7-Oct-16		16-Oct-16	_ 25-Oct-16	3-Nov-16	12-Nov-16	21-Nov-16	30-Nov-16
	-16		p-16	p-16	p-16	-16		:t-16	st-16	-16	ov-16	ov-16	ov-16

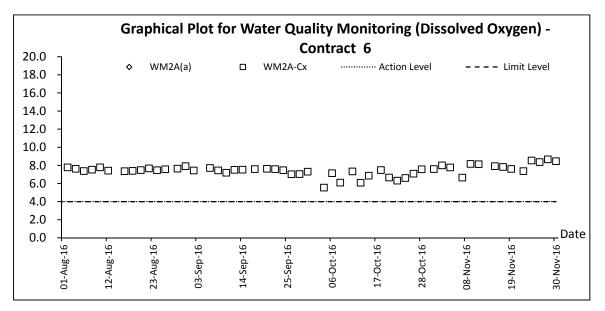

Water Quality

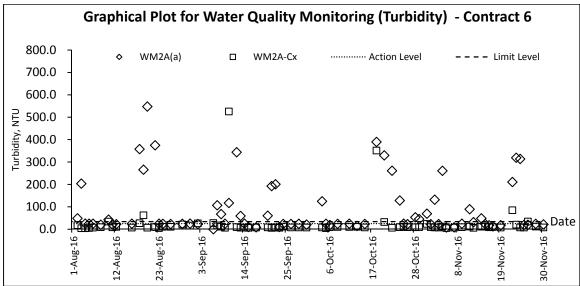


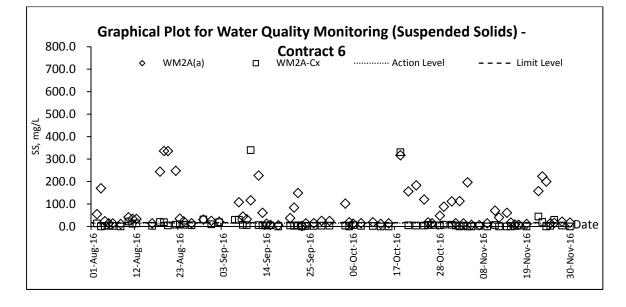


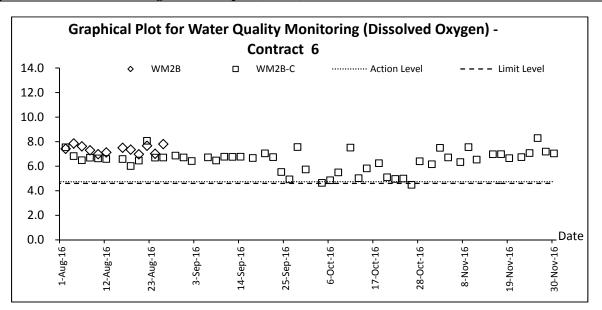


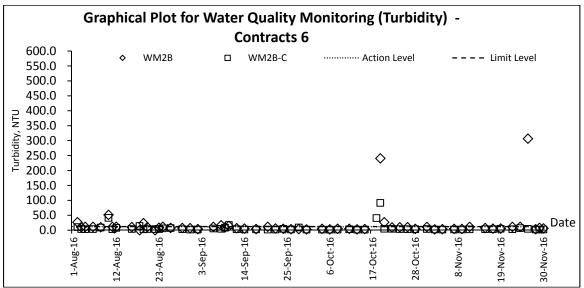


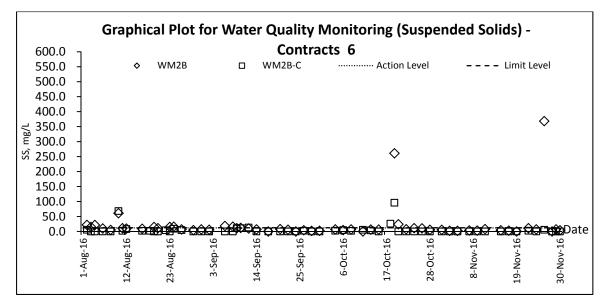












Appendix K

Meteorological Data

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No. 40) – November 2016

				Ta Kwu Ling Station				
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction	
1-Nov-16	Tue	Moderate easterly winds, becoming fresh northerlies later tomorrow.	0	23.1	12	66.7	N	
2-Nov-16	Wed	It will be cool. Cloudy to overcast with a few rain patches.	0	22	12	65.5	N/NW	
3-Nov-16	Thu	Sunny intervals in the afternoon. Light winds. Winds will strengthen	0	20.2	10	59.5	N/NW	
4-Nov-16	Fri	It will be cool. Cloudy to overcast with a few rain patches.	0	20.3	4	72	N/NW	
5-Nov-16	Sat	Moderate easterly winds, becoming fresh northerlies later tomorrow.	0	22.4	5	77	N/NW	
6-Nov-16	Sun	Sunny intervals in the afternoon. Light winds. Winds will strengthen	0	22.5	5.3	80.5	E/NE	
7-Nov-16	Mon	Moderate easterly winds, becoming fresh northerlies later tomorrow.	0	23.5	7.3	79.7	E/NE	
8-Nov-16	Tue	Sunny intervals in the afternoon. Light winds. Winds will strengthen	4.8	24.7	7.5	77.2	N/NW	
9-Nov-16	Wed	It will be cool. Cloudy to overcast with a few rain patches.	1.3	18.3	8.3	79.5	N/NW	
10-Nov-16	Thu	It will be cool. Cloudy to overcast with a few rain patches.	1.9	15	9.9	81.7	N/NW	
11-Nov-16	Fri	Sunny intervals in the afternoon. Light winds. Winds will strengthen	Trace	16.6	4.1	81.7	N/NW	
12-Nov-16	Sat	It will be cool. Cloudy to overcast with a few rain patches.	0.2	23	5	95	N/NW	
13-Nov-16	Sun	It will be cool. Cloudy to overcast with a few rain patches.	0	25.9	5.5	82.5	E/SE	
14-Nov-16	Mon	Moderate easterly winds, becoming fresh northerlies later tomorrow.	0	25.9	4	76.2	N/NW	
15-Nov-16	Tue	Moderate easterly winds, becoming fresh northerlies later tomorrow.	Trace	25.2	6	75.7	E/NE	
16-Nov-16	Wed	Mainly cloudy. Sunny periods in the afternoon. Moderate to fresh easterly winds	Trace	24.9	11.7	73.5	E/NE	
17-Nov-16	Thu	Mainly fine. Moderate easterly winds, occasionally fresh offshore.	Trace	25.5	5	72.5	E/NE	
18-Nov-16	Fri	It will be cool. Cloudy to overcast with a few rain patches.	Trace	24	5.6	83	E/NE	
19-Nov-16	Sat	It will be cool. Cloudy to overcast with a few rain patches.	1.4	25.8	10.3	78	E/NE	
20-Nov-16	Sun	It will be cool. Cloudy to overcast with a few rain patches.	Trace	26	14.7	70.5	Е	
21-Nov-16	Mon	Mainly cloudy. Moderate easterly winds, occasionally fresh offshore.	0.3	25.3	8.2	76.2	Е	
22-Nov-16	Tue	Cloudy to overcast with occasional rain.	36.5	22.6	7	91.5	E/NE	
23-Nov-16	Wed	Cloudy to overcast with occasional rain.	25.9	17.6	8.4	90.7	N/NW	
24-Nov-16	Thu	Mainly cloudy with one or two light rain patches.	Trace	15.4	15.7	66.5	N/NW	
25-Nov-16	Fri	Mainly cloudy with one or two light rain patches.	0.1	16.1	6	79.2	N/NW	
26-Nov-16	Sat	Mainly fine and dry. Moderate northerly winds, fresh at times.	50.3	13.9	7.8	78	N/NW	
27-Nov-16	Sun	Cloudy to overcast with occasional rain.	8.6	14.9	8.5	72	N/NW	
28-Nov-16	Mon	Mainly cloudy with one or two light rain patches.	0	17.6	8.5	66	N/NW	
29-Nov-16	Tue	Mainly fine and dry. Moderate northerly winds, fresh at times.	0	17.6	5.6	71.5	N/NW	
30-Nov-16	Wed	Mainly fine and dry. Moderate northerly winds, fresh at times.	0	17.6	8.5	71.7	Ν	

Appendix L

Waste Flow Table

Name of Department : CEDD

Contract No./ Work Order No. :

CV/2012/08

Appendix I - Monthly Summary Waste Flow Table for 2016

(All quantities shall be rounded off to 3 decimal places)

		Actual Quantitie	es of Inert C&D Mater	ials Generated / Importe	ed (in '000 m3)			Actual Quantities of	f Other C&D Materials	Wastes Generated	
Month	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Metal	Paper/ Cardboard Packaging	Plastic (bottles/containers, plastic sheets/ foams from package material)	Chemical Waste	Others (e.g. General Refuse etc.)
	[a+b+c+d)	(a)	(b)	(c)	(d)		(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
January	72.2029	0.0000	0.6482	31.8061	39.7486	0.9345	26.2000	0.0000	0.7600	1.2320	0.1247
February	55.6715	0.0000	1.0145	38.3484	16.3085	1.3108	8.3800	0.9800	0.4000	1.4080	0.1089
March	34.1757	0.0000	0.3241	29.3514	4.5003	1.0325	44.1700	0.0000	1.0700	11.9680	0.0732
April	86.9048	0.0000	0.7045	32.8811	53.3191	1.3786	31.8220	0.4000	1.0900	1.6456	0.1306
May	77.5386	0.0000	0.1268	38.9050	38.5068	6.3690	44.8000	0.3500	1.1400	2.7280	0.1246
June	62.4192	0.0000	0.5848	45.2952	16.5392	2.4119	35.7300	0.3700	1.8200	1.7600	0.0916
Half-year total	388.9127	0.0000	3.4030	216.5873	168.9224	13.4373	191.1020	2.1000	6.2800	20.7416	0.6536
July	65.3701	0.0000	0.4227	25.0255	39.9219	2.4087	11.3820	0.3500	1.5510	2.9920	0.1794
August	88.4708	0.0000	0.1283	27.0545	61.2879	2.0077	23.0010	0.3300	2.0110	5.2800	0.1482
September	97.0232	0.0000	1.5359	50.8682	44.6191	1.8653	4.6810	0.3000	1.9410	3.8720	0.2018
October	92.8467	0.0000	0.8666	39.8733	52.1068	1.6055	0.8420	0.4500	2.1840	0.0000	0.1852
November	100.2462	0.0000	0.4509	45.5418	54.2534	0	6.4300	0	0	2.4640	0.3216
December	0.0000										
Yearly Total	832.8696	0.0000	6.8074	404.9506	421.1116	21.3246	237.4380	3.5300	13.9670	35.3496	1.6898

(All quantities shall be rounded off to 3 decimal places)

		Actual Quantitie	es of Inert C&D Mater	ials Generated / Importe	ed (in '000 m3)		Actual Quantities of Other C&D Materials / Wastes Generated					
Year	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Metal	Paper/ Cardboard Packaging	Plastic (bottles/containers, plastic sheets/ foams from package material)	Chemical Waste	Others (e.g. General Refuse etc.)	
	[a+b+c+d)	(a)	(b)	(c)	(d)		(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)	
2013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
2014	425.4406	0.0000	2.7362	376.3945	46.3099	5.6245	3.2100	0.4390	0.0070	10.8800	2.2609	
2015	570.9459	0.0000	20.8159	543.2162	6.9138	4.5492	14.1300	3.9220	11.9700	16.1920	1.1696	
2016	832.8696	0.0000	6.8074	404.9506	421.1116	21.3246	237.4380	3.5300	13.9670	35.3496	1.6898	
2017												
2018												
Total	1829.2561	0.0000	30.3595	1324.5613	474.3353	31.4982	254.7780	7.8910	25.9440	62.4216	5.1203	

Remark:

1) Density of C&D material to be

2) Density of General Refuse to be

2.2metric ton/m31.6metric ton/m3

3) Density of Spent Oil to be

0.88 metric ton/m3

Monthly Summary Waste Flow Table for 2016 (year)

	Actua		of Inert C&D	Materials G	enerated Mo	onthly	Actual	Quantities o	f C&D Wastes	Generated	Monthly
		Hard Rock									
	Total	and Large	Reused in	Reused in	Disposed			Paper/			Others, e.g.
Month	Quantity	Broken	the	other	as Public	Imported		cardboard		Chemical	general
	Generated	Concrete	Contract	Projects	Fill	Fill	Metals	packaging	Plastics	Waste	refuse
	(in '000m ³)	(in m ³)	(in '000m ³)								
Jan	2.683	0.253	0.030	0.000	2.400	0.799	0.001	0.000	0.000	0.000	0.115
Feb	1.877	0.651	0.020	0.000	1.205	1.141	0.000	0.000	0.000	0.000	0.110
Mar	1.501	0.417	0.000	0.000	1.084	0.831	0.000	0.000	0.001	0.000	0.090
Apr	0.472	0.046	0.018	0.000	0.408	0.647	0.000	0.000	0.000	0.000	0.135
May	0.488	0.013	0.000	0.000	0.475	2.479	0.000	0.000	0.000	0.000	0.105
Jun	0.523	0.103	0.000	0.000	0.420	0.716	0.000	0.000	0.001	0.000	0.135
Sub-total	7.544	1.483	0.068	0.000	5.993	6.613	0.001	0.000	0.002	0.000	0.690
Jul	0.565	0.019	0.000	0.000	0.546	1.407	0.000	0.001	0.004	1.000	0.085
Aug	0.582	0.088	0.000	0.000	0.494	0.715	0.000	0.000	0.001	0.000	0.105
Sep	1.797	0.604	0.258	0.000	0.935	0.038	0.001	0.000	0.002	0.000	0.090
Oct	1.115	0.485	0.177	0.000	0.453	0.395	0.000	0.000	0.002	0.800	0.120
Nov	0.747	0.140	0.201	0.000	0.407	0.714	0.001	0.000	0.001	0.000	0.125
Dec											
Total	12.349	2.819	0.704	0.000	8.827	9.882	0.003	0.001	0.012	1.800	1.215

Note: 1. Assume the density of soil fill is 2 ton/m³.

2. Assume the density of rock and broken concrete is 2.5 ton/m^3 .

3. Assume each truck of C&D wastes is 5m³.

4. The inert C&D materials except slurry and bentonite are disposed at Tuen Mun 38.

5. The slurry and bentonite are disposed at Tseung Kwun O 137.

6. The non-inert C&D wastes are disposed at NENT.

7. Assume the density of metal is $7,850 \text{ kg/m}^3$.

8. Assume the density of plastic is 941 kg/m^3 .

Monthly Summary Waste Flow Table for 2016 (year)

Name of Person completing the record: K.M. Lui (EO)

Jan

Feb

Jun

Jul

Sep

Oct

Project : Liangtang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 6

Actual Quantities of C&D Wastes Generated Monthly Actual Quantities of Inert C&D Materials Generated Monthly Hard Rock Total Paper/ Others, e.g. Reused in and Large Reused in Disposed as Plastics Chemical Imported Fill **Ouantity** other Metals cardboard general Month Public Fill Broken the Contract Waste Projects packaging Generated refuse Concrete (see Note 3) $(in '000m^3)$ $(in '000m^3)$ $(in '000m^3)$ $(in '000m^3)$ $(in '000m^3)$ (in '000 kg) (in '000kg) (in '000kg) (in '000kg) $(in '000m^3)$ $(in '000 m^3)$ 3.811 12.131 43.001 31.248 0 58.943 0 0 0 0 0.695 39.85 6.552 74.418 0 8.785 25.783 0 0.097 0 0 0.339 0.007 0 Mar 43.764 0 6.438 12.034 25.292 3.288 0.206 0 0.042 Apr 33.767 0 1.933 5.759 26.075 0 0.221 0 0 0.070 0 3.229 0.928 0 0.079 May 51.115 17.469 30.417 0 0.211 0 0 61.126 0 6.921 23.286 30.919 3.693 0 0.166 0 0 0.043 323.133 0 31.117 110.529 181.487 45.709 0 0.901 0.007 0 1.268 Sub-total 73.407 0.951 32.858 39.598 0.827 0 0.271 0 0 0 0.094 Aug 45.652 0 6.653 5.933 33.066 0 0 0.323 0 0 0.110 31.086 2.089 0.048 0 0 0.049 0 11.529 17.468 0.231 0 1.475 21.377 0.273 36.479 0 5.359 9.743 0.01 0 0 0.075 35.682 4.298 22.843 0.252 Nov 0 8.541 0.03 0 0 0.115 0 Dec 714.662 73.244 191.674 449.744 53.873 2.545 0.007 33.755 4.787 0 0 Total

Contract No.: CV/2013/08

(1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site. Notes:

(2) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.

(3) Broken concrete for recycling into aggregates.

Appendix I

MONTHLY SUMMARY WASTE FLOW TABLE

Name of Department: CEDD

Contract Title:Liantang/ Heung Yuen Wai Boundary Control Point
Site Formation and Infrastructure Works – Contract 7Contract No.:

NE/2014/03

Monthly Summary Waste Flow Table for <u>2016</u> (year)

		Actual Quan	tities of Inert C&I	O Materials Genera	ted Monthly		А	ctual Quantities of	Inert C&D Waste	s Generated Month	ly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastic (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
Jan	0	0	0	0	0	0	0	0	0	0	0
Feb	0.16	0	0	0	0.16	0	0	0	0	0	0
Mar	0.135	0	0	0	0.135	0	0	0	0	0	0.005
Apr	0.313	0	0	0	0.313	0	0	0	0	0	0.005
May	0.505	0	0	0	0.505	0	0	0	0	0	0
June	0.613	0	0	0	0.613	0	0	0.005	0.001	0	0
Sub-total	1.726	0	0	0	1.726	0	0	0.005	0.001	0	0.01
July	0.207	0	0	0	0.207	0	0	0.047	0.001	0	0
Aug	0.464	0	0	0	0.464	0	0	0.03	0.001	0	0
Sept	0.207	0	0	0	0.207	0	0.1	0.05	0.001	0	0
Oct	0	0	0	0	0	0	0.2	0.04	0.001	0	0
Nov	0	0	0	0	0	0	0.1	0.04	0.001	0	0.005
Dec											
Total	2.604	0	0	0	2.604	0	0.4	0.212	0.006	0	0.015

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Architectural Services Department

Form No. D/OI.03/09.002

Contract No. / Works Order No.: - SSC505

Monthly Summary Waste Flow Table for <u>2016</u> [year] [to be submitted not later than the 15th day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

		Actual Quantities of	nert Construction Waste Ge	nerated Monthly	
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Broken Concrete (see Note 4)	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)
Jan	0.800	0	0	0	0.800
Feb	0.858	0	0	0	0.858
Mar	0.793	0	0	0	0.793
Apr	0.111	0	0	0	0.111
May	1.087	0	1.074	0	0.013
Jun	8.645	0	8.541	0	0.104
Sub-total	12.293	0	9.615	0	2.678
Jul	2.942	0	2.884	0	0.059
Aug	4.247	0	4.182	0	0.065
Sep	2.963	0	2.911	0	0.052
Oct	4.841	0	4.0475	0	0.793
Nov					
Dec					
Total	23.608	0	19.591	0	4.017

Architectural Services Department

Form No. D/OI.03/09.002

					Actual Qua	ntities of Nor	n-inert Constr	uction Waste	Generated M	onthly			
Month	Tim	ber	Me	Metals		Paper/ cardboard packaging		tics ote 3)	Chemica	al Waste	Mate	ecyclable erials age 3)	General Refuse disposed of at Landfill
	(in '000kg)		(in '000kg)		(in '000kg)		(in '000kg)		(in '000kg)		(in '000kg)		(in '000m ³)
	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated
Jan	0.000	0.000	4.73	4.73	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.072
Feb	0.000	0.000	0.0004	0.0004	0.0186	0.0186	0.000	0.000	0.000	0.000	0.021	0.021	0.065
Mar	0	0	52.752	52.752	0.044	0.044	0	0	0	0	0.05	0.05	0.059
Apr	0	0	1465.5906	1465.5906	0.09	0.09	0	0	0	0	0.084	0.084	0.091
May	0	0	1587.5818	1587.5818	0	0	0.004	0.004	0	0	0.153	0.153	0.156
Jun	0	0	725.0582	725.0582	0.33	0.33	0.0045	0.0045	0	0	0.067	0.067	0.117
Sub-total	0	0	3818.7330	3818.7330	0.4826	0.4826	0.0085	0.0085	0	0	0.375	0.375	0.559
Jul	0	0	265.690	265.690	0.430	0.430	0.020	0.020	0.000	0.000	0.194	0.194	0.189
Aug	0	0	298.260	298.260	0.360	0.360	0.025	0.025	0.000	0.000	0.069	0.069	0.228
Sep	0	0	572.15	572.15	0.370	0.370	0.048	0.048	0.000	0.000	0.088	0.088	0.241
Oct	0	0	287.87	287.87	0.36	0.36	0.098	0.098	0.000	0.000	0.112	0.112	0.189
Nov	0	0	268.18	268.18	0.54	0.54	0.087	0.087	0.000	0.000	0.0765	0.0765	0.423
Dec													
Total	0	0	5943.418	5943.418	2.003	2.003	0.199	0.199	0.000	0.000	0.837	0.837	1.404

Description of mod	Description of mode and details of recycling if any for the month e.g. XX kg of used timber was sent to YY site for transformation into fertilizers											
15.5kg of cans were sent to Kong Han for recycling.	540kg of paper were sent to Wai Sang Waste Paper and metal Co. Ltd.	87kg of plastic bottles and 61kg of glass bottles were sent to Action Health for recycling.	268.18 tons of scrap metals from LCAL were sent for recycling.									

Notes: (1) The performance targets are given in the Particular Specification on Environmental Management Plan.

(2) The waste flow table shall also include construction waste that are specified in the Contract to be imported for use at the site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) Broken concrete for recycling into aggregates.

(5) If necessary, use the conversion factor: 1 full load of dumping truck being equivalent to 6.5 m^3 by volume.

Appendix M

Implementation Schedule for Environmental Mitigation Measures

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
Air Quali	ty Impact (Construction)					
3.6.1.1	2.1	 General Dust Control Measures The following dust suppression measures should be implemented: Frequent water spraying for active construction areas (4 times per day for active areas in Po Kak Tsai and 8 times per day for all other active areas), including areas with heavy construction and slope cutting activities 80% of stockpile areas should be covered by impervious sheets Speed of trucks within the site should be controlled to about 10 km/hr All haul roads within the site should be paved to avoid dust 	To minimize adverse dust emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		emission due to vehicular movement					FIA Recommendation
3.6.1.2	2.1	Best Practice for Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (Construction Dust) Regulation should be adopted to further reduce the construction dust impacts of the Project. These best practices include:	emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		 Good site management The Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. 					
		 Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimize the release of visible dust emission. 					
		 Any piles of materials accumulated on or around the work areas should be cleaned up regularly. 					
		 Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimizing generation of fugitive dust emissions. 					
		 The material should be handled properly to prevent fugitive dust emission before cleaning. Disturbed Parts of the Roads 					
		 Each and every main temporary access should be paved with 					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	Ref.		& Main Concerns to address	the measure?	measure	measure?	measure to achieve?
		concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or					
		 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 					
		Exposed Earth					
		Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies.					
		Loading, Unloading or Transfer of Dusty Materials					
		 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 					
		Debris Handling					
		 Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides. 					
		 Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped. 					
		Transport of Dusty Materials					
		 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards. 					
		Wheel washing					
		Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Use of vehicles					
		Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		Site hoarding					
		Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit.					
		Blasting					
		The areas within 30m from the blasting area should be wetted with water prior to blasting.					
Air Quali	ty Impact (Operation)					
3.5.2.2	2.2	 The following odour containment and control measures will be provided for the proposed sewage treatment work at the BCP site: The treatment work will be totally enclosed. Negative pressure ventilation will be provided within the enclosure to avoid any fugitive odorous emission from the treatment work. Further odour containment will be achieved by covering or confining the sewage channels, sewage tanks, and equipment with potential odour emission. Proper mixing will be provided at the equalization and sludge holding tanks to prevent sewage septicity. Chemical or biological deodorisation facilities with a minimum odour removal efficiency of 90% will be provided to treat potential odorous emissions from the treatment plant including sewage channels / tanks, filter press and screening facilities so as to minimize any potential odour impact to the nearby ASRs. 	To minimize potential odour impact from operation of the proposed sewage treatment work at BCP	DSD	BCP	Operation Phase	EIA recommendation
Noise Im	pact (Cons	truction)					
4.4.1.4	3.1	Adoption of Quieter PME	To minimize the	Contractors	Construction	During	EIA recommendation,
		Use of the recommended quieter PME such as those given in the BS5228: Part 1:2009 and presented in Table 4.14 , which can be found in Hong Kong.	construction air- borne noise impact		Work Sites	Construction	EIAO and Noise Control Ordinance (NCO)

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?	
4.4.1.4	3.1	Use of Movable Noise Barrier The use of movable barrier for certain PME can further alleviate the construction noise impacts. In general, a 5 dB(A) reduction for movable PME and 10 dB(A) for stationary PME can be achieved depending on the actual design of the movable noise barrier. The Contractor shall be responsible for design of the movable noise barrier with due consideration given to the size of the PME and the requirement for intercepting the line of sight between the NSRs and PME. Barrier material with surface mass in excess of 7 kg/m ² is recommended to achieve the predicted screening effect.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO	
4.4.1.4	3.1	Use of Noise Enclosure/ Acoustic Shed The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the GW-TM.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO	
4.4.1.4	3.1	Use of Noise Insulating Fabric Noise insulating fabric can be adopted for certain PME (e.g. drill rig, pilling auger etc). The insulating fabric should be lapped such that there are no openings or gaps on the joints. Technical data from manufacturers state that by using the Fabric, a noise reduction of over 10 dB(A) can be achieved on noise level.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO	

			Objectives of the	Who to			What requirements
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Recommended Measure	implement the	Location of the measure	When to implement the	or standards for the measure to
	nei.		& Main Concerns to address	measure?	measure	measure?	achieve?
4.4.1.4	3.1	Good Site Practice	To minimize the	Contractors	Construction	During Construction	EIA recommendation, EIAO and NCO
		The good site practices listed below should be followed during each phase of construction:	construction air- borne noise impact		Work Sites		
		• Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;					
		 Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction programme; 					
		• Mobile plant, if any, should be sited as far from NSRs as possible;					
		 Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 					
		• Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and					
		• Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities.					
Noise Im	pact (Oper	ation)					
		Road Traffic Noise					
Table 4.42 and Figure 4.20.1 to 4.20.4	3.2	Erection of noise barrier/ enclosure along the viaduct section.	To minimize the road traffic noise along the connecting road of BCP	Contractor	Loi Tung and Fanling Highway Interchange	Before Operation	EIAO and NCO
		Fixed Plant Noise					
Table 4.46	3.2	Specification of the maximum allowable sound power levels of the proposed fixed plants during daytime and night-time.	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIA recommendation, EIAO and NCO

	ientai wor	nitoring and Audit Manual	Objectives of the				
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirement or standards for th measure to achieve?
4.5.2.4	3.2	 The following noise reduction measures shall be considered as far as practicable during operation: Choose quieter plant such as those which have been effectively silenced; Include noise levels specification when ordering new plant (including chillier and E/M equipment); Locate fixed plant/louver away from any NSRs as far as practicable; Locate fixed plant in walled plant rooms or in specially designed enclosures; Locate noisy machines in a basement or a completely separate building; Install direct noise mitigation measures including silencers, acoustic louvers and acoustic enclosure where necessary; and Develop and implement a regularly scheduled plant maintenance programme so that equipment is properly operated and serviced in order to maintain a controlled level of noise. 	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIAO and NCO
Vater Qu	uality Impa	ct (Construction)					
5.6.1.1	4.1	 Construction site runoff and drainage The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts: At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the Contractor prior to the commencement of 	To control site runoff and drainage; prevent high sediment loading from reaching the nearby watercourses	Contractor	Construction Works Sites	Construction Phase	Practice Note for Professional Persons on Construction Site Drainage (ProPECC Note PN 1/94)

The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas.

construction.

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the measure to
			& Main Concerns to address	the measure?	measure	measure?	achieve?
		Temporary ditches should be provided to facilitate the runoff discharge into stormwater drainage system through a sediment/silt trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates, if practical.					
	-	Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the Contractor prior to the commencement of construction.					
	•	All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.					
	•	Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities.					
	•	If surface excavation works cannot be avoided during the wet season (April to September), temporarily exposed slope/soil surfaces should be covered by tarpaulin or other means, as far as practicable, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Interception channels should be provided (e.g. along the crest/edge of the excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. Other measures that need to be implemented before, during and after rainstorms are summarized in ProPECC Note PN 1/94.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		the erosive potential of surface water flows.					

All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.

- Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.
- Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.
- Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.
- Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.

5.6.1.1	4.1	Good site practices for works within water gathering grounds	To minimize water	Contractor	Construction	Construction	ProPECC Note PN
		The following conditions should be complied, if there is any works to be	quality impacts to		Works Sites	Phase	1/94
		carried out within the water gathering grounds:	the water gathering		within the water		
			grounds		gathering		

255228/ENL/ENL/61/C December 2010

nvironmenta	ronmental Monitoring and Audit Manual						
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for th measure to achieve?
	•	Adequate measures should be implemented to ensure no pollution or siltation occurs to the catchwaters and catchments.			grounds		
	•	No earth, building materials, oil or fuel, soil, toxic materials or any materials that may possibly cause contamination to water gathering grounds are allowed to be stockpiled on site.					
	•	All surplus spoil should be removed from water gathering grounds as soon as possible.					
	•	Temporary drains with silt traps should be constructed at the site boundary before the commencement of any earthworks.					
	•	Regular cleaning of silt traps should be carried out to ensure proper operation at all time.					
	•	All excavated or filled surfaces which have the risk of erosion should always be protected form erosion.					
	•	Facilities for washing the wheels of vehicles before leaving the site should be provided.					
	•	Any construction plant which causes pollution to catchwaters or catchments due to the leakage of oil or fuel should be removed off site immediately.					
	-	No maintenance activities which may generate chemical wastes should be undertaken in the water gathering grounds. Vehicle maintenance should be confined to designated paved areas only and any spillages should be cleared up immediately using absorbents and waste oils should be collected in designated tanks prior to disposal off site. All storm water run-off from these areas should be discharged via oil/petrol separators and sand/silt removal traps.					
	•	Any soil contaminated with fuel leaked from plant should be removed off site and the voids arising from removal of contaminated soil should be replaced by suitable material approved by the Director of Water Supplies.					
	•	Provision of temporary toilet facilities and use of chemicals or insecticide of any kind are subject to the approval of the Director of Water Supplies.					

Drainage plans should be submitted for approval by the Director of

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	non		& Main Concerns to address	measure?	mououro	measure?	achieve?
		Water Supplies.					
		 An unimpeded access through the waterworks access road should always be maintained. 					
		 Earthworks near catchwaters or streamcourses should only be carried out in dry season between October and March, 					
		 Advance notice must be given before the commencement of works on site quoting WSD's approval letter reference. 					
5.6.1.2	4.1	Good site practices of general construction activities	To minimize water	Contractor	All construction works sites	Construction	EIA Recommendation
		Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby stormwater drain. Stockpiles of cement and other construction materials should be kept covered when not being used.	/ 			phase	
		Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby stormwater drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event.					
5.6.1.3	4.1	Sewage effluent from construction workforce	To minimize water	Contractor	All construction works sites with on-site sanitary facilities	Construction phase	EIA Recommendation and Water Pollution Control Ordinance (WPCO)
		Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	quality impacts				
5.6.1.4	4.1	Hydrogeological Impact	To minimize water	Contractor	Construction	Construction	EIA Recommendation
		Grout injection works would be conducted before blasting, for sealing a limited area around the tunnel with a grout of a suitable strength for controlling the potential groundwater inflows. The pre-injection grouting method would be supplemented by post-injection grouting where necessary to further enhance the groundwater inflow control. On-site treatment for the groundwater ingress pumped out would be required to remove any contamination by grouting materials before discharge off-site.	r J e d		works sites of the drill and blast tunnel	phase	and WPCO
Water Qu	ality Impa	ct (Operation)					
		No mitigation measure is required.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns	Who to implement the	Location of the measure	When to implement the measure?	What requirements or standards for the measure to
			to address	measure?			achieve?
Sewage a	and Sewera	age Treatment Impact (Construction)					
6.7	5	The sewage generated by the on-site workforce should be collected in chemical toilets and disposed of off-site by a licensed waste collector.	To minimize water quality impacts	Contractor	All construction works sites with on-site sanitary facilities	Construction phase	EIA recommendation and WPCO
Sewage a	and Sewera	age Treatment Impact (Operation)					
6.6.3	5	Sewage generated by the BCP and Chuk Yuen Village Resite will be collected and treated by the proposed on-site sewage treatment facility using Membrane Bioreactor treatment with a portion of the treated wastewater reused for irrigation and flushing within the BCP.	To minimize water quality impacts	DSD	BCP	Operation phase	EIA recommendation and WPCO
6.5.3	5	Sewage generated from the Administration Building will be discharged to the existing local sewerage system.	To minimize water quality impacts	DSD	Administration Building	Operation phase	EIA recommendation and WPCO
Waste Ma	anagement	t Implication (Construction)					
7.6.1.1	6	Good Site Practices	To minimize	Contractor	Construction	Construction	EIA recommendation
		Adverse impacts related to waste management such as potential hazard, air, odour, noise, wastewater discharge and public transport as mentioned in section 3.4.7.2 (ii)(c) of the Study Brief are not expected to arise, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities include:	adverse environmental impact		works sites (general)	Phase	Waste Disposal Ordinance; Waste Disposal (Chemical Wastes) (General) Regulation; and ETWB TC(W) No. 19/2005,
		Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site					Environmental Management on Construction Site
		 Training of site personnel in proper waste management and chemical handling procedures 					
		 Provision of sufficient waste disposal points and regular collection of waste 					
		 Dust suppression measures as required under the Air Pollution Control (Construction Dust) Regulation should be followed as far as practicable. Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by covering trucks or in enclosed containers 					
		 General refuse shall be removed away immediately for disposal. As 					

EIA Ref.	EM&A	& A Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	implement the	What requirements or standards for the measure to
	nei.		& Main Concerns to address	measure?	measure	measure?	achieve?
		such odour is not anticipated to be an issue to distant sensitive receivers					
		 Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction from public road 					
		 Covers and water spraying system should be provided for the stockpiled C&D material to prevent dust impact or being washed away 					
		 Designate different locations for storage of C&D material to enhance reuse 					
		 Well planned programme for transportation of C&D material to lessen the off-site traffic impact. Well planned delivery programme for offsite disposal and imported filling material such that adverse noise impact from transporting of C&D material is not anticipated 					
		 Site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be adopted as far as practicable, such as cleaning and maintenance of drainage systems regularly 					
		 Provision of cover for the stockpile material, sand bag or earth bund as barrier to prevent material from washing away and entering the drains 					
.6.1.2	6	Waste Reduction Measures	To reduce the	Contractor	Construction	Construction	EIA recommendation
		Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	quantity of wastes		works sites (General)	Phase	and Waste Disposal Ordinance
		 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 					
		 Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force 					
		 Proper storage and site practices to minimise the potential for damage or contamination of construction materials 					
		Plan and stock construction materials carefully to minimise amount					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		of waste generated and avoid unnecessary generation of waste					
		In addition to the above measures, specific mitigation measures are recommended below for the identified waste arising to minimise environmental impacts during handling, transportation and disposal of these wastes.					
7.6.1.3	6	C&D Materials In order to minimise impacts resulting from collection and transportation of C&D material for off-site disposal, the excavated materials should be reused on-site as backfilling material as far as practicable. The surplus rock and other inert C&D material would be disposed of at the Government's Public Fill Reception Facilities (PFRFs) at Tuen Mun Area 38 for beneficial use by other projects in the HKSAR as the last resort. C&D waste generated from general site clearance and tree felling works would require disposal to the designated landfill site. Other mitigation requirements are listed below:	To minimize impacts resulting from C&D material	Contractor	Construction Works Sites (General)	Construction Phase	EIA recommendation; Waste Disposal Ordinance; and ETWB TCW No. 31/2004
		 A Waste Management Plan should be prepared and implemented in accordance with ETWB TC(W) No. 19/2005 Environmental Management on Construction Site; and In order to monitor the disposal of C&D material and solid wastes at public filling facilities and landfills, and to control fly-tipping, a trip-ticket system (e.g. ETWB TCW No. 31/2004) should be included. 					
7.6.1.4	6	General refuse General refuse should be stored in enclosed bins or compaction units separated from other C&D material. A reputable waste collector is to be employed by the Contractor to remove general refuse from the site separately. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' litter.	To minimize impacts resulting from collection and transportation of general refuse for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal Ordinance and Public Health and Municipal Services Ordinance - Public Cleansing and Prevention of Nuisances Regulation
7.6.1.5	6	Chemical waste If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the <i>Code of Practice on the</i> <i>Packaging, Labelling and Storage of Chemical Wastes.</i> Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical	To minimize impacts resulting from collection and transportation of chemical waste for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal (Chemical Waste) (General) Regulation and Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes

Appendix N

Investigation Report for Exceedance

То	Mr. Vincent Chan	Fax No	By e-mail
Company	CRBC-CEC-Kaden JV		
сс			
From	Nicola Hon	Date	16 November 2016
Our Ref	TCS00694/13/300/ F0718	No of Pages	7 (Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of 28, 29 and 31 October 2016		

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0699 dated 31 October 2016 TCS00694/13/300/F0717 dated 7 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl. c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
Mr. Simon Leung (ER of C6, AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008						
Date		28 Oct	29 Oct	31 Oct	25 Oct	28 Oct	29 Oct	31 Oct
Location		WM2A(a)						
Time		11:00	11:37	9:57	10:30	11:00	11:37	9:57
Parameter			Turbidity (NTU)		Suspended Solids (mg/L)			
Action Level Limit Level		24.9 AND 120% of upstream 14.6 AND 120% of upstream contr			n control			
		control station of the same day		station of the same day				
		33.8 AND 130% of upstream			17.3 AND 130% of upstream control			
Measure	WM2A-C	control station of the same day8.69.123.5			station of the same day 7.0 5.0 8.0 7.5			
d Levels	WM2A(a)	53.0	45.4	69.3	18.0	48.0	88.0	111.5
		Limit	Limit	Limit	Limit	Limit	Limit	Limit
Exceedance		level	level	level	level	level	level	level
Investigation Results, Recommendations & Mitigation Measures		 According to the site information provided from the Contractor of Contract 6 (CCKJV), construction activities carried out on 25 to 31 October 2016 at Bridge D (upstream of WM2A(a)) were mainly pile cap works. The monitoring locations and works area are shown in Figure 1. 						
		2. According to the site record from the monitoring team on 25 October 2016, water quality observed at WM2A(a) and WM2A-C was clear. On 28, 29 and 31 October 2016, turbid water was observed at WM2A(a) while the water quality at WM2A-C was clear (<i>Photo 1 to 8</i>)						
		3. During weekly joint site inspection conducted at Bridge D, the water mitigation measures were properly implemented. The observation during the site inspection is summarized below.						
			Pile cap worl generated fro			-) and the w	astewater
		-	Wastewater provided for According to provided by discharge fro Licences requ	Bridge I the daily the Contro om the site	D (<i>Figur</i>) record of ractor of	es 1 and wastewat Contract	d 2 and 1 er treatmen 6, the w	Photo 9) t systems astewater
			A sump pit v particulates i proper treatm tank was clea	in the wate nent. (Phot	er before	diverted	to the Aqu	aSed for
			Concrete blo course and n site. (<i>Photo I</i>	o turbid ru				
		(e) To minimize the muddy runoff from the site, the Contractor has						

	covered the exposed slopes as far as practicable. (<i>Photo 12</i>)
4.	In our investigation, the water mitigation measures implemented on site was in order and no adverse water impact was identified. Moreover, there were no rain recorded during the exceedance days and surface runoff generated from the site area was unlikely to occur. It is considered the exceedances on 25 and 28 to 31 October 2016 were due to natural variation and unlikely caused by the works under the project.
5.	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Since the SS result required 5 working days to process, the need for repeated measurement could only rely on the result of turbidity which is in-situ measurement. Therefore, there were no repeated monitoring carried out on 26 October 2016 as no exceedance of turbidity recorded. Moreover, there were no exceedances recorded on 27 October and 1 November 2016. Nevertheless, the Contractor should continually implement the water mitigation measures in full gear as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Auch
Date :	16 November 2016

Photo Record

Photo 1

On 25 October 2016, the water quality observed at WM2A(a) was clear.

Photo 2 On 25 October 2016, the water qu

On 25 October 2016, the water quality observed at WM2A-C was clear.

Photo 3

On 28 October 2016, turbid water was observed in the existing river course and WM2A(a).

Photo 5 On 29 October 2016, the water quality observed at WM2A(a) was slightly turbid.

Phot 4

On 28 October 2016, the water quality observed at WM2A-C was clear.

Photo 6

On 29 October 2016, the water quality observed at WM2A-C was clear.

Photo 7 On 30 October 2016, turbid water was observed in the existing river course and WM2A(a).

Photo 8 On 30 October 2016, the water quality observed at WM2A-C was clear.

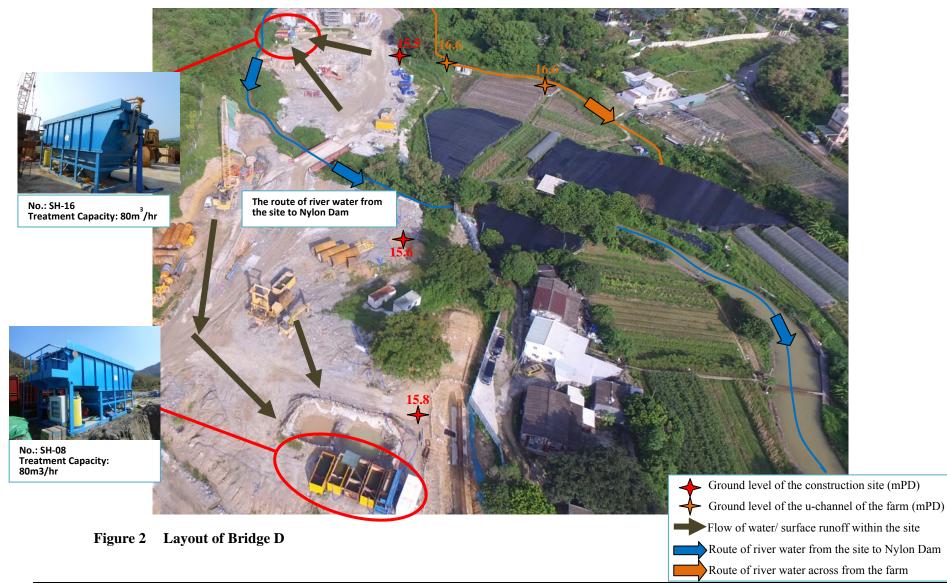
Photo 9 Wastewater treatment facilites were provided for Bridge D

Photo 10

A sump pit was constructed to preliminary settled the particulates in the water before diverted to the AquaSed for proper treatment.

Photo 11

Concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site.


Photo 12 The exposed slopes have been covered with tarpaulin as far as practicable.

AUES

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract 6

AUES

То	Mr. Vincent Chan	Fax No	By e-m	nail	
Company	CRBC-CEC-Kaden JV				
сс					
From	Nicola Hon	Date	25 November 2016		
Our Ref	TCS00694/13/300/ F0743a	No of Pages	7	(Incl. cover sheet)	
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 2 and 4 November 2016				

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0712 dated 3 November 2016 TCS00694/13/300/F07126 dated 7 November 2016 TCS00694/13/300/F0725 dated 10 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
Mr. Simon Leung (ER of C6, AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008			
Date		2 Nov 2016	4 Nov 2016	2 Nov 2016	4 Nov 2016
Location			WM2A(a)		
Time		9:55	10:35	9:55	10:35
Parameter		Turbidi	ty (NTU)	Suspended Sol	lids (mg/L)
Action Lev	/el		0% of upstream of the same day	14.6 AND 120% of station of the	
Limit Leve	el	33.8 AND 13	0% of upstream of the same day	17.3 AND 130% of station of the	upstream control
Measure	WM2A-C	7.6	11.8	<2	<2
d Levels	WM2A(a)	131.5	260.5	113.0	196.5
Exceedanc	e	Limit level	Limit level	Limit level	Limit level
Investigation Results, Recommendations & Mitigation Measures		Contract 6 November	(CCKJV), constr 2016 at Bridge I works. The more	nation provided from ruction activities carrie D (upstream of WM2A nitoring locations and	ed out on 2 and 4 (a)) were mainly
		2. According to the site record from the monitoring team on 2 and 4 November 2016, turbid water was observed at WM2A(a) while the water quality at WM2A-C was clear (<i>Photo 1 to 4</i>)			
the possible ca observed that however, there course after th underneath the quality in the ri			le cause of excee hat the water qu there was an exp er the Nylon Da the exposed sh	at upstream of WM2A edance on 2 Novemb- nality near the Nylon posed slope right adja am and mud and soi ope. It is considered vas slightly deteriorated . (<i>Photo 5</i>)	er 2016. It was Dam was clear, icent to the river l was cumulated d that the water
		4. As advised by CCKJV, the exposed slope was formed by construction activities adjacent to the river course. As remedial measures, CCKJV was immediately hard paved the exposed slope and erected sand bag barrier at the edge of slope. The remedial work was completed in the afternoon of 4 November 2016. (<i>Photo 6</i>)			
		water mit	igation measures	nspection conducted as were properly impospection is summarized	olemented. The
			p works were con ted from the work	nducted at Bridge D ar as was limited.	nd the wastewater
		provid Accord provid	ed for Bridge I ding to the daily ed by the Contr	facilites (3 nos. of D (<i>Figures 1 and 2</i> record of wastewater t ractor of Contract 6, e was compliance wi	2 and Photo 7) reatment systems , the wastewater

· · · · · · · · · · · · · · · · · · ·	
	Licences requirements.
	(c) A sump pit was constructed to preliminary settle the suspended particulates in the water before diverted to the AquaSed for proper treatment. (<i>Photo 8</i>) The treated water in the final tank was clear.
	(d) Concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. (<i>Photo 9</i>)
	 (e) To minimize the muddy runoff from the site, the Contractor has covered the exposed slopes as far as practicable. (<i>Photo 10</i>)
6.	In our investigation, it is considered that exceedances were related to the exposed slope in which CCKJV has immediately rectified the deficiency in 2 days. There were no exceedances recorded on the subsequent water quality monitoring 5 and 7 November 2016, thus it is considered that the remedial measures provided by CCKJV were effective.
7.	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There were no exceedances recorded on 3, 5 and 7 November 2016. Nevertheless, the Contractor should continually implement the water mitigation measures in full gear as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	25 November 2016
	23 110/01/00/ 2010

Photo 1

On 2 November 2016, the water quality observed at WM2A(a) was clear.

Photo 3

On 4 November 2016, turbid water was observed in the existing river course and WM2A(a).

Photo 5

On 2 November 2016, it was observed that the water quality near the Nylon Dam was clear, however, there was an exposed slope adjacent to the river course after the Nylon Dam and mud and soil was cumulated underneath the exposed slope.

Photo 2

On 2 November 2016, the water quality observed at WM2A-C was clear.

Photo 4

On 4 November 2016, the water quality observed at WM2A-C was clear.

Photo 6

CCKJV was immediately hard paved the exposed slope and erected sand bag barrier at the edge of slope. The remedial work was completed in the afternoon of 4 November 2016.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0743a.doc Action-United Environmental Services & Consulting

Wastewater treatment facilites were provided for

Photo 8

A sump pit was constructed to preliminary settled the particulates in the water before diverted to the AquaSed for proper treatment.

Photo 9

Bridge D

Concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site.

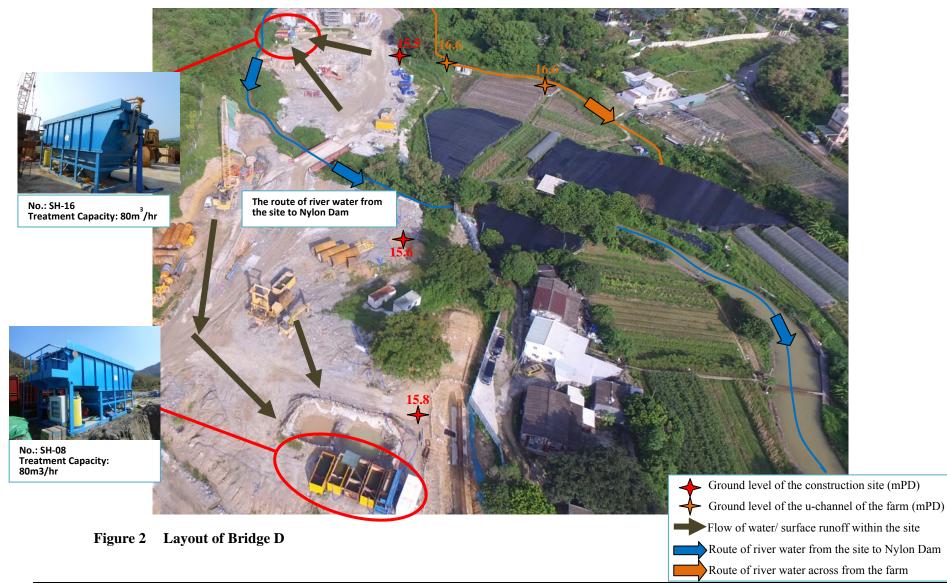


Photo 10

The exposed slopes have been covered with tarpaulin as far as practicable.

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract 6

Fax Cover Sheet

То	Mr. Daniel Ho	Fax No	2638 7077
Company	Chun Wo Construction Ltd		
сс			
From	Nicola Hon	Date	23 November 2016
Our Ref	TCS00670/13/300/ F0752	No of Pages	5 (Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance November 2016 (Contract 3)		

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Ho,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F0735 dated 16 November 2016 TCS00670/13/300/F0750 dated 23 November 2016.

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)Fax:2685 1155Mr. Desmond Lam (CE/BCP, NTEDO, CEDD/C3)Fax3547 1659Mr. Alan Lee (ER of C3, AECOM)Fax:2171 3498Mr. Antony Wong (IEC, SMEC)By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project			2008	
Project Date		CE 45/2008		
Location		15 November 2016 WM4		
Time		12:00		
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
		35.2 AND 120% of upstream		
Action Level		control station of the same day	39.4 AND 120% of upstream control station of the same day	
		38.4 AND 130% of upstream	45.5 AND 130% of upstream	
Limit Level		control station of the same day	control station of the same day	
	WM4-CA	10.3	<2	
Measured	WM4-CB	25.1	22.0	
Level	WM4	242.5	116.5	
Exceedance	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Investigation Recommendat Mitigation Me		242.5 116.5 Limit Level Limit Level 1. According to the site information provided by the Contractor of C3 (Chun Wo), the construction activities carried out on 15 November 2016 were mainly general site works such as excavation, breaking work, erection of formwork and backfilling which as same as the previous months and these activities would not generated excessive wastewater. 2. According to the site record from the monitoring team on 15 November 2016, muddy water was observed at WM4 while the water quality at WM4-CA and WM4-CB were visually clear. (Photo 1 to 3 and Figure 1) 3. During joint site inspection by RE, IEC, Chun Wo and ET on 16 November 2016, muddy water was found in the river branch from Kiu Tau Road. (Photo 4) There was active construction site by other Contractor near Kiu Tak Road and muddy water was observed in the open channel near that construction site on 15 and 16 November 2016. (Photo 5 to 7) It is suspected that the muddy water was come from other construction site. 4. During weekly site inspection by ET on 16 November 2016, the condition was generally in order and no adverse water quality impacts under the Contract were identified. In our investigation, it is considered that exceedances were due to the muddy water from the outside of site boundary and not likely related to the works under the Contract. 5. According to the Event and Action, the monitoring frequency at exceed station shall be increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. In view of the subsequent monitoring result, no exceedances were triggered at WM4 on 16 and 17 November 2016. However, the Contractor should continue to implement the environmental mitigation measures recommended in		
Prepared By :		Nicola Hon		
Designation :	Enviro	ronmental Consultant		
Signature :		Aul		
Date :	23 November 2016			

Turbid water was observed at WM4 on 15 November 2016.

The water quality at WM4-CB was visually clear

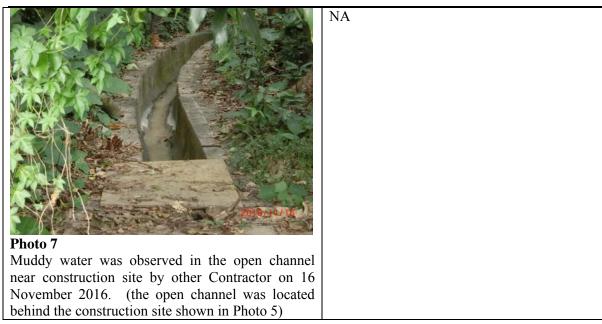
on 15 November 2016.

Photo 2

The water quality at WM4-CA was visually clear on 15 November 2016.

Photo 4

During joint site inspection on 16 November 2016, muddy water was found in the river branch from Kiu Tau Road.


Photo 5

There was active construction site by other Contractor near Kiu Tak Road, suspecting the source of muddy water.

Photo 6

Muddy water was observed in the open channel near construction site by other Contractor on 15 November 2016. (the open channel was located behind the construction site shown in Photo 5)

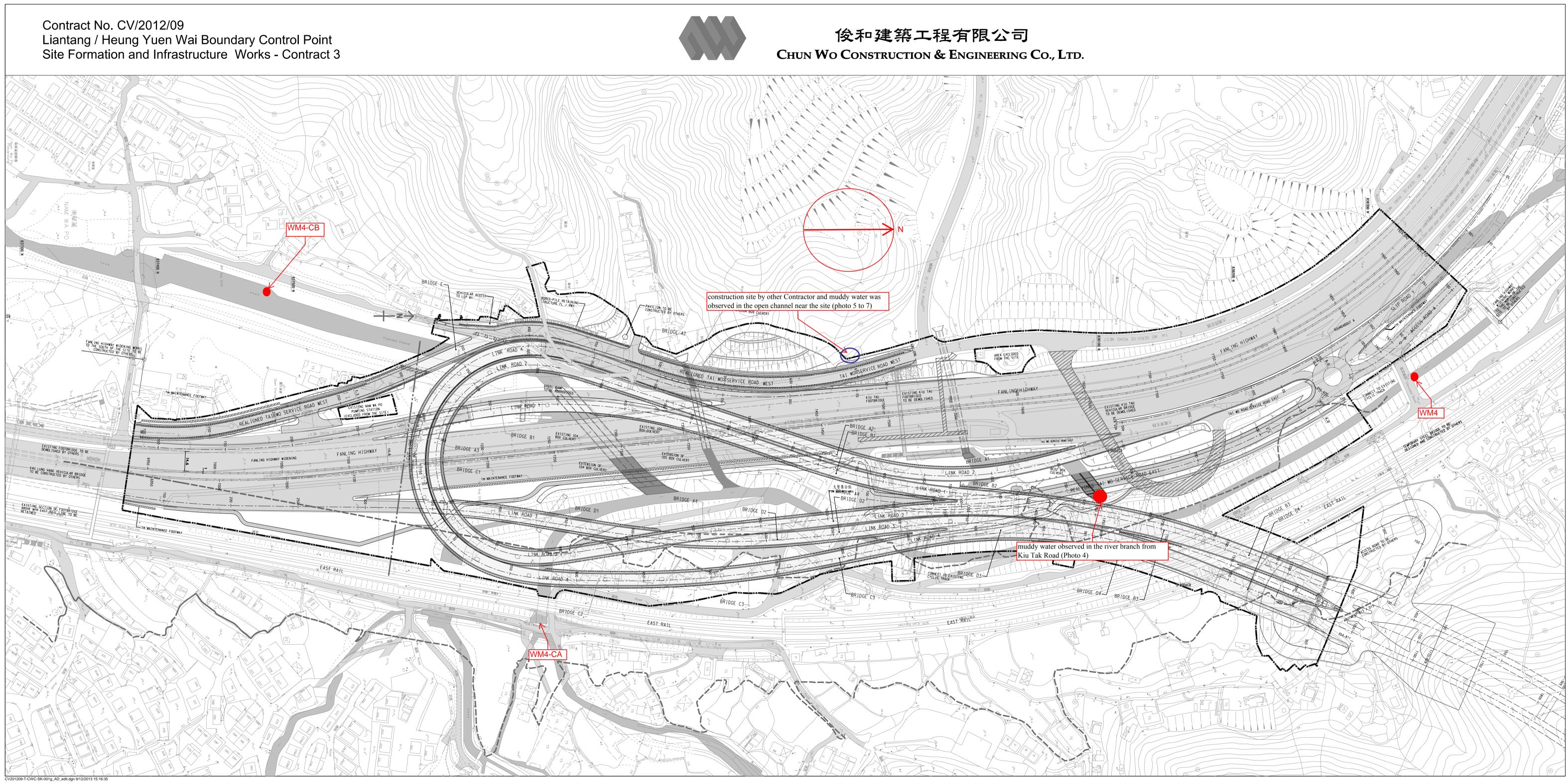


Figure 1. Location of Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 3	3299	
Company	Dragages Hong Kong Limited				
сс					
From	Nicola Hon	Date	23 Nov	ember 2016	
Our Ref	TCS00697/13/300/ F0753	No of Pages	5	(Incl. cover sheet)	
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM4 on 15 November 2016 (Contract 2)				
If you do not	receive all pages or transmission is illegible please	contact the originate	r on (852) 2	050-6050 to resend Should	

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F0736 dated 16 November 2016 TCS00670/13/300/F0751 dated 23 November 2016.

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. B.K. Chow (CE/BCP, NTWDO, CEDD/C2)	Fax:	3547 1659
	Mr. CT Wong (PER, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008		
Date		15 No	vember 2016	
Location			WM4	
Time			12:00	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
Action Level		35.2 AND 120% of upstream	39.4 AND 120% of upstream control	
Action Level		control station of the same day	station of the same day	
Limit Level		38.4 AND 130% of upstream 45.5 AND 130% of upstream control		
		control station of the same day	station of the same day	
Measured	WM4-CA	10.3	<2	
Level	WM4-CB	25.1	22.0	
Level	WM4	242.5	116.5	
Exceedance		Limit Level	Limit Level	
 According to the si Contract 2 (DHK), or during 15 Novem ventilation building is According to the si Contract 2 (DHK), or during 15 Novem ventilation building is According to the si November 2016, m water quality at W (Photo 1 to 3 and Fi Site inspection by if According to the te According to the E According to the E According to the E exceed ance recorde consecutive days. exceedances were tr However, the Cor environmental mitig 		 Contract 2 (DHK), construct during 15 November 20 ventilation building superstru According to the site record November 2016, muddy was water quality at WM4-CA (<i>Photo 1 to 3 and Figure 1</i>) Site inspection by ET on 1 found in the river branch from active construction site by o muddy water was observ construction site on 15 and 1 suspected that the muddy w site. During weekly site inspection 2016, the condition was ge quality impacts under the investigation, it is consider muddy water from the outsid to the works under the Contractor According to the Event and exceed station shall be increased and shall be increased	and from the monitoring team on 15 ater was observed at WM4 while the and WM4-CB were visually clear. 6 November 2016, muddy water was m Kiu Tau Road. (<i>Photo 4</i>) There was ther Contractor near Kiu Tak Road and ed in the open channel near that 6 November 2016. (<i>Photo 5 to 7</i>) It is ater was come from other construction on at South Portal by ET in November nerally in order and no adverse water Contract were identified. In our ed that exceedances were due to the e of site boundary and not likely related act. d Action, the monitoring frequency at reased to daily due to the limit level no exceedances were triggered in of the subsequent monitoring result, no at WM4 on 16 and 17 November 2016. should continue to implement the asures recommended in implementation	

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Auch		
Date :	23 November 2016		

Photo 1

Turbid water was observed at WM4 on 15 November 2016.

Photo 3

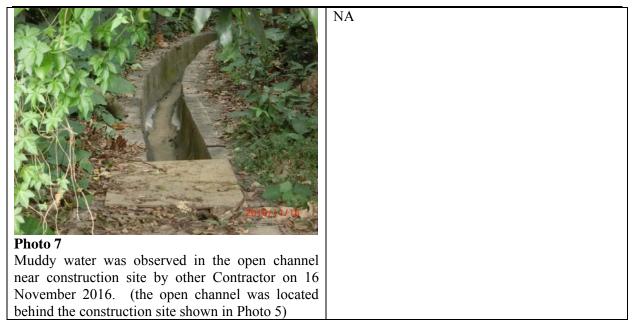
The water quality at WM4-CB was visually clear on 15 November 2016.

Photo 2

The water quality at WM4-CA was visually clear on 15 November 2016.

Photo 4

During joint site inspection on 16 November 2016, muddy water was found in the river branch from Kiu Tau Road.


Photo 5

There was active construction site by other Contractor near Kiu Tak Road, suspecting the source of muddy water.

Muddy water was observed in the open channel near construction site by other Contractor on 15 November 2016. (the open channel was located behind the construction site shown in Photo 5)

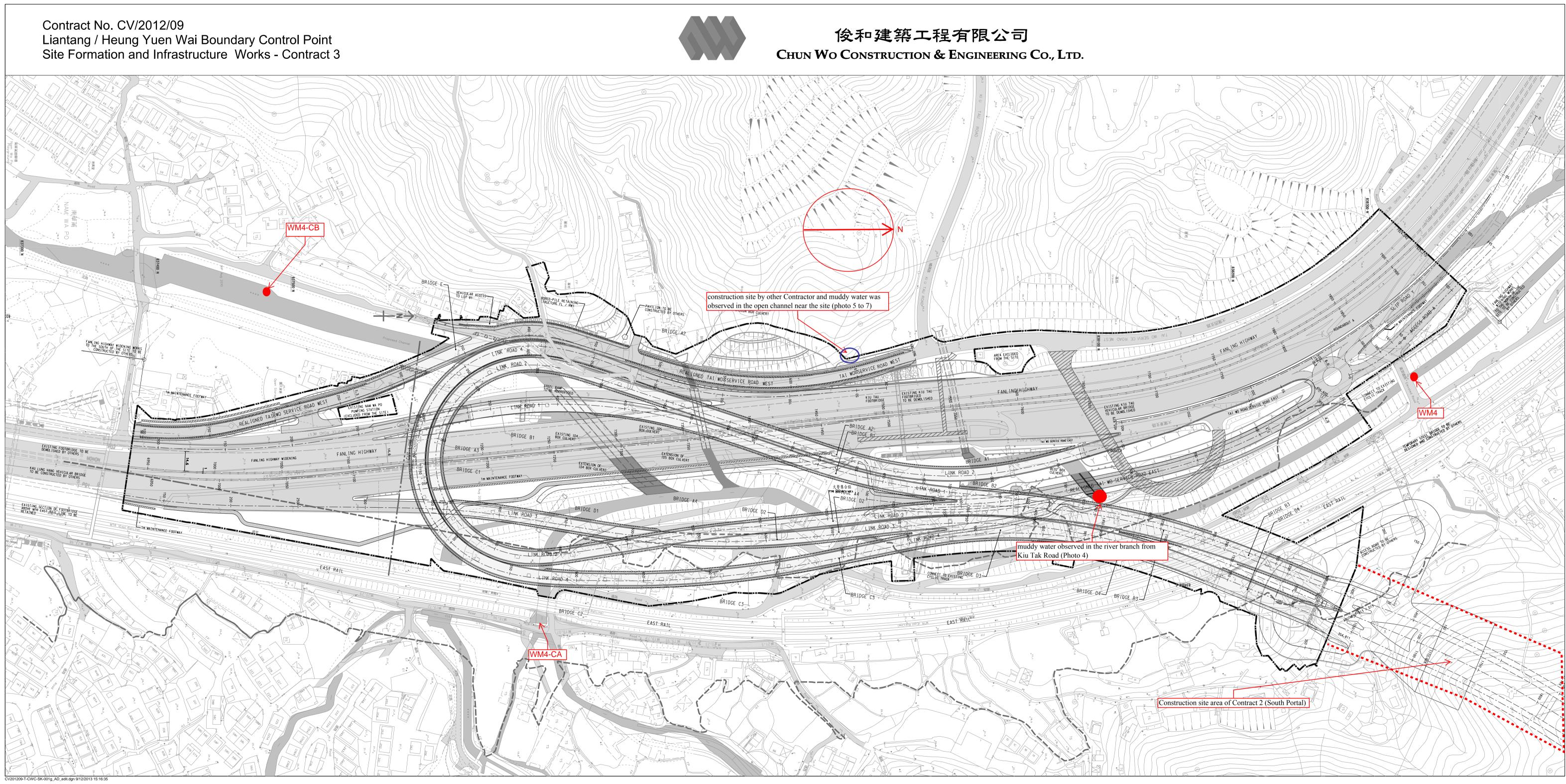


Figure 1. Location of Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-ma	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	24 Nover	nber 2016
Our Ref	TCS00694/13/300/ F0757	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary O Investigation Report of Exceedance of V November 2016			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0726 dated 10 November 2016 TCS00694/13/300/F0747 dated 21 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)
Mr. Simon Leung (ER of C6/ AECOM)
Mr. Antony Wong (IEC, SMEC)

Fax:	2685 1155
Fax:	3547 1659
Fax:	2251 0698
	By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project			CE 45/2	2008		
Date					10 Nov 2016	
Location		WM3x				
Time		12:31	11:10	12:31	11:10	
Parameter		Turbid	ity (NTU)	Suspended So	l Solids (mg/L)	
Action Lev	ما	13.4 AND 120%	of upstream control	12.6 AND 1209	% of upstream	
Action Lev	ei		the same day	control station o		
Limit Leve	1		of upstream control	12.9 AND 1309	*	
			the same day	control station of the same day		
Measured	WM3-C	3.0	3.6	<2	8.0	
Level	WM3x	34.7	>999 (over range)	44.5	826.0	
Exceedance	e	Limit Level	Limit Level	Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		(CCKJV), the Park (upstream mainly pre-be monitoring loo	the site information perconstruction activities m of WM3x) carried of ored socketed steel H cations and works areas	s at South Portal and out on 9 and 10 Nov I-pile and bored p s are shown in Figur	d Wo Keng Shan vember 2016 was vile works. The e 1.	
		2. According to the site record from the monitoring team on 9 November 2016, it was observed that water quality at WM3x was slightly turbid while the water quality at WM3-C was clear. (<i>Photo 1 & 2</i>) In order to trace the source of turbid water, inspection was subsequently carried out aligned the existing river course of upstream of WM3x. It was noted that the river water adjacent the construction site was clear and no muddy discharge from the site was observed. (<i>Photo 3 & 4</i>)				
		2016, muddy WM3-C was carrying slurr Wo Keng Sha 2016. (<i>Photo</i>	the site record from the water was observed a clear. (<i>Photo 5 & 6</i>) y from H-pipe works a an was burst accidenta 7) The burst pipe was not the adjacent river c	at WM3x while the CCKJV reported t area to primary sedi ally in the morning immediately replace	water quality at hat a pipe which mentation tank at of 10 November	
		in the afternoo Park. It w maintained p impact and m	site inspection by RE, on of 10 November 20 vas observed that w roperly at both work huddy discharge was which adjacent to the s 9)	16 at South Portal ar vastewater treatmen is area. No adver observed. The wat	nd Wo Keng Shan tt facilites were rse water quality ter quality in Ng	
		2016 were du under the Pro considered the CCKJV was	gation, it is considered ue to natural variation oject. For the exceed at the exceedances we advised to regularly c arrying untreated water	and unlikely caus dances on 10 Nove re related to the pij heck up the conditi	ed by the works omber 2016, it is pe burst incident. on of water pipe	

	systems are well maintained.	
	6. According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 11 and 12 November 2016. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.	
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.	
Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Aul	

Date :

24 November 2016

Photo 1

On 9 November 2016, it was observed that water quality at WM3x was slightly turbid

Photo 2 During water sampling on 9 November 2016, the water quality at WM3-C was clear.

Photo 3

On 9 November 2016, the river water adjacent the construction site of South Portal was clear and no muddy discharge from the site was observed.

On 9 November 2016, the river water adjacent the construction site of Wo Keng Shan Park was clear and no muddy discharge from the site was observed.

Muddy water was observed at WM3x on 10 November 2016.

During water sampling on 10 November 2016, the water quality at WM3-C was clear.

Photo 7

CCKJV reported that a pipe which carrying slurry from H-pipe works area to primary sedimentation tank at Wo Keng Shan was burst accidentally in the morning of 10 November 2016.

Photo 8

On 10 November 2016, the river water adjacent the construction site of South Portal was clear and no muddy discharge from the site was observed.

On 10 November 2016, the river water adjacent the construction site of Wo Keng Shan Park was clear and no muddy discharge from the site was observed.

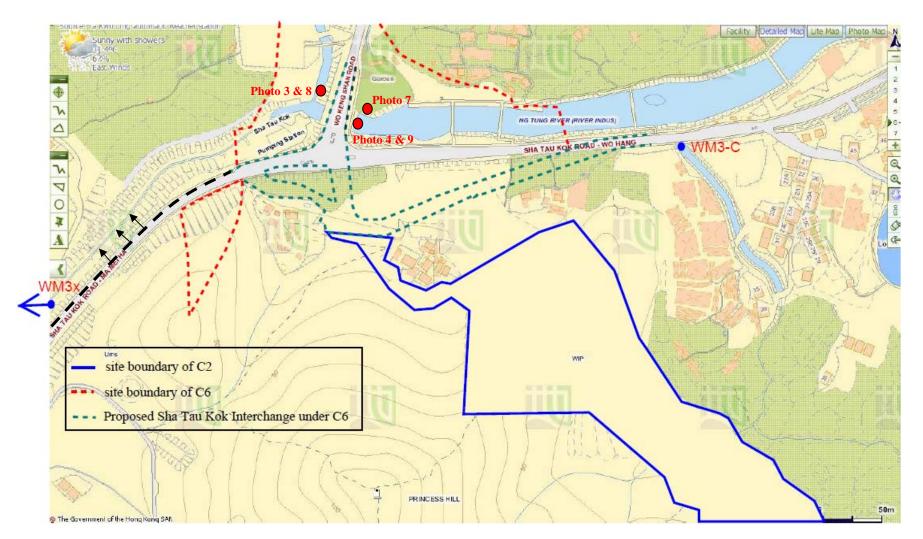


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 32	299
Company	Dragages Hong Kong Limited			
сс				
From	Nicola Hon	Date	24 Nove	mber 2016
Our Ref	TCS00697/13/300/ F0758	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of November 2016 (Contract 2)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0727 dated 10 November 2016 TCS00694/13/300/F0748 dated 21 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

 c.c.
 Mr. David Chan (EPD)
 Fax:
 2685 1155

 Mr. B.K. Chow(CEDD/C2)
 Fax:
 3547 1659

 Mr. C T Wong (PER, AECOM)
 Fax:
 2171 3498

 Mr. Antony Wong (IEC, SMEC)
 By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008				
Date		9 Nov 2016	10 Nov 2016	9 Nov 2016	10 Nov 2016	
Location		WM3x				
Time		12:31	11:10	12:31	11:10	
Parameter		Turbid	ity (NTU)	Suspended So	lids (mg/L)	
Action Level	l		of upstream control the same day	12.6 AND 120% control station of		
Limit Level			of upstream control the same day	12.9 AND 130% control station of		
Measured	WM3-C	3.0	3.6	<2	8.0	
Level	WM3x	34.7	>999 (over range)	44.5	826.0	
Exceedance	9	Limit Level	Limit Level	Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		(DHK), the con at upstream of	the site information p nstruction activities car WM3x was superstruct s area under C2 and re 1.	ried out on 9 and 10 cture work at Admin	November 2016 Building. The	
		2. According to the site record from the monitoring team on 9 November 2016, it was observed that water quality at WM3x was slightly turbid while the water quality at WM3-C was clear. (<i>Photo 1 & 2</i>) In order to trace the source of turbid water, inspection was subsequently carried out aligned the existing river course of upstream of WM3x. It was noted that the river water at downstream of the construction site of Admin Building was clear. (<i>Photo 3 & 4</i>)				
		3. According to the site record from the monitoring team on 10 November 2016, muddy water was observed at WM3x while the water quality at WM3-C was clear. (<i>Photo 5 & 6</i>) Other than the observation during water sampling, burst pipe incident at Wo Keng Shan Park was reported by other Contractor on the morning of 10 November 2016. (<i>Figure 1</i>) Due to the incident, some slurry was flowing into the adjacent river channel and the pipe was replaced immediately.				
		4. During weekly site inspection with DHK in November 2016, it was observed that superstructure work was carried out at Admin Building and wastewater generated from superstructure work was very limited. In addition that the site area of Admin Building was mostly hard paved, no adverse water impact was identified during site inspection. (<i>Photo 7</i>)				
		2016 were due the Project.	gation, it is considered to to natural variation and For the exceedances on edances were related to	d unlikely caused by 10 November 2016	the works under , it is considered	
		6. According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 11 and 12 November 2016. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.				

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Anh		
Date :	24 November 2016		

Photo 1

On 9 November 2016, it was observed that water quality at WM3x was slightly turbid

Photo 2

During water sampling on 9 November 2016, the water quality at WM3-C was clear.

Photo 3

On 9 November 2016, the river water at downstream of the construction site of Admin Building was clear.

Photo 5 Muddy water was observed at WM3x on 10 November 2016.

Photo 4

On 9 November 2016, the river water at downstream of the construction site of Admin Building was clear.

Photo 6 During water sampling on 10 November 2016, the water quality at WM3-C was clear.

Photo 7

Superstructure works for Admin Building was carried out at Admin Building and wastewater generated from the site was limited. The site area was mostly hard paved and no adverse water impact was identified.

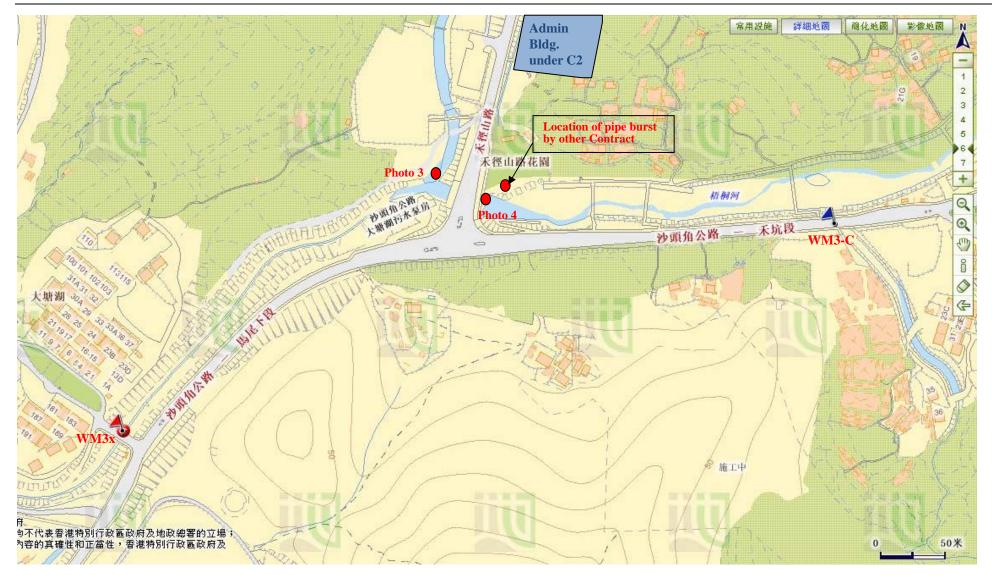


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-m	nail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	28 Nove	ember 2016
Our Ref	TCS00694/13/300/ F0764	No of Pages	8	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 11, 12, 14 and 15 November 2016			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0734 dated 14 November 2016 TCS00694/13/300/F0746 dated 21 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
Mr. Simon Leung (ER of C6, AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008						
Date		11 Nov	12 Nov	14 Nov	11 Nov	12 Nov	14 Nov	15 Nov
Location					WM2A(a)			
Time		11:50	9:05	11:00	11:50	9:05	11:00	10:25
Parameter	•		rbidity (NT				olids (mg/I	
Action Lev	م		24.9 AND 120% of upstream 14.6 AND 120% of upstream control			/		
Action Lev		control st	ation of the	same day	station of the same day			
Limit Leve	el		D 130% of				upstream	
<u> </u>	WM2A-C		ation of the				same day	
Measure d Levels		11.7	6.0	11.0	6.5	<2	<2	<2
u Levels	WM2A(a)	89.2	31.3	48.4	70.5	40.0	61.0	17.0
Exceedanc	e	Limit level	Action level	Limit level	Limit level	Limit level	Limit level	Action level
Investigation Results, Recommendations & Mitigation Measures		Contr Nove bridge to na	act 6 (CCK mber 2016 e column ar	GJV), const at Bridge nd pier con- rks. The r	mation prov ruction activ D (upstream struction and monitoring 1	vities carri of WM2 there we	ed out on 2A(a)) wer re no disch	11 to 15 re mainly narge due
		2. According to the site photo record from the monitoring team on 11, 12 and 14 November 2016, slightly turbid water was observed at WM2A(a) while the water quality at WM2A-C was clear. On 15 November 2016, the water quality at both WM2A(a) and WM2A-C were visually clear. (<i>Photo 1 to 8</i>)						
		possil Nove Dam envisa	ole cause of mber 2016. was clear	f exceedanc It was ob which rev he works an	t upstream o be during the oserved that t ealed the n rea at upstrea	monitorir the water of o water of	ng days on quality at t quality im	11 to 15 he Nylon pact was
		ET at		on 10 Nover	was conduc nber 2016 ar red below.	-		
		Ir	n view of t	the nature	construction of work, wa mited. (<i>Phot</i>	stewater	generated	-
		fc re C	or Bridge D ecord of ontractor o	(<i>Photo 15</i> , wastewater f Contract	cilites (3 nos Figures 1 d treatment 6, the waster e Discharge I	<i>and 2)</i> Acc systems water disc	cording to provided harge fron	the daily by the n the site
					ucted to prel before diver	-		-

	treatment. (Photo 16)
	 (d) Concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. (<i>Photo 17</i>)
	(e) To minimize the muddy runoff from the site, the Contractor has covered the exposed slopes as far as practicable. (<i>Photo 18</i>)
5.	There was no adverse water quality impact identified during site inspection and the water quality mitigation implemented on site was generally in order. Besides, there were no rain recorded during 11 to 15 November 2016 and muddy runoff generated from the site into the river course was unlikely to occur. In our investigation, it is considered that the exceedances were related to natural variation and unlikely caused by the works under the Contract.
6.	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There were no exceedances recorded on 16 and 17 November 2016. Nevertheless, the Contractor should continually implement the water mitigation measures in full gear as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	28 November 2016

Photo 1

On 11 November 2016, turbid water was observed in the existing river course and WM2A(a).

Photo 2

On 11 November 2016, the water quality observed at WM2A-C was clear.

Photo 3

On 12 November 2016, turbid water was observed in the existing river course and WM2A(a).

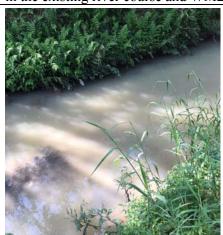
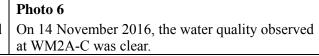



Photo 5PhoOn 14 November 2016, turbid water was observed
in the existing river course and WM2A(a).On
at W

Photo 4

On 12 November 2016, the water quality observed at WM2A-C was clear.

Photo 7 On 15 November 2016, the water quality observed at WM2A(a) was clear.

at WM2A-C was clear.

Photo 9

On 11 November 2016, the water quality observed at Nylon Dam was clear.

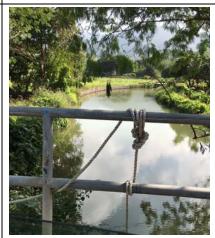


Photo 11 On 14 November 2016, the water quality observed at Nylon Dam was clear.

Photo 10

On 12 November 2016, the water quality observed at Nylon Dam was clear.

On 15 November 2016, the water quality observed

Photo 12

On 15 November 2016, the water quality observed at Nylon Dam was clear.

Photo 13

Bridge column and pier construction were carried out at Bridge D. In view of the nature of work, wastewater generated from the active works was very limited.

Photo 14

Bridge column and pier construction were carried out at Bridge D. In view of the nature of work, wastewater generated from the active works was very limited.

Wastewater treatment facilites were provided for

Photo 16

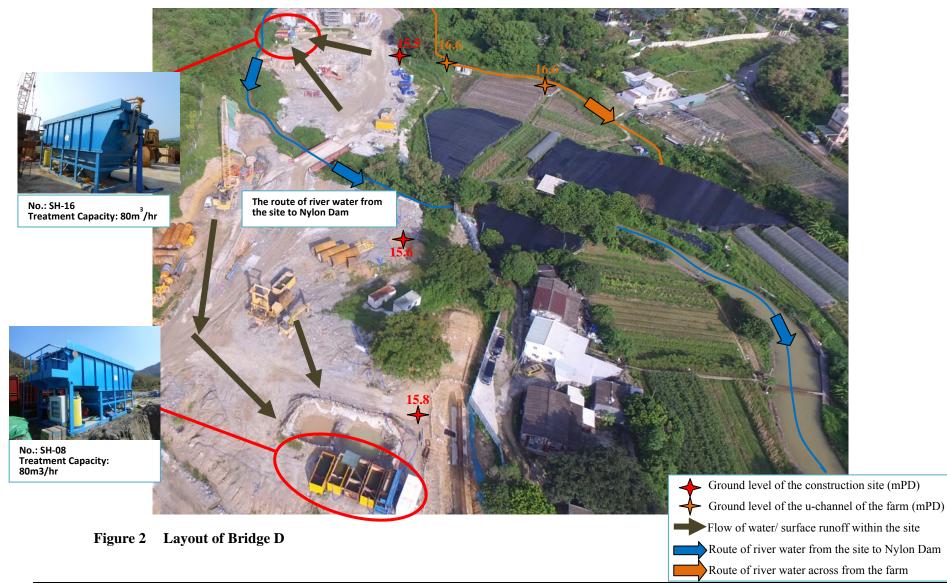
Sump pit was constructed to preliminary settled the particulates in the water before diverted to the AquaSed for proper treatment.

Photo 17

Photo 15

Bridge D

Concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site.



The exposed slopes have been covered with tarpaulin as far as practicable.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0764.doc Action-United Environmental Services & Consulting

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract 6

То	Mr. Vincent Chan	Fax No	By e-m	nail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	29 Nove	ember 2016
Our Ref	TCS00694/13/300/ F0772	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of V 16 November 2016 (Contract 6)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0733 dated 16 November 2016 TCS00694/13/300/F0765 dated 25 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Μ	r. David Chan (EPD)
Μ	r. Steve Lo (CE/BCP, NTWDO, CEDD)
Μ	r. Simon Leung (ER of C6/ AECOM)

 Fax:
 2685 1155

 Fax:
 3547 1659

 Fax:
 2251 0698

 By email

Mr. Antony Wong (IEC, SMEC)

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project			CE 45/2	2008		
Date		15 Nov 2016	16 Nov 2016	15 Nov 2016	16 Nov 2016	
Location			WM.	3x		
Time		11:25	10:55	11:25	10:55	
Parameter		Turbid	ity (NTU)	Suspended So	olids (mg/L)	
A	-1	13.4 AND 120%	of upstream control	12.6 AND 1209		
Action Lev	el		the same day	control station o		
Limit Leve	1	14.0 AND 130%	of upstream control	12.9 AND 130%	A	
	[the same day	control station o		
Measured	WM3-C	3.8	6.9	<2	8.0	
Level	WM3x	347.5	224.5	272.0	274.0	
Exceedance	e	Limit Level	Limit Level	Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		(CCKJV), the Park (upstream mainly pre-be monitoring lo	the site information construction activities m of WM3x) carried o ored socketed steel F cations and works area	s at South Portal and ut on 15 and 16 Nor I-pile and bored p s are shown in Figur	d Wo Keng Shan vember 2016 was ile works. The e 1.	
		2. According to the site photo record from the monitoring team on 15 and 16 November 2016, muddy water was observed at WM3x while the water quality at WM3-C was clear. (<i>Photo 1 to 4</i>)				
		3. As advised by CCKJV, a portion of works area at Sha Tau Kok Road was handed over to other Contractor since 5 September 2016 and discharge of turbid water to the gully by other Contractor was observed on 15 and 16 November 2016. (<i>Photo 5 & 6</i>)				
		4. Weekly joint site inspection was conducted in November 2016 at South Portal and Wo Keng Shan Park. It was observed that wastewater treatment facilites were maintained properly at both works area. No adverse water quality impact and muddy discharge was observed. The water quality of discharge point in South Portal and at river branch of Ng Tung River which adjacent to the site was appeared in good condition. (<i>Photo 7 & 8</i>)				
		November 20 Contractor an advised by Co	gation, it is considered 016 were due to the od unlikely caused by CKJV, the possession other Contractor will b	discharge of muddy the works under period for the works	y water by other the Project. As s area at Sha Tau	
		been increased exceedances exceedances t 2016. Never the water mit	Event and Action, the d to daily due to the lin were triggered in d triggered in the monitor theless, the Contractor tigation measures as a nvironmental mitigation	nit level exceedance consecutive days. oring result on 17 a r should continually recommended in the	recorded until no There were no nd 18 November fully implement e implementation	

Action to be taken		implement the water mitigation measures ion schedule for environmental mitigation
Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Anh	
Date :	29 November 2016	

Photo Record	
Photo 1 Muddy water was observed at WM3x on 15 November 2016.	Photo 2 During water sampling on 15 November 2016, the water quality at WM3-C was clear.
November 2010. Image: state of the state of	Photo 4 During water sampling on 16 November 2016, the water quality at WM3-C was clear.

Discharge of turbid water to the gully by other Contractor at Sha Tau Kok Road was observed on 15 November 2016.

Photo 6

Discharge of turbid water to the gully by other Contractor at Sha Tau Kok Road was observed on 16 November 2016.

Photo 7

During site inspection, the water quality of discharge point in South Portal was appeared in good condition. Photo 8

During site inspection, the water quality in the river branch of Ng Tung River which adjacent to the site was appeared in good condition.

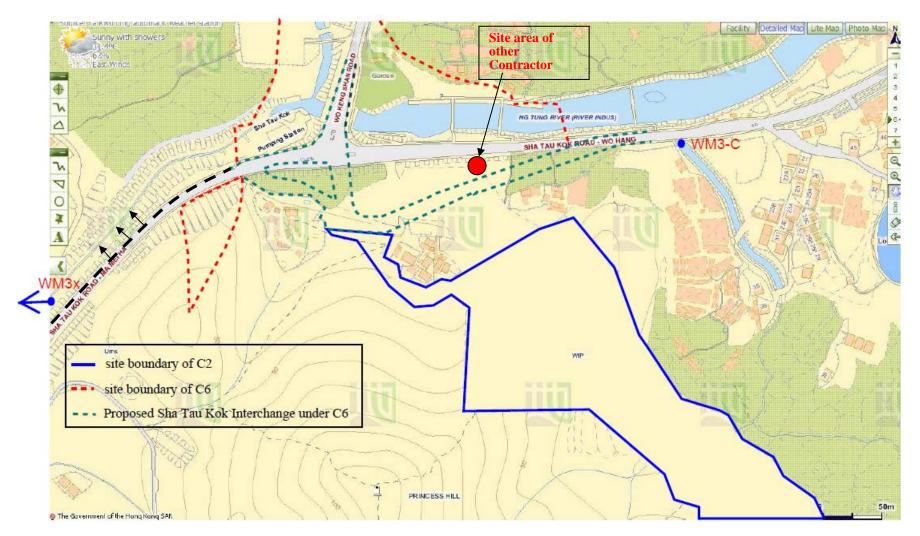


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 3	299	
Company	Dragages Hong Kong Limited				
сс					
From	Nicola Hon	Date	29 Nove	ember 2016	
Our Ref	TCS00697/13/300/ F0773	No of Pages	5	(Incl. cover sheet)	
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 15 16 November 2016 (Contract 2)				

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0734 dated 16 November 2016 TCS00694/13/300/F0766 dated 25 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

 Mr. David Chan (EPD)
 Fax:
 2685 1155

 Mr. B.K. Chow (CE/BCP, NTWDO, CEDD)
 Fax:
 3547 1659

 Mr. C T Wong (PRE, AECOM)
 Fax:
 2171 3498

 Mr. Antony Wong (IEC, SMEC)
 By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008				
Date		15 Nov 2016	16 Nov 2016	15 Nov 2016	16 Nov 2016	
Location			WM3			
Time		11:25	10:55	11:25	10:55	
Parameter			ity (NTU)	Suspended So	olids (mg/L)	
Action Level	l	station of	of upstream control the same day	12.6 AND 1209 control station o	f the same day	
Limit Level			of upstream control the same day	12.9 AND 1309 control station o		
Measured	WM3-C	3.8	6.9	<2	8.0	
Level	WM3x	347.5	224.5	272.0	274.0	
Exceedance	e	Limit Level	Limit Level	Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		(DHK), the co 2016 at upstre. The relevant w shown in Figur		carried out on 15 and perstructure work at and the water monitor	nd 16 Novembe Admin Building ring locations ar	
		2. According to the site photo record from the monitoring team on 15 and 16 November 2016, muddy water was observed at WM3x while the water quality at WM3-C was clear. (<i>Photo 1 to 4</i>)				
		3. As informed by the Contractor of Contract 6, a portion of area Sha Tau Kok Road was handed over to other Contractor since 5 September 2016 and discharge of turbid water to the gully was observed in that portion area on 15 and 16 November 2016. (<i>Photo 5 & 6</i>)				
		4. During weekly site inspection with DHK in November 2016, it was observed that superstructure work was carried out at Admin Building and wastewater generated from superstructure work was very limited. In addition that the site area of Admin Building was mostly hard paved, no adverse water impact was identified during site inspection. (<i>Photo 7</i>)				
		 In our investigation, it is considered that the exceedances on 15 and 16 November 2016 were due to the discharge of muddy water by other Contractor and unlikely caused by the works under the Project. 				
 6. According to Event and Action, the monitoring frequency at WM been increased to daily due to the limit level exceedance recorded to exceedances were triggered in consecutive days. There we exceedances triggered in the monitoring result on 17 and 18 No 2016. Nevertheless, the Contractor should continually fully impact the water mitigation measures as recommended in the implement schedule for environmental mitigation measures in the EM&A Man 						
epared By :		Nicola Hon				

Signature :

Date :

29 November 2016

Photo Record

Photo 5 Discharge of turbid water to the gully by other Contractor at Sha Tau Kok Road was observed on 15 November 2016.

Photo 6 Discharge of turbid water to the gully by other Contractor at Sha Tau Kok Road was observed on 16 November 2016.

Photo 7

Superstructure works for Admin Building was carried out at Admin Building and wastewater generated from the site was limited. The site area was mostly hard paved and no adverse water impact was identified.

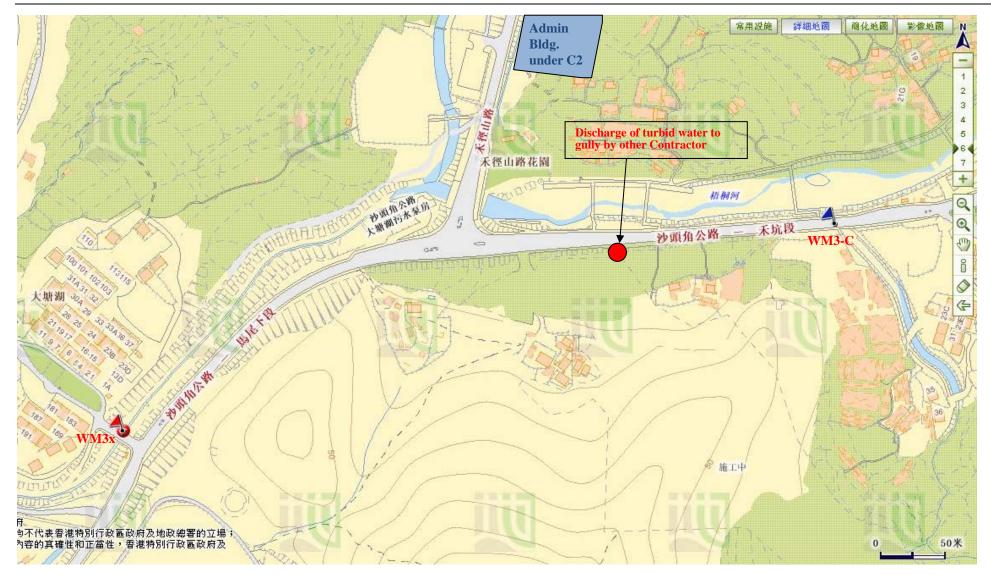


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-n	nail			
Company	CRBC-CEC-Kaden JV						
сс							
From	Nicola Hon	Date	1 Decen	nber 2016			
Our Ref	TCS00694/13/300/ F0778	No of Pages	8	(Incl. cover sheet)			
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 22, 23 and 24 November 2016						

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0754 dated 23 November 2016 TCS00694/13/300/F0760 dated 25 November 2016 TCS00694/13/300/F0775 dated 30 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project				CE 4	5/2008		
Date		22 Nov	23 Nov	24 Nov	22 Nov	23 Nov	24 Nov
Location			WM2A(a)				
Time		11:15	11:15	11:55	11:15	11:15	11:55
Parameter	,	T	urbidity (NT	TU)	Susper	nded Solids (mg/L)
Action Lev	/el		ND 120% of tation of the			D 120% of u tation of the s	
Limit Leve	el	33.8 AN	ND 130% of tation of the	upstream	17.3 AN	D 130% of u tation of the s	pstream
Measure	WM2A-C	84.5	20.2	7.6	44.0	20.0	<2
d Levels	WM2A(a)	210.5	319.0	313.5	157.5	223.0	200.0
Exceedanc	e	Limit level	Limit level	Limit level	Limit level	Limit level	Limit level
	on Results, ndations & Measures	Contra Noven bridge	nct 6 (CCKJ nber 2016 au column an	site informati V), construct t Bridge D (u d pier const shown in Fig	ion activities upstream of V ruction. Th	carried out o	on 22 to 24 vere mainly
		2. According to the site record from the monitoring team on 22 and 23 November 2016, muddy water was observed at the existing river course and WM2A(a) while the water quality at WM2A-C was slightly turbid. On 24 November 2016, muddy water was observed at the existing river course and WM2A(a) while the water quality at WM2A-C was clear. (<i>Photo 1 to 6</i>)					
 3. According to the rainfall record from the Hong Kong OP (HKO), there were rainstorms on 22 and 23 Novem Muddy water generated from runoff from the su environment and turbid water was also found throug Yeung River. Thick sediment was cumulated at the rive more muddy water was generated under vigorous water stir up sediment. (<i>Photo 7 & 8</i>) 					nber 2016. surrounding ghout Ping ver bed and		
 During weekly joint site inspection con November 2016, the water mitigation implemented. The observation dur summarized below. 				nitigation m	easures wer	e properly	
		pro Ac pro dis	ovided for ecording to povided by	reatment fac Bridge D (the daily reco the Contract n the site w rements.	Figures 1 ord of waster or of Contr	and 2 and water treatme ract 6, the	<i>Photo 9</i>) ent systems wastewater
		pa	rticulates in	as constructed the water b ent. (Photo)	before divert	ed to the A	quaSed for

tank was clear. (c) A stream diversion within the site was clear. (*Photo 11*) (d) To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. Also The Contractor has covered the exposed slopes as far as practicable. (Photo 12) 5. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 22 and 23 November 2016 were due to rainstorm and exceedances on 24 November 2016 was due to residual impact after rainstorm and not caused by the works under the Contract. 6. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There was no exceedance on 25 and 26 November 2016. The Contractor should continually implement the water mitigation measures in full gear as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	1 December 2016

Photo Record

Photo 1

On 22 November 2016, muddy water was observed at WM2A(a).

Photo 3

On 23 November 2016, muddy water was observed at WM2A(a).

On 24 November 2016, muddy water was observed at WM2A(a).

On 22 November 2016, the water quality observed at WM2A-C was slightly turbid.

Phot 4

On 23 November 2016, the water quality observed at WM2A-C was slightly turbid.

Photo 6 On 24 November 2016, the water quality observed at WM2A-C was clear.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0778.doc Action-United Environmental Services & Consulting

After rainstorm on 22 November 2016, muddy water was generated from runoff from the surrounding environment and trapped at the nylon dam.

On 23 November 2016, muddy water was generated from runoff from the surrounding environment and trapped at the nylon dam.

Photo 9 Wastewater treatment facilites were provided for Bridge D

Photo 10 A sump pit was constructed to preliminary settled the particulates in the water before diverted to the AquaSed for proper treatment.

Photo 11 A stream diversion within the site was clear.

Photo 12

To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. Also The Contractor has covered the exposed slopes as far as practicable

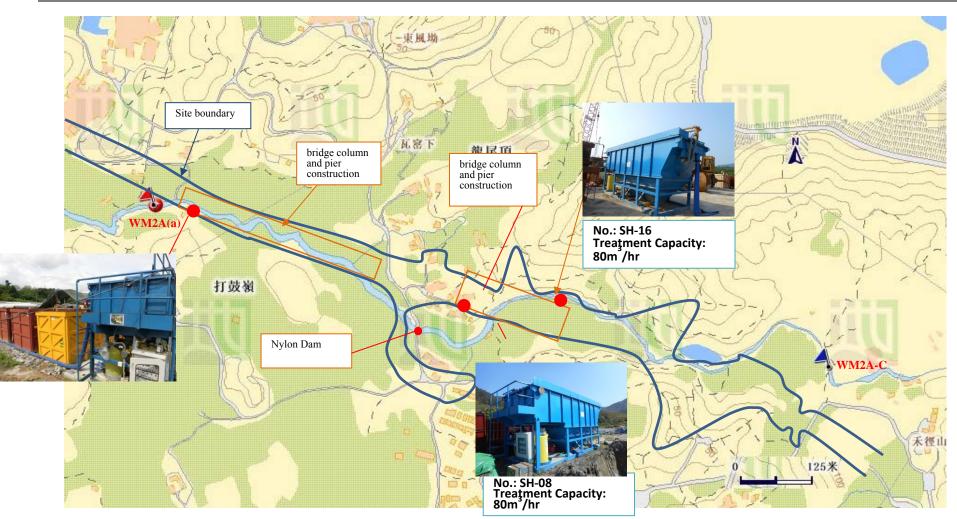
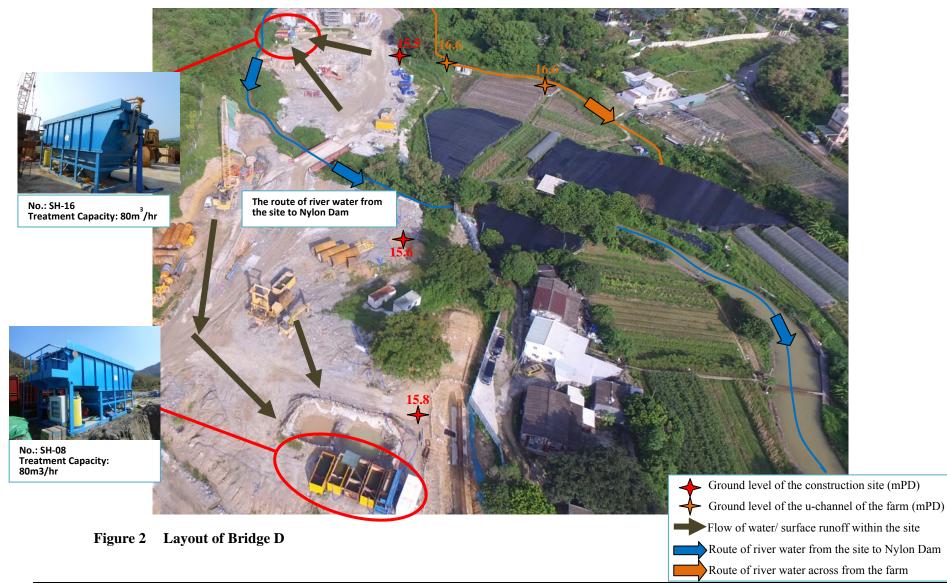



Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract 6

То	Mr. Vincent Chan	Fax No	By e-ma	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	8 December 2016	
Our Ref	TCS00694/13/300/ F0792	No of Pages	7	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary O Investigation Report of Exceedance of and 30 November 2016			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0786 dated 8 December 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl. c.c.

•			
	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008				
Date		28 Nov 2016 30 Nov 2016				
Location		WM2A(a)				
Time		12:56 10:25				
Parameter		Suspended Solids (mg/I	2)			
Action Level		14.6 AND 120% of upstream control stati	on of the same day			
Limit Level		17.3 AND 130% of upstream control stati				
Measured	WM2A-C	4.0	<2			
Levels	WM2A(a)	21.5	17.5			
Exceedance		Limit level	Limit level			
Investigation Recommend Mitigation M	ations &	 According to the site information provid of Contract 6 (CCKJV), construction acti and 30 November 2016 at Bridge D (u were mainly bridge column and pie monitoring locations and works area are size 	vities carried out on 28 pstream of WM2A(a)) r construction. The hown in Figure 1.			
		2. According to the site photo taken by the monitoring team on 28 November 2016, slightly turbid water was observed at the existing river course and WM2A(a) while the water quality at WM2A-C was clear. On 30 November 2016, the water quality at both WM2A-C and WM2A(a) were clear. (<i>Photo 1 to 4</i>)				
		3. During weekly joint site inspection conducted at Bridge D in November 2016, the water mitigation measures were properly implemented. The observation during the site inspection is summarized below.				
		 (a) Wastewater treatment facilites (3 no provided for Bridge D (<i>Figures 1</i> According to the daily record of systems provided by the Contracted wastewater discharge from the site w Discharge Licences requirements. 	and 2 and Photo 5) wastewater treatment or of Contract 6, the			
		(b) A sump pit was constructed to preliminary settle the suspended particulates in the water before diverted to the AquaSed for proper treatment. (<i>Photo 6</i>) The treated water in the final tank was clear.				
		(c) A stream diversion within the site was clear. (<i>Photo 7</i>)				
		 (d) To minimize the muddy runoff from as temporary bund was provided alig no turbid runoff and discharge was Also The Contractor has covered the opracticable. (<i>Photo 8</i>) 	gn the river course and s made from the site.			
		4. In our investigation, the implementation measures on site was in order and no				

	impact was observed. It is considered that the exceedances on 28 and 30 November 2016 were due natural variation and not caused by the works under the Contract.
5	5. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Since the SS result required 5 working days to process, the need for repeated measurement could only rely on the result of turbidity which is in-situ measurement. There were no repeated monitoring on 29 November and 1 December 2016 as no exceedance of turbidity recorded at the day before. Moreover, there were no exceedances recorded on 2 December 2016. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Auch	
Date :	8 December 2016	

Photo Record

Photo 1

On 28 November 2016, the water quality observed at WM2A(a) was slightly turbid.

Photo 3

On 30 November 2016, the water quality observed at WM2A(a) was clear.

Photo 5 Wastewater treatment facilites were provided for Bridge D

On 28 November 2016, the water quality observed at WM2A-C was clear.

Phot 4

On 30 November 2016, the water quality observed at WM2A-C was clear.

Photo 6

A sump pit was constructed to preliminary settled the particulates in the water before diverted to the AquaSed for proper treatment.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0792.doc Action-United Environmental Services & Consulting

Photo 7 A stream diversion within the site was clear.

Photo 8

To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. Also The Contractor has covered the exposed slopes as far as practicable

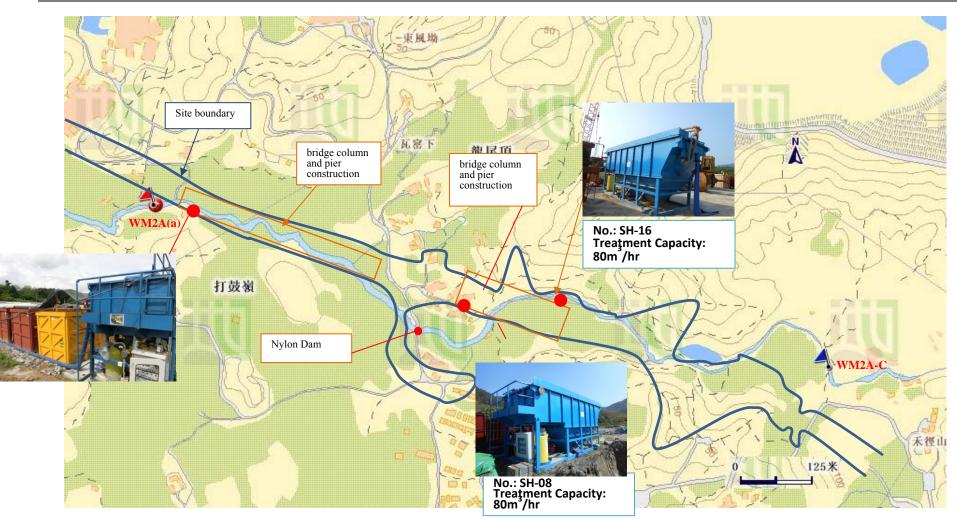
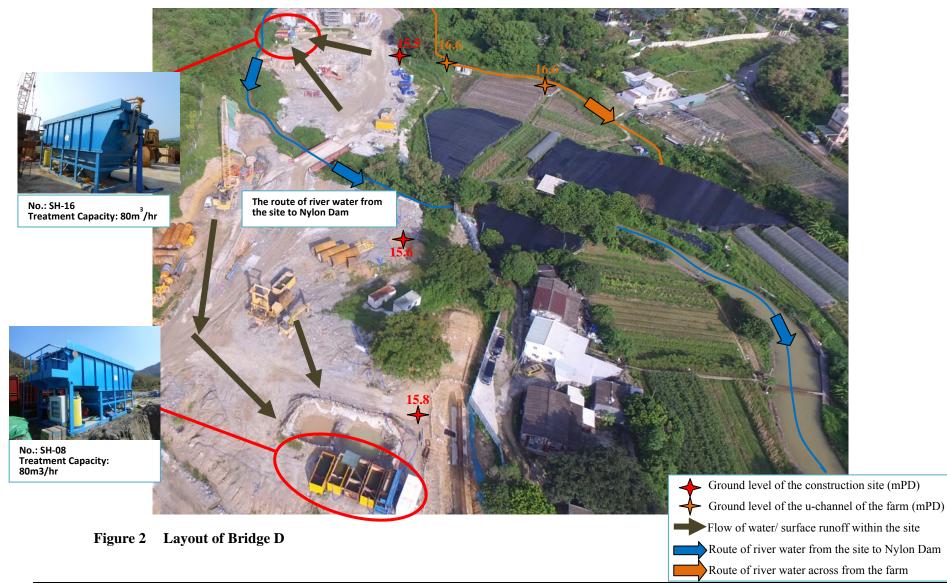



Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract 6

Mr. Vincent Chan	Fax No	By e-mail
CRBC-CEC-Kaden JV		
Nicola Hon	Date	8 December 2016
TCS00694/13/300/ F0793	No of Pages	4 (Incl. cover sheet)
8 8		
	CRBC-CEC-Kaden JV Nicola Hon TCS00694/13/300/F0793 Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary O Investigation Report of Exceedance of	CRBC-CEC-Kaden JV Nicola Hon Date TCS00694/13/300/F0793 No of Pages Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point a Investigation Report of Exceedance of Water Quality

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref. of following:

TCS00694/13/300/F0771 dated 28 November 2016 TCS00694/13/300/F0787 dated 8 December 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008				
Date		26 Nov 2016				
Location		WM	2B			
Time		10:4	43			
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)			
Action Lev	el	11.4 AND 120% of upstream control station of the same day	11.8 AND 120% of upstream control station of the same day			
Limit Leve	1	12.3 AND 130% of upstream control station of the same day	12.4 AND 130% of upstream control station of the same day			
Measured	WM2B-C	4.3	5.5			
Levels	WM2B	306.5	368.5			
Exceedance	e	Limit Level	Limit Level			
Investigation Results, Recommendations & Mitigation Measures		 Contract 6 (CCKJV), construction a 2016 at North Portal (upstream of work. The monitoring locations Figure 1. 2. According to the site record and pl team on 26 November 2016, turbic channel of WM2B while the water water sampling was carried out u water flow in the channel was rathe 3. In view of the vicinity of impact stanext to the channel of WM2B while the aver water. Moreover, muddy runoff v road and getting into the existing ri <i>3 and Figure 1</i>) 4. In our investigation, it is conside November 2016 were due rainstorm caused by the Project. 	ation WM2B, there was a public road tich cumulated of scattered domestic vas observed flowing from the public iver channel during rainstorm. (<i>Photo</i>			
		28 and 29 November 2016. N implement the water mitigation	Nevertheless, CCKJV should fully measures as recommended in the onmental mitigation measures in the			

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Aug		
Date :	8 December 2016		

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0793.doc Action-United Environmental Services & Consulting

Photo Record

Photo 1 On 26 November 2016, turbid water was observed throughout the channel of WM2B. Monitoring was carried out during heavy rain.

Photo 2 On 26 November 2016, the water at the channel of WM2B-C was clear,

Photo 3

There was a public road next to the channel of WM2B which cumulated of scattered domestic waste. Moreover, muddy runoff was observed flowing from the public road and getting into the existing river channel during rainstorm.

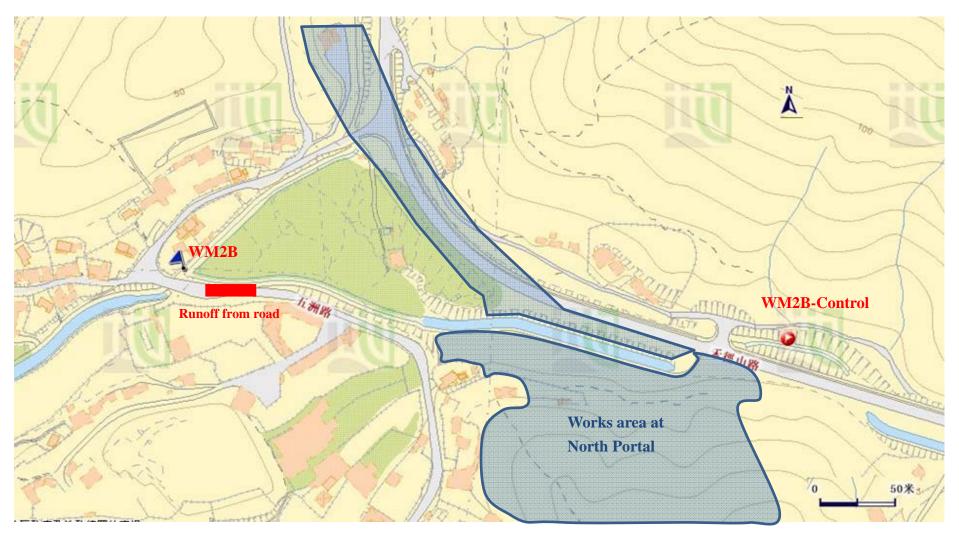


Figure 1 Location Map for Water Quality Monitoring Locations WM2B and WM2B-Control

То	Mr. Vincent Chan	Fax No	By e-ma	il
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	12 Decen	1ber 2016
Our Ref	TCS00694/13/300/ F0779	No of Pages	7	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary O Investigation Report of Exceedance of 22 and 23 November 2016 (Contract 6)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0744 dated 21 November 2016 TCS00694/13/300/F0755 dated 23 November 2016 TCS00694/13/300/F0776 dated 30 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

c.c.

Nicola Hon Environmental Consultant Encl.

Mr. David Chan (EPD)
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)
Mr. Simon Leung (ER of C6/ AECOM)
Mr. Antony Wong (IEC, SMEC)

Fax:	2685 1155
Fax:	3547 1659
Fax:	2251 0698
	By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008								
Date		19 Nov	21 Nov	22 Nov	23 Nov	19 Nov	21 Nov	22 Nov	23 Nov	
Location		17 1101	211107	221101		M3x	211107	22 110 1	23 1101	
Time		9:57	10:00	10:45	10:30	9:57	10:00	10:45	10:30	
Parameter		9.07	Turbidity		10.50			olids (mg/I		
	_	13 4 AN	D 120% of	. ,	control		*	f upstream	/	
Action Lev	el		ation of the					ie same day		
Limit Leve	1		D 130% of					fupstream		
Linnt Leve	1	st	ation of the	e same day	/	S	tation of th	the same day		
Measured	WM3-C	10.7	6.7	8.7	21.0	3.0	<2	16.5	16.0	
Level	WM3x	38.8	24.3	126.0	37.7	40.5	18.0	127.5	38.0	
Exceedance	e	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	
& Measures	fitigation	 Accon Novel at WI water flow i while Week Portal facilit qualit discha adjace Inspe- water obvio was re In our Novel sedim 	ored socked ons and work rding to the mber 2016 M3-C was sampling in the chan the water of ly joint site and Wo H res were m y impact a arge point ent to the ction was flowing flue us thick see eadily form r investigate	eted steel orks areas e site pho , turbid wa clear. (P) was carrie quality at V e inspectie Keng Sham naintained and mudd in South I site was also unde from the o ediment cu ned under tion, it is c were like ated at the	H-pile and are illustration to record ater was of <i>aoto 1 to</i> ed out durivery rapid WM3-C with on was con Park. In properly y discharg Portal and appeared rtaken at construction imulated a water flow onsidered by due to t	nd bored j ated in Figu from the r bserved at 4) On 22 ring rain and a Turbid ras slightly onducted on t was obser at slightly onducted on t was obser at both we ge was obser at river br d in good Ng Tung H on site wa at the chan t the chan t that the exc he muddy t bed. Mor	pile works ire 1. nonitoring WM3x wh 2 and 23 M nd it was r water was turbid. (<i>Ph</i> n 24 Nover ved that w orks area. served. T anch of Ng condition River and is s clear. H nel bed and <i>I & 12</i>) ceedances of turbulence reover, the	er 2016 wa s. The m team on 1 ⁴ ile the water Noted that to observed a poto 5 to 8) mber 2016 vastewater 1 No adver he water q g Tung Riv. (<i>Photo 9</i> it was obsection of the lowever, the d muddy tu on 19, 21, 2 formed by monitored	onitoring 9 and 21 er quality 2016, the the water at WM3x at South treatment rse water quality of er which 9 & 10) erved the here was irbulence 22 and 23 the loose drainage	
		 chann road consid relate 5. Accon increa excee 	tel near Wi surface v dered that d to the rai rding to Ev used to da dances we	M3x woul ia open the excee n. vent and A nily due t re triggere	d also col drain and dances or ction, the o the lin od in conse	lect the rai d commun n 22 and 2 monitoring nit level e ecutive day	n water fro al channe 23 Noveml 3 frequency exceedance vs. There w	om the Sha 1. Therefo ber 2016 v 7 at WM3x recorded vere no exc Neverthe	Tau Kok re, it is vere also has been until no eedances	

	Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	12 December 2016

Photo Record

Photo 1

Turbid water was observed at WM3x on 19 November 2016.

Photo 2 During water sampling on 19 November 2016, the water quality at WM3-C was clear.

Turbid water was observed at WM3x on 21 Photo 4

During water sampling on 21 November 2016, the water quality at WM3-C was clear.

Photo 5

November 2016.

On 22 November 2016, the water sampling was carried out during rain and it was noted that the water flow in the channel water very rapid. Turbid water was observed at WM3x.

During water sampling on 22 November 2016, slightly turbid water was observed at WM3-C.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0779.doc Action-United Environmental Services & Consulting

Photo 7

On 23 November 2016, the water sampling was carried out during rain and it was noted that the water flow in the channel water very rapid. Turbid water was observed at WM3x.

During water sampling on 23 November 2016, slightly turbid water was observed at WM3-C.

Photo 9

During site inspection on 24 November 2016, the water quality of discharge point in South Portal was appeared in good condition.

During site inspection on 24 November 2016, the water quality of discharge point in South Portal was appeared in good condition.

Photo 11

During site inspection at Ng Tung River on 24 November 2016, it was observed the water flowing from the construction sites clear. However, there was obvious thick sediment cumulated at the channel bed and muddy turbulence was readily formed under water flow.

Photo 12

During site inspection at Ng Tung River on 24 November 2016, it was observed that thick sediment was cumulated at the channel bed and muddy turbulence was readily formed under water flow.

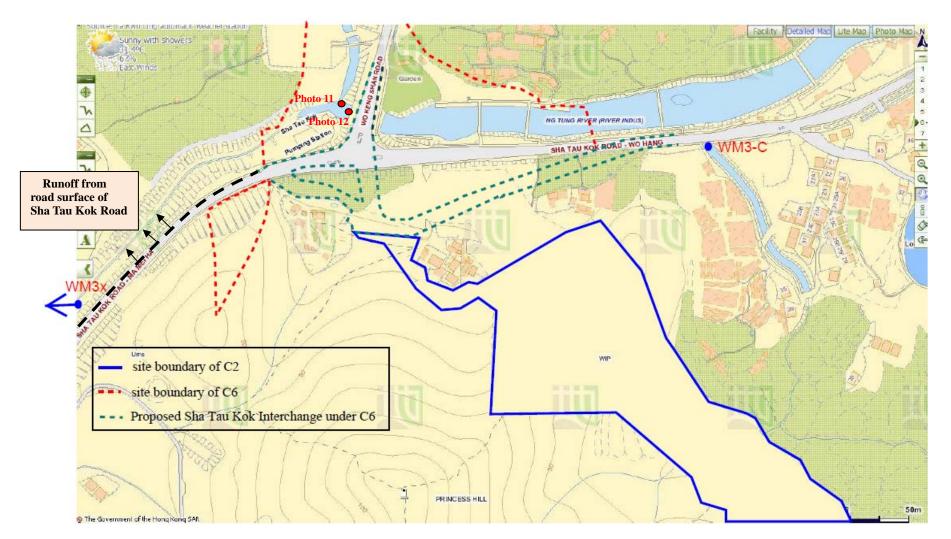


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 32	299	
Company	Dragages Hong Kong Limited				
сс					
From	Nicola Hon	Date	12 Decer	mber 2016	
Our Ref	TCS00697/13/300/ F0780	No of Pages	6	(Incl. cover sheet)	
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 19, 21, 22 and 23 November 2016 (Contract 2)				

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0745 dated 21 November 2016 TCS00694/13/300/F0756 dated 23 November 2016 TCS00694/13/300/F0777 dated 30 November 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD) Mr. B.K. Chow (CE/BCP, NTWDO, CEDD)	Fax: Fax:	2685 1155 3547 1659
Mr. C T Wong (PRE, AECOM)	Fax:	2171 3498
Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project				CE 45	5/2008			
Date	19 Nov	21 Nov	22 Nov	23 Nov	19 Nov	21 Nov	22 Nov	23 Nov
Location		1		WN	M3x	1		
Time	9:57	10:00	10:45	10:30	9:57	10:00	10:45	10:30
Parameter		Turbidity	y (NTU)		S	uspended S	Solids (mg/	′L)
Action Level	13.4 AN	ND 120% o	f upstream	o control	12.6 Al	ND 120% c	of upstream	n control
Action Level		tation of th				station of th		
Limit Level		ND 130% o				ND 130% c		
		tation of th				station of th		
Measured WM3 Level WM3		6.7	8.7	21.0	3.0	<2	16.5	16.0
Level WM3		24.3	126.0	37.7	40.5	18.0	127.5	38.0
Exceedance	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level
Investigation Results, Recommendation & Mitigati Measures	 son area to of W area to of W area to of W area to 0 area	rding to the onstruction M3x was s inder C2 ar rding to the mber 2016. G-C was cleaned water we quality at an and water we quality at an ag weekly s outperstructure ated from so of Admin F fied during ung River an clear. Ho hel bed an to 10 & 11) r investigat mber 2016 hent cumul hel near Wi surface via he exceedant rding to Ew ased to day adances we ared in the factor should hel near Wi surface via he exceedant	activities superstruct of the wate e site pho , turbid wate ear. (<i>Photo</i> rried out of very rapid. WM3-C w site inspect ure work very superstruct Building w g site inspect and it was wever, the d muddy tion, it is c were like ated at th M3x woul open drai nces on 22 vent and <i>A</i> aily due re triggere monitorin d continuan	carried out ture work a er monitorin oto record iter was obse o 1 to 4) huring rain Turbid ras slightly tion with I was carried ture work v vas mostly ection. (<i>Pha</i> observed the ere was of turbulence considered to ly due to the e channel d also coll n and comme and 23 No action, the to the lim ed in conse ag result or ally fully in lementation	and it was water was turbid. (<i>Ph</i> OHK in No d out at A was very lin hard pavece oto 9) Ins water flo by ious thice was read that the exc he muddy bed. Mon ect the rai munal char wember 20 monitoring nit level of courted and monitoring nit level of courted and monitoring nit level of courted and monitoring nit level of courted and monitoring nit level of courted and not a state of courted and monitoring nit level of courted and not a state of courted and monitoring nit level of courted and not a state monitoring nit level of courted and monitoring nit level of courted and not a state monitoring nit level of courted and not a state monitoring nit level of courted and not a state monitoring	23 Novemb Building. Is are illustin nonitoring VM3x while 23 Novem noted that observed boto 5 to 8) ovember 20 dmin Build mited. In d, no adver spection wa owing from ck sedimen lily formed ceedances of turbulence reover, the n water from mel. There in the sediment of the sediment is sediment for the sediment of the sediment is sediment turbulence reover, the n water from mel. There is frequency exceedance with the sediment of the sediment is sediment turbulence reover, the n water from the sediment is sediment to be sediment the sediment of the sediment is sediment the sediment is sediment the sediment the sediment is sediment the sediment the sediment the sediment is sediment the s	ber 2016 at The relev rated in Fig team on e the water nber 2016, the water f at WM3x 016, it was ling and v addition th se water in as also und the constr at cumulat d under w on 19, 21, formed by monitored by monitored to related t v at WM3x is constructed to recorded vere no ex Neverth itigation m	t upstream rant works gure 1. 19 and 21 r quality at the water flow in the while the s observed wastewater nat the site mpact was lertaken at uction site ted at the rater flow. 22 and 23 y the loose d drainage a Tau Kok considered to the rain. c has been until no rceedances heless, the reasures as

Prepared By :	Nicola Hon			
Designation :	Environmental Consultant			
Signature :	Auh			
Date :	12 December 2016			

Photo Record

Photo 1

Turbid water was observed at WM3x on 19 November 2016.

Photo 3

Turbid water was observed at WM3x on 21 November 2016.

Photo 5

On 22 November 2016, the water sampling was carried out during rain and it was noted that the water flow in the channel water very rapid. Turbid water was observed at WM3x.

Photo 2 During water sampling on 19 November 2016, the water quality at WM3-C was clear.

Photo 4

During water sampling on 21 November 2016, the water quality at WM3-C was clear.

Photo 6 During water sampling on 22 November 2016, slightly turbid water was observed at WM3-C.

On 23 November 2016, the water sampling was carried out during rain and it was noted that the water flow in the channel water very rapid. Turbid water was observed at WM3x.

Photo 9

Superstructure works for Admin Building was carried out at Admin Building and wastewater generated from the site was limited. The site area was mostly hard paved and no adverse water impact was identified.

Photo 8

During water sampling on 23 November 2016, slightly turbid water was observed at WM3-C.

Photo 10

During site inspection at Ng Tung River on 24 November 2016, it was observed the water flowing from the construction sites clear. However, there was obvious thick sediment cumulated at the channel bed and muddy turbulence was readily formed under water flow.

Photo 11

During site inspection at Ng Tung River on 24 November 2016, it was observed that thick sediment was cumulated at the channel bed and muddy turbulence was readily formed under water flow.

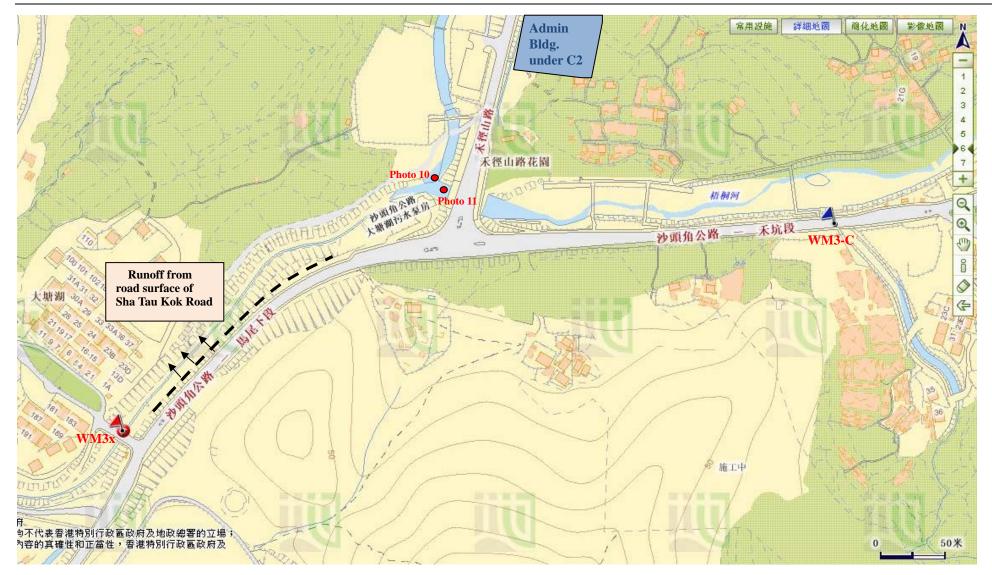


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-ma	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	12 Decen	nber 2016
Our Ref	TCS00694/13/300/ F0794	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 25, 26 and 28 November 2016 (Contract 6)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0761 dated 25 November 2016 TCS00694/13/300/F0772 dated 28 November 2016 TCS00694/13/300/F0788 dated 8 December 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant Encl.

c.c.	

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

	triggered in the monitoring result on 29 and 30 November 2016.
	Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for
	environmental mitigation measures in the EM&A Manual.
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Auch		
Date :	12 December 2016		

Photo Record

Photo 1

Slightly turbid water was observed at WM3x on 25 November 2016.

Photo 2 During water sampling on 25 November 2016, the water quality at WM3-C was clear.

Photo 4

During water sampling on 26 November 2016, the water quality at WM3-C was slightly turbid.

Photo 6

During water sampling on 28 November 2016, the water quality at WM3-C was clear.

Photo 3

On 26 November 2016, the water sampling was carried out during rain and it was noted that the water flow in the channel water very rapid. Turbid water was observed at WM3x.

Photo 5

Slightly turbid water was observed at WM3x on 28 November 2016.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0794.doc Action-United Environmental Services & Consulting

Photo 9

During site inspection on 24 November 2016, the water quality of discharge point in South Portal was appeared in good condition.

Photo 10

During site inspection on 24 November 2016, the water quality of discharge point in South Portal was appeared in good condition.

Photo 11

During site inspection at Ng Tung River on 24 November 2016, it was observed the water flowing from the construction sites clear. However, there was obvious thick sediment cumulated at the channel bed and muddy turbulence was readily formed under water flow.

During inspection at Ng Tung River on 25 November 2016, it was observed that thick sediment was cumulated at the channel bed and muddy turbulence was readily formed under water flow.

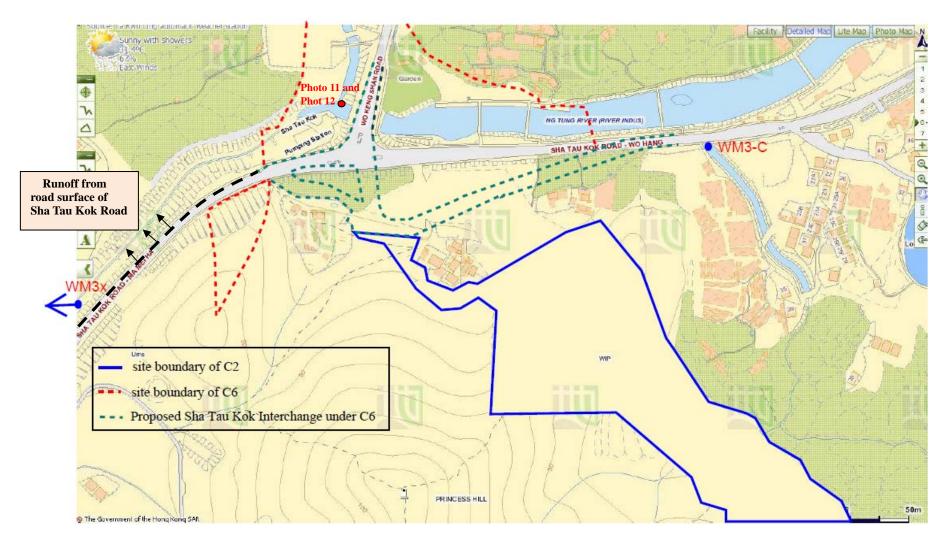


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

Mr. Roger Lee	Fax No	2717 32	99
Dragages Hong Kong Limited			
Nicola Hon	Date	12 Decen	nber 2016
TCS00697/13/300/ F0795	No of Pages	6	(Incl. cover sheet)
8 8 ·			
	Dragages Hong Kong Limited Nicola Hon TCS00697/13/300/F0795 Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of and 28 November 2016 (Contract 2)	Dragages Hong Kong Limited Nicola Hon Date TCS00697/13/300/F0795 No of Pages Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point an Investigation Report of Exceedance of Water Quality and 28 November 2016 (Contract 2)	Dragages Hong Kong Limited Nicola Hon Date 12 Decer TCS00697/13/300/F0795 No of Pages 6 Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associa Investigation Report of Exceedance of Water Quality at Locat

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0762 dated 25 November 2016 TCS00694/13/300/F0773 dated 28 November 2016 TCS00694/13/300/F0789 dated 8 December 2016

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155	
Mr. B.K. Chow (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659	
Mr. C T Wong (PRE, AECOM)	Fax:	2171 3498	
Mr. Antony Wong (IEC, SMEC)		By e-mail	

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008						
Date		25 Nov	26 Nov	28 Nov	25 Nov	26 Nov	28 Nov	
Location		WM3x						
Time		10:45	11:29	14:18	10:45	11:29	14:18	
Parameter		Turbidity (NTU)			Suspended Solids (mg/L)			
Action Level		13.4 AND 120% of upstream control station of the same day			12.6 AND 120% of upstream control station of the same day			
Limit Level		14.0 AND 130% of upstream control station of the same day			12.9 AND 130% of upstream control station of the same day			
Measured Level	WM3-C	6.6	28.9	8.5	11.0	31.5	5.0	
	WM3x	23.4	531.5	26.8	27.0	492.0	13.0	
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		1. According to the site information provided from the Contractor of C2 (DHK), the construction activities carried out on 25 to 28 November 2016 at upstream of WM3x was superstructure work at Admin Building. The relevant works area under C2 and the water monitoring locations are illustrated in Figure 1.						
		2. According to the site photo record from the monitoring team on 25 and 28 November 2016, slight turbid water was observed at WM3x while the water quality at WM3-C was clear. On 26 November 2016, the water sampling was carried out during rain and it was noted that the water flow in the channel water very rapid. Turbid water was observed at WM3x while the water quality at WM3-C was slightly turbid. (<i>Photo 1 to 6</i>)						
		3. During weekly site inspection with DHK in November 2016, it was observed that superstructure work was carried out at Admin Building and wastewater generated from superstructure work was very limited. In addition that the site area of Admin Building was mostly hard paved, no adverse water impact was identified during site inspection. (<i>Photo 7</i>) Inspection was also undertaken at Ng Tung River and it was observed the water flowing from the construction site was clear. However, there was obvious thick sediment cumulated at the channel bed and muddy turbulence was readily formed under water flow. (<i>Photo 8 & 9</i>)						
		4. In our investigation, it is considered that the exceedances on 25 and 28 November 2016 were likely due to the muddy turbulence formed by the loose sediment cumulated at the channel bed. Moreover, the monitored drainage channel near WM3x would also collect the rain water from the Sha Tau Kok road surface via open drain and communal channel. Therefore, it is considered that the exceedances on 26 November 2016 were related to the rain.						
		5. According to Event and Action, the monitoring frequency at WM3x has increased to daily due to the limit level exceedance recorded untersceedances were triggered in consecutive days. There were no exceedance triggered in the monitoring result on 29 and 30 November 20 Nevertheless, the Contractor should continually fully implement the mitigation measures as recommended in the implementation schedule environmental mitigation measures in the EM&A Manual.					rded until no o exceedances rember 2016. ent the water	

Prepared By :	Nicola Hon				
Designation :	Environmental Consultant				
Signature :	Anh				
Date :	12 December 2016				

Photo Record

Photo 1

Slightly turbid water was observed at WM3x on 25 November 2016.

Photo 3

On 26 November 2016, the water sampling was carried out during rain and it was noted that the water flow in the channel water very rapid. Turbid water was observed at WM3x

Photo 2

During water sampling on 25 November 2016, the water quality at WM3-C was clear.

Photo 4

During water sampling on 26 November 2016, the water quality at WM3-C was slightly turbid.

November 2016.

During water sampling on 28 November 2016, the water quality at WM3-C was clear.

Photo 7

Superstructure works for Admin Building was carried out at Admin Building and wastewater generated from the site was limited. The site area was mostly hard paved and no adverse water impact was identified.

Photo 8

During site inspection at Ng Tung River on 24 November 2016, it was observed the water flowing from the construction sites clear. However, there was obvious thick sediment cumulated at the channel bed and muddy turbulence was readily formed under water flow.

Photo 9

During inspection at Ng Tung River on 25 November 2016, it was observed that thick sediment was cumulated at the channel bed and muddy turbulence was readily formed under water flow.

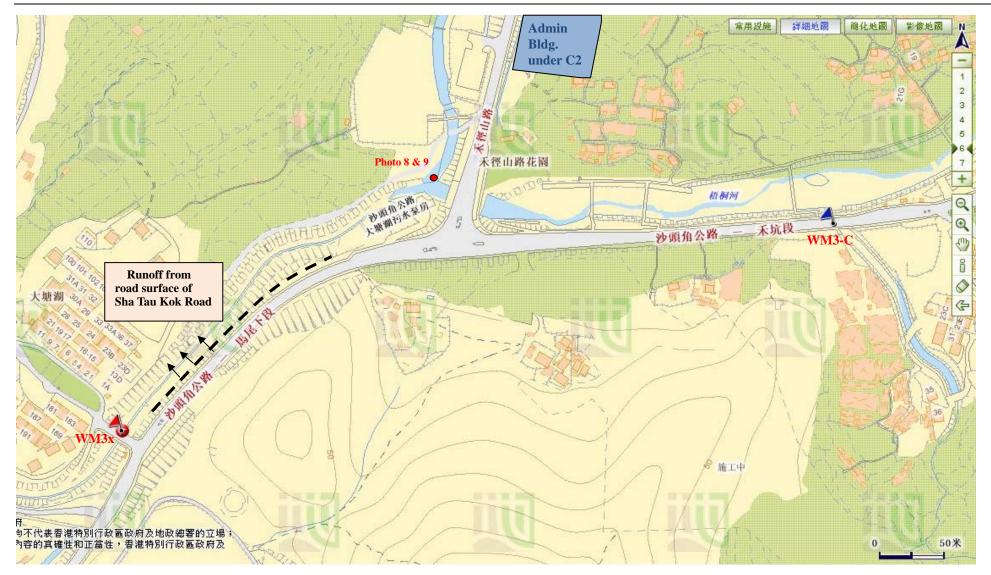


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location