
Report

Contract No. HY/2012/08
Tuen Mun – Chek Lap Kok Link –
Northern Connection Sub-sea Tunnel
Section

Fourth Annual Environmental Monitoring & Audit (EM&A) Report

26 November 2018

Environmental Resources Management 2507, 25/F One Harbourfront 18 Tak Fung Street Hunghom, Kowloon Hong Kong Telephone 2271 3000 Facsimile 2723 5660

ERM

www.erm.com

Ref.: HYDHZMBEEM00_0_7021L.18

26 November 2018

By Fax (2293 6300) and By Post

AECOM Supervising Officer Representative's Office No.8 Mong Fat Street, Tuen Mun, New Territories, Hong Kong

Attention: Messrs. Andy Westmoreland / Roger Man

Dear Sirs,

Re: Agreement No. CE 48/2011 (EP)
Environmental Project Office for the
HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing
Facilities, and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2012/08 TM-CLKL Northern Connection Sub-sea Tunnel Section

Fourth Annual Environmental Monitoring & Audit (EM&A) Report

Reference is made to the Fourth Annual EM&A Report (Nov. 2016 – Oct. 2017) (ET's ref.: "0212330_4th Annual EM&A_20181126.doc" dated 26 November 2018) certified by the ET Leader and provided to us via e-mail on 26 November 2018.

Please be informed that we have no further comments on the captioned Report. However, as mentioned in our letters for the First, Second and Third Annual EM&A Report (our ref. HYDHZMBEEM00_0_4359L.16, HYDHZMBEEM00_0_5396L.17, and HYDHZMBEEM00_0_6338L.18), we would like to draw your attention that the ET shall supplement the Report with respect to the following observation:

1. Detailed review, analysis and evaluation of dolphin monitoring data covering annual period as per sections 1.5.1.6 and 12.9.1.1 (vi) of the EM&A Manual for TM-CLKL with level of details not less than the same part in your submitted quarterly EM&A Report and AFCD's annual marine mammal monitoring reports applicable to the dolphin monitoring.

Thank you for your attention. Please do not hesitate to contact the undersigned or the ENPO Leader Mr. Y. H. Hui should you have any queries.

Yours sincerely,

F. C. Tsang

Independent Environmental Checker

Tuen Mun – Chek Lap Kok Link

Q:\Projects\HYDHZMBEEM00\02_Proj_Mqt\02_Corr\2018\HYDHZMBEEM00_0_7021L.18.docx

C.C.

HyD - Mr. Stephen Chan (By Fax: 3188 6614) HyD - Mr. Tony Pang (By Fax: 3188 6614)

AECOM - Mr. Conrad Ng (By Fax: 3922 9797) ERM - Dr. Jasmine Ng (By Fax: 2723 5660)

Dragages - Bouygues JV - Mr. Bryan Lee (By Fax: 2293 7499)

Internal: DY, YH, DF, ENPO Site

Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section

Fourth Annual Environmental Monitoring & Audit (EM&A) Report

Document Code: 0212330_4th Annual EM&A_20181126.doc

Environmental Resources Management

2507, 25/F One Harbourfront 18 Tak Fung Street Hunghom, Kowloon Hong Kong Telephone: (852) 2271 3000

Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Client:		Project No:					
DBJV		0212330					
Summary	:	Date:					
_		26 Nove	ember 20	18			
		Approved by:					
This document presents the Fourth Annual EM&A Report for Tuen Mun – Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section.							
		Mr Crai	g Reid				
		Partner					
		Certified I	by:				
		Jas	mill				
		Dr Jasn	nine Na				
		ET Leade	-				
	4 th Annual EM&A Report	VAR	JN	CAR	26/11/18		
Revision	Description	Ву	Checked	Approved	Date		
'ERM Hong- Contract wit taking accou	has been prepared by Environmental Resources Management the trading name of Kong, Limited', with all reasonable skill, care and diligence within the terms of the h the client, incorporating our General Terms and Conditions of Business and int of the resources devoted to it by agreement with the client. any responsibility to the client and others in respect of any matters outside the above.	Distribution Internal OHSAS 18001:2007 Certificate No. OHS 5154 Public Confidential ISO 9001: 2008 Certificate No. FS 325					

TABLE OF CONTENTS

	LEXECUTIVE SUMMARY	I
1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	SCOPE OF REPORT	2
1.3	ORGANIZATION STRUCTURE	2
1.4	SUMMARY OF CONSTRUCTION WORKS	2
2	EM&A RESULTS	5
2.1	AIR QUALITY	5
2.2	Water Quality Monitoring	9
2.3	DOLPHIN MONITORING	16
2.4	EM&A SITE INSPECTION	21
2.5	WASTE MANAGEMENT STATUS	21
2.6	ENVIRONMENTAL LICENSES AND PERMITS	22
2.7	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	25
2.8	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMA	NCE
	LIMIT	25
2.9	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS	27
2.10	COMPARISON OF EM&A DATA WITH EIA PREDICTIONS	27
2.11	SUMMARY OF MONITORING METHODOLOGY AND EFFECTIVENESS	30
2.12	SUMMARY OF MITIGATION MEASURES	30
3	REVIEW OF EM&A PROGRAMME	32
3.1	SITE INSPECTIONS & AUDITS	32
3.2	AIR QUALITY MONITORING	32
3.3	MARINE WATER QUALITY MONITORING	32
3.4	WASTE MANAGEMENT	33
3.5	MARINE ECOLOGY MONITORING	33
3.6	SUMMARY OF RECOMMENDATIONS	33
4	CONCLUSIONS	34

APPENDIX A PROJECT ORGANIZATION

APPENDIX B ENVIRONMENTAL MITIGATION AND

ENHANCEMENT MEASURE IMPLEMENTATION

SCHEDULES (EMIS)

APPENDIX C ACTION AND LIMIT LEVELS

APPENDIX D AIR QUALITY MONITORING RESULTS

APPENDIX E WATER QUALITY MONITORING RESULTS

APPENDIX F IMPACT DOLPHIN MONITORING

APPENDIX G EVENT AND ACTION PLAN

APPENDIX H CUMULATIVE STATISTICS ON EXCEEDANCE AND

COMPLAINT

APPENDIX I WASTE FLOW TABLE

EXECUTIVE SUMMARY

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of the Tuen Mun – Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET) in accordance with *Environmental Permit No. EP-354/2009/A*. Ramboll Hong Kong Limited was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO). Subsequent applications for variation of environmental permits (VEP), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

The construction phase of the Project commenced on 1 November 2013 and will tentatively be completed by the end of 2018. The impact monitoring of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

This is the Fourth Annual EM&A report presenting the EM&A works carried out during the period from 1 November 2016to 31 October 2017 for the *Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section* (the "Project") in accordance with the Updated EM&A Manual of the TM-CLK Link Project. As informed by the Contractor, the major activities in the reporting year included:

Construction Activities Undertaken

Land-based Works

- Box Culvert Extension at Works Area Portion N-A;
- Phase 2 Surcharge Removal Portion N-A;
- Preparation of Stage 2 Reclamation Portion N-A
- Shaft Structure and Backfilling Portion N-C;
- Construction of North Ventilation Building Portion N-C;
- Construction of Cross Passage Tympanum TBM tunnel;
- Cross Passage Lining Installation TBM Tunnel;
- Corbel Construction TBM Tunnel;
- Excavation of Sub-sea Tunnel TBM tunnel;
- Sub-sea Tunnel Gallery Installation TBM tunnel;
- Ground Freezing Works Portion S-A
- Bulk Excavation Portion S-A;
- Deep Band Drain Installation Portion S-A; and
- Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction Portion S-A.

Construction Activities Undertaken

Marine-based Works

- Installation of silt curtain Portion N-A;
- Dredging Portion N-A;
- Construction of Vertical Seawall at Portion N-A;
- Band drain installation at Portion N-A; and
- Filling works at Portion N-A.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP Monitoring 120 sessions

1-hour TSP Monitoring 121 sessions

Water Quality Monitoring 66 sessions

Impact Dolphin Monitoring 24 sessions

Joint Environmental Site Inspection 52 sessions

Implementation of Marine Mammal Exclusion Zone

Daily marine mammal exclusion zone was in effect during the period of dredging, reclamation or marine sheet piling works in open waters under this Contract. Passive Acoustic Monitoring (PAM) was also implemented for the detection of marine mammal when dredging, reclamation or marine sheet piling works were carried out outside the daylight hours under this Contract. No sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded in the reporting period during the exclusion zone monitoring.

Summary of Breaches of Action/Limit Levels

Breaches of Action and Limit Levels for Air Quality

Fourteen (14) Action Level exceedances of 1-hour TSP, one (1) Limit Level exceedance of 1-hour TSP and one (1) Action Level exceedance of 24-hour TSP were recorded in the air quality monitoring of this reporting period.

Breaches of Action and Limit Levels for Water Quality

No Action Level or Limit Level exceedances were recorded from the water quality monitoring in this reporting period.

Dolphin Monitoring

Whilst four (4) Limit Level exceedances were recorded for four (4) sets of quarterly dolphin monitoring data between November 2016 and October 2017, no unacceptable impact from the construction activities of the TM-CLKL

Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations during dolphin monitoring in this reporting period.

Environmental Complaints, Non-compliance & Summons

No non-compliance with EIA recommendations, EP conditions and other requirements associated with the construction of this Contract was recorded in this reporting period.

Seven (7) environmental complaint cases were received in this reporting period. The investigation reports were submitted to ENPO and reported in the subsequent EM&A reports.

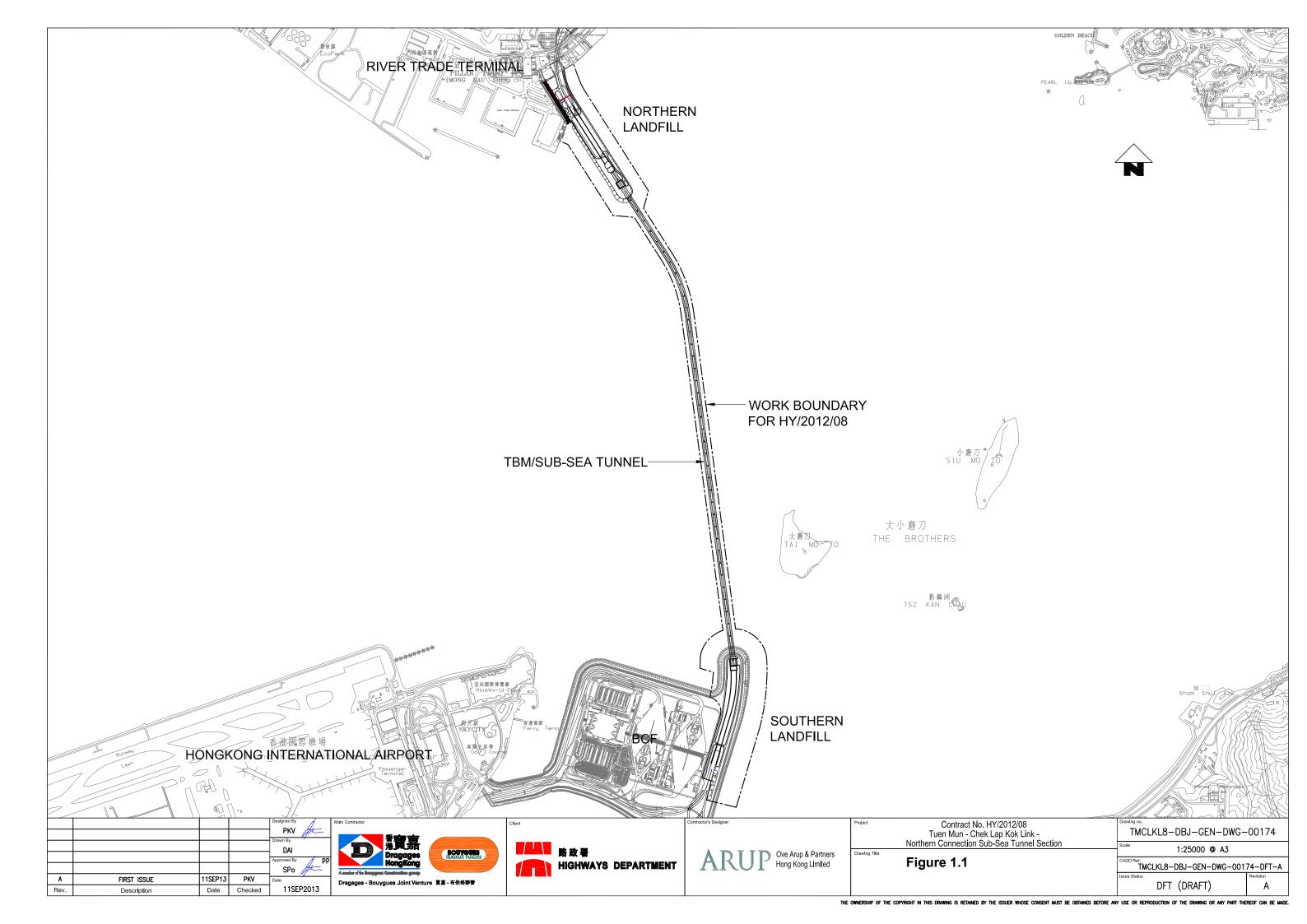
A notification of summons regarding the complaint case received on 17 November 2016 has been received in the reporting period.

Review of EM&A programme

The EM&A requirements have been reviewed and were considered as adequate and effective. No change to the requirements was considered to be necessary. The recommended environmental mitigation measures were also considered to be effective and efficient in reducing the potential environmental impacts associated with the construction of the Project. No change was thus considered necessary.

Overall, the EM&A results indicated that the Project has not caused unacceptable environmental impacts. This is in agreement with the assessment presented in the EIA Report.

1.1 BACKGROUND


According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong – Zhuhai – Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau – Tuen Mun – Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. ESB-175/2007) and the *Technical Memorandum of the Environmental Impact Assessment Process (EIAO-TM*). The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number AEIAR-146/2009), an Environmental Permit (EP-354/2009) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (VEP) (EP-354/2009A) was issued on 8 December 2010. Subsequent applications for variation of environmental permits (VEP), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of TM-CLKL while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). Ramboll Hong Kong Limited was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO).

Layout of the Contract components is presented in *Figure 1.1*.

The construction phase of the Contract commenced on 1 November 2013 and will tentatively be completed by 2020. The impact monitoring phase of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

1.2 Scope of Report

This is the Fourth Annual EM&A Report under the *Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section*. This report presents a summary of the environmental monitoring and audit works from 1 November 2016 to 31 October 2017.

1.3 ORGANIZATION STRUCTURE

The organization structure of the Contract is shown in *Appendix A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Highways Department	Engr 22/HZMB	Chow Man Lung, Andrew	2762 4110	2762 4110
SOR (AECOM Asia Company	Chief Resident Engineer	Roger Man	2293 6388	2293 6300
Limited)	Ü	Andrew Westmoreland	2293 6360	2293 6300
ENPO / IEC (Ramboll Hong Kong	ENPO Leader	Y.H. Hui	3465 2850	3465 2899
Limited)	IEC	Dr. F.C. Tsang	3465 2851	3465 2899
Contractor (Dragages - Bouygues Joint Venture)	Environmental Officer	Bryan Lee	2293 7323	2293 7499
	24-hour complaint hotline	Rachel Lam	2293 7330	
ET (ERM-HK)	ET Leader	Jovy Tam	2271 3113	2723 5660

1.4 SUMMARY OF CONSTRUCTION WORKS

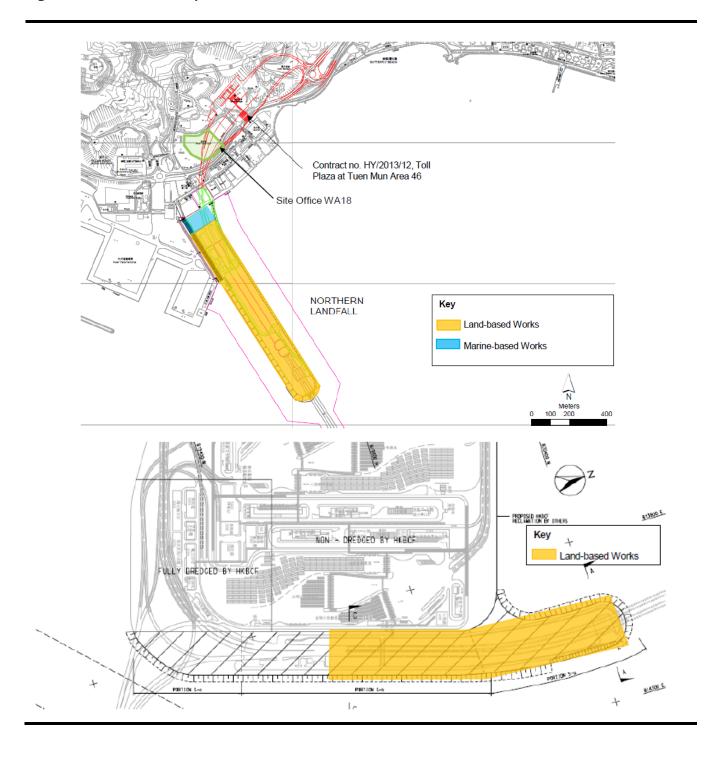
With reference to DBJV's information, details of major construction works carried out in this reporting period are summarized in *Table 1.2*.

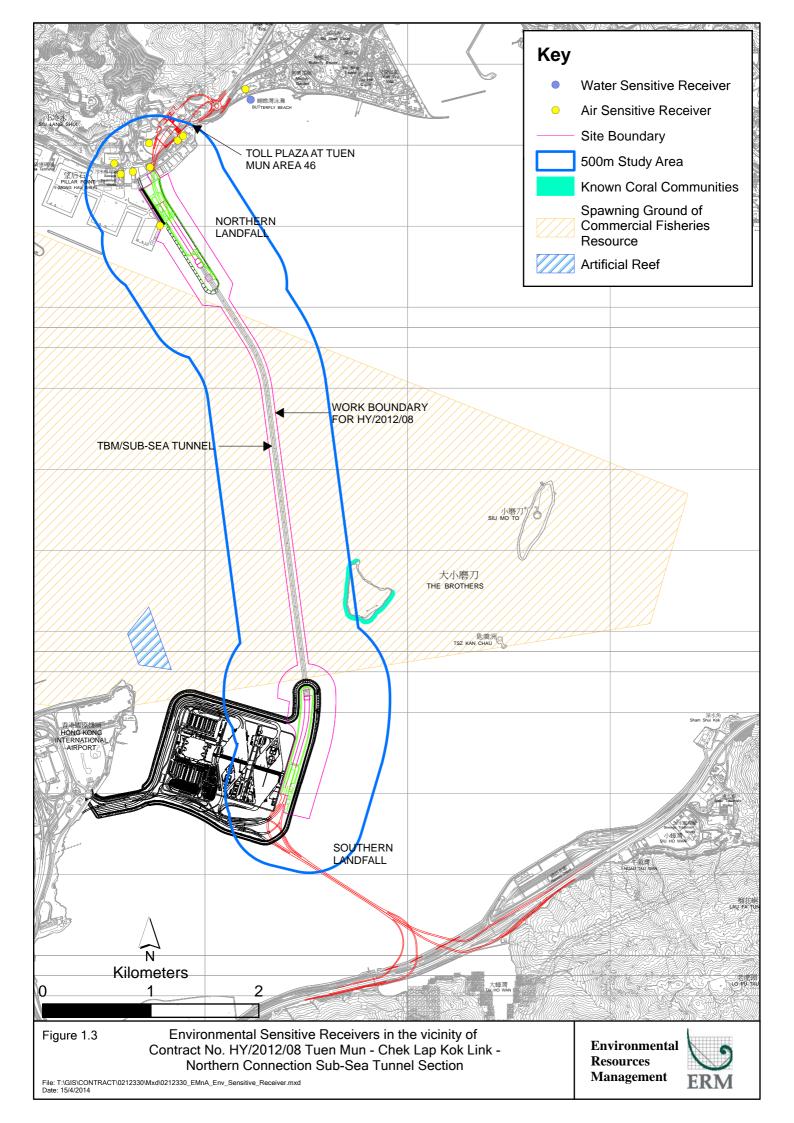
The general layout plan of the site showing the detailed works areas is shown in *Figure 1.2*. The Environmental Sensitive Receivers in the vicinity of the Project are shown in *Figure 1.3*.

The implementation schedule of environmental mitigation measures is presented in *Appendix B*.

Table 1.2 Summary of Construction Activities Undertaken during the Reporting Period

Construction Activities Undertaken


Land-based Works


- Box Culvert Extension at Works Area Portion N-A;
- Phase 2 Surcharge Removal Portion N-A;
- Preparation of Stage 2 Reclamation Portion N-A
- Shaft Structure and Backfilling Portion N-C;
- Construction of North Ventilation Building Portion N-C;
- Construction of Cross Passage Tympanum TBM tunnel;
- Cross Passage Lining Installation TBM Tunnel;
- Corbel Construction TBM Tunnel;
- Excavation of Sub-sea Tunnel TBM tunnel;
- Sub-sea Tunnel Gallery Installation TBM tunnel;
- Ground Freezing Works Portion S-A
- Bulk Excavation Portion S-A;
- Deep Band Drain Installation Portion S-A; and
- Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction Portion S-A.

Marine-based Works

- Installation of silt curtain Portion N-A;
- Dredging Portion N-A;
- Construction of Vertical Seawall at Portion N-A;
- Band drain installation at Portion N-A; and
- Filling works at Portion N-A

Figure 1.2 Locations of Construction Activities - November 2016 to October 2017

2 EM&A RESULTS

The EM&A programme required environmental monitoring for air quality, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections

2.1 AIR QUALITY

2.1.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual and the *Enhanced TSP Monitoring Plan* ⁽¹⁾, impact 1-hour TSP monitoring was conducted three (3) times in every six (6) days and impact 24-hour TSP monitoring was carried out once in every six (6) days when the highest dust impact was expected. 1-hr and 24-hr TSP monitoring frequency was increased to three times per day every three days and daily every three days respectively as excavation works for launching shaft commenced on 24 October 2014.

High volume samplers (HVSs) were used to carry out the 1-hour and 24-hour TSP monitoring in the reporting period at the five (5) air quality monitoring stations in accordance with the requirements stipulated in the Updated EM&A Manual (*Figure 2.1*; *Table 2.1*). Wind anemometer was installed at the rooftop of ASR5 for logging wind speed and wind direction. Details of the equipment deployed are provided in *Table 2.2*.

⁽¹⁾ ERM (2013) Enhanced TSP Monitoring Plan. Submitted on 28 October 2013 and subsequently approved by EPD on 1 November 2013.

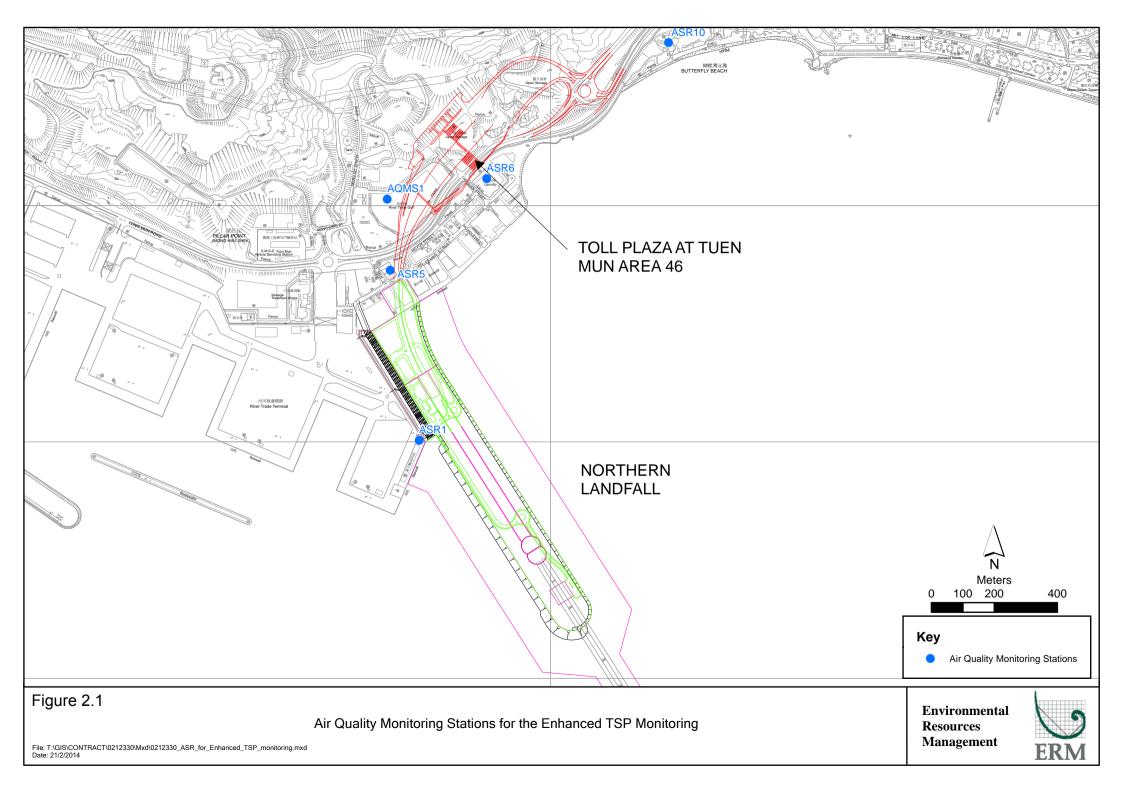


Table 2.1 Locations of Impact Air Quality Monitoring Stations and Monitoring Dates in this Reporting Period

Monitoring Station	Location	Description	Parameters & Frequency
ASR1	Tuen Mun Fireboat Station	Office	TSP monitoring • 1-hour Total Suspended
ASR5	Pillar Point Fire Station	Office	Particulates (1-hour TSP, μ g/m³), 3 times in every 6 days
AQMS1	Previous River Trade Golf	Bare ground	• 24-hour Total Suspended Particulates (24-hour TSP,
AQMS2/ASR6	Bare ground at Ho Suen Street /Butterfly Beach Laundry	Bare ground/Office	μg/m³), daily for 24-hour in every 6 days Enhanced TSP monitoring (commenced on 24 October 2014)
ASR10	Butterfly Beach Park	Recreational uses	 1-hour Total Suspended Particulates (1-hour TSP, μg/m³), 3 times in every 3 days 24-hour Total Suspended Particulates (24-hour TSP, μg/m³), daily for 24-hour in every 3 days

*Notes: AQMS2 was relocated and HVS was re-installed at ASR6 (Butterfly Beach Laundry) on 17 January 2014. AQMS2 was then superseded by ASR6 for the impact air quality monitoring. Impact air quality monitoring at ASR6 commenced on 21 January 2014.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (1-hour TSP and 24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Sampler (Model No. TE-5170)
Wind Meter	Davis (Model: Weather Wizard III (S/N: WE90911A30)
	Davis (Model: Vantage Pro 2 (S/N:
	AS160104014
Wind Anemometer for calibration	Lutron (Model No. AM-4201)

2.1.2 Action & Limit Levels

The Action and Limit Levels of the air quality monitoring are provided in *Appendix C*. The Event and Action plan is presented in *Appendix G*.

2.1.3 Results and Observations

Impact air quality monitoring was conducted at all designated monitoring stations in the reporting period under acceptable weather conditions. The major dust sources in the reporting period include construction activities under the Contract and *Contract No. HY/2013/12* as well as nearby traffic emissions.

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in *Tables 2.3* and *2.4*, respectively. Baseline and impact monitoring results are

presented graphically in *Appendix D*. The detailed impact air quality monitoring data and meteorological information were reported in the *Thirty-seventh* to *Forty-eighth Monthly EM&A Report*.

Table 2.3 Summary of 1-hour TSP Monitoring Results in this Reporting Period

Month/Year	Station	Average (μg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
November	ASR 1	137	33 - 545	331	500
2016 to	ASR 5	160	27 - 456	340	500
October 2017	AQMS1	102	10 - 473	335	500
	ASR6	131	30 - 401	338	500
	ASR10	86	18 - 475	337	500

Table 2.4 Summary of 24-hour TSP Monitoring Results in this Reporting Period

Month/Year	Station	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
November	ASR 1	83	35 - 220	213	260
2016 to	ASR 5	81	30 - 163	238	260
October 2017	AQMS1	60	24 - 160	213	260
	ASR6	70	32 - 138	238	260
	ASR10	57	21 - 205	214	260

In this reporting period, a total of 121 monitoring events were undertaken. Fourteen (14) Action Level exceedance and one (1) Limit Level exceedance of 1-hour TSP was recorded. One (1) Action Level exceedance of 24-hour TSP was recorded. Summary of exceedances for Air Quality Impact Monitoring in this reporting period is detailed in *Table 2.24*.

As shown in *Table 2.5*, the annual average 1-hour TSP and 24-hour TSP level in the reporting period were generally lower than the corresponding average levels of baseline at most monitoring stations. The annual average 1-hour TSP was higher than the corresponding average levels of baseline at ASR1 and ASR5.

In order to determine any significant air quality impacts caused by construction activities from this Contract, one-way ANOVA (with setting α at 0.05) was conducted to examine whether the observed differences are significant between reporting period and baseline monitoring. For 1-hour TSP, the average results of monitoring stations AQMS1 and ASR10 in the reporting period were significantly lower than the average results of baseline monitoring while there were no significant differences for ASR6. average results of monitoring stations ASR1 and ASR5 in the reporting period were slightly higher than the average results of baseline monitoring (AQMS1: $F_{1,404} = 11.51, p < 0.01, ASR6: F_{1,404} = 0.20, p = 0.66, ASR1: F_{1,404} = 1.15, p = 0.66$ 0.28, ASR10: $F_{1,404} = 46.6$, p < 0.01 and ASR5: $F_{1,404} = 4.36$ p = 0.037). For 24hour TSP, the average results of all monitoring stations in the reporting period were significantly lower than the average results of baseline monitoring (AQMS1: $F_{1,133} = 109.54$, p < 0.01, ASR6: $F_{1,133} = 200.06$, p < 0.01, ASR1: $F_{1,133} = 200.06$ 20.47, p < 0.01, ASR10: F_{1,133} = 120.05, p < 0.01 and ASR5: F_{1,133} = 106.36, p < 0.010.01). In the reporting period, 1-hour and 24-hour TSP were varied across

sampling months (see *Appendix D*) and these variations were however not consistent throughout the reporting period.

Table 2.5 Summary of Average Levels of TSP Level of Baseline Monitoring and Reporting Period (in µg/m³)

Monitoring Station	Average Baseline Monitoring	Average Impact Monitoring
ASR1(1-hour TSP)	125	137
ASR1(24-hour TSP)	128	83
ASR5(1-hour TSP)	138	160
ASR5(24-hour TSP)	167	81
AQMS1(1-hour TSP)	131	102
AQMS1(24-hour TSP)	127	60
ASR6(1-hour TSP)	135	131
ASR6(24-hour TSP)	166	70
ASR10(1-hour TSP)	134	86
ASR10(24-hour TSP)	129	57

Further to the One-way ANOVA, Linear Regression was conducted to examine any relationship between TSP levels and time (i.e. number of days after construction works commencement) during this yearly monitoring period at each monitoring station. Linear regression analysis makes assumptions of equal variance and normal distribution of data. Therefore, the significance level of the test was set at 1 % (i.e. p = 0.01) to reduce the chance of committing a Type 1 error. If a significant regression relationship was found between TSP level and time (i.e. p < 0.01), r^2 value from the analysis would be further assessed. This value represents the proportion of the total variation in the dependent variable (i.e. TSP level) that is accounted for by the fitted regression line and is referred to as the coefficient of determination. An r² value of 1 indicates a perfect relationship (or fit) whereas a value of 0 indicates that there is no relationship (or no fit) between the dependent and independent variables. As there are no specific criteria to indicate how meaningful an r² value is, for the purposes of this EM&A programme a value of 0.60 was adopted to indicate a meaningful regression. If $r^2 < 0.60$ then it was considered that there was a weak relationship between TSP level and time or none at all. If the regression analysis indicated $r^2 > 0.60$ then it had been interpreted that there was in fact a strong relationship between the dependent and independent variables (i.e. a strong temporal trend of increasing / decreasing TSP level with time).

As shown in *Table 2.6*, results of the regression analysis indicated that there was no significant ($r^2 < 0.60$) relationship between TSP level and time during this yearly monitoring period. As such, it is considered that there is no apparent trend of increasing / decreasing TSP level during the reporting period.

Table 2.6 Linear Regression Result of TSP Monitoring

Parameter	Station	\mathbb{R}^2	F-ratio	p-value	Intercept	Coefficient
1-hour TSP	AQMS1	0.003	$F_{1,361} = 1.13$	< 0.001	138.8	-0.028
	AQMS2 /ASR6	0.004	$F_{1,361} = 1.43$	<0.001	179.2	-0.037

Parameter	Station	R ²	F-ratio	p-value	Intercept	Coefficient
	ASR1	0.001	$F_{1,361} = 0.49$	0.03	104.0	0.026
	ASR10	0.002	$F_{1,361} = 0.88$	< 0.001	112.2	-0.021
	ASR5	< 0.001	$F_{1,361} = 0.092$	< 0.001	173.6	-0.011
24-hour TSP	AQMS1	0.105	$F_{1,118} = 13.7$	< 0.001	143.4	-0.065
	AQMS2	0.046	$F_{1.118} = 5.58$	< 0.001	129.1	-0.046
	/ASR6	0.040	1 1,118 3.30	10.001	127.1	-0.040
	ASR1	0.051	$F_{1,118} = 6.29$	0.727	-13.46	0.075
	ASR10	0.015	$F_{1,118} = 1.81$	< 0.001	90.8	-0.026
	ASR5	<u>0.020</u>	$F_{1,118} = 2.38$	< 0.001	128.2	-0.037

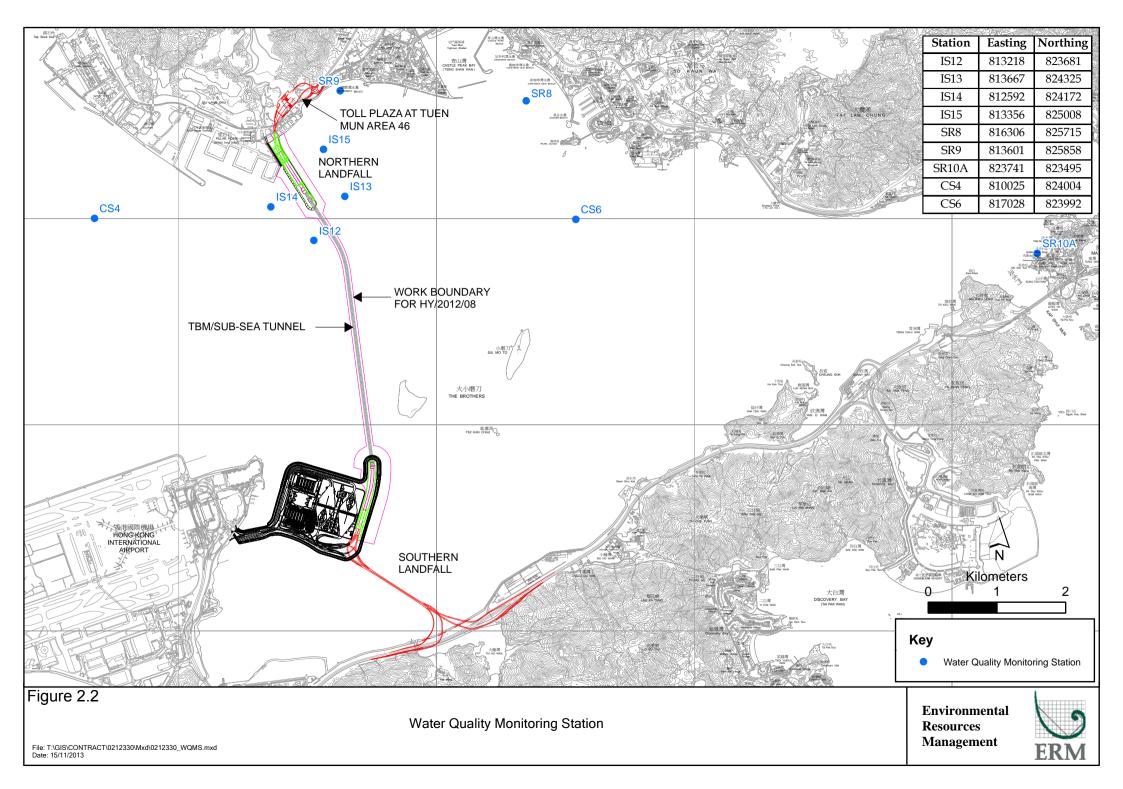
Note:

2.2 WATER QUALITY MONITORING

The baseline water quality monitoring undertaken by the Hong Kong – Zhuhai – Macao Bridge Hong Kong Projects (HKZMB) between 6 and 31 October 2011 included all monitoring stations for the Project. Thus, the baseline monitoring results and Action/Limit Levels presented in HKZMB Baseline Monitoring Report (1) are adopted for this Project.

2.2.1 Monitoring Requirements & Equipment

In accordance with the Updated EM&A Manual, impact water quality monitoring was carried out three (3) days per week during the construction period at nine (9) water quality monitoring stations (*Figure 2.2*; *Table 2.7*).


Table 2.7 Locations of Water Quality Monitoring Stations and the Corresponding Monitoring Requirements

Station ID	Type	Coordinates		*Parameters, unit	Depth	Frequency
		Easting	Northing	_		
IS12	Impact Station	813218	823681	Temperature(°C)	3 water depths: 1m	Impact
IS13	Impact Station	813667	824325	 pH(pH unit) 	below sea surface,	monitoring: 3
IS14	Impact Station	812592	824172	 Turbidity (NTU) 	mid-depth and 1m	days per week,
IS15	Impact Station	813356	825008	 Water depth (m) 	above sea bed. If	at mid-flood
CS4	Control / Far	810025	824004	 Salinity (ppt) 	the water depth is	and mid-ebb
	Field Station			 DO (mg/L and 	less than 3m, mid-	tides during the
CS6	Control / Far	817028	823992	% of	depth sampling	construction
	Field Station			saturation)	only. If water	period of the
SR8	Sensitive	816306	825715	• SS (mg/L)	depth less than 6m,	Contract.
	receiver				mid-depth may be	
	(Gazettal				omitted.	
	beaches in					
	Tuen Mun)					
SR9	Sensitive	813601	825858			
	receiver					
	(Butterfly					
	Beach)					
	-					

⁽¹) Agreement No. CE 35/2011 (EP) Baseline Environmental Monitoring for Hong Kong - Zhuhai - Macao Bridge Hong Kong Projects - Investigation. Baseline Environmental Monitoring Report (Version C). Submitted on 8 March 2012 and subsequently approved by EPD.

^{1.} Dependent variable is set as TSP levels (in $\mu g/m^3$) and independent variable is set as number of day of construction works.

^{2.} R² <0.6 and p-value >0.01 (i.e. showing the regression insignificant) are underlined.

Type	Coordinates		*Parameters, unit	Depth	Frequency
Sensitive	823741	823495	_		
receiver					
(Ma Wan					
FCZ)					
	Sensitive receiver (Ma Wan	Sensitive 823741 receiver (Ma Wan	Sensitive 823741 823495 receiver (Ma Wan	Sensitive 823741 823495 receiver (Ma Wan	Sensitive 823741 823495 receiver (Ma Wan

^{*}Notes:

In addition to the parameters presented monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or works underway nearby were also recorded.

Table 2.8 summarizes the equipment used in the impact water quality monitoring programme.

Table 2.8 Water Quality Monitoring Equipment

Equipment	Model	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
Dissolved Oxygen Meter	YSI Pro 2030	1
pH Meter	HANNA HI 9125	1
Turbidity Meter	HACH 2100Q	1
Monitoring Position	"Magellan" Handheld GPS Model explorist GC	4
Equipment	DGPS Koden KGP913MK2 (1)	1

2.2.2 Action & Limit Levels

The Action and Limit Levels of the water quality monitoring is provided in *Appendix C*. The Event and Action plan is presented in *Appendix G*.

2.2.3 Results and Observations

During this reporting period, major marine works included dredging, reclamation filling and construction of vertical seawall. On 20 May 2017, dredging and marine filling works for Phase-II reclamation of Northern Landfall has been completed. There will be no marine filling and dredging works to be carried out until the resumption of seawall construction at Northern Landfall in December 2017.

Impact water quality monitoring was conducted at all designated monitoring stations in the reporting period under favourable weather conditions. Baseline and impact monitoring results are presented graphically in *Appendix E* and detailed impact water quality monitoring data were reported in the *Thirty-eighth* to *Forty-third Monthly EM&A Report*. Water Quality Monitoring was suspended from 1 June 2017 effectively and will resume when construction of seawall commences in the fourth quarter of 2017 tentatively.

In this reporting period, a total of 66 monitoring events were undertaken in which no Action Level or Limit Level exceedances were recorded from the water quality monitoring in this reporting period. Summary of exceedances for Water Quality Impact Monitoring in this reporting period is detailed in *Table 2.25*.

In order to determine any significant water quality impacts caused by construction activities from this Contract, One-way ANOVA (with setting α at 0.05) was conducted to examine whether there was significant difference in

DO, turbidity and SS between reporting period and baseline monitoring The annual average levels and statistical analysis results are presented in *Tables 2.9 to 2.11* and *Tables 2.12 to 2.14*, respectively. the DO levels recorded during the reporting period were significantly higher than the results obtained during the baseline monitoring period. The annual depth-averaged turbidity recorded in the reporting period were significantly lower than the average levels in baseline monitoring, except for SR10A and SR9 in mid-ebb tide and SR10A in mid-flood tide in which turbidity levels during this reporting period were comparable to the corresponding average baseline levels. The SS levels recorded during the reporting period were significantly lower than the results obtained during the baseline monitoring period, except for SR9 in both mid-ebb and mid-flood tide in which the SS levels recorded during the baseline monitoring period were comparable to the corresponding average baseline levels. Whilst DO, turbidity and suspended solids levels were varied across sampling months (see *Appendix E*) these variations were, however, not consistent throughout the reporting period.

Table 2.9 Summary of Average DO Level of Baseline Monitoring and the Reporting Period (in mg/L)

Tide	Station	Depth	Average DO of baseline	Average DO of reporting
		-	monitoring	period
Mid-ebb	IS12	Surface	6.1	7.2
	IS13	Surface	6.1	7.2
	IS14	Surface	6.1	7.2
	IS15	Surface	6.1	7.2
	SR10A	Surface	6.0	7.3
	SR8	Surface	6.2	7.2
	SR9	Surface	6.0	7.2
Mid-flood	IS12	Surface	6.1	7.3
	IS13	Surface	6.1	7.3
	IS14	Surface	6.1	7.3
	IS15	Surface	6.2	7.3
	SR10A	Surface	6.0	7.4
	SR8	Surface	6.2	7.3
	SR9	Surface	6.0	7.3
Mid-ebb	IS12	Middle	5.9	7.3
	IS13	Middle	6.0	7.3
	IS14	Middle	6.0	7.2
	IS15	Middle	6.0	7.3
	SR10A	Middle	5.9	7.3
Mid-flood	IS12	Middle	5.9	7.4
	IS13	Middle	6.0	7.4
	IS14	Middle	5.9	7.3
	IS15	Middle	6.1	7.4
	SR10A	Middle	5.9	7.4
Mid-ebb	IS12	Bottom	5.9	7.3
	IS13	Bottom	5.9	7.3
	IS14	Bottom	5.9	7.3
	IS15	Bottom	5.9	7.3
	SR10A	Bottom	5.7	7.3
	SR8	Bottom	6.0	7.3
	SR9	Bottom	5.8	7.3
Mid-flood	IS12	Bottom	5.9	7.4
	IS13	Bottom	5.9	7.4
	IS14	Bottom	5.9	7.4

Environmental Resources Management 0212330_4th Annual EM&A_20181126.doc

Tide	Station	Depth	Average DO of baseline monitoring	Average DO of reporting period
	IS15	Bottom	6.0	7.4
	SR10A	Bottom	5.8	7.4
	SR8	Bottom	5.8	7.4
	SR9	Bottom	5.9	7.4

Table 2.10 Summary of Average Depth-averaged Turbidity Level of Baseline Monitoring and the Reporting Period (in NTU)

Tide	Station	Average depth- averaged turbidity of baseline monitoring	Average depth- averaged turbidity of reporting period
Mid-ebb	IS12	10.7	6.7
	IS13	9.2	6.7
	IS14	9.3	6.7
	IS15	9.8	6.7
	SR10A	7.1	6.6
	SR8	11.0	6.5
	SR9	7.2	6.6
Mid-flood	IS12	9.8	6.6
	IS13	9.5	6.5
	IS14	9.4	6.6
	IS15	9.8	6.5
	SR10A	7.0	6.5
	SR8	10.1	6.4
	SR9	8.5	6.4

Table 2.11 Summary of Average Depth-averaged SS Level of Baseline Monitoring and the Reporting Period (in mg/L)

Tide	Station	Average depth- averaged SS of baseline monitoring	Average depth- averaged SS of reporting period
Mid-ebb	IS12	9.2	9.1
	IS13	10.0	9.3
	IS14	10.4	8.4
	IS15	9.6	9.1
	SR10A	10.3	8.5
	SR8	10.1	8.4
	SR9	8.8	8.4
Mid-flood	IS12	9.5	8.8
	IS13	10.5	9.0
	IS14	9.7	8.1
	IS15	11.0	9.0
	SR10A	10.2	8.3
	SR8	11.3	8.3
	SR9	9.9	8.2

Table 2.12 One-way ANOVA Results for DO Comparison between Impact and Baseline Periods

Tide	Station	Depth	F ratio	p-value	
Mid-ebb	IS12	Surface	$F_{1,77} = 39.5$	<0.01	
Mid-ebb	IS13	Surface	$F_{1,77} = 46.4$	<0.01	

Tide	Station	Depth	F ratio	p-value
Mid-ebb	IS14	Surface	$F_{1,77} = 39.7$	<0.01
Mid-ebb	IS15	Surface	$F_{1,77} = 37.6$	<0.01
Mid-ebb	SR10A	Surface	$F_{1,77} = 46.0$	<0.01
Mid-ebb	SR8	Surface	$F_{1,77} = 32.6$	<0.01
Mid-ebb	SR9	Surface	$F_{1,77} = 48.5$	<0.01
Mid-flood	IS12	Surface	$F_{1,77} = 48.3$	<0.01
Mid-flood	IS13	Surface	$F_{1,77} = 47.0$	<0.01
Mid-flood	IS14	Surface	$F_{1,77} = 45.1$	<0.01
Mid-flood	IS15	Surface	$F_{1,77} = 32.5$	<0.01
Mid-flood	SR10A	Surface	$F_{1,77} = 53.2$	<0.01
Mid-flood	SR8	Surface	$F_{1,77} = 48.0$	<0.01
Mid-flood	SR9	Surface	$F_{1,77} = 58.0$	<0.01
Mid-ebb	IS12	Middle	$F_{1,77} = 50.4$	<0.01
Mid-ebb	IS13	Middle	$F_{1,77} = 42.3$	<0.01
Mid-ebb	IS14	Middle	$F_{1,77} = 42.6$	<0.01
Mid-ebb	IS15	Middle	$F_{1,77} = 48.6$	<0.01
Mid-ebb	SR10A	Middle	$F_{1,77} = 64.6$	<0.01
Mid-flood	IS12	Middle	$F_{1,77} = 60.3$	<0.01
Mid-flood	IS13	Middle	$F_{1,77} = 51.1$	<0.01
Mid-flood	IS14	Middle	$F_{1,77} = 55.1$	<0.01
Mid-flood	IS15	Middle	$F_{1,77} = 47.7$	<0.01
Mid-flood	SR10A	Middle	$F_{1,77} = 73.9$	<0.01
Mid-ebb	IS12	Bottom	$F_{1,77} = 57.6$	<0.01
Mid-ebb	IS13	Bottom	$F_{1,77} = 50.5$	<0.01
Mid-ebb	IS14	Bottom	$F_{1,77} = 44.9$	<0.01
Mid-ebb	IS15	Bottom	$F_{1,77} = 67.9$	<0.01
Mid-ebb	SR10A	Bottom	$F_{1,77} = 75.5$	<0.01
Mid-ebb	SR8	Bottom	$F_{1,77} = 48.0$	<0.01
Mid-ebb	SR9	Bottom	$F_{1,77} = 74.9$	<0.01
Mid-flood	IS12	Bottom	$F_{1,77} = 66.6$	<0.01
Mid-flood	IS13	Bottom	$F_{1,77} = 56.7$	<0.01
Mid-flood	IS14	Bottom	$F_{1,77} = 57.0$	<0.01
Mid-flood	IS15	Bottom	$F_{1,77} = 56.6$	<0.01
Mid-flood	SR10A	Bottom	$F_{1,77} = 71.0$	0.30
Mid-flood	SR8	Bottom	$F_{1,77} = 94.6$	<0.01
Mid-flood	SR9	Bottom	$F_{1,77} = 59.3$	<0.01
Note:				

By setting α at 0.05, significant differences (*p*-value < 0.05) are bold.

Table 2.13 One-way ANOVA Results for Depth-averaged Turbidity Comparison between Impact and Baseline Periods

Tide	Station	F ratio	p-value	
Mid-ebb	IS12	$F_{1,77} = 36.4$	<0.01	
Mid-ebb	IS13	$F_{1,77} = 20.1$	<0.01	
Mid-ebb	IS14	$F_{1,77} = 15.6$	<0.01	
Mid-ebb	IS15	$F_{1,77} = 26.9$	<0.01	
Mid-ebb	SR10A	$F_{1,77} = 1.1$	0.14	
Mid-ebb	SR8	$F_{1,77} = 44.4$	<0.01	
Mid-ebb	SR9	$F_{1,77} = 1.42$	0.16	
Mid-flood	IS12	$F_{1,77} = 20.0$	<0.01	
Mid-flood	IS13	$F_{1,77} = 16.0$	<0.01	
Mid-flood	IS14	$F_{1,77} = 19.5$	<0.01	
Mid-flood	IS15	$F_{1,77} = 24.3$	<0.01	
Mid-flood	SR10A	$F_{1,77} = 0.88$	0.19	
Mid-flood	SR8	$F_{1,77} = 24.2$	<0.01	
Mid-flood	SR9	$F_{1,77} = 12.2$	<0.01	

m: 1	0	T	•
Tide	Station	F ratio	p-value
			r

Note:

By setting α at 0.05, significant differences (*p*-value < 0.05) are bold.

Table 2.14 One-way ANOVA Results for Depth-averaged SS Comparison between Impact and Baseline Periods

Tide	Station	F ratio	p-value	
Mid-ebb	IS12	$F_{1,77} = 0.03$	<0.01	
Mid-ebb	IS13	$F_{1,77} = 1.04$	<0.01	
Mid-ebb	IS14	$F_{1,77} = 8.31$	<0.01	
Mid-ebb	IS15	$F_{1,77} = 0.58$	<0.01	
Mid-ebb	SR10A	$F_{1,77} = 6.10$	<0.01	
Mid-ebb	SR8	$F_{1,77} = 6.61$	<0.01	
Mid-ebb	SR9	$F_{1,77} = 0.24$	0.03	
Mid-flood	IS12	$F_{1,77} = 0.74$	<0.01	
Mid-flood	IS13	$F_{1,77} = 4.23$	<0.01	
Mid-flood	IS14	$F_{1,77} = 5.88$	<0.01	
Mid-flood	IS15	$F_{1,77} = 6.60$	<0.01	
Mid-flood	SR10A	$F_{1,77} = 7.51$	<0.01	
Mid-flood	SR8	$F_{1,77} = 23.1$	<0.01	
Mid-flood	SR9	$F_{1,77} = 5.84$	0.03	

Note:

By setting α at 0.05, significant differences (p-value < 0.05) are bold.

In addition, linear regression was conducted to examine any relationship between DO / Turbidity / SS levels and time (i.e. number of days after construction works commencement) during this yearly monitoring period at each monitoring station. The method of data interpretation followed the same method as indicated in *Section 2.1.3* for TSP monitoring. As shown in *Tables 2.15 to 2.17*, results of the regression analysis indicated that there was no significant ($r^2 < 0.60$) relationship between DO / Turbidity / SS level and time during this yearly monitoring period. As such, it is considered that there is no apparent trend of increasing or decreasing DO / Turbidity / SS level since commencement of constructions works.

Table 2.15 Linear Regression Result of DO

Parameter	Station	\mathbb{R}^2	$F_{1,65}$	p-value	Intercept	Coefficient of days of construction
Mid-ebb	IS12	0.269	23.6	< 0.001	14.73	-0.006
Surface DO	IS13	0.271	23.8	< 0.001	14.37	-0.005
	IS14	0.261	22.6	< 0.001	14.32	-0.005
	IS15	0.209	17.0	< 0.001	13.97	-0.005
	SR10A	0.244	20.7	< 0.001	14.24	-0.005
	SR8	0.203	16.3	< 0.001	13.33	-0.005
	SR9	0.186	14.6	< 0.001	12.59	-0.004
Parameter	Station	R ²	F _{1,65}	p-value	Intercept	Coefficient of days
						of construction
Mid-flood	IS12	0.232	19.4	< 0.001	14.15	-0.006
surface DO	IS13	0.248	21.2	< 0.001	14.28	-0.006
	IS14	0.263	22.8	< 0.001	14.81	-0.006
	IS15	0.215	17.5	< 0.001	14.57	-0.006
	SR10A	0.235	19.7	< 0.001	14.96	-0.006
	SR8	0.208	16.8	< 0.001	13.58	-0.005
	SR9	<u>0.157</u>	11.9	< 0.001	12.49	-0.004

Parameter	Station	R ²	F _{1,65}	p-value	Intercept	Coefficient of days
						of construction
Mid-ebb	IS12	0.232	19.4	< 0.001	14.15	-0.006
middle DO	IS13	0.251	21.4	< 0.001	14.38	-0.006
	IS14	0.280	24.9	< 0.001	15.16	-0.006
	IS15	0.252	21.5	< 0.001	14.40	-0.006
	SR10A	0.256	22.0	< 0.001	14.35	-0.006
Parameter	Station	\mathbb{R}^2	F _{1,65}	p-value	Intercept	Coefficient of days
						of construction
Mid-flood	IS12	0.234	19.5	< 0.001	14.2	-0.006
middle DO	IS13	0.214	17.4	< 0.001	14.0	-0.005
	IS14	0.219	18.0	< 0.001	14.4	-0.006
	IS15	0.244	20.6	< 0.001	14.4	-0.006
	SR10A	0.236	19.8	< 0.001	14.6	-0.006
Parameter	Station	R ²	F _{1,65}	p-value	Intercept	Coefficient of days
						of construction
Mid-ebb	IS12	0.197	15.7	< 0.001	13.97	-0.005
bottom DO	IS13	0.252	21.5	< 0.001	14.87	-0.006
	IS14	0.286	25.6	< 0.001	15.54	-0.007
	IS15	0.260	22.5	< 0.001	14.45	-0.006
	SR10A	0.184	14.4	< 0.001	14.09	-0.005
	SR8	0.187	14.7	< 0.001	13.18	-0.005
	SR9	0.210	17.0	< 0.001	13.35	-0.005
Parameter	Station	<u>R</u> ²	F _{1,65}	p-value	Intercept	Coefficient of days
						of construction
Mid-flood	IS12	0.162	12.4	< 0.001	13.38	-0.004
bottom DO	IS13	0.184	14.4	< 0.001	13.85	-0.005
	IS14	0.165	12.6	< 0.001	13.88	-0.005
	IS15	0.223	18.3	< 0.001	14.13	-0.005
	SR10A	0.170	13.1	< 0.001	13.89	-0.005
	SR8	0.179	14.0	< 0.001	13.06	-0.005
	SR9	<u>0.132</u>	9.77	<0.001	12.40	-0.004

Note

Table 2.16 Linear Regression Result of Turbidity

Parameter	Station	\mathbb{R}^2	F _{1,65}	p-value	Intercept	Coefficient of days
						of construction
Mid-ebb	IS12	0.001	0.06	0.28	5.46	0.001
depth	IS13	< 0.001	0.04	0.23	5.72	0.001
-average	IS14	0.002	0.11	0.26	5.20	0.001
turbidity	IS15	0.002	0.11	0.25	5.19	0.001
	SR10A	0.001	0.94	0.70	1.89	0.004
	SR8	0.009	0.56	0.47	3.22	0.003
	SR9	0.002	0.10	0.31	5.03	0.001
Parameter	Station	R ²	F _{1,65}	p-value	Intercept	Coefficient of days
						of construction
Mid-flood	IS12	0.004	0.285	0.42	3.97	0.002
depth	IS13	0.004	0.261	0.38	4.14	0.002
-average	IS14	0.004	0.258	<u>0.36</u>	4.23	0.002
turbidity	IS15	0.002	0.142	0.30	4.81	0.001
	SR10A	0.013	0.845	0.67	2.03	0.004
	SR8	0.006	0.387	0.40	3.70	0.002
	SR9	0.004	0.277	0.42	3.88	0.002

Note

^{1.} Dependent variable is set as DO (in mg/L) and independent variable is set as number of day of construction works.

^{2.} R^2 <0.6 and p-value >0.01 (i.e. showing the regression insignificant) are underlined.

^{3.} By setting α at 0.01, insignificant coefficient is underlined.

- 1. Dependent variable is set as Turbidity (in mg/L) and independent variable is set as number of day of construction works.
- 2. R² <0.6 and p-value >0.01 (i.e. showing the regression insignificant) are underlined.
- 3. By setting α at 0.01, insignificant coefficient is underlined.

Table 2.17 Linear Regression Result of SS

Parameter	Station	R ²	E	n value	Intercent	Coefficient of days
rarameter	Station	IX ²	$F_{1,65}$	p-value	Intercept	Coefficient of days
						of construction
Mid-ebb	IS12	<u>0.001</u>	0.077	<u>0.30</u>	7.18	0.002
depth	IS13	0.001	0.065	0.25	7.60	0.001
-average SS	IS14	0.003	0.172	0.30	5.97	0.002
	IS15	0.002	0.120	0.27	6.92	0.002
	SR10A	0.015	0.966	0.72	2.27	0.005
	SR8	0.006	0.377	0.39	4.93	0.003
	SR9	0.003	0.202	0.38	5.57	0.002
Parameter	Station	R ²	F _{1,65}	p-value	Intercept	Coefficient of days
						of construction
						or construction
Mid-flood	IS12	0.005	0.299	0.42	5.27	0.003
Mid-flood depth	IS12 IS13	0.005 0.005	0.299 0.351	0.42 0.42	5.27 5.21	
	_			·		0.003
depth	IS13	0.005	0.351	0.42	5.21	0.003 0.003
depth	IS13 IS14	0.005 0.005	0.351 0.345	0.42 0.40	5.21 4.82	0.003 0.003 0.003
depth	IS13 IS14 IS15	0.005 0.005 0.003	0.351 0.345 0.177	0.42 0.40 0.09	5.21 4.82 11.9	0.003 0.003 0.003 -0.002

Note:

- 1. Dependent variable is set as Turbidity (in mg/L) and independent variable is set as number of day of construction works.
- 2. R² <0.6 and p-value >0.01 (i.e. showing the regression insignificant) are underlined.
- 3. By setting α at 0.01, insignificant coefficient is underlined.

2.3 DOLPHIN MONITORING

2.3.1 *Monitoring Requirements*

Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the dolphins. In order to fulfil the EM&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data collected by HyD's *Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities* on the monthly basis are adopted to avoid duplicates of survey effort.

2.3.2 Monitoring Equipment

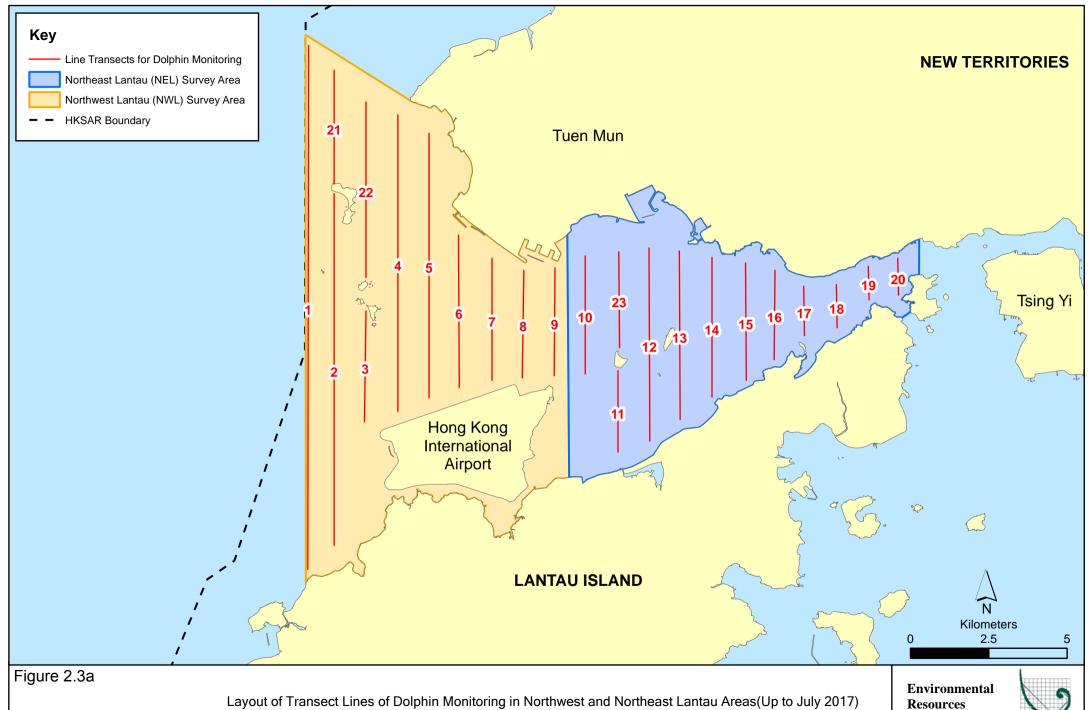
Table 2.18 summarize the equipment used for the impact dolphin monitoring.

Table 2.18 Dolphin Monitoring Equipment

Equipment Model

Equipment	Model
Global Positioning System (GPS)	Garmin 18X-PC
	Geo One Phottix
Camera	Nikon D90 300m 2.8D fixed focus
	Nikon D90 20-300m zoom lens
Laser Binoculars	Infinitor LRF 1000
Marine Binocular	Bushell 7 x 50 marine binocular with compass and
Vessel for Monitoring	reticules
	65 foot single engine motor vessel with viewing platform
	4.5m above water level

2.3.3 Monitoring Parameter, Frequencies & Duration


Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

2.3.4 Monitoring Location

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in *Figure 2.3*. The co-ordinates of all transect lines are shown in *Table 2.19* below.

Table 2.19a Impact Dolphin Monitoring Line Transect Co-ordinates (Up to July 2017)

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	804671	815456	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805475	815913	14	Start Point	817537	820220
2	End Point	805477	826654	14	End Point	817537	824613
3	Start Point	806464	819435	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	819771	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	820220	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	820466	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	820880	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613

 $File: T:\GIS\CONTRACT\0212330\Mxd\0212330_Transect_of_Dolphin_Monitoring.mxd\\ Date: 29/11/2013$

Management

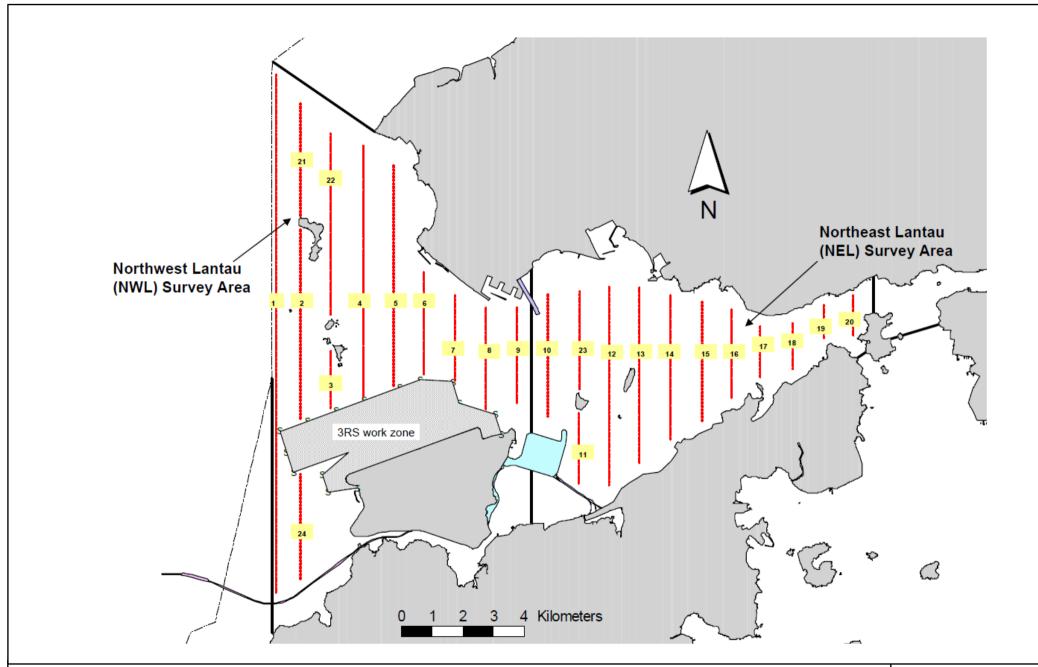


Figure 2.3b

Layout of Transect Lines of Dolphin Monitoring in Northwest and Northeast Lantau Areas(Since August 2017)

Environmental Resources Management

	Line No.	Easting	Northing	Line No.		Easting	Northing
9	Start Point	812516	821303	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	820872	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807				
12	End Point	815542	824882				

Table 2.19b Impact Dolphin Monitoring Line Transect Co-ordinates (Since August 2017)

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	804671	815456	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805476	820800*	14	Start Point	817537	820220
2	End Point	805476	826654	14	End Point	817537	824613
3	Start Point	806464	821150*	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	821500*	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	821850*	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	822150*	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	822000*	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	821303	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	821176	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807	24*	Start Point	805476*	815900*
12	End Point	815542	824882	24*	End Point	805476*	819100*

Remarks: The coordinates of several starting and ending points have been revised since August 2017 due to the presence of a work zone to the north of the airport platform with intense

construction activities in association with the construction of the third runway expansion for the Hong Kong International Airport. Co-ordinates in red and marked with asterisk are revised co-ordinates of transect line.

2.3.5 Action & Limit Levels

The Action and Limit levels of dolphin impact monitoring are shown in *Appendix C*. The Event and Action plan is presented in *Appendix G*.

2.3.6 Results & Observations

A total of 3,338.24 km of survey effort was collected, with 93.0% of the total survey effort being conducted under favourable weather conditions (ie Beaufort Sea State 3 or below with good visibility) in this reporting year. Amongst the two areas, 1,279.91 km and 2,058.33 km of survey effort were collected from NEL and NWL survey areas, respectively. The total survey effort conducted on primary and secondary lines were 2,397.70 km and 947.54 km, respectively. The survey efforts are summarized in *Appendix F*.

A total of 43 groups of 151 Chinese White Dolphin sightings were recorded during the 24 sets of surveys in this reporting year. All except three (3) sightings were made during on-effort search. Thirty-four (34) on-effort sightings were made on primary lines, while six (6) other on-effort sightings were made on secondary lines. During this reporting year, all dolphin groups were sighted in NWL, while none of them were sighted in NEL.

Dolphin sighting distribution of the present impact phase monitoring period (November 2016 to October 2017 was compared to the ones during the baseline phase (February 2011 to January 2012), transitional phase (November 2012 to October 2013) and the first, second and third years of impact phase (November 2013 to October 2014, November 2014 to October 2015 and November 2015 to October 2016 respectively). As TMCLKL construction works commenced in November 2013, a 12-month period between baseline phase and impact phase is defined as transitional phase.

During the present 12-month impact phase monitoring period, the average daily encounter rates of Chinese White Dolphins were deduced in NEL and NWL survey areas, and compared to the ones deduced from the baseline and transitional phases as shown in *Table 2.20*.

Table 2.20 Average Daily Dolphin Encounter Rates

	Encounter	rate (STG)	Encounter rate (ANI)		
	(no. of on-effort o	dolphin sightings	(no. of dolphins from all on-effort		
	per 100 km of	survey effort)	sightings per 100 km of survey		
		effort)			
	Northeast	Northwest	Northeast	Northwest	
	Lantau	Lantau	Lantau Lantau		
Impact Phase					
(2016-2017)	0.00	2.35 ± 2.62	0.00	8.57 ± 11.05	

Impact Phase (2015-2016)	0.00	2.10 ± 1.83	0.00	8.54 ± 8.53
Impact Phase (2014-2015)	0.11 ± 0.54	2.54 ± 2.49	0.11 ± 0.54	11.64 ± 14.04
Impact Phase (2013-2014)	0.22 ± 0.74	6.93 ± 4.08	0.76 ± 2.59	26.31 ± 17.56
Transitional Phase (2012-2013)	1.70 ± 2.26	7.68 ± 4.36	4.75 ± 7.61	27.51 ± 18.06
Baseline Phase (2011-2012)	6.05 ± 5.04	7.75 ± 5.69	19.91 ± 21.30	29.57 ± 26.96

Note: Comparison of average daily dolphin encounter rates from the first, second, third and fourth years of impact phase (November 2013 to October 2014, November 2014 to October 2015, November 2015 to October 2016, and November 2016 to October 2017, respectively), transitional phase (November 2012 – October 2013) and baseline phase monitoring periods (February 2011 – January 2012). \pm denotes the standard deviation of the value.

Group size of Chinese White Dolphins ranged from one to twelve (1-12) individuals per group in North Lantau region during November 2016 - October 2017. The average dolphin group sizes from the 12-month impact phase monitoring period were compared with the ones deduced from baseline and transitional phases, as shown in *Table 2.21*.

Table 2.21 Comparison of Average Dolphin Group Sizes from Impact Monitoring Period and Baseline Monitoring Period

	Av	Average Dolphin Group Size						
	Overall Northeast Lantau		Northwest Lantau					
Impact Phase (2016- 2017)	3.51 ± 2.68 (n = 43)	0.00	3.51 ± 2.68 (n = 43)					
Impact Phase (2015- 2016)	$3.73 \pm 3.14 $ (n = 45)	1.00 (n = 1)	$3.80 \pm 3.14 (n = 44)$					
Impact Phase (2014-								
2015)	$4.24 \pm 3.15 (n = 54)$	1.00 (n = 1)	$4.30 \pm 3.15 $ (n = 53)					
Impact Phase (2013- 2014)	3.76 ± 2.57 (n = 136)	$5.00 \pm 2.71 $ (n = 4)	3.73 ± 2.57 (n = 132)					
Transitional Phase (2012-2013)	3.37 ± 2.98 (n = 186)	2.64 ± 2.38 (n = 22)	3.47 ± 3.05 (n = 164)					
Baseline Phase (2011-2012)	3.32 ± 2.86 (n = 288)	$2.80 \pm 2.35 $ (n = 79)	3.52 ± 3.01 (n = 209)					

Note: Comparison of average dolphin group sizes from the first, second, third and fourth years of impact phase (November 2013 to October 2014, November 2014 to October 2015, November 2015 to October 2016, and November 2016 to October 2017, respectively), transitional phase (November 2012 - October 2013) and baseline phase monitoring periods (February 2011 - January 2012). (± denotes the standard deviation of the average value)

Whilst four (4) Limit Level exceedances were observed for the quarterly dolphin monitoring data between November 2016 and October 2017. In this reporting period, no unacceptable impact from the activities of this Contract on Chinese White Dolphins was noticeable from the general observations. It is essential to continue monitoring the dolphin usage in North Lantau region for the rest of the impact phase monitoring period.

2.3.7 Implementation of Marine Mammal Exclusion Zone

Daily marine mammal exclusion zone was in effect during the period of dredging, reclamation or marine sheet piling works in open waters under this Contract. Passive Acoustic Monitoring (PAM) was also implemented for the detection of marine mammal when dredging, reclamation or marine sheet piling works were carried out outside the daylight hours under this Contract. No sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded in the reporting period during the exclusion zone monitoring.

2.4 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. Fifty-two (52) site inspections were carried out in the reporting period. Key observations were summarized in the *Thirty-seventh to Forty-eighth Monthly EM&A Reports*.

2.5 WASTE MANAGEMENT STATUS

The Contractor was registered as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

Wastes generated during this reporting period include mainly construction wastes (inert and non-inert) and recyclable materials. Reference has been made to the waste flow table prepared by the Contractor (*Appendix I*). The quantities of different types of wastes are summarized in *Table 2.22*.

Table 2.22 Quantities of Different Waste Generated in the Reporting Period

Month/Year	Inert Construction	Inert Construction	Non-inert Construction	Recyclable Materials (c)	Chemical Wastes		Sediment n³)
	Waste (a) (tonnes)	Waste Re-used (tonnes)	Waste (b) (tonnes)	(kg)	(kg)	Category L	Category M
November	13.293	0	305	0	0	0	0
2016							
December	25,662	0	288	0	0	550	0
2016							
January	60,781	0	257	0	3,400	2,750	8,200
2017							
February	17,367	0	340	200	0	550	0
2017							
March 2017	7,508	0	286	0	6,100	0	0
April 2017	15,603	0	237	0	0	0	0
May 2017	12,358	0	300	0	10,400	0	0
June 2017	194	0	317	0	0	0	0
July 2017	652	0	272	200	0	0	0
August 2017	1,624	0	305	142,190	0	0	0
September	886	0	300	200	0	0	0
2017							
October	706	0	244	0	0	0	2,312
2017							
Total	143,339	0	3,867	132,670	9,500	3,850	10,512

The Contractor was advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/ recycle of C&D materials and wastes. The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

2.6 ENVIRONMENTAL LICENSES AND PERMITS

The status of environmental licensing and permit is summarized in *Table 2.23* below.

 Table 2.23
 Summary of Environmental Licensing and Permit Status

License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/ Permit Holder	Remarks
Environmental Permit	EP-354/2009/D	13 March 2015	Throughout the Contract	НуD	Application for VEP on 3 March 2015 to supersede EP-354/2009/C
Construction Dust Notification	363510	19 August 2013	Throughout the Contract	DBJV	Northern Landfall
Construction Dust Notification	403620	10 June 2016	Throughout the Contract	DBJV	Southern Landfall
Chemical Waste Registration	5213-422-D2516-01	10 September 2013	Throughout the Contract	DBJV	Northern Landfall
Chemical Waste Registration	5213-951-D2591-01	25 May 2016	Throughout the Contract	DBJV	Southern Landfall
Construction Waste Disposal Account	7018108	28 August 2013	Throughout the Contract	DBJV	Waste disposal in Contract No. HY/2012/08
Construction Waste Disposal Account	7021715	12 January 2017	12 April 2017	DBJV	Vessel disposal
Waste Water Discharge License	WT00017707-2013	18 November 2013	30 November 2018	DBJV	For site WA18
Chemical Waste Registration	5213-422-D2516-02	18 January 2017	Throughout the Contract	DBJV	Northern Landfall
Waste Water Discharge License	WT00018433-2014	6 March 2014	31 March 2019	DBJV	N6 Site
Waste Water Discharge License	WT00019248-2014	5 June 2014	30 June 2019	DBJV	For site Portion N6 and Reclamation Area E
Waste Water Discharge License	WT00025944-2016	15 December 2016	31 December 2021	DBJV	Southern Landfall
Marine Dumping Permit	EP/MD/17-103	16 December 2016	13 June 2017	DBJV	Northern Landfall
Marine Dumping Permit	EP/MD/17-121	16 December 2016	15 January 2017	DBJV	Northern Landfall
Marine Dumping Permit	EP/MD/17-164	16 January 2017	15 February 2017	DBJV	Northern Landfall
Marine Dumping Permit	EP/MD/17-108	16 November 2016	15 December 2016	DBJV	Southern Landfall

ENVIRONMENTAL RESOURCES MANAGEMENT 0212330_4TH ANNUAL EM&A_20181126.DOC

License/ Permit	License or Permit	Date of Issue	Date of Expiry	License/ Permit Holder	Remarks
	No.			•	
Marine Dumping Permit	EP/MD/18-006	7 May 2017	6 June 2017	DBJV	Southern Landfall
Marine Dumping Permit	EP/MD/18-036	21 October 2017	20 November 2017	DBJV	Type 1 (Dedicated site) and Type 2 (Confined Marine Disposal)
Construction Noise Permit	GW-RW0538-17	16 October 2017	15 April 2018	DBJV	For Urmston Road in front of Pillar Point
Construction Noise Permit	GW-RW0644-16	30 November 2016	29 May 2017	DBJV	For Urmston Road in front of Pillar Point
Construction Noise Permit	GW-RW0279-17	13 June 2017	12 December 2017	DBJV	WA23 @ Tsing Yi
Construction Noise Permit	PP-RS0012-17	13 June 2017	30 August 2017	DBJV	Southern Landfall
Construction Noise Permit	GW-RW0247-17	19 May 2017	9 November 2017	DBJV	For Urmston Road in front of Pillar Point
Construction Noise Permit	GW-RW0666-16	13 December 2016	12 June 2017	DBJV	For site WA23A+B
Construction Noise Permit	GW-RW0143-17	29 March 2017	28 September 2017	DBJV	For Portion N6
Construction Noise Permit	GW-RS0121-17	25 February 2017	24 August 2017	DBJV	For Southern Landfall
Construction Noise Permit	GW-RW0533-16	29 September 2016	28 March 2017	DBJV	For Portion N6
Construction Noise Permit	GW-RS0165-17	1 March 2017	2 September 2017	DBJV	For Southern Landfall
Construction Noise Permit	PP-RS0019-17	31 August 2017	30 November 2017	DBJV	Southern Landfall (Percussive Piling)
Construction Noise Permit	GW-RS0713-17	1 September 2017	28 February 2018	DBJV	Southern Landfall
Construction Noise Permit	GW-RS0878-17	11 October 2017	2 April 2018	DBJV	Southern Landfall
Construction Noise Permit	GW-RS0860-16	25 August 2016	24 February 2017	DBJV	For Southern Landfall

Notes:

HyD = Highways Department
DBJV = Dragages - Bouygues Joint Venture
VEP = Variation of Environmental Permit

2.7 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

In response to the EM&A site audit findings mentioned in *Section 2.4* of this report, the Contractor has carried out the corrective actions.

A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in *Appendix B*. The necessary mitigation measures relevant to this Contract were implemented properly.

2.8 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

In this reporting period, a total of 121 air quality monitoring events were undertaken in which no Action Level or Limit Level exceedances for 1-hr TSP and 24-hr TSP were recorded. (*Table 2.24*).

Table 2.24 Summary of Exceedances for Air Quality Impact Monitoring in this Reporting Year

Station	Exceedance Level	Number o	f Exceedances
		1-hr TSP	24-hr TSP
AQMS1	Action Level	1	0
	Limit Level	0	0
ASR1	Action Level	5	1
	Limit Level	1	0
ASR5	Action Level	5	0
	Limit Level	0	0
AQMS2/ASR6	Action Level	2	0
	Limit Level	0	0
ASR10	Action Level	1	0
	Limit Level	0	0
Total number of	Action level Exceedances:	14	1
Total number of	Limit level Exceedances:	1	0

For marine water quality impact monitoring, a total of 66 monitoring events were undertaken in which no Action Level or Limit Level exceedances were recorded (*Table 2.25*).

Table 2.25 Summary of Exceedances for Marine Water Quality Impact Monitoring in this Reporting Period

Challan	Face dense I and (a)	DO (Surface	and Middle)	DO (Bottom)	Turbidity (d	epth-averaged)	SS (depth-averaged)	
Station	Exceedance Level (a) —	Mid-ebb	Mid-flood	Mid-ebb	Mid-flood	Mid-ebb	Mid-flood	Mid-ebb	Mid-flood
CS4	AL	-	-	-	-	-	-	-	-
C54	LL	-	-	-	-	-	-	-	-
CS6	\mathbf{AL}	-	-	-	-	-	-	-	-
C50	LL	-	-	-	-	-	-	-	-
IS12	\mathbf{AL}	-	-	-	-	-	-	-	-
1512	LL	-	-	-	-	-	-	-	-
IS13	\mathbf{AL}	-	-	-	-	-	-	-	-
1513	LL	-	-	-	-	-	-	-	-
TC14	\mathbf{AL}	-	-	-	-	-	-	-	-
IS14	$\mathbf{L}\mathbf{L}$	-	-	-	-	-	-	-	-
IS15	\mathbf{AL}	-	-	-	-	-	-	-	-
1313	$\mathbf{L}\mathbf{L}$	-	-	-	-	-	-	-	-
SR8	\mathbf{AL}	-	-	-	-	-	-	-	-
SKo	LL	-	-	-	-	-	-	-	-
SR9	\mathbf{AL}	-	-	-	-	-	-	-	-
3K9	LL	-	-	-	-	-	-	-	-
SR10	\mathbf{AL}	-	-	-	-	-	-	-	-
SKIU	LL	-	-	-	-	-	-	-	-
	Total AL Exceedances:	0	0	0	0	0	0	0	0
	Total LL Exceedances:	0	0	0	0	0	0	0	0

(a) AL = Action Level; LL = Limit Level

There were a total of four (4) Limit Levels exceedances for impact dolphin monitoring in the reporting period. No unacceptable impact from the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations during the dolphin monitoring in this reporting period. Detailed investigation findings are presented in *the Twelfth to Fifteenth Quarterly EM&A Report*.

Cumulative statistics are provided in *Appendix H*.

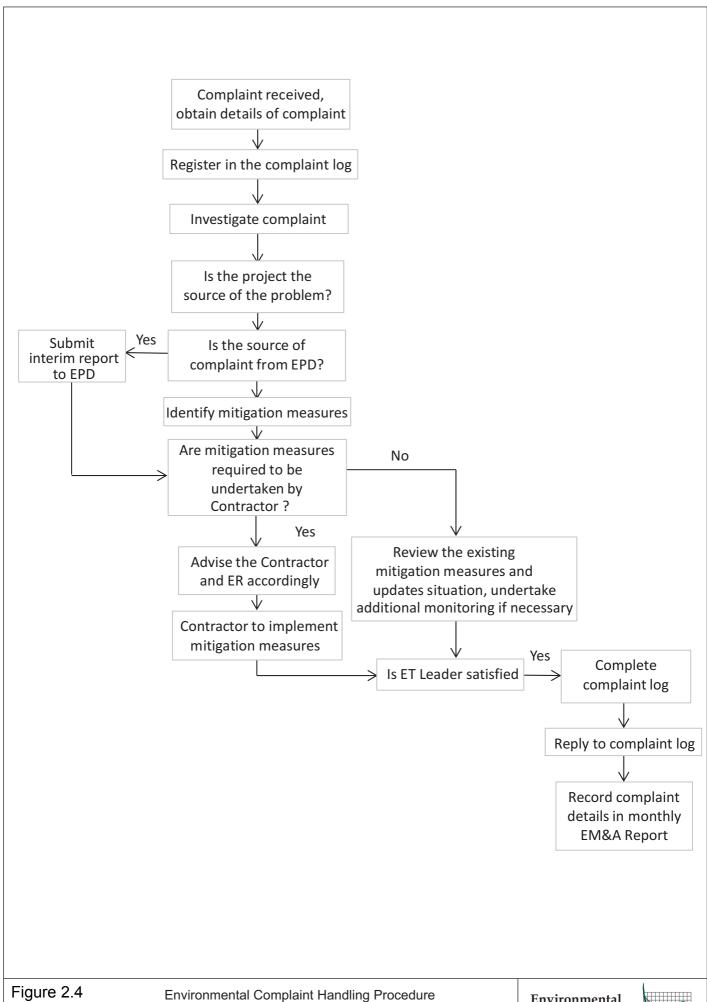
2.9 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

The Environmental Complaint Handling Procedure is provided in Figure 2.4.

No non-compliance event was recorded during the reporting period.

Seven (7) environmental complaint cases were received in this reporting period. The investigation reports were submitted to ENPO and reported in the subsequent EM&A reports.

A notification of summons regarding the complaint case received on 17 November 2016 has been received in the reporting period.


Statistics on complaints, notifications of summons and successful prosecutions are summarized in *Appendix H*.

2.10 COMPARISON OF EM&A DATA WITH EIA PREDICTIONS

Findings of the EM&A activities undertaken during the period from 1 November 2016 to 31 October 2017 were compared with the relevant EIA predictions where appropriate to provide a review of the validity of the EIA predictions and identify potential shortcomings in the EIA recommendations.

2.10.1 Air Quality

Based on the findings presented in TM-CLKL EIA study, the major sources of dust nuisance arising from the Northern Connection are related to excavation, wind erosion from reclaimed areas, open sites and stockpiling areas. Therefore, during these construction activities, the TSP monitoring frequency will be increased at all air quality monitoring stations such that any deteriorating air quality can be readily detected and timely action taken to rectify the situation. Comparison of EIA prediction, average baseline monitoring and average impact monitoring results of TSP is presented in *Table* 2.26.

Environmental Resources Management

Table 2.26 Comparison of EIA prediction and EM&A Results on Air Quality

Station	EIA Predicted Maximum	Maximum Impact	Average Impact	Maximum Baseline	Average Baseline
		Monitoring	Monitoring	Monitoring	Monitoring
ASR1	195	545	137	182	125
(1-hour)					
ASR1	148	220	83	173	128
(24-hour)					
ASR5	235	456	160	211	138
(1-hour)					
ASR5	133	163	81	249	167
(24-hour)					
AQMS1	N/A	473	102	196	131
(1-hour)					
AQMS1	N/A	160	60	211	127
(24-hour)					
AQMS2/ASR6	226	401	131	226	135
(1-hour)					
AQMS2/ASR6	153	138	70	221	166
(24-hour)					
ASR10	189	475	86	215	134
(1-hour)					
ASR10	112	205	57	181	129
(24-hour)					

As shown in *Table 2.26*, maximum 1-hour TSP at ASR1, ASR5, ASR6 and ASR10 and 24-hour TSP impact monitoring levels at ASR1, ASR5 and ASR10 were higher than their corresponding EIA predicted maximum levels. Occasional exceedances were recorded at these stations during impact monitoring period. However, they were not project-related upon investigation. It also appeared that the construction activities of the Contract did not cause significant impact on air quality with similar average TSP levels between the baseline and impact monitoring. The EIA has concluded that no adverse residual construction dust impacts will occur after implementation of mitigation measures. Thus, the monitoring results are considered to be in line with the EIA prediction.

2.10.2 Water Quality

As identified in the EIA Report, key water quality issues during construction phase may be caused by dredging and filling works for the reclamation of the Project. Thus, marine water quality monitoring should be carried out during the construction phase to ensure that any unacceptable increase in suspended solids / turbidity or unacceptable decrease in dissolved oxygen due to dredging and filling activities could be readily detected and timely action could be taken to rectify the situation.

According to the EIA prediction, no SS exceedance is anticipated from this Project at the water sensitive receivers in the vicinity of the Contract works area (WSR 12, WSR 13 and WSR 47a). This is in-line with the monitoring results that no Action Level or Limit Level exceedances were recorded from the water quality monitoring in this reporting period. In addition, the annual mean values of depth-averaged SS recorded in this reporting period were

compared with the relevant concerned mean values, which were defined as 30% above baseline levels. Results showed that the annual mean values of depth-averaged SS at all monitoring stations were well below the concerned mean values (*Table 2.27*), thus the impact monitoring results are considered to in line with the EIA prediction.

DO levels from surface, mid-depth and bottom waters were generally similar amongst Control, Impact stations and Sensitive Receivers, and DO levels were variable throughout the reporting period which represented natural background fluctuation in water quality. Similar to DO levels, turbidity and SS levels were generally comparable amongst Control, Impact stations and Sensitive Receivers and variable throughout the monitoring period. High levels of turbidity and SS were occasionally recorded during both mid-ebb and mid-flood tides. Such fluctuations were also observed during baseline monitoring and are considered to be sporadic events and characteristic of water quality in this area of Hong Kong.

The annual means of DO levels during impact period were higher than the means of DO levels measured during baseline period. The annual means of depth-averaged SS and Turbidity during impact period were lower than the means of depth-averaged SS and Turbidity measured during baseline period. One way Analysis of Variance (ANOVA) was conducted to test for the differences between the baseline and impact monitoring data of Dissolved Oxygen, Turbidity and SS at the designated water quality monitoring locations. The detailed graphical and statistical results, as presented in *Section 2.2.3* and *Appendix E* respectively, show that depth-averaged SS and Turbidity levels were lower during impact period than baseline period whilst DO levels were higher during impact period than baseline period. No deterioration trend on water quality was detected in the reporting period when comparing to baseline data. Thus, the impact monitoring results are considered to in line with the EIA prediction.

Table 2.27 Comparison between Annual Mean and Ambient Mean Values of Depthaveraged Suspended Solids (mg/L)

Station	Baseline Mean		Ambien	t Mean (a)	Annual Mean (November 2016 to October 2017)		
	Mid-ebb	Mid-flood	Mid-ebb	Mid-flood	Mid-ebb	Mid-flood	
CS4	10.2	9.0	13.3	11.7	9.67	9.52	
CS6	10.9	11.7	14.1	15.2	9.72	9.54	
IS12	9.2	9.5	12.0	12.3	9.09	8.82	
IS13	10.0	10.5	13.0	13.7	9.27	9.00	
IS14	10.4	9.7	13.5	12.6	8.35	8.13	
IS15	9.6	11.0	12.5	14.2	9.06	8.96	
SR10A	10.3	10.2	13.3	13.3	8.54	8.33	
SR8	10.1	11.3	13.1	14.7	8.43	8.27	
SR9	8.8	9.9	11.4	12.8	8.44	8.16	
Grand Total	10.0	10.3	13.0	13.4	8.95	8.75	

Notes:

(a) Ambient mean value is defined as a 30% increase of the baseline mean value

2.10.3 Marine Ecology

Impact monitoring on marine ecology was undertaken during the monitoring period. According to the baseline results in the *Appendix F* of the approved EIA Report, the dolphin groups were largely sighted near Lung Kwu Chau and the waters between Lung Kwu Chau and Black Points and infrequently along the alignment of this Contract. Two-way ANOVAs with repeated measures were conducted to compare results of average encounter rate of sightings (STG) and average encounter rate of dolphins (ANI) between baseline and impact periods. The STG and ANI in impact monitoring period were lower than that before the commencement of this Contract (see Section 2.3.6) and the distribution pattern was also different between the impact monitoring period and before the commencement (i.e. transition period in 2012 – 2013) of this Contract. In addition, the habitat use pattern between impact monitoring in this reporting period and before the commencement of this Contract is different. During the present impact phase monitoring period in 2016-17, the most heavily utilized habitats by Chinese White Dolphins were only found on both eastern and western sides of Lung Kwu Chau. Dolphin usage of NWL waters declined during the present and previous phase monitoring periods. The monitoring results in this reporting period are considered to be in line with the EIA predictions, and the review of monitoring data suggested that no unacceptable impacts was noted from the marine dredging and reclamation activities under this Contract. It is essential to monitor the dolphin usage in North Lantau region for the rest of impact monitoring period to keep track on the trend of dolphin ranging pattern.

2.10.4 Waste Management

For wastes generated from the construction activities including C&D materials (inert and non-inert), chemical wastes, recyclable materials and marine sediments (both categories L and M), the types of wastes generated were in line with the EIA predictions. The wastes were disposed of in accordance with the recommendations of the EIA.

2.11 SUMMARY OF MONITORING METHODOLOGY AND EFFECTIVENESS

The EM&A monitoring programme has been reviewed and was considered effective and adequate to cater for the nature of works in progress. No change to the monitoring programme was considered necessary.

The EM&A programme will be evaluated as appropriate in the next reporting period and improvements in the EM&A programme will be recommended if deemed necessary.

2.12 SUMMARY OF MITIGATION MEASURES

The mitigation measures stipulated in the Updated EM&A Manual were undertaken by the Contractor in the reporting period. The mitigation

measures were reviewed and considered effective. mitigation measures was considered necessary.	ino addition of change o

3 REVIEW OF EM&A PROGRAMME

3.1 SITE INSPECTIONS & AUDITS

Weekly joint environmental site inspections have been conducted in the reporting period to assess the effectiveness of the environmental controls established by the Contractor and the implementation of the environmental mitigation measures recommended in the EIA Report. Findings of the site inspections confirmed that the environmental mitigation measures recommended in the EIA Report were properly implemented by the Contractor, and the recommended mitigation measures have been working effectively. There was no non-compliance recorded during the site inspections and environmental performance complied with environmental requirements.

The requirements for site inspections and audits have been reviewed and were considered as adequate. No change to the requirements was considered to be necessary.

The recommended environmental mitigation measures are also considered to be effective and efficient in reducing the potential environmental impacts associated with the construction phase of the Project. No change was thus considered necessary.

3.2 AIR QUALITY MONITORING

Construction phase air quality monitoring was conducted during this reporting period when land-based construction works were undertaken. Fourteen (14) Action Level exceedance of 1-hour TSP, one (1) Limit Level exceedance of 1-hour TSP and One (1) Action Level exceedance of 24-hour TSP were recorded in the air quality monitoring of this reporting period.

The monitoring programme has been reviewed and was considered to be adequate to cater for the nature of works. No change to the requirements was considered to be necessary.

3.3 MARINE WATER QUALITY MONITORING

No Action Level or Limit Level exceedances were recorded from the water quality monitoring in this reporting period. Marine water quality monitoring was suspended from June 2017 until the resumption of seawall construction at Northern Landfall in December 2017

The monitoring programme has been reviewed and was considered to be adequate to cater for the nature of works. No change to the requirements was considered to be necessary.

3.4 WASTE MANAGEMENT

The waste inspection and audit programme has been implemented during this reporting period. Wastes generated from construction activities have been managed in accordance with the recommendations in the EIA Report, the EM&A Manual, the WMP and other relevant legislative requirements.

The requirements for construction waste management have been reviewed and were considered as adequate. No change to the requirements was considered to be necessary.

3.5 MARINE ECOLOGY MONITORING

Daily marine mammal exclusion zone was in effect during the period of dredging, reclamation or marine sheet piling works in open waters under this Contract. Passive Acoustic Monitoring (PAM) was also implemented for the detection of marine mammal when dredging, reclamation or marine sheet piling works were carried out outside the daylight hours under this Contract. No sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded in the reporting period during the exclusion zone monitoring.

3.6 SUMMARY OF RECOMMENDATIONS

Findings of the EM&A programme indicate that the recommended mitigation measures have been properly implemented and working effectively. The EM&A programme has been reviewed and was considered as adequate and effective. No change to the EM&A programme was considered to be necessary.

The EM&A programme will be evaluated as appropriate in the next reporting period and improvements in the EM&A programme will be recommended if deemed necessary.

4 CONCLUSIONS

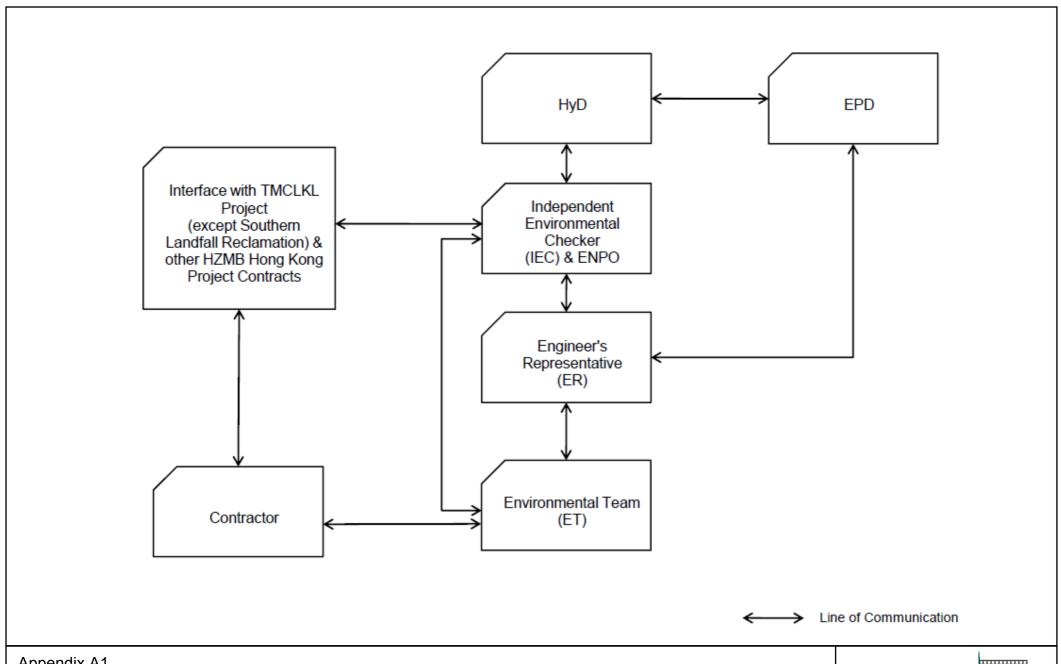
This Fourth Annual EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 November 2016 to 31 October 2017, in accordance with the Updated EM&A Manual and the requirements of *EP-354/2009/D*.

Air quality (including 1-hour TSP and 24-hour TSP) and dolphin monitoring were carried out in the reporting period. Fourteen (14) Action Level exceedance of 1-hour TSP, one (1) Limit Level exceedance of 1-hour TSP and One (1) Action Level exceedance of 24-hour TSP were recorded in the air quality monitoring of this reporting period. The Contractor was reminded to ensure that all dust mitigation measures are provided at the construction sites.

A total of 43 groups of 151 Chinese White Dolphin sightings were recorded during the 24 sets of surveys in this reporting year. Whilst four (4) Limit Level exceedances were recorded for four (4) sets of quarterly dolphin monitoring data between November 2016 and October 2017, no unacceptable impact from the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations during dolphin monitoring in this reporting period. It is essential to monitor the dolphin usage in North Lantau region for the rest of impact monitoring period to keep track on the trend of dolphin ranging pattern.

Fifty-two (52) weekly environmental site inspections were carried out in the reporting period. Recommendations on remedial actions provided for the deficiencies identified during the site audits were properly implemented by the Contractor. No non-compliance event was recorded during the reporting period.

Seven (7) environmental complaint cases were received in this reporting period. The investigation reports were submitted to ENPO and reported in the subsequent EM&A reports.


A notification of summons regarding the complaint case received on 17 November 2016 has been received in the reporting period.

The review of monitoring data suggested that the construction works under this Contract have proceeded in an environmentally acceptable manner in this reporting period.

The monitoring programme has been reviewed and was considered as adequate to cater for the nature of works in progress. Change to the monitoring programme was thus not recommended at this stage. The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Appendix A

Project Organization for Environmental Works

Appendix A1

Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section **Project Organization**

Environmental Resources Management

Appendix B

Environmental Mitigation and Enhancement Measure Implementation Schedules

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lementa Stages	tion	Status *
	Reference					D	C	0	
Air Quality 4.8.1	3.8	An effective watering programme of twice daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;	construction period	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		√
4.8.1	3.8	Watering of the construction sites in Lantau for 8 times/day and in Tuen Mun for 12 times/day to reduce dust emissions by 87.5% and 91.7% respectively and shall be undertaken.		Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels.	construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8.1	3.8	The Contractor shall not burn debris or other materials on the works areas.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8. 1	3.8	In hot, dry or windy weather, the watering programme shall maintain all exposed road surfaces and dust sources wet.	All unpaved haul roads / throughout construction period in hot, dry or windy weather	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		√
4.8.1	3.8	Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.	construction period	Contractor	TMEIA Avoid dust generation		Y		<>
4.8.1	3.8	Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading.		Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.		Contractor	TMEIA Avoid dust generation		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures Loc	cation/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lementa Stages	tion	Status *
	Kererence					D	C	О	
4.8.1	3.8	Materials having the potential to create dust shall not be loaded All to a level higher than the side and tail boards, and shall be covered con by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards.		Contractor	TMEIA Avoid dust generation		Y		\$
4.8.1	3.8	No earth, mud, debris, dust and the like shall be deposited on All public roads. Wheel washing facility shall be usable prior to any con earthworks excavation activity on the site.		Contractor	TMEIA Avoid dust		Y		√
4.8.1	3.8	Areas of exposed soil shall be minimised to areas in which All works have been completed shall be restored as soon as is through		Contractor	TMEIA Avoid dust generation		Y		✓
4.8.1	3.8	All stockpiles of aggregate or spoil shall be enclosed or covered All and water applied in dry or windy condition.	areas / throughout nstruction period	Contractor	TMEIA Avoid dust generation		Y		<>
4.11	Section 3	audit. / th	representative existing ASRs hroughout construction riod	Contractor	EM&A Manual		Y		√
WATER QUAL	ITY								
Marine Works (Seq	uence A)								
6.1	Annex A	Construction of seawalls to be advanced by at least 200m before the All main reclamation dredging and filling can commence. The bac protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2a and detailed in Appendix D6a. The part of the works where such measures can be undertaken for the majority of the time includes the following locations:		Contractor	TM-EIAO		Y		~
Figure 6.2a Appendix D6a		- TM-CLKL northern reclamation;							
6.1	-	a maximum of 50% public fill to be used for all seawall filling below TM +2.5mPD for TM-CLKL southern and northern landfalls.	I-CLKL seawall filling	Contractor	TM-EIAO		Y		→

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	nnual	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	C	О	
6.1	-	a maximum of 30% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL southern landfall	TM-CLKL southern landfall reclamation filling	Contractor	TM-EIAO		Y		N/A
6.1	-	a maximum of 100% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL northern landfall	TM-CLKL northern landfall reclamation filling	Contractor	TM-EIAO		Y		1
6.1	-	Use of cage type silt curtains round allgrab dredgers during the HKBCF, HKLR and TM-CLKL southern reclamation works.	All areas dredging works	Contractor	TM-EIAO		Y		~
	Figure 1.1 of Annex C	A layer of floating type silt curtain will be applied when dredging and reclamation works are being undertaken at Portion N-a as shown in Figure 1.1 of Annex C of the EM&A Manual.		Contractor	TM-EIAO		Y		√
6.1	-	Trailer suction hopper dredgers shall not allow mud to overflow.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.1	-	The use of Lean Material Overboard (LMOB) systems shall be prohibited.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.1	Annex A	For other parts of the reclamation works construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. It should be noted that the protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2b and detailed in Appendices D6b. The part of the works where such measures can be undertaken for the majority of the time includes the following locations:	Portion D of HKBCF and HKLR	Contractor	TM-EIAO		Y		✓
Figure 6.2b Appendix D6b		- TM-CLKL northern reclamation;							

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	O	
		 Reclamation filling for Portion D of HKBCF; Reclamation filling for FSD berth of HKBCF; and 							
		- Reclamation dredging and filling for Portion 1 of HKLR;							
6.1	-	The filling material for the other parts of the works are the same as Sequence A;	All other areas/backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	5.7	Cage type silt curtain (with steel enclosure) shall be used for grab dredgers working in the site of HKBCF and TM- CLKL southern reclamation. Cage type silt curtains will be applied round all grab dredgers at other works area.	grab dredging	Contractor	TM-EIAO		Y		√
6.1	Annex A	A layer of floating type silt curtain will be applied around all works as defined in Appendix D6b.	All areas/ through out marine works	Contractor	TM-EIAO		Y		√
6.1	-	TM-CLKL northern landfall: - Reclamation filling shall not proceed until at least 200m section of leading seawall at both the east and west sides of the reclamation are formed above +2.5 mPD, except for 100m gaps for marine access;		Contractor	TM-EIAO		Y		*
General Marine Wo	orks			•	•				
6.1	-	Use of TMB for the construction of the submarine tunnel.	Tunnel works / Construction phase	Contractor	TM-EIAO		Y		N/A
6.1	-	Export dredged spoils from NWWCZ.	All areas as much as possible / dredging activities	Contractor	DASO Permit conditions		Y		✓
6.1	-	Where public fill is proposed for filling below +2.5mPD, the fine content in the public fill will be controlled to 25%	All areas/ backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	-	Where sand fill is proposed for filling below +2.5mPD, the fine content in the sand fill will be controlled to 5%.	All areas/ backfilling works	Contractor	TM-EIAO		Y		N.A
6.1	-	Mechanical grabs shall be designed and maintained to avoid spillage and should seal tightly while being lifted.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit		Y		*

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	O	
					conditions.				
6.1	-	Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.	All areas/ throughout construction period	Contractor	Marine Fill Committee		Y		✓
					Guidelines. DASO permit				
					conditions.				
6.1	-	Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.	All areas/ throughout construction period	Contractor	Marine Fill Committee		Y		✓
					Guidelines. DASO permit				
					conditions.				
6.1	-	Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or	construction period	Contractor	Marine Fill Committee		Y		✓
		hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.			Guidelines. DASO permit				
1					conditions.				
6.1	-	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.	All areas/ throughout construction period	Contractor	Marine Fill Committee		Y		✓
					Guidelines. DASO permit				
					conditions.				
6.1	-	Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;	All areas/ throughout construction period	Contractor	Marine Fill Committee		Y		N/A
					Guidelines. DASO permit				
					conditions.				
6.1	-	All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit		Y		N/A

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	C	О	
					conditions.				
6.1	-	The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.		Contractor	Marine Fill Committee		Y		<>
					Guidelines. DASO permit conditions.				
6.1	5.2	Silt curtain shall have proved effectiveness from the producer and shall be fully maintained throughout the works by the contractor.		Contractor	TM-EIAO		Y		√
6.1	-	The daily maximum production rates shall not exceed those assumed in the water quality assessment.	construction period	Contractor	TM-EIAO		Y		√
6.1	-	The dredging and filling works shall be scheduled to spread the works evenly over a working day.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
Land Works									
6.1	-	Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		<>
6.1	-	Sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided.	construction period	Contractor	TM-EIAO		Y		✓
6.1	-	Storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		\$
6.1	-	Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly including specifically at the onset of and after each rainstorm.		Contractor	TM-EIAO		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	ual	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	Status *	
	Kererence					D	С	O	
6.1	-	Temporary access roads should be surfaced with crushed stone or gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		1
6.1	-	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.		Contractor	TM-EIAO		Y		—
6.1	-	Measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.1	-	Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.		Contractor	TM-EIAO		Y		—
6.1	5.8	Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.	construction period	Contractor	TM-EIAO		Y		
6.1	-	Discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.		Contractor	TM-EIAO		Y		√
6.1	-	All vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit.	construction period	Contractor	TM-EIAO		Y		
6.1	-	Wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.1	-	Section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel.		Contractor	TM-EIAO		Y		√
6.1	-	Wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lementa Stages	tion	Status *
	Reference					D	С	0	
6.1	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for off site disposal.	construction period	Contractor	TM-EIAO		Y		N/A
6.1	-	The Contractor shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately.		Contractor	TM-EIAO		Y		√
6.1	-	Waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance.	All areas/ throughout construction period	Contractor	TM-EIAO Waste Disposal Ordinance		Y		√
6.1	-	All fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.	construction period	Contractor	TM-EIAO		Y		√
6.1	-	Surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the stormwater system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.1	-	Roadside gullies to trap silt and grit shall be provided prior to discharging the stormwater into the marine environment. The sumps will be maintained and cleaned at regular intervals.		Design Consultant/ Contractor	TM-EIAO	Y		Y	√
6.1	Section 5	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.		Contractor	EM&A Manual		Y		✓
Water Quality Mon	nitoring								
6.1	Section 5	Water quality monitoring shall be undertaken for suspended solids, turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline, backfilling and post construction period.	as defined in EM&A Manual, Section 5/ Before, through-out	Contractor	EM&A Manual		Y	Y	√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Im _l	olementa Stages	tion	Status *
	Reference					D	С	O	
		One year operation phase water quality monitoring at designated stations.	monitoring for a year.						
ECOLOGY									
8.14	6.3	Specification for and implement pre, during and post construction dolphin abundance monitoring.	All Areas/Detailed Design/ during construction works/post construction	Design Consultant/ Contractor	TMEIA	Y	Y	Y	√
8.14	6.3,6.5	Specification and implementation of 250m dolphin exclusion zone.	All dredging and reclamation areas/Detailed Design/during all reclamation and dredging works	Design Consultant/ Contractor	TMEIA	Y	Y		*
8.15	6.3, 6.5	Specification and deployment of an artificial reef of an area of 3,600m2 in an area where fishing activities are prohibited.	Area of prohibited fishing activities/Detailed Design/towards end of construction period	TM-CLKL/ HKBCF Design Consultant/TM- CLKL/ HKBCF Contractor	TMEIA	Y		Y	N/A. To be implemente d by AFCD.
8.14	6.3, 6.5	Specification and implementation of marine vessel control specifications	All areas/Detailed Design/during construction works	Design Consultant/ Contractor	TMEIA	Y	Y		√
8.14	6.3, 6.5	Design and implementation of acoustic decoupling methods for dredging and reclamation works	All areas/ Detailed Design/during dredging and reclamation works	Design Consultant/ Contractor	TMEIA	Y	Y		√
8.15	6.3, 6.4	Pre-construction phase survey and coral translocation	Detailed Design/Prior to construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
8.15	6.5	Audit coral translocation success	Post translocation	Contractor	TMEIA		Y		✓
7.13	6.5	The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.	All areas / As soon as accessible	Contractor	TMEIA		Y		N/A.
7.13	6.5	Spoil heaps shall be covered at all times.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Avoid damage and disturbance to the remaining and surrounding natural habitat	All areas / Throughout construction period	Contractor	TMEIA		Y		✓

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual		Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	tion	Status *	
	Reference					D	C	O	
7.13	6.5	Placement of equipment in designated areas within the existing disturbed land	All areas / Throughout construction period	Contractor	TMEIA		Y		√
7.13	6.5	Disturbed areas to be reinstated immediately after completion of the works.	All areas / Throughout construction period	Contractor	TMEIA		Y		√
7.13	6.5	Construction activities should be restricted to the proposed works boundary.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
LANDSCAPE A	AND VISUAI								
10.9	7.6	The colour and shape of the toll control buildings, ventilation building and administration building shall adopt a design which could blend it into the vicinity elements, and the details will be developed in detailed design stage (DM2)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		√
10.9	7.6	Control night-time lighting and glare by hooding all lights (CM6)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		N/A
10.9	7.6	Ensure no run-off into water body adjacent to the Project Area (CM7)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (CM8)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
10.9	7.6	Aesthetically pleasing design (visually unobtrusive and non-reflective) as regard to the form, material and finishes shall be incorporated to all buildings, engineering structures and associated infrastructure facilities (OM5)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (OM6)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
WASTE									

WASTE

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	Status *	
	Reference					D	С	O	
12.6		The Contractor shall identify a coordinator for the management of waste.	Contract mobilisation	Contractor	TMEIA		Y		✓
12.6		The Contractor shall prepare and implement a Waste Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated, recycled and disposed. A recording system for the amount of waste generated, recycled and disposed (locations) should be established.		Contractor	TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material		Y		*
12.6		The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.		Contractor	TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance.		Y		✓
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures including waste reduction, reuse and recycling.		Contractor	TMEIA		Y		√
12.6	8.1	The extent of cutting operation should be optimised where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.		Contractor	TMEIA		Y		√
12.6	8.1	The surplus surcharge should be transferred to a fill bank	Reclamation areas / after surcharge works	Contractor	TMEIA		Y		N/A
12.6	8.1	Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible	All areas / throughout construction period	Contractor	TMEIA		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	О	
12.6	8.1	The site and surroundings shall be kept tidy and litter free.	All areas / throughout construction period	Contractor	TMEIA		Y		<>
12.6	8.1	No waste shall be burnt on site.	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.	Detailed Design	Design Consultant	TMEIA	Y			√
12.6	8.1	The Contractor shall be prohibited from disposing of C&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation.	construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Stockpiled material shall be covered by tarpaulin and /or watered as appropriate to prevent windblown dust/ surface run off.	All areas / throughout construction period	Contractor	TMEIA		Y		<>
12.6	8.1	Excavated material in trucks shall be covered by tarpaulins to reduce the potential for spillage and dust generation.	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Dredged marine mud shall be disposed of in a gazetted marine disposal ground under the requirements of the Dumping at Seas Ordinance.		Contractor	TMEIA		Y		√
12.6	8.1	Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling. Purchasing of construction materials should avoid over-ordering and wastage.	construction period	Contractor	TMEIA		Y		V

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	C	О	
12.6	8.1	The Contractor should recycle as many C&D materials (this is a waste section) as possible on-site. The public fill and C&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal. Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities.	construction period	Contractor	TMEIA		Y		√
12.6	8.1	All falsework will be steel instead of wood.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows: - suitable for the substance to be held, - resistant to corrosion, maintained in good conditions and securely closed; - Having a capacity of <450L unless the specifications have been approved by the EPD; and - Displaying a label in English and Chinese according to the instructions prescribed in Schedule 2 of the Regulations. - Clearly labelled and used solely for the storage of chemical wastes; - Enclosed with at least 3 sides; - Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest; - Adequate ventilation;	construction period	Contractor	TMEIA		Y		*

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	Implementation Stages D C O Y Y Y Y Y Y Y Y Y Y Y Y Y		
	Reference					D	C	О	
		- Sufficiently covered to prevent rainfall							
		entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and							
		- Incompatible materials are adequately separated.							
12.6	8.1	Waste oils, chemicals or solvents shall not be disposed of to drain,	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Adequate numbers of portable toilets should be provided for on-site workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.		Contractor	TMEIA		Y		✓
12.6	8.1	Night soil should be regularly collected by licensed collectors.	All areas / throughout construction period	Contractor	TMEIA		Y		N/A
12.6	8.1	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C&D and chemical wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By-laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited.	construction period	Contractor	TMEIA		Y		<>
12.6	8.1	All waste containers shall be in a secure area on hardstanding;	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.		Contractor	TMEIA		Y		√
12.6	8.1	Office wastes can be reduced by recycling of paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	construction period	Contractor	TMEIA		Y		✓

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lementa Stages	tion	Status *
	Reference					D	C	О	
12.6	Section 8	EM&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.		Contractor	EM&A Manual		Y		√
CULTURAL H	ERITAGE								
11.8	Section 9	EM&A in the form of audit of the mitigation measures	All areas / throughout construction period	Highways Department	EIAO-TM		Y		N/A

* Remarks:

✓ Compliance of Mitigation Measures

Compliance of Mitigation but need improvement

x Non-compliance of Mitigation Measures

▲ Non-compliance of Mitigation Measures but rectified by Contractor

Δ Deficiency of Mitigation Measures but rectified by Contractor

N/A Not Applicable in Reporting Period

Legend: D=Design, C=Construction, O=Operation

Appendix C

Summary of Action and Limit Levels

Table C1 Action and Limit Levels for 1-hour and 24-hour TSP

Parameters	Action	Limit
24 Hour TSP Level in μg/m ³	ASR1 = 213	260
	ASR5 = 238	
	AQMS1 = 213	
	ASR6 = 238	
	ASR10 = 214	
1 Hour TSP Level in μg /m³	ASR1 = 331	500
	ASR5 = 340	
	AQMS1 = 335	
	ASR6 = 338	
	ASR10 = 337	

Table C2 Action and Limit Levels for Water Quality

Parameter	Action Level#	Limit Level#
DO in mg/L (a)	Surface and Middle	Surface and Middle
	5.0 mg/L	4.2 mg/L
	<u>Bottom</u>	<u>Bottom</u>
	4.7 mg/L	3.6 mg/L
Turbidity in NTU (Depthaveraged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data, i.e.,
	27.5 NTU	47.0 NTU
SS in mg/L (Depth-averaged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e., 23.5 mg/L	130% of upstream control station at the same tide of the same day and 10mg/L for WSD Seawater Intakes at Tuen Mun and 99%-ile of baseline data, i.e.,
		34.4 mg/L

Notes:

Baseline data: data from HKZMB Baseline Water Quality Monitoring between 6 and 31 October 2011.

- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths
- (c) For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (d) All figures given in the table are used for reference only, and EPD may amend the figures whenever it is considered as necessary
- (e) The 1%-ile of baseline data for surface and middle DO is 4.2 mg/L, whilst for bottom DO is 3.6 mg/L.

Table C3 Action and Limit Levels for Impact Dolphin Monitoring

	North Lantau Social Cluster	
	NEL	NWL
Action Level	STG < 70% of baseline &	STG < 70% of baseline &
	ANI < 70% of baseline	ANI < 70% of baseline
Limit Level	[STG < 40% of baseline & ANI < 40% of baselin	
	and	
	STG < 40% of baseline & ANI < 40% of baseline	

Notes:

- STG means quarterly encounter rate of number of dolphin sightings, which is 6.00 in NEL and 9.85 in NWL during the baseline monitoring period
- 2. ANI means quarterly encounter rate of total number of dolphins, which is **22.19 in NEL** and **44.66 in NWL** during the baseline monitoring period
- 3. For North Lantau Social Cluster, AL will be trigger if NEL or NWL fall below the criteria; LL will be triggered if both NEL and NWL fall below the criteria.

Table C4 Derived Value of Action Level (AL) and Limit Level (LL)

	North Lantau Social Cluster	
	NEL	NWL
Action Level	STG < 4.2 & ANI< 15.5	STG < 6.9 & ANI < 31.3
Limit Level	NEL = [STG < 2.4 & ANI < 8.9]	
	and	
	NWL = [STG < 3.9 & ANI < 17.9]	

Appendix D

Impact Air Quality Monitoring Results

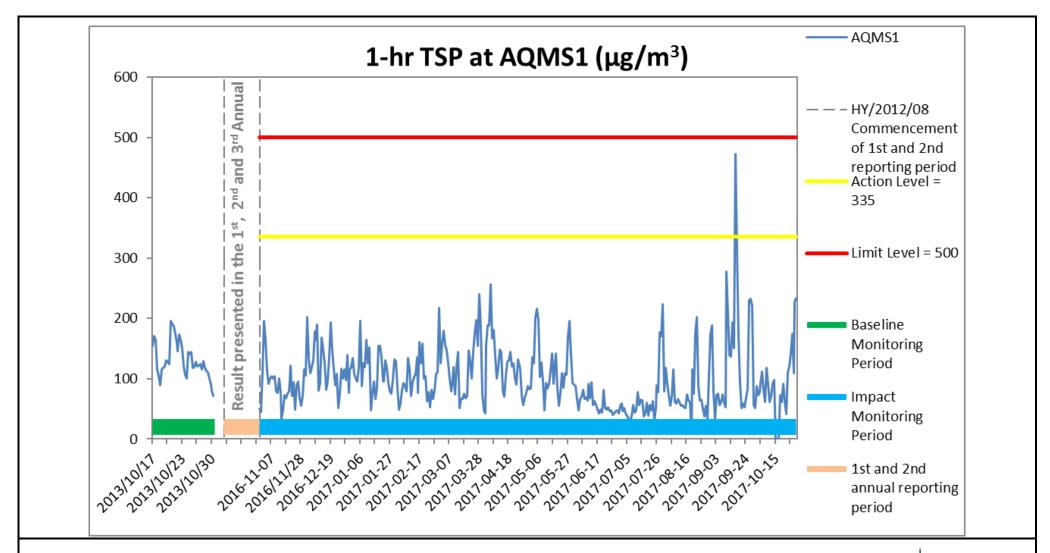


Figure D.1 Baseline & Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at AQMS1 between 17 October 2013 and 31 October 2017 during Baseline & Impact Monitoring period. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major land-based construction activities included: Construction of Cross Passage Tympanum, Box Culvert Extension, CSM Ground Treatment, TBM Tunnel Works & Excavation of sub-sea tunnel. Ref: 0212330_Impact AQM graphs_4thAnnual_REV a.xlsx

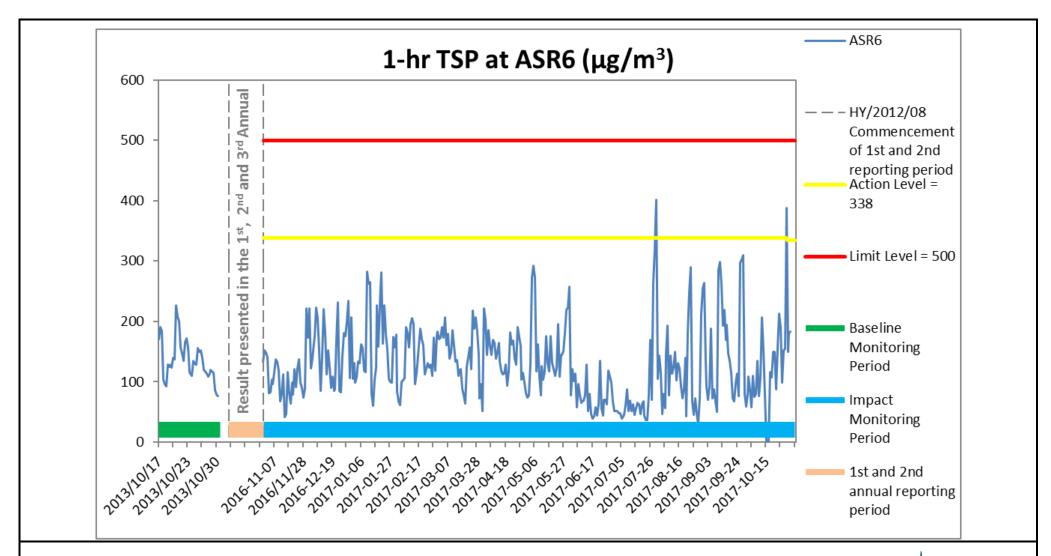


Figure D.2 Baseline & Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at AQMS2/ASR6 between 17 October 2013 and 31 October 2017 during Baseline & Impact Monitoring period. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major land-based construction activities included: Construction of Cross Passage Tympanum, Box Culvert Extension, CSM Ground Treatment, TBM Tunnel Works & Excavation of sub-sea tunnel. Ref: 0212330_Impact AQM graphs_4thAnnual_REV a.xlsx

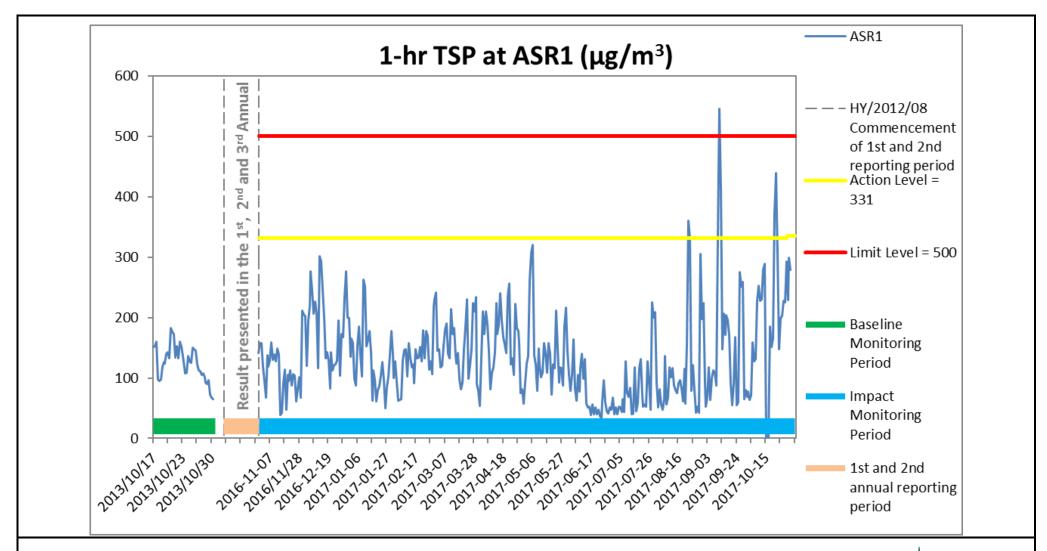


Figure D.3 Baseline & Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR1 between 17 October 2013 and 31 October 2017 during Baseline & Impact Monitoring period. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major land-based construction activities included: Construction of Cross Passage Tympanum, Box Culvert Extension, CSM Ground Treatment, TBM Tunnel Works & Excavation of sub-sea tunnel. Ref: 0212330_Impact AQM graphs_4thAnnual_REV a.xlsx

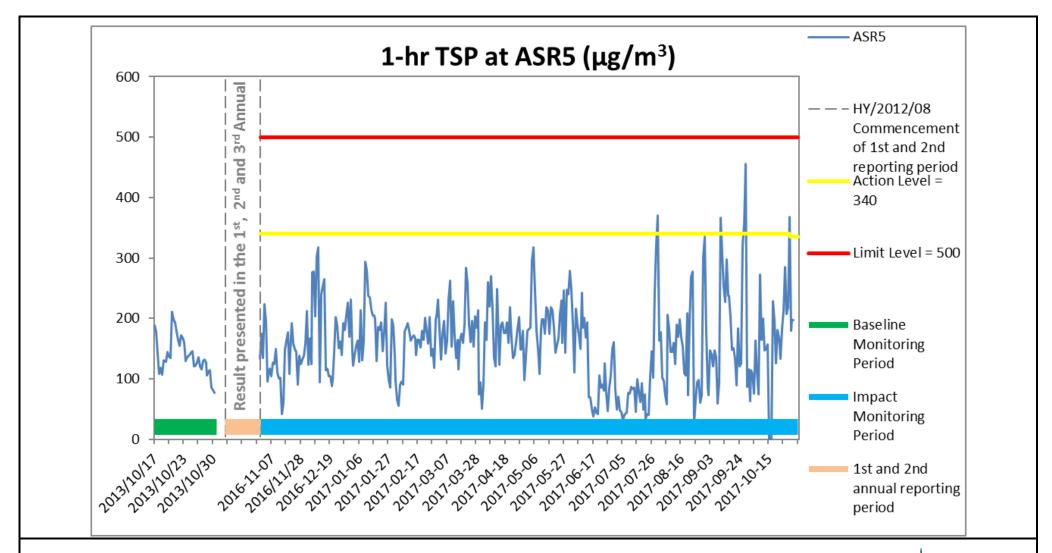


Figure D.4 Baseline & Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR5 between 17 October 2013 and 31 October 2017 during Baseline & Impact Monitoring period. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major land-based construction activities included: Construction of Cross Passage Tympanum, Box Culvert Extension, CSM Ground Treatment, TBM Tunnel Works & Excavation of sub-sea tunnel. Ref: 0212330_Impact AQM graphs_4thAnnual_REV a.xlsx

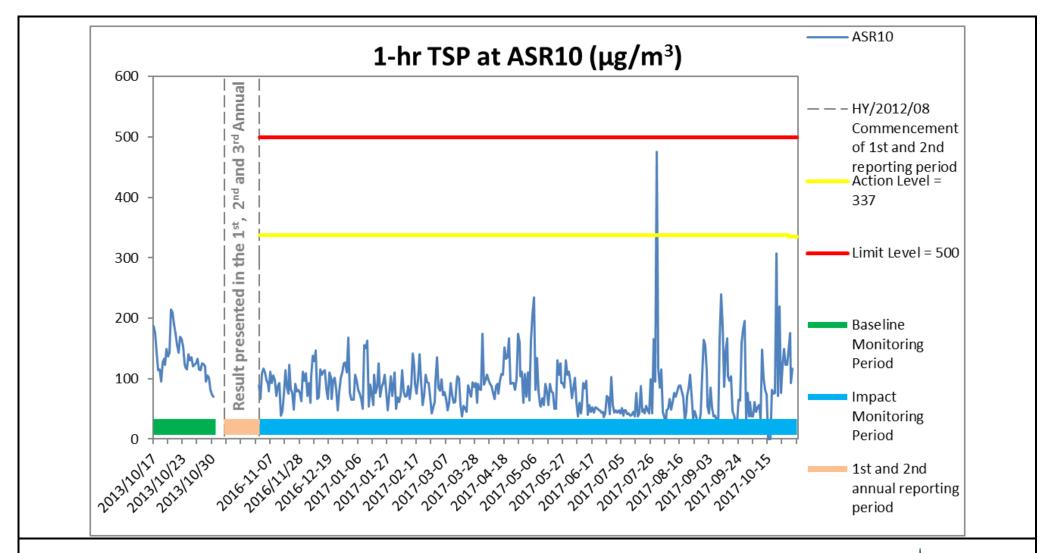


Figure D.5 Baseline & Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR10 between 17 October 2013 and 31 October 2017 during Baseline & Impact Monitoring period. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major land-based construction activities included: Construction of Cross Passage Tympanum, Box Culvert Extension, CSM Ground Treatment, TBM Tunnel Works & Excavation of sub-sea tunnel. Ref: 0212330_Impact AQM graphs_4thAnnual_REV a.xlsx

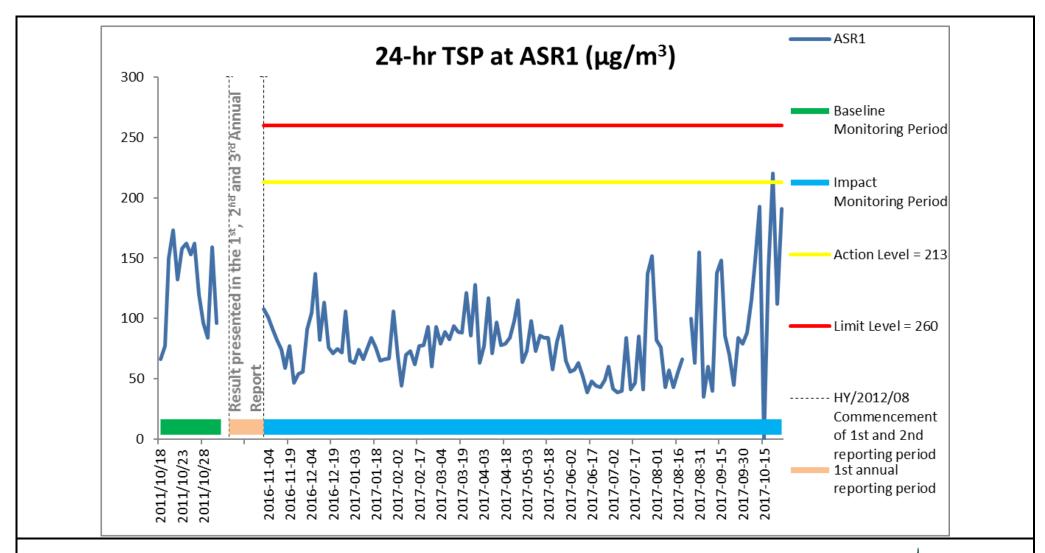


Figure D.6 Baseline & Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR1 between 17 October 2013 and 31 October 2017 during Baseline & Impact Monitoring period. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major land-based construction activities included: Construction of Cross Passage Tympanum, Box Culvert Extension, CSM Ground Treatment, TBM Tunnel Works & Excavation of sub-sea tunnel. Ref: 0212330_Impact AQM graphs_4thAnnual_REV a.xlsx

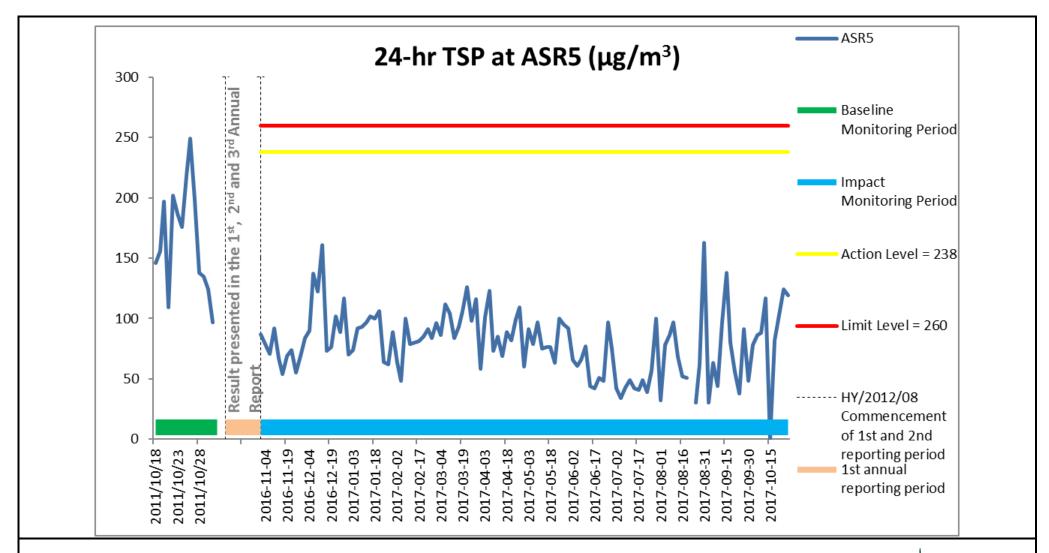


Figure D.7 Baseline & Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR5 between 17 October 2013 and 31 October 2017 during Baseline & Impact Monitoring period. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major land-based construction activities included: Construction of Cross Passage Tympanum, Box Culvert Extension, CSM Ground Treatment, TBM Tunnel Works & Excavation of sub-sea tunnel. Ref: 0212330_Impact AQM graphs_4thAnnual_REV a.xlsx

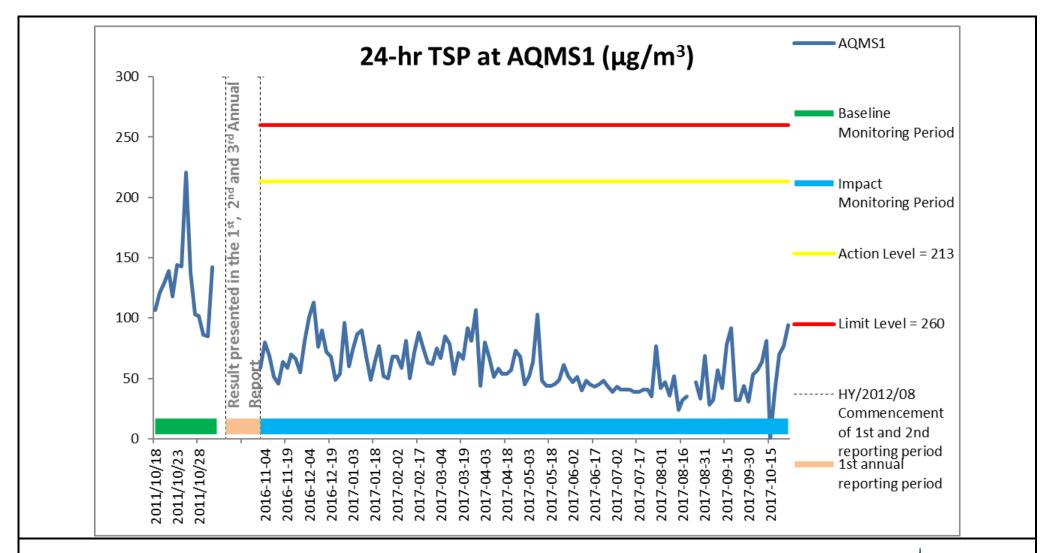


Figure D.8 Baseline & Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at AQMS1 between 17 October 2013 and 31 October 2017 during Baseline & Impact Monitoring period. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major land-based construction activities included: Construction of Cross Passage Tympanum, Box Culvert Extension, CSM Ground Treatment, TBM Tunnel Works & Excavation of sub-sea tunnel. Ref: 0212330_Impact AQM graphs_4thAnnual_REV a.xlsx

Figure D.9 Baseline & Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at AQMS2/ASR6 between 17 October 2013 and 31 October 2017 during Baseline & Impact Monitoring period. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major land-based construction activities included: Construction of Cross Passage Tympanum, Box Culvert Extension, CSM Ground Treatment, TBM Tunnel Works & Excavation of sub-sea tunnel. Ref: 0212330_Impact AQM graphs_4thAnnual_REV a.xlsx

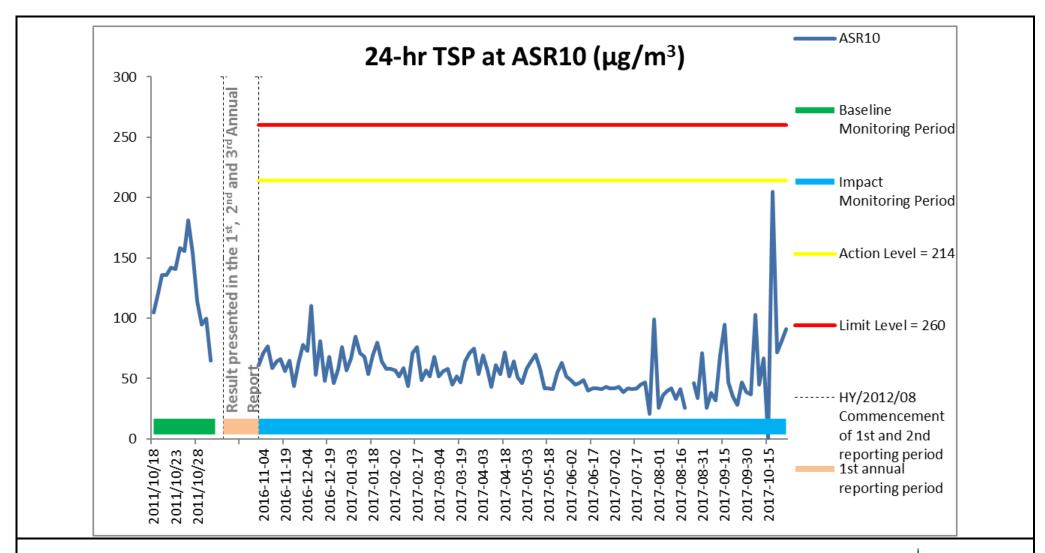
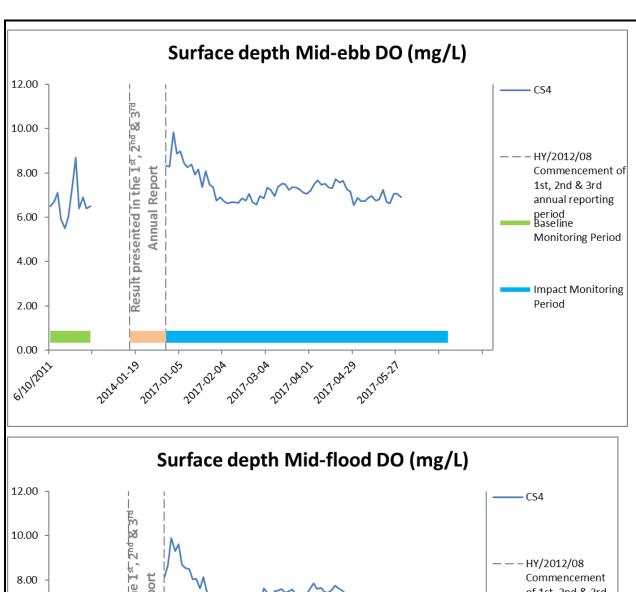



Figure D.10 Baseline & Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR10 between 17 October 2013 and 31 October 2017 during Baseline & Impact Monitoring period. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major land-based construction activities included: Construction of Cross Passage Tympanum, Box Culvert Extension, CSM Ground Treatment, TBM Tunnel Works & Excavation of sub-sea tunnel. Ref: 0212330_Impact AQM graphs_4thAnnual_REV a.xlsx

Appendix E

Impact Water Quality Monitoring Results

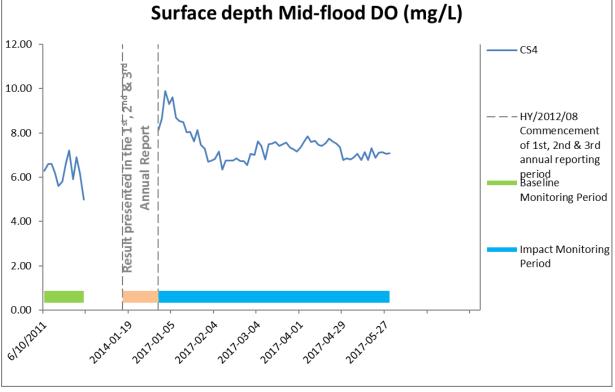
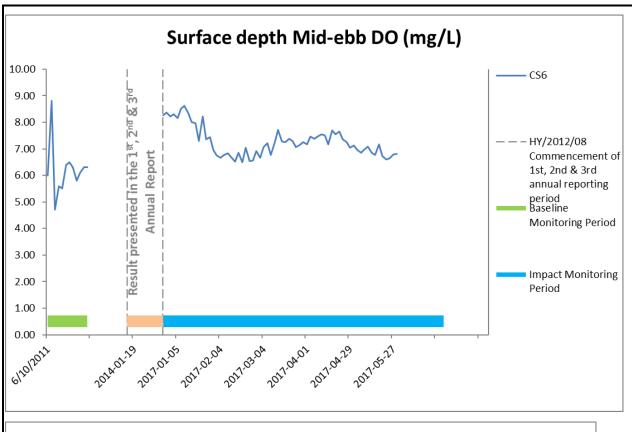



Figure E1 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at CS4. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

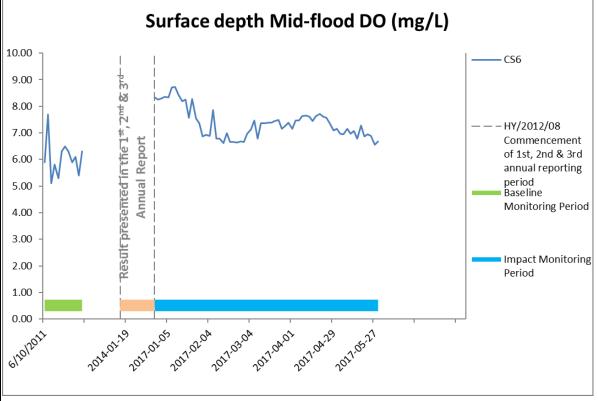
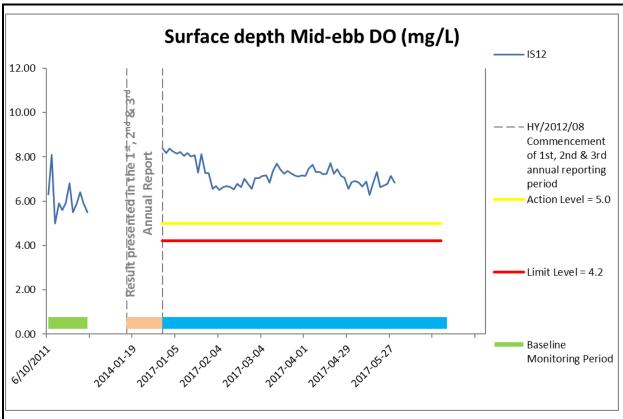



Figure E2 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at CS6. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

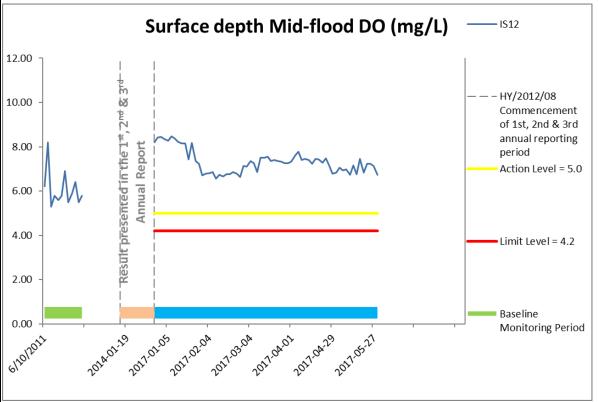
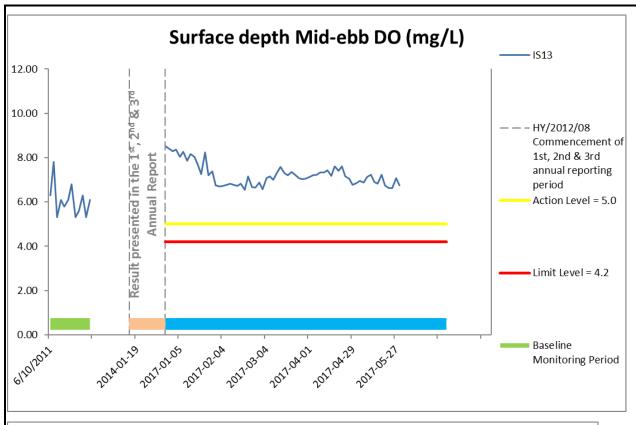



Figure E3 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS12. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

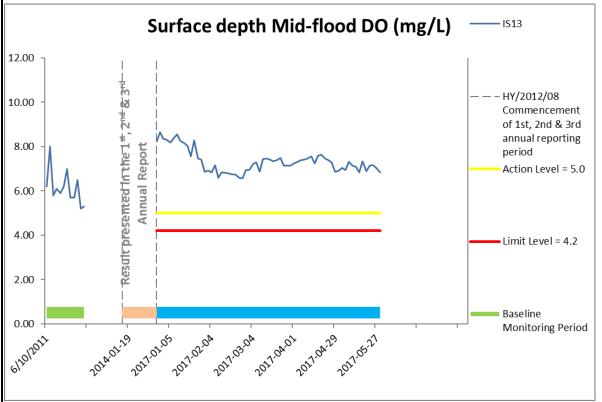
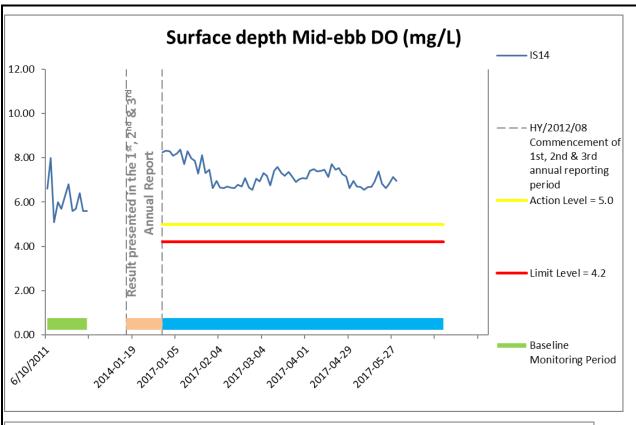



Figure E4 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS13. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

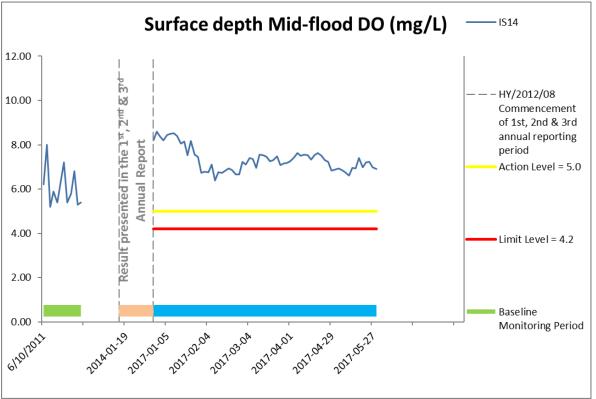
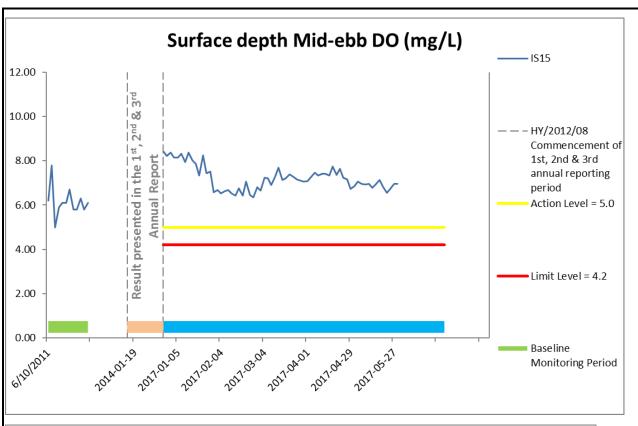



Figure E5 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS14. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

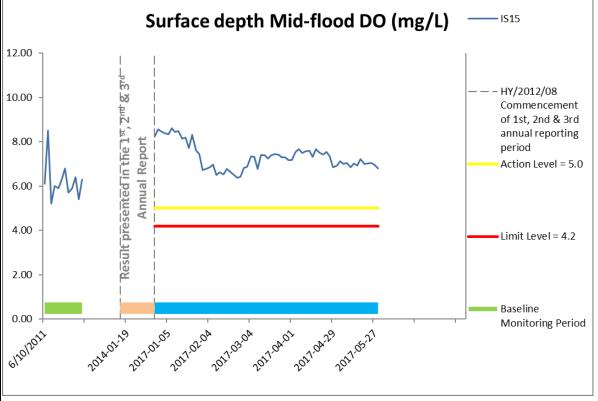
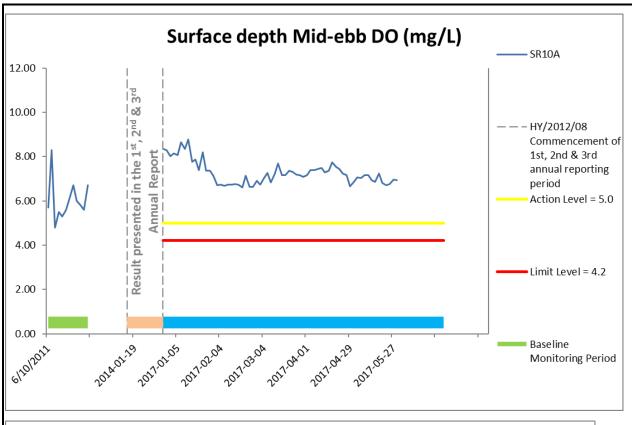



Figure E6 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS15. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

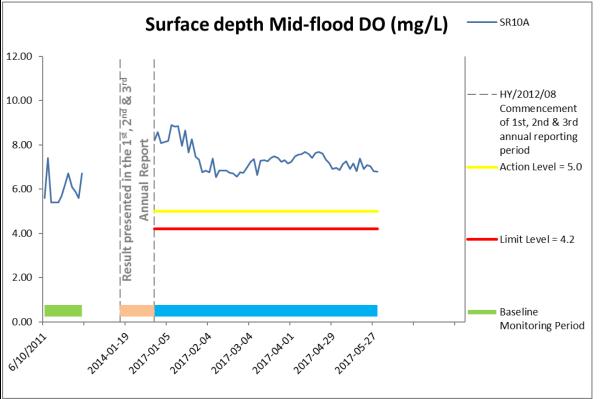
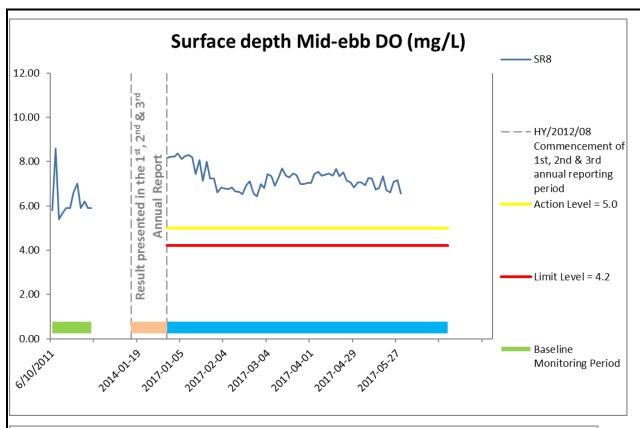



Figure E7 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR10A. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

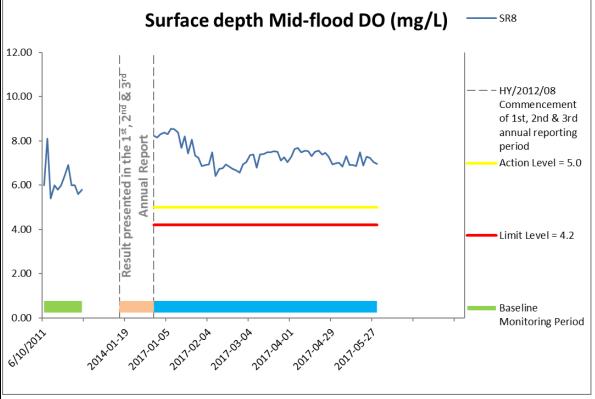
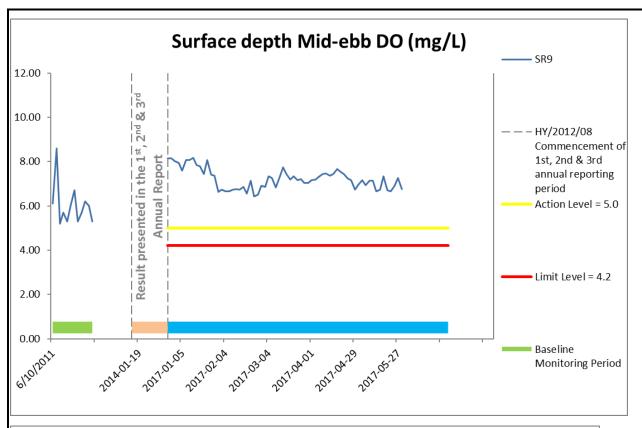



Figure E8 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR8. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

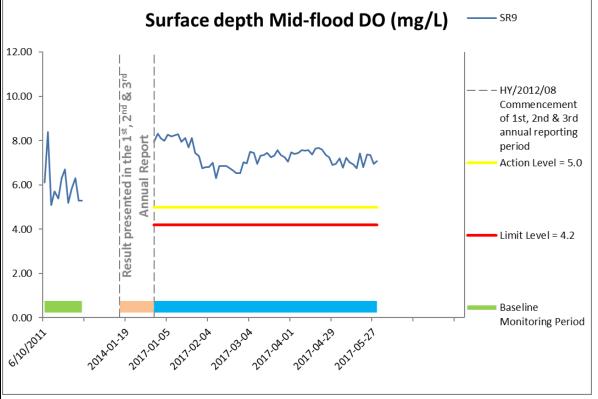
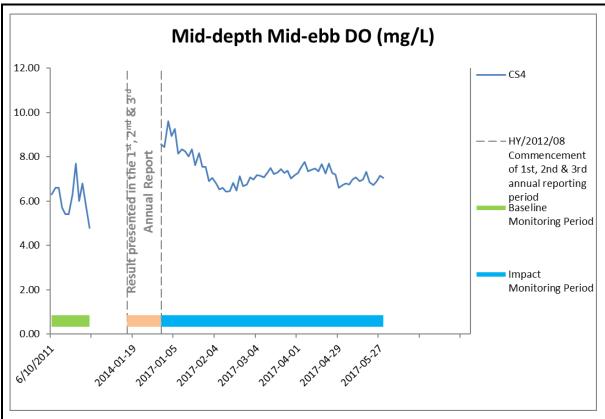



Figure E9 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR9. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

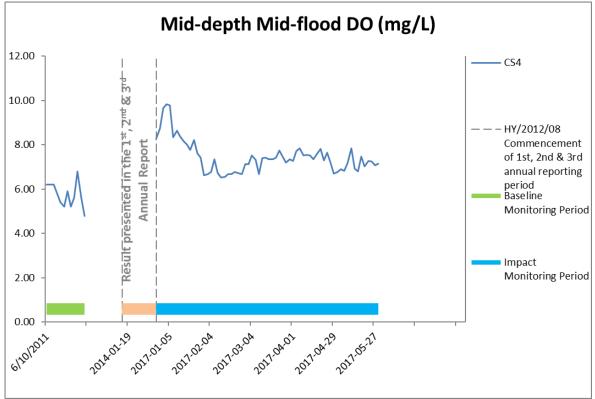
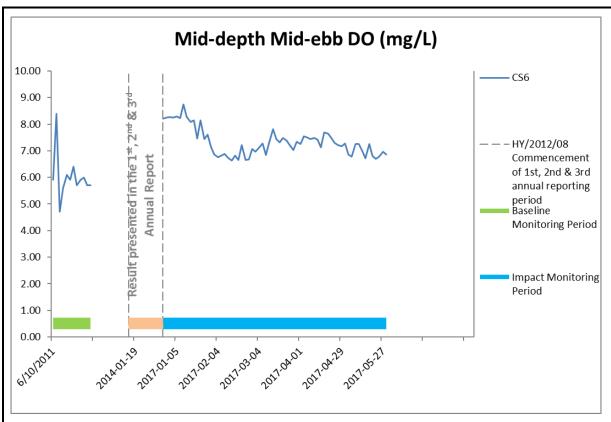



Figure E10 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at CS4. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

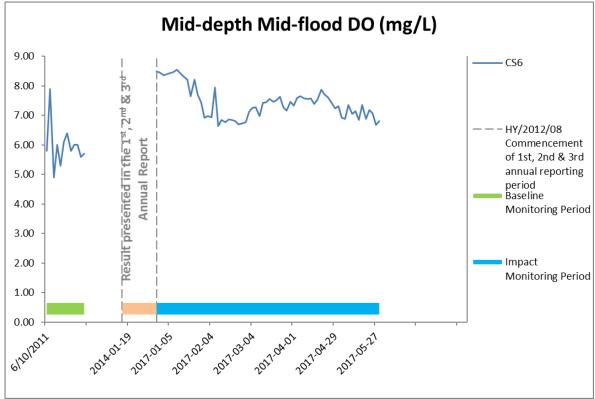
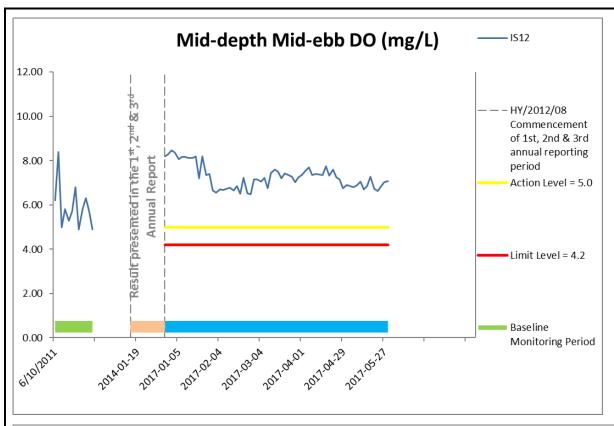



Figure E11 Baseline & Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at CS6. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

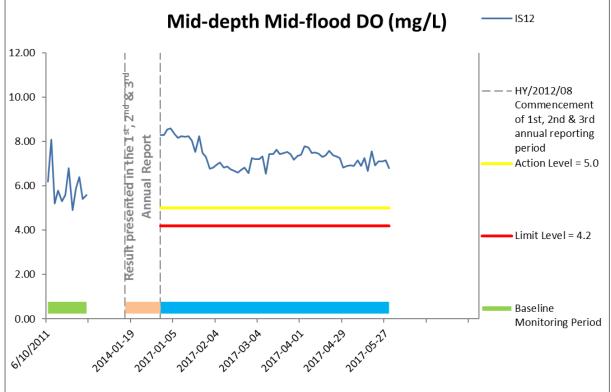
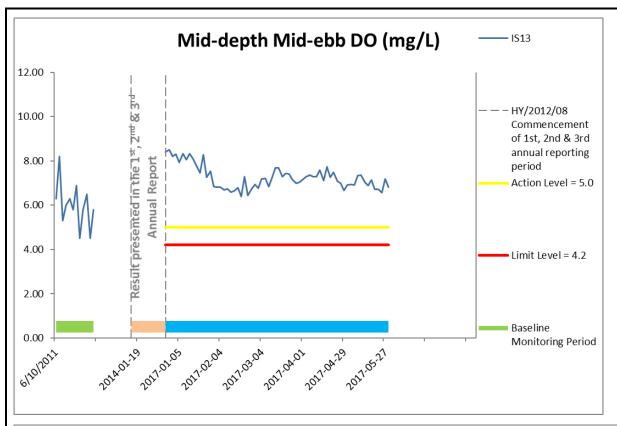



Figure E12 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS12. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

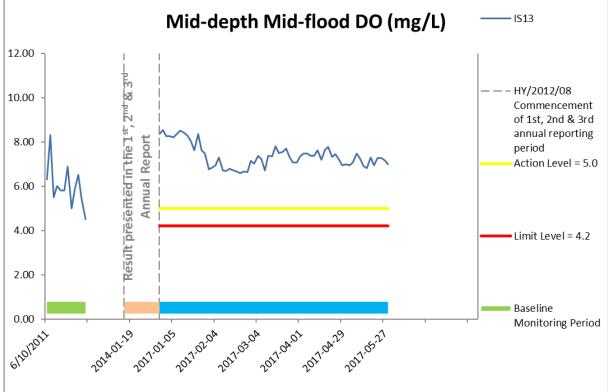
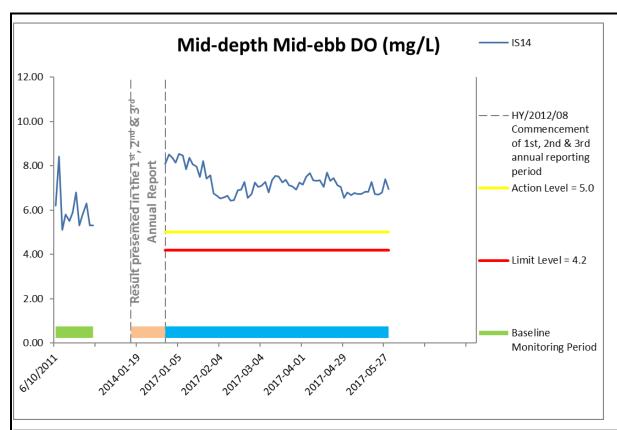



Figure E13 Baseline & Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS13. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

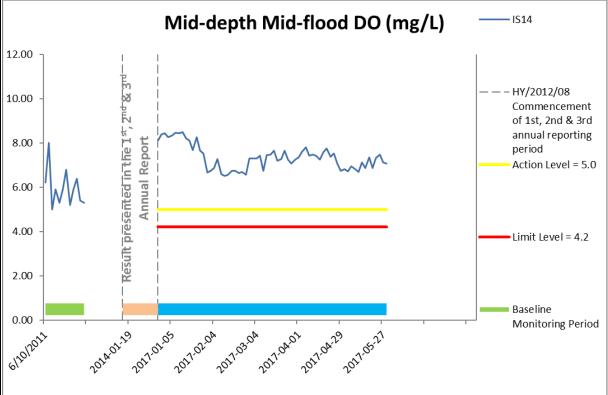
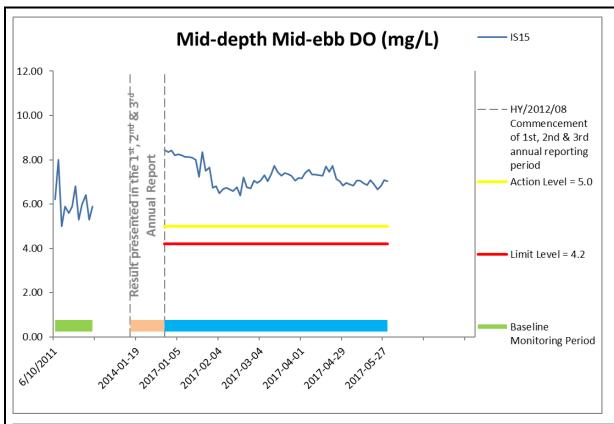



Figure E14 Baseline & Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS14. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

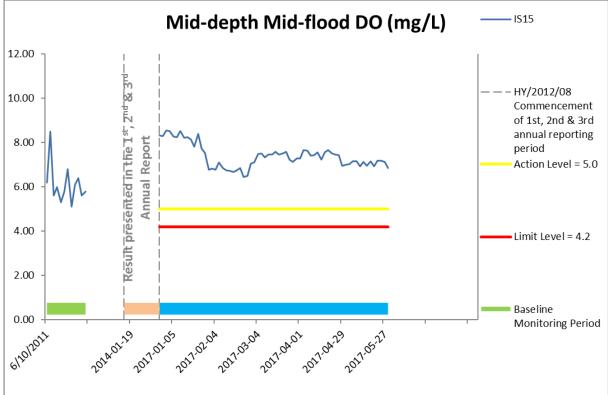
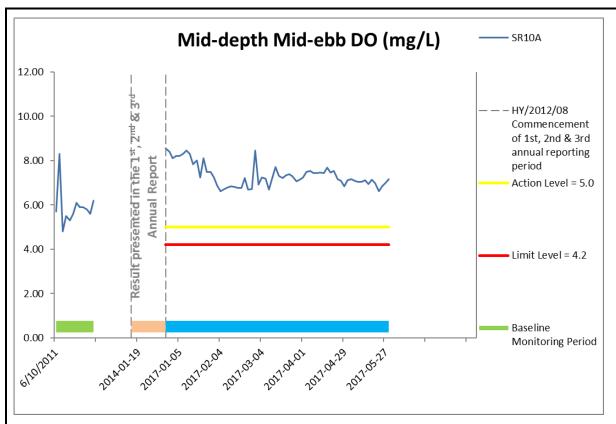



Figure E15 Baseline & Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS15. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

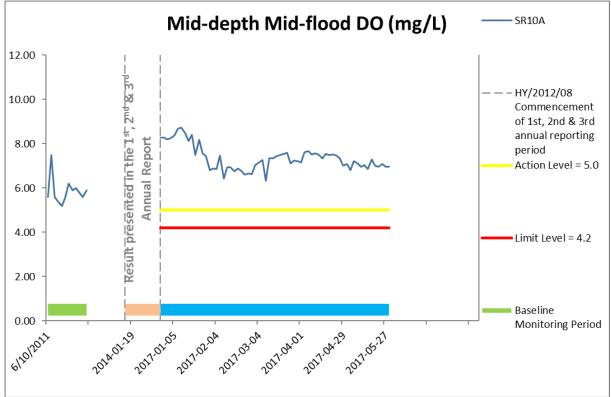
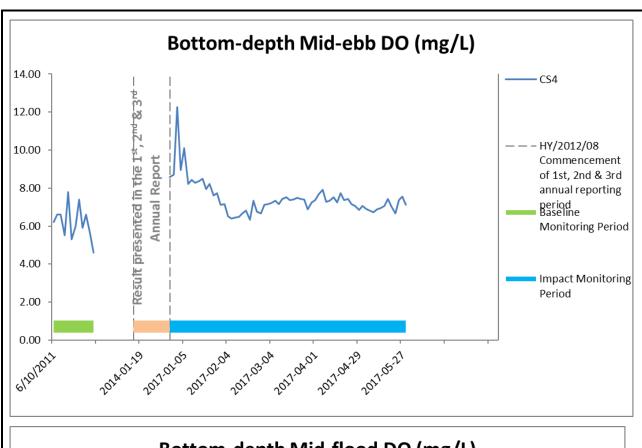



Figure E16 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR10A. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

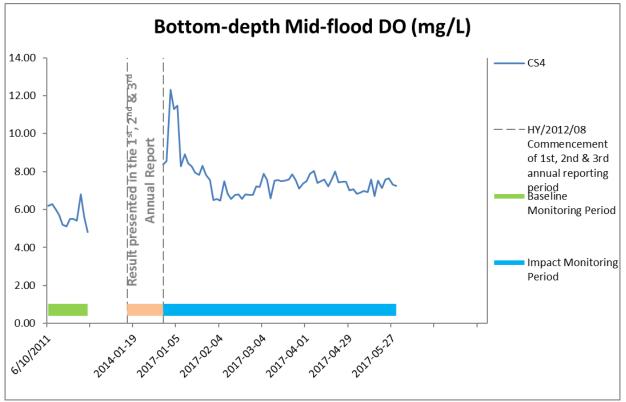
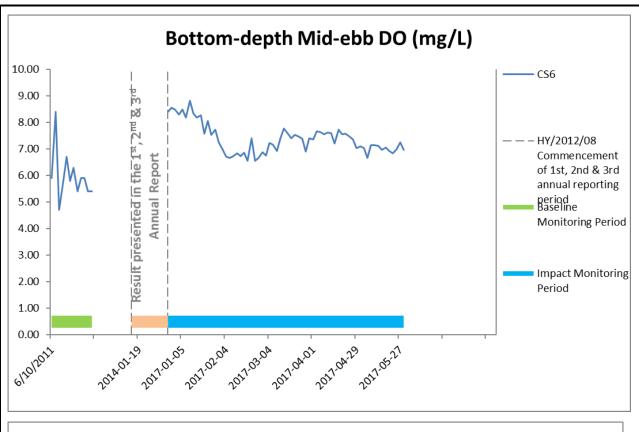



Figure E17 Baseline & Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at CS4. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

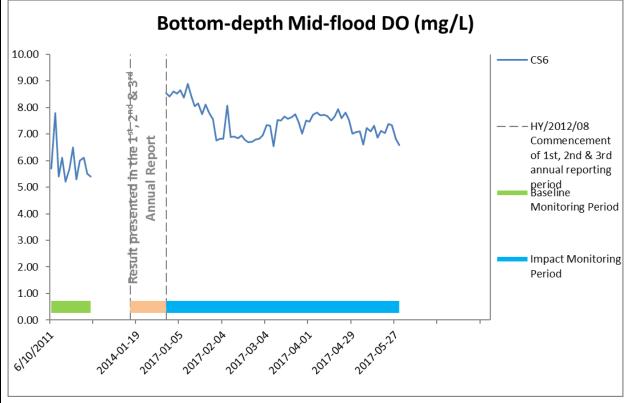
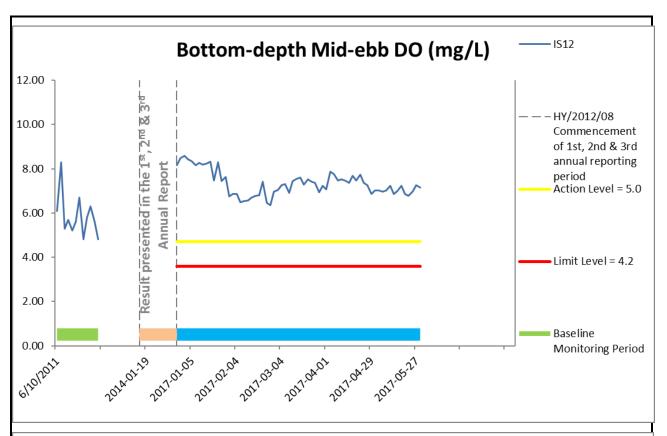



Figure E18 Baseline & Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at CS6. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

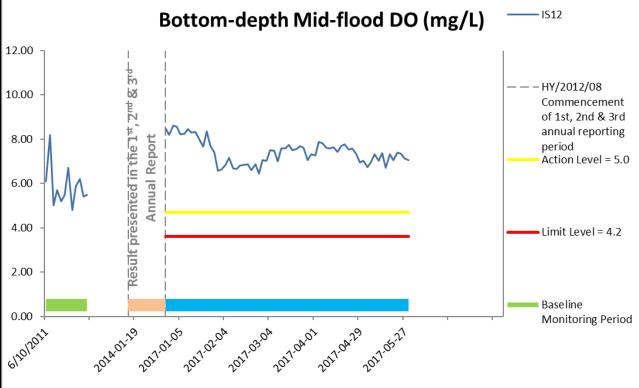
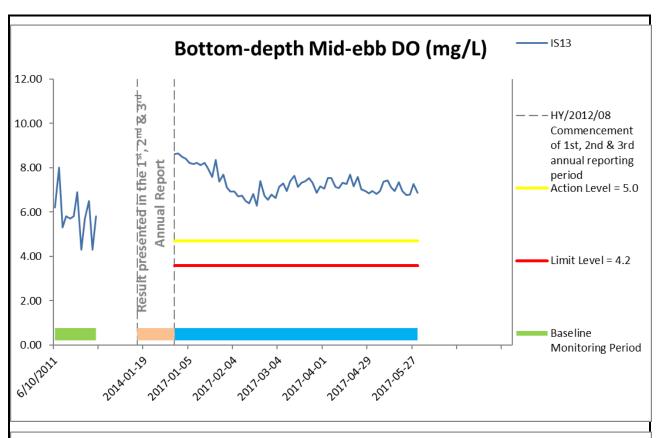



Figure E19 Baseline & Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS12. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

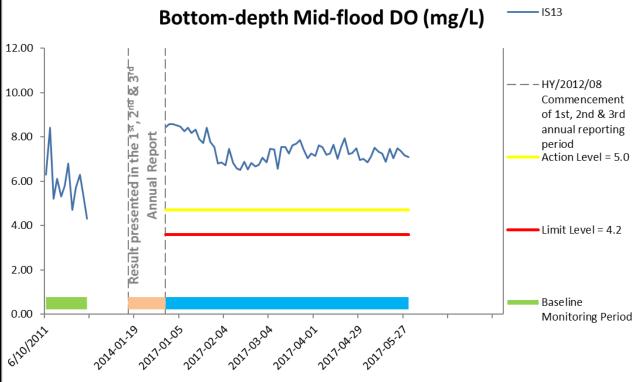
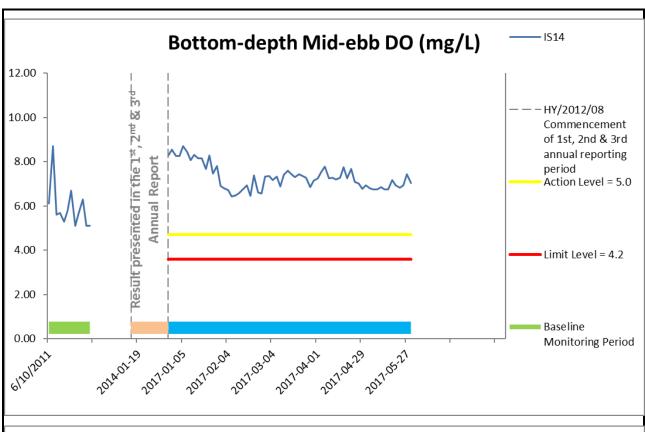



Figure E20 Baseline & Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS13. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

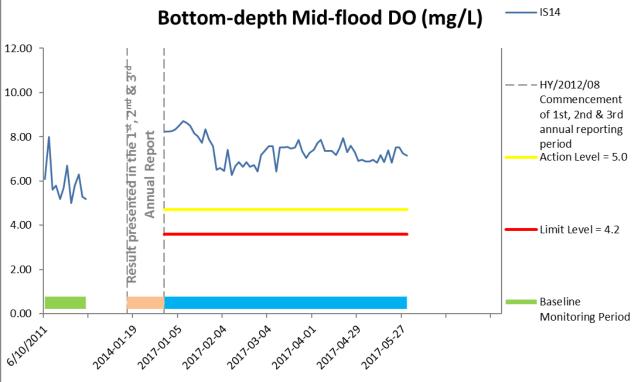
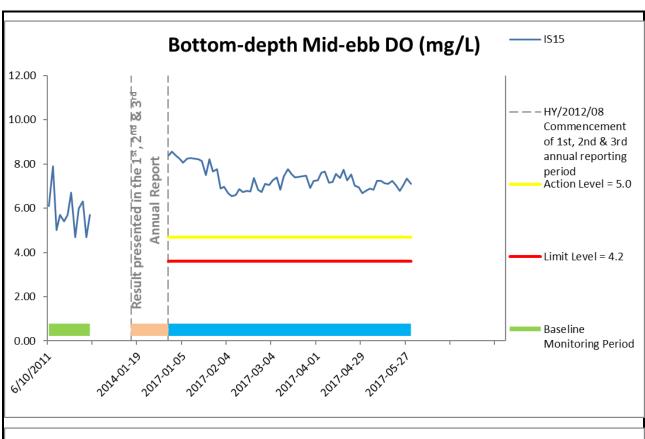



Figure E21 Baseline & Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS14. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

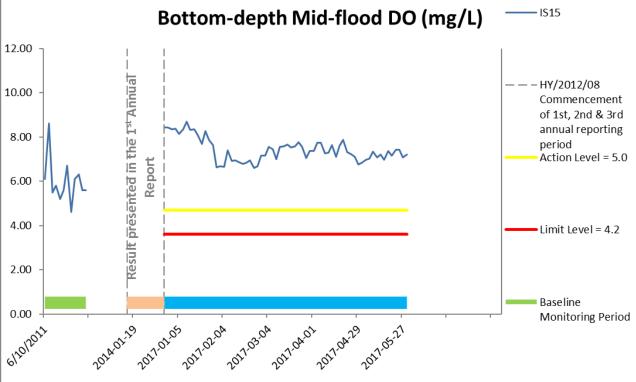



Figure E22 Baseline & Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS15. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

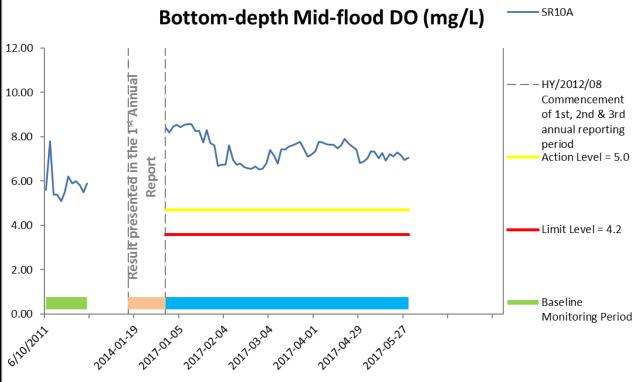
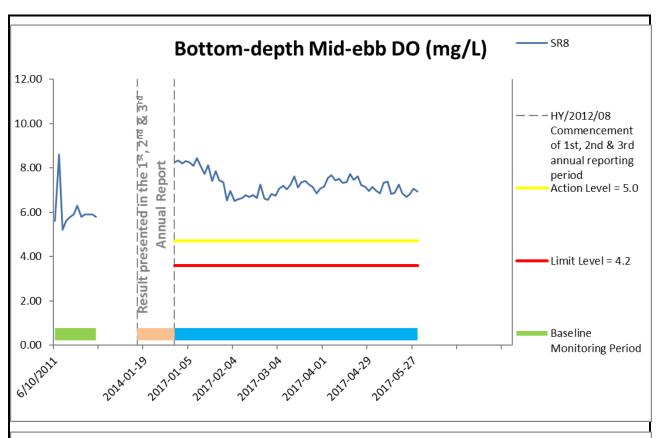



Figure E23 Baseline & Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR10A. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

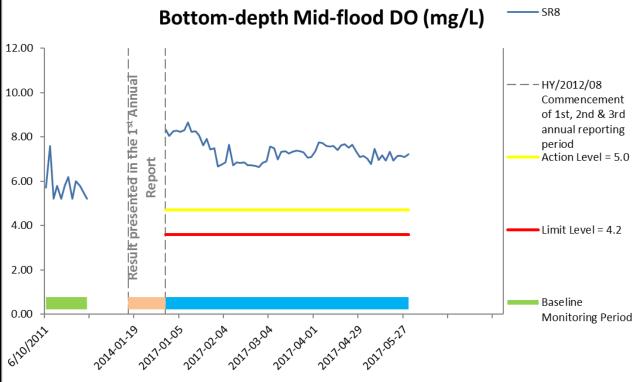
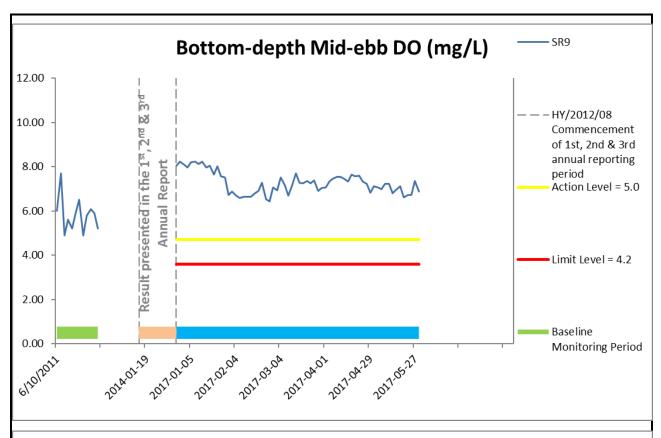



Figure E24 Baseline & Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR8. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

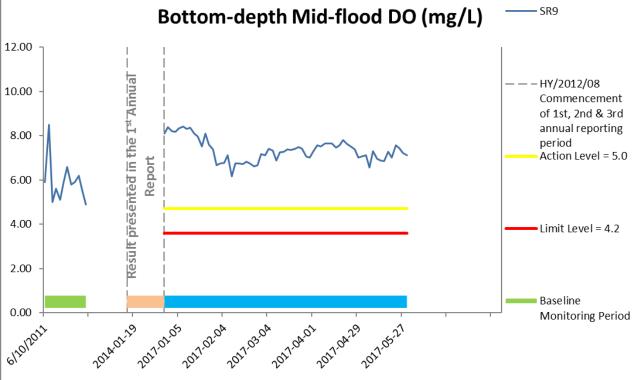
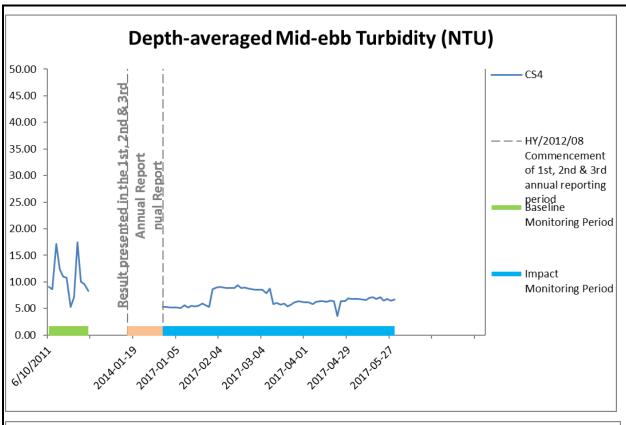



Figure E25 Baseline & Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR9. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

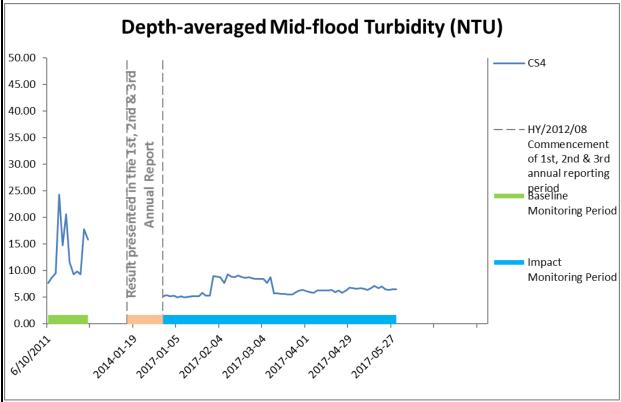
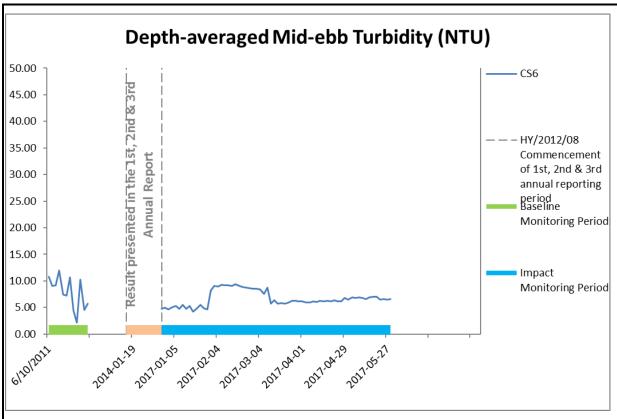



Figure E26 Baseline & Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at CS4. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

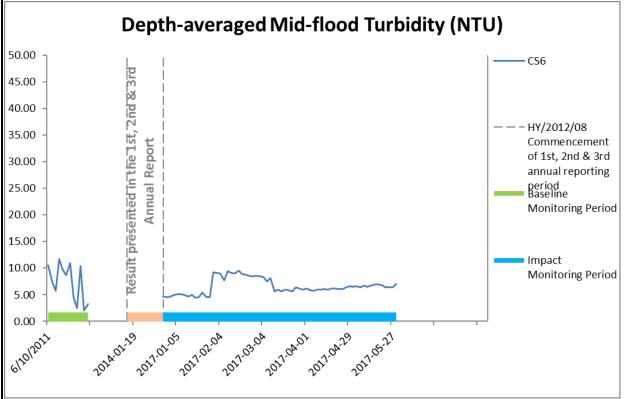
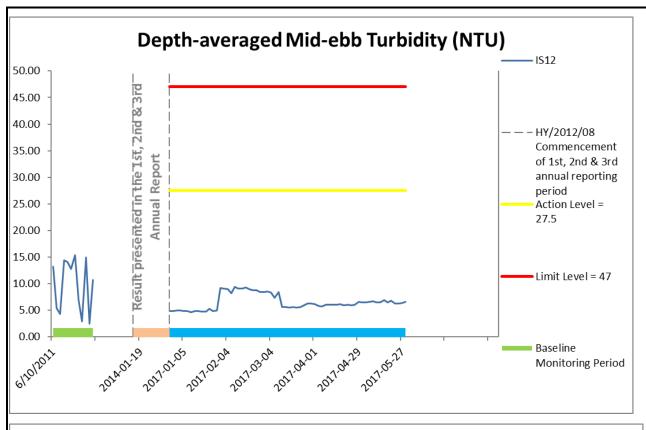



Figure E27 Baseline & Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at CS6. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

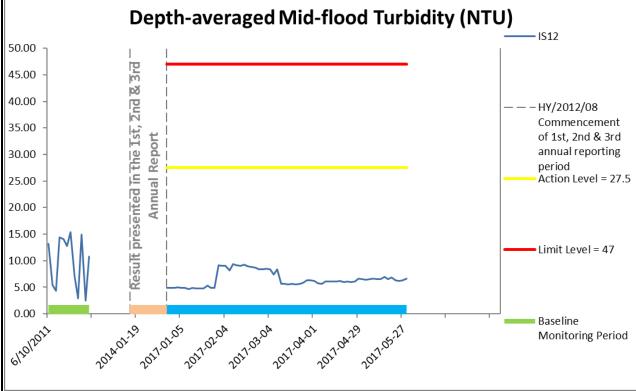
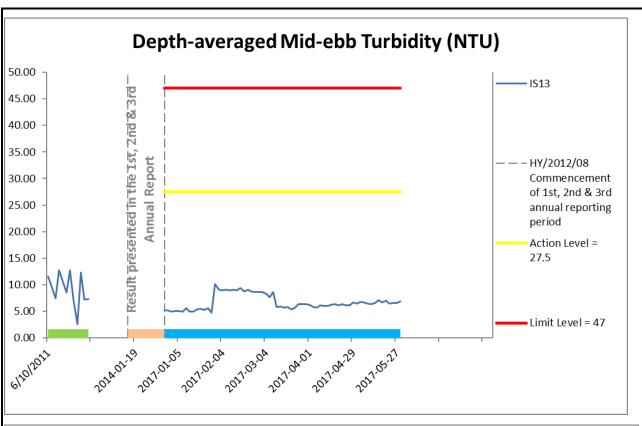



Figure E28 Baseline & Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS12. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

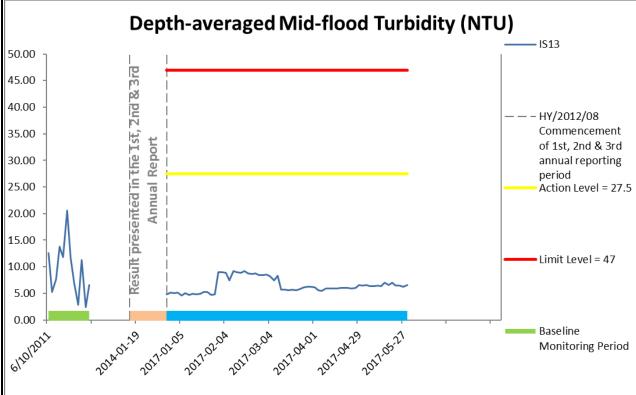



Figure E29 Baseline & Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS13. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

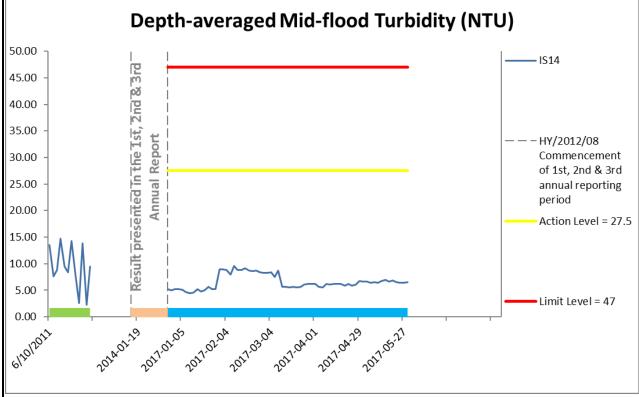


Figure E30 Baseline & Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS14. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

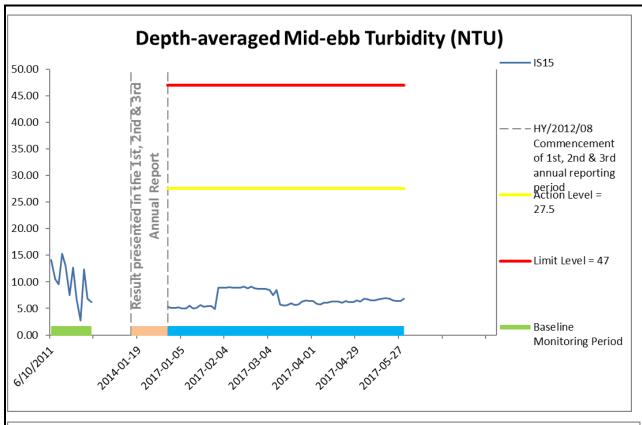
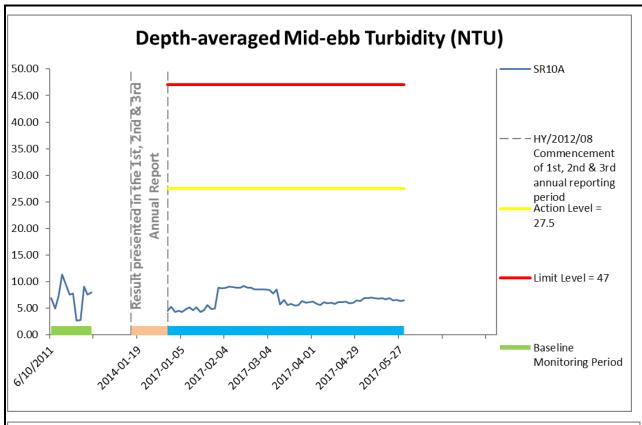



Figure E31 Baseline & Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS15. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

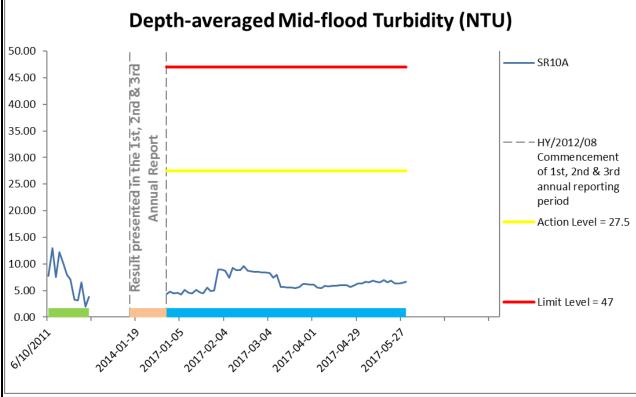


Figure E32 Baseline & Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR10A. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

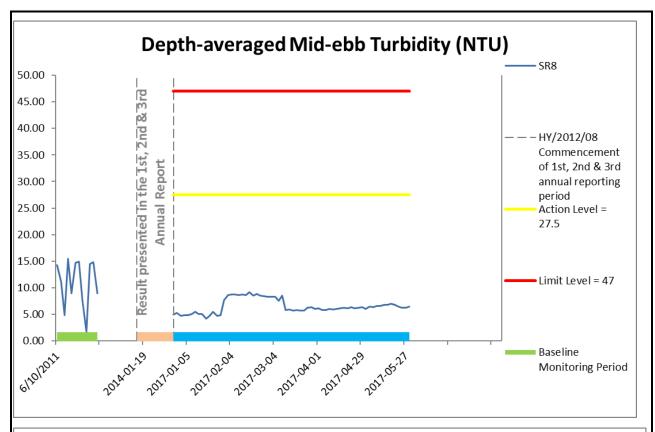
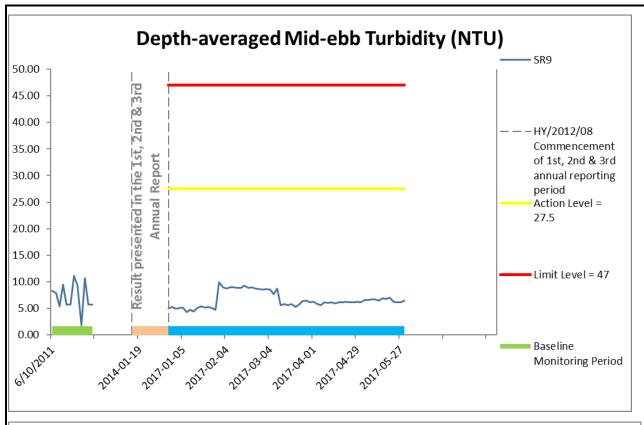



Figure E33 Baseline & Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR8. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

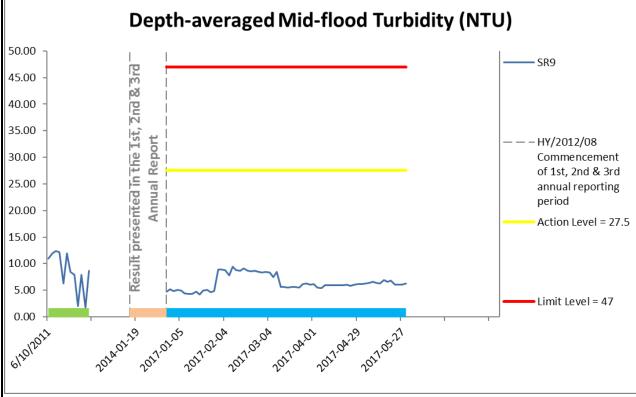
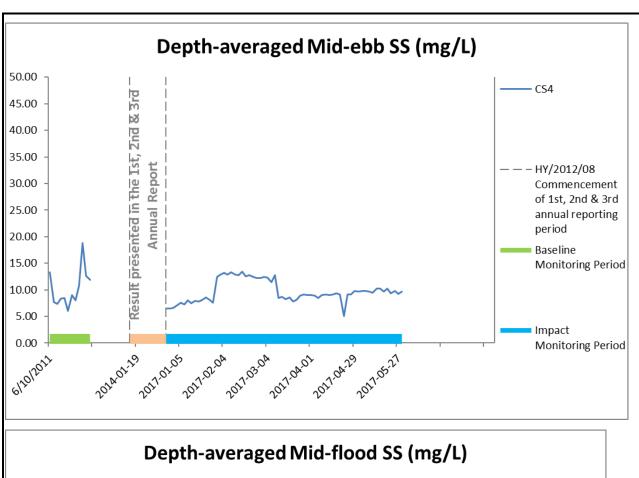



Figure E34 Baseline & Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR9. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

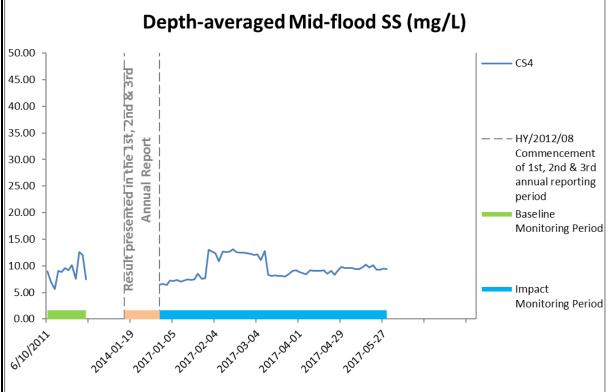
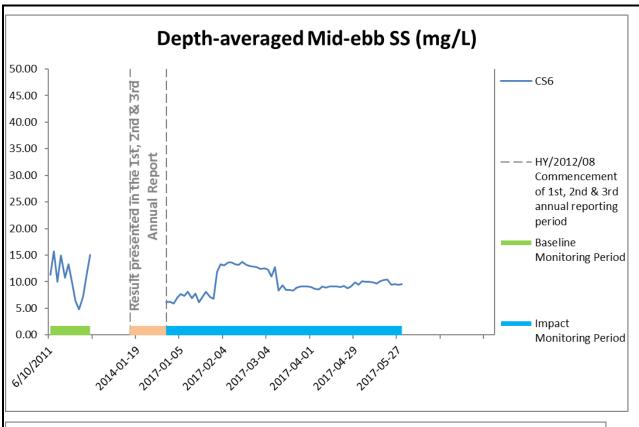



Figure E35 Baseline & Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at CS4. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

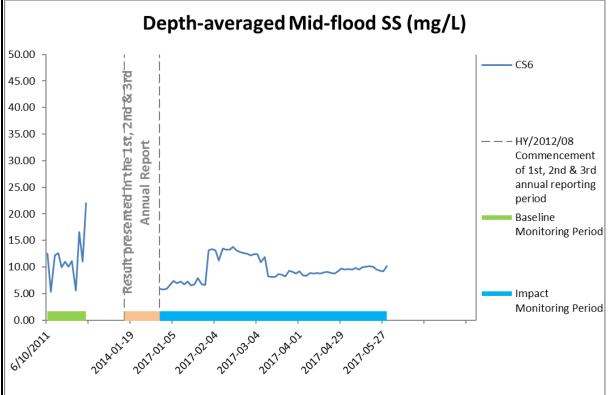
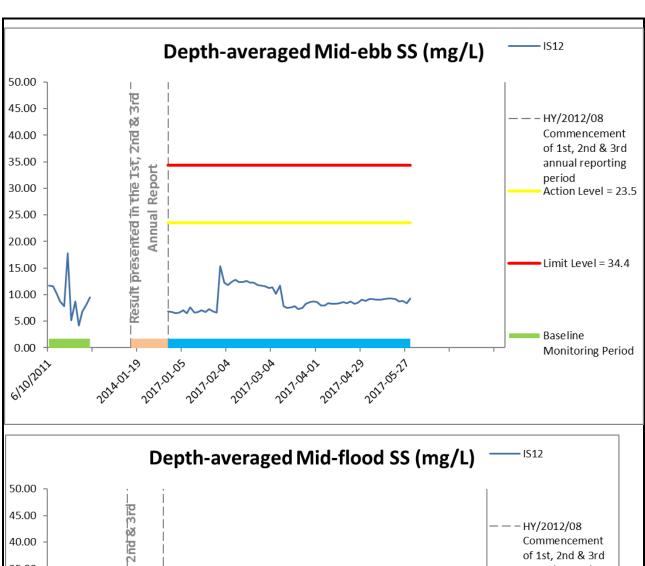



Figure E36 Baseline & Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at CS6. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

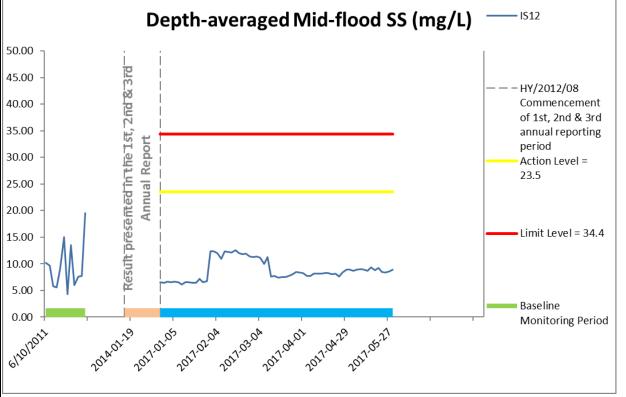


Figure E37 Baseline & Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS12. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

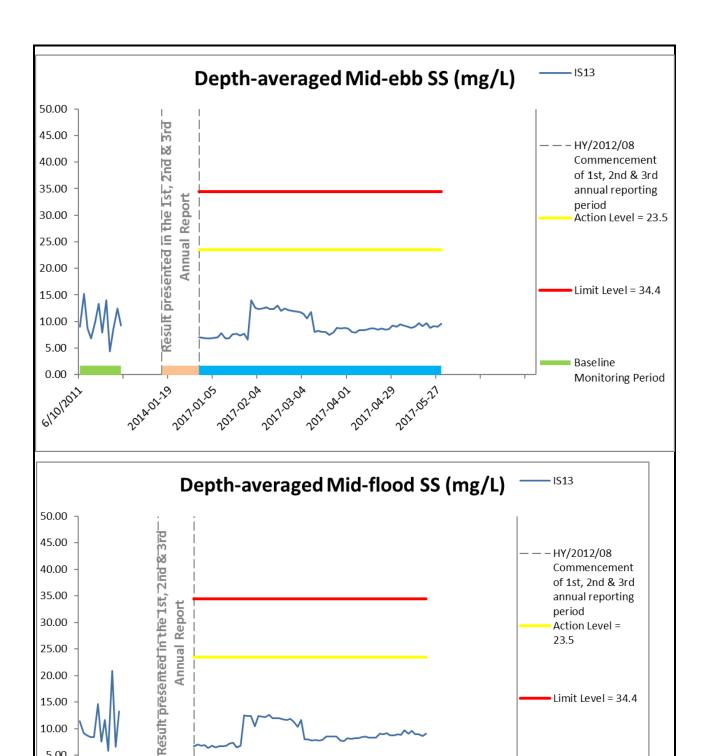
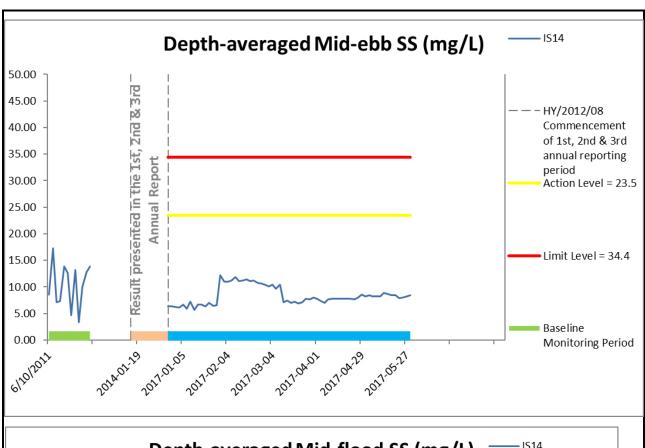


Figure E38 Baseline & Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS13. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

Baseline


Monitoring Period

Ref: 0212330_Impact-WQM_4th annual.xlsx

10.00

5.00

0.00

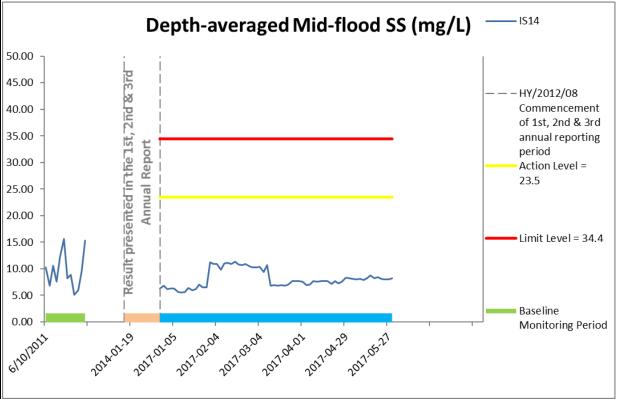
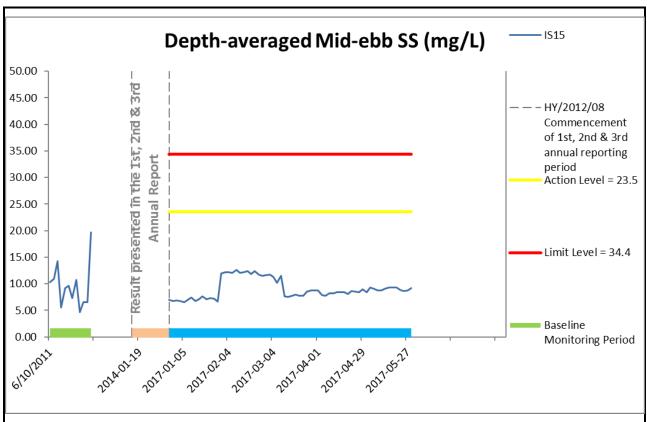



Figure E39 Baseline & Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS14. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

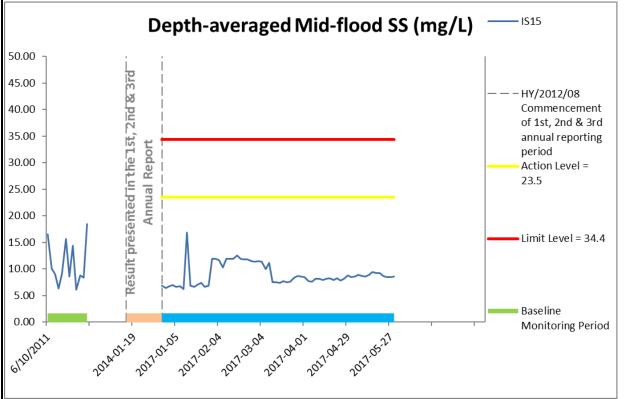


Figure E40 Baseline & Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at IS15. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

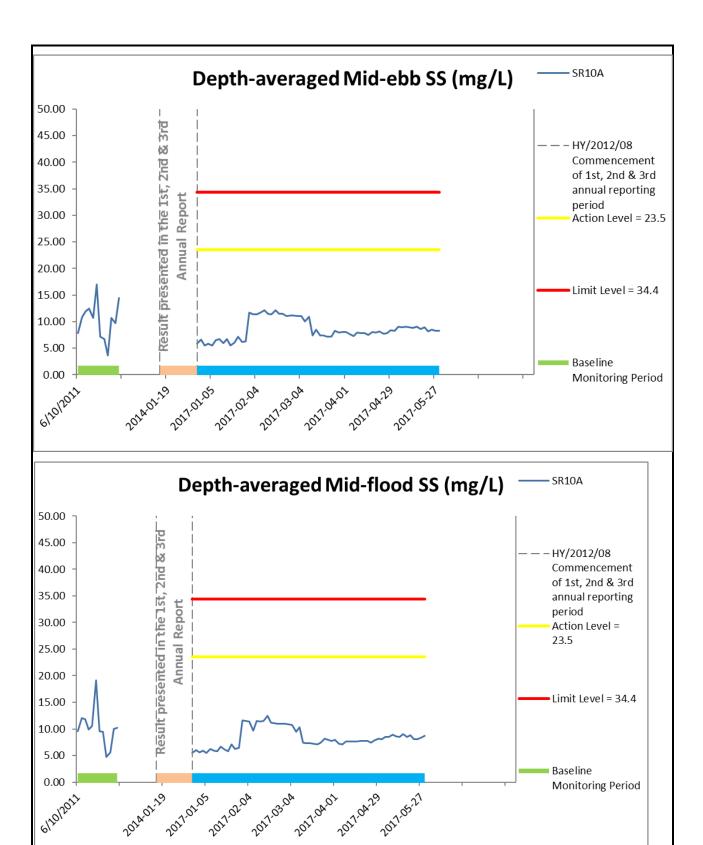


Figure E41 Baseline & Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR10A. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

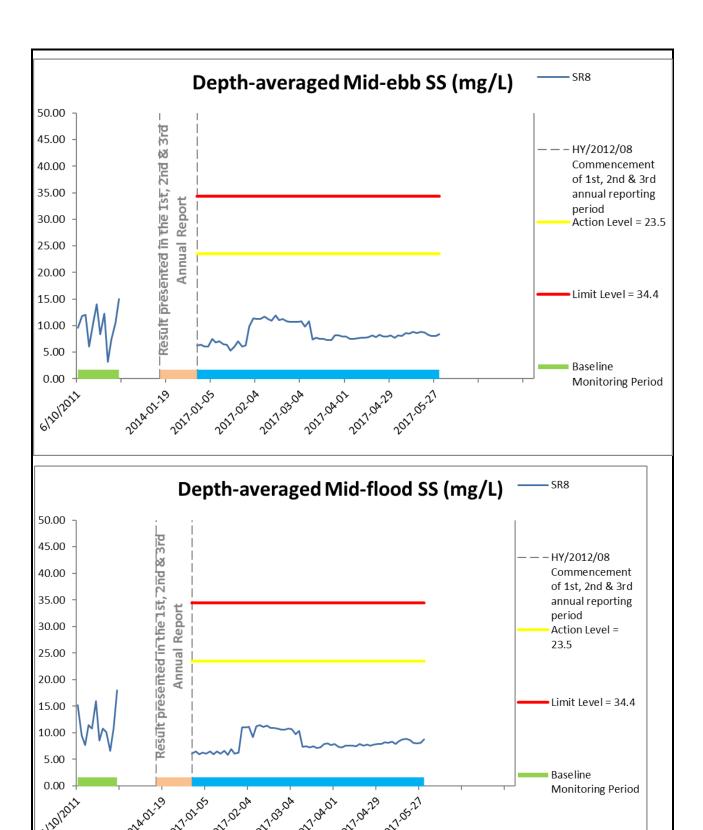
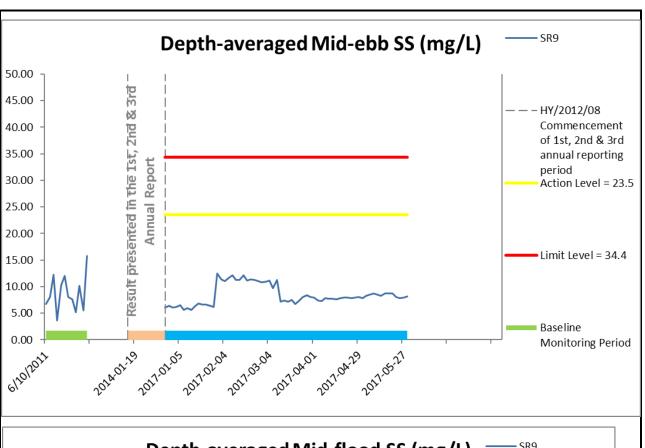



Figure E42 Baseline & Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR8. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

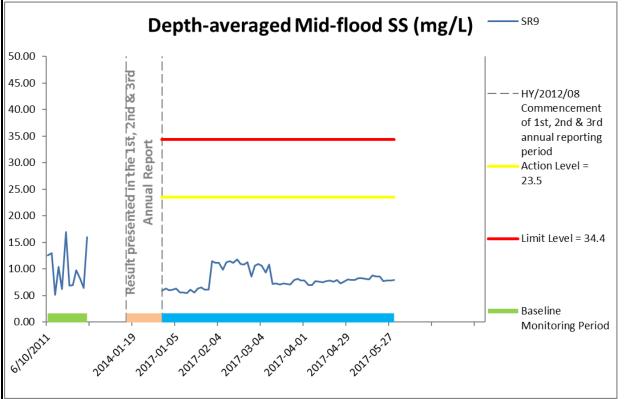


Figure E43 Baseline & Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between Baseline monitoring period: 6/10/2011 to 31/10/2011 and Impact monitoring period: 3/1/2017 to 30/5/2017 at SR9. Weather condition within the reporting period varied between sunny to rainy. The overall monitoring results were not affected by weather conditions. Major marine construction activities included: Dredging, Reclamation filling and Construction of Vertical Seawall

Appendix F

Impact Dolphin Monitoring Survey

香港鯨豚研究計劃

CONTRACT NO. HY/2012/08

Hong Kong-Zhuhai-Macao Bridge Tuen Mun – Chek Lap Kok Link (Northern Connection Sub-sea Tunnel Section) Chinese White Dolphin Monitoring

Fourth Annual Progress Report (November 2016 - October 2017) submitted to Dragages – Bouygues Joint Venture & ERM Hong Kong Ltd.

Submitted by Samuel K.Y. Hung, Ph.D., Hong Kong Cetacean Research Project

19 May 2018

1. Introduction

- 1.1. As part of the Hong Kong-Zhuhai-Macao Bridge, the Tuen Mun-Chek Lap Kok Link (TM-CLKL) Northern Connection Sub-sea Tunnel Section (Contract no. HY/2012/08) comprises the sub-sea TBM tunnels (two tubes with cross passages) across the Urmston Road to connect Tuen Area 40 and Hong Kong Boundary Crossing Facilities (HKBCF) of approximately 4 km in length with dual 2-lane carriageway, the tunnels at both the southern landfall and the northern landfall for construction of approach roads to the sub-sea TBM tunnels of approximately 1.5 km in length, as well as the northern landfall reclamation of approximately 16.5 hectares and about 20.km long seawalls. Dragages Bouygues Joint Venture (hereinafter called the "Contractor") was awarded as the main contractor for the Northern Connection Sub-sea Tunnel Section, and ERM Hong Kong Limited would serve as the Environmental Team to implement the Environmental Monitoring and Audit (EM&A) programme.
- 1.2. According to the updated EM&A Manual (for TM-CLKL), monthly line-transect vessel surveys for Chinese White Dolphin should be conducted to cover the Northwest (NWL) and Northeast Lantau (NEL) survey areas as in AFCD annual marine mammal monitoring programme. However, as such surveys have been undertaken by the HKLR03 and HKBCF projects in the same areas (i.e. NWL and NEL), a combined monitoring approach is recommended by the Highways Department, that the TM-CLKL EM&A project can utilize the monitoring data collected by HKLR03 or HKBCF project to avoid any redundancy in monitoring effort. Such exemption for the dolphin monitoring will end upon the completion of the dolphin monitoring carried out by HKLR03 contract.
- 1.3. In November 2013, the Director of Hong Kong Cetacean Research Project (HKCRP), Dr. Samuel Hung, has been appointed by ERM Hong Kong Limited as the dolphin specialist for the TM-CLKL Northern Connection Sub-sea Tunnel Section EM&A project. He is responsible for the dolphin monitoring study, including the data collection on Chinese White

香港鯨豚研究計劃

Dolphins during the construction phase (i.e. impact period) of the TM-CLKL project in Northwest Lantau (NWL) and Northeast Lantau (NEL) survey areas.

- 1.4. During the construction period of HKLR, the dolphin specialist would be in charge of reviewing and collating information collected by HKLR03 dolphin monitoring programme to examine any potential impacts of TM-CLKL construction works on the dolphins.
- 1.5. From the monitoring results, any changes in dolphin occurrence within the study area will be examined for possible causes, and appropriate actions and additional mitigation measures will be recommended as necessary.
- 1.6. This report is the fourth annual progress report under the TM-CLKL construction phase dolphin monitoring programme submitted to the Contractor, summarizing the results of the surveys findings during the period of November 2016 to October 2017, utilizing the survey data collected by HKLR03 project.

2. Monitoring Methodology

- 2.1. Vessel-based Line-transect Survey
- 2.1.1. According to the requirement of the updated EM&A manual, dolphin monitoring programme should cover all transect lines in NEL and NWL survey areas (see Figure 1) twice per month throughout the entire construction period of HZMB. The co-ordinates of all transect lines conducted during the HKLR03 dolphin monitoring surveys are shown in Table 1.

Table 1 Co-ordinates of transect lines conducted by HKLR03 project

Line No.		Easting	Northing	Line No.		Easting	Northing
1	Start Point	804671	815456	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805475	815913	14	Start Point	817537	820220
2	End Point	805477	826654	14	End Point	817537	824613
3	Start Point	806464	819435	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	819771	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	820220	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	820466	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	820880	19	Start Point	822513	823268

香港鯨豚研究計劃

7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	821303	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	820872	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807				
12	End Point	815542	824882				

- 2.1.2. The HKLR03 survey team used standard line-transect methods (Buckland et al. 2001) to conduct the systematic vessel surveys, and followed the same technique of data collection that has been adopted over the last 20 years of marine mammal monitoring surveys in Hong Kong developed by HKCRP (see Hung 2015, 2016). For each monitoring vessel survey, a 15-m inboard vessel with an open upper deck (about 4.5 m above water surface) was used to make observations from the flying bridge area.
- 2.1.3. Two experienced observers (a data recorder and a primary observer) made up the on-effort survey team, and the survey vessel transited different transect lines at a constant speed of 13-15 km per hour. The data recorder searched with unaided eyes and filled out the datasheets, while the primary observer searched for dolphins and porpoises continuously through 7 x 50 *Fujinon* or *Steiner* marine binoculars. Both observers searched the sea ahead of the vessel, between 270° and 90° (in relation to the bow, which is defined as 0°). One to two additional experienced observers were available on the boat to work in shift (i.e. rotate every 30 minutes) in order to minimize fatigue of the survey team members. All observers were experienced in small cetacean survey techniques and identifying local cetacean species.
- 2.1.4. During on-effort survey periods, the survey team recorded effort data including time, positions (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance traveled in each series (a continuous period of search effort) with the assistance of a handheld GPS.
- 2.1.5. Data including time, position and vessel speed were also automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review.
- 2.1.6. When dolphins were sighted, the survey team would end the survey effort, and immediately record the initial sighting distance and angle of the dolphin group from the survey vessel, as well as the sighting time and position. Then the research vessel was diverted from its course to approach the animals for species identification, group size estimation, assessment of group composition, and behavioural observations. The perpendicular distance (PSD) of the dolphin group to the transect line was later calculated

HK CETACEAN RESEARCH PROJECT 香港鯨豚研究計劃

from the initial sighting distance and angle.

2.1.7. Survey effort being conducted along the parallel transect lines that were perpendicular to the coastlines (as indicated in Figure 1) was labeled as "primary" survey effort, while the survey effort conducted along the connecting lines between parallel lines was labeled as "secondary" survey effort. According to HKCRP long-term dolphin monitoring data, encounter rates of Chinese white dolphins deduced from effort and sighting data collected along primary and secondary lines were similar in NEL and NWL survey areas. Therefore, both primary and secondary survey effort were presented as on-effort survey effort in this report.

2.2. Photo-identification Work

- 2.2.1. When a group of Chinese White Dolphins were sighted during the line-transect survey, the HKLR03 survey team would end effort and approach the group slowly from the side and behind to take photographs of them. Every attempt was made to photograph every dolphin in the group, and even photograph both sides of the dolphins, since the colouration and markings on both sides may not be symmetrical.
- 2.2.2. A professional digital camera (*Canon* EOS 7D or 60D model), equipped with long telephoto lenses (100-400 mm zoom), were available on board for researchers to take sharp, close-up photographs of dolphins as they surfaced. The images were shot at the highest available resolution and stored on Compact Flash memory cards for downloading onto a computer.
- 2.2.3. All digital images taken in the field were first examined, and those containing potentially identifiable individuals were sorted out. These photographs would then be examined in greater detail, and were carefully compared to the existing Chinese White Dolphin photo-identification catalogue maintained by HKCRP since 1995.
- 2.2.4. Chinese White Dolphins can be identified by their natural markings, such as nicks, cuts, scars and deformities on their dorsal fin and body, and their unique spotting patterns were also used as secondary identifying features (Jefferson 2000).
- 2.2.5. All photographs of each individual were then compiled and arranged in chronological order, with data including the date and location first identified (initial sighting), re-sightings, associated dolphins, distinctive features, and age classes entered into a computer database.

2.3. Data Analysis

2.3.1. The following analyses were performed utilizing the HKLR03 dolphin monitoring data collected under the present impact phase (the fourth year of TMCLKL construction; i.e. November 2016 to October 2017). In addition, these analyses were also conducted for the one-year baseline phase (one year before any HZMB construction works have commenced; i.e. February 2011 to January 2012); the one-year transitional phase (one year after the

HK CETACEAN RESEARCH PROJECT 香港鯨豚研究計劃

HZMB construction works (HKBCF and HKLR works) have commenced, but before the commencement of TMCLKL construction works; i.e. November 2012 to October 2013); and the first, second and third years of TMCLKL construction (i.e. November 2013 to October 2014, November 2014 to October 2015 & November 2015 to October 2016).

2.3.2. Along with the analyzed results from the baseline and transitional as well as the first three years of impact phase, results from the fourth year of impact phase can then be interpreted from the examination of any temporal changes before and during the construction activities of TMCLKL on dolphin usage in North Lantau waters. For the baseline phase, both baseline monitoring data collected under HZMB contract as well as the AFCD long-term dolphin monitoring data were included to increase the sample size in order to match the similar amount of survey effort in transitional and impact phases, both of which only HKLR03 monitoring data were included for the various analyses.

Distribution analysis

2.3.3. The line-transect survey data was integrated with the Geographic Information System (GIS) in order to visualize and interpret different spatial and temporal patterns of dolphin distribution using sighting positions. Location data of dolphin groups were plotted on map layers of Hong Kong using a desktop GIS (ArcView® 3.1) to examine their distribution patterns in details. The dataset was also stratified into different subsets to examine distribution patterns of dolphin groups with different categories of group sizes, young calves and activities.

Encounter rate analysis

- 2.3.4. Encounter rate analysis Encounter rates of Chinese white dolphins (number of on-effort sightings per 100 km of survey effort, and total number of dolphins sighted on-effort per 100 km of survey effort) were calculated in NEL and NWL survey areas in relation to the amount of survey effort conducted during each month of monitoring survey. Only data collected under Beaufort 3 or below condition would be used for the encounter rate analyses. Dolphin encounter rates during the impact phase were calculated in two ways for comparisons with the HZMB baseline and transitional period monitoring results as well as to the AFCD long-term marine mammal monitoring results.
- 2.3.5. Firstly, for the comparison with the HZMB monitoring results, the encounter rates were calculated using primary survey effort alone. The average encounter rate of sightings (STG) and average encounter rate of dolphins (ANI) were deduced based on the encounter rates from the 24 events during the present 12-month study period (i.e. 24 sets of line-transect surveys in North Lantau), which was also compared with the ones deduced from the events during the first three years of impact period as well as the transitional period and baseline period.
- 2.3.6. Secondly, the encounter rates were also calculated using both primary and secondary survey effort as in AFCD long-term monitoring study. The encounter rate of sightings and dolphins were deduced by diving the total number of on-effort sightings (STG) and total number of dolphins (ANI) by the amount of survey effort for the present 12-month study period.

香港鯨豚研究計劃

Quantitative grid analysis on habitat use

- 2.3.7. To conduct quantitative grid analysis of habitat use, positions of on-effort sightings of Chinese White Dolphins collected during the quarterly impact phase monitoring period were plotted onto 1-km² grids among NWL and NEL survey areas on GIS. Sighting densities (number of on-effort sightings per km²) and dolphin densities (total number of dolphins from on-effort sightings per km²) were then calculated for each 1 km by 1 km grid with the aid of GIS.
- 2.3.8. Sighting density grids and dolphin density grids were then further normalized with the amount of survey effort conducted within each grid. The total amount of survey effort spent on each grid was calculated by examining the survey coverage on each line-transect survey to determine how many times the grid was surveyed during the study period. For example, when the survey boat traversed through a specific grid 50 times, 50 units of survey effort were counted for that grid. With the amount of survey effort calculated for each grid, the sighting density and dolphin density of each grid were then normalized (i.e. divided by the unit of survey effort).
- 2.3.9. The newly-derived unit for sighting density was termed SPSE, representing the number of on-effort sightings per 100 units of survey effort. In addition, the derived unit for actual dolphin density was termed DPSE, representing the number of dolphins per 100 units of survey effort. Among the 1-km² grids that were partially covered by land, the percentage of sea area was calculated using GIS tools, and their SPSE and DPSE values were adjusted accordingly. The following formulae were used to estimate SPSE and DPSE in each 1-km² grid within the study area:

SPSE = $((S / E) \times 100) / SA\%$ DPSE = $((D / E) \times 100) / SA\%$

where

S = total number of on-effort sightings

D = total number of dolphins from on-effort sightings

E = total number of units of survey effort

SA% = percentage of sea area

Behavioural analysis

2.3.10. When dolphins were sighted during vessel surveys, their behaviour was observed. Different activities were categorized (i.e. feeding, socializing, traveling, and milling/resting) and recorded on sighting datasheets. This data was then input into a separate database with sighting information, which can be used to determine the distribution of behavioural data with a desktop GIS. Sighting distribution of dolphins engaged in different activities and behaviours would then be plotted on GIS and carefully examined to identify important areas for different activities of the dolphins.

Ranging pattern analysis

2.3.11. Location data of individual dolphins that occurred during the present 12-month impact phase monitoring period were obtained from the dolphin sighting database and photo-identification catalogue. To deduce home ranges for individual dolphins using the fixed kernel methods, the program Animal Movement Analyst Extension, was loaded as an extension with ArcView[®] 3.1 along with another extension Spatial Analyst 2.0. Using the

HK CETACEAN RESEARCH PROJECT 香港鯨豚研究計劃

ne program calculated kernel density estimates based on all sighting

fixed kernel method, the program calculated kernel density estimates based on all sighting positions, and provided an active interface to display kernel density plots. The kernel estimator then calculated and displayed the overall ranging area at 95% UD level.

3. Monitoring Results

- 3.1. Summary of survey effort and dolphin sightings
- 3.1.1. During the fourth year of TMCLKL impact phase monitoring (November 2016 to October 2017), a total of 24 sets of systematic line-transect vessel surveys were conducted under the HKLR03 monitoring works to cover all transect lines in NWL and NEL survey areas twice per month.
- 3.1.2. From these HKLR03 surveys, a total of 3,338.24 km of survey effort was collected, with 93.0% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility). Among the two areas, 1,279.91 km and 2,058.33 km of survey effort were conducted in NEL and NWL survey areas respectively.
- 3.1.3. The total survey effort conducted on primary lines was 2,390.70 km, while the effort on secondary lines was 947.54 km. The survey effort conducted on primary and secondary lines were both considered as on-effort survey data. Summary table of the survey effort is shown in Appendix I.
- 3.1.4. From the 24 sets of HKLR03 monitoring surveys from November 2016 to October 2017, a total of 43 groups of 151 Chinese White Dolphins were sighted. All except three dolphin groups were sighted during on-effort search. Among the 40 on-effort sightings, 34 of them were made on primary lines, while the other six dolphin sightings were made on secondary lines.
- 3.1.5. During this 12-month period, all dolphin sighting were made in NWL, while none of them were made in NEL. A summary table of the dolphin sightings is shown in Appendix II.
- 3.2. Distribution
- 3.2.1. Distribution of dolphin sightings made during the HKLR03 monitoring surveys in November 2016 to October 2017 is shown in Figure 1.
- 3.2.2. Similar to the first three years of TMCLKL impact phase, the majority of dolphin sightings made during the fourth year of impact phase were concentrated at the northwestern end of the North Lantau region, mainly to the north and east of Lung Kwu Chau (Figure 1). Several dolphin sightings were also made around Sha Chau and near Pillar Point, and some were sighted at the juncture of Northwest and West Lantau survey areas, or just to the north and south of the HKLR09 alignment (Figure 1).
- 3.2.3. None of the dolphin groups were sighted in the vicinity of the entire alignment of

HK CETACEAN RESEARCH PROJECT 香港鯨豚研究計劃

TMCLKL or the reclamation sites of HKLR03 and HKBCF (Figure 1). As mentioned above, only a few sightings were made adjacent to the HKLR09 alignment near Shum Wat (Figure 1). In general, dolphins appeared to have mostly avoided the construction areas of HZMB works during the present impact phase monitoring period, which was consistent with the dolphin distribution during the first three years of impact phase.

- 3.2.4. Dolphin sighting distribution of the present impact phase monitoring period (November 2016 to October 2017) was compared to the ones during the baseline phase (February 2011 to January 2012), the transitional phase (November 2012 to October 2013) and the first three years of impact phase (November 2013 to October 2016).
- 3.2.5. During the present impact phase period in 2016-17, dolphin distribution was quite similar to the previous two impact phase periods in 2014-15 and 2015-16, with dolphins being largely vacated from the eastern and central portions of the North Lantau region (Figure 2). This was in stark contrast to their very frequent occurrence around the Brothers Islands, Shum Shui Kok, the waters between Pillar Point and airport platform, and the vicinity of HZMB-associated work sites during the baseline period (Figure 2). Even in the transitional phase, dolphins still utilized these waters in a moderate extent, but such usage has progressively diminished during the four periods of impact phase of TMCLKL construction (Figure 2).
- 3.2.6. The only area where dolphin occurrence was consistent across the six periods was around the Lung Kwu Chau area, but even so such occurrence there was progressively diminishing in past three years (Figure 2).
- 3.2.7. It should be noted that dolphin usage within the Sha Chau and Lung Kwu Chau Marine Park appeared to reach a lower point in 2016-17 (Figure 2). Such decline could be related to the diversion of high-speed ferry traffic originated from the Airport's Sky Pier since late 2015, where the ferries have been traversing through the waters to the north of Lung Kwu Chau. Moreover, the commencement of reclamation works for the third runway expansion of the Hong Kong International Airport in mid-2016 could have further affected the usage of this prime habitat for the dolphins in the past.
- 3.3. Encounter rate
- 3.3.1. During the present 12-month impact phase monitoring period, the average daily encounter rates of Chinese White Dolphins were deduced in NEL and NWL survey areas, and compared to the ones deduced from the baseline, transitional and first three years of impact phases (Table 2).
- 3.3.2. To facilitate the comparison with the AFCD long-term monitoring results, the encounter rates were also calculated for the present 12-month study period using both primary and secondary survey effort. The encounter rates of sightings (STG) and dolphins (ANI) in NWL were 1.96 sightings and 6.95 dolphins per 100 km of survey effort respectively, while the encounter rates of sightings (STG) and dolphins (ANI) in NEL were both nil with no on-effort sighting being made there in 2016-17.

香港鯨豚研究計劃

Table 2. Comparison of average daily dolphin encounter rates from the first four years of impact phase, transitional phase and baseline phase monitoring periods (Note: encounter rates deduced from the five periods were calculated based on survey and on-effort sighting data made along the primary transect lines under favourable conditions; ± denotes the standard deviation of the average encounter rates).

	Encounter (no. of on-effort dol 100 km of su	phin sightings per	Encounter rate (ANI) (no. of dolphins from all on-effort sightings per 100 km of survey effort)		
	Northeast Northwest Lantau Lantau		Northeast Lantau	Northwest Lantau	
Impact Phase (2016-17)	0.00	2.35 ± 2.62	0.00	8.57 ± 11.05	
Impact Phase (2015-16)	0.00	2.10 ± 1.83	0.00	8.54 ± 8.53	
Impact Phase (2014-15)	0.11 ± 0.54	2.54 ± 2.49	0.11 ± 0.54	11.64 ± 14.04	
Impact Phase (2013-14)	0.22 ± 0.74	6.93 ± 4.08	0.76 ± 2.59	26.31 ± 17.56	
Transitional Phase (2012-13)	1.70 ± 2.26	7.68 ± 4.36	4.75 ± 7.61	27.51 ± 18.06	
Baseline Phase (2011-12)	6.05 ± 5.04	7.75 ± 5.69	19.91 ± 21.30	29.57 ± 26.96	

- 3.3.3. A two-way ANOVA with repeated measures of variance and unequal sample size was conducted to examine whether there were any significant differences in the average encounter rates between the baseline, transitional and the four impact phase periods. The two variables that were examined included the different periods and the two locations (i.e. NEL and NWL).
- 3.3.4. For the comparison between the different monitoring periods, the p-value for the differences in average dolphin encounter rates of STG and ANI were both 0.000000 and 0.00000 respectively. Even if the alpha value is set at 0.00001, significant differences were detected among the different periods in both dolphin encounter rates of STG and ANI.
- 3.3.5. In NEL, the dolphin encounter rates (both STG and ANI) in the fourth year of TMCLKL impact monitoring period were nil as in the previous year in 2015-16, which was a huge contrast to the averages during the baseline phase and transitional phase (Table 2). Such progressive decline has actually existed in this area since the transitional phase (i.e. well before the TMCLKL construction works commenced), with the averages in the transitional phase being much lower than the ones in the baseline phase (reductions of 71.9% for STG and 76.1% respectively). Since then, dolphin occurrence has further diminished to an extremely low level during the first and second years of TMCLKL construction works, and then to complete absence in the third and fourth years.
- 3.3.6. In NWL, the average dolphin encounter rates (STG and ANI) during the present impact phase monitoring period were much lower (reductions of 69.7% and 71.0% respectively) than the ones recorded in the baseline period, indicating a dramatic decline in dolphin usage of this survey area during the fourth year of TMCLKL impact phase monitoring

香港鯨豚研究計劃

period (Table 2).

- 3.3.7. Notably, the encounter rates in NWL during the first year of impact phase (2013-14) were only slightly lower than the baseline period, but such decline has quickly escalated during the second, third and fourth years of impact phase. This signaled a further widespread of declining usage by the dolphins throughout the entire North Lantau region with no sign of recovery, even though most of the marine works of HZMB construction has been completed.
- 3.4. Group size
- 3.4.1. Group size of Chinese White Dolphins ranged from one to 12 individuals per group in North Lantau region during November 2016 October 2017. The average dolphin group sizes from the 12-month impact phase monitoring period were compared with the ones deduced from baseline, transitional and first three years of impact phases, as shown in Table 3.

Table 3. Comparison of average dolphin group sizes from the first four years of impact phase, transitional phase and baseline phase monitoring periods (± denotes the standard deviation of the average encounter rates)

	Average Dolphin Group Size				
	Overall	Northeast Lantau	Northwest Lantau		
Impact Phase (2016-17)	3.51 ± 2.68 (n = 43)	0.00	3.51 ± 2.68 (n = 43)		
Impact Phase (2015-16)	3.73 ± 3.14 (n = 45)	1.00 (n = 1)	3.80 ± 3.14 (n = 44)		
Impact Phase (2014-15)	4.24 ± 3.15 (n = 54)	1.00 (n = 1)	4.30 ± 3.15 (n = 53)		
Impact Phase (2013-14)	3.76 ± 2.57 (n = 136)	5.00 ± 2.71 (n = 4)	3.73 ± 2.57 (n = 132)		
Transitional Phase (2012-13)	3.37 ± 2.98 (n = 186)	2.64 ± 2.38 (n = 22)	3.47 ± 3.05 (n = 164)		
Baseline Phase (2011-12)	3.32 ± 2.86 (n = 288)	2.80 ± 2.35 (n = 79)	3.52 ± 3.01 (n = 209)		

- 3.4.2. The average dolphin group sizes in NWL waters (and also the entire North Lantau region) during the present impact phase monitoring period were quite similar to the ones recorded during the baseline and transitional phases, slightly lower than the first and third years of impact phase, and much lower than the second year of impact phase (Table 3).
- 3.4.3. Among the 43 dolphin groups sighted during the impact phase, 31 of them were composed of 1-4 individuals only, while there were 12 groups with more than 5 animals and only one group with more than 10 individuals (Appendix II).
- 3.4.4. Distribution of dolphins with larger group sizes (i.e. five individuals or more per group) during the present impact phase is shown in Figure 3, with comparison to the ones in the

香港鯨豚研究計劃

first three years of impact phase, transitional phase and baseline phase. During the impact phase in 2016-17, distribution of the larger dolphin groups were mainly concentrated around Lung Kwu Chau, while the largest group with 12 animals was sighted just to the east of Sha Chau (Figure 3).

- 3.4.5. Throughout the four impact phases, distribution of these larger groups has been largely confined to the northwestern portion of North Lantau region. Such limited distribution was drastically different from the baseline phase, when the larger dolphin groups were distributed more evenly in NWL waters with many of them also sighted in NEL waters (Figure 3).
- 3.5. Habitat use
- 3.5.1. During the present impact phase monitoring period in 2016-17, the most heavily utilized habitats by Chinese White Dolphins were only found on both eastern and western sides of Lung Kwu Chau (Figures 4a and 4b). For the rest of North Lantau region, only a handful of grids near Sha Chau, Pillar Point, Black Point and the HKLR09 alignment have recorded low to moderately low dolphin densities (Figures 4a and 4b). Moreover, all grids near the HKLR03 and HKBCF reclamation sites as well as the entire alignment of TMCLKL did not record any presence of dolphins in the present 12-month impact monitoring period in 2016-17 (Figures 4a and 4b).
- 3.5.2. When compared with the habitat use patterns during the baseline phase, dolphin usage in NEL has progressively diminished during the transitional phase and the four periods of impact phases (Figure 5). During the baseline period, a number of grids between Siu Mo To and Shum Shui Kok recorded moderately high to high dolphin densities, and most grids in NEL recorded dolphin usage. This was in stark contrast to the complete absence of dolphin in this area during the present and previous two impact phase periods (Figure 5).
- 3.5.3. Moreover, dolphin usage of NWL waters also declined dramatically during the present and previous phase monitoring periods, with the only higher densities occurred near Lung Kwu Chau. This is in contrast to a more evenly spread usage in NWL during the baseline phase, transitional phase and the first year of impact phase monitoring (Figure 5). Apparently there was a more widespread decline of dolphin usage throughout the North Lantau waters in the past three years of the impact phase.
- 3.6. *Mother-calf pairs*
- 3.6.1. During the present 12-month impact phase monitoring period, only three unspotted juveniles (UJ) were sighted with their mothers in North Lantau waters. These young calves comprised of 2.0% of all animals sighted, which was a small fraction of the percentages recorded during the previous impact phase in 2013-14 (5.7%), transitional phase (6.7%) and baseline phase (4.5%). Notably, such percentage has been consistently at a low level in the previous two impact phase periods, with only 1.3% in 2014-15 and 0% in 2015-16.
- 3.6.2. The three young calves were sighted near Sha Chau and just to the north of the HKLR09 alignment, which was drastically different from the distribution patterns during the

香港鯨豚研究計劃

baseline and transitional phases when the young calves were sighted throughout NWL waters (Figure 6).

- 3.6.3. None of the young calves were sighted in the vicinity of the TMCLKL alignment and HKBCF/HKLR03 reclamation sites, but two young calves were sighted near the HKLR09 alignment during the present impact phase monitoring period (Figure 6).
- 3.7. Activities and associations with fishing boats
- 3.7.1. Eight dolphin sightings were associated with feeding activities during the 12-month impact phase monitoring period. The percentage of sightings associated with feeding activities during the present impact phase (18.6%) was much higher than the impact phase periods in 2015-16 (11.1%), 2013-14 (5.9%), transitional phase (8.6%) and baseline phase (12.8%), but was very similar to the impact phase in 2014-15 (18.5%).
- 3.7.2. Notably, none of the 43 dolphin groups was engaged in socializing, traveling or resting/milling activities during the present impact phase monitoring period in 2016-17.
- 3.7.3. Distribution of dolphins engaged in feeding activities during the present impact phase monitoring period is shown in Figure 7. The eight groups were mostly sighted around Lung Kwu Chau and Sha Chau, with the exception of one group being sighted adjacent to the HKLR09 alignment near Shum Wat (Figure 7).
- 3.7.4. In contrast, feeding activities were frequently sighted during the baseline and transitional periods along the Urmston Road, within the Sha Chau and Lung Kwu Chau Marine Park, to the west of the airport platform and around the Brothers Islands, while the socializing activities were more scattered throughout the North Lantau region in the same period (Figure 7). It is apparent that the "hotspots" where dolphins engaged in different activities were considerably different between the baseline, transitional and impact phases.
- 3.7.5. Notably, three of the 43 dolphin groups sighted during the impact phase monitoring period in 2016-17 were found to be associated with operating fishing vessels, which included two purse-seiners and a gill-netter. The rare events of fishing boat associations by the dolphins during the four periods of impact phase as well as the transitional phase was quite different from the baseline period with 14 of 288 dolphin groups associated with fishing boats.
- 3.8. Summary of photo-identification works
- 3.8.1. During the 12-month impact phase monitoring period in 2016-17, a total of 44 individuals sighted 115 times altogether were identified (see Appendix III). All of these re-sightings were made in NWL.
- 3.8.2. Nearly two-thirds of the 44 identified individuals were sighted only once or twice, while the other individuals were sighted more frequently during the 12-month period. For example, five individuals were sighted five to six times (CH34, NL46, NL123, NL136 and NL182), while NL286 and NL202 were sighted ten times and 13 times respectively in 2016-17. Their frequent occurrences during the fourth year of impact phase monitoring

HK CETACEAN RESEARCH PROJECT 香港鯨豚研究計劃

indicated strong reliance of NWL waters as their home ranges.

- 3.8.3. Notably, several well-recognized females (i.e. NL33, NL104, NL202 and NL233) were accompanied with their calves during their re-sightings, and all of these calves are older and already in their juvenile stage.
- 3.9. Individual range use
- 3.9.1. Ranging patterns of the 44 individuals identified during the 12-month impact phase monitoring period in 2016-17 were determined by fixed kernel method, and are shown in Appendix IV.
- 3.9.2. The majority of identified dolphins sighted within this 12-month period were utilizing their ranges primarily in NWL, with the exception of CH105, WL17, WL28, WL145, WL167, WL214, WL234, WL243, WL261 and WL275 that were primarily ranged in WL waters (Appendix IV). Moreover, half of the 44 individuals, including CH105, NL12, NL98, NL120, NL123, NL182, NL202, NL210, NL224, NL226, NL236, NL259, NL269, NL301, WL17, WL28, WL145, WL179, WL214, WL243 and WL276, have occurred in both North and West Lantau waters based on the HKLR09 monitoring data collected concurrently during the same 12-month period in 2016-17.
- 3.9.3. All identified dolphins have avoided the NEL waters (Appendix IV), the area where many of them have utilized as their core areas of activities in the past.
- 3.9.4. Temporal changes in range use of 18 individual dolphins that have occurred in baseline phase, transitional phase and all four periods of impact phases were examined in details (Appendix V). It is apparent that 10 of them (e.g. CH34, NL98, NL123, NL259) have gradually shifted their range use away from their previously important habitat in NEL in the past several years, and have been completely absent from there in the present and previous impact phase periods (Appendix V).
- 3.9.5. Moreover, some individual dolphins have gradually diminished their utilization of NWL waters during the TMCLKL impact phases, and at the same time 12 of them (e.g. NL210, NL224, NL259) have increased their utilization of WL waters (Appendix V). Three individuals (NL33, NL120 and NL269) have even expanded their range use to Southwest Lantau waters as well during the past three periods of impact phase (Appendix V).
- 3.9.6. Notably, such range expansion or shift has been reversed for several individuals (e.g. NL104, NL136) in 2017, as they have not occurred in WL or SWL waters but primarily utilized NWL waters for their range use (Appendix V).
- 3.9.7. The abovementioned temporal changes in individual range use should be continuously monitored for the rest of the TMCLKL construction period, to determine whether such range shifts are temporary or permanent, and whether the dolphins would continue the North Lantau waters once the HZMB-related construction works have completed.

香港鯨豚研究計劃

4. Conclusion

- 4.1. During the fourth year of TMCLKL impact phase monitoring of Chinese white dolphins, no adverse impact from the activities of the TMCLKL construction project on the dolphins was noticeable from general observations.
- 4.2. Although the dolphins infrequently occurred along the alignment of TMCLKL northern connection sub-sea tunnel section in the past and during the baseline monitoring period, it is apparent that dolphin usage has been drastically reduced in the entire North Lantau region, and many individuals have shifted away from the important habitats around the Brothers Islands and the rest of North Lantau waters.
- 4.3. It is critical to monitor the dolphin usage in North Lantau region for the rest of the impact phase monitoring period, to determine whether the dolphins are continuously affected by the various construction activities in relation to the HZMB-related works, and whether suitable mitigation measure can be applied to revert the situation.

5. References

- Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, London.
- Hung, S. K. 2015. Monitoring of marine mammals in Hong Kong waters data collection: final report (2014-15). An unpublished report submitted to the Agriculture, Fisheries and Conservation Department of Hong Kong SAR Government, 198 pp.
- Hung, S. K. 2016. Monitoring of marine mammals in Hong Kong waters data collection: final report (2015-16). An unpublished report submitted to the Agriculture, Fisheries and Conservation Department of Hong Kong SAR Government, 163 pp.
- Jefferson, T. A. 2000. Population biology of the Indo-Pacific hump-backed dolphin in Hong Kong waters. Wildlife Monographs 144:1-65.

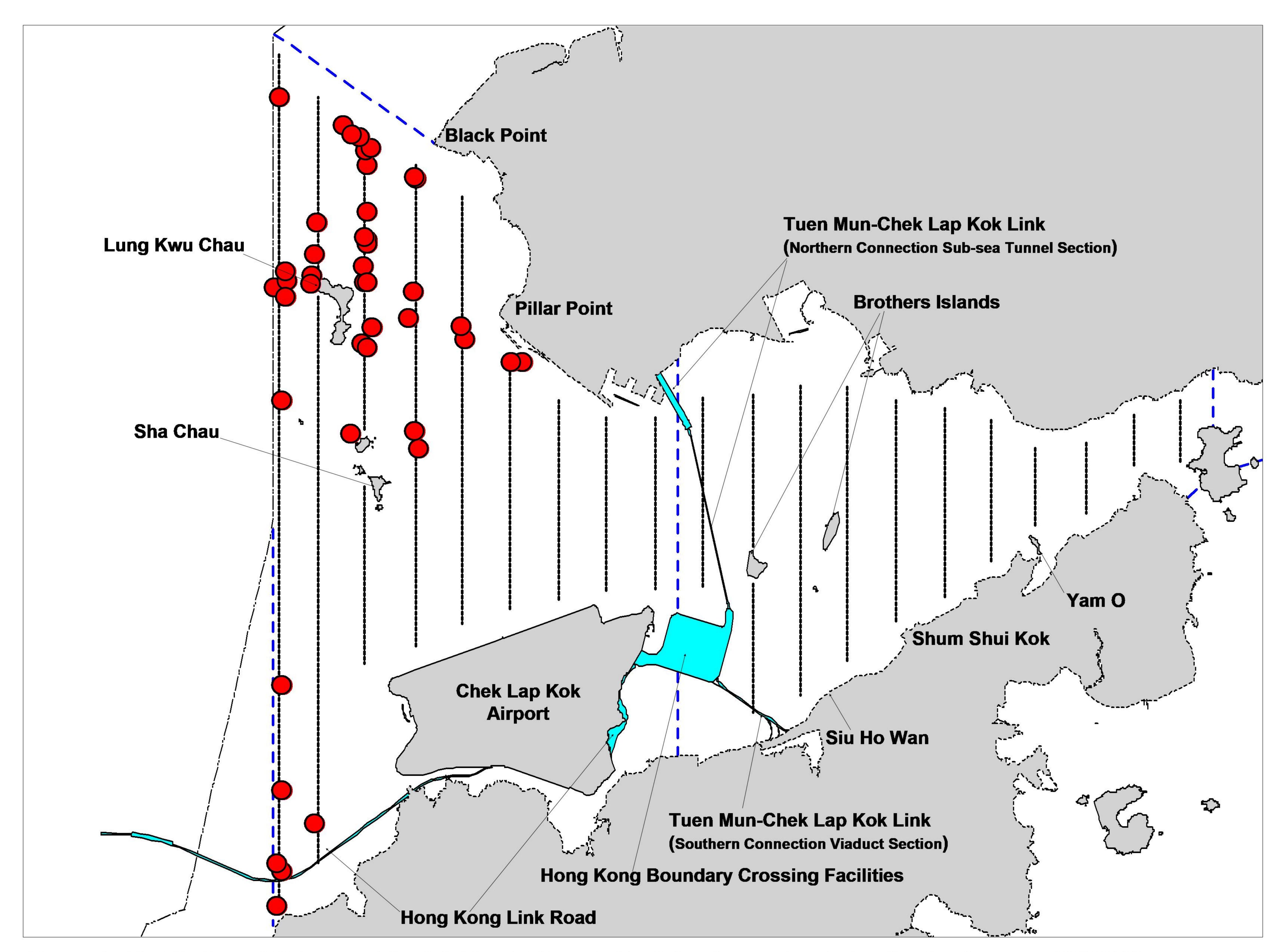


Figure 1. Distribution of Chinese white dolphin sightings in North Lantau region during the fourth year of TMCLKL construction works (November 2016 to October 2017), utilizing the HKLR03 monitoring data

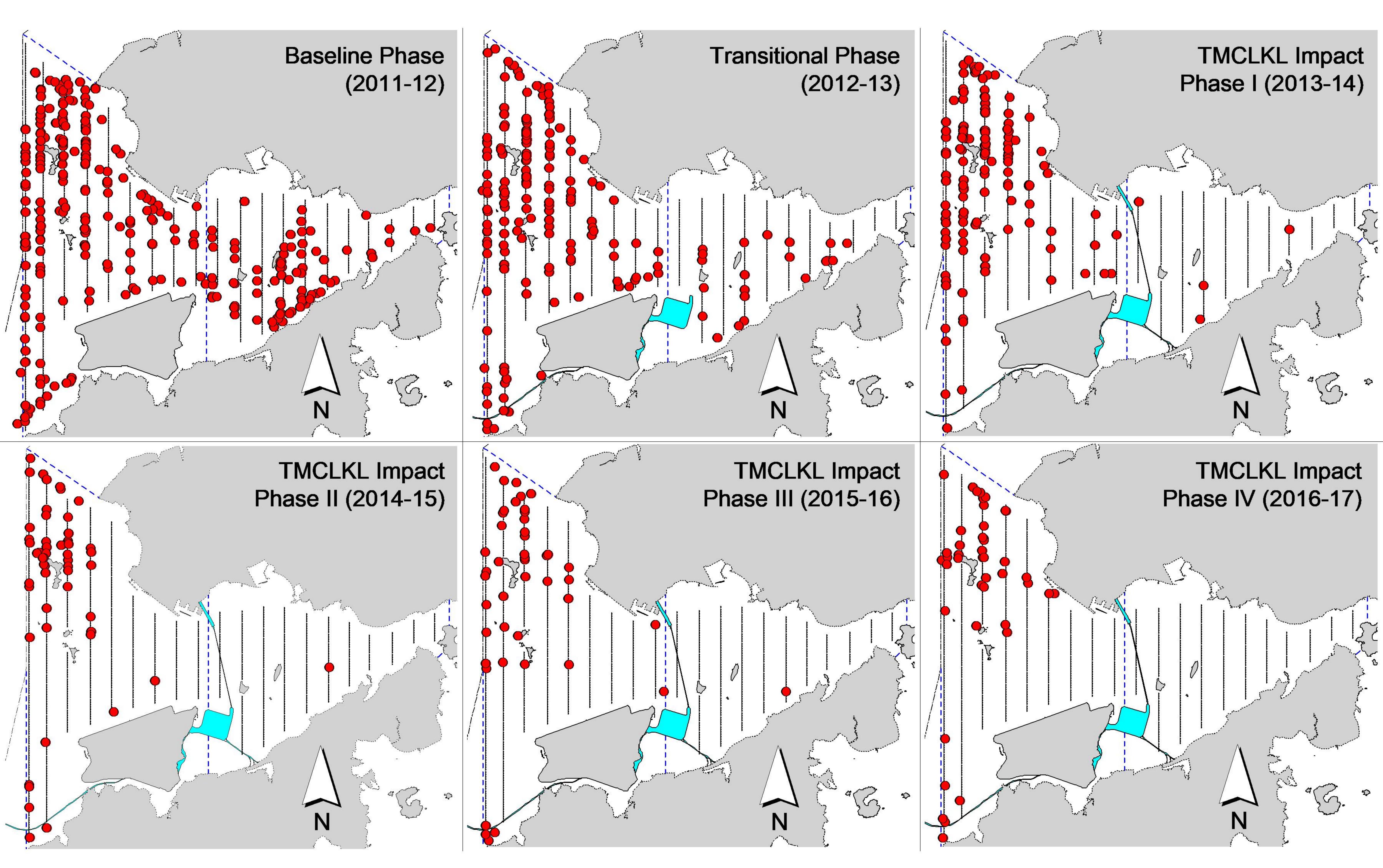


Figure 2. A comparison on distribution of Chinese white dolphin sightings in North Lantau region during the baseline, transitional and four impact phases of TMCLKL construction works

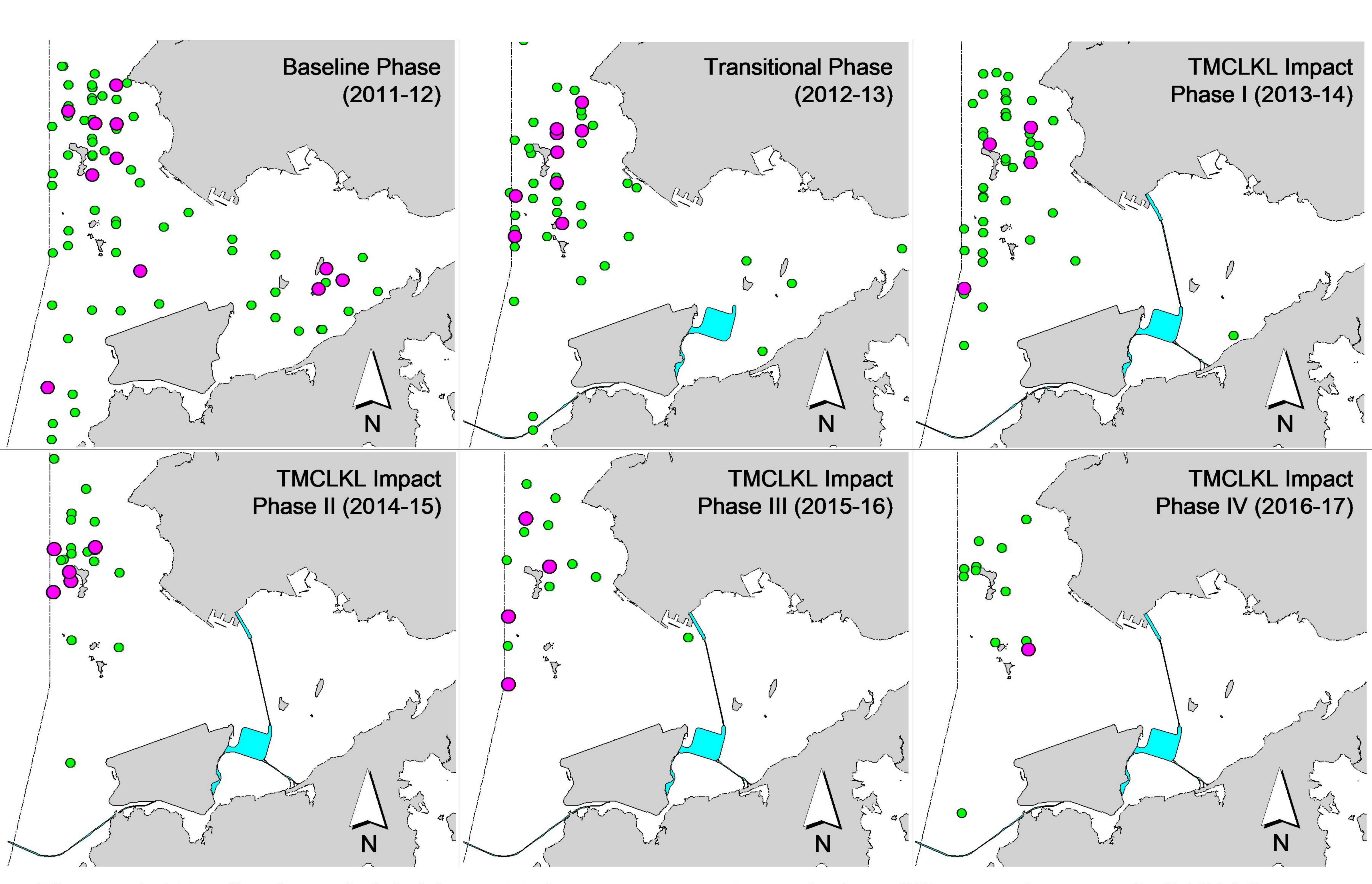


Figure 3. Distribution of dolphins with larger group sizes during different phases of TMCLKL construction works (green dots: group sizes of 5 or more; purple dots: group sizes of 10 or more)

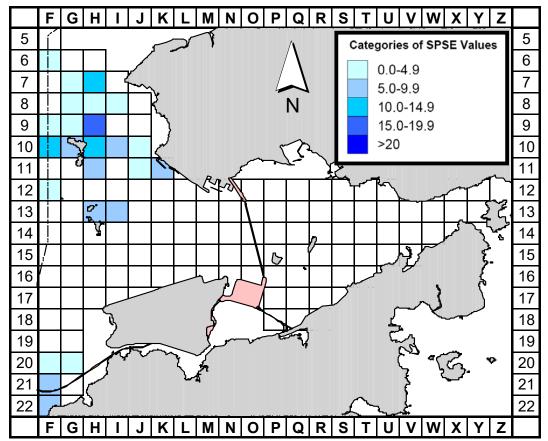


Figure 4a. Sighting density of Chinese white dolphins with corrected survey effort per km² in Northeast and Northwest Lantau survey areas, using data collected during HKLR03 impact monitoring period monitoring period (Nov16 - Oct17) (SPSE = no. of on-effort sightings per 100 units of survey effort)

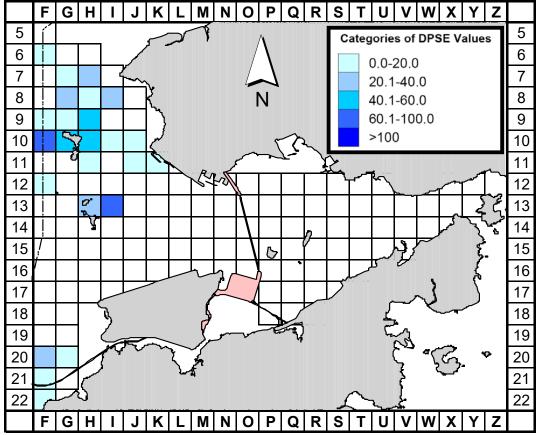


Figure 4b. Density of Chinese white dolphins with corrected survey effort per km² in Northeast and Northwest Lantau survey areas, using data collected during HKLR03 impact monitoring period (Nov16 -Oct17) (DPSE = no. of dolphins per 100 units of survey effort)

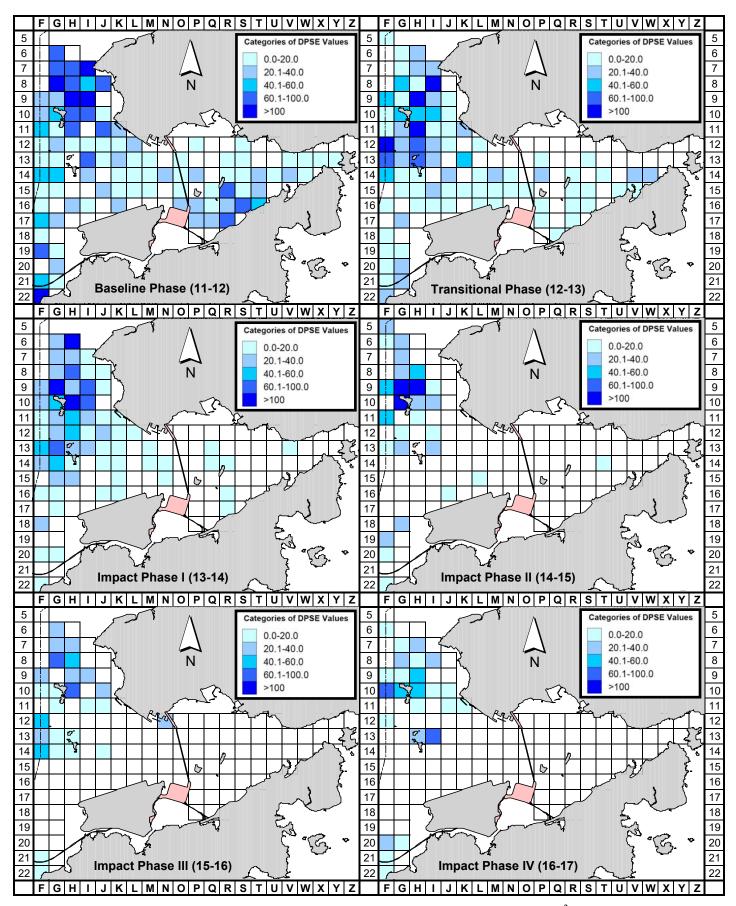


Figure 5. Comparison of density of Chinese white dolphins with corrected survey effort per km² in NWL and NEL survey areas between the four impact phases (Nov16-Oct17, Nov15-Oct16, Nov14-Oct15 and Nov13-Oct14), transitional phase (Nov12-Oct13) and baseline phase (Feb11-Jan12) monitoring periods (DPSE = no. of dolphins per 100 units of survey effort

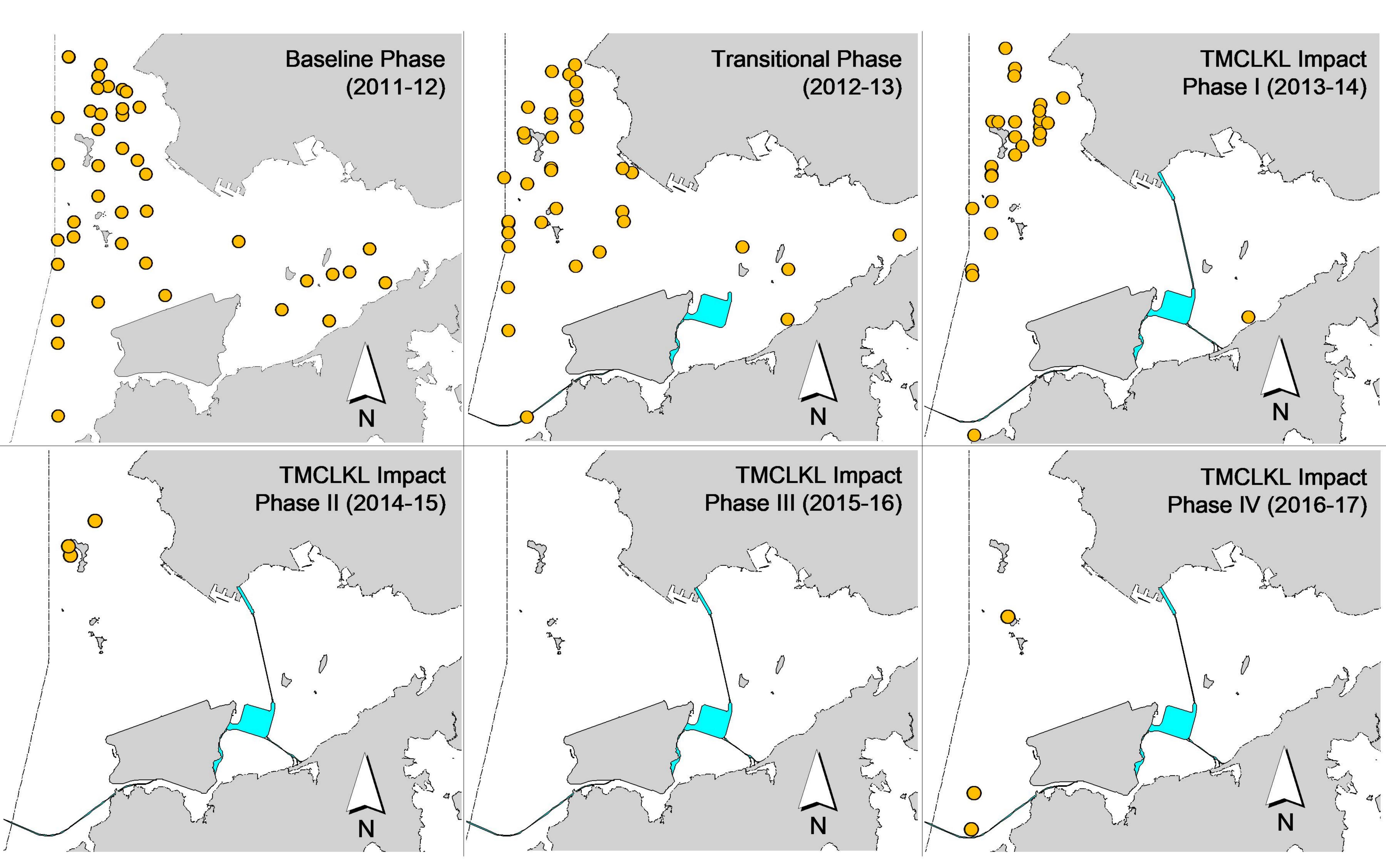


Figure 6. Distribution of young calves of Chinese white dolphins during different phases of TMCLKL construction works

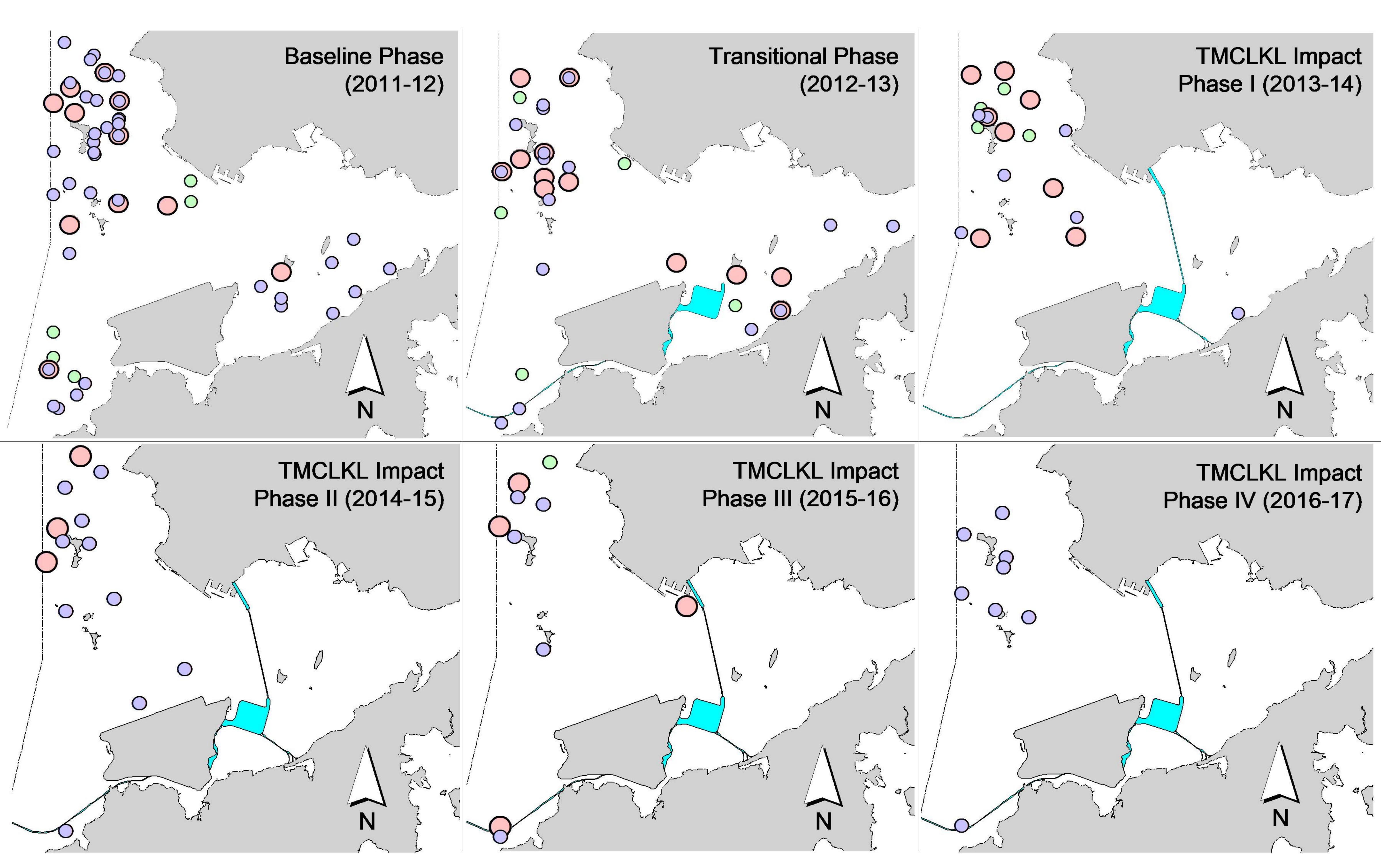


Figure 7. Distribution of dolphins engaged in feeding (purple dots), socializing (pink dots) and traveling (green dots) activities during different phases of TMCLKL construction works

Appendix I. HKLR03 Survey Effort Database (November 2016 - October 2017)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
2-Nov-16	NW LANTAU	2	3.00	AUTUMN	STANDARD36826	HKLR	Р
2-Nov-16	NW LANTAU	3	19.06	AUTUMN	STANDARD36826	HKLR	Р
2-Nov-16	NW LANTAU	4	9.44	AUTUMN	STANDARD36826	HKLR	Р
2-Nov-16	NW LANTAU	2	2.50	AUTUMN	STANDARD36826	HKLR	S
2-Nov-16	NW LANTAU	3	5.40	AUTUMN	STANDARD36826	HKLR	S
2-Nov-16	NE LANTAU	2	4.13	AUTUMN	STANDARD36826	HKLR	P
2-Nov-16	NE LANTAU	3	15.46	AUTUMN	STANDARD36826	HKLR	P
2-Nov-16	NE LANTAU	2	4.21	AUTUMN	STANDARD36826	HKLR	s S
2-Nov-16	NE LANTAU	3	7.40	AUTUMN	STANDARD36826	HKLR	S
7-Nov-16	NW LANTAU	2	37.21	AUTUMN	STANDARD31516	HKLR	P
7-Nov-16	NW LANTAU	3	0.90	AUTUMN	STANDARD31516	HKLR	Р
7-Nov-16	NW LANTAU	2	13.39	AUTUMN	STANDARD31516	HKLR	S
7-Nov-16	NE LANTAU	2	14.34	AUTUMN	STANDARD31516	HKLR	P
7-Nov-16 7-Nov-16	NE LANTAU	3	1.00	AUTUMN	STANDARD31516	HKLR	P
7-Nov-16 7-Nov-16	NE LANTAU	2	7.66	AUTUMN	STANDARD31516 STANDARD31516	HKLR	S
7-Nov-16 7-Nov-16	NE LANTAU	3	0.80	AUTUMN	STANDARD31516 STANDARD31516	HKLR	S
	NW LANTAU	1		AUTUMN	STANDARD31516 STANDARD31516		o P
18-Nov-16			1.90			HKLR	
18-Nov-16	NW LANTAU	2	38.57	AUTUMN	STANDARD31516	HKLR	Р
18-Nov-16	NW LANTAU	1	1.70	AUTUMN	STANDARD31516	HKLR	S
18-Nov-16	NW LANTAU	2	11.23	AUTUMN	STANDARD31516	HKLR	S
18-Nov-16	NE LANTAU	2	17.54	AUTUMN	STANDARD31516	HKLR	Р
18-Nov-16	NE LANTAU	2	10.66	AUTUMN	STANDARD31516	HKLR	S
22-Nov-16	NE LANTAU	2	17.43	AUTUMN	STANDARD36826	HKLR	Р
22-Nov-16	NE LANTAU	3	1.32	AUTUMN	STANDARD36826	HKLR	Р
22-Nov-16	NE LANTAU	2	10.95	AUTUMN	STANDARD36826	HKLR	S
22-Nov-16	NW LANTAU	2	29.12	AUTUMN	STANDARD36826	HKLR	Р
22-Nov-16	NW LANTAU	3	2.10	AUTUMN	STANDARD36826	HKLR	Р
22-Nov-16	NW LANTAU	2	7.58	AUTUMN	STANDARD36826	HKLR	S
1-Dec-16	NE LANTAU	1	1.10	WINTER	STANDARD36826	HKLR	Р
1-Dec-16	NE LANTAU	2	14.04	WINTER	STANDARD36826	HKLR	Р
1-Dec-16	NE LANTAU	3	2.70	WINTER	STANDARD36826	HKLR	Р
1-Dec-16	NE LANTAU	2	6.99	WINTER	STANDARD36826	HKLR	S
1-Dec-16	NE LANTAU	3	2.87	WINTER	STANDARD36826	HKLR	S
1-Dec-16	NW LANTAU	2	7.78	WINTER	STANDARD36826	HKLR	Р
1-Dec-16	NW LANTAU	3	30.29	WINTER	STANDARD36826	HKLR	Р
1-Dec-16	NW LANTAU	4	2.10	WINTER	STANDARD36826	HKLR	Р
1-Dec-16	NW LANTAU	2	0.10	WINTER	STANDARD36826	HKLR	S
1-Dec-16	NW LANTAU	3	12.43	WINTER	STANDARD36826	HKLR	S
6-Dec-16	NE LANTAU	2	8.24	WINTER	STANDARD36826	HKLR	Р
6-Dec-16	NE LANTAU	3	12.45	WINTER	STANDARD36826	HKLR	Р
6-Dec-16	NE LANTAU	2	5.56	WINTER	STANDARD36826	HKLR	S
6-Dec-16	NE LANTAU	3	5.85	WINTER	STANDARD36826	HKLR	S
6-Dec-16	NW LANTAU	2	3.30	WINTER	STANDARD36826	HKLR	Р
6-Dec-16	NW LANTAU	3	21.96	WINTER	STANDARD36826	HKLR	Р
6-Dec-16	NW LANTAU	4	6.80	WINTER	STANDARD36826	HKLR	Р
6-Dec-16	NW LANTAU	2	2.34	WINTER	STANDARD36826	HKLR	S S
6-Dec-16 16-Dec-16	NW LANTAU NE LANTAU	3 2	5.60 1.84	WINTER WINTER	STANDARD36826 STANDARD36826	HKLR HKLR	S P
16-Dec-16 16-Dec-16	NE LANTAU NE LANTAU	3	15.94	WINTER	STANDARD36826 STANDARD36826	HKLR	P
16-Dec-16	NE LANTAU	4	2.10	WINTER	STANDARD36826 STANDARD36826	HKLR	P
16-Dec-16	NE LANTAU	2	2.10	WINTER	STANDARD36826 STANDARD36826	HKLR	S
16-Dec-16	NE LANTAU	3	8.66	WINTER	STANDARD36826	HKLR	S
10-060-10	INE EXIMIZO		0.00	V V 11 V 1 L 1 V	517 ((4D/1(1000020	INLIX	

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
16-Dec-16	NW LANTAU	2	8.49	WINTER	STANDARD36826	HKLR	Р
16-Dec-16	NW LANTAU	3	22.63	WINTER	STANDARD36826	HKLR	Р
16-Dec-16	NW LANTAU	2	3.41	WINTER	STANDARD36826	HKLR	S
16-Dec-16	NW LANTAU	3	4.41	WINTER	STANDARD36826	HKLR	S
19-Dec-16	NW LANTAU	2	25.43	WINTER	STANDARD36826	HKLR	Р
19-Dec-16	NW LANTAU	3	10.26	WINTER	STANDARD36826	HKLR	Р
19-Dec-16	NW LANTAU	2	6.14	WINTER	STANDARD36826	HKLR	S
19-Dec-16	NW LANTAU	3	5.93	WINTER	STANDARD36826	HKLR	S
19-Dec-16	NE LANTAU	2	2.66	WINTER	STANDARD36826	HKLR	Р
19-Dec-16	NE LANTAU	3	12.82	WINTER	STANDARD36826	HKLR	Р
19-Dec-16	NE LANTAU	2	4.15	WINTER	STANDARD36826	HKLR	S
19-Dec-16	NE LANTAU	3	5.57	WINTER	STANDARD36826	HKLR	S
10-Jan-17	NE LANTAU	2	4.00	WINTER	STANDARD36826	HKLR	Р
10-Jan-17	NE LANTAU	3	14.60	WINTER	STANDARD36826	HKLR	Р
10-Jan-17	NE LANTAU	2	8.90	WINTER	STANDARD36826	HKLR	S
10-Jan-17	NE LANTAU	3	2.10	WINTER	STANDARD36826	HKLR	S
10-Jan-17	NW LANTAU	2	0.70	WINTER	STANDARD36826	HKLR	Р
10-Jan-17	NW LANTAU	3	28.52	WINTER	STANDARD36826	HKLR	Р
10-Jan-17	NW LANTAU	4	2.10	WINTER	STANDARD36826	HKLR	Р
10-Jan-17	NW LANTAU	2	2.10	WINTER	STANDARD36826	HKLR	S
10-Jan-17	NW LANTAU	3	5.88	WINTER	STANDARD36826	HKLR	S
12-Jan-17	NW LANTAU	2	11.90	WINTER	STANDARD31516	HKLR	Р
12-Jan-17	NW LANTAU	3	28.60	WINTER	STANDARD31516	HKLR	Р
12-Jan-17	NW LANTAU	2	11.00	WINTER	STANDARD31516	HKLR	S
12-Jan-17	NW LANTAU	3	2.30	WINTER	STANDARD31516	HKLR	S
12-Jan-17	NE LANTAU	2	16.82	WINTER	STANDARD31516	HKLR	Р
12-Jan-17	NE LANTAU	2	8.97	WINTER	STANDARD31516	HKLR	S
12-Jan-17	NE LANTAU	3	1.00	WINTER	STANDARD31516	HKLR	S
16-Jan-17	NW LANTAU	2	17.83	WINTER	STANDARD36826	HKLR	Р
16-Jan-17	NW LANTAU	3	19.51	WINTER	STANDARD36826	HKLR	P
16-Jan-17	NW LANTAU	2	10.47	WINTER	STANDARD36826	HKLR	S
16-Jan-17	NW LANTAU	3	2.70	WINTER	STANDARD36826	HKLR	S
16-Jan-17	NE LANTAU	2	10.30	WINTER	STANDARD36826	HKLR	Р
16-Jan-17	NE LANTAU	3	6.40	WINTER	STANDARD36826	HKLR	P
16-Jan-17	NE LANTAU	2	9.60	WINTER	STANDARD36826	HKLR	S
20-Jan-17	NW LANTAU	2	0.70	WINTER	STANDARD31516	HKLR	P
20-Jan-17	NW LANTAU	3	25.76	WINTER	STANDARD31516	HKLR	Р
20-Jan-17	NW LANTAU	4	4.64	WINTER	STANDARD31516	HKLR	Р
20-Jan-17	NW LANTAU	2	1.20	WINTER	STANDARD31516	HKLR	S
20-Jan-17	NW LANTAU	3	6.20	WINTER	STANDARD31516	HKLR	S
20-Jan-17	NE LANTAU	2	13.65	WINTER	STANDARD31516	HKLR	P
20-Jan-17	NE LANTAU	3	5.69	WINTER	STANDARD31516	HKLR	Р
20-Jan-17	NE LANTAU	2	10.46	WINTER	STANDARD31516	HKLR	S
7-Feb-17	NE LANTAU	2	0.61	WINTER	STANDARD36826	HKLR	Р
7-Feb-17	NE LANTAU	3	8.22	WINTER	STANDARD36826	HKLR	P
7-Feb-17	NE LANTAU	4	10.00	WINTER	STANDARD36826	HKLR	P
7-Feb-17	NE LANTAU	2	0.96	WINTER	STANDARD36826	HKLR	S
7-Feb-17	NE LANTAU	3	5.61	WINTER	STANDARD36826	HKLR	S
7-Feb-17	NE LANTAU	4	4.60	WINTER	STANDARD36826	HKLR	S
7-Feb-17	NW LANTAU	2	1.58	WINTER	STANDARD36826	HKLR	P
7-Feb-17	NW LANTAU	3	16.98	WINTER	STANDARD36826	HKLR	Р
7-Feb-17	NW LANTAU	4	12.66	WINTER	STANDARD36826	HKLR	Р
7-Feb-17	NW LANTAU	3	5.78	WINTER	STANDARD36826	HKLR	S
7-Feb-17	NW LANTAU	4	1.80	WINTER	STANDARD36826	HKLR	S
55 17		,				,,	
			1				

Appendix I. (cont'd)

9-Feb-17 NE LANTAU 2 5:54 WINTER STANDARD31516 HKLR 9-Feb-17 NE LANTAU 2 5:54 WINTER STANDARD31516 HKLR 9-Feb-17 NE LANTAU 3 4:53 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 2 2:18 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 3 8:68 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 4 28:37 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 3 7:37 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 36:29 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 36:29 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 10:85 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 10:85 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 14:21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 14:21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 3 1:81 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 8:20 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18:51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 8:20 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18:51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 3:99 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1:00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18:51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 3:99 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18:51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 1:00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 2:80 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1:40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 2:80 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 1:40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 5 2:80 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5:12 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 5:80 W	DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
9-Feb-17 NE LANTAU 2 5.54 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 3 4.53 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 3 4.53 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 3 8.68 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 4 28.37 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 4 28.37 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 4 6.00 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 36.29 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 10.85 WINTER STANDARD31516 HKLR 16-Feb-17 NE LANTAU 1 0.70 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 14.21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 7.08 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 3 1.81 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18.51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 3.99 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 2.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 2.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 2.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 2.80 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 1.20 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.59 SPRING STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40	9-Feb-17	NE LANTAU	2	4.59	WINTER	STANDARD31516	HKLR	Р
9-Feb-17 NW LANTAU 2 2.18 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 3 8.68 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 4 28.37 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 4 28.37 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 4 6.00 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 36.29 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 10.85 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 10.85 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 10.85 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 10.85 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 14.21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 3 1.81 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 3 1.81 WINTER STANDARD36826 HKLR 12-Feb-17 NW LANTAU 4 18.51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18.51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 3.99 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1.00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 1.340 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 1.20 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.52 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 1.20 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE	9-Feb-17	NE LANTAU	3	12.25	WINTER	STANDARD31516	HKLR	Р
9-Feb-17 NW LANTAU 2 2.18 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 4 28.37 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 3 7.37 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 3 7.37 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 36.29 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 36.29 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 10.85 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 1 0.70 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 14.21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 14.21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 3 1.81 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 8.20 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18.51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 3.99 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 2.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 2.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 2.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 2.80 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 1.5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 1.5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.52 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 SPRING STANDARD36826 HKLR 24-Feb-17 NE LANTAU 5 4.59 SPRING STANDARD36826 HKLR 24-Feb-17 NE LANTAU 2 5.98 SPRING STANDARD36826 HKLR 24-Feb-17 NE LANTAU 3 3.470 SPRING STANDARD36826 HKLR 24-Feb-17 NE LANTAU 2 5.98 SPRING STANDARD36826 HKLR 24-Feb-17 NE LANTAU 2 5.98 SPRING STANDARD36826 HKLR 24-Feb-17 NE LANTAU 2 5.	9-Feb-17	NE LANTAU	2	5.54	WINTER	STANDARD31516	HKLR	S
9-Feb-17 NW LANTAU	9-Feb-17	NE LANTAU	3	4.53	WINTER	STANDARD31516	HKLR	S
9-Feb-17 NW LANTAU 4 28.37 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 4 28.37 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 3 7.37 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 4 6.00 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 36.29 WINTER STANDARD36826 HKLR 16-Feb-17 NW LANTAU 2 10.70 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 1 0.70 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 14.21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 14.21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 3 1.81 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 18.20 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18.51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 3.99 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 10.00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 10.00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 4.70 WINTER STANDARD36826 HKLR 24-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 24-Feb-17 NE LANTAU 3 4.70 WINTER STANDARD36826 HKLR 24-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 24-Feb-17 NE LANTAU 3 4.70 WINTER STANDARD36826 HKLR 24-Feb-17 NE LANTAU 3 4.70 WINTER STANDARD36826 HKLR 24-Feb-17 NE LANTAU 3 5.459 SPRING STANDARD36826 HKLR 24-Feb-17 NE LANTAU 2 10.66 SPRING STANDARD36826 HKLR 24-Feb-17 NW LANTAU 3 5.459 SPRING STANDARD36826 HKLR 24-Feb-17 NW LANTAU 2 10.69 SPRING STANDARD36826 HKLR 24-Feb-17 NW LANTA	9-Feb-17	NW LANTAU	2	2.18	WINTER	STANDARD31516	HKLR	Р
9-Feb-17 NW LANTAU 4 28.37 WINTER STANDARD31516 HKLR 9-Feb-17 NW LANTAU 4 6.00 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 36.29 WINTER STANDARD31516 HKLR 16-Feb-17 NW LANTAU 2 10.85 WINTER STANDARD36826 HKLR 16-Feb-17 NW LANTAU 2 10.85 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 1 0.70 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 14.21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 14.21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 3 1.81 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 8.20 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18.51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 3.99 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 2.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 2.80 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1.20 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.52 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.52 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 5 0.80 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 0.80 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 1.64 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 0.89 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 1.664 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 0.89 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 1.475 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 1-MAR-17 NW LANTAU 2 1.91 SPRING ST						STANDARD31516		Р
9-Feb-17 NW LANTAU								Р
9-Feb-17 NW LANTAU 2 36.29 WINTER STANDARD36826 HKLR 16-Feb-17 NW LANTAU 2 10.85 WINTER STANDARD36826 HKLR 16-Feb-17 NW LANTAU 1 0.70 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 1 0.70 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 14.21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 7.08 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 3 1.81 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 1.81 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 1.81 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18.51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 3.99 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1.00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 2.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 2.80 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 1.20 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 0.80 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 10.64 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 1.64 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 1.64 SPRING STANDARD36826 HKLR 1.64 Mar-17 NW LANTAU 2 1.0.67 SPRING STANDARD36826 HKLR 1.64 Mar-17 NW LANTAU								S
16-Feb-17								S
16-Feb-17 NW LANTAU 2 10.85 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 1 0.70 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 14.21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 7.08 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 3 1.81 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 8.20 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18.51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 3.99 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1.00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 2.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 2.80 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 10.64 SPRING STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 10-Fe SPRING STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 10-Fe SPRING STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 10-Fe SPRING STANDARD36826 HKLR 21-Feb-17 NW LANT								P
16-Feb-17 NE LANTAU								S
16-Feb-17 NE LANTAU 2 14.21 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 2 7.08 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 3 1.81 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18.51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18.51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1.00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1.00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1.00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 3 2.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1.20 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.80 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.449 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.49 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.49 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 10.67 S								P
16-Feb-17 NE LANTAU 2 7.08 WINTER STANDARD36826 HKLR 16-Feb-17 NE LANTAU 3 1.81 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 18.51 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 3.99 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1.00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1.00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1.00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 2.80 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 1.20 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 1.20 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 4.70 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 0.80 SPRING STANDARD36826 HKLR 21-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 21-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 21-Mar-17 NW LANTAU 2 10.67 SPRING STANDARD36826 HKLR 21-Mar-17 NW LANTAU 2 10.67 SPRING STANDARD36826 HKLR 21-Mar-17 NW LANTAU 2 10.16 SPRING STANDARD36826 HKLR 21-Mar-17 NW LANTAU 2								P
16-Feb-17								S
21-Feb-17 NW LANTAU								S
21-Feb-17 NW LANTAU								P
21-Feb-17 NW LANTAU 5 3.99 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 2 1.00 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 4 1.40 WINTER STANDARD36826 HKLR 21-Feb-17 NW LANTAU 5 2.80 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 1.20 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.80 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 0.80 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 10.64 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 4.59 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 0.69 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 14.49 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 3-Mar-17 NW LANTAU 2 30.59 SPRIN		_						Р
21-Feb-17								Р
21-Feb-17								S
21-Feb-17								S
21-Feb-17 NW LANTAU 5 2.80 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 1.20 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 13.40 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 4.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 14.47 SPRING								S
21-Feb-17								S
21-Feb-17								S P
21-Feb-17 NE LANTAU 4 5.12 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 2 0.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 4.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 0.80 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 10.64 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 14.49 SPRING <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
21-Feb-17 NE LANTAU 2 0.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 3 4.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 0.80 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 10.64 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 10.64 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 14.49 SPRING <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Р</td></t<>								Р
21-Feb-17 NE LANTAU 3 4.70 WINTER STANDARD36826 HKLR 21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 0.80 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 10.64 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 4.59 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 14.49 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Р</td></td<>								Р
21-Feb-17 NE LANTAU 4 5.58 WINTER STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 0.80 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 10.64 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 4.59 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 0.69 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 14.49 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING								S
2-Mar-17 NW LANTAU 2 0.80 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 10.64 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 4.59 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 0.69 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 14.49 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 10.67 SPRING								S
2-Mar-17 NW LANTAU 3 14.47 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 10.64 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 4.59 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 0.69 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 14.49 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 16.13 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>S</td></td<>								S
2-Mar-17 NW LANTAU 4 10.64 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 4.59 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 0.69 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 14.49 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 10.67 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>P</td></td<>								P
2-Mar-17 NW LANTAU 5 4.59 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 0.69 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 14.49 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 10.67 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 12.91 SPRING <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>P</td></td<>								P
2-Mar-17 NW LANTAU 2 1.90 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 0.69 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 14.49 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 3 4.75 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 10.67 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 12.91 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 20.88 SPRING <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>P</td></t<>								P
2-Mar-17 NW LANTAU 3 2.40 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NW LANTAU 5 0.69 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 14.49 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 3 4.75 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 10.67 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 12.91 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 20.88 SPRING <								Р
2-Mar-17 NW LANTAU 4 2.71 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 5 0.69 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 14.49 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 3 4.75 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 10.67 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 3 8.40 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 12.91 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 20.88 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 31.93 SPRING								S
2-Mar-17 NW LANTAU 5 0.69 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 14.49 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 3 4.75 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 16.13 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 10.67 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 3 8.40 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 12.91 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 20.88 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING								S
2-Mar-17 NE LANTAU 2 14.49 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 3 4.75 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 16.13 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 10.67 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 3 8.40 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 12.91 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 20.88 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING		_						S
2-Mar-17 NE LANTAU 3 4.75 SPRING STANDARD36826 HKLR 2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 16.13 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 10.67 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 3 8.40 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 12.91 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 20.88 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 10.92 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 7.27 SPRING				0.69				S
2-Mar-17 NE LANTAU 2 10.16 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 16.13 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 10.67 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 3 8.40 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 12.91 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 20.88 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 7.27 SPRING STANDARD36826 HKLR								Р
7-Mar-17 NE LANTAU 2 16.13 SPRING STANDARD36826 HKLR 7-Mar-17 NE LANTAU 2 10.67 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 3 8.40 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 12.91 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 20.88 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 7.27 SPRING STANDARD36826 HKLR								Р
7-Mar-17 NE LANTAU 2 10.67 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 30.59 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 3 8.40 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 12.91 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 20.88 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 7.27 SPRING STANDARD36826 HKLR								S
7-Mar-17 NW LANTAU 2 30.59 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 3 8.40 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 12.91 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 20.88 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 10.92 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 7.27 SPRING STANDARD36826 HKLR								Р
7-Mar-17 NW LANTAU 3 8.40 SPRING STANDARD36826 HKLR 7-Mar-17 NW LANTAU 2 12.91 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 20.88 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 10.92 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 7.27 SPRING STANDARD36826 HKLR								S
7-Mar-17 NW LANTAU 2 12.91 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 20.88 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 10.92 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 7.27 SPRING STANDARD36826 HKLR								Р
16-Mar-17 NE LANTAU 2 20.88 SPRING STANDARD36826 HKLR 16-Mar-17 NE LANTAU 2 10.92 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 7.27 SPRING STANDARD36826 HKLR								Р
16-Mar-17 NE LANTAU 2 10.92 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 7.27 SPRING STANDARD36826 HKLR	7-Mar-17			12.91				S
16-Mar-17 NW LANTAU 2 31.93 SPRING STANDARD36826 HKLR 16-Mar-17 NW LANTAU 2 7.27 SPRING STANDARD36826 HKLR								Р
16-Mar-17 NW LANTAU 2 7.27 SPRING STANDARD36826 HKLR	16-Mar-17			10.92				S
	16-Mar-17	NW LANTAU	2	31.93	SPRING	STANDARD36826	HKLR	Р
	16-Mar-17	NW LANTAU	2	7.27	SPRING	STANDARD36826	HKLR	S
28-Mar-17 NW LANTAU 2 3.40 SPRING STANDARD36826 HKLR	28-Mar-17	NW LANTAU		3.40	SPRING	STANDARD36826	HKLR	Р
	28-Mar-17	NW LANTAU		13.92	SPRING	STANDARD36826	HKLR	Р
28-Mar-17 NW LANTAU 4 9.78 SPRING STANDARD36826 HKLR	28-Mar-17	NW LANTAU	4	9.78	SPRING	STANDARD36826	HKLR	Р
	28-Mar-17	NW LANTAU		3.00	SPRING	STANDARD36826	HKLR	S
	28-Mar-17	NW LANTAU		1.50		STANDARD36826	HKLR	S
	28-Mar-17	NW LANTAU	4	3.40		STANDARD36826		S

Appendix I. (cont'd)

28-Mar-17 NE LANTAU 2 1.30 SPRING STANDARD36826 H		P/S
	HKLR	Р
	HKLR	Р
	HKLR	Р
28-Mar-17 NE LANTAU 2 1.20 SPRING STANDARD36826 F	HKLR	S
28-Mar-17 NE LANTAU 3 6.67 SPRING STANDARD36826 H	HKLR	S
28-Mar-17 NE LANTAU 4 3.30 SPRING STANDARD36826 H	HKLR	S
12-Apr-17 NW LANTAU 2 17.47 SPRING STANDARD36826 F	HKLR	Р
	HKLR	Р
	HKLR	S
	HKLR	S
	HKLR	Р
· '	HKLR	P
·	HKLR	S
·	HKLR	S
	HKLR	S
	HKLR	P
	HKLR	P
	HKLR	S
	HKLR	S
	HKLR	P
·	HKLR	S
·	HKLR	S
		S
• • • • • • • • • • • • • • • • • • • •	HKLR	o P
	HKLR	P
	HKLR	
	HKLR	Р
	HKLR	S
	HKLR	Р
	HKLR	Р
	HKLR	S
	HKLR	Р
	HKLR	Р
	HKLR	S
	HKLR	S
·	HKLR	Р
	HKLR	S
	HKLR	Р
	HKLR	Р
	HKLR	S
	HKLR	S
	HKLR	Р
	HKLR	Р
	HKLR	S
	HKLR	S
	HKLR	Р
	HKLR	Р
	HKLR	Р
	HKLR	S
22-May-17 NE LANTAU 3 7.08 SPRING STANDARD36826 F	HKLR	S
	HKLR	Р
	HKLR	Р
	HKLR	Р
	HKLR	S
	HKLR	S

Appendix I. (cont'd)

24-May-17 NW LANTAU 2 13.73 SPRING STANDARD33706 HKLR P 24-May-17 NW LANTAU 3 12.79 SPRING STANDARD33706 HKLR S 24-May-17 NW LANTAU 2 5.14 SPRING STANDARD33706 HKLR S 24-May-17 NW LANTAU 2 19.90 SPRING STANDARD33706 HKLR S 24-May-17 NE LANTAU 2 19.90 SPRING STANDARD33706 HKLR S 26-May-17 NW LANTAU 2 19.90 SPRING STANDARD33706 HKLR S 26-May-17 NW LANTAU 1 19.0 SPRING STANDARD33706 HKLR S 26-May-17 NW LANTAU 2 30.88 SPRING STANDARD3626 HKLR P 26-May-17 NW LANTAU 3 0.82 SPRING STANDARD3626 HKLR P 26-May-17 NW LANTAU 1 0.80 SPRING STANDARD3626 HKLR S 26-May-17 NW LANTAU 2 12.00 SPRING STANDARD3626 HKLR S 26-May-17 NE LANTAU 2 7.88 SPRING STANDARD36826 HKLR S 26-May-17 NE LANTAU 1 3.47 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 1 3.47 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 1 3.47 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 1 3.47 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 1 3.47 SPRING STANDARD36826 HKLR P 26-May-17 NW LANTAU 2 25.80 SUMMER STANDARD36826 HKLR P 14-Jun-17 NW LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P 14-Jun-17 NW LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 1 8.30 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 3 3.30 SUMMER STANDARD36826 HKLR P 14-Jun-17 NW LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P 14-Jun-17 NW LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P 14-Jun-17 NW LANTAU 3 6.95 SUMMER STANDARD36826 HKLR P 14-Jun-17 NW LANTAU 3 6.95 SUMMER STANDARD	DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
24-May-17 NW LANTAU	24-May-17	NW LANTAU	2	13.73	SPRING	STANDARD33706	HKLR	Р
24-May-17 NW LANTAU 3	24-May-17	NW LANTAU	3	12.79	SPRING	STANDARD33706	HKLR	Р
24-May-17 NE LANTAU 2 18.50 SPRING STANDARD33706 HKLR P 24-May-17 NW LANTAU 2 10.90 SPRING STANDARD33706 HKLR P 26-May-17 NW LANTAU 2 30.88 SPRING STANDARD36826 HKLR P 26-May-17 NW LANTAU 1 0.80 SPRING STANDARD36826 HKLR P 26-May-17 NW LANTAU 1 0.80 SPRING STANDARD36826 HKLR P 26-May-17 NW LANTAU 1 0.80 SPRING STANDARD36826 HKLR S SPRING STANDARD36826 HKLR P 26-May-17 NW LANTAU 2 12.00 SPRING STANDARD36826 HKLR S SPRING STANDARD36826 HKLR S SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 2 7.88 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 1 3.47 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 2 5.00 SPRING STANDARD36826 HKLR S SPRING STANDARD36826 HKLR P 26-May-17 NW LANTAU 2 5.00 SPRING STANDARD36826 HKLR S SPRING STANDARD36826 HKLR S SPRING STANDARD36826 HKLR P 14-Jun-17 NW LANTAU 2 25.80 SUMMER STANDARD36826 HKLR P 14-Jun-17 NW LANTAU 2 25.80 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 1 8.30 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 1 8.30 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 1 1.67 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 1 1.67 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 2 5.91 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 2 5.91 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 3 25.98 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 3 13.14 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 2 5.91 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 3 13.14 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 2 0.90 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 2 2.07 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 2 2.07 SUMMER	24-May-17	NW LANTAU	2	5.14	SPRING	STANDARD33706	HKLR	S
24-May-17 NE LANTAU 2 10.90 SPRING STANDARD336706 HKLR P 26-May-17 NW LANTAU 1 1.90 SPRING STANDARD36826 HKLR P 26-May-17 NW LANTAU 2 30.88 SPRING STANDARD36826 HKLR P 26-May-17 NW LANTAU 2 10.80 SPRING STANDARD36826 HKLR P 26-May-17 NW LANTAU 2 12.00 SPRING STANDARD36826 HKLR S SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 1 5.55 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 3 1.60 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 1 3.47 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 2 5.00 SPRING STANDARD36826 HKLR S SPRING STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR P NW LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P NW LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P NW LANTAU 1 8.30 SUMMER STANDARD36826 HKLR P NW LANTAU 1 1.67 SUMMER STANDARD36826 HKLR P NW LANTAU 2 10.28 SUMMER STANDARD36826 HKLR P NW LANTAU 3 13.14 SUMMER STANDARD36826 HKLR P NW LANTAU 4 3.70 SUMMER STANDARD36826 HKLR P NW LANTAU 2 2.01 NW	24-May-17	NW LANTAU	3	2.48	SPRING	STANDARD33706	HKLR	S
24-May-17 NE LANTAU 2 10.90 SPRING STANDARD336706 HKLR P 26-May-17 NW LANTAU 1 1.90 SPRING STANDARD36826 HKLR P 26-May-17 NW LANTAU 2 30.88 SPRING STANDARD36826 HKLR P 26-May-17 NW LANTAU 2 10.80 SPRING STANDARD36826 HKLR P 26-May-17 NW LANTAU 2 12.00 SPRING STANDARD36826 HKLR S SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 1 5.55 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 3 1.60 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 1 3.47 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 2 5.00 SPRING STANDARD36826 HKLR S SPRING STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR P NW LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P NW LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P NW LANTAU 1 8.30 SUMMER STANDARD36826 HKLR P NW LANTAU 1 1.67 SUMMER STANDARD36826 HKLR P NW LANTAU 2 10.28 SUMMER STANDARD36826 HKLR P NW LANTAU 3 13.14 SUMMER STANDARD36826 HKLR P NW LANTAU 4 3.70 SUMMER STANDARD36826 HKLR P NW LANTAU 2 2.01 NW	24-Mav-17	NE LANTAU		18.50		STANDARD33706	HKLR	Р
26-May-17 NW LANTAU	,							S
26-May-17	,							
26-May-17	,							
26-May-17								
26-May-17	,							
26-May-17 NE LANTAU	,							
26-May-17 NE LANTAU 2 7.88 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 3 1.60 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 1 3.47 SPRING STANDARD36826 HKLR P 26-May-17 NE LANTAU 2 5.00 SPRING STANDARD36826 HKLR S SEMANDARD36826 HKLR S SEMANDARD36826 HKLR S SEMANDARD36826 HKLR P 14-Jun-17 NW LANTAU 2 25.80 SUMMER STANDARD36826 HKLR P 14-Jun-17 NW LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 1 8.30 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 2 22.46 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 3 0.39 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 3 0.39 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 3 0.39 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 2 10.28 SUMMER STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 2 5.91 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 4 3.70 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 4 3.70 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 4 3.70 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 4 1.10 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 2 7.20 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 2 7.20 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 2 0.90 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 2 2.07 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 2 2.07 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 3 11.18 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 3 13.44 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 3 13.45 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 3 13.45 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 3 13.45	,							
26-May-17 NE LANTAU	,							
26-May-17	,							
26-May-17								
14-Jun-17								
14-Jun-17	,							
14-Jun-17 NW LANTAU 2 6.95 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 1 8.30 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 2 22.46 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 3 0.39 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 1 1.67 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 1 1.67 SUMMER STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR P STANDARD36826 HKLR S STANDARD36826 HKLR P STANDARD36826 HKLR P STANDARD36826 HKLR P STANDARD36826 HKLR P STANDARD36826 HKLR S STANDARD36826 HKLR P STANDARD36826 HKLR S STANDARD36826 HKLR S STANDARD36826 HKLR P STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR P STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR P STANDARD36826 HKLR S SUMMER STANDARD36826 HKLR S								
14-Jun-17 NE LANTAU								
14-Jun-17 NE LANTAU 2 22.46 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 1 1.67 SUMMER STANDARD36826 HKLR P 14-Jun-17 NE LANTAU 2 10.28 SUMMER STANDARD36826 HKLR S 15-Jun-17 NW LANTAU 2 5.91 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 3 25.98 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 4 3.70 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 3 13.14 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 4 1.10 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 4 1.10 SUMMER STANDARD36826 HKLR P 15-Jun-17 NW LANTAU 4 1.10 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 2 7.20 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 4 1.50 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 2 0.90 SUMMER STANDARD36826 HKLR S STANDARD36826 HKLR S STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 2 0.90 SUMMER STANDARD36826 HKLR S STANDARD36826 HKLR P 20-Jun-17 NE LANTAU 2 28.41 SUMMER STANDARD36826 HKLR P 20-Jun-17 NW LANTAU 2 2.07 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 25.84 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 4 3.36 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 18.23 SUMMER STANDARD36826 HKLR S SUMMER STANDARD36826					_			
14-Jun-17 NE LANTAU								
14-Jun-17								
14-Jun-17								
15-Jun-17								
15-Jun-17								
15-Jun-17								
15-Jun-17								
15-Jun-17								
20-Jun-17								
20-Jun-17								
20-Jun-17								
20-Jun-17 NW LANTAU 2 0.90 SUMMER STANDARD36826 HKLR S 20-Jun-17 NW LANTAU 3 11.18 SUMMER STANDARD36826 HKLR S 20-Jun-17 NE LANTAU 1 7.56 SUMMER STANDARD36826 HKLR P 20-Jun-17 NE LANTAU 2 28.41 SUMMER STANDARD36826 HKLR P 20-Jun-17 NE LANTAU 2 211.63 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 2 2.07 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 25.84 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 4 6.35 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 8.38 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 2 18.97 SUMMER STANDARD								
20-Jun-17 NW LANTAU 3 11.18 SUMMER STANDARD36826 HKLR S 20-Jun-17 NE LANTAU 1 7.56 SUMMER STANDARD36826 HKLR P 20-Jun-17 NE LANTAU 2 28.41 SUMMER STANDARD36826 HKLR P 20-Jun-17 NE LANTAU 2 11.63 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 2 2.07 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 25.84 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 4 6.35 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 8.38 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 2 18.97 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 2 18.23 SUMMER STANDARD								
20-Jun-17 NE LANTAU 1 7.56 SUMMER STANDARD36826 HKLR P 20-Jun-17 NE LANTAU 2 28.41 SUMMER STANDARD36826 HKLR P 20-Jun-17 NE LANTAU 2 11.63 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 2 2.07 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 25.84 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 4 6.35 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 8.38 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 4 3.36 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 2 18.97 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 3 5.70 SUMMER STANDARD36								
20-Jun-17 NE LANTAU 2 28.41 SUMMER STANDARD36826 HKLR P 20-Jun-17 NE LANTAU 2 11.63 SUMMER STANDARD36826 HKLR S 26-Jun-17 NW LANTAU 2 2.07 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 25.84 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 4 6.35 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 8.38 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 4 3.36 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 2 18.97 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 3 18.23 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 3 5.70 SUMMER STANDARD3								
20-Jun-17 NE LANTAU 2 11.63 SUMMER STANDARD36826 HKLR S 26-Jun-17 NW LANTAU 2 2.07 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 25.84 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 4 6.35 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 8.38 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 4 3.36 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 2 18.97 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 2 7.00 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 3 5.70 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 4 1.60 SUMMER STANDARD368								
26-Jun-17 NW LANTAU 2 2.07 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 25.84 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 4 6.35 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 8.38 SUMMER STANDARD36826 HKLR S 26-Jun-17 NW LANTAU 4 3.36 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 2 18.97 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 3 18.23 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 2 7.00 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 3 1.60 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 1 3.80 SUMMER STANDARD368			_		_			-
26-Jun-17 NW LANTAU 3 25.84 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 4 6.35 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 8.38 SUMMER STANDARD36826 HKLR S 26-Jun-17 NW LANTAU 4 3.36 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 2 18.97 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 3 18.23 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 2 7.00 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 3 5.70 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 4 1.60 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 1 3.80 SUMMER STANDARD368								
26-Jun-17 NW LANTAU 4 6.35 SUMMER STANDARD36826 HKLR P 26-Jun-17 NW LANTAU 3 8.38 SUMMER STANDARD36826 HKLR S 26-Jun-17 NW LANTAU 4 3.36 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 2 18.97 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 3 18.23 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 2 7.00 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 3 5.70 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 4 1.60 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 1 3.80 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 1 1.20 SUMMER STANDARD3682								
26-Jun-17 NW LANTAU 3 8.38 SUMMER STANDARD36826 HKLR S 26-Jun-17 NW LANTAU 4 3.36 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 2 18.97 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 3 18.23 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 2 7.00 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 3 5.70 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 4 1.60 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 1 3.80 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 2 31.92 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 1 1.20 SUMMER STANDARD368								
26-Jun-17 NW LANTAU 4 3.36 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 2 18.97 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 3 18.23 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 2 7.00 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 3 5.70 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 4 1.60 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 1 3.80 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 2 31.92 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 1 1.20 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 2 10.58 SUMMER STANDARD36								
20-Jul-17 NW LANTAU 2 18.97 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 3 18.23 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 2 7.00 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 3 5.70 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 4 1.60 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 1 3.80 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 2 31.92 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 1 1.20 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 2 10.58 SUMMER STANDARD36826 HKLR S 24-Jul-17 NW LANTAU 2 20.28 SUMMER STANDARD3								
20-Jul-17 NW LANTAU 3 18.23 SUMMER STANDARD36826 HKLR P 20-Jul-17 NW LANTAU 2 7.00 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 3 5.70 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 4 1.60 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 1 3.80 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 2 31.92 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 1 1.20 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 2 10.58 SUMMER STANDARD36826 HKLR S 24-Jul-17 NW LANTAU 2 20.28 SUMMER STANDARD36826 HKLR P 24-Jul-17 NW LANTAU 3 3.38 SUMMER STANDARD36								
20-Jul-17 NW LANTAU 2 7.00 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 3 5.70 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 4 1.60 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 1 3.80 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 2 31.92 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 1 1.20 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 2 10.58 SUMMER STANDARD36826 HKLR S 24-Jul-17 NW LANTAU 2 20.28 SUMMER STANDARD36826 HKLR P 24-Jul-17 NW LANTAU 3 3.38 SUMMER STANDARD36826 HKLR P								
20-Jul-17 NW LANTAU 3 5.70 SUMMER STANDARD36826 HKLR S 20-Jul-17 NW LANTAU 4 1.60 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 1 3.80 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 2 31.92 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 1 1.20 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 2 10.58 SUMMER STANDARD36826 HKLR S 24-Jul-17 NW LANTAU 2 20.28 SUMMER STANDARD36826 HKLR P 24-Jul-17 NW LANTAU 3 3.38 SUMMER STANDARD36826 HKLR P								
20-Jul-17 NW LANTAU 4 1.60 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 1 3.80 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 2 31.92 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 1 1.20 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 2 10.58 SUMMER STANDARD36826 HKLR S 24-Jul-17 NW LANTAU 2 20.28 SUMMER STANDARD36826 HKLR P 24-Jul-17 NW LANTAU 3 3.38 SUMMER STANDARD36826 HKLR P								
20-Jul-17 NE LANTAU 1 3.80 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 2 31.92 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 1 1.20 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 2 10.58 SUMMER STANDARD36826 HKLR S 24-Jul-17 NW LANTAU 2 20.28 SUMMER STANDARD36826 HKLR P 24-Jul-17 NW LANTAU 3 3.38 SUMMER STANDARD36826 HKLR P								
20-Jul-17 NE LANTAU 2 31.92 SUMMER STANDARD36826 HKLR P 20-Jul-17 NE LANTAU 1 1.20 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 2 10.58 SUMMER STANDARD36826 HKLR S 24-Jul-17 NW LANTAU 2 20.28 SUMMER STANDARD36826 HKLR P 24-Jul-17 NW LANTAU 3 3.38 SUMMER STANDARD36826 HKLR P			4					
20-Jul-17 NE LANTAU 1 1.20 SUMMER STANDARD36826 HKLR S 20-Jul-17 NE LANTAU 2 10.58 SUMMER STANDARD36826 HKLR S 24-Jul-17 NW LANTAU 2 20.28 SUMMER STANDARD36826 HKLR P 24-Jul-17 NW LANTAU 3 3.38 SUMMER STANDARD36826 HKLR P								
20-Jul-17 NE LANTAU 2 10.58 SUMMER STANDARD36826 HKLR S 24-Jul-17 NW LANTAU 2 20.28 SUMMER STANDARD36826 HKLR P 24-Jul-17 NW LANTAU 3 3.38 SUMMER STANDARD36826 HKLR P			2					
24-Jul-17 NW LANTAU 2 20.28 SUMMER STANDARD36826 HKLR P 24-Jul-17 NW LANTAU 3 3.38 SUMMER STANDARD36826 HKLR P	20-Jul-17	NE LANTAU	1	1.20	SUMMER	STANDARD36826	HKLR	
24-Jul-17 NW LANTAU 2 20.28 SUMMER STANDARD36826 HKLR P 24-Jul-17 NW LANTAU 3 3.38 SUMMER STANDARD36826 HKLR P	20-Jul-17	NE LANTAU	2	10.58	SUMMER	STANDARD36826	HKLR	S
24-Jul-17 NW LANTAU 3 3.38 SUMMER STANDARD36826 HKLR P	24-Jul-17	NW LANTAU		20.28	SUMMER	STANDARD36826	HKLR	Р
	24-Jul-17	NW LANTAU		3.38	SUMMER	STANDARD36826	HKLR	Р
	24-Jul-17	NW LANTAU		6.35	SUMMER	STANDARD36826	HKLR	S

Appendix I. (cont'd)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
27-Jul-17	NW LANTAU	2	32.62	SUMMER	STANDARD36826	HKLR	Р
27-Jul-17	NW LANTAU	3	3.79	SUMMER	STANDARD36826	HKLR	Р
27-Jul-17	NW LANTAU	2	12.69	SUMMER	STANDARD36826	HKLR	S
27-Jul-17	NE LANTAU	2	22.18	SUMMER	STANDARD36826	HKLR	Р
27-Jul-17	NE LANTAU	3	13.60	SUMMER	STANDARD36826	HKLR	Р
27-Jul-17	NE LANTAU	2	11.02	SUMMER	STANDARD36826	HKLR	S
27-Jul-17	NE LANTAU	3	2.00	SUMMER	STANDARD36826	HKLR	S
28-Jul-17	NW LANTAU	1	2.10	SUMMER	STANDARD36826	HKLR	Р
28-Jul-17	NW LANTAU	2	19.21	SUMMER	STANDARD36826	HKLR	Р
28-Jul-17	NW LANTAU	3	4.53	SUMMER	STANDARD36826	HKLR	Р
28-Jul-17	NW LANTAU	2	10.69	SUMMER	STANDARD36826	HKLR	S
28-Jul-17	NW LANTAU	3	1.77	SUMMER	STANDARD36826	HKLR	S
7-Aug-17	NW LANTAU	2	20.96	SUMMER	STANDARD36826	HKLR	Р
7-Aug-17	NW LANTAU	3	11.21	SUMMER	STANDARD36826	HKLR	Р
7-Aug-17	NW LANTAU	2	2.10	SUMMER	STANDARD36826	HKLR	S
7-Aug-17	NW LANTAU	3	8.74	SUMMER	STANDARD36826	HKLR	S
7-Aug-17	NE LANTAU	2	30.03	SUMMER	STANDARD36826	HKLR	P
7-Aug-17	NE LANTAU	3	3.99	SUMMER	STANDARD36826	HKLR	Р
7-Aug-17	NE LANTAU	2	12.29	SUMMER	STANDARD36826	HKLR	S
7-Aug-17	NE LANTAU	3	1.19	SUMMER	STANDARD36826	HKLR	S
15-Aug-17	NW LANTAU	2	0.92	SUMMER	STANDARD36826	HKLR	P
15-Aug-17	NW LANTAU	3	27.46	SUMMER	STANDARD36826	HKLR	P
15-Aug-17	NW LANTAU	3	9.12	SUMMER	STANDARD36826	HKLR	S
21-Aug-17	NW LANTAU	1	5.12	SUMMER	STANDARD36826	HKLR	P
21-Aug-17 21-Aug-17	NW LANTAU	2	19.03	SUMMER	STANDARD36826	HKLR	P
21-Aug-17 21-Aug-17	NW LANTAU	3	0.40	SUMMER	STANDARD36826	HKLR	Р
21-Aug-17 21-Aug-17	NW LANTAU	1	4.43	SUMMER	STANDARD36826	HKLR	S
21-Aug-17 21-Aug-17	NW LANTAU	2	6.75	SUMMER	STANDARD36826	HKLR	S
21-Aug-17 21-Aug-17	NE LANTAU	2	18.25	SUMMER	STANDARD36826	HKLR	P
21-Aug-17 21-Aug-17	NE LANTAU	3	0.53	SUMMER	STANDARD36826	HKLR	Р
21-Aug-17 21-Aug-17	NE LANTAU	2	9.99	SUMMER	STANDARD36826	HKLR	S
21-Aug-17 21-Aug-17	NE LANTAU	3	0.51	SUMMER	STANDARD36826	HKLR	S
31-Aug-17	NW LANTAU	2	36.26	SUMMER	STANDARD36826	HKLR	P
31-Aug-17 31-Aug-17	NW LANTAU	2	13.74	SUMMER	STANDARD36826	HKLR	S
31-Aug-17	NE LANTAU	2	16.93	SUMMER	STANDARD36826	HKLR	P
31-Aug-17 31-Aug-17	NE LANTAU	2	9.87	SUMMER	STANDARD36826	HKLR	S
15-Sep-17	NW LANTAU		26.51	AUTUMN	STANDARD36826		
		2				HKLR	Р
15-Sep-17 15-Sep-17	NW LANTAU NW LANTAU	2 3	10.09 1.20	AUTUMN	STANDARD36826	HKLR	S S
15-Sep-17 15-Sep-17	NE LANTAU	2	34.49	AUTUMN AUTUMN	STANDARD36826 STANDARD36826	HKLR	o P
•	NE LANTAU NE LANTAU					HKLR	P
15-Sep-17	NE LANTAU NE LANTAU	3 2	2.20	AUTUMN	STANDARD36826	HKLR	S
15-Sep-17			12.01	AUTUMN	STANDARD36826	HKLR	5 P
18-Sep-17	NW LANTAU	2	28.84	AUTUMN	STANDARD36826	HKLR	
18-Sep-17	NW LANTAU	3	7.20	AUTUMN	STANDARD36826	HKLR	Р
18-Sep-17	NW LANTAU	2	12.96	AUTUMN	STANDARD36826	HKLR	S
22-Sep-17	NW LANTAU	1	6.05	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17	NW LANTAU	2	18.48	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17	NW LANTAU	3	0.56	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17	NW LANTAU	1	1.58	AUTUMN	STANDARD36826	HKLR	S
22-Sep-17	NW LANTAU	2	9.25	AUTUMN	STANDARD36826	HKLR	S
22-Sep-17	NE LANTAU	2	4.68	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17	NE LANTAU	3	31.06	AUTUMN	STANDARD36826	HKLR	P
22-Sep-17	NE LANTAU	2	3.30	AUTUMN	STANDARD36826	HKLR	S
22-Sep-17	NE LANTAU	3	9.06	AUTUMN	STANDARD36826	HKLR	S

Appendix I. (cont'd)(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
29-Sep-17	NW LANTAU	1	3.40	AUTUMN	STANDARD36826	HKLR	Р
29-Sep-17	NW LANTAU	2	13.70	AUTUMN	STANDARD36826	HKLR	Р
29-Sep-17	NW LANTAU	3	12.90	AUTUMN	STANDARD36826	HKLR	Р
29-Sep-17	NW LANTAU	4	5.60	AUTUMN	STANDARD36826	HKLR	Р
29-Sep-17	NW LANTAU	2	1.15	AUTUMN	STANDARD36826	HKLR	S
29-Sep-17	NW LANTAU	3	10.06	AUTUMN	STANDARD36826	HKLR	S
4-Oct-17	NW LANTAU	2	0.88	AUTUMN	STANDARD36826	HKLR	Р
4-Oct-17	NW LANTAU	3	20.90	AUTUMN	STANDARD36826	HKLR	Р
4-Oct-17	NW LANTAU	4	2.00	AUTUMN	STANDARD36826	HKLR	Р
4-Oct-17	NW LANTAU	2	3.80	AUTUMN	STANDARD36826	HKLR	S
4-Oct-17	NW LANTAU	3	5.02	AUTUMN	STANDARD36826	HKLR	S
4-Oct-17	NW LANTAU	4	2.40	AUTUMN	STANDARD36826	HKLR	S
4-Oct-17	NE LANTAU	2	8.22	AUTUMN	STANDARD36826	HKLR	Р
4-Oct-17	NE LANTAU	3	11.59	AUTUMN	STANDARD36826	HKLR	Р
4-Oct-17	NE LANTAU	2	9.49	AUTUMN	STANDARD36826	HKLR	S
4-Oct-17	NE LANTAU	3	1.30	AUTUMN	STANDARD36826	HKLR	S
9-Oct-17	NW LANTAU	2	1.68	AUTUMN	STANDARD36826	HKLR	Р
9-Oct-17	NW LANTAU	3	30.32	AUTUMN	STANDARD36826	HKLR	Р
9-Oct-17	NW LANTAU	4	2.50	AUTUMN	STANDARD36826	HKLR	Р
9-Oct-17	NW LANTAU	2	2.30	AUTUMN	STANDARD36826	HKLR	S
9-Oct-17	NW LANTAU	3	4.90	AUTUMN	STANDARD36826	HKLR	S
9-Oct-17	NW LANTAU	4	6.70	AUTUMN	STANDARD36826	HKLR	S
9-Oct-17	NE LANTAU	3	6.99	AUTUMN	STANDARD36826	HKLR	Р
9-Oct-17	NE LANTAU	4	9.93	AUTUMN	STANDARD36826	HKLR	Р
9-Oct-17	NE LANTAU	3	6.79	AUTUMN	STANDARD36826	HKLR	S
9-Oct-17	NE LANTAU	4	3.09	AUTUMN	STANDARD36826	HKLR	S
18-Oct-17	NW LANTAU	2	11.46	AUTUMN	STANDARD36826	HKLR	Р
18-Oct-17	NW LANTAU	3	20.72	AUTUMN	STANDARD36826	HKLR	Р
18-Oct-17	NW LANTAU	2	8.55	AUTUMN	STANDARD36826	HKLR	S
18-Oct-17	NW LANTAU	3	2.50	AUTUMN	STANDARD36826	HKLR	S
18-Oct-17	NE LANTAU	1	2.44	AUTUMN	STANDARD36826	HKLR	Р
18-Oct-17	NE LANTAU	2	27.42	AUTUMN	STANDARD36826	HKLR	Р
18-Oct-17	NE LANTAU	3	5.50	AUTUMN	STANDARD36826	HKLR	Р
18-Oct-17	NE LANTAU	1	1.70	AUTUMN	STANDARD36826	HKLR	S
18-Oct-17	NE LANTAU	2	11.34	AUTUMN	STANDARD36826	HKLR	S
26-Oct-17	NW LANTAU	2	24.70	AUTUMN	STANDARD36826	HKLR	Р
26-Oct-17	NW LANTAU	3	4.44	AUTUMN	STANDARD36826	HKLR	Р
26-Oct-17	NW LANTAU	2	11.91	AUTUMN	STANDARD36826	HKLR	S
26-Oct-17	NW LANTAU	3	0.85	AUTUMN	STANDARD36826	HKLR	S

Appendix II. HKLR03 Chinese White Dolphin Sighting Database (November 2016 - October 2017) (Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association P/S: Sighting Made on Primary/Secondary Lines

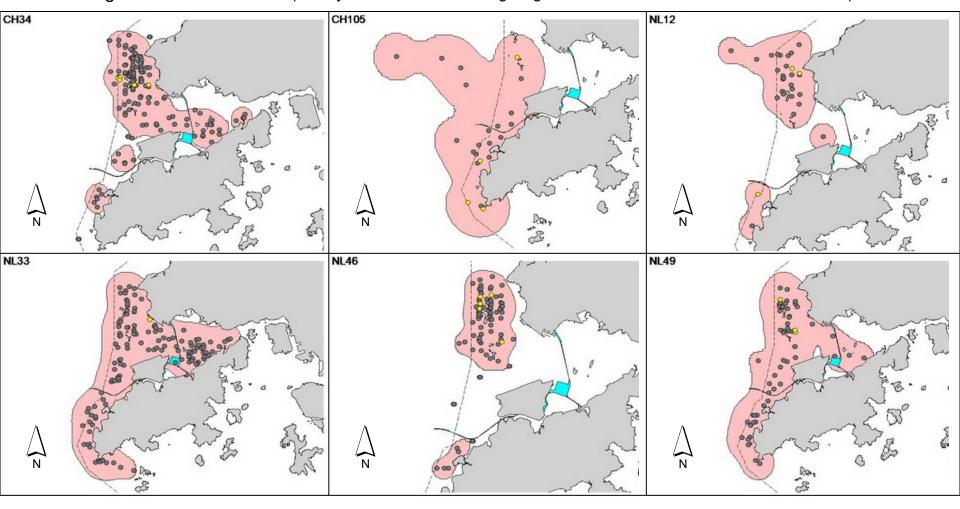
DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
7-Nov-16	1	1103	1	NW LANTAU	2	211	ON	HKLR	824583	804711	AUTUMN	NONE	Р
18-Nov-16	1	1352	7	NW LANTAU	1	99	ON	HKLR	826019	806609	AUTUMN	GILLNET	Р
18-Nov-16	2	1459	4	NW LANTAU	2	440	ON	HKLR	826820	804551	AUTUMN	NONE	Р
1-Dec-16	1	1337	1	NW LANTAU	3	233	ON	HKLR	827758	806489	WINTER	NONE	Р
16-Dec-16	1	1308	3	NW LANTAU	3	74	ON	HKLR	826206	807351	WINTER	NONE	Р
16-Dec-16	2	1359	8	NW LANTAU	3	ND	OFF	HKLR	827051	805334	WINTER	NONE	
19-Dec-16	1	1105	6	NW LANTAU	2	17	ON	HKLR	826942	804829	WINTER	NONE	Р
19-Dec-16	2	1204	4	NW LANTAU	2	272	ON	HKLR	829219	806502	WINTER	NONE	Р
19-Dec-16	3	1222	2	NW LANTAU	2	26	ON	HKLR	827680	806489	WINTER	NONE	Р
16-Jan-17	1	1027	1	NW LANTAU	2	84	ON	HKLR	815336	804713	WINTER	NONE	Р
16-Jan-17	2	1041	5	NW LANTAU	3	22	ON	HKLR	816920	804716	WINTER	NONE	Р
16-Jan-17	3	1211	3	NW LANTAU	3	121	ON	HKLR	828289	806500	WINTER	NONE	Р
16-Jan-17	4	1226	4	NW LANTAU	2	200	ON	HKLR	826916	806446	WINTER	NONE	Р
7-Feb-17	1	1259	3	NW LANTAU	3	ND	OFF	HKLR	828941	807511	WINTER	NONE	
9-Feb-17	1	1510	1	NW LANTAU	4	515	ON	HKLR	829996	805999	WINTER	NONE	S
16-Feb-17	1	1006	2	NW LANTAU	2	325	ON	HKLR	815481	804610	WINTER	NONE	Р
16-Feb-17	2	1027	2	NW LANTAU	2	ND	OFF	HKLR	818991	804710	WINTER	NONE	
16-Feb-17	3	1115	2	NW LANTAU	2	1311	ON	HKLR	830541	804672	WINTER	NONE	Р
16-Feb-17	4	1139	7	NW LANTAU	2	98	ON	HKLR	827813	806448	WINTER	NONE	Р
16-Feb-17	5	1210	8	NW LANTAU	2	4	ON	HKLR	823927	806152	WINTER	NONE	Р
2-Mar-17	1	1049	8	NW LANTAU	3	60	ON	HKLR	826885	805324	SPRING	NONE	S
16-Mar-17	1	1242	12	NW LANTAU	2	509	ON	HKLR	823647	807563	SPRING	PURSE-SEINE	Р
12-Apr-17	1	1123	2	NW LANTAU	2	20	ON	HKLR	829496	806462	SPRING	NONE	Р
18-May-17	1	1057	2	NW LANTAU	3	265	ON	HKLR	827119	804799	SPRING	NONE	Р
15-Jun-17	1	1445	4	NW LANTAU	4	109	ON	HKLR	825338	809729	SUMMER	NONE	S
20-Jun-17	1	1131	1	NW LANTAU	3	15	ON	HKLR	829563	806565	SUMMER	NONE	S
24-Jul-17	1	1111	9	NW LANTAU	2	243	ON	HKLR	828092	805439	SUMMER	NONE	Р
27-Jul-17	1	1131	2	NW LANTAU	2	16	ON	HKLR	829774	806339	SUMMER	NONE	S
7-Aug-17	1	1011	1	NW LANTAU	2	63	ON	HKLR	814661	804608	SUMMER	NONE	Р
7-Aug-17	2	1143	3	NW LANTAU	2	146	ON	HKLR	829807	806174	SUMMER	NONE	S
7-Aug-17	3	1221	1	NW LANTAU	2	4	ON	HKLR	825698	806382	SUMMER	NONE	Р
7-Aug-17	4	1324	2	NW LANTAU	3	18	ON	HKLR	825794	808545	SUMMER	NONE	Р

Appendix II. (cont'd)

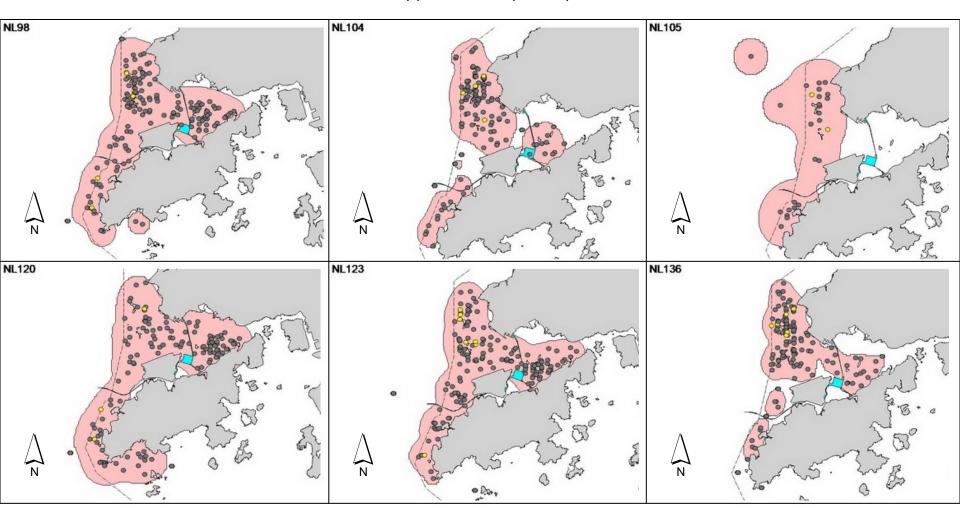
(Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association P/S: Sighting Made on Primary/Secondary Lines

DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
21-Aug-17	1	1012	1	NW LANTAU	1	209	ON	HKLR	816265	805384	SUMMER	NONE	Р
21-Aug-17	2	1132	3	NW LANTAU	2	326	ON	HKLR	827461	805407	SUMMER	NONE	Р
31-Aug-17	1	1117	5	NW LANTAU	2	20	ON	HKLR	826621	804788	SUMMER	NONE	Р
31-Aug-17	2	1314	2	NW LANTAU	2	262	ON	HKLR	826049	808443	SUMMER	NONE	Р
22-Sep-17	1	1152	6	NW LANTAU	2	320	ON	HKLR	823991	807501	AUTUMN	NONE	Р
22-Sep-17	2	1244	3	NW LANTAU	1	250	ON	HKLR	825349	809502	AUTUMN	NONE	Р
29-Sep-17	1	1309	2	NW LANTAU	4	140	ON	HKLR	827215	806416	AUTUMN	NONE	Р
4-Oct-17	1	1143	5	NW LANTAU	3	52	ON	HKLR	828985	807490	AUTUMN	NONE	Р
18-Oct-17	1	1149	1	NW LANTAU	2	65	ON	HKLR	826905	806487	AUTUMN	NONE	Р
18-Oct-17	2	1159	1	NW LANTAU	2	264	ON	HKLR	825632	806485	AUTUMN	PURSE-SEINE	Р
26-Oct-17	1	1135	1	NW LANTAU	2	34	ON	HKLR	826737	807455	AUTUMN	NONE	Р

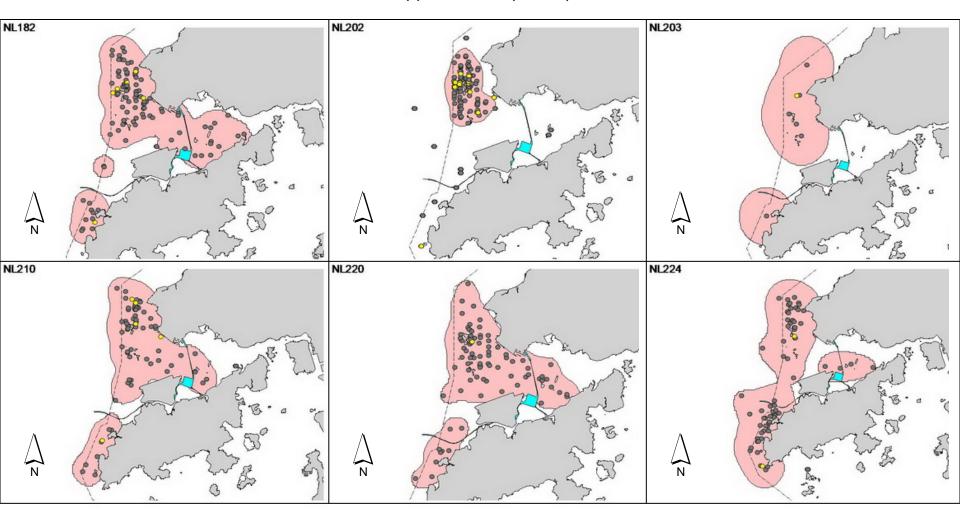
Appendix III. Individual dolphins identified during HKLR03 monitoring surveys in November 2016-October 2017

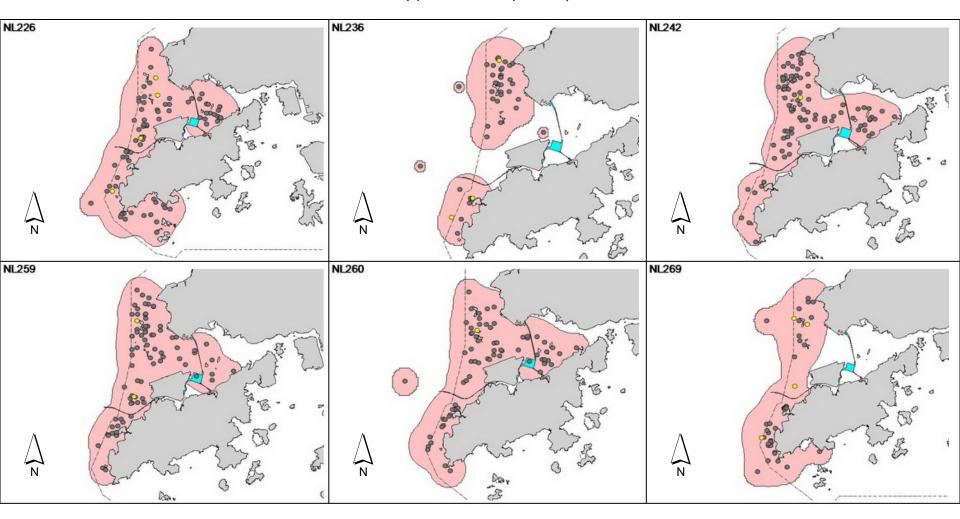

ID#	DATE	STG#	AREA
CH34	18/11/16	1	NW LANTAU
	18/11/16	2	NW LANTAU
	19/12/16	1	NW LANTAU
	31/08/17	1	NW LANTAU
	31/08/17	2	NW LANTAU
CH105	16/02/17	5	NW LANTAU
NL12	20/06/17	1	NW LANTAU
	04/10/17	1	NW LANTAU
NL33	15/06/17	1	NW LANTAU
NL46	16/12/16	2	NW LANTAU
	16/01/17	3	NW LANTAU
	24/07/17	1	NW LANTAU
	21/08/17	2	NW LANTAU
	22/09/17	1	NW LANTAU
NL49	16/03/17	1	NW LANTAU
	24/07/17	1	NW LANTAU
	22/09/17	1	NW LANTAU
NL98	16/12/16	2	NW LANTAU
	16/02/17	5	NW LANTAU
	02/03/17	1	NW LANTAU
NL104	19/12/16	1	NW LANTAU
	16/02/17	4	NW LANTAU
	16/03/17	1	NW LANTAU
	04/10/17	1	NW LANTAU
NL105	16/03/17	1	NW LANTAU
	24/07/17	1	NW LANTAU
NL120	16/12/16	1	NW LANTAU
NL123	16/02/17	5	NW LANTAU
	02/03/17	1	NW LANTAU
	16/03/17	1	NW LANTAU
	24/07/17	1	NW LANTAU
	21/08/17	2	NW LANTAU
	22/09/17	1	NW LANTAU
NL136	18/11/16	1	NW LANTAU
	18/11/16	2	NW LANTAU
	16/12/16	2	NW LANTAU
	16/01/17	3	NW LANTAU
	04/10/17	1	NW LANTAU
	18/10/17	2	NW LANTAU

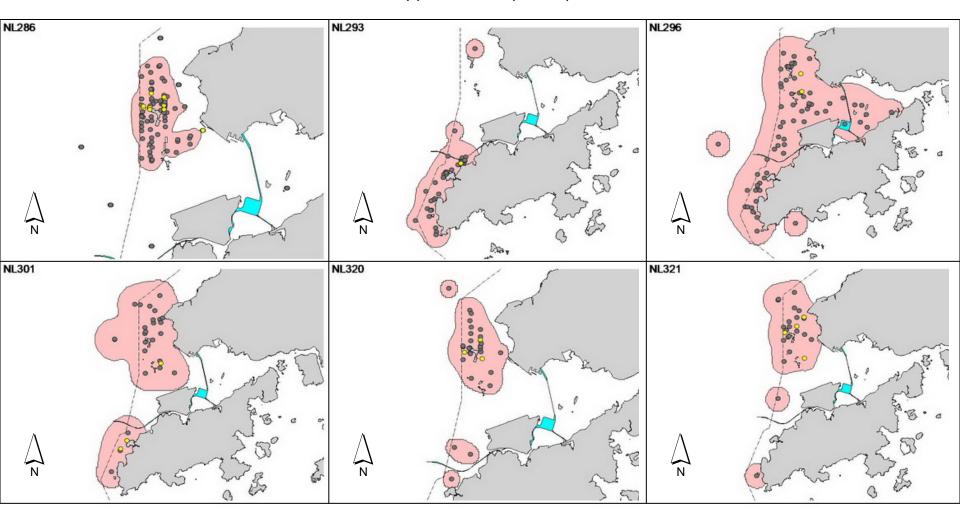
ID#	DATE	STG#	AREA
NL182	01/12/16	1	NW LANTAU
	16/12/16	2	NW LANTAU
	31/08/17	1	NW LANTAU
	31/08/17	2	NW LANTAU
	04/10/17	1	NW LANTAU
	18/10/17	1	NW LANTAU
NL202	18/11/16	1	NW LANTAU
	16/12/16	2	NW LANTAU
	19/12/16	1	NW LANTAU
	19/12/16	3	NW LANTAU
	16/01/17	4	NW LANTAU
	16/02/17	4	NW LANTAU
	02/03/17	1	NW LANTAU
	16/03/17	1	NW LANTAU
	18/05/17	1	NW LANTAU
	24/07/17	1	NW LANTAU
	31/08/17	1	NW LANTAU
	22/09/17	2	NW LANTAU
	29/09/17	1	NW LANTAU
NL203	19/12/16	2	NW LANTAU
NL210	16/01/17	4	NW LANTAU
	09/02/17	1	NW LANTAU
	12/04/17	1	NW LANTAU
	15/06/17	1	NW LANTAU
NL220	18/11/16	1	NW LANTAU
NL224	07/08/17	3	NW LANTAU
NL226	16/12/16	1	NW LANTAU
	16/03/17	1	NW LANTAU
NL236	07/08/17	2	NW LANTAU
NL242	22/09/17	1	NW LANTAU
NL259	02/03/17	1	NW LANTAU
NL260	16/02/17	5	NW LANTAU
NL269	18/11/16	1	NW LANTAU
	18/11/16	2	NW LANTAU
	16/01/17	2	NW LANTAU

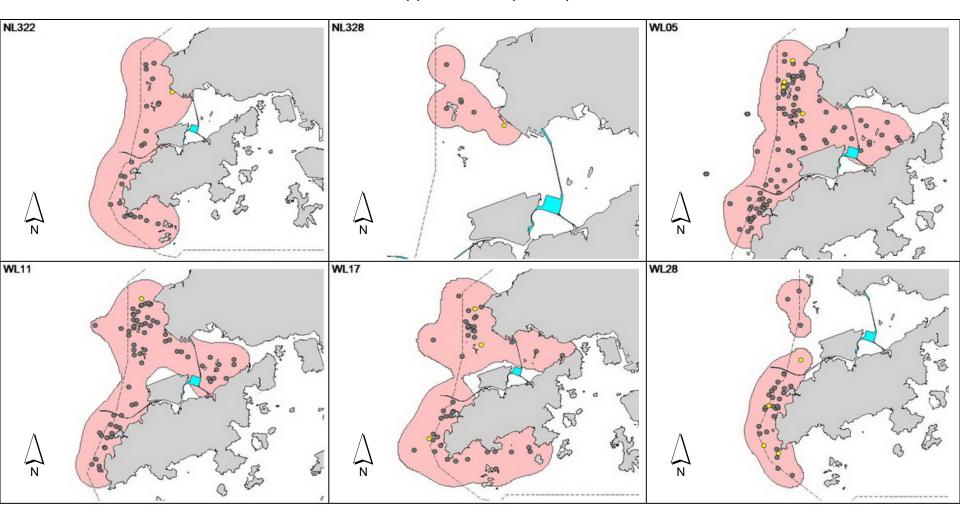

Appendix III. (cont'd)

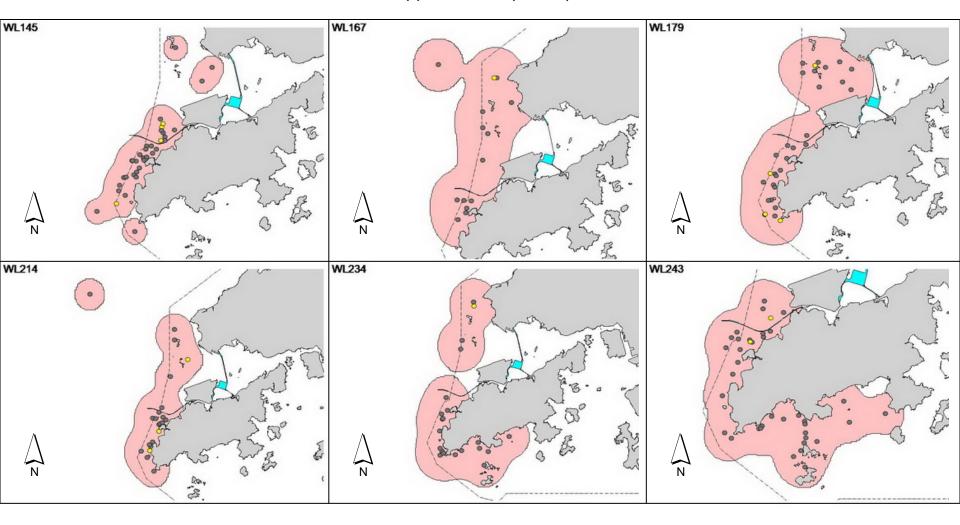
ID#	DATE	STG#	AREA
NL286	16/12/16	2	NW LANTAU
INLZOU	19/12/16	1	NW LANTAU
	19/12/16	3	NW LANTAU
	16/01/17	3 4	NW LANTAU
	16/01/17	4	NW LANTAU
	02/03/17	1	NW LANTAU
	18/05/17	1	NW LANTAU
	24/07/17	1	NW LANTAU
	24/07/17 22/09/17	·-	NW LANTAU
	29/09/17	2 1	NW LANTAU
NL293		1	NW LANTAU
NL293	07/08/17 16/12/16	1	NW LANTAU
INLZ90	22/09/17	1	NW LANTAU
NII 201		1	_
NL301 NL320	16/03/17 18/11/16	1	NW LANTAU NW LANTAU
NL320		-	_
	16/02/17	4	NW LANTAU
NL321	31/08/17	1	NW LANTAU
INL321	19/12/16	1 4	NW LANTAU NW LANTAU
	16/02/17 16/03/17	1	NW LANTAU
		1	_
NL322	04/10/17 15/06/17	1	NW LANTAU NW LANTAU
NL328	15/06/17	1	NW LANTAU
WL05	02/03/17	1	NW LANTAU
VVLUS	02/03/17 27/07/17	1	NW LANTAU
	21/07/17	2	NW LANTAU
	21/00/17	1	NW LANTAU
WL11	27/07/17	1	NW LANTAU
WL17	19/12/16	2	NW LANTAU
VVL 17	16/03/17	1	NW LANTAU
WL28	16/03/17	2	NW LANTAU
WL145	16/01/17	2	NW LANTAU
VVL143	16/02/17	1	NW LANTAU
WL167	07/08/17	2	NW LANTAU
WL179	16/02/17	5	NW LANTAU
WL214	16/03/17	1	NW LANTAU
WL234	16/03/17	3	NW LANTAU
WL243	21/08/17	1	NW LANTAU
WL243	16/02/17	5	NW LANTAU
WL275	07/02/17	1	NW LANTAU
************	16/02/17	4	NW LANTAU
	10/02/17	_ T	TAVE ANTAO

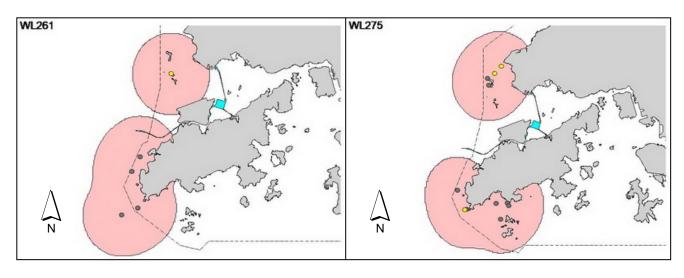

Appendix IV. Ranging patterns (95% kernel ranges) of 44 individual dolphins that were sighted during the fourth year of TMCLKL construction works, utilizing the HKLR03 monitoring data with supplement of HKLR09 monitoring data in West Lantau (note: yellow dots indicates sightings made in November 2016 to October 2017)

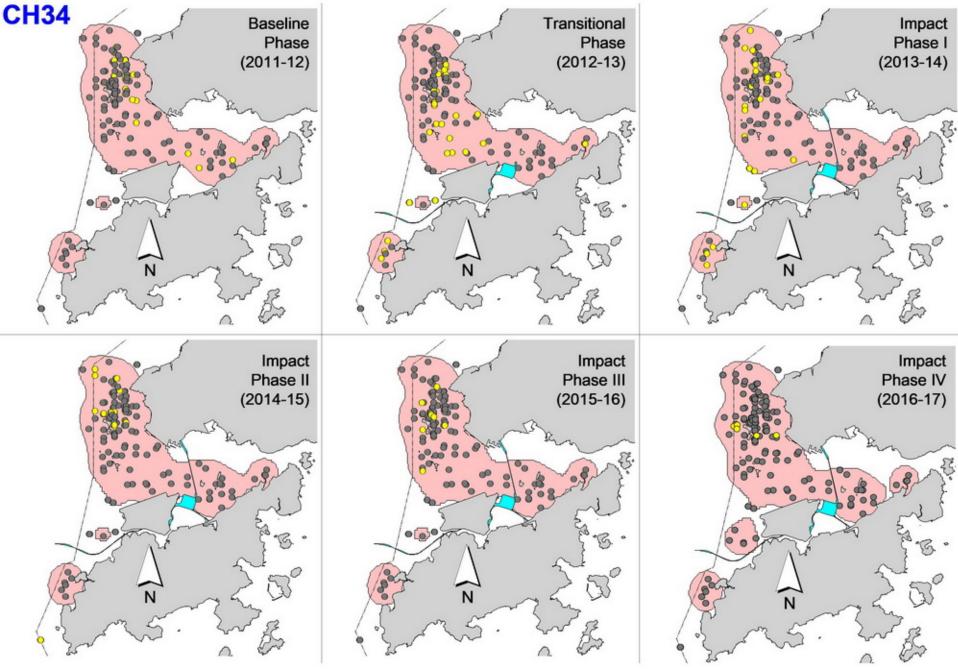

Appendix IV. (cont'd)


Appendix IV. (cont'd)

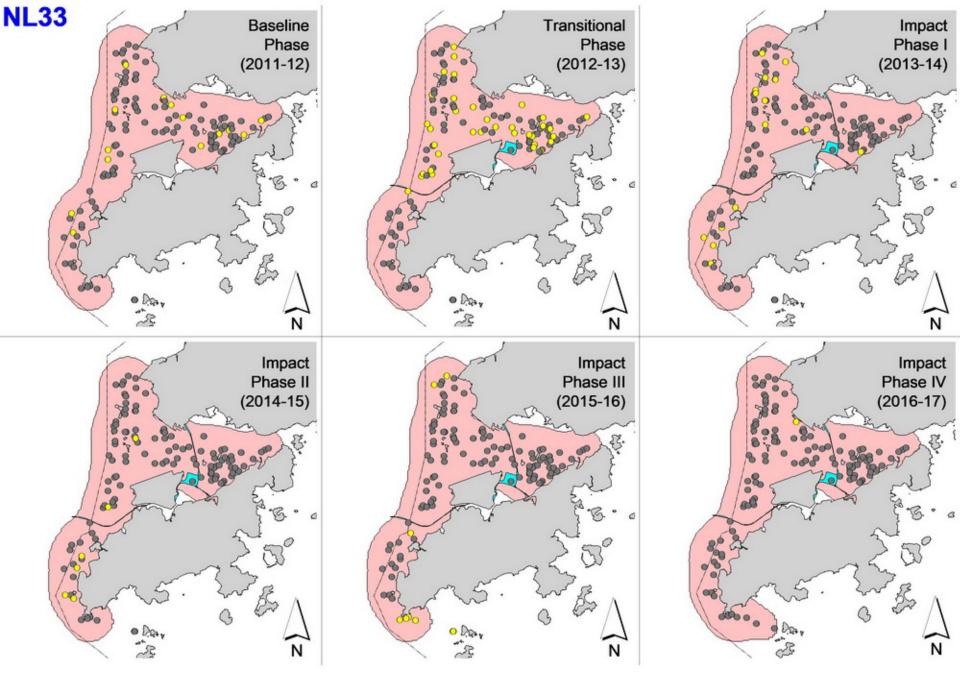

Appendix IV. (cont'd)


Appendix IV. (cont'd)

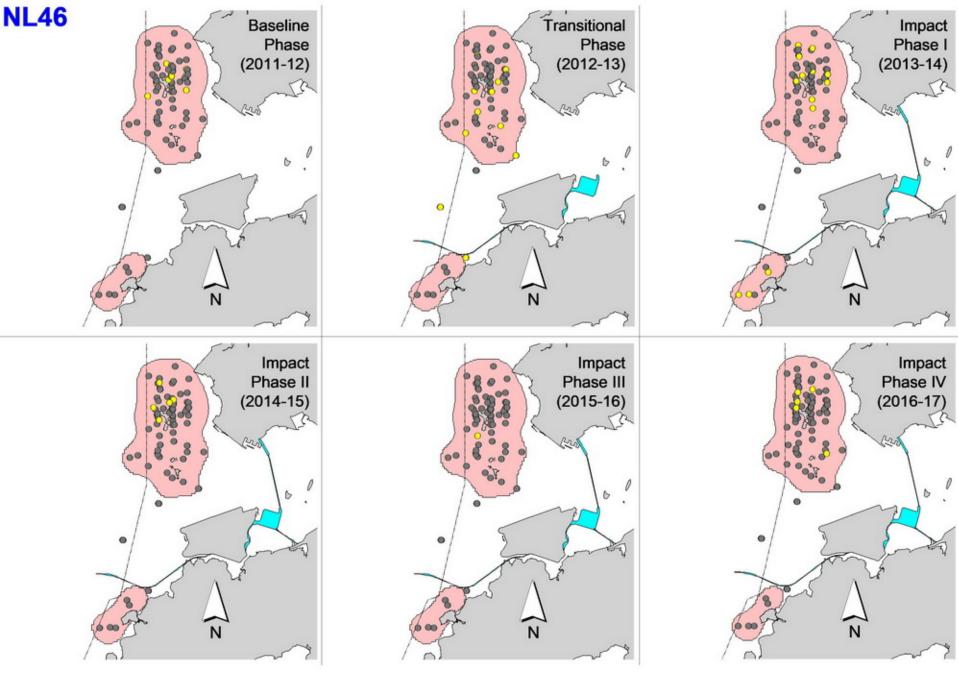

Appendix IV. (cont'd)

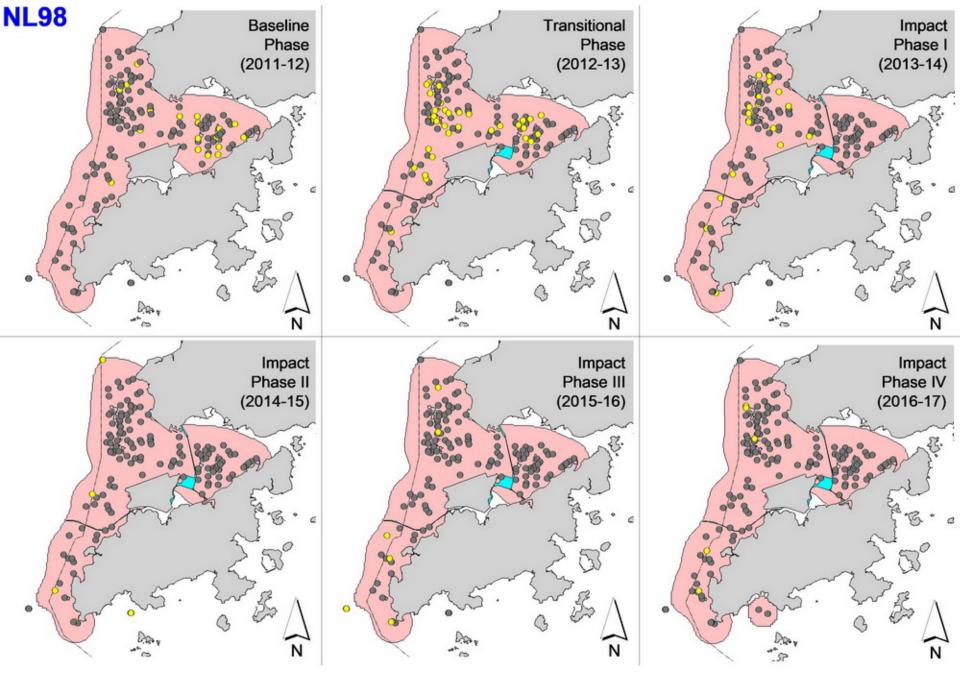


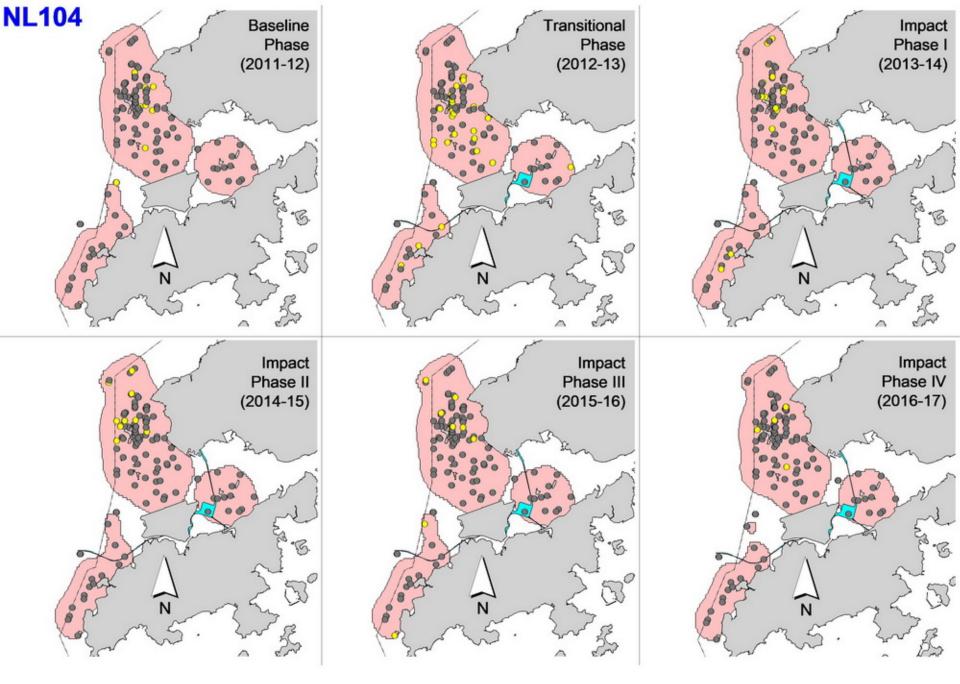
Appendix IV. (cont'd)

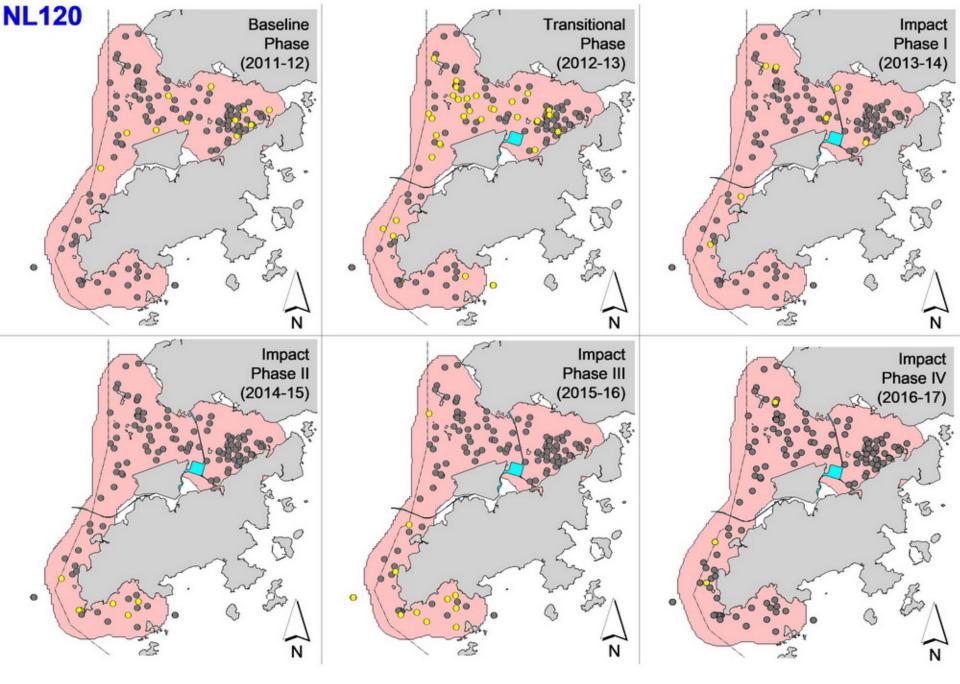


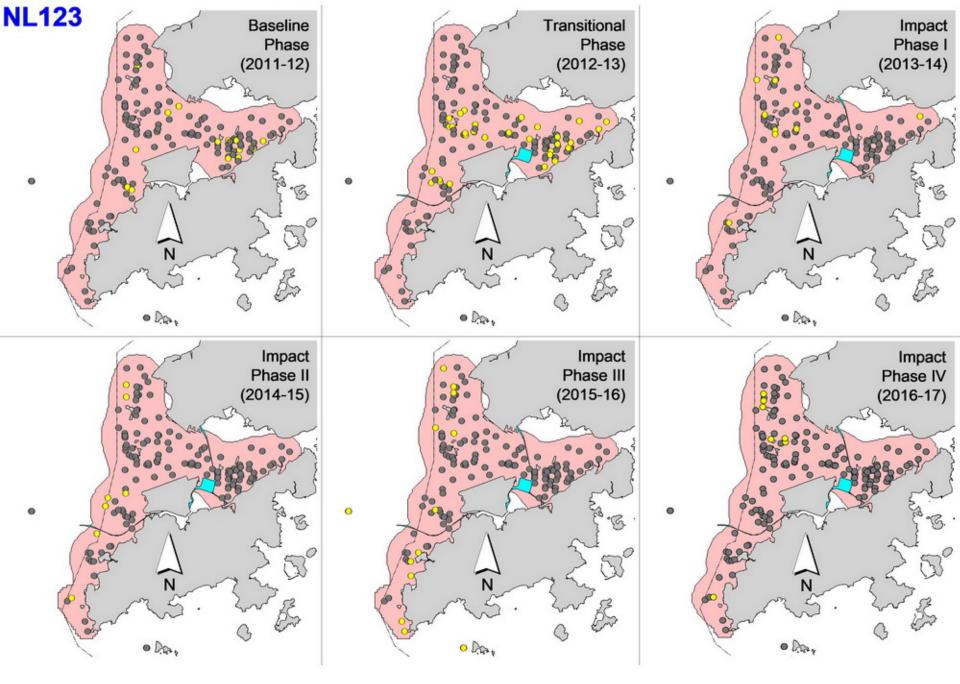
Appendix IV. (cont'd)

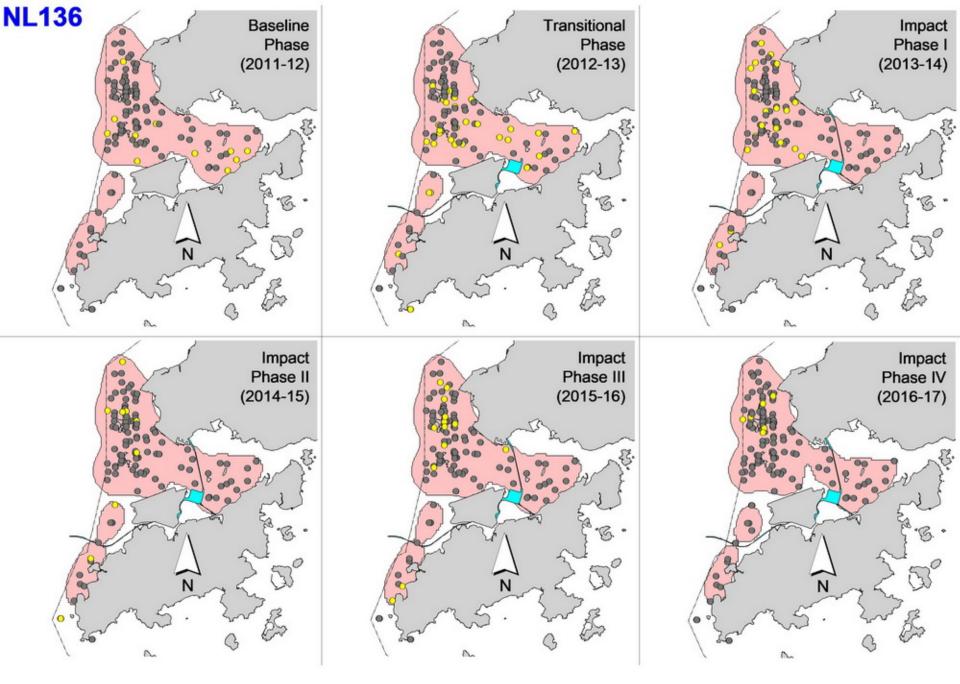


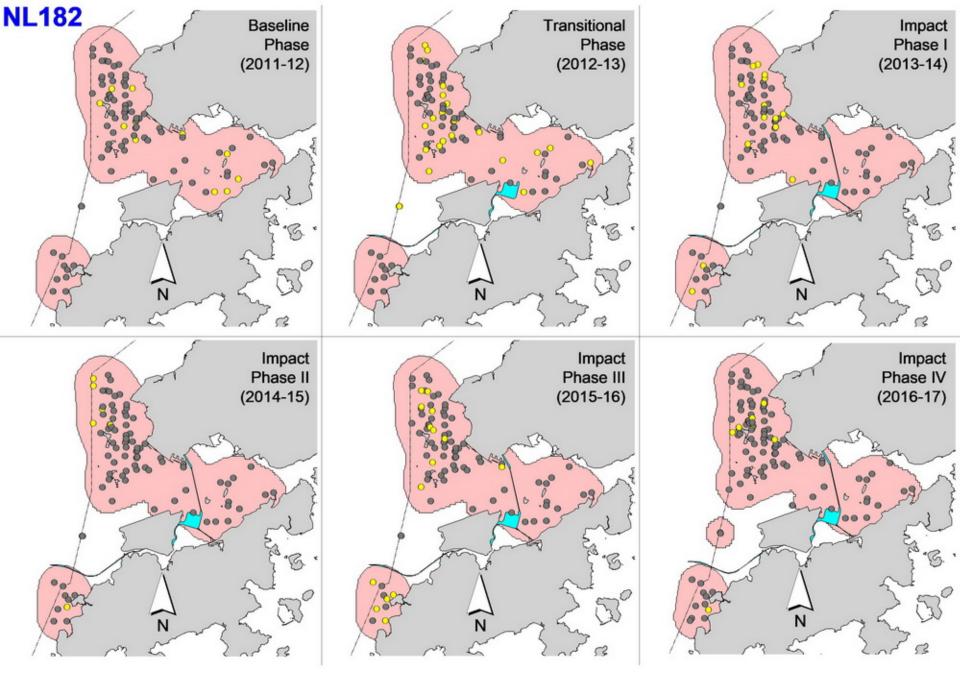

Appendix V. Temporal changes in range use patterns of 18 individual dolphins during baseline, transitional & four impact phases of TMCLKL construction (note: yellow dots indicates sightings made in corresponding period)

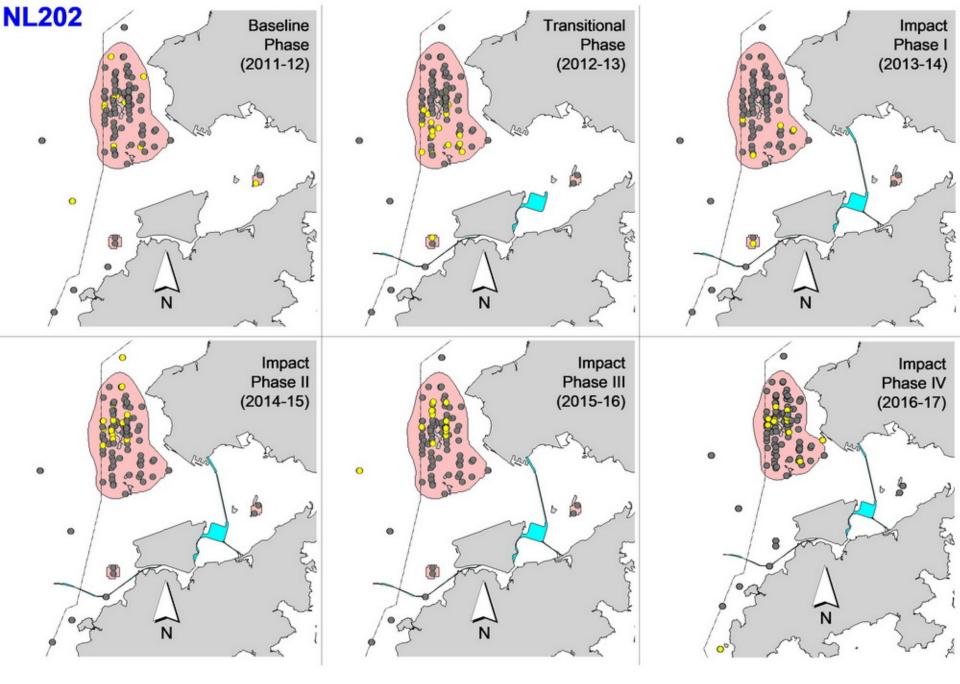

Appendix V. (cont'd)

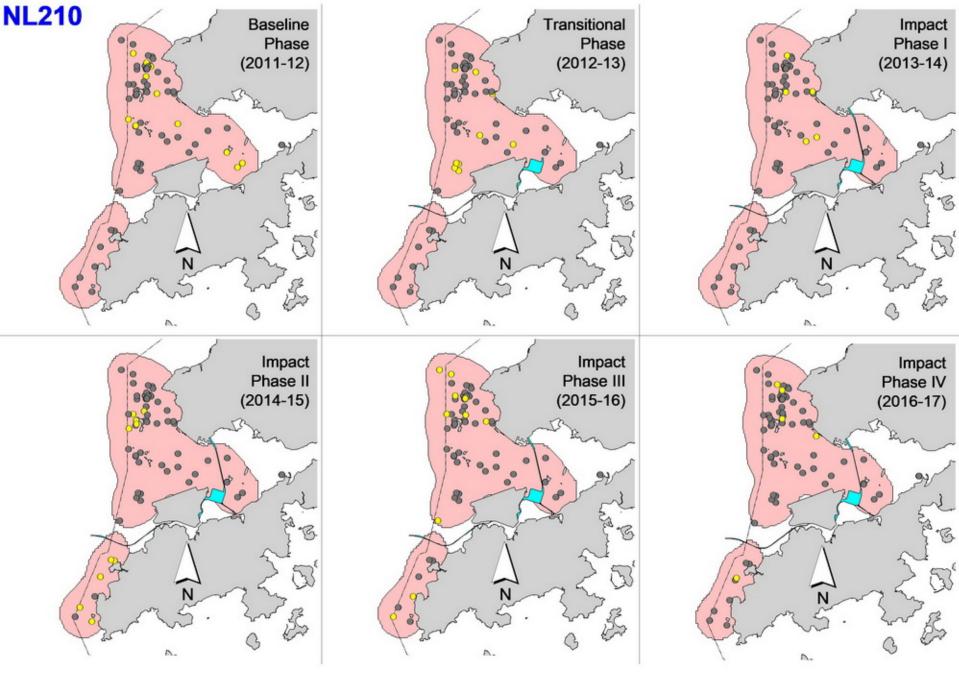

Appendix V. (cont'd)


Appendix V. (cont'd)

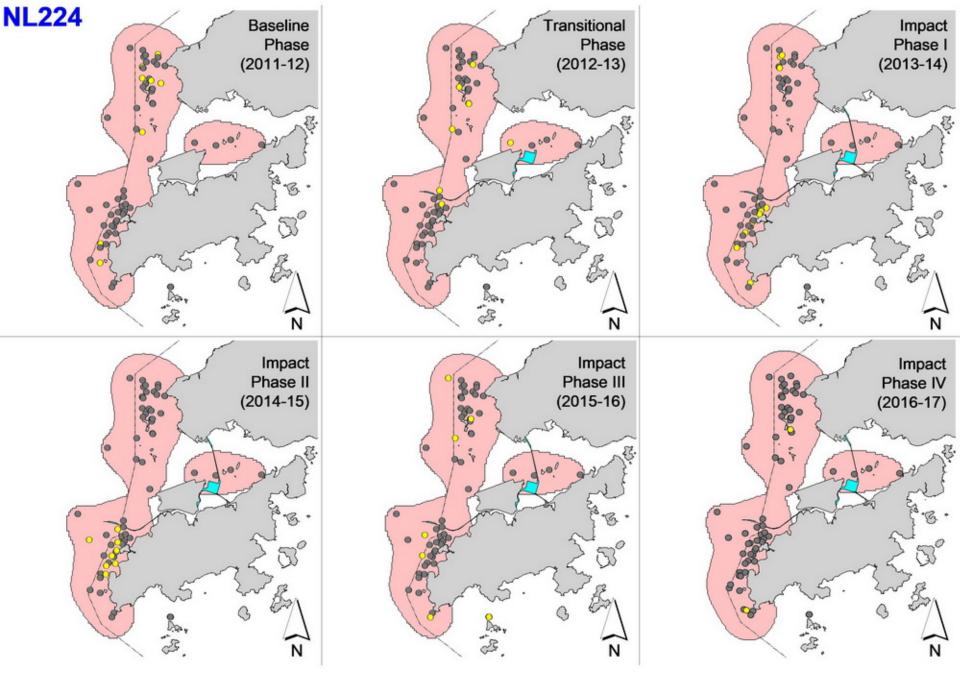

Appendix V. (cont'd)

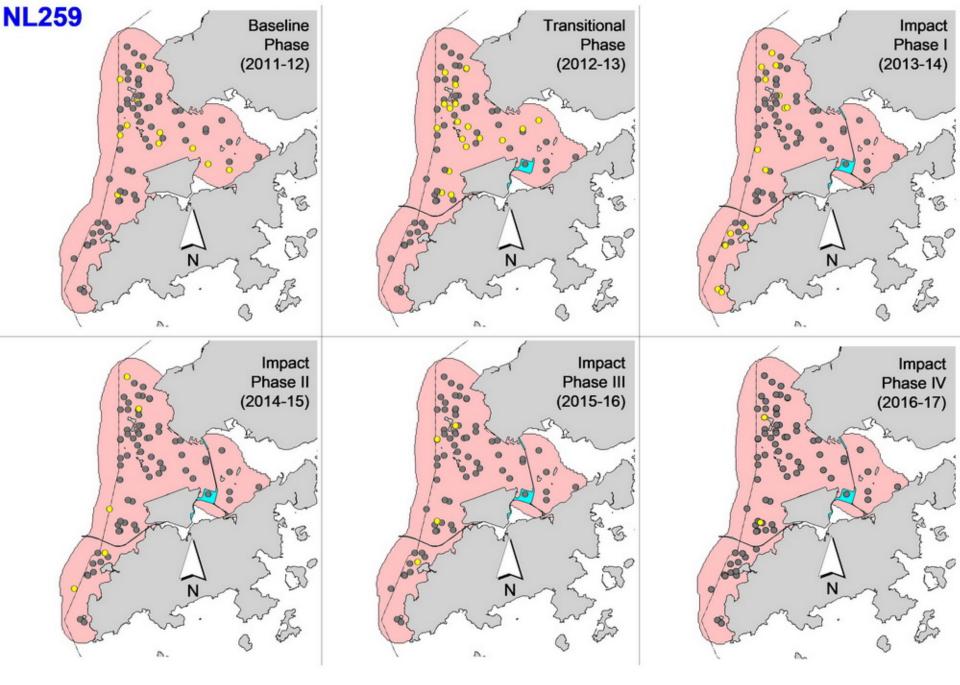

Appendix V. (cont'd)

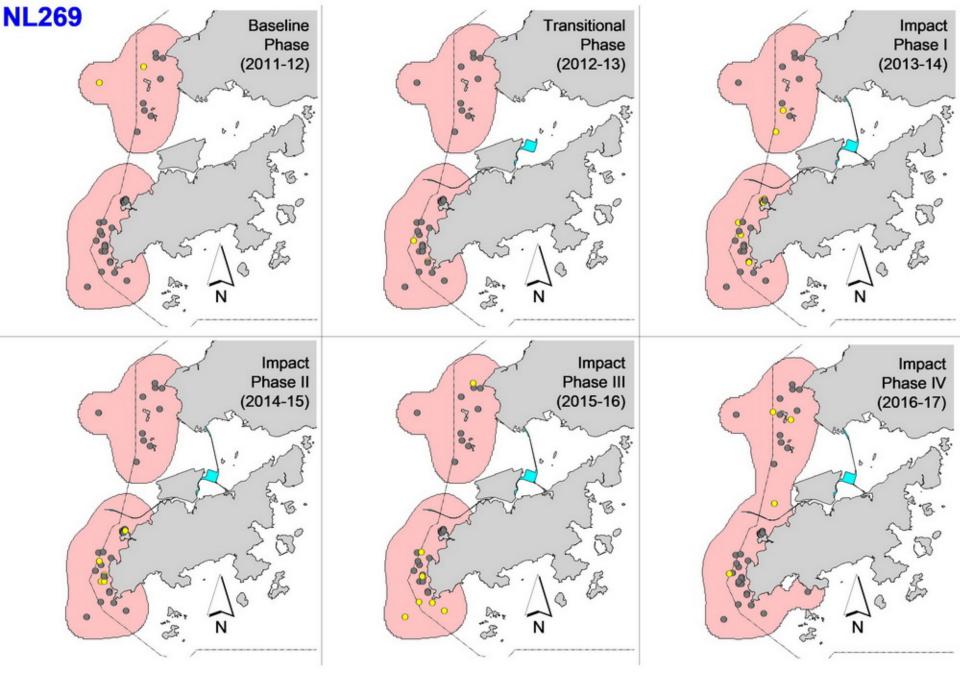

Appendix V. (cont'd)

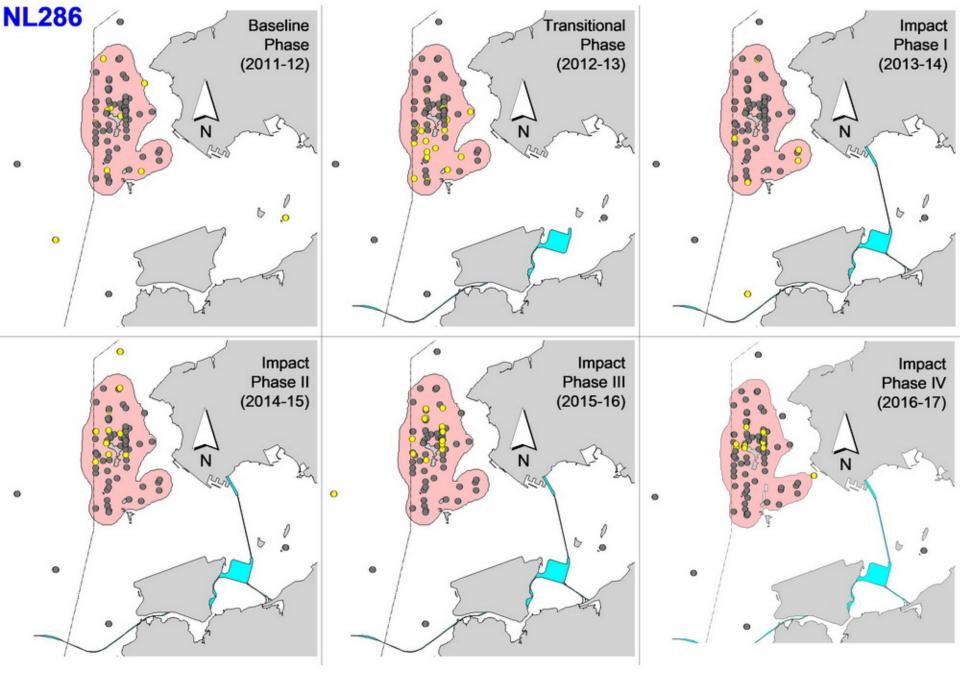

Appendix V. (cont'd)

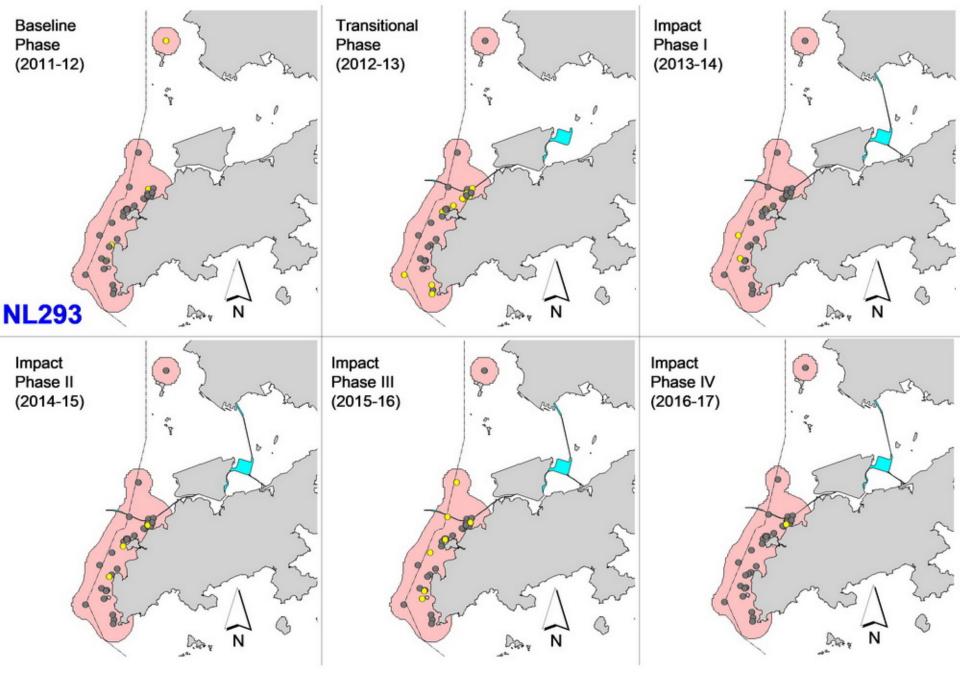
Appendix V. (cont'd)

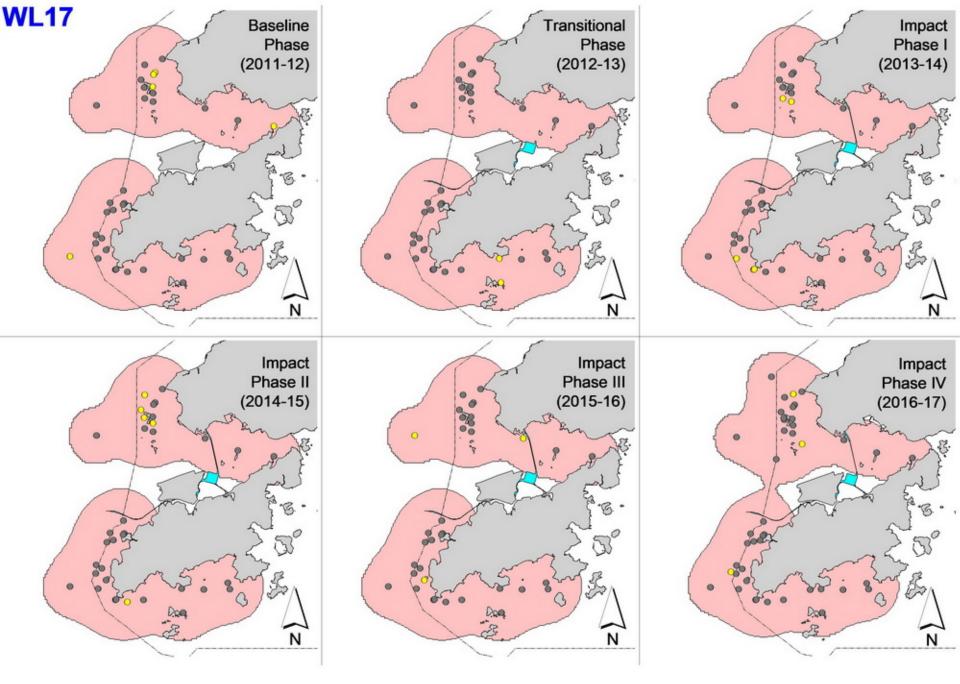

Appendix V. (cont'd)


Appendix V. (cont'd)


Appendix V. (cont'd)


Appendix V. (cont'd)


Appendix V. (cont'd)


Appendix V. (cont'd)

Appendix V. (cont'd)

Appendix V. (cont'd)

Appendix V. (cont'd)

Appendix G

Event and Action Plan

Event and Action Plan for Impact Air Monitoring

			Action				
	ET (a)		IEC (a)		SOR (a)		Contractor(s)
Action Level Exceedance							
1. 2.	Identify the source. Repeat measurement to confirm finding. If two	1.	Check monitoring data submitted by the ET.	1.	Confirm receipt of notification of failure in	1.	Rectify any unacceptable practice
	consecutive measurements exceed Action Level, the exceedance is then confirmed.	2.	Check the Contractor's working method.	2.	writing. Notify the Contractor.	2.	Amend working methods if appropriate
3.	Inform the IEC and the SOR.	3.	If the exceedance is	3.	Ensure remedial measures	3.	If the exceedance is
4.	Investigate the cause of exceedance and check Contractor's working procedures to determine possible mitigation to be implemented.		confirmed to be Project related after investigation, discuss with the ET and the		properly implemented.		confirmed to be Project related, submit proposals for remedial
5.	If the exceedance is confirmed to be Project related after investigation, increase monitoring frequency to daily.		Contractor on possible remedial measures.				actions to IEC within 3 working days of
6.	Discuss with the IEC and the Contractor on remedial actions required.	4.	Advise the SOR on the effectiveness of the proposed			4.	notification Implement the agreed
7. 8.	If exceedance continues, arrange meeting with the IEC and the SOR. If exceedance stops, cease additional monitoring.	5.	remedial measures. Supervise implementation of remedial measures.			5.	proposals Amend proposal if appropriate

			Action				
	ET (a)		IEC (a)		SOR (a)		Contractor(s)
mit Level Exceedance							
1.	Identify the source.	1.	Check monitoring data	1.	Confirm receipt of	1.	Take immediate action
2.	Repeat measurement to confirm finding. If		submitted by the ET.		notification of failure in		to avoid further
	two consecutive measurements exceed Limit	2.	Check Contractor's working		writing.		exceedance.
	Level, the exceedance is then confirmed.		method.	2.	Notify the Contractor.	2.	If the exceedance is
3.	Inform the IEC, the SOR, the DEP and the	3.	If the exceedance is	3.	If the exceedance is		confirmed to be Proje
	Contractor.		confirmed to be Project		confirmed to be Project		related after
4.	0		related after investigation,		related after investigation, in		investigation, submit
	check Contractor's working procedures to		discuss with the ET and the		consultation with the IEC,		proposals for remedi
	determine possible mitigation to be		Contractor on possible		agree with the Contractor on		actions to IEC within
	implemented.		remedial measures.		the remedial measures to be		working days of
5.	· · · · · · · · · · · · · · · · · · ·	4.	Advise the SOR on the		implemented.		notification.
	related after investigation, increase		effectiveness of the proposed	4.	Ensure remedial measures	3.	Implement the agree
	monitoring frequency to daily.	_	remedial measures.	_	are properly implemented.		proposals.
6.		5.	Supervise implementation of	5.	If exceedance continues,	4.	Amend proposal if
	working procedures to determine possible		remedial measures.		consider what activity of the	_	appropriate.
_	mitigation to be implemented.				work is responsible and	5.	Stop the relevant
7.	0 0				instruct the Contractor to		activity of works as
	to discuss the remedial actions to be taken.				stop that activity of work		determined by the SC
8.	Assess effectiveness of the Contractor's				until the exceedance is		until the exceedance
	remedial actions and keep the IEC, the DEP				abated.		abated.
_	and the SOR informed of the results.						
9.	1 ,						
	monitoring.						

Note: (a) ET - Environmental Team; IEC - Independent Environmental Checker; SOR - Supervising Officer's Representative

$Event \ \& \ Action \ Plan \ for \ Impact \ Water \ Quality \ Monitoring$

Event		Leader	IEC		SO	R	Cor	ntractor
Action level being exceeded by one sampling day	1. 2. 3. 4.	Repeat <i>in situ</i> measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor and SOR; Check monitoring data, all plant, equipment and Contractor's working methods.	1.	Check monitoring data submitted by ET and Contractor's working methods.	2.	Confirm receipt of notification of non-compliance in writing; Notify Contractor.	 2. 3. 	Inform the SOR and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Amend working methods if appropriate.
Action level being exceeded by two or more consecutive sampling days	 2. 3. 4. 	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, Contractor, SOR and EPD; Check monitoring data, all plant,	 2. 	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions;	 2. 3. 	Discuss with IEC on the proposed mitigation measures; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation	 2. 3. 	Inform the Supervising Officer and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and
	5.6.7.	equipment and Contractor's working methods; Discuss mitigation measures with IEC, SOR and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level;	 4. 	Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly; Supervise the implementation of mitigation measures.		measures.	4.	equipment and consider changes of working methods; Submit proposal of additional mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR; Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and	1.	Confirm receipt of notification of failure in	1.	Inform the SOR and confirm notification of the

Event	ET Leader	IEC	SOR	Contractor
	 Identify source(s) of impact; Inform IEC, Contractor, SOR and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SOR and Contractor; 	Contractor's working method; 2. Discuss with ET and Contractor on possible remedial actions; 3. Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly.	 writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to review the working methods. 	non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment and consider changes of working methods; 4. Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR.
Limit level being exceeded by two or more consecutive sampling days	 Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SOR and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SOR and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days; 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the SOR accordingly; Supervise the implementation of mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 	 Take immediate action to avoid further exceedance; Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

Note: ET – Environmental Team, IEC – Independent Environmental Checker, SOR – Supervising Officer's Representative

Event/Action Plan for Impact Dolphin Monitoring

EVENT		ACTION		
	ET	IEC	SOR	Contractor
Action Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, SOR and Contractor; Check monitoring data. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and finding with the ET and the Contractor. 	 Discuss monitoring with the IEC and any other measures proposed by the ET; If SOR is satisfied with the proposal of any other measures, SOR to signify the agreement in writing on the measures to be implemented. 	 Inform the SOR and confirm notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SOR; Implement the agreed measures.
Limit Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, SOR and 	 Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. If SOR is satisfied with the 	 Inform the SOR and confirm notification of the non-compliance in writing; Attend the meeting to discuss with ET, IEC and SOR the necessity of additional dolphin monitoring and any other

EVENT	ACTION							
	ET	IEC	SOR	Contractor				
	 Identify source(s) of impact; Inform the IEC, SOR and Contractor of findings; Check monitoring data; Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary. 	Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. 4. Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise SOR of the results and findings accordingly. 5. Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise SOR the results and findings accordingly.	proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, SOR to signify the agreement in writing on such proposals and any other mitigation measures. 3. Supervise the implementation of additional monitoring and/or any other mitigation measures.	potential mitigation measures. 3. Jointly submit with ET to IEC a proposal of addition dolphin monitoring and/ any other mitigation measures when necessary 4. Implement the agreed additional dolphin monitoring and/or any other mitigation measures				

Note: ET – Environmental Team, IEC – Independent Environmental Checker, SOR – Supervising Officer's Representative

Appendix H

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

 Table H1
 Cumulative Statistics on Exceedances

Monitoring Parameters	Action/Limit Level	Total No. recorded in this reporting year (Nov 2016 to Oct 2017)	Total No. recorded since project commencement
1-Hr TSP	Action	14	44
	Limit	1	3
24-Hr TSP	Action	1	6
	Limit	0	1
Water Quality	Action	0	6
	Limit	0	1
Impact Dolphin	Action	0	9
Monitoring	Limit	4	10

Table H2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period		Cumulative Statistics	
_	Complaints	Notifications of	Successful
		Summons	Prosecutions
This Reporting Period	7	1	0
(Nov 2016 to Oct 2017)			
Total No. received since project	15	1	0
commencement			

Appendix I

Waste Flow Table

Monthly Summary Waste Flow Table

Name of Department: HyD Contract No. / Works Order No.: HY/2012/08

Monthly Summary Waste Flow Table for December 2016 [to be submitted not later than the 15th day of each month following reporting month] (All quantities shall be rounded off to 3 decimal places.)

	Monthly Break-down of <u>Inert</u> Construction & Demolition Materials (i.e. Public Fill Materials)							
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Hard Rock and Large Broken Concrete	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill			
	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)			
Sub-total	930.268	0.000	0.000	0.000	930.268			
Jan-2016	24.068	0.000	0.000	0.000	24.068			
Feb-2016	9.229	0.000	0.000	0.000	9.229			
Mar-2016	3.501	0.000	0.000	0.000	3.501			
Apr-2016	9.175	0.000	0.000	0.000	9.175			
May-2016	2.392	0.000	0.000	0.000	2.392			
Jun-2016	5.597	0.000	0.000	0.000	5.597			
Half Year Sub-total	53.962	0.000	0.000	0.000	53.962			
Jul-2016	10.063	0.000	0.000	0.000	10.063			
Aug-2016	31.621	0.000	0.000	0.000	31.621			
Sep-2016	9.450	0.000	0.000	0.000	9.450			
Oct-2016	23.118	0.000	0.000	0.000	23.118			
Nov-2016	13.293	0.000	0.000	0.000	13.293			
Dec-2016	25.662	0.000	0.000	0.000	25.662			
Project Total Quantities	1097.437	0.000	0.000	0.000	1097.437			

			Actu	al Quantities of <u>l</u>	Non-inert Cons	truction Waste	Generated Mon	thly			
Month	Me	etals	Paper/ cardboard packaging		Paper/ cardboard packaging Plastics (see Note 3)		ardhoard nackaging		Chemical Waste		Others, e.g. General Refuse disposed at Landfill
	(in '0	00kg)	(in '(000kg)	(in '0	000kg)	(in '0	00kg)	(in '000ton)		
	generated	recycled	generated	recycled	generated	recycled	generated	Disposed	generated		
Sub-total	0.000	0.000	2.150	2.150	6.870	6.870	1.710	1.710	2.217		
Jan-2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.113		
Feb-2016	1.850	1.850	0.000	0.000	0.000	0.000	4.740	4.740	0.102		
Mar-2016	0.000	0.000	0.200	0.200	0.000	0.000	3.000	3.000	0.111		
Apr-2016	0.000	0.000	0.200	0.200	0.000	0.000	0.000	0.000	0.198		
May-2016	0.000	0.000	0.200	0.200	0.000	0.000	0.000	0.000	0.202		
Jun-2016	0.000	0.000	0.200	0.200	0.000	0.000	0.000	0.000	0.214		
Half Year Sub-total	1.850	1.850	0.800	0.800	0.000	0.000	7.740	7.740	0.940		
Jul-2016	0.000	0.000	0.200	0.200	0.000	0.000	0.000	0.000	0.292		
Aug-2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.323		
Sep-2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.335		
Oct-2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.235		
Nov-2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.305		
Dec-2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.288		
Project Total Quantities	1.850	1.850	3.150	3.150	6.870	6.870	9.450	9.450	4.935		

	Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*									
Total Quantity Generated Hard Rock and Large Broken Concrete Reused in the Contract Reused in other Projects Disposed of as Public Fill										
(in '000 ton)	(in '000 ton) (in '000 ton) (in '000 ton) (in '000 ton)									
20.000 0.000 0.000 20.000										

	Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*									
Metals Paper/ cardboard packaging Plastics (see Note 3) Chemical Waste General Refuse disposed of at Landfill										
(in '000kg)	(in '000kg)	(in '000kg)	(in '000 ton)							
0.000	0.000	0.000	0.000	0.100						

Notes:

- (1) The performance targets are given in the **ER Appendix 8J Clause 14** and the EM & A Manual(s).
- (2) The waste flow table shall also include C&D materials to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³. (ER Part 8 Clause 8.8.5 (d) (ii) refers).

Monthly Summary Waste Flow Table

Name of Department: HyD Contract No. / Works Order No.: HY/2012/08

Monthly Summary Waste Flow Table for October 2017 [to be submitted not later than the 15th day of each month following reporting month] (All quantities shall be rounded off to 3 decimal places.)

	Monthly Break-down of <u>Inert</u> Construction & Demolition Materials (i.e. Public Fill Materials)							
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Hard Rock and Large Broken Concrete	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill			
	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)			
Sub-total	1097.465	0.000	0.000	0.000	1097.465			
Jan-2017	60.781	0.000	0.000	0.000	60.781			
Feb-2017	17.367	0.000	0.000	0.000	17.367			
Mar-2017	7.508	7.508 0.000		0.000	7.508			
Apr-2017	15.603	0.000	0.000	0.000	15.603			
May-2017	12.358	0.000	0.000	0.000	12.358			
Jun-2017	0.194	0.000	0.000	0.000	0.194			
Half Year Sub-total	113.811	0.000	0.000	0.000	113.811			
Jul-2017	0.652	0.000	0.000	0.000	0.652			
Aug-2017	1.624	0.000	0.000	0.000	1.624			
Sep-2017	0.886	0.000	0.000	0.000	0.886			
Oct-2017	0.706	0.000	0.000	0.000	0.706			
Nov-2017								
Dec-2017								
Project Total Quantities	1215.144	0.000	0.000	0.000	1215.144			

	Actual Quantities of Non-inert Construction Waste Generated Monthly								
Month	Metals		Paper/ cardboard packaging		Plastics (see Note 3)		Chemical Waste		Others, e.g. General Refuse disposed at Landfill
	(in '000kg)		(in '000kg)		(in '000kg)		(in '000kg)		(in '000ton)
	generated	recycled	generated	recycled	generated	recycled	generated	Disposed	generated
Sub-total	1.850	1.850	3.150	3.150	6.870	6.870	9.450	9.450	4.935
Jan-2017	0.000	0.000	0.000	0.000	0.000	0.000	3.400	3.400	0.257
Feb-2017	0.000	0.000	0.200	0.200	0.000	0.000	0.000	0.000	0.340
Mar-2017	0.000	0.000	0.000	0.000	0.000	0.000	6.100	6.100	0.286
Apr-2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.237
May-2017	0.000	0.000	0.000	0.000	0.000	0.000	10.400	10.400	0.300
Jun-2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.317
Half Year Sub-total	0.000	0.000	0.200	0.200	0.000	0.000	19.900	19.900	1.737
Jul-2017	0.000	0.000	0.200	0.200	0.000	0.000	0.000	0.000	0.272
Aug-2017	141.990	141.990	0.200	0.200	0.000	0.000	0.000	0.000	0.305
Sep-2017	0.000	0.000	0.200	0.200	0.000	0.000	0.000	0.000	0.300
Oct-2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.244
Nov-2017									
Dec-2017	_				_				
Project Total Quantities	143.840	143.840	3.950	3.950	6.870	6.870	29.350	29.350	7.793

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*						
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed of as Public Fill		
(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)		
2.000	0.000	0.000	0.000	2.000		

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*						
Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	General Refuse disposed of at Landfill		
(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 ton)		
0.000	0.000	0.000	0.000	0.100		

Notes:

- (1) The performance targets are given in the **ER Appendix 8J Clause 14** and the EM & A Manual(s).
- (2) The waste flow table shall also include C&D materials to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³. (**ER Part 8 Clause 8.8.5** (d) (ii) refers).