

China Harbour Engineering Company Limited

Contract No. HY/2010/02

Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for June 2016

[07/2016]

	Name	Signature
Prepared & Checked:	Y T Tang	Caraltating
Reviewed, Approved and Certified:	Echo Leong (ETL)	Envlouf

Version:	Rev. 0	Date:	15 July 2016
----------	--------	-------	--------------

Disclaimer

This report is prepared for China Harbour Engineering Company Limited and is given for its sole benefit in relation to and pursuant to Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities-Reclamation Works and may not be disclosed to, quoted to or relied upon by any person other than China Harbour Engineering Company Limited without our prior written consent. No person (other than China Harbour Engineering Company Limited) into whose possession a copy of this report comes may rely on this report without our express written consent and China Harbour Engineering Company Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: HYDHZMBEEM00_0_4371L.16

15 July 2016

By Fax (3698 5999) and By Post

Ove Arup & Partners Chief Resident Engineer's Office 5 Ying Hei Road, Tung Chung, Lantau Hong Kong

Attention: Mr. Paul Appleton

Dear Sir,

Re: Agreement No. CE 48/2011 (EP)

Environmental Project Office for the

HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities,

and Tuen Mun-Chek Lap Kok Link - Investigation

Contract No. HY/2010/02 - HZMB HKBCF - Reclamation Works Monthly Environmental Monitoring & Audit Report for June 2016

Reference is made to the Environmental Team's submission of the Monthly Environmental Monitoring & Audit Report for June 2016 certified by the ET Leader (ET's ref.: "60249820/C/RMKY16071501" dated 15 July 2016) and provided to us via e-mail on 15 July 2016.

We are pleased to inform you that we have no adverse comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 5.4 of EP-353/2009/K and Condition 4.4 of EP-354/2009/D (for TM-CLKL Southern Landfall Reclamation only).

As per Condition 1.7 of EPs, please be reminded to keep in view on the site condition, in particular on the integrity of the perimeter silt curtain and the effectiveness of perimeter drainage facilities with your on-going surveillance and monitoring and to further update/notify ENPO and EPD, from time to time and prior to each further removal of other section(s) of the perimeter silt curtains.

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully, For and on behalf of

Ramboll Environ Hong Kong Limited

Raymond Dai

Independent Environmental Checker

c.c. HyD Mr. Vico Cheung (By Fax: 3188 6614) HyD Mr. Wai-Ping Lee (By Fax: 3188 6614) AECOM Ms. Echo Leong (By Fax: 2317 7609) CHEC Mr. Lim Kim Chuan (By Fax: 2578 0413)

Internal: DY, YH, ENPO Site

TABLE OF CONTENTS

		Page
EXE	EXECUTIVE SUMMARY	3
1	INTRODUCTION	5
	 1.1 Background 1.2 Scope of Report 1.3 Contract Organization 1.4 Summary of Construction Works 1.5 Summary of EM&A Programme Requirements 	5 5 6 6 7
2	AIR QUALITY MONITORING	8
	 2.1 Monitoring Requirements 2.2 Monitoring Equipment 2.3 Monitoring Locations 2.4 Monitoring Parameters, Frequency and Duration 2.5 Monitoring Methodology 2.6 Monitoring Schedule for the Reporting Month 2.7 Results and Observations 	8 8 10 10 12 12
3	NOISE MONITORING	13
	 3.1 Monitoring Requirements 3.2 Monitoring Equipment 3.3 Monitoring Locations 3.4 Monitoring Parameters, Frequency and Duration 3.5 Monitoring Methodology 3.6 Monitoring Schedule for the Reporting Month 3.7 Monitoring Results 	13 13 13 14 14 14 15
4	WATER QUALITY MONITORING	16
	 4.1 Monitoring Requirements 4.2 Monitoring Equipment 4.3 Monitoring Parameters, Frequency and Duration 4.4 Monitoring Locations 4.5 Monitoring Methodology 4.6 Monitoring Schedule for the Reporting Month 4.7 Results and Observations 	16 16 16 17 18 19
5	DOLPHIN MONITORING	21
	 5.1 Monitoring Requirements 5.2 Monitoring Equipment 5.3 Monitoring Frequency and Conditions 5.4 Monitoring Methodology and Location 5.5 Monitoring Procedures 5.6 Monitoring Schedule for the Reporting Month 5.7 Results and Observations 	21 21 21 21 23 23 23
6	ENVIRONMENTAL SITE INSPECTION AND AUDIT	27
	 6.1 Site Inspection 6.2 Advice on the Solid and Liquid Waste Management State 6.3 Environmental Licenses and Permits 6.4 Implementation Status of Environmental Mitigation Meas 6.5 Summary of Exceedances of the Environmental Quality 6.6 Summary of Complaints, Notification of Summons and States 	sures 29 Performance Limit 30
7	FUTURE KEY ISSUES	32
	 7.1 Construction Programme for the Coming Months 7.2 Key Issues for the Coming Month 7.3 Monitoring Schedule for the Coming Month 	32 33 33

Hong Kong	o. HY/2010/02 -Zhuhai-Macao Bridge Boundary Crossing Facilities – Reclamation Works Monthly EM&A Report for June	2016
	LUSIONS AND RECOMMENDATIONS	34
	Conclusions Recommendations	34 35
List of Tab	les	
Table 1.1 Table 2.1 Table 2.2 Table 2.3 Table 2.4 Table 2.5 Table 3.1 Table 3.2 Table 3.3 Table 3.4 Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 5.1 Table 5.2 Table 5.3 Table 5.4 Table 5.5 Table 6.1	Contact Information of Key Personnel Air Quality Monitoring Equipment Locations of Impact Air Quality Monitoring Stations Air Quality Monitoring Parameters, Frequency and Duration Summary of 1-hour TSP Monitoring Results in the Reporting Period Summary of 24-hour TSP Monitoring Results in the Reporting Period Noise Monitoring Equipment Locations of Impact Noise Monitoring Stations Noise Monitoring Parameters, Frequency and Duration Summary of Construction Noise Monitoring Results in the Reporting Period Water Quality Monitoring Equipment Impact Water Quality Monitoring Parameters and Frequency Impact Water Quality Monitoring Stations Laboratory Analysis for Suspended Solids Summary of Water Quality Exceedances Dolphin Monitoring Equipment Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD) Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State Impact Dolphin Monitoring Survey Details June 2016 The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^ Summary of Environmental Licensing and Permit Status	
Figures		
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6	General Contract Layout Plan Impact Air Quality and Noise Monitoring Stations and Wind Station Impact Water Quality Monitoring Stations Impact Dolphin Monitoring Line Transect Layout Map Impact Dolphin Monitoring Survey Efforts and Sightings in June 2016 Environmental Complaint Handling Procedures	
List of App	pendices	
Appendix A Appendix E Appendix E Appendix E Appendix E Appendix E Appendix I Appendix I Appendix K Appendix L Appendix L Appendix N Appendix N	Three Month Rolling Construction Programmes Implementation Schedule of Environmental Mitigation Measures (EMIS) Summary of Action and Limit Levels Calibration Certificates of Monitoring Equipments EM&A Monitoring Schedules Impact Air Quality Monitoring Results and their Graphical Presentation Meteorological Data for Monitoring Periods on Monitoring Dates in June 2016 Impact Construction Noise Monitoring Results and their Graphical Presentation Impact Water Quality Monitoring Results and their Graphical Presentation Impact Dolphin Monitoring Survey Sighting Summary Event Action Plan Monthly Summary of Waste Flow Table	essful

Prosecutions

EXECUTIVE SUMMARY

Contract No. HY/2010/02 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works (here below, known as "the Contract") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun - Chek Lap Kok Link (TMCLKL). It is a designated Project and is governed by the current permits for the Project, i.e. the amended Environmental Permits (EPs) issued on 11 April 2016 (EP-353/2009/K) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).

Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Contract).

China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Contract.

Ramboll Environ Hong Kong Limited was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Contract for carrying out the environmental monitoring and audit (EM&A) works.

The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2017. The EM&A programme, including air quality, noise, water quality and dolphin monitoring and environmental site inspections, was commenced on 12 March 2012.

This report documents the findings of EM&A works conducted in the period between 1 and 30 June 2016. As informed by the Contractor, major activities in the reporting period were:-

Marine-base

- Sloping Seawalls
- Rubble Mound Seawall
- Maintenance of silt curtain

Land-base

- Surcharge removal & laying
- Deep Cement Mixing
- Installations of Precast Culverts except sloping outfalls
- Construction of Permanent Seawall
- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour Total Suspended Particulates (TSP) monitoring6 sessions1-hour TSP monitoring6 sessionsNoise monitoring4 sessionsImpact water quality monitoring13 sessionsImpact dolphin monitoring2 surveysJoint Environmental site inspection5 sessions

Breaches of Action and Limit Levels for Air Quality

For impact air quality monitoring, no exceedance of 1-Hour TSP or 24-Hour TSP was recorded at all monitoring stations in the reporting month.

Breaches of Action and Limit Levels for Noise

For construction noise monitoring, no exceedance was recorded at all monitoring stations in the reporting month.

Breaches of Action and Limit Levels for Water Quality

For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.

Breaches of Action and Limit Levels for Impact Dolphin Monitoring

For dolphin monitoring, a total of 4 sightings were made, two "on effort" and two "opportunistic". One sighting was recorded on the 6 June 2016 and three on the 21 June 2016. The group sighted on the 6 June 2016 contained 5 individuals that were engaged in multiple behaviours including socializing and feeding. The three groups sighted on the 21 June contained one, three and one individuals, respectively. Two groups of these groups were travelling and one dolphin group's behavior was unknown.

Complaint, Notification of Summons and Successful Prosecution

No complaint, notification of summons or prosecution was received in the reporting period.

Reporting Change

No reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:

- Site runoff should be properly collected and treated prior to discharge;
- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
- Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission;
- Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures for operating equipment and machinery on-site, such as erection of movable noise barriers or enclosure for noisy plants;
- Closely check and replace the sound insulation materials regularly;
- Better scheduling of construction works to minimize noise nuisance:
- Properly store and label oil drums and chemical containers placed on site;
- Proper chemicals, chemical wastes and wastes management:
- Maintenance works should be carried out within roofed, paved and confined areas;
- Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.
- Control night-time lighting and glare by hooding all lights.
- Regular review and provide maintenance to dust control measures such as sprinkler system.

1 INTRODUCTION

1.1 Background

- 1.1.1 Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities Reclamation Works (here below, known as "the Contract") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun Chek Lap Kok Link (TMCLKL).
- 1.1.2 The environmental impact assessment (EIA) reports (Hong Kong Zhuhai Macao Bridge Hong Kong Boundary Crossing Facilities EIA Report (Register No. AEIAR-145/2009) (HKBCFEIA) and Tuen Mun Chek Lap Kok Link EIA Report (Register No. AEIAR-146/2009) (TMCLKLEIA), and their environmental monitoring and audit (EM&A) Manuals (original EM&A Manuals), for the Project were approved by Environmental Protection Department (EPD) in October 2009.
- 1.1.3 EPD subsequently issued the Environmental Permit (EP) for HKBCF in November 2009 (EP-353/2009) and the Variation of Environmental Permit (VEP) in June 2010 (EP-353/2009/A), November 2010 (EP-353/2009/B), November 2011 (EP-353/2009/C), March 2012 (EP-353/2009/D), October 2012 (EP-353/2009/E), April 2013 (EP-353/2009/F), August 2013 (EP-353/2009/G), January 2015 (EP-353/2009/H), July 2015 (EP-353/2009/I), February 2016 (EP-353/2009/J) and April 2016 (EP-353/2009/K). Similarly, EPD issued the Environmental Permit (EP) for TMCLKL in November 2009 (EP-354/2009) and the Variation of Environmental Permit (VEP) in December 2010 (EP-354/2009/A), January 2014 (EP-354/2009/B), December 2014 (EP-354/2009/C) and March 2015 (EP-354/2009/D).
- 1.1.4 The Project is a designated Project and is governed by the current permits for the Project, i.e. the amended EPs issued on 11 April 2016 (EP-353/2009/K) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).
- 1.1.5 A Contract Specific EM&A Manual, which included all Contract -relation contents from the original EM&A Manuals for the Contract, was issued in May 2012.
- 1.1.6 Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Contract).
- 1.1.7 China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Contract.
- 1.1.8 Ramboll Environ Hong Kong Limited. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Contract for carrying out the EM&A works.
- 1.1.10 The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2017.
- 1.1.11 According to the Contract Specific EM&A Manual, there is a need of an EM&A programme including air quality, noise, water quality and dolphin monitoring and environmental site inspections. The EM&A programme of the Contract commenced on 12 March 2012.

1.2 Scope of Report

1.2.1 This is the fifty second monthly EM&A Report under the Contract No.HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Contract in June 2016.

1.3 Contract Organization

1.3.1 The Contract organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Engineer's Representative (ER) (Ove Arup & Partners Hong Kong Limited)	Chief Resident Engineer	Paul Appleton	3698 5889	2698 5999
IEC / ENPO	Independent Environmental Checker	Raymond Dai	3465 2888	3465 2899
(Ramboll Environ Hong Kong Limited)	Environmental Project Office Leader	Y. H. Hui	3547 2133	3465 2899
Contractor (China Harbour	Environmental Officer	Louie Chan	3693 2254	2578 0413
Engineering Company Limited)	24-hour Hotline	Alan C.C. Yeung	9448 0325	
ET (AECOM Asia Company Limited)	ET Leader	Echo Leong	3922 9280	2317 7609

1.4 Summary of Construction Works

- 1.4.1 The construction phase of the Project under the EP commenced on 12 March 2012.
- 1.4.2 As informed by the Contractor, details of the major works carried out in this reporting period are listed below:-

Marine-base

- Sloping Seawalls
- Rubble Mound Seawall
- Maintenance of silt curtain

Land-base

- Surcharge removal & laying
- Deep Cement Mixing
- Installations of Precast Culverts except sloping outfalls
- Construction of Permanent Seawall
- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

- 1.4.3 The 3-month rolling construction programme of the Contract is shown in Appendix B.
- 1.4.4 The general layout plan of the Contract site showing the detailed works areas is shown in Figure 1.
- 1.4.5 The environmental mitigation measures implementation schedule are presented in Appendix C.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise, water quality, marine ecology and environmental site inspections for air quality, noise, water quality, waste management, marine ecology, and landscape and visual impact. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming month;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA reports; and
 - Environmental requirement in contract documents.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the Contract Specific EM&A Manual, baseline 1-hour and 24-hour Total Suspended Particulates (TSP) levels at 4 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix D.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the Contract Specific EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Air Sampler (Model No. TE-5170)

2.3 Monitoring Locations

- 2.3.1 Monitoring locations AMS2 and AMS7 were set up at the proposed locations in accordance with Contract Specific EM&A Manual. For AMS6 (Dragonair/CNAC (Group) Building), permission on setting up and carrying out impact monitoring works was sought, however, access to the premise has not been granted yet on this report issuing date. For monitoring location AMS3 (Ho Yu College), as proposed in the Contract Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact air quality monitoring was conducted at site boundary of the site office area in Works Area WA2 (AMS3B) respectively. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.2 It was observed that a tree near AMS3B may affect the wind flow around the HVS located at AMS3B. With no further comment received from IEC, the HVS at AMS3B has been relocated on 8 September 2014 to slightly more than 2 meters separation from it, measured horizontally. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.3 Reference is made to ET's proposal of the omission of air monitoring station (AMS 6) dated on 1 November 2012 and EPD's letter dated on 19 November 2012 regarding the conditional approval of the proposed omission of air monitoring station (AMS 6) for Contract No. HY/2010/02. The aforesaid omission of Monitoring Station AMS6 is effective since 19 November 2012.
- 2.3.4 The impact air quality monitoring station AMS7A (Chu Kong Air-Sea Union Transportation Company Limited) has been relocated to AMS7 (Hong Kong SkyCity Marriott Hotel) on 30 December 2015. The impact air quality monitoring was conducted at AMS7 (Hong Kong SkyCity Marriott Hotel) since January 2016, action Level for air quality, as derived from the baseline monitoring data recorded at Hong Kong SkyCity Marriott Hotel has been adopted for this air quality monitoring location.

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge

AECOM

Hong Kong Boundary Crossing Facilities – Reclamation Works Monthly EM&A Report for June 2016
2.3.5 Figure 2 shows the locations of monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 Locations of Impact Air Quality Monitoring Stations

Monitoring Station	Location	Description
AMS2	Tung Chung Development Pier	Rooftop of the premise
AMS3B	Site Boundary of Site Office Area at Works Area WA2	On ground at the area boundary
AMS6*	Dragonair/CNAC (Group) Building	On ground at boundary of the premise
AMS7	Hong Kong SkyCity Marriott Hotel	On ground at boundary of the premise

^{*}Remarks: Reference is made to EPD conditional approval of the omission of air monitoring station (AMS 6) for the Contract. The omission will be effective on 19 November 2012.

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration	
1-hour TSP	Three times every 6 days while the highest dust impact was expected	
24-hour TSP	Once every 6 days	

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
 - A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) No two samplers should be placed less than 2 meters apart.
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (ix) A secured supply of electricity was obtained to operate the samplers.
 - (x) The sampler was located more than 20 meters from any dripline.
 - (xi) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xii) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.

All filter papers were prepared and analysed by ALS Technichem (HK) Ptv Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- The power supply was checked to ensure the HVS works properly.
- The filter holder and the area surrounding the filter were cleaned. (ii)
- The filter holder was removed by loosening the four bolts and a new filter, with (iii) stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- The swing bolts were fastened to hold the filter holder down to the frame. The (v) pressure applied was sufficient to avoid air leakage at the edges.
- Then the shelter lid was closed and was secured with the aluminum strip. (vi)
- The HVS was warmed-up for about 5 minutes to establish run-temperature conditions. (vii)
- A new flow rate record sheet was set into the flow recorder. (viii)
- On site temperature and atmospheric pressure readings were taken and the flow rate (ix) of the HVS was checked and adjusted at around 1.1 m³/min, and complied with the range specified in the updated EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- The initial elapsed time was recorded. (xi)
- At the end of sampling, on site temperature and atmospheric pressure readings were (xii) taken and the final flow rate of the HVS was checked and recorded.
- The final elapsed time was recorded. (xiii)
- The sampled filter was removed carefully and folded in half length so that only (xiv) surfaces with collected particulate matter were in contact.
- It was then placed in a clean plastic envelope and sealed. (xv)
- All monitoring information was recorded on a standard data sheet. (xvi)
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- The HVS and its accessories were maintained in good working condition, such as (i) replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- 5-point calibration of the HVS was conducted using TE-5025A Calibration Kit prior to (ii) the commencement of baseline monitoring. Bi-monthly 5-point calibration of the HVS will be carried out during impact monitoring.
- Calibration certificate of the HVSs are provided in Appendix E. (iii)

1-hour TSP Monitoring 2.5.2

Measuring Procedures (a)

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- Turn the power on. (i)
- Close the air collecting opening cover. (ii)
- Push the "TIME SETTING" switch to [BG]. (iii)
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display. (vi)
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This (vii) measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position. (viii)
- Push the "TIME SETTING" switch the time set in the display to 3 hours. (ix)
- Lower down the air collection opening cover. (x)
- Push "START/STOP" switch to start measurement. (xi)

- (b) Maintenance and Calibration
 - (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix E.
 - (ii) 1-hour validation checking of the TSP meter against HVS is carried out on half-year basis at the air quality monitoring locations.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for air quality monitoring in June 2016 is provided in Appendix F.

2.7 Results and Observations

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Table 2.4 and 2.5 respectively. Detailed impact air quality monitoring results are presented in Appendix G.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AMS2	75	72-79	374	500
AMS3B	74	71-77	368	500
AMS7	74	72-77	370	500

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AMS2	19	14-26	176	260
AMS3B	17	12-23	167	260
AMS7	30	18-38	183	260

- 2.7.2 The event action plan is annexed in Appendix L.
- 2.7.3 Meteorological information collected from the wind station during the monitoring periods on the monitoring dates, as shown in Figure 2, including wind speed and wind direction, is annexed in Appendix H.

NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the Contract Specific EM&A Manual, impact noise monitoring was conducted for at least once per week during the construction phase of the Contract. The Action and Limit level of the noise monitoring is provided in Appendix D.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	Rion NL-31 & B&K2238
Acoustic Calibrator	Rion NC-73 & B&K 4231

3.3 Monitoring Locations

- 3.3.1 Monitoring locations NMS2 was set up at the proposed locations in accordance with Contract Specific EM&A Manual. However, for monitoring location NMS3 (Ho Yu College), as proposed in the Contract Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact noise monitoring was conducted at site boundary of the site office area in Works Area WA2 (NMS3B) respectively. Same baseline noise level (as derived from the baseline monitoring data recorded at Ho Yu College) and Limit Level were adopted for this alternative noise monitoring location.
- 3.3.2 Figure 2 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 Locations of Impact Noise Monitoring Stations

Monitoring Station	Location	Description
NMS2	Seaview Crescent Tower 1	Free-field on the rooftop of the premise
NMS3B	Site Boundary of Site Office Area at Works Area WA2	Free-field on ground at the area boundary.

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). L _{eq} , L ₁₀ and L ₉₀ would be recorded.	At least once per week

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground for free-field measurements at NMS2. A correction of +3 dB(A) shall be made to the free field measurements.
- (b) All measurement at NMS3B were free field measurements in the reporting month at NMS3B. A correction of +3 dB(A) shall be made to the free field measurements.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:-
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: $L_{eq(30-minutes)}$ during non-restricted hours i.e. 07:00-1900 on normal weekdays.
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix E.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for construction noise monitoring in June 2016 is provided in Appendix F.

3.7 Monitoring Results

3.7.1 The monitoring results for construction noise are summarized in Table 3.4 and the monitoring data is provided in Appendix I.

Table 3.4 Summary of Construction Noise Monitoring Results in the Reporting Period

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq (30 mins)}
NMS2	66	64-67*	75
NMS3B	67	65-69*	70/65^

^{*+3}dB(A) Façade correction included

- 3.7.2 No Action or Limit Level Exceedance of construction noise was recorded in the reporting month.
- 3.7.3 Other major noise sources during the noise monitoring included construction activities of the Contract, construction activities by other contracts and nearby traffic noise. However, for major noise sources during the noise monitoring at NMS3B on 20 June 2016, the works of the private property development/construction project which do not belongs to Contract No.HY/2010/02 (HKBCF Reclamation Works) is likely to have more contribution to the measured noise level recorded at NMS3B on 20 June 2016 because it is located relatively closer to the monitoring station NMS3B than the works from Contract No.HY/2010/02. Nonetheless, the Contractor of Contract No.HY/2010/02 was reminded to continue to properly implement all noise mitigation measures.
- 3.7.4 Since the measured noise level at NMS3B on 20 June 2016 is 66 dB(A) and is below the baseline level, therefore it is considered that the measured noise level is lower than the background, therefore it is not considered as an exceedance. As such the EAP was not triggered.
- 3.7.5 The event action plan is annexed in Appendix L.

[^] Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

4 WATER QUALITY MONITORING

4.1 Monitoring Requirements

4.1.1 Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. For impact water quality monitoring, measurements were taken in accordance with the Contract Specific EM&A Manual. Appendix D shows the established Action/Limit Levels for the environmental monitoring works.

4.2 Monitoring Equipment

4.2.1 Table 4.1 summarises the equipment used in the impact water quality monitoring programme.

Table 4.1 Water Quality Monitoring Equipment

Equipment	Brand and Model
Dissolved Oxygen (DO) and Temperature Meter, Salinity	YSI Model 6820
Meter and Turbidity Meter	
pH Meter	YSI Model 6820 or Thermo Orion 230A+
Positioning Equipment	JRC DGPS 224 Model JLR-4341 with J-NAV
	500 Model NWZ4551
Water Depth Detector	Eagle Cuda-168 and Lowrance x-4
Water Sampler	Kahlsio Water Sampler (Vertical) 2.2 L with
	messenger

4.3 Monitoring Parameters, Frequency and Duration

4.3.1 Table 4.2 summarises the monitoring parameters, frequency and monitoring depths of impact water quality monitoring as required in the Contract Specific EM&A Manual.

Table 4.2 Impact Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameter, unit	Frequency	No. of depth
Impact Stations: IS5, IS(Mf)6, IS7, IS8, IS(Mf)9, IS10, IS(Mf)11, IS(Mf)16, IS17 Control/Far Field Stations: CS(Mf)3, CS(Mf)5, CS4, CS6, CSA Sensitive Receiver Stations: SR3-SR7, SR10A&SR10B	 Depth, m Temperature, °C Salinity, ppt Dissolved Oxygen (DO), mg/L DO Saturation, % Turbidity, NTU pH Suspended Solids (SS), mg/L 	Three times per week during mid- ebb and mid- flood tides (within ± 1.75 hour of the predicted time)	3 (1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the middepth station may be omitted. Should the water depth be less than 3 m, only the mid-depth station will be monitored).

4.4 Monitoring Locations

- 4.4.1 In accordance with the Contract Specific EM&A Manual, twenty-one stations (9 Impact Stations, 7 Sensitive Receiver Stations and 5 Control/Far Field Stations) were designated for impact water quality monitoring. The nine Impact Stations (IS) were chosen on the basis of their proximity to the reclamation and thus the greatest potential for water quality impacts, the seven Sensitive Receiver Stations (SR) were chosen as they are close to the key sensitive receives and the five Control/ Far Field Stations (CS) were chosen to facilitate comparison of the water quality of the IS stations with less influence by the Project/ ambient water quality conditions.
- 4.4.2 Due to safety concern and topographical condition of the original locations of SR4 and SR10B, alternative impact water quality monitoring stations, naming as SR4 (N) and SR10B (N), were adopted, which are situated in vicinity of the original impact water quality monitoring stations (SR4 and SR10B) and could be reachable.
- 4.4.3 Same baseline and Action Level for water quality, as derived from the baseline monitoring data recorded, were adopted for these alternative impact water quality monitoring stations.
- 4.4.4 The locations of these monitoring stations are summarized in Table 4.3 and depicted in Figure 3.

Table 4.3 Impact Water Quality Monitoring Stations

Station	Description	East	North
IS5	Impact Station (Close to HKBCF construction site)	811579	817106
IS(Mf)6	Impact Station (Close to HKBCF construction site)	812101	817873
IS7	Impact Station (Close to HKBCF construction site)	812244	818777
IS8	Impact Station (Close to HKBCF construction site)	814251	818412
IS(Mf)9	Impact Station (Close to HKBCF construction site)	813273	818850
IS10	Impact Station (Close to HKBCF construction site)	812577	820670
IS(Mf)11	Impact Station (Close to HKBCF construction site)	813562	820716
IS(Mf)16	Impact Station (Close to HKBCF construction site)	814328	819497
IS17	Impact Station (Close to HKBCF construction site)	814539	820391
SR3	Sensitive receivers (San Tau SSSI)	810525	816456
SR4(N)	Sensitive receivers (Tai Ho)	814705	817859
SR5	Sensitive receivers (Artificial Reef in NE Airport)	811489	820455
SR6	Sensitive receivers (Sha Chau and Lung Kwu Chau Marine Park)	805837	821818
SR7	Sensitive receivers (Tai Mo Do)	814293	821431
SR10A	Sensitive receivers (Ma Wan FCZ)1	823741	823495
SR10B(N)	Sensitive receivers (Ma Wan FCZ)2	823683	823187
CS(Mf)3	Control Station	809989	821117
CS(Mf)5	Control Station	817990	821129
CS4	Control Station	810025	824004
CS6	Control Station	817028	823992
CSA	Control Station	818103	823064

4.5 Monitoring Methodology

4.5.1 Instrumentation

(a) The in-situ water quality parameters, viz. dissolved oxygen, temperature, salinity, turbidity and pH, were measured by multi-parameter meters (i.e. Model YSI 6820 CE-C-M-Y) and pH meter (i.e. Thermo Orion 230A+) respectively.

4.5.2 Operating/Analytical Procedures

- (a) Digital Differential Global Positioning Systems (DGPS) were used to ensure that the correct location was selected prior to sample collection.
- (b) Portable, battery-operated echo sounders were used for the determination of water depth at each designated monitoring station.
- (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
- (d) At each measurement/sampling depth, two consecutive in-situ monitoring (DO concentration and saturation, temperature, turbidity, pH, salinity) and water sample for SS. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of DO or turbidity parameters was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- (e) Duplicate samples from each independent sampling event were collected for SS measurement. Water samples were collected using the water samplers and the samples were stored in high-density polythene bottles. Water samples collected were well-mixed in the water sampler prior to pre-rinsing and transferring to sample bottles. Sample bottles were pre-rinsed with the same water samples. The sample bottles were then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. for the analysis of suspended solids concentrations. The laboratory determination work would be started within 24 hours after collection of the water samples. ALS Technichem (HK) Pty Ltd. is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples was analyzed.
- (f) The analysis method and reporting and detection limit for SS is shown in Table 4.4.

Table 4.4 Laboratory Analysis for Suspended Solids

Parameters	Instrumentation	Analytical Method	Reporting Limit	Detection Limit
Suspended Solid (SS)	Weighting	APHA 2540-D	0.5mg/L	0.5mg/L

(g) Other relevant data were recorded, including monitoring location / position, time, water depth, tidal stages, weather conditions and any special phenomena or work underway at the construction site in the field log sheet for information.

4.5.3 Maintenance and Calibration

- (a) All in situ monitoring instruments would be calibrated and calibrated by ALS Technichem (HK) Pty Ltd. before use and at 3-monthly intervals throughout all stages of the water quality monitoring programme. Calibration details are provided in Appendix E.
- (b) The dissolved oxygen probe of YSI 6820 was calibrated by wet bulb method. Before the calibration routine, the sensor for dissolved oxygen was thermally equilibrated in water-saturated air. Calibration cup is served as a calibration chamber and it was loosened from airtight condition before it is used for the calibration. Calibration at ALS Technichem (HK) Pty Ltd. was carried out once every three months in a water sample with a known concentration of dissolved oxygen. The sensor was immersed in the water and after thermal equilibration, the known mg/L value was keyed in and the calibration was carried out automatically.
- (c) The turbidity probe of YSI 6820 is calibrated two times a month. A zero check in distilled water was performed with the turbidity probe of YSI 6820 once per monitoring day. The probe will be calibrated with a solution of known NTU at ALS Technichem (HK) Pty Ltd. once every three months.

4.6 Monitoring Schedule for the Reporting Month

4.6.1 The schedule for impact water quality monitoring in June 2016 is provided in Appendix F.

4.7 Results and Observations

4.7.1 Impact water quality monitoring results and graphical presentations are provided in Appendix J.

Table 4.5 Summary of Water Quality Exceedances

Station	Exceedance Level	e DO (S&M)				DO (B	ottom)	Tur	bidity	SS		Total	
	LCVCI	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood		
IS5	Action	0	0	0	0	0	0	0	0	0	0		
155	Limit	0	0	0	0	0	0	0	0	0	0		
IS(Mf)6	Action	0	0	0	0	0	0	0	0	0	0		
13(111)6	Limit	0	0	0	0	0	0	0	0	0	0		
IS7	Action	0	0	0	0	0	0	0	0	0	0		
137	Limit	0	0	0	0	0	0	0	0	0	0		
IS8	Action	0	0	0	0	0	0	0	0	0	0		
136	Limit	0	0	0	0	0	0	0	0	0	0		
IS(Mf)9	Action	0	0	0	0	0	0	0	0	0	0		
13(1011)9	Limit	0	0	0	0	0	0	0	0	0	0		
IS10	Action	0	0	0	0	0	0	0	0	0	0		
1310	Limit	0	0	0	0	0	0	0	0	0	0		
IS(Mf)11	Action	0	0	0	0	0	0	0	0	0	0		
13(1011)11	Limit	0	0	0	0	0	0	0	0	0	0		
IS(Mf)16	Action	0	0	0	0	0	0	0	0	0	0		
13(1011) 10	Limit	0	0	0	0	0	0	0	0	0	0		
IS17	Action	0	0	0	0	0	0	0	0	0	0		
1317	Limit	0	0	0	0	0	0	0	0	0	0		
SR3	Action	0	0	0	0	0	0	0	0	0	0		
SNS	Limit	0	0	0	0	0	0	0	0	0	0		
SR4(N)	Action	0	0	0	0	0	0	0	0	0	0		
3K4(N)	Limit	0	0	0	0	0	0	0	0	0	0		
SR5	Action	0	0	0	0	0	0	0	0	0	0		
SNO	Limit	0	0	0	0	0	0	0	0	0	0		
SR6	Action	0	0	0	0	0	0	0	0	0	0		
SNO	Limit	0	0	0	0	0	0	0	0	0	0		
SR7	Action	0	0	0	0	0	0	0	0	0	0		
SK/	Limit	0	0	0	0	0	0	0	0	0	0		
SR10A	Action	0	0	0	0	0	0	0	0	0	0		
SKIUA	Limit	0	0	0	0	0	0	0	0	0	0		

Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for June 2016

Station	Exceedance Level	DO (S&M)		DO (B	ottom)	Tur	bidity		SS	Te	otal
	Level	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood
SR10B	Action	0	0	0	0	0	0	0	0	0	0
(N)	Limit	0	0	0	0	0	0	0	0	0	0
Total	Action	0	0	0	0	0	0	0	0		0
	Limit	0	0	0	0	0	0	0	0		0

Note: S: Surface; and

M: Mid-depth.

- 4.7.2 No exceedance was recorded at all monitoring stations in the reporting month.
- 4.7.3 The event action plan is annexed in Appendix L.

5 DOLPHIN MONITORING

5.1 Monitoring Requirements

- 5.1.1 Vessel based surveys for the Chinese White Dolphin (CWD), Sousa chinensis, are to be conducted by a dedicated team comprising a qualified marine mammal ecologist and experienced marine mammal observers (MMOs). The purpose of the surveys are to evaluate the impact of the HKCBF reclamation and, if deemed detrimental, to take appropriate action as per the EM&A manual.
- 5.1.2 This 'Impact Monitoring' follows several months of 'Baseline Monitoring' so similar survey methodologies have been adopted to facilitate comparisons between datasets. Further, the data collected are compatible with, and are available for, incorporation into the data set managed by the Agriculture, Fisheries and Conservation Department (AFCD) as part of Hong Kong's long term Marine Mammal Monitoring Programme.

5.2 Monitoring Equipment

Table 5.1 summarises the equipment used for the impact dolphin monitoring.

Table 5.1 Dolphin Monitoring Equipment

Equipment	Model
Commercially licensed motor vessel	15m in length with a 4.5m viewing platform
Global Positioning System (GPS) x2	Integrated into T7000
	Garmin GPS Map 76C
Computers (T7000 Tablet, Intel Atom)	Windows 7/MSO 13
	Logger
Camera	Nikon D7100 300m 2.8D fixed focus
	Nikon D90 80-400mm zoom lens
Laser Rangefinder	Range Finder Bushnell 1000m
Marine Binocular x3	Nexus 7 x 50 marine binocular with compass
	and reticules
	Fujinon 7 x 50 marine binocular with compass
	and reticules

5.3 Monitoring Frequency and Conditions

- 5.3.1 Dolphin monitoring is conducted twice per month in each survey area.
- 5.3.2 Dolphin monitoring is conducted only when visibility is good (e.g., over 1km) and the sea condition is at a Beaufort Sea State of 4 or better.
- 5.3.3 When thunder storm, black rain or typhoon warnings are in force, all survey effort is stopped.

5.4 Monitoring Methodology and Location

- 5.4.1 The impact dolphin monitoring is vessel-based and combines line-transect and photo-ID methodology. The survey follows pre-set and fixed transect lines in the two areas defined by AFCD as:
- 5.4.2 Northeast Lantau survey area; and
- 5.4.3 Northwest Lantau survey area.
- 5.4.4 The co-ordinates for the transect lines and layout map have been provided by AFCD and are shown in Table 5.2 and Figure 4.

Table 5.2 Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD)

	HK Grid System		Long Lat i	in WGS84
ID	X	Υ	Long	Lat
1	804671	815456	113.870287	22.277678
1	804671	831404	113.869975	22.421696
2	805475	815913	113.878079	22.281820
2	805477	826654	113.877896	22.378814
3	806464	819435	113.887615	22.313643
3	806464	822911	113.887550	22.345030
4	807518	819771	113.897833	22.316697
4	807518	829230	113.897663	22.402113
5	808504	820220	113.907397	22.320761
5	808504	828602	113.907252	22.396462
6	809490	820466	113.916965	22.323003
6	809490	825352	113.916884	22.367128
7	810499	820880	113.926749	22.326757
7	810499	824613	113.926688	22.360464
8	811508	821123	113.936539	22.328966
8	811508	824254	113.936486	22.357241
9	812516	821303	113.946320	22.330606
9	812516	824254	113.946279	22.357255
10*	813525	820827	113.956112	22.326321
10*	813525	824657	113.956066	22.360908
11	814556	818853	113.966155	22.304858
11	814556	820992	113.966125	22.327820
12	815542	818807	113.975726	22.308109
12	815542	824882	113.975647	22.362962
13	816506	819480	113.985072	22.314192
13	816506	824859	113.985005	22.362771
14	817537	820220	113.995070	22.320883
14	817537	824613	113.995018	22.360556
15	818568	820735	114.005071	22.325550
15	818568	824433	114.005030	22.358947
16	819532	821420	114.014420	22.331747
16	819532	824209	114.014390	22.356933
17	820451	822125	114.023333	22.338117
17	820451	823671	114.023317	22.352084
18	821504	822371	114.033556	22.340353
18	821504	823761	114.033544	22.352903
19	822513	823268	114.043340	22.348458
19	822513	824321	114.043331	22.357971
20	823477	823402	114.052695	22.349680
20	823477	824613	114.052686	22.360610
21	805476	827081	113.877878	22.382668
21	805476	830562	113.877811	22.414103
22	806464	824033	113.887520	22.355164
22	806464	829598	113.887416	22.405423
23	814559	821739	113.966142	22.334574
23	814559	824768	113.966101	22.361920

Remarks:

(a) *Due to the presence of deployed silt curtain systems at the site boundaries of the Contract, some of the transect lines shown in Figure 5 could not be fully surveyed during the regular survey. Transect 10 is reduced from 6.4km to approximately 3.6km in length due to the HKBCF construction site. Therefore the total transect length for both NEL and NWL combined is reduced to approximately 108km.

(b) Coordinates for transect lines 1, 2, 7, 8, 9 and 11 have been updated in respect to the Proposal for Alteration of Transect Line for Dolphin Monitoring approved by EPD on 19 August 2015.

5.5 **Monitoring Procedures**

- 5.5.1 The study area incorporates 23 transects which are to be surveyed twice per month. Each survey day lasts approximately 9 hours.
- The survey vessel departs from Tung Chung Development Pier, Tsing Yi Public Pier or the nearest 5.5.2 safe and convenient pier.
- When the vessel reaches the start of a transect line, "on effort" survey begins. Areas between transect 5.5.3 lines and traveling to and from the study area are defined as "off effort".
- The transect line is surveyed at a speed of 6-8 knots (11-14 km/hr). For the sake of safety, the speed 5.5.4 was sometimes a bit slower to avoid collision with other vessels. During some periods, tide and current flow in the survey areas exceeds 7 knots which can affect survey speed. There are a minimum of four marine mammal observers (MMOs) present on each survey, rotating through four positions, observers (2), data recorder (1) and 'rest' (1). Rotations occur every 30 minutes or at the end of dolphin encounters. The data recorder records effort, weather and sightings data directly onto the programme Logger and is not part of the observer team. The observers search with naked eye and binoculars between 90° and 270° abeam (bow being 0°).
- When a group of dolphins is sighted, position, bearing and distance data are recorded immediately 5.5.5 onto the computer and, after a short observation, an estimate made of group size. These parameters are linked to the time-GPS-ships data which are automatically stored in the programme Logger throughout the survey period. In this manner, information on heading, position, speed, weather, effort and sightings are stored in a format suitable for use with DISTANCE software for subsequent line transect analyses.
- 5.5.6 Once the vessel leaves the transect line, it is deemed to be "off effort". The dolphins are approached with the purpose of taking high resolution pictures for proper photo-identification of individual CWD. Attempts to photograph all dolphins in the group are made. Both the left and right hand sides of the dorsal fin area of each dolphin in the group are photographed, if possible. On finishing photographing, the vessel will return to the transect line at the point of departure and "on effort" survey is resumed.
- 5.5.7 Sightings which are made while on the transect line are referred to as "on effort sightings", while not on the actual transect line are referred to as an "opportunistic sightings" (e.g. another group of dolphins is sighted while travelling back to the transect line). Only "on effort sightings" can be used in analyses which require effort or rate quantification, e.g., encounter rate per 100km searched. This is also how "on effort sightings" are treated in the baseline report. "Opportunistic sightings" provide additional information on individual habitat use and population distribution and they are noted accordingly.
- 5.5.8 As time and GPS data are automatically logged throughout the survey and are linked to sightings data input, start and end times of encounters and deviation from the transect lines are recorded and can be subsequently reviewed.

5.6 Monitoring Schedule for the Reporting Month

- 5.6.1 The schedule for dolphin monitoring in June 2016 is provided in Appendix F.
- 5.6.2 Two surveys covering both study areas were completed.

5.7 **Results and Observations**

Dolphin surveys were conducted on 6, 7, 20 and 21 June 2016. A total of 221.5km of transect line was 5.7.1 conducted, all 221.5km was conducted during Beaufort Sea State 3 or better (favourable water conditions).

The effort summary and sightings data are shown in Tables 5.3 and 5.4, respectively. The survey efforts conducted in June 2016 are plotted in Figure 5a-b. For Table 5.3, only on-effort information is included. Transects conducted in all Beaufort Sea State are included. Compared to previous monthly reports, the whole number Beaufort Sea State scale is used so as to ease comparison with other dolphin monitoring reports.

Table 5.3 Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State

Survey	Date	Area	Beaufort	Effort (km)	Total Distance Travelled (km)
	06/06/2016	NWL	1	57.2	
	06/06/2016	NWL	2	6.4	
	06/07/2016	NWL	1	10.2	110.9
1	06/07/2016	NEL	1	34.4	
	06/07/2016	NEL	2	2.7	
	06/20/2016	NWL	1	3.3	
	06/20/2016	NEL	1	37	110.6
2	06/21/2016	NWL	1	37.5	110.6
	06/21/2016	NWL	2	8.9	
	06/21/2016	NWL	3	23.9	
			TOTA	L in June 2016	221.5

^{*}Remark: Surveys conduct under Beaufort Sea State 3 or below are considered as under favourable condition.

Table 5.4 Impact Dolphin Monitoring Survey Details June 2016

Date	Location	No. Sightings "on effort"	No. Sightings "opportunistic"
	NWL\WL	1*	0
06/06/2016	NEL	0	0
	NWL	0	0
06/07/2016	NEL	0	0
	NWL	0	0
06/20/2016	NEL	0	0
	NWL	2	1
06/21/2016	NEL	0	0
	TOTAL in JUNE 2016	3	1

^{*} Group of dolphin was sighted at WL area while vessel based dolphin monitoring was conducted in NWL

Table 5.5 The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^

Encounter Rate of Number of Dolphin Sightings (STG)*							
NEL Track (km)	NWL Track (km)	NEL Sightings	NWL Sightings	NEL Encounter Rate	NWL Encounter Rate		
37.1	73.8	0	0	0.0	0.0		
37.0	73.6	0	2	0.0	2.7		
	NEL Track (km) 37.1	NEL Track (km) NWL Track (km) 37.1 73.8 37.0 73.6	NEL Track NWL Track (km) (km) Sightings	NEL Track (km) NWL Track (km) NEL Sightings NWL Sightings 37.1 73.8 0 0 37.0 73.6 0 2	NEL Track (km) NWL (km) NEL Sightings NWL Sightings NWL Encounter Rate 37.1 73.8 0 0 0.0 37.0 73.6 0 2 0.0		

Encounter Rate of Total Number of Dolphins (ANI)

Date	NEL Track (km)	NWL Track (km)	NEL Dolphins	NWL Dolphins	NEL Encounter Rate	NWL Encounter Rate
6 and 7 June 16	37.1	73.8	0	0	0.0	0.0
20 and 21 June 16	37.0	73.6	0	4	0.0	5.4

^{*} Encounter Rate of Number of Dolphin Sightings (STG) presents encounter rates in terms of groups per 100km.

- 5.7.2 A total of 4 sightings were made, two "on effort" and two "opportunistic". One sighting was recorded on the 6 June 2016 and three on the 21 June 2016. The group sighted on the 6 June 2016 contained 5 individuals that were engaged in multiple behaviours including socialising and feeding. The three groups sighted on the 21 June contained one, three and one individuals, respectively. Two groups of these groups were travelling and one dolphin group's behavior was unknown. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively. The locations of sighting with different behaviour are mapped in Figure 5d.
- 5.7.3 One calf was sighted on 6 June 2016. No attempt was made to approach the mother and calf pair to avoid disturbance.
- 5.7.4 Six individuals were resighted and three individuals were added to the catalogue in May 2016. The new individuals are HZMB 132; HZMB 133 and HZMB 134. HZMB 132 and HZMB 134 are adults and HZMB 133 is a sub-adult. HZMB 001 [WL46] was first identified in 2012 and has now been recorded on seven different days in total and always in NWL. It was last sighted in August 2014. HZMB 038 has only been sighted once previously, in November 2012. HZMB 044 [NL98] is a frequently sighted individual and has been recorded during baseline monitoring and a total of 12 times on different days during construction monitoring. It was last sighted in January 2016. HZMB 045 has been sighted a total of five times, the last sighting in February 2014. HZMB 054 [CH34] is a regularly sighted individual and was recorded during baseline monitoring for this project. During construction monitoring, it has now been sighted a total of 13 times and was last sighted in December 2015. HZMB 126 has been sighted a total of three times. This individual was identified in January 2015 and was last sighted in February 2015. Images and re-sightings data are included in Appendix K.

5.7.5 Noteworthy Observation¹:

5.7.5.1 When impact monitoring was conducted at the southern parts of transect lines 1 & 2, the view of the area was partially blocked by the working vessels and fixed structures which do not belong to HKBCF Reclamation Works. The number of fixed structures has increased and in many areas, it is no longer possible to pass between them by ship. And the number of working vessels appears to have decreased, it is considered that they will temporarily affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour, whereas the fixed structures will

^{**} Encounter Rate of Total Number of Dolphins (ANI) presents encounter rates in terms of individuals per 100km. And the encounter rate is not corrected for individuals, calculation may represent double counting.

[^]The table is made only for reference to the quarterly STG & ANI, which were adopted for the Event & Action Plan.

¹ A noteworthy observation is to show that either the conduct of the surveys themselves is affected, i.e., the noted vessel or works impedes the progress or view of the survey platform. In addition, the vessel or construction works may be different or additional to that observed previously and further, are of such a nature that they are a likely to create an impact on the movement or behaviour of the subject of the impact survey, in this case, the dolphins.

continuously affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour.

- 5.7.5.2 The HKBCF and adjoining "Southern Landfall" Projects effected lines 11 and 12. The view of the area was partially blocked by the working vessels and in water structures. As the working vessels will move as construction progresses, they will cause temporary effects to survey protocol and survey data collection. In time, the fixed structures will affect all survey protocols and dolphin ecology in the long term. As construction is ongoing, it is not yet known if these fixed structures will affect the transect lines passage. It is noted that fewer vessels occupy this area compared to previous months
- 5.7.5.3 Travel to the northern end of line was slightly impeded by anchorages. After checking with the Contractor, there are no construction vessels of this Contract that are required to anchor at northern end of line 10 during this reporting period, as such they are unlikely to be related to this Contract. As there are variable numbers of ships in this anchorage through time, it is considered that this could temporarily affect survey protocol, survey data collection and dolphin habitat use.
- 5.7.5.4 Anchored fishing vessels were noted on lines 1 and 21. In previous encounters, dolphins were seen feeding in association with these vessels despite them not being active. This may influence both dolphin behaviour and the view of the area.
- 5.7.5.5 A new project was noted on southern part of transect line 8 on 7 June 2016 and 21 June 2016 respectively, which blocked the transect area view. After checking with the Contractor, these new project do not belongs to this Contract and it is unknown what activities occur under this project or how long it may occur for and, as such, it is considered that this new project may affect survey protocol, survey data collection and dolphin habitat use.
- 5.7.5.6 Several single anchored vessels were noted on lines 5, 18 and 22 which caused the monitoring vessel to divert slightly from the trackline or blocked the transect area view. It is unknown who these vessels belong to or even if they were Project related. After checking with the Contractor, there are no transboundary vessels that are required to anchor on lines 5, 18 and 22 during this reporting period, as such they are unlikely to be related to this Contract. As there are variable numbers of ships in anchor on lines 2 and 4 through time, it is considered that this could temporarily affect survey protocol, survey data collection and dolphin habitat use.
- 5.7.5.7 The survey effort log notes the areas in which the visibility is limited or the survey is affected so that these can be accounted for in any subsequent analyses. Some of these obstructions will become permanent and some will be temporary as the HZMB is built and other projects progress. It is advised that the impact monitoring surveys should be completed as close to the predefined lines as possible (as per Figure 4 of this report).
- 5.7.5.8 The above noteworthy observations are largely a result of multiple and on-going infrastructure projects within the Lantau area. No amendment to EM&A protocols can negate the effects of these projects, e.g., it is a highly dynamic environment and viewing conditions may alter every survey (sometimes within surveys) and most of the survey area is affected, to some degree, by marine construction works. Instead, survey data analyses should incorporate any noteworthy observations which may affect either data collection or dolphin distribution and behavioural changes. The above mentioned activities recorded during boat survey will not affect implementation of the EM&A Programme provided appropriate data analyses are conducted.
- 5.7.6 The event action plan is annexed in Appendix L.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

6.1 Site Inspection

- 6.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Contract. In the reporting month, 5 site inspections were carried out on 2, 10, 16, 23 and 30 June 2016.
- 6.1.2 Particular observations during the site inspections are described below:

Air Quality

- 6.1.3 The Contractor was reminded to affix a proper exception/approval label to the power pack at Portion E2 under NRMM regulation last reporting month. The Contractor subsequently rectified the situation in the reporting month. (Closed)
- 6.1.4 An excavator was observed without NNRM label. The Contractor was reminded to properly affix NNRM label to the excavator. The Contractor subsequently affix NRMM label onto the excavator. (Closed)
- 6.1.5 Idle ground breaking works area was observed, the Contractor was reminded to provide mitigation measures when there are active ground breaking activities last reporting month. The Contractor subsequently watering to the concerned area when there were active ground breaking activities. (Closed)
- 6.1.6 Fugitive dust was observed when vehicle passed through roads on site. The Contractor was reminded to provide mitigation measures such as dust suppression measures to effectively prevent generation of fugitive dust. (Reminder)

Noise

6.1.7 No relevant adverse impact was observed in the reporting month.

Water Quality

6.1.8 No relevant adverse impact was observed in the reporting month.

Chemical and Waste Management

- 6.1.9 The Contractor was reminded to dispose of general refuse regularly at Portion E2 properly. The Contractor subsequently cleared the generation refuse at Portion E2 in the reporting month. (Closed)
- 6.1.10 The Contractor was reminded to provide drip tray for the moveable light generator at Portion E2 last reporting month. The Contractor subsequently provided drip tray to the moveable light generator in the reporting month. (Closed)
- 6.1.11 Oil drums were observed without drip tray at workshop area, the Contractor was advised to provide drip tray to all oil drums. (Follow up)

Landscape and Visual Impact

6.1.12 No relevant adverse impact was observed in the reporting month.

Others

6.1.13 No relevant adverse impact was observed in the reporting month.

6.2 Advice on the Solid and Liquid Waste Management Status

- 6.2.1 The Contractor had registered as a chemical waste producer for this Project. Receptacles were available for general refuse collection and sorting.
- 6.2.2 As advised by the Contractor, 156m³ of Hard Rock and Large Broken Concrete was generated for recycling into aggregates, 29,193.8m³ of inert C&D material was reused in other projects. 27,882m³ of fill material were imported for the Contract use in the reporting period. 65m³ of general refuse were generated and disposed of in the reporting period. Monthly summary of waste flow table is detailed in Appendix M.
- 6.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes storage, collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 6.2.4 The Contractor is reminded that chemical waste should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labeling and Storage of Chemical Wastes.
- 6.2.5 The treated marine sediment and/or treated excavated filling material specified by Contract no. HY/2013/01 has been received as public fill for Contract no. HY/2010/02's reclamation filling works since January 2015. As informed by the Contractor in the reporting month, such site arrangement has been discontinued since 24 February 2016.
- 6.2.6 After checking with the Contractor, surcharge material was removed off site to Macau from 27 April 2016 and it is continued in the reporting month. Surplus surcharge was exported to Macau during the reporting month. The Contractor was reminded to ensure consistency in quantities in case of any C&D material disposed off-site and/or no surcharge material removed off site.
- 6.2.7 As advised by the Contractor, 96,183m³ of surplus surcharge was exported to Macau during the reporting month.

6.3 Environmental Licenses and Permits

6.3.1 The environmental licenses and permits for the Contract and valid in the reporting month is summarized in Table 6.1.

Table 6.1 Summary of Environmental Licensing and Permit Status

Statutory Reference	License/ Permit	License or Permit No.	Valid	Period	License/ Permit	Remarks
			From	То	Holder	
EIAO Environme Permi	Environmental	EP- 353/2009/K	11/04/2016	N/A	HyD	Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities
	Permit	EP- 354/2009/D	13/03/2015	N/A		Tuen Mun – Chek Lap Kok Link (TMCLKL Southern Landfall Reclamation only)
APCO	NA notification		30/12/2011		CHEC	Works Area WA2 and WA3
APCO	NA notification		25/07/2014		CHEC	Works Area WA1
WDO	Chemical Waste Producer Registration	5213-951- C1186-30	28/10/2015	N/A	CHEC	Chemical waste produced in Contract HY/2010/02 (WA1)
WDO	Chemical Waste Producer Registration	5213-951- C1186-21	30/3/2012	N/A	CHEC	Chemical waste produced in Contract HY/2010/02 (WA2)
WDO	Chemical Waste Producer Registration	5213-839- C3750-02	13/09/2012		CHEC	Registration as Chemical Waste Producer at TKO 137(FB)
WDO	Billing Account for Disposal of Construction Waste	7014181	05/12/2011	N/A	CHEC	Waste disposal in Contract HY/2010/02
NCO	Construction Noise Permit	GW- RE0385-16	19/04/2016	14/10/2016	CHEC	Section of TKO Fill Bank under Contract HY/2010/02
NCO	Construction Noise Permit	GW- RS0095-16	05/02/2016	03/08/2016	CHEC	Reclamation Works in Contract HY/2010/02

6.4 Implementation Status of Environmental Mitigation Measures

- 6.4.1 In response to the site audit findings, the Contractors carried out corrective actions.
- 6.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix C. Most of the necessary mitigation measures were implemented properly.
- 6.4.3 Training of marine travel route for marine vessels operator was given to relevant staff and relevant records were kept properly.
- 6.4.4 Regarding the implementation of dolphin monitoring and protection measures (i.e. implementation of Dolphin Watching Plan, Dolphin Exclusion Zone and Silt Curtain integrity Check), regular checking were conducted by the experienced MMOs within the works area to ensure no dolphin was trapped by the enclosed silt curtain systems. Any dolphin spotted within the enclosed silt curtain systems was reported and recorded. Relevant procedures were followed and measures were well implemented. Silt curtain systems were also inspected timely in accordance to the submitted plan. All inspection records were kept properly.
- 6.4.5 Acoustic decoupling measures on noisy plants on construction vessels were checked regularly and the Contractor was reminded to ensure provision of ongoing maintenance to noisy plants and to carry out improvement work once insufficient acoustic decoupling measures were found.
- 6.4.6 Frequency of watering per day on exposed soil was checked; with reference to the record provided by the Contract, watering was conducted at least 8 times per day on reclaimed land. The frequency of watering is the mainly refer to water truck. Sprinklers are only served to strengthen dust control measure for busy traffic at the entrance of Portion D. As informed by the Contractor, during the malfunction period of sprinkler, water truck will enhance watering at such area. The Contractor was reminded to ensure provision of watering of at least 8 times per day on all exposed soil within the Contract site and associated works areas throughout the construction phase.
- 6.4.7 After review, 1 floating grout production was in operation at any time in June 2016 for Contract No.HY/2010/02. Condition 3.26A of EP-353/2009/K for Contract No.HY/2010/02 is complied with during the reporting month.
- 6.4.8 As informed by the Contractor, the perimeter silt curtain near Portion B of HKBCF has been arranged on 3 February 2016. A notification on the concerned site arrangement of the perimeter silt curtain of Contract HY/2010/02 was sent to IEC/ENPO by the ET for their review on 8 March 2016, IEC/ENPO issued comments on 10 March 2016 and the notification of realignment of perimeter silt curtain is under ET's further review in the reporting in the reporting month. The concerned notification on the concerned site arrangement of the perimeter silt curtain of Contract HY/2010/02 will be sent to the Authority once the review is completed.
- Further to our letter (ET's letter's ref.: 60249820/rmky16033001) dated 30/3/2016 regarding the notification of silt curtain removal programme and arrangement, as informed by RSS on 18 May 2016, the Contractor provided an updated programme on 17 May 2016 to indicate the current site situation. According to CHEC's latest removal programme during the reporting month, stage 1 (southern section of Portion B) removal work was rescheduled and therefore not carried out in June 2016. Tentative completion for stage 1 removal work and dates for the subsequent stages have also been updated in the reporting month, while the overall phasing arrangement has not changed. A notification letter was prepared in the reporting month and sent to IEC/ENPO on 1 June 2016 via email to inform them that the removal of perimeter silt curtain of Stages 1, 2, 3 and 4 has been rescheduled. IEC/ENPO expressed on 7 June 2016 that the update on the proposal is mainly on time schedule and as such, they have no objection in principle. However prior to IEC/ENPO's reply to confirm ET's updated proposal, ET was requested to provide site photos to show ET's checking of the current site condition with respect to the reminders given in their previous letter (Our Ref.: HYDHZMBEEM00_0_4102L.16 dated 22 April 2016). The situation was currently under ET's review during the reporting month.

6.5 Summary of Exceedances of the Environmental Quality Performance Limit

6.5.1 For impact air quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.

- 6.5.2 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.3 For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.4 For dolphin monitoring, a total of 4 sightings were made, two "on effort" and two "opportunistic". One sighting was recorded on the 6 June 2016 and three on the 21 June 2016. The group sighted on the 6 June 2016 contained 5 individuals that were engaged in multiple behaviours including socialising and feeding. The three groups sighted on the 21 June contained one, three and one individuals, respectively. Two groups of these groups were travelling and one dolphin's groups behavior was unknown.
- 6.5.5 Environmental site inspection was carried out 5 times in June 2016. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.
- 6.5.6 Cumulative statistics on exceedance is provided in Appendix N.

6.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 6.6.1 The Environmental Complaint Handling Procedure is annexed in Figure 6.
- 6.6.2 No complaint, notification of summons or prosecution was received in the reporting period.
- 6.6.3 Statistics on complaints, notifications of summons and successful prosecutions are summarized in Appendix N.

7 FUTURE KEY ISSUES

7.1 Construction Programme for the Coming Months

7.1.1 As informed by the Contractor, the major works for the Contract in July and August 2016 will be *:-

Marine-base

- Sloping Seawalls
- Rubble Mound Seawall
- Maintenance of silt curtain

Land-base

- Surcharge removal & laying
- Deep Cement Mixing
- Installations of Precast Culverts except sloping outfalls
- Construction of Permanent Seawall
- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

^{*}Construction activities in July and August 2016 will be changed subject to works progress.

7.2 Key Issues for the Coming Month

- 7.2.1 Key issues to be considered in the coming months:-
 - Site runoff should be properly collected and treated prior to discharge;
 - Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
 - Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface runoff during rainstorm;
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
 - Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission;
 - Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic:
 - Quieter powered mechanical equipment should be used;
 - Provision of proper and effective noise control measures for operating equipment and machinery onsite, such as erection of movable noise barriers or enclosure for noisy plants;
 - Closely check and replace the sound insulation materials regularly;
 - Better scheduling of construction works to minimize noise nuisance;
 - Properly store and label oil drums and chemical containers placed on site;
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved and confined areas;
 - Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.
 - Control night-time lighting and glare by hooding all lights.
 - Regular review and provide maintenance to dust control measures such as sprinkler system.

7.3 Monitoring Schedule for the Coming Month

7.3.1 The tentative schedule for environmental monitoring in July 2016 is provided in Appendix F.

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

- 8.1.1 For impact air quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.1.2 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.1.3 For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.1.4 For dolphin monitoring, a total of 4 sightings were made, two "on effort" and two "opportunistic". One sighting was recorded on the 6 June 2016 and three on the 21 June 2016. The group sighted on the 6 June 2016 contained 5 individuals that were engaged in multiple behaviours including socialising and feeding. The three groups sighted on the 21 June contained one, three and one individuals, respectively. Two groups of these groups were travelling and one dolphin group's behavior was unknown.
- 8.1.5 No complaint, notification of summons or prosecution was received in the reporting period.
- 8.1.6 Environmental site inspection was carried out 5 times in June 2016. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.

8.2 Recommendations

8.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

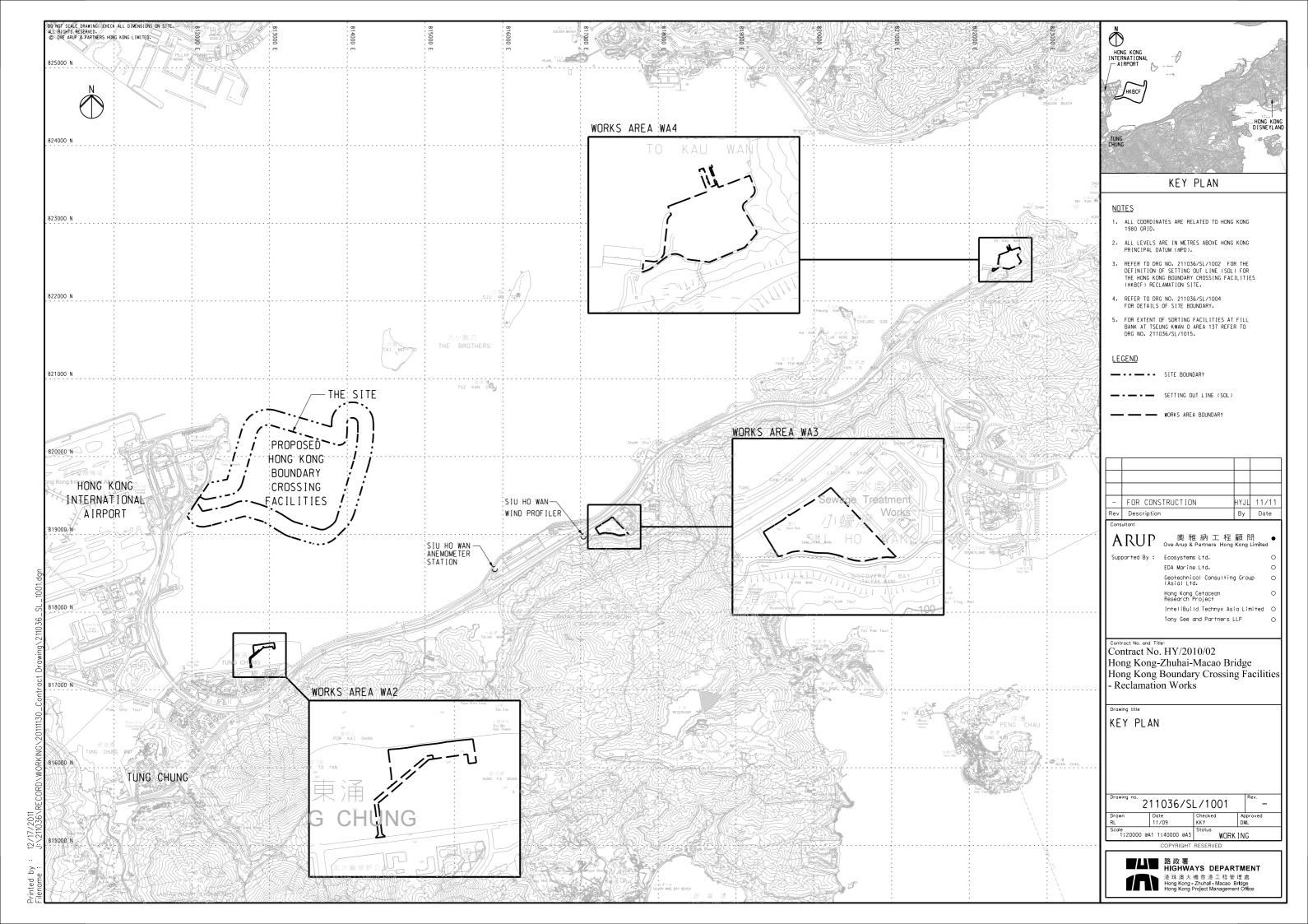
Air Quality Impact

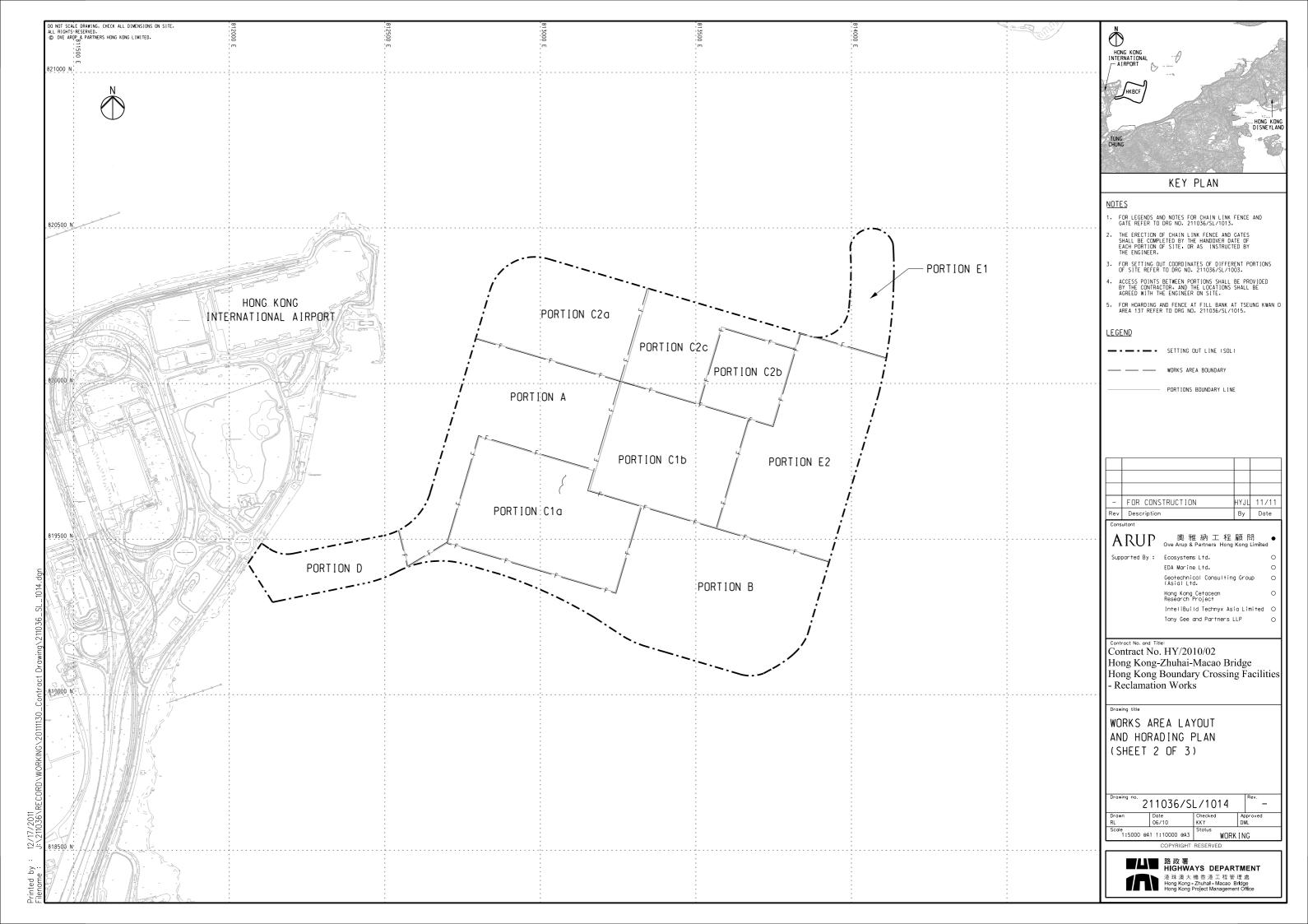
- All working plants and vessels on site should be regularly inspected and properly maintained to avoid dark smoke emission.
- All vehicles should be washed to remove any dusty materials before leaving the site.
- Haul roads should be sufficiently dampened to minimize fugitive dust generation.
- Wheel washing facilities should be properly maintained and reviewed to ensure properly functioning.
- Temporary exposed slopes and open stockpiles should be properly covered.
- Enclosure should be erected for cement debagging, batching and mixing operations.
- Water spraying should be provided to suppress fugitive dust for any dusty construction activity.
- Regular review and provide maintenance to dust control measures such as sprinkler system.

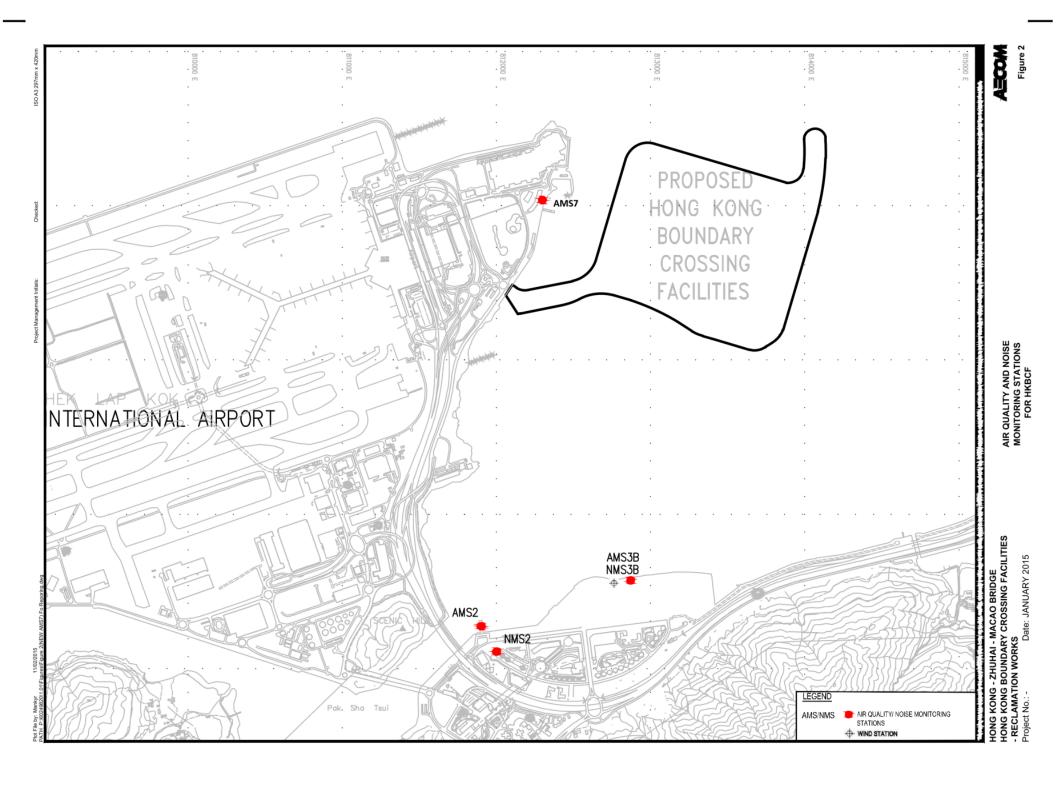
Construction Noise Impact

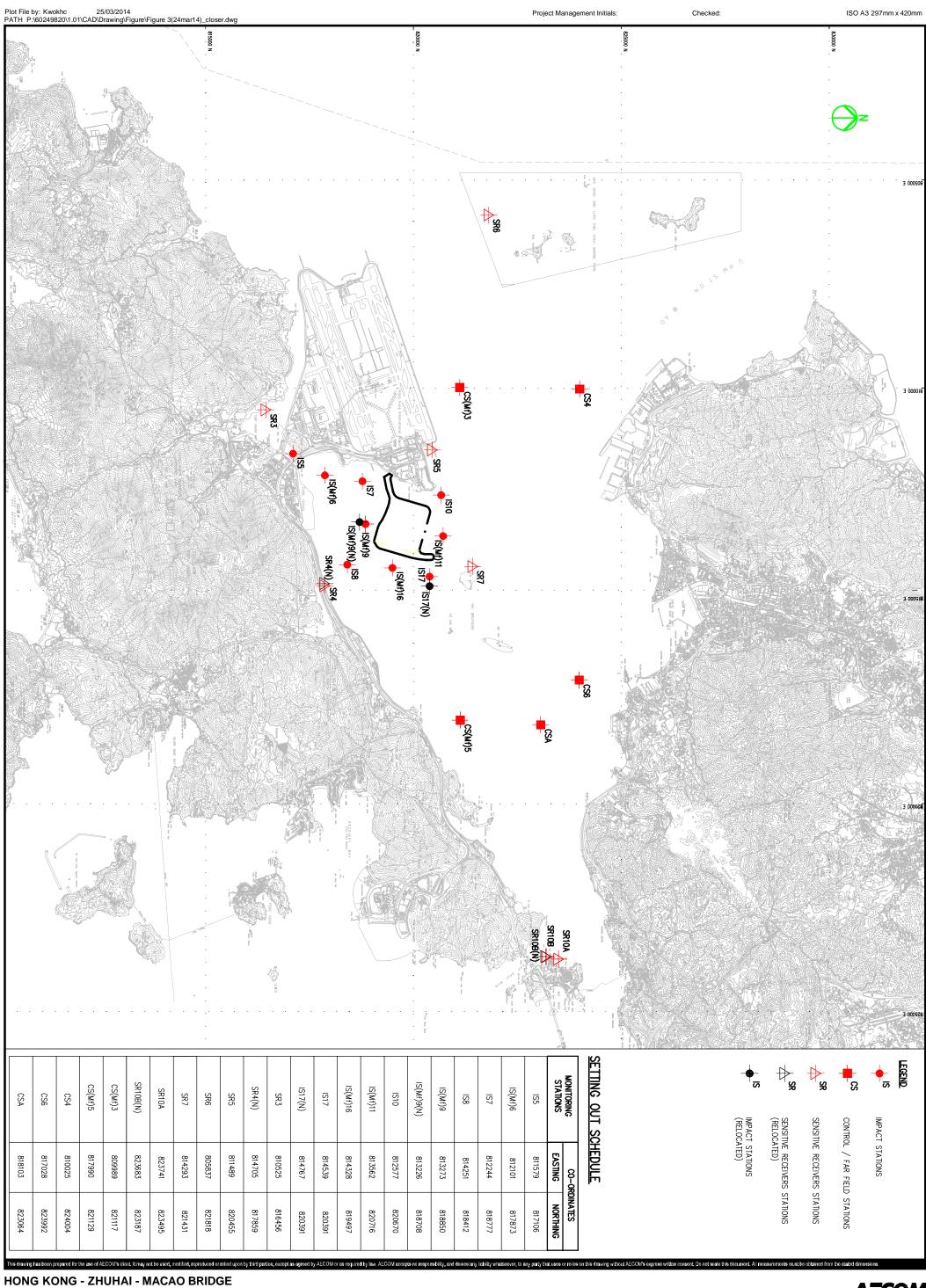
- Quieter powered mechanical equipment should be used as far as possible.
- Noisy operations should be oriented to a direction away from sensitive receivers as far as possible.
- Proper and effective noise control measures for operating equipment and machinery on-site should be provided, such as erection of movable noise barriers, enclosure for noisy plants or enhancement works to provide sufficient acoustic decoupling measure(s). Closely check and replace the sound insulation materials regularly
- Vessels and equipment operating should be checked regularly and properly maintained.
- Noise Emission Label (NEL) shall be affixed to the air compressor and hand-held breaker operating within works area.
- Acoustic decoupling measures should be properly implemented for all existing and incoming construction vessels with continuous and regularly checking to ensure effective implementation of acoustic decoupling measures.

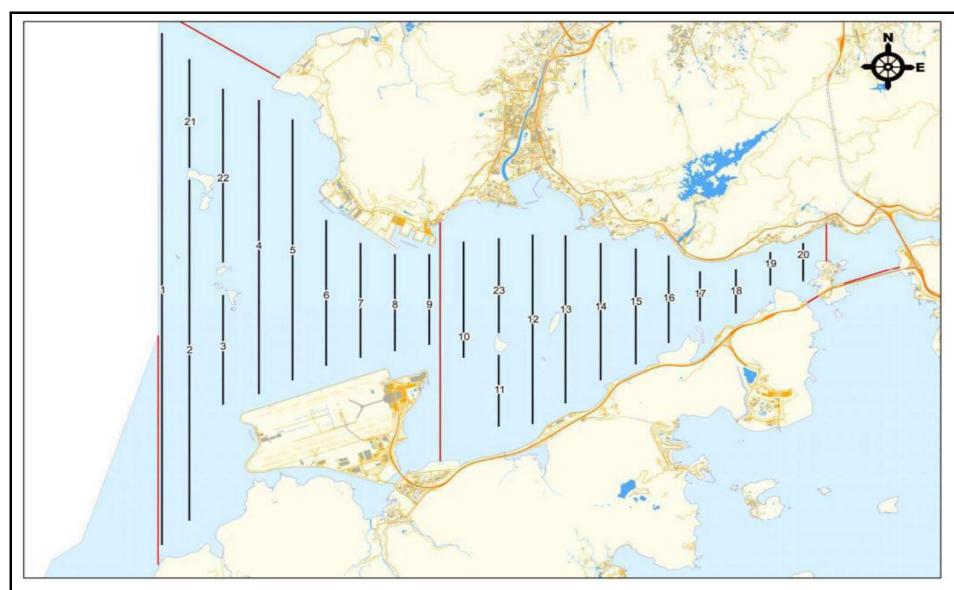
Water Quality Impact


- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities in order to make sure they are functioning effectively.
- Construction of seawall should be completed as early as possible.
- Regular inspect and review the loading process from barges to avoid splashing of material.
- Silt, debris and leaves accumulated at public drains, wheel washing bays and perimeter uchannels and desilting facilities should be cleaned up regularly.
- Silty effluent should be treated/ desilted before discharged. Untreated effluent should be prevented from entering public drain channel.
- Proper drainage channels/bunds should be provided at the site boundaries to collect/intercept the surface run-off from works areas.
- Exposed slopes and stockpiles should be covered up properly during rainstorm.

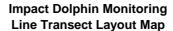

Chemical and Waste Management


- All types of wastes, both on land and floating in the sea, should be collected and sorted properly
 and disposed of timely and properly. They should be properly stored in designated areas within
 works areas temporarily.
- All chemical containers, batteries and oil drums should be properly stored and labelled.
- All plants and vehicles on site should be properly maintained to prevent oil leakage. Proper measures, like drip trays and/or bundings, should be provided for retaining leaked oil/chemical from plants.
- All kinds of maintenance works should be carried out within roofed, paved and confined areas.
- All drain holes of the drip trays utilized within works areas should be properly plugged to avoid any oil and chemical waste leakage.
- Oil stains on soil surface, accumulated oil mixture and empty chemical containers should be cleared and disposed of as chemical waste.
- Regular review should be conducted for working barges and patrol boats to ensure sufficient
 measures and spill control kits were provided on working barges and patrol boats to avoid any
 spreading of leaked oil/chemicals.

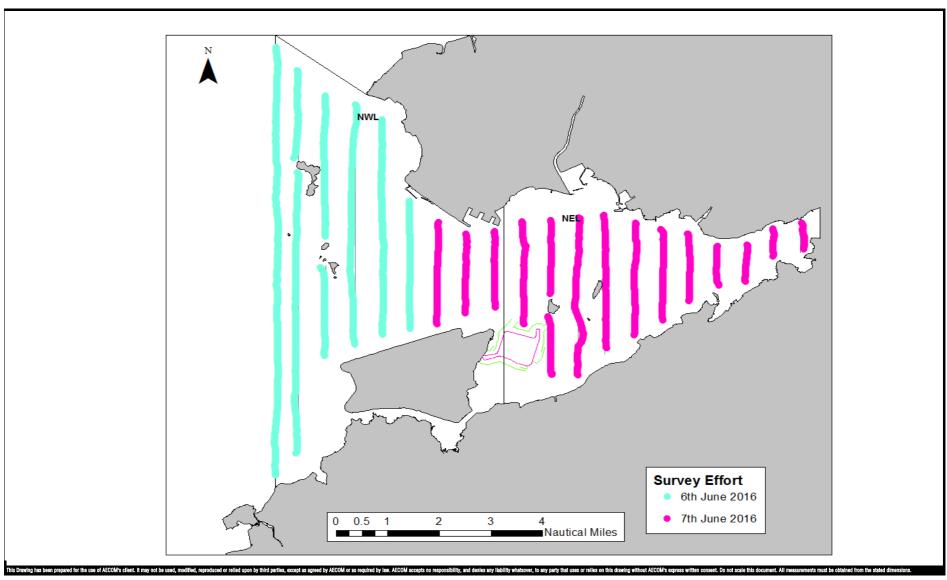

Landscape and Visual Impact


- All existing, retained/transplanted trees at the works areas should be properly fenced off and regularly inspected.
- Control night-time lighting and glare by hooding all lights.

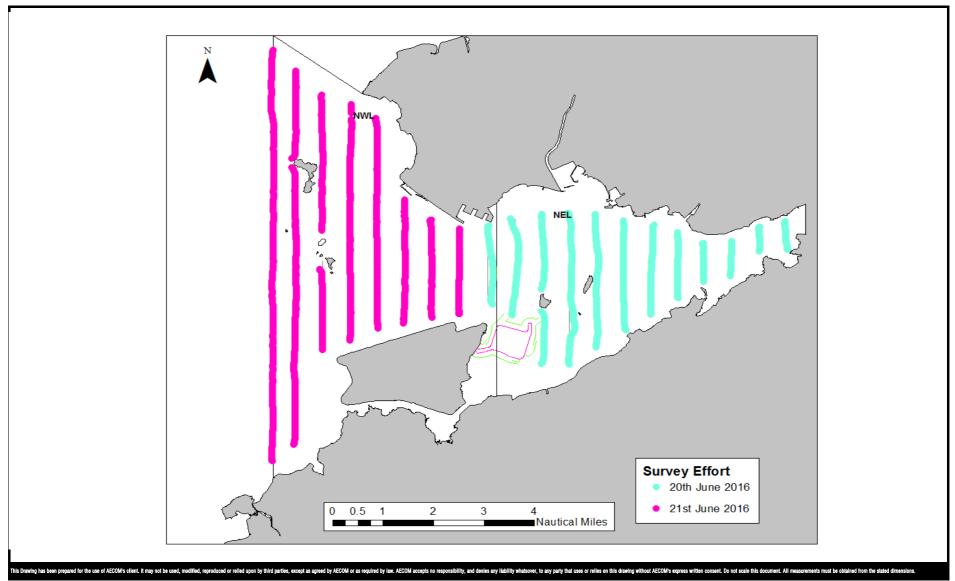
Remarks:

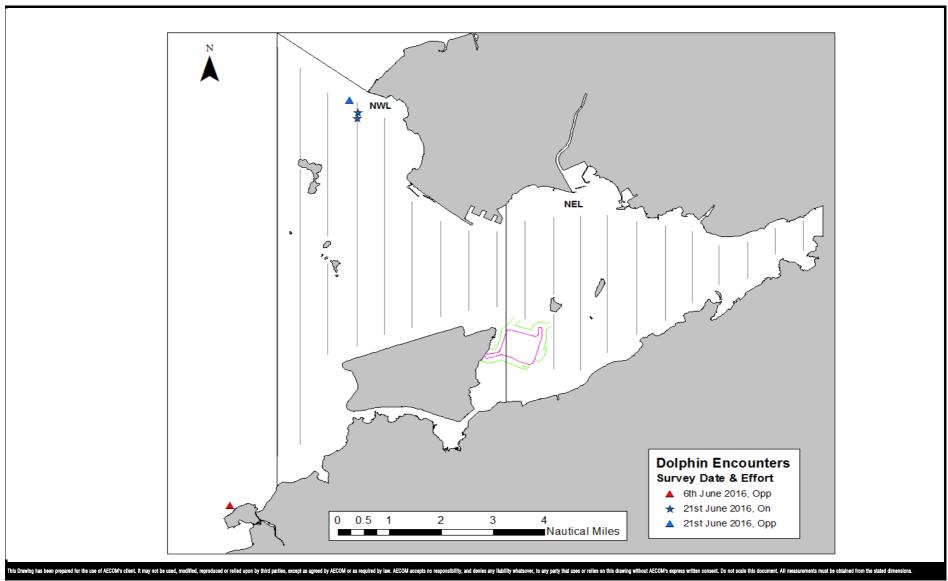

*Transect 10 is now 3.6km in length due to the HKBCF construction site.

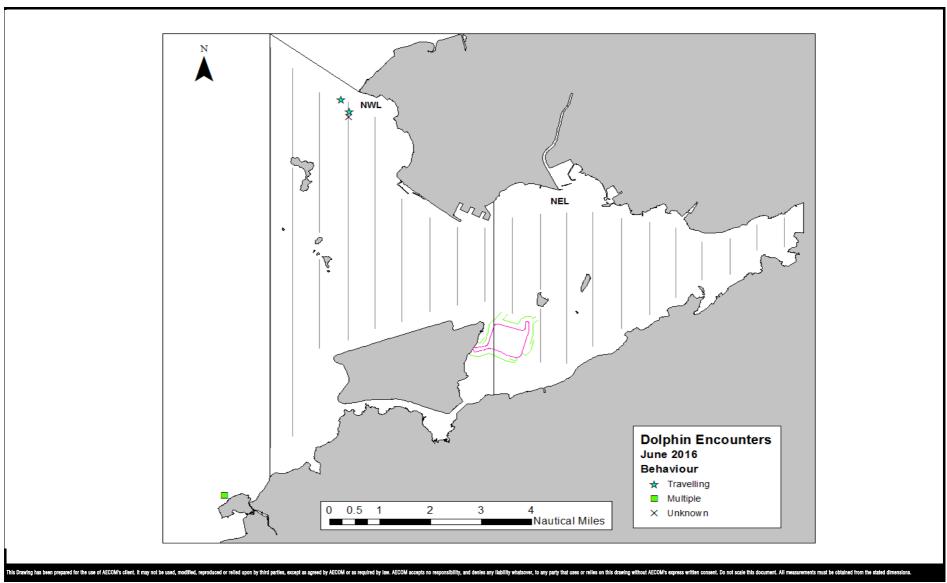
^Coordinates for transect lines 1, 2, 7, 8, 9 and 11 have been updated in respect to the Proposal for Alteration of Transect Line for Dolphin Monitoring approved by EPD on 19 August 2015. The total transect length for both NEL and NWL combined is 108km.


This Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by lew. AECOM accepts no responsibility, and denies any liability whatsover, to any party that uses or relies on this drawing without AECOM's express written consent. Do not scale this document. All measurements must be obtained from the stated dimensions.

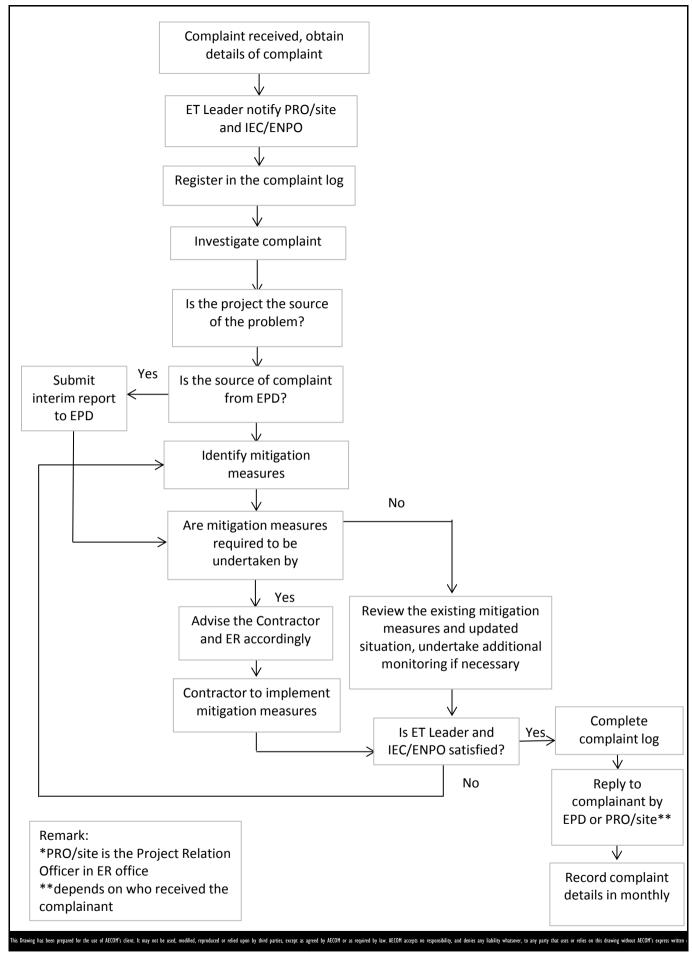
HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS


Project No.: 60249820 Date: November 2015


Project No.: 60249820 Date: July 2016

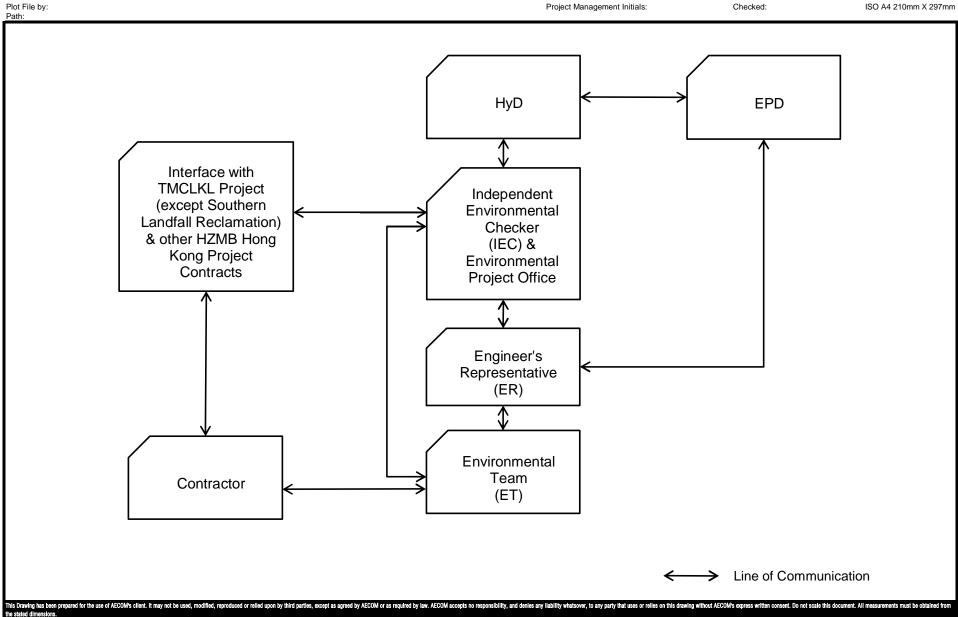

Date: July 2016

Project No.: 60249820


Impact Dolphin Monitoring Survey Efforts on 20 and 21 June 2016

Project No.: 60249820 Date: July 2016

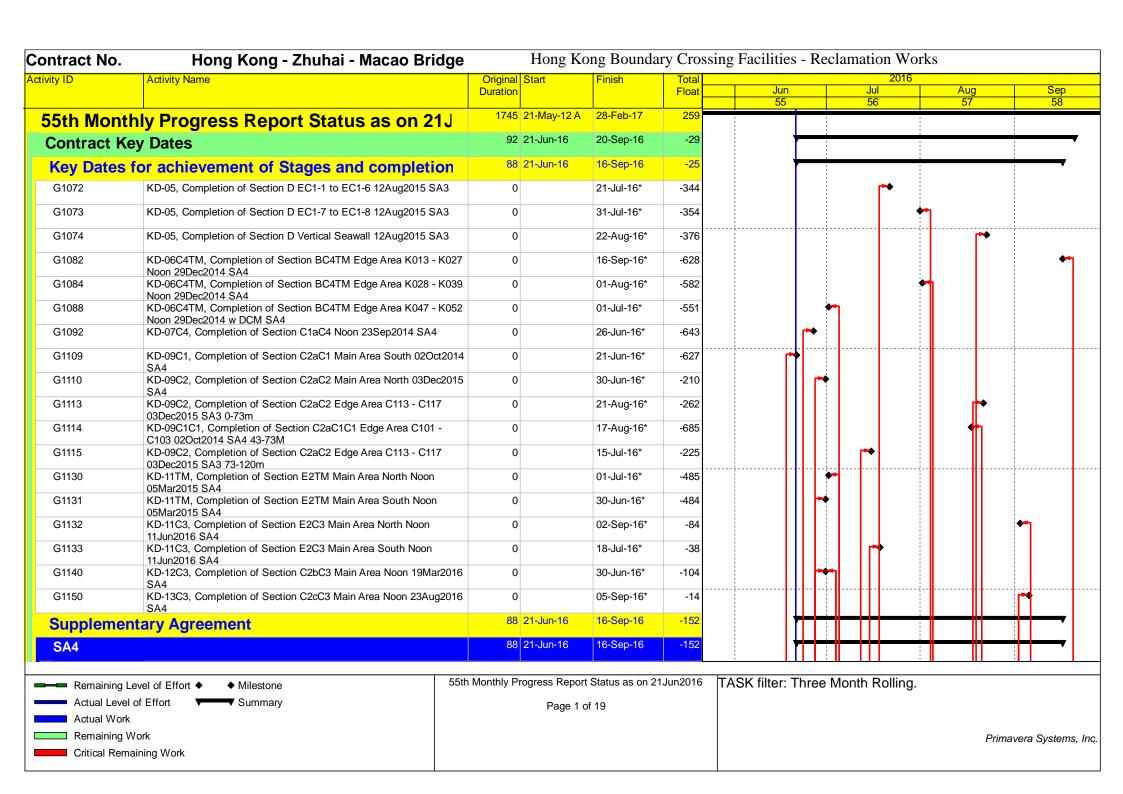
Project No.: 60249820 Date: July 2016


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

IES AECOM

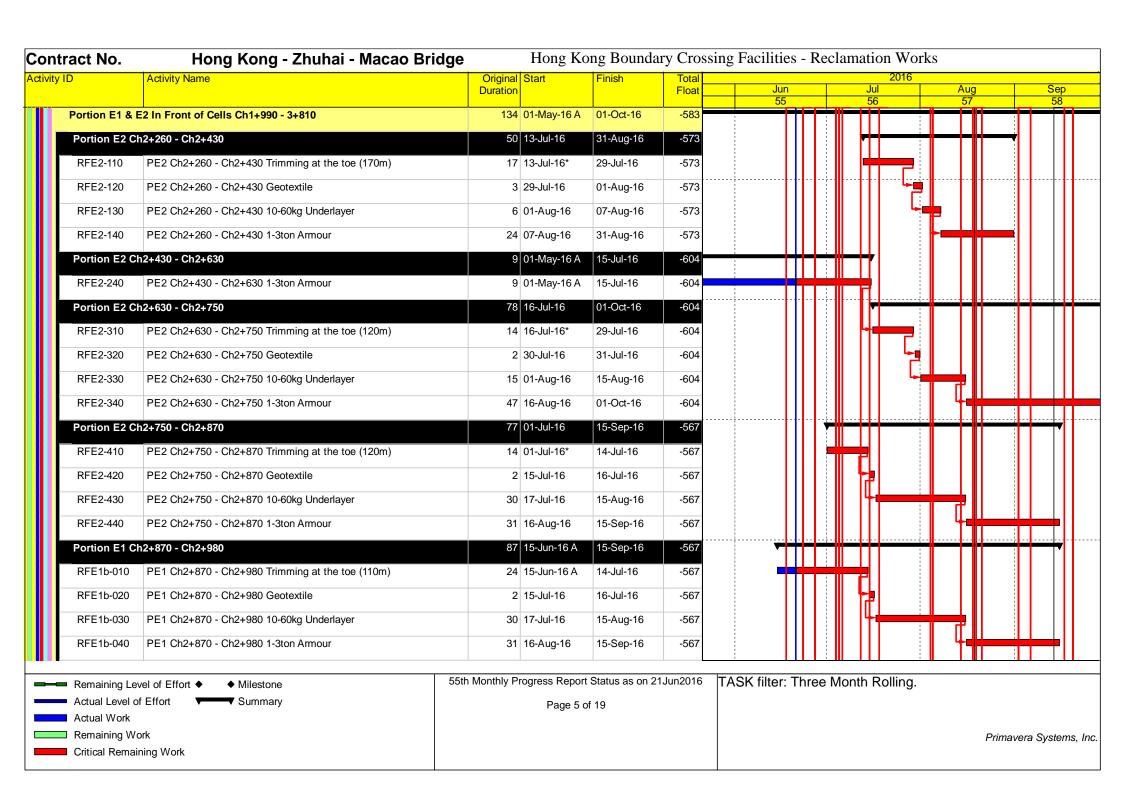
- RECLAMATION WORKS

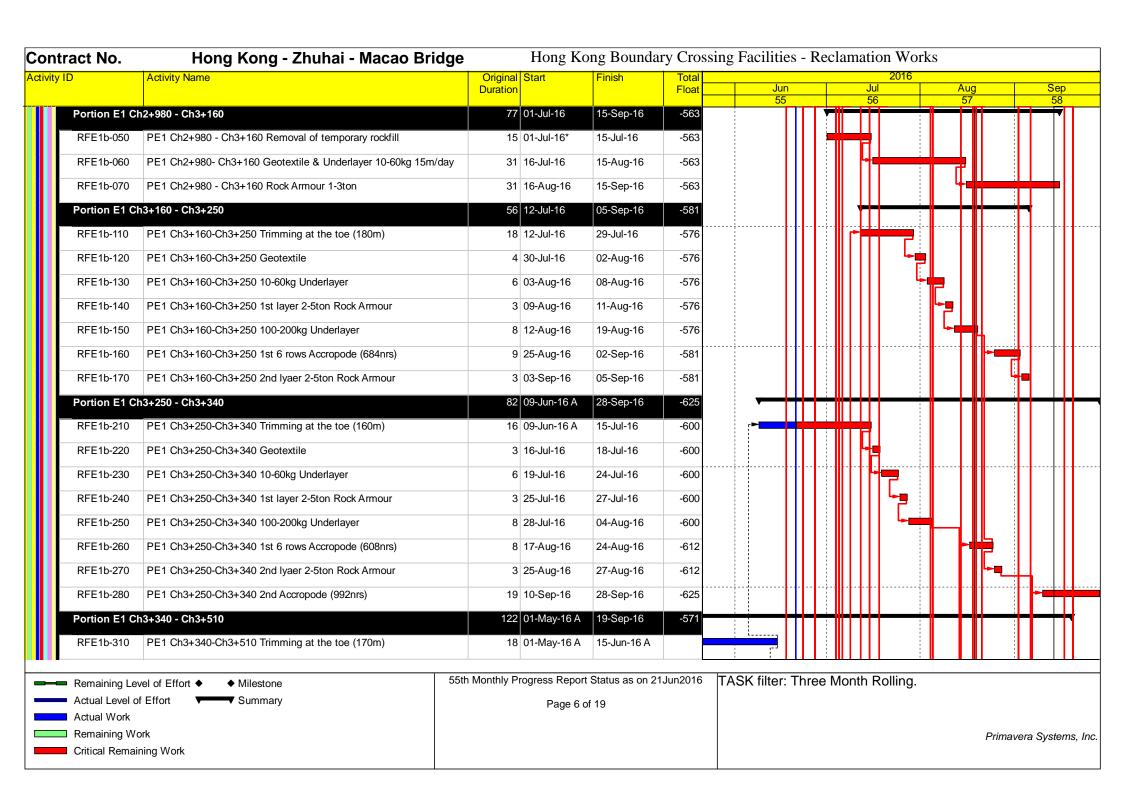
Environmental Complaint Handling Procedure


Project No.: 60249820 Date: July 2012 Figure 6

Project No.: 60249820 Date: April 2013

Contract Organisation for Environmental Works





ontract No.	Hong Kong - Zhuhai - Macao Bridg	je	nong K	ong Bounda	ry Cross	sing Fac	mues -	· Kec	amat	ion woi	CKS			
ctivity ID	Activity Name	Original S	Start	Finish	Total		lue			2016				000
		Duration			Float _		Jun 55			ul 6		lug 57		ep 58
SA4-KD06-050	KD-06C4TM Completion of Section BC4TM Noon 29Dec2014	0		16-Sep-16*	-628				П		T	П		**
SA4-KD07-020	KD-07C4 Completion of Section C1aC4 Noon 23Sep2014	0		26-Jun-16*	-643			◄						
SA4-KD09-010	KD-09C1C1 Completion of Section C2aC1C1 02Oct2014	0		17-Aug-16*	-685							•		
SA4-KD09-020	KD-09C1C3 Completion of Section C2aC1C3 Noon 20Dec2015	0		21-Jun-16*	-184		+					\parallel		
SA4-KD11-020	KD-11C8N Completion of Section E2C8N Noon 19Jan2016	0		30-Jun-16*	-164	!		-				\parallel		
SA4-KD11-030	KD-11C8S Completion of Section E2C8S Noon 23Feb2016	0		30-Jun-16*	-129			-				\parallel		
SA4-KD12-020	KD-12C8N Completion of Section C2bC8N Noon 14Jan2016	0		30-Jun-16*	-169			-				\parallel		
SA4-KD12-030	KD-12C8S Completion of Section C2bC8S Noon 14Jan2016	0		30-Jun-16*	-169			*						
SA4-KD13-020	KD-13C8E Completion of Section C2cC8E Noon 18Apr2016	0		05-Sep-16*	-141							\parallel		
SA4-KD13-030	KD-13C8W Completion of Section C2cC8W Noon 18Apr2016	0		09-Jul-16*	-83				 ~			\parallel		
Summary P	Programme	92 2	21-Jun-16	20-Sep-16	-29			1	Ш			#		_
Portion Sum	mary	92 2	?1-Jun-16	20-Sep-16	-29									_
Portion B		77 0)1-Jul-16	16-Sep-16	-724				Ш					7
SSA4-KD06-050	KD-06C4TM Completion of Section BC4TM 12Sept2014	0		16-Sep-16*	-736							\parallel		•
SSB-1082	KD-06C4TM, Completion of Section BC4TM Edge Area K013 - K0: 23Sep2014 SA4	27 0		16-Sep-16*	-724							\parallel		•
SSB-1084	KD-06C4TM, Completion of Section BC4TM Edge Area K028 - K0 23Sep2014 SA4	39 0		01-Aug-16*	-678						4	\parallel		
SSB-1088	KD-06C4TM, Completion of Section BC4TM Edge Area K047 - K0: 23Sep2014 w DCM SA4	52 0		01-Jul-16*	-647			•				\parallel		
Portion C		77 2	21-Jun-16	05-Sep-16	-14		T							
Portion C1a		0 2	26-Jun-16	26-Jun-16	-643			1				Ш		
SSA4-KD07-02	KD-07C4 Completion of Section C1aC4 22Sep2014	0		26-Jun-16*	-644			◄				\parallel		
SSC1a-1092	KD-07C4, Completion of Section C1aC4 22Sep2014 SA4	0		26-Jun-16*	-643			◄				\parallel		
Portion C2a		62 2	21-Jun-16	21-Aug-16	-247							- }		
SSA4-KD09-01	0 KD-09C1C1 Completion of Section C2aC1C1 30Sep2014	0		17-Aug-16*	-688							*#		
Danisis I	F	55th Monthly Pro	aress Renoi	rt Status as on 21	Llun2016	TASK f	iltor: Th	roo N	lonth	Rolling.				_
Remaining Le	The state of the s							ii CG IV	1011111	r coming.				
Actual Work	or Error. V Cummary		Page 2	or 19										
Remaining W	/ork											D=:	overe C:-	to
Critical Rema												PIIII	avera Sys	CITIS

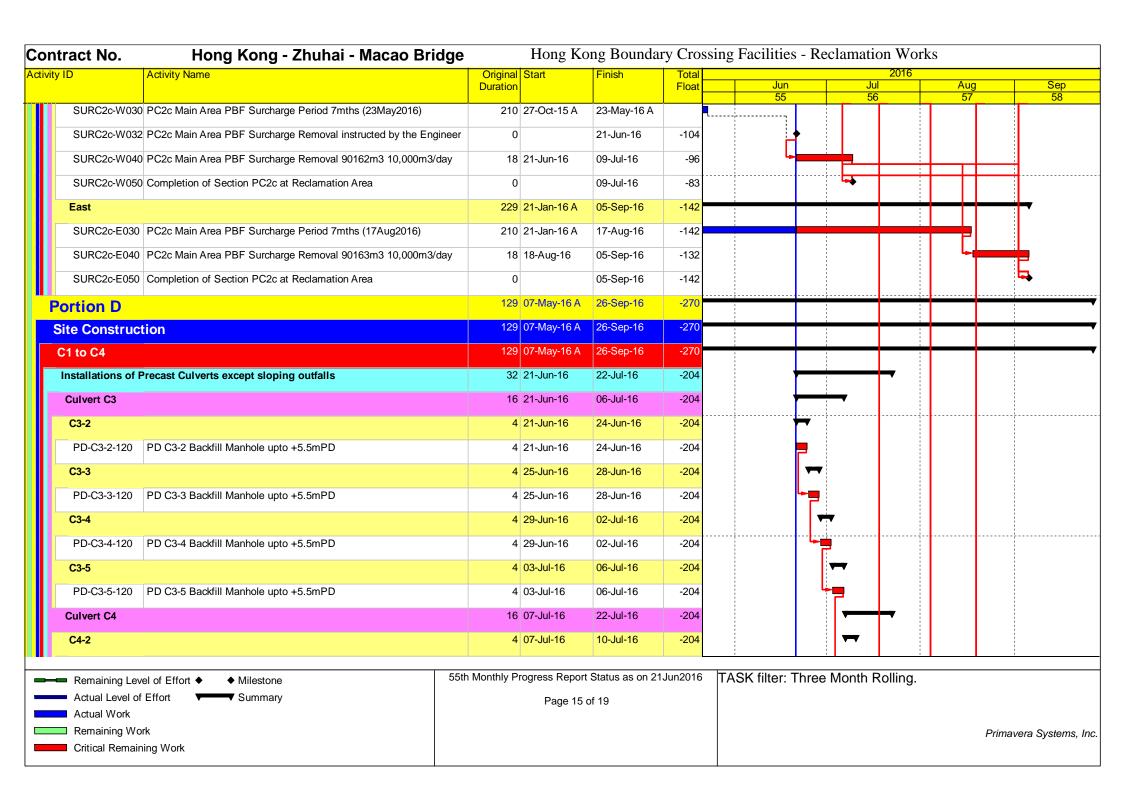
ntract No.	Hong Kong - Zhuhai - Macao Bridզ	•	ng Rong Dounda	ny Cros	sing Facilitie	s - IXCC	iaiiiai	IOH WOLK	72		
vity ID	Activity Name	Original Start Duration	Finish	Total _	Jun		J	2016	Aug	, I	Sep
		Duration		Float	55		5		57		58
SSA4-KD09-020	KD-09C1C3 Completion of Section C2aC1C3 19Dec2015	0	21-Jun-16*	-185	- 1	P	ПП				
SSC2a-1109	KD-09C1, Completion of Section C2aC1 Main Area South 30Sep2014 SA4	0	21-Jun-16*	-629	•	+					
SSC2a-1110	KD-09C2, Completion of Section C2aC2 Main Area North 30Sep20 SA4	014 0	30-Jun-16*	-639		│					
SSC2a-1113	KD-09C2, Completion of Section C2aC2 Edge Area C113 - C117 28Nov2015 SA3 0-73m	0	21-Aug-16*	-267						 	
SSC2a-1114	KD-09C1C1, Completion of Section C2aC1C1 Edge Area C101 - C103 30Sep2014 SA4 43-73M	0	17-Aug-16*	-687					•	1	
SSC2a-1115	KD-09C2, Completion of Section C2aC2 Edge Area C113 - C117 28Nov2015 SA3 73-120m	0	15-Jul-16*	-230			╟╶╟	•			
Portion C2b	201002013 3A3 73-12011	0 30-Jui	n-16 30-Jun-16	-104						1	
SSA4-KD12-020	KD-12C8N Completion of Section C2bC8N 13Jan2016	0	30-Jun-16*	-169							
SSA4-KD12-030	KD-12C8S Completion of Section C2bC8S 13Jan2016	0	30-Jun-16*	-169							
SSC2b-1140	KD-12C3, Completion of Section C2bC3 Main Area 18Mar2016 SA	A4 0	30-Jun-16*	-104							
Portion C2c		58 09-Jul	l-16 05-Sep-16	-14			╿╺ ┿┥				┥
SSA4-KD13-020	KD-13C8E Completion of Section C2cC8E 17Apr2016	0	05-Sep-16*	-142							 - -
SSA4-KD13-030	KD-13C8W Completion of Section C2cC8W 17Apr2016	0	09-Jul-16*	-83			 				
SSC2c-1150	KD-13C3, Completion of Section C2cC3 Main Area 22Aug2016 SA	A4 0	05-Sep-16*	-14							-
Portion D		32 21-Jul	l-16 22-Aug-16	-378			++	· · ·		•••	
SSD-1072	KD-05, Completion of Section D EC1-1 to EC1-6 10Aug2015 SA3	0	21-Jul-16*	-346				-			
SSD-1073	KD-05, Completion of Section D EC1-7 to EC1-8 10Aug2015 SA3	0	31-Jul-16*	-356				—	1		
SSD-1074	KD-05, Completion of Section D Vertical Seawall 10Aug2015 SA3	0	22-Aug-16*	-378				1		 	
Portion E		82 30-Ju	n-16 20-Sep-16	-102		+	╫╼┼				
Portion E2		82 30-Jui	n-16 20-Sep-16	-102							
SSA4-KD11-020	KD-11C8N Completion of Section E2C8N 18Jan2016	0	30-Jun-16*	-164		-					
SSA4-KD11-030	KD-11C8S Completion of Section E2C8S 22Feb2016	0	30-Jun-16*	-129		-	$\ \ \ $				
SSE2-1130	KD-11TM, Completion of Section E2TM Main Area North 05Feb20 SA4	15 0	01-Jul-16*	-512		•					
Remaining Lev	rel of Effort ◆	55th Monthly Progress	s Report Status as on 2	1Jun2016	TASK filter:	Three N	/lonth	Rolling.			
Actual Level of		F	Page 3 of 19								
Actual Work			-								
Remaining Wo	rk									Prima	vera System

vity ID	Activity Name	Origina							2016				
0		Duratio		Finish	Total Float	Jun			Jul		Aug		Sep
SSE2-1131	KD-11TM, Completion of Section E2TM Main Area South 05Feb201	15	0	30-Jun-16*	-511	55	11 1-4	TIT T	56		57 	П	58_
SSE2-1132	SA4 KD-11C3, Completion of Section E2C3 Main Area North 10Jun2016	;	0	02-Sep-16*	-84			₩+				•	
SSE2-1133	SA4 KD-11C3, Completion of Section E2C3 Main Area South 10Jun2016	3	0	18-Jul-16*	-38				 -				
SSE2-1136	SA4 KD-11TM, Completion of Section E2TM Edge C064-C067 05Feb20 SA4	15	0	20-Sep-16*	-593								ľ
Work Zone,	as defined in PS Clause 1.03(6)	46	2 25-Oct-15 A	22-Jan-17	296		+++	╫┼	H	-	┝╫─	++-	\dashv
Portion A, E	• • • • • • • • • • • • • • • • • • • •	46	2 25-Oct-15 A	22-Jan-17	296		╫┼	╫┼		-	╫─	+	-
Portion A, B,	C&E	46	2 25-Oct-15 A	22-Jan-17	296			╫∺					+
Seawall		42	7 09-Nov-15 A	08-Jan-17	310		╫┼	╫┼	\vdash	<u> </u>	┝╫─╴	++-	+
Optimizing Rub	ble Mound Seawalls	42	3 09-Nov-15 A	08-Jan-17	282		++++	╫┼	+-	+	┝╫─╴	-	+
Rock Armour		42	3 09-Nov-15 A	08-Jan-17	282		╫┼	╫┼		-	Н—	-	\dashv
Seawall Porti	on A C120-C134 Ch5+050 - Ch5+650	20	1 09-Nov-15 A	15-Aug-16	-76		╫┼	₩		+	-		
RFA0-010	PA at C118 - C134 Removal of Temporary Rockfill (170,000m3,	17	0 09-Nov-15 A	30-Jun-16	-58				+		∤-╢╂		
RFA0-020	1,500m3/day) PA at C118 - C134 Underlayer (21,600m3 1,000m3/day)	17	9 15-Nov-15 A	20-Jul-16	-64				┿┙		Ш		
RFA0-030	PA at C118 - C134 Rock Armour (1-3ton 30,840m3 & 0.3-1ton 14,466m3 244m3/day)	17	9 01-Dec-15 A	15-Aug-16*	-76					:	┢╣		
Seawall Porti	on B K013-K027 Ch0+450 - Ch1+100	11	4 17-Sep-16	08-Jan-17	268				Ш		Ш		+
RFB0-010	PB at K013 - K027 Removal of Temporary Rockfill (170,000m3, 1,500m3/day)	11	4 17-Sep-16	08-Jan-17	268						Ш		
Seawall Porti	on C2a C113-C119 Ch4+710 - Ch5+050	12	7 22-Aug-16	26-Dec-16	295			₩+	1				
RFC2a010	PC2a at C113 - C117 Removal of Temporary Rockfill (190,000m3, 1,500m3/day)	12	7 22-Aug-16	26-Dec-16	295						╽╟═		
Conforming Slo		32	1 16-Nov-15 A	01-Oct-16	409		╫┼	╫┤	\vdash		┌╫─		++
Rock Armour -	Before Surcharge Period	32	1 16-Nov-15 A	01-Oct-16	409		╫┼	╫┼			┌╫┼─		₩
ACP1-00030	Precasting Accropode (18,092nos), 90nos/day	26	5 16-Nov-15 A	09-Sep-16	-572		+++	₩					
Portion B At I	K028 - K039 (Ch1+102 - Ch1+600)	15	2 01-Dec-15 A	10-Jun-16 A		-		₩†	1-1	1			†- -
BF-RFB1-060	PB at K028 - K039 in front of cells Rock Armour 0.3-1ton 11,244m3 244m3/day	15	2 01-Dec-15 A	10-Jun-16 A	_								
	5	5th Monthly	Progress Repor	t Status as on 21		TASK filter:	Throo	Month	Polling				
Remaining Le	TOTAL THORE TO THINGSTORIE	oar worthing			150112010	TAGIN IIILEI.	111166	VIOLIT	i ixoiiiiig.				
Actual Work	. Commany		Page 4 o	DI 19									
Remaining W	ork										Prin	navera Sys	stem

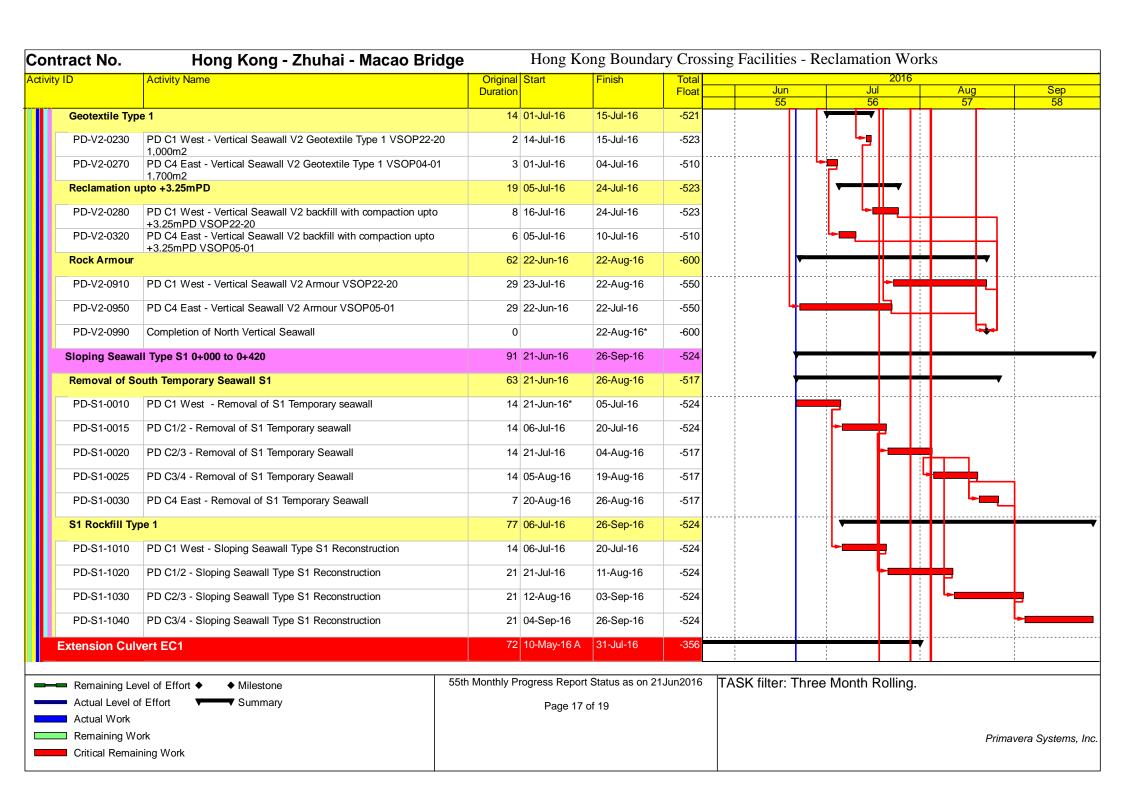
/ ID	Activity Name	Original		Finish	Total	lura.			2016	Λ			
		Duration			Float	Jun 55		Jul 56		Aug 57			Se 58
RFE1b-320	PE1 Ch3+340-Ch3+510 Geotextile	4	16-Jun-16 A	23-Jun-16	-591	,		ТПТ				П	Ī
RFE1b-330	PE1 Ch3+340-Ch3+510 10-60kg Underlayer	7	24-Jun-16	30-Jun-16	-591		┪═						
RFE1b-340	PE1 Ch3+340-Ch3+510 1st layer 2-5ton Rock Armour	3	01-Jul-16	03-Jul-16	-591								-
RFE1b-350	PE1 Ch3+340-Ch3+510 100-200kg Underlayer	8	04-Jul-16	11-Jul-16	-591		-	▝					
RFE1b-360	PE1 Ch3+340-Ch3+510 1st 6 rows Accropode (684nrs)	9	08-Aug-16	16-Aug-16	-618			$\parallel \parallel \parallel$	ŀ	-			
RFE1b-370	PE1 Ch3+340-Ch3+510 2nd Iyaer 2-5ton Rock Armour	3	17-Aug-16	19-Aug-16	-618			$\parallel \parallel \parallel$		-1	Щ		
RFE1b-380	PE1 Ch3+340-Ch3+510 2nd Accropode (1116nrs)	14	27-Aug-16	09-Sep-16	-625			$\parallel \parallel \parallel$					
RFE1b-390	PE1 Ch3+340-Ch3+510 3rd 2-5ton Rock Armour	10	10-Sep-16	19-Sep-16	-571								ŧ
Portion E1 C	ch3+510 - Ch3+810	100	21-May-16 A	28-Sep-16	-580		╂	╼┼┼┼			₩	 	┢
RFE1b-410	PE1 Ch3+510-Ch3+810 Trimming at the toe (200m)	20	21-May-16 A	07-Jul-16	-625			,					
RFE1b-420	PE1 Ch3+510-Ch3+810 Geotextile	4	08-Jul-16	11-Jul-16	-625								
RFE1b-430	PE1 Ch3+510-Ch3+810 10-60kg Underlayer	6	12-Jul-16	17-Jul-16	-625			L- - - - - - - - - - - - - - - - - - -					
RFE1b-440	PE1 Ch3+510-Ch3+810 1st layer 2-5ton Rock Armour	3	18-Jul-16	20-Jul-16	-625			┈┼┞╆			++		
RFE1b-450	PE1 Ch3+510-3+810 100-200kg Underlayer	8	21-Jul-16	28-Jul-16	-625			- ┡₁	-				
RFE1b-460	PE1 Ch3+510-3+810 1st 6 rows Accropode (760nrs)	10	29-Jul-16	07-Aug-16	-625			$\parallel \parallel \parallel$	L-				
RFE1b-470	PE1 Ch3+510-3+810 2nd lyaer 2-5ton Rock Armour	3	08-Aug-16	10-Aug-16	-625			$\parallel \parallel \parallel$	ŀ	-			
RFE1b-480	PE1 Ch3+510-3+810 2nd Accropode (1240nrs)	16	11-Aug-16	26-Aug-16	-625			$\parallel \parallel \parallel$		-			
RFE1b-490	PE1 Ch3+510-3+810 3rd 2-5ton Rock Armour	33	27-Aug-16	28-Sep-16	-580						-		ŧ
Portion E1 &	E2 on Cells C049 - C091	128	01-May-16 A	25-Sep-16	-577			┵				 	┢
Portion E2 C	049-C059	71	01-May-16 A	16-Sep-16	-589		╂	╫					┢
PFE2a-110	PE2 C049-C059 Trimming	24	01-May-16 A	15-Jul-16	-589			═╬╽					
PFE2a-120	PE2 C049-C059 Geotextile	6	16-Jul-16	21-Jul-16	-589			┞┼╪╕					
PFE2a-130	PE2 C049-C059 10-60kg Underlayer	20	22-Jul-16	10-Aug-16	-589			┈┼┼┡╸		7			
-													<u>_</u>
 Remaining Le 		55th Monthly P			1Jun2016	ASK filter: 1	nree M	ontn Ro	ıııng.				
Actual Level	of Effort ▼ Summary		Page 7 c	f 19									
Actual WorkRemaining W													

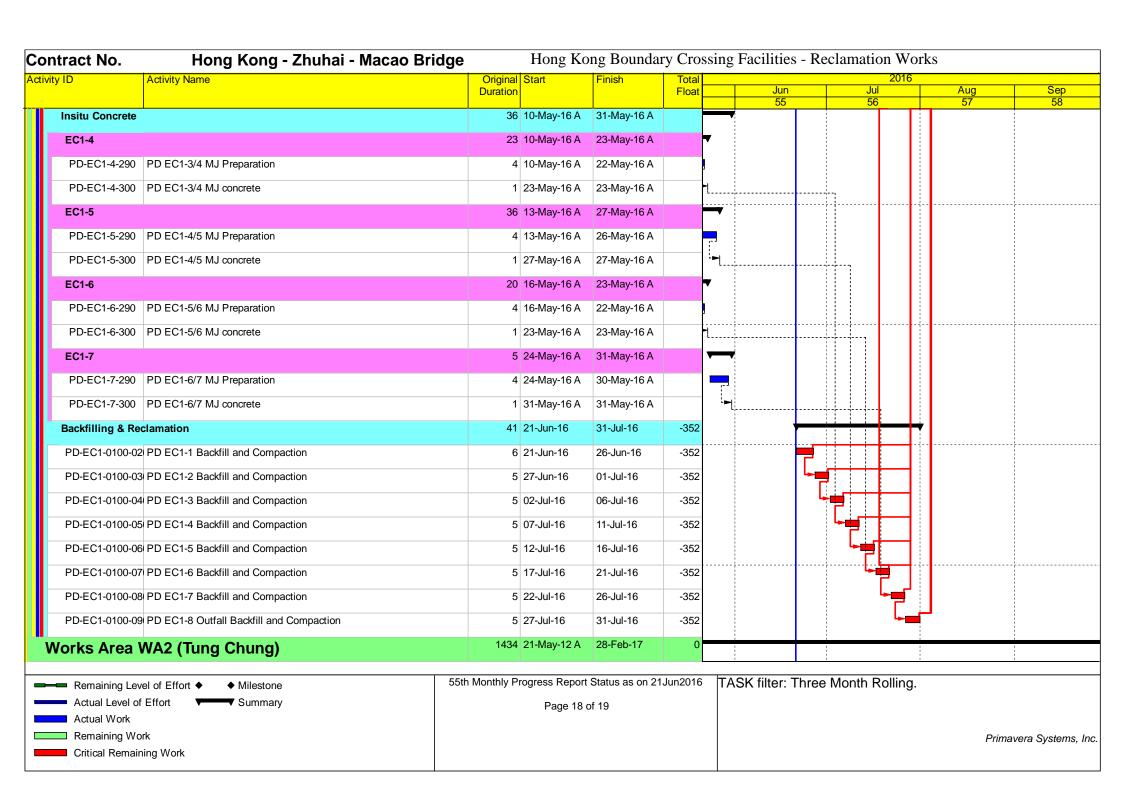
ntract N	0.	Hong Kong - Zhuhai - Macao B			ong Bounda		sing Fa	cilities -	Keci	amat		KS			
rity ID		Activity Name	Original Duration	Start	Finish	Total _ Float		Jun			2016 lul	Au	a	Se	an.
			Duration			Float		55			56	57		5	
PFE2a	a-140	PE2 C049-C059 2-5ton Rock Armour	37	11-Aug-16	16-Sep-16	-589						-			-
Portion	n E2 C0	060-C067 & E1 C068-C070	77	01-Jul-16	15-Sep-16	-588			—	Н				+	₹
RFE2a	a-210	PE2 C060-C067 & PE1 C068-C070 Trimming	24	01-Jul-16*	24-Jul-16	-588					+-				
RFE2a	a-220	PE2 C060-C067 & PE1 C068-C070 Geotextile	6	25-Jul-16	30-Jul-16	-588					└ -				
RFE2a	a-230	PE2 C060-C067 & PE1 C068-C070 10-60kg Underlayer	15	31-Jul-16	14-Aug-16	-588					┖╸				
RFE2a	a-240	PE2 C060-C067 & PE1 C068-C070 2-5ton Rock Armour	32	15-Aug-16	15-Sep-16	-588						╽╙		┿	
Portion	n E1 C0	 	45	12-Aug-16	25-Sep-16	-609						+		╂┼	+
RFE1a	a-110	PE1 C071-C076 Trimming	24	12-Aug-16*	04-Sep-16	-609								 	
RFE1a	a-120	PE1 C071-C076 Geotextile	6	05-Sep-16	10-Sep-16	-609								┡╪╸	ı
RFE1a	a-130	PE1 C071-C076 10-60kg Underlayer	15	11-Sep-16	25-Sep-16	-609								╽╽┖╾	4
Portion	n E1 C0	 	65	01-May-16 A	11-Aug-16	-609			+ +	$\vdash\vdash\vdash$		┩┩			
RFE1a	a-210	PE1 C077-C079 Trimming	6	01-May-16 A	30-Jun-16	-609			<u> </u>						
RFE1a	a-220	PE1 C077-C079 Geotextile	2	01-Jul-16	02-Jul-16	-609			-						
RFE1a	a-230	PE1 C077-C079 10-60kg Underlayer	10	03-Jul-16	12-Jul-16	-609			-						
RFE1a	a-240	PE1 C077-C079 2-5ton Rock Armour	30	13-Jul-16	11-Aug-16	-609						┸			
Portion	n E1 C0	 80-C085	20	19-May-16 A	07-Jul-16	-497			-	▼					
RFE1a	a-340	PE1 C080-C085 2-5ton Rock Armour	20	19-May-16 A	07-Jul-16	-497									
Portion	n E1 C0	 86-C091	103	01-May-16 A	31-Aug-16	-552				Н		-		,	
RFE1a	a-410	PE1 C086-C091 Trimming	12	01-May-16 A	15-Jul-16	-552					1			:	
RFE1a	a-420	PE1 C086-C091 Geotextile		16-Jul-16	18-Jul-16	-552									
RFE1a	a-430	PE1 C086-C091 10-60kg Underlayer	10	19-Jul-16	28-Jul-16	-552									
RFE1a		PE1 C086-C091 2-5ton Rock Armour		29-Jul-16	31-Aug-16	-552									
		C2b At C090 - C101 (Ch3+810 - Ch4+262)		28-Jan-16 A	31-Jul-16	23			44	Ш					
				2 (3)	7. 55 10									Ш	
Remain	ning Lev	vel of Effort ◆	55th Monthly P	rogress Report	Status as on 2	1Jun2016	TASK	filter: Th	ree M	1onth	Rolling.				
Actual L		f Effort ▼ Summary		Page 8 c	of 19										
Actual \		hele.												_	
Remain		ning Work											Prima	vera Syste	er

BF-RFC2c-2020 PC2c at C1091 - C101 on cells Geotesdile & Underlayer 10-60kg 12.393m3-200m3/dav BF-RFC2c-2030 PC2c at C1091 - C101 on cells Rock Armour 2-5ton m3 25771m3 148 04-Feb-16 A 04-Jul-16 50 BF-RFC2c-2060 PC2c at C1091 - C101 on cells Rock Armour 2-5ton m3 25771m3 148 04-Feb-16 A 04-Jul-16 50 BF-RFC2c-2060 PC2c at C1091 - C101 on cells Rock Armour 2-5ton 20,295m3 BF-RFC2c-2060 PC2c at C1091 - C101 on cells Rock Armour 2-5ton 20,295m3 BF-RFC2c-2010 PC2c at C1092 - C112 on cells Rock Armour 2-5ton 20,295m3 BF-RFC2c-2010 PC2c at C1092 - C112 on cells Rock Armour 2-5ton m3 25,210m3 BF-RFC2c-2020 PC2c at C1092 - C112 on cells Rock Armour 2-5ton m3 25,210m3 BF-RFC2c-2000 PC2c at C1092 - C112 on cells Rock Armour 2-5ton m3 25,210m3 BF-RFC2c-2000 PC2c at C1092 - C112 on cells Rock Armour 2-5ton m3 25,210m3 BF-RFC2c-2000 PC2c at C1092 - C112 on cells Rock Armour 2-5ton m3 25,210m3 BF-RFC2c-2000 PC2c at C1092 - C112 on cells Rock Armour 2-5ton m3 25,210m3 BF-RFC2c-2000 PC2c at C1092 - C112 on cells Rock Armour 2-5ton m3 25,210m3 BF-RFC2c-2000 PC2c at C1092 - C112 on cells Rock Armour 2-5ton 19,855m3 BF-RFC2c-2000 PC2c at C1092 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2c-2000 PC2c at C1092 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2c-2000 PC2c at C1092 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2c-2000 PC2c at C1092 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2c-2000 PC2c at C1092 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2c-2000 PC2c at C1092 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2c-2000 PC2c at C1092 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2c-2000 PC2c at C1092 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2c-2000 PC2c at C1092 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2c-2000 PC2c at C1092 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2c-2000 PC2c at C1092 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2c-2000 PC2c at C1092 - C112 in fro															
BF-RFC2e-020 PC2e at C029 - C101 on colts Geotechile & Underlayer 10-00kg BF-RFC2e-030 PC2e at C029 - C101 on colts Rock Armour 2-Storn m2 5771m3 180 4Feb-16 A 0-Jul-16 50 221-m3/dex BF-RFC2e-030 PC2e at C029 - C101 on colts Rock Armour 2-Storn	ity ID	Activity Name			Finish			Jun		Ju		A	lug		Sep
12.3933 300m3/dely	75.550							55		5	6		57		58
BF-RFC2e-080 C2ca at C102 - C112 on cells Renoval of temporary roddfill 41 21-Mar-16 A 31-Jul-16 23 24-Mar-16 A 15-Aug-16 410 45-Aug-16 410		12,393m3 200m3/day								-,					
Portion Cza At C102 - C112 (Ch4-262 - Ch4-710) 194 2 - Mar-16	BF-RFC2c-030		148	04-Feb-16 A	04-Jul-16	50	i			' ⁻			.		
BF-RFC2a-010 PC2a at C102 - C112 on cells Removal of temporary rockfill BF-RFC2a-020 PC2a at C102 - C112 on cells Geotestile & Undertayer 10-60kg BF-RFC2a-030 PC2a at C102 - C112 on cells Geotestile & Undertayer 10-60kg BF-RFC2a-030 PC2a at C102 - C112 on cells Rock Armour 2-5ton m3 25,210m3 BF-RFC2a-040 PC2a at C102 - C112 in front of cells Removal of temporary rockfill 32 21-Apr-16 A 31-Aug-16 471 33 1-827m3 BF-RFC2a-040 PC2a at C102 - C112 in front of cells Removal of temporary rockfill 33 21-Apr-16 A 31-Aug-16 471 33 1-827m3 BF-RFC2a-050 PC2a at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 46 16-Aug-16 31-Aug-16 2-98 BF-RFC2a-060 PC2a at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 46 16-Aug-16 31-Aug-16 2-98 BF-RFC2a-060 PC2a at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 46 16-Aug-16 31-Aug-16 2-98 BF-RFC2a-060 PC2a at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 46 16-Aug-16 32-89e 142 25-00-15A 15-8ep-16 32-89e 142 25-00-15A 15-8ep-16 32-89e 142 25-00-15A 15-8ep-16 32-89e 142 25-00-15A 15-8ep-16 32-89e 142 32-99e 142 32-	BF-RFC2c-060		3 92	21-Apr-16 A	31-Jul-16	23				-					
BF-RFC2a-020 PC2a at C102 - C112 on cells Geotextile & Underlayer 10-60kg	Portion C2a At	C102 - C112 (Ch4+262 - Ch4+710)	194	21-Mar-16 A	30-Sep-16	410		-111	1	╫					$\dashv \uparrow$
BF-RFC2a-303 PC2a at C102 - C112 on cells Rock Armour 2-5ton m3 25,210m3 22 m3/dev BF-RFC2a-3040 PC2a at C102 - C112 in front of cells Removal of temporary rockfill 32 21-Apr-16 A 31-Jul-16 37 21-Jul-16 38 31-Jul-16 471 471 471 471 471 471 471 4	BF-RFC2a-010	PC2a at C102 - C112 on cells Removal of temporary rockfill	41	21-Mar-16 A	15-Aug-16	456	i			\blacksquare			اد		
BF-RFC2a-030 PC2c at C102 - C112 on cells Rock Armour 2-5ton m3 25,210m3 BF-RFC2a-040 PC2c at C102 - C112 in front of cells Removal of temporary rockfill 31.987m3 BF-RFC2a-050 PC2c at C102 - C112 Accropade 5,226ms 60ms/day BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RF	BF-RFC2a-020		55	21-Apr-16 A	31-Aug-16	-283		-		+				= -	\dashv
BF-RFC2a-040 PC2a at C102 - C112 in front of cells Removal of temporary rockfill 31,997m3 BF-RFC2a-050 PC2a at C102 - C112 Accropode 5,228ns 60nrs/day BF-RFC2a-050 PC2a at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 BF-RFC2a-050 PC2a at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 46 16-Aug-16 30-Sep-16 -298 Surcharge 462 25-Oct-15 A 16-Sep-16 -625 SurR80-090 Completion of Section B in Edge Areas 326 27-Oct-15 A 16-Sep-16 -625 SurR80-090 Completion of Section B in Edge Areas 0 16-Sep-16 -625 SurR80-090 PB Edge Area K013-K027 Sand Surcharge Period at +11.5mPD 240 09-Jan-16 A 04-Sep-16 -736 SuEB0-090 PB Edge Area K013-K027 Sand Surcharge Removal 84,258m3 + 11 05-Sep-16 16-Sep-16 -676 20,889m3(cal) 10,000m3/day SuEB0-100 PB Edge Area K013-K027 Completion (Target Date = 31Dec2014) 0 16-Sep-16 -736 SuEB0-090 PB Edge Area K013-K027 Completion (Target Date = 31Dec2014) 0 16-Sep-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 -690 SuEB0-100 PB Edge Ar	BF-RFC2a-030	PC2a at C102 - C112 on cells Rock Armour 2-5ton m3 25,210m3	57	21-Jul-16	15-Sep-16	-283									-
BF-RFC2a-050 PC2a at C102 - C112 Accropode 5,226nrs 60nrs/day BF-RFC2a-060 PC2c at C102 - C112 in front of cells Rock Armour 2-5ton 19,855m3 46 16-Aug-16 30-Sep-16 - 298 Surcharge 462 25-Oct-15 A 22-Jan-17 153 Land Portion B 326 27-Oct-15 A 16-Sep-16 6-25 SURB0-090 Completion of Section B in Edge Areas 326 27-Oct-15 A 16-Sep-16 6-25 SURB0-090 PB Edge Area K013-K027 Sand Surcharge Period at +11.5mPD 240 09-Jan-16 A 04-Sep-16 736 SUEB0-040 PB Edge Area K013-K027 Sand Surcharge Removal 84,258m3 + 11 05-Sep-16 16-Sep-16 6-736 SUEB0-050 PB Edge Area K013-K027 Completion (Target Date = 31Dec2014) at K02a - K035 SUEB0-090 PB Edge Area K028-K035 Sand Surcharge Period +11.5mPD 5mths 150 20-Feb-16 A 18-Jul-16 6-990 SUEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 19-Jul-16 6-59 SUEB0-101 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 01-Aug-16 6-990 SUEB0-101 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 6-690 SUEB0-101 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 6-690 SUEB0-101 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 6-690 SUEB0-102 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 6-690 SUEB0-104 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 6-690 SUEB0-107 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 6-690 SUEB0-108 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 6-690 SUEB0-109 PB Edge Area K028-K035 Sompletion (Target Date = 31Dec2014) At K047 - K052 (w Deep Cement Mixing) 55th Monthly Progress Report Status as on 21Jun2016 Page 9 of 19	BF-RFC2a-040	PC2a at C102 - C112 in front of cells Removal of temporary rockfill	32	21-Apr-16 A	31-Jul-16	471					-				
Surcharge Land Portion B 326 27-Oct-15A 16-Sep-16 6-25 Edge Areas 326 27-Oct-15A 16-Sep-16 6-25 SURBO-090 Completion of Section B in Edge Areas 326 27-Oct-15A 16-Sep-16 6-25 SURBO-090 Completion of Section B in Edge Areas 326 27-Oct-15A 16-Sep-16 6-25 327 Oct-15A 16-Sep-16 6-25 328 27-Oct-15A 18-Jul-16 6-89 329 27-Oct-15A 18-Ju	BF-RFC2a-050		87	17-May-16 A	31-Aug-16	-298		-	:	╫				- ↓↓	
Surcharge 462 25-Oct-15 A 22-Jan-17 -153			3 46	16-Aug-16	30-Sep-16	-298				Ш				+	-
Edge Areas SURB0-090 Completion of Section B in Edge Areas 0 16-Sep-16 -625 at K013 - K027 252 09-Jan-16 A 16-Sep-16 -736 SUEB0-040 PB Edge Area K013-K027 Sand Surcharge Period at +11.5mPD 240 09-Jan-16 A 04-Sep-16 -736 SUEB0-050 PB Edge Area K013-K027 Sand Surcharge Removal 84,258m3 + 11 05-Sep-16 16-Sep-16 -676 20.88m3/C1a) 10.00m3/dav SUEB0-120 PB Edge Area K013-K027 Completion (Target Date = 31Dec2014) 0 16-Sep-16 -690 at K028 - K035 164 20-Feb-16 A 18-Jul-16 -690 SUEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 01-Aug-16 -690 SUEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 01-Aug-16 -690 SUEB0-110 PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) 0 01-Aug-16 -690 at K047 - K052 (w Deep Cement Mixing) 249 27-Oct-15 A 01-Jul-16 -659 TASK filter: Three Month Rolling.		-22 III.3/uay	462	25-Oct-15 A	22-Jan-17	-153			╅╫	╫				-	┿
SURB0-090 Completion of Section B in Edge Areas 0 16-Sep-16* -625 at K013 - K027 252 09-Jan-16 A 16-Sep-16 -736 SUEB0-040 PB Edge Area K013-K027 Sand Surcharge Period at +11.5mPD 240 09-Jan-16 A 04-Sep-16 -736 SUEB0-050 PB Edge Area K013-K027 Sand Surcharge Removal 84,258m3 + 11 05-Sep-16 16-Sep-16 -676 20.880m3(C1a) 10,000m3/dav SUEB0-120 PB Edge Area K013-K027 Completion (Target Date = 31Dec2014) 0 16-Sep-16* -736 at K028 - K035 SUEB0-090 PB Edge Area K028-K035 Sand Surcharge Period +11.5mPD 5mths 150 20-Feb-16 A 18-Jul-16 -690 SUEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 01-Aug-16 -633 14,904m3 5,000m3/dav SUEB0-110 PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) 0 01-Aug-16* -690 at K047 - K052 (w Deep Cement Mixing) 249 27-Oct-15 A 01-Jul-16 -659 TASK filter: Three Month Rolling. Page 9 of 19	Land Portion B		326	27-Oct-15 A	16-Sep-16	-625	 		-						+
at K013 - K027 SUEB0-040 PB Edge Area K013-K027 Sand Surcharge Period at +11.5mPD 8mths (4Sep2016) SUEB0-050 PB Edge Area K013-K027 Sand Surcharge Removal 84,258m3 + 11 05-Sep-16 16-Sep-16 -676 20.880m3(C1a) 10.000m3/dav SUEB0-120 PB Edge Area K013-K027 Completion (Target Date = 31Dec2014) at K028 - K035 SUEB0-100 PB Edge Area K028-K035 Sand Surcharge Period +11.5mPD 5mths 150 20-Feb-16 A 18-Jul-16 -690 SUEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 01-Aug-16 -633 14,904m3 5,000m3/dav SUEB0-110 PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) at K047 - K052 (w Deep Cement Mixing) SUEB0-110 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 12 19-Jul-16 01-Aug-16 -659 TASK filter: Three Month Rolling. Page 9 of 19	Edge Areas		326	27-Oct-15 A	16-Sep-16	-625		╼┼┼┼	╂╬╫	╫		┪	╫─	-	\dashv
SUEB0-040 PB Edge Area K013-K027 Sand Surcharge Period at +11.5mPD 240 09-Jan-16 A 04-Sep-16 -736 3mths (4Sep2016) SUEB0-050 PB Edge Area K013-K027 Sand Surcharge Removal 84,258m3 + 11 05-Sep-16 16-Sep-16 -676 20.880m3(C1a) 10.000m3/dav SUEB0-120 PB Edge Area K013-K027 Completion (Target Date = 31Dec2014) 0 16-Sep-16 -736 3t K028 - K035 3mt K028 - K035 Sand Surcharge Period +11.5mPD 5mths 150 20-Feb-16 A 18-Jul-16 -690 3UEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 01-Aug-16 -633 14.904m3 5.000m3/dav SUEB0-110 PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) 0 01-Aug-16 -659 3t K047 - K052 (w Deep Cement Mixing) 249 27-Oct-15 A 01-Jul-16 -659 3t Monthly Progress Report Status as on 21Jun2016 TASK filter: Three Month Rolling. Actual Level of Effort ★ Milestone Summary Summary Septimary	SURB0-090	Completion of Section B in Edge Areas	0		16-Sep-16*	-625				Ш					+
8mths id-Sep2016) SUEB0-050 PB Edge Area K013-K027 Sand Surcharge Removal 84,258m3 + 11 05-Sep-16 16-Sep-16 -676 20,880m3(C1a) 10,000m3/day SUEB0-120 PB Edge Area K013-K027 Completion (Target Date = 31Dec2014) 0 16-Sep-16 -736 at K028 - K035 SUEB0-90 PB Edge Area K028-K035 Sand Surcharge Period +11.5mPD 5mths 150 20-Feb-16 A 18-Jul-16 -690 SUEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 01-Aug-16 -633 14,904m3 5,000m3/day SUEB0-110 PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) 0 01-Aug-16 -690 at K047 - K052 (w Deep Cement Mixing) SUEB0-110 PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) TASK filter: Three Month Rolling. Page 9 of 19	at K013 - K027		252	09-Jan-16 A	16-Sep-16	-736			╂┊╫	╫		┪		+	-
SUEB0-050 PB Edge Area K013-K027 Sand Surcharge Removal 84,258m3 + 20,880m3(C1a) 10,000m3/day 11 05-Sep-16 16-Sep-16 -676 -676 SUEB0-120 PB Edge Area K013-K027 Completion (Target Date = 31Dec2014) 0 16-Sep-16* -736 -736 at K028 - K035 164 20-Feb-16 A 01-Aug-16 -690 -690 SUEB0-090 PB Edge Area K028-K035 Sand Surcharge Period +11.5mPD 5mths 150 20-Feb-16 A 18-Jul-16 -690 18-Jul-16 -690 SUEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 01-Aug-16 -633 14,904m3 5,000m3/day -633 SUEB0-110 PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) 0 01-Aug-16* -690 at K047 - K052 (w Deep Cement Mixing) 249 27-Oct-15 A 01-Jul-16 -659 TASK filter: Three Month Rolling. Page 9 of 19	SUEB0-040		240	09-Jan-16 A	04-Sep-16	-736		-++		┿			#	- 	
SUEB0-120 PB Edge Area K013-K027 Completion (Target Date = 31Dec2014) 0 16-Sep-16* -736 at K028 - K035 164 20-Feb-16 A 01-Aug-16 -690 SUEB0-090 PB Edge Area K028-K035 Sand Surcharge Period +11.5mPD 5mths 150 20-Feb-16 A 18-Jul-16 -690 SUEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 01-Aug-16 -633 SUEB0-110 PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) 0 01-Aug-16* -690 at K047 - K052 (w Deep Cement Mixing) 249 27-Oct-15 A 01-Jul-16 -659 Remaining Level of Effort ◆ Milestone Actual Level of Effort ▼ Summary Page 9 of 19	SUEB0-050	PB Edge Area K013-K027 Sand Surcharge Removal 84,258m3 +	11	05-Sep-16	16-Sep-16	-676				+	-				
SUEB0-090 PB Edge Area K028-K035 Sand Surcharge Period +11.5mPD 5mths 150 20-Feb-16 A 18-Jul-16 -690 SUEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 14,904m3 5,000m3/day 13 19-Jul-16 01-Aug-16 -633 SUEB0-110 PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) 0 01-Aug-16* -690 at K047 - K052 (w Deep Cement Mixing) 249 27-Oct-15 A 01-Jul-16 -659 TASK filter: Three Month Rolling. Page 9 of 19	SUEB0-120		0)	16-Sep-16*	-736				Ш					#
SUEB0-100 PB Edge Area K028-K035 Sand Surcharge Removal 49,985m3 + 13 19-Jul-16 01-Aug-16 -633 14,904m3 5,000m3/day SUEB0-110 PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) 0 01-Aug-16* -690 01-Aug-16* -659 at K047 - K052 (w Deep Cement Mixing) 249 27-Oct-15 A 01-Jul-16 01-Aug-16* -659 Remaining Level of Effort ◆ Milestone Actual Level of Effort ▼ Summary 55th Monthly Progress Report Status as on 21Jun2016 Page 9 of 19 TASK filter: Three Month Rolling.	at K028 - K035		164	20-Feb-16 A	01-Aug-16	-690	i		╅	╫		▼			
14,904m3 5,000m3/day SUEB0-110 PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) 0 01-Aug-16* -690 at K047 - K052 (w Deep Cement Mixing) 249 27-Oct-15 A 01-Jul-16 -659 TASK filter: Three Month Rolling. Page 9 of 19	SUEB0-090	PB Edge Area K028-K035 Sand Surcharge Period +11.5mPD 5mth	ns 150	20-Feb-16 A	18-Jul-16	-690		┿		┵					
SUEB0-110 PB Edge Area K028-K035 Completion (Target Date = 31Dec2014) 0 01-Aug-16* -690 at K047 - K052 (w Deep Cement Mixing) 249 27-Oct-15 A 01-Jul-16 -659 Remaining Level of Effort Milestone Status as on 21Jun2016 Page 9 of 19 TASK filter: Three Month Rolling.	SUEB0-100		13	19-Jul-16	01-Aug-16	-633				┈╟	-		#	+	\dashv
Remaining Level of Effort Milestone Actual Level of Effort Summary Summary 55th Monthly Progress Report Status as on 21Jun2016 Page 9 of 19	SUEB0-110		0		01-Aug-16*	-690				+	-	4	+	+	\dashv
Actual Level of Effort ✓ Summary Page 9 of 19	at K047 - K052 ((w Deep Cement Mixing)	249	27-Oct-15 A	01-Jul-16	-659		┵	╇╢	Ш					
Actual Level of Effort ✓ Summary Page 9 of 19							İ			Ш			Щ_		
Actual Level of Effort ✓ Summary Page 9 of 19	Remaining Leve	el of Effort ♦ ♦ Milestone	55th Monthly P	rogress Report	Status as on 21	Jun2016	TASK fil	ter: Thr	ее Мо	onth I	Rolling.				
, ago 5 61 15	•			Page 0 o	of 10						J				
		.,		rage 9 0	19										
Remaining Work Primavera Sy.		et											D.:		.


ity ID	Activity Name	Original	Start	Finish	Total	2016
,	Northly Name	Duration	Otan	T II II GIT	Float	
DCM-2070	PB Edge Area K047-K052 36-73m Surcharge Period 7mths (23May2016)	210	27-Oct-15 A	23-May-16 A		• · · · · · · · · · · · · · · · · · · ·
DCM-2072	PB Edge Area K047-K052 36-73m Surcharge Removal instructed by the Engineer	0		27-Jun-16*	-660	
DCM-2080	PB Edge Area K047-K052 36-73m Surcharge Removal 20,000m3	5	27-Jun-16	01-Jul-16	-605	Ĭ <u>Ĭ</u>
DCM-2090	PB Edge Area K047-K052 Completion (Target Date = 31Dec2014)	0		01-Jul-16*	-659	
Land Portion C	2a	462	25-Oct-15 A	28-Dec-16	-128	
Edge Areas		442	14-Nov-15 A	28-Dec-16	-396	▎
Deep Cement	Mixing Works at C101 - C103	245	17-Dec-15 A	17-Aug-16	-688	▎
DCM-3070	PC2a Edge Area C101-C103 Surcharge Period 8mths (Land Side) (12Aug2016)	240	17-Dec-15 A	12-Aug-16	-688	▗▗
DCM-3080	PC2a Edge Area C101-C103 Surcharge Removal 36,000m3	5	13-Aug-16	17-Aug-16	-688	
DCM-3090	PC2a Edge Area C101-C103 Completion at 43-73m	0		17-Aug-16*	-688	
VO - Deep Ce	ment Mixing Works at C104 - C107	240	13-Mar-16 A	07-Nov-16	-599	▎
DCM-4180	PC2a Edge Area C104-C107 Surcharge Period 8mths (Land Side)(07Nov2016)	240	13-Mar-16 A	07-Nov-16	-599	
VO - Deep Ce	ment Mixing Works at C108 - C109	240	21-Mar-16 A	15-Nov-16	-604	
DCM-5180	PC2a Edge Area C108-C109 Surcharge Period 8mths (Land Side) 15Nov2016	240	21-Mar-16 A	15-Nov-16	-604	
at C110 - C112	2 Cellular Seawall	240	03-May-16 A	28-Dec-16	-647	
VO - Deep Co	ement Mixing Works at C110 - C112	240	03-May-16 A	28-Dec-16	-647	
DCM-4280	PC2a Edge Area C110-C112 Surcharge Period 8mths (Land Side) 29Dec2016	240	03-May-16 A	28-Dec-16	-647	
CH4+710 - CH	5+110 Rubble Mound Seawall	438	14-Nov-15 A	25-Dec-16	-393	\
Deep Cemen	t Mixing at CH4+710 - CH4+880	240	30-Apr-16 A	25-Dec-16	-399	
DCM-5070	PC2a Ch4+710 - Ch4+880 Surcharge Monitoring 8mths (25Dec2016)	240	30-Apr-16 A	25-Dec-16	-399	
10-73m Ch4-	.880 - Ch5+010	245	21-Dec-15 A	21-Aug-16	-267	▎
SUEC2a-112	PC2a Ch4+880 - Ch5+010 Surcharge Sand Period 8mths (16Aug2016)	240	21-Dec-15 A	16-Aug-16	-267	゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚
SUEC2a-113	0 PC2a Ch4+880 - Ch5+010 Surcharge Sand Removal 24,000m3 5.000m3/day	5	17-Aug-16	21-Aug-16	-244	
_		Monthly	rogross Bonor	Status as on 21	lun2016	TACK filter: Three Month Dalling
Remaining Le	VOI OI ENOR V VIIIIOSCONO	i iviorithly P			Julizulo	TASK filter: Three Month Rolling.
Actual Level Actual Work	of Effort ✓ Summary		Page 10	of 19		
Remaining W	ork					Primavera Syst
_	ining Work					Fillilavera Syst

ID	Activity Name	Original	Start	Finish	Total				2016			
		Duration			Float	Jun 55		Jul 56		Aug 57		Se 58
SUEC2a-114	Completion of Section PC2aC2 at Ch4+880 - Ch5+010	0		21-Aug-16	-267	35_				3/ 		- 50
73-120m		245	14-Nov-15 A	15-Jul-16	-230							
SUEC2a-209	PC2a C113-C117 73m-120m Surcharge Sand Period 8mths	240	14-Nov-15 A	10-Jul-16	-230							
SUEC2a-210	(10Jul2016) 0 PC2a C113-C117 73m-120m Sand Surcharge Removal 54,000m3 10.000m3/day	5	11-Jul-16	15-Jul-16	-210			┡				
SUEC2a-211	0 Completion of Section PC2aC2 at C113 - C117 73m-120m	0		15-Jul-16	-230			╟┾╢				
Reclamation A	reas	262	25-Oct-15 A	12-Jul-16	41							
C2aC1		262	25-Oct-15 A	12-Jul-16	41							
SURC2aC1-0	CPC2a C2aC1 Sand Surcharge Period 8mths (20Jun2016)	240	25-Oct-15 A	20-Jun-16 A	_	-3						
SURC2aC1-0	PC2a C2aC1 Sand Surcharge Completed by the instruction from the Engineer	0		21-Jun-16	-630	_						
SURC2aC1-08	C PC2a C2aC1 Top up to +11.5mPD 193,082m3 10,000m3/day for completion	19	21-Jun-16	12-Jul-16	35	-						
SURC2aC1-09	C Completion of Section PC2a in C2aC1 Main Areas	0		21-Jun-16	-630							
C2aC2		10	21-Jun-16	30-Jun-16	-639	•	/					
SURC2aC2-0	PC2a C2aC2 Sand Surcharge Removal instruction by the Engineer	0	21-Jun-16		-639	_						
SURC2aC2-08	RC PC2a C2aC2 Sand Surcharge Removal	10	21-Jun-16	30-Jun-16	-639	Ļ	++-					
SURC2aC2-09	Completion of Section PC2a in C2aC2 Main Areas	0		30-Jun-16	-639		=					
Land Portion C	1a	6	21-Jun-16	26-Jun-16	-644		77					
Reclamation A	reas	6	21-Jun-16	26-Jun-16	-644	•						
C4		6	21-Jun-16	26-Jun-16	-644	•						
SURC1a-152	PC1a South Sand Surcharge Removal instruction by the Engineer	0	21-Jun-16		-645	_						
SURC1a-160	PC1a South East Land Area Sand Surcharge Removal	3	21-Jun-16	23-Jun-16	-591	L_						
SURC1a-170	PC1a South West Land Area Sand Surcharge Removal	3	24-Jun-16	26-Jun-16	-591	 	-					
SURC1a-180	Completion of Section C1aC4	0		26-Jun-16	-644		7					
Land Portion E	2	368	21-Jan-16 A	22-Jan-17	-226						#	
	551	h Monthly P	rogress Report	Status as on 21	1 lun2016	TASK filter: 1	Throo N	lonth Do	lling	•		
Remaining LeActual Level of	TOTAL ETION V TAMOSTORIO		Page 11		. 54112010	TAOK IIILEI. I	THEE IV	ionui ixu	ming.			
Actual Work	•		i aye i i	01 10								


y ID	Activity Name	Original		Finish	Total			2016		
		Duration	ו		Float _	Jun 55	Jul 56		Aug 57	Sep 58
North Part		368	21-Jan-16 A	22-Jan-17	-226					
Edge Areas -	North (C3)	299	30-Mar-16 A	22-Jan-17	-229					
SUEE2-350	PE2 North Edge C3 Sand Surcharge Period as +8.5mPD 4.5mths	135	30-Mar-16 A	11-Aug-16	-229				<u> </u>	
SUEE2-360	(11Aug2016) PE2 North Edge C3 Sand Surcharge CPT Test	10	12-Aug-16	21-Aug-16	-229				L-	
SUEE2-370	PE2 North Edge C3 Sand Surcharge Laying up to +11.5mPD	4	22-Aug-16	25-Aug-16	-196				-	
SUEE2-380	18.248m3 5.000m3/dav PE2 North Edge C3 Sand Surcharge Period as +11.5mPD 5mths	150	26-Aug-16	22-Jan-17	-229				l _►	
Edge Areas -	North (TM)	150	21-Apr-16 A	20-Sep-16	-593				_	++-+
SUEE2-480	PE2 North Edge TM Sand Surcharge Period as +11.5mPD 5mths	150	21-Apr-16 A	17-Sep-16	-593					
SUEE2-490	(17Sep2016) PE2 North Edge TM Sand Surcharge Removal 14,600m3 5.000m3/day	3	18-Sep-16	20-Sep-16	-543					
Edge Areas -	East (TM) C064-C067	150	21-Apr-16 A	20-Sep-16	-593					+
SUEE2-150	PE2 East Edge C064-C067 Sand Surcharge Period as +11.5mPD 5mths (17Sep2016)	150	21-Apr-16 A	17-Sep-16	-593		;	;		++
SUEE2-160	PE2 East Edge C064-C067 Sand Surcharge Removal 14,600m3 5.000m3/day	3	18-Sep-16	20-Sep-16	-543					
Land Areas -	East (TM) C057 - C063 Ch2+300 to Ch2+600	11	21-Jun-16	01-Jul-16	-512		7			
SURE2-055	PE2 Land C057-C063 Removal of Surcharge instructed by the Engineer	C	21-Jun-16*		-512					
SURE2-060	PE2 Land C057-C063 Tunnel Sand Surcharge Removal at tunnel area 107,437m3 10,000m3/day	11	21-Jun-16	01-Jul-16	-468	└				
Land Areas -		226	21-Jan-16 A	02-Sep-16	-84					-
SURE2-180	PE2 Land C061-C064 Non-Tunnel Sand Surcharge Period as +11.5mPD non tunnel area 7mths 17Aug2016	210	21-Jan-16 A	17-Aug-16	-84					
SURE2-190	PE2 Land C061-C064 Non-Tunnel Sand Surcharge Removal non tunnel Area 147,437m3 10,000m3/day	15	18-Aug-16	02-Sep-16	-78				-	
SURE2-299	Completion of Section PE2 in Land C061-C064 Non-tunnel Reclamation Area	C		02-Sep-16	-84					F
South Part		186	15-Apr-16 A	29-Sep-16	-111					
Edge Areas E	ast C058 to C063	150	21-Apr-16 A	29-Sep-16	-602					
SUEE2-040	PE2 Edge C058-C063 Sand Surcharge Period as +11.5mPD 5mths (17Sep2016)	150	21-Apr-16 A	17-Sep-16	-601					17
SUEE2-050	PE2 Edge C058-C063 Sand Surcharge Removal 100,481m3 10,000m3/day	11	18-Sep-16	29-Sep-16	-551					L►∎
	5	5th Monthly E	Progress Penor	Status as on 2	1 lun2016	TACK filter: Three	Month B	Polling		
Remaining Le	TOTAL TRANSPORTER	our monuny F			100112010	TASK filter: Three	, MOUTHI K	Coming.		
Actual Level of Actual Work	of Effort ▼ Summary		Page 12	of 19						
Remaining W										navera System


ntract No.	Hong Kong - Zhuhai - Macao Bridg	е	Hong Ko	ong Bounda	ry Cross	sing Fac	cilities -	Reci	amati	ion Work	S	
vity ID	Activity Name	Original		Finish	Total					2016	<u> </u>	
		Duration	ı		Float		Jun 55		J ₁	ul 6	Aug 57	Sep 58
VO DCM Edg	e Areas East C056 to C057	150	21-Apr-16 A	21-Sep-16	-594							
DCM-4380	PE2 Edge C056-C057 Surcharge Period 7mths (Land Side) (17Sep2016)	150	21-Apr-16 A	19-Sep-16	-594							
DCM-4390	PE2 Edge C056-C057 Surcharge Removal 5,000m3	2	20-Sep-16	21-Sep-16	-594							<u>ا</u>
Edge Areas E	ast C052 to C055	150	21-Apr-16 A	22-Sep-16	-595			╅	\vdash			i
SURE2-440	PE2 Edge C052-C055 300m Zone Sand Surcharge Period as +11.5mPD 5mths	150	21-Apr-16 A	17-Sep-16	-595					-		
SURE2-450	PE2 Edge C052-C055 300m Zone Sand Surcharge Removal 52,891m3 10,000m3/day	5	18-Sep-16	22-Sep-16	-545							└ -■
Land Areas	32.0911113 10,0001113/day	95	15-Apr-16 A	18-Jul-16	-38			+++	\vdash	•		
300m to 100i	m Zone	95	15-Apr-16 A	18-Jul-16	-38			╅		•		
SURE2-540	PE2 Land C052-C056 300m Zone Sand Surcharge Removal 105.782m3 10.000m3/day	17	15-Apr-16 A	30-Jun-16	-467							
SURE2-550		0)	18-Jul-16	-38	· ·				 		
Out of K052		16	01-Jul-16	18-Jul-16	-35			-	\vdash	-		
SURE2-030	PE2 Land C052-C060 Non-Tunnel Sand Surcharge Removal 158,673m3 + 28,116m3(C1b) 10,000m3/day	16	01-Jul-16	18-Jul-16	-35					₹'		
Land Portion E		206	04-May-16 A	12-Dec-16	-676			111				i
Edge Areas So	outhern Part	206	04-May-16 A	12-Dec-16	-676	-		╅╅				
DCM-4450	PE1 Edge Area East Zone Additional DCM Works 1,029nrs by 3 pla	nnt 86	04-May-16 A	28-Jul-16	-597	·						
DCM-4460	PE1 Edge Area West Zone Additional DCM Works 927nrs by 3 plan	nt 58	29-Jul-16	24-Sep-16	-597					L-		i
SUEE1-030	PE1 Edge Area at South of C071 Surcharge Laying up to +11.5mPl 50,000m3 4,200m3/day	D 12	23-May-16 A	15-Jul-16	-591							
SUEE1-040	PE1 Edge Area at South of C071 Surcharge Period as +11.5mPD 5mths	150	16-Jul-16	12-Dec-16	-693				-			i
Land Portion C		390	01-Nov-15 A	24-Nov-16	-254			+++				
Edge Areas		159	20-May-16 A	24-Nov-16	-254	·						
SUEC2b-070-0	07 PC2b Edge Area Sand Surcharge at 10.0mPD Observational Approach	6	20-May-16 A	31-May-16 A								
SUEC2b-070-0	08 PC2b Edge Area Sand Surcharge Laying 10.0mPD to 10.5mPD 2,009m3	1	01-Jun-16 A	02-Jun-16 A		-						
SUEC2b-070-0	09 PC2b Edge Area Sand Surcharge at 10.5mPD Observational Approach	6	03-Jun-16 A	10-Jun-16 A		-	•					
		Eth Monthly D	Progress Bonori	t Status as on 21	Jun 2016	TACK	tils v. Th	*** N	ملدمدا	Dalling		
Remaining Le	Thinodono	out Mortully P			Jul 120 10	IASK	filter: Th	nee W	IUIIIII	Nulling.		
Actual Level of Actual Work	of Effort Summary		Page 13	of 19								
Remaining W	/ork										Dri	mavera Systems
Critical Rema											PII	mavera Systems

			Start	Finish	Total							
		Duration			Float		Jun 55		Jul 56		Aug 57	Sep 58
SUEC2b-070-1	0 PC2b Edge Area Sand Surcharge Laying 10.5mPD to 11.0mPD 2.009m3	1	11-Jun-16 A	12-Jun-16 A		[7]						
SUEC2b-070-1	PC2b Edge Area Sand Surcharge at 11.0mPD Observational	6	13-Jun-16 A	26-Jun-16	-254		-	7				
SUEC2b-070-1	2 PC2b Edge Area Sand Surcharge Laying 11.0mPD to 11.5mPD 2.009m3	1	27-Jun-16	27-Jun-16	-254			뉘ㅣ				
SUEC2b-080	PC2b Edge Area Sand Surcharge Period as +11.5mPD 5mths	150	28-Jun-16	24-Nov-16	-254							
Reclamation A	reas	243	01-Nov-15 A	30-Jun-16	-169			_				1
North		242	01-Nov-15 A	29-Jun-16	-168			 -				
SURC2b-020	PC2b Main Area North Public Surcharge Period as +11.5mPD 7mths (28May2016)	210	01-Nov-15 A	28-May-16 A								
SURC2b-030	PC2b Main Area North Public Surcharge Removal 42,609m3 5,000m3/day	9	21-Jun-16	29-Jun-16	-153		· -	#1				
SURC2b-040	Completion of Section PC2b at Reclamation Area North	0		29-Jun-16	-168			1				
South		101	22-Mar-16 A	30-Jun-16	-169							
SURC2b-036	PC2b Main Area South PBF Surcharge Removal 137,244m3 5,000m3/day	46	22-Mar-16 A	30-Jun-16	-154							
SURC2b-050	Completion of Section PC2b at Reclamation Area South	0		30-Jun-16	-169			-				
Land Portion Ca	2c	395	27-Oct-15 A	24-Nov-16	-221							
Edge Areas		159	20-May-16 A	24-Nov-16	-230							
SUEC2c-030-0	7 PC2c Edge Area Sand Surcharge at 10.0mPD Observational Approach	6	20-May-16 A	31-May-16 A								
SUEC2c-030-0	B PC2c Edge Area Sand Surcharge Laying 10.0mPD to 10.5mPD 7,232m3	4	01-Jun-16 A	04-Jun-16 A		-						
SUEC2c-030-09	9 PC2c Edge Area Sand Surcharge at 10.5mPD Observational Approach	6	05-Jun-16 A	10-Jun-16 A		-]					
SUEC2c-030-10	D PC2c Edge Area Sand Surcharge Laying 10.5mPD to 11.0mPD 7,232m3	4	11-Jun-16 A	14-Jun-16 A			=					
SUEC2c-030-1	PC2c Edge Area Sand Surcharge at 11.0mPD Observational Approach	6	15-Jun-16 A	22-Jun-16	-230		-)				
SUEC2c-030-12	2 PC2c Edge Area Sand Surcharge Laying 11.0mPD to 11.5mPD 7,232m3	4	23-Jun-16	27-Jun-16	-197		4	7				
SUEC2c-040	PC2c Edge Area Sand Surcharge Period 2nd stage 5mths	150	28-Jun-16	24-Nov-16	-230			L				
Reclamation A	reas	315	27-Oct-15 A	05-Sep-16	-141	i						
West		257	27-Oct-15 A	09-Jul-16	-83				-			
		Married D	D	01-1 01	1 .0010	TA 014 (' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		
Remaining Lev	VOI OI EITOIL V VIIIIIOOLOTTO	i Monthly P	rogress Report	Status as on 21	Junzuno	IASKI	iiter: i	nree ivi	onth Rolli	ng.		
Actual Level o	f Effort Summary		Page 14	of 19								
Actual WorkRemaining Wo												

ntract No.	Hong Kong - Zhuhai - Macao Brido	ge	Hong Ko	ong Bounda	ry Cros	sing Facilities -	Reciama	tion Work	S		
ivity ID	Activity Name	Original	Start	Finish	Total	lus		2016	Δυσ		Con
		Duration			Float	Jun 55		Jul 56	Aug 57		Sep 58
PD-C4-2-120	PD C4-2 Backfill Manhole upto +5.5mPD	4	07-Jul-16	10-Jul-16	-204		-		<u> </u>		
C4-3		4	11-Jul-16	14-Jul-16	-204		-	7			
PD-C4-3-120	PD C4-3 Backfill Manhole upto +5.5mPD	4	11-Jul-16	14-Jul-16	-204		└ -				
C4-4		4	15-Jul-16	18-Jul-16	-204			- 			
PD-C4-4-120	PD C4-4 Backfill Manhole upto +5.5mPD	4	15-Jul-16	18-Jul-16	-204		<u>_</u>	=			
C4-5		4	19-Jul-16	22-Jul-16	-204			-			
PD-C4-5-120	PD C4-5 Backfill Manhole upto +5.5mPD	4	19-Jul-16	22-Jul-16*	-204			L-			
Removal of Tem	nporary Bridge and Channel Beside Existing Seawall	54	26-May-16 A	01-Aug-16	-356			+			
PD-TD1-0030	PD EC1 Beside Existing Seawall - Diversion Access advised by oth project C2	ner 0		26-May-16 A		.					
PD-TD1-0040	PD EC1 Beside Existing Seawall - Removal of Temporary bridge, concrete blocks & Ramp	21	27-May-16 A	11-Jun-16 A		-					
PD-TD1-0050	PD EC1 Beside Existing Seawall - Reinstatement	30	13-Jun-16 A	20-Jul-16	-326			+			
PD-TD1-0060	PD EC1 Existing Seawall Type 2 & Backfill	10	21-Jul-16	30-Jul-16	-355			-			
PD-TD1-0999	Completion of PD EC1	0		01-Aug-16	-327			r+			
Construction of	Permanent Seawall	129	07-May-16 A	26-Sep-16	-569			+ +			
Vertical Seawal	II Type V2 6+136 to 5+650	94	07-May-16 A	22-Aug-16	-600			+ +		~	
Foundation Le	eveling	7	04-Jun-16 A	11-Jun-16 A			 				
PD-V2-0050	PD C1 West - Vertical Seawall V2 VSOP22-20 Foundation Levelin 3,000m2 and Geotextile	ng 7	04-Jun-16 A	11-Jun-16 A		—	1				
Seawall Block		47	07-May-16 A	10-Jul-16	-539						
PD-V2-0070	PD C1 West - Vertical Seawall Blocks V2 VSPD22-20 Type 2E & 2 352nrs (20nrs/dav)	2A 18	22-Jun-16	10-Jul-16	-539	-		-			
PD-V2-0150	PD C4 East - Vertical Seawall Blocks V2 VSOP04-01 Type 2A2, 2 & 2B 548nrs (20nrs/day)	A1 28	07-May-16 A	21-Jun-16	-550						
Rockfill Type 2	2 behind seawall	21	22-Jun-16	13-Jul-16	-522	-					
PD-V2-0180	PD C1 West - Vertical Seawall V2 Rockf ill Type 2 VSOP22-20 1,400m3	3	11-Jul-16	13-Jul-16	-523		└ ;				
PD-V2-0220	PD C4 East - Vertical Seawall V2 Rockf ill Type 2 VSOP04-01 2,500m3	9	22-Jun-16	30-Jun-16	-510	 -	7				
	2,3001113			l		1				'	
Remaining Lev	vel of Effort ♦	55th Monthly P	rogress Report	Status as on 21	Jun2016	TASK filter: Th	ree Month	Rolling.			
Actual Level o			Page 16	of 19							
Actual Work	ŕ		i age io	01 10							
Remaining Wo	ork									Drimova	ra Cuataria
_	ning Work									riinave	era Systems

Contract No.	Hong Kong - Zhuhai - Macao Bridge	ong Kong - Zhuhai - Macao Bridge Hong Kong Boundary Crossing Facilities - Reclamation Works									
Activity ID	Activity Name	Original Duration									
					Float		Jun 55		Jul 56	Aug 57	Sep 58
Zone A		1434	21-May-12 A	28-Feb-17	0						
A1880	Maintenance of Engineer's Accommodation	1434	21-May-12 A	28-Feb-17	0	į					
Works Area TKO Fill Bank		1254	25-Sep-12 A	30-Nov-16	0						1
WA-TKO-1040	Operate and Maintain Public Fill Sorting Facilities in Zone A, B1 & B2	1254	25-Sep-12 A	30-Nov-16	0	i					

Appendix C - Implementation Schedule of Environmental Mitigation Measures

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
Air Quality				
S5.5.6.1 of	A1	The contractor shall follow the procedures and requirements given in the Air Pollution	All construction sites	V
HKBCFEIA		Control (Construction Dust) Regulation		
S5.5.6.2 of	A2	Proper watering of exposed spoil should be undertaken throughout the construction	All construction sites	V
HKBCFEIA		phase:		
and S4.8.1 of		Any excavated or stockpile of dusty material should be covered entirely by		
TKCLKLEIA		impervious sheeting or sprayed with water to maintain the entire surface wet and		
		then removed or backfilled or reinstated where practicable within 24 hours of the		
		excavation or unloading;		
		Any dusty materials remaining after a stockpile is removed should be wetted with		
		water and cleared from the surface of roads;		
		A stockpile of dusty material should not be extend beyond the pedestrian barriers,		
		fencing or traffic cones.		
		Where practicable, vehicle washing facilities with high pressure water jet should be		
		provided at every discernible or designated vehicle exit point. The area where		
		vehicle washing takes place and the road section between the washing facilities		
		and the exit point should be paved with concrete, bituminous materials or		
		hardcores;		
		When there are open excavation and reinstatement works, hoarding of not less		
		than 2.4m high should be provided as far as practicable along the site boundary		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;		
		The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials;		
		 Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; 		
		 Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; 		
		Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding;		
		Any skip hoist for material transport should be totally enclosed by impervious sheeting;		
		Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides;		
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		audible high level alarm which is interlocked with the material filling line and no overfilling is allowed;		
		All unpaved roads/exposed area shall be watered which results in dust suppression by forming moist cohesive films among the discrete grains of road surface material.		
		No burning of debris or other materials on the works areas is allowed;		
		Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created;		
		Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading;		
		During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.		
		Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The		
		tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards;		
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust		
		should be fitted with an effective fabric filter or equivalent air pollution control system; and		
		Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		surface stabiliser within six months after the last construction activity on the		
		construction site or part of the construction site where the exposed earth lies.		
S5.5.6.3 of	A3	The Contractor should undertake proper watering on all exposed spoil and associated	All construction sites	V
HKBCFEIA		work areas (with at least 8 times per day) throughout the construction phase.		
and S4.8.1 of				
TKCLKLEIA				
S5.5.6.4 of	A4	Implement regular dust monitoring under EM&A programme during the construction	Selected	V
HKBCFEIA		stage.	representative dust	
and S4.11 of			monitoring station	
TKCLKLEIA				
S5.5.7.1 of	A5	The following mitigation measures should be adopted to prevent fugitive dust emissions	All construction sites	N/A
HKBCFEIA		for concrete batching plant:		
		Loading, unloading, handling, transfer or storage of any dusty materials should be		
		carried out in totally enclosed system;		
		All dust-laden air or waste gas generated by the process operations should be		
		properly extracted and vented to fabric filtering system to meet the emission limits		
		for TSP;		
		Vents for all silos and cement/ pulverised fuel ash (PFA) weighing scale should be		
		fitted with fabric filtering system;		
		The materials which may generate airborne dusty emissions should be wetted by		
		water spray system;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		All receiving hoppers should be enclosed on three sides up to 3m above unloading point;		
		 All conveyor transfer points should be totally enclosed; All access and route roads within the premises should be paved and wetted; and Vehicle cleaning facilities should be provided and used by all concrete trucks before leaving the premises to wash off any dust on the wheels and/or body. 		
S5.5.2.7 of HKBCFEIA	A6	The following mitigation measures should be adopted to prevent fugitive dust emissions at barging point: All road surface within the barging facilities will be paved; Dust enclosures will be provided for the loading ramp; Vehicles will be required to pass through designated wheels wash facilities; and Continuous water spray at the loading points.	All construction sites	N/A (Construction in process)
Construction	Noise (Air bor	ne)		L
S6.4.10 of HKBCFEIA	N1	 Use of good site practices to limit noise emissions by considering the following: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction, where possible, be orientated 	All construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		so that the noise is directed away from nearby NSRs;		
		silencers or mufflers on construction equipment should be properly fitted and		
		maintained during the construction works;		
		mobile plant should be sited as far away from NSRs as possible and practicable;		
		material stockpiles, mobile container site officer and other structures should be		
		effectively utilised, where practicable, to screen noise from on-site construction		
		activities.		
S6.4.11 of	N2	Install temporary hoarding located on the site boundaries between noisy construction	All construction sites	V
HKBCFEIA		activities and NSRs. The conditions of the hoardings shall be properly maintained		
		throughout the construction period.		
S6.4.12 of	N3	Install movable noise barriers (typically density @14kg/m²), acoustic mat or full	For plant items listed	N/A
HKBCFEIA		enclosure close to noisy plants including air compressor, generators, saw.	in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.13 of	N4	Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	For plant items listed	V
HKBCFEIA			in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.14 of	N5	Sequencing operation of construction plants where practicable.	All construction sites	V
HKBCFEIA			where practicable	
S5.1 of	N6	Implement a noise monitoring under EM&A programme.	Selected	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA			representative noise	
			monitoring station	
Waste Manag	ement (Consti	ruction Waste)		
S12.6 of	WM1	The Contractor shall identify a coordinator for the management of waste.	All construction sites	V
TMCLKLEIA			All construction sites	
S12.6 of	WM2	The Contractor shall apply for and obtain the appropriate licenses for the disposal of	All construction sites	V
TMCLKLEIA		public fill, chemical waste and effluent discharges.	All construction sites	
S12.6 of	WM3	EM&A of waste handling, storage, transportation, disposal procedures and		V
TMCLKLEIA		documentation through the site audit programme shall be undertaken.	All construction sites	
S8.3.8 of	WM4	Construction and Demolition Material		V
HKBCFEIA		The following mitigation measures should be implemented in handling the waste:		
and S12.6 of		Maintain temporary stockpiles and reuse excavated fill material for backfilling and		
TMCLKLEIA		reinstatement;		
		Carry out on-site sorting;	All construction sites	
		Make provisions in the Contract documents to allow and promote the use of	All construction sites	
		recycled aggregates where appropriate;		
		Adopt 'Selective Demolition' technique to demolish the existing structures and		
		facilities with a view to recovering broken concrete effectively for recycling purpose,		
		where possible;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; 		
		 Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction; In addition, disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation; and 		
		The surplus surcharge should be transferred to a fill bank.		
S8.3.9- S8.3.11 of HKBCFEIA and S12.6 of TMCLKLEIA	WM5	 Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding and falsework should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage. The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers 	All construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		or skips to enhance reuse or recycling of materials and their proper disposal.		
		Where practicable, concrete and masonry can be crushed and used as fill. Steel		
		reinforcement bar can be used by scrap steel mills. Different areas of the sites		
		should be considered for such segregation and storage.		
S8.2.12-	WM6	Chemical Waste	All construction sites	V
S8.3.15 of		Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal		
HKBCFEIA		(Chemical Waste) (General) Regulation, should be handled in accordance with the		
and S12.6 of		Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.		
TMCLKLEIA		 Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation. The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the 		
		largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated. • Disposal of chemical waste should be via a licensed waste collector; be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		which also offers a chemical waste collection service and can supply the necessary		
		storage containers; or be to a reuser of the waste, under approval from the EPD.		
S8.3.16 of	WM7	<u>Sewage</u>	All construction sites	V
HKBCFEIA		Adequate numbers of portable toilets should be provided for the workers. The		
and S12.6 of		portable toilets should be maintained in a state, which will not deter the workers		
TMCLKLEIA		from utilizing these portable toilets. Night soil should be collected by licensed		
		collectors regularly.		
S8.3.17 of	WM8	General Refuse	All construction sites	V
HKBCFEIA		The site and surroundings shall be kept tidy and litter free. General refuse		
and S12.6 of		generated on-site should be stored in enclosed bins or compaction units separately		
TMCLKLEIA		from construction and chemical wastes.		
		A reputable waste collector should be employed by the Contractor to remove		
		general refuse from the site, separately from construction and chemical wastes, on		
		a daily basis to minimize odour, pest and litter impacts. Burning of refuse on		
		construction sites is prohibited by law.		
		Aluminium cans are often recovered from the waste stream by individual collectors		
		if they are segregated and made easily accessible. Separate labelled bins for their		
		deposit should be provided if feasible.		
		Office wastes can be reduced through the recycling of paper if volumes are large		
		enough to warrant collection. Participation in a local collection scheme should be		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 considered by the Contractor. In addition, waste separation facilities for paper, aluminum cans, plastic bottles etc., should be provided. Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including reduction, reuse and recycling of wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By-laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. All waste containers shall be in a secure area on hardstanding. 		
Water Quality	(Construction	Phase)		
	W1	Mitigation during the marine works to reduce impacts to within acceptable levels have been recommended and will comprise a series of measures that restrict the method and sequencing of backfilling, as well as protection measures. Details of the measures are provided below:	During filling	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Reclamation filling for the Project shall not proceed until at least 200m of leading		
		seawall at the reclamation area formed above +2.2mPD, unless otherwise		
		agreement was obtained from EPD, except for the 300m gaps for marine access.		
		All underwater filling works shall be carried out behind seawalls to avoid dispersion		
		of suspended solids outside the Project limit;		
		Except for the filling of the cellular structures, not more than 15% public fill shall be		
		used for reclamation filling below +2.5mPD during construction of the seawall;		
		After the seawall is completed except for the 300m marine access as indicated in		
		the EPs, not more than 30% public fill shall be used for reclamation filling below		
		+2.5mPD, unless otherwise agreement from EPD was obtained;		
		Upon completion of 200m leading seawall, no more than a total of 60 filling barge		
		trips per day shall be made with a cumulative maximum daily filling rate of 60,000		
		m3 for HKBCF and TMCLKL southern landfall reclamation during the filling		
		operation; and		
		Upon completion of the whole section of seawall except for the 300m marine access		
		as indicated in the EPs, no more than a total of 190 filling barge trips per day shall		
		be made with a cumulative maximum daily filling rate of 190,000 m3 for the		
		remaining filling operations for HKBCF and TMCLKL southern landfall reclamation.		
		Floating type perimeter silt curtains shall be around the HKBCF site before the		
		commencement of marine works. Staggered layers of silt curtain shall be provided		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		to prevent sediment loss at navigation accesses. The length of each staggered layers shall be at least 200m; Single layer silt curtain to be applied around the North-east airport water intake; The silt-curtains should be maintained in good condition to ensure the sediment		
		 plume generated from filling be confined effectively within the site boundary; The filling works shall be scheduled to spread the works evenly over a working day; Cellular structure shall be used for seawall construction; A layer of geotextile shall be placed on top of the seabed before any filling activities 		
		 take place inside the cellular structures to form the seawall; The conveyor belts shall be fitted with windboards and conveyor release points shall be covered with curtain to prevent any spillage of filling materials onto the surrounding waters; and An additional layer of silt curtain shall be installed near the active stone column installation points. A layer of geotextile with stone blanket on top shall be placed on 		
S9.11.1.3 of HKBCFEIA and S6.10 of	W2	the seabed prior to stone column installation works. Land Works General construction activities on land should also be governed by standard good working practice. Specific measures to be written into the works contracts should include:	All land-based construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA		 wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters; sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided; storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks; silt removal facilities, channels and manholes shall be maintained and any 	Location	·
		 deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm; temporary access roads should be surfaced with crushed stone or gravel; rainwater pumped out from trenches or foundation excavations should be 		
		 discharged into storm drains via silt removal facilities; measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system; open stockpiles of construction materials (e.g. aggregates and sand) on site 		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 should be covered with tarpaulin or similar fabric during rainstorms; manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or 		
		debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers;		
		discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system;		
		 all vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit; 		
		 wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain; 		
		the section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel;		
		 wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects; 		
		vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the		
		requirements of the WPCO or collected for offsite disposal;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 the contractors shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately; waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance; all fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank; and surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the storm water system 		
S9.14 of HKBCFEIA and S6.10 of TMCLKLEIA	W3	Implement a water quality monitoring programme	At identified monitoring location	V
S6.10 of TMCLKLEIA	W4	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All construction site areas	V
Ecology (Cons	struction Phas	e)		
S10.7 of HKBCFEIA and S8.14 of TMCLKLEIA	E1	 Install silt curtain during the construction Limit works fronts Construct seawall prior to reclamation filling where practicable 	Seawall, reclamation area	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Good site practices		
		Strict enforcement of no marine dumping		
		Site runoff control		
		Spill response plan		
S10.7 of	E2	Watering to reduce dust generation; prevention of siltation of freshwater habitats;	Land-based works	V
HKBCFEIA		Site runoff should be desilted, to reduce the potential for suspended sediments,	areas	
		organics and other contaminants to enter streams and standing freshwater.		
S10.7 of	E3	Good site practices, including strictly following the permitted works hours, using	Land-based works	V
HKBCFEIA		quieter machines where practicable, and avoiding excessive lightings during night	areas	
and S8.14 of		time.		
TMCLKLEIA				
S10.7 of	E4	Dolphin Exclusion Zone	Marine works	V
HKBCFEIA		Dolphin watching plan		
and S8.14 of				
TMCLKLEIA				
S10.7 of	E5	Decouple compressors and other equipment on working vessels	Marine works	V
HKBCFEIA		Proposal on design and implementation of acoustic decoupling measures applied		
and S8.14 of		during reclamation works		
TMCLKLEIA		Avoidance of percussive piling		
S10.7 of	E6	Control vessel speed	Marine traffic	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
HKBCFEIA		Skipper training		
and S8.14 of		Predefined and regular routes for working vessels; avoid Brothers Islands		
TMCLKLEIA				
S10.10 of	E7	Vessel based dolphin monitoring	Northeast and	V
HKBCFEIA		, · · · · ·	Northwest	
and S8.14 of			Lantau	
TMCLKLEIA				
Fisheries				
S11.7 of	F1	Reduce re-suspension of sediments	Seawall, reclamation	V
HKBCFEIA		Limit works fronts	area	
		Good site practices		
		Strict enforcement of no marine dumping		
		Spill response plan		
S11.7 of	F2	Install silt-grease trap in the drainage system collecting surface runoff	Reclamation area	V
HKBCFEIA				
Landscape &	Visual (Constr	uction Phase)		
S14.3.3. 3 of	LV1	Mitigate Landscape Impacts	All construction site	N/A
HKBCFEIA			areas	
and S10.9 of		G1/CM4 Grass-hydroseed or sheeting bare soil surface and stock pile areas.		
TMCLKLEIA		G9 Reserve of loose natural granite rocks for re-use. Provide new coastline to		
		adopt "natural-look" by means of using armour rocks in the form of natural		

EIA Ref.	EM&A Log Ref	Environmental Mitigation Measures	Location	Implementation Status
		rock materials and planting strip area accommodating screen buffer to enhance "natural-look" of new coastline.		
S10.9 of TMCLKLEIA	LV2	Mitigate Landscape Impacts CM7 Ensure no run-off into water body adjacent to the Project Area.	All construction site areas	V
S14.3.3. 3 of HKBCFEIA	LV4	Mitigate Visual Impacts V1 Minimize time for construction activities during construction period.	All construction site areas	V
S10.9 of TMCLKLEIA	LV5	Mitigate Visual Impacts CM6 Control night-time lighting and glare by hooding all lights.	All construction site areas	V
EM&A				
S15.2.2 of HKBCFEIA	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual.	All construction site areas	V
S15.5 - S15.6 of HKBCFEIA	EM2	 An Environmental Team needs to be employed as per the EM&A Manual. Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with. 	All construction site areas	V

Legend: V = implemented;

x = not implemented;

N/A = not applicable

Appendix D - Summary of Action and Limit Levels

Table 1 - Action and Limit Levels for 1-hour TSP

Location	Action Level	Limit Level
AMS2	374 μg/m³	500 μg/m³
AMS3B*	368 μg/m³	500 μg/m³
AMS6	360 μg/m³	500 μg/m³
AMS7	370 μg/m³	500 μg/m³

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

Table 2 - Action and Limit Levels for 24-hour TSP

Location	Action Level	Limit Level		
AMS2	176 μg/m³	260 μg/m³		
AMS3B*	167 μg/m³	260 μg/m ³		
AMS6	173 μg/m³	260 μg/m³		
AMS7	183 μg/m³	260 μg/m³		

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

Table 3 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Location	Action Level	Limit Level
NMS2	When one documented	75 dB(A)
	complaint, related to 0700 -	
	1900 hours on normal	
NMS3B	weekdays, is received	*65 / 70 dB(A)
	from any one of the sensitive	
	receivers	

^{*}Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

Table 4 - Action and Limit Levels for Water Quality

Parameters	Action	Limit
DO in mg L ⁻¹	Surface and Middle	Surface and Middle
(Surface, Middle & Bottom)	5.0	4 .2 (except 5 mg/L for FCZ)
	<u>Bottom</u>	<u>Bottom</u>
	4.7	3.6
SS in mg L ⁻¹	23.5 and 120% of upstream	34.4 and 130% of upstream
(depth-averaged)	control station's SS at the	control station's SS at the same
	same tide of the same day	tide of the same day and
		10mg/L for WSD Seawater
		intakes
Turbidity in NTU	27.5 and 120% of upstream	47.0 and130% of upstream
(depth-averaged)	control station's turbidity at	control station's turbidity at the
	the same tide of the same	same tide of the same day
	day	

Notes:

- "depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 5(a) Action and Limit Levels for Chinese White Dolphin Monitoring - Approach to Define Action Level (AL) and Limit Level (LL):

	North Lantau Social Cluster					
	NEL	NWL				
Action Level	(STG < 70% of baseline) &	(STG < 70% of baseline) &				
	(ANI < 70% of baseline)	(ANI < 70% of baseline)				
Limit Level	[(STG < 40% of baseline) & (Af	NI < 40% of baseline)] AND				
	[(STG < 40% of baseline) & (A	.NI < 40% of baseline)]				

For North Lantau Social Cluster, action level will be trigger if either NEL **or** NWL fall below the criteria; limit level will be triggered if both NEL **and** NWL fall below the criteria.

Table 5(b) Derived Value of Action Level (AL) and Limit Level (LL) for Chinese White Dolphin Monitoring

	North Lantau Social Cluster			
	NEL	NWL		
Action Level	(STG < 4.2) &	(STG < 6.9) &		
	(ANI < 15.5)	(ANI < 31.3)		
Limit Level	[(STG < 2.4) & (ANI <8.9)] AND			
	[(STG < 3.9)& (ANI < 17.9)]			

Station	Tung Chung Dev	relopment Pier (A	MS2)	Operator:	Leung Y	iu Ting	_
al. Date:	18-May-16			Next Due Date:	18-Ju	ıl-16	_
quipment No.:	A-001-78T			Serial No.	338	83	_
			Ambient	Condition			
Temperatu	re, Ta (K)	299	Pressure, F	Pa (mmHg)		757.8	
		(Orifice Transfer S	tandard Informatio			
Serial	Serial No:		Slope, mc	1.97831	Interce		0.0126
Last Calibra	ation Date:	29-May-15			= [DH x (Pa/760) x		
Next Calibra	ation Date:	29-May-16		Qstd = {[DH x (I	Pa/760) x (298/Ta)]	" ² -bc} / mc	
			Calibration o	of TSP Sampler			
		C	Orfice		HVS	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water		60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X -	Flow Recorder Reading (CFM)	Continuous Flo Reading IC (CF	
18	7.9		2.80	1.41	48.0	47.8	5
13	6.7		2.58	1.30	42.0	41.8	7
10	4.9		2.21	1.11	34.0	33.8	9
7	3.8		1.94	0.98	28.0	27.9	1
5	2.5		1.58	0.79	22.0	21.9	3
Slope , mw =	ession of Y on X 41.9392	_		Intercept, bw =	-12.	1393	_
Correlation Coe	fficient* =	0.	9936	_			
'If Correlation Co	pefficient < 0.990,	check and recali	brate.				
			Set Point	Calculation			
From the TSP Fi	eld Calibration Cu	urve, take Qstd =					
		e "Y" value accor					
Tom the regree	olon Equation, an	o i valao acco.					
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}		
Therefore, Set P	oint; IC = (mw x	Qstd + bw) x [(7	60 / Pa) x (Ta / 2	98)] ^{1/2} =		42.51	_
Damanda							
Remarks:			the state of the s				
		7					
	VV S	× 13.00				Date: 18/5/	16

Station	Site Boundary of	Site Office (WA2)	(AMS3B)	Operator:	Leung Yiu Ting		_
al. Date:	29-Apr-16			Next Due Date:			_
quipment No.:	A-001-79T			Serial No.	33	84	_
			Ambient	Condition			
Temperatur	re, Ta (K)	303.0	Pressure, I	Pa (mmHg)		756.9	
01.1	N.			tandard Informatio			T 0.0400
Serial		988	Slope, mc	1.97831	Interce	•	0.01264
Last Calibra		29-May-15			= [DH x (Pa/760) x		
Next Calibra	ation Date:	29-May-16	(4)	Qsta = {[DH X (Pa/760) x (298/Ta)]	-bc} / mc	
		•	Calibration of	of TSP Sampler			
		0	rfice		HVS	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flo Reading IC (C	
18	7.2		2.66	1.34	48.0	47.5	51
13	6.2		2.46	1.24	42.0	41.5	57
10	4.7		2.15	1.08	34.0	33.6	35
7	3.2		1.77	0.89	24.0	23.7	75
5	2.0		1.40	0.70	14.0	13.8	36
By Linear Regre	52.4202	_	995	Intercept, bw =	-22.9	9024	_
Correlation Coef		check and recalib		_			
II Correlation Co	emolent < 0.990,	CHECK AND TECANIL	iate.				
				Calculation			
rom the TSP Fie	eld Calibration Cu	urve, take Qstd = 1	1.30m³/min				
rom the Regress	sion Equation, the	e "Y" value accord	ling to				
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Га)] ^{1/2}		
Thoroforo Cot Do	sint: IC = / mu v /	Qstd + bw) x [(76	:0 / Po \ v / To / 20	00 \11/2_		45.70	
i lielelole, Sel Fl	Jill, IC – (IIIW X)	QSIU + DW) X [(/C	10/Fa)X(1a/2	- (80		45.72	_
The way and the second							
Remarks:							
							:
•		*14)					
× 1	10		Signature:			Date: 39- Av	11

Station	Site Boundary of	f Site Office (WA2	(AMS3B)	Operator:	Leung \	/iu Ting	
Cal. Date:	29-Jun-16			Next Due Date:	29-Aı	ıg-16	
Equipment No.:	A-001-79T	_		Serial No.	33	84	
			Ambient	t Condition			
Temperatu	re, Ta (K)	302.0	Pressure,	Pa (mmHg)		756.3	
		•					
		(Orifice Transfer S	tandard Information	on		
Serial No:		988	Slope, mc	1.99349	Interce	ept, bc	-0.0273
Last Calibration Date:		31-May-16		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	31-May-17		Qstd = {[DH x (Pa/760) x (298/Ta)]	^{1/2} -bc} / mc	
				of TSP Sampler			
Posistanos		0	rfice		HV	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m ³ /min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFI	
18	7.3	- Pa	2.68	1.36	49.0	48.56	i
13	6.1		2.45	1.24	43.0	42.61	
10	4.9		2.19	1.11	35.0	34.68	
7	3.2		1.77	0.90	25.0	24.77	
5	2.0	10. 1	1.40	0.72	15.0	14.86	j
Slope , mw =	ession of Y on X	_	2005	Intercept, bw =	-22.8	3441	-
Correlation Coe	•		985	_			
If Correlation Co	efficient < 0.990,	check and recalit	orate.				
			Set Point	Calculation			
From the TSP Fie	eld Calibration Cu	ırve, take Qstd =	1.30m ³ /min				
From the Regres	sion Equation, th	e "Y" value accord	ling to				
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}		
TI (0.15		0.44.4 \ 7/70	0.45 \ 47.404	20.11/2			
Therefore, Set Po	oint; IC = (mw x	Qstd + bw) x [(/6	60 / Pa) x (Ta / 29	98)]=		45.77	-
Remarks:			*				
		/					
OC Reviewer	WS CHA	Λ1	Signature:	<u> </u>		Date: 29 / 0 /	1,6

Cal. Date:	00 4 40						
	29-Apr-16	_		Next Due Date:	29-Ju		_
Equipment No.:	A-001-80T			Serial No.	33	85	-
			Ambient	Condition			
Temperatu	re, Ta (K)	303.0	Pressure, I	Pa (mmHg)	8	756.9	
	•						
		(Orifice Transfer S	tandard Informatio	n		
Seria	l No:	988	Slope, mc	1.97831	Interce	ept, bc	0.0126
Last Calibra	ation Date:	29-May-15		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	29-May-16		Qstd = {[DH x (F	Pa/760) x (298/Ta)]	^{1/2} -bc} / mc	
		e, "					
			Calibration of	of TSP Sampler			
SSSS to an		0	rfice		HVS	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X · axis	Flow Recorder Reading (CFM)	der Continuous Flow Reading IC (CFN 47.51	
18	7.4	2.69		1.35	48.0	47.51	
13	6.6	2.54		1.28	44.0	43.55	
10	5.5	2.32		1.17	38.0	37.61 22.76	
7	3.2	1.77		0.89	23.0	22.7	6
5	2.3		1.50	0.75	15.0	14.8	5
By Linear Regre	ession of Y on X 54.0244	_		Intercept, bw =	-25.5	5358	_
Correlation Coe	fficient* =	0.9	9998	_			
If Correlation Co	efficient < 0.990,	check and recalib	orate.				
			Set Point	Calculation			we feel an
rom the TSP Fie	eld Calibration Cu	rve_take Ostd = 1	The state of the s	Galoulation			
	sion Equation, the						
Total tale region	Sion Equation, the	o i valuo accord	ang to				
		mw	x Qstd + bw = IC	x [(Ра/760) x (298/Л	[a]] ^{1/2}		
				., , ,	74		
Therefore, Set Po	oint; IC = (mw x 0	Qstd + bw) x [(76	60 / Pa) x (Ta / 29	98)] ^{1/2} =		45.16	
Remarks:							

Cal. Date:	nong nong onje	ity Marriott Hotel	(AIVIST)	Operator: _	Leung y		
-	29-Jun-16	_		Next Due Date: _	29-Au		
Equipment No.:	A-001-80T			Serial No	338	35	
			Ambient	Condition			
Temperatur	re, Ta (K)	302.0	Pressure, P	Pa (mmHg)		756.3	
	, , ,						
		(rifice Transfer St	andard Informatio	n		
Serial	No:	988	Slope, mc	1.99349	Interce		-0.02737
Last Calibra	ition Date:	31-May-16	31-May-16		= [DH x (Pa/760) x		
Next Calibra	ation Date:	31-May-17		$Qstd = \{[DH \times (Family + Family + Fami$	Pa/760) x (298/Ta)] ¹	^{1/2} -bc} / mc	
	•						
			Calibration o	f TSP Sampler			
		0	rfice		HVS	S Flow Recorder	
Resistance Plate No.	o. DH (orifice), in. of water [DH x (Pa/760) x (298		60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF	
18	7.3	şw.	2.68	1.36	50.0	49.55	j
13	6.4		2.51	1.27	44.0	43.60)
10	5.0	2.22		1.13	37.0	36.66)
7	3.4		1.83	0.93	24.0	23.78	3
5	2.3		1.50	0.77	16.0	15.85	5
	ession of Y on X 57.3614		0074	Intercept, bw =	-28.	6477	-
Slope , mw =		0.9	9971	_			
Slope , mw = Correlation Coe	fficient* =	, check and recali		_			
Slope , mw = Correlation Coe	fficient* =		brate.	: Calculation			
Slope , mw = Correlation Coe *If Correlation Co	oefficient* = 0.990		brate. Set Point	: Calculation			
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	eld Calibration C	, check and recalil	Set Point 1.30m³/min	Calculation			
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	eld Calibration C	urve, take Qstd =	Set Point 1.30m³/min ding to		410		
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	eld Calibration C	urve, take Qstd =	Set Point 1.30m³/min ding to	: Calculation x [(Pa/760) x (298/	Ta)] ^{1/2}		
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi From the Regres	eld Calibration C	urve, take Qstd =	Set Point 1.30m³/min ding to x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}	46.34	
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi From the Regres	eld Calibration C	urve, take Qstd =	Set Point 1.30m³/min ding to	x [(Pa/760) x (298/	Ta)] ^{1/2}	46.34	
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi From the Regres	eld Calibration C	urve, take Qstd =	Set Point 1.30m³/min ding to x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}	46.34	
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi From the Regres	eld Calibration C	urve, take Qstd =	Set Point 1.30m³/min ding to x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}	46.34	
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi From the Regres Therefore, Set P	eld Calibration C	urve, take Qstd =	Set Point 1.30m³/min ding to x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}	46.34	
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi From the Regres	eld Calibration C	urve, take Qstd =	Set Point 1.30m³/min ding to x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}	46.34	
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi From the Regres Therefore, Set P	eld Calibration C	urve, take Qstd =	Set Point 1.30m³/min ding to x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}	46.34	

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

						- 002311
Date - Ma Operator	ay 29, 201 Tisch ========	5 Rootsmeter Orifice I.	S/N D =======	0438320 0988	Ta (K) - Pa (mm)	297 - 755.65
PLATE OR Run # 1 2 3 4 5	VOLUME START (m3) NA NA NA NA NA	VOLUME STOP (m3) NA NA NA NA NA	DIFF VOLUME (m3) 1.00 1.00 1.00 1.00	DIFF TIME (min) 1.3980 0.9910 0.8790 0.8380 0.6890	METER DIFF Hg (mm) 3.2 6.3 7.8 8.6 12.6	ORFICE DIFF H20 (in.) 2.00 4.00 5.00 5.50 8.00
					''	

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9934 0.9893 0.9872 0.9862 0.9809	0.7106 0.9983 1.1231 1.1769 1.4237	1.4125 1.9976 2.2334 2.3424 2.8251		0.9957 0.9917 0.9896 0.9886 0.9833	0.7123 1.0007 1.1258 1.1797 1.4271	0.8866 1.2539 1.4019 1.4703
Qstd slop intercept coefficie	(b) = nt (r) =	1.97831 0.01264 0.99985	1 e n	Qa slope intercept coefficie	(b) =	1.23878 0.00793 0.99985
y axis =	SQRT[H2O(P	a/760) (298/1	[a)]	y axis =	SQRT [H2O (Ta	a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Type:				(Laser Du	ıst Moni	tor		
	acturer/Brand:			_	SIBATA		2		
Model	ment No.:				LD-3 A.005.07	·-			
	ivity Adjustment	Scale Se	ttina:	_	557 CPI				
Serisit	ivity Adjustinent	Scale Se	ung.	_	337 CFI	VI			
Opera	tor:			-	Mike She	k (MSKN	1)		
Standa	rd Equipment					-0.0-0.010			
								2	
Equipr					tashnick			400	
Venue					ing Seco	ndary So	chool)		
Model				400AB					
Serial	No:								
1+ 0	Sensor: <u>1200C143659803</u> K _o : <u>12500</u> Last Calibration Date*: 7 May 2016								
Last C	alibration Date":	_ / //	ay 20)76	-				
*Remar	ks: Recommend	ed interva	al for I	nardwar	e calibra	tion is 1 y	/ear		
Calibra	tion Result								
	ivity Adjustment		_ ,			,		PM PM	
Hour	Date	-	Γime		[4] 10.00 (10	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)					dition	(mg/m ³)	Count ²	Minute ³
					Temp	R.H.	Y-axis		X-axis
	07.05.40	10.15		10.15	(°C)	(%)	0.04500	1010	
1	07-05-16	12:15		13:15	28.1	77	0.04530	1812	30.20
3	07-05-16 07-05-16	13:15 14:15		14:15 15:15	28.2	76	0.04659	1863	31.05
4	07-05-16	15:15		16:15	28.4 28.5	78 77	0.04560 0.04434	1824 1774	30.40 29.57
Note:								1774	29.57
Note.	2. Total Count 3. Count/minut	was logg	ed by	Laser [Dust Mon	itor	shnick TEOM®		
By Line	or Pograssian of	VorV							
	ar Regression of (K-factor):	1 01 1	0.1	0015					
	ation coefficient:			9969					
	y of Calibration F	Record:	-	May 20°	17)			
	,			,					
Remark	s:								
	3000								
QC Re	eviewer: YW F	ung		Signat	ture:	11/	Da	te: 09 Ma	y 2016

Model N Equipm	cturer/Brand: No.: ent No.: ity Adjustment	Scale Settii	- - ng: _	Laser D SIBATA LD-3 A.005.00 702 CP	8a	nitor			
Operato	or:		-	Mike Sh	ek (MSF	(M)			
Standard	l Equipment						1		
	No.: lo: libration Date*:	Cybe Serie Contr Sens 7 Ma	Rupprecht & Patashnick TEOM® Cyberport (Pui Ying Secondary School) Series 1400AB Control: 140AB219899803 Sensor: 1200C143659803 K _o : 12500 7 May 2016 interval for hardware calibration is 1 year						
Calibrati	on Result						-		
Sensitiv	ity Adjustment ity Adjustment					702 702	CPM CPM		
Hour	Date (dd-mm-yy)	Tin	Time Ambient Condition Temp R.H. (°C) (%)			Concentration¹ (mg/m³) Y-axis	Total Count ²	Count/ Minute ³ X-axis	
1	07-05-16	12:30 -	13:30	28.2	77	0.04611	1727	28.78	
2	07-05-16	13:30 -	14:30	28.2	77	0.04678	1758	29.30	
3	07-05-16 07-05-16	14:30 - 15:30 -	15:30 16:30	28.4 28.5	78 77	0.04574 0.04353	1717 1634	28.62 27.23	
Slope (F	1. Monitoring of 2. Total Count 3. Count/minut Regression of (-factor): ion coefficient:	was logged e was calcu	by Laser	Dust Mor	nitor	tashnick TEOM®			
Validity	of Calibration F	Record:	7 May 20	17					
Remarks									
QC Rev	iewer: YW F	ung	_ Signa	ture:	(1/	Date: _09	May 2016	

Type:	footurer/Prend		_	Laser Di	ust Moni	tor		
Model	facturer/Brand:		_	SIBATA LD-3				
	ment No.:		_	A.005.09	00			
	ivity Adjustment	Scale Sett	_	797 CPI			Ñ.	
Seriali	ivity Adjustinent	Scale Sell	g	191 CFI	WI .		(.40)	
Opera	tor:		_	Mike She	ek (MSKN	<i>(</i>)		
Standa	rd Equipment				00000			
Equip			precht & Pa					
Venue			erport (Pui \	ring Seco	ondary So	chool)		
Model			es 1400AB					
Serial	No:	Control: <u>140AB219899803</u>						
701 77 1920	Sensor: <u>1200C143659803</u> K _o : <u>12500</u>							
Last C	Calibration Date*:	_7 Ma	ay 2016	40000		1000		
*Remar	ks: Recommend	ed interval	for hardwar	re calibra	tion is 1 y	year		
Calibra	tion Result							
			W MACHINE	The second con-				
	ivity Adjustment					_797 CP	M	
Sensit	ivity Adjustment	Scale Sett	ing (After Ca	alibration):	797 CP	M	
	_							
Hour	Date	Ti	me	Ambient		Concentration ¹	Total	Count/
	(dd-mm-yy)				dition	(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
1	07-05-16	11:45	- 12:45	(°C) 28.2	(%) 77	0.04623	1847	30.78
2	07-05-16	12:45	- 13:45	28.2	78	0.04708	1885	31.42
3	07-05-16	13:45	- 13:45 - 14:45	28.3	76	0.04591	1836	30.60
4	07-05-16	14:45	- 15:45	28.4	77	0.04333	1726	28.77
Note:						shnick TEOM®	1120	20.77
NOIG.	2. Total Count					ISTITION TEOWY		
	3. Count/minut							
				0.0				
By Linea	ar Regression of	Y or X						
Slope	(K-factor):		0.0015					
Correl	ation coefficient:		0.9964					
20 20 0000 00000	Statement and the statement of the state	TO. (4)						
Validit	y of Calibration F	Record:	7 May 20	17				
Remark	e.							
Temark	.5.					*		
10								
						/		
OC D	aviewer: VM/F	- -una	Signat		4/	D-4-	. 00 May	

Model Equip	facturer/Brand: No.: ment No.: rivity Adjustment	Scale Setti	=	Laser Du SIBATA LD-3 A.005.10 753 CPI				
Opera	tor:		- <u>-</u>	Mike She	k (MSKN	1)		
Standa	rd Equipment							
	e: No.:	Cybe Serie Cont Sens 7 Ma	or: 120 by 2016	/ing Seco 0AB21989 00C14369	99803 59803	K _o : <u>12500</u>		
	tion Result						11000	
Sensit	ivity Adjustment ivity Adjustment					753 CF		
Hour	Date (dd-mm-yy)	Ti	me		dition R.H. (%)	Concentration ¹ (mg/m³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	08-05-16	10:00	- 11:00	28.3	76	0.04945	1975	32.92
2	08-05-16	11:00	- 12:00	28.3	77	0.05116	2049	34.15
3	08-05-16	12:00	- 13:00	28.4	76	0.04767	1912	31.87
4	08-05-16	13:00	- 14:00	28.3	76	0.04593	1833	30.55
Slope Correl	1. Monitoring of 2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logged te was calc Y or X	d by Laser [Oust Mon otal Cou	itor	shnick TEOM®		
Remark	es:							
OC P	aviewer VM/F	-una	Signat	huro.	4/	Date	a. 00 Ma	v 2016

Type: Manut Model	facturer/Brand:		-	Laser Do	ıst Moni	tor		
	ment No.:			LD-3 A.005.11	2			
	tivity Adjustment	Scale Setti		799 CPI				
Opera			_	Mike She		Л)		
Standa	rd Equipment							
Equipo Venue Model	ment:	Cybe	erecht & Pa erport (Pui \ s 1400AB			chool)		
Serial	No:	Conti		DAB2198	99803			
		Sens		00C1436		Ko: 12500)	
Last C	Calibration Date*:	7 Ma	y 2016					
*Remar	ks: Recommend	ed interval	for hardwai	re calibra	tion is 1 y	/ear		
Calibra	tion Result							
Sensit	civity Adjustment civity Adjustment	Scale Setti	ng (After Ca	alibration): ´		PM PM	
Hour	Date (dd-mm-yy)	Tir	ne	N 2000000	dition R.H. (%)	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	08-05-16		- 10:30	28.3	77	0.04959	1893	33.05
2	08-05-16	10:30	- 11:30	28.4	77	0.05173	2071	34.52
3	08-05-16	11:30 · 12:30 ·	12:30	28.3	76	0.04817	1922	32.03
Note:	08-05-16		- 13:30	28.3	77	0.04562	1828	30.47
By Linea	2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logged e was calcu	by Laser [Dust Mon	itor	shnick TEOM®		
Validit	y of Calibration F	Record:	8 May 20	17				
Remark	s:							
QC Re	eviewer: YW F	- ung	_ Signat	ture:	y	Date	e: _09 Ma <u>y</u>	y 2016

Type:	facturer/Brand:		_	Laser Du SIBATA	ust Moni	tor		
Model				LD-3B				
Equip	ment No.:			A.005.13	la			
	tivity Adjustment	Scale Settin		643 CPI				
Opera	ator:		_	Mike She	ek (MSKN	1)		
Standa	rd Equipment							
						30.		
Equip		Rupp	recht & Pa	tashnick	TEOM®			
Venue			rport (Pui Y	∕ing Secc	ondary So	chool)		
Model	No.:	Serie	s 1400AB					
Serial	No:	Contr	ol: 140	DAB21989	99803			
		Sens	or: 120	00C14365	59803	Ko: 1250	0	
Last C	Calibration Date*:	_7 Ma;	y 2016					
*Remar	ks: Recommend	ed interval	for hardwar	re calibra	tion is 1 y	/ear		
Calibra	tion Result							
Sensit	tivity Adjustment tivity Adjustment						PM PM	
Hour	Date	Tir	ne	Amb	pient	Concentration ¹	Total	Count/
1	(dd-mm-yy)			22000000000	dition	(mg/m³)	Count ²	Minute ³
	()))			Temp	R.H.	Y-axis	Count	X-axis
				(°C)	(%)	I unio		A dalo
1	08-05-16	09:45 -	- 10:45	28.3	76	0.04923	1977	32.95
2	08-05-16	10:45 -	- 11:45	28.3	77	0.05086	2034	33.90
3	08-05-16	11:45 -	12:45	28.4	77	0.04834	1936	32.27
4	08-05-16	12:45 -	- 13:45	28.4	76	0.04617	1850	30.83
Note:	Monitoring of 2. Total Count 3. Count/minut ar Regression of	was logged te was calcu	by Laser [Dust Mon	itor	shnick TEOM®		
	(K-factor):	1 01 7	0.0015					
	ation coefficient:		0.9981					
	y of Calibration F		8 May 201	17				
Remark	ks:							
						7		
QC Re	eviewer: YW F	ung	Signat	ture:	4	Dat	e: _09 Ma	y 2016

Model Equipr	acturer/Brand: No.: ment No.: ivity Adjustment	Scale Se	tting:		Laser Du SIBATA LD-3B A.005.14 786 CPN	а	tor		
Opera	tor:				Mike She	k (MSKN	1)		
Standa	rd Equipment								
Venue Model Serial Last C	Sensor: 1 Last Calibration Date*: 7 May 2016 *Remarks: Recommended interval for hardw					ndary Sc 99803 99803	K _o : <u>12500</u>)	
	tion Result								
Sensit	ivity Adjustment ivity Adjustment					,		PM PM	
Hour	Date (dd-mm-yy)	7	Time			lition R.H. (%)	Concentration ¹ (mg/m³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	08-05-16	13:45	-	14:45	(°C) 28.4	77	0.04652	1994	33.23
2	08-05-16	14:45	-	15:45	28.5	77	0.04837	2071	34.52
3	08-05-16	15:45	-	16:45	28.4	77	0.05162	2205	36.75
4	08-05-16	16:45	-	17:45	28.4	77	0.04983	2135	35.59
Slope Correl	2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logg te was cal Y or X	ed by culated	Laser E ed by (T 0014 9987	Oust Moni otal Cour	tor	shnick TEOM®		
	y of Calibration F	Record:	_8	May 201	17				
Remark	s:					10 /	£		
QC Re	eviewer: YW F	ung		Signat	ure:	-	Dat	e: <u>09 Ma</u>	y 2016

Model Equipr	acturer/Brand: No.: ment No.: ivity Adjustment	Scale Setting	_	Laser Du SIBATA LD-3B A.005.16 521 CPI	a	tor		
Opera	tor:		_	Mike She	k (MSKN	1)		
Standa	rd Equipment				TO MILE TO SEE OF 10			
Equipr Venue Model Serial Last C	: No.:	Cyberp Series Contro Sensor	: 120		ndary So 99803	chool) K _o : _1250	00	
*Remark	ks: Recommend	ed interval fo	r hardwar	e calibrat	ion is 1 v	/ear		
		od irkorvario	riai avvai	o danbra		, cai		
Calibrat	tion Result							
	ivity Adjustment ivity Adjustment				,		CPM CPM	
Hour	Date (dd-mm-yy)	Time	Time		oient dition R.H. (%)	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	18-07-15	09:30 -	10:30	(°C) 29.8	75	0.05032	2014	33.57
2	18-07-15	10:45 -	11:45	30.1	76	0.05117	2047	34.12
3	18-07-15	12:15 -	13:15	30.4	77	0.05363	2141	35.68
4	18-07-15	13:40 -	14:40	30.5	78	0.05465	2179	36.32
Slope	1. Monitoring of 2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logged be was calculary or X	y Laser [Dust Moni	itor	shnick TEOM [®]		
	y of Calibration F	-	18 July 20	016				
Remarks	s:				,			
QC Re	eviewer: _YW F	ung	Signat	ure:		Da	ate: 20 Jul	y 2015

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黄竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA1203 03

Page:

of

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Rion Co., Ltd. NC-73 10307223

Serial/Equipment No.: Adaptors used:

100

(N 4 18)

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

-

Request No.:

-

Date of receipt:

03-Dec-2015

Date of test:

03-Dec-2015

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	15-Apr-2016	SCL
Preamplifier	B&K 2673	2239857	22-Apr-2016	CEPREI
Measuring amplifier	B&K 2610	2346941	22-Apr-2016	CEPREI
Signal generator	DS 360	61227	16-Apr-2016	CEPREI
Digital multi-meter	34401A	US36087050	17-Apr-2016	CEPREI
Audio analyzer	8903B	GB41300350	17-Apr-2016	CEPREI
Universal counter	53132A	MY40003662	16-Apr-2016	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

50 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

04-Dec-2015

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA0408 02

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer:

B&K

Type/Model No.:

2238

4188

Serial/Equipment No.:

2285692

2791211

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.:

Date of receipt:

08-Apr-2016

Date of test:

11-Apr-2016

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator

B&K 4226 DS 360

2288444

19-Jun-2016 16-Apr-2016 CIGISMEC CEPRFI

Signal generator

DS 360

33873 61227

16-Apr-2016

CEPREI

Ambient conditions

Temperature:

Air pressure:

21 ± 1 °C

Relative humidity:

50 ± 10 % 1010 ± 5 hPa

Test specifications

1 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%

3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed

Details of the performed measurements are presented on page 2 of this certificate.

in/Feng Jun Qi

Actual Measurement data are documented on worksheets

Huang Jian M

Approved Signatory:

Date:

12-Apr-2016

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA0703 02-02

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1)

Microphone **B&K** 4188

Type/Model No.: Serial/Equipment No.:

B & K 2238 2800927

2791214

Adaptors used:

Item submitted by

Customer Name:

N.009.06 AECOM ASIA CO., LTD.

Address of Customer:

Request No.: Date of receipt:

03-Jul-2015

Date of test:

04-Jul-2015

Reference equipment used in the calibration

Description:

Model: B&K 4226 Serial No.

Expiry Date: 19-Jun-2016

Traceable to:

Multi function sound calibrator Signal generator Signal generator

DS 360 DS 360

2288444 33873 61227

16-Apr-2016 16-Apr-2016

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity: Air pressure:

60 ± 10 % 1000 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Mint/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

06-Jul-2015

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA0304 02

Page

Tel: (852) 2873 6860

Fax: (852) 2555 7533

2

Item tested

Description: Manufacturer:

Sound Level Meter (Type 1) **B&K**

Microphone

Preamp **B&K**

of

Type/Model No.: Serial/Equipment No.: 2250-L 2681366 4950 2879980 ZC0032 19428

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO LIMITED

Address of Customer:

Request No. Date of receipt:

04-Mar-2016

Date of test:

05-Mar-2016

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: B&K 4226 DS 360

Serial No.

Expiry Date: 19-Jun-2016

Traceable to:

Signal generator Signal generator

DS 360

2288444 33873 61227

16-Apr-2016 16-Apr-2016 CIGISMEC CEPREL CEPREI

Ambient conditions

Temperature:

21 ± 1 °C 60 ± 10 %

Relative humidity: Air pressure:

1010 ± 5 hPa

Test specifications

1. The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2. replaced by an equivalent capacitance within a tolerance of +20%

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580; Part 1; 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate

m/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Huang Jian M

Approved Signatory:

Date:

08-Mar-2016

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No CARP152-1/Issue 1/Rev C/01/02/2007

Work Order:

HK1616643

Sub-batch:

0

Client:

AECOM ASIA COMPANY LIMITED

Date of Issue:

29/04/2016

Description:

Multifunctional Meter

Brand Name:

Model No.:

6820 V2

Serial No.:

12A101545

Equipment No.:

W.026.35

Date of Calibration: 28 April, 2016

Date of next Calibration:

28 July, 2016

Parameters:

Conductivity

Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	140.5	-4.4
6667	6750	+1.2
12890	12680	-1.6
58670	58320	-0.6
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.43	3.40	-0.03
5.50	5.46	-0.04
7.75	7.73	-0.02
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
11.0	10.94	-0.1
22.0	21.97	-0.0
37.5	37.44	-0.1
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Fung Lim Chee, Richard General Manager 4

Work Order:

HK1616643

Sub-Batch:

0

Client:

AECOM ASIA COMPANY LIMITED

Date of Issue:

29/04/2016

Description:

Multifunctional Meter

Brand Name:

YSI

Model No.:

6820 V2

Serial No.:

12A101545

Equipment No.:

W.026.35

Date of Calibration: 28 April, 2016

Date of next Calibration:

28 July, 2016

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	
10	10.05	+0.5
20	19.94	-0.3
30	29.90	-0.3
	Tolerance Limit (%)	±10.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	::
4	4.1	+2.5
10	9.9	-1.0
20	20.2	+1.0
50	50.2	+0.4
100	100.4	+0.4
	Tolerance Limit (%)	±10.0

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.02	+0.02
7.0	6.99	-0.01
10.0	10.03	+0.03
	Tolerance Limit (pH Unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard

General Manager

Work Order:

HK1616644

Sub-batch:

0

Client:

AECOM ASIA COMPANY LIMITED

Date of Issue:

29/04/2016

Description:

Multifunctional Meter

Brand Name:

Model No.:

6820 V2

Serial No.:

12D100972

Equipment No.:

W.026.36

Date of Calibration: 28 April, 2016

Date of next Calibration:

28 July, 2016

Parameters:

Conductivity

Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	142.0	-3.3
6667	6780	+1.7
12890	12640	-1.9
58670	58790	+0.2
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.43	3.45	+0.02
5.50	5.51	+0.01
7.75	7.76	+0.01
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
11.0	10.95	-0.1
22.0	22.02	+0.0
37.5	37.53	+0.0
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

General Manager -

Work Order:

HK1616644

Sub-Batch:

0

Client:

AECOM ASIA COMPANY LIMITED

Date of Issue:

29/04/2016

Description:

Multifunctional Meter

Brand Name: Model No.:

YSI

Serial No.:

6820 V2 12D100972

W.026.36

Equipment No.:

Date of Calibration: 28 April, 2016

Date of next Calibration:

28 July, 2016

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	1 m m
10	10.05	+0.5
20	20.02	+0.1
30	29.94	-0.2
	Tolerance Limit (%)	±10.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	<u>6/24/49</u> 6
4	3.9	-2.5
10	9.8	-2.0
20	19.7	-1.5
50	50.5	+1.0
100	99.7	-0.3
	Tolerance Limit (%)	±10.0

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.01	+0.01
7.0	7.03	+0.03
10.0	10.01	+0.01
	Tolerance Limit (pH Unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Fung Lim Chee, Richard General Manager

Hong Kong Boundary Crossing Facilities – Reclamation Works Tentative Impact Monitoring Schedule for June 2016

Sunday	Monday	Tuesday	Wednesday		Thursday	Frida	ay	Saturday	
				1-Jun	2-Jun		3-Jun		4-Jun
				10:05 15:56		Mid-Ebb Mid-Flood	11:35 18:04	24-hour TSP 1-hour TSP	
5-Jun	6-Jun	7-Jun		8-Jun	9-Jun		10-Jun		11-Jun
	Mid-Flood 6:58 Mid-Ebb 13:51 Dolphin monitoring		Mid-Flood	8:21 15:21		Mid-Flood Mid-Ebb	9:50 16:51		
12-Jun	13-Jun	14-Jun	1	15-Jun	16-Jun		17-Jun	•	18-Jun
	Mid-Ebb 8:12 Mid-Flood 13:31			10:08 16:19		Mid-Ebb Mid-Flood	11:22 18:03		
19-Jun	20-Jun	21-Jun	2	22-Jun	23-Jun		24-Jun	4	25-Jun
	Mid-Flood 6:10 Mid-Ebb 13:03 Dolphin monitoring 24-hour TSP 1-hour TSP Noise		Mid-Flood Mid-Ebb	7:22 14:15		Mid-Flood Mid-Ebb	8:44 15:33	24-hour TSP 1-hour TSP	
26-Jun	27-Jun	28-Jun	2	29-Jun	30-Jun	_			
	Mid-Flood 11:34 Mid-Ebb 17:58		Mid-Ebb Mid-Flood	8:36 14:26	24-hour TSP 1-hour TSP Noise				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix F Schedule June 2016

Hong Kong Boundary Crossing Facilities – Reclamation Works Impact Monitoring Schedule for July 2016

Sunday	Monday	Tuesday	Wedn	esday	Thursday	Friday		Saturday
,	ĺ	,		,	•	Í	1-Jul	2-Jul
						Mid-Ebb	10:30	
						Mid-Flood	17:04	
						IVIIG 1 100G	17.04	
3-Jul		4-Jul 5-	-Jul	6-Jul	7-Jul		8-Jul	9-Jul
3-341		4-001	Jui	0-341	7-501		0-Jui	9-501
	Mid-Flood	5:56	Mid-Flood	7:24		Mid-Flood	8:50	
		12:53	Mid-Ebb	14:21		Mid-Ebb	15:43	
	Dolphin monitoring		IVIIQ-EDD	14.21		IVIIQ-EDD	15.43	
	Dolphin monitoring	Dolphiin monitoring	24-hou	ır TSP				
			1-hou					
			Noi					
10-Jul	1	1-Jul 12-	-Jul	13-Jul	14-Jul		15-Jul	16-Jul
	Mid-Flood 1	11:15 24-hour TSP	Mid-Ebb	8:14		Mid-Ebb	10:10	24-hour TSP
	Mid-Ebb 1	17:40 1-hour TSP	Mid-Flood	14:10		Mid-Flood	17:00	1-hour TSP
		Noise						
17-Jul	1	8-Jul 19-	-Jul	20-Jul	21-Jul		22-Jul	23-Jul
	Mid-Ebb 1	12:06	Mid-Flood	6:27		Mid-Flood	7:52	
	Mid-Flood 1	19:12	Mid-Ebb	13:21		Mid-Ebb	14:36	
	Dolphin monitoring	Dolphin monitoring				24-hour TSP		
						1-hour TSP Noise		
						140126		
24-Jul	2	5-Jul 26-	-Jul	27-Jul	28-Jul		29-Jul	30-Jul
2.00	_				20 04.			00 04.
	Mid-Flood 1	10:20	Mid-Flood	12:50	24-hour TSP	Mid-Ebb	9:13	
		16:42	Mid-Ebb	18:41		Mid-Flood	15:58	
	IVIIG EDD		Wild EDD	10.41	Noise	iviid i lood	10.00	
					INDISE			
31-Jul								
31 001								
	l .							li

Appendix F Schedule June 2016

Appendix G Impact Air Quality Monitoring Results

1-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Date	Session	Weather Condition	averaged Wind Speed (m/s)*	Time (hh:mm)	Conc. (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
04-Jun-16	1st Hour	Sunny	0.00	10:28	73	374	500
04-Jun-16	2nd Hour	Sunny	2.50	11:28	73	374	500
04-Jun-16	3rd Hour	Sunny	1.29	12:28	73	374	500
08-Jun-16	1st Hour	Fine	0.00	10:15	78	374	500
08-Jun-16	2nd Hour	Fine	0.42	11:15	74	374	500
08-Jun-16	3rd Hour	Fine	0.31	12:15	76	374	500
14-Jun-16	1st Hour	Sunny	0.67	10:21	75	374	500
14-Jun-16	2nd Hour	Sunny	1.37	11:21	74	374	500
14-Jun-16	3rd Hour	Sunny	4.73	12:21	74	374	500
20-Jun-16	1st Hour	Sunny	0.81	10:10	72	374	500
20-Jun-16	2nd Hour	Sunny	0.06	11:10	75	374	500
20-Jun-16	3rd Hour	Sunny	0.04	12:10	73	374	500
25-Jun-16	1st Hour	Sunny	0.13	13:20	78	374	500
25-Jun-16	2nd Hour	Sunny	0.08	14:20	79	374	500
25-Jun-16	3rd Hour	Sunny	1.40	15:20	78	374	500
30-Jun-16	1st Hour	Sunny	0.32	09:40	74	374	500
30-Jun-16	2nd Hour	Sunny	0.62	10:40	74	374	500
30-Jun-16	3rd Hour	Sunny	1.72	11:40	75	374	500
				Average	75		
				Min	72		
				Max	79		

1-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

		Weather	averaged Wind	Time	Conc.	Action Level	Limit Level
Date	Session	Condition	Speed (m/s)*	(hh:mm)	(µg/m³)	(µg/m³) ^	(µg/m³)
04-Jun-16	1st Hour	Sunny	0.00	10:40	73	368	500
04-Jun-16	2nd Hour	Sunny	2.50	11:40	73	368	500
04-Jun-16	3rd Hour	Sunny	1.29	12:40	72	368	500
08-Jun-16	1st Hour	Fine	0.07	10:00	72	368	500
08-Jun-16	2nd Hour	Fine	0.00	11:00	74	368	500
08-Jun-16	3rd Hour	Fine	0.42	12:00	71	368	500
14-Jun-16	1st Hour	Sunny	1.37	11:33	74	368	500
14-Jun-16	2nd Hour	Sunny	4.73	12:33	75	368	500
14-Jun-16	3rd Hour	Sunny	2.83	13:33	75	368	500
20-Jun-16	1st Hour	Sunny	0.06	10:20	71	368	500
20-Jun-16	2nd Hour	Sunny	0.04	11:20	74	368	500
20-Jun-16	3rd Hour	Sunny	0.00	12:20	76	368	500
25-Jun-16	1st Hour	Sunny	0.00	10:21	76	368	500
25-Jun-16	2nd Hour	Sunny	0.08	11:21	77	368	500
25-Jun-16	3rd Hour	Sunny	0.43	12:21	76	368	500
30-Jun-16	1st Hour	Sunny	0.32	10:06	74	368	500
30-Jun-16	2nd Hour	Sunny	0.62	11:06	74	368	500
30-Jun-16	3rd Hour	Sunny	1.72	12:06	73	368	500
				Average	74		

Min Max

Remarks:

1-hour TSP Monitoring Results at Station AMS7 - Hong Kong SkyCity Marriott Hotel

		Weather	averaged Wind	Time	Conc.	Action Level	Limit Level
Date	Session	Condition	Speed (m/s)*	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
04-Jun-16	1st Hour	Sunny	0.21	10:07	74	370	500
04-Jun-16	2nd Hour	Sunny	0.00	11:07	74	370	500
04-Jun-16	3rd Hour	Sunny	2.50	12:07	72	370	500
08-Jun-16	1st Hour	Fine	0.00	10:25	74	370	500
08-Jun-16	2nd Hour	Fine	0.42	11:25	75	370	500
08-Jun-16	3rd Hour	Fine	0.31	12:25	73	370	500
14-Jun-16	1st Hour	Sunny	0.67	10:02	73	370	500
14-Jun-16	2nd Hour	Sunny	1.37	11:02	75	370	500
14-Jun-16	3rd Hour	Sunny	2.76	12:02	75	370	500
20-Jun-16	1st Hour	Sunny	0.06	10:30	73	370	500
20-Jun-16	2nd Hour	Sunny	0.04	11:30	75	370	500
20-Jun-16	3rd Hour	Sunny	0.00	12:30	73	370	500
25-Jun-16	1st Hour	Sunny	0.00	10:05	77	370	500
25-Jun-16	2nd Hour	Sunny	0.08	11:05	76	370	500
25-Jun-16	3rd Hour	Sunny	0.43	12:05	77	370	500
30-Jun-16	1st Hour	Sunny	1.72	12:09	73	370	500
30-Jun-16	2nd Hour	Sunny	N.A.	13:09	73	370	500
30-Jun-16	3rd Hour	Sunny	N.A.	14:09	74	370	500
				Average	74		
30-Jun-16	3rd Hour		N.A.			370	

Remarks: Due to malfunction of the wind station monitoring equipment, wind data was not able to be obtained for monitoring event(s) conducted between 11:46:36 30 June 2016 – 16:00:00 30 June 2016. Wind speed and direction data set between 11:46:36 30 June 2016 – 16:00:00 30 June 2016 from the Hong Kong Observatory is not available at time this monthly report is submitted.

Min Max

[^] Action Level set out at AMS3 Ho Yu College is adopted.

Appendix G Impact Air Quality Monitoring Results

24-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)	(µg/m ³)	(µg/m ³)
03-Jun-16	16:00	04-Jun-16	16:00	Sunny	28.7	1007.9	1.33	1.33	1.33	1909.4	2.8048	2.8497	0.0449	6480.04	6504.04	24.00	24	176	260
07-Jun-16	16:00	08-Jun-16	16:00	Cloudy	27.1	1006.3	1.33	1.33	1.33	1909.4	2.8043	2.8323	0.0280	6504.04	6528.04	24.00	15	176	260
13-Jun-16	16:00	14-Jun-16	16:00	Cloudy	30.2	1004.2	1.33	1.33	1.33	1909.4	2.8024	2.8523	0.0499	6528.04	6552.04	24.00	26	176	260
20-Jun-16	09:00	21-Jun-16	09:00	Sunny	25.2	1006.9	1.33	1.33	1.33	1909.4	2.8100	2.8460	0.0360	6552.04	6576.04	24.00	19	176	260
24-Jun-16	16:00	25-Jun-16	16:00	Sunny	31.4	1008.9	1.33	1.33	1.33	1909.4	2.7854	2.8124	0.0270	6576.04	6600.04	24.00	14	176	260
29-Jun-16	16:00	30-Jun-16	16:00	Sunny	30.0	1010.3	1.33	1.33	1.33	1909.4	2.7831	2.8144	0.0313	6600.04	6624.04	24.00	16	176	260

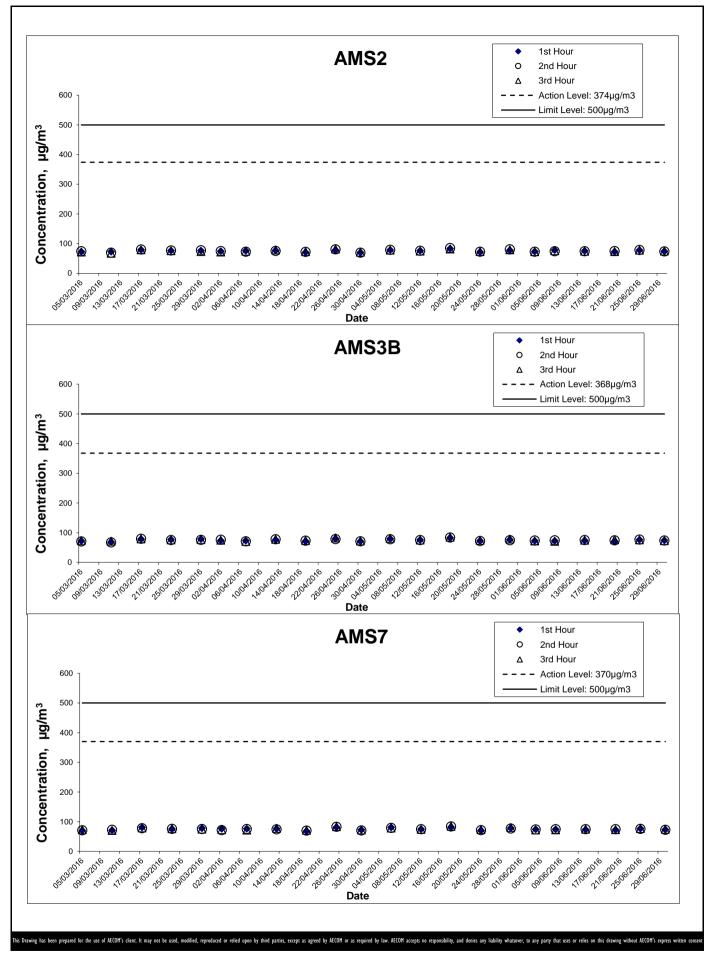
 Average
 19

 Min
 14

 Max
 26

24-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m ³)	(µg/m ³)
03-Jun-16	16:00	04-Jun-16	16:00	Sunny	28.7	1007.9	1.34	1.34	1.34	1923.8	2.8071	2.8404	0.0333	7255.38	7279.38	24.00	17	167	260
07-Jun-16	16:00	08-Jun-16	16:00	Cloudy	27.1	1006.3	1.34	1.34	1.34	1923.8	2.7997	2.8274	0.0277	7279.38	7303.38	24.00	14	167	260
13-Jun-16	16:00	14-Jun-16	16:00	Cloudy	30.2	1004.2	1.34	1.34	1.34	1923.8	2.7801	2.8235	0.0434	7303.38	7327.38	24.00	23	167	260
20-Jun-16	09:00	21-Jun-16	09:00	Sunny	15.5	1019.6	1.34	1.34	1.34	1923.8	2.8163	2.8493	0.0330	7327.38	7351.38	24.00	17	167	260
24-Jun-16	16:00	25-Jun-16	16:00	Sunny	31.4	1008.9	1.34	1.34	1.34	1923.8	2.7969	2.8194	0.0225	7351.38	7375.38	24.00	12	167	260
29-Jun-16	16:00	30-Jun-16	16:00	Sunny	30.0	1010.3	1.32	1.32	1.32	1895.0	2.7735	2.8057	0.0322	7375.38	7399.38	24.00	17	167	260

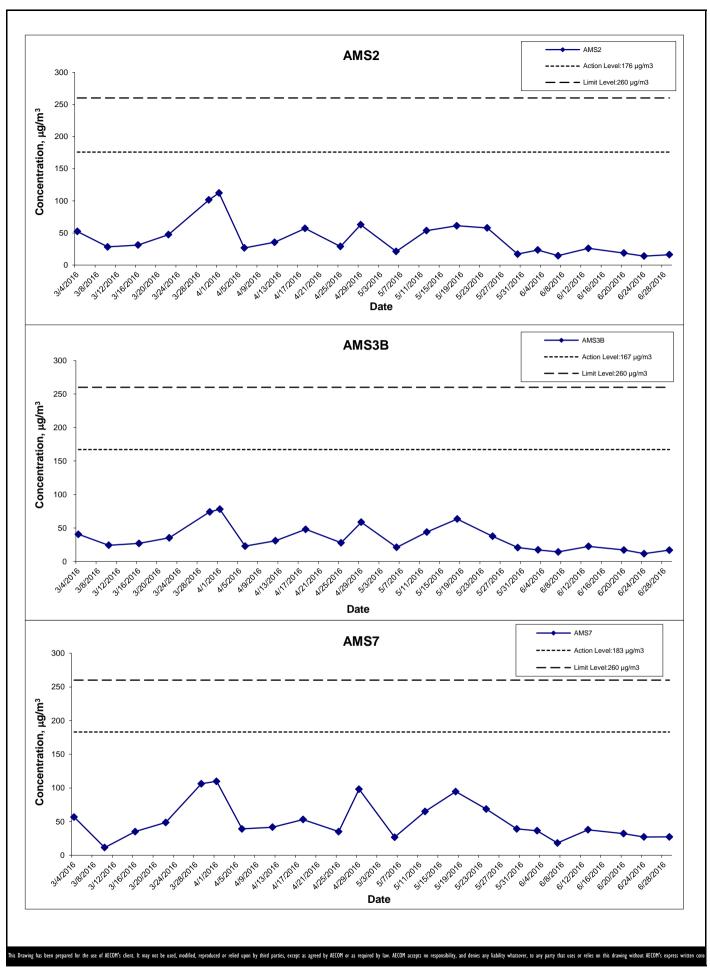

Average 17
Min 12
Max 23

24-hour TSP Monitoring Results at Station AMS7 - Hong Kong SkyCity Marriott Hotel

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)	(µg/m ³)	(µg/m ³)
03-Jun-16	16:00	04-Jun-16	16:00	Sunny	28.7	1007.9	1.30	1.30	1.30	1869.1	2.8030	2.8712	0.0682	6195.91	6219.91	24.00	36	183	260
07-Jun-16	16:00	08-Jun-16	16:00	Cloudy	27.1	1006.3	1.30	1.30	1.30	1869.1	2.7920	2.8262	0.0342	6219.91	6243.91	24.00	18	183	260
13-Jun-16	16:00	14-Jun-16	16:00	Cloudy	30.2	1004.2	1.30	1.30	1.30	1869.1	2.7942	2.8651	0.0709	6243.91	6267.91	24.00	38	183	260
20-Jun-16	09:00	21-Jun-16	09:00	Sunny	15.5	1019.6	1.30	1.30	1.30	1869.1	2.8086	2.8689	0.0603	6267.91	6291.91	24.00	32	183	260
24-Jun-16	16:00	25-Jun-16	16:00	Sunny	31.4	1008.9	1.30	1.30	1.30	1869.1	2.8063	2.8571	0.0508	6291.91	6315.91	24.00	27	183	260
29-Jun-16	16:00	30-Jun-16	16:00	Sunny	30.0	1010.3	1.30	1.30	1.30	1869.1	2.7657	2.8168	0.0511	6291.91	6315.91	24.00	27	183	260

Average 30 Min 18 Max 38

[^] Action Level set out at AMS3 Ho Yu College is adopted.


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

Graphical Presentation of Impact 1-hour TSP

Monitoring Results

AECOM

Project No.: 60249820 Date: July 2016 Appendix G

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES

Project No.: 60249820

- RECLAMATION WORKS Graphical Presentation of Impact 24-hour TSP

Monitoring Results

Date: July 2016

AECOM

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in June 2016

WIND DATA

IND DATA			
Date	Time	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)
03/06/2016	15:44:56	3.80	329
03/06/2016	16:44:56	2.60	316
03/06/2016	17:44:56	1.85	336
03/06/2016	18:44:56	1.54	283
03/06/2016	19:44:56	0.78	75
03/06/2016	20:44:56	0.45	321
03/06/2016	21:44:56	0.43	308
03/06/2016	22:44:56	1.19	335
03/06/2016	23:44:56	0.10	334
04/06/2016	00:44:56	0.69	329
04/06/2016	01:44:56	1.41	20
04/06/2016	02:44:56	0.50	28
04/06/2016	03:44:56	1.06	317
04/06/2016	04:44:56	0.15	113
04/06/2016	05:44:56	0.43	328
04/06/2016	06:44:56	0.06	310
04/06/2016	07:44:56	0.07	268
04/06/2016	08:44:56	0.66	144
04/06/2016	09:44:56	0.21	136
04/06/2016	10:44:56	0.00	106
04/06/2016	11:44:56	2.50	140
04/06/2016	12:44:56	1.29	9
04/06/2016	13:44:56	1.99	10
			303
04/06/2016	14:44:56	1.34	
04/06/2016	15:44:56	1.24	290
04/06/2016	16:44:56	0.24	285
04/06/2016	17:44:56	0.06	280
07/06/2016	15:44:56	0.08	149
07/06/2016	16:44:56	-0.01	346
07/06/2016	17:44:56	0.00	142
07/06/2016	18:44:56	0.07	125
07/06/2016	19:44:56	0.07	130
07/06/2016	20:44:56	0.04	281
07/06/2016	21:44:56	0.04	122
07/06/2016	22:44:56	0.04	312
07/06/2016	23:44:56	0.06	152
08/06/2016	00:44:56	0.01	328
08/06/2016	01:44:56	0.27	156
08/06/2016	02:44:56	0.35	-51
08/06/2016	03:44:56	0.32	133
08/06/2016	04:44:56	0.00	300
08/06/2016	05:44:56	0.00	277
08/06/2016	06:44:56	0.08	151
		0.03	79
08/06/2016	07:44:56		
08/06/2016	08:44:56	0.98	131
08/06/2016	09:44:56	0.07	139
08/06/2016	10:44:56	0.00	130
08/06/2016	11:29:30	0.42	104
08/06/2016	12:29:30	0.31	149
08/06/2016	13:29:30	0.88	129
08/06/2016	14:29:30	0.52	109
08/06/2016	15:29:30	0.69	128
08/06/2016	16:29:30	0.77	49
08/06/2016	17:29:30	0.03	132
		0.03	39
13/06/2016	15:29:30		
13/06/2016	16:29:30	0.01	119
13/06/2016	17:29:30	0.66	170
13/06/2016	18:29:30	0.04	80
13/06/2016	19:29:30	0.49	12
13/06/2016	20:29:30	0.63	337
13/06/2016	21:29:30	0.94	328
13/06/2016	22:29:30	0.11	9
13/06/2016	23:29:30	0.06	74
14/06/2016	00:29:30	1.44	147
	01:29:30		75
14/06/2016		0.32	
14/06/2016	02:29:30	0.73	64
14/06/2016	03:29:30	0.90	26
14/06/2016	04:29:30	2.03	326
14/06/2016	05:29:30	0.21	323
14/06/2016	06:29:30	0.34	147
14/06/2016	07:29:30	0.06	105
14/06/2016	08:29:30	0.03	133
14/06/2016	09:29:30	0.73	8
14/06/2016	10:29:30	0.67	328
14/06/2016	11:29:30	1.37	334
14/06/2016	11:53:29	2.76	304
14/06/2016	12:53:29	4.73	310
14/06/2016	13:53:29	2.83	281
14/06/2016	14:53:29	2.07	330
14/06/2016	15:53:29	0.87	337
14/06/2016	16:53:29	3.05	342
14/06/2016	17:53:29	0.03	31
20/06/2016	08:53:29	0.00	127
20/06/2016	09:53:29		344
		0.81	
20/06/2016	10:53:29	0.06	78
20/06/2016	11:16:35	0.04	68
20/06/2016	12:16:35	0.00	67
20/06/2016	13:16:35	0.48	68
20/06/2016	14:16:35	0.78	297
20/06/2016	15:16:35	1.68	341
		·	

1

Appendix H Wind Data

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in June 2016

WIND DATA

Date	Time	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)
20/06/2016	16:16:35	0.01	21
20/06/2016	17:16:35	2.41	-54
20/06/2016	18:16:35	0.17	334
20/06/2016	19:16:35	0.10	77
20/06/2016	20:16:35	0.88	89
20/06/2016	21:16:35	0.46	305
20/06/2016	22:16:35	0.14	278
20/06/2016	23:16:35	1.54	334
21/06/2016	00:16:35	0.01	25
21/06/2016	01:16:35	0.00	28
21/06/2016	02:16:35	0.57	133
21/06/2016	03:16:35	0.13	248
21/06/2016	04:16:35	0.00	294
21/06/2016	05:16:35	0.01	94
21/06/2016	06:16:35	0.00	131
21/06/2016	07:16:35	0.04	44
21/06/2016	08:16:35	0.00	110
21/06/2016	09:16:35	0.48	117
21/06/2016	10:16:35	0.00	262
24/06/2016	15:16:35	0.27	119
24/06/2016	16:16:35	0.50	349
24/06/2016	17:16:35	1.13	348
24/06/2016	18:16:35	1.27	291
24/06/2016	19:16:35	0.04	90
24/06/2016	20:16:35	0.11	145
24/06/2016	21:16:35	0.06	312
24/06/2016	22:16:35	0.03	330
24/06/2016	23:16:35	0.04	316
25/06/2016	00:16:35	0.06	118
25/06/2016	01:16:35	0.03	353
25/06/2016	02:16:35	0.29	140
25/06/2016	03:16:35	0.01	162
25/06/2016	04:16:35	0.01	81
25/06/2016	05:16:35	0.01	324
25/06/2016	06:16:35	0.01	130
25/06/2016	07:16:35	0.03	109
25/06/2016	08:16:35	0.20	144
25/06/2016	09:16:35	0.00	128
25/06/2016	10:16:35	0.00	120
25/06/2016		0.08	61
25/06/2016	11:16:35 12:46:36	0.00	127
25/06/2016	13:46:36	0.43	116
25/06/2016	14:46:36	0.13	87
25/06/2016		1.40	21
	15:46:36 16:46:36		344
25/06/2016 25/06/2016		0.53 0.01	92
	17:46:36		
29/06/2016 29/06/2016	15:46:36 16:46:36	0.91 0.01	20 142
29/06/2016	17:46:36	4.21	153
29/06/2016			
29/06/2016	18:46:36 19:46:36	0.60 0.95	156 154
29/06/2016	20:46:36	0.83	146
29/06/2016	21:46:36	0.03	79
		1.09	159
29/06/2016	22:46:36		
29/06/2016	23:46:36	2.04	149
30/06/2016	00:46:36	0.01 0.73	110 126
30/06/2016 30/06/2016	01:46:36	0.73	
	02:46:36	0.17	21
30/06/2016	03:46:36	7.60	346
30/06/2016	04:46:36	1.96	329
30/06/2016	05:46:36	0.28	64
30/06/2016	06:46:36	0.04	54
30/06/2016	07:46:36	0.28	67
30/06/2016	08:46:36	0.11	323
30/06/2016	09:46:36	0.32	341
30/06/2016	10:46:36	0.62	183
30/06/2016	11:46:36	1.72	66

Remarks: Due to malfunction of the wind station monitoring equipment, wind data was not able to be obtained for monitoring event(s) conducted between 11:46:36 30 June 2016 – 16:00:00 30 June 2016. Wind speed and direction data set between 11:46:36 30 June 2016 – 16:00:00 30 June 2016 from the Hong Kong Observatory is not available at time this monthly report is submitted.

2

Appendix H Wind Data

Appendix I Impact Daytime Construction Noise Monitoring Results

Daytime Noise Monitoring Results at Station NMS2 - Seaview Crescent Tower 1

Average

Max

Average

		Nois	se Level for 30	O-min, dB(A) [#]					
Date	Weather Condition	Time	L90	L10	Leq	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
8-Jun-16	Fine	10:30	61	68	65	<5m/s	62.9	75	N
14-Jun-16	Sunny	10:44	63	67	65	<5m/s	62.9	75	N
20-Jun-16	Sunny	10:30	60	68	65	<5m/s	62.9	75	N
30-Jun-16	Sunny	10:38	65	69	67	<5m/s	62.9	75	N
		Min	61	66	64			·	
		N 4	0.4	70	67				

Daytime Noise Monitoring Results at Station NMS3B - Site Boundary of Site Office (WA2)

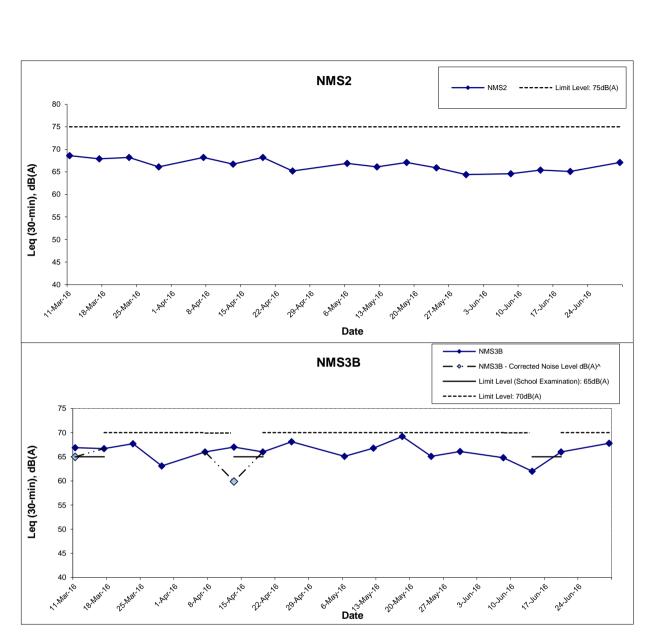
		Nois	se Level for 30	D-min, dB(A)#					
Date	Weather Condition	Time	L90	L10	Leq	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A) ^	Limit Level, dB(A)**	Exceedance (Y/N)
8-Jun-16	Fine	11:15	61	68	65	<5m/s	66.3	70	N
14-Jun-16	Sunny	11:33	59	64	62	<5m/s	66.3	65	N
20-Jun-16	Sunny	11:15	61	69	66 ^v	<5m/s	66.3	65	Ν
30-Jun-16	Sunny	11:17	62	70	68	<5m/s	66.3	70	N
		Min	61	67	65				

Remark:

66

72

67


[#] A correction of +3dB(A) was made to the free field measurement.

^{*} Façade measurement.

[^] Averaged baseline noise level recorded at NMS3 Ho Yu College is adopted.

^{**} Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.

^V The measured noise level on 20 Jun 2016 exceeded the noise level of 65dB(A) during examination period on 20 Jun 2016 but it is below the baseline level. Therefore, it is not considered as an exceedance. As such the EAP was not triggered.

Remarks: Effective from July 2012, the Limit Level at NMS3A was revised to 70dB(A). Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

- > The measured noise level on 11 March 2016 exceeded the noise level of 65dB(A) during examination period on 11 March 2016 and it is higher than the baseline level. Therefore, baseline correction was carried out and the corrected noise level which solely represent the noise level of Construction works is 65 dB(A), no exceedance after correction. As such the EAP was not triggered.
- < Since the measured noise level on 13 April 2016 is 66.3dB(A) and is equal to the baseline level, therefore it is considered that the measured noise level is same as the background, therefore it is not considered as an exceedance. As such the EAP was not triggered.

V The measured noise level on 20 Jun 2016 exceeded the noise level of 65dB(A) during examination period on 20 Jun 2016 but it is below the baseline level. Therefore, it is not considered as an exceedance. As such the EAP was not triggered.

This Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and denies any liability whatsover, to any parry that uses or relies on this drawing without AECOM's express written com

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

Graphical Presentation of Impact Daytime Construction Noise Monitoring Results

Project No.: 60249820 Date: July 2016 Appendix I

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	10:25		Surface	1.0	28.7 28.7	28.7	8.4 8.4	8.4	10.7 10.7	10.7	99.9 93.3	96.6	7.3 6.8	7.0		7.6 7.0	7.3		3.1 3.8	3.5	
				6.4	Middle	3.2	28.4 28.1	28.3	8.4 8.4	8.4	11.1 11.0	11.1	92.6 88.1	90.4	6.8 6.5	6.6	6.8	8.8 8.5	8.7	8.7	3.3 3.6	3.5	3.4
					Bottom	5.4	27.7	27.8	8.2 8.2	8.2	19.8 19.9	19.9	88.4 93.5	91.0	6.2 6.6	6.4	6.4	10.3	10.1		2.9	3.3	
3-Jun-16	Sunny	Moderate	12:08		Surface	1.0	28.8	28.7	8.5	8.5	14.7	14.7	93.5	96.4	6.9	6.9		3.7	3.8		2.9	3.0	
							28.6 28.2		8.5 8.4		14.7 18.2		95.7 93.8		6.8 6.5		6.7	3.8			3.0		
				6.2	Middle	3.1	28.2	28.2	8.4 8.3	8.4	18.1	18.2	95.3 92.6	94.6	6.6	6.5		3.7	3.8	3.8	2.9	3.1	3.6
	2				Bottom	5.2	27.8	27.8	8.3	8.3	23.8	23.7	92.1	92.4	6.5	6.5	6.5	3.7	3.8		4.5	4.6	
6-Jun-16	Cloudy	Moderate	13:11		Surface	1.0	27.7 27.8	27.8	8.2 8.2	8.2	17.8 17.4	17.6	79.2 80.8	80.0	5.7 5.8	5.7	5.7	4.7 4.8	4.8		2.1 2.6	2.4]
				6.7	Middle	3.4	27.7 27.6	27.7	8.2 8.2	8.2	17.7 19.3	18.5	79.2 77.6	78.4	5.6 5.5	5.6	0.7	4.9 4.7	4.8	4.9	2.6 2.2	2.4	2.5
					Bottom	5.7	27.7 27.6	27.7	8.2 8.2	8.2	19.5 20.6	20.1	76.4 77.0	76.7	5.4 5.4	5.4	5.4	5.0 5.2	5.1		2.7 2.5	2.6	
8-Jun-16	Sunny	Moderate	14:37		Surface	1.0	28.7 28.5	28.6	8.3 8.3	8.3	13.4 13.9	13.6	80.4 78.2	79.3	5.9 5.7	5.8		5.2 5.1	5.2		3.5 2.7	3.1	
				6.8	Middle	3.4	27.8	27.9	8.2	8.2	15.9	15.2	74.8	74.7	5.5	5.5	5.7	7.7	7.8	7.1	3.8	2.9	3.4
					Bottom	5.8	28.1 27.7	27.9	8.2 8.1	8.1	14.4 21.3	21.2	74.6 77.3	78.3	5.5 5.5	5.6	5.6	7.9 8.2	8.3		3.9	4.2	
10-Jun-16	Rainy	Moderate	16:12		Surface	1.0	28.0 28.8	28.7	8.1 8.4	8.4	21.2 14.5	14.5	79.3 70.6	71.4	5.6 5.5	5.5		8.3 2.1	2.2		4.5 2.8	2.8	
				0.0			28.6 27.7		8.4 8.2		14.5 19.0		72.1 69.8		5.6 5.4		5.4	2.2		0.0	2.8 3.9		
				6.2	Middle	3.1	27.8 27.8	27.8	8.3 8.2	8.3	19.0	19.0	68.6 69.9	69.2	5.3	5.3		2.2	2.2	2.2	3.5	3.7	3.2
10.1.10	0		00.10		Bottom	5.2	27.8	27.8	8.2	8.2	21.2	21.1	69.4	69.7	5.3	5.3	5.3	2.1	2.1		2.8	3.0	
13-Jun-16	Cloudy	Moderate	08:10		Surface	1.0	27.8 27.8	27.8	8.2 8.1	8.2	17.4 17.4	17.4	81.9 80.3	81.1	6.0 6.0	6.0	5.9	3.5 3.6	3.6		3.2 2.7	3.0]
				6.4	Middle	3.2	27.7 27.6	27.7	8.1 8.0	8.1	19.7 20.5	20.1	79.5 77.6	78.6	5.9 5.7	5.8	0.0	3.7 3.7	3.7	3.7	4.3 3.3	3.8	3.8
					Bottom	5.4	27.6 27.6	27.6	8.0 8.0	8.0	21.6 20.6	21.1	77.0 77.0	77.0	5.7 5.7	5.7	5.7	3.8 3.9	3.9		5.3 4.1	4.7	
15-Jun-16	Sunny	Moderate	11:11		Surface	1.0	28.9 28.9	28.9	8.1 8.2	8.2	6.7 6.6	6.7	89.0 89.4	89.2	6.6 6.6	6.6		5.8 6.0	5.9		5.4 5.7	5.6	
				6.4	Middle	3.2	28.3	28.3	8.1	8.1	10.2	10.2	76.4	76.6	5.6	5.6	6.1	6.5	6.4	6.5	5.8 6.9	6.4	5.9
					Bottom	5.4	28.3 27.1	27.1	7.8	7.8	10.2 22.9	22.8	76.8 74.2	74.4	5.7 5.2	5.2	5.2	6.3 7.1	7.3		5.6	5.6	
17-Jun-16	Sunny	Moderate	11:46		Surface	1.0	27.1 28.5	28.6	7.8 8.1	8.1	9.4	9.1	74.6 78.6	79.3	5.2 5.8	5.8		7.4 6.8	6.7		5.6 6.2	6.3	
				0.0			28.6 28.3		8.1 8.1		8.9 10.0		79.9 75.8		5.9 5.6		5.7	6.6		0.7	6.3 5.2		
				6.6	Middle	3.3	28.0 28.2	28.1	8.1 7.9	8.1	10.1 17.3	10.1	78.8 72.2	77.3	5.6 5.3	5.6		6.4 6.8	6.6	6.7	6.4 5.8	5.8	6.2
20 h : 40	Commercial	Maderete	40.00		Bottom	5.6	27.0	27.6	7.8	7.9	17.9	17.6	71.2	71.7	5.3	5.3	5.3	7.0	6.9		7.2	6.5	
20-Jun-16	Sunny	Moderate	12:26		Surface	1.0	28.3 28.3	28.3	8.1 8.1	8.1	18.5 17.3	17.9	74.3 74.8	74.6	5.5 5.4	5.4	5.4	4.3 4.2	4.3		4.5 4.8	4.7	
				6.7	Middle	3.4	27.7 27.8	27.7	8.0 8.0	8.0	19.7 20.6	20.1	73.4 73.9	73.7	5.4 5.4	5.4		4.4 4.4	4.4	4.4	4.5 4.9	4.7	4.6
					Bottom	5.7	27.6 27.1	27.3	7.8 7.8	7.8	26.5 28.5	27.5	72.1 71.9	72.0	5.3 5.3	5.3	5.3	4.6 4.5	4.6		4.7 3.8	4.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	14:40		Surface	1.0	29.3 29.2	29.2	8.3 8.3	8.3	9.4 9.3	9.4	72.3 72.6	72.5	5.5 5.5	5.5	5.5	8.6 8.2	8.4		3.6 3.9	3.8	
				6.6	Middle	3.3	27.6 27.4	27.5	8.1 8.1	8.1	16.2 16.5	16.4	72.2 71.8	72.0	5.5 5.5	5.5	5.5	9.1 8.5	8.8	8.7	4.0 3.9	4.0	3.6
					Bottom	5.6	27.2 27.1	27.1	8.0 7.9	8.0	20.6 20.9	20.8	72.2 71.8	72.0	5.5 5.4	5.4	5.4	9.2 8.8	9.0		2.9 3.2	3.1	
24-Jun-16	Sunny	Moderate	14:53		Surface	1.0	28.7 28.0	28.4	8.2 8.1	8.2	18.5 19.2	18.8	74.1 75.3	74.7	5.3 5.3	5.3	5.3	4.2 4.2	4.2		4.3 4.7	4.5	
				6.7	Middle	3.4	28.7 27.3	28.0	8.1 8.1	8.1	19.6 18.7	19.2	73.2 74.6	73.9	5.2 5.3	5.2	0.0	4.3 4.2	4.3	4.3	6.3 5.9	6.1	5.3
					Bottom	5.7	27.5 27.1	27.3	8.0 8.0	8.0	19.8 21.7	20.8	71.9 73.0	72.5	5.1 5.1	5.1	5.1	4.4 4.4	4.4		5.1 5.4	5.3	
27-Jun-16	Sunny	Moderate	17:20		Surface	1.0	30.2 30.1	30.2	8.4 8.4	8.4	14.9 14.9	14.9	104.1 105.2	104.7	7.2 7.3	7.3	6.7	3.6 3.9	3.8		4.1 4.5	4.3	
				6.5	Middle	3.3	27.8 27.7	27.8	8.3 8.3	8.3	19.5 19.6	19.6	82.7 86.2	84.5	5.8 6.1	6.0	0.7	3.6 3.7	3.7	3.8	4.6 4.2	4.4	4.0
					Bottom	5.5	27.6 27.6	27.6	8.3 8.3	8.3	21.4 21.4	21.4	91.1 92.8	92.0	6.4 6.5	6.4	6.4	4.0 3.9	4.0		3.5 3.3	3.4	
29-Jun-16	Sunny	Moderate	08:30		Surface	1.0	28.3 28.4	28.3	8.3 8.3	8.3	17.1 16.9	17.0	76.3 82.6	79.5	5.4 5.9	5.6	5.5	3.0 3.0	3.0		4.3 4.8	4.6	
				7.1	Middle	3.6	26.9 26.8	26.8	8.2 8.2	8.2	23.2 23.2	23.2	74.6 78.4	76.5	5.3 5.5	5.4	5.5	3.1 3.0	3.1	3.1	4.9 5.4	5.2	4.8
					Bottom	6.1	26.8 26.9	26.8	8.2 8.2	8.2	23.3 23.3	23.3	71.9 77.1	74.5	5.1 5.4	5.2	5.2	3.2 3.1	3.2		4.8 4.6	4.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	ţ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	15:27		Surface	1.0	29.2 29.2	29.2	8.5 8.5	8.5	11.5 11.3	11.4	99.4 101.8	100.6	7.2 7.3	7.3		7.6 7.6	7.6		3.9 2.4	3.2	
				6.5	Middle	3.3	28.1	28.0	8.3 8.3	8.3	15.8 16.0	15.9	88.8 96.7	92.8	6.4 6.9	6.6	7.0	7.4 7.2	7.3	7.8	3.7	3.5	4.0
					Bottom	5.5	27.8	27.9	8.3	8.3	19.4	19.6	90.4	96.3	6.4	6.8	6.8	8.5	8.4		5.4	5.3	
3-Jun-16	Sunny	Moderate	17:31				27.9 29.3		8.3 8.5		10.8		102.1 101.3		7.2 7.2			8.2 2.4			5.1 4.2		
o dun 10	Cuiniy	moderate			Surface	1.0	29.6	29.5	8.5 8.4	8.5	11.1	11.0	104.2	102.8	7.5 7.1	7.3	7.2	2.5	2.5		3.7	4.0	
				6.5	Middle	3.3	28.7	28.7	8.4	8.4	14.5 16.5	14.5	97.7	98.9	6.9	7.0		2.8	2.8	2.7	2.5	3.2	3.9
					Bottom	5.5	28.8 28.6	28.7	8.4 8.3	8.4	15.6	16.0	96.1	97.2	7.0 6.9	6.9	6.9	2.9	2.9		4.8	4.4	
6-Jun-16	Cloudy	Moderate	07:39		Surface	1.0	27.7 27.8	27.8	8.3 8.4	8.4	18.8 18.6	18.7	80.7 83.4	82.1	5.9 5.8	5.8	5.7	3.1 3.2	3.2		2.6 2.6	2.6	
				6.8	Middle	3.4	27.7 27.6	27.6	8.3 8.3	8.3	22.0 22.4	22.2	78.4 80.5	79.5	5.6 5.6	5.6	5.7	3.3 3.3	3.3	3.3	2.3 2.4	2.4	2.6
					Bottom	5.8	27.5 27.5	27.5	8.2 8.2	8.2	24.4 24.1	24.3	78.0 79.4	78.7	5.4 5.5	5.5	5.5	3.5 3.4	3.5		3.0 2.3	2.7	
8-Jun-16	Sunny	Moderate	07:45		Surface	1.0	27.7 27.7	27.7	8.2	8.2	17.1 16.5	16.8	73.5 76.1	74.8	5.4 5.6	5.5		4.2	4.2		2.9 3.5	3.2	
				6.7	Middle	3.4	27.5	27.5	8.2	8.2	20.4	20.2	77.0	75.0	5.5	5.4	5.5	6.0	5.8	5.5	2.9	3.2	3.2
					Bottom	5.7	27.6 27.4	27.4	8.2 8.1	8.1	20.0 22.7	22.7	73.0 74.3	74.5	5.3 5.3	5.3	5.3	5.6 6.7	6.5		3.5 2.8	3.1	
10-Jun-16	Sunny	Moderate	10:18		Surface	1.0	27.4 28.5	28.4	8.1 8.3	8.3	22.6 13.8	13.9	74.7 71.6	71.3	5.3 5.4	5.4		6.3 2.4	2.5		3.3 3.4	3.1	
				6.4		3.2	28.4 28.1	28.1	8.3 8.2	8.2	14.0 15.7	15.5	71.0 70.7	70.6	5.4 5.3	5.3	5.4	2.6	2.8	2.9	2.8	3.0	3.8
				6.4	Middle		28.1 27.4		8.3 8.1		15.2 22.7		70.5 70.6		5.3 5.3			2.7 3.4		2.9	3.1 5.1		3.8
40 lun 40	Clavidi	Madagata	40.00		Bottom	5.4	28.2	27.8	8.2	8.2	18.8	20.8	70.3	70.5	5.3	5.3	5.3	3.3	3.4		5.5	5.3	
13-Jun-16	Cloudy	Moderate	13:33		Surface	1.0	28.1 28.1	28.1	8.2 8.1	8.1	17.8 17.9	17.9	83.0 82.0	82.5	6.2	6.1	6.0	3.9	3.9		3.7 4.2	4.0	
				6.6	Middle	3.3	28.0 27.8	27.9	8.1 8.1	8.1	17.9 18.7	18.3	78.9 80.8	79.9	5.8 6.0	5.9		4.0 4.1	4.1	4.1	2.9 3.0	3.0	3.7
					Bottom	5.6	27.4 27.7	27.6	7.9 8.0	7.9	20.6 20.8	20.7	78.2 73.6	75.9	5.6 5.5	5.5	5.5	4.2 4.2	4.2		3.9 4.5	4.2	
15-Jun-16	Sunny	Moderate	16:10		Surface	1.0	28.6 28.7	28.7	8.3 8.3	8.3	5.2 5.2	5.2	82.3 82.7	82.5	6.2 6.2	6.2	5.0	7.4 7.4	7.4		7.6 7.7	7.7	
				6.2	Middle	3.1	28.1 28.1	28.1	8.0 8.0	8.0	12.0 11.9	12.0	77.5 76.0	76.8	5.6 5.6	5.6	5.9	6.3 6.3	6.3	7.0	7.9 8.0	8.0	7.9
					Bottom	5.2	26.5 26.4	26.5	7.6 7.6	7.6	24.7 24.7	24.7	76.0 75.1	75.6	5.3 5.3	5.3	5.3	7.0	7.2		8.8 7.4	8.1	
17-Jun-16	Sunny	Moderate	17:27		Surface	1.0	29.2	29.2	8.2	8.2	6.7	6.7	74.3	74.7	5.5	5.5		8.4	8.5		5.6	5.7	
				6.5	Middle	3.3	29.2 27.4	27.8	7.9	7.9	6.8 12.7	13.0	75.1 76.1	74.6	5.5 5.3	5.3	5.4	7.3	7.5	8.2	5.8 7.3	7.1	6.4
				0.0	Bottom	5.5	28.1 26.6	26.6	7.9 7.7	7.6	13.3 24.6	25.6	73.1 71.0	72.6	5.3 5.0	5.1	5.1	7.7 8.6	8.5	0.2	6.8	6.5	0
20-Jun-16	Sunny	Moderate	06:47				26.7 28.4		7.5 8.3		26.5 18.7		74.2 78.2		5.1 5.8		J. I	8.3 3.7			6.7 3.8		
20 00 10					Surface	1.0	28.2	28.3	8.2 8.1	8.2	17.6 18.3	18.2	78.6 78.0	78.4	5.8 5.7	5.8	5.8	3.6	3.7		5.1 4.6	4.5	ł
				6.8	Middle	3.4	28.1	28.1	8.2	8.2	18.2	18.3	78.8	78.4	5.7	5.7		3.8	3.8	3.8	4.8	4.7	4.6
					Bottom	5.8	28.2 27.3	27.7	8.1 8.0	8.1	26.8 26.1	26.5	76.8 77.6	77.2	5.7 5.7	5.7	5.7	3.9 4.0	4.0		5.1 4.1	4.6	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplii	ng	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	07:45		Surface	1.0	27.6 27.7	27.7	8.2 8.2	8.2	15.3 15.5	15.4	72.7 73.1	72.9	5.7 5.6	5.7	5.7	8.5 8.4	8.5		5.8 5.5	5.7	
				6.7	Middle	3.4	26.8 26.7	26.8	8.1 8.1	8.1	21.2 21.4	21.3	72.1 73.3	72.7	5.6 5.6	5.6	5.7	10.9 11.0	11.0	10.1	6.6 6.6	6.6	6.4
					Bottom	5.7	26.9 26.6	26.8	8.1 8.1	8.1	22.5 22.8	22.6	72.2 74.5	73.4	5.6 5.6	5.6	5.6	10.5 10.8	10.7		6.7 6.8	6.8	
24-Jun-16	Sunny	Moderate	09:02		Surface	1.0	27.9 27.6	27.8	8.2 8.2	8.2	17.8 18.2	18.0	74.1 73.2	73.7	5.2 5.2	5.2	5.2	7.1 7.2	7.2		4.3 5.2	4.8	
				6.9	Middle	3.5	27.1 27.1	27.1	8.1 8.1	8.1	20.3 20.3	20.3	73.3 72.8	73.1	5.2 5.2	5.2	0.2	7.3 7.3	7.3	7.4	4.4 4.4	4.4	4.8
					Bottom	5.9	26.7 27.3	27.0	8.1 8.1	8.1	22.8 22.3	22.5	71.8 72.2	72.0	5.1 5.1	5.1	5.1	7.6 7.5	7.6		5.1 5.0	5.1	
27-Jun-16	Sunny	Moderate	11:46		Surface	1.0	28.6 28.3	28.4	8.3 8.3	8.3	16.0 16.4	16.2	87.6 88.5	88.1	6.2 6.3	6.2	5.9	3.9 4.1	4.0		3.3 3.4	3.4	
				6.3	Middle	3.2	27.2 27.7	27.4	8.2 8.3	8.2	22.3 20.4	21.3	76.2 79.2	77.7	5.4 5.6	5.5	5.9	7.2 6.9	7.1	6.7	3.6 3.7	3.7	3.7
					Bottom	5.3	27.0 27.0	27.0	8.2 8.2	8.2	23.9 23.5	23.7	79.3 80.8	80.1	5.5 5.6	5.6	5.6	8.8 9.0	8.9		4.3 3.8	4.1	
29-Jun-16	Sunny	Moderate	13:48		Surface	1.0	27.3 27.4	27.4	8.2 8.2	8.2	20.7 20.1	20.4	75.0 76.3	75.7	5.3 5.4	5.3	5.3	3.1 3.0	3.1		4.3 3.8	4.1	
				7.0	Middle	3.5	27.3 27.3	27.3	8.2 8.2	8.2	21.8 21.8	21.8	75.2 72.5	73.9	5.3 5.1	5.2	5.5	3.1 3.1	3.1	3.1	3.0 4.9	4.0	3.9
					Bottom	6.0	27.4 27.2	27.3	8.2 8.2	8.2	21.8 22.6	22.2	75.0 72.5	73.8	5.3 5.1	5.2	5.2	3.3 3.1	3.2		3.9 3.3	3.6	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Total Condition Condition Condition Time Depth (m) Depth (m) Depth (m) Condition C	
16.1 Middle 8.1 27.6 27.6 8.2 8.2 20.6 20.6 82.9 8.5 5.7 5.8 6.5 8.0 7.9 8.1 2.9 2.3 2.6 2.0 2	DA*
16.1 Middle 8.1 27.6 27.6 8.2 8.2 20.6 20.6 81.5 82.2 5.8 5.8 8.0 7.9 8.1 2.9 2.6 2.6 8.1 2.0 2.6 2.0 8.1 2.0 2.0 8.1 2.0 2.0 2.0 8.1 2.0	
Suny Moderate 12:30 Surface 10 27.6 8.2 20.6 81.5 5.7 8.1 81.5 20.6 20.6 81.5	3.3
3-Jun-16 Sunny Moderate 12:30	3.3
16.0 Middle 8.0 27.6 27.6 8.3 8.3 24.1 24.2 91.8 92.5 6.3 6.4 6.7 4.6 4.7 4.8 4.3 4.2 2.2 3.7 3.0	
16.0 Middle 8.0 27.6 27.6 8.3 8.3 24.1 24.2 91.8 92.5 6.3 6.4 6.7 3.4 4.8 4.7 4.8 4.3 3.7 3.0	
Bottom 15.0 27.6 27.5 8.3 8.3 24.3 24.2 93.1 92.5 6.4 6.4 4.8 4.7 4.8 4.3 3.7 3.0	
6-Jun-16 Cloudy Moderate 12:49	3.6
6-Jun-16 Cloudy Moderate 12:49	
16.2 Middle 8.1 27.6 27.5 27.5 8.0 8.1 20.7 75.2 75.2 5.3 5.3 5.4 4.6 4.6 4.6 4.6 2.3	
Bottom 15.2 Middle 8.1 27.5 27.5 8.1 8.1 21.9 21.3 75.2 75.2 5.3 5.3 4.6 4.6 4.6 4.6 2.3	
8-Jun-16 Sunny Moderate 14:17	2.5
8-Jun-16 Sunny Moderate 14:17	
16.5 Middle 8.3 27.6 27.7 8.1 8.1 21.4 21.4 73.6 72.2 5.1 5.5 5.8 5.5 3.0 3.0 3.6	
16.5 Middle 8.3 27.7 27.7 8.1 8.1 21.4 21.4 73.6 72.2 5.3 5.2 6.5 6.5 6.5 6.5 6.9 3.2 3.2	
Bottom 15.5 27.6 27.7 8.1 8.1 8.1 21.6 21.5 71.9 72.0 5.1 5.1 5.1 8.3 8.6 2.7 3.0 10-Jun-16 Rainy Moderate 15:53 Surface 1.0 28.6 28.8 8.4 8.4 14.7 14.6 70.5 70.5 70.6 5.4 5.4 5.4 2.2 2.3 2.8 2.9 3.0 2.9 16.3 Middle 8.2 27.6 27.6 8.2 8.2 21.2 21.3 68.7 68.8 5.2 5.2 5.3 3.0 2.9 2.5 3.1 3.3	3.3
10-Jun-16 Rainy Moderate 15:53 Surface 1.0 28.6 28.8 8.4 8.4 14.7 14.6 70.6 70.6 5.4 5.4 5.4 2.2 2.3 3.0 2.9 16.3 Middle 8.2 27.6 27.6 8.2 8.2 21.2 21.3 68.7 68.8 5.2 5.2 5.3 3.0 2.9 2.5 3.1 3.3	
Surface 1.0 28.9 28.8 8.4 8.4 14.5 14.0 70.5 70.0 5.4 5.4 5.3 2.2 2.3 3.0 2.9 16.3 Middle 8.2 27.6 27.6 8.2 8.2 21.2 21.3 68.7 68.8 5.2 5.2 5.3 3.0 2.9 2.5 3.1 3.3	
	3.0
Bottom 15.3 28.0 27.9 8.2 8.2 21.5 69.5 69.6 5.3 5.3 5.3 2.3 3.3 2.9	
13-Jun-16 Cloudy Moderate 08:32 Surface 1.0 27.7 27.8 8.1 8.1 17.4 17.4 81.6 81.7 6.1 6.0 5.9 3.6 3.6 3.6 3.7 4.4 4.1	
168 Middle 84 27.6 27.6 8.0 8.0 19.7 19.5 76.2 77.8 5.7 5.8 3.7 3.7 3.7 5.1 42	4.2
276 80 207 737 54 30 32	
1 1 27.5 8.0 21.6 73.6 5.4 3.8 5.4	
15-Jun-16 Sunny Moderate 11:25 Surface 1.0 28.9 28.9 8.2 8.2 6.7 6.7 81.3 81.6 6.0 6.1 5.7 5.7 5.7 6.9 6.4 6.7	
16.2 Middle 8.1 27.2 27.2 8.1 8.0 21.4 21.3 78.5 79.0 5.8 58 0.0 6.3 6.3 6.4 6.7 6.7	7.1
Bottom 15.2 25.9 25.8 7.7 1.1 27.8 21.1 75.3 15.8 5.3 5.3 5.3 7.1 1.2 7.7 1.9	
17-Jun-16 Sunny Moderate 12:05 Surface 1.0 28.6 28.4 28.5 8.1 8.1 9.4 9.5 78.8 78.8 5.8 5.8 6.7 6.6 6.7 7.0 7.3	
16.0 Middle 8.0 26.8 26.7 7.7 7.7 24.5 24.1 75.5 74.8 5.4 5.3 3.6 5.6 5.6 6.1 7.7 7.4	7.0
26.7 7.7 23.7 74.0 5.2 5.5 7.0 6.1	7.0
Bottom 15.0 26.5 26.6 7.7 7.7 25.6 25.7 66.3 71.1 5.1 5.1 5.1 6.0 6.0 6.1 6.3	
20-Jun-16 Sunny Moderate 12:04 Surface 1.0 28.1 28.1 8.1 16.5 17.0 75.7 76.0 5.4 5.4 4.5 4.5 4.5 2.8 3.5	
16.2 Middle 8.1 27.6 27.7 7.9 8.0 22.3 21.6 75.5 75.7 5.3 5.3 5.4 4.5 4.5 4.5 3.1 3.1	3.5
27.7 8.0 20.9 75.8 5.4 4.5 3.0	ა.ა
Bottom 15.2 27.5 27.4 7.9 7.8 25.8 27.0 74.8 74.6 5.2 5.3 5.3 4.6 4.6 4.6 4.1 3.9 4.0	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	14:19		Surface	1.0	29.2 29.2	29.2	8.3 8.3	8.3	9.4 9.5	9.5	72.4 72.9	72.7	5.5 5.5	5.5	5.5	10.1 10.3	10.2		5.2 4.9	5.1	
				16.4	Middle	8.2	27.0 27.0	27.0	8.0 8.0	8.0	20.8 20.8	20.8	72.2 71.9	72.1	5.4 5.4	5.4	5.5	12.1 12.4	12.3	11.3	5.4 6.3	5.9	5.6
					Bottom	15.4	27.1 27.0	27.1	8.0 7.9	8.0	21.0 20.9	21.0	72.1 72.4	72.3	5.4 5.4	5.4	5.4	11.5 11.3	11.4		6.0 5.6	5.8	
24-Jun-16	Sunny	Moderate	14:33		Surface	1.0	28.9 28.9	28.9	8.2 8.2	8.2	18.2 18.2	18.2	75.2 75.0	75.1	5.4 5.4	5.4	5.4	5.5 5.4	5.5		5.3 5.0	5.2	
				16.1	Middle	8.1	27.9 28.8	28.4	8.2 8.2	8.2	19.5 19.4	19.4	74.2 74.6	74.4	5.3 5.3	5.3	5.4	5.5 5.6	5.6	5.6	6.3 5.7	6.0	5.7
					Bottom	15.1	27.5 27.4	27.4	8.1 8.0	8.1	20.6 21.3	21.0	73.7 73.7	73.7	5.2 5.3	5.2	5.2	5.7 5.8	5.8		5.3 6.5	5.9	
27-Jun-16	Sunny	Moderate	17:01		Surface	1.0	30.1 30.2	30.2	8.4 8.4	8.4	14.9 15.0	14.9	98.9 102.6	100.8	6.9 7.1	7.0	6.3	3.9 3.7	3.8		4.3 5.3	4.8	
				16.6	Middle	8.3	27.4 27.5	27.5	8.2 8.2	8.2	21.4 21.4	21.4	79.7 80.7	80.2	5.6 5.7	5.6	0.5	4.9 4.6	4.8	4.6	4.4 4.0	4.2	4.3
					Bottom	15.6	27.3 27.3	27.3	8.2 8.2	8.2	22.7 22.7	22.7	84.0 87.8	85.9	5.9 6.1	6.0	6.0	5.3 5.0	5.2		4.1 3.7	3.9	
29-Jun-16	Sunny	Moderate	08:41		Surface	1.0	28.5 28.6	28.6	8.3 8.3	8.3	16.6 16.4	16.5	85.4 86.1	85.8	6.0 6.0	6.0	5.8	3.0 3.0	3.0		4.2 4.5	4.4	
				18.1	Middle	9.1	26.9 27.3	27.1	8.2 8.2	8.2	22.9 22.3	22.6	79.4 78.1	78.8	5.6 5.5	5.6	5.0	3.1 3.0	3.1	3.1	5.5 4.3	4.9	4.6
					Bottom	17.1	26.9 27.0	26.9	8.2 8.2	8.2	23.2 23.2	23.2	73.8 77.7	75.8	5.2 5.5	5.3	5.3	3.2 3.1	3.2		5.1 4.0	4.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ing	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	15:07		Surface	1.0	29.3 29.3	29.3	8.5 8.5	8.5	11.2 11.3	11.3	90.6 105.0	97.8	6.5 7.6	7.0		7.0 7.1	7.1		2.5 3.2	2.9	
				16.1	Middle	8.1	27.8 28.1	27.9	8.2 8.3	8.3	20.0	18.5	84.9 90.9	87.9	6.0 6.5	6.2	6.6	8.5 7.9	8.2	8.1	3.8	3.3	2.8
					Bottom	15.1	27.9	27.8	8.3	8.3	19.5	19.9	91.1 93.7	92.4	6.4	6.5	6.5	8.7 9.2	9.0		2.6	2.3	
3-Jun-16	Sunny	Moderate	17:06				29.5		8.2 8.5		12.2		100.9		6.6 7.2			2.1			6.1		
					Surface	1.0	29.4 28.6	29.5	8.5 8.4	8.5	11.2 15.9	11.7	100.8 100.2	100.9	7.1 7.1	7.1	7.1	2.1	2.1		5.9 5.6	6.0	
				17.4	Middle	8.7	28.6 28.9	28.6	8.3 8.4	8.4	16.7 16.4	16.3	100.3	100.3	7.1 6.8	7.1		2.2	2.3	2.2	6.0 5.6	5.8	5.8
					Bottom	16.4	28.7	28.8	8.4	8.4	16.9	16.7	94.8	95.6	6.7	6.8	6.8	2.2	2.2		5.5	5.6	
6-Jun-16	Cloudy	Moderate	08:01		Surface	1.0	27.8 27.8	27.8	8.3 8.4	8.4	19.2 19.2	19.2	78.7 78.8	78.8	5.6 5.7	5.6	5.5	2.4 2.5	2.5		2.6 2.7	2.7	
				16.3	Middle	8.2	27.6 27.7	27.6	8.3 8.3	8.3	19.9 21.5	20.7	77.5 77.2	77.4	5.5 5.4	5.4	0.0	2.6 2.7	2.7	2.7	2.9 2.5	2.7	2.6
					Bottom	15.3	27.4 27.5	27.5	8.2 8.2	8.2	24.3 24.5	24.4	77.3 78.2	77.8	5.3 5.4	5.4	5.4	2.9 2.8	2.9		2.6 2.3	2.5	
8-Jun-16	Sunny	Moderate	08:03		Surface	1.0	27.8 27.8	27.8	8.2	8.2	17.0 17.2	17.1	72.7 74.3	73.5	5.3	5.3		5.1 5.5	5.3		2.3 2.0	2.2	
				16.4	Middle	8.2	27.3	27.3	8.2 8.1	8.1	22.7	22.8	70.4	70.7	5.4	5.0	5.2	6.8	7.0	6.8	3.1	3.0	2.7
					Bottom	15.4	27.3 27.3	27.4	8.1 8.1	8.1	22.8 22.7	22.7	71.0 71.2	71.4	5.1 5.1	5.1	5.1	7.2 8.2	8.0		2.9	2.8	
10-Jun-16	Sunny	Moderate	10:38	1	Surface	1.0	27.4 28.2	28.2	8.1 8.3	8.2	22.7 14.5	15.3	71.6 70.9	70.7	5.1 5.4	5.4		7.7 2.7	2.9		2.8 3.5	3.7	
				40.0			28.2 27.4		8.2 8.1		16.2 22.5		70.4 69.4		5.4 5.2		5.3	3.0		0.0	3.8		0.7
				16.3	Middle	8.2	27.2 27.3	27.3	8.1 8.0	8.1	23.3	22.9	69.5 68.9	69.5	5.3	5.2		3.5	3.4	3.3	3.1	3.4	3.7
10 1 10	0		10.11		Bottom	15.3	27.5	27.4	8.1	8.1	23.1	23.2	69.7	69.3	5.2	5.2	5.2	3.6	3.7		4.3	4.0	<u> </u>
13-Jun-16	Cloudy	Moderate	13:11		Surface	1.0	28.1 28.1	28.1	8.2 8.2	8.2	17.8 17.8	17.8	89.1 96.5	92.8	6.6 7.1	6.8	6.6	3.8 3.7	3.8		4.0 3.5	3.8	
				16.0	Middle	8.0	27.9 27.9	27.9	8.2 8.1	8.1	17.9 17.9	17.9	83.0 87.8	85.4	6.1 6.5	6.3		3.8 3.8	3.8	3.8	3.9 3.7	3.8	4.1
					Bottom	15.0	28.0 27.7	27.9	8.1 8.0	8.1	20.1 21.3	20.7	80.3 82.2	81.3	6.0 6.1	6.0	6.0	3.9 3.9	3.9		4.3 4.9	4.6	
15-Jun-16	Sunny	Moderate	15:55		Surface	1.0	29.0 28.9	29.0	8.3 8.3	8.3	5.3 5.2	5.2	79.5 79.5	79.5	5.9 6.0	5.9		8.4 8.3	8.4		5.9 5.8	5.9	
				16.4	Middle	8.2	26.6 26.6	26.6	7.9 7.9	7.9	22.1 22.2	22.1	76.6 76.4	76.5	5.6 5.6	5.6	5.8	6.1 5.9	6.0	6.6	6.8	6.4	6.6
					Bottom	15.4	25.3 25.3	25.3	7.5 7.5	7.5	28.8	28.7	73.1	73.3	5.1	5.1	5.1	5.2 5.5	5.4		7.5 7.3	7.4	
17-Jun-16	Sunny	Moderate	17:07		Surface	1.0	29.2	29.2	8.2	8.2	6.8	6.8	73.5 75.5	77.1	5.5	5.6		8.5	8.7		3.0	3.4	
				16.2	Middle	8.1	29.2 26.6	26.6	8.2 7.7	7.7	6.7 24.5	23.9	78.6 72.6	73.3	5.7 5.4	5.4	5.5	8.8	8.1	8.6	3.8	4.0	4.8
				10.2			26.6 26.7		7.7 7.7		23.4 23.8	24.8	73.9 72.9		5.5 5.2		5.1	7.8 8.8		0.0	4.0 6.4		7.0
20-Jun-16	Sunny	Moderate	07:08	<u> </u>	Bottom	15.2	26.4 28.3	26.6	7.7 8.2	7.7	25.8 18.6		71.5 76.0	72.2	5.1 5.6	5.1	5.1	9.0	8.9		7.5 4.1	7.0	
20-0011-10	Odiniy	Moderate	07.00		Surface	1.0	28.2	28.3	8.1	8.1	18.1 18.3	18.3	76.6 74.1	76.3	5.6 5.4	5.6	5.5	3.8	3.8		6.3	5.2	
				16.3	Middle	8.2	28.1 28.1	28.1	8.1 8.1	8.1	19.0	18.6	74.2	74.2	5.4	5.4		3.8	4.0	4.0	5.9	5.8	5.2
					Bottom	15.3	27.6 27.8	27.7	7.9 7.9	7.9	26.8 25.9	26.3	73.9 75.4	74.7	5.2 5.3	5.3	5.3	4.2 4.0	4.1		4.0 4.9	4.5	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	g	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	۱)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	08:03		Surface	1.0	27.7 27.4	27.6	8.2 8.2	8.2	15.9 15.7	15.8	72.6 72.2	72.4	5.7 5.7	5.7	5.7	7.6 8.2	7.9		6.0 5.8	5.9	
				16.8	Middle	8.4	26.6 26.6	26.6	8.1 8.1	8.1	22.6 22.7	22.7	72.6 71.2	71.9	5.7 5.6	5.6	5.7	10.4 10.8	10.6	9.5	5.7 5.7	5.7	5.9
					Bottom 1	15.8	26.6 26.7	26.7	8.1 8.1	8.1	22.8 22.8	22.8	72.0 72.6	72.3	5.6 5.7	5.6	5.6	10.4 9.8	10.1		5.0 7.0	6.0	
24-Jun-16	Sunny	Moderate	09:21		Surface	1.0	27.7 27.8	27.8	8.2 8.2	8.2	18.1 17.9	18.0	73.7 74.1	73.9	5.3 5.3	5.3	5.3	6.4 6.4	6.4		4.1 4.5	4.3	
				16.3	Middle	8.2	27.4 27.2	27.3	8.1 8.1	8.1	19.7 20.1	19.9	73.4 72.8	73.1	5.2 5.2	5.2	0.0	6.6 6.5	6.6	6.6	5.3 5.4	5.4	5.2
					Bottom 1	15.3	27.6 27.3	27.5	8.1 8.1	8.1	20.5 21.2	20.9	73.2 72.0	72.6	5.2 5.1	5.1	5.1	6.8 6.7	6.8		5.9 5.9	5.9	
27-Jun-16	Sunny	Moderate	12:05		Surface	1.0	28.9 28.1	28.5	8.3 8.2	8.3	16.7 18.4	17.5	85.2 86.3	85.8	6.0 6.1	6.0	5.6	5.0 4.7	4.9		3.8 4.0	3.9	
				16.4	Middle	8.2	27.0 27.0	27.0	8.2 8.2	8.2	23.3 23.5	23.4	72.1 72.6	72.4	5.0 5.1	5.1	5.0	6.6 6.3	6.5	6.3	4.8 4.9	4.9	4.4
					Bottom 1	15.4	26.9 27.0	27.0	8.1 8.1	8.1	24.0 23.7	23.9	78.6 75.9	77.3	5.5 5.3	5.4	5.4	7.8 7.2	7.5		4.4 4.3	4.4	
29-Jun-16	Sunny	Moderate	13:26		Surface	1.0	27.8 28.0	27.9	8.2 8.2	8.2	18.6 18.6	18.6	77.1 77.3	77.2	5.4 5.4	5.4	5.3	3.1 3.0	3.1		3.0 2.6	2.8	
				18.1	Middle	9.1	27.2 27.4	27.3	8.2 8.2	8.2	21.7 21.5	21.6	75.3 72.3	73.8	5.3 5.1	5.2	J.3	3.1 3.2	3.2	3.2	4.4 4.4	4.4	3.5
					Bottom 1	17.1	27.7 26.8	27.3	8.2 8.1	8.2	22.2 23.1	22.6	72.1 72.9	72.5	5.0 5.1	5.1	5.1	3.2 3.4	3.3		3.2 3.4	3.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	10:03		Surface	1.0	28.3 28.1	28.2	8.4 8.4	8.4	13.5 14.0	13.8	92.0 90.9	91.5	6.6 6.6	6.6		2.2 2.0	2.1		2.4 2.0	2.2	
				12.8	Middle	6.4	27.5 27.6	27.5	8.3 8.3	8.3	22.6 21.3	21.9	91.7 89.7	90.7	6.2 6.3	6.2	6.4	2.3 2.2	2.3	2.2	3.6 3.6	3.6	3.0
					Bottom	11.8	27.1 27.8	27.5	8.1 8.2	8.1	29.9	29.6	88.8 91.8	90.3	6.2 6.1	6.2	6.2	2.3	2.3		3.6	3.2	
3-Jun-16	Sunny	Moderate	10:46		Surface	1.0	28.6	28.7	8.4	8.5	16.8	16.8	99.7	99.6	7.0	7.0		2.6	2.6		5.9	6.1	
				13.7	Middle	6.9	28.7 28.4	28.3	8.5 8.4	8.4	16.8 19.4	19.7	99.4 98.7	97.7	7.0 6.9	6.8	6.9	2.5	2.9	2.8	6.3 5.2	5.8	6.6
				13.7			28.3 28.2		8.4 8.4		20.0		96.6 96.4		6.7			3.0 2.9		2.0	6.4 7.2		0.0
6 Jun 16	Cloudy	Madarata	14:02		Bottom	12.7	28.5 27.8	28.4	8.4 8.4	8.4	20.6	20.7	99.5 79.3	98.0	6.9 5.6	6.8	6.8	2.9	2.9		8.5	7.9	
6-Jun-16	Cloudy	Moderate	14.02		Surface	1.0	27.8	27.8	8.3	8.4	20.7	20.6	79.2	79.3	5.6	5.6	5.5	3.5	3.5		2.3	2.7	
				11.9	Middle	6.0	27.4 27.6	27.5	8.3 8.3	8.3	24.0 23.4	23.7	76.9 77.8	77.4	5.4 5.3	5.4		3.6 3.5	3.6	3.6	2.6 2.2	2.4	2.6
					Bottom	10.9	26.8 27.5	27.1	8.2 8.3	8.2	29.4 27.6	28.5	77.0 79.3	78.2	5.3 5.3	5.3	5.3	3.5 3.6	3.6		3.1 2.3	2.7	
8-Jun-16	Sunny	Moderate	15:22		Surface	1.0	28.7 29.3	29.0	8.4 8.4	8.4	17.7 17.2	17.5	74.9 75.6	75.3	5.2 5.3	5.2	5.0	2.1 2.1	2.1		3.7 2.7	3.2	
				12.5	Middle	6.3	27.0 26.7	26.8	8.3 8.3	8.3	26.0 26.3	26.1	72.3 72.5	72.4	5.1 5.1	5.1	5.2	2.1 2.2	2.2	2.2	3.9 3.2	3.6	3.4
					Bottom	11.5	26.3 26.6	26.5	8.2 8.2	8.2	30.4 30.3	30.3	71.8 73.5	72.7	4.9 5.0	4.9	4.9	2.2	2.2		3.6	3.3	
10-Jun-16	Rainy	Moderate	17:03		Surface	1.0	28.7	28.6	8.4	8.4	17.7	18.1	82.8	81.3	5.8	5.7		1.6	1.6		3.9	3.6	
				11.8	Middle	5.9	28.5 27.4	27.4	8.4 8.3	8.3	18.6 23.5	22.5	79.7 80.2	79.6	5.6 5.5	5.5	5.6	1.6	1.8	1.7	3.2 2.9	3.0	3.3
					Bottom	10.8	27.4 27.0	26.9	8.3 8.2	8.2	21.5 26.8	26.8	79.0 73.5	74.3	5.4 5.2	5.2	5.2	1.8 1.8	1.8		3.1	3.4	
13-Jun-16	Cloudy	Moderate	08:04				26.8 27.6		8.3 8.2		26.8 13.0		75.0 83.5		5.2 6.1		5.2	1.8 2.7			3.5 3.0		
	,				Surface	1.0	27.4 26.7	27.5	8.2 8.0	8.2	13.0 21.0	13.0	81.7 82.1	82.6	5.8 5.6	6.0	5.8	2.8	2.8		3.8 4.0	3.4	
				13.5	Middle	6.8	26.9	26.8	8.1 7.9	8.0	21.2	21.1	79.4 76.0	80.8	5.6	5.6		2.9	2.9	2.9	3.5	3.8	3.4
					Bottom	12.5	26.6 26.9	26.7	7.9	7.9	29.8 29.5	29.6	77.0	76.5	5.4 5.5	5.4	5.4	3.0 2.9	3.0		3.4 2.8	3.1	
15-Jun-16	Sunny	Moderate	10:07		Surface	1.0	28.7 28.7	28.7	8.3 8.3	8.3	10.4 10.4	10.4	77.7 80.1	78.9	5.7 5.8	5.8	5.4	5.6 5.5	5.6		4.0 4.4	4.2	
				12.3	Middle	6.2	27.1 27.0	27.1	8.0 8.0	8.0	23.3 23.9	23.6	74.7 74.9	74.8	5.0 5.0	5.0	0.4	5.3 5.6	5.5	5.6	6.2 5.7	6.0	5.0
					Bottom	11.3	25.5 26.0	25.8	7.8 7.8	7.8	34.5 34.4	34.5	72.5 71.3	71.9	4.9 4.8	4.8	4.8	5.6 5.8	5.7		4.6 4.8	4.7	
17-Jun-16	Sunny	Moderate	11:16		Surface	1.0	28.0 28.0	28.0	8.3 8.2	8.3	14.2 14.2	14.2	79.3 79.4	79.4	5.8 5.8	5.8		4.6 4.6	4.6		4.7 4.5	4.6	
				12.3	Middle	6.2	25.8	26.0	8.0	8.0	27.7	25.9	78.0	79.1	5.4	5.5	5.7	4.6	4.6	4.6	4.6	4.6	4.4
					Bottom	11.3	26.2 25.5	25.7	7.9	7.9	24.1 32.9	31.8	72.0	73.9	5.6 5.1	5.2	5.2	4.6	4.7		4.5	4.0	
20-Jun-16	Sunny	Moderate	12:59		Surface	1.0	25.8 28.7	28.4	8.3	8.3	30.7 14.2	14.8	75.8 78.1	78.7	5.4 5.6	5.6	-	4.7 5.2	5.2		3.6 4.3	4.4	
				12.6			28.1 25.9		8.3 8.1		15.4 26.0		79.3 76.1		5.7 5.3		5.4	5.2 6.0		E 7	4.5 4.0		4.6
				13.6	Middle	6.8	25.9 25.7	25.9	8.1 8.1	8.1	26.8 28.3	26.4	72.5 76.3	74.3	5.1 5.3	5.2		6.2 5.8	6.1	5.7	4.1 4.6	4.1	4.6
					Bottom	12.6	25.7	25.7	8.1	8.1	26.9	27.6	80.8	78.6	5.7	5.5	5.5	5.5	5.7		6.1	5.4	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (n	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	13:52		Surface	1.0	28.4 28.5	28.4	8.4 8.4	8.4	17.1 16.9	17.0	77.2 74.6	75.9	5.3 5.2	5.3	5.3	5.1 5.0	5.1		5.3 5.5	5.4	
				12.7	Middle	6.4	26.6 26.7	26.7	8.3 8.3	8.3	24.5 24.7	24.6	75.3 73.9	74.6	5.3 5.2	5.3	5.5	5.3 5.1	5.2	5.2	6.7 7.3	7.0	7.1
					Bottom	11.7	25.2 25.1	25.2	8.2 8.2	8.2	31.6 31.9	31.7	72.6 73.4	73.0	5.0 5.1	5.1	5.1	5.4 5.3	5.4		9.8 8.2	9.0	
24-Jun-16	Sunny	Moderate	15:35		Surface	1.0	28.8 28.8	28.8	8.3 8.4	8.4	19.5 19.6	19.6	79.9 81.0	80.5	5.5 5.6	5.6	5.5	4.5 4.4	4.5		6.3 5.6	6.0	
				12.7	Middle	6.4	26.0 25.9	25.9	8.2 8.3	8.3	27.9 28.2	28.1	77.9 78.8	78.4	5.3 5.4	5.3	0.0	6.3 6.0	6.2	5.5	5.6 5.8	5.7	6.0
					Bottom	11.7	26.1 25.7	25.9	8.2 8.3	8.3	29.1 29.9	29.5	75.4 76.2	75.8	5.2 5.3	5.2	5.2	5.9 5.7	5.8		5.8 6.5	6.2	
27-Jun-16	Sunny	Moderate	18:04		Surface	1.0	29.3 29.2	29.3	8.5 8.5	8.5	19.8 19.8	19.8	93.8 87.8	90.8	6.4 6.0	6.2	5.9	4.5 4.4	4.5		4.6 4.5	4.6	
				12.5	Middle	6.3	26.8 27.1	26.9	8.4 8.4	8.4	26.9 25.8	26.4	79.1 84.6	81.9	5.5 5.8	5.6	5.9	4.8 4.7	4.8	4.7	4.4 4.2	4.3	4.4
					Bottom	11.5	25.6 25.9	25.8	8.4 8.4	8.4	30.4 31.1	30.7	77.9 80.8	79.4	5.4 5.6	5.5	5.5	4.8 4.8	4.8		4.2 4.2	4.2	
29-Jun-16	Sunny	Moderate	08:26		Surface	1.0	28.1 27.8	27.9	8.3 8.3	8.3	19.9 19.2	19.5	82.3 80.2	81.3	5.8 5.6	5.7	5.6	2.6 2.6	2.6		3.4 3.7	3.6	
				12.2	Middle	6.1	27.0 27.0	27.0	8.2 8.2	8.2	25.1 25.2	25.2	79.7 78.2	79.0	5.5 5.3	5.4	5.0	3.1 3.3	3.2	3.0	3.6 3.9	3.8	3.6
					Bottom	11.2	25.8 26.2	26.0	8.2 8.2	8.2	30.6 30.3	30.5	77.0 75.5	76.3	5.3 5.2	5.3	5.3	3.1 3.2	3.2		3.2 3.3	3.3	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

		Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	P	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	15:36		Surface	1.0	29.3 29.3	29.3	8.7 8.7	8.7	12.6 12.5	12.5	113.2 107.1	110.2	8.1 7.2	7.7		1.8 1.9	1.9		4.0 2.0	3.0	
				11.9	Middle	6.0	26.9 27.4	27.1	8.4 8.5	8.5	24.6 23.3	23.9	98.7 95.1	96.9	7.1 6.4	6.7	7.2	2.0 2.0	2.0	2.0	3.2 2.0	2.6	2.7
					Bottom	10.9	27.0 26.9	26.9	8.5 8.4	8.4	29.7 30.3	30.0	89.0 92.5	90.8	6.2	6.3	6.3	2.0	2.0		2.0	2.5	
3-Jun-16	Sunny	Moderate	18:13		Surface	1.0	29.5	29.5	8.6	8.6	15.5	15.4	108.3	107.4	7.6	7.5		2.7	2.8		4.1	4.0	
				13.8	Middle	6.9	29.5 27.3	27.3	8.6 8.3	8.4	15.3 27.1	26.7	106.5 92.7	88.5	7.5 6.3	6.0	6.8	4.2	4.3	3.7	3.9 5.0	5.1	6.1
					Bottom	12.8	27.4 27.3	27.3	8.4 8.4	8.4	26.2 27.4	27.4	84.2 101.9	102.6	5.8 6.9	7.0	7.0	3.8	3.9		5.2 9.6	9.1	
6-Jun-16	Cloudy	Moderate	06:41				27.3 27.5		8.4 8.4		27.4 26.0		103.3 78.8		7.0 5.4		7.0	4.0 2.2			8.6 2.6		
	,				Surface	1.0	27.3 26.4	27.4	8.4 8.3	8.4	25.9 31.9	25.9	77.7 76.1	78.3	5.3 5.1	5.3	5.3	2.2	2.2		2.2	2.4	
				12.6	Middle	6.3	26.5 26.4	26.5	8.3 8.3	8.3	31.8 32.2	31.8	76.8 74.2	76.5	5.2	5.2		2.3	2.4	2.3	2.3	2.3	2.4
2 1 12					Bottom	11.6	26.7	26.6	8.3	8.3	32.0	32.1	75.1	74.7	5.1	5.0	5.0	2.3	2.3		2.6	2.5	
8-Jun-16	Sunny	Moderate	08:07		Surface	1.0	27.6 27.4	27.5	8.3 8.3	8.3	18.7 19.2	18.9	73.1 72.3	72.7	5.3 5.3	5.3	5.2	3.7	3.8		3.7	3.7	
				12.8	Middle	6.4	26.6 26.6	26.6	8.2 8.1	8.2	28.3 28.2	28.3	72.1 71.9	72.0	5.1 5.1	5.1		3.7 3.8	3.8	3.8	3.7 3.0	3.4	3.6
					Bottom	11.8	26.7 26.3	26.5	8.1 8.1	8.1	29.9 30.2	30.1	70.8 70.7	70.8	5.0 5.0	5.0	5.0	3.9 3.7	3.8		3.5 3.7	3.6	
10-Jun-16	Sunny	Moderate	09:35		Surface	1.0	28.0 28.0	28.0	8.3 8.2	8.3	18.3 18.4	18.3	73.5 73.2	73.4	5.2 5.2	5.2	<i></i>	2.2 2.2	2.2		2.8 2.6	2.7	
				12.9	Middle	6.5	26.1 26.1	26.1	8.1 8.1	8.1	29.9 29.4	29.7	72.3 72.6	72.5	5.0 5.1	5.0	5.1	2.3 2.1	2.2	2.2	2.8 2.8	2.8	2.9
					Bottom	11.9	26.0 26.0	26.0	8.1 8.0	8.0	32.1 32.1	32.1	70.3 70.1	70.2	4.8 4.8	4.8	4.8	2.2	2.2		2.8	3.1	
13-Jun-16	Cloudy	Moderate	13:15		Surface	1.0	27.9	28.1	8.3	8.4	12.0	12.0	81.3	83.5	5.6	5.9		2.5	2.5		2.6	2.8	
				13.2	Middle	6.6	28.2	26.6	8.4	8.2	12.0 24.1	24.4	85.7 75.2	74.4	6.2 5.2	5.3	5.6	2.4	2.5	2.5	3.0 2.4	2.4	2.5
					Bottom	12.2	26.4 25.6	25.7	8.1 8.1	8.1	24.8 30.7	30.8	73.6 72.1	72.8	5.4 5.2	5.2	5.2	2.5 2.6	2.6		2.4	2.2	
15-Jun-16	Sunny	Moderate	16:22		Surface	1.0	25.8 29.0	29.0	8.1 8.5	8.5	30.9 11.1	11.1	73.5 81.7	80.1	5.2 6.0	5.8	0.2	2.6 4.8	5.0		5.9	5.8	
				11.8	-		28.9 26.2	26.1	8.5 8.1	8.2	11.1 26.2	26.6	78.4 75.6	76.9	5.7 5.1		5.5	5.1 5.8			5.6 5.6		5.0
				11.8	Middle	5.9	26.0 24.9		8.2 8.1		26.9 34.8		78.1 74.1		5.3 5.0	5.2		5.7 5.6	5.8	5.5	5.7 5.6	5.7	5.8
17-Jun-16	Cuppu	Modorata	19:01		Bottom	10.8	24.9	24.9	8.1 8.5	8.1	35.0 11.8	34.9	74.7	74.4	5.1 5.9	5.0	5.0	5.7	5.7		6.4	6.0	
17-Juli-10	Sunny	Moderate	18:01		Surface	1.0	28.8	28.8	8.5	8.5	11.7	11.8	80.8	80.8	5.9	5.9	5.7	4.6	4.6		5.0	4.8	
				12.6	Middle	6.3	26.3 25.5	25.9	8.2 8.2	8.2	26.5 27.2	26.8	79.1 74.9	77.0	5.5 5.2	5.4		5.5 5.5	5.5	5.2	4.3 3.8	4.1	4.0
					Bottom	11.6	24.8 24.8	24.8	8.1 8.2	8.1	33.1 33.1	33.1	72.2 66.6	69.4	5.1 4.7	4.9	4.9	5.6 5.6	5.6		3.2 3.2	3.2	
20-Jun-16	Sunny	Moderate	05:53		Surface	1.0	27.3 27.6	27.4	8.2 8.2	8.2	21.6 21.1	21.4	76.1 74.6	75.4	5.4 5.2	5.3	5.2	2.6 2.8	2.7		3.9 5.3	4.6	
				13.5	Middle	6.8	24.7 24.5	24.6	8.1 8.0	8.1	34.2 34.4	34.3	73.2 72.0	72.6	5.1 5.1	5.1	5.2	3.9 4.0	4.0	3.5	4.6 4.6	4.6	5.1
					Bottom	12.5	24.5 24.6	24.5	8.1 8.0	8.1	34.7 34.6	34.6	71.1 70.8	71.0	5.0	5.0	5.0	3.9	3.9		5.8 6.1	6.0	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	07:22		Surface	1.0	27.2 26.9	27.1	8.3 8.3	8.3	22.2 23.1	22.7	78.6 74.7	76.7	5.4 5.2	5.3	5.3	3.1 3.2	3.2		3.6 4.4	4.0	
				13.3	Middle	6.7	25.0 25.2	25.1	8.2 8.2	8.2	30.8 31.7	31.2	75.9 74.1	75.0	5.3 5.1	5.2	5.5	3.3 3.4	3.4	3.3	3.4 4.5	4.0	3.9
					Bottom	12.3	24.0 24.3	24.2	8.2 8.2	8.2	35.3 35.1	35.2	73.2 71.6	72.4	5.0 5.0	5.0	5.0	3.4 3.4	3.4		3.7 3.4	3.6	
24-Jun-16	Sunny	Moderate	08:29		Surface	1.0	27.9 27.8	27.9	8.2 8.2	8.2	19.9 20.0	20.0	80.8 79.1	80.0	5.7 5.7	5.7	5.6	3.0 3.1	3.1		7.0 7.2	7.1	
				13.3	Middle	6.7	25.5 25.4	25.4	8.0 8.0	8.0	30.3 31.4	30.8	76.1 75.4	75.8	5.4 5.4	5.4	0.0	3.0 3.2	3.1	3.1	7.2 6.7	7.0	7.1
					Bottom	12.3	25.8 25.3	25.5	8.0 8.0	8.0	31.2 32.0	31.6	72.8 73.3	73.1	5.2 5.2	5.2	5.2	3.3 3.1	3.2		6.9 7.5	7.2	
27-Jun-16	Sunny	Moderate	11:10		Surface	1.0	28.6 28.6	28.6	8.3 8.3	8.3	20.8 20.7	20.8	85.9 83.3	84.6	5.9 5.8	5.8	5.7	3.2 3.4	3.3		3.9 3.5	3.7	
				12.7	Middle	6.4	25.9 26.3	26.1	8.2 8.2	8.2	28.9 28.3	28.6	80.9 79.1	80.0	5.5 5.4	5.5	5.7	3.4 3.5	3.5	3.4	4.0 3.8	3.9	3.9
					Bottom	11.7	24.8 24.8	24.8	8.2 8.1	8.2	33.9 33.8	33.9	73.9 71.0	72.5	5.1 4.9	5.0	5.0	3.3 3.4	3.4		4.4 4.0	4.2	
29-Jun-16	Sunny	Moderate	14:31		Surface	1.0	27.6 27.6	27.6	8.4 8.4	8.4	23.0 22.7	22.9	81.6 80.5	81.1	5.7 5.6	5.6	5.5	3.2 3.2	3.2		6.0 6.5	6.3	
				12.6	Middle	6.3	26.4 25.9	26.2	8.4 8.4	8.4	27.3 27.8	27.6	76.8 77.5	77.2	5.3 5.3	5.3	5.5	3.6 3.5	3.6	3.5	6.0 7.0	6.5	5.8
					Bottom	11.6	24.7 24.6	24.7	8.3 8.3	8.3	33.2 33.3	33.2	69.4 68.8	69.1	4.8 4.8	4.8	4.8	3.6 3.5	3.6		4.6 4.5	4.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	09:04		Surface	1.0	28.5 28.4	28.4	8.3 8.3	8.3	11.4 12.4	11.9	100.3 100.3	100.3	7.3 7.3	7.3	7	6.7 6.5	6.6		4.3 2.6	3.5	
				10.1	Middle	5.1	28.1 28.1	28.1	8.1 8.1	8.1	17.3 17.2	17.3	98.6 98.9	98.8	7.0 7.0	7.0	7.2	7.5 7.5	7.5	7.2	4.0 5.0	4.5	4.1
					Bottom	9.1	28.2	28.1	8.1 8.1	8.1	17.3 17.4	17.4	99.5 98.7	99.1	7.1 7.0	7.0	7.0	7.3 7.6	7.5		4.6 4.1	4.4	ļ
3-Jun-16	Sunny	Moderate	10:41		Surface	1.0	28.8	28.7	8.5	8.5	15.4	15.4	101.3	101.6	7.2	7.2		1.5	1.5		2.2	2.1	
				10.5	Middle	5.3	28.7 28.2	28.1	8.4 8.3	8.3	15.4 20.2	20.4	101.8 99.7	100.1	7.2 6.9	7.0	7.1	1.5 1.5	1.5	1.5	2.0	2.6	2.7
					Bottom	9.5	28.1 28.0	28.0	8.3 8.3	8.3	20.5 22.1	22.0	100.4	99.7	7.0 6.9	6.9	6.9	1.5 1.5	1.6		3.5	3.3	
6-Jun-16	Cloudy	Moderate	14:30		Surface	1.0	28.0 27.7	27.7	8.3 8.3	8.3	21.9 20.9	20.6	99.0 77.8	77.9	6.9 5.5	5.4	0.0	1.6 2.3	2.3		3.0 2.9	2.7	
				40.0	-		27.7 27.5		8.3 8.3		20.4 22.7	22.7	77.9 77.3	77.0	5.4 5.4		5.4	2.3		2.0	2.5 2.5		2.5
				10.6	Middle	5.3	27.5 27.1	27.5	8.2 8.2	8.2	22.7 26.8		76.7 75.7		5.4 5.3	5.4		2.6 2.8	2.6	2.6	2.6	2.6	2.5
8-Jun-16	Sunny	Moderate	15:51		Bottom	9.6	27.3 27.7	27.2	8.2 8.3	8.2	24.7 17.6	25.8	76.5 76.1	76.1	5.2 5.5	5.3	5.3	2.7	2.8		2.1 4.3	2.2	
0 0411 10	Cuiniy	moderate	10.01		Surface	1.0	28.2	28.0	8.3 8.2	8.3	17.3 23.4	17.5	80.0 74.2	78.1	5.8 5.3	5.7	5.5	1.3	1.4		4.4	4.4	
				10.7	Middle	5.4	27.0 27.0	27.1	8.2 8.2	8.2	24.7	24.0	74.7 78.7	74.5	5.3 5.5	5.3		1.6	1.5	1.5	4.0	3.9	4.1
40.1.40			17.00		Bottom	9.7	26.8	26.9	8.2	8.2	25.7	25.7	75.7	77.2	5.3	5.4	5.4	1.4	1.5		3.9	3.9	
10-Jun-16	Rainy	Moderate	17:32		Surface	1.0	28.1 28.1	28.1	8.3 8.3	8.3	19.0 19.1	19.1	70.7 70.6	70.7	5.4 5.3	5.4	5.3	2.2 2.1	2.2		2.8 2.5	2.7	
				10.1	Middle	5.1	26.9 26.9	26.9	8.2 8.2	8.2	24.9 24.8	24.8	69.4 69.3	69.4	5.2 5.3	5.2		2.4 2.3	2.4	2.3	3.2 2.5	2.9	3.1
					Bottom	9.1	27.0 26.9	26.9	8.2 8.2	8.2	24.9 25.0	25.0	70.6 71.5	71.1	5.3 5.3	5.3	5.3	2.3 2.3	2.3		3.6 3.8	3.7	
13-Jun-16	Cloudy	Moderate	06:43		Surface	1.0	27.6 27.5	27.6	8.1 8.1	8.1	19.5 20.3	19.9	78.1 78.6	78.4	5.8 5.7	5.7	5.7	2.6 2.6	2.6		4.6 4.0	4.3	
				9.8	Middle	4.9	27.3 27.4	27.3	8.1 8.1	8.1	21.9 21.9	21.9	76.9 76.5	76.7	5.7 5.6	5.6	5.7	2.8 2.7	2.8	2.8	4.1 4.5	4.3	4.2
					Bottom	8.8	27.5 27.3	27.4	8.0 8.0	8.0	24.6 24.6	24.6	75.6 76.9	76.3	5.6 5.6	5.6	5.6	2.9 2.8	2.9		3.7 4.0	3.9	
15-Jun-16	Sunny	Moderate	10:02		Surface	1.0	28.4 28.4	28.4	8.1 8.1	8.1	8.7 8.8	8.7	83.3 83.4	83.4	6.2 6.2	6.2		5.7 5.5	5.6		6.3 5.6	6.0	
				9.8	Middle	4.9	27.5 27.5	27.5	7.9 7.9	7.9	16.4 16.5	16.5	82.2 82.4	82.3	5.9 5.9	5.9	6.1	3.5 3.7	3.6	4.5	5.3 4.8	5.1	6.0
					Bottom	8.8	25.6 25.6	25.6	7.6 7.6	7.6	28.6 28.5	28.5	80.5 79.9	80.2	5.6 5.6	5.6	5.6	4.5 4.2	4.4		6.8	6.8	
17-Jun-16	Sunny	Moderate	10:29		Surface	1.0	28.0	28.1	8.2	8.2	10.6	10.6	75.3	76.0	5.6	5.6		3.5	3.6		5.0	5.0	
				10.1	Middle	5.1	28.2 27.4	27.3	8.3 8.1	8.1	10.6 16.6	16.8	76.6 72.4	73.0	5.6 5.2	5.3	5.5	3.6	3.3	3.4	3.7	3.9	4.8
					Bottom	9.1	27.2 27.2	27.2	8.0	8.0	17.0 17.8	18.3	73.5 73.6	74.4	5.3 5.3	5.3	5.3	3.3 3.2	3.3	-	4.1 5.3	5.5	-
20-Jun-16	Sunny	Moderate	13:43	<u> </u>	Surface	1.0	27.2 27.7	27.7	8.0 8.2	8.1	18.8 22.9	23.2	75.2 75.9	75.9	5.4 5.4	5.4	0.0	3.4	3.4		5.7 2.1	2.5	
	,			40.0			27.6 26.5		8.1 8.0		23.6 29.8		75.9 73.9		5.5 5.3		5.4	3.4		0.0	2.9 4.6		0.0
				10.2	Middle	5.1	26.7 26.2	26.6	8.0 7.9	8.0	28.6 32.3	29.2	73.5 71.8	73.7	5.3 5.1	5.3		3.5	3.5	3.6	3.7	4.2	3.6
					Bottom	9.2	26.0	26.1	8.0	7.9	32.4	32.3	71.4	71.6	5.1	5.1	5.1	3.7	3.8		4.5	4.1	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	15:49		Surface	1.0	27.4 27.4	27.4	8.2 8.2	8.2	16.3 14.8	15.5	73.7 75.6	74.7	5.7 5.7	5.7	5.7	5.5 5.7	5.6		4.5 5.3	4.9	
				9.6	Middle	4.8	25.8 25.8	25.8	8.1 8.1	8.1	25.7 26.0	25.8	73.7 74.6	74.2	5.6 5.6	5.6	5.7	7.1 7.7	7.4	6.8	5.3 4.8	5.1	5.2
					Bottom	8.6	25.8 25.7	25.8	8.1 8.1	8.1	25.7 26.3	26.0	74.9 75.6	75.3	5.6 5.6	5.6	5.6	7.3 7.6	7.5		6.0 5.2	5.6	
24-Jun-16	Sunny	Moderate	16:08		Surface	1.0	28.4 28.1	28.3	8.1 8.1	8.1	18.2 18.7	18.4	84.4 84.4	84.4	6.0 5.9	5.9	5.9	2.6 2.6	2.6		5.9 6.1	6.0	
				10.1	Middle	5.1	27.7 27.9	27.8	8.1 8.1	8.1	19.2 19.2	19.2	83.5 83.0	83.3	5.8 5.8	5.8	0.0	2.8 2.7	2.8	2.8	6.2 5.8	6.0	6.0
					Bottom	9.1	27.9 27.9	27.9	8.1 8.1	8.1	20.9 19.5	20.2	79.8 79.9	79.9	5.7 5.6	5.6	5.6	3.0 2.9	3.0		5.9 6.1	6.0	
27-Jun-16	Sunny	Moderate	18:31		Surface	1.0	28.9 28.6	28.7	8.4 8.4	8.4	20.0 20.5	20.2	104.1 97.2	100.7	7.2 6.7	7.0	6.6	2.4 2.4	2.4		3.5 4.5	4.0	
				10.0	Middle	5.0	27.9 27.4	27.7	8.4 8.4	8.4	22.1 23.0	22.6	90.6 87.9	89.3	6.3 6.1	6.2	0.0	2.3 2.6	2.5	2.5	4.7 4.6	4.7	4.2
					Bottom	9.0	27.3 27.7	27.5	8.4 8.4	8.4	23.4 22.6	23.0	91.5 95.9	93.7	6.4 6.7	6.5	6.5	2.6 2.4	2.5		4.5 3.4	4.0	
29-Jun-16	Sunny	Moderate	07:29		Surface	1.0	28.3 28.2	28.3	8.3 8.3	8.3	16.2 16.2	16.2	85.8 85.5	85.7	6.1 6.1	6.1	6.0	2.1 2.0	2.1		3.7 3.9	3.8	
				10.1	Middle	5.1	27.6 27.6	27.6	8.2 8.2	8.2	20.0 20.3	20.1	81.5 85.4	83.5	5.7 6.0	5.9	0.0	2.1 2.0	2.1	2.2	4.9 4.7	4.8	4.5
					Bottom	9.1	27.4 27.4	27.4	8.2 8.2	8.2	21.8 21.7	21.8	80.3 82.3	81.3	5.7 5.8	5.7	5.7	2.3 2.2	2.3		4.8 4.8	4.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	16:44		Surface	1.0	29.0 28.9	29.0	8.5 8.5	8.5	13.1 13.1	13.1	102.6 99.1	100.9	7.3 7.1	7.2		6.3 6.4	6.4		3.4 3.1	3.3	
				10.3	Middle	5.2	27.5 27.3	27.4	8.3 8.3	8.3	22.8 19.6	21.2	94.4 91.4	92.9	6.6 6.5	6.5	6.9	6.3 6.2	6.3	6.3	4.0	4.0	3.5
					Bottom	9.3	27.2 27.1	27.1	8.3 8.2	8.3	26.1 26.8	26.5	95.2 100.3	97.8	6.5 6.9	6.7	6.7	6.3	6.3		3.3	3.1	
3-Jun-16	Sunny	Moderate	19:07		Surface	1.0	29.1	29.2	8.6	8.5	15.9	15.6	103.1	105.8	7.3	7.4		1.6	1.7		5.4	5.2	
				10.4	Middle	5.2	29.3 28.1	28.1	8.5 8.4	8.4	15.3 20.6	20.7	108.5 97.2	97.8	7.6 6.8	6.8	7.1	1.8	1.6	1.7	5.0 5.1	5.1	5.0
					Bottom	9.4	28.0 27.9	28.0	8.4 8.4	8.4	20.8 22.6	21.8	98.4 94.2	94.0	6.8 6.6	6.5	6.5	1.6 1.7	1.7		5.0 4.1	4.6	0.0
6-Jun-16	Cloudy	Moderate	06:10		Surface	1.0	28.1 27.0	27.0	8.5 8.3	8.3	21.0 26.7	26.9	93.7 80.6	80.5	6.5 5.5	5.5	0.5	1.6 1.1	1.2		5.0 4.1	4.0	
	,			40.7			26.9 26.9		8.3 8.3		27.1 26.9		80.3 76.9		5.5 5.3		5.4	1.2 1.2			3.9		
				10.7	Middle	5.4	26.8 26.9	26.9	8.3 8.3	8.3	27.8 27.8	27.3	78.7 76.1	77.8	5.4 5.2	5.3		1.3 1.5	1.3	1.3	3.0	3.0	3.5
8-Jun-16	Sunny	Moderate	06:29		Bottom	9.7	26.8 27.9	26.9	8.3 8.0	8.3	28.0 16.5	27.9	76.2 79.1	76.2	5.2 5.8	5.2	5.2	1.4	1.5		3.2	3.4	
0-Juli-10	Suring	Moderate	06.29		Surface	1.0	27.9	27.9	8.1	8.1	16.5	16.5	79.1	79.1	5.8	5.8	5.7	1.3	1.3		2.8	2.9	
				10.2	Middle	5.1	27.7 27.6	27.7	7.9 8.0	8.0	20.4	20.4	78.4 77.7	78.1	5.6 5.6	5.6		1.2	1.2	1.2	2.7 3.5	3.1	3.1
					Bottom	9.2	27.8 27.6	27.7	7.9 7.9	7.9	20.2 21.6	20.9	79.9 78.6	79.3	5.7 5.6	5.7	5.7	1.1 1.2	1.2		2.8 3.6	3.2	
10-Jun-16	Sunny	Moderate	09:02		Surface	1.0	27.8 27.7	27.8	8.2 8.2	8.2	18.2 18.1	18.1	75.6 74.6	75.1	5.7 5.6	5.6	5.4	1.7 1.5	1.6		3.8 2.2	3.0	
				10.2	Middle	5.1	27.2 27.1	27.1	8.1 8.1	8.1	23.3 24.1	23.7	69.8 70.3	70.1	5.2 5.2	5.2	0.4	2.2 2.1	2.2	2.0	2.5 2.9	2.7	2.9
					Bottom	9.2	27.1 27.2	27.2	8.1 8.1	8.1	24.1 23.2	23.6	72.3 71.7	72.0	5.3 5.3	5.3	5.3	2.4 2.2	2.3		3.3 2.9	3.1	
13-Jun-16	Cloudy	Moderate	14:41		Surface	1.0	27.8 27.8	27.8	8.3 8.3	8.3	19.5 19.9	19.7	80.8 79.1	80.0	5.8 5.8	5.8		2.2 2.2	2.2		5.4 4.1	4.8	
				10.0	Middle	5.0	27.4 26.9	27.1	8.3 8.1	8.2	27.3 27.4	27.3	73.4 75.4	74.4	5.4 5.6	5.5	5.7	2.3	2.3	2.4	5.1 3.9	4.5	4.5
					Bottom	9.0	26.7 26.8	26.7	8.0 8.1	8.0	33.4 30.1	31.8	76.1 73.9	75.0	5.3 5.3	5.3	5.3	2.5 2.6	2.6		4.8 3.5	4.2	
15-Jun-16	Sunny	Moderate	17:13		Surface	1.0	28.6	28.6	8.2	8.2	8.7	8.7	81.9	82.2	6.1	6.1		5.3	5.3		4.7	4.8	
				10.0	Middle	5.0	28.6 26.5	26.4	7.9	7.9	24.2	24.2	82.5 79.8	79.9	5.6	5.6	5.9	3.3	3.3	3.9	5.8 5.8	5.8	5.7
					Bottom	9.0	26.4 25.1	25.0	7.9	7.7	24.3	27.7	79.9 74.8	74.3	5.6 5.2	5.2	5.2	3.2	3.2		5.8 6.5	6.5	
17-Jun-16	Sunny	Moderate	18:41	<u> </u>	Surface	1.0	25.0 28.6	28.7	7.7 8.2	8.2	27.7 11.9	11.7	73.7 86.6	86.4	5.1 5.3	5.8		3.1	3.8		6.5 3.2	3.2	
				10.5	Middle	5.3	28.8 25.8	25.8	8.2 7.9	7.9	11.4 25.2	26.3	86.2 77.3	77.7	6.2 5.4	5.4	5.6	3.9 4.4	4.3	4.2	3.2 2.7	2.7	3.1
				10.5	-	9.5	25.8 25.7	25.6	7.9 7.8	7.8	27.4 28.4	28.8	78.0 70.8	71.1	5.4 5.0	5.0	5.0	4.2 4.6	4.6	7.2	2.7 2.5	3.3	5.1
20-Jun-16	Sunny	Moderate	05:22	<u> </u>	Bottom		25.5 26.7		7.8 8.2		29.2 21.5		71.3 72.0		5.1 5.2		5.0	4.5 2.9			4.0 6.9		
	,				Surface	1.0	26.6 26.4	26.6	8.2 8.2	8.2	21.4	21.5	72.1 71.4	72.1	5.2 5.2	5.2	5.2	2.9	2.9		6.4	6.7	
				10.3	Middle	5.2	26.4 25.8	26.4	8.2 8.2	8.2	22.5 25.7	22.4	71.8	71.6	5.2 5.1	5.2		3.0	3.1	3.0	7.5 8.6	7.1	7.2
					Bottom	9.3	25.8 25.6	25.7	8.2 8.1	8.2	25.7 27.6	26.6	70.9 70.6	70.8	5.1 5.1	5.1	5.1	3.1	3.1		7.0	7.8	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ıg	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	06:26		Surface	1.0	26.9 26.8	26.9	8.1 8.1	8.1	20.6 21.7	21.2	73.4 73.1	73.3	5.4 5.4	5.4	5.4	2.9 2.9	2.9		5.5 4.3	4.9	
				9.7	Middle	4.9	26.6 26.2	26.4	8.1 8.1	8.1	22.0 23.9	23.0	73.0 73.0	73.0	5.4 5.4	5.4	5.4	3.0 3.0	3.0	3.0	4.2 4.8	4.5	4.8
					Bottom	8.7	26.2 26.7	26.4	8.0 8.1	8.1	24.3 22.7	23.5	73.1 72.9	73.0	5.4 5.4	5.4	5.4	3.0 2.9	3.0		4.8 5.1	5.0	
24-Jun-16	Sunny	Moderate	07:55		Surface	1.0	27.7 27.7	27.7	8.2 8.2	8.2	16.5 16.7	16.6	73.7 72.5	73.1	5.2 5.2	5.2	5.2	2.9 2.8	2.9		4.0 3.9	4.0	
				10.3	Middle	5.2	26.8 27.1	26.9	8.1 8.1	8.1	21.3 21.5	21.4	73.1 71.7	72.4	5.2 5.1	5.2	0.2	2.9 2.9	2.9	2.9	5.3 5.4	5.4	4.9
					Bottom	9.3	26.7 26.6	26.6	8.1 8.1	8.1	26.5 25.7	26.1	71.1 72.9	72.0	5.1 5.1	5.1	5.1	2.9 2.9	2.9		5.3 5.1	5.2	
27-Jun-16	Sunny	Moderate	10:33		Surface	1.0	28.4 28.5	28.5	8.3 8.3	8.3	18.7 18.8	18.7	82.4 82.1	82.3	5.8 5.8	5.8	5.6	2.7 2.8	2.8		3.6 3.3	3.5	
				10.2	Middle	5.1	26.5 26.5	26.5	8.2 8.2	8.2	25.4 25.6	25.5	76.9 76.9	76.9	5.4 5.4	5.4	3.0	2.4 2.5	2.5	2.6	3.3 4.2	3.8	4.0
					Bottom	9.2	26.5 26.5	26.5	8.2 8.2	8.2	25.7 25.6	25.7	80.8 78.5	79.7	5.6 5.5	5.5	5.5	2.5 2.4	2.5		4.7 4.5	4.6	
29-Jun-16	Sunny	Moderate	14:55		Surface	1.0	28.1 27.8	28.0	8.4 8.4	8.4	19.5 19.3	19.4	88.6 81.3	85.0	6.2 5.7	6.0	5.8	3.3 3.3	3.3		4.0 4.4	4.2	
				10.1	Middle	5.1	27.5 27.4	27.5	8.4 8.4	8.4	21.2 21.1	21.2	82.8 78.0	80.4	5.8 5.5	5.6	5.0	3.3 3.4	3.4	3.4	4.0 3.0	3.5	3.8
					Bottom	9.1	27.2 27.2	27.2	8.3 8.4	8.4	22.6 22.7	22.7	76.9 76.5	76.7	5.4 5.4	5.4	5.4	3.5 3.5	3.5		4.1 3.3	3.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ıration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	08:51		Surface	1.0	28.5	28.4	8.0	8.1	13.0	12.0	100.1	99.9	7.2	7.3		6.4	6.5		3.3 2.6	3.0	P
				35.1	Middle	17.6	28.4	28.0	8.2	7.9	11.0 17.6	17.7	99.6 97.6	97.8	7.3 6.9	6.9	7.1	6.5	6.5	6.4	3.2	3.3	3.6
					Bottom	34.1	28.0 27.9	28.0	7.8 7.9	7.7	17.7 19.5	19.1	97.9 97.9	98.2	6.9 6.9	6.9	6.9	6.6	6.3		3.3 4.4	4.6	
0.110	0	Madagas	40.04			•	28.1		7.6		18.7		98.4		6.9			6.4			4.8		
3-Jun-16	Sunny	Moderate	10:34		Surface	1.0	28.9 28.9	28.9	8.5 8.4	8.4	14.4 13.7	14.1	102.1 103.1	102.6	7.3 7.4	7.3	7.1	1.4 1.5	1.5		3.2 2.5	2.9	
				34.3	Middle	17.2	28.0 28.0	28.0	8.3 8.2	8.3	20.6 21.3	20.9	99.8 98.9	99.4	6.9 6.9	6.9		1.7 1.8	1.8	1.7	2.4 2.0	2.2	3.0
					Bottom	33.3	28.0 28.0	28.0	8.2 8.2	8.2	22.4 23.4	22.9	98.9 99.1	99.0	6.8 6.9	6.8	6.8	1.8 1.7	1.8		3.9 3.6	3.8	
6-Jun-16	Cloudy	Moderate	14:44		Surface	1.0	27.8 27.9	27.8	8.3 8.3	8.3	19.4 18.9	19.1	78.5 78.4	78.5	5.6 5.6	5.6		2.3 2.2	2.3		2.7 2.8	2.8	
				35.4	Middle	17.7	27.5 27.6	27.5	8.3 8.3	8.3	23.8	22.1	77.0 77.5	77.3	5.4 5.5	5.4	5.5	2.4	2.4	2.4	2.6 2.5	2.6	2.7
					Bottom	34.4	27.2	27.5	8.3	8.3	27.2	26.0	75.7	75.6	5.2	5.3	5.3	2.4	2.4		2.8	2.7	1
8-Jun-16	Sunny	Moderate	16:03		Surface	1.0	27.8 28.1	28.1	8.3 8.3	8.3	24.8 17.4	17.4	75.4 78.8	78.1	5.3 5.7	5.6		1.2	1.2		2.6 3.9	4.2	
	•					-	28.0 26.9		8.3 8.2		17.4 25.3		77.4 74.4		5.6 5.3		5.5	1.2			4.4 3.4		<u> </u>
				34.7	Middle	17.4	27.0 26.9	26.9	8.2 8.2	8.2	25.2 25.8	25.2	75.4 76.6	74.9	5.3 5.4	5.3		1.3	1.3	1.3	3.8	3.6	3.8
					Bottom	33.7	27.1	27.0	8.2	8.2	25.3	25.6	78.0	77.3	5.5	5.5	5.5	1.5	1.5		3.6	3.7	<u> </u>
10-Jun-16	Rainy	Moderate	17:44		Surface	1.0	28.3 28.3	28.3	8.4 8.4	8.4	18.1 18.0	18.1	72.1 73.5	72.8	5.6 5.7	5.6	5.5	2.1 2.0	2.1		3.0 3.0	3.0	<u> </u>
				34.7	Middle	17.4	27.0 27.0	27.0	8.2 8.2	8.2	24.7 24.7	24.7	68.9 68.1	68.5	5.3 5.2	5.3	0.0	2.6 2.5	2.6	2.3	3.9 4.2	4.1	3.5
					Bottom	33.7	27.0 27.2	27.1	8.2 8.2	8.2	24.9 24.8	24.8	67.8 69.5	68.7	5.2 5.4	5.3	5.3	2.3 2.2	2.3		3.1 3.9	3.5	
13-Jun-16	Cloudy	Moderate	06:30		Surface	1.0	27.6	27.5	8.2	8.1	20.0	19.8	78.1	78.5	5.7	5.8		2.7	2.8		4.0	4.4	
				34.8	Middle	17.4	27.5 27.3	27.4	8.1 8.1	8.1	19.6 22.3	21.7	78.9 77.6	77.4	5.8 5.7	5.6	5.7	2.8	2.9	2.9	4.8 5.1	5.2	4.2
					Bottom	33.8	27.5 27.3	27.3	8.2 8.1	8.1	21.2 24.3	23.5	77.2 75.8	76.3	5.6 5.6	5.6	5.6	2.9 3.0	3.0		5.2 3.4	3.1	-
15-Jun-16	Comment	Madazata	09:33		Dottom	00.0	27.3 28.4	27.0	8.2 8.0	0.1	22.6 9.2	20.0	76.7 88.0	70.0	5.7 6.5	0.0	0.0	3.0 5.1	0.0		2.8 4.8	0.1	<u> </u>
15-Jun-16	Sunny	Moderate	09:33		Surface	1.0	28.4	28.4	8.1	8.1	9.1	9.1	86.6	87.3	6.4	6.5	6.0	5.1	5.1		5.2	5.0	<u> </u>
				34.8	Middle	17.4	25.3 25.3	25.3	7.8 7.8	7.8	16.7 16.7	16.7	75.2 75.3	75.3	5.4 5.4	5.4		3.5 3.4	3.5	3.9	3.5 4.8	4.2	5.2
					Bottom	33.8	24.3 24.3	24.3	7.4 7.4	7.4	30.0 30.0	30.0	72.0 72.3	72.2	5.0 5.0	5.0	5.0	3.0 3.2	3.1		6.0 6.5	6.3	
17-Jun-16	Sunny	Moderate	10:16		Surface	1.0	28.0 28.1	28.0	8.3 8.3	8.3	14.0 13.0	13.5	75.8 76.7	76.3	5.5 5.6	5.5		3.5 3.5	3.5		7.1 7.3	7.2	
				35.4	Middle	17.7	27.0 27.1	27.0	8.2 8.2	8.2	19.2 19.1	19.1	74.6 73.1	73.9	5.3 5.2	5.3	5.4	3.0 3.2	3.1	3.3	6.6 7.2	6.9	7.4
					Bottom	34.4	27.3 27.0	27.2	8.2 8.2	8.2	19.4 19.5	19.5	76.0 78.1	77.1	5.4 5.6	5.5	5.5	3.3	3.2		7.8 8.3	8.1	•
20-Jun-16	Sunny	Moderate	13:55		Surface	1.0	28.5	28.8	8.2	8.2	20.0	19.4	73.5	73.4	5.4	5.4		3.4	3.5	<u> </u>	2.8	3.4	
				35.3	Middle	17.7	29.0 27.0	27.0	8.2 8.1	8.1	18.9 26.3	25.7	73.2 72.7	72.8	5.4 5.2	5.2	5.3	3.5	3.6	3.6	3.7	3.4	3.2
				30.5		34.3	27.0 26.3	26.3	8.1 8.0	8.0	25.1 31.0	31.1	72.8 71.2	71.2	5.2 5.1		5.1	3.6 3.8	3.8	3.0	3.1 2.6	2.8	- 5.2
					Bottom	34.3	26.3	20.3	8.0	8.0	31.2	31.1	71.1	/1.2	5.1	5.1	5.1	3.7	3.8		2.9	2.8	<u></u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	16:02		Surface 1.	0 28.0 27.7	27.9	8.3 8.2	8.3	14.5 16.2	15.3	73.6 74.3	74.0	5.7 5.8	5.7	5.7	5.8 5.6	5.7		4.4 3.5	4.0	
				34.3	Middle 17	.2 26.0 25.9	26.0	8.1 8.1	8.1	25.1 25.2	25.2	72.5 72.9	72.7	5.6 5.6	5.6	3.7	7.5 7.8	7.7	6.9	4.4 4.6	4.5	5.1
					Bottom 33	.3 26.1 25.9	26.0	8.1 8.1	8.1	25.2 25.6	25.4	73.4 73.1	73.3	5.7 5.6	5.6	5.6	7.2 7.4	7.3		6.7 6.8	6.8	
24-Jun-16	Sunny	Moderate	16:20		Surface 1.	0 27.7 27.8	27.8	8.1 8.2	8.1	19.2 18.9	19.1	76.5 76.1	76.3	5.4 5.4	5.4	5.4	3.4 3.5	3.5		4.3 4.3	4.3	
				34.8	Middle 17	.4 26.7 27.5	27.1	8.1 8.1	8.1	21.4 20.4	20.9	74.1 73.8	74.0	5.3 5.3	5.3	0.4	3.4 3.6	3.5	3.6	6.0 5.5	5.8	5.4
					Bottom 33	.8 26.3 25.9	26.1	8.0 8.0	8.0	24.6 26.3	25.5	72.2 72.7	72.5	5.1 5.2	5.1	5.1	3.6 3.7	3.7		5.9 6.2	6.1	
27-Jun-16	Sunny	Moderate	18:43		Surface 1.	0 28.9 28.9	28.9	8.4 8.4	8.4	20.0 20.1	20.0	104.2 101.3	102.8	7.2 7.0	7.1	6.6	2.5 2.3	2.4		4.0 3.1	3.6	
				34.5	Middle 17	27.3 27.2	27.2	8.4 8.4	8.4	23.3 23.2	23.2	87.0 87.5	87.3	6.1 6.1	6.1	0.0	2.8 2.5	2.7	2.6	3.7 4.6	4.2	3.9
					Bottom 33	.5 27.1 27.2	27.1	8.3 8.4	8.4	24.4 24.0	24.2	91.6 93.5	92.6	6.4 6.5	6.4	6.4	2.7 2.5	2.6		4.1 3.7	3.9	
29-Jun-16	Sunny	Moderate	07:10		Surface 1.	0 28.3 28.3	28.3	8.4 8.4	8.4	16.1 16.2	16.2	88.2 87.9	88.1	6.3 6.3	6.3	6.1	1.9 1.9	1.9		3.3 2.8	3.1	
				36.1	Middle 18	27.7	27.6	8.3 8.3	8.3	19.9 19.9	19.9	84.0 84.8	84.4	5.9 5.9	5.9	0.1	2.1 2.0	2.1	2.1	3.2 4.3	3.8	3.8
					Bottom 35	.1 27.7 27.4	27.6	8.3 8.2	8.3	22.4 22.3	22.4	81.8 82.1	82.0	5.8 5.8	5.8	5.8	2.2 2.2	2.2		5.3 3.4	4.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	17:00		Surface	1.0	28.9 29.0	28.9	8.5 8.6	8.6	13.4 13.0	13.2	112.7 102.7	107.7	8.1 7.4	7.7		6.7 6.5	6.6		4.0 2.8	3.4	
				35.5	Middle	17.8	27.0 27.0	27.0	8.3 8.3	8.3	27.1 26.9	27.0	89.3 92.5	90.9	6.1 6.3	6.2	7.0	6.4 6.3	6.4	6.5	4.4 6.2	5.3	4.8
					Bottom	34.5	27.1 27.0	27.0	8.3 8.2	8.3	27.1 27.6	27.3	100.3 92.5	96.4	6.9 6.3	6.6	6.6	6.4 6.4	6.4		5.8 5.5	5.7	
3-Jun-16	Sunny	Moderate	19:17		Surface	1.0	29.1	29.2	8.5	8.5	15.9	15.8	107.4	109.1	7.6	7.7		2.8	2.8		6.3	5.9	
				34.4	Middle	17.2	29.2 27.6	27.5	8.5 8.4	8.4	15.7 26.6	27.1	110.8 94.7	90.8	7.8 6.4	6.2	7.0	2.7	2.8	2.8	5.4 5.8	5.5	6.4
					Bottom	33.4	27.3 27.4	27.3	8.4 8.3	8.4	27.5 27.6	27.7	86.8 86.7	84.9	5.9 5.9	5.8	5.8	2.8	2.9		5.1 7.1	7.7	
6-Jun-16	Cloudy	Moderate	05:59		Surface	1.0	27.2 27.0	27.0	8.4 8.3	8.3	27.8 26.8	26.8	83.1 76.6	77.1	5.7 5.2	5.2	0.0	2.8 1.4	1.4		8.3 3.4	3.4	
				05.5			26.9 26.8		8.2 8.3		26.8 27.4		77.6 76.7		5.3 5.2		5.2	1.4 1.5		4.0	3.3 3.2		
				35.5	Middle	17.8	27.0 26.7	26.9	8.2 8.2	8.2	28.2 29.1	27.8	75.5 75.0	76.1	5.2 5.2	5.2		1.6 1.8	1.6	1.6	2.9 3.1	3.1	3.2
8-Jun-16	Sunny	Moderate	06:17		Bottom	34.5	26.7 27.9	26.7	8.2 7.9	8.2	28.7 16.5	28.9	75.1 80.4	75.1	5.1 5.9	5.1	5.1	1.8	1.8		3.0	3.1	<u> </u>
0-3un-10	Suring	Moderate	00.17		Surface	1.0	27.9 27.9	27.9	7.9 7.9	7.9	16.5 18.0	16.5	80.6 80.0	80.5	5.9 5.8	5.9	5.8	2.0	1.9		3.9 3.5	4.1	
				35.2	Middle	17.6	27.7	27.8	7.9	7.9	19.8	18.9	77.8	78.9	5.6	5.7		1.5	1.6	1.6	3.4	3.5	3.8
					Bottom	34.2	27.9 27.3	27.6	8.0 8.0	8.0	18.5 22.6	20.5	80.2 78.4	79.3	5.8 5.6	5.7	5.7	1.2 1.3	1.3		2.8 5.0	3.9	
10-Jun-16	Sunny	Moderate	08:50		Surface	1.0	27.9 28.0	28.0	8.2 8.2	8.2	17.8 17.1	17.5	74.9 74.6	74.8	5.6 5.6	5.6	5.4	1.8 1.7	1.8		2.7 3.3	3.0	
				35.2	Middle	17.6	27.3 27.3	27.3	8.1 8.1	8.1	22.8 22.5	22.7	69.7 69.5	69.6	5.2 5.2	5.2	0	1.5 1.5	1.5	1.6	3.6 4.0	3.8	3.2
					Bottom	34.2	27.3 27.3	27.3	8.0 8.0	8.0	22.6 22.7	22.7	69.6 70.8	70.2	5.2 5.2	5.2	5.2	1.7 1.5	1.6		2.9 2.5	2.7	
13-Jun-16	Cloudy	Moderate	14:56		Surface	1.0	27.9 28.0	28.0	8.2 8.3	8.3	19.3 19.3	19.3	74.6 77.5	76.1	5.5 5.7	5.6		2.3 2.4	2.4		3.3 4.5	3.9	
				34.9	Middle	17.5	27.1 27.3	27.2	8.2 8.1	8.1	20.4	22.3	76.9 75.7	76.3	5.4 5.4	5.4	5.5	2.5	2.5	2.5	4.5 4.4	4.5	4.2
					Bottom	33.9	26.8 26.7	26.8	8.0 8.0	8.0	30.2 30.5	30.4	73.0 75.1	74.1	5.4 5.4	5.4	5.4	2.6 2.7	2.7		3.3 5.0	4.2	
15-Jun-16	Sunny	Moderate	17:41		Surface	1.0	28.6 28.6	28.6	8.3 8.3	8.3	9.6 9.6	9.6	86.8 88.0	87.4	6.4 6.5	6.4		4.9 4.9	4.9		6.4 5.5	6.0	
				35.0	Middle	17.5	25.1	25.2	8.0	8.0	26.2	26.2	75.7	76.4	5.3	5.4	5.9	3.4	3.3	4.1	6.1 5.9	6.0	5.7
					Bottom	34.0	25.2	24.2	7.5	7.5	26.1 30.9	30.9	77.1	71.0	4.9	4.9	4.9	4.0	4.0		5.0	5.1	
17-Jun-16	Sunny	Moderate	18:55		Surface	1.0	24.2	28.6	7.5 8.3	8.3	30.9 11.7	11.7	71.1 81.5	81.3	4.9 5.9	5.9		3.7	3.7		5.1 2.6	2.7	
				35.6	Middle	17.8	28.6 25.7	25.6	8.3 7.9	7.9	11.7 28.3	28.9	81.0 81.0	79.8	5.9 5.9	5.7	5.8	3.7 4.0	4.1	3.9	2.8 4.4	3.9	3.5
				00.0	Bottom	34.6	25.4 25.7	25.6	7.8 7.9	7.9	29.4 28.7	29.1	78.5 72.0	71.2	5.4 5.2	5.2	5.2	4.1 3.9	3.8	0.0	3.4 3.4	3.8	0.0
20-Jun-16	Sunny	Moderate	05:11	<u> </u>			25.6 26.6		7.9 8.3		29.5 21.6		70.4 72.5		5.1 5.2		5.2	3.6 3.1			4.2 9.3		
	,				Surface	1.0	26.6 26.0	26.6	8.3 8.2	8.3	21.7	21.7	72.2 71.4	72.4	5.2	5.2	5.2	3.0	3.1		8.9 9.3	9.1	
				35.5	Middle	17.8	26.2 25.1	26.1	8.2 8.1	8.2	24.5 27.2	24.5	71.8	71.6	5.1 5.1	5.2		3.2	3.2	3.2	8.9 8.7	9.1	8.9
					Bottom	34.5	25.1 25.7	25.4	8.1	8.2	27.2 26.4	26.8	70.9 71.2	71.1	5.1 5.1	5.1	5.1	3.3	3.3		8.7	8.4	i

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Temper	rature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	06:15		Surface 1.0	27.4 27.2	27.3	8.1 8.1	8.1	18.8 19.1	18.9	73.9 73.5	73.7	5.5 5.4	5.4	5.4	3.1 3.2	3.2		3.0 3.4	3.2	
				34.5	Middle 17.3	26.5 26.7	26.6	8.1 8.1	8.1	22.1 21.5	21.8	73.7 73.2	73.5	5.4 5.4	5.4	5.4	3.0 3.1	3.1	3.1	4.6 3.8	4.2	4.1
					Bottom 33.5	26.9 26.4	26.6	8.1 8.0	8.0	21.1 23.6	22.3	73.3 73.6	73.5	5.4 5.4	5.4	5.4	3.0 3.0	3.0		4.2 5.4	4.8	
24-Jun-16	Sunny	Moderate	07:45		Surface 1.0	27.7 28.1	27.9	8.3 8.3	8.3	16.4 16.3	16.3	78.2 78.7	78.5	5.5 5.6	5.5	5.5	2.8 2.8	2.8		4.6 4.9	4.8	
				34.9	Middle 17.5	26.2 26.9	26.6	8.3 8.2	8.2	23.1 21.6	22.4	76.4 77.1	76.8	5.3 5.5	5.4	5.5	2.8 2.9	2.9	2.9	4.6 5.3	5.0	4.6
					Bottom 33.9	26.2 26.3	26.2	8.2 8.2	8.2	27.7 26.0	26.8	73.6 72.9	73.3	5.3 5.2	5.2	5.2	2.9 2.9	2.9		3.9 4.1	4.0	
27-Jun-16	Sunny	Moderate	10:21		Surface 1.0	28.7 28.4	28.6	8.4 8.3	8.3	18.5 18.8	18.6	83.8 81.0	82.4	5.9 5.7	5.8	5.5	2.7 2.7	2.7		3.7 4.2	4.0	
				34.7	Middle 17.4	26.4 26.4	26.4	8.3 8.2	8.2	25.7 25.8	25.8	74.1 75.8	75.0	5.2 5.3	5.2	5.5	2.3 2.6	2.5	2.6	4.1 4.0	4.1	4.0
					Bottom 33.7	, 26.2 26.4	26.3	8.3 8.2	8.2	26.2 26.0	26.1	75.5 78.8	77.2	5.3 5.5	5.4	5.4	2.4 2.5	2.5		3.2 4.5	3.9	
29-Jun-16	Sunny	Moderate	15:16		Surface 1.0	27.8 27.9	27.9	8.3 8.3	8.3	20.3 19.4	19.9	76.9 77.1	77.0	5.4 5.4	5.4	5.4	3.3 3.3	3.3		4.9 4.2	4.6	
				36.1	Middle 18.1	27.5	27.5	8.3 8.3	8.3	21.0 20.9	20.9	76.4 75.3	75.9	5.4 5.3	5.3	0.4	3.4 3.5	3.5	3.5	3.4 5.2	4.3	4.9
					Bottom 35.1	27.2 27.3	27.2	8.3 8.3	8.3	22.7 22.3	22.5	73.7 74.1	73.9	5.2 5.2	5.2	5.2	3.6 3.6	3.6		5.4 6.3	5.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Note Surrey Moderate 11-31 Surface 10 256 284 8.6 6.8 17.3 17.3 17.3 17.3 17.3 7.8 7.8 7.2 7.3 7.5	Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	ř.	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
Sump		Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
Moderate 14:13 Surface 14:13 Surface 14:13 Surface 14:13 Surface 15:50 Surface 16:30 Surface	1-Jun-16	Sunny	Moderate	11:31		Surface	1.0		28.5		8.6		17.3	-	111.1		7.8			7.3			6.0	
Summy Moderate 12:05 Summy Moderate					3.4	Middle	-	-	-		-	-	-	-	-	-	-	7.8	-	-	7.3	-	-	6.9
3-Jun-16 Surrey Moderate 12:05 Surface 10 2:05 28:0 28:0 8:4 8:4 15:9 15:8 10:4 10:4 7:4 7:4 7:4 7:4 7:4 7:4 7:5						Bottom	2.4		28.5		8.5	20.0	19.8	109.9	110.1		7.7	7.7	7.2	7.3		8.4	7.8	
A	3-Jun-16	Sunny	Moderate	12:05		Surface	1.0		28.0		8.4		15.8		104.3		7.4			2.0			3.0	
Botton 23 289 83 83 83 166 1032 1039 7.3 7.3 7.3 7.3 7.3 2.2 2.3 3.1 3.1					2.2		1.0										7.4	7.4			0.0		5.9	3.9
6-Jun-16 Cloudy Moderate 12.51 Surface 10 28.6 8.0 8.2 8.2 19.0 19.0 19.0 86.2 8.1 6.1 6.1 6.1 3.0 2.2 2.3 3.1 3					3.3		-	28.9		- 8.3		16.6		104.2		7.3	-		2.3		2.2	4.1	-	3.9
Surface 1.0 28.0 28.0 8.2 19.0 19.0 86.0 66.1 6.1 6.1 6.1 3.0 2.9 3.1	6- Jun-16	Cloudy	Moderate	12:51				28.9		8.3		16.7		103.6		7.3		7.3	2.2			3.5		
Surroy Moderate 14-13 Surroy Moderate 14-13 Surface 10, 28, 6 28, 6 8.4 8.4 19, 9 19, 0 86, 8 86, 3 8.5 6.0 6.0 6.0 3.1 3.2 2.9 2.4 2.9 2.4 2.5	0-3uii-10	Cloudy	Wioderate	12.51		Surface	1.0	28.0	28.0	8.2	8.2	19.0	19.0	86.0	86.1	6.1	6.1	6.1	3.0	2.9		3.1	3.1	_
Sunny Moderate 14:13 Surface 10 28.6 28.6 8.4 8.4 18.9 19.0 86.6 8.5 6.0 6.0 6.0 2.4 2.5 5.6 5.1 5.4					3.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.1	-	-	2.8
Surface 10 28 28 28 28 28 28 28 2						Bottom	2.3		28.0		8.1		20.0		86.3		6.0	6.0		3.2			2.4	
Surface 10 Surf	8-Jun-16	Sunny	Moderate	14:13		Surface	1.0		28.6		8.4		19.0		86.5		6.0	6.0		2.5			5.4	
10-Jun-16 Rainy Moderate 15:50 Surface 10- 28.7 28.7 28.7 28.6 8.6 17.1 17.1 108.6 17.2 17.1 107.9 108.3 7.6 7.6 2.6 2.7 2.8 2.7 2.8 3.5 3.7					3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	2.5	-	-	6.7
10-Jun-16						Bottom	2.3		28.3		8.4		19.8		85.9		6.0	6.0		2.4			7.9	
3.4 Middle -	10-Jun-16	Rainy	Moderate	15:50		Surface	1.0	28.7	28.7	8.6	8.6	17.1	17.1	108.6	108.3	7.6	7.6		2.6	2.7		3.8	3.7	
Surface 10 Sunny Moderate 11:15 Surface 1.0 27.7 27.8 8.1 8.1 15.8 15.8 82.5 82.5 5.9 6.3 6.1 6.1 2.5 2.5 2.5 2.6 2.8 2.9 2.5					3.4	Middle	-		-		-		-		-		-	7.6		-	2.8		-	3.3
13-Jun-16						Bottom	2.4		28.5		8.6		17.8		107.3		7.5	7.5		2.9			2.8	
Sunny Moderate 11:15 Sunny Moderate 12:28 Surface 1.0 29.2 29.1 8.3 8.3 11.8 11	13-Jun-16	Cloudy	Moderate	09:18		Surface	1.0	27.7	27.8	8.1	8.1	15.8	15.8	82.5	85.2	5.9			2.5			2.6	2.8	
Bottom 2.3 27.7 27.7 8.1 8.1 17.5 17.6 81.2 81.9 5.9 5.9 5.9 5.9 2.5 2.5 3.0 2.8					33				_		_		_		_	6.3		6.1			2.5			2.8
15-Jun-16 Sunny Moderate 11:15 Surface 1.0 28.8 8.2 8.8 8.2 8.8 8.3 14.9 14.9 14.9 94.8 95.7 95.3 6.8 6.8 6.8 5.0 5.0 5.0 5.0 5.1 5.1 5.1 5.3 6.4 5.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6					0.0		2.2	27.7	27.7	8.1	0.1	17.5	17.6	_	91.0	5.9	5.0	5.0	2.5		2.0			. 2.0
Surface 1.0 28.9 28.8 8.3 8.3 14.9 14.9 95.7 95.3 6.8 6.8 5.0 5.0 5.0 5.1 5.1 5.2 Middle	15-Jun-16	Sunny	Moderate	11:15														5.5						
3.2 Middle - - - - - - - - -		Jan,					1.0	28.9		8.3		14.9		95.7		6.8	6.8	6.8	5.0			5.1		-
17-Jun-16 Sunny Moderate 12:28 Surface 1.0 29.2 29.1 8.3 8.3 11.8 11.8 98.8 97.1 7.1 7.0 7.0 4.8 4.8 3.5 3.4 3.2 3.2 3.4 3.3					3.2	Middle	-	-		-		-		-		-	-		-		5.1	-		5.6
3.3 Surface 1.0 29.1 29.1 8.3 8.3 11.8 11.8 95.4 97.1 6.9 7.0 7.0 4.7 4.8 3.2 3.4 11.8 11.8 95.4 97.1 6.9 7.0 7.0 4.7 4.8 3.2 3.2 3.4 11.8 11.8 95.4 97.1 6.9 7.0 7.0 4.7 4.8 3.2 3.2 3.4 11.8 11.8 95.4 97.1 6.9 7.0 95.8 6.9 6.8 6.8 4.6 4.7 4.7 95.1 11.4 11.4 11.4 11.4 11.4 11.4 11.4 1	17.1.10			10.00		Bottom	2.2	28.8	28.8	8.3	8.3	14.9	15.0	96.6	95.9	6.9	6.8	6.8	5.1	5.1		6.4	5.9	
3.3 Middle - [17-Jun-16	Sunny	Moderate	12:28		Surface	1.0	29.1	29.1	8.3	8.3	11.8	11.8	95.4	97.1	6.9	7.0	7.0	4.7	4.8		3.2	3.4	
20-Jun-16 Sunny Moderate 11:41 Surface 1.0 28.5 8.3 8.3 15.0 15.0 97.0 95.8 6.9 6.8 6.8 4.7 4.7 3.2 2.7 6.2 6.9 6.8 6.8 4.7 4.7 3.2 2.7 6.2 6.9 6.8 6.8 4.7 4.7 3.2 2.7 6.2 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9					3.3	Middle	-	-	-	-	-	-		-	-	-	-		-	-	4.8	-	-	3.1
3.3 Middle						Bottom	2.3		28.8		8.3		15.0		95.8		6.8	6.8		4.7			2.7	
3.3 Middle	20-Jun-16	Sunny	Moderate	11:41		Surface	1.0		28.5		8.3		18.2		98.3		6.9	0.0		7.1			6.6	
28.4 0.1 8.3 0.1 18.9 0.0 98.3 0.7 6.9 0.1 7.2 0.61					3.3	Middle	-	-	-		-		-		-	-	-	6.9		-	7.2		-	6.5
Bottom 2.3 28.4 8.3 19.0 19.0 96.6 97.5 6.8 6.8 6.8 7.4 7.3 6.5 6.5 6.3						Bottom	2.3	28.4	28.4	8.3	8.3	18.9	19.0	98.3	97.5	6.9	6.8	6.8	7.2	7.3		6.1	6.3	1

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	12:52		Surface	1.0	28.6 28.5	28.5	8.4 8.4	8.4	17.6 17.7	17.7	92.7 95.9	94.3	6.5 6.7	6.6	6.6	6.6 6.7	6.7		6.9 7.5	7.2	
				3.3	Middle			-		-		-	-	-		-	0.0	-	-	6.9	-	-	7.7
					Bottom	2.3	28.5 28.6	28.6	8.4 8.4	8.4	17.7 17.6	17.6	93.5 92.0	92.8	6.6 6.5	6.5	6.5	7.0 6.9	7.0		7.4 8.9	8.2	
24-Jun-16	Sunny	Moderate	14:16		Surface	1.0	29.6 29.6	29.6	8.4 8.4	8.4	18.4 18.6	18.5	107.7 114.3	111.0	7.4 7.9	7.6	7.6	6.4 6.0	6.2		6.6 6.0	6.3	
				3.2	Middle	-		-		-	-	-	-	-	1 1	-	7.0	-	-	6.3	-	-	6.5
					Bottom	2.2	29.6 29.1	29.3	8.4 8.4	8.4	18.8 19.3	19.0	112.4 103.7	108.1	7.7 7.2	7.4	7.4	6.2 6.6	6.4		6.7 6.4	6.6	
27-Jun-16	Sunny	Moderate	16:58		Surface	1.0	30.0 30.0	30.0	8.5 8.5	8.5	20.1 20.0	20.1	151.7 150.6	151.2	10.3 10.2	10.2	10.2	5.7 5.8	5.8		7.3 7.8	7.6	
				3.2	Middle	-		-		-	-	-	-	-		-	10.2	-	-	5.9	-	-	7.8
					Bottom	2.2	29.9 30.0	29.9	8.5 8.5	8.5	20.6 20.4	20.5	133.2 134.6	133.9	9.0 9.2	9.1	9.1	5.8 5.9	5.9		8.3 7.7	8.0	
29-Jun-16	Sunny	Moderate	09:35		Surface	1.0	28.6 28.6	28.6	8.4 8.4	8.4	20.7 20.8	20.8	86.5 87.0	86.8	6.0 6.0	6.0	6.0	5.8 5.7	5.8		5.9 6.1	6.0	
				3.2	Middle	-	-	-		-	-	-	-	-		-	0.0	-	-	5.8	-	-	5.7
					Bottom	2.2	28.0 28.1	28.1	8.4 8.4	8.4	22.5 22.5	22.5	85.8 86.1	86.0	5.9 5.9	5.9	5.9	5.8 5.8	5.8		6.2 4.5	5.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	14:27		Surface	1.0	30.0 30.0	30.0	8.9 8.9	8.9	16.1 16.1	16.1	143.0 152.0	147.5	9.9 10.5	10.2	40.0	4.5 4.7	4.6		8.1 9.0	8.6	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	10.2	-	-	4.7	-	-	8.7
					Bottom	2.3	29.8 30.1	29.9	8.8 8.9	8.8	16.2 16.1	16.1	132.8 147.6	140.2	9.2 10.2	9.7	9.7	4.7 4.9	4.8		8.9 8.6	8.8	
3-Jun-16	Sunny	Moderate	16:48		Surface	1.0	29.3	29.7	8.5	8.6	18.0	17.5	132.1	132.2	9.1	9.1		12.5	12.6		8.9	8.5	
				3.3	Middle		30.1		8.6	_	16.9	-	132.2		9.1	-	9.1	12.7		13.2	8.1	-	9.4
				0.0	Bottom	2.3	29.7	29.7	8.6	8.6	18.1	18.2	131.2	133.0	9.1	9.2	9.2	13.5	13.7	10.2	10.4	10.3	0.4
6-Jun-16	Cloudy	Moderate	07:45				29.6 28.0		8.5 8.3		18.3 19.2		134.7 86.9		9.3 6.1		9.2	13.9 2.8			10.1 3.1		<u> </u>
o dan 10	Cidady	moderate	01110		Surface	1.0	28.0	28.0	8.3	8.3	19.3	19.2	86.6	86.8	6.1	6.1	6.1	2.8	2.8		4.2	3.7	
				3.3	Middle	-	28.0	-	8.3	-	19.3	-	86.3	-	-	-		-	-	2.9	-	-	3.7
					Bottom	2.3	28.0	28.0	8.3	8.3	19.4	19.4	86.7	86.5	6.1 6.1	6.1	6.1	2.8 2.9	2.9		3.5 3.6	3.6	
8-Jun-16	Sunny	Moderate	09:08		Surface	1.0	28.0 28.0	28.0	8.2 8.2	8.2	17.0 17.0	17.0	81.3 84.3	82.8	5.8 6.0	5.9	5.9	1.8 1.8	1.8		4.1 3.7	3.9	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	1.8	-	-	3.7
					Bottom	2.4	28.0 28.0	28.0	8.2 8.2	8.2	18.0 18.0	18.0	80.7 82.3	81.5	5.7 5.9	5.8	5.8	1.8 1.8	1.8		3.8 3.0	3.4	
10-Jun-16	Sunny	Moderate	11:02		Surface	1.0	28.4 28.4	28.4	8.3 8.3	8.3	18.1 18.1	18.1	90.7 92.2	91.5	6.4 6.5	6.4		1.4	1.4		3.1 2.9	3.0	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	1.5	-	-	2.8
					Bottom	2.3	28.4	28.4	8.3	8.3	18.1	18.3	91.5	92.1	6.4	6.5	6.5	1.5	1.5		2.4	2.5	
13-Jun-16	Cloudy	Moderate	12:06		Surface	1.0	28.3 28.1	28.0	8.3 8.2	8.2	18.5 15.9	16.1	92.7 88.9	85.5	6.5 6.4	6.1		2.0	2.1		2.6 3.6	3.2	
				3.4	Middle		27.9	_	8.2	_	16.2	_	82.1	_	5.9 -	_	6.1	2.1	_	2.2	2.8	_	3.2
				0.4	Bottom	2.4	27.7	27.8	8.2	8.2	16.8	16.7	85.5	83.8	6.1	6.0	6.0	2.1	2.2	2.2	2.5	3.1	0.2
15-Jun-16	Sunny	Moderate	15:04				27.8 29.0		8.2 8.4		16.6 13.1		82.0 94.5		5.9 6.8		6.0	7.2			3.6 3.4		
					Surface	1.0	29.1	29.0	8.4	8.4	13.1	13.1	97.4	96.0	7.0	6.9	6.9	7.2	7.2		4.1	3.8	
				3.3	Middle	-	- 28.9	-	8.4	-	13.5	-	96.5	-	6.9	-		- 7.4	-	7.3	3.8	-	4.1
					Bottom	2.3	28.7	28.8	8.4	8.4	13.7	13.6	93.6	95.1	6.7	6.8	6.8	7.1	7.3		5.0	4.4	
17-Jun-16	Sunny	Moderate	16:50		Surface	1.0	29.9 29.9	29.9	8.6 8.6	8.6	10.7 10.7	10.7	112.8 116.9	114.9	8.1 8.4	8.2	8.2	4.7 4.8	4.8		4.5 4.4	4.5	
				3.3	Middle	-	-	-		-		-		-		-		-	-	4.9	-	-	5.3
					Bottom	2.3	29.2 29.7	29.4	8.5 8.6	8.5	12.3 12.5	12.4	112.4 115.2	113.8	8.0 8.2	8.1	8.1	4.9 4.9	4.9		6.3 5.8	6.1	
20-Jun-16	Sunny	Moderate	07:14		Surface	1.0	29.0 29.0	29.0	8.5 8.5	8.5	17.2 17.1	17.2	121.2 115.0	118.1	8.5 8.1	8.3		4.7 4.6	4.7		6.2 5.9	6.1	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	8.3	-	-	4.8	-	-	6.4
					Bottom	2.2	29.0	28.9	8.4	8.4	17.8	17.8	118.3	111.3	8.3	7.8	7.8	4.8	4.9		6.4	6.6	
							28.9		8.4		17.8	_	104.2	l	7.3			4.9			6.7		

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	08:27		Surface	1.0	28.6 28.6	28.6	8.4 8.4	8.4	17.5 17.4	17.5	105.3 104.4	104.9	7.4 7.4	7.4	7.4	4.5 4.4	4.5		3.8 3.9	3.9	
				3.4	Middle			-		-	-	-	-	-	1 1	-	7.4	-	-	4.5	-	-	4.5
					Bottom	2.4	28.6 28.6	28.6	8.4 8.4	8.4	17.7 17.5	17.6	101.1 105.0	103.1	7.1 7.4	7.2	7.2	4.4 4.5	4.5		5.0 5.0	5.0	
24-Jun-16	Sunny	Moderate	09:46		Surface	1.0	28.3 28.2	28.3	8.2 8.2	8.2	18.2 18.5	18.3	76.7 77.3	77.0	5.4 5.4	5.4	5.4	7.7 8.0	7.9		5.1 5.6	5.4	
				3.3	Middle			-		-	-	-	-	-		-	5.4	-	-	7.7	-	-	6.3
					Bottom	2.3	28.2 28.0	28.1	8.2 8.2	8.2	19.2 19.1	19.2	77.2 76.4	76.8	5.4 5.4	5.4	5.4	7.7 7.3	7.5		7.2 7.1	7.2	
27-Jun-16	Sunny	Moderate	12:17		Surface	1.0	29.3 29.3	29.3	8.5 8.4	8.5	21.4 21.3	21.4	123.3 123.8	123.6	8.1 8.1	8.1	8.1	4.8 4.7	4.8		6.9 6.9	6.9	
				3.3	Middle			-		-	-	-	-	-		-	0.1	-	-	4.8	-	-	7.0
					Bottom	2.3	29.3 29.3	29.3	8.4 8.5	8.4	21.4 21.5	21.4	118.7 117.5	118.1	7.9 7.7	7.8	7.8	4.9 4.7	4.8		7.0 7.0	7.0	
29-Jun-16	Sunny	Moderate	13:21		Surface	1.0	29.1 29.1	29.1	8.5 8.5	8.5	19.2 19.2	19.2	112.4 111.6	112.0	7.8 7.7	7.7	7.7	3.3 3.2	3.3		3.1 5.2	4.2	
				3.3	Middle	-		-		-	-	-	-	-	1 1	-	1.1	-	-	3.3	-	-	4.3
					Bottom	2.3	29.1 29.0	29.1	8.5 8.5	8.5	19.2 19.2	19.2	108.4 103.6	106.0	7.5 7.2	7.3	7.3	3.3 3.3	3.3		4.1 4.7	4.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	11:16		Surface	1.0	29.0 29.0	29.0	8.6 8.6	8.6	17.2 17.1	17.2	119.6 116.1	117.9	8.4 8.1	8.3		6.3 6.2	6.3		5.8 4.7	5.3	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	8.3	-	-	6.3	-	-	4.8
					Bottom	2.5	29.0	29.0	8.6 8.6	8.6	17.2 17.1	17.1	117.9 112.1	115.0	8.3 7.9	8.1	8.1	6.3 6.3	6.3		5.2 3.1	4.2	
3-Jun-16	Sunny	Moderate	11:51		Surface	1.0	28.9	29.0	8.4	8.4	15.7	15.6	104.2	104.0	7.4	7.3		2.4	2.4		4.4	4.3	
				3.5	Middle	1.0	29.0	-	8.4	-	15.5	-	103.7	-	7.3	7.0	7.3	2.4	2.4	2.5	4.2	-	4.7
				3.5		-	28.8		8.4		16.3		- 101.4		7.2	-		2.4	-	2.5	5.2		4.7
6 Jun 16	Cloudy	Moderate	12:06		Bottom	2.5	28.8	28.8	8.4 8.3	8.4	16.5 19.1	16.4	104.0 84.8	102.7	7.3	7.2	7.2	2.5	2.5		4.8	5.0	
6-Jun-16	Cloudy	Moderate	13:06		Surface	1.0	28.0	28.0	8.3	8.3	19.1	19.1	84.7	84.8	6.0	6.0	6.0	3.2	3.2		2.4	2.4	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.2	-	-	2.6
					Bottom	2.7	28.0 28.0	28.0	8.2 8.2	8.2	20.3 20.3	20.3	85.0 85.2	85.1	6.0 6.0	6.0	6.0	3.2 3.2	3.2		3.0 2.4	2.7	
8-Jun-16	Sunny	Moderate	14:27		Surface	1.0	28.3 28.3	28.3	8.4 8.4	8.4	18.4 18.7	18.6	81.5 85.8	83.7	5.7 6.0	5.9	5.9	2.5 2.7	2.6		4.3 4.4	4.4	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	2.6	-	-	4.6
					Bottom	2.6	28.3 27.9	28.1	8.4 8.3	8.4	18.6 21.9	20.3	83.7 82.2	83.0	5.9 5.7	5.8	5.8	2.6	2.6		4.8 4.5	4.7	
10-Jun-16	Rainy	Moderate	16:05		Surface	1.0	28.6	28.6	8.5	8.5	17.4	17.4	101.7	103.4	7.2	7.3		2.4	2.5		3.5	3.4	
				3.6	Middle	_	28.7	-	8.5	-	17.4	-	105.0	_	7.4	-	7.3	2.6	_	2.6	3.2	-	3.9
					Bottom	2.6	28.2	28.4	8.5	8.5	18.6	18.5	100.2	102.3	7.1	7.2	7.2	2.5	2.6		4.2	4.4	
13-Jun-16	Cloudy	Moderate	08:59		Surface	1.0	28.6 27.6	27.6	8.5 8.1	8.1	18.5 16.7	16.4	104.4 87.7	91.0	7.3 6.3	6.6	7.2	2.6 1.9	1.9		4.5 2.0	3.1	
						1.0	27.6	27.0	8.1		16.2	10.4	94.2	91.0	6.8	0.0	6.6	1.8	-		4.2		
				3.4	Middle	-	- 27.7	-	8.1	-	- 15.6	-	- 89.6	-	6.5	-		- 1.8	-	1.9	2.9	-	2.9
45.140	0	Madaga	44.00		Bottom	2.4	27.6	27.6	8.1	8.1	16.4	16.0	85.5	87.6	6.1	6.3	6.3	1.9	1.9		2.3	2.6	
15-Jun-16	Sunny	Moderate	11:02		Surface	1.0	28.5 28.8	28.7	8.2 8.2	8.2	14.8 14.1	14.4	88.0 84.3	86.2	6.1 6.0	6.1	6.1	7.9 7.6	7.8		4.2 4.7	4.5	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	7.7	-	-	5.7
					Bottom	2.7	28.4 28.7	28.5	8.1 8.2	8.2	14.7 14.2	14.4	84.6 84.0	84.3	6.1 6.0	6.0	6.0	7.5 7.5	7.5		6.6 6.9	6.8	
17-Jun-16	Sunny	Moderate	12:12		Surface	1.0	29.0 28.7	28.9	8.3 8.3	8.3	11.9 12.2	12.0	76.0 80.7	78.4	5.5 5.8	5.7		5.5 5.5	5.5		3.3 3.3	3.3	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-	5.6	-	-	4.1
					Bottom	2.7	28.5 27.6	28.0	8.1 8.1	8.1	18.6 18.3	18.5	80.3 75.4	77.9	5.6 5.5	5.5	5.5	5.6 5.6	5.6		5.2 4.4	4.8	
20-Jun-16	Sunny	Moderate	11:57		Surface	1.0	28.6	28.6	8.4	8.4	17.1	17.2	110.0	110.4	7.8	7.8		6.9	7.1		5.1	5.2	
				3.6	Middle	_	28.6	_	8.4	_	17.3	_	110.7	_	7.8	_	7.8	7.2	_	7.9	5.3	_	5.6
				0.0		2.6	28.5	28.5	8.4	8.4	19.4	19.4	114.0	112.6	7.9	7.8	7.8	8.5	8.6		5.9	6.0	0.0
					Bottom	2.0	28.5	28.5	8.4	8.4	19.4	19.4	111.2	112.0	7.8	7.8	7.8	8.7	0.0		6.1	0.0	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	13:05		Surface	1.0	28.3 28.2	28.3	8.3 8.3	8.3	18.2 18.3	18.2	82.6 82.8	82.7	5.8 5.8	5.8	5.8	7.0 7.1	7.1		8.0 7.7	7.9	
				3.5	Middle	-		-		-	-	-	-	-		-	5.6	-	-	7.2	-	-	8.2
					Bottom	2.5	28.3 28.1	28.2	8.3 8.3	8.3	18.2 18.6	18.4	82.5 82.3	82.4	5.8 5.8	5.8	5.8	7.2 7.2	7.2		8.4 8.4	8.4	
24-Jun-16	Sunny	Moderate	14:31		Surface	1.0	29.1 28.9	29.0	8.5 8.5	8.5	17.9 18.6	18.3	117.4 112.5	115.0	8.2 7.8	8.0	8.0	5.5 6.0	5.8		6.3 6.1	6.2	
				3.5	Middle	-		-		-	-	-	-	-		-	0.0	-	-	5.9	-	-	5.9
					Bottom	2.5	28.9 28.7	28.8	8.5 8.5	8.5	18.7 19.1	18.9	115.4 113.6	114.5	8.0 7.9	8.0	8.0	5.8 6.2	6.0		6.3 4.7	5.5	
27-Jun-16	Sunny	Moderate	17:15		Surface	1.0	29.5 29.4	29.4	8.5 8.5	8.5	20.2 20.3	20.3	143.8 144.9	144.4	9.8 9.9	9.9	9.9	8.1 8.1	8.1		8.7 8.9	8.8	
				3.5	Middle	-		-		-	-	-	-	-		-	5.5	-	-	8.2	-	-	8.8
					Bottom	2.5	29.2 29.3	29.3	8.5 8.5	8.5	20.4 20.5	20.4	132.5 135.6	134.1	9.2 9.3	9.2	9.2	8.2 8.2	8.2		8.6 8.8	8.7	
29-Jun-16	Sunny	Moderate	09:14		Surface	1.0	28.7 28.6	28.7	8.4 8.4	8.4	18.6 18.6	18.6	91.2 89.8	90.5	6.4 6.3	6.3	6.3	6.2 6.5	6.4		3.3 2.3	2.8	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.3	-	-	6.4	-	-	3.8
					Bottom	2.7	28.4 28.6	28.5	8.4 8.4	8.4	22.2 22.1	22.2	96.0 93.6	94.8	6.6 6.4	6.5	6.5	6.3 6.3	6.3		5.2 4.4	4.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ing	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	14:40		Surface	1.0	30.1 30.1	30.1	8.9 8.9	8.9	16.1 16.1	16.1	168.5 168.2	168.4	11.6 11.6	11.6		4.4 4.5	4.5		10.4 10.8	10.6	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	11.6	-	-	4.5	-	-	10.7
					Bottom	2.3	30.0 30.1	30.1	8.9 8.9	8.9	16.2 16.1	16.1	168.0 168.2	168.1	11.6 11.6	11.6	11.6	4.6 4.4	4.5		10.0	10.7	
3-Jun-16	Sunny	Moderate	17:04		Surface	1.0	30.2	30.2	8.6	8.6	17.2	17.2	143.4	141.8	9.8	9.7		16.0	16.1		22.5	22.3	
				3.5	Middle	_	30.2	-	8.6	_	17.2	_	140.2	-	9.6	_	9.7	16.1	-	16.1	22.1	-	22.5
					Bottom	2.5	30.2	30.0	8.6	8.6	17.3	17.6	141.8	139.9	9.7	9.6	9.6	16.4	16.1		22.6	22.6	
6-Jun-16	Cloudy	Moderate	07:31		Surface	1.0	29.8 27.9	27.9	8.6 8.3	8.3	17.8 19.3	19.3	138.0 87.7	88.5	9.5 6.2	6.2		15.8 3.2	3.1		22.6	3.1	
				3.7	Middle	1.0	28.0	-	8.3	-	19.3	-	89.2	-	6.3	0.2	6.2	3.0	-	3.1	3.4	-	3.2
				3.7	Bottom	2.7	27.9	27.9	8.3	8.3	20.1	19.8	88.6	90.2	6.2	6.3	6.3	3.2	3.1	3.1	3.5	3.2	5.2
8-Jun-16	Sunny	Moderate	08:52		Surface	1.0	27.9 28.0	28.0	8.3 8.2	8.2	19.4 17.2	17.3	91.7 81.3	79.9	6.5 5.8		0.5	3.0			2.9 4.2		
	·			3.7		1.0	28.0	20.0	8.2	0.2	17.3	17.3	78.5 -	79.9	5.6	5.7	5.7	3.2	3.4	3.4	4.9	4.6	5.0
				3.7	Middle		28.0	-	8.2	-	18.9	-	79.4	-	5.6	-		3.3		3.4	6.2		5.0
10-Jun-16	Sunny	Moderate	10:43		Bottom	2.7	28.0 28.1	28.0	8.2 8.3	8.2	19.0 18.7	18.9	83.1 85.1	81.3	5.9 6.0	5.7	5.7	3.4 2.8	3.4		4.5 3.4	5.4	
10-3411-10	Guilly	Woderate	10.43		Surface	1.0	28.1	28.1	8.3	8.3	18.7	18.7	85.3	85.2	6.0	6.0	6.0	2.8	2.8		3.9	3.7	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.8	-	-	4.0
					Bottom	2.8	28.0 28.1	28.0	8.2 8.2	8.2	20.0 19.7	19.9	82.0 85.0	83.5	5.7 6.0	5.9	5.9	2.8 2.8	2.8		3.6 4.8	4.2	
13-Jun-16	Cloudy	Moderate	12:26		Surface	1.0	27.9 27.9	27.9	8.3 8.3	8.3	15.1 15.2	15.2	90.8 94.4	92.6	6.5 6.8	6.7	6.7	2.1 2.0	2.1		2.7 2.9	2.8	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.1	-	-	2.9
					Bottom	2.3	28.2 27.9	28.1	8.3 8.3	8.3	15.2 15.1	15.1	91.9 89.5	90.7	6.6 6.5	6.5	6.5	2.1 2.1	2.1		2.7 3.0	2.9	
15-Jun-16	Sunny	Moderate	15:19		Surface	1.0	29.1 29.0	29.1	8.4 8.4	8.4	12.8 12.7	12.8	98.1 97.3	97.7	7.0 7.0	7.0	7.0	7.5 7.4	7.5		3.8 4.8	4.3	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-		7.6	-	-	5.5
					Bottom	2.6	29.0 29.0	29.0	8.4 8.4	8.4	13.1 13.3	13.2	97.7 97.4	97.6	7.0 7.0	7.0	7.0	7.7 7.5	7.6		6.8 6.6	6.7	
17-Jun-16	Sunny	Moderate	17:07		Surface	1.0	29.6 29.8	29.7	8.6 8.6	8.6	11.6 11.4	11.5	115.7 115.3	115.5	8.3 8.2	8.2	0.0	8.6 8.5	8.6		4.3 3.9	4.1	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	8.2	-	-	8.7	-	-	4.2
					Bottom	2.8	29.6 29.5	29.5	8.6 8.6	8.6	12.0 13.0	12.5	111.3 116.8	114.1	7.9 8.3	8.1	8.1	8.4 8.9	8.7		4.4 4.2	4.3	
20-Jun-16	Sunny	Moderate	06:57		Surface	1.0	28.9 28.8	28.9	8.4 8.4	8.4	16.9 16.9	16.9	126.7 123.7	125.2	8.9 8.7	8.8		4.2 4.2	4.2		7.4 6.5	7.0	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	8.8	-	-	4.3	-	-	6.8
					Bottom	2.6	28.9	28.9	8.4 8.4	8.4	16.9 16.9	16.9	124.6 124.0	124.3	8.8 8.7	8.7	8.7	4.3	4.3		6.6	6.6	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	08:13		Surface	1.0	28.3 28.3	28.3	8.3 8.3	8.3	17.6 17.6	17.6	89.9 88.3	89.1	6.4 6.2	6.3	6.3	5.4 5.5	5.5		4.7 4.0	4.4	
				3.5	Middle			-		-	-	-		-		-	0.5	-	-	5.6	-	-	4.3
					Bottom	2.5	28.3 28.3	28.3	8.3 8.3	8.3	17.5 17.6	17.6	87.8 88.8	88.3	6.2 6.3	6.2	6.2	5.6 5.5	5.6		3.9 4.3	4.1	
24-Jun-16	Sunny	Moderate	09:29		Surface	1.0	28.1 28.1	28.1	8.2 8.2	8.2	19.1 19.3	19.2	77.7 76.3	77.0	5.5 5.4	5.4	5.4	7.3 7.4	7.4		5.2 4.6	4.9	
				3.4	Middle			-		-	-	-	-			-	5.4	-	-	7.4	-	-	6.0
					Bottom	2.4	28.0 28.0	28.0	8.2 8.2	8.2	20.2 20.1	20.2	76.7 78.5	77.6	5.4 5.5	5.4	5.4	7.3 7.4	7.4		7.0 7.0	7.0	
27-Jun-16	Sunny	Moderate	12:03		Surface	1.0	28.7 28.8	28.7	8.4 8.4	8.4	20.7 20.5	20.6	106.8 107.5	107.2	7.4 7.4	7.4	7.4	13.3 13.5	13.4		11.9 11.8	11.9	
				3.6	Middle	-		-		-	-	-		-		-	7.4	-	-	13.3	-	-	11.8
					Bottom	2.6	28.5 28.6	28.5	8.4 8.4	8.4	22.2 22.2	22.2	106.4 106.8	106.6	7.3 7.3	7.3	7.3	13.2 13.2	13.2		11.6 11.8	11.7	
29-Jun-16	Sunny	Moderate	13:35		Surface	1.0	28.6 28.7	28.7	8.5 8.5	8.5	20.3 20.3	20.3	99.8 100.6	100.2	6.9 7.0	6.9	6.9	7.1 7.1	7.1	_	9.7 9.8	9.8	
				3.6	Middle	-	-	-		-	-	-		-		-	0.5	-	-	7.2	-	-	9.5
					Bottom	2.6	28.5 28.6	28.6	8.5 8.5	8.5	20.6 20.8	20.7	100.1 100.1	100.1	6.9 6.9	6.9	6.9	7.3 7.3	7.3		9.4 9.0	9.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	Turbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	09:59		Surface	1.0	28.7 28.7	28.7	8.4 8.4	8.4	11.1 11.2	11.1	94.4 97.2	95.8	6.9 7.1	7.0	0.0	7.8 7.6	7.7		2.4 3.7	3.1	
				10.2	Middle	5.1	27.9 27.9	27.9	8.2 8.2	8.2	16.6 16.5	16.6	91.5 89.1	90.3	6.5 6.4	6.5	6.8	10.4 9.6	10.0	9.2	3.3 3.5	3.4	3.5
					Bottom	9.2	27.7 28.1	27.9	8.1 8.2	8.2	19.6 20.9	20.2	92.8 98.2	95.5	6.5 6.8	6.7	6.7	9.9 9.8	9.9		3.7 4.2	4.0	
3-Jun-16	Sunny	Moderate	11:45		Surface	1.0	28.8	28.8	8.5	8.5	14.5	14.4	95.9	96.9	6.8	6.9		4.8	4.9		3.9	3.7	
				11.0	Middle	5.5	28.9 28.2	28.0	8.5 8.3	8.3	14.4 22.5	22.7	97.8 95.9	95.2	7.0 6.6	6.5	6.7	5.0 5.7	5.8	5.5	3.5	3.5	3.8
					Bottom	10.0	27.9 27.6	27.7	8.3 8.2	8.3	22.8 24.8	24.5	94.5 89.3	90.8	6.5 6.2	6.3	6.3	5.8 5.8	5.9		3.9 4.4	4.1	
6-Jun-16	Cloudy	Moderate	13:33				27.8 27.8		8.3 8.3		24.2 16.3		92.3 82.6		6.4 5.8		0.5	5.9 2.3			3.7 2.6		
	,				Surface	1.0	27.8 27.7	27.8	8.2 8.2	8.3	17.3 19.5	16.8	80.4 79.3	81.5	5.7 5.7	5.8	5.7	2.3	2.3		3.0 2.7	2.8	
				10.7	Middle	5.4	27.7 27.7	27.7	8.2	8.2	19.2	19.4	79.7 76.8	79.5	5.6 5.4	5.6		2.5	2.6	2.6	2.8	2.8	2.7
			45.00		Bottom	9.7	27.7	27.7	8.2	8.2	20.1	20.0	77.6	77.2	5.5	5.5	5.5	2.7	2.8		2.5	2.5	
8-Jun-16	Sunny	Moderate	15:00		Surface	1.0	28.8 28.6	28.7	8.3 8.3	8.3	13.8 13.9	13.9	83.0 80.6	81.8	6.0 5.7	5.9	5.8	2.0 1.9	2.0		2.0 3.0	2.5	
				10.6	Middle	5.3	27.8 27.8	27.8	8.1 8.1	8.1	19.2 21.1	20.1	76.5 78.9	77.7	5.5 5.8	5.6		3.5 3.5	3.5	2.7	2.4 2.3	2.4	2.8
					Bottom	9.6	28.1 28.0	28.0	8.1 8.1	8.1	21.0 21.1	21.0	72.8 75.1	74.0	5.3 5.4	5.3	5.3	2.7 2.4	2.6		3.2 3.6	3.4	
10-Jun-16	Rainy	Moderate	16:35		Surface	1.0	29.3 29.0	29.1	8.4 8.4	8.4	14.1 14.6	14.4	75.9 74.5	75.2	6.0 5.8	5.9		2.7 2.7	2.7		2.4 2.6	2.5	
				10.7	Middle	5.4	27.2 27.2	27.2	8.2 8.2	8.2	24.1 24.2	24.1	72.8 73.6	73.2	5.7 5.7	5.7	5.8	4.0 3.9	4.0	3.4	3.2 2.4	2.8	2.6
					Bottom	9.7	27.2 27.5	27.4	8.2 8.2	8.2	24.1 24.1	24.1	74.1 74.6	74.4	5.8 5.8	5.8	5.8	3.6 3.4	3.5		2.2	2.5	
13-Jun-16	Cloudy	Moderate	07:49		Surface	1.0	27.8	27.8	8.1	8.1	19.7	19.6	82.6	82.2	6.1	6.1		3.7	3.7		4.4	4.2	
				10.4	Middle	5.2	27.8 27.8	27.8	8.1 8.1	8.1	19.5 18.7	19.5	81.7 81.2	81.4	6.0	6.0	6.1	3.6	3.8	3.8	3.9 3.1	3.3	4.2
					Bottom	9.4	27.7 27.8	27.8	8.1 8.0	8.1	20.3 18.9	19.0	81.5 80.3	80.8	6.0	6.0	6.0	3.8	4.0		3.5 4.6	5.0	
15-Jun-16	Sunny	Moderate	10:52				27.8 28.9		8.1 8.3		19.1 7.8		81.3 82.0		6.0		0.0	4.0 5.8			5.3 4.5		
	,				Surface	1.0	28.8 27.1	28.9	8.3 7.9	8.3	7.8 24.1	7.8	81.4 83.9	81.7	6.0 5.9	6.0	6.0	5.6 6.5	5.7		4.5 4.3	4.5	
				11.0	Middle	5.5	27.0 25.3	27.1	7.9 7.8	7.9	24.0	24.1	84.3 79.0	84.1	5.9 5.5	5.9		6.2 7.3	6.4	6.5	4.1	4.2	4.7
47.1.40			1101		Bottom	10.0	25.3	25.3	7.8	7.8	28.4	28.4	78.8	78.9	5.4	5.5	5.5	7.4	7.4		6.0	5.4	
17-Jun-16	Sunny	Moderate	11:21		Surface	1.0	29.1 29.1	29.1	8.2 8.2	8.2	7.4 7.7	7.6	78.6 81.3	80.0	5.8 6.0	5.9	5.7	6.6 6.4	6.5		5.5 6.4	6.0	
				10.3	Middle	5.2	26.9 26.9	26.9	7.7 7.8	7.8	21.9 20.9	21.4	80.6 77.3	79.0	5.6 5.5	5.5	***	6.6 6.7	6.7	6.6	6.4 5.3	5.9	6.0
					Bottom	9.3	26.7 26.8	26.7	7.6 7.7	7.7	25.8 23.6	24.7	76.6 75.0	75.8	5.4 5.3	5.3	5.3	6.7 6.3	6.5		6.5 5.9	6.2	
20-Jun-16	Sunny	Moderate	12:48		Surface	1.0	28.3 28.5	28.4	8.1 8.1	8.1	20.0 18.8	19.4	76.9 74.5	75.7	5.7 5.5	5.6		4.4 4.3	4.4		5.0 6.0	5.5	
				10.6	Middle	5.3	28.2 27.8	28.0	8.0 7.9	7.9	19.2 22.6	20.9	74.0 75.5	74.8	5.3 5.4	5.3	5.5	4.5 4.6	4.6	4.6	6.1 5.9	6.0	5.8
					Bottom	9.6	28.0	27.9	7.9	7.8	24.0	23.8	71.3	71.4	5.1	5.1	5.1	4.8	4.8		5.9	5.8	1
		l					27.9		7.8		23.5		71.5		5.2	<u> </u>		4.8			5.6		

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	15:04		Surface	1.0	29.0 29.0	29.0	8.3 8.2	8.3	9.6 9.5	9.6	74.9 74.7	74.8	5.8 5.7	5.7	5.7	8.5 8.3	8.4		2.5 2.4	2.5	
				10.6	Middle	5.3	27.1 27.2	27.2	8.0 8.0	8.0	19.0 18.9	18.9	74.1 74.3	74.2	5.7 5.7	5.7	5.7	10.7 11.5	11.1	10.1	3.6 3.1	3.4	3.2
					Bottom	9.6	27.1 27.2	27.1	7.9 7.9	7.9	20.8 20.4	20.6	74.2 74.1	74.2	5.7 5.6	5.7	5.7	10.6 11.2	10.9		3.4 3.9	3.7	
24-Jun-16	Sunny	Moderate	15:14		Surface	1.0	28.5 28.7	28.6	8.1 8.1	8.1	17.2 18.2	17.7	79.7 79.5	79.6	5.6 5.7	5.7	5.7	3.3 3.4	3.4		5.8 6.3	6.1	
				10.7	Middle	5.4	29.3 29.3	29.3	8.1 8.1	8.1	18.7 18.8	18.8	78.9 78.9	78.9	5.7 5.6	5.6	0.7	3.6 3.5	3.6	3.6	7.1 7.3	7.2	7.0
					Bottom	9.7	28.4 28.5	28.4	8.1 8.1	8.1	19.6 19.7	19.7	77.4 78.1	77.8	5.6 5.5	5.5	5.5	3.7 3.7	3.7		7.8 7.3	7.6	
27-Jun-16	Sunny	Moderate	17:43		Surface	1.0	30.5 29.6	30.1	8.5 8.4	8.4	15.0 15.5	15.2	100.6 98.0	99.3	6.9 6.9	6.9	6.2	4.0 4.0	4.0		4.9 4.8	4.9	
				10.3	Middle	5.2	27.4 27.3	27.3	8.2 8.2	8.2	22.5 22.7	22.6	78.8 77.6	78.2	5.5 5.4	5.5	0.2	4.8 5.1	5.0	4.6	4.5 4.4	4.5	4.7
					Bottom	9.3	27.3 27.3	27.3	8.3 8.2	8.2	22.7 22.7	22.7	81.4 80.7	81.1	5.7 5.6	5.7	5.7	4.7 5.1	4.9		4.4 4.7	4.6	
29-Jun-16	Sunny	Moderate	08:10		Surface	1.0	28.3 28.3	28.3	8.3 8.3	8.3	17.0 16.9	17.0	81.6 82.1	81.9	5.8 5.8	5.8	5.7	2.8 2.9	2.9		4.3 4.7	4.5	
				11.0	Middle	5.5	27.7 27.6	27.7	8.2 8.3	8.3	19.1 18.9	19.0	77.9 81.4	79.7	5.5 5.7	5.6	5.7	3.0 3.0	3.0	3.0	5.0 4.2	4.6	4.4
					Bottom	10.0	27.5 27.5	27.5	8.2 8.2	8.2	20.6 20.8	20.7	77.3 75.9	76.6	5.5 5.4	5.4	5.4	3.0 3.0	3.0		4.7 3.6	4.2	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	15:50		Surface	1.0	29.0 28.7	28.9	8.5 8.5	8.5	12.2 12.3	12.3	100.8 96.6	98.7	7.3 7.0	7.1	0.0	7.4 7.7	7.6		3.2 3.9	3.6	
				10.5	Middle	5.3	27.8 27.8	27.8	8.3 8.3	8.3	19.1 19.0	19.0	89.9 93.5	91.7	6.4 6.6	6.5	6.8	8.7 8.2	8.5	8.1	3.7 3.3	3.5	3.6
					Bottom	9.5	28.0 27.6	27.8	8.3 8.2	8.2	23.3 23.6	23.4	98.4 94.1	96.3	6.8 6.5	6.6	6.6	7.9 8.3	8.1		3.8 3.6	3.7	
3-Jun-16	Sunny	Moderate	17:56		Surface	1.0	29.4	29.4	8.5	8.5	13.0	13.2	107.9	105.8	7.7	7.5		4.7	4.8		4.4	4.2	
				10.7	Middle	5.4	29.3	28.5	8.5 8.4	8.4	13.4 17.5	17.3	103.6	101.8	7.4	7.1	7.3	4.8	4.8	4.8	3.9	3.3	3.7
					Bottom	9.7	28.4 28.5	28.1	8.4 8.4	8.3	17.1 22.0	22.1	99.7 93.4	93.0	7.0 6.5	6.5	6.5	4.8 4.7	4.8		3.1	3.5	
6-Jun-16	Cloudy	Moderate	07:08		Surface	1.0	27.8 27.7	27.8	8.3 8.3	8.3	22.3	20.5	92.5 77.5	77.0	6.5 5.4	5.4		4.9 5.4	5.4		3.9	2.9	
				10.8	Middle		27.8 27.6	27.6	8.3 8.2	8.2	21.0 24.5	23.8	76.5 76.7	77.0	5.4 5.3	5.3	5.4	5.4 5.6		5.6	2.5 3.7		3.3
				10.6		5.4	27.6 27.6		8.2 8.2		23.1		77.3 76.5		5.3 5.3			5.6 5.8	5.6	5.6	4.0 3.2	3.9	3.3
8-Jun-16	Sunny	Moderate	07:21		Bottom	9.8	27.5 27.8	27.6	8.2 8.3	8.2	24.4 16.5	24.6	75.7 73.9	76.1	5.2 5.4	5.2	5.2	5.9 3.0	5.9		2.9 3.6	3.1	<u> </u>
0 0 dii 10	Cumy	moderate	07.21		Surface	1.0	27.6 27.1	27.7	8.3 8.1	8.3	17.4 24.2	16.9	72.3 71.5	73.1	5.3 5.1	5.3	5.2	3.2 5.5	3.1		3.8	3.7	
				10.6	Middle	5.3	27.2 27.1	27.2	8.1 8.1	8.1	22.9	23.5	71.7 73.5	71.6	5.1 5.2	5.1		5.4 5.6	5.5	4.6	2.6	3.0	3.3
10.110	0	Mar I and a	00.55		Bottom	9.6	27.3	27.2	8.1	8.1	24.2	24.2	73.2	73.4	5.2	5.2	5.2	5.0	5.3		3.6	3.2	
10-Jun-16	Sunny	Moderate	09:55		Surface	1.0	28.1 28.4	28.2	8.3 8.3	8.3	14.6 14.6	14.6	74.4 74.6	74.5	5.6 5.7	5.6	5.5	3.4 3.0	3.2		4.8 5.0	4.9	
				10.5	Middle	5.3	27.0 27.0	27.0	8.1 8.1	8.1	24.8 24.8	24.8	72.1 70.7	71.4	5.4 5.3	5.4		4.3 4.1	4.2	3.8	4.3 4.7	4.5	4.7
					Bottom	9.5	27.3 27.0	27.1	8.1 8.1	8.1	24.8 25.0	24.9	72.2 71.1	71.7	5.5 5.4	5.4	5.4	4.2 4.0	4.1		4.8 4.6	4.7	
13-Jun-16	Cloudy	Moderate	13:51		Surface	1.0	28.1 28.2	28.1	8.2 8.1	8.1	18.1 18.2	18.1	80.3 80.2	80.3	5.9 5.9	5.9	5.8	3.8 3.9	3.9		3.3 2.7	3.0	
				10.4	Middle	5.2	28.1 27.7	27.9	8.1 8.1	8.1	18.3 18.7	18.5	76.1 77.5	76.8	5.6 5.7	5.7	5.0	4.2 4.1	4.2	4.2	2.5 2.3	2.4	2.7
					Bottom	9.4	27.7 27.4	27.5	8.0 7.9	8.0	21.0 22.7	21.8	69.6 71.7	70.7	5.2 5.1	5.2	5.2	4.4 4.3	4.4		2.5 2.9	2.7	
15-Jun-16	Sunny	Moderate	16:29		Surface	1.0	28.9 28.9	28.9	8.3 8.3	8.3	6.1 6.0	6.1	82.0 82.6	82.3	6.1 6.2	6.1		6.5 6.9	6.7		6.9 6.0	6.5	
				11.0	Middle	5.5	27.6 27.6	27.6	8.0 8.0	8.0	14.3 14.3	14.3	76.5 75.1	75.8	5.5 5.5	5.5	5.8	5.7 5.9	5.8	6.3	6.8 7.2	7.0	6.9
					Bottom	10.0	25.6	25.5	7.7	7.7	26.2	26.3	70.8	71.1	5.0	5.0	5.0	6.2	6.3		6.9	7.2	
17-Jun-16	Sunny	Moderate	17:49		Surface	1.0	25.5 29.2	29.1	7.7 8.2	8.2	7.6	7.6	71.4 76.8	77.3	5.0	5.5		7.7	7.7		7.4	7.3	
				10.6	Middle	5.3	29.0 26.6	26.6	7.8	7.8	7.7 22.5	22.8	77.8 75.3	73.8	5.4 5.6	5.4	5.5	7.6 6.4	6.5	7.2	7.2 6.5	6.5	6.9
					Bottom	9.6	26.6 26.8	26.3	7.7 7.8	7.8	23.0 26.7	27.4	72.3 69.8	70.0	5.3 5.0	5.1	5.1	6.5 7.2	7.4		6.4 7.2	6.9	0.0
20-Jun-16	Sunny	Moderate	06:19	<u> </u>			25.7 27.9		7.7 8.2		28.2 19.2		70.2 74.3		5.1 5.3		3.1	7.5 3.6			6.6 4.2		
	,			40.0	Surface	1.0	27.9 27.4	27.9	8.1 8.0	8.2	20.3	19.8	75.8 73.2	75.1	5.4	5.4	5.3	3.6	3.6		4.0	4.1	
				10.6	Middle	5.3	27.4 27.5	27.4	8.1 8.1	8.1	24.8 25.9	24.7	72.9 71.0	73.1	5.2 5.2	5.2		3.8	3.8	3.8	4.6	4.7	4.5
					Bottom	9.6	27.5 27.4	27.4	8.0	8.1	25.9 25.7	25.8	71.9	71.5	5.2 5.2	5.2	5.2	3.9	3.9		4.6	4.8	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ng	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	07:21		Surface	1.0	28.0 27.7	27.9	8.3 8.3	8.3	15.2 16.3	15.8	72.8 72.7	72.8	5.7 5.7	5.7	5.7	9.4 9.2	9.3		6.7 6.3	6.5	
				10.6	Middle	5.3	26.3 26.2	26.3	8.1 8.1	8.1	24.1 24.4	24.3	73.1 73.2	73.2	5.7 5.7	5.7	5.7	11.0 10.8	10.9	10.7	4.7 6.1	5.4	6.0
					Bottom	9.6	26.4 26.2	26.3	8.1 8.1	8.1	24.4 24.5	24.5	73.3 74.0	73.7	5.7 5.8	5.8	5.8	12.2 11.3	11.8		6.3 5.6	6.0	
24-Jun-16	Sunny	Moderate	08:42		Surface	1.0	27.9 28.0	28.0	8.2 8.2	8.2	17.5 17.1	17.3	75.9 77.6	76.8	5.4 5.5	5.5	5.4	4.9 4.8	4.9		6.0 5.7	5.9	
				10.7	Middle	5.4	27.5 27.3	27.4	8.1 8.1	8.1	19.6 20.0	19.8	72.8 73.2	73.0	5.1 5.2	5.2	0.4	5.0 5.1	5.1	5.1	6.0 6.6	6.3	6.2
					Bottom	9.7	26.7 27.3	27.0	8.1 8.1	8.1	21.6 20.3	20.9	71.3 71.5	71.4	5.1 5.1	5.1	5.1	5.3 5.2	5.3		6.2 6.6	6.4	
27-Jun-16	Sunny	Moderate	11:24		Surface	1.0	28.5 28.5	28.5	8.3 8.3	8.3	19.0 19.2	19.1	92.7 96.9	94.8	6.5 6.8	6.6	6.0	4.0 3.8	3.9		4.6 5.1	4.9	
				10.7	Middle	5.4	26.7 26.7	26.7	8.2 8.2	8.2	24.4 24.4	24.4	77.2 77.6	77.4	5.4 5.4	5.4	0.0	7.8 8.4	8.1	6.7	5.4 4.2	4.8	4.8
					Bottom	9.7	26.5 26.6	26.5	8.2 8.2	8.2	25.6 25.6	25.6	81.2 80.9	81.1	5.7 5.6	5.6	5.6	7.8 8.6	8.2		4.1 5.3	4.7	
29-Jun-16	Sunny	Moderate	14:06		Surface	1.0	27.5 28.3	27.9	8.2 8.3	8.3	19.2 18.8	19.0	72.7 83.4	78.1	5.2 5.9	5.5	5.4	3.1 3.0	3.1		3.7 4.1	3.9	
				11.1	Middle	5.6	27.1 27.0	27.0	8.2 8.2	8.2	22.0 22.0	22.0	72.3 74.8	73.6	5.1 5.2	5.2	5.4	3.1 3.2	3.2	3.2	5.0 5.0	5.0	4.2
					Bottom	10.1	26.9 27.2	27.1	8.2 8.2	8.2	23.2 23.1	23.2	71.7 72.3	72.0	5.1 5.1	5.1	5.1	3.2 3.3	3.3		3.4 3.7	3.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	09:48		Surface	1.0	28.7 28.5	28.6	8.4 8.4	8.4	10.5 10.6	10.5	95.0 92.1	93.6	6.9 6.7	6.8	0.0	7.4 7.3	7.4		3.5 3.0	3.3	
				10.6	Middle	5.3	27.9 27.8	27.9	8.2 8.1	8.2	16.8 17.5	17.1	88.8 87.8	88.3	6.3 6.3	6.3	6.6	7.6 7.8	7.7	7.6	3.6 4.0	3.8	3.5
					Bottom	9.6	27.8 27.6	27.7	8.1 8.0	8.1	20.6 21.5	21.0	92.0 90.1	91.1	6.4 6.3	6.4	6.4	7.7 7.8	7.8		4.2	3.4	
3-Jun-16	Sunny	Moderate	11:37		Surface	1.0	28.8	28.8	8.5	8.5	14.7	14.7	95.6	95.7	6.8	6.8		5.2	5.3		3.5	3.3	
				10.8	Middle	5.4	28.8 27.9	28.0	8.5 8.3	8.3	14.8 22.2	22.7	95.7 87.6	88.0	6.8 6.1	6.1	6.5	5.3 7.4	7.4	6.7	3.0 5.0	5.4	4.8
				10.0	Bottom	9.8	28.0 27.5	27.6	8.3 8.2	8.2	23.2 25.2	24.8	88.4 87.8	87.7	6.1 6.1	6.0	6.0	7.3 7.3	7.4	0	5.8 4.8	5.6	
6-Jun-16	Cloudy	Moderate	13:42				27.6 27.8		8.3 8.3		24.4 18.0		87.5 86.2	****	6.0		0.0	7.5 2.2			6.3 2.7		
o dan 10	Cicacy	modorato	10.12		Surface	1.0	27.8	27.8	8.3 8.2	8.3	16.8	17.4	85.9 83.5	86.1	6.2 5.9	6.2	6.1	2.2	2.2		2.4	2.6	
				10.7	Middle	5.4	27.8	27.7	8.2	8.2	18.8	18.7	83.0	83.3	5.9	5.9		2.3	2.3	2.3	3.3	3.0	2.7
					Bottom	9.7	27.7 27.7	27.7	8.2 8.3	8.2	19.9 19.5	19.7	81.5 81.8	81.7	5.8 5.8	5.8	5.8	2.4 2.4	2.4		2.6 2.4	2.5	
8-Jun-16	Sunny	Moderate	15:10		Surface	1.0	28.3 28.3	28.3	8.3 8.3	8.3	14.9 14.9	14.9	79.0 78.6	78.8	5.8 5.7	5.8	5.7	1.7 1.7	1.7		2.2 2.3	2.3	
				10.4	Middle	5.2	27.7 27.7	27.7	8.2 8.2	8.2	19.0 19.2	19.1	75.7 77.3	76.5	5.5 5.6	5.5	0.7	2.4 2.3	2.4	2.3	2.3 2.7	2.5	2.6
					Bottom	9.4	27.5 27.8	27.7	8.2 8.2	8.2	21.2 21.0	21.1	77.0 79.8	78.4	5.5 5.7	5.6	5.6	2.7 2.6	2.7		3.2 2.5	2.9	
10-Jun-16	Rainy	Moderate	16:45		Surface	1.0	28.5 28.6	28.6	8.4 8.4	8.4	17.0 16.9	17.0	75.4 76.8	76.1	5.9 6.0	5.9		2.0	2.1		2.6 2.8	2.7	
				10.6	Middle	5.3	26.8	26.9	8.2	8.2	25.4	25.2	72.4	71.3	5.6	5.5	5.7	2.5	2.6	2.5	3.2	3.1	2.9
					Bottom	9.6	26.9 26.8	26.8	8.2 8.2	8.2	24.9 25.6	25.5	70.1 74.1	72.2	5.4	5.6	5.6	2.7	2.7		3.0	3.0	
13-Jun-16	Cloudy	Moderate	07:34		Surface	1.0	26.8 27.8	27.8	8.2 8.1	8.1	25.4 18.7	18.8	70.2 81.9	81.4	5.4 6.1	6.0		2.6 3.1	3.2		2.8 4.2	4.1	
				10.2	Middle	5.1	27.8 27.8	27.7	8.1 8.1	8.1	18.9 18.8	18.8	80.9 80.7	80.5	6.0	6.0	6.0	3.2	3.3	3.3	3.9 4.1	4.5	4.5
				10.2	Bottom	9.2	27.7 27.6	27.6	8.1 8.1	8.1	18.8 20.0	20.1	80.2 80.1	80.4	6.0 5.9	5.9	5.9	3.3	3.5	5.5	4.8 5.1	5.0	4.5
15-Jun-16	Sunny	Moderate	10:43				27.6 25.7		8.0 7.7		20.1 7.6	_	80.7 85.8		6.0 5.9		5.9	3.5 7.2			4.8 2.7		
10 0011 10	Cullity	Woderate	10.40		Surface	1.0	29.1	27.4	8.2 8.2	8.0	7.6	7.6	89.9 88.6	87.9	6.6	6.3	6.4	7.4	7.3		3.4	3.1	
				11.5	Middle	5.8	26.8	27.9	7.9	8.1	22.3	22.3	90.3	89.5	6.4	6.5		5.9	5.6	6.5	4.5	4.2	4.1
					Bottom	10.5	26.8 25.7	26.3	7.8 7.7	7.8	28.5 28.4	28.4	89.7 82.8	86.3	6.3 5.8	6.1	6.1	5.9 7.2	6.6		4.3 5.6	5.0	
17-Jun-16	Sunny	Moderate	11:13		Surface	1.0	28.5 28.5	28.5	8.1 8.1	8.1	9.0 8.8	8.9	77.3 76.6	77.0	5.7 5.7	5.7	6.5	4.9 5.0	5.0		4.1 3.7	3.9	
				10.5	Middle	5.3	26.6 26.4	26.5	7.7 7.7	7.7	23.0 24.3	23.7	74.8 74.5	74.7	7.4 7.3	7.3	0.5	4.4 4.9	4.7	4.8	4.1 4.6	4.4	4.3
					Bottom	9.5	26.5 26.6	26.6	7.7 7.8	7.8	24.5 24.4	24.5	73.1 75.2	74.2	5.1 5.3	5.2	5.2	4.8 4.7	4.8		4.4	4.6	
20-Jun-16	Sunny	Moderate	12:58		Surface	1.0	28.1 28.1	28.1	8.1 8.1	8.1	18.3 18.2	18.3	75.3 75.8	75.6	5.6 5.6	5.6		3.2 3.2	3.2		3.3 5.4	4.4	
				10.7	Middle	5.4	27.9	28.0	8.0	8.0	19.4	19.6	74.7	74.8	5.5	5.5	5.6	3.5	3.5	3.4	5.1	5.1	4.7
					Bottom	9.7	28.0 27.9	27.8	8.0 8.0	7.9	19.7 22.0	23.1	74.9 73.4	73.9	5.5 5.4	5.3	5.3	3.4	3.6		5.0 4.3	4.7	
					Dottoni	0.7	27.8	27.0	7.9	7.5	24.2	20.1	74.3	7 0.0	5.3	0.0	0.0	3.6	0.0		5.0	7.1	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth (ı	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	15:12		Surface	1.0	28.7 28.5	28.6	8.3 8.3	8.3	10.4 10.4	10.4	75.3 76.0	75.7	5.8 5.8	5.8	5.8	5.5 5.6	5.6		1.1 1.1	1.1	
				10.6	Middle	5.3	27.0 27.1	27.0	8.0 8.0	8.0	20.7 20.2	20.5	74.9 74.0	74.5	5.6 5.7	5.7	3.6	6.8 7.2	7.0	6.8	2.7 2.7	2.7	2.1
					Bottom	9.6	26.9 27.1	27.0	8.0 8.0	8.0	21.5 20.6	21.1	75.9 74.7	75.3	5.7 5.7	5.7	5.7	7.7 7.8	7.8		2.4 2.6	2.5	
24-Jun-16	Sunny	Moderate	15:24		Surface	1.0	29.6 29.4	29.5	8.2 8.2	8.2	19.2 17.3	18.2	81.2 81.4	81.3	5.7 5.8	5.8	5.8	3.4 3.3	3.4		6.0 5.8	5.9	
				10.6	Middle	5.3	28.1 28.3	28.2	8.1 8.2	8.1	16.2 15.2	15.7	80.2 78.1	79.2	5.7 5.6	5.7	0.0	3.5 3.6	3.6	3.5	5.3 5.2	5.3	6.3
					Bottom	9.6	28.1 28.1	28.1	8.1 8.1	8.1	17.0 17.1	17.0	77.0 78.1	77.6	5.4 5.6	5.5	5.5	3.6 3.6	3.6		7.8 7.5	7.7	
27-Jun-16	Sunny	Moderate	17:51		Surface	1.0	30.2 29.9	30.0	8.5 8.5	8.5	15.8 15.8	15.8	96.6 95.9	96.3	6.7 6.7	6.7	6.3	3.8 3.9	3.9		4.4 4.2	4.3	
				10.4	Middle	5.2	27.3 27.0	27.2	8.3 8.3	8.3	22.8 23.4	23.1	82.0 88.2	85.1	5.7 6.1	5.9	0.3	4.4 4.3	4.4	4.5	4.8 4.1	4.5	4.4
					Bottom	9.4	26.9 26.8	26.8	8.3 8.3	8.3	24.4 24.5	24.5	76.1 79.7	77.9	5.3 5.6	5.4	5.4	4.8 5.3	5.1		4.2 4.7	4.5	
29-Jun-16	Sunny	Moderate	07:58		Surface	1.0	28.3 28.2	28.3	8.3 8.3	8.3	16.4 16.5	16.5	81.8 81.6	81.7	5.7 5.7	5.7	5.7	3.0 2.8	2.9		3.5 3.7	3.6	
				11.1	Middle	5.6	27.8 27.3	27.6	8.2 8.2	8.2	20.1 20.2	20.2	79.7 80.7	80.2	5.7 5.7	5.7	5.7	3.0 3.0	3.0	3.0	3.9 4.4	4.2	4.2
					Bottom	10.1	27.4 27.7	27.6	8.2 8.2	8.2	22.1 21.7	21.9	76.1 76.6	76.4	5.4 5.4	5.4	5.4	3.2 3.1	3.2		4.1 5.2	4.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	16:01		Surface	1.0	29.3 29.3	29.3	8.5 8.5	8.5	11.0 11.0	11.0	116.1 116.9	116.5	8.4 8.4	8.4		6.9 6.9	6.9		4.0 2.2	3.1	
				10.7	Middle	5.4	29.1 28.9	29.0	8.5 8.5	8.5	12.6 11.7	12.2	109.9 113.5	111.7	7.9 8.2	8.0	8.2	7.2 7.3	7.3	7.1	2.4	2.8	3.1
					Bottom	9.7	28.7	28.9	8.4 8.5	8.4	17.8 17.4	17.6	102.8 116.7	109.8	7.2 8.1	7.7	7.7	7.3 7.0	7.2		4.0	3.5	
3-Jun-16	Sunny	Moderate	18:08		Surface	1.0	29.5	29.5	8.5	8.5	13.7	13.8	119.7	122.0	8.4	8.6		4.1	4.0		4.4	4.6	
				10.8	Middle	5.4	29.5 28.8	28.9	8.5 8.5	8.5	14.0 17.9	17.6	124.2 118.9	119.0	8.8 8.3	8.3	8.5	3.9	3.6	3.8	4.8 4.6	5.5	5.3
					Bottom	9.8	29.0 28.7	28.9	8.5 8.5	8.5	17.4 18.3	18.2	119.1 109.1	111.8	8.3 7.6	7.8	7.8	3.6 3.6	3.7		6.4 5.2	5.7	
6-Jun-16	Cloudy	Moderate	06:54				29.0 27.9		8.5 8.2		18.1 18.9		114.4 79.8		8.0 5.6		7.0	3.7			6.2 2.6		
o dan 10	Cicacy	moderate	00.01		Surface	1.0	27.9 27.8	27.9	8.2	8.2	19.4	19.1	79.5 79.4	79.7	5.6 5.6	5.6	5.6	3.3	3.2		3.4	3.0	
				10.9	Middle	5.5	27.8	27.8	8.2	8.2	20.1	20.0	78.9	79.2	5.6	5.6		3.4	3.5	3.5	3.0	3.0	3.0
					Bottom	9.9	27.8 27.8	27.8	8.2 8.2	8.2	20.2 21.4	20.8	78.4 79.2	78.8	5.5 5.5	5.5	5.5	3.7 3.6	3.7		3.1 2.9	3.0	
8-Jun-16	Sunny	Moderate	07:13		Surface	1.0	27.9 27.9	27.9	8.3 8.2	8.3	16.8 17.1	17.0	74.4 76.4	75.4	5.4 5.6	5.5	5.3	11.7 11.4	11.6		3.9 3.3	3.6	
				10.5	Middle	5.3	26.9 26.9	26.9	8.1 8.1	8.1	26.2 26.4	26.3	71.6 72.7	72.2	5.1 5.1	5.1	0.0	10.1 10.4	10.3	11.6	3.7 3.5	3.6	3.9
					Bottom	9.5	27.3 27.4	27.4	8.1 8.1	8.1	26.0 26.1	26.0	76.0 75.8	75.9	5.3 5.3	5.3	5.3	12.5 13.2	12.9		4.2 4.8	4.5	
10-Jun-16	Sunny	Moderate	09:46		Surface	1.0	28.0 28.0	28.0	8.3 8.2	8.2	16.0 16.2	16.1	72.8 73.0	72.9	5.5 5.5	5.5		3.8 3.4	3.6		4.3 3.9	4.1	
				10.4	Middle	5.2	27.4	27.2	8.2	8.1	24.2	24.4	69.6	69.3	5.2	5.2	5.4	3.3	3.5	4.0	3.3	3.5	3.9
					Bottom	9.4	26.9 27.4	27.3	8.1	8.1	24.6	24.8	70.9	70.3	5.2	5.3	5.3	3.6 5.0	4.8		3.6 4.5	4.2	
13-Jun-16	Cloudy	Moderate	14:01		Surface	1.0	27.1 27.9	27.9	8.0	8.2	24.9 18.9	18.9	69.7 85.2	85.6	5.2 6.3	6.3		4.5 2.6	2.6		3.9 2.5	2.5	
				10.3	Middle	5.2	28.0 27.8	27.8	8.2 8.1	8.1	18.9 19.9	19.6	85.9 83.6	83.6	6.3 6.2	6.2	6.3	2.6	2.8	2.8	2.5 2.9	3.1	2.9
				10.5			27.8 27.6		8.1 8.0		19.2 21.8		83.5 81.6		6.2		<i></i>	2.8		2.0	3.3		2.5
15-Jun-16	Sunny	Moderate	16:40		Bottom	9.3	27.9 28.9	27.8	8.2 8.2	8.1	19.1 6.1	20.5	80.2 91.3	80.9	5.9 6.8	5.9	5.9	2.8 7.7	2.9		2.9 7.6	3.1	
10 0011 10	Cullity	Woderate	10.40		Surface	1.0	28.9 27.6	28.9	8.3 8.2	8.2	6.1	6.1	90.2	90.8	6.7 6.1	6.8	6.5	7.6 7.1	7.7		6.7	7.2	
				11.6	Middle	5.8	27.6	27.6	8.1	8.1	14.4	14.4	82.7	83.1	6.1	6.1		7.3	7.2	7.9	6.2	6.7	7.4
					Bottom	10.6	25.6 25.5	25.6	7.8 7.8	7.8	26.4 26.5	26.4	81.4 82.5	82.0	5.8 5.8	5.8	5.8	8.5 8.8	8.7		8.3 8.1	8.2	
17-Jun-16	Sunny	Moderate	17:56		Surface	1.0	29.2 28.9	29.0	8.2 8.1	8.2	8.1 8.6	8.3	82.6 82.8	82.7	6.1 5.9	6.0	5.9	7.3 7.1	7.2		5.4 6.7	6.1	
				10.5	Middle	5.3	27.6 27.3	27.5	7.9 7.9	7.9	16.7 16.8	16.7	76.1 81.2	78.7	5.4 6.0	5.7	5.5	7.8 7.7	7.8	7.9	6.8 6.1	6.5	6.7
					Bottom	9.5	27.1 27.1	27.1	7.8 7.9	7.8	21.3 20.9	21.1	70.1 72.7	71.4	5.1 5.2	5.1	5.1	8.8 8.7	8.8		7.6 7.5	7.6	İ
20-Jun-16	Sunny	Moderate	06:05		Surface	1.0	27.9 27.8	27.8	8.2 8.1	8.2	21.2 17.5	19.3	72.6 71.8	72.2	5.3 5.2	5.2		5.2 5.2	5.2		4.8 4.5	4.7	
				10.7	Middle	5.4	27.4	27.6	8.1	8.1	18.1	19.9	71.2	71.4	5.2	5.2	5.2	5.3	5.3	5.3	5.3	4.8	4.7
					Bottom	9.7	27.7 26.4	26.4	7.9	8.0	21.7 24.1	24.0	71.5 70.9	70.8	5.2 5.1	5.1	5.1	5.3 5.4	5.5		4.2 4.1	4.5	İ
					Dottom	0.7	26.5	20.4	8.0	0.0	23.9	24.0	70.6	70.0	5.1	0.1	0.1	5.5	0.0		4.8	7.0	1

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	T	urbidity(NTI	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	07:13		Surface	1.0	27.4 27.4	27.4	8.1 8.1	8.1	18.7 18.6	18.7	72.3 72.1	72.2	5.5 5.5	5.5	5.5	5.5 5.7	5.6		5.3 6.1	5.7	
				10.5	Middle	5.3	25.8 25.8	25.8	8.0 8.0	8.0	26.2 26.8	26.5	70.6 71.6	71.1	5.4 5.5	5.4	5.5	6.6 6.5	6.6	6.2	5.7 5.4	5.6	5.6
					Bottom	9.5	26.1 26.1	26.1	8.0 8.0	8.0	26.9 26.5	26.7	72.0 71.1	71.6	5.5 5.4	5.5	5.5	6.7 6.3	6.5		5.2 5.5	5.4	
24-Jun-16	Sunny	Moderate	08:29		Surface	1.0	28.0 28.1	28.1	8.2 8.2	8.2	16.9 16.9	16.9	76.9 77.4	77.2	5.5 5.4	5.4	5.4	5.6 5.5	5.6		6.8 7.1	7.0	
				10.7	Middle	5.4	27.8 27.4	27.6	8.2 8.1	8.2	17.2 18.3	17.8	74.9 74.4	74.7	5.3 5.3	5.3	0.4	5.8 5.7	5.8	5.8	7.2 7.2	7.2	6.9
					Bottom	9.7	27.4 27.4	27.4	8.1 8.1	8.1	21.3 21.8	21.5	75.5 74.1	74.8	5.3 5.3	5.3	5.3	5.9 5.9	5.9		7.0 6.2	6.6	
27-Jun-16	Sunny	Moderate	11:16		Surface	1.0	28.8 29.1	28.9	8.3 8.3	8.3	19.0 18.5	18.7	102.9 102.5	102.7	7.2 7.1	7.1	6.7	4.6 4.5	4.6		4.9 5.0	5.0	
				10.5	Middle	5.3	27.1 27.3	27.2	8.2 8.2	8.2	23.1 24.1	23.6	86.6 94.4	90.5	6.0 6.6	6.3	0.7	5.9 5.7	5.8	5.7	5.8 5.6	5.7	5.4
					Bottom	9.5	27.2 27.0	27.1	8.2 8.2	8.2	24.7 24.4	24.6	80.8 83.7	82.3	5.6 5.9	5.7	5.7	7.0 6.6	6.8		5.0 5.7	5.4	
29-Jun-16	Sunny	Moderate	14:21		Surface	1.0	27.9 28.2	28.0	8.4 8.4	8.4	20.9 20.6	20.8	87.0 92.8	89.9	6.0 6.5	6.2	6.0	4.9 4.8	4.9		6.1 6.8	6.5	
				11.0	Middle	5.5	27.3 27.3	27.3	8.3 8.3	8.3	22.5 22.4	22.4	77.0 85.1	81.1	5.4 5.9	5.7	0.0	5.0 4.9	5.0	5.0	6.9 6.8	6.9	6.4
					Bottom	10.0	27.1 26.7	26.9	8.3 8.3	8.3	24.1 24.6	24.3	81.7 73.2	77.5	5.7 5.1	5.4	5.4	5.1 5.0	5.1		6.4 5.3	5.9	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	10:39		Surface	1.0	29.1 29.1	29.1	8.5 8.5	8.5	15.7 15.9	15.8	119.7 119.1	119.4	8.4 8.4	8.4		2.8 2.7	2.8		6.8 6.6	6.7	
				7.1	Middle	3.6	28.8 28.2	28.5	8.5 8.4	8.4	17.4 17.7	17.5	113.3 111.5	112.4	7.9 8.0	8.0	8.2	3.0 2.9	3.0	3.0	5.3 5.6	5.5	6.0
					Bottom	6.1	28.0	28.2	8.3 8.4	8.3	24.1	23.9	113.2 117.9	115.6	7.9 7.9	7.9	7.9	3.0	3.1		6.4 5.1	5.8	
3-Jun-16	Sunny	Moderate	11:19		Surface	1.0	28.7	28.7	8.5	8.4	15.8	16.0	98.5	99.0	7.0	7.0		3.0	3.0		7.0	7.9	
				6.5	Middle	3.3	28.7 28.5	28.5	8.4 8.4	8.4	16.1 17.3	17.1	99.4 98.3	98.0	7.0 6.9	6.9	7.0	3.0	3.0	2.9	8.7 8.0	8.2	8.4
				0.0	Bottom	5.5	28.5 28.5	28.5	8.4 8.4	8.4	16.9 18.3	18.3	97.7 97.8	97.7	6.9 6.9	6.9	6.9	2.9 2.7	2.6	2.0	8.3 8.6	9.1	0.4
6-Jun-16	Cloudy	Moderate	13:34				28.5 27.9		8.4 8.3		18.2 19.9		97.6 84.9	****	6.9 5.9		6.9	2.4			9.6 2.7		<u> </u>
o dun 10	Cloudy	Woderate	10.04		Surface	1.0	28.0	28.0	8.3 8.3	8.3	19.7	19.8	86.3 84.0	85.6	6.0 5.9	6.0	6.0	2.5	2.6		3.3	3.0	
				6.3	Middle	3.2	27.9	27.9	8.3	8.3	21.2	20.7	84.8	84.4	6.0	5.9		2.6	2.6	2.6	2.2	2.5	2.9
					Bottom	5.3	27.8 27.9	27.8	8.2 8.3	8.2	22.0 21.9	21.9	83.3 83.4	83.4	5.8 5.9	5.8	5.8	2.6 2.5	2.6		3.4 2.9	3.2	
8-Jun-16	Sunny	Moderate	14:51		Surface	1.0	28.0 28.0	28.0	8.3 8.3	8.3	20.6 20.4	20.5	76.8 75.9	76.4	5.4 5.3	5.3	5.3	1.6 1.5	1.6		4.6 4.0	4.3	
				6.3	Middle	3.2	27.5 27.4	27.5	8.3 8.3	8.3	22.7 23.2	22.9	75.6 76.6	76.1	5.2 5.4	5.3	5.5	1.8 1.7	1.8	1.7	4.8 4.4	4.6	4.6
					Bottom	5.3	27.1 27.5	27.3	8.2 8.2	8.2	26.4 25.6	26.0	75.4 75.1	75.3	5.2 5.2	5.2	5.2	1.7 1.7	1.7		4.4 5.2	4.8	
10-Jun-16	Rainy	Moderate	16:35		Surface	1.0	28.4 28.3	28.4	8.3 8.3	8.3	18.4 18.4	18.4	86.9 84.4	85.7	6.1 5.9	6.0		1.4 1.4	1.4		3.0	2.9	
				6.2	Middle	3.1	28.1	28.0	8.3	8.3	20.3	20.8	85.4	84.3	5.9	5.9	6.0	1.5	1.5	1.4	2.9	3.5	3.2
					Bottom	5.2	27.9 27.4	27.8	8.3 8.2	8.2	21.3	23.7	83.2 81.1	82.7	5.8	5.8	5.8	1.4	1.4		3.2	3.1	
13-Jun-16	Cloudy	Moderate	08:38		Surface	1.0	28.2 27.5	27.6	8.3 8.2	8.2	23.4 14.4	14.0	84.3 84.0	83.5	5.9 5.9	6.0		3.3	3.3		3.0	3.3	
				7.2	Middle	3.6	27.7 27.1	27.2	8.2 8.1	8.1	13.6 15.7	15.6	82.9 77.0	77.5	6.1 5.6	5.6	5.8	3.3	3.4	3.4	2.6	3.2	3.3
				1.2	Bottom	6.2	27.4 27.2	27.4	8.2 8.1	8.1	15.5 22.7	23.4	78.0 76.8	76.3	5.5 5.6	5.5	5.5	3.4		5.4	3.5 2.9	3.4	0.5
15-Jun-16	Sunny	Moderate	10:39				27.6 28.7		8.1 8.3		24.1 14.2		75.8 83.8		5.4 6.0		5.5	3.6 5.2	3.6		3.8 5.5		
10 0011 10	Cullity	Woderate	10.00		Surface	1.0	28.8	28.8	8.3 8.2	8.3	14.0	14.1	85.9 78.3	84.9	6.1 5.6	6.1	5.9	5.1	5.2		5.5 6.4	5.5	
				6.3	Middle	3.2	28.3	28.3	8.2	8.2	14.8	14.9	80.3	79.3	5.8	5.7		5.3	5.4	5.3	6.7	6.6	5.9
					Bottom	5.3	27.3 27.8	27.5	8.1 8.1	8.1	20.6 18.2	19.4	76.7 79.6	78.2	5.4 5.7	5.5	5.5	5.3 5.3	5.3		5.6 5.5	5.6	
17-Jun-16	Sunny	Moderate	11:50		Surface	1.0	28.9 28.8	28.9	8.3 8.3	8.3	12.3 13.1	12.7	77.7 76.9	77.3	5.6 5.5	5.6	5.5	7.5 7.6	7.6		2.9 2.6	2.8	
				6.3	Middle	3.2	27.8 28.1	28.0	8.1 8.2	8.2	16.9 17.1	17.0	76.3 76.1	76.2	5.3 5.3	5.3	5.5	7.8 7.6	7.7	7.7	3.3 4.1	3.7	3.4
					Bottom	5.3	26.2 26.3	26.2	8.0 7.9	8.0	27.9 28.4	28.1	72.0 69.8	70.9	5.1 5.0	5.1	5.1	7.7 7.8	7.8		4.0 3.4	3.7	İ
20-Jun-16	Sunny	Moderate	12:29		Surface	1.0	28.4 28.4	28.4	8.3 8.3	8.3	16.4 16.1	16.2	85.6 84.2	84.9	6.1 6.0	6.0		3.8 3.9	3.9		3.3 4.8	4.1	
				6.4	Middle	3.2	27.6	27.5	8.2	8.3	18.9	19.5	79.5	81.5	5.6	5.8	5.9	3.7	3.7	3.7	4.2	3.9	5.0
					Bottom	5.4	27.4 27.2	26.9	8.3 8.2	8.2	20.2	24.1	83.5 86.3	83.9	5.9 6.0	5.8	5.8	3.6 3.5	3.6		3.5 7.7	7.0	
					30	J	26.7	20.0	8.2	J.2	24.0		81.5	00.0	5.7	0.0	0.0	3.7	0.0		6.3		<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	13:31		Surface	1.0	28.9 29.0	29.0	8.5 8.5	8.5	18.2 18.0	18.1	88.2 87.4	87.8	6.2 6.0	6.1	6.0	5.1 5.0	5.1		7.5 6.6	7.1	
				7.1	Middle	3.6	27.2 26.1	26.6	8.4 8.4	8.4	21.9 23.7	22.8	86.5 83.6	85.1	6.0 5.8	5.9	6.0	5.1 5.1	5.1	5.2	6.8 7.5	7.2	7.2
					Bottom	6.1	25.9 26.0	25.9	8.4 8.3	8.4	28.6 28.9	28.7	78.7 81.0	79.9	5.6 5.7	5.6	5.6	5.3 5.2	5.3	<u> </u>	7.0 7.8	7.4	
24-Jun-16	Sunny	Moderate	15:04		Surface	1.0	28.5 29.6	29.1	8.3 8.4	8.4	19.5 17.3	18.4	80.2 84.1	82.2	5.6 5.8	5.7	5.6	5.4 5.0	5.2		4.1 3.5	3.8	
				6.3	Middle	3.2	28.0 27.7	27.9	8.4 8.4	8.4	20.7 21.5	21.1	75.9 78.0	77.0	5.3 5.5	5.4	3.0	5.9 5.5	5.7	5.5	3.6 3.8	3.7	3.9
					Bottom	5.3	26.7 26.3	26.5	8.3 8.4	8.4	27.1 27.4	27.2	81.1 85.8	83.5	5.6 5.9	5.8	5.8	5.5 5.9	5.7		4.8 3.5	4.2	
27-Jun-16	Sunny	Moderate	17:36		Surface	1.0	28.3 28.7	28.5	8.4 8.4	8.4	22.1 22.0	22.0	95.5 94.0	94.8	6.6 6.4	6.5	6.4	4.7 4.4	4.6		8.7 7.7	8.2	
				6.2	Middle	3.1	27.5 28.1	27.8	8.3 8.4	8.4	23.4 23.0	23.2	89.8 92.4	91.1	6.2 6.4	6.3	0.4	4.8 4.8	4.8	4.7	8.4 8.4	8.4	8.4
					Bottom	5.2	26.9 27.0	27.0	8.4 8.3	8.3	25.9 25.7	25.8	84.1 84.3	84.2	5.8 5.8	5.8	5.8	4.8 4.6	4.7		9.1 7.8	8.5	
29-Jun-16	Sunny	Moderate	08:57		Surface	1.0	28.5 28.4	28.5	8.4 8.4	8.4	19.8 19.8	19.8	88.6 87.5	88.1	6.2 6.1	6.1	6.0	3.4 3.2	3.3		2.6 3.9	3.3	
				6.1	Middle	3.1	28.1 28.1	28.1	8.3 8.3	8.3	22.2 22.3	22.2	82.5 87.5	85.0	5.7 6.0	5.9	0.0	3.9 3.8	3.9	3.8	2.7 3.2	3.0	3.3
					Bottom	5.1	26.7 26.7	26.7	8.3 8.3	8.3	25.7 27.6	26.7	82.1 85.0	83.6	5.7 5.9	5.8	5.8	4.1 4.1	4.1		3.0 4.2	3.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	15:09		Surface	1.0	29.0 29.3	29.2	8.7 8.7	8.7	15.1 14.8	14.9	112.2 119.5	115.9	7.9 8.4	8.2		4.4 4.5	4.5		6.1 6.0	6.1	
				7.4	Middle	3.7	28.5 28.3	28.4	8.6 8.6	8.6	16.3 16.2	16.2	109.6 116.3	113.0	7.5 8.0	7.8	8.0	4.5 4.7	4.6	4.7	6.8 6.7	6.8	6.9
					Bottom	6.4	28.5 28.9	28.7	8.6 8.6	8.6	22.6 21.7	22.1	104.6 113.0	108.8	7.4 7.9	7.7	7.7	4.8	4.9		7.7 7.6	7.7	
3-Jun-16	Sunny	Moderate	17:38		Surface	1.0	29.3	29.3	8.6	8.6	17.0	17.1	112.5	110.5	7.8	7.7		4.3	4.2		4.1	4.7	
				6.5	Middle	3.3	29.3 28.4	28.3	8.6 8.5	8.5	17.1 19.3	19.5	108.5 99.2	96.8	7.6 7.0	6.8	7.3	3.3	3.3	3.6	5.3 6.5	6.4	6.1
				0.5			28.3 28.5		8.5 8.5		19.6 21.0		94.3 98.5		6.6			3.2		3.0	6.2 6.5		0.1
6 Jun 16	Cloudy	Madarata	07:09		Bottom	5.5	28.1 27.8	28.3	8.5 8.3	8.5	21.3 21.4	21.1	95.3 76.5	96.9	6.6 5.3	6.7	6.7	3.3	3.4		8.1 3.2	7.3	
6-Jun-16	Cloudy	Moderate	07:09		Surface	1.0	27.8	27.8	8.3	8.3	22.4	21.9	79.2	77.9	5.4	5.4	5.4	1.9	1.9		3.4	3.3	
				6.3	Middle	3.2	27.6 27.6	27.6	8.3 8.3	8.3	24.0 24.1	24.1	77.4 76.0	76.7	5.4 5.2	5.3		1.9 1.9	1.9	1.9	3.5 2.4	3.0	2.9
					Bottom	5.3	27.4 27.4	27.4	8.3 8.3	8.3	26.3 26.8	26.5	77.3 75.7	76.5	5.4 5.2	5.3	5.3	1.9 1.9	1.9		2.1 2.4	2.3	
8-Jun-16	Sunny	Moderate	08:31		Surface	1.0	28.0 28.0	28.0	8.3 8.3	8.3	15.6 15.8	15.7	74.1 78.0	76.1	5.3 5.4	5.4		2.4 2.4	2.4		3.1 4.4	3.8	
				6.3	Middle	3.2	27.9 27.9	27.9	8.2	8.2	18.9 17.5	18.2	73.5	74.0	5.2 5.4	5.3	5.4	2.4	2.5	2.5	3.9	4.0	4.4
					Bottom	5.3	27.9	27.7	8.2 8.2	8.2	21.9	22.3	74.5 73.1	73.7	5.1	5.2	5.2	2.5	2.5		5.0	5.3	
10-Jun-16	Sunny	Moderate	10:20		Surface	1.0	27.5 27.8	27.9	8.2 8.2	8.2	22.6 20.2	20.2	74.3 77.7	76.7	5.3 5.4	5.3		2.5	2.2		5.5 2.8	3.3	
				0.0			28.0 27.6		8.2 8.2		20.1		75.6 71.9		5.2 5.0		5.2	2.2	-	0.0	3.8		0.5
				6.6	Middle	3.3	27.6 27.5	27.6	8.2	8.2	22.0	21.9	74.0 72.3	73.0	5.2 5.1	5.1		2.2	2.2	2.2	4.9	4.0	3.5
					Bottom	5.6	27.6	27.5	8.2	8.2	23.1	23.2	70.9	71.6	4.9	5.0	5.0	2.3	2.3		3.5	3.3	
13-Jun-16	Cloudy	Moderate	12:48		Surface	1.0	28.1 28.1	28.1	8.3 8.3	8.3	12.2 12.7	12.4	79.1 81.2	80.2	5.8 5.9	5.8	5.6	3.1 3.2	3.2		2.4 2.7	2.6	
				7.0	Middle	3.5	27.6 27.1	27.3	8.2 8.2	8.2	14.2 14.7	14.4	75.8 79.6	77.7	5.3 5.6	5.4	0.0	3.2 3.3	3.3	3.3	3.4 3.6	3.5	3.1
					Bottom	6.0	27.4 27.0	27.2	8.1 8.1	8.1	22.5 23.1	22.8	72.8 73.0	72.9	5.3 5.3	5.3	5.3	3.3 3.4	3.4		3.4 2.7	3.1	
15-Jun-16	Sunny	Moderate	15:45		Surface	1.0	28.9	28.9	8.4	8.4	11.9	11.9	88.0	89.5	6.4	6.5		8.3	8.4		4.9	4.7	
				6.2	Middle	3.1	28.9 28.5	28.5	8.4 8.3	8.3	11.9 14.3	14.3	91.0 86.0	87.8	6.6 6.2	6.2	6.4	8.4 8.5	8.4	8.4	4.5 5.4	5.0	4.9
					Bottom	5.2	28.5 27.9	28.0	8.3 8.2	8.2	14.3 19.7	19.5	89.6 80.4	81.3	6.3 5.7	5.7	5.7	8.2 8.1	8.3		4.5 5.3	5.0	
17-Jun-16	Sunny	Moderate	17:28	1			28.2 29.4		8.2 8.4		19.3 11.2		82.1 81.2		5.8 5.8		5.1	8.5 6.3	1		4.7 3.4		
17 0411 10	Cumy	Moderate	20		Surface	1.0	29.0 27.9	29.2	8.4 8.3	8.4	11.7	11.5	81.6 79.4	81.4	5.9 5.6	5.9	5.8	6.5	6.4		3.2	3.3	
				6.3	Middle	3.2	27.7	27.8	8.3	8.3	14.8	14.8	80.0	79.7	5.7	5.6		6.5	6.6	6.6	3.5	3.6	4.0
					Bottom	5.3	27.7 27.4	27.6	8.2 8.2	8.2	20.2 20.3	20.3	75.2 73.9	74.6	5.4 5.4	5.4	5.4	6.7 6.8	6.8		4.4 5.8	5.1	
20-Jun-16	Sunny	Moderate	06:28		Surface	1.0	28.3 28.1	28.2	8.2 8.2	8.2	17.1 17.6	17.3	78.5 77.5	78.0	5.6 5.5	5.5	F 0	3.2 3.3	3.3		4.7 3.7	4.2	
				6.2	Middle	3.1	27.0 27.1	27.1	8.1 8.1	8.1	23.3 22.2	22.8	71.6 71.8	71.7	5.0 5.1	5.0	5.3	3.2 3.3	3.3	3.5	4.5 4.0	4.3	4.2
					Bottom	5.2	26.5	26.3	8.1	8.1	26.6	26.4	72.7	72.4	5.0	5.0	5.0	3.7	3.9		4.3	4.0	
							26.2		8.1		26.2		72.0		5.0			4.0			3.7		

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (ı	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	07:54		Surface	1.0	28.6 28.1	28.4	8.3 8.3	8.3	16.0 16.1	16.0	81.4 74.7	78.1	5.8 5.2	5.5	5.4	3.9 4.0	4.0		3.5 4.2	3.9	
				7.0	Middle	3.5	27.8 27.6	27.7	8.3 8.2	8.3	19.4 19.5	19.5	72.8 74.9	73.9	5.1 5.2	5.2	3.4	4.0 4.0	4.0	4.1	3.1 3.5	3.3	4.0
					Bottom	6.0	25.7 26.2	25.9	8.1 8.2	8.2	30.2 29.5	29.9	73.7 70.9	72.3	5.2 5.0	5.1	5.1	4.2 4.1	4.2		5.1 4.2	4.7	
24-Jun-16	Sunny	Moderate	09:01		Surface	1.0	27.8 27.8	27.8	8.2 8.2	8.2	20.0 20.4	20.2	75.9 75.8	75.9	5.5 5.5	5.5	5.4	3.2 3.2	3.2		5.3 5.2	5.3	
				6.3	Middle	3.2	27.1 27.5	27.3	8.1 8.2	8.2	24.8 21.3	23.1	71.6 74.1	72.9	5.1 5.4	5.2	0.4	3.2 3.1	3.2	3.3	5.4 5.6	5.5	5.1
					Bottom	5.3	26.4 25.7	26.1	8.1 8.1	8.1	28.6 30.6	29.6	75.0 72.7	73.9	5.3 5.1	5.2	5.2	3.3 3.5	3.4		4.3 4.9	4.6	
27-Jun-16	Sunny	Moderate	11:37		Surface	1.0	28.6 28.2	28.4	8.4 8.4	8.4	21.2 21.5	21.3	88.0 91.1	89.6	6.1 6.2	6.2	6.1	4.1 4.3	4.2		4.1 4.3	4.2	
				6.5	Middle	3.3	27.6 27.8	27.7	8.3 8.4	8.3	24.3 22.6	23.5	87.7 85.6	86.7	6.0 5.9	6.0	0.1	4.7 4.7	4.7	4.5	4.5 4.2	4.4	4.5
					Bottom	5.5	27.5 27.9	27.7	8.3 8.3	8.3	24.4 24.2	24.3	82.6 87.2	84.9	5.7 6.0	5.9	5.9	4.5 4.5	4.5		4.7 4.9	4.8	
29-Jun-16	Sunny	Moderate	13:57		Surface	1.0	28.2 28.1	28.2	8.5 8.4	8.5	21.2 21.3	21.3	84.7 86.0	85.4	5.9 5.9	5.9	5.9	6.6 6.3	6.5		5.2 5.1	5.2	
				6.3	Middle	3.2	27.6 27.6	27.6	8.4 8.4	8.4	23.5 22.8	23.2	84.7 83.9	84.3	5.9 5.8	5.9	5.5	6.6 6.5	6.6	6.6	5.6 5.9	5.8	5.6
					Bottom	5.3	28.0 27.5	27.7	8.4 8.4	8.4	23.6 23.9	23.7	84.2 82.2	83.2	5.8 5.7	5.8	5.8	6.5 6.6	6.6		5.9 5.6	5.8	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	11:40		Surface	1.0	28.9	29.0	8.6	8.6	16.7	16.5	101.3 97.0	99.2	7.0	6.9		6.9	6.9		5.0	5.1	
				9.1	Middle	4.6	29.1 27.1	27.1	8.6 8.4	8.4	16.4 25.3	25.0	95.1	93.6	6.8	6.5	6.7	7.0	7.0	7.0	5.1 8.3	8.3	6.9
					Bottom	8.1	27.1 27.0	27.1	8.4 8.4	8.4	24.8 26.2	26.2	92.0 86.0	89.7	6.3	6.2	6.2	7.0 7.2	7.2		8.2 7.2	7.4	
0.1.10			40.45		Dottom	0.1	27.2	21.1	8.4	0.4	26.1	20.2	93.4	00.1	6.5	0.2	0.2	7.1	7.2		7.5	7	
3-Jun-16	Sunny	Moderate	12:17		Surface	1.0	29.2 29.5	29.4	8.5 8.5	8.5	16.6 15.9	16.3	123.2 120.8	122.0	8.6 8.4	8.5	8.4	9.2 8.7	9.0		8.1 7.6	7.9	
				8.3	Middle	4.2	29.2 29.1	29.2	8.5 8.5	8.5	16.1 16.9	16.5	113.1 122.8	118.0	7.9 8.6	8.3	0.4	8.9 9.3	9.1	10.1	7.7 7.7	7.7	8.2
					Bottom	7.3	29.0 29.3	29.2	8.5 8.5	8.5	16.6 16.4	16.5	121.2 124.4	122.8	8.5 8.7	8.6	8.6	12.2 12.1	12.2		9.8 8.2	9.0	
6-Jun-16	Cloudy	Moderate	12:44		Surface	1.0	27.7 27.7	27.7	8.1 8.0	8.0	20.7 20.7	20.7	77.5 79.7	78.6	5.4 5.6	5.5		9.0 8.8	8.9		7.0 7.3	7.2	
				8.7	Middle	4.4	27.7 27.7	27.7	8.0 8.0	8.0	21.1 21.2	21.1	77.0 77.7	77.4	5.4 5.4	5.4	5.5	8.7 8.9	8.8	9.0	6.1 5.4	5.8	6.4
					Bottom	7.7	27.6 27.7	27.6	8.0	8.0	21.5	21.4	77.6	77.1	5.4	5.4	5.4	9.1	9.2		6.4	6.2	
8-Jun-16	Sunny	Moderate	14:06		Surface	1.0	28.1	28.1	8.0	8.5	21.3 19.8	19.8	76.6 77.1	77.4	5.4 5.4	5.4		4.7	4.6		6.0 6.2	6.3	
				0.0			28.2 27.9		8.6 8.6		19.7 20.7		77.6 77.3		5.4 5.4		5.4	4.5 5.2		5.0	6.4 5.8		6.4
				8.6	Middle	4.3	27.9 27.9	27.9	8.5 8.6	8.5	20.9 21.2	20.8	76.3 75.7	76.8	5.3 5.3	5.4		5.2 5.3	5.2	5.0	5.9 6.0	5.9	6.1
10.1.10			4= 44		Bottom	7.6	28.0	27.9	8.5	8.6	21.1	21.1	75.7	75.7	5.3	5.3	5.3	5.2	5.3		6.0	6.0	
10-Jun-16	Rainy	Moderate	15:41		Surface	1.0	28.6 28.7	28.7	8.6 8.6	8.6	16.6 16.7	16.7	91.8 79.7	85.8	6.3 5.5	5.9	5.7	5.6 5.4	5.5		2.4 3.4	2.9	
				8.0	Middle	4.0	27.4 27.4	27.4	8.5 8.5	8.5	22.8 22.5	22.7	73.8 79.9	76.9	5.2 5.6	5.4		5.4 5.6	5.5	5.5	2.5 3.7	3.1	2.9
					Bottom	7.0	27.0 27.3	27.1	8.5 8.5	8.5	25.2 24.7	25.0	72.5 78.1	75.3	5.1 5.5	5.3	5.3	5.5 5.5	5.5		2.6 2.8	2.7	
13-Jun-16	Cloudy	Moderate	09:28		Surface	1.0	27.7 27.7	27.7	8.2 8.2	8.2	15.9 15.7	15.8	75.8 88.3	82.1	5.5 6.1	5.8		2.8 2.9	2.9		3.2 2.3	2.8	
				9.1	Middle	4.6	27.1 26.9	27.0	8.1 8.1	8.1	24.1 24.2	24.1	81.1 75.5	78.3	5.8 5.2	5.5	5.7	3.0 2.9	3.0	3.0	3.0 3.2	3.1	3.2
					Bottom	8.1	27.0 26.9	27.0	8.0	8.0	26.9 26.9	26.9	72.7 72.6	72.7	5.1 5.1	5.1	5.1	3.0	3.0		4.1	3.7	
15-Jun-16	Sunny	Moderate	11:26		Surface	1.0	28.9	28.9	8.3	8.3	14.1	14.2	83.9	83.2	5.6	5.7		5.2	5.2		5.3	5.3	
				8.3	Middle	4.2	28.9 27.0	27.1	8.3 8.1	8.1	14.2 24.6	24.7	82.4 72.1	72.9	5.9 5.2	5.1	5.4	5.1 5.3	5.4	5.4	5.2 6.6	6.3	5.9
				0.5			27.3 27.0		8.1 8.1	-	24.7 31.2		73.6 70.2		5.1 4.8		4.0	5.5 5.4		3.4	5.9 6.4		3.9
17-Jun-16	Sunny	Moderate	12:35	<u> </u>	Bottom	7.3	26.6 28.9	26.8	8.0 8.4	8.1	31.4 12.7	31.3	68.8 91.5	69.5	4.7 6.3	4.8	4.8	5.5 5.7	5.5		5.9 2.2	6.2	
17-5un-10	Guilly	Woderate	12.55		Surface	1.0	29.0 26.4	28.9	8.4	8.4	12.8	12.8	85.7 81.7	88.6	6.2 5.9	6.2	6.0	6.0	5.9		3.3	2.8	
				8.4	Middle	4.2	26.5	26.4	8.1 8.1	8.1	29.4	29.0	79.2	80.5	5.5	5.7		6.3 6.6	6.5	6.3	3.9	3.6	3.6
					Bottom	7.4	26.4 26.2	26.3	8.1 8.0	8.1	30.9 31.2	31.1	73.9 73.5	73.7	5.1 5.1	5.1	5.1	6.5 6.4	6.5		3.4 5.1	4.3	
20-Jun-16	Sunny	Moderate	11:32		Surface	1.0	28.5 28.5	28.5	8.4 8.4	8.4	16.9 17.0	16.9	88.7 86.6	87.7	6.3 5.9	6.1	5.7	7.6 7.9	7.8		7.0 7.8	7.4	
				8.3	Middle	4.2	27.1 27.3	27.2	8.3 8.3	8.3	21.6 23.4	22.5	75.4 76.6	76.0	5.2 5.4	5.3	3.1	8.2 8.0	8.1	8.0	7.8 8.2	8.0	7.8
					Bottom	7.3	27.8 27.0	27.4	8.3 8.3	8.3	24.5 25.0	24.7	73.3 72.2	72.8	5.1 5.1	5.1	5.1	8.3 8.0	8.2		8.0	8.0	
		l					21.0		0.0		23.0		14.4		J. I		<u> </u>	0.0		<u> </u>	0.0	<u> </u>	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	erature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	12:46		Surface 1	.0 28.2 28.2	28.2	8.6 8.5	8.5	16.7 17.0	16.9	75.2 75.8	75.5	5.4 5.3	5.3	5.3	6.6 6.6	6.6		9.6 9.4	9.5	
				9.0	Middle 4	27.8 26.4	27.1	8.5 8.4	8.5	23.5 23.1	23.3	74.1 74.8	74.5	5.2 5.3	5.3	5.5	6.6 6.6	6.6	6.7	8.7 9.6	9.2	9.4
					Bottom 8	26.3 26.4	26.4	8.4 8.4	8.4	25.9 25.4	25.6	74.2 73.4	73.8	5.2 5.1	5.2	5.2	6.8 6.7	6.8		9.5 9.6	9.6	
24-Jun-16	Sunny	Moderate	14:05		Surface 1	.0 28.6 28.5	28.5	8.4 8.4	8.4	19.2 19.2	19.2	82.1 82.3	82.2	5.7 5.7	5.7	5.7	8.3 8.8	8.6		8.0 8.4	8.2	
				8.4	Middle 4	27.8 27.6	27.7	8.3 8.4	8.4	21.0 20.9	20.9	79.4 81.1	80.3	5.6 5.7	5.6	5.7	9.5 8.8	9.2	9.0	9.8 8.8	9.3	9.1
					Bottom 7	7.4 27.8 27.9	27.8	8.4 8.3	8.4	21.4 21.2	21.3	87.0 81.5	84.3	6.1 5.7	5.9	5.9	8.9 9.5	9.2		9.6 9.9	9.8	
27-Jun-16	Sunny	Moderate	16:52		Surface 1	.0 29.3 29.3	29.3	8.5 8.5	8.5	20.7 20.7	20.7	115.4 113.6	114.5	7.9 7.8	7.8	7.3	8.3 8.4	8.4		9.2 9.0	9.1	I
				8.4	Middle 4	28.5 28.9	28.7	8.4 8.4	8.4	22.2 21.9	22.0	94.9 102.0	98.5	6.6 7.0	6.8	7.3	8.5 8.5	8.5	8.5	9.5 8.8	9.2	9.2
					Bottom 7	7.4 27.1 26.8	26.9	8.4 8.4	8.4	25.5 25.7	25.6	84.3 86.5	85.4	5.8 5.9	5.9	5.9	8.6 8.4	8.5		9.2 9.6	9.4	
29-Jun-16	Sunny	Moderate	09:47		Surface 1	.0 28.3 28.4	28.4	8.4 8.4	8.4	20.5 20.2	20.3	80.3 81.2	80.8	5.6 5.7	5.6	5.4	7.7 7.6	7.7		6.1 6.4	6.3	
				8.0	Middle 4	26.2 27.3	26.8	8.3 8.3	8.3	26.3 25.4	25.8	75.7 74.5	75.1	5.2 5.1	5.2	5.4	7.5 7.7	7.6	7.6	6.3 6.9	6.6	6.4
					Bottom 7	7.0 26.0 26.0	26.0	8.3 8.3	8.3	28.5 28.5	28.5	73.2 72.9	73.1	5.1 5.0	5.1	5.1	7.5 7.7	7.6		6.7 5.6	6.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Ti	urbidity(NTI	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	14:19		Surface	1.0	29.3 29.2	29.3	8.8 8.8	8.8	16.1 16.1	16.1	117.9 110.5	114.2	8.3 7.8	8.0		5.4 5.3	5.4		7.2 7.5	7.4	
				9.1	Middle	4.6	28.3	28.3	8.7	8.7	17.3	17.4	99.3	106.5	6.9	7.4	7.7	5.5	5.5	5.5	8.8	8.7	8.4
					Bottom	8.1	28.2 27.6	27.7	8.7 8.7	8.7	17.5 21.6	21.7	113.7 97.5	100.8	7.9 6.9	7.1	7.1	5.5 5.5	5.6		8.5 9.4	9.1	•
3-Jun-16	Sunny	Moderate	16:37				27.7 29.5		8.7 8.5		21.7 17.4		104.1 123.9		7.4 8.6			5.7 8.3			8.7 9.6		
	,				Surface	1.0	29.4 29.0	29.5	8.5 8.5	8.5	17.6 18.3	17.5	118.8 109.3	121.4	8.2 7.6	8.4	8.1	8.8 10.1	8.6		10.3 9.8	10.0	4
				8.4	Middle	4.2	28.9 28.9	28.9	8.5 8.5	8.5	18.7 18.6	18.5	115.3 108.8	112.3	8.0 7.6	7.8		9.7	9.9	9.5	8.8 11.4	9.3	10.2
					Bottom	7.4	28.9	28.9	8.5	8.5	19.3	19.0	120.0	114.4	8.3	7.9	7.9	9.6	10.1		11.4	11.4	
6-Jun-16	Cloudy	Moderate	07:56		Surface	1.0	28.0 28.0	28.0	8.3 8.3	8.3	20.9 20.8	20.9	83.2 80.4	81.8	5.8 5.6	5.7	5.7	8.0 7.8	7.9		3.5 3.2	3.4	
				8.9	Middle	4.5	28.0 27.9	28.0	8.3 8.3	8.3	21.4 21.6	21.5	81.0 79.3	80.2	5.6 5.5	5.6	5.7	7.8 7.8	7.8	7.8	4.9 5.0	5.0	4.5
					Bottom	7.9	27.9 28.0	28.0	8.3 8.3	8.3	21.7 21.9	21.8	80.7 79.3	80.0	5.6 5.5	5.6	5.6	7.7	7.7		4.8 5.2	5.0	
8-Jun-16	Sunny	Moderate	09:19		Surface	1.0	28.0	28.0	8.2	8.2	17.9	17.8	79.5	80.7	5.6	5.7		4.2	4.2		5.8	5.5	
				8.9	Middle	4.5	28.0 27.9	27.9	8.2 8.2	8.2	17.8 18.7	18.8	81.8 79.1	79.2	5.7 5.5	5.6	5.7	4.1 4.2	4.2	4.2	5.2 5.3	5.5	5.6
				0.5			27.9 27.8		8.2 8.1	-	19.0 21.8		79.2 78.1		5.6 5.5			4.1 4.2		7.2	5.6 5.4		0.0
10-Jun-16	Sunny	Moderate	11:11		Bottom	7.9	27.9 28.4	27.8	8.2 8.3	8.2	21.7 18.6	21.7	78.0 78.7	78.1	5.5 5.5	5.5	5.5	4.3 2.2	4.3		6.1 3.0	5.8	
10-3411-10	Sullily	Woderate	11.11		Surface	1.0	28.5	28.4	8.3	8.3	18.3	18.5	79.0	78.9	5.5	5.5	5.4	2.3	2.3		3.1	3.1]
				9.0	Middle	4.5	27.8 27.9	27.8	8.2 8.2	8.2	20.9 21.8	21.3	76.4 75.1	75.8	5.3 5.2	5.2		3.3 3.3	3.3	3.0	2.4 3.1	2.8	2.8
					Bottom	8.0	27.3 27.4	27.4	8.2 8.2	8.2	25.1 25.1	25.1	72.0 72.3	72.2	5.0 5.1	5.0	5.0	3.3 3.3	3.3		2.2 2.6	2.4	
13-Jun-16	Cloudy	Moderate	11:58		Surface	1.0	27.8 27.8	27.8	8.4 8.3	8.4	15.4 15.5	15.5	88.8 90.2	89.5	6.4 6.4	6.4		2.8 2.7	2.8		2.4 2.1	2.3	
				9.1	Middle	4.6	27.1 27.0	27.0	8.2 8.2	8.2	22.4 21.8	22.1	88.3 86.3	87.3	6.3 6.1	6.2	6.3	2.8 2.8	2.8	2.8	3.6 3.0	3.3	2.8
					Bottom	8.1	26.9	27.1	8.2	8.2	25.8	25.8	84.2	83.5	5.8	5.8	5.8	2.9	2.9		2.8	2.7	1
15-Jun-16	Sunny	Moderate	14:57		Surface	1.0	27.3 28.9	28.9	8.2 8.5	8.5	25.8 13.2	13.5	82.8 85.4	85.3	5.8 6.1	5.9		2.8 7.5	7.6		2.5 4.8	4.9	
				0.7			28.8 27.4		8.5 8.4		13.8 19.7		85.1 73.3		5.8 5.2		5.6	7.6 7.4			5.0 4.6		
				8.7	Middle	4.4	27.0 26.8	27.2	8.3 8.3	8.3	20.5 27.6	20.1	77.4 71.7	75.4	5.3 5.1	5.2		7.5 7.4	7.5	7.5	4.8	4.7	4.9
47.1.40			10.11		Bottom	7.7	27.0	26.9	8.3	8.3	28.2	27.9	71.9	71.8	5.1	5.1	5.1	7.3	7.4		5.8	5.1	
17-Jun-16	Sunny	Moderate	16:41		Surface	1.0	29.2 29.3	29.3	8.7 8.6	8.6	11.2 11.4	11.3	96.8 98.2	97.5	6.9 7.1	7.0	6.6	8.5 8.2	8.4		5.8 5.5	5.7	
				8.6	Middle	4.3	27.0 26.8	26.9	8.5 8.4	8.4	21.1 21.5	21.3	85.4 86.0	85.7	6.2 6.2	6.2	0.0	8.6 8.5	8.6	8.6	6.0 5.8	5.9	5.7
					Bottom	7.6	26.6 26.6	26.6	8.4 8.3	8.4	25.8 26.2	26.0	77.1 76.5	76.8	5.4 5.3	5.3	5.3	8.8 8.7	8.8		5.5 5.2	5.4	
20-Jun-16	Sunny	Moderate	07:22		Surface	1.0	28.7	28.7	8.4	8.4	16.7	16.7	101.8	102.5	7.2	7.2		6.7	6.6		6.7	6.6	
				8.3	Middle	4.2	28.7 28.5	28.5	8.4 8.4	8.4	16.8 18.7	18.5	103.1 101.7	101.0	7.3 7.1	7.1	7.2	7.0	7.1	6.9	7.2	7.5	6.9
					Bottom	7.3	28.5 28.4	28.5	8.4 8.4	8.4	18.2 18.9	18.9	100.3 100.3	101.6	7.0 7.0	7.1	7.1	7.2 7.0	6.9		7.8 6.9	6.5	-
					DULLUITI	1.3	28.6	20.0	8.4	0.4	18.9	10.9	102.9	0.101	7.2	7.1	7.1	6.8	0.9		6.0	0.0	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	08:34		Surface	1.0	28.5 28.3	28.4	8.4 8.4	8.4	19.0 19.0	19.0	91.9 88.1	90.0	6.4 6.2	6.3	6.2	4.4 4.3	4.4		5.4 6.2	5.8	
				9.0	Middle	4.5	28.1 28.0	28.1	8.4 8.3	8.4	21.3 21.2	21.2	85.8 89.7	87.8	5.9 6.2	6.1	0.2	4.3 4.4	4.4	4.4	5.8 5.5	5.7	5.9
					Bottom	8.0	27.6 27.6	27.6	8.3 8.3	8.3	23.5 24.4	24.0	82.8 80.7	81.8	5.7 5.6	5.7	5.7	4.4 4.5	4.5		6.2 6.0	6.1	
24-Jun-16	Sunny	Moderate	09:57		Surface	1.0	28.6 28.7	28.7	8.3 8.3	8.3	18.5 18.4	18.5	83.3 85.8	84.6	5.8 6.0	5.9	5.6	5.6 5.2	5.4		3.5 3.4	3.5	
				8.4	Middle	4.2	28.0 27.7	27.9	8.2 8.2	8.2	20.8 21.9	21.3	76.0 72.2	74.1	5.3 5.0	5.2	0.0	6.4 6.2	6.3	6.2	4.8 5.0	4.9	4.4
					Bottom	7.4	27.6 27.7	27.7	8.2 8.2	8.2	22.8 22.4	22.6	73.8 76.3	75.1	5.1 5.3	5.2	5.2	7.1 6.9	7.0		4.3 5.4	4.9	
27-Jun-16	Sunny	Moderate	12:25		Surface	1.0	29.2 29.2	29.2	8.5 8.5	8.5	21.3 21.4	21.4	111.7 114.3	113.0	7.6 7.8	7.7	7.4	7.6 7.5	7.6		6.3 6.3	6.3	
				8.5	Middle	4.3	27.9 27.8	27.8	8.4 8.4	8.4	24.8 24.7	24.7	101.0 102.9	102.0	6.9 7.0	7.0	7.4	7.4 7.2	7.3	7.5	6.4 6.4	6.4	6.2
					Bottom	7.5	26.9 26.6	26.8	8.4 8.4	8.4	27.5 27.6	27.6	81.2 78.1	79.7	5.6 5.4	5.5	5.5	7.5 7.5	7.5		5.9 5.9	5.9	
29-Jun-16	Sunny	Moderate	13:11		Surface	1.0	29.0 29.0	29.0	8.4 8.4	8.4	19.2 19.1	19.2	87.7 90.8	89.3	6.1 6.3	6.2	5.9	7.5 7.4	7.5		5.2 5.9	5.6	
				8.7	Middle	4.4	27.4 28.0	27.7	8.3 8.4	8.4	22.9 22.3	22.6	79.0 79.4	79.2	5.5 5.5	5.5	5.5	7.5 7.5	7.5	7.5	6.2 6.7	6.5	6.0
					Bottom	7.7	26.2 26.4	26.3	8.3 8.3	8.3	26.7 26.3	26.5	70.4 69.1	69.8	4.9 4.8	4.8	4.8	7.7 7.4	7.6		5.2 6.4	5.8	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	11:27		Surface	1.0	28.9 28.9	28.9	8.6	8.6	17.3 17.2	17.3	114.1 106.7	110.4	8.0 7.5	7.7		6.8	6.9		4.8 4.9	4.9	
				3.3	Middle	_	- 28.9	_	8.6	_	-	_	-	-	-	-	7.7	7.0	_	7.1	4.9	_	5.1
					Bottom	2.3	28.7	28.8	8.6	8.6	17.2	17.1	102.7	106.2	7.2	7.5	7.5	7.3	7.2		5.3	5.2	
					DOLLOITI	2.3	28.9	20.0	8.6	0.0	17.0	17.1	109.6	100.2	7.7	7.5	7.5	7.1	1.2		5.1	5.2	
3-Jun-16	Sunny	Moderate	11:58		Surface	1.0	28.9 28.9	28.9	8.4 8.4	8.4	16.1 15.5	15.8	104.7 104.9	104.8	7.4 7.4	7.4	7.4	2.5 2.7	2.6		4.8 4.5	4.7	<u> </u>
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	2.5	-	-	5.3
					Bottom	2.4	28.8 28.9	28.8	8.4 8.4	8.4	16.7 16.4	16.5	104.5 104.6	104.6	7.4 7.4	7.4	7.4	2.2 2.3	2.3		6.3 5.5	5.9	
6-Jun-16	Cloudy	Moderate	12:58		Surface	1.0	28.0 28.0	28.0	8.2 8.2	8.2	19.1 19.0	19.1	85.2 84.7	85.0	6.0	6.0		2.6 2.6	2.6		2.2	2.2	
				3.2	Middle	-	-	-	-	-	-	-	- 04.7	-	-	-	6.0	-	-	2.6	-	-	2.4
					Bottom	2.2	28.0	28.0	8.2	8.2	19.9	19.9	84.6	84.8	5.9	5.9	5.9	2.5	2.6		2.0	2.5	
8-Jun-16	Sunny	Moderate	14:20				28.0 28.5		8.2 8.4		19.9 19.0		85.0 86.4		6.0			2.6 1.8			3.0 5.1		
	,				Surface	1.0	28.5	28.5	8.4	8.4	19.0	19.0	86.0	86.2	6.0	6.0	6.0	1.8	1.8		4.9	5.0	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	1.9	-	-	5.7
					Bottom	2.2	28.4 28.4	28.4	8.4 8.4	8.4	19.8 19.6	19.7	86.1 85.7	85.9	6.0 6.0	6.0	6.0	1.9 1.8	1.9		6.2 6.6	6.4	
10-Jun-16	Rainy	Moderate	15:57		Surface	1.0	28.7 28.7	28.7	8.6 8.6	8.6	17.3 17.3	17.3	106.3 107.7	107.0	7.5 7.6	7.5	7.5	3.0 2.9	3.0		4.2 4.0	4.1	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	3.1	-	-	4.3
					Bottom	2.4	28.6 28.7	28.6	8.6 8.6	8.6	18.1 18.2	18.2	105.2 107.0	106.1	7.4 7.5	7.4	7.4	3.2 3.0	3.1		3.7 5.1	4.4	
13-Jun-16	Cloudy	Moderate	09:08		Surface	1.0	27.7	27.7	8.2	8.2	15.1	14.9	85.8	86.3	6.2	6.2		3.6	3.7		2.5	2.9	
				3.3	Middle	_	27.7	-	8.1	_	14.7	_	86.7	_	6.2	-	6.2	3.7	-	3.7	3.2	-	5.7
					Bottom	2.3	27.6	27.6	8.2	8.1	16.0	16.5	81.2	81.3	5.9	5.9	5.9	3.7	3.7		8.6	8.4	!
15-Jun-16	Sunny	Moderate	11:10				27.6 28.5		8.1 8.2		16.9 14.6		81.3 79.4		5.9 5.7		0.0	3.7 8.6			8.1 5.6		
13-3411-10	Guilly	Woderate	11.10		Surface	1.0	28.4	28.5	8.2	8.2	14.8	14.7	79.8	79.6	5.7	5.7	5.7	8.5	8.6		5.8	5.7	<u> </u>
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	8.6	-	-	5.8
					Bottom	2.3	27.8 28.3	28.1	8.1 8.1	8.1	17.9 18.6	18.2	78.4 79.9	79.2	5.6 5.6	5.6	5.6	8.5 8.4	8.5		5.8 6.0	5.9	
17-Jun-16	Sunny	Moderate	12:21		Surface	1.0	28.9 28.8	28.9	8.3 8.3	8.3	12.0 12.2	12.1	90.6 89.7	90.2	6.5 6.5	6.5	0.5	5.6 5.6	5.6		4.0 5.4	4.7	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-	5.7	-	-	4.5
					Bottom	2.3	28.5 28.7	28.6	8.2 8.2	8.2	14.4 16.7	15.6	91.3 90.8	91.1	6.5 6.4	6.5	6.5	5.7 5.8	5.8		4.4 4.0	4.2	
20-Jun-16	Sunny	Moderate	11:47		Surface	1.0	28.7	28.9	8.4	8.4	17.8	17.5	110.1	112.3	7.7	7.9		8.8	8.9		7.0	7.2	
				3.4	Middle	-	29.0	-	8.4	-	17.2	-	114.5	-	8.0	-	7.9	8.9	-	9.1	7.4	-	7.2
					Bottom	2.4	28.7	28.6	8.4	8.3	18.0	18.6	106.8	108.1	7.5	7.6	7.6	9.0	9.3		7.2	7.2	1
					DULLUITI	2.4	28.5	20.0	8.3	0.3	19.3	10.0	109.4	100.1	7.6	7.0	7.0	9.5	9.3		7.2	1.2	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	12:59		Surface	1.0	28.3 28.2	28.2	8.4 8.4	8.4	18.1 18.3	18.2	83.4 83.7	83.6	5.9 5.9	5.9	5.9	7.0 7.0	7.0		8.4 7.5	8.0	
				3.5	Middle			-		-	-	-		-	1 1	-	5.9	-	-	7.1	-	-	8.6
					Bottom	2.5	28.2 28.3	28.2	8.4 8.4	8.4	18.5 18.1	18.3	83.3 83.4	83.4	5.9 5.9	5.9	5.9	7.1 7.0	7.1		9.3 8.9	9.1	
24-Jun-16	Sunny	Moderate	14:24		Surface	1.0	29.0 28.9	28.9	8.5 8.5	8.5	18.6 18.1	18.3	108.3 104.7	106.5	7.5 7.3	7.4	7.4	5.9 6.3	6.1		5.3 5.0	5.2	
				3.3	Middle			-		-	-	-		-	1 1	-	7.4	-	-	6.4	-	-	5.4
					Bottom	2.3	28.0 28.9	28.5	8.4 8.5	8.4	19.2 19.0	19.1	88.8 95.7	92.3	6.3 6.7	6.5	6.5	7.0 6.3	6.7		5.5 5.6	5.6	
27-Jun-16	Sunny	Moderate	17:05		Surface	1.0	30.0 30.0	30.0	8.5 8.5	8.5	20.1 20.1	20.1	150.8 149.5	150.2	10.2 10.2	10.2	10.2	5.6 5.9	5.8		8.2 7.6	7.9	
				3.2	Middle		-	-		-	-	-		-		-	10.2	-	-	5.8	-	-	7.8
					Bottom	2.2	29.5 29.9	29.7	8.5 8.5	8.5	21.2 20.9	21.0	141.2 142.2	141.7	9.6 9.7	9.6	9.6	5.8 5.8	5.8		8.2 7.2	7.7	
29-Jun-16	Sunny	Moderate	09:26		Surface	1.0	28.7 28.7	28.7	8.4 8.4	8.4	18.5 18.6	18.5	100.4 100.9	100.7	7.0 7.0	7.0	7.0	2.8 2.8	2.8		3.4 2.8	3.1	
				3.3	Middle	-	-	-		-	-	-		-		-	7.0	-	-	2.9	-	-	3.3
					Bottom	2.3	28.7 28.4	28.6	8.4 8.4	8.4	20.2 19.6	19.9	100.9 98.5	99.7	7.0 6.9	6.9	6.9	2.9 2.8	2.9		3.6 3.1	3.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	14:34		Surface	1.0	30.1 30.0	30.1	8.9 8.9	8.9	16.1 16.1	16.1	167.6 167.2	167.4	11.6 11.6	11.6		4.5 4.4	4.5		10.4 9.8	10.1	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	11.6	-	-	4.6	-	-	10.1
					Bottom	2.3	30.1	30.1	8.9	8.9	16.1	16.1	167.3	166.9	11.6	11.5	11.5	4.6	4.7		9.3	10.0	
3-Jun-16	Sunny	Moderate	16:56				30.0 29.8		8.9 8.5		16.2 17.2		166.4 128.7		11.5 8.9			4.7 14.5	1		9.8		
3-3un-10	Guilly	Woderate	10.50		Surface	1.0	29.4	29.6	8.5	8.5	17.3	17.2	121.5	125.1	8.4	8.7	8.7	14.8	14.7		9.7	9.8	
				3.3	Middle	-	29.4	-	8.5	-	18.3	-	125.5	-	8.7	-		15.7	-	15.2	14.4	-	11.9
					Bottom	2.3	29.1	29.2	8.5	8.5	18.9	18.6	122.0	123.8	8.4	8.6	8.6	15.5	15.6		13.6	14.0	
6-Jun-16	Cloudy	Moderate	07:38		Surface	1.0	28.0 28.0	28.0	8.3 8.3	8.3	19.2 19.2	19.2	87.1 86.2	86.7	6.1 6.1	6.1	6.1	2.8 2.7	2.8		3.5 3.7	3.6	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	2.8	-	-	3.7
					Bottom	2.4	28.0 27.9	27.9	8.3 8.3	8.3	19.4 19.6	19.5	86.7 85.8	86.3	6.1 6.0	6.1	6.1	2.8 2.8	2.8		3.9 3.7	3.8	ļ
8-Jun-16	Sunny	Moderate	09:00		Surface	1.0	28.0 28.0	28.0	8.2 8.2	8.2	16.9 17.0	17.0	76.6 76.8	76.7	5.5 5.5	5.5		2.6 2.6	2.6		4.8 4.7	4.8	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-	2.6	-	-	4.5
					Bottom	2.4	28.0 28.0	28.0	8.2 8.2	8.2	18.9 18.7	18.8	76.8 76.7	76.8	5.4 5.4	5.4	5.4	2.5 2.5	2.5		4.6 3.8	4.2	
10-Jun-16	Sunny	Moderate	10:53		Surface	1.0	28.2 28.2	28.2	8.3 8.3	8.3	18.7 18.7	18.7	86.7 85.9	86.3	6.1 6.1	6.1		2.8 3.0	2.9		5.1 5.0	5.1	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	2.9	-	-	5.1
					Bottom	2.6	28.1	28.1	8.3	8.3	18.9	19.1	86.4	86.9	6.1	6.1	6.1	2.9	2.9		5.4	5.0	
13-Jun-16	Cloudy	Moderate	12:14				28.1 27.9		8.3 8.2		19.3 16.4		87.3 82.6		6.1 5.9			2.8	1		4.6 2.2		
10 0411 10	Cloudy	Woderate	12.14		Surface	1.0	28.0	28.0	8.2	8.2	16.2	16.3	82.5	82.6	5.9	5.9	5.9	2.2	2.2		2.6	2.4	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.3	-	-	2.5
					Bottom	2.4	28.0 27.9	28.0	8.2 8.2	8.2	16.2 16.8	16.5	82.5 82.4	82.5	5.9 5.9	5.9	5.9	2.4 2.3	2.4		2.5 2.5	2.5	<u> </u>
15-Jun-16	Sunny	Moderate	15:11		Surface	1.0	29.0 29.1	29.1	8.4 8.4	8.4	13.2 13.2	13.2	98.5 100.8	99.7	7.0 7.2	7.1	7.1	4.4 4.6	4.5		3.7 3.8	3.8]
				3.2	Middle	-	-	-	-	-	-	-	-	-		-	,	-	-	4.6	-	-	3.8
					Bottom	2.2	29.0 28.8	28.9	8.4 8.4	8.4	13.3 13.8	13.5	99.8 97.5	98.7	7.1 7.0	7.1	7.1	4.6 4.5	4.6		3.1 4.2	3.7	
17-Jun-16	Sunny	Moderate	16:57		Surface	1.0	29.9 29.5	29.7	8.6 8.6	8.6	10.9 11.0	10.9	113.6 114.0	113.8	8.1 8.2	8.1	0.4	4.7 4.9	4.8		3.8 3.1	3.5	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	8.1	-	-	4.8	-	-	4.2
					Bottom	2.2	29.6	29.2	8.6 8.5	8.6	12.8 13.2	13.0	114.5 117.3	115.9	8.1 8.4	8.3	8.3	4.8 4.8	4.8	1	4.0 5.8	4.9	
20-Jun-16	Sunny	Moderate	07:04		Surface	1.0	29.0 28.8	28.9	8.4	8.4	16.7	16.8	120.9	117.9	8.5	8.3		4.0	4.0		6.2	5.8	
				3.4	Middle	-	- 28.8	-	8.4	-	16.8	-	114.8	-	8.1	-	8.3	3.9	-	4.0	5.4	-	6.3
					Bottom	2.4	28.8	28.8	8.4	8.4	16.8	16.8	112.7	115.2	7.9	8.1	8.1	3.9	3.9		7.0	6.8	1
					Dottoill	۷.٦	28.7	20.0	8.4	0.4	16.9	10.0	117.6	110.2	8.3	0.1	0.1	3.9	0.0		6.5	0.0	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	08:18		Surface	1.0	28.3 28.3	28.3	8.3 8.3	8.3	17.5 17.5	17.5	86.3 86.3	86.3	6.1 6.1	6.1	6.1	5.1 5.3	5.2		4.2 4.3	4.3	
				3.4	Middle	-		-		-	-	-	-	-		-	0.1	-	-	5.3	-	-	4.3
					Bottom	2.4	28.4 28.3	28.3	8.3 8.3	8.3	17.5 17.6	17.5	86.2 86.2	86.2	6.1 6.1	6.1	6.1	5.3 5.3	5.3		3.5 5.1	4.3	
24-Jun-16	Sunny	Moderate	09:37		Surface	1.0	28.2 28.3	28.3	8.2 8.2	8.2	18.6 18.5	18.6	77.0 77.2	77.1	5.4 5.4	5.4	5.4	7.6 7.1	7.4		5.2 5.6	5.4	
				3.5	Middle			-		-	-	-	-	-	1 1	-	5.4	-	-	7.4	-	-	5.7
					Bottom	2.5	28.1 28.1	28.1	8.2 8.2	8.2	19.0 19.8	19.4	76.1 77.2	76.7	5.4 5.4	5.4	5.4	7.2 7.3	7.3		6.2 5.6	5.9	
27-Jun-16	Sunny	Moderate	12:09		Surface	1.0	28.9 29.0	29.0	8.4 8.4	8.4	20.4 20.2	20.3	104.3 105.6	105.0	7.2 7.3	7.2	7.2	11.4 11.3	11.4		10.8 10.1	10.5	
				3.2	Middle	-		-		-	-	-	-	-	1 1	-	7.2	-	-	11.5	-	-	10.7
					Bottom	2.2	28.6 28.8	28.7	8.4 8.4	8.4	21.8 21.8	21.8	103.4 103.0	103.2	7.1 7.1	7.1	7.1	11.5 11.6	11.6		11.2 10.3	10.8	
29-Jun-16	Sunny	Moderate	13:28		Surface	1.0	28.7 29.1	28.9	8.5 8.5	8.5	19.4 19.3	19.4	95.7 102.4	99.1	6.7 7.1	6.9	6.9	3.8 3.7	3.8		4.2 4.0	4.1	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	3.8	-	-	4.7
					Bottom	2.2	29.0 27.5	28.3	8.5 8.4	8.4	19.3 21.9	20.6	98.7 94.2	96.5	6.8 6.5	6.7	6.7	3.9 3.7	3.8		4.8 5.7	5.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	10:50		Surface	1.0	29.2 29.2	29.2	8.6 8.7	8.6	15.9 16.0	16.0	136.9 141.3	139.1	9.6 9.9	9.8		6.5 6.6	6.6		5.4 5.1	5.3	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	9.8	-	-	6.7	-	-	5.7
					Bottom	2.3	29.2 29.2	29.2	8.6 8.6	8.6	16.0 16.0	16.0	119.6 139.1	129.4	8.4 9.8	9.1	9.1	6.6 6.8	6.7		6.0 6.1	6.1	
3-Jun-16	Sunny	Moderate	11:30		Surface	1.0	28.7	28.7	8.4	8.4	16.1	16.1	99.3	99.3	7.0	7.0		3.1	3.3		5.8	6.5	
				3.8	Middle		28.6	-	8.4	-	16.1	-	99.3	-	7.0	-	7.0	3.4	-	3.3	7.1	-	6.7
				3.0	Bottom	2.8	28.6	28.6	8.4	8.4	17.3	17.2	98.8	99.0	7.0	7.0	7.0	3.0		5.5	6.6	6.8	0.7
6-Jun-16	Cloudy	Moderate	13:25				28.6 28.1		8.4 8.3		17.2 19.1		99.2 84.3		7.0 5.9		7.0	3.3	3.2		6.9 3.2		
o dun 10	Cloudy	Wioderate	10.20		Surface	1.0	28.1	28.1	8.3	8.3	19.0	19.0	83.8	84.1	5.9	5.9	5.9	3.5	3.5		3.2	3.2	
				4.3	Middle	-	-	-	-	-	21.3	-	84.8	-	-	-		3.5	-	3.6	2.9	-	3.4
					Bottom	3.3	28.0 28.1	28.0	8.2 8.3	8.3	20.2	20.8	84.3	84.6	5.9 5.9	5.9	5.9	3.6	3.6		4.0	3.5	
8-Jun-16	Sunny	Moderate	14:43		Surface	1.0	28.7 28.6	28.6	8.3 8.3	8.3	17.6 17.6	17.6	87.6 87.6	87.6	6.1 6.2	6.2	6.2	2.1 2.2	2.2		3.0 3.6	3.3	
				3.9	Middle	-		-	-	-		-		-		-	-	-	-	2.3	-	-	3.4
					Bottom	2.9	28.5 28.2	28.3	8.3 8.3	8.3	20.3 21.0	20.6	87.6 88.9	88.3	6.1 6.2	6.1	6.1	2.3 2.3	2.3		3.7 3.0	3.4	
10-Jun-16	Rainy	Moderate	16:27		Surface	1.0	28.5 28.6	28.5	8.5 8.5	8.5	17.7 17.7	17.7	95.8 99.4	97.6	6.7 7.0	6.9		3.1 3.2	3.2		4.0 4.2	4.1	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	3.2	-	-	4.3
					Bottom	3.0	28.5 27.9	28.2	8.5 8.5	8.5	19.6 19.7	19.7	98.0 95.2	96.6	6.8 6.7	6.8	6.8	3.2 3.1	3.2		4.7 4.3	4.5	
13-Jun-16	Cloudy	Moderate	08:48		Surface	1.0	27.6	27.6	8.2	8.2	14.8	14.7	89.5	90.1	6.5	6.5		2.3	2.3		3.3	2.8	
				3.4	Middle	_	27.7	-	8.2	-	14.7	-	90.7	-	6.6	-	6.5	2.2	-	2.4	2.3	-	2.8
					Bottom	2.4	27.6	27.6	8.2	8.2	15.3	15.4	87.7	87.7	6.4	6.4	6.4	2.4	2.4		2.4	2.7	
15-Jun-16	Sunny	Moderate	10:50		Surface	1.0	27.7 29.0	28.8	8.1 8.3	8.3	15.5 12.7	13.1	87.7 90.7	87.5	6.4	6.3		2.4 6.6	6.6		2.9 4.6	4.2	
				4.1	Middle	1.0	28.7	-	8.3	-	13.6	-	84.3	-	6.1	0.0	6.3	6.6	-	6.6	3.8		4.4
				4.1		3.1	28.3	28.3	8.2	8.2	18.3	18.3	- 85.6	83.7	6.0	5.9	5.9	6.5	6.6	0.0	4.5	4.6	4.4
17-Jun-16	Sunny	Moderate	11:57		Bottom		28.2 28.1		8.2 8.2		18.3 12.3		81.8 79.5		5.8 5.5		5.9	6.6 7.7			4.6 3.8		
17 3411 10	Odiniy	Moderate	11.07		Surface	1.0	28.5	28.3	8.2	8.2	13.0	12.7	78.9	79.2	5.7	5.6	5.6	7.5	7.6		2.9	3.4	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	7.6	-	-	3.5
	_				Bottom	3.0	28.1 28.4	28.3	8.1 8.2	8.1	20.7 17.5	19.1	74.8 77.4	76.1	5.5 5.5	5.5	5.5	7.6 7.3	7.5		3.0 4.0	3.5	<u> </u>
20-Jun-16	Sunny	Moderate	12:17		Surface	1.0	28.4 28.4	28.4	8.3 8.3	8.3	17.3 17.3	17.3	97.5 96.3	96.9	6.9 6.8	6.9	6.9	4.2 4.3	4.3		6.6 6.5	6.6]
				3.8	Middle	-	-	-	-	-	-	-		-	-	-		-	-	4.3	-	-	6.7
					Bottom	2.8	28.4 28.0	28.2	8.3 8.3	8.3	18.9 18.5	18.7	98.9 101.0	100.0	6.9 7.1	7.0	7.0	4.3 4.1	4.2		7.0 6.4	6.7	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	13:23		Surface	1.0	28.9 28.9	28.9	8.5 8.5	8.5	16.9 17.0	17.0	125.4 122.8	124.1	8.8 8.6	8.7	8.7	4.6 4.6	4.6		7.3 7.8	7.6	
				3.5	Middle		-	-	-	-	-	-	-	-	-	-	0.7	-	-	4.7	-	-	7.7
					Bottom	2.5	29.0 29.0	29.0	8.5 8.5	8.5	17.5 17.5	17.5	123.4 122.0	122.7	8.7 8.6	8.6	8.6	4.8 4.6	4.7		7.9 7.5	7.7	
24-Jun-16	Sunny	Moderate	14:51		Surface	1.0	28.9 29.1	29.0	8.5 8.5	8.5	17.9 17.8	17.9	116.2 120.2	118.2	8.1 8.4	8.2	8.2	5.9 6.1	6.0		4.0 4.8	4.4	
				3.8	Middle	-		-	1 1	-		-		-		-	0.2	-	-	7.1	-	-	5.0
					Bottom	2.8	28.8 28.1	28.5	8.5 8.4	8.5	20.5 21.2	20.8	117.7 113.3	115.5	8.1 7.9	8.0	8.0	7.8 8.5	8.2		5.0 6.0	5.5	
27-Jun-16	Sunny	Moderate	17:28		Surface	1.0	29.1 28.9	29.0	8.4 8.4	8.4	20.7 20.9	20.8	123.4 120.3	121.9	8.4 8.3	8.4	8.4	14.5 14.6	14.6		8.6 8.8	8.7	
				3.9	Middle			-		-		-		-		-	0.4	-	-	14.7	-	-	9.1
					Bottom	2.9	28.7 28.0	28.4	8.3 8.3	8.3	22.1 22.4	22.3	108.1 108.1	108.1	7.4 7.5	7.4	7.4	14.8 14.5	14.7		9.0 9.7	9.4	
29-Jun-16	Sunny	Moderate	09:02		Surface	1.0	28.7 28.5	28.6	8.4 8.4	8.4	19.2 19.3	19.2	95.7 95.8	95.8	6.7 6.7	6.7	6.7	7.7 7.7	7.7	_	3.7 3.6	3.7	
				4.1	Middle	-		-	1 1	-		-	1 1	-	-	-	0.7	-	-	7.7	-	-	3.5
					Bottom	3.1	28.5 28.0	28.3	8.4 8.3	8.3	22.7 23.7	23.2	96.9 90.9	93.9	6.6 6.2	6.4	6.4	7.6 7.8	7.7		2.9 3.6	3.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	15:01		Surface	1.0	29.1 29.0	29.0	8.7 8.7	8.7	15.9 16.0	15.9	124.0 120.3	122.2	8.7 8.5	8.6		9.9 10.0	10.0		5.3 5.0	5.2	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	8.6	-	-	10.1	-	-	5.3
					Bottom	2.4	29.1 29.1	29.1	8.7 8.7	8.7	15.8 15.9	15.9	122.2 115.6	118.9	8.6 8.1	8.4	8.4	10.1 10.0	10.1		5.2 5.4	5.3	
3-Jun-16	Sunny	Moderate	17:26		Surface	1.0	29.1	29.5	8.5	8.5	17.0	17.0	134.9	135.6	9.4	9.4		10.0	10.3		7.0	6.9	
	,			0.7		1.0	29.5		8.5	-	17.0		136.3		9.5	9.4	9.4	10.3		40.4	6.8		7.0
				3.7	Middle	-	- 29.5	-	8.5	-	17.0	-	135.8	-	9.4	-		10.3	-	10.4	6.0	-	7.0
0.110	01: 1	Madaga	07.47		Bottom	2.7	29.3	29.4	8.5	8.5	17.1	17.1	133.6	134.7	9.3	9.4	9.4	10.5	10.4		8.0	7.0	
6-Jun-16	Cloudy	Moderate	07:17		Surface	1.0	28.1 28.1	28.1	8.3 8.3	8.3	19.4 19.5	19.5	82.3 83.6	83.0	5.8 5.9	5.8	5.8	2.8 3.0	2.9		3.2 2.6	2.9	
				4.1	Middle	-	-	-	-	-	-	-		-		-		-	-	3.0	-	-	2.9
					Bottom	3.1	28.1 28.1	28.1	8.3 8.3	8.3	20.4 20.6	20.5	82.8 85.6	84.2	5.8 6.0	5.9	5.9	3.0 3.1	3.1		3.0 2.8	2.9	
8-Jun-16	Sunny	Moderate	08:38		Surface	1.0	28.0 28.0	28.0	8.2 8.2	8.2	16.9 17.0	17.0	78.5 75.1	76.8	5.5 5.3	5.4		6.2 6.1	6.2		5.6 5.4	5.5	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	5.4	-	-	6.2	-	-	5.6
					Bottom	3.3	28.0 27.9	28.0	8.2	8.2	18.7 19.1	18.9	74.3 75.9	75.1	5.3	5.4	5.4	6.3 6.1	6.2		5.4 5.9	5.7	
10-Jun-16	Sunny	Moderate	10:29		Surface	1.0	28.1	28.1	8.2 8.3	8.3	17.5	17.7	77.3	76.9	5.4 5.5	5.4		1.3	1.4		3.0	2.6	
				4.3	Middle	_	28.1	_	8.3	_	17.9	_	76.5 -	_	5.4	_	5.4	1.4	_	1.4	2.1	_	2.5
					Bottom	3.3	28.1	27.9	8.2	8.2	21.0	21.0	77.0	77.8	5.4	5.4	5.4	1.3	1.3		2.3	2.3	
13-Jun-16	Cloudy	Moderate	12:38				27.8 28.0		8.2 8.2		21.0 14.5		78.5 88.4		5.5 6.4		3.4	1.3 3.2			2.3 3.7		
	,				Surface	1.0	28.1	28.1	8.2	8.2	14.5	14.5	88.7	88.6	6.4	6.4	6.4	3.0	3.1		4.5	4.1	
				3.3	Middle	-	- 28.1	-	8.2	-	- 14.5	-	- 88.5	-	6.4	-		3.0	-	3.1	3.6	-	3.9
	-				Bottom	2.3	28.0	28.0	8.2	8.2	14.7	14.6	88.2	88.4	6.4	6.4	6.4	3.2	3.1		3.8	3.7	<u> </u>
15-Jun-16	Sunny	Moderate	15:37		Surface	1.0	28.8 28.8	28.8	8.3 8.3	8.3	13.3 13.4	13.3	92.9 93.1	93.0	6.7 6.7	6.7	6.7	11.5 11.4	11.5		12.0 10.2	11.1	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0	-	-	11.5	-	-	11.4
					Bottom	3.1	28.8 28.7	28.8	8.3 8.3	8.3	13.6 13.8	13.7	93.0 94.3	93.7	6.7 6.8	6.7	6.7	11.4 11.6	11.5		11.6 11.6	11.6	
17-Jun-16	Sunny	Moderate	17:19		Surface	1.0	29.5 29.3	29.4	8.5 8.5	8.5	11.6 11.6	11.6	107.8 105.0	106.4	7.7 7.5	7.6		7.5 7.6	7.6		4.4 5.3	4.9	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	7.7	-	-	4.7
					Bottom	3.1	29.3	29.3	8.5	8.5	12.3	13.0	108.7	107.9	7.8	7.7	7.7	7.8	7.7		5.0	4.5	
20-Jun-16	Sunny	Moderate	06:38		Surface	1.0	29.3 28.4	28.4	8.4 8.2	8.2	13.7 16.2	16.3	107.0 89.9	88.7	7.6 6.4	6.3		7.6 5.0	5.2		4.0	4.2	
				3.8	Middle	1.0	28.3	20.4	8.2	0.2	16.3	-	87.5 -	-	6.2	0.0	6.3	5.4	-	5.3	4.1	-	4.9
				3.8		-	- 27.9		8.2		18.4		89.7		6.4	-		- 5.3		5.3	5.8		4.9
					Bottom	2.8	28.4	28.2	8.2	8.2	17.9	18.2	88.8	89.3	6.3	6.3	6.3	5.2	5.3		5.1	5.5	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	08:00		Surface	1.0	28.2 28.1	28.2	8.3 8.3	8.3	18.0 18.3	18.1	91.9 84.5	88.2	6.5 6.0	6.2	6.2	6.4 6.4	6.4		4.0 4.4	4.2	
				3.3	Middle			•		-	-	-		-	1 1	-	0.2	-	-	6.5	-	-	4.2
					Bottom	2.3	28.2 28.2	28.2	8.3 8.3	8.3	18.6 18.2	18.4	86.3 83.0	84.7	6.1 5.9	6.0	6.0	6.6 6.4	6.5		4.0 4.4	4.2	
24-Jun-16	Sunny	Moderate	09:11		Surface	1.0	28.3 28.3	28.3	8.2 8.2	8.2	18.4 18.4	18.4	79.8 78.9	79.4	5.6 5.6	5.6	5.6	7.1 6.8	7.0		5.2 5.8	5.5	
				3.9	Middle	-		-		-	-	-		-		-	0.0	-	-	7.2	-	-	5.7
					Bottom	2.9	28.1 28.2	28.2	8.2 8.2	8.2	19.4 19.7	19.5	80.9 79.5	80.2	5.7 5.6	5.6	5.6	7.7 7.1	7.4		5.7 6.0	5.9	
27-Jun-16	Sunny	Moderate	11:44		Surface	1.0	28.2 28.1	28.2	8.4 8.4	8.4	21.4 21.4	21.4	87.2 84.6	85.9	6.0 5.9	5.9	5.9	13.4 13.5	13.5		9.0 9.0	9.0	
				4.0	Middle			-		-	-	-		-		-	5.5	-	-	13.4	-	-	9.4
					Bottom	3.0	28.0 28.0	28.0	8.4 8.3	8.3	22.4 22.4	22.4	85.8 84.7	85.3	6.0 5.9	5.9	5.9	13.2 13.2	13.2		9.6 9.8	9.7	
29-Jun-16	Sunny	Moderate	13:49		Surface	1.0	28.7 28.5	28.6	8.5 8.5	8.5	20.7 20.8	20.7	98.5 96.5	97.5	6.8 6.7	6.7	6.7	8.5 8.6	8.6		10.1 10.3	10.2	
				4.1	Middle	-		-		-	-	-		-	1 1	-	0.7	-	-	8.6	-	-	10.9
					Bottom	3.1	28.6 27.9	28.3	8.5 8.4	8.4	22.3 23.1	22.7	98.3 98.7	98.5	6.7 6.8	6.8	6.8	8.7 8.5	8.6		11.9 11.3	11.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	10:30		Surface	1.0	28.4 28.4	28.4	8.5 8.4	8.5	13.4 13.5	13.4	88.6 90.3	89.5	6.4 6.5	6.5		2.5 2.5	2.5		3.7 3.9	3.8	
				11.3	Middle	5.7	27.6 27.8	27.7	8.3 8.3	8.3	18.7 19.5	19.1	83.8 84.3	84.1	6.0 6.0	6.0	6.3	2.6 2.5	2.6	2.6	2.8 2.6	2.7	3.3
					Bottom	10.3	27.4 27.2	27.3	8.2 8.2	8.2	25.9 25.7	25.8	86.9 86.6	86.8	5.9 6.0	5.9	5.9	2.7	2.8		3.0	3.3	
3-Jun-16	Sunny	Moderate	11:08		Surface	1.0	28.7	28.7	8.5	8.5	15.2	15.2	93.4	93.9	6.6	6.7		3.4	3.5		5.4	5.2	
				11.4	Middle	5.7	28.6 27.8	27.9	8.5 8.4	8.4	15.2 21.6	21.2	94.3 88.8	90.8	6.7 6.2	6.3	6.5	3.6 4.1	4.1	3.8	5.0 7.0	7.1	6.5
				11.4			28.1 27.9		8.4 8.4		20.9 22.4		92.7 92.0		6.5 6.4			4.0 4.0		3.0	7.1 7.6		0.5
6 Jun 16	Cloudy	Madarata	13:41		Bottom	10.4	28.4 27.9	28.1	8.4 8.3	8.4	22.6 19.8	22.5	94.8 78.3	93.4	6.5 5.5	6.4	6.4	3.8	3.9		6.8	7.2	
6-Jun-16	Cloudy	Moderate	13.41		Surface	1.0	27.9	27.9	8.3	8.3	20.0	19.9	78.5	78.4	5.5	5.5	5.4	3.6	3.6		4.4	3.8	
				11.0	Middle	5.5	27.5 27.4	27.5	8.3 8.3	8.3	21.7 22.0	21.9	78.3 77.6	78.0	5.4 5.3	5.3		3.5 3.6	3.6	3.6	3.9 3.7	3.8	3.6
					Bottom	10.0	27.1 27.3	27.2	8.2 8.2	8.2	28.6 28.8	28.7	75.3 76.5	75.9	5.3 5.3	5.3	5.3	3.6 3.7	3.7		3.0 3.1	3.1	
8-Jun-16	Sunny	Moderate	14:57		Surface	1.0	28.1 28.1	28.1	8.3 8.3	8.3	19.6 19.8	19.7	75.8 83.5	79.7	5.3 5.7	5.5	5.4	2.1 2.2	2.2		3.9 3.3	3.6	
				10.7	Middle	5.4	27.2 27.3	27.3	8.3 8.3	8.3	23.0 22.4	22.7	78.8 75.3	77.1	5.5 5.1	5.3	5.4	2.1 2.1	2.1	2.2	3.9 4.0	4.0	3.6
					Bottom	9.7	27.0 27.1	27.0	8.2 8.2	8.2	28.6 28.6	28.6	77.4 71.9	74.7	5.4 5.0	5.2	5.2	2.1	2.2		2.6 4.0	3.3	
10-Jun-16	Rainy	Moderate	16:41		Surface	1.0	28.5	28.5	8.4 8.4	8.4	18.2 18.3	18.2	82.1 80.6	81.4	5.7 5.7	5.7		1.6	1.6		4.3 4.3	4.3	
				10.1	Middle	5.1	27.2	27.1	8.3	8.3	23.9	24.2	73.1	77.3	5.1	5.4	5.6	1.6	1.8	1.8	3.5	3.6	3.7
					Bottom	9.1	27.0 26.9	26.8	8.3 8.3	8.3	24.5 26.9	26.9	81.5 74.6	72.3	5.6 5.2	5.0	5.0	1.8 1.9	1.9		3.6 2.8	3.2	
13-Jun-16	Cloudy	Moderate	08:31		Surface	1.0	26.6 27.7	27.7	8.2 8.3	8.3	26.9 12.6	12.7	69.9 87.3	84.2	4.8 6.4	6.2		3.0	3.1		3.6	3.3	
				11.0	Middle	5.5	27.6 27.3	27.2	8.3 8.2	8.2	12.7 19.0	19.1	81.1 80.9	78.8	5.9 5.6	5.4	5.8	3.2	3.2	3.2	3.5	3.3	3.3
				11.0			27.2 26.3		8.2 8.0		19.2 28.8		76.6 72.3		5.3 5.2			3.1 3.3		3.2	3.3 4.2		3.3
15-Jun-16	Sunny	Moderate	10:33		Bottom	10.0	26.1 28.8	26.2	8.0 8.4	8.0	28.9 10.2	28.9	74.9 78.6	73.6	5.3 5.7	5.3	5.3	3.3 4.7	3.3		2.5 6.3	3.4	
15-5411-10	Juliny	Woderate	10.55		Surface	1.0	28.5 27.9	28.6	8.3 8.2	8.4	11.5 17.3	10.8	77.4 73.4	78.0	5.6 5.0	5.7	5.4	4.7	4.7		4.6	5.5	
				10.6	Middle	5.3	27.8	27.9	8.2	8.2	17.3	17.3	70.7	72.1	5.0	5.0		4.8	4.8	4.8	7.0	6.4	5.9
					Bottom	9.6	26.1 25.7	25.9	8.0 8.0	8.0	30.4 31.2	30.8	70.6 70.2	70.4	5.0 5.0	5.0	5.0	4.7 4.8	4.8		5.7 6.1	5.9	
17-Jun-16	Sunny	Moderate	11:43		Surface	1.0	28.1 28.2	28.1	8.3 8.3	8.3	11.9 10.9	11.4	76.7 76.8	76.8	5.6 5.7	5.6	5.5	5.1 5.2	5.2		4.0 3.4	3.7	
				10.2	Middle	5.1	26.7 27.4	27.0	8.1 8.2	8.1	19.7 18.0	18.8	76.3 78.5	77.4	5.3 5.4	5.4	5.5	6.4 6.3	6.4	6.0	4.6 5.0	4.8	4.1
					Bottom	9.2	25.5 25.6	25.6	8.0 8.0	8.0	32.1 32.2	32.2	70.9 71.7	71.3	5.1 5.2	5.2	5.2	6.5 6.2	6.4		3.3 4.0	3.7	
20-Jun-16	Sunny	Moderate	12:37		Surface	1.0	28.5 28.5	28.5	8.3 8.3	8.3	15.8 15.7	15.8	82.8 82.7	82.8	5.9 5.9	5.9		4.2 3.9	4.1		6.9 6.7	6.8	
				10.6	Middle	5.3	27.0	27.0	8.2	8.2	23.7	23.5	76.1	76.6	5.3	5.3	5.6	3.8	3.9	4.0	6.6	6.0	6.4
					Bottom	9.6	27.0 26.0	26.2	8.1 8.1	8.1	23.3	26.0	77.0 77.8	80.1	5.4	5.6	5.6	4.0	4.0		5.3 6.5	6.5	
					201.0.11	0.0	26.4		8.1	J	25.9	20.0	82.3	00	5.7	0.0	0.0	3.9			6.5	0.0	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	13:37		Surface	1.0	28.6 28.6	28.6	8.5 8.4	8.4	15.5 16.6	16.1	81.7 82.4	82.1	5.8 5.8	5.8	5.6	4.7 4.5	4.6		4.7 5.2	5.0	
				10.9	Middle	5.5	27.1 27.7	27.4	8.3 8.4	8.4	20.5 20.1	20.3	77.4 75.0	76.2	5.4 5.3	5.3	5.0	4.7 4.8	4.8	4.8	6.5 5.9	6.2	6.2
					Bottom	9.9	25.9 26.0	26.0	8.3 8.3	8.3	28.0 28.3	28.2	74.1 74.3	74.2	5.1 5.3	5.2	5.2	5.0 5.0	5.0		7.0 8.0	7.5	
24-Jun-16	Sunny	Moderate	15:16		Surface	1.0	28.6 28.7	28.7	8.3 8.3	8.3	18.9 18.7	18.8	80.8 79.5	80.2	5.6 5.5	5.6	5.4	4.6 4.6	4.6		5.3 5.9	5.6	
				10.6	Middle	5.3	26.3 26.4	26.3	8.2 8.2	8.2	26.0 26.5	26.3	72.8 73.4	73.1	5.1 5.1	5.1	0.4	6.0 5.8	5.9	5.5	5.7 5.9	5.8	5.6
					Bottom	9.6	26.3 26.4	26.3	8.2 8.2	8.2	27.2 26.9	27.1	75.5 77.4	76.5	5.2 5.4	5.3	5.3	6.0 5.7	5.9		5.4 5.3	5.4	
27-Jun-16	Sunny	Moderate	17:42		Surface	1.0	29.0 28.9	29.0	8.4 8.3	8.3	21.1 21.2	21.2	103.7 109.2	106.5	7.1 7.5	7.3	7.0	4.3 4.6	4.5		5.4 6.0	5.7	
				10.6	Middle	5.3	28.2 26.5	27.3	8.3 8.3	8.3	22.6 25.8	24.2	93.3 101.5	97.4	6.4 7.0	6.7	7.0	4.5 4.6	4.6	4.5	5.9 6.3	6.1	6.1
					Bottom	9.6	26.5 26.4	26.4	8.3 8.3	8.3	28.0 28.0	28.0	79.8 85.2	82.5	5.6 5.9	5.7	5.7	4.4 4.5	4.5		6.4 6.3	6.4	
29-Jun-16	Sunny	Moderate	08:50		Surface	1.0	28.0 28.0	28.0	8.4 8.3	8.3	20.4 20.5	20.4	76.7 76.9	76.8	5.4 5.4	5.4	5.3	3.5 3.6	3.6		2.1 3.1	2.6	
				10.1	Middle	5.1	27.0 27.7	27.4	8.3 8.3	8.3	24.6 25.4	25.0	74.5 75.4	75.0	5.1 5.2	5.1	5.5	3.8 3.8	3.8	3.7	3.4 3.1	3.3	3.0
					Bottom	9.1	26.3 26.2	26.2	8.2 8.3	8.2	28.6 28.8	28.7	72.6 70.7	71.7	5.0 4.9	5.0	5.0	3.7 3.8	3.8		2.7 3.5	3.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	15:15		Surface	1.0	29.5 29.3	29.4	8.7 8.7	8.7	14.3 14.4	14.3	119.3 109.3	114.3	8.4 7.7	8.1		2.5 2.7	2.6		3.5 3.8	3.7	
				11.0	Middle	5.5	27.8 27.8	27.8	8.5 8.5	8.5	18.7 17.7	18.2	99.4 118.1	108.8	7.1 8.1	7.6	7.9	2.8	2.8	2.8	4.8 3.9	4.4	4.4
					Bottom	10.0	27.2 27.7	27.5	8.4 8.5	8.5	25.6	25.1	99.3	103.3	7.0 7.6	7.3	7.3	3.1	3.1		4.6 5.3	5.0	
3-Jun-16	Sunny	Moderate	17:50		Curfoss	1.0	29.3	29.4	8.5	8.5	24.5 17.0	16.9	111.8	114.6	7.8	9.0		4.5	4.6		7.8	8.2	
					Surface	1.0	29.5 28.1		8.5 8.4		16.8 21.6		117.4 95.5		8.2 6.6	8.0	7.4	4.6 2.9	4.6		8.6 9.0		ļ '
				11.3	Middle	5.7	28.2	28.2	8.4 8.4	8.4	21.6	21.6	100.8	98.2	7.0	6.8		2.8	2.9	3.7	9.0	9.0	9.3
					Bottom	10.3	28.4	28.2	8.4	8.4	21.6	21.6	110.9	107.7	7.7	7.4	7.4	3.5	3.6		10.2	10.6	<u> </u>
6-Jun-16	Cloudy	Moderate	07:03		Surface	1.0	27.7 27.7	27.7	8.3 8.3	8.3	21.8 22.4	22.1	76.3 77.2	76.8	5.3 5.3	5.3	5.3	2.3 2.2	2.3		2.5 2.7	2.6	
				10.0	Middle	5.0	27.1 27.1	27.1	8.2 8.2	8.2	28.5 28.6	28.6	75.5 76.7	76.1	5.1 5.2	5.2	5.5	2.2 2.2	2.2	2.2	2.8 2.4	2.6	2.6
					Bottom	9.0	27.3 27.0	27.2	8.2 8.1	8.1	29.6 30.0	29.8	74.7 75.1	74.9	5.1 5.1	5.1	5.1	2.2	2.2		2.8 2.3	2.6	
8-Jun-16	Sunny	Moderate	08:23		Surface	1.0	27.9 27.9	27.9	8.3	8.3	16.3	16.5	77.7 76.4	77.1	5.7 5.6	5.6		2.5	2.6		3.9 4.6	4.3	
				10.9	Middle	5.5	27.7	27.7	8.3	8.3	16.8	19.4	77.1	76.4	5.5	5.5	5.6	3.2	3.2	3.0	4.0	4.3	4.4
					Bottom	9.9	27.6 27.1	27.2	8.2 8.2	8.2	19.3 25.9	25.9	75.7 76.1	75.8	5.5 5.5	5.4	5.4	3.2	3.3		4.5	4.5	
10-Jun-16	Sunny	Moderate	10:10		Surface	1.0	27.2 28.2	28.2	8.1 8.3	8.3	26.0 18.4	18.3	75.4 73.5	73.2	5.4 5.2	5.1		3.3	3.3		4.6 2.2	3.0	
							28.1 27.3		8.3 8.3		18.3 22.1		72.9 72.5		5.1 5.0		5.1	3.2			3.7		
				11.9	Middle	6.0	27.3 26.6	27.3	8.2 8.2	8.3	23.1	22.6	72.1	72.3	5.0	5.0		3.6	3.6	3.6	3.2	3.3	3.3
10 1 10	<u> </u>		10.51		Bottom	10.9	26.7	26.6	8.2	8.2	28.7	28.8	71.2	71.0	4.9	4.9	4.9	3.8	3.8		3.7	3.7	
13-Jun-16	Cloudy	Moderate	12:54		Surface	1.0	28.3 28.3	28.3	8.3 8.3	8.3	12.2 12.3	12.2	84.2 84.5	84.4	6.1 6.1	6.1	5.9	3.3 3.5	3.4		3.9 3.6	3.8	
				11.1	Middle	5.6	27.0 27.3	27.2	8.1 8.1	8.1	20.2 20.1	20.1	80.6 81.2	80.9	5.5 5.6	5.6	0.0	3.3 3.5	3.4	3.5	3.2 2.1	2.7	3.1
					Bottom	10.1	26.1 26.3	26.2	8.0 8.0	8.0	30.2 30.1	30.1	74.2 74.4	74.3	5.3 5.3	5.3	5.3	3.5 3.6	3.6		2.9 2.6	2.8	
15-Jun-16	Sunny	Moderate	15:52		Surface	1.0	28.9 29.0	29.0	8.4 8.4	8.4	12.3 12.5	12.4	82.3 84.4	83.4	5.9 6.1	6.0		5.3 5.4	5.4		5.6 5.4	5.5	
				10.4	Middle	5.2	28.1	28.0	8.3	8.3	20.7	20.4	80.8	78.4	5.6	5.5	5.8	5.7	5.8	5.7	5.8	5.6	5.5
					Bottom	9.4	27.8 25.7	26.1	8.3 8.1	8.1	20.0	27.3	76.0 69.1	71.3	5.3 4.9	5.1	5.1	5.8 5.8	5.8		5.4 6.0	5.4	
17-Jun-16	Sunny	Moderate	17:34		Surface	1.0	26.5 29.4	29.4	8.1 8.4	8.4	25.7 11.8	11.8	73.5 82.4	85.2	5.3 5.9	6.1		5.8 6.4	6.3		4.8 5.1	4.7	
				40.5			29.4 27.9		8.4 8.3		11.9 19.5		87.9 80.9		6.3 5.6		5.8	6.2		0.0	4.2 6.1		5.0
				10.5	Middle	5.3	27.8 26.1	27.8	8.3 8.1	8.3	18.2 29.6	18.8	76.9 67.5	78.9	5.3 4.8	5.4		6.7 6.8	6.7	6.6	6.1 4.7	6.1	5.3
20 lun 10	Cunny	Madarata	06:14		Bottom	9.5	25.8	26.0	8.1	8.1	30.4	30.0	71.2	69.4	5.0	4.9	4.9	6.7	6.8		5.4	5.1	
20-Jun-16	Sunny	Moderate	06:14		Surface	1.0	28.0 27.9	27.9	8.3 8.2	8.2	18.9 18.9	18.9	76.7 74.3	75.5	5.4 5.3	5.3	5.2	3.6 3.6	3.6		3.5 3.6	3.6	
				10.7	Middle	5.4	26.1 26.7	26.4	8.1 8.2	8.2	24.9 25.2	25.1	72.7 74.2	73.5	5.1 5.2	5.1		3.8 3.9	3.9	3.8	4.0 4.8	4.4	4.2
					Bottom	9.7	26.3 25.4	25.9	8.1 8.1	8.1	29.9 31.4	30.6	75.1 79.3	77.2	5.1 5.4	5.3	5.3	3.7 4.1	3.9		4.8 4.6	4.7	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	g T	emperature (°C	C)	рН	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n) V	alue Avera	age Valu	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	07:43		Surface		7.3 7.6	5 8.4 8.4	8.4	20.1 19.9	20.0	76.8 78.0	77.4	5.3 5.4	5.4	5.3	4.0 3.8	3.9		3.9 3.5	3.7	
				11.2	Middle		6.8 6.8	8 8.3 8.3	8.3	23.9 24.0	24.0	74.8 72.9	73.9	5.2 5.1	5.1	5.5	4.0 4.0	4.0	4.0	4.9 3.7	4.3	5.4
					Bottom	1021	4.8 4.7	8 8.2 8.2	8.2	33.5 33.4	33.5	71.7 71.8	71.8	5.0 5.0	5.0	5.0	4.2 4.2	4.2		7.9 8.2	8.1	
24-Jun-16	Sunny	Moderate	08:50		Surface		7.8 7.9	8 8.2 8.2	8.2	20.3 19.9	20.1	74.6 75.5	75.1	5.4 5.5	5.4	5.3	3.2 3.2	3.2		6.7 6.0	6.4	
				10.8	Middle		5.3 5.0	1 8.1	8.1	31.2 31.9	31.6	73.5 73.1	73.3	5.2 5.2	5.2	3.3	3.5 3.8	3.7	3.5	6.8 7.2	7.0	6.1
					Bottom		5.0 5.2	1 8.0	8.0	32.3 32.1	32.2	71.1 71.4	71.3	5.0 5.1	5.0	5.0	3.7 3.4	3.6		4.8 5.2	5.0	
27-Jun-16	Sunny	Moderate	11:29		Surface	1.0	8.3 8.3	3 8.4 8.4	8.4	21.2 21.2	21.2	87.9 90.2	89.1	6.1 6.2	6.2	6.0	4.1 4.1	4.1		4.8 4.8	4.8	
				10.3	Middle		7.7 7.7	7 8.4 8.3	8.4	22.8 22.9	22.8	82.0 84.1	83.1	5.7 5.8	5.7	0.0	4.2 4.2	4.2	4.2	4.6 4.3	4.5	4.8
					Bottom	93	7.0 7.1	1 8.3	8.3	26.3 26.2	26.3	81.9 83.2	82.6	5.6 5.8	5.7	5.7	4.2 4.4	4.3		5.1 5.3	5.2	
29-Jun-16	Sunny	Moderate	14:07		Surface		8.6 8.5	5 8.4 8.4	8.4	21.1 21.1	21.1	83.0 83.3	83.2	5.7 5.8	5.7	5.6	4.4 4.5	4.5		4.9 5.3	5.1	
				10.7	Middle		6.6 6.9	7 8.4 8.4	8.4	25.4 25.3	25.3	79.6 76.0	77.8	5.5 5.3	5.4	5.0	5.6 5.5	5.6	5.2	5.7 6.1	5.9	5.6
					Bottom		6.2 6.6	4 8.3 8.4	8.3	28.9 26.7	27.8	74.4 72.1	73.3	5.2 5.0	5.1	5.1	5.7 5.5	5.6		5.9 5.9	5.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	29.1 29.1	29.1	8.6 8.6	8.6	16.6 16.6	16.6	128.1 127.9	128.0	9.0 9.0	9.0	9.0	6.8 6.7	6.8	6.8	4.6 4.0	4.3	4.3
					Bottom		-	-	-	-	-	-		-	-	-	-	-	-		-	-	
3-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-		-	-	
				1.8	Middle	0.9	29.5 29.5	29.5	8.5 8.5	8.5	16.8 16.8	16.8	134.8 136.0	135.4	9.4 9.5	9.4	9.4	6.2 6.2	6.2	6.2	6.1 4.8	5.5	5.5
					Bottom	-		-	-	-	1 1	-	1 1	-		-	-	-	-		-	-	
6-Jun-16	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-		-	-	
				1.4	Middle	0.7	27.8 27.8	27.8	8.1 8.0	8.0	20.5 20.6	20.5	83.2 85.4	84.3	5.8 6.0	5.9	3.9	5.9 5.7	5.8	5.8	8.0 8.2	8.1	8.1
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
8-Jun-16	Sunny	Moderate	-		Surface	-	1 1	-	-	-	1 1	-	1 1	-		-	5.9	-	-		-	-	
				1.4	Middle	0.7	28.1 28.1	28.1	8.7 8.6	8.7	19.3 19.1	19.2	82.1 84.5	83.3	5.8 5.9	5.9	0.0	3.2 3.1	3.2	3.2	3.6 4.0	3.8	3.8
					Bottom	-	1 1	-	-	-	-	-		-	-	-	-	-	-		-	-	
10-Jun-16	Rainy	Moderate	-		Surface	-		-	-	-	-	-		-	-	-	7.6	-	-		-	-	
				1.4	Middle	0.7	28.8 28.8	28.8	8.7 8.7	8.7	15.7 16.0	15.9	104.4 108.9	106.7	7.4 7.7	7.6		2.4 2.3	2.4	2.4	4.2 4.4	4.3	4.3
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
13-Jun-16	Cloudy	Moderate	-		Surface	-		-	-	-		-		-	-	-	5.9	-	-		-	-	
				1.6	Middle	8.0	27.8 27.8	27.8	8.2 8.2	8.2	16.1 16.2	16.1	81.9 82.2	82.1	5.9 5.9	5.9		2.6 2.9	2.8	2.8	3.8 3.2	3.5	3.5
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
15-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.8	-	-		-	-	
				1.4	Middle	0.7	29.0 29.0	29.0	8.3 8.3	8.3	14.1 14.1	14.1	94.7 95.4	95.1	6.7 6.8	6.8		4.5 4.7	4.6	4.6	9.8 9.7	9.8	9.8
47.1.40					Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	
17-Jun-16	Sunny	Moderate	-		Surface	-		-		-		-	98.8	-	7.1	-	7.2	4.8	-		- 10	-	
				1.2	Middle	0.6	29.2 29.2	29.2	8.4 8.4	8.4	12.4 12.4	12.4	101.0	99.9	7.1 7.2	7.2		4.8	4.9	4.9	4.9 6.0	5.5	5.5
20 him 40	Comment	Madagat			Bottom	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	
20-Jun-16	Sunny	Moderate	-		Surface	-		-		-		-	- - 05.5	-	-	-	6.7		-		- 16	-	
				1.6	Middle	8.0	28.6 28.6	28.6	8.5 8.5	8.5	16.0 15.6	15.8	95.5 94.2	94.9	6.8 6.7	6.7		5.3 5.2	5.3	5.3	4.6 3.9	4.3	4.3
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (ı	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-		-	-	
				1.6	Middle	0.8	28.6 28.5	28.6	8.7 8.7	8.7	15.6 15.8	15.7	88.7 87.7	88.2	6.3 6.2	6.3	6.3	6.5 6.6	6.6	6.6	7.0 6.7	6.9	6.9
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
24-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	1 1	-	6.0	-	-		-	-	
				1.6	Middle	8.0	28.4 28.3	28.4	8.4 8.4	8.4	18.0 17.9	18.0	84.4 84.9	84.7	5.9 6.0	6.0	0.0	6.6 6.6	6.6	6.6	10.4 9.6	10.0	10.0
					Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	
27-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-		-	9.4	-	-		-	-	
				1.6	Middle	8.0	29.5 29.5	29.5	8.5 8.5	8.5	19.5 19.5	19.5	138.0 137.8	137.9	9.5 9.4	9.4	3.4	6.9 7.2	7.1	7.1	8.2 8.4	8.3	8.3
					Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	
29-Jun-16	Sunny	Moderate	-	_	Surface	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	_	-	-	
				1.6	Middle	8.0	28.3 28.2	28.3	8.3 8.3	8.3	20.5 20.8	20.7	85.6 83.9	84.8	5.9 5.8	5.9	5.9	5.5 5.7	5.6	5.6	6.5 6.6	6.6	6.6
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	ř.	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.4	Middle	0.7	29.7 29.7	29.7	8.8 8.9	8.8	15.2 15.2	15.2	138.1 145.0	141.6	9.7 10.1	9.9	9.9	5.2 5.2	5.2	5.2	9.2 9.0	9.1	9.1
					Bottom	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	
3-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-		-	-	
				1.6	Middle	0.8	29.9 30.1	30.0	8.4 8.4	8.4	16.2 15.8	16.0	116.0 118.3	117.2	8.0 8.2	8.1	8.1	7.2 6.5	6.9	6.9	10.6 10.0	10.3	10.3
					Bottom	-	-	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
6-Jun-16	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-		-	-	
				1.6	Middle	0.8	28.0 28.0	28.0	8.3 8.3	8.3	20.8 20.9	20.9	80.9 80.7	80.8	5.6 5.6	5.6	3.0	5.6 5.6	5.6	5.6	5.9 5.7	5.8	5.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
8-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	1 1	-	1 1	-	-	-	5.7	-	-		-	-	
				1.4	Middle	0.7	28.0 28.0	28.0	8.2 8.2	8.2	17.9 17.9	17.9	81.0 81.2	81.1	5.7 5.8	5.7	0.7	3.1 3.1	3.1	3.1	6.1 5.6	5.9	5.9
					Bottom	-	-	-	-	-	1 1	-		-	-	-	-	-	-		-	-	
10-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-		-	-	
				1.4	Middle	0.7	28.4 28.6	28.5	8.3 8.3	8.3	18.5 18.4	18.4	94.5 94.7	94.6	6.6 6.6	6.6		2.4 2.4	2.4	2.4	2.4 4.3	3.4	3.4
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
13-Jun-16	Cloudy	Moderate	-		Surface	-	-	-	-	-		-		-	-	-	6.4	-	-		-	-	
				1.6	Middle	8.0	27.8 27.8	27.8	8.5 8.4	8.5	15.0 15.0	15.0	89.9 87.1	88.5	6.5 6.3	6.4		2.6 2.7	2.7	2.7	4.0 4.4	4.2	4.2
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
15-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-		-	-	
				1.4	Middle	0.7	28.8 28.8	28.8	8.6 8.6	8.6	13.2 13.2	13.2	92.0 92.2	92.1	6.6 6.6	6.6		5.0 5.0	5.0	5.0	6.9 6.2	6.6	6.6
47 1 40	Comment	Madagas			Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
17-Jun-16	Sunny	Moderate	-		Surface	-	29.3	-	8.7	-	10.7	-	107.4	-	7.8	-	7.6	4.5	-		4.9	-	
				1.2	Middle	0.6	29.3	29.3	8.7	8.7	10.7	10.6	107.4	105.9	7.8	7.6		4.6	4.6	4.6	4.9	4.8	4.8
20. lun 10	Cuppy	Madarata			Bottom	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	<u> </u>
20-Jun-16	Sunny	Moderate	-		Surface	-	28.8	-	8.4	-	- - 16.9	-	109.2	-	7.7	-	7.7	5.5	-		8.5	-	
				1.6	Middle	8.0	28.7	28.7	8.4	8.4	17.1	17.0	109.2	109.4	7.7	7.7		5.5 5.9	5.7	5.7	8.2	8.4	8.4
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	-	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplii	ng	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		-	-	
				1.6	Middle	0.8	28.7 28.7	28.7	8.4 8.4	8.4	17.7 17.7	17.7	106.1 106.7	106.4	7.4 7.5	7.5	7.5	4.2 4.2	4.2	4.2	5.3 6.3	5.8	5.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
24-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-		-	7.4	-	-		-	-	
				1.6	Middle	8.0	28.9 28.8	28.9	8.4 8.4	8.4	18.4 18.4	18.4	107.3 105.9	106.6	7.5 7.4	7.4	7.4	3.9 4.3	4.1	4.1	5.6 5.0	5.3	5.3
					Bottom	-	-	-		-	-	-	-	-		-	-	-	-		-	-	
27-Jun-16	Sunny	Moderate	-		Surface	-	-	-		-	-	-	-	-		-	8.5	-	-		-	-	
				1.4	Middle	0.7	29.3 29.3	29.3	8.5 8.5	8.5	21.3 21.4	21.4	130.2 127.1	128.7	8.6 8.3	8.5	0.5	4.1 4.3	4.2	4.2	5.2 6.4	5.8	5.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
29-Jun-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-		-	-	
				1.6	Middle	8.0	29.0 29.0	29.0	8.4 8.4	8.4	18.4 18.2	18.3	104.4 102.5	103.5	7.3 7.1	7.2	1.2	4.1 4.2	4.2	4.2	5.0 4.8	4.9	4.9
					Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	11:01		Surface	1.0	29.1 29.0	29.0	8.6 8.7	8.6	15.0 15.0	15.0	116.5 112.2	114.4	8.2 7.9	8.1	0.4	5.6 5.8	5.7		6.2 5.9	6.1	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	8.1	-	-	6.0	-	_	6.7
					Bottom	2.4	29.1 29.0	29.0	8.6 8.7	8.7	15.0 15.1	15.1	114.3 106.5	110.4	8.1 7.5	7.8	7.8	6.2 6.1	6.2		7.9 6.7	7.3	
3-Jun-16	Sunny	Moderate	11:41		Surface	1.0	28.7 28.7	28.7	8.4 8.4	8.4	16.8 16.4	16.6	99.4 99.1	99.3	7.0 7.0	7.0	7.0	2.6 2.4	2.5		4.0 5.3	4.7	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	2.7	-	-	5.1
					Bottom	2.7	28.6 28.7	28.6	8.4 8.4	8.4	17.3 17.4	17.3	98.9 99.2	99.1	7.0 7.0	7.0	7.0	2.8 3.0	2.9		6.1 4.7	5.4	
6-Jun-16	Cloudy	Moderate	13:18		Surface	1.0	28.1 28.0	28.0	8.2 8.2	8.2	19.3 19.5	19.4	88.8 86.9	87.9	6.2 6.1	6.2	6.2	3.0 3.1	3.1		2.9 2.2	2.6	
				4.0	Middle	-	-	-		-		-	-	-		-	6.∠	-	-	3.1	-	-	2.4
					Bottom	3.0	28.0 28.0	28.0	8.2 8.2	8.2	19.7 20.1	19.9	91.9 87.8	89.9	6.5 6.1	6.3	6.3	3.0 3.2	3.1		2.1 2.2	2.2	
8-Jun-16	Sunny	Moderate	14:37		Surface	1.0	28.3 28.2	28.3	8.3 8.3	8.3	18.2 18.7	18.5	86.6 86.9	86.8	6.1 6.1	6.1	0.4	2.8 2.6	2.7		3.3 2.7	3.0	
				3.6	Middle	-	-	-	-	-	-	-	-	-		-	6.1	-	-	2.7	-	-	2.8
					Bottom	2.6	28.2 28.0	28.1	8.3 8.3	8.3	19.0 20.9	20.0	85.5 84.6	85.1	6.0 5.9	6.0	6.0	2.7 2.5	2.6		2.7 2.5	2.6	
10-Jun-16	Rainy	Moderate	16:19		Surface	1.0	28.4 28.6	28.5	8.5 8.5	8.5	17.7 17.6	17.6	101.0 97.0	99.0	7.1 6.8	7.0	7.0	3.5 3.6	3.6		3.7 2.8	3.3	
				4.0	Middle	-	-	-		-	-	-	-	-		-	7.0	-	-	3.6	-	-	3.6
					Bottom	3.0	28.0 28.5	28.3	8.5 8.5	8.5	19.6 19.1	19.3	94.1 100.7	97.4	6.6 7.0	6.8	6.8	3.6 3.6	3.6		3.6 4.0	3.8	
13-Jun-16	Cloudy	Moderate	08:54		Surface	1.0	27.6 27.7	27.7	8.2 8.2	8.2	14.2 14.3	14.2	84.8 84.9	84.9	6.2 6.2	6.2	6.2	2.4 2.3	2.4		3.0 3.6	3.3	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	2.4	-	-	3.0
					Bottom	2.3	27.7 27.6	27.7	8.2 8.1	8.1	15.1 15.2	15.2	84.8 84.8	84.8	6.1 6.1	6.1	6.1	2.4 2.4	2.4		2.4 2.9	2.7	
15-Jun-16	Sunny	Moderate	10:56		Surface	1.0	28.9 29.0	28.9	8.3 8.3	8.3	12.7 12.8	12.8	87.3 92.2	89.8	6.3 6.6	6.4	6.4	7.7 7.7	7.7		7.4 7.2	7.3	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-	7.8	-	-	7.1
					Bottom	2.7	28.7 28.4	28.6	8.2 8.2	8.2	16.1 16.2	16.2	89.3 85.5	87.4	6.3 6.1	6.2	6.2	7.7 7.8	7.8		7.4 6.3	6.9	
17-Jun-16	Sunny	Moderate	12:06		Surface	1.0	28.5 28.6	28.6	8.2 8.2	8.2	12.8 13.0	12.9	76.2 77.6	76.9	5.5 5.6	5.6	5.6	7.3 7.3	7.3		3.1 2.8	3.0	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-	7.4	-	-	3.9
					Bottom	2.8	28.2 28.0	28.1	8.1 8.1	8.1	18.5 17.4	17.9	77.9 72.6	75.3	5.5 5.2	5.3	5.3	7.4 7.3	7.4		4.5 4.8	4.7	
20-Jun-16	Sunny	Moderate	12:07		Surface	1.0	28.4 28.4	28.4	8.4 8.3	8.4	17.3 17.4	17.3	93.9 91.5	92.7	6.6 6.5	6.5	6.5	4.3 4.1	4.2		6.0 6.3	6.2	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-	4.3	-	-	6.2
					Bottom	2.8	28.3 28.0	28.1	8.4 8.3	8.3	19.5 19.4	19.4	98.1 92.5	95.3	6.9 6.5	6.7	6.7	4.4 4.3	4.4		6.8 5.4	6.1	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	13:17		Surface	1.0	29.1 29.2	29.2	8.5 8.5	8.5	16.6 16.6	16.6	113.7 122.4	118.1	8.0 8.6	8.3	8.3	4.8 4.6	4.7		8.0 7.8	7.9	
				3.3	Middle			-		-		-		-	1 1	-	0.5	-	-	4.9	-	-	7.9
					Bottom	2.3	29.0 28.8	28.9	8.5 8.4	8.4	17.6 17.2	17.4	118.3 108.2	113.3	8.3 7.6	7.9	7.9	4.9 5.0	5.0		8.2 7.5	7.9	
24-Jun-16	Sunny	Moderate	14:40		Surface	1.0	28.9 28.9	28.9	8.5 8.5	8.5	17.8 17.8	17.8	112.2 111.4	111.8	7.8 7.8	7.8	7.8	7.5 6.7	7.1		6.7 6.4	6.6	
				3.8	Middle	-	-	-		-	-	-		-		-	7.0	-	-	7.3	-	-	6.7
					Bottom	2.8	28.8 28.2	28.5	8.5 8.4	8.5	20.1 20.6	20.3	109.7 105.5	107.6	7.6 7.3	7.5	7.5	7.2 7.8	7.5		7.2 6.4	6.8	
27-Jun-16	Sunny	Moderate	17:23		Surface	1.0	29.3 29.3	29.3	8.4 8.4	8.4	20.4 20.4	20.4	144.7 148.4	146.6	9.9 10.1	10.0	10.0	13.5 13.5	13.5		6.6 6.1	6.4	
				3.5	Middle	•	-	-		-	-	-		-	1 1	-	10.0	-	-	13.5	-	-	7.5
					Bottom	2.5	28.8 29.1	28.9	8.4 8.4	8.4	21.3 21.9	21.6	135.4 136.9	136.2	9.3 9.4	9.3	9.3	13.2 13.8	13.5		8.2 8.7	8.5	
29-Jun-16	Sunny	Moderate	09:09		Surface	1.0	28.4 28.5	28.4	8.4 8.4	8.4	19.3 19.3	19.3	90.9 92.6	91.8	6.4 6.5	6.4	6.4	6.7 6.5	6.6	_	5.5 5.3	5.4	
				3.7	Middle	-	-	-		-	-	-		-		-	0.4	-	-	6.6	-	-	6.4
					Bottom	2.7	27.6 28.5	28.1	8.3 8.4	8.4	23.3 23.1	23.2	92.4 92.6	92.5	6.4 6.3	6.4	6.4	6.5 6.5	6.5		6.6 8.1	7.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ţ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	14:55		Surface	1.0	29.3 29.3	29.3	8.8 8.8	8.8	15.0 15.0	15.0	133.5 134.0	133.8	9.4 9.5	9.4		9.9 9.8	9.9		7.5 8.2	7.9	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	9.4	-	-	10.0	-	-	9.0
					Bottom	2.2	29.1	29.2	8.9	8.8	15.8	15.9	128.4 133.9	131.2	9.0	9.2	9.2	10.0	10.0		10.1	10.1	
3-Jun-16	Sunny	Moderate	17:13				29.2		8.8 8.6		16.0 16.9		133.9		9.4 8.7			9.9			8.2		\vdash
	,				Surface	1.0	29.5	29.5	8.5	8.6	17.0	16.9	131.3	128.1	9.1	8.9	8.9	9.7	9.5		8.3	8.3	
				3.7	Middle	-	29.4	-	- 8.5	-	- 17.0	-	129.4	-	9.0	-		- 9.5	-	9.4	8.4	-	8.7
					Bottom	2.7	29.4	29.4	8.6	8.6	16.9	16.9	125.5	127.5	8.8	8.9	8.9	8.8	9.2		9.6	9.0	
6-Jun-16	Cloudy	Moderate	07:21		Surface	1.0	28.1 28.1	28.1	8.3 8.3	8.3	18.9 18.9	18.9	81.2 81.4	81.3	5.7 5.7	5.7	5.7	2.6 2.6	2.6		2.1 2.5	2.3	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.7	-	-	2.6	-	-	2.6
					Bottom	2.7	28.1 28.1	28.1	8.3 8.3	8.3	20.4 20.2	20.3	81.1 81.3	81.2	5.7 5.7	5.7	5.7	2.5 2.6	2.6		3.3 2.5	2.9	İ
8-Jun-16	Sunny	Moderate	08:47		Surface	1.0	28.0 28.0	28.0	8.2 8.2	8.2	17.4 17.4	17.4	72.1 72.3	72.2	5.1 5.1	5.1		6.7 6.6	6.7		5.1 5.8	5.5	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	5.1	-	-	6.7	-	-	5.8
					Bottom	2.9	28.0	28.0	8.2	8.2	18.8	18.8	72.4	72.3	5.1	5.1	5.1	6.7	6.7		6.1	6.0	
10-Jun-16	Sunny	Moderate	10:36		Surface	1.0	28.0 28.3	28.3	8.2 8.2	8.2	18.8 17.3	17.4	72.1 76.4	76.3	5.1 5.4	5.4		6.6 2.1	2.1		5.9 2.6	2.6	
				2.7		1.0	28.3	20.5	8.3	0.2	17.4	17.4	76.1	70.5	5.4	5.4	5.4	2.1		2.0	2.5		2.0
				3.7	Middle	-	27.8	-	8.2		20.8	-	75.0	-	- 5.3	-		2.2	-	2.2	2.8	-	2.6
40 him 40	Claudin	Madagata	40.04		Bottom	2.7	28.1	27.9	8.2	8.2	20.8	20.8	76.4	75.7	5.3	5.3	5.3	2.2	2.2		2.2	2.5	<u> </u>
13-Jun-16	Cloudy	Moderate	12:31		Surface	1.0	28.0 28.0	28.0	8.2 8.3	8.3	14.5 14.4	14.5	89.0 89.1	89.1	6.4 6.4	6.4	6.4	3.1 3.0	3.1		3.1 3.3	3.2	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.2	-	-	3.2
					Bottom	2.3	28.1 27.9	28.0	8.3 8.3	8.3	14.4 14.9	14.6	89.0 88.9	89.0	6.4 6.4	6.4	6.4	3.2 3.2	3.2		3.9 2.2	3.1	
15-Jun-16	Sunny	Moderate	15:30		Surface	1.0	28.9 28.9	28.9	8.4 8.3	8.4	13.3 13.3	13.3	94.0 93.5	93.8	6.7 6.7	6.7		11.4 11.5	11.5		12.3 10.1	11.2	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	11.5	-	-	11.1
					Bottom	2.8	28.7 28.8	28.7	8.4 8.3	8.3	13.9 13.8	13.8	92.5 93.7	93.1	6.6 6.7	6.7	6.7	11.2 11.5	11.4		10.2 11.6	10.9	
17-Jun-16	Sunny	Moderate	17:12	<u> </u>	Surface	1.0	29.4	29.4	8.5	8.5	11.6	11.8	103.3	102.4	7.4	7.3		9.4	9.3		7.2	7.7	
				3.8	Middle		29.3		8.5		12.0		101.4		7.3		7.3	9.2		9.5	8.1		7.3
				0.0		2.8	29.3	29.2	8.5	8.5	12.4	12.6	101.9	100.6	7.3	7.2	7.2	9.7	9.6	0.0	7.4	6.9	1.0
20-Jun-16	Sunny	Moderate	06:47		Bottom		29.1 28.4		8.5 8.2		12.8 16.4		99.3 86.8		7.1 6.2		1.2	9.5 4.0			6.3 4.9		
20 0011 10	Curity	Moderate	00.47		Surface	1.0	28.3	28.3	8.2	8.2	16.5	16.4	86.7	86.8	6.2	6.2	6.2	4.3	4.2		4.8	4.9	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.4	-	-	5.2
					Bottom	2.7	28.3 27.8	28.1	8.2 8.1	8.2	18.3 18.5	18.4	88.1 81.6	84.9	6.2 5.8	6.0	6.0	4.3 4.6	4.5		5.7 5.1	5.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	p	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	08:07		Surface	1.0	28.2 28.2	28.2	8.3 8.3	8.3	18.1 18.1	18.1	80.5 80.8	80.7	5.7 5.7	5.7	5.7	7.7 7.8	7.8		5.5 5.1	5.3	
				3.3	Middle	-		•		-	-	-	-	-		-	5.7	-	-	7.9	-	-	5.2
					Bottom	2.3	28.2 28.1	28.1	8.3 8.2	8.3	18.1 18.4	18.2	80.7 80.5	80.6	5.7 5.7	5.7	5.7	7.9 8.0	8.0		5.0 5.1	5.1	
24-Jun-16	Sunny	Moderate	09:20		Surface	1.0	28.2 28.2	28.2	8.2 8.2	8.2	18.4 18.4	18.4	77.2 77.2	77.2	5.4 5.4	5.4	5.4	6.5 6.3	6.4		6.7 6.4	6.6	
				3.7	Middle	-		-		-	-	-	-	-		-	0.4	-	-	6.6	-	-	7.6
					Bottom	2.7	28.1 28.2	28.2	8.2 8.2	8.2	19.3 19.4	19.4	77.8 77.4	77.6	5.5 5.4	5.4	5.4	7.1 6.5	6.8		9.0 8.2	8.6	
27-Jun-16	Sunny	Moderate	11:51		Surface	1.0	28.5 28.3	28.4	8.4 8.3	8.4	20.7 21.2	20.9	87.9 86.3	87.1	6.1 6.0	6.0	6.0	11.5 11.0	11.3		15.7 15.5	15.6	
				3.7	Middle	-		-		-	-	-	-	-		-	0.0	-	-	11.4	-	-	15.9
					Bottom	2.7	28.0 28.2	28.1	8.3 8.3	8.3	22.4 22.2	22.3	84.7 86.3	85.5	5.9 6.0	5.9	5.9	11.2 11.5	11.4		16.4 15.9	16.2	
29-Jun-16	Sunny	Moderate	13:41		Surface	1.0	28.9 28.7	28.8	8.5 8.5	8.5	20.5 20.6	20.6	101.8 101.7	101.8	7.0 7.0	7.0	7.0	9.4 9.5	9.5		12.1 11.6	11.9	
				3.8	Middle	-		-		-	-	-	-	-	-	-	7.0	-	-	9.5	-	-	11.9
					Bottom	2.8	28.7 28.2	28.5	8.5 8.5	8.5	22.0 22.2	22.1	102.5 98.5	100.5	7.0 6.8	6.9	6.9	9.5 9.5	9.5		11.1 12.6	11.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-EbbTide

	Sunny	Condition**	Time							H	Salini		DO Satu			ed Oxygen		T					(mg/L)
1-Jun-16 Si	Sunny		Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
		Moderate	10:10		Surface	1.0	28.5 28.4	28.5	8.4 8.4	8.4	11.1 11.1	11.1	97.0 95.2	96.1	7.1 7.0	7.0	7.0	7.1 7.2	7.2		2.6 3.4	3.0	
				5.1	Middle			-	-	-	-	-	-	-	-	-	7.0	-	-	7.3	-	-	3.2
					Bottom	4.1	28.4 28.1	28.3	8.3 8.2	8.3	15.7 16.0	15.8	96.1 95.3	95.7	6.9 6.8	6.8	6.8	7.3 7.4	7.4		3.5 3.3	3.4	
3-Jun-16 Su	Sunny	Moderate	11:56		Surface	1.0	28.7	28.8	8.5	8.5	14.6	14.6	100.3	99.7	7.2	7.1		3.4	3.5		2.8	3.0	
				5.2	Middle		28.8	-	8.5	-	14.6	-	99.1	-	7.1		7.1	3.5	0.0	3.5	3.2	-	3.6
				5.2		4.2	28.3	28.5	8.4	8.4	18.5	19.4	96.5	98.6	6.8		6.9	3.5	3.5	5.5	4.4	4.1	3.0
6-Jun-16 Clo	Cloudy	Moderate	13:19		Bottom		28.6 27.8		8.4 8.2		20.3 17.5		100.7 93.1		7.0 6.6	6.9	6.9	3.4 2.5			3.7 3.1		
	,,oud,	moderate	10.10		Surface	1.0	27.7	27.8	8.2	8.2	20.0	18.7	85.6	89.4	6.1	6.3	6.3	2.4	2.5		3.2	3.2	
				5.2	Middle	-	27.8	-	8.3	-	16.4	-	80.3	-	5.7	-		-	-	2.7	-	-	3.2
					Bottom	4.2	27.7	27.7	8.2	8.2	20.0	18.2	78.1	79.2	5.6	5.6	5.6	2.8	2.8		3.2 3.2	3.2	
8-Jun-16 Su	Sunny	Moderate	14:50		Surface	1.0	28.7 28.7	28.7	8.3 8.3	8.3	13.5 13.6	13.6	87.4 85.7	86.6	6.4 6.2	6.3	6.3	1.4 1.2	1.3		2.3 2.2	2.3	
				5.2	Middle	-	1 1	-	-	-		-		-		-		-	-	1.3	-	-	2.8
					Bottom	4.2	28.5 28.5	28.5	8.2 8.2	8.2	15.8 15.7	15.7	89.5 85.8	87.7	6.5 6.2	6.3	6.3	1.3 1.2	1.3		2.8 3.5	3.2	
10-Jun-16 Ra	Rainy	Moderate	16:26		Surface	1.0	29.0 28.6	28.8	8.4 8.3	8.4	15.3 16.5	15.9	76.0 75.9	76.0	5.9 5.9	5.9		2.5 2.8	2.7		2.1 2.2	2.2	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	2.8	-	-	2.3
					Bottom	4.1	27.4 27.9	27.7	8.2 8.3	8.2	23.2 22.6	22.9	74.9 75.4	75.2	5.9 5.9	5.9	5.9	2.8 2.7	2.8		2.2 2.5	2.4	
13-Jun-16 Clo	Cloudy	Moderate	08:01		Surface	1.0	27.8	27.9	8.1	8.1	18.5	18.5	83.3	83.2	6.2	6.2		3.7	3.7		4.3	4.7	
				4.9	Middle	-	27.9	-	8.1	_	18.4	_	83.1	-	6.2	-	6.2	3.7	-	3.9	5.1	-	4.3
					Bottom	3.9	27.8	27.8	8.1	8.1	19.4	19.3	81.5	80.9	6.0	6.0	6.0	3.9	4.0		4.4	3.9	
15-Jun-16 Su	Sunny	Moderate	11:00		Surface	1.0	27.8 28.6	28.6	8.1 8.2	8.2	19.1 8.4	8.3	80.3 74.3	74.8	6.0 5.5	5.5		4.0 5.7	5.7		3.3 5.2	5.0	
				5.1	Middle	1.0	28.5	20.0	8.2	-	8.3	-	75.2	74.0	5.6	5.5	5.5	5.6	5.7	5.9	4.7	-	5.0
				5.1		-	27.4		7.8		20.4		74.4		5.3	-		6.0	-	5.8	5.0		5.0
17-Jun-16 Su	Sunny	Moderate	11:32		Bottom	4.1	27.4	27.4	7.8 8.1	7.8	20.5 7.9	20.4	76.1 77.8	75.3	5.3 5.8	5.3	5.3	5.9 5.6	6.0		4.8	4.9	
17-5011-10	Juliny	Moderate	11.02		Surface	1.0	28.9	28.7	8.1	8.1	8.0	8.0	76.2	77.0	5.6	5.7	5.7	5.8	5.7		4.2	4.2	
				4.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.6	-	-	4.8
					Bottom	3.7	28.3 27.7	28.0	7.9 7.8	7.9	17.0 20.9	19.0	78.8 79.7	79.3	5.6 5.6	5.6	5.6	5.4 5.6	5.5		4.9 5.7	5.3	
20-Jun-16 Su	Sunny	Moderate	12:37		Surface	1.0	27.9 28.3	28.1	8.0 8.1	8.1	20.0 19.1	19.6	75.4 74.4	74.9	5.4 5.5	5.5	5.5	4.1 4.2	4.2	·	4.4 5.2	4.8	
				5.3	Middle	-		-	-	-	-	-	-	-	-	-	5.5	-	-	4.3	-	-	4.8
					Bottom	4.3	27.8 27.9	27.9	7.9 7.9	7.9	24.2 23.1	23.6	74.6 72.7	73.7	5.3 5.4	5.3	5.3	4.2 4.3	4.3		4.6 5.0	4.8	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	14:53		Surface	1.0	29.3 29.2	29.2	8.2 8.2	8.2	9.5 9.5	9.5	75.8 76.0	75.9	5.8 5.7	5.7	5.7	7.3 7.1	7.2		3.5 3.4	3.5	
				5.2	Middle	-	1 1	-		-	-	-	-	-		-	3.7	-	-	7.5	-	-	3.6
					Bottom	4.2	27.2 27.6	27.4	8.0 8.0	8.0	20.4 20.3	20.3	75.8 76.8	76.3	5.7 5.8	5.7	5.7	7.8 7.5	7.7		3.7 3.5	3.6	
24-Jun-16	Sunny	Moderate	15:02		Surface	1.0	28.9 28.7	28.8	8.2 8.1	8.2	19.0 18.3	18.7	82.1 81.8	82.0	5.9 5.8	5.8	5.8	3.4 3.3	3.4		4.8 6.2	5.5	
				5.3	Middle	-		-	1 1	-	-	-	-	-	1 1	-	0.0	-	-	3.5	-	-	5.5
					Bottom	4.3	28.5 28.5	28.5	8.1 8.1	8.1	16.6 16.2	16.4	79.8 78.6	79.2	5.7 5.6	5.6	5.6	3.5 3.6	3.6		5.2 5.7	5.5	
27-Jun-16	Sunny	Moderate	17:33		Surface	1.0	28.9 29.9	29.4	8.4 8.4	8.4	17.4 15.2	16.3	96.8 94.1	95.5	6.8 6.6	6.7	6.7	2.9 3.0	3.0		3.4 4.3	3.9	
				5.3	Middle	-		-		-	-	-	-	-	1 1	-	0.7	-	-	2.9	-	-	4.1
					Bottom	4.3	28.0 28.0	28.0	8.4 8.3	8.3	20.2 20.7	20.5	97.4 96.2	96.8	6.8 6.7	6.8	6.8	2.7 2.7	2.7		3.8 4.7	4.3	
29-Jun-16	Sunny	Moderate	08:20		Surface	1.0	27.9 28.4	28.2	8.3 8.3	8.3	16.9 16.7	16.8	76.6 81.4	79.0	5.5 5.8	5.6	5.6	3.1 3.1	3.1		5.4 5.3	5.4	
				5.3	Middle	-	1 1	-	1 1	-	-	-	-	-	-	-	5.0	-	-	3.2	-	-	5.3
					Bottom	4.3	27.4 28.0	27.7	8.2 8.2	8.2	21.4 21.1	21.2	73.7 76.3	75.0	5.2 5.3	5.3	5.3	3.2 3.1	3.2		5.4 4.7	5.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	ř.	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	15:41		Surface	1.0	29.0 28.8	28.9	8.5 8.4	8.4	12.3 12.3	12.3	100.3 101.5	100.9	7.2 7.3	7.3		6.8 6.8	6.8		4.6 4.2	4.4	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	6.8	-	-	4.1
					Bottom	4.2	28.1 28.6	28.3	8.4 8.4	8.4	16.8 16.6	16.7	94.2 102.5	98.4	6.7 7.3	7.0	7.0	6.7 6.8	6.8		4.1	3.7	
3-Jun-16	Sunny	Moderate	17:43		Surface	1.0	29.3	29.3	8.5	8.5	13.6	13.5	107.2	107.3	7.6	7.6		1.8	1.9		3.0	3.4	
				5.0		1.0	29.3		8.5		13.5		107.4		7.6	7.0	7.6	1.9	1.9	4.0	3.8	3.4	
				5.3	Middle		28.8	-	8.4	-	16.3	-	103.4	-	7.3			- 1.9	-	1.9	2.4	-	3.3
C I 40	Classels	Madagata	07.47		Bottom	4.3	28.8	28.8	8.4	8.4	16.3 19.2	16.3	108.3	105.9	7.7	7.5	7.5	1.9	1.9		3.7	3.1	
6-Jun-16	Cloudy	Moderate	07:17		Surface	1.0	27.7 27.8	27.7	8.3	8.3	19.4	19.3	75.9 76.2	76.1	5.4 5.4	5.4	5.4	5.3 5.4	5.4		2.6 2.2	2.4	
				5.4	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.5	-	-	2.7
					Bottom	4.4	27.6 27.6	27.6	8.2 8.2	8.2	24.5 24.6	24.5	76.0 76.9	76.5	5.2 5.3	5.3	5.3	5.6 5.5	5.6		2.5 3.3	2.9	
8-Jun-16	Sunny	Moderate	07:31		Surface	1.0	27.8 27.8	27.8	8.2 8.2	8.2	16.9 16.4	16.6	76.9 76.3	76.6	5.6 5.6	5.6		1.5 1.5	1.5		2.7 2.8	2.8	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-	1.6	-	-	2.7
					Bottom	4.1	27.7 27.8	27.8	8.2 8.2	8.2	20.4	20.3	76.3 76.9	76.6	5.5 5.5	5.5	5.5	1.6	1.6		2.0	2.5	
10-Jun-16	Sunny	Moderate	10:04		Surface	1.0	27.9	27.9	8.2	8.2	15.8	15.9	75.9	75.8	5.8	5.7		2.1	2.1		5.9	5.8	
				5.2	Middle	_	28.0	_	8.2	_	16.0	_	75.7 -	_	5.7	_	5.7	2.1	<u> </u>	2.2	5.7	_	5.8
					Bottom	4.2	27.8	27.7	8.1	8.1	22.7	22.8	75.8	75.5	5.7	5.7	5.7	2.4	2.3		5.2	5.7	1
13-Jun-16	Cloudy	Moderate	13:41			1.0	27.7 27.7	27.9	8.1 8.0	8.1	22.8 18.2	18.2	75.2 83.9	84.9	5.7 6.2	6.2	5.7	2.2 3.6			6.2 2.3	2.9	
	,				Surface	1.0	28.0	27.9	8.1		18.2	18.2	85.8	84.9	6.3	0.2	6.2	3.6	3.6		3.4		
				5.1	Middle	-	28.1	-	- 8.1	-	20.6	-	80.4	-	6.0	-		3.9	-	3.8	2.2	-	2.7
	_				Bottom	4.1	28.0	28.0	8.1	8.1	21.1	20.9	80.8	80.6	6.0	6.0	6.0	3.8	3.9		2.6	2.4	
15-Jun-16	Sunny	Moderate	16:19		Surface	1.0	28.9 28.9	28.9	8.2 8.2	8.2	5.9 6.0	5.9	89.1 88.7	88.9	6.7 6.6	6.6	6.6	7.3 7.1	7.2		6.7 6.9	6.8	
				5.0	Middle	-	-	-	-	-		-		-		-		-	-	6.5	-	-	6.8
					Bottom	4.0	28.6 28.6	28.6	8.1 8.1	8.1	9.6 9.6	9.6	88.8 88.1	88.5	6.5 6.5	6.5	6.5	5.9 5.7	5.8		6.9 6.5	6.7	
17-Jun-16	Sunny	Moderate	17:39		Surface	1.0	29.0 28.7	28.9	8.2 8.1	8.2	7.8 8.3	8.1	80.4 84.3	82.4	5.7 5.9	5.8		7.5 7.3	7.4		7.2 6.9	7.1	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-	7.2	-	-	6.9
					Bottom	4.1	27.9	27.8	7.7	7.8	19.2	19.6	76.8	78.5	5.7	5.8	5.8	7.2	7.0		6.1	6.7	1
20-Jun-16	Sunny	Moderate	06:30		Surface	1.0	27.7 27.1	27.2	7.8 8.1	8.1	19.9 24.5	24.5	72.1	72.3	5.9 5.1	5.2		6.7 5.3	5.3		7.2 3.8	3.2	
				5.5	Middle		27.3		8.0	-	24.4	-	72.5 -		5.2	<u> </u>	5.2	5.3	-	5.4	2.5	-	3.5
				3.3		1.5	26.8		- 7.9		31.3		70.5		- 5.1	- -	F 1	5.4		J. 4	3.5		3.3
					Bottom	4.5	27.3	27.0	8.0	8.0	30.2	30.7	69.0	69.8	5.1	5.1	5.1	5.5	5.5		4.0	3.8	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	07:32		Surface	1.0	28.0 28.0	28.0	8.3 8.2	8.3	12.9 13.0	13.0	72.3 72.2	72.3	5.7 5.7	5.7	5.7	7.0 6.7	6.9		5.8 5.9	5.9	
				5.1	Middle			-	1	-	-	-		-	1 1	-	5.7	-	-	7.8	-	-	6.6
					Bottom	4.1	26.7 26.8	26.7	8.1 8.1	8.1	22.7 23.6	23.1	72.0 71.8	71.9	5.7 5.7	5.7	5.7	8.4 8.8	8.6		7.2 7.3	7.3	
24-Jun-16	Sunny	Moderate	08:51		Surface	1.0	27.9 27.7	27.8	8.2 8.2	8.2	16.4 17.5	17.0	74.3 74.4	74.4	5.3 5.3	5.3	5.3	4.7 4.8	4.8		5.5 6.4	6.0	
				5.5	Middle	-		-	1 1	-	-	-		-		-	0.0	-	-	4.9	-	-	6.3
					Bottom	4.5	27.5 28.0	27.8	8.1 8.1	8.1	20.3 19.4	19.9	72.5 73.3	72.9	5.2 5.2	5.2	5.2	4.9 4.9	4.9		6.3 6.9	6.6	
27-Jun-16	Sunny	Moderate	11:33		Surface	1.0	28.3 28.3	28.3	8.3 8.3	8.3	18.7 17.5	18.1	94.9 95.2	95.1	6.7 6.7	6.7	6.7	3.3 3.4	3.4		5.2 5.8	5.5	
				5.0	Middle			-		-	-	-		-		-	0.7	-	-	3.4	-	-	5.4
					Bottom	4.0	27.9 27.8	27.9	8.3 8.3	8.3	22.6 22.3	22.5	95.4 96.4	95.9	6.6 6.7	6.6	6.6	3.4 3.4	3.4		5.1 5.2	5.2	
29-Jun-16	Sunny	Moderate	13:58		Surface	1.0	27.5 27.7	27.6	8.3 8.3	8.3	19.1 19.1	19.1	82.6 77.0	79.8	5.8 5.4	5.6	5.6	3.0 3.1	3.1		4.6 4.2	4.4	
				5.3	Middle	-		-	1 1	-	-	-		-		-	5.0	-	-	3.1	-	-	4.0
					Bottom	4.3	27.1 27.8	27.4	8.2 8.3	8.3	22.8 22.4	22.6	74.7 75.8	75.3	5.3 5.3	5.3	5.3	3.0 3.1	3.1		4.0 3.1	3.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	11:07		Surface	1.0	28.7 28.7	28.7	8.4 8.4	8.4	10.7 10.8	10.8	98.8 97.9	98.4	7.2 7.1	7.2		7.3 7.3	7.3		4.1 3.3	3.7	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	7.4	-	-	3.5
					Bottom	3.1	28.6 28.5	28.6	8.3 8.3	8.3	16.3 16.1	16.2	98.9 96.5	97.7	7.0 6.9	6.9	6.9	7.5 7.3	7.4		3.0	3.2	
3-Jun-16	Sunny	Moderate	12:50		Surface	1.0	28.7	28.7	8.5	8.5	14.6	14.6	99.2	99.1	7.1	7.1		3.8	3.8		2.2	2.2	
				4.1		1.0	28.7	-	8.5	-	14.6	-	99.0	-	7.1	7.1	7.1	3.8	3.0	3.8	2.2	-	2.5
				4.1	Middle	-	28.3		8.4		- 19.1		99.0		6.9	-		3.7	-	3.0	3.2		2.5
6-Jun-16	Cloudy	Moderate	12:28		Bottom	3.1	28.2 27.7	28.3	8.4 7.9	8.4	18.1 18.4	18.6	100.6 80.3	99.8	7.1 5.7	7.0	7.0	3.6	3.7		2.3	2.8	
6-Juli-16	Cloudy	Moderate	12.20		Surface	1.0	27.7	27.7	7.9	7.9	17.7	18.0	82.1	81.2	5.8	5.8	5.8	3.1	3.2		2.1	2.4	
				4.2	Middle	-	-	-		-		-	-	-		-		-	-	3.4	-	-	2.8
					Bottom	3.2	27.7 27.7	27.7	7.8 7.9	7.8	20.3 19.2	19.7	79.6 80.8	80.2	5.7 5.7	5.7	5.7	3.5 3.4	3.5		3.4 2.8	3.1	
8-Jun-16	Sunny	Moderate	13:56		Surface	1.0	28.6 28.6	28.6	8.2 8.2	8.2	13.9 13.8	13.8	86.7 86.9	86.8	6.3 6.3	6.3	6.3	1.6 1.5	1.6		4.3 3.9	4.1	
				4.1	Middle	-	-	-		-		-	-	-		-	6.3	-	-	1.5	-	-	3.8
					Bottom	3.1	28.6 28.6	28.6	8.2 8.2	8.2	14.0 14.1	14.1	86.6 86.7	86.7	6.3 6.3	6.3	6.3	1.3	1.3		4.0 2.8	3.4	
10-Jun-16	Rainy	Moderate	15:33		Surface	1.0	28.7	28.5	8.3	8.3	14.6	14.6	72.5	72.4	5.5	5.5		2.0	2.1		3.9	3.8	
				4.3	Middle	_	28.4	-	8.3	-	14.7	-	72.2	-	5.5 -	_	5.5	2.1	_	2.1	3.6	-	4.0
					Bottom	3.3	28.2	28.3	8.2	8.3	18.7	18.7	71.2	71.9	5.4	5.5	5.5	2.1	2.1		3.6	4.2	
13-Jun-16	Cloudy	Moderate	08:53		Surface	1.0	28.5 28.0	28.0	8.3 8.1	8.1	18.7 17.9	17.9	72.6 84.1	84.3	5.5 6.3	6.3	0.0	2.0 4.1	4.2		4.8	5.0	
				4.2	Middle	1.0	27.9	20.0	8.1	-	17.9	-	84.4	04.0	6.3	0.0	6.3	4.2	-	4.3	5.1	-	4.6
				4.2		-	27.9		- 8.1		- 17.9		83.6	-	6.2	-	0.0	4.3		4.3	3.8		4.0
15-Jun-16	Sunny	Moderate	11:36		Bottom	3.2	27.9 28.9	27.9	8.1 8.2	8.1	18.0 6.6	18.0	83.6 87.7	83.6	6.2 6.5	6.2	6.2	4.3 7.2	4.3		4.6 6.0	4.2	
15-5411-10	Odility	Woderate	11.50		Surface	1.0	28.9	28.9	8.1	8.1	6.7	6.7	86.0	86.9	6.4	6.5	6.5	7.2	7.2		6.3	6.2	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	7.6	-	-	6.3
					Bottom	3.0	28.3 28.3	28.3	7.9 8.0	8.0	10.5 10.6	10.6	85.1 84.4	84.8	6.3 6.2	6.2	6.2	7.9 7.8	7.9		6.0 6.8	6.4	
17-Jun-16	Sunny	Moderate	12:25		Surface	1.0	28.5 28.5	28.5	8.1 8.1	8.1	9.2 9.1	9.2	79.9 81.1	80.5	5.9 6.0	5.9	5.9	6.2 6.2	6.2		5.0 5.6	5.3	
				4.1	Middle	-	-	-		-		-	-	-		-	5.8	-	-	6.2	-	-	5.6
					Bottom	3.1	28.5 28.4	28.4	8.0 8.1	8.0	9.7 9.8	9.8	80.5 77.5	79.0	5.9 5.7	5.8	5.8	6.2 5.9	6.1		6.1 5.4	5.8	
20-Jun-16	Sunny	Moderate	11:41		Surface	1.0	27.9 27.8	27.8	8.1 8.0	8.0	18.6 20.1	19.4	76.1 76.4	76.3	5.3 5.3	5.3		3.7 3.8	3.8		4.0 4.4	4.2	
				4.3	Middle	_	-	-	-	-	-	-	-	-	-	-	5.3	-	-	3.9	-	-	4.2
					Bottom	3.3	27.6	27.6	7.9	7.9	26.1	25.0	75.3	75.6	5.2	5.2	5.2	3.9	3.9		4.6	4.2	
				<u> </u>		0	27.6		7.9		23.9	_5.0	75.8	. 5.0	5.2			3.9	0		3.8		

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	13:59		Surface	1.0	29.1 29.1	29.1	8.2 8.2	8.2	9.7 9.8	9.7	73.0 73.0	73.0	5.5 5.5	5.5	5.5	4.1 4.2	4.2		5.3 4.3	4.8	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-	4.2	-	-	5.3
					Bottom	3.1	29.1 28.8	28.9	8.2 8.2	8.2	10.1 10.6	10.3	73.2 72.4	72.8	5.5 5.4	5.5	5.5	4.2 3.9	4.1	<u> </u>	5.3 6.1	5.7	
24-Jun-16	Sunny	Moderate	14:11		Surface	1.0	28.2 28.2	28.2	8.2 8.2	8.2	18.2 18.2	18.2	73.4 72.5	73.0	5.2 5.2	5.2	5.2	4.2 4.2	4.2		5.2 5.0	5.1	
				3.9	Middle	-		•		-	-	-	-	-	1 1	-	5.2	-	-	4.3	-	-	5.4
					Bottom	2.9	27.7 27.8	27.8	8.1 8.1	8.1	19.3 19.5	19.4	71.8 71.8	71.8	5.2 5.1	5.1	5.1	4.4 4.3	4.4		5.5 5.6	5.6	
27-Jun-16	Sunny	Moderate	16:42		Surface	1.0	30.1 30.0	30.0	8.4 8.3	8.4	14.9 14.9	14.9	99.8 96.9	98.4	7.0 6.8	6.9	6.9	3.1 3.1	3.1		3.0 4.0	3.5	
				4.0	Middle	-		-		-	-	-	-	-	1 1	-	0.5	-	-	3.0	-	-	3.8
					Bottom	3.0	28.1 28.0	28.1	8.3 8.2	8.3	19.2 19.6	19.4	98.2 93.7	96.0	6.9 6.6	6.7	6.7	3.0 2.8	2.9		3.4 4.6	4.0	
29-Jun-16	Sunny	Moderate	09:00		Surface	1.0	28.5 28.5	28.5	8.3 8.3	8.3	16.6 16.4	16.5	80.5 85.9	83.2	5.7 6.0	5.9	5.9	2.9 3.0	3.0		4.0 4.0	4.0	
				5.2	Middle	-		-	1 1	-	-	-	-	-		-	5.5	-	-	3.0	-	-	4.4
					Bottom	4.2	27.1 27.2	27.1	8.2 8.2	8.2	22.8 23.0	22.9	76.8 79.0	77.9	5.5 5.5	5.5	5.5	3.0 3.0	3.0		4.2 5.3	4.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	р	H	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	14:48		Surface	1.0	29.3 29.2	29.2	8.4 8.4	8.4	11.4 11.3	11.4	99.8 97.7	98.8	7.2 7.0	7.1		7.8 7.5	7.7		4.2 4.4	4.3	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	7.7	-	-	4.6
					Bottom	3.1	28.0 28.1	28.0	8.3 8.3	8.3	20.1	18.7	101.3 101.9	101.6	7.1 7.2	7.2	7.2	7.9 7.4	7.7		4.4 5.1	4.8	
3-Jun-16	Sunny	Moderate	16:48		Surface	1.0	29.4	29.4	8.5	8.5	12.4	12.1	104.3	104.1	7.4	7.4		2.2	2.2		3.7 3.9	3.8	
				4.3	Middle	-	29.5	-	8.5	-	11.9	-	103.9	-	7.4	-	7.4	2.2	-	2.2	- 3.9	-	3.8
					Bottom	3.3	29.0 29.2	29.1	8.4 8.4	8.4	14.4 14.2	14.3	104.1 104.1	104.1	7.4 7.4	7.4	7.4	2.2	2.2		4.1	3.8	
6-Jun-16	Cloudy	Moderate	08:20		Surface	1.0	27.8	27.8	8.4	8.4	16.5	16.8	80.0	79.7	5.7	5.7		2.2	2.2		2.7 2.1	2.4	
				4.2	Middle	-	27.8	-	- 8.4	_	17.0	-	79.4	-	5.7	_	5.7	2.2	-	2.4	-	-	2.3
					Bottom	3.2	27.7 27.6	27.7	8.3	8.3	20.9	22.5	78.3 79.7	79.0	5.5 5.5	5.5	5.5	2.4	2.5		2.0	2.1	
8-Jun-16	Sunny	Moderate	08:22		Surface	1.0	27.8 27.8	27.8	8.2 8.2	8.2	17.4 17.3	17.4	73.9 74.2	74.1	5.4 5.4	5.4		2.3 2.3	2.3		2.6 2.8	2.7	
				3.8	Middle	-	-	-		-	-	-	-	-	-	-	5.4	-	-	2.9	-	-	3.0
					Bottom	2.8	27.6 27.6	27.6	8.1 8.1	8.1	19.8 19.8	19.8	74.3 74.0	74.2	5.4 5.3	5.3	5.3	3.3 3.4	3.4		3.3	3.2	
10-Jun-16	Sunny	Moderate	10:56		Surface	1.0	28.0 27.8	27.9	8.2 8.2	8.2	16.8 17.1	17.0	71.4 70.9	71.2	5.4 5.4	5.4		2.0 2.3	2.2	I	4.1 4.3	4.2	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	5.4	-	-	2.4	-	-	4.0
					Bottom	3.2	27.9 27.7	27.8	8.2 8.1	8.1	19.5 22.0	20.7	71.1 70.5	70.8	5.4 5.4	5.4	5.4	2.5 2.5	2.5		4.1 3.4	3.8	
13-Jun-16	Cloudy	Moderate	12:51		Surface	1.0	28.0 28.0	28.0	8.2 8.1	8.2	17.5 17.5	17.5	83.4 83.5	83.5	6.2 6.2	6.2		4.4 4.4	4.4		3.5 3.7	3.6	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	4.5	-	-	3.3
					Bottom	3.3	27.9 27.8	27.8	8.1 8.1	8.1	18.8 17.8	18.3	83.1 82.8	83.0	6.2 6.2	6.2	6.2	4.5 4.6	4.6		2.7 3.0	2.9	
15-Jun-16	Sunny	Moderate	15:38		Surface	1.0	28.9 28.9	28.9	8.3 8.2	8.2	5.4 5.4	5.4	81.3 81.1	81.2	6.1 6.1	6.1	0.4	8.0 7.8	7.9		7.3 7.3	7.3	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	7.4	-	-	7.6
					Bottom	3.1	28.2 28.2	28.2	7.9 8.0	7.9	10.8 10.7	10.8	81.0 78.8	79.9	5.9 5.8	5.9	5.9	7.1 6.6	6.9		7.8 8.0	7.9	
17-Jun-16	Sunny	Moderate	16:48		Surface	1.0	29.1 29.1	29.1	8.1 8.1	8.1	6.7 6.9	6.8	78.4 78.4	78.4	5.8 5.8	5.8	5.8	8.4 8.5	8.5		7.4 6.3	6.9	
				4.3	Middle	-	-	-	1 1	-	-	-	-	-	-	-	3.0	-	-	8.4	-	-	7.2
					Bottom	3.3	28.8 28.7	28.8	8.0 7.9	8.0	10.3 10.1	10.2	78.6 78.4	78.5	5.7 5.7	5.7	5.7	8.3 8.0	8.2		7.7 7.1	7.4	
20-Jun-16	Sunny	Moderate	07:28		Surface	1.0	28.1 28.0	28.0	8.1 8.1	8.1	17.4 18.2	17.8	75.4 75.2	75.3	5.4 5.4	5.4	5.4	3.7 3.7	3.7		4.9 5.0	5.0	
				4.4	Middle	-	-	-	1 1	-	-	-	-	-	-	-	3.4	-	-	3.8	-	-	4.9
					Bottom	3.4	28.0 27.4	27.7	7.9 7.8	7.8	25.3 25.8	25.5	74.7 72.8	73.8	5.3 5.4	5.3	5.3	3.9 3.8	3.9		4.8 4.6	4.7	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	08:23		Surface	1.0	27.5 27.5	27.5	8.2 8.2	8.2	16.0 16.2	16.1	72.7 72.7	72.7	5.7 5.7	5.7	5.7	8.3 8.5	8.4		5.3 5.4	5.4	
				4.4	Middle	-	-	•	1	-	-	-		-	1 1	-	5.7	-	-	9.1	-	-	5.3
					Bottom	3.4	26.7 27.0	26.9	8.1 8.1	8.1	21.7 21.3	21.5	72.2 73.3	72.8	5.7 5.8	5.7	5.7	10.1 9.4	9.8		5.5 4.9	5.2	
24-Jun-16	Sunny	Moderate	09:41		Surface	1.0	27.3 27.8	27.6	8.1 8.1	8.1	18.3 18.5	18.4	74.5 74.1	74.3	5.3 5.3	5.3	5.3	6.1 6.0	6.1		5.9 6.0	6.0	
				4.1	Middle	-	-	-	1 1	-	-	-		-		-	0.0	-	-	6.3	-	-	6.6
					Bottom	3.1	26.9 26.8	26.9	8.1 8.0	8.0	22.1 22.6	22.3	73.8 73.9	73.9	5.2 5.2	5.2	5.2	6.3 6.4	6.4		7.0 7.2	7.1	
27-Jun-16	Sunny	Moderate	12:24		Surface	1.0	28.5 28.0	28.3	8.3 8.2	8.3	16.0 19.5	17.7	81.0 80.6	80.8	5.6 5.7	5.7	5.7	4.5 4.3	4.4		4.4 4.7	4.6	
				3.9	Middle	-	-	-		-	-	-		-		-	5.7	-	-	5.0	-	-	4.6
					Bottom	2.9	28.0 27.7	27.8	8.2 8.2	8.2	21.0 20.0	20.5	79.4 75.7	77.6	5.6 5.3	5.5	5.5	5.3 5.8	5.6		4.6 4.4	4.5	
29-Jun-16	Sunny	Moderate	13:07		Surface	1.0	27.9 27.7	27.8	8.2 8.2	8.2	17.8 18.2	18.0	78.2 73.5	75.9	5.5 5.2	5.3	5.3	3.0 3.2	3.1		4.1 2.8	3.5	
				5.2	Middle	-	-	-	1 1	-	-	-		-		-	5.5	-	-	3.2	-	-	3.5
					Bottom	4.2	27.5 27.1	27.3	8.1 8.1	8.1	22.5 22.7	22.6	71.2 71.7	71.5	5.1 5.0	5.0	5.0	3.2 3.3	3.3		2.6 4.1	3.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Condition Cond	Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
Sum Moderate Mod		Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
Mode	1-Jun-16	Sunny	Moderate	09:40		Surface	1.0		28.6		8.3		10.6		98.7		7.2	7.0		7.1			3.4	
Surviy Moderate 11.26 Surviy Moderate 11.26 Surviy Moderate 11.26 Surviy Moderate 11.26 Surviy Moderate 11.26 Surviy Moderate 11.26 Surviy Moderate 11.26 Surviy Moderate 12.21 Surviv Moderate 13.30 Surviv Surviv Moderate 13.30 Surviv Survi					4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	7.2		-	3.2
Surface 10.0 Surface 10.0 28.8 28.8 8.5 14.6 10.0 10.0 27.8 12.0 28.8 28.8 8.5 14.6 10.0 10.0 27.8 12.0 12.						Bottom	3.1		28.3		8.2		14.8		98.3		7.1	7.1		7.2			2.9	
A	3-Jun-16	Sunny	Moderate	11:26		Surface	1.0	28.8	28.8	8.5	8.5	14.6	14.6	100.6	101.4	7.2	7.2		4.3	4.4		7.1	7.5	
Bettom 3.4 28.7 28.4 8.4 8.4 17.6 17.9 17.18 10.07 77.1 7.1 7.1 4.2 4.3 4.3 9.4 8.7 9.4 8.4 17.6 17.9 17.18 10.07 77.1 7.1 7.1 4.2 4.3 4.3 9.4 8.7 9.4 8.7 9.4 8.7 8.2 8.2 8.3 8.3 17.4 17.7 8.2 8.2 8.2 8.2 8.2 8.3 8.3 17.4 17.7 8.2 8.2 8.2 8.2 8.3 8.3 17.4 17.7 8.2 8.2 8.2 8.3 8.3 17.4 17.7 8.2 8.2 8.2 8.3 8.3 17.4 17.7 8.2 8.2 8.2 8.3 8.3 17.4 17.7 8.2 8.2 8.2 8.3 8.3 17.4 17.7 8.2 8.2 8.2 8.3 8.3 8.3 8.3 17.4 17.7 8.2 17.4					44													7.2			44			8.1
6-Jun-16 Cloudy Moderate 13:53 Surface 1.0 27.8 27.8 27.8 8.4 15.0 11.1 11.0					4.4		2.4	28.2		8.4		17.8		99.6		7.0	7.1	7.1	4.3	12	7.7	9.4		0.1
A	6-Jun-16	Cloudy	Moderate	13:53														7.1						
Moderate 15:17	0.00	2.2.2,					1.0	27.8	27.8	8.3	8.3	17.4	17.7	82.0	82.1	5.8	5.8	5.8		1.3		2.4	2.2	
Sunny Moderate 15:17 Sunny Moderate 15:17 Sunny Moderate 15:17 Sunny Moderate 15:17 Sunny Moderate 15:17 Sunny Sunny Moderate 15:17 Sunny Sunny Moderate 16:52 Sunny Sunny Moderate 16:52 Sunny Sunny Moderate 16:52 Sunny Modera					4.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	1.4	-	-	2.6
A-3 Model - - - - - - - - -	0.1.10			15.15		Bottom	3.3	27.7	27.7	8.2	8.2	18.3	18.6	82.1	82.0	5.8	5.8	5.8	1.5	1.5		2.9	3.0	
Moderate 10-Jun-16 Rainy Moderate 16:52 Surface 1.0 28:2 27:3 27:3 8:2 8:2 8:2 17:8 8:2 8:3	8-Jun-16	Sunny	Moderate	15:17		Surface	1.0	28.5	28.4	8.3	8.3	14.6	14.8	82.9	83.0	6.0	6.0	6.0	1.3	1.3			2.8	
10-Jun-16					4.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	1.3	-	-	2.6
A.1 Middle Colored Middle Colored Colored Middle Colored C						Bottom	3.3		28.1		8.2		17.2		81.7		5.9	5.9		1.3			2.4	
A.1 Middle Cloudy Moderate O7:24 A.0 Middle Cloudy Moderate O7:24 A.0 Middle Cloudy Moderate O7:24 A.0 Middle Cloudy Moderate O7:24 A.0 Middle Cloudy Moderate O7:24 A.0 Middle Cloudy Moderate O7:24 A.0 Middle Cloudy	10-Jun-16	Rainy	Moderate	16:52		Surface	1.0		28.2		8.3		19.0		79.5		6.2	0.0		2.1			2.4	
13-Jun-16 Cloudy Moderate 07:24					4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	2.2	-	-	2.5
13-Jun-16						Bottom	3.1		27.3		8.2		23.5		77.0		6.0	6.0		2.2			2.6	
A.0 Middle - - - - - - - - -	13-Jun-16	Cloudy	Moderate	07:24		Surface	1.0	27.8	27.6	8.0	8.1	18.9	20.7	77.8	78.4	5.8	5.7		2.9	2.9		3.5	3.0	
Bottom 3.0 27.5 27.4 8.1 8.0 23.3 23.3 74.5 73.1 5.4 5.3 5.3 3.1 3.1 2.6 3.9 3.3 3.1 3.1 3.1 3.1 3.9 3.9 3.3 3.1 3.1 3.1 3.1 3.9 3.9 3.3 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1					4.0	Middle	_		-		_		_		_		-	5.7		_	3.0		-	3.2
15-Jun-16 Sunny Moderate 10:32 Surface 1.0 29.0 29.0 29.0 8.1 8.1 7.3 7.3 91.3 91.6 6.8 6.8 6.8 5.7 5.7 5.9						Bottom	3.0	27.5	27.4	8.1	8.0	23.3	23.3	74.5	73.1		5.3	5.3	3.1	3.1			3.3	
3.8 Middle	15-Jun-16	Sunny	Moderate	10:32														0.0						
Bottom 2.8 28.4 28.4 8.0 8.0 10.5 10.5 90.0 89.3 89.7 6.6 6.6 6.6 5.5 5.6 5.6 5.8 5.8 17-Jun-16 Sunny Moderate 11:05 Surface 1.0 28.5 28.4 28.5 8.2 8.2 8.2 8.2 8.0 8.6 79.3 79.9 5.9 5.9 5.9 4.8 4.7 4.1 4.0 4.1 4.0 4.1 4.0 4.1 4.0 4.1 4.0 4.1 4.0 4.1 4.1 4.0 4.1 4.1 4.0 4.1 4.1 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1					2.0		1.0										0.0	6.8		5.7	<i>-</i> 7			5.0
17-Jun-16 Sunny Moderate 11:05 Sufface 1.0 28.5 28.3 28.4 8.0 8.0 10.4 10.5 89.3 89.7 6.6 6.6 6.6 6.6 5.5 5.5 6.3 5.8 6.3 5.8 10.4 10.5 89.3 89.7 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6					3.8		-	-		- 8.0		10.5		- 90.0		- 66	-		- 5.6	-	5.7	- 52		5.8
3.9 Middle	17 Jun 16	Cuppy	Madarata	11:05		Bottom	2.8	28.3	28.4	8.0	8.0	10.4	10.5	89.3	89.7	6.6	6.6	6.6	5.5	5.6		6.3	5.8	
3.9 Middle 4.7	17-Juli-16	Suring	Moderate	11.05		Surface	1.0	28.4	28.5	8.1	8.2	9.0	8.6	79.3	79.9	5.9	5.9	5.9	4.7	4.8		4.1	4.0	
1					3.9	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.7	-	-	3.4
Bottom 2.9 28.1 8.0 8.0 11.8 12.5 79.6 80.6 5.8 5.9 5.9 4.5 4.5 2.7 2.8						Bottom	2.9		28.1		8.0		12.5		80.6		5.9	5.9		4.5			2.8	<u> </u>
20-Jun-16 Sunny Moderate 13:10 Surface 1.0 28.2 27.9 28.1 8.0 8.0 20.9 21.4 21.2 72.6 72.9 72.8 5.3 5.3 3.2 3.2 5.2 5.2	20-Jun-16	Sunny	Moderate	13:10		Surface	1.0		28.1		8.0		21.2		72.8		5.3	5.2		3.2			5.2	
4.2 Middle - [4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-	3.4	-	-	5.0
Bottom 3.2 28.1 28.0 8.0 8.0 22.3 22.6 72.6 72.6 5.3 5.2 5.2 3.4 3.5 5.0 4.5						Bottom	3.2		28.0		8.0		22.6		72.6		5.2	5.2		3.5			4.8	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Tempera	ature (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (ı	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	15:18		Surface	1.0	28.4 28.8	28.6	8.2 8.2	8.2	10.4 10.3	10.4	75.4 75.4	75.4	5.9 5.9	5.9	5.9	3.6 3.6	3.6		5.4 5.5	5.5	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-		5.5	-	-	3.6	-	-	4.9
					Bottom	3.0	27.9 28.2	28.0	8.1 8.1	8.1	13.8 14.8	14.3	74.9 75.3	75.1	5.8 5.8	5.8	5.8	3.6 3.5	3.6		4.7 3.9	4.3	
24-Jun-16	Sunny	Moderate	15:33		Surface	1.0	29.5 29.6	29.6	8.2 8.2	8.2	17.2 17.2	17.2	80.6 80.8	80.7	5.8 5.7	5.7	5.7	3.4 3.3	3.4		6.4 6.1	6.3	
				4.3	Middle	-	-	•		-		i		-		-	5.7	-	-	3.5	-	-	6.1
					Bottom	3.3	28.2 28.2	28.2	8.1 8.1	8.1	16.8 17.3	17.0	79.3 80.6	80.0	5.6 5.7	5.6	5.6	3.6 3.5	3.6		5.5 6.0	5.8	
27-Jun-16	Sunny	Moderate	17:56		Surface	1.0	30.2 29.7	30.0	8.4 8.4	8.4	15.5 16.2	15.9	101.7 102.2	102.0	7.0 7.1	7.1	7.1	3.0 3.1	3.1		4.0 4.3	4.2	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	2.9	-	-	4.2
					Bottom	2.7	28.3 28.2	28.3	8.4 8.4	8.4	19.1 19.2	19.1	101.6 100.6	101.1	7.1 7.1	7.1	7.1	2.7 2.7	2.7		4.3 4.0	4.2	
29-Jun-16	Sunny	Moderate	07:50		Surface	1.0	28.4 28.2	28.3	8.3 8.3	8.3	16.4 16.5	16.4	84.7 76.8	80.8	6.0 5.5	5.7	5.7	3.0 2.9	3.0	_	3.4 2.9	3.2	
				5.1	Middle	-	-	-	1 1	-	1 1	-	1 1	-		-	5.7	-	-	3.1	-	-	3.1
					Bottom	4.1	27.4 27.3	27.4	8.2 8.2	8.2	21.4 21.3	21.3	75.0 71.5	73.3	5.3 5.0	5.2	5.2	3.0 3.1	3.1		2.6 3.4	3.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ing	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	16:07		Surface	1.0	29.0 28.8	28.9	8.5 8.5	8.5	11.0 11.0	11.0	110.8 107.3	109.1	8.0 7.8	7.9		8.6 8.5	8.6		2.8 3.0	2.9	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.9	-	-	8.7	-	-	4.0
					Bottom	3.0	28.7	28.7	8.4	8.4	17.7	18.0	113.3 110.1	111.7	8.0 7.7	7.8	7.8	8.5 8.8	8.7		4.9 5.1	5.0	
3-Jun-16	Sunny	Moderate	18:19				29.6		8.4 8.6		18.4 14.0		135.1		9.5			2.6			3.7		
	,				Surface	1.0	29.5	29.6	8.6	8.6	14.1	14.1	134.8	135.0	9.5	9.5	9.5	2.6	2.6		2.8	3.3	
				4.2	Middle	-	29.6	-	- 8.5	-	- 15.8	-	- 136.5	-	- 9.5	-		2.6	-	2.7	3.8	-	3.6
					Bottom	3.2	29.6	29.6	8.5	8.5	15.4	15.6	133.4	135.0	9.3	9.4	9.4	2.7	2.7		3.9	3.9	
6-Jun-16	Cloudy	Moderate	06:45		Surface	1.0	27.9 27.9	27.9	8.1 8.1	8.1	18.6 19.2	18.9	86.2 86.4	86.3	6.1 6.2	6.1	6.1	3.3 3.2	3.3		2.8 2.7	2.8	
				4.4	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	3.4	-	-	3.0
					Bottom	3.4	27.8 27.9	27.8	8.0 8.1	8.1	20.2 19.6	19.9	83.9 82.1	83.0	5.9 5.8	5.9	5.9	3.5 3.4	3.5		2.8 3.3	3.1	Ì
8-Jun-16	Sunny	Moderate	07:05		Surface	1.0	27.9 27.8	27.9	8.1 8.1	8.1	16.4 16.8	16.6	77.8 76.9	77.4	5.6 5.6	5.6		7.6 8.1	7.9		5.1 4.9	5.0	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-	8.5	-	-	4.7
					Bottom	3.2	27.5	27.6	8.1	8.1	20.9	20.3	77.2	76.3	5.5	5.4	5.4	9.3	9.1		4.6	4.4	
10-Jun-16	Sunny	Moderate	09:38		Surface	1.0	27.6 27.9	28.0	8.1 8.2	8.2	19.7 16.0	16.1	75.3 76.1	76.2	5.3 5.8	5.8		8.8 2.3	2.3		4.2 3.2	3.2	
				4.4		1.0	28.0	20.0	8.2	0.2	16.1	10.1	76.2	70.2	5.8	3.0	5.8	2.2			3.2		2.0
				4.1	Middle		27.7	-	8.2		21.2	-	- 75.2	-	- 5.7	-		2.2	-	2.3	3.0	-	3.0
13-Jun-16	Cloudy	Moderate	14:12		Bottom	3.1	27.9 28.1	27.8	8.1 8.2	8.2	23.5	22.4	76.2 83.6	75.7	5.7	5.7	5.7	2.2	2.2		2.6	2.8	
13-3411-16	Cloudy	Moderate	14.12		Surface	1.0	27.9	28.0	8.1	8.1	18.6	18.6	83.9	83.8	6.2 6.0	6.1	6.1	3.2	3.2		4.3	3.7	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.3	-	-	3.6
					Bottom	3.1	27.8 27.7	27.7	8.0 8.0	8.0	22.8 24.6	23.7	81.3 80.1	80.7	5.9 5.9	5.9	5.9	3.3 3.4	3.4		3.5 3.5	3.5	
15-Jun-16	Sunny	Moderate	16:48		Surface	1.0	28.9 28.9	28.9	8.2 8.2	8.2	5.7 5.8	5.7	93.1 93.4	93.3	7.0 7.0	7.0	7.0	7.2 7.0	7.1		7.0 7.1	7.1	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	6.9	-	-	7.3
					Bottom	2.9	28.8 28.8	28.8	8.0 8.0	8.0	9.0 8.9	8.9	92.8 93.0	92.9	6.8 6.9	6.8	6.8	6.7 6.7	6.7		7.3 7.4	7.4	
17-Jun-16	Sunny	Moderate	18:04	<u> </u>	Surface	1.0	28.9	28.9	8.1	8.1	8.0	8.1	85.0	85.0	6.3	6.3		6.8	6.8		4.1	4.3	
				4.1	Middle	_	28.9	_	8.1	_	8.3	_	84.9	-	6.3	_	6.3	6.7	_	6.8	4.4	_	5.1
					Bottom	3.1	28.9	28.9	8.1	8.1	9.4	9.4	84.6	84.6	6.2	6.2	6.2	6.6	6.7		5.8	5.8	
20-Jun-16	Sunny	Moderate	05:56	<u> </u>			28.9 28.1		8.1 8.2		9.3 19.6		84.6 78.2		6.2 5.7		0.2	6.7 4.8			5.7 4.9		
	,				Surface	1.0	28.0	28.0	8.3	8.3	19.2	19.4	78.8	78.5	5.7	5.7	5.7	4.9	4.9		4.7	4.8	ł
				4.4	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.0	-	-	5.1
					Bottom	3.4	26.6 26.5	26.5	8.2 8.1	8.1	23.0 24.1	23.6	75.9 75.5	75.7	5.3 5.5	5.4	5.4	5.0 5.1	5.1		5.1 5.5	5.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	07:06		Surface	1.0	27.4 27.4	27.4	8.1 8.1	8.1	18.6 18.5	18.5	74.5 76.6	75.6	5.7 5.9	5.8	5.8	5.6 5.4	5.5		3.7 3.6	3.7	
				4.1	Middle			•		-	-	-		-	1 1	-	3.0	-	-	6.2	-	1	3.7
					Bottom	3.1	27.0 26.7	26.9	8.1 8.1	8.1	22.9 22.0	22.4	75.3 78.2	76.8	5.8 6.0	5.9	5.9	6.8 6.7	6.8		3.4 3.7	3.6	
24-Jun-16	Sunny	Moderate	08:21		Surface	1.0	28.4 27.9	28.1	8.2 8.2	8.2	16.6 17.0	16.8	81.9 82.0	82.0	5.8 5.8	5.8	5.8	4.6 4.5	4.6		7.7 8.0	7.9	
				4.3	Middle		-	•		-	-	-		-	1 1	-	3.0	-	-	4.7	-	1	7.7
					Bottom	3.3	28.0 27.9	28.0	8.1 8.1	8.1	17.1 18.8	17.9	80.9 78.5	79.7	5.7 5.6	5.7	5.7	4.8 4.8	4.8		7.8 7.2	7.5	
27-Jun-16	Sunny	Moderate	11:09		Surface	1.0	28.6 28.5	28.6	8.3 8.3	8.3	19.0 19.0	19.0	108.2 105.6	106.9	7.5 7.4	7.5	7.5	5.2 5.3	5.3		4.5 4.6	4.6	
				4.1	Middle	-	-	-		-	-	-		-	1 1	-	7.5	-	-	5.9	-	-	5.1
					Bottom	3.1	28.4 28.1	28.3	8.3 8.3	8.3	20.7 21.3	21.0	107.8 106.0	106.9	7.5 7.4	7.4	7.4	6.3 6.6	6.5		4.7 6.3	5.5	
29-Jun-16	Sunny	Moderate	14:27		Surface	1.0	27.4 27.5	27.4	8.3 8.3	8.3	20.7 21.6	21.1	81.5 81.9	81.7	5.7 5.7	5.7	5.7	4.9 5.1	5.0		7.0 6.6	6.8	
				5.2	Middle	-	-	-		-	-	-		-		-	5.7	-	-	5.1	-	-	7.4
					Bottom	4.2	27.4 27.1	27.3	8.3 8.3	8.3	23.1 23.4	23.3	81.5 80.1	80.8	5.7 5.6	5.6	5.6	5.0 5.1	5.1		7.8 7.9	7.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	09:31		Surface	1.0	28.3 28.4	28.4	8.4 8.4	8.4	14.0 13.9	14.0	96.7 97.1	96.9	7.0 7.0	7.0		2.0 2.1	2.1		4.2 5.4	4.8	
				6.2	Middle	3.1	28.4 28.2	28.3	8.4 8.3	8.3	13.9 14.3	14.1	96.8 96.5	96.7	7.0 7.0	7.0	7.0	2.1	2.1	2.1	5.4 5.3	5.4	5.2
					Bottom	5.2	28.0	28.2	8.2	8.3	15.9	16.8	96.4	96.5	6.9	6.9	6.9	2.2	2.2		5.2	5.3	
3-Jun-16	Sunny	Moderate	10:02		Surface	1.0	28.3 28.7	28.7	8.3 8.4	8.4	17.7 17.1	17.1	96.6 101.5	101.2	6.8 7.1	7.1		2.2	2.6		5.4 2.9	2.8	
				0.0			28.7 28.5		8.4 8.4	_	17.0 17.7		100.9 99.8		7.1 7.0		7.1	2.6 3.2	-	0.0	2.7		
				6.6	Middle	3.3	28.6 28.4	28.6	8.4 8.3	8.4	17.8 20.4	17.7	100.6 100.8	100.2	7.1	7.0		3.0	3.1	3.0	2.2 3.5	2.4	3.0
					Bottom	5.6	28.3	28.4	8.3	8.3	20.7	20.5	100.2	100.5	7.0	7.0	7.0	3.4	3.3		3.8	3.7	
6-Jun-16	Cloudy	Moderate	14:31		Surface	1.0	27.8 27.8	27.8	8.3 8.3	8.3	20.5 20.4	20.5	81.3 82.5	81.9	5.7 5.8	5.7	5.7	1.5 1.4	1.5		2.9 2.9	2.9	
				6.5	Middle	3.3	27.8 27.7	27.8	8.3 8.3	8.3	20.7 20.7	20.7	82.0 80.2	81.1	5.8 5.6	5.7	0	1.4 1.4	1.4	1.4	2.2 2.3	2.3	2.6
					Bottom	5.5	27.6 27.8	27.7	8.3 8.3	8.3	22.0 22.3	22.1	80.1 81.9	81.0	5.6 5.7	5.6	5.6	1.4 1.4	1.4		2.9 2.3	2.6	
8-Jun-16	Sunny	Moderate	15:58		Surface	1.0	28.6 28.7	28.7	8.3 8.4	8.4	17.8 17.5	17.7	79.3 79.2	79.3	5.6 5.6	5.6		1.1	1.1		2.0	2.9	
				6.6	Middle	3.3	28.0	28.3	8.3 8.3	8.3	19.0	18.9	78.2	78.3	5.4 5.4	5.4	5.5	1.2	1.2	1.2	2.6	3.1	3.6
					Bottom	5.6	28.5 27.9	27.6	8.3	8.3	18.8 25.4	25.6	78.3 76.9	77.2	5.3	5.4	5.4	1.2 1.2	1.2		3.5 5.3	4.9	
10-Jun-16	Rainy	Moderate	17:41		Surface	1.0	27.3 28.6	28.7	8.2 8.4	8.4	25.7 18.4	17.9	77.4 89.5	89.1	5.4 6.3	6.2		1.2	1.3		4.5 2.6	3.2	
				0.4			28.7 28.4		8.4 8.4	_	17.5 18.9	_	88.7 87.5		6.2 6.1		6.1	1.3	-	4.0	3.7 2.9		0.0
				6.4	Middle	3.2	28.3	28.4	8.4	8.4	18.9	18.9	85.2 85.1	86.4	6.0	6.0		1.2	1.2	1.2	3.0	3.0	3.2
	01 1				Bottom	5.4	28.1	28.0	8.3	8.3	20.7	20.8	87.1	86.1	6.1	6.0	6.0	1.2	1.2		3.5	3.3	
13-Jun-16	Cloudy	Moderate	07:30		Surface	1.0	27.5 27.6	27.5	8.2 8.2	8.2	13.1 13.0	13.1	74.0 73.7	73.9	5.4 5.4	5.4	5.4	2.6 2.5	2.6		3.0 2.9	3.0	
				6.1	Middle	3.1	27.2 27.1	27.1	8.1 8.1	8.1	14.2 14.7	14.5	73.1 73.3	73.2	5.3 5.3	5.3	0.1	2.8 2.7	2.8	2.8	3.5 3.8	3.7	3.3
					Bottom	5.1	27.1 27.0	27.1	8.0 8.0	8.0	21.0 21.0	21.0	72.3 72.6	72.5	5.2 5.2	5.2	5.2	2.8 2.9	2.9		3.3 3.0	3.2	
15-Jun-16	Sunny	Moderate	09:21		Surface	1.0	28.6 28.5	28.6	8.2 8.1	8.2	10.7 10.9	10.8	82.4 82.8	82.6	6.0 6.1	6.0		5.2 5.5	5.4		4.7 4.9	4.8	
				6.5	Middle	3.3	28.1	28.1	8.1	8.1	13.7	13.1	80.0	81.1	5.7	5.8	5.9	5.3	5.2	5.3	4.4	3.9	4.1
					Bottom	5.5	28.0 27.4	27.8	8.1 8.1	8.1	12.6 23.4	22.7	82.2 79.3	80.4	6.0 5.6	5.6	5.6	5.1 5.2	5.2		3.3 4.1	3.7	
17-Jun-16	Sunny	Moderate	10:27		Surface	1.0	28.1 27.9	27.9	8.0 8.2	8.2	21.9 14.8	14.8	81.5 74.8	74.7	5.7 5.4	5.4		5.1 3.7	3.7		3.3 6.0	6.0	
				0.5			27.9 27.4	_	8.2 8.1	_	14.7 18.3	_	74.6 74.1		5.4 5.2		5.3	3.7		0.0	5.9 6.1		
				6.5	Middle	3.3	27.5 27.4	27.5	8.1	8.1	18.4	18.3	74.4	74.3	5.3 5.2	5.2		3.7	3.8	3.8	6.0 9.5	6.1	7.4
00 1 10	0	Modera	40.12		Bottom	5.5	26.7	27.1	8.0	8.0	24.1	23.7	73.3	73.5	5.2	5.2	5.2	3.7	3.8		10.8	10.2	<u> </u>
20-Jun-16	Sunny	Moderate	13:42		Surface	1.0	28.4 28.5	28.5	8.2 8.2	8.2	14.5 14.2	14.3	79.1 78.3	78.7	5.7 5.6	5.6	5.5	4.8 4.7	4.8		4.8 4.2	4.5	
				6.4	Middle	3.2	27.7 27.9	27.8	8.1 8.1	8.1	18.1 17.7	17.9	76.3 77.3	76.8	5.4 5.5	5.4		4.7 4.7	4.7	4.6	4.5 4.4	4.5	4.9
					Bottom	5.4	26.1 28.0	27.0	8.0 8.1	8.1	25.4 25.9	25.6	73.3 78.1	75.7	5.3 5.5	5.4	5.4	4.4 4.2	4.3		6.2 5.0	5.6	Í ,

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	14:23		Surface	1.0	28.2 28.2	28.2	8.3 8.3	8.3	17.9 17.4	17.7	77.7 77.6	77.7	5.5 5.5	5.5	5.4	5.1 5.3	5.2		4.5 5.5	5.0	
				6.7	Middle	3.4	28.1 28.1	28.1	8.3 8.3	8.3	18.7 18.8	18.7	75.5 75.7	75.6	5.3 5.3	5.3	3.4	5.3 5.3	5.3	5.3	5.8 5.0	5.4	4.9
					Bottom	5.7	27.8 27.8	27.8	8.3 8.3	8.3	22.1 18.8	20.5	74.3 73.6	74.0	5.2 5.2	5.2	5.2	5.4 5.5	5.5		5.0 3.7	4.4	
24-Jun-16	Sunny	Moderate	16:07		Surface	1.0	28.8 28.7	28.8	8.3 8.3	8.3	19.3 19.6	19.5	80.1 81.4	80.8	5.6 5.7	5.6	5.4	4.5 4.3	4.4		5.3 3.9	4.6	
				6.7	Middle	3.4	28.3 28.3	28.3	8.3 8.3	8.3	20.5 20.6	20.5	73.3 75.4	74.4	5.1 5.2	5.2	0.4	5.4 5.2	5.3	4.9	4.3 5.2	4.8	5.7
					Bottom	5.7	26.6 26.4	26.5	8.2 8.2	8.2	26.5 26.7	26.6	79.2 74.2	76.7	5.5 5.1	5.3	5.3	5.0 5.0	5.0		6.9 8.7	7.8	
27-Jun-16	Sunny	Moderate	18:32		Surface	1.0	29.2 29.3	29.3	8.5 8.5	8.5	19.9 19.7	19.8	108.0 104.7	106.4	7.4 7.2	7.3	7.2	3.0 3.0	3.0		4.2 3.9	4.1	
				6.5	Middle	3.3	28.8 28.2	28.5	8.4 8.4	8.4	22.7 23.1	22.9	99.8 102.9	101.4	6.9 7.1	7.0	7.2	3.3 3.1	3.2	3.1	4.4 3.9	4.2	4.1
					Bottom	5.5	27.9 26.6	27.3	8.4 8.4	8.4	24.9 26.3	25.6	95.4 99.2	97.3	6.5 6.8	6.7	6.7	3.2 3.2	3.2		3.5 4.2	3.9	
29-Jun-16	Sunny	Moderate	07:51		Surface	1.0	28.0 28.1	28.1	8.3 8.3	8.3	19.1 19.1	19.1	85.7 86.8	86.3	6.0 6.1	6.1	6.0	2.6 2.5	2.6		2.9 2.6	2.8	
				6.6	Middle	3.3	27.5 27.6	27.6	8.2 8.2	8.2	21.5 21.5	21.5	83.9 86.3	85.1	5.9 6.0	5.9	0.0	2.7 2.6	2.7	2.7	3.3 3.3	3.3	3.0
					Bottom	5.6	27.7 27.3	27.5	8.2 8.2	8.2	24.8 25.3	25.1	85.3 83.7	84.5	5.9 5.9	5.9	5.9	2.6 2.7	2.7		2.8 2.8	2.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	16:08		Surface	1.0	29.0 28.6	28.8	8.6 8.6	8.6	12.8 12.9	12.8	103.7 108.5	106.1	7.4 7.5	7.5		1.7 1.7	1.7		2.5 2.4	2.5	
				6.1	Middle	3.1	27.9 27.9	27.9	8.5 8.5	8.5	14.2 15.5	14.8	103.6 100.5	102.1	7.5 7.0	7.2	7.4	1.7	1.7	1.7	2.8	2.9	2.7
					Bottom	5.1	27.8 27.6	27.7	8.5 8.4	8.4	22.9 22.9	22.9	100.9 96.6	98.8	7.3 7.0	7.1	7.1	1.7	1.8		2.7	2.7	
3-Jun-16	Sunny	Moderate	18:50		Surface	1.0	29.5 29.5	29.5	8.5 8.5	8.5	15.3 15.3	15.3	110.3 113.4	111.9	7.7 8.0	7.8		2.2	2.3		4.4 3.6	4.0	
				6.9	Middle	3.5	29.0 28.9	28.9	8.5 8.5	8.5	16.6 16.4	16.5	95.0 94.4	94.7	6.7 6.6	6.7	7.3	2.6 2.8	2.7	2.7	3.1 4.5	3.8	4.8
					Bottom	5.9	27.5 27.7	27.6	8.3 8.3	8.3	26.4 26.3	26.4	99.1 97.7	98.4	6.8 6.6	6.7	6.7	3.1 3.2	3.2		5.8 7.2	6.5	
6-Jun-16	Cloudy	Moderate	06:12		Surface	1.0	27.6 27.4	27.5	8.4 8.4	8.4	23.3 25.7	24.5	75.5 75.9	75.7	5.2 5.1	5.2		1.3 1.3	1.3		2.9	2.7	
				6.4	Middle	3.2	27.0 27.2	27.1	8.3 8.4	8.4	30.0 28.9	29.4	75.1 74.8	75.0	5.0 5.0	5.0	5.1	1.3	1.3	1.3	2.2	2.3	2.6
					Bottom	5.4	27.0 26.7	26.8	8.3 8.3	8.3	31.6 31.7	31.6	73.6 74.2	73.9	5.0 5.0	5.0	5.0	1.3	1.3		3.3	2.8	
8-Jun-16	Sunny	Moderate	07:32		Surface	1.0	27.8 27.8	27.8	8.2 8.2	8.2	18.9 18.9	18.9	77.0 76.4	76.7	5.6 5.6	5.6		1.1	1.1		2.4	2.4	
				6.7	Middle	3.4	27.5 27.6	27.6	8.2 8.2	8.2	20.8	20.7	76.3 74.9	75.6	5.5 5.4	5.5	5.6	1.1	1.2	1.2	2.1	2.2	2.3
					Bottom	5.7	27.4 26.7	27.0	8.1 8.1	8.1	26.7 28.2	27.5	76.1 73.4	74.8	5.4 5.2	5.3	5.3	1.1	1.2		2.1	2.4	
10-Jun-16	Sunny	Moderate	09:02		Surface	1.0	27.9 27.9	27.9	8.2 8.2	8.2	18.3 18.5	18.4	74.9 73.6	74.3	5.3 5.2	5.3	F.0.	1.8 1.7	1.8		3.1 2.8	3.0	
				6.5	Middle	3.3	27.5 27.6	27.5	8.1 8.1	8.1	21.4 20.9	21.2	71.4 74.0	72.7	5.0 5.1	5.1	5.2	1.8 1.7	1.8	1.8	3.4 3.6	3.5	3.2
					Bottom	5.5	27.6 26.9	27.3	8.1 8.0	8.1	23.4 27.5	25.5	73.2 72.3	72.8	5.1 5.0	5.0	5.0	1.7 1.8	1.8		3.4 2.8	3.1	
13-Jun-16	Cloudy	Moderate	13:47		Surface	1.0	28.0 27.2	27.6	8.3 8.2	8.3	12.3 12.3	12.3	77.4 73.3	75.4	5.7 5.2	5.4	5.4	2.3 2.0	2.2		3.1 3.1	3.1	
				6.2	Middle	3.1	27.4 27.0	27.2	8.2 8.1	8.2	19.5 20.1	19.8	74.2 70.5	72.4	5.4 5.1	5.3	5.4	2.4 2.2	2.3	2.3	4.4 3.1	3.8	3.8
					Bottom	5.2	27.2 26.9	27.0	8.2 8.0	8.1	22.5 23.8	23.2	74.2 70.1	72.2	5.3 5.1	5.2	5.2	2.4 2.4	2.4		5.0 4.2	4.6	
15-Jun-16	Sunny	Moderate	17:03		Surface	1.0	29.0 29.0	29.0	8.4 8.4	8.4	11.2 11.2	11.2	86.5 91.3	88.9	6.3 6.6	6.4	6.3	4.5 4.5	4.5		3.8 4.0	3.9	
				6.6	Middle	3.3	28.9 28.6	28.7	8.4 8.4	8.4	11.4 12.1	11.7	84.3 89.2	86.8	6.1 6.2	6.2	0.5	4.2 4.4	4.3	4.4	2.8 3.9	3.4	3.5
					Bottom	5.6	27.1 26.8	27.0	8.2 8.1	8.2	24.0 25.1	24.6	82.0 77.8	79.9	5.7 5.6	5.7	5.7	4.4 4.5	4.5		3.0 3.1	3.1	
17-Jun-16	Sunny	Moderate	18:40		Surface	1.0	28.9 28.8	28.9	8.4 8.4	8.4	11.8 11.9	11.8	78.7 80.1	79.4	5.7 5.8	5.7	5.5	3.5 3.5	3.5		3.6 4.0	3.8	
				6.4	Middle	3.2	27.6 27.1	27.4	8.2 8.2	8.2	17.5 19.0	18.3	77.4 74.1	75.8	5.4 5.1	5.2	5.0	3.5 3.6	3.6	3.5	3.2 4.8	4.0	4.2
					Bottom	5.4	26.8 26.5	26.7	8.1 8.1	8.1	26.3 26.6	26.4	67.1 70.4	68.8	4.8 5.0	4.9	4.9	3.5 3.5	3.5		4.1 5.5	4.8	
20-Jun-16	Sunny	Moderate	05:15		Surface	1.0	27.3 27.1	27.2	8.3 8.2	8.2	22.4 22.6	22.5	75.5 75.3	75.4	5.3 5.3	5.3	5.2	2.6 2.7	2.7		5.1 5.8	5.5	
				6.3	Middle	3.2	26.2 27.1	26.7	8.2 8.3	8.2	25.8 23.5	24.6	73.2 73.3	73.3	5.1 5.1	5.1	0.2	2.9 2.8	2.9	2.8	5.6 5.6	5.6	5.4
					Bottom	5.3	25.0 25.7	25.4	8.2 8.2	8.2	28.6 30.7	29.7	71.7 75.0	73.4	5.0 5.1	5.1	5.1	3.0 2.8	2.9		4.9 5.3	5.1	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling) T	emperature (°C)		рН	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	ı) V	alue Averag	e Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	07:02		Surface		6.9 6.9 26.9	8.3 8.3	8.3	23.2 23.5	23.3	77.4 75.6	76.5	5.4 5.3	5.3	5.3	3.3 3.0	3.2		3.0 3.5	3.3	
				6.7	Middle		5.5 5.5 25.5	8.2 8.2	8.2	26.8 26.9	26.8	75.4 73.5	74.5	5.2 5.2	5.2	3.3	3.0 3.3	3.2	3.2	2.9 4.3	3.6	3.8
					Bottom		5.0 5.3	8.2 8.2	8.2	31.3 31.5	31.4	72.8 72.4	72.6	5.1 5.0	5.1	5.1	3.2 3.3	3.3		4.5 4.7	4.6	
24-Jun-16	Sunny	Moderate	07:51		Surface		7.4 7.4 27.4	7.9 8.0	8.0	22.5 22.5	22.5	75.7 75.9	75.8	5.4 5.5	5.4	5.4	2.5 2.7	2.6		5.1 4.4	4.8	
				6.6	Middle :		6.7 6.9 26.8	7.9 7.9	7.9	25.0 24.8	24.9	73.2 74.1	73.7	5.3 5.3	5.3	0.4	2.5 2.6	2.6	2.6	6.3 6.3	6.3	5.4
					Bottom	รถ เ	6.3 6.6 26.4	7.9 7.9	7.9	27.7 27.1	27.4	74.9 73.7	74.3	5.3 5.2	5.3	5.3	2.5 2.7	2.6		5.2 5.1	5.2	
27-Jun-16	Sunny	Moderate	10:41		Surface		8.2 8.0 28.1	8.2 8.2	8.2	21.2 21.1	21.1	85.2 83.8	84.5	5.9 5.8	5.9	5.9	2.7 2.6	2.7		4.1 3.2	3.7	
				6.6	Middle	3.3	7.5 7.6 27.5	8.2 8.2	8.2	24.0 24.0	24.0	83.5 84.5	84.0	5.8 5.8	5.8	3.5	2.5 2.6	2.6	2.6	3.7 3.5	3.6	3.9
					Bottom		6.7 7.7 27.2	8.1 8.2	8.2	26.6 25.4	26.0	81.6 82.9	82.3	5.6 5.7	5.7	5.7	2.6 2.6	2.6		5.0 3.5	4.3	
29-Jun-16	Sunny	Moderate	15:05		Surface	1()	7.6 7.6 27.6	8.4 8.4	8.4	23.0 22.9	22.9	81.0 80.1	80.6	5.6 5.6	5.6	5.6	3.2 3.0	3.1		4.3 4.1	4.2	
				6.6	Middle 3	3.3	7.2 7.3 27.2	8.4 8.4	8.4	24.1 24.2	24.1	79.2 79.8	79.5	5.5 5.5	5.5	5.0	3.5 3.6	3.6	3.4	3.1 4.0	3.6	4.3
					Bottom	รถ เ	6.9 6.9	8.3 8.3	8.3	26.3 26.5	26.4	77.1 76.9	77.0	5.3 5.3	5.3	5.3	3.5 3.5	3.5		5.4 4.6	5.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxyger	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	09:22		Surface	1.0	28.4 28.5	28.5	8.4	8.4	13.9 13.6	13.8	99.0 98.9	99.0	7.1	7.1		2.0 2.0	2.0		3.9 2.9	3.4	
				4.9	Middle	_	- 28.5	_	8.4	_	-	_	- 98.9	_	7.1	_	7.1	- 2.0	_	2.2	- 2.9	_	3.2
							28.4		8.4		- 14.1		98.7		7.1			2.3			2.8		0.2
					Bottom	3.9	28.4	28.4	8.5	8.4	14.3	14.2	98.4	98.6	7.1	7.1	7.1	2.2	2.3		3.2	3.0	
3-Jun-16	Sunny	Moderate	09:49		Surface	1.0	28.7 28.7	28.7	8.3 8.3	8.3	17.3 17.3	17.3	102.4 102.1	102.3	7.2 7.2	7.2		2.3 2.4	2.4		2.6 3.6	3.1	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	2.4	-	-	3.2
					Bottom	4.1	28.7	28.7	8.3	8.3	18.0	18.1	101.1	101.5	7.1	7.1	7.1	2.5	2.4		3.2	3.2	
6-Jun-16	Cloudy	Moderate	14:41				28.7 27.8	_	8.2 8.3		18.2 20.5		101.9 83.6		7.1 5.9		7	2.3 1.7			3.1 2.0		
0-3411-10	Oloudy	Woderate	14.41		Surface	1.0	27.8	27.8	8.3	8.3	20.6	20.5	83.4	83.5	5.8	5.9	5.9	1.7	1.7		2.4	2.2	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	1.8	-	-	2.6
					Bottom	4.0	27.8 27.8	27.8	8.3 8.3	8.3	20.8 20.6	20.7	83.2 83.4	83.3	5.8 5.8	5.8	5.8	1.7 1.8	1.8		2.9 3.0	3.0	
8-Jun-16	Sunny	Moderate	16:09		Surface	1.0	28.6	28.6	8.3	8.3	18.1	18.2	80.1	78.3	5.6	5.5		1.5	1.6		3.3	3.1	
				5.0			28.5		8.3		18.2		76.5	10.0	5.4		5.5	1.6		4.0	2.9		0.4
				5.3	Middle	-	28.2	-	8.3	-	20.3	-	77.9	-	5.4	-		- 1.4	-	1.6	3.9	-	3.1
					Bottom	4.3	26.2 27.2	27.7	8.2	8.2	20.3 25.1	22.7	77.9 77.4	77.7	5.4	5.4	5.4	1.4 1.5	1.5		2.3	3.1	
10-Jun-16	Rainy	Moderate	17:51		Surface	1.0	28.7 28.6	28.6	8.4 8.4	8.4	17.8 18.1	18.0	92.8 90.9	91.9	6.5 6.4	6.4		1.4 1.5	1.5		2.9 4.1	3.5	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	1.5	-	-	3.4
					Bottom	4.0	28.6	28.6	8.4	8.4	18.9	19.1	91.9	91.1	6.4	6.3	6.3	1.4	1.5		2.8	3.3	
13-Jun-16	Cloudy	Moderate	07:24				28.5 27.4		8.4 8.3		19.3 13.2		90.2 76.0		6.3 5.5		0.5	1.5 2.5			3.7 2.6		
10 0011 10	Oloudy	Woderate	07.24		Surface	1.0	27.4	27.4	8.4	8.3	13.1	13.2	79.4	77.7	5.6	5.6	5.6	2.6	2.6		2.9	2.8	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.7	-	-	2.6
					Bottom	4.2	27.2 27.3	27.3	8.2 8.2	8.2	20.5 20.4	20.4	76.8 75.1	76.0	5.6 5.4	5.5	5.5	2.8 2.8	2.8		2.7 2.1	2.4	
15-Jun-16	Sunny	Moderate	09:11		Surface	1.0	28.6	28.7	8.1	8.1	10.9	10.9	86.8	86.6	6.3	6.3		5.8	5.8		4.6	4.8	
				4.0			28.7		8.1		10.8		86.3		6.3	0.0	6.3	5.8	0.0	5.0	5.0		4.0
				4.8	Middle	-	28.3	-	8.0	-	- 14.5	-	85.3	-	6.1	-		- 5.8	-	5.8	4.9	-	4.9
					Bottom	3.8	28.3 28.6	28.4	8.0 8.0	8.0	14.5	14.4	85.3 86.5	85.9	6.2	6.2	6.2	5.8	5.8		4.9 4.9	4.9	
17-Jun-16	Sunny	Moderate	10:16		Surface	1.0	27.8 27.6	27.7	8.2 8.2	8.2	14.8 15.6	15.2	76.7 78.4	77.6	5.6 5.7	5.6		3.8 3.8	3.8		6.5 7.0	6.8	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-	3.8	-	-	6.6
					Bottom	4.3	27.5	27.5	8.1	8.1	19.8	19.8	78.9	77.9	5.6	5.5	5.5	3.6	3.7		6.1	6.3	
20-Jun-16	Sunny	Moderate	13:53				27.5 28.4		8.1 8.1		19.9 13.6		76.8 81.2		5.4 5.9		5.5	3.7 4.6			6.5 4.0		
20-Juli-10	Suring	iviouerate	13.33		Surface	1.0	28.6	28.5	8.1	8.1	14.5	14.1	81.1	81.2	5.8	5.8	5.8	4.6	4.6		3.4	3.7	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.5	-	-	3.8
					Bottom	4.1	28.2	28.3	8.0	8.0	17.8	17.6	80.6	80.7	5.7	5.7	5.7	4.3	4.4		2.6	3.8	
<u> </u>		<u> </u>	<u> </u>	<u> </u>	1		28.3	l	8.1	<u> </u>	17.4	l l	80.7	<u> </u>	5.7	l		4.5			4.9	l	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	14:31		Surface	1.0	28.4 28.4	28.4	8.3 8.3	8.3	17.8 17.8	17.8	81.8 81.3	81.6	5.8 5.7	5.7	5.7	5.1 5.1	5.1		3.6 3.8	3.7	
				5.1	Middle	-		-		-	-	-	-	-		-	5.7	-	-	5.2	-	-	4.0
					Bottom	4.1	28.4 28.4	28.4	8.3 8.3	8.3	18.0 17.9	17.9	80.8 81.5	81.2	5.7 5.7	5.7	5.7	5.2 5.2	5.2		3.7 4.9	4.3	
24-Jun-16	Sunny	Moderate	16:19		Surface	1.0	29.3 28.9	29.1	8.3 8.3	8.3	18.4 18.6	18.5	80.0 82.1	81.1	5.5 5.7	5.6	5.6	4.1 4.1	4.1		4.4 5.0	4.7	
				5.4	Middle	-		-		-	-	-	-	-		-	0.0	-	-	4.2	-	-	5.3
					Bottom	4.4	28.5 27.2	27.8	8.3 8.2	8.2	21.4 24.4	22.9	80.9 80.5	80.7	5.6 5.6	5.6	5.6	4.3 4.1	4.2		6.0 5.8	5.9	
27-Jun-16	Sunny	Moderate	18:41		Surface	1.0	29.1 29.0	29.0	8.5 8.4	8.5	20.4 20.5	20.4	101.7 102.8	102.3	7.0 7.1	7.0	7.0	3.1 2.9	3.0		3.9 3.7	3.8	
				5.1	Middle	-		-		-	-	-	-	-		-	7.0	-	-	3.1	-	-	3.7
					Bottom	4.1	27.7 27.6	27.7	8.4 8.4	8.4	23.9 24.0	23.9	104.5 100.3	102.4	7.2 6.9	7.1	7.1	3.0 3.1	3.1		4.1 3.1	3.6	
29-Jun-16	Sunny	Moderate	07:41		Surface	1.0	28.2 28.0	28.1	8.2 8.2	8.2	19.8 19.6	19.7	90.4 89.3	89.9	6.3 6.3	6.3	6.3	2.3 2.2	2.3		6.1 6.2	6.2	
				5.0	Middle	-		-		-	-	-	-	-	-	-	0.3	-	-	2.4	-	-	5.9
					Bottom	4.0	27.8 27.8	27.8	8.2 8.1	8.1	22.1 22.6	22.4	89.5 90.6	90.1	6.2 6.3	6.2	6.2	2.3 2.4	2.4		5.3 5.8	5.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

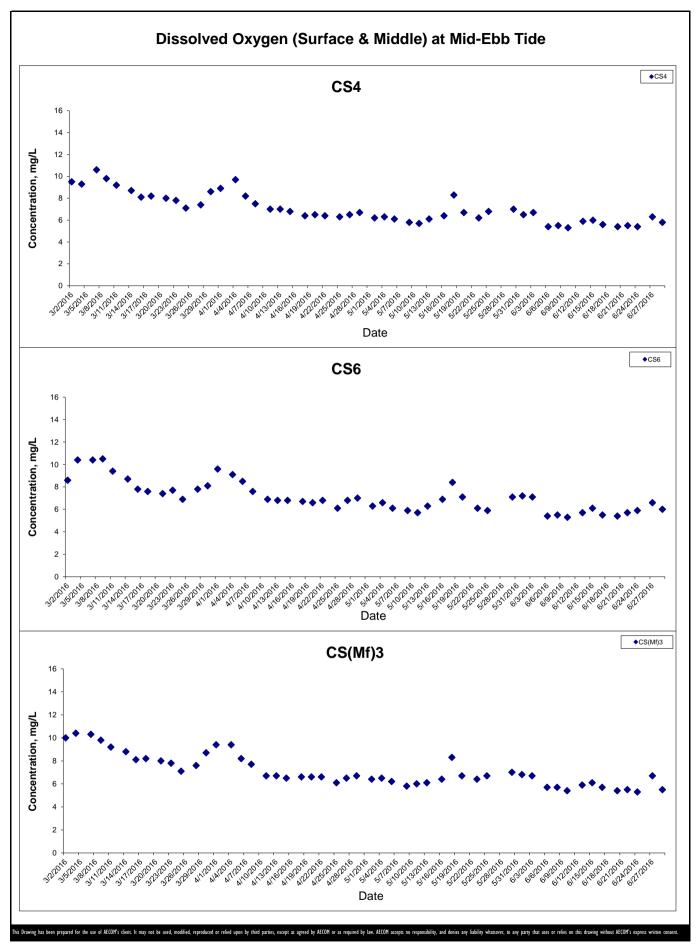
Date	Weather	Sea	Sampling	Water	Sampling		Temperature (°C)		pH		Salinity (ppt)		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)		
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jun-16	Sunny	Moderate	16:16		Surface	1.0	29.1 28.8	29.0	8.6 8.6	8.6	12.9 13.0	12.9	117.9 116.2	117.1	8.4 8.3	8.4		1.7 1.6	1.7		2.3 2.0	2.2	
				4.6	Middle	-	-	-	-	-	-	-	-	-	-	-	8.4	-	-	1.8	-	-	3.3
					Bottom	3.6	29.1	28.8	8.6 8.5	8.6	14.3 15.5	14.9	116.1 114.5	115.3	8.2 8.2	8.2	8.2	1.8	1.8		4.8	4.4	
3-Jun-16	Sunny	Moderate	19:03		0 (4.0	29.4	00.4	8.5	0.5	15.5	45.4	112.4	445.0	7.9	0.4		2.0	0.4		5.3		
	,				Surface	1.0	29.5	29.4	8.5	8.5	15.4	15.4	118.8	115.6	8.3	8.1	8.1	2.1	2.1		5.4	5.4	_
				5.1	Middle	-	28.9	-	8.4	-	20.9	-	114.6	-	7.9	-		2.0	-	2.1	8.4	-	7.1
					Bottom	4.1	28.3	28.6	8.4	8.4	20.1	20.5	107.7	111.2	7.5	7.7	7.7	1.9	2.0		9.0	8.7	
6-Jun-16	Cloudy	Moderate	06:02		Surface	1.0	27.6 27.4	27.5	8.5 8.4	8.4	25.6 25.4	25.5	77.8 76.3	77.1	5.3 5.2	5.3	5.3	1.4 1.4	1.4		2.8 2.4	2.6	
				4.7	Middle	-		-		-		-	<u>-</u>	-	-	-		-	-	1.5	-	-	2.7
					Bottom	3.7	26.9 26.8	26.8	8.4 8.4	8.4	30.7 30.9	30.8	75.8 77.5	76.7	5.1 5.2	5.2	5.2	1.5 1.4	1.5		2.2 3.1	2.7	Ì
8-Jun-16	Sunny	Moderate	07:21	5.4	Surface	1.0	27.5 27.5	27.5	8.2 8.2	8.2	20.8 20.6	20.7	81.9 76.9	79.4	5.7 5.6	5.7	5.7	1.2 1.2	1.2	1.2	3.0 2.4	2.7	
					Middle	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	2.7
					Bottom	4.4	27.2 27.3	27.3	8.1 8.1	8.1	27.0 28.5	27.8	78.4 77.5	78.0	5.7 5.4	5.5	5.5	1.1	1.1		2.6	2.6	
10-Jun-16	Sunny	Moderate	08:53		Surface	1.0	27.7	27.7	8.2	8.2	19.3	19.2	74.0	74.4	5.2	5.3		1.8	1.7		2.7	2.7	
				4.9	Middle		27.7	_	8.2	_	19.2	_	74.8	_	5.3	_	5.3	1.6	_	1.7	2.7	_	2.6
					Bottom	3.9	27.3	27.5	8.1	8.1	24.0	23.7	73.3	73.9	5.1	5.1	5.1	1.8	1.7	•••	2.1	2.5	1
13-Jun-16	Cloudy	Moderate	13:56	1			27.7 27.6		8.1 8.2		23.3 12.5		74.4 77.3		5.2 5.7		3.1	1.6 2.2			2.9 4.9		
	,				Surface	1.0	27.5	27.6	8.2	8.2	12.6	12.5	77.2	77.3	5.6	5.7	5.7	2.1	2.2		5.1	5.0	
				5.3	Middle	-	27.3	-	- 8.1	-	- 19.1	-	- 76.4	-	- 5.5	-		2.2	-	2.2	3.7	-	4.5
	-				Bottom	4.3	27.8	27.6	8.2	8.1	18.6	18.8	77.1	76.8	5.5	5.5	5.5	2.2	2.2		4.3	4.0	
15-Jun-16	Sunny	Moderate	17:12		Surface	1.0	28.7 28.9	28.8	8.4 8.4	8.4	11.1 11.0	11.1	90.7 94.7	92.7	6.6 6.9	6.7	6.7	4.5 4.6	4.6		3.2 3.4	3.3	
				5.0	Middle	-		-		-		-		-		-	0	-	-	4.6	-	-	3.5
					Bottom	4.0	28.8 27.9	28.3	8.3 8.2	8.3	13.2 13.6	13.4	93.1 92.2	92.7	6.7 6.5	6.6	6.6	4.6 4.4	4.5		3.7 3.5	3.6	
17-Jun-16	Sunny	Moderate	18:51		Surface	1.0	28.8 28.7	28.8	8.4 8.3	8.4	11.9 12.0	11.9	83.4 86.2	84.8	5.9 6.1	6.0		3.9 4.0	4.0		4.3 4.1	4.2	
				4.9	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	4.0	-	-	4.0
					Bottom	3.9	26.6	27.2	8.1	8.2	21.8	20.8	72.6	74.0	5.2	5.3	5.3	3.9	4.0		3.5	3.7	İ
20-Jun-16	Sunny	Moderate	05:04		Surface	1.0	27.9	27.2	8.4	8.4	19.8 20.6	20.8	75.3 82.3	80.8	5.4 5.8	5.7		2.3	2.4		3.9 5.4	5.2	
				5.2	Middle		27.1		8.4		21.0		79.2		5.6 -	-	5.7	2.5		2.7	5.0	-	5.3
				J. <u>Z</u>		4.2	25.7		8.4		27.7	27.2	- 85.1		5.9	- - 7	F 7	2.8		2.1	5.1	5.3	3.5
					Bottom	4.2	26.5	26.1	8.4	8.4	26.7	27.2	79.9	82.5	5.5	5.7	5.7	3.0	2.9		5.5	5.3	<u> </u>

Remarks:

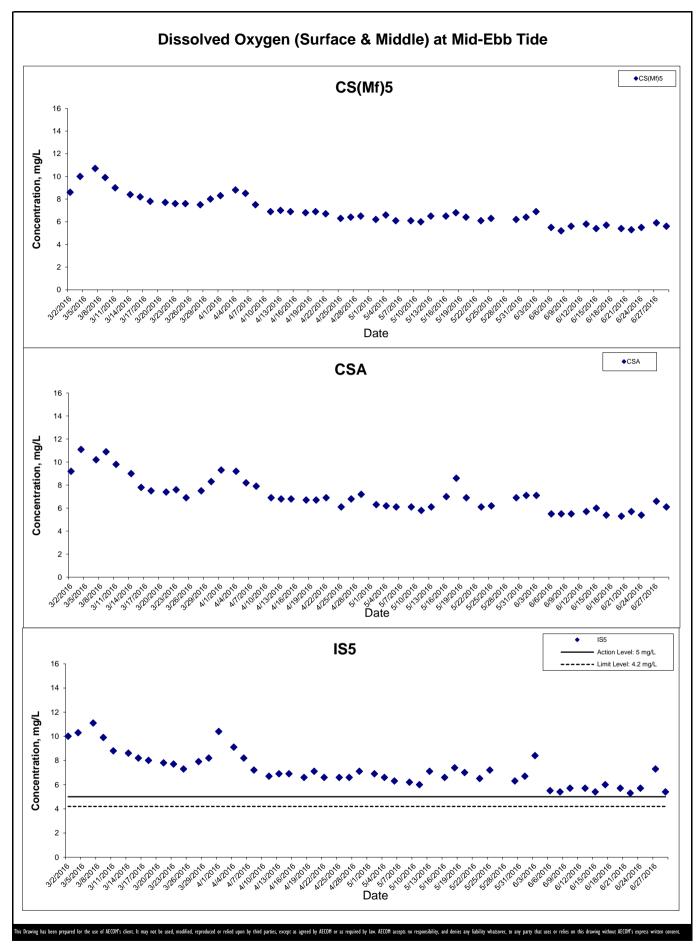
* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

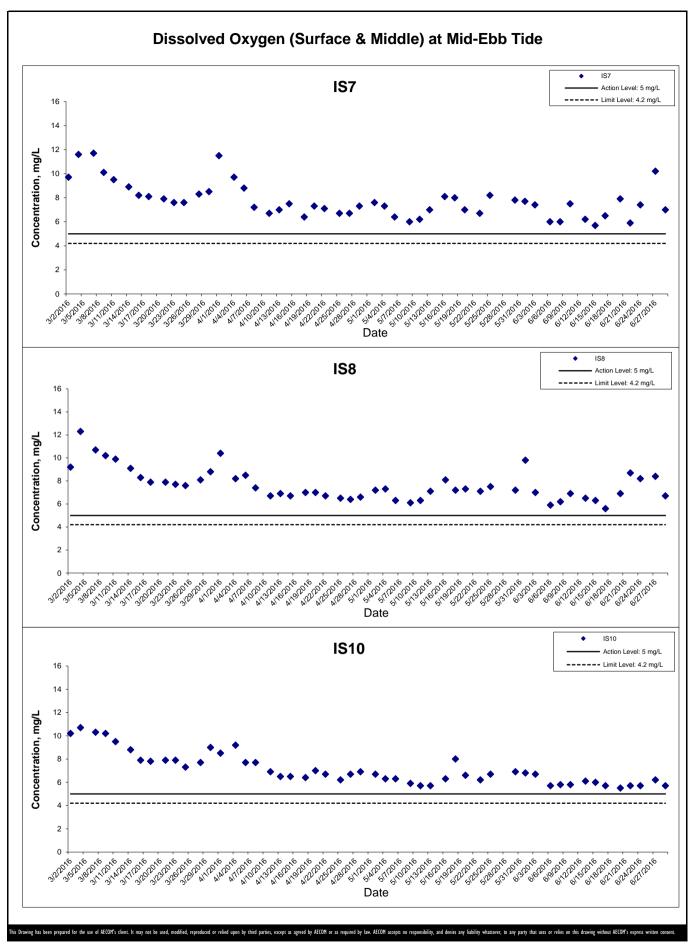

Date	Weather	Sea	Sampling	Water	Sampling		Temperature (°C)		рН		Salinity (ppt)		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)		
	Condition	Condition**	Time	Depth (m)	Depth (Depth (m)		Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jun-16	Sunny	Moderate	06:56		Surface	1.0	26.8 27.0	26.9	8.3 8.3	8.3	24.9 24.5	24.7	83.0 77.0	80.0	5.7 5.4	5.5	5.5	3.0 2.9	3.0		4.4 4.1	4.3	
				5.2	Middle	•		-		-	-	-		-	1 1	-	3.3	-	-	3.1	-	-	4.3
					Bottom	4.2	26.7 26.5	26.6	8.3 8.3	8.3	28.0 29.2	28.6	76.9 78.6	77.8	5.3 5.5	5.4	5.4	3.0 3.3	3.2		4.6 3.7	4.2	
24-Jun-16	Sunny	Moderate	07:36	_	Surface	1.0	28.0 27.9	27.9	8.0 8.0	8.0	20.0 20.4	20.2	81.4 84.7	83.1	5.9 6.1	6.0	6.0	2.7 2.6	2.7		3.8 3.5	3.7	
				5.1	Middle	-		-	-	-	-	-		-		-	0.0	-	-	2.7	-	-	3.6
					Bottom	4.1	27.3 27.1	27.2	7.9 7.9	7.9	23.8 24.3	24.1	81.5 82.4	82.0	5.8 5.7	5.8	5.8	2.7 2.6	2.7		3.3 3.4	3.4	
27-Jun-16	Sunny	Moderate	10:31		Surface	1.0	28.1 27.9	28.0	8.1 8.1	8.1	22.0 22.0	22.0	83.4 85.4	84.4	5.8 5.9	5.8	5.8	2.7 2.8	2.8		4.4 4.8	4.6	
				5.0	Middle	-		-		-	-	-		-		-	5.0	-	-	2.8	-	-	4.7
					Bottom	4.0	28.1 27.4	27.7	8.1 8.0	8.1	24.7 25.6	25.2	84.9 82.5	83.7	5.8 5.7	5.7	5.7	2.8 2.7	2.8		4.6 5.0	4.8	
29-Jun-16	Sunny	Moderate	15:16		Surface	1.0	27.4 27.4	27.4	8.4 8.4	8.4	23.0 23.0	23.0	81.5 81.0	81.3	5.7 5.6	5.7	5.7	2.8 2.9	2.9		5.2 5.4	5.3	
				5.5	Middle	-	-	-	-	-	-	-		-	-	-	5.7	-	-	2.9	-	-	5.2
					Bottom	4.5	27.4 27.1	27.2	8.4 8.3	8.4	25.1 25.8	25.5	81.6 81.9	81.8	5.6 5.6	5.6	5.6	2.8 2.8	2.8		5.6 4.5	5.1	

Remarks:


Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

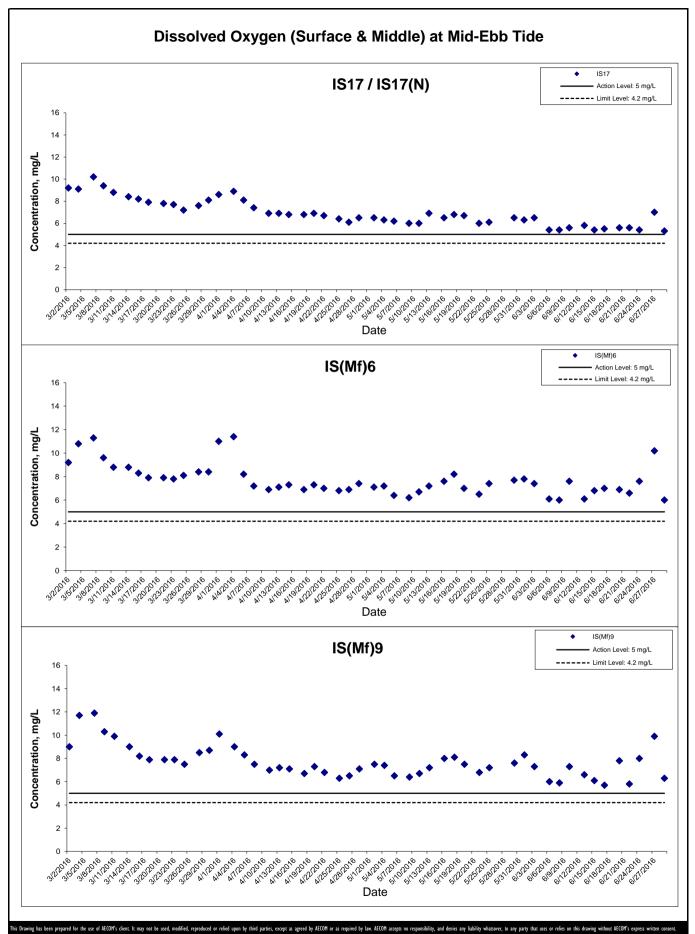
^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher


AECOM

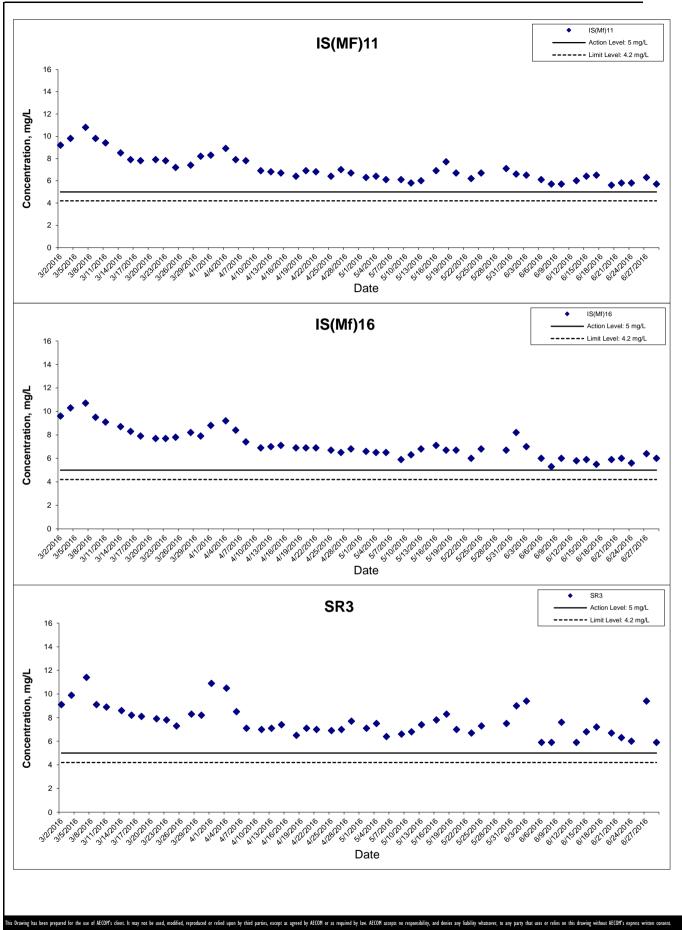
AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

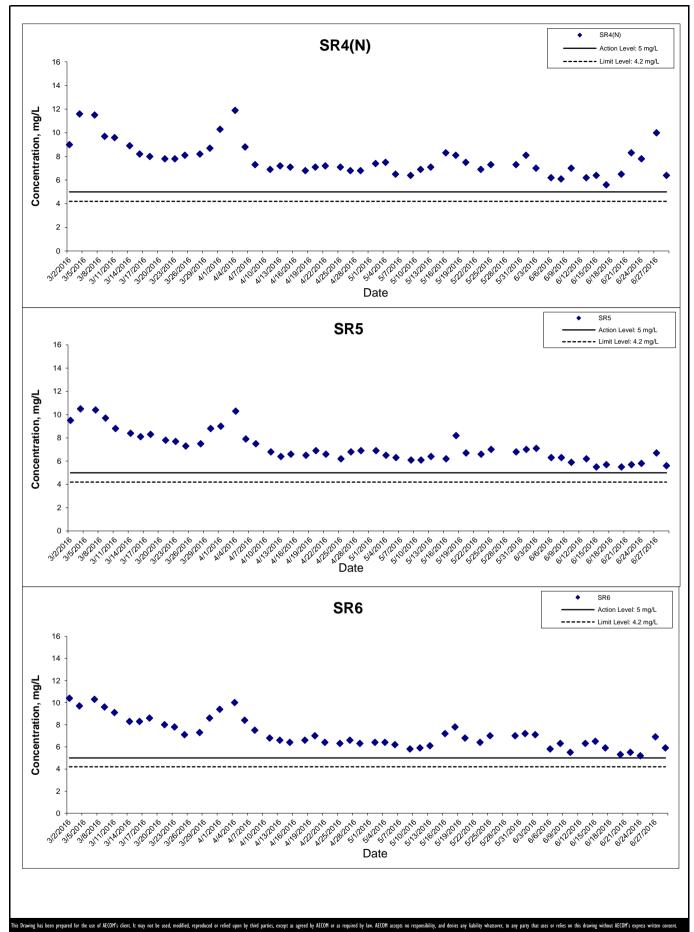

Monitoring Results

AECOM

- RECLAMATION WORKS Graphical Prese

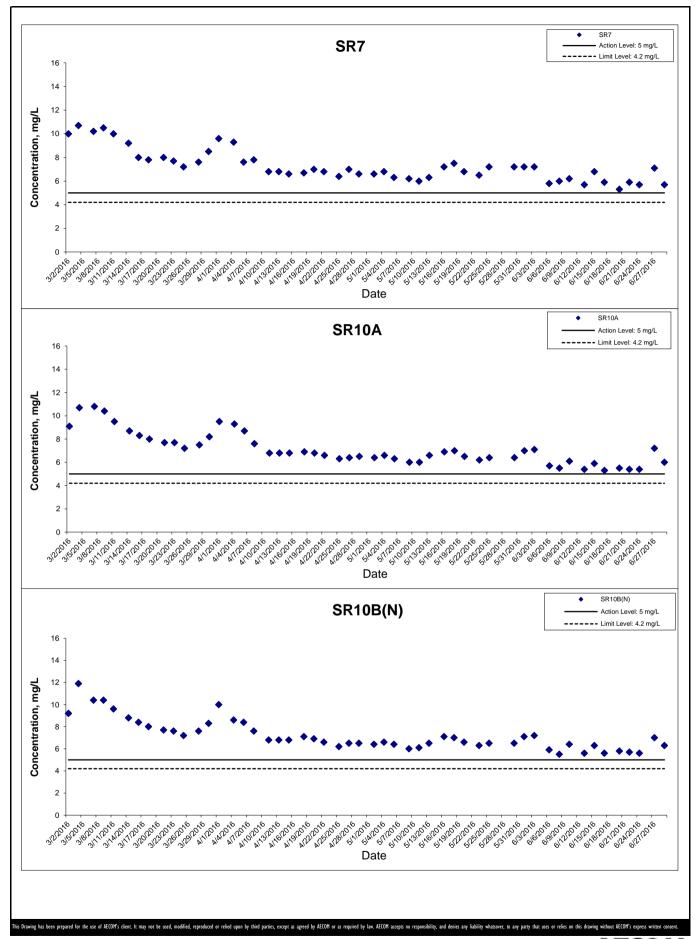

Graphical Presentation of Impact Water Quality
Monitoring Results

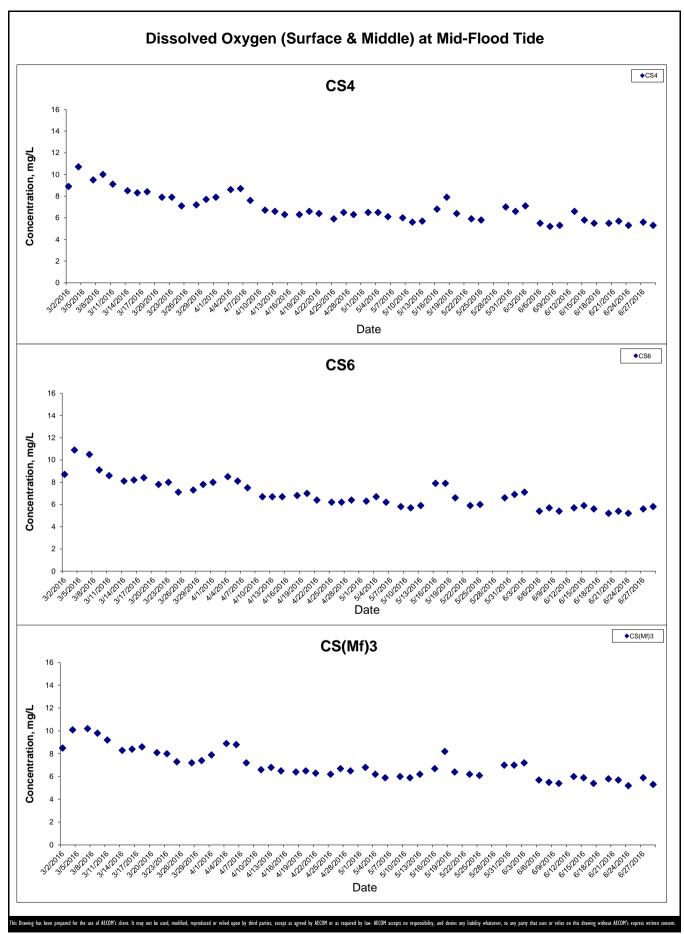
- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality

Monitoring Results

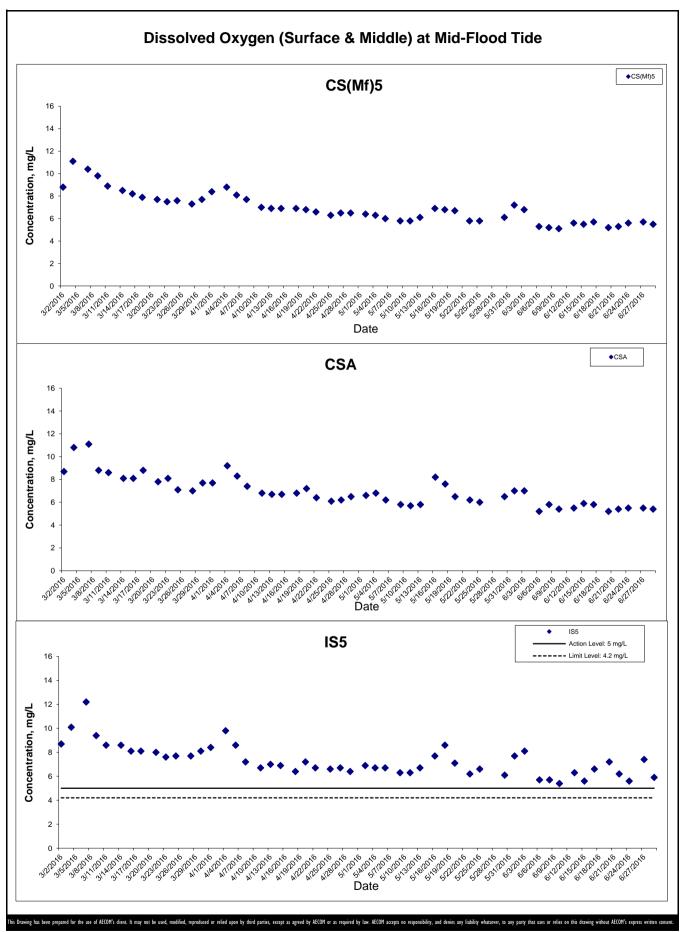
- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results

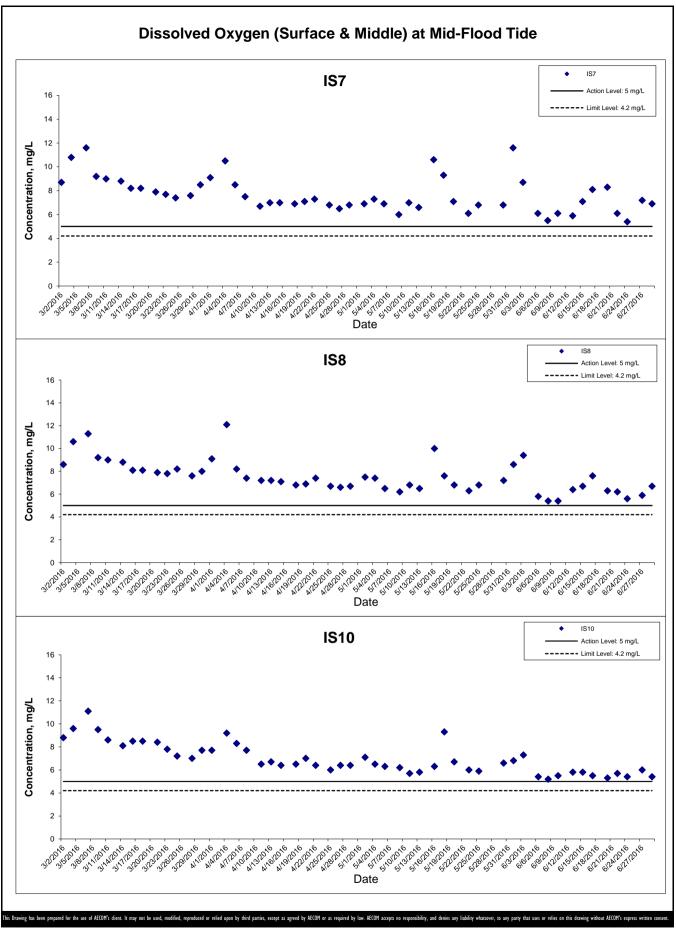

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

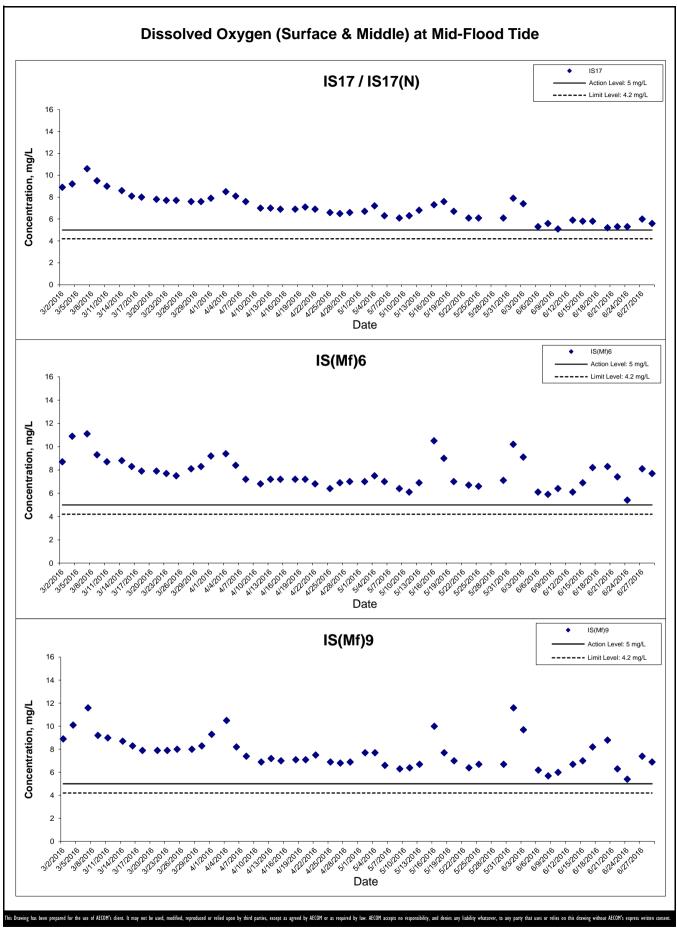
Monitoring Results



AECOM

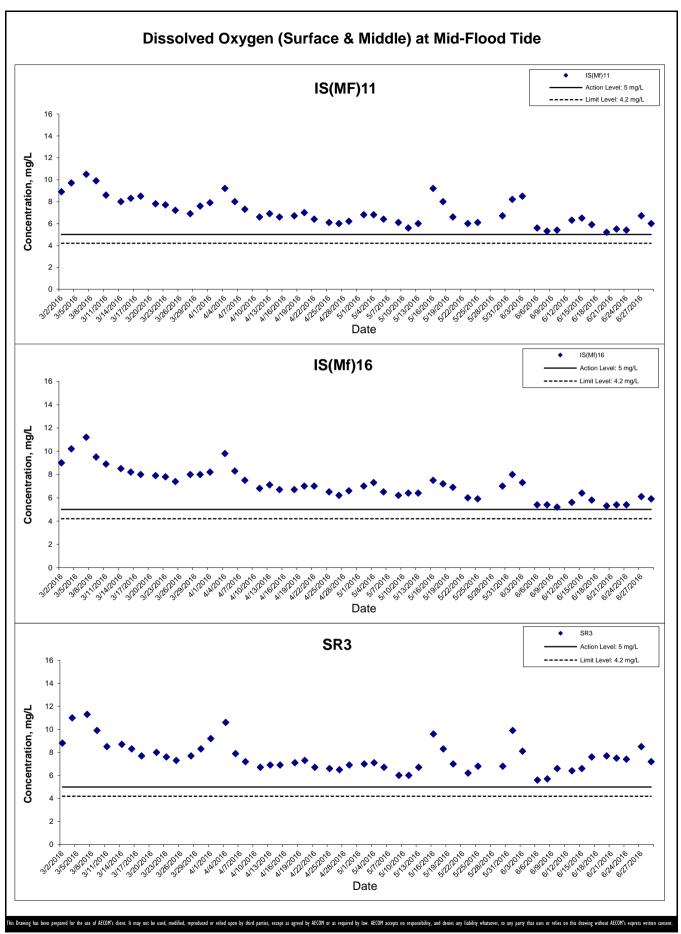

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES **Graphical Presentation of Impact Water Quality** - RECLAMATION WORKS

Monitoring Results Appendix J Project No.: 60249820 Date: July 2016


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS

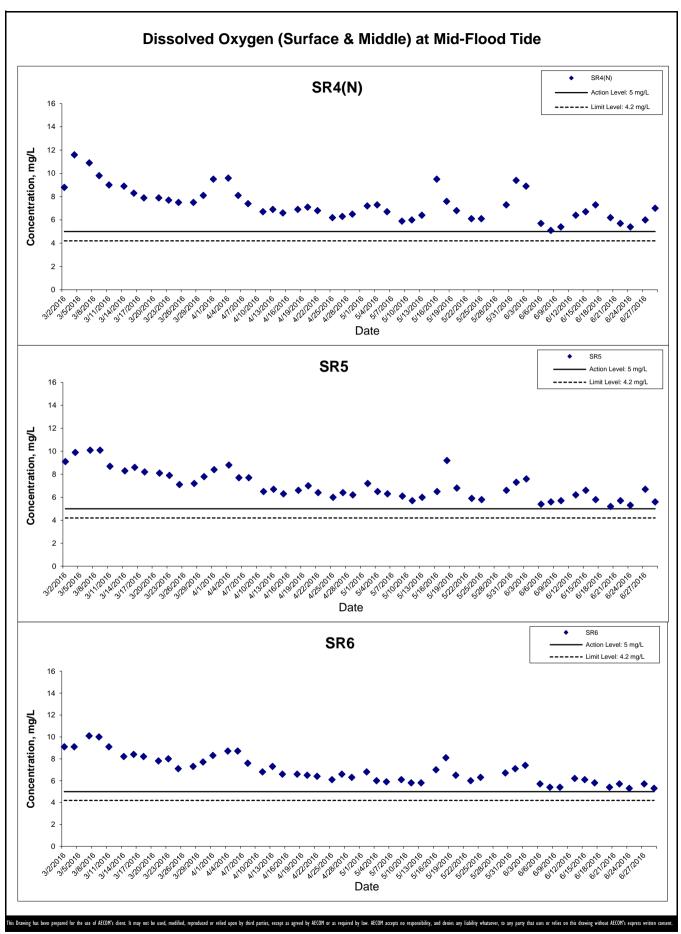
Graphical Presentation of Impact Water Quality
Monitoring Results

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
G1


Graphical Presentation of Impact Water Quality
Monitoring Results

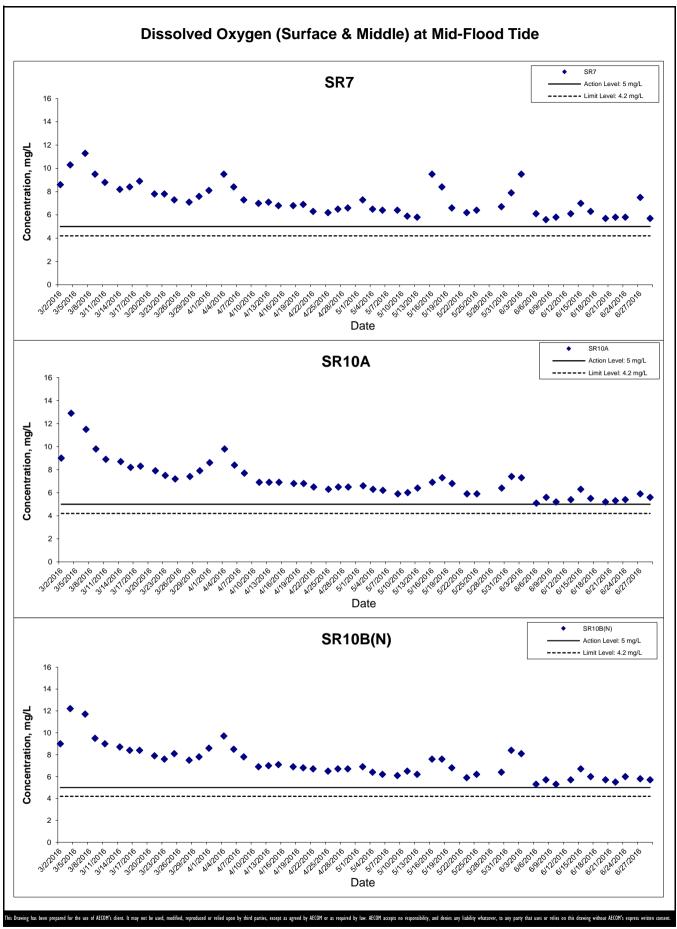
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI

Graphical Presentation of Impact Water Quality
Monitoring Results



HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

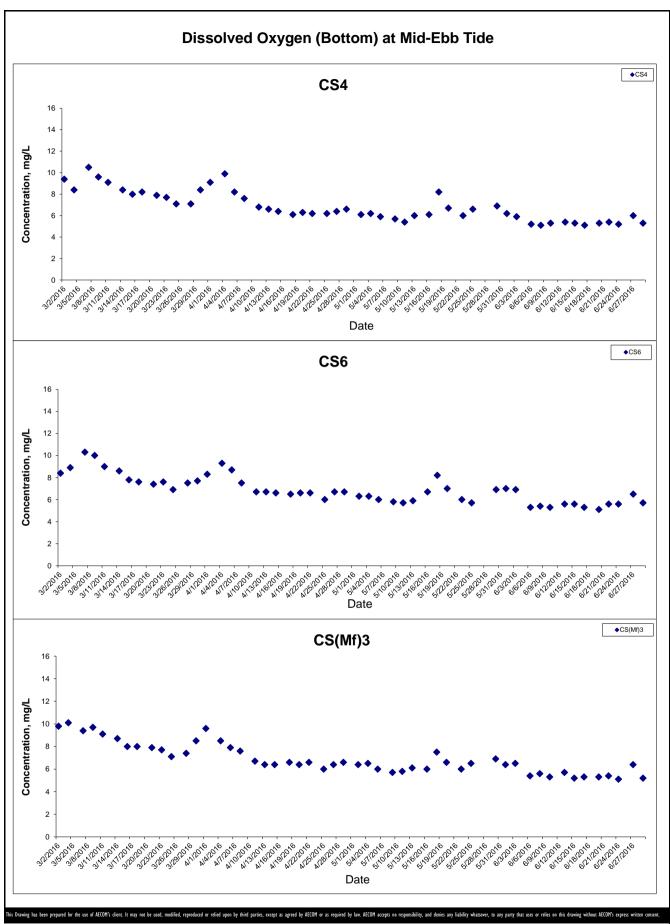
Graphical Presentation of Impact Water Quality
Monitoring Results


Project No.: 60249820 Date: July 2016 Appendix J

AECOM

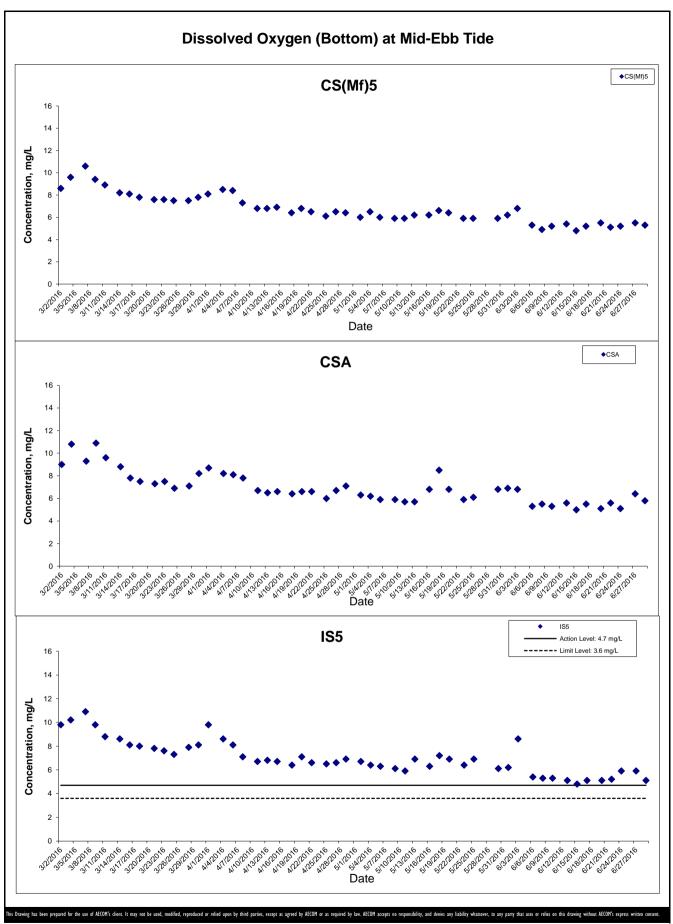
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI

Graphical Presentation of Impact Water Quality
Monitoring Results

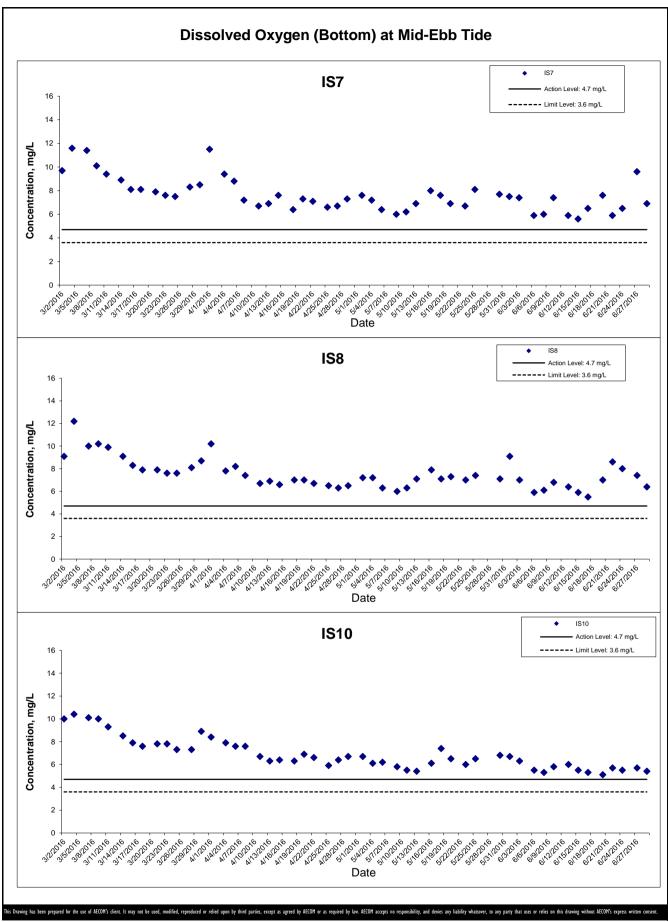

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI

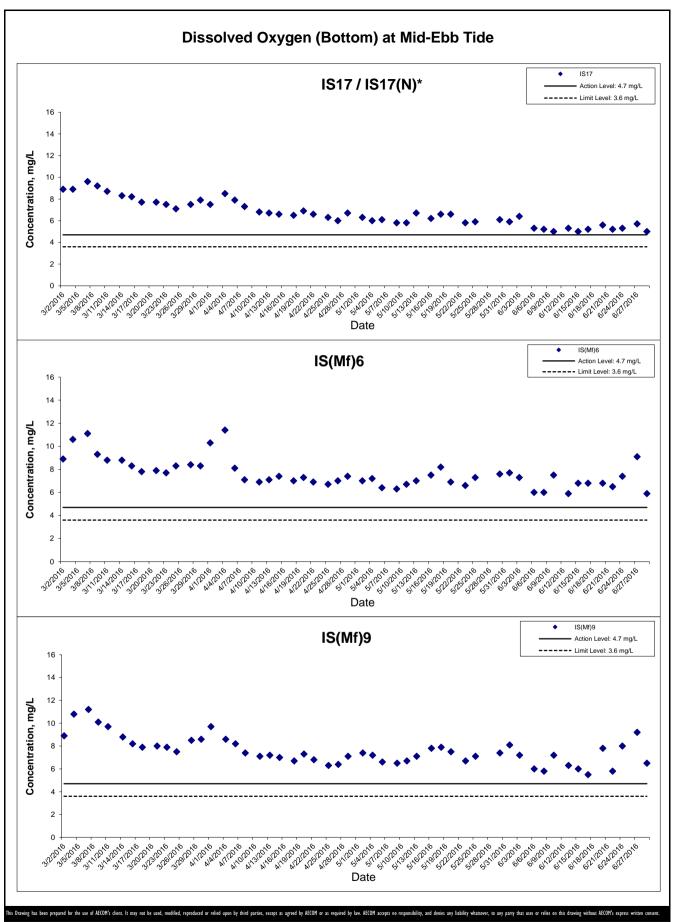
Graphical Presentation of Impact Water Quality
Monitoring Results

Monitoring Results

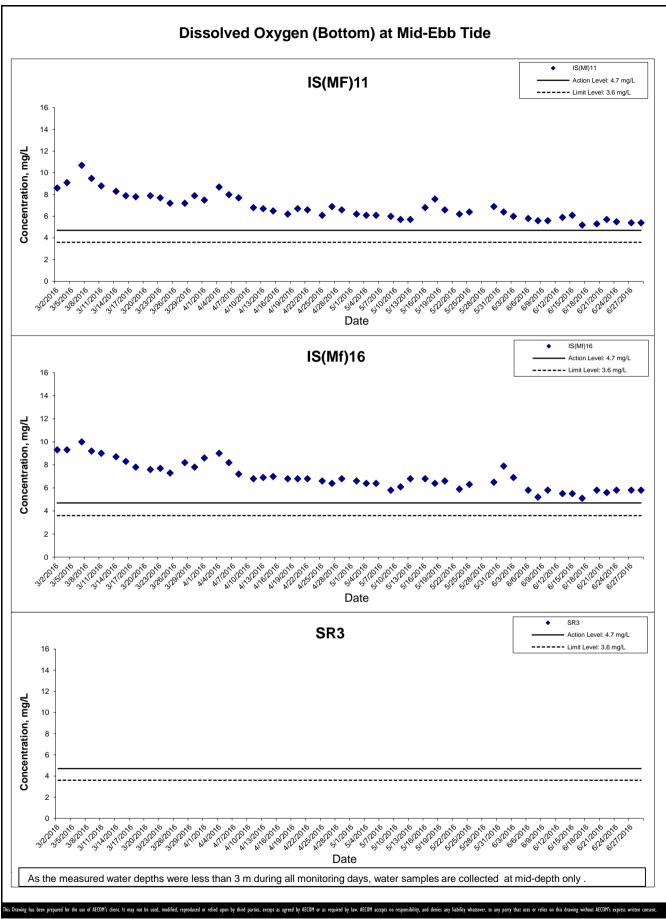

Project No.: 60249820 Date: July 2016 Appendix J

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

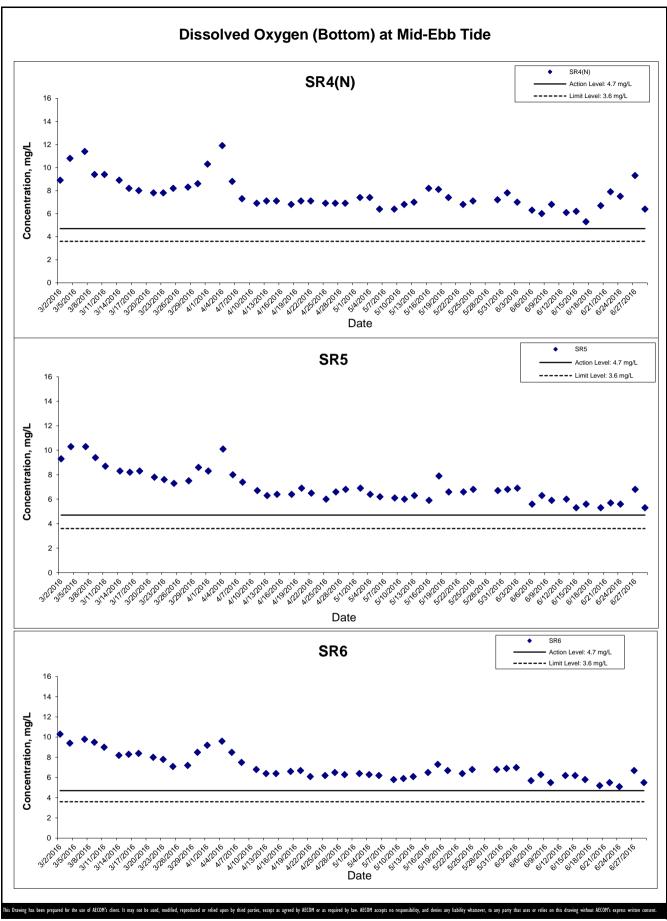

AECOM


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

Graphical Presentation of Impact Water Quality

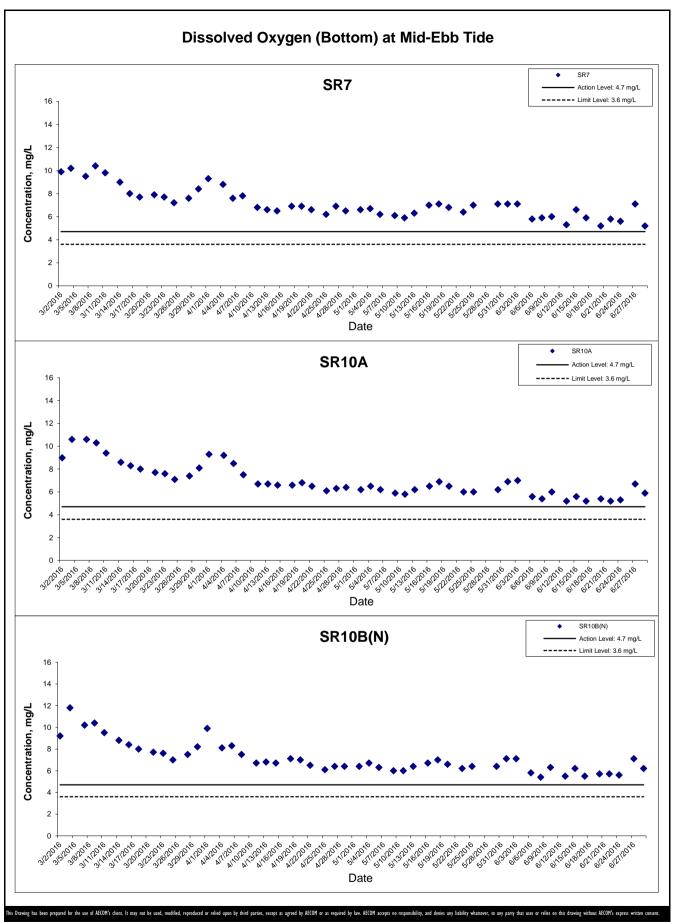

Monitoring Results
Project No.: 60249820 Date: July 2016 Appendix J

AECOM


AECOM

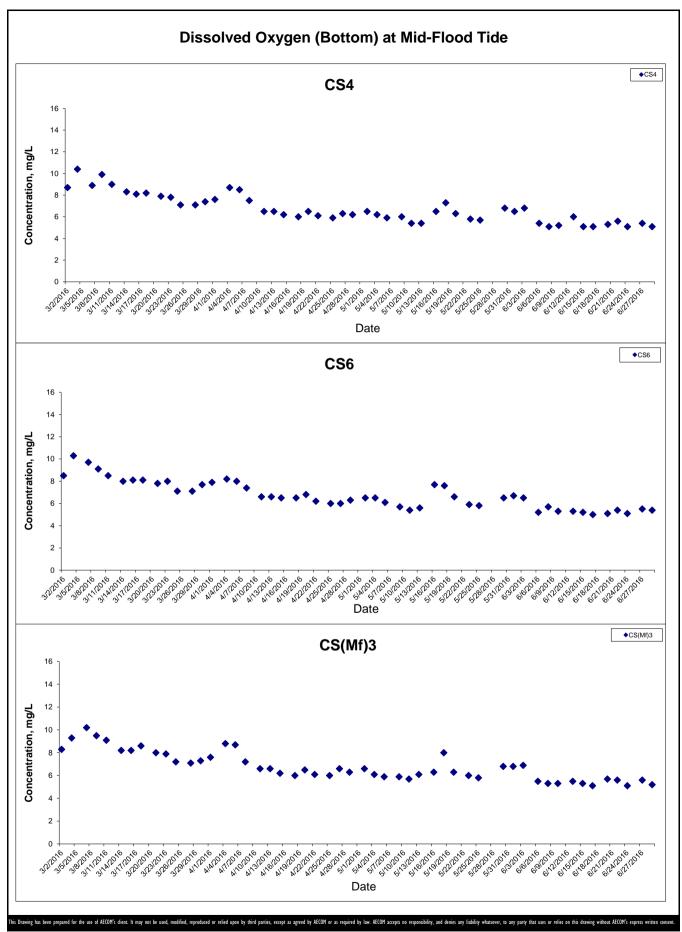
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

AECOM


Graphical Presentation of Impact Water Quality
Monitoring Results

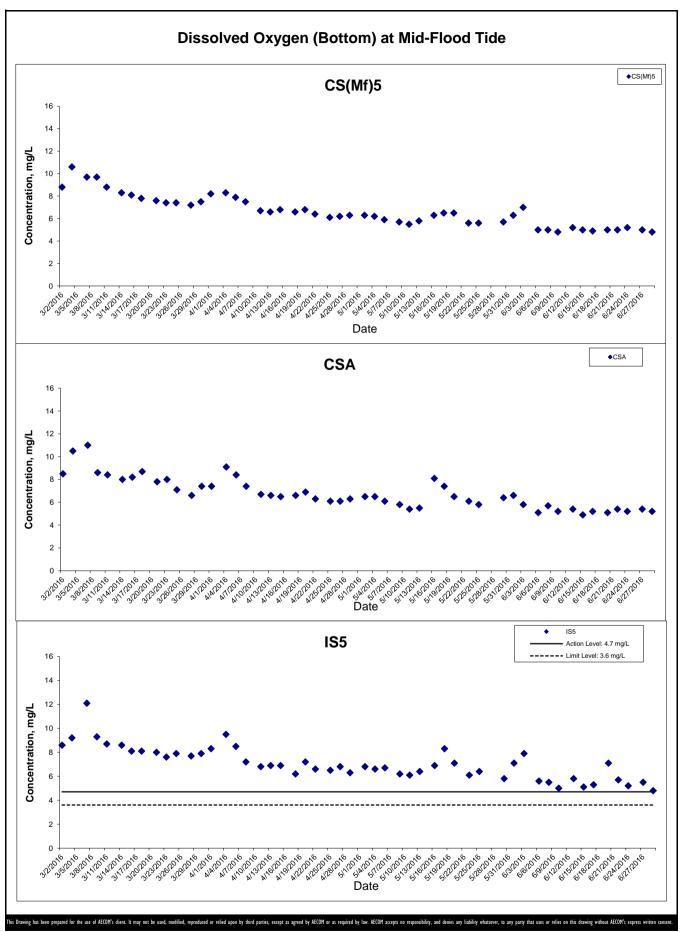
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

IES
Graphical Presentation of Impact Water Quality

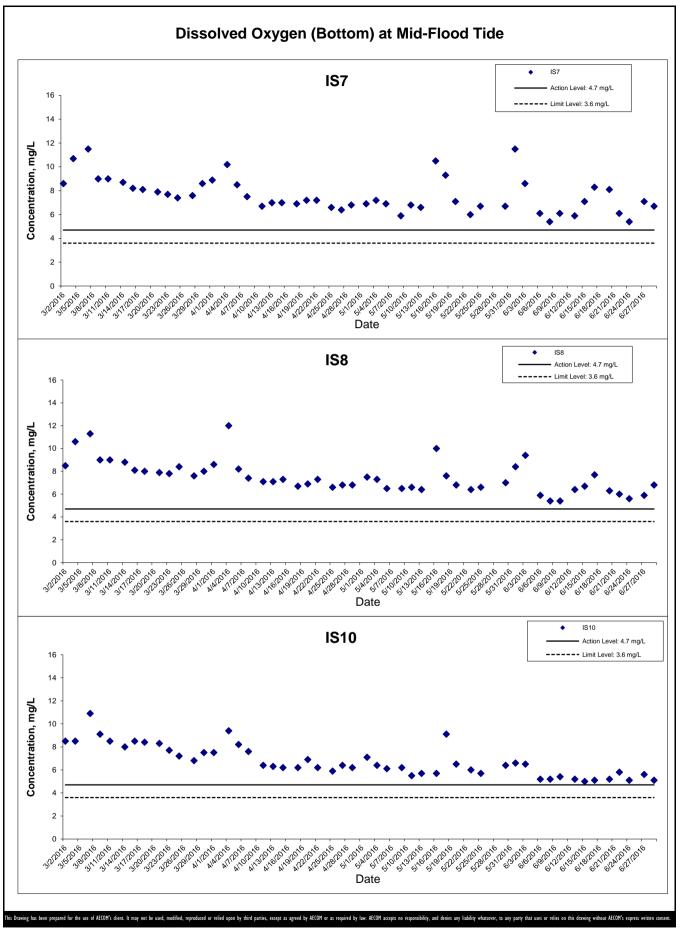

Monitoring Results
Project No.: 60249820 Date: July 2016

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

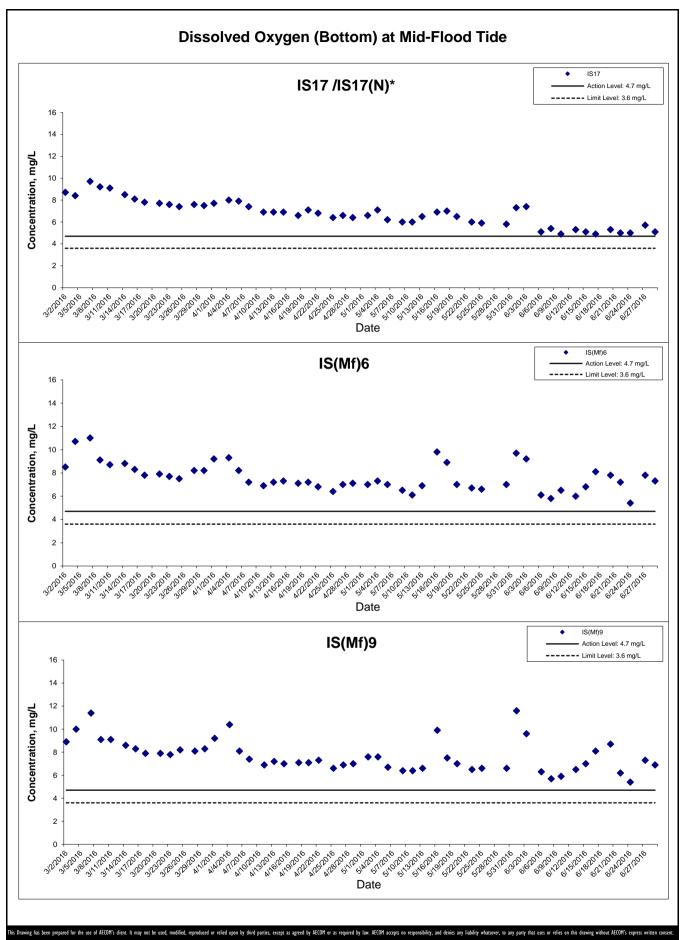
IES
Graphical Presentation of Impact Water Quality


Monitoring Results
Project No.: 60249820 Date: July 2016 Appendix J

A**EC**OM


- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

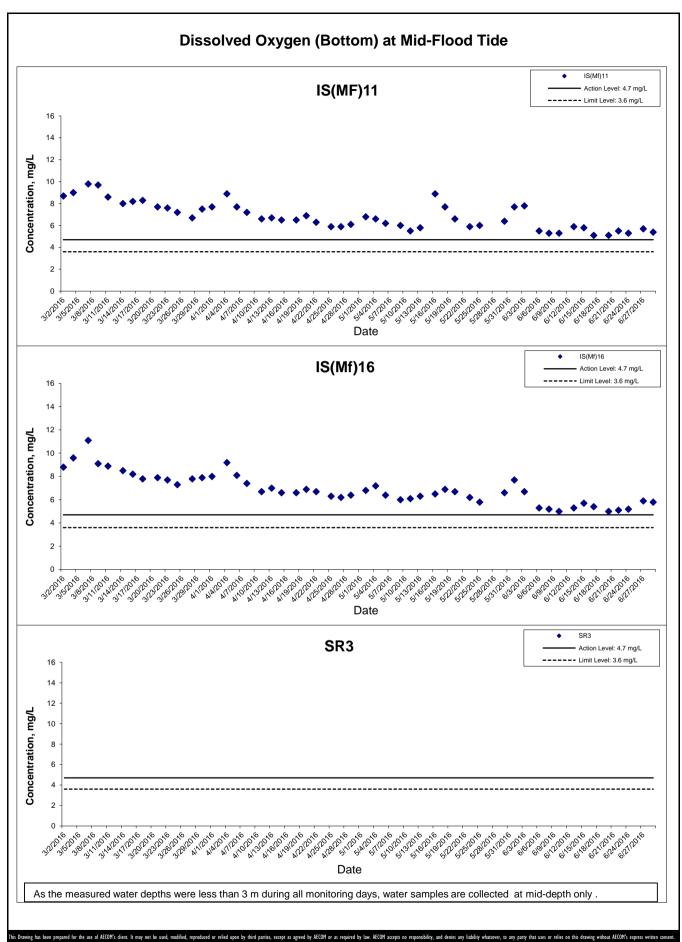

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

AECOM

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
G1

Graphical Presentation of Impact Water Quality
Monitoring Results

Date: July 2016


- RECLAMATION WORKS

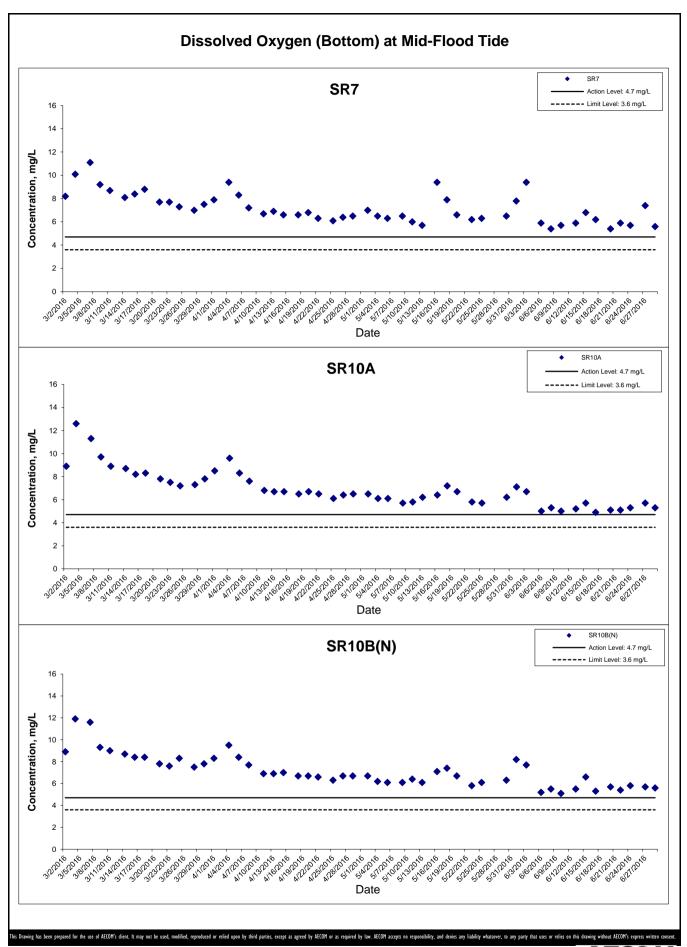
Project No.: 60249820

Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM

Appendix J

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

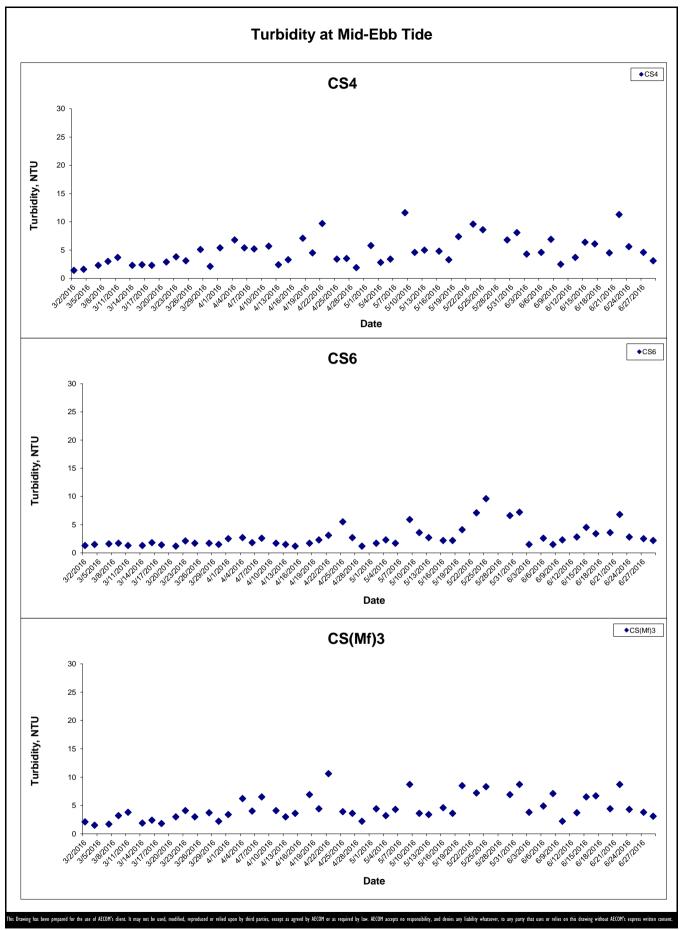

Monitoring Results

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

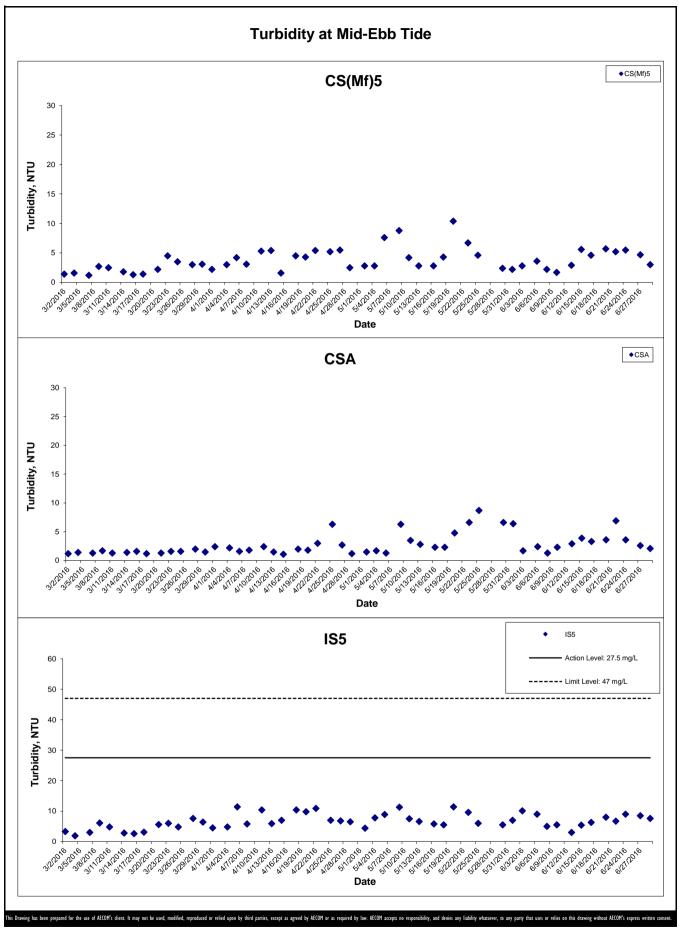
Monitoring Results

Date: July 2016


- RECLAMATION WORKS

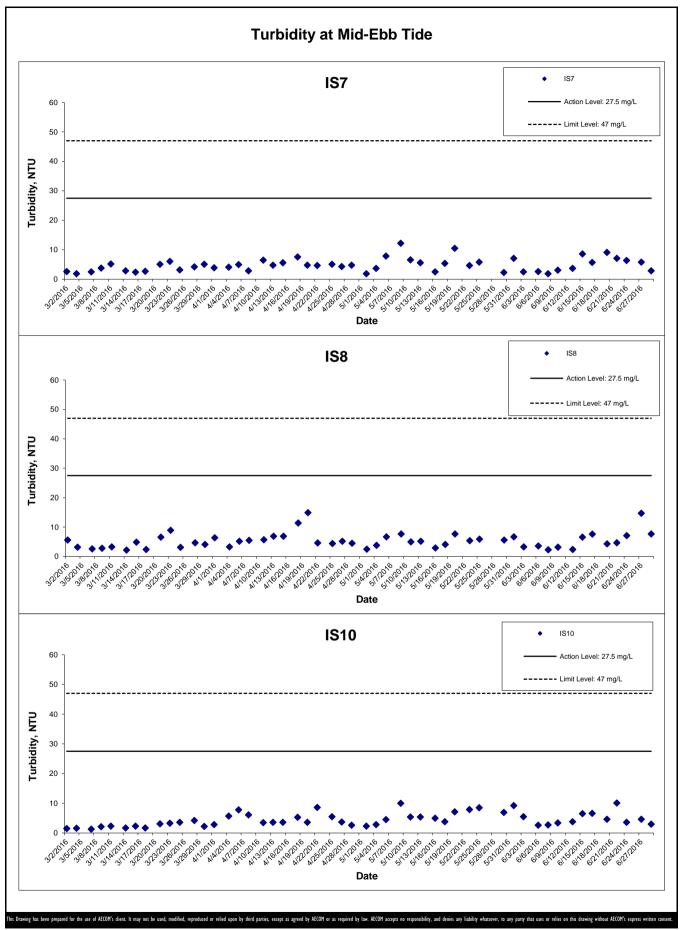
Project No.: 60249820

Graphical Presentation of Impact Water Quality
Monitoring Results

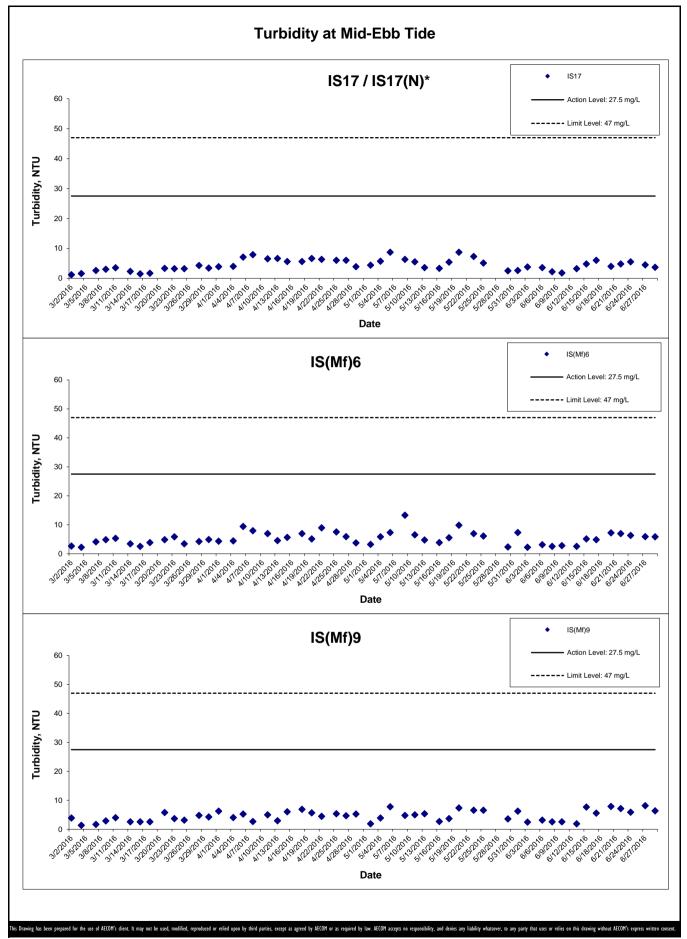

AECOM

Appendix J

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results

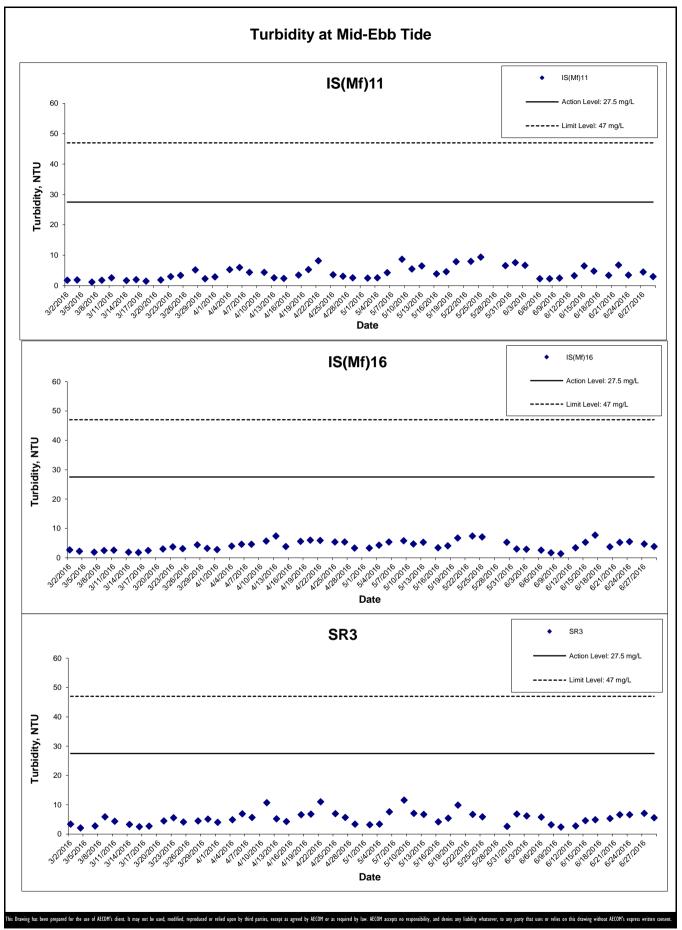
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI


Graphical Presentation of Impact Water Quality

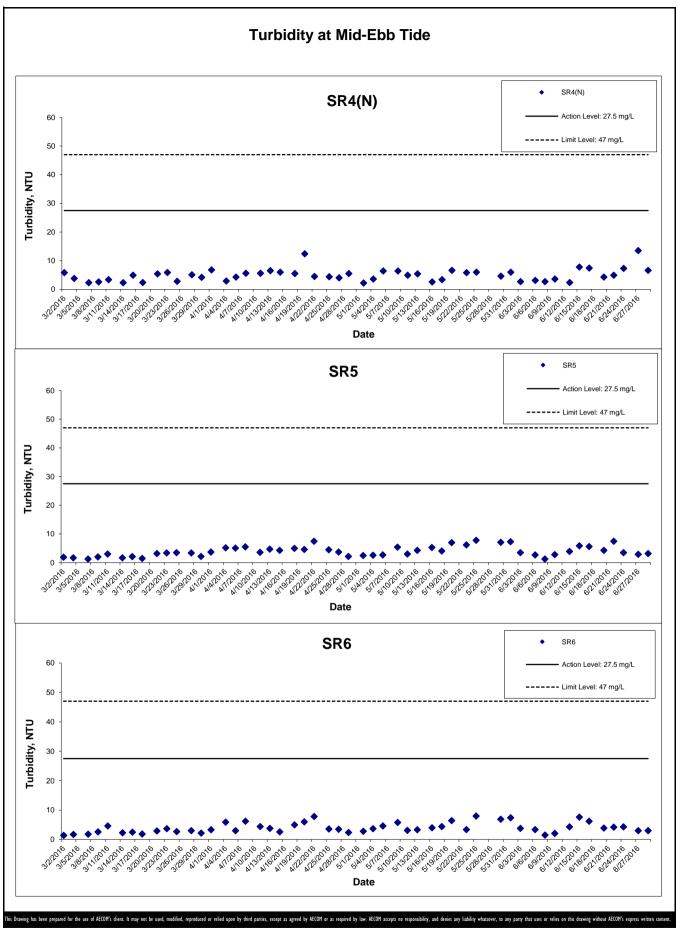
Monitoring Results

- RECLAMATION WORKS

A=COM

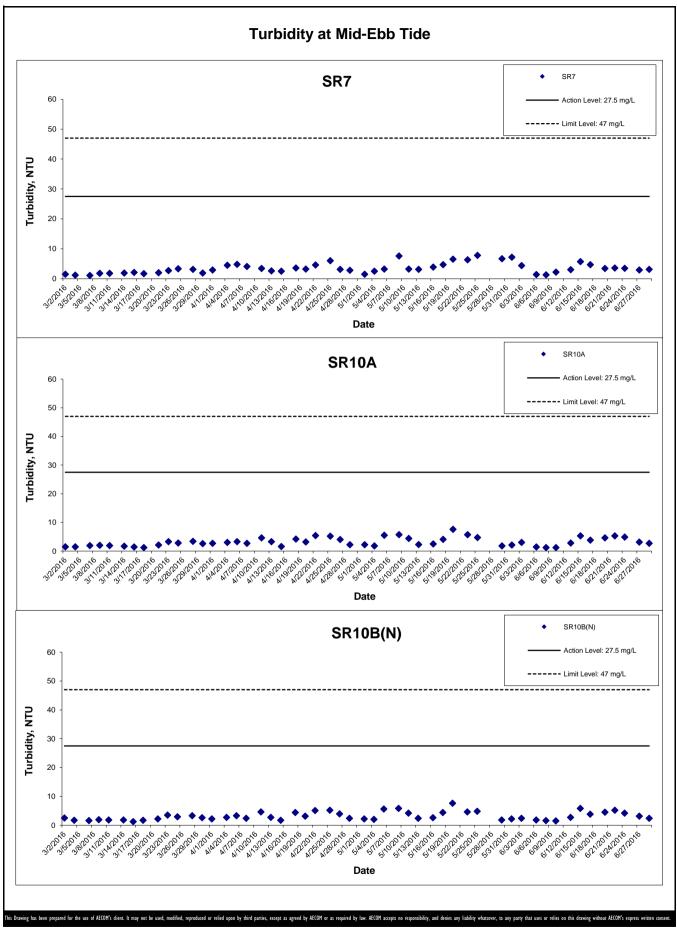


AECOM


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

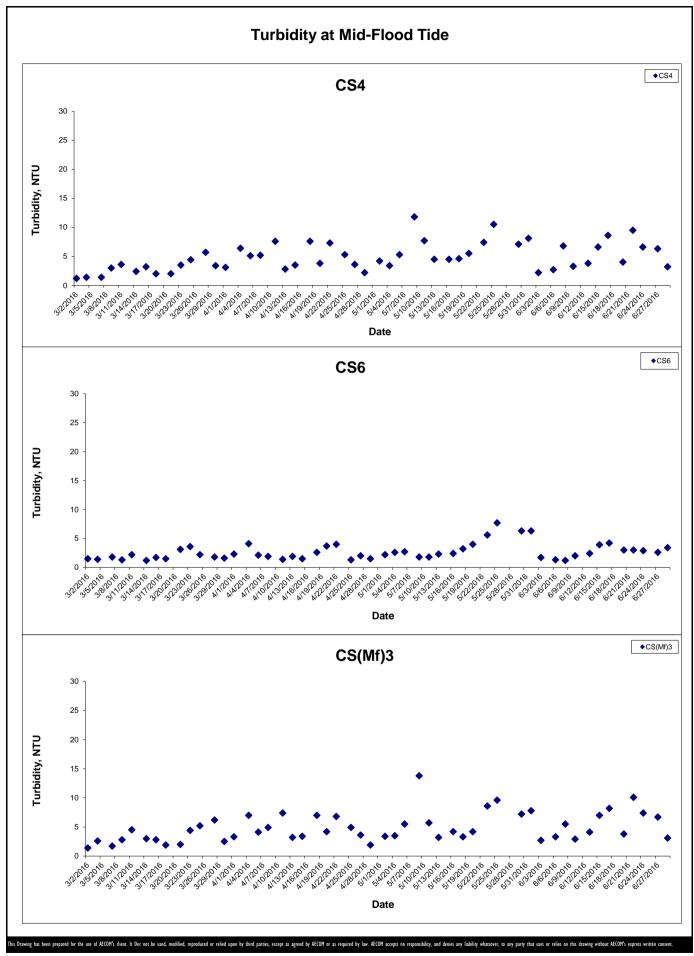
Monitoring Results


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS **AECOM**

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

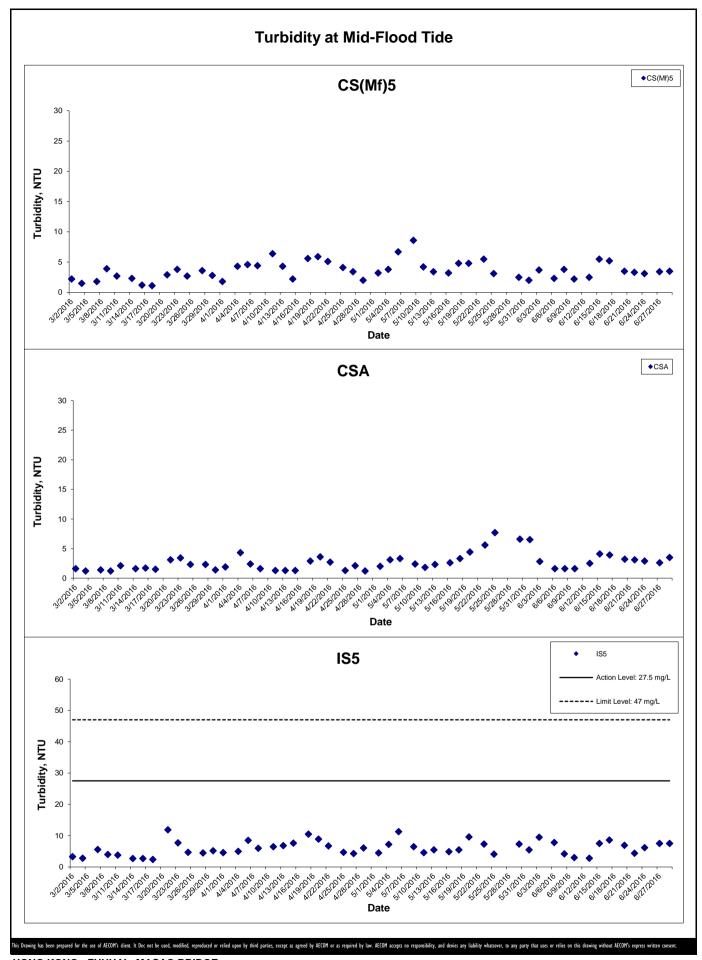
AECOM



- RECLAMATION WORKS

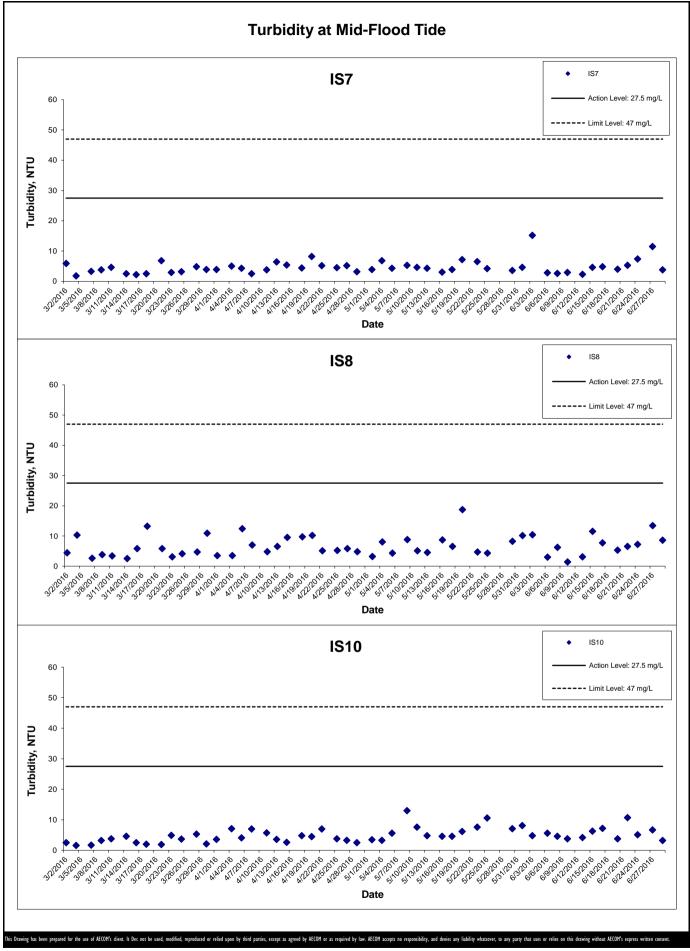
Graphical Presentation of Impact Water Quality
Monitoring Results

Project No.: 60249820 Date: July 2016 Appendix J


AECOM

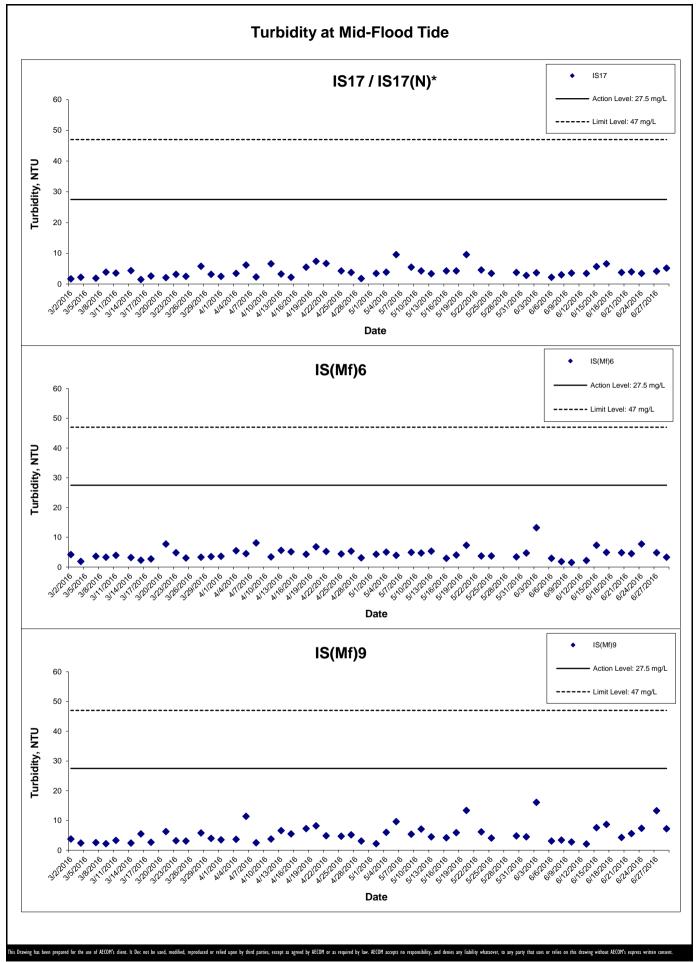
AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality


Monitoring Results

- RECLAMATION WORKS

IES
Graphical Presentation of Impact Water Quality

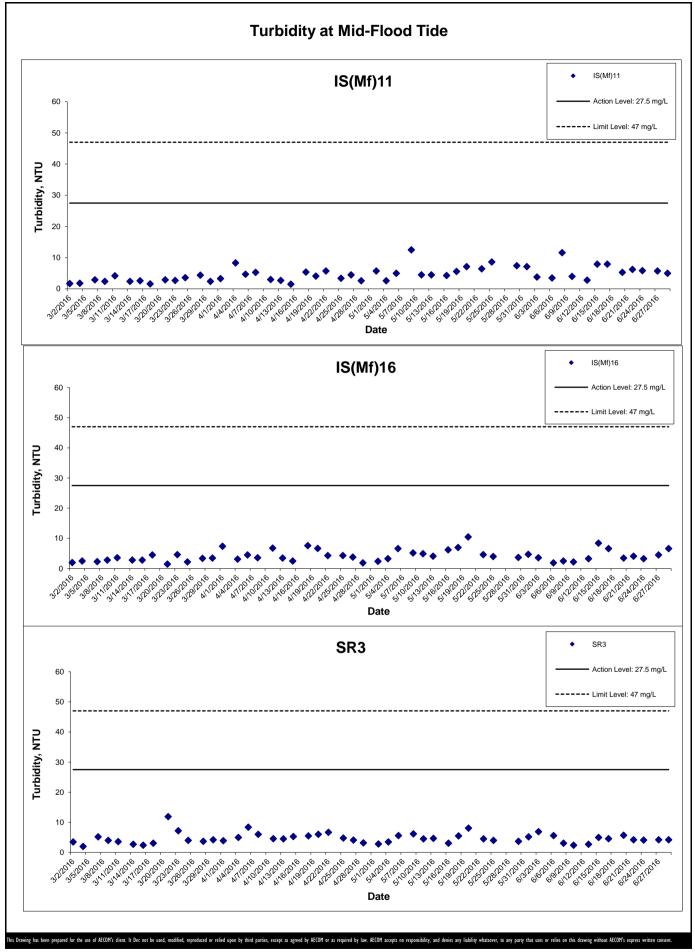

Monitoring Results
Project No.: 60249820 Date: July 2016 Appendix J

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

Monitoring Results

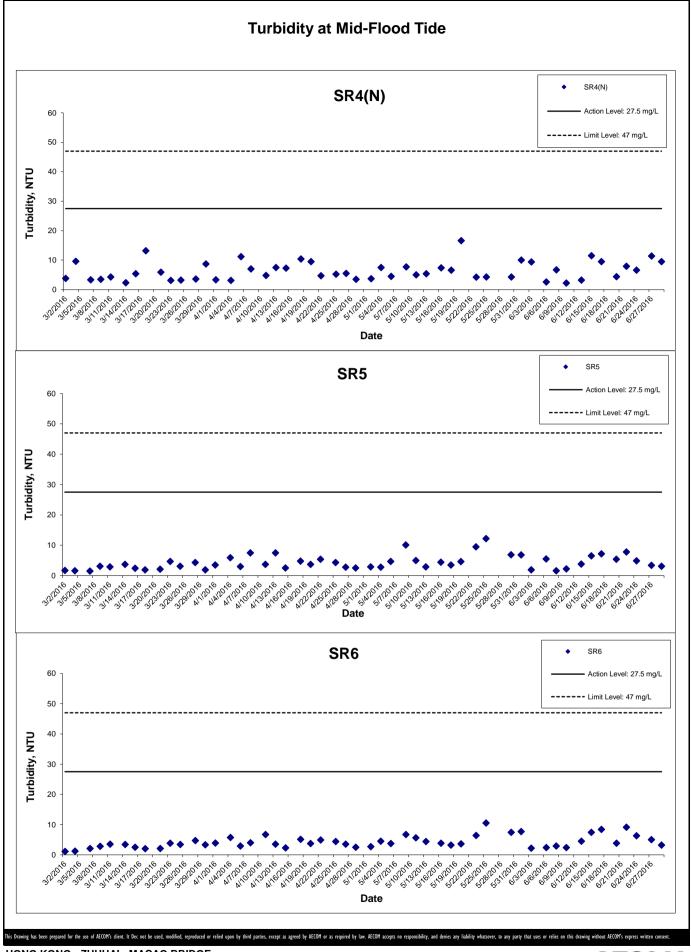
Project No.: 60249820


- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

Date: July 2016

AECOM

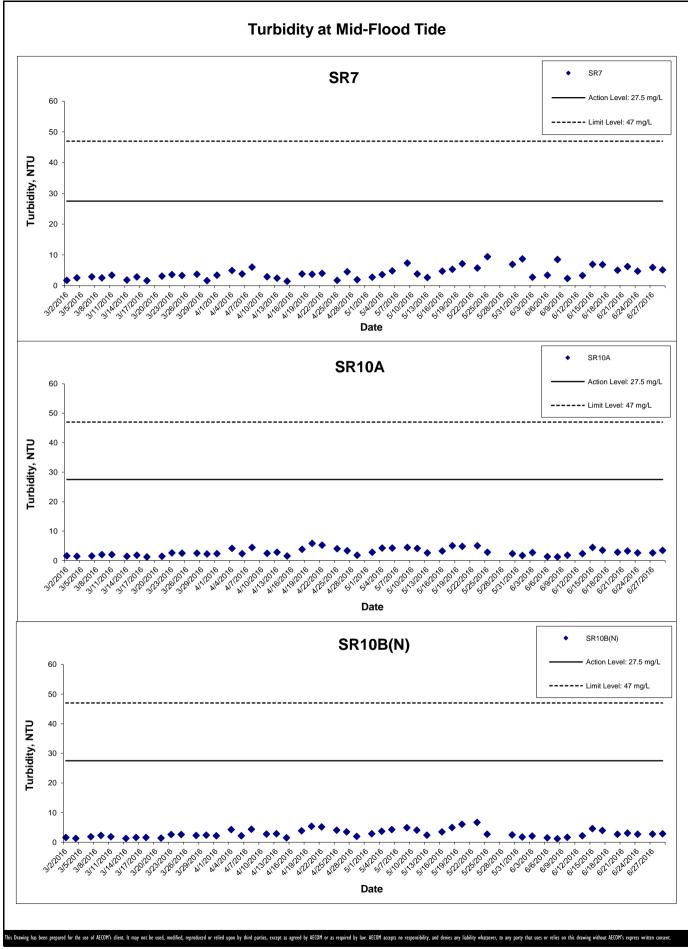

Appendix J

AECOM

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

Date: July 2016

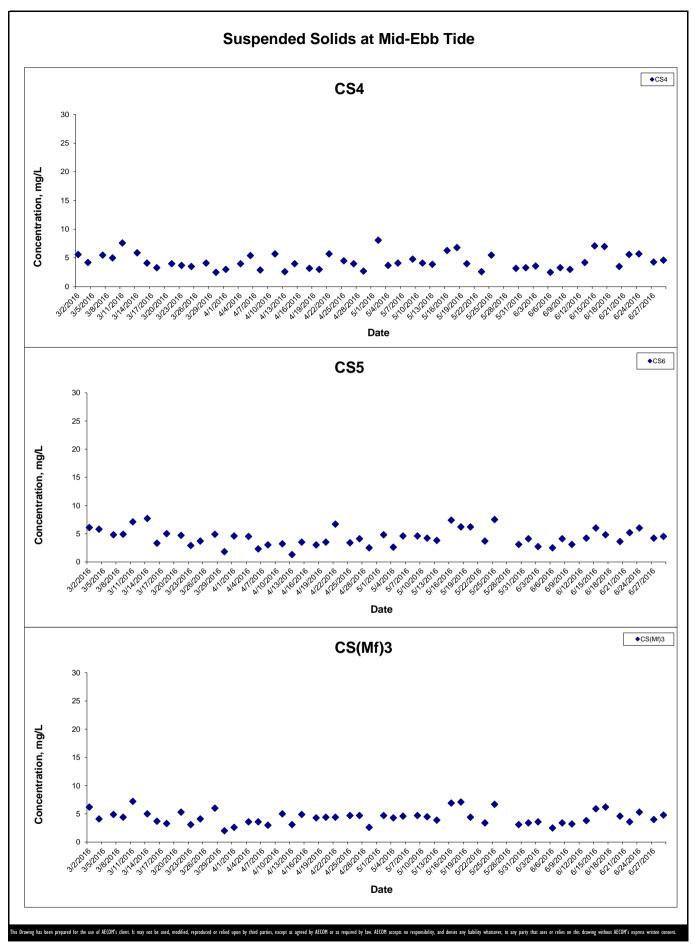

Project No.: 60249820

Graphical Presentation of Impact Water Quality Monitoring Results

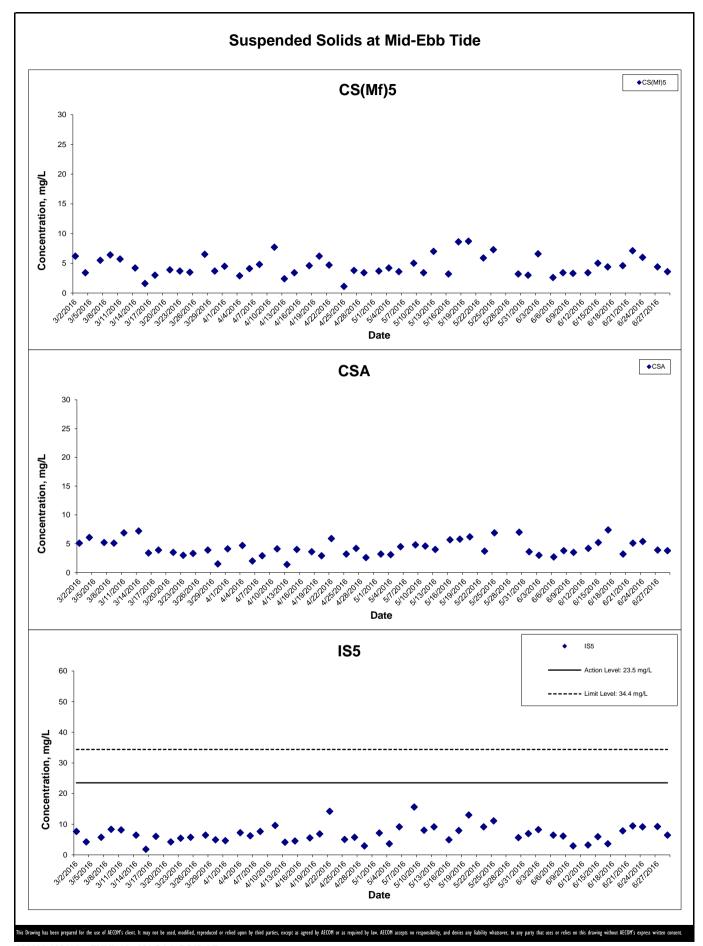
- RECLAMATION WORKS

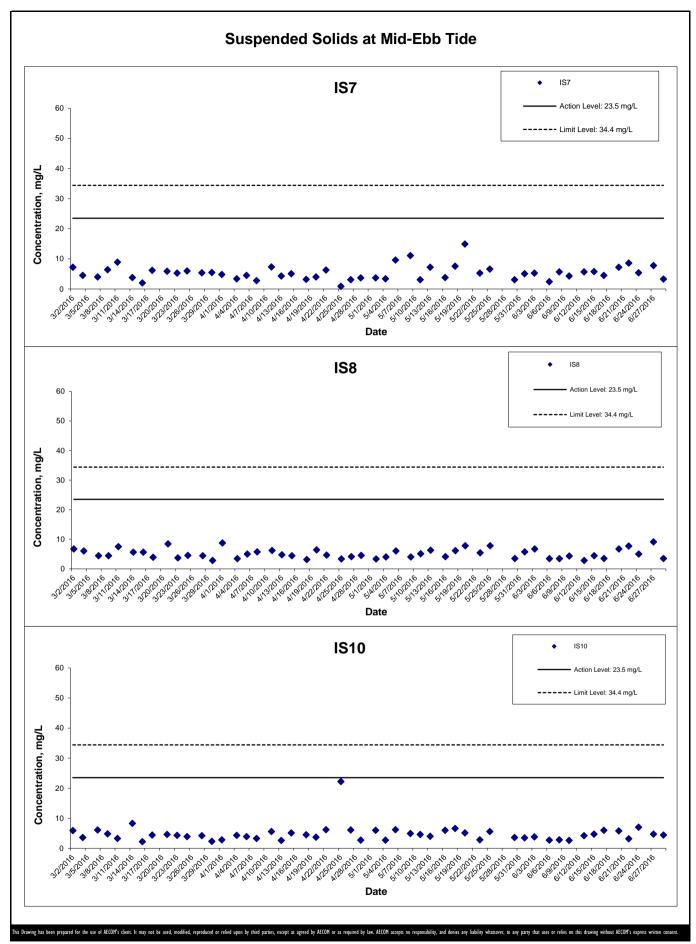
Appendix J

Project No.: 60249820

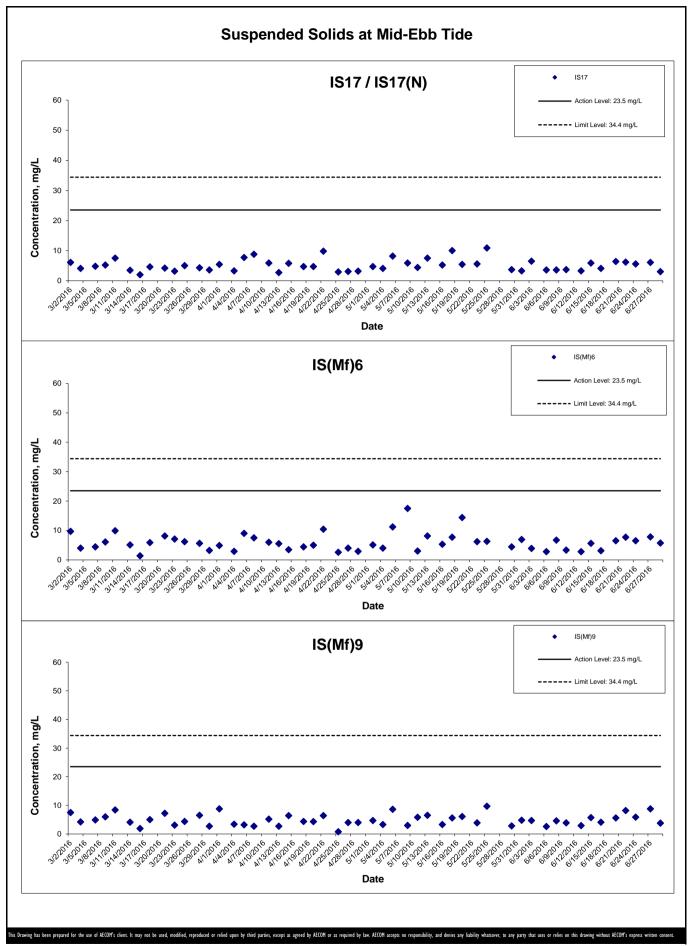

Graphical Presentation of Impact Water Quality

- RECLAMATION WORKS **Monitoring Results**

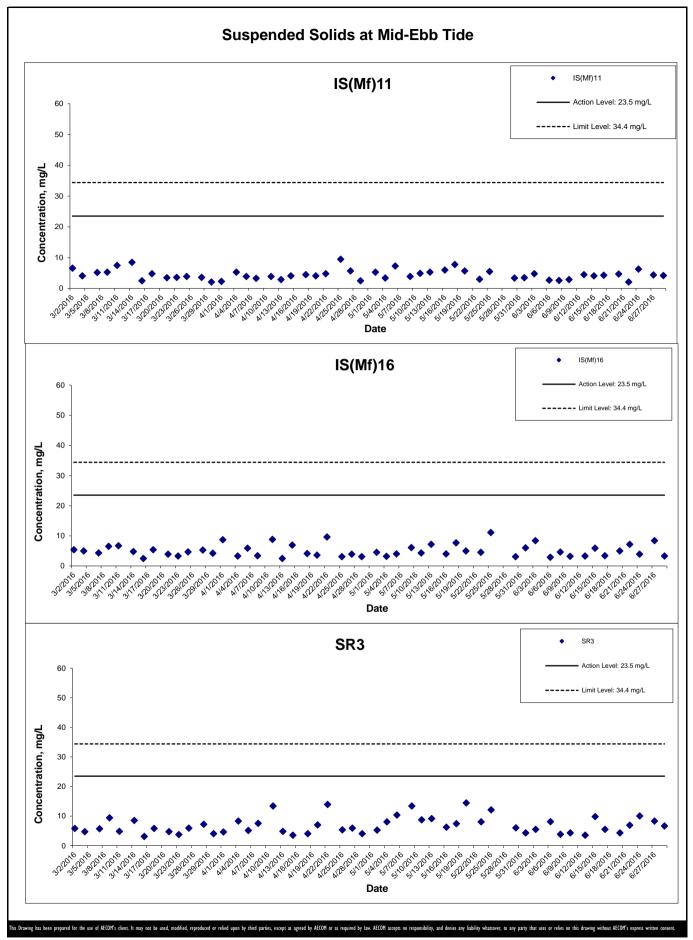

Date: July 2016


Appendix J

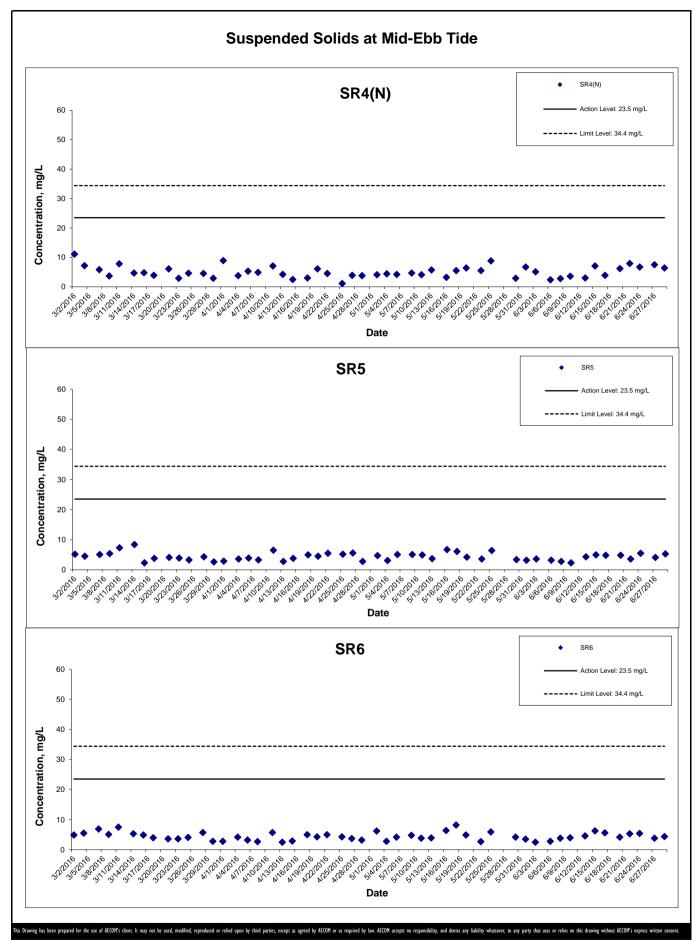
AECOM


AECOM

AECOM

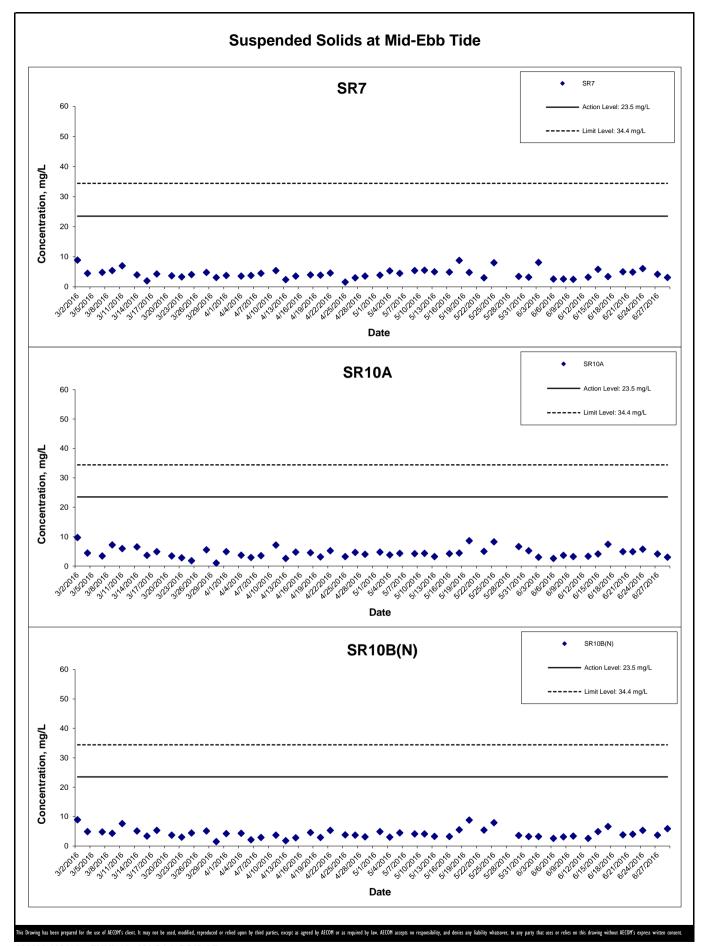

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results



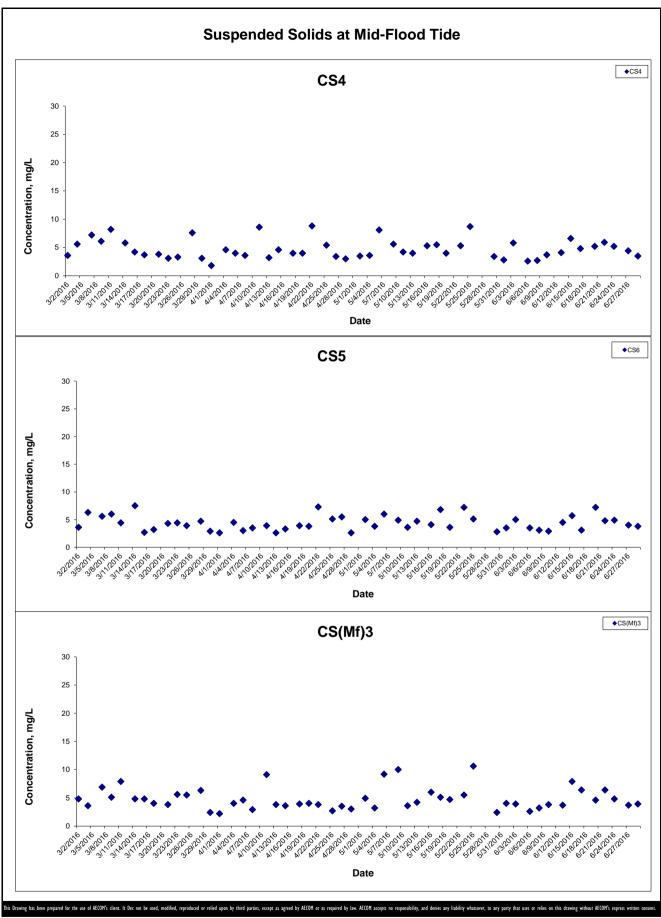
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

AECOM


AECOM

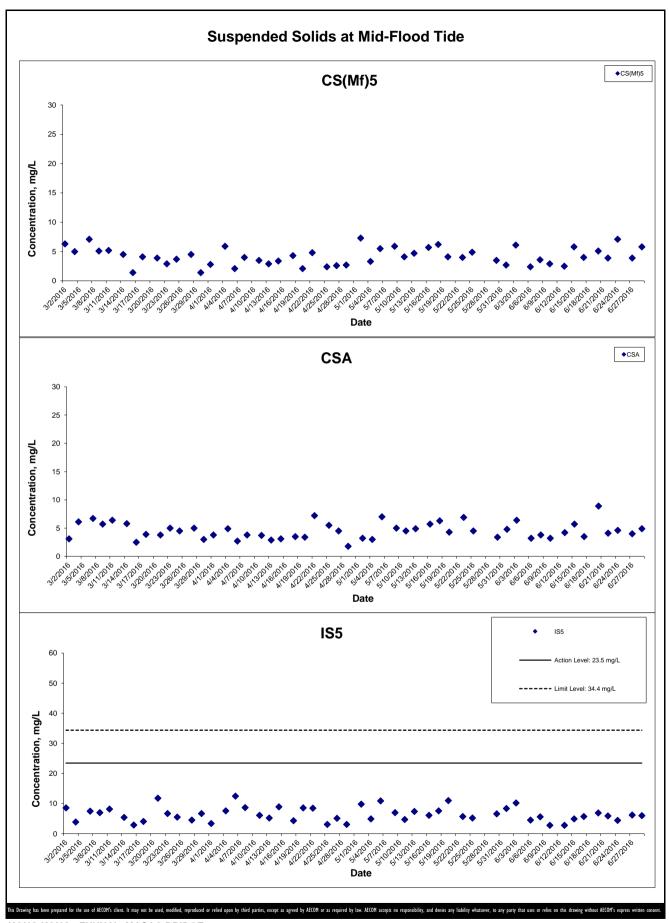
AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality


Monitoring Results

AECOM

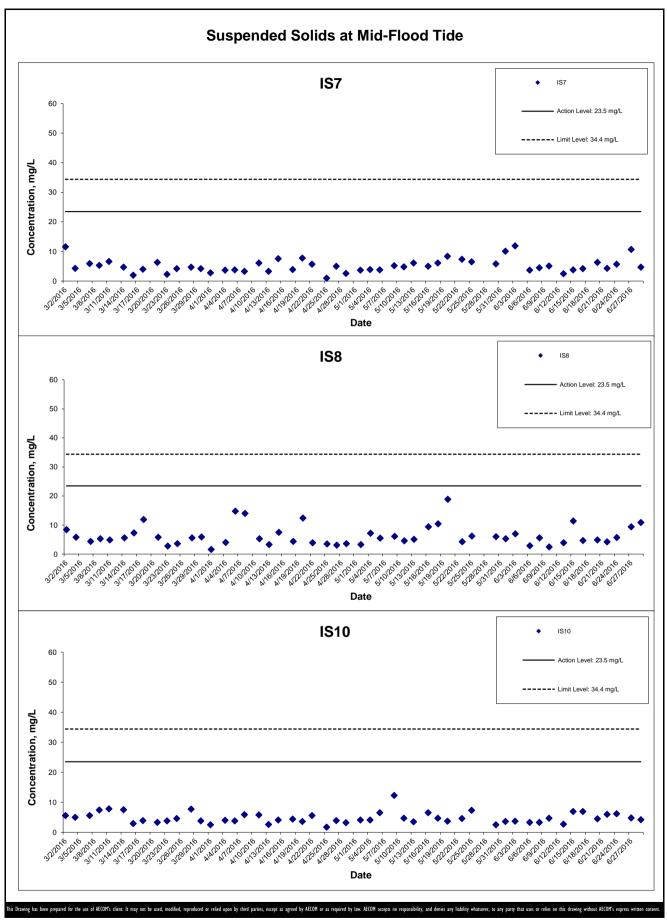
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality


Monitoring Results

AECOM

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results


AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

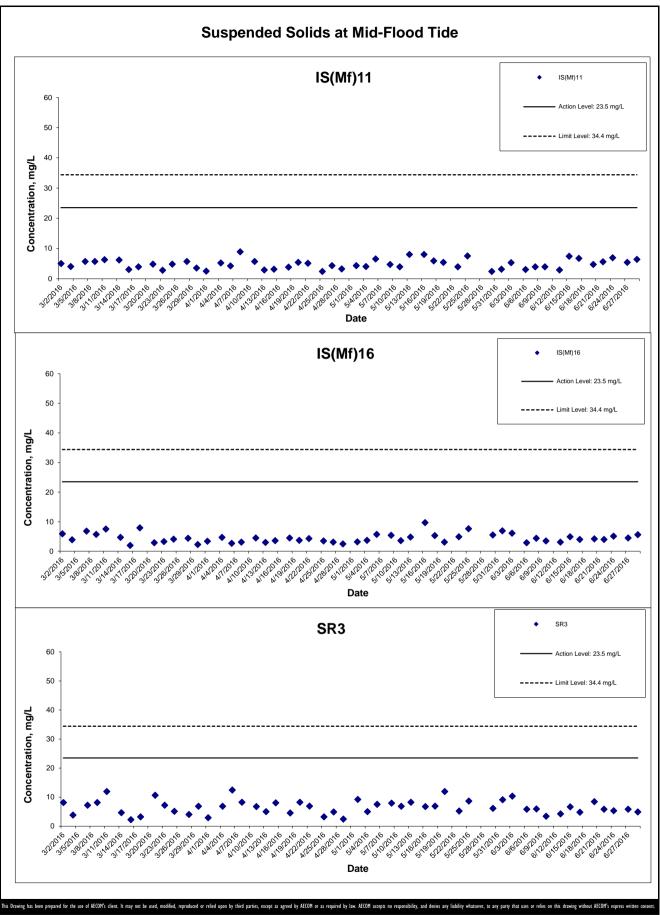
Project No.: 60249820 Date: July 2016

Appendix J

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

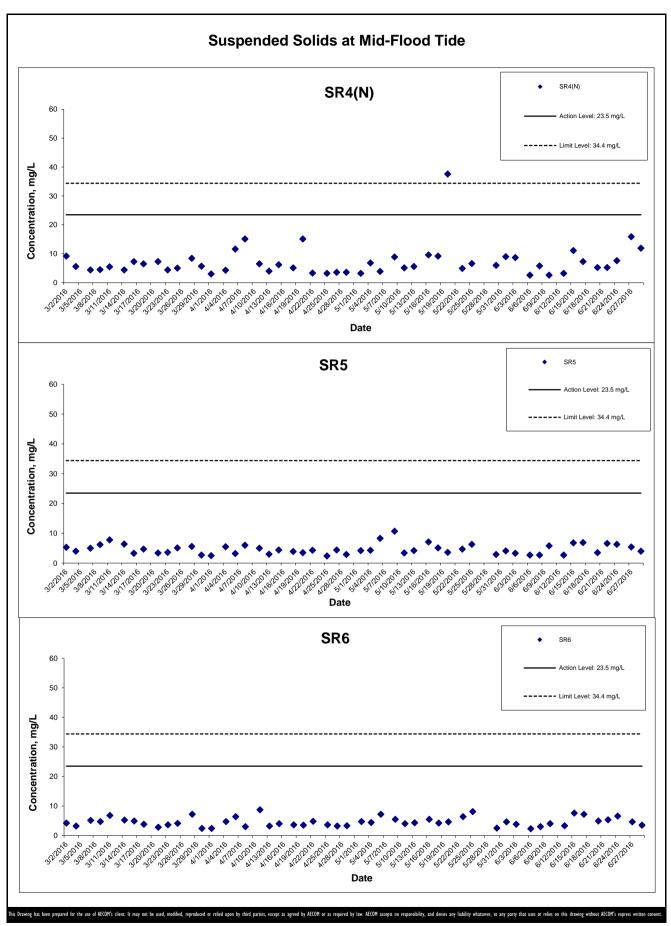
AECON

Monitoring Results
Project No.: 60249820 Date: July 2016 Appendix J


Project No.: 60249820

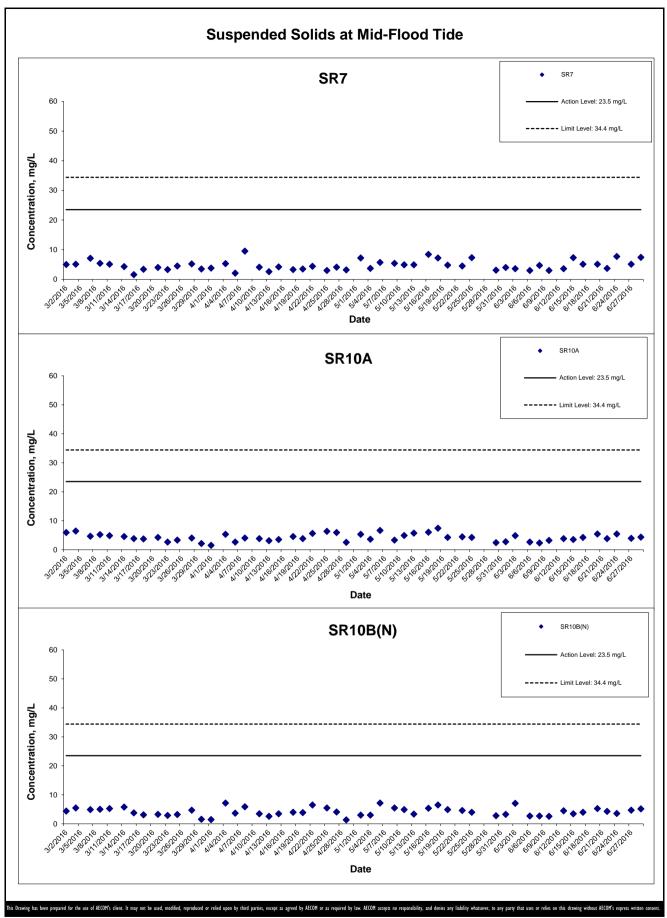
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results


AECOM

Date: July 2016 Appendix J

- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS Gr

Graphical Presentation of Impact Water Quality

Monitoring Results
Project No.: 60249820 Date: July 2016 Appendix J

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

Project No.: 60249820 Date: July 2016 Appendix J

AECOM

Appendix K Impact Dolphin Monitoring Survey Sighting Summary

Table 1 Impact Dolphin Monitoring Survey Sighting Table

Project	Contract	Date	Sighting No.	Time	Group Size	Area	Beaufort	PSD	Effort	Туре	Northing	Easting	Season	Boat Association
HKBCF	HY/2010/02	06-Jun-16	1261	09:30:32	5	WL*	1	N/A	Орр	Impact	813401.3	803229.5	Summer	No
HKBCF	HY/2010/02	21-Jun-16	1266	11:50:57	1	NWL	2	0	On	Impact	828457.0	807793.0	Summer	No
HKBCF	HY/2010/02	21-Jun-16	1267	12:04:44	3	NWL	2	0	On	Impact	828540.1	807793.1	Summer	No
HKBCF	HY/2010/02	21-Jun-16	1268	12:17:29	1	NWL	2	N/A	Орр	Impact	829153.0	807505.9	Summer	No

^{*} Group of dolphin was sighted at WL area while vessel based dolphin monitoring was conducted in NWL

KEY:

Sighting Opp Opportunistic On On effort

PSD Perpendicular Sighting Distance NEL North East Lantau
Group Size Represents best estimate for group encountered NWL North West Lantau

PS = Purse Seine trawler (active)

HT = Hang Trawler (not active but sorting fish and cleaning nets)

GN = Gill Net

Annex I

May 2016 Photo Identification Information

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
HZMB 134		23/05/2016	1251	NWL
HZMB 133		23/05/2016	1249	NWL
HZMB 132		23/05/2016	1244	NWL
HZMB 131		22/03/2016	1215	NWL
HZMB 130		04/02/2016	1199	NWL
		07/01/2016	1189	NWL
117MD 400		22/10/2015	1156	NWL
HZMB 129		07/09/2015	1143	NWL
		25/08/2015	1138	NWL
HZMB 128		03/01/2015	1056	NWL
HZMB 127		03/01/2015	1056	NWL
		23/05/2016	1244	NWL
HZMB 126		23/02/2015	1068	NWL
		03/01/2015	1054	NWL
UZMD 405		07/03/2016	1208	NWL
HZMB 125		13/10/2014	1019	NWL
HZMB 124		22/09/2014	1005	NWL
HZMB 123		25/08/2014	998	NWL
UZMD 400		22/10/2015	1156	NWL
HZMB 122		04/08/2014	989	NWL
HZMB 121		14/07/2014	968	NWL
HZMB 120		31/05/2014	951	NWL
HZMB 119		19/04/2014	940	NWL
HZMB 118		06/01/2014	890	NWL
HZMB 117		17/06/2014	964	NWL
HZIVID 117		06/01/2014	888	NWL
HZMB 116		25/08/2014	999	NWL
		14/07/2014	972	NWL
U7MD 445		14/07/2014	971	NWL
HZMB 115		26/12/2013	879	NWL
		26/12/2013	879	NWL
U7MD 444		05/11/2015	1162	NWL
HZMB 114		24/10/2013	827	NWL
HZMB 113		24/10/2013	827	NWL
HZMB 112		15/10/2013	815	NWL

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
HZMB 111	13	15/10/2013	815	NWL
117MD 440		18/01/2016	1193	NWL
HZMB 110		15/10/2013	812	NWL
117MD 400		11/06/2015	1118	NWL
HZMB 108		30/08/2013	780	NEL
		28/07/2015	1126	NWL
117MD 407		13/10/2014	1019	NWL
HZMB 107		31/05/2014	951	NWL
		21/08/2013	770	NWL
HZMB 106		21/08/2013	769	NWL
117MD 405		31/05/2014	951	NWL
HZMB 105		08/07/2013	711	NWL
HZMB 104		08/07/2013	711	NWL
HZMB 103		08/07/2013	711	NWL
HZMB 102		08/07/2013	706	NWL
HZMB 101		08/07/2013	706	NWL
HZMB 100		08/07/2013	706	NWL
LIZMD 000		13/06/2013	681	NWL
HZMB 099		13/06/2013	680	NWL
		23/02/2015	1077	NWL
		18/12/2014	1044	NWL
		04/08/2014	992	NWL
		06/01/2014	888	NWL
		02/11/2013	849	NWL
		02/11/2013	845	NWL
		24/10/2013	831	NWL
UZMD 000	NI 404	08/07/2013	711	NWL
HZMB 098	NL104	24/05/2013	659	NWL
		07/11/2011	Baseline	NWL
		05/11/2011	Baseline	NWL
		05/11/2011	Baseline	NWL
		02/11/2011	Baseline	NWL
		28/10/2011	Baseline	NWL
		23/09/2011	Baseline	NWL
		16/09/2011	Baseline	NWL
HZMB 097		09/05/2013	647	NWL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
HZMB 096		01/04/2013	621	NWL
		30/08/2013	780	NEL
LIZMD OOF		25/06/2013	697	NWL
HZMB 095		13/06/2013	682	NWL
		01/04/2013	621	NWL
		13/10/2014	1019	NWL
		31/05/2014	954	NWL
LIZMD 004		17/02/2014	910	NWL
HZMB 094		26/06/2013	703	NWL
		25/06/2013	698	NWL
		18/03/2013	601	NWL
LIZMD 000		24/05/2013	657	NWL
HZMB 093		21/02/2013	587	NWL
		20/04/2015	1097	NWL
HZMB 092		21/02/2013	589	NWL
		15/02/2013	581	NWL
HZMB 091		15/02/2013	579	NWL
		25/06/2013	697	NWL
HZMB 090		13/06/2013	682	NWL
		15/02/2013	579	NWL
HZMB 089		15/02/2013	579	NWL
HZMB 088		15/02/2013	579	NWL
HZMB 087		15/02/2013	579	NWL
		19/03/2015	1086	NWL
LIZMD 000	NII 040	09/05/2013	642	NWL
HZMB 086	NL242	15/02/2013	579	NWL
		10/10/2011	Baseline	NWL
LIZMD 005		13/10/2014	1019	NWL
HZMB 085		31/05/2014	954	NWL
		26/06/2013	703	NWL
HZMB 084		15/02/2013	579	NWL
		14/02/2013	575	NWL
		01/12/2015	1180	NWL
LIZME COO	NII 400	11/05/2015	1104	NWL
HZMB 083	NL136	19/12/2013	863	NWL
		28/03/2013	607	NWL

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		15/02/2013	579	NWL
		28/01/2013	568	NWL
		28/01/2013	564	NWL
		19/04/2012	267	NWL
		28/10/2011	Baseline	NWL
		28/10/2011	Baseline	NWL
		10/10/2011	Baseline	NEL
		06/09/2011	Baseline	NWL
		20/10/2014	1024	NWL
H7MD 000		21/02/2013	587	NWL
HZMB 082		15/02/2013	579	NWL
		28/01/2013	563	NWL
LIZMD 004		28/01/2013	559	NWL
HZMB 081		28/01/2013	557	NWL
HZMB 080		28/01/2013	556	NWL
HZMB 079		28/01/2013	556	NWL
117MD 070		15/02/2013	579	NWL
HZMB 078		08/01/2013	552	NWL
		26/12/2013	878	NWL
HZMB 077		08/07/2013	706	NWL
		11/12/2012	541	NWL
LIZMD 070		08/07/2013	706	NWL
HZMB 076		11/12/2012	541	NWL
HZMB 075		06/12/2012	525	NEL
		09/05/2013	647	NWL
		01/04/2013	623	NWL
117140 074		01/04/2013	621	NWL
HZMB 074		21/02/2013	594	NEL
		10/12/2012	529	NEL
		06/12/2012	525	NEL
		09/05/2013	647	NWL
		01/04/2013	623	NWL
117145 070		01/04/2013	621	NWL
HZMB 073		21/02/2013	594	NEL
		10/12/2012	529	NEL
		06/12/2012	525	NEL

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
HZMB 072		24/10/2012	476	NWL
HZMB 071		24/10/2012	475	NWL
HZIVID U7 I		12/10/2012	466	NWL
HZMB 070		24/10/2012	476	NWL
		04/06/2015	1116	NWL
HZMB 069		21/08/2013	774	NWL
HZIVID 009		08/07/2013	711	NWL
		24/10/2012	476	NWL
		20/10/2014	1025	NWL
HZMB 068		01/11/2013	839	NWL
		24/10/2012	476	NWL
HZMB 067		24/10/2012	475	NWL
		28/01/2013	559	NWL
		11/12/2012	537	NWL
117MD 000	NL93	24/10/2012	475	NWL
HZMB 066		12/10/2012	466	NWL
		07/11/2011	Baseline	NWL
		05/11/2011	Baseline	NWL
		19/03/2015	1086	NWL
		17/06/2014	964	NWL
LIZMD OCA		09/05/2013	647	NWL
HZMB 064		28/01/2013	561	NWL
		24/10/2012	475	NWL
		12/10/2012	466	NWL
117MD 000		09/05/2013	647	NWL
HZMB 063		12/10/2012	466	NWL
117MD 000		06/12/2012	525	NEL
HZMB 062		11/10/2012	457	NWL
HZMB 060		18/09/2012	447	NWL
LIZMD 050		21/02/2013	591	NWL
HZMB 059		18/09/2012	445	NWL
HZMB 057		18/09/2012	440	NWL
LIZMD OF O		18/09/2012	442	NWL
HZMB 056		05/09/2012	433	NEL
HZMB 055		04/09/2012	425	NWL
HZMB 054	CH34	12/05/2016	1238	NWL

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		01/12/2015	1180	NWL
		20/04/2015	1097	NWL
		15/01/2015	1062	NWL
		31/05/2014	953	NWL
		06/01/2014	888	NWL
		07/11/2013	854	NWL
		02/11/2013	845	NWL
		24/10/2013	831	NWL
		30/08/2013	780	NEL
		08/07/2013	711	NWL
		18/09/2013	448	NWL
		05/09/2012	432	NEL
		07/11/2011	Baseline	NWL
		05/11/2011	Baseline	NWL
		02/11/2011	Baseline	NWL
		01/11/2011	Baseline	NEL
		01/11/2011	Baseline	NEL
		28/10/2011	Baseline	NWL
		06/10/2011	Baseline	NWL
HZMB 053		04/09/2012	425	NWL
HZMB 052		04/09/2012	423	NWL
		11/05/2015	1104	NWL
		04/08/2014	989	NWL
		09/05/2013	644	NWL
		01/04/2013	622	NWL
HZMB 051	NL213	15/02/2013	582	NWL
		15/02/2013	581	NWL
		28/01/2013	559	NWL
		28/01/2013	556	NWL
		04/09/2012	422	NWL
		14/07/2014	971	NWL
		10/01/2014	900	NWL
HZMB 050		06/01/2014	888	NWL
		15/02/2013	579	NWL
		04/09/2012	421	NWL
HZMB 049		09/10/2015	1151	NWL

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		29/07/2014	982	NWL
		03/09/2012	419	NWL
HZMB 048		03/09/2012	419	NWL
HZMB 047		28/04/2015	1100	NWL
HZIVID U47		03/09/2012	412	NWL
HZMB 046		03/09/2012	412	NWL
		23/05/2016	1249	NWL
		17/02/2014	910	NWL
HZMB 045		13/06/2013	682	NWL
		15/02/2013	579	NWL
		01/11/2012	495	NWL
		23/05/2016	1247	NWL
		18/01/2016	1194	NWL
		13/10/2014	1019	NWL
	NL98	17/02/2014	910	NWL
		19/12/2013	864	NWL
		02/11/2013	845	NWL
		01/11/2013	842	NWL
		15/10/2013	819	NWL
HZMB 044		09/05/2013	648	NWL
HZIVID U44		09/05/2013	647	NWL
		01/04/2013	623	NWL
		01/04/2013	621	NWL
		15/02/2013	579	NWL
		01/11/2012	495	NWL
		07/11/2011	Baseline	NWL
		06/11/2011	Baseline	NEL
		01/11/2011	Baseline	NEL
		06/10/2011	Baseline	NEL
HZMB 043		03/09/2012	407	NWL
		22/10/2015	1156	NWL
U ZM D 040	NI 260	19/12/2013	863	NWL
HZMB 042	NL260	01/11/2012	495	NWL
		07/11/2011	Baseline	NWL
LIZMP 044	NII O4	05/06/2014	960	NEL
HZMB 041	NL24	17/02/2014	910	NWL

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		02/11/2013	845	NWL
		09/05/2013	648	NWL
		09/05/2013	647	NWL
		01/04/2013	623	NWL
		01/04/2013	621	NWL
		15/02/2013	579	NWL
		01/11/2012	495	NWL
		06/11/2011	Baseline	NEL
		05/11/2011	Baseline	NWL
		05/11/2011	Baseline	NWL
		10/10/2011	Baseline	NWL
		17/02/2014	910	NWL
		06/01/2014	893	NWL
		15/10/2013	821	NWL
HZMB 040		08/07/2013	714	NWL
		08/07/2013	711	NWL
		21/02/2013	589	NWL
		01/11/2012	493	NWL
1.17MD 000		23/05/2016	1246	NWL
HZMB 038		01/11/2012	490	NWL
HZMB 037		01/11/2012	490	NWL
LIZMD 020		03/09/2012	407	NWL
HZMB 036		01/11/2012	490	NWL
11 7M D 005		15/02/2013	579	NWL
HZMB 035		01/11/2012	490	NWL
HZMB 034		01/11/2012	493	NWL
		17/11/2014	1035	NWL
HZMB 028		01/04/2013	625	NWL
		06/08/2012	373	NWL
		19/12/2013	863	NWL
		15/02/2013	579	NWL
HZMB 027		28/01/2013	568	NWL
		28/01/2013	564	NWL
		14/06/2012	299	NWL
LIZMD 000		13/10/2014	1018	NWL
HZMB 026		25/06/2013	697	NWL

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		09/05/2013	642	NWL
		28/01/2013	561	NWL
		13/06/2012	295	NEL
		22/02/2013	596	NEL
		21/02/2013	591	NWL
HZMB 025		06/12/2012	525	NEL
		11/10/2012	457	NWL
		13/06/2012	295	NEL
HZMB 024		18/03/2013	601	NWL
HZIVID UZ4		13/06/2012	295	NEL
		09/10/2015	1153	NWL
		09/10/2015	1152	NWL
		20/04/2015	1097	NWL
		18/12/2014	1044	NWL
		17/11/2014	1035	NWL
LIZMD 000		06/01/2014	888	NWL
HZMB 023		08/07/2013	715	NWL
		08/07/2013	711	NWL
		01/04/2013	619	NWL
		21/02/2013	589	NWL
		15/02/2013	579	NWL
		10/07/2012	330	NWL
		21/04/2016	1219	NWL
		07/09/2015	1143	NWL
		20/04/2015	1097	NWL
		18/12/2014	1044	NWL
		17/11/2014	1035	NWL
		04/08/2014	991	NWL
U ZM D 000		06/01/2014	888	NWL
HZMB 022		24/10/2013	827	NWL
		08/07/2013	715	NWL
		08/07/2013	711	NWL
		01/04/2013	619	NWL
		21/02/2013	589	NWL
		15/02/2013	579	NWL
		10/07/2012	330	NWL

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		22/03/2016	1215	NWL
HZMB 021	NL37	10/07/2012	330	NWL
		16/09/2011	Baseline	NWL
HZMB 020		10/07/2012	330	NWL
HZMB 019		10/07/2012	330	NWL
		17/02/2014	910	NWL
		09/05/2013	647	NWL
HZMB 018		21/02/2013	594	NEL
		10/12/2012	529	NEL
		10/07/2012	330	NWL
HZMB 017		10/07/2012	330	NWL
		08/07/2013	706	NWL
		11/12/2012	539	NWL
HZMB 016		18/09/2012	446	NWL
		04/09/2012	421	NWL
		10/07/2012	330	NWL
HZMB 015		10/07/2012	330	NEL
	NL176	25/08/2015	1139	NWL
		26/12/2013	880	NWL
		06/08/2012	373	NWL
HZMB 014		13/06/2012	295	NEL
		06/11/2011	Baseline	NEL
		01/11/2011	Baseline	NEL
		01/11/2011	Baseline	NEL
HZMB 013		28/05/2012	281	NWL
HZMB 012		28/05/2012	281	NWL
		22/02/2013	597	NEL
		21/02/2013	592	NEL
		14/02/2013	572	NEL
U7MD 044	EL 04	06/11/2012	517	NEL
HZMB 011	EL01	19/09/2012	452	NWL
		31/03/2012	261	NEL
		02/11/2011	Baseline	NWL
		01/11/2011	Baseline	NEL
U7MD 000		19/03/2015	1084	NWL
HZMB 009		28/05/2012	281	NWL

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
HZMB 008		06/07/2015	1122	NWL
FIZIVID 008		28/05/2012	281	NWL
		10/12/2012	529	NEL
HZMB 007	NL246	06/11/2011	Baseline	NEL
		16/09/2011	Baseline	NWL
		22/10/2015	1158	NWL
		21/02/2013	594	NEL
HZMB 006		11/12/2012	539	NWL
		01/11/2012	495	NWL
		29/03/2012	250	NWL
		09/02/2015	1070	NWL
		09/02/2015	1069	NWL
		09/11/2013	860	NWL
HZMB 005		07/11/2013	858	NWL
HZIVID 005		15/10/2013	813	NWL
		10/12/2012	532	NWL
		06/08/2012	374	NWL
		28/05/2012	287	NWL
		28/07/2015	1126	NWL
HZMB 004		04/09/2012	421	NWL
		31/03/2012	262	NWL
		15/10/2013	812	NWL
		25/06/2013	697	NWL
HZMB 003	NII 470	10/12/2012	529	NEL
HZIVID 003	NL179	31/03/2012	261	NWL
		06/11/2011	Baseline	NEL
		16/09/2011	Baseline	NWL
		31/05/2014	951	NWL
		26/12/2013	878	NWL
		19/12/2013	863	NWL
		01/11/2013	839	NWL
HZMB 002	WL111	15/10/2013	819	NWL
		24/09/2013	798	NWL
		14/02/2013	573	NWL
		11/12/2012	536	NWL
		11/12/2012	535	NWL

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		12/10/2012	466	NWL
		24/10/2012	475	NWL
		28/05/2012	281	NWL
		29/03/2012	250	NWL
		02/11/2011	Baseline	NWL
		23/05/2016	1251	NWL
		25/08/2014	997	NWL
		21/08/2013	771	NWL
HZMB 001	WL46	13/06/2013	681	NWL
		01/04/2013	617	NWL
		14/02/2013	573	NWL
		29/03/2012	250	NWL
	CH98	02/11/2011	Baseline	NWL
	NL11	02/11/2011	Baseline	NWL
	INLII	07/11/2011	Baseline	NWL
	NL12	02/11/2011	Baseline	NWL
		23/09/2011	Baseline	NWL
	NL33	01/11/2011	Baseline	NEL
	INLOG	05/11/2011	Baseline	NWL
		07/11/2011	Baseline	NWL
	NL46	28/10/2011	Baseline	NWL
	CH153	11/10/2011	Baseline	NWL
		07/11/2001	Baseline	NWL
	NL48	02/11/2011	Baseline	NWL
		16/09/2011	Baseline	NWL
		16/09/2011	Baseline	NWL
	NL75	16/09/2011	Baseline	NWL
		01/11/2011	Baseline	NEL
	NL80	02/11/2011	Baseline	NWL
	NL118	06/09/2011	Baseline	NWL
	NI 400	06/11/2011	Baseline	NEL
	NL120	10/10/2011	Baseline	NWL
		06/11/2011	Baseline	NEL
	NL123	10/10/2011	Baseline	NWL
		06/10/2011	Baseline	NWL
	NL139	01/11/2011	Baseline	NEL

Identification Number	Baseline Identification Number	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
		10/10/2011	Baseline	NEL
		16/09/2011	Baseline	NWL
	NL165	05/11/2011	Baseline	NWL
	INCTOS	02/11/2011	Baseline	NWL
	NL170	06/10/2011	Baseline	NEL
		07/11/2011	Baseline	NWL
	NL188	01/11/2011	Baseline	NWL
		28/10/2011	Baseline	NWL
	NL191	07/09/2011	Baseline	NWL
	NL202	07/11/2011	Baseline	NWL
	INLZUZ	28/10/2011	Baseline	NWL
		07/11/2011	Baseline	NWL
	NL210	05/11/2011	Baseline	NWL
	INLZTO	02/11/2011	Baseline	NWL
		07/09/2011	Baseline	NWL
		05/11/2011	Baseline	NWL
	NL214	02/11/2011	Baseline	NWL
		28/10/2011	Baseline	NWL
	NL220	10/10/2011	Baseline	NEL
	NL224	28/10/2011	Baseline	NWL
	NII 226	05/11/2011	Baseline	NWL
	NL226	17/10/2011	Baseline	WL
	NL230	02/11/2011	Baseline	NWL
	INL230	17/10/2011	Baseline	WL
		28/10/2011	Baseline	NWL
	NL233	06/10/2011	Baseline	NWL
		16/09/2011	Baseline	NWL
		07/11/2011	Baseline	NWL
	NL241	02/11/2011	Baseline	NWL
		16/09/2011	Baseline	NWL
		01/11/2011	Baseline	NEL
	NL244	01/11/2011	Baseline	NWL
		05/09/2011	Baseline	WL
	NL256	02/11/2011	Baseline	NWL
	NII OEO	16/09/2011	Baseline	NWL
	NL258	05/09/2011	Baseline	WL

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
	NL259	07/11/2011	Baseline	NWL
	NL261	01/11/2011	Baseline	NEL
		06/11/2011	Baseline	NEL
	NL264	06/10/2011	Baseline	NEL
		23/09/2011	Baseline	NWL
	NL269	02/11/2011	Baseline	NWL
		05/11/2011	Baseline	NWL
	NL272	02/11/2011	Baseline	NWL
	INL212	28/10/2011	Baseline	NWL
		16/09/2011	Baseline	NWL
	NL278	02/11/2011	Baseline	NWL
	NL279	02/11/2011	Baseline	NWL
	SL42	02/11/2011	Baseline	NWL
	SL43	28/10/2011	Baseline	NWL
		05/11/2011	Baseline	NWL
		02/11/2011	Baseline	NWL
	WL04	17/10/2011	Baseline	WL
		10/10/2011	Baseline	NWL
		16/09/2011	Baseline	NWL
	WL05	01/11/2011	Baseline	NEL
	VVL05	01/11/2011	Baseline	NEL
	WL11	07/11/2011	Baseline	NWL
		17/10/2011	Baseline	WL
	WL25	23/09/2011	Baseline	WL
		16/09/2011	Baseline	NWL
	\\\ 00	02/11/2011	Baseline	WL
	WL88	16/09/2011	Baseline	NWL
	WL116	16/09/2011	Baseline	NWL
	WL124	02/11/2011	Baseline	NWL
	VAII 450	28/10/2011	Baseline	NWL
	WL156	23/09/2011	Baseline	WL
	WL162	16/09/2011	Baseline	NWL
	NL275	23/09/2011	Baseline	WL
		02/11/2011	Baseline	WL
	SL48	17/10/2011	Baseline	WL
		23/09/2011	Baseline	WL

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
	CH108	02/11/2011	Baseline	WL
	CITIO	02/11/2011	Baseline	WL
	CH157	02/11/2011	Baseline	WL
	NL206	07/10/2011	Baseline	WL
	WL28	23/09/2011	Baseline	WL
	WL42	02/11/2011	Baseline	WL
	VVL42	05/09/2011	Baseline	WL
	WL47	17/10/2011	Baseline	WL
	WI 61	17/10/2011	Baseline	WL
	WL61	23/09/2011	Baseline	WL
	WL66	07/11/2011	Baseline	WL
	WI CO	05/09/2011	Baseline	WL
	WL68	05/09/2011	Baseline	WL
		02/11/2011	Baseline	WL
	WL72	02/11/2011	Baseline	WL
		23/09/2011	Baseline	WL
	WL87	23/09/2011	Baseline	WL
	WI 00	02/11/2011	Baseline	WL
	WL88	16/09/2011	Baseline	WL
	WL116	16/09/2011	Baseline	WL
	WII 440	02/11/2011	Baseline	WL
	WL118	02/11/2011	Baseline	WL
	WL123	02/11/2011	Baseline	WL
	WL124	02/11/2011	Baseline	WL
	WII 400	07/11/2011	Baseline	WL
	WL128	02/11/2011	Baseline	WL
		02/11/2011	Baseline	WL
	WL131	02/11/2011	Baseline	WL
		23/09/2011	Baseline	WL
	WL132	23/09/2011	Baseline	WL
	WL137	02/11/2011	Baseline	WL
	WL138	02/11/2011	Baseline	WL
	WL144	02/11/2011	Baseline	WL
	WL145	05/09/2011	Baseline	WL
	WL146	17/10/2011	Baseline	WL
	WL153	07/11/2011	Baseline	WL

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Monthly EM&A Report for June 2016

Identification Number	Baseline Identification	Date (YYYY-MM-DD)	Sighting Number	Area Sighted
	WL157	23/09/2011	Baseline	WL
	WL158	23/09/2011	Baseline	WL
	WI 162	07/11/2011	Baseline	WL
	WL163	02/11/2011	Baseline	WL
	WL165	17/10/2011	Baseline	WL
	WL167	17/10/2011	Baseline	WL
	WL170	07/11/2011	Baseline	WL
	WL171	28/10/2011	Baseline	WL

HZMB 132 2016-05-23_10-49-54_01 MED

HZMB 132 2016-05-23_10-53-54 MED

HZMB 133 LL 2016-05-23_12-14-02_01 MED

HZMB 134 LL 2016-05-23_12-35-03 MED

HZMB 134 LL 2016-05-23_12-37-35 MED

Appendix L – Event Action Plan

Event / Action Plan for Air Quality

Event		Action	n	
	ET Leader	IEC	ER	Contractor
Action Level				
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily.	Check monitoring data submitted by ET; Check Contractor's working method.	1. Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

Event	Action				
	ET Leader	IEC	ER	Contractor	
Limit Level					
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	Contractor on possible	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.	

Event	Action				
	ET Leader	IEC	ER	Contractor	
samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is	

Event / Action Plan for Construction Noise

Event		Action	1	
	ET Leader	IEC	ER	Contractor
Action Level	 Notify IEC and Contractor; Identify source, investigate the causes of exceedance and propose remedial measures; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.
Limit Level	 Inform IEC, ER, EPD and Contractor; Identify source; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event / Action Plan for Water Quality

Event	Action			
	ET Leader	IEC	ER	Contractor
Action level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Repeat measurement on next day of exceedance to confirm findings. 	 Check monitoring data submitted by ET and Contractor's working methods; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented.	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. Amend working methods if appropriate.

Event	Action			
	ET Leader	IEC	ER	Contractor
Action level being exceeded by two or more consecutive sampling days	confirm findings; 2. Identify source(s) of impact; 3. Inform IEC, Contractor and ER; 4. Check monitoring data, all plant,	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER within 3 working days of notification; Implement the agreed mitigation measures; Amend working methods if appropriate.

Event	Action			
	ET Leader	IEC	ER	Contractor
Limit level being exceeded by one sampling day	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. 	1. Check monitoring data submitted by ET and Contractor's working method; 2. Discuss with ET and Contractor on possible remedial actions; 3. Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; 4. Assess the effectiveness of the implemented mitigation measures.	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Amend working methods if appropriate.

Event	Action						
	ET Leader	IEC	ER	Contractor			
Limit level being exceeded by two or more consecutive sampling days	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	1. Check monitoring data submitted by ET and Contractor's working method; 2. Discuss with ET and Contractor on possible remedial actions; 3. Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the ER accordingly.	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 	 Inform the ER and confirm notification of the non-compliance in writing; Take immediate action to avoid further exceedance; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Engineer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 			

Event / Action Plan for Dolphin Monitoring

Action Level	 Repeat statistical data analys to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as result of natural variation or 	submitted by ET and Contractor; 2. Discuss monitoring results and finding with the ET and the Contractor.	Discuss monitoring with the IEC and any other measures proposed by the ET; If ER/SOR is satisfied with the proposal of any other measures, ER/SOR to signify	Inform the ER/SOR and confirm notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the ER/SOR:
	previously observed seasonal differences; 3. Identify source(s) of impact; 4. Inform the IEC, ER/SOR and Contractor; 5. Check monitoring data. 6. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.	a	the agreement in writing on the measures to be implemented.	the IEC and the ER/SOR; 3. Implement the agreed measures.
Limit	Repeat statistical data analys to confirm findings;	s 1. Check monitoring data submitted by ET and	Attend the meeting to discuss with ET, IEC and Contractor	Inform the ER/SOR and confirm notification of the
	 Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor of findings; Check monitoring data; Repeat review to ensure all th 	Contractor; 2. Discuss monitoring results and findings with the ET and the Contractor; 3. Attend the meeting to discuss with ET, ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. 4. Review proposals for additional monitoring and any other mitigation measures submitted	the necessity of additional dolphin monitoring and any other potential mitigation measures. 2. If ER/SOR is satisfied with the proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, ER/SOR to signify the agreement in writing on such proposals and any other mitigation measures. 3. Supervise the implementation	non-compliance in writing; 2. Attend the meeting to discuss with ET, IEC and ER/SOR the necessity of additional dolphin monitoring and any other potential mitigation measures. 3. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary. 4. Implement the agreed additional dolphin monitoring and/or any other mitigation

dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 7. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, ER/SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary.		of additional monitoring and/or any other mitigation measures.	measures.
---	--	--	-----------

China Harbour Engineering Company Limited

Monthly Summary Waste Flow Table for <u>June / 2016</u> (year)

Project: Hong Kong – Zhuhai – Macao Bridge, Hong Kong Boundary Crossing Facilities – Reclamation Works

Contract No.: HY/2010/02

110ject . 11	Floject : Holg Rollg – Zhuhar – Wacao Bridge, Holg Rollg Boundary Crossing Facilities – Reclamation Works — Contract No.: 1117/2010/02											
		Actual	Quantities of Inert	C&D Materials	Generated Mo	onthly		Actual Quantities of C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Surplus Surcharge exported to Macau	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste (see Note 4)	Others, e.g. general refuse (see Note 3)
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan-16	0.0000	0.0000	0.0000	3.0720	0.0000	0.0000	52.4729	0.0000	0.2520	0.0000	0.8000	0.0520
Feb-16	0.0000	0.0000	0.0000	6.3366	0.0000	0.0000	6.1333	0.0000	0.0000	6.0800	0.0000	0.0520
Mar-16	0.0000	0.0000	0.0000	56.1071	0.0000	0.0000	38.3187	0.0000	0.3080	0.0000	0.0000	0.0520
Apr-16	0.0000	0.0000	0.0000	47.2724	3.5710	0.0000	18.7380	0.0000	0.2240	0.0000	0.0000	0.3662
May-16	0.0000	0.0000	0.0000	24.8600	93.8100	0.0000	45.2723	0.0000	0.0000	0.0000	0.0000	0.0715
Jun-16	0.0000	0.1560	0.0000	29.1938	96.1830	0.0000	27.8820	0.0000	0.0000	0.0000	0.0000	0.0650
Sub-total	0.0000	0.1560	0.0000	166.8419	193.5640	0.0000	188.8172	0.0000	0.7840	6.0800	0.8000	0.6587
Jul-16												
Aug-16												
Sep-16												
Oct-16												
Nov-16												
Dec-16												
Total	0.0000	0.1560	0.0000	166.8419	193.5640	0.0000	188.8172	0.0000	0.7840	6.0800	0.8000	0.6587

Notes:

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles / containers / sheets / foam / barrier from packaging materials.
- (3) Use the conversion factor: 1 full load of dumping truck being equivalent to 6.5m³ by volume.
- (4) Chemical waste refer to spent "battery" and "oil with water".

Appendix N

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in this month	Total no. recorded since project commencement
1-Hour TSP	Action	-	-
	Limit	-	-
24-Hour TSP	Action	-	-
	Limit	-	•
Noise	Action	-	•
	Limit	-	-
Water Quality	Action	-	2
	Limit	-	3
Dolphin Monitoring	Action	-	-
	Limit	-	-

Remarks: Exceedances which are not project-related are not presented in this table.

Cumulative statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints	-	-	-	-	35
Notification of summons	-	-	-	-	2
Successful Prosecutions	-	-	-	-	2